

Progress of Theoretical and Experimental Physics

Review of Particle Physics

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

The Physical Society of Japan

REVIEW OF PARTICLE PHYSICS*

Particle Data Group

Abstract

The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons.

The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings.

The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.

The 2020 edition of the Review of Particle Physics should be cited as:
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

DOI: 10.1093/ptep/ptaa104

For the online version see pdg.lbl.gov:

(c)2020 Regents of the University of California

*The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; by the Italian National Institute of Nuclear Physics (INFN); and by the Physical Society of Japan (JPS). Individual collaborators receive support for their PDG activities from their respective funding agencies.

Particle Data Group

P.A. Zyla, ${ }^{1}$ R.M. Barnett, ${ }^{1}$ J. Beringer, ${ }^{1}$ O. Dahl, ${ }^{1}$ D.A. Dwyer, ${ }^{1}$ D.E. Groom, ${ }^{1}$ C.-J. Lin, ${ }^{1}$ K.S. Lugovsky, ${ }^{1,2}$ E. Pianori, ${ }^{1}$ D.J. Robinson, ${ }^{1}$ C.G. Wohl, ${ }^{1}$ W.-M. Yao, ${ }^{1}$ K. Agashe, ${ }^{3}$ G. Aielli, ${ }^{4}$ B.C. Allanach, ${ }^{5}$ C. Amsler, ${ }^{6}$ M. Antonelli, ${ }^{7}$ E.C. Aschenauer, ${ }^{8}$ D.M. Asner, ${ }^{8}$ H. Baer, ${ }^{9}$ Sw. Banerjee, ${ }^{10}$ L. Baudis, ${ }^{11}$ C.W. Bauer, ${ }^{1}$ J.J. Beatty,,12 V.I. Belousov, ${ }^{2}$ S. Bethke, ${ }^{13}$ A. Bettini*, ${ }^{14}$ O. Biebel, ${ }^{15}$ K.M. Black, ${ }^{16}$ E. Blucher, ${ }^{17}$ O. Buchmuller, ${ }^{18}$ V. Burkert, ${ }^{19}$ M.A. Bychkov, ${ }^{20}$ R.N. Cahn, ${ }^{1}$ M. Carena,,${ }^{21,17,22}$ A. Ceccucci, ${ }^{23}$ A. Cerri, ${ }^{24}$ D. Chakraborty, ${ }^{25}$ R.Sekhar Chivukula, ${ }^{26}$ G. Cowan, ${ }^{27}$ G. D'Ambrosio, ${ }^{28}$ T. Damour, ${ }^{29}$ D. de Florian, ${ }^{30}$ A. de Gouvêa, ${ }^{31}$ T. DeGrand, ${ }^{32}$ P. de Jong, ${ }^{33}$ G. Dissertori, ${ }^{34}$ B.A. Dobrescu, ${ }^{21}$ M. D'Onofrio, ${ }^{35}$ M. Doser, ${ }^{23}$ M. Drees, ${ }^{36}$ H.K. Dreiner, ${ }^{36}$ P. Eerola, ${ }^{37}$ U. Egede, ${ }^{38}$ S. Eidelman, ${ }^{39,40}$ J. Ellis, ${ }^{41,23}$ J. Erler, ${ }^{42,43}$ V.V. Ezhela, ${ }^{2}$ W. Fetscher, ${ }^{34}$ B.D. Fields, ${ }^{44,45}$ B. Foster, ${ }^{46,47,48}$ A. Freitas, ${ }^{49}$ H. Gallagher, ${ }^{50}$ L. Garren, ${ }^{21}$ H.-J. Gerber ${ }^{\dagger},{ }^{34}$ G. Gerbier, ${ }^{51}$ T. Gershon, ${ }^{52}$ Y. Gershtein, ${ }^{53}$ T. Gherghetta, ${ }^{54}$ A.A. Godizov, ${ }^{2}$ M.C. Gonzalez-Garcia,,${ }^{55,56,57}$ M. Goodman, ${ }^{58}$ C. Grab, ${ }^{34}$ A.V. Gritsan, ${ }^{59}$ C. Grojean, ${ }^{60,61}$ M. Grünewald, ${ }^{62}$ A. Gurtu, ${ }^{63,23}$ T. Gutsche, ${ }^{64}$ H.E. Haber, ${ }^{65}$ C. Hanhart, ${ }^{66}$ S. Hashimoto, ${ }^{67}$ Y. Hayato, ${ }^{68}$ A. Hebecker, ${ }^{69}$ S. Heinemeyer, ${ }^{70,71,72}$ B. Heltsley, ${ }^{73}$ J. J. Hernández-Rey ${ }^{\ddagger},{ }^{74}$ K. Hikasa, ${ }^{75}$ J. Hisano, ${ }^{76}$ A. Höcker, ${ }^{23}$ J. Holder, ${ }^{77,78}$ A. Holtkamp, ${ }^{23}$ J. Huston, ${ }^{79}$ T. Hyodo, ${ }^{80}$ K.F. Johnson, ${ }^{81}$ M. Kado, ${ }^{82,83,84}$ M. Karliner, ${ }^{85}$ U.F. Katz, ${ }^{86}$ M. Kenzie, ${ }^{52}$ V.A. Khoze, ${ }^{87,88}$ S.R. Klein, ${ }^{89,90}$ E. Klempt, ${ }^{91}$ R.V. Kowalewski, ${ }^{92}$ F. Krauss, ${ }^{87}$ M. Kreps, ${ }^{52}$ B. Krusche, ${ }^{93}$ Y. Kwon, ${ }^{94}$ O. Lahav, ${ }^{95}$ J. Laiho, ${ }^{96}$ L.P. Lellouch, ${ }^{97}$ J. Lesgourgues, ${ }^{98}$ A. R. Liddle, ${ }^{99,100}$ Z. Ligeti, ${ }^{1}$ C. Lippmann, ${ }^{101}$ T.M. Liss, ${ }^{102}$ L. Littenberg, ${ }^{8}$ C. Lourenço, ${ }^{23}$ S.B. Lugovsky, ${ }^{2}$ A. Lusiani, ${ }^{103,104}$ Y. Makida, ${ }^{67}$ F. Maltoni, ${ }^{105,106}$ T. Mannel, ${ }^{107}$ A.V. Manohar, ${ }^{26}$ W.J. Marciano, ${ }^{8}$ A. Masoni, ${ }^{108}$ J. Matthews, ${ }^{109}$ U.-G. Meißner, ${ }^{91,66}$ M. Mikhasenko, ${ }^{23}$ D.J. Miller, ${ }^{110}$ D. Milstead, ${ }^{111}$ R.E. Mitchell, ${ }^{112}$ K. Mönig, ${ }^{113}$ P. Molaro, ${ }^{114}$ F. Moortgat, ${ }^{23,115}$ M. Moskovic, ${ }^{23}$ K. Nakamura, ${ }^{116,67}$ M. Narain, ${ }^{117}$ P. Nason, ${ }^{118,119}$ S. Navas ${ }^{\ddagger},{ }^{120}$ M. Neubert, ${ }^{121}$ P. Nevski§ ${ }^{\S},{ }^{8}$ Y. Nir, ${ }^{122}$ K.A. Olive, ${ }^{54}$ C. Patrignani, ${ }^{123}$ J.A. Peacock, ${ }^{124}$ S.T. Petcov, ${ }^{125,116,126}$ V.A. Petrov, ${ }^{2}$ A. Pich, ${ }^{74}$ A. Piepke, ${ }^{127}$ A. Pomarol, ${ }^{128,129}$ S. Profumo, ${ }^{65}$ A. Quadt, ${ }^{130}$ K. Rabbertz, ${ }^{131}$ J. Rademacker, ${ }^{132}$ G. Raffelt, ${ }^{133}$ H. Ramani, ${ }^{1}$ M. Ramsey-Musolf, ${ }^{134,135,136}$ B.N. Ratcliff, ${ }^{137}$ P. Richardson, ${ }^{87}$ A. Ringwald, ${ }^{47}$ S. Roesler, ${ }^{23}$ S. Rolli, ${ }^{138}$ A. Romaniouk, ${ }^{139}$ L.J. Rosenberg, ${ }^{140}$ J.L. Rosner, ${ }^{17}$ G. Rybka, ${ }^{140}$ M. Ryskin, ${ }^{88}$ R.A. Ryutin, ${ }^{2}$ Y. Sakai, ${ }^{67}$ G.P. Salam, ${ }^{23,141,142}$ S. Sarkar, ${ }^{142}$ F. Sauli ${ }^{\S},{ }^{23}$ O. Schneider, ${ }^{143}$ K. Scholberg, ${ }^{144}$ A.J. Schwartz, ${ }^{145}$ J. Schwiening, ${ }^{101}$ D. Scott, ${ }^{146}$ V. Sharma, ${ }^{26}$ S.R. Sharpe, ${ }^{140}$ T. Shutt, ${ }^{137}$ M. Silari, ${ }^{23}$ T. Sjöstrand, ${ }^{147}$ P. Skands, ${ }^{38}{ }^{\text {T. Skwarnicki, }}{ }^{96}$ G.F. Smoot, ${ }^{148,149,90,1}$ A. Soffer, ${ }^{85}$ M.S. Sozzi, ${ }^{150}$ S. Spanier, ${ }^{151}$ C. Spiering, ${ }^{113}$ A. Stahl, ${ }^{152}$ S.L. Stone, ${ }^{96}$ Y. Sumino, ${ }^{75}$ T. Sumiyoshi, ${ }^{153}$ M.J. Syphers, ${ }^{25,21}$ F. Takahashi, ${ }^{75}$ M. Tanabashi, ${ }^{154,76}$ J. Tanaka, ${ }^{155}$ M. Taševský, ${ }^{156}$ K. Terashi, ${ }^{155}$ J. Terning, ${ }^{157}$ U. Thoma, ${ }^{91}$ R.S. Thorne, ${ }^{95}$ L. Tiator, ${ }^{158}$ M. Titov, ${ }^{51}$ N.P. Tkachenko, ${ }^{2}$ D.R. Tovey, ${ }^{159}$ K. Trabelsi, ${ }^{84}$ P. Urquijo, ${ }^{160}$ G. Valencia, ${ }^{38}$ R. Van de Water, ${ }^{21}$ N. Varelas, ${ }^{161}$ G. Venanzoni, ${ }^{104}$ L. Verde, ${ }^{57,56}$ M.G. Vincter, ${ }^{162}$ P. Vogel, ${ }^{163}$ W. Vogelsang, ${ }^{64}$ A. Vogt, ${ }^{164}$ V. Vorobyev, ${ }^{39,40}$ S.P. Wakely, ${ }^{17,22}$ W. Walkowiak, ${ }^{107}$ C.W. Walter, ${ }^{144}$ D. Wands, ${ }^{165}$ M.O. Wascko, ${ }^{18}$ D.H. Weinberg, ${ }^{166}$ E.J. Weinberg, ${ }_{167}$ M. White, ${ }^{90,1}$ L.R. Wiencke, ${ }^{168}$ S. Willocq, ${ }^{136}$ C.L. Woody, ${ }^{8}$ R.L. Workman, ${ }^{169}$ M. Yokoyama, ${ }^{170,116}$ R. Yoshida, ${ }^{19}$ G. Zanderighi, ${ }^{13}$ G.P. Zeller, ${ }^{21}$ O.V. Zenin,,${ }^{2,171}$ R.-Y. Zhu, ${ }^{172}$ S.-L. Zhu, ${ }^{173}$ F. Zimmermann ${ }^{23}$

Technical Associates: J. Anderson, ${ }^{1}$ T. Basaglia, ${ }^{23}$ V.S. Lugovsky, ${ }^{2}$ P. Schaffner, ${ }^{1}$ W. Zheng, ${ }^{174}$

1. Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2. Institute for High Energy Physics, COMPAS Group, Protvino, Russia
3. University of Maryland, Department of Physics, College Park, MD, USA
4. Università degli Studi di Roma "Tor Vergata", Rome, Italy
5. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
6. Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Vienna, Austria
7. Lab. Nazionali di Frascati dell'INFN, Frascati, Italy
8. Brookhaven National Laboratory, Nuclear and Particle Physics Directorate, Upton, NY, USA
9. University of Oklahoma, Department of Physics and Astronomy, Norman, OK, USA
10. University of Louisville, Louisville, KY, USA
11. Universität Zürich, Physik-Institut, Zürich, Switzerland
12. Ohio State University, Department of Physics, Columbus, OH, USA
13. Max-Planck-Institute of Physics, Munich, Germany
14. INFN and Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy
15. Ludwig-Maximilians-Universität, Fakultät für Physik, München, Germany
16. University of Wisconsin, Department of Physics, Madison, WI, USA
17. University of Chicago, Enrico Fermi Institute and Department of Physics, Chicago, IL, USA

[^0]18. Imperial College, High Energy Physics Group, Blackett Laboratory, London, UK
19. Jefferson Lab, Newport News, VA, USA
20. University of Virginia, Department of Physics, Charlottesville, VA, USA
21. Fermi National Accelerator Laboratory, Batavia, IL, USA
22. University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL, USA
23. CERN, European Organization for Nuclear Research, Genève, Switzerland
24. Department of Physics and Astronomy, University of Sussex, Brighton, UK
25. Department of Physics, Northern Illinois University, DeKalb, IL, USA
26. Department of Physics, University of California at San Diego, La Jolla, CA, USA
27. Department of Physics, Royal Holloway, University of London, London, UK
28. INFN Sezione di Napoli, Napoli, Italy
29. Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
30. UNSAM - Universidad Nacional de San Martin, International Center for Advanced Studies (ICAS) and Instituto de Ciencias Físicas (ICIFI), Buenos Aires, Argentina
31. Northwestern University, Department of Physics and Astronomy, Evanston, IL, USA
32. University of Colorado at Boulder, Department of Physics, Boulder, CO, USA
33. Nikhef and University of Amsterdam, Amsterdam, The Netherlands
34. ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
35. University of Liverpool, Department of Physics, Liverpool, UK
36. Universität Bonn, Physikalisches Institut, Bonn, Germany
37. University of Helsinki, Department of Physics, Helsinki, Finland
38. Monash University, School of Physics and Astronomy, Melbourne, Australia
39. Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
40. Novosibirsk State University, Novosibirsk, Russia
41. King's College London, Department of Physics, London, UK
42. Universidad Nacional Autónoma de México, Departamento de Física Teórica, Instituto de Física, México, Mexico
43. Helmholtz Institute Mainz, Johannes Gutenberg-University, Mainz, Germany
44. University of Illinois, Department of Astronomy, Urbana, IL, USA
45. University of Illinois, Department of Physics, Urbana, IL, USA
46. University of Hamburg, Hamburg, Germany
47. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
48. University of Oxford, Denys Wilkinson Building, Department of Physics, Oxford, UK
49. University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA, USA
50. Tufts University, Department of Physics and Astronomy, Medford, MA, USA
51. CEA Saclay, DSM/IRFU/SPP, Gif-sur-Yvette, France
52. University of Warwick, Department of Physics, Coventry, UK
53. Department of Physics and Astronomy, Rutgers University, NJ, USA
54. University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA
55. CN Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, USA
56. Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
57. Instituto de ciencias del Cosmos (ICC), University of Barcelona, Barcelona, Spain
58. Argonne National Laboratory, Argonne, IL, USA
59. Johns Hopkins University, Baltimore, MD, USA
60. Theoriegruppe, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
61. Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
62. University College Dublin, School of Physics, Dublin, Ireland
63. Physics Department, Kyung Hee University, Seoul 02447, Republic of Korea
64. Universität Tübingen, Institut für Theoretische Physik, Tübingen, Germany
65. Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
66. Institut für Kernphysik and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
67. KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
68. Kamioka Observatory, ICRR, The University of Tokyo, Tokyo, Japan
69. Heidelberg University, Institute for Theoretical Physics, Heidelberg, Germany
70. Instituto de Física Teórica (UAM/CSIC), Universidad Autónoma de Madrid, Madrid, Spain
71. Campus of International Excellence UAM+CSIC, Universidad Autònoma de Madrid, Madrid, Spain
72. Instituto de Física de Cantabria, CSIC-UC, Santander, Spain
73. Cornell University, Laboratory of Elementary-Particle Physics, Ithaca, NY, USA
74. IFIC - Instituto de Física Corpuscular, Universitat de València - C.S.I.C., Valencia, Spain
75. Tohoku University, Department of Physics, Sendai, Japan
76. Nagoya University, Kobayashi-Maskawa Institute, Nagoya, Japan
77. University of Delaware, Department of Physics and Astronomy, Newark, DE, USA
78. University of Delaware, Bartol Research Institute, Newark, DE, USA
79. Michigan State University, Dept. of Physics and Astronomy, East Lansing, MI, USA
80. Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
81. Florida State University, Department of Physics, Tallahassee, FL, USA
82. Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
83. INFN Sezione di Roma, Rome, Italy
84. IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
85. Department of Particle Physics, Tel-Aviv University, Tel Aviv, Israel
86. Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erlangen, Germany
87. University of Durham, Institute for Particle Physics Phenomenology, Department of Physics, Durham, UK
88. Petersburg Nuclear Physics Institute, Petersburg, Russia
89. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
90. University of California, Department of Physics, Berkeley, CA, USA
91. Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
92. University of Victoria, Victoria, BC, Canada
93. University of Basel, Institute of Physics, Basel, Switzerland
94. Yonsei University, Department of Physics, Seoul, Republic of Korea
95. University College London, Department of Physics and Astronomy, London, UK
96. Syracuse University, Department of Physics, Syracuse, NY, USA
97. Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
98. Institute of Theoretical Particle Physics and Cosmology (TTK), RWTH, Aachen, Germany
99. Perimeter Institute for Theoretical Physics, Waterloo, Canada
100. Instituto de Astrofisica e Ciencias do Espaco, Universidade de Lisboa, Lisbon, Portugal
101. GSI, Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
102. Division of Science, City College of New York, New York, NY, USA
103. Scuola Normale Superiore, Pisa, Italy
104. INFN Sezione di Pisa, Pisa, Italy
105. Universitè catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve, Belgium
106. Università di Bologna and INFN, Dipartimento di Fisica e Astronomia, Bologna, Italy
107. Universität Siegen, Department für Physik, Siegen, Germany
108. INFN Sezione di Cagliari, Monserrato, Italy
109. Louisana State University, Department of Physics and Astronomy, Baton Rouge, LA, USA
110. University of Glasgow, School of Physics and Astronomy, Glasgow, UK
111. Stockholms Universitet, AlbaNova University Centre, Fysikum, Stockholm, Sweden
112. Indiana University, Department of Physics, Bloomington, IN, USA
113. DESY, Zeuthen, Germany
114. INAF-OATS, Trieste, Italy
115. University of Ghent, Dept. of Physics and Astronomy, Ghent, Belgium
116. University of Tokyo, Kavli IPMU (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa, Japan
117. Brown University, Department of Physics, Providence, RI, USA
118. INFN Sezione di Milano-Bicocca, Piazza della Scienza, Milano, Italy
119. Dip. di Fisica "G. Occhialini", Università di Milano-Bicocca, Milano, Italy
120. Universidad de Granada, Dpto. de Física Teórica y del Cosmos ε_{3} C.A.F.P.E., Granada, Spain
121. Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz, Germany
122. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
123. Università di Bologna and INFN, Dip. Scienze per la Qualità della Vita, Rimini, Italy
124. University of Edinburgh, Royal Observatory, Institute for Astronomy, Edinburgh, UK
125. SISSA/INFN, Trieste, Italy
126. INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria
127. University of Alabama, Department of Physics and Astronomy, Tuscaloosa, AL, USA
128. Universitat Autònoma de Barcelona, Departament de Física, Barcelona, Spain
129. IFAE, Universitat Autònoma de Barcelona, Barcelona, Spain
130. Georg-August-Universität Göttingen, II. Physikalisches Institut, Göttingen, Germany
131. Karlsruhe Institute of Technology, Karlsruhe, Germany
132. University of Bristol, HH Wills Physics Laboratory, Bristol, UK
133. Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
134. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
135. Shanghai Jiao Tong University, Shanghai, China
136. University of Massachusetts, Department of Physics, Amherst, MA, USA
137. SLAC National Accelerator Laboratory, Menlo Park, CA, USA
138. DOE, Washington, $D C, U S A$
139. National Research Nuclear University "MEPhI", Moscow, Russia
140. University of Washington, Department of Physics, Seattle, WA, USA
141. LPTHE, UPMC Université de Paris 6, Paris, France
142. University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford, UK
143. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
144. Duke University, Physics Department, Durham, NC, USA
145. University of Cincinnati, Department of Physics, Cincinnati, OH, USA
146. University of British Columbia, Department of Physics and Astronomy, Vancouver, BC, Canada
147. Lund University, Department of Astronomy and Theoretical Physics, Lund, Sweden
148. The Hong Kong University of Science and Technology, Kowloon, Hong Kong
149. Paris Centre for Cosmological Physics, APC (CNRS), Université de Paris, Paris, France
150. Pisa University, Pisa, Italy
151. University of Tennessee, Department of Physics and Astronomy, Knoxville, TN, USA
152. III. Physikalisches Institut, Physikzentrum, RWTH Aachen University, Aachen, Germany
153. Tokyo Metropolitan University, High Energy Physics Laboratory, Tokyo, Japan
154. Department of Physics, Nagoya University, Nagoya, Japan
155. International Center for Elementary Particle Physics (ICEPP), University of Tokyo, Tokyo, Japan
156. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
157. Department of Physics, University of California, Davis, CA, USA
158. Institut für Kernphysik, Johannes Gutenberg University, Mainz, Germany
159. University of Sheffield, Department of Physics and Astronomy, Sheffield, UK
160. University of Melbourne, School of Physics, Victoria, Australia
161. University of Illinois at Chicago, Chicago, IL, USA
162. Carleton University, Department of Physics, Ottawa, ON, Canada
163. California Institute of Technology, Kellogg Radiation Laboratory, Pasadena, CA, USA
164. The University of Liverpool, Division of Theoretical Physics, Department of Mathematical Sciences, Liverpool, UK
165. University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth, UK
166. Ohio State University, Department of Astronomy and CCAPP, Columbus, OH, USA
167. Columbia University, Department of Physics, New York, NY, USA
168. Dept. of Physics, Colorado School of Mines, Golden, CO, USA
169. George Washington University Virginia Campus, Department of Physics, Ashburn, VA, USA
170. University of Tokyo, Department of Physics, Tokyo, Japan
171. Moscow Institute of Physics and Technology, Dolgoprudny, Russia
172. California Institute of Technology, High Energy Physics, Pasadena, CA, USA
173. School of Physics, Peking University, Beijing, China
174. Institute of High Energy Physics, Beijing, China

HIGHLIGHTS OF THE 2020 EDITION OF THE REVIEW OF PARTICLE PHYSICS

All PDG data and review articles are available online at pdg.lbl.gov.

878 new papers with 3,324 new measurements

- 411 new papers from $L H C$ experiments (ATLAS, CMS and LHCb).
- Extensive up-to-date Higgs boson coverage from 117 new papers with 201 measurements, including latest results on mass, couplings, decay width and branching ratios, plus searches for other neutral and charged Higgs bosons.
- Supersymmetry: 83 new papers with major exclusions.
- Top quark: 36 new papers provide latest results on mass, coupling, and constraints on various models of physics beyond the Standard Model involving top-quark production and decay.
- Latest from B-meson physics: 85 papers and 356 measurements, including observations of new excited Λ_{b} baryons and new pentaquark states.
- 5 new sections including limits of cross sections in WIMP and Dark Matter Searches for masses in the GeV range (65 new entries, including also older results).
- Heavy Neutral Lepton Listings reorganized and extended.
- New proton charge radius measurements appear to resolve charge radius puzzle.

120 reviews (most are revised)

- New reviews on:
- High Energy Soft QCD and Diffraction.
- Determination of CKM Angles from B Hadrons.
- Significant update/revision to reviews on:
- Major revision of Physical Constants following the 2019 redefinition of units in the International System of Units.
- Electroweak Model and CKM reviews provide latest fits of Standard Model parameters.
- Structure Functions review includes new discussion on transverse momentum dependent distributions (TMDs).
- Top Quark review summarizes latest results and constraints on new physics from top quark.
- $D^{0}-\bar{D}^{0}$ Mixing summarizes latest results and discusses implications of first observation of CP violation in D^{0} decays.
- Completely rewritten review on Neutrino Masses, Mixing and Oscillations discusses latest results from solar, atmospheric, reactor and accelerator-based neutrino experiments and provides global fit values for mixing parameters and mass spectrum.
- Pentaquarks review updated based on new LHCb measurement of hidden-charm pentaquarks.
- Monte Carlo Neutrino Generators includes new extensive discussion on nuclear scattering.
- Completely rewritten review on Dark Matter.
- Experimental Tests of Gravitational Theory revised and extended to include gravitational waves.

VOLUME 1: SUMMARY TABLES AND REVIEWS

Highlights	6
Introduction	11
History plots	19
Online particle physics information (rev.)	20
SUMMARY TABLES	
Gauge and Higgs bosons	31
Leptons	34
Quarks	37
Mesons	38
Meson quick reference table	91
Baryon quick reference table	92
Baryons	93
Searches not in Other Sections	111
Tests of conservation laws	113
REVIEWS, TABLES, AND PLOTS	
Constants, Units, Atomic and Nuclear Properties	
1. Physical constants (rev.)	137
2. Astrophysical constants (rev.)	138
3. International system of units (SI)	140
4. Periodic table of the elements (rev.)	141
5. Electronic structure of the elements	142
6. Atomic and nuclear properties of materials	144
7. Electromagnetic relations	146
8. Naming scheme for hadrons (rev.)	148
Standard Model and Related Topics	
9. Quantum chromodynamics (rev.)	153
10. Electroweak model and constraints on new physics (rev.)	180
11. Higgs boson physics, status of (rev.)	203
12. CKM quark-mixing matrix (rev.)	261
13. $C P$ violation in the quark sector (rev.)	271
14. Neutrino masses, mixing, and oscillations (new)	285
15. Quark model (rev.)	312
16. Heavy-quark \& soft-collinear effective theory (rev.)	325
17. Lattice quantum chromodynamics (rev.)	333
18. Structure functions (rev.)	347
19. Fragmentation functions in $e^{+} e^{-}, e p$ and $p p$ collisions (rev.)	368
20. High Energy Soft QCD and Diffraction (new)	385
Astrophysics and Cosmology	
21. Experimental tests of gravitational theory (rev.)	409
22. Big-Bang cosmology (rev.)	422
23. Inflation (rev.)	435
24. Big-Bang nucleosynthesis (rev.)	451
25. Cosmological parameters (rev.)	458
26. Neutrinos in cosmology (rev.)	467
27. Dark matter (new)	474
28. Dark energy (rev.)	490
29. Cosmic microwave background (rev.)	499
30. Cosmic rays (rev.)	510

Experimental Methods and Colliders
31. Accelerator physics of colliders (rev.)
32. High-energy collider parameters (rev.) 529
33. Neutrino beam lines at high-energy 534 proton synchrotrons (rev.)
34. Passage of particles through matter (rev.) 535
35. Particle detectors at accelerators (rev.) 551
36. Particle detectors for non-accelerator phys. (rev.) 589
37. Radioactivity and radiation protection (rev.) 612
38. Commonly used radioactive sources (rev.) 618

Mathematical Tools
39. Probability (rev.) 621
40. Statistics (rev.) 626
41. Monte Carlo techniques (rev.) 642
42. Monte Carlo event generators 646
43. Monte Carlo neutrino event generators (rev.) 657
44. Monte Carlo particle numbering scheme (rev.) 661
45. Clebsch-Gordan coefficients, spherical 665 harmonics, and d functions
46. $\mathrm{SU}(3)$ isoscalar factors and representation 666 matrices
47. $\mathrm{SU}(n)$ multiplets and Young diagrams 667

Kinematics, Cross-Section Formulae, and Plots
48. Kinematics (rev.) 671
49. Resonances (rev.) 675
50. Cross-section formulae for specific processes (rev.) 682
51. Neutrino cross section measurements (rev.) 691
52. Plots of cross sections and related 696 quantities (rev.)

Particle Properties
Gauge Bosons
53. Mass and width of the W boson (rev.) 715
54. Z boson 717
$\frac{\text { Charged Leptons }}{55 \text {. Muon anomalous magnetic moment (rev.) }} 722$
56. Muon decay parameters (rev.) 725
57. τ branching fractions (rev.) 728
58. τ-lepton decay parameters 731
$\frac{\text { Quarks }}{59 . \text { Quark masses (rev.) }}$
60. Top quark (rev.)
Mesons61. Form factors for radiative762
pion \& kaon decays (rev.)
62. Scalar mesons below 2 GeV (rev.)
63. Pseudoscalar and pseudovector mesons
in the 1400 MeV region (rev.)
64. Rare kaon decays (rev.)
774
65. $C P T$ invariance tests in neutral kaon decay (rev.) 779
66. $V_{u d}, V_{u s}$, Cabibbo angle, 781
and CKM unitarity (rev.)
67. $C P$-violation in K_{L} decays784
68. Review of multibody charm analyses (rev.) 788
69. $D^{0}-\bar{D}^{0}$ mixing (rev.) 792
70. D_{s}^{+}branching fractions (rev.) 801
71. Leptonic decays of charged pseudoscalar 803
mesons (rev.)
72. Production and decay of b-flavored hadrons (rev.) 814
73. Polarization in B decays (rev.) 824
74. $B^{0}-\bar{B}^{0}$ mixing (rev.) 828
75. Semileptonic B decays, $V_{c b}$ and $V_{u b}$ (rev.) 835
76. CKM angles from B hadrons, 849determination of (new)
77. Spectroscopy of mesons containing854
two heavy quarks (rev.)
78. Non- $q \bar{q}$ mesons (rev.)861
Baryons
79. Baryon decay parameters 868
80. N and Δ resonances (rev.) 869
81. Baryon magnetic moments 874
82. Λ and Σ resonances (rev.) 875
83. Pole structure of the Λ (1405) region (rev.) 878
84. Charmed baryons (rev.) 879
85. Pentaquarks (rev.) 881
Hypothetical Particles and Concepts
86. Extra dimensions (rev.) 889
87. W^{\prime}-boson searches (rev.) 897
88. Z^{\prime}-boson searches (rev.) 900
89. Supersymmetry: theory (rev.) 905
90. Supersymmetry: experiment (rev.) 923
91. Axions and other similar particles (rev.) 939
92. Quark and lepton compositeness, 953searches for (rev.)
93. Dynamical electroweak symmetry breaking: 958
implications of the $H(0)$ (rev.)
94. Grand unified theories (rev.) 971
95. Leptoquarks (rev.) 986
96. Magnetic monopoles (rev.) 989

VOLUME 2: PARTICLE LISTINGS (available online only)

Illustrative key and abbreviations
 Illustrative key
 999

Abbreviations 1000
Gauge and Higgs bosons
(γ, gluon, graviton, W, Z, Higgs, Axions) 1013
Leptons
(e, μ, τ, Heavy-charged lepton searches, 1101
Neutrino properties, Number of neutrino typesDouble- β decay, Neutrino mixing,Heavy-neutral lepton searches)
Quarks
($u, d, s, c, b, t, b^{\prime}, t^{\prime}$ ($4^{t h}$ gen.), Free quarks)1173
Mesons
Light unflavored $(\pi, \rho, a, b)(\eta, \omega, f, \phi, h)$ 1209
Other light unflavored 1332
Strange (K, K^{*}) 1337
Charmed (D, D^{*}) 1391
Charmed, strange ($D_{s}, D_{s}^{*}, D_{s J}$) 1448
Bottom ($B, V_{c b} / V_{u b}, B^{*}, B_{J}^{*}$) 1465
Bottom, strange $\left(B_{s}, B_{s}^{*}, B_{s J}^{*}\right)$ 1640
Bottom, charmed (B_{c}) 1664
$c \bar{c}\left(\eta_{c}, J / \psi(1 S), \chi_{c}, h_{c}, \psi\right)$ 1668
$b \bar{b}\left(\eta_{b}, \Upsilon, \chi_{b}, h_{b}\right)$ 1782
Baryons
N 1825
Δ 1878
Λ 1902
Σ 1927
Ξ 1959
Ω 1971
Charmed $\left(\Lambda_{c}, \Sigma_{c}, \Xi_{c}, \Omega_{c}\right)$ 1974
Doubly charmed $\left(\Xi_{c c}\right)$ 1996
Bottom ($\Lambda_{b}, \Sigma_{b}, \Xi_{b}, \Omega_{b}, b$-baryon admixture) 1997
Exotic baryons (P_{c} pentaquarks) 2014
Searches not in Other Sections
Magnetic monopole searches2017
Supersymmetric particle searches 2019
Technicolor 2062
Searches for quark and lepton compositeness 2063
Extra dimensions 2067
WIMP and dark matter searches 2073
Other particle searches 2085

INTRODUCTION

1. Overview 11
2. Particle Listings responsibilities 11
3. Consultants 12
4. Naming scheme for hadrons 15
5. Procedures 15
5.1 Selection and treatment of data 15
5.2 Averages and fits 15
5.2.1 Treatment of errors 15
5.2.2 Unconstrained averaging 16
5.2.3 Constrained fits 16
5.3 Rounding 17
5.4 Discussion 17
History plots 19
ONLINE PARTICLE PHYSICS INFORMATION
6. Introduction 20
7. Particle Data Group (PDG) resources 20
8. Particle physics information platforms 20
9. Literature databases 20
10. Particle physics journals and conference proceedings series 21
11. Conference databases 21
12. Research institutions 21
13. People 21
14. Experiments 21
15. Jobs 21
16. Software repositories 22
17. Data repositories 22
18. Data preservation 24
19. Particle physics education and outreach sites 24

Introduction

1 Overview

The Review of Particle Physics is a comprehensive review of the field of Particle Physics and of related areas in Cosmology. It is divided into two volumes. Volume 1 includes the "Summary Tables" and "Reviews, Tables, and Plots". Volume 2 consists of the "Particle Listings".

The Review is updated each year and made available on the PDG website (pdg.lbl.gov). In even-numbered years, the Review is also published in a journal and printed as the $P D G$ Book together with an abridged Particle Physics Booklet containing Summary Tables and essential tables, figures, and equations from selected review articles. This edition is an updating through January 2020.

The Summary Tables give our best values and limits for particle properties such as masses, widths or lifetimes, and branching fractions, as well as an extensive summary of searches for hypothetical particles and a summary of experimental tests of conservation laws.

The 96 review articles in Reviews, Tables and Plots cover a wide variety of theoretical and experimental topics. Together with the Summary Tables they provide a quick reference for the practicing particle physicist. Two more review articles, Online Particle Physics Information and Tests of Conservation Laws, can be found in the Introduction and Summary Tables, respectively.

The Particle Listings are a compilation/evaluation of data on particle properties. They contain all the data used to get the values given in the Summary Tables. They also give information on unconfirmed particles and particle searches. In this edition, the Particle Listings include 3,324 new measurements from 878 papers, in addition to the 41,371 measurements from 11,322 papers that first appeared in previous editions [1]. 22 review articles are part of the Particle Listings and address specific aspects of the data presented in the Listings. Because of the large quantity of data, the Particle Listings are not an archive of all published data on particle properties. We refer interested readers to earlier editions for data now considered to be obsolete.

We organize the particles into six categories:

- Gauge and Higgs bosons
- Leptons
- Quarks
- Mesons
- Baryons
- Searches not in other sections

The last category only includes searches for particles that do not belong to the previous groups. For example, it includes searches for supersymmetric particles, compositeness and extra dimensions, while searches for heavy charged leptons and massive neutrinos are with the leptons.

In Sec. 2 of this Introduction, we list the main areas of responsibility of the authors of the Particle Listings. Our many consultants, without whom we would not have been able to produce this Review, are acknowledged in Sec. 3. In Sec. 4, we mention briefly the naming scheme for hadrons, which was extended in the previous edition [1]. In Sec. 5, we discuss our procedures for choosing among measurements of particle properties and for obtaining best values of the properties from the measurements.

The accuracy and usefulness of this Review depend in large part on interaction between its users and the authors. We appreciate comments, criticisms, and suggestions for improvements of any kind. Please send them to the appropriate author, according to the list of responsibilities in Sec. 2 below, or to pdg@lbl.gov.

In addition to the online publication at pdg.lbl.gov, the Review is available in different formats:

- The printed $P D G$ Book includes volume 1 only, i.e. it contains the Summary Tables and most review articles. Since the 2016 edition [2] the detailed tables from the Particle Listings are no longer printed.
- The Particle Physics Booklet includes the Summary Tables plus essential tables, figures, and equations from selected review articles. Starting with the Booklets of the 2018 edition,
we have excluded most text and explanations in order to revert back to a more pocket-sized format. The Booklet is available in print and as a web version optimized for use on phones as well as an Android app (see pdg.lbl.gov/booklet).
- pdgLive (pdgLive.lbl.gov) is a web application giving more interactive access to PDG data than the static web pages and PDF files that are also available.
- Files that can be downloaded from the PDG website include a table of masses, widths, and PDG Monte Carlo particle ID numbers; PDF files of volume 1 (PDG Book), volume 2 (Particle Listings) and Booklet; individual review articles; all figures; and an archive file containing the complete PDG website (except for pdgLive).

Copies of the PDG Book or the Particle Physics Booklet can be ordered from our website or directly at pdg.lbl.gov/order. For special requests only, please email pdg@lbl.gov in North and South America, Australia, and the Far East, and pdg-products@cern.ch in all other areas.

This Review is considered to be a single comprehensive review of particle physics and related areas. Therefore we prefer that it be cited as a whole, rather than citing e.g. an individual review article that is part of this Review. For the 2020 edition, the proper citation is:
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

If you wish to refer to a specific part of the Review, for example to the Higgs boson review article, the following form should be used:

Status of Higgs Boson Physics in P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

2 Particle Listings responsibilities

* Asterisk indicates the people to contact with questions or comments about Particle Listings sections.
- Gauge and Higgs bosons

γ	A. Bettini, D.E. Groom*
Gluons	R.M. Barnett,* A.V. Manohar
Graviton	A. Bettini,* D.E. Groom
W, Z	M. Grünewald,* A. Gurtu*
Higgs bosons	S. Heinemeyer,* K. Hikasa, J. Tanaka
Heavy bosons	R.M. Barnett,* K.A. Olive, M. Tanabashi
Axions	K.A. Olive, G. Raffelt,* F. Takahashi

- Leptons

Neutrinos M. Goodman, C.-J. Lin,* K. Nakamura, K.A. Olive, A. Piepke, P. Vogel
$e, \mu \quad$ A. Bettini,* C. Grab
τ
A. Lusiani, K. Mönig*

- Quarks

Quarks R.M. Barnett,* A.V. Manohar
Top quark R.M. Barnett,* Y. Sumino
$b^{\prime}, t^{\prime} \quad$ R.M. Barnett,* Y. Sumino
Free quark A. Bettini,* C.-J. Lin

- Mesons
$\pi, \eta \quad$ A. Bettini,* C. Grab
Unstable mesons
C. Amsler, M. Doser,* S. Eidelman,* T. Gutsche, C. Hanhart,
J.J. Hernández-Rey, C. Lourenco, A. Masoni, M. Mikhasenko, R.E. Mitchell, S. Navas,
C. Patrignani, S. Spanier,
G. Venanzoni, V. Vorobyev
K (stable)
D (stable, no mix.)
D^{0} mixing
B (stable)
- Baryons
$\left.\begin{array}{ll}\text { Stable baryons } & \text { C. Grab, D. Robinson* } \\ \text { Unstable baryons } & \text { V. Burkert, E. Klempt, U. Thoma, } \\ \text { L. Tiator, R.L. Workman* }\end{array}\right\}$
- Miscellanoues searches

Monopole
Supersymmetry

Technicolor
Compositeness
Extra Dimensions
WIMP, DM, Other
A. Bettini,* D. Milstead
M. D'Onofrio, H.K. Dreiner,* A. de Gouvêa, F. Moortgat K.A. Olive
K. Agashe,* K.A. Olive, M. Tanabashi
M. Tanabashi, J. Terning*
T. Gherghetta, K.A. Olive,
D. Robinson*
H. Baer, A. Bettini,* W.-M. Yao*

3 Consultants

The Particle Data Group benefits greatly from the assistance of hundreds of physicists who are asked to referee review articles and verify every piece of data entered into this Review. Of special value is the advice of the PDG Advisory Committee, which meets biennially and thoroughly reviews all aspects of our operation. The members of the 2020 committee are:

```
S. Demers (Yale)
D. d'Enterria (CERN)
J. Frieman (FNAL)
L. Hall (UC Berkeley/LBNL)
T. Nakada (EPFL)
M. Yokoyama (Tokyo)
Q. Zhao (IHEP Beijing)
```

We have especially relied on the expertise of the following people for advice on particular topics:

- I. Abt (MPI Munich)
- M. Achasov (Budker Inst., Novosibirsk)
- M. Albrow (FNAL)
- A. Antognini (ETH Zurich)
- F. Anulli (INFN, Rome)
- E. Aprile (Columbia U.)
- G. Arduini (CERN)
- E. Armengaud (CEA Saclay, DSM/IRFU/SPP)
- M. Artuso (Syracuse U.)
- P. Azzurri (INFN, Pisa)
- H. Bachacou (IRFU, Saclay)
- K. Backes (Yale U.)
- A. Barabash (ITEP)
- E. Barberis (FNAL)
- M. Bardeen (FNAL)
- W. Barter (Imperial Coll. London)
- M. Battaglieri (U. di Genova)
- G. Bell (Siegen U.)
- V. Belyaev (ITEP)
- S. Benson (CERN)
- Z. Berezhiani (INFN, LNGS)
- F. Bernlochner (Karlsruhe U.)
- E. Berti (Johns Hopkins U.)
- V. Bertone (NIKHEF)
- M. Bettler (CERN)
- M. Beznogov (Astro. Inst. UNAM)
- M. Borsato (CERN)
- J. Bramante (Queen's U.)
- J.E. Brau (Oregon U.)
- T. Bringmann (Oslo U.)
- J. Brod (Cincinnati U.)
- G. Brooijmans (Columbia U.)
- R. Bruce (CERN)
- T. Brune (TU)
- O. Bruning (CERN)
- D.A. Bryman (TRIUMF)
- J. Butterworth (UCL)
- F. Calore (LAPTH)
- F. Canelli (Zurich U.)
- A. Canto (CERN)
- J. Cao (IHEP Beijing)
- L. Cardani (INFN, Rome)
- V. Cavaliere (BNL)
- G. Cavallero (CERN)
- M. Cepeda (CIEMAT)
- F. Cerutti (LBNL)
- M. Charles (CNRS)
- M. Chen (Queen's U.)
- K. Cheung (Tsinghua U.)
- G. Chiarelli (INFN, Pisa)
- V. Chobanova (CERN)
- J. Chou (Rutgers U.)
- S. Choudhury (Indian Inst. Tech., Mumbai)
- R. Ciesielski (Rockefeller U.)
- G. Colangelo (Bern U.)
- J.I. Collar (Chicago U.)
- G. Compère (ULB, Brussels)
- M. Crisler (FNAL)
- A. Czarnecki (Alberta U.)
- G. D'Ambrosio (INFN, Napoli)
- A. Danilov (INR, Moscow)
- M. Daum (PSI)
- I. David (Glasgow U.)
- C. Davies (Glasgow U.)
- B. Dawson (Adelaide U.)
- J. De Blas (INFN, Padua)
- P. Decowski (NIKHEF)
- G. de Lellis (INFN, Napoli)
- M. Della Morte (SDU)
- S. Demidov (INR, Moscow)
- D. Denisov (FNAL)
- D. d'Enterria (CERN)
- A.V. Derbin (Petersburg Nuclear Phys. Inst.)
- S. Derenzo (LBNL)
- S. Desai (Boston U.)
- U. De Sanctis (Rome U. Tor Vergata)
- S. Descotes-Genon (Paris-Sud U.)
- B. Dey (CERN)
- M. Diamond (Toronto U.)
- A. Di Domenica (INFN, Rome)
- F. Dordei (CERN)
- K. Dundas (Columbia U.)
- S.R. Elliott (LANL)
- K. Ellis (Durham U.)
- C. Englert (Glasgow U.)
- D. Epifanov (Budker Inst., Novosibirsk)
- M. Escudero (King's Coll. London)
- S. Esen (CERN)
- R. Essig (YITP, Stony Brook)
- P. Everaerts (MIT)
- V. Ezhov (NRC Kurchatov Inst. PNPI)
- S. Fang (IHEP Beijing)
- P. Fayet (LPTENS)
- M. Fedderke (Stanford U.)
- A. Ferrari (CERN)
- W. Fischer (BNL)
- J. Formaggio (MIT)
- J. Fortin (UC San Diego)
- T. Fujita (Kyoto U.)
- T. Gaisser (Delaware U., Bartol Inst.)
- P. Gambino (INFN, Torino)
- A. Gangapshev (INR, Moscow)
- J. Gao (IHEP Beijing)
- R. Garisto (APS)
- A. Gasparian (Jefferson Lab)
- C. Gatti (INFN, LNF)
- A. Geiser (DESY, Hamburg)
- M. Genest (CNRS)
- M. Gersabeck (Manchester U.)
- L. Gironi (INFN, Milano-Bicocca)
- C. Glasman (U. Autònoma de Madrid)
- S.N. Gninenko (Russian Academy of Sciences)
- T. Golling (Geneva U.)
- B. Golob (Jozef Stefan Inst.)
- J. Gomez Cadenas (DIPC)
- j. goodman (Maryland U.)
- P. Grabmayr (Tübingen U.)
- P. Grafstroem (INFN, Bologna)
- L. Grandi (Chicago U.)
- E. Grauges (ICC, U. of Barcelona)
- R. Gray (U. Washington)
- G. Greene (Tennessee U.)
- Y. Grossman (Cornell U.)
- Y. Guo (KPH, JGU Mainz)
- C. Gwilliam (Liverpool U.)
- C. Ha (Northwestern U.)
- F. Halzen (Wisconsin U.)
- S. Harnew (Oxford U.)
- F.A. Harris (Hawaii U.)
- A. Hasenfratz (Colorado U., Boulder)
- K.M. Heeger (Yale U.)
- A. Hinzmann (Hamburg U.)
- A. Hoang (HEPHY, Vienna)
- Y. Hochberg (Racah Inst. Hebrew U.)
- T. Huege (KIT)
- A. Ianni (INFN, LNGS)
- N. Ilic (NIKHEF)
- I.G. Irastorza (U. de Zaragoza)
- A. Jafari (DESY, Zeuten)
- N. Jafari (DESY, Zeuten)
- P. Janot (CERN)
- L. Jeanty (Oregon U.)
- X. Ji (SJTU)
- C. Joram (CERN)
- J. Jowett (CERN)
- A. Jung (Purdue U.)
- K. Kaadze (CERN)
- H. Kamano (Osaka U.)
- J. Kamenik (Jozef Stefan Inst.)
- J. Kaminski (Bonn U.)
- D. Karlen (Victoria U.)
- S. Karshenboim (Pulkovo Obs., St.Petersburg)
- E.T. Kearns (Boston U.)
- V. Kekelidze (JINR, Dubna)
- J. Kile (CFTP)
- S. Kim (Seoul National U.)
- K. Kirch (ETH Zurich)
- M. Kitaguchi (Nagoya U.)
- R. Klanner (DESY, Hamburg)
- S. Klaver (CERN)
- S. Knirck (Werner-Heisenberg-Inst.)
- R. Kogler (Hamburg U.)
- A. Kopylov (INR, Moscow)
- E. Kovetz (Ben-Gurion U.)
- A. Krasznahorkay (Hungarian Academy of Sciences)
- P. Krokovny (Budker Inst., Novosibirsk)
- A. Kronfeld (FNAL)
- B. Kubis (Bonn U.)
- A. Kupsc (Uppsala U.)
- M. Kuzniak (Carleton U.)
- G. Landsberg (Brown U.)
- C. Lange (CERN)
- G. Latyshev (COMPAS Group, IHEP)
- H. Lee (ANL)
- H. Lee (BNL)
- L.B. Leinson (Russian Academy of Sciences)
- G.P. Lepage (Cornell U.)
- O. Leroy (CPPM Marseille)
- J. Libby (Indian Inst. Tech., Madras)
- Z. Ligeti (LBNL)
- E. Lisi (INFN, Bari)
- Y. Liu (Lanzhou U.)
- S. Lloyd (Phys. Dep. Durham U.)
- H. Long (Inst. of Physics, Vietnamese Academy of Science \& Technology)
- P.T. Lukens (FNAL)
- O. Lupton (Warwick U.)
- X. Lyu (UCAS, Beijing)
- H. Ma (IHEP Beijing)
- P. Maksimovic (Johns Hopkins U.)
- B. Malaescu (CNRS)
- S. Malde (Oxford U.)
- Y. Mambrini (Paris-Sud U.)
- G. Mandaglio (Messina U.)
- D.M. Manley (Kent U.)
- M. Margoni (INFN, Padova)
- Z. Marshall (LBNL)
- S.P. Martin (Northern Illinois U.)
- G. Martinelli (INFN, Rome)
- M. Martinelli (CERN)
- A. Masiero (INFN, Padua)
- R. Massarczyk (LANL)
- K. Matchev (Florida U.)
- A. Mathad (ETH Zurich)
- V. Matiunin (CERN)
- N. Mavromatos (King's Coll. London)
- M. Mazziotta (INFN, Bari)
- P. Mcdonald (LBNL)
- S. Meinel (Arizona U.)
- W. Melnitchouk (Jefferson Lab)
- F. Meloni (CERN)
- E. Meoni (CERN)
- P. Merkel (FNAL)
- P.D. Meyers (Princeton U.)
- T. Mibe (KEK)
- I. Mikulec (Austrian Academy of Sciences)
- V. Mitsou (IFIC, Valencia)
- R.N. Mohapatra (Maryland U.)
- S. Moosavi (Ryerson U.)
- M. Morello (SNS, Pisa)
- O. Moreno (SLAC)
- S. Moretti (Southampton U.)
- S. Moriyama (ICRR)
- M. Mulder (CERN)
- S. Murgia (UC Irvine)
- W. Murray (Warwick U.)
- B. Nachman (LBNL)
- R. Nahnhauer (DESY, Hamburg)
- T. Nakadaira (KEK)
- T. Nakaya (Kyoto U.)
- S. Narison (Montpellier U.)
- A. Nelles (DESY, Zeuten)
- P. Newman (IFAE)
- V. Obraztsov (IHEP, Protvino)
- H.B. O'Connell (Chicago U.)
- K. Oide (KEK)
- Y. Onishi (KEK)
- G. Orebi Gann (LBNL)
- A. Orso Maria Iorio (INFN, Napoli)
- P. Osland (Bergen U.)
- S. Ostapchenko (Frankfurt U.)
- C. Palomba (INFN, Rome)
- T. Papadopoulou (Athens U.)
- E. Passemar (Indiana U.)
- S. Paul (TU)
- C. Paus (MIT)
- F. Petricca (MPI Munich)
- G. Petrucciani (CERN)
- G. Piacquadio (NYU)
- L. Piilonen (Virginia Tech)
- P. Piminov (Budker Inst., Novosibirsk)
- I. Polyakov (Syracuse U.)
- A. Poon (NSD LBNL)
- N. Porayako (MPIK)
- W. QIAN (IHEP Beijing)
- S. Rakshit (Indian Inst. of Technology)
- K. Ramanathan (Chicago U.)
- A. Rana (Delhi U.)
- A. Rebhan (TU Vienna)
- M. Redi (CERN)
- C.F. Redmer (IKP)
- J. Richard (IP2I, Lyon)
- W. Richard (Dep. of Phys. Texas Tech U.)
- J. Rico (ICREA, Barcelona; SISSA/INFN, Trieste)
- A. Ritz (Victoria U.)
- A. Rodas (UCM, Madrid)
- G. Ross (Oxford U.)
- M. Rotondo (INFN, Frascati)
- G. Ruggiero (Lancaster U.)
- C.T. Sachrajda (Southampton U.)
- R. Salerno (CNRS)
- M. Santimaria (INFN, LNF)
- V. Sanz (Sussex U.)
- N. Saoulidou (Athens U.)
- A.V. Sarantsev (Bonn U.)
- E. Sarkisyan-Grinbaum (Texas U.)
- A. Saunders (LANL)
- M. Schmaltz (Boston U.)
- B. Schmidt (CERN)
- F. Schroeder (Delaware U.)
- C. Schwanda (HEPHY, Vienna)
- R. Schwienhorst (Michigan State U.)
- B. Schwingenheur (MPIK)
- D. Scott (U. of British Columbia)
- R. Seidl (BNL)
- I. Seong (UC Irvine)
- S. Seon-Hee (IBS, Daejeon)
- A.P. Serebrov (Petersburg Nuclear Phys. Inst.)
- S. Serednyakov (Budker Inst., Novosibirsk)
- E. Shabalina (Georg August U. Goettingen)
- L. Shchutska (ETH Zurich)
- V. Shiltsev (FNAL)
- Y. Shirman (UC Irvine)
- D. Shwartz (Budker Inst., Novosibirsk)
- P. Sikivie (Florida U.)
- L. Silvestrini (INFN, Rome)
- S. Simula (INFN, Rome)
- A. Soffer (Tel Aviv U.)
- F. Spano (RHUL)
- H. Spiesberger (JGU, Mainz)
- M. Spira (PSI)
- Y. Stadnik (New South Wales U.)
- O. Stelzer-Chilton (TRIUMF)
- I.W. Stewart (MIT)
- A. Szczepaniak (Indiana U.)
- F. Tackmann (DESY, Zeuten)
- K. Tackmann (DESY, Hamburg)
- T.M. Tait (UC Irvine)
- A. Tapper (Imperial Coll. London)
- C. Ternes (IFIC, Valencia)
- R. Tesarek (FNAL)
- A. Thomas (KPH, JGU Mainz)
- J. Thomas (NSD LBNL)
- J. Timmermans (NIKHEF)
- K. Todyshev (Budker Inst., Novosibirsk)
- S. Trifinopoulos (Zurich U.)
- J. Uzan (CNRS)
- P.L. Vahle (William and Mary Coll.)
- K.A. van Bibber (UC Berkeley)
- R.G. Van De Water (LANL)
- C. van Eldik (Erlangen U.)
- R. Van Kooten (Indiana U.)
- A. Vartak (UC San Diego)
- C. Vincenzo (LANL)
- B. von Krosigk (DESY, Hamburg)
- A. Vossen (Duke U.)
- W. Wagner (Wuppertal U.)
- J. Walder (Lancaster U.)
- D. Wang (School of Physics, Peking U.)
- Y. Wang (JGU, Mainz)
- G. Watt (Durham U.)
- B. Webber (Cambridge U.)
- R. Wendell (Kyoto U.)
- N. Wex (MPIFR, Bonn)
- M. Whitehead (RWTH Aachen)
- M. Williams (Manchester U.)
- J.S. Wilson (FNAL)
- M. Wing (UCL)
- H.T. Wong (Academia Sinica, Inst. of Physics)
- G. Wormser (U. Paris-Saclay)
- Z. Xia (PMO, Nanjing)
- C. Yaguna (UPTC)
- T. Yamanaka (Osaka U.)
- T. Yamazaki (Tokyo U.)
- W. Yan (USTC China)
- W. Yan (Beihang U.)
- L. Yang (UC San Diego)
- S. Youn (IBS, Daejeon)
- A. Young (NCSU)
- C. Yuan (IHEP Beijing)
- C. Yue (Liaoning Normal U.)
- Q. Yue (Tsinghua U.)
- V. Zacek (U. de Montreal)
- A. Zakharov (ITEP)
- L. Zani (INFN, Pisa)
- D. Zerwas (LAL Orsay)
- C. Zhang (IHEP Beijing)
- Y. Zhang (Phys. Dep. Oxford U.)
- B. Zheng (South China U.)
- A. Zhevlakov (Tamsk State U.)
- K. Zhu (IHEP Beijing)
- J. Zupan (Cincinnati U.)
- R.M. Zwaska (FNAL)

4 Naming scheme for hadrons

We introduced in the 1986 edition [3] a new naming scheme for the hadrons. Changes from older terminology affected mainly the heavier mesons made of u, d, and s quarks. Otherwise, the only important change to known hadrons was that the $F^{ \pm}$became the $D_{s}^{ \pm}$. None of the lightest pseudoscalar or vector mesons changed names, nor did the $c \bar{c}$ or $b \bar{b}$ mesons (we do, however, now use χ_{c} for the $c \bar{c} \chi$ states), nor did any of the established baryons. The Summary Tables give both the new and old names whenever a change has occurred.

In the previous edition [1] the naming scheme was extended to address the naming of charmonium and bottomonium states that are commonly referred to as X, Y or Z states in the literature. The current scheme is described in "Naming Scheme for Hadrons" (p. 1) of this Review. A table details the correspondence between the names newly adopted by the PDG and those that have appeared in the literature.

We give here our conventions on type-setting style. Particle symbols are italic (or slanted) characters: $e^{-}, p, \Lambda, \pi^{0}, K_{L}, D_{s}^{+}$, b. Charge is indicated by a superscript: B^{-}, Δ^{++}. Charge is not normally indicated for p, n, or the quarks, and is optional for neutral isosinglets: η or η^{0}. Antiparticles and particles are distinguished by charge for charged leptons and mesons: τ^{+}, K^{-}. Otherwise, distinct antiparticles are indicated by a bar (overline): $\bar{\nu}_{\mu}, \bar{t}, \bar{p}, \bar{K}^{0}$, and $\bar{\Sigma}^{+}$(the antiparticle of the Σ^{-}).

5 Procedures

5.1 Selection and treatment of data

The Particle Listings contain all relevant data known to us that are published in journals. With very few exceptions, we do not include results from preprints or conference reports. Nor do we include data that are of historical importance only (the Listings are not an archival record). We search every volume of 20 journals through our cutoff date for relevant data. We also include later published papers that are sent to us by the authors (or others).

In the Particle Listings, we clearly separate measurements that are used to calculate or estimate values given in the Summary Tables from measurements that are not used. We give explanatory
comments in many such cases. Among the reasons a measurement might be excluded are the following:

- It is superseded by or included in later results.
- No error is given.
- It involves assumptions we question.
- It has a poor signal-to-noise ratio, low statistical significance, or is otherwise of poorer quality than other data available.
- It is clearly inconsistent with other results that appear to be more reliable. Usually we then state the criterion, which sometimes is quite subjective, for selecting "more reliable" data for averaging. See Sec. 5.4.
- It is not independent of other results.
- It is not the best limit (see below).
- It is quoted from a preprint or a conference report.

In some cases, none of the measurements is entirely reliable and no average is calculated. For example, the masses of many of the baryon resonances, obtained from partial-wave analyses, are quoted as estimated ranges thought to probably include the true values, rather than as averages with errors. This is discussed in the Baryon Particle Listings.

For upper limits, we normally quote in the Summary Tables the strongest limit. We do not average or combine upper limits except in a very few cases where they may be re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that particle and antiparticle share the same spin, mass, and mean life. The Tests of Conservation Laws table, following the Summary Tables, lists tests of CPT as well as other conservation laws.

We use the following indicators in the Particle Listings to tell how we get values from the tabulated measurements:

- OUR AVERAGE - From a weighted average of selected data.
- OUR FIT -From a constrained or overdetermined multiparameter fit of selected data.
- OUR EVALUATION -Not from a direct measurement, but evaluated from measurements of related quantities.
- OUR ESTIMATE — Based on the observed range of the data. Not from a formal statistical procedure.
- OUR LIMIT —For special cases where the limit is evaluated by us from measured ratios or other data. Not from a direct measurement.

An experimentalist who sees indications of a particle will of course want to know what has been seen in that region in the past. Hence we include in the Particle Listings all reported states that, in our opinion, have sufficient statistical merit and that have not been disproved by more reliable data. However, we promote to the Summary Tables only those states that we feel are well established. This judgment is, of course, somewhat subjective and no precise criteria can be given. For more detailed discussions, see the minireviews in the Particle Listings.

5.2 Averages and fits

We divide this discussion on obtaining averages and errors into three sections: (1) treatment of errors; (2) unconstrained averaging; (3) constrained fits.

5.2.1 Treatment of errors

In what follows, the "error" δx means that the range $x \pm \delta x$ is intended to be a 68.3% confidence interval about the central value x. We treat this error as if it were Gaussian. Thus when the error $i s$ Gaussian, δx is the usual one standard deviation (1σ). Many experimenters now give statistical and systematic errors separately, in which case we usually quote both errors, with the statistical error first. For averages and fits, we then add the two errors in quadrature and use this combined error for δx.

When experimenters quote asymmetric errors $(\delta x)^{+}$and $(\delta x)^{-}$ for a measurement x, the error that we use for that measurement in making an average or a fit with other measurements is a continuous function of these three quantities. When the resultant average or fit \bar{x} is less than $x-(\delta x)^{-}$, we use $(\delta x)^{-}$; when it is
greater than $x+(\delta x)^{+}$, we use $(\delta x)^{+}$. In between, the error we use is a linear function of x. Since the errors we use are functions of the result, we iterate to get the final result. Asymmetric output errors are determined from the input errors assuming a linear relation between the input and output quantities.

In fitting or averaging, we usually do not include correlations between different measurements, but we try to select data in such a way as to reduce correlations. Correlated errors are, however, treated explicitly when there are a number of results of the form $A_{i} \pm \sigma_{i} \pm \Delta$ that have identical systematic errors Δ. In this case, one can first average the $A_{i} \pm \sigma_{i}$ and then combine the resulting statistical error with Δ. One obtains, however, the same result by averaging $A_{i} \pm\left(\sigma_{i}^{2}+\Delta_{i}^{2}\right)^{1 / 2}$, where $\Delta_{i}=\sigma_{i} \Delta\left[\sum\left(1 / \sigma_{j}^{2}\right)\right]^{1 / 2}$. This procedure has the advantage that, with the modified systematic errors Δ_{i}, each measurement may be treated as independent and averaged in the usual way with other data. Therefore, when appropriate, we adopt this procedure. We tabulate Δ and invoke an automated procedure that computes Δ_{i} before averaging and we include a note saying that there are common systematic errors.

Another common case of correlated errors occurs when experimenters measure two quantities and then quote the two and their difference, e.g., m_{1}, m_{2}, and $\Delta=m_{2}-m_{1}$. We cannot enter all of m_{1}, m_{2} and Δ into a constrained fit because they are not independent. In some cases, it is a good approximation to ignore the quantity with the largest error and put the other two into the fit. However, in some cases correlations are such that the errors on m_{1}, m_{2} and Δ are comparable and none of the three values can be ignored. In this case, we put all three values into the fit and invoke an automated procedure to increase the errors prior to fitting such that the three quantities can be treated as independent measurements in the constrained fit. We include a note saying that this has been done.

5.2.2 Unconstrained averaging

To average data, we use a standard weighted least-squares procedure and in some cases, discussed below, increase the errors with a "scale factor." We begin by assuming that measurements of a given quantity are uncorrelated, and calculate a weighted average and error as

$$
\begin{equation*}
\bar{x} \pm \delta \bar{x}=\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \pm\left(\sum_{i} w_{i}\right)^{-1 / 2} \tag{1}
\end{equation*}
$$

where

$$
w_{i}=1 /\left(\delta x_{i}\right)^{2}
$$

Here x_{i} and δx_{i} are the value and error reported by the i th experiment, and the sums run over the N experiments. We then calculate $\chi^{2}=\sum w_{i}\left(\bar{x}-x_{i}\right)^{2}$ and compare it with $N-1$, which is the expectation value of χ^{2} if the measurements are from a Gaussian distribution.
If $\chi^{2} /(N-1)$ is less than or equal to 1 , and there are no known problems with the data, we accept the results.

If $\chi^{2} /(N-1)$ is very large, we may choose not to use the average at all. Alternatively, we may quote the calculated average, but then make an educated guess of the error, a conservative estimate designed to take into account known problems with the data.

Finally, if $\chi^{2} /(N-1)$ is greater than 1 , but not greatly so, we still average the data, but then also do the following:
(a) We increase our quoted error, $\delta \bar{x}$ in Eq. (1), by a scale factor S defined as

$$
\begin{equation*}
S=\left[\chi^{2} /(N-1)\right]^{1 / 2} \tag{2}
\end{equation*}
$$

Our reasoning is as follows. The large value of the χ^{2} is likely to be due to underestimation of errors in at least one of the experiments. Not knowing which of the errors are underestimated, we assume they are all underestimated by the same factor S. If we scale up all the input errors by this factor, the χ^{2} becomes $N-1$, and of course the output error $\delta \bar{x}$ scales up by the same factor. See Ref. [4].

When combining data with widely varying errors, we modify this procedure slightly. We evaluate S using only the experiments with smaller errors. Our cutoff or ceiling on δx_{i} is arbitrarily chosen to be

$$
\delta_{0}=3 N^{1 / 2} \delta \bar{x}
$$

where $\delta \bar{x}$ is the unscaled error of the mean of all the experiments. Our reasoning is that although the low-precision experiments have little influence on the values \bar{x} and $\delta \bar{x}$, they can make significant contributions to the χ^{2}, and the contribution of the high-precision experiments thus tends to be obscured. Note that if each experiment has the same error δx_{i}, then $\delta \bar{x}$ is $\delta x_{i} / N^{1 / 2}$, so each δx_{i} is well below the cutoff. (More often, however, we simply exclude measurements with relatively large errors from averages and fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there are two values with comparable errors separated by much more than their stated errors (with or without a number of other values of lower accuracy), the scaled-up error $\delta \bar{x}$ is approximately half the interval between the two discrepant values.

We emphasize that our scaling procedure for errors in no way affects central values. And if you wish to recover the unscaled error $\delta \bar{x}$, simply divide the quoted error by S.
(b) If the number M of experiments with an error smaller than δ_{0} is at least three, and if $\chi^{2} /(M-1)$ is greater than 1.25, we show in the Particle Listings an ideogram of the data. Figure 1 is an example. Sometimes one or two data points lie apart from the main body; other times the data split into two or more groups. We extract no numbers from these ideograms; they are simply visual aids, which the reader may use as he or she sees fit.

Each measurement in an ideogram is represented by a Gaussian with a central value x_{i}, error δx_{i}, and area proportional to $1 / \delta x_{i}$. The choice of $1 / \delta x_{i}$ for the area is somewhat arbitrary. With this choice, the center of gravity of the ideogram corresponds to an average that uses weights $1 / \delta x_{i}$ rather than the $\left(1 / \delta x_{i}\right)^{2}$ actually used in the averages. This may be appropriate when some of the experiments have seriously underestimated systematic errors. However, since for this choice of area the height of the Gaussian for each measurement is proportional to $\left(1 / \delta x_{i}\right)^{2}$, the peak position of the ideogram will often favor the high-precision measurements at least as much as does the least-squares average. See our 1986 edition [3] for a detailed discussion of the use of ideograms.

5.2.3 Constrained fits

In some cases, such as branching ratios or masses and mass differences, a constrained fit may be needed to obtain the best values of a set of parameters. For example, most branching ratios and rate measurements are analyzed by making a simultaneous least-squares fit to all the data and extracting the partial decay fractions P_{i}, the partial widths Γ_{i}, the full width Γ (or mean life), and the associated error matrix.

Assume, for example, that a state has m partial decay fractions P_{i}, where $\sum P_{i}=1$. These have been measured in N_{r} different ratios R_{r}, where, e.g., $R_{1}=P_{1} / P_{2}, R_{2}=P_{1} / P_{3}$, etc. [We can handle any ratio R of the form $\sum \alpha_{i} P_{i} / \sum \beta_{i} P_{i}$, where α_{i} and β_{i} are constants, usually 1 or 0 . The forms $R=P_{i} P_{j}$ and $R=$ $\left(P_{i} P_{j}\right)^{1 / 2}$ are also allowed.] Further assume that each ratio R has been measured by N_{k} experiments (we designate each experiment with a subscript k, e.g., $R_{1 k}$). We then find the best values of the fractions P_{i} by minimizing the χ^{2} as a function of the $m-1$ independent parameters:

$$
\begin{equation*}
\chi^{2}=\sum_{r=1}^{N_{r}} \sum_{k=1}^{N_{k}}\left(\frac{R_{r k}-R_{r}}{\delta R_{r k}}\right)^{2} \tag{3}
\end{equation*}
$$

where the $R_{r k}$ are the measured values and R_{r} are the fitted values of the branching ratios.

In addition to the fitted values \bar{P}_{i}, we calculate an error ma$\operatorname{trix}\left\langle\delta \bar{P}_{i} \delta \bar{P}_{j}\right\rangle$. We tabulate the diagonal elements of $\delta \bar{P}_{i}=$ $\left\langle\delta \bar{P}_{i} \delta \bar{P}_{i}\right\rangle^{1 / 2}$ (except that some errors are scaled as discussed below). In the Particle Listings, we give the complete correlation matrix; we also calculate the fitted value of each ratio, for comparison with the input data, and list it above the relevant input, along with a simple unconstrained average of the same input.

Three comments on the example above:
(1) There was no connection assumed between measurements of the full width and the branching ratios. But often we also have information on partial widths Γ_{i} as well as the total width Γ. In this case we must introduce Γ as a parameter in the fit, along

Figure 1: A typical ideogram. The arrow at the top shows the position of the weighted average, while the width of the shaded pattern shows the error in the average after scaling by the factor S. The column on the right gives the χ^{2} contribution of each of the experiments. Note that the next-to-last experiment, denoted by the incomplete error flag (\perp), is not used in the calculation of S (see the text).
with the P_{i}, and we give correlation matrices for the widths in the Particle Listings.
(2) We try to pick those ratios and widths that are as independent and as close to the original data as possible. When one experiment measures all the branching fractions and constrains their sum to be one, we leave one of them (usually the least welldetermined one) out of the fit to make the set of input data more nearly independent. We now do allow for correlations between input data.
(3) We calculate scale factors for both the R_{r} and P_{i} when the measurements for any R give a larger-than-expected contribution to the χ^{2}. According to Eq. (3), the double sum for χ^{2} is first summed over experiments $k=1$ to N_{k}, leaving a single sum over ratios $\chi^{2}=\sum \chi_{r}^{2}$. One is tempted to define a scale factor for the ratio r as $S_{r}^{2}=\chi_{r}^{2} /\left\langle\chi_{r}^{2}\right\rangle$. However, since $\left\langle\chi_{r}^{2}\right\rangle$ is not a fixed quantity (it is somewhere between N_{k} and N_{k-1}), we do not know how to evaluate this expression. Instead we define

$$
\begin{equation*}
S_{r}^{2}=\frac{1}{N_{k}} \sum_{k=1}^{N_{k}} \frac{\left(R_{r k}-\bar{R}_{r}\right)^{2}}{\left\langle\left(R_{r k}-\bar{R}_{r}\right)^{2}\right\rangle} . \tag{4}
\end{equation*}
$$

With this definition the expected value of S_{r}^{2} is one. We can show that

$$
\begin{equation*}
\left\langle\left(R_{r k}-\bar{R}_{r}\right)^{2}\right\rangle=\left\langle\left(\delta R_{r k}\right)^{2}\right\rangle-\left(\delta \bar{R}_{r}\right)^{2}, \tag{5}
\end{equation*}
$$

where $\delta \bar{R}_{r}$ is the fitted error for ratio r.
The fit is redone using errors for the branching ratios that are scaled by the larger of S_{r} and unity, from which new and often larger errors $\delta \bar{P}_{i}^{\prime}$ are obtained. The scale factors we finally list in such cases are defined by $S_{i}=\delta \bar{P}_{i}^{\prime} / \delta \bar{P}_{i}$. However, in line with our policy of not letting S affect the central values, we give the values of \bar{P}_{i} obtained from the original (unscaled) fit.

There is one special case in which the errors that are obtained by the preceding procedure may be changed. When a fitted branching ratio (or rate) \bar{P}_{i} turns out to be less than three standard deviations $\left(\delta \bar{P}_{i}^{\prime}\right)$ from zero, a new smaller error $\left(\delta \bar{P}_{i}^{\prime \prime}\right)^{-}$is calculated on the low side by requiring the area under the Gaussian between $\bar{P}_{i}-\left(\delta \bar{P}_{i}^{\prime \prime}\right)^{-}$and \bar{P}_{i} to be 68.3% of the area between zero and \bar{P}_{i}. A similar correction is made for branching fractions that are within three standard deviations of one. This keeps the quoted errors from overlapping the boundary of the physical region.

5.3 Rounding

While the results shown in the Particle Listings are usually exactly those published by the experiments, the numbers that
appear in the Summary Tables (means, averages and limits) are subject to a set of rounding rules.
The basic rule states that if the three highest order digits of the error lie between 100 and 354 , we round to two significant digits. If they lie between 355 and 949 , we round to one significant digit. Finally, if they lie between 950 and 999 , we round up to 1000 and keep two significant digits. In all cases, the central value is given with a precision that matches that of the error. So, for example, the result (coming from an average) 0.827 ± 0.119 would appear as 0.83 ± 0.12, while 0.827 ± 0.367 would turn into 0.8 ± 0.4.
Rounding is not performed if a result in a Summary Table comes from a single measurement, without any averaging. In that case, the number of digits published in the original paper is kept, unless we feel it inappropriate. Note that, even for a single measurement, when we combine statistical and systematic errors in quadrature, rounding rules apply to the result of the combination. It should be noted also that most of the limits in the Summary Tables come from a single source (the best limit) and, therefore, are not subject to rounding.

Finally, we should point out that in several instances, when a group of results come from a single fit to a set of data, we have chosen to keep two significant digits for all the results. This happens, for instance, for several properties of the W and Z bosons and the τ lepton.

5.4 Discussion

The problem of averaging data containing discrepant values is nicely discussed by Taylor in Ref. [5]. He considers a number of algorithms that attempt to incorporate inconsistent data into a meaningful average. However, it is difficult to develop a procedure that handles simultaneously in a reasonable way two basic types of situations: (a) data that lie apart from the main body of the data are incorrect (contain unreported errors); and (b) the oppositeit is the main body of data that is incorrect. Unfortunately, as Taylor shows, case (b) is not infrequent. He concludes that the choice of procedure is less significant than the initial choice of data to include or exclude.

We place much emphasis on this choice of data. Often we solicit the help of outside experts (consultants). Sometimes, however, it is simply impossible to determine which of a set of discrepant measurements are correct. Our scale-factor technique is an attempt to address this ignorance by increasing the error. In effect, we are saying that present experiments do not allow a precise determination of this quantity because of unresolvable discrepancies, and one must await further measurements. The reader is warned of this situation by the size of the scale factor, and if he or she desires can go back to the literature (via the Particle Listings) and redo the average with a different choice of data.

Our situation is less severe than most of the cases Taylor considers, such as estimates of the fundamental constants like \hbar, etc. Most of the errors in his case are dominated by systematic effects. For our data, statistical errors are often at least as large as systematic errors, and statistical errors are usually easier to estimate. A notable exception occurs in partial-wave analyses, where different techniques applied to the same data yield different results. In this case, as stated earlier, we often do not make an average but just quote a range of values.

A brief history of early Particle Data Group averages is given in Ref. [4]. On the following page, our History Plots show the time evolution of some of our values of a few particle properties. Sometimes large changes occur. These usually reflect the introduction of significant new data or the discarding of older data. Older data are discarded in favor of newer data when it is felt that the newer data have smaller systematic errors, or have more checks on systematic errors, or have made corrections unknown at the time of the older experiments, or simply have much smaller errors. Sometimes, the scale factor becomes large near the time at which a large jump takes place, reflecting the uncertainty introduced by the new and inconsistent data. By and large, however, a full scan of our history plots shows a dull progression toward greater precision at central values quite consistent with the first data points shown.

We conclude that the reliability of the combination of experimental data and our averaging procedures is usually good, but it
is important to be aware that fluctuations outside of the quoted errors can and do occur.

ACKNOWLEDGMENTS

The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC0205CH11231; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; by the Italian National Institute of Nuclear Physics (INFN); and by the Physical Society of Japan (JPS). Individual collaborators receive support for their PDG activities from their respective funding agencies.
We thank all those who have assisted in the many phases of preparing this Review. We particularly thank the many who have responded to our requests for verification of data entered in the Listings, and those who have made suggestions or pointed out errors.

We are grateful to the staff at CERN, IHEP Beijing, KEK, and LBNL who take care of the mailing and distribution of our
products.
This work used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

[1] The previous edition was: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018).
[2] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10,100001 (2016).
[3] M. Aguilar-Benitez et al. (Particle Data Group), Phys. Lett. 170B, 1 (1986).
[4] A. H. Rosenfeld, Ann. Rev. Nucl. Part. Sci. 25, 555 (1975).
[5] B.N. Taylor, "Numerical Comparisons of Several Algorithms for Treating Inconsistent Data in a Least-Squares Adjustment of the Fundamental Constants," U.S. National Bureau of Standards NBSIR 81-2426 (1982).

Figure 1: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of publication of the Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the "scale factor."

Online Particle Physics Information

Pare Packages and Repositorie
11.1 Particle Physics Software
11.2 Astrophysics Software 22
11.3 Web Apps 23
11.4 Mobile Apps 23
Data repositories 23
12.1 Particle Physics 23
12.2 Astrophysics 23
12.3 General Physics 23
Data preservation activities 24
13.1 Particle Physics 24
13.2 Astrophysics 24
14 Particle Physics Education and Outreach Sites 24
14.1 Science Educators' Networks 24
14.2 Physics Courses 24
14.3 Masterclasses 24
14.4 General Sites 25
14.5 General Physics Activities 25
14.6 Particle Physics Activities 25
14.7 Lab Education Offices 26
14.8 Educational Programs of Experiments 27
14.9 News 27
14.10 Art in Physics 28
14.11 Blogs and Twitter 28

Revised August 2019 by M. Moskovic (CERN).

1 Introduction

The collection of online information resources in particle physics and related areas presented in this chapter is of necessity incomplete. An expanded and regularly updated online version can be found at:
http://library.cern/particle_physics_information
Suggestions for additions and updates are very welcome. ${ }^{1}$

2 Particle Data Group (PDG) resources

- Review of Particle Physics (RPP): A comprehensive report on the fields of particle physics and related areas of cosmology and astrophysics, including both review articles and a compilation/evaluation of data on particle properties. The review section includes articles, tables and plots on a wide variety of theoretical and experimental topics of interest to particle physicists and astrophysicists. The particle properties section provides tables of published measurements as well as the Particle Data Group's best values and limits for particle properties such as masses, widths, lifetimes, and branching fractions, as well as an extensive summary of searches for hypothetical particles. RPP is published as a large book every two years, with partial updates made available once each year on the web.
All the contents of the book version of RPP are available online:

> http://pdg.lbl.gov

The printed book can be ordered:
http:
//pdg.lbl.gov/2019/html/receive_our_products.html Of historical interest is the complete RPP collection which can be found online:
http://pdg.lbl.gov/rpp-archive/

[^1]http://library.cern/PDG_publications/review_ particle_physics

- Particle Physics booklet: An abridged version of the Review of Particle Physics, available as a pocket-sized 250-page booklet. It is one of the most useful summaries of physics data. The booklet contains an abbreviated set of reviews and the summary tables from the most recent edition of the Review of Particle Physics.
The PDF file of the booklet can be downloaded:
http://pdg.lbl.gov/current/booklet.pdf
The printed booklet can be ordered:

http:

//pdg.lbl.gov/2019/html/receive_our_products.html

- PDGLive: A web application for browsing the contents of the PDG database that contains the information published in the Review of Particle Physics. It allows one to navigate to a particle of interest, see a summary of the information available, and then proceed to the detailed information published in the Review of Particle Physics. Data entries are directly linked to the corresponding bibliographic information in INSPIRE.

http://pdglive.lbl.gov

- Computer-readable files: Data files that can be downloaded from the PDG include tables of particle masses and widths, PDG Monte Carlo particle numbers, and crosssection data. The files are updated with each new edition of the Review of Particle Physics.
http://pdg.lbl.gov/current/html/computer_read.html

3 Particle Physics Information Platforms

- INSPIRE: INSPIRE serves as a one-stop information platform for the particle physics community, comprising 8 interlinked databases on literature, conferences, institutions, journals, researchers, experiments, jobs and data. Run in collaboration by CERN, DESY, Fermilab, IHEP, IN2P3, and SLAC, it has been serving the scientific community for almost 50 years. Previously known as SPIRES, it was the first website outside Europe and the first database on the web. Close interaction with the user community and with arXiv, ADS, HEPData, ORCID, PDG and publishers is the backbone of INSPIRE's evolution.

> http://inspirehep.net/

In 2019, INSPIRE launched INSPIRE beta, featuring all-new literature search, author profiles and job postings. INSPIRE beta is running in parallel with the current platform and it will fully replace it in the future. The INSPIRE beta site is available at:
http://beta.inspirehep.net

- Blog: http://blog.inspirehep.net/
- Twitter: @inspirehep

4 Literature Databases

- ADS: The SAO/NASA Astrophysics Data System is a Digital Library portal offering access to 13 million bibliographic records in Astronomy and Physics. The ADS search engine also indexes the full-text for approximately four million publications in this collection and tracks citations, which now amount to over 80 million links. The system also provides access and links to a wealth of external resources, including electronic articles hosted by publishers and arXiv, data catalogs and a variety of data products hosted by the astronomy archives worldwide. The ADS can be accessed at:
http://ads.harvard.edu/
- arXiv.org: A repository of full-text articles in physics, astronomy, mathematics, computer science, statistics, nonlinear sciences, quantitative finance, quantitative biology, electrical engineering and systems science, and economics. Papers are submitted by registered authors to arXiv, often as preprints in advance of submission to a journal for publication; includes postprints, working papers, and other relevant material. Established in 1991, the repository is interlinked
with ADS and INSPIRE, among others. Readers can browse subject categories or search by author, title, abstract, date, and other fields. Receive daily update alerts for subfields by email or RSS.
https://arXiv.org
- Blog: https://blogs.cornell.edu/arXiv
- Twitter: @arxiv
- CDS: The CERN Document Server contains records of about 700,000 CERN and non-CERN articles, preprints, theses. It includes records for internal and technical notes, official CERN committee documents, and multimedia objects. CDS is planning to focus on its role as an institutional repository covering all CERN material from the early 50 s and reflecting the holdings of the CERN library. Non-CERN particle and accelerator physics content is in the process of being exported to INSPIRE.

http://cds.cern.ch

- INSPIRE HEP: The HEP collection, the flagship of the INSPIRE suite, serves more than 1.3 million bibliographic records with a growing number of full-text articles attached and metadata including author affiliations, abstracts, references, experiments, keywords as well as links to arXiv, ADS, PDG, HEPData, publisher platforms and other servers. It provides fast metadata and full-text searches, plots extracted from full text, author disambiguation, author profile pages and citation analysis and is expanding its content to, e.g., experimental notes.

http://inspirehep.net

- JACoW: The Joint Accelerator Conference Website publishes the proceedings of several accelerator conferences held around the world. A custom interface allows searching based on keywords, titles, authors, and in the full text.
http://www.jacow.org/
- KEK Library Preprints and Reports Database: This database contains bibliographic records of preprints and technical reports held in the KEK library, with links to the fulltext images of more than 100,000 papers scanned from their worldwide preprint collection. Particularly useful for older scanned preprints. Links to it are included in INSPIRE HEP.

https:

//www.i-repository.net/il/meta_pub/engG0000128Lib

- MathSciNet: This database of almost 3 million items provides reviews, abstracts and bibliographic information for much of the mathematical sciences literature. Over 100,000 new items, most of them classified according to the Mathematics Subject Classification, and more than 80,000 reviews of the current published literature are added each year. Author identification allows users to search for publications by author and citation data allows users to track the history and influence of research publications.

http://www.ams.org/mathscinet

- OSTI.GOV: A portal to free, publicly available DOEsponsored R\&D results including technical reports, bibliographic citations, journal articles, conference papers, books, multimedia and data information. It consolidates OSTI's home page and the now-retired primary search tool SciTech Connect. It contains over 3 million records, including citations to 1.5 million journal articles, 1 million of which have digital object identifiers (DOIs) linking to full-text articles on publishers' websites.

> https://www.osti.gov

5 Particle Physics Journals and Conference Proceedings Series

- CERN Journal List: This list of journals and conference series publishing particle physics content provides information on Open Access, copyright policies and terms of use.
http://library.cern/oa/where-publish
- INSPIRE Journals: The database contains over 3,600 journals publishing HEP-related articles.

http://inspirehep.net/collection/journals

6 Conference Databases

- INSPIRE Conferences: The database of more than 23,000 past, present, and future conferences, schools, and meetings relevant to high-energy physics and related fields is searchable by title, acronym, series, date and location. Included are information about published proceedings, links to conference contributions in the INSPIRE HEP database, and links to the conference website when available. New conferences can be submitted from the entry page.

> http://inspirehep.net/conferences

7 Research Institutions

- INSPIRE Institutions: INSPIRE Institutions contains over 11,500 institutes, laboratories, and universities, where research on particle physics and astrophysics is led. Every record includes, whenever possible, as detailed information, such as address, web links, experiments, and links to INSPIRE papers authored by people affiliated to that institution. One can search for a particular institution by name, acronym, and location.
http://inspirehep.net/institutions

8 People

- INSPIRE HEPNames: Searchable worldwide database of over 125,000 active, departed, retired, and deceased people associated with particle physics and related fields. The affiliation history of these researchers, their e-mail addresses, ORCIDs, web pages, experiments they participated in, PhD advisor, information on their graduate students and links to their papers in the INSPIRE HEP, arXiv and ADS databases are provided, as well as a user interface to update this information.

http://inspirehep.net/hepnames

- ORCID: Registry providing persistent digital identifiers allowing to unambiguously identify researchers. Through integration in key research workflows such as manuscript and grant submission, it supports automated linkages between scientists and their professional activities ensuring that their work is recognized.
https://orcid.org

9 Experiments

- INSPIRE Experiments: Contains more than 3,500 past, present, and future experiments in particle physics. Lists both accelerator and non-accelerator experiments. Includes official experiment name and number, location, and collaboration lists. Simple searches by participant, title, experiment number, institution, date approved, accelerator, or detector, return a description of the experiment, including a complete list of authors, title, overview of the experiment's goals and methods, and a link to the experiment's web page if available. Recently, it has expanded its scope to include particle accelerators besides experiments and to link them together.

> http://inspirehep.net/Experiments

- Cosmic ray/Gamma ray/Neutrino and similar experiments: This extensive collection of experiment websites is organized by focus of study and by location. Additional sections link to educational materials, organizations, and other useful resources. The site is maintained at the Max Planck Institute for Nuclear Physics, Heidelberg.

$$
\begin{gathered}
\text { http://www.mpi-hd.mpg.de/hfm/CosmicRay/ } \\
\text { CosmicRaySites.html }
\end{gathered}
$$

10 Jobs

- AAS Job Register: The American Astronomical Society publishes once a month graduate, postgraduate, faculty and other positions mainly in astronomy and astrophysics.

http://jobregister.aas.org/

- Academic Jobs Online: A full-service online recruiting site for academic institutions worldwide in all disciplines and areas.
- APS Careers: A gateway for physicists, students, and physics enthusiasts to information about physics jobs and careers. It contains Physics job listings, career advice, upcoming workshops and meetings, and career and job-related resources provided by the American Physical Society.

> http://www.aps.org/careers/employment

- brightrecruits.com: A recruitment service run by IOP Publishing that connects employers from different industry sectors with jobseekers who have a background in physics and engineering.

http://brightrecruits.com/

- IOP Careers: Career information and resources primarily aimed at university students are provided by the UK Institute of Physics.
http://www.iop.org/careers/
- INSPIRE HEPJobs: Lists academic and research jobs in high energy physics, nuclear physics, accelerator physics and astrophysics with the option to post a job or to receive email notices of new job listings. About 500 jobs are currently listed.

http://inspirehep.net/jobs

- Physics Today Jobs: Online recruitment advertising website for Physics Today magazine, published by the American Institute of Physics. Physics Today Jobs is the managing partner of the AIP Career Network, an online job board network for the physical science, engineering, and computing disciplines. Over 6,000 resumes are currently available, and nearly 5,000 jobs were posted in 2018.

```
http://www.physicstoday.org/jobs
```


11 Software Packages and Repositories

Most relevant software is hosted by general-purpose repositories like GitHub, GitLab or BitBucket, but here are a few specific repositories focused on astrophysics or HEP. \#\# Repositories

- ASCL: The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists. It lists codes that have been used in research that has appeared in, or been submitted to, peerreviewed publications.
http://ascl.net
- GenSer: The Generator Services project collaborates with Monte Carlo (MC) generator authors and with LHC experiments in order to prepare validated LCG compliant code for both theoretical and experimental communities at the LHC, sharing the user support duties, providing assistance for the development of the new object-oriented generators, and guaranteeing the maintenance of the older packages on the LCG supported platforms. The project consists of the generators repository, validation, HepMC record and MCDB event databases.

> http://ep-dep-sft.web.cern.ch/project/ generator-service-project-genser

- Hepforge: A development environment for high-energy physics software projects, in particular housing many eventgenerator related projects, that offers a ready-made, easy-to-use set of web-based tools, including shell account with up-to-date development tools, web page hosting, subversion, git and Mercurial code management systems, mailing lists, bug tracker and wiki system.

```
http://www.hepforge.org/
```


11.1 Particle Physics Software

- FastJet: This is a software package for jet finding in $p p$ and $e^{+} e^{-}$collisions. It includes fast native implementations of many sequential recombination clustering algorithms, plugins for access to a range of cone jet finders and tools for advanced jet manipulation.
http://fastjet.fr/
- GAMBIT: A global fitting code for generic Beyond the Standard Model theories, designed to allow fast and easy definition of new models, observables, likelihoods, scanners and
backend physics codes.

http://gambit.hepforge.org

- Geant4: This is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science.
http://geant4.web.cern.ch/geant4/
- LHAPDF: HEP community standard library for parton distribution function interpolation, including official collection of PDF data sets.
http://lhapdf.hepforge.org/
- QUDA: Library for performing calculations in lattice QCD on GPUs using NVIDIA's CUDA platform. The current release includes optimized solvers for Wilson, Clover-improved Wilson, Twisted mass, Staggered, Improved staggered, Domain wall and Mobius fermion actions.
http://lattice.github.io/quda/
- Rivet: The Rivet toolkit, a system for validation of Monte Carlo event generators, provides a large set of experimental analyses useful for MC generator development, validation, and tuning.

http://rivet.hepforge.org/

- ROOT: This framework for data processing in high-energy physics, born at CERN, offers applications to store, access, process, analyze and represent data or perform simulations.
http://root.cern.ch
- Scikit-HEP: This is a community-driven and communityoriented project with the aim of providing Particle Physics at large with an ecosystem for data analysis in Python. The project started in Autumn 2016 and is under active development. It focuses on providing core and common tools for the community but also on improving the interoperability between HEP tools and the scientific ecosystem in Python as well as the discoverability of utility packages and projects.
http://scikit-hep.org
- tmLQCD: This freely available software suite provides a set of tools to be used in lattice QCD simulations, mainly a HMC implementation for Wilson and Wilson twisted mass fermions and inverter for different versions of the Dirac operator.

https://github.com/etmc/tmLQCD

- USQCD: The software suite enables lattice QCD computations to be performed with high performance across a variety of architectures. The page contains links to the project web pages of the individual software modules, as well as to complete lattice QCD application packages which use them.
http://usqcd-software.github.io
- Software lists: A list of Monte Carlo generators may be found at:
http://cmsdoc.cern.ch/cms/PRS/gentools/www/geners/ collection/
The homepage of the SUSY Les Houches Accord contains links to codes relevant for supersymmetry calculations and phenomenology.
http://skands.physics.monash.edu/slha/
A variety of codes and algorithmic tools for analysing supersymmetric phenomenology is described in
http://arxiv.org/abs/0805.2088
G. Cowan's list provides links to HEP software, general statistics and data analysis links.
http://www.pp.rhul.ac.uk/~cowan/sda/statlinks.html An extended list of more specialized HEP-related software can be found in the online version of this review:
http://library.cern/particle_physics_information\#sof

11.2 Astrophysics Software

- Astropy: The Astropy Project is a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages.
http://www.astropy.org
- Starlink: Starlink was a UK Project supporting astronomi-
cal data processing. It was shut down in 2005 but its opensource software continued to be developed at the Joint Astronomy Centre until March 2015. It is currently maintained by the East Asian Observatory. The open-source software products are a collection of applications and libraries, usually focused on a specific aspect of data reduction or analysis.
http://starlink.eao.hawaii.edu/starlink
- Links to a large number of astronomy software archives are listed at:
http://heasarc.nasa.gov/docs/heasarc/astro-update/

11.3 Web Apps

- APFEL Web: This online parton density function plotter allows to compare predictions for different PDF fits.

```
https://apfel.mi.infn.it/
```

- ColliderReach: A tool to give a simple estimate of the relation between the mass reaches of different proton-proton collider configurations.
http://collider-reach.web.cern.ch/
- TMDplotter: Allows to plot TMDs and PDFs as a function of different variables.
http://tmdplotter.desy.de/

11.4 Mobile Apps

- arXiv eXplorer: Android app for browsing and searching arXiv.org, and for reading, saving and sharing articles.
https://play.google.com/store/apps/details?id=com. gbeatty.arxiv
- Collider: This mobile app allows users to see data from the ATLAS experiment at the LHC.
http://collider.physics.ox.ac.uk/
- LHSee: This smartphone app allows users to see collisions from the Large Hadron Collider.
http://www2.physics.ox.ac.uk/about-us/outreach/ public/lhsee
- The Particles: App for Apple iPad, Windows 8 and Microsoft Surface. Allows users to browse a wealth of real "event" images and videos, read popular "biographies" of each of the particles and explore the A-Z of particle physics with its details and definitions of key concepts, laboratories and physicists. Developed by Science Photo Library in partnership with Prof. Frank Close.
http://www.sciencephoto.com/apps/particles.html

12 Data repositories

Data is increasingly deposited in general-purpose repositories like Zenodo (https://zenodo.org/), figshare (https://figshare.com/) or the Open Science Framework (https://osf.io/), but here are a few specific repositories focused on physics.

12.1 Particle Physics

- HEPData: The HEPData project, funded by the STFC (UK) and based at Durham University, has been built up over the past four decades as a unique repository for scattering data from experimental particle physics papers. It currently comprises the data points from plots and tables related to several thousand publications including those from the LHC. The data from HEPData can also be accessed through INSPIRE. A new enhanced service was recently developed in collaboration with CERN.

```
https://hepdata.net
```

- CERN Open Data: The CERN Open Data portal provides data from real collision events, as well as simulated and simplified datasets, produced by the experiments at the LHC, virtual machines to reproduce the analysis environment, and software to process the data. It serves over 2 PB of data in total and encourages their use for both educational and research purposes.

http://opendata.cern.ch

- HepSim: A repository with Monte Carlo simulations for particle-collision experiments. It contains predictions from
parton shower models and includes Monte Carlo events after fast and full detector simulations and event reconstruction. http://atlaswww.hep.anl.gov/hepsim/
- ILDG: The International Lattice Data Grid is an international organization which provides standards, services, methods and tools that facilitate the sharing and interchange of lattice QCD gauge configurations among scientific collaborations by uniting their regional data grids. It offers semantic access with local tools to worldwide distributed data.

```
http://www.usqcd.org/ildg/
```

- MCDB - Monte Carlo Database: This central database of MC events aims to facilitate communication between Monte-Carlo experts and users of event samples in LHC collaborations. Having these events stored in a public place along with the corresponding documentation allows for direct cross checks of the performances on reference samples.

> http://mcdb.cern.ch/

- MCPLOTS: MCPLOTS is a repository of Monte Carlo plots comparing High Energy Physics event generators to a wide variety of available experimental data. The website is supported by the LHC Physics Centre at CERN.
http://mcplots.cern.ch/

12.2 Astrophysics

- CfA Dataverse: This astronomy data repository at Harvard is open to all scientific data from astronomical institutions worldwide.
https://dataverse.harvard.edu/dataverse/cfa
- NASA's HEASARC: The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA's (and other space agencies') missions dealing with electromagnetic radiation from extremely energetic phenomena ranging from black holes to the Big Bang.
http://heasarc.gsfc.nasa.gov/
- NASA archives: The NASA archives provide access to raw and processed datasets from numerous NASA missions.
Mikulski Archive for Space Telescopes (MAST): Hubble telescope, other missions (UV, optical):
http://archive.stsci.edu/
NASA/IPAC Infrared Science Archive: Spitzer, Herschel, Planck telescope, other missions:
http://irsa.ipac.caltech.edu/
- NASA/IPAC Extragalactic Database (NED): An astronomical database that collates and cross-correlates information on extragalactic objects. It contains their positions, basic data, and names as well as bibliographic references to published papers, and notes from catalogs and other publications. NED supports searches for objects and references, and offers browsing capabilities for abstracts of articles of extragalactic interest.
http://ned.ipac.caltech.edu/
- SIMBAD: The SIMBAD astronomical database provides basic data, cross-identifications, bibliography and measurements for astronomical objects outside the solar system. It can be queried by object name, coordinates and various criteria. Lists of objects and scripts can be submitted.
http://simbad.u-strasbg.fr/simbad/
- VizieR: VizieR provides access to the most complete library of published astronomical catalogues and data tables, available online organized in a self-documented database. Query tools allow users to select relevant data tables and extract and format records matching given criteria. Currently, more than 19,000 catalogues are available.
http://vizier.u-strasbg.fr/

12.3 General Physics

- NIST Physical Measurement Laboratory: The National Institute of Standards and Technology provides access to physical reference data (physical constants, atomic spectroscopy data, x-ray and gamma-ray data, radiation dosimetry data, nuclear physics data and more) and measurements
and calibrations data (dimensional and electromagnetic measurements).
https://www.nist.gov/pml/
- Springer Materials - The Landolt-Börnstein Database: Landolt-Börnstein is a data collection covering all areas of physical sciences and engineering, such as particle physics, electronic structure and transport, magnetism, superconductivity. International experts scan the primary literature in more than 8,000 peer-reviewed journals and evaluate and select the most valid information to be included in the database. It includes more than 130,000 online documents, 1,2 million references, and covers 250,000 chemical substances. SpringerMaterials Interactive allows to visualise and analyse data. The search functionality is freely accessible and the search results are displayed in their context, whereas the full text is secured to subscribers.
http://materials.springer.com

13 Data preservation activities

13.1 Particle Physics

- CERN Analysis Preservation: CERN Analysis Preservation is a platform for preserving knowledge and assets of individual physics analyses in LHC collaborations. Its aim is to capture and document all the elements needed to understand and rerun an analysis even several years later: data, software, environment, workflow, context, and documentation. This platform is currently in a pilot stage. It is accessible by LHC experimental groups (standard collaboration access restrictions are applied).
https://analysispreservation.cern.ch
- DASPOS: A collective effort to explore the realisation of a viable data, software and algorithm preservation architecture in High Energy Physics

> https://daspos.crc.nd.edu

- DPHEP: DPHEP coordinates the efforts to define and implement Data Preservation and Long Term Analysis in HEP. DPHEP, which was initiated as a study group in 2008-2009, includes all major HEP experiments and labs. In 2014, it has become a Collaboration through the signature of a Collaboration Agreement by a number of large funding agencies. The group is endorsed by the International Committee for Future Accelerators (ICFA).
DPHEP regularly organizes workshops, creates status reports, and maintains links with similar activities in other disciplines. Details of the organizational structure, the objectives, workshops and publications can be found on the website.

http://dphep.org

- REANA: REANA (REusable ANAlyses) is a system for instantiating research data analyses on the cloud using container-based solutions. It complements CERN Analysis Preservation permitting the reuse and revalidation of preserved analyses. It is being developed in close collaboration with DASPOS and RECAST.

> http://reanahub.io/

- RECAST: Building on analysis preservation and re-use infrastructure of the LHC experiments, RECAST acts as a science gateway allowing theorists to suggest new reinterpretations of archived analyses of the LHC dataset. Experiments review suggestions and, if approved, simulate the proposed models and re-run the archived analysis to determine their viability. Such reinterpretation results are then appended to the records of the original publication in the relevant digital archives.

> https://recast.cern.ch

13.2 Astrophysics

More formal and advanced data preservation activity is ongoing in the field of Experimental Astrophysics, including:

- Fermi Data
https://fermi.gsfc.nasa.gov/ssc/data
- IVOA (International Virtual Observatory Alliance) http://www.ivoa.net/astronomers/applications.html
- GWOSC (Gravitational Wave Open Science Center) https://www.gw-openscience.org/about/
- PLA (Planck Legacy Archive)

> http://pla.esac.esa.int/pla/

- SDSS (Sloan Digital Sky Survey)
http://sdss.org

14 Particle Physics Education and Outreach Sites

A useful list of resources can also be found at http://www.stfc.ac.uk/research/ particle-physics-and-particle-astrophysics/ particle-physics-resources/

14.1 Science Educators' Networks

- IPPOG: The International Particle Physics Outreach Group is a network of scientists, science educators and communication specialists working across the globe in informal science education and outreach for particle physics. The IPPOG collaboration comprises 30 members: 24 countries, 5 experiments and CERN as an international laboratory.
http://ippog.web.cern.ch
- Interactions.org: Designed to serve as a central resource for communicators of particle physics. The daily updated website provides links to current particle physics news from the world's press, high-resolution photos and graphics from the particle physics laboratories of the world; links to education and outreach programs; information about science policy and funding; a glossary; and links to many educational sites.

http://www.interactions.org

- QuarkNet: The QuarkNet Collaboration is a national program that partners high school science teachers with particle physicists working in experiments at CERN or Fermilab. The network consists of over 50 centers at research groups in universities and labs across the United States. About 100,000 students from $500+$ U.S. high schools learn fundamental physics as they participate in inquiry-oriented investigations and analyze authentic data online. QuarkNet is supported in part by the National Science Foundation and Fermilab.

https://quarknet.org/

- Netzwerk Teilchenwelt: Behind the project are about 200 researchers from 30 institutes and universities doing research in particle physics, astroparticle physics and hadron and nuclear physics in Germany. Exciting young scientists throughout Germany for particle physics and accompanying them from school to top-level particle physics research-that's what they have set their sights on. https://www.teilchenwelt.de

14.2 Physics Courses

- MIT OpenCourseWare - Physics: These MIT course materials reflect almost all the undergraduate and graduate subjects taught at MIT. In addition to physics courses, supplementary educational resources are also available.
http://ocw.mit.edu/courses/physics/
- OnlineCourses.com: A collection of online tests, video lectures, and related course materials from mostly prestigious universities around the world.
http://www.onlinecourses.com/physics/

14.3 Masterclasses

- Cosmic Ray Studies: There are more than 12 projects around the world that address young people and teachers giving them an opportunity to explore cosmic particles, collecting, uploading and analyzing data and sharing results. Two annual events include International Cosmic Day and International Muon Week.
https://icd.desy.de
https://quarknet.org/content/international-muon-week
- Hands-On Universe: This program enables students to investigate the Universe while applying tools and concepts from science, math and technology.
http://handsonuniverse.org/
- HYPATIA: HYPATIA (Hybrid Pupil's Analysis Tool for Interactions in ATLAS) is a tool for high school students to inspect the graphic visualization of particle collision products in the ATLAS detector at CERN.
http://hypatia.phys.uoa.gr/
- International Masterclasses: Each year about 13,000 high school students in 55 countries come to one of about 225 nearby universities or research centres for a day to unravel the mysteries of particle physics. Lectures from active scientists give insight in topics and methods of basic research enabling the students to perform measurements on real data from one of seven experiments. At the end of the day, like an international research collaboration, participants join a video conference for discussion and combination of results. The program is coordinated from Institut fur Kern- und Teilchenphysik at TU Dresden and the Notre Dame University QuarkNet Center within the framework of the International Particle Physics Outreach Group (IPPOG). CERN, Fermilab and TRIUMF support videoconferences.
https://physicsmasterclasses.org
World Wide Data Day is an annual event.
https://quarknet.org/content/world-wide-data-day
- LHC physics Masterclasses: Lectures from active scientists give insight into methods of basic research, enabling the students to perform measurements on real data from LHC experiments. Like in a real research collaboration, the participants then discuss their results and compare with expectations.

http:

//cms.web.cern.ch/content/cms-physics-masterclass http://lhcb-public.web.cern.ch/lhcb-public/en/ LHCb-outreach/masterclasses/en
 http://alice.physicsmasterclasses.org/ MasterClassWebpage.html

http://atlas-minerva.web.cern.ch/atlas-minerva

- IceCube Masterclass: The program is inspired by the International Masterclasses program started by IPPOG and is coordinated by the Wisconsin IceCube Particle Astrophysics Center with support from QuarkNet. https://masterclass.icecube.wisc.edu/

14.4 General Sites

- Contemporary Physics Education Project (CPEP): Provides charts, brochures, Web links, and classroom activities. Online interactive courses include: Fundamental Particles and Interactions; Plasma Physics and Fusion; History and Fate of the Universe; and Nuclear Science.
http://www. cpepweb.org/
- PhysicsCentral: This site maintained by the American Physical Society provides information about current research and people in physics, experiments that can be performed at home or at school and the possibility to get physics questions answered by physicists.
http://www.physicscentral.com

14.5 General Physics Activities

- HyperPhysics: An exploration environment for concepts in physics employing concept maps and other linking strategies and providing opportunities for numerical exploration. http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html
- PhET Interactive Simulations: Founded in 2002 by Nobel Laureate Carl Wieman, the PhET Interactive Simulations project at the University of Colorado Boulder creates free interactive math and science simulations. PhET sims are based on extensive education research and engage students through an intuitive, game-like environment where students learn through exploration and discovery.
//phet.colorado.edu/en/simulations/category/physics

14.6 Particle Physics Activities

Citizen Science

- Higgs Hunters: A web-based citizen science project to help search for unknown exotic particles in the LHC data.
http://HiggsHunters.org
- LHC @ home: Volunteer computing platform to help physicists compare theory with experiment, in the search for new fundamental particles and answers to questions about the Universe.
http://lhcathome.web.cern.ch

Classroom Activities Collections

- Contemporary Physics Education Project - Fundamental particle and interactions: http://www.cpepphysics.org/particles.html
- Fermilab Physical Science/Physics Resources:
https://ed.fnal.gov/home/educators1000-physics.shtml

- IceCube Activities:

https://icecube.wisc.edu/outreach/activities

- IPPOG Resources:
http://ippog.org/resources
- Jefferson Lab Teacher Resources:
https://education.jlab.org/indexpages/teachers.html
- LIGO Classroom Activities:
https:
//www.ligo.caltech.edu/page/classroom-activities
- MINERvA Neutrinos in the Classroom: https://neutrino-classroom.org
- Perimeter Institute Educational Resources:
https://resources.perimeterinstitute.ca
- Quarked Lesson Plans:
http://www.quarked.org/parents/lessonplans.html
- QuarkNet Data Activities Portfolio: https://quarknet.org/data-portfolio
- Sanford Lab curriculum materials: https://sanfordlab.org/educators/curriculum-modules

Interactive Sites

- CAMELIA: CAMELIA (Cross-platform Atlas Multimedia Educational Lab for Interactive Analysis) is a discovery tool for the general public, based on computer gaming technology.

https://www.atlasexperiment.org/camelia.html

- CERNland: With a range of games, multimedia applications and films CERNland is a virtual theme park developed to bring the excitement of CERN's research to a young audience aged between 7 and 12. CERNland is designed to show children what is being done at CERN and inspire them with some physics.

> http://www.cernland.net/

- In particular: Podcast and more about physics and the process of discovering physics at the ATLAS experiment.
https://inparticular.web.cern.ch/
- Lancaster Particle Physics: Suitable for 16+ students, this site offers a number of simulations and explanations of particle physics, including a section on the LHC.
http://www.lppp.lancs.ac.uk/
- Quarked! - Adventures in the Subatomic Universe: This project, targeted to kids aged 7-12 (and their families), brings subatomic physics to life through a multimedia project including an interactive website, a facilitated program for museums and schools, and an educational outreach program.
http://www.quarked.org/

Planetarium Show

- Phantom of the Universe: A planetarium show about dark matter that covers astrophysics, an underground experiment, and the LHC. It is distributed to planetariums for free.

> http://phantomoftheuniverse.com/

Video/Film

- Angels and Demons: With the aim of looking at the myth versus reality of antimatter and science at CERN this site describes the science behind the story including a set of videos.

```
http://angelsanddemons.web.cern.ch/
```

- CollidingParticles: A series of films following a team of physicists involved in research at the LHC.
http://www.collidingparticles.com/
- Rewarding Learning videos about CERN: The three videos based on interviews with scientists and engineers at CERN introduce pupils to CERN and the type of research and work undertaken there and are accompanied by teachers' notes.
http://www.nicurriculum.org.uk/STEMWorks/resources/ cern/index.asp
- Videos by Don Lincoln: Short YouTube videos on basic particle physics and cosmology.

```
https://www.youtube.com/playlist?list=
    PLCfRa7MXBEsoJuAM8s6D8oKDPyBepBosS
```

Websites * Cambridge Relativity and Cosmology: Materials for the greater public to learn about the Origins of the Universe, including information on black holes, string theory, Mthoery, the cosmic microwave background and the structure of the Universe.
http://www.damtp.cam.ac.uk/research/gr/public/index.html

* Imagine the Universe: This site is for students age 14 and up and for anyone interested in learning about the Universe.
http://imagine.gsfc.nasa.gov/home.html
* Particle Adventure: An interactive tour of quarks, neutrinos, antimatter, extra dimensions, dark matter, accelerators and particle detectors from the Particle Data Group of Lawrence Berkeley National Laboratory. Simple elegant graphics and translations into 16 languages.
http://particleadventure.org/

14.7 Lab Education Offices

- Argonne National Laboratory (ANL) Educational Programs: Connecting today's world-class research to tomorrow's STEM problem solvers.
http://www.anl.gov/education/
- Brookhaven National Laboratory (BNL) Educational Programs: The Office of Educational Programs mission is to design, develop, implement, and facilitate workforce development and education initiatives that support the scientific mission at Brookhaven National Laboratory and the Department of Energy.
http://www.bnl.gov/education/
- CERN's education programmes: CERN's education and outreach programmes cover all ages from high-school students to university students. Specifically, CERN offers the tailormade High-School Students Internship Programme several times per year and the Beamline for Schools Competition, challenging high-school students from around the world to propose an experiment to carry out at a real research laboratory. The Laboratory also runs residential programmes for high-school teachers from around the world and a summer programme for undergraduate students.

> https://home.cern/about/what-we-do/
> our-educational-programmes

- DESY Education: DESY Hamburg offers a regular series of public lectures and the DESY Science Café for young and old alike.
https://fortbildung.desy.de/index_eng.html
- DESY Zeuthen Outreach: Posters, photos, lectures, videos and blogs. Projects for teachers and students include School Labs, Cosmic@Web, Teilchenwelt and International Cosmic Day.
https://astro.desy.de/outreach
- Fermilab Office of Education and Public Outreach: Provides education resources and information about activities for 's, physicists, students and visitors to the Lab. In addition to information about 25 programs, the website provides online data-based investigations for high school students, online versions of exhibits in the Lederman Science Center, links to particle physics discovery resources, webbased instructional resources, tips for education and outreach, and links to the Lederman Science Center and the Teacher Resource Center.
http://ed.fnal.gov/
- Perimeter Institute Outreach: Perimeter Institute shares ideas with students, teachers, and like-minded people through programs and resources that communicate the power, joy, and mystery of science. Perimeter's award-winning Outreach team brings science to life and raises scientific literacy through classroom resources, public lectures, teacher workshops, an educator network, and a summer school where students interact with Perimeter researchers.

https://www.perimeterinstitute.ca/outreach

- Science Education at Jefferson Lab: Jefferson Lab's long-term commitment to science education continues to focus on increasing the number of teachers with a substantial background in math and science, strengthening the motivation and preparation of all students, especially minorities and females, and addressing the serious under representation of minorities and females in science, math, engineering and technology careers.

http://education.jlab.org/

- Joint Institute for Nuclear Research Education (JINR): The JINR educational portal has resources, programs for teachers and school students and lab tours.
http://www.jinr.ru/schoolstudents-teachers-en/
- Laboratori Nazionali di Frescati Educational (INFN): INFN educational programs are addressed to students, teachers and general audiences of every age, from Italy and abroad. Insights and education about the INFN-LNF research are offered thanks to the organization of guided tours and open days, stages for students, refresher courses for teachers, seminars and divulgation events. The aim is to create a constant exchange between the research world and society, thanks to direct contact and via the internet and other social media.

```
http://edu.lnf.infn.it/about/?lang=en
```

- Laboratori Nazionali del Gran Sasso Outreach Activities: The Lab offers pupils the opportunity to approach the fascinating world of Physics and Science in general through stages, summer schools and training camps. It makes young researchers' skills and competences available to people both in public events, such as the Open Day and the European Researchers' Night, and in guided tours to visit the underground experimental halls.
https://www.lngs.infn.it/en/outreach-activities
- Lawrence Berkeley National Laboratory (LBNL) Workforce Development and Education: Working with our partners both within and outside Berkeley Lab, LBNL promotes equal access to scientific and technical careers for students from all backgrounds, supports STEM teachers, and build sscientific literacy through innovative education programs. The lab also supports educational outreach efforts from Berkeley Lab's divisions by providing program development assistance, materials, funding, volunteers, project management, marketing, and administrative support.
https://education.lbl.gov/
- Sanford Underground Research Facility Education and Outreach: Leveraging research being conducted underground at Sanford Lab, staff provide training, teaching
tools and materials for teachers so they can inspire and challenge students.

https://sanfordlab.org/educators

- SNOLAB Outreach: The goal at SNOLAB is to develop new educational material that fosters an appreciation of the field of astroparticle physics. The education team endeavours to facilitate an exchange of knowledge with the public and scientists from around the world to better understand our solar system. The desired outcome of the educational work is to have a network of healthy and resilient community partners with informed and active citizens better equipped to understand the goals here at SNOLAB now and in the future.

https://www.snolab.ca/outreach

- TRIUMF High School Programs: TRIUMF offers outreach programs for high-school students, teachers, and the general public with a mission of promoting science and research in the public arena. TRIUMF's outreach activities are also designed to tell Canadian students, teachers, and the public about the excitement of curiosity-driven research and about how a laboratory like TRIUMF adds value to Canada in new technologies, medical applications, and highly qualified people.

> https:
//www.triumf.ca/for-public/high-school-programs

- LBL Workforce Development and Education: This group carries out Berkeley Lab's mission to inspire and prepare the next generation of scientists, engineers, and technicians.

> https://education.lbl.gov/

14.8 Educational Programs of Experiments

- ATLAS Education: The ATLAS Experiment has a wide range of educational resources available for students and teachers. Categories include primary and secondary school students, university students, teachers, citizen science, and multimedia and resources.
https://atlas.cern/resources/education
- CMS Education and Outreach Resources: Access to 110 resources from Activities and Artworks to Visualizations. https://cds.cern.ch/collection/CMS\ Education\% 20and\%200utreach\%20Resources?ln=en
- HiSPARC at UCU: HiSPARC is an outreach, educational and research experiment on cosmic rays detection, which was initiated in the Netherlands in 2004. It brings together secondary school students and teachers, undergraduate students and university researchers in the quest to understand the origin of the most energetic particles in our universe. HSPARC has stations in the Netherlands, the United Kingdom, Denmark and Namibia.

> https://www.uu.nl/en/organisation/
university-college-utrecht/hisparc-at-ucu

- IceCube Education and Outreach: IceCube is committed to bringing science to a wider audience. Learning opportunities for high school students, research experiences for teachers and undergraduates, learning activities for the classroom or at home, and wecasts.
https://icecube.wisc.edu/outreach
- KASCADE and KASCADE-Grande KDKC: The aim of the project KCDC (KASCADE Cosmic Ray Data Centre) is the installation and establishment of a public data centre for high-energy astroparticle physics based on the data of the KASCADE experiment.
https://kcdc.ikp.kit.edu
- LIGO Education Resources: Something fun and educational for K-12 educators, parents and interested students. https:
//www.ligo.caltech.edu/page/educational-resources
- MINERvA Neutrinos in the Classroom: Information and educational materials provide high school physics students with an in-depth hands-on interactive experience with real high-energy particle physics. The materials should be
suitable for a 1-2 weeks module on particle physics as it's done by professional scientists.
https://neutrino-classroom.org
- VIRGO Educational Resources: Useful resources (websites, texts, videos) for teachers and students related to gravitational waves and the interferometers like Virgo.
http://public.virgo-gw.eu/educational-resources/
- Pierre Auger Observatory's Educational Pages: The site offers information about cosmic rays and their detection, and provides material for students and teachers.
https://www.auger.org/index.php/edu-outreach
14.9 News
- Asimmetrie: Bimonthly magazine about particle physics published by INFN, the Istituto Nazionale di Fisica Nucleare (in Italian).
http://www.asimmetrie.it/
- CERN Courier:
- Website: https://cernocurier.com
- Twitter: @cerncourier
- DESY inForm:
- Website: http://www.desy.de/news/desy_inform/index_eng
- Twitter: @desy
- Fermilab News:
- Website: https://news.fnal.gov
- Twitter: @Fermilab
- LC Newsline: The newsletter of the Linear Collider community.
http://newsline.linearcollider.org/
- Twitter: @LCnewsline
- IOP News:
http://www.iop.org/news/
- JINR News:
http://www1.jinr.ru/News/Jinrnews_index.html
- News at Interactions.org: The Interactions site provides news and press releases on particle physics.
http://www.interactions.org/news-center
- Twitter: @particlenews
- Perimeter Institute News:
- Website: https://www.perimeterinstitute.ca/news
- Twitter: @perimeter
- Sandford News and Events:
- Website: https://sanfordlab.org/news-and-events
- Twitter: @SanforLab
- SLAC Signals: This email newsletter reports about cuttingedge science, major SLAC milestones and other lab information. It has replaced SLAC Today in November 2013. Its signup page can be found at
http://eepurl.com/IqPl1
- SNOLAB News and Headline:
https://www.snolab.ca/news
- Symmetry: This magazine about particle physics and its connections to other aspects of life and science, from interdisciplinary collaborations to policy to culture is published 6 times per year by Fermilab and SLAC.

> http://www.symmetrymagazine.org/

- Twitter: @symmetrymag
- TRIUMF on NewsWise:
https://www.newswise.com/institutions/newsroom/19528

14.10 Art in Physics

- Arts@CERN - When Art Meets Science: Arts at CERN is the leading art and science programme promoting the dialog between artists and particle physicists. Programmes include Art Commissions and Exhibitions, Collide, Accelerate and Guest Artists.
https://arts.cern
The Collide@CERN residency programme aims to develop expert knowledge in the arts through the connection with fundamental science. Since 2011 the COLLIDE award calls to artists to win a fully funded residency for up to 3 months.
https://arts.cern/programme/collide
Accelerate@CERN is a country specific one-month research award for artists who have never spent time at a science lab before.

https://arts.cern/programme/accelerate

- Art of Physics Competition: The Canadian Association of Physicists organizes this competition, the first was launched in 1992, with the aim of stimulating interest, especially among non-scientists, in some of the captivating imagery associated with physics. The challenge is to capture photographically a beautiful or unusual physics phenomenon and explain it in less than 200 words in terms that everyone can understand.
https://www.cap.ca/programs/art-physics/
- Fermilab Art Gallery: The convergence of art and science occurs daily in the Fermilab Art Gallery open to the public. To initiate and stimulate communication and interactions among scientists, artists and the public, the laboratory hosts an artist-in-residence program. The artist-in-residence interacts with scientists to learn about their research and how it connects to society. They use this information to create a body of work, leading to presentations in the community and possibly an exhibition of the artwork at Fermilab.
http://events.fnal.gov/art-gallery/
- TRIUMF Science through Art: TRIUMF's Science through Art initiatives explore the space where art and science collide. These programs bring artists and TRIUMF researchers, engineers, technicians, tradespeople, and students together to explore new ways of thinking about science, discovery, creativity, and our universe.
https://www.triumf.ca/science-through-art

14.11 Blogs and Twitter

Lists of active blogs and tweets can be found on INSPIRE:

- Scientist blogs:
http://tinyurl.com/nmku27s
- Scientists with twitter accounts: http://tinyurl.com/nrg5k63
- Experiments with twitter accounts: http://tinyurl.com/q86kma8
- Institutions with twitter accounts: http://tinyurl.com/mzcm3nw

List of physicists on Twitter at TrueSciPhi:
http://truesciphi.org/phy.html

Some selected particle physics related blogs:

- ATLAS blog:
https://atlas.cern/updates/blog
- Life and Physics: Jon Butterworth's blog in the Guardian. http://www.guardian.co.uk/science/life-and-physics
- Of Particular Significance: Conversations about science, with a current focus on particle physics, with theoretical physicist Matt Strassler.

> http://profmattstrassler.com/

- Particle People: This interactions.org page highlights a new blogger involved in particle physics research each month. http://www.interactions.org/particle-people
- Preposterous Universe: Theoretical physicist Sean Carroll's blog.
https://www.preposterousuniverse.com/blog/
- Quantum diaries: Thoughts on work and life from particle physicists from around the world, from 2005 to 2016.

> http://www.quantumdiaries.org/

- Quantum diaries survivor: Experimental particle physicist Tommaso Dorigo's blog.
https://www.science20.com/quantum_diaries_survivor
- Science blogs: Launched in January 2006, ScienceBlogs features bloggers from a wide array of scientific disciplines, including physics.
http://scienceblogs.com/channel/physical-science/
- AstroBetter: Blog with tips and tricks for professional astronomers.
https://www.astrobetter.com/

SUMMARY TABLES OF PARTICLE PHYSICS

Gauge and Higgs bosons 31
Leptons . 34
Quarks . 37
Mesons . 38
Baryons . 93
Searches not in Other Sections* 111
Tests of conservation laws 113

Meson Quick Reference Table 91
Baryon Quick Reference Table 92

* There are also search limits in the Summary Tables for the Gauge and Higgs Bosons, the Leptons, the Quarks, and the Mesons.

SUMMARY TABLES OF PARTICLE PROPERTIES

Extracted from the Particle Listings of the Review of Particle Physics

P.A. Zyla et al. (Particle Data Group),

Prog. Theor. Exp. Phys. 2020, 083C01 (2020) Available at http://pdg.lbl.gov

Particle Data Group
P.A. Zyla, R.M. Barnett, J. Beringer, O. Dahl, D.A. Dwyer, D.E. Groom, C.-J. Lin, K.S. Lugovsky, E. Pianori, D.J. Robinson, C.G. Wohl, W.-M. Yao, K. Agashe, G. Aielli, B.C. Allanach, C. Amsler, M. Antonelli, E.C. Aschenauer, D.M. Asner, H. Baer, Sw. Banerjee, L. Baudis, C.W. Bauer, J.J. Beatty, V.I. Belousov, S. Bethke, A. Bettini, O. Biebel, K.M. Black, E. Blucher, O. Buchmuller, V. Burkert, M.A. Bychkov, R.N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, R.Sekhar Chivukula, G. Cowan, G. D'Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B.A. Dobrescu, M. D'Onofrio, M. Doser, M. Drees, H.K. Dreiner, P. Eerola, U. Egede, S. Eidelman, J. Ellis, J. Erler, V.V. Ezhela, W. Fetscher, B.D. Fields, B. Foster, A. Freitas, H. Gallagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A.A. Godizov, M.C. Gonzalez-Garcia, M. Goodman, C. Grab, A.V. Gritsan, C. Grojean, M. Grünewald, A. Gurtu, T. Gutsche, H.E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, J. Huston, T. Hyodo, K.F. Johnson, M. Kado, M. Karliner, U.F. Katz, M. Kenzie, V.A. Khoze, S.R. Klein, E. Klempt, R.V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L.P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C. Lippmann, T.M. Liss, L. Littenberg, C. Louren, co, S.B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A.V. Manohar, W.J. Marciano, A. Masoni, J. Matthews, U.-G. Meiß ner, M. Mikhasenko, D.J. Miller, D. Milstead, R.E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K.A. Olive, C. Patrignani, J.A. Peacock, S.T. Petcov, V.A. Petrov, A. Pich, A. Piepke, A. Pomarol, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, H. Ramani, M. Ramsey-Musolf, B.N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.L. Rosner, G. Rybka, M. Ryskin, R.A. Ryutin, Y. Sakai, G.P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A.J. Schwartz, J. Schwiening, D. Scott, V. Sharma, S.R. Sharpe, T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, G.F. Smoot, A. Soffer, M.S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S.L. Stone, Y. Sumino, T. Sumiyoshi, M.J. Syphers, F. Takahashi, M. Tanabashi, J. Tanaka, M. Ta` sevský, K. Terashi, J. Terning, U. Thoma, R.S. Thorne, L. Tiator, M. Titov, N.P. Tkachenko, D.R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M.G. Vincter, P. Vogel, W. Vogelsang, A. Vogt, V. Vorobyev, S.P. Wakely, W. Walkowiak, C.W. Walter, D. Wands, M.O. Wascko, D.H. Weinberg, E.J. Weinberg, M. White, L.R. Wiencke, S. Willocq, C.L. Woody, R.L. Workman, M. Yokoyama, R. Yoshida,
G. Zanderighi, G.P. Zeller, O.V. Zenin, R.-Y. Zhu, S.-L. Zhu,
F. Zimmermann

Technical Associates:
J. Anderson, T. Basaglia, V.S. Lugovsky, P. Schaffner, W. Zheng
(C)2020 Regents of the University of California (Approximate closing date for data: January 15, 2020)

GAUGE AND HIGGS BOSONS

p

W^{+}DECAY MODES		Fraction ($\Gamma_{i} / \overline{\text { r }}$)	Con	level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\ell^{+}{ }_{\nu}$	[b]	$(10.86 \pm 0.09) \%$			-
$e^{+} \nu$		$(10.71 \pm 0.16) \%$			40189
$\mu^{+} \nu$		$(10.63 \pm 0.15) \%$			40189
$\tau^{+} \nu$		(11.38 $\pm 0.21) \%$			40170
hadrons		(67.41 $\pm 0.27) \%$			-
$\pi^{+} \gamma$		<7	$\times 10^{-6}$	95\%	40189
$D_{s}^{+} \gamma$		<1.3	$\times 10^{-3}$	95\%	40165
cX	$(33.3 \pm 2.6) \%$				-
$c \bar{s}$	$\left(31 \begin{array}{l}+13 \\ -11\end{array}\right.$) \%		-
invisible	[c]	$(1.4 \pm 2.9) \%$			-
$\pi^{+} \pi^{+} \pi^{-}$		< 1.01	$\times 10^{-6}$	95\%	40189

$J=1$
Charge $=0$
Mass $m=91.1876 \pm 0.0021 \mathrm{GeV}[d]$
Full width $\Gamma=2.4952 \pm 0.0023 \mathrm{GeV}$
$\Gamma\left(\ell^{+} \ell^{-}\right)=83.984 \pm 0.086 \mathrm{MeV}{ }^{[b]}$
$\Gamma($ invisible $)=499.0 \pm 1.5 \mathrm{MeV}{ }^{[e]}$
Γ (hadrons) $=1744.4 \pm 2.0 \mathrm{MeV}$
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0001 \pm 0.0024$
$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0020 \pm 0.0032[f]$

Average charged multiplicity

$\left\langle N_{\text {charged }}\right\rangle=20.76 \pm 0.16 \quad(\mathrm{~S}=2.1)$
Couplings to quarks and leptons
$g_{V}^{\ell}=-0.03783 \pm 0.00041$
$g_{V}^{U}=0.266 \pm 0.034$
$g_{V}^{d}=-0.38_{-0.05}^{+0.04}$
$g_{A}^{\ell}=-0.50123 \pm 0.00026$
$g_{A}^{u}=0.519_{-0.033}^{+0.028}$
$g_{A}^{d}=-0.527_{-0.028}^{+0.040}$
$g^{\nu_{\ell}}=0.5008 \pm 0.0008$
$g^{\nu_{e}}=0.53 \pm 0.09$
$g^{\nu_{\mu}}=0.502 \pm 0.017$

Gauge \& Higgs Boson Summary Table

New Heavy Bosons
 (W^{\prime}, Z^{\prime}, leptoquarks, etc.),
 Searches for

Additional W Bosons

W^{\prime} with standard couplings
Mass $m>5200 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ ($p p$ direct search)
W_{R} (Right-handed W Boson) Mass $m>715 \mathrm{GeV}, \mathrm{CL}=90 \% \quad$ (electroweak fit)

Additional Z Bosons

$Z_{S M}^{\prime}$ with standard couplings
Mass $m>4.500 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad(p p$ direct search)
$Z_{L R}$ of $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1) \quad$ (with $g_{L}=g_{R}$)
Mass $m>630 \mathrm{GeV}, \mathrm{CL}=95 \% \quad(p \bar{p}$ direct search)
Mass $m>1162 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (electroweak fit)
Z_{χ} of $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)_{\chi}$ (with $\left.g_{\chi}=e / \cos \theta_{W}\right)$
Mass $m>4.100 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad(p p$ direct search)
Z_{ψ} of $E_{6} \rightarrow \mathrm{SO}(10) \times \mathrm{U}(1)_{\psi}$ (with $\left.g_{\psi}=e / \cos \theta_{W}\right)$
Mass $m>3900 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ ($p p$ direct search)
Z_{η} of $E_{6} \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)_{\eta}$ (with $\left.g_{\eta}=e / \cos \theta_{W}\right)$
Mass $m>3.900 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ ($p p$ direct search)

Scalar Leptoquarks

$m>1050 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (1st gen., pair prod., $\mathrm{B}(\tau t)=1$)
$m>1755 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (1st gen., single prod., $\mathrm{B}(\tau b)=1$)
$m>1420 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (2nd gen., pair prod., $\mathrm{B}(\mu t)=1$)
$m>660 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (2nd gen., single prod., $\mathrm{B}(\mu q)=1$)
$m>900 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (3rd gen., pair prod., $\mathrm{B}(e q)=1$) $m>740 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (3rd gen., single prod., $\mathrm{B}(e q)=1$)
(See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)

Diquarks

Mass $m>6000 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (E_{6} diquark)
Axigluon
Mass $m>6100 \mathrm{GeV}, \mathrm{CL}=95 \%$

Axions (A^{0}) and Other
 Very Light Bosons, Searches for

See the review on "Axions and other similar particles."
The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $>7.2 \times 10^{24}$ years ($C L=90 \%$).

NOTES
In this Summary Table:
When a quantity has " $(S=\ldots)$ " to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S=\sqrt{\chi^{2} /(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when $S>1$, which often indicates that the measurements are inconsistent. When $S>1.25$, we also show in the Particle Listings an ideogram of the measurements. For more about S , see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.
[a] Theoretical value. A mass as large as a few MeV may not be precluded.
$[b] \ell$ indicates each type of lepton (e, μ, and τ), not sum over them.
[c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, $\mathrm{p}<200 \mathrm{MeV}$.
[d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
[e] This partial width takes into account Z decays into $\nu \bar{\nu}$ and any other possible undetected modes.
[f] This ratio has not been corrected for the τ mass.
$[g]$ Here $A \equiv 2 g_{V} g_{A} /\left(g_{V}^{2}+g_{A}^{2}\right)$.
[h] This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06 (Physics Reports (Physics Letters C) 427257 (2006)).
[i] Here ℓ indicates e or μ.
[j] The value is for the sum of the charge states or particle/antiparticle states indicated.
[k] This value is updated using the product of (i) the $Z \rightarrow b \bar{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/\#FRACZ).
[/] See the Z Particle Listings for the γ energy range used in this measurement.
[n] For $m_{\gamma \gamma}=(60 \pm 5) \mathrm{GeV}$.

LEPTONS

e

$J=\frac{1}{2}$

Mass $m=(548.579909070 \pm 0.000000016) \times 10^{-6} u$
Mass $m=0.5109989461 \pm 0.0000000031 \mathrm{MeV}$
$\left|m_{e^{+}}-m_{e^{-}}\right| / m<8 \times 10^{-9}, \mathrm{CL}=90 \%$
$\left|q_{e^{+}}+q_{e^{-}}\right| / e<4 \times 10^{-8}$
Magnetic moment anomaly

$$
(g-2) / 2=(1159.65218091 \pm 0.00000026) \times 10^{-6}
$$

$\left(g_{e^{+}}-g_{e^{-}}\right) / g_{\text {average }}=(-0.5 \pm 2.1) \times 10^{-12}$
Electric dipole moment $d<0.11 \times 10^{-28} \mathrm{ecm}, \mathrm{CL}=90 \%$
Mean life $\tau>6.6 \times 10^{28} \mathrm{yr}, \mathrm{CL}=90 \%{ }^{[a]}$

$$
J=\frac{1}{2}
$$

Mass $m=0.1134289257 \pm 0.0000000025 u$
Mass $m=105.6583745 \pm 0.0000024 \mathrm{MeV}$
Mean life $\tau=(2.1969811 \pm 0.0000022) \times 10^{-6} \mathrm{~s}$
$\tau_{\mu^{+}} / \tau_{\mu^{-}}=1.00002 \pm 0.00008$ $C \tau=658.6384 \mathrm{~m}$
Magnetic moment anomaly $(g-2) / 2=(11659209 \pm 6) \times 10^{-10}$
$\left(g_{\mu^{+}}-g_{\mu^{-}}\right) / g_{\text {average }}=(-0.11 \pm 0.12) \times 10^{-8}$
Electric diapole moment $|\mathrm{d}|<1.8 \times 10^{-19} \mathrm{ecm}, \mathrm{CL}=95 \%$
Decay parameters ${ }^{[b]}$
$\rho=0.74979 \pm 0.00026$
$\eta=0.057 \pm 0.034$
$\delta=0.75047 \pm 0.00034$
$\xi P_{\mu}=1.0009_{-0.0007}^{+0.0016}[c]$
$\xi P_{\mu} \delta / \rho=1.0018_{-0.0007}^{+0.0016}[c]$
$\xi^{\prime}=1.00 \pm 0.04$
$\xi^{\prime \prime}=0.98 \pm 0.04$
$\alpha / \mathrm{A}=(0 \pm 4) \times 10^{-3}$
$\alpha^{\prime} / A=(-10 \pm 20) \times 10^{-3}$
$\beta / A=(4 \pm 6) \times 10^{-3}$
$\beta^{\prime} / \mathrm{A}=(2 \pm 7) \times 10^{-3}$
$\bar{\eta}=0.02 \pm 0.08$
μ^{+}modes are charge conjugates of the modes below.

$\boldsymbol{\mu}^{-}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
$e^{-} \bar{\nu}_{e} \nu_{\mu}$	$\approx 100 \%$	53	
$e^{-} \bar{\nu}_{e} \nu_{\mu} \gamma$	$[d]$	$(6.0 \pm 0.5) \times 10^{-8}$	53
$e^{-} \bar{\nu}_{e} \nu_{\mu} e^{+} e^{-}$	$[e]$	$(3.4 \pm 0.4) \times 10^{-5}$	53

Lepton Family number ($L F$) violating modes

$e^{-} \nu_{e} \bar{\nu}_{\mu}$	$L F$	$[f]<1.2$	$\%$	90%	53
$e^{-} \gamma$	$L F$	<4.2	$\times 10^{-13}$	90%	53
$e^{-} e^{+} e^{-}$	$L F$	<1.0	$\times 10^{-12}$	90%	53
$e^{-} 2 \gamma$	$L F$	<7.2	$\times 10^{-11}$	90%	53

$$
J=\frac{1}{2}
$$

Mass $m=1776.86 \pm 0.12 \mathrm{MeV}$
$\left(m_{\tau^{+}}-m_{\tau^{-}}\right) / m_{\text {average }}<2.8 \times 10^{-4}, \mathrm{CL}=90 \%$
Mean life $\tau=(290.3 \pm 0.5) \times 10^{-15} \mathrm{~S}$

$$
c \tau=87.03 \mu \mathrm{~m}
$$

Magnetic moment anomaly >-0.052 and $<0.013, C L=95 \%$
$\operatorname{Re}\left(d_{\tau}\right)=-0.220$ to $0.45 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$
$\operatorname{Im}\left(d_{\tau}\right)=-0.250$ to $0.0080 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$

Weak dipole moment

$\operatorname{Re}\left(d_{\tau}^{w}\right)<0.50 \times 10^{-17} \mathrm{ecm}, \mathrm{CL}=95 \%$
$\operatorname{Im}\left(d_{\tau}^{W}\right)<1.1 \times 10^{-17} \mathrm{ecm}, \mathrm{CL}=95 \%$

Weak anomalous magnetic dipole moment

$\operatorname{Re}\left(\alpha_{\tau}^{w}\right)<1.1 \times 10^{-3}, \mathrm{CL}=95 \%$
$\operatorname{Im}\left(\alpha_{\tau}^{W}\right)<2.7 \times 10^{-3}, \mathrm{CL}=95 \%$
$\tau^{ \pm} \rightarrow \pi^{ \pm} K_{S}^{0} \nu_{\tau}$ (RATE DIFFERENCE) / (RATE SUM) $=$ $(-0.36 \pm 0.25) \%$

Decay parameters

See the τ Particle Listings for a note concerning τ-decay parameters.
$\rho(e$ or $\mu)=0.745 \pm 0.008$
$\rho(e)=0.747 \pm 0.010$
$\rho(\mu)=0.763 \pm 0.020$
$\xi(e$ or $\mu)=0.985 \pm 0.030$
$\xi(e)=0.994 \pm 0.040$
$\xi(\mu)=1.030 \pm 0.059$
$\eta(e$ or $\mu)=0.013 \pm 0.020$
$\eta(\mu)=0.094 \pm 0.073$
$(\delta \xi)(e$ or $\mu)=0.746 \pm 0.021$
$(\delta \xi)(e)=0.734 \pm 0.028$
$(\delta \xi)(\mu)=0.778 \pm 0.037$
$\xi(\pi)=0.993 \pm 0.022$
$\xi(\rho)=0.994 \pm 0.008$
$\xi\left(a_{1}\right)=1.001 \pm 0.027$
$\xi($ all hadronic modes $)=0.995 \pm 0.007$
$\bar{\eta}(\mu)$ PARAMETER $=-1.3 \pm 1.7$
$\xi_{\kappa}(e)$ PARAMETER $=-0.4 \pm 1.2$
$\xi_{\kappa}(\mu)$ PARAMETER $=0.8 \pm 0.6$
τ^{+}modes are charge conjugates of the modes below. " $h^{ \pm \text {" }}$ stands for $\pi^{ \pm}$or $K^{ \pm}$. " ℓ " stands for e or μ. "Neutrals" stands for γ^{\prime} 's and/or π^{0} 's.

$\boldsymbol{\tau}$				
$\boldsymbol{\tau}^{-}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level		p
:---:				
$(\mathrm{MeV} / \mathrm{c})$				

Modes with one charged particle

particle ${ }^{-} \geq 0$ neutrals $\geq 0 K^{0} \nu_{\tau} \quad(85.24 \pm 0.06) \%$
("1-prong")
particle ${ }^{-} \geq 0$ neutrals $\geq 0 K_{L}^{0} \nu_{\tau} \quad(84.58 \pm 0.06) \%$ $\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$
[g] $(17.39 \pm 0.04) \%$
[e] $(3.67 \pm 0.08) \times 10^{-3}$
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma$
$[g] \quad(17.82 \pm 0.04) \%$
$e^{-} \bar{\nu}_{e} \nu_{\tau}$
$e^{-} \bar{\nu}_{e} \nu_{\tau} \gamma$
$h^{-} \geq 0 K_{L}^{0} \nu_{\tau}$
$h^{-} \nu_{\tau}$
$\pi^{-} \nu_{\tau}$
$K^{-} \nu_{\tau}$
$h^{-} \geq 1$ neutrals ν_{τ}
$h^{-} \geq 1 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$h^{-} \pi^{0} \nu_{\tau}$
$\pi^{-} \pi^{0} \nu_{\tau}$
$\pi^{-} \pi^{0}$ non- $\rho(770) \nu_{\tau}$
$K^{-} \pi^{0} \nu_{\tau}$
$h^{-} \geq 2 \pi^{0} \nu_{\tau}$
$h^{-} 2 \pi^{0} \nu_{\tau}$
$h^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$,
scalar
$\pi^{-} \stackrel{\text { scalar }}{2 \pi^{0}}{ }_{\nu_{\tau}}\left(\right.$ ex. $\left.K^{0}\right)$,
vector $K^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$h^{-} \geq 3 \pi^{0} \nu_{\tau}$
$h^{-} \geq 3 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$h^{-} 3 \pi^{0} \nu_{\tau}$
$\pi^{-} 3 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$K^{-} 3 \pi^{0} \nu_{\tau}$ (ex. K^{0},
η
${ }^{2}$
0
$h^{-} 4 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$h^{-} 4 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \eta\right)$
$a_{1}(1260) \nu_{\tau} \rightarrow \pi^{-} \gamma \nu_{\tau}$
$K^{-} \geq 0 \pi^{0} \geq 0 K^{0} \geq 0 \gamma \nu_{\tau}$
$K^{-} \geq 1\left(\pi^{0} \text { or } K^{0} \text { or } \gamma\right)^{\tau} \nu_{\tau}$
[e] $(1.83 \pm 0.05) \%$
$(12.03 \pm 0.05) \%$
$(11.51 \pm 0.05) \%$
[g] (10.82 $\pm 0.05) \%$
[g] $(6.96 \pm 0.10) \times 10^{-3}$
$(37.01 \pm 0.09) \%$
$(36.51 \pm 0.09) \%$
$(25.93 \pm 0.09) \%$
[g] $(25.49 \pm 0.09) \%$
$(3.0 \pm 3.2) \times 10^{-3}$
[g] $(4.33 \pm 0.15) \times 10^{-3}$
$(10.81 \pm 0.09) \%$
$(9.48 \pm 0.10) \%$
$(9.32 \pm 0.10) \%$
[g] ($9.26 \pm 0.10) \%$
$<9 \quad \times 10^{-3} \mathrm{CL}=95 \%$
<7
$\times 10^{-3} \mathrm{CL}=95 \%$
[g] $\quad\left(\begin{array}{ll}6.5 & \pm 2.2\end{array}\right) \times 10^{-4}$
$(1.34 \pm 0.07) \%$
$(1.25 \pm 0.07) \%$
$(1.18 \pm 0.07) \%$
[g] ($1.04 \pm 0.07) \%$
[g] $\left(\begin{array}{l}4.8 \pm 2.1\end{array}\right) \times 10^{-4}$
836
$\left(\begin{array}{lll}1.6 \pm 0.4\end{array}\right) \times 10^{-3} \quad 800$
$[g]\left(\begin{array}{lll}1.1 & \pm 0.4\end{array}\right) \times 10^{-3} \quad 800$
$(3.8 \pm 1.5) \times 10^{-4}$
(1.552 ± 0.029) \%
$(8.59 \pm 0.28) \times 10^{-3}$

Modes with $K^{0} \mathbf{s}$

$K_{S}^{0}(\text { particles })^{-} \nu_{\tau}$
$h^{-} \bar{K}^{0} \nu_{\tau}$
$\pi^{-} \frac{\nu_{\tau}}{K^{0}} \nu_{\tau}$
$\pi^{-} \bar{K}^{0}$
$(9.43 \pm 0.28) \times 10^{-3}$
$(9.87 \pm 0.14) \times 10^{-3}$
[g] $(8.38 \pm 0.14) \times 10^{-3}$
$(5.4 \pm 2.1) \times 10^{-4}$
[g] $(1.486 \pm 0.034) \times 10^{-3}$
$(2.99 \pm 0.07) \times 10^{-3}$
$(5.32 \pm 0.13) \times 10^{-3}$
812
(non- $\left.K^{*}(892)^{-}\right) \nu_{\tau}$
$K^{-} K^{0} \nu_{\tau}$
$K^{-} K^{0} \geq 0 \pi^{0} \nu_{\tau}$
$h^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$ $\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$
$\bar{K}^{0} \rho^{-} \nu_{\tau}$

Lepton Summary Table

NOTES

In this Summary Table:
When a quantity has " $(S=\ldots)$ " to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S=\sqrt{\chi^{2} /(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when $S>1$, which often indicates that the measurements are inconsistent. When $S>1.25$, we also show in the Particle Listings an ideogram of the measurements. For more about S , see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3 -or-more-body decay, p is the largest momentum any of the products can have in this frame.
[a] This is the best limit for the mode $e^{-} \rightarrow \nu \gamma$. The best limit for Nuclear de-excitation experiments is $6.4 \times 10^{24} \mathrm{yr}$.
[b] See the review on "Muon Decay Parameters" for definitions and details.
[c] P_{μ} is the longitudinal polarization of the muon from pion decay. For $V-A$ coupling, $P_{\mu}=1$ and $\rho=\delta=3 / 4$.
[d] This only includes events with energy of $e>45 \mathrm{MeV}$ and energy of $\gamma>40 \mathrm{MeV}$. Since the $e^{-} \bar{\nu}_{e} \nu_{\mu}$ and $e^{-} \bar{\nu}_{e} \nu_{\mu} \gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
[e] See the relevant Particle Listings for the energy limits used in this measurement.
[f] A test of additive vs. multiplicative lepton family number conservation.
$[g]$ Basis mode for the τ.
$[h] L^{ \pm}$mass limit depends on decay assumptions; see the Full Listings.

NOTES

[a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
[b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7 \mathrm{TeV}$. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of $173.2 \pm 0.9 \mathrm{GeV}$. See the note "The Top Quark' in the Quark Particle Listings of this Review.
[c] This limit is for $\Gamma(t \rightarrow \gamma q) / \Gamma(t \rightarrow W b)$.
$[d]$ This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.

LIGHT UNFLAVORED MESONS
 $(S=C=B=0)$

For $I=1(\pi, b, \rho, a)$: $u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$; for $I=0\left(\eta, \eta^{\prime}, h, h^{\prime}, \omega, \phi, f, f^{\prime}\right): \quad c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$

Mass $m=139.57039 \pm 0.00018 \mathrm{MeV} \quad(S=1.8)$
Mean life $\tau=(2.6033 \pm 0.0005) \times 10^{-8} \mathrm{~S} \quad(\mathrm{~S}=1.2)$
$c \tau=7.8045 \mathrm{~m}$
$\boldsymbol{\pi}^{ \pm} \rightarrow \ell^{ \pm} \boldsymbol{\nu} \boldsymbol{\gamma}$ form factors ${ }^{[a]}$
$F_{V}=0.0254 \pm 0.0017$
$F_{A}=0.0119 \pm 0.0001$
F_{V} slope parameter $a=0.10 \pm 0.06$
$R=0.059_{-0.008}^{+0.009}$
π^{-}modes are charge conjugates of the modes below.
For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^{+}DECAY MODES	Fraction $\left(\Gamma_{i} / \overline{\text { r }}\right.$)			Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\mu^{+} \nu_{\mu}$	[b]	(99.9877	0 ± 0.0000	2) \%	30
$\mu^{+} \nu_{\mu} \gamma$	[c]	(2.00	± 0.25) $\times 10^{-4}$	30
$e^{+} \nu_{e}$	[b]	(1.230	± 0.004) $\times 10^{-4}$	70
$e^{+} \nu_{e} \gamma$	[c]	(7.39	± 0.05) $\times 10^{-7}$	70
$e^{+} \nu_{e} \pi^{0}$		(1.036	± 0.006) $\times 10^{-8}$	4
$e^{+} \nu_{e} e^{+} e^{-}$		(3.2	± 0.5) $\times 10^{-9}$	70
$e^{+} \nu_{e} \nu \bar{\nu}$		<5		$\times 10^{-6} 90 \%$	70

Lepton Family number ($L F$) or Lepton number (L) violating modes

$\mu^{+} \bar{\nu}_{e}$	L	$[d]<$	1.5	$\times 10^{-3} 90 \%$	30
$\mu^{+} \nu_{e}$	$L F$	$[d]<8.0$	$\times 10^{-3} 90 \%$	30	
$\mu^{-} e^{+} e^{+} \nu$	$L F$	$<$	1.6	$\times 10^{-6} 90 \%$	30
$\boldsymbol{\pi}^{0}$					

$$
\begin{aligned}
& \text { Mass } m=134.9768 \pm 0.0005 \mathrm{MeV} \quad(S=1.1) \\
& m_{\pi^{ \pm}}-m_{\pi^{0}}=4.5936 \pm 0.0005 \mathrm{MeV} \\
& \text { Mean life } \tau=(8.52 \pm 0.18) \times 10^{-17} \mathrm{~s} \quad(\mathrm{~S}=1.2) \\
& \quad \quad \quad \tau=25.5 \mathrm{~nm}
\end{aligned}
$$

π^{0} decay modes	Fraction (Γ_{i} / Γ)	Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \end{gathered}$
2γ	(98.823 $\pm 0.034)$	\% $\mathrm{S}=1.5$	67
$e^{+} e^{-} \gamma$	($1.174 \pm 0.035)$	$\% \quad \mathrm{~S}=1.5$	67
γ positronium	(1.82 ± 0.29)	$\times 10^{-9}$	67
$e^{+} e^{+} e^{-} e^{-}$	(3.34 ± 0.16)	$\times 10^{-5}$	67
$e^{+} e^{-}$	(6.46 ± 0.33)	$\times 10^{-8}$	67
4γ	<2	$\times 10^{-8} \mathrm{CL}=90 \%$	67
$\nu \bar{\nu}$	[e] < 2.7	$\times 10^{-7} \mathrm{CL}=90 \%$	67
$\nu_{e} \bar{\nu}_{e}$	< 1.7	$\times 10^{-6} \mathrm{CL}=90 \%$	67
$\nu_{\mu} \bar{\nu}_{\mu}$	< 1.6	$\times 10^{-6} \mathrm{CL}=90 \%$	67
$\nu_{\tau} \bar{\nu}_{\tau}$	< 2.1	$\times 10^{-6} \mathrm{CL}=90 \%$	67
$\gamma \nu \bar{\nu}$	< 1.9	$\times 10^{-7} \mathrm{CL}=90 \%$	67

Charge conjugation (C) or Lepton Family number ($L F$) violating modes				
3γ	c	< 3.1	$\times 10^{-8} \mathrm{CL}=90 \%$	67
$\mu^{+} e^{-}$	LF	< 3.8	$\times 10^{-10} \mathrm{CL}=90 \%$	26
$\mu^{-} e^{+}$	LF	< 3.4	$\times 10^{-9} \mathrm{CL}=90 \%$	26
$\mu^{+} e^{-}+\mu^{-} e^{+}$	LF	< 3.6	$\times 10^{-10} \mathrm{CL}=90 \%$	26

Mass $m=547.862 \pm 0.017 \mathrm{MeV}$
Full width $\Gamma=1.31 \pm 0.05 \mathrm{keV}$

C-nonconserving decay parameters

$$
\begin{array}{ll}
\pi^{+} \pi^{-} \pi^{0} & \text { left-right asymmetry }=\left(0.09_{-0.12}^{+0.11}\right) \times 10^{-2} \\
\pi^{+} \pi^{-} \pi^{0} & \text { sextant asymmetry }=\left(0.12_{-0.11}^{+0.10}\right) \times 10^{-2} \\
\pi^{+} \pi^{-} \pi^{0} & \text { quadrant asymmetry }=(-0.09 \pm 0.09) \times 10^{-2} \\
\pi^{+} \pi^{-} \gamma & \text { left-right asymmetry }=(0.9 \pm 0.4) \times 10^{-2} \\
\pi^{+} \pi^{-} \gamma & \beta(D \text {-wave })=-0.02 \pm 0.07 \quad(\mathrm{~S}=1.3)
\end{array}
$$

$C P$-nonconserving decay parameters

$\pi^{+} \pi^{-} e^{+} e^{-}$decay-plane asymmetry $A_{\phi}=(-0.6 \pm 3.1) \times 10^{-2}$

Other decay parameters

$\pi^{0} \pi^{0} \pi^{0} \quad$ Dalitz plot $\alpha=-0.0288 \pm 0.0012 \quad(\mathrm{~S}=1.1)$
Parameter Λ in $\eta \rightarrow \ell^{+} \ell^{-} \gamma$ decay $=0.716 \pm 0.011 \mathrm{GeV} / c^{2}$

Charge conjugation (C), Parity (P),
Charge conjugation \times Parity $(C P)$, or
Lepton Family number ($L F$) violating modes

$\pi^{0} \gamma$	C	[f] <	9	$\times 10^{-5}$	CL=90\%	257
$\pi^{+} \pi^{-}$	$P, C P$	$<$	1.3	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	236
$2 \pi^{0}$	$P, C P$	<	3.5	$\times 10^{-4}$	CL=90\%	238
$2 \pi^{0} \gamma$	C	<	5	$\times 10^{-4}$	CL=90\%	238
$3 \pi^{0} \gamma$	c	$<$	6	$\times 10^{-5}$	CL=90\%	179
3γ	C	$<$	1.6	$\times 10^{-5}$	CL=90\%	27
$4 \pi^{0}$	P, CP	<	6.9	$\times 10^{-7}$	CL=90\%	40
$\pi^{0} e^{+} e^{-}$	C	$[g]<$	8	$\times 10^{-6}$	CL=90\%	257
$\pi^{0} \mu^{+} \mu^{-}$	c	$[g]<$	5	$\times 10^{-6}$	CL=90\%	21
$\mu^{+} e^{-}+\mu^{-} e^{+}$	LF	$<$	6	$\times 10^{-6}$	CL=90\%	264
$f_{0}(500)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$					

also known as σ; was $f_{0}(600)$
See the review on "Scalar Mesons below 2 GeV ."

$$
\begin{aligned}
& \text { Mass }(\mathrm{T}-\text { Matrix Pole } \sqrt{s})=(400-550)-i(200-350) \mathrm{MeV} \\
& \text { Mass (Breit-Wigner) }=(400-550) \mathrm{MeV} \\
& \text { Full width (Breit-Wigner) }=(400-700) \mathrm{MeV}
\end{aligned}
$$

$\mathbf{f}_{\mathbf{0}} \mathbf{(5 0 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	-
$\gamma \gamma$	seen	-
$\boldsymbol{\rho}(\mathbf{7 7 0})$	$\rho^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)$	

See the note in $\rho(770)$ Particle Listings.
Mass $m=775.26 \pm 0.25 \mathrm{MeV}$
Full width $\Gamma=149.1 \pm 0.8 \mathrm{MeV}$
$\Gamma_{e e}=7.04 \pm 0.06 \mathrm{keV}$

$\rho(770)$ DECAY MODES		Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)		Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\pi \pi$		~ 100	\%		363
$\rho(770)^{ \pm}$decays					
$\pi^{ \pm} \gamma$		(4.5 ± 0.5	$) \times 10^{-4}$	$\mathrm{S}=2.2$	375
$\pi^{ \pm} \eta$		< 6	$\times 10^{-3}$	$\mathrm{CL}=84 \%$	152
$\pi^{ \pm} \pi^{+} \pi^{-} \pi^{0}$		<2.0	$\times 10^{-3}$	CL=84\%	254
$\rho(770)^{0}$ decays					
$\pi^{+} \pi^{-} \gamma$		(9.9 ± 1.6	$) \times 10^{-3}$		362
$\pi^{0} \gamma$		(4.7 ± 0.6) $\times 10^{-4}$	$\mathrm{S}=1.4$	376
$\eta \gamma$		(3.00 ± 0.21) $\times 10^{-4}$		194
$\pi^{0} \pi^{0} \gamma$		(4.5 ± 0.8) $\times 10^{-5}$		363
$\mu^{+} \mu^{-}$		(4.55 ± 0.28) $\times 10^{-5}$		373
$e^{+} e^{-}$		(4.72 ± 0.05) $\times 10^{-5}$		388
$\pi^{+} \pi^{-} \pi^{0}$		($1.01{ }_{-0.36}^{+0.54}$	4) $\times 10^{-4}$		323
$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$		(1.8 ± 0.9) $\times 10^{-5}$		251
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$		(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^{0} e^{+} e^{-}$		< 1.2	$\times 10^{-5}$	CL=90\%	376
$\omega(782)$	$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$				

Mass $m=782.65 \pm 0.12 \mathrm{MeV} \quad(S=1.9)$
Full width $\Gamma=8.49 \pm 0.08 \mathrm{MeV}$
$\Gamma_{e e}=0.60 \pm 0.02 \mathrm{keV}$

$\omega(782)$ DECAY MODES	Fraction ($\left.\Gamma_{i} / \Gamma\right) \quad$ Con	Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\pi^{+} \pi^{-} \pi^{0}$	(89.3 $\pm 0.6) \%$		327
$\pi^{0} \gamma$	($8.40 \pm 0.22) \%$	$\mathrm{S}=1.8$	380
$\pi^{+} \pi^{-}$	(1.53 ± 0.06) \%		366
neutrals (excluding $\pi^{0} \gamma$)	$\left(\begin{array}{ll}7 & +7\end{array}\right) \times 10^{-3}$	$\mathrm{S}=1.1$	-
$\eta \gamma$	$(4.5 \pm 0.4) \times 10^{-4}$	$\mathrm{S}=1.1$	200
$\pi^{0} e^{+} e^{-}$	$(7.7 \pm 0.6) \times 10^{-4}$		380
$\pi^{0} \mu^{+} \mu^{-}$	$(1.34 \pm 0.18) \times 10^{-4}$	$\mathrm{S}=1.5$	349
$e^{+} e^{-}$	$(7.36 \pm 0.15) \times 10^{-5}$	$\mathrm{S}=1.5$	391
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	$<2 \times 10^{-4}$	$\mathrm{CL}=90 \%$	262
$\pi^{+} \pi^{-} \gamma$	$<3.6 \times 10^{-3}$	CL=95\%	366
$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$<1 \times 10^{-3}$	CL=90\%	256
$\pi^{0} \pi^{0} \gamma$	$(6.7 \pm 1.1) \times 10^{-5}$		367
$\eta \pi^{0} \gamma$	< 3.3×10^{-5}	CL=90\%	162
$\mu^{+} \mu^{-}$	$(7.4 \pm 1.8) \times 10^{-5}$		377
3γ	< 1.9×10^{-4}	$\mathrm{CL}=95 \%$	391

Charge conjugation (C) violating modes					
$\eta \pi^{0}$	C	< 2.2	$\times 10^{-4}$	CL=90\%	162
$2 \pi^{0}$	C	< 2.2	$\times 10^{-4}$	CL=90\%	367
$3 \pi^{0}$	C	< 2.3	$\times 10^{-4}$	CL=90\%	330
invisible		<7	$\times 10^{-5}$	CL=90\%	

$\eta^{\prime}(958) \quad \quad I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$

Mass $m=957.78 \pm 0.06 \mathrm{MeV}$
Full width $\Gamma=0.188 \pm 0.006 \mathrm{MeV}$

$\boldsymbol{\eta}^{\prime}(958)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \\ \hline \end{gathered}$
$\pi^{+} \pi^{-} \eta$	$(42.5 \pm 0.5$) \%	232
$\rho^{0} \gamma$ (including non-resonant $\left.\pi^{+} \pi^{-} \gamma\right)$	$(29.5 \pm 0.4$) \%	165
$\pi^{0} \pi^{0} \eta$	$(22.4 \pm 0.5$) \%	239
$\omega \gamma$	(2.52 ± 0.07)) $\%$	159
$\omega e^{+} e^{-}$	(2.0 ± 0.4) $\times 10^{-4}$	159
$\gamma \gamma$	($2.307 \pm 0.033)$		479
$3 \pi^{0}$	(2.50 ± 0.17) $\times 10^{-3}$	430
$\mu^{+} \mu^{-} \gamma$	(1.13 ± 0.28) $\times 10^{-4}$	467
$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$	< 2.9	$\times 10^{-5} \quad 90 \%$	401
$\pi^{+} \pi^{-} \pi^{0}$	(3.61 ± 0.17) $\times 10^{-3}$	428
$\left(\pi^{+} \pi^{-} \pi^{0}\right)$ S-wave	$(3.8 \pm 0.5$) $\times 10^{-3}$	428
$\pi^{\mp} \rho^{ \pm}$	$\left(\begin{array}{ll}7.4 & \pm 2.3\end{array}\right.$) $\times 10^{-4}$	106
$\pi^{0} \rho^{0}$	<4	\% 90\%	111
2($\pi^{+} \pi^{-}$)	$(8.4 \pm 0.9$) $\times 10^{-5}$	372
$\pi^{+} \pi^{-} 2 \pi^{0}$	$(1.8 \pm 0.4$) $\times 10^{-4}$	376
$2\left(\pi^{+} \pi^{-}\right)$neutrals	< 1	\% 95\%	-

$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	<1.8	$\times 10^{-3}$	90%	298
$2\left(\pi^{+} \pi^{-}\right) 2 \pi^{0}$	<1	$\%$	95%	197
$3\left(\pi^{+} \pi^{-}\right)$	<3.1	$\times 10^{-5}$	90%	189
$K^{ \pm} \pi^{\mp}$	<4	$\times 10^{-5}$	90%	334
$\pi^{+} \pi^{-} e^{+} e^{-}$	$(2.4$	± 1.3	$) \times 10^{-3}$	
$\pi^{+} e^{-} \nu_{e}+$ c.c.	<2.1	$\times 10^{-4}$	90%	458
$\gamma e^{+} e^{-}$	$(4.91 \pm 0.27) \times 10^{-4}$		479	
$\pi^{0} \gamma \gamma$	$(3.20 \pm 0.24) \times 10^{-3}$		469	
$\pi^{0} \gamma \gamma($ non resonant $)$	$(6.2$	± 0.9	$) \times 10^{-4}$	
$\eta \gamma \gamma$	<1.33	$\times 10^{-4}$	90%	-
$4 \pi^{0}$	<3.2	$\times 10^{-4}$	90%	380
$e^{+} e^{-}$	<5.6	$\times 10^{-9}$	90%	479
invisible	<6	$\times 10^{-4}$	90%	-

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^{+} \pi^{-}$	$P, C P$	<1.8	$\times 10^{-5}$	90%	458
$\pi^{0} \pi^{0}$	$P, C P$	<4	$\times 10^{-4}$	90%	459
$\pi^{0} e^{+} e^{-}$	C	$[g]<1.4$	$\times 10^{-3}$	90%	469
$\eta e^{+} e^{-}$	C	$[g]<2.4$	$\times 10^{-3}$	90%	322
3γ	C	<1.0	$\times 10^{-4}$	90%	479
$\mu^{+} \mu^{-} \pi^{0}$	C	$[g]<6.0$	$\times 10^{-5}$	90%	445
$\mu^{+} \mu^{-} \eta$	C	$[g]<1.5$	$\times 10^{-5}$	90%	273
$e \mu$	$L F$	<4.7	$\times 10^{-4}$	90%	473

See the review on "Scalar Mesons below 2 GeV ."
Mass $m=990 \pm 20 \mathrm{MeV}$
Full width $\Gamma=10$ to 100 MeV

$\mathrm{f}_{0}(980)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	476
$K \bar{K}$	seen	36
$\gamma \gamma$	seen	495
$a_{0}(980)$	${ }^{G}\left(J^{P C}\right)=1^{-}\left(0^{++}\right)$	

See the review on "Scalar Mesons below 2 GeV ."

> Mass $m=980 \pm 20 \mathrm{MeV}$
> Full width $\Gamma=50$ to 100 MeV

$\mathbf{a}_{\mathbf{0}} \mathbf{(9 8 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\eta \pi$	seen	319
$K \bar{K}$	seen	\dagger
$\rho \pi$	not seen	137
$\gamma \gamma$	seen	490

$$
\phi(\mathbf{1 0 2 0}) \quad \quad, G\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

Mass $m=1019.461 \pm 0.016 \mathrm{MeV}$
Full width $\Gamma=4.249 \pm 0.013 \mathrm{MeV} \quad(\mathrm{S}=1.1)$

$\phi(1020)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$\begin{array}{r} \text { Scal } \\ \text { Confid } \end{array}$	ale factor/ dence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \\ \hline \end{gathered}$
$K^{+} K^{-}$	(49.2 ± 0.5)) \%	$\mathrm{S}=1.3$	127
$K_{L}^{0} K_{S}^{0}$	(34.0 ± 0.4)) $\%$	$\mathrm{S}=1.3$	110
$\rho \pi+\pi^{+} \pi^{-} \pi^{0}$	(15.24 ± 0.33)		$\mathrm{S}=1.2$	-
$\eta \gamma$	(1.303 ± 0.025)		$\mathrm{S}=1.2$	363
$\pi^{0} \gamma$	(1.30 ± 0.05)	$) \times 10^{-3}$		501
$\ell^{+} \ell^{-}$	-			510
$e^{+} e^{-}$	(2.973 ± 0.034)) $\times 10^{-4}$	$\mathrm{S}=1.3$	510
$\mu^{+} \mu^{-}$	(2.86 ± 0.19)) $\times 10^{-4}$		499
$\eta e^{+} e^{-}$	(1.08 ± 0.04)	$) \times 10^{-4}$		363
$\pi^{+} \pi^{-}$	(7.3 ± 1.3)	$) \times 10^{-5}$		490
$\omega \pi^{0}$	(4.7 ± 0.5)	$) \times 10^{-5}$		172
$\omega \gamma$	< 5	\%	CL=84\%	209
$\rho \gamma$	<1.2	$\times 10^{-5}$	CL=90\%	215
$\pi^{+} \pi^{-} \gamma$	(4.1 ± 1.3)) $\times 10^{-5}$		490
$f_{0}(980) \gamma$	(3.22 ± 0.19)	$) \times 10^{-4}$	$\mathrm{S}=1.1$	29
$\pi^{0} \pi^{0} \gamma$	(1.12 ± 0.06)	$) \times 10^{-4}$		492
$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$\binom{3.9}{{ }_{-2.2}^{+2.8}}$) $\times 10^{-6}$		410

Meson Summary Table

Lepton Family number（LF）violating modes					
$e^{ \pm} \mu^{\mp}$	LF	<2	$\times 10^{-}$	CL＝90\％	504
$h_{1}(1170)$	$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{+-}\right)$				

$f_{1}(1285)$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right) \quad$ Co	Scale factor／ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
4π	（32．7 $\pm 1.9) \%$	$\mathrm{S}=1.2$	568
$\pi^{0} \pi^{0} \pi^{+} \pi^{-}$	（21．8土 1．3）\％	$\mathrm{S}=1.2$	566
$2 \pi^{+} 2 \pi^{-}$	$(10.9 \pm 0.6) \%$	$\mathrm{S}=1.2$	563
$\rho^{0} \pi^{+} \pi^{-}$	$(10.9 \pm 0.6) \%$	$\mathrm{S}=1.2$	336
$\rho^{0} \rho^{0}$	seen		\dagger
$4 \pi^{0}$	$<7 \times 10^{-4}$	$4 \mathrm{CL}=90 \%$	568
$\eta \pi^{+} \pi^{-}$	（35 ± 15 ）\％		479
$\eta \pi \pi$	（52．2土 2．0）\％	$\mathrm{S}=1.2$	482
$\begin{aligned} & a_{0}(980) \pi \text { [ignoring } a_{0}(980) \rightarrow \\ & K \bar{K}] \end{aligned}$	（38 $\pm 4) \%$		238
$\underline{\eta} \pi \pi$［excluding $a_{0}(980) \pi$ ］	（14 $\pm 4) \%$		482
K $\bar{K} \pi$	（ 9.0 ± 0.4 ）\％	$\mathrm{S}=1.1$	308
$K \bar{K}^{*}(892)$	not seen		\dagger
$\pi^{+} \pi^{-} \pi^{0}$	（ 3．0土 0．9）$\times 10^{-3}$		603
$\rho^{ \pm} \pi^{\mp}$	$<3.1 \times 10^{-3}$	$3 \mathrm{CL}=95 \%$	390
$\gamma \rho^{0}$	（ $6.1 \pm 1.0) \%$	$\mathrm{S}=1.7$	406
$\phi \gamma$	$(7.4 \pm 2.6) \times 10^{-4}$		236
$e^{+} e^{-}$	$<9.4 \times 10^{-9}$	$9 \mathrm{CL}=90 \%$	641
$\eta(1295)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$		

See the review on＂Pseudoscalar and pseudovector mesons in the 1400 MeV region．＂

$$
\begin{aligned}
& \text { Mass } m=1294 \pm 4 \mathrm{MeV} \quad(\mathrm{~S}=1.6) \\
& \text { Full width } \Gamma=55 \pm 5 \mathrm{MeV}
\end{aligned}
$$

$\boldsymbol{\eta (1 2 9 5)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\eta \pi^{+} \pi^{-}$	seen	487
$a_{0}(980) \pi$	seen	248
$\eta \pi^{0} \pi^{0}$	seen	490
$\eta(\pi \pi)_{S \text {－wave }}$	seen	-
$\boldsymbol{\pi (1 3 0 0)}$	$J^{2}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)$	

Mass $m=1300 \pm 100 \mathrm{MeV}[j]$
Full width $\Gamma=200$ to 600 MeV

$\boldsymbol{\pi}(\mathbf{1 3 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\rho \pi$	seen	404
$\pi(\pi \pi) S$－wave	seen	-
$\mathbf{a}_{\mathbf{2}}(\mathbf{1 3 2 0})$	$I_{(J P C)=1^{-}\left(2^{+}+\right)}$	

Mass $m=1316.9 \pm 0.9 \mathrm{MeV} \quad(\mathrm{S}=1.9)$
Full width $\Gamma=107 \pm 5 \mathrm{MeV}[j]$

$\mathbf{a}_{\mathbf{2}}(\mathbf{1 3 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor／ Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
3π	$(70.1 \pm 2.7) \%$	$\mathrm{~S}=1.2$	623
$\eta \pi$	$(14.5 \pm 1.2) \%$		535
$\omega \pi \pi$	$(10.6 \pm 3.2) \%$	$\mathrm{~S}=1.3$	364
$K \bar{K}$	$(4.9 \pm 0.8) \%$		436
$\eta^{\prime}(958) \pi$	$(5.5 \pm 0.9) \times 10^{-3}$		287
$\pi^{ \pm} \gamma$	$(2.91 \pm 0.27) \times 10^{-3}$		651
$\gamma \gamma$	$(9.4 \pm 0.7) \times 10^{-6}$		658
$e^{+} e^{-}$	<5	$\times 10^{-9}$	$\mathrm{CL}=90 \%$

$f_{0}(1370) \quad \quad, G\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$

See the review on "Scalar Mesons below 2 GeV ."
Mass $m=1200$ to 1500 MeV
Full width $\Gamma=200$ to 500 MeV

$f_{0}(\mathbf{1 3 7 0})$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	672
4π	seen	617
$4 \pi^{0}$	seen	617
$2 \pi^{+} 2 \pi^{-}$	seen	612
$\pi^{+} \pi^{-} 2 \pi^{0}$	seen	615
$\rho \rho$	seen	\dagger
$2(\pi \pi)_{S \text {-wave }}$	seen	-
$\pi(1300) \pi$	seen	\dagger
$a_{1}(1260) \pi$	seen	35
$\eta \eta$	seen	411
$K \bar{K}$	seen	475
$K \bar{K} n \pi$	not seen	\dagger
6π	not seen	508
$\omega \omega$	not seen	\dagger
$\gamma \gamma$	seen	685
$e^{+} e^{-}$	not seen	685
$\pi_{1}(1400){ }^{[k]}$	${ }^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)$	

> See the review on "Non- $q \bar{q}$ Mesons."
> Mass $m=1354 \pm 25 \mathrm{MeV} \quad(S=1.8)$
> Full width $\Gamma=330 \pm 35 \mathrm{MeV}$

$\pi_{1}(1400)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)		$p(\mathrm{MeV} / \mathrm{c})$
$\eta \pi^{0}$	seen		557
$\eta \pi^{-}$	seen		556
$\rho(770) \pi$	not seen		442
$\eta(1405)$	$I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$		
See the review on "Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region."			
Mass $m=1408.8 \pm 2.0 \mathrm{MeV} \quad(\mathrm{S}=2.2)$			
Full width $\Gamma=50.1 \pm 2.6 \mathrm{MeV} \quad(\mathrm{S}=1.7)$			
$\eta(1405)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \\ \hline \end{gathered}$
$K \bar{K} \pi$	seen		424
$\eta \pi \pi$	seen		562
$a_{0}(980) \pi$	seen		345
$\eta(\pi \pi)_{S \text {-wave }}$	seen		-
$f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	not seen		-
$f_{0}(980) \eta$	seen		\dagger
4π	seen		639
$\rho \rho$	< 58 \%	99.85\%	†
$\rho^{0} \gamma$	seen		491
$K^{*}(892) K$	seen		123

$\boldsymbol{h}_{\mathbf{1}}(\mathbf{1 4 1 5)}$
was $h_{1}(1380)$
Mass $m=1416 \pm 8 \mathrm{MeV} \quad(\mathrm{S}=1.5)$
Full width $\Gamma=90 \pm 15 \mathrm{MeV}$

$f_{1}(1420)$

$$
{ }^{G}(J P C)=0^{+}(1++)
$$

See the review on "Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region."

$$
\begin{aligned}
& \text { Mass } m=1426.3 \pm 0.9 \mathrm{MeV} \quad(S=1.1) \\
& \text { Full width } \Gamma=54.5 \pm 2.6 \mathrm{MeV}
\end{aligned}
$$

$\mathbf{f}_{\mathbf{1}}(\mathbf{1 4 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$K \bar{K} \pi$	seen	438
$K \bar{K}^{*}(892)+$ c.c.	seen	163

$\eta \pi \pi$	possibly seen	573
$\phi \gamma$	seen	349

$\omega(1420)^{[/]}$
$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$

Mass $m=1410 \pm 60 \mathrm{MeV}[j]$
Full width $\Gamma=290 \pm 190 \mathrm{MeV}[j]$

$\omega \mathbf{(1 4 2 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\rho \pi$	seen	480
$\omega \pi \pi$	seen	437
$b_{1}(1235) \pi$	seen	112
$e^{+} e^{-}$	seen	705

$a_{\mathbf{0}}(\mathbf{1 4 5 0}) \quad, I^{G}\left(J^{P C}\right)=1^{-}\left(0^{++}\right)$

See the review on "Scalar Mesons below 2 GeV ."
Mass $m=1474 \pm 19 \mathrm{MeV}$
Full width $\Gamma=265 \pm 13 \mathrm{MeV}$

$a_{0}(1450)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \eta$	0.093 ± 0.020	627
$\pi \eta^{\prime}(958)$	0.033 ± 0.017	410
$K \bar{K}$	0.082 ± 0.028	547
$\omega \pi \pi$	DEFINED AS 1	484
$a_{0}(980) \pi \pi$	seen	342
$\gamma \gamma$	seen	737
$\rho(1450)$	${ }^{G}\left(J^{P C}\right)=1$	

See the note in $\rho(1450)$ Particle Listings.

$$
\begin{aligned}
& \text { Mass } m=1465 \pm 25 \mathrm{MeV}[j] \\
& \text { Full width } \Gamma=400 \pm 60 \mathrm{MeV}[j]
\end{aligned}
$$

$\boldsymbol{\rho (1 4 5 0)}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	720
$\pi^{+} \pi^{-}$	seen	719
4π	seen	669
$e^{+} e^{-}$	seen	732
$\eta \rho$	seen	311
$a_{2}(1320) \pi$	not seen	58
$K \bar{K}$	seen	541
$K^{+} K^{-}$	seen	541
$K \bar{K}^{*}(892)+$ c.c.	possibly seen	229
$\eta \gamma$	seen	630
$f_{0}(500) \gamma$	not seen	-
$f_{0}(980) \gamma$	not seen	398
$f_{0}(1370) \gamma$	not seen	92
$f_{2}(1270) \gamma$	not seen	177

$\eta\left(\mathbf{1 4 7 5)} \quad \quad G^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)\right.$

See the review on "Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region."

$$
\begin{aligned}
& \text { Mass } m=1475 \pm 4 \mathrm{MeV} \quad(\mathrm{~S}=1.4) \\
& \text { Full width } \Gamma=90 \pm 9 \mathrm{MeV} \quad(\mathrm{~S}=1.6)
\end{aligned}
$$

$\boldsymbol{\eta}(\mathbf{1 4 7 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$K \bar{K} \pi$	seen	477
$K \bar{K}^{*}(892)+$ c.c.	seen	244
$a_{0}(980) \pi$	seen	396
$\gamma \gamma$	seen	738
$K_{S}^{0} K_{S}^{0} \eta$	possibly seen	\dagger
$\gamma \phi(1020)$	possibly seen	385
	$\left(J^{P C}\right)=0^{+}\left(0^{+}+\right)$	

See the reviews on "Scalar Mesons below 2 GeV " and on "Non- $q \bar{q}$ Mesons".

Mass $m=1506 \pm 6 \mathrm{MeV} \quad(\mathrm{S}=1.4)$
Full width $\Gamma=112 \pm 9 \mathrm{MeV}$

Meson Summary Table

$f_{0}(1500)$ DECAY MODES	Fraction ($\Gamma_{i} / \bar{\Gamma}$)	Scale factor	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\pi \pi$	(34.5 $\pm 2.2) \%$	1.2	741
$\pi^{+} \pi^{-}$	seen		740
$2 \pi^{0}$	seen		741
4π	(48.9 ± 3.3) \%	1.2	692
$4 \pi^{0}$	seen		692
$2 \pi^{+} 2 \pi^{-}$	seen		687
$2(\pi \pi) S$-wave	seen		-
$\rho \rho$	seen		\dagger
$\pi(1300) \pi$	seen		145
$a_{1}(1260) \pi$	seen		219
$\eta \eta$	($6.0 \pm 0.9) \%$	1.1	517
$\eta \eta^{\prime}(958)$	($2.2 \pm 0.8) \%$	1.4	20
$K \bar{K}$	(8.5 ± 1.0) \%	1.1	569
$\gamma \gamma$	not seen		753
$f_{2}^{\prime}(1525)$	$I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$		

Mass $m=1517.4 \pm 2.5 \mathrm{MeV} \quad(\mathrm{S}=2.8)$
Full width $\Gamma=86 \pm 5 \mathrm{MeV} \quad(\mathrm{S}=2.2)$
Full width $\Gamma=86 \pm 5 \mathrm{MeV} \quad(\mathrm{S}=2.2)$

$\boldsymbol{f}_{\mathbf{2}}^{\prime}(\mathbf{1 5 2 5)}$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Scale factor	$\begin{gathered} p \\ (\mathrm{MeV} / c) \end{gathered}$
$K \bar{K}$	(87.6 $\pm 2.2)$ \%	1.1	576
$\eta \eta$	(11.6 ± 2.2) \%	1.1	525
$\pi \pi$	$(8.3 \pm 1.6) \times 10^{-3}$		747
$\gamma \gamma$	$(9.5 \pm 1.1) \times 10^{-7}$	1.1	759
$\pi_{1}(1600)$	$I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)$		

See the review on "Non- $q \bar{q}$ Mesons" and a note in PDG 06, Journal of Physics G33 1 (2006).

Mass $m=1660_{-11}^{+15} \mathrm{MeV} \quad(\mathrm{S}=1.2)$
Full width $\Gamma=257 \pm 60 \mathrm{MeV} \quad(\mathrm{S}=1.9)$

$\boldsymbol{\pi}_{\mathbf{1}}(\mathbf{1 6 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi \pi$	seen	802
$\rho^{0} \pi^{-}$	seen	640
$f_{2}(1270) \pi^{-}$	not seen	316
$b_{1}(1235) \pi$	seen	355
$\eta^{\prime}(958) \pi^{-}$	seen	542
$f_{1}(1285) \pi$	seen	312

$\boldsymbol{a}_{\mathbf{1}}\left(\mathbf{1 6 4 0)} \quad I^{G}\left(J^{P C}\right)=1^{-}(1++)\right.$

> Mass $m=1655 \pm 16 \mathrm{MeV} \quad(\mathrm{S}=1.2)$
> Full width $\Gamma=254 \pm 40 \mathrm{MeV} \quad(\mathrm{S}=1.8)$

$\mathrm{a}_{1}(\mathbf{1 6 4 0})$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi \pi$	seen	800
$f_{2}(1270) \pi$	seen	314
$\sigma \pi$	seen	-
$\rho \pi_{\text {S-wave }}$	seen	638
$\rho \pi_{\text {D-wave }}$	seen	638
$\omega \pi \pi$	seen	607
$f_{1}(1285) \pi$	seen	309
$a_{1}(1260) \eta$	not seen	\dagger
$\eta_{2}(1645)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{-+}\right)$	

> Mass $m=1617 \pm 5 \mathrm{MeV}$
> Full width $\Gamma=181 \pm 11 \mathrm{MeV}$

$\eta_{\mathbf{2}}(\mathbf{1 6 4 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$a_{2}(1320) \pi$	seen	243
$K \bar{K} \pi$	seen	580
$K^{*} \bar{K}$	seen	404
$\eta \pi^{+} \pi^{-}$	seen	685
$a_{0}(980) \pi$	seen	499
$f_{2}(1270) \eta$	not seen	\dagger

$\rho_{3}(\mathbf{1 6 9 0}) \quad \quad{ }^{G}\left(J^{P C}\right)=1^{+}\left(3^{--}\right)$

Mass $m=1688.8 \pm 2.1 \mathrm{MeV}$
Full width $\Gamma=161 \pm 10 \mathrm{MeV} \quad(\mathrm{S}=1.5)$

$\boldsymbol{\rho}_{\mathbf{3}} \mathbf{(1 6 9 0)}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor
4π	$(71.1 \pm 1.9) \%$	p $(\mathrm{MeV} / \mathrm{c})$
$\pi^{+} \pi^{-} \pi^{0}$	$(67 \pm 22) \%$	790
$\omega \pi$	$(16 \pm 6 \quad \%$	787
$\pi \pi$	$(23.6 \pm 1.3) \%$	655
$K \bar{K} \pi$	$(3.8 \pm 1.2) \%$	834
$K \bar{K}$	$(1.58 \pm 0.26) \%$	629
$\eta \pi^{+} \pi^{-}$	seen	1.2

$\rho(770) \eta$	seen	520
$\pi \pi \rho$	seen	633
$a_{2}(1320) \pi$	seen	308
$\rho \rho$	seen	335
$\rho(1700)$	${ }^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)$	
See the note in $\rho(1700)$ Particle Listings.$\begin{aligned} & \text { Mass } m=1720 \pm 20 \mathrm{MeV}[j] \quad\left(\eta \rho^{0} \text { and } \pi^{+} \pi^{-} \text {modes }\right) \\ & \text { Full width } \Gamma=250 \pm 100 \mathrm{MeV}[j] \quad\left(\eta \rho^{0} \text { and } \pi^{+} \pi^{-} \text {modes }\right) \end{aligned}$		
$\rho(1700)$ DECAY MODES	Fraction (Γ_{i} / Γ)	$p(\mathrm{MeV} / \mathrm{C})$
$2\left(\pi^{+} \pi^{-}\right)$	seen	803
$\rho \pi \pi$	seen	653
$\rho^{0} \pi^{+} \pi^{-}$	seen	651
$\rho^{ \pm} \pi^{\mp} \pi^{0}$	seen	652
$a_{1}(1260) \pi$	seen	404
$h_{1}(1170) \pi$	seen	450
$\pi(1300) \pi$	seen	349
$\rho \rho$	seen	372
$\pi^{+} \pi^{-}$	seen	849
$\pi \pi$	seen	849
$K \bar{K}^{*}(892)+$ c.c.	seen	496
$\eta \rho$	seen	545
$\mathrm{a}_{2}(1320) \pi$	not seen	335
$K \bar{K}$	seen	704
$e^{+} e^{-}$	seen	860
$\pi^{0} \omega$	seen	674
$\pi^{0} \gamma$	not seen	855
$a_{2}(1700)$	$I^{G}\left(J^{P C}\right)=1^{-}\left(2^{++}\right)$	

$\eta \eta \pi^{-}$	seen	660
$a_{0}(980) \eta$	seen	471
$a_{2}(1320) \eta$	not seen	\dagger
$f_{2}(1270) \pi$	not seen	441
$f_{0}(1370) \pi^{-}$	not seen	366
$f_{0}(1500) \pi^{-}$	seen	247
$\eta \eta^{\prime}(958) \pi^{-}$	seen	373
$K_{0}^{*}(1430) K^{-}$	seen	\dagger
$K^{*}(892) K^{-}$	not seen	568
$\phi_{3}(\mathbf{1 8 5 0})$	$I_{(J P C)}$	

$a_{4}(\mathbf{1 9 7 0)}$ DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$K \bar{K}$	seen	851
$\pi^{+} \pi^{-} \pi^{0}$	seen	959
$\rho \pi$	seen	825
$f_{2}(1270) \pi$	seen	559
$\omega \pi^{-} \pi^{0}$	seen	801
$\omega \rho$	seen	601
$\eta \pi$	seen	902
$\eta^{\prime}(958) \pi$	seen	743
$f_{2}(2010)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$	
Mass $m=2011_{-80}^{+60} \mathrm{MeV}$ Full width $\Gamma=202 \pm 60 \mathrm{MeV}$		

$\boldsymbol{f}_{\mathbf{2}}(\mathbf{2 0 1 0})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\phi \phi$	seen	\dagger
$K \bar{K}$	seen	876

$\mathrm{f}_{\mathbf{4}(2050)} \quad I^{(20}\left(J^{P C}\right)=0^{+}\left(4^{++}\right)$

Mass $m=2018 \pm 11 \mathrm{MeV} \quad(\mathrm{S}=2.1)$
Full width $\Gamma=237 \pm 18 \mathrm{MeV} \quad(\mathrm{S}=1.9)$

$\boldsymbol{f}_{\mathbf{4}}(\mathbf{2 0 5 0} \mathbf{)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\omega \omega$	seen	637
$\pi \pi$	$(17.0 \pm 1.5) \%$	1000
$K \bar{K}$	$\left(6.8_{-1.8}^{+3.4}\right) \times 10^{-3}$	880
$\eta \eta$	$(2.1 \pm 0.8) \times 10^{-3}$	848
$4 \pi^{0}$	$<1.2 \quad \%$	964
$a_{2}(1320) \pi$	seen	568

$\phi(2170)$

$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
Mass $m=2160 \pm 80 \mathrm{MeV}[$ [j]
Full width $\Gamma=125 \pm 65 \mathrm{MeV}$ [j]

$\phi(2170)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$e^{+} e^{-}$	seen	1080
$\phi f_{0}(980)$	seen	396
$K^{+} K^{-} f_{0}(980) \rightarrow$	seen	-
$\begin{aligned} & K^{+} K^{-} \pi^{+} \pi^{-} \\ & K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \end{aligned}$	seen	-
$K^{* 0} K^{ \pm} \pi^{\mp}$	not seen	759
$K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$	not seen	609
$f_{2}(2300)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$	

Mass $m=2297 \pm 28 \mathrm{MeV}$
Full width $\Gamma=149 \pm 40 \mathrm{MeV}$

$\mathbf{f}_{\mathbf{2}}(\mathbf{2 3 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\phi \phi$	seen	529
$K \bar{K}$	seen	1037
$\gamma \gamma$	seen	1149
$\boldsymbol{f}_{\mathbf{2}}(\mathbf{2 3 4 0})$	$I^{G}\left(J^{2} P C\right)=0^{+}\left(2^{++}\right)$	

Mass $m=23455_{-40}^{+50} \mathrm{MeV}$
Full width $\Gamma=322_{-60}^{+70} \mathrm{MeV}$

$\mathbf{f}_{\mathbf{2}}(\mathbf{2 3 4 0} \mathbf{)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\phi \phi$	seen	580
$\eta \eta$	seen	1037
STRANGE MESONS		
$\mathbf{S}= \pm \mathbf{1}, \mathbf{C}=\boldsymbol{B}=\mathbf{0})$		
$K^{+}=u \bar{s}, K^{0}=d \bar{s}, \bar{K}^{0}=\bar{d} s, K^{-}=\bar{u} s$,	similarly for $K^{* \prime} \mathrm{~s}$	

$K^{ \pm}$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

Mass $m=493.677 \pm 0.016 \mathrm{MeV}[0] \quad(\mathrm{S}=2.8)$
Mean life $\tau=(1.2380 \pm 0.0020) \times 10^{-8} \mathrm{~s} \quad(\mathrm{~S}=1.8)$

$$
c \tau=3.711 \mathrm{~m}
$$

CPT violation parameters ($\Delta=$ rate difference/sum)
$\Delta\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}\right)=(-0.27 \pm 0.21) \%$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)=(0.4 \pm 0.6) \%[p]$
$C P$ violation parameters ($\Delta=$ rate difference/sum)
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} e^{+} e^{-}\right)=(-2.2 \pm 1.6) \times 10^{-2}$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)=0.010 \pm 0.023$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \gamma\right)=(0.0 \pm 1.2) \times 10^{-3}$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right)=(0.04 \pm 0.06) \%$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\right)=(-0.02 \pm 0.28) \%$

T violation parameters

$$
\begin{array}{lc}
K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} & P_{T}=(-1.7 \pm 2.5) \times 10^{-3} \\
K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma & P_{T}=(-0.6 \pm 1.9) \times 10^{-2} \\
K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} & \operatorname{Im}(\xi)=-0.006 \pm 0.008
\end{array}
$$

Slope parameter $\boldsymbol{g}{ }^{[q]}$
(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi \pi$ scattering)

$$
\begin{aligned}
& K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} g=-0.21134 \pm 0.00017 \\
& \quad\left(g_{+}-g_{-}\right) /\left(g_{+}+g_{-}\right)=(-1.5 \pm 2.2) \times 10^{-4} \\
& K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0} \quad g=0.626 \pm 0.007 \\
& \quad\left(g_{+}-g_{-}\right) /\left(g_{+}+g_{-}\right)=(1.8 \pm 1.8) \times 10^{-4}
\end{aligned}
$$

$K^{ \pm}$decay form factors ${ }^{[a, r]}$
Assuming μ - e universality

$$
\begin{aligned}
& \lambda_{+}\left(K_{\mu 3}^{+}\right)=\lambda_{+}\left(K_{e 3}^{+}\right)=(2.959 \pm 0.025) \times 10^{-2} \\
& \lambda_{0}\left(K_{\mu 3}^{+}\right)=(1.76 \pm 0.25) \times 10^{-2} \quad(S=2.7)
\end{aligned}
$$

Not assuming μ-e universality

$$
\left.\begin{array}{l}
\lambda_{+}\left(K_{e 3}^{+}\right)=(2.956 \pm 0.025) \times 10^{-2} \\
\lambda_{+}\left(K_{\mu 3}^{+}\right)=(3.09 \pm 0.25) \times 10^{-2} \quad(S=1.5) \\
\lambda_{0}\left(K_{\mu 3}^{+}\right)=(1.73 \pm 0.27) \times 10^{-2}
\end{array} \quad(S=2.6)\right) ~ l
$$

$K_{e 3}$ form factor quadratic fit

$$
\lambda^{\prime}+\left(K_{\text {e3 }}^{ \pm}\right) \text {linear coeff. }=(2.59 \pm 0.04) \times 10^{-2}
$$

$$
\lambda^{\prime \prime}+\left(K_{e 3}^{ \pm}\right) \text {quadratic coeff. }=(0.186 \pm 0.021) \times 10^{-2}
$$

$\lambda^{\prime}+\left(\right.$ LINEAR $K_{\mu 3}^{ \pm}$FORM FACTOR FROM QUADRATIC FIT $)$ $=(24 \pm 4) \times 10^{-3}$
$\lambda^{\prime \prime}{ }_{+}\left(\right.$QUADRATIC $K_{\mu 3}^{ \pm}$FORM FACTOR $)=(1.8 \pm 1.5) \times 10^{-3}$
$M_{V}\left(\right.$ VECTOR POLE MASS FOR $K_{e 3}^{ \pm}$DECAY $)=890.3 \pm 2.8$ MeV
$M_{V}\left(\right.$ VECTOR POLE MASS FOR $K_{\mu 3}^{ \pm}$DECAY $)=878 \pm 12$ MeV
$M_{S}\left(\right.$ SCALAR POLE MASS FOR $K_{\mu 3}^{ \pm}$DECAY $)=1215 \pm 50$ MeV
Λ_{+}(DISPERSIVE VECTOR FORM FACTOR IN $K_{e 3}^{ \pm}$DECAY $)=$ $(2.460 \pm 0.017) \times 10^{-2}$
Λ_{+}(DISPERSIVE VECTOR FORM FACTOR IN $K_{\mu 3}^{ \pm}$DECAY) $=(25.4 \pm 0.9) \times 10^{-3}$
$\ln (C)$ (DISPERSIVE SCALAR FORM FACTOR in $K_{\mu 3}^{ \pm}$decays)

$$
=(182 \pm 16) \times 10^{-3}
$$

$K_{e 3}^{+} \quad\left|f_{S} / f_{+}\right|=\left(-0.08_{-0.40}^{+0.34}\right) \times 10^{-2}$
$K_{e 3}^{+} \quad\left|f_{T} / f_{+}\right|=\left(-1.2_{-1.1}^{+1.3}\right) \times 10^{-2}$
$K_{\mu 3}^{+} \quad\left|f_{S} / f_{+}\right|=(0.2 \pm 0.6) \times 10^{-2}$
$K_{\mu 3}^{+} \quad\left|f_{T} / f_{+}\right|=(-0.1 \pm 0.7) \times 10^{-2}$
$K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad\left|F_{A}+F_{V}\right|=0.133 \pm 0.008 \quad(\mathrm{~S}=1.3)$
$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma\left|F_{A}+F_{V}\right|=0.165 \pm 0.013$
$K^{+} \rightarrow e^{+} \nu_{e} \gamma\left|F_{A}-F_{V}\right|<0.49, \mathrm{CL}=90 \%$
$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad\left|F_{A}-F_{V}\right|=-0.153 \pm 0.033 \quad(\mathrm{~S}=1.1)$

Charge radius

$\langle r\rangle=0.560 \pm 0.031 \mathrm{fm}$
Forward-backward asymmetry

$$
\begin{aligned}
& \mathrm{A}_{F B}\left(K_{\pi \mu \mu}^{ \pm}\right)=\frac{\Gamma\left(\cos \left(\theta_{K \mu}\right)>0\right)-\Gamma\left(\cos \left(\theta_{K \mu}\right)<0\right)}{\Gamma\left(\cos \left(\theta_{K \mu}\right)>0\right)+\Gamma\left(\cos \left(\theta_{K \mu}\right)<0\right)}<2.3 \times 10^{-2}, \mathrm{CL} \\
& \quad=90 \%
\end{aligned}
$$

K^{-}modes are charge conjugates of the modes below.

| \boldsymbol{K}^{+}DECAY MODES | Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$ | Scale factor/
 Confidence level $(\mathrm{MeV} / \mathrm{c})$ |
| :--- | :---: | :---: | :---: |
| Leptonic and semileptonic modes | | |

Called $K_{\mu 3}^{+}$.					
$\pi^{0} \pi^{0} e^{+} \nu_{e}$		2.55 ± 0.04) $\times 10^{-5}$	$\mathrm{S}=1.1$	206
$\pi^{+} \pi^{-} e^{+} \nu_{e}$		4.247 ± 0.024) $\times 10^{-5}$		203
$\pi^{+} \pi^{-} \mu^{+} \nu_{\mu}$		1.4 ± 0.9	$) \times 10^{-5}$		151
$\pi^{0} \pi^{0} \pi^{0} e^{+} \nu_{e}$	$<$	3.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	135
Hadronic modes					
$\pi^{+} \pi^{0}$		20.67 ± 0.08		$\mathrm{S}=1.2$	205
$\pi^{+} \pi^{0} \pi^{0}$		1.760 ± 0.023		$\mathrm{S}=1.1$	133
$\pi^{+} \pi^{+} \pi^{-}$		5.583 ± 0.024			125
Leptonic and semileptonic modes with photons					
$\mu^{+} \nu_{\mu} \gamma$	[s,t]	6.2 ± 0.8) $\times 10^{-3}$		236
$\mu^{+} \nu_{\mu} \gamma\left(\mathrm{SD}^{+}\right)$	[a,u]	1.33 ± 0.22) $\times 10^{-5}$		
$\mu^{+} \nu_{\mu} \gamma\left(\mathrm{SD}^{+} \mathrm{INT}\right)$	$[a, u]<$	2.7	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	
$\mu^{+} \nu_{\mu} \gamma\left(\mathrm{SD}^{-}+\mathrm{SD}^{-} \mathrm{INT}\right)$	$[a, u]<$	2.6	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	-
$e^{+} \nu_{e} \gamma$		9.4 ± 0.4) $\times 10^{-6}$		247
$\pi^{0} e^{+} \nu_{e} \gamma$	[s,t]	2.56 ± 0.16) $\times 10^{-4}$		228
$\pi^{0} e^{+} \nu_{e} \gamma$ (SD)	$[a, u]<$	5.3	$\times 10^{-5}$	CL=90\%	228
$\pi^{0} \mu^{+} \nu_{\mu} \gamma$	[s,t]	1.25 ± 0.25) $\times 10^{-5}$		215
$\pi^{0} \pi^{0} e^{+} \nu_{e} \gamma$	$<$	5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	206

Hadronic modes with photons or $\boldsymbol{\ell} \overline{\boldsymbol{\ell}}$ pairs

$\pi^{+} \pi^{0} \gamma$ (INT)		4.2	± 0.9) $\times 10^{-6}$		
$\pi^{+} \pi^{0} \gamma$ (DE)		6.0	± 0.4) $\times 10^{-6}$		205
$\pi^{+} \pi^{0} e^{+} e^{-}$		4.2	± 0.14) $\times 10^{-6}$		205
$\pi^{+} \pi^{0} \pi^{0} \gamma$		7.6	+3.0 +3.0) $\times 10^{-6}$		133
$\pi^{+} \pi^{+} \pi^{-} \gamma$		7.1	± 0.5) $\times 10^{-6}$		125
$\pi^{+} \gamma \gamma$		1.0	± 0.06) $\times 10^{-6}$		227
$\pi^{+} 3 \gamma$	[s]	1.0		$\times 10^{-4}$	$\mathrm{CL}=90 \%$	227
$\pi^{+} e^{+} e^{-} \gamma$		1.1	± 0.13) $\times 10^{-8}$		227
Leptonic modes with $\boldsymbol{\ell} \bar{\ell}$ pairs						
$e^{+} \nu_{e} \nu \bar{\nu}$		6		$\times 10^{-5}$	$\mathrm{CL}=90 \%$	247
$\mu^{+} \nu_{\mu} \nu \bar{\nu}$		2.4		$\times 10^{-6}$	CL=90\%	236
$e^{+} \nu_{e} e^{+} e^{-}$		2.48	± 0.20) $\times 10^{-8}$		247
$\mu^{+} \nu_{\mu} e^{+} e^{-}$		7.06	± 0.31) $\times 10^{-8}$		236
$e^{+} \nu_{e} \mu^{+} \mu^{-}$		1.7	± 0.5) $\times 10^{-8}$		223
$\mu^{+} \nu_{\mu} \mu^{+} \mu^{-}$				$\times 10^{-7}$	CL=90\%	185

Lepton family number (LF), Lepton number (L), $\Delta S=\Delta Q$ (SQ) violating modes, or $\Delta S=1$ weak neutral current (S1) modes
$\pi^{+} \pi^{+} e^{-} \bar{\nu}_{e}$
$\pi^{+} \pi^{+} \mu^{-} \bar{\nu}_{\mu}$
$\pi^{+} e^{+} e^{-}$
$\pi^{+} \mu^{+} \mu^{-}$
$\pi^{+} \nu \bar{\nu}$
$\pi^{+} \pi^{0} \nu \bar{\nu}$
$\mu^{-} \nu e^{+} e^{+}$
$\mu^{+} \nu_{e}$
$\pi^{+} \mu^{+} e^{-}$
$\pi^{+} \mu^{-} e^{+}$
$\pi^{-} \mu^{+} e^{+}$
$\pi^{-} e^{+} e^{+}$
$\pi^{-} \mu^{+} \mu^{+}$
$\mu^{+} \bar{\nu}_{e}$
$\pi^{0} e^{+} \bar{\nu}_{e}$
$\pi^{+} \gamma$

SQ	<	1.3		$\times 10^{-8}$	$\mathrm{CL}=90 \%$	203
SQ	$<$	3.0		$\times 10^{-6}$	CL=95\%	151
S1		3.00	± 0.09) $\times 10^{-7}$		227
S1		9.4	± 0.6) $\times 10^{-8}$	S $=2.6$	172
S1		1.7	± 1.1) $\times 10^{-10}$		227
S1	$<$	4.3		$\times 10^{-5}$	CL=90\%	205
LF	$<$	2.1		$\times 10^{-8}$	CL=90\%	236
LF	[d]<	4		$\times 10^{-3}$	CL=90\%	236
LF	<	1.3		$\times 10^{-11}$	CL=90\%	214
LF	$<$	5.2		$\times 10^{-10}$	$\mathrm{CL}=90 \%$	214
L	$<$	5.0		$\times 10^{-10}$	CL=90\%	214
L	$<$	2.2		$\times 10^{-10}$	$\mathrm{CL}=90 \%$	227
L	$<$	4.2		$\times 10^{-11}$	CL=90\%	172
L	[d] <	3.3		$\times 10^{-3}$	CL=90\%	236
L	$<$	3		$\times 10^{-3}$	CL=90\%	228
	[x] <	2.3		$\times 10^{-9}$	CL=90\%	227

K^{0}

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

$50 \% K_{S}, 50 \% K_{L}$

$$
\text { Mass } m=497.611 \pm 0.013 \mathrm{MeV} \quad(\mathrm{~S}=1.2)
$$

$$
m_{K^{0}}-m_{K^{ \pm}}=3.934 \pm 0.020 \mathrm{MeV} \quad(\mathrm{~S}=1.6)
$$

Mean square charge radius

$$
\left\langle r^{2}\right\rangle=-0.077 \pm 0.010 \mathrm{fm}^{2}
$$

T-violation parameters in $\boldsymbol{K}^{0}-\bar{K}^{0}$ mixing ${ }^{[r]}$

Asymmetry A_{T} in $K^{0}-\bar{K}^{0}$ mixing $=(6.6 \pm 1.6) \times 10^{-3}$

$C P$-violation parameters

$\operatorname{Re}(\epsilon)=(1.596 \pm 0.013) \times 10^{-3}$

CPT-violation parameters ${ }^{[r]}$
$\operatorname{Re} \delta=(2.5 \pm 2.3) \times 10^{-4}$
$\operatorname{Im} \delta=(-1.5 \pm 1.6) \times 10^{-5}$
$\operatorname{Re}(y), K_{e 3}$ parameter $=(0.4 \pm 2.5) \times 10^{-3}$
$\mathrm{Re}\left(\mathrm{x}_{-}\right), K_{e 3}$ parameter $=(-2.9 \pm 2.0) \times 10^{-3}$
$\left|m_{K^{0}}-m_{\overline{K^{0}}}\right| / m_{\text {average }}<6 \times 10^{-19}, \mathrm{CL}=90 \%[y]$
$\left(\Gamma_{K^{0}}-\Gamma_{\bar{K}^{0}}\right) / m_{\text {average }}=(8 \pm 8) \times 10^{-18}$

Tests of $\Delta S=\Delta Q$

$\operatorname{Re}\left(\mathrm{x}_{+}\right), K_{e 3}$ parameter $=(-0.9 \pm 3.0) \times 10^{-3}$

Slope parameters ${ }^{[q]}$

(See Particle Listings for other linear and quadratic coefficients)

$$
\begin{aligned}
& K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}: g=0.678 \pm 0.008 \quad(\mathrm{~S}=1.5) \\
& K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}: h=0.076 \pm 0.006 \\
& K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}: \\
& K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}: \quad h=(0.6 \pm 1.2) \times 10^{-3}
\end{aligned}
$$

K_{L} decay form factors ${ }^{[r]}$
Linear parametrization assuming μ-e universality

$$
\begin{aligned}
& \lambda_{+}\left(K_{\mu 3}^{0}\right)=\lambda_{+}\left(K_{e 3}^{0}\right)=(2.82 \pm 0.04) \times 10^{-2} \quad(S=1.1) \\
& \lambda_{0}\left(K_{\mu 3}^{0}\right)=(1.38 \pm 0.18) \times 10^{-2} \quad(\mathrm{~S}=2.2)
\end{aligned}
$$

Quadratic parametrization assuming μ-e universality

$$
\begin{array}{ll}
\lambda^{\prime}+\left(K_{\mu 3}^{0}\right)=\lambda^{\prime}+\left(K_{e 3}^{0}\right)=(2.40 \pm 0.12) \times 10^{-2} & (\mathrm{~S}=1.2) \\
\lambda^{\prime \prime}+\left(K_{\mu 3}^{0}\right)=\lambda^{\prime \prime}\left(K_{e 3}^{0}\right)=(0.20 \pm 0.05) \times 10^{-2} & (\mathrm{~S}=1.2) \\
\lambda_{0}\left(K_{\mu 3}^{0}\right)=(1.16 \pm 0.09) \times 10^{-2} \quad(\mathrm{~S}=1.2) &
\end{array}
$$

Pole parametrization assuming μ-e universality

$$
\begin{aligned}
& M_{V}^{\mu}\left(K_{\mu 3}^{0}\right)=M_{V}^{e}\left(K_{e 3}^{0}\right)=878 \pm 6 \mathrm{MeV} \quad(\mathrm{~S}=1.1) \\
& M_{S}^{\mu}\left(K_{\mu 3}^{0}\right)=1252 \pm 90 \mathrm{MeV} \quad(\mathrm{~S}=2.6)
\end{aligned}
$$

Dispersive parametrization assuming μ-e universality
$\Lambda_{+}=(2.51 \pm 0.06) \times 10^{-2} \quad(\mathrm{~S}=1.5)$
$\ln (C)=(1.75 \pm 0.18) \times 10^{-1} \quad(S=2.0)$
$K_{e 3}^{0} \quad\left|f_{S} / f_{+}\right|=\left(1.5_{-1.6}^{+1.4}\right) \times 10^{-2}$
$K_{e 3}^{0} \quad\left|f_{T} / f_{+}\right|=\left(5_{-5}^{+4}\right) \times 10^{-2}$
$K_{\mu 3}^{0} \quad\left|f_{T} / f_{+}\right|=(12 \pm 12) \times 10^{-2}$
$K_{L} \rightarrow \ell^{+} \ell^{-} \gamma, K_{L} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}: \alpha_{K^{*}}=-0.205 \pm$ $0.022 \quad(S=1.8)$
$K_{L}^{0} \rightarrow \ell^{+} \ell^{-} \gamma, K_{L}^{0} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}: \alpha_{D I P}=-1.69 \pm$ $0.08 \quad(\mathrm{~S}=1.7)$
$K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}: a_{1} / a_{2}=-0.737 \pm 0.014 \mathrm{GeV}^{2}$
$K_{L} \rightarrow \pi^{0} 2 \gamma: \quad a_{V}=-0.43 \pm 0.06 \quad(S=1.5)$

$C P$-violation parameters ${ }^{[z]}$

$A_{L}=(0.332 \pm 0.006) \%$
$\left|\eta_{00}\right|=(2.220 \pm 0.011) \times 10^{-3} \quad(S=1.8)$
$\left|\eta_{+-}\right|=(2.232 \pm 0.011) \times 10^{-3} \quad(S=1.8)$
$|\epsilon|=(2.228 \pm 0.011) \times 10^{-3} \quad(S=1.8)$
$\left|\eta_{00} / \eta_{+-}\right|=0.9950 \pm 0.0007[c c] \quad(\mathrm{S}=1.6)$
$\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(1.66 \pm 0.23) \times 10^{-3}[c c] \quad(S=1.6)$
Assuming CPT

$$
\begin{aligned}
& \phi_{+-}=(43.51 \pm 0.05)^{\circ} \quad(\mathrm{S}=1.2) \\
& \phi_{00}=(43.52 \pm 0.05)^{\circ} \quad(\mathrm{S}=1.3)
\end{aligned}
$$

$$
\phi_{\epsilon}=\phi_{\mathrm{SW}}=(43.52 \pm 0.05)^{\circ} \quad(\mathrm{S}=1.2)
$$

$\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)=-\left(\phi_{00}-\phi_{+-}\right) / 3=(-0.002 \pm 0.005)^{\circ} \quad(S=1.7)$
Not assuming CPT

$$
\begin{aligned}
& \phi_{+-}=(43.4 \pm 0.5)^{\circ} \quad(\mathrm{S}=1.2) \\
& \phi_{00}=(43.7 \pm 0.6)^{\circ} \quad(\mathrm{S}=1.2) \\
& \phi_{\epsilon}=(43.5 \pm 0.5)^{\circ} \quad(\mathrm{S}=1.3)
\end{aligned}
$$

$C P$ asymmetry A in $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}=(13.7 \pm 1.5) \%$
$\beta_{C P}$ from $K_{L}^{0} \rightarrow e^{+} e^{-} e^{+} e^{-}=-0.19 \pm 0.07$
$\gamma_{C P}$ from $K_{L}^{0} \rightarrow e^{+} e^{-} e^{+} e^{-}=0.01 \pm 0.11 \quad(S=1.6)$
j for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}=0.0012 \pm 0.0008$
f for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}=0.004 \pm 0.006$
$\left|\eta_{+-\gamma}\right|=(2.35 \pm 0.07) \times 10^{-3}$
$\phi_{+-\gamma}=(44 \pm 4)^{\circ}$
$\left|\epsilon_{+-\gamma}^{\prime}\right| / \epsilon<0.3, \mathrm{CL}=90 \%$
$\left|\mathrm{g}_{E 1}\right|$ for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma<0.21, \mathrm{CL}=90 \%$

T-violation parameters

$\operatorname{Im}(\xi)$ in $K_{\mu 3}^{0}=-0.007 \pm 0.026$

CPT invariance tests

$\phi_{00}-\phi_{+-}=(0.34 \pm 0.32)^{\circ}$
$\operatorname{Re}\left(\frac{2}{3} \eta_{+-}+\frac{1}{3} \eta_{00}\right)-\frac{A_{L}}{2}=(-3 \pm 35) \times 10^{-6}$

$\Delta S=-\Delta Q$ in $K_{\ell 3}^{0}$ decay

$\operatorname{Re} x=-0.002 \pm 0.006$
Im $x=0.0012 \pm 0.0021$

Hadronic modes, including Charge conjugation \times Parity Violating (CPV) modes $3 \pi^{0}$
$3 \pi^{0}$
$\pi^{+} \pi^{-} \pi^{0}$
$\pi^{+} \pi^{-}$
$\pi^{0} \pi^{0}$

$\pi^{ \pm} e^{\mp} \nu_{e} \gamma$
$\pi^{ \pm} \mu^{\mp} \nu_{\mu} \gamma$

$\pi^{0} \pi^{0} \gamma$
$\pi^{+} \pi^{-} \gamma$
$\pi^{+} \pi^{-} \gamma(\mathrm{DE})$
$\pi^{0} 2 \gamma$
$\pi^{0} \gamma e^{+} e^{-}$
$(19.52 \pm 0.12) \%$ $\mathrm{S}=1.6 \quad 139$

$\pi^{+} \pi^{-} \pi^{0}$				
$\pi^{+} \pi^{-}$	$C P V$	$(d d]$	$(12.54 \pm 0.05) \%$	
$(1.967 \pm 0.010) \times 10^{-3}$	$S=1.5$	133		
206				

$\pi^{0} \pi^{0}$
CPV

Semileptonic modes with photons

$[t, b b, e e] \quad(3.79 \pm 0.06) \times 10^{-3}$
$(5.65 \pm 0.23) \times 10^{-4}$
$\mathrm{S}=1.8 \quad 209$

$$
\begin{aligned}
& \pi^{ \pm} e^{\mp} \nu_{e} \gamma \\
& \pi^{ \pm} \mu^{\mp} \nu_{\mu} \gamma \\
& \pi^{0} \pi^{0} \gamma \\
& \pi^{+} \pi^{-} \gamma \\
& \pi^{+} \pi^{-} \gamma(\mathrm{DE})
\end{aligned}
$$

Hadronic modes with photons or $\bar{\ell} \bar{\ell}$ pairs

	<2.43	$\times 10^{-7}$	$\mathrm{CL}=90 \%$	209
$[t, e e]$	$(4.15 \pm 0.15) \times 10^{-5}$	$\mathrm{~S}=2.8$	206	
	$(2.84 \pm 0.11) \times 10^{-5}$	$\mathrm{~S}=2.0$	206	
$[e e]$	$(1.273 \pm 0.033) \times 10^{-6}$		230	
	$(1.62 \pm 0.17) \times 10^{-8}$		230	

Other modes with photons or $\ell \bar{\ell}$ pairs

2γ		(5.47	± 0.04	$) \times 10^{-4}$	$\mathrm{S}=1.1$	249
3γ		<7.4		$\times 10^{-8}$	CL=90\%	249
$e^{+} e^{-} \gamma$		(9.4	± 0.4) $\times 10^{-6}$	$\mathrm{S}=2.0$	249
$\mu^{+} \mu^{-} \gamma$		(3.59	± 0.11) $\times 10^{-7}$	$\mathrm{S}=1.3$	225
$e^{+} e^{-} \gamma \gamma$	[ee]	(5.95	± 0.33	$) \times 10^{-7}$		249
$\mu^{+} \mu^{-} \gamma \gamma$	[ee]	(1.0	+0.8 +0.6) $\times 10^{-8}$		225

Charge conjugation \times Parity (CP) or Lepton Family number (LF) violating modes, or $\Delta S=1$ weak neutral current ($S 1$) modes

$\mu^{+} \mu^{-}$	S1		$\text { (} 6.84$	± 0.11	$) \times 10^{-9}$		225
$e^{+} e^{-}$	S1		(9	${ }_{-4}^{+6}$) $\times 10^{-12}$		249
$\pi^{+} \pi^{-} e^{+} e^{-}$	S1		(3.11	± 0.19) $\times 10^{-7}$		206
$\pi^{0} \pi^{0} e^{+} e^{-}$	S1		< 6.6		$\times 10^{-9}$	$\mathrm{CL}=90 \%$	209
$\pi^{0} \pi^{0} \mu^{+} \mu^{-}$	S1		< 9.2		$\times 10^{-11}$	$\mathrm{CL}=90 \%$	57
$\mu^{+} \mu^{-} e^{+} e^{-}$	S1		(2.69	± 0.27) $\times 10^{-9}$		225
$e^{+} e^{-} e^{+} e^{-}$	S1		(3.56	± 0.21) $\times 10^{-8}$		249
$\pi^{0} \mu^{+} \mu^{-}$		[ff]	< 3.8		$\times 10^{-10}$	$\mathrm{CL}=90 \%$	177
$\pi^{0} e^{+} e^{-}$		[ff]	< 2.8		$\times 10^{-10}$	CL=90\%	230
$\pi^{0} \nu \bar{\nu}$		[gg]	< 3.0		$\times 10^{-9}$	CL=90\%	230
$\pi^{0} \pi^{0} \nu \bar{\nu}$	S1		< 8.1		$\times 10^{-7}$	CL=90\%	209
$e^{ \pm} \mu^{\mp}$	LF	[bb]	< 4.7		$\times 10^{-12}$	CL=90\%	238
$e^{ \pm} e^{ \pm} \mu^{\mp} \mu^{\mp}$	LF		<4.12		$\times 10^{-11}$	CL=90\%	225
$\pi^{0} \mu^{ \pm} e^{\mp}$	LF		< 7.6		$\times 10^{-11}$	CL=90\%	217
$\pi^{0} \pi^{0} \mu^{ \pm} e^{\mp}$	LF		< 1.7		$\times 10^{-10}$	CL=90\%	159
$K_{0}^{*}(700)$	$I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)$						

also known as κ; was $K_{0}^{*}(800)$
Mass (T-Matrix Pole $\sqrt{s})=(630-730)-i(260-340) \mathrm{MeV}$ Mass (Breit-Wigner) $=824 \pm 30 \mathrm{MeV}$
Full width $($ Breit-Wigner $)=478 \pm 50 \mathrm{MeV}$

$\boldsymbol{K}_{0}^{*}(700)$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$K \pi$	100%	240
$K^{*}(892)$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{-}\right)$	

$K^{*}(892)^{ \pm}$hadroproduced mass $m=891.66 \pm 0.26 \mathrm{MeV}$
$K^{*}(892)^{ \pm}$in τ decays mass $m=895.5 \pm 0.8 \mathrm{MeV}$
$K^{*}(892)^{0}$ mass $m=895.55 \pm 0.20 \mathrm{MeV} \quad(\mathrm{S}=1.7)$
$K^{*}(892)^{ \pm}$hadroproduced full width $\Gamma=50.8 \pm 0.9 \mathrm{MeV}$
$K^{*}(892)^{ \pm}$in τ decays full width $\Gamma=46.2 \pm 1.3 \mathrm{MeV}$
$K^{*}(892)^{0}$ full width $\Gamma=47.3 \pm 0.5 \mathrm{MeV} \quad(S=1.9)$

$K^{*}(892)$ DECAY MODES	Fraction ($\Gamma_{\boldsymbol{i}} / \overline{\text { r }}$)	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \end{gathered}$
$K \pi$	~ 100	\%	289
$K^{0} \gamma$	(2.46 ± 0.21)	$\times 10^{-3}$	307
$K^{ \pm} \gamma$	(9.9 ± 0.9)	$\times 10^{-4}$	309
$K \pi \pi$	<7	$\times 10^{-4} 95 \%$	223
$K_{1}(1270)$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$		

$K \eta$	$\left(1.5_{-1.0}^{+3.4}\right) \times 10^{-3}$	$\mathrm{~S}=1.3$	488	
$K \omega \pi$	<7.2	$\times 10^{-4}$	$\mathrm{CL}=95 \%$	106
$K^{0} \gamma$	<9	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	627
$K^{*}(\mathbf{1 6 8 0})$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{-}\right)$			

Mass $m=1253 \pm 7 \mathrm{MeV}[j] \quad(S=2.2)$
Full width $\Gamma=90 \pm 20 \mathrm{MeV}{ }^{[j]}$

$\boldsymbol{K}_{\mathbf{1}}(\mathbf{1 2 7 0})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$K \rho$	$(42 \pm 6) \%$	\dagger
$K_{0}^{*}(1430) \pi$	$(28 \pm 4) \%$	\dagger
$K^{*}(892) \pi$	$(16 \pm 5) \%$	286
$K \omega$	$(11.0 \pm 2.0) \%$	\dagger
$K f_{0}(1370)$	$(3.0 \pm 2.0) \%$	\dagger
γK^{0}	seen	528

$\boldsymbol{K}^{*}(\mathbf{1 6 8 0})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \boldsymbol{\Gamma}\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$K \pi$	$(38.7 \pm 2.5) \%$	782
$K \rho$	$\left(31.4_{-2.1}^{+5.0}\right) \%$	571
$K^{*}(892) \pi$	$\left(29.9_{-5.0}^{+2.2}\right) \%$	618
$K \phi$	seen	387

$K_{2}(1770){ }^{[i j]} \quad I\left(J^{P}\right)=\frac{1}{2}\left(2^{-}\right)$

Mass $m=1773 \pm 8 \mathrm{MeV}$
Full width $\Gamma=186 \pm 14 \mathrm{MeV}$

$\boldsymbol{K}_{\mathbf{2}}(\mathbf{1 7 7 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$K \pi \pi$		794
$K_{2}^{*}(1430) \pi$	seen	287
$K^{*}(892) \pi$	seen	654
$K f_{2}(1270)$	seen	53
$K \phi$	seen	441
$K \omega$	seen	607

$\boldsymbol{K}_{\mathbf{1}}(\mathbf{1 4 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$K^{*}(892) \pi$	$(94 \pm 6) \%$	402
$K \rho$	$(3.0 \pm 3.0) \%$	293
$K f_{0}(1370)$	$(2.0 \pm 2.0) \%$	\dagger
$K \omega$	$(1.0 \pm 1.0) \%$	284
$K_{0}^{*}(1430) \pi$	not seen	\dagger
γK^{0}	seen	613

$K_{3}^{*}(\mathbf{1 7 8 0}) \quad I\left(J^{P}\right)=\frac{1}{2}\left(3^{-}\right)$

> Mass $m=1776 \pm 7 \mathrm{MeV} \quad(\mathrm{S}=1.1)$
> Full width $\Gamma=159 \pm 21 \mathrm{MeV} \quad(\mathrm{S}=1.3)$

$K_{3}^{*}(1780)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$K \rho$	(31 ± 9) \%		613
$K^{*}(892) \pi$	(20 ± 5) \%		656
$K \pi$	$(18.8 \pm 1.0) \%$		813
$K \eta$	(30 ± 13) \%		719
$K_{2}^{*}(1430) \pi$	< 16 \%	95\%	290
$K_{2}(1820){ }^{[j]}$	$I\left(J^{P}\right)=\frac{1}{2}(2$		

Mass $m=1819 \pm 12 \mathrm{MeV}$
Full width 「 $=264 \pm 34 \mathrm{MeV}$

$\boldsymbol{K}_{\mathbf{2}}(\mathbf{1 8 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$K_{2}^{*}(1430) \pi$	seen	328
$K^{*}(892) \pi$	seen	683
$K f_{2}(1270)$	seen	191
$K \omega$	seen	640
$K \phi$	seen	483

$\boldsymbol{K}_{0}^{*}(\mathbf{1 4 3 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$K \pi$	$(93 \pm 10) \%$	619
$K \eta$	$\left(8.6_{-}^{+2.7}\right) \%$	486
$K \eta^{\prime}(958)$	seen	\dagger
$K_{2}^{*}(\mathbf{1 4 3 0})$	$I\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)$	

$K_{2}^{*}(1430)^{ \pm}$mass $m=1427.3 \pm 1.5 \mathrm{MeV} \quad(\mathrm{S}=1.3)$
$K_{2}^{*}(1430)^{0}$ mass $m=1432.4 \pm 1.3 \mathrm{MeV}$
$K_{2}^{*}(1430)^{ \pm}$full width $\Gamma=100.0 \pm 2.1 \mathrm{MeV}$
$K_{2}^{*}(1430)^{0}$ full width $\Gamma=109 \pm 5 \mathrm{MeV} \quad(\mathrm{S}=1.9)$

$\boldsymbol{K}_{2}^{*}(\mathbf{1 4 3 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
$K \pi$	$(49.9 \pm 1.2) \%$		620
$K^{*}(892) \pi$	$(24.7 \pm 1.5) \%$	420	
$K^{*}(892) \pi \pi$	$(13.4 \pm 2.2) \%$		373
$K \rho$	$(8.7 \pm 0.8) \%$	$\mathrm{~S}=1.2$	320
$K \omega$	$(2.9 \pm 0.8) \%$		313
$K^{+} \gamma$	$(2.4 \pm 0.5) \times 10^{-3}$	$\mathrm{~S}=1.1$	628

CHARMED MESONS

($C= \pm 1$)

$D^{+}=c \bar{d}, D^{0}=c \bar{u}, \bar{D}^{0}=\bar{c} u, D^{-}=\bar{c} d, \quad$ similarly for $D^{*} ' s$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

Mass $m=1869.65 \pm 0.05 \mathrm{MeV}$
Mean life $\tau=(1040 \pm 7) \times 10^{-15} \mathrm{~s}$

$$
c \tau=311.8 \mu \mathrm{~m}
$$

c-quark decays
$\Gamma\left(c \rightarrow \ell^{+}\right.$anything $) / \Gamma(c \rightarrow$ anything $)=0.096 \pm 0.004[k k]$
$\Gamma\left(c \rightarrow D^{*}(2010)^{+}\right.$anything $) / \Gamma(c \rightarrow$ anything $)=0.255 \pm 0.017$

$C P$-violation decay-rate asymmetries

$A_{C P}\left(\mu^{ \pm} \nu\right)=(8 \pm 8) \%$
$A_{C P}\left(K_{L}^{0} e^{ \pm} \nu\right)=(-0.6 \pm 1.6) \%$
$A_{C P}\left(K_{S}^{0} \pi^{ \pm}\right)=(-0.41 \pm 0.09) \%$
$A_{C P}\left(K_{L}^{0} K^{ \pm}\right)$in $D^{ \pm} \rightarrow K_{L}^{0} K^{ \pm}=(-4.2 \pm 3.4) \times 10^{-2}$
$A_{C P}\left(K^{\mp} 2 \pi^{ \pm}\right)=(-0.18 \pm 0.16) \%$
$A_{C P}\left(K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{0}\right)=(-0.3 \pm 0.7) \%$
$A_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{0}\right)=(-0.1 \pm 0.7) \%$
$A_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{+} \pi^{-}\right)=(0.0 \pm 1.2) \%$
$A_{C P}\left(\pi^{ \pm} \pi^{0}\right)=(2.4 \pm 1.2) \%$
$A_{C P}\left(\pi^{ \pm} \eta\right)=(1.0 \pm 1.5) \% \quad(\mathrm{~S}=1.4)$
$A_{C P}\left(\pi^{ \pm} \eta^{\prime}(958)\right)=(-0.6 \pm 0.7) \%$
$A_{C P}\left(\bar{K}^{0} / K^{0} K^{ \pm}\right)=(0.11 \pm 0.17) \%$
$A_{C P}\left(K_{S}^{0} K^{ \pm}\right)=(-0.01 \pm 0.07) \%$
$A_{C P}\left(K_{S}^{0} K^{ \pm} \pi^{0}\right)$ in $D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{0}=(1 \pm 4) \times 10^{-2}$
$A_{C P}\left(K_{L}^{0} K^{ \pm} \pi^{0}\right)$ in $D^{ \pm} \rightarrow K_{L}^{0} K^{ \pm} \pi^{0}=(-1 \pm 4) \times 10^{-2}$
$A_{C P}\left(K^{+} K^{-} \pi^{ \pm}\right)=(0.37 \pm 0.29) \%$
$A_{C P}\left(K^{ \pm} K^{* 0}\right)=(-0.3 \pm 0.4) \%$
$A_{C P}\left(\phi \pi^{ \pm}\right)=(0.01 \pm 0.09) \% \quad(\mathrm{~S}=1.8)$
$A_{C P}\left(K^{ \pm} K_{0}^{*}(1430)^{0}\right)=\left(8_{-6}^{+7}\right) \%$
$A_{C P}\left(K^{ \pm} K_{2}^{*}(1430)^{0}\right)=\left(43_{-26}^{+20}\right) \%$
$A_{C P}\left(K^{ \pm} K_{0}^{*}(700)\right)=\left(-12_{-13}^{+18}\right) \%$
$A_{C P}\left(a_{0}(1450)^{0} \pi^{ \pm}\right)=\left(-19_{-16}^{+14}\right) \%$
$A_{C P}\left(\phi(1680) \pi^{ \pm}\right)=(-9 \pm 26) \%$
$A_{C P}\left(\pi^{+} \pi^{-} \pi^{ \pm}\right)=(-2 \pm 4) \%$
$A_{C P}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)=(-4 \pm 7) \%$
$A_{C P}\left(K^{ \pm} \pi^{0}\right)=(-4 \pm 11) \%$
χ^{2} tests of $C P$-violation (CPV)
Local $C P V$ in $D^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}=78.1 \%$
Local CPV in $D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}=31 \%$
$C P$ violating asymmetries of \boldsymbol{P}-odd (\boldsymbol{T}-odd) moments
$A_{T}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)=(-12 \pm 11) \times 10^{-3}[/ /]$

D^{+}form factors

$$
\begin{aligned}
& f_{+}(0)\left|V_{c s}\right| \text { in } \bar{K}^{0} \ell^{+} \nu_{\ell}=0.719 \pm 0.011 \quad(\mathrm{~S}=1.6) \\
& r_{1} \equiv a_{1} / a_{0} \text { in } \bar{K}^{0} \ell^{+} \nu_{\ell}=-2.13 \pm 0.14 \\
& r_{2} \equiv a_{2} / a_{0} \text { in } \bar{K}^{0} \ell^{+} \nu_{\ell}=-3 \pm 12 \quad(\mathrm{~S}=1.5) \\
& f_{+}(0)\left|V_{c d}\right| \text { in } \pi^{0} \ell^{+} \nu_{\ell}=0.1407 \pm 0.0025 \\
& r_{1} \equiv a_{1} / a_{0} \text { in } \pi^{0} \ell^{+} \nu_{\ell}=-2.00 \pm 0.13 \\
& r_{2} \equiv a_{2} / a_{0} \text { in } \pi^{0} \ell^{+} \nu_{\ell}=-4 \pm 5 \\
& f_{+}(0)\left|V_{c d}\right| \text { in } D^{+} \rightarrow \eta e^{+} \nu_{e}=(8.3 \pm 0.5) \times 10^{-2} \\
& r_{1} \equiv a_{1} / a_{0} \text { in } D^{+} \rightarrow \eta e^{+} \nu_{e}=-5.3 \pm 2.7 \quad(\mathrm{~S}=1.9) \\
& r_{v} \equiv V(0) / A_{1}(0) \text { in } D^{+} \rightarrow \omega e^{+} \nu_{e}=1.24 \pm 0.11 \\
& r_{2} \equiv A_{2}(0) / A_{1}(0) \text { in } D^{+} \rightarrow \omega e^{+} \nu_{e}=1.06 \pm 0.16 \quad \\
& r_{v} \equiv V(0) / A_{1}(0) \text { in } D^{+}, D^{0} \rightarrow \rho e^{+} \nu_{e}=1.64 \pm 0.10 \quad(\mathrm{~S}=1.2) \\
& r_{2} \equiv A_{2}(0) / A_{1}(0) \text { in } D^{+}, D^{0} \rightarrow \rho e^{+} \nu_{e}=0.84 \pm 0.06 \\
& r_{v} \equiv V(0) / A_{1}(0) \text { in } \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}=1.49 \pm 0.05 \quad(\mathrm{~S}=2.1) \\
& r_{2} \equiv A_{2}(0) / A_{1}(0) \text { in } \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}=0.802 \pm 0.021 \\
& r_{3} \equiv A_{3}(0) / A_{1}(0) \text { in } \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}=0.0 \pm 0.4 \\
& \Gamma_{L} / \Gamma_{T} \text { in } \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}=1.13 \pm 0.08 \\
& \Gamma_{+} / \Gamma_{-} \text {in } \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}=0.22 \pm 0.06 \quad(\mathrm{~S}=1.6)
\end{aligned}
$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_{S}^{0} modes, not as \bar{K}^{0} modes. Nearly always it is a K_{S}^{0} that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma\left(K_{S}^{0}\right)=\Gamma\left(\bar{K}^{0}\right)$.

Scale factor/ p

D^{+}DECAY MODES	Fraction $\left(\Gamma_{i} / \overline{\text { r }}\right.$)	Confidence level	$(\mathrm{MeV} / \mathrm{c})$
	Inclusive modes		
e^{+}semileptonic	$(16.07 \pm 0.30$		
μ^{+}anything	$(17.6 \pm 3.2$) \%	
K^{-}anything	$(25.7 \pm 1.4$) \%	
\bar{K}^{0} anything $+K^{0}$ anything	(61 ± 5) \%	
K^{+}anything	$(5.9 \pm 0.8$) \%	
$K^{*}(892)$ - anything	(6 ± 5) \%	
$\bar{K}^{*}(892){ }^{0}$ anything	(23 ± 5) \%	
$K^{*}(892)^{0}$ anything	< 6.6	\% CL=90\%	
η anything	$(6.3 \pm 0.7$		
η^{\prime} anything	$(1.04 \pm 0.18$		
ϕ anything	$(1.12 \pm 0.04$		

Hadronic modes with a \bar{K} or $\bar{K} K \bar{K}$

$\Delta C=1$ weak neutral current (C1) modes, or Lepton Family number ($L F$) or Lepton number (L) violating modes

$I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)$
Mass $m=1864.83 \pm 0.05 \mathrm{MeV}$
$m_{D^{ \pm}}-m_{D^{0}}=4.822 \pm 0.015 \mathrm{MeV}$ Mean life $\tau=(410.1 \pm 1.5) \times 10^{-15} \mathrm{~s}$

$$
c \tau=122.9 \mu \mathrm{~m}
$$

> Mixing and related parameters $$
m_{D_{1}^{0}}-m_{D_{2}^{0}} \mid=\left(0.95_{-0.44}^{+0.41}\right) \times 10^{10} \hbar \mathrm{~s}^{-1}
$$ $\left(\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}}\right) / \Gamma=2 y=\left(1.29_{-0.18}^{+0.14}\right) \times 10^{-2}$ $|\mathrm{q} / \mathrm{p}|=0.92_{-0.09}^{+0.12}$ $\mathrm{~A}_{\Gamma}=(-0.125 \pm 0.526) \times 10^{-3}$ $\phi^{K_{S}^{0} \pi \pi}=-0.09_{-0.13}^{+0.10}$ $K^{+} \pi^{-}$relative strong phase: $\cos \delta=0.97 \pm 0.11$ $K^{-} \pi^{+} \pi^{0}$ coherence factor $R_{K \pi \pi^{0}}=0.82 \pm 0.06$ $K^{-} \pi^{+} \pi^{0}$ average relative strong phase $\delta^{K \pi \pi^{0}}=(199 \pm 14)^{\circ}$ $K^{-} \pi^{-} 2 \pi^{+}$coherence factor $R_{K 3 \pi}=0.53_{-0.21}^{+0.18}$ $K^{-} \pi^{-} 2 \pi^{+}$average relative strong phase $\delta^{K} 3 \pi=\left(125_{-14}^{+22}\right)^{\circ}$ $D^{0} \rightarrow K^{-} \pi^{-} 2 \pi^{+}, R_{K} 3 \pi\left(\mathrm{y} \cos \delta^{K} 3 \pi-\mathrm{x} \sin \delta^{K} 3 \pi\right.$ $0.7) \times 10^{-3} \mathrm{TeV}-1$ $K_{S}^{0} K^{+} \pi^{-}$coherence factor $\mathrm{R}_{K_{S}^{0}} K \pi=0.70 \pm 0.08$ $K_{S}^{0} K^{+} \pi^{-}$average relative strong phase $\delta^{K} S_{S}^{0} K \pi=(0 \pm 16)^{\circ}$ $K^{*} K$ coherence factor $\mathrm{R}_{K^{*} K}=0.94 \pm 0.12$ $K^{*} K$ average relative strong phase $\delta^{K^{*} K}=(-17 \pm 18)^{\circ}$

$C P$-violation decay-rate asymmetries (labeled by the $\boldsymbol{D}^{\mathbf{0}}$ decay)
$A_{C P}\left(K^{+} K^{-}\right)=(-0.07 \pm 0.11) \%$
$A_{C P}\left(2 K_{S}^{0}\right)=(0.4 \pm 1.4) \%$
$A_{C P}\left(\pi^{+} \pi^{-}\right)=(0.13 \pm 0.14) \%$
$A_{C P}\left(\pi^{0} \pi^{0}\right)=(0.0 \pm 0.6) \%$
$A_{C P}(\rho \gamma)=(6 \pm 15) \times 10^{-2}$
$A_{C P}(\phi \gamma)=(-9 \pm 7) \times 10^{-2}$
$A_{C P}\left(\bar{K}^{*}(892)^{0} \gamma\right)=(-0.3 \pm 2.0) \times 10^{-2}$
$A_{C P}\left(\pi^{+} \pi^{-} \pi^{0}\right)=(0.3 \pm 0.4) \%$
$A_{C P}\left(\rho(770)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(1.2 \pm 0.9) \%[t t]$
$A_{C P}\left(\rho(770)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(-3.1 \pm 3.0) \%[t t]$
$A_{C P}\left(\rho(770)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(-1.0 \pm 1.7) \%[t t]$
$A_{C P}\left(\rho(1450)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(0 \pm 70) \%[t t]$
$A_{C P}\left(\rho(1450)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(-20 \pm 40) \%[t t]$
$A_{C P}\left(\rho(1450)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(6 \pm 9) \%[t t]$
$A_{C P}\left(\rho(1700)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(-5 \pm 14) \%[t t]$
$A_{C P}\left(\rho(1700)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(13 \pm 9) \%[t t]$
$A_{C P}\left(\rho(1700)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(8 \pm 11) \%[t t]$
$A_{C P}\left(f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(0 \pm 35) \%[t t]$
$A_{C P}\left(f_{0}(1370) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(25 \pm 18) \%[t t]$
$A_{C P}\left(f_{0}(1500) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(0 \pm 18) \%[t t]$
$A_{C P}\left(f_{0}(1710) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(0 \pm 24) \%[t t]$
$A_{C P}\left(f_{2}(1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(-4 \pm 6) \%[t t]$
$A_{C P}\left(\sigma(400) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(6 \pm 8) \%{ }^{[t t]}$
$A_{C P}\left(\right.$ nonresonant $\left.\pi^{+} \pi^{-} \pi^{0}\right)=(-13 \pm 23) \%[t t]$
$A_{C P}\left(a_{1}(1260)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(5 \pm 6) \%$
$A_{C P}\left(a_{1}(1260)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(14 \pm 18) \%$
$A_{C P}\left(\pi(1300)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(-2 \pm 15) \%$
$A_{C P}\left(\pi(1300)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(-6 \pm 30) \%$
$A_{C P}\left(a_{1}(1640)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(9 \pm 26) \%$
$A_{C P}\left(\pi_{2}(1670)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(7 \pm 18) \%$
$A_{C P}\left(\sigma f_{0}(1370) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(-15 \pm 19) \%$
$A_{C P}\left(\sigma \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(3 \pm 27) \%$
$A_{C P}\left(2 \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(-6 \pm 6) \%$
$A_{C P}\left(2 f_{2}(1270) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=(-28 \pm 24) \%$
$A_{C P}\left(K^{+} K^{-} \pi^{0}\right)=(-1.0 \pm 1.7) \%$
$A_{C P}\left(K^{*}(892)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-0.9 \pm 1.3) \%[t t]$
$A_{C P}\left(K^{*}(1410)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-21 \pm 24) \%[t t]$
$A_{C P}\left(\left(K^{+} \pi^{0}\right)_{S-\text { wave }} K^{-} \rightarrow K^{+} K^{-} \pi^{0}\right)=(7 \pm 15) \%[t t]$
$A_{C P}\left(\phi(1020) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(1.1 \pm 2.2) \%[t t]$
$A_{C P}\left(f_{0}(980) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-3 \pm 19) \%[t t]$
$A_{C P}\left(a_{0}(980)^{0} \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-5 \pm 16) \%[t t]$
$A_{C P}\left(f_{2}^{\prime}(1525) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(0 \pm 160) \%[t t]$
$A_{C P}\left(K^{*}(892)^{-} K^{+} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-5 \pm 4) \%[t t]$
$A_{C P}\left(K^{*}(1410)^{-} K^{+} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-17 \pm 29) \%[t t]$
$A_{C P}\left(\left(K^{-} \pi^{0}\right)_{S-w a v e} K^{+} \rightarrow K^{+} K^{-} \pi^{0}\right)=(-10 \pm 40) \%[t t]$
$A_{C P}\left(K_{S}^{0} \pi^{0}\right)=(-0.20 \pm 0.17) \%$
$A_{C P}\left(K_{S}^{0} \eta\right)=(0.5 \pm 0.5) \%$
$A_{C P}\left(K_{S}^{0} \eta^{\prime}\right)=(1.0 \pm 0.7) \%$
$A_{C P}\left(K_{S}^{0} \phi\right)=(-3 \pm 9) \%$
$A_{C P}\left(K^{-} \pi^{+}\right)=(0.2 \pm 0.5) \%$
$A_{C P}\left(K^{+} \pi^{-}\right)=(-0.9 \pm 1.4) \%$
$A_{C P}\left(D_{C P(\pm 1)} \rightarrow K^{\mp} \pi^{ \pm}\right)=(12.7 \pm 1.5) \%$
$A_{C P}\left(K^{-} \pi^{+} \pi^{0}\right)=(0.1 \pm 0.5) \%$
$A_{C P}\left(K^{+} \pi^{-} \pi^{0}\right)=(0 \pm 5) \%$
$A_{C P}\left(K_{S}^{0} \pi^{+} \pi^{-}\right)=(-0.1 \pm 0.8) \%$
$A_{C P}\left(K^{*}(892)^{-} \pi^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(0.4 \pm 0.5) \%$
$A_{C P}\left(K^{*}(892)^{+} \pi^{-} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(1 \pm 6) \%$
$A_{C P}\left(\bar{K}^{0}{ }_{\rho}{ }^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-0.1 \pm 0.5) \%$
$A_{C P}\left(\bar{K}^{0} \omega \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-13 \pm 7) \%$
$A_{C P}\left(\bar{K}^{0} f_{0}(980) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-0.4 \pm 2.7) \%$
$A_{C P}\left(\bar{K}^{0} f_{2}(1270) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-4 \pm 5) \%$
$A_{C P}\left(\bar{K}^{0} f_{0}(1370) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-1 \pm 9) \%$
$A_{C P}\left(\bar{K}^{0} \rho^{0}(1450) \rightarrow \widehat{K}_{S}^{0} \pi^{+} \pi^{-}\right)=(-4 \pm 10) \%$
$A_{C P}\left(\bar{K}^{0} f_{0}(600) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-3 \pm 5) \%$
$A_{C P}\left(K^{*}(1410)^{-} \pi^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-2 \pm 9) \%$
$A_{C P}\left(K_{0}^{*}(1430)^{-} \pi^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4 \pm 4) \%$
$A_{C P}\left(K_{0}^{*}(1430)^{+} \pi^{-} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(12 \pm 15) \%$
$A_{C P}\left(K_{2}^{*}(1430)^{-} \pi^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(3 \pm 6) \%$
$A_{C P}\left(K_{2}^{*}(1430)^{+} \pi^{-} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(-10 \pm 32) \%$
$A_{C P}\left(K^{-} \pi^{+} \pi^{+} \pi^{-}\right)=(0.2 \pm 0.5) \%$
$A_{C P}\left(K^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(-2 \pm 4) \%$
$A_{C P}\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)=(1.3 \pm 1.7) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)=(-2.3 \pm 1.7) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{+} K^{-} \rightarrow K^{* 0} \pi^{+} K^{-}\right)=(-1 \pm 10) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow \bar{K}^{* 0} \pi^{-} K^{+}\right)=(-10 \pm 32) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)=(1.7 \pm 3.5) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{+} K^{-} \rightarrow \rho^{0} K^{+} K^{-}\right)=(-7 \pm 17) \%$
$A_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow \rho^{0} K^{-} K^{+}\right)=(10 \pm 13) \%$
$A_{C P}\left(K_{1}(1400)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)=(-4.4 \pm 2.1) \%$
$A_{C P}\left(K^{*}(1410)^{+} K^{-} \rightarrow K^{* 0} \pi^{+} K^{-}\right)=(-20 \pm 17) \%$
$A_{C P}\left(K^{*}(1410)^{-} K^{+} \rightarrow \bar{K}^{* 0} \pi^{-} K^{+}\right)=(-1 \pm 14) \%$
$A_{C P}\left(K^{*}(1680)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)=(-17 \pm 29) \%$
$A_{C P}\left(K^{* 0} \bar{K}^{* 0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}=(-5 \pm 14) \%$
$A_{C P}\left(K^{* 0} \bar{K}^{* 0} S\right.$-wave $)=(-3.9 \pm 2.2) \%$
$A_{C P}\left(\phi \rho^{0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow \phi \rho^{0}=(1 \pm 9) \%$
$A_{C P}\left(\phi \rho^{0} S\right.$-wave $)=(-3 \pm 5) \%$
$A_{C P}\left(\phi \rho^{0} D\right.$-wave $)=(-37 \pm 19) \%$
$A_{C P}\left(\phi\left(\pi^{+} \pi^{-}\right)_{S \text {-wave }}\right)=(6 \pm 6) \%$
$A_{C P}\left(K^{*}(892)^{0}\left(K^{-} \pi^{+}\right)_{S \text {-wave }}\right)=(-10 \pm 40) \%$
$A_{C P}\left(K^{+} K^{-} \pi^{+} \pi^{-}\right.$non-resonant $)=(8 \pm 20) \%$
$A_{C P}\left(\left(K^{-} \pi^{+}\right)_{P-w a v e}\left(K^{+} \pi^{-}\right)_{S \text {-wave }}\right)=(3 \pm 11) \%$
$A_{C P}\left(K^{+} K^{-} \mu^{+} \mu^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-} \mu^{+} \mu^{-}=(0 \pm 11) \%$
$A_{C P}\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}=(5 \pm 4) \%$

$C P$-even fractions (labeled by the $D^{\mathbf{0}}$ decay)

$C P$-even fraction in $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays $=(97.3 \pm 1.7) \%$
$C P$-even fraction in $D^{0} \rightarrow K^{+} K^{-} \pi^{0}$ decays $=(73 \pm 6) \%$
$C P$-even fraction in $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$decays $=(76.9 \pm 2.3) \%$
$C P$-even fraction in $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ decays $=(23.8 \pm 1.7) \%$
$C P$-even fraction in $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$decays $=(75 \pm 4) \%$

$C P$-violation asymmetry difference

$\Delta A_{C P}=A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)=(-0.154 \pm 0.029) \%$
$\chi^{\mathbf{2}}$ tests of $C P$-violation ($C P V$) p -values
Local CPV in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}=4.9 \%$
Local CPV in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}=(0.6 \pm 0.2) \%$
Local $C P V$ in $D^{0}, \bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}=96 \%$
Local CPV in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-} \pi^{0}=16.6 \%$
Local $C P V$ in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}=9.1 \%$

T-violation decay-rate asymmetry

$A_{T}\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)=(2.9 \pm 2.2) \times 10^{-3}[/ /]$
$A_{\text {Tviol }}\left(K_{S} \pi^{+} \pi^{-} \pi^{0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}=\left(-0.3_{-1.6}^{+1.4}\right) \times$ 10^{-3}

CPT-violation decay-rate asymmetry
$A_{C P T}\left(K^{\mp} \pi^{ \pm}\right)=0.008 \pm 0.008$

Form factors

$r_{V} \equiv \mathrm{~V}(0) / \mathrm{A}_{1}(0)$ in $D^{0} \rightarrow K^{*}(892)^{-} \ell^{+} \nu_{\ell}=1.46 \pm 0.07$ $\mathrm{r}_{2} \equiv \mathrm{~A}_{2}(0) / \mathrm{A}_{1}(0)$ in $D^{0} \rightarrow K^{*}(892)^{-} \ell^{+} \nu_{\ell}=0.68 \pm 0.06$
$f_{+}(0)$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}=0.736 \pm 0.004$
$f_{+}(0)\left|V_{c s}\right|$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}=0.7166 \pm 0.0030$
$r_{1} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}=-2.40 \pm 0.16$
$r_{2} \equiv a_{2} / a_{0}$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}=5 \pm 4$
$f_{+}(0)$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}=0.637 \pm 0.009$
$f_{+}(0)\left|V_{c d}\right|$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}=0.1436 \pm 0.0026 \quad(\mathrm{~S}=1.5)$
$r_{1} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}=-1.97 \pm 0.28 \quad(\mathrm{~S}=1.4)$
$r_{2} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}=-0.2 \pm 2.2 \quad(S=1.7)$

Meson Summary Table

Meson Summary Table
$D_{0}^{*}(\mathbf{2 3 0 0})^{0} \quad I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)$
was $D_{0}^{*}(2400)^{0}$
Mass $m=2300 \pm 19 \mathrm{MeV}$
Full widthr $=274 \pm 40 \mathrm{MeV}$

$\boldsymbol{D}_{\mathbf{0}}^{*}(\mathbf{2 3 0 0})^{\mathbf{0}} \mathbf{D E C A Y}$ MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$D^{+} \pi^{-}$	seen	369
$D_{\mathbf{1}}(\mathbf{2 4 2 0})^{\mathbf{0}}$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$	

> Mass $m=2420.8 \pm 0.5 \mathrm{MeV} \quad(\mathrm{S}=1.3)$
> $m_{D_{1}^{0}}-m_{D^{*+}}=410.6 \pm 0.5 \mathrm{MeV} \quad(\mathrm{S}=1.3)$
> Full width $\Gamma=31.7 \pm 2.5 \mathrm{MeV} \quad(\mathrm{S}=3.5)$
$\bar{D}_{1}(2420)^{0}$ modes are charge conjugates of modes below.

$\boldsymbol{D}_{\mathbf{1}}\left(\mathbf{2 4 2 0} \mathbf{)}^{\mathbf{0}}\right.$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$D^{*}(2010)^{+} \pi^{-}$	seen	353
$D^{0} \pi^{+} \pi^{-}$	seen	425
$D^{+} \pi^{-}$	not seen	472
$D^{* 0} \pi^{+} \pi^{-}$	not seen	279

$$
D_{2}^{*}(2460)^{0} \quad I\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)
$$

$J^{P}=2^{+}$assignment strongly favored.
Mass $m=2460.7 \pm 0.4 \mathrm{MeV} \quad(\mathrm{S}=3.1)$
$m_{D_{2}^{* 0}}-m_{D^{+}}=591.0 \pm 0.4 \mathrm{MeV} \quad(\mathrm{S}=2.9)$
$m_{D_{2}^{* 0}}-m_{D^{*+}}=450.4 \pm 0.4 \mathrm{MeV} \quad(\mathrm{S}=2.9)$
Full width $\Gamma=47.5 \pm 1.1 \mathrm{MeV} \quad(\mathrm{S}=1.8)$
$\bar{D}_{2}^{*}(2460)^{0}$ modes are charge conjugates of modes below.

$\mathbf{D}_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \boldsymbol{\Gamma}\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$D^{+} \pi^{-}$	seen	505
$D^{*}(2010)^{+} \pi^{-}$	seen	389
$D^{0} \pi^{+} \pi^{-}$	not seen	462
$D^{* 0} \pi^{+} \pi^{-}$	not seen	324

$D_{2}^{*}(\mathbf{2 4 6 0})^{ \pm} \quad \quad I\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)$
$J^{P}=2^{+}$assignment strongly favored.
Mass $m=2465.4 \pm 1.3 \mathrm{MeV} \quad(\mathrm{S}=3.1)$
$m_{D_{2}^{*}(2460)^{ \pm}}-m_{D_{2}^{*}(2460)^{0}}=2.4 \pm 1.7 \mathrm{MeV}$
Full width $\Gamma=46.7 \pm 1.2 \mathrm{MeV}$
$D_{2}^{*}(2460)^{-}$modes are charge conjugates of modes below.

	Fraction (r, r)	(Mev/C)
	sen	${ }^{513}$
		析
	not seen	
CHARMED, STRANGE MESONS$(C=S= \pm 1)$		
$D_{s}^{+}=c \bar{c}, D_{s}^{-}=\bar{c} s$, similary for $D_{s}^{* \prime}$'s		

$D_{s}^{ \pm}$

$I\left(J^{P}\right)=0\left(0^{-}\right)$
Mass $m=1968.34 \pm 0.07 \mathrm{MeV}$
$m_{D_{s}^{ \pm}}-m_{D^{ \pm}}=98.69 \pm 0.05 \mathrm{MeV}$
Mean life $\tau=(504 \pm 4) \times 10^{-15} \mathrm{~s} \quad(\mathrm{~S}=1.2)$
$c \tau=151.2 \mu \mathrm{~m}$

$C P$-violating decay-rate asymmetries

$A_{C P}\left(\mu^{ \pm} \nu\right)=(5 \pm 6) \%$
$A_{C P}\left(K^{ \pm} K_{S}^{0}\right)=(0.09 \pm 0.26) \%$
$A_{C P}\left(K^{ \pm} K_{L}^{0}\right)$ in $D_{s}^{ \pm} \rightarrow K^{ \pm} K_{L}^{0}=(-1.1 \pm 2.7) \times 10^{-2}$
$A_{C P}\left(K^{+} K^{-} \pi^{ \pm}\right)=(-0.5 \pm 0.9) \%$
$A_{C P}\left(\phi \pi^{ \pm}\right)=(-0.38 \pm 0.27) \%$
$A_{C P}\left(K^{ \pm} K_{S}^{0} \pi^{0}\right)=(-2 \pm 6) \%$
$A_{C P}\left(2 K_{S}^{0} \pi^{ \pm}\right)=(3 \pm 5) \%$
$A_{C P}\left(K^{+} K^{-} \pi^{ \pm} \pi^{0}\right)=(0.0 \pm 3.0) \%$
$A_{C P}\left(K^{ \pm} K_{S}^{0} \pi^{+} \pi^{-}\right)=(-6 \pm 5) \%$
$A_{C P}\left(K_{S}^{0} K^{\mp} 2 \pi^{ \pm}\right)=(4.1 \pm 2.8) \%$
$A_{C P}\left(\pi^{+} \pi^{-} \pi^{ \pm}\right)=(-0.7 \pm 3.1) \%$
$A_{C P}\left(\pi^{ \pm} \eta\right)=(1.1 \pm 3.1) \%$
$A_{C P}\left(\pi^{ \pm} \eta^{\prime}\right)=(-0.9 \pm 0.5) \%$
$A_{C P}\left(\eta \pi^{ \pm} \pi^{0}\right)=(-1 \pm 4) \%$
$A_{C P}\left(\eta^{\prime} \pi^{ \pm} \pi^{0}\right)=(0 \pm 8) \%$
$A_{C P}\left(K^{ \pm} \pi^{0}\right)=(-27 \pm 24) \%$
$A_{C P}\left(\bar{K}^{0} / K^{0} \pi^{ \pm}\right)=(0.4 \pm 0.5) \%$
$A_{C P}\left(K_{S}^{0} \pi^{ \pm}\right)=(0.20 \pm 0.18) \%$
$A_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)=(4 \pm 5) \%$
$A_{C P}\left(K^{ \pm} \eta\right)=(9 \pm 15) \%$
$A_{C P}\left(K^{ \pm} \eta^{\prime}(958)\right)=(6 \pm 19) \%$
$C P$ violating asymmetries of P-odd (T-odd) moments
$A_{T}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)=(-14 \pm 8) \times 10^{-3}[/ I]$

$$
D_{s}^{+} \Rightarrow \phi \ell^{+} \nu_{\ell} \text { form factors }
$$

$$
\begin{aligned}
& r_{2}=0.84 \pm 0.11 \quad(S=2.4) \\
& r_{v}=1.80 \pm 0.08 \\
& \Gamma_{L} / \Gamma_{T}=0.72 \pm 0.18 \\
& f_{+}(0)\left|V_{c s}\right| \text { in } D_{s}^{+} \rightarrow \eta e^{+} \nu_{e}=0.446 \pm 0.007 \\
& f_{+}(0)\left|V_{c s}\right| \text { in } D_{s}^{+} \rightarrow \eta^{\prime} e^{+} \nu_{e}=0.48 \pm 0.05
\end{aligned}
$$

$C P$ violating asymmetries of P-odd (T-odd) moments
$f_{+}(0)\left|V_{c d}\right|$ in $D_{s}^{+} \rightarrow K^{0} e^{+} \nu_{e}=0.162 \pm 0.019$
$r_{v} \equiv V(0) / A_{1}(0)$ in $D_{s}^{+} \rightarrow K^{*}(892)^{0} e^{+} \nu_{e}=1.7 \pm 0.4$
$r_{2} \equiv A_{2}(0) / A_{1}(0)$ in $D_{s}^{+} \rightarrow K^{*}(892)^{0} e^{+} \nu_{e}=0.77 \pm 0.29$
$f_{D_{s}^{+}}\left|V_{c s}\right|$ in $D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}=246 \pm 5 \mathrm{MeV}$
Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_{S}^{-}modes are charge conjugates of the modes below.

$\begin{array}{lrr}K^{+} \pi^{0} & (6.1 \pm 2.1) \times 10^{-4} \\ K_{S}^{0} \pi^{+} & & (1.19 \pm 0.05) \times 10^{-3} \\ K^{+} \eta & {[h h h]} & (1.72 \pm 0.34) \times 10^{-3} \\ K^{+} \omega & {[h h h]} & (8.7 \pm 2.5) \times 10^{-4} \\ K^{+} \eta^{\prime}(958) & {[h h h]} & (1.7 \pm 0.5) \times 10^{-3}\end{array}$

917
 916
 835
 646

 , 5都
Meson Summary Table

$D_{s}^{+} \gamma \gamma$	< 18	\%	95\%	323
$D_{S}^{*}(2112)^{+} \pi^{0}$	<11	\%	90\%	-
$D_{s}^{+} \pi^{+} \pi^{-}$	< 4	$\times 10^{-3}$	90\%	194
$D_{S}^{+} \pi^{0} \pi^{0}$	not seen			205
$D_{s 1}(2460)^{ \pm}$	$I\left(J^{P}\right)=0\left(1^{+}\right)$			
$\begin{array}{ll} \text { Mass } m=2459.5 \pm 0.6 \mathrm{MeV} \quad(\mathrm{~S}=1.1) \\ m_{D_{s 1}(2460)^{ \pm}}-m_{D_{s}^{* \pm}}=347.3 \pm 0.7 \mathrm{MeV} & (\mathrm{~S}=1.2) \\ m_{D_{s 1}(2460)^{ \pm}}-m_{D_{s}^{ \pm}}=491.2 \pm 0.6 \mathrm{MeV} & (\mathrm{~S}=1.1) \\ \text { Full width } \Gamma<3.5 \mathrm{MeV}, \mathrm{CL}=95 \% & \end{array}$				
$D_{S 1}(2460)^{-}$modes are charge conjugates of the modes below.				

$\boldsymbol{D}_{\text {S1 }}(\mathbf{2 4 6 0})^{+}$DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\prime}$)	Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \\ \hline \end{gathered}$
$D_{s}^{*+} \pi^{0}$	(48 ± 11) \%		297
$D_{s}^{+} \gamma$	$(18 \pm 4) \%$		442
$D_{s}^{+} \pi^{+} \pi^{-}$	($4.3 \pm 1.3) \%$	$\mathrm{S}=1.1$	363
$D_{s}^{*+} \gamma$	$<8 \%$	$\mathrm{CL}=90 \%$	323
$D_{s 0}^{*}(2317)^{+} \gamma$	$\left(3.7 \pm{ }_{-}^{5.4}\right.$) $\%$		138

$D_{s 1}(\mathbf{2 5 3 6})^{ \pm}$	$l\left(J^{P}\right)=0\left(1^{+}\right)$
J, P need confirmation.	

Mass $m=2535.11 \pm 0.06 \mathrm{MeV}$
Full width $\Gamma=0.92 \pm 0.05 \mathrm{MeV}$
$D_{S 1}(2536)^{-}$modes are charge conjugates of the modes below.

$\boldsymbol{D}_{\mathbf{s 1}}(\mathbf{2 5 3 6})^{+}$DECAY MODES	Fraction ($\Gamma_{i} / \bar{\Gamma}$)	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \\ \hline \end{gathered}$
$D^{*}(2010)^{+} K^{0}$	0.85 ± 0.12		149
$\left(D^{*}(2010)+K^{0}\right)_{S-w a v e}$	0.61 ± 0.09		149
$D^{+} \pi^{-} K^{+}$	0.028 ± 0.005		176
$D^{*}(2007)^{0} K^{+}$	DEFINED AS 1		167
$D^{+} K^{0}$	<0.34	90\%	381
$D^{0} K^{+}$	<0.12	90\%	391
$D_{S}^{*+} \gamma$	possibly seen		388
$D_{S}^{+} \pi^{+} \pi^{-}$	seen		437
$D_{s 2}^{*}(2573)$	$I\left(J^{P}\right)=0\left(2^{+}\right.$		

J^{P} is natural, width and decay modes consistent with 2^{+}.
Mass $m=2569.1 \pm 0.8 \mathrm{MeV} \quad(\mathrm{S}=2.4)$
Full width $\Gamma=16.9 \pm 0.7 \mathrm{MeV}$
$D_{S 2}^{*}(2573)^{-}$modes are charge conjugates of the modes below.

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures
in the $B^{ \pm}$section, but because of their importance we have created two new sections: " $B^{ \pm} / B^{0}$ Admixture" for $\Upsilon(4 S)$ results and " $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_{b} at high energy are found in the Admixture sections. $B^{0}-\bar{B}^{0}$ mixing data are found in the B^{0} section, while $B_{s}^{0}-$ \bar{B}_{s}^{0} mixing data and $B-\bar{B}$ mixing data for a B^{0} / B_{s}^{0} admixture are found in the B_{s}^{0} section. $C P$-violation data are found in the $B^{ \pm}, B^{0}$, and $B^{ \pm} B^{0}$ Admixture sections. b-baryons are found near the end of the Baryon section.
The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- $B^{ \pm}$ mass, mean life, $C P$ violation, branching fractions - B^{0} mass, mean life, $B^{0}-\bar{B}^{0}$ mixing, $C P$ violation, branching fractions
- $B^{ \pm} / B^{0}$ Admixtures $C P$ violation, branching fractions
- $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon Admixtures mean life, production fractions, branching fractions
- B^{*} mass
- $B_{1}(5721)^{+}$ mass
- $B_{1}(5721)^{0}$ mass
- $B_{2}^{*}(5747)^{+}$ mass
- $B_{2}^{*}(5747)^{0}$ mass
- $B_{j}^{*}(5970)^{+}$
mass
- $B_{J}^{*}(5970)^{0}$
mass
- B_{s}^{0}
mass, mean life, $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing, $C P$ violation, branching fractions
- B_{s}^{*}
mass
- $B_{s 1}(5830)^{0}$
mass
- $B_{s 2}^{*}(5840)^{0}$
mass
- $B_{c}^{ \pm}$
mass, mean life, branching fractions
- Λ_{b} mass, mean life, branching fractions
- $\Lambda_{b}(5912)^{0}$ mass, mean life
- $\Lambda_{b}(5920)^{0}$ mass, mean life
- Σ_{b}
mass
- Σ_{b}^{*}
mass
- $\bar{Z}_{b}^{0}, \bar{\Xi}_{b}^{-}$
mass, mean life, branching fractions
- $\Xi_{b}^{\prime}(5935)^{-}$

- $\Xi_{b}(5945)^{0}$ mass - $\Xi_{b}^{*}(5955)^{-}$ mass - Ω_{b}^{-} mass, branching fractions - b-baryon Admixture mean life, branching fractions	$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)=-0.04 \pm 0.06$ $A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)=-0.05 \pm 0.10$ $A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)=0.013 \pm 0.023$ $A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)=-0.019 \pm 0.015$ $A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)=-0.013 \pm 0.019$ $A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)=-0.002 \pm 0.011$ $A_{C P}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right)=0.0010 \pm 0.0028$ $A_{C P}\left(B^{+} \rightarrow\left(D_{C P(+1)}^{*}\right)^{0} \pi^{+}\right)=0.016 \pm 0.010 \quad(S=1.2)$ $A_{C P}\left(B^{+} \rightarrow\left(D_{C P(-1)}^{*}\right)^{0} \pi^{+}\right)=-0.09 \pm 0.05$ $A_{C P}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)=-0.001 \pm 0.011 \quad(S=1.1)$
$B^{ \pm} \quad I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)$	$\begin{aligned} & A_{C P}\left(B^{+} \rightarrow D_{C P(+1)}^{* 0} K^{+}\right)=-0.11 \pm 0.08 \quad(S=2.7) \\ & A_{C P}\left(B^{+} \rightarrow D_{C P(-1)}^{*} K^{+}\right)=0.07 \pm 0.10 \end{aligned}$
I, J, P need confirmation. Quantum numbers shown are quark-model predictions.	$\begin{aligned} & A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} K^{*}(892)^{+}\right)=0.08 \pm 0.06 \\ & A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} K^{*}(892)^{+}\right)=-0.23 \pm 0.22 \end{aligned}$
Mass $m_{B^{ \pm}}=5279.34 \pm 0.12 \mathrm{MeV}$	$A_{C P}\left(B^{+} \rightarrow D_{s}^{+} \phi\right)=0.0 \pm 0.4$
$\begin{aligned} & \text { Mean life } \tau \mathcal{B}^{ \pm}=(1.638 \pm 0.004) \times 10^{-12} \mathrm{~s} \\ & \quad c \tau=491.1 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & A_{C P}\left(B^{+} \rightarrow D_{s}^{+} \bar{D}^{0}\right)=(-0.4 \pm 0.7) \% \\ & A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{* 0}\right)=-0.15 \pm 0.11 \end{aligned}$
$C P$ violation	$A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{0}\right)=-0.06 \pm 0.13$ $A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{* 0}\right)=0.13 \pm 0.18$
$A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(1.8 \pm 3.0) \times 10^{-3} \quad(\mathrm{~S}=1.5)$	$A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{0}\right)=0.016 \pm 0.025$
$A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) \pi^{+}\right)=(1.8 \pm 1.2) \times 10^{-2} \quad(\mathrm{~S}=1.3)$	$A_{C P}\left(B^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=-0.017 \pm 0.016$
$A_{C P}\left(B^{+} \rightarrow \mathrm{J} / \psi \rho^{+}\right)=-0.05 \pm 0.05$	$A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.037 \pm 0.021$
$A_{C P}\left(B^{+} \rightarrow J / \psi K^{*}(892)^{+}\right)=-0.048 \pm 0.033$	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right)=0.004 \pm 0.011$
$A_{C P}\left(B^{+} \rightarrow \eta_{c} K^{+}\right)=0.01 \pm 0.07 \quad(S=2.2)$	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{*}(892)^{+}\right)=-0.26 \pm 0.27$
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) \pi^{+}\right)=0.03 \pm 0.06$	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{0}^{*}(1430)^{+}\right)=0.06 \pm 0.20$
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)=0.012 \pm 0.020 \quad(\mathrm{~S}=1.5)$	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{2}^{*}(1430)^{+}\right)=0.15 \pm 0.13$
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{*}(892)^{+}\right)=0.08 \pm 0.21$	$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\eta} \boldsymbol{K}^{+}\right)=-0.37 \pm 0.08$
$A_{C P}\left(B^{+} \rightarrow \chi_{C 1}(1 P) \pi^{+}\right)=0.07 \pm 0.18$	$A_{C P}\left(B^{+} \rightarrow \eta K^{*}(892)^{+}\right)=0.02 \pm 0.06$
$A_{C P}\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right)=-0.20 \pm 0.18 \quad(S=1.5)$	$A_{C P}\left(B^{+} \rightarrow \eta K_{0}^{*}(1430)^{+}\right)=0.05 \pm 0.13$
$A_{C P}\left(B^{+} \rightarrow \chi_{C 1} K^{+}\right)=-0.009 \pm 0.033$	$A_{C P}\left(B^{+} \rightarrow \eta K_{2}^{*}(1430)^{+}\right)=-0.45 \pm 0.30$
$A_{C P}\left(B^{+} \rightarrow \chi_{C 1} K^{*}(892)^{+}\right)=0.5 \pm 0.5$	$A_{C P}\left(B^{+} \rightarrow \omega K^{+}\right)=-0.02 \pm 0.04$
$A_{C P}\left(B^{+} \rightarrow D^{0} \ell^{+} \nu_{\ell}\right)=(-0.14 \pm 0.20) \times 10^{-2}$	$A_{C P}\left(B^{+} \rightarrow \omega K^{*+}\right)=0.29 \pm 0.35$
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)=-0.007 \pm 0.007$	$A_{C P}\left(B^{+} \rightarrow \omega(K \pi)_{0}^{*+}\right)=-0.10 \pm 0.09$
$A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} \pi^{+}\right)=-0.0080 \pm 0.0026$	$A_{C P}\left(B^{+} \rightarrow \omega K_{2}^{*}(1430)^{+}\right)=0.14 \pm 0.15$
$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} \pi^{+}\right)=0.017 \pm 0.026$	$A_{C P}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)=-0.04 \pm 0.09 \quad(\mathrm{~S}=2.1)$
$A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} \pi^{+}\right)=0.02 \pm 0.05$	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \pi^{0}\right)=-0.39 \pm 0.21 \quad(\mathrm{~S}=1.6)$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right]_{D} K^{+}\right)=0.10 \pm 0.04$	$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}\right)=0.027 \pm 0.008$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{+}\right)=0.02 \pm 0.11$	$A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right.$nonresonant $)=0.06 \pm 0.05$
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)=-0.017 \pm 0.005$	$A_{C P}\left(B^{+} \rightarrow f(980)^{0} K^{+}\right)=-0.08 \pm 0.09$
$A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} K^{+}\right)=-0.31 \pm 0.11$	$\boldsymbol{A}_{C P}\left(\boldsymbol{B}^{+} \rightarrow \mathrm{f}_{2}(\mathbf{1 2 7 0}) \boldsymbol{K}^{+}\right)=-0.68{ }_{-0.17}^{+0.19}$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right]_{D} \pi^{+}\right)=(-4 \pm 8) \times 10^{-3}$	$A_{C P}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right)=0.28 \pm 0.30$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)=-0.58 \pm 0.21$	$A_{C P}\left(B^{+} \rightarrow f_{2}^{\prime}(1525)^{0} K^{+}\right)=-0.08_{-0.04}^{+0.05}$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{+}\right)=0.07 \pm 0.30 \quad(\mathrm{~S}=1.5)$	$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{K}^{+}\right)=0.37 \pm 0.10$
$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-} \pi^{0}\right]_{D} K^{+}\right)=0.30 \pm 0.20$	$A_{C P}\left(B^{+} \rightarrow K^{0} \pi^{+} \pi^{0}\right)=0.07 \pm 0.06$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)=0.05 \pm 0.09$	$A_{C P}\left(B^{+} \rightarrow K_{0}^{*}(1430)^{0} \pi^{+}\right)=0.061 \pm 0.032$
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{*}(892)^{+}\right)=-0.007 \pm 0.019$	$A_{C P}\left(B^{+} \rightarrow K_{0}^{*}(1430)^{+} \pi^{0}\right)=0.26_{-0.14}^{+0.18}$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{*}(892)^{+}\right)=-0.75 \pm 0.16$	$A_{C P}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right)=0.05_{-0.24}^{-0.29}$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{-} \pi^{+}\right]_{\bar{D}} K^{*}(892)^{+}\right)=-0.45 \pm 0.25$	$A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right)=-0.06 \pm 0.07$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+}\right)=0.00 \pm 0.09$	$A_{C P}\left(B^{+} \rightarrow K^{0} \rho^{+}\right)=-0.03 \pm 0.15$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} \pi^{+}\right)=0.35 \pm 0.16$	$A_{C P}\left(B^{+} \rightarrow K^{*+} \pi^{+} \pi^{-}\right)=0.07 \pm 0.08$
$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-} \pi^{0}\right]_{D} \pi^{+}\right)=-0.03 \pm 0.04$ $A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D \pi^{+}}\right)=-0.016 \pm 0.020$	$A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}\right)=0.31 \pm 0.13$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} \pi^{+}\right)=-0.016 \pm 0.020$ $A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} \pi^{+}\right)=-0.09 \pm 0.27$	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)\right)=-0.15 \pm 0.12$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} \pi^{+}\right)=-0.09 \pm 0.27$ $A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} \pi^{+}\right)=-0.7 \pm 0.6$	$A_{C P}\left(B^{+} \rightarrow \mathrm{a}_{1}^{+} K^{0}\right)=0.12 \pm 0.11$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} K^{+}\right)=0.8 \pm 0.4$	$A_{C P}\left(B^{+} \rightarrow b_{1}^{+} K^{0}\right)=-0.03 \pm 0.15$ $A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{0} \rho^{+}\right)=-0.01 \pm 0.16$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} K^{+}\right)=0.4 \pm 1.0$	$A_{C P}\left(B^{+} \rightarrow b_{1}^{0} K^{+}\right)=-0.46 \pm 0.20$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)=-0.02 \pm 0.15$	$A_{C P}\left(B^{+} \rightarrow K^{0} K^{+}\right)=0.04 \pm 0.14$
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} K^{+}\right)=0.04 \pm 0.09$	$A_{C P}\left(B^{+} \rightarrow K_{S}^{0} K^{+}\right)=-0.21 \pm 0.14$
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} K^{+}\right)=0.23 \pm 0.13$	$A_{C P}\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)=0.025 \pm 0.031$
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} \pi^{+}\right)=-0.052 \pm 0.034$	$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)=-0.122 \pm 0.021$
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} \pi^{+}\right)=-0.025 \pm 0.026$	$A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right.$nonresonant $)=-0.11 \pm 0.06$
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{-} K^{+}\right]_{D} K^{+}\right)=0.03 \pm 0.11$	$A_{C P}\left(B^{+} \rightarrow K^{+} \bar{K}^{*}(892)^{0}\right)=0.12 \pm 0.10$
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{+} K^{-}\right]_{D} K^{+}\right)=0.34 \pm 0.21$	$A_{C P}\left(B^{+} \rightarrow K^{+} \bar{K}_{0}^{*}(1430)^{0}\right)=0.10 \pm 0.17$
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{+} K^{-}\right]_{D} \pi^{+}\right)=-0.05 \pm 0.05$	$A_{C P}\left(B^{+} \rightarrow \phi \pi^{+}\right)=0.1 \pm 0.5$
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)-K^{+}\right]_{D} \pi^{+}\right)=-0.012 \pm 0.030$	$A_{C P}\left(B^{+} \rightarrow \pi^{+}\left(K^{+} K^{-}\right)_{S-\text { wave }}\right)=-0.66 \pm 0.04$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}_{\boldsymbol{C P}(+1)} K^{+}\right)=0.120 \pm 0.014 \quad(\mathrm{~S}=1.4)$	
$A_{A D S}\left(B^{+} \rightarrow D K^{+}\right)=-0.40 \pm 0.06$	$A_{C P}\left(B^{+} \rightarrow \phi K^{+}\right)=0.024 \pm 0.028 \quad(\mathrm{~S}=2.3)$
$A_{A D S}\left(B^{+} \rightarrow D \pi^{+}\right)=0.100 \pm 0.032$	$A_{C P}\left(B^{+} \rightarrow X_{0}(1550) K^{+}\right)=-0.04 \pm 0.07$
$A_{A D S}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)=-0.33 \pm 0.35$	$A_{C P}\left(B^{+} \rightarrow K^{*+} K^{+} K^{-}\right)=0.11 \pm 0.09$
$A_{A D S}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)=-0.01 \pm 0.09$	$A_{C P}\left(B^{+} \rightarrow \phi K^{*}(892)^{+}\right)=-0.01 \pm 0.08$
$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} K^{+}\right)=-0.10 \pm 0.07$	$A_{C P}\left(B^{+} \rightarrow \phi(K \pi)_{0}^{*+}\right)=0.04 \pm 0.16$

$A_{C P}\left(B^{+} \rightarrow \phi K_{1}(1270)^{+}\right)=0.15 \pm 0.20$
$A_{C P}\left(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}\right)=-0.23 \pm 0.20$
$A_{C P}\left(B^{+} \rightarrow K^{+}{ }_{\phi} \phi\right)=-0.10 \pm 0.08$
$A_{C P}\left(B^{+} \rightarrow K^{+}[\phi \phi]_{\eta_{C}}\right)=0.09 \pm 0.10$
$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \gamma\right)=0.014 \pm 0.018$
$A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)=0.028 \pm 0.019$
$A_{C P}\left(B^{+} \rightarrow \eta K^{+} \gamma\right)=-0.12 \pm 0.07$
$A_{C P}\left(B^{+} \rightarrow \phi K^{+} \gamma\right)=-0.13 \pm 0.11 \quad(S=1.1)$
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \gamma\right)=-0.11 \pm 0.33$
$A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=0.03 \pm 0.04$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}\right)=0.057 \pm 0.013$
$A_{C P}\left(B^{+} \rightarrow \rho^{0} \pi^{+}\right)=0.009 \pm 0.019$
$A_{C P}\left(B^{+} \rightarrow f_{2}(1270) \pi^{+}\right)=0.40 \pm 0.06$
$A_{C P}\left(B^{+} \rightarrow \rho^{0}(1450) \pi^{+}\right)=-0.11 \pm 0.05$
$A_{C P}\left(B^{+} \rightarrow \rho_{3}(1690) \pi^{+}\right)=-0.80 \pm 0.28$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \mathrm{f}_{\mathbf{0}}(\mathbf{1 3 7 0}) \boldsymbol{\pi}^{+}\right)=0.72 \pm 0.22$
$A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right.$nonresonant $)=-0.14_{-0.16}^{+0.23}$
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \pi^{0}\right)=0.02 \pm 0.11$
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.05 \pm 0.05$
$A_{C P}\left(B^{+} \rightarrow \omega \pi^{+}\right)=-0.04 \pm 0.05$
$A_{C P}\left(B^{+} \rightarrow \omega \rho^{+}\right)=-0.20 \pm 0.09$
$A_{C P}\left(B^{+} \rightarrow \eta \pi^{+}\right)=-0.14 \pm 0.07 \quad(S=1.4)$
$A_{C P}\left(B^{+} \rightarrow \eta \rho^{+}\right)=0.11 \pm 0.11$
$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \pi^{+}\right)=0.06 \pm 0.16$
$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \rho^{+}\right)=0.26 \pm 0.17$
$A_{C P}\left(B^{+} \rightarrow b_{1}^{0} \pi^{+}\right)=0.05 \pm 0.16$
$A_{C P}\left(B^{+} \rightarrow p \bar{p} \pi^{+}\right)=0.00 \pm 0.04$
$A_{C P}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)=0.00 \pm 0.04 \quad(S=2.2)$
$A_{C P}\left(B^{+} \rightarrow p \underline{\bar{p}} K^{*}(892)^{+}\right)=0.21 \pm 0.16 \quad(\mathrm{~S}=1.4)$
$A_{C P}\left(B^{+} \rightarrow p \overline{\bar{\Lambda}} \gamma\right)=0.17 \pm 0.17$
$A_{C P}\left(B^{+} \rightarrow p \bar{\Lambda} \pi^{0}\right)=0.01 \pm 0.17$
$A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)=-0.02 \pm 0.08$
$A_{C P}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)=0.14 \pm 0.14$
$A_{C P}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)=0.011 \pm 0.017$
$A_{C P}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)=-0.11 \pm 0.12$
$A_{C P}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)=-0.09 \pm 0.14$
$A_{C P}\left(B^{+} \rightarrow K^{*} e^{+} e^{-}\right)=-0.14 \pm 0.23$
$A_{C P}\left(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}\right)=-0.12 \pm 0.24$
$\boldsymbol{\gamma}=\left(71.1_{-5.3}^{+4.6}\right)^{\circ}$
$\mathbf{r}_{\boldsymbol{B}}\left(\boldsymbol{B}^{+} \rightarrow D^{\mathbf{0}} \boldsymbol{K}^{+}\right)=0.0993 \pm 0.0046$
$\boldsymbol{\delta}_{\boldsymbol{B}}\left(B^{+} \rightarrow \boldsymbol{D}^{\mathbf{0}} K^{+}\right)=\left(129.6_{-6.0}^{+5.0}\right)^{\circ}$
$\mathbf{r}_{\boldsymbol{B}}\left(\boldsymbol{B}^{+} \rightarrow D^{0} K^{*+}\right)=0.076 \pm 0.020$
$\boldsymbol{\delta}_{\boldsymbol{B}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}^{0} K^{*+}\right)=\left(98_{-37}^{+18}\right)^{\circ}$
$\mathbf{r}_{\boldsymbol{B}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}^{* \mathbf{0}} \boldsymbol{K}^{+}\right)=0.140 \pm 0.019$
$\boldsymbol{\delta}_{\boldsymbol{B}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}^{\boldsymbol{* 0}} \boldsymbol{K}^{+}\right)=\left(319.2_{-8.7}^{+7.7}\right)^{\circ}$
B^{-}modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the $B^{ \pm} / B^{0}$ ADMIXTURE section.

The branching fractions listed below assume $50 \% B^{0} \bar{B}^{0}$ and $50 \% B^{+} B^{-}$ production at the $\Upsilon(4 S)$. We have attempted to bring older measurements up to date by rescaling their assumed $r(4 S)$ production ratio to $50: 50$ and their assumed D, D_{S}, D^{*}, and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\left.\begin{array}{ccc}\boldsymbol{B}^{+} \text {DECAY MODES } & \text { Fraction }\left(\Gamma_{\boldsymbol{i}} / \Gamma\right) & \begin{array}{c}\text { Scale factor/ } \\ \text { Confidence level }(\mathrm{MeV} / \mathrm{c})\end{array} \\ \hline & \begin{array}{c}p \\ \ell^{+} \nu_{\ell} X\end{array} & {[I I I]}\end{array}\right)$

Meson Summary Table

Meson Summary Table

Charged particle ($h^{ \pm}$) modes

$h^{ \pm}=K^{ \pm}$or $\pi^{ \pm}$				
$h^{+} \pi^{0}$		1.6	$\times 10^{-5}$	
ωh^{+}		1.3	$\times 10^{-5}$	
$h^{+} X^{0}$ (Familon)	<	4.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$K^{+} \chi^{0}, X^{0} \rightarrow \mu^{+} \mu^{-}$	$<$	1	$\times 10^{-7}$	$\mathrm{CL}=95 \%$

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Meson Summary Table

$\boldsymbol{S}_{\boldsymbol{D}^{*+}} \boldsymbol{D}^{*=}\left(B^{0} \rightarrow \boldsymbol{D}^{*+} \boldsymbol{D}^{*-}\right)=-0.59 \pm 0.14 \quad(\mathrm{~S}=1.8)$
$C_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.00 \pm 0.10 \quad(S=1.6)$
$\boldsymbol{S}_{+}\left(\boldsymbol{B}^{0} \rightarrow \boldsymbol{D}^{*+} \boldsymbol{D}^{*-}\right)=-0.73 \pm 0.09$
$C_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.19 \pm 0.31$
$S_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.1 \pm 1.6 \quad(S=3.5)$
$C\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)=0.01 \pm 0.29$
$S\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{\delta}\right)=0.1 \pm 0.4$
$C_{D^{+} D^{-}}\left(B^{0} \rightarrow D^{+} D^{-}\right)=-0.22 \pm 0.24 \quad(\mathrm{~S}=2.5)$
$\boldsymbol{S}_{\boldsymbol{D}^{+\boldsymbol{D}^{-}}}\left(\boldsymbol{B}^{0} \rightarrow \boldsymbol{D}^{+} \boldsymbol{D}^{-}\right)=-0.76_{-0.13}^{+0.15} \quad(\mathrm{~S}=1.2)$
$C_{J / \psi(1 S) \pi^{0}}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{0}\right)=0.03 \pm 0.17 \quad(\mathrm{~S}=1.5)$
$\boldsymbol{S}_{\boldsymbol{J} / \psi(\mathbf{1 S}) \boldsymbol{\pi}^{0}}\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \mathbf{J} / \psi(\mathbf{1 S}) \boldsymbol{\pi}^{\mathbf{0}}\right)=-0.88 \pm 0.32 \quad(\mathrm{~S}=2.2)$
$C\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)=-0.06 \pm 0.06$
$S\left(B^{0} \rightarrow J / \psi(\mathbf{1 S}) \rho^{0}\right)=-0.66_{-0.12}^{+0.16}$
$C_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)=-0.02 \pm 0.08$
$S_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)=-0.66 \pm 0.12$
$C_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)=0.00 \pm 0.13 \quad(S=1.4)$
$\boldsymbol{S}_{\boldsymbol{K}^{0} \boldsymbol{\pi}^{0}}\left(B^{0} \rightarrow \boldsymbol{K}^{0} \boldsymbol{\pi}^{0}\right)=0.58 \pm 0.17$
$C_{\eta^{\prime}(958) K_{S}^{0}}^{\boldsymbol{K}^{\circ} \boldsymbol{\pi}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)=-0.04 \pm 0.20 \quad(S=2.5)$
$S_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)=0.43 \pm 0.17 \quad(S=1.5)$
$C_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)=-0.06 \pm 0.04$
$\boldsymbol{S}_{\eta^{\prime}} \boldsymbol{K}^{0}\left(B^{0} \rightarrow \eta^{\mathbf{0}} \boldsymbol{K}^{0}\right)=0.63 \pm 0.06$
$C_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)=0.0 \pm 0.4 \quad(S=3.0)$
$S_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)=0.70 \pm 0.21$
$C\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)=-0.21 \pm 0.20$
$S\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)=0.89_{-0.30}^{+0.27}$
$C_{\rho^{0}} K_{S}^{0}\left(B^{0} \rightarrow \rho^{0} K_{S}^{0}\right)=-0.04 \pm 0.20$
$S_{\rho^{0} K_{S}^{0}}\left(B^{0} \rightarrow \rho^{0} K_{S}^{0}\right)=0.50_{-0.21}^{+0.17}$
$C_{f_{0} K_{S}^{0}}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)=0.29 \pm 0.20$
$S_{f_{0} K_{s}^{0}}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)=-0.50 \pm 0.16$
$S_{f_{2} K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)=-0.5 \pm 0.5$
$C_{f_{2} K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)=0.3 \pm 0.4$
$S_{f_{x}} K_{S}^{0}\left(B^{0} \rightarrow f_{x}(1300) K_{S}^{0}\right)=-0.2 \pm 0.5$
$C_{f_{x} K_{S}^{0}}\left(B^{0} \rightarrow f_{x}(1300) K_{S}^{0}\right)=0.13 \pm 0.35$
$S_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant $)=-0.01 \pm 0.33$
$C_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant $)=0.01 \pm 0.26$
$C_{K_{S}^{0} K_{S}^{0}}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)=0.0 \pm 0.4 \quad(S=1.4)$
$S_{K_{S}^{0} K_{S}^{0}}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)=-0.8 \pm 0.5$
$C_{K^{+} K^{-} K_{S}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ nonresonant $)=0.06 \pm 0.08$
$\boldsymbol{S}_{\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}^{0}}\left(\boldsymbol{B}^{0} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}^{0}\right.$ nonresonant $)=-0.66 \pm 0.11$
$C_{K^{+} K^{-} K_{S}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ inclusive $)=0.01 \pm 0.09$
$\boldsymbol{S}_{\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{\mathbf{S}}^{0}}\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right.$ inclusive $)=-0.65 \pm 0.12$
$C_{\phi K_{S}^{0}}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)=0.01 \pm 0.14$
$\boldsymbol{S}_{\boldsymbol{\phi} K_{\boldsymbol{S}}^{0}}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)=0.59 \pm 0.14$
$C_{K_{S} K_{S} K_{S}}\left(B^{0} \rightarrow K_{S} K_{S} K_{S}\right)=-0.23 \pm 0.14$
$S_{K_{S} K_{S} K_{S}}\left(B^{0} \rightarrow K_{S} K_{S} K_{S}\right)=-0.5 \pm 0.6 \quad(S=3.0)$
$C_{K_{S}^{0} \pi^{0} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)=0.36 \pm 0.33$
$S_{K_{S}^{0} \pi^{0} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)=-0.8 \pm 0.6$
$C_{K_{S}^{0} \pi^{+} \pi^{-} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \gamma\right)=-0.39 \pm 0.20$
$S_{K_{S}^{0} \pi^{+} \pi^{-} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \gamma\right)=0.14 \pm 0.25$
$C_{K^{* 0} \gamma}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)=-0.04 \pm 0.16 \quad(S=1.2)$
$S_{K^{* 0} \gamma}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)=-0.15 \pm 0.22$
$C_{\eta K^{0} \gamma}\left(B^{0} \rightarrow \eta K^{0} \gamma\right)=0.1 \pm 0.4 \quad(S=1.4)$
$S_{\eta K^{0} \gamma}\left(B^{0} \rightarrow \eta K^{0} \gamma\right)=-0.5 \pm 0.5 \quad(\mathrm{~S}=1.2)$
$C_{K^{0} \phi \gamma}\left(B^{0} \rightarrow K^{0} \phi \gamma\right)=-0.3 \pm 0.6$
$S_{K^{0} \phi \gamma}\left(B^{0} \rightarrow K^{0} \phi \gamma\right)=0.7_{-1.1}^{+0.7}$
$C\left(B^{0} \rightarrow K_{S}^{0} \rho^{0} \gamma\right)=-0.05 \pm 0.19$
$S\left(B^{0} \rightarrow K_{S}^{0} \rho^{0} \gamma\right)=-0.04 \pm 0.23$
$C\left(B^{0} \rightarrow \rho^{0} \gamma\right)=0.4 \pm 0.5$
$S\left(B^{0} \rightarrow \rho^{0} \gamma\right)=-0.8 \pm 0.7$
$C_{\pi \pi}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=-0.32 \pm 0.04$
$S_{\pi \pi}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=-0.65 \pm 0.04$
$C_{\pi^{0} \pi^{0}}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=-0.33 \pm 0.22$
$C_{\rho \pi}^{C_{0} \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)=-0.03 \pm 0.07 \quad(S=1.2)$
$S_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)=0.05 \pm 0.07$
$\Delta C_{\boldsymbol{\rho} \boldsymbol{\pi}}\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\rho}^{+} \boldsymbol{\pi}^{-}\right)=0.27 \pm 0.06$
$\Delta S_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)=0.01 \pm 0.08$
$C_{\rho^{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)=0.27 \pm 0.24$
$S_{\rho^{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)=-0.23 \pm 0.34$
$C_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)=-0.05 \pm 0.11$
$S_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)=-0.2 \pm 0.4 \quad(S=3.2)$
$\Delta C_{\mathbf{a}_{1} \pi}\left(B^{0} \rightarrow \boldsymbol{a}_{1}(\mathbf{1 2 6 0})^{+} \pi^{-}\right)=0.43 \pm 0.14 \quad(\mathrm{~S}=1.3)$
$\Delta S_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)=-0.11 \pm 0.12$
$C\left(B^{0} \rightarrow b_{1}^{-} K^{+}\right)=-0.22 \pm 0.24$
$\Delta C\left(B^{0} \rightarrow b_{1}^{-} \pi^{+}\right)=-1.04 \pm 0.24$
$C_{\rho^{0} \rho^{0}}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)=0.2 \pm 0.9$
$S_{\rho^{0} \rho^{0}}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)=0.3 \pm 0.7$
$C_{\rho \rho}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=0.00 \pm 0.09$
$S_{\rho \rho}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=-0.14 \pm 0.13$
$|\lambda|\left(B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)<0.25, C L=95 \%$
$\cos 2 \beta\left(B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)=1.7_{-0.9}^{+0.7} \quad(S=1.6)$
$\cos 2 \beta\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{* *}} h^{0}\right)=0.91 \pm 0.25$
$\left(S_{+}+S_{-}\right) / 2\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)=-0.039 \pm 0.011$
$\left(S_{-}-S_{+}\right) / 2\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)=-0.009 \pm 0.015$
$\left(S_{+}+S_{-}\right) / 2\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=-0.046 \pm 0.023$
$\left(S_{-}-S_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=-0.022 \pm 0.021$
$S_{+}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=0.058 \pm 0.023$
$S_{-}\left(B^{0} \rightarrow D^{+} \pi^{-}\right)=0.038 \pm 0.021$
$\left(\mathrm{S}_{+}+\mathrm{S}_{-}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)=-0.024 \pm 0.032$
$\left(S_{-}-S_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)=-0.10 \pm 0.06$
$C_{\eta_{c} K_{s}^{0}}\left(B^{0} \rightarrow \eta_{c} K_{S}^{0}\right)=0.08 \pm 0.13$
$S_{\boldsymbol{\eta}_{c} K_{s}^{0}}\left(B^{0} \rightarrow \eta_{c} K_{S}^{0}\right)=0.93 \pm 0.17$
$C_{c \bar{c} K^{(*) 0}}\left(B^{0} \rightarrow c \bar{c} K^{(*) 0}\right)=(0.5 \pm 1.7) \times 10^{-2}$
$\sin (\mathbf{2 \beta})=0.695 \pm 0.019$
$C_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)=(0.5 \pm 2.0) \times 10^{-2}$
$S_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)=0.701 \pm 0.017$
$C_{J / \psi K^{* 0}}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)=0.03 \pm 0.10$
$S_{J / \psi K^{* 0}}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)=0.60 \pm 0.25$
$C_{\chi_{C 0} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{C 0} K_{S}^{0}\right)=-0.3_{-0.4}^{+0.5}$
$S_{\chi_{c 0} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{c 0} K_{S}^{0}\right)=-0.7 \pm 0.5$
$C_{\chi_{C 1} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{C 1} K_{S}^{0}\right)=0.06 \pm 0.07$
$S_{\chi_{c 1} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{c 1} K_{S}^{0}\right)=0.63 \pm 0.10$
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow \phi K^{0}\right)=0.22 \pm 0.30$
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow \phi K_{0}^{*}(1430)^{0}\right)=0.97_{-0.52}^{+0.03}$
$\boldsymbol{\operatorname { s i n }}\left(\mathbf{2} \boldsymbol{\beta}_{\mathrm{eff}}\right)\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}^{0}\right)=0.77_{-0.12}^{+0.13}$
$\sin \left(2 \beta_{\mathrm{eff}}\right)\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)=0.80 \pm 0.16$
$\beta_{\text {eff }}\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{*} *} h^{0}\right)=(22 \pm 5)^{\circ}$
$2 \beta_{\text {eff }}\left(B^{0} \rightarrow J / \psi \rho^{0}\right)=\left(42_{-11}^{+10}\right)^{\circ}$
$|\lambda|\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{\left.D^{*}\right)} h^{0}\right)=1.01 \pm 0.08$
$|\sin (2 \beta+\gamma)|>0.40, \mathrm{CL}=90 \%$
$2 \beta+\gamma=(83 \pm 60)^{\circ}$
$\boldsymbol{\alpha}=\left(84.9_{-4.5}^{+5.1}\right)^{\circ}$
$x_{+}\left(B^{0} \rightarrow D K^{* 0}\right)=0.04 \pm 0.17$
$x_{-}\left(B^{0} \rightarrow D K^{* 0}\right)=-0.16 \pm 0.14$
$y_{+}\left(B^{0} \rightarrow D K^{* 0}\right)=-0.68 \pm 0.22$
$y_{-}\left(B^{0} \rightarrow D K^{* 0}\right)=0.20 \pm 0.25 \quad(S=1.2)$
$r_{\mathbf{B}^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)=0.220_{-0.047}^{+0.041}$
$\delta_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)=\left(194_{-22}\right)^{\circ}$
\bar{B}^{0} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the $B^{ \pm} / B^{0}$ ADMIXTURE section.
The branching fractions listed below assume $50 \% B^{0} \bar{B}^{0}$ and $50 \% B^{+} B^{-}$ production at the $\gamma(4 S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\gamma(4 S)$ production ratio to 50:50 and their assumed D, D_{S}, D^{*}, and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Meson Summary Table

Meson Summary Table

$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{0}$	<	5.07		$\times 10^{-3}$	$\mathrm{CL}=90 \%$	1883
$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74		$\times 10^{-3}$	$\mathrm{CL}=90 \%$	1821
$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}$(nonresonant)		$5.5 \pm$		$\times 10^{-4}$	$\mathrm{S}=1.3$	1934
$\bar{\Sigma}_{\bar{\Sigma}}^{c}(2520)^{--} p \pi^{+}$		$1.02 \pm$		$\times 10^{-4}$		1860
$\bar{\Sigma}_{C}(2520)^{0} p \pi^{-}$	$<$	3.1		$\times 10^{-5}$	$\mathrm{CL}=90 \%$	1860
$\bar{\Sigma}_{\underline{c}}(2455)^{0} p \pi^{-}$		$1.08 \pm$		$\times 10^{-4}$		1895
$\underset{p \pi^{-}}{\Sigma_{c}(2455)^{0}} N^{0}, \quad N^{0} \rightarrow$				$\times 10^{-5}$		-
$\bar{\Sigma}_{c}(2455)^{--} p \pi^{+}$		$1.83 \pm$		$\times 10^{-4}$		1895
$\Lambda_{c}^{-} p K^{+} \pi^{-}$		$3.4 \pm$		$\times 10^{-5}$		1786
$\begin{gathered} \bar{\Sigma}_{c}(2455)^{--} p K^{+}, \bar{\Sigma}_{c}^{--} \rightarrow \\ \bar{\Lambda}_{c}^{-} \pi^{-} \end{gathered}$		$8.8 \pm$		$\times 10^{-6}$		1754
$\Lambda_{c}^{-} p K^{*}(892)^{0}$	<	2.42		$\times 10^{-5}$	$\mathrm{CL}=90 \%$	1647
$\Lambda_{c}^{-} p K^{+} K^{-}$		$2.0 \pm$		$\times 10^{-5}$		1588
$\Lambda_{c}^{-} p \phi$	$<$	1.0		$\times 10^{-5}$	CL=90\%	1567
$\Lambda_{c}^{-} p \bar{p} p$	<	2.8		$\times 10^{-6}$		677
$\overline{\bar{N}}_{c}^{-} \wedge K^{+}$	($4.8 \pm$		$\times 10^{-5}$		1767
$\bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$	<	1.6		$\times 10^{-5}$	CL=95\%	1319
$\bar{\Lambda}_{C}(2593){ }^{-} / \bar{\Lambda}_{C}(2625)^{-} p$	<	1.1		$\times 10^{-4}$	CL=90\%	-
$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}$		$1.2 \pm$		$\times 10^{-3}$		1147
$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}, \overline{\bar{E}}_{c}^{-} \rightarrow \overline{\bar{E}}^{+} \pi^{-} \pi^{-}$		$2.4 \pm$		$\times 10^{-5}$	$\mathrm{S}=1.8$	1147
$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}, \overline{\bar{\Xi}}_{c}^{-} \rightarrow \bar{p} K^{+} \pi^{-}$		$5.3 \pm$	1.7)	$\times 10^{-6}$		-
$\Lambda_{c}^{+} \Lambda_{c}^{-} K^{0}$		$4.0 \pm$	$0.9)$	$\times 10^{-4}$		732
$\overline{\bar{E}}_{c}(2930)^{-} \Lambda_{c}^{+}$, $\overline{\bar{X}}_{c}^{-} \rightarrow \Lambda_{c}^{-} K^{0}$		$2.4 \pm$		$\times 10^{-4}$		-

$B^{ \pm} / B^{0}$ ADMIXTURE

$C P$ violation

$A_{C P}\left(B \rightarrow K^{*}(892) \gamma\right)=-0.003 \pm 0.011$
$A_{C P}(B \rightarrow s \gamma)=0.015 \pm 0.011$
$A_{C P}(B \rightarrow(s+d) \gamma)=0.010 \pm 0.031$
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=0.04 \pm 0.11$
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)=-0.06 \pm 0.22$
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(10.1<\mathrm{q}^{2}<12.9\right.$ or $\left.\mathrm{q}^{2}>14.2 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$=0.19 \pm 0.18$
$A_{C P}\left(B \rightarrow K^{*} e^{+} e^{-}\right)=-0.18 \pm 0.15$
$A_{C P}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)=-0.03 \pm 0.13$
$A_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=-0.04 \pm 0.07$
$A_{C P}(B \rightarrow \eta$ anything $)=-0.13_{-0.05}^{+0.04}$
$\Delta A_{C P}\left(X_{s} \gamma\right)=A_{C P}\left(B^{ \pm} \rightarrow X_{s} \gamma\right)-A_{C P}\left(B^{0} \rightarrow X_{s} \gamma\right)=$ 0.041 ± 0.023
$\bar{A}_{C P}\left(B \rightarrow X_{s} \gamma\right)=\left(A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)+A_{C P}\left(B^{0} \rightarrow\right.\right.$ $\left.\left.X_{s} \gamma\right)\right) / 2=0.009 \pm 0.012$
$\Delta A_{C P}\left(B \rightarrow K^{*} \gamma\right)=A_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right)-A_{C P}\left(B^{0} \rightarrow\right.$ $\left.K^{* 0} \gamma\right)=0.024 \pm 0.028$
$\bar{A}_{C P}\left(B \rightarrow K^{*} \gamma\right)=\left(A_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right)+A_{C P}\left(B^{0} \rightarrow\right.\right.$ $\left.\left.K^{* 0} \gamma\right)\right) / 2=-0.001 \pm 0.014$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4 S)$. The values quoted assume that $\mathrm{B}(\Upsilon(4 S) \rightarrow B \bar{B})=100 \%$.

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the treatment of multiple D 's in the final state must be defined. One possibility would be to count the number of events with one-or-more D 's and divide by the total number of B 's. Another possibility would be to count the total number of D 's and divide by the total number of B 's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.
\bar{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

Meson Summary Table

$B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $\mathrm{Sp} \overline{\mathrm{p} S}$).

$$
\begin{aligned}
& \text { Mean life } \tau=(1.5668 \pm 0.0028) \times 10^{-12} \mathrm{~s} \\
& \text { Mean life } \tau=(1.72 \pm 0.10) \times 10^{-12} \mathrm{~s} \quad \text { Charged } b \text {-hadron } \\
& \quad \text { admixture } \\
& \text { Mean life } \tau=(1.58 \pm 0.14) \times 10^{-12} \mathrm{~s} \quad \text { Neutral } b \text {-hadron ad- } \\
& \quad \text { mixture } \\
& \tau \text { charged } b \text {-hadron } / \tau_{\text {neutral } b \text {-hadron }}=1.09 \pm 0.13 \\
& \left|\Delta \tau_{b}\right| / \tau_{b, \bar{b}}=-0.001 \pm 0.014
\end{aligned}
$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\gamma(4 S)$. Only the highest energy results (LHC, LEP, Tevatron, $\mathrm{S} p \overline{\mathrm{p}}$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \bar{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.			
$\overline{\text { b }}$ DECAY MODES	Fraction ($\Gamma_{i} / \mathbf{\Gamma}$)	Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
PRODUCTION FRACTIONS			
The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " $B^{0}-\bar{B}^{0}$ Mixing" in the B^{0} Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_{T}) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p \bar{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume			
$\begin{aligned} & \mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right) \\ & \mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)+\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)+\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)+\mathrm{B}(b \rightarrow b \text {-baryon })=100 \% . \end{aligned}$			

The correlation coefficients between production fractions are also reported:

$$
\begin{aligned}
& \operatorname{cor}\left(B_{S}^{0}, b \text {-baryon }\right)=0.064 \\
& \operatorname{cor}\left(B_{S}^{0}, B^{ \pm}=B^{0}\right)=-0.633 \\
& \operatorname{cor}\left(b \text {-baryon, } B^{ \pm}=B^{0}\right)=-0.813 .
\end{aligned}
$$

The notation for production fractions varies in the literature $\left(f_{d}, d_{B^{0}}\right.$, $\left.f\left(b \rightarrow \bar{B}^{0}\right), \operatorname{Br}\left(b \rightarrow \bar{B}^{0}\right)\right)$. We use our own branching fraction notation here, $\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^{+}	$(40.8 \pm 0.7) \%$
B^{0}	$(40.8 \pm 0.7) \%$
B_{S}^{0}	$(10.0 \pm 0.8) \%$
b-baryon	$(8.4 \pm 1.1) \%$

DECAY MODES

Charmed meson and baryon modes

Charmed meson and baryon modes	
\bar{D}^{0} anything	$(58.7 \pm 2.8) \%$
$D^{0} D_{s}^{ \pm}$anything	[bb] ($9.1 \pm 2.8) \%$
$D^{\mp} D_{s}^{ \pm}$anything	[bb] ($\left.4.0 \pm{ }_{-1.8}^{2.3}\right) \%$
$\bar{D}^{0} D^{0}$ anything	$[b b] \quad(5.1 \pm \underset{1.8}{2.0}) \%$
$D^{0} D^{ \pm}$anything	$[b b] \quad(2.7 \pm 1.6) \%$
$D^{ \pm} D^{\mp}$ anything	$[b b]<9 \times 10^{-3} \mathrm{CL}=90 \%$
D^{-}anything	(22.7 ± 1.6) \%
$D^{*}(2010)^{+}$a nything	$(17.3 \pm 2.0) \%$
$D_{1}(2420)^{0}$ anything	($5.0 \pm 1.5) \%$
$D^{*}(2010)^{\mp} D_{s}^{ \pm}$anything	[bb] ($\left.3.3 \pm{ }_{-1.3}^{1.6}\right) \%$
$D^{0} D^{*}(2010)^{ \pm}$anything	[bb] ($\left.3.0 \pm \pm{ }_{-1.1}^{1.1}\right) \%$
$D^{*}(2010)^{ \pm} D^{\mp}$ anything	$[b b] \quad(2.5 \pm 1.0) \%$
$D^{*}(2010)^{ \pm} D^{*}(2010)^{\mp}$ anything	[bb] (1.2 ± 0.4) \%
\bar{D} Danything	$\left(\begin{array}{ll}10 & +11\end{array}\right) \%$
$D_{2}^{*}(2460)^{0}$ anything	(4.7 ± 2.7) \%
D_{s}^{-}anything	$(14.7 \pm 2.1) \%$
D_{s}^{+}anything	$(10.1 \pm 3.1) \%$
Λ_{C}^{+}anything	(7.7 ± 1.1) \%
\bar{c} / c anything	haa] (116.2 $\pm 3.2) \%$

[hhaa]

Charmonium modes

Charmonium modes			
$J / \psi(1 S)$ anything		1.16 $\pm 0.10) \%$	
$\psi(2 S)$ anything		$2.86 \pm 0.28) \times 10^{-3}$	
$\chi_{c 0}(1 P)$ anything		$1.5 \pm 0.6) \%$	
$\chi_{c 1}(1 P)$ anything		$1.4 \pm 0.4) \%$	
$\chi_{c 2}(1 P)$ anything		$6.2 \pm 2.9) \times 10^{-3}$	
$\chi_{c}(2 P)$ anything, $\chi_{c} \rightarrow \phi \phi$	<	2.8×10^{-7}	CL=95\%
$\eta_{c}(1 S)$ anything		$4.5 \pm 1.9) \%$	
$\eta_{C}(2 S)$ anything, $\eta_{C} \rightarrow \phi \phi$		$3.2 \pm 1.7) \times 10^{-6}$	
$\begin{aligned} & \chi_{c 1}(3872) \text { anything, } \chi_{c 1} \rightarrow \\ & \end{aligned}$	$<$	4.5×10^{-7}	$\mathrm{CL}=95 \%$
$X(3915)$ anything, $X \rightarrow \phi \phi$	$<$	3.1×10^{-7}	CL=95\%
K or K^{*} modes			
$\bar{s} \gamma$		$3.1 \pm 1.1) \times 10^{-4}$	
$\bar{s} \bar{\nu} \nu \quad B 1$	<	6.4×10^{-4}	CL=90\%
$K^{ \pm}$anything		$74 \pm 6) \%$	
K_{S}^{0} anything		$29.0 \pm 2.9) \%$	

$$
\begin{aligned}
& \pi^{ \pm} \text {anything } \\
& \pi^{0} \text { anything }
\end{aligned}
$$

Pion modes

$$
\phi \text { anything }
$$

[hhaa] $\left.\begin{array}{ll}(397 & \pm 21\end{array}\right) \%$

Baryon modes

$$
p / \bar{p} \text { anything }
$$

$$
\Lambda / \overline{\text { Nanything }}
$$

$$
(13.1 \pm 1.1) \%
$$

$$
b \text {-baryon anything }
$$

$$
(5.9 \pm 0.6) \%
$$

$$
(10.2 \pm 2.8) \%
$$

charged anything

Other modes

[hhaa] ($\left.\begin{array}{lll}497 & \pm 7\end{array}\right) \%$

$$
\text { hadron }^{+} \text {hadron }^{-}
$$

$(1.7 \pm \underset{0.7}{1.0}) \times 10^{-5}$
charmless
($7 \pm 21 \quad$) $\times 10^{-3}$

$\Delta B=1$ weak neutral current (B1) modes

$\mu^{+} \mu^{-}$anything $\quad B 1<3.2 \times 10^{-4} \mathrm{CL}=90 \%$

B^{*}	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{-}\right)$
I, J, P need confi	

$$
I, J, P \text { need confirmation. }
$$

Quantum numbers shown are quark-model predictions.
Mass $m_{B^{*}}=5324.70 \pm 0.21 \mathrm{MeV}$
$m_{B^{*}}-m_{B}=45.21 \pm 0.21 \mathrm{MeV}$
$m_{B^{*}}-m_{B^{+}}=45.37 \pm 0.21 \mathrm{MeV}$
$m_{B^{*+}}-m_{B^{+}}=45.37 \pm 0.21 \mathrm{MeV}$

\boldsymbol{B}^{*} DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$B \gamma$	seen	45
$B_{\mathbf{1}}(\mathbf{5 7 2 1})^{+}$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$	
	I, J, P need confirmation.	

Mass $m=5725.9_{-2.7}^{+2.5} \mathrm{MeV}$
$m_{B_{1}^{+}}-m_{B^{* 0}}=401.2_{-2.7}^{+2.4} \mathrm{MeV}$
Full width $\Gamma=31 \pm 6 \mathrm{MeV} \quad(\mathrm{S}=1.1)$

Meson Summary Table

$\mathrm{B}_{1}(5721)+$ decay modes	Fraction (Γ_{i} / r)	$p(\mathrm{MeV} / \mathrm{c}$)
$B^{* 0} \pi^{+}$	seen	363
$B_{1}(5721)^{0}$	$I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$ I, J, P need confirmation.	
$\begin{aligned} & B_{1}(5721)^{0} \mathrm{MASS}=5726.1 \pm 1.3 \mathrm{MeV} \quad(\mathrm{~S}=1.2) \\ & m_{B_{1}^{0}}-m_{B^{+}}=446.7 \pm 1.3 \mathrm{MeV} \quad(\mathrm{~S}=1.2) \\ & m_{B_{0}^{0}}-m_{B^{*+}}=401.4 \pm 1.2 \mathrm{MeV} \quad(\mathrm{~S}=1.2) \\ & \text { Full width } \Gamma=27.5 \pm 3.4 \mathrm{MeV} \quad(\mathrm{~S}=1.1) \end{aligned}$		

$\mathrm{B}_{1}(5721)^{0}$ decay modes	Fraction (Γ_{i} / Γ)	$p(\mathrm{MeV} / \mathrm{c})$
$B^{*+} \pi^{-}$	seen	363
$B_{2}^{*}(5747)^{+}$	$\begin{aligned} & I\left(J^{P}\right)=\frac{1}{2}(2 \\ & I, J, P \text { need } \end{aligned}$	

Mass $m=5737.2 \pm 0.7 \mathrm{MeV}$
$m_{B_{2}^{*+}}-m_{B^{0}}=457.5 \pm 0.7 \mathrm{MeV}$
Full width $\Gamma=20 \pm 5 \mathrm{MeV} \quad(S=2.2)$

$\mathbf{B}_{\mathbf{2}}^{\boldsymbol{2}(\mathbf{5 7 4 7})^{+}}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$B^{0} \pi^{+}$	seen	418
$B^{* 0} \pi^{+}$	seen	374

$B_{\mathbf{2}}^{\mathbf{*}(\mathbf{5 7 4 7})^{\mathbf{0}}}$| $\quad l\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)$ |
| :--- |
| I, J, P need confirmation |
| $B_{2}^{*}(5747)^{0} \mathrm{MASS}=5739.5 \pm 0.7 \mathrm{MeV} \quad(\mathrm{S}=1.4)$ |
| $m_{B_{2}^{* 0}}-m_{B_{1}^{0}}=13.4 \pm 1.4 \mathrm{MeV} \quad(\mathrm{S}=1.3)$ |
| $m_{B_{2}^{* 0}}-m_{B^{+}}=460.2 \pm 0.6 \mathrm{MeV} \quad(\mathrm{S}=1.4)$ |
| Full width $\Gamma=24.2 \pm 1.7 \mathrm{MeV}$ |

$B_{2}^{*}(5747)^{0}$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$B^{+} \pi^{-}$	seen	421
$B^{*+} \pi^{-}$	seen	376
$B_{J}(5970)^{+}$	$I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$ I, J, P need confirmation.	

Mass $m=5964 \pm 5 \mathrm{MeV}$
$m_{B_{J}(5970)^{+}}-m_{B^{0}}=685 \pm 5 \mathrm{MeV}$
Full width $\Gamma=62 \pm 20 \mathrm{MeV}$

$B^{\prime}(5970)^{+}$DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$B^{0} \pi^{+}$	possibly seen	632
$B^{* 0} \pi^{+}$	seen	591
$B_{J}(5970)^{0}$	$\begin{aligned} & I\left(J^{P}\right)=\frac{1}{2} \\ & I, J, P \text { need } \end{aligned}$	
Mass $m=5971 \pm 5 \mathrm{MeV}$ $m_{B_{J}(5970)^{0}}-m_{B^{+}}=691 \pm 5 \mathrm{MeV}$ Full width $\Gamma=81 \pm 12 \mathrm{MeV}$		
$\left.B^{\boldsymbol{J}} \mathbf{(5 9 7 0}\right)^{0}$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$B^{+} \pi^{-}$	possibly seen	638
$B^{*+} \pi^{-}$	seen	596

BOTTOM, STRANGE MESONS
 ($B= \pm 1, S=\mp 1$)
 $B_{s}^{0}=s \bar{b}, \bar{B}_{s}^{0}=\bar{s} b, \quad$ similarly for B_{s}^{*} 's

89

$$
I\left(J^{P}\right)=0\left(0^{-}\right)
$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

$$
\begin{aligned}
& \text { Mass } m_{B_{s}^{0}}=5366.88 \pm 0.14 \mathrm{MeV} \\
& m_{B_{s}^{0}}-m_{B}=87.38 \pm 0.16 \mathrm{MeV} \\
& \text { Mean life } \tau=(1.515 \pm 0.004) \times 10^{-12} \mathrm{~s} \\
& \quad \quad \tau=454.2 \mu \mathrm{~m} \\
& \Delta \Gamma_{B_{S}^{0}}=\Gamma_{B_{s L}^{0}}-\Gamma_{B_{S H}^{0}}=(0.085 \pm 0.004) \times 10^{12} \mathrm{~s}^{-1}
\end{aligned}
$$

$\boldsymbol{B}_{\boldsymbol{s}}^{0}-\bar{B}_{\boldsymbol{s}}^{\mathbf{0}}$ mixing parameters
$\Delta m_{B_{s}^{0}}=m_{B_{s H}^{0}}-m_{B_{s L}^{0}}=(17.749 \pm 0.020) \times 10^{12} \mathrm{~h} \mathrm{~s}^{-1}$

$$
=(1.1683 \pm 0.0013) \times 10^{-8} \mathrm{MeV}
$$

$x_{s}=\Delta m_{B_{s}^{0}} / \Gamma_{B_{s}^{0}}=26.89 \pm 0.07$
$\chi_{s}=0.499^{s} 312 \pm 0.000004$
CP violation parameters in $B_{\mathbf{s}}^{\mathbf{0}}$
$\operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left|\epsilon_{B_{s}^{0}}\right|^{2}\right)=(-0.15 \pm 0.70) \times 10^{-3}$
$C_{K K}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=0.14 \pm 0.11$
$S_{K K}\left(B_{S}^{0} \rightarrow K^{+} K^{-}\right)=0.30 \pm 0.13$
$\mathrm{r}_{B}\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right)=0.37_{-0.09}^{+0.10}$
$\delta_{B}\left(B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}\right)=(358 \pm 14)^{\circ}$
$C P$ Violation phase $\beta_{s}=(2.55 \pm 1.15) \times 10^{-2} \mathrm{rad}$
$|\lambda|\left(B_{s}^{0} \rightarrow J / \psi(1 S) \phi\right)=1.012 \pm 0.017$
$|\lambda|=0.999 \pm 0.017$
$\mathrm{A}, C P$ violation parameter $=-0.75 \pm 0.12$
C, $C P$ violation parameter $=0.19 \pm 0.06$
$\mathrm{S}, C P$ violation parameter $=0.17 \pm 0.06$
$A_{C P}^{L}\left(B_{S} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)=-0.05 \pm 0.06$
$A_{C P}^{\|}\left(B_{s} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)=0.17 \pm 0.15$
$A_{C P}^{1}\left(B_{s} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)=-0.05 \pm 0.10$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{K}^{-}\right)=0.221 \pm 0.015$
$A_{C P}\left(B_{s}^{0} \rightarrow\left[K^{+} K^{-}\right]_{D} \bar{K}^{*}(892)^{0}\right)=-0.04 \pm 0.07$
$A_{C P}\left(B_{S}^{0} \rightarrow\left[\pi^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right)=-0.01 \pm 0.04$
$A_{C P}\left(B_{S}^{0} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}\right)=0.06 \pm 0.13$
$S\left(B_{S}^{0} \rightarrow \phi \gamma\right)=0.43 \pm 0.32$
$C\left(B_{s}^{0} \rightarrow \phi \gamma\right)=0.11 \pm 0.31$
$A^{\Delta}\left(B_{S} \rightarrow \phi \gamma\right)=-0.7 \pm 0.4$
$\Delta a_{\perp}<1.2 \times 10^{-12} \mathrm{GeV}, \mathrm{CL}=95 \%$
$\Delta a_{\|}=(-0.9 \pm 1.5) \times 10^{-14} \mathrm{GeV}$
$\Delta a_{X}=(1.0 \pm 2.2) \times 10^{-14} \mathrm{GeV}$
$\Delta a_{Y}=(-3.8 \pm 2.2) \times 10^{-14} \mathrm{GeV}$
$\operatorname{Re}(\xi)=-0.022 \pm 0.033$
$\operatorname{Im}(\xi)=0.004 \pm 0.011$
These branching fractions all scale with $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)$.
The branching fraction $\mathrm{B}\left(B_{s}^{0} \rightarrow D_{S}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)$ is not a pure measurement since the measured product branching fraction $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right) \times$ $\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)$ was used to determine $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$, as described in the note on " $B^{0}-\bar{B}^{0}$ Mixing"
For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$\boldsymbol{B}_{\boldsymbol{s}}^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor/ Confidence level
D_{s}^{-}anything	p $(\mathrm{MeV} / \mathrm{c})$	
$\ell \nu_{\ell} X$	$(93 \pm 25) \%$	-
$e^{+} \nu X^{-}$	$(9.1 \pm 0.8) \%$	-
$\mu^{+} \nu X^{-}$	$(10.2 \pm 1.0) \%$	-
$D_{S}^{-} \ell^{+} \nu_{\ell}$ anything	$[j j a a]$	-
$D_{S}^{*-} \ell^{+} \nu_{\ell}$ anything	$(8.1 \pm 1.3) \%$	-
$D_{S 1}(2536)^{-} \mu^{+} \nu_{\mu}, \quad D_{s 1}^{-} \rightarrow$	$(5.4 \pm 1.1) \%$	-
$D^{*-} K_{S}^{0}$	$(2.7 \pm 0.7) \times 10^{-3}$	-

$\begin{aligned} & D_{s 1}(2536)^{-} X \mu^{+} \nu, \quad D_{s 1}^{-} \rightarrow \\ & \bar{D}^{0} K^{+} \end{aligned}$	$(4.4 \pm 1.3) \times 10^{-3}$		-	$J / \psi(1 S) f_{2}^{\prime}(1525)_{\\|}, f_{2}^{\prime} \rightarrow$	$\left(1.3-\underset{-}{+}{ }_{0}^{2.7}\right) \times 10^{-7}$		-
$\begin{aligned} & D_{s 2}(2573)^{-} X \mu^{+} \nu, D_{s 2}^{-} \rightarrow \\ & \bar{D}^{0} K^{+} \end{aligned}$	$(2.7 \pm 1.0) \times 10^{-3}$		-	$\begin{gathered} \pi^{+} \pi^{-} \\ J / \psi(1 S) f_{2}^{\prime}(1525)_{\perp}, \quad f_{2}^{\prime} \rightarrow \end{gathered}$	$\left(\begin{array}{lll}5 & \pm 4\end{array}\right) \times 10^{-7}$		-
$D_{s}^{-} \pi^{+}$	$(3.00 \pm 0.23) \times 10^{-3}$		2320	$\pi^{+} \pi-$	$(5.0+11.0) \times 10^{-6}$		-
$D_{s}^{-} \rho^{+}$	$(6.9 \pm 1.4) \times 10^{-3}$		2249	$\pi^{+} \pi^{-}$	$(5.0-1.1) \times 10^{-6}$		
$D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}$	$(6.1 \pm 1.0) \times 10^{-3}$		2301	$J / \psi(1 S) \pi^{+} \pi^{-}$(nonresonant)	$\left(1.8 \pm{ }_{-}^{+}{ }_{0.4}^{1.1}\right) \times 10^{-5}$		1775
$D_{S 1}(2536)^{-} \pi^{+}, D_{s 1}^{-} \rightarrow$ $D_{s}^{-} \pi^{+} \pi^{-}$	$(2.5 \pm 0.8) \times 10^{-5}$		-	$J / \psi(1 S) \bar{K}^{0} \pi^{+} \pi^{-}$	$<4.4-0.4) \times 10^{-5}$	CL=90\%	1675
$D_{s}^{\mp} K^{ \pm}{ }^{s}$	$(2.27 \pm 0.19) \times 10^{-4}$		2293	$J / \psi(1 S) K^{+} K^{-}$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$D_{s}^{-} K^{+} \pi^{+} \pi^{-}$	$(3.2 \pm 0.6) \times 10^{-4}$		2249	$J / \psi(1 S) \bar{K}^{0} K^{+} K^{-}$	$(9.2 \pm 1.3) \times 10^{-4}$ <1.2	CL=90\%	1538 1333
$D_{s}^{+} D_{s}^{-}$	$(4.4 \pm 0.5) \times 10^{-3}$		1824	$J / \psi(1 S) f_{2}^{\prime}(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1310
$D_{s}^{-} D^{+}$	$(2.8 \pm 0.5) \times 10^{-4}$		1875	$J / \psi(1 S) p \bar{p}$	$(3.6 \pm 0.4) \times 10^{-6}$		982
$D^{+} D^{-}$	$(2.2 \pm 0.6) \times 10^{-4}$		1925	$J / \psi(1 S) \gamma$	$<7.3 \times 10^{-6}$	$\mathrm{CL}=90 \%$	1790
$D^{0} \bar{D}^{0}$	$(1.9 \pm 0.5) \times 10^{-4}$		1930	$J / \psi(1 S) \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$(7.8 \pm 1.0) \times 10^{-5}$		1731
$D_{s}^{*-} \pi^{+}$	$(2.0 \pm 0.5) \times 10^{-3}$		2265	$J / \psi(1 S) f_{1}(1285)$	$(7.2 \pm 1.4) \times 10^{-5}$		1460
$D_{s}^{* \mp} K^{ \pm}$	$(1.33 \pm 0.35) \times 10^{-4}$		-	$\psi(2 S) \eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$D_{s}^{*-} \rho^{+}$	$(9.6 \pm 2.1) \times 10^{-3}$		2191	$\psi(2 S) \eta^{\prime}$	$(1.29 \pm 0.35) \times 10^{-4}$		1158
$D_{s}^{*+} D_{s}^{-}+D_{s}^{*-} D_{s}^{+}$	(1.39 ± 0.17) \%		1742	$\psi(2 S) \pi^{+} \pi^{-}$	$(7.1 \pm 1.3) \times 10^{-5}$		1397
$D_{s}^{*+} D_{s}^{*-}{ }_{s}$		$\mathrm{S}=1.1$	1655	$\psi(2 S) \phi$	$(5.4 \pm 0.6) \times 10^{-4}$		1120
${ }_{S}{ }^{(*)+{ }^{\text {s }} \text { (*)- }}$	(1.44 ± 0.21) \%	$\mathrm{S}=1.1$	1655	$\psi(2 S) K^{-} \pi^{+}$	$(3.1 \pm 0.4) \times 10^{-5}$		1310
$D_{s}^{(*)+} D_{s}^{(*)-}$	$(4.5 \pm 1.4) \%$		-	$\psi(2 S) \bar{K}^{*}(892)^{0}$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\bar{D}^{* 0} \bar{K}^{0}$	$(2.8 \pm 1.1) \times 10^{-4}$		2278	$\chi_{c 1}{ }^{\text {}}$,	$(2.04 \pm 0.30) \times 10^{-4}$		1274
$\bar{D}^{0} \bar{K}^{0}$	$(4.3 \pm 0.9) \times 10^{-4}$		2330	$\pi^{+} \pi^{-}$	$(7.0 \pm 1.0) \times 10^{-7}$		2680
$\bar{D}^{0} K^{-} \pi^{+}$	$(1.04 \pm 0.13) \times 10^{-3}$		2312	$\pi^{0} \pi^{0}$	$<2.1 \times 10^{-4}$	CL=90\%	2680
$\bar{D}^{0} \bar{K}^{*}(892)^{0}$	$(4.4 \pm 0.6) \times 10^{-4}$		2264	$\eta \pi^{0}$	$<1.0 \times 10^{-3}$	CL=90\%	2654
$\bar{D}^{0} \bar{K}^{*}$ (1410)	$(3.9 \pm 3.5) \times 10^{-4}$		2117	$\eta \eta$	$<1.5 \times 10^{-3}$	CL=90\%	2627
$\bar{D}^{0} \bar{K}_{0}^{*}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		2113	$\rho^{0} \rho^{0}$	$<3.20 \times 10^{-4}$	CL=90\%	2569
$\bar{D}^{0} \bar{K}_{2}^{*}(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		2112	$\eta^{\prime} \eta^{\prime}$	$(3.3 \pm 0.7) \times 10^{-5}$		2507
$\bar{D}^{0} \bar{K}^{*}(1680)$	$<7.8 \times 10^{-5}$	$\mathrm{CL}=90 \%$	1997	$\eta^{\prime} \phi$	$<8.2 \times 10^{-7}$	CL=90\%	2495
$\bar{D}^{0} \bar{K}_{0}^{*}(1950)$	$<1.1 \times 10^{-4}$	CL=90\%	1890	$\phi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}$	$(1.12 \pm 0.21) \times 10^{-6}$		-
$\bar{D}^{0} \bar{K}_{3}^{*}(1780)$	$<2.6 \times 10^{-5}$	CL=90\%	1971	$\phi f_{2}(1270), f_{2}(1270) \rightarrow$	$(6.1-1.5) \times 10^{-7}$		-
$\bar{D}^{0} \bar{K}_{4}^{*}(2045)$	$<3.1 \times 10^{-5}$	$\mathrm{CL}=90 \%$	1835	$\pi^{+} \pi^{-}$			
$\bar{D}^{0} K^{-} \pi^{+}$(non-resonant)	$(2.1 \pm 0.8) \times 10^{-4}$		2312	$\phi \rho^{0}$	$(2.7 \pm 0.8) \times 10^{-7}$		2526
$D_{s 2}^{*}(2573)^{-} \pi^{+}, D_{s 2}^{*} \rightarrow$	$(2.6 \pm 0.4) \times 10^{-4}$		-	$\phi \pi^{+} \pi^{-}$	$(3.5 \pm 0.5) \times 10^{-6}$		2579
${ }^{2} \bar{D}^{0} K^{-}$				$\phi \phi$	$(1.87 \pm 0.15) \times 10^{-5}$		2482
$D_{S 1}^{*}(2700)^{-} \pi^{+}, D_{S 1}^{*} \rightarrow$	$(1.6 \pm 0.8) \times 10^{-5}$		-	$\phi \phi \phi$	$(2.2 \pm 0.7) \times 10^{-6}$		2165
${ }^{\text {s }} \bar{D}^{0} K^{-}$,				$\pi^{+} K^{-}$	$(5.8 \pm 0.7) \times 10^{-6}$		2659
$D_{S 1}^{*}(2860)^{-} \pi^{+}, D_{s 1}^{*} \rightarrow$	$\left(\begin{array}{lll}5 & \pm 4\end{array}\right) \times 10^{-5}$		-	$K^{+} K^{-}$	$(2.66 \pm 0.22) \times 10^{-5}$		2638
${ }^{\text {S }} \bar{D}^{0} K^{-}$,				$K^{0} \bar{K}^{0}$	$(2.0 \pm 0.6) \times 10^{-5}$		2637
$D_{s 3}^{*}(2860)^{-} \pi^{+}, \quad D_{s 3}^{*} \rightarrow$	$(2.2 \pm 0.6) \times 10^{-5}$		-	$K^{0} \pi^{+} \pi^{-}$	$(9.5 \pm 2.1) \times 10^{-6}$		2653
$\bar{D}^{0} K^{-}$				$K^{0} K^{ \pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$		2622
$\bar{D}^{0} K^{+} K^{-}$	$(5.5 \pm 0.8) \times 10^{-5}$		2243	$K^{*}(892)^{-} \pi^{+}$	$(2.9 \pm 1.1) \times 10^{-6}$		2607
$\bar{D}^{0} f_{0}(980)$	$<3.1 \times 10^{-6}$	$\mathrm{CL}=90 \%$	2242	$K^{*}(892)^{ \pm} K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$		2585
$\bar{D}^{0} \phi$	$(3.0 \pm 0.5) \times 10^{-5}$		2235	$K_{0}^{*}(1430){ }^{ \pm} K^{\mp}$	$(3.1 \pm 2.5) \times 10^{-5}$		-
$\overline{D^{* 0}} \phi$	$(3.7 \pm 0.6) \times 10^{-5}$		2178	$K_{2}^{*}(1430)^{ \pm} K^{\mp}$	$(1.0 \pm 1.7) \times 10^{-5}$		-
$D^{* \mp} \pi^{ \pm}$	$<6.1 \times 10^{-6}$	$\mathrm{CL}=90 \%$	-	$K^{*}(892)^{0} \bar{K}^{0}+$ c.c.	$(2.0 \pm 0.6) \times 10^{-5}$		2585
$\eta_{c}{ }^{\phi}$	$(5.0 \pm 0.9) \times 10^{-4}$		1663	$K_{0}^{*}(1430) \bar{K}^{0}+$ c.c.	$(3.3 \pm 1.0) \times 10^{-5}$		2468
$\eta_{c} \pi^{+} \pi^{-}$	$(1.8 \pm 0.7) \times 10^{-4}$		1840	$K_{2}^{*}(1430)^{0} \bar{K}^{0}+$ c.c.	$(1.7 \pm 2.2) \times 10^{-5}$		2467
$J / \psi(1 S) \phi$	$(1.08 \pm 0.08) \times 10^{-3}$		1588	$K_{S}^{0} \bar{K}^{*}(892)^{0}+$ c.c.	$(1.6 \pm 0.4) \times 10^{-5}$		2585
$J / \psi(1 S) \phi \phi$	$\left(1.24{ }_{-}^{+} 0.17\right) \times 10^{-5}$		764	$K^{0} K^{+} K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$		2568
$J / \psi(1 S) \pi^{0}$	$<1.2 \times 10^{-3}$	CL=90\%	1787	$\bar{K}^{*}(892){ }^{0} \rho^{0}$	$<7.67 \times 10^{-4}$	$\mathrm{CL}=90 \%$	2550
$J / \psi(1 S) \eta$	$(4.0 \pm 0.7) \times 10^{-4}$	$\mathrm{S}=1.4$	1733	$\bar{K}^{*}(892)^{0} K^{*}(892)^{0}$	$(1.11 \pm 0.27) \times 10^{-5}$		2531
$J / \psi(1 S) K_{S}^{0}$	$(1.88 \pm 0.15) \times 10^{-5}$		1743	$\phi K^{*}(892)^{0}$	$(1.14 \pm 0.30) \times 10^{-6}$		2507
$J / \psi(1 S) \bar{K}^{*}(892)^{0}$	$(4.1 \pm 0.4) \times 10^{-5}$		1637	$p \bar{p}$	$<1.5 \times 10^{-8}$	$\mathrm{CL}=90 \%$	2514
$J / \psi(1 S) \eta^{\prime}$	$(3.3 \pm 0.4) \times 10^{-4}$		1612	$p \bar{p} K^{+} K^{-}$	$(4.5 \pm 0.5) \times 10^{-6}$		2231
$J / \psi(1 S) \pi^{+} \pi^{-}$	($2.09 \pm 0.23) \times 10^{-4}$	$\mathrm{S}=1.3$	1775	$p \bar{p} K^{+} \pi^{-}$	$(1.39 \pm 0.26) \times 10^{-6}$		2355
$J / \psi(1 S) f_{0}(500), f_{0} \rightarrow$	$<4 \times 10^{-6}$	CL=90\%	-	$p \underline{\bar{p}} \pi^{+} \pi^{-}$	$(4.3 \pm 2.0) \times 10^{-7}$		2454
$\pi^{+} \pi^{-}$	$\bigcirc \times 10$	CL=90\%		$p \bar{\Lambda} K^{-}+$c.c.	$(5.5 \pm 1.0) \times 10^{-6}$		2358
$J / \psi(1 S) \rho, \rho \rightarrow \pi^{+} \pi^{-}$	$<4 \times 10^{-6}$	$\mathrm{CL}=90 \%$	-	$\Lambda_{c}^{-} \wedge \pi^{+}$	$(3.6 \pm 1.6) \times 10^{-4}$		1979
$\begin{gathered} J / \psi(1 S) f_{0}(980), \quad f_{0} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$	$(1.28 \pm 0.18) \times 10^{-4}$	$\mathrm{S}=1.7$	-	$\Lambda_{c}^{-} \Lambda_{c}^{+}$	$<8.0 \times 10^{-5}$	CL=95\%	1405
$\begin{aligned} & J / \psi(1 S) f_{2}(1270), \quad f_{2} \rightarrow \\ & \pi^{+} \pi^{-} \end{aligned}$	$(1.1 \pm 0.4) \times 10^{-6}$		-	Lepton Family n $\Delta B=1$ weak	umber ($L F$) violating modes neutral current (B1) modes		
$J / \psi(1 S) f_{2}(1270)_{0}, f_{2} \rightarrow$	$(7.5 \pm 1.8) \times 10^{-7}$		-	$\gamma \gamma \quad B 1$	$<3.1 \times 10^{-6}$	CL=90\%	2683
$\pi^{+} \pi^{-}$				$\phi \gamma \quad B 1$	$(3.4 \pm 0.4) \times 10^{-5}$		2587
$J / \psi(1 S) f_{2}(1270){ }_{\\|}, f_{2} \rightarrow$	$(1.09 \pm 0.34) \times 10^{-6}$		-	$\mu^{+} \mu^{-} \quad B 1$	$(3.0 \pm 0.4) \times 10^{-9}$		2681
$\pi^{+} \pi^{-}$(1270) ${ }^{\text {d }}$				$e^{+} e^{-} \quad$ B1	$<2.8 \times 10^{-7}$	CL=90\%	2683
$\begin{gathered} J / \psi(1 S) f_{2}(1270) \perp, \quad f_{2} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$	$(1.3 \pm 0.8) \times 10^{-6}$		-	$\tau^{+} \tau^{-} \quad B 1$	$<6.8 \times 10^{-3}$	CL=95\%	2011
				$\mu^{+} \mu^{-} \mu^{+} \mu^{-} \quad$ B1	$<2.5 \times 10^{-9}$	CL=95\%	2673
$\begin{gathered} J / \psi(1 S) f_{0}(1370), f_{0} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$	$\left(4.5{ }_{-}^{+0.7}{ }_{4}^{0.7}\right) \times 10^{-5}$		-	$\begin{aligned} & S P, S \rightarrow \mu^{+} \mu^{-}, \quad B 1 \\ & P \rightarrow \mu^{+} \mu^{-} \end{aligned}$	[aaaa] < 2.2×10^{-9}	CL=95\%	-
$J / \psi(1 S) f_{0}(1500), f_{0} \rightarrow$	$\left(2.11-{ }_{-}^{+0.40}\right) \times 10^{-5}$		-	$\phi(1020) \mu^{+} \mu^{-} \quad$ B1	$(8.2 \pm 1.2) \times 10^{-7}$		2582
$\pi^{+} \pi^{-} f^{\prime}(1525)$				$\bar{K}^{*}(892)^{0} \mu^{+} \mu^{-}$	$(2.9 \pm 1.1) \times 10^{-8}$		2605
$\begin{gathered} J / \psi(1 S) f_{2}^{\prime}(1525)_{0}, \quad f_{2}^{\prime} \rightarrow \\ \pi^{+}+\pi^{-} \end{gathered}$	$(1.07 \pm 0.24) \times 10^{-6}$		-	$\pi^{+} \pi^{-} \mu^{+} \mu^{-} \quad$ B1	$(8.4 \pm 1.7) \times 10^{-8}$		2670

Mass $m=5839.86 \pm 0.12 \mathrm{MeV}$
$m_{B_{s}^{* 0}}-m_{B^{+}}=560.52 \pm 0.14 \mathrm{MeV}$
Full width $\Gamma=1.49 \pm 0.27 \mathrm{MeV}$

$\boldsymbol{B}_{\mathbf{s 2}}^{\boldsymbol{*}} \mathbf{(5 8 4 0}^{\mathbf{0}}$ 0 DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$B^{+} K^{-}$	DEFINED AS 1	252
$B^{*+} K^{-}$	0.093 ± 0.018	141
$B^{0} K_{S}^{0}$	0.43 ± 0.11	245
$B^{* 0} K_{S}^{0}$	0.04 ± 0.04	-

$$
\begin{gathered}
\hline \text { BOTTOM, CHARMED MESONS } \\
(B=C= \pm 1) \\
B_{c}^{+}=c \bar{b}, B_{c}^{-}=\bar{c}, \quad \text { similary for } B_{c}^{* *} \\
\hline
\end{gathered}
$$

B_{c}^{+}
$I\left(J^{P}\right)=0\left(0^{-}\right)$
I, J, P need confirmation.
Quantum numbers shown are quark-model predictions.

$$
\begin{gathered}
\text { Mass } m=6274.9 \pm 0.8 \mathrm{MeV} \\
\text { Mean life } \tau=(0.510 \pm 0.009) \times 10^{-12} \mathrm{~s} \\
B_{\boldsymbol{C}}^{-} \text {modes are charge conjugates of the modes below. } \\
\\
\boldsymbol{B}_{\boldsymbol{c}}^{+} \text {DECAY MODES } \times \mathbf{B}\left(\overline{\boldsymbol{b}} \rightarrow \boldsymbol{B}_{\boldsymbol{c}}\right) \quad \text { Fraction }\left(\Gamma_{\boldsymbol{i}} / \Gamma\right) \quad \text { Confidence level } \begin{array}{c}
p \\
(\mathrm{MeV} / \mathrm{c}) \\
\hline
\end{array}
\end{gathered}
$$

The following quantities are not pure branching ratios; rather the fraction $\Gamma_{i} / \Gamma \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)$.

$J / \psi(1 S) \ell^{+} \nu_{\ell}$ anything	$(8.1 \pm 1.2) \times 10^{-5}$	-
$J / \psi(1 S) \pi^{+}$	seen	2371
$J / \psi(1 S) K^{+}$	seen	2341
$J / \psi(1 S) \pi^{+} \pi^{+} \pi^{-}$	seen	2350
$J / \psi(1 S) a_{1}(1260)$	seen	$\times 10^{-3}$
$J / \psi(1 S) K^{+} K^{-} \pi^{+}$	seen	90%
$J / \psi(1 S) \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	seen	2169
$\psi(2 S) \pi^{+}$	seen	2203
$J / \psi(1 S) D^{0} K^{+}$	seen	2309
$J / \psi(1 S) D^{*}(2007)^{0} K^{+}$	seen	2052
$J / \psi(1 S) D^{*}(2010)^{+} K^{* 0}$	seen	1539
$J / \psi(1 S) D^{+} K^{* 0}$	seen	1412
$J / \psi(1 S) D_{S}^{+}$	seen	920
$J / \psi(1 S) D_{S}^{*+}$	seen	1123
$J / \psi(1 S) p \bar{p} \pi^{+}$		1822
		1728
		1792

Meson Summary Table

Meson Summary Table

${ }_{\boldsymbol{h}}^{\boldsymbol{c}}$ (1P) DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \end{gathered}$
$J / \psi(1 S) \pi \pi$	not seen		312
$J / \psi(1 S) \pi^{+} \pi^{-}$	< 2.3	-3 90\%	305
$p \bar{p}$	<1.5	90\%	1492
$p \bar{p} \pi^{+} \pi^{-}$	$(2.9 \pm 0.6) \times$		1390
$\pi^{+} \pi^{-} \pi^{0}$	(1.6 ± 0.5) \times		1749
$2 \pi^{+} 2 \pi^{-} \pi^{0}$	(8.1 ± 1.8) \times		1716
$3 \pi^{+} 3 \pi^{-} \pi^{0}$	<9	-3 90\%	1661
$K^{+} K^{-} \pi^{+} \pi^{-}$	<6	90\%	1640
	ive decays		
$\gamma \eta$	$(4.7 \pm 2.1) \times$		1720
$\gamma \eta^{\prime}(958)$	$(1.5 \pm 0.4) \times$		1633
$\gamma \eta_{C}(1 S)$	(51 ± 6) \%		500
$\chi_{c 2}(1 P)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{+}+\right)$		

Mass $m=3556.17 \pm 0.07 \mathrm{MeV}$
Full width $\Gamma=1.97 \pm 0.09 \mathrm{MeV}$
$\chi_{C 2}(1 P)$ DECAY MODES
Fraction $\left(\Gamma_{i} / \Gamma\right) \quad$ Confidence level $(\mathrm{MeV} / \mathrm{c})$
$2\left(\pi^{+} \pi^{-}\right)$
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$
${ }^{\rho^{+}} \pi^{-} \pi^{0}+$ c.c.
$4 \pi^{0}$
$K^{+} K^{-} \pi^{0} \pi^{0}$
$K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c. $\rho^{-} K^{+} \bar{K}^{0}+$ c.c.
$K^{*}(892)^{0} K^{-} \pi^{+} \rightarrow$ $K^{-} \pi^{+} K^{0} \pi^{0}+$ c.c.
$K^{*}(892)^{0} \bar{K}^{0} \pi^{0} \rightarrow$ $K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c.
$K^{*}(892)^{-} K^{+} \pi^{0} \rightarrow$ $K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c.
$K^{*}(892)^{+} \bar{K}^{0} \pi^{-} \rightarrow$ $K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c.
$K^{+} K^{-} \eta \pi^{0}$
$K^{+} K^{-} \pi^{+} \pi^{-}$
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
$K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$
$K^{+} \bar{K}^{*}(892)^{0} \pi^{-}+$c.c.
$K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$
$3\left(\pi^{+} \pi^{-}\right)$
$\phi \phi$
$\phi \phi \eta$
$\omega K^{+} K^{-}$
$\omega \phi$
${ }^{\pi \pi} \rho^{0} \pi^{+} \pi^{-}$
$\pi^{+} \pi^{-} \pi^{0}$ (non-resonant)
$\rho(770)^{ \pm} \pi^{\mp}$
$\pi^{+} \pi^{-} \eta$
$\pi^{+} \pi^{-} \eta^{\prime}$
$\eta \eta$
$K^{+} K^{-}$
$K_{S}^{0} K_{S}^{0}$
$K^{*}(892)^{ \pm} K^{\mp}$
$K^{*}(892)^{0} \bar{K}^{0}+$ c.c.
$K_{2}^{*}(1430)^{ \pm} K^{\mp}$
$K_{2}^{*}(1430)^{0} \bar{K}^{0}+$ c.c.
$K_{3}^{*}(1780)^{ \pm} K^{\mp}$
$K_{3}^{*}(1780)^{0} \bar{K}^{0}+$ c.c.
$a_{2}(1320)^{0} \pi^{0}$
$a_{2}(1320)^{ \pm} \pi^{\mp}$
$\bar{K}^{0} K^{+} \pi^{-}+$c.c.
$K^{+} K^{-} \pi^{0}$
$K^{+} K^{-} \eta$
$K^{+} K^{-} \eta^{\prime}(958)$
$\eta \eta^{\prime}$
$\eta^{\prime} \eta^{\prime}$
$\pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0}$
$K^{+} K^{-} K_{S}^{0} K_{S}^{0}$
$K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$

Hadronic decays

($1.02 \pm 0.09) \%$		1751
($1.83 \pm 0.23) \%$		1752
($2.19 \pm 0.34) \%$		1682
$(1.11 \pm 0.15) \times 10^{-3}$		1752
$(2.1 \pm 0.4) \times 10^{-3}$		1658
$(1.38 \pm 0.20) \%$		1657
$(4.1 \pm 1.2) \times 10^{-3}$		1540
$(2.9 \pm 0.8) \times 10^{-3}$		-
$(3.8 \pm 0.9) \times 10^{-3}$		
$(3.7 \pm 0.8) \times 10^{-3}$		
$(2.9 \pm 0.8) \times 10^{-3}$		-
$(1.3 \pm 0.4) \times 10^{-3}$		1549
$(8.4 \pm 0.9) \times 10^{-3}$		1656
$(1.17 \pm 0.13) \%$		1623
$(7.3 \pm 0.8) \times 10^{-3}$		1621
$(2.1 \pm 1.1) \times 10^{-3}$		1602
$(2.3 \pm 0.4) \times 10^{-3}$		1538
$(8.6 \pm 1.8) \times 10^{-3}$		1707
$(1.06 \pm 0.09) \times 10^{-3}$		1457
$(5.3 \pm 0.6) \times 10^{-4}$		1206
$(8.4 \pm 1.0) \times 10^{-4}$		1597
$(7.3 \pm 0.9) \times 10^{-4}$		1540
$(9.6 \pm 2.7) \times 10^{-6}$		1529
$(2.23 \pm 0.09) \times 10^{-3}$		1773
$(3.7 \pm 1.6) \times 10^{-3}$		1682
$(2.0 \pm 0.4) \times 10^{-5}$		1765
$\left(\begin{array}{lll}6 & \pm 4\end{array}\right) \times 10^{-6}$		-
$(4.8 \pm 1.3) \times 10^{-4}$		1724
$(5.0 \pm 1.8) \times 10^{-4}$		1636
$(5.4 \pm 0.4) \times 10^{-4}$		1692
$(1.01 \pm 0.06) \times 10^{-3}$		1708
$(5.2 \pm 0.4) \times 10^{-4}$		1707
$(1.44 \pm 0.21) \times 10^{-4}$		1627
$(1.24 \pm 0.27) \times 10^{-4}$		1627
$(1.48 \pm 0.12) \times 10^{-3}$		
$(1.24 \pm 0.17) \times 10^{-3}$		1443
$(5.2 \pm 0.8) \times 10^{-4}$		-
$(5.6 \pm 2.1) \times 10^{-4}$		1276
$(1.29 \pm 0.34) \times 10^{-3}$		
$(1.8 \pm 0.6) \times 10^{-3}$		1531
$(1.28 \pm 0.18) \times 10^{-3}$		1685
$(3.0 \pm 0.8) \times 10^{-4}$		1686
$<3.2 \times 10^{-4}$	90\%	1592
$(1.94 \pm 0.34) \times 10^{-4}$		1488
$(2.2 \pm 0.5) \times 10^{-5}$		1600
$(4.6 \pm 0.6) \times 10^{-5}$		1498
$(2.2 \pm 0.5) \times 10^{-3}$		1655
$<4 \times 10^{-4}$	90\%	1418
$(1.13 \pm 0.18) \times 10^{-4}$		1415

Meson Summary Table

Meson Summary Table

Meson Summary Table

$h_{b}(1 P)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\prime}$)	$p(\mathrm{MeV} / \mathrm{c})$	
$\eta_{b}(1 S) \gamma$	$\left(52-{ }_{-5}^{+6}\right) \%$		488
$\chi_{b 2}(1 P)^{[b b b b]}$	$I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$ J needs confirmation.		
Mass $m=9912.21 \pm 0.26 \pm 0.31 \mathrm{MeV}$			
$\underline{\chi_{b 2}(1 P)}$ DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	Confidence level	$(\mathrm{MeV} / \mathrm{c})$
$\gamma \Upsilon(1 S)$	$(18.0 \pm 1.0) \%$		442
$D^{0} \chi$	<7.9 \%	90\%	-
$\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}$	$(8 \pm 5) \times 10$		4902
$2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}$	$<1.0 \times 10$	-4 90\%	4901
$2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}$	$(5.3 \pm 2.4) \times$		4873
$2 \pi^{+} 2 \pi^{-} 2 \pi^{0}$	$(3.5 \pm 1.4) \times 10$		4931
$2 \pi^{+} 2 \pi^{-} K^{+} K^{-}$	$(1.1 \pm 0.4) \times$		4888
$2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}$	$(2.1 \pm 0.9) \times 10$		4872
$2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}$	$(3.9 \pm 1.8) \times 10$		4855
$3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}$	$<5 \times 10$	90\%	4854
$3 \pi^{+} 3 \pi^{-}$	$(7.0 \pm 3.1) \times$		4931
$3 \pi^{+} 3 \pi^{-} 2 \pi^{0}$	$(1.0 \pm 0.4) \times 10$		4908
$3 \pi^{+} 3 \pi^{-} K^{+} K^{-}$	$<8 \times$	-5 90\%	4854
$3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}$	$(3.6 \pm 1.5) \times 10$		4835
$4 \pi^{+} 4 \pi^{-}$	$(8 \pm 4) \times 1$		4907
$4 \pi^{+} 4 \pi^{-} 2 \pi^{0}$	$(1.8 \pm 0.7) \times 10$		4877
$J / \psi J / \psi$	$<4 \times$	-5 90\%	3869
$J / \psi \psi(2 S)$	$<5 \times$	-5 90\%	3608
$\psi(2 S) \psi(2 S)$	$<1.6 \times 10$	-5 90\%	3313
$J / \psi(1 S)$ anything	$(1.5 \pm 0.4) \times 1$		-

$r(2 S)$

$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
Mass $m=10023.26 \pm 0.31 \mathrm{MeV}$
$m_{r(3 S)}-m_{r(2 S)}=331.50 \pm 0.13 \mathrm{MeV}$
Full width $\Gamma=31.98 \pm 2.63 \mathrm{keV}$
$\Gamma_{e e}=0.612 \pm 0.011 \mathrm{keV}$

$\underline{r(2 S) ~ D E C A Y ~ M O D E S ~}$	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	$\begin{array}{r} \text { Sc } \\ \text { Confic } \end{array}$	le factor/ ence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	(17.85 $\pm 0.26)$			475
$\Upsilon(1 S) \pi^{0} \pi^{0}$	(8.6 ± 0.4)			480
$\tau^{+} \tau^{-}$	(2.00 ± 0.21)			4686
$\mu^{+} \mu^{-}$	(1.93 ± 0.17)		$\mathrm{S}=2.2$	5011
$e^{+} e^{-}$	(1.91 ± 0.16)	\%		5012
$\Upsilon(1 S) \pi^{0}$	<4	$\times 10^{-5}$	CL=90\%	531
$\gamma(1 S) \eta$	(2.9 ± 0.4)	$\times 10^{-4}$	$\mathrm{S}=2.0$	126
$J / \psi(1 S)$ anything	<6	$\times 10^{-3}$	$\mathrm{CL}=90 \%$	4533
$J / \psi(1 S) \eta_{C}$	<5.4	$\times 10^{-6}$	CL=90\%	3984
$J / \psi(1 S) \chi_{c 0}$	<3.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	3808
$J / \psi(1 S) \chi_{c 1}$	< 1.2	$\times 10^{-6}$	CL=90\%	3765
$J / \psi(1 S) \chi_{C 2}$	<2.0	$\times 10^{-6}$	CL=90\%	3744
$J / \psi(1 S) \eta_{C}(2 S)$	<2.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	3707
$J / \psi(1 S) X(3940)$	< 2.0	$\times 10^{-6}$	CL=90\%	3555
$J / \psi(1 S) X(4160)$	< 2.0	$\times 10^{-6}$	CL=90\%	3440
$\chi_{c 1}$ anything	(2.2 ± 0.5)	$\times 10^{-4}$		-
$\chi_{c 1}(1 P)^{0} \chi_{\text {tetra }}$	< 3.67	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	-
$\chi_{C 2}$ anything	(2.3 ± 0.8)	$\times 10^{-4}$		-
$\psi(2 S) \eta_{c}$	<5.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	3732
$\psi(2 S) \chi_{c 0}$	<4.7	$\times 10^{-6}$	CL=90\%	3536
$\psi(2 S) \chi_{c 1}$	<2.5	$\times 10^{-6}$	CL=90\%	3488
$\psi(2 S) \chi_{C 2}$	<1.9	$\times 10^{-6}$	CL=90\%	3464
$\psi(2 S) \eta_{C}(2 S)$	<3.3	$\times 10^{-6}$	CL=90\%	3422
$\psi(2 S) X(3940)$	< 3.9	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	3250
$\psi(2 S) X(4160)$	<3.9	$\times 10^{-6}$	CL=90\%	3118
$Z_{C}(3900)^{+} Z_{C}(3900)^{-}$	<1.0	$\times 10^{-6}$	CL=90\%	-
$Z_{C}(4200)^{+} Z_{C}(4200)^{-}$	< 1.67	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	-
$Z_{C}(3900)^{ \pm} Z_{C}(4200)^{\mp}$	<7.3	$\times 10^{-6}$	CL=90\%	-
$X(4050)^{+} X(4050)^{-}$	< 1.35	$\times 10^{-5}$	CL=90\%	-
$X(4250)^{+} X(4250)^{-}$	< 2.67	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	-
$X(4050)^{ \pm} X(4250)^{\mp}$	< 2.72	$\times 10^{-5}$	CL=90\%	-
$Z_{C}(4430)^{+} Z_{C}(4430)^{-}$	< 2.03	$\times 10^{-5}$	CL=90\%	-
$X(4055)^{ \pm} X(4055)^{\mp}$	< 1.11	$\times 10^{-5}$	CL=90\%	-
$X(4055)^{ \pm} Z_{C}(4430)^{\mp}$	<2.11	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	-
${ }^{2} H$ anything	$\left(2.78{ }_{-}^{+} 0.36\right)$	$\times 10^{-5}$	$\mathrm{S}=1.2$	-

also known as $\Upsilon(10580)$

$$
\begin{aligned}
& \text { Mass } m=10579.4 \pm 1.2 \mathrm{MeV} \\
& \text { Full width } \Gamma=20.5 \pm 2.5 \mathrm{MeV} \\
& \Gamma_{e e}=0.272 \pm 0.029 \mathrm{keV} \quad(S=1.5)
\end{aligned}
$$

Meson Summary Table

$K^{*}(892)^{0} \bar{K}^{0}$	<2.0	$\times 10^{-6}$	90\%	5240
$J / \psi(1 S)$ anything	< 1.9	$\times 10^{-4}$	95\%	-
D^{*+} anything + c.c.	<7.4	\%	90\%	5099
ϕ anything	(7.1 ± 0.6) \%		5240	
$\phi \eta$	< 1.8	$\times 10^{-6}$	90\%	5226
$\phi \eta^{\prime}$	<4.3	$\times 10^{-6}$	90\%	5196
$\rho \eta$	<1.3	$\times 10^{-6}$	90\%	5247
$\rho \eta^{\prime}$	<2.5	$\times 10^{-6}$	90\%	5217
$\Upsilon(1 S)$ anything	< 4	$\times 10^{-3}$	90\%	1053
$\gamma(1 S) \pi^{+} \pi^{-}$	$(8.2 \pm 0.4) \times 10^{-5}$		1026	
$\gamma(1 S) \eta$	$(1.81 \pm 0.18) \times 10^{-4}$		924	
$\gamma(1 S) \eta^{\prime}$	$(3.4 \pm 0.9) \times 10^{-5}$			-
$\gamma(2 S) \pi^{+} \pi^{-}$	($8.2 \pm 0.8) \times 10^{-5}$			468
$h_{b}(1 P) \pi^{+} \pi^{-}$	not seen			600
$h_{b}(1 P) \eta$	$(2.18 \pm 0.21) \times 10^{-3}$		90\%	390
${ }^{2} H$ anything	<1.3	$\times 10^{-5}$		-
Double Radiative Decays				
$\gamma \gamma \gamma(\mathrm{D}) \rightarrow \gamma \gamma \eta \gamma(1 S)$	<2.3	$\times 10^{-5}$	90\%	-
$Z_{b}(10610)$	$I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)$			
was $X(10610)$				
Mass $m=10607.2 \pm 2.0 \mathrm{MeV}$ Full width 「 $=18.4 \pm 2.4 \mathrm{MeV}$				
$Z_{b}(\mathbf{1 0 6 1 0})$ DECAY MODES	Fraction (Γ_{i} / Γ)		$p(\mathrm{MeV} / \mathrm{c})$	
$\Upsilon(1 S) \pi^{+}$	$(5.4-1.5) \times 10^{-3}$		1077	
$\gamma(1 S) \pi^{0}$	not seen		1077	
$\gamma(2 S) \pi^{+}$	$\left(3.6{ }_{-0.8}^{+1.1}\right) \%$		551	
$\gamma(2 S) \pi^{0}$	seen		552	
$\gamma(3 S) \pi^{+}$	$(2.1-0.6)$ \%		207	
$\gamma(3 S) \pi^{0}$	seen		210	
$h_{b}(1 P) \pi^{+}$	$\left(3.5{ }_{-0.9}^{+1.2}\right) \%$		671	
$h_{b}(2 P) \pi^{+}$	$\left(4.7{ }_{-1.3}^{+1.7}\right) \%$		313	
$B^{+} \bar{B}^{0}$	not seen		505	
$B^{+} \bar{B}^{* 0}+B^{*+} \bar{B}^{0}$	$(85.6-2.1)$ \%			-

$\begin{array}{ll}Z_{\boldsymbol{b}}(\mathbf{1 0 6 5 0}) & I G(J P C)=1^{+}(1+-) \\ I, G, C \text { need confirmation. }\end{array}$
was $X(10650)^{ \pm}$
Mass $m=10652.2 \pm 1.5 \mathrm{MeV}$
Full width $\Gamma=11.5 \pm 2.2 \mathrm{MeV}$
$Z_{b}(10650)^{-}$decay modes are charge conjugates of the modes below.

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

> Mass $m=11000 \pm 4 \mathrm{MeV}$
> Full width $\Gamma=24_{-6}^{+8} \mathrm{MeV}$
> $\Gamma_{e e}=0.130 \pm 0.030 \mathrm{keV}$

$\boldsymbol{r}(11020)$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$e^{+} e^{-}$	$\left(5.4_{-2.1}^{+1.9}\right) \times 10^{-6}$	5500
$\chi_{b J}(1 P) \pi^{+} \pi^{-} \pi^{0}$	$\left(9 \begin{array}{c} \pm 9\end{array}\right) \times 10^{-3}$	1007
$\chi_{b 1}(1 P) \pi^{+} \pi^{-} \pi^{0}$	seen	975
$\chi_{b 2}(1 P) \pi^{+} \pi^{-} \pi^{0}$	seen	956

NOTES

In this Summary Table:
When a quantity has " $(S=\ldots)$ " to its right, the error on the quantity has been enlarged by the "scale factor" S , defined as $\mathrm{S}=\sqrt{\chi^{2} /(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when $S>1$, which often indicates that the measurements are inconsistent. When $S>1.25$, we also show in the Particle Listings an ideogram of the measurements. For more about S , see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.
[a] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
[b] Measurements of $\Gamma\left(e^{+} \nu_{e}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$ always include decays with γ 's, and measurements of $\Gamma\left(e^{+} \nu_{e} \gamma\right)$ and $\Gamma\left(\mu^{+} \nu_{\mu} \gamma\right)$ never include lowenergy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $\left[\Gamma\left(e^{+} \nu_{e}\right)+\Gamma\left(\mu^{+} \nu_{\mu}\right)\right] / \Gamma_{\text {total }}=100 \%$.
[c] See the $\pi^{ \pm}$Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
[d] Derived from an analysis of neutrino-oscillation experiments.
[e] Astrophysical and cosmological arguments give limits of order 10^{-13}.
[f] Forbidden by angular momentum conservation.
[g] C parity forbids this to occur as a single-photon process.
[h] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e \mu$ universality holds, $\Gamma\left(\rho^{0} \rightarrow \mu^{+} \mu^{-}\right)=\Gamma\left(\rho^{0} \rightarrow e^{+} e^{-}\right)$ $\times 0.99785$.
[i] See the "Note on $a_{1}(1260)$ " in the $a_{1}(1260)$ Particle Listings in PDG 06, Journal of Physics G33 1 (2006).
[j] Our estimate. See the Particle Listings for details.
[k] See the note on "Non- $q \bar{q}$ mesons" in the Particle Listings in PDG 06, Journal of Physics G33 1 (2006).
[/] See also the $\omega(1650)$.
[n] See also the $\omega(1420)$.
[o] See the note in the $K^{ \pm}$Particle Listings.
[p] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975).
[q] The definition of the slope parameters of the $K \rightarrow 3 \pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \rightarrow 3 \pi$ Decays" in the $K^{ \pm}$Particle Listings):

$$
|M|^{2}=1+g\left(s_{3}-s_{0}\right) / m_{\pi^{+}}^{2}+\cdots
$$

[r] For more details and definitions of parameters see the Particle Listings.
[s] See the $K^{ \pm}$Particle Listings for the energy limits used in this measurement.
[t] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
[u] Structure-dependent part.
[v] Direct-emission branching fraction.
[x] Violates angular-momentum conservation.
[y] Derived from measured values of $\phi_{+-}, \phi_{00},|\eta|,\left|m_{K_{L}^{0}}-m_{K_{S}^{0}}\right|$, and $\tau_{K_{s}^{0}}$, as described in the introduction to "Tests of Conservation Laws."
[z] The $C P$-violation parameters are defined as follows (see also "Note on $C P$ Violation in $K_{S} \rightarrow 3 \pi$ " and "Note on CP Violation in K_{L}^{0} Decay" in the Particle Listings):
$\eta_{+-}=\left|\eta_{+-}\right| e^{i \phi_{+-}}=\frac{A\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=\epsilon+\epsilon^{\prime}$
$\eta_{00}=\left|\eta_{00}\right| \mathrm{e}^{i \phi_{00}}=\frac{A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)}=\epsilon-2 \epsilon^{\prime}$
$\delta=\frac{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)-\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \ell^{-} \nu\right)}{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)+\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \ell^{-} \nu\right)}$,
$\operatorname{Im}\left(\eta_{+-0}\right)^{2}=\frac{\Gamma\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)^{C P} \text { viol. }}{\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}$,
$\operatorname{Im}\left(\eta_{000}\right)^{2}=\frac{\Gamma\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)}$.
where for the last two relations $C P T$ is assumed valid, i.e., $\operatorname{Re}\left(\eta_{+-0}\right) \simeq$ 0 and $\operatorname{Re}\left(\eta_{000}\right) \simeq 0$.
[aa] See the K_{S}^{0} Particle Listings for the energy limits used in this measurement.
[bb] The value is for the sum of the charge states or particle/antiparticle states indicated.
[cc] $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=\epsilon^{\prime} / \epsilon$ to a very good approximation provided the phases satisfy CPT invariance.
[dd] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma(\mathrm{DE})$.
[ee] See the K_{L}^{0} Particle Listings for the energy limits used in this measurement.
[ff] Allowed by higher-order electroweak interactions.
$[g g]$ Violates $C P$ in leading order. Test of direct $C P$ violation since the indirect $C P$-violating and $C P$-conserving contributions are expected to be suppressed.
[$h h$] See the "Note on $f_{0}(1370)$ " in the $f_{0}(1370)$ Particle Listings and in the 1994 edition.
[ii] See the note in the $L(1770)$ Particle Listings in Reviews of Modern Physics 56 S1 (1984), p. S200. See also the "Note on $K_{2}(1770)$ and the $K_{2}(1820)$ " in the $K_{2}(1770)$ Particle Listings .
[jj] See the "Note on $K_{2}(1770)$ and the $K_{2}(1820)$ " in the $K_{2}(1770)$ Particle Listings.
[kk] This result applies to $Z^{0} \rightarrow c \bar{c}$ decays only. Here ℓ^{+}is an average (not a sum) of e^{+}and μ^{+}decays.
[/I] See the Particle Listings for the (complicated) definition of this quantity.
[$n n$] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
[oo] These subfractions of the $K^{-} 2 \pi^{+}$mode are uncertain: see the Particle Listings.
[$p p$] Submodes of the $D^{+} \rightarrow K^{-} 2 \pi^{+} \pi^{0}$ and $K_{S}^{0} 2 \pi^{+} \pi^{-}$modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second - not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters B667 1 (2008), for those results.
$[q q]$ The unseen decay modes of the resonances are included.
[$r r$] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^{+} \ell^{+} \ell^{-}$final state.
[ss] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
[$t t$] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
[uu] This value is obtained by subtracting the branching fractions for 2-, 4and 6-prongs from unity.
$[v v]$ This is the sum of our $K^{-} 2 \pi^{+} \pi^{-}, \quad K^{-} 2 \pi^{+} \pi^{-} \pi^{0}$, $\bar{K}^{0} 2 \pi^{+} 2 \pi^{-}, K^{+} 2 K^{-} \pi^{+}, 2 \pi^{+} 2 \pi^{-}, 2 \pi^{+} 2 \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{+} \pi^{-}$, and $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$, branching fractions.
[$x x$] This is the sum of our $K^{-} 3 \pi^{+} 2 \pi^{-}$and $3 \pi^{+} 3 \pi^{-}$branching fractions.
[yy] The branching fractions for the $K^{-} e^{+} \nu_{e}, K^{*}(892)^{-} e^{+} \nu_{e}, \pi^{-} e^{+} \nu_{e}$, and $\rho^{-} e^{+} \nu_{e}$ modes add up to $6.17 \pm 0.17 \%$.
[zz] This is a doubly Cabibbo-suppressed mode.
[aaa] Submodes of the $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ mode with a K^{*} and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters B667 1 (2008), for those results.
$[b b b]$ This branching fraction includes all the decay modes of the resonance in the final state.
[ccc] This limit is for either D^{0} or \bar{D}^{0} to $p e^{-}$.
[ddd] This limit is for either D^{0} or \bar{D}^{0} to $\bar{p} e^{+}$.
[eee] This is the purely e^{+}semileptonic branching fraction: the e^{+}fraction from τ^{+}decays has been subtracted off. The sum of our (non- τ) e^{+} exclusive fractions - an $e^{+} \nu_{e}$ with an $\eta, \eta^{\prime}, \phi, K^{0}$, or $K^{* 0}$ - is $5.99 \pm 0.31 \%$.
[fff] This fraction includes η from η^{\prime} decays.
[ggg] The sum of our exclusive η^{\prime} fractions $-\eta^{\prime} e^{+} \nu_{e}, \eta^{\prime} \mu^{+} \nu_{\mu}, \eta^{\prime} \pi^{+}, \eta^{\prime} \rho^{+}$, and $\eta^{\prime} K^{+}$— is $11.8 \pm 1.6 \%$.
[hhh] This branching fraction includes all the decay modes of the final-state resonance.
[iii] A test for $u \bar{u}$ or $d \bar{d}$ content in the D_{s}^{+}. Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4}.
[jjj] We decouple the $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_{s}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow K^{+} K^{-}$branching fraction obtained from the Dalitz-plot analysis of $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$. That is, the ratio of these two branching fractions is not exactly the $\phi \rightarrow K^{+} K^{-}$branching fraction 0.491 .

Meson Summary Table

[kkk] This is the average of a model-independent and a K-matrix parametrization of the $\pi^{+} \pi^{-} S$-wave and is a sum over several f_{0} mesons.
[III] An ℓ indicates an e or a μ mode, not a sum over these modes.
[nnn] An $C P(\pm 1)$ indicates the $C P=+1$ and $C P=-1$ eigenstates of the D^{0} \bar{D}^{0} system.
[ooo] D denotes D^{0} or \bar{D}^{0}.
[ppp] $D_{C P+}^{* 0}$ decays into $D^{0} \pi^{0}$ with the D^{0} reconstructed in $C P$-even eigenstates $K^{+} K^{-}$and $\pi^{+} \pi^{-}$.
[qqq] $\bar{D}^{* *}$ represents an excited state with mass $2.2<\mathrm{M}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
$[r r r] \chi_{c 1}(3872)^{+}$is a hypothetical charged partner of the $\chi_{c 1}(3872)$.
[sss] $\Theta(1710)^{++}$is a possible narrow pentaquark state and $G(2220)$ is a possible glueball resonance.
$[t t t]\left(\bar{\Lambda}_{c}^{-} p\right)_{s}$ denotes a low-mass enhancement near $3.35 \mathrm{GeV} / \mathrm{c}^{2}$.
[uuu] Stands for the possible candidates of $K^{*}(1410), K_{0}^{*}(1430)$ and $K_{2}^{*}(1430)$.
[vvv] B^{0} and B_{s}^{0} contributions not separated. Limit is on weighted average of the two decay rates.
$[x x x]$ This decay refers to the coherent sum of resonant and nonresonant J^{P} $=0^{+} K \pi$ components with $1.60<m_{K \pi}<2.15 \mathrm{GeV} / \mathrm{c}^{2}$.
[yyy] $X(214)$ is a hypothetical particle of mass $214 \mathrm{MeV} / \mathrm{c}^{2}$ reported by the HyperCP experiment, Physical Review Letters 94021801 (2005)
[zzz] $\Theta(1540)^{+}$denotes a possible narrow pentaquark state.
[aaaa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of $2.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$, respectively.
[bbaa] These values are model dependent.
[ccaa] Here "anything" means at least one particle observed.
[ddaa] This is a $\mathrm{B}\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}\right)$ value.
[eeaa] $D^{* *}$ stands for the sum of the $D\left(1^{1} P_{1}\right), D\left(1^{3} P_{0}\right), D\left(1^{3} P_{1}\right), D\left(1^{3} P_{2}\right)$, $D\left(2^{1} S_{0}\right)$, and $D\left(2^{1} S_{1}\right)$ resonances.
[ffaa] $D^{(*)} \bar{D}^{(*)}$ stands for the sum of $D^{*} \bar{D}^{*}, D^{*} \bar{D}, D \bar{D}^{*}$, and $D \bar{D}$.
[ggaa] X (3915) denotes a near-threshold enhancement in the $\omega J / \psi$ mass spectrum.
[hhaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
[iiaa] D_{j} represents an unresolved mixture of pseudoscalar and tensor $D^{* *}$ (P-wave) states.
[jjaa] Not a pure measurement. See note at head of B_{s}^{0} Decay Modes.
[kkaa] For $E_{\gamma}>100 \mathrm{MeV}$.
[/laa] Includes $p \bar{p} \pi^{+} \pi^{-} \gamma$ and excludes $p \bar{p} \eta, p \bar{p} \omega, p \bar{p} \eta^{\prime}$.
[nnaa] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
[ooaa] For a narrow state A with mass less than 960 MeV .
[ppaa] For a narrow scalar or pseudoscalar A^{0} with mass $0.21-3.0 \mathrm{GeV}$.
[qqaa] For a narrow resonance in the range $2.2<M(X)<2.8 \mathrm{GeV}$.
[rraa] $J^{P C}$ known by production in $e^{+} e^{-}$via single photon annihilation. I^{G} is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
[ssaa] $2 m_{\tau}<\mathrm{M}\left(\tau^{+} \tau^{-}\right)<9.2 \mathrm{GeV}$
[ttaa] $2 \mathrm{GeV}<m_{K^{+} K^{-}}<3 \mathrm{GeV}$
[uuaa] $X=$ scalar with $m<8.0 \mathrm{GeV}$
[vvaa] $X \bar{X}=$ vectors with $m<3.1 \mathrm{GeV}$
[xxaa] X and $\bar{X}=$ zero spin with $m<4.5 \mathrm{GeV}$
[yyaa] $1.5 \mathrm{GeV}<m_{X}<5.0 \mathrm{GeV}$
[zzaa] $201 \mathrm{MeV}<\mathrm{M}\left(\mu^{+} \mu^{-}\right)<3565 \mathrm{MeV}$
[aabb] $0.5 \mathrm{GeV}<m_{X}<9.0 \mathrm{GeV}$, where m_{X} is the invariant mass of the hadronic final state.
$[b b b b]$ Spectroscopic labeling for these states is theoretical, pending experimental information.
$[c c b b] 1.5 \mathrm{GeV}<m_{X}<5.0 \mathrm{GeV}$
$[d d b b] 1.5 \mathrm{GeV}<m_{X}<5.0 \mathrm{GeV}$
[eebb] For $m_{\tau^{+} \tau^{-}}$in the ranges $4.03-9.52$ and $9.61-10.10 \mathrm{GeV}$.

- Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

LIGHT UNFLAVORED$(S=C=B=0)$		STRANGE $(S= \pm 1, C=B=0)$	CHARMED, STRANGE $(C=S= \pm 1)$	$C \bar{C}$ continued $I^{G}\left(J^{P C}\right)$
$I^{G}\left(J^{P C}\right)$	$I^{G}\left(J^{P C}\right)$	$\left.1 \mathrm{~J}^{+}\right)$	$l\left(J^{P}\right)$	- $\psi(3770) \quad 0^{-}(1$
- $\pi^{ \pm} \quad 1^{-}\left(0^{-}\right)$	- $\pi_{2}(1670) \quad 1^{-}\left(2^{-+}\right)$	- $K^{ \pm} \quad 1 / 2\left(0^{-}\right)$	- $D_{s}^{ \pm} \quad 0\left(0^{-}\right)$	- $\psi_{2}(3823) \quad 0^{-}(2$
- $\pi^{0} \quad 1^{-}\left(0^{-+}\right)$	- $\phi(1680) \quad 0^{-}\left(1^{--}\right)$	- $K^{0} \quad 1 / 2\left(0^{-}\right)$	- $D_{s}^{* \pm} \quad 0\left(?^{?}\right)$	- $\psi_{3}(3842) \quad 0^{-}\left(3^{--}\right)$
- $\eta \quad 0^{+}\left(0^{-+}\right)$	- $\rho_{3}(1690) \quad 1^{+}\left(3^{--}\right)$	- $K_{S}^{0} \quad 1 / 2\left(0^{-}\right)$	- $D_{s 0}^{*}(2317)^{ \pm} \quad 0\left(0^{+}\right)$	$\chi_{c 0}(3860) 0^{+}\left(0^{++}\right)$
- $f_{0}(500) \quad 0^{+}\left(0^{++}\right)$	- $\rho(1700) \quad 1^{+}\left(1^{--}\right)$	- $K_{L}^{0} \quad 1 / 2\left(0^{-}\right)$	- $D_{s 1}(2460)^{ \pm} \quad 0\left(1^{+}\right)$	- $\chi_{c 1}(3872) 0^{+}\left(1^{++}\right)$
- $\rho(770) \quad 1^{+}\left(1^{--}\right)$	- $a_{2}(1700) \quad 1^{-}(2++)$	- $K_{0}^{*}(700) \quad 1 / 2\left(0^{+}\right)$	- $D_{s 1}(2536)^{ \pm} \quad 0\left(1^{+}\right)$	$\text { - } Z_{c}(3900) \quad 1^{+}\left(1^{+-}\right)$
- ω (782) $\quad 0^{-}\left(1^{---}\right)$	- $f_{0}(1710) \quad 0^{+}\left(0^{++}\right)$	- $K^{*}(892) \quad 1 / 2\left(1^{-}\right)$	- $D_{s 2}^{*}(2573) \quad 0\left(2^{+}\right)$	- X(3915) $0^{+}\left(0 / 2^{+}+\right.$
- $\eta^{\prime}(958) \quad 0^{+}\left(0^{-+}\right)$	$\eta(1760) \quad 0^{+}\left(0^{-+}\right)$	- $K_{1}(1270) \quad 1 / 2\left(1^{+}\right)$	- $D_{s 1}^{*}(2700)^{ \pm} 0\left(1^{-}\right)$	- $\chi_{c 2}(3930) 0^{+}\left(2^{+}+\right)$
- $f_{0}(980) \quad 0^{+}\left(0^{++}\right)$	- $\pi(1800) \quad 11^{-}\left(0^{-+}\right)$	- $K_{1}(1400) \quad 1 / 2\left(1^{+}\right)$	$D_{s 1}^{*}(2860)^{ \pm} \quad 0\left(1^{-}\right)$	$X(3940) \quad ?^{?}\left(?^{? ? ?}\right)$
- $a_{0}(980) \quad 1^{-}\left(0^{++}\right)$	$f_{2}(1810) \quad 0^{+}\left(2^{++}\right)$	- $K^{*}(1410) \quad 1 / 2\left(1^{-}\right)$	$D_{s 3}^{*}(2860)^{ \pm} \quad 0\left(3^{-}\right)$	- $X(4020)^{ \pm} 1^{+}\left(?^{?-}\right)$
- $\phi(1020) \quad 0^{-}\left(1^{---}\right)$	$X(1835) \quad ? ?\left(0^{-+}\right)$	- $K_{0}^{*}(1430) \quad 1 / 2\left(0^{+}\right)$	$D_{s J}(3040)^{ \pm} \quad 0(? ?)$	- $\psi(4040) \quad 0^{-}\left(1^{--}\right)$
- $h_{1}(1170) \quad 0^{-}\left(1^{+-}\right)$	- $\phi_{3}(1850) \quad 0^{-}\left(3^{--}\right)$	- $K_{2}^{*}(1430) \quad 1 / 2\left(2^{+}\right)$		$X(4050)^{ \pm} \quad 1^{-}(? ?+)$
- $b_{1}(1235) ~ 1-1+\left(1^{+-}\right)$	- $\eta_{2}(1870) \quad 0^{+}\left(2^{-+}\right)$	$K(1460) \quad 1 / 2\left(0^{-}\right)$	BOTTOM	$X(4055)^{ \pm} \quad 1^{+}\left(?^{?-}\right)$
- $a_{1}(1260) \quad 1^{-}\left(1^{++}\right)$	- $\pi_{2}(1880) \quad 1^{-}\left(2^{-+}\right)$	$K_{2}(1580) \quad 1 / 2\left(2^{-}\right)$	$(B= \pm 1)$	$X(4100)^{ \pm} \quad 1^{-}(? ? ?)$
- $f_{2}(1270) \quad 0^{+}\left(2^{++}\right)$	$\rho(1900) \quad 1^{+}\left(1^{---}\right)$	$K(1630) \quad 1 / 2(? ?)$	- $B^{ \pm} \quad 1 / 2\left(0^{-}\right)$	- $\chi_{c 1}(4140) \quad 0^{+}\left(1^{++}\right)$
- $f_{1}(1285) \quad 0^{+}\left(1^{++}\right)$	$f_{2}(1910) \quad 0^{+}\left(2^{++}\right)$	$K_{1}(1650) \quad 1 / 2\left(1^{+}\right)$	- $B^{0} \quad 1 / 2\left(0^{-}\right)$	- $\psi(4160) \quad 0^{-}(1$
- $\eta(1295) \quad 0^{+}\left(0^{-+}\right)$	$a_{0}(1950) \quad 1^{-}\left(0^{++}\right)$	- $K^{*}(1680) \quad 1 / 2\left(1^{-}\right)$	- $B^{ \pm} / B^{0}$ ADMIXTURE	$X(4160) \quad ? ?(? ? ?$
- $\pi(1300) \quad 11^{-}\left(0^{-+}\right)$	- $f_{2}(1950) \quad 0^{+}\left(2^{++}\right)$	- $K_{2}(1770) 1 / 2\left(2^{-}\right)$	- $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon	$Z_{C}(4200) \quad 1^{+}\left(1^{+-}\right)$
- $a_{2}(1320) \quad 11^{-}\left(2^{++}\right)$	- $a_{4}(1970) \quad 11^{-}\left(4^{++}\right)$	- $K_{3}^{*}(1780) \quad 1 / 2\left(3^{-}\right)$	ADMIXTURE	$\text { - } \psi(4230) \quad 0^{-}\left(1^{--}\right)$
- $f_{0}(1370) \quad 0^{+}\left(0^{++}\right)$	$\rho_{3}(1990) \quad 1^{+}\left(3^{---}\right)$	$\text { - } K_{2}(1820) \quad 1 / 2\left(2^{-}\right)$	$V_{c b}$ and $V_{u b}$ CKM Matrix Elements	$R_{C 0}(4240) 1^{+}\left(0^{--}\right)$ $x(4250)^{ \pm} \quad 1-(?++)$
$\text { - } \pi_{1}(1400) \quad 1^{-}\left(1^{-+}\right)$	$\begin{array}{ll}\pi_{2}(2005) & 1^{-}\left(2^{-+}\right)\end{array}$	$K(1830) \quad 1 / 2\left(0^{-}\right)$	$\text { - } B^{*} \quad 1 / 2\left(1^{-}\right)$	$X(4250)^{ \pm} \quad 1^{-}\left(?^{?+}\right)$
- $\eta(1405)$	- $f_{2}(2010) \quad 0^{+}\left(2^{++}\right)$	$K_{0}^{*}(1950) \quad 1 / 2\left(0^{+}\right)$	$\text { - } B_{1}(5721)^{+} \quad 1 / 2\left(1^{+}\right)$	$\psi(4260) \quad 0^{-}\left(1^{--}\right)$
- $h_{1}(1415) \quad 0^{-}\left(1^{+-}\right)$	$f_{0}(2020) ~ 00^{+}\left(0^{++}\right)$	$K_{2}^{*}(1980) \quad 1 / 2\left(2^{+}\right)$	$\text { - } B_{1}(5721)^{0} \quad 1 / 2\left(1^{+}\right)$	- $\chi_{c 1}(4274) \quad 0^{+}\left(1^{+}+\right)$ $x(4350) \quad 0^{+}(?++)$
$\begin{array}{ll}a_{1}(1420) & 1^{-}(1++) \\ \text { f } 1_{1}(1420) & 0^{+}(1++)\end{array}$	- $f_{4}(2050) \quad 0^{+}\left(4^{++}\right)$	- $K_{4}^{*}(2045) \quad 1 / 2\left(4^{+}\right)$	$B_{J}^{*}(5732) \quad ?(? ?)$	$X(4350) \quad 0^{+}\left(?^{?+}\right)$
- $f_{1}(1420) \quad 0^{+}\left(1^{++}\right)$ - $\omega(1420) \quad 0^{-}\left(1^{--}\right)$	$\begin{array}{ll}\pi_{2}(2100) & 1^{-}\left(2^{-+}\right) \\ f_{0}(2100) & 0^{+}\left(0^{+}+\right)\end{array}$	$K_{2}(2250) \quad 1 / 2\left(2^{-}\right)$	$\text { - } B_{2}^{*}(5747)^{+} \quad 1 / 2\left(2^{+}\right)$	- $\psi(4360) \quad 0^{-}\left(1^{--}\right)$
- $\begin{aligned} \text { (1420) } & 0^{-}\left(1^{--}\right) \\ f_{2}(1430) & 0^{+}(2++)\end{aligned}$	$f_{0}(2100) \quad 0^{+}\left(0^{++}\right)$	$K_{3}(2320) \quad 1 / 2\left(3^{+}\right)$	$\text { - } B_{2}^{*}(5747)^{0} \quad 1 / 2\left(2^{+}\right)$	$\psi(4390) \quad 0^{-}\left(1^{--}\right)$
$\begin{array}{rr}f_{2}(1430) & 0^{+}\left(2^{++}\right) \\ \text {- } a_{0}(1450) & 1^{-}\left(0^{++}\right)\end{array}$	$f_{2}(2150) \quad 0^{+}\left(2^{++}\right)$	$K_{5}^{*}(2380) \quad 1 / 2\left(5^{-}\right)$	$B_{J}(5840)^{+} \quad 1 / 2(? ?)$	- $\psi(4415) \quad 0^{-}\left(1^{--}\right)$
$\begin{array}{ll}\text { - } a_{0}(1450) & 1^{-}\left(0^{++}\right) \\ \text {- } \rho(1450) & 1^{+}\left(1^{--}\right)\end{array}$	$\rho(2150) \quad 1^{+}\left(1^{--}\right)$	$K_{4}(2500) \quad 1 / 2\left(4^{-}\right)$		$\text { - } Z_{c}(4430) \quad 1^{+}\left(1^{+-}\right)$
- $\rho(1450)$	- $\phi(2170) \quad 0^{-}\left(1^{---}\right)$	$\begin{array}{ll} K_{4}(2500) & 1 / 2(4 \\ K(3100) & ? ?(? ? ? \end{array}$	- $B_{J}(5970)^{+} \quad 1 / 2(? ?)$	$\chi_{c 0}(4500) \quad 0^{+}\left(0^{++}\right)$
- $\eta(1475) \quad 0^{+}\left(0^{-+}\right)$	$f_{0}(2200) \quad 0^{+}\left(0^{++}\right)$	$K(3100) \quad ?(?)$		- $\psi(4660) \quad 0^{-}\left(1^{--}\right)$
- $f_{0}(1500) \quad 0^{+}\left(0^{++}\right)$	$f_{J}(2220) \quad 0^{+}\left(2^{+}\right.$	CHARMED	- $B_{J}(5970)^{0} 1 / 2(?)$	$\chi_{c 0}(4700) 0^{+}\left(0^{++}\right)$
$f_{1}(1510) \quad 0^{+}\left(1^{++}\right)$	or 4^{++})	+1)	BOTTOM, STRANGE	
- $f_{2}^{\prime}(1525) \quad 0^{+}\left(2^{++}\right)$	$\eta(2225) \quad 0^{+}\left(0^{-+}\right)$	- $D^{ \pm} \quad 1 / 2\left(0^{-}\right)$	($B= \pm 1, S=\mp 1)$	$b \bar{b}$
$f_{2}(1565) \quad 0^{+}\left(2^{++}\right)$	$\rho_{3}(2250) \quad 1^{+}\left(3^{--}\right)$	- $D^{0} \quad 1 / 2\left(0^{-}\right)$	- $B_{s}^{0} \quad 0\left(0^{-}\right)$	
$\rho(1570) \quad 1^{+}\left(1^{--}\right)$	- $f_{2}(2300) \quad 0^{+}(2++)$	- $D^{*}(2007)^{0} 11 / 2\left(1^{-}\right)$	- $B_{s}^{*} \quad 0\left(1^{-}\right)$	- $\eta_{b}(1 S) \quad 0^{+}\left(0^{-+}\right)$
$h_{1}(1595) \quad 0^{-}\left(1^{+-}\right)$	$f_{4}(2300) \quad 0^{+}\left(4^{++}\right)$	- $D^{*}(2010)^{ \pm} 1 / 2\left(1^{-}\right)$	$X(5568)^{ \pm} \quad ?\left(?^{?}\right)$	- $r(1 S) \quad 0^{-}\left(1^{--}\right)$
- $\pi_{1}(1600) \quad 1^{-}\left(1^{-+}\right)$	$f_{0}(2330) \quad 0^{+}\left(0^{++}\right)$	- $D_{0}^{*}(2300)^{0} \quad 1 / 2\left(0^{+}\right)$	$\text { - } B_{s 1}(5830)^{0} \quad 0\left(1^{+}\right)$	- $\chi_{b 0}(1 P) \quad 0^{+}\left(0^{++}\right)$
- $a_{1}(1640) \quad 11^{-}\left(1^{++}\right)$	- $f_{2}(2340) \quad 0^{+}\left(2^{++}\right)$	$D_{0}^{*}(2300)^{ \pm} \quad 1 / 2\left(0^{+}\right)$	- $B_{s 2}^{*}(5840)^{0} \quad 0\left(2^{+}\right)$	- $\chi_{b 1}(1 P) \quad 0^{+}\left(1^{++}\right)$
$f_{2}(1640) \quad 0^{+}\left(2^{++}\right)$ - $\eta_{2}(1645) \quad 0^{+}\left(2^{-+}\right)$	$\begin{array}{ll} \rho_{5}(2350) & 1^{+}\left(5^{--}\right) \\ f_{6}(2510) & 0^{+}\left(6^{+}+\right) \end{array}$	- $D_{1}(2420)^{0} \quad 1 / 2\left(1^{+}\right)$	$B_{s J}^{*}(5850) \quad ?(? ?)$	- $h_{b}(1 P) \quad 0^{-}\left(1^{+-}\right)$ - $\chi_{b 2}(1 P) \quad 0^{+}\left(2^{++}\right)$
$\text { - } \omega(1650) \quad 0^{-}\left(1^{--}\right)$	$f_{6}(2510) \quad 0+(6++)$	$D_{1}(2420)^{ \pm} \quad 1 / 2\left(?^{?}\right)$	BOTTOM, CHARM	$\begin{array}{ll} \eta_{b}(2 S) & 0^{+}\left(0^{-+}\right) \end{array}$
- $\omega_{3}(1670) \quad 0^{-}\left(3^{--}\right)$	OTHER LIGHT	$D_{1}(2430)^{0} 1 / 2\left(1^{+}\right)$	$(B=C= \pm 1)$	- $\gamma(2 S) \quad 0^{-}(1--$
	Further States	- $D_{2}^{*}(2460)^{ \pm} \quad 1 / 2\left(2^{+}\right)$	- $B_{C}^{+} \quad 0\left(0^{-}\right)$	- $r_{2}(1 D) \quad 0^{-}\left(2^{---}\right)$
		$D(2550)^{0} \quad 1 / 2(? ?)$	$B_{c}(2 S)^{ \pm} \quad 0\left(0^{-}\right)$	- $\chi_{b 0}(2 P) \quad 0^{+}\left(0^{++}\right)$
				- $\chi_{b 1}(2 P) \quad 0^{+}\left(1^{++}\right)$
		$D_{j}^{*}(2600) \quad 1 / 2(? ?)$	$c \bar{C}$	$h_{b}(2 P) \quad 0^{-}\left(1^{+-}\right)$
		$D^{*}(2640)^{ \pm} \quad 1 / 2(? ?)$	possibly non $-q \bar{q}$ states)	- $\chi_{b 2}(2 P) \quad 0^{+}(2++)$
		$D(2740)^{0} \quad 1 / 2\left(?^{?}\right)$	- $\eta_{c}(1 S) \quad 0^{+}\left(0^{-+}\right)$	- $r(3 S) \quad 0^{-}\left(1^{--}\right)$
		$D_{3}^{*}(2750) \quad 1 / 2\left(3^{-}\right)$	- J/ $\psi(1 S) \quad 0^{-}\left(1^{--}\right)$	- $\chi_{b 1}(3 P) \quad 0^{+}(1++$
		$D(3000)^{0} \quad 1 / 2\left(?^{?}\right)$	- $\chi_{c 0}(1 P) \quad 0^{+}\left(0^{++}\right)$	- $\chi_{b 2}(3 P) \quad 0^{+}\left(2^{++}\right)$
			- $\chi_{c 1}(1 P) \quad 0^{+}(1++)$	- $\Upsilon(4 S) \quad 0^{-}\left(1^{--}\right)$
			- $h_{c}(1 P) \quad 0^{-}\left(1^{+-}\right)$	- $Z_{b}(10610) 1^{+}\left(1^{+-}\right)$
			- $\chi_{c 2}(1 P) \quad 0^{+}(2++)$	- $Z_{b}(10650) 1^{+}\left(1^{+-}\right)$
			- $\eta_{c}(2 S) \quad 0^{+}\left(0^{-+}\right)$	$r(10753) \quad ?^{?}\left(1^{--}\right)$
			- $\psi(2 S) \quad 0^{-}\left(1^{--}\right)$	- $\gamma(10860) 0^{-}\left(1^{--}\right)$
				- $\gamma(11020) 0^{-}\left(1^{--}\right)$

Baryon Summary Table

This short table gives the name，the quantum numbers（where known），and the status of baryons in the Review．Only the baryons with 3－or 4－star status are included in the Baryon Summary Table．Due to insufficient data or uncertain interpretation，the other entries in the table are not established baryons．The names with masses are of baryons that decay strongly．The spin－parity J^{P}（when known）is given with each particle．For the strongly decaying particles，the J^{P} values are considered to be part of the names．

p	$1 / 2^{+}$	＊＊＊＊	Δ（1232）	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	$1 / 2^{+}$	＊＊＊＊	三 0	$1 / 2^{+}$	＊＊＊＊	$\mathrm{E}_{c c}^{++}$		＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	＝	$1 / 2^{+}$	＊＊＊＊			
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	Σ	$1 / 2^{+}$	＊＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊	Λ_{b}^{0}	$1 / 2^{+}$	＊＊＊
$N(1520)$	3／2 ${ }^{-}$	＊＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	$3 / 2^{+}$	＊＊＊＊	三（1620）		＊	$\Lambda_{b}(5912)^{0}$	$1 / 2^{-}$	＊＊＊
$N(1535)$	1／2 ${ }^{-}$	＊＊＊＊	$\Delta(1750)$	1／2 ${ }^{+}$	＊	$\Sigma(1580)$	$3 / 2^{-}$	＊	三（1690）		＊＊＊	$\Lambda_{b}(5920)^{0}$	$3 / 2^{-}$	＊＊＊
$N(1650)$	1／2 ${ }^{-}$	＊＊＊＊	Δ（1900）	$1 / 2^{-}$	＊＊＊	$\Sigma(1620)$	$1 / 2^{-}$	＊	三（1820）	$3 / 2^{-}$	＊＊＊	$\Lambda_{b}(6146)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1675)$	5／2－	＊＊＊＊	Δ（1905）	$5 / 2^{+}$	＊＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	三（1950）		＊＊＊	$\Lambda_{b}(6152)^{0}$	5／2＋	＊＊＊
$N(1680)$	5／2＋	＊＊＊＊	Δ（1910）	$1 / 2^{+}$	＊＊＊＊	$\Sigma(1670)$	$3 / 2^{-}$	＊＊＊＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊	Σ_{b}	$1 / 2^{+}$	＊＊＊
$N(1700)$	3／2 ${ }^{-}$	＊＊＊	Δ（1920）	$3 / 2^{+}$	＊＊＊	$\Sigma(1750)$	$1 / 2^{-}$	＊＊＊	三（2120）		＊	Σ_{b}^{*}	$3 / 2^{+}$	＊＊＊
$N(1710)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1930)$	$5 / 2^{-}$	＊＊＊	$\Sigma(1775)$	5／2－	＊＊＊＊	三（2250）		＊＊	$\Sigma_{b}(6097)^{+}$		＊＊＊
$N(1720)$	3／2＋	＊＊＊＊	Δ（1940）	3／2 ${ }^{-}$	＊＊	$\Sigma(1780)$	$3 / 2^{+}$	＊	三（2370）		＊＊	$\Sigma_{b}(6097)^{-}$		＊＊＊
$N(1860)$	$5 / 2^{+}$	＊＊	$\Delta(1950)$	$7 / 2^{+}$	＊＊＊＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	三（2500）		＊	Ξ_{b}^{0}, Ξ_{b}^{-}	$1 / 2^{+}$	＊＊＊
$N(1875)$	3／2 ${ }^{-}$	＊＊＊	$\Delta(2000)$	5／2＋	＊＊	$\Sigma(1900)$	$1 / 2^{-}$	＊＊				$\Xi^{\prime}{ }^{\prime}(5935)^{-}$	$1 / 2^{+}$	＊＊＊
$N(1880)$	$1 / 2^{+}$	＊＊＊	$\Delta(2150)$	1／2－	＊	$\Sigma(1910)$	$3 / 2^{-}$	＊＊＊	Ω^{-}	$3 / 2^{+}$	＊＊＊＊	$\bar{\Xi}_{b}(5945)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1895)$	1／2 ${ }^{-}$	＊＊＊＊	$\Delta(2200)$	7／2 ${ }^{-}$	＊＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊＊	$\Omega(2012)^{-}$	？${ }^{-}$	＊＊＊	$\bar{\Xi}_{b}(5955)^{-}$	$3 / 2^{+}$	＊＊＊
$N(1900)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(2300)$	9／2 ${ }^{+}$	＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊	$\Omega(2250)^{-}$		＊＊＊	$\overline{\#}_{b}(6227)$		＊＊＊
$N(1990)$	7／2 ${ }^{+}$	＊＊	$\Delta(2350)$	5／2－	＊	$\Sigma(2010)$	$3 / 2^{-}$	＊	$\Omega(2380)^{-}$		＊＊	Ω_{b}^{-}	$1 / 2^{+}$	＊＊＊
$N(2000)$	5／2＋	＊＊	$\Delta(2390)$	7／2 ${ }^{+}$	＊	$\Sigma(2030)$	7／2＋	＊＊＊＊	$\Omega(2470)^{-}$		＊＊			
$N(2040)$	$3 / 2^{+}$	＊	$\Delta(2400)$	9／2 ${ }^{-}$	＊＊	$\Sigma(2070)$	5／2＋	＊				$P_{C}(4312)^{+}$		＊
$N(2060)$	5／2 ${ }^{-}$	＊＊＊	$\Delta(2420)$	11／2 ${ }^{+}$	＊＊＊＊	$\Sigma(2080)$	$3 / 2^{+}$	＊	Λ_{c}^{+}	$1 / 2^{+}$	＊＊＊＊	$P_{C}(4380)^{+}$		＊
$N(2100)$	$1 / 2^{+}$	＊＊＊	$\Delta(2750)$	13／2 ${ }^{-}$	＊＊	$\Sigma(2100)$	7／2 ${ }^{-}$	＊	$\Lambda_{C}(2595)^{+}$	$1 / 2^{-}$	＊＊＊	$P_{C}(4440)^{+}$		＊
$N(2120)$	3／2 ${ }^{-}$	＊＊＊	$\Delta(2950)$	15／2 ${ }^{+}$	＊＊	$\Sigma(2160)$	1／2 ${ }^{-}$	＊	$\Lambda_{C}(2625)^{+}$	$3 / 2^{-}$	＊＊＊	$P_{C}(4457)^{+}$		＊
$N(2190)$	7／2－	＊＊＊＊				$\Sigma(2230)$	$3 / 2^{+}$	＊	$\Lambda_{c}(2765)^{+}$		＊			
$N(2220)$	9／2 ${ }^{+}$	＊＊＊＊	\wedge	$1 / 2^{+}$	＊＊＊＊	$\Sigma(2250)$		＊＊＊	$\Lambda_{c}(2860)^{+}$	3／2 ${ }^{+}$	＊＊＊			
$N(2250)$	9／2 ${ }^{-}$	＊＊＊＊	\wedge	$1 / 2^{-}$	＊＊	$\Sigma(2455)$		＊＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊			
$N(2300)$	$1 / 2^{+}$	＊＊	$\Lambda(1405)$	$1 / 2^{-}$	＊＊＊＊	$\Sigma(2620)$		＊＊	$\Lambda_{c}(2940)^{+}$	$3 / 2^{-}$	＊＊＊			
$N(2570)$	5／2 ${ }^{-}$	＊＊	$\Lambda(1520)$	3／2－	＊＊＊＊	$\Sigma(3000)$		＊	$\Sigma_{c}(2455)$	$1 / 2^{+}$	＊＊＊＊			
$N(2600)$	11／2 ${ }^{-}$	＊＊＊	$\Lambda(1600)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma(3170)$		＊	$\Sigma_{c}(2520)$	$3 / 2^{+}$	＊＊＊			
$N(2700)$	$13 / 2^{+* *}$		$\Lambda(1670)$	1／2－	＊＊				$\Sigma_{c}(2800)$		＊＊＊			
			$\Lambda(1690)$	3／2 ${ }^{-}$	＊＊＊					$1 / 2^{+}$	＊＊＊			
			＾（1710）	1／2＋	＊				Ξ^{0}	$1 / 2^{+}$	＊＊＊＊			
			$\Lambda(1800)$	1／2－	＊＊＊					$1 / 2^{+}$	＊＊＊			
			$\Lambda(1810)$	$1 / 2^{+}$	***				$\Xi^{\prime \prime}{ }_{C}^{\prime 0}$	$1 / 2^{+}$	＊＊＊			
			$\Lambda(1820)$	5／2＋	＊＊＊＊				$\bar{\Xi}_{C}(2645)$	$3 / 2^{+}$	＊＊＊			
			$\Lambda(1830)$	$5 / 2^{-}$ $3 / 2+$	****				$\Xi_{C}(2790)$	$1 / 2^{-}$	＊＊＊			
			$\Lambda(1890)$	$3 / 2^{+}$	＊＊＊＊				$\bar{\Xi}_{c}(2815)$	$3 / 2^{-}$	＊＊＊			
			$\Lambda(2000)$	1／2－	*				$\overline{\#}_{c}(2930)$		＊＊			
			$\Lambda(2050)$	$3 / 2^{-}$	＊				$\bar{\Xi}_{c}(2970)$		＊＊＊			
			$\Lambda(2070)$	3／2＋	*				$\bar{\Xi}_{c}(3055)$		＊＊＊			
			$\Lambda(2080)$	$5 / 2^{-}$	＊				$\bar{\Xi}_{c}(3080)$		＊＊＊			
			$\Lambda(2085)$	7／2＋	$* *$ $* * * *$				$\bar{\Xi}_{c}(3123)$		＊			
			$\Lambda(2100)$	7／2－	＊＊＊＊					$1 / 2^{+}$	＊＊＊			
			$\Lambda(2110)$	5／2 ${ }^{+}$	***				$\Omega_{c}(2770)^{0}$	$3 / 2^{+}$	＊＊＊			
			$\Lambda(2325)$	$3 / 2$					$\Omega_{c}(3000)^{0}$		＊＊＊			
			$\Lambda(2350)$	9／2 ${ }^{+}$	$* * *$ $* *$				$\Omega_{c}(3050)^{0}$		＊＊＊			
			$\Lambda(2585)$						$\Omega_{c}(3065)^{0}$		＊＊＊			
									$\Omega_{c}(3090)^{0}$		＊＊＊			
									$\Omega_{c}(3120)^{0}$		＊＊＊			

＊＊＊＊Existence is certain，and properties are at least fairly well explored．
＊＊＊Existence ranges from very likely to certain，but further confirmation is desirable and／or quantum numbers，branching fractions，etc．are not well determined．
＊＊Evidence of existence is only fair．
＊Evidence of existence is poor．

Baryon Summary Table

Magnetic radius $\sqrt{\left\langle r_{M}^{2}\right\rangle}=0.864_{-0.008}^{+0.009} \mathrm{fm}$
Electric polarizability $\alpha=(11.8 \pm 1.1) \times 10^{-4} \mathrm{fm}^{3}$
Magnetic polarizability $\beta=(3.7 \pm 1.2) \times 10^{-4} \mathrm{fm}^{3}$
Charge $q=(-0.2 \pm 0.8) \times 10^{-21} e$
Mean $n \bar{n}$-oscillation time $>8.6 \times 10^{7} \mathrm{~s}, \mathrm{CL}=90 \%$ (free $\left.n\right)$
Mean $n \bar{n}$-oscillation time $>2.7 \times 10^{8} \mathrm{~s}, \mathrm{CL}=90 \%[g] \quad$ (bound $\left.n\right)$
Mean $n n^{\prime}$-oscillation time $>448 \mathrm{~s}, \mathrm{CL}=90 \%[h]$
$\boldsymbol{p} \boldsymbol{e}^{-} \boldsymbol{\nu}_{\boldsymbol{e}}$ decay parameters $[\mathrm{i}]$
$\lambda \equiv g_{A} / g_{V}=-1.2756 \pm 0.0013 \quad(\mathrm{~S}=2.6)$
$A=-0.11958 \pm 0.00021 \quad(\mathrm{~S}=1.2)$
$B=0.9807 \pm 0.0030$
$C=-0.2377 \pm 0.0026$
$a=-0.1059 \pm 0.0028$
$\phi_{\boldsymbol{A V}}=(180.017 \pm 0.026)^{\circ}[j]$
$D=(-1.2 \pm 2.0) \times 10^{-4}[k]$
$R=0.004 \pm 0.013[k]$

$N(1440) 1 / 2^{+} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$
$\operatorname{Re}($ pole position $)=1360$ to $1380(\approx 1370) \mathrm{MeV}$ $-2 \operatorname{lm}($ pole position $)=160$ to $190(\approx 175) \mathrm{MeV}$ Breit-Wigner mass $=1410$ to $1470(\approx 1440) \mathrm{MeV}$ Breit-Wigner full width $=250$ to $450(\approx 350) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 4 4 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$55-75 \%$	398
$N \eta$	$<1 \%$	\dagger
$N \pi \pi$	$17-50 \%$	347
$\Delta(1232) \pi, P$-wave	$6-27 \%$	147
$N \sigma$	$11-23 \%$	-
$p \gamma$, helicity $=1 / 2$	$0.035-0.048 \%$	414
$n \gamma$, helicity $=1 / 2$	$0.02-0.04 \%$	413
$\boldsymbol{N (1 5 2 0)} \mathbf{3 / 2}$		

$\operatorname{Re}($ pole position $)=1505$ to $1515(\approx 1510) \mathrm{MeV}$ $-21 \mathrm{~m}($ pole position $)=105$ to $120(\approx 110) \mathrm{MeV}$ Breit-Wigner mass $=1510$ to $1520(\approx 1515) \mathrm{MeV}$ Breit-Wigner full width $=100$ to $120(\approx 110) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 5 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathbf{c})$
$N \pi$	$55-65 \%$	453
$N \eta$	$0.07-0.09 \%$	142
$N \pi \pi$	$25-35 \%$	410
$\Delta(1232) \pi$	$22-34 \%$	225
$\Delta(1232) \pi, S$-wave	$15-23 \%$	225
$\Delta(1232) \pi, D$-wave	$7-11 \%$	225
$N \sigma$	$<2 \%$	-
$p \gamma$	$0.31-0.52 \%$	467
$p \gamma$, helicity $=1 / 2$	$0.01-0.02 \%$	467
$p \gamma$, helicity $=3 / 2$	$0.30-0.50 \%$	467
$n \gamma$	$0.30-0.53 \%$	466
$n \gamma$, helicity $=1 / 2$	$0.04-0.10 \%$	466
$n \gamma$, helicity $=3 / 2$	$0.25-0.45 \%$	466

$$
\begin{array}{ll}
\hline N(1535) & 1 / 2^{-}
\end{array} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}-\right)
$$

$\operatorname{Re}($ pole position $)=1500$ to $1520(\approx 1510) \mathrm{MeV}$ $-2 \operatorname{lm}($ pole position $)=110$ to $150(\approx 130) \mathrm{MeV}$ Breit-Wigner mass $=1515$ to $1545(\approx 1530) \mathrm{MeV}$ Breit-Wigner full width $=125$ to $175(\approx 150) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 5 3 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$32-52 \%$	464
$N \eta$	$30-55 \%$	176
$N \pi \pi$	$3-14 \%$	422
$\quad \Delta(1232) \pi, D$-wave	$1-4 \%$	240
$N \sigma$	$2-10 \%$	-
$N(1440) \pi$	$5-12 \%$	\dagger
$p \gamma$, helicity $=1 / 2$	$0.15-0.30 \%$	477
$n \gamma$, helicity $=1 / 2$	$0.01-0.25 \%$	477
$\boldsymbol{N (1 6 5 0)} \mathbf{1 / 2 -}$		

$\operatorname{Re}($ pole position $)=1640$ to $1670(\approx 1655) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=100$ to $170(\approx 135) \mathrm{MeV}$
Breit-Wigner mass $=1635$ to $1665(\approx 1650) \mathrm{MeV}$
Breit-Wigner full width $=100$ to $150(\approx 125) \mathrm{MeV}$

$N(1650)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	50-70 \%	547
$N \eta$	15-35 \%	348
1 K	5-15 \%	169
$N \pi \pi$	8-36 \%	514
$\Delta(1232) \pi, D$-wave	6-18\%	345
$N \sigma$	2-18\%	-
$N(1440) \pi$	6-26 \%	150
$p \gamma$, helicity $=1 / 2$	0.04-0.20 \%	558
$n \gamma$, helicity $=1 / 2$	0.003-0.17 \%	557
$N(1675) 5 / 2^{-}$	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}{ }^{-}\right)$	

$\operatorname{Re}($ pole position $)=1655$ to $1665(\approx 1660) \mathrm{MeV}$
$-2 \operatorname{lm}$ (pole position) $=125$ to $150(\approx 135) \mathrm{MeV}$
Breit-Wigner mass $=1665$ to $1680(\approx 1675) \mathrm{MeV}$
Breit-Wigner full width $=130$ to $160(\approx 145) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 6 7 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$38-42 \%$	564
$N \eta$	$<1 \%$	376
$N \pi \pi$	$25-45 \%$	532
$\Delta(1232) \pi, D$-wave	$23-37 \%$	366
$N \sigma$	$3-7 \%$	-
$p \gamma$	$0-0.02 \%$	575
$p \gamma$, helicity $=1 / 2$	$0-0.01 \%$	575
$p \gamma$, helicity $=3 / 2$	$0-0.01 \%$	575
$n \gamma$	$0-0.15 \%$	574
$n \gamma$, helicity $=1 / 2$	$0-0.05 \%$	574
$n \gamma$, helicity $=3 / 2$	$0-0.10 \%$	574

$N(1680) 5 / 2^{+} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}+\right)$
$\operatorname{Re}($ pole position $)=1665$ to $1680(\approx 1675) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=110$ to $135(\approx 120) \mathrm{MeV}$
Breit-Wigner mass $=1680$ to $1690(\approx 1685) \mathrm{MeV}$
Breit-Wigner full width $=115$ to $130(\approx 120) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 6 8 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$60-70 \%$	571
$N \eta$	$<1 \%$	386
$N \pi \pi$	$20-40 \%$	539
$\Delta(1232) \pi$	$11-23 \%$	374
$\Delta(1232) \pi, P$-wave	$4-10 \%$	374
$\Delta(1232) \pi, F$-wave	$1-13 \%$	374
$N \sigma$	$9-19 \%$	-
$p \gamma$	$0.21-0.32 \%$	581
$p \gamma$, helicity $=1 / 2$	$0.001-0.011 \%$	581
$p \gamma$, helicity $=3 / 2$	$0.20-0.32 \%$	581
$n \gamma$	$0.021-0.046 \%$	581
$n \gamma$, helicity=1/2	$0.004-0.029 \%$	581
$n \gamma$, helicity $=3 / 2$	$0.01-0.024 \%$	

$N(1700) 3 / 2^{-} \quad I\left(J^{P}\right)=\frac{1}{2}\left(3^{-}{ }^{-}\right)$
$\operatorname{Re}($ pole position $)=1650$ to $1750(\approx 1700) \mathrm{MeV}$ $-21 m$ (pole position) $=100$ to $300(\approx 200) \mathrm{MeV}$ Breit-Wigner mass $=1650$ to $1800(\approx 1720) \mathrm{MeV}$ Breit-Wigner full width $=100$ to $300(\approx 200) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 7 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$7-17 \%$	594
$N \eta$	seen	422
$N \omega$	$10-34 \%$	\dagger
$N \pi \pi$	$60-90 \%$	564
$\Delta(1232) \pi$	$55-85 \%$	402
$\Delta(1232) \pi, S$-wave	$50-80 \%$	402
$\Delta(1232) \pi, D$-wave	$4-14 \%$	402
$N(1440) \pi$	$3-11 \%$	225
$N(1520) \pi$	$<4 \%$	145
$N \rho, S=3 / 2, S$-wave	$32-44 \%$	74
$N \sigma$	$2-14 \%$	-
$p \gamma$	$0.01-0.05 \%$	604
$p \gamma$, helicity $=1 / 2$	$0.0-0.024 \%$	604
$p \gamma$, helicity $=3 / 2$	$0.002-0.026 \%$	604
$n \gamma$	$0.01-0.13 \%$	603
$n \gamma$, helicity $=1 / 2$	$0.0-0.09 \%$	603
$n \gamma$, helicity $=3 / 2$	$0.01-0.05 \%$	603

$N(1710) \mathbf{1 / 2 +} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$

$\operatorname{Re}($ pole position $)=1680$ to $1720(\approx 1700) \mathrm{MeV}$
-21 m (pole position) $=80$ to $160(\approx 120) \mathrm{MeV}$
Breit-Wigner mass $=1680$ to $1740(\approx 1710) \mathrm{MeV}$
Breit-Wigner full width $=80$ to $200(\approx 140) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 7 1 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$5-20 \%$	588
$N \eta$	$10-50 \%$	412
$N \omega$	$1-5 \%$	\dagger
ΛK	$5-25 \%$	269
ΣK	seen	138
$N \pi \pi$	seen	557
$\quad 3(1232) \pi, P$-wave	$3-9 \%$	394
$N(1535) \pi$	$9-21 \%$	113
$N \rho, S=1 / 2, P$-wave	$11-23 \%$	\dagger
$p \gamma$, helicity $=1 / 2$	$0.002-0.08 \%$	598
$n \gamma$, helicity=1/2	$0.0-0.02 \%$	597
$\boldsymbol{N}(\mathbf{1 7 2 0}) \mathbf{3 / 2 +}$	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}+\right)$	

$\operatorname{Re}($ pole position $)=1660$ to $1690(\approx 1675) \mathrm{MeV}$ -21 m (pole position) $=150$ to $400(\approx 250) \mathrm{MeV}$ Breit-Wigner mass $=1680$ to $1750(\approx 1720) \mathrm{MeV}$ Breit-Wigner full width $=150$ to $400(\approx 250) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 7 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$8-14 \%$	594
$N \eta$	$1-5 \%$	422
$N \omega$	$12-40 \%$	\dagger
ΛK	$4-5 \%$	283
$N \pi \pi$	$50-90 \%$	564
$\Delta(1232) \pi$	$47-89 \%$	402
$\Delta(1232) \pi, P$-wave	$47-77 \%$	402
$\Delta(1232) \pi, F$-wave	$<12 \%$	402
$N \rho, S=1 / 2, P$-wave	$1-2 \%$	74
$N \sigma$	$2-14 \%$	-
$N(1440) \pi$	$<2 \%$	225
$N(1520) \pi, S$-wave	$1-5 \%$	145
$p \gamma$	$0.05-0.25 \%$	604
$p \gamma$, helicity $=1 / 2$	$0.05-0.15 \%$	604
$p \gamma$, helicity=3/2	$0.002-0.16 \%$	604
$n \gamma$	$0.0-0.016 \%$	603
$n \gamma$, helicity $=1 / 2$	$0.0-0.01 \%$	603
$n \gamma$, helicity $=3 / 2$	$0.0-0.015 \%$	603

$N(\mathbf{1 8 7 5}) 3 / 2^{-} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}{ }^{-}\right)$
$\operatorname{Re}($ pole position $)=1850$ to $1950(\approx 1900) \mathrm{MeV}$ $-21 \mathrm{~m}($ pole position $)=100$ to $220(\approx 160) \mathrm{MeV}$ Breit-Wigner mass $=1850$ to $1920(\approx 1875) \mathrm{MeV}$ Breit-Wigner full width $=120$ to $250(\approx 200) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 8 7 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$3-11 \%$	695
$N \eta$	$<1 \%$	559
$N \omega$	$15-25 \%$	371
ΛK	seen	454
ΣK	seen	384
$N \pi \pi$		670
$\Delta(1232) \pi$	$10-35 \%$	520
$\Delta(1232) \pi, S$-wave	$7-21 \%$	520
$\Delta(1232) \pi, D$-wave	$2-12 \%$	520
$N \rho, S=3 / 2, S$-wave	seen	379
$N \sigma$	$30-60 \%$	-
$N(1440) \pi$	$2-8 \%$	365
$N(1520) \pi$	$<2 \%$	301
$p \gamma$	$0.001-0.025 \%$	703
$p \gamma$, helicity=1/2	$0.001-0.021 \%$	703
$p \gamma$, helicity $=3 / 2$	$<0.003 \%$	703
$n \gamma$	$<0.040 \%$	702
$n \gamma$, helicity $=1 / 2$	$<0.007 \%$	702
$n \gamma$, helicity $=3 / 2$	$<0.033 \%$	702

$N\left(\mathbf{1 8 8 0} \mathbf{1 / 2 +} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)\right.$
$\operatorname{Re}($ pole position $)=1820$ to $1900(\approx 1860) \mathrm{MeV}$
$-21 \mathrm{~m}($ pole position $)=180$ to $280(\approx 230) \mathrm{MeV}$
Breit-Wigner mass $=1830$ to $1930(\approx 1880) \mathrm{MeV}$
Breit-Wigner full width $=200$ to $400(\approx 300) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 8 8 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$3-9 \%$	698
$N \eta$	$5-55 \%$	563
$N \omega$	$12-28 \%$	377
ΛK	$12-28 \%$	459
ΣK	$10-24 \%$	389
$N \pi \pi$	$30-80 \%$	673
$\Delta(1232) \pi$	$18-42 \%$	524
$N \sigma$	$10-40 \%$	539
$N(1535) \pi$	$4-12 \%$	293
$N a_{0}(980)$	$1-5 \%$	\dagger
$\Lambda K^{*}(892)$	$0.5-1 \%$	\dagger
$p \gamma$, helicity=1/2	seen	706
$n \gamma$, helicity=1/2	$0.002-0.63 \%$	705

$\boldsymbol{N}(1895) \mathbf{1 / 2} \quad \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{-}\right)$
$\operatorname{Re}($ pole position $)=1890$ to $1930(\approx 1910) \mathrm{MeV}$ $-2 \operatorname{lm}$ (pole position) $=80$ to $140(\approx 110) \mathrm{MeV}$
Breit-Wigner mass $=1870$ to $1920(\approx 1895) \mathrm{MeV}$
Breit-Wigner full width $=80$ to $200(\approx 120) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 8 9 5})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{C})$
$N \pi$	$2-18 \%$	707
$N \eta$	$15-40 \%$	575
$N \eta^{\prime}$	$10-40 \%$	\dagger
$N \omega$	$16-40 \%$	395
ΛK	$13-23 \%$	473
ΣK	$6-20 \%$	405
$\Delta(1232) \pi, D$-wave	$3-11 \%$	535
$N \rho, S=1 / 2, S$-wave	seen	403
$N \rho, S=3 / 2, D$-wave	$3-12 \%$	403
$\Lambda K^{*}(892)$	$4-9 \%$	\dagger
$N \sigma$	seen	-
$N(1440) \pi$	$1-4 \%$	382
$p \gamma$, helicity $=1 / 2$	$0.01-0.06 \%$	715
$n \gamma$, helicity $=1 / 2$	$0.003-0.05 \%$	715

Baryon Summary Table

$N(1900) 3 / 2^{+} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}+\right)$
$\operatorname{Re}($ pole position $)=1900$ to $1940(\approx 1920) \mathrm{MeV}$ $-2 \operatorname{Im}($ pole position $)=100$ to $200(\approx 150) \mathrm{MeV}$ Breit-Wigner mass $=1890$ to $1950(\approx 1920) \mathrm{MeV}$ Breit-Wigner full width $=100$ to $320(\approx 200) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{1 9 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$1-20 \%$	723
$N \eta$	$2-14 \%$	595
$N \eta^{\prime}$	$4-8 \%$	151
$N \omega$	$7-13 \%$	424
ΛK	$2-20 \%$	495
ΣK	$3-7 \%$	431
$N \pi \pi$	$40-80 \%$	699
$\Delta(1232) \pi$	$30-70 \%$	553
$\Delta(1232) \pi, P$-wave	$9-25 \%$	553
$\Delta(1232) \pi, F$-wave	$21-45 \%$	553
$\Lambda K^{*}(892)$	$<0.2 \%$	\dagger
$N \sigma$	$1-7 \%$	-
$N(1520) \pi$	$7-23 \%$	341
$N(1535) \pi$	$4-10 \%$	328
$p \gamma$	$0.001-0.025 \%$	731
$p \gamma$, helicity=1/2	$0.001-0.021 \%$	731
$p \gamma$, helicity=3/2	$<0.003 \%$	731
$n \gamma$	$<0.040 \%$	730
$n \gamma$, helicity $=1 / 2$	$<0.007 \%$	730
$n \gamma$, helicity $=3 / 2$	$<0.033 \%$	730

$N(2060) 5 / 2^{-} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}^{-}\right)$

$\operatorname{Re}($ pole position $)=2020$ to $2130(\approx 2070) \mathrm{MeV}$ -21 m (pole position) $=350$ to $430(\approx 400) \mathrm{MeV}$ Breit-Wigner mass $=2030$ to $2200(\approx 2100) \mathrm{MeV}$ Breit-Wigner full width $=300$ to $450(\approx 400) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{2 0 6 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$7-12 \%$	834
$N \eta$	$2-6 \%$	729
$N \omega$	$1-7 \%$	600
ΛK	seen	644
ΣK	$1-5 \%$	593
$N \pi \pi$	$7-19 \%$	814
$\Delta(1232) \pi, D$-wave	$4-10 \%$	680
$N \rho, S=1 / 2, P$-wave	seen	605
$\Lambda K^{*}(892)$	$0.3-1.3 \%$	307
$N \sigma$	$3-9 \%$	-
$N(1440) \pi$	$4-14 \%$	544
$N(1520) \pi, P$-wave	$9-21 \%$	490
$N(1680) \pi, S$-wave	$8-22 \%$	353
$p \gamma$	$0.03-0.19 \%$	840
$p \gamma$, helicity $=1 / 2$	$0.02-0.08 \%$	840
$p \gamma$, helicity=3/2	$0.01-0.10 \%$	840
$n \gamma$	$0.003-0.07 \%$	840
$n \gamma$, helicity=1/2	$0.001-0.02 \%$	840
$n \gamma$, helicity $=3 / 2$	$0.002-0.05 \%$	840

$N(2100) 1 / 2^{+}$
 $$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$\mathrm{Re}($ pole position $)=2050$ to $2150(\approx 2100) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=240$ to $340(\approx 300) \mathrm{MeV}$
Breit-Wigner mass $=2050$ to $2150(\approx 2100) \mathrm{MeV}$
Breit-Wigner full width $=200$ to $320(\approx 260) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{2 1 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$N \pi$	$8-18 \%$	834
$N \eta$	seen	729
$N \eta^{\prime}$	$5-11 \%$	451
$N \omega$	$10-25 \%$	600
$1 K$	seen	644
$N \pi \pi$	$20-40 \%$	814

$(1232) \pi, P$-wave	$6-14 \%$	680
$N \rho, S=1 / 2, P$-wave	seen	605
$\Lambda K^{*}(892)$	$3-11 \%$	307
$N \sigma$	$14-26 \%$	-
$N(1535) \pi$	$26-34 \%$	478
$N \gamma$, helicity $=1 / 2$	$0.001-0.012 \%$	840

$$
\begin{array}{|ll}
\hline N(2120) 3 / 2^{-} & I\left(J^{P}\right)=\frac{1}{2}\left(3^{-}\right) \\
\hline
\end{array}
$$

$\operatorname{Re}($ pole position $)=2050$ to $2150(\approx 2100) \mathrm{MeV}$
$-2 \operatorname{Im}($ pole position $)=200$ to $360(\approx 280) \mathrm{MeV}$
Breit-Wigner mass $=2060$ to $2160(\approx 2120) \mathrm{MeV}$
Breit-Wigner full width $=260$ to $360(\approx 300) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{2 1 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$5-15 \%$	846
$N \eta^{\prime}$	$2-6 \%$	474
$N \omega$	$4-20 \%$	617
$N \pi \pi$	$50-95 \%$	827
$\Delta(1232) \pi$	$40-90 \%$	693
$\Delta(1232) \pi, S$-wave	$30-70 \%$	693
$\Delta(1232) \pi, D$-wave	$8-32 \%$	693
$\Lambda K^{*}(892)$	$<0.2 \%$	339
$N \sigma$	$7-15 \%$	-
$N(1535) \pi$	$7-23 \%$	494
$p \gamma$	$0.16-2.1 \%$	852
$p \gamma$, helicity $=1 / 2$	$0.07-0.80 \%$	852
$p \gamma$, helicity $=3 / 2$	$0.09-1.3 \%$	852
$n \gamma$	$0.04-0.72 \%$	852
$n \gamma$, helicity $=1 / 2$	$0.04-0.60 \%$	852
$n \gamma$, helicity $=3 / 2$	$0.001-0.12 \%$	852

$$
\begin{array}{|ll|}
\hline N(2190) & 7 / 2^{-}
\end{array} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{7}{2}-\right)
$$

$\operatorname{Re}($ pole position $)=2050$ to $2150(\approx 2100) \mathrm{MeV}$
$-2 \operatorname{Im}$ (pole position) $=300$ to $500(\approx 400) \mathrm{MeV}$
Breit-Wigner mass $=2140$ to $2220(\approx 2180) \mathrm{MeV}$
Breit-Wigner full width $=300$ to $500(\approx 400) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{2 1 9 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$10-20 \%$	882
$N \eta$	$1-3 \%$	785
$N \omega$	$8-20 \%$	667
$\Delta(1232) \pi, D$-wave	$19-31 \%$	734
$N \rho, S=3 / 2, D$-wave	seen	672
$\Lambda K^{*}(892)$	$0.2-0.8 \%$	423
$N \sigma$	$3-9 \%$	-
$p \gamma$	$0.014-0.077 \%$	888
$n \gamma$	$<0.04 \%$	888
$n \gamma$, helicity=3/2	$<0.03 \%$	888
$\boldsymbol{N}(\mathbf{2 2 2 0}) \mathbf{9 / 2 +}$	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{9}{2}+\right)$	

$\operatorname{Re}($ pole position $)=2130$ to $2200(\approx 2170) \mathrm{MeV}$
$-2 \operatorname{Im}($ pole position $)=360$ to $480(\approx 400) \mathrm{MeV}$
Breit-Wigner mass $=2200$ to $2300(\approx 2250) \mathrm{MeV}$ Breit-Wigner full width $=350$ to $500(\approx 400) \mathrm{MeV}$

$\operatorname{Re}($ pole position $)=2150$ to $2250(\approx 2200) \mathrm{MeV}$ $-21 \mathrm{~m}($ pole position $)=350$ to $500(\approx 420) \mathrm{MeV}$ Breit-Wigner mass $=2250$ to $2320(\approx 2280) \mathrm{MeV}$ Breit-Wigner full width $=300$ to $600(\approx 500) \mathrm{MeV}$

$\boldsymbol{N}(\mathbf{2 2 5 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	0.05 to $0.15(\approx 0.10)$	941

$N(2600) 11 / 2^{-}$	$I\left(J^{P}\right)=\frac{1}{2}$	
Breit-Wigner mass $=2550$ to $2750(\approx 2600) \mathrm{MeV}$ Breit-Wigner full width $=500$ to $800(\approx 650) \mathrm{MeV}$		
$N(2600)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	3-8\%	1126
\triangle BARYONS $(S=0, I=3 / 2)$ $\Delta^{++}=u u u, \quad \Delta^{+}=u u d, \quad \Delta^{0}=u d d, \quad \Delta^{-}=d d d$		

$\Delta(1232) 3 / 2^{+} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}+\right)$

$\operatorname{Re}($ pole position $)=1209$ to $1211(\approx 1210) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=98$ to $102(\approx 100) \mathrm{MeV}$
Breit-Wigner mass (mixed charges) $=1230$ to $1234(\approx 1232)$ MeV
Breit-Wigner full width (mixed charges) $=114$ to $120(\approx 117)$ MeV

$\boldsymbol{\Delta}(\mathbf{1 2 3 2})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$99.4 \% \%$	229
$N \gamma$	$0.55-0.65 \%$	259
$N \gamma$, helicity $=1 / 2$	$0.11-0.13 \%$	259
$N \gamma$, helicity $=3 / 2$	$0.44-0.52 \%$	259
$p e^{+} e^{-}$	$(4.2 \pm 0.7) \times 10^{-5}$	259
$\boldsymbol{\Delta (1 6 0 0)} \mathbf{3 / 2 ^ { + }}$	$I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}{ }^{+}\right)$	

$\operatorname{Re}($ pole position $)=1460$ to $1560(\approx 1510) \mathrm{MeV}$
$-2 \operatorname{lm}$ (pole position) $=200$ to $340(\approx 270) \mathrm{MeV}$
Breit-Wigner mass $=1500$ to $1640(\approx 1570) \mathrm{MeV}$ Breit-Wigner full width $=200$ to $300(\approx 250) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 6 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$8-24 \%$	492
$N \pi \pi$	$75-90 \%$	454
$\Delta(1232) \pi$	$73-83 \%$	276
$\Delta(1232) \pi, P$-wave	$72-82 \%$	276
$\Delta(1232) \pi, F$-wave	$<2 \%$	276
$N(1440) \pi, P$-wave	$15-25 \%$	\dagger
$N \gamma$	$0.001-0.035 \%$	505
$N \gamma$, helicity $=1 / 2$	$0.0-0.02 \%$	505
$N \gamma$, helicity $=3 / 2$	$0.001-0.015 \%$	505

$\Delta(1620) 1 / 2^{-} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{1}{2}^{-}\right)$
$\operatorname{Re}($ pole position $)=1590$ to $1610(\approx 1600) \mathrm{MeV}$ $-2 \operatorname{Im}($ pole position $)=100$ to $140(\approx 120) \mathrm{MeV}$ Breit-Wigner mass $=1590$ to $1630(\approx 1610) \mathrm{MeV}$ Breit-Wigner full width $=110$ to $150(\approx 130) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 6 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$N \pi$	$25-35 \%$	520
$N \pi \pi$	$55-80 \%$	484
$\quad \Delta(1232) \pi, D$-wave	$52-72 \%$	311
$N \rho, S=1 / 2, S$-wave	seen	\dagger
$N \rho, S=3 / 2, D$-wave	seen	\dagger
$N(1440) \pi$	$3-9 \%$	98
$N \gamma$, helicity $=1 / 2$	$0.03-0.10 \%$	532

$\Delta(1700) 3 / 2^{-}$
 $$
\left.I\left(J^{P}\right)=\frac{3}{2}^{\left(\frac{3}{2}\right.}{ }^{-}\right)
$$

$\operatorname{Re}($ pole position $)=1640$ to $1690(\approx 1665) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=200$ to $300(\approx 250) \mathrm{MeV}$ Breit-Wigner mass $=1690$ to $1730(\approx 1710) \mathrm{MeV}$ Breit-Wigner full width $=220$ to $380(\approx 300) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 7 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$10-20 \%$	588
$N \pi \pi$	$10-55 \%$	557
$\Delta(1232) \pi$	$10-50 \%$	394
$\Delta(1232) \pi, S$-wave	$5-35 \%$	394
$\Delta(1232) \pi$, D-wave	$4-16 \%$	394
$N \rho, S=3 / 2, S$-wave	seen	\dagger
$N(1520) \pi, P$-wave	$1-5 \%$	133
$N(1535) \pi$	$0.5-1.5 \%$	113
$\Delta(1232) \eta$	$3-7 \%$	\dagger
$N \gamma$	$0.22-0.60 \%$	598
$N \gamma$, helicity $=1 / 2$	$0.12-0.30 \%$	598
$N \gamma$, helicity=3/2	$0.10-0.30 \%$	598

$\Delta(1900) 1 / 2^{-}$
 $$
I\left(J^{P}\right)=\frac{3}{2}\left(\frac{1}{2}^{-}\right)
$$

$\operatorname{Re}($ pole position $)=1830$ to $1900(\approx 1865) \mathrm{MeV}$ -21 m (pole position) $=180$ to $300(\approx 240) \mathrm{MeV}$ Breit-Wigner mass $=1840$ to $1920(\approx 1860) \mathrm{MeV}$ Breit-Wigner full width $=180$ to $320(\approx 250) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 9 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$4-12 \%$	685
ΣK	seen	367
$N \pi \pi$	$45-85 \%$	660
$\left.\begin{array}{l}\text { (1232) }\end{array}\right), D$-wave	$30-70 \%$	509
$N \rho, S=1 / 2, S$-wave	$8-16 \%$	360
$N \rho, S=3 / 2, D$-wave	$18-28 \%$	360
$N(1440) \pi$	$8-32 \%$	353
$N(1520) \pi$	$2-10 \%$	288
$\Delta(1232) \eta$	$0-2 \%$	251
$N \gamma$, helicity $=1 / 2$	$0.06-0.43 \%$	693

$$
\begin{array}{|ll|}
\hline \Delta(1905) 5 / 2^{+} & I\left(J^{P}\right)=\frac{3}{2}\left(\frac{5}{2}+\right) \\
\hline
\end{array}
$$

$\operatorname{Re}($ pole position $)=1770$ to $1830(\approx 1800) \mathrm{MeV}$
$-21 \mathrm{~m}($ pole position $)=260$ to $340(\approx 300) \mathrm{MeV}$
Breit-Wigner mass $=1855$ to $1910(\approx 1880) \mathrm{MeV}$
Breit-Wigner full width $=270$ to $400(\approx 330) \mathrm{MeV}$

$\Delta(1905)$ DECAY MODES	Fraction (Γ_{i} / Γ)	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	9-15 \%	698
$N \pi \pi$		673
$\Delta(1232) \pi$	80-100 \%	524
$\Delta(1232) \pi$, P-wave	23-43 \%	524
$\Delta(1232) \pi, F$-wave	56-72 \%	524
$N \rho, S=3 / 2, P$-wave	seen	385
$N(1535) \pi$	< 1 \%	293
$N(1680) \pi, P$-wave	5-15 \%	133
$\Delta(1232) \eta$	2-6 \%	282
$N \gamma$	0.012-0.036 \%	706
$N \gamma$, helicity $=1 / 2$	0.002-0.006 \%	706
$N \gamma$, helicity $=3 / 2$	0.01-0.03 \%	706
$\Delta(1910) 1 / 2^{+}$	$I\left(J^{P}\right)=\frac{3}{2}\left(\frac{1}{2}^{+}\right)$	

$\operatorname{Re}($ pole position $)=1830$ to $1890(\approx 1860) \mathrm{MeV}$ $-2 \operatorname{lm}($ pole position $)=200$ to $400(\approx 300) \mathrm{MeV}$ Breit-Wigner mass $=1850$ to $1950(\approx 1900) \mathrm{MeV}$ Breit-Wigner full width $=200$ to $400(\approx 300) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 9 1 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$15-30 \%$	710
ΣK	$4-14 \%$	410
$N \pi \pi$		686
$\Delta(1232) \pi$	$34-66 \%$	539
$N(1440) \pi$	$3-9 \%$	386
$\Delta(1232) \eta$	$5-13 \%$	310
$N \gamma$, helicity $=1 / 2$	$0.0-0.02 \%$	718

Baryon Summary Table

$\Delta(1920) 3 / 2^{+} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}+\right.$
$\operatorname{Re}($ pole position $)=1850$ to $1950(\approx 1900) \mathrm{MeV}$ $-21 \mathrm{~m}($ pole position $)=200$ to $400(\approx 300) \mathrm{MeV}$ Breit-Wigner mass $=1870$ to $1970(\approx 1920) \mathrm{MeV}$ Breit-Wigner full width $=240$ to $360(\approx 300) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 9 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$5-20 \%$	723
ΣK	$2-6 \%$	431
$N \pi \pi$		699
$\Delta(1232) \pi$	$50-90 \%$	553
$\Delta(1232) \pi, P$-wave	$8-28 \%$	553
$\Delta(1232) \pi, F$-wave	$44-72 \%$	553
$N(1440) \pi, P$-wave	$<4 \%$	403
$N(1520) \pi, S$-wave	$<5 \%$	341
$N(1535) \pi$	$<2 \%$	328
$N a_{0}(980)$	seen	41
$\Delta(1232) \eta$	$5-17 \%$	336

$\Delta(1930) 5 / 2^{-} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{5}{2}^{-}\right)$

$\mathrm{Re}($ pole position $)=1840$ to $1920(\approx 1880) \mathrm{MeV}$ $-21 \mathrm{~m}($ pole position $)=230$ to $330(\approx 280) \mathrm{MeV}$ Breit-Wigner mass $=1900$ to $2000(\approx 1950) \mathrm{MeV}$ Breit-Wigner full width $=200$ to $400(\approx 300) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 9 3 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$5-15 \%$	742
$N \gamma$	$0.0-0.01 \%$	749
$N \gamma$, helicity $=1 / 2$	$0.0-0.005 \%$	749
$N \gamma$, helicity $=3 / 2$	$0.0-0.004 \%$	749

$\Delta(1950) 7 / 2^{+} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{7}{2}+\right)$
$\operatorname{Re}($ pole position $)=1870$ to $1890(\approx 1880) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=220$ to $260(\approx 240) \mathrm{MeV}$
Breit-Wigner mass $=1915$ to $1950(\approx 1930) \mathrm{MeV}$ Breit-Wigner full width $=235$ to $335(\approx 285) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{1 9 5 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$35-45 \%$	729
ΣK	$0.3-0.5 \%$	441
$N \pi \pi$	$1-9 \%$	706
$\Delta(1232) \pi, F$-wave	$3-9 \%$	560
$N(1680) \pi, P$-wave	$<0.6 \%$	191
$\Delta(1232) \eta$		349

$\Delta(\mathbf{2 2 0 0}) \mathbf{7 / 2 ^ { - }} \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{7}{2}-\right)$

$\operatorname{Re}($ pole position $)=2050$ to $2150(\approx 2100) \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=260$ to $420(\approx 340) \mathrm{MeV}$
Breit-Wigner mass $=2150$ to $2250(\approx 2200) \mathrm{MeV}$ Breit-Wigner full width $=200$ to $500(\approx 350) \mathrm{MeV}$

$\boldsymbol{\Delta}(\mathbf{2 2 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	$2-8 \%$	894
ΣK	$1-7 \%$	672
$\Delta \pi, D$-wave	$40-100 \%$	747
$\Delta \pi, G$-wave	$5-25 \%$	747
$\Delta \eta, D$-wave	seen	614

$$
\Delta(\mathbf{2 4 2 0}) \mathbf{1 1} / 2^{+} \quad \quad I\left(J^{P}\right)=\frac{3}{2}\left(\frac{11}{2}^{+}\right)
$$

$\mathrm{Re}($ pole position $)=2300$ to $2500(\approx 2400) \mathrm{MeV}$
-21 m (pole position) $=350$ to $550(\approx 450) \mathrm{MeV}$ Breit-Wigner mass $=2300$ to $2600(\approx 2450) \mathrm{MeV}$ Breit-Wigner full width $=300$ to $700(\approx 500) \mathrm{MeV}$

$\Delta(2420)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$N \pi$	5-10 \%	1040
\wedge BARYONS$\begin{gathered} S=-1, I=0) \\ \Lambda^{0}=u d s \end{gathered}$		

Λ

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

Mass $m=1115.683 \pm 0.006 \mathrm{MeV}$
$\left(m_{\Lambda}-m_{\bar{\Lambda}}\right) / m_{\Lambda}=(-0.1 \pm 1.1) \times 10^{-5} \quad(S=1.6)$
Mean life $\tau=(2.632 \pm 0.020) \times 10^{-10} \mathrm{~S} \quad(\mathrm{~S}=1.6)$
$\left(\tau_{\Lambda}-\tau_{\bar{\Lambda}}\right) / \tau_{\Lambda}=-0.001 \pm 0.009$

$$
c \tau=7.89 \mathrm{~cm}
$$

Magnetic moment $\mu=-0.613 \pm 0.004 \mu_{N}$
Electric dipole moment $d<1.5 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$
Decay parameters

$$
\begin{array}{ll}
p \pi^{-} & \alpha_{-}=0.732 \pm 0.014 \quad(\mathrm{~S}=2.3) \\
\bar{p} \pi^{+} & \alpha_{+}=-0.758 \pm 0.012 \\
\bar{\alpha}_{0} \mathrm{FOR} \bar{\Lambda} \rightarrow \bar{n} \pi^{0}=-0.692 \pm 0.017 \\
p \pi^{-} & \phi_{-}=(-6.5 \pm 3.5)^{\circ} \\
" & \gamma_{-}=0.76[n] \\
" & \Delta_{-}=(8 \pm 4)^{\circ}[n] \\
\alpha_{0} / \alpha_{+} \text {in } \bar{\Lambda} \rightarrow \bar{n} \pi^{0}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}=0.913 \pm 0.030 \\
\mathrm{R}=\left|\mathrm{G}_{E} / \mathrm{G}_{M}\right| \text { in } \Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}=0.96 \pm 0.14 \\
\Delta \Phi=\Phi_{E}-\Phi_{M} \text { in } \Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}=37 \pm 13 \text { degrees } \\
n \pi^{0} & \alpha_{0}=0.74 \pm 0.05 \\
p e^{-} \bar{\nu}_{e} & g_{A} / g_{V}=-0.718 \pm 0.015[i]
\end{array}
$$

$\boldsymbol{\Lambda}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
$p \pi^{-}$	$(63.9 \pm 0.5) \%$	p $(\mathrm{MeV} / \mathrm{c})$
$n \pi^{0}$	$(35.8 \pm 0.5) \%$	101
$n \gamma$	$(1.75 \pm 0.15) \times 10^{-3}$	104
$p \pi^{-} \gamma$	$[0]$	$(8.4 \pm 1.4) \times 10^{-4}$
$p e^{-} \bar{\nu}_{e}$	$(8.32 \pm 0.14) \times 10^{-4}$	162
$p \mu^{-} \bar{\nu}_{\mu}$	$(1.57 \pm 0.35) \times 10^{-4}$	101

Lepton (L) and/or Baryon (B) number violating decay modes						
$\pi^{+} e^{-}$	L, B	<	6	$\times 10^{-7}$	90\%	549
$\pi^{+} \mu^{-}$	L, B	$<$		$\times 10^{-7}$	90\%	544
$\pi^{-} e^{+}$	L, B	$<$	4	$\times 10^{-7}$	90\%	549
$\pi^{-} \mu^{+}$	L, B	$<$	6	$\times 10^{-7}$	90\%	544
$K^{+} e^{-}$	L, B	$<$	2	$\times 10^{-6}$	90\%	449
$K^{+} \mu^{-}$	L, B	$<$	3	$\times 10^{-6}$	90\%	441
$K^{-} e^{+}$	L, B	$<$	2	$\times 10^{-6}$	90\%	449
$K^{-} \mu^{+}$	L,B	$<$	3	$\times 10^{-6}$	90\%	441
$K_{S}^{0} \nu$	L, B	$<$	2	$\times 10^{-5}$	90\%	447
$\bar{p} \pi^{+}$	B		9	$\times 10^{-7}$	90\%	101
$\Lambda(1405) 1 / 2^{-}$	$I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$					

Mass $m=1405.1_{-1.0}^{+1.3} \mathrm{MeV}$
Full width $\Gamma=50.5 \pm 2.0 \mathrm{MeV}$ Below $\bar{K} N$ threshold

^(1405) DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Sigma \pi$	100%	155
$\Lambda(\mathbf{1 5 2 0}) \mathbf{3 / 2}$		

Mass $m=1518$ to $1520(\approx 1519) \mathrm{MeV}[p]$
Full width $\Gamma=15$ to $17(\approx 16) \mathrm{MeV}[p]$

$\Lambda(\mathbf{1 5 2 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$	
$N \bar{K}$	$(45$	± 1	$) \%$
$\sum \pi$	$(42$	± 1	$) \%$
$\Lambda \pi \pi$	$(10$	± 1	$) \%$

$\sum \pi \pi$	(0.9 ± 0.1) \%	168
$\Lambda \gamma$	($0.85 \pm 0.15) \%$	350
$\Lambda(1600) 1 / 2^{+}$	$I\left(J^{P}\right)=0\left(\frac{1}{2}\right.$	
Mass $m=1570$ to $1630(\approx 1600) \mathrm{MeV}$ Full width $\Gamma=150$ to $250(\approx 200) \mathrm{MeV}$		
A(1600) DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	15-30 \%	343
$\Sigma \pi$	10-60 \%	338
$\wedge \sigma$	$(19 \pm 4) \%$	-
$\Sigma(1385) \pi$	(9 ± 4) \%	158
$\Lambda(1670) 1 / 2^{-}$	$I\left(J^{P}\right)=0\left(\frac{1}{2}\right.$	
Mass $m=1670$ to $1678(\approx 1674) \mathrm{MeV}$ Full width $\Gamma=25$ to $35(\approx 30) \mathrm{MeV}$		
A(1670) DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	20-30\%	418
$\Sigma \pi$	25-55 \%	398
$\wedge \eta$	10-25 \%	88
$\Sigma(1385) \pi, D$-wave	(6.0 ± 2.0) \%	235
$N \bar{K}^{*}(892), S=3 / 2, D$-wave	$(5 \pm 4) \%$	\dagger
$\wedge \sigma$	$(20 \pm 8) \%$	-
$\Lambda(1690) 3 / 2^{-}$	$I\left(J^{P}\right)=0\left(\frac{3}{2}\right.$	

Mass $m=1685$ to $1695(\approx 1690) \mathrm{MeV}$ Full width $\Gamma=60$ to $80(\approx 70) \mathrm{MeV}$

$\boldsymbol{\Lambda}(\mathbf{1 6 9 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$N \bar{K}$	$20-30 \%$	433
$\Sigma \pi$	$20-40 \%$	410
$\Lambda \sigma$	$(5.0 \pm 2.0) \%$	-
$\Lambda \pi \pi$	$\sim 25 \%$	419
$\Sigma \pi \pi$	$\sim 20 \%$	358
$\Sigma(1385) \pi, S$-wave	$(9 \pm 5) \%$	251
$\Sigma(1385) \pi, D$-wave	$(3.0 \pm 2.0) \%$	251

$\Lambda(1800) 1 / 2^{-}$	$I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right.$
Mass m	(1800) MeV

$\boldsymbol{\Lambda}(\mathbf{1 8 0 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	$25-40 \%$	528
$\Sigma \pi$	seen	494
$\Lambda \sigma$	$(15 \quad \pm 4) \%$	-
$\Sigma(1385) \pi$	seen	349
$\Lambda \eta$	0.01 to 0.10	326
$N \bar{K}^{*}(892)$	seen	\dagger

$$
\Lambda(1810) \mathbf{1 / 2} \quad \quad I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

Mass $m=1740$ to $1840(\approx 1790) \mathrm{MeV}$
Full width $\Gamma=50$ to $170(\approx 110) \mathrm{MeV}$

$\boldsymbol{\Lambda}(\mathbf{1 8 1 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.05 to 0.35	520
$\Sigma \pi$	$(16 \quad \pm 5) \%$	487
$\Sigma(1385) \pi$	$(40 \quad \pm 15) \%$	340
$N \bar{K}^{*}(892)$	$30-60 \%$	\dagger

$$
\Lambda(1820) 5 / 2^{+} \quad I\left(J^{P}\right)=0\left(\frac{5}{2}^{+}\right)
$$

Mass $m=1815$ to $1825(\approx 1820) \mathrm{MeV}$
Full width $\Gamma=70$ to $90(\approx 80) \mathrm{MeV}$

Mass $m=1189.37 \pm 0.07 \mathrm{MeV} \quad(\mathrm{S}=2.2)$
Mean life $\tau=(0.8018 \pm 0.0026) \times 10^{-10} \mathrm{~s}$

$$
c \tau=2.404 \mathrm{~cm}
$$

$\left(\tau_{\Sigma^{+}}-\tau_{\bar{\Sigma}^{-}}\right) / \tau_{\Sigma^{+}}=-0.0006 \pm 0.0012$
Magnetic moment $\mu=2.458 \pm 0.010 \mu_{N} \quad(\mathrm{~S}=2.1)$
$\left(\mu_{\Sigma^{+}}+\mu{\overline{\Sigma^{-}}}^{-}\right) / \mu_{\Sigma^{+}}=0.014 \pm 0.015$
$\Gamma\left(\Sigma^{+} \rightarrow n \ell^{+} \nu\right) / \Gamma\left(\Sigma^{-} \rightarrow n \ell^{-} \bar{\nu}\right)<0.043$

Decay parameters

$$
\begin{array}{cl}
p \pi^{0} & \alpha_{0}=-0.980_{-0.0015}^{+0.017} \\
" & \phi_{0}=(36 \pm 34)^{\circ} \\
" & \gamma_{0}=0.16[n] \\
" & \Delta_{0}=(187 \pm 6)^{\circ}[n] \\
n \pi^{+} & \alpha_{+}=0.068 \pm 0.013 \\
" & \phi_{+}=(167 \pm 20)^{\circ}(\mathrm{S}=1.1) \\
" & \gamma_{+}=-0.97[n] \\
" & \Delta_{+}=\left(-73_{-}^{+133}\right)^{\circ} \quad[n] \\
p \gamma & \alpha_{\gamma}=-0.76 \pm 0.08
\end{array}
$$

$\boldsymbol{\boldsymbol { \Sigma } ^ { + }}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence levelp $(\mathrm{MeV} / \mathrm{c})$
$p \pi^{0}$	$(51.57 \pm 0.30) \%$	189
$n \pi^{+}$	$(48.31 \pm 0.30) \%$	185
$p \gamma$	$(1.23 \pm 0.05) \times 10^{-3}$	225
$n \pi^{+} \gamma$	$[0]$	$(4.5 \pm 0.5) \times 10^{-4}$
$\Lambda e^{+} \nu_{e}$	$(2.0 \pm 0.5) \times 10^{-5}$	185

$\Delta S=\Delta Q(S Q)$ violating modes or $\Delta S=1$ weak neutral current ($S 1$) modes

$n e^{+} \nu_{e}$	$S Q$	<5	$\times 10^{-6}$	90%	224
$n \mu^{+} \nu_{\mu}$	$S Q$	<3.0	$\times 10^{-5}$	90%	202
$p e^{+} e^{-}$	$S 1$	<7	$\times 10^{-6}$		225
$p \mu^{+} \mu^{-}$	$S 1$	$\left(2.4_{-1.3}^{+1.7}\right) \times 10^{-8}$	121		
$\boldsymbol{\Sigma}^{0}$					

Mass $m=1192.642 \pm 0.024 \mathrm{MeV}$
$m_{\Sigma^{-}}-m_{\Sigma^{0}}=4.807 \pm 0.035 \mathrm{MeV} \quad(\mathrm{S}=1.1)$
$m_{\Sigma^{0}}-m_{\Lambda}=76.959 \pm 0.023 \mathrm{MeV}$
Mean life $\tau=(7.4 \pm 0.7) \times 10^{-20} \mathrm{~s}$

$$
C \tau=2.22 \times 10^{-11} \mathrm{~m}
$$

Transition magnetic moment $\left|\mu_{\Sigma \Lambda}\right|=1.61 \pm 0.08 \mu_{N}$

Σ^{0} DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\prime}$)	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\Lambda \gamma$	100 \%		74
$\Lambda \gamma \gamma$	$<3 \%$	90\%	74
$\wedge e^{+} e^{-}$	[q] 5×10^{-3}		74
$\Sigma^{=}$	$I\left(J^{P}\right)=1\left(\frac{1}{2}^{+}\right)$		

$$
\text { Mass } m=1197.449 \pm 0.030 \mathrm{MeV} \quad(\mathrm{~S}=1.2)
$$

$$
m_{\Sigma^{-}}-m_{\Sigma^{+}}=8.08 \pm 0.08 \mathrm{MeV} \quad(\mathrm{~S}=1.9)
$$

$$
m_{\Sigma^{-}}-m_{\Lambda}=81.766 \pm 0.030 \mathrm{MeV} \quad(\mathrm{~S}=1.2)
$$

$$
\text { Mean life } \tau=(1.479 \pm 0.011) \times 10^{-10} \mathrm{~s} \quad(\mathrm{~S}=1.3)
$$

$$
c \tau=4.434 \mathrm{~cm}
$$

$$
\text { Magnetic moment } \mu=-1.160 \pm 0.025 \mu_{N} \quad(S=1.7)
$$

$$
\Sigma^{-} \text {charge radius }=0.78 \pm 0.10 \mathrm{fm}
$$

Decay parameters

\[

\]

$\Sigma(1385) 3 / 2^{+} \quad I\left(J^{P}\right)=1\left(\frac{3}{2}^{+}\right)$

$\Sigma(1385)^{+}$mass $m=1382.80 \pm 0.35 \mathrm{MeV} \quad(\mathrm{S}=1.9)$
$\Sigma(1385)^{0}$ mass $m=1383.7 \pm 1.0 \mathrm{MeV} \quad(\mathrm{S}=1.4)$
$\Sigma(1385)^{-}$mass $m=1387.2 \pm 0.5 \mathrm{MeV} \quad(\mathrm{S}=2.2)$
$\Sigma(1385)^{+}$full width $\Gamma=36.0 \pm 0.7 \mathrm{MeV}$
$\Sigma(1385)^{0}$ full width $\Gamma=36 \pm 5 \mathrm{MeV}$
$\Sigma(1385)^{-}$full width $\Gamma=39.4 \pm 2.1 \mathrm{MeV} \quad(\mathrm{S}=1.7)$ Below $\bar{K} N$ threshold

$\boldsymbol{\Sigma (1 3 8 5) ~ D E C A Y ~ M O D E S ~}$	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	Confidence level	($\mathrm{MeV} / \mathrm{c}$)
$\wedge \pi$	$(87.0 \pm 1.5) \%$		208
$\Sigma \pi$	$(11.7 \pm 1.5) \%$		129
$\Lambda \gamma$	$\left(1.25{ }_{-0.12}^{+0.13}\right) \%$		241
$\Sigma^{+} \gamma$	$(7.0 \pm 1.7) \times$	0^{-3}	180
$\Sigma^{-} \gamma$	$<2.4 \times$	-4 90\%	173
$\Sigma(1660) 1 / 2^{+}$	$I\left(J^{P}\right)=1\left(\frac{1}{2}\right.$		

$\operatorname{Re}($ pole position $)=1585 \pm 20 \mathrm{MeV}$
$-2 \operatorname{lm}($ pole position $)=290_{-}^{+140} \mathrm{MeV}$
Mass $m=1640$ to $1680(\approx 1660) \mathrm{MeV}$
Full width $\Gamma=100$ to $300(\approx 200) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{1 6 6 0})$ DECAY MODES	Fraction $\left(\Gamma_{j} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.05 to $0.15(\approx 010)$	405
$\Lambda \pi$	$(35 \pm 12) \%$	440
$\Sigma \pi$	$(37 \pm 10) \%$	387
$\Sigma \sigma$	$(20 \pm 8) \%$	-
$\Lambda(1405) \pi$	$(4.0 \pm 2.0) \%$	199

$$
\begin{array}{|ll}
\hline \boldsymbol{\Sigma}(1670) 3 / 2^{-} & I\left(J^{P}\right)=1\left(\frac{3}{2}^{-}\right) \\
\hline
\end{array}
$$

Mass $m=1665$ to $1685(\approx 1675) \mathrm{MeV}$ Full width $\Gamma=40$ to $100(\approx 70) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{1 6 7 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.06 to 0.12	419
$\Lambda \pi$	$5-15 \%$	452
$\Sigma \pi$	$30-60 \%$	398
$\Sigma \sigma$	$(7.0 \pm 3.0) \%$	-
$\boldsymbol{\Sigma}(\mathbf{1 7 5 0} \mathbf{1 / 2}$		

Mass $m=1700$ to $1800(\approx 1750) \mathrm{MeV}$ Full width「 = 100 to $200(\approx 150) \mathrm{MeV}$

$\Sigma(1750)$ DECAY MODE	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.06 to 0.12	486
$\wedge \pi$	$(14 \pm 5) \%$	507
$\Sigma \pi$	(16 ± 4) \%	456
$\Sigma \eta$	15-55 \%	98
$\Sigma(1385) \pi$, D-wave	<1 \%	305
$\Lambda(1520) \pi$	(2.0 ± 1.0) \%	175
$N \bar{K}^{*}(892), S=1 / 2$	(8 ± 4) \%	
$\Sigma(1775) 5 / 2^{-}$	$I\left(J^{P}\right)=1\left(\frac{5}{2}\right.$	

Mass $m=1770$ to $1780(\approx 1775) \mathrm{MeV}$
Full width $\Gamma=105$ to $135(\approx 120) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{1 7 7 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$N \bar{K}$	$37-43 \%$	508
$\Lambda \pi$	$14-20 \%$	525
$\Sigma \pi$	$2-5 \%$	475
$\Sigma(1385) \pi$	$8-12 \%$	327
$\Lambda(1520) \pi, P$-wave	$17-23 \%$	202

$\boldsymbol{\Sigma}(1910) 3 / 2^{-} \quad I\left(J^{P}\right)=1\left(\frac{3}{2}^{-}\right)$
was $\Sigma(1940)$
Full width $\Gamma=0.03 \pm 0.02$
Full width $\Gamma=0.16 \pm 0.04$
Full width $\Gamma=0.04 \pm 0.03$
Full width $\Gamma=0.01 \pm 0.01$
Full width $\Gamma=0.01 \pm 0.01$
Full width $\Gamma=0.03 \pm 0.01$
Full width $\Gamma=0.03 \pm 0.02$
Full width $\Gamma=0.02 \pm 0.01$
Full width $\Gamma=0.01 \pm 0.01$
Mass $m=1870$ to $1950(\approx 1910) \mathrm{MeV}$
Full width $\Gamma=150$ to $300(\approx 220) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{1 9 1 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.01 to $0.05(\approx 0.02)$	615
$\Lambda \pi$	$(6 \quad \pm 4) \%$	619
$\Sigma \pi$	$(86 \quad \pm 21) \%$	574
$\Sigma(1385) \pi$	seen	439
$\Lambda(1520) \pi$	seen	329
$\Delta(1232) \bar{K}$	$(3.0 \pm 1.0) \%$	377
$N \bar{K}^{*}(892)$	seen	274
$N \bar{K}^{*}(892), S=1 / 2, D$-wave	$(1.0 \pm 1.0) \%$	274

$\boldsymbol{\Sigma}(1915) \mathbf{5} / 2^{+} \quad I\left(J^{P}\right)=1\left(\frac{5}{2}^{+}\right)$

Mass $m=1900$ to $1935(\approx 1915) \mathrm{MeV}$
Full width $\Gamma=80$ to $160(\approx 120) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{1 9 1 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	0.05 to 0.15	618
$\Lambda \pi$	$(6.0 \pm 2.0) \%$	623
$\Sigma \pi$	$(10.0 \pm 2.0) \%$	577
$\Sigma(1385) \pi, P$-wave	$(2.0 \pm 2.0) \%$	443
$\Sigma(1385) \pi, F$-wave	$(4.0 \pm 2.0) \%$	443
$\Sigma(1385) \pi$	$<5 \%$	443
$\Lambda(1520) \pi, D$-wave	$(8.0 \pm 2.0) \%$	334
$N \bar{K}(892), S=1 / 2, F$-wave	$(5.0 \pm 3.0) \%$	282
$N \bar{K} *(892), S=3 / 2, F$-wave	$(5.0 \pm 2.0) \%$	282
$\Delta \bar{K}, P$-wave	$(16 \pm 5) \%$	383
$\Delta \bar{K}, F$-wave	$(5.0 \pm 3.0) \%$	383

$\boldsymbol{\Sigma}\left(\mathbf{2 0 3 0} \mathbf{)} \mathbf{7 / 2 ^ { + }} \quad I\left(J^{P}\right)=1\left(\frac{7}{2}{ }^{+}\right)\right.$

Mass $m=2025$ to $2040(\approx 2030) \mathrm{MeV}$
Full width $\Gamma=150$ to $200(\approx 180) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{2 0 3 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	$17-23 \%$	702
$\Lambda \pi$	$17-23 \%$	700
$\Sigma \pi$	$5-10 \%$	657
$\equiv K$	$<2 \%$	422
$\Sigma(1385) \pi$	$5-15 \%$	532
$\Sigma(1385) \pi, F$-wave	$(1.0 \pm 1.0) \%$	532
$\Lambda(1520) \pi$	$10-20 \%$	431
$\Delta(1232) \bar{K}$	$10-20 \%$	498
$\Delta(1232) \bar{K}, F$-wave	$(15 \pm 5) \%$	498
$\Delta(1232) \bar{K}, H$-wave	$(1.0 \pm 1.0) \%$	498
$N \bar{K}^{*}(892)$	$<5 \%$	439
$N K^{*}(892), S=3 / 2, F$-wave	$(14 \pm 8) \%$	439

$$
\boldsymbol{\Sigma}(2250) \quad I\left(J^{P}\right)=1\left(?^{?}\right)
$$

Mass $m=2210$ to $2280(\approx 2250) \mathrm{MeV}$ Full width $\Gamma=60$ to $150(\approx 100) \mathrm{MeV}$

$\boldsymbol{\Sigma}(\mathbf{2 2 5 0})$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	$<10 \%$	851
$\Lambda \pi$	seen	842
$\Sigma \pi$	seen	803

$$
\begin{gathered}
\text { 三BARYONS } \\
(S=-2, I=1 / 2) \\
\equiv^{0}=u s, \quad \equiv-=d s s
\end{gathered}
$$

三0

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

P is not yet measured; + is the quark model prediction.

$$
\begin{aligned}
& \text { Mass } m=1314.86 \pm 0.20 \mathrm{MeV} \\
& m_{\Xi^{-}}-m_{\Xi^{\prime}}=6.85 \pm 0.21 \mathrm{MeV} \\
& \text { Mean life } \tau=(2.90 \pm 0.09) \times 10^{-10} \mathrm{~s} \\
& \quad c \tau=8.71 \mathrm{~cm} \\
& \text { Magnetic moment } \mu=-1.250 \pm 0.014 \mu_{N} \\
& \text { Decay parameters } \\
& \begin{array}{ll}
\Lambda \pi^{0} & \alpha=-0.356 \pm 0.011 \\
" & \phi=(21 \pm 12)^{\circ} \\
" & \gamma=0.85[n] \\
" & \Delta=\left(218_{-19}^{+12}\right)^{\circ}[n] \\
\text { " }^{0} & \alpha=-0.70 \pm 0.07 \\
\Lambda e^{+} e^{-} & \alpha=-0.8 \pm 0.2 \\
\Sigma^{0} \gamma & \alpha=-0.69 \pm 0.06 \\
\Sigma^{+} e^{-} \bar{\nu}_{e} & g_{1}(0) / f_{1}(0)=1.22 \pm 0.05 \\
\Sigma^{+} e^{-} \bar{\nu}_{e} & f_{2}(0) / f_{1}(0)=2.0 \pm 0.9
\end{array}
\end{aligned}
$$

$\mathbf{= 0}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Confidence level
$(\mathrm{MeV} / \mathbf{c})$		
$\Lambda \pi^{0}$	$(99.524 \pm 0.012) \%$	135
$\Lambda \gamma$	$(1.17 \pm 0.07) \times 10^{-3}$	184
$\Lambda e^{+} e^{-}$	$(7.6 \pm 0.6) \times 10^{-6}$	184
$\Sigma^{0} \gamma$	$(3.33 \pm 0.10) \times 10^{-3}$	117
$\Sigma^{+} e^{-} \bar{\nu}_{e}$	$(2.52 \pm 0.08) \times 10^{-4}$	120
$\Sigma^{+} \mu^{-} \bar{\nu}_{\mu}$	$(2.33 \pm 0.35) \times 10^{-6}$	64

$$
\Delta S=\Delta Q(S Q) \text { violating modes or }
$$

$$
\Delta S=2 \text { forbidden (S2) modes }
$$

$\Sigma^{-} e^{+} \nu_{e}$	$S Q$	<9	$\times 10^{-4}$	90%	112
$\Sigma^{-} \mu^{+} \nu_{\mu}$	$S Q$	<9	$\times 10^{-4}$	90%	49
$p \pi^{-}$	$S 2$	<8	$\times 10^{-6}$	90%	299
$p e^{-} \bar{\nu}_{e}$	$S 2$	<1.3	$\times 10^{-3}$		323
$p \mu^{-} \bar{\nu}_{\mu}$	$S 2$	<1.3	$\times 10^{-3}$	309	
E- $^{-}$					

P is not yet measured; + is the quark model prediction.

$$
\begin{aligned}
& \text { Mass } m=1321.71 \pm 0.07 \mathrm{MeV} \\
& \left(m_{\Xi^{-}}-m_{\overline{\bar{\Xi}}^{+}}\right) / m_{\bar{\Xi}^{-}}=(-3 \pm 9) \times 10^{-5} \\
& \text { Mean life } \tau=(1.639 \pm 0.015) \times 10^{-10} \mathrm{~s} \\
& \quad \quad c \tau=4.91 \mathrm{~cm} \\
& \left(\tau \bar{\Xi}^{-}-\tau \overline{\bar{\Xi}}^{+}\right) / \tau \tau_{\bar{\Xi}^{-}}=-0.01 \pm 0.07 \\
& \text { Magnetic moment } \mu=-0.6507 \pm 0.0025 \mu_{N} \\
& \left(\mu_{\Xi^{-}}+\mu_{\bar{\Xi}^{+}}\right) /\left|\mu_{\Xi^{-}}\right|=+0.01 \pm 0.05
\end{aligned}
$$

Decay parameters

$$
\begin{aligned}
& \Lambda \pi^{-} \quad \alpha=-0.401 \pm 0.010 \\
& {\left[\alpha\left(\bar{\Xi}^{-}\right) \alpha_{-}(\Lambda)-\alpha\left(\bar{\Xi}^{+}\right) \alpha_{+}(\bar{\Lambda})\right] /[\text { sum }]=(0 \pm 7) \times 10^{-4}} \\
& \text { " } \quad \phi=(-2.1 \pm 0.8)^{\circ} \\
& \text { " } \quad \gamma=0.89[n] \\
& \text { " } \Delta=(175.9 \pm 1.5)^{\circ}[n] \\
& \Lambda e^{-} \bar{\nu}_{e} \quad g_{A} / g_{V}=-0.25 \pm 0.05{ }^{[i]}
\end{aligned}
$$

Baryon Summary Table

$[r] \quad(9.1 \pm 2.0) \times 10^{-3}$
$[r] \quad(1.5 \pm 0.5) \%$
$<8 \times 10^{-3} \quad \mathrm{CL}=90 \%$ $(5.7 \pm 1.1) \times 10^{-3} \quad \mathrm{~S}=1.9 \quad 443$
$(1.6 \pm 0.5) \times 10^{-3}$
($1.29 \pm 0.07) \% \quad \mathrm{~S}=1.1$ (1.25 ± 0.10) \%
$(4.4 \pm 2.0) \times 10^{-3}$
(1.5 ± 0.6) \%
$\begin{array}{rrr}(4.50 \pm 0.25) \% & \mathrm{~S}=1.3 \\ <1.7 & \% & \mathrm{CL}=95 \%\end{array}$
(1.87 ± 0.18) \%
(3.5 ± 0.4) \%
(1.55 ± 0.15) \%
(1.11 ± 0.30) \%
[r] (1.70 ± 0.21) \% (2.1 ± 0.4) $\%$ $(3.5 \pm 0.4) \times 10^{-3} \quad \mathrm{~S}=1.1 \quad 349$
$[r] \begin{array}{lll}(3.9 \pm 0.6) \times 10^{-3} & \mathrm{~S}=1.1 & 295 \\ (1.02 \pm 0.25) \times 10^{-3} & & 286\end{array}$
$<8 \quad \times 10^{-4} \quad \mathrm{CL}=90 \%$ $(5.5 \pm 0.7) \times 10^{-3}$ 349 $(6.2+0.6) \times 10^{-3} \quad 653$ $(4.3 \pm 0.9) \times 10^{-3} \quad \mathrm{~S}=1.1 \quad 473$

Hadronic modes with a hyperon: $S=0$ final states			
$\wedge K^{+}$	$(6.1 \pm 1.2) \times 10^{-4}$		781
$\wedge K^{+} \pi^{+} \pi^{-}$	$<5 \times 10^{-4}$	CL=90\%	637
$\Sigma^{0} K^{+}$	$(5.2 \pm 0.8) \times 10^{-4}$		735
$\Sigma^{0} K^{+} \pi^{+} \pi^{-}$	$<2.6 \times 10^{-4}$	CL=90\%	574
$\Sigma^{+} K^{+} \pi^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$		670
$\Sigma+K^{*}(892)^{0}$	$[r] \quad(3.5 \pm 1.0) \times 10^{-3}$		470
$\Sigma^{-} K^{+} \pi^{+}$	< 1.2×10^{-3}	CL=90\%	664
Doubly Cabibbo-suppressed modes			
$p K^{+} \pi^{-}$	$(1.11 \pm 0.18) \times 10^{-4}$		823
Semileptonic modes			
$\Lambda e^{+} \nu_{e}$	(3.6 ± 0.4) \%		871
$\Lambda \mu^{+} \nu_{\mu}$	(3.5 ± 0.5) \%		867
Inclusive modes			
e^{+}anything	(3.95 ± 0.35) \%		-
p anything	(50 ± 16) \%		-
n anything	(50 ± 16) \%		-
Λ anything	$(38.2 \pm 2.9) \%$		-
3prongs	(24 $\pm 8) \%$		-

$\Delta C=1$ weak neutral current (C1) modes, or Lepton Family number ($L F$), or Lepton number (L), or

Baryon number (B) violating modes

$p e^{+} e^{-}$	$C 1$	<5.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	951
$p \mu^{+} \mu^{-}$non-resonant	$C 1$	<7.7	$\times 10^{-8}$	$\mathrm{CL}=90 \%$	937
$p e^{+} \mu^{-}$	$L F$	<9.9	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	947
$p e^{-} \mu^{+}$	$L F$	<1.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	947
$\bar{p} 2 e^{+}$	L, B	<2.7	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	951
$\bar{p} 2 \mu^{+}$	L, B	<9.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	937
$\bar{p} e^{+} \mu^{+}$	L, B	<1.6	$\times 10^{-5}$	$\mathrm{CL}=90 \%$	947
$\Sigma^{-} \mu^{+} \mu^{+}$	L	<7.0	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	812

$\Lambda_{c}(2595)^{+}$

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)
$$

The spin-parity follows from the fact that $\Sigma_{c}(2455) \pi$ decays, with little available phase space, are dominant. This assumes that $J^{P}=$ $1 / 2^{+}$for the $\Sigma_{C}(2455)$.

$$
\begin{aligned}
& \text { Mass } m=2592.25 \pm 0.28 \mathrm{MeV} \\
& m-m_{\Lambda_{c}^{+}}=305.79 \pm 0.24 \mathrm{MeV} \\
& \text { Full width } \Gamma=2.6 \pm 0.6 \mathrm{MeV}
\end{aligned}
$$

$\Lambda_{C}^{+} \pi \pi$ and its submode $\Sigma_{C}(2455) \pi$ - the latter just barely - are the only strong decays allowed to an excited Λ_{C}^{+}having this mass; and the submode seems to dominate.

$\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 5})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{c}^{+} \pi^{+} \pi^{-}$	$[s]$	-
$\Sigma_{c}(2455)^{++} \pi^{-}$	$24 \pm 7 \%$	117
$\Sigma_{c}(2455)^{0} \pi^{+}$	$24 \pm 7 \%$	\dagger
$\Lambda_{c}^{+} \pi^{+} \pi^{-} 3$-body	$18 \pm 10 \%$	\dagger
$\Lambda_{c}^{+} \pi^{0}$	$[t]$ not seen	117
$\Lambda_{c}^{+} \gamma$	not seen	258
		288

$$
\begin{array}{|l|l}
\Lambda_{c}(\mathbf{2 6 2 5})^{+} & I\left(J^{P}\right)=0\left(\frac{3}{2}-\right.
\end{array}
$$

J^{P} has not been measured; $\frac{3}{2}-$ is the quark-model prediction.

$$
\begin{aligned}
& \text { Mass } m=2628.11 \pm 0.19 \mathrm{MeV} \quad(\mathrm{~S}=1.1) \\
& m-m_{\Lambda_{c}^{+}}=341.65 \pm 0.13 \mathrm{MeV} \quad(\mathrm{~S}=1.1) \\
& \text { Full width } \Gamma<0.97 \mathrm{MeV}, \mathrm{CL}=90 \%
\end{aligned}
$$

$\Lambda_{C}^{+} \pi \pi$ and its submode $\Sigma(2455) \pi$ are the only strong decays allowed to an excited Λ_{C}^{+}having this mass.

$\boldsymbol{\Lambda s}_{\boldsymbol{c}}(\mathbf{2 6 2 5})^{+}$DECAY MODES		Fraction $\left(\Gamma_{i} / \overline{\text { r }}\right.$)	Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / c) \end{gathered}$
$\Lambda_{C}^{+} \pi^{+} \pi^{-}$		$\approx 67 \%$		184
$\Sigma_{c}(2455)^{++} \pi^{-}$		<5	90\%	102
$\Sigma_{C}(2455)^{0} \pi^{+}$		<5	90\%	102
$\Lambda_{c}^{+} \pi^{+} \pi^{-}$3-body		large		184
$\Lambda_{C}^{+} \pi^{0}$	[t]	not seen		293
$\Lambda_{C}^{+} \gamma$		not seen		319
$\Lambda_{c}(\mathbf{2 8 6 0})^{+}$	$I\left(J^{P}\right)=0\left(\frac{3}{2}^{+}\right)$			

> Mass $m=2856.1_{-6.0}^{+2.3} \mathrm{MeV}$
> Full width $\Gamma=688_{-22}^{+12} \mathrm{MeV}$

$\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 8 6 0})^{+}$DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$D^{0} p$	seen	259
$\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 8 8 0})^{+}$	$I\left(J^{P}\right)=0\left(\frac{5}{2}{ }^{+}\right)$	

> Mass $m=2881.63 \pm 0.24 \mathrm{MeV}$
> $m-m_{\Lambda_{c}^{+}}=595.17 \pm 0.28 \mathrm{MeV}$
> Full width $\Gamma=5.6_{-0.6}^{+0.8} \mathrm{MeV}$

$\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 8 8 0})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{C}^{+} \pi^{+} \pi^{-}$	seen	471
$\Sigma_{c}(2455)^{0,++} \pi^{ \pm}$	seen	376
$\Sigma_{c}(2520)^{0,++} \pi^{ \pm}$	seen	317
$p D^{0}$	seen	316

$$
\Lambda_{c}(\mathbf{2 9 4 0})^{+} \quad I\left(J^{P}\right)=0\left(\frac{3}{2}-\right)
$$

$J^{P}=3 / 2^{-}$is favored, but is not certain

$$
\begin{aligned}
& \text { Mass } m=2939.6_{-1.5}^{+1.3} \mathrm{MeV} \\
& \text { Full width } \Gamma=20_{-5}^{+6} \mathrm{MeV}
\end{aligned}
$$

$\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 9 4 0})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$p D^{0}$	seen	420
$\Sigma_{c}(2455)^{0,++} \pi^{ \pm}$	seen	-

$\Sigma_{c}(2455)$

$$
I\left(J^{P}\right)=1\left(\frac{1}{2}+\right)
$$

$\Sigma_{c}(2455)^{++}$mass $m=2453.97 \pm 0.14 \mathrm{MeV}$
$\Sigma_{C}(2455)^{+}$mass $m=2452.9 \pm 0.4 \mathrm{MeV}$
$\Sigma_{c}(2455)^{0}$ mass $m=2453.75 \pm 0.14 \mathrm{MeV}$

has not been measured; $\frac{1}{2}^{+}$is the quark-model prediction.

$$
\begin{aligned}
& \text { Mass } m=2578.4 \pm 0.5 \mathrm{MeV} \\
& m_{\Xi_{c}^{\prime+}}-m_{\Xi_{c}^{+}}=110.5 \pm 0.4 \mathrm{MeV} \\
& m_{\Xi^{\prime+}}-m_{=^{\prime}}=-0.8 \pm 0.6 \mathrm{MeV}
\end{aligned}
$$

$\bar{B}_{\boldsymbol{c}} \mathbf{(2 8 1 5)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\bar{\Xi}_{c}^{\prime} \pi$	seen	188
$\bar{\Xi}_{c}(2645) \pi$	seen	102

Baryon Summary Table

```
#c(2970) I(J P)=\frac{1}{2}(\mp@subsup{?}{}{?})
```

was $\bar{\Xi}_{c}(2980)$

$$
\begin{aligned}
& \bar{\Xi}_{c}(2970)^{+} m=2966.34_{-1.00}^{+0.17} \mathrm{MeV} \\
& \bar{\Xi}_{c}(2970)^{0} m=2970.9_{-0.6}^{+0.4} \mathrm{MeV} \\
& \backslash \text { quad } m_{\Xi_{c}(2970)^{+}}-m_{\Xi_{c}^{+}}=498.40_{-0.90}^{+0.27} \mathrm{MeV} \\
& \text { \quad } m_{\Xi_{c}(2970)^{0}}-m_{\Xi_{c}^{0}}=500.0_{-0.6}^{+0.4} \mathrm{MeV} \\
& \quad m_{\Xi_{c}(2970)^{+}}-m_{\Xi_{c}(2970)^{0}}=-4.6_{-0.6}^{+0.4} \mathrm{MeV} \\
& \bar{\Xi}_{c}(2970)^{+} \text {width } \Gamma=20.9_{-3.5}^{+2.4} \mathrm{MeV} \quad(\mathrm{~S}=1.2) \\
& \bar{\Xi}_{c}(2970)^{0} \text { width } \Gamma=28.1_{-4.0}^{+3.4} \mathrm{MeV} \quad(\mathrm{~S}=1.5)
\end{aligned}
$$

$\bar{\Xi}_{c}(2970)$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{C}^{+} \bar{K} \pi$	seen	228
$\Sigma_{C}(2455) \bar{K}$	seen	128
$\Lambda_{C}^{+} \frac{1}{K}$	not seen	412
$\bar{Z}_{C} 2 \pi$	seen	383
$\bar{\Xi}_{c}^{\prime} \pi$	seen	-
$\bar{\Xi}_{C}(2645) \pi$	seen	275

$\Xi_{c}(3055)$	$I\left(J^{P}\right)=?(? ?$

Mass $m=3055.9 \pm 0.4 \mathrm{MeV}$
Full width $\Gamma=7.8 \pm 1.9 \mathrm{MeV}$

$\bar{\Xi}_{\boldsymbol{c}}(\mathbf{3 0 5 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Sigma^{++} K^{-}$	seen	-
ΛD^{+}	seen	316

$\Xi_{c}(3080)$

$I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$

$$
\begin{aligned}
& \bar{E}_{c}(3080)^{+} m=3077.2 \pm 0.4 \mathrm{MeV} \\
& \overline{\mathrm{E}}_{c}(3080)^{0} \mathrm{~m}=3079.9 \pm 1.4 \mathrm{MeV} \quad(\mathrm{~S}=1.3) \\
& \bar{E}_{c}(3080)^{+} \text {width } \Gamma=3.6 \pm 1.1 \mathrm{MeV} \quad(\mathrm{~S}=1.5) \\
& \bar{E}_{c}(3080)^{0} \text { width } \Gamma=5.6 \pm 2.2 \mathrm{MeV}
\end{aligned}
$$

$\bar{\Xi}_{c}(\mathbf{3 0 8 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{C}^{+} \bar{K} \pi$	seen	415
$\Sigma_{c}(2455) \bar{K}$	seen	342
$\Sigma_{c}(2455)^{++} K^{-}$	seen	342
$\Sigma_{c}(2520)^{++} K^{-}$	seen	239
$\Sigma_{c}(2455) \bar{K}+\Sigma_{c}(2520) \bar{K}$	seen	-
$\Lambda_{C}^{+} \bar{K}$	not seen	536
$\Lambda_{c}^{+} \bar{K} \pi^{+} \pi^{-}$	not seen	144
ΛD^{+}	seen	362

Ω_{c}^{0}

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}+\right)
$$

J^{P} has not been measured; $\frac{1_{2}}{}{ }^{+}$is the quark-model prediction.
Mass $m=2695.2 \pm 1.7 \mathrm{MeV} \quad(S=1.3)$
Mean life $\tau=(268 \pm 26) \times 10^{-15} \mathrm{~s}$

$$
c \tau=80 \mu \mathrm{~m}
$$

Ω_{c}^{0} decay modes
Fraction $\left(\Gamma_{i} / \Gamma\right) \quad$ Confidence level $(\mathrm{MeV} / \mathrm{c})$
No absolute branching fractions have been measured.
The following are branching ratios relative to $\Omega^{-} \pi^{+}$.
Cabibbo-favored $(S=-3)$ decays - relative to $\Omega^{-} \pi^{+}$
$\Omega^{-} \pi^{+}$

$$
\begin{aligned}
& \Omega^{-} \pi^{+} \pi^{0} \\
& \Omega^{-} \rho^{+} \\
& \Omega^{-} \pi^{-} 2 \pi^{+} \\
& \Omega^{-} e^{+} \nu_{e} \\
& \bar{Z}^{0} \bar{K}^{0} \\
& \bar{Z}^{0} K^{-} \pi^{+} \\
& \overline{=}^{0} \bar{K}^{* 0}, \bar{K}^{* 0} \rightarrow K^{-} \pi^{+} \\
& \bar{Z}^{-} \bar{K}^{0} \pi^{+}
\end{aligned}
$$

$$
\text { DEFINED AS } 1
$$

1.80 ± 0.33
>1.3
0.31 ± 0.05
2.4 ± 1.2
1.64 ± 0.29
1.20 ± 0.18
0.68 ± 0.16
2.12 ± 0.28

90\%

E- $^{-}{ }^{-} 2 \pi^{+}$	0.63 ± 0.09		830
三(1530) ${ }^{0} K^{-} \pi^{+}$, *0 $^{*} \rightarrow$	0.21 ± 0.06		757
三- $\overline{\overline{\bar{K}}}^{-} \pi^{+} \pi^{+}$	0.34 ± 0.11		653
$\Sigma^{+} K^{-} K^{-} \pi^{+}$	<0.32	90\%	689
$\wedge \bar{K}^{0} \bar{K}^{0}$	1.72 ± 0.35		837
$\Omega_{c}(2770)^{0}$	$I\left(J^{P}\right)=$		

J^{P} has not been measured; $\frac{3}{2}+$ is the quark-model prediction.
Mass $m=2765.9 \pm 2.0 \mathrm{MeV} \quad(\mathrm{S}=1.2)$ $m_{\Omega_{c}(2770)^{0}}-m_{\Omega_{c}^{0}}=70.7_{-0.9}^{+0.8} \mathrm{MeV}$

The $\Omega_{C}(2770)^{0}-\Omega_{C}^{0}$ mass difference is too small for any strong decay to occur.

Mass $m=3000.41 \pm 0.22 \mathrm{MeV}$ Full width $\Gamma=4.5 \pm 0.7 \mathrm{MeV}$

$\Omega_{\boldsymbol{c}}(\mathbf{3 0 0 0})^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\bar{\Xi}_{c}^{+} K^{-}$	seen	181
$\Omega_{\boldsymbol{c}}(\mathbf{3 0 5 0})^{\mathbf{0}}$	$I\left(J^{P}\right)=?\left(?^{?}\right)$	

Mass $m=3050.20 \pm 0.13 \mathrm{MeV}$ Full width $\Gamma<1.2 \mathrm{MeV}, \mathrm{CL}=95 \%$

Mass $m=3090.0 \pm 0.5 \mathrm{MeV}$ Full width $\Gamma=8.7 \pm 1.3 \mathrm{MeV}$

$\boldsymbol{\Omega}_{\boldsymbol{C}} \mathbf{(\mathbf { 3 0 9 0 }} \mathbf{0}^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\bar{E}_{C}^{+} K^{-}$	seen	339
$\boldsymbol{\Omega}_{\boldsymbol{C}}(\mathbf{3 1 2 0})^{\mathbf{0}}$	$I\left(J^{P}\right)=?\left(?^{?}\right)$	

$\Xi_{c c}^{++}$
${ }_{c c}^{++}$

$I\left(J^{P}\right)$ not yet measured; $0\left(\frac{1}{2}^{+}\right)$is the quark model prediction.
Mass $m=5619.60 \pm 0.17 \mathrm{MeV}$
$m_{\Lambda_{b}^{0}}-m_{B^{0}}=339.2 \pm 1.4 \mathrm{MeV}$
$m_{\Lambda_{b}^{0}}-m_{B^{+}}=339.72 \pm 0.28 \mathrm{MeV}$
Mean life $\tau=(1.471 \pm 0.009) \times 10^{-12} \mathrm{~s}$

$$
c \tau=441.0 \mu \mathrm{~m}
$$

$$
A_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)=-0.025 \pm 0.029 \quad(\mathrm{~S}=1.2)
$$

$A_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)=-0.025 \pm 0.022$
$\Delta A_{C P}\left(p K^{-} / \pi^{-}\right)=0.014 \pm 0.024$
$A_{C P}\left(\Lambda_{b} \rightarrow p \bar{K}^{0} \pi^{-}\right)=0.22 \pm 0.13$
$\Delta A_{C P}\left(J / \psi p \pi^{-} / K^{-}\right)=(5.7 \pm 2.7) \times 10^{-2}$
$A_{C P}\left(\Lambda_{b} \rightarrow \Lambda K^{+} \pi^{-}\right)=-0.53 \pm 0.25$
$A_{C P}\left(\Lambda_{b} \rightarrow \Lambda K^{+} K^{-}\right)=-0.28 \pm 0.12$
$\triangle A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)=(-4 \pm 5) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)=(1.1 \pm 2.6) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(p \pi^{-} \pi^{+} \pi^{-}\right)_{L B M}\right)=(4 \pm 4) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p a_{1}(1260)^{-}\right)=(-1 \pm 4) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow N(1520)^{0} \rho(770)^{0}\right)=(2 \pm 5) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow \Delta(1232)^{++} \pi^{-} \pi^{-}\right)=(0.1 \pm 3.3) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)=(3.2 \pm 1.3) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow\left(p K^{-} \pi^{+} \pi^{-}\right)_{L B M}\right)=(3.5 \pm 1.6) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow N(1520)^{0} K^{*}(892)^{0}\right)=(5.5 \pm 2.5) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow \Lambda(1520) \rho(770)^{0}\right)=(1 \pm 6) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow \Delta(1232)^{++} K^{-} \pi^{-}\right)=(4.4 \pm 2.7) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K_{1}(1410)^{-}\right)=(5 \pm 4) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow p K^{-} K^{+} \pi^{-}\right)=(-7 \pm 5) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} K^{-}\right)=(0.2 \pm 1.9) \times 10^{-2}$
$\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow \Lambda(1520) \phi(1020)\right)=(4 \pm 6) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow\left(p K^{-}\right)_{\text {highmass }} \phi(1020)\right)=(-0.7 \pm 3.4) \times 10^{-2}$
$\Delta A_{C P}\left(\wedge_{b}^{0} \rightarrow\left(p K^{-} K^{+} K^{-}\right)_{L B M}\right)=(2.7 \pm 2.4) \times 10^{-2}$
$\mathrm{A}_{F B}^{\ell}(\mu \mu)$ in $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}=-0.39 \pm 0.04$
$\Delta\left(\mathrm{A}_{F B}^{\ell}(\mu \mu)\right)$ in $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}=-0.05 \pm 0.09$
$\mathrm{A}_{F B}^{h}(p \pi)$ in $\Lambda_{b} \rightarrow \Lambda(p \pi) \mu^{+} \mu^{-}=-0.30 \pm 0.05$
$\mathrm{A}_{F B}^{\ell h}$ in $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}=0.25 \pm 0.04$
The branching fractions $\mathrm{B}\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $)$ and $\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.$ $\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with $\mathrm{B}(b \rightarrow b$-baryon) were used to determine $\mathrm{B}(b \rightarrow b$-baryon $)$, as described in the note "Production and Decay of b-Flavored Hadrons."
For inclusive branching fractions, e.g., $\Lambda_{b} \rightarrow \bar{\Lambda}_{C}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$p J / \psi(1 S) \pi^{+} \pi^{-} K^{-}$	$\left(6.6{ }_{-1.1}^{+1.3}\right) \times 10^{-5}$		1410
$p \psi(2 S) K^{-}$	$\left(6.6{ }_{-1.0}^{+1.2}\right) \times 10^{-5}$		1063
$\begin{aligned} & \chi_{c 1}(3872) p K^{-}, \quad \chi_{c 1}(3872) \rightarrow \\ & J / \psi \pi^{+} \pi^{-} \end{aligned}$	$(1.23 \pm 0.33) \times 10^{-6}$		-
$\psi(2 S) p \pi^{-}$	$\left(7.5{ }_{-1.4}^{+1.6}\right) \times 10^{-6}$		1320
$p \bar{K}^{0} \pi^{-}$	$(1.3 \pm 0.4) \times 10^{-5}$		2693
$p K^{0} K^{-}$	$<3.5 \times 10^{-6}$	$\mathrm{CL}=90 \%$	2639
$\wedge_{c}^{+} \pi^{-}$	$(4.9 \pm 0.4) \times 10^{-3}$	$\mathrm{S}=1.2$	2342
$\Lambda_{c}^{+} K^{-}$	$(3.59 \pm 0.30) \times 10^{-4}$	$\mathrm{S}=1.2$	2314
$\Lambda_{c}^{+} \mathrm{a}_{1}(1260)^{-}$	seen		2153
$\Lambda_{c}^{+} D^{-}$	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_{c}^{+} D_{s}^{-}$	$(1.10 \pm 0.10) \%$		1833
$\Lambda_{C}^{+} \pi^{+} \pi^{-} \pi^{-}$	$(7.7 \pm 1.1) \times 10^{-3}$	$\mathrm{S}=1.1$	2323
$\begin{aligned} & { }^{\Lambda_{C}(2595)^{+} \pi^{-}} \\ & \quad \Lambda_{C}(2595)^{+} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \end{aligned}$	$(3.4 \pm 1.5) \times 10^{-4}$		2210
$\begin{aligned} & \Lambda_{C}(2625)^{+} \pi^{-}, \\ & \quad \Lambda_{c}(2625)^{+} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \end{aligned}$	$(3.3 \pm 1.3) \times 10^{-4}$		2193
$\begin{aligned} & \Sigma_{c}(2455)^{0} \pi^{+} \pi^{-}, \Sigma_{c}^{0} \rightarrow \\ & \quad \Lambda_{c}^{+} \pi^{-} \end{aligned}$	$(5.7 \pm 2.2) \times 10^{-4}$		2265
$\begin{aligned} & \Sigma_{c}(2455)^{++} \pi^{-} \pi^{-}, \Sigma_{c}^{++} \rightarrow \\ & \quad \Lambda_{c}^{+} \pi^{+} \end{aligned}$	$(3.2 \pm 1.6) \times 10^{-4}$		2265
$\Lambda_{c}^{+} p \bar{p} \pi^{-}$	$(2.65 \pm 0.29) \times 10^{-4}$		1805
$\Sigma_{c}(2455)^{0} p \bar{p}, \Sigma_{c}(2455)^{0} \rightarrow$	$(2.4 \pm 0.5) \times 10^{-5}$		-
$\begin{aligned} & \Sigma_{c}(2520)^{0} p \bar{p}, \Sigma_{c}(2520)^{0} \rightarrow \\ & \quad \Lambda_{c}^{+} \pi^{-} \end{aligned}$	$(3.2 \pm 0.7) \times 10^{-5}$		-
$\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}$ anything	[v] (10.9 $\pm 2.2) \%$		-
$\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}$	$\left(6.2{ }_{-1.3}^{+1.4}\right) \%$		2345
$\Lambda_{c}^{+} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$	$(5.6 \pm 3.1) \%$		2335
$\Lambda_{c}(2595){ }^{+} \ell^{-} \bar{\nu}_{\ell}$	$\left(7.9{ }_{-3.5}^{+4.0}\right) \times 10^{-3}$		2212
$\Lambda_{C}(2625){ }^{+} \ell^{-} \bar{\nu}_{\ell}$	$\left(1.3{ }_{-0.5}^{+0.6}\right) \%$		2195
$p h^{-}$	$[x]<2.3 \times 10^{-5}$	$\mathrm{CL}=90 \%$	2730
$p \pi^{-}$	$(4.5 \pm 0.8) \times 10^{-6}$		2730
$p K^{-}$	$(5.4 \pm 1.0) \times 10^{-6}$		2709
$p D_{s}^{-}$	$<4.8 \times 10^{-4}$	$\mathrm{CL}=90 \%$	2364
$p \mu^{-} \bar{\nu}_{\mu}$	$(4.1 \pm 1.0) \times 10^{-4}$		2730
$\wedge \mu^{+} \mu^{-}$	$(1.08 \pm 0.28) \times 10^{-6}$		2695
$p \pi^{-} \mu^{+} \mu^{-}$	$(6.9 \pm 2.5) \times 10^{-8}$		2720
$\wedge \gamma$	$(7.1 \pm 1.7) \times 10^{-6}$		2699
$\wedge \eta$	$\left(\begin{array}{ll}9 & +7\end{array}\right) \times 10^{-6}$		2670
$\wedge \eta^{\prime}(958)$	$<3.1 \times 10^{-6}$	CL=90\%	2611
$\wedge \pi^{+} \pi^{-}$	$(4.7 \pm 1.9) \times 10^{-6}$		2692
$\wedge K^{+} \pi^{-}$	$(5.7 \pm 1.3) \times 10^{-6}$		2660
$\wedge K^{+} K^{-}$	$(1.62 \pm 0.23) \times 10^{-5}$		2605
$\wedge \phi$	$(9.8 \pm 2.6) \times 10^{-6}$		2599
$p \pi^{-} \pi^{+} \pi^{-}$	$(2.11 \pm 0.23) \times 10^{-5}$		2715
$p K^{-} K^{+} \pi^{-}$	$(4.1 \pm 0.6) \times 10^{-6}$		2612
$p K^{-} \pi^{+} \pi^{-}$	$(5.1 \pm 0.5) \times 10^{-5}$		2675
$p K^{-} K^{+} K^{-}$	$(1.27 \pm 0.14) \times 10^{-5}$		2524
$\Lambda_{b}(5912)^{0}$	$J^{P}=\frac{1}{2}^{-}$		

Mass $m=5912.20 \pm 0.21 \mathrm{MeV}$ Full width $\Gamma<0.66 \mathrm{MeV}, \mathrm{CL}=90 \%$

$\boldsymbol{\Lambda}_{\boldsymbol{b}} \mathbf{(5 9 1 2)}{ }^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\Lambda_{b}^{0} \pi^{+} \pi^{-}$	seen	86
$\left.\boldsymbol{\Lambda}_{\boldsymbol{b}} \mathbf{(5 9 2 0}\right)^{\mathbf{0}}$	$J^{P}=\frac{3}{2}^{-}$	

Mass $m=5919.92 \pm 0.19 \mathrm{MeV} \quad(\mathrm{S}=1.1)$ Full width 「 $<0.63 \mathrm{MeV}, \mathrm{CL}=90 \%$

$\boldsymbol{\Lambda}_{\boldsymbol{b}} \mathbf{(5 9 2 0}^{\mathbf{0}}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \boldsymbol{\Gamma}\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\Lambda_{b}^{0} \pi^{+} \pi^{-}$	seen	108

Baryon Summary Table
$\Lambda_{b}(6146)^{0} \quad J^{P}=\frac{3}{2}+$

Mass $m=6146.2 \pm 0.4 \mathrm{MeV}$
Full width $\Gamma=2.9 \pm 1.3 \mathrm{MeV}$
Full width $\Gamma=526.55 \pm 0.34 \mathrm{MeV}$

$\Lambda_{b}(6152)^{0} \quad J^{P}=\frac{5}{2}+$
 Mass $m=6152.5 \pm 0.4 \mathrm{MeV}$
 Full width $\Gamma=2.1 \pm 0.9 \mathrm{MeV}$
 Full width $\Gamma=532.89 \pm 0.28 \mathrm{MeV}$
 Full width $\Gamma=6.34 \pm 0.32 \mathrm{MeV}$

Σ_{b}

$$
I\left(J^{P}\right)=1\left(\frac{1}{2}^{+}\right)
$$

I, J, P need confirmation.
Mass $m\left(\Sigma_{b}^{+}\right)=5810.56 \pm 0.25 \mathrm{MeV}$
Mass $m\left(\Sigma_{b}^{-}\right)=5815.64 \pm 0.27 \mathrm{MeV}$
$m_{\Sigma_{b}^{+}}-m_{\Sigma_{b}^{-}}=-5.06 \pm 0.18 \mathrm{MeV}$
$\Gamma\left(\Sigma_{b}^{+}\right)=5.0 \pm 0.5 \mathrm{MeV}$
$\Gamma\left(\Sigma_{b}^{-}\right)=5.3 \pm 0.5 \mathrm{MeV}$

$\boldsymbol{\Sigma}_{\boldsymbol{b}}$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\Lambda_{b}^{0} \pi$	dominant	133
$\Sigma_{\text {b }}^{*}$	$I\left(J^{P}\right)=1($ I, J, P need	
$\begin{aligned} & \text { Mass } \\ & \text { Mass } \\ & m_{\Sigma_{b}^{*+}} \\ & m_{\Sigma_{b}^{*+}} \\ & m_{\Sigma_{b}^{*-}} \\ & \Gamma\left(\Sigma_{b}^{*-1}\right. \\ & \Gamma\left(\Sigma_{b}^{*-}\right. \\ & m_{\Sigma_{b}^{*}} \end{aligned}$	$\begin{aligned} & 2 \pm 0.27 \mathrm{MeV} \\ & 4 \pm 0.30 \mathrm{MeV} \\ & 7 \pm 0.33 \mathrm{MeV} \\ & \pm 0.18 \\ & \pm 0.22 \\ & \mathrm{~V} \quad \\ & \mathrm{eV} \quad(\mathrm{~S}=1.3) \\ & 2.0 \mathrm{MeV} \end{aligned}$	
$\boldsymbol{\Sigma}_{\boldsymbol{b}}^{*}$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$\Lambda_{b}^{0} \pi$	dominant	159
$\Sigma_{b}(6097)^{+}$	$J^{P}=? ?$	
Mass $m=6095.8 \pm 1.7 \mathrm{MeV}$ Full width $\Gamma=31 \pm 6 \mathrm{MeV}$		

$\boldsymbol{\Sigma}_{\boldsymbol{b}}(\mathbf{6 0 9 7})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{b} \pi^{+} \times \mathrm{B}\left(b \rightarrow \Sigma_{b}(6097)^{+}\right)$	seen	-
$\boldsymbol{\Sigma}_{b}(6097)$		

$\Sigma_{b}(6097)^{-}$
 $J^{P}=?$

Mass $m=6098.0 \pm 1.8 \mathrm{MeV}$
Full width $\Gamma=29 \pm 4 \mathrm{MeV}$

$\boldsymbol{\Sigma}_{\boldsymbol{b}}(\mathbf{6 0 9 7})^{-}$DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\Lambda_{b} \pi^{-} \times \mathrm{B}\left(b \rightarrow \Sigma_{b}(6097)^{-}\right)$	seen	-

$\bar{\Xi}_{\boldsymbol{b}}^{0}, \bar{\Xi}_{\boldsymbol{b}}^{-}$	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)$
	I, J, P need confirmation.

$m\left(\Xi_{b}^{-}\right)=5797.0 \pm 0.6 \mathrm{MeV} \quad(\mathrm{S}=1.7)$
$m\left(\bar{三}_{b}^{0}\right)=5791.9 \pm 0.5 \mathrm{MeV}$
$m_{\Xi_{b}^{-}}-m_{\Lambda_{b}^{0}}=177.5 \pm 0.5 \mathrm{MeV} \quad(\mathrm{S}=1.6)$
$m_{\bar{E}_{b}^{0}}-m_{\Lambda_{b}^{0}}=172.5 \pm 0.4 \mathrm{MeV}$
$m_{\bar{E}_{b}^{-}}-m_{\bar{E}_{b}^{0}}=5.9 \pm 0.6 \mathrm{MeV}$
Mean life $\tau_{\Xi_{b}^{-}}=(1.572 \pm 0.040) \times 10^{-12} \mathrm{~s}$
Mean life $\tau_{\equiv_{b}^{0}}=(1.480 \pm 0.030) \times 10^{-12} \mathrm{~s}$

$\bar{E}_{\boldsymbol{b}}$ DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$) Co	Scale factor/ Confidence level	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \\ \hline \end{gathered}$
$\bar{\Xi}^{-} \ell^{-} \bar{\nu}_{\ell} X \times \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}\right)$	$(3.9 \pm 1.2) \times 10^{-4}$	-4 S=1.4	-
$J / \psi \Xi^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{-}\right)$	$(1.02-0.21) \times 10^{-5}$		1782
$J / \psi \wedge K^{-} \times \mathrm{B}\left(b \rightarrow \bar{E}_{b}^{-}\right)$	$(2.5 \pm 0.4) \times 10^{-6}$		1631
$p D^{0} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{E}_{b}\right)$	$(1.7 \pm 0.6) \times 10^{-6}$		2374
$\begin{gathered} p \bar{K}^{0} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}\right) / \mathrm{B}(\bar{b} \rightarrow \\ \left.B^{0}\right) \end{gathered}$	$<1.6 \times 10^{-6}$	-6 CL=90\%	2783
$\begin{aligned} & p K^{0} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \overline{=}_{b}\right) / \mathrm{B}(\bar{b} \rightarrow \\ & \left.B^{0}\right) \end{aligned}$	$<1.1 \times 10^{-6}$	-6 CL=90\%	2730
$p K^{-} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}\right)$	$(3.7 \pm 0.8) \times 10^{-8}$		2731
$\begin{aligned} & \wedge \pi^{+} \pi^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{0}\right) / \mathrm{B}(b \rightarrow \\ & \left.\wedge_{b}^{0}\right) \end{aligned}$	$<1.7 \times 10^{-6}$	6 CL=90\%	2781
$\begin{aligned} & \wedge K^{-} \pi^{+} \times \mathrm{B}\left(b \rightarrow \bar{\Xi}_{b}^{0}\right) / \mathrm{B}(b \rightarrow \\ & \left.\wedge_{b}^{0}\right) \end{aligned}$	$<8 \times 10^{-7}$	-7 CL=90\%	2751
$\begin{aligned} & \Lambda K^{+} K^{-} \times \mathrm{B}\left(b \rightarrow \bar{E}_{b}^{0}\right) / \mathrm{B}(b \rightarrow \\ & \left.\Lambda_{b}^{0}\right) \end{aligned}$	$<3 \times 10^{-7}$	- $7 \mathrm{CL}=90 \%$	2698
$\Lambda_{C}^{+} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{E}_{b}\right)$	$\left(\begin{array}{lll}6 & \pm 4\end{array}\right) \times 10^{-7}$		2416
$\Lambda_{b}^{0} \pi^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{-}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)$	$(5.7 \pm 2.0) \times 10^{-4}$		99
$\begin{array}{r} p K^{-} \pi^{+} \pi^{-} \times \mathrm{B}(b \rightarrow \\ \left.\overline{=}_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right) \end{array}$	$(1.9 \pm 0.4) \times 10^{-6}$		2766
$\begin{gathered} p K^{-} K^{-} \pi^{+} \times \mathrm{B}(b \rightarrow \\ \left.=_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right) \end{gathered}$	$(1.73 \pm 0.32) \times 10^{-6}$		2704
$\begin{array}{r} p K^{-} K^{+} K^{-} \times \mathrm{B}(b \rightarrow \\ \left.\overline{=}_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right) \end{array}$	$(1.8 \pm 1.0) \times 10^{-7}$		2620

$\Xi^{\prime}(5935)^{-}$	$J^{P}=\frac{1}{2}^{+}$	
Mass $m=5935.02 \pm 0.05 \mathrm{MeV}$		
$m_{\Xi_{b}^{\prime}(5935)^{-}}-m_{\Xi_{b}^{0}}-m_{\pi^{-}}=3.653 \pm 0.019 \mathrm{MeV}$		
$\bar{E}_{\boldsymbol{b}}^{\prime} \mathbf{(5 9 3 5)}^{-}$DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\bar{E}_{b}^{0} \pi^{-} \times \mathrm{B}(\bar{b} \rightarrow$	$(11.8 \pm 1.8) \%$	31
$\left.\bar{E}^{\prime}{ }^{\prime}(5935)^{-}\right) / \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}^{0}\right)$		

$\equiv_{b}(5945)^{0} \quad J^{P}=\frac{3}{2}+$

Mass $m=5952.3 \pm 0.6 \mathrm{MeV}$ Full width $\Gamma=0.90 \pm 0.18 \mathrm{MeV}$

$\bar{E}_{\boldsymbol{b}}(\mathbf{5 9 4 5})^{0}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\bar{E}_{b}^{-} \pi^{+}$	seen	78

$\bar{Z}_{b}(5955)$
$J^{P}=\frac{3}{2}+$
Mass $m=5955.33 \pm 0.13 \mathrm{MeV}$
$m_{\Xi_{b}(5955)^{-}}-m_{\Xi_{b}^{0}}-m_{\pi^{-}}=23.96 \pm 0.13 \mathrm{MeV}$ Full width $\Gamma=1.65 \pm 0.33 \mathrm{MeV}$

$\bar{\Xi}_{\boldsymbol{b}} \mathbf{(5 9 5 5)}$ - DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\bar{\Xi}_{b}^{0} \pi^{-} \times \mathrm{B}(\bar{b} \rightarrow$	$(20.7 \pm 3.5) \%$	84
$\left.\bar{\Xi}_{b}^{*}(5955)^{-}\right) / \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}^{0}\right)$		

$\bar{E}_{b}(6227) \quad J^{P}=? ?$

Mass $m=6226.9 \pm 2.0 \mathrm{MeV}$
Full width $\Gamma=18 \pm 6 \mathrm{MeV}$

$\bar{E}_{b}(6227)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Scale factor	$\begin{gathered} p \\ (\mathrm{MeV} / \mathrm{c}) \end{gathered}$
$\Lambda_{b}^{0} K^{-} \times \mathrm{B}(b \rightarrow$	$(3.20 \pm 0.35) \times 10^{-3}$	1.8	336
$\left.\bar{\Xi}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)$			
$\begin{aligned} & \bar{\Xi}_{b}^{0} \pi^{-} \times \mathrm{B}(b \rightarrow \\ & \left.\quad \bar{b}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \text { E }_{b}^{0}\right) \end{aligned}$	$(2.8 \pm 1.1) \%$		398

Ω_{b}^{-}

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

I, J, P need confirmation.
Mass $m=6046.1 \pm 1.7 \mathrm{MeV}$
$m_{\Omega_{b}^{-}}-m_{\Lambda_{b}^{0}}=426.4 \pm 2.2 \mathrm{MeV}$
$m_{\Omega_{b}^{-}}-m_{\Xi_{b}^{-}}=247.3 \pm 3.2 \mathrm{MeV}$
Mean life $\tau=\left(1.64_{-0.17}^{+0.18}\right) \times 10^{-12} \mathrm{~s}$
$\tau\left(\Omega_{b}^{-}\right) / \tau\left(\Xi_{b}^{-}\right)$mean life ratio $=1.11 \pm 0.16$

$\boldsymbol{\Omega}_{\boldsymbol{b}}^{-}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
$J / \psi \Omega^{-} \times \mathrm{B}\left(b \rightarrow \Omega_{b}\right)$	$(2.9+1.1) \times 10^{-6}$		1806
$p K^{-} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)$	<2.5	$\times 10^{-9}$	90%
$p \pi^{-} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)$	<1.5	$\times 10^{-8}$	9866
$p K^{-} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)$	<7	$\times 10^{-9}$	90%

b-baryon ADMIXTURE $\left(\Lambda_{b}, \Xi_{b}, \Omega_{b}\right)$

These branching fractions are actually an average over weakly decaying b baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction $\mathrm{B}(b \rightarrow b$-baryon $)$.
The branching fractions $\mathrm{B}\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $)$ and $\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.$ $\Lambda_{C}^{+} \ell^{-} \bar{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with $\mathrm{B}(b \rightarrow b$-baryon $)$ were used to determine $\mathrm{B}(b \rightarrow b$-baryon $)$, as described in the note "Production and Decay of b-Flavored Hadrons."
For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
b-baryon ADMIXTURE DECAY MODES

$\left(\Lambda_{\boldsymbol{b}}, \bar{\Xi}_{\boldsymbol{b}}, \Omega_{\boldsymbol{b}}\right)$	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$p \mu^{-} \bar{\nu}$ anything	$\left(5.8_{-}^{+2.3}\right) \%$	-
$p \ell \bar{\nu}_{\ell}$ anything	$(5.6 \pm 1.2) \%$	-
p anything	$(70 \pm 22) \%$	-
$\Lambda \ell^{-} \bar{\nu}_{\ell}$ anything	$(3.8 \pm 0.6) \%$	-
$\Lambda \ell^{+} \nu_{\ell}$ anything	$(3.2 \pm 0.8) \%$	-
$\Lambda_{\text {anything }}$	$(39 \pm 7) \%$	-
$\bar{Z}^{-} \ell^{-} \bar{\nu}_{\ell}$ anything	$(6.6 \pm 1.6) \times 10^{-3}$	-

EXOTIC BARYONS

$P_{c}(4312)^{+}$

Mass $m=4311.9_{-0.9}^{+7.0} \mathrm{MeV}$ Full width $\Gamma=10 \pm 5 \mathrm{MeV}$

$\boldsymbol{P}_{\boldsymbol{C}}(\mathbf{4 3 1 2})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \bar{c})$
$J / \psi p$	seen	658

$P_{c}(4380)^{+}$

Mass $m=4380 \pm 30 \mathrm{MeV}$
Full width $\Gamma=205 \pm 90 \mathrm{MeV}$

$\boldsymbol{P}_{\boldsymbol{C}}(\mathbf{4 3 8 0})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \bar{c})$
$J / \psi p$	seen	741

$P_{c}(4440)^{+}$

Mass $m=4440_{-5}^{+4} \mathrm{MeV}$
Full width $\Gamma=21_{-11}^{+10} \mathrm{MeV}$

$\boldsymbol{P}_{\boldsymbol{C}}(\mathbf{4 4 4 0})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{C})$
$J / \psi p$	seen	810

$P_{c}(4457)^{+}$

was $P_{C}(4450)$

$$
\begin{aligned}
& \text { Mass } m=4457.3_{-1.8}^{+4.0} \mathrm{MeV} \\
& \text { Full width } \Gamma=6.4_{-2.8}^{+6.0} \mathrm{MeV}
\end{aligned}
$$

$\boldsymbol{P}_{\boldsymbol{c}}(\mathbf{4 4 5 7})^{+}$DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$J / \psi p$	seen	828

NOTES

This Summary Table only includes established baryons. The Particle Listings include evidence for other baryons. The masses, widths, and branching fractions for the resonances in this Table are Breit-Wigner parameters, but pole positions are also given for most of the N and Δ resonances.

For most of the resonances, the parameters come from various partial-wave analyses of more or less the same sets of data, and it is not appropriate to treat the results of the analyses as independent or to average them together. Furthermore, the systematic errors on the results are not well understood. Thus, we usually only give ranges for the parameters. We then also give a best guess for the mass (as part of the name of the resonance) and for the width. The Note on N and Δ Resonances and the Note on Λ and Σ Resonances in the Particle Listings review the partial-wave analyses.

When a quantity has " $(S=\ldots)$ " to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S=\sqrt{\chi^{2} /(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when $S>1$, which often indicates that the measurements are inconsistent. When $S>1.25$, we also show in the Particle Listings an ideogram of the measurements. For more about S , see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3 -or-more-body decay, p is the largest momentum any of the products can have in this frame. For any resonance, the nominal mass is used in calculating p. A dagger (" \dagger ") in this column indicates that the mode is forbidden when the nominal masses of resonances are used, but is in fact allowed due to the nonzero widths of the resonances.
[a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to $\mathrm{MeV}, 1 \mathrm{u}=931.494061$ (21) MeV , is less well known than are the masses in u.
[b] The $\left|m_{p}-m_{\bar{p}}\right| / m_{p}$ and $\left|q_{p}+q_{\bar{p}}\right| / e$ are not independent, and both use the more precise measurement of $\left|q_{\bar{p}} / m_{\bar{p}}\right| /\left(q_{p} / m_{p}\right)$.
[c] The limit is from neutrality-of-matter experiments; it assumes $q_{n}=q_{p}+$ q_{e}. See also the charge of the neutron.
[d] The μp and $e p$ values for the charge radius are much too different to average them. The disagreement is not yet understood.
[e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
[f] The first limit is for $p \rightarrow$ anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \bar{p} 's is $\tau_{\bar{p}}>10^{7}$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\bar{p}} / \mathrm{B}\left(\bar{p} \rightarrow e^{-} \gamma\right)>7 \times 10^{5} \mathrm{yr}$.
$[g]$ There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
[h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry-thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B^{\prime} were equal. The limit for any B^{\prime} in the range 0 to $12.5 \mu \mathrm{~T}$ is $>12 \mathrm{~s}(95 \% \mathrm{CL})$.
[i] The parameters g_{A}, g_{V}, and $g_{W M}$ for semileptonic modes are defined by $\bar{B}_{f}\left[\gamma_{\lambda}\left(g_{V}+g_{A} \gamma_{5}\right)+i\left(g_{W M} / m_{B_{i}}\right) \sigma_{\lambda \nu} q^{\nu}\right] B_{i}$, and $\phi_{A V}$ is defined by $g_{A} / g_{V}=\left|g_{A} / g_{V}\right| e^{i \phi_{A V}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
[j] Time-reversal invariance requires this to be 0° or 180°
[k] This coefficient is zero if time invariance is not violated.
[/] This limit is for γ energies between 0.4 and 782 keV .

Baryon Summary Table

[n] The decay parameters γ and Δ are calculated from α and ϕ using

$$
\gamma=\sqrt{1-\alpha^{2}} \cos \phi, \quad \tan \Delta=-\frac{1}{\alpha} \sqrt{1-\alpha^{2}} \sin \phi
$$

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
[0] See the Listings for the pion momentum range used in this measurement.
[p] Our estimate. See the Particle Listings for details.
[q] A theoretical value using QED.
$[r]$ This branching fraction includes all the decay modes of the final-state resonance.
[s] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_{c}^{+} \pi^{0} \pi^{0}$ and $\Lambda_{c}^{+} \pi^{+} \pi^{-}$partial widths as a function of the $\Lambda_{C}(2595)^{+}-\Lambda_{c}^{+}$mass difference. At our value of the mass difference, the ratio is about 4.
$[t]$ A test that the isospin is indeed 0 , so that the particle is indeed a Λ_{c}^{+}.
$[u] P_{c}^{+}$is a pentaquark-charmonium state.
[v] Not a pure measurement. See note at head of Λ_{b}^{0} Decay Modes.
[x] Here h^{-}means π^{-}or K^{-}.

SEARCHES
 not in other sections

Magnetic Monopole Searches

The most sensitive experiments obtain negative results.
Best cosmic-ray supermassive monopole flux limit:

$$
<1.4 \times 10^{-16} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{~s}^{-1} \quad \text { for } 1.1 \times 10^{-4}<\beta<1
$$

Supersymmetric Particle Searches

All supersymmetric mass bounds here are model dependent.
The limits assume:

1) $\widetilde{\chi}_{1}^{0}$ is the lightest supersymmetric particle; 2) R-parity is conserved, unless stated otherwise;
See the Particle Listings for a Note giving details of supersymmetry.

$$
\begin{aligned}
& \widetilde{\chi}_{i}^{0} \text { - neutralinos (mixtures of } \widetilde{\gamma}, \widetilde{Z}^{0} \text {, and } \widetilde{H}_{i}^{0} \text {) } \\
& \text { Mass } m_{\widetilde{\chi}_{1}^{0}}>0 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& \text { [general MSSM, non-universal gaugino masses] } \\
& \text { Mass } m_{\widetilde{\chi}_{1}^{0}}>46 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& \text { [all } \tan \beta \text {, all } m_{0} \text {, all } m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}^{0}} \text {] } \\
& \text { Mass } m_{\tilde{\chi}_{2}^{0}}>62.4 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& \text { [} \left.1<\tan \beta<40 \text {, all } m_{0} \text {, all } m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\right] \\
& \text { Mass } m_{\tilde{\chi}_{3}^{0}}>99.9 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& {\left[1<\tan \beta<40 \text {, all } m_{0} \text {, all } m_{\widetilde{\chi}_{2}^{0}}-m_{\tilde{\chi}_{1}^{0}}\right]} \\
& \text { Mass } m_{\tilde{\chi}_{4}^{0}}>116 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& \text { [} \left.1<\tan \beta<40 \text {, all } m_{0} \text {, all } m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\right] \\
& \widetilde{\chi}_{i}^{ \pm} \text {—charginos (mixtures of } \widetilde{W}^{ \pm} \text {and } \widetilde{H}_{i}^{ \pm} \text {) } \\
& \text { Mass } m_{\tilde{\chi}_{1}^{ \pm}}>94 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& {\left[\tan \beta<40, m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}>3 \mathrm{GeV} \text {, all } m_{0}\right]} \\
& \text { Mass } m_{\tilde{\chi}_{1}^{ \pm}}>810 \mathrm{GeV}, \mathrm{CL}=95 \% \\
& {\left[\ell^{ \pm} \ell^{\mp}, \text { Tchi1chi1C, } m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\right]}
\end{aligned}
$$

$\tilde{\chi}^{ \pm}$— long-lived chargino
Mass $m_{\tilde{\chi}^{ \pm}}>620 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [stable $\widetilde{\chi}^{ \pm}$]
$\widetilde{\nu}$ - sneutrino
Mass $m>41 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [model independent]
Mass $m>94 \mathrm{GeV}, \mathrm{CL}=95 \%$
[CMSSM, $1 \leq \tan \beta \leq 40, m_{\widetilde{e}_{R}}-m_{\widetilde{\chi}_{1}^{0}}>10 \mathrm{GeV}$]
Mass $m>3400 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [R-Parity Violating]

$$
\left[\widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{312}=\lambda_{321}=0.07, \lambda_{311}^{\prime}=0.11\right]
$$

\widetilde{e} - scalar electron (selectron)
Mass $m\left(\widetilde{e}_{L}\right)>107 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [all $m_{\widetilde{e}_{L}}-m_{\widetilde{\chi}_{1}^{0}}$]
Mass $m>410 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [R-Parity Violating]

$$
\left[\geq 4 \ell^{ \pm}, \tilde{\ell} \rightarrow I \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\right]
$$

$\widetilde{\mu}$ - scalar muon (smuon)
Mass $m>94 \mathrm{GeV}, \mathrm{CL}=95 \%$

$$
\left[\mathrm{CMSSM}, 1 \leq \tan \beta \leq 40, m_{\widetilde{\mu}_{R}}-m_{\widetilde{\chi}_{1}^{0}}>10 \mathrm{GeV}\right]
$$

Mass $m>410 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [R-Parity Violating]

$$
\left[\geq 4 \ell^{ \pm}, \widetilde{\ell} \rightarrow \mid \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\right]
$$

$\tilde{\tau}-$ scalar tau (stau)
Mass $m>81.9 \mathrm{GeV}, \mathrm{CL}=95 \%$

$$
\left[m_{\tilde{\tau}_{R}}-m_{\widetilde{\chi}_{1}^{0}}>15 \mathrm{GeV} \text {, all } \theta_{\tau}, \mathrm{B}\left(\widetilde{\tau} \rightarrow \tau \widetilde{\chi}_{1}^{0}\right)=100 \%\right]
$$

Mass $m>286 \mathrm{GeV}, \mathrm{CL}=95 \% \quad[$ long-lived $\widetilde{\tau}$]
\widetilde{q} - squarks of the first two quark generations
Mass $m>1.450 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \%$ [CMSSM, $\left.\tan \beta=30, A_{0}=-2 \max \left(m_{0}, m_{1 / 2}\right), \mu>0\right]$
Mass $m>1630 \mathrm{GeV}, \mathrm{CL}=95 \%$ [mass degenerate squarks]
Mass $m>1130 \mathrm{GeV}, \mathrm{CL}=95 \%$
[single light squark bounds]
Mass $m>1.600 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ [R-Parity Violating] $\left[\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu, \lambda_{121}, \lambda_{122} \neq 0, m_{\tilde{g}}=2400 \mathrm{GeV}\right]$

```
\(\widetilde{q}\) - long-lived squark
    Mass \(m>1340, \mathrm{CL}=95 \% \quad[\widetilde{t} R\)-hadrons \(]\)
    Mass \(m>1250, \mathrm{CL}=95 \% \quad[b R\)-hadrons \(]\)
\(\widetilde{b}\) - scalar bottom (sbottom)
    Mass \(m>1230 \mathrm{GeV}, \mathrm{CL}=95 \%\)
        \(\left[j e t s+E_{T}\right.\), Tsbot1, \(\left.m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\right]\)
    Mass \(m>307 \mathrm{GeV}, \mathrm{CL} \stackrel{(1)}{=} 95 \% \quad\) [R-Parity Violating]
        [ \(\widetilde{b} \rightarrow t d\) or \(t s, \lambda_{332}^{\prime \prime}\) or \(\lambda_{331}^{\prime \prime}\) coupling]
\(\tilde{t}\) — scalar top (stop)
    Mass \(m>1190 \mathrm{GeV}, \mathrm{CL}=95 \%\)
        \(\left[j e t s+E_{T}\right.\), Tstop1, \(\left.m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\right]\)
    Mass \(m>1100 \mathrm{GeV}, \mathrm{CL}^{1}=95 \% \quad\) [R-Parity Violating]
        \([\widetilde{t} \rightarrow\) be, Tstop2RPV, prompt]
\(\tilde{g}\) - gluino
    Mass \(m>2.000 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \%\)
        [jets \(+E_{T}\), Tglu1A, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) ]
    Mass \(m>2.260 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad\) [R-Parity Violating]
        \(\left[\geq 4 \ell, \lambda_{12 k} \neq 0, m_{\tilde{\chi}_{1}^{0}}>1000 \mathrm{GeV}\right]\)
```


Technicolor

The limits for technicolor (and top-color) particles are quite varied depending on assumptions. See the Technicolor section of the full Review (the data listings).

Quark and Lepton Compositeness,
 Searches for

Scale Limits Λ for Contact Interactions
(the lowest dimensional interactions with four fermions)
If the Lagrangian has the form

$$
\pm \frac{g^{2}}{2 \Lambda^{2}} \bar{\psi}_{L} \gamma_{\mu} \psi_{L} \bar{\psi}_{L} \gamma^{\mu} \psi_{L}
$$

(with $g^{2} / 4 \pi$ set equal to 1), then we define $\Lambda \equiv \Lambda_{L L}^{ \pm}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full Review and the original literature.

$\Lambda_{L L}^{+}(e e e e)$	$>8.3 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(e e e e)$	$>10.3 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(e e \mu \mu)$	> 8.5 TeV, CL $=95 \%$
$\Lambda_{L L}^{-}(e e \mu \mu)$	> 9.5 TeV, CL $=95 \%$
$\wedge_{L L}^{+}(e e \tau \tau)$	> 7.9 TeV, CL $=95 \%$
$\Lambda_{L L}^{-}(e e \tau \tau)$	> $7.2 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(\ell \ell \ell \ell)$	$>9.1 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(\ell \ell \ell \ell)$	$>10.3 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(e e q q)$	$>24 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(e e q q)$	$>37 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(e e u u)$	> 23.3 TeV, CL $=95 \%$
$\Lambda_{L L}^{-}(e e u u)$	$>12.5 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(e e d d)$	$>11.1 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(e e d d)$	> 26.4 TeV, CL $=95 \%$
$\Lambda_{L L}^{+}(e e c c)$	$>9.4 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(e e c c)$	> 5.6 TeV, CL $=95 \%$
$\Lambda_{L L}^{+}(e e b b)$	> 9.4 TeV, CL $=95 \%$
$\Lambda_{L L}^{-}(e e b b)$	$>10.2 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(\mu \mu q q)$	$>20 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(\mu \mu q q)$	$>30 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda(\ell \nu \ell \nu)$	$>3.10 \mathrm{TeV}, \mathrm{CL}=90 \%$
$\wedge(e \nu q q)$	> $2.81 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(q q q q)$	>13.1 none 17.4-29.5 TeV, $\mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(q q q q)$	$>21.8 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{+}(\nu \nu q q)$	$>5.0 \mathrm{TeV}, \mathrm{CL}=95 \%$
$\Lambda_{L L}^{-}(\nu \nu q q)$	> 5.4 TeV, CL $=95 \%$

Excited Leptons

The limits from $\ell^{*+} \ell^{*-}$ do not depend on λ (where λ is the $\ell \ell^{*}$ transition coupling). The λ-dependent limits assume chiral coupling.
$e^{* \pm}$ — excited electron
Mass $m>103.2 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $e^{*} e^{*}$)
Mass $m>4.800 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $e e^{*}$)
Mass $m>356 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (if $\lambda_{\gamma}=1$)
$\mu^{* \pm}$ — excited muon
Mass $m>103.2 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $\mu^{*} \mu^{*}$)
Mass $m>3.800 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $\mu \mu^{*}$)
$\tau^{* \pm}$ - excited tau
Mass $m>103.2 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(\right.$ from $\left.\tau^{*} \tau^{*}\right)$
Mass $m>2.500 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $\tau \tau^{*}$)
ν^{*} - excited neutrino
Mass $m>1.600 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $\nu^{*} \nu^{*}$)
Mass $m>213 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(\right.$ from $\left.\nu^{*} X\right)$
q^{*} - excited quark
Mass $m>338 \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $q^{*} q^{*}$)
Mass $m>6.000 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% \quad$ (from $q^{*} X$)

Color Sextet and Octet Particles

Color Sextet Quarks (q_{6})
Mass $m>84 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(\right.$ Stable $\left.q_{6}\right)$
Color Octet Charged Leptons (ℓ_{8})
Mass $m>86 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(\right.$ Stable $\left.\ell_{8}\right)$
Color Octet Neutrinos (ν_{8})
Mass $m>110 \mathrm{GeV}, \mathrm{CL}=90 \% \quad\left(\nu_{8} \rightarrow \nu \mathrm{~g}\right)$

Extra Dimensions

Please refer to the Extra Dimensions section of the full Review for a discussion of the model-dependence of these bounds, and further constraints.

Constraints on the radius of the extra dimensions,
for the case of two-flat dimensions of equal radii
$R<30 \mu \mathrm{~m}, \mathrm{CL}=95 \% \quad$ (direct tests of Newton's law)
$R<4.8 \mu \mathrm{~m}, \mathrm{CL}=95 \% \quad(p p \rightarrow j G)$
$R<0.16-916 \mathrm{~nm} \quad$ (astrophysics; limits depend on technique and assumptions)
Constraints on the fundamental gravity scale
$M_{T T}>9.02 \mathrm{TeV}, \mathrm{CL}=95 \% \quad(p p \rightarrow$ dijet, angular distribution $)$ $M_{c}>4.16 \mathrm{TeV}, \mathrm{CL}=95 \% \quad(p p \rightarrow \ell \bar{\ell})$
Constraints on the Kaluza-Klein graviton in warped extra dimensions $M_{G}>4.25 \mathrm{TeV}, \mathrm{CL}=95 \% \quad(p p \rightarrow \gamma \gamma)$
Constraints on the Kaluza-Klein gluon in warped extra dimensions

$$
M_{g_{K K}}>3.8 \mathrm{TeV}, \mathrm{CL}=95 \% \quad\left(g_{K K} \rightarrow t \bar{t}\right)
$$

WIMP and Dark Matter Searches

No confirmed evidence found for galactic WIMPs from the GeV to the TeV mass scales and down to 1×10^{-10} pb spin independent cross section at $\mathrm{M}=100 \mathrm{GeV}$.

Tests of Conservation Laws

Written August 2019 by A. Pich (IFIC, Valencia) and M. RamseyMusolf (Tsung-Dao Lee Inst.; SJTU; U. Massachusetts).

In keeping with the current interest in tests of conservation laws, we collect together a Table of experimental limits on all weak and electromagnetic decays, mass differences, and moments, and on a few reactions, whose observation would violate conservation laws. The Table is given only in the full Review of Particle Physics (RPP), not in the Particle Physics Booklet, and organizes the data in two main sections: "Discrete Space-Time Symmetries", i.e., C, $P, T, C P$ and $C P T$; and "Number Conservation Laws", i.e., lepton, baryon, flavor and charge conservation. The references for these data can be found in the Particle Listings. The following text discusses the best limits among those included in the Table and gives a brief overview of the current status. For some topics, a more extensive discussion of the framework for theoretical interpretation is provided, particularly where the analogous discussion does not appear elsewhere in the RPP. References to more extensive review articles are also included where appropriate. Unless otherwise specified, all limits quoted in this review are given at a C.L. of 90%.

DISCRETE SPACE-TIME SYMMETRIES

Charge conjugation (C), parity (P) and time reversal (T) are empirically exact symmetries of the electromagnetic (QED) and strong (QCD) interactions, but they are violated by the weak forces. Owing to the left-handed nature of the $S U(2)_{L} \otimes U(1)_{Y}$ electroweak theory, C and P are maximally violated in the fermionic couplings of the $W^{ \pm}$and (up to $\sin ^{2} \theta_{W}$ corrections) the Z. However, their product $C P$ is still an exact symmetry when only one or two fermion families are considered. With three generations of fermions, $C P$ is violated through the single complex phase present in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. An analogous $C P$-violating (CPV) phase appears in the lepton sector when non-vanishing neutrino masses are taken into account (plus two additional phases if neutrinos are Majorana particles). The product of the three discrete symmetries, $C P T$, is an exact symmetry of any local and Lorentz-invariant quantum field theory with a positive-definite hermitian Hamiltonian that preserves micro-causality $[1,2]$. Therefore, the breaking of $C P$ implies a corresponding violation of T.

Violations of charge-conjugation symmetry have never been observed in electromagnetic and strong phenomena. The most stringent limits are extracted from C-violating transitions of neutral (self-conjugate) particles such as $\operatorname{Br}\left(\pi^{0} \rightarrow 3 \gamma\right)<3.1 \times 10^{-8}$ [3] and $\operatorname{Br}(J / \psi \rightarrow 2 \gamma)<2.7 \times 10^{-7}$ [4]. P (and $C P$) conservation has been also precisely tested through forbidden decays such as $\operatorname{Br}\left(\eta \rightarrow 4 \pi^{0}\right)<6.9 \times 10^{-7}$ [5], but the best limits on P and T are set by the non-observation of electric dipole moments (see section 2). Obviously, the interplay of the weak interaction puts a lower bound in sensitivity for this type of tests, beyond which violations of the corresponding conservation laws should be detected.

1 Violations of $\boldsymbol{C P}$ and T

The first evidence of $C P$ non-invariance in particle physics was the observation in 1964 of $K_{L}^{0} \rightarrow \pi^{+} \pi^{-}$decays [6]. For many years afterwards, the non-zero ratio

$$
\begin{align*}
\left|\eta_{+-}\right| & \equiv\left|\mathcal{M}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathcal{M}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)\right| \tag{1}\\
& =(2.232 \pm 0.011) \times 10^{-3}
\end{align*}
$$

could be explained as a $K^{0}-\bar{K}^{0}$ mixing effect, $\eta_{+-}=\epsilon$ (superweak $C P$ violation), which would imply an identical ratio $\eta_{00} \equiv \mathcal{M}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \mathcal{M}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ in the neutral decay mode and successfully predicts the observed CPV semileptonic $\operatorname{asymmetry}\left(A_{L}(e) \approx 2 \operatorname{Re} \epsilon\right)$

$$
\begin{align*}
A_{L}(e) & \equiv \frac{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)-\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)}{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)+\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)} \tag{2}\\
& =(3.34 \pm 0.07) \times 10^{-3}
\end{align*}
$$

A tiny difference between η_{+-}and η_{00} was reported for the first time in 1988 by the CERN NA31 collaboration [7], and later es-
tablished at the 7.2σ level with the full data samples from the NA31 [8], E731 [9], NA48 [10] and KTeV [11] experiments:

$$
\begin{equation*}
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=\frac{1}{3}\left(1-\left|\eta_{00} / \eta_{+-}\right|\right)=(1.66 \pm 0.23) \times 10^{-3} \tag{3}
\end{equation*}
$$

This important measurement confirmed that $C P$ violation is associated with a $\Delta S=1$ transition, as predicted by the CKM mechanism. The Standard Model (SM) prediction, $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=$ $(1.4 \pm 0.5) \times 10^{-3}[12,13]$, is in good agreement with the measured ratio, although the theoretical uncertainty is unfortunately large.

Much larger $C P$ asymmetries have been later measured in B meson decays, many of them involving the interference between $B^{0}-\bar{B}^{0}$ mixing and the decay amplitude. They provide many successful tests of the CKM unitarity structure, validating the SM mechanism of CP violation (see the review on $C P$ violation in the quark sector). Prominent signals of direct $C P$ violation have been also clearly established in several $B^{ \pm}, B_{d}^{0}$ and B_{s}^{0} decays, and, very recently, in charm decays [14]:

$$
\begin{align*}
\Delta a_{C P}^{\mathrm{dir}} & \equiv a_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-a_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-15.7 \pm 2.9) \times 10^{-4} \tag{4}
\end{align*}
$$

These direct $C P$ asymmetries necessarily involve the presence of a strong phase-shift difference between (at least) two interfering amplitudes, which makes very challenging to perform reliable SM predictions for heavy-flavored mesons.

Global fits to neutrino oscillation data provide some hints of a non-zero mixing phase $[15,16]$. Although the statistical significance is not yet compelling, they suggest that $C P$-violation effects in neutrino oscillations could be large (see the review on neutrino masses, mixings and oscillations). The future DUNE and HyperKamiokande experiments are expected to confirm the presence of $C P$ violation in the lepton sector or constrain the phase in the leptonic mixing matrix to be smaller than $O\left(10^{\circ}\right)$.

While $C P$ violation implies a breaking of time-reversal symmetry, direct tests of T violation are much more difficult. The CPLEAR experiment observed longtime ago a non-zero difference between the oscillation probabilities of $K^{0} \rightarrow \bar{K}^{0}$ and $\bar{K}^{0} \rightarrow K^{0}$ [17]. Initial neutral kaons with defined strangeness were produced from proton-antiproton annihilations at rest, $p \bar{p} \rightarrow$ $K^{-} \pi^{+} K^{0}, K^{+} \pi^{-} \bar{K}^{0}$, and tagged by the accompanying charged kaon, while the strangeness of the final neutral kaon was identified through its semileptonic decay: $K^{0} \rightarrow e^{+} \pi^{-} \nu_{e}, \bar{K}^{0} \rightarrow e^{-} \pi^{+} \bar{\nu}_{e}$. The average asymmetry over the time interval from 1 to $20 K_{S}^{0}$ lifetimes was found to be different from zero at 4σ [17]:

$$
\begin{align*}
& \frac{R\left[\bar{K}^{0}(t=0) \rightarrow e^{+} \pi^{-} \nu_{e}(t)\right]-R\left[K^{0}(t=0) \rightarrow e^{-} \pi^{+} \bar{\nu}_{e}(t)\right]}{R\left[\bar{K}^{0}(t=0) \rightarrow e^{+} \pi^{-} \nu_{e}(t)\right]+R\left[K^{0}(t=0) \rightarrow e^{-} \pi^{+} \bar{\nu}_{e}(t)\right]}= \\
& =(6.6 \pm 1.3 \pm 1.0) \times 10^{-3} . \tag{5}
\end{align*}
$$

Since this asymmetry violates also $C P$, its interpretation as direct evidence of T violation requires a detailed analysis of the underlying $K^{0}-\bar{K}^{0}$ mixing process [18-20].

More recently, the exchange of initial and final states has been made possible in B decays, taking advantage of the entanglement of the two daughter mesons produced in the decay $\Upsilon(4 S) \rightarrow B \bar{B}$ which allows for both flavor $\left(B^{0} \rightarrow \ell^{+} X, \bar{B}^{0} \rightarrow \ell^{-} X\right)$ and $C P$ $\left(B_{+} \rightarrow J / \psi K_{L}^{0}, B_{-} \rightarrow J / \psi K_{S}^{0}\right)$ tagging. Selecting events where one B candidate is reconstructed in a $C P$ eigenstate and the flavor of the other B is identified, one can compare the rates of the $\bar{B}^{0} \rightarrow B_{ \pm}$and $B^{0} \rightarrow B_{ \pm}$transitions with their T-reversed $B_{ \pm} \rightarrow \bar{B}^{0}$ and $B_{ \pm} \rightarrow B^{0}$ processes, as a function of the time difference Δt between the two B decays [21-23]. Neglecting the small width difference between the two B_{d}^{0} mass eigenstates, each of these eight transitions has a time-dependent decay rate of the form $\mathrm{e}^{-\Gamma_{d} \Delta t}\left\{1+S_{\alpha, \beta}^{ \pm} \sin \left(\Delta m_{d} \Delta t\right)+C_{\alpha, \beta}^{ \pm} \cos \left(\Delta m_{d} \Delta t\right)\right\}$, where Γ_{d} is the average decay width, Δm_{d} the B_{d}^{0} mass difference, the subindices $\alpha=\ell^{+}, \ell^{-}$and $\beta=K_{S}^{0}, K_{L}^{0}$ stand for the reconstructed final states of the two B mesons and the superindex +

Figure 1: Measured values of $\Delta S_{T}^{+}, \Delta C_{T}^{+}$(blue point, dashed lines) and $\Delta S_{T}^{-}, \Delta C_{T}^{-}$(red square, solid lines) [24]. The twodimensional contours correspond to $1-\mathrm{CL}=0.317,4.55 \times$ $10^{-2}, 2.70 \times 10^{-3}, 6.33 \times 10^{-5}, 5.73 \times 10^{-7}$, and 1.97×10^{-9}. The + sign indicates the T-invariant point.
or - indicates whether the decay to the flavor final state α occurs before or after the decay to the $C P$ final state β. Figure 1 shows confidence-level contours for the T-asymmetry parameters $\Delta S_{T}^{ \pm} \equiv S_{\ell^{-}, K_{L}^{0}}^{\mp}-S_{\ell^{+}, K_{S}^{0}}^{ \pm}$and $\Delta C_{T}^{ \pm} \equiv C_{\ell^{-}, K_{L}^{0}}^{\mp}-C_{\ell^{+}, K_{S}^{0}}^{ \pm}$, reported by the BABAR experiment [24], which clearly demonstrate a violation of T in $\Delta S_{T}^{ \pm}$, with a significance of 14σ.

2 Electric dipole moments

Among the most powerful tests of $C P$ invariance is the search for a permanent electric dipole moment (EDM) of an elementary fermion or non-degenerate quantum system. The EDM of an elementary spin- $1 / 2$ fermion f is defined by the effective, nonrenormalizable interaction

$$
\begin{equation*}
\mathcal{L}_{\mathrm{EDM}}=-\frac{i}{2} d_{f} \bar{f} \sigma_{\mu \nu} \gamma_{5} f F^{\mu \nu} \tag{6}
\end{equation*}
$$

where $F^{\mu \nu}$ is the QED field strength tensor. The values for d_{f} are conventionally expressed in units of $e \mathrm{~cm}$. The interaction (6) is separately odd under T and P. In the non-relativistic limit, Eq. (6) reduces to

$$
\begin{equation*}
\mathcal{L}_{\mathrm{EDM}} \rightarrow d_{f} \chi_{f}^{\dagger} \vec{\sigma} \chi \cdot \vec{E} \tag{7}
\end{equation*}
$$

where χ is a two-component Pauli spinor and \vec{E} is the electric field. Note the interaction (7) is manifestly T-odd and carries no direct information on $C P$. The observation of a non-zero EDM of a non-relativistic (and non-degenerate) quantum system, such as the mercury atom (see below) would imply $C P$ violation under the assumption of $C P T$ invariance.

To date, no experimental observation of an EDM of an elementary particle or non-degenerate bound quantum system has been observed. The most stringent limits have been obtained for the EDMs of the electron, mercury atom, and neutron. A selection of the representative, most stringent limits is given in Table 1. The limits on the electron EDM are inferred from experiments involving polar molecules, paramagnetic systems with an unpaired electron spin. In contrast, the neutron and ${ }^{199} \mathrm{Hg}$ atom are diamagnetic. A variety of experimental efforts aimed at improved sensitivities are underway. For reviews of the experimental and theoretical situation, see, e.g. [25-28].

EDMs in the Standard Model

The SM provides two sources of d_{f} : the CPV phase in the CKM matrix and the P - and T-odd ' θ term' in the QCD Lagrangian. The former is characterized by the Jarlskog invariant [35]

$$
\begin{equation*}
\mathcal{J}=\operatorname{Im}\left(V_{u s} V_{c s}^{*} V_{c b} V_{u b}^{*}\right) \sim A^{2} \lambda^{6} \eta<10^{-4} \tag{8}
\end{equation*}
$$

while the latter is given by

$$
\begin{equation*}
\mathcal{L}_{\bar{\theta}}=-\frac{g_{3}^{2}}{16 \pi^{2}} \bar{\theta} \operatorname{Tr}\left(G^{\mu \nu} \tilde{G}_{\mu \nu}\right) \tag{9}
\end{equation*}
$$

Table 1: Most stringent limits on electric dipole moments.

EDM	Limit $(e \mathrm{~cm})$		Source
Electron	1.1×10^{-29}	$(90 \%$ C.L. $)$	ThO $[29]$
	1.3×10^{-28}	(90\% C.L.)	HfF $^{+}[30]$
Muon	1.8×10^{-19}	(95\% C.L.)	$[31]$
Neutron	1.8×10^{-26}	(90\% C.L.)	$[32]$
${ }^{199}$ Hg Atom	7.4×10^{-30}	(95\% C.L.)	$[33]$
${ }^{129}$ Xe Atom	1.5×10^{-27}	(95\% C.L.)	$[34]$

where $G_{\mu \nu}\left(\tilde{G}_{\mu \nu}=\epsilon_{\mu \nu \alpha \beta} G^{\alpha \beta} / 2\right)$ is the QCD field strength tensor (dual).

The CKM-induced EDMs of quarks and charged leptons arise at three- and four-loop orders, respectively [36-39]. The resulting numerical impact for the experimental observables (see below) falls well below present and prospective experimental sensitivities. The most important impact of \mathcal{J} for the EDMs of the neutron and diamagnetic atoms arise via induced hadronic interactions. The resulting theoretical expectations for the electron, neutron and ${ }^{199} \mathrm{Hg}$ EDMs are

$$
\begin{align*}
\left|d_{e}\right|_{\mathrm{CKM}} & \approx 10^{-44} e \mathrm{~cm} \quad[39] \tag{10a}\\
\left|d_{n}\right|_{\mathrm{CKM}} & \approx(1-6) \times 10^{-32} e \mathrm{~cm} \quad[40] \tag{10b}\\
\left|d_{A}\left({ }^{199} \mathrm{Hg}\right)\right|_{\mathrm{CKM}} & \lesssim 4 \times 10^{-34} e \mathrm{~cm} \quad[25] \tag{10c}
\end{align*}
$$

For d_{n} and $d_{A}\left({ }^{199} \mathrm{Hg}\right)$, the dominant CKM contributions arise from four-quark operators (generated after integrating out the electroweak gauge bosons) rather than from the EDMs of the individual quarks. The corresponding sensitivities to the QCD $\bar{\theta}$ parameter are given by

$$
\begin{align*}
&\left|d_{n}\right|_{\bar{\theta}} \approx(0.9-1.2) \times 10^{-16} \bar{\theta} e \mathrm{~cm} \tag{11a}\\
&\left|d_{A}\left({ }^{199} \mathrm{Hg}\right)\right|_{\bar{\theta}} \approx(0.07-8) \times 10^{-20} \bar{\theta} e \mathrm{~cm} \tag{11b}\\
& {[25,26] }
\end{align*}
$$

where the ranges quoted include the impacts of hadronic, nuclear, and atomic theory uncertainties. The neutron EDM puts then a stringent limit on 'strong' $C P$ violation: $\bar{\theta} \lesssim 2 \times 10^{-10}$. The corresponding limit from $d_{A}\left({ }^{199} \mathrm{Hg}\right)$ is weaker due to the large theoretical uncertainty.

EDMs Beyond the Standard Model

It is possible that the next generation of EDM searches will yield a non-zero result, arising from the $\bar{\theta}$-term interaction and/or physics beyond the SM (BSM). Most of the considered BSM scenarios involve new particles with masses well above the electroweak scale. At energies much lower than the BSM mass scale Λ, the dynamics can be described through an effective field theory (SMEFT) involving an infinite set of non-renormalizable operators $\mathcal{O}_{k}^{(d)}$, with dimensions $d>4$, that are invariant under the SM gauge group:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{k, d} \alpha_{k}^{(d)}\left(\frac{1}{\Lambda}\right)^{d-4} \mathcal{O}_{k}^{(d)} \tag{12}
\end{equation*}
$$

The operators contain only SM fields, while all short-distance information on the BSM physics is encoded in their Wilson coefficients $\alpha_{k}^{(d)}$. The $d=4$ term corresponds to the SM Lagrangian.

For the systems of Table 1 and for many BSM scenarios of recent interest, it suffices to consider the leading contributions from $d=6$ operators. Considering only the first-generation SM fermions, there exist 12 independent CPV pertinent operators. For a complete listing, see e.g., Refs. [26,41]. For a given elementary fermion f, two of these operators reduce to the EDM interaction in Eq. (6). Of the remaining, the most relevant include the chromo-electric dipole moments (cEDMs) of the quarks; a $C P$-odd three gluon operator; three semileptonic, four-fermion operators; two four-quark operators; and a CPV interaction involving two Higgs fields and a right-handed quark current. For the dipole operators, it is useful to define a rescaled Wilson coefficient $\alpha_{f V_{j}}^{(6)} \equiv g_{j} C_{f V_{j}}$, where $V_{j}(j=1,2,3)$ denote the gauge bosons for

Table 2: Pertinent dimension-six EDM and cEDM sources (first generation fermions only).

System	$d=6$ Source	Wilson Coefficient
Paramagnetic	Electron EDM	$\operatorname{Im} C_{e \gamma}$
	Electron-quark	$C_{e q}^{(\pm)}$
Diamagnetic	Quark EDM	$\operatorname{Im} C_{q \gamma}$
	Quark cEDM	$\operatorname{Im} C_{q G}$
	Three gluon	$C_{\tilde{G}}$
	Four quark	$\operatorname{Im} C_{q u q d}^{(1,8)}$
	Quark-Higgs	$\operatorname{Im} C_{\varphi u d}$
	Electron-quark tensor*	$\operatorname{Im} C_{\text {lequ }}^{(3)}$

* Applicable only to atoms.
the three SM gauge groups with corresponding couplings g_{j}; for all other $d=6$ operators we correspondingly identify $\alpha_{k}^{(6)} \equiv C_{k}$. In this case, one has for the $\operatorname{EDM}\left(d_{f}\right)$ and $\operatorname{cEDM}\left(\tilde{d}_{q}\right)$

$$
\begin{align*}
d_{f} & =-\left(1.13 \times 10^{-16} e \mathrm{~cm}\right)\left(\frac{v}{\Lambda}\right)^{2} \operatorname{Im} C_{f \gamma}, \tag{13a}\\
\tilde{d}_{q} & =-\left(1.13 \times 10^{-16} \mathrm{~cm}\right)\left(\frac{v}{\Lambda}\right)^{2} \operatorname{Im} C_{q G}, \tag{13b}
\end{align*}
$$

with $\operatorname{Im} C_{f \gamma}=\operatorname{Im} C_{f B}+3 I_{3}^{f} \operatorname{Im} C_{f W}$. As the expressions (13a,13b) illustrate, the magnitude of the BSM contributions scales with two inverse powers of the scale Λ. A similar conclusion holds for the contributions from the other $d=6$ operators to the EDMs of Table 1.

It is important to emphasize that if the BSM mediators are light, with masses below the weak scale, the effective field theory description of Eq. (12) does not apply. For recent studies along these lines, see, e.g. [42, 43].

EDM Interpretation: From Short Distances to the Atomic Scale

The EDM limits in Table 1 are obtained using composite quantum systems, wherein the relevant dynamics involve physics at the hadronic, nuclear, atomic and molecular scales. The manifestation of a given CPV source (CKM, $\bar{\theta}$ term, BSM) involves an interplay of these dynamics. In all cases, one must first evolve the Wilson coefficients from the weak scale to the hadronic scale, then match onto the relevant low-energy degrees of freedom (electrons, nucleons, pions, etc.). At this level, the most straightforward interpretation involves the paramagnetic systems, for which two sources dominate: the electron EDM and the electron spindependent semileptonic interaction $\bar{e} \gamma_{5} e \bar{q} q$. The latter gives rise to an spin-independent Hamiltonian, for an atom with Z electrons/protons and N neutrons,

$$
\begin{equation*}
\hat{H}_{S}=\frac{i G_{F}}{\sqrt{2}} \delta(\vec{r})\left[(Z+N) C_{S}^{(0)}+(Z-N) C_{S}^{(1)}\right] \gamma_{0} \gamma_{5} \tag{14}
\end{equation*}
$$

where $C_{S}^{(0)}\left(C_{S}^{(1)}\right)$ is proportional to $C_{e q}^{(+)}\left(C_{e q}^{(-)}\right)$. The computation of $C_{S}^{(0,1)}$ is relatively free from theoretical uncertainty since the operator $\bar{q} q$ essentially counts the number of quarks of flavor q in the nucleus. Experimental results for paramagnetic systems, thus, often quote bounds on

$$
\begin{equation*}
C_{S} \equiv C_{S}^{(0)}+\left(\frac{Z-N}{Z+N}\right) C_{S}^{(1)} \tag{15}
\end{equation*}
$$

as well as on d_{e}, assuming only one of these two sources is nonvanishing. Combining results from ThO and HfF^{+}(see Figure 2) allows one to obtain the global, 90% C.L. bounds

$$
\begin{equation*}
\left|d_{e}\right|<1.8 \times 10^{-28} e \mathrm{~cm}, \quad\left|C_{S}\right|<9.8 \times 10^{-9} \tag{16}
\end{equation*}
$$

Note that the limits on d_{e} given in Table 1 have been obtained assuming $C_{S}=0$.

For the diamagnetic systems, the situation is considerably more involved. For the neutron, a variety of approaches - including

Figure 2: Constraints on d_{e} and C_{S} from EDM searches using polar molecules (updated by [44] from Ref. [25]).
lattice QCD, chiral perturbation theory, QCD sum rules, and the quark model - have been employed to compute the relevant hadronic matrix elements of the CPV sources (see, e.g., [26,27,45, 46]). For diamagnetic atoms, the non-leptonic sources of Table 2 give rise to the EDM of the nucleus as well as other P - and T-odd nuclear moments, as allowed by the nuclear spin. However, according to a theorem by Schiff [47], the nuclear EDM generates no contribution to the neutral-atom EDM due to screening by atomic electrons. The leading contribution from these sources, instead, arises via the nuclear Schiff moment, \vec{S}, an r^{3}-weighted moment of the T - and P-odd component of the nuclear charge density. The resulting effective atomic Hamiltonian is

$$
\begin{equation*}
\hat{H}_{\text {Schiff }}=-4 \pi \vec{\nabla} \rho_{e}(0) \cdot \vec{S}, \tag{17}
\end{equation*}
$$

where $\vec{\nabla} \rho_{e}(0)$ is the gradient of the electron density at the nucleus. To date, computations of the nuclear Schiff moment have assumed that the leading contribution arises from a pion-exchange induced nuclear force, with the P - and T-odd πN interaction given by

$$
\begin{equation*}
\mathcal{L}_{\pi N}^{T, P}=\bar{N}\left[\bar{g}_{\pi}^{(0)} \vec{\tau} \cdot \vec{\pi}+\bar{g}_{\pi}^{(1)} \pi^{0}+\bar{g}_{\pi}^{(2)}\left(3 \tau_{3} \pi^{0}-\vec{\tau} \cdot \vec{\pi}\right)\right] N \tag{18}
\end{equation*}
$$

Chiral effective field theory power counting implies that in general the magnitude of $\bar{g}_{\pi}^{(2)}$ is suppressed with respect to the isoscalar and isovector couplings. The CPV sources then generate a diamagnetic atom EDM d_{A} via the sequence

$$
\begin{equation*}
\mathrm{CPV} \text { source } \longrightarrow \bar{g}_{\pi}^{(i)} \longrightarrow \vec{S} \longrightarrow d_{A} \tag{19}
\end{equation*}
$$

The steps in this sequence involve dynamics at the hadronic, nuclear, and atomic scales, respectively. In addition, d_{A} may receive contributions from the nuclear spin-dependent interaction generated by the semileptonic tensor interaction listed in Table 2, with the corresponding atomic Hamiltonian

$$
\begin{equation*}
\hat{H}_{T}=\frac{2 i G_{F}}{\sqrt{2}} \delta(\vec{r}) \sum_{N}\left[C_{T}^{(0)}+C_{T}^{(1)} \tau_{3}\right] \vec{\sigma}_{N} \cdot \vec{\gamma}, \tag{20}
\end{equation*}
$$

where σ_{N} is the nucleon spin Pauli matrix and $C_{T}^{(0,1)} \propto \operatorname{Im} C_{\ell \text { equ }}^{(3)}$.
Given the large number of CPV sources and existing diagmagnetic EDM limits, it is not possible to obtain a set of global constraints on the former. One may, however, do so for the low-energy effective parameters $\bar{g}_{\pi}^{(0,1)}, C_{T}^{(0,1)}$ and $\bar{d}_{n}^{\mathrm{sr}}$, where the latter denotes a 'short-range' contribution to the neutron EDM [25, 48]. In this context, the dominant source of theoretical uncertainty involves computations of the nuclear Schiff moment. From the bounds on the low-energy parameters, one may then derive constraints on the CPV sources by utilizing computations of the hadronic matrix elements. Reducing the degree of theoretical hadronic and nuclear physics uncertainty is an area of active effort.

3 Tests of CPT

$C P T$ symmetry implies the equality of the masses and widths of a particle and its antiparticle. The most constraining limits are extracted from the neutral kaons [49,50]:

$$
\begin{align*}
& 2 \frac{\left|m_{K^{0}}-m_{\overline{K^{0}}}\right|}{\left(m_{K^{0}}+m_{\overline{K^{0}}}\right)}<6 \times 10^{-19}, \\
& 2 \frac{\left|\Gamma_{K^{0}}-\Gamma_{\bar{K}^{0}}\right|}{\left(\Gamma_{K^{0}}+\Gamma_{\bar{K}^{0}}\right)}=(8 \pm 8) \times 10^{-18} . \tag{21}
\end{align*}
$$

The limit on the $K^{0}-\bar{K}^{0}$ mass difference assumes that there is no other source of $C P T$ violation. An upper bound on $C P T$ breaking in $K_{L}^{0} \rightarrow 2 \pi$ has been also set through the measured phase difference of the CPV ratios η_{00} and $\eta_{+-}, \phi_{00}-\phi_{+-}=$ $(0.34 \pm 0.32)^{\circ}$, thanks to the small value of $\left(1-\left|\eta_{00} / \eta_{+-}\right|\right)$(see the review on $C P$ violation in K_{L}^{0} decays).

The measured masses and electric charges of the electron, the proton and their antiparticles provide also strong limits on $C P T$ violation [51-53]:

$$
\begin{align*}
& 2 \frac{\left|m_{e^{+}}-m_{e^{-}}\right|}{m_{e^{+}}+m_{e^{-}}}<8 \times 10^{-9}, \quad \frac{\left|q_{e^{+}}+q_{e^{-}}\right|}{e}<4 \times 10^{-8} \\
& \left|\frac{q_{\bar{p}} / m_{\bar{p}}}{q_{p} / m_{p}}\right|-1=(0.1 \pm 6.9) \times 10^{-11} \tag{22}
\end{align*}
$$

Worth mentioning are also the tight constraints derived from the lepton and antilepton magnetic moments [54, 55],

$$
\begin{align*}
& 2 \frac{g_{e^{+}}-g_{e^{-}}}{g_{e^{+}}+g_{e^{-}}}=(-0.5 \pm 2.1) \times 10^{-12} \\
& 2 \frac{g_{\mu^{+}}-g_{\mu^{-}}}{g_{\mu^{+}}+g_{\mu^{-}}}=(-0.11 \pm 0.12) \times 10^{-8} \tag{23}
\end{align*}
$$

those of the proton and antiproton [56],

$$
\begin{equation*}
\left(\mu_{p}+\mu_{\bar{p}}\right) / \mu_{p}=(2 \pm 4) \times 10^{-9} \tag{24}
\end{equation*}
$$

and the recent measurement of the 1S-2S atomic transition in antihydrogen which agrees with the corresponding frequency spectral line in hydrogen at a relative precision of 2×10^{-12} [57].

A violation of $C P T$ in an interacting local quantum field theory would imply that Lorentz symmetry is also violated [58]. Signatures of Lorentz-invariance violation have been searched for with atomic clocks, penning traps, matter and antimatter spectroscopy, colliders and astroparticle experiments, with so far negative results [59]. A compilation of experimental bounds is given in Ref. [60], parametrized through the coefficients of the so-called Standard Model Extension (SME) Lagrangian which contains all possible Lorentz- and CPT-violating operators preserving gauge invariance, renormalizability, locality and observer causality [61].

QUANTUM-NUMBER
 CONSERVATION

 LAWS

 LAWS}Conservation laws of several quantum numbers have been empirically established with a very high degree of confidence. They are usually associated with some global phase symmetry. However, while some of them are deeply rooted in basic principles such as gauge invariance (charge conservation; local symmetry implies global symmetry) or Lorentz symmetry (fermion number conservation), others appear to be accidental symmetries of the SM Lagrangian and could be broken by new physics interactions.

In fact, if one only assumes the SM gauge symmetries and particle content, the most general dynamics at energies below the BSM mass scale is described by the SMEFT Lagrangian in Eq. (12). All $d=4$ operators (i.e., the SM) happen to preserve the B and L quantum numbers, but this is no-longer true for the gaugeinvariant structures of higher dimensionality. There is only one operator with $d=5$ (up to hermitian conjugation and flavor assignments), and it violates lepton number by two units [62], giving rise to Majorana neutrino masses after the electroweak spontaneous symmetry breaking. With $d=6$, there are five operators
that violate B and $L[63,64]$. Thus, violations of these quantum numbers can be generically expected, unless there is an explicit symmetry protecting them.

4 Electric charge

The conservation of electric charges is associated with the QED gauge symmetry. The most precise tests are the non-observation of the decays $e \rightarrow \nu_{e} \gamma$ (lifetime larger than 6.6×10^{28} yr [65]) and $n \rightarrow p \nu_{e} \bar{\nu}_{e}\left(\mathrm{Br}<8 \times 10^{-27}, 68 \%\right.$ C.L. [66]). The neutrality of matter can be also interpreted as a test of electric charge conservation. Worth mentioning are the experimental limits on the electric charge of the neutron, $q_{n} / e=(-0.2 \pm 0.8) \times 10^{-21}$, and on the sum of the proton and electron charges, $\left|q_{p}+q_{e}\right| / e<1 \times 10^{-21}$ ($68 \% \mathrm{CL}$) [67].

The isotropy of the cosmic microwave background has been used to set stringent limits on a possible charge asymmetry of the Universe [68]. Assuming that charge asymmetries produced by different particles are not anticorrelated, this implies upper bounds on the photon $\left(\left|q_{\gamma}\right| / e<1 \times 10^{-35}\right)$ and neutrino $\left(\left|q_{\nu}\right| / e<4 \times 10^{-35}\right)$ electric charges. A much stronger upper bound on the photon charge $\left(\left|q_{\gamma}\right| / e<1 \times 10^{-46}\right)$ has been derived from the nonobservation of Aharonov-Bohm phase differences in interferometric experiments with photons that have traversed cosmological distances, under the assumption that both positive and negative charged photons exist [69].

5 Lepton family numbers

In the SM with massless left-handed neutrinos there is a separate conservation number for each lepton family. However, neutrino oscillations show that neutrinos have tiny masses and there are sizable mixings among the different lepton flavors. Compelling evidence from solar, atmospheric, accelerator and reactor neutrino experiments has established a quite solid pattern of neutrino mass differences and mixing angles $[15,16]$ (see the review on neutrino masses, mixings and oscillations). Nevertheless, flavor mixing among the different charged leptons has never been observed.
If neutrino masses and mixings among the three active neutrinos were the only sources of lepton-flavor violation (LFV), neutrinoless transitions from one charged lepton flavor to another would be heavily suppressed by powers of $m_{\nu_{i}}$ (GIM mechanism), leading to un-observably small rates; for instance [72-77],

$$
\begin{equation*}
\operatorname{Br}(\mu \rightarrow e \gamma)=\frac{3 \alpha}{32 \pi}\left|\sum_{i} U_{\mu i}^{*} U_{e i} \frac{m_{\nu_{i}}^{2}-m_{\nu_{1}}^{2}}{M_{W}^{2}}\right|^{2}<10^{-54} \tag{25}
\end{equation*}
$$

where $U_{i a}$ are the relevant elements of the PMNS mixing matrix. This contribution is clearly too small to be observed in any realistic experiment, so any experimentally accessible effect would arise from BSM physics with sources of LFV not related to $m_{\nu_{i}}$. The search for charged LFV (CLFV) remains an area of active interest, which has the potential to probe physics at scales much higher than the TeV .

Among the most sensitive probes are searches for the CLFV decays of the muon, $\mu \rightarrow e \gamma$ and $\mu \rightarrow 3 e$, as well as the conversion process $\mu^{-}+A(N, Z) \rightarrow e^{-}+A(N, Z)$, where $A(N, Z)$ denotes a nucleus with N neutrons and Z protons. Searches for rare τ decays such as $\tau \rightarrow \ell \gamma(\ell=e, \mu)$ also provide interesting probes of CLFV. A variety of BSM scenarios predict that rates for these CLFV processes could be sufficiently large to be observed in the present or planned searches. To date, no observation has been reported, and the resulting null results place strong constraints on BSM scenarios. For extensive reviews of the experimental and theoretical status and prospects, see Refs. [71, 78, 79].

A detailed set of upper bounds on CLFV branching rations is given in the listings for the muon and tau leptons. Here we emphasize those with the strongest limits:

$$
\begin{align*}
& \operatorname{Br}(\mu \rightarrow e \gamma)<4.2 \times 10^{-13} \\
& \operatorname{Br}(\mu \rightarrow 3 e)<1.0 \times 10^{-12} \tag{26}
\end{align*}
$$

Figure 3: Model-independent CLFV sensitivities based on Eq (31). Left panel shows the comparison of present constraints with prospective future sensitivities for $\mu \rightarrow e \gamma$ and $\mu \rightarrow e$ conversion. Right panel gives analogous comparison for $\mu \rightarrow e \gamma$ and $\mu \rightarrow 3 e$. Updated by [70] from Ref. [71].
and

$$
\begin{equation*}
B_{\mu \rightarrow e} \equiv \frac{\Gamma\left(\mu^{-}+A(N, Z) \rightarrow e^{-}+A(N, Z)\right.}{\Gamma\left(\mu^{-}+A(N, Z) \rightarrow \nu+A(N+1, Z-1)\right.} \tag{27}
\end{equation*}
$$

with the best limit so far, $B_{\mu \rightarrow e}<7 \times 10^{-13}$ [82], obtained with gold. Several proposed experiments aim to improve these limits by several orders of magnitude with different atoms.

One may interpret both $\mu \rightarrow e \gamma$ and $\mu \rightarrow e$ conversion in terms of the amplitudes to emit a real or virtual photon:

$$
\begin{align*}
\mathcal{M}_{\mu \rightarrow e \gamma^{(*)}} & =e G_{\mu} \varepsilon^{\alpha *} \bar{e}(p-q)\left[\left(q^{2} \gamma_{\alpha}-\not q q_{\alpha}\right)\left(\tilde{A}_{1}^{R} P_{R}+\tilde{A}_{1}^{L} P_{L}\right)\right. \\
& \left.+i m_{\mu} \sigma_{\alpha \beta} q^{\beta}\left(\tilde{A}_{2}^{R} P_{R}+\tilde{A}_{2}^{L} P_{L}\right)\right] \mu(p) \tag{28}
\end{align*}
$$

where it is conventional to normalize the amplitude to the Fermi constant. One then has

$$
\begin{equation*}
\operatorname{Br}(\mu \rightarrow e \gamma)=48 \pi^{3} \alpha\left(\left|\tilde{A}_{2}^{R}\right|^{2}+\left|\tilde{A}_{2}^{L}\right|^{2}\right) \tag{29}
\end{equation*}
$$

For the conversion process, the virtual photon is absorbed by the quarks in the nucleus, yielding an effective four-fermion operator. In general, the exchange of other particles could lead to similar or alternate Lorentz structures, and it is not possible to distinguish between the exchange of a virtual photon or other particle. It is conventional to write the most general four-fermion amplitude, valid for energies below the electroweak scale as (adapted from Ref. [88])

$$
\begin{equation*}
\mathcal{M}_{\mu \rightarrow e}=G_{\mu} \sum_{n, a, q} a_{a, q}^{(n)} \bar{e} \Gamma^{n} P_{a} \mu \bar{q} \Gamma_{n} q \tag{30}
\end{equation*}
$$

where $P_{a}(a=L, R)$ denote the left and right-handed projectors and Γ^{n} denotes $1, \gamma_{5}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}$, and $\sigma_{\mu \nu}$. If any of the coefficients $a_{a, q}^{(n)}$ are generated by physics at a scale $\Lambda>v$, then their effects would be encoded in the SMEFT Lagrangian (12). For scenarios in which the leading CLFV operators occur at $d=6$,
the $a_{a, q}^{(n)}$ will scale as $(v / \Lambda)^{2}$. The corresponding decay and conversion rates will then scale as $(v / \Lambda)^{4}$. Note that the scalar and time component of the vector interactions are coherent over the nucleus, essentially counting the number of quarks. Consequently, these interactions typically yield the greatest sensitivities to high BSM mass scales.
It is sometimes convenient to compare the relative sensitivities of the decay and conversion processes using the following simplified effective Lagrangian [71]:

$$
\begin{align*}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{CLFV}} & =\frac{m_{\mu}}{(\kappa+1) \Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu \nu} e_{L} F^{\mu \nu} \\
& +\frac{\kappa}{(\kappa+1) \Lambda^{2}} \bar{\mu} \gamma_{\mu} e \sum_{q} \bar{q} \gamma^{\mu} q+\text { h.c. } \tag{31}
\end{align*}
$$

Note that one may replace the second term in Eq. (31) by any one of the other four-fermion interactions given in Eq. (30). An analogous expression applies to the process $\mu \rightarrow 3 e$ when replacing the sum over quarks by the corresponding electron bilinear. A comparison of the present and prospective sensitivities for various muon CLFV searches in this framework is shown in Figure 3.

Stringent limits have been also set on the LFV decay modes of the τ lepton [89]. As shown in Figure 4, the large τ data samples collected at the B factories have made possible to reach a 10^{-8} sensitivity for many of its leptonic $\left(\tau \rightarrow \ell \gamma, \tau \rightarrow \ell^{\prime} \ell^{+} \ell^{-}\right)$ and semileptonic $\left(\tau \rightarrow \ell P^{0}, \tau \rightarrow \ell V^{0}, \tau \rightarrow \ell P^{0} P^{0}, \tau \rightarrow \ell P^{+} P^{\prime-}\right)$ neutrinoless LFV decays, and BELLE-II is expected to push these limits beyond the 10^{-9} level [84]. Being a third generation lepton, the τ could be more sensitive to heavier new-physics scales, which makes his LFV decays particularly interesting. Compared to the muon, the τ decay amplitudes could be enhanced by a chirality ratio $\left(m_{\tau} / m_{\mu}\right)^{2} \sim 280$ and/or by lepton-mixing factors such as $\left|U_{\tau 3} / U_{e 3}\right|^{2} \sim 20$, but the exact relation is model dependent. In any case, the τ LFV decays provide a rich data set that is very complementary to the μ bounds. If LFV is finally observed, the correlations between μ and τ data, and among different LFV τ decays will allow to probe the underlying mechanism of lepton flavor breaking.
Interesting limits on LFV are also obtained in meson decays.

Figure 4: Current experimental limits on neutrinoless LFV τ decays [83]. Also shown are the future projections at Belle-II [84] and at the HL-LHC [85].

Figure 5: Current limits on the Higgs LFV τ Yukawas from direct $H^{0} \rightarrow \ell^{ \pm} \tau^{\mp}$ decays $(\ell=e, \mu)$, and indirect constraints from τ decays [86, 87].

The best bounds come from kaon experiments, e.g., $\operatorname{Br}\left(K_{L}^{0} \rightarrow\right.$ $\left.e^{ \pm} \mu^{\mp}\right)<4.7 \times 10^{-12}[90], \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \mu^{+} e^{-}\right)<1.3 \times 10^{-11}$ [91]. Quite strong limits have also been set in decays of B and D mesons, the best upper bounds being $\operatorname{Br}\left(B^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)<1.0 \times$ 10^{-9} [92] and $\operatorname{Br}\left(D^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)<1.3 \times 10^{-8}$ [93].

The LFV decays of the Z boson were probed at LEP at the 10^{-5} to 10^{-6} level. The LHC ATLAS collaboration has put recently a stronger bound on the $Z \rightarrow e^{ \pm} \mu^{\mp}$ decay mode [94]. Currently, the best (95\% C.L.) limits are [94-96]:

$$
\begin{gather*}
\operatorname{Br}\left(Z \rightarrow e^{ \pm} \mu^{\mp}\right)<7.5 \times 10^{-7}, \quad \operatorname{Br}\left(Z \rightarrow e^{ \pm} \tau^{\mp}\right)<9.8 \times 10^{-6} \\
\operatorname{Br}\left(Z \rightarrow \mu^{ \pm} \tau^{\mp}\right)<1.2 \times 10^{-5} \tag{32}
\end{gather*}
$$

LHC is now starting to test LFV in Higgs decays, within the available statistics. From the current (95% C.L.) experimental
upper bounds [86, 87, 97],

$$
\begin{gather*}
\operatorname{Br}\left(H^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)<6.1 \times 10^{-5}, \quad \operatorname{Br}\left(H^{0} \rightarrow e^{ \pm} \tau^{\mp}\right)<0.47 \% \\
\operatorname{Br}\left(H^{0} \rightarrow \mu^{ \pm} \tau^{\mp}\right)<0.25 \% \tag{33}
\end{gather*}
$$

one can derive direct limits on the LFV Yukawa couplings of the Higgs boson,

$$
\begin{equation*}
\mathcal{L}_{Y}=-H^{0} \sum_{i \neq j}\left(Y_{\ell_{i} \ell_{j}} \bar{\ell}_{L}^{i} \ell_{R}^{j}+\text { h.c. }\right) \tag{34}
\end{equation*}
$$

From $H^{0} \rightarrow e^{ \pm} \mu^{\mp}$, one obtains $\sqrt{Y_{\mu e}^{2}+Y_{e \mu}^{2}}<2.2 \times 10^{-4}$, which is not yet competitive with the indirect limit set by $\mu \rightarrow e \gamma$ through a (one-loop) virtual Higgs exchange:

$$
\begin{equation*}
\sqrt{Y_{\mu e}^{2}+Y_{e \mu}^{2}}<3.6 \times 10^{-6} \tag{35}
\end{equation*}
$$

However, the LHC data provides at present the strongest bounds
on the LFV τ Yukawas $[86,87]$:

$$
\sqrt{Y_{e \tau}^{2}+Y_{\tau e}^{2}}<2.0 \times 10^{-3}, \quad \sqrt{Y_{\mu \tau}^{2}+Y_{\tau \mu}^{2}}<1.4 \times 10^{-3}
$$

Figure 5 compares the Higgs exclusion limits on the τ Yukawas with the current indirect constraints from LFV τ decays.

6 Baryon and Lepton Number

The transitions discussed in the previous section preserve the total lepton number $L=L_{e}+L_{\mu}+L_{\tau}$. In the SM , conservation of $B-L$ is an accidental symmetry of the Lagrangian. At the classical level, $B+L$ is also conserved, though it is violated at the loop level by the anomaly. The latter is a topological effect that is highly suppressed at zero temperature and, moreover, does not contribute to the processes discussed in the review. Going beyond renormalizable interactions, there exists a tower of operators in the SMEFT Lagrangian (12), containing only SM fields, that break one or both of these symmetries. We briefly review these possibilities in turn.

Lepton Number

The lowest-dimension operator containing only SM fields that breaks baryon or lepton number is the $d=5$, lepton-numberviolating (LNV) 'Weinberg' neutrino-mass operator [62]:

$$
\begin{equation*}
\mathcal{L}^{\mathrm{LNV}}=\frac{y}{\Lambda} \bar{L}^{C} H H^{T} L \tag{37}
\end{equation*}
$$

When the neutral component of the Higgs field obtains its vacuum expectation value, this $\Delta L=2$ interaction yields a Majorana mass for the light, active neutrinos. The most comprehensive approach for probing this effect is the search for neutrinoless double-beta decay $(0 \nu \beta \beta)$ of atomic nuclei, $(Z, A) \rightarrow(Z+2, A)+e^{-}+e^{-}[98$, 99] (see the review on neutrinoless double- β decay). The detection of a non-zero $0 \nu \beta \beta$ signal could represent a spectacular evidence of Majorana neutrinos. The current best limit, $\tau_{1 / 2}>1.07 \times 10^{26} \mathrm{yr}$, was obtained by the KamLAND-Zen experiment with ${ }^{136} \mathrm{Xe}$ [100].

Theoretically, the interaction (37) can arise from BSM interactions in the well-known see-saw mechanism for neutrino mass (for a review, see [101]). In this context, the conventional choice for the scale Λ is of order the GUT scale, yielding light neutrino masses of order eV and below when the couplings y are of order the charged elementary fermion Yukawa couplings. BSM theories may also give rise to LNV observables in other contexts. In these scenarios, if the LNV scale is of order 1 TeV , one may observe signatures of LNV not only in $0 \nu \beta \beta$ but also in collider searches for final states containing same sign dileptons. Searches for same sign dileptons plus a di-jet pair at the LHC have placed constraints on TeV-scale LNV [102, 103] that in some cases complement those obtained from $0 \nu \beta \beta$.

Stringent constraints on violations of L have been also set in $\mu^{-} \rightarrow e^{+}$conversion in muonic atoms, the best limit being $\sigma\left(\mu^{-} \mathrm{Ti} \rightarrow e^{+} \mathrm{Ca}\right) / \sigma\left(\mu^{-} \mathrm{Ti} \rightarrow\right.$ all $)<3.6 \times 10^{-11}$ [104], and at the flavor factories through L-violating decays of the τ lepton and K, D and B mesons. Some representative examples are $\operatorname{Br}\left(\tau^{-} \rightarrow e^{+} \pi^{-} \pi^{-}\right)<2.0 \times 10^{-8}[105], \operatorname{Br}\left(K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right)<$ $4.2 \times 10^{-11}[106], \operatorname{Br}\left(D^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right)<2.2 \times 10^{-8}$ [107] and $\operatorname{Br}\left(B^{+} \rightarrow K^{-} e^{+} e^{+}\right)<3.0 \times 10^{-8}$ [108]. All these $|\Delta L|=2$ processes could be mediated by a massive Majorana neutrino. They provide useful bounds on the effective Majorana neutrino mass matrix $m_{\ell \ell^{\prime}} \sim \sum_{i} U_{\ell i} U_{\ell^{\prime} i} m_{\nu_{i}}$ [109], although not as strong as the $0 \nu \beta \beta$ constraint on $m_{e e}$.

Baryon Number

Grand Unified Theories (GUTs) combine leptons and quarks in the same symmetry multiplets and, therefore, predict the violation of the baryon and lepton quantum numbers. Many experiments have searched for B-violating transitions, but no positive signal has been identified so far. Proton decay would be the most relevant violation of B, as it would imply the unstability of matter. The current lower bound on the proton lifetime is $3.6 \times 10^{29} \mathrm{yr}$ [110]. Stronger limits have been set for particular decay modes, such as $\tau\left(p \rightarrow e^{+} \pi^{0}\right)>1.6 \times 10^{34}$ yr [111]. For a discussion of proton decay in the context of GUTs, see the review on Grand Unified Theories.

Another spectacular signal would be neutron-antineutron oscillations. Searches have been performed for quasi-free $n-\bar{n}$ oscillations and for $n \bar{n}$ annihilation products in a nucleus. The latter would arise when the \bar{n} produced through oscillations annihilates with another neutron in the nuclear medium. The corresponding best limits, expressed in terms of the free and bound oscillation times, $\tau_{n \bar{n}}$ and τ_{m}, respectively, are:

$$
\begin{align*}
\tau_{n \bar{n}} & >0.86 \times 10^{8} \mathrm{~s} \quad[112] \tag{38a}\\
\tau_{m} & >1.9 \times 10^{32} \mathrm{yr} \quad[113] \tag{38b}
\end{align*}
$$

From the latter, one may infer a bound $\tau_{n \bar{n}}>2.7 \times 10^{8} \mathrm{~s}$, as discussed below. See Ref. [114] for a recent review.

The theoretical interpretation of these bounds starts with an assumed, effective Hamiltonian for the free (anti-)neutron, $\mathcal{H}_{\text {eff }}$ that contains a B-violating part, yielding matrix elements

$$
\begin{align*}
\langle n| \mathcal{H}_{\mathrm{eff}}|n\rangle & =\langle\bar{n}| \mathcal{H}_{\mathrm{eff}}|\bar{n}\rangle=m-i \frac{\lambda}{2}, \tag{39a}\\
\langle n| \mathcal{H}_{\mathrm{eff}}|\bar{n}\rangle & =\langle\bar{n}| \mathcal{H}_{\mathrm{eff}}|n\rangle \equiv \delta m, \tag{39b}
\end{align*}
$$

where $C P T$ is assumed to be conserved, the neutron lifetime $\tau_{n}=$ $1 / \lambda$ and $\tau_{n \bar{n}}=1 /|\delta m|$. The rate for a neutron to oscillate into an antineutron after a time t is given by

$$
\begin{equation*}
\mathcal{P}_{n \bar{n}}(t)=\sin ^{2}\left(\frac{t}{\tau_{n \bar{n}}}\right) e^{-\lambda t} . \tag{40}
\end{equation*}
$$

For $t \ll \tau_{n} \ll \tau_{n \bar{n}}$, one has

$$
\begin{equation*}
\mathcal{P}_{n \bar{n}}(t) \rightarrow\left(t / \tau_{n \bar{n}}\right)^{2} \tag{41}
\end{equation*}
$$

In realistic experiments, there exist effects, such as background magnetic fields, that split the energies of the neutron and antineutron. One must ensure that the observation time is sufficiently short so that these effects do not overwhelm the small B-violating term δm and that Eq. (40) applies.

In nuclei, the interactions of neutrons and antineutrons with the surrounding medium are sufficiently distinct that one must take the corresponding matter potentials into account. In particular, the matrix elements in Eq. (39a) become

$$
\begin{equation*}
\langle n| \mathcal{H}_{\mathrm{eff}}|n\rangle=m+V_{n}, \quad\langle\bar{n}| \mathcal{H}_{\mathrm{eff}}|\bar{n}\rangle=m+V_{\bar{n}}, \tag{42}
\end{equation*}
$$

with V_{n} being essentially real $\left(V_{n} \equiv V_{n R}\right)$ and $V_{\bar{n}}=V_{\bar{n} R}-i V_{\bar{n} I}$. The imaginary part $V_{\bar{n} I}$ characterizes the annihilation of the antineutron with bound nucleons into secondary hadrons. The rate for a bound neutron to disappear is given by

$$
\begin{equation*}
\Gamma_{m}=\frac{2(\delta m)^{2}\left|V_{\bar{n} I}\right|}{\left(V_{n R}-V_{\bar{n} R}\right)^{2}+V_{\bar{n} I}^{2}} \equiv\left(R \tau_{n \bar{n}}^{2}\right)^{-1} \tag{43}
\end{equation*}
$$

For the nuclei of experimental interest, nuclear theory computations yield $R \sim 10^{23} s^{-1}$. Null results of bound $n-\bar{n}$ oscillation searches thus allow one to infer a bound on $\tau_{n \bar{n}}$ via Eq. (43).

From an elementary particle standpoint, $n-\bar{n}$ oscillations involve the conversion of three quarks into three antiquarks (and viceversa). The lowest-dimension operators mediating such process arise at dimension nine in the SMEFT:

$$
\begin{equation*}
\mathcal{L}_{n-\bar{n}}=\frac{1}{\Lambda^{5}} \sum_{j} \alpha_{j}^{(9)} \mathcal{O}_{j}^{\mathrm{BNV}} \tag{44}
\end{equation*}
$$

Consequently, one expects

$$
\begin{equation*}
\delta m \sim \alpha_{j}^{(9)} \frac{\Lambda_{\mathrm{HAD}}^{6}}{\Lambda^{5}} \tag{45}
\end{equation*}
$$

where Λ_{HAD} is a hadronic scale set by the $n-\bar{n}$ matrix elements in Eq. (39b). Taking Λ_{HAD} to be of order the QCD scale and using the present bounds on $\tau_{n \bar{n}}$ yields a lower bound on the B-violating mass scale of $\sim 100 \mathrm{TeV}$.
The search for B-violating decays of short-lived particles such as Z bosons, τ leptons and B mesons provides also relevant constraints. The best limits are $\operatorname{Br}(Z \rightarrow p e, p \mu)<1.8 \times 10^{-6}$ (95\% C.L.) [115], $\operatorname{Br}\left(\tau^{-} \rightarrow \Lambda \pi^{-}\right)<7.2 \times 10^{-8}$ [116] and $\operatorname{Br}\left(B^{+} \rightarrow \Lambda e^{+}\right)<3.2 \times 10^{-8}[117]$.

7 Quark flavors

While strong and electromagnetic forces preserve the quark flavor, the charged-current weak interactions generate transitions among the different quark species (see the review on the CKM quark-mixing matrix). Since the SM flavor-changing mechanism is associated with the $W^{ \pm}$fermionic vertices, the tree-level transitions satisfy a $\Delta F=\Delta Q$ rule where ΔQ denotes the change in charge of the relevant hadrons. Remember that the flavor quantum number F is defined to be +1 for positively charged quarks $(F=U, C, T)$ and -1 for quarks with negative charges $(F=$ $D, S, B)$. The strongest tests on this conservation law have been obtained in kaon decays such as $\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \pi^{+} e^{-} \bar{\nu}_{e}\right)<1.3 \times$ $10^{-8}[118]$, and $(\operatorname{Re} x, \operatorname{Im} x)=(-0.002 \pm 0.006,0.0012 \pm 0.0021)$ $[119,120]$ where $x \equiv \mathcal{M}\left(\bar{K}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) / \mathcal{M}\left(K^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)$.

The $\Delta F=\Delta Q$ rule can be violated through quantum loop contributions giving rise to flavor-changing neutral-current transitions (FCNCs). Owing to the GIM mechanism, processes of this type are very suppressed in the SM, which makes them a superb tool in the search for new physics associated with the flavor dynamics. Within the SM itself, these transitions are also sensitive to the heavy-quark mass scales and have played a crucial role identifying the size of the charm $\left(K^{0}-\bar{K}^{0}\right.$ mixing $)$ and top ($B^{0}-\bar{B}^{0}$ mixing) masses before the discovery of those quarks. In addition to the well-established $\Delta F=2$ mixings in neutral K and B mesons, $\Delta M_{K^{0}} \equiv M_{K_{L}^{0}}-M_{K_{S}^{0}}=(0.5293 \pm 0.0009) \times 10^{10} \mathrm{~s}^{-1}$, $\Delta M_{B^{0}} \equiv M_{B_{H}^{0}}-M_{B_{L}^{0}}^{L}=(0.5065 \pm 0.0019) \times 10^{12} \mathrm{~s}^{-1}$ and $\Delta M_{B_{s}^{0}} \equiv M_{B_{s H}^{0}}^{0}-M_{B_{s L}^{0}}^{0}=(17.757 \pm 0.0021) \times 10^{12} \mathrm{~s}^{-1}$, there is now strong evidence for the mixing of the D^{0} meson and its antiparticle [121],

$$
\begin{equation*}
x_{D} \equiv\left(M_{D_{H}^{0}}-M_{D_{L}^{0}}\right) / \Gamma_{D^{0}}=\left(3.9_{-1.2}^{+1.1}\right) \times 10^{-3} \tag{46}
\end{equation*}
$$

showing that there is a nonzero mass difference between the two neutral charm-meson eigenstates, of the expected size. The SM prediction for x_{D} is dominated by long-distance physics, because it involves virtual loops with down-type light quarks, and has unfortunately quite large uncertainties [122].

The FCNC kaon decays into lepton-antilepton pairs put stringent constraints on new flavor-changing interactions. The measured $K_{L}^{0} \rightarrow \mu^{+} \mu^{-}$rate, $\operatorname{Br}\left(K_{L}^{0} \rightarrow \mu^{+} \mu^{-}\right)=(6.84 \pm 0.11) \times 10^{-9}$, is completely dominated by the known 2γ absorptive contribution, leaving very little room for new-physics, and $\operatorname{Br}\left(K_{L}^{0} \rightarrow e^{+} e^{-}\right)=$ $\left(9_{-4}^{+6}\right) \times 10^{-12}$ [123] (the tiniest branching ratio ever measured) also agrees with the SM expectation [124]. The experimental K_{S}^{0} upper bounds on the electron, $\operatorname{Br}\left(K_{S}^{0} \rightarrow e^{+} e^{-}\right)<9 \times 10^{-9}$ [125], and muon, $\operatorname{Br}\left(K_{S}^{0} \rightarrow \mu^{+} \mu^{-}\right)<2.1 \times 10^{-10}$ [126], modes are still five and two orders of magnitude, respectively, larger than their SM predictions [124]. Another very clean test of FCNCs will be soon provided by the decay $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$. With a predicted SM branching fraction of $(7.8 \pm 0.8) \times 10^{-11}$ [127], the CERN NA62 experiment is aiming to collect around one hundred events. Even more interesting is the $C P$-violating neutral mode $K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$, expected at a rate of $(2.4 \pm 0.4) \times 10^{-11}$ [127] that is still far away from the current upper bound of 3.0×10^{-9} [128]. The KOTO experiment at KEK is expected to substantially increase the sensitivity to this mode.

The strongest bound on FCNC transitions in charm decays is $\operatorname{Br}\left(D^{0} \rightarrow \mu^{+} \mu^{-}\right)<6.2 \times 10^{-9}$ [129], while in B decays the LHC experiments have recently reached the SM sensitivity: $\operatorname{Br}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(0.14_{-0.14}^{+0.16}\right) \times 10^{-9}$ and $\operatorname{Br}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=$ $(3.0 \pm 0.4) \times 10^{-9}$. At present, there is a lot of interest on the decays $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$where sizable discrepancies between the measured data and the SM predictions have been reported [130]. In particular, the LHCb experiment has found the ratios of produced muons versus electrons to be around 2.5σ below the SM predictions, both in $B \rightarrow K^{*} \ell^{+} \ell^{-}$[131] and in $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}[132]$ (for dilepton invariant-masses squared in the range $q^{2} \leq 6 \mathrm{GeV}^{2}$), suggesting a significant violation of lepton universality. The current Belle-II measurements of these ratios $[133,134]$ are consistent with the SM, but they are also compatible with the LHCb results. Future analyses from LHCb and Belle-II are expected to clarify the situation.

References

[1] G. Luders, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 5, 1 (1954).
[2] W. Pauli, in L. Rosenfelf and V. Weisskopf, editors, "Niels Bohr and the Development of Physics," 30-51, McGrawHill, New York (1955).
[3] J. McDonough et al., Phys. Rev. D38, 2121 (1988).
[4] M. Ablikim et al. (BESIII), Phys. Rev. D90, 9, 092002 (2014), [arXiv:1409.4040].
[5] S. Prakhov et al. (Crystal Ball), Phys. Rev. Lett. 84, 4802 (2000).
[6] J. H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).
[7] H. Burkhardt et al. (NA31), Phys. Lett. B206, 169 (1988).
[8] G. D. Barr et al. (NA31), Phys. Lett. B317, 233 (1993).
[9] L. K. Gibbons et al., Phys. Rev. Lett. 70, 1203 (1993).
[10] J. R. Batley et al. (NA48), Phys. Lett. B544, 97 (2002), [hep-ex/0208009].
[11] E. Abouzaid et al. (KTeV), Phys. Rev. D83, 092001 (2011), [arXiv:1011.0127].
[12] H. Gisbert and A. Pich, Rept. Prog. Phys. 81, 7, 076201 (2018), [arXiv:1712.06147].
[13] V. Cirigliano et al., JHEP 02, 032 (2020), [arXiv:1911.01359].
[14] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 21, 211803 (2019), [arXiv:1903.08726].
[15] P. F. de Salas et al., Phys. Lett. B782, 633 (2018), [arXiv:1708.01186].
[16] I. Esteban et al., JHEP 01, 106 (2019), [arXiv:1811.05487].
[17] A. Angelopoulos et al. (CPLEAR), Phys. Lett. B444, 43 (1998).
[18] L. Wolfenstein, Phys. Rev. Lett. 83, 911 (1999).
[19] L. Alvarez-Gaume et al., Phys. Lett. B458, 347 (1999), [hep-ph/9812326].
[20] H. J. Gerber, Eur. Phys. J. C35, 195 (2004).
[21] M. C. Bañuls and J. Bernabeu, Phys. Lett. B464, 117 (1999), [hep-ph/9908353].
[22] M. C. Bañuls and J. Bernabeu, Nucl. Phys. B590, 19 (2000), [hep-ph/0005323].
[23] J. Bernabeu, F. Martinez-Vidal and P. Villanueva-Perez, JHEP 08, 064 (2012), [arXiv:1203.0171].
[24] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 211801 (2012), [arXiv:1207.5832].
[25] T. Chupp et al., Rev. Mod. Phys. 91, 1, 015001 (2019), [arXiv:1710.02504].
[26] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013), [arXiv:1303.2371].
[27] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005), [hep-ph/0504231].
[28] J. S. M. Ginges and V. V. Flambaum, Phys. Rept. 397, 63 (2004), [arXiv:physics/0309054].
[29] V. Andreev et al. (ACME), Nature 562, 7727, 355 (2018).
[30] W. B. Cairncross et al., Phys. Rev. Lett. 119, 15, 153001 (2017), [arXiv:1704.07928].
[31] G. W. Bennett et al. (Muon (g-2)), Phys. Rev. D80, 052008 (2009), [arXiv:0811.1207].
[32] C. Abel et al. (nEDM), Phys. Rev. Lett. 124, 8, 081803 (2020), [arXiv:2001.11966].
[33] B. Graner et al., Phys. Rev. Lett. 116, 16, 161601 (2016), [Erratum: Phys. Rev. Lett.119,no.11,119901(2017)], [arXiv:1601.04339].
[34] F. Allmendinger et al., Phys. Rev. A100, 2, 022505 (2019), [arXiv:1904.12295].
[35] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); C. Jarlskog, Z. Phys. C29, 491 (1985).
[36] E. P. Shabalin, Sov. J. Nucl. Phys. 28, 75 (1978), [Yad. Fiz.28,151(1978)].
[37] E. P. Shabalin, Sov. Phys. Usp. 26, 297 (1983), [Usp. Fiz. Nauk139,561(1983)].
[38] W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991), [Erratum: Rev. Mod. Phys.64,633(1992)].
[39] M. Pospelov and A. Ritz, Phys. Rev. D89, 5, 056006 (2014), [arXiv:1311.5537].
[40] C.-Y. Seng, Phys. Rev. C91, 2, 025502 (2015), [arXiv:1411.1476].
[41] B. Grzadkowski et al., JHEP 10, 085 (2010), [arXiv:1008.4884].
[42] S. Mantry, M. Pitschmann and M. J. Ramsey-Musolf, Phys. Rev. D90, 5, 054016 (2014), [arXiv:1401.7339].
[43] B. K. Sahoo, Phys. Rev. D95, 1, 013002 (2017), [arXiv:1612.09371].
[44] T. Chupp, Private Communication (2019).
[45] J. Bsaisou et al., Annals Phys. 359, 317 (2015), [arXiv:1412.5471].
[46] J. de Vries et al., Annals Phys. 338, 50 (2013), [arXiv:1212.0990].
[47] L. I. Schiff, Phys. Rev. 132, 2194 (1963).
[48] T. Chupp and M. Ramsey-Musolf, Phys. Rev. C91, 3, 035502 (2015), [arXiv:1407.1064].
[49] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[50] A. Angelopoulos et al. (CPLEAR), Phys. Lett. B471, 332 (1999).
[51] M. S. Fee et al., Phys. Rev. A48, 192 (1993).
[52] R. J. Hughes and B. I. Deutch, Phys. Rev. Lett. 69, 578 (1992).
[53] S. Ulmer et al. (BASE), Nature 524, 7564, 196 (2015).
[54] R. S. Van Dyck, P. B. Schwinberg and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).
[55] G. W. Bennett et al. (Muon g-2), Phys. Rev. Lett. 92, 161802 (2004), [hep-ex/0401008].
[56] C. Smorra et al. (BASE), Nature 550, 7676, 371 (2017).
[57] M. Ahmadi et al., Nature 557, 7703, 71 (2018).
[58] O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002), [hepph/0201258].
[59] S. Liberati, Class. Quant. Grav. 30, 133001 (2013), [arXiv:1304.5795].
[60] V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83, 11 (2011), [arXiv:0801.0287].
[61] D. Colladay and V. A. Kostelecky, Phys. Rev. D58, 116002 (1998), [hep-ph/9809521].
[62] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[63] F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).
[64] L. F. Abbott and M. B. Wise, Phys. Rev. D22, 2208 (1980).
[65] M. Agostini et al. (Borexino), Phys. Rev. Lett. 115, 231802 (2015), [arXiv:1509.01223].
[66] E. B. Norman, J. N. Bahcall and M. Goldhaber, Phys. Rev. D53, 4086 (1996).
[67] G. Bressi et al., Phys. Rev. A83, 5, 052101 (2011), [arXiv:1102.2766].
[68] C. Caprini, S. Biller and P. G. Ferreira, JCAP 0502, 006 (2005), [hep-ph/0310066].
[69] B. Altschul, Phys. Rev. Lett. 98, 261801 (2007), [hepph/0703126].
[70] A. de Gouvea, Private Communication (2019).
[71] A. de Gouvea and P. Vogel, Prog. Part. Nucl. Phys. 71, 75 (2013), [arXiv:1303.4097].
[72] S. T. Petcov, Sov. J. Nucl. Phys. 25, 340 (1977), [Erratum: Yad. Fiz.25,1336(1977)].
[73] W. J. Marciano and A. I. Sanda, Phys. Lett. 67B, 303 (1977).
[74] S. M. Bilenky, S. T. Petcov and B. Pontecorvo, Phys. Lett. 67B, 309 (1977).
[75] T.-P. Cheng and L.-F. Li, Phys. Rev. D16, 1425 (1977).
[76] B. W. Lee and R. E. Shrock, Phys. Rev. D16, 1444 (1977).
[77] B. W. Lee et al., Phys. Rev. Lett. 38, 937 (1977), [Erratum: Phys. Rev. Lett.38,1230(1977)].
[78] R. H. Bernstein and P. S. Cooper, Phys. Rept. 532, 27 (2013), [arXiv:1307.5787].
[79] L. Calibbi and G. Signorelli, Riv. Nuovo Cim. 41, 2, 71 (2018), [arXiv:1709.00294].
[80] A. M. Baldini et al. (MEG), Eur. Phys. J. C76, 8, 434 (2016), [arXiv:1605.05081].
[81] U. Bellgardt et al. (SINDRUM), Nucl. Phys. B299, 1 (1988).
[82] W. H. Bertl et al. (SINDRUM II), Eur. Phys. J. C47, 337 (2006).
[83] Y. S. Amhis et al. (HFLAV) (2019), [arXiv:1909.12524].
[84] W. Altmannshofer et al. (Belle-II), PTEP 2019, 12, 123C01 (2019), [arXiv:1808.10567].
[85] A. Cerri et al., CERN Yellow Rep. Monogr. 7, 867 (2019), [arXiv:1812.07638].
[86] G. Aad et al. (ATLAS), Phys. Lett. B800, 135069 (2020), [arXiv:1907.06131].
[87] A. M. Sirunyan et al. (CMS), JHEP 06, 001 (2018), [arXiv:1712.07173].
[88] R. Kitano, M. Koike and Y. Okada, Phys. Rev. D66, 096002 (2002), [Erratum: Phys. Rev.D76,059902(2007)], [hep-ph/0203110].
[89] A. Pich, Prog. Part. Nucl. Phys. 75, 41 (2014), [arXiv:1310.7922].
[90] D. Ambrose et al. (BNL), Phys. Rev. Lett. 81, 5734 (1998), [hep-ex/9811038].
[91] A. Sher et al., Phys. Rev. D72, 012005 (2005), [hepex/0502020].
[92] R. Aaij et al. (LHCb), JHEP 03, 078 (2018), [arXiv:1710.04111].
[93] R. Aaij et al. (LHCb), Phys. Lett. B754, 167 (2016), [arXiv:1512.00322].
[94] G. Aad et al. (ATLAS), Phys. Rev. D90, 7, 072010 (2014), [arXiv:1408.5774].
[95] R. Akers et al. (OPAL), Z. Phys. C67, 555 (1995).
[96] P. Abreu et al. (DELPHI), Z. Phys. C73, 243 (1997).
[97] G. Aad et al. (ATLAS), Phys. Lett. B801, 135148 (2020), [arXiv:1909.10235].
[98] S. Dell'Oro et al., Adv. High Energy Phys. 2016, 2162659 (2016), [arXiv:1601.07512].
[99] J. Engel and J. Menéndez, Rept. Prog. Phys. 80, 4, 046301 (2017), [arXiv:1610.06548].
[100] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117, 8, 082503 (2016), [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)], [arXiv:1605.02889].
[101] P. Fileviez Perez, Phys. Rept. 597, 1 (2015), [arXiv:1501.01886].
[102] M. Aaboud et al. (ATLAS), JHEP 01, 016 (2019), [arXiv:1809.11105].
[103] A. M. Sirunyan et al. (CMS), JHEP 05, 05, 148 (2018), [arXiv:1803.11116].
[104] J. Kaulard et al. (SINDRUM II), Phys. Lett. B422, 334 (1998).
[105] Y. Miyazaki et al. (Belle), Phys. Lett. B719, 346 (2013), [arXiv:1206.5595].
[106] E. Cortina Gil et al. (NA62), Phys. Lett. B797, 134794 (2019), [arXiv:1905.07770].
[107] R. Aaij et al. (LHCb), Phys. Lett. B724, 203 (2013), [arXiv:1304.6365].
[108] J. P. Lees et al. (BaBar), Phys. Rev. D85, 071103 (2012), [arXiv:1202.3650].
[109] A. Abada et al., JHEP 02, 169 (2018), [arXiv:1712.03984].
[110] M. Anderson et al. (SNO+), Phys. Rev. D 99, 3, 032008 (2019), [arXiv:1812.05552].
[111] K. Abe et al. (Super-Kamiokande), Phys. Rev. D95, 1, 012004 (2017), [arXiv:1610.03597].
[112] M. Baldo-Ceolin et al., Z. Phys. C63, 409 (1994).
[113] K. Abe et al. (Super-Kamiokande), Phys. Rev. D91, 072006 (2015), [arXiv:1109.4227].
[114] D. G. Phillips, II et al., Phys. Rept. 612, 1 (2016), [arXiv:1410.1100].
[115] G. Abbiendi et al. (OPAL), Phys. Lett. B447, 157 (1999), [hep-ex/9901011].
[116] Y. Miyazaki et al. (Belle), Phys. Lett. B632, 51 (2006), [hep-ex/0508044].
[117] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D83, 091101 (2011), [arXiv:1101.3830].
[118] P. Bloch et al. (Geneva-Saclay), Phys. Lett. 60B, 393 (1976).
[119] A. Angelopoulos et al. (CPLEAR), Phys. Lett. B444, 38 (1998).
[120] A. Angelopoulos et al. (CPLEAR), Eur. Phys. J. C22, 55 (2001).
[121] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 23, 231802 (2019), [arXiv:1903.03074].
[122] A. A. Petrov, Int. J. Mod. Phys. A21, 5686 (2006), [hepph/0611361].
[123] D. Ambrose et al. (BNL E871), Phys. Rev. Lett. 81, 4309 (1998), [hep-ex/9810007].
[124] V. Cirigliano et al., Rev. Mod. Phys. 84, 399 (2012), [arXiv:1107.6001].
[125] F. Ambrosino et al. (KLOE), Phys. Lett. B672, 203 (2009), [arXiv:0811.1007].
[126] R. Aaij et al. (LHCb) (2020), [arXiv:2001.10354].
[127] J. Brod, M. Gorbahn and E. Stamou, Phys. Rev. D83, 034030 (2011), [arXiv:1009.0947].
[128] J. K. Ahn et al. (KOTO), Phys. Rev. Lett. 122, 2, 021802 (2019), [arXiv:1810.09655].
[129] R. Aaij et al. (LHCb), Phys. Lett. B725, 15 (2013), [arXiv:1305.5059].
[130] S. Bifani et al., J. Phys. G46, 2, 023001 (2019), [arXiv:1809.06229].
[131] R. Aaij et al. (LHCb), JHEP 08, 055 (2017), [arXiv:1705.05802].
[132] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 19, 191801 (2019), [arXiv:1903.09252].
[133] A. Abdesselam et al. (Belle) (2019), [arXiv:1904.02440].
[134] A. Abdesselam et al. (2019), [arXiv:1908.01848].

Tests of Conservation Laws

TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

$\Gamma\left(\pi^{0} \rightarrow 3 \gamma\right) / \Gamma_{\text {total }}$
$\eta($-nonconserving decay parameters
$\pi^{+} \pi^{-} \pi^{0}$ left-right asymmetry
$\pi^{+} \pi^{-} \pi^{0}$ sextant asymmetry
$\pi^{+} \pi^{-} \pi^{0}$ quadrant asymmetry
$\pi^{+} \pi^{-} \gamma$ left-right asymmetry
$\pi^{+} \pi^{-} \gamma$ parameter β (D-wave)
$\Gamma\left(\eta \rightarrow \pi^{0} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 2 \pi^{0} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 3 \pi^{0} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma(\eta \rightarrow 3 \gamma) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\omega(782) \rightarrow \eta \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\omega(782) \rightarrow 2 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\omega(782) \rightarrow 3 \pi^{0}\right) / \Gamma_{\text {total }}$
asymmetry parameter for $\eta^{\prime}(958) \rightarrow$
$\pi^{+} \pi^{-} \gamma$ decay
$\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \eta e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow 3 \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \mu^{+} \mu^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \mu^{+} \mu^{-} \eta\right) / \Gamma_{\text {total }}$
$\Gamma(J / \psi(1 S) \rightarrow \gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma(J / \psi(1 S) \rightarrow \gamma \phi) / \Gamma_{\text {total }}$
$<3.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\left(0.09{ }_{-0.12}^{+0.11}\right) \times 10^{-2}$
$\left(0.122_{-0.11}^{+0.10}\right) \times 10^{-2}$
$(-0.09 \pm 0.09) \times 10^{-2}$ $(0.9 \pm 0.4) \times 10^{-2}$
$-0.02 \pm 0.07(S=1.3)$
[a] $<9 \times 10^{-5}, \mathrm{CL}=90 \%$
$<5 \times 10^{-4}, \mathrm{CL}=90 \%$
$<6 \times 10^{-5}, \mathrm{CL}=90 \%$
$<1.6 \times 10^{-5}, \mathrm{CL}=90 \%$
[b] $<8 \times 10^{-6}, \mathrm{CL}=90 \%$
[b] $<5 \times 10^{-6}, \mathrm{CL}=90 \%$ $<2.2 \times 10^{-4}, \mathrm{CL}=90 \%$ $<2.2 \times 10^{-4}, \mathrm{CL}=90 \%$ $<2.3 \times 10^{-4}, \mathrm{CL}=90 \%$ -0.03 ± 0.04
[b] $<1.4 \times 10^{-3}, \mathrm{CL}=90 \%$
[b] $<2.4 \times 10^{-3}, \mathrm{CL}=90 \%$ $<1.0 \times 10^{-4}, \mathrm{CL}=90 \%$
[b] $<6.0 \times 10^{-5}, \mathrm{CL}=90 \%$
[b] $<1.5 \times 10^{-5}, \mathrm{CL}=90 \%$ $<2.7 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-6}, \mathrm{CL}=90 \%$

PARITY (P) INVARIANCE

e electric dipole moment
μ electric dipole moment $|\mathrm{d}|$
$\operatorname{Re}\left(d_{\tau}=\tau\right.$ electric dipole moment $)$
$\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 2 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 4 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta_{C}(1 S) \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$
p electric dipole moment
n electric dipole moment Λ electric dipole moment
$\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)$
$\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)$
$\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} \pi^{-}\right)$
$\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} K^{-}\right)$
$\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)$
$\mathrm{a}_{P}\left(\bar{E}_{b}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\right)$
$<0.11 \times 10^{-28} e \mathrm{~cm}, \mathrm{CL}=90 \%$ $<1.8 \times 10^{-19} \mathrm{ecm}, \mathrm{CL}=95 \%$ -0.220 to $0.45 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}$ = 95\%
$<1.3 \times 10^{-5}, \mathrm{CL}=90 \%$
$<3.5 \times 10^{-4}, \mathrm{CL}=90 \%$
$<6.9 \times 10^{-7}, \mathrm{CL}=90 \%$
$<1.8 \times 10^{-5}, \mathrm{CL}=90 \%$
$<4 \times 10^{-4}, \mathrm{CL}=90 \%$
$<1.1 \times 10^{-4}, \mathrm{CL}=90 \%$
$<4 \times 10^{-5}, \mathrm{CL}=90 \%$
$<6 \times 10^{-4}, \mathrm{CL}=90 \%$
$<3.1 \times 10^{-4}, \mathrm{CL}=90 \%$
$<0.021 \times 10^{-23} \mathrm{ecm}$ $<0.18 \times 10^{-25} \mathrm{ecm}, \mathrm{CL}=90 \%$ $<1.5 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$ (-3.7 ± 1.5)\% $(-0.6 \pm 0.9) \%$ (4 ± 5)\%
(-1.6 $\pm 1.5) \%$
$(-5 \pm 5) \%$
$(-3 \pm 5) \%$

TIME REVERSAL (T) INVARIANCE
e electric dipole moment
μ electric dipole moment $\mid d$
μ decay parameters
transverse e^{+}polarization normal to plane of μ spin, e^{+}momentum

α^{\prime} / A

 $\beta^{\prime} / A$$\operatorname{Re}\left(d_{\tau}=\tau\right.$ electric dipole moment $)$
P_{T} in $K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu}$
P_{T} in $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma$
$\operatorname{Im}(\xi)$ in $K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu}$ decay (from transverse $\mu \mathrm{pol}$.)
asymmetry A_{T} in $K^{0}-\bar{K}^{0}$ mixing
$<0.11 \times 10^{-28} e \mathrm{~cm}, \mathrm{CL}=90 \%$ $<1.8 \times 10^{-19} \mathrm{ecm}, \mathrm{CL}=95 \%$
$(-2 \pm 8) \times 10^{-3}$
$(-10 \pm 20) \times 10^{-3}$
$(2 \pm 7) \times 10^{-3}$
-0.220 to $0.45 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}$

$$
=95 \%
$$

$(-1.7 \pm 2.5) \times 10^{-3}$
$(-0.6 \pm 1.9) \times 10^{-2}$
-0.006 ± 0.008
$(6.6 \pm 1.6) \times 10^{-3}$
$\operatorname{Im}(\xi)$ in $K_{\mu 3}^{0}$ decay (from transverse μ pol.)
$A_{T}\left(D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)$
$A_{T}\left(D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$A_{T}\left(D_{S}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)$
$\Delta S_{T}^{+}\left(S_{\ell^{-}, K_{S}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}\right)$
$\Delta S_{T}^{-}\left(S_{\ell^{-}, K_{S}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{-}\right)$
$\Delta C_{T}^{+}\left(C_{\ell^{-}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}\right)$
$\Delta C_{T}^{-}\left(C_{\ell^{-}, K_{S}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}\right)$
p electric dipole moment
n electric dipole moment
$n \rightarrow p e^{-} \bar{\nu}_{e}$ decay parameters
$\phi_{A V}$, phase of g_{A} relative to g_{V}
triple correlation coefficient D
triple correlation coefficient R
Λ electric dipole moment
triple correlation coefficient D for $\Sigma^{-} \rightarrow$ $n e^{-} \bar{\nu}_{e}$
-0.007 ± 0.026
[c] $(-12 \pm 11) \times 10^{-3}$
[c] $(2.9 \pm 2.2) \times 10^{-3}$
[c] $(-14 \pm 8) \times 10^{-3}$
-1.37 ± 0.15
1.17 ± 0.21
0.10 ± 0.16
0.04 ± 0.16
$<0.021 \times 10^{-23} \mathrm{ecm}$
$<0.18 \times 10^{-25} \mathrm{ecm}, \mathrm{CL}=90 \%$
[d] $(180.017 \pm 0.026)^{\circ}$
[e] $(-1.2 \pm 2.0) \times 10^{-4}$
[e] 0.004 ± 0.013
$<1.5 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$
0.11 ± 0.10

CP INVARIANCE

$\operatorname{Re}\left(d_{\tau}^{W}\right)$
$\operatorname{Im}\left(d_{\tau}^{W}\right)$
δ ($C P$ violating phase in neutrino mixing)
$\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$decay-plane asymmetry
$\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 2 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow 4 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
$K^{ \pm} \rightarrow \pi^{ \pm} e^{+} e^{-}$rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \gamma$ rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$ rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\left(g_{+}-g_{-}\right) /\left(g_{+}+\right.$ g_{-})
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\left(g_{+}-g_{-}\right) /\left(g_{+}+g_{-}\right)$
$A_{S}=\left[\Gamma\left(K_{S}^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)-\Gamma\left(K_{S}^{0} \rightarrow\right.\right.$

$$
\left.\left.\pi^{+} e^{-} \bar{\nu}_{e}\right)\right] / \text { SUM }
$$

$\operatorname{Im}\left(\eta_{+-0}\right)=\operatorname{Im}\left(\mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}, C P-\right.\right.$

$$
\text { violating) / } \left.\mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right)
$$

$\operatorname{Im}\left(\eta_{000}\right)=\operatorname{Im}\left(A\left(K_{S}^{0} \rightarrow\right.\right.$ $\left.\left.\pi^{0} \pi^{0} \pi^{0}\right) / A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)\right)$
$\left|\eta_{000}\right|=\left|A\left(K_{S}^{0} \rightarrow 3 \pi^{0}\right) / A\left(K_{L}^{0} \rightarrow 3 \pi^{0}\right)\right|$
$C P$ asymmetry A in $K_{S}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$
$\Gamma\left(K_{S}^{0} \rightarrow 3 \pi^{0}\right) / \Gamma_{\text {total }}$
linear coefficient j for $k_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
quadratic coefficient f for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\left|\epsilon_{+-\gamma}^{\prime}\right| / \epsilon$ for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$
$\left|\mathrm{g}_{E 1}\right|$ for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$A_{C P}\left(D^{ \pm} \rightarrow \mu^{ \pm} \nu\right)$
${ }^{A} C P\left(D^{ \pm} \rightarrow K_{L}^{0} e^{ \pm} \nu\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K^{\mp} 2 \pi^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{0}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm} \pi^{0}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm} \pi^{+} \pi^{-}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow \pi^{ \pm} \eta\right)$
$A_{C P}\left(D^{ \pm} \rightarrow \pi^{ \pm} \eta^{\prime}(958)\right)$
$A_{C P}\left(D^{ \pm} \rightarrow \bar{K}^{0} / K^{0} K^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K^{ \pm} K^{* 0}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow \phi \pi^{ \pm}\right)$
$A_{C P}\left(D^{ \pm} \rightarrow K^{ \pm} K_{0}^{*}(1430)^{0}\right)$
$<0.50 \times 10^{-17} e \mathrm{~cm}, \mathrm{CL}=95 \%$
$<1.1 \times 10^{-17} \mathrm{ecm}, \mathrm{CL}=95 \%$
$1.36 \pm 0.17 \pi \mathrm{rad}$
$(-0.6 \pm 3.1) \times 10^{-2}$
$<1.3 \times 10^{-5}, \mathrm{CL}=90 \%$
$<3.5 \times 10^{-4}, \mathrm{CL}=90 \%$
$<6.9 \times 10^{-7}, \mathrm{CL}=90 \%$
$<1.8 \times 10^{-5}, \mathrm{CL}=90 \%$
$<4 \times 10^{-4}, \mathrm{CL}=90 \%$
$(-2.2 \pm 1.6) \times 10^{-2}$
0.010 ± 0.023
$(0.0 \pm 1.2) \times 10^{-3}$
$(0.04 \pm 0.06) \%$
$(-0.02 \pm 0.28) \%$
$(-1.5 \pm 2.2) \times 10^{-4}$
$(1.8 \pm 1.8) \times 10^{-4}$
$(-4 \pm 6) \times 10^{-3}$
-0.002 ± 0.009
-0.001 ± 0.016
$<0.0088, \mathrm{CL}=90 \%$
$(-0.4 \pm 0.8) \%$
$<2.6 \times 10^{-8}, \mathrm{CL}=90 \%$
0.0012 ± 0.0008
0.004 ± 0.006
$<0.3, C L=90 \%$
$<0.21, \mathrm{CL}=90 \%$
$[f]<3.8 \times 10^{-10}, \mathrm{CL}=90 \%$
$[f]<2.8 \times 10^{-10}, \mathrm{CL}=90 \%$
$[g]<3.0 \times 10^{-9}, \mathrm{CL}=90 \%$
$(8 \pm 8) \%$
$(-0.6 \pm 1.6) \%$
$(-0.41 \pm 0.09) \%$
$(-0.18 \pm 0.16) \%$
$(-0.3 \pm 0.7) \%$
$(-0.1 \pm 0.7) \%$
(0.0 ± 1.2) \%
$(2.4 \pm 1.2) \%$
$(1.0 \pm 1.5) \%(S=1.4)$
$(-0.6 \pm 0.7) \%$
(0.11 ± 0.17)\%
$(-0.01 \pm 0.07) \%$
$(0.37 \pm 0.29) \%$
$(-0.3 \pm 0.4) \%$
$(0.01 \pm 0.09) \%(S=1.8)$
$\left(8{ }_{-6}^{+7}\right) \%$

Tests of Conservation Laws

$A_{C P}\left(D^{ \pm} \rightarrow K^{ \pm} K_{2}^{*}(1430)^{0}\right)$	$\left(43{ }_{-26}^{+20}\right) \%$	$A_{C P}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)$	$(0.1 \pm 0.5) \%$
$A_{C P}\left(D^{ \pm} \rightarrow K^{ \pm} K_{0}^{*}(700)\right)$	$\left(-12{ }_{-13}^{+18}\right) \%$	$A_{C P}\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)$	$(0 \pm 5) \%$
$A_{C P}\left(D^{ \pm} \rightarrow a_{0}(1450)^{0} \pi^{ \pm}\right)$	$(-19+14) \%$	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-0.1 \pm 0.8) \%$
$A_{C P}\left(D^{ \pm} \rightarrow \phi(1680) \pi^{ \pm}\right)$	$(-9 \pm 26) \%$	$A_{C P}\left(D^{0} \rightarrow K^{*}(892)^{-} \pi^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	(0.4 $\pm 0.5) \%$
$A_{C P}\left(D^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)$	$(-2 \pm 4) \%$	$A_{C P}\left(D^{0} \rightarrow K^{*}(892)^{+} \pi^{-} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(1 \pm 6) \%$
$A_{C P}\left(D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)$	$(-4 \pm 7) \%$	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \rho^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-0.1 \pm 0.5) \%$
$A_{C P}\left(D^{ \pm} \rightarrow K^{ \pm} \pi^{0}\right)$	$(-4 \pm 11) \%$	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \omega \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-13 \pm 7) \%$
Local CPV in $D^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$	78.1\%	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} f_{0}(980) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-0.4 \pm 2.7) \%$
Local CPV in $D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$	31%	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} f_{2}(1270) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-4 \pm 5) \%$
$\|\mathrm{q} / \mathrm{p}\|$ of $D^{0}-\bar{D}^{0}$ mixing	$0.92{ }_{-0.09}^{+0.12}$	$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} f_{0}(1370) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-1 \pm 9) \%$
A_{Γ} of $D^{0}-\bar{D}^{0}$ mixing	$(-0.125 \pm 0.526) \times 10^{-3}$	$A_{C P}\left(D^{0} \rightarrow \bar{K}^{0} \rho^{0}(1450) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-4 \pm 10) \%$
Where there is ambiguity, the $C P$ test is labe	by the D^{0} decay mode.	$A_{C P}\left(D^{0} \rightarrow \bar{K}^{0} f_{0}(600) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-3 \pm 5) \%$
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)$	$(-0.07 \pm 0.11) \%$	$A_{C P}\left(D^{0} \rightarrow K^{*}(1410)^{-} \pi^{+} \rightarrow\right.$	$(-2 \pm 9) \%$
$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$	(0.4 $\pm 1.4) \%$	$\left.K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-2 \pm)$
$A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$	$(0.13 \pm 0.14) \%$	$A_{C P}\left(D^{0} \rightarrow K_{0}^{*}(1430)^{-} \pi^{+} \rightarrow\right.$	$(4 \pm 4) \%$
$A_{C P}\left(D^{0} \rightarrow \pi^{0} \pi^{0}\right)$	$(0.0 \pm 0.6) \%$	$\left.K_{S}^{0} \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow \rho \gamma\right)$	$(6 \pm 15) \times 10^{-2}$		$(12 \pm 15) \%$
$A_{C P}\left(D^{0} \rightarrow \phi \gamma\right)$ $A_{C P}\left(D^{0} \rightarrow \bar{K}^{*}(892)^{0} \gamma\right)$	$\begin{aligned} & (-9 \pm 7) \times 10^{-2} \\ & (-0.3 \pm 2.0) \times 10^{-2} \end{aligned}$	$\left.k_{S}^{0} \pi^{+} \pi^{-}\right)$	(12 \pm) ${ }^{\text {c }}$
$A_{C P}\left(D^{0} \rightarrow \bar{K}^{*}(892)^{0} \gamma\right)$ $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$(-0.3 \pm 2.0) \times 10^{-2}$ $(0.3 \pm 0.4) \%$	${ }^{A_{C P}\left(D^{0}\right.} \rightarrow K_{2}^{*}(1430)^{-} \pi^{+} \rightarrow$	$(3 \pm 6) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(770)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] (1.2 $\pm 0.9) \%$	$\left.{ }_{S}^{0} \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow \rho(770)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h](-3.1 \pm 3.0) \%$	$A_{C P}\left(D^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-} \rightarrow\right.$	$(-10 \pm 32) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(770)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] $(-1.0 \pm 1.7) \%$	$K_{S}^{0} \pi^{+} \pi^{-}$)	
$A_{C P}\left(D^{0} \rightarrow \rho(1450)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] (0 ± 70) \%	${ }^{\text {CPP }}$ ($\left.D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}\right)$	$(0.2 \pm 0.5) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(1450)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] $(-20 \pm 40) \%$	$A_{C P}\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right)$	$(-2 \pm 4) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(1450)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h](6 \pm 9) \%$	$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$	$(1.3 \pm 1.7) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(1700)^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] (-5 ± 14 \% $\%$	$A_{C P}\left(D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-} \rightarrow\right.$	$(-2.3 \pm 1.7) \%$
$A_{C P}\left(D^{0} \rightarrow \rho(1700)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h] \quad(13 \pm 9) \%$	$\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow \rho(1700)^{-} \pi^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h](8 \pm 11) \%$	$A_{C P}\left(D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-} \rightarrow\right.$	$(-1 \pm 10) \%$
$A_{C P}\left(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] ($0 \pm 35) \%$	$\left.K^{* 0} \pi^{+} K^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow f_{0}(1370) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] $(25 \pm 18) \%$	$A_{C P}\left(D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+} \rightarrow\right.$	$(-10 \pm 32) \%$
$A_{C P}\left(D^{0} \rightarrow f_{0}(1500) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h] \quad(0 \pm 18) \%$	$\left.\bar{K}^{* 0} \pi^{-} K^{+}\right)$	
$A_{C P}\left(D^{0} \rightarrow f_{0}(1710) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] $(0 \pm 24) \%$	$A_{C P}\left(D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+} \rightarrow\right.$	$(1.7 \pm 3.5) \%$
$A_{C P}\left(D^{0} \rightarrow f_{2}(1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[h] (-4 ± 6) \%	$\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow \sigma(400) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	[$h \mathrm{l}$ ($6 \pm 8) \%$	$A_{C P}\left(D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-} \rightarrow\right.$	$(-7 \pm 17) \%$
$A_{C P}\left(\right.$ nonresonant $\left.D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$	$[h] \quad(-13 \pm 23) \%$	$\left.\rho^{0} K^{+} K^{-}\right)$	
$A_{C P}\left(D^{0}, \bar{D}^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(0.5 \pm 1.2) \%$	$A_{C P}{ }^{\left(D^{0}\right.} \rightarrow K_{1}^{*}(1270)^{-} K^{+} \rightarrow$	$(10 \pm 13) \%$
$A_{C P}\left(D^{0} \rightarrow a_{1}(1260)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	(5 ± 6)\%	$\left.\rho^{0} K^{-} K^{+}\right)$	
$A_{C P}\left(D^{0} \rightarrow a_{1}(1260)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(14 \pm 18) \%$	$A_{C P}\left(D^{0} \rightarrow K_{1}(1400)^{+} K^{-} \rightarrow\right.$ $\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$	(-4.4 $\pm 2.1) \%$
$A_{C P}\left(D^{0} \rightarrow \pi(1300)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(-2 \pm 15) \%$	$\begin{gathered} \left.K^{+} K^{-} \pi^{+} \pi^{-}\right) \\ A_{C P}\left(D^{0} \rightarrow K^{*}(1410)^{+} K^{-} \rightarrow\right. \end{gathered}$	$(-20 \pm 17) \%$
$A_{C P}\left(D^{0} \rightarrow \pi(1300)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(-6 \pm 30) \%$	$\begin{gathered} A_{C P}\left(D^{0} \rightarrow K^{*}(1410)^{+} K^{-} \rightarrow\right. \\ \left.K^{* 0} \pi^{+} K^{-}\right) \end{gathered}$	$(-20 \pm 17) \%$
${ }^{A_{C P}\left(D^{0} \rightarrow a_{1}(1640)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)}$	$(9 \pm 26) \%$		$(-1 \pm 14) \%$
$A_{C P}\left(D^{0} \rightarrow \pi_{2}(1670)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	(7 ± 18)\%	$\left.\bar{K}^{* 0} \pi^{-} \kappa^{+}\right)$	
$A_{C P}\left(D^{0} \rightarrow \sigma f_{0}(1370) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(-15 \pm 19) \%$	$A_{C P}\left(D^{0} \rightarrow K^{*}(1680)+K^{-} \rightarrow\right.$	$(-17 \pm 29) \%$
$A_{C P}\left(D^{0} \rightarrow \sigma \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(3 \pm 27) \%$	$\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(D^{0} \rightarrow 2 \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(-6 \pm 6) \%$	$A_{C P}\left(K^{* 0} \bar{K}^{* 0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$	$(-5 \pm 14) \%$
$A_{C P}\left(D^{0} \rightarrow 2 f_{2}(1270) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$	$(-28 \pm 24) \%$	$A_{C P}\left(D^{0} \rightarrow K^{* 0} \bar{K}^{* 0} s\right.$-wave $)$	$(-3.9 \pm 2.2) \%$
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)$	$(-1.0 \pm 1.7) \%$	$A_{C P}\left(\phi \rho^{0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow \phi \rho^{0}$	$(1 \pm 9) \%$
$A_{C P}\left(D^{0} \rightarrow K^{*}(892)+K^{-} \rightarrow\right.$	$[h](-0.9 \pm 1.3) \%$	$A_{C P}\left(D^{0} \rightarrow \phi \rho^{0} S\right.$-wave)	$(-3 \pm 5) \%$
$\left.K^{+} K^{-} \pi^{0}\right)$		$A_{C P}\left(D^{0} \rightarrow \phi \rho^{0} D\right.$-wave)	$(-37 \pm 19) \%$
$\begin{gathered} A_{C P}\left(D^{0} \rightarrow K^{*}(1410)^{+} K^{-} \rightarrow\right. \\ \left.K^{+} K^{-} \pi^{0}\right) \end{gathered}$	$[h](-21 \pm 24) \%$	$A_{C P}\left(D^{0} \rightarrow \phi\left(\pi^{+} \pi^{-}\right)_{S-w a v e}\right)$	$(6 \pm 6) \%$
$A_{C P}\left(D^{0} \rightarrow\left(K^{+} \pi^{0}\right)_{S} K^{-} \rightarrow\right.$	[h] ($7 \pm 15) \%$	$A_{C P}\left(D^{0} \rightarrow K^{*}(892)^{0}\left(K^{-} \pi^{+}\right)_{S-w a v e}\right)$	$(-10 \pm 40) \%$
$\left.{ }^{\prime} K^{+} K^{-} \pi^{0}\right)$	[1] $(7 \pm 15) \%$	$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right.$non-resonant)	$(8 \pm 20) \%$
$A_{C P}\left(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)$	$[h] ~(1.1 \pm 2.2) \%$	${ }^{A_{C P}}\left(\left(K^{-} \pi^{+}\right)_{P-\text { wave }}\left(K^{+} \pi^{-}\right)_{S-w a v e}\right)$	(3 ± 11)\%
$A_{C P}\left(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)$	[h] $(-3 \pm 19) \%$	$C P$-even fraction in $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays	$(97.3 \pm 1.7) \%$
$A_{C P}\left(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)$	[h] $(-5 \pm 16) \%$	$C P$-even fraction in $D^{0} \rightarrow K^{+} K^{-} \pi^{0}$	$(73 \pm 6) \%$
$A_{C P}\left(D^{0} \rightarrow f_{2}^{\prime}(1525) \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)$	[h] (0 ± 160) \%	${ }_{\text {c }}$-even fray decation in $D^{0} \rightarrow K+\pi$	$(73 \pm 6) \%$
$\begin{aligned} & A_{C P}\left(D^{0} \rightarrow K^{*}(892)^{-} K^{+} \rightarrow\right. \\ & \left.K^{+} K^{-} \pi^{0}\right) \end{aligned}$	[h] (-5 $\pm 4) \%$	$C P$-even fraction in $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ decays	$(76.9 \pm 2.3) \%$
$A_{C P}\left(D^{0} \rightarrow K^{*}(1410)^{-} K^{+} \rightarrow\right.$	$[h](-17 \pm 29) \%$	Local CPV p-value in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	4.9\%
$\left.K^{+} K^{-} \pi^{0}\right)$		Local CPV p-value in $D^{0}, \bar{D}^{0} \rightarrow$	$(0.6 \pm 0.2) \%$
$\begin{gathered} A_{C P}\left(D^{0} \rightarrow\left(K^{-} \pi^{0}\right)_{S-\text { wave }} K^{+} \rightarrow\right. \\ \left.K^{+} K^{-} \pi^{0}\right) \end{gathered}$	$[h](-10 \pm 40) \%$	Local $C P V$ p-value in $D^{0}, \bar{D}^{0} \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$	96\%
$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \pi^{0}\right)$	$(-0.20 \pm 0.17) \%$	Local $C P V$ p-value in $D^{0}, \bar{D}^{0} \rightarrow$	16.6\%
$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \eta\right)$	$(0.5 \pm 0.5) \%$	$K^{+} K^{-} \pi^{0}$	16.6\%
$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \eta^{\prime}\right)$	$(1.0 \pm 0.7) \%$	Local CPV p-value in $D^{0}, \bar{D}^{0} \rightarrow$	9.1\%
$A_{C P}\left(D^{0} \rightarrow K_{S}^{0} \phi\right)$	$(-3 \pm 9) \%$	$\begin{array}{r} K^{+} K^{-} \pi^{+} \pi^{-} \\ A_{C P}\left(D_{\varepsilon}^{ \pm} \rightarrow \mu^{ \pm} \nu\right) \end{array}$	
${ }^{A} C P\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	(0.2 $\pm 0.5) \%$	$\begin{aligned} & A_{C P}\left(D_{S}^{ \pm} \rightarrow \mu^{ \pm} \nu\right) \\ & A_{C P}\left(D_{S}^{ \pm} \rightarrow K^{ \pm} K_{S}^{0}\right) \end{aligned}$	$\begin{aligned} & (5 \pm 6) \% \\ & (0.09 \pm 0.26) \% \end{aligned}$
$A_{C P}\left(D^{0} \rightarrow K^{+} \pi^{-}\right)$	$(-0.9 \pm 1.4) \%$	$A_{C P}\left(D_{S}^{ \pm} \rightarrow K^{ \pm} K_{S}^{0}\right)$	$(0.09 \pm 0.26) \%$
$\left.{ }^{A_{C P}\left(D_{C P}(\pm 1)\right.} \rightarrow K^{\mp} \pi^{ \pm}\right)$	$(12.7 \pm 1.5) \%$	${ }^{A} C P\left(D_{s}^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)$	(-0.5 $\pm 0.9) \%$

$A_{C P}\left(D_{s}^{ \pm} \rightarrow \phi \pi^{ \pm}\right)$	$(-0.38 \pm 0.27) \%$	$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)$	-0.019 ± 0.015
$A_{C P}\left(D_{S}^{ \pm} \rightarrow K^{ \pm} K_{S}^{0} \pi^{0}\right)$	$(-2 \pm 6) \%$	$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)$	-0.013 ± 0.019
$A_{C P}\left(D_{S}^{ \pm} \rightarrow 2 K_{S}^{0} \pi^{ \pm}\right)$	(3 ± 5)\%	$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)$	-0.002 ± 0.011
$A_{C P}\left(D_{s}^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm} \pi^{0}\right)$	$(0.0 \pm 3.0) \%$	$A_{C P}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right)$	0.0010 ± 0.0028
$A_{C P}\left(D_{S}^{ \pm} \rightarrow K^{ \pm} K_{S}^{0} \pi^{+} \pi^{-}\right)$	$(-6 \pm 5) \%$	$A_{C P}\left(B^{+} \rightarrow\left(D_{C P(+1)}^{*}\right)^{0} \pi^{+}\right)$	$0.016 \pm 0.010(S=1.2)$
$A_{C P}\left(D_{S}^{ \pm} \rightarrow K_{S}^{0} K^{\mp} 2 \pi^{ \pm}\right)$	$(4.1 \pm 2.8) \%$	$A_{C P}\left(B^{+} \rightarrow\left(D_{C P(-1)}^{*}\right)^{0} \pi^{+}\right)$	-0.09 ± 0.05
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)$	$(-0.7 \pm 3.1) \%$	$A_{C P}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$	$-0.001 \pm 0.011(\mathrm{~S}=1.1)$
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \pi^{ \pm} \eta\right)$	$(1.1 \pm 3.1) \%$	$A_{C P}\left(B^{+} \rightarrow D_{C P(+1)}^{* 0}{ }^{+}\right)$	$-0.11 \pm 0.08(S=2.7)$
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \pi^{ \pm} \eta^{\prime}\right)$	$(-0.9 \pm 0.5) \%$	$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)}^{*} K^{+}\right)$	0.07 ± 0.10
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \eta \pi^{ \pm} \pi^{0}\right)$	$(-1 \pm 4) \%$	$A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} K^{*}(892)^{+}\right)$	0.08 ± 0.06
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \eta^{\prime} \pi^{ \pm} \pi^{0}\right)$	(0 ± 8)\%	$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} K^{*}(892)^{+}\right)$	-0.23 ± 0.22
$A_{C P}\left(D_{s}^{ \pm} \rightarrow K^{ \pm} \pi^{0}\right)$	$(-27 \pm 24) \%$	$A_{C P}\left(B^{+} \rightarrow D_{S}^{+} \phi\right)$	0.0 ± 0.4
$A_{C P}\left(D_{s}^{ \pm} \rightarrow \bar{K}^{0} / K^{0} \pi^{ \pm}\right)$	$(0.4 \pm 0.5) \%$	${ }^{A_{C P}}\left(B^{+} \rightarrow D_{s}^{+} \bar{D}^{0}\right)$	$(-0.4 \pm 0.7) \%$
$A_{C P}\left(D_{S}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}\right)$	$(0.20 \pm 0.18) \%$	$A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{* 0}\right)$	-0.15 ± 0.11
$A_{C P}\left(D_{s}^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right)$	(4 ± 5)\%	$A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{0}\right)$	-0.06 ± 0.13
$A_{C P}\left(D_{s}^{ \pm} \rightarrow K^{ \pm} \eta\right)$	$(9 \pm 15) \%$	$A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{* 0}\right)$	0.13 ± 0.18
$A_{C P}\left(D_{s}^{ \pm} \rightarrow K^{ \pm} \eta^{\prime}(958)\right)$	$(6 \pm 19) \%$	$A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{0}\right)$	0.016 ± 0.025
$A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)$	$(1.8 \pm 3.0) \times 10^{-3}(\mathrm{~S}=1.5)$	$A_{C P}\left(B^{+} \rightarrow K_{S}^{0} \pi^{+}\right)$	-0.017 ± 0.016
$A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) \pi^{+}\right)$	$(1.8 \pm 1.2) \times 10^{-2}(\mathrm{~S}=1.3)$	$A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)$	0.037 ± 0.021
$\left.A_{C P}{ }^{\left(B^{+}\right.} \rightarrow \mathrm{J} / \psi \rho^{+}\right)$	-0.05 ± 0.05	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right)$	0.004 ± 0.011
$A_{C P}\left(B^{+} \rightarrow J / \psi K^{*}(892)^{+}\right)$	-0.048 ± 0.033	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{*}(892)^{+}\right)$	-0.26 ± 0.27
$A_{C P}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)$	$0.01 \pm 0.07(S=2.2)$	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{0}^{*}(1430)^{+}\right)$	0.06 ± 0.20
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) \pi^{+}\right)$	0.03 ± 0.06	$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{2}^{*}(1430)^{+}\right)$	0.15 ± 0.13
$\left.{ }^{A} C P P^{\left(B^{+}\right.} \rightarrow \psi(2 S) K^{+}\right)$	0.012 ± 0.020 ($\mathrm{S}=1.5$)	$A_{C P}\left(B^{+} \rightarrow \eta K^{*}(892)^{+}\right)$	0.02 ± 0.06
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{*}(892)^{+}\right)$	0.08 ± 0.21	$A_{C P}\left(B^{+} \rightarrow \eta K_{0}^{*}(1430)^{+}\right)$	0.05 ± 0.13
$A_{C P}\left(B^{+} \rightarrow \chi_{C 1}(1 P) \pi^{+}\right)$	0.07 ± 0.18	$A_{C P}\left(B^{+} \rightarrow \eta K_{2}^{*}(1430)^{+}\right)$	-0.45 ± 0.30
$\left.{ }^{A_{C P}\left(B^{+}\right.} \rightarrow \chi_{C 0} K^{+}\right)$	$-0.20 \pm 0.18(S=1.5)$	$A_{C P}\left(B^{+} \rightarrow \omega K^{+}\right)$	-0.02 ± 0.04
$\left.{ }^{A_{C P}}{ }^{\left(B^{+}\right.} \rightarrow \chi_{C 1} K^{+}\right)$	-0.009 ± 0.033	${ }^{A_{C P}}\left(B^{+} \rightarrow \omega K^{*+}\right)$	0.29 ± 0.35
$A_{C P}\left(B^{+} \rightarrow \chi_{C 1} K^{*}(892)^{+}\right)$	0.5 ± 0.5	$A_{C P}\left(B^{+} \rightarrow \omega(K \pi)_{0}^{*+}\right)$	-0.10 ± 0.09
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)$	-0.007 ± 0.007	$A_{C P}\left(B^{+} \rightarrow \omega K_{2}^{*}(1430){ }^{+}\right)$	0.14 ± 0.15
$A_{C P P}\left(B^{+} \rightarrow D_{C P(+1)}{ }^{+}\right)$	-0.0080 ± 0.0026	$A_{C P}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)$	0.14 ± 0.15 $-0.04 \pm 0.09(S=2.1)$
$A_{C P}\left(B^{+} \rightarrow{ }^{D_{C P}}(-1)^{\pi^{+}}\right)$	0.017 ± 0.026	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \pi^{0}\right)$	$-0.39 \pm 0.21(S=1.6)$
$A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} \pi^{+}\right)$	0.02 ± 0.05	$A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}\right)$	0.027 ± 0.008
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right]_{D} K^{+}\right)$	0.10 ± 0.04	$A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right.$nonresonant)	0.06 ± 0.05
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{+}\right)$	0.02 ± 0.11	$A_{C P}\left(B^{+} \rightarrow f(980)^{0} K^{+}\right)$	-0.08 ± 0.09
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)$	-0.017 ± 0.005	$A_{C P}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right)$	0.28 ± 0.30
$A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} K^{+}\right)$	-0.31 ± 0.11	$A_{C P}\left(B^{+} \rightarrow f_{2}^{\prime}(1525)^{0} K^{+}\right)$	${ }_{-0.08}^{+0.05}$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right]_{D} \pi^{+}\right)$	$(-4 \pm 8) \times 10^{-3}$	$A_{C P}\left(B^{+} \rightarrow K_{0}^{*}(1430)^{0} \pi^{+}\right)$	0.061 ± 0.032
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)$	-0.58 ± 0.21		
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{+}\right)$	0.07 ± 0.30 ($\mathrm{S}=1.5$)	$A_{C P}\left(B^{+} \rightarrow K_{0}(1430)\right.$ $A_{C P}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right)$	$0.26-0.14$ $0.05+0.29$
$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-} \pi^{0}\right]_{D} K^{+}\right)$	0.30 ± 0.20	$A_{C P}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right)$	$0.05{ }_{-0.24}^{+0.29}$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)$	0.05 ± 0.09	$A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right)$	-0.06 ± 0.07
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{*}(892)^{+}\right)$	-0.007 ± 0.019	$A_{C P}\left(B^{+} \rightarrow K^{0} \rho^{+}\right)$	-0.03 ± 0.15
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{-} \pi^{+}\right]_{\bar{D}} K^{*}(892){ }^{+}\right)$	-0.45 ± 0.25	$A_{C P}\left(B^{+} \rightarrow K^{*+} \pi^{+} \pi^{-}\right)$	0.07 ± 0.08
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+}\right)$	0.00 ± 0.09	$A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}\right)$	0.31 ± 0.13
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D^{\pi^{+}}}\right)$	0.35 ± 0.16	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)\right)$	-0.15 ± 0.12
$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-} \pi^{0}\right]_{D}{ }^{+}{ }^{+}\right)$	-0.03 ± 0.04	$A_{C P}\left(B^{+} \rightarrow a_{1}^{+} K^{0}\right)$	0.12 ± 0.11
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D^{\prime}}{ }^{+}\right)$	-0.016 ± 0.020	$A_{C P}\left(B^{+} \rightarrow b_{1}^{+} K^{0}\right)$	-0.03 ± 0.15
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)^{++}}{ }^{+}\right.$	-0.09 ± 0.27	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{0} \rho^{+}\right)$	-0.01 ± 0.16
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} \pi^{+}\right)$	-0.7 ± 0.6	$A_{C P}\left(B^{+} \rightarrow b_{1}^{0} K^{+}\right)$	-0.46 ± 0.20
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} K^{+}\right)$	0.8 ± 0.4	$A_{C P}\left(B^{+} \rightarrow K^{0} K^{+}\right)$ $A_{C P}\left(B^{+} \rightarrow K^{+} K^{0} K^{0}\right)$	0.04 ± 0.14
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} K^{+}\right)$	0.4 ± 1.0	$\begin{aligned} & A_{C P}\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right) \\ & A_{C P}\left(B^{+} \rightarrow \phi K^{+}\right) \end{aligned}$	$\begin{aligned} & 0.025 \pm 0.031 \\ & 0.024 \pm 0.028(S=2.3) \end{aligned}$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)$	-0.02 ± 0.15	${ }^{A_{C P}\left(B^{+}\right.}{ }^{+}{ }^{\text {a }}$ ($\left.x_{0}(1550) K^{+}\right)$	$0.024 \pm 0.028(S-2.3)$ -0.04 ± 0.07
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} K^{+}\right)$	0.04 ± 0.09	$A_{C P}\left(B^{+} \rightarrow K^{*+} K^{+} K^{-}\right)$	0.11 ± 0.09
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} K^{+}\right)$	0.23 ± 0.13	$A_{C P}\left(B^{+} \rightarrow \phi K^{*}(892)^{+}\right)$	-0.01 ± 0.08
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} \pi^{+}\right)$	-0.052 ± 0.034	$A_{C P}\left(B^{+} \rightarrow \phi(K \pi)_{0}^{*+}\right)$	0.04 ± 0.16
$A_{C P}\left(B^{+} \rightarrow\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} \pi^{+}\right)$	-0.025 ± 0.026	$A_{C P}\left(B^{+} \rightarrow \phi K_{1}(1270)^{+}\right)$	0.15 ± 0.20
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{-} K^{+}\right]_{D} K^{+}\right)$	0.03 ± 0.11	$A_{C P}\left(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}\right)$	-0.23 ± 0.20
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{+} K^{-}\right]_{D} K^{+}\right)$	0.34 ± 0.21	$A_{C P}\left(B^{+} \rightarrow K^{+}{ }_{\phi \phi}\right)$	-0.10 ± 0.08
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{+} K^{-}\right]_{D} \pi^{+}\right)$	-0.05 ± 0.05	$A_{C P}\left(B^{+} \rightarrow K^{+}[\phi \phi]_{\eta_{C}}\right)$	0.09 ± 0.10
$A_{C P}\left(B^{+} \rightarrow\left[K^{*}(892)^{-} K^{+}\right]_{D} \pi^{+}\right)$	-0.012 ± 0.030	$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \gamma\right)$	0.014 ± 0.018
$A_{A D S}\left(B^{+} \rightarrow D \pi^{+}\right)$	0.100 ± 0.032	$A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)$	0.028 ± 0.019
$A_{A D S}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$	-0.33 ± 0.35	$A_{C P}\left(B^{+} \rightarrow \eta K^{+} \gamma\right)$	-0.12 ± 0.07
$A_{A D S}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right)$	-0.01 ± 0.09	$A_{C P}\left(B^{+} \rightarrow \phi K^{+} \gamma\right)$	$-0.13 \pm 0.11(S=1.1)$
$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)}{ }^{+}{ }^{+}\right)$	-0.10 ± 0.07	$A_{C P}\left(B^{+} \rightarrow \rho^{+} \gamma\right)$	-0.11 ± 0.33
$A_{C P}\left(B^{+} \rightarrow\left[K^{+} K^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$	-0.04 ± 0.06	$A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$	0.03 ± 0.04
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$	-0.05 ± 0.10	$A_{C P}\left(B^{+} \rightarrow \rho^{0} \pi^{+}\right)$	0.009 ± 0.019
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$	0.013 ± 0.023		

Tests of Conservation Laws

$A_{C P}\left(B^{+} \rightarrow \rho^{0}(1450) \pi^{+}\right)$	-0.11 ± 0.05	$A_{C P}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)$	-0.05 ± 0.10
$A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right.$nonresonant)	$-0.14{ }_{-0.16}^{+0.23}$	$A_{C P}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)$	-0.21 ± 0.19
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \pi^{0}\right)$	0.02 ± 0.11	$A_{C P}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	-0.034 ± 0.024
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)$	-0.05 ± 0.05	$C_{D^{*}(2010)^{-} D^{+}}\left(B^{0} \rightarrow D^{*}(2010)^{-} D^{+}\right)$	-0.01 ± 0.11
$A_{C P}\left(B^{+} \rightarrow \omega \pi^{+}\right)$	-0.04 ± 0.05	$C_{D^{*}(2010)^{+} D^{-}}\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{-}\right)$	0.00 ± 0.13 ($\mathrm{S}=1.3)$
$A_{C P}\left(B^{+} \rightarrow \omega \rho^{+}\right)$	-0.20 ± 0.09	$C_{D^{*++} D^{*-}}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	$0.01 \pm 0.09(S=1.6)$
$\left.A_{C P}{ }^{\left(B^{+}\right.}{ }^{+} \rightarrow \eta \pi^{+}\right)$	$-0.14 \pm 0.07(S=1.4)$	$C_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	0.00 ± 0.10 ($\mathrm{S}=1.6$)
$A_{C P}\left(B^{+} \rightarrow \eta \rho^{+}\right)$ $A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \pi^{+}\right)$	0.11 ± 0.11 0.06 ± 0.16	$C_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	$0.00 \pm 0.10(S-1.6)$ 0.19
$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \pi^{+}\right)$ $A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \rho^{+}\right)$	0.06 ± 0.16 0.26 ± 0.17	$S_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	$0.1 \pm 1.6(S=3.5)$
$A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \rho^{+}\right)$ $A_{C P}\left(B^{+} \rightarrow b_{1}^{0} \pi^{+}\right)$	0.26 ± 0.17 0.05 ± 0.16	$C\left(B^{0} \rightarrow D^{*}(2010)+D^{*}(2010)^{-} K_{S}^{0}\right)$	0.01 ± 0.29
$A_{C P}\left(B^{+} \rightarrow p \bar{p} \pi^{+}\right)$	0.00 ± 0.04	$S\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)$	0.1 ± 0.4
$A_{C P}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)$	0.00 ± 0.04 ($\mathrm{S}=2.2$)	$C_{D^{+} D^{-}}\left(B^{0} \rightarrow D^{+} D^{-}\right)$	$-0.22 \pm 0.24(S=2.5)$
$A_{C P}\left(B^{+} \rightarrow p \bar{p} K^{*}(892)^{+}\right)$	0.21 ± 0.16 ($\mathrm{S}=1.4$)	$C_{J / \psi(1 S) \pi^{0}}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{0}\right)$	$0.03 \pm 0.17(S=1.5)$
$A_{C P}\left(B^{+} \rightarrow p \bar{\lambda} \gamma\right)$	0.17 ± 0.17	$C\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)$	-0.06 ± 0.06
$A_{C P}\left(B^{+} \rightarrow p \bar{\Lambda} \pi^{0}\right)$	0.01 ± 0.17	$C_{D^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)$	-0.02 ± 0.08
$A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)$	-0.02 ± 0.08	$D_{C P}^{* *} h^{0}{ }^{\left(B^{0}\right.}$	
$A_{C P}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)$	0.14 ± 0.14	$S_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)$	-0.66 ± 0.12
$A_{C P}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$	0.011 ± 0.017	$C_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$	0.00 ± 0.13 ($\mathrm{S}=1.4$)
$\left.{ }^{A_{C P}}{ }^{\left(B^{+}\right.} \rightarrow K^{*++} \ell^{+} \ell^{-}\right)$	-0.09 ± 0.14	$C_{\eta^{\prime}(958) K^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)$	$-0.04 \pm 0.20(S=2.5)$
$A_{C P}\left(B^{+} \rightarrow K^{*} e^{+} e^{-}\right)$	-0.14 ± 0.23	$C_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}\right)$	$-0.04 \pm 0.20(\mathrm{~S}=2.5)$
$A_{C P}\left(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	-0.12 ± 0.24	$S_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)$	$0.43 \pm 0.17(S=1.5)$
$\operatorname{Re}\left(\epsilon_{B^{0}}\right) /\left(1+\mid \epsilon_{B^{0}}{ }^{2}\right)$	$(-0.5 \pm 0.4) \times 10^{-3}$	$C_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)$	-0.06 ± 0.04
$A_{T / C P}\left(B^{0} \leftrightarrow \bar{B}^{0}\right)$	0.005 ± 0.018	$C{ }^{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)$	
$A_{C P}\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{-}\right)$	0.037 ± 0.034	$C_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)$	$0.0 \pm 0.4(\mathrm{~S}=3.0)$
$A_{C P}\left(B^{0} \rightarrow\left[K^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right)$	-0.05 ± 0.10	$S_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)$	0.70 ± 0.21
$A_{C P}\left(B^{0} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}\right)$	0.047 ± 0.029	$C\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)$	-0.21 ± 0.20
$A_{C P}\left(B^{0} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}\right)$	-0.18 ± 0.14	$S\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)$	$0.89{ }_{-0.30}^{+0.27}$
$A_{C P}\left(B^{0} \rightarrow \eta^{\prime} K^{*}(892)^{0}\right)$	-0.07 ± 0.18	$C_{\rho^{0} K_{S}^{0}}\left(B^{0} \rightarrow \rho^{0} K_{S}^{0}\right)$	-0.04 ± 0.20
$A_{C P}\left(B^{0} \rightarrow \eta^{\prime} K_{0}^{*}(1430)^{0}\right)$	-0.19 ± 0.17		- 0.0 .17
$A_{C P}\left(B^{0} \rightarrow \eta^{\prime} K_{2}^{*}(1430)^{0}\right)$	0.14 ± 0.18	$S_{\rho^{0} K_{S}^{0}}\left(B^{0} \rightarrow \rho^{0} K_{S}^{0}\right)$	$0.50{ }_{-0.21}^{+0.17}$
$A_{C P}\left(B^{0} \rightarrow \eta K_{0}^{*}(1430)^{0}\right)$	0.06 ± 0.13	$C_{f_{0}(980) K_{S}^{0}}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)$	0.29 ± 0.20
$A_{C P}\left(B^{0} \rightarrow \eta K_{2}^{*}(1430)^{0}\right)$	-0.07 ± 0.19	$S_{f_{0}(980) K_{S}^{0}}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)$	-0.50 ± 0.16
$A_{C P}\left(B^{0} \rightarrow b_{1} K^{+}\right)$	-0.07 ± 0.12	${ }_{f_{0}(980) K_{S}^{0}}\left(B^{0} \rightarrow f_{0}(80) K_{S}\right.$	
$A_{C P}\left(B^{0} \rightarrow \omega K^{* 0}\right)$	0.45 ± 0.25	$S_{f_{2}(1270) K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)$	-0.5 ± 0.5
$A_{C P}\left(B^{0} \rightarrow \omega(K \pi)_{0}^{* 0}\right)$	-0.07 ± 0.09	$C_{f_{2}(1270) K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)$	0.3 ± 0.4
$A_{C P}\left(B^{0} \rightarrow \omega K_{2}^{*}(1430)^{0}\right)$	-0.37 ± 0.17	$f_{2}(1270) K_{S}\left(B^{0} \rightarrow f_{\chi}(1300) K_{C}^{0}\right)$	-0.2 ± 0.5
$A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)$	$(0 \pm 6) \times 10^{-2}$	${ }^{f_{X}(1300) K_{S}^{0}}{ }^{\left(B^{0}\right.} \rightarrow f_{X}(1300) K_{S}^{0}$	-0.2 ± 0.5
$A_{C P}\left(B^{0} \rightarrow \rho^{-} K^{+}\right)$	0.20 ± 0.11	$C_{f_{\chi}(1300) K_{S}^{0}}\left(B^{0} \rightarrow f_{X}(1300) K_{S}^{0}\right)$	0.13 ± 0.35
$A_{C P}\left(B^{0} \rightarrow \rho(1450)^{-} K^{+}\right)$	-0.10 ± 0.33	$S_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant)	-0.01 ± 0.33
$A_{C P}\left(B^{0} \rightarrow \rho(1700)^{-} K^{+}\right)$	-0.4 ± 0.6	$C_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant)	0.01 ± 0.26
$A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right.$ nonresonant)	0.10 ± 0.18	$C_{K^{0} K^{0} \pi^{0}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)}$	
$A_{C P}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)$	-0.01 ± 0.05	${ }^{C} K_{S}^{0} K_{S}^{0}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$	$0.0 \pm 0.4(\mathrm{~S}=1.4)$
$A_{C P}\left(B^{0} \rightarrow(K \pi)_{0}^{*+} \pi^{-}\right)$	0.02 ± 0.04	$S_{K_{S}^{0} K_{S}^{0}}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$	-0.8 ± 0.5
$A_{C P}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}\right)$	-0.29 ± 0.24	$C_{K^{+} K^{-} K_{S}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$	0.06 ± 0.08
$A_{C P}\left(B^{0} \rightarrow K^{*}(1680)^{+} \pi^{-}\right)$	-0.07 ± 0.14	nonresonant)	
$A_{C P}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)$	0.28 ± 0.31	$C_{K^{+} K^{-} K_{S}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ inclusive)	0.01 ± 0.09
$A_{C P}\left(B^{0} \rightarrow(K \pi)_{0}^{* 0} \pi^{0}\right)$	-0.15 ± 0.11		
$A_{C P}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)$	-0.15 ± 0.13	$C_{\phi K_{S}^{0}}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$	0.01 ± 0.14
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} \pi^{+} \pi^{-}\right)$	0.07 ± 0.05	$S_{\phi K_{S}^{0}}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$	0.59 ± 0.14
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}\right)$	-0.06 ± 0.09	$C_{K_{S} K_{S} K_{S}\left(B^{0} \rightarrow K_{S} K_{S} K_{S}\right)}$	-0.23 ± 0.14
$A_{C P}\left(B^{0} \rightarrow K^{* 0} f_{0}(980)\right)$	0.07 ± 0.10	$S_{K_{S} K_{S} K_{S}\left(K_{S}\left(B^{0} \rightarrow K_{S} K_{S} K_{S}\right)\right.}$	$-0.5 \pm 0.6(\mathrm{~S}=3.0)$
$A_{C P}\left(B^{0} \rightarrow K^{*+} \rho^{-}\right)$	0.21 ± 0.15	$\left.{ }^{K_{S} K_{S} K_{S}\left(B^{0}\right.} \rightarrow K_{S} K_{S} K_{S}\right)$	-0.5 ± 0.6 ($\mathrm{S}=3.0$)
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} K^{+} K^{-}\right)$	0.01 ± 0.05	${ }^{\left.K_{K}^{0} \pi^{0} \gamma^{\left(B^{0}\right.} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)}$	0.36 ± 0.33
$A_{C P}\left(B^{0} \rightarrow a_{1}^{-} K^{+}\right)$	-0.16 ± 0.12	$\left.{ }^{K_{S}^{0} \pi^{0} \gamma}{ }^{\left(B^{0}\right.} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)$	-0.8 ± 0.6
	-0.6 ± 0.7	$C_{K^{*}(892)^{0} \gamma}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$	$-0.04 \pm 0.16(S=1.2)$
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)$ $A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} K^{-} \pi^{+}\right)$	0.00 ± 0.04 0.2 ± 0.4	$S_{K^{*}(892)^{0} \gamma}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$	-0.15 ± 0.22
$A_{C P}\left(B^{0} \rightarrow \phi(K \pi)_{0}^{* 0}\right)$	0.12 ± 0.08	$C_{\eta K^{0} \gamma}\left(B^{0} \rightarrow \eta K^{0} \gamma\right)$	$0.1 \pm 0.4(\mathrm{~S}=1.4)$
$A_{C P}\left(B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}\right)$	-0.11 ± 0.10	$S_{\eta K^{0} \gamma}\left(B^{0} \rightarrow \eta K^{0} \gamma\right)$	$-0.5 \pm 0.5(\mathrm{~S}=1.2)$
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$	-0.006 ± 0.011	$C_{K^{0} \phi \gamma}\left(B^{0} \rightarrow K^{0} \phi \gamma\right)$	-0.3 ± 0.6
$A_{C P}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{0} \gamma\right)$	-0.08 ± 0.15	$S_{K^{0} \phi \gamma}\left(B^{0} \rightarrow K^{0} \phi \gamma\right)$	$0.7{ }_{-1.1}^{+0.7}$
$A_{C P}\left(B^{0} \rightarrow x_{s} \gamma\right)$	-0.009 ± 0.018	${ }^{5} K^{0} \phi \gamma$ $C\left(B^{0} \rightarrow K^{0}{ }^{0}{ }^{0} K^{0}\right)$	${ }^{0.7}-1.1$
$A_{C P}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$	0.13 ± 0.06 ($\mathrm{S}=1.1$)	$C\left(B^{0} \rightarrow K_{S}^{0} \rho^{0} \gamma\right)$	-0.05 ± 0.19
$A_{C P}\left(B^{0} \rightarrow \rho^{-} \pi^{+}\right)$	-0.08 ± 0.08	$S\left(B^{0} \rightarrow K_{S}^{0} \rho^{0} \gamma\right)$	-0.04 ± 0.23
$A_{C P}\left(B^{0} \rightarrow a_{1}(1260)^{ \pm} \pi^{\mp}\right)$	-0.07 ± 0.06	$C\left(B^{0} \rightarrow \rho^{0} \gamma\right)$	0.4 ± 0.5
$A_{C P}\left(B^{0} \rightarrow b_{1}^{-} \pi^{+}\right)$	-0.05 ± 0.10	$S\left(B^{0} \rightarrow{ }^{0}{ }^{0} \gamma\right){ }^{0}{ }^{0}{ }^{0}$	-0.8 ± 0.7
$A_{C P}\left(B^{0} \rightarrow p \bar{p} K^{*}(892)^{0}\right)$	0.05 ± 0.12	$C_{\pi^{0} \pi^{0}}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$	-0.33 ± 0.22
$A_{C P}\left(B^{0} \rightarrow p \bar{\Lambda} \pi^{-}\right)$	0.04 ± 0.07	$C_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$	$-0.03 \pm 0.07(S=1.2)$

$S_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$	0.05 ± 0.07	$A_{C}^{\perp}{ }_{C}\left(B_{S} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)$	-0.05 ± 0.10
$\Delta S_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$	0.01 ± 0.08	$A_{C P}\left(B_{S}^{0} \rightarrow\left[K^{+} K^{-}\right]_{D} \bar{K}^{*}(892)^{0}\right)$	-0.04 ± 0.07
$C_{\rho^{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)$	0.27 ± 0.24	$A_{C P}\left(B_{s}^{0} \rightarrow\left[\pi^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right)$	-0.01 ± 0.04
$S_{\rho_{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)$	-0.23 ± 0.34	$A_{C P}\left(B_{s}^{0} \rightarrow\left[\pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}\right)$	0.06 ± 0.13
$C_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)$	-0.05 ± 0.11	$\Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$<1.1 \times 10^{-4}, \mathrm{CL}=90 \%$
$S_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)$	$-0.2 \pm 0.4(S=3.2)$	$\begin{aligned} & \Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }} \\ & \Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }} \end{aligned}$	$\begin{aligned} & <4 \times 10^{-5}, \mathrm{CL}=90 \% \\ & <6 \times 10^{-4}, \mathrm{CL}=90 \% \end{aligned}$
$\Delta C_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)$	$0.43 \pm 0.14(S=1.3)$	$\begin{aligned} & \Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }} \\ & \Gamma\left(\eta_{C}(1 S) \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \end{aligned}$	$\begin{aligned} & <6 \times 10^{-4}, C L=90 \% \\ & <3.1 \times 10^{-4}, C L=90 \% \end{aligned}$
$\Delta S_{a_{1} \pi}\left(B^{0} \rightarrow a_{1}(1260)^{+} \pi^{-}\right)$	-0.11 ± 0.12	n electric dipole moment	$<0.18 \times 10^{-25} \mathrm{ecm}, \mathrm{CL}=90 \%$
$C\left(B^{0} \rightarrow b_{1}^{-} K^{+}\right)$	-0.22 ± 0.24	$(\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha})$ in $\Lambda \rightarrow \frac{p}{} \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	-0.002 ± 0.012
$\Delta C\left(B^{0} \rightarrow b_{1}^{-} \pi^{+}\right)$	-1.04 ± 0.24	$\frac{\left[\alpha\left(\bar{\Xi}^{-}\right) \alpha_{-}(\Lambda)-\alpha\left(\bar{E}^{+}\right) \alpha_{+}(\bar{\Lambda})\right]}{\left[\alpha\left(\bar{\Xi}^{-}\right) \alpha_{-}(\Lambda)+\alpha\left(\bar{\Xi}^{+}\right) \alpha_{+}(\bar{\Lambda})\right]}$	$(0 \pm 7) \times 10^{-4}$
$C_{\rho^{0} \rho^{0}}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)$	0.2 ± 0.9	$(\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha})$ in $\Omega^{-} \rightarrow \Lambda K^{-}, \bar{\Omega}^{+} \rightarrow$	-0.02 ± 0.13
$S_{\rho^{0} \rho^{0}}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)$	0.3 ± 0.7	$\stackrel{\bar{\lambda} K^{+}}{ }$	
$C_{\rho \rho}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)$	0.00 ± 0.09	$(\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha})$ in $\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}, \bar{\Lambda}_{c} \rightarrow$ $\bar{\Lambda} \pi^{-}$	-0.07 ± 0.31
$S_{\rho \rho}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)$	-0.14 ± 0.13	$(\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha})$ in $\Lambda_{C}^{+} \rightarrow \Lambda e^{+} \nu_{e}, \bar{\Lambda}_{C}^{-} \rightarrow$	0.00 ± 0.04
$\|\lambda\|\left(B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)$	<0.25, CL $=95 \%$	$\overline{\bar{\Lambda}} \mathrm{e}^{-} \bar{\nu}_{e}$	
$\cos 2 \beta\left(B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)$	$1.7{ }_{-0.9}^{+0.7}(\mathrm{~S}=1.6)$	$A_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$-0.025 \pm 0.029(\mathrm{~S}=1.2)$
$\cos 2 \beta\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)$	0.91 ± 0.25	$A_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	-0.025 ± 0.022
$\left(\mathrm{S}_{+}+\mathrm{S}_{-}\right) / 2\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)$	-0.039 ± 0.011		0.014 ± 0.024
$\left(\mathrm{S}_{-}-\mathrm{S}_{+}\right) / 2\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)$	-0.009 ± 0.015	$A_{C P}\left(\Lambda_{b} \rightarrow p \bar{K}^{0} \pi^{-}\right)$	0.22 ± 0.13
$\left(\mathrm{S}_{+}+\mathrm{S}_{-}\right) / 2\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$	-0.046 ± 0.023	$\Delta_{C P}\left(J / \psi p \pi^{-} / K^{-}\right)$	$(5.7 \pm 2.7) \times 10^{-2}$
$\left(\mathrm{S}_{-}-\mathrm{S}_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$	-0.022 ± 0.021	$A_{C P}\left(\Lambda_{b} \rightarrow \Lambda K^{+} \pi^{-}\right)$	-0.53 ± 0.25
$\mathrm{S}_{+}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$	0.058 ± 0.023	$\left.{ }^{A_{C P}\left(\Lambda_{b}\right.} \rightarrow^{\prime} \mathrm{K}^{+} \mathrm{K}^{-}\right)$	-0.28 ± 0.12
$S_{-}\left(B^{0} \rightarrow D^{+} \pi^{-}\right)$	0.038 ± 0.021	$\Delta_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)$	$(-4 \pm 5) \times 10^{-2}$
$\left(\mathrm{S}_{+}+\mathrm{S}_{-}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)$	-0.024 ± 0.032	$A_{C}(\Lambda)$	-0.22 ± 0.13
$\left(\mathrm{S}_{-}-\mathrm{S}_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)$	-0.10 ± 0.06	$A_{s}(\Lambda)$	0.13 ± 0.13
	0.08 ± 0.13	$A_{c}(\phi)$	-0.01 ± 0.12
$C_{\eta_{C} K_{S}^{0}}\left(B^{0} \rightarrow \eta_{C} K_{S}^{0}\right)$	0.08 ± 0.13	$A_{s}(\phi)$	-0.07 ± 0.12
$C_{C \bar{c} K^{(*) 0}}\left(B^{0} \rightarrow c \bar{c} K^{(*) 0}\right)$	$(0.5 \pm 1.7) \times 10^{-2}$	$\mathrm{a}_{C P}\left(\wedge_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)$	$(1.1 \pm 1.5) \%$
$C_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$	$(0.5 \pm 2.0) \times 10^{-2}$	$\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)$	(-0.8 $\pm 0.9) \%$
$C_{J / \psi K^{* 0}}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)$	0.03 ± 0.10	$\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mathrm{K}^{+} \pi^{-}\right)$	$(-1 \pm 5) \%$
$S_{J / \psi K * 0}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)$		$\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mathrm{K}^{+} \mathrm{K}^{-}\right)$	$(1.1 \pm 1.5) \%$
${ }^{J} / \psi K^{* 0}\left(B^{0} \rightarrow \mathrm{~J} / \psi K^{*}\right)$	0.60 ± 0.25 0.5	$\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)$	$(1 \pm 5) \%$
$C^{\chi_{C 0} K_{S}^{0}}{ }^{\left(B^{0} \rightarrow \chi_{C 0} K_{S}^{0}\right)}$	$-0.3{ }_{-0.4}^{+0.5}$	$\mathrm{a}_{C P}\left(\equiv_{b}^{0} \rightarrow p K^{-} \mathrm{K}^{-} \pi^{+}\right)$	$(-4 \pm 5) \%$
$S_{\chi_{C O}} K_{S}^{0}\left(B^{0} \rightarrow \chi_{C O} K_{S}^{0}\right)$	-0.7 ± 0.5		
$C_{\chi_{C 1}} K_{S}^{0}\left(B^{0} \rightarrow \chi_{C 1} K_{S}^{0}\right)$	0.06 ± 0.07	CP VIOLATIO	OBSERVED
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow \phi K^{0}\right)$	0.22 ± 0.30		
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow \phi K_{0}^{*}(1430){ }^{0}\right)$	$0.97_{-0.52}^{+0.03}$	$\operatorname{Re}(\epsilon)$	$(1.596 \pm 0.013) \times 10^{-3}$
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)$	0.80 ± 0.16	charge asymmetry in $K_{\ell 3}^{0}$ decays	
$\|\lambda\|\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)$	1.01 ± 0.08	$A_{L}=$ weighted average of $A_{L}(\mu)$ and $A_{L}(e)$	$(0.332 \pm 0.006) \%$
$\|\sin (2 \beta+\gamma)\|$	$>0.40, \mathrm{CL}=90 \%$	$A_{L}(\mu)=\left[\Gamma\left(\pi^{-} \mu^{+} \nu_{\mu}\right)\right.$	(0.304 $\pm 0.025) \%$
$2 \beta+\gamma$	$(83 \pm 60)^{\circ}$	$\left.-\Gamma\left(\pi^{+} \mu^{-} \bar{\nu}_{\mu}\right)\right] /$ sum	
$x_{+}\left(B^{0} \rightarrow D K^{* 0}\right)$	0.04 ± 0.17	$A_{L}(e)=\left[\Gamma\left(\pi^{-} e^{+} \nu_{e}\right)\right.$	$(0.334 \pm 0.007) \%$
$x_{-}\left(B^{0} \rightarrow D K^{* 0}\right)$	-0.16 ± 0.14	$\left.-\Gamma\left(\pi^{+} e^{-} \bar{\nu}_{e}\right)\right] / \text { sum }$	
$y_{-}\left(B^{0} \rightarrow D K^{* 0}\right)$	0.20 ± 0.25 ($\mathrm{S}=1.2)$	parameters for $K_{L}^{0} \rightarrow 2 \pi$ decay	
$A_{C P}\left(B \rightarrow K^{*}(892) \gamma\right)$	-0.003 ± 0.011	$\left\|\eta_{00}\right\|=\mid \mathrm{A}\left(K_{L}^{0} \rightarrow 2 \pi^{0}\right) /$	$(2.220 \pm 0.011) \times 10^{-3}(S=1.8)$
$A_{C P}(B \rightarrow s \gamma)$	0.015 ± 0.011	$\mathrm{A}\left(K_{S}^{0} \rightarrow 2 \pi^{0}\right) \mid$	
$A_{C P}(B \rightarrow(s+d) \gamma)$	0.010 ± 0.031	$\left\|\eta_{+-}\right\|=\mid \mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) /$	$(2.232 \pm 0.011) \times 10^{-3}(\mathrm{~S}=1.8)$
$A_{C P}\left(B \rightarrow X_{S} \ell^{+} \ell^{-}\right)$	0.04 ± 0.11	$\mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$	
$A_{C P}\left(B \rightarrow K^{*} e^{+} e^{-}\right)$	-0.18 ± 0.15	$\|\epsilon\|=\left(2\left\|\eta_{+-}\right\|+\left\|\eta_{00}\right\|\right) / 3$	$(2.228 \pm 0.011) \times 10^{-3}(S=1.8)$
$A_{C P}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	-0.03 ± 0.13	$\|\epsilon\|=\left(2\left\|\eta_{+-}\right\|+\left\|\eta_{00}\right\|\right) / 3$ η_{00} / η_{+-}	[i] $0.9950 \pm 0.0007(S=1.6)$
$A_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$	-0.04 ± 0.07	$\left\|\eta_{00} / \eta_{+-}\right\|$	[i] $0.9950 \pm 0.0007(\mathrm{~S}=1.6)$
$A_{C P}(B \rightarrow \eta$ anything $)$	$-0.13{ }_{-0.05}^{+0.04}$	$\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=\left(1-\left\|\eta_{00} / \eta_{+-}\right\|\right) / 3$ Assuming CPT	[i] $(1.66 \pm 0.23) \times 10^{-3}(S=1.6)$
$\begin{aligned} & \Delta A_{C P}\left(x_{s} \gamma\right)=A_{C P}\left(B^{ \pm} \rightarrow x_{s} \gamma\right) \\ & \quad-A_{C P}\left(B^{0} \rightarrow x_{s} \gamma\right) \end{aligned}$	0.041 ± 0.023	Assuming CPT $\phi_{+-}, \text {phase of } \eta_{+-}$	$(43.51 \pm 0.05)^{\circ}(\mathrm{S}=1.2)$
$\begin{gathered} \bar{A}_{C P}\left(B \rightarrow X_{s} \gamma\right)=\left(A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)+\right. \\ \left.A_{C P}\left(B^{0} \rightarrow X_{s} \gamma\right)\right) / 2 \end{gathered}$	0.009 ± 0.012	ϕ_{00}, phase of η_{00} $\phi_{\epsilon}=\left(2 \phi_{+-}+\phi_{00}\right) / 3$	$\begin{aligned} & (43.52 \pm 0.05)^{\circ}(S=1.3) \\ & (43.52 \pm 0.05)^{\circ}(S=1.2) \end{aligned}$
$\begin{aligned} & \bar{A}_{C P}\left(B \rightarrow K^{*} \gamma\right)=\left(A_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right)\right. \\ & \left.\quad+A_{C P}\left(B^{0} \rightarrow K^{* 0} \gamma\right)\right) / 2 \end{aligned}$	-0.001 ± 0.014	Not assuming CPT $\phi_{+-}, \text {phase of } \eta_{+-}$	$(43.4 \pm 0.5)^{\circ}(\mathrm{S}=1.2)$
$\operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left\|\epsilon_{B_{s}^{0}}\right\|^{2}\right)$	$(-0.15 \pm 0.70) \times 10^{-3}$	ϕ_{00}, phase of η_{00} $\phi_{\epsilon}=\left(2 \phi_{+-}+\phi_{00}\right) / 3$	$\begin{aligned} & (43.7 \pm 0.6)^{\circ}(S=1.2) \\ & (43.5 \pm 0.5)^{\circ}(S=1.3) \end{aligned}$
$\left.C_{K K}{ }^{\left(B_{S}^{0}\right.} \rightarrow K^{+} K^{-}\right)$	0.14 ± 0.11	$C P$ asymmetry \boldsymbol{A} in $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$	(13.7 $\pm 1.5) \%$
$\left.S_{K K}{ }^{\left(B_{S}^{0}\right.} \rightarrow K^{+} K^{-}\right)$	0.30 ± 0.13	$\beta_{C P}$ from $K_{L}^{0} \rightarrow e^{+} e^{-} e^{+} e^{-}$	-0.19 ± 0.07
$\mathrm{r}_{B}\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right)$	$0.37{ }_{-0.09}^{+0.10}$	$\gamma_{C P}$ from $K_{L}^{0} \rightarrow e^{+} e^{-} e^{+} e^{-}$	0.01 ± 0.11 ($\mathrm{S}=1.6$)
$\delta_{B}\left(B_{S}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}\right)$	$(358 \pm 14)^{\circ}$	parameters for $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ decay	
$C P$ Violation phase β_{s}	$(2.55 \pm 1.15) \times 10^{-2} \mathrm{rad}$	$\left\|\eta_{+-\gamma}\right\|=\mid \mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma, C P\right.$	$(2.35 \pm 0.07) \times 10^{-3}$
$A_{C P}^{L}\left(B_{S} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)$	-0.05 ± 0.06	violating)/A $\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \gamma\right) \mid$	
$A_{C P}\left(B_{S} \rightarrow J / \psi \bar{K}^{*}(892){ }^{0}\right)$	0.17 ± 0.15	$\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$	$(44 \pm 4)^{\circ}$

Tests of Conservation Laws

$\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	[j] $(1.967 \pm 0.010) \times 10^{-3}(\mathrm{~S}=1.5)$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$	$(8.64 \pm 0.06) \times 10^{-4}(\mathrm{~S}=1.8)$
$\Delta A_{C P}^{D^{0}}=A_{C P}\left(\kappa^{+} \kappa^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)$	$(-0.154 \pm 0.029) \%$
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{\bar{D}} K^{*}(892)^{+}\right)$	-0.75 ± 0.16
$A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} K^{+}\right)$	$0.120 \pm 0.014(\mathrm{~S}=1.4)$
${ }^{\text {A }}$ ADS $\left({ }^{\left(B^{+}\right.} \rightarrow\right.$ D $\left.K^{+}\right)$	-0.40 ± 0.06
$A_{C P}\left(B^{+} \rightarrow \eta K^{+}\right)$	-0.37 ± 0.08
$A_{C P}\left(B^{+} \rightarrow \mathrm{f}_{2}(1270) K^{+}\right)$	$-0.68{ }_{-0.17}^{+0.19}$
$A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{+}\right)$	0.37 ± 0.10
$A_{C P}{ }_{C P}\left(B^{+} \rightarrow K^{+} \kappa^{-} \pi^{+}\right)$	-0.122 ± 0.021
$A_{C P}\left(B^{+} \rightarrow \kappa^{+} \kappa^{-} \kappa^{+}\right)$	-0.033 ± 0.008
$\mathrm{A}_{C P}\left(\mathrm{~B}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)$	0.057 ± 0.013
$A_{C P}\left(B^{+} \rightarrow f_{2}(1270) \pi^{+}\right)$	0.40 ± 0.06
$A_{C P}\left(B^{+} \rightarrow f_{0}(1370) \pi^{+}\right)$	0.72 ± 0.22
γ	$(71.1+5.3)^{\circ}$
$\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)$	0.0993 ± 0.0046
$\delta_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)$	$\left.(129.6-6.0)^{+5}\right)^{\circ}$
$\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$	0.076 ± 0.020
$\delta_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$	$(98+37)^{+18}$
$\mathrm{r}_{B}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$	0.140 ± 0.019
$\delta_{B}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$	$(319.2-8.7 .7)^{\circ}$
$A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)$	-0.083 ± 0.004
$A_{C P}\left(B^{0} \rightarrow \eta K^{*}(892)^{0}\right)$	0.19 ± 0.05
$A_{C P}\left(B^{0} \rightarrow K^{*}(892)^{+} \pi^{-}\right)$	-0.27 ± 0.04
$S_{D^{*}(2010)^{-} D^{+}}\left(B^{0} \rightarrow D^{*}(2010)^{-} D^{+}\right)$	-0.72 ± 0.15
$S_{D^{*}(2010)^{+} D^{-}}\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{-}\right)$	-0.73 ± 0.14
$S_{D^{*+} D^{*-}}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	$-0.59 \pm 0.14(S=1.8)$
$s_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$	-0.73 ± 0.09
$S_{D^{+} D^{-}}\left(B^{0} \rightarrow D^{+} D^{-}\right)$	${ }_{-0.76}+0.13$ ($(\mathrm{s}=1.2)$
$S_{J / \psi(1 S) \pi^{0}}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{0}\right)$	-0.88 ± 0.32 ($\mathrm{S}=2.2)$
$S\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)$	$-0.66{ }_{-0.12}^{+0.16}$
$S_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$	0.58 ± 0.17
$S_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)$	0.63 ± 0.06
$\underset{\substack{\left.K^{+} K_{-}^{-} K_{S}^{0} \\ \text { nonresonant }\right)}}{\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.}$	-0.66 ± 0.11
$S_{K^{+} K^{-} K_{S}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ inclusive)	-0.65 ± 0.12
$C_{\pi \pi}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$	-0.32 ± 0.04
$S_{\pi \pi}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$	-0.65 ± 0.04
$\Delta C_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$	0.27 ± 0.06
$S_{\eta_{c} K_{S}^{0}}\left(B^{0} \rightarrow \eta_{C} K_{S}^{0}\right)$	0.93 ± 0.17
$\sin (2 \beta)\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right)$	0.695 ± 0.019
$S_{J / \psi(\mathrm{nS}) K^{0}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)}$	0.701 ± 0.017
$S_{\chi_{C 1} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{C 1} K_{S}^{0}\right)$	0.63 ± 0.10
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}\right)$	$0.77_{-0.12}^{+0.13}$
α	$(84.9-4.5)^{\text {5 }}$)
$r_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)$	$0.220_{-0.047}^{+0.041}$
$\delta_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)$	$(194+32)^{\text {a }}$
${ }^{A_{C P}\left(B_{S} \rightarrow \pi^{+} K^{-}\right)}$	0.221 ± 0.015

CPT INVARIANCE

$\left(m_{W^{+}}-m_{W^{-}}\right) / m_{\text {average }}$	$(-3.7 \pm 3.5) \times 10^{-4}$
$\left(m_{e^{+}}-m_{e^{-}}\right) / m_{\text {average }}$	$<8 \times 10^{-9}, \mathrm{CL}=90 \%$
$\left\|q_{e^{+}}+q_{e^{-}}\right\| / e$	$<4 \times 10^{-8}$
$\left(g_{e^{+}}-g_{e^{-}}\right) / g_{\text {average }}$	$(-0.5 \pm 2.1) \times 10^{-12}$
$\left(\tau_{\mu^{+}}-\tau_{\mu^{-}}\right) / \tau_{\text {average }}$	$(2 \pm 8) \times 10^{-5}$
$\left(g_{\mu^{+}}-g_{\mu^{-}}\right) / g_{\text {average }}$	$(-0.11 \pm 0.12) \times 10^{-8}$
$\left(m_{\tau^{+}}-m_{\tau^{-}}\right) / m_{\text {average }}$	$<2.8 \times 10^{-4}, \mathrm{CL}=90 \%$
$\left\langle\Delta m_{21}^{2}-\Delta \bar{m}_{21}^{2}\right\rangle$ in neutrino mixing	$<1.1 \times 10^{-4} \mathrm{eV}^{2}, \mathrm{CL}=99.7 \%$
$\left\langle\Delta m_{32}^{2}-\Delta \bar{m}_{32}^{2}\right\rangle$ in neutrino mixing	$(-0.12 \pm 0.25) \times 10^{-3} \mathrm{eV}^{2}$
$m_{t}-m_{\bar{t}}$	$-0.16 \pm 0.19 \mathrm{GeV}$
$\left(m_{\pi^{+}}-m_{\pi^{-}}\right) / m_{\text {average }}$	$(2 \pm 5) \times 10^{-4}$
$\left(\tau_{\pi^{+}}-\tau_{\pi^{-}}\right) / \tau_{\text {average }}$	$(6 \pm 7) \times 10^{-4}$

$\left(m_{W^{+}}-m_{W^{-}}\right) / m_{\text {average }}$
$\left(m_{e^{+}}-m_{e^{-}}\right) / m_{\text {average }}$
$\left|q_{e^{+}}+q_{e^{-}}\right| / e$
$\left(g_{e^{+}}-g_{e^{-}}\right) / g_{\text {average }}$
$\left(\tau_{\mu^{+}}-\tau_{\mu^{-}}\right) / \tau_{\text {average }}$
$\left(g_{\mu^{+}}-g_{\mu^{-}}\right) / g_{\text {average }}$
$\left(m_{\tau^{+}}-m_{\tau^{-}}\right) / m_{\text {average }}$
$\left\langle\Delta m_{21}^{2}-\Delta \bar{m}_{21}^{2}\right\rangle$ in neutrino mixing
$m_{t}-m_{\bar{t}}$
$\left(m_{\pi^{+}}-m_{\pi^{-}}\right) / m_{\text {average }}$
$\left.{ }^{(} \tau_{\pi^{+}}-\tau_{\pi^{-}}\right) / \tau_{\text {average }}$
$\left(m_{K^{+}}-m_{K^{-}}\right) / m_{\text {average }}$
$\left(\tau_{K^{+}}-\tau_{K^{-}}\right) / \tau_{\text {average }}$
$K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}$ rate difference/sum
$K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ rate difference/sum
δ in $K^{0}-\bar{K}^{0}$ mixing
real part of δ
imaginary part of δ
$\operatorname{Re}(y), K_{e 3}$ parameter
$\operatorname{Re}\left(\mathrm{x}_{-}\right), K_{e 3}$ parameter
$\left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{\text {average }}$
$\left(\Gamma_{K}{ }^{0}-\Gamma_{K^{0}}\right) / m_{\text {average }}$
phase difference $\phi_{00}-\phi_{+-}$
$\operatorname{Re}\left(\frac{2}{3} \eta_{+-}+\frac{1}{3} \eta_{00}\right)-\frac{A_{L}}{2}$
$A_{C P T}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$
$\Delta S_{C P T}^{+}\left(S_{\ell^{+}, K_{S}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}\right)$
$\Delta S_{C P T}^{-}\left(S_{\ell^{+}, K_{S}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{-}\right)$
$\Delta C_{C P T}^{+}\left(C_{\ell^{+}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}\right)$
$\Delta C_{C P T}^{-}\left(C_{\ell^{+}, K_{S}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}\right)$
$\left|m_{p}-m_{\bar{p}}\right| / m_{p_{0}}$
$\left(\left|\frac{q_{\bar{p}}}{m_{\bar{p}}}\right|-\frac{q_{p}}{m_{p}}\right) / \frac{q_{p}}{m_{p}}$
$\left|q_{p}+q_{\bar{p}}\right| / e$
$\left(\mu_{p}+\mu_{\bar{p}}\right) / \mu_{p}$
$\left(m_{n}-m_{\bar{n}}\right) / m_{n}$
$\left(m_{\Lambda}-m_{\bar{\Lambda}}\right) / m_{\Lambda}$
$\left(\tau_{\Lambda}-\tau_{\bar{\Lambda}}\right) / \tau_{\Lambda}$
$\left.{ }^{(\tau} \Sigma^{+}-{ }^{-} \bar{\Sigma}^{-}\right) / \tau \Sigma^{+}$
$\left(\mu_{\Sigma^{+}}+\mu_{\bar{\Sigma}^{-}}\right) / \mu_{\Sigma^{+}}$
$\left(m_{\bar{\Xi}^{-}}-m_{\bar{\Xi}^{+}}\right) / m_{\Xi^{-}}$
$\left(\tau \equiv^{-}-\tau_{\bar{\Xi}^{+}}\right) / \tau \Xi^{-}$
$\left(\mu_{\Xi^{-}}+\mu_{\overline{\bar{E}^{+}}}\right) / / \mu_{\Xi^{-}} \mid$
$\left(m_{\Omega^{-}}-m_{\bar{\Omega}^{+}}\right) / m_{\Omega^{-}}$
$\left(\tau_{\Omega^{-}}-\tau{\overline{\Omega^{+}}}\right) / \tau \Omega_{\Omega^{-}}$
$(-0.6 \pm 1.8) \times 10^{-4}$
$(0.10 \pm 0.09) \%(S=1.2)$
$(-0.27 \pm 0.21) \%$
[k] $(0.4 \pm 0.6) \%$
$(2.5 \pm 2.3) \times 10^{-4}$
$(-1.5 \pm 1.6) \times 10^{-5}$
$(0.4 \pm 2.5) \times 10^{-3}$
$(-2.9 \pm 2.0) \times 10^{-3}$
[$]$] $<6 \times 10^{-19}, \mathrm{CL}=90 \%$
$(8 \pm 8) \times 10^{-18}$
$(0.34 \pm 0.32)^{\circ}$
$(-3 \pm 35) \times 10^{-6}$
0.008 ± 0.008
0.16 ± 0.23
-0.03 ± 0.14
0.14 ± 0.17
0.03 ± 0.14
[n] $<7 \times 10^{-10}, \mathrm{CL}=90 \%$ $(0.1 \pm 6.9) \times 10^{-11}$
[n] $<7 \times 10^{-10}, \mathrm{CL}=90 \%$
$(0.002 \pm 0.004) \times 10^{-6}$
$(9 \pm 6) \times 10^{-5}$
$(-0.1 \pm 1.1) \times 10^{-5}(S=1.6)$
-0.001 ± 0.009
-0.0006 ± 0.0012
0.014 ± 0.015
$(-3 \pm 9) \times 10^{-5}$
-0.01 ± 0.07
$+0.01 \pm 0.05$
$(-1 \pm 8) \times 10^{-5}$
0.00 ± 0.05

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of L_{e}, L_{μ}, L_{τ}.

$\Gamma\left(Z \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$	[o]	$<7.5 \times 10^{-7}, \mathrm{CL}=95 \%$
$\Gamma\left(Z \rightarrow e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$	[o]	$<9.8 \times 10^{-6}, \mathrm{CL}=95 \%$
$\Gamma\left(Z \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$	[o]	$<1.2 \times 10^{-5}, \mathrm{CL}=95 \%$
$\Gamma\left(H^{0} \rightarrow e \mu\right) / \Gamma_{\text {total }}$		$<6.1 \times 10^{-5}, \mathrm{CL}=95 \%$
$\Gamma\left(H^{0} \rightarrow e \tau\right) / \Gamma_{\text {total }}$		$<4.7 \times 10^{-3}, \mathrm{CL}=95 \%$
$\Gamma\left(H^{0} \rightarrow \mu \tau\right) / \Gamma_{\text {total }}$		<2.5 $\times 10^{-3}, \mathrm{CL}=95 \%$
$\begin{gathered} \sigma\left(e^{+} e^{-} \rightarrow e^{ \pm} \tau^{\mp}\right) / \sigma\left(e^{+} e^{-} \rightarrow\right. \\ \left.\mu^{+} \mu^{-}\right) \end{gathered}$		$<8.9 \times 10^{-6}, \mathrm{CL}=95 \%$
$\begin{gathered} \sigma\left(e^{+} e^{-} \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \sigma\left(e^{+} e^{-} \rightarrow\right. \\ \left.\mu^{+} \mu^{-}\right) \end{gathered}$		$<4.0 \times 10^{-6}, \mathrm{CL}=95 \%$
$\begin{aligned} & \text { limit on } \mu^{-} \rightarrow e^{-} \text {conversion } \\ & \sigma\left(\mu^{-32} \mathrm{~S} \rightarrow e^{-32 \mathrm{~S}) /}\right. \\ & \quad \sigma\left(\mu^{-32} \mathrm{~S} \rightarrow \nu_{\mu} 32 \mathrm{P}^{*}\right) \end{aligned}$		$<7 \times 10^{-11}, \mathrm{CL}=90 \%$
$\begin{aligned} & \sigma\left(\mu^{-} \mathrm{Ti} \rightarrow e^{-} \mathrm{Ti}\right) / \\ & \sigma\left(\mu^{-} \mathrm{Ti} \rightarrow \text { capture }\right) \end{aligned}$		$<4.3 \times 10^{-12}, \mathrm{CL}=90 \%$
$\begin{aligned} & \sigma\left(\mu^{-} \mathrm{Pb} \rightarrow e^{-} \mathrm{Pb}\right) / \\ & \quad \sigma\left(\mu^{-} \mathrm{Pb} \rightarrow \text { capture }\right) \end{aligned}$		$<4.6 \times 10^{-11}, \mathrm{CL}=90 \%$
$\begin{aligned} & \sigma\left(\mu^{-} \mathrm{A} \mathbf{u} \rightarrow e^{-} \mathrm{Au}\right) / \\ & \sigma\left(\mu^{-} \mathrm{Au} \rightarrow \text { capture }\right) \end{aligned}$		$<7 \times 10^{-13}, \mathrm{CL}=90 \%$
limit on muonium \rightarrow antimuonium conversion $R_{g}=G_{C} / G_{F}$		<0.0030, CL $=90 \%$
$\Gamma\left(\mu^{-} \rightarrow e^{-} \nu^{\prime} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$	[p]	$<1.2 \times 10^{-2}, \mathrm{CL}=90 \%$
$\Gamma\left(\mu^{-} \rightarrow e^{-} \gamma\right) / \Gamma_{\text {total }}$		$<4.2 \times 10^{-13}, \mathrm{CL}=90 \%$
$\Gamma\left(\mu^{-} \rightarrow e^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$		<1.0 $\times 10^{-12}, \mathrm{CL}=90 \%$
$\Gamma\left(\mu^{-} \rightarrow e^{-} 2 \gamma\right) / \Gamma_{\text {total }}$		$<7.2 \times 10^{-11}, \mathrm{CL}=90 \%$

Tests of Conservation Laws

$\Gamma\left(\tau^{-} \rightarrow e^{-} \gamma\right) / \Gamma_{\text {total }}$	$<3.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \gamma\right) / \Gamma_{\text {total }}$	$<4.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{0}\right) / \Gamma_{\text {total }}$	$<8.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{0}\right) / \Gamma_{\text {total }}$	$<1.1 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}$	$<2.6 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}$	$<2.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \eta\right) / \Gamma_{\text {total }}$	$<9.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \eta\right) / \Gamma_{\text {total }}$	$<6.5 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \rho^{0}\right) / \Gamma_{\text {total }}$	$<1.8 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \rho^{0}\right) / \Gamma_{\text {total }}$	$<1.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \omega\right) / \Gamma_{\text {total }}$	$<4.8 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \omega\right) / \Gamma_{\text {total }}$	$<4.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$	$<3.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$	$<5.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$	$<3.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$	$<7.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$	$<1.6 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$	$<1.3 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} f_{0}(980) \rightarrow e^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$<3.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} f_{0}(980) \rightarrow \mu^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$<3.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-\phi}\right) / \Gamma_{\text {total }}$	$<3.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \phi\right) / \Gamma_{\text {total }}$	$<8.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<2.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<2.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{+} \mu^{-} \mu^{-}\right) / \Gamma_{\text {total }}$	$<1.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<1.8 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{+} e^{-} e^{-}\right) / \Gamma_{\text {total }}$	$<1.5 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<2.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$<2.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$<2.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{+} K^{-}\right) / \Gamma_{\text {total }}$	$<3.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{-} K^{+}\right) / \Gamma_{\text {total }}$	$<3.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$	$<7.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$	$<3.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{+} K^{-}\right) / \Gamma_{\text {total }}$	$<8.6 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{-} K^{+}\right) / \Gamma_{\text {total }}$	$<4.5 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$	$<8.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$	$<4.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$	$<6.5 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$	$<1.4 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \eta \eta\right) / \Gamma_{\text {total }}$	$<3.5 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \eta \eta\right) / \Gamma_{\text {total }}$	$<6.0 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \pi^{0} \eta\right) / \Gamma_{\text {total }}$	$<2.4 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \pi^{0} \eta\right) / \Gamma_{\text {total }}$	$<2.2 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\tau^{-} \rightarrow e^{-}\right.$light boson $) / \Gamma_{\text {total }}$	$<2.7 \times 10^{-3}, \mathrm{CL}=95 \%$
$\Gamma\left(\tau^{-} \rightarrow \mu^{-}\right.$light boson $) / \Gamma_{\text {total }}$	<5 $\times 10^{-3}, \mathrm{CL}=95 \%$

LEPTON FAMILY NUMBER VIOL $\sin ^{2}\left(\theta_{12}\right)$	TRINOS 0.307 ± 0.013
$\Delta \mathrm{m}_{21}^{2}$	$(7.53 \pm 0.18) \times 10^{-5} \mathrm{eV}^{2}$
$\sin ^{2}\left(\theta_{23}\right)$ (Normal order)	0.545 ± 0.021
$\Delta \mathrm{m}_{32}^{2}$ (Inverted order)	$\left(-2.546_{-0.040}^{+0.034}\right) \times 10^{-3} \mathrm{eV}^{2}$
Δm_{32}^{2} (Normal order)	$(2.453 \pm 0.034) \times 10^{-3} \mathrm{eV}^{2}$
$\sin ^{2}\left(\theta_{13}\right)$	$(2.18 \pm 0.07) \times 10^{-2}$
$\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{e}\right) / \Gamma_{\text {total }}$	[q] $<8.0 \times 10^{-3}, \mathrm{CL}=90 \%$
$\Gamma\left(\pi^{+} \rightarrow \mu^{-} e^{+} e^{+} \nu\right) / \Gamma_{\text {total }}$	$<1.6 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\pi^{0} \rightarrow \mu^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<3.8 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(\pi^{0} \rightarrow \mu^{-} e^{+}\right) / \Gamma_{\text {total }}$	$<3.4 \times 10^{-9}, \mathrm{CL}=90 \%$
$\Gamma\left(\pi^{0} \rightarrow \mu^{+} e^{-}+\mu^{-} e^{+}\right) / \Gamma_{\text {total }}$	$<3.6 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(\eta \rightarrow \mu^{+} e^{-}+\mu^{-} e^{+}\right) / \Gamma_{\text {total }}$	$<6 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\eta^{\prime}(958) \rightarrow e \mu\right) / \Gamma_{\text {total }}$	$<4.7 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(\phi(1020) \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$	$<2 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(K^{+} \rightarrow \mu^{-} \nu e^{+} e^{+}\right) / \Gamma_{\text {total }}$	$<2.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{e}\right) / \Gamma_{\text {total }}$	[q] $<4 \times 10^{-3}, \mathrm{CL}=90 \%$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<1.3 \times 10^{-11}, \mathrm{CL}=90 \%$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}\right) / \Gamma_{\text {total }}$	$<5.2 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$	$[o]<4.7 \times 10^{-12}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} e^{ \pm} \mu^{\mp} \mu^{\mp}\right) / \Gamma_{\text {total }}$	[o] $<4.12 \times 10^{-11}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \mu^{ \pm} e^{\mp}\right) / \Gamma_{\text {total }}$	[o] $<7.6 \times 10^{-11}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} e^{\mp}\right) / \Gamma_{\text {total }}$	$<1.7 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{+} \rightarrow \pi^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<2.9 \times 10^{-6}, \mathrm{CL}=90 \%$

LEPTON FAMILY NUMBER VIOLATION IN NEUTRINO
$\Delta \mathrm{m}_{21}^{2}$
$\sin ^{2}\left(\theta_{23}\right)$ (Normal order)
m_{32}^{2} (Inverted order)
$\Delta \mathrm{m}_{32}^{2}$ (Normal order)
$\sin ^{2}\left(\theta_{13}\right)$
$\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\pi^{+} \rightarrow \mu^{-} e^{+} e^{+} \nu\right) / \Gamma_{\text {total }}$
$\Gamma\left(\pi^{0} \rightarrow \mu^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\pi^{0} \rightarrow \mu^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\pi^{0} \rightarrow \mu^{+} e^{-}+\mu^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\eta \rightarrow \mu^{+} e^{-}+\mu^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\rightarrow e \mu) / r_{\text {tota }}$
$\Gamma\left(\phi(1020) \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
)/ total
$\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
$\left.\rightarrow \pi^{+} \mu^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\left.L^{-} \rightarrow e^{-}\right) / \Gamma_{\text {total }}$
(
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} e^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \pi^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \pi^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \mu^{ \pm} e^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \pi^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(D^{0} \rightarrow \eta e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \rho^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(D^{0} \rightarrow \omega e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow K^{-} K^{+} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \phi e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \bar{K}^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow K^{-} \pi^{+} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \bar{K}^{*}(892)^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow \pi^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow \pi^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow K^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow K^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{-} \tau^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} \mu^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} \mu^{-} \tau^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{-} \tau^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \mu^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \mu^{-} \tau^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \pi^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow s e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow \pi e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow \rho e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K^{*}(892) e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B_{S}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(J / \psi(1 S) \rightarrow e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(J / \psi(1 S) \rightarrow e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(J / \psi(1 S) \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\gamma(1 S) \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Upsilon(2 S) \rightarrow e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\gamma(2 S) \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\gamma(3 S) \rightarrow e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\gamma(3 S) \rightarrow \mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{c}^{+} \rightarrow p e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{C}^{+} \rightarrow p e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$<3.6 \times 10^{-6}, \mathrm{CL}=90 \%$
$<1.2 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2.8 \times 10^{-6}, \mathrm{CL}=90 \%$
[o] $<1.3 \times 10^{-8}, \mathrm{CL}=90 \%$
[o] $<8.6 \times 10^{-5}, \mathrm{CL}=90 \%$
[o] $<1.0 \times 10^{-4}, \mathrm{CL}=90 \%$
[o] $<1.5 \times 10^{-5}, \mathrm{CL}=90 \%$
[o] $<4.9 \times 10^{-5}, \mathrm{CL}=90 \%$
[o] $<1.2 \times 10^{-4}, \mathrm{CL}=90 \%$
[o] $<1.8 \times 10^{-4}, \mathrm{CL}=90 \%$
[o] $<3.4 \times 10^{-5}, \mathrm{CL}=90 \%$
[o] $<1.0 \times 10^{-4}, \mathrm{CL}=90 \%$
$\left[\right.$ o] $<5.53 \times 10^{-4}, \mathrm{CL}=90 \%$
[o] $<8.3 \times 10^{-5}, \mathrm{CL}=90 \%$ $<1.2 \times 10^{-5}, \mathrm{CL}=90 \%$ $<2.0 \times 10^{-5}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-5}, \mathrm{CL}=90 \%$ $<9.7 \times 10^{-6}, \mathrm{CL}=90 \%$ $<6.4 \times 10^{-3}, \mathrm{CL}=90 \%$ $<6.4 \times 10^{-3}, \mathrm{CL}=90 \%$ $<1.7 \times 10^{-7}, \mathrm{CL}=90 \%$ $<7.4 \times 10^{-5}, \mathrm{CL}=90 \%$ $<2.0 \times 10^{-5}, \mathrm{CL}=90 \%$ $<7.5 \times 10^{-5}, \mathrm{CL}=90 \%$ $<6.2 \times 10^{-5}, \mathrm{CL}=90 \%$ $<4.5 \times 10^{-5}, \mathrm{CL}=90 \%$ $<7.2 \times 10^{-5}, \mathrm{CL}=90 \%$ $<7.0 \times 10^{-9}, \mathrm{CL}=90 \%$ $<6.4 \times 10^{-9}, \mathrm{CL}=90 \%$ $<9.1 \times 10^{-8}, \mathrm{CL}=90 \%$ $<4.3 \times 10^{-5}, \mathrm{CL}=90 \%$ $<1.5 \times 10^{-5}, \mathrm{CL}=90 \%$ $<3.0 \times 10^{-5}, \mathrm{CL}=90 \%$ $<4.5 \times 10^{-5}, \mathrm{CL}=90 \%$ $<2.8 \times 10^{-5}, \mathrm{CL}=90 \%$ $<4.8 \times 10^{-5}, \mathrm{CL}=90 \%$ $<1.3 \times 10^{-6}, \mathrm{CL}=90 \%$ $<9.9 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-6}, \mathrm{CL}=90 \%$
[o] $<1.0 \times 10^{-9}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-7}, \mathrm{CL}=90 \%$ $<2.7 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.6 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.2 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.8 \times 10^{-7}, \mathrm{CL}=90 \%$
[o] $<2.8 \times 10^{-5}, \mathrm{CL}=90 \%$
[o] $<1.4 \times 10^{-5}, \mathrm{CL}=95 \%$
[o] $<2.2 \times 10^{-5}, \mathrm{CL}=90 \%$ $<9.2 \times 10^{-8}, \mathrm{CL}=90 \%$ $<3.2 \times 10^{-6}, \mathrm{CL}=90 \%$ $<3.8 \times 10^{-8}, \mathrm{CL}=90 \%$ $<5.1 \times 10^{-7}, \mathrm{CL}=90 \%$
[o] $<5.4 \times 10^{-9}, \mathrm{CL}=90 \%$ $<1.6 \times 10^{-7}, \mathrm{CL}=90 \%$ $<8.3 \times 10^{-6}, \mathrm{CL}=90 \%$ $<2.0 \times 10^{-6}, \mathrm{CL}=90 \%$ $<6.0 \times 10^{-6}, \mathrm{CL}=95 \%$ $<3.2 \times 10^{-6}, \mathrm{CL}=90 \%$ $<3.3 \times 10^{-6}, \mathrm{CL}=90 \%$ $<4.2 \times 10^{-6}, \mathrm{CL}=90 \%$ $<3.1 \times 10^{-6}, \mathrm{CL}=90 \%$ $<9.9 \times 10^{-6}, \mathrm{CL}=90 \%$ $<1.9 \times 10^{-5}, \mathrm{CL}=90 \%$

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

$\Gamma(Z \rightarrow p e) / \Gamma_{\text {total }}$
$\Gamma(Z \rightarrow p \mu) / \Gamma_{\text {total }}$ limit on $\mu^{-} \rightarrow e^{+}$conversion $\sigma\left(\mu^{-32} \mathrm{~S} \rightarrow e^{+32} \mathrm{Si}^{*}\right) /$
$\sigma\left(\mu^{-32} \mathrm{~S} \rightarrow \nu_{\mu} 32 \mathrm{P}^{*}\right)$
$\sigma\left(\mu^{-127} \rightarrow e^{+127} \mathrm{Sb}^{*}\right) /$ $\sigma\left(\mu^{-127} \mid \rightarrow\right.$ anything $)$
$\sigma\left(\mu^{-} \mathrm{Ti} \rightarrow e^{+} \mathrm{Ca}\right) /$ $\sigma\left(\mu^{-} \mathrm{Ti} \rightarrow\right.$ capture $)$
$\Gamma\left(\tau^{-} \rightarrow e^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \mu^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow e^{+} \pi^{-} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow e^{+} K^{-} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \mu^{+} \pi^{-} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \mu^{+} K^{-} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow p \mu^{-} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} 2 \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \eta\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \pi^{0} \eta\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \Lambda \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{\Lambda} \pi^{-}\right) / \Gamma_{\text {total }}$
$t_{1 / 2}\left({ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}+2 e^{-}\right)$
$t_{1 / 2}\left({ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}+2 e^{-}\right)$
$t_{1 / 2}\left({ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}+2 e^{-}\right)$
$\Gamma\left(\pi^{+} \rightarrow \mu^{+} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \pi^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \mu^{+} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$
$\Gamma\left(K^{+} \rightarrow \pi^{0} e^{+} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \pi^{-} 2 e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \pi^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \pi^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow \rho^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{-} 2 e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{+} \rightarrow K^{*}(892)^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow 2 \pi^{-} 2 e^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow 2 \pi^{-} 2 \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow K^{-} \pi^{-} 2 \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow 2 K^{-} 2 e^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow 2 K^{-} 2 \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \pi^{-} \pi^{-} e^{+} \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow K^{-} \pi^{-} e^{+} \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow 2 K^{-} e^{+} \mu^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow p e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \bar{p} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{S}^{+} \rightarrow \pi^{-} 2 e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{S}^{+} \rightarrow \pi^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow \pi^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{S}^{+} \rightarrow K^{-} 2 e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow K^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{S}^{+} \rightarrow K^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D_{s}^{+} \rightarrow K^{*}(892)^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \rho^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \rho^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \rho^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$<1.8 \times 10^{-6}, \mathrm{CL}=95 \%$ $<1.8 \times 10^{-6}, \mathrm{CL}=95 \%$
$<9 \times 10^{-10}, \mathrm{CL}=90 \%$
$<3 \times 10^{-10}, \mathrm{CL}=90 \%$
$<3.6 \times 10^{-11}, \mathrm{CL}=90 \%$
$<2.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$<3.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$<3.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$<3.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$<4.8 \times 10^{-8}, \mathrm{CL}=90 \%$
$<4.7 \times 10^{-8}, \mathrm{CL}=90 \%$
$<4.4 \times 10^{-7}, \mathrm{CL}=90 \%$
$<3.3 \times 10^{-7}, \mathrm{CL}=90 \%$
$<3.5 \times 10^{-6}, \mathrm{CL}=90 \%$
$<1.5 \times 10^{-5}, \mathrm{CL}=90 \%$
$<3.3 \times 10^{-5}, \mathrm{CL}=90 \%$
$<8.9 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2.7 \times 10^{-5}, \mathrm{CL}=90 \%$
$<7.2 \times 10^{-8}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-7}, \mathrm{CL}=90 \%$ $>9.0 \times 10^{25} \mathrm{yr}, \mathrm{CL}=90 \%$ $>10.7 \times 10^{25} \mathrm{yr}, \mathrm{CL}=90 \%$ $>1.5 \times 10^{25} \mathrm{yr}, \mathrm{CL}=90 \%$
[q] $<1.5 \times 10^{-3}, \mathrm{CL}=90 \%$
$<5.0 \times 10^{-10}, \mathrm{CL}=90 \%$
$<2.2 \times 10^{-10}, \mathrm{CL}=90 \%$
[q] $<4.2 \times 10^{-11}, \mathrm{CL}=90 \%$
[q] $<3.3 \times 10^{-3}, \mathrm{CL}=90 \%$ $<3 \times 10^{-3}, \mathrm{CL}=90 \%$ $<1.1 \times 10^{-6}, \mathrm{CL}=90 \%$ $<2.2 \times 10^{-8}, \mathrm{CL}=90 \%$ $<2.0 \times 10^{-6}, \mathrm{CL}=90 \%$ $<5.6 \times 10^{-4}, \mathrm{CL}=90 \%$ $<9 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.0 \times 10^{-5}, \mathrm{CL}=90 \%$ $<1.9 \times 10^{-6}, \mathrm{CL}=90 \%$ $<8.5 \times 10^{-4}, \mathrm{CL}=90 \%$ $<1.12 \times 10^{-4}, \mathrm{CL}=90 \%$ $<2.9 \times 10^{-5}, \mathrm{CL}=90 \%$ $<3.9 \times 10^{-4}, \mathrm{CL}=90 \%$ $<1.52 \times 10^{-4}, \mathrm{CL}=90 \%$ $<9.4 \times 10^{-5}, \mathrm{CL}=90 \%$ $<7.9 \times 10^{-5}, \mathrm{CL}=90 \%$ $<2.18 \times 10^{-4}, \mathrm{CL}=90 \%$ $<5.7 \times 10^{-5}, \mathrm{CL}=90 \%$
$[r]<1.0 \times 10^{-5}, \mathrm{CL}=90 \%$
$[s]<1.1 \times 10^{-5}, \mathrm{CL}=90 \%$ $<4.1 \times 10^{-6}, \mathrm{CL}=90 \%$ $<1.2 \times 10^{-7}, \mathrm{CL}=90 \%$ $<8.4 \times 10^{-6}, \mathrm{CL}=90 \%$ $<5.2 \times 10^{-6}, \mathrm{CL}=90 \%$ $<1.3 \times 10^{-5}, \mathrm{CL}=90 \%$ $<6.1 \times 10^{-6}, \mathrm{CL}=90 \%$ $<1.4 \times 10^{-3}, \mathrm{CL}=90 \%$ $<2.3 \times 10^{-8}, \mathrm{CL}=90 \%$ $<4.0 \times 10^{-9}, \mathrm{CL}=95 \%$ $<1.5 \times 10^{-7}, \mathrm{CL}=90 \%$ $<1.7 \times 10^{-7}, \mathrm{CL}=90 \%$ $<4.2 \times 10^{-7}, \mathrm{CL}=90 \%$ $<4.7 \times 10^{-7}, \mathrm{CL}=90 \%$ $<3.0 \times 10^{-8}, \mathrm{CL}=90 \%$ $<4.1 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(B^{+} \rightarrow K^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow D^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow D^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow D^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow D^{*-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow D_{s}^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \Lambda^{0} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \Lambda^{0} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \lambda^{0} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \bar{\Lambda}^{0} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \Lambda_{c}^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \Lambda_{c}^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K_{S}^{0} \nu\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Xi^{-} \rightarrow p \mu^{-} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{c}^{+} \rightarrow \overline{\mathrm{p}} 2 e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{c}^{+} \rightarrow \bar{p} 2 \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{c}^{+} \rightarrow \bar{\rho} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda_{c}^{+} \rightarrow \Sigma^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
$<1.6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<4.0 \times 10^{-7}, \mathrm{CL}=90 \%$
$<5.9 \times 10^{-7}, \mathrm{CL}=90 \%$
$<3.0 \times 10^{-7}, \mathrm{CL}=90 \%$
$<2.6 \times 10^{-6}, \mathrm{CL}=90 \%$
$<1.8 \times 10^{-6}, \mathrm{CL}=90 \%$
$<6.9 \times 10^{-7}, \mathrm{CL}=95 \%$
$<2.4 \times 10^{-6}, \mathrm{CL}=95 \%$
$<5.8 \times 10^{-7}, \mathrm{CL}=95 \%$
$<1.5 \times 10^{-6}, \mathrm{CL}=95 \%$
$<6 \times 10^{-8}, \mathrm{CL}=90 \%$
$<3.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$<6 \times 10^{-8}, \mathrm{CL}=90 \%$
$<8 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.4 \times 10^{-6}, \mathrm{CL}=90 \%$
$<4 \times 10^{-6}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<4 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<2 \times 10^{-6}, \mathrm{CL}=90 \%$
$<3 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2 \times 10^{-6}, \mathrm{CL}=90 \%$
$<3 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2 \times 10^{-5}, \mathrm{CL}=90 \%$
$<4 \times 10^{-8}, \mathrm{CL}=90 \%$
$<2.7 \times 10^{-6}, \mathrm{CL}=90 \%$
$<9.4 \times 10^{-6}, \mathrm{CL}=90 \%$
$<1.6 \times 10^{-5}, \mathrm{CL}=90 \%$
$<7.0 \times 10^{-4}, \mathrm{CL}=90 \%$

BARYON NUMBER

$\Gamma(Z \rightarrow p e) / \Gamma_{\text {total }}$
$\Gamma(Z \rightarrow p \mu) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow p \mu^{-} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} 2 \pi \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \eta\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{p} \pi^{0} \eta\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \Lambda \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\tau^{-} \rightarrow \bar{\Lambda} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow p e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(D^{0} \rightarrow \bar{p} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \Lambda^{0} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \Lambda^{0} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \bar{\Lambda}^{0} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \bar{\Lambda}^{0} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \Lambda_{C}^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \Lambda_{C}^{+} e^{-}\right) / \Gamma_{\text {total }}$
p mean life
$<1.8 \times 10^{-6}, \mathrm{CL}=95 \%$ $<1.8 \times 10^{-6}, \mathrm{CL}=95 \%$ $<4.4 \times 10^{-7}, \mathrm{CL}=90 \%$
$<3.3 \times 10^{-7}, \mathrm{CL}=90 \%$
$<3.5 \times 10^{-6}, \mathrm{CL}=90 \%$
$<1.5 \times 10^{-5}, \mathrm{CL}=90 \%$
$<3.3 \times 10^{-5}, \mathrm{CL}=90 \%$
$<8.9 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2.7 \times 10^{-5}, \mathrm{CL}=90 \%$
$<7.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.4 \times 10^{-7}, \mathrm{CL}=90 \%$
$[r]<1.0 \times 10^{-5}, \mathrm{CL}=90 \%$
[s] $<1.1 \times 10^{-5}, \mathrm{CL}=90 \%$
$<6 \times 10^{-8}, \mathrm{CL}=90 \%$
$<3.2 \times 10^{-8}, \mathrm{CL}=90 \%$
$<6 \times 10^{-8}, \mathrm{CL}=90 \%$
$<8 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.4 \times 10^{-6}, \mathrm{CL}=90 \%$
$<4 \times 10^{-6}, \mathrm{CL}=90 \%$
$[t]>3.6 \times 10^{29}$ years, $\mathrm{CL}=90 \%$
A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.
$\tau\left(N \rightarrow e^{+} \pi\right)$
$\tau\left(N \rightarrow \mu^{+} \pi\right)$
$\tau\left(N \rightarrow e^{+} K\right)$
$\tau\left(N \rightarrow \mu^{+} K\right)$
limit on $n \bar{n}$ oscillations (free n) limit on $n \bar{n}$ oscillations (bound n)
$\Gamma\left(\Lambda \rightarrow \pi^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{-} e^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow \pi^{-} \mu^{+}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\Lambda \rightarrow K^{-} e^{+}\right) / \Gamma_{\text {total }}$
$>5300(n),>16000(p) \times 10^{30}$ years, $\mathrm{CL}=90 \%$
$>3500(n),>7700(p) \times 10^{30}$ years, $\mathrm{CL}=90 \%$
$>17(n),>1000(p) \times 10^{30}$ years, $\mathrm{CL}=90 \%$
$>26(n),>1600(p) \times 10^{30}$ years, $\mathrm{CL}=90 \%$
$>0.86 \times 10^{8}{ }^{8} \mathrm{~s}, \mathrm{CL}=90 \%$
$[u]>2.7 \times 10^{8} \mathrm{~s}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<4 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<2 \times 10^{-6}, \mathrm{CL}=90 \%$
$<3 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2 \times 10^{-6}, \mathrm{CL}=90 \%$

$\Gamma\left(\Lambda \rightarrow K^{-} \mu^{+}\right) / \Gamma_{\text {total }}$	$<3 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda \rightarrow K_{S}^{0} \nu\right) / \Gamma_{\text {total }}$	$<2 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda \rightarrow \bar{p} \pi^{+}\right) / \Gamma_{\text {total }}$	$<9 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda_{C}^{+} \rightarrow \bar{p} 2 e^{+}\right) / \Gamma_{\text {total }}$	$<2.7 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda_{C}^{+} \rightarrow \bar{p} 2 \mu^{+}\right) / \Gamma_{\text {total }}$	$<9.4 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda_{C}^{+} \rightarrow \bar{p} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$	$<1.6 \times 10^{-5}, \mathrm{CL}=90 \%$

ELECTRIC CHARGE (Q)

γ charge (mixed)
γ charge (single)
$e \rightarrow \nu_{e} \gamma$ and astrophysical limits
ν charge
$\left|q_{p}+q_{e}\right| / e$
n charge
$\Gamma\left(n \rightarrow p \nu{ }_{e} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$
$<1 \times 10^{-46} e$
$<1 \times 10^{-35} e$
[v] $>6.6 \times 10^{28} \mathrm{yr}, \mathrm{CL}=90 \%$ $<4 \times 10^{-35} e, \mathrm{CL}=95 \%$
[x] $<1 \times 10^{-21}$
$(-0.2 \pm 0.8) \times 10^{-21} e$ $<8 \times 10^{-27}, C L=68 \%$

$\Delta S=\Delta Q$ RULE

Violations allowed in second-order weak interactions.

$\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{+} e^{-} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$	$<1.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{+} \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$	$<3.0 \times 10^{-6}, \mathrm{CL}=95 \%$
$\quad \operatorname{Re}\left(\mathrm{x}_{+}\right), K_{e 3}$ parameter	$(-0.9 \pm 3.0) \times 10^{-3}$
$x=\mathrm{A}\left(\bar{K}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) / \mathrm{A}\left(K^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=\mathrm{A}(\Delta S=-\Delta Q) / \mathrm{A}(\Delta S=\Delta Q)$	
\quad real part of x	-0.002 ± 0.006
\quad imaginary part of x	0.0012 ± 0.0021
$\Gamma\left(\Sigma^{+} \rightarrow n \ell^{+} \nu\right) / \Gamma\left(\Sigma^{-} \rightarrow n \ell^{-} \bar{\nu}\right)$	<0.043
$\Gamma\left(\Sigma^{+} \rightarrow n e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$	$<5 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\Sigma^{+} \rightarrow n \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$	$<3.0 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{0} \rightarrow \Sigma^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$	$<9 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{0} \rightarrow \Sigma^{-} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$	$<9 \times 10^{-4}, \mathrm{CL}=90 \%$

$\Delta S=2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma\left(\Xi^{0} \rightarrow p \pi^{-}\right) / \Gamma_{\text {total }}$	$<8 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{0} \rightarrow p e^{-} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$	$<1.3 \times 10^{-3}$
$\Gamma\left(\Xi^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$	$<1.3 \times 10^{-3}$
$\Gamma\left(\Xi^{-} \rightarrow n \pi^{-}\right) / \Gamma_{\text {total }}$	$<1.9 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{-} \rightarrow n e^{-} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$	$<3.2 \times 10^{-3}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{-} \rightarrow n \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$	$<1.5 \times 10^{-2}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{-} \rightarrow p \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$	$<4 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{-} \rightarrow p \pi^{-} e^{-} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$	$<4 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(\Xi^{-} \rightarrow p \pi^{-} \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$	$<4 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(\Omega^{-} \rightarrow \Lambda \pi^{-}\right) / \Gamma_{\text {total }}$	$<2.9 \times 10^{-6}, \mathrm{CL}=90 \%$

$\Delta S=2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.
${ }^{m} K_{L}^{0}-m_{K_{S}^{0}}$
${ }^{m} K_{L}^{0}-m_{K_{S}^{0}}$
$(0.5293 \pm 0.0009) \times 10^{10} \hbar \mathrm{~s}^{-1}(\mathrm{~S}$
= 1.3)
$(3.484 \pm 0.006) \times 10^{-12} \mathrm{MeV}$

$\Delta C=2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.
$\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|=x \Gamma$
$\left(0.95{ }_{-0.44}^{+0.41}\right) \times 10^{10} \hbar \mathrm{~s}^{-1}$
$\left(\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}}\right) / \Gamma=2 y$
$\left(1.29{ }_{-0.18}^{+0.14}\right) \times 10^{-2}$
$\Delta B=2$ VIA MIXING
Allowed in second-order weak interactions, e.g. mixing.

χ_{d}	0.1858 ± 0.0011
$\Delta m_{B^{0}}=m_{B_{H}^{0}}-m_{B_{L}^{0}}$	$(0.5065 \pm 0.0019) \times 10^{12} \mathrm{~h} \mathrm{~s}^{-1}$
$x_{d}=\Delta m_{B^{0}} / \Gamma_{B^{0}}$	0.769 ± 0.004
$\Delta m_{B_{s}^{0}}=m_{B_{s H}^{0}}-m_{B_{s L}^{0}}$	$(17.749 \pm 0.020) \times 10^{12} \mathrm{\hbar} \mathrm{~s}^{-1}$
$x_{S}=\Delta m_{B_{s}^{0}} / \Gamma_{B_{s}^{0}}$	26.89 ± 0.07
χ_{S}	0.499312 ± 0.000004

$\Delta S=1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$(3.00 \pm 0.09) \times 10^{-7}$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$(9.4 \pm 0.6) \times 10^{-8}(\mathrm{~S}=2.6)$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$	$(1.7 \pm 1.1) \times 10^{-10}$
$\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$	$<4.3 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{S}^{0} \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<8 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{S}^{0} \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<9 \times 10^{-9}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{S}^{0} \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$[y]$
$\Gamma\left(K_{S}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$\left.\left(2.0_{-1.2}^{+1.5}\right) \times 10^{-9}\right) \times 10^{-9}$
$\Gamma\left(K_{L}^{0} \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$(6.84 \pm 0.11) \times 10^{-9}$
$\Gamma\left(K_{L}^{0} \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$\left(9{ }_{-4}^{+6}\right) \times 10^{-12}$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$(3.11 \pm 0.19) \times 10^{-7}$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<6.6 \times 10^{-9}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<9.2 \times 10^{-11}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \mu^{+} \mu^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$(2.69 \pm 0.27) \times 10^{-9}$
$\Gamma\left(K_{L}^{0} \rightarrow e^{+} e^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$(3.56 \pm 0.21) \times 10^{-8}$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<3.8 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<2.8 \times 10^{-10}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$	$<3.0 \times 10^{-9}, \mathrm{CL}=90 \%$
$\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$	$<8.1 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(\Sigma^{+} \rightarrow p e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<7 \times 10^{-6}$
$\Gamma\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$(2.4=1.3) \times 10^{-8}$

$\Delta C=1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma\left(D^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<1.1 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<7.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{+} \rightarrow \rho^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<5.6 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$	$<8.5 \times 10^{-7}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<7.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<6.2 \times 10^{-9}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	<4 $\times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<1.8 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \eta e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<3 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \eta \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<5.3 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<7 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \rho^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<1.0 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$(9.6 \pm 1.2) \times 10^{-7}$
$\Gamma\left(D^{0} \rightarrow \rho^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<2.2 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \omega e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<6 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \omega \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<8.3 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow K^{-} K^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<1.1 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \phi e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<5.2 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow K^{-} K^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$(1.54 \pm 0.32) \times 10^{-7}$
$\Gamma\left(D^{0} \rightarrow \phi \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<3.1 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow K^{-} \pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<3.59 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<8.1 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(D_{S}^{+} \rightarrow K^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<3.7 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(D_{S}^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<2.1 \times 10^{-5}, \mathrm{CL}=90 \%$
$\Gamma\left(D_{s}^{+} \rightarrow K^{*}(892)^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$	$<1.4 \times 10^{-3}, \mathrm{CL}=90 \%$
$\Gamma\left(\Lambda_{C}^{+} \rightarrow p e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$<5.5 \times 10^{-6}, \mathrm{CL}=90 \%$

Tests of Conservation Laws
$\Gamma\left(\Lambda_{c}^{+} \rightarrow p \mu^{+} \mu^{-}\right.$non-resonant $) / \Gamma_{\text {total }} \quad<7.7 \times 10^{-8}, \mathrm{CL}=90 \%$

$\Delta B=1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

Γ
$\Gamma\left(B^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right.$nonresonant $) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \bar{\nu} \nu\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \rho^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{*}(892)^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{+} \rightarrow \phi K^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow S P, S \rightarrow \mu^{+} \mu^{-}, P \rightarrow\right.$
$\left.\mu^{+} \mu^{-}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \eta \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \eta e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \eta \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \rho^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(B^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow\right.$ invisible $) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \nu \bar{\nu} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(B^{0} \rightarrow \phi \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow s e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow s \mu^{+} \mu^{-}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(B \rightarrow s \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow \pi \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow \pi e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow \pi \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K^{*}(892) e^{+} e^{-}\right) / \Gamma_{\text {tota }}$
$\Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K^{*}(892) \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma(B \rightarrow K \nu \bar{\nu}) / \Gamma_{\text {total }}$
$\Gamma\left(B \rightarrow K^{*} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
$\Gamma(B \rightarrow \pi \nu \bar{\nu}) / \Gamma_{\text {total }}$
$\Gamma(B \rightarrow \rho \nu \bar{\nu}) / \Gamma_{\text {tota }}$
$\Gamma(\bar{b} \rightarrow \bar{s} \bar{\nu} \nu) / \Gamma_{\text {total }}$
$\Gamma\left(\bar{b} \rightarrow \mu^{+} \mu^{-}\right.$anything $) / \Gamma_{\text {total }}$
$<4.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$<8.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$(1.75 \pm 0.22) \times 10^{-8}$
$<1.4 \times 10^{-5}, \mathrm{CL}=90 \%$
[aa] $(4.51 \pm 0.23) \times 10^{-7}(S=1.1)$
$(5.5 \pm 0.7) \times 10^{-7}$
$(4.41 \pm 0.22) \times 10^{-7}(S=1.2)$
$(4.37 \pm 0.27) \times 10^{-7}$
$<2.25 \times 10^{-3}, \mathrm{CL}=90 \%$
$<1.6 \times 10^{-5}, \mathrm{CL}=90 \%$
$<3.0 \times 10^{-5}, \mathrm{CL}=90 \%$
[aa] $(1.01 \pm 0.11) \times 10^{-6}(S=1.1)$
$\left(1.55{ }_{-0.31}^{+0.40}\right) \times 10^{-6}$
$(9.6 \pm 1.0) \times 10^{-7}$
$<4.0 \times 10^{-5}, \mathrm{CL}=90 \%$
$(4.3 \pm 0.4) \times 10^{-7}$
$\left(7.9_{-1.7}^{+2.1}\right) \times 10^{-8}$
$<3.2 \times 10^{-7}, \mathrm{CL}=90 \%$
$<8.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.2 \times 10^{-7}, \mathrm{CL}=90 \%$
$\left(1.1_{-1.3}^{+1.4}\right) \times 10^{-10}(\mathrm{~S}=1.6)$
$<1.6 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6.9 \times 10^{-10}, \mathrm{CL}=95 \%$
$[b b]<6.0 \times 10^{-10}, \mathrm{CL}=95 \%$
$<2.1 \times 10^{-3}, \mathrm{CL}=95 \%$
$<5.3 \times 10^{-8}, \mathrm{CL}=90 \%$
$<8.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$<6.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$<6.4 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.08 \times 10^{-7}, \mathrm{CL}=90 \%$
$<1.12 \times 10^{-7}, \mathrm{CL}=90 \%$
$<9 \times 10^{-6}, \mathrm{CL}=90 \%$
[aa] $\left(3.1_{-0.7}^{+0.8}\right) \times 10^{-7}$
$\left(1.6_{-0.8}^{+1.0}\right) \times 10^{-7}$
$(3.39 \pm 0.34) \times 10^{-7}$
$<2.6 \times 10^{-5}, \mathrm{CL}=90 \%$
$<4.0 \times 10^{-5}, \mathrm{CL}=90 \%$
[aa] $\left(9.9_{-1.1}^{+1.2}\right) \times 10^{-7}$
$\left(1.03{ }_{-0.17}^{+0.19}\right) \times 10^{-6}$
$(9.4 \pm 0.5) \times 10^{-7}$
$(2.1 \pm 0.5) \times 10^{-8}$
$<1.8 \times 10^{-5}, \mathrm{CL}=90 \%$
$<2.4 \times 10^{-5}, \mathrm{CL}=90 \%$
$<1.7 \times 10^{-5}, \mathrm{CL}=90 \%$
$<1.27 \times 10^{-4}, \mathrm{CL}=90 \%$
$(6.7 \pm 1.7) \times 10^{-6}(\mathrm{~S}=2.0)$
$(4.3 \pm 1.0) \times 10^{-6}$
[aa] $(5.8 \pm 1.3) \times 10^{-6}(S=1.8)$
$<5.9 \times 10^{-8}, \mathrm{CL}=90 \%$
$<1.10 \times 10^{-7}, \mathrm{CL}=90 \%$
$<5.0 \times 10^{-8}, \mathrm{CL}=90 \%$
$(4.4 \pm 0.6) \times 10^{-7}$
$(1.19 \pm 0.20) \times 10^{-6}(S=1.2)$
$(4.4 \pm 0.4) \times 10^{-7}$
$(1.06 \pm 0.09) \times 10^{-6}$
$(4.8 \pm 0.4) \times 10^{-7}$
$(1.05 \pm 0.10) \times 10^{-6}$
$<1.6 \times 10^{-5}, \mathrm{CL}=90 \%$
$<2.7 \times 10^{-5}, \mathrm{CL}=90 \%$
$<8 \times 10^{-6}, \mathrm{CL}=90 \%$
$<2.8 \times 10^{-5}, \mathrm{CL}=90 \%$
$<6.4 \times 10^{-4}, \mathrm{CL}=90 \%$
$<3.2 \times 10^{-4}, \mathrm{CL}=90 \%$
$\Gamma\left(B_{S}^{0} \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$
$\Gamma\left(B_{S}^{0} \rightarrow \phi \gamma\right) / \Gamma_{\text {total }}$
$<3.1 \times 10^{-6}, \mathrm{CL}=90 \%$
$\Gamma\left(B_{S}^{0} \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {tota }}$
$(3.4 \pm 0.4) \times 10^{-5}$
$\Gamma\left(B_{S}^{0} \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$(3.0 \pm 0.4) \times 10^{-9}$
$<2.8 \times 10^{-7}, \mathrm{CL}=90 \%$
$<6.8 \times 10^{-3}, \mathrm{CL}=95 \%$
$<2.5 \times 10^{-9}, \mathrm{CL}=95 \%$
$\Gamma\left(B_{S}^{0} \rightarrow \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B_{S}^{0} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B_{S}^{0} \rightarrow S P, S \rightarrow \mu^{+} \mu^{-}, P \rightarrow\right.$
[bb] $<2.2 \times 10^{-9}, \mathrm{CL}=95 \%$
$\left.\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma\left(B_{S}^{0} \rightarrow \phi(1020) \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$(8.2 \pm 1.2) \times 10^{-7}$
$\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$(8.4 \pm 1.7) \times 10^{-8}$
$<5.4 \times 10^{-3}, \mathrm{CL}=90 \%$

$\Delta T=1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(t \rightarrow Z q(q=u, c)) / \Gamma_{\text {total }}$	$[c c]$	$<5 \times 10^{-4}, \mathrm{CL}=95 \%$
$\Gamma(t \rightarrow H u) / \Gamma_{\text {total }}$		$<1.2 \times 10^{-3}, \mathrm{CL}=95 \%$
$\Gamma(t \rightarrow H c) / \Gamma_{\text {total }}$		$<1.1 \times 10^{-3}, \mathrm{CL}=95 \%$
$\Gamma\left(t \rightarrow \ell^{+} \bar{q} \bar{q}^{\prime}\left(q=d, s, b ; q^{\prime}=u, c\right)\right) / \Gamma_{\text {total }}$		$<1.6 \times 10^{-3}, \mathrm{CL}=95 \%$

NOTES

In this Summary Table:
When a quantity has " $(S=\ldots)$ " to its right, the error on the quantity has been enlarged by the "scale factor" S , defined as $\mathrm{S}=\sqrt{\chi^{2} /(N-1)}$, where N is the number of measurements used in calculating the quantity. We do this when $S>1$, which often indicates that the measurements are inconsistent. When $S>1.25$, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.
[a] Forbidden by angular momentum conservation.
[b] C parity forbids this to occur as a single-photon process.
[c] See the Particle Listings for the (complicated) definition of this quantity.
[d] Time-reversal invariance requires this to be 0° or 180°.
[e] This coefficient is zero if time invariance is not violated.
[f] Allowed by higher-order electroweak interactions.
[g] Violates $C P$ in leading order. Test of direct $C P$ violation since the indirect $C P$-violating and $C P$-conserving contributions are expected to be suppressed.
[h] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
[i] $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=\epsilon^{\prime} / \epsilon$ to a very good approximation provided the phases satisfy $C P T$ invariance.
[j] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma(D E)$.
[k] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975).
[/] Derived from measured values of $\phi_{+-}, \phi_{00},|\eta|,\left|m_{K_{L}^{0}}-m_{K_{S}^{0}}\right|$, and $\tau_{K_{S}^{0}}$, as described in the introduction to "Tests of Conservation Laws."
[n] The $\left|m_{p}-m_{\bar{p}}\right| / m_{p}$ and $\left|q_{p}+q_{\bar{p}}\right| / e$ are not independent, and both use the more precise measurement of $\left|q_{\bar{p}} / m_{\bar{p}}\right| /\left(q_{p} / m_{p}\right)$.
[0] The value is for the sum of the charge states or particle/antiparticle states indicated.
[p] A test of additive vs. multiplicative lepton family number conservation.
[q] Derived from an analysis of neutrino-oscillation experiments.
[r] This limit is for either D^{0} or \bar{D}^{0} to $p e^{-}$.
$[s]$ This limit is for either D^{0} or \bar{D}^{0} to $\bar{p} e^{+}$.
[t] The first limit is for $p \rightarrow$ anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \bar{p} 's is $\tau_{\bar{p}}>10^{7}$ yr , the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\bar{p}} / \mathrm{B}\left(\bar{p} \rightarrow e^{-} \gamma\right)>7 \times 10^{5} \mathrm{yr}$.
[u] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the
best limit comes). The first limit here is from reactor experiments with free neutrons.
[v] This is the best limit for the mode $e^{-} \rightarrow \nu \gamma$. The best limit for Nuclear de-excitation experiments is $6.4 \times 10^{24} \mathrm{yr}$.
[x] The limit is from neutrality-of-matter experiments; it assumes $q_{n}=q_{p}+$ q_{e}. See also the charge of the neutron.
[y] See the K_{S}^{0} Particle Listings for the energy limits used in this measurement.
[z] See the K_{L}^{0} Particle Listings for the energy limits used in this measurement.
[aa] An ℓ indicates an e or a μ mode, not a sum over these modes.
[$b b$] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of $2.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$, respectively.
$[c c]$ This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.

REVIEWS, TABLES, AND PLOTS

Constants, Units, Atomic and Nuclear Properties

1. Physical constants (rev.) 137
2. Astrophysical constants (rev.) 138
3. International system of units (SI) 140
4. Periodic table of the elements (rev.) 141
5. Electronic structure of the elements 142
6. Atomic and nuclear properties of materials 144
7. Electromagnetic relations 146
8. Naming scheme for hadrons (rev.) 148

1. Physical Constants (a major revision)

Table 1.1. Revised 2019 by C.G. Wohl (LBNL). Reviewed by P.J. Mohr and D.B. Newell (NIST). Mainly from "CODATA Recommended Values of the Fundamental Physical Constants: 2018," E. Tiesinga, D.B. Newell, P.J. Mohr, and B.N. Taylor, NIST SP961 (May 2019). The electron charge magnitude e, and the Planck, Boltzmann, and Avogadro constants h, k, and N_{A}, now join c as having defined values; the free-space permittivity and permeability constants ϵ_{0} and μ_{0} are no longer exact. These changes affect practically everything else in the Table. Figures in parentheses after the values are the 1-standard-deviation uncertainties in the last digits; the fractional uncertainties in parts per $10^{9}(\mathrm{ppb})$ are in the last column. The full 2018 CODATA Committee on Data for Science and Technology set of constants are found at https://physics.nist.gov/constants. The last set of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. See also "The International System of Units (SI)," 9th ed. (2019) of the International Bureau of Weights and Measures (BIPM), https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf.

Quantity	Symbol, equation	Value	Uncertainty (ppb)
speed of light in vacuum	c	$299792458 \mathrm{~m} \mathrm{~s}^{-1}$	exact
Planck constant	h	$6.62607015 \times 10^{-34} \mathrm{~J} \mathrm{~s}\left(\right.$ or J/Hz)${ }^{\#}$	exact
Planck constant, reduced	$\hbar \equiv h / 2 \pi$	$\begin{aligned} & 1.054571817 \ldots \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & =6.582119569 \ldots \times 10^{-22} \mathrm{MeV} \mathrm{~s} \end{aligned}$	exact* exact*
electron charge magnitude	e	$1.602176634 \times 10^{-19} \mathrm{C}$	exact
conversion constant	$\hbar c$	$197.3269804 . . . \mathrm{MeV} \mathrm{fm}$	exact*
conversion constant	$(\hbar c)^{2}$	$0.3893793721 \ldots \mathrm{GeV}^{2}$ mbarn	exact*
electron mass proton mass	m_{e}	$0.51099895000(15) \mathrm{MeV} / c^{2}=9.1093837015(28) \times 10^{-31} \mathrm{~kg} \quad 0.30$	
	m_{p}	$\begin{aligned} 938.27208816(29) \mathrm{MeV} / \mathrm{c}^{2} & =1.67262192369(51) \times 10^{-27} \mathrm{~kg} \\ =1.007276466621(53) \mathrm{u} & =1836.15267343(11) m_{e} \quad 0.053,0.060 \end{aligned}$	
proton mass			
neutron mass	m_{n}	$939.56542052(54) \mathrm{MeV} / c^{2}=1.00866491595(49)$ u $0.57,0.48$	
deuteron mass	m_{d}	$1875.61294257(57) \mathrm{MeV} / c^{2} \quad 0.30$	
unified atomic mass unit**	$u=\left(\right.$ mass ${ }^{12} \mathrm{C}$ atom) $/ 12$	$931.49410242(28) \mathrm{MeV} / c^{2}=1.66053906660(50) \times 10^{-27} \mathrm{~kg} \quad 0.30$	
permittivity of free space permeability of free space	$\epsilon_{0}=1 / \mu_{0} c^{2}$	$8.8541878128(13) \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \quad 0.15$	
	$\mu_{0} /\left(4 \pi \times 10^{-7}\right)$	$1.00000000055(15) \mathrm{N} \mathrm{A}^{-2}$	0.15
fine-structure constant	$\alpha=e^{2} / 4 \pi \epsilon_{0} \hbar c$	$7.2973525693(11) \times 10^{-3}=1 / 137.035999084(21)^{\dagger}$	
	$r_{e}=e^{2} / 4 \pi \epsilon_{0} m_{e} c^{2}$	$2.8179403262(13) \times 10^{-15} \mathrm{~m}$	0.45
	$\lambda_{e}=\hbar / m_{e} c=r_{e} \alpha^{-1}$	$3.8615926796(12) \times 10^{-13} \mathrm{~m}$	0.30
(e^{-}Compton wavelength) $/ 2 \pi$ Bohr radius ($m_{\text {nucleus }}=\infty$)	$a_{\infty}=4 \pi \epsilon_{0} \hbar^{2} / m_{e} e^{2}=r_{e} \alpha^{-2}$	$0.529177210903(80) \times 10^{-10} \mathrm{~m}$	0.15
wavelength of $1 \mathrm{eV} / c$ particle	$h c /(1 \mathrm{eV})$	$1.239841984 \ldots \times 10^{-6} \mathrm{~m}$	exact*
Rydberg energy	$h c R_{\infty}=m_{e} e^{4} / 2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}=m_{e} c^{2} \alpha^{2} / 2$	$13.605693122994(26) \mathrm{eV}$	1.9×10^{-3}
Thomson cross section	$\sigma_{T}=8 \pi r_{e}^{2} / 3$	0.665245873 21(60) barn	0.91
Bohr magneton nuclear magneton electron cyclotron freq./field proton cyclotron freq./field	$\mu_{B}=e \hbar / 2 m_{e}$	$5.7883818060(17) \times 10^{-11} \mathrm{MeV} \mathrm{T}^{-1}$	0.3
	$\mu_{N}=e \hbar / 2 m_{p}$	$3.15245125844(96) \times 10^{-14} \mathrm{MeV} \mathrm{T}^{-1}$	0.31
	$\omega_{\text {cycl }}^{e} / B=e / m_{e}$	$1.75882001076(53) \times 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}$	0.30
	$\omega_{\text {cycl }}^{p} / B=e / m_{p}$	$9.5788331560(29) \times 10^{7} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}$	0.31
gravitational constant ${ }^{\ddagger}$	G_{N}	$\begin{aligned} & 6.67430(15) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \\ & =6.70883(15) \times 10^{-39} \hbar c\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-2} \end{aligned}$	2.2×10^{4}
			2.2×10^{4}
standard gravitational accel.	g_{N}	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$	exact
Avogadro constant Boltzmann constant	N_{A}	$6.02214076 \times 10^{23} \mathrm{~mol}^{-1}$	exact
	k	$1.380649 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$	exact
Boltzmann constant		$=8.617333262 \ldots \times 10^{-5} \mathrm{eV} \mathrm{~K}^{-1}$	
molar volume, ideal gas at STP	$N_{A} k(273.15 \mathrm{~K}) /(101325 \mathrm{~Pa})$	$22.41396954 \ldots \times 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$	exact*
Wien displacement law constant	$b=\lambda_{\max } T$	$2.897771955 \ldots \times 10^{-3} \mathrm{~m} \mathrm{~K}$	exact*
Stefan-Boltzmann constant	$\sigma=\pi^{2} k^{4} / 60 \hbar^{3} c^{2}$	$5.670374419 \ldots \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-}$	exact*
Fermi coupling constant ${ }^{\ddagger \ddagger}$	$G_{F} /(\hbar c)^{3}$	$1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}$	510
weak-mixing angle $W^{ \pm}$boson mass Z^{0} boson mass strong coupling constant	$\sin ^{2} \widehat{\theta}\left(M_{Z}\right)(\overline{\mathrm{MS}})$	$0.23121(4)^{\dagger \dagger}$	1.7×10^{5}
	m_{W}	80.379(12) GeV / c^{2}	1.5×10^{5}
	m_{Z}	91.1876(21) GeV / c^{2}	2.3×10^{4}
	$\alpha_{s}\left(m_{Z}\right)$	$0.1179(10)$	8.5×10^{6}
$\pi=3.141592653589793238 \ldots \quad e=2.718281828$		59 $045235 \ldots \quad \gamma=0.577215664901532860 \ldots$	
$1 \mathrm{in} \equiv 0.0254 \mathrm{~m} \quad 1 \mathrm{G} \equiv 10^{-4} \mathrm{~T} \quad 1 \mathrm{eV}=1.602176634 \times$		${ }^{9} \mathrm{~J}$ (exact) $\quad k T$ at $300 \mathrm{~K}=[38.681740(22)]^{-1} \mathrm{eV}$	
$1 \AA \equiv 0.1 \mathrm{~nm} \quad 1$ dyne \equiv	1 dyne $\equiv 10^{-5} \mathrm{~N} \quad(1 \mathrm{~kg}) c^{2}=5.609588603$		$\times 10^{35} \mathrm{eV}$ (exact*) ${ }^{*}{ }^{\circ} \mathrm{C} \equiv 273.15 \mathrm{~K}$
1 barn $\equiv 10^{-28} \mathrm{~m}^{2} \quad 1 \mathrm{erg} \equiv$	$1 \mathrm{erg} \equiv 10^{-7} \mathrm{~J} \quad 1 \mathrm{C}=2.99792458 \times 1$	0^{9} esu $\quad 1$ atmosphere $\equiv 760$ lorr $\equiv 101325 \mathrm{~Pa}$	

\# CODATA recommends that the unit be J / Hz to stress that in $h=E / \nu$ the frequency ν is in cycles $/ \mathrm{sec}(\mathrm{Hz})$, not radians $/ \mathrm{sec}$.

* These are calculated from exact values and are exact to the number of places given (i.e no rounding).
** The molar mass of ${ }^{12} \mathrm{C}$ is $11.9999999958(36) \mathrm{g}$.
${ }^{\dagger}$ At $Q^{2}=0$. At $Q^{2} \approx m_{W}^{2}$ the value is $\sim 1 / 128$.
\ddagger Absolute laboratory measurements of G_{N} have been made only on scales of about 1 cm to 1 m .
$\ddagger \ddagger$ See the discussion in Sec. 10, "Electroweak model and constraints on new physics."
${ }^{\dagger} \dagger$ The corresponding $\sin ^{2} \theta$ for the effective angle is $0.23153(4)$.

2. Astrophysical Constants and Parameters

Table 2.1: Revised August 2019 by D.E. Groom (LBNL) and D. Scott (U. of British Columbia). The figures in parentheses after some values give the 1- σ uncertainties in the last digit(s). Physical constants are from Ref. [1]. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference. The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit. Many of the derived parameters reported in this table have non-Gaussian likelihoods. Parameters may be highly correlated, so care must be taken in propagating errors. Unless otherwise specified, cosmological parameters are derived from a 6-parameter Λ CDM cosmology fit to Planck cosmic microwave background 2018 temperature (TT) + polarization $(\mathrm{TE}, \mathrm{EE}+\mathrm{lowE})+$ lensing data [2]. For more information see Ref. [3] and the original papers.

Quantity Sy	Symbol, equation.	Value	Reference,footnote
redshift of matter-radiation equality	$z_{\text {eq }}$	\dagger 3402(26)	[2,36]
age at matter-radiation equality	$t_{\text {eq }}$	$\dagger 51.1(8) \mathrm{kyr}$	[2,37]
redshift at which optical depth equals unity	ity z_{*}	\dagger 1089.92(25)	[2]
comoving size of sound horizon at z_{*}	r_{*}	\dagger 144.43(26) Mpc	[2,38]
age when optical depth equals unity	t_{*}	\dagger 372.9(10) kyr	[2,37]
redshift at half reionization	$z_{\text {i }}$	† 7.7(7)	[2,39]
age at half reionization	$t_{\text {i }}$	\dagger 690(90) Myr	[2]
redshift when acceleration was zero	z_{q}	\dagger 0.636(18)	[2, 37]
age when acceleration was zero	t_{q}	\dagger 7.70(10) Gyr	[2]
age of the Universe today	t_{0}	\dagger 13.797(23) Gyr	[2]
effective number of neutrinos	$N_{\text {eff }}$	\# 2.99(17)	[2, 40, 41]
sum of neutrino masses		$\#<0.12 \mathrm{eV}(95 \%, \mathrm{CMB}+\mathrm{BAO}) ; \geq 0.06 \mathrm{eV}$ (mixing)	[2, 41-43]
		$\#<0.003(95 \%, \mathrm{CMB}+\mathrm{BAO}) ; \geq 0.0012$ (mixing)	[2, 42, 43]
neutrino density of the Universe $\quad \Omega_{\nu}=h^{-2} \Sigma m_{\nu_{j}} / 93.14 \mathrm{eV}$ curvature		\# 0.0007(19)	[2]
running spectral index, $k_{0}=0.05 \mathrm{Mpc}^{-1}$	$d n_{\mathrm{s}} / d \ln k$	\# -0.004(7)	[2]
tensor-to-scalar field perturbations ratio,	$r_{0.002}=T / S$	$\#<0.058$ (95\% CL, $k_{0}=0.002 \mathrm{Mpc}^{-1}$, no running)	[2, 44, 45]
dark energy equation of state parameter	w	-1.028(31)	[2,46]
primordial helium fraction	Y_{p}	0.245(4)	[47]

\ddagger Parameter in 6-parameter $\Lambda \mathrm{CDM}$ fit; ${ }^{\dagger}$ Derived parameter in 6-parameter $\Lambda \mathrm{CDM}$ fit; $\#$ Extended model parameter, Planck + BAO data [2].

References

[1] CODATA recommended 2018 values of the fundamental physical constants: https://physics.nist.gov/cuu/Constants/index.html.
[2] Planck Collab. 2018 Results VI (2018), [arXiv:1807.06209].
[3] O. Lahav \& A.R. Liddle, "The Cosmological Parameters," Sec. 25.1 in this Review.
[4] The Astronomical Almanac for the year 2020.
[5] The astronomical unit of length (au) in meters is re-defined (IAU XXVIII General Assembly 2012, Resolution B2) to be a conventional unit of length in agreement with the value adopted in IAU XXVII 2009 Resolution B2. It is to be used with all time scales.
[6] The distance at which 1 au subtends 1 arc sec: 1 au divided by $\pi / 648000$.
[7] IAU XVI GA 1976, Recommendations.
[8] The number of square degrees on a sphere is $360^{2} / \pi=41259.9 \ldots$.
[9] Observationally determined mass parameter $G_{N} M \times 2 / c^{2}$ [1] for either the Sun or the Earth, where $\mathcal{G} \mathcal{M}_{\odot}=1.3271244 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}$ and $\mathcal{G} \mathcal{M}_{\oplus}=3.986004 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}[48]$.
[10] $G_{N} M \div G_{N}$ [1].
[11] IAU XXIX GA, 2015, Resolution B3, "on recommended nominal conversion constants ..." Calligraphic symbol indicates recommended nominal value.
[12] See also G. Kopp \& J.L. Lean, Geophys. Res. Lett. 38, L01706 (2011), who give (1360.8 ± 0.6) $\mathrm{W} \mathrm{m}^{-2}$; see paper for caveats and other measurements.
[13] $4 \pi(1 \mathrm{au})^{2} \times \mathcal{S}_{\odot}$, assuming isotropic irradiance.
[14] S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
[15] This value assumes an ideal Fermi gas, using a numerical constant from the Lane-Emden equation [49], and with μ the average molecular weight per electron, defined relative to the mass of the single-proton hydrogen atom.
[16] A. S. Eddington, Mon. Not. R. Astron. Soc 77, 16 (1916).
[17] The maximum luminosity assuming pure electron scattering for the outward force arising from radiation pressure: $4 \pi G_{N} M m_{p} c / \sigma_{T}$.
[18] IAU XXIX GA, 2015, Resolution B2, "on recommended zero points for the absolute and apparent bolometric magnitude scales".
[19] J. Oke and J. Gunn, Astrophys. J. 266, 713 (1983).
[20] J. Bovy, Mon. Not. R. Astron. Soc 468, 1, L63 (2017).
[21] R. Abuter et al. (2019), [arXiv:1904.05721].
[22] IAU XIX GA (1985) suggested that "in cases where standardization on a common set of galactic parameters is desirable" that the values $R_{0}=(8.5 \pm 1.0) \mathrm{kpc}$ and $\theta_{0}=(220 \pm 20) \mathrm{km} \mathrm{s}^{-1}$ should be used.
[23] M. Reid et al., Astrophys. J. 783, 2, 130 (2014).
[24] T. Piff et al., Astron. Astrophys. 562, A91 (2014), [arXiv:1309.4293].
[25] C. F. McKee, A. Parravano and D. J. Hollenbach, Astrophys. J. 814, 1, 13 (2015); This is representative of other published estimates.
[26] J. Read, J. Phys. G41, 063101 (2014); A. M. Green, J. Phys. G44, 8, 084001 (2017); The conclusion is $\rho_{\mathrm{DM}}^{\text {local }}=0.39 \pm 0.03 \mathrm{GeV} \mathrm{cm}^{-3}$.
[27] D. Scott \& G.F. Smoot, "Cosmic Microwave Background," Sec. 29 in this Review.
[28] D. J. Fixsen, Astrophys. J. 707, 916 (2009).
[29] Planck Collab. 2018 Results I (2018), [arXiv:1807.06205].
[30] $n_{\gamma}=\frac{2 \zeta(3)}{\pi^{2}}\left(\frac{k T}{\hbar c}\right)^{3} ; \rho_{\gamma}=\frac{\pi^{2} k T}{15 c^{2}}\left(\frac{k T}{\hbar c}\right)^{3} ; s / k=\frac{2 \cdot 43 \cdot \pi^{2}}{11 \cdot 45}\left(\frac{k T}{\hbar c}\right)^{3}$; $k T / \hbar c=11.90235(T / 2.7255) / \mathrm{cm}$.
[31] Conversion using length of sidereal year.
[32] Distance-ladder estimates of H_{0} tend to give higher values than derived from the CMB, e.g. Riess et al., Astrophys. J. 826, 56 (2016) give $h=0.732 \pm 0.017$; for discussion see O. Lahav \& A.R. Liddle, "The Cosmological Parameters," Sec. 25.1 in this Review.
[33] B.D. Fields, P. Molaro, \& S. Sarkar, "Big-Bang Nucleosynthesis," Sec. 24 in this Review.
[34] n_{b} depends only upon the measured $\Omega_{\mathrm{b}} h^{2}$, the average baryon mass at the present epoch [35], and G_{N} : $n_{\mathrm{b}}=$ $\left(\Omega_{\mathrm{b}} h^{2}\right)\left(h^{-2} \rho_{\text {crit }}\right) /\left(0.93711 \mathrm{GeV} / c^{2}\right.$ per baryon $)$.
[35] G. Steigman, JCAP 0610, 016 (2006).
[36] Here 'radiation' includes three species of light neutrinos as well as photons.
[37] D. Scott, A. Narimani and D. N. Page, Phys. Canada 70, 258 (2014).
[38] D.H. Weinberg, M. White, "Dark Energy," Sec. 28 in this Review.
[39] Planck Collab. Interm. Results XLVI, Astron. \& Astrophys. 596, A108 (2016) extend the range by $\Delta z \approx 1$, depending on the reionization model.
[40] Summary Tables in this Review list $N_{\nu}=2.984$ (8) (Standard Model fits to LEP-SLC data). Because neutrinos are not completely decoupled at $e^{ \pm}$annihilation, the effective number of massless neutrino species is 3.045 , rather than 3 .
[41] J. Lesgourgues \& L. Verde, "Neutrinos in Cosmology," Sec. 26 in this Review.
[42] The sum is over all neutrino mass eigenstates, the lower limit following from neutrino mixing results reported in this Review combined with the assumptions that there are three light neutrinos and that the lightest neutrino is substantially less massive than the others.
[43] Astrophysical determinations of $\sum m_{\nu_{j}}$, reported in the Full Listings of this Review under "Sum of the neutrino masses," range from $<0.17 \mathrm{eV}$ to $<2.3 \mathrm{eV}$ in papers published since 2003.
[44] P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. 121, 221301 (2018).
[45] Planck data alone give $r<0.10$; adding the BICEP/Keck data tightens the constraint.
[46] This constraint uses BAO and SNe data, as described in Ref. [2]; see discussion in D.H. Weinberg, M. White, "Dark Energy," Sec. 28 in this Review.
[47] E. Aver, K. A. Olive and E. D. Skillman, JCAP 1507, 07, 011 (2015).
[48] IAU XXIX GA 2015, Resolution B2.
[49] G. P. Horedt, Astrophys. Space Sci. 126, 2, 357 (1986).

3. International System of Units (SI)

See "The International System of Units (SI)," NIST Special Publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and "Guide for the Use of the International System of Units (SI)," NIST Special Publication 811, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995).

Physical quantity	Name of unit	Symbol
Base units		
length mass time electric current thermodynamic temperature amount of substance luminous intensity	meter kilogram second ampere kelvin mole candela	$\begin{gathered} \mathrm{m} \\ \mathrm{~kg} \\ \mathrm{~s} \\ \mathrm{~A} \\ \mathrm{~K} \\ \mathrm{~mol} \\ \mathrm{~cd} \end{gathered}$
Derived units with special names		
plane angle solid angle frequency energy force pressure power electric charge electric potential electric resistance electric conductance electric capacitance magnetic flux inductance magnetic flux density luminous flux illuminance celsius temperature activity (of a radioactive source)* absorbed dose (of ionizing radiation) ${ }^{*}$ dose equivalent*	radian steradian hertz joule newton pascal watt coulomb volt ohm siemens farad weber henry tesla lumen lux degree celsius becquerel gray sievert	rad sr Hz J N Pa W C V Ω S F Wb H T lm lx ${ }^{\circ} \mathrm{C}$ Bq Gy Sv

SI prefixes		
10^{24}	yotta	(Y)
10^{21}	zetta	(Z)
10^{18}	exa	(E)
10^{15}	peta	(P)
10^{12}	tera	(T)
10^{9}	giga	(G)
10^{6}	mega	(M)
10^{3}	kilo	(k)
10^{2}	hecto	(h)
10	deca	(da)
10^{-1}	deci	(d)
10^{-2}	centi	(c)
10^{-3}	milli	(m)
10^{-6}	micro	(μ)
10^{-9}	nano	(n)
10^{-12}	pico	(p)
10^{-15}	femto	(f)
10^{-18}	atto	(a)
10^{-21}	zepto	(z)
10^{-24}	yocto	(y)

*See our section 37, on "Radioactivity and radiation protection."

4. Periodic Table of the Elements

Table 4.1. Revised June 2019 by D.E. Groom (LBNL). The atomic number (top left) is the number of protons in the nucleus. The atomic masses (bottom) of stable elements are weighted by isotopic abundances in the Earth's surface. Atomic masses are relative to the mass of ${ }^{12} \mathrm{C}$, defined to be exactly 12 unified atomic mass units (u) $(1 \mathrm{u} \approx 1 \mathrm{~g} /$ mole). The exceptions are Th, Pa, and U , which have no stable isotopes but do have characteristic terrestrial compositions. Relative isotopic abundance often vary considerably, both in natural and commercial samples; this is reflected in the number of significant figures given for the mass. Masses may be found at https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses. If there is no stable isotope, the atomic mass of the most stable isotope known as of June 2019 is given in parentheses.

IUPAC announced verification of the discoveries of elements 113, 115, 117, and 118 in December 2015. The names were approved November 2016. The 7th period of the periodic table is now complete.

Lanthanide

5. Electronic Structure of the Elements

Table 5.1. Reviewed 2011 by J.E. Sansonetti (NIST). The electronic configurations and the ionization energies are from the NIST database, "Ground Levels and Ionization Energies for the Neutral Atoms," W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sansonetti, http://www.nist.gov/pml/data/ion_energy.cfm. The electron configuration for, say, iron indicates an argon electronic core (see argon) plus six $3 d$ electrons and two $4 s$ electrons.

	Element		Electron configuration ($3 d^{5}=$ five $3 d$ electrons, etc.)	Ground state ${ }^{2 S+1} L_{J}$	Ionization energy (eV)
1	H	Hydrogen	$1 s$	${ }^{2} S_{1 / 2}$	13.5984
2	He	Helium	$1 s^{2}$	${ }^{1} S_{0}$	24.5874
3	Li	Lithium	(He) $2 s$	${ }^{2} S_{1 / 2}$	5.3917
4	Be	Beryllium	(He) $2 s^{2}$	${ }^{1} S_{0}$	9.3227
5	B	Boron	(He) $2 s^{2} 2 p$	${ }^{2} P_{1 / 2}$	8.2980
6	C	Carbon	(He) $2 s^{2} 2 p^{2}$	${ }^{3} P_{0}$	11.2603
7	N	Nitrogen	(He) $2 s^{2} 2 p^{3}$	${ }^{4} S_{3 / 2}$	14.5341
8	O	Oxygen	(He) $2 s^{2} 2 p^{4}$	${ }^{3} P_{2}$	13.6181
9	F	Fluorine	(He) $2 s^{2} 2 p^{5}$	${ }^{2} P_{3 / 2}$	17.4228
10	Ne	Neon	(He) $2 s^{2} 2 p^{6}$	${ }^{1} S_{0}$	21.5645
11	Na	Sodium	(Ne) 3 s	${ }^{2} S_{1 / 2}$	5.1391
12	Mg	Magnesium	(Ne) $3 s^{2}$	${ }^{1} S_{0}$	7.6462
13	Al	Aluminum	(Ne) $3 s^{2} 3 p$	${ }^{2} P_{1 / 2}$	5.9858
14	Si	Silicon	(Ne) $3 s^{2} 3 p^{2}$	${ }^{3} P_{0}$	8.1517
15	P	Phosphorus	(Ne) $3 s^{2} 3 p^{3}$	${ }^{4} S_{3 / 2}$	10.4867
16	S	Sulfur	(Ne) $3 s^{2} 3 p^{4}$	${ }^{3} P_{2}$	10.3600
17	Cl	Chlorine	(Ne) $3 s^{2} 3 p^{5}$	${ }^{2} P_{3 / 2}$	12.9676
18	Ar	Argon	(Ne) $3 s^{2} 3 p^{6}$	${ }^{1} S_{0}$	15.7596
19	K	Potassium	(Ar) $4 s$	${ }^{2} S_{1 / 2}$	4.3407
20	Ca	Calcium	(Ar) $4 s^{2}$	${ }^{1} S_{0}$	6.1132
	- -	- - - - -	- - - - -	- -	- - -
21	Sc	Scandium	(Ar) $3 d \quad 4 s^{2} \quad \mathrm{~T}$	${ }^{2} D_{3 / 2}$	6.5615
22	Ti	Titanium	(Ar) $3 d^{2} 4 s^{2}$	e ${ }^{3} F_{2}$	6.8281
23	V	Vanadium	(Ar) $3 d^{3} 4 s^{2}$	$1 \quad{ }^{4} F_{3 / 2}$	6.7462
24	Cr	Chromium	(Ar) $3 d^{5} 4 s$ n	${ }^{7} S_{3}$	6.7665
25	Mn	Manganese	(Ar) $3 d^{5} 4 s^{2} \quad \mathrm{~S}$	m $\quad{ }^{6} S_{5 / 2}$	7.4340
26	Fe	Iron	(Ar) $3 d^{6} 4 s^{2}$	e $\quad{ }^{5} D_{4}$	7.9024
27	Co	Cobalt	(Ar) $3 d^{7} 4 s^{2}$	n $\quad{ }^{4} F_{9 / 2}$	7.8810
28	Ni	Nickel	(Ar) $3 d^{8} 4 s^{2}$	${ }^{3} F_{4}$	7.6399
29	Cu	Copper	(Ar) $3 d^{10} 4 s$	s ${ }^{2} S_{1 / 2}$	7.7264
30	Zn	Zinc	(Ar) $3 d^{10} 4 s^{2}$	${ }^{1} S_{0}$	9.3942
-	- -	---	- - - - - -	-- -	- - - -
31	Ga	Gallium	(Ar) $3 d^{10} 4 s^{2} 4 p$	${ }^{2} P_{1 / 2}$	5.9993
32	Ge	Germanium	(Ar) $3 d^{10} 4 s^{2} 4 p^{2}$	${ }^{3} P_{0}$	7.8994
33	As	Arsenic	(Ar) $3 d^{10} 4 s^{2} 4 p^{3}$	${ }^{4} S_{3 / 2}$	9.7886
34	Se	Selenium	(Ar) $3 d^{10} 4 s^{2} 4 p^{4}$	${ }^{3} P_{2}$	9.7524
35	Br	Bromine	(Ar) $3 d^{10} 4 s^{2} 4 p^{5}$	${ }^{2} P_{3 / 2}$	11.8138
36	Kr	Krypton	(Ar) $3 d^{10} 4 s^{2} 4 p^{6}$	${ }^{1} S_{0}$	13.9996
37	Rb	Rubidium	(Kr) $5 s$	${ }^{2} S_{1 / 2}$	4.1771
38	Sr	Strontium	(Kr) $5 s^{2}$	${ }^{1} S_{0}$	5.6949
-	--	- - - -	--- - - - - - -	- - - -	- - -
39	Y	Yttrium	(Kr) $4 d \quad 5 s^{2} \mathrm{~T}$	${ }^{2} D_{3 / 2}$	6.2173
40	Zr	Zirconium	(Kr) $4 d^{2} 5 s^{2}$	${ }^{3} F_{2}$	6.6339
41	Nb	Niobium	(Kr) $4 d^{4} 5 s$	$l) \quad{ }^{6} D_{1 / 2}$	6.7589
42	Mo	Molybdenum	(Kr) $4 d^{5} 5 s \mathrm{n}$	${ }^{7} S_{3}$	7.0924
43	Tc	Technetium	(Kr) $4 d^{5} 5 s^{2}$	m $\quad{ }^{6} S_{5 / 2}$	7.28
44	Ru	Ruthenium	(Kr) $4 d^{7} 5 s$	${ }^{5} F_{5}$	7.3605
45	Rh	Rhodium	(Kr) $4 d^{8} 5 s$	$\mathrm{n} \quad{ }^{4} F_{9 / 2}$	7.4589
46	Pd	Palladium	(Kr) $4 d^{10}$	${ }^{1} S_{0}$	8.3369
47	Ag	Silver	(Kr) $4 d^{10} 5 s$ n	${ }^{2} S_{1 / 2}$	7.5762
48	Cd	Cadmium	(Kr) $4 d^{10} 5 s^{2}$	${ }^{1} S_{0}$	8.9938

49	In	Indium	(Kr) $4 d^{10} 5 s^{2} 5 p$		${ }^{2} P_{1 / 2}$	5.7864
50	Sn	Tin	(Kr) $4 d^{10} 5 s^{2} 5 p^{2}$		${ }^{3} P_{0}$	7.3439
51	Sb	Antimony	(Kr) $4 d^{10} 5 s^{2} 5 p^{3}$		${ }^{4} S_{3 / 2}$	8.6084
52	Te	Tellurium	(Kr) $4 d^{10} 5 s^{2} 5 p^{4}$		${ }^{3} P_{2}$	9.0096
53	I	Iodine	(Kr) $4 d^{10} 5 s^{2} 5 p^{5}$		${ }^{2} P_{3 / 2}$	10.4513
54	Xe	Xenon	(Kr) $4 d^{10} 5 s^{2} 5 p^{6}$		${ }^{1} S_{0}$	12.1298
55	Cs	Cesium	(Xe) $6 s$		${ }^{2} S_{1 / 2}$	3.8939
56	Ba	Barium	(Xe) $6 s^{2}$		${ }^{1} S_{0}$	5.2117
	- -	-	- -		- -	- -
57	La	Lanthanum	(Xe) $\quad 5 d \quad 6 s^{2}$		${ }^{2} D_{3 / 2}$	5.5769
58	Ce	Cerium	(Xe) $4 f \quad 5 d \quad 6 s^{2}$		${ }^{1} G_{4}$	5.5387
59	Pr	Praseodymium	(Xe) $4 f^{3} \quad 6 s^{2}$	L	${ }^{4} I_{9 / 2}$	5.473
60	Nd	Neodymium	(Xe) $4 f^{4} \quad 6 s^{2}$	a	${ }^{5} I_{4}$	5.5250
61	Pm	Promethium	(Xe) $4 f^{5} \quad 6 s^{2}$	n	${ }^{6} H_{5 / 2}$	5.582
62	Sm	Samarium	(Xe) $4 f^{6} \quad 6 s^{2}$	t	${ }^{7} F_{0}$	5.6437
63	Eu	Europium	(Xe) $4 f^{7} \quad 6 s^{2}$	h	${ }^{8} S_{7 / 2}$	5.6704
64	Gd	Gadolinium	(Xe) $4 f^{7} 5 d \quad 6 s^{2}$	a	${ }^{9} D_{2}$	6.1498
65	Tb	Terbium	(Xe) $4 f^{9} \quad 6 s^{2}$	i	${ }^{6} H_{15 / 2}$	5.8638
66	Dy	Dysprosium	(Xe) $4 f^{10} \quad 6 s^{2}$	d	${ }^{5} I_{8}$	5.9389
67	Ho	Holmium	(Xe) $4 f^{11} \quad 6 s^{2}$	e	${ }^{4} I_{15 / 2}$	6.0215
68	Er	Erbium	(Xe) $4 f^{12} \quad 6 s^{2}$	S	${ }^{3} \mathrm{H}_{6}$	6.1077
69	Tm	Thulium	(Xe) $4 f^{13} \quad 6 s^{2}$		${ }^{2} F_{7 / 2}$	6.1843
70	Yb	Ytterbium	(Xe) $4 f^{14} \quad 6 s^{2}$		${ }^{1} S_{0}$	6.2542
71	Lu	Lutetium	(Xe) $4 f^{14} 5 d \quad 6 s^{2}$		${ }^{2} D_{3 / 2}$	5.4259
-	- -	-	- - - - - -	-	-	- -
72	Hf	Hafnium	(Xe) $4 f^{14} 5 d^{2} 6 s^{2}$	T	${ }^{3} F_{2}$	6.8251
73	Ta	Tantalum	(Xe) $4 f^{14} 5 d^{3} 6 s^{2}$	r	${ }^{4} F_{3 / 2}$	7.5496
74	W	Tungsten	(Xe) $4 f^{14} 5 d^{4} 6 s^{2}$	a	${ }^{5} D_{0}$	7.8640
75	Re	Rhenium	(Xe) $4 f^{14} 5 d^{5} 6 s^{2}$	n	${ }^{6} S_{5 / 2}$	7.8335
76	Os	Osmium	(Xe) $4 f^{14} 5 d^{6} 6 s^{2}$	S	${ }^{5} D_{4}$	8.4382
77	Ir	Iridium	(Xe) $4 f^{14} 5 d^{7} 6 s^{2}$	1	${ }^{4} F_{9 / 2}$	8.9670
78	Pt	Platinum	$\text { (Xe) } 4 f^{14} 5 d^{9} 6 s$	i	${ }^{3} D_{3}$	8.9588
79	Au	Gold	(Xe) $4 f^{14} 5 d^{10} 6 s$	-	${ }^{2} S_{1 / 2}$	9.2255
80	Hg	Mercury	(Xe) $4 f^{14} 5 d^{10} 6 s^{2}$	n	${ }^{1} S_{0}$	10.4375
81	Tl	Thallium	(Xe) $4 f^{14} 5 d^{10} 6 s^{2}{ }^{-} 6 p$		${ }^{2}{ }^{-}-$	- - -
82	Pb	Lead	(Xe) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{2}$		${ }^{3} P_{0}$	7.4167
83	Bi	Bismuth	(Xe) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{3}$		${ }^{4} S_{3 / 2}$	7.2855
84	Po	Polonium	(Xe) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{4}$		${ }^{3} P_{2}$	8.414
85	At	Astatine	(Xe) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{5}$		${ }^{2} P_{3 / 2}$	
86	Rn	Radon	(Xe) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{6}$		${ }^{1} S_{0}$	10.7485
87	Fr	Francium	(Rn) $7 s$		${ }^{2} S_{1 / 2}$	4.0727
88	Ra	Radium	(Rn) $7 s^{2}$		${ }^{1} S_{0}$	5.2784
-	- -	- - - - -	- - - - -	-	- -	- -
89	Ac	Actinium	(Rn) 6d $7 s^{2}$		${ }^{2} D_{3 / 2}$	5.3807
90	Th	Thorium	(Rn) $6 d^{2} 7 s^{2}$		${ }^{3} F_{2}$	6.3067
91	Pa	Protactinium	(Rn) $5 f^{2} 6 d \quad 7 s^{2}$	A	${ }^{4} K_{11 / 2}{ }^{*}$	5.89
92	U	Uranium	(Rn) $5 f^{3} 6 d 7 s^{2}$	c	${ }^{5} L_{6}{ }^{*}$	6.1939
93	Np	Neptunium	$(\mathrm{Rn}) 5 f^{4} 6 d \quad 7 s^{2}$	t	${ }^{6} L_{11 / 2}{ }^{*}$	6.2657
94	Pu	Plutonium	(Rn) $5 f^{6} \quad 7 s^{2}$	1	${ }^{7} F_{0}$	6.0260
95	Am	Americium	(Rn) $5 f^{7} \quad 7 s^{2}$	n	${ }^{8} S_{7 / 2}$	5.9738
96	Cm	Curium	(Rn) $5 f^{7} 6 d \quad 7 s^{2}$	d	${ }^{9} D_{2}$	5.9914
97	Bk	Berkelium	(Rn) $5 f^{9} \quad 7 s^{2}$	d	${ }^{6} H_{15 / 2}$	6.1979
98	Cf	Californium	$(\mathrm{Rn}) 5 \mathrm{f}^{10} \quad 7 s^{2}$	s	${ }^{5} I_{8}$	6.2817
99	Es	Einsteinium	(Rn) $5 f^{11} \quad 7 s^{2}$		${ }^{4} I_{15 / 2}$	6.3676
100	Fm	Fermium	(Rn) $5 f^{12} \quad 7 s^{2}$		${ }^{3} H_{6}$	6.50
101	Md	Mendelevium	(Rn) $5 f^{13} \quad 7 s^{2}$		${ }^{2} F_{7 / 2}$	6.58
102	No	Nobelium	(Rn) $5 f^{14} \quad 7 s^{2}$		${ }^{1} S_{0}$	6.65
103	Lr	Lawrencium	$(\mathrm{Rn}) 5 f^{14} \quad 7 s^{2} 7 p$?		${ }^{2} P_{1 / 2}$?	4.9 ?
104	- -	- - - - -	(Rn) $5 f^{14} 6 d^{2} 7 s^{2}$?		${ }^{3} F_{2}$?	- - - -

* The usual $L S$ coupling scheme does not apply for these three elements. See the introductory note to the NIST table from which this table is taken.

6. Atomic and Nuclear Properties of Materials

Table 6.1 Abridged from pdg.lbl.gov/AtomicNuclearProperties by D.E. Groom (2017). See web pages for more detail about entries in this table and for several hundred others. Parentheses in the $d E / d x$ and density columns indicate gases at $20^{\circ} \mathrm{C}$ and 1 atm. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 nm); values $\gg 1$ in brackets indicate $(n-1) \times 10^{6}$ for gases at $0^{\circ} \mathrm{C}$ and 1 atm.

Material	Z	A	$\langle Z / A\rangle$	Nucl.co length $\left\{\mathrm{g} \mathrm{cm}^{-}\right.$	Nucl.inter length λ_{I} $\left\{\mathrm{g} \mathrm{~cm}^{-2}\right\}$	$\begin{gathered} \text { Rad.len. } \\ X_{0} \\ \left\{\mathrm{~g} \mathrm{~cm}^{-2}\right. \end{gathered}$	$\begin{gathered} d E /\left.d x\right\|_{\text {min }} \\ \{\mathrm{MeV} \\ \left.\mathrm{g}^{-1} \mathrm{~cm}^{2}\right\} \end{gathered}$	$\begin{gathered} \text { Density } \\ \left\{\mathrm{g} \mathrm{~cm}^{-3}\right\} \\ \left(\left\{\mathrm{g} \ell^{-1}\right\}\right) \end{gathered}$	Melting point (K)	Boiling point (K)	Refract. index @ Na D
H_{2}	1	1.008(7)	0.99212	42.8	52.0	63.05	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_{2}	1	$2.014101764(8)$	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	$0.125(0.166)$		4.220	1.02 [35.0]
Li	3	6.94 (2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	$9.0121831(5)$	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.419
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210	Sublime	at 4098.	K
N_{2}	7	14.007(2)	0.49976	61.1	89.7	37.99	(1.825)	$0.807(1.165)$	63.15	77.29	1.20[298.]
O_{2}	8	15.999(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_{2}	9	18.998403163(6)	0.47372	65.0	97.4	32.93	(1.676)	$1.507(1.580)$	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	$1.204(0.839)$	24.56	27.07	1.09 [67.1]
Al	13	26.9815385(7)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_{2}	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	$1.574(2.980)$	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	$1.396(1.662)$	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.630(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(5)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
Air (dry, 1 atm)			0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	[289]
Shielding concrete			0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)			0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass			0.42101	95.9	158.0	7.87	1.255	6.220			
Standard rock			0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (CH_{4})			0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$			0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Propane ($\mathrm{C}_{3} \mathrm{H}_{8}$)			0.58962	55.3	76.7	45.37	(2.262)	$0.493(1.868)$	85.52	231.0	
Butane ($\mathrm{C}_{4} \mathrm{H}_{10}$)			0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane ($\mathrm{C}_{8} \mathrm{H}_{18}$)			0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} \approx 23} \mathrm{CH}_{3}\right)$			0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type 6, 6/6)			0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbonate (Lexan)			0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene ($\left[\mathrm{CH}_{2} \mathrm{CH}_{2}\right]_{\mathrm{n}}$)			0.57034	56.1	78.5	44.77	2.079	0.89			
Polyethylene terephthalate (Mylar)			0.52037	58.9	84.9	39.95	1.848	1.40			
Polyimide film (Kapton)			0.51264	59.2	85.5	40.58	1.820	1.42			
Polymethylmethacrylate (acrylic)			0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropylene			0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene ($\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{2}\right]_{\mathrm{n}}$)			0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetrafluoroethylene (Teflon)			0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltoluene			0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum oxide (sapphire)			0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flouride (BaF_{2})			0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Bismuth germanate (BGO)			0.42065	96.2	159.1	7.97	1.251	7.130	1317.		2.15
Carbon dioxide gas (CO_{2})			0.49989	60.7	88.9	36.20	1.819	(1.842)			[449.]
Solid carbon dioxide (dry ice)			0.49989	60.7	88.9	36.20	1.787	1.563	Sublime	at 194.7	
Cesium iodide (CsI)			0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
Lithium fluoride (LiF)			0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
Lithium hydride (LiH)			0.50321	50.8	68.1	79.62	1.897	0.820	965.		
Lead tungstate (PbWO_{4})			0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
Silicon dioxide (SiO_{2}, fused quartz)			0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
Sodium chloride (NaCl)			0.47910	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodide (NaI)			0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water ($\mathrm{H}_{2} \mathrm{O}$)			0.55509	58.5	83.3	36.08	1.992	1.000	273.1	373.1	1.33
Silica aerogel			0.50093	65.0	97.3	27.25	1.740	0.200	$\left(0.03 \mathrm{H}_{2}\right.$, 0.97 S	

Material	Dielectric constant $\left(\kappa=\epsilon / \epsilon_{0}\right)$ () is $(\kappa-1) \times 10^{6}$ for gas	Young's modulus $\left[10^{6} \mathrm{psi}\right]$	Coeff. of thermal expansion $\left[10^{-6} \mathrm{~cm} / \mathrm{cm}^{\circ}{ }^{\circ} \mathrm{C}\right]$	Specific heat $\left[\mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}\right]$	Electrical resistivity $\left[\mu \Omega \mathrm{cm}\left(@{ }^{\circ} \mathrm{C}\right)\right]$	Thermal conductivity $\left[\mathrm{cal} / \mathrm{cm}-{ }^{\circ} \mathrm{C}-\mathrm{sec}\right]$
	(253.9)	-	-	-	-	-
H_{2}	(64)	-	-	-	-	-
He	-	-	56	0.86	-	-
Li	-	37	-	12.4	0.436	$5.885\left(0^{\circ}\right)$

7. Electromagnetic Relations

Revised September 2005 by H.G. Spieler (LBNL).

Quantity	Gaussian CGS	SI								
Conversion factors: Charge: Potential: Magnetic field:	$\begin{aligned} & 2.99792458 \times 10^{9} \text { esu } \\ & (1 / 299.792458) \text { statvolt } \quad(\text { ergs } / \text { esu }) \\ & 10^{4} \text { gauss }=10^{4} \text { dyne } / \text { esu } \\ & \hline \end{aligned}$	$\begin{aligned} & =1 \mathrm{C}=1 \mathrm{As} \\ & =1 \mathrm{~V}=1 \mathrm{~J} \mathrm{C}^{-1} \\ & =1 \mathrm{~T}=1 \mathrm{~N} \mathrm{~A}^{-1} \mathrm{~m}^{-1} \end{aligned}$								
	F $=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$								
	$\begin{aligned} & \boldsymbol{\nabla} \cdot \mathbf{D}=4 \pi \rho \\ & \boldsymbol{\nabla} \times \mathbf{H}-\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}=\frac{4 \pi}{c} \mathbf{J} \\ & \boldsymbol{\nabla} \cdot \mathbf{B}=0 \\ & \boldsymbol{\nabla} \times \mathbf{E}+\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=0 \end{aligned}$	$\begin{aligned} & \boldsymbol{\nabla} \cdot \mathbf{D}=\rho \\ & \boldsymbol{\nabla} \times \mathbf{H}-\frac{\partial \mathbf{D}}{\partial t}=\mathbf{J} \\ & \boldsymbol{\nabla} \cdot \mathbf{B}=0 \\ & \boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \end{aligned}$								
Constitutive relations:	$\mathbf{D}=\mathbf{E}+4 \pi \mathbf{P}, \quad \mathbf{H}=\mathbf{B}-4 \pi \mathbf{M}$	$\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}, \quad \mathbf{H}=\mathbf{B} / \mu_{0}-\mathbf{M}$								
Linear media:	$\begin{array}{lll} \mathbf{D}=\epsilon \mathbf{E}, \quad \mathbf{H}=\mathbf{B} / \mu \\ 1 & \\ 1 & \\ \end{array}$	$\begin{aligned} & \mathbf{D}=\epsilon \mathbf{E}, \quad \mathbf{H}=\mathbf{B} / \mu \\ & \epsilon_{0}=8.854187 \ldots \times 10^{-12} \mathrm{Fm}^{-1} \\ & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2} \end{aligned}$								
	$\begin{aligned} & \mathbf{E}=-\boldsymbol{\nabla} V-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \\ & \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} \end{aligned}$	$\begin{aligned} & \mathbf{E}=-\boldsymbol{\nabla} V-\frac{\partial \mathbf{A}}{\partial t} \\ & \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} \end{aligned}$								
	$\begin{aligned} & V=\sum_{\text {charges }} \frac{q_{i}}{r_{i}}=\int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} d^{3} x^{\prime} \\ & \mathbf{A}=\frac{1}{c} \oint \frac{I \mathrm{~d} \ell}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|}=\frac{1}{c} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} d^{3} x^{\prime} \end{aligned}$	$\begin{aligned} & V=\frac{1}{4 \pi \epsilon_{0}} \sum_{\text {charges }} \frac{q_{i}}{r_{i}}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} d^{3} x^{\prime} \\ & \mathbf{A}=\frac{\mu_{0}}{4 \pi} \oint \frac{I \mathbf{d} \boldsymbol{\ell}}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} d^{3} x^{\prime} \end{aligned}$								
	$\begin{aligned} & \mathbf{E}_{\\|}^{\prime}=\mathbf{E}_{\\|} \\ & \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right) \\ & \mathbf{B}_{\\|}^{\prime}=\mathbf{B}_{\\|} \\ & \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\frac{1}{c} \mathbf{v} \times \mathbf{E}\right) \end{aligned}$	$\begin{aligned} & \mathbf{E}_{\\|}^{\prime}=\mathbf{E}_{\\|} \\ & \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \times \mathbf{B}\right) \\ & \mathbf{B}_{\\|}^{\prime}=\mathbf{B}_{\\|} \\ & \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\frac{1}{c^{2}} \mathbf{v} \times \mathbf{E}\right) \end{aligned}$								
$\frac{1}{4 \pi \epsilon_{0}}=c^{2} \times 10^{-7} \mathrm{NA}^{-2}=8.98755 \ldots \times 10^{9} \mathrm{~m} \mathrm{~F}^{-1} ; \frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{~N} \mathrm{~A}^{-2} ; c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$										

7.1. Impedances (SI units)

$\rho=$ resistivity at room temperature in $10^{-8} \Omega \mathrm{~m}$:

$$
\begin{array}{ll}
\sim 1.7 \text { for } \mathrm{Cu} & \sim 5.5 \text { for } \mathrm{W} \\
\sim 2.4 \text { for } \mathrm{Au} & \sim 73 \text { for } \mathrm{SS} 304 \\
\sim 2.8 \text { for } \mathrm{Al} & \sim 100 \text { for Nichrome } \\
(\mathrm{Al} \text { alloys may have double the } \mathrm{Al} \text { value. })
\end{array}
$$

For alternating currents, instantaneous current I, voltage V, angular frequency ω :

$$
\begin{equation*}
V=V_{0} e^{j \omega t}=Z I \tag{7.1}
\end{equation*}
$$

Impedance of self-inductance $L: Z=j \omega L$.
Impedance of capacitance $C: Z=1 / j \omega C$.
Impedance of free space: $Z=\sqrt{\mu_{0} / \epsilon_{0}}=376.7 \Omega$.
High-frequency surface impedance of a good conductor:

$$
\begin{gather*}
Z=\frac{(1+j) \rho}{\delta}, \quad \text { where } \delta=\text { skin depth } ; \tag{7.2}\\
\delta=\sqrt{\frac{\rho}{\pi \nu \mu}} \approx \frac{6.6 \mathrm{~cm}}{\sqrt{\nu(\mathrm{~Hz})}} \text { for } \mathrm{Cu} \tag{7.3}
\end{gather*}
$$

7.2. Capacitors, inductors, and transmission Lines

The capacitance between two parallel plates of area A spaced by the distance d and enclosing a medium with the dielectric constant ε is

$$
\begin{equation*}
C=K \varepsilon A / d \tag{7.4}
\end{equation*}
$$

where the correction factor K depends on the extent of the fringing field. If the dielectric fills the capacitor volume without extending beyond the electrodes. the correction factor $K \approx 0.8$ for capacitors of typical geometry.
The inductance at high frequencies of a straight wire whose length ℓ is much greater than the wire diameter d is

$$
\begin{equation*}
L \approx 2.0\left[\frac{\mathrm{nH}}{\mathrm{~cm}}\right] \cdot \ell\left(\ln \left(\frac{4 \ell}{d}\right)-1\right) \tag{7.5}
\end{equation*}
$$

For very short wires, representative of vias in a printed circuit board, the inductance is

$$
\begin{equation*}
L(\text { in } \mathrm{nH}) \approx \ell / d \tag{7.6}
\end{equation*}
$$

A transmission line is a pair of conductors with inductance L and capacitance C. The characteristic impedance $Z=\sqrt{L / C}$ and the phase velocity $v_{p}=1 / \sqrt{L C}=1 / \sqrt{\mu \varepsilon}$, which decreases with the inverse square root of the dielectric constant of the medium. Typical coaxial and ribbon cables have a propagation delay of about $5 \mathrm{~ns} / \mathrm{cm}$. The impedance of a coaxial cable with outer diameter D and inner diameter d is

$$
\begin{equation*}
Z=60 \Omega \cdot \frac{1}{\sqrt{\varepsilon_{r}}} \ln \frac{D}{d} \tag{7.7}
\end{equation*}
$$

where the relative dielectric constant $\varepsilon_{r}=\varepsilon / \varepsilon_{0}$. A pair of parallel wires of diameter d and spacing $a>2.5 d$ has the impedance

$$
\begin{equation*}
Z=120 \Omega \cdot \frac{1}{\sqrt{\varepsilon_{r}}} \ln \frac{2 a}{d} \tag{7.8}
\end{equation*}
$$

This yields the impedance of a wire at a spacing h above a ground plane,

$$
\begin{equation*}
Z=60 \Omega \cdot \frac{1}{\sqrt{\varepsilon_{r}}} \ln \frac{4 h}{d} \tag{7.9}
\end{equation*}
$$

A common configuration utilizes a thin rectangular conductor above a ground plane with an intermediate dielectric (microstrip). Detailed calculations for this and other transmission line configurations are given by Gunston.*

[^2]
7.3. Synchrotron radiation (CGS units)

For a particle of charge e, velocity $v=\beta c$, and energy $E=\gamma m c^{2}$, traveling in a circular orbit of radius R, the classical energy loss per revolution δE is

$$
\begin{equation*}
\delta E=\frac{4 \pi}{3} \frac{e^{2}}{R} \beta^{3} \gamma^{4} \tag{7.10}
\end{equation*}
$$

For high-energy electrons or positrons $(\beta \approx 1)$, this becomes

$$
\begin{equation*}
\delta E(\text { in } \mathrm{MeV}) \approx 0.0885[E(\text { in } \mathrm{GeV})]^{4} / R(\text { in } \mathrm{m}) \tag{7.11}
\end{equation*}
$$

For $\gamma \gg 1$, the energy radiated per revolution into the photon energy interval $d(\hbar \omega)$ is

$$
\begin{equation*}
d I=\frac{8 \pi}{9} \alpha \gamma F\left(\omega / \omega_{c}\right) d(\hbar \omega) \tag{7.12}
\end{equation*}
$$

where $\alpha=e^{2} / \hbar c$ is the fine-structure constant and

$$
\begin{equation*}
\omega_{c}=\frac{3 \gamma^{3} c}{2 R} \tag{7.13}
\end{equation*}
$$

is the critical frequency. The normalized function $F(y)$ is

$$
\begin{equation*}
F(y)=\frac{9}{8 \pi} \sqrt{3} y \int_{y}^{\infty} K_{5 / 3}(x) d x \tag{7.14}
\end{equation*}
$$

where $K_{5 / 3}(x)$ is a modified Bessel function of the third kind. For electrons or positrons,

$$
\begin{equation*}
\hbar \omega_{c}(\text { in } \mathrm{keV}) \approx 2.22[E(\text { in } \mathrm{GeV})]^{3} / R(\text { in } \mathrm{m}) \tag{7.15}
\end{equation*}
$$

Fig. 7.1 shows $F(y)$ over the important range of y.

Figure 7.1: The normalized synchrotron radiation spectrum $F(y)$.

For $\gamma \gg 1$ and $\omega \ll \omega_{c}$,

$$
\begin{equation*}
\frac{d I}{d(\hbar \omega)} \approx 3.3 \alpha(\omega R / c)^{1 / 3} \tag{7.16}
\end{equation*}
$$

whereas for

$$
\gamma \gg 1 \text { and } \omega \gtrsim 3 \omega_{c}
$$

$$
\begin{equation*}
\frac{d I}{d(\hbar \omega)} \approx \sqrt{\frac{3 \pi}{2}} \alpha \gamma\left(\frac{\omega}{\omega_{c}}\right)^{1 / 2} e^{-\omega / \omega_{c}}\left[1+\frac{55}{72} \frac{\omega_{c}}{\omega}+\ldots\right] \tag{7.17}
\end{equation*}
$$

The radiation is confined to angles $\lesssim 1 / \gamma$ relative to the instantaneous direction of motion. For $\gamma \gg 1$, where Eq. (7.12) applies, the mean number of photons emitted per revolution is

$$
\begin{equation*}
N_{\gamma}=\frac{5 \pi}{\sqrt{3}} \alpha \gamma \tag{7.18}
\end{equation*}
$$

and the mean energy per photon is

$$
\begin{equation*}
\langle\hbar \omega\rangle=\frac{8}{15 \sqrt{3}} \hbar \omega_{c} \tag{7.19}
\end{equation*}
$$

When $\langle\hbar \omega\rangle \gtrsim \mathrm{O}(E)$, quantum corrections are important.

See J.D. Jackson, Classical Electrodynamics, $3{ }^{\text {rd }}$ edition (John Wiley \& Sons, New York, 1998) for more formulae and details. (Note that earlier editions had ω_{c} twice as large as Eq. (7.13).

8. Naming Scheme for Hadrons

Revised August 2019 by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), E. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn U.), L. Tiator (KPH, JGU Mainz) and R.L. Workman (George Washington U.).

In the 1986 edition [1], the Particle Data Group extended and systematized the naming scheme for mesons and baryons. The extensions were necessary in order to name the new particles containing c or b quarks that were rapidly being discovered. With the discoveries of particles that are candidates for states with more complicated structures than just $q \bar{q}$ or $q q q$, it is necessary to extend the naming scheme again.

8.1 "Neutral-flavor" mesons

The naming of mesons is based on their quantum numbers. Although we use names established within the naive quark model, the name does not necessarily designate a (predominantly) $q \bar{q}$ state. In other words, the name provides information on the quantum numbers of a given state and not about its dominant component, which might well be $q \bar{q}$ (if allowed) or tetraquark, molecule, etc. In many cases, exotic states will be difficult to distinguish from $q \bar{q}$ states and will likely mix with them, and we make no attempt to, e.g., distinguish those that are "mostly gluonium" from those that are "mostly $q \bar{q}$."

Table 8.1: Symbols for mesons with strangeness and heavy-flavor quantum numbers equal to zero. States that do not yet appear in the RPP are listed in parentheses.

$J^{P C}=\{$	$\begin{aligned} & \hline 0^{-+} \\ & 2^{-+} \end{aligned}$	$\begin{aligned} & 1+- \\ & 3^{+-} \end{aligned}$	$\begin{aligned} & 1^{--} \\ & 2^{--} \end{aligned}$	$\begin{aligned} & \hline 0^{++} \\ & 1^{++} \end{aligned}$
Minimal quark content				
$\overline{u d}, u \bar{u}-d d, d \bar{u}(I=1)$	π	b	ρ	a
$d \bar{d}+u \bar{u}$ and/or $s \bar{s}(I=0)$	η, η^{\prime}	h, h^{\prime}	ω, ϕ	f, f^{\prime}
$c \bar{c}$	η_{c}	h_{c}	ψ^{*}	χ c
$b \bar{b}$	η_{b}	h_{b}	Υ	χ_{b}
$I=1$ with $c \bar{c}$	$\left(\Pi_{c}\right)$	Z_{c}	R_{c}	$\left(W_{c}\right)$
$I=1$ with $b \bar{b}$	$\left(\Pi_{b}\right)$	Z_{b}	$\left(R_{b}\right)$	$\left(W_{b}\right)$

* The J / ψ remains the J / ψ.

Table 8.1 shows the names for mesons having strangeness and all heavy-flavor quantum numbers equal to zero. The rows of Table 8.1 give the minimal $q \bar{q}$ content. The columns give the possible parity/charge-conjugation states,

$$
P C=-+,+-,--, \text { and }++.
$$

Within the naive quark model, these combinations correspond one-to-one to the angular-momentum state ${ }^{2 S+1} L_{J}$ of the $q \bar{q}$ system being

$$
{ }^{1}(L \text { even })_{J},{ }^{1}(L \text { odd })_{J},{ }^{3}(L \text { even })_{J}, \text { or }{ }^{3}(L \text { odd })_{J}
$$

respectively. Here S, L, and J are the spin, orbital, and total angular momenta of the $q \bar{q}$ system. Within the naive quark model, the quantum numbers are related by $P=(-1)^{L+1}$, $C=(-1)^{L+S}$, and G parity $=(-1)^{L+S+I}$, where the quantum number C is only relevant to neutral mesons with neutral-flavor quantum numbers and G extends to isovector mesons; see the review on the quark model. These expressions impose restrictions on the quantum numbers that are allowed for $q \bar{q}$ states. However, they do not apply to more complicated structures such as tetraquarks.

The spin J is added as a subscript in the name except for pseudoscalar and vector mesons, and the mass is added in parentheses for mesons that decay strongly. However, for some of the familiar mesons (e.g. $\eta^{\prime}, \phi, \omega$), we omit the mass.
Measurements of the mass, quark content (where relevant), and quantum numbers I, J, P, and C (or G) of a meson thus deter-
mine its symbol. Conversely, these properties may be inferred unambiguously from the symbol. The name X is used for states with still unknown quantum numbers.

The mass label used in particle names is chosen using the best information available when a name is assigned. A more accurate value of a particle mass may become available at a later time. PDG will decide on a case-by-case basis whether to revise the mass label, taking into account the updated information.

With u, d, and s quarks, there are two isospin- 0 mesons. A prime is used to distinguish one from the other (e.g. η and η^{\prime}). Vector mesons decoupling to $u \bar{u}+d \bar{d}$ and $s \bar{s}$ (ideal mixing) are labeled ω and ϕ, respectively. As usual, we assign the spectroscopic name (e.g. $\Upsilon(1 S))$ as the primary name to most of those ψ, Υ, and χ states whose spectroscopic identity is known. We use the form $\Upsilon(9460)$ as an alternative, and as the primary name when the spectroscopic identity is not known.

Since the top quark is so heavy that it decays too rapidly to form bound states, no name is assigned to structures like $t \bar{t}$.

Mesons with quantum numbers $J^{P C}=$ $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}$, etc. cannot be $q \bar{q}$. For such a "manifestly exotic" meson, we use the same symbol as for a $q \bar{q}$ meson; the exotic nature of the meson can be inferred from the values of the P and C quantum numbers (given by the symbol), and the spin J (given by the subscript). For example, an isospin-0 1^{-+}meson containing only u, d, and s quarks and antiquarks would be denoted η_{1} and an isospin-1 0^{--}meson containing only u, d, and s quarks and antiquarks would be denoted ρ_{0}.

The last two lines of Table 8.1 list isospin- 1 states that also contain hidden heavy flavor, i.e. whose minimal quark content includes $c \bar{c}$ or $b \bar{b}$. We have assigned new names to these states, in keeping with the practice in the light-quark sector, where the $I=$ 0 and $I=1$ states have distinct names. The currently established $I=1$ states in the heavy-quark sector have quantum numbers $J^{P C}=1^{+-}$and the proposed scheme keeps their original names Z.

8.2 Remarks on "neutral-flavor" mesons with hidden charm or bottom not classified as $q \bar{q}$

In the heavy-quark sector, there are several states with properties - such as masses, decay patterns, and widths - that are in disagreement with predictions from the naive quark model. For example, the vector state at 4260 MeV does not decay into $D \bar{D}$, although within the naive quark model its quantum numbers would call for this decay channel to be dominant. In recent literature, these states have been called X, Y, or Z, with their masses added in parentheses. This nomenclature conflicts with the rules outlined in the previous section, since the meson names are not related to their quantum numbers. However, these states have properties in conflict with the naive quark model and therefore deserve some special labeling.

Therefore in the Review of Particle Physics we will keep two names, one that carries the quantum number information and the other the original name. However, the former name will be given priority. In particular, it will be used when the particle appears as a decay product. Thus, in the Listings as well as Summary Tables from the 2018 edition onwards (listed are only some examples of the particles that appear in the Summary Tables),

- $X(3872)$ will appear as ' $\chi_{c 1}(3872)$ also known as $X(3872)$ ';
- $X(3900)^{ \pm}$will appear as ' $Z_{c}(3900)^{ \pm}$';
- $X(4260)$ will appear as ' $\psi(4260)$ also known as $Y(4260)$ ';

In addition, states with quantum numbers allowed by the naive quark model but showing some peculiarities, such as an unusual decay pattern, will have the following information in the header:

This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the minireview on non $q \bar{q}$ states.

The states that cannot be classified as $q \bar{q}$ states (such as charged states with strong decays to heavy quarkonia) will have in the header:

Properties incompatible with a $q \bar{q}$ structure (exotic state). See the minireview on non $q \bar{q}$ states.

The names Z_{c} and Z_{b} used in the literature for isovector states in the $c \bar{c}$ and $b \bar{b}$ sector, respectively, will now also be the official PDG names. No heavy isovector $P C=-+,--$, or ++ states have yet been confirmed, but provisional names for such states Π, R, and W, respectively - are listed in Table 8.1. Note that the heavy isovector $P C=++$ states were predicted to exist as spin partners of the Z states in [2], where the name W was also introduced.

By analogy to the light-quark sector, states with quantum numbers that are in conflict with the naive quark model are labeled according to their I, P, C, and spin J. The exotic nature can be inferred from the quantum numbers.

8.3 Mesons with nonzero S, C and/or B

Mesons with nonzero strangeness S or heavy flavor C and/or B are not eigenstates of charge conjugation, and in each of them one of the quarks is heavier than the other (as above, states containing top quarks are not considered). The rules have been and remain:

1. The main symbol is an upper-case italic letter indicating the heavier quark as follows:

$$
s \rightarrow \bar{K} \quad c \rightarrow D \quad b \rightarrow \bar{B},
$$

We use the convention that the flavor quantum number and the charge of a quark have the same sign. Thus the strangeness of the s quark is negative, the charm of the c quark is positive, and the bottomness of the b quark is negative. The effect of this convention is as follows: any flavor carried by a charged meson has the same sign as its charge. Thus the K^{+}, D^{+}, and B^{+}have positive strangeness, charm, and bottomness, respectively, and all have positive I_{3}. The D_{s}^{+}has positive charm and strangeness. Furthermore, the Δ (flavor) $=\Delta Q$ rule, best known for the strange kaons, applies to every flavor.
2. If the lighter quark is not a u or a d quark, its identity is given by a subscript. The D_{s}^{+}is an example.
3. When the spin-parity is in the natural series, $J^{P}=$ $0^{+}, 1^{-}, 2^{+}, \cdots$, a superscript "*" is added.
4. The spin is added as a subscript except for pseudoscalar or vector mesons.

8.4 Ordinary (3-quark) baryons

All baryons having quantum numbers consistent with a minimal quark content of three quarks are denoted by the symbols N, Δ, Λ, Σ, Ξ, and Ω introduced more than 50 years ago. These symbols are followed by J^{P} signifying their spin J and parity P. For those where the minimal content involves one or more heavier quarks than the light $(u, d$, and $s)$ quarks, subscripts are added to their symbols, (c and b) as appropriate. The rules are:

1. Baryons with miminal content of three u and/or d quarks are N 's (isospin $1 / 2$) or Δ 's (isospin $3 / 2$).
2. Baryons with two u and/or d quarks are Λ 's (isospin 0) or Σ 's (isospin 1). If the third quark is a c or b quark, its identity is given by a subscript.
3. Baryons with one u or d quark are Ξ 's (isospin $1 / 2$). One or two subscripts are used if one or both of the remaining quarks are heavy: thus $\Xi_{c}, \Xi_{c c}, \Xi_{b}$, etc.*
4. Baryons with no u or d quarks are Ω 's (isospin 0), and subscripts indicate any heavy-quark content.
5. A baryon that decays strongly has its mass in parentheses. Examples are the $\Delta(1232) 3 / 2^{+}, \Sigma(1385) 3 / 2^{+}, N(1440)$ $1 / 2^{+}, \Xi_{c}(2645) 3 / 2^{+}$.

In short, the minimal number of u plus d quarks together with the isospin determine the main symbol, and subscripts indicate any content of heavy quarks. A Σ always has isospin 1 , an Ω always has isospin 0 , etc.

8.5 Exotic baryons

In 2003, several experiments reported finding a strangeness $S=$ +1 , charge $Q=+1$ baryon, and one experiment reported finding an $S=-2, Q=-2$ baryon. Baryons with such quantum numbers cannot be made from three quarks, and thus they are exotic with respect to the naive quark model. However, these "discoveries" were then ruled out by many experiments with far larger statistics: See our 2008 Review [3].
More recently, the LHCb collaboration found a series of candidates for pentaquark states in the $J / \psi p$ system extracted from data on $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p[4,5] .{ }^{* *}$ These have the quantum numbers of excited nucleons, but have a minimal quark content of $c \bar{c} u u d$. Following the name established by the LHCb collaboration, we label these P_{c}^{+}(mass) J^{P}, with the mass given in parentheses.

8.6 Change of meson names

For the recently discovered particles above open-flavor threshold in the charmonium and bottomonium systems (previously the "XYZ" mesons), there are a number of differences between the names newly adopted by the PDG and those that have commonly appeared in the literature. Table 8.2 maps the names now used in the PDG to former commonly used names.

Footnotes and References:

* See the "Note on Charmed Baryons" in the Charmed Baryon Listings.
** See our review "Pentaquarks" in the 2016 Edition.
Table 8.2: A comparison of current PDG names to former names commonly used in the literature.

Mesons with complete $I^{G} J^{P C}$ assignment	
PDG Name	Former Common Name(s)
$\psi_{2}(3823)^{*}$	$X(3823)$
$\chi_{c 1}(3872)$	$X(3872)$
$Z_{c}(3900)$	$Z_{c}(3900)$
$\chi_{c 2}(3930)^{\dagger}$	$\chi_{c 2}(2 P), Z(3930)$
$\chi_{c 1}(4140)$	$Y(4140)$
$Z_{c}(4200)$	$Z_{c}(4200)$
$\psi(4230)$	$Y(4230)$
$R_{c 0}(4240)$	$Z_{c}(4240)$
$\psi(4260)$	$Y(4260)$
$\chi_{c 1}(4274)$	$Y(4274)$
$\psi(4360)$	$Y(4360)$
$Z_{c}(4430)$	$Z_{c}(4430)$
$\chi_{c 0}(4500)$	$X(4500)$
$\psi(4660)$	$X(4630), Y(4660)$
$\chi_{c 0}(4700)$	$X(4700)$
$Z_{b}(10610)$	$Z_{b}(10610)$
$Z_{b}(10650)$	$Z_{b}^{(\prime)}(10650)$
Mesons with incomplete $I^{G} J^{P C}$ assignment	
PDG Name	Former Common Name(s)
$X(3915)^{\ddagger}$	$\chi_{c 0}(3915), X(3915), Y(3940)$
$X(3940)$	$X(3940)$
$X(4020)$	$Z_{c}^{(\prime)}(4020)$
$X(4050)^{ \pm}$	$Z_{1}(4050)$
$X(4055)^{ \pm}$	$Z_{c}(4055)$
$X(4160)$	$X(4160)$
$X(4250)^{ \pm}$	$Z_{2}(4250)$
$X(4350)$	$X(4350)$

*The 2016 edition used $\psi(3823)$.
${ }^{\dagger}$ The 2016 edition used $\chi_{c 2}(2 P)$. The mass is now used in the name following the current prescription.
${ }^{\ddagger}$ The 2016 edition used $\chi_{c 0}(3915)$. The $J^{P C}$ have since been questioned.

References

[1] M. Aguilar-Benitez et al. (Particle Data Group), Phys. Lett. 170B, 1 (1986).
[2] M. B. Voloshin, Phys. Rev. D84, 031502 (2011), [arXiv:1105.5829].
[3] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).
[4] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015),
[arXiv:1507.03414].
[5] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 22, 222001 (2019), [arXiv:1904.03947].
Standard Model and Related Topics
9. Quantum chromodynamics (rev.) 153
10. Electroweak model and constraints on new physics (rev.) 180
11. Higgs boson physics, status of (rev.) 203
12. CKM quark-mixing matrix (rev.) 261
13. $C P$ violation in the quark sector (rev.) 271
14. Neutrino mass, mixing, and oscillations (new) 285
15. Quark model (rev.) 312
16. Heavy-quark \& soft-collinear effective theory (rev.) 325
17. Lattice quantum chromodynamics (rev.) 333
18. Structure functions (rev.) 347
19. Fragmentation functions in $e^{+} e^{-}, e p$ and $p p$ collisions (rev.) 368
20. High Energy Soft QCD and Diffraction (new) 385

9. Quantum Chromodynamics

Revised August 2019 by J. Huston (Michigan State U.), K. Rabbertz (KIT) and G. Zanderighi (MPI Munich).

9.1 Basics

Quantum Chromodynamics (QCD), the gauge field theory that describes the strong interactions of colored quarks and gluons, is the $\mathrm{SU}(3)$ component of the $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ Standard Model of Particle Physics. The Lagrangian of QCD is given by

$$
\begin{equation*}
\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \gamma^{\mu} \partial_{\mu} \delta_{a b}-g_{s} \gamma^{\mu} t_{a b}^{C} \mathcal{A}_{\mu}^{C}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu} \tag{9.1}
\end{equation*}
$$

where repeated indices are summed over. The γ^{μ} are the Dirac γ-matrices. The $\psi_{q, a}$ are quark-field spinors for a quark of flavor q and mass m_{q}, with a color-index a that runs from $a=1$ to $N_{c}=3$, i.e. quarks come in three "colors." Quarks are said to be in the fundamental representation of the $\mathrm{SU}(3)$ color group.

The \mathcal{A}_{μ}^{C} correspond to the gluon fields, with C running from 1 to $N_{c}^{2}-1=8$, i.e. there are eight kinds of gluon. Gluons transform under the adjoint representation of the $\mathrm{SU}(3)$ color group. The $t_{a b}^{C}$ correspond to eight 3×3 matrices and are the generators of the $\mathrm{SU}(3)$ group ($c f$. the section on " $\mathrm{SU}(3)$ isoscalar factors and representation matrices" in this Review, with $\left.t_{a b}^{C} \equiv \lambda_{a b}^{C} / 2\right)$. They encode the fact that a gluon's interaction with a quark rotates the quark's color in $\mathrm{SU}(3)$ space. The quantity $g_{s}\left(\right.$ or $\alpha_{s}=\frac{g_{s}^{2}}{4 \pi}$) is the QCD coupling constant. Besides quark masses, who have electroweak origin, it is the only fundamental parameter of QCD. Finally, the field tensor $F_{\mu \nu}^{A}$ is given by

$$
\begin{align*}
F_{\mu \nu}^{A} & =\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\mu}^{A}-g_{s} f_{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C}, \\
{\left[t^{A}, t^{B}\right] } & =i f_{A B C} t^{C}, \tag{9.2}
\end{align*}
$$

where the $f_{A B C}$ are the structure constants of the $\mathrm{SU}(3)$ group.
Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e. color-neutral) combinations of quarks, anti-quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative expansions in the coupling. The Feynman rules of QCD involve a quark-antiquark-gluon ($q \bar{q} g$) vertex, a 3gluon vertex (both proportional to g_{s}), and a 4-gluon vertex (proportional to g_{s}^{2}). A full set of Feynman rules is to be found for example in Refs. [1,2].

Useful color-algebra relations include: $t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}$, where $C_{F} \equiv\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right)=4 / 3$ is the color-factor ("Casimir") associated with gluon emission from a quark; $f_{A C D} f_{B C D}=C_{A} \delta_{A B}$, where $C_{A} \equiv N_{c}=3$ is the color-factor associated with gluon emission from a gluon; $t_{a b}^{A} t_{a b}^{B}=T_{R} \delta_{A B}$, where $T_{R}=1 / 2$ is the color-factor for a gluon to split to a $q \bar{q}$ pair.

There is freedom for an additional CP-violating term to be present in the QCD Lagrangian, $\theta \frac{\alpha_{s}}{8 \pi} F_{\mu \nu}^{A} \tilde{F}^{A \mu \nu}$, where $\tilde{F}^{A \mu \nu}$ is the dual of the gluon field tensor, $\frac{1}{2} \epsilon_{\mu \nu \sigma \rho} F^{A \sigma \rho}$, where $\epsilon_{\mu \nu \sigma \rho}$ is the fully antisymmetric Levi-Civita symbol. Experimental limits on ultracold neutrons [3,4] and atomic mercury [5] constrain the QCD vacuum angle to satisfy $|\theta| \lesssim 10^{-10}$. Further discussion is to be found in Ref. [6] and in the Axions section in the Listings of this Review.

This section will concentrate mainly on perturbative aspects of QCD as they relate to collider physics. Related textbooks and lecture notes include Refs. [1, 2, 7-9]. Aspects specific to Monte Carlo event generators are reviewed in the dedicated section 41. Lattice QCD is also reviewed in a section of its own, Sec. 17, with further discussion of perturbative and non-perturbative aspects to be found in the sections on "Quark Masses", "The CKM quarkmixing matrix", "Structure Functions", "Fragmentation Functions", "Passage of Particles Through Matter" and "Heavy-Quark and Soft-Collinear Effective Theory" in this Review.

9.1.1 Running coupling

In the framework of perturbative QCD (pQCD), predictions for observables are expressed in terms of the renormalized coupling $\alpha_{s}\left(\mu_{R}^{2}\right)$, a function of an (unphysical) renormalization scale μ_{R}. When one takes μ_{R} close to the scale of the momentum transfer Q
in a given process, then $\alpha_{s}\left(\mu_{R}^{2} \simeq Q^{2}\right)$ is indicative of the effective strength of the strong interaction in that process.

The coupling satisfies the following renormalization group equation (RGE):

$$
\begin{equation*}
\mu_{R}^{2} \frac{d \alpha_{s}}{d \mu_{R}^{2}}=\beta\left(\alpha_{s}\right)=-\left(b_{0} \alpha_{s}^{2}+b_{1} \alpha_{s}^{3}+b_{2} \alpha_{s}^{4}+\cdots\right) \tag{9.3}
\end{equation*}
$$

where $b_{0}=\left(11 C_{A}-4 n_{f} T_{R}\right) /(12 \pi)=\left(33-2 n_{f}\right) /(12 \pi)$ is referred to as the 1-loop β-function coefficient, the 2-loop coefficient is $b_{1}=$ $\left(17 C_{A}^{2}-n_{f} T_{R}\left(10 C_{A}+6 C_{F}\right)\right) /\left(24 \pi^{2}\right)=\left(153-19 n_{f}\right) /\left(24 \pi^{2}\right)$, and the 3-loop coefficient is $b_{2}=\left(2857-\frac{5033}{9} n_{f}+\frac{325}{27} n_{f}^{2}\right) /\left(128 \pi^{3}\right)$ for the $\mathrm{SU}(3)$ values of C_{A} and C_{F}. Here n_{f} is the number of quark flavours. The 4 -loop coefficient, b_{3}, is to be found in Refs. [10,11], while the 5 -loop coefficient, b_{4}, is in Refs. [12-16]. The coefficients b_{2} and b_{3} (and beyond) are renormalization-scheme-dependent and given here in the modified minimal subtraction $(\overline{\mathrm{MS}})$ scheme [17], by far the most widely used scheme in QCD and the one adopted in the following.
The minus sign in Eq. (9.3) is the origin of Asymptotic Freedom $[18,19]$, i.e. the fact that the strong coupling becomes weak for processes involving large momentum transfers ("hard processes"). For momentum transfers in the $0.1-1 \mathrm{TeV}$ range, $\alpha_{s} \sim 0.1$, while the theory is strongly interacting for scales around and below 1 GeV .
The β-function coefficients, the b_{i}, are given for the coupling of an effective theory in which n_{f} of the quark flavors are considered light $\left(m_{q} \ll \mu_{R}\right)$, and in which the remaining heavier quark flavors decouple from the theory. One may relate the coupling for the theory with $n_{f}+1$ light flavors to that with n_{f} flavors through an equation of the form

$$
\begin{align*}
\alpha_{s}^{\left(n_{f}+1\right)}\left(\mu_{R}^{2}\right)= & \alpha_{s}^{\left(n_{f}\right)}\left(\mu_{R}^{2}\right) \times \\
& \times\left(1+\sum_{n=1}^{\infty} \sum_{\ell=0}^{n} c_{n \ell}\left[\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{R}^{2}\right)\right]^{n} \ln ^{\ell} \frac{\mu_{R}^{2}}{m_{h}^{2}}\right) \tag{9.4}
\end{align*}
$$

where m_{h} is the mass of the $\left(n_{f}+1\right)^{\text {th }}$ flavor, and the first few $c_{n \ell}$ coefficients are $c_{11}=\frac{1}{6 \pi}, c_{10}=0, c_{22}=c_{11}^{2}, c_{21}=\frac{11}{24 \pi^{2}}$, and $c_{20}=-\frac{11}{72 \pi^{2}}$ when m_{h} is the $\overline{\mathrm{MS}}$ mass at scale m_{h}, while $c_{20}=$ $\frac{7}{24 \pi^{2}}$ when m_{h} is the pole mass (mass definitions are discussed below in Sec. (9.1.2) and in the review on "Quark Masses"). Terms up to $c_{4 \ell}$ are to be found in Refs. [20,21]. Numerically, when one chooses $\mu_{R}=m_{h}$, the matching is a modest effect, owing to the zero value for the c_{10} coefficient. Relations between n_{f} and ($n_{f}+2$) flavors where the two heavy flavors are close in mass are given to three loops in Ref. [22].
Working in an energy range where the number of flavors is taken constant, a simple exact analytic solution exists for Eq. (9.3) only if one neglects all but the b_{0} term, giving $\alpha_{s}\left(\mu_{R}^{2}\right)=$ $\left(b_{0} \ln \left(\mu_{R}^{2} / \Lambda^{2}\right)\right)^{-1}$. Here Λ is a constant of integration, which corresponds to the scale where the perturbatively-defined coupling would diverge. Its value is indicative of the energy range where non-perturbative dynamics dominates. A convenient approximate analytic solution to the RGE that includes terms up to b_{4} is given by solving iteratively Eq. (9.3)

$$
\begin{align*}
\alpha_{s}\left(\mu_{R}^{2}\right) & \simeq \frac{1}{b_{0} t}\left(1-\frac{b_{1}}{b_{0}^{2}} \frac{\ell}{t}+\frac{b_{1}^{2}\left(\ell^{2}-\ell-1\right)+b_{0} b_{2}}{b_{0}^{4} t^{2}}+\right. \\
& +\frac{b_{1}^{3}\left(-2 \ell^{3}+5 \ell^{2}+4 \ell-1\right)-6 b_{0} b_{2} b_{1} \ell+b_{0}^{2} b_{3}}{2 b_{0}^{6} t^{3}}+ \\
+ & \frac{18 b_{0} b_{2} b_{1}^{2}\left(2 \ell^{2}-\ell-1\right)+b_{1}^{4}\left(6 \ell^{4}-26 \ell^{3}-9 \ell^{2}+24 \ell+7\right)}{6 b_{0}^{8} t^{4}} \\
& \left.+\frac{-b_{0}^{2} b_{3} b_{1}(12 \ell+1)+2 b_{0}^{2}\left(5 b_{2}^{2}+b_{0} b_{4}\right)}{6 b_{0}^{8} t^{4}}\right) \tag{9.5}
\end{align*}
$$

with $t \equiv \ln \frac{\mu_{R}^{2}}{\Lambda^{2}}$ and $\ell=\ln t$, again parametrized in terms of a constant Λ. Note that Eq. (9.5) is one of several possible approximate 4-loop solutions for $\alpha_{s}\left(\mu_{R}^{2}\right)$, and that a value for Λ only defines $\alpha_{s}\left(\mu_{R}^{2}\right)$ once one knows which particular approximation is being used. An alternative to the use of formulas such as Eq. (9.5) is to solve the RGE exactly, numerically (including the discontinuities, Eq. (9.4), at flavor thresholds). In such cases the quantity Λ does not directly arise (though it can be defined, cf. Eqs. (1-3) of Ref. [23]). For these reasons, in determinations of the coupling, it has become standard practice to quote the value of α_{s} at a given scale (typically the mass of the Z boson, M_{Z}) rather than to quote a value for Λ.

A discussion of determinations of the coupling and a graph illustrating its scale dependence ("running") are to be found in Section 9.4. The RunDec package [24-26] is often used to calculate the evolution of the coupling. For a discussion of electroweak effects in the evolution of the QCD coupling, see Ref. [27] and references therein.

9.1.2 Quark masses

Free quarks have never been observed, which is understood as a result of a long-distance, confining property of the strong QCD force: up, down, strange, charm, and bottom quarks all hadronize, i.e. become part of a meson or baryon, on a timescale $\sim 1 / \Lambda$; the top quark instead decays before it has time to hadronize. This means that the question of what one means by the quark mass is a complex one, which requires one to adopt a specific prescription. A perturbatively defined prescription is the pole mass, m_{q}, which corresponds to the position of the divergence of the propagator. This is close to one's physical picture of mass. However, when relating it to observable quantities, it suffers from substantial nonperturbative ambiguities (see e.g. Ref. [28-30]). An alternative is the $\overline{\mathrm{MS}}$ mass, $\bar{m}_{q}\left(\mu_{R}^{2}\right)$, which depends on the renormalization scale μ_{R}.

Results for the masses of heavier quarks are often quoted either as the pole mass or as the $\overline{\mathrm{MS}}$ mass evaluated at a scale equal to the mass, $\bar{m}_{q}\left(\bar{m}_{q}^{2}\right)$; light quark masses are often quoted in the $\overline{\mathrm{MS}}$ scheme at a scale $\mu_{R} \sim 2 \mathrm{GeV}$. The pole and $\overline{\mathrm{MS}}$ masses are related by a series that starts as $m_{q}=\bar{m}_{q}\left(\bar{m}_{q}^{2}\right)\left(1+\frac{4 \alpha_{s}\left(\bar{m}_{q}^{2}\right)}{3 \pi}+\right.$ $\mathcal{O}\left(\alpha_{s}^{2}\right)$), while the scale-dependence of $\overline{\mathrm{MS}}$ masses is given at lowest order by

$$
\begin{equation*}
\mu_{R}^{2} \frac{d \bar{m}_{q}\left(\mu_{R}^{2}\right)}{d \mu_{R}^{2}}=\left[-\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right] \bar{m}_{q}\left(\mu_{R}^{2}\right) \tag{9.6}
\end{equation*}
$$

A more detailed discussion is to be found in a dedicated section of the Review, "Quark Masses", with detailed formulas also in Ref. [31] and references therein.

In perturbative QCD calculations of scattering processes, it is common to work in an approximation in which one neglects (i.e. sets to zero) the masses of all quarks, whose mass is significantly smaller than the momentum transfer in the process.

9.2 Structure of QCD predictions

9.2.1 Fully inclusive cross sections

The simplest observables in perturbative QCD are those that do not involve initial-state hadrons and that are fully inclusive with respect to details of the final state. One example is the total cross section for $e^{+} e^{-} \rightarrow$ hadrons at center-of-mass energy Q, for which one can write

$$
\begin{equation*}
\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons, } Q\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, Q\right)} \equiv R(Q)=R_{\mathrm{EW}}(Q)\left(1+\delta_{\mathrm{QCD}}(Q)\right) \tag{9.7}
\end{equation*}
$$

where $R_{\mathrm{EW}}(Q)$ is the purely electroweak prediction for the ratio and $\delta_{\mathrm{QCD}}(Q)$ is the correction due to QCD effects. To keep the discussion simple, we can restrict our attention to energies $Q \ll M_{Z}$, where the process is dominated by photon exchange (neglecting electroweak and finite-quark-mass corrections $R_{\mathrm{EW}}=N_{c} \sum_{q} e_{q}^{2}$, where the e_{q} are the electric charges of the quarks) and

$$
\begin{equation*}
\delta_{\mathrm{QCD}}(Q)=\sum_{n=1}^{\infty} c_{n} \cdot\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{n}+\mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right) \tag{9.8}
\end{equation*}
$$

The first four terms in the α_{s} series expansion are then to be found in Ref. [32],

$$
\begin{gather*}
c_{1}=1, \quad c_{2}=1.9857-0.1152 n_{f} \tag{9.9a}\\
c_{3}=-6.63694-1.20013 n_{f}-0.00518 n_{f}^{2}-1.240 \eta \tag{9.9b}\\
c_{4}=-156.61+18.775 n_{f}-0.7974 n_{f}^{2}+0.0215 n_{f}^{3} \\
\quad-\left(17.828-0.575 n_{f}\right) \eta \tag{9.9c}
\end{gather*}
$$

with $\eta=\left(\sum e_{q}\right)^{2} /\left(3 \sum e_{q}^{2}\right)$. For corresponding expressions including also Z exchange and finite-quark-mass effects, see Refs. [33-35].

A related series holds also for the QCD corrections to the hadronic decay width of the τ lepton, which essentially involves an integral of $R(Q)$ over the allowed range of invariant masses of the hadronic part of the τ decay (see e.g. Ref. [36]). The series expansions for QCD corrections to Higgs-boson hadronic (partial) decay widths in the limit of heavy top quark and massless light flavours at $\mathrm{N}^{4} \mathrm{LO}$ are given in Ref. [37].

One characteristic feature of Eqs. (9.8) and (9.9) is that the coefficients of α_{s}^{n} increase order by order: calculations in perturbative QCD tend to converge more slowly than would be expected based just on the size of α_{s}. The situation is significantly worse near thresholds or in the presence of tight kinematic cuts. Another feature is the existence of an extra "power-correction" term $\mathcal{O}\left(\Lambda^{4} / Q^{4}\right)$ in Eq. (9.8), which accounts for contributions that are fundamentally non-perturbative. All high-energy QCD predictions involve power corrections $(\Lambda / Q)^{p}$, although typically the suppression of these corrections with Q is smaller than given in Eq. (9.8) where $p=4$. The exact power p depends on the observable and, for many processes and observables, it is possible to introduce an operator product expansion and associate power suppressed terms with specific higher-dimension (non-perturbative) operators [38].
Scale dependence. In Eq. (9.8) the renormalization scale for α_{s} has been chosen equal to Q. The result can also be expressed in terms of the coupling at an arbitrary renormalization scale μ_{R},

$$
\begin{equation*}
\delta_{\mathrm{QCD}}(Q)=\sum_{n=1}^{\infty} \bar{c}_{n}\left(\frac{\mu_{R}^{2}}{Q^{2}}\right) \cdot\left(\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{\pi}\right)^{n}+\mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right) \tag{9.10}
\end{equation*}
$$

where $\bar{c}_{1}\left(\mu_{R}^{2} / Q^{2}\right) \equiv c_{1}, \bar{c}_{2}\left(\mu_{R}^{2} / Q^{2}\right)=c_{2}+\pi b_{0} c_{1} \ln \left(\mu_{R}^{2} / Q^{2}\right)$, $\bar{c}_{3}\left(\mu_{R}^{2} / Q^{2}\right)=c_{3}+\left(2 b_{0} c_{2} \pi+b_{1} c_{1} \pi^{2}\right) \times \ln \left(\mu_{R}^{2} / Q^{2}\right)+$ $b_{0}^{2} c_{1} \pi^{2} \ln ^{2}\left(\mu_{R}^{2} / Q^{2}\right)$, etc. Given an infinite number of terms in the α_{s} expansion, the μ_{R} dependence of the $\bar{c}_{n}\left(\mu_{R}^{2} / Q^{2}\right)$ coefficients will exactly cancel that of $\alpha_{s}\left(\mu_{R}^{2}\right)$, and the final result will be independent of the choice of μ_{R} : physical observables do not depend on unphysical scales. ${ }^{1}$
With just terms up to some finite $n=N$, a residual μ_{R} dependence will remain, which implies an uncertainty on the prediction of $R(Q)$ due to the arbitrariness of the scale choice. This uncertainty will be $\mathcal{O}\left(\alpha_{s}^{N+1}\right)$, i.e. of the same order as the neglected higher-order terms. For this reason it is customary to use QCD predictions' scale dependence as an estimate of the uncertainties due to neglected terms. One usually takes a central value for $\mu_{R} \sim Q$, in order to avoid the poor convergence of the perturbative series that results from the large $\ln ^{n-1}\left(\mu_{R}^{2} / Q^{2}\right)$ terms in the \bar{c}_{n} coefficients when $\mu_{R} \ll Q$ or $\mu_{R} \gg Q$. Uncertainties are then

[^3]commonly determined by varying μ_{R} by a factor of two up and down around the central scale choice. A more detailed discussion on the accuracy of theoretical predictions and on ways to estimate the theoretical uncertainties can be found in Section 9.2.4.

9.2.2 Processes with initial-state hadrons

Deep-Inelastic Scattering. To illustrate the key features of QCD cross sections in processes with initial-state hadrons, let us consider deep-inelastic scattering (DIS), $e p \rightarrow e+X$, where an electron e with four-momentum k emits a highly off-shell photon (momentum q) that interacts with the proton (momentum p). For photon virtualities $Q^{2} \equiv-q^{2}$ far above the squared proton mass (but far below the Z mass), the differential cross section in terms of the kinematic variables $Q^{2}, x=Q^{2} /(2 p \cdot q)$ and $y=(q \cdot p) /(k \cdot p)$ is

$$
\begin{equation*}
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{2 x Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)\right] \tag{9.11}
\end{equation*}
$$

where α is the electromagnetic coupling and $F_{2}\left(x, Q^{2}\right)$ and $F_{L}\left(x, Q^{2}\right)$ are proton structure functions, which encode the interaction between the photon (in given polarization states) and the proton. In the presence of parity-violating interactions (e.g. νp scattering) an additional F_{3} structure function is present. For an extended review, including equations for the full electroweak and polarized cases, see Sec. 18 of this Review.

Structure functions are not calculable in perturbative QCD, nor is any other cross section that involves QCD interactions and initial-state hadrons. To zeroth order in α_{s}, the structure functions are given directly in terms of non-perturbative parton (quark or gluon) distribution functions (PDFs),

$$
\begin{equation*}
F_{2}\left(x, Q^{2}\right)=x \sum_{q} e_{q}^{2} f_{q / p}(x), \quad F_{L}\left(x, Q^{2}\right)=0 \tag{9.12}
\end{equation*}
$$

where $f_{q / p}(x)$ is the non-perturbative PDF for quarks of type q inside the proton, i.e. the number density of quarks of type q inside a fast-moving proton that carry a fraction x of its longitudinal momentum (the quark flavor index q, here, is not to be confused with the photon momentum q in the lines preceding Eq. (9.11)). Recently, some first determinations on lattice started to appear [39-43] but there is also some debate about the underlying methods [44]. Accordingly, for all practical uses, PDFs are currently determined from data ($c f$. Sec. 18 of this Review and also Refs. $[45,46])^{2}$.

The above result, with PDFs $f_{q / p}(x)$ that are independent of the scale Q, corresponds to the "quark-parton model" picture in which the photon interacts with point-like free quarks, or equivalently, one has incoherent elastic scattering between the electron and individual constituents of the proton. As a consequence, in this picture also F_{2} and F_{L} are independent of Q [50]. When including higher orders in pQCD,

$$
\begin{align*}
& F_{2}\left(x, Q^{2}\right)=x \sum_{n=0}^{\infty} \frac{\alpha_{s}^{n}\left(\mu_{R}^{2}\right)}{(2 \pi)^{n}} \times \\
& \times \sum_{i=q, g} \int_{x}^{1} \frac{d z}{z} C_{2, i}^{(n)}\left(z, Q^{2}, \mu_{R}^{2}, \mu_{F}^{2}\right) f_{i / p}\left(\frac{x}{z}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{Q^{2}}\right) . \tag{9.13}
\end{align*}
$$

${ }^{2}$ PDFs can be determined from data in a global fit at LO, NLO and NNLO, depending on the order of the matrix elements used to describe the data. In modern global PDF fits, data are included from DIS, DY, jets and $t \bar{t}$ processes, and more LHC collider data, with the global PDF fits using 3000-4000 data points. There is a large change in the PDFs from LO to NLO, with a much smaller change from NLO to NNLO. LO PDFs can be unreliable for collider predictions, especially at low and high x. The uncertainties for the resulting PDFs are determined from the experimental uncertainties of the data that serves as input to the global PDF fits. The PDF uncertainties can either be determined through a Hessian approach or through the use of Monte Carlo replicas. It is now relatively straightforward to convert results from one approach to the other. The PDF4LHC15 PDF set is formed by combining replicas of the CT14, MMHT2014 and NNPDF3.0 PDF sets, at NLO and at NNLO [47]. Recently, theoretical uncertainties related to missing higher orders have been included in global PDF determinations but so far only at NLO $[48,49]$.

Just as in Eq. (9.10), we have a series in powers of $\alpha_{s}\left(\mu_{R}^{2}\right)$, each term involving a coefficient $C_{2, i}^{(n)}$ that can be calculated using Feynman graphs. At variance with the parton model, the PDFs in pQCD depend on an additional scale, the factorization scale μ_{F}, whose significance will be discussed in the following. Another important difference is the additional integral over z. The parton that comes from the proton can undergo a splitting before it interacts with the photon. As a result, the $C_{2, i}^{(n)}$ coefficients are functions that depend on the ratio, z, of the parton's momentum before and after radiation, and one must integrate over that ratio. For the electromagnetic component of DIS with light quarks and gluons, the zeroth order coefficient functions are $C_{2, q}^{(0)}=e_{q}^{2} \delta(1-z)$ and $C_{2, g}^{(0)}=0$. Corrections are known up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ (next-to-next-to-next-to-leading order, $\mathrm{N}^{3} \mathrm{LO}$) for both electromagnetic [51] and weak currents [52,53]. For heavy-quark production they are known to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ [54,55] (next-to-leading order, NLO, insofar as the series starts at $\left.\mathcal{O}\left(\alpha_{s}\right)\right)$. For precise comparisons of LHC cross sections with theoretical predictions, the photon PDF of the proton is also needed. It has been computed precisely in Ref. [56] and has now been implemented in most global PDF fits.

The majority of the emissions that modify a parton's momentum are collinear (parallel) to that parton, and do not depend on the fact that the parton is destined to interact with a photon. It is natural to view these emissions as modifying the proton's structure rather than being part of the coefficient function for the parton's interaction with the photon. Technically, one uses a procedure known as collinear factorization to give a well-defined meaning to this distinction, most commonly through the $\overline{\mathrm{MS}}$ factorization scheme, defined in the context of dimensional regularization. The $\overline{\mathrm{MS}}$ factorization scheme involves an arbitrary choice of factorization scale, μ_{F}, whose meaning can be understood roughly as follows: emissions with transverse momenta above μ_{F} are included in the $C_{2, q}^{(n)}\left(z, Q^{2}, \mu_{R}^{2}, \mu_{F}^{2}\right)$; emissions with transverse momenta below μ_{F} are accounted for within the PDFs, $f_{i / p}\left(x, \mu_{F}^{2}\right)$. While collinear factorization is generally believed to be valid for suitable (sufficiently inclusive) observables in processes with hard scales, Ref. [57], which reviews the factorization proofs in detail, is cautious in the statements it makes about their exhaustivity, notably for the hadron-collider processes which we shall discuss below. Further discussion is to be found in Refs. [58, 59].

The PDFs' resulting dependence on μ_{F} is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [60], which to leading order (LO) read ${ }^{3}$

$$
\begin{equation*}
\mu_{F}^{2} \frac{\partial f_{i / p}\left(x, \mu_{F}^{2}\right)}{\partial \mu_{F}^{2}}=\sum_{j} \frac{\alpha_{s}\left(\mu_{F}^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z} P_{i \leftarrow j}^{(1)}(z) f_{j / p}\left(\frac{x}{z}, \mu_{F}^{2}\right) \tag{9.14}
\end{equation*}
$$

with, for example, $P_{q}^{(1)} g(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$. The other LO splitting functions are listed in Sec. 18 of this Review, while results up to NLO, α_{s}^{2}, and NNLO, α_{s}^{3}, are given in Refs. [61] and [62] respectively. At $\mathrm{N}^{3} \mathrm{LO}$ accuracy, only partial results are currently available Ref. [63-65].

Splitting functions for polarized PDFs are given in Ref. [66]. Beyond LO, the coefficient functions are also μ_{F} dependent, for example $C_{2, i}^{(1)}\left(x, Q^{2}, \mu_{R}^{2}, \mu_{F}^{2}\right)=C_{2, i}^{(1)}\left(x, Q^{2}, \mu_{R}^{2}, Q^{2}\right)-$ $\ln \left(\frac{\mu_{F}^{2}}{Q^{2}}\right) \sum_{j} \int_{x}^{1} \frac{d z}{z} \quad \times C_{2, j}^{(0)}\left(\frac{x}{z}\right) P_{j \leftarrow i}^{(1)}(z)$. In certain contexts, higher-order QED and mixed QED-QCD corrections to the splitting functions are also needed [67].

As with the renormalization scale, the choice of factorization scale is arbitrary, but if one has an infinite number of terms in the perturbative series, the μ_{F}-dependencies of the coefficient functions and PDFs will compensate each other fully. Given only N terms of the series, a residual $\mathcal{O}\left(\alpha_{s}^{N+1}\right)$ uncertainty is associated with the ambiguity in the choice of μ_{F}. As with μ_{R}, varying μ_{F} provides an input in estimating uncertainties on predictions. In inclusive DIS predictions, the default choice for the scales is

[^4]usually $\mu_{R}=\mu_{F}=Q$.
As is the case for the running coupling, in DGLAP evolution one can introduce flavor thresholds near the heavy quark masses: below a given heavy quark's mass, that quark is not considered to be part of the proton's structure, while above it is considered to be part of the proton's structure and evolves with massless DGLAP splitting kernels. With appropriate parton distribution matching terms at threshold, such a variable flavor number scheme (VFNS), when used with massless coefficient functions, gives the full heavy-quark contributions at high Q^{2} scales. For scales near the threshold, it is instead necessary to appropriately adapt the standard massive coefficient functions to account for the heavyquark contribution already included in the PDFs [68-70].

At sufficiently small x and Q^{2} in inclusive DIS, resummation of small x logarithms may be necessary [71,72]. This may in fact have been observed in Refs. [73] based on HERA data [74], in a kinematic region where useful information for PDFs for collider predictions is present. A better description of the data in this region can be gained by small x resummation matched to NNLO [73,75], or by the inclusion of power-suppressed contributions [76] or by using an x-dependent factorization scale in the NNLO DIS predictions [77].
Hadron-hadron collisions. The extension to processes with two initial-state hadrons can be illustrated with the example of the total (inclusive) cross section for W boson production in collisions of hadrons h_{1} and h_{2}, which can be written as

$$
\begin{align*}
\sigma\left(h_{1} h_{2} \rightarrow W+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \\
& \times \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow W+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right) \tag{9.15}
\end{align*}
$$

where s is the squared center-of-mass energy of the collision. At LO, $n=0$, the hard (partonic) cross section $\hat{\sigma}_{i j \rightarrow W+X}^{(0)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)$ is simply proportional to $\delta\left(x_{1} x_{2} s-\right.$ M_{W}^{2}), in the narrow W-boson width approximation (see Sec. 50 of this Review for detailed expressions for this and other hard scattering cross sections). It is non-zero only for choices of i, j that can directly give a W, such as $i=u, j=\bar{d}$. At higher orders, $n \geq 1$, new partonic channels contribute, such as $g q$, and $x_{1} x_{2} s \geq M_{W}^{2}$ in the narrow W-boson width approximation.

Eq. (9.15) involves a collinear factorization between the hard cross section and the PDFs, just like Eq. (9.13). As long as the same factorization scheme is used in DIS and $p p$ or $p \bar{p}$ (usually the $\overline{\mathrm{MS}}$ scheme), then PDFs extracted in DIS can be directly used in $p p$ and $p \bar{p}$ predictions [57,78] (with the anti-quark distributions in an anti-proton being the same as the quark distributions in a proton).

Fully inclusive hard cross sections are known to NNLO, i.e. corrections up to relative order α_{s}^{2}, for Drell-Yan (DY) leptonpair and vector-boson production [79,80], Higgs-boson production in association with a vector boson [81], Higgs-boson production via vector-boson fusion [82] (in an approximation that factorizes the production of the two vector bosons), Higgs-pair production with full m_{t} dependence [83], top-antitop production [84] and vector-boson pair production [85-87]. ${ }^{4}$ Inclusive Higgs production through gluon fusion in the large m_{t} limit was calculated at $\mathrm{N}^{3} \mathrm{LO}[88,89]$. A calculation at this order, differential in the Higgs rapidity has also been presented recently [90]. Vector-boson fusion Higgs production is also known to $\mathrm{N}^{3} \mathrm{LO}$ [91] in the factorized approximation. A discussion of many other calculations for Higgs production processes is to be found in Ref. [92].
Photoproduction. γp (and $\gamma \gamma$) collisions are similar to $p p$ collisions, with the subtlety that the photon can behave in two ways:

[^5]there is "direct" photoproduction, in which the photon behaves as a point-like particle and takes part directly in the hard collision, with hard subprocesses such as $\gamma g \rightarrow q \bar{q}$; there is also resolved photoproduction, in which the photon behaves like a hadron, with non-perturbative partonic substructure and a corresponding PDF for its quark and gluon content, $f_{i / \gamma}\left(x, Q^{2}\right)$. While useful to understand the general structure of γp collisions, the distinction between direct and resolved photoproduction is not well defined beyond leading order, as discussed for example in Ref. [93].
The high-energy (BFKL) limit. In situations in which the total center-of-mass energy \sqrt{s} is much larger than all other momentum-transfer scales in the problem (e.g. Q in DIS, m_{b} for $b \bar{b}$ production in $p p$ collisions, etc.), each power of α_{s} beyond LO can be accompanied by a power of $\ln \left(s / Q^{2}\right)$ (or $\ln \left(s / m_{b}^{2}\right)$, etc.). This is variously referred to as the high-energy, small-x or Balitsky-Fadin-Kuraev-Lipatov (BFKL) limit [72, 94, 95]. Currently it is possible to account for the dominant and first subdominant $[96,97]$ power of $\ln s$ at each order of α_{s}, and also to estimate further sub-dominant contributions that are numerically large (see Refs. [98-101] and references therein). Progress towards NNLO is discussed in Ref. [102].

Physically, the summation of all orders in α_{s} can be understood as leading to a growth with s of the gluon density in the proton. At sufficiently high energies this implies non-linear effects (commonly referred to as parton saturation), whose treatment has been the subject of intense study (see for example Refs. [103,104] and references thereto).

9.2.3 Cross sections with phase-space restrictions

QCD final states always consist of hadrons, while perturbative QCD calculations deal with partons. Physically, an energetic parton fragments ("showers") into many further partons, which then, on later timescales, undergo a transition to hadrons ("hadronization"). Fixed-order perturbation theory captures only a small part of these dynamics. This does not matter for the fully inclusive cross sections discussed above: the showering and hadronization stages are approximately unitary, i.e. they do not substantially change the overall probability of hard scattering, because they occur long after it has taken place (they introduce at most a correction proportional to a power of the ratio of timescales involved, i.e. a power of Λ / Q, where Q is the hard scattering scale).

Less inclusive measurements, in contrast, may be affected by the extra dynamics. For those sensitive just to the main directions of energy flow (jet rates, event shapes, $c f$. Sec. 9.3.1) fixed-order perturbation theory is often still adequate, because showering and hadronization do not substantially change the overall energy flow. This means that one can make a prediction using just a small number of partons, which should correspond well to a measurement of the same observable carried out on hadrons. For observables that instead depend on distributions of individual hadrons (which, e.g., are the inputs to detector simulations), it is mandatory to account for showering and hadronization. The range of predictive techniques available for QCD final states reflects this diversity of needs of different measurements.

While illustrating the different methods, we shall for simplicity mainly use expressions that hold for $e^{+} e^{-}$scattering. The extension to cases with initial-state partons will be mostly straightforward (space constraints unfortunately prevent us from addressing diffraction and exclusive hadron-production processes; extensive discussion is to be found in Refs. $[105,106])$.

9.2.3.1 Soft and collinear limits

Before examining specific predictive methods, it is useful to be aware of a general property of QCD matrix elements in the soft and collinear limits. Consider a squared tree-level matrix element $\left|M_{n}^{2}\left(p_{1}, \ldots, p_{n}\right)\right|$ for the process $e^{+} e^{-} \rightarrow n$ partons with momenta p_{1}, \ldots, p_{n}, and a corresponding phase-space integration measure $d \Phi_{n}$. If particle n is a gluon, which becomes collinear (parallel) to another particle i and additionally its momentum tends to zero
(is "soft"), the matrix element simplifies as follows,

$$
\begin{align*}
& \lim _{\theta_{i n} \rightarrow 0, E_{n} \rightarrow 0} d \Phi_{n}\left|M_{n}^{2}\left(p_{1}, \ldots, p_{n}\right)\right| \\
& =d \Phi_{n-1}\left|M_{n-1}^{2}\left(p_{1}, \ldots, p_{n-1}\right)\right| \frac{\alpha_{s} C_{i}}{\pi} \frac{d \theta_{i n}^{2}}{\theta_{i n}^{2}} \frac{d E_{n}}{E_{n}} \tag{9.16}
\end{align*}
$$

where $C_{i}=C_{F}\left(C_{A}\right)$ if i is a quark (gluon). This formula has non-integrable divergences both for the inter-parton angle $\theta_{\text {in }} \rightarrow 0$ and for the gluon energy $E_{n} \rightarrow 0$, which are mirrored also in the structure of divergences in loop diagrams. These divergences are important for at least two reasons: firstly, they govern the typical structure of events (inducing many emissions either with low energy or at small angle with respect to hard partons); secondly, they will determine which observables can be calculated within perturbative QCD.

9.2.3.2 Fixed-order predictions

Let us consider an observable \mathcal{O} that is a function $\mathcal{O}_{n}\left(p_{1}, \ldots, p_{n}\right)$ of the four-momenta of the n final-state particles in an event (either partons or hadrons). In what follows, we shall consider the cross section for events weighted with the value of the observable, $\sigma_{\mathcal{O}}$. As examples, if $\mathcal{O}_{n} \equiv 1$ for all n, then $\sigma_{\mathcal{O}}$ is just the total cross section; if $\mathcal{O}_{n} \equiv \hat{\tau}\left(p_{1}, \ldots, p_{n}\right)$ where $\hat{\tau}$ is the value of the Thrust for that event (see Sec. 9.3.1.2), then the average value of the Thrust is $\langle\tau\rangle=\sigma_{\mathcal{O}} / \sigma_{\text {tot }} ;$ if $\mathcal{O}_{n} \equiv \delta\left(\tau-\hat{\tau}\left(p_{1}, \ldots, p_{n}\right)\right)$ then one gets the differential cross section as a function of the Thrust, $\sigma_{\mathcal{O}} \equiv d \sigma / d \tau$.

In the expressions below, we shall omit to write the nonperturbative power correction term, which for most common observables is proportional to a single power of Λ / Q.
Leading Order. If the observable \mathcal{O} is non-zero only for events with at least n final-state particles, then the LO QCD prediction for the weighted cross section in $e^{+} e^{-}$annihilation is

$$
\begin{equation*}
\sigma_{\mathcal{O}, L O}=\alpha_{s}^{n-2}\left(\mu_{R}^{2}\right) \int d \Phi_{n}\left|M_{n}^{2}\left(p_{1}, \ldots, p_{n}\right)\right| \mathcal{O}_{n}\left(p_{1}, \ldots, p_{n}\right) \tag{9.17}
\end{equation*}
$$

where the squared tree-level matrix element, $\left|M_{n}^{2}\left(p_{1}, \ldots, p_{n}\right)\right|$, including relevant symmetry factors, has been summed over all subprocesses (e.g. $\left.e^{+} e^{-} \rightarrow q \bar{q} q \bar{q}, e^{+} e^{-} \rightarrow q \bar{q} g g\right)$ and has had all factors of α_{s} extracted in front. In processes other than $e^{+} e^{-}$ collisions, the center-of-mass energy of the LO process is generally not fixed, and so the powers of the coupling are often brought inside the integrals, with the scale μ_{R} chosen event by event, as a function of the event kinematics.

Other than in the simplest cases (see the review on Cross Sections in this Review), the matrix elements in Eq. (9.17) are usually calculated automatically with programs such as CompHEP [107], MadGraph [108], Alpgen [109], Comix/Sherpa [110], and Helac/Phegas [111]. Some of these (CompHEP, MadGraph) use formulas obtained from direct evaluations of Feynman diagrams. Others (Alpgen, Helac/Phegas and Comix/Sherpa) use methods designed to be particularly efficient at high multiplicities, such as Berends-Giele recursion [112], which builds up amplitudes for complex processes from simpler ones (see also Refs. [113-116] for reviews on the topic and for other tree-level calculational methods).

The phase-space integration is usually carried out by Monte Carlo sampling, in order to deal with the possibly involved kinematic cuts that are used in the corresponding experimental measurements. Because of the divergences in the matrix element, Eq. (9.16), the integral converges only if the observable vanishes for kinematic configurations in which one of the n particles is arbitrarily soft or it is collinear to another particle. As an example, the cross section for producing any configuration of n partons will lead to an infinite integral, whereas a finite result will be obtained for the cross section for producing n deposits of energy (or jets, see Sec. 9.3.1.1), each above some energy threshold and well separated from each other in angle.

At a practical level, LO calculations can be carried out for $2 \rightarrow$ n processes with $n \lesssim 6-10$. The exact upper limit depends on the process, the method used to evaluate the matrix elements (recursive methods are more efficient), and the extent to which
the phase-space integration can be optimized to work around the large variations in the values of the matrix elements.

NLO. Given an observable that is non-zero starting from n finalstate particles, its prediction at NLO involves supplementing the LO result, Eq. (9.17), with the $2 \rightarrow(n+1)$-particle squared treelevel matrix element $\left(\left|M_{n+1}^{2}\right|\right)$, and the interference of a $2 \rightarrow n$ tree-level and $2 \rightarrow n$ 1-loop amplitude $\left(2 \operatorname{Re}\left(M_{n} M_{n, 1-\mathrm{loop}}^{*}\right)\right)$,

$$
\begin{align*}
\sigma_{\mathcal{O}}^{N L O} & =\sigma_{\mathcal{O}}^{L O}+\alpha_{s}^{n-1}\left(\mu_{R}^{2}\right) \int d \Phi_{n+1}\left|M_{n+1}^{2}\left(p_{1}, \ldots, p_{n+1}\right)\right| \\
& \times \mathcal{O}_{n+1}\left(p_{1}, \ldots, p_{n+1}\right)+\alpha_{s}^{n-1}\left(\mu_{R}^{2}\right) \\
& \times \int d \Phi_{n} 2 \operatorname{Re}\left[M_{n}\left(p_{1}, \ldots, p_{n}\right) M_{n, 1-\mathrm{loop}}^{*}\left(p_{1}, \ldots, p_{n}\right)\right] \\
& \times \mathcal{O}_{n}\left(p_{1}, \ldots, p_{n}\right) . \tag{9.18}
\end{align*}
$$

Relative to LO calculations, two important issues appear in the NLO calculations. Firstly, the extra complexity of loopcalculations relative to tree-level calculations means that automated calculations started to appear only about fifteen years ago (see below). Secondly, loop amplitudes are infinite in 4 dimensions, while tree-level amplitudes are finite, but their integrals are infinite, due to the divergences of Eq. (9.16). These two sources of infinities have the same soft and collinear origins and cancel after the integration only if the observable \mathcal{O} satisfies the property of infrared and collinear safety, which means that the observable is non-sensitive to soft emissions or to collinear splittings, i.e.

$$
\begin{aligned}
\mathcal{O}_{n+1}\left(p_{1}, \ldots, p_{s}, \ldots, p_{n}\right) & \rightarrow \mathcal{O}_{n}\left(p_{1}, \ldots, p_{s-1}, p_{s+1}, \ldots, p_{n}\right) \\
& \text { if } p_{s} \rightarrow 0 \\
\mathcal{O}_{n+1}\left(p_{1}, \ldots, p_{a}, p_{b}, \ldots, p_{n}\right) & \rightarrow \mathcal{O}_{n}\left(p_{1}, \ldots, p_{a}+p_{b}, \ldots, p_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { if } p_{a} \| p_{b} \tag{9.19}
\end{equation*}
$$

Examples of infrared-safe quantities include event-shape distributions and jet cross sections (with appropriate jet algorithms, see below). Unsafe quantities include the distribution of the momentum of the hardest QCD particle (which is not conserved under collinear splitting), observables that require the complete absence of radiation in some region of phase space (e.g. rapidity gaps or 100% isolation cuts, which are affected by soft emissions), or the particle multiplicity (affected by both soft and collinear emissions). The non-cancellation of divergences at NLO due to infrared or collinear unsafety compromises the usefulness not only of the NLO calculation, but also that of a LO calculation, since LO is only an acceptable approximation if one can prove that higher-order terms are smaller. Infrared and collinear unsafety usually also imply large non-perturbative effects.
As with LO calculations, the phase-space integrals in Eq. (9.18) are usually carried out by Monte Carlo integration, so as to facilitate the study of arbitrary observables. Various methods exist to obtain numerically efficient cancellation among the different infinities. These include notably dipole [117], FKS [118] and antenna [119] subtraction.

Thanks to new ideas like the OPP method [120], generalised [121] and D-dimensional [122] unitarity, onshell methods [123], and on the fly reduction algorithms [124], recent years have seen a breakthrough in the calculation of one-loop matrix elements (for reviews on unitarity based method see Ref. [125, 126]). Thanks to these innovative methods, automated NLO calculations tools have been developed and a number of programs are available publicly: Madgraph5_aMC@NLO [108] and Helac-NLO [127] provide full frameworks for NLO calculations; GoSam [128], Njet [129], OpenLoops [130] and Recola [131] calculate just the 1-loop part and are typically interfaced with an external tool such as Sherpa [132] for a combination with the appropriate tree-level amplitudes. Other tools such as NLOJet ++ [133], MCFM [134], VBFNLO [135], the Phox family [136] or BlackHat [137] implement analytic calculations for a selected class of processes. Given that NLO computation for high-multiplicity final states is numerically demanding,
procedures [138-141] have been developed for a posteriori PDF and scale change. These methods represent NLO (or NNLO) results, for a given set of cuts and binning, as an effective coefficient function on a grid in parton momentum fractions and factorization scales.

Recently, a lot of attention has also been paid to the calculation of NLO electroweak corrections. Electroweak corrections are especially important for transverse momenta significantly above the W and Z masses, because they are enhanced by two powers of $\ln p_{t} / M_{W}$ for each power of the electroweak coupling, and close to Sudakov peaks, where most of the data lie and the best experimental precision can be achieved. In some cases the above programs (or development versions of them) can be used to calculate also NLO electroweak or beyond-standard-model corrections [142-148].

Given the progress in QCD and EW fixed-order computations, the largest unknown from fixed-order corrections is often given by the mixed QCD-electroweak corrections of $\mathcal{O}\left(\alpha_{s} \alpha\right)$. These mixed two-loop corrections are often available only in an approximate form [149-154] and first three-loop results $\mathcal{O}\left(\alpha_{s}^{2} \alpha\right)$ in the case of Higgs productions started to appear recently [155].
NNLO. Conceptually, NNLO and NLO calculations are similar, except that one must add a further order in α_{s}, consisting of: the squared $(n+2)$-parton tree-level amplitude, the interference of the $(n+1)$-parton tree-level and 1-loop amplitudes, the interference of the n-parton tree-level and 2-loop amplitudes, and the squared n-parton 1-loop amplitude.

Each of these elements involves large numbers of soft and collinear divergences, satisfying relations analogous to Eq. (9.16) which now involve multiple collinear or soft particles and higher loop orders (see e.g. Refs. [156-158]). Arranging for the cancellation of the divergences after numerical Monte Carlo integration has been one of the significant challenges of NNLO calculations, as has been the determination of the relevant 2-loop amplitudes. For the cancellations of divergences a wide range of methods has been developed. Some of them [159-163] retain the approach, inherent in NLO methods, of directly combining the separate loop and tree-level amplitudes. Others combine a suitably chosen, partially inclusive $2 \rightarrow n$ NNLO calculation with a fully differential $2 \rightarrow n+1$ NLO calculation [164-167].

Quite a number of processes have been calculated differentially at NNLO so far. The state of the art for $e^{+} e^{-}$collisions is $e^{+} e^{-} \rightarrow$ 3 jets [168-170]. For DIS, dijet production is known at NNLO [171] and the description jet production has been recently pushed even to $\mathrm{N}^{3} \mathrm{LO}$ using the Projection-to-Born method [172,173]. For hadron colliders, all $2 \rightarrow 1$ processes are known, specifically vector boson [174, 175] and Higgs boson production [164, 176]. For most of the above calculations there exist public codes (EERAD3 for $e^{+} e^{-}$, DYNNLO, FEWZ and MATRIX for W and Z production, Fehipro and HNNLO for Higgs production), links to which are to be found among the above references. Substantial progress has been made in the past couple of years for hadron-collider $2 \rightarrow 2$ processes, with calculations having been performed for nearly all relevant processes: $Z Z[86] W W$ [85] and $W Z[177], \gamma \gamma[178,179]$, $Z \gamma$ [180] and $W \gamma$ [181] (many of these colour singlet processes are available also in MCFM [182] or MATRIX [87]), inclusive photon [183, 184], $\gamma+$ jet [184, 185], $W+$ jet [165], $Z+$ jet [185-187] $H+$ jet [188-191], $W H$ [192] and $Z H$ [193], t-channel single-top [194, 195], $t \bar{t}$ production [196], dijet production [197], and $H H$ [198] (in large-top-mass approximation, see also the exact (two-loop) NLO result [83]). One $2 \rightarrow 3$ process is known at NNLO, Higgs production through vector-boson fusion, using an approximation in which the two underlying DIS-like $q \rightarrow q V$ scatterings are factorised, the socalled structure function approximation $[167,199]$. Corrections beyond the structure function approximation are expected to be small, on the order of a percent or less [200].

The Les Houches precision wishlist compiles predictions needed to fully exploit the data that will be taken at the High Luminosity LHC [201]. Most of the needed calculations require accuracy of at least NNLO QCD and NLO EW, and many require the prediction of $2 \rightarrow 3$ processes, such as $W / Z+\geq 2$ jets, $H+\geq 2$ jets, and $t t H$ to NNLO.

As discussed in this section, calculations at NLO can now be
relatively easily generated by non-experts using the programs described. However, many NNLO calculations can be too complex and CPU-intensive to allow such an approach. In these cases, the relevant matrix element information can be stored in a grid format (or in ROOT ntuples) allowing predictions to be generated on-the-fly, similar to what has been available at NLO.

9.2.3.3 Resummation

Many experimental measurements place tight constraints on emissions in the final state. For example, in $e^{+} e^{-}$events, that (one minus) the Thrust should be less than some value $\tau \ll 1$, or, in $p p \rightarrow Z$, events that the Z-boson transverse momentum or the transverse momentum of the accompanying jet should be much smaller than the Z-boson mass. A further example is the production of heavy particles or jets near threshold (so that little energy is left over for real emissions) in DIS and $p p$ collisions.

In such cases, the constraint vetoes a significant part of the integral over the soft and collinear divergence of Eq. (9.16). As a result, there is only a partial cancellation between real emission terms (subject to the constraint) and loop (virtual) contributions (not subject to the constraint), causing each order of α_{s} to be accompanied by a large coefficient $\sim L^{2}$, where e.g. $L=\ln \tau$ or $L=\ln \left(M_{Z} / p_{t}^{Z}\right)$. One ends up with a perturbative series, whose terms go as $\sim\left(\alpha_{s} L^{2}\right)^{n}$. It is not uncommon that $\alpha_{s} L^{2} \gg 1$, so that the perturbative series converges very poorly if at all. ${ }^{5}$ In such cases one may carry out a "resummation", which accounts for the dominant logarithmically enhanced terms to all orders in α_{s}, by making use of known properties of matrix elements for multiple soft and collinear emissions, and of the all-orders properties of the divergent parts of virtual corrections, following original works such as Refs. [202-211] and also through soft-collinear effective theory $[212,213]$ ($c f$. also the section on "Heavy-Quark and SoftCollinear Effective Theory" in this Review, as well as Ref. [214]).
For cases with double logarithmic enhancements (two powers of logarithm per power of α_{s}), there are two classification schemes for resummation accuracy. Writing the cross section including the constraint as $\sigma(L)$ and the unconstrained (total) cross section as $\sigma_{\text {tot }}$, the series expansion takes the form

$$
\begin{equation*}
\sigma(L) \simeq \sigma_{\mathrm{tot}} \sum_{n=0}^{\infty} \sum_{k=0}^{2 n} R_{n k} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) L^{k}, \quad L \gg 1 \tag{9.20}
\end{equation*}
$$

and leading log (LL) resummation means that one accounts for all terms with $k=2 n$, next-to-leading-log (NLL) includes additionally all terms with $k=2 n-1$, etc. Often $\sigma(L)$ (or its Fourier or Mellin transform) exponentiates ${ }^{6}$,

$$
\begin{equation*}
\sigma(L) \simeq \sigma_{\mathrm{tot}} \exp \left[\sum_{n=1}^{\infty} \sum_{k=0}^{n+1} G_{n k} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) L^{k}\right], \quad L \gg 1 \tag{9.21}
\end{equation*}
$$

where one notes the different upper limit on $k(\leq n+1)$ compared to Eq. (9.20). This is a more powerful form of resummation: the G_{12} term alone reproduces the full LL series in Eq. (9.20). With the form Eq. (9.21) one still uses the nomenclature LL, but this now means that all terms with $k=n+1$ are included, and NLL implies all terms with $k=n$, etc.

For a large number of observables, NLL resummations are available in the sense of Eq. (9.21) (see Refs. [218-220] and references therein). NNLL has been achieved for the DY and Higgsboson p_{t} distributions [221-224] (also available in the CuTe [225], HRes [226] and ResBos [227] families of programs and also differentially in vector-boson decay products [228]) and related variables [229], for the p_{t} of vector-boson pairs [230], for the back-toback energy-energy correlation in $e^{+} e^{-}$[231], the jet broadening

[^6]in $e^{+} e^{-}$collisions [232], the jet-veto survival probability in Higgs and Z boson production in $p p$ collisions $[233,234]^{7}$, an eventshape type observable known as the beam Thrust [235], hadroncollider jet masses in specific limits [236] (see also Ref. [237]), the production of top anti-top pairs near threshold [238-240] (and references therein), and high- $p_{t} W$ and Z production [241]. Automation of NNLL jet-veto resummations for different processes has been achieved in Ref. [242] (cf. also the NLL automation in Ref. [243]), while automation for a certain class of $e^{+} e^{-}$observables has been achieved in Ref. [244]. $\mathrm{N}^{3} \mathrm{LL}$ resummations are available for the Thrust variable, C-parameter and heavy-jet mass in $e^{+} e^{-}$annihilations [245-247] (confirmed for Thrust at NNLL in Ref. [248]), for p_{t} distribution of the Higgs boson [249] and weak gauge bosons [250] and for Higgs- and vector-boson production near threshold [251]. An extensive discussion of jet masses for heavy-quark induced jets has been given in Ref. [252] (see also Ref. [253]). In order to make better contact with experimental measurements, recent years have seen an increasing interest in resummations in exclusive phase-space regions and joint resummations [254-260]. Finally, there has also been considerable progress in resummed calculations for jet substructure, whose observables involve more complicated definitions than is the case for standard resummations [261-267], see also Refs. [268,269]. The inputs and methods involved in these various calculations are somewhat too diverse to discuss in detail here, so we recommend that the interested reader consult the original references for further details.

9.2.3.4 Fragmentation functions

Since the parton-hadron transition is non-perturbative, it is not possible to perturbatively calculate quantities such as the energy-spectra of specific hadrons in high-energy collisions. However, one can factorize perturbative and non-perturbative contributions via the concept of fragmentation functions. These are the final-state analogue of the parton distribution functions which are used for initial-state hadrons. Like parton distribution functions, they depend on a (fragmentation) factorization scale and satisfy a DGLAP evolution equation.

It should be added that if one ignores the non-perturbative difficulties and just calculates the energy and angular spectrum of partons in perturbative QCD with some low cutoff scale $\sim \Lambda$ (using resummation to sum large logarithms of \sqrt{s} / Λ), then this reproduces many features of the corresponding hadron spectra [270]. This is often taken to suggest that hadronization is "local", in this sense it mainly involves partons that are close both in position and in momentum.

Section 19 of this Review provides further information (and references) on these topics, including also the question of heavyquark fragmentation.

9.2.3.5 Parton-shower Monte Carlo generators

Parton-shower Monte Carlo (MC) event generators like PYTHIA [271-273], HERWIG [274-276] and SHERPA [132] provide fully exclusive simulations of QCD events. ${ }^{8}$ Because they provide access to "hadron-level" events, they are a crucial tool for all applications that involve simulating the response of detectors to QCD events. Here we give only a brief outline of how they work and refer the reader to Sec. 41 and Ref. [278] for a full overview.

The MC generation of an event involves several stages. It starts with the random generation of the kinematics and partonic channels of whatever hard scattering process the user has requested at some high scale Q_{0} (for complex processes, this may be carried out by an external program). This is followed by a parton shower, usually based on the successive random generation of gluon emissions (or $g \rightarrow q \bar{q}$ splittings). Emissions are ordered according to some ordering variable. Common choices of scale for the ordering of emissions are virtuality, transverse momentum or angle. Each emission is generated at a scale lower than the previous

[^7]emission, following a (soft and collinear resummed) perturbative QCD distribution, which depends on the momenta of all previous emissions. Parton showering stops at a scale of order 1 GeV , at which point a hadronization model is used to convert the resulting partons into hadrons. One widely-used model involves stretching a color "string" across quarks and gluons, and breaking it up into hadrons $[279,280]$. Another breaks each gluon into a $q \bar{q}$ pair and then groups quarks and anti-quarks into colorless "clusters", which then give the hadrons [274]. As both models are tuned primarily to LEP data, the cluster and string models provide similar results for most observables [281]. For $p p$ and γp processes, modeling is also needed to treat the collision between the two hadron remnants, which generates an underlying event (UE), usually implemented via additional $2 \rightarrow 2$ scatterings ("multiple parton interactions") at a scale of a few GeV , following Ref. [282]. The parameter values for the multiple parton interaction models must be determined from fits to the underlying event levels from LHC collision data. As the different Monte Carlo programs fit to essentially the same data, there should be similar results for each program. One complication, however, is the non-universality of the underlying event for different physics processes.

A deficiency of the soft and collinear approximations that underlie parton showers is that they may fail to reproduce the full pattern of hard wide-angle emissions, important, for example, in many new physics searches. It is therefore common to use LO multi-parton matrix elements to generate hard high-multiplicity partonic configurations as additional starting points for the showering, supplemented with some prescription (CKKW [283], MLM [284]) for consistently merging samples with different initial multiplicities. Monte Carlo generators, as described above, compute cross sections for the requested hard process that are correct at LO.

A wide variety of processes are available in MC implementations that are correct also to NLO, using the MC@NLO [285] or POWHEG [286] prescriptions, notably through the Madgraph5_aMC@NLO [108], POWHEGBox [287] and Sherpa [110] programs. Techniques have also been developed to combine NLO plus shower accuracy for different multiplicities of final-state jets [288]. Building in part on some of that work, several groups have also obtained NNLO plus shower accuracy for Drell-Yan and Higgs production [289], as well as for a handful of $2 \rightarrow 2$ processes [290-292].

In general, we expect parton-shower matched predictions to differ from the underlying fixed-order results in regions where (1) there is a large sensitivity to jet shapes (for instance small R jets), (2) there is a restriction in phase space such that soft gluon resummation effects become important, (3) the observable contains multiple disparate scales, (4) there are perturbative instabilities at fixed order, e.g. related to kinematical cuts, and (5) the observable is sensitive to higher multiplicity states than those described by the fixed-order calculation [281].

9.2.4 Accuracy of predictions

Estimating the accuracy of perturbative QCD predictions is not an exact science. It is often said that LO calculations are accurate to within a factor of two. This is based on experience with NLO corrections in the cases where these are available. In processes involving new partonic scattering channels at NLO and/or large ratios of scales (such as jet observables in processes with vector bosons, or the production of high- p_{t} jets containing B-hadrons), the ratio of the NLO to LO predictions, commonly called the " K factor", can be substantially larger than two. NLO corrections tend to be large for processes for which there is a great deal of color annihilation in the interaction. In addition, NLO corrections tend to decrease as more final state legs are added.

For calculations beyond LO, a conservative approach to estimate the perturbative uncertainty is to take it to be the last known perturbative correction; a more widely used method is to estimate it from the change in the prediction when varying the renormalization and factorization scales around a central value Q that is taken close to the physical scale of the process. A conventional range of variation is $Q / 2<\mu_{R}, \mu_{F}<2 Q$, varying the two scales independently with the restriction $\frac{1}{2} \mu_{R}<\mu_{F}<2 \mu_{R}$ [293]. This constraint limits the risk of misleadingly small uncertainties due
to fortuitous cancellations between the μ_{F} and μ_{R} dependence when both are varied together, while avoiding the appearance of large logarithms of $\mu_{R}^{2} / \mu_{F}^{2}$ when both are varied completely independently. Where possible, it can be instructive to examine the two-dimensional scale distributions $\left(\mu_{R}\right.$ vs. $\left.\mu_{F}\right)$ to obtain a better understanding of the interplay between μ_{R} and μ_{F}. This procedure should not be assumed to always estimate the full uncertainty from missing higher orders, but it does indicate the size of one important known source of higher-order ambiguity. ${ }^{9}$

For processes involving jets in the final state, estimates of the uncertainties at NNLO, along the lines described above, can be misleading for jets of smaller radii, due to accidental cancellations. Procedures are available to provide more reasonable estimates of the uncertainties in those cases [281,302]. In addition, care must be taken as to the form of the central scale [303].

Calculations that involve resummations usually have an additional source of uncertainty associated with the choice of argument of the logarithms being resummed, e.g. $\ln \left(2 \frac{p_{t}^{Z}}{M_{Z}}\right)$ as opposed to $\ln \left(\frac{1}{2} \frac{p_{t}^{Z}}{M_{Z}}\right)$. In addition to varying renormalization and factorization scales, it is therefore also advisable to vary the argument of the logarithm by a suitable factor in either direction with respect to the "natural" argument.

The accuracy of QCD predictions is limited also by nonperturbative corrections, which typically scale as a power of $\Lambda / Q .{ }^{10}$ For measurements that are directly sensitive to the structure of the hadronic final state, the corrections are usually linear in Λ / Q. The non-perturbative corrections are further enhanced in processes with a significant underlying event (i.e. in $p p$ and $p \bar{p}$ collisions) and in cases where the perturbative cross sections fall steeply as a function of p_{t} or some other kinematic variable, for example in inclusive jet spectra or dijet mass spectra. In general, the underlying event for a hard scattering process, such as dijet production, is of a similar order, but somewhat harder, than the average energy density in a minimum-bias event. Under highluminosity running conditions, such as 13 TeV at the LHC, there can be on the order of 50 minimum-bias interactions occurring at each beam-beam crossing. This additional energy needs to be corrected for, and is typically removed by subtracting a rapiditydependent transverse energy density determined on an event-byevent basis [304]. This subtraction, of necessity, also removes the underlying event, which must be added back in to restore the measured event to the hadron level.
Non-perturbative corrections are commonly estimated from the difference between Monte Carlo events at the parton level and after hadronization. An issue to be aware of with this procedure is that "parton level" is not a uniquely defined concept. For example, in an event generator it depends on a (somewhat arbitrary and tunable) internal cutoff scale that separates the parton showering from the hadronization. In contrast, no such cutoff scale exists in an NLO or NNLO partonic calculation. There exist alternative methods for estimating hadronization corrections, that attempt to analytically deduce non-perturbative effects in one observable based on measurements of other observables (see the reviews $[28,305]$). While they directly address the problem of different possible definitions of parton level, it should also be said that they are far less flexible than Monte Carlo programs and not always able to provide equally good descriptions of the data.
One of the main issues is whether the fixed partonic final state of a NLO or NNLO prediction can match the parton shower in its ability to describe the experimental jet shape (minus any underlying event). NNLO calculations provide a better match to the parton shower predictions than do NLO ones, as might be expected from the additional gluon available to describe the jet shape. The hadronization predictions appear to work for both orders, but at an unknown accuracy. The impact of any error should fall as a power correction.

[^8]
9.3 Experimental studies of QCD

Since we are not able to directly measure partons (quarks or gluons), but only hadrons and their decay products, a central issue for every experimental study of perturbative QCD is establishing a correspondence between observables obtained at the partonic and the hadronic level. The only theoretically sound correspondence is achieved by means of infrared and collinear safe quantities, which allow one to obtain finite predictions at any order of perturbative QCD.

As stated above, the simplest case of infrared- and collinear-safe observables are total cross sections. More generally, when measuring fully inclusive observables, the final state is not analyzed at all regarding its (topological, kinematical) structure or its composition. Basically the relevant information consists in the rate of a process ending up in a partonic or hadronic final state. In $e^{+} e^{-}$annihilation, widely used examples are the ratios of partial widths or branching ratios for the electroweak decay of particles into hadrons or leptons, such as Z or τ decays, ($c f$. Sec. 9.2.1). Such ratios are often favored over absolute cross sections or partial widths because of large cancellations of experimental and theoretical systematic uncertainties. The strong suppression of nonperturbative effects, $\mathcal{O}\left(\Lambda^{4} / Q^{4}\right)$, is one of the attractive features of such observables, however, at the same time, the sensitivity to radiative QCD corrections is small, which for example affects the statistical uncertainty when using them for the determination of the strong coupling constant. In the case of τ decays not only the hadronic branching ratio is of interest, but also moments of the spectral functions of hadronic tau decays, which sample different parts of the decay spectrum and thus provide additional information. Other examples of fully inclusive observables are structure functions (and related sum rules) in DIS. These are extensively discussed in Sec. 18 of this Review.

On the other hand, often the structure or composition of the final state are analyzed and cross sections differential in one or more variables characterizing this structure are of interest. Examples are jet rates, jet substructure, event shapes or transverse momentum distributions of jets or vector bosons in hadron collisions. The case of fragmentation functions, i.e. the measurement of hadron production as a function of the hadron momentum relative to some hard scattering scale, is discussed in Sec. 19 of this Review.

It is worth mentioning that, besides the correspondence between the parton and hadron level, also a correspondence between the hadron level and the actually measured quantities in the detector has to be established. The simplest examples are corrections for finite experimental acceptance and efficiencies. Whereas acceptance corrections essentially are of theoretical nature, since they involve extrapolations from the measurable (partial) to the full phase space, other corrections such as for efficiency, resolution and response are of experimental nature. For example, measurements of differential cross sections such as jet rates require corrections in order to relate, e.g., the energy deposits in a calorimeter to the jets at the hadron level. Typically detector simulations and/or datadriven methods are used in order to obtain these corrections. Care should be taken here in order to have a clear separation between the parton-to-hadron level and hadron-to-detector level corrections. Finally, for the sake of an easy comparison to the results of other experiments and/or theoretical calculations, it is suggested to provide, whenever possible, measurements corrected for detector effects and/or all necessary information related to the detector response (e.g., the detector response matrix).

9.3.1 Hadronic final-state observables 9.3.1.1 Jets

In hard interactions, final-state partons and hadrons appear predominantly in collimated bunches, which are generically called jets. To a first approximation, a jet can be thought of as a hard parton that has undergone soft and collinear showering and then hadronization. Jets are used both for testing our understanding and predictions of high-energy QCD processes, and also for identifying the hard partonic structure of decays of massive particles such as top quarks and W, Z and Higgs bosons.

In order to map observed hadrons onto a set of jets, one uses a jet definition. The mapping involves explicit choices: for example when a gluon is radiated from a quark, for what range of kinematics should the gluon be part of the quark jet, or instead form a separate jet? Good jet definitions are infrared and collinear safe, simple to use in theoretical and experimental contexts, applicable to any type of inputs (parton or hadron momenta, charged particle tracks, and/or energy deposits in the detectors) and lead to jets that are not too sensitive to non-perturbative effects.

An extensive treatment of the topic of jet definitions is given in Ref. [306] (for $e^{+} e^{-}$collisions) and Refs. [307-309]. Here we briefly review the two main classes: cone algorithms, extensively used at older hadron colliders, and sequential recombination algorithms, more widespread in $e^{+} e^{-}$and $e p$ colliders and at the LHC.

Very generically, most (iterative) cone algorithms start with some seed particle i, sum the momenta of all particles j within a cone of opening-angle R, typically defined in terms of rapidity and azimuthal angle. They then take the direction of this sum as a new seed and repeat until the direction of the cone is stable, and call the contents of the resulting stable cone a jet if its transverse momentum is above some threshold $p_{t, \min }$. The parameters R and $p_{t, \text { min }}$ should be chosen according to the needs of a given analysis.

There are many variants of the cone algorithm, and they differ in the set of seeds they use and the manner in which they ensure a one-to-one mapping of particles to jets, given that two stable cones may share particles ("overlap"). The use of seed particles is a problem w.r.t. infrared and collinear safety. Seeded algorithms are generally not compatible with higher-order (or sometimes even leading-order) QCD calculations, especially in multi-jet contexts, as well as potentially subject to large non-perturbative corrections and instabilities. Seeded algorithms (JetCLU, MidPoint, and various other experiment-specific iterative cone algorithms) are therefore to be deprecated. Such algorithms are not used at the LHC, but were at the Fermilab Tevatron, where data still provide useful information, for example for global PDF fits. A modern alternative is to use a seedless variant, SISCone [310].

Sequential recombination algorithms at hadron colliders (and in DIS) are characterized by a distance $d_{i j}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right) \Delta_{i j}^{2} / R^{2}$ between all pairs of particles i, j, where $\Delta_{i j}$ is their separation in the rapidity-azimuthal plane, $k_{t, i}$ is the transverse momentum w.r.t. the incoming beams, and R is a free parameter. At the LHC, R is typically in the range from 0.4 to 0.7 . They also involve a "beam" distance $d_{i B}=k_{t, i}^{2 p}$. One identifies the smallest of all the $d_{i j}$ and $d_{i B}$, and if it is a $d_{i j}$, then i and j are merged into a new pseudo-particle (with some prescription, a recombination scheme, for the definition of the merged four-momentum). If the smallest distance is a $d_{i B}$, then i is removed from the list of particles and called a jet. As with cone algorithms, one usually considers only jets above some transverse-momentum threshold $p_{t, \min }$. The parameter p determines the kind of algorithm: $p=1$ corresponds to the (inclusive-) k_{t} algorithm $[215,311,312], p=0$ defines the Cambridge-Aachen algorithm [313,314], while for the anti- k_{t} algorithm $p=-1$ [315]. All these variants are infrared and collinear safe. Whereas the former two lead to irregularly shaped jet boundaries, the latter results in cone-like boundaries. The anti- k_{t} algorithm has become the de-facto standard for the LHC experiments.

In $e^{+} e^{-}$annihilation the k_{t} algorithm [215] uses $y_{i j}=$ $2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right) / Q^{2}$ as distance measure between two particles/partons i and j and repeatedly merges the pair with smallest $y_{i j}$, until all $y_{i j}$ distances are above some threshold $y_{\text {cut }}$, the jet resolution parameter. Q is a measure of the overall hardness of the event. The (pseudo)-particles that remain at this point are called the jets. Here it is $y_{\text {cut }}$ (rather than R and $p_{t, \min }$) that should be chosen according to the needs of the analysis. The two-jet rate in the k_{t} algorithm has the property that logarithms $\ln \left(1 / y_{\text {cut }}\right)$ exponentiate. This is one reason why it is preferred over the earlier JADE algorithm [217], which uses the distance measure $y_{i j}=2 E_{i} E_{j}\left(1-\cos \theta_{i j}\right) / Q^{2}$. Note that other variants of sequential recombination algorithms for $e^{+} e^{-}$annihilations, using different definitions of the resolution measure $y_{i j}$, exhibit
much larger sensitivities to fragmentation and hadronization effects than the k_{t} and JADE algorithms [316]. Efficient implementations of the above algorithms are available through the FastJet package [317].

9.3.1.2 Event Shapes

Event-shape variables are functions of the four momenta of the particles in the final state and characterize the topology of an event's energy flow. They are sensitive to QCD radiation (and correspondingly to the strong coupling) insofar as gluon emission changes the shape of the energy flow.
The classic example of an event shape is the Thrust $[318,319]$ in $e^{+} e^{-}$annihilations, defined as

$$
\begin{equation*}
\hat{\tau}=\max _{\vec{n}_{\tau}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{\tau}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \tag{9.22}
\end{equation*}
$$

where \vec{p}_{i} are the momenta of the particles or the jets in the finalstate and the maximum is obtained for the Thrust axis \vec{n}_{τ}. In the Born limit of the production of a perfect back-to-back $q \bar{q}$ pair, the limit $\hat{\tau} \rightarrow 1$ is obtained, whereas a perfectly spherical many-particle configuration leads to $\hat{\tau} \rightarrow 1 / 2$. Further event shapes of similar nature have been extensively measured at LEP and at HERA, and for their definitions and reviews we refer to Refs. [1, 7, 305, 320, 321]. The energy-energy correlation function [322], namely the energy-weighted angular distribution of produced hadron pairs, and its associated asymmetry are further shape variables which have been studied in detail at $e^{+} e^{-}$colliders. For hadron colliders the appropriate modification consists in only taking the transverse momentum component [323]. More recently, the event shape N-jettiness has been proposed [324], that measures the degree to which the hadrons in the final state are aligned along N jet axes or the beam direction. It vanishes in the limit of exactly N infinitely narrow jets.

Phenomenological discussions of event shapes at hadron colliders can be found in Refs. [324-328]. Measurements of hadronic event-shape distributions have been published by CDF [329], ATLAS [330-335] and CMS [336-339].

Event shapes are used for many purposes. These include measuring the strong coupling, tuning the parameters of Monte Carlo programs, investigating analytical models of hadronization and distinguishing QCD events from events that might involve decays of new particles (giving event-shape values closer to the spherical limit).

9.3.1.3 Jet substructure, quark vs. gluon jets

Jet substructure, which can be resolved by finding subjets or by measuring jet shapes, is sensitive to the details of QCD radiation in the shower development inside a jet and has been extensively used to study differences in the properties of quark and gluon induced jets, strongly related to their different color charges. In general, there is clear experimental evidence that gluon jets have a softer particle spectrum and are "broader" than (light-) quark jets (as expected from perturbative QCD) when looking at observables such as the jet shape $\Psi(r / R)$. This is the fractional transverse momentum contained within a sub-cone of cone-size r for jets of cone-size R. It is sensitive to the relative fractions of quark and gluon jets in an inclusive jet sample and receives contributions from soft-gluon initial-state radiation and the underlying event. Therefore, it has been widely employed for validation and tuning of Monte Carlo parton-shower models. Furthermore, this quantity turns out to be sensitive to the modification of the gluon radiation pattern in heavy ion collisions (see e.g. Ref. [340]).

The most recent jet shape measurements using proton-proton collision data have been presented for inclusive jet samples [341-343] and for top-quark production [344]. Further discussions, references and summaries can be found in Refs. [321,345,346] and Sec. 4 of Ref. [347].

The use of jet substructure has also been investigated in order to distinguish QCD jets from jets that originate from hadronic decays of boosted massive particles (high- p_{t} electroweak bosons, top quarks and hypothesized new particles). A considerable number of experimental studies have been carried out with Tevatron and LHC data, in order to investigate on the performance of the
proposed algorithms for resolving jet substructure and to apply them to searches for new physics, as well as to the reconstruction of boosted top quarks, vector bosons and the Higgs boson. For reviews of this rapidly growing field, see sec. 5.3 of Ref. [307], Ref. [348] and Refs. [347,349-352]. Perhaps no other sub-field has benefited as much from machine learning techniques as the study of jet substructure. As a jet can have $\mathrm{O}(100)$ constituents each with kinematic and other information, jet substructure analysis is naturally a highly multivariate problem. Deep learning techniques can use all of the available information to study jets in their natural high dimensionality. Such techniques have not only improved discrimination between different final states/types of jets, but have also improved our understanding of perturbative QCD. See for example the review in Ref. [268].

9.3.2 QCD measurements at colliders

There exists a wealth of data on QCD-related measurements in $e^{+} e^{-}, e p, p p$, and $p \bar{p}$ collisions, to which a short overview like this would not be able to do any justice. Extensive reviews of the subject have been published in Refs. $[320,321]$ for $e^{+} e^{-}$colliders and in Ref. [353] for ep scattering, whereas for hadron colliders comprehensive overviews are given in, e.g., Refs. [308, 346] and Refs. [2, 354-356].

Below we concentrate our discussion on measurements that are most sensitive to hard QCD processes with focus on jet production.

9.3.2.1 $e^{+} e^{-}$colliders

Analyses of jet production in $e^{+} e^{-}$collisions are mostly based on data from the JADE experiment at center-of-mass energies between 14 and 44 GeV , as well as on LEP collider data at the Z resonance and up to 209 GeV . The analyses cover the measurements of (differential or exclusive) jet rates (with multiplicities typically up to 4,5 or 6 jets), the study of 3 -jet events and particle production between the jets, as well as 4 -jet production and angular correlations in 4-jet events.
Event-shape distributions from $e^{+} e^{-}$data have been an important input to the tuning of parton shower MC models, typically matched to matrix elements for 3 -jet production. In general these models provide good descriptions of the available, highly precise data. Especially for the large LEP data sample at the Z peak, the statistical uncertainties are mostly negligible and the experimental systematic uncertainties are at the percent level or even below. These are usually dominated by the uncertainties related to the MC model dependence of the efficiency and acceptance corrections (often referred to as "detector corrections").

Observables measured in $e^{+} e^{-}$collisions have been used for determinations of the strong coupling constant (cf. Section 9.4 below) and for putting constraints on the QCD color factors ($c f$. Sec. 9.1 for their definitions), thus probing the non-Abelian nature of QCD. Typically, cross sections can be expressed as functions of these color factors, for example $\sigma=f\left(\alpha_{s} C_{F}, C_{A} / C_{F}, n_{f} T_{R} / C_{F}\right)$. Angular correlations in 4 -jet events give sensitivity at leading order. Some sensitivity to these color factors, although only at NLO, is also obtained from event-shape distributions. Scaling violations of fragmentation functions and the different subjet structure in quark and gluon induced jets also give access to these color factors. In order to extract absolute values, e.g. for C_{F} and C_{A}, certain assumptions have to be made for other parameters, such as T_{R}, n_{f} or α_{s}, since typically only combinations (ratios, products) of all the relevant parameters appear in the perturbative predictions. A compilation of results [321] quotes world average values of $C_{A}=2.89 \pm 0.03$ (stat) ± 0.21 (syst) and $C_{F}=1.30 \pm 0.01$ (stat) ± 0.09 (syst), with a correlation coefficient of 82%. These results are in perfect agreement with the expectations from $\mathrm{SU}(3)$ of $C_{A}=3$ and $C_{F}=4 / 3$.

9.3.2.2 DIS and photoproduction

Jet measurements in $e p$ collisions, both in the DIS and photoproduction regimes, allow for tests of QCD factorization (as they involve only one initial state proton and thus one PDF function), and provide sensitivity to both the gluon distribution and to the strong coupling constant. Calculations are available at NNLO in both regimes $[357,358]$. Experimental uncertainties of the order of $5-10 \%$ have been achieved, mostly dominated by the jet energy
scale, whereas statistical uncertainties are negligible to a large extent. For comparison to theoretical predictions, at large jet p_{t} the PDF uncertainty dominates the theoretical uncertainty (typically of order $5-10 \%$, in some regions of phase space up to 20%), therefore jet observables become useful inputs for PDF fits.

In general, the data are well described by the NLO and NNLO matrix-element calculations, combined with DGLAP evolution equations, in particular at large Q^{2} and central values of jet pseudo-rapidity. At low values of Q^{2} and x, in particular for large jet pseudo-rapidities, certain features of the data have been interpreted as requiring BFKL-type evolution, though the predictions for such schemes are still limited. It is worth noting that there is lack of consensus throughout the community regarding this need of BFKL-evolution at currently probed x, Q^{2} values, and an alternative approach [359], which implements the merging of LO matrix-element based event generation with a parton shower (using the SHERPA framework), successfully describes the data in all kinematical regions, including the low Q^{2}, low x domain. At moderately small x values, it should perhaps not be surprising that the BFKL approach and fixed-order matrix-element merging with parton showers may both provide adequate descriptions of the data, because some part of the multi-parton phase space that they model is common to both approaches.

In the case of photoproduction, a wealth of measurements with low p_{t} jets were performed in order to constrain the photon content of the proton. The uncertainties related to such photon PDFs play a minor role at high jet p_{t}, which has allowed for precise tests of pQCD calculations.

A few examples of recent measurements can be found in Refs. [360-364] for photoproduction and in Refs. [365-374] for DIS.

9.3.2.3 Hadron-hadron colliders

The spectrum of observables and the number of measurements performed at hadron colliders is enormous, probing many regions of phase space and covering a huge range of cross sections, as illustrated in Fig. 9.1 for the case of the ATLAS and CMS experiments at the LHC. In general, the theory agreement with data is excellent for a wide variety of processes, indicating the success of perturbative QCD with the PDF and strong coupling inputs. For the sake of brevity, in the following only certain classes of those measurements will be discussed, which allow addressing particular aspects of the various QCD studies performed. Most of our discussion will focus on LHC results, which are available for center-ofmass energies of $2.76,5,7,8$ and 13 TeV with integrated luminosities of up to $140 \mathrm{fb}^{-1}$. Generally speaking, besides representing a general test of the standard model and QCD in particular, these measurements serve several purposes, such as: (i) probing pQCD and its various approximations and implementations in MC models, in order to quantify the order of magnitude of not yet calculated contributions and to gauge their precision when used as background predictions, or (ii) extracting/constraining model parameters such as the strong coupling constant or PDFs. Indeed, data from the LHC is becoming increasingly important for the determination of both, PDFs and the strong coupling constant.

The final states measured at the LHC include single, double and triple gauge boson production, top production (single top, top pair and four top production), Higgs boson production, alone and in conjunction with a W or Z boson, and with a top quark pair. Many/most of these events are accompanied by additional jets. So far only relatively loose limits have been placed on double Higgs production. The volume of LHC results prohibits a comprehensive description in this Review; hence, only a few highlights will be presented.

Among the most important cross sections measured, and the one with the largest dynamic range, is the inclusive jet spectrum as a function of the jet transverse momentum $\left(p_{t}\right)$, for several rapidity regions and for p_{t} up to 700 GeV at the Tevatron and $\sim 3.5 \mathrm{TeV}$ at the LHC. It is worth noting that this upper limit in p_{t} corresponds to a distance scale of $\sim 10^{-19} \mathrm{~m}$: no other experiment so far is able to directly probe smaller distance scales of nature than this measurement. The Tevatron inclusive jet measurements in Run 2 (Refs. [377-380]) were carried out with the MidPoint jet clustering algorithm (or its equivalent) and with the k_{t} jet

Figure 9.1: Overview of cross section measurements for a wide class of processes and observables, as obtained by the CMS [375] and ATLAS [376] experiments at the LHC, for centre-of-mass energies of 7,8 and 13 TeV . Also shown are the theoretical predictions and their uncertainties.
clustering algorithm. Most of the LHC measurements use the anti- k_{t} algorithm, with a variety of jet radii. The use of multiple jet radii in the same analysis allows a better understanding of the underlying QCD dynamics. Measurements by ALICE, ATLAS
and CMS have been published in Refs. [381-389].
In general, we observe a good description of the data by the NLO and NNLO QCD predictions over about 11 orders of magnitude in cross section. as long as care is taken for the form of
the central scale choice [303]. The experimental systematic uncertainties are dominated by the jet energy scale uncertainty, quoted to be in the range of a few percent (see for instance the review in Ref. [390]), leading to uncertainties of $\sim 5-30 \%$ on the cross section, increasing with p_{t} and rapidity. The PDF uncertainties dominate the theoretical uncertainty at large p_{t} and rapidity. In fact, inclusive jet data are one of the most important inputs to global PDF fits, in particular for constraining the high- x gluon PDF [77, 391]. Constraints on the PDFs can also be obtained from ratios of inclusive cross sections at different center-of-mass energies [382, 387]. In general, ratios of jet cross sections are a means to (at least partially) cancel the jet energy scale uncertainties and thus provide jet observables with significantly improved precision.

Dijet events are analyzed in terms of their invariant mass or average dijet p_{t} and angular distributions, which allows for tests of NLO and NNLO QCD predictions (see e.g. Refs. [386,392,393] for recent LHC results), and for setting stringent limits on deviations from the Standard Model, such as quark compositeness or contact interactions (some examples can be found in Refs. [389,394-400]). Furthermore, dijet azimuthal correlations between the two leading jets, normalized to the total dijet cross section, are an extremely valuable tool for studying the spectrum of gluon radiation in the event. The azimuthal separation of the two leading jets is sensitive to multi-jet production, avoiding at the same time large systematic uncertainties from the jet energy calibration. For example, results from the Tevatron [401, 402] and the LHC [335, 403-407] show that the LO (non-trivial) prediction for this observable, with at most three partons in the final state, is not able to describe the data for an azimuthal separation below $2 \pi / 3$, where NLO contributions (with 4 partons) restore the agreement with data. In addition, this observable can be employed to tune Monte Carlo predictions of soft gluon radiation. Further examples of dijet observables that probe special corners of phase space are those that involve forward (large rapidity) jets and where a large rapidity separation, possibly also a rapidity gap, is required between the two jets. Reviews of such measurements can be found in Ref. [346], showing that no single prediction is capable of describing the data in all phase-space regions. In particular, no conclusive evidence for BFKL effects in these observables has been established so far.

Beyond dijet final states, measurements of the production of three or more jets, including cross section ratios, have been performed (see Refs. [346,408] for recent reviews), as a means of testing perturbative QCD predictions, determining the strong coupling constant (at NLO precision so far), and probing/tuning MC models, in particular those combining multi-parton matrix elements with parton showers.
W and Z production serve as benchmark cross sections at the LHC. The large boson mass provides a stability for the perturbative predictions which results in better theoretical precision. In terms of experimental precision, measurements of inclusive vector boson (W, Z) production provide the most precisely determined observables at hadron colliders so far. This is because the experimental signatures are based on leptons which are measured much more accurately than jets or photons. At the LHC [409-416], the dominant uncertainty stems from the luminosity determination $(\leq 2-4 \%)$, while other uncertainties (e.g. statistics, lepton efficiencies) are controlled at the $\sim 0.5-3 \%$ level. The uncertainty from the acceptance correction of about $\sim 1-2 \%$ can be reduced by measuring so-called fiducial cross sections, ie. by applying kinematic cuts also to the particle level of the theoretical predictions. A further reduction or even complete elimination of particular uncertainties (e.g. luminosity) is achieved by measuring cross section ratios $\left(W / Z\right.$ or $\left.W^{+} / W^{-}\right)$or differential distributions that are normalised to the inclusive cross section. On the theory side, as discussed earlier in this Review, the production of these colorsinglet states has been calculated up to NNLO accuracy, with some progress towards $\mathrm{N}^{3} \mathrm{LO}$. Since the dominant theoretical uncertainty is related to the choice of PDFs, these high-precision data provide useful handles for PDF determinations.

Further insights are obtained from measurements of differential vector boson production, as a function of the invariant dilepton mass, the boson's rapidity or its transverse momentum. For
example, the dilepton invariant mass distribution has been measured [417-422] for masses between 15 and 3000 GeV , covering more than 8 orders of magnitude in cross section. NNLO QCD predictions, together with modern PDF sets and including higherorder electroweak and QED final-state radiation corrections, describe the data to within $5-10 \%$ over this large range, whereas NLO predictions show larger deviations, unless matched to a parton shower.

Similar conclusions can be drawn from the observed rapidity distribution of the dilepton system (see e.g. Refs. [409, 418, 423]) or, in the case of W production, from the observed charged lepton rapidity distribution and its charge asymmetry. The latter is particularly sensitive to differences among PDF sets [409, 424-426], also thanks to the high precision achieved by the ATLAS and CMS experiments for central rapidity ranges. These measurements are nicely extended to the very forward region, up to 4.5 in lepton rapidity, by the LHCb experiment.

An overview of this kind of measurements can be found in Ref. [346]. There one can also find a discussion of and references to LHC results from studies of the vector boson's transverse momentum distribution, p_{t}^{V} (see also Refs. [427-429]). This observable covers a wide kinematic range and probes different aspects of higher-order QCD effects. It is sensitive to jet production in association with the vector boson, without suffering from the large jet energy scale uncertainties. In the p_{t}^{V} region of several tens of GeV to over 1 TeV , the NNLO predictions for $\mathrm{V}+$ jet ${ }^{11}$ can be used to predict the high p_{t} boson transverse cross section. The NNLO predictions agree with the data to within about 10%, and agree somewhat better at high transverse momentum than do the NLO predictions [430]. At transverse momenta below $\sim 20 \mathrm{GeV}$, the fixed-order predictions fail and soft-gluon resummation is needed to restore the agreement with data. The soft gluon resummation can either be performed analytically, or effectively using parton showering implemented in Monte Carlo programs.

The addition of jets to the final state extends the kinematic range as well as increasing the complexity of the calculation/measurements. ${ }^{12}$ The number of results obtained both at the Tevatron and at the LHC is extensive. Recent summaries can be found in Refs. [346, 432]. Some more recent results can be found in Refs. [430, 433-436].

The measurements cover a very large phase space, e.g. with jet transverse momenta between 30 GeV and $\sim 1.5 \mathrm{TeV}$ and jet rapidities up to $|y|<4.4$ [430]. Jet multiplicities as high as seven jets accompanying the vector boson have already been probed at the LHC, together with a substantial number of other kinematical observables, such as angular correlations among the various jets or among the jets and the vector boson, or the sum of jet transverse momenta, H_{T}. Whereas the jet p_{t} and H_{T} distributions are dominated by jet energy scale uncertainties at levels similar to those discussed above for inclusive jet production, angular correlations and jet multiplicity ratios have been measured with a precision of $\sim 10 \%$, see e.g. Refs. [337, 437].

NLO calculations for up to five jets [438] in addition to the vector boson are in good agreement with the data over that phase space, where the calculations are applicable; that is, one can not expect such predictions to work for $e . g$. the p_{t} distribution of the $n+1$ st jet with $V+n$ jets calculated at NLO. However, with the higher kinematic reach achieved by the LHC experiments, some more detailed observations can be made. NLO fixed-order predictions describe the W boson p_{t} distribution and the lead jet p_{t} distribution reasonably well at transverse momenta below around 500 GeV , but predict smaller cross sections than the data at higher transverse momenta. Predictions for $\mathrm{V}+$ jet at NNLO improve the description of the data. MC models that implement parton shower matching to matrix elements (either at LO or NLO) have mixed results.

The challenges get even more severe in the case of vector boson plus heavy quark (b, c) production, both because of theoretical

[^9]issues (an additional scale is introduced by the heavy quark mass and different schemes exist for the handling of heavy quarks and their mass effects in the initial and/or final state) and because of additional experimental uncertainties related to the heavy-flavour tagging. A review of heavy quark production at the LHC can be found in Ref. [439]. There it is stated that studies of b-jet production with or without associated W and Z bosons reveal the di- b-jet p_{t} and mass spectra to be well modelled, within experimental and theoretical uncertainties, by most generators on the market. However, sizable differences between data and predictions are seen in the modelling of events with single b jets, particularly at large b-jet p_{t}, where gluon splitting processes become dominant, as also confirmed by studies of b-hadron and b-jet angular correlations.

The precision reached in photon measurements is in between that for lepton and jet measurements. The photon 4 -vectors can be measured at about the same precision as the lepton 4 -vectors in Drell-Yan production, but there are greater challenges encountered in photon reconstruction (for example isolation) and in purity determination. Note, though, that the photon purity approaches unity as the photon p_{t} increases. At high p_{t}, it becomes increasingly difficult for a jet to fragment into an isolated neutral electromagnetic cluster which mimics the photon signature. The inclusive photon cross section can be measured [392,440-443], as well as the production of a photon accompanied by one or more jets [443-445, 445-448]. The kinematic range for photon production is less than that for jet production because of the presence of the electromagnetic coupling, but still reaches about 2 TeV . Better agreement is obtained with NNLO predictions for photon production than for NLO predictions, except when the latter are matched to matrix element plus parton shower predictions. Photon production in association with a heavy-flavor jet is a useful input for the determination of the b and c quark PDFs [449].

Electroweak corrections are expected to become more and more relevant now that the TeV energy range starts to be explored. For example, such corrections were found [450] to be sizable (tens of percent) when studying the ratio $\left(d \sigma^{\gamma} / d p_{t}\right) /\left(d \sigma^{Z} / d p_{t}\right)$ in $\gamma(Z)+$ jet production, p_{t} being the boson's transverse momentum, and might account for (some of) the differences observed in a CMS measurement [451] of this quantity.

A number of interesting developments, in terms of probing higher-order QCD effects, have occurred in the sector of diboson production, in particular for the $W W$ and $\gamma \gamma$ cases. Regarding the former, an early disagreement of about 10% between the LHC measurements and the NLO predictions had led to a number of speculations of possible new physics effects in this channel. However, more recent ATLAS and CMS measurements [452-455] are in agreement with the NNLO prediction [85]. The statistical reach of the LHC has resulted in evidence for triple massive gauge boson production [456].

In the case of diphoton production, ATLAS [457, 458] and CMS [459] have provided accurate measurements, in particular for phase-space regions that are sensitive to radiative QCD corrections (multi-jet production), such as small azimuthal photon separation. While there are large deviations between data and NLO predictions in this region, a calculation [178] at NNLO accuracy manages to mostly fill this gap. This is an interesting example where scale variations can not provide a reliable estimate of missing contributions beyond NLO, since at NNLO new channels appear in the initial state (gluon fusion in this case). These missing channels can be included in a matrix element plus parton shower calculation in which two additional jets are included at NLO. The result is a similar level of agreement as that obtained at NNLO. Three photon production has also been measured [460].

In terms of heaviest particle involved, top-quark production at the LHC has become an important tool for probing higherorder QCD calculations, thanks to very impressive achievements both on the experimental and theoretical side, as extensively summarised in Ref. [461]. Regarding $t \bar{t}$ production, the most precise inclusive cross section measurements are achieved using the dilepton $(e \mu)$ final state, with a total uncertainty of 4% [462-465]. This is of about the same size as the uncertainty on the most advanced theoretical predictions [84, 466-468], obtained at NNLO with additional soft-gluon resummation at NNLL accuracy [469]. There
is excellent agreement between data and the QCD predictions.
The $t \bar{t}$ final state allows multiple observables to be measured. A large number of differential cross section measurements have been performed at 7,8 and 13 TeV centre-of-mass energy, studying distributions such as the top-quark p_{t} and rapidity, the transverse momentum and invariant mass of the $t \bar{t}$ system (probing scales up to the TeV range), or the number of additional jets. These measurements have been compared to a wide range of predictions, at fixed order up to NNLO as well as using LO or NLO matrix elements matched to parton showers. Each of the observables provides information on the high x gluon and have been used in global PDF fits. While in general there is reasonable agreement observed with data, most MC simulations predict a somewhat harder top-quark p_{t} distribution than seen in data.

Thanks to both the precise measurements of, and predictions for, the inclusive top-pair cross section, which is sensitive to the strong coupling constant and the top-quark mass, this observable has been used to measure the strong coupling constant at NNLO accuracy from hadron collider data [470, 471] (cf. Section 9.4 below), as well as to obtain a measurement of the topquark's pole mass without employing direct reconstruction methods [470, 472, 473].

The Higgs boson lends itself to being a tool for QCD studies, especially as the dominant production mechanism is $g g$ fusion, which is subject to very large QCD corrections. Higgs boson production has been measured in the $Z Z, \gamma \gamma, W W$ and $\tau \tau$ decay channels. The experimental cross section is now known with a precision approaching 10% [474, 475], similar to the size of the theoretical uncertainty [92], of which the $\mathrm{PDF}+\alpha_{s}$ uncertainty is the largest component. The experimental precision has allowed detailed fiducial and differential cross section measurements. For example, with the diphoton final state, the transverse momentum of the Higgs boson can be measured out to 350$400 \mathrm{GeV}[476,477]$, where top quark mass effects become important. The production of a Higgs boson with up to 4 jets has been measured $[476,478]$. The experimental cross sections have been compared to NNLO predictions (for $H+\geq 1$ jet), NLO for 2 and 3 jets, and NNLO+NNLL for the transverse momentum distribution. In addition, finite top quark mass effects have been taken into account at NLO. The use of the boosted $H \rightarrow b \bar{b}$ topology allows probes of Higgs boson transverse momenta on the order of 600 GeV [478]. So far the agreement with the perturbative QCD corrections is good.

9.4 Determinations of the strong coupling constant

Beside the quark masses, the only free parameter in the QCD Lagrangian is the strong coupling constant α_{s}. The coupling constant in itself is not a physical observable, but rather a quantity defined in the context of perturbation theory, which enters predictions for experimentally measurable observables, such as R in Eq. (9.7). The value of the strong coupling constant must be inferred from such measurements and is subject to experimental and theoretical uncertainties. The incomplete knowledge of α_{s} propagates into uncertainties in numerous precision tests of the Standard Model. Here we present an update of the 2016 PDG average value of $\alpha_{s}\left(M_{Z}^{2}\right)$ and its uncertainty [479], which were retained in the 2018 edition of this Review [480]. ${ }^{13}$

Many experimental observables are used to determine α_{s}. A number of recent determinations are collected in Ref. [484]. Further discussions and considerations on determinations of α_{s} can also be found in Refs. [485, 486]. Such considerations include:

- The observable's sensitivity to α_{s} as compared to the experimental precision. For example, for the $e^{+} e^{-}$cross section to hadrons ($c f . R$ in Sec. 9.2.1), QCD effects are only a small correction, since the perturbative series starts at order α_{s}^{0}; 3-jet production or event shapes in $e^{+} e^{-}$annihilations are directly sensitive to α_{s} since they start at order α_{s}; the hadronic decay width of heavy quarkonia, $\Gamma(\Upsilon \rightarrow$ hadrons $)$, is very sensitive to α_{s} since its leading order term is $\propto \alpha_{s}^{3}$.

[^10]- The accuracy of the perturbative prediction, or equivalently of the relation between α_{s} and the value of the observable. The minimal requirement is generally considered to be an NLO prediction. Some observables (many inclusive ones as well as 3 -jet rates and event shapes in $e^{+} e^{-}$collisions) are known to NNLO since quite some time. Recent additions to the list of processes calculated up to NNLO comprise inclusive jet and dijet production in DIS and $p p$ or $p \bar{p}$ collisions. Likewise, $t \bar{t}$ and $W / Z+$ jet production cross sections have been computed up to NNLO for $p p$ and $p \bar{p}$ scattering. The $e^{+} e^{-}$ hadronic cross section and τ branching fraction to hadrons are even known to $\mathrm{N}^{3} \mathrm{LO}$, where one denotes the LO as the first non-trivial term. In certain cases, fixed-order predictions are supplemented with resummation. The precise magnitude of the associated theory uncertainties usually is estimated as discussed in Sec. 9.2.4.
- The size of non-perturbative effects. Sufficiently inclusive quantities, like the $e^{+} e^{-}$cross section to hadrons, have small nonperturbative contributions $\sim \Lambda^{4} / Q^{4}$. Others, such as eventshape distributions, have typically contributions $\sim \Lambda / Q$.
- The scale at which the measurement is performed. An uncertainty δ on a measurement of $\alpha_{s}\left(Q^{2}\right)$, at a scale Q, translates to an uncertainty $\delta^{\prime}=\left(\alpha_{s}^{2}\left(M_{Z}^{2}\right) / \alpha_{s}^{2}\left(Q^{2}\right)\right) \cdot \delta$ on $\alpha_{s}\left(M_{Z}^{2}\right)$. For example, this enhances the already important impact of precise low- Q measurements, such as from τ decays, in combinations performed at the M_{Z} scale.

The selection of results from which to determine the world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$ is restricted to those that are

- published in a peer-reviewed journal at the time of writing this report,
- based on the most complete perturbative QCD predictions of at least NNLO accuracy,
- accompanied by reliable estimates of all experimental and theoretical uncertainties.

We note that all determinations of $\alpha_{s}\left(M_{Z}^{2}\right)$ entering the average of the lattice gauge community as summarised comprehensively in the FLAG2019 report [487] are published in peer-reviewed journals, although the FLAG report itself that only describes the averaging procedure is not.
We also note that a prediction in perturbative QCD for the determination of $\alpha_{s}\left(M_{Z}^{2}\right)$ at NNLO accuracy requires the calculation of at least three consecutive terms in powers $p>0$ of α_{s}^{p}. Although this condition is fulfilled, measurements from jet production in DIS and at hadron colliders (with one exception) are still excluded, because the determination of $\alpha_{s}\left(M_{Z}^{2}\right)$ has not yet been upgraded to NNLO. Nevertheless, the NLO analyses will be discussed in this Review, as they are important ingredients for the experimental evidence of the energy dependence of α_{s}, i.e. for Asymptotic Freedom, one of the key features of QCD.
In order to calculate the world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$, as in earlier editions we apply an intermediate step of pre-averaging results within the sub-fields now labelled "Hadronic τ decays and low Q^{2} continuum" (τ decays and low Q^{2}), "Heavy quarkonia decays" ($Q \bar{Q}$ bound states), "Deep-inelastic scattering and global PDF fits" (DIS \& PDF fits), "Hadronic final states of $e^{+} e^{-}$ annihilations" ($e^{+} e^{-}$jets \& shapes), "Hadron collider results" (hadron collider), and "Electroweak precision fit" (electroweak) as explained in the following sections. For each sub-field, the unweighted average of all selected results is taken as the pre-average value of $\alpha_{s}\left(M_{Z}^{2}\right)$, and the unweighted average of the quoted uncertainties is assigned to be the respective overall error of this pre-average. ${ }^{14}$ At variance with previous reviews, for the "Lattice QCD" (lattice) sub-field we do not perform a pre-averaging;

[^11]instead, we adopt for this sub-field the FLAG2019 average value and uncertainty derived in Ref. [487].
Assuming that the six sub-fields (excluding lattice) are largely independent of each other, we determine a non-lattice world average value using a ' χ 2 averaging' method. In a last step we perform an unweighted average of the values and uncertainties of $\alpha_{s}\left(M_{Z}^{2}\right)$ from our non-lattice result and the lattice result presented in the FLAG 2019 report [487].

9.4.1 Hadronic τ decays and low Q^{2} continuum:

Based on complete $\mathrm{N}^{3} \mathrm{LO}$ predictions [36], analyses of the τ hadronic decay width and spectral functions have been performed, $e . g$. in Refs. [36,488-493], and lead to precise determinations of α_{s} at the energy scale of M_{τ}^{2}. They are based on different approaches to treat perturbative and non-perturbative contributions, the impacts of which have been a matter of intense discussions since a long time, see e.g. Refs. [492-495]. In particular, in τ decays there is a significant difference between results obtained using fixedorder (FOPT) or contour improved perturbation theory (CIPT), such that analyses based on CIPT generally arrive at larger values of $\alpha_{s}\left(M_{\tau}^{2}\right)$ than those based on FOPT. In addition, some results show differences in $\alpha_{s}\left(M_{\tau}^{2}\right)$ between different groups using the same data sets and perturbative calculations, most likely due to different treatments of the non-perturbative contributions, $c f$. Ref. [493] with Refs. [492, 496].

Here, we largely keep the same input calculations as in the previous review, with only the following changes. The result of Ref. [492] has been replaced by the one of Ref. [495]. From Ref. [493] we use the values resulting from a combination of ALEPH and OPAL data instead of ALEPH data alone. Moreover, we include the new α_{s} determination obtained from $R(s)$ below the charm threshold [497]. Here, the average from the FOPT and CIPT results gives $\alpha_{s}\left(M_{\tau}^{2}\right)=0.301 \pm 0.019$, where the difference between the two amounts to 2% at m_{τ}. This corresponds to $\alpha_{s}\left(M_{Z}^{2}\right)=0.1162 \pm 0.0025$.
In summary, we determine the pre-average value of $\alpha_{s}\left(M_{Z}^{2}\right)$ for this sub-field from studies that employ both FOPT and CIPT expansions, and that account for the difference among these in the quoted overall uncertainty: $\alpha_{s}\left(M_{Z}^{2}\right)=0.1202 \pm 0.0019$ [36], $\alpha_{s}\left(M_{Z}^{2}\right)=0.1199 \pm 0.0015[496], \alpha_{s}\left(M_{Z}^{2}\right)=0.1175 \pm 0.0017$ [493], $\alpha_{s}\left(M_{Z}^{2}\right)=0.1197 \pm 0.0015$ [495], and $\alpha_{s}\left(M_{Z}^{2}\right)=0.1162 \pm 0.0025$ [497]. Additionally, we include the result from τ decay and lifetime measurements, obtained in Sec. Electroweak Model and constraints on New Physics of the 2018 edition of this Review, $\alpha_{s}\left(M_{Z}^{2}\right)=0.1184 \pm 0.0019$. The latter result, being a global fit of τ data, involve some correlations with the other extractions of this category. However, since we perform an unweighted average of the central value and uncertainty, we do not need to worry about double counting.
All these results are summarised in Fig. 9.2. Determining the unweighted average of the central values and their overall uncertainties, we arrive at $\alpha_{s}\left(M_{Z}^{2}\right)=0.1187 \pm 0.0018$, which we will use as the first input for determining the world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$. This corresponds to $\alpha_{s}\left(M_{\tau}^{2}\right)=0.325 \pm 0.016$.

9.4.2 Heavy quarkonia decays:

For a long time, the best determination of the strong coupling constant from radiative Υ decays was the one of Ref. [498], which resulted in $\alpha_{s}\left(M_{Z}^{2}\right)=0.119_{-0.005}^{+0.006}$. This determination is based on QCD at NLO only, so it will not be considered for the final extraction of the world average value of α_{s}; it is, however, an important ingredient for the demonstration of Asymptotic Freedom as given in Fig. 9.3. More recently, two determinations have been performed $[499,500]$ that are based on $\mathrm{N}^{3} \mathrm{LO}$ accurate predictions. Reference [499] performs a simultaneous fit of the strong coupling and the bottom mass $\overline{m_{b}}$, including states with principal quantum number up to $n \leq 2$ in order to break the degeneracy between α_{s} and $\overline{m_{b}}$, finding $\alpha_{s}\left(M_{Z}^{2}\right)=0.1178 \pm 0.0051$. Reference [500] instead uses as input of the fit the renormalon-free energy combination of B_{c} and bottomonium η_{b} and charmonium $\eta_{c}, M_{B_{c}}-M_{\eta_{b}} / 2-M_{\eta_{c}} / 2$, which is weakly dependent on the heavy quark masses, but shows a good dependence on α_{s}. Using this observable, they obtain $\alpha_{s}\left(M_{Z}^{2}\right)=0.1178 \pm 0.0051$. These two determinations satisfy our criteria to be included in the world

Figure 9.2: Summary of determinations of $\alpha_{s}\left(M_{Z}^{2}\right)$ from the seven sub-fields discussed in the text. The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field. The dashed line and blue (dark shaded) band represent the final world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$.
average and are at the moment the only input values in the Heavyquarkonia category. Their unweighted combination leads to the pre-average for this category of $\alpha_{s}\left(M_{Z}^{2}\right)=0.1187 \pm 0.0052$. We note that, while we include this result in our final average, because of the large uncertainty of the two determinations in this category, removing this pre-average would not change the final result within the quoted uncertainty.

9.4.3 Deep-inelastic scattering and global PDF fits:

Studies of DIS final states have led to a number of precise determinations of α_{s} : a combination [501] of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral current DIS at high Q^{2}, provides combined values of α_{s} at different energy scales Q, as shown in Fig. 9.3, and quotes a combined result of $\alpha_{s}\left(M_{Z}^{2}\right)=0.1198 \pm 0.0032$. A more recent study of multijet production [373], based on improved reconstruction and data calibration, confirms the general picture, albeit with a somewhat smaller value of $\alpha_{s}\left(M_{Z}^{2}\right)=0.1165 \pm 0.0039$, still at NLO. An evaluation of inclusive jet production, including approximate NNLO contributions [502], reduces the theoretical prediction for jet production in DIS, improves the description of the final HERA data in particular at high photon virtuality Q^{2} and increases the central fit value of the strong coupling constant.

Another class of studies, analyzing structure functions at NNLO QCD (and partly beyond), provide results that serve as relevant inputs for the world average of α_{s}. Most of these studies do not, however, explicitly include estimates of theoretical uncertainties when quoting fit results of α_{s}. In such cases we add, in quadrature, half of the difference between the results obtained in NNLO and NLO to the quoted errors: a combined analysis of non-singlet structure functions from DIS [503], based on QCD predictions up to $\mathrm{N}^{3} \mathrm{LO}$ in some of its parts, results in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1141 \pm 0.0022$ (BBG). Studies of singlet and non-singlet structure functions, based on NNLO predictions, result in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1162 \pm 0.0017$ [504] (JR14). The AMBP group [505,506] determined a set of parton distribution functions using data from HERA, NOMAD,

Figure 9.3: Summary of measurements of α_{s} as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_{s} is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a resummed calculation; $\mathrm{N}^{3} \mathrm{LO}$: next-to-NNLO).

CHORUS, from Tevatron and the LHC for the Drell-Yan process and the hadro-production of single-top and top-quark pairs and determined $\alpha_{s}\left(M_{Z}^{2}\right)=0.1147 \pm 0.0024$ [505]. The MMHT group [507], also including hadron collider data, determined a new set of parton density functions (MMHT2014) together with $\alpha_{s}\left(M_{Z}^{2}\right)=$ 0.1172 ± 0.0013. Similarly, the CT group [508] determined the CT14 parton density set together with $\alpha_{s}\left(M_{Z}^{2}\right)=0.1150_{-0.0024}^{+0.0036}$. The NNPDF group [509] presented NNPDF3.1 parton distribution functions together with $\alpha_{s}\left(M_{Z}^{2}\right)=0.1185 \pm 0.0012$.

We note that criticism has been expressed on some of the above extractions. Among the issues raised, we mention the neglect of singlet contributions at $x \geq 0.3$ in pure non-singlet fits [510], the impact and detailed treatment of particular classes of data in the fits $[510,511]$, possible biases due to insufficiently flexible parametrizations of the PDFs [512] and the use of a fixed-flavor number scheme $[513,514]$.

Summarizing the results from world data on structure functions, taking the unweighted average of the central values and errors of all selected results, leads to a pre-average value of $\alpha_{s}\left(M_{Z}^{2}\right)=$ 0.1161 ± 0.0018, see Fig. 9.2.

9.4.4 Hadronic final states of $e^{+} e^{-}$annihilations:

Re-analyses of event shapes in $e^{+} e^{-}$annihilation (j\&s), measured around the Z peak and at LEP2 center-of-mass energies up to 209 GeV , using NNLO predictions matched to NLL resummation and Monte Carlo models to correct for hadronization effects, resulted in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1224 \pm 0.0039$ (ALEPH) [515], with a dominant theoretical uncertainty of 0.0035 , and in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1189 \pm 0.0043$ (OPAL) [516]. Similarly, an analysis of JADE data [517] at center-of-mass energies between 14 and 46 GeV gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1172 \pm 0.0051$, with contributions from the hadronization model and from perturbative QCD uncertainties of 0.0035 and 0.0030 , respectively. Precise determinations of α_{s} from 3-jet production alone (3j), at NNLO, resulted in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1175 \pm 0.0025$ [518] from ALEPH data and in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1199 \pm 0.0059$ [519] from JADE. A recent determination is based on an NNLO+NNLL accurate calculation that allows to fit the region of lower 3 -jet rate $(2 \mathrm{j})$ using data collected at LEP and PETRA at different energies. This fit gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1188 \pm 0.0013$ [520], where the dominant uncertainty is the hadronization uncertainty, which is estimated
from Monte Carlo simulations. A fit of energy-energy-correlation (EEC) also based on an NNLO+NNLL calculation together with a Monte Carlo based modelling of hadronization corrections gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1175 \pm 0.0029$ [521]. These results are summarized in the upper seven rows of the $e^{+} e^{-}$sector of Fig. 9.2.

Another class of α_{s} determinations is based on analytic modelling of non-perturbative and hadronization effects, rather than on Monte Carlo models [522-525], using methods like power corrections, factorization of soft-collinear effective field theory, dispersive models and low scale QCD effective couplings. In these studies, the world data on Thrust distributions (T), or - most recently - C-parameter distributions (C), are analysed and fitted to perturbative QCD predictions at NNLO matched with resummation of leading logs up to $\mathrm{N}^{3} \mathrm{LL}$ accuracy, see Sec. 9.2.3.3. The results are $\alpha_{s}\left(M_{Z}^{2}\right)=0.1135 \pm 0.0011$ [523] and $\alpha_{s}\left(M_{Z}^{2}\right)=$ $0.1134_{-0.0025}^{+0.0031}$ [524] from Thrust, and $\alpha_{s}\left(M_{Z}^{2}\right)=0.1123 \pm 0.0015$ [525] from C-parameter. They are displayed in the lower three rows of the $e^{+} e^{-}$sector of Fig. 9.2.

The determination of Ref. [522], $\alpha_{s}\left(M_{Z}^{2}\right)=0.1164_{-0.0024}^{+0.0028}$, is no longer included in the average as it is superseded by other determinations that use the same Thrust data but rely on more accurate theoretical predictions. Not included in the computation of the world average but worth mentioning are a computation of the NLO corrections to 5 -jet production and comparison to the measured 5 -jet rates at LEP [526], giving $\alpha_{s}\left(M_{Z}^{2}\right)=$ $0.1156_{-0.0034}^{+0.0041}$, and a computation of non-perturbative and perturbative QCD contributions to the scale evolution of quark and gluon jet multiplicities, including resummation, resulting in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1199 \pm 0.0026[527]$.

We note that there is criticism on both classes of α_{s} extractions described above: those based on corrections of non-perturbative hadronization effects using QCD-inspired Monte Carlo generators (since the parton level of a Monte Carlo simulation is not defined in a manner equivalent to that of a fixed-order calculation), as well as studies based on non-perturbative analytic modelling, as their systematics have not yet been fully verified. For the latter case, Refs. [523, 525] quote surprisingly small overall experimental, hadronization, and theoretical uncertainties of only 2,5 , and 9 per-mille, respectively, which calls for an independent confirmation.

In view of these open questions, the determination of the unweighted average and uncertainties is intended to provide the most appropriate and unbiased estimate of the average value of $\alpha_{s}\left(M_{Z}^{2}\right)$ for this sub-field, which results in $\alpha_{s}\left(M_{Z}^{2}\right)=0.1171 \pm 0.0031$.

9.4.5 Hadron collider results:

Until recently, determinations of α_{s} using hadron collider data, mostly from jet or $t \bar{t}$ production processes, could be performed at NLO only. In the meantime, NNLO calculations have become available for $t \bar{t}[84,466,468]$ and for inclusive jet and dijet production $[197,528,529]$. Both can be supplemented by electroweak corrections [530-532], which become important for high- p_{T} collisions at the LHC; for $t \bar{t}$ logarithms have been resummed [469]. $Z+$ jet production, studied with respect to an α_{s} determination at NLO from multi-jet events in Ref. [533], is also known at NNLO for the 1-jet case [187,534].

The first determination of α_{s} at NNLO accuracy in QCD has been reported by CMS [470] from the $t \bar{t}$ production cross section at $\sqrt{s}=7 \mathrm{TeV}: \alpha_{s}\left(M_{Z}^{2}\right)=0.1151_{-0.0027}^{+0.0028}$, whereby the dominating contributions to the overall uncertainty are experimental $\binom{+0.0017}{-0.0018}$, from parton density functions $\left(\begin{array}{c}+0.0011\end{array}\right)$ and the value of the top quark pole mass (± 0.0013). In the last Review this opened up a new sub-field on its own. In the meantime, multiple datasets on $t \bar{t}$ production from Tevatron at $\sqrt{s}=1.96 \mathrm{TeV}$ and from LHC at $\sqrt{s}=7,8$, and 13 TeV have been analyzed simultaneously to determine $\alpha_{s}[471]$ to

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.1177_{-0.0036}^{+0.0034}
$$

where the largest uncertainties are associated with missing higher orders and with PDFs. Since this combined analysis contains among other things an updated measurement as compared to the dataset used by CMS, the latter is replaced in the averaging by
the new combined result. A second entry into this sub-field is given by an analysis of new $t \bar{t}$ production data at $\sqrt{s}=13 \mathrm{TeV}$ from the CMS collaboration [464]. From the four values presented for the chosen PDF sets, the unweighted average is taken:

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.1145_{-0.0031}^{+0.0036}
$$

From jet production only one α_{s} determination has been performed yet at NNLO using DIS data of the H1 Collaboration [374]. Two strategies are pursued for the extraction of α_{s}, one using predetermined PDFs as input and a second strategy fitting the proton PDFs together with the strong coupling constant. From the first approach we choose the result with the smallest total uncertainty, $\alpha_{s}\left(M_{Z}^{2}\right)=0.1168 \pm 0.0030$, where the analysis is restricted to the phase space with the most precise theoretical prediction at the cost of excluding numerous data points at lower scale values. The second approach gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1142 \pm 0.0028$, which we combine with the first result to our unweighted input average:

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.1155 \pm 0.0029
$$

As unweighted pre-average for this sub-field we obtain: $\alpha_{s}\left(M_{Z}^{2}\right)=$ 0.1159 ± 0.0034. Also worth mentioning is a recent still unpublished extraction of $\alpha_{s}\left(M_{Z}^{2}\right)=0.1170 \pm 0.0030$ [535] using HERA jet data and relying on fast interpolation grid techniques.

Many further α_{s} determinations from jet measurements either could not yet be advanced to NNLO accuracy or the NNLO predictions are not yet available as is the case for observables requiring three or more jets in the final state. A selection of results from inclusive jet $[373,387,536-541]$ and multi-jet measurements [332, 334, 335, 373,542-546] is presented in Fig. 9.4, where the uncertainty in most cases is dominated by the impact of missing higher orders estimated through scale variations. The multi-jet α_{s} determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2 -, and 3 -jet cross sections (nj) simultaneously.

The CMS Collaboration has also derived an α_{s} value at NLO from dijet production at $\sqrt{s}=8 \mathrm{TeV}$ [393], but only in combination with a PDF fit. The last point of the inclusive jet sub-field from Ref. [541] is derived from a simultaneous fit to six datasets from different experiments and partially includes data used already for the other data points, e.g. the CMS result at 7 TeV .

All NLO results are within their large uncertainties in agreement with the world average and the associated analyses provide valuable new values for the scale dependence of α_{s} at energy scales now extending up to almost 2.0 TeV as shown in Fig. 9.3.

9.4.6 Electroweak precision fit:

For this category, we update the global electroweak fit result of Ref. [547] to the one of Ref. [548], which now includes kinematic top quark and W boson mass measurements from the LHC, new determinations of the effective leptonic electroweak mixing angles from the Tevatron, a Higgs mass measurement from ATLAS and CMS, and a new evaluation of the hadronic contribution to the running of the electromagnetic coupling at the Z-boson mass. In addition, we use the newer results of the electroweak fit at the Z mass pole from LEP and SLC data presented in Sec. Electroweak Model and constraints on New Physics of the 2018 edition of this Review. Both very similar results, $\alpha_{s}\left(M_{Z}^{2}\right)=0.1203 \pm 0.0028$ [480], $\alpha_{s}\left(M_{Z}^{2}\right)=0.1194 \pm 0.0029$ [548], are also in perfect agreement with the original result obtained from LEP and SLD data [549]. Our pre-averaging gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1199 \pm 0.0029$.

We note, however, that results from electroweak precision data strongly depend on the strict validity of Standard Model predictions and the existence of the minimal Higgs mechanism to implement electroweak symmetry breaking. Any - even small deviation of nature from this model could strongly influence this extraction of α_{s}.

9.4.7 Lattice QCD:

Several methods exist to extract the strong coupling constant from lattice QCD, as reviewed also in Sec. Lattice $Q C D$ of this Review.

Figure 9.4: Summary of determinations of $\alpha_{s}\left(M_{Z}^{2}\right)$ at NLO from inclusive and multi-jet measurements at hadron colliders. The uncertainty is dominated by estimates of the impact of missing higher orders. The yellow (light shaded) bands and dotted lines indicate average values for the two sub-fields. The dashed line and blue (dark shaded) band represent the final world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$.

Figure 9.5: Lattice determinations that enter the FLAG2019 average. The yellow (light shaded) band and dotted line indicates the average value for this sub-field. The dashed line and blue (dark shaded) band represent the final world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$.

The Flavour Lattice Averaging Group (FLAG) has recently considered the most up-to-date determinations and combined them to produce an update of their average α_{s} [487]. Their final result is obtained by considering seventeen possible input calculations [550-567] and by retaining in their final average only those eight [551-553,556,559-561,563] that fulfill their predefined quality criteria. These determinations, together with their uncertainties, are displayed in Fig. 9.5. The yellow (light shaded) band and dotted line indicate the FLAG 2018 average, while the dashed line and blue (dark shaded) band represent the world average (see later). The level of agreement of individual results to the world average, or to the non-lattice world average is very similar. The criteria applied are detailed in the Sec. 9.2.1 of Ref. [487]. We
note that, as in our case, the calculation must be published in a peer-reviewed journal for it to be eligible to be included in the FLAG average. We also note that the criteria applied now are considered relatively loose by the FLAG collaboration and they have already formulated more stringent criteria. It is likely that in future FLAG averages only results satisfying these stricter criteria will be included in their averaging.

Similarly to what is done here, the FLAG collaboration built pre-averages of results that belong to different classes. The categories that currently contribute to the average are: step-scaling methods $\left(\alpha_{s}\left(M_{Z}^{2}\right)=0.11848_{-0.00081}^{+0.00081}\right)$, the potential at short distances $\left(\alpha_{s}\left(M_{Z}^{2}\right)=0.11660_{-0.00160}^{+0.00160}\right)$, Wilson loops $\left(\alpha_{s}\left(M_{Z}^{2}\right)=\right.$ $\left.0.11858_{-0.00120}^{+0.00120}\right)$, and heavy-quark current two-point functions $\left(\alpha_{s}\left(M_{Z}^{2}\right)=0.11824_{-0.00150}^{+0.00150}\right)$.

Other categories like the vacuum polarization at short distances, the calculation of QCD vertices, or of the eigenvalue spectrum of the Dirac operator have not yet published results that fulfill all requirements to be included in the average. Ref. [568] has been completed after the publication of Ref. [487], hence these results have not been considered in the last FLAG average.

The final value is obtained by performing an unweighted average of the pre-averages. In order to be conservative, the final uncertainty is not the combined uncertainty of the pre-averages, rather it is taken to be the smallest uncertainty of the pre-averages, which is the uncertainty of the step-scaling category and is dominated by the ALPHA 17 result [563]. The final FLAG average (rounded to four digits) is

$$
\begin{equation*}
\alpha_{s}\left(M_{Z}^{2}\right)=0.1182 \pm 0.0008, \quad \text { (lattice) } \tag{9.23}
\end{equation*}
$$

We believe that this result expresses to a large extent the consensus of the lattice community and that the imposed criteria and the rigorous assessment of systematic uncertainties qualify for a direct inclusion of this FLAG average here. In contrast to the previous review, we therefore decided to adopt the FLAG average with its uncertainty as our value of α_{s} for the lattice category. Moreover, this lattice result will not be directly combined with any other sub-field average, but with our non-lattice average to give our final world average value for α_{s}.
9.4.8 Determination of the world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$: Obtaining a world average value for $\alpha_{s}\left(M_{Z}^{2}\right)$ is a non-trivial exercise. A certain arbitrariness and subjective component is inevitable because of the choice of measurements to be included in the average, the treatment of (non-Gaussian) systematic uncertainties of mostly theoretical nature, as well as the treatment of correlations among the various inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for sub-fields of measurements that are considered to exhibit a maximum of independence among each other, considering experimental as well as theoretical issues. The seven pre-averages are summarized in Fig. 9.2. We recall that these are exclusively obtained from extractions that are based on (at least) full NNLO QCD predictions, and are published in peer-reviewed journals at the time of completing this Review. To obtain our final world average, we first combine six pre-averages, excluding the lattice result, using a χ^{2} averaging method. This gives

$$
\begin{equation*}
\alpha_{s}\left(M_{Z}^{2}\right)=0.1176 \pm 0.0011, \quad \text { (without lattice) } \tag{9.24}
\end{equation*}
$$

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error. In order to be conservative, we combine these two numbers using an unweighted average and take as an uncertainty the average between these two uncertainties. This gives our final world average value

$$
\begin{equation*}
\alpha_{s}\left(M_{Z}^{2}\right)=0.1179 \pm 0.0010 \tag{9.25}
\end{equation*}
$$

This world average value is in very good agreement with the last version of this Review, which was $\alpha_{s}\left(M_{Z}^{2}\right)=0.1181 \pm 0.0011$, with only a slightly lower central value and decreased overall uncertainty. Performing a weighted average of all seven categories
gives $\alpha_{s}\left(M_{Z}^{2}\right)=0.1180 \pm 0.0007$. Our uncertainty instead is about 50% larger.
Notwithstanding the many open issues still present within each of the sub-fields summarised in this Review, the wealth of available results provides a rather precise and reasonably stable world average value of $\alpha_{s}\left(M_{Z}^{2}\right)$, as well as a clear signature and proof of the energy dependence of α_{s}, in full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in Fig. 9.3, where results of $\alpha_{s}\left(Q^{2}\right)$ obtained at discrete energy scales Q, now also including those based just on NLO QCD, are summarised. Thanks to the results from the Tevatron and from the LHC, the energy scales, at which α_{s} is determined, now extend up to almost $2 \mathrm{TeV} .{ }^{15}$

9.5 Acknowledgments

We are grateful to S. Bethke, G. Dissertori, D. d'Enterria, C. Glasman, A. Hoang, D. Lombardi, G.P. Salam, and B. Webber for discussions and for their comments on the manuscript, and to J. Andersen, A. Bazavov, H.-L. Win, and J. Smillie for useful discussions.

References

[1] R. K. Ellis, W. J. Stirling and B. R. Webber, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996).
[2] J. Campbell, J. Huston, F. Krauss "The Black Book of Quantum Chromodynamics, a Primer for the $Q C D$ Era, "Oxford University Press, UK (2017).
[3] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), [hepex/0602020].
[4] J. M. Pendlebury et al., Phys. Rev. D92, 9, 092003 (2015), [arXiv:1509.04411].
[5] B. Graner et al., Phys. Rev. Lett. 116, 16, 161601 (2016), [Erratum: Phys. Rev. Lett.119,no.11,119901(2017)], [arXiv:1601.04339].
[6] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010), [arXiv:0807.3125].
[7] G. Dissertori, I. G. Knowles and M. Schmelling, High energy experiments and theory, Oxford, UK: Clarendon (2003).
[8] R. Brock et al. (CTEQ), Rev. Mod. Phys. 67, 157 (1995); see also http://www.phys.psu.edu/~cteq/ handbook/v1.1/handbook.pdf/.
[9] K. Melnikov, CERN Yellow Rep. School Proc. 3, 37 (2018).
[10] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B400, 379 (1997), [hep-ph/9701390].
[11] M. Czakon, Nucl. Phys. B710, 485 (2005), [hepph/0411261].
[12] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett. 118, 8, 082002 (2017), [arXiv:1606.08659].
[13] T. Luthe et al., JHEP 07, 127 (2016), [arXiv:1606.08662].
[14] F. Herzog et al., JHEP 02, 090 (2017), [arXiv:1701.01404].
[15] T. Luthe et al., JHEP 10, 166 (2017), [arXiv:1709.07718].
[16] K. G. Chetyrkin et al., JHEP 10, 179 (2017), [Addendum: JHEP12,006(2017)], [arXiv:1709.08541].
[17] W. A. Bardeen et al., Phys. Rev. D18, 3998 (1978).
[18] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973), [,271(1973)].
[19] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973), [,274(1973)].
[20] Y. Schroder and M. Steinhauser, JHEP 01, 051 (2006), [hep-ph/0512058].
[21] K. G. Chetyrkin, J. H. Kuhn and C. Sturm, Nucl. Phys. B744, 121 (2006), [hep-ph/0512060].

[^12][22] A. G. Grozin et al., JHEP 09, 066 (2011), [arXiv:1107.5970].
[23] M. Dalla Brida et al. (ALPHA), Phys. Rev. Lett. 117, 18, 182001 (2016), [arXiv:1604.06193].
[24] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000), [hep-ph/0004189].
[25] B. Schmidt and M. Steinhauser, Comput. Phys. Commun. 183, 1845 (2012), [arXiv:1201.6149].
[26] F. Herren and M. Steinhauser, Comput. Phys. Commun. 224, 333 (2018), [arXiv:1703.03751].
[27] A. V. Bednyakov, Phys. Lett. B741, 262 (2015), [arXiv:1410.7603].
[28] M. Beneke, Phys. Rept. 317, 1 (1999), [hep-ph/9807443].
[29] M. Beneke et al., Phys. Lett. B775, 63 (2017), [arXiv:1605.03609].
[30] A. H. Hoang, C. Lepenik and M. Preisser, JHEP 09, 099 (2017), [arXiv:1706.08526].
[31] P. Marquard et al., Phys. Rev. Lett. 114, 14, 142002 (2015), [arXiv:1502.01030].
[32] P. A. Baikov et al., Phys. Lett. B714, 62 (2012), [arXiv:1206.1288].
[33] K. G. Chetyrkin, J. H. Kuhn and A. Kwiatkowski (1996), [Phys. Rept.277,189(1996)], [hep-ph/9503396].
[34] Y. Kiyo et al., Nucl. Phys. B823, 269 (2009), [arXiv:0907.2120].
[35] P. A. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012), [arXiv:1201.5804].
[36] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008), [arXiv:0801.1821].
[37] F. Herzog et al., JHEP 08, 113 (2017), [arXiv:1707.01044].
[38] V. A. Novikov et al., Nucl. Phys. B174, 378 (1980).
[39] H.-W. Lin et al., Phys. Rev. D91, 054510 (2015), [arXiv:1402.1462]; C. Alexandrou et al., Phys. Rev. D92, 014502 (2015), [arXiv:1504.07455].
[40] H.-W. Lin et al., Prog. Part. Nucl. Phys. 100, 107 (2018), [arXiv:1711.07916].
[41] C. Alexandrou et al., Phys. Rev. Lett. 121, 11, 112001 (2018), [arXiv:1803.02685].
[42] J.-W. Chen et al. (2018), [arXiv:1803.04393].
[43] K. Cichy, L. Del Debbio and T. Giani (2019), [arXiv:1907.06037].
[44] G. C. Rossi and M. Testa, Phys. Rev. D96, 1, 014507 (2017), [arXiv:1706.04428].
[45] J. Gao, L. Harland-Lang and J. Rojo, Phys. Rept. 742, 1 (2018), [arXiv:1709.04922].
[46] K. Kovařík, P. M. Nadolsky and D. E. Soper (2019), [arXiv:1905.06957].
[47] J. Butterworth et al., J. Phys. G43, 023001 (2016), [arXiv:1510.03865].
[48] R. Abdul Khalek et al. (NNPDF) (2019), [arXiv:1905.04311].
[49] R. Abdul Khalek et al. (NNPDF) (2019), [arXiv:1906.10698].
[50] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
[51] J. A. M. Vermaseren, A. Vogt and S. Moch, Nucl. Phys. B724, 3 (2005), [hep-ph/0504242].
[52] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B813, 220 (2009), [arXiv:0812.4168].
[53] J. Davies et al., PoS DIS2016, 059 (2016), [arXiv:1606.08907].
[54] E. Laenen et al., Nucl. Phys. B392, 162 (1993); S. Riemersma, J. Smith and W. L. van Neerven, Phys. Lett. B347, 143 (1995), [hep-ph/9411431].
[55] J. Blümlein et al. (2019), [arXiv:1903.06155].
[56] A. Manohar et al., Phys. Rev. Lett. 117, 24, 242002 (2016), [arXiv:1607.04266].
[57] J. C. Collins, D. E. Soper and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989), [hep-ph/0409313].
[58] J.C. Collins, Foundations of Perturbative QCD, Cambridge University Press, 2011.
[59] G. C. Nayak, J.-W. Qiu and G. F. Sterman, Phys. Rev. D72, 114012 (2005), [hep-ph/0509021].
[60] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972), [Yad. Fiz.15,781(1972)]; L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975), [Yad. Fiz.20,181(1974)]; G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977); Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977), [Zh. Eksp. Teor. Fiz.73,1216(1977)].
[61] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980); W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980).
[62] A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B691, 129 (2004), [hep-ph/0404111]; S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B688, 101 (2004), [hep-ph/0403192].
[63] S. Moch et al., JHEP 10, 041 (2017), [arXiv:1707.08315].
[64] A. Vogt et al., PoS RADCOR2017, 046 (2018), [arXiv:1801.06085].
[65] A. Vogt et al., PoS LL2018, 050 (2018), [arXiv:1808.08981].
[66] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B889, 351 (2014), [arXiv:1409.5131].
[67] D. de Florian, G. F. R. Sborlini and G. Rodrigo, Eur. Phys. J. C76, 5, 282 (2016), [arXiv:1512.00612]; D. de Florian, G. F. R. Sborlini and G. Rodrigo, JHEP 10, 056 (2016), [arXiv:1606.02887].
[68] R. S. Thorne, Phys. Rev. D73, 054019 (2006), [hepph/0601245].
[69] S. Forte et al., Nucl. Phys. B834, 116 (2010), [arXiv:1001.2312].
[70] M. Guzzi et al., Phys. Rev. D86, 053005 (2012), [arXiv:1108.5112].
[71] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. 60B, 50 (1975).
[72] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978), [Yad. Fiz.28,1597(1978)].
[73] R. D. Ball et al., Eur. Phys. J. C78, 4, 321 (2018), [arXiv:1710.05935].
[74] H. Abramowicz et al. (H1, ZEUS), Eur. Phys. J. C75, 12, 580 (2015), [arXiv:1506.06042].
[75] H. Abdolmaleki et al. (xFitter Developers' Team), Eur. Phys. J. C78, 8, 621 (2018), [arXiv:1802.00064].
[76] L. A. Harland-Lang et al., Eur. Phys. J. C76, 4, 186 (2016), [arXiv:1601.03413].
[77] T.-J. Hou et al. (2019), [arXiv:1908.11238].
[78] J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B261, 104 (1985).
[79] R. Hamberg, W. L. van Neerven and T. Matsuura, Nucl. Phys. B359, 343 (1991), [Erratum: Nucl. Phys.B644,403(2002)].
[80] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002), [hep-ph/0201206].
[81] O. Brein, A. Djouadi and R. Harlander, Phys. Lett. B579, 149 (2004), [hep-ph/0307206].
[82] P. Bolzoni et al., Phys. Rev. Lett. 105, 011801 (2010), [arXiv:1003.4451].
[83] S. Borowka et al., Phys. Rev. Lett. 117, 1, 012001 (2016), [Erratum: Phys. Rev. Lett.117,no.7,079901(2016)], [arXiv:1604.06447].
[84] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110, 252004 (2013), [arXiv:1303.6254].
[85] T. Gehrmann et al., Phys. Rev. Lett. 113, 21, 212001 (2014), [arXiv:1408.5243].
[86] F. Cascioli et al., Phys. Lett. B735, 311 (2014), [arXiv:1405.2219].
[87] M. Grazzini, S. Kallweit and M. Wiesemann, Eur. Phys. J. C78, 7, 537 (2018), [arXiv:1711.06631].
[88] C. Anastasiou et al., Phys. Rev. Lett. 114, 212001 (2015), [arXiv:1503.06056]; C. Anastasiou et al., JHEP 05, 058 (2016), [arXiv:1602.00695].
[89] B. Mistlberger, JHEP 05, 028 (2018), [arXiv:1802.00833].
[90] F. Dulat, B. Mistlberger and A. Pelloni, Phys. Rev. D99, 3, 034004 (2019), [arXiv:1810.09462].
[91] F. A. Dreyer and A. Karlberg, Phys. Rev. Lett. 117, 7, 072001 (2016), [arXiv:1606.00840].
[92] D. de Florian et al. (LHC Higgs Cross Section Working Group) (2016), [arXiv:1610.07922].
[93] M. Greco and A. Vicini, Nucl. Phys. B415, 386 (1994).
[94] L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976), [Yad. Fiz.23,642(1976)].
[95] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977), [Zh. Eksp. Teor. Fiz.72,377(1977)].
[96] V. S. Fadin and L. N. Lipatov, Phys. Lett. B429, 127 (1998), [hep-ph/9802290].
[97] M. Ciafaloni and G. Camici, Phys. Lett. B430, 349 (1998), [hep-ph/9803389].
[98] G. Altarelli, R. D. Ball and S. Forte, Nucl. Phys. B799, 199 (2008), [arXiv:0802.0032].
[99] M. Ciafaloni et al., JHEP 08, 046 (2007), [arXiv:0707.1453].
[100] C. D. White and R. S. Thorne, Phys. Rev. D75, 034005 (2007), [hep-ph/0611204].
[101] E. Iancu et al., Phys. Lett. B744, 293 (2015), [arXiv:1502.05642].
[102] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Phys. Rev. Lett. 115, 25, 251601 (2015), [arXiv:1507.04010]; V. N. Velizhanin (2015), [arXiv:1508.02857]; S. Caron-Huot and M. Herranen, JHEP 02, 058 (2018), [arXiv:1604.07417].
[103] I. Balitsky, Nucl. Phys. B463, 99 (1996), [hep-ph/9509348].
[104] Y. V. Kovchegov, Phys. Rev. D60, 034008 (1999), [hepph/9901281].
[105] A. Hebecker, Phys. Rept. 331, 1 (2000), [hep-ph/9905226].
[106] A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005), [hep-ph/0504030].
[107] E. Boos et al. (CompHEP), Nucl. Instrum. Meth. A534, 250 (2004), [hep-ph/0403113]; http://compep.sinp.su.ru/.
[108] J. Alwall et al., JHEP 07, 079 (2014), [arXiv:1405.0301]; https://launchpad.net/mg5amcnlo.
[109] M. L. Mangano et al., JHEP 07, 001 (2003), [hepph/0206293];
http://cern.ch/mlm/alpgen/.
[110] T. Gleisberg and S. Hoeche, JHEP 12, 039 (2008), [arXiv:0808.3674]; https://sherpa.hepforge.prg/trac/wiki.
[111] A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun. 180, 1941 (2009), [arXiv:0710.2427]; http://cern.ch/helac-phegas/.
[112] F. A. Berends and W. T. Giele, Nucl. Phys. B306, 759 (1988).
[113] L. J. Dixon, in "QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, USA, June 430, 1995," 539-584 (1996), [hep-ph/9601359], URL http://www-public.slac.stanford.edu/sciDoc/docMeta. aspx?slacPubNumber=SLAC-PUB-7106.
[114] R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B715, 499 (2005), [hep-th/0412308].
[115] F. Cachazo, P. Svrcek and E. Witten, JHEP 09, 006 (2004), [hep-th/0403047].
[116] S. Badger et al., Phys. Rev. D87, 3, 034011 (2013), [arXiv:1206.2381].
[117] S. Catani and M. H. Seymour, Nucl. Phys. B485, 291 (1997), [Erratum: Nucl. Phys.B510,503(1998)], [hepph/9605323].
[118] S. Frixione, Z. Kunszt and A. Signer, Nucl. Phys. B467, 399 (1996), [hep-ph/9512328].
[119] D. A. Kosower, Phys. Rev. D57, 5410 (1998), [hepph/9710213]; J. M. Campbell, M. A. Cullen and E. W. N. Glover, Eur. Phys. J. C9, 245 (1999), [hep-ph/9809429]; D. A. Kosower, Phys. Rev. D71, 045016 (2005), [hepph/0311272].
[120] G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B763, 147 (2007), [hep-ph/0609007].
[121] R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B725, 275 (2005), [hep-th/0412103].
[122] R. K. Ellis et al., Nucl. Phys. B822, 270 (2009), [arXiv:0806.3467].
[123] C. F. Berger and D. Forde, Ann. Rev. Nucl. Part. Sci. 60, 181 (2010), [arXiv:0912.3534].
[124] F. Cascioli, P. Maierhofer and S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012), [arXiv:1111.5206].
[125] Z. Bern, L. J. Dixon and D. A. Kosower, Annals Phys. 322, 1587 (2007), [arXiv:0704.2798].
[126] R. K. Ellis et al., Phys. Rept. 518, 141 (2012), [arXiv:1105.4319].
[127] G. Bevilacqua et al., Comput. Phys. Commun. 184, 986 (2013), [arXiv:1110.1499]; http://cern.ch/helax-phegas/.
[128] G. Cullen et al., Eur. Phys. J. C74, 8, 3001 (2014), [arXiv:1404.7096]; http://gosam.hepforge.org/.
[129] S. Badger et al., Comput. Phys. Commun. 184, 1981 (2013), [arXiv:1209.0100]; https://bitbucket.org/njet/wiki/Home/.
[130] F. Buccioni, S. Pozzorini and M. Zoller, Eur. Phys. J. C78, 1, 70 (2018), [arXiv:1710.11452]; https://openloops.hepforge.org/.
[131] S. Actis et al., Comput. Phys. Commun. 214, 140 (2017), [arXiv:1605.01090].
[132] T. Gleisberg et al., JHEP 02, 007 (2009), [arXiv:0811.4622]; http://projects.hepforge.org/sherpa.
[133] Z. Nagy, Phys. Rev. D68, 094002 (2003), [hep-ph/0307268]; http://www.desy.de.~znagy/Site/NLOJet++.html.
[134] J. M. Campbell and R. K. Ellis, Phys. Rev. D62, 114012 (2000), [hep-ph/0006304].
[135] J. Baglio et al. (2011), [arXiv:1107.4038]; http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb.
[136] T. Binoth et al., Eur. Phys. J. C16, 311 (2000), [hepph/9911340]; http://lapth.in2p3.fr/PHOX_FAMILY/.
[137] Z. Bern et al., PoS LL2012, 018 (2012), [arXiv:1210.6684].
[138] T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast $p Q C D$ calculations for PDF fits (2006), [hepph/0609285], URL http://lss.fnal.gov/cgi-bin/find_ paper.pl?conf-06-352;
http://fastnlo.hepforge.org/.
[139] T. Carli et al., Eur. Phys. J. C66, 503 (2010), [arXiv:0911.2985]; https://applgrid.hepforge.org/.
[140] L. Del Debbio, N. P. Hartland and S. Schumann, Comput. Phys. Commun. 185, 2115 (2014), [arXiv:1312.4460]; http://mcgrid.hepforge.org/.
[141] V. Bertone et al., JHEP 08, 166 (2014), [arXiv:1406.7693]; https://amcfast.hepforge.org/.
[142] G. Cullen, N. Greiner and G. Heinrich, Eur. Phys. J. C73, 4, 2388 (2013), [arXiv:1212.5154].
[143] S. Kallweit et al., JHEP 04, 012 (2015), [arXiv:1412.5157].
[144] A. Denner et al., JHEP 04, 018 (2015), [arXiv:1412.7421].
[145] M. Chiesa, N. Greiner and F. Tramontano, J. Phys. G43, 1, 013002 (2016), [arXiv:1507.08579].
[146] S. Frixione et al., JHEP 06, 184 (2015), [arXiv:1504.03446].
[147] B. Biedermann et al., Eur. Phys. J. C77, 492 (2017), [arXiv:1704.05783].
[148] R. Frederix et al., JHEP 07, 185 (2018), [arXiv:1804.10017].
[149] C. Anastasiou, R. Boughezal and F. Petriello, JHEP 04, 003 (2009), [arXiv:0811.3458].
[150] S. Dittmaier, A. Huss and C. Schwinn, Nucl. Phys. B885, 318 (2014), [arXiv:1403.3216].
[151] S. Dittmaier, A. Huss and C. Schwinn, Nucl. Phys. B904, 216 (2016), [arXiv:1511.08016].
[152] D. de Florian, M. Der and I. Fabre, Phys. Rev. D98, 9, 094008 (2018), [arXiv:1805.12214].
[153] M. Bonetti, K. Melnikov and L. Tancredi, Phys. Rev. D97, 5, 056017 (2018), [Erratum: Phys. Rev.D97,no.9,099906(2018)], [arXiv:1801.10403].
[154] C. Anastasiou et al., JHEP 03, 162 (2019), [arXiv:1811.11211].
[155] M. Bonetti, K. Melnikov and L. Tancredi, Phys. Rev. D97, 3, 034004 (2018), [arXiv:1711.11113].
[156] Z. Bern et al., Nucl. Phys. B425, 217 (1994), [hepph/9403226].
[157] J. M. Campbell and E. W. N. Glover, Nucl. Phys. B527, 264 (1998), [hep-ph/9710255].
[158] S. Catani and M. Grazzini, Phys. Lett. B446, 143 (1999), [hep-ph/9810389].
[159] T. Binoth and G. Heinrich, Nucl. Phys. B585, 741 (2000), [hep-ph/0004013].
[160] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. D69, 076010 (2004), [hep-ph/0311311].
[161] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, JHEP 09, 056 (2005), [hep-ph/0505111].
[162] G. Somogyi, Z. Trocsanyi and V. Del Duca, JHEP 01, 070 (2007), [hep-ph/0609042].
[163] M. Czakon, Phys. Lett. B693, 259 (2010), [arXiv:1005.0274].
[164] S. Catani and M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007), [hep-ph/0703012]; http://theory.fi.infn.it/grazzini/codes.html.
[165] R. Boughezal et al., Phys. Rev. Lett. 115, 6, 062002 (2015), [arXiv:1504.02131].
[166] J. Gaunt et al., JHEP 09, 058 (2015), [arXiv:1505.04794].
[167] M. Cacciari et al., Phys. Rev. Lett. 115, 8, 082002 (2015), [Erratum: Phys. Rev. Lett.120,no.13,139901(2018)], [arXiv:1506.02660].
[168] A. Gehrmann-De Ridder et al., Phys. Rev. Lett. 99, 132002 (2007), [arXiv:0707.1285]; A. Gehrmann-De Ridder et al., JHEP 12, 094 (2007), [arXiv:0711.4711]; A. GehrmannDe Ridder et al., Phys. Rev. Lett. 100, 172001 (2008), [arXiv:0802.0813].
[169] A. Gehrmann-De Ridder et al., Comput. Phys. Commun. 185, 3331 (2014), [arXiv:1402.4140]; https://eerad3.epforge.org/.
[170] S. Weinzierl, Phys. Rev. Lett. 101, 162001 (2008), [arXiv:0807.3241]; S. Weinzierl, JHEP 06, 041 (2009), [arXiv:0904.1077].
[171] J. Currie, T. Gehrmann and J. Niehues, Phys. Rev. Lett. 117, 4, 042001 (2016), [arXiv:1606.03991].
[172] J. Currie et al., JHEP 05, 209 (2018), [arXiv:1803.09973].
[173] T. Gehrmann et al., Phys. Lett. B792, 182 (2019), [arXiv:1812.06104].
[174] K. Melnikov and F. Petriello, Phys. Rev. D74, 114017 (2006), [hep-ph/0609070];
http://gate.hep.anl.gov/fpetriello/FEWZ.html.
[175] S. Catani et al., Phys. Rev. Lett. 103, 082001 (2009), [arXiv:0903.2120];
http://theory.fi.infn.it/gazzani/dy.html.
[176] C. Anastasiou, K. Melnikov and F. Petriello, Nucl. Phys. B724, 197 (2005), [hep-ph/0501130]; http://www.phys.ethz.ch/~pheno/fehipro/.
[177] M. Grazzini et al., JHEP 05, 139 (2017), [arXiv:1703.09065].
[178] S. Catani et al., Phys. Rev. Lett. 108, 072001 (2012), [Erratum: Phys. Rev. Lett.117,no.8,089901(2016)], [arXiv:1110.2375].
[179] J. M. Campbell et al., JHEP 07, 148 (2016), [arXiv:1603.02663].
[180] M. Grazzini et al., Phys. Lett. B731, 204 (2014), [arXiv:1309.7000].
[181] M. Grazzini, S. Kallweit and D. Rathlev, JHEP 07, 085 (2015), [arXiv:1504.01330].
[182] R. Boughezal et al., Eur. Phys. J. C77, 1, 7 (2017), [arXiv:1605.08011].
[183] J. M. Campbell, R. K. Ellis and C. Williams, Phys. Rev. Lett. 118, 22, 222001 (2017), [arXiv:1612.04333].
[184] X. Chen et al., Submitted to: J. High Energy Phys. (2019), [arXiv:1904.01044].
[185] J. M. Campbell, R. K. Ellis and C. Williams, Phys. Rev. D96, 1, 014037 (2017), [arXiv:1703.10109].
[186] A. Gehrmann-De Ridder et al., Phys. Rev. Lett. 117, 2, 022001 (2016), [arXiv:1507.02850].
[187] R. Boughezal et al., Phys. Rev. Lett. 116, 15, 152001 (2016), [arXiv:1512.01291].
[188] R. Boughezal et al., Phys. Rev. Lett. 115, 8, 082003 (2015), [arXiv:1504.07922].
[189] R. Boughezal et al., Phys. Lett. B748, 5 (2015), [arXiv:1505.03893].
[190] F. Caola, K. Melnikov and M. Schulze, Phys. Rev. D92, 7, 074032 (2015), [arXiv:1508.02684].
[191] X. Chen et al., JHEP 10, 066 (2016), [arXiv:1607.08817].
[192] G. Ferrera, M. Grazzini and F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011), [arXiv:1107.1164].
[193] G. Ferrera, M. Grazzini and F. Tramontano, Phys. Lett. B740, 51 (2015), [arXiv:1407.4747].
[194] M. Brucherseifer, F. Caola and K. Melnikov, Phys. Lett. B736, 58 (2014), [arXiv:1404.7116].
[195] E. L. Berger et al., Phys. Rev. D94, 7, 071501 (2016), [arXiv:1606.08463].
[196] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 115, 5, 052001 (2015), [arXiv:1411.3007].
[197] J. Currie, E. W. N. Glover and J. Pires, Phys. Rev. Lett. 118, 7, 072002 (2017), [arXiv:1611.01460].
[198] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801 (2013), [arXiv:1309.6594].
[199] J. Cruz-Martinez et al., Phys. Lett. B781, 672 (2018), [arXiv:1802.02445].
[200] T. Liu, K. Melnikov and A. A. Penin (2019), [arXiv:1906.10899].
[201] Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report (2018), [arXiv:1803.07977], URL
http://lss.fnal.gov/archive/2018/conf/ fermilab-conf-18-122-cd-t.pdf.
[202] Y. L. Dokshitzer, D. Diakonov and S. I. Troian, Phys. Rept. 58, 269 (1980).
[203] G. Parisi and R. Petronzio, Nucl. Phys. B154, 427 (1979).
[204] G. Curci, M. Greco and Y. Srivastava, Nucl. Phys. B159, 451 (1979).
[205] A. Bassetto, M. Ciafaloni and G. Marchesini, Nucl. Phys. B163, 477 (1980).
[206] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981), [Erratum: Nucl. Phys.B213,545(1983)].
[207] J. C. Collins and D. E. Soper, Nucl. Phys. B197, 446 (1982).
[208] J. Kodaira and L. Trentadue, Phys. Lett. 112B, 66 (1982).
[209] J. Kodaira and L. Trentadue, Phys. Lett. 123B, 335 (1983).
[210] J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B250, 199 (1985).
[211] S. Catani et al., Nucl. Phys. B407, 3 (1993).
[212] C. W. Bauer et al., Phys. Rev. D63, 114020 (2001), [hepph/0011336].
[213] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D65, 054022 (2002), [hep-ph/0109045].
[214] T. Becher, A. Broggio and A. Ferroglia, Lect. Notes Phys. 896, pp. 1 (2015), [arXiv:1410.1892].
[215] S. Catani et al., Phys. Lett. B269, 432 (1991).
[216] N. Brown and W. J. Stirling, Phys. Lett. B252, 657 (1990).
[217] W. Bartel et al. (JADE), Z. Phys. C33, 23 (1986), [,53(1986)].
[218] N. Kidonakis, G. Oderda and G. F. Sterman, Nucl. Phys. B531, 365 (1998), [hep-ph/9803241].
[219] R. Bonciani et al., Phys. Lett. B575, 268 (2003), [hepph/0307035].
[220] A. Banfi, G. P. Salam and G. Zanderighi, JHEP 03, 073 (2005), [hep-ph/0407286].
[221] D. de Florian and M. Grazzini, Phys. Rev. Lett. 85, 4678 (2000), [hep-ph/0008152].
[222] G. Bozzi et al., Nucl. Phys. B737, 73 (2006), [hepph/0508068]; http://theory.fi.infn.it/grazzini/codes.html.
[223] G. Bozzi et al., Phys. Lett. B696, 207 (2011), [arXiv:1007.2351].
[224] T. Becher and M. Neubert, Eur. Phys. J. C71, 1665 (2011), [arXiv:1007.4005].
[225] T. Becher, M. Neubert, and D. Wilhelm, http://cute.hepforge.org/.
[226] D. de Florian et al., JHEP 06, 132 (2012), [arXiv:1203.6321];
http://theory.fi.infn.it/grazzini/codes.html.
[227] C. Balazs and C. P. Yuan, Phys. Rev. D56, 5558 (1997), [hep-ph/9704258].
[228] S. Catani et al., JHEP 12, 047 (2015), [arXiv:1507.06937].
[229] A. Banfi et al., Phys. Lett. B715, 152 (2012), [arXiv:1205.4760].
[230] M. Grazzini et al., JHEP 08, 154 (2015), [arXiv:1507.02565].
[231] D. de Florian and M. Grazzini, Nucl. Phys. B704, 387 (2005), [hep-ph/0407241].
[232] T. Becher and G. Bell, JHEP 11, 126 (2012), [arXiv:1210.0580].
[233] A. Banfi et al., Phys. Rev. Lett. 109, 202001 (2012), [arXiv:1206.4998]; T. Becher, M. Neubert and L. Rothen, JHEP 10, 125 (2013), [arXiv:1307.0025].
[234] I. W. Stewart et al., Phys. Rev. D89, 5, 054001 (2014), [arXiv:1307.1808].
[235] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. Lett. 106, 032001 (2011), [arXiv:1005.4060].
[236] Y.-T. Chien et al., Phys. Rev. D87, 1, 014010 (2013), [arXiv:1208.0010]; T. T. Jouttenus et al., Phys. Rev. D88, 5, 054031 (2013), [arXiv:1302.0846].
[237] M. Dasgupta et al., JHEP 10, 126 (2012), [arXiv:1207.1640].
[238] V. Ahrens et al., JHEP 09, 097 (2010), [arXiv:1003.5827].
[239] M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011), [arXiv:1007.1327].
[240] N. Kidonakis, Phys. Rev. D82, 114030 (2010), [arXiv:1009.4935].
[241] T. Becher, C. Lorentzen and M. D. Schwartz, Phys. Rev. Lett. 108, 012001 (2012), [arXiv:1106.4310].
[242] T. Becher et al., Eur. Phys. J. C75, 4, 154 (2015), [arXiv:1412.8408].
[243] E. Gerwick et al., JHEP 02, 106 (2015), [arXiv:1411.7325].
[244] A. Banfi et al., JHEP 05, 102 (2015), [arXiv:1412.2126].
[245] T. Becher and M. D. Schwartz, JHEP 07, 034 (2008), [arXiv:0803.0342].
[246] A. H. Hoang et al., Phys. Rev. D91, 9, 094017 (2015), [arXiv:1411.6633].
[247] Y.-T. Chien and M. D. Schwartz, JHEP 08, 058 (2010), [arXiv:1005.1644].
[248] P. F. Monni, T. Gehrmann and G. Luisoni, JHEP 08, 010 (2011), [arXiv:1105.4560].
[249] W. Bizon et al., JHEP 02, 108 (2018), [arXiv:1705.09127].
[250] W. Bizon et al. (2019), [arXiv:1905.05171].
[251] S. Catani et al., Nucl. Phys. B888, 75 (2014), [arXiv:1405.4827].
[252] S. Fleming et al., Phys. Rev. D77, 074010 (2008), [hepph/0703207].
[253] A. H. Hoang, P. Pietrulewicz and D. Samitz, Phys. Rev. D93, 3, 034034 (2016), [arXiv:1508.04323].
[254] A. Banfi et al., JHEP 04, 049 (2016), [arXiv:1511.02886].
[255] A. J. Larkoski and I. Moult, Phys. Rev. D93, 014017 (2016), [arXiv:1510.08459].
[256] G. Lustermans, W. J. Waalewijn and L. Zeune, Phys. Lett. B762, 447 (2016), [arXiv:1605.02740].
[257] C. Muselli, S. Forte and G. Ridolfi, JHEP 03, 106 (2017), [arXiv:1701.01464].
[258] M. Bonvini and S. Marzani, Phys. Rev. Lett. 120, 20, 202003 (2018), [arXiv:1802.07758].
[259] M. Procura, W. J. Waalewijn and L. Zeune, JHEP 10, 098 (2018), [arXiv:1806.10622].
[260] G. Lustermans et al., JHEP 03, 124 (2019), [arXiv:1901.03331].
[261] I. Feige et al., Phys. Rev. Lett. 109, 092001 (2012), [arXiv:1204.3898].
[262] M. Dasgupta et al., JHEP 09, 029 (2013), [arXiv:1307.0007].
[263] A. J. Larkoski et al., JHEP 05, 146 (2014), [arXiv:1402.2657].
[264] M. Dasgupta, A. Powling and A. Siodmok, JHEP 08, 079 (2015), [arXiv:1503.01088].
[265] A. J. Larkoski, I. Moult and D. Neill, JHEP 05, 117 (2016), [arXiv:1507.03018].
[266] C. Frye et al., JHEP 07, 064 (2016), [arXiv:1603.09338].
[267] A. J. Larkoski, I. Moult and D. Neill, JHEP 02, 144 (2018), [arXiv:1710.00014].
[268] A. J. Larkoski, I. Moult and B. Nachman (2017), [arXiv:1709.04464].
[269] S. Marzani, G. Soyez and M. Spannowsky (2019), [Lect. Notes Phys.958,pp.(2019)], [arXiv:1901.10342].
[270] Yu.L. Dokshitzer et al., "Basics of perturbative $Q C D$," Gif-sur-Yvette, France: Éditions frontières (1991), see also http://www.lpthe.jussieu.fr/~yuri/ BPQCD/cover.html.
[271] T. Sj ostrand et al., Comput. Phys. Commun. 135, 238 (2001), [hep-ph/0010017].
[272] T. Sj ostrand, S. Mrenna and P. Z. Skands, JHEP 05, 026 (2006), [hep-ph/0603175]; http://projects.hepforge.org/pythia6/.
[273] T. Sjostrand et al., Comput. Phys. Commun. 191, 159 (2015), [arXiv:1410.3012]; http://home.thep.lu.se/~torbjorn/Pythia.html.
[274] B. R. Webber, Nucl. Phys. B238, 492 (1984).
[275] G. Corcella et al., JHEP 01, 010 (2001), [hep-ph/0011363]; http://www.hep.phy.cam.ac.uk/theory/webber/Herwig/.
[276] M. Bahr et al., Eur. Phys. J. C58, 639 (2008), [arXiv:0803.0883]; http://projects.hepforge.org/herwig/.
[277] L. Lonnblad, Comput. Phys. Commun. 71, 15 (1992).
[278] A. Buckley et al., Phys. Rept. 504, 145 (2011), [arXiv:1101.2599].
[279] B. Andersson et al., Phys. Rept. 97, 31 (1983).
[280] T. Sjostrand, Nucl. Phys. B248, 469 (1984).
[281] J. Bellm et al. (2019), [arXiv:1903.12563].
[282] T. Sjostrand and M. van Zijl, Phys. Rev. D36, 2019 (1987).
[283] S. Catani et al., JHEP 11, 063 (2001), [hep-ph/0109231].
[284] J. Alwall et al., Eur. Phys. J. C53, 473 (2008), [arXiv:0706.2569].
[285] S. Frixione and B. R. Webber, JHEP 06, 029 (2002), [hepph/0204244].
[286] P. Nason, JHEP 11, 040 (2004), [hep-ph/0409146].
[287] S. Alioli et al., JHEP 06, 043 (2010), [arXiv:1002.2581]; http://powhegbox.mib.infn.it/.
[288] S. Plätzer, JHEP 08, 114 (2013), [arXiv:1211.5467]; R. Frederix and S. Frixione, JHEP 12, 061 (2012), [arXiv:1209.6215]; K. Hamilton et al., JHEP 05, 082 (2013), [arXiv:1212.4504].
[289] K. Hamilton et al., JHEP 10, 222 (2013), [arXiv:1309.0017]; A. Karlberg, E. Re and G. Zanderighi, JHEP 09, 134 (2014), [arXiv:1407.2940]; S. Höche, Y. Li and S. Prestel, Phys. Rev. D91, 7, 074015 (2015), [arXiv:1405.3607]; S. Höche, Y. Li and S. Prestel, Phys. Rev. D90, 5, 054011 (2014), [arXiv:1407.3773]; S. Alioli et al., Phys. Rev. D92, 9, 094020 (2015), [arXiv:1508.01475]; P. F. Monni et al. (2019), [arXiv:1908.06987].
[290] W. Astill et al., JHEP 06, 154 (2016), [arXiv:1603.01620].
[291] W. Astill et al., JHEP 11, 157 (2018), [arXiv:1804.08141].
[292] E. Re, M. Wiesemann and G. Zanderighi, JHEP 12, 121 (2018), [arXiv:1805.09857].
[293] M. Cacciari et al., JHEP 04, 068 (2004), [hep-ph/0303085].
[294] P. M. Stevenson, Phys. Lett. 100B, 61 (1981).
[295] P. M. Stevenson, Phys. Rev. D23, 2916 (1981).
[296] G. Grunberg, Phys. Rev. D29, 2315 (1984).
[297] S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D28, 228 (1983).
[298] S.-Q. Wang et al. (2019), [arXiv:1908.00060].
[299] M. Cacciari and N. Houdeau, JHEP 09, 039 (2011), [arXiv:1105.5152].
[300] A. David and G. Passarino, Phys. Lett. B726, 266 (2013), [arXiv:1307.1843].
[301] E. Bagnaschi et al., JHEP 02, 133 (2015), [arXiv:1409.5036].
[302] M. Dasgupta et al., JHEP 06, 057 (2016), [arXiv:1602.01110].
[303] J. Currie et al., JHEP 10, 155 (2018), [arXiv:1807.03692].
[304] G. Soyez et al., Phys. Rev. Lett. 110, 16, 162001 (2013), [arXiv:1211.2811].
[305] M. Dasgupta and G. P. Salam, J. Phys. G30, R143 (2004), [hep-ph/0312283].
[306] S. Moretti, L. Lonnblad and T. Sjostrand, JHEP 08, 001 (1998), [hep-ph/9804296].
[307] G. P. Salam, Eur. Phys. J. C67, 637 (2010), [arXiv:0906.1833].
[308] S. D. Ellis et al., Prog. Part. Nucl. Phys. 60, 484 (2008), [arXiv:0712.2447].
[309] M. Cacciari, Int. J. Mod. Phys. A30, 31, 1546001 (2015), [arXiv:1509.02272].
[310] G. P. Salam and G. Soyez, JHEP 05, 086 (2007), [arXiv:0704.0292].
[311] S. Catani et al., Nucl. Phys. B406, 187 (1993).
[312] S. D. Ellis and D. E. Soper, Phys. Rev. D48, 3160 (1993), [hep-ph/9305266].
[313] Y. L. Dokshitzer et al., JHEP 08, 001 (1997), [hepph/9707323].
[314] M. Wobisch and T. Wengler, in "Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999," 270-279 (1998), [hep-ph/9907280].
[315] M. Cacciari, G. P. Salam and G. Soyez, JHEP 04, 063 (2008), [arXiv:0802.1189].
[316] S. Bethke et al., Nucl. Phys. B370, 310 (1992), [Erratum: Nucl. Phys.B523,681(1998)].
[317] M. Cacciari and G. P. Salam, Phys. Lett. B641, 57 (2006), [hep-ph/0512210]; M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C72, 1896 (2012), [arXiv:1111.6097].
[318] S. Brandt et al., Phys. Lett. 12, 57 (1964).
[319] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[320] O. Biebel, Phys. Rept. 340, 165 (2001).
[321] S. Kluth, Rept. Prog. Phys. 69, 1771 (2006), [hepex/0603011].
[322] C. L. Basham et al., Phys. Rev. Lett. 41, 1585 (1978).
[323] A. Ali, E. Pietarinen and W. J. Stirling, Phys. Lett. 141B, 447 (1984).
[324] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. Lett. 105, 092002 (2010), [arXiv:1004.2489].
[325] A. Banfi, G. P. Salam and G. Zanderighi, JHEP 08, 062 (2004), [hep-ph/0407287].
[326] A. Banfi, G. P. Salam and G. Zanderighi, JHEP 06, 038 (2010), [arXiv:1001.4082].
[327] T. Becher, X. Garcia i Tormo and J. Piclum, Phys. Rev. D93, 5, 054038 (2016), [Erratum: Phys. Rev.D93,no.7,079905(2016)], [arXiv:1512.00022].
[328] A. Gao et al., Phys. Rev. Lett. 123, 6, 062001 (2019), [arXiv:1901.04497].
[329] T. Aaltonen et al. (CDF), Phys. Rev. D83, 112007 (2011), [arXiv:1103.5143].
[330] G. Aad et al. (ATLAS), Eur. Phys. J. C72, 2211 (2012), [arXiv:1206.2135].
[331] G. Aad et al. (ATLAS), Phys. Rev. D88, 3, 032004 (2013), [arXiv:1207.6915].
[332] G. Aad et al. (ATLAS), Phys. Lett. B750, 427 (2015), [arXiv:1508.01579].
[333] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 7, 375 (2016), [arXiv:1602.08980].
[334] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 12, 872 (2017), [arXiv:1707.02562].
[335] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 9, 092004 (2018), [arXiv:1805.04691].
[336] V. Khachatryan et al. (CMS), Phys. Lett. B699, 48 (2011), [arXiv:1102.0068].
[337] S. Chatrchyan et al. (CMS), Phys. Lett. B722, 238 (2013), [arXiv:1301.1646].
[338] V. Khachatryan et al. (CMS), JHEP 10, 87 (2014), [arXiv:1407.2856].
[339] A. M. Sirunyan et al. (CMS), JHEP 12, 117 (2018), [arXiv:1811.00588].
[340] S. Chatrchyan et al. (CMS), Phys. Lett. B730, 243 (2014), [arXiv:1310.0878].
[341] G. Aad et al. (ATLAS), Phys. Rev. D83, 052003 (2011), [arXiv:1101.0070].
[342] S. Chatrchyan et al. (CMS), JHEP 06, 160 (2012), [arXiv:1204.3170].
[343] B. B. Abelev et al. (ALICE), Phys. Rev. D91, 11, 112012 (2015), [arXiv:1411.4969].
[344] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 12, 2676 (2013), [arXiv:1307.5749].
[345] C. Glasman (H1, ZEUS), Nucl. Phys. Proc. Suppl. 191, 121 (2009), [arXiv:0812.0757].
[346] T. Carli, K. Rabbertz and S. Schumann, in T. SchörnerSadenius, editor, "The Large Hadron Collider: Harvest of Run 1," 139-194 (2015), [arXiv:1506.03239].
[347] A. Abdesselam et al., Eur. Phys. J. C71, 1661 (2011), [arXiv:1012.5412].
[348] D. Krohn, J. Thaler and L.-T. Wang, JHEP 02, 084 (2010), [arXiv:0912.1342].
[349] A. Altheimer et al., J. Phys. G39, 063001 (2012), [arXiv:1201.0008].
[350] A. Altheimer et al., Eur. Phys. J. C74, 3, 2792 (2014), [arXiv:1311.2708].
[351] P. C. Stichel and W. J. Zakrzewski, Eur. Phys. J. C75, 1, 9 (2015), [arXiv:1409.1363].
[352] D. Adams et al., Eur. Phys. J. C75, 9, 409 (2015), [arXiv:1504.00679].
[353] T. Schorner-Sadenius, Eur. Phys. J. C72, 2060 (2012), [Erratum: Eur. Phys. J.C72,2133(2012)].
[354] J. M. Campbell, J. W. Huston and W. J. Stirling, Rept. Prog. Phys. 70, 89 (2007), [hep-ph/0611148].
[355] M. L. Mangano, Phys. Usp. 53, 109 (2010), [Usp. Fiz. Nauk180,113(2010)].
[356] J. M. Butterworth, G. Dissertori and G. P. Salam, Ann. Rev. Nucl. Part. Sci. 62, 387 (2012), [arXiv:1202.0583].
[357] J. Currie et al., JHEP 07, 018 (2017), [arXiv:1703.05977].
[358] M. Klasen, G. Kramer and M. Michael, Phys. Rev. D89, 7, 074032 (2014), [arXiv:1310.1724].
[359] T. Carli, T. Gehrmann and S. Hoeche, Eur. Phys. J. C67, 73 (2010), [arXiv:0912.3715].
[360] S. Chekanov et al. (ZEUS), Nucl. Phys. B792, 1 (2008), [arXiv:0707.3749].
[361] S. Chekanov et al. (ZEUS), Phys. Rev. D76, 072011 (2007), [arXiv:0706.3809].
[362] A. Aktas et al. (H1), Phys. Lett. B639, 21 (2006), [hepex/0603014].
[363] H. Abramowicz et al. (ZEUS), Eur. Phys. J. C71, 1659 (2011), [arXiv:1104.5444].
[364] H. Abramowicz et al. (ZEUS), Nucl. Phys. B864, 1 (2012), [arXiv:1205.6153].
[365] F. D. Aaron et al. (H1), Eur. Phys. J. C65, 363 (2010), [arXiv:0904.3870].
[366] F. D. Aaron et al. (H1), Eur. Phys. J. C54, 389 (2008), [arXiv:0711.2606].
[367] S. Chekanov et al. (ZEUS), Eur. Phys. J. C52, 515 (2007), [arXiv:0707.3093].
[368] S. Chekanov et al. (ZEUS), Phys. Rev. D78, 032004 (2008), [arXiv:0802.3955].
[369] H. Abramowicz et al. (ZEUS), Eur. Phys. J. C70, 965 (2010), [arXiv:1010.6167].
[370] H. Abramowicz et al. (ZEUS), Phys. Lett. B691, 127 (2010), [arXiv:1003.2923].
[371] S. Chekanov et al. (ZEUS), Phys. Rev. D85, 052008 (2012), [arXiv:0808.3783].
[372] F. D. Aaron et al. (H1), Eur. Phys. J. C67, 1 (2010), [arXiv:0911.5678].
[373] V. Andreev et al. (H1), Eur. Phys. J. C75, 2, 65 (2015), [arXiv:1406.4709].
[374] V. Andreev et al. (H1), Eur. Phys. J. C77, 11, 791 (2017), [arXiv:1709.07251].
[375] http://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsCombined.
[376] http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/SM.
[377] A. Abulencia et al. (CDF), Phys. Rev. D75, 092006 (2007), [Erratum: Phys. Rev.D75,119901(2007)], [hep-ex/0701051].
[378] T. Aaltonen et al. (CDF), Phys. Rev. D78, 052006 (2008), [Erratum: Phys. Rev.D79,119902(2009)], [arXiv:0807.2204].
[379] V. M. Abazov et al. (D0), Phys. Rev. Lett. 101, 062001 (2008), [arXiv:0802.2400].
[380] V. M. Abazov et al. (D0), Phys. Rev. D85, 052006 (2012), [arXiv:1110.3771].
[381] B. Abelev et al. (ALICE), Phys. Lett. B722, 262 (2013), [arXiv:1301.3475].
[382] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 8, 2509 (2013), [arXiv:1304.4739].
[383] G. Aad et al. (ATLAS), JHEP 02, 153 (2015), [Erratum: JHEP09,141(2015)], [arXiv:1410.8857].
[384] M. Aaboud et al. (ATLAS), JHEP 09, 020 (2017), [arXiv:1706.03192].
[385] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 5, 265 (2016), [arXiv:1512.06212].
[386] S. Chatrchyan et al. (CMS), Phys. Rev. D87, 11, 112002 (2013), [Erratum: Phys. Rev.D87,no.11,119902(2013)], [arXiv:1212.6660].
[387] V. Khachatryan et al. (CMS), JHEP 03, 156 (2017), [arXiv:1609.05331].
[388] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 8, 451 (2016), [arXiv:1605.04436].
[389] M. Aaboud et al. (ATLAS), JHEP 05, 195 (2018), [arXiv:1711.02692].
[390] A. Schwartzman, Int. J. Mod. Phys. A30, 31, 1546002 (2015), [arXiv:1509.05459].
[391] J. Rojo, Int. J. Mod. Phys. A30, 1546005 (2015), [arXiv:1410.7728].
[392] G. Aad et al. (ATLAS), JHEP 05, 059 (2014), [arXiv:1312.3524].
[393] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 11, 746 (2017), [arXiv:1705.02628].
[394] T. Aaltonen et al. (CDF), Phys. Rev. D79, 112002 (2009), [arXiv:0812.4036].
[395] V. M. Abazov et al. (D0), Phys. Rev. Lett. 103, 191803 (2009), [arXiv:0906.4819].
[396] S. Chatrchyan et al. (CMS), JHEP 05, 055 (2012), [arXiv:1202.5535].
[397] V. Khachatryan et al. (CMS), Phys. Lett. B746, 79 (2015), [arXiv:1411.2646].
[398] A. M. Sirunyan et al. (CMS), JHEP 07, 013 (2017), [arXiv:1703.09986].
[399] G. Aad et al. (ATLAS), JHEP 01, 029 (2013), [arXiv:1210.1718].
[400] M. Aaboud et al. (ATLAS), Phys. Rev. D96, 5, 052004 (2017), [arXiv:1703.09127].
[401] V. M. Abazov et al. (D0), Phys. Rev. Lett. 94, 221801 (2005), [hep-ex/0409040].
[402] V. M. Abazov et al. (D0), Phys. Lett. B721, 212 (2013), [arXiv:1212.1842].
[403] G. Aad et al. (ATLAS), Phys. Rev. Lett. 106, 172002 (2011), [arXiv:1102.2696].
[404] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 106, 122003 (2011), [arXiv:1101.5029].
[405] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 10, 536 (2016), [arXiv:1602.04384].
[406] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 7, 566 (2018), [arXiv:1712.05471].
[407] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1902.04374].
[408] P. Kokkas, Int. J. Mod. Phys. A30, 31, 1546004 (2015), [arXiv:1509.02144].
[409] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 6, 367 (2017), [arXiv:1612.03016].
[410] G. Aad et al. (ATLAS), Phys. Lett. B759, 601 (2016), [arXiv:1603.09222].
[411] R. Aaij et al. (LHCb), JHEP 08, 039 (2015), [arXiv:1505.07024].
[412] S. Chatrchyan et al. (CMS), JHEP 10, 132 (2011), [arXiv:1107.4789].
[413] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 191802 (2014), [arXiv:1402.0923].
[414] R. Aaij et al. (LHCb), JHEP 06, 058 (2012), [arXiv:1204.1620].
[415] R. Aaij et al. (LHCb), JHEP 01, 155 (2016), [arXiv:1511.08039].
[416] R. Aaij et al. (LHCb), JHEP 09, 136 (2016), [arXiv:1607.06495].
[417] S. Chatrchyan et al. (CMS), JHEP 10, 007 (2011), [arXiv:1108.0566].
[418] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 4, 147 (2015), [arXiv:1412.1115].
[419] G. Aad et al. (ATLAS), Phys. Lett. B725, 223 (2013), [arXiv:1305.4192].
[420] G. Aad et al. (ATLAS), JHEP 06, 112 (2014), [arXiv:1404.1212].
[421] G. Aad et al. (ATLAS), JHEP 08, 009 (2016), [arXiv:1606.01736].
[422] A. M. Sirunyan et al. (CMS), Submitted to: JHEP (2018), [arXiv:1812.10529].
[423] M. Aaboud et al. (ATLAS), JHEP 12, 059 (2017), [arXiv:1710.05167].
[424] S. Chatrchyan et al. (CMS), Phys. Rev. D90, 3, 032004 (2014), [arXiv:1312.6283].
[425] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 8, 469 (2016), [arXiv:1603.01803].
[426] G. Aad et al. (ATLAS), Submitted to: Eur. Phys. J. (2019), [arXiv:1904.05631].
[427] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 5, 291 (2016), [arXiv:1512.02192].
[428] V. Khachatryan et al. (CMS), JHEP 02, 096 (2017), [arXiv:1606.05864].
[429] A. M. Sirunyan et al. (CMS), JHEP 03, 172 (2018), [arXiv:1710.07955].
[430] M. Aaboud et al. (ATLAS), JHEP 05, 077 (2018), [arXiv:1711.03296].
[431] C. F. Berger et al., Phys. Rev. D80, 074036 (2009), [arXiv:0907.1984].
[432] U. Blumenschein, Int. J. Mod. Phys. A30, 31, 1546007 (2015), [arXiv:1509.04885].
[433] G. Aad et al. (ATLAS) (2019), [arXiv:1907.06728].
[434] V. Khachatryan et al. (CMS), Phys. Rev. D95, 052002 (2017), [arXiv:1610.04222].
[435] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 7, 072005 (2017), [arXiv:1707.05979].
[436] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 11, 965 (2018), [arXiv:1804.05252].
[437] G. Aad et al. (ATLAS), JHEP 07, 032 (2013), [arXiv:1304.7098].
[438] Z. Bern et al., Phys. Rev. D88, 1, 014025 (2013), [arXiv:1304.1253].
[439] M. Voutilainen, Int. J. Mod. Phys. A30, 31, 1546008 (2015), [arXiv:1509.05026].
[440] G. Aad et al. (ATLAS), JHEP 08, 005 (2016), [arXiv:1605.03495].
[441] G. Aad et al. (ATLAS) (2019), [arXiv:1908.02746].
[442] S. Chatrchyan et al. (CMS), Phys. Rev. D84, 052011 (2011), [arXiv:1108.2044].
[443] S. Chatrchyan et al. (CMS), JHEP 06, 009 (2014), [arXiv:1311.6141].
[444] G. Aad et al. (ATLAS), Phys. Rev. D89, 5, 052004 (2014), [arXiv:1311.1440].
[445] M. Aaboud et al. (ATLAS), Phys. Lett. B780, 578 (2018), [arXiv:1801.00112].
[446] M. Aaboud et al. (ATLAS), Nucl. Phys. B918, 257 (2017), [arXiv:1611.06586].
[447] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 1, 20 (2019), [arXiv:1807.00782].
[448] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.08155].
[449] M. Aaboud et al. (ATLAS), Phys. Lett. B776, 295 (2018), [arXiv:1710.09560].
[450] J. H. Kuhn et al., JHEP 03, 059 (2006), [hep-ph/0508253].
[451] V. Khachatryan et al. (CMS), JHEP 10, 128 (2015), [Erratum: JHEP04,010(2016)], [arXiv:1505.06520].
[452] G. Aad et al. (ATLAS), JHEP 09, 029 (2016), [arXiv:1603.01702].
[453] M. Aaboud et al. (ATLAS), Phys. Lett. B773, 354 (2017), [arXiv:1702.04519].
[454] M. Aaboud et al. (ATLAS) (2019), [arXiv:1905.04242].
[455] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 7, 401 (2016), [arXiv:1507.03268].
[456] G. Aad et al. (ATLAS) (2019), [arXiv:1903.10415].
[457] G. Aad et al. (ATLAS), JHEP 01, 086 (2013), [arXiv:1211.1913].
[458] M. Aaboud et al. (ATLAS), Phys. Rev. D95, 11, 112005 (2017), [arXiv:1704.03839].
[459] S. Chatrchyan et al. (CMS), Eur. Phys. J. C74, 11, 3129 (2014), [arXiv:1405.7225].
[460] M. Aaboud et al. (ATLAS), Phys. Lett. B781, 55 (2018), [arXiv:1712.07291].
[461] K. Kröninger, A. B. Meyer and P. Uwer, in T. SchörnerSadenius, editor, "The Large Hadron Collider: Harvest of Run 1," 259-300 (2015), [arXiv:1506.02800].
[462] M. Aaboud et al. (ATLAS), Phys. Rev. D94, 9, 092003 (2016), [arXiv:1607.07281].
[463] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 5, 292 (2017), [arXiv:1612.05220].
[464] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 5, 368 (2019), [arXiv:1812.10505].
[465] A. M. Sirunyan et al. (CMS), Submitted to: Eur. Phys. J. (2019), [arXiv:1904.05237].
[466] M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116, 8, 082003 (2016), [arXiv:1511.00549].
[467] S. Catani et al., Phys. Rev. D99, 5, 051501 (2019), [arXiv:1901.04005].
[468] S. Catani et al., JHEP 07, 100 (2019), [arXiv:1906.06535].
[469] M. Czakon et al., JHEP 05, 149 (2018), [arXiv:1803.07623].
[470] S. Chatrchyan et al. (CMS), Phys. Lett. B728, 496 (2014), [Erratum: Phys. Lett.B738,526(2014)], [arXiv:1307.1907].
[471] T. Klijnsma et al., Eur. Phys. J. C77, 11, 778 (2017), [arXiv:1708.07495].
[472] G. Aad et al. (ATLAS), Eur. Phys. J. C74, 10, 3109 (2014), [Addendum: Eur. Phys. J.C76,no.11,642(2016)], [arXiv:1406.5375].
[473] A. M. Sirunyan et al. (CMS), JHEP 09, 051 (2017), [arXiv:1701.06228].
[474] M. Aaboud et al. (ATLAS), Phys. Lett. B786, 114 (2018), [arXiv:1805.10197].
[475] A. M. Sirunyan et al. (CMS), Phys. Lett. B792, 369 (2019), [arXiv:1812.06504].
[476] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 052005 (2018), [arXiv:1802.04146].
[477] A. M. Sirunyan et al. (CMS), JHEP 01, 183 (2019), [arXiv:1807.03825].
[478] A. M. Sirunyan et al. (CMS Collaboration), Phys. Lett. B 792, arXiv:1812.06504. CMS-HIG-17-028-003, 369. 28 p (2018), submitted to Phys.Lett., URL http://cds.cern. ch/record/2651932.
[479] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[480] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[481] S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007), [hepex/0606035].
[482] S. Bethke, Eur. Phys. J. C64, 689 (2009), [,111(2009)], [arXiv:0908.1135].
[483] S. Bethke, J. Phys. G26, R27 (2000), [hep-ex/0004021].
[484] D. d'Enterria et al., in "Workshop on precision measurements of the QCD coupling constant (alphas-2019) Trento, Trentino, Italy, February 11-15, 2019," (2019), [arXiv:1907.01435].
[485] G. P. Salam, in A. Levy, S. Forte and G. Ridolfi, editors, "From My Vast Repertoire ...: Guido Altarelli's Legacy," 101-121 (2019), [arXiv:1712.05165].
[486] A. Pich et al., in "13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII) Maynooth, Ireland, July 31-August 6, 2018," (2018), [arXiv:1811.11801].
[487] S. Aoki et al. (Flavour Lattice Averaging Group) (2019), [arXiv:1902.08191].
[488] M. Beneke and M. Jamin, JHEP 09, 044 (2008), [arXiv:0806.3156].
[489] K. Maltman and T. Yavin, Phys. Rev. D78, 094020 (2008), [arXiv:0807.0650].
[490] S. Narison, Phys. Lett. B673, 30 (2009), [arXiv:0901.3823].
[491] I. Caprini and J. Fischer, Eur. Phys. J. C64, 35 (2009), [arXiv:0906.5211].
[492] A. Pich, Prog. Part. Nucl. Phys. 75, 41 (2014), [arXiv:1310.7922].
[493] D. Boito et al., Phys. Rev. D91, 3, 034003 (2015), [arXiv:1410.3528].
[494] G. Altarelli, PoS Corfu2012, 002 (2013), [arXiv:1303.6065].
[495] A. Pich and A. Rodríguez-Sánchez, Phys. Rev. D94, 3, 034027 (2016), [arXiv:1605.06830].
[496] M. Davier et al., Eur. Phys. J. C74, 3, 2803 (2014), [arXiv:1312.1501].
[497] D. Boito et al., Phys. Rev. D98, 7, 074030 (2018), [arXiv:1805.08176].
[498] N. Brambilla et al., Phys. Rev. D75, 074014 (2007), [hepph/0702079].
[499] V. Mateu and P. G. Ortega, JHEP 01, 122 (2018), [arXiv:1711.05755].
[500] C. Peset, A. Pineda and J. Segovia, JHEP 09, 167 (2018), [arXiv:1806.05197].
[501] C. Glasman (H1, ZEUS), J. Phys. Conf. Ser. 110, 022013 (2008), [arXiv:0709.4426].
[502] T. Biekötter, M. Klasen and G. Kramer, Phys. Rev. D92, 7, 074037 (2015), [arXiv:1508.07153].
[503] J. Blumlein, H. Bottcher and A. Guffanti, Nucl. Phys. B774, 182 (2007), [hep-ph/0607200].
[504] P. Jimenez-Delgado and E. Reya, Phys. Rev. D89, 7, 074049 (2014), [arXiv:1403.1852].
[505] S. Alekhin et al., Phys. Rev. D96, 1, 014011 (2017), [arXiv:1701.05838].
[506] S. Alekhin, J. Blümlein and S. Moch, Eur. Phys. J. C78, 6, 477 (2018), [arXiv:1803.07537].
[507] L. A. Harland-Lang et al., Eur. Phys. J. C75, 9, 435 (2015), [arXiv:1506.05682].
[508] S. Dulat et al., Phys. Rev. D93, 3, 033006 (2016), [arXiv:1506.07443].
[509] R. D. Ball et al. (NNPDF), Eur. Phys. J. C78, 5, 408 (2018), [arXiv:1802.03398].
[510] R. S. Thorne and G. Watt, JHEP 08, 100 (2011), [arXiv:1106.5789].
[511] S. Alekhin, J. Blumlein and S. Moch, Eur. Phys. J. C71, 1723 (2011), [arXiv:1101.5261].
[512] R. D. Ball et al. (NNPDF), Phys. Lett. B704, 36 (2011), [arXiv:1102.3182].
[513] R. D. Ball et al. (NNPDF), Phys. Lett. B723, 330 (2013), [arXiv:1303.1189].
[514] R. S. Thorne, PoS DIS2013, 042 (2013), [arXiv:1306.3907].
[515] G. Dissertori et al., JHEP 08, 036 (2009), [arXiv:0906.3436].
[516] G. Abbiendi et al. (OPAL), Eur. Phys. J. C71, 1733 (2011), [arXiv:1101.1470].
[517] S. Bethke et al. (JADE), Eur. Phys. J. C64, 351 (2009), [arXiv:0810.1389].
[518] G. Dissertori et al., Phys. Rev. Lett. 104, 072002 (2010), [arXiv:0910.4283].
[519] J. Schieck et al. (JADE), Eur. Phys. J. C73, 3, 2332 (2013), [arXiv:1205.3714].
[520] A. Verbytskyi et al., JHEP 08, 129 (2019), [arXiv:1902.08158].
[521] A. Kardos et al., Eur. Phys. J. C78, 6, 498 (2018), [arXiv:1804.09146].
[522] R. A. Davison and B. R. Webber, Eur. Phys. J. C59, 13 (2009), [arXiv:0809.3326].
[523] R. Abbate et al., Phys. Rev. D83, 074021 (2011), [arXiv:1006.3080].
[524] T. Gehrmann, G. Luisoni and P. F. Monni, Eur. Phys. J. C73, 1, 2265 (2013), [arXiv:1210.6945].
[525] A. H. Hoang et al., Phys. Rev. D91, 9, 094018 (2015), [arXiv:1501.04111].
[526] R. Frederix et al., JHEP 11, 050 (2010), [arXiv:1008.5313].
[527] P. Bolzoni, B. A. Kniehl and A. V. Kotikov, Nucl. Phys. B875, 18 (2013), [arXiv:1305.6017].
[528] J. Currie et al., Phys. Rev. Lett. 119, 15, 152001 (2017), [arXiv:1705.10271].
[529] M. Czakon et al. (2019), [arXiv:1907.12911].
[530] S. Dittmaier, A. Huss and C. Speckner, JHEP 11, 095 (2012), [arXiv:1210.0438].
[531] R. Frederix et al., JHEP 04, 076 (2017), [arXiv:1612.06548].
[532] M. Czakon et al., JHEP 10, 186 (2017), [arXiv:1705.04105].
[533] M. Johnson and D. Maître, Phys. Rev. D97, 5, 054013 (2018), [arXiv:1711.01408].
[534] A. Gehrmann-De Ridder et al., JHEP 07, 133 (2016), [arXiv:1605.04295].
[535] D. Britzger et al. (2019), [arXiv:1906.05303].
[536] T. Affolder et al. (CDF), Phys. Rev. Lett. 88, 042001 (2002), [hep-ex/0108034].
[537] S. Chekanov et al. (ZEUS), Phys. Lett. B 649, 12 (2007), [hep-ex/0701039].
[538] V. M. Abazov et al. (D0), Phys. Rev. D80, 111107 (2009), [arXiv:0911.2710].
[539] B. Malaescu and P. Starovoitov, Eur. Phys. J. C72, 2041 (2012), [arXiv:1203.5416].
[540] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 6, 288 (2015), [arXiv:1410.6765].
[541] D. Britzger et al., Eur. Phys. J. C79, 1, 68 (2019), [arXiv:1712.00480].
[542] S. Chekanov et al. (ZEUS), Eur. Phys. J. C44, 183 (2005), [hep-ex/0502007].
[543] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 10, 2604 (2013), [arXiv:1304.7498].
[544] V. M. Abazov et al. (D0), Phys. Lett. B718, 56 (2012), [arXiv:1207.4957].
[545] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 5, 186 (2015), [arXiv:1412.1633].
[546] V. Andreev et al. (H1), Eur. Phys. J. C 77, 4, 215 (2017), [arXiv:1611.03421].
[547] M. Baak et al. (Gfitter Group), Eur. Phys. J. C74, 3046 (2014), [arXiv:1407.3792].
[548] J. Haller et al., Eur. Phys. J. C78, 8, 675 (2018), [arXiv:1803.01853].
[549] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427, 257 (2006), [hepex/0509008].
[550] I. Allison et al. (HPQCD), Phys. Rev. D78, 054513 (2008), [arXiv:0805.2999].
[551] K. Maltman et al., Phys. Rev. D78, 114504 (2008), [arXiv:0807.2020].
[552] S. Aoki et al. (PACS-CS), JHEP 10, 053 (2009), [arXiv:0906.3906].
[553] C. McNeile et al., Phys. Rev. D82, 034512 (2010), [arXiv:1004.4285].
[554] E. Shintani et al., Phys. Rev. D82, 7, 074505 (2010), [Erratum: Phys. Rev.D89,no.9,099903(2014)], [arXiv:1002.0371].
[555] B. Blossier et al., Phys. Rev. D85, 034503 (2012), [arXiv:1110.5829].
[556] A. Bazavov et al., Phys. Rev. D86, 114031 (2012), [arXiv:1205.6155].
[557] B. Blossier et al., Phys. Rev. Lett. 108, 262002 (2012), [arXiv:1201.5770].
[558] B. Blossier et al. (ETM), Phys. Rev. D89, 1, 014507 (2014), [arXiv:1310.3763].
[559] B. Chakraborty et al., Phys. Rev. D91, 5, 054508 (2015), [arXiv:1408.4169].
[560] A. Bazavov et al., Phys. Rev. D90, 7, 074038 (2014), [arXiv:1407.8437].
[561] K. Nakayama, B. Fahy and S. Hashimoto, Phys. Rev. D94, 5, 054507 (2016), [arXiv:1606.01002].
[562] Y. Maezawa and P. Petreczky, Phys. Rev. D94, 3, 034507 (2016), [arXiv:1606.08798].
[563] M. Bruno et al. (ALPHA), Phys. Rev. Lett. 119, 10, 102001 (2017), [arXiv:1706.03821].
[564] R. J. Hudspith et al. (2018), [arXiv:1804.10286].
[565] H. Takaura et al., Phys. Lett. B789, 598 (2019), [arXiv:1808.01632].
[566] H. Takaura et al., JHEP 04, 155 (2019), [arXiv:1808.01643].
[567] K. Nakayama, H. Fukaya and S. Hashimoto, Phys. Rev. D98, 1, 014501 (2018), [arXiv:1804.06695].
[568] A. Bazavov et al. (2019), [arXiv:1907.11747].

10. Electroweak Model and Constraints on New Physics

Revised March 2020 by J. Erler (IF-UNAM; U. of Mainz) and A. Freitas (Pittsburg U.).
10.1 Introduction 180
10.2 Renormalization and radiative corrections 180
10.2.1 The Fermi constant 181
10.2.2 The electromagnetic coupling 181
10.2.3 Quark masses 182
10.2.4 The weak mixing angle 182
10.2.5 Radiative corrections 183
10.3 Low energy electroweak observables 184
10.3.1 Neutrino scattering 184
10.3.2 Parity violating lepton scattering 185
10.3.3 Atomic parity violation 186
10.4 Precision flavor physics 187
10.4.1 The τ lifetime. 187
10.4.2 The muon anomalous magnetic moment 187
10.5 Physics of the massive electroweak bosons 188
10.5.1 Electroweak physics off the Z pole 189
10.5.2 Z pole physics 189
10.5.3 W and Z decays 190
10.6 Global fit results 192
10.7 Constraints on new physics 194

10.1 Introduction

The standard model of the electroweak interactions (SM) [1-4] is based on the gauge group $\mathrm{SU}(2) \times \mathrm{U}(1)$, with gauge bosons $W_{\mu}^{i}, i=1,2,3$, and B_{μ} for the $\mathrm{SU}(2)$ and $\mathrm{U}(1)$ factors, respectively, and the corresponding gauge coupling constants g and g^{\prime}. The left-handed fermion fields of the $i^{\text {th }}$ fermion family transform as doublets $\Psi_{i}=\binom{\nu_{i}}{\ell_{i}^{-}}$and $\binom{u_{i}}{d_{i}^{\prime}}$ under $\mathrm{SU}(2)$, where $d_{i}^{\prime} \equiv \sum_{j} V_{i j} d_{j}$, and V is the Cabibbo-Kobayashi-Maskawa mixing $[5,6]$ matrix ${ }^{1}$. The right-handed fields are $\mathrm{SU}(2)$ singlets. From Higgs and electroweak precision data it is known that there are precisely three sequential fermion families.

A complex scalar Higgs doublet, ϕ, is added to the model for mass generation through spontaneous symmetry breaking with potential ${ }^{2}$ given by,

$$
\begin{equation*}
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\frac{\lambda^{2}}{2}\left(\phi^{\dagger} \phi\right)^{2}, \quad \phi \equiv\binom{\phi^{+}}{\phi^{0}} \tag{10.1}
\end{equation*}
$$

For μ^{2} negative, ϕ develops a vacuum expectation value, $v / \sqrt{2}=$ $|\mu| / \lambda$, where $v=246.22 \mathrm{GeV}$, breaking part of the electroweak (EW) gauge symmetry, after which only one neutral Higgs scalar, H, remains in the physical particle spectrum. In non-minimal models there are additional charged and neutral scalar Higgs particles. Higgs boson physics is reviewed in the Section on the "Status of Higgs Boson Physics" in this Review.

After symmetry breaking the Lagrangian for the fermion fields,

[^13]\[

$$
\begin{align*}
& \psi_{i}, \text { is } \\
& \qquad \begin{aligned}
\mathscr{L}_{F} & =\sum_{i} \bar{\psi}_{i}\left(i \not \partial-m_{i}-\frac{m_{i} H}{v}\right) \psi_{i} \\
& -\frac{g}{2 \sqrt{2}} \sum_{i} \bar{\Psi}_{i} \gamma^{\mu}\left(1-\gamma^{5}\right)\left(T^{+} W_{\mu}^{+}+T^{-} W_{\mu}^{-}\right) \Psi_{i} \\
& -e \sum_{i} Q_{i} \bar{\psi}_{i} \gamma^{\mu} \psi_{i} A_{\mu} \\
& -\frac{g}{2 \cos \theta_{W}} \sum_{i} \bar{\psi}_{i} \gamma^{\mu}\left(g_{V}^{i}-g_{A}^{i} \gamma^{5}\right) \psi_{i} Z_{\mu}
\end{aligned}
\end{align*}
$$
\]

Here $\theta_{W} \equiv \tan ^{-1}\left(g^{\prime} / g\right)$ is the weak mixing angle and $e=g \sin \theta_{W}$ is the positron electric charge. Furthermore,

$$
\begin{align*}
A_{\mu} & \equiv B_{\mu} \cos \theta_{W}+W_{\mu}^{3} \sin \theta_{W} \tag{10.3a}\\
W_{\mu}^{ \pm} & \equiv \frac{W_{\mu}^{1} \mp i W_{\mu}^{2}}{\sqrt{2}} \tag{10.3b}\\
Z_{\mu} & \equiv-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W} \tag{10.3c}
\end{align*}
$$

are the photon field (γ) and the charged $\left(W^{ \pm}\right)$and neutral (Z) weak boson fields, respectively.

The Yukawa coupling of H to ψ_{i} in the first term in \mathscr{L}_{F}, which is flavor diagonal in the minimal model, is $g m_{i} / 2 M_{W}$. The boson masses in the EW sector are given (at tree level, i.e., to lowest order in perturbation theory) by,

$$
\begin{align*}
M_{H} & =\lambda v \tag{10.4a}\\
M_{W} & =\frac{g v}{2}=\frac{e v}{2 \sin \theta_{W}} \tag{10.4b}\\
M_{Z} & =\sqrt{g^{2}+g^{\prime 2}} \frac{v}{2}=\frac{e v}{2 \sin \theta_{W} \cos \theta_{W}} \tag{10.4c}\\
M_{\gamma} & =0 \tag{10.4~d}
\end{align*}
$$

The second term in \mathscr{L}_{F} represents the charged-current weak interaction [8-10], where T^{+}and T^{-}are the weak isospin raising and lowering operators. For example, the coupling of a W to an electron and a neutrino is

$$
\begin{equation*}
-\frac{e}{2 \sqrt{2} \sin \theta_{W}}\left[W_{\mu}^{-} \bar{e} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu+W_{\mu}^{+} \bar{\nu} \gamma^{\mu}\left(1-\gamma^{5}\right) e\right] \tag{10.5}
\end{equation*}
$$

For momenta small compared to M_{W}, this term gives rise to the effective four-fermion interaction with the Fermi constant given by $G_{F} / \sqrt{2}=1 / 2 v^{2}=g^{2} / 8 M_{W}^{2}$. CP violation is incorporated into the EW model by a single observable phase in $V_{i j}$.

The third term in \mathscr{L}_{F} describes electromagnetic interactions (QED) $[11,12]$, and the last is the weak neutral-current interaction $[9,10,13]$. The vector and axial-vector couplings are

$$
\begin{align*}
g_{V}^{i} & \equiv t_{3 L}(i)-2 Q_{i} \sin ^{2} \theta_{W} \tag{10.6a}\\
g_{A}^{i} & \equiv t_{3 L}(i) \tag{10.6b}
\end{align*}
$$

where $t_{3 L}(i)$ is the weak isospin of fermion $i\left(+1 / 2\right.$ for u_{i} and ν_{i}; $-1 / 2$ for d_{i} and e_{i}) and Q_{i} is the charge of ψ_{i} in units of e.

The first term in Eq. (10.2) also gives rise to fermion masses, and in the presence of right-handed neutrinos to Dirac neutrino masses. The possibility of Majorana masses is discussed in the Section on "Neutrino Mass, Mixing, and Oscillations" in this Review.

10.2 Renormalization and radiative corrections

In addition to the Higgs boson mass, M_{H}, the fermion masses and mixings, and the strong coupling constant, α_{s}, the SM has three parameters. The set with the smallest experimental errors contains the Z mass 3, the Fermi constant, and the fine structure

[^14]constant, to be discussed in turn (the numerical values quoted in Sections 10.2-10.4 correspond to the main fit result in Table 10.7).

The Z boson mass, $M_{Z}=91.1876 \pm 0.0021 \mathrm{GeV}$, has been determined from the Z lineshape scan at LEP 1 [14]. This value of M_{Z} corresponds to a definition based on a Breit-Wigner shape with an energy-dependent width ${ }^{4}$ (see the Section on the " Z Boson" in this Review).

10.2.1 The Fermi constant

The Fermi constant, $G_{F}=1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}$, is derived from the μ lifetime formula ${ }^{5}$,

$$
\begin{equation*}
\frac{\hbar}{\tau_{\mu}}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} F(\rho)\left[1+H_{1}(\rho) \frac{\widehat{\alpha}\left(m_{\mu}\right)}{\pi}+H_{2}(\rho) \frac{\widehat{\alpha}^{2}\left(m_{\mu}\right)}{\pi^{2}}\right] \tag{10.7}
\end{equation*}
$$

where $\rho=m_{e}^{2} / m_{\mu}^{2}$, and where

$$
\begin{equation*}
F(\rho)=1-8 \rho+8 \rho^{3}-\rho^{4}-12 \rho^{2} \ln \rho=0.99981295 \tag{10.8a}
\end{equation*}
$$

$$
\begin{aligned}
H_{1}(\rho) & =\frac{25}{8}-\frac{\pi^{2}}{2}-\left(9+4 \pi^{2}+12 \ln \rho\right) \rho+16 \pi^{2} \rho^{3 / 2}+\mathcal{O}\left(\rho^{2}\right) \\
& =-1.80793
\end{aligned}
$$

$$
H_{2}(\rho)=\frac{156815}{5184}-\frac{518}{81} \pi^{2}-\frac{895}{36} \zeta(3)+\frac{67}{720} \pi^{4}+\frac{53}{6} \pi^{2} \ln 2
$$

$$
-(0.042 \pm 0.002)_{\mathrm{had}}-\frac{5}{4} \pi^{2} \sqrt{\rho}+\mathcal{O}(\rho)=6.64, \quad(10.8 \mathrm{c})
$$

$$
\begin{equation*}
\widehat{\alpha}\left(m_{\mu}\right)^{-1}=\alpha^{-1}+\frac{1}{3 \pi} \ln \rho+\mathcal{O}(\alpha)=135.901 . \tag{10.8~d}
\end{equation*}
$$

H_{1} and H_{2} capture the QED corrections within the Fermi model. The results for $\rho=0$ have been obtained in Refs. [16] and [17,18] for H_{1} and H_{2}, respectively, where the term in parentheses is from the hadronic vacuum polarization [17]. The mass corrections to H_{1} have been known for some time [19], while those to H_{2} are more recent [20]. Notice the term linear in m_{e} whose appearance was unforeseen and can be traced to the use of the muon pole mass in the prefactor [20]. The remaining uncertainty in G_{F} is mostly experimental and has been reduced by an order of magnitude by the MuLan collaboration [15] at the PSI.

10.2.2 The electromagnetic coupling

The fine structure constant, α, can be extracted from the $e^{ \pm}$ anomalous magnetic moment [21], $a_{e}=(1159652180.91 \pm 0.26) \times$ 10^{-12} [22], which gives the value $\alpha^{-1}=137.035999150(33)$. Another approach combines measurements of the Rydberg constant and atomic masses with interferometry of atomic recoil kinematics. Applied to ${ }^{87} \mathrm{Rb}$ [23] and ${ }^{133} \mathrm{Cs}$ [24], this method implies the results $\alpha^{-1}=137.035998997(85)$ and $\alpha^{-1}=$ 137.035999047(28), respectively, which can be combined to give $\alpha^{-1}=137.035999042(26)$. Finally, combining the anomalous magnetic moment and atomic interferometry methods leads to the world average of $\alpha^{-1}=137.035999084(21)$, but notice that they also show a 2.6σ discrepancy. If this is interpreted as due to physics beyond the SM (BSM), the new physics would contribute to a_{e} with opposite sign compared to the $\mu^{ \pm}$anomalous magnetic moment, a_{μ}, to be discussed in Section 10.4.2.

In most EW renormalization schemes, it is convenient to define a running α dependent on the energy scale of the process, with

[^15]$\alpha^{-1} \approx 137.036$ appropriate at very low energy, i.e. close to the Thomson limit. The OPAL [25] and L3 [26] collaborations at LEP could also observe the running directly in small and large angle Bhabha scattering, respectively. For scales above a few hundred MeV the low energy hadronic contribution to vacuum polarization introduces a theoretical uncertainty in α. In the modified minimal subtraction ($\overline{\mathrm{MS}}$) scheme ${ }^{6}$ [27] (used for this Review), and with $\alpha_{s}\left(M_{Z}\right)=0.1185 \pm 0.0016$ we have $\widehat{\alpha}^{(4)}\left(m_{\tau}\right)^{-1}=133.472 \pm 0.007$ and $\widehat{\alpha}^{(5)}\left(M_{Z}\right)^{-1}=127.952 \pm 0.009$. The latter corresponds to a quark sector contribution (without the top) to the conventional (on-shell) QED coupling,
\[

$$
\begin{equation*}
\alpha\left(M_{Z}\right)=\frac{\alpha}{1-\Delta \alpha\left(M_{Z}\right)}, \tag{10.9}
\end{equation*}
$$

\]

of $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)=0.02766 \pm 0.00007$. These values are updated from Ref. [28] with $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)$ moved downwards and its uncertainty reduced (partly due to a more precise charm quark mass). Its correlation with a_{μ}, as well as the non-linear α_{s} dependence of $\widehat{\alpha}\left(M_{Z}\right)$ and the resulting correlation with the input variable α_{s}, are fully taken into account in the fits. This is done by using as actual input (fit constraint) instead of $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)$ the low energy contribution by the three light quarks, $\Delta \alpha_{\text {had }}^{(3)}(2.0 \mathrm{GeV})=$ $(58.84 \pm 0.51) \times 10^{-4}[29]$, and by calculating the perturbative and heavy quark contributions to $\widehat{\alpha}\left(M_{Z}\right)$ in each call of the fits according to [28]. Part of the error $\left(\pm 0.37 \times 10^{-4}\right)$ is from $e^{+} e^{-}$annihilation data below 2 GeV , as well as isospin rotated data from τ decays into two- and four-pion final states [30] (including uncertainties from isospin breaking effects [31]), but uncalculated higher order perturbative $\left(\pm 0.21 \times 10^{-4}\right)$ and nonperturbative $\left(\pm 0.28 \times 10^{-4}\right.$ [29]) QCD corrections and the $\overline{\mathrm{MS}}$ quark mass values (see below) also contribute. Various evaluations of $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)$ are summarized in Table 10.1, where the relation ${ }^{7}$ between the $\overline{\mathrm{MS}}$ and on-shell definitions (obtained using $\operatorname{Ref}[34]$) is given by,

$$
\begin{align*}
\widehat{\alpha}\left(M_{Z}\right) & =\Delta \alpha\left(M_{Z}\right)+\frac{\alpha}{\pi}\left[\frac{100}{27}-\frac{1}{6}-\frac{7}{4} \ln \frac{M_{Z}^{2}}{M_{W}^{2}}\right. \\
& +\frac{\alpha_{s}\left(M_{Z}\right)}{\pi}\left(\frac{605}{108}-\frac{44}{9} \zeta(3)\right) \\
& \left.+\frac{\alpha_{s}^{2}}{\pi^{2}}\left(\frac{976481}{23328}-\frac{253}{36} \zeta(2)-\frac{781}{18} \zeta(3)+\frac{275}{27} \zeta(5)\right)\right] \\
& =0.007127(2) \tag{10.10}
\end{align*}
$$

and where the first entry of the lowest order term is from fermions and the other two are from $W^{ \pm}$loops, which are usually excluded from the on-shell definition. Fermion mass effects and corrections of $\mathscr{O}\left(\alpha \alpha_{s}^{3}\right)$ and $\mathscr{O}\left(\alpha^{2}\right)$ contributing to Eq. (10.10) are small, partly cancel each other and are not included here. The most recent results on $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)[29,35-37]$ typically assume the validity of perturbative QCD (PQCD) at scales of $\sim 2 \mathrm{GeV}$ or above and are in good agreement with each other. In regions where PQCD is not trusted, one can use $e^{+} e^{-} \rightarrow$ hadrons cross-section data and τ decay spectral functions [38], where the latter derive from OPAL [39], CLEO [40], ALEPH [41], and Belle [42]. Recently, new data for various $e^{+} e^{-} \rightarrow$ hadrons channels was obtained from BaBar, BES III, CLEO, the SND and CMD-3 experiments at VEPP-2000, and the KEDR experiments at VEPP-4M (for a list of references see, e.g., Ref. [29]). While VEPP-2000 and VEPP-4M scanned center-of-mass (CM) energies up to 2 GeV and between about 3 and 4 GeV , respectively, the BaBar collaboration studied multi-hadron events radiatively returned from the $\Upsilon(4 S)$,

[^16]reconstructing the radiated photon and normalizing to $\mu^{ \pm} \gamma$ final states. The precision of these results generally exceeds those from τ decays. There are significant discrepancies between the older (CMD-2) and newer (CMD-3) measurements of $e^{+} e^{-} \rightarrow K^{+} K^{-}$, which could be due to difficulties in determining the detection efficiency of low-momentum kaons. The radiative return data from BaBar is expected to be more reliable for this channel owing to an additional boost of the final-state hadrons.

10.2.3 Quark masses

Further free parameters entering into Eq. (10.2) are the quark and lepton masses, where m_{i} is the mass of the $i^{\text {th }}$ fermion ψ_{i}. For the light quarks, as described in the Section on "Quark Masses" in this Review, $\widehat{m}_{u}=2.16_{-0.26}^{+0.49} \mathrm{MeV}, \widehat{m}_{d}=4.67_{-0.17}^{+0.48} \mathrm{MeV}$, and $\widehat{m}_{s}=93_{-5}^{+11} \mathrm{MeV}$. These are running $\overline{\mathrm{MS}}$ masses evaluated at the scale $\mu=2 \mathrm{GeV}$. For the charm mass we use the constraint [51],

$$
\begin{equation*}
\widehat{m}_{c}\left(\widehat{m}_{c}\right)=1274 \pm 8+2616\left[\alpha_{s}\left(M_{Z}\right)-0.1182\right] \mathrm{MeV}, \tag{10.11}
\end{equation*}
$$

which is based on QCD sum rules [52,53], and recalculate \widehat{m}_{c} in each call of our fits to account for its α_{s} dependence. Similarly, for the bottom quark mass we use,

$$
\begin{equation*}
\widehat{m}_{b}\left(\widehat{m}_{b}\right)=4180 \pm 8+108\left[\alpha_{s}\left(M_{Z}\right)-0.1182\right] \mathrm{MeV} \tag{10.12}
\end{equation*}
$$

with a theoretical correlation of about 60% arising mostly from the PQCD truncation uncertainty which is similar for $\widehat{m}_{c}\left(\widehat{m}_{c}\right)$ and $\widehat{m}_{b}\left(\widehat{m}_{b}\right)$. To improve the precisions in $\widehat{m}_{c}\left(\widehat{m}_{c}\right)$ and $\widehat{m}_{b}\left(\widehat{m}_{b}\right)$ in the future it would help to remeasure the threshold regions of the heavy quarks, as well as the electronic decay widths of the narrow $c \bar{c}$ and $b \bar{b}$ resonances.

The top quark "pole" mass (the quotation marks are a reminder that the experiments do not strictly measure the pole mass and that quarks do not form asymptotic states), has been kinematically reconstructed by the Tevatron collaborations, CDF and $\mathrm{D} \emptyset$, in leptonic, hadronic, and mixed channels with the result $m_{t}=174.30 \pm 0.35$ stat. $\pm 0.54_{\text {syst. }} \mathrm{GeV}$ [54]. Likewise, using data from CM energies $\sqrt{s}=7$ and 8 TeV (Run 1), ATLAS and CMS (including alternative technique measurements) at the LHC obtained $m_{t}=172.69 \pm 0.25_{\text {stat. }} \pm 0.41_{\text {syst. }} \mathrm{GeV}[55]$ and $m_{t}=172.43 \pm 0.13_{\text {stat. }} \pm 0.46_{\text {syst. }} \mathrm{GeV}$ [56], respectively. In addition, there are first results with $\sqrt{s}=13 \mathrm{TeV}$ data (Run 2). CMS obtained $m_{t}=172.26 \pm 0.07_{\text {mostly stat. }} \pm 0.61_{\text {syst. }} \mathrm{GeV}$ [57] in the lepton + jets and all-jets channels, and $m_{t}=172.33 \pm$ $0.14_{\text {stat. }} \pm 0.69_{\text {syst. }} \mathrm{GeV}$ [58] in the di-lepton channel. Using a leptonic invariant mass and thus featuring reduced correlation with the more traditional analysis approaches, ATLAS quotes $m_{t}=174.48 \pm 0.40$ stat. $\pm 0.67_{\text {syst. }} \mathrm{GeV}$ [59] from the lepton + jets channel. While there seems to be generally good agreement between all these measurements, we observe a 2.8σ discrepancy (or more in case of correlated systematics) between the two most precise determinations, $174.98 \pm 0.76 \mathrm{GeV}[60]$ (by the $\mathrm{D} \varnothing$ collaboration) and $172.25 \pm 0.63 \mathrm{GeV}$ [61] (by the CMS collaboration), both from the lepton + jets channels. In addition, the latter is also 2.2σ lower than the preliminary result of Ref. [59]. Assuming a systematic error component of 0.17 GeV (the QCD, PDF and Monte Carlo type errors at ATLAS at Run 1) is common to all six results, we arrive at the combination,

$$
\begin{equation*}
m_{t}=172.89 \pm 0.28_{\exp .} \mathrm{GeV}+\Delta m_{\mathrm{MC}} \tag{10.13}
\end{equation*}
$$

where Δm_{MC} is defined to account for any difference between the top pole mass, m_{t}, and the mass parameter implemented in the Monte Carlo event generators employed by the experimental groups. Δm_{MC} is expected to be of order $\alpha_{s}\left(Q_{0}\right) Q_{0}$ with a low scale $Q_{0} \sim \mathcal{O}(1 \mathrm{GeV})$ [62], but its value is unknown in hadron collider environments so that we will treat it as an uncertainty instead, and choose for definiteness $Q_{0}=\Gamma_{t}=1.42 \mathrm{GeV}$ to arrive at $\Delta m_{\mathrm{MC}}=0 \pm 0.52 \mathrm{GeV}$. We further assume that an uncertainty [63] of $\pm 0.32 \mathrm{GeV}$ in the relation [64] between m_{t} and the $\overline{\mathrm{MS}}$ definition, $\widehat{m}_{t}\left(\widehat{m}_{t}\right)$, entering electroweak radiative correction libraries, including the renormalon ambiguity [65], is already included in Δm_{MC}, as m_{t} merely serves as an intermediate bookkeeping device in Ref. [62]. A promising future direction to arrive
at a competitive independent constraint on m_{t} is to analyze differential top quark pair production cross-sections at next-to-next-toleading order (NNLO) [66], as m_{t} extraction based on them are easier to interpret, and experimentally they have become much more precise recently [67,68]. The combination in Eq. (10.13) differs slightly from the average, $m_{t}=172.9 \pm 0.4_{\text {exp. }} \mathrm{GeV}$, which appears in the Top Quark Listings in this Review, as its uncertainty has been scaled up by a factor of 1.3 . For more details and references, see the Section on the "Top Quark" and the Quarks Listings in this Review.

10.2.4 The weak mixing angle

The observables $\sin ^{2} \theta_{W}$ and M_{W} can be calculated from M_{Z}, $\widehat{\alpha}\left(M_{Z}\right)$, and G_{F}, when values for m_{t} and M_{H} are given, or conversely, M_{H} can be constrained by $\sin ^{2} \theta_{W}$ and M_{W}. The value of $\sin ^{2} \theta_{W}$ is extracted from neutral-current processes (see Sec. 10.3) and Z pole observables (see Sec. 10.5.3) and depends on the renormalization prescription. There are a number of popular schemes [9] leading to values which differ by small factors depending on m_{t} and M_{H}. The notation for these schemes is shown in Table 10.2.
(i) The on-shell scheme [70] promotes the tree-level formula $\sin ^{2} \theta_{W}=1-M_{W}^{2} / M_{Z}^{2}$ to a definition of the renormalized $\sin ^{2} \theta_{W}$ to all orders in perturbation theory, i.e.,

$$
\begin{align*}
& \sin ^{2} \theta_{W} \rightarrow s_{W}^{2} \equiv 1-\frac{M_{W}^{2}}{M_{Z}^{2}} \\
& M_{W}=\frac{A_{0}}{s_{W}(1-\Delta r)^{1 / 2}} \tag{10.14b}
\end{align*}
$$

$$
M_{Z}=\frac{M_{W}}{c_{W}}
$$

where $\quad c_{W} \equiv \cos \theta_{W}, \quad A_{0}=\left(\pi \alpha / \sqrt{2} G_{F}\right)^{1 / 2}=$ $37.28038(1) \mathrm{GeV}$, and Δr includes the radiative corrections relating $\alpha, \alpha\left(M_{Z}\right), G_{F}, M_{W}$, and M_{Z}. One finds $\Delta r \sim$ $\Delta r_{0}-\rho_{t} \tan ^{-2} \theta_{W}$, where $\Delta r_{0}=1-\alpha / \widehat{\alpha}\left(M_{Z}\right)=0.06629(7)$ is due to the running of α, and

$$
\begin{equation*}
\rho_{t}=\frac{3 G_{F} m_{t}^{2}}{8 \sqrt{2} \pi^{2}}=0.00937 \times \frac{m_{t}^{2}}{(172.89 \mathrm{GeV})^{2}} \tag{10.15}
\end{equation*}
$$

represents the dominant (quadratic) m_{t} dependence. There are additional contributions to Δr from bosonic loops, including those which depend logarithmically on M_{H} and higher-order corrections ${ }^{8}$. One has $\Delta r=0.03652 \mp 0.00021 \pm$ 0.00007 , where the first uncertainty is from m_{t} and the second is from $\alpha\left(M_{Z}\right)$. Thus the value of s_{W}^{2} extracted from M_{Z} includes an uncertainty (∓ 0.00007) from the currently allowed range of m_{t}. This scheme is simple conceptually. However, the relatively large ($\sim 3 \%$) correction from ρ_{t} causes large spurious contributions in higher orders. s_{W}^{2} depends not only on the gauge couplings but also on the spontaneous-symmetry breaking, and it is awkward in the presence of any extension of the SM which perturbs the value of M_{Z} (or M_{W}). Other definitions are motivated by the tree-level coupling constant definition $\theta_{W}=\tan ^{-1}\left(g^{\prime} / g\right)$:
(ii) In particular, the $\overline{\mathrm{MS}}$ scheme introduces the quantity,

$$
\begin{equation*}
\sin ^{2} \widehat{\theta}_{W}(\mu) \equiv \frac{\widehat{g}^{\prime 2}(\mu)}{\widehat{g}^{2}(\mu)+\widehat{g}^{\prime 2}(\mu)} \tag{10.16}
\end{equation*}
$$

where the couplings \widehat{g} and \widehat{g}^{\prime} are defined by modified minimal subtraction and the scale μ is conveniently chosen to be M_{Z} for many EW processes. The value of $\widehat{s}_{Z}^{2} \equiv \sin ^{2} \widehat{\theta}_{W}\left(M_{Z}\right)$ extracted from M_{Z} is less sensitive than s_{W}^{2} to m_{t} (by a factor of $\tan ^{2} \theta_{W}$), and is less sensitive to most types of new physics. It is also very useful for comparing with the predictions of grand unification. There are actually several variant definitions of $\sin ^{2} \widehat{\theta}_{W}\left(M_{Z}\right)$, differing according

[^17]Table 10.1: Evaluations of the on-shell $\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}\right)$ by different groups (for a more complete list of evaluations see the 2012 edition of this Review). For better comparison we adjusted central values and errors to correspond to a common and fixed value of $\alpha_{s}\left(M_{Z}\right)=0.120$. References quoting results without the top quark decoupled are converted to the five flavor definition. Ref. [43] uses $\Lambda_{\mathrm{QCD}}=380 \pm 60 \mathrm{MeV}$; for the conversion we assumed $\alpha_{s}\left(M_{Z}\right)=0.118 \pm 0.003$.

Reference	Result	Comment
Geshkenbein, Morgunov [44]	0.02780 ± 0.00006	$\mathcal{O}\left(\alpha_{s}\right)$ resonance model
Swartz [45]	0.02754 ± 0.00046	use of fitting function
Krasnikov, Rodenberg [46]	0.02737 ± 0.00039	PQCD for $\sqrt{s}>2.3 \mathrm{GeV}$
Kühn \& Steinhauser [47]	0.02778 ± 0.00016	full $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for $\sqrt{s}>1.8 \mathrm{GeV}$
Groote et al. $[43]$	0.02787 ± 0.00032	use of QCD sum rules
Martin et al. $[48]$	0.02741 ± 0.00019	incl. new BES data
de Troconiz, Yndurain [49]	0.02754 ± 0.00010	PQCD for $s>2 \mathrm{GeV}{ }^{2}$
Burkhardt, Pietrzyk [50]	0.02750 ± 0.00033	PQCD for $\sqrt{s}>12 \mathrm{GeV}$
Erler, Ferro-Hernández [35]	0.02761 ± 0.00010	conv. from $\overline{\mathrm{MS}}$ scheme
Jegerlehner [36]	0.02755 ± 0.00013	Euclidean split technique
Davier et al. $[29]$	0.02760 ± 0.00010	PQCD for $\sqrt{s}=1.8-3.7 \&>5 \mathrm{GeV}$
Keshavarzi et al. $[37]$	0.02761 ± 0.00011	PQCD for $\sqrt{s}>11.2 \mathrm{GeV}$

Table 10.2: Notations used to indicate the various schemes discussed in the text. Each definition of $\sin ^{2} \theta_{W}$ leads to values that differ by small factors depending on m_{t} and M_{H}. Numerical values and the uncertainties induced by the imperfectly known SM parameters and unknown higher orders [69] are also given for illustration.

Scheme	Notation	Value	Uncertainty
$\overline{\text { On-shell }}$	s_{W}^{2}	0.22337	± 0.00010
$\overline{\mathrm{MS}}$	\widehat{s}_{Z}^{2}	0.23121	± 0.00004
$\overline{\mathrm{MS}} \mathrm{ND}$	$\widehat{s}_{\mathrm{ND}}^{2}$	0.23141	± 0.00004
$\overline{\mathrm{MS}}$	\widehat{s}_{0}^{2}	0.23857	± 0.00005
Effective angle	\bar{s}_{ℓ}^{2}	0.23153	± 0.00004

to whether or how finite $\alpha \ln \left(m_{t} / M_{Z}\right)$ terms are decoupled (subtracted from the couplings). One cannot entirely decouple the $\alpha \ln \left(m_{t} / M_{Z}\right)$ terms from all EW quantities because $m_{t} \gg m_{b}$ breaks $\mathrm{SU}(2)$ symmetry. The scheme that will be adopted here decouples the $\alpha \ln \left(m_{t} / M_{Z}\right)$ terms from the $\gamma-Z$ mixing [27, 71], essentially eliminating any $\ln \left(m_{t} / M_{Z}\right)$ dependence in the formulae for asymmetries at the Z pole when written in terms of \widehat{s}_{Z}^{2}. (A similar definition is used for $\widehat{\alpha}$.) The on-shell and $\overline{\mathrm{MS}}$ definitions are related by

$$
\begin{equation*}
\widehat{s}_{Z}^{2}=c\left(m_{t}, M_{H}\right) s_{W}^{2}=(1.0351 \pm 0.0003) s_{W}^{2} \tag{10.17}
\end{equation*}
$$

The quadratic m_{t} dependence is given by $c \sim 1+$ $\rho_{t} / \tan ^{2} \theta_{W}$. The expressions for M_{W} and M_{Z} in the $\overline{\mathrm{MS}}$ scheme are
$M_{W}=\frac{A_{0}}{\widehat{s}_{Z}\left(1-\Delta \widehat{r}_{W}\right)^{1 / 2}}, \quad M_{Z}=\frac{M_{W}}{\widehat{\rho}^{1 / 2} \widehat{c}_{Z}}$,
(10.18)
and one predicts $\Delta \widehat{r}_{W}=0.06918 \pm 0.00007 . \Delta \widehat{r}_{W}$ has no quadratic m_{t} dependence, because shifts in M_{W} are absorbed into the observed G_{F}, so that the error in $\Delta \widehat{r}_{W}$ is almost entirely due to $\Delta r_{0}=1-\alpha / \widehat{\alpha}\left(M_{Z}\right)$. The quadratic m_{t} dependence has been shifted into $\widehat{\rho} \sim 1+\rho_{t}$, where including bosonic loops, $\widehat{\rho}=1.01019 \pm 0.00009$.
(iii) A variant $\overline{\mathrm{MS}}$ quantity $\widehat{s}_{\mathrm{ND}}^{2}$ (used in the 1992 edition of this Review) does not decouple the $\alpha \ln \left(m_{t} / M_{Z}\right)$ terms [72]. It is related to \widehat{s}_{Z}^{2} by

$$
\begin{align*}
& \widehat{s}_{Z}^{2}=\frac{\widehat{s}_{\mathrm{ND}}^{2}}{1+\frac{\widehat{\alpha}}{\pi} d} \tag{10.19}\\
& d=\frac{1}{3}\left(\frac{1}{\widehat{s}^{2}}-\frac{8}{3}\right)\left[\left(1+\frac{\alpha_{s}}{\pi}\right) \ln \frac{m_{t}}{M_{Z}}-\frac{15 \alpha_{s}}{8 \pi}\right]
\end{align*}
$$

Thus, $\widehat{s}_{Z}^{2}-\widehat{s}_{\mathrm{ND}}^{2}=-0.0002$.
(iv) Some of the low-energy experiments discussed in the next section are sensitive to the weak mixing angle at almost vanishing momentum transfer [35,73-75]. Thus, Table 10.2 also includes $\widehat{s}_{0}^{2} \equiv \sin ^{2} \widehat{\theta}_{W}(0)$.
(v) Yet another definition, the effective angle $[76,77], \bar{s}_{f}^{2} \equiv$ $\sin \theta_{\text {eff }}^{f}$, for the Z vector coupling to fermion f, is based on Z pole observables and described in Sec. 10.5.

10.2.5 Radiative corrections

Experiments are at such level of precision [69] that complete one-loop, dominant two-loop, and partial three and four-loop radiative corrections must be applied. For neutral-current and Z pole processes, these corrections are conveniently divided into two classes:

1. QED diagrams involving the emission of real photons or the exchange of virtual photons in loops, but not including vacuum polarization diagrams. These graphs often yield finite and gauge-invariant contributions to observable processes. However, they are dependent on energies, experimental cuts, etc., and must be calculated individually for each experiment.
2. EW corrections, including $\gamma \gamma, \gamma Z, Z Z$, and $W W$ vacuum polarization diagrams, as well as vertex corrections, box graphs, etc., involving virtual W and Z bosons. One-loop corrections [78] are included for all processes, and many two-loop corrections are also important. In particular, two-loop corrections involving the top quark modify ρ_{t} in $\widehat{\rho}, \Delta r$, and elsewhere by

$$
\begin{equation*}
\rho_{t} \rightarrow \rho_{t}\left[1+R\left(M_{H}, m_{t}\right) \frac{\rho_{t}}{3}\right] \tag{10.20}
\end{equation*}
$$

$R\left(M_{H}, m_{t}\right)$ can be described as an expansion in M_{Z}^{2} / m_{t}^{2}, for which the leading $m_{t}^{4} / M_{Z}^{4}[79,80]$ and next-to-leading $m_{t}^{2} / M_{Z}^{2}[81,82]$ terms are known. The complete two-loop calculation of Δr (without further approximation) has been performed in Refs. [83-87]. More recently, Ref. [88] obtained
the $\overline{\mathrm{MS}}$ quantities $\Delta \widehat{r}_{W}$ and $\widehat{\rho}$ to two-loop accuracy, confirming the prediction of M_{W} in the on-shell scheme from Refs. [85, 89] within about 4 MeV . Similarly, the EW twoloop corrections for the relation between $\bar{s}_{\ell, b}^{2}$ and s_{W}^{2} are known [90-95], as well as for the partial decay and total decay widths and the effective couplings of the Z boson [96-99]. For $\bar{s}_{s, c}$ only two-loop corrections from diagrams with closed fermion loops are available [100], but given the experimental precision this is more than adequate.
The mixed QCD-EW contributions to gauge boson selfenergies of order $\alpha \alpha_{s} m_{t}^{2}$ [101, 102], $\alpha \alpha_{s}^{2} m_{t}^{2}[103,104]$, and $\alpha \alpha_{s}^{3} m_{t}^{2}[105-107]$ increase the predicted value of m_{t} by 6%. This is, however, almost entirely an artifact of using the pole mass definition for m_{t}. The equivalent corrections when using the $\overline{\mathrm{MS}}$ definition $\widehat{m}_{t}\left(\widehat{m}_{t}\right)$ increase m_{t} by less than 0.5%. The sub-leading $\alpha \alpha_{s}$ corrections [108-111] are also included. Further three-loop corrections of order $\alpha \alpha_{s}^{2}[112,113], \alpha^{3} m_{t}^{6}$, and $\alpha^{2} \alpha_{s} m_{t}^{4}[114,115]$, are rather small. The same is true for $\alpha^{3} M_{H}^{4}$ [116] corrections unless M_{H} approaches 1 TeV . The theoretical uncertainty from unknown higher-order corrections [69] is estimated to amount to 4 MeV for the prediction of M_{W} [89] and 4.5×10^{-5} for \bar{s}_{ℓ}^{2} [100].

Throughout this Review we utilize EW radiative corrections from the program GAPP [32], which works entirely in the $\overline{\mathrm{MS}}$ scheme, and which is independent of the package ZFITTER [117].

10.3 Low energy electroweak observables

In the following we discuss EW precision observables obtained at low momentum transfers [118], i.e., $Q^{2} \ll M_{Z}^{2}$. It is convenient to write the four-fermion interactions relevant to ν-hadron, $\nu-e$, as well as parity violating e-hadron and e-e neutral-current processes, in a form that is valid in an arbitrary gauge theory (assuming massless left-handed neutrinos). One has ${ }^{9}$,

$$
\begin{align*}
&-\mathscr{L}^{\nu e}= \frac{G_{F}}{\sqrt{2}} \bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu \bar{e} \gamma^{\mu}\left(g_{L V}^{\nu e}-g_{L A}^{\nu e} \gamma^{5}\right) e \tag{10.21a}\\
&-\mathscr{L}^{\nu h}= \frac{G_{F}}{\sqrt{2}} \bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu \sum_{q}\left[g_{L L}^{\nu q} \bar{q} \gamma^{\mu}\left(1-\gamma^{5}\right) q\right. \\
&\left.+g_{L R}^{\nu q} \bar{q} \gamma^{\mu}\left(1+\gamma^{5}\right) q\right] \tag{,10.21b}\\
&-\mathscr{L}^{e e}=-\frac{G_{F}}{\sqrt{2}} g_{A V}^{e e} \bar{e} \gamma_{\mu} \gamma^{5} e \bar{e} \gamma^{\mu} e \tag{10.21c}\\
&-\mathscr{L}^{e h}=-\frac{G_{F}}{\sqrt{2}} \sum_{q}\left[g_{A V}^{e q} \bar{e} \gamma_{\mu} \gamma^{5} e \bar{q} \gamma^{\mu} q\right. \\
&\left.+g_{V A}^{e q} \bar{e} \gamma_{\mu} e \bar{q} \gamma^{\mu} \gamma^{5} q\right] \tag{10.21d}
\end{align*}
$$

where one must include the charged-current contribution for $\nu_{e}-e$ and $\bar{\nu}_{e}-e$ and the parity conserving QED contribution for electron scattering. The SM tree level expressions for the four-Fermi couplings are given in Table 10.3. Note that they differ from the respective products of the gauge couplings in (10.6) in the radiative corrections and in the presence of possible physics beyond the SM.

10.3.1 Neutrino scattering

The cross-section in the laboratory system for $\nu_{\mu} e \rightarrow \nu_{\mu} e$ or $\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$ elastic scattering $[9,119]$ is (in this subsection we drop

[^18]the redundant index L in the effective neutrino couplings),
\[

$$
\begin{align*}
\frac{d \sigma_{\nu, \bar{\nu}}}{d y}=\frac{G_{F}^{2} m_{e} E_{\nu}}{2 \pi}[& \left(g_{V}^{\nu e} \pm g_{A}^{\nu e}\right)^{2}+\left(g_{V}^{\nu e} \mp g_{A}^{\nu e}\right)^{2}(1-y)^{2} \\
& \left.-\left(g_{V}^{\nu e 2}-g_{A}^{\nu e 2}\right) \frac{y m_{e}}{E_{\nu}}\right] \tag{10.22}
\end{align*}
$$
\]

where the upper (lower) sign refers to $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$, and $y \equiv T_{e} / E_{\nu}$ (which runs from 0 to $\left(1+m_{e} / 2 E_{\nu}\right)^{-1}$) is the ratio of the kinetic energy of the recoil electron to the incident ν or $\bar{\nu}$ energy. For $E_{\nu} \gg m_{e}$ this yields a total cross-section

$$
\begin{equation*}
\sigma=\frac{G_{F}^{2} m_{e} E_{\nu}}{2 \pi}\left[\left(g_{V}^{\nu e} \pm g_{A}^{\nu e}\right)^{2}+\frac{1}{3}\left(g_{V}^{\nu e} \mp g_{A}^{\nu e}\right)^{2}\right] \tag{10.23}
\end{equation*}
$$

The most accurate measurements of $\sin ^{2} \theta_{W}$ from ν-lepton scattering (see Sec. 10.6) are from the ratio $R \equiv \sigma_{\nu_{\mu} e} / \sigma_{\bar{\nu}_{\mu} e}$, in which many of the systematic uncertainties cancel. The results are $\sin ^{2} \theta_{W}=0.211 \pm 0.037$ [120], $\sin ^{2} \theta_{W}=0.195 \pm 0.022$ [121], and $\sin ^{2} \theta_{W}=0.2324 \pm 0.0083$ [122], where radiative corrections (other than m_{t} effects) are small compared to the precision of present experiments and have negligible effect. As shown in Fig. 10.1, one can determine $g_{V, A}^{\nu e}$ from the experimental data as well. The cross-sections for $\nu_{e}-e$ and $\bar{\nu}_{e}-e$ may be obtained from Eq. (10.22) by replacing $g_{V, A}^{\nu e}$ by $g_{V, A}^{\nu e}+1$, where the 1 is due to the chargedcurrent contribution.

Figure 10.1: Allowed contours in $g_{A}^{\nu e}$ vs. $g_{V}^{\nu e}$ from neutrinoelectron scattering and the SM prediction as a function of \widehat{s}_{Z}^{2}. (The SM best fit value, $\widehat{s}_{Z}^{2}=0.23121$, is also indicated.) The $\nu_{e}-e[123,124]$ and $\bar{\nu}_{e}-e[125]$ constraints are at 1σ, while each of the four equivalent $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)-e[120-122]$ solutions $\left(g_{V, A} \rightarrow-g_{V, A}\right.$ and $\left.g_{V, A} \rightarrow g_{A, V}\right)$ are at the $90 \% \mathrm{CL}$. The global best fit region (shaded) almost exactly coincides with the corresponding $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ e region. The solution near $g_{A}=0$ and $g_{V}=-0.5$ is eliminated by $e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}$data under the weak additional assumption that the neutral current is dominated by the exchange of a single Z boson.

A precise determination of the on-shell s_{W}^{2}, which depends only very weakly on m_{t} and M_{H}, is obtained from deep inelastic scattering (DIS) of neutrinos [119,126] from (approximately) isoscalar targets. The ratio $R_{\nu} \equiv \sigma_{\nu N}^{N C} / \sigma_{\nu N}^{C C}$ of neutral-to-charged-current cross-sections has been measured to 1% accuracy by CDHS [127] and CHARM [128] at CERN. CCFR [129] at Fermilab has obtained an even more precise result, so it is important to obtain theoretical expressions for R_{ν} and $R_{\bar{\nu}} \equiv \sigma_{\bar{\nu} N}^{N C} / \sigma_{\bar{\nu} N}^{C C}$ to comparable accuracy. Fortunately, many of the uncertainties from the strong interactions and neutrino spectra cancel in the ratio. A large theoretical uncertainty is associated with the c-threshold,

Table 10.3: SM tree level expressions for the neutral-current parameters for ν-hadron, ν - e, and e^{-}scattering processes. To obtain the SM values in the last column, the tree level expressions have to be multiplied by the low-energy neutral-current ρ parameter, $\rho_{\mathrm{NC}}=1.00063$, and further vertex and box corrections need to be added as detailed in Ref. [13]. The dominant m_{t} dependence is again given by $\rho_{\mathrm{NC}} \sim 1+\rho_{t}$.

Quantity	SM tree level	SM value
$g_{L V}^{\nu_{\mu} e}$	$-\frac{1}{2}+2 \widehat{s}_{0}^{2}$	-0.0398
$g_{L A}^{\nu_{\mu} e}$	$-\frac{1}{2}$	-0.5064
$g_{L L}^{\nu_{\mu} u}$	$\frac{1}{2}-\frac{2}{3} \widehat{s}_{0}^{2}$	0.3458
$g_{L L}^{\nu_{\mu} d}$	$-\frac{1}{2}+\frac{1}{3} \widehat{s}_{0}^{2}$	-0.4288
$g_{L R}^{\nu \mu u}$	$-\frac{2}{3} \widehat{s}_{0}^{2}$	-0.1552
$g_{L R}^{\nu \mu d}$	$\frac{1}{3} \widehat{s}_{0}^{2}$	0.0777
$g_{A V}^{e e}$	$\frac{1}{2}-2 \widehat{s}_{0}^{2}$	0.0227
$g_{A V}^{e u}$	$-\frac{1}{2}+\frac{4}{3} \widehat{s}_{0}^{2}$	-0.1888
$g_{A V}^{e d}$	$\frac{1}{2}-\frac{2}{3} \widehat{s}_{0}^{2}$	0.3419
$g_{V A}^{e u}$	$-\frac{1}{2}+2 \widehat{s}_{0}^{2}$	-0.0352
$g_{V A}^{e d}$	$\frac{1}{2}-2 \widehat{s}_{0}^{2}$	0.0249

which mainly affects $\sigma^{C C}$. Using the slow rescaling prescription $[130,131]$ the central value of $\sin ^{2} \theta_{W}$ from CCFR varies as $0.0111\left(m_{c} / \mathrm{GeV}-1.31\right)$, where m_{c} is the effective mass which is numerically close to the $\overline{\mathrm{MS}}$ mass $\widehat{m}_{c}\left(\widehat{m}_{c}\right)$, but their exact relation is unknown at higher orders. For $m_{c}=1.31 \pm 0.24 \mathrm{GeV}$, which was determined from ν-induced di-muon production [132], this contributes ± 0.003 to the total uncertainty of $\Delta \sin ^{2} \theta_{W}= \pm 0.004$, where the experimental uncertainty was also ± 0.003. This uncertainty largely cancels, however, in the Paschos-Wolfenstein ratio [133],

$$
\begin{equation*}
R^{-}=\frac{\sigma_{\nu N}^{N C}-\sigma_{\bar{\nu} N}^{N C}}{\sigma_{\nu N}^{C C}-\sigma_{\bar{\nu} N}^{C C}} \tag{10.24}
\end{equation*}
$$

It was measured by Fermilab's NuTeV collaboration [134] for the first time, and required a high-intensity and high-energy antineutrino beam.

A simple zero ${ }^{\text {th }}$-order approximation is,

$$
\begin{array}{ll}
R_{\nu}=g_{L}^{2}+g_{R}^{2} r, & R_{\bar{\nu}}=g_{L}^{2}+\frac{g_{R}^{2}}{r} \\
R^{-}=g_{L}^{2}-g_{R}^{2}, & r \equiv \frac{\sigma_{\bar{\nu} N}^{C C}}{\sigma_{\nu N}^{C C}}
\end{array}
$$

where r is the ratio of $\bar{\nu}$ to ν charged-current cross-sections which can be measured directly ${ }^{10}$, and

$$
\begin{align*}
& g_{L}^{2} \equiv\left(g_{L L}^{\nu_{\mu} u}\right)^{2}+\left(g_{L L}^{\nu_{\mu} d}\right)^{2} \approx \frac{1}{2}-\sin ^{2} \theta_{W}+\frac{5}{9} \sin ^{4} \theta_{W} \tag{10.26a}\\
& g_{R}^{2} \equiv\left(g_{L R}^{\nu_{\mu} u}\right)^{2}+\left(g_{L R}^{\nu_{\mu} d}\right)^{2} \approx \frac{5}{9} \sin ^{4} \theta_{W} \tag{10.26b}
\end{align*}
$$

In practice, Eq. (10.25b) must be corrected for quark mixing, quark sea effects, c quark threshold effects, non-isoscalarity, $W-Z$ propagator differences, the finite muon mass, QED and EW radiative corrections. Details of the neutrino spectra, experimental cuts, x and Q^{2} dependence of structure functions, and longitudinal structure functions, enter only at the level of these corrections and therefore lead to very small uncertainties. CCFR quotes $s_{W}^{2}=0.2236 \pm 0.0041$ for the reference values $\left(m_{t}, M_{H}\right)=$ $(175,150) \mathrm{GeV}$ with very little sensitivity to $\left(m_{t}, M_{H}\right)$.

The NuTeV collaboration found $s_{W}^{2}=0.2277 \pm 0.0016$ (for the same reference values), which was 3.0σ higher than the SM prediction [134]. However, since then several groups have raised concerns about the interpretation of the NuTeV result, which could

[^19]affect the extracted $g_{L, R}^{2}$ (and thus s_{W}^{2}) including their uncertainties and correlation. These include the assumption of symmetric strange and anti-strange sea quark distributions, the electron neutrino contamination from $K_{e 3}$ decays, isospin symmetry violation in the parton distribution functions and from QED splitting effects, nuclear shadowing effects, and a more complete treatment of EW and QCD radiative corrections. A more detailed discussion and a list of references can be found in the 2016 edition of this Review. The precise impact of these effects would need to be evaluated carefully by the collaboration, but in the absence of such an effort we do not include the ν DIS constraints in our default set of fits.

Very recently, the COHERENT collaboration was the first to observe the coherent elastic neutrino nucleus scattering ($\mathrm{CE} \nu \mathrm{NS}$) process [135] on a target consisting mostly of ${ }^{133} \mathrm{Cs}$ and ${ }^{127} \mathrm{I}$, and at the opposite end of the kinematic scale where the momentum transfer is significantly smaller than the inverse of the nuclear radius. The coherence enhances the process roughly proportional to the square of the number of neutrons in the nuclei, but the process is difficult to observe as the experimental signature is a mere keV scale nuclear recoil.

10.3.2 Parity violating lepton scattering

Reviews on weak polarized electron scattering may be found in Refs. [9, 136]. The SLAC polarized electron-deuteron DIS (eDIS) experiment [137] measured the parity violating right-left asymmetry,

$$
\begin{equation*}
A_{R L} \equiv \frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \tag{10.27}
\end{equation*}
$$

where $\sigma_{R, L}$ is the cross-section for the deep-inelastic scattering of a right- or left-handed electron, $e_{R, L} N \rightarrow e \mathrm{X}$. In the quark parton model,

$$
\begin{equation*}
\frac{A_{R L}}{Q^{2}}=a_{1}+a_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}} \tag{10.28}
\end{equation*}
$$

where $Q^{2}>0$ is the momentum transfer and y is the fractional energy transfer from the electron to the hadrons. For the deuteron or other isoscalar targets, one has, neglecting the s quark and antiquarks,

$$
\begin{align*}
& a_{1}=\frac{3 G_{F}}{5 \sqrt{2} \pi \alpha}\left(g_{A V}^{e u}-\frac{1}{2} g_{A V}^{e d}\right) \approx \frac{3 G_{F}}{5 \sqrt{2} \pi \alpha}\left(-\frac{3}{4}+\frac{5}{3} \widehat{s}_{0}^{2}\right) \tag{10.29a}\\
& a_{2}=\frac{3 G_{F}}{5 \sqrt{2} \pi \alpha}\left(g_{V A}^{e u}-\frac{1}{2} g_{V A}^{e d}\right) \approx \frac{9 G_{F}}{5 \sqrt{2} \pi \alpha}\left(\widehat{s}_{0}^{2}-\frac{1}{4}\right) \tag{10.29b}
\end{align*}
$$

The Jefferson Lab Hall A collaboration $[138,139]$ improved on the SLAC result by measuring $A_{R L}$ at $Q^{2}=1.085 \mathrm{GeV}^{2}$ and
$1.901 \mathrm{GeV}^{2}$, and determined the weak mixing angle to 2% precision, $\widehat{s}^{2}(161 \mathrm{MeV})=0.2403 \pm 0.0043$. In another polarized electron scattering experiment on deuterons, but in the quasielastic kinematic regime, the SAMPLE experiment [140, 141] at MIT-Bates extracted the combination $g_{V A}^{e u}-g_{V A}^{e d}$ at Q^{2} values of $0.038 \mathrm{GeV}^{2}$ and $0.091 \mathrm{GeV}^{2}$. What was actually determined were nucleon form factors from which the quoted results were obtained by the removal of a multi-quark radiative correction [142]. Other linear combinations of the effective couplings have been determined in polarized lepton scattering at CERN in μ - ${ }^{12} \mathrm{C}$ DIS [143] (the observable was the double charge-helicity cross-section asymmetry), at Mainz in $e-{ }^{9} \mathrm{Be}$ (quasi-elastic) [144], and at Bates in $e-{ }^{12} \mathrm{C}$ (elastic) [145]. More recent polarized electron scattering experiments, i.e., SAMPLE, the PVA4 experiment at Mainz, and the HAPPEX and GØ experiments at Jefferson Lab, have focussed on the strange quark content of the nucleon [146].
$A_{R L}$ can also be measured in fixed target polarized Møller scattering, $e^{-} e^{-} \rightarrow e^{-} e^{-}$, and reads [147],

$$
\begin{equation*}
\frac{A_{R L}}{Q^{2}}=-2 g_{A V}^{e e} \frac{G_{F}}{\sqrt{2} \pi \alpha} \frac{1-y}{1+y^{4}+(1-y)^{4}} \tag{10.30}
\end{equation*}
$$

It has been determined at low $Q^{2}=0.026 \mathrm{GeV}^{2}$ in the SLAC E158 experiment [148], with the result, $A_{R L}=\left(-1.31 \pm 0.14_{\text {stat. }} \pm\right.$

Figure 10.2: Scale dependence of the weak mixing angle defined in the $\overline{\mathrm{MS}}$ scheme $[35,74]$ (for the scale dependence in a massdependent renormalization scheme, see Ref. [73]). The minimum of the curve corresponds to $\mu=M_{W}$, below which we switch to an effective theory with the $W^{ \pm}$bosons integrated out, and where the β-function for $\widehat{s}^{2}(\mu)$ changes sign. At M_{W} and each fermion mass there are also discontinuities arising from scheme dependent matching terms, which are necessary to ensure that the various effective field theories within a given loop order describe the same physics. However, in the $\overline{\mathrm{MS}}$ scheme these are very small numerically and barely visible in the figure provided one decouples quarks at $\mu=\widehat{m}_{q}\left(\widehat{m}_{q}\right)$. The width of the curve exceeds the theory uncertainty from strong interaction effects which at low energies is at the level of $\pm 2 \times 10^{-5}$ [35]. The Tevatron and LHC measurements are strongly dominated by invariant masses of the final-state di-lepton pair of $\mathcal{O}\left(M_{Z}\right)$ and can thus be considered as additional Z pole data points. For clarity we displayed the Tevatron and LHC points horizontally to the left and right, respectively.
$0.10_{\text {syst. }}$) $\times 10^{-7}$. Expressed in terms of the weak mixing angle in the $\overline{\mathrm{MS}}$ scheme this yields $\widehat{s}^{2}(161 \mathrm{MeV})=0.2403 \pm 0.0013$, and as shown in Fig. 10.2 established the scale dependence of the weak mixing angle at the level of 6.4σ. One also extracts the model-independent effective coupling, $g_{A V}^{e e}=0.0190 \pm 0.0027$ [13]. One-loop radiative corrections and implications are discussed in Ref. [73].

In a similar experiment and at about the same $Q^{2}=$ $0.0248 \mathrm{GeV}^{2}$, the $\mathrm{Q}_{\text {weak }}$ collaboration at Jefferson Lab obtained $A_{R L}=\left(-2.265 \pm 0.073_{\text {stat. }} \pm 0.058_{\text {syst. }}\right) \times 10^{-7}[149,150]$ in elastic $e^{-} p \rightarrow e^{-} p$ scattering. To extract the physical quantity of interest, the weak charge of the proton [151], a large $(\approx 30 \%)$ correction had to be applied to $A_{R L}$ arising from electromagnetic, strange, and axial form factors. This was achieved by
performing a global fit [152] including a large number of $A_{R L}$ data points at larger Q^{2}, dominated by the HAPPEX result at $Q^{2}=0.109 \mathrm{GeV}^{2}[153]$. Finally, the constraint, $2 g_{A V}^{e u}+g_{A V}^{e d}=$ 0.0356 ± 0.0023, which translates into a weak mixing angle measurement of $\widehat{s}^{2}(157 \mathrm{MeV})=0.2382 \pm 0.0011$, could be deduced, after correcting for a relatively large and uncertain contribution from the γZ box diagram [154-157].

10.3.3 Atomic parity violation

There are precise measurements of atomic parity violation (APV) $[9,158,159]$ in ${ }^{133} \mathrm{Cs}[160,161]$ (at the 0.4% level [160]), ${ }^{205} \mathrm{Tl}[162,163],{ }^{208} \mathrm{~Pb}$ [164], and ${ }^{209} \mathrm{Bi}$ [165]. The EW physics is contained in the nuclear weak charges $Q_{W}(Z, N)$, where Z and N are the numbers of protons and neutrons in the nucleus. In terms of the nucleon vector couplings,

$$
\begin{align*}
& g_{A V}^{e p} \equiv 2 g_{A V}^{e u}+g_{A V}^{e d} \approx-\frac{1}{2}+2 \widehat{s}_{0}^{2} \tag{10.31a}\\
& g_{A V}^{e n} \equiv g_{A V}^{e u}+2 g_{A V}^{e d} \approx+\frac{1}{2} \tag{10.31b}
\end{align*}
$$

one has,

$$
\begin{align*}
Q_{W}(Z, N) \equiv & -2\left[Z\left(g_{A V}^{e p}+0.00005\right)+N\left(g_{A V}^{e n}+0.00006\right)\right] \\
& \times\left(1-\frac{\alpha}{2 \pi}\right) \tag{10.32}
\end{align*}
$$

where the numerically small adjustments are discussed in Ref. [13] and include the result of the γZ-box correction from Ref. [166].
E.g., $Q_{W}\left({ }_{78}^{133} \mathrm{Cs}\right)$ is extracted by measuring experimentally the ratio of the parity violating amplitude, E_{PNC}, to the Stark vector transition polarizability, β, and by calculating theoretically E_{PNC} in terms of Q_{W}. One can then write,

$$
\begin{align*}
Q_{W}\left({ }_{78}^{133} \mathrm{Cs}\right) & =N\left(\frac{\operatorname{Im} E_{\mathrm{PNC}}}{\beta}\right)_{\text {exp. }}\left(\frac{|e| a_{B}}{\operatorname{Im} E_{\mathrm{PNC}}} \frac{Q_{W}}{N}\right)_{\mathrm{th} .} \\
& \times\left(\frac{\beta}{a_{B}^{3}}\right)_{\text {exp.+th. }}\left(\frac{a_{B}^{2}}{|e|}\right) \tag{10.33}
\end{align*}
$$

where a_{B} is the Bohr radius. There are currently two semiempirical approaches to β of similar precision. The ratio of the off-diagonal hyperfine amplitude to the vector polarizability was measured directly by the Boulder group [167]. Combined with the hyperfine amplitude, computed precisely in Ref. [168], one finds $\beta=\left(26.957 \pm 0.044_{\text {exp. }} \pm 0.027_{\text {th. }}\right) a_{B}^{3}$. Alternatively, one can combine [169] the measurement of the ratio of scalar to vector transition polarizabilities [170] with the recent calculation of the scalar polarizability [171] to obtain $\beta=$ $\left(27.139 \pm 0.030_{\text {exp. }} \pm 0.030_{\mathrm{th} .}\right) a_{B}^{3}$, in agreement with earlier results $[172,173]$ based on this approach. The two determinations average to $\beta=\left(27.064 \pm 0.025_{\text {exp. }} \pm 0.021_{\mathrm{th} .}\right) a_{B}^{3}$, while they differ by 2.7σ.

The uncertainties associated with the atomic wave function calculations are relatively small for cesium [9, 174-176]. State-of-the-art many-body atomic structure computations of the parity non-conserving amplitude, $\operatorname{Im} E_{\text {PNC }}=(0.8977 \pm$ $0.0040) \times 10^{-11}|e| a_{B} Q_{W} / N[177-182]$, together with the measurements $[160,161]$ which can be combined to give $\operatorname{Im} E_{\mathrm{PNC}} / \beta=$ $-1.5924 \pm 0.0055 \mathrm{mV} / \mathrm{cm}$, imply,

$$
\begin{equation*}
Q_{W}\left({ }_{78}^{133} \mathrm{Cs}\right)=-72.82 \pm 0.26_{\text {exp. }} \pm 0.33_{\mathrm{th}} \tag{10.34}
\end{equation*}
$$

or equivalently the constraint, $55 g_{A V}^{e p}+78 g_{A V}^{e n}=36.46 \pm 0.21$. Within the SM this can also be translated into a determination of the weak mixing angle, $\widehat{s}^{2}(2.4 \mathrm{MeV})=0.2367 \pm 0.0018$, where the scale setting follows the estimate in Ref. [183] for the typical momentum transfer for parity violation experiments in Cs (the corresponding estimate for Tl amounts to 8 MeV). By comparing different hyperfine transitions, the Boulder experiment in cesium also observed the parity violating weak corrections to the nuclear electromagnetic vertex, called the nuclear anapole moment [184186].

The theoretical atomic structure uncertainties are 3\% for thallium [187] and even larger for the other atoms. However, they mostly cancel if one takes ratios of parity violation in different isotopes [188]. The first result of this type of experiment was announced very recently by the Mainz group [189], who studied APV in ${ }^{100} \mathrm{Yb},{ }^{102} \mathrm{Yb},{ }^{104} \mathrm{Yb}$, and ${ }^{106} \mathrm{Yb}$, at the 0.5% level. The resulting three ratios can be interpreted as a measurement of $\widehat{s}_{0}^{2}=0.258 \pm 0.052$, and represent a very complementary approach to search for BSM physics [190]. If the precision increases in the future, one would ultimately face uncertainties from differences in the neutron charge radii $[191,192]$. These can be constrained experimentally [193], e.g., by measuring $A_{R L}$ in heavier nuclei as done by the PREX collaboration at Jefferson Lab on ${ }^{208} \mathrm{~Pb}$ [194].

10.4 Precision flavor physics

In addition to cross-sections, asymmetries, parity violation, W, Z, Higgs and other collider physics, there is a large number of experiments and observables testing the flavor structure of the SM. These are addressed elsewhere in this Review, and are generally not included in this Section. However, we identify three precision observables with sensitivity to similar types of new physics as the other processes discussed here. The branching fraction of the flavor changing transition $b \rightarrow s \gamma$ is of comparatively low precision, but since it is a loop-level process (in the SM) its sensitivity to new physics (and SM parameters, such as heavy quark masses) is enhanced. A discussion can be found in the 2010 edition of this Review.

The τ lepton lifetime and leptonic branching ratios are primarily sensitive to α_{s} and not affected significantly by many types of new physics. However, having an independent and reliable low energy measurement of α_{s} in a global analysis allows the comparison with the Z lineshape determination of α_{s} which shifts easily in the presence of new physics contributions. By far the most precise observable discussed here is the anomalous magnetic moment of the muon. Its combined experimental and theoretical uncertainty is smaller than typical electroweak scale contributions. The electron magnetic moment is measured to even greater precision, and as discussed in Sec. 10.2.2 can be used to determine α. Its new physics sensitivity, however, is suppressed by an additional factor of m_{e}^{2} / m_{μ}^{2}, unless there is a new light degree of freedom such as a dark Z [195] boson.

10.4.1 The τ lifetime

The extraction of α_{s} from the τ lifetime $\tau_{\tau}[196,197]$ is standing out from other determinations because of a variety of independent reasons:
(i) The τ-scale is low, so that upon extrapolation to the Z scale (where it can be compared to the theoretically clean Z lineshape determinations) the α_{s} error shrinks by about an order of magnitude.
(ii) Yet, this scale is high enough that perturbation theory and the operator product expansion (OPE) can be applied.
(iii) These observables are fully inclusive and thus free of fragmentation and hadronization effects that would have to be modeled or measured.
(iv) Duality violation (DV) effects are most problematic near the branch cut but there they are suppressed by a double zero at $s=m_{\tau}^{2}$.
(v) There are data $[39,41,198]$ to constrain non-perturbative effects both within and breaking the OPE.
(vi) A complete four-loop order QCD calculation is available [199-203] in the massless limit.
(vii) Large effects associated with the QCD β-function can be re-summed [204] in what has become known as contour improved perturbation theory (CIPT).

However, while CIPT certainly shows faster convergence in the lower (calculable) orders, doubts have been cast on the method by the observation that at least in a specific model [205], which includes the exactly known coefficients and theoretical constraints on the large-order behavior, ordinary fixed order perturbation theory (FOPT) may nevertheless give a better approximation to the
full result. We therefore use the expressions [53, 203, 206],

$$
\begin{equation*}
\tau_{\tau}=\hbar \frac{1-\mathcal{B}_{\tau}^{s}}{\Gamma_{\tau}^{e}+\Gamma_{\tau}^{\mu}+\Gamma_{\tau}^{u d}}=290.75 \pm 0.36 \mathrm{fs} \tag{10.35}
\end{equation*}
$$

and

$$
\begin{gather*}
\Gamma_{\tau}^{u d}= \\
\frac{G_{F}^{2} m_{\tau}^{5}\left|V_{u d}\right|^{2}}{64 \pi^{3}} S\left(m_{\tau}, M_{Z}\right)\left(1+\frac{3}{5} \frac{m_{\tau}^{2}-m_{\mu}^{2}}{M_{W}^{2}}\right) \times \\
{\left[1+\frac{\alpha_{s}\left(m_{\tau}\right)}{\pi}+5.202 \frac{\alpha_{s}^{2}}{\pi^{2}}+26.37 \frac{\alpha_{s}^{3}}{\pi^{3}}\right.} \tag{10.36}\\
\left.\quad+127.1 \frac{\alpha_{s}^{4}}{\pi^{4}}+\frac{\widehat{\alpha}}{\pi}\left(\frac{85}{24}-\frac{\pi^{2}}{2}\right)+\delta_{\mathrm{NP}}\right]
\end{gather*}
$$

where Γ_{τ}^{e} and Γ_{τ}^{μ} can be taken from Eq. (10.7) with obvious replacements. The relative fraction of strangeness changing $(\Delta S=-1)$ decays, $\mathcal{B}_{\tau}^{s}=0.0292 \pm 0.0004$, is based on experimental data since the value for the strange quark mass, $\widehat{m}_{s}\left(m_{\tau}\right)$, is not well known and the QCD expansion proportional to \widehat{m}_{s}^{2} converges poorly and cannot be trusted. $S\left(m_{\tau}, M_{Z}\right)=1.01907 \pm 0.0003$ is a logarithmically enhanced EW correction factor [207] with higher orders re-summed [208].
δ_{NP} collects non-perturbative and quark-mass suppressed contributions, including the dimension four, six and eight terms in the OPE, as well as DV effects. We use the average $\delta_{\mathrm{NP}}=0.0141 \pm$ 0.0072 derived from the τ decay spectral functions provided by OPAL [39] and ALEPH [41, 198], which give $\delta_{\mathrm{NP}}=0.000 \pm 0.012$ and $\delta_{\mathrm{NP}}=0.022 \pm 0.009$, respectively. These numbers are based on the original analyses in Refs. [209, 210], but are modified to correspond to a strict FOPT analysis as is appropriate for our purpose ${ }^{11}$ (for alternative analyses, see Refs. [197, 198, 211]).

The dominant uncertainty arises from the truncation of the FOPT series and is conservatively taken as the α_{s}^{4} term (this is re-calculated in each call of the fits, leading to an α_{s}-dependent and thus asymmetric error) until a better understanding of the numerical differences between FOPT and CIPT has been gained. Our perturbative error covers almost the entire range from using CIPT to assuming that the nearly geometric series in Eq. (10.36) continues to higher orders. The experimental uncertainty in Eq. (10.35) is from the combination of the two leptonic branching ratios with the direct τ_{τ}. Included are also various smaller uncertainties $(\pm 0.15 \mathrm{fs})$ from other sources. Based on the method of Refs. [53, 212], we obtain in total

$$
\begin{equation*}
\alpha_{s}^{(4)}\left(m_{\tau}\right)=0.312_{-0.013}^{+0.016}, \quad \alpha_{s}^{(5)}\left(M_{Z}\right)=0.1170_{-0.0017}^{+0.0019} \tag{10.37}
\end{equation*}
$$

which represents a 1.5% determination of $\alpha_{s}\left(M_{Z}\right)$. For more details, see Refs. [209,210] where the τ spectral functions themselves and an estimate of the unknown α_{s}^{5} term were used as additional inputs.

10.4.2 The muon anomalous magnetic moment

The world average of the muon anomalous magnetic moment ${ }^{12}$,

$$
\begin{equation*}
a_{\mu}^{\exp }=\frac{g_{\mu}-2}{2}=(1165920.91 \pm 0.63) \times 10^{-9} \tag{10.38}
\end{equation*}
$$

is dominated by the final result of the BNL E821 collaboration [213]. The QED contribution has been calculated to five loops [214-216] (fully analytic to three loops [217-221] and semianalytic to four loops [222]). The estimated SM EW contribution $[223-228], a_{\mu}^{\mathrm{EW}}=(1.54 \pm 0.01) \times 10^{-9}$, includes two-

[^20]loop [229-233] and leading three-loop [234, 235] corrections and is at the level of twice the current uncertainty.
The limiting factor in the interpretation of the result are the uncertainties from hadronic effects. The most recent evaluations of the leading-order (two-loop) hadronic vacuum polarization contribution obtained $a_{\mu}^{\text {had, } \mathrm{VP}}\left(\alpha^{2}\right)=(68.81 \pm 0.41) \times 10^{-9}[236]$, $a_{\mu}^{\mathrm{had}, \mathrm{VP}}\left(\alpha^{2}\right)=(69.39 \pm 0.40) \times 10^{-9}[29]$, and $a_{\mu}^{\mathrm{had}, \mathrm{VP}}\left(\alpha^{2}\right)=$ $(69.28 \pm 0.24) \times 10^{-9}[37]$. These are mainly based on data from $e^{+} e^{-} \rightarrow$ hadrons (see, e.g., Ref. [29] for references). Our analysis combines the $e^{+} e^{-}[29]$ and τ-decay data [30,31] for contributions up to $\sqrt{s}=2 \mathrm{GeV}, a_{\mu}^{\text {had, } \mathrm{VP}}\left(\alpha^{2}, 2 \mathrm{GeV}\right)=(64.49 \pm 0.33) \times 10^{-9}$, with analytical PQCD expressions for energies beyond 2 GeV and for the c and b quark contributions [221]. By now there are also precise results for the determination of $a_{\mu}^{\mathrm{had}, \mathrm{VP}}\left(\alpha^{2}\right)$ from lattice QCD calculations [237] at the $2-3 \%$ level [238-242], while the most recent one has a 0.6% quoted uncertainty [243] (for a comparative appraisal and further references, see Ref. [244]). The result of Ref. [243], $(71.24 \pm 0.45) \times 10^{-9}$, has a more than 3σ conflict with the data-driven evaluations, while there is very good statistical agreement among the different lattice results, assuming them to be uncorrelated ($\chi^{2} /$ d.o.f. $=5.1 / 5$). If confirmed, the recent lattice determinations for $a_{\mu}^{\text {had, VP }}\left(\alpha^{2}\right)$ may point to a problem with the data-driven approach to this quantity.
The other hadronic uncertainty is induced by the threeloop light-by-light scattering amplitude, where a number of independent model calculations yield results which are in reasonable agreement with each other, $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=(1.36 \pm$ $0.25) \times 10^{-9}[245], a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=1.37_{-0.27}^{+0.15} \times 10^{-9}$ [246], $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=(1.05 \pm 0.26) \times 10^{-9}[247]$, and $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=$ $(1.03 \pm 0.29) \times 10^{-9}$ [236], but the sign of this effect is opposite [248] to the one quoted in the 2002 edition of this Review. There is also an upper bound given by $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)<1.59 \times 10^{-9}$ [246] but this requires an ad hoc assumption, too. An effort to improve the evaluation of the light-by-light contribution by using experimental input where available yields a slightly lower value, $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=$ $(0.87 \pm 0.13) \times 10^{-9}$ [249]. A first complete result from lattice simulations, $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=(0.79 \pm 0.35) \times 10^{-9}$ [250], accounting for all systematic errors, is consistent with the model and datadriven calculations. For the fits, we take the result from Ref. [236], shifted by 2×10^{-11} to account for the more accurate charm quark treatment of Ref. [246], and with increased error to cover all recent evaluations, resulting in $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{3}\right)=(1.05 \pm 0.33) \times 10^{-9}$.
Sub-leading hadronic vacuum polarization effects at threeloop [251] and four-loop order [252] contribute $a_{\mu}^{\text {had, }, \mathrm{VP}}\left(\alpha^{3}\right)=$ $(-0.983 \pm 0.004) \times 10^{-9}[37]$ and $a_{\mu}^{\text {had, } \mathrm{VP}}\left(\alpha^{4}\right)=(0.124 \pm 0.001) \times$ 10^{-9} [252], respectively. The correlations with the two-loop hadronic contribution and with $\Delta \alpha\left(M_{Z}\right)$ (see Sec. 10.2) were considered in Ref. [221]. The contributions with a hadronic light-bylight scattering subgraph have been estimated in Ref. [253], with the result, $a_{\mu}^{\text {had, } \gamma \times \gamma}\left(\alpha^{4}\right)=(0.03 \pm 0.02) \times 10^{-9}$.
Altogether, the SM prediction is
\[

$$
\begin{equation*}
a_{\mu}^{\text {theory }}=(1165918.46 \pm 0.47) \times 10^{-9}, \tag{10.39}
\end{equation*}
$$

\]

where the error is from the hadronic uncertainties excluding parametric ones such as from α_{s} and the heavy quark masses. We evaluate the correlation of the total (experimental plus theoretical) uncertainty in a_{μ} with $\Delta \alpha\left(M_{Z}\right)$ to amount to roughly 30%. The overall 3.1σ discrepancy between $a_{\mu}^{\text {theory }}$ and $a_{\mu}^{\text {exp }}$ could be due to fluctuations (the E821 result is statistics dominated) or underestimates of the theoretical uncertainties. On the other hand, the deviation could also arise from physics beyond the SM, such as supersymmetric models with large $\tan \beta$ and moderately light superparticle masses [254], or a dark Z boson [195].

10.5 Physics of the massive electroweak bosons

If the CM energy \sqrt{s} is large compared to the fermion mass m_{f}, the unpolarized Born cross-section for $e^{+} e^{-} \rightarrow f \bar{f}[255]$ can
be written as,

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}(s)}{2 s}\left[F_{1}\left(1+\cos ^{2} \theta\right)+2 F_{2} \cos \theta\right]+B \tag{10.40a}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}=Q_{e}^{2} Q_{f}^{2}-2 \chi Q_{e} Q_{f} \bar{g}_{V}^{e} \bar{g}_{V}^{f} \cos \delta_{R}+\chi^{2}\left(\bar{g}_{V}^{e 2}+\bar{g}_{A}^{e 2}\right)\left(\bar{g}_{V}^{f 2}+\bar{g}_{A}^{f 2}\right), \tag{10.40b}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}=-2 \chi Q_{e} Q_{f} \bar{g}_{A}^{e} \bar{g}_{A}^{f} \cos \delta_{R}+4 \chi^{2} \bar{g}_{V}^{e} \bar{g}_{A}^{e} \bar{g}_{V}^{f} \bar{g}_{A}^{f}, \tag{10.40c}
\end{equation*}
$$

where,
$\tan \delta_{R}=\frac{\bar{M}_{Z} \bar{\Gamma}_{Z}}{\bar{M}_{Z}^{2}-s}, \quad \chi=\frac{G_{F}}{2 \sqrt{2} \pi \alpha(s)} \frac{s \bar{M}_{Z}^{2}}{\left[\left(\bar{M}_{Z}^{2}-s\right)^{2}+\bar{M}_{Z}^{2} \bar{\Gamma}_{Z}^{2}\right]^{1 / 2}}$ (10.41)
B accounts for box graphs involving virtual Z and W bosons, and the $\bar{g}_{V, A}^{f}$ are defined in Eq. (10.42) below. \bar{M}_{Z} and $\bar{\Gamma}_{Z}$ correspond to mass and width definitions based on a Breit-Wigner shape with an energy-independent width (see the Section on the " Z Boson" in this Review). The differential cross-section receives important corrections from QED effects in the initial and final state, and interference between the two [256]. For $q \bar{q}$ production, there are additional final-state QCD corrections, which are relatively large. Note also that the equations above are written in the CM frame of the incident $e^{+} e^{-}$system, which may be boosted due to the initial-state QED radiation.

Some of the leading virtual EW corrections are captured by the running QED coupling $\alpha(s)$ and the Fermi constant G_{F}. The remaining corrections to the $Z f \bar{f}$ interactions are absorbed by replacing the tree-level couplings in Eq. (10.6) with the s-dependent effective couplings [14],

$$
\begin{align*}
\bar{g}_{V}^{f} & =\sqrt{\rho_{f}}\left(t_{3 L}^{f}-2 Q_{f} \kappa_{f} \sin ^{2} \theta_{W}\right) \tag{10.42a}\\
\bar{g}_{A}^{f} & =\sqrt{\rho_{f}} t_{3 L}^{f} \tag{10.42b}
\end{align*}
$$

In these equations, the effective couplings are to be taken at the scale \sqrt{s}, but for notational simplicity we do not show this explicitly. At tree-level, $\rho_{f}=\kappa_{f}=1$, but inclusion of EW radiative corrections leads to $\rho_{f} \neq 1$ and $\kappa_{f} \neq 1$, which depend on the fermion f and on the renormalization scheme. In the on-shell scheme, the quadratic m_{t} dependence is given by,

$$
\rho_{f} \sim 1+\rho_{t}, \quad \quad \kappa_{f} \sim 1+\frac{\rho_{t}}{\tan ^{2} \theta_{W}}
$$

while in $\overline{\mathrm{MS}}, \widehat{\rho}_{f} \sim \widehat{\kappa}_{f} \sim 1$, for $f \neq b$, and

$$
\begin{equation*}
\widehat{\rho}_{b} \sim 1-\frac{4}{3} \rho_{t}, \quad \widehat{\kappa}_{b} \sim 1+\frac{2}{3} \rho_{t} \tag{10.44}
\end{equation*}
$$

In the $\overline{\mathrm{MS}}$ scheme the normalization is changed according to $G_{F} M_{Z}^{2} / 2 \sqrt{2} \pi \rightarrow \widehat{\alpha} / 4 \widehat{s}_{Z}^{2} \widehat{c}_{Z}^{2}$ in the second Eq. (10.41).

As reviewed in Sec. 10.2.5, for the high precision Z pole observables discussed below, many additional bosonic and fermionic loop effects, vertex corrections, and higher order contributions, etc., must be included. For example, in the $\overline{\mathrm{MS}}$ scheme one then has $\widehat{\rho}_{\ell}=0.9977, \widehat{\kappa}_{\ell}=1.0014, \widehat{\rho}_{b}=0.9866$, and $\widehat{\kappa}_{b}=1.0068$.

To connect to measured quantities, it is convenient to define an effective angle

$$
\begin{equation*}
\bar{s}_{f}^{2} \equiv \sin ^{2} \bar{\theta}_{W f} \equiv \widehat{\kappa}_{f} \widehat{s}_{Z}^{2}=\kappa_{f} s_{W}^{2}, \tag{10.45}
\end{equation*}
$$

in terms of which \bar{g}_{V}^{f} and \bar{g}_{A}^{f} are given by $\sqrt{\rho_{f}}$ times their treelevel formulae. One finds that the $\widehat{\kappa}_{f}(f \neq b)$ are almost independent of m_{t} and M_{H}, and thus one can write,

$$
\begin{equation*}
\bar{s}_{\ell}^{2}=\widehat{s}_{Z}^{2}+0.00032 \tag{10.46}
\end{equation*}
$$

while the κ_{f} for the on-shell scheme are m_{t} dependent.

10.5.1 Electroweak physics off the Z pole

Experiments at PEP, PETRA and TRISTAN have measured the unpolarized forward-backward asymmetry, $A_{F B}$, and the total cross-section relative to pure QED, R, for $e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}, \ell=\mu$ or τ at CM energies $\sqrt{s}<M_{Z}$. They are defined as

$$
\begin{equation*}
A_{F B} \equiv \frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}} \tag{10.47}
\end{equation*}
$$

$$
R=\frac{\sigma}{\mathcal{R}_{\mathrm{ini}} \otimes 4 \pi \alpha^{2} / 3 s}
$$

where $\sigma_{F}\left(\sigma_{B}\right)$ is the cross-section for ℓ^{-}to travel forward (backward) with respect to the e^{-}direction, and $\mathcal{R}_{\text {ini }} \otimes$ denotes convolution with initial-state QED corrections. Neglecting box graph contributions, they are given by,

$$
\begin{equation*}
A_{F B}=\frac{3}{4} \frac{F_{2}}{F_{1}}, \quad \quad R=F_{1} \tag{10.48}
\end{equation*}
$$

For the available data, it is sufficient to approximate the EW corrections through the leading running $\alpha(s)$ and quadratic m_{t} contributions [257], as described above. Reviews and formulae for $e^{+} e^{-} \rightarrow$ hadrons may be found in [9, 258, 259].

LEP 2 [260] ran at several energies above the Z pole up to $\sim 209 \mathrm{GeV}$. Measurements were made of a number of observables, including the total production cross-sections of $f \bar{f}$ pairs for $f=$ μ, τ, and q (hadrons), of four-fermion final states, of $\gamma \gamma, Z Z, W W$, $W W \gamma$, and $W W Z$, as well as of single resonant W and Z bosons. The differential cross-sections for all three lepton flavors, and the leptonic and hadronic W branching ratios were also extracted.

Among the most important LEP 2 results were the measurements [260] of the W boson mass,

$$
\begin{equation*}
M_{W}=80.376 \pm 0.025_{\text {stat. }} \pm 0.022_{\text {syst. }} \text { GeV (LEP 2) } \tag{10.49}
\end{equation*}
$$

which were dominated by kinematic reconstruction, but included the complementary albeit statistics limited and thus much less precise determination from a $W W$ threshold cross section scan. The kinematic method was also employed at the Tevatron [261] and by ATLAS [263]. They quote,

$$
\begin{align*}
& M_{W}=80.387 \pm 0.016 \mathrm{GeV} \text { (Tevatron) }, \tag{10.50a}\\
& M_{W}=80.3695 \pm 0.0068_{\text {stat. }} \pm 0.0106_{\text {syst }} \text {. } \\
& \pm 0.0136_{\text {th. }} \text { GeV (ATLAS) } . \tag{10.50b}
\end{align*}
$$

We assume an error component of 7 MeV to be common between the two hadron collider determinations. This is smaller than the 10 MeV PDF uncertainty quoted by CDF, because the larger CM energy at the LHC enhances the sensitivity to second generation quark PDFs, in addition to the greater sea quark PDF dependence of the Drell-Yan process in the $p p$ environment. There may also be some correlation due to other production modeling uncertainties. This implies for the average,

$$
\begin{equation*}
M_{W}=80.379 \pm 0.012 \mathrm{GeV} \text { (world average) } \tag{10.51}
\end{equation*}
$$

For details and references, see the Section on the "Mass and Width of the W Boson" in this Review.

Strong constraints on anomalous triple and quartic gauge couplings have been obtained at LEP 2, the Tevatron, and the LHC. These are described in detail in the three Sections on the "Extraction of Triple Gauge Couplings (TGCs)", "Anomalous W / Z Quartic Couplings (QGCs)", and "Anomalous $Z Z \gamma, Z \gamma \gamma$, and ZZV Couplings" in this Review.

After their discovery of the Higgs boson [264, 265], the LHC experiments are now performing high precision measurements of its mass. We average the results, $M_{H}=124.97 \pm 0.16_{\text {stat. }} \pm$ 0.18 syst. GeV from ATLAS [266], and $M_{H}=125.38 \pm 0.11_{\text {stat. }} \pm$ $0.09_{\text {syst. }} \mathrm{GeV}$ from CMS [267], by conservatively treating the smaller systematic error as common among the two determinations, and arrive at,

$$
\begin{equation*}
M_{H}=125.30 \pm 0.09_{\text {stat. }} \pm 0.09_{\text {syst. }} \mathrm{GeV}(\mathrm{LHC}) \tag{10.52}
\end{equation*}
$$

For further references and many more details on Higgs boson properties, see the Section on the "Status of Higgs Boson Physics" in this Review. The principal non- Z pole observables discussed here and in Sections 10.2-10.4 are summarized in Table 10.4.

10.5.2 Z pole physics

High precision measurements of various Z pole $\left(\sqrt{s} \approx M_{Z}\right)$ observables $[9,276,277]$ have been performed at LEP 1 and SLC [14, 273, 274, 278, 279], as summarized in Table 10.5. These include the Z mass and total width, Γ_{Z}, and partial widths $\Gamma_{f \bar{f}}$ for $Z \rightarrow f \bar{f}$, where $f=e, \mu, \tau$, light hadrons, b, and c. It is convenient to use the variables M_{Z}, Γ_{Z},
$\sigma_{\mathrm{had}} \equiv \frac{12 \pi \Gamma_{e^{+} e^{-}} \Gamma_{\mathrm{had}}}{M_{Z}^{2} \Gamma_{Z}^{2}}, \quad \quad R_{\ell} \equiv \frac{\Gamma_{\mathrm{had}}}{\Gamma_{\ell^{+} \ell^{-}}}, \quad R_{q} \equiv \frac{\Gamma_{q \bar{q}}}{\Gamma_{\mathrm{had}}}$, (10.53)
for $\ell=e, \mu$ or τ, and $q=b$ or c, where $\Gamma_{\text {had }}$ is the partial width into hadrons. Most of these are weakly correlated experimentally. The three values for R_{ℓ} are consistent with lepton universality (although R_{τ} is somewhat low compared to R_{e} and R_{μ}), but we use the general analysis in which the three observables are treated as independent. Similar remarks apply to $A_{F B}^{0, \ell}$ defined through Eq. (10.54) with $P_{e}=0$, where $A_{F B}^{0, \tau}$ is somewhat high. Initial-state radiation reduces the peak cross section by more than 25%, where $\mathcal{O}\left(\alpha^{3}\right)$ QED effects induce a large anti-correlation (-30%) between Γ_{Z} and $\sigma_{\text {had }}$. The anti-correlation between R_{b} and R_{c} amounts to -18% [14]. The R_{ℓ} are insensitive to m_{t} except for the $Z \rightarrow b \bar{b}$ vertex, final-state corrections, and the implicit dependence through $\sin ^{2} \theta_{W}$. Thus, they are especially useful for constraining α_{s}.

Very important constraints follow from measurements of various Z pole asymmetries. These include the forward-backward asymmetry, $A_{F B}$, and the polarization or left-right asymmetry, $A_{L R}$, defined analogously to Eq. (10.27). The latter was measured precisely by the SLD collaboration at the SLC [273], and has the advantages of being very sensitive to \bar{s}_{ℓ}^{2} and that systematic uncertainties largely cancel. After removing initial-state QED corrections and contributions from photon exchange, $\gamma-Z$ interference, as well as the EW boxes in Eq. (10.40a), one can use the effective tree-level expressions,

$$
\begin{equation*}
A_{L R}=A_{e} P_{e}, \quad \quad A_{F B}=\frac{3}{4} A_{f} \frac{A_{e}+P_{e}}{1+P_{e} A_{e}} \tag{10.54}
\end{equation*}
$$

where,

$$
\begin{equation*}
A_{f} \equiv \frac{2 \bar{g}_{V}^{f} \bar{g}_{A}^{f}}{\bar{g}_{V}^{f 2}+\bar{g}_{A}^{f 2}}=\frac{1-4\left|Q_{f}\right| \bar{s}_{f}^{2}}{1-4\left|Q_{f}\right| \bar{s}_{f}^{2}+8\left(\left|Q_{f}\right| \bar{s}_{f}^{2}\right)^{2}} \tag{10.55}
\end{equation*}
$$

P_{e} is the initial e^{-}polarization, so that the second equality in Eq. (10.56) is reproduced for $P_{e}=1$, and the Z pole forward-backward asymmetries at LEP $1\left(P_{e}=0\right)$ are given by $A_{F B}^{(0, f)}=\frac{3}{4} A_{e} A_{f}$ for $f=e, \mu, \tau, b, c, s$ [14], and q, and where $A_{F B}^{(0, q)}$ refers to the hadronic charge asymmetry. Corrections for t-channel exchange and s / t-channel interference cause $A_{F B}^{(0, e)}$ to be strongly anti-correlated with $R_{e}(-37 \%)$. Very recently, the m_{b}-dependence [280] of the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ QCD correction [281], affecting the reference axis of the b quark asymmetry [282], increased the extracted ${ }^{13} A_{F B}^{(0, b)}$ by about 0.2σ. The correlation between $A_{F B}^{(0, b)}$ and $A_{F B}^{(0, c)}$ amounts to 15%.

In addition, SLD extracted the final-state couplings A_{b}, A_{c} [14], $A_{s}[278], A_{\tau}$, and A_{μ} [274], from left-right forward-backward asymmetries, using

$$
\begin{equation*}
A_{L R}^{F B}(f)=\frac{\sigma_{L F}^{f}-\sigma_{L B}^{f}-\sigma_{R F}^{f}+\sigma_{R B}^{f}}{\sigma_{L F}^{f}+\sigma_{L B}^{f}+\sigma_{R F}^{f}+\sigma_{R B}^{f}}=\frac{3}{4} A_{f} \tag{10.56}
\end{equation*}
$$

where, for example, $\sigma_{L F}^{f}$ is the cross-section for a left-handed incident electron to produce a fermion f traveling in the forward hemisphere. Similarly, A_{τ} and A_{e} were measured at LEP 1 [14] through the τ polarization, \mathcal{P}_{τ}, as a function of the scattering

[^21]Table 10.4: Non- Z pole observables, compared with the $S M$ best fit predictions. The first M_{W} and Γ_{W} values are from the Tevatron [261,262], the second ones from LEP 2 [260], while the third M_{W} is from ATLAS [263]. The entry of m_{t} differs from the one in the Particle Listings as it includes an additional theory error. The world averages for $g_{V, A}^{\nu e}$ are dominated by the CHARM II [122] results, $g_{V}^{\nu e}=-0.035 \pm 0.017$ and $g_{A}^{\nu e}=-0.503 \pm 0.017$. The τ_{τ} value is the τ lifetime world average computed by combining the direct measurements with values derived from the leptonic branching ratios [53]; in this case, the theory error is included in the SM prediction. In all other SM predictions, the uncertainty is parametric from $M_{Z}, M_{H}, m_{t}, m_{b}, m_{c}, \widehat{\alpha}\left(M_{Z}\right)$, and α_{s}, and theoretical from unknown higher orders [69], where correlations due to both types have been accounted for. The column denoted by Pull gives the standard deviations.

Quantity	Value	Standard Model	Pull
$m_{t}[\mathrm{GeV}]$	172.89 ± 0.59	173.19 ± 0.55	-0.5
$M_{H}[\mathrm{GeV}]$	125.30 ± 0.13	125.30 ± 0.13	0.0
$M_{W}[\mathrm{GeV}]$	80.387 ± 0.016	80.361 ± 0.006	1.6
	80.376 ± 0.033		0.5
	80.370 ± 0.019		0.5
$\Gamma_{W}[\mathrm{GeV}]$	2.046 ± 0.049	2.090 ± 0.001	-0.9
	2.195 ± 0.083		1.3
$g_{V}^{\nu e}$	-0.040 ± 0.015	-0.0398 ± 0.0001	0.0
$g_{A}^{\nu e}$	-0.507 ± 0.014	-0.5064	0.0
$Q_{W}(e)$	-0.0403 ± 0.0053	-0.0476 ± 0.0002	1.4
$Q_{W}(p)$	0.0719 ± 0.0045	0.0711 ± 0.0002	0.2
$Q_{W}(\mathrm{Cs})$	-72.82 ± 0.42	-73.23 ± 0.01	1.0
$Q_{W}(\mathrm{Tl})$	-116.4 ± 3.6	-116.88 ± 0.02	0.1
$\widehat{s}_{Z}^{2}(\mathrm{eDIS})$	0.2299 ± 0.0043	0.23121 ± 0.00004	-0.3
$\tau_{\tau}[\mathrm{fs}]$	290.75 ± 0.36	288.90 ± 2.24	0.8
$\frac{1}{2}\left(g_{\mu}-2-\frac{\alpha}{\pi}\right)$	$(4511.18 \pm 0.78) \times 10^{-9}$	$(4508.74 \pm 0.03) \times 10^{-9}$	3.1

angle θ, which can be written as,

$$
\begin{equation*}
\mathcal{P}_{\tau}=-\frac{A_{\tau}\left(1+\cos ^{2} \theta\right)+2 A_{e} \cos \theta}{\left(1+\cos ^{2} \theta\right)+2 A_{\tau} A_{e} \cos \theta} \tag{10.57}
\end{equation*}
$$

The average polarization, $\left\langle\mathcal{P}_{\tau}\right\rangle$, obtained by integrating over $\cos \theta$ in the numerator and denominator of Eq. (10.57), yields $\left\langle\mathcal{P}_{\tau}\right\rangle=-A_{\tau}$, and A_{e} can be extracted from the \mathcal{P}_{τ} angular distribution. The initial-state coupling, A_{e}, was also determined through the left-right charge asymmetry [279] and in polarized Bhabba scattering [274] at the SLC. Because \bar{g}_{V}^{ℓ} is very small, not only $A_{L R}^{0}=A_{e}, A_{F B}^{(0, \ell)}$, and \mathcal{P}_{τ}, but also $A_{F B}^{(0, q)}$ for $q=b, c$, and s, as well as the hadronic asymmetries are mainly sensitive to \bar{s}_{ℓ}^{2}.

As an example of the precision of the Z pole observables, the values of \bar{g}_{A}^{f} and \bar{g}_{V}^{f} for $f=e, \mu, \tau$, and ℓ, extracted from the LEP and SLC lineshape and asymmetry data, are shown in Fig. 10.3. It may be compared with Fig. 10.1 as the two sets of parameters coincide at the SM at tree-level

As for hadron colliders, the forward-backward asymmetry, $A_{F B}$, for $e^{+} e^{-}$and $\mu^{+} \mu^{-}$final states (with invariant masses restricted to or dominated by values around M_{Z}) in $p \bar{p}$ collisions has been measured by the CDF [283] and DØ [284] collaborations, and the values $\bar{s}_{\ell}^{2}=0.23221 \pm 0.00046$ and $\bar{s}_{\ell}^{2}=0.23095 \pm 0.00040$ were extracted, respectively. The combination of these measurements (which differ by more than 2σ) yields [268],

$$
\begin{equation*}
\bar{s}_{\ell}^{2}=0.23148 \pm 0.00033 \text { (Tevatron) } \tag{10.58}
\end{equation*}
$$

By varying the invariant mass and the scattering angle (and assuming the electron couplings), information on the effective Z couplings to light quarks, $\bar{g}_{V, A}^{u, d}$, could also be obtained [285, 286], but with large uncertainties, mutual correlations, and not independently of \bar{s}_{ℓ}^{2} above. Similar analyses have also been reported by the H1 [287] and ZEUS [288] collaborations at HERA and by the LEP collaborations [14]. This kind of measurement is harder in the $p p$ environment due to the difficulty to assign the initial quark and antiquark in the underlying Drell-Yan process to the protons, thus requiring excellent control of uncertainties from parton distribution functions. ATLAS obtained $\bar{s}_{\ell}^{2}=0.2308 \pm 0.0012$ using 7 TeV data [269] and $\bar{s}_{\ell}^{2}=0.23140 \pm 0.00036$ at 8 TeV [270],

Figure 10.3: $1 \sigma(39.35 \% \mathrm{CL})$ contours of the effective couplings \bar{g}_{A}^{f} and \bar{g}_{V}^{f} for $f=e, \mu$ and τ from LEP and SLC, compared to the SM expectation as a function of \widehat{s}_{Z}^{2}. (The SM best fit value $\widehat{s}_{Z}^{2}=0.23121$ is also indicated.) Also shown is the 90% CL allowed region in $\bar{g}_{A, V}^{\ell}$ obtained assuming lepton universality.
while CMS measured $\bar{s}_{\ell}^{2}=0.23101 \pm 0.00053(8 \mathrm{TeV})$ [271] and LHCb reported $\bar{s}_{\ell}^{2}=0.23142 \pm 0.00106$ (from both 7 and 8 TeV data, but only analyzing $\mu^{+} \mu^{-}$final state) [272]. Assuming that the smallest theoretical and PDF uncertainty (± 0.00024 from ATLAS [270]) is fully correlated among the four determinations, they combine to

$$
\begin{equation*}
\bar{s}_{\ell}^{2}=0.23129 \pm 0.00033(\mathrm{LHC}) \tag{10.59}
\end{equation*}
$$

10.5.3 W and Z decays

The partial decay widths for gauge bosons to decay into massless fermions $f_{1} \bar{f}_{2}$ (the numerical values include the small EW

Table 10.5: Principal Z pole observables and their SM predictions ($c f$. Table 10.4). The first \bar{s}_{ℓ}^{2} is the effective weak mixing angle extracted from the hadronic charge asymmetry at LEP 1 [14], the second is the combined value from the Tevatron [268], and the third is from the LHC [269-272]. The values of A_{e} are (i) from $A_{L R}$ for hadronic final states [273]; (ii) from $A_{L R}$ for leptonic final states and from polarized Bhabba scattering [274]; and (iii) from the angular distribution of the τ polarization at LEP 1 [14]. The A_{τ} values are from SLD [274] and the total τ polarization, respectively. Note that the SM errors in Γ_{Z}, the R_{ℓ}, and $\sigma_{\text {had }}$ are largely dominated by the uncertainty in α_{s}.

Quantity	Value	Standard Model	Pull
$M_{Z}[\mathrm{GeV}]$	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
$\Gamma_{Z}[\mathrm{GeV}]$	2.4955 ± 0.0023	2.4942 ± 0.0009	0.6
$\sigma_{\text {had }}$ [nb]	41.481 ± 0.033	41.482 ± 0.008	0.0
R_{e}	20.804 ± 0.050	20.736 ± 0.010	1.4
R_{μ}	20.784 ± 0.034	20.735 ± 0.010	1.4
R_{τ}	20.764 ± 0.045	20.781 ± 0.010	-0.4
R_{b}	0.21629 ± 0.00066	0.21581 ± 0.00002	0.7
R_{c}	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{F B}^{(0, e)}$	0.0145 ± 0.0025	0.01619 ± 0.00007	-0.7
$A_{F B}^{(0, \mu)}$	0.0169 ± 0.0013		0.5
$A_{F B}^{(0, \tau)}$	0.0188 ± 0.0017		1.5
$A_{F B}^{(0, b)}$	0.0996 ± 0.0016	0.1030 ± 0.0002	-2.1
$A_{F B}^{(0, c)}$	0.0707 ± 0.0035	0.0736 ± 0.0002	-0.8
$A_{F B}^{(0, s)}$	0.0976 ± 0.0114	0.1031 ± 0.0002	-0.5
\bar{s}_{ℓ}^{2}	0.2324 ± 0.0012	0.23153 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
	0.23129 ± 0.00033		-0.7
A_{e}	0.15138 ± 0.00216	0.1469 ± 0.0003	2.1
	0.1544 ± 0.0060		1.2
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
A_{τ}	0.136 ± 0.015		-0.7
	0.1439 ± 0.0043		-0.7
A_{b}	0.923 ± 0.020	0.9347	-0.6
A_{c}	0.670 ± 0.027	0.6677 ± 0.0001	0.1
A_{s}	0.895 ± 0.091	0.9356	-0.4

Table 10.6: Results derived from Table 10.5 and the corresponding covariance matrices [14, 275], and the SM predictions for the partial and total Z decay widths [in MeV]. In the (second) third column lepton universality is (not) assumed.

Quantity	Value	Value (universal)	Standard Model
$\Gamma_{e^{+} e^{-}}$	83.87 ± 0.12	83.942 ± 0.085	83.964 ± 0.009
$\Gamma_{\mu}+\mu^{-}$	83.95 ± 0.18	83.941 ± 0.085	83.963 ± 0.009
$\Gamma_{\tau^{+} \tau^{-}}$	84.03 ± 0.21	83.759 ± 0.085	83.780 ± 0.009
$\Gamma_{\text {inv }}$	498.9 ± 2.5	500.5	± 1.5
$\Gamma_{u \bar{u}}$	-	-	501.464 ± 0.047
$\Gamma_{c \bar{c}}$	300.3 ± 5.3	300.0	± 5.2
$\Gamma_{d \bar{d}}, \Gamma_{s \bar{s}}$	-	-	299.91 ± 0.20
$\Gamma_{b \bar{b}}$	377.4	± 1.3	377.0
$\Gamma_{\text {had }}$	1744.8	± 2.6	1743.2
Γ_{Z}	2495.5	± 2.3	2495.5

radiative corrections and final-state mass effects) are given by,

$$
\begin{align*}
\Gamma\left(W^{+} \rightarrow e^{+} \nu_{e}\right) & =\frac{M_{W}^{3}}{12 \pi v^{2}}=226.35 \pm 0.05 \mathrm{MeV} \tag{10.60a}\\
\Gamma\left(W^{+} \rightarrow u_{i} \bar{d}_{j}\right) & =\frac{M_{W}^{3}}{12 \pi v^{2}}\left|V_{i j}\right|^{2} \mathcal{R}_{V}^{q}=(705.4 \pm 0.4 \mathrm{MeV})\left|V_{i j}\right|^{2} \tag{10.60b}
\end{align*}
$$

$$
\begin{equation*}
\Gamma(Z \rightarrow f \bar{f})=\frac{M_{Z}^{3}}{12 \pi v^{2}}\left[\mathcal{R}_{V}^{f} \bar{g}_{V}^{f 2}+\mathcal{R}_{A}^{f} \bar{g}_{A}^{f 2}\right] \tag{10.60c}
\end{equation*}
$$

where the result for the latter are shown in Table 10.6. Final-state QED and QCD corrections [289] to the vector and axial-vector form factors are given by,

$$
\mathcal{R}_{V, A}^{f}=N_{C}\left[1+\frac{3}{4}\left(Q_{f}^{2} \frac{\alpha(s)}{\pi}+\frac{N_{C}^{2}-1}{2 N_{C}} \frac{\alpha_{s}(s)}{\pi}\right)+\cdots\right]_{(10 .}
$$

where $N_{C}=3(1)$ is the color factor for quarks (leptons) and the dots indicate finite fermion mass effects proportional to m_{f}^{2} / s which are different for \mathcal{R}_{V}^{f} and \mathcal{R}_{A}^{f}, as well as higher-order QCD corrections [290], which are known to $\mathcal{O}\left(\alpha_{s}^{4}\right)$ [203]. These include
singlet contributions starting from two-loop order which are large, strongly top quark mass dependent, family universal, and flavor non-universal [291-295]. The $\mathcal{O}\left(\alpha^{2}\right)$ self-energy corrections from Ref. [296] are also taken into account.

For the W decay into quarks, Eq. (10.60b), only the universal massless part (non-singlet and $m_{q}=0$) of the final-state QCD radiator function in \mathcal{R}_{V} from Eq. (10.61) is used, and the QED corrections are modified. Expressing the widths in terms of $G_{F} M_{W, Z}^{3}$ incorporates the largest radiative corrections from the running QED coupling. EW corrections to the Z widths are then taken into account through the effective couplings $\bar{g}_{V, A}^{i 2}$. Hence, in the on-shell scheme the Z widths are proportional to $\rho_{i} \sim 1+\rho_{t}$. There is additional (negative) quadratic m_{t} dependence in the $Z \rightarrow b \bar{b}$ vertex corrections [297,298] which causes $\Gamma_{b \bar{b}}$ to decrease with m_{t}. The dominant effect is to multiply $\Gamma_{b \bar{b}}$ by the vertex correction $1+\delta \rho_{b \bar{b}}$, where $\delta \rho_{b \bar{b}} \sim 10^{-2}\left(-\frac{1}{2} m_{t}^{2} / M_{Z}^{2}+\frac{1}{5}\right)$. In practice, the corrections are included in $\widehat{\rho}_{b}$ and $\widehat{\kappa}_{b}$, as discussed in Sec. 10.5.

Starting at $\mathcal{O}\left(\alpha \alpha_{s}\right)$, the factorized form indicated in Eq. (10.60) is violated and corrections need to be included [299-301]. They add coherently, resulting in a sizable effect, and shift $\alpha_{s}\left(M_{Z}\right)$ when extracted from Z lineshape observables by about +0.0007 . Similar non-factorizable corrections are also known for mixed QED-EW corrections [97, 98, 100, 302].

For three fermion families the total widths of the Z [303-307] and $W[308,309]$ bosons are predicted to be,
$\Gamma_{Z}=2.4942 \pm 0.0009 \mathrm{GeV}$,
$\Gamma_{W}=2.0896 \pm 0.0008 \mathrm{GeV}$
(10.62)

The uncertainties in these predictions are almost entirely induced by the parametric error in $\alpha_{s}\left(M_{Z}\right)=0.1185 \pm 0.0016$ from the global fit. These predictions can be compared with the experimental results, $\Gamma_{Z}=2.4955 \pm 0.0023 \mathrm{GeV}[14,275]$ and $\Gamma_{W}=2.085 \pm 0.042 \mathrm{GeV}[260,262]$ (see the Gauge \& Higgs Bosons Particle Listings). The measurements of the total and partical widths are generally in good agreement with the SM. The exception is the branching ratio $W \rightarrow \tau+\nu_{\tau}$ from LEP 2, which is 2.6σ larger than the electron-muon average [260].

The invisible decay width, $\Gamma_{\text {inv }}=\Gamma_{Z}-\Gamma_{e^{+} e^{-}}-\Gamma_{\mu^{+} \mu^{-}}-$ $\Gamma_{\tau^{+} \tau^{-}}-\Gamma_{\text {had }}$, can be used to determine the number of neutrino flavors, N_{ν}, much lighter than $M_{Z} / 2$. The hadronic peak cross section, and therefore the extracted $\Gamma_{\text {had }}$, depends strongly on the knowledge of the LEP 1 luminosity derived from smallangle Bhabha scattering. However, the prediction for the Bhabha cross-section was very recently found to be overestimated, and consequently the luminosity underestimated [275]. The updated analysis involved an improved Z lineshape fit, significantly reducing $\sigma_{\text {had }}$, while slightly increasing Γ_{Z}, with the result, $N_{\nu}=$ 2.9963 ± 0.0074 [275]. In practice, we determine N_{ν} by allowing it as an additional fit parameter and obtain,

$$
\begin{equation*}
N_{\nu}=3.0026 \pm 0.0061 \tag{10.63}
\end{equation*}
$$

which is now in perfect agreement with the observed number of fermion generations and $N_{\nu}=3$ (a 1.3σ deviation was observed in the 2018 edition of this Review before including the correction in the luminosity determination).

10.6 Global fit results

In this section, we present the results of global fits, subject to the experimental data and theoretical constraints discussed in Section 10.2-10.4. For earlier analyses, see Refs. [14, 69, 310-313] and previous editions of this Review. The values for $m_{t}, M_{W}[260$, 261, 263], $\Gamma_{W}[260,262]$, the weak charges of the electron [148], the proton [149], cesium [160, 161] and thallium [162, 163], the weak mixing angle extracted from eDIS [138], $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$-e scattering [120-122], the τ lifetime, and the μ anomalous magnetic moment [213] are listed in Table 10.4. Likewise, Table 10.5 summarizes the principal Z pole observables, where the LEP 1 averages of the ALEPH, DELPHI, L3, and OPAL results include common systematic uncertainties and correlations [14,275]. The heavy flavor results [14, 280] of LEP 1 and SLD are based on common inputs, and are thus correlated, as well.

Also shown in both tables are the SM predictions for the values of $M_{Z}, M_{H}, \alpha_{s}\left(M_{Z}\right), \Delta \alpha_{\text {had }}^{(3)}$ and the heavy quark masses shown in Table 10.7. The predictions result from a global least-square $\left(\chi^{2}\right)$ fit to all data using the minimization package MINUIT [314] and the EW library GAPP [32]. In most cases, we treat all input errors (the uncertainties of the values) as Gaussian. The reason is not that we assume that theoretical and systematic errors are intrinsically bell-shaped (which they are not) but because in most cases the input errors are either dominated by the statistical components or they are combinations of many different (including statistical) error sources, which should yield approximately Gaussian combined errors by the large number theorem. An exception is the theory dominated error on the τ lifetime, which we recalculate in each χ^{2}-function call since it depends itself on α_{s}. Sizes and shapes of the output errors (the uncertainties of the predictions and the SM fit parameters) are fully determined by the fit, and 1σ errors are defined to correspond to $\Delta \chi^{2}=\chi^{2}-\chi_{\min }^{2}=1$, and do not necessarily correspond to the 68.3% probability range or the 39.3% probability contour (for 2 parameters).

The agreement is generally very good. Despite the few discrepancies addressed in the following, the global electroweak fit describes the data very well, with an excellent $\chi^{2} /$ d.o.f. $=40.8 / 41$. The probability of a larger χ^{2} is 48%, and only $g_{\mu}-2$ is currently showing a larger (3.1σ) conflict. In addition, $A_{L R}^{0}$ (SLD) from hadronic final states and $A_{F B}^{(0, b)}$ (LEP 1) deviate at the 2σ level. g_{L}^{2} from NuTeV is nominally in conflict with the SM, as well, but the precise status is unresolved (see Sec. 10.3.1). We also emphasize that there are a number of discrepancies among individual measurements of certain quantities, as discussed in previous sections, but that they are not reflected in the overall χ^{2} of the fit as only the corresponding combinations are used as constraints.
A_{b} can be extracted from $A_{F B}^{(0, b)}$ when $A_{e}=0.1501 \pm 0.0016$ is taken from a fit to leptonic asymmetries (using lepton universality). The result, $A_{b}=0.885 \pm 0.017$, is 2.9σ below the SM prediction ${ }^{14}$ and also 1.4σ below $A_{b}=0.923 \pm 0.020$ obtained from $A_{L R}^{F B}(b)$ at SLD. Thus, it appears that at least some of the problem in A_{b} is due to a statistical fluctuation or other experimental effect in one of the asymmetries. Note, however, that the uncertainty in $A_{F B}^{(0, b)}$ is strongly statistics dominated. The combined value, $A_{b}=0.901 \pm 0.013$ deviates by 2.6σ.

The left-right asymmetry, $A_{L R}^{0}=0.15138 \pm 0.00216$ [273], from hadronic decays at SLD, differs by 2.1σ from the SM expectation of 0.1469 ± 0.0003. The combined value of $A_{\ell}=0.1513 \pm 0.0021$ from SLD (using lepton-family universality and including correlations) is also 2.1σ above the SM prediction; but there is experimental agreement between this SLD value and the LEP 1 value, $A_{\ell}=0.1481 \pm 0.0027$, obtained from a fit to $A_{F B}^{(0, \ell)}, A_{e}\left(\mathcal{P}_{\tau}\right)$, and $A_{\tau}\left(\mathcal{P}_{\tau}\right)$, again assuming universality.

The observables in Table 10.4 and Table 10.5, as well as some other less precise observables, are used in the global fits described below. In all fits, the errors include full statistical, systematic, and theoretical uncertainties. The correlations from the LEP 1 lineshape and τ polarization measurements, the LEP/SLD heavy flavor observables, the SLD lepton asymmetries, and the ν-e scattering observables, are included. The theoretical correlations between $\Delta \alpha_{\text {had }}^{(5)}, \widehat{s}_{0}^{2}$, and $g_{\mu}-2$, and between the M_{W} extractions from ATLAS and the Tevatron, are also accounted for.

The electroweak data allow a simultaneous determination of M_{Z}, m_{t}, and $\alpha_{s}\left(M_{Z}\right)$. The direct measurements of M_{H} at the LHC $[266,267]$ have reached a precision that the global fit result for M_{H} coincides with the constraint in Eq. (10.52) with negligible correlations with the other fit parameters. $\widehat{m}_{c}, \widehat{m}_{b}$, and $\Delta \alpha_{\text {had }}^{(3)}$ are also allowed to float in the fits, subject to the theoretical constraints $[28,51]$ described in Sec. 10.2, and are correlated with α_{s}, which in turn is determined mainly through $R_{\ell}, \Gamma_{Z}, \sigma_{\text {had }}$, and τ_{τ}. The global fit to all data, including the hadron collider m_{t} average in Eq. (10.13), yields the results in Table 10.7, while those

[^22]Table 10.7: Principal SM fit result including mutual correlations.

$\overline{M_{Z}[\mathrm{GeV}]}$	91.1882 ± 0.0020	1.00	-0.07	0.00	0.00	0.02	0.02
$\widehat{m}_{t}\left(\widehat{m}_{t}\right)[\mathrm{GeV}]$	163.51 ± 0.55	-0.07	1.00	0.00	-0.11	-0.22	0.04
$\widehat{m}_{b}\left(\widehat{m}_{b}\right)[\mathrm{GeV}]$	4.180 ± 0.008	0.00	0.00	1.00	0.20	-0.02	0.00
$\widehat{m}_{c}\left(\widehat{m}_{c}\right)[\mathrm{GeV}]$	1.275 ± 0.009	0.00	-0.11	0.20	1.00	0.47	0.00
$\alpha_{s}\left(M_{Z}\right)$	0.1185 ± 0.0016	0.02	-0.22	-0.02	0.47	1.00	-0.03
$\Delta \alpha_{\text {had }}^{(3)}(2 \mathrm{GeV})$	0.00592 ± 0.00005	0.02	0.04	0.00	0.00	-0.03	1.00

Figure 10.4: Fit result and one-standard-deviation (39.35\% for the closed contours and 68% for the others) uncertainties in M_{H} as a function of m_{t} for various inputs, and the 90% CL region $\left(\Delta \chi^{2}=4.605\right)$ allowed by all data. $\alpha_{s}\left(M_{Z}\right)=0.1185$ is assumed except for the fits including the Z lineshape. The width of the horizontal dashed band is not visible on the scale of the plot.

Figure 10.5: One-standard-deviation (39.35\%) regions in M_{W} as a function of m_{t} for the direct and indirect data, and the $90 \% \mathrm{CL}$ region $\left(\Delta \chi^{2}=4.605\right)$ allowed by all data.
for the weak mixing angle in various schemes are summarized in Table 10.2.

Removing the kinematic constraint on M_{H} from LHC gives the loop-level determination from the precision data,

$$
\begin{equation*}
M_{H}=90_{-16}^{+18} \mathrm{GeV} \tag{10.64}
\end{equation*}
$$

which is 1.8σ below the value in Eq. (10.52). The latter is also slightly outside the 90% central confidence range,

$$
\begin{equation*}
64 \mathrm{GeV}<M_{H}<122 \mathrm{GeV} \tag{10.65}
\end{equation*}
$$

This is mostly a reflection of the Tevatron determination of M_{W}, which is 1.6σ higher than the SM best fit value in Table 10.4. This is shown in Fig. 10.4 where one sees that the precision data
together with M_{H} from the LHC prefer m_{t} to be closer to the upper end of its 1σ allowed range.

Conversely, one can remove the explicit M_{W} and Γ_{W} constraints from the global fit and use $M_{H}=125.30 \pm 0.13 \mathrm{GeV}$ to obtain $M_{W}=80.357 \pm 0.006 \mathrm{GeV}$, which is 1.7σ below the world average in Eq. (10.51). Finally, one can carry out a fit without including the direct constraint, $m_{t}=172.89 \pm 0.59 \mathrm{GeV}$, from the hadron colliders. One obtains $m_{t}=176.3 \pm 1.9 \mathrm{GeV}$, which is 1.7σ higher than the collider average. (The indirect prediction is for the $\overline{\mathrm{MS}}$ mass definition, $\widehat{m}_{t}\left(\widehat{m}_{t}\right)=166.4 \pm 1.8 \mathrm{GeV}$, which is in the end converted to the pole mass.) The situation is summarized in Fig. 10.5 showing the 1σ contours in the $M_{W}-m_{t}$ plane from the direct and indirect determinations, as well as the combined 90% CL region.

In view of these tensions it is instructive to study the effect of doubling the uncertainty in $\Delta \alpha_{\text {had }}^{(3)}(2 \mathrm{GeV})=(58.84 \pm 0.51) \times 10^{-4}$ (see Sec. 10.2) on the loop-level determination of the Higgs boson mass. The result, $M_{H}=88_{-17}^{+18} \mathrm{GeV}$, deviates even slightly more (1.9σ) than Eq. (10.64), and demonstrates that the uncertainty in $\Delta \alpha_{\text {had }}$ is currently of only secondary importance. Note also that a shift of $\pm 10^{-4}$ in $\Delta \alpha_{\text {had }}^{(3)}(2 \mathrm{GeV})$ corresponds to a shift of $\mp 4.4 \mathrm{GeV}$ in M_{H}. The hadronic contribution to $\alpha\left(M_{Z}\right)$ is correlated with $g_{\mu}-2$ (see Sec. 10.4). The measurement of the latter is higher than the SM prediction, and its inclusion in the fit favors a larger $\alpha\left(M_{Z}\right)$ and a lower M_{H} from the precision data (currently by 2.3 GeV).

The weak mixing angle can be determined from Z pole observables, M_{W}, and a variety of neutral-current processes spanning a very wide Q^{2} range. The results (for older low energy neutralcurrent data see Refs. [310-313], as well as earlier editions of this Review) shown in Table 10.8 are in reasonable agreement with each other, indicating the quantitative success of the SM. One of the largest discrepancies is the value $\widehat{s}_{Z}^{2}=0.23176 \pm 0.00027$ from $A_{F B}^{(0, b)}$ and $A_{F B}^{(0, c)}$, which is 2.0σ above the value 0.23121 ± 0.00004 from the global fit to all data. Similarly, $\widehat{s}_{Z}^{2}=0.23064 \pm 0.00028$ from the SLD asymmetries (in both cases when combined with M_{Z}, Γ_{Z}, and m_{t}) is 2.0σ low.
The extracted Z pole value of $\alpha_{s}\left(M_{Z}\right)$ is based on a formula with negligible theoretical uncertainty if one assumes the exact validity of the SM. One should keep in mind, however, that this value, $\alpha_{s}\left(M_{Z}\right)=0.1221 \pm 0.0027$, which increased after the updated analysis in Ref. [275], is very sensitive to certain types of new physics such as non-universal vertex corrections. In contrast, the value derived from τ decays, $\alpha_{s}\left(M_{Z}\right)=0.1170_{-0.0017}^{+0.0019}$, is theory dominated but less sensitive to new physics. The agreement between the two values is only marginal, but the latter does agree well with the averages deduced from DIS and global PDF fits (0.1161 ± 0.0018), hadronic final states of $e^{+} e^{-}$annihilations (0.1171 ± 0.0031), hadron colliders (0.1159 ± 0.0034), as well as lattice QCD simulations (0.1182 ± 0.0008). For more details, other determinations, and references, see the Section on "Quantum Chromodynamics" in this Review.

Using $\alpha\left(M_{Z}\right)$ and \widehat{s}_{Z}^{2} as inputs, one can predict $\alpha_{s}\left(M_{Z}\right)$ assuming grand unification. One finds $\alpha_{s}\left(M_{Z}\right)=0.13 \pm 0.01[317,318]$ for the simplest theories based on the minimal supersymmetric extension of the SM, where the uncertainty is from the unknown particle thresholds. This is slightly larger, but consistent with $\alpha_{s}\left(M_{Z}\right)=0.1185 \pm 0.0016$ from our fit and most other determinations, while minimal non-supersymmetric theories predict much lower and excluded values (see the Section on "Grand Unified The-

Table 10.8: Values of $\widehat{s}_{Z}^{2}, s_{W}^{2}, \alpha_{s}, m_{t}$ and M_{H} for various data sets. In the fit to the LHC data, the α_{s} constraint is from a combined NNLO analysis of inclusive electroweak boson production cross-sections at the LHC [315]. Likewise, for the Tevatron fit we use the α_{s} result from the inclusive jet cross-section at $\mathrm{D} \varnothing[316]$.

data set	\widehat{s}_{Z}^{2}	s_{W}^{2}	$\alpha_{s}\left(M_{Z}\right)$	$m_{t}[\mathrm{GeV}]$	$M_{H}[\mathrm{GeV}]$
all data	0.23121(4)	0.22337(10)	0.1185(16)	173.2 ± 0.6	125
all data except M_{H}	0.23107(9)	$0.22309(19)$	0.1189(17)	172.9 ± 0.6	90_{-16}^{+18}
all data except M_{Z}	0.23111 (6)	$0.22334(10)$	$0.1185(16)$	172.9 ± 0.6	125
all data except M_{W}	0.23123(4)	$0.22345(11)$	0.1189(17)	172.9 ± 0.6	125
all data except m_{t}	0.23113(6)	0.22305(21)	0.1190(17)	176.3 ± 1.9	125
$M_{H, Z}+\Gamma_{Z}+m_{t}$	0.23126(8)	0.22351(17)	0.1215(47)	172.9 ± 0.6	125
LHC	$0.23113(10)$	0.22337(13)	0.1188(16)	172.7 ± 0.6	125
Tevatron $+M_{Z}$	0.23102(13)	0.22295(30)	0.1160(44)	174.3 ± 0.8	99 -32 -32
LEP $1+$ LEP 2	0.23137(18)	0.22353(46)	$0.1235(29)$	178 ± 11	$201{ }_{-113}^{+279}$
LEP $1+\mathrm{SLD}$	0.23116(17)	0.22348(58)	0.1221(27)	169 ± 10	80_{-39}^{+101}
$\mathrm{SLD}+M_{Z}+\Gamma_{Z}+m_{t}$	$0.23064(28)$	$0.22227(54)$	0.1188(48)	172.9 ± 0.6	37_{-21}^{+}
$A_{F B}^{(b, c)}+M_{Z}+\Gamma_{Z}+m_{t}$	0.23176(27)	0.22467(66)	0.1266(46)	172.9 ± 0.6	280_{-100}^{+145}
$M_{W, Z}+\Gamma_{W, Z}+m_{t}$	0.23103(12)	0.22302(25)	0.1198(44)	172.9 ± 0.6	84_{-20}^{+24}
low energy $+M_{H, Z}$	0.23176(94)	0.2254(35)	0.1171(18)	156 ± 29	125

Table 10.9: Values of model-independent neutral-current parameters, compared with the SM predictions, where the uncertainties in the latter are $\lesssim 0.0001$, throughout.

Quantity	Experimental Value	Standard Model	Correlation
$g_{L V}^{\nu e}$	-0.040 ± 0.015	-0.0398	-0.05
$g_{L A}^{\nu e e}$	-0.507 ± 0.014	-0.5064	
$g_{A V}^{e u}+2 g_{A V}^{e d}$	0.4927 ± 0.0031	0.4950	-0.88
$2 g_{A V}^{e u}-g_{A V}^{e d}$	-0.7165 ± 0.0068	-0.7195	0.20
$2 g_{V A}^{e u}-g_{V A}^{e d}$	-0.13 ± 0.06	-0.0954	-0.22
$g_{V A}^{e e}$	0.0190 ± 0.0027	0.0227	

ories" in this Review).
Most of the parameters relevant to ν-hadron, ν-e, e-hadron, and $e-e$ processes are determined uniquely and precisely from the data in "model-independent" fits, i.e., fits allowing for an arbitrary EW gauge theory. The values for the parameters defined in Eq. (10.21) are given in Table 10.9 along with the predictions of the SM. The agreement is very good. (The ν-hadron results including NuTeV [134] and other ν-DIS data can be found in the 2006 edition of this Review, and fits with modified NuTeV constraints in the 2008 and 2010 editions.)

10.7 Constraints on new physics

The masses and decay properties of the electroweak bosons and low energy data can be used to search for and set limits on deviations from the SM. We will mainly discuss the effects of exotic particles (with heavy masses $M_{\text {new }} \gg M_{Z}$ in an expansion in $M_{Z} / M_{\text {new }}$) on the gauge boson self-energies. (Brief remarks are made on new physics which is not of this type.) Most of the effects on precision measurements can be described by three gauge self-energy parameters S, T, and U. We will define these, as well as the related parameters ρ_{0}, ϵ_{i}, and $\widehat{\epsilon}_{i}$, to arise from new physics only. In other words, they are equal to zero $\left(\rho_{0}=1\right)$ exactly in the SM, and do not include any (loop induced) contributions that depend on m_{t} or M_{H}, which are treated separately. Our treatment differs from most of the original papers.
The dominant effect of many extensions of the SM can be described by the ρ_{0} parameter,

$$
\begin{equation*}
\rho_{0} \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \widehat{c}_{Z}^{2} \widehat{\rho}} \tag{10.66}
\end{equation*}
$$

which describes new sources of $\mathrm{SU}(2)$ breaking that cannot be accounted for by the SM Higgs doublet or by m_{t} effects. $\widehat{\rho}$ is calculated as in Eq. (10.18) assuming the validity of the SM. In the
presence of $\rho_{0} \neq 1$, Eq. (10.66) generalizes the second Eq. (10.18) while the first remains unchanged. Provided that the new physics which yields $\rho_{0} \neq 1$ is a small perturbation which does not significantly affect other radiative corrections, ρ_{0} can be regarded as a phenomenological parameter which multiplies G_{F} in Eqs. (10.21) and (10.41), as well as Γ_{Z} in Eq. (10.60c). There are enough data to determine ρ_{0}, M_{H}, m_{t}, and α_{s}, simultaneously. From the global fit,

$$
\begin{align*}
\rho_{0} & =1.00038 \pm 0.00020 \tag{10.67a}\\
\alpha_{s}\left(M_{Z}\right) & =0.1188 \pm 0.0017 \tag{10.67b}
\end{align*}
$$

where as before the uncertainty is from the experimental inputs and includes an estimate of the error from unknown higher-order electroweak corrections. The result in Eq. (10.67a) is 1.9σ above the SM expectation, $\rho_{0}=1$. It can be used to constrain higherdimensional Higgs representations to have vacuum expectation values of less than a few percent of those of the doublets. Indeed, the relation between M_{W} and M_{Z} is modified if there are Higgs multiplets with weak isospin $>1 / 2$ and significant vacuum expectation values. For a general (charge-conserving) Higgs structure,

$$
\begin{equation*}
\rho_{0}=\frac{\sum_{i}\left[t_{i}\left(t_{i}+1\right)-t_{3 i}^{2}\right]\left|v_{i}\right|^{2}}{2 \sum_{i} t_{3 i}^{2}\left|v_{i}\right|^{2}} \tag{10.68}
\end{equation*}
$$

where v_{i} is the expectation value of the neutral component of a Higgs multiplet with weak isospin t_{i} and third component $t_{3 i}$. In order to calculate to higher orders in such theories one must define a set of four fundamental renormalized parameters which one may conveniently choose to be α, G_{F}, M_{Z}, and M_{W}, since M_{W} and M_{Z} are directly measurable. Then \widehat{s}_{Z}^{2} and ρ_{0} can be considered dependent parameters.

Eq. (10.67a) can also be used to constrain other types of new physics. For example, non-degenerate multiplets of heavy
fermions or scalars break the vector part of weak $\mathrm{SU}(2)$ and lead to a decrease in the value of M_{Z} / M_{W}. Each non-degenerate $\mathrm{SU}(2)$ doublet $\binom{f_{1}}{f_{2}}$ yields a positive contribution to $\rho_{0}[319-321]$ of

$$
\begin{equation*}
\frac{N_{C} G_{F}}{8 \sqrt{2} \pi^{2}} \Delta m^{2} \tag{10.69}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta m^{2} \equiv m_{1}^{2}+m_{2}^{2}-\frac{4 m_{1}^{2} m_{2}^{2}}{m_{1}^{2}-m_{2}^{2}} \ln \frac{m_{1}}{m_{2}} \geq\left(m_{1}-m_{2}\right)^{2} \tag{10.70}
\end{equation*}
$$

and $N_{C}=1$ (3) for color singlets (triplets). Eq. (10.67a) taken together with Eq. (10.69) implies the following constraint on the mass splitting at the 90% CL,

$$
\begin{equation*}
(14 \mathrm{GeV})^{2}<\sum_{i} \frac{N_{C}^{i}}{3} \Delta m_{i}^{2}<(48 \mathrm{GeV})^{2} \tag{10.71}
\end{equation*}
$$

where the sum runs over all new-physics doublets, for example fourth-family quarks or leptons, $\binom{t^{\prime}}{b^{\prime}}$ or $\binom{\nu^{\prime}}{\ell^{\prime-}}$, vector-like fermion doublets (which contribute to the sum in Eq. (10.71) with an extra factor of 2), and scalar doublets such as ($\binom{\tilde{t}}{\tilde{b}}$ in Supersymmetry (in the absence of $L-R$ mixing).

Non-degenerate multiplets usually imply $\rho_{0}>1$. Similarly, heavy Z^{\prime} bosons decrease the prediction for M_{Z} due to mixing and generally lead to $\rho_{0}>1$ [322]. On the other hand, extra Higgs doublets participating in spontaneous symmetry breaking [323-325] or heavy lepton doublets involving Majorana neutrinos [326], both of which have more complicated expressions, and the v_{i} of higher-dimensional Higgs representations can contribute to ρ_{0} with either sign.

A number of authors [327-329] have considered the general effects on neutral-current, Z and W boson observables of various types of heavy (i.e., $M_{\text {new }} \gg M_{Z}$) physics which contribute to the W and Z self-energies but which do not have any direct coupling to the ordinary fermions (an alternative formulation is given by Ref. [330]). In addition to non-degenerate multiplets, which break the vector part of weak $\mathrm{SU}(2)$, these include heavy degenerate multiplets of chiral fermions which break the axial generators.

Such effects can be described by just three parameters, S, T, and U [331], at the (EW) one-loop level ${ }^{15} . T$ is proportional to the difference between the W and Z self-energies at $Q^{2}=0$ (i.e., vector $\mathrm{SU}(2)$-breaking), while $S(S+U)$ is associated with the difference between the $Z(W)$ self-energy at $Q^{2}=M_{Z, W}^{2}$ and $Q^{2}=0$ (axial $\mathrm{SU}(2)$-breaking). Denoting the contributions of new physics to the various self-energies by $\Pi_{i j}^{\text {new }}$, we have

$$
\begin{align*}
& \widehat{\alpha}\left(M_{Z}\right) T \equiv \frac{\Pi_{W W}^{\text {new }}(0)}{M_{W}^{2}}-\frac{\Pi_{Z Z}^{\text {new }}(0)}{M_{Z}^{2}}, \tag{10.72a}\\
& \frac{\widehat{\alpha}\left(M_{Z}\right)}{4 \widehat{s}_{Z}^{2} \widehat{c}_{Z}^{2}} S \equiv \frac{\Pi_{Z Z}^{\text {new }}\left(M_{Z}^{2}\right)-\Pi_{Z Z}^{\text {new }}(0)}{M_{Z}^{2}}-\frac{\widehat{c}_{Z}^{2}-\widehat{s}_{Z}^{2}}{\widehat{c}_{Z} \widehat{s}_{Z}} \frac{\Pi_{Z \gamma}^{\text {new }}\left(M_{Z}^{2}\right)}{M_{Z}^{2}} \\
&-\frac{\Pi_{\gamma \gamma}^{\text {new }}\left(M_{Z}^{2}\right)}{M_{Z}^{2}}, \tag{10.72b}\\
& \frac{\widehat{\alpha}\left(M_{Z}\right)}{4 \widehat{s}_{Z}^{2}}(S+U) \equiv \frac{\Pi_{W W}^{\text {new }}\left(M_{W}^{2}\right)-\Pi_{W W}^{\text {new }}(0)}{M_{W}^{2}}-\frac{\widehat{c}_{Z}}{\widehat{s}_{Z}} \frac{\Pi_{Z \gamma}^{\text {new }}\left(M_{Z}^{2}\right)}{M_{Z}^{2}} \\
&-\frac{\Pi_{\gamma \gamma}^{\text {new }}\left(M_{Z}^{2}\right)}{M_{Z}^{2}} \tag{10.72c}
\end{align*}
$$

S, T, and U are defined with a factor proportional to $\widehat{\alpha}$ removed, so that they are expected to be of order unity in the presence of new physics. In the $\overline{\mathrm{MS}}$ scheme as defined in Ref. [71], the last

[^23]two terms in Eqs. (10.72b) and (10.72c) can be omitted, as was done in some earlier editions of this Review. These parameters are related to other parameter sets, $S_{i}[71], \widehat{\epsilon}_{i}$ [335], and h_{i} [336], by
\[

$$
\begin{align*}
& T=h_{V}=\frac{\widehat{\epsilon}_{1}}{\widehat{\alpha}\left(M_{Z}\right)} \tag{10.73a}\\
& S=h_{A Z}=S_{Z}=4 \widehat{s}_{Z}^{2} \frac{\widehat{\epsilon}_{3}}{\widehat{\alpha}\left(M_{Z}\right)} \tag{10.73b}\\
& U=h_{A W}-h_{A Z}=S_{W}-S_{Z}=-4 \widehat{s}_{Z}^{2} \frac{\widehat{\epsilon}_{2}}{\widehat{\alpha}\left(M_{Z}\right)} . \tag{10.73c}
\end{align*}
$$
\]

A heavy non-degenerate multiplet of fermions or scalars contributes positively to T as

$$
\begin{equation*}
\rho_{0}-1=\frac{1}{1-\widehat{\alpha}\left(M_{Z}\right) T}-1 \approx \widehat{\alpha}\left(M_{Z}\right) T \tag{10.74}
\end{equation*}
$$

where $\rho_{0}-1$ is given in Eq. (10.69). The effects of nonstandard Higgs representations cannot be separated from heavy non-degenerate multiplets unless the new physics has other consequences, such as vertex corrections. Most of the original papers defined T to include the effects of loops only. However, we will redefine T to include all new sources of $\mathrm{SU}(2)$ breaking, including non-standard Higgs, so that T and ρ_{0} are equivalent by Eq. (10.74).

A multiplet of heavy degenerate chiral fermions yields

$$
\begin{equation*}
S=\frac{N_{C}}{3 \pi} \sum_{i}\left(t_{3 i}^{L}-t_{3 i}^{R}\right)^{2} \tag{10.75}
\end{equation*}
$$

where $t_{3 i}^{L, R}$ is the $3^{\text {rd }}$ component of weak isospin of the left-(right-) handed component of fermion i. For example, a heavy degenerate ordinary or mirror family would contribute $2 / 3 \pi$ to S. In models with warped extra dimensions [337], sizeable corrections to the S parameter are generated through mixing between the SM gauge bosons and their Kaluza-Klein (KK) excitations, and one finds $S \approx 30 v^{2} M_{K K}^{-2}$ [338], where $M_{K K}$ is the mass scale of the KK gauge bosons. Large positive values of S can also be generated in models with dynamical electroweak symmetry breaking, where the Higgs boson is composite. In simple composite Higgs models, the dominant contribution stems from heavy spin-1 resonances of the strong dynamics leading to $S \approx 4 \pi v^{2}\left(M_{V}^{-2}+M_{A}^{-2}\right)$, where $M_{V, A}$ are the masses of the lightest vector and axial-vector resonances, respectively [339].
Negative values of S are possible, for example, in models of walking Technicolor [340-347], or from loops involving scalars or Majorana particles [348,349]. The simplest origin of $S<0$ would probably be an additional heavy Z^{\prime} boson [322]. Supersymmetric extensions of the SM $[350,351]$ generally give very small effects. For more details and references, see Refs. [352-361] and the Sections on "Supersymmetry" in this Review. Most simple types of new physics yield $U=0$, although there are counter-examples, such as the effects of anomalous triple gauge vertices [335].
The SM expressions for observables are replaced by,

$$
\begin{align*}
M_{Z}^{2} & =M_{Z 0}^{2} \frac{1-\widehat{\alpha}\left(M_{Z}\right) T}{1-G_{F} M_{Z 0}^{2} S / 2 \sqrt{2} \pi} \tag{10.76a}\\
M_{W}^{2} & =M_{W 0}^{2} \frac{1}{1-G_{F} M_{W 0}^{2}(S+U) / 2 \sqrt{2} \pi} \tag{10.76b}
\end{align*}
$$

where $M_{Z 0}$ and $M_{W 0}$ are the SM expressions (as functions of m_{t} and $\left.M_{H}\right)$ in the $\overline{\mathrm{MS}}$ scheme. Furthermore,

$$
\begin{align*}
\Gamma_{Z} & =\frac{M_{Z}^{3} \beta_{Z}}{1-\widehat{\alpha}\left(M_{Z}\right) T} \tag{10.77a}\\
\Gamma_{W} & =M_{W}^{3} \beta_{W} \tag{10.77b}\\
A_{i} & =\frac{A_{i 0}}{1-\widehat{\alpha}\left(M_{Z}\right) T} \tag{10.77c}
\end{align*}
$$

Figure 10.6: 1σ constraints (39.35% for the closed contours and 68% for the others) on S and T (for $U=0$) from various inputs combined with $M_{Z} . S$ and T represent the contributions of new physics only. Data sets not involving M_{W} or Γ_{W} are insensitive to U. With the exception of the fit to all data, we fix $\alpha_{s}=0.1185$. The black dot indicates the Standard Model values $S=T=0$.
where $\beta_{Z, W}$ are the SM expressions for the reduced widths $\Gamma_{Z 0} / M_{Z 0}^{3}$ and $\Gamma_{W 0} / M_{W 0}^{3}, M_{Z}$ and M_{W} are the physical masses, and $A_{i}\left(A_{i 0}\right)$ is a neutral-current amplitude (in the SM).

The data allows for a simultaneous determination of M_{H} and m_{t} (from the hadron colliders), S (from M_{Z}), T (mainly from $\left.\Gamma_{Z}\right), U\left(\right.$ from $\left.M_{W}\right), \widehat{s}_{Z}^{2}=0.23112 \pm 0.00013$ (from the Z pole asymmetries), and $\alpha_{s}\left(M_{Z}\right)=0.1189 \pm 0.0018$ (from $R_{\ell}, \sigma_{\text {had }}$, and τ_{τ}), giving,

$$
\begin{align*}
& S=-0.01 \pm 0.10 \tag{10.78a}\\
& T=0.03 \pm 0.12 \tag{10.78b}\\
& U=0.02 \pm 0.11 \tag{10.78c}
\end{align*}
$$

with little correlation among the SM parameters, where the uncertainties are from unknown higher orders in the SM predictions and the inputs. The parameters in Eq. (10.78), which by definition are due to new physics only, are in excellent agreement with the SM values of zero. Fixing $U=0$, which is motivated by the fact that U is suppressed by an additional factor $M_{\text {new }}^{2} / M_{Z}^{2}$ compared to S and T [362], greatly improves the precision on S and particularly T,

$$
\begin{align*}
& S=0.00 \pm 0.07 \tag{10.79a}\\
& T=0.05 \pm 0.06 \tag{10.79b}
\end{align*}
$$

If only any one of the three parameters is allowed, then this parameter would deviate at the 1.6 to 1.9σ level, reflecting the deviation in M_{W}. Using Eq. (10.74), the value of ρ_{0} corresponding to T in Eqs. (10.78) is 1.0002 ± 0.0009, while the one corresponding to Eqs. (10.79) is 1.0004 ± 0.0005. Thus, the multi-parameter fits are consistent with $\rho_{0}=1$, in contrast to the fit with $S=U=0$ in Eq. (10.67a). There is a strong correlation (92%) between the S and T parameters. The U parameter is $-80 \%(-93 \%)$ anticorrelated with $S(T)$. The allowed regions in $S-T$ (for $U=0$) are shown in Fig. 10.6. From Eq. (10.78) one obtains $S<0.14$ and $T<0.22$ at $95 \% \mathrm{CL}$, where the former puts the constraint $M_{K K} \gtrsim 3.6 \mathrm{TeV}$ on the masses of KK gauge bosons in warped extra dimensions. In minimal composite Higgs models, the bound on S requires $M_{V} \gtrsim 4 \mathrm{TeV}$ [363], but this constraint can be relaxed, e.g., if the fermionic sector is also allowed to be partially composite [364, 365].

The S parameter can also be used to constrain the number of fermion families, under the assumption that there are no new contributions to T or U and therefore that any new families are degenerate; then an extra generation of SM fermions is excluded at the 8σ level corresponding to $N_{F}=2.75 \pm 0.15$. This can be compared to the fit to the number of light neutrinos given in Eq. (10.63),
$N_{\nu}=3.0026 \pm 0.0061$, but the S parameter fits are valid even for a very heavy fourth family neutrino. Allowing T to vary as well, the constraint on a fourth family is weaker [366]. However, a heavy fourth family would increase the Higgs production crosssection through gluon fusion by a factor of about 9 [367], which is in considerable tension with the observed Higgs signal at the LHC [368]. Combining the limits from electroweak precision data with the measured Higgs production rate and limits from direct searches for heavy quarks [369], a fourth family of chiral fermions is now excluded by more than five standard deviations [370, 371]. Similar remarks apply to a heavy mirror family [372] involving right-handed $\mathrm{SU}(2)$ doublets and left-handed singlets. In contrast, new doublets that receive most of their mass from a different source than the Higgs vacuum expectation value, such as vector-like fermion doublets or scalar doublets in Supersymmetry, give small or no contribution to S, T, U, and the Higgs production cross-section and are therefore still allowed. Partial or complete vector-like fermion families are predicted in many Grand Unified Theories [373] (see the Section on "Grand Unified Theories" in this Review), and many other models including supersymmetric and superstring inspired ones [374-377].

As discussed in Sec. 10.6, there is a 3.6% deviation in the asymmetry parameter A_{b}. Assuming that this is due to new physics affecting preferentially the third generation, we can perform a fit allowing additional $Z \rightarrow b \bar{b}$ vertex corrections ρ_{b} and κ_{b} as in Eq. (10.42) (here defined to be due to new physics only with the SM contributions removed), as well as S, T, U, and the SM parameters, with the result,

$$
\begin{align*}
& \rho_{b}=0.058 \pm 0.020 \tag{10.80a}\\
& \kappa_{b}=0.185 \pm 0.067 \tag{10.80b}
\end{align*}
$$

with an almost perfect correlation of 99% (because R_{b} is much better determined than A_{b}). The central values of the oblique parameters are consistent with their SM values of zero, and there is little change in the SM parameters, except that the value of $\alpha_{s}\left(M_{Z}\right)$ is lower by 0.0008 compared to the SM fit. Given that an $\mathcal{O}(20 \%)$ correction to κ_{b} would be necessary, it would be difficult to account for the deviation in A_{b} by new physics that enters only at the level of radiative corrections. Thus, if it is due to new physics, it is most likely of tree-level type affecting preferentially the third generation. Examples include the decay of a scalar neutrino resonance [378], mixing of the b quark with heavy exotics [379], and a heavy Z^{\prime} with family non-universal couplings [380,381]. It is difficult, however, to simultaneously account for R_{b} without tuning, which has been measured on the Z peak and off-peak [382] at LEP 1.

There is no simple parametrization to describe the effects of every type of new physics on every possible observable. The S, T, and U formalism describes many types of heavy physics which affect only the gauge self-energies, and it can be applied to all precision observables. However, new physics which couples directly to ordinary fermions cannot be fully parametrized in the S, T, and U framework. Examples include heavy Z^{\prime} bosons [322], mixing with exotic fermions [9, 383, 384], leptoquark exchange [260, 385, 386], supersymmetric models, strong EW dynamics [364], Little Higgs models [387, 388], and TeV-scale extra spatial dimensions [389392] (for more details and references, see the Section on "Extra Dimensions" in this Review). These types of new physics can be parametrized in a model-independent way by using an effective field theory description [393-396]. Here the SM is extended by a set of higher-dimensional operators, denoted \mathcal{O}_{i},

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\sum_{d>4} \sum_{i} \frac{C_{i}}{\Lambda^{d-4}} \mathcal{O}_{i} \tag{10.81}
\end{equation*}
$$

where Λ is the characteristic scale of the new physics sector, which is assumed to satisfy $\Lambda \gg v$. For EW precision observables, the leading new operators enter at dimension $d=6$. Note that S and T can be identified with two of these operators (or linear combinations thereof, depending on the chosen operator basis), while U corresponds to a dimension-8 operator [362, 397]. With current data on M_{W} and Z pole observables, Λ is constrained to
be larger than $\mathcal{O}(\mathrm{TeV})$ if the Wilson coefficients C_{i} are of order unity [398-402].

An alternate formalism [403] defines parameters, $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$, and ϵ_{b} in terms of the specific observables $M_{W} / M_{Z}, \Gamma_{\ell \ell}, A_{F B}^{(0, \ell)}$, and R_{b}. The definitions coincide with those for $\widehat{\epsilon}_{i}$ in Eqs. (10.72) and (10.73c) for physics which affects gauge self-energies only, but the ϵ 's now parametrize arbitrary types of new physics. However, the ϵ_{i} are not related to other observables unless additional modeldependent assumptions are made.

Limits on new four-Fermi operators and on leptoquarks using LEP 2 and lower energy data are given in Refs. [260, 404-406], while constraints on various types of new physics are addressed in Refs. [9, 151, 277, 407, 408]. For a particularly well motivated and explored type of physics beyond the SM, see the Section on " Z^{\prime}-Boson Searches" in this Review.

Acknowledgments

It is a pleasure to thank Rodolfo Ferro-Hernández for discussions, for performing some of the calculations and checks, and for producing the plot in Fig. 10.2. J.E. is supported by the German-Mexican research collaboration grant SP 778/4-1 (DFG) and 278017 (CONACyT). A.F. is supported in part by the National Science Foundation under grant no. PHY-1820760.

References

[1] S. Glashow, Nucl. Phys. 22, 579 (1961).
[2] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
[3] A. Salam, Conf. Proc. C 680519, 367 (1968).
[4] S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).
[5] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[6] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[7] S. Descotes-Genon and P. Koppenburg, Ann. Rev. Nucl. Part. Sci. 67, 97 (2017), [arXiv:1702.08834].
[8] E. Commins and P. Bucksbaum, Weak Interactions of Leptons and Quarks, Cambridge Univ. Pr., Cambridge, USA (1983), ISBN 978-0-521-27370-1.
[9] P. Langacker, editor, Precision tests of the standard electroweak model, volume 14, WSP, Singapore (1996).
[10] P. Langacker, The standard model and beyond, CRC Pr., Boca Raton, USA (2010), ISBN 978-1-4200-7906-7.
[11] T. Kinoshita, editor, Quantum electrodynamics, volume 7, WSP, Singapore (1990).
[12] S. G. Karshenboim, Phys. Rept. 422, 1 (2005), [hepph/0509010].
[13] J. Erler and S. Su, Prog. Part. Nucl. Phys. 71, 119 (2013), [arXiv:1303.5522].
[14] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427, 257 (2006), [hepex/0509008].
[15] D. Webber et al. (MuLan), Phys. Rev. Lett. 106, 041803 (2011), [arXiv:1010.0991].
[16] T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).
[17] T. van Ritbergen and R. G. Stuart, Nucl. Phys. B 564, 343 (2000), [hep-ph/9904240].
[18] M. Steinhauser and T. Seidensticker, Phys. Lett. B 467, 271 (1999), [hep-ph/9909436].
[19] Y. Nir, Phys. Lett. B 221, 184 (1989).
[20] A. Pak and A. Czarnecki, Phys. Rev. Lett. 100, 241807 (2008), [arXiv:0803.0960].
[21] T. Aoyama, T. Kinoshita and M. Nio, Atoms 7, 1, 28 (2019).
[22] P. J. Mohr, D. B. Newell and B. N. Taylor, Rev. Mod. Phys. 88, 3, 035009 (2016), [arXiv:1507.07956].
[23] R. Bouchendira et al., Phys. Rev. Lett. 106, 080801 (2011), [arXiv:1012.3627].
[24] R. H. Parker et al., Science 360, 191 (2018), [arXiv:1812.04130].
[25] G. Abbiendi et al. (OPAL), Eur. Phys. J. C 45, 1 (2006), [hep-ex/0505072].
[26] P. Achard et al. (L3), Phys. Lett. B 623, 26 (2005), [hepex/0507078].
[27] S. Fanchiotti, B. A. Kniehl and A. Sirlin, Phys. Rev. D 48, 307 (1993), [hep-ph/9212285].
[28] J. Erler, Phys. Rev. D 59, 054008 (1999), [hep-ph/9803453].
[29] M. Davier et al., Eur. Phys. J. C 80, 3, 241 (2020), [arXiv:1908.00921].
[30] F. Jegerlehner, EPJ Web Conf. 118, 01016 (2016), [arXiv:1511.04473].
[31] F. Jegerlehner and R. Szafron, Eur. Phys. J. C 71, 1632 (2011), [arXiv:1101.2872].
[32] J. Erler (1999), [hep-ph/0005084].
[33] M. Steinhauser, Phys. Lett. B 429, 158 (1998), [hepph/9803313].
[34] K. Chetyrkin, J. H. Kuhn and M. Steinhauser, Nucl. Phys. B 482, 213 (1996), [hep-ph/9606230].
[35] J. Erler and R. Ferro-Hernández, JHEP 03, 196 (2018), [arXiv:1712.09146].
[36] Theory report on the 11th FCC-ee workshop (2019), [arXiv:1905.05078].
[37] A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 101, 1, 014029 (2020), [arXiv:1911.00367].
[38] M. Davier et al., Eur. Phys. J. C 71, 1515 (2011), [Erratum: Eur.Phys.J.C 72, 1874 (2012)], [arXiv:1010.4180].
[39] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C 7, 571 (1999), [hep-ex/9808019].
[40] S. Anderson et al. (CLEO), Phys. Rev. D 61, 112002 (2000), [hep-ex/9910046].
[41] S. Schael et al. (ALEPH), Phys. Rept. 421, 191 (2005), [hep-ex/0506072].
[42] M. Fujikawa et al. (Belle), Phys. Rev. D 78, 072006 (2008), [arXiv:0805.3773].
[43] S. Groote et al., Phys. Lett. B 440, 375 (1998), [hepph/9802374].
[44] B. Geshkenbein and V. Morgunov, Phys. Lett. B 352, 456 (1995).
[45] M. L. Swartz, Phys. Rev. D 53, 5268 (1996), [hepph/9509248].
[46] N. Krasnikov and R. Rodenberg, Nuovo Cim. A 111, 217 (1998), [hep-ph/9711367].
[47] J. H. Kuhn and M. Steinhauser, Phys. Lett. B 437, 425 (1998), [hep-ph/9802241].
[48] A. D. Martin, J. Outhwaite and M. Ryskin, Phys. Lett. B 492, 69 (2000), [hep-ph/0008078].
[49] J. de Troconiz and F. Yndurain, Phys. Rev. D 65, 093002 (2002), [hep-ph/0107318].
[50] H. Burkhardt and B. Pietrzyk, Phys. Rev. D 84, 037502 (2011), [arXiv:1106.2991].
[51] J. Erler, P. Masjuan and H. Spiesberger, Eur. Phys. J. C 77, 2, 99 (2017), [arXiv:1610.08531].
[52] V. Novikov et al., Phys. Rept. 41, 1 (1978).
[53] J. Erler and M. Luo, Phys. Lett. B 558, 125 (2003), [hepph/0207114].
[54] T. Aaltonen et al. (CDF, DØ, Tevatron Electroweak Working Group) (2016), [arXiv:1608.01881].
[55] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 79, 4, 290 (2019), [arXiv:1810.01772].
[56] Technical Report CMS-PAS-TOP-15-012, CERN, Geneva (2016), URL https://cds.cern.ch/record/2235162.
[57] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79, 4, 313 (2019), [arXiv:1812.10534].
[58] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79, 5, 368 (2019), [arXiv:1812.10505].
[59] Technical Report ATLAS-CONF-2019-046, CERN, Geneva (2019), URL https://cds.cern.ch/record/2693954.
[60] V. M. Abazov et al. (DØ), Phys. Rev. Lett. 113, 032002 (2014), [arXiv:1405.1756].
[61] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 78, 11, 891 (2018), [arXiv:1805.01428].
[62] A. H. Hoang, S. Plätzer and D. Samitz, JHEP 10, 200 (2018), [arXiv:1807.06617].
[63] M. Beneke et al., Phys. Lett. B 775, 63 (2017), [arXiv:1605.03609].
[64] P. Marquard et al., Phys. Rev. Lett. 114, 14, 142002 (2015), [arXiv:1502.01030].
[65] M. Beneke, Phys. Rept. 317, 1 (1999), [hep-ph/9807443].
[66] S. Catani et al., JHEP 07, 100 (2019), [arXiv:1906.06535].
[67] Technical Report CMS-PAS-TOP-18-004, CERN, Geneva (2018), URL https://cds.cern.ch/record/2647989.
[68] G. Aad et al. (ATLAS), JHEP 11, 150 (2019), [arXiv:1905.02302].
[69] J. Erler and M. Schott, Prog. Part. Nucl. Phys. 106, 68 (2019), [arXiv:1902.05142].
[70] A. Sirlin, Phys. Rev. D 22, 971 (1980).
[71] W. J. Marciano and J. L. Rosner, Phys. Rev. Lett. 65, 2963 (1990), [Erratum: Phys.Rev.Lett. 68, 898 (1992)].
[72] G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B 351, 49 (1991).
[73] A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000), [hep-ph/0003049].
[74] J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005), [hep-ph/0409169].
[75] K. Kumar et al., Ann. Rev. Nucl. Part. Sci. 63, 237 (2013), [arXiv:1302.6263].
[76] G. Degrassi and A. Sirlin, Nucl. Phys. B 352, 342 (1991).
[77] P. Gambino and A. Sirlin, Phys. Rev. D 49, 1160 (1994), [hep-ph/9309326].
[78] W. Hollik, Fortsch. Phys. 38, 165 (1990).
[79] R. Barbieri et al., Nucl. Phys. B 409, 105 (1993).
[80] J. Fleischer, O. Tarasov and F. Jegerlehner, Phys. Lett. B 319, 249 (1993).
[81] G. Degrassi, P. Gambino and A. Vicini, Phys. Lett. B 383, 219 (1996), [hep-ph/9603374].
[82] G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B 394, 188 (1997), [hep-ph/9611363].
[83] A. Freitas et al., Phys. Lett. B 495, 338 (2000), [Erratum: Phys.Lett.B 570, 265 (2003)], [hep-ph/0007091].
[84] M. Awramik and M. Czakon, Phys. Lett. B 568, 48 (2003), [hep-ph/0305248].
[85] A. Freitas et al., Nucl. Phys. B 632, 189 (2002), [Erratum: Nucl.Phys.B 666, 305-307 (2003)], [hep-ph/0202131].
[86] M. Awramik and M. Czakon, Phys. Rev. Lett. 89, 241801 (2002), [hep-ph/0208113].
[87] A. Onishchenko and O. Veretin, Phys. Lett. B 551, 111 (2003), [hep-ph/0209010].
[88] G. Degrassi, P. Gambino and P. P. Giardino, JHEP 05, 154 (2015), [arXiv:1411.7040].
[89] M. Awramik et al., Phys. Rev. D 69, 053006 (2004), [hepph/0311148].
[90] M. Awramik et al., Phys. Rev. Lett. 93, 201805 (2004), [hep-ph/0407317].
[91] W. Hollik, U. Meier and S. Uccirati, Nucl. Phys. B 731, 213 (2005), [hep-ph/0507158].
[92] M. Awramik, M. Czakon and A. Freitas, Phys. Lett. B 642, 563 (2006), [hep-ph/0605339].
[93] W. Hollik, U. Meier and S. Uccirati, Nucl. Phys. B 765, 154 (2007), [hep-ph/0610312].
[94] M. Awramik et al., Nucl. Phys. B 813, 174 (2009), [arXiv:0811.1364].
[95] I. Dubovyk et al., Phys. Lett. B 762, 184 (2016), [arXiv:1607.08375].
[96] A. Freitas, Phys. Lett. B 730, 50 (2014), [arXiv:1310.2256].
[97] A. Freitas, JHEP 04, 070 (2014), [arXiv:1401.2447].
[98] I. Dubovyk et al., Phys. Lett. B 783, 86 (2018), [arXiv:1804.10236].
[99] I. Dubovyk et al., JHEP 08, 113 (2019), [arXiv:1906.08815].
[100] M. Awramik, M. Czakon and A. Freitas, JHEP 11, 048 (2006), [hep-ph/0608099].
[101] A. Djouadi and C. Verzegnassi, Phys. Lett. B 195, 265 (1987).
[102] A. Djouadi, Nuovo Cim. A 100, 357 (1988).
[103] K. Chetyrkin, J. H. Kuhn and M. Steinhauser, Phys. Lett. B 351, 331 (1995), [hep-ph/9502291].
[104] L. Avdeev et al., Phys. Lett. B 336, 560 (1994), [Erratum: Phys.Lett.B 349, 597-598 (1995)], [hep-ph/9406363].
[105] Y. Schroder and M. Steinhauser, Phys. Lett. B 622, 124 (2005), [hep-ph/0504055].
[106] K. Chetyrkin et al., Phys. Rev. Lett. 97, 102003 (2006), [hep-ph/0605201].
[107] R. Boughezal and M. Czakon, Nucl. Phys. B 755, 221 (2006), [hep-ph/0606232].
[108] B. A. Kniehl, J. H. Kuhn and R. Stuart, Phys. Lett. B 214, 621 (1988).
[109] B. A. Kniehl, Nucl. Phys. B 347, 86 (1990).
[110] F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991).
[111] A. Djouadi and P. Gambino, Phys. Rev. D 49, 3499 (1994), [Erratum: Phys.Rev.D 53, 4111 (1996)], [hep-ph/9309298].
[112] A. Anselm, N. Dombey and E. Leader, Phys. Lett. B 312, 232 (1993).
[113] K. Chetyrkin, J. H. Kuhn and M. Steinhauser, Phys. Rev. Lett. 75, 3394 (1995), [hep-ph/9504413].
[114] J. van der Bij et al., Phys. Lett. B 498, 156 (2001), [hepph/0011373].
[115] M. Faisst et al., Nucl. Phys. B 665, 649 (2003), [hepph/0302275].
[116] R. Boughezal, J. Tausk and J. van der Bij, Nucl. Phys. B 725, 3 (2005), [hep-ph/0504092].
[117] A. Arbuzov et al., Comput. Phys. Commun. 174, 728 (2006), [hep-ph/0507146].
[118] J. Erler and M. J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005), [hep-ph/0404291].
[119] J. Formaggio and G. Zeller, Rev. Mod. Phys. 84, 1307 (2012), [arXiv:1305.7513].
[120] J. Dorenbosch et al. (CHARM), Z. Phys. C 41, 567 (1989), [Erratum: Z.Phys.C 51, 142 (1991)].
[121] L. Ahrens et al., Phys. Rev. D 41, 3297 (1990).
[122] P. Vilain et al. (CHARM-II), Phys. Lett. B 335, 246 (1994).
[123] R. Allen et al., Phys. Rev. D 47, 11 (1993).
[124] L. Auerbach et al. (LSND), Phys. Rev. D 63, 112001 (2001), [hep-ex/0101039].
[125] M. Deniz et al. (TEXONO), Phys. Rev. D 81, 072001 (2010), [arXiv:0911.1597].
[126] J. M. Conrad, M. H. Shaevitz and T. Bolton, Rev. Mod. Phys. 70, 1341 (1998), [hep-ex/9707015].
[127] A. Blondel et al., Z. Phys. C 45, 361 (1990).
[128] J. Allaby et al. (CHARM), Z. Phys. C 36, 611 (1987).
[129] K. S. McFarland et al. (CCFR, E744, E770), Eur. Phys. J. C 1, 509 (1998), [hep-ex/9701010].
[130] R. Barnett, Phys. Rev. D 14, 70 (1976).
[131] H. Georgi and H. Politzer, Phys. Rev. D 14, 1829 (1976).
[132] S. Rabinowitz et al., Phys. Rev. Lett. 70, 134 (1993).
[133] E. Paschos and L. Wolfenstein, Phys. Rev. D 7, 91 (1973).
[134] G. Zeller et al. (NuTeV), Phys. Rev. Lett. 88, 091802 (2002), [Erratum: Phys.Rev.Lett. 90, 239902 (2003)], [hepex/0110059].
[135] D. Akimov et al. (COHERENT), Science 357, 6356, 1123 (2017), [arXiv:1708.01294].
[136] J. Erler et al., Ann. Rev. Nucl. Part. Sci. 64, 269 (2014), [arXiv:1401.6199].
[137] C. Prescott et al., Phys. Lett. B 84, 524 (1979).
[138] D. Wang et al. (PVDIS), Nature 506, 7486, 67 (2014).
[139] D. Wang et al., Phys. Rev. C 91, 4, 045506 (2015), [arXiv:1411.3200].
[140] R. Hasty et al. (SAMPLE), Science 290, 2117 (2000), [arXiv:nucl-ex/0102001].
[141] E. Beise, M. Pitt and D. Spayde, Prog. Part. Nucl. Phys. 54, 289 (2005), [arXiv:nucl-ex/0412054].
[142] S.-L. Zhu et al., Phys. Rev. D 62, 033008 (2000), [hepph/0002252].
[143] A. Argento et al., Phys. Lett. B 120, 245 (1983).
[144] W. Heil et al., Nucl. Phys. B 327, 1 (1989).
[145] P. Souder et al., Phys. Rev. Lett. 65, 694 (1990).
[146] D. Armstrong and R. McKeown, Ann. Rev. Nucl. Part. Sci. 62, 337 (2012), [arXiv:1207.5238].
[147] E. Derman and W. J. Marciano, Annals Phys. 121, 147 (1979).
[148] P. Anthony et al. (SLAC E158), Phys. Rev. Lett. 95, 081601 (2005), [hep-ex/0504049].
[149] D. Androić et al. (Qweak), Nature 557, 7704, 207 (2018), [arXiv:1905.08283].
[150] R. D. Carlini et al., Ann. Rev. Nucl. Part. Sci. 69, 191 (2019).
[151] J. Erler, A. Kurylov and M. J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003), [hep-ph/0302149].
[152] R. D. Young et al., Phys. Rev. Lett. 99, 122003 (2007), [arXiv:0704.2618].
[153] A. Acha et al. (HAPPEX), Phys. Rev. Lett. 98, 032301 (2007), [arXiv:nucl-ex/0609002].
[154] M. Gorchtein and C. Horowitz, Phys. Rev. Lett. 102, 091806 (2009), [arXiv:0811.0614].
[155] M. Gorchtein, C. Horowitz and M. J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011), [arXiv:1102.3910].
[156] N. Hall et al., Phys. Lett. B 753, 221 (2016), [arXiv:1504.03973].
[157] J. Erler et al., Phys. Rev. D 100, 5, 053007 (2019), [arXiv:1907.07928].
[158] M. Bouchiat and C. Bouchiat, Phys. Lett. B 48, 111 (1974).
[159] M. Safronova et al., Rev. Mod. Phys. 90, 2, 025008 (2018), [arXiv:1710.01833].
[160] C. Wood et al., Science 275, 1759 (1997).
[161] J. Guena, M. Lintz and M. Bouchiat, Phys. Rev. A 71, 042108 (2005), [arXiv:physics/0412017].
[162] N. Edwards et al., Phys. Rev. Lett. 74, 2654 (1995).
[163] P. Vetter et al., Phys. Rev. Lett. 74, 2658 (1995).
[164] D. Meekhof et al., Phys. Rev. Lett. 71, 3442 (1993).
[165] M. Macpherson et al., Phys. Rev. Lett. 67, 20, 2784 (1991).
[166] P. Blunden, W. Melnitchouk and A. Thomas, Phys. Rev. Lett. 109, 262301 (2012), [arXiv:1208.4310].
[167] S. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484 (1999), [Erratum: Phys.Rev.Lett. 82, 4153 (1999), Erratum: Phys.Rev.Lett. 83, 889 (1999)], [hep-ex/9903022].
[168] V. Dzuba and V. Flambaum., Phys. Rev. A 62, 052101 (2000), [arXiv:physics/0005038].
[169] V. Dzuba, V. Flambaum and O. Sushkov, Phys. Rev. A 56, 4357 (1997), [hep-ph/9709251].
[170] D. Cho et al., Phys. Rev. A 55, 1007 (1997).
[171] G. Toh et al., Phys. Rev. Lett. 123, 7, 073002 (2019), [arXiv:1905.02768].
[172] A. A. Vasilyev et al., Phys. Rev. A 66, 020101 (2002).
[173] V. Dzuba, V. Flambaum and J. Ginges, Phys. Rev. D 66, 076013 (2002), [hep-ph/0204134].
[174] J. Ginges and V. Flambaum, Phys. Rept. 397, 63 (2004), [arXiv:physics/0309054].
[175] A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 4, 517 (2007), [hep-ph/0608178].
[176] B. Roberts, V. Dzuba and V. Flambaum, Ann. Rev. Nucl. Part. Sci. 65, 63 (2015), [arXiv:1412.6644].
[177] A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000), [hepph/0005274].
[178] W. Johnson, I. Bednyakov and G. Soff, Phys. Rev. Lett. 87, 233001 (2001), [Erratum: Phys.Rev.Lett. 88, 079903 (2002)], [hep-ph/0110262].
[179] M. Kuchiev and V. Flambaum, Phys. Rev. Lett. 89, 283002 (2002), [hep-ph/0206124].
[180] A. Milstein, O. Sushkov and I. Terekhov, Phys. Rev. Lett. 89, 283003 (2002), [hep-ph/0208227].
[181] S. Porsev, K. Beloy and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009), [arXiv:0902.0335].
[182] V. Dzuba et al., Phys. Rev. Lett. 109, 203003 (2012), [arXiv:1207.5864].
[183] C. Bouchiat and C. Piketty, Phys. Lett. B 128, 73 (1983).
[184] I. Zel'dovich, J. Exp. Theor. Phys. 6, 1184 (1958).
[185] V. Flambaum and D. Murray, Phys. Rev. C 56, 1641 (1997), [arXiv:nucl-th/9703050].
[186] W. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001), [arXiv:nucl-th/0104026].
[187] V. Dzuba et al., J. Phys. B 20, 3297 (1987).
[188] J. L. Rosner, Phys. Rev. D 53, 2724 (1996), [hepph/9507375].
[189] D. Antypas et al., Nature Phys. 15, 2, 120 (2019), [arXiv:1804.05747].
[190] M. Ramsey-Musolf, Phys. Rev. C 60, 015501 (1999), [hepph/9903264].
[191] S. Pollock, E. Fortson and L. Wilets, Phys. Rev. C 46, 2587 (1992), [arXiv:nucl-th/9211004].
[192] B. Chen and P. Vogel, Phys. Rev. C 48, 1392 (1993), [arXiv:nucl-th/9303003].
[193] C. Horowitz et al., Phys. Rev. C 63, 025501 (2001), [arXiv:nucl-th/9912038].
[194] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012), [arXiv:1201.2568].
[195] H. Davoudiasl, H.-S. Lee and W. J. Marciano, Phys. Rev. D 86, 095009 (2012), [arXiv:1208.2973].
[196] E. Braaten, S. Narison and A. Pich, Nucl. Phys. B 373, 581 (1992).
[197] A. Pich, Prog. Part. Nucl. Phys. 75, 41 (2014), [arXiv:1310.7922].
[198] M. Davier et al., Eur. Phys. J. C 74, 3, 2803 (2014), [arXiv:1312.1501].
[199] K. Chetyrkin, A. Kataev and F. Tkachov, Phys. Lett. B 85, 277 (1979).
[200] M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668 (1979).
[201] S. Gorishnii, A. Kataev and S. Larin, Phys. Lett. B 259, 144 (1991).
[202] L. R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66, 560 (1991), [Erratum: Phys.Rev.Lett. 66, 2416 (1991)].
[203] P. Baikov, K. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008), [arXiv:0801.1821].
[204] F. Le Diberder and A. Pich, Phys. Lett. B 286, 147 (1992).
[205] M. Beneke and M. Jamin, JHEP 09, 044 (2008), [arXiv:0806.3156].
[206] E. Braaten and C.-S. Li, Phys. Rev. D 42, 3888 (1990).
[207] W. Marciano and A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988).
[208] J. Erler, Rev. Mex. Fis. 50, 200 (2004), [hep-ph/0211345].
[209] D. Boito et al., Phys. Rev. D 85, 093015 (2012), [arXiv:1203.3146].
[210] D. Boito et al., Phys. Rev. D 91, 3, 034003 (2015), [arXiv:1410.3528].
[211] A. Pich and A. Rodríguez-Sánchez, Phys. Rev. D 94, 3, 034027 (2016), [arXiv:1605.06830].
[212] J. Erler (2011), [arXiv:1102.5520].
[213] G. Bennett et al. (Muon g-2), Phys. Rev. Lett. 92, 161802 (2004), [hep-ex/0401008].
[214] T. Aoyama et al., Phys. Rev. Lett. 109, 111808 (2012), [arXiv:1205.5370].
[215] T. Aoyama et al., PTEP 2012, 01A107 (2012).
[216] P. Baikov, A. Maier and P. Marquard, Nucl. Phys. B 877, 647 (2013), [arXiv:1307.6105].
[217] G. Li, R. Mendel and M. A. Samuel, Phys. Rev. D 47, 1723 (1993).
[218] S. Laporta and E. Remiddi, Phys. Lett. B 301, 440 (1993).
[219] S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996), [hep-ph/9602417].
[220] A. Czarnecki and M. Skrzypek, Phys. Lett. B 449, 354 (1999), [hep-ph/9812394].
[221] J. Erler and M. Luo, Phys. Rev. Lett. 87, 071804 (2001), [hep-ph/0101010].
[222] S. Laporta, Phys. Lett. B 772, 232 (2017), [arXiv:1704.06996].
[223] S. J. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644 (1967).
[224] T. Burnett and M. Levine, Phys. Lett. B 24, 467 (1967).
[225] R. Jackiw and S. Weinberg, Phys. Rev. D 5, 2396 (1972).
[226] I. Bars and M. Yoshimura, Phys. Rev. D 6, 374 (1972).
[227] K. Fujikawa, B. Lee and A. Sanda, Phys. Rev. D 6, 2923 (1972).
[228] W. A. Bardeen, R. Gastmans and B. Lautrup, Nucl. Phys. B 46, 319 (1972).
[229] T. Kukhto et al., Nucl. Phys. B 371, 567 (1992).
[230] S. Peris, M. Perrottet and E. de Rafael, Phys. Lett. B 355, 523 (1995), [hep-ph/9505405].
[231] A. Czarnecki, B. Krause and W. J. Marciano, Phys. Rev. D 52, 2619 (1995), [hep-ph/9506256].
[232] A. Czarnecki, B. Krause and W. J. Marciano, Phys. Rev. Lett. 76, 3267 (1996), [hep-ph/9512369].
[233] C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013), [arXiv:1306.5546].
[234] G. Degrassi and G. Giudice, Phys. Rev. D 58, 053007 (1998), [hep-ph/9803384].
[235] A. Czarnecki, W. J. Marciano and A. Vainshtein, Phys. Rev. D 67, 073006 (2003), [Erratum: Phys.Rev.D 73, 119901 (2006)], [hep-ph/0212229].
[236] F. Jegerlehner, EPJ Web Conf. 166, 00022 (2018), [arXiv:1705.00263].
[237] H. B. Meyer and H. Wittig, Prog. Part. Nucl. Phys. 104, 46 (2019), [arXiv:1807.09370].
[238] T. Blum et al. (RBC, UKQCD), Phys. Rev. Lett. 121, 2, 022003 (2018), [arXiv:1801.07224].
[239] D. Giusti et al., Phys. Rev. D 99, 11, 114502 (2019), [arXiv:1901.10462].
[240] E. Shintani and Y. Kuramashi (PACS), Phys. Rev. D 100, 3, 034517 (2019), [arXiv:1902.00885].
[241] C. Davies et al. (Fermilab Lattice, LATTICEHPQCD, MILC), Phys. Rev. D 101, 3, 034512 (2020), [arXiv:1902.04223].
[242] A. Gérardin et al., Phys. Rev. D 100, 1, 014510 (2019), [arXiv:1904.03120].
[243] S. Borsanyi et al. (2020), [arXiv:2002.12347].
[244] C. Lehner and A. S. Meyer (2020), [arXiv:2003.04177].
[245] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004), [hep-ph/0312226].
[246] J. Erler and G. Toledo Sanchez, Phys. Rev. Lett. 97, 161801 (2006), [hep-ph/0605052].
[247] J. Prades, E. de Rafael and A. Vainshtein 20, 303 (2009), [arXiv:0901.0306].
[248] M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002), [hep-ph/0111058].
[249] I. Danilkin, C. F. Redmer and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 107, 20 (2019), [arXiv:1901.10346].
[250] T. Blum et al. (2019), [arXiv:1911.08123].
[251] B. Krause, Phys. Lett. B 390, 392 (1997), [hep-ph/9607259].
[252] A. Kurz et al., Phys. Lett. B 734, 144 (2014), [arXiv:1403.6400].
[253] G. Colangelo et al., Phys. Lett. B 735, 90 (2014), [arXiv:1403.7512].
[254] J. L. Lopez, D. V. Nanopoulos and X. Wang, Phys. Rev. D 49, 366 (1994), [hep-ph/9308336].
[255] G. Passarino and M. Veltman, Nucl. Phys. B 160, 151 (1979).
[256] W. Hollik and G. Duckeck, Springer Tracts Mod. Phys. 162, 1 (2000).
[257] B. Lynn and R. Stuart, Nucl. Phys. B 253, 216 (1985).
[258] S. L. Wu, Phys. Rept. 107, 59 (1984).
[259] R. Marshall, Z. Phys. C 43, 607 (1989).
[260] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, LEP Electroweak), Phys. Rept. 532, 119 (2013), [arXiv:1302.3415].
[261] T. A. Aaltonen et al. (CDF, DØ), Phys. Rev. D 88, 5, 052018 (2013), [arXiv:1307.7627].
[262] Technical Report TEVEWWG/WZ 2010/01, FERMILAB, Batavia (2010), [arXiv:1003.2826], URL https://www-d0. fnal.gov/Run2Physics/WWW/results/prelim/EW/E34.
[263] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 78, 2, 110 (2018), [Erratum: Eur.Phys.J.C 78, 898 (2018)], [arXiv:1701.07240].
[264] G. Aad et al. (ATLAS), Phys. Lett. B 716, 1 (2012), [arXiv:1207.7214].
[265] S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), [arXiv:1207.7235].
[266] M. Aaboud et al. (ATLAS), Phys. Lett. B 784, 345 (2018), [arXiv:1806.00242].
[267] A. M. Sirunyan et al. (CMS) (2020), [arXiv:2002.06398].
[268] T. A. Aaltonen et al. (CDF, DØ), Phys. Rev. D 97, 11, 112007 (2018), [arXiv:1801.06283].
[269] G. Aad et al. (ATLAS), JHEP 09, 049 (2015), [arXiv:1503.03709].
[270] Technical Report ATLAS-CONF-2018-037, CERN, Geneva (2018), URL https://cds.cern.ch/record/2630340.
[271] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 78, 9, 701 (2018), [arXiv:1806.00863].
[272] R. Aaij et al. (LHCb), JHEP 11, 190 (2015), [arXiv:1509.07645].
[273] K. Abe et al. (SLD), Phys. Rev. Lett. 84, 5945 (2000), [hepex/0004026].
[274] K. Abe et al. (SLD), Phys. Rev. Lett. 86, 1162 (2001), [hepex/0010015].
[275] P. Janot and S. Jadach, Phys. Lett. B 803, 135319 (2020), [arXiv:1912.02067].
[276] D. Kennedy et al., Nucl. Phys. B 321, 83 (1989).
[277] S. Riemann, Rept. Prog. Phys. 73, 126201 (2010).
[278] K. Abe et al. (SLD), Phys. Rev. Lett. 85, 5059 (2000), [hepex/0006019].
[279] K. Abe et al. (SLD), Phys. Rev. Lett. 78, 17 (1997), [hepex/9609019].
[280] W. Bernreuther et al., JHEP 01, 053 (2017), [arXiv:1611.07942].
[281] S. Catani and M. H. Seymour, JHEP 07, 023 (1999), [hepph/9905424].
[282] A. Djouadi, J. H. Kuhn and P. Zerwas, Z. Phys. C 46, 411 (1990).
[283] T. A. Aaltonen et al. (CDF), Phys. Rev. D 93, 11, 112016 (2016), [Addendum: Phys.Rev.D 95, 119901 (2017)], [arXiv:1605.02719].
[284] V. M. Abazov et al. (DØ), Phys. Rev. Lett. 120, 24, 241802 (2018), [arXiv:1710.03951].
[285] V. Abazov et al. (DØ), Phys. Rev. D 84, 012007 (2011), [arXiv:1104.4590].
[286] D. Acosta et al. (CDF), Phys. Rev. D 71, 052002 (2005), [hep-ex/0411059].
[287] A. Aktas et al. (H1), Phys. Lett. B 632, 35 (2006), [hepex/0507080].
[288] H. Abramowicz et al. (ZEUS), Phys. Rev. D 93, 9, 092002 (2016), [arXiv:1603.09628].
[289] D. Albert et al., Nucl. Phys. B 166, 460 (1980).
[290] K. Chetyrkin, J. H. Kuhn and A. Kwiatkowski, Phys. Rept. 277, 189 (1996), [hep-ph/9503396].
[291] B. A. Kniehl and J. H. Kuhn, Nucl. Phys. B 329, 547 (1990).
[292] K. Chetyrkin and A. Kwiatkowski, Phys. Lett. B 319, 307 (1993), [hep-ph/9310229].
[293] S. Larin, T. van Ritbergen and J. Vermaseren, Phys. Lett. B 320, 159 (1994), [hep-ph/9310378].
[294] K. Chetyrkin and O. Tarasov, Phys. Lett. B 327, 114 (1994), [hep-ph/9312323].
[295] P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012), [arXiv:1201.5804].
[296] A. Kataev, Phys. Lett. B 287, 209 (1992).
[297] B. W. Lynn and R. G. Stuart, Phys. Lett. B 252, 676 (1990).
[298] J. Bernabeu, A. Pich and A. Santamaria, Nucl. Phys. B 363, 326 (1991).
[299] A. Czarnecki and J. H. Kuhn, Phys. Rev. Lett. 77, 3955 (1996), [hep-ph/9608366].
[300] R. Harlander, T. Seidensticker and M. Steinhauser, Phys. Lett. B 426, 125 (1998), [hep-ph/9712228].
[301] J. Fleischer et al., Phys. Lett. B 459, 625 (1999), [hepph/9904256].
[302] P. A. Grassi, B. A. Kniehl and A. Sirlin, Phys. Rev. Lett. 86, 389 (2001), [hep-th/0005149].
[303] A. Akhundov, D. Bardin and T. Riemann, Nucl. Phys. B 276, 1 (1986).
[304] F. Jegerlehner, Z. Phys. C 32, 425 (1986), [Erratum: Z.Phys.C 38, 519 (1988)].
[305] W. Beenakker and W. Hollik, Z. Phys. C 40, 141 (1988).
[306] D. Bardin et al., Z. Phys. C 44, 493 (1989).
[307] A. Borrelli et al., Nucl. Phys. B 333, 357 (1990).
[308] A. Denner and T. Sack, Z. Phys. C 46, 653 (1990).
[309] A. Denner, Fortsch. Phys. 41, 307 (1993), [arXiv:0709.1075].
[310] U. Amaldi et al., Phys. Rev. D 36, 1385 (1987).
[311] G. Costa et al., Nucl. Phys. B 297, 244 (1988).
[312] P. Langacker and M. Luo, Phys. Rev. D 44, 817 (1991).
[313] J. Erler and P. Langacker, Phys. Rev. D 52, 441 (1995), [hep-ph/9411203].
[314] F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
[315] D. d'Enterria and A. Poldaru (2019), [arXiv:1912.11733].
[316] V. Abazov et al. (DØ), Phys. Rev. D 80, 111107 (2009), [arXiv:0911.2710].
[317] J. Bagger, K. T. Matchev and D. Pierce, Phys. Lett. B 348, 443 (1995), [hep-ph/9501277].
[318] P. Langacker and N. Polonsky, Phys. Rev. D 52, 3081 (1995), [hep-ph/9503214].
[319] M. Veltman, Nucl. Phys. B 123, 89 (1977).
[320] M. S. Chanowitz, M. Furman and I. Hinchliffe, Phys. Lett. B 78, 285 (1978).
[321] J. van der Bij and F. Hoogeveen, Nucl. Phys. B 283, 477 (1987).
[322] P. Langacker and M. Luo, Phys. Rev. D 45, 278 (1992).
[323] A. Denner, R. Guth and J. H. Kuhn, Phys. Lett. B 240, 438 (1990).
[324] W. Grimus et al., J. Phys. G 35, 075001 (2008), [arXiv:0711.4022].
[325] H. E. Haber and D. O'Neil, Phys. Rev. D 83, 055017 (2011), [arXiv:1011.6188].
[326] S. Bertolini and A. Sirlin, Phys. Lett. B 257, 179 (1991).
[327] M. Golden and L. Randall, Nucl. Phys. B 361, 3 (1991).
[328] B. Holdom and J. Terning, Phys. Lett. B 247, 88 (1990).
[329] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990).
[330] K. Hagiwara et al., Z. Phys. C 64, 559 (1994), [Erratum: Z.Phys.C 68, 352 (1995)], [hep-ph/9409380].
[331] M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992).
[332] I. Maksymyk, C. Burgess and D. London, Phys. Rev. D 50, 529 (1994), [hep-ph/9306267].
[333] R. Barbieri et al., Nucl. Phys. B 703, 127 (2004), [hepph/0405040].
[334] M. Farina et al., Phys. Lett. B 772, 210 (2017), [arXiv:1609.08157].
[335] G. Altarelli and R. Barbieri, Phys. Lett. B 253, 161 (1991).
[336] D. Kennedy and P. Langacker, Phys. Rev. D 44, 1591 (1991).
[337] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), [hep-ph/9905221].
[338] M. Carena et al., Nucl. Phys. B 759, 202 (2006), [hepph/0607106].
[339] R. Contino (2011), [arXiv:1005.4269].
[340] E. Gates and J. Terning, Phys. Rev. Lett. 67, 1840 (1991).
[341] R. Sundrum, Nucl. Phys. B 395, 60 (1993), [hepph/9205203].
[342] R. Sundrum and S. D. Hsu, Nucl. Phys. B 391, 127 (1993), [hep-ph/9206225].
[343] M. A. Luty and R. Sundrum, Phys. Rev. Lett. 70, 529 (1993), [hep-ph/9209255].
[344] T. Appelquist and J. Terning, Phys. Lett. B 315, 139 (1993), [hep-ph/9305258].
[345] D. D. Dietrich, F. Sannino and K. Tuominen, Phys. Rev. D 72, 055001 (2005), [hep-ph/0505059].
[346] N. D. Christensen and R. Shrock, Phys. Lett. B 632, 92 (2006), [hep-ph/0509109].
[347] M. Harada, M. Kurachi and K. Yamawaki, Prog. Theor. Phys. 115, 765 (2006), [hep-ph/0509193].
[348] H. Georgi, Nucl. Phys. B 363, 301 (1991).
[349] M. J. Dugan and L. Randall, Phys. Lett. B 264, 154 (1991).
[350] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[351] A. Djouadi, Phys. Rept. 459, 1 (2008), [hep-ph/0503173].
[352] R. Barbieri et al., Nucl. Phys. B 341, 309 (1990).
[353] R. Barbieri, M. Frigeni and F. Caravaglios, Phys. Lett. B 279, 169 (1992).
[354] J. Erler and D. M. Pierce, Nucl. Phys. B 526, 53 (1998), [hep-ph/9801238].
[355] G.-C. Cho and K. Hagiwara, Nucl. Phys. B 574, 623 (2000), [hep-ph/9912260].
[356] G. Altarelli et al., JHEP 06, 018 (2001), [hep-ph/0106029].
[357] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rept. 425, 265 (2006), [hep-ph/0412214].
[358] S. P. Martin, K. Tobe and J. D. Wells, Phys. Rev. D 71, 073014 (2005), [hep-ph/0412424].
[359] M. Ramsey-Musolf and S. Su, Phys. Rept. 456, 1 (2008), [hep-ph/0612057].
[360] S. Heinemeyer et al., JHEP 04, 039 (2008), [arXiv:0710.2972].
[361] O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012), [arXiv:1112.3564].
[362] B. Grinstein and M. B. Wise, Phys. Lett. B 265, 326 (1991).
[363] A. Pich, I. Rosell and J. Sanz-Cillero, JHEP 01, 157 (2014), [arXiv:1310.3121].
[364] C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003), [Erratum: Phys.Rept. 390, 553-554 (2004)], [hepph/0203079].
[365] G. Panico and A. Wulzer 913 (2016), [arXiv:1506.01961].
[366] J. Erler and P. Langacker, Phys. Rev. Lett. 105, 031801 (2010), [arXiv:1003.3211].
[367] J. Gunion, D. W. McKay and H. Pois, Phys. Rev. D 53, 1616 (1996), [hep-ph/9507323].
[368] A. Lenz, Adv. High Energy Phys. 2013, 910275 (2013).
[369] S. Chatrchyan et al. (CMS), Phys. Rev. D 86, 112003 (2012), [arXiv:1209.1062].
[370] A. Djouadi and A. Lenz, Phys. Lett. B 715, 310 (2012), [arXiv:1204.1252].
[371] O. Eberhardt et al., Phys. Rev. Lett. 109, 241802 (2012), [arXiv:1209.1101].
[372] J. Maalampi and M. Roos, Phys. Rept. 186, 53 (1990).
[373] P. Langacker, Phys. Rept. 72, 185 (1981).
[374] J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
[375] J. Kang, P. Langacker and B. D. Nelson, Phys. Rev. D 77, 035003 (2008), [arXiv:0708.2701].
[376] S. P. Martin, Phys. Rev. D 81, 035004 (2010), [arXiv:0910.2732].
[377] P. W. Graham et al., Phys. Rev. D 81, 055016 (2010), [arXiv:0910.3020].
[378] J. Erler, J. L. Feng and N. Polonsky, Phys. Rev. Lett. 78, 3063 (1997), [hep-ph/9612397].
[379] D. Choudhury, T. M. Tait and C. Wagner, Phys. Rev. D 65, 053002 (2002), [hep-ph/0109097].
[380] J. Erler and P. Langacker, Phys. Rev. Lett. 84, 212 (2000), [hep-ph/9910315].
[381] P. Langacker and M. Plumacher, Phys. Rev. D 62, 013006 (2000), [hep-ph/0001204].
[382] P. Abreu et al. (DELPHI), Eur. Phys. J. C 10, 415 (1999).
[383] P. Langacker and D. London, Phys. Rev. D 38, 886 (1988).
[384] F. del Aguila, J. de Blas and M. Perez-Victoria, Phys. Rev. D 78, 013010 (2008), [arXiv:0803.4008].
[385] M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005), [hepph/0406029].
[386] R. Barbier et al., Phys. Rept. 420, 1 (2005), [hepph/0406039].
[387] T. Han, H. E. Logan and L.-T. Wang, JHEP 01, 099 (2006), [hep-ph/0506313].
[388] M. Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007), [hepph/0512128].
[389] I. Antoniadis (2001), [hep-th/0102202].
[390] M. Carena et al., Phys. Rev. D 68, 035010 (2003), [hepph/0305188].
[391] K. Agashe et al., JHEP 08, 050 (2003), [hep-ph/0308036].
[392] I. Gogoladze and C. Macesanu, Phys. Rev. D 74, 093012 (2006), [hep-ph/0605207].
[393] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[394] W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621 (1986).
[395] B. Grzadkowski et al., JHEP 10, 085 (2010), [arXiv:1008.4884].
[396] R. Contino et al., JHEP 07, 035 (2013), [arXiv:1303.3876].
[397] K. Hagiwara et al., Phys. Rev. D 48, 2182 (1993).
[398] A. Falkowski, F. Riva and A. Urbano, JHEP 11, 111 (2013), [arXiv:1303.1812].
[399] A. Pomarol and F. Riva, JHEP 01, 151 (2014), [arXiv:1308.2803].
[400] J. Ellis, V. Sanz and T. You, JHEP 03, 157 (2015), [arXiv:1410.7703].
[401] A. Efrati, A. Falkowski and Y. Soreq, JHEP 07, 018 (2015), [arXiv:1503.07872].
[402] J. de Blas et al., PoS EPS-HEP2017, 467 (2017), [arXiv:1710.05402].
[403] G. Altarelli, R. Barbieri and S. Jadach, Nucl. Phys. B 369, 3 (1992), [Erratum: Nucl.Phys.B 376, 444 (1992)].
[404] G.-C. Cho, K. Hagiwara and S. Matsumoto, Eur. Phys. J. C 5, 155 (1998), [hep-ph/9707334].
[405] K. Cheung, Phys. Lett. B 517, 167 (2001), [hepph/0106251].
[406] Z. Han and W. Skiba, Phys. Rev. D 71, 075009 (2005), [hep-ph/0412166].
[407] P. Langacker, M. Luo and A. K. Mann, Rev. Mod. Phys. 64, 87 (1992).
[408] P. Langacker, Rev. Mod. Phys. 81, 1199 (2009), [arXiv:0801.1345].

11. Status of Higgs Boson Physics

Revised August 2019 by M. Carena (FNAL; Chicago U.; Chicago U., Kavli Inst.), C. Grojean (Theoriegruppe, DESY, Hamburg; Physik, Humboldt U.), M. Kado (Rome U. Sapienza; INFN, Rome; U. Paris-Saclay, IJCLab) and V. Sharma (UC San Diego).
11.1 Introduction 203
11.2 The Standard Model and the mechanism of elec-troweak symmetry breaking204
11.2.1 The SM Higgs boson mass, couplings and quantum numbers 204
11.2.2 The SM custodial symmetry 205
11.2.3 Stability of the Higgs potential 205
11.2.4 Higgs boson production and decay mecha- nisms 205
11.3 The experimental profile of the Higgs boson 209
11.3.1 The principal decay channels to vector bosons209
11.3.2 Decays to third generation fermions ($b \bar{b}$ and$\left.\tau^{+} \tau^{-}\right)$212
11.3.3 Higgs boson production in association with top quarks or in top decays 214
11.3.4 Higgs boson pair production 215
11.3.5 Searches for rare decays of the Higgs boson 216
11.3.6 Searches for non-SM decay channels 218
11.4 Combining the main channels 220
11.4.1 Principles of the combination 220
11.4.2 Main decay modes 221
11.4.3 Main production modes 222
11.5 Main quantum numbers and width of the Higgs boson 222
11.5.1 Main quantum numbers $J^{P C}$ 222
11.5.2 Off-shell couplings of the Higgs boson 225
11.5.3 The Higgs boson width 226
11.6 Probing the coupling properties of the Higgs boson227
11.6.1 Effective Lagrangian framework 228
11.6.2 Probing coupling properties 228
11.7 New physics models of EWSB in the light of theHiggs boson discovery234
11.7.1 Higgs bosons in the minimal supersymmet- ric standard model (MSSM) 235
11.7.2 Supersymmetry with singlet extensions 238
11.7.3 Supersymmetry with extended gauge sector 238
11.7.4 Effects of $C P$ violation 239
11.7.5 Non-supersymmetric extensions of the Higgs sector 240
11.7.6 Composite Higgs models 242
11.7.7 Searches for signatures of extended Higgs sectors 245
11.8 Summary and outlook 250

11.1 Introduction

Understanding the mechanism that breaks the electroweak symmetry and generates the masses of the known elementary particles has been one of the fundamental endeavours in particle physics for several decades. The discovery in 2012 by the ATLAS [1] and the CMS [2] collaborations of a new resonance with a mass of approximately 125 GeV and the subsequent studies of its properties with the full data set from Run 1, from 2009 to 2012, with a centre-of-mass energy of 7 TeV and 8 TeV , conclusively provided a first portrait of the Electroweak Symmetry Breaking (EWSB) mechanism. The data collected during the LHC Run 2, from 2015 to 2018, with a higher centre-of-mass energy of 13 TeV and more conspicuous dataset, put in solid grounds the compatibility of the measured resonance with the Higgs boson of the Standard Model (SM) [3].

In the SM, the electroweak interactions are described by a gauge field theory invariant under the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ symmetry group. The mechanism of EWSB [4] provides a general framework to keep untouched the structure of these gauge interactions at high energies and still generate the observed masses of the W and Z gauge bosons. The EWSB mechanism posits a self-interacting complex

EW doublet scalar field, whose $C P$-even neutral component acquires a vacuum expectation value (VEV) $v \approx 246 \mathrm{GeV}$, which sets the scale of the symmetry breaking. Three massless Goldstone bosons are generated and are absorbed to give masses to the W and Z gauge bosons. The remaining component of the complex doublet becomes the Higgs boson - a new, and so far unique, fundamental scalar particle. The masses of all fermions are also a consequence of EWSB since the Higgs doublet is postulated to couple to the fermions through Yukawa interactions

The initial measurements during the LHC Run 1 were accessible mainly through production and decay channels related to the couplings of the Higgs boson to the vector gauge bosons (the mediators of the electroweak interactions, $W^{ \pm}, Z$ and γ, as well as the gluons, g, mediators of the strong interactions).

The outstanding performance of the LHC Run 2, made it possible for the ATLAS and CMS experiments to independently and unambiguously establish the couplings of the Higgs boson to the charged fermions of the third generation (the top quark, the bottom quark, and the tau). These observations of fundamental importance were made with partial Run 2 datasets.

In all observed production and decay modes measured so far, the rates and differential measurements are found to be consistent, within experimental and theoretical uncertainties, with the SM predictions. In high resolution decay channels, such as the ones with four leptons (electrons or muons) or diphoton final states, the mass of the Higgs boson has been measured at the permill precision level.

Nevertheless, several channels are still out of reach experimentally and the couplings of the Higgs boson to light fermions are yet to be proven. Moreover, within the current precision, a more complex sector with additional states is not ruled out, nor has it been established whether the Higgs boson is an elementary particle or whether it has an internal structure like any other scalar particles observed before it.
Without the Higgs boson, the calculability of the SM would have been spoiled. In particular, perturbative unitarity [5] would be lost at high energies since the longitudinal W / Z boson scattering amplitude would grow with the centre-of-mass energy. In addition, the radiative corrections to the gauge boson self-energies would exhibit dangerous logarithmic divergences that would be difficult to reconcile with EW precision data. With the discovery of the Higgs boson, the SM is a spontaneously broken gauge theory and, as such, it could a priori be consistently extrapolated well above the masses of the W and Z bosons. Hence, formally there is no need for new physics at the EW scale. However, as the SM Higgs boson is a scalar particle, at the quantum level it has sensitivity to possible new physics scales. Quite generally, the Higgs boson mass is affected by the presence of heavy particles and receives quantum corrections which destabilise the weak scale barring a large fine tuning of unrelated parameters. This is known as the Higgs naturalness or hierarchy problem [6]. It has been the prime argument for expecting new physics right at the TeV scale. New theoretical paradigms have been imagined, such as a new fermion-boson symmetry called supersymmetry (SUSY) [7] (for recent reviews, see Refs. $[8,9]$), or the existence of strong interactions at a scale of the order of a TeV from which the Higgs boson would emerge as a composite state [10] (see Refs. [11, 12] for recent reviews). Alternatively, new agents stabilising the weak scale could also be light but elusive, like in models of neutral naturalness $[13,14]$. Other more recent scenarios [15], instead, rely on the cosmological evolution of the Universe to drive the Higgs boson mass to a value much smaller than the cutoff of the theory and aim at alleviating the hierarchy problem without the need for TeV scale new physics, even thought there might still be interesting and spectacular signatures $[15,16]$. Beyond the naturalness problem, extensions of the SM Higgs sector without other low-energy particles have been proposed, for example, to provide explanations for the fermion mass hierarchies, see e.g. Ref. [17], to account for the Dark Matter abundance, see e.g. Ref. [18], or to modify the properties of the electroweak phase transition [19]. Such models with additional scalars provide grounds to explore new Higgs boson signals in concrete and complete scenarios, with different types of coupling structure to fermions and gauge bosons.

The Higgs boson is anyway special and, in the eight years since its discovery, it became a powerful tool to explore the manifestations of the SM and to probe the physics landscape beyond it. It might offer direct insights on what comes beyond the weak scale through possible sizeable effects on the Higgs boson properties. The Higgs boson couplings, however, are observed to be in good agreement with their SM predictions. This, together with the strong bounds from precision electroweak and flavour data, leaves open the possibility that the Higgs boson may well be elementary, weakly coupled and solitary up to the Planck scale, rendering the EW vacuum potentially metastable [20].

After completion of the first two runs, the LHC has only gathered approximately 5% of its projected full dataset. During the second long shut down currently underway, the LHC is undergoing important upgrades in order to prepare for its high luminosity phase. The foreseen larger datasets to be collected during Run 3 and ultimately during the High Luminosity LHC (HL-LHC), will enable yet more fundamental and challenging measurements to explore new physics.

This review is organised as follow. Section 11.2 is a theoretical review of the SM Higgs boson, its properties, production mechanisms and decay rates. In Section 11.3, the experimental measurements are described. In Section 11.4, the combination of the main Higgs boson production and decay channels is presented. In Section 11.5, measurements of the main quantum numbers and $C P$ properties of the Higgs boson are reported and the bounds on its total width are discussed. In Section 11.6, a general theoretical framework to describe the deviations of the Higgs boson couplings from the SM predictions is introduced and the experimental measurements of these Higgs couplings is reviewed. Measurements of differential cross sections are outlined. Section 11.7 presents, in detail, some interesting models proposed for extensions of the SM Higgs sector, addressing the hierarchy problem or not, and considers their experimental signatures. Section 11.8 provides a short summary and a brief outlook.

11.2 The Standard Model and the mechanism of electroweak symmetry breaking

In the SM [3], electroweak symmetry breaking [4] is responsible for generating mass for the W and Z gauge bosons rendering the weak interactions short ranged. The SM scalar potential reads:

$$
\begin{equation*}
V(\Phi)=m^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \tag{11.1}
\end{equation*}
$$

with the Higgs field Φ being a self-interacting $\mathrm{SU}(2)_{L}$ complex doublet (four real degrees of freedom) with weak hypercharge $Y=1$ (the hypercharge is normalised such that $Q=T_{3 L}+Y / 2, Q$ being the electric charge and $T_{3 L}$ the eigenvalue of the diagonal generator of $\left.\mathrm{SU}(2)_{L}\right)$:

$$
\begin{equation*}
\Phi=\frac{1}{\sqrt{2}}\binom{\sqrt{2} \phi^{+}}{\phi^{0}+i a^{0}} \tag{11.2}
\end{equation*}
$$

where ϕ^{0} and a^{0} are the $C P$-even and $C P$-odd neutral components, and ϕ^{+}is the complex charged component of the Higgs doublet, respectively. $V(\Phi)$ is the most general renormalisable scalar potential. If the quadratic term is negative, the neutral component of the scalar doublet acquires a non-zero vacuum expectation value (VEV)

$$
\begin{equation*}
\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v} \tag{11.3}
\end{equation*}
$$

with $\phi^{0}=H+\left\langle\phi^{0}\right\rangle$ and $\left\langle\phi^{0}\right\rangle \equiv v$, inducing the spontaneous breaking of the SM gauge symmetry $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ into $\mathrm{SU}(3)_{C} \times \mathrm{U}(1)_{\mathrm{em}}$. The global minimum of the theory defines the ground state, and spontaneous symmetry breaking implies that there is a (global and/or local) symmetry of the system that is not respected by the ground state. From the four generators of the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ SM gauge group, three are spontaneously broken, implying that they lead to non-trivial transformations of the ground state and indicate the existence of three massless Goldstone bosons identified with three of the four Higgs field degrees of freedom. The Higgs field couples to the W_{μ} and B_{μ} gauge fields associated with the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ local symmetry through the
covariant derivative appearing in the kinetic term of the Higgs Lagrangian,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{Higgs}}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)-V(\Phi) \tag{11.4}
\end{equation*}
$$

where $D_{\mu} \Phi=\left(\partial_{\mu}+i g \sigma^{a} W_{\mu}^{a} / 2+i g^{\prime} Y B_{\mu} / 2\right) \Phi, g$ and g^{\prime} are the $\mathrm{SU}(2)_{L}$ and $\mathrm{U}(1)_{Y}$ gauge couplings, respectively, and $\sigma^{a}, a=$ $1,2,3$ are the usual Pauli matrices. As a result, the neutral and the two charged massless Goldstone degrees of freedom mix with the gauge fields corresponding to the broken generators of $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ and become, in the unitarity gauge, the longitudinal components of the Z and W physical gauge bosons, respectively. The Z and W gauge bosons acquire masses,

$$
\begin{equation*}
m_{W}^{2}=\frac{g^{2} v^{2}}{4}, \quad m_{Z}^{2}=\frac{\left(g^{\prime 2}+g^{2}\right) v^{2}}{4} \tag{11.5}
\end{equation*}
$$

The fourth generator remains unbroken since it is the one associated to the conserved $\mathrm{U}(1)_{\mathrm{em}}$ gauge symmetry, and its corresponding gauge field, the photon, remains massless. Similarly the eight color gauge bosons, the gluons, corresponding to the conserved $\mathrm{SU}(3)_{C}$ gauge symmetry with 8 unbroken generators, also remain massless (though confined inside hadrons and mesons as the result of the asymptotic freedom behaviour of QCD). Hence, from the initial four degrees of freedom of the Higgs field, two are absorbed by the $W^{ \pm}$gauge bosons, one by the Z gauge boson, and there is one remaining degree of freedom, H, that is the physical Higgs boson - a new scalar particle first imagined by P. Higgs [4]. The Higgs boson is neutral under the electromagnetic interactions and transforms as a singlet under $\mathrm{SU}(3)_{C}$ and hence does not couple at tree level to the massless photons and gluons.

The fermions of the SM acquire mass through renormalisable interactions between the Higgs field and the fermions: the Yukawa interactions,
$\mathcal{L}_{\text {Yukawa }}=-\hat{h}_{d_{i j}} \bar{q}_{L_{i}} \Phi d_{R_{j}}-\hat{h}_{u_{i j}} \bar{q}_{L_{i}} \tilde{\Phi} u_{R_{j}}-\hat{h}_{l_{i j}} \bar{l}_{L_{i}} \Phi e_{R_{j}}+$ h.c.,
which respect the symmetries of the SM but generate fermion masses once EWSB occurs. In the Lagrangian above, $\tilde{\Phi}=i \sigma_{2} \Phi^{*}$ and $q_{L}\left(l_{L}\right)$ and $u_{R}, d_{R}\left(e_{R}\right)$ are the quark (lepton) $\mathrm{SU}(2)_{L}$ doublets and singlets, respectively, while in each term, $\hat{h}_{X_{i j}}$ is parametrised by a 3×3 matrix in family space. The mass term for neutrinos is omitted, but could be added in an analogous manner to the up-type quarks when right-handed neutrinos are supplementing the SM particle content (neutrinos can also acquire Majorana masses via non-renormalisable dimension-5 interactions with the Higgs field [21]). Once the Higgs field acquires a VEV, and after rotation to the fermion mass eigenstate basis that also diagonalises the Higgs-fermion interactions, $\hat{h}_{f_{i j}} \rightarrow h_{f_{i}} \delta_{i j}$, all fermions acquire a mass given by $m_{f_{i}}=h_{f_{i}} v / \sqrt{2}$. The indices $i, j=1,2,3$ refer to the three families in the up-quark, downquark or charged lepton sectors. It should be noted that the EWSB mechanism provides no additional insight on possible underlying reasons for the large variety of masses of the fermions, often referred to as the flavour hierarchy. The fermion masses, accounting for a large number of the free parameters of the SM, are simply translated into Yukawa couplings.

11.2.1 The SM Higgs boson mass, couplings and quantum numbers

The SM Higgs boson is a $C P$-even scalar of spin 0 . Its mass is given by $m_{H}=\sqrt{2 \lambda} v$, where λ is the self coupling parameter in $V(\Phi)$. The expectation value of the Higgs field, $v=\left(\sqrt{2} G_{F}\right)^{-1 / 2} \approx 246 \mathrm{GeV}$, is fixed by the Fermi coupling G_{F}, which is determined with a precision of 0.6 ppm from muon decay measurements [22]. The quartic coupling λ is a free parameter in the SM, and hence, there is no a priori prediction for the Higgs mass. Moreover the sign of the mass parameter $m^{2}=-\lambda v^{2}$ has to be negative for the EW symmetry breaking to take place, but there is no a priori understanding of what decides of this sign. The experimentally measured Higgs boson mass, $m_{H}=125.10 \pm 0.14 \mathrm{GeV}$ [22], implies that $\lambda \simeq 0.13$ and $|m| \simeq$ 88.4 GeV .

The Higgs boson couplings to the fundamental particles are set by their masses. This is a new type of interaction; very weak for light particles, such as up and down quarks, and electrons, but strong for heavy particles such as the W and Z bosons and the top quark. More precisely, the SM Higgs couplings to fundamental fermions are linearly proportional to the fermion masses, whereas the couplings to bosons are proportional to the square of the boson masses. The SM Higgs boson couplings to gauge bosons and fermions, as well as the Higgs boson self coupling, are summarised in the following Lagrangian:

$$
\begin{align*}
\mathcal{L}=-g_{H f \bar{f}} \bar{f} f H & +\frac{g_{H H H}}{6} H^{3}+\frac{g_{H H H H}}{24} H^{4} \\
& +\delta_{V} V_{\mu} V^{\mu}\left(g_{H V V} H+\frac{g_{H H V V}}{2} H^{2}\right) \tag{11.7}
\end{align*}
$$

with

$$
\begin{align*}
& g_{H f \bar{f}}=\frac{m_{f}}{v}, g_{H V V}=\frac{2 m_{V}^{2}}{v}, g_{H H V V}=\frac{2 m_{V}^{2}}{v^{2}} \tag{11.8}\\
& g_{H H H}=\frac{3 m_{H}^{2}}{v}, g_{H H H H}=\frac{3 m_{H}^{2}}{v^{2}}
\end{align*}
$$

where $V=W^{ \pm}$or Z and $\delta_{W}=1, \delta_{Z}=1 / 2$. As a result, the dominant mechanisms for Higgs boson production and decay involve the coupling of H to W, Z and/or the third generation quarks and leptons. The Higgs boson coupling to gluons [23,24] is induced at leading order by a one-loop process in which H couples to a virtual $t \bar{t}$ pair (with minor contributions from the other lighter quarks). Likewise, the Higgs boson coupling to photons is also generated via loops, although in this case the one-loop graph with a virtual $W^{+} W^{-}$pair provides the dominant contribution [25] and it is interfering with the smaller contribution involving a virtual $t \bar{t}$ pair (as such, the Higgs coupling to photons is sensitive to the relative phase of the interactions between bosons and fermions).

11.2.2 The $S M$ custodial symmetry

The SM Higgs Lagrangian, $\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}$ of Eq. (11.4) and Eq. (11.6), is, by construction, $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ gauge invariant, but it also has an approximate global symmetry. In the limit $g^{\prime} \rightarrow 0$ and $h_{f} \rightarrow 0$, the Higgs sector has a global $\mathrm{SU}(2)_{R}$ symmetry, and hence it is invariant under a global $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$ symmetry, with $\mathrm{SU}(2)_{L}$ just being the global variant of the SM chiral gauge symmetry. This symmetry is preserved for non-vanishing Yukawa couplings, provided $h_{u}=h_{d}$. Once the Higgs acquires a VEV, both the $\mathrm{SU}(2)_{L}$ and $\mathrm{SU}(2)_{R}$ symmetry groups are broken but the diagonal subgroup $\mathrm{SU}(2)_{L+R}$ remains unbroken and it is the subgroup that defines the custodial symmetry of the SM [26].

In the limit $g^{\prime} \rightarrow 0$, the W and Z gauge bosons have equal mass and form a triplet of the $\mathrm{SU}(2)_{L+R}$ unbroken global symmetry. Using the expressions for the W and Z gauge boson masses in term of the gauge couplings, one obtains at tree level

$$
\begin{equation*}
\frac{m_{W}^{2}}{m_{Z}^{2}}=\frac{g^{2}}{g^{\prime 2}+g^{2}}=\cos ^{2} \theta_{W} \quad \text { or } \quad \rho \equiv \frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}}=1 \tag{11.9}
\end{equation*}
$$

The custodial symmetry protects the above relation from large radiative corrections. All corrections to the ρ parameter are therefore proportional to terms that break the custodial symmetry. For instance, radiative corrections involving the Higgs boson are proportional to $\sin ^{2} \theta_{W}, \delta \rho=$ $-11 G_{F} m_{Z}^{2} \sin ^{2} \theta_{W} \log \left(m_{H}^{2} / m_{Z}^{2}\right) /\left(24 \sqrt{2} \pi^{2}\right)$, and vanish in the limit $g^{\prime} \rightarrow 0$. Since $m_{t} \neq m_{b}$, there are also relevant radiative corrections generated by massive fermions. They are proportional to $m_{t}^{2}+m_{b}^{2}-2\left(m_{t}^{2} m_{b}^{2}\right) \log \left(m_{t}^{2} / m_{b}^{2}\right) /\left(m_{t}^{2}-m_{b}^{2}\right)$ and would indeed vanish for $m_{t}=m_{b}$ [27].

11.2.3 Stability of the Higgs potential

The discovery of the Higgs boson with $m_{H} \approx 125 \mathrm{GeV}$ has far reaching consequences within the SM framework. In particular, the precise value of m_{H} determines the value of the quartic coupling λ at the electroweak scale and makes it possible to study its behavior up to high energy scales. A larger value of m_{H} would have implied that the self coupling λ would become nonperturbative at some scale Λ that could be well below the Planck scale [28].

However, for the value of Higgs boson mass experimentally measured, the EW vacuum of the Higgs potential is most likely metastable [20]. The high energy evolution of λ shows that it becomes negative at energies $\Lambda=\mathcal{O}\left(10^{11}\right) \mathrm{GeV}$ (even though λ could remain positive till higher energy, maybe all the way to the Planck scale, if the top quark mass exceeds its current measured value by 3σ). When this occurs, the SM Higgs potential develops an instability and the long term existence of the EW vacuum is challenged. This behaviour may call for new physics at an intermediate scale before the instability develops, i.e., below $M_{\text {Planck }}$, even though new physics at $M_{\text {Planck }}$ could influence the stability of the EW vacuum and possibly modify this conclusion [29]. The consequences of the instability of the EW vacuum on high-scale inflation have been discussed in Ref. [30]. It was also noticed that Higgs field fluctuations during inflation could seed the formation of primordial black holes, possibly making up the Dark Matter relic abundance [31] or they could produce a stochastic background of gravitational waves with characteristic structures [32], offering a probe of the EW vacuum near criticality.

The lifetime of the EW metastable vacuum is determined by the rate of quantum tunnelling from this vacuum into the true vacuum of the theory (for the most recent computation of the EW vacuum lifetime within the SM, see Ref. [33]). Within the SM, the running of the Higgs self coupling slows down at high energies with a cancellation of its β-function at energies just one to two orders of magnitude below the Planck scale [34]. This slow evolution of the quartic coupling is responsible for saving the EW vacuum from premature collapse. It might also help the Higgs boson to play the role of an inflaton [35] (see, however, Ref. [36] for potential issues with this Higgs-boson-as-an-inflaton idea).

11.2.4 Higgs boson production and decay mechanisms

Reviews of the SM Higgs boson's properties and phenomenology, with an emphasis on the impact of loop corrections to the Higgs boson decay rates and cross sections, can be found in Refs. [37-44].

11.2.4.1 Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron collider and the LHC are gluon fusion (ggF), weak-boson fusion (VBF), associated production with a gauge boson $(V H)$, and associated production with a pair of $t \bar{t}$ quarks $(t \bar{t} H)$ or with a single top quark $(t H q)$. Figure 11.1 depicts representative diagrams for these dominant Higgs boson production processes.

The state-of-the-art of the theoretical calculations in the main different production channels is summarized in Table 11.1.

The cross sections for the production of a SM Higgs boson as a function of \sqrt{s}, the center of mass energy, for $p p$ collisions, including bands indicating the theoretical uncertainties, are summarised in Fig. 11.2 (left) [45]. A detailed discussion, including uncertainties in the theoretical calculations due to missing higherorder effects and experimental uncertainties on the determination of SM parameters involved in the calculations, can be found in Refs. [41-44]. These references also contain state-of-the-art discussions on the impact of PDF uncertainties, QCD scale uncertainties and uncertainties due to different procedures for including higher-order corrections matched to parton shower simulations, as well as uncertainties due to hadronisation and parton-shower events.

Table 11.2 summarises the Higgs boson production cross sections and relative uncertainties for a Higgs boson mass of 125 GeV , for $\sqrt{s}=7,8,13$ and 14 TeV . The Higgs boson production cross sections in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ for the Tevatron are obtained from Ref. [46].

i. Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production mechanism with the largest cross section is the gluon-fusion process, $g g \rightarrow H+X$, mediated by the exchange of a virtual, heavy top quark [47]. Contributions from lighter quarks propagating in the loop are suppressed proportionally to m_{q}^{2}. QCD radiative corrections to the gluon-fusion process are very important and have been studied in detail. Including the full dependence on the

(a)

(b)

(c)

(d)

(f)

(e)

(g)

Figure 11.1: Main leading order Feynman diagrams contributing to the Higgs boson production in (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or associated production with a gauge boson at tree level from a quark-quark interaction), (d) associated production with a gauge boson (at loop level from a gluon-gluon interaction), (e) associated production with a pair of top quarks (there is a similar diagram for the associated production with a pair of bottom quarks), (f-g) production in association with a single top quark

Table 11.1: State-of-the-art of the theoretical calculations in the main Higgs boson production channels in the SM , and the major MC tools used in the simulations

ggF	VBF	$V H$	$t \bar{t} H$
Fixed order:	Fixed order:	Fixed order:	Fixed order:
N3LO QCD + NLO EW	NNLO QCD	NLO QCD+EW	NLO QCD+EW
(HIGLU, iHixs, FeHiPro, HNNLO)	(VBF@NNLO)	(V2HV and HAWK)	(Powheg)
Resummed:	Fixed order:	Fixed order:	(MG5_aMC@NLO)
NNLO + NNLL QCD	NLO QCD + NLO EW	NNLO QCD	
(HRes)	(HAWK)	(VH@NNLO)	
Higgs $p_{T}:$			
NNLO +NNLL			
(HqT, HRes)			
Jet Veto:			
N3LO+NNLL			

Figure 11.2: (Left) The SM Higgs boson production cross sections as a function of the center of mass energy, \sqrt{s}, for $p p$ collisions [45]. The VBF process is indicated here as $q q H$. The theoretical uncertainties are indicated as bands. (Right) The branching ratios for the main decays of the SM Higgs boson near $m_{H}=125 \mathrm{GeV}[43,44]$. The theoretical uncertainties are indicated as bands.

Table 11.2: The SM Higgs boson production cross sections for $m_{H}=125 \mathrm{GeV}$ in $p p$ collisions ($p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ for the Tevatron), as a function of the center of mass energy, \sqrt{s}. The predictions for the LHC energies are taken from Refs. [41-44], the ones for the Tevatron energy are from Ref. [46]. The predictions for the ggF channel at the LHC include the latest N3LO results leading to reduced theoretical uncertainties by a factor around 2 compared to the NNLO+NLL results. The total uncertainties are estimated assuming no correlations between α_{S} and PDF uncertainties.

\sqrt{s} (TeV)	Production cross section (in pb) for $m_{H}=125 \mathrm{GeV}$					
	ggF	VBF	$W H$	$Z H$	$t t H$	total
1.96	$0.95_{-17 \%}^{+17 \%}$	$0.065_{-7 \%}^{+8 \%}$	$0.13_{-8 \%}^{+8 \%}$	$0.079_{-8 \%}^{+8 \%}$	$0.004_{-10 \%}^{+10 \%}$	1.23
7	$16.9_{-7.0 \%}^{+4.4 \%}$	$1.24_{-2.1 \%}^{+2.1 \%}$	$0.58_{-2.3 \%}^{+2.2 \%}$	$0.34_{-3.0 \%}^{+3.1 \%}$	$0.09_{-10.2 \%}^{+5.6 \%}$	19.1
	$21.4_{-6.9 \%}^{+4.4 \%}$	$1.60_{-2.1 \%}^{+2.3 \%}$	$0.70_{-2.2 \%}^{+2.1 \%}$	$0.42_{-2.9 \%}^{+3.4 \%}$	$0.13_{-10.1 \%}^{+5.9 \%}$	24.2
8						
13	$48.6_{-6.7 \%}^{+4.6 \%}$	$3.78_{-2.2 \%}^{+2.2 \%}$	$1.37_{-2.6 \%}^{+2.6 \%}$	$0.88_{-3.5 \%}^{+4.1 \%}$	$0.50_{-9.9 \%}^{+6.8 \%}$	55.1
14	$54.7_{-6.7 \%}^{+4.6 \%}$	$4.28_{-2.2 \%}^{+2.2 \%}$	$1.51_{-2.0 \%}^{+1.9 \%}$	$0.99_{-3.7 \%}^{+4.1 \%}$	$0.60_{-9.8 \%}^{+6.9 \%}$	62.1

in $\alpha_{s}[48,49]$. To a very good approximation, the leading topquark contribution can be evaluated in the limit $m_{t} \rightarrow \infty$ by matching the SM to an effective theory. The gluon-fusion amplitude is then evaluated from an effective Lagrangian containing a local $H G_{\mu \nu}^{a} G^{a \mu \nu}$ operator [23,24]. In this approximation, the cross section is known at next-to-next-to-next-to-leading order (N3LO) [50]. The validity of the effective theory with infinite m_{t} is greatly enhanced by rescaling the result by the exact LO result: $\sigma=\left(\sigma_{m_{t}}^{\mathrm{LO}} / \sigma_{m_{t}=\infty}^{\mathrm{LO}}\right) \times \sigma_{m_{t}=\infty}[44]$. The large top-quark mass approximation, after this rescaling of the cross section, yields a NNLO result that has been established to be at the percent level accuracy [51]. Further progress is made to include full top mass dependence at NNLO [52].

The LO and NLO QCD corrections [53] amount to about 80% of the total N3LO cross section. The NNLO corrections [54] further enhance the cross section by approximately 30% of the LO plus NLO result (at $\mu_{f}=\mu_{r}=m_{H} / 2$). Electroweak radiative corrections have been computed at NLO and increase the LO cross section by about 5% for $m_{H} \simeq 125 \mathrm{GeV}$ [55]. Mixed QCD-EW corrections are now being investigated with encouraging results on the computation of the exact 3-loop amplitude [56] complementing the results obtained in either limit of heavy [57] or massless [58] gauge bosons.

At N3LO, the perturbation series is rather stable with a mere enhancement of 3% of the total cross section, with a central value quite insensitive to threshold resummation effects with the scale choice mentioned above $[44,50,59]$. At the LHC with a center-ofmass energy of 13 TeV , the most up-to-date value for the production cross section of a 125 GeV Higgs boson amounts to [44]

$$
\begin{equation*}
\sigma_{\mathrm{ggF}}^{\mathrm{N3LO}}=48.6 \mathrm{pb}_{-3.3 \mathrm{pb}(-6.7 \%)}^{+2.2 \mathrm{pb}(+4.6 \%)}(\text { theory }) \pm 1.6 \mathrm{pb}(3.2 \%)\left(\mathrm{PDF}+\alpha_{s}\right) \tag{11.10}
\end{equation*}
$$

Besides considering the inclusive Higgs boson production cross section at the LHC, it is important to study differential distributions in order to probe the properties of the Higgs boson in a detailed way. A more exclusive account of Higgs boson production is also required because experimental analyses often impose cuts on the final states in order to improve the signal-tobackground ratio. To this end, it is useful to define benchmark cuts and compare the differential distributions obtained at various levels of theoretical accuracy (i.e., at NLO or NNLO) with Monte-Carlo generators. In the infinite top mass limit, the Higgs
boson p_{T} distribution is known at NNLO [60,61] (see Ref. [62] for a recent reappraisal) and heavy quark mass effects, including top-bottom interferences, have been computed at NLO [63], revealing a non-trivial logarithmic structure that will make resummation difficult [64]. A programatic approach for a fixedorder/resummation matching of the top-bottom interferences has been proposed [65]. Many search modes for the Higgs boson are carried out by separating the events according to the number of jets or the transverse momentum and rapidity of the Higgs boson. For $p_{T}<35 \mathrm{GeV}$, predictions for the transverse-momentum distribution can only be trusted after large logarithms of the form $\alpha_{s}^{n} \ln ^{k}\left(m_{H} / p_{T}^{\text {veto }}\right), k \leq 2 n-1$, and (non-Sudakov) double logarithms of the form $g_{H q \bar{q}} m_{q} / m_{H}\left[\ln ^{2}\left(m_{H} / m_{q}\right), \ln ^{2}\left(p_{T} / m_{q}\right)\right]$ have been resummed. This has been accomplished with N3LL accuracy [66] and the results have been matched onto the fixed-order prediction at NNLO [67]. In addition, impressive progress is made to improve the calculation of the Higgs boson production cross section with a jet veto (the "0-jet bin" or in the presence of a veto bounding the transverse momentum of the hardest accompanying jet) [68], reaching N2LL accuracy matched to N3LO. These accurate predictions for the jet-veto cross section are required, e.g., to suppress the $t \bar{t}$ background in the $H \rightarrow W W$ channel [69]. Electroweak corrections have been studied in Ref. [70]. Note that in the boosted regime, at $p_{T} \sim 1 \mathrm{TeV}, V H$ takes over ggF as the dominant channel [71].

ii. Vector boson fusion production mechanism

The SM Higgs boson production mode with the second-largest cross section at the LHC is vector boson fusion. At the Tevatron collider, VBF also occurred, but for $m_{H}=125 \mathrm{GeV}$ had a smaller cross section than Higgs boson production in association with a W or Z boson. Higgs boson production via VBF, $q q \rightarrow q q H$, proceeds by the scattering of two (anti-)quarks, mediated by t - or u-channel exchange of a W or Z boson, with the Higgs boson radiated off the weak-boson propagator. The scattered quarks give rise to two back-to-back hard jets in the forward and backward regions of the detector [72]. Because of the color-singlet nature of the weak-gauge boson exchange, gluon radiation from the centralrapidity regions is strongly suppressed. These characteristic features of VBF processes can be exploited to distinguish them from overwhelming QCD backgrounds, including gluon-fusion induced Higgs boson +2 jet production, and from s-channel $W H$ or $Z H$ production with a hadronically decaying weak gauge boson. After the application of specific selection cuts, the VBF channel provides a clean environment, not only for the Higgs boson searches originally performed, but also for the subsequent determination of Higgs boson couplings at the LHC.

At the inclusive level, the cross-section is known at N3LO [73], with a residual uncertainty of the order of few permill. However, this result is obtained in the DIS/factorised approximation [74] where the fusing gauge bosons are emitted from the two quark legs independently. While, the exact NNLO VBF calculation will remain out-of-reach in the near future, the leading non-factorisable contributions with two forward jets have been estimated [75]. They give some corrections, also of the order of few permill, to inclusive quantities, but they are an order of magnitude larger for differential observables. Full NNLO QCD and NLO EW results in the DIS approximation are known [76] and the residual uncertainty is of the order of a few percent but is quite sensitive to the tagging jet cuts and jet radius modelling [77].

iii. WH and ZH associated production mechanism

The next most relevant Higgs boson production mechanisms after ggF and VBF at the LHC, and the most relevant ones after ggF at the Tevatron collider, are associated production with W and Z gauge bosons. The cross sections for the associated production processes, $p p \rightarrow V H+X$, with $V=W^{ \pm}, Z$ receive contributions at NLO given by NLO QCD corrections to the Drell-Yan cross section $[78,79]$ and from NLO EW corrections. The latter, unlike the QCD corrections, do not respect the factorisation into DrellYan production since there are irreducible box contributions already at one loop [80]. At NNLO, the Drell-Yan-like corrections
to $W H$ production also give the bulk of the corrections to $Z H$ production [81]. For $Z H$ production there are, however, gluongluon induced contributions that do not involve a virtual Z gauge boson but are such that the Z gauge boson and H boson couple to gluons via top-quark loops [82], see diagram (d) in Fig. 11.1. In addition, $W H$ and $Z H$ production receive non Drell-Yan-like corrections in the $q \bar{q}^{\prime}$ and $q \bar{q}$ initiated channels, respectively, at the NNLO level, where the Higgs boson is radiated off top-quark loops [83]. The full QCD corrections up to NNLO order, the NLO EW corrections and the NLO corrections to the gluon-gluon channel are available in vHennlo [84].

As neither the Higgs boson nor the weak gauge bosons are stable particles, their decays also have to be taken into account. Providing full kinematical information for the decay products can furthermore help in the suppression of large QCD backgrounds. Differential distributions for the processes $p p \rightarrow W H \rightarrow \bar{\nu}_{\ell} \ell H$ and $p p \rightarrow Z H \rightarrow \ell^{+} \ell^{-} H / \nu_{\ell} \bar{\nu}_{\ell} H$, including NLO QCD and EW corrections, have been presented in Ref. [85]. The NNLO QCD corrections to differential observables for $W H$ production at the LHC, including the leptonic decays of the W boson and the decay of the Higgs boson into a $b \bar{b}$ pair, are presented in Ref. [86]. Calculations at the same level, including also the $Z H$ process have been performed [87]. The $W H$ production mode has also been matched to a parton shower at NNLO accuracy [88]. Full NNLO results for both the production and decay are available [89] and show a large impact of radiation from the final-state bottoms. The $W H$ and ZH production modes, especially in the boosted regime, provide a relatively clean environment for studying the decay of the Higgs boson into bottom quarks [90].

iv. Higgs boson production in association with $t \bar{t}$

Higgs boson radiation off top quarks, $p p \rightarrow t \bar{t} H$, provides a direct probe of the top-Higgs Yukawa coupling. The LO cross section for this production process was computed in Ref. [91]. Later, the NLO (+NNLL) QCD [92] and NLO EW corrections [93] were evaluated yielding a moderate increase in the total cross section of at most 20%, but significantly reducing the scale dependence of the inclusive cross section. The EW corrections can be enhanced by large electroweak Sudakov logarithms in particular in the boosted regime often used in the phenomenological analyses [94]. The total theoretical errors, estimated by combining the uncertainties from factorisation and renormalisation scales, strong gauge coupling, and parton distributions, amount to $10-15 \%$ of the corresponding inclusive cross section. Interfaces between NLO QCD calculations for $t \bar{t} H$ production with parton-shower MonteCarlo programs have been provided in Ref. [95]. These programs provide the most flexible tools to date for the computation of differential distributions, including experimental selection cuts and vetoes on the final-state particles and their decay products. The fixed-order NLO QCD calculation have been interfaced with the standard Parton Shower Monte-Carlo generators, allowing an accurate description of the $t \bar{t} H$ signal, from the energy scale of the hard scattering to the hadronisation energy scale. The exploitation of this channel requires, however, a proper description of the background, in particular $t \bar{t} b \bar{b}$, which exhibits a huge k-factor ${ }^{1}$ enhancement from shower effects, see Ref. [44] for a detailed discussion.

v. Other single Higgs boson production mechanisms at the LHC

The Higgs boson production in association with a single top quark, though subdominant, can bring valuable information, in particular regarding the sign of the top Yukawa coupling. This is due to an almost totally destructive interference between two large contributions, one where the Higgs boson couples to a space-like W boson and the other where it couples to the top quark. This process has been computed at NLO in a five-flavour scheme [96] and amounts to about 90 fb at $\sqrt{s}=14 \mathrm{TeV}$ (with the opposite sign of the top Yukawa coupling, the cross section increases by one or-

[^24]der of magnitude while the cross section for associated production with a pair of top quarks is unaffected).
The Higgs boson production in association with a pair of bottom quarks $(b \bar{b} H)$ is known at NNLO in the case of five quark flavours [97-99]. The coupling of the Higgs boson to a b-quark is suppressed in the SM by the bottom-quark mass over the Higgs VEV, m_{b} / v, implying that associated production of a SM Higgs boson with b-quarks is small at the LHC. Yet, at high energy, large logarithms are present and need to be resummed, leading to an enhancement of the inclusive cross section. At $\sqrt{s}=14 \mathrm{TeV}$, the $b \bar{b} H$ cross section can be as large as 550 fb , still two orders of magnitude below the ggF production cross section. In a two Higgs doublet model or a SUSY model, which will be discussed in Section 11.7, this coupling is proportional to the ratio of neutral Higgs boson vacuum expectation values, $\tan \beta$, and can be significantly enhanced for large values of this ratio. Consequently, the $b \bar{b} H$ mode can even become the dominant production process for the Higgs boson, unlike in the SM.
The Higgs boson production in association with charm quarks is also known at NNLO and its cross section is approximately 85 fb at $\sqrt{s}=13 \mathrm{TeV}[44]$.

vi. Double Higgs boson production at the LHC

The main interest in the double Higgs boson production is that it can provide invaluable information on the Higgs potential. In particular, it gives access to the Higgs trilinear self coupling. The dominant production is via gluon fusion $g g \rightarrow H H$. It accounts for more than 90% of the total inclusive cross-section, the subleading production mechanisms are VBF $H H j j$ (around 1.7 fb at 13 TeV$), H H W(0.50 \mathrm{fb}), H H Z(0.36 \mathrm{fb})$ and $t \bar{t} H H(0.8 \mathrm{fb})$. The fixed order QCD corrections, computed in the infinite top mass limit, are large, typically doubling the cross section from LO to NLO [100] and further enhancing it by 20% from NLO to NNLO [101] to reach at 13 TeV [45]

$$
\begin{align*}
\sigma(g g \rightarrow H H)_{\mathrm{ggF}}^{\mathrm{NNLO}, \mathrm{FTa}}= & 31.05 \mathrm{fb}_{-5.0 \%}^{+2.2 \%} \text { (theory) } \\
& \pm 3 \%\left(\mathrm{PDF}+\alpha_{s}\right) \pm 2.6 \%\left(m_{t}\right) . \tag{11.11}
\end{align*}
$$

Recently, the complete NLO corrections with all top quark mass effects also became available numerically [102, 103], intriguingly revealing a k -factor much less flat than predicted in the large top mass approximations. The non-trivial dependence of the results on the renormalisation scheme and scale for the top quark mass [103] questions the assessment of the scale uncertainty and would warrant a proper NNLO computation that will however remain out of reach for quite some time. At the differential level, the destructive interference between the box and the triangle contributions complicates the predictions made in the infinite top mass limit for both the $H H$ invariant mass and the leading Higgs boson p_{T} distributions. With an inclusive cross section of about 35 fb at $\sqrt{s}=13 \mathrm{TeV}$ and a difficult signal vs background discrimination, the double Higgs boson production remains a challenging channel to probe and will greatly benefit from the high-luminosity run of the LHC [104].

11.2.4.2 Production mechanisms at $e^{+} e^{-}$colliders

The dominant Higgs boson production cross sections at an $e^{+} e^{-}$collider are from the Higgs-strahlung process [23, 105], $e^{+} e^{-} \rightarrow Z H$, and the $W W$ fusion process [106], $e^{+} e^{-} \rightarrow$ $\bar{\nu}_{e} \nu_{e} W^{*} W^{*} \rightarrow \bar{\nu}_{e} \nu_{e} H$. The cross-section for the Higgs-strahlung process scales as s^{-1} and is predominant at low energies, while the cross-section for the $W W$ fusion process scales as $\ln \left(s / m_{H}^{2}\right)$ and dominates at high energies [107]. The $Z Z$ fusion mechanism, $e^{+} e^{-} \rightarrow e^{+} e^{-} Z^{*} Z^{*} \rightarrow e^{+} e^{-} H$, also contributes to the Higgs boson production, with a cross-section suppressed by an order of magnitude with respect to that of $W W$ fusion. The process $e^{+} e^{-} \rightarrow t \bar{t} H$ [108] becomes important for $\sqrt{s} \geq 500 \mathrm{GeV}$. For a more detailed discussion of Higgs boson production properties at lepton colliders, see for example Ref. [109].
11.2.4.3 SM Higgs boson branching ratios and total width

For the understanding and interpretation of the experimental results, the computation of all relevant Higgs boson decay widths is essential, including an estimate of their uncertainties and, when appropriate, the effects of Higgs boson decays into off-shell particles with successive decays into lighter SM ones. A Higgs boson mass of about 125 GeV allows to explore the Higgs boson couplings to many SM particles. In particular the dominant decay modes are $H \rightarrow b \bar{b}$ and $H \rightarrow W W^{*}$, followed by $H \rightarrow g g, H \rightarrow \tau^{+} \tau^{-}$, $H \rightarrow c \bar{c}$ and $H \rightarrow Z Z^{*}$. With much smaller rates follow the Higgs boson decays into $H \rightarrow \gamma \gamma, H \rightarrow \gamma Z$ and $H \rightarrow \mu^{+} \mu^{-}$. Since the decays into gluons, diphotons and $Z \gamma$ are loop induced, they provide indirect information on the Higgs boson couplings to $W W, Z Z$ and $t \bar{t}$ in different combinations. The uncertainties in the branching ratios include the missing higher-order corrections in the theoretical calculations as well as the errors in the SM input parameters, in particular fermion masses and the QCD gauge coupling, involved in the decay. In the following the state-of-theart of the theoretical calculations will be discussed and the reader is referred to Refs. [41-44, 110] for detail.

The evaluation of the radiative corrections to the fermionic decays of the SM Higgs boson are implemented in HDECAY [111] at different levels of accuracy. The computations of the $H \rightarrow b \bar{b}$ and $H \rightarrow c \bar{c}$ decays include the complete massless QCD corrections up to N4LO, with a corresponding scale dependence of about 0.1% [112]. Both the electroweak corrections to $H \rightarrow b \bar{b}, c \bar{c}$ as well as $H \rightarrow \tau^{+} \tau^{-}$are known at NLO [113] providing predictions with an overall accuracy of about $1-2 \%$ for $m_{H} \simeq 125 \mathrm{GeV}$.

The loop induced decays of the SM Higgs boson are known fully at NLO and partially beyond that approximation. For $H \rightarrow g g$, the QCD corrections are known up to N3LO in the limit of heavy top quarks $[49,114]$ and the uncertainty from the scale dependence is about 3%. For the $H \rightarrow \gamma \gamma$, the full NLO QCD corrections are available $[49,115]$ and the three-loop QCD corrections have also been evaluated [116]. The NLO electroweak corrections to $H \rightarrow g g$ and $H \rightarrow \gamma \gamma$ have been computed in Ref. [117]. All these corrections are implemented in HDECAY [111]. For $m_{H} \simeq$ 125 GeV , the overall impact of known QCD and EW radiative effects turns out to be well below 1%. In addition, the contribution of the $H \rightarrow \gamma e^{+} e^{-}$decay via virtual photon conversion has been computed in Ref. [118]. The partial decay width $H \rightarrow Z \gamma$ is only implemented at LO in HDECAY, including the virtual W, top, bottom-, and τ-loop contributions. The QCD corrections have been calculated and are at the percent level [119]. The theoretical uncertainty due to unknown electroweak corrections is estimated to be less than 5%, an accuracy that will be hard to achieve in the measurement of this process at the LHC.

Table 11.3: The branching ratios and the relative uncertainty $[43,44]$ for a SM Higgs boson with $m_{H}=125 \mathrm{GeV}$.

Decay channel	Branching ratio	Rel. uncertainty
$H \rightarrow \gamma \gamma$	2.27×10^{-3}	2.1%
$H \rightarrow Z Z$	2.62×10^{-2}	$\pm 1.5 \%$
$H \rightarrow W^{+} W^{-}$	2.14×10^{-1}	$\pm 1.5 \%$
$H \rightarrow \tau^{+} \tau^{-}$	6.27×10^{-2}	$\pm 1.6 \%$
$H \rightarrow b \bar{b}$	5.82×10^{-1}	$+1.2 \%$ $H \rightarrow c \bar{c}$ $H \rightarrow Z \gamma$ $H \rightarrow \mu^{+} \mu^{-}$
	2.89×10^{-2}	$+5.5 \%$
	1.53×10^{-3}	$\pm 5.8 \%$
H	2.18×10^{-4}	$\pm 1.7 \%$

The decays $H \rightarrow W W / Z Z \rightarrow 4 f$ can be simulated with the

Prophecy4f Monte-Carlo generator [120] that includes complete NLO QCD and EW corrections for Higgs decays into any possible four-fermion final state. All calculations are consistently performed with off-shell gauge bosons, without any on-shell approximation. For the SM Higgs boson, the missing higher-order corrections are estimated to be roughly 0.5%. Such uncertainties will have to be combined with the parametric uncertainties, in particular those associated to the bottom-quark mass and the strong gauge coupling, to arrive at the full theory uncertainty. A detailed treatment of the differential distributions for a Higgs boson decay into four charged leptons in the final state is discussed in Refs. [43, 121].
The total width of a 125 GeV SM Higgs boson is $\Gamma_{H}=4.07 \times$ $10^{-3} \mathrm{GeV}$, with a relative uncertainty of ${ }_{-3.9 \%}^{+4.0 \%}$. The branching ratios for the most relevant decay modes of the SM Higgs boson as a function of m_{H}, including the most recent theoretical uncertainties, are shown in Fig. 11.2 (right) and listed for $m_{H}=125 \mathrm{GeV}$ in Table 11.3. Further details of these calculations can be found in the reviews [41-44] and references therein.

11.3 The experimental profile of the Higgs boson

The observation $[1,2]$ at the LHC of a narrow resonance with a mass of about 125 GeV was an important landmark in the decadeslong direct search $[46,122]$ for the SM Higgs boson. This was followed by a detailed exploration of properties of the Higgs boson at the different runs of the LHC at $\sqrt{s}=7,8$ and 13 TeV .

The dataset at $\sqrt{s}=13 \mathrm{TeV}$ in the Run 2 phase of the LHC operation corresponds to an integrated luminosity of about $156 \mathrm{fb}^{-1}$ see Table 11.4. The datasets effectively useful for analysis need to take into account the data-taking efficiency with fully operational detectors and the data quality efficiency. The typical total inefficiency for both ATLAS and CMS is approximately 10%, where approximately half is due to the data taking inefficiency and half from data quality.

In this section, most of the references for the Run 1 measurements that have been updated at the Run 2 are given in the previous version of this review [123] and are not repeated herein.

Table 11.4: The LHC $p p$ collision centre-of-mass energies and delivered data samples.

Year	$\sqrt{s}(\mathrm{TeV})$	\int L.dt $\left(\mathrm{fb}^{-1}\right)$	Period
2010	7	0.04	Run 1
2011	7	6.1	Run 1
2012	8	23.3	Run 1
2015	13	4.2	Run 2
2016	13	40.8	Run 2
2017	13	50.2	Run 2
2018	13	60.6	Run 2

11.3.1 The principal decay channels to vector bosons

For a given m_{H}, the sensitivity of a channel depends on the production cross section of the Higgs boson, its decay branching fraction, the reconstructed mass resolution, the selection efficiency and the level of background in the final state. For a low-mass Higgs boson ($110 \mathrm{GeV}<m_{H}<150 \mathrm{GeV}$) for which the SM width would be only a few MeV , five decay channels play an important role at the LHC. In the $H \rightarrow \gamma \gamma$ and $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ channels, all final state particles can be very precisely measured and the reconstructed m_{H} resolution is excellent (typically 1-2\%). While the $H \rightarrow W^{+} W^{-} \rightarrow \ell^{+} \nu_{\ell} \ell^{\prime-} \bar{\nu}_{\ell^{\prime}}$ channel has relatively large branching fraction, however, due to the presence of neutrinos which are not reconstructed in the final state, the m_{H} resolution, obtained through observables sensitive to the Higgs boson mass such as the transverse mass, is poor (approximately 20%). The $H \rightarrow b \bar{b}$ and the $H \rightarrow \tau^{+} \tau^{-}$channels suffer from large backgrounds and lead to an intermediate mass resolution of about 10% and 15% respectively.

With the increase in the size of datasets, measurements in the most sensitive channels are now carried out differentially or in exclusive modes depending on specific production characteristics. These measurements are discussed in Section 11.6.2.4.

The candidate events in each Higgs boson decay channel are split into several mutually exclusive categories (or event tags) based on the specific topological, kinematic or other features present in the event. The categorization of events increases the sensitivity of the overall analysis and allows a separation of different Higgs boson production processes. Most categories are dominated by signal from one Higgs boson decay mode but contain an admixture of various Higgs boson production processes. For example, a typical VBF selection requires Higgs boson candidates to be accompanied by two energetic jets $(\geq 30 \mathrm{GeV})$ with a large dijet mass $(\geq 400 \mathrm{GeV})$ and separated by a large pseudo-rapidity $\left(\Delta \eta_{j j} \geq 3.5\right)$ [124]. While such a category is enriched in Higgs bosons produced via VBF, the contamination from the ggF production mechanism can be significant. Hence, a measurement of the signal rate in the VBF category does not imply a measurement of VBF production cross section since one cannot resolve the contamination from ggF . Simulations are used to determine the relative contributions of the various Higgs boson production modes in each specific categories.

An important difference between the Run 1 and Run 2 results, in particular when comparing signal strengths, and therefore in the measurement of the couplings of the Higgs boson as discussed in Section 11.4, is that values and errors of the predicted cross sections have been improved (mostly the scale and PDF uncertainties). The theoretical predictions are however compatible and therefore, the signal strengths can be compared on a sound basis.

11.3.1.1 $H \rightarrow \gamma \gamma$

In the $H \rightarrow \gamma \gamma$ channel, a search is performed for a narrow peak over a smoothly falling background in the invariant mass distribution of two high p_{T} photons. The background in this channel is conspicuous and stems from prompt $\gamma \gamma$ processes for the irreducible backgrounds, and the $\gamma+$ jet and dijet processes for the reducible backgrounds where one jet fragments typically into a leading π^{0}. In order to optimise search sensitivity and also to separate the various Higgs boson production modes, ATLAS and CMS split events into several mutually exclusive categories. Diphoton events containing a high p_{T} muon or electron, or missing energy (E_{T}^{miss}) consistent with the decay of a W or Z boson, are tagged in the $V H$ production category. Diphoton events containing energetic dijets with a large mass and pseudo-rapidity difference are assigned to the VBF production category, and the remaining events are considered either in the $V H$ category when the two jets are compatible with the hadronic decay of a W or a Z, or in the ggF production category. While the leptonic $V H$ category is relatively pure, the VBF category has significant contamination from the gluon fusion process. Events which are not picked by any of the above selections are further categorised according to their expected $m_{\gamma \gamma}$ resolution and signal-to-background ratio. Categories with good m_{H} resolution and larger signal-to-background ratio contribute most to the sensitivity of the search.

Both ATLAS and CMS have studied in detail the calibration of the energy response of photons, in particular using $Z \rightarrow e^{+} e^{-}$, $Z \rightarrow \mu^{+} \mu^{-} \gamma$ and the response of muons in the calorimeter (for ATLAS) from $Z \rightarrow \mu^{+} \mu^{-}$events. This information is used to correct the simulated signal mass line-shapes. In each category, parametric signal models are adjusted to these line-shapes to provide a functional form for the signal. Simple monotonic functional forms of the backgrounds are determined by a fit to the $m_{\gamma \gamma}$ distribution in each category (typically exponential, Bernstein polynomials, Laurent series or power laws). All categories are fitted simultaneously to determine the signal yield at the measured combined Run 1 mass of $125.09 \pm \mathrm{GeV}$ [127] discussed in Section 11.3.2. The $m_{\gamma \gamma}$ distribution after combining all categories is shown in Fig. 11.3, using the full ATLAS Run 2 dataset.

The signal strength, $\mu=(\sigma \cdot \mathrm{BR})_{\mathrm{obs}} /(\sigma \cdot \mathrm{BR})_{\mathrm{SM}}$, which is the observed product of the Higgs boson production cross section (σ) and its branching ratio (BR) normalised to the corresponding SM values, is 1.17 ± 0.27 for ATLAS in Run 1 and 1.02 ± 0.14 in Run 2 [128] (where this signal strength measurement is estimated from the measured fiducial cross sections and thus neglects acceptance systematic uncertainties, which are not expected to be dominant in particular given that the measurement is inclusive).

The signal strengths ${ }^{2}$ measured in Run 1 and Run 2 by the CMS collaboration are $1.18_{-0.23}^{+0.26}$ and $1.18_{-0.14}^{+0.17}$ [129] respectively.
11.3.1.2 $H \rightarrow Z Z^{*} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$

In the $H \rightarrow Z Z^{*} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$ channel, a search is performed for a narrow mass peak over a small continuous background dominated by non-resonant $Z Z^{*}$ production from $q \bar{q}$ annihilation and $g g$ fusion processes. The contribution and the shape of this irreducible background is taken from simulation. The subdominant and reducible backgrounds stem from $Z+b \bar{b}, t \bar{t}$ and $Z+$ jets events. Their contribution is suppressed by requirements on lepton isolation and lepton impact parameter and their yield is estimated from control samples in data.

To help to distinguish the Higgs boson signal from the dominant non-resonant $Z Z^{*}$ background, both ATLAS and CMS [130] use a matrix element likelihood approach to construct a kinematic discriminant built for each 4ℓ event based on the ratio of complete leading-order matrix elements $\left|\mathcal{M}_{\text {sig }}{ }^{2} / \mathcal{M}_{\mathrm{bkg}}{ }^{2}\right|$ for the signal $(g g \rightarrow H \rightarrow 4 \ell)$ and background $(q \bar{q} \rightarrow Z Z \rightarrow 4 \ell)$ hypotheses. To further enhance the sensitivity, experiments also use multivariate techniques.

To improve the sensitivity to more exclusive production processes such as VBF, $V H$ and $t \bar{t} H$, the experiments divide 4ℓ events into mutually exclusive categories. Events are categorised in terms of the number of reconstructed jets, the number of additional leptons (from the decay of a vector boson in the associated production mode), number of jet tagged as containing a b-hadron, the transverse momentum of the Higgs boson (or e.g. its associated vector boson) and missing transverse momentum. The exclusive processes are also further separated in different kinematic regions in a framework referred to as Simplified Template Cross Sections (see Section 11.6.2.4). Dijets with a large mass and pseudo-rapidity difference populate the VBF category. ATLAS requires the presence of an additional lepton in the $V H$ category. In events with less than two jets, CMS uses the $p_{T}^{4 \ell}$ to distinguish between production via the gluon fusion and the $V H / \mathrm{VBF}$ processes.

Since the $m_{4 \ell}$ resolutions and the reducible background levels are different in the $4 \mu, 4 e$ and $2 e 2 \mu$ sub-channels, they are analysed separately and the results are then combined. The distribution of the reconstructed invariant mass of the four leptons for CMS [126] is given in Fig. 11.3 (right), showing a clear excess at a mass of approximately $m_{H}=125 \mathrm{GeV}$. Both experiments also observe a clear peak at $m_{4 \ell}=91 \mathrm{GeV}$ from the production of a Z boson on-mass-shell and decaying to four leptons due typically to the emission of an off-shell photon from one of the primary leptons from the Z boson decay.

The signal strengths μ for the inclusive $H \rightarrow 4 \ell$ production measured by ATLAS and CMS are $1.44_{-0.33}^{+0.40}$ at $m_{H}=125.36 \mathrm{GeV}$ and $0.93_{-0.25}^{+0.29}$ at $m_{H}=125.6 \mathrm{GeV}$ respectively, in Run 1. The signal strengths measured by ATLAS and CMS in Run 2 are 1.04 ± 0.10 [131] and 0.94 ± 0.10 [126] respectively (the ATLAS measurement is made at the combined Run 1 Higgs boson mass of $m_{H}=125.09 \mathrm{GeV}$ while the m_{H} is profiled in the CMS analysis). The dominant uncertainty in these measurements remains the statistical uncertainty.

11.3.1.3 Measurement of the Higgs boson mass

To measure the mass of the Higgs boson, ATLAS and CMS collaborations rely on the two high mass-resolution and sensitive channels, $\gamma \gamma$ and $Z Z^{*} / 4 \ell$. The ATLAS and CMS approaches are very similar in these two analyses with small differences on the usage of categories, additional discriminating variables and perevent errors. In these two channels, the mass resolutions range from 1.4 GeV to 2 GeV for ATLAS and from 1.0 GeV to 2.8 GeV for CMS (see Ref. [127] and the reconstruction-performance references therein). The best mass resolution is obtained for both experiments in the diphoton channel for central diphoton pairs (typically for events where both photons are not converted). The signal strengths in the $\gamma \gamma$ and $Z Z$ channels are assumed to be

[^25]

Figure 11.3: (Left) The invariant mass distribution of diphoton candidates, with each event weighted by the ratio of signal-to-background in each event category, observed by ATLAS [125] at Run 2. The residuals of the data with respect to the fitted background are displayed in the lower panel. (Right) The $m_{4 \ell}$ distribution from CMS [126] Run 2 data.
independent and not constrained to the expected rate $(\mu=1)$ for the SM Higgs boson.

Figure 11.4: Summary of the CMS and ATLAS mass measurements in the $\gamma \gamma$ and $Z Z$ channels in Run 1 and Run 2.

Figure 11.4 summarizes all measurements of the Higgs boson mass, including the individual and combined Run 1 measurements [127] and the Run 2 measurement by ATLAS [132] and CMS $[130,133]$ for both the diphoton and the 4ℓ channels.

In the diphoton channel, as discussed in Section 11.5.3.2, a mass shift is expected to be induced by the deformation of the mass line-shape of the signal in presence of background, from the interference between the Higgs boson production and the continuum irreducible background. It is a small but non negligible effect of approximately 35 MeV [134] for a Higgs boson width close to that of the SM. This effect could be larger if the width of the Higgs boson were to be substantially larger. This effect estimated by ATLAS with a full simulation is still relatively small with respect to the total uncertainty on the mass and is therefore neglected.

11.3.1.4 $H \rightarrow W^{+} W^{-} \rightarrow \ell^{+} \nu \ell^{-} \bar{\nu}$

In this intricate channel, experiments search for an excess of events with two leptons of opposite charge accompanied by missing energy and/or jets. A typical event selection is described below in order to give an idea of the main challenges. Specific se-
lections vary between experiments and between Run 1 and Run 2 analyses. Events are divided into several categories depending on the lepton flavour combination ($e^{+} e^{-}, \mu^{+} \mu^{-}$and $\left.e^{ \pm} \mu^{\mp}\right)$ and the number of accompanying jets $\left(N_{\text {jet }}=0,1, \geq 2\right)$. In the ATLAS analysis, the $N_{\text {jet }} \geq 2$ category is optimised for the VBF production process by selecting two leading jets with a large pseudorapidity difference and with a large mass $\left(m_{j j}>500 \mathrm{GeV}\right)$.

Backgrounds contributing to this channel are numerous and depend on the category of selected events. Reducing them and accurately estimating the remainder is a major challenge in this analysis. For events with opposite-flavour leptons and no accompanying high p_{T} jets, the dominant background stems from non-resonant $W W$ production. Events with same-flavour leptons suffer from large Drell-Yan contamination (note that also the opposite-flavour leptons analysis has Drell-Yan $\tau \bar{\tau}$ background in 0 -jet category). The $t \bar{t}, t W$ and $W+$ jets (with the jet misidentified as a lepton) events contaminate all categories. Non-resonant $W Z, Z Z$ and $W \gamma$ processes also contribute to the background at a sub-leading level.

A requirement of large missing transverse energy $\left(E_{T}^{\text {miss }}\right)$ is used to reduce the Drell-Yan and multijet backgrounds. In the $e^{+} e^{-}$ and $\mu^{+} \mu^{-}$categories, events with $m_{\ell \ell}$ consistent with the Z mass are vetoed. The $t \bar{t}$ background is suppressed by a veto against identified b-jets or low p_{T} muons assumed to be coming from semi-leptonic b-hadron decays within jets (this soft muon veto was not applied anymore in Run 2 analysis) and tight isolation requirements diminish the $W+$ jets background. The scalar nature of the Higgs boson and the $V-A$ nature of the W boson decay implies that the two charged leptons in the final state are preferentially emitted at small angles with respect to each other. Therefore the dilepton invariant mass ($m_{\ell \ell}$) and the azimuthal angle difference between the leptons ($\Delta \phi_{\ell \ell}$) are used to discriminate between the signal and non-resonant $W W$ events [135]. The transverse mass, constructed from the dilepton $p_{T}\left(p_{T}^{\ell \ell}\right), E_{T}^{\text {miss }}$ and the azimuthal angle between $E_{T}^{\text {miss }}$ and $p_{T}^{\ell \ell}$, is defined as $m_{T}=\sqrt{2 p_{T}^{\ell \ell} E_{T}^{\mathrm{miss}}\left(1-\cos \Delta \phi_{E_{T}^{\mathrm{miss}} \ell \ell}\right)}$ and serves as an effective discriminant against backgrounds. The transverse mass variable also tracks the Higgs boson mass but with a poor mass resolution. Background rates except for the small contributions typically from non-resonant $W Z, Z Z$ and $W \gamma$ are evaluated from data control samples with floating normalisation.

ATLAS fitted the m_{T} distributions and observed an excess at $m_{H}=125.36 \mathrm{GeV}$ with a local significance of 6.1σ similar to that expected from a 125 GeV SM Higgs boson. The measured inclusive
signal strength is $\mu=1.09_{-0.21}^{+0.23}$. In the VBF category, an excess with a significance of 3.2σ corresponding to a signal strength of $\mu=1.27_{-0.45}^{+0.53}$ is observed. The CMS analysis of 0 - and 1-jet categories, using all lepton flavour combinations, shows an excess with an observed significance of 4.3σ, lower than the expected sensitivity of 5.8σ for a 125.6 GeV SM Higgs boson. CMS observes no significant excess in the VBF production mode and sets a $95 \% \mathrm{CL}$ limit on the signal strength of $\mu_{\mathrm{VBF}}<1.7$ for $m_{H}=125.6 \mathrm{GeV}$.

ATLAS and CMS have also searched for the associated Higgs boson production in this channel. The signal consists of up to three $(W H)$ or four $(Z H)$ high p_{T} isolated leptons with missing transverse energy and low hadronic activity. The major backgrounds stem from triboson and diboson production where each boson decays leptonically. ATLAS observes [136] an excess at $m_{H}=125.36 \mathrm{GeV}$ with a local significance of 2.5σ corresponding to a $\mu_{V H}=3.0_{-1.0}^{+1.6}$. CMS instead sets a 95% CL limit of $\mu_{V H}<4.7$.

In this difficult channel, the full Run 2 dataset has not yet been analysed by ATLAS nor CMS. There have been partial analyses made with Run 2 data at 13 TeV by both ATLAS and CMS. ATLAS has analysed the $W W \rightarrow e \nu \mu \nu$ decay mode in the gluon fusion, the VBF and VH production modes with 2015 and 2016 datasets $[137,138]$. With this limited dataset the measured gluon fusion signal strength yielded [138] $\mu_{\mathrm{ggF}}=1.10 \pm 0.20$, with the largest uncertainties being the experimental systematic uncertainties.

CMS has performed a more complete analysis with the full 2016 dataset, with most production channels covering both the opposite- and same-flavour final states of opposite charge leptons (electrons or muons), obtaining a combined signal strength of $\mu_{\mathrm{WW}}=1.28 \pm 0.18$ [139]. This analysis aims at several production modes (ggF, VBF and VH - with the vector boson reconstructed both in jet and leptonic decay modes).

11.3.2 Decays to third generation fermions (b \bar{b} and $\tau^{+} \tau^{-}$)

In the SM , fermions acquire a mass through gauge invariant interactions with the Higgs field which is also responsible for the electroweak symmetry breaking and thus for generating the masses of gauge bosons (see Section 11.2 for more details). While this minimal solution is very elegant, there is no fundamental reason for it to be the case, and probing the couplings of the Higgs boson to fermions is therefore of fundamental importance, in particular since BSM physics can largely change the SM predictions.

The discovery of the Higgs boson was made essentially through bosonic final states. These decays probed mostly the couplings of the Higgs boson to vector bosons (the decay of the Higgs boson to photons occurring only through loops is also dominated in the SM by the coupling of the Higgs boson to W bosons). However, the predominant Higgs boson production mode is the gluon fusion, occurring only through loops dominated by the coupling of the Higgs boson to fermions. The observation of the Higgs boson in the two photons or two gluons decay modes is also an indirect evidence for the coupling of the Higgs boson to fermions (and in particular to the top quark). Nevertheless, the observation of either decays to fermions or production modes which unambiguously proceed through fermion couplings provide direct probes of the coupling of the Higgs boson to fermions and is thus of fundamental importance.
At hadron colliders, the most promising channel for probing the coupling of the Higgs field to the quarks and leptons are $H \rightarrow b \bar{b}$ and $H \rightarrow \tau^{+} \tau^{-}$, respectively. For a Higgs boson with $m_{H} \approx$ 125 GeV , the branching fraction to $b \bar{b}$ is about 58% and to $\tau^{+} \tau^{-}$ is about 6%. Nevertheless, the presence of very large backgrounds makes the isolation of a Higgs boson signal in these channels quite challenging.

One of the most prominent goals of the LHC Run 2 for ATLAS and CMS was the direct observation of the Yukawa coupling of the Higgs boson to fermions of the third generation (bottom quarks, tau leptons and top quarks). This goal has been reached independently by both ATLAS and CMS and with only partial Run 2 datasets.
11.3.2.1 $H \rightarrow \tau^{+} \tau^{-}$

In the $H \rightarrow \tau^{+} \tau^{-}$search, τ leptons decaying to electrons $\left(\tau_{e}\right)$, muons $\left(\tau_{\mu}\right)$ and hadrons $\left(\tau_{h a d}\right)$ are considered. The $\tau^{+} \tau^{-}$invariant mass $\left(m_{\tau \tau}\right)$ is reconstructed from a kinematic fit of the visible products from the two τ leptons and the missing energy observed in the event. Due to the presence of missing neutrinos, the $m_{\tau \tau}$ resolution is poor $(\approx 15 \%)$. As a result, a broad excess over the expected background in the $m_{\tau \tau}$ distribution is searched for. The major sources of background stem from Drell-Yan $Z \rightarrow \tau^{+} \tau^{-}$ and $Z \rightarrow e^{+} e^{-}, W+$ jets, $t \bar{t}$ and multijet production. Events in all sub-channels are divided into categories based on the number and kinematic properties of additional energetic jets in the event and the transverse momentum of the reconstructed Higgs boson and the distance ΔR distance between the two τ 's. The sensitivity of the search is generally higher for categories with one or more additional jets. The VBF category, consisting of a τ pair with two energetic jets separated by a large pseudo-rapidity, has the best signal-to-background ratio and search sensitivity, followed by the $\tau^{+} \tau^{-}+1$ jet category. The signal to background discrimination relies in part on the $m_{\tau \tau}$ resolution, which improves with the boost of the Higgs boson. The non-VBF categories are further subdivided according to the observed boost of the $\tau^{+} \tau^{-}$system. CMS primarily uses the reconstructed $m_{\tau \tau}$ as the final discriminating variable while ATLAS combines various kinematic properties of each event categories with multivariate techniques to build the final discriminant [140].

Searches for $H \rightarrow \tau^{+} \tau^{-}$decays in the $V H$ production mode are also performed in final states where the W or Z boson decays into leptons or jets. The irreducible background in this search arises from non-resonant $W Z$ and $Z Z$ diboson production. The reducible backgrounds originate from W, Z, and $t \bar{t}$ events that contain at least one fake lepton in the final state due to a misidentified jet. The shape and yield of the major backgrounds in each category are estimated from control samples in data. Contributions from non-resonant $W Z$ and $Z Z$ diboson production are estimated from simulations but corrected for reconstruction efficiency using control samples formed from observed data.

For CMS, the significance of the observed excess at $m_{H}=$ 125 GeV in Run 1 is 3.2σ, close to the expected 3.7σ sensitivity, and corresponds to a signal strength of $\mu=0.86 \pm 0.29$. The observed (expected) deviation from the background-only hypothesis in ATLAS corresponds to a local significance of $4.5 \sigma(3.4 \sigma)$ and the best fit value of the signal strength is $\mu=1.43_{-0.37}^{+0.43}$ [140].

When the ATLAS and CMS $H \rightarrow \tau \tau$ Run 1 measurements are combined [141], the significance of the observed excess corresponding to $m_{H}=125.09 \mathrm{GeV}$ is 5.5σ and the combined signal strength is $\mu=1.11_{-0.22}^{+0.24}$, consistent with the SM expectation.

The Run 1 evidence was strong only through the combination of the two experiments. The Run 2 larger dataset at a greater centre-of-mass energy is essential to further confirm this observation and perform first precision measurements in this important channel.

ATLAS has analysed its 2015 and 2016 dataset so far, providing further evidence at the 4.4σ level with an expected significance of 4.1σ. When combined with the Run 1 data the single experiment observation significance is 6.4σ (5.4 σ expected) [142].

In the CMS analysis of the 2016 data [143], the strategy was improved using additional categories aiming at the inclusive production of the Higgs boson and binned in transverse momentum of the $\tau^{+} \tau^{-}$system, and for the VBF production, the analysis is binned as a function of the dijet mass. This analysis reached a sensitivity of 4.7σ with a dataset corresponding to an integrated luminosity of $35.9 \mathrm{fb}^{-1}$. CMS observes an excess with a significance of 4.9σ. In combination with the Run 1 results, this provides an unambiguous observation of the direct coupling of the Higgs boson to taus, in the VBF production mode.

CMS has then also extended to additional production modes via the associated production with a vector boson [144] and analysed a larger dataset corresponding to an integrated luminosity of almost $80 \mathrm{fb}^{-1}$ of data collected in 2016 and 2017 , providing results which complete the Run 1 search for an unambiguous observation of the direct decay of the Higgs bosons to a pair of taus (and measurements of cross sections times branching-fractions) [145].
11.3.2.2 $H \rightarrow b \bar{b}$

In the search for the decay of the Higgs boson to a pair of b quarks, the most sensitive production modes are the associated $W H$ and $Z H$ processes allowing use of the leptonic W and Z decays for triggering, and to purify the signal and reject QCD backgrounds. The W bosons are reconstructed via their leptonic decay $W \rightarrow \ell \bar{\nu}_{\ell}$ where $\ell=e, \mu$ or τ. The Z bosons are reconstructed via their decay into $e^{+} e^{-}, \mu^{+} \mu^{-}$or $\nu \bar{\nu}$. The Higgs boson candidate mass is reconstructed from two b-tagged jets in the event. Backgrounds arise from production of W and Z bosons in association with gluon, light and heavy-flavoured jets ($V+$ jets), $t \bar{t}$, diboson ($Z Z$ and $W Z$ with $Z \rightarrow b b$) and QCD multi-jet processes. Due to the limited $m_{b \bar{b}}$ mass resolution, a SM Higgs boson signal is expected to appear as a broad enhancement in the reconstructed dijet mass distribution. The crucial elements in this search are b-jet tagging with high efficiency and low fake rate, accurate estimate of b-jet momentum and estimate of backgrounds from various signal depleted control samples constructed from data.

At the Tevatron, the $H \rightarrow b \bar{b}$ channel contributes the majority of the Higgs boson search sensitivity below $m_{H}=130 \mathrm{GeV}$. To separate signal from background, CDF and D0 use multivariate analysis (MVA) techniques that combine several discriminating variables into a single final discriminant. Each channel is divided into exclusive sub-channels according to various lepton, jet multiplicity, and b-tagging characteristics in order to group events with similar signal-to-background ratio and thus optimise the overall search sensitivity. The combined CDF and D0 data show $[46,146]$ an excess of events with respect to the predicted background in the $115-140 \mathrm{GeV}$ mass range in the most sensitive bins of the discriminant distributions suggesting the potential presence of a signal. At $m_{H}=125 \mathrm{GeV}$, the observed signal strength is $\mu=$ $1.59_{-0.72}^{+0.69}$

At the LHC, in order to reduce the dominant $V+$ jets background, following Ref. [90], experiments select a region in the $V H$ production phase space where the vector boson is significantly boosted and recoils from the $H \rightarrow b \bar{b}$ candidate with a large azimuthal angle $\Delta \phi_{V H}$. For each channel, events are categorised into different $p_{T}(V)$ regions with varying signal/background ratios. Events with higher $p_{T}(V)$ have smaller backgrounds and better $m_{b \bar{b}}$ resolution. CMS uses MVA classifiers based on kinematic, topological and quality of b-jet tagging and trained on different values of m_{H} to separate Higgs boson signal in each category from backgrounds. The MVA outputs for all categories are then fit simultaneously.

The nominal results from ATLAS are also based on a combination of (i) a multivariate analysis of their 8 TeV data, incorporating various kinematic variables in addition to $m_{b \bar{b}}$ and b-tagging information and (ii) a statistical analysis of their 7 TeV data centred on $m_{b \bar{b}}$ as the main discriminant. In both cases, customised control samples devised from data are used to constrain the contributions of the dominant background processes.

The direct observation of the Higgs boson decaying to a pair of b-quarks, a major result of Run 2, was obtained by both ATLAS and CMS independently after the update of their search with similar analyses as those performed at Run 1 but with a larger dataset of approximately $80 \mathrm{fb}^{-1}$ of data collected in 2015, 2016 and 2017. The increase in signal cross sections of nearly a factor of 3 at the centre-of-mass energy of 13 TeV with respect to 7 TeV , has also been instrumental in bringing the two experiments to the required sensitivity to claim an evidence for this decay mode in the $V H$ production mode (in the high transverse momentum of the vector boson fiducial region of interest for this channel). The expected significance for a SM Higgs boson is 4.3σ for ATLAS [147] and 4.9σ for CMS [148]. Both ATLAS and CMS observe significant excesses corresponding to 4.9σ and 4.8σ respectively with Run 2 data only. When combined with results obtained in Run 1, the observed (expected) significance of the excesses are $5.4 \sigma(5.5 \sigma)$ and $5.6 \sigma(5.5 \sigma)$ respectively. These results provide direct evidence for the Higgs boson decay to a $b \bar{b}$ through the $V H$ production mode. All these results are summarised in Table 11.5. It should be noted that the sensitivity of these analyses are already limited by systematic uncertainties.

This channel has also been exploited by ATLAS to produce a
measurement at higher transverse momentum of the vector boson in the framework of Simplified Template Cross Sections (STXS) discussed in Section 11.6.2.4 [149]. In this case, at higher transverse momentum, the statistical uncertainty still dominates.

Also, the LHCb collaboration has performed a search for the VH production with subsequent decay of the Higgs boson to a pair of b-quarks [150] with $1.98 \mathrm{fb}^{-1}$ of data taken at a centre-of-mass energy of 8 TeV . The final state is required to have two reconstructed b quarks and one lepton in the LHCb acceptance of $2<\eta<5$. The sensitivity of this search is an expected 95% CL exclusion of 84 times the SM production rate. This analysis is also used to set a limit on the $V H$ production with the subsequent decay of the Higgs boson in a pair of c quarks with a 95% CL limit at 6.4×10^{3} times the SM production rate, while the expected sensitivity corresponds to an exclusion of 7.9×10^{3} times the SM production rate.

ATLAS and CMS have also searched for $H \rightarrow b \bar{b}$ in the VBF production mode. The event topology consists of two VBFtagging energetic light-quark jets in the forward and backward direction relative to the beam direction and two b-tagged jets in the central region of the detector. Due to the electroweak nature of the process, for the signal events, no additional energetic jet activity (excluding that from the Higgs boson) is expected in the rapidity gap between the two VBF-tagging jets. The dominant background in this search stems from QCD production of multi-jet events and the hadronic decays of vector bosons accompanied by additional jets. A contribution of Higgs boson events produced in the ggF process but with two or more associated jets is expected in the signal sample. The signal is expected as a broad enhancement in the $m_{b \bar{b}}$ distribution over the smoothly falling contribution from the SM background processes. Both ATLAS [151] and CMS [152] have produced results in this channel with Run 1 data, but with limited sensitivity. Both experiments performed a similar analysis with Run 2 data [153]. The results are summarised in Table 11.5.

Two of the main difficulties for the VBF production mode are the large QCD background and the difficulty in triggering events fully hadronic events. Both difficulties are addressed, by the proposal made in Ref. [154], where the requirement of an additional photon in the final state reduces the background through an interference effect and enhances the possibilities for triggering. This analysis has been carried out by ATLAS at Run 2 [153] (see Table 11.5).

The sensitivity in the inclusive search for the Higgs boson in the ggF production mode with $H \rightarrow b \bar{b}$ is limited by the overwhelming background from the inclusive production of $p p \rightarrow b \bar{b}+X$ via the strong interaction. For this reason, no meaningful results exist with the Run 1 dataset for this production mode. With the increase in centre-of-mass energy to 13 TeV , and by taking advantage of the harder transverse momentum spectrum of the $g g \rightarrow H$ production mode with respect to the QCD background, a search for high p_{T} Higgs boson decaying to a pair of b quarks in association with an energetic Initial State Radiation (ISR) jet, has been performed by ATLAS [155] and CMS [156]. For this analysis with the Run 2 data, ATLAS and CMS require jets clustered with the anti- k_{T} algorithm [157] with a distance parameter of 1.0 and 0.8 respectively, with a transverse momentum in excess of 480 GeV and 450 GeV respectively. As in the case of $V \underline{H}$ production mode, this analysis is sensitive also to the $V Z, Z \rightarrow b \bar{b}$ production, which is an important step in the validation of the analysis chain. The $Z \rightarrow b \bar{b}$ decay is observed with a significance of 5.8σ, in good agreement with the expected sensitivity of 5.1σ. CMS provides an expected sensitivity to the observation of a Higgs boson of 0.7σ. This estimate has a non negligible uncertainty from the precise estimate of the fiducial signal cross section in the specific acceptance of this analysis. Both ATLAS and CMS observe small and non significant excesses at $m_{H}=125 \mathrm{GeV}$ of 1.6σ and 1.5σ respectively. These results are reported in Table 11.5

Another important production mode sensitive to the decay of the Higgs boson to bottom quarks, is the associated production with a pair of top quarks. The results of the searches for this process have been combined with the channels described above, to provide an additional constraint on the Yukawa coupling of

Table 11.5: Summary of the results of measurements for a Higgs boson decaying to a pair of b-quarks by ATLAS and CMS. The results are given in terms of measured signal strength. When available, the statistical and systematic contributions to the total uncertainty are reported separately and in this order.

$H \rightarrow b \bar{b}$	Tevatron	ATLAS Run 1	CMS Run 1	ATLAS Run 2	CMS Run 2
$V H$	1.6 ± 0.7	$0.52 \pm 0.32 \pm 0.24$	1.0 ± 0.5	$1.16 \pm 0.16_{-0.19}^{+0.21}$	1.01 ± 0.22
$\operatorname{VBF}(\gamma)$	-	-0.8 ± 2.3	$2.8 \pm 1.4 \pm 0.8$	2.5 ± 1.3	1.3 ± 1.2
$t \bar{t} H$	-	$1.4 \pm 0.6 \pm 0.8$	0.7 ± 1.9	$0.79 \pm 0.29 \pm 0.53$	$1.49 \pm 0.21 \pm 0.39$
Inclusive	-	-	-	$5.8 \pm 3.1 \pm 2.5$	2.3 ± 1.7

the Higgs boson to bottom quarks. The channels corresponding to this production mode are described in Section 11.3.3. The results are, however, also reported in Table 11.5.
11.3.3 Higgs boson production in association with top quarks or in top decays

11.3.3.1 The associated production with top quark pairs

As discussed in Section 11.2, the coupling of the Higgs boson to top quarks plays a special role in the electroweak symmetry breaking mechanism in the SM, as well as in its possible extensions. Substantial indirect evidence of this coupling is provided by the compatibility of observed rates of the Higgs boson in the principal discovery channels, given that the main production process - the gluon fusion - is dominated by a top quark loop. Direct evidence of this coupling at the LHC and the future $e^{+} e^{-}$colliders will be mainly available through the $t \bar{t} H$ final state and will permit a clean measurement of the top quark-Higgs boson Yukawa coupling. The $t \bar{t} H$ production cross section at the LHC is small in comparison with the ggF or even $V H$ production modes. The production cross section for a 125 GeV Higgs boson in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ of about 130 fb made it challenging to measure the $t \bar{t} H$ process with the LHC Run 1 dataset. However, in Run 2, the increase in cross section at $\sqrt{s}=13 \mathrm{TeV}$ is substantial, reaching approximately 500 fb . For a sensitive search, at Run 1, it was important to target as many accessible experimental signatures as possible. The analysis channels for such complex final states can be separated in four classes according to the decays of the Higgs boson. In each of these classes, most of the decay final states of the top quarks are considered (fully hadronic, semi-leptonic and dilepton decay final states).

The first analysis in this ensemble is the search for $t \bar{t} H$ production in the $H \rightarrow \gamma \gamma$ channel. This analysis relies on the search for a narrow mass peak in the $m_{\gamma \gamma}$ distribution. The background is estimated from the $m_{\gamma \gamma}$ sidebands. The sensitivity in this channel is mostly limited by the available statistics. The second analysis is the search for the Higgs boson decaying to $Z Z^{*}$ and subsequently to four leptons (electrons and/or muons). This channel is currently limited by the low statistics due to the small branching fraction of the Z decays to leptons. The third analysis is the search in the $H \rightarrow b \bar{b}$ channel. This search is intricate due to the large backgrounds, both physical and combinatorial in resolving the $b \bar{b}$ system from the Higgs boson decay, in events with six jets and four b-tagged jets. Already with the Run 1 dataset, the sensitivity of this analysis was strongly impacted by the systematic uncertainties on the background predictions. The fourth analysis channel is a specific search for $\tau^{+} \tau^{-}$where the two tau leptons decay to hadrons. Finally, the $W^{+} W^{-}, \tau^{+} \tau^{-}$and $Z Z^{*}$ final states can be searched for inclusively in multilepton event topologies (not including the resonant $H \rightarrow 4 \ell$ channel that is covered in a more specific analysis). The corresponding $t \bar{t} H$ modes can be decomposed in terms of the decays of the Higgs boson and those of the top quarks as having two b-quarks and four W bosons (or two W and two taus, or two W and two Z) in the final state.

ATLAS and CMS have provided a complete set of results in these channels and their combination with the Run 1 data [158, 159]. Results for most of these channels have been updated with Run 2 data.

With the large increase in production cross section for the $t \bar{t} H$ associated production process of a factor of 3.9 from 7 TeV to 13 TeV , an outstanding goal of the Run 2 physics program was the direct observation of the top Yukawa coupling through this production mode. As could be seen in the Run 1 results, the $H \rightarrow b \bar{b}$ channel sensitivity was already dominated by systematic uncertainties and the multilepton channel had already large systematic uncertainties, while channels such as the $H \rightarrow \gamma \gamma$ had very limited sensitivity due to the low statistics. With a conspicuous amount of data, the hierarchy of channels was therefore bound to change.

ATLAS and CMS have analysed Run 2 data in all the sensitive decay channels for this production mode, with datasets of variable size of up to the full Run 2 dataset in the case where it matters the most, i.e., the $t \bar{t}(H \rightarrow \gamma \gamma)$ channel. With this partial analysis of the Run 2 data, ATLAS and CMS were able to independently observe the production of the Higgs boson in association with a pair of top quarks, and therefore the Yukawa coupling of the Higgs boson to the top quark [160]. This observation is particularly important in comparison to the indirect evidence through the gluon fusion production process dominated by the top quark loop.

The observation made independently by the two experiments was based on all the channels that were studied at the Run 1. ATLAS used up to $79.8 \mathrm{fb}^{-1}$ of Run 2 data and CMS has used its 2016 dataset of $35.9 \mathrm{fb}^{-1}$. ATLAS reached an expected sensitivity of 4.9σ and an observed significance of 5.8σ with the Run 2 partial dataset alone, and 6.3σ (with 5.1σ expected) in combination with the Run 1 results. CMS reached a sensitivity of 4.2σ and observed an excess with respect to the background-only hypothesis of 5.2σ, combining the Run 1 and Run 2 results.

With the larger Run 2 dataset, the dominant mode is the $t \bar{t}(H \rightarrow \gamma \gamma)$ channel, where a narrow peak over a continuous background is searched for. At Run 2, this channel has reached a signal-to-background ratio in excess of 1 in the most signallike categories. This is in contrast with the inclusive diphoton channel Higgs channels where the signal-to-background ratios are of the order of a few percent. ATLAS has analysed the entire Run 2 dataset reaching an observed (expected) sensitivity of $4.9 \sigma(4.2 \sigma)$ [161] and CMS has utilised $77.4 \mathrm{fb}^{-1}$ of Run 2 data for this channel with an observed (expected) sensitivity of 4.1σ (2.7σ) [162], providing nearly unambiguous observations in this channel alone. These results are largely dominated by statistical uncertainty and are therefore expected to improve significantly with more data. These results with the full dataset from ATLAS [161] and with a larger Run 2 dataset for CMS [162] are not part of the ATLAS and CMS combinations and therefore provide substantially more evidence for the direct coupling of the Higgs boson to the top quark.

The resonant search for the resonant Higgs boson decay to four leptons in the associated production with a pair of top quarks has also been updated in ATLAS [131] with the full Run 2 dataset and reported in Table 11.6, but it is also not included in the combination.
An update of the $H \rightarrow b \bar{b}$ channel made by CMS with a partial Run 2 dataset of $41.5 \mathrm{fb}^{-1}$ [163], using in particular the fully hadronic channel, is not in combination either. It is nevertheless reported in Table 11.5.

For the so-called "multi-lepton" channels which cover mostly
the $W W, Z Z$ and $\tau \tau$ decay modes, ATLAS and CMS have analysed only part of the Run 2 datasets [164].

All results are summarized in Table 11.6.
11.3.3.2 The associated production with a single top quark

An additional production mode of the Higgs boson in association with a top quark is the single top associated production mode. There is an interesting similarity between this production mode and the $H \rightarrow \gamma \gamma$ decay mode. Both processes proceed through either the top Yukawa coupling or the interaction of the Higgs boson with the W boson, with a negative interference between the two. Representative Feynman diagrams for this production process are shown in Fig. 11.1. Contrary to the diphoton decay channel, in this production mode the interference occurs at the tree level and is dominant. This process can therefore be used to further discriminate a negative relative sign between the couplings of the Higgs boson to fermions and its couplings to gauge bosons [165].

ATLAS and CMS have produced specific searches for the $t H$ production mode with the Run 1 and Run 2 data exploiting a variety of Higgs boson decay modes resulting in final states with photons, bottom quarks, and multiple charged leptons, including tau leptons. In particular, with the Run 2 data, CMS has searched for multi-leptonic decay signatures from the $H \rightarrow W W^{*}$, $H \rightarrow \tau^{+} \tau^{-}$and $H \rightarrow Z Z^{*}$ modes [166]. This analysis restricts values of κ_{t}, the top-Higgs coupling normalized to its SM value, to $[-1.25,1.60]$ at 95% CL. CMS has also performed an analysis of the 2015 dataset to search for the $H \rightarrow b \bar{b}$ mode [167], yielding much less stringent constraints.

The diphoton channel has also been used to search specifically for this production mode by ATLAS using Run 1 data, yielding the restricted range of allowed values of κ_{t} at the $95 \% \mathrm{CL}$ to $[-1.3,8]$.

The strongest constraint on the negative (relative) sign of κ_{t} was obtained by CMS with a recent analysis of the 2016 dataset [168] in the multilepton $(H \rightarrow W W, H \rightarrow Z Z, H \rightarrow \tau \tau)$ and $H \rightarrow b b$ channels, all combined with a reinterpretation of the $H \rightarrow \gamma \gamma$ analysis channel aiming at measuring the $p p \rightarrow t \bar{t} H$ production mode. Negative values of κ_{t} are disfavoured at approximately 1.5σ and values of κ_{t} below -0.9 are excluded at 95\% CL.
11.3.3.3 Flavour changing neutral current decays of the top quark

The discovery of the Higgs boson at a mass smaller than the top quark mass opened a new decay channel for the top quark. The decays of the top quark to a Higgs boson and a charm or an up quark proceed through a Flavour Changing Neutral Current (FCNC) which are forbidden at tree level and suppressed at higher orders through the Glashow-Iliopoulos-Maiani (GIM) mechanism [3]. The SM prediction for these branching fractions is $\mathrm{BR}(t \rightarrow H c)=10^{-15}$ and two orders of magnitude less for the $H u$ final state. These decay channels of the top quark are, therefore, very interesting to probe possible FCNC interactions in the Yukawa couplings to the quark sector, see Section 11.7.

ATLAS has searched for FCNC top decays specifically in channels involving a Higgs boson with subsequent decays to two photons and a pair of b-quarks [169]. It has also reinterpreted a search for the $t \bar{t} H$ production in the multilepton final state (discussed in Section 11.3.6.1) [159]. The latter channel covers Higgs boson decays to a pair of W bosons and a pair of taus. No significant excess was observed in any of the specific channels (as discussed in Section 11.3.6.1, a slight excess is observed in the $t \bar{t} H$ multilepton channel) and 95% CL upper limits are set on $\mathrm{BR}(t \rightarrow H c)<0.46 \%$ with an expected sensitivity of 0.25% and $\operatorname{BR}(t \rightarrow H u)<0.45 \%$ with an expected sensitivity of 0.29%. CMS has performed a search for these FCNC top decays in the diphoton and multi-lepton channels [170], placing a 95% CL upper limit on $\mathrm{BR}(t \rightarrow H c)<0.40 \%$ with an expected sensitivity of 0.43%.

From these limits on branching fractions, constraints on non-flavour-diagonal Yukawa couplings of a FCNC Lagrangian of the form:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{FCNC}}=\lambda_{t c H} \bar{t} H c+\lambda_{t u H} \bar{t} H u+\text { h.c. } \tag{11.12}
\end{equation*}
$$

can be derived. The 95% CL observed (expected) upper limits from ATLAS on the $\left|\lambda_{t c H}\right|$ and $\left|\lambda_{t u H}\right|$ couplings are 0.13 (0.10)
and 0.13 (0.10), respectively.
The results above are derived from the combination of several channels for searches performed with Run 1 data. Both ATLAS and CMS have produced updates of individual channels with Run 2 data. ATLAS has searched for FCNC top decays with subsequent decays of the Higgs boson to a pair of photons [171], yielding a 95% CL upper limit on $\mathrm{BR}(t \rightarrow H c)<0.22 \%$ with an expected sensitivity of 0.16%. CMS has searched for FCNC top decays with subsequent decays of the Higgs boson to a pair of b-quarks [172], yiedling a 95% CL upper limit on $\mathrm{BR}(t \rightarrow H c)<0.47 \%$ with an expected sensitivity of 0.44%.

11.3.4 Higgs boson pair production

Higgs boson pair production in the SM is a rare but very important mode to measure and search for. The measurement of Higgs boson pair production is essential to directly constrain the trilinear Higgs boson self coupling and the search for Higgs boson pair resonances is key in a variety of BSM models. The latter searches are discussed in Section 11.7.7.

In the SM, the main non-resonant production mode of two Higgs bosons proceeds through a loop, mainly of top quarks, see Fig. 11.5 (a). Another production mode is via the trilinear coupling of the Higgs boson, see Fig. 11.5 (b), whose amplitude is not negligible compared to the former. These diagrams interfere negatively, making the overall production rate smaller than what would be expected in the absence of a trilinear coupling.

Figure 11.5: Feynman diagrams contributing at leading order to Higgs boson pair production through (a) a top- and bottom-quark loop and (b) through the self coupling of the Higgs boson.

11.3.4.1 Searches for Higgs boson pair production

The searches for Higgs boson pair production both resonant and non-resonant are very interesting probes for a variety of BSM theories, and they can be done in a large number of Higgs boson decay channels. At Run 1, ATLAS and CMS have searched for both resonant and non resonant Higgs boson pair production in the following channels: (i) $H H \rightarrow b \bar{b} \gamma \gamma$; (ii) $H H \rightarrow$ $b \bar{b} \tau^{+} \tau^{-}$; (iii) $H H \rightarrow b \bar{b} b \bar{b}$; (iv) $H H \rightarrow W W^{*} \gamma \gamma$; (v) in final states containing multiple leptons (electrons or muons) covering the $W W^{*} W W^{*}, W W^{*} Z Z^{*}, Z Z^{*} Z Z^{*}, Z Z^{*} \tau^{+} \tau^{-}, W W^{*} \tau^{+} \tau^{-}$, $Z Z^{*} b \bar{b}, \tau^{+} \tau^{-} \tau^{+} \tau^{-}$channels; and (vi) $\gamma \gamma \tau^{+} \tau^{-}$channels.

At Run 2, similarly to the $t \bar{t} H$ production process, the di-Higgs production gains a substantial increase in production cross section of a factor in excess of 3 from 8 TeV to 13 TeV , and most of these channels have been updated both by ATLAS [173] and CMS [174] using the 2016 datasets with the addition of the (vii) $H H \rightarrow b \bar{b} b \bar{b}$ channels. The detailed description of the analyses can be found in references within the combination results published by the collaborations $[173,174]$. All the results and their combinations are summarised in Table 11.7.

11.3.4.2 The Higgs boson self coupling

The Higgs boson self coupling is an extremely important direct probe of the Higgs potential with implications on our understanding of the electroweak phase transition. Constraints on the trilinear self coupling from $H H$ processes is an outstanding long term goal of the LHC and the reach in sensitivity has been reappraised in the light of the recent $H H$ analyses from ATLAS and CMS, shedding a different light on the achievable sensitivity [104]. Constraints from the $H H H$ final state on the quartic Higgs boson self coupling are out of reach at the LHC due mostly to the very small production rates and intricate final states.

In the SM, the Higgs boson pair production through the trilinear Higgs boson self coupling has an on-shell component and a large off-shell component. The on-shell $H \rightarrow H^{*} H^{*}$ is strongly disfavoured, requiring two off-shell Higgs bosons in the final state.

Table 11.6: Summary of the results of searches for a Higgs boson in association with a top quark pair by ATLAS and CMS. The results are given in terms of a measured signal strength. When available, the statistical and systematic contributions to the total uncertainty are reported separately and in this order. The ATLAS [161] and CMS [162] diphoton results indicated by (*) are not included in the overall combinations which include versions of the diphoton analyses with smaller Run 2 datasets. The combination includes the $t \bar{t}(H \rightarrow b \bar{b})$ channels reported in Table 11.5.

$t \bar{t} H$	ATLAS Run 1	CMS Run 1	ATLAS Run 2	CMS Run 2
$H \rightarrow \gamma \gamma$	$1.3_{-1.7}^{+2.6}{ }_{-1.7}^{+2.5}$	$1.2_{-1.7}^{+2.5}+2.6$	$1.38_{-0.31}^{+0.33}{ }_{-0.18}^{+0.26}(*)$	$2.27_{-0.74}^{+0.86}(*)$
$H \rightarrow 4 \ell$	-	-	$1.2_{-0.8}^{+1.4}(*)$	$0.0 \pm 1.2(*)$
$W W / \tau \tau / Z Z$	$1.4 \pm 0.6 \pm 1.0$	3.3 ± 1.4	$1.56_{-0.29}^{+0.30}{ }_{-0.27}^{+0.30}$	$0.96_{-0.31}^{+0.34}$
Comb.	$1.7 \pm 0.5 \pm 0.8$	$2.6_{-0.9}^{+1.0}$	$1.32 \pm 0.18_{-0.19}^{+0.21}$	$1.49 \pm 0.16_{-0.21}^{+0.27}$

Table 11.7: Summary of the final states investigated in the search for Higgs boson pair production by ATLAS and CMS, most analyses make use of the 2016 Run 2 dataset corresponding to integrated luminosities of up to $36 \mathrm{fb}^{-1}$. For ATLAS, the result indicated by (*) uses mostly the $b \bar{b} W^{+} W^{-}$channel. Results are 95% CL upper limits on the observed (expected) SM signal strengths.

Channel	ATLAS	CMS
$b \bar{b} \gamma \gamma$	$20.3(26)$	$23.6(18.8)$
$b \bar{b} b \bar{b}$	$12.9(21)$	$74.6(36.9)$
$b \bar{b} \tau^{+} \tau^{-}$	$12.5(15)$	$31.4(25.1)$
$W^{+} W^{-} W^{+} W^{-}$	$160(120)$	-
$W^{+} W^{-} \gamma \gamma$	$230(170)$	-
$b \bar{b} V V$	$305(305)^{*}$	$79(89)$
Combination	$6.9(10)$	$22.2(12.8)$

The sensitivity region to the trilinear coupling production as in Fig. 11.5 (b), is mainly in the kinematic region where the two Higgs boson in the final state are on-shell and the Higgs boson acts as a propagator (off-shell). As discussed in the introduction to this section, this process interferes negatively with the background Higgs boson pair production (Fig. 11.5 (a)).

The measurement of the trilinear coupling requires separating the contributions of the diagram of Fig. 11.5 (b) from the box diagram of Fig. 11.5 (b), and therefore a precise knowledge of the top-Yukawa coupling is needed. Each diagram alone would produce rather distinct $m_{H H}$ distribution. And, for values of the trilinear coupling close to the SM value, an additional discriminating feature of the signal with respect to one obtained with the box contribution alone is a deficit in the number of events. With large variations of the trilinear coupling, an excess of events over the SM prediction would be observed (for a value of the trilinear coupling about 6 times larger than its SM value, the number of events is equal to the SM expectation). Additional sensitivity to the trilinear coupling is also obtained from the kinematical distributions of the signal taking in particular into account the effect of the HH mass distribution which discriminates the main contributions of Fig. 11.5. This further discrimination is instrumental in resolving the degeneracy in the total cross section mentioned above. The bounds obtained by ATLAS [173] and CMS [174] are
the following:

$$
\begin{align*}
(\text { ATLAS }) & -5.0<\kappa_{\lambda}<12.0 \text { (observed) } \\
& -5.8<\kappa_{\lambda}<12.0 \text { (expected) } \\
(\text { CMS }) & -11.8<\kappa_{\lambda}<18.8 \text { (observed) } \tag{11.13}\\
& -7.1<\kappa_{\lambda}<13.6 \text { (expected) }
\end{align*}
$$

where κ_{λ} is the ratio between the trilinear coupling value left free in the fit and its expected value in the SM ($\kappa_{\lambda}=1$ corresponds to the SM). These results are also illustrated in Fig. 11.6.

The analyses performed at Run 2 bring substantial improvements from those of Run 1, and they were used to reappraise the sensitivity of the LHC in the High Luminosity regime in the framework of the update of the European Strategy for Particle Physics [104]. The result in terms of bounds on the trilinear coupling are shown in Fig. 11.6, indicating that the significance of the observation of the $H H$ process reaches 4σ. It is also apparent that the degeneracy of secondary minimum at intermediate values of κ_{λ} is resolved by the use of the kinematic discriminants. Indeed, this secondary minimum is expected to be excluded at 99.4% CL. This is very important to allow the measurement in the vicinity of the SM value at one standard deviation and to provide a meaningful confidence interval. At HL-LHC, the foreseen precision on κ_{λ} is approximately 50%.
Significantly higher precisions can be reached at $p p$ colliders (and $e^{+} e^{-}$colliders) at higher centre-of-mass energies. The foreseen precision for a High-Energy (HE) LHC at a centre-of-mass energy of 27 TeV is expected to be within 10% to 20% [104]. At a very large hadron collider at a centre-of-mass energy of 100 TeV , a 5% sensitivity is expected to be reached, provided that the theoretical and parametric uncertainties are kept at the 1% level.

Indirect constraints on the Higgs boson trilinear coupling from single Higgs boson production processes will be discussed in Section 11.6.2.5.

11.3.5 Searches for rare decays of the Higgs boson 11.3.5.1 $H \rightarrow Z \gamma$ and the Dalitz $H \rightarrow \ell^{+} \ell^{-} \gamma$ decay

The search for $H \rightarrow Z \gamma$ is performed in the final states where the Z boson decays into opposite sign and same flavour leptons $\left(\ell^{+} \ell^{-}\right), \ell$ here refers to e or μ. While the branching fraction for $H \rightarrow Z \gamma$ is comparable to $H \rightarrow \gamma \gamma$ (about 10^{-3}) at $m_{H}=125 \mathrm{GeV}$, the observable signal yield is brought down by the small branching ratio of $Z \rightarrow\left(e^{+} e^{-}+\mu^{+} \mu^{-}\right)=6.7 \times 10^{-2}$. In these channels, the $m_{\ell \ell \gamma}$ mass resolution is excellent $(1-3 \%)$, therefore the analyses search for a narrow mass peak over a continuous background. The major backgrounds arise from the $Z+\gamma$ final state radiation in Drell-Yan decays and from the $Z+$ jets processes where a jet is misidentified as a photon. The ratio of signal over background in this channel is typically of the order of 0.5%. In a narrow window of a few GeV around 125 GeV , several hundreds of events are expected in a Run 2 dataset corresponding to approximately $36 \mathrm{fb}^{-1}$.

Events are divided into mutually exclusive categories on the basis of the expected $m_{Z_{\gamma}}$ resolution and the signal-to-background ratio. A VBF category is formed for $H \rightarrow Z \gamma$ candidates which

Figure 11.6: (Left) Upper limit obtained by ATLAS on the total $p p \rightarrow H H$ production cross section as a function of the trilinear coupling modifier κ_{λ}. The variation of the limit corresponds to variations in the signal acceptance. The expected total production cross section is also illustrated (red). (Right) Expected combined ATLAS and CMS likelihood for the searches for the $p p \rightarrow H H$ production at the High Luminosity LHC. The channels used in the combination are indicated in the figure.
are accompanied by two energetic jets separated by a large pseudorapidity. While this category contains only about 2% of the total event count, the signal-to-noise ratio is about an order of magnitude higher. The search for a Higgs boson is conducted independently in each category and the results from all categories are then combined.

No excess of events is observed in either ATLAS or CMS in the Run 1 data. The CMS expected and observed 95% CL upper limits for $m_{H}=125 \mathrm{GeV}$ on the signal strength μ are 10.0 and 9.5 respectively. The ATLAS expected and observed upper limits on the signal strength μ are 9.0 and 11.0 respectively, for $m_{H}=$ 125.5 GeV .

The CMS analysis also extended the search for the so-called Dalitz Higgs boson decays $H \rightarrow \gamma^{*} \gamma \rightarrow \ell^{+} \ell^{-} \gamma$ in the low mass γ^{*} range of $m_{\ell \ell}<20 \mathrm{GeV}$. This decay mode has a substantially larger branching fraction compared to the $Z \gamma$ decay, as $\Gamma\left(H \rightarrow \gamma^{*} \gamma \rightarrow\right.$ $\left.e^{+} e^{-} \gamma\right) \sim 3.5 \% \times \Gamma(H \rightarrow \gamma \gamma)$ and $\Gamma\left(H \rightarrow \gamma^{*} \gamma \rightarrow \mu^{+} \mu^{-} \gamma\right) \sim$ $1.7 \% \times \Gamma(H \rightarrow \gamma \gamma)$, while $\Gamma(H \rightarrow Z \gamma)=2.3 \% \times \Gamma(H \rightarrow \gamma \gamma)$ (which does not account for the subsequent decay of the Z boson to electrons or muons). The limits in this channel are therefore stronger and CMS has observed an upper limit of 6.7 times the SM branching ratio [175].

ATLAS has performed an analysis of the full 2015 and 2016 Run 2 data to search for the $Z \gamma$ decay mode [176]. No significant excess was observed and 95% CL observed (expected) upper limits on the signal strength are 6.6 (5.2).

CMS has repeated its $Z \gamma$ and $\gamma^{*} \gamma$ analyses with the 2016 dataset and obtained much more stringent observed limits on cross section times the corresponding branching fractions of 1.4 and 4.0 (6.1 and 11.4) times the SM cross section for $H \rightarrow \gamma^{*} \gamma$ $(H \rightarrow Z \gamma)$ [177]. CMS also performed a combination of the two modes, obtaining a combined observed (expected) limit of 3.9 (2.0) times the SM branching fractions.

11.3.5.2 $H \rightarrow \mu^{+} \mu^{-}$

The branching fraction in the $H \rightarrow \mu^{+} \mu^{-}$channel for a 125 GeV SM Higgs boson is 2.2×10^{-4}, about ten times smaller than that for $H \rightarrow \gamma \gamma$. The dominant and irreducible background arises from the $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$process which has a rate several orders of magnitude larger than that from the SM Higgs boson signal. Due to the precise muon momentum measurement achieved by ATLAS and CMS, the $m_{\mu^{+} \mu^{-}}$mass resolution is very good $(\approx$ $2-3 \%$ for ATLAS and $\approx 1-3 \%$ for CMS depending on the selected categories; a better resolution is expected for CMS due its higher field in the inner detector). A search is performed for a narrow peak over a large but smoothly falling background. For optimal search sensitivity, events are divided into several categories. Either taking advantage of the superior muon momentum measurement in the central region, events can be subdivided by the pseudo-rapidity of the muons, or designing selections aiming
at specific production processes such in particular as the vector boson fusion.

No excess in the $m_{\mu+\mu^{-}}$spectrum is observed near 125 GeV . From an analysis of the Run 1 data, ATLAS sets an observed (expected) $95 \% \mathrm{CL}$ upper limit on the signal strength $\mu<7.0$ (7.2). The CMS analysis of its 7 and 8 TeV data sets an observed (expected) limit of $\mu<7.4$ (6.5).

ATLAS performed a reoptimised analysis using the full Run 2 dataset and categorising events in number of jets including VBFtopology specific categories [178]. The data showed a nonsignificance excess with a best-fit value of the signal strength for Higgs boson with a mass of $125 \mathrm{GeV}, \mu=0.5 \pm 0.7$. The data subsequently yielded an observed (expected) 95% CL upper limit on the signal strength of 1.7 (1.3) , assuming $\operatorname{BR}(H \rightarrow \mu \mu)=0$, (while the expected limit assuming the SM value for $\mathrm{BR}(H \rightarrow \mu \mu)$ is 2.2).

CMS, having analysed its 2016 dataset of Run 2, has obtained an observed (expected) limit on the production cross section times the branching fraction to a pair of muons of 3.0 (2.5) times the SM expectation [179]. In combination with the Run 1 data, the limit improves to 2.2 times the SM expectation. A non significant excess is also observed (with a significance of approximately 1σ) and the best fit signal strength is 1.0 ± 1.0 (stat) ± 0.1 (syst).

11.3.5.3 $H \rightarrow e^{+} e^{-}$

A search similar to the $H \rightarrow \mu^{+} \mu^{-}$is performed by CMS in the di-electron channel. In this search channel, the contribution from the peaking background from Higgs boson decays to diphotons mis-identified as di-electrons (when mostly converted photons are faking electrons) needs to be assessed. The sensitivity to the SM Higgs decays is negligible given the extremely small branching fraction to $e^{+} e^{-}$, approximately $40^{\prime} 000$ times smaller than the branching fraction to dimuons. It is nevertheless interesting to probe this decay channel to search for potential large anomalous couplings. Assuming a SM Higgs boson production cross section, the observed limit on the branching fraction at the $95 \% \mathrm{CL}$ is 0.0019 , five orders of magnitude larger than the expected SM prediction. It is also important to note that processes not depending on the electron Yukawa coupling such as the $H \rightarrow e^{+} e^{-} \gamma$ (where the photon is soft), are sizeably larger than the direct Yukawa coupling process, but also much smaller than the current constraints, making any interpretation in terms of constraint on the electron Yukawa couplings far from straightforward.

At Run 2, ATLAS has also performed a search for the $H \rightarrow$ $e^{+} e^{-}$decay mode with the full dataset, improving the current limit by a factor of approximately 5 , with a limit of 3.6×10^{-4} on the branching fraction [180].

11.3.5.4 Lepton flavour violating (LFV) Higgs boson decays

Given the Yukawa suppression of the couplings of the Higgs boson to quarks and leptons of the first two generations and the small total width of the Higgs boson, new physics contributions could easily have sizable branching fractions. One very interesting possibility is the Lepton Flavour Violating (LFV) decays of the Higgs boson, in particular in the $\tau \mu$ and τe modes. These decays are suppressed in the SM but they could easily be enhanced in theories such as two-Higgs-doublet models (discussed in Section 11.7).

There are already constraints on LFV Yukawa couplings $\left|Y_{\tau \mu}\right|$ from channels such as the $\tau \rightarrow 3 \mu$ or $\tau \rightarrow \mu \gamma$, or a reinterpretation of the search for Higgs boson decays to $\tau^{+} \tau^{-}$. A direct search at the LHC, however, complements these indirect limits. The search for LFV decays in the $\tau \mu$ channel have been done with the Run 1 dataset in several channels according to the subsequent decay of the τ. The results from CMS [181] and from ATLAS for the hadronic [182], the leptonic [183] decays of the tau, and their combination [183] are reported in Table 11.8. It is interesting to note that the analysis strategies at Run 1 for the di-lepton $\tau_{\text {lep }} \mu$ channel are very different between ATLAS [183] and CMS [181].

As shown in Table 11.8, an excess was observed in this channel by CMS with a significance of 2.5σ, while in ATLAS analysis, the excess is smaller, about 1σ at Run 1. CMS has performed the search again with the full 2016 Run 2 dataset [184], relying on a multivariate analysis. The observed best fit branching fraction is $(0.00 \pm 0.12) \%$. These limits are reported in Table 11.8.

ATLAS and CMS have also performed a search for the LFV Higgs boson decays in the τe and μe channels [183-185]. No significant excess was observed and 95% CL limits are reported in Table 11.8, for the τe channel only. For the μe channel, the constraints from the $\mu \rightarrow e \gamma$ experiments [186] are much stronger than those from the direct LFV Higgs boson decay search. However these indirect constraints can be relaxed by the cancellation of LFV effects from new physics.

At Run 2, ATLAS has performed searches for LFV decays of the Higgs boson in the $e \tau$ and $\mu \tau$ channels [187] as well as in the $e \mu$ channel [180]. The searches for the $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ decays where done with the 2016 data only and yielded upper limits on the LFV decay branching fraction of 0.47% (0.34%) and 0.28% (0.37%), respectively.

CMS has also searched for LFV decays with the 2016 dataset at Run 2 and obtained observed (expected) limits on the LFV branching fraction of $\mathrm{BR}(H \rightarrow \mu \tau)<0.25 \%(0.25 \%)$ and BR $(H \rightarrow e \tau)<0.61 \% ~(0.37 \%)$, at the 95% CL [188]. These limits were also interpreted in terms of constraints on the corresponding off-diagonal Yukawa couplings.

The results obtained by ATLAS and CMS at Run 2 do not confirm the excesses observed at Run 1.

11.3.5.5 Probing charm- and light-quark-Yukawa couplings

Probing the Yukawa couplings to quarks of the second or even the first generation is extremely challenging given the overwhelming backgrounds and very small rates.

The possibility of probing the Yukawa coupling to the charm has been discussed in Ref. [189] where indirect bounds are estimated from a combined fit to the Higgs data and the importance of using charm tagging is emphasised. Searches in the $V H$ production mode have then been carried out, in the channels very similarly to those aiming at the b-quark Yukawa coupling, by both ATLAS [190] and CMS [191] with Run 2 data. The upper limits obtained (expected) on the $V H$ production cross section times the charm quark decay branching fraction of the Higgs boson are:

$$
\begin{align*}
& (\mathrm{ATLAS}) \sigma(Z H) \times \mathrm{BR}(H \rightarrow c \bar{c})<2.7\left(3.9_{-1.1}^{+2.1}\right) \mathrm{pb} \tag{11.14}\\
& (\mathrm{CMS}) \frac{\sigma(V H) \times \mathrm{BR}(H \rightarrow c \bar{c})}{\sigma(V H)_{S M} \times \mathrm{BR}(H \rightarrow c \bar{c})_{S M}}<70\left(37_{-10}^{+16}\right) \tag{11.15}
\end{align*}
$$

The ATLAS search [190] was done in the $Z H$ channel where the Z boson decays to a pair of leptons (electrons or muons) only. The expected cross section times branching fraction $\sigma(Z H) \times \mathrm{BR}(H \rightarrow$ $c \bar{c})$ is $26 \mathrm{fb}^{-1}$.

Another possibility to access the charm Yukawa coupling has been discussed in Ref. [192]. It relies on the decays of the Higgs boson to a final state with charmonium: $H \rightarrow J / \Psi \gamma$. Higgs boson decays in this final state have been searched for by ATLAS [193]. The sensitivity of this analysis is, however, several orders of magnitude above the branching fraction estimated in the $\mathrm{SM}: \operatorname{BR}(H \rightarrow J / \Psi \gamma)=(2.8 \pm 0.2) \times 10^{-6}$. ATLAS [193] has also searched for Higgs boson decays to $\Upsilon(n S) \gamma$ where $(n=1,2,3)$, a channel with much lower sensitivity than the $H \rightarrow b \bar{b}$ to the Yukawa coupling to b-quarks.

More recently, ATLAS has searched, , with a specific trigger, for another quarkonia final state where the Higgs boson decays to $\phi \gamma$ [194] at the LHC Run 2 and a center-of-mass energy of 13 TeV . This channel could probe deviations from the strangequark Yukawa coupling. Its sensitivity is several orders of magnitude above the SM expectation. Other quarkonia final states, such as the $\rho \gamma$, which could potentially probe the Yukawa coupling to light quarks, can also be searched for.

CMS has also performed a search of the decays of the Higgs boson in the $J / \Psi J / \Psi$ and $\Upsilon \Upsilon$ decay to cover the cases where the photon in the $J / \Psi \gamma$ decay is virtual and transforms into a J / Ψ meson, These decays provide an additional channel potentially sensitive to BSM phenomena [195].

11.3.5.6 Rare decays outlook

Rare decays such as those described in the above sections have clearly a limited sensitivity. However, they already deliver interesting messages. For example, if the coupling of the Higgs boson to muons was as strong as it is to top quarks, this mode should have been observed. Therefore, it can be concluded that the observed couplings of the Higgs boson are manifestly non-universal. Further developing these rare decay modes is an important component of the High Luminosity program of the LHC in order to directly probe the couplings of the Higgs boson, and to potentially measure the Yukawa coupling to the fermions of the second generation, in particular to muons. It is also an integral part of the physics program of the discussed potential future Higgs boson factories.

11.3.6 Searches for non-SM decay channels

The main decay and production properties of the observed Higgs boson are consistent with the SM predictions. The Higgs boson may, however, have other decay channels beyond those anticipated in the SM. Among these, and of great interest, are the invisible decays into stable particles, such as DM particle candidates, that interact very weakly with the detector, and that remain undetected. Other non standard decay channels that have been investigated are the decays of the Higgs particle to hidden valley or dark particles.

11.3.6.1 Invisible decays of the Higgs boson

The discovery of the Higgs boson immediately raised the question of its couplings to DM and how it could be used to reveal at colliders the existence of a dark sector coupled to the SM via the Higgs boson portal, see Ref. [196] and references therein. If kinematically accessible and with a sufficiently large coupling to the Higgs boson, DM particles, such as, e.g., neutralinos in SUSY models, graviscalars in models with extra dimensions or heavy neutrinos in the context of four-generation fermion models, would manifest themselves as invisible decays of the Higgs boson, thus strongly motivating searches for the invisible decays of the Higgs boson.

To identify an invisibly decaying Higgs boson at the LHC, it must be produced in association with other particles. Searches for invisible decays of the Higgs particle at the LHC have been carried out in the three associated production modes of the Higgs boson with the highest SM cross sections and target events with large missing energy.

The ggF production mode has the largest SM cross section but it usually results in the Higgs boson being created alone and hence leaving no characteristic signature in the detector of its invisible decay. One way to search for invisible decays in ggF production mode is to look for events with the monojet topology arising from initial state gluon radiation and containing missing energy. The major irreducible background in such searches stems from $Z+$ jets

Table 11.8: Summary of the results of searches for lepton flavour violating decays of the Higgs boson in the $\tau \mu$ and τe channels from ATLAS and CMS. For the result with *, the expected sensitivity was not reported but appears consistent with the observed one.

	ATLAS (Run 1)	CMS (Run 1)	CMS (Run 2)	
$\operatorname{BR}(H \rightarrow \tau \mu)$	$(0.53 \pm 0.51) \%$		$\left(0.84_{-0.37}^{+0.39}\right) \%$	$(0.00 \pm 0.12) \%$
95% CL Obs. (Exp.)	$1.43 \% \quad(1.01 \%)$	$1.51 \% \quad(0.75 \%)$	$0.25 \% \quad(0.25 \%)$	
$H \rightarrow \tau e 95 \%$ CL Obs. (Exp.)	1.02%	(1.21%)	$0.69 \%^{*}$	0.61%

events where the Z boson decays into a pair of neutrinos [197]. The analysis with the best sensitivity targets the VBF production topology but it suffers from large backgrounds arising from events with two jets and large missing energy. The $V H$ mode has much smaller cross section but the presence of a W or Z boson allows a variety of final states that can be tagged with relatively low background.

ATLAS and CMS have searched for such final states at Run 1 and have observed no significant excess over the predicted backgrounds (for references, see the previous edition of this review [123]). Table 11.9 summarizes the 95% CL limits on the invisible decays of the Higgs boson assuming a SM Higgs boson production cross section and the corresponding detector acceptances.

ATLAS has performed the search for invisible decays of the Higgs boson at Run 2 with the 2015 and 2016 datasets, corresponding to an integrated luminosity of approximately $36 \mathrm{fb}^{-1}$, in the VBF production [198], the $Z H$ associated production where the Z boson subsequently decays to a pair of leptons [199], and the $V H$ associated production where the vector boson (a W or a Z) subsequently decays hadonically [200]. The most stringent constraint is obtained through the VBF channel. All results and their combination [201] are reported in Table 11.9. Combined with the Run 1 results, the ATLAS limit on the invisible branching fraction reaches 26%, with an expected sensitivity of 17% [201].

CMS has updated the search for invisible decays of the Higgs boson in the vector boson fusion and the associated production with a vector boson channels (both with subsequent leptonic [202] and hadronic decays [203]) using Run 2 data collected in 2016 [204]. It has produced a combination with Run 1 channels, yielding a limit on the invisible branching fraction of 19%, with an expected sensitivity of 15% [204].

CMS has also reinterpreted a search for scalar top quarks in the all-hadronic, semi-leptonic and fully leptonic final state with the 2016 data of Run 2 to set limits on the invisible Higgs decays through the $p p \rightarrow t \bar{t} H$ production mode [205]. The results of the search are reported in Table 11.9.

This constraint can then be further used to probe Higgs portal models to DM [196], where an additional weakly interacting particle χ with mass lower than $m_{H} / 2$ is introduced as DM candidate and where the Higgs boson is considered as the only mediator between the SM particles and DM. In this model, it is interesting to express the limit on the invisible branching fraction in terms of strength of interaction of DM with standard matter, i.e., in terms of it interaction cross section with nucleons $\sigma_{\chi-N}$. In this model, the couplings of the Higgs boson to SM particles are assumed to be those of the SM and the interaction of the Higgs boson with the nucleon is parametrised in a Higgs-Nucleon form factor estimated using lattice QCD calculations [196]. The exclusion limits from the constraints on invisible Higgs boson decays, both direct and indirect from the measurement of the coupling properties of the Higgs boson can be compared to direct detection experiments. For comparison, the limit at $90 \% \mathrm{CL}$ on the invisible branching fraction of $\mathrm{BR}_{\mathrm{inv}}<19 \%$ [204] is used and converted into limits on $\sigma_{\chi-N}$ under several hypotheses on the nature of DM particles depending mainly on their spin (scalar- or fermion-like). The vector DM hypothesis is not included since (renormalisable) models of vectorial DM require an extended dark sector that could imply modifications of the signal. The results are shown in Fig. 11.7.

11.3.6.2 Exotic Higgs boson decays

The 125 GeV Higgs boson serves not only as a probe for potential DM candidates, but also to search for other exotic particles arising from fields associated with a low-mass hidden sector. Such

Figure 11.7: 90% CL upper limits on the WIMP-nucleon scattering cross section as a function of the DM particle mass. Spinindependent results excluded and favored regions from direct detection experiments are also shown.
hidden sectors are composed of fields that are singlet under the SM gauge group $\mathrm{SU}(3) \times \mathrm{SU}(2) \times U(1)$. These models are referred to as hidden valley models [206]. Since a light Higgs boson is a particle with a narrow width, even modest couplings to new states can give rise to a significant modification of the Higgs boson phenomenology through exotic decays. Simple hidden valley models exist in which the Higgs boson decays to an invisible fundamental particle, which has a long lifetime to decay back to SM particles through a small mixing with the SM Higgs boson, see Ref. [206] for a concrete example. The Higgs boson may also decay to a pair of hidden valley "v-quarks," which subsequently hadronise in the hidden sector, forming "v-mesons." These mesons often prefer to decay to the heaviest state kinematically available, so that a possible signature is $H \rightarrow 4 b$. Some of the v-mesons may be stable, implying a mixed missing energy plus heavy flavour final state. In other cases, the v-mesons may decay to leptons, implying the presence of low mass lepton resonances in high- H_{T} events [207]. Other scenarios have been studied [208] in which the Higgs boson decays predominantly into light hidden sector particles, either directly, or through light SUSY states, and with subsequent cascades that increase the multiplicity of hidden sector particles. In such scenarios, the high-multiplicity hidden-sector particles, after decaying back into the SM, appear in the detector as clusters of collimated leptons known as "lepton jets".

A variety of models have been investigated searching for final states involving dark photons and hidden valley scalars. The resulting topologies typically have leptons or light hadrons which in some cases can be prompt (i.e., originating from the hard process interaction point) or not and are in some cases collimated and reconstructed as jets [209, 210], and long lived weakly interacting particles. The latter occur not only in hidden valley scenarios, but also in gauge-mediated extensions of the minimal SUSY standard model (MSSM), the MSSM with R-parity violation, and inelastic DM scenarios [211]. Finally, CMS has performed a search for pair production of light bosons [212]. Such a scenario can occur in SUSY models with additional hidden (or dark) valleys.

Table 11.9: Summary of the channels searched for and the corresponding 95% CL limits from ATLAS and CMS on the branching fraction for the Higgs boson decay to invisible particles assuming a SM Higgs boson production cross section. The results in parentheses are the expected exclusions.

	ATLAS (Run 1)	TLAS (Run 2)	CMS (Run 1)	CMS (Run 2)
ggF (monojet) $; H \rightarrow$ inv.	-	-	67 (71) \%	66 (59)\%
VBF; $H \rightarrow$ inv.	28 (31) \%	37 (28) \%	57 (40) \%	33 (25) \%
$\mathrm{ZH} ; Z \rightarrow \ell^{+} \ell^{-} ; H \rightarrow$ inv.	75 (62)\%	67 (39) \%	75 (91) \%	40 (42)\%
$\mathrm{VH} ; Z, W \rightarrow j j ; H \rightarrow$ inv.	78 (86)\%	83 (58) \%	-	50 (48)\%
$\mathrm{ZH} ; Z \rightarrow b \bar{b} ; H \rightarrow$ inv.	-	-	182 (189)\%	-
Combination	25 (27)\%	38 (21)\%	-	26 (20) \%
Run 1 \& 2 Combination	26 (17)\%		19 (15)\%	
$t \bar{t} H ; H \rightarrow$ inv.	-	-	-	46 (48)\%

11.4 Combining the main channels

The analysis strategy used by the LHC experiments to perform the searches for the Higgs boson has been based on the Higgs boson decay modes. It is a natural choice given that it focusses on the decay products of the object searched for. However, for each channel, exclusive sub-channels have been defined according to the Higgs boson production processes and, in the results presented, these sub-channels have been combined. The natural extension of this approach in order to probe further the production and decay modes of the Higgs boson is to combine the analysis channels together. Such a combination is also used in Section 11.6 to further measure the coupling properties of the Higgs boson.

At the LHC, the total cross section cannot be measured in any of the production modes. As a consequence, neither the absolute branching fractions nor the total width of the Higgs boson can be directly measured, at least if the width is of the SM size. However, a combined measurement of the large variety of categories described in Section 11.3, with different sensitivities to various production and decay modes, permits a wide variety of measurements of the production, decay and coupling properties. These measurements require, in general, a limited but nevertheless restrictive number of assumptions.

In this section, three sets of results will be given. The first one is the ATLAS and CMS Run 1 combination [141]. The other two are the individual combinations of ATLAS and CMS independently with partial Run 2 dataset. It is important to note that, between the Run 1 and the Run 2 results, the signal theoretical systematic uncertainties have improved significantly.

The Run 1 full combination results were derived by the two collaborations, taking rigorously into account all correlations in the systematic uncertainties and in the large number of channels and their categories

At Run 2, ATLAS [213] and CMS [214] have already produced combined measurements of the coupling properties of the Higgs boson with partial datasets, of up to $80 \mathrm{fb}^{-1}$ and up to $36 \mathrm{fb}^{-1}$ respectively.
In this section, only the results on the main Higgs boson production and decay modes will be discussed. Only a brief presentation of the combination framework is given here (a more detailed description is given in Ref. [215]). This framework will also be used in Section 11.6 to discuss the measurements of the coupling properties of the Higgs boson.

11.4.1 Principles of the combination

The combination of the Higgs boson analysis channels in each experiment and for the two experiments together was done using a fit of a signal and background model to the data. As described above, the data was made of a large number of categories, aiming at reconstructing exclusive production and decay modes. In the combination of ATLAS and CMS [141], there were approximately 600 categories. The combination was a simultaneous fit to all these categories, using a reduced number of parameters of interest and a Higgs boson mass fixed at its measured value (see Section 11.3.2). The much larger number of categories present in the ATLAS and CMS combination [141] is due to additional separation in terms of finer exclusive production regions, decay channels of the Z and the W bosons, and taus, control regions where
little-to-no signal is present, and different center-of-mass energies. It should be noted that the individual combination performed by ATLAS [216] included two additional decay channels: the $\mu^{+} \mu^{-}$ and $Z \gamma$. For the sake of simplicity these channels were omitted in the ATLAS-CMS combination. In addition, a $H \rightarrow b \bar{b}$ analysis performed by CMS, see the reference in Ref [123], and included in its own combination, has been omitted from the ATLAS-CMS combination.

In their Run 2 individual combinations, ATLAS and CMS have not considered the $Z \gamma$ channel. The CMS experiment has included the $\mu \mu$ channel.

The key to understand how the combination of channels works relies on the combination master formula, which expresses for each category, indexed by c, of a given channel (typically a category covers mostly one decay mode, but possibly various production modes), the measured number of signal events n_{s}^{c} as a function of a limited number of parameters as follows:

$$
\begin{equation*}
n_{s}^{c}=\left(\sum_{i, f} \mu_{i} \sigma_{i}^{\mathrm{SM}} \times A_{i f}^{c} \times \varepsilon_{i f}^{c} \times \mu_{f} \mathrm{BR}_{f}^{\mathrm{SM}}\right) \times \mathcal{L}^{c} \tag{11.16}
\end{equation*}
$$

The production index is defined as $i \in\{\operatorname{ggF}, \mathrm{VBF}, V H, t \bar{t} H\}$ and the decay index is defined as $f \in\{\gamma \gamma, W W, Z Z, b b, \tau \tau\}$, while σ_{i}^{SM} and $\mathrm{BR}_{f}^{\mathrm{SM}}$ are the corresponding production cross sections and decay branching fractions, estimated as described in Section 11.2, assuming that the Higgs boson is that of the SM. $A_{i f}^{c}$ and $\varepsilon_{i f}^{c}$ are the signal acceptance and the reconstruction efficiency for the given production and decay modes in the category $c . \mathcal{L}^{c}$ is the integrated luminosity used for that specific category. For the purpose of this review, these parameters can be considered as fixed ${ }^{3}$.

The parameters of interest in the master formula are the signal strength parameters μ_{i} and μ_{f}. It is important to note that the formula relies on the factorisation of the production cross section and decay branching fraction, which assumes the narrow width approximation. The width of the Higgs boson will be discussed in Section 11.5, however, for the precision needed here, the fact that the Higgs boson has been observed in decay channels with high mass resolution as a resonance is sufficient to validate this hypothesis. It is also manifest in the above equation that the ten parameters for the production modes $\left(\mu_{i}\right)$ and decay modes $\left(\mu_{f}\right)$ cannot be determined simultaneously. This illustrates that total cross sections or branching fractions cannot be measured without further assumptions in this fit.

The master formula also illustrates an important caveat to the measurement of signal strength parameters. In case these are interpreted as scale factors of the production cross sections or branching fractions, then all the other quantities such as the acceptances and efficiencies, $A_{i f}^{c}$ and $\varepsilon_{i f}^{c}$, need to be assumed as independent and fixed to their estimated values for the SM Higgs boson. An additional important caveat to note concerning these combined results is that only the normalisation is varied, while the discriminating variables for the signal are not modified and

[^26]Table 11.10: Summary of the observation significances (with respect to the background only hypothesis) for the main production and decay processes at the LHC. Measured signal strengths are reported when the observation has been established unambiguously. Measured signal strengths are reported with the uncertainty of statistical nature first and systematic last, ATLAS has not reported these results in its Run 2 combination (NR). *The Run $2 V H$ significances reported in this table are obtained from the observation of the Higgs boson decays to b quarks, while the Run 1 combination corresponds to combination of all channels.

	Decay modes			
	ATLAS (Run 1)	CMS (Run 1)	ATLAS (Run 2)	CMS (Run 2)
$\gamma \gamma$	$4.6 \sigma(5.3 \sigma)$	$5.2 \sigma(4.6 \sigma)$	NR	$1.20{ }_{-0.11}^{+0.13}{ }_{-0.09}^{+0.12}$
ZZ	$6.2 \sigma(6.3 \sigma)$	$8.1 \sigma(6.5 \sigma)$	NR	$1.06{ }_{-0.15}^{+0.16}{ }_{-0.08}^{+0.11}$
WW	$5.9 \sigma(5.4 \sigma)$	$6.5 \sigma(4.7 \sigma)$	NR	$1.28{ }_{-0.09}^{+0.09}+0.14$
$\tau^{+} \tau^{-}$	$3.4 \sigma(3.9 \sigma)$	$4.5 \sigma(3.8 \sigma)$	$6.4 \sigma(5.4 \sigma)$	$5.9 \sigma(5.9 \sigma)$
	Comb. 5.0	$\sigma(5.5 \sigma)$		
$b \bar{b}$	$2.6 \sigma(2.5 \sigma)$	$1.4 \sigma(2.1 \sigma)$	$5.4 \sigma(5.5 \sigma)$	$5.5 \sigma(5.6 \sigma)$
	Comb. 3.7	$\sigma(2.6 \sigma)$		
		Product	ion modes	
	ATLAS and C	CMS (Run 1)	ATLAS (Run 2)	CMS (Run 2)
$q q \rightarrow q q H(\mathrm{VBF})$	Comb. 5.4	$\sigma(4.6 \sigma)$	$1.21{ }_{-0.17}^{+0.18}{ }_{-0.13}^{+0.16}$	$0.73{ }_{-0.23}^{+0.24}+0.17{ }_{-0.15}^{+0}$
$p p \rightarrow V H$	Comb. 3.5	$\sigma(4.2 \sigma)$	$5.3 \sigma(4.8 \sigma)^{*}$	$4.8 \sigma(4.9 \sigma)^{*}$
$p p \rightarrow t \bar{t} H$	Comb. 4.4	$\sigma(2.2 \sigma)$	$5.8 \sigma(4.9 \sigma)$	$5.2 \sigma(4.2 \sigma)$

are still used in the fit. These caveats are of particular importance in the use of the combination to measure the coupling properties of the Higgs boson, as discussed in Section 11.6. For relatively small perturbations of the couplings of the Higgs boson from the SM values, this hypothesis is valid.

However, the products $\mu_{i} \times \mu_{f}$ can be considered as free parameters and in principle measurable (if there is sufficient sensitivity from specific categories). Measuring the products of signal strengths can be viewed as measuring the cross sections times the branching fraction, $\sigma \cdot \mathrm{BR}$. An illustration of the results for the Run 2 combinations of ATLAS and CMS is presented in Fig. 11.8 for the combination of ATLAS and CMS.

A coherent picture emerges (including the Run 1 results, see Ref. [123]) where an excellent consistency between the observation in each channel and the SM expectation. This multi-parameter fit quantifies the current experimental knowledge of the main production and decays modes. Run 2 results are also available [213,214]. These are not included in the figure for the sake of simplicity. The Run 2 results are already competitive with the Run 1 results. In Fig. 11.8, the Run 1 results are kept for illustration purposes. The theoretical uncertainty in the aforementioned fit is not included in the measured values of the signal strengths but is illustrated on the unit value corresponding to the SM expectation.

Other fits involving ratios of cross sections, which are less sensitive to theory uncertainties, are performed and reported in Ref. [215].

The most constrained fit in the combination allows for only one single parameter to vary, i.e., $\forall(i, f), \mu_{i}=\mu_{f}=\mu$. This global-signal-strength model provides the simplest probe of the compatibility of the signal with the SM Higgs boson. Indeed, it is sensitive to any deviation from the SM Higgs boson couplings provided that these deviations do not cancel overall. The full Run 1 combination determines the global signal strength to be

$$
\begin{align*}
\mu=1.09 \pm 0.11= & 1.09 \pm 0.07 \text { (stat.) } \pm 0.04 \text { (expt.) } \\
& \pm 0.03 \text { (th. bkg.) } \pm 0.07 \text { (th. sig.) } \tag{11.17}
\end{align*}
$$

where the statistical, experimental uncertainties as well as the theoretical uncertainties on the background and on the signal are reported separately. The ATLAS Run 2 combination of the global
signal strength yields [213]:

$$
\begin{align*}
\mu=1.11_{-0.08}^{+0.09} & =1.11 \pm 0.05 \text { (stat.) }{ }_{-0.04}^{+0.05} \text { (expt.) } \\
& \pm 0.03 \text { (th. bkg.) }{ }_{-0.04}^{+0.05} \text { (th. sig.) } \tag{11.18}
\end{align*}
$$

while the CMS Run 2 combination yields [214]:

$$
\begin{align*}
\mu=1.17 \pm 0.10=1.17 & \pm 0.06 \text { (stat.) }{ }_{-0.05}^{+0.06} \text { (th. sig.) } \tag{11.19}\\
& \pm 0.06 \text { (other. syst.). }
\end{align*}
$$

These overall signal strengths are fully compatible with the SM expectation, $\mu=1$, with a precision of 10%. It is interesting to note that the main uncertainty in these measurements arises from the limited precision in the theoretical predictions for the signal production processes. The precision reached with the individual experiments combinations using partial Run 2 data sets have already exceeded the full Run 1 ATLAS and CMS combination precision.

11.4.2 Main decay modes

Despite the large number of decay channels, since the cross sections cannot be independently measured, from the measurements described in this section it is impossible to measure the decay branching fractions without a loss of generality. The simplest assumption that can be made is that the production cross sections are those of the SM, which is equivalent to assume that, for all i indices, $\mu_{i}=1$. All branching fractions μ_{f} can then be measured in a simple 5 parameter fit. The results of these fits are reported in Table 11.10 in terms of significances to highlight their unambiguous observations: all the measured branching fractions are compatible with the SM values.

For the $\tau^{+} \tau^{-}$channel, ATLAS and CMS were both only mildly sensitive at the Run 1 and have observed excesses in their data. The individual results were not sufficiently significant to claim an observation, however, in combination the evidence was very strong. It is really with the addition of the Run 2 data that the decay of the Higgs boson to tau pairs has been established by the two experiments independently and unambiguously (see Table 11.10 and Section 11.3.2).

As illustrated in Table 11.10, ATLAS and CMS were both less sensitive in the $H \rightarrow b \bar{b}$ decay mode. The available sensitivity

Figure 11.8: Combined measurements of the products $\sigma \cdot \mathrm{BR}$, normalised to the SM predictions, for the five main production and five main decay modes. The hatched combinations require more data for a meaningful confidence interval to be provided.
came mostly from the $V H$ process. The combined significance of 3.7σ at Run 1 was sufficient to suggest evidence, however ATLAS and CMS observations were both low with respect to the rate expected in the SM. At Run 2, this channel benefited largely from the increased production cross sections at 13 TeV and the much larger dataset. In this case as well, it is with the addition of the Run 2 data that both experiments were able to establish a measurement in this channel (as discussed in Section 11.3.2).

These are major milestones of the LHC physics program.

11.4.3 Main production modes

Most analysis channels are divided into exclusive categories allowing for an increased overall sensitivity and permitting to access the various Higgs boson production modes. The cross sections of the main production modes can be measured assuming that the branching fractions are those of the SM , i.e., for all f indices $\mu_{f}=1$. These assumptions lead to a 5 parameter combination. The results are reported in terms of significances of observation of the production modes in Table 11.10.
The gluon fusion production process is the dominant production mode. Although no numerical estimate of combined significance of observation for this process has been given by the experiments, it is considered as established due to the overwhelming evidence from the three main discovery channels. None of the other production modes have been firmly established by the experiments individually. However, the table shows that, for the VBF production mode, the combination had a large sensitivity and produced a combined observation of 5.4σ, therefore establishing this process with a rate compatible with that expected in the SM.

The $V H$ production mode has only very recently been unambiguously observed by ATLAS and CMS independently (as discussed in Section 11.3.2) through the $V(H \rightarrow b \bar{b})$ channel. This is illustrated in the relative contributions of all channels to the $V H$ process shown in Figure 11.8.

With the Run 2 data, all production processes have been established, and in particular the $p p \rightarrow t \bar{t} H$ process, which provides direct evidence of the coupling of the Higgs boson to top quarks. This is another milestone in the LHC physics program.

11.5 Main quantum numbers and width of the Higgs boson

11.5.1 Main quantum numbers $J^{P C}$

Probing the Higgs boson quantum numbers is essential to further unveiling its coupling properties. The measurements of the signal event yields in all the channels discussed in Sections 11.3 and 11.4, and their compatibility with the SM Higgs boson predictions, give a qualitative but, nonetheless, compelling indication of its nature. This qualitative picture is further complemented by the implications of the observation of the particle in the diphoton channel. According to the Landau-Yang theorem [217], the observation made in the diphoton channel excludes the spin-1 hypothesis and restricts possibilities for the spin to 0 or 2 .

The Landau-Yang theorem does not apply if the observed state is not decaying to a pair of photons but to a pair of scalars subsequently decaying to two very collimated pairs of photons (as for example in the case of $H \rightarrow a_{1} a_{1} \rightarrow 4 \gamma$). This possibility has not been rigorously excluded but is not experimentally favoured since tight selection criteria are applied on the electromagnetic shower shapes of the reconstructed photons. A more systematic analysis of shower shapes and the fraction of conversions could be performed to further discriminate between the single prompt photon and the two overlapping photons hypotheses. There are also potential theoretical loopholes concerning the applicability of the Landau-Yang theorem, such as off-shell vector boson decays. However, for the observed particle not to be of spin 0 and +1 parity would require an improbable conspiracy of effects. It is nevertheless important to test this hypothesis independently, in particular since the measurements of coupling properties of the Higgs boson assume that it is a $C P$-even state.

11.5.1.1 Charge conjugation

The charge conjugation quantum number is multiplicative, therefore given that the Higgs-like particle is observed in the $H \rightarrow \gamma \gamma$ channel, and given that photons are C-odd eigenstates, assuming C conservation, the observed neutral particle should be C-even.
11.5.1.2 Spin and parity

To probe the spin and parity quantum numbers of the discovered particle, a systematic analysis of its production and decay processes is performed in several analyses. These analyses are designed to be independent of the measured event yields and they rely instead on the production and the decay angles, and on the threshold distributions as long as a significant signal is observed, i.e., in situations when an excess over the expected background can be used to further discriminate between signal hypotheses. These analyses are based on probing various alternative models of spin and parity [218]. These models can be expressed in terms of an effective Lagrangian [219] or in terms of helicity amplitudes [220]. The two approaches are equivalent. In the following, the effective Lagrangian formalism is chosen to describe the models considered and a restricted number of models are discussed [219]. In the analysis performed by CMS [220], a larger number of models have been investigated, however, the main channels studied by both experiments are essentially the same and the main conclusions are similar and fully consistent.

i. Spin-0 model

The interaction Lagrangian relevant for the analysis of spin-0 particle interaction with a pair of W or Z bosons with either fixed or mixed SM and BSM $C P$-even couplings or $C P$-odd couplings, is the following [221]:

$$
\begin{align*}
& \mathcal{L}_{0}^{W, Z} \supset\left\{\cos (\alpha) \kappa_{\mathrm{SM}}\left[\frac{1}{2} g_{H Z Z} Z_{\mu} Z^{\mu}+g_{H W W} W_{\mu}^{+} W^{-\mu}\right]\right. \\
& -\frac{1}{4 \Lambda}\left[\cos (\alpha) \kappa_{H Z Z} Z_{\mu \nu} Z^{\mu \nu}+\sin (\alpha) \kappa_{A Z Z} Z_{\mu \nu} \tilde{Z}^{\mu \nu}\right] \\
& \left.-\frac{1}{2 \Lambda}\left[\cos (\alpha) \kappa_{H W W} W_{\mu \nu}^{+} W^{-\mu \nu}+\sin (\alpha) \kappa_{A W W} W_{\mu \nu}^{+} \tilde{W}^{-\mu \nu}\right]\right\} H \tag{11.20}
\end{align*}
$$

where $V^{\mu}=Z^{\mu}, W^{+\mu}$ are the vector boson fields, $V^{ \pm \mu \nu}$ are the reduced field tensors and $\tilde{V}^{ \pm \mu \nu}=1 / 2 \varepsilon^{\mu \nu \rho \sigma} V_{\rho \sigma}$ are the dual tensor fields. And Λ defines an effective theory energy scale. The factors $\kappa_{\mathrm{SM}}, \kappa_{H Z Z}, \kappa_{H W W}, \kappa_{A Z Z}, \kappa_{A W W}$ denote the coupling constants corresponding of the coupling of the SM and BSM CP-even and $C P$-odd components of the Higgs boson to the W and Z fields. The mixing angle α allows for the production of a $C P$-mixed state and the $C P$-symmetry is broken when $\alpha \neq 0, \pi$.

This formalism can be used to probe both $C P$-mixing for a spin-0 state, as discussed in Section 11.5.1.4 or specific alternative hypotheses, as discussed below in Section 11.5.1.3, such as a pure $C P$-odd state $\left(J^{P}=0^{-}\right)$corresponding to $\alpha=\pi / 2, \kappa_{\mathrm{SM}}=$ $\kappa_{H V V}=0$ and $\kappa_{A V V}=1$. A BSM $C P$-even state $J^{P}=0^{+}$ corresponds to $\alpha=0, \kappa_{A V V}=0, \kappa_{H V V}=1$ and $\kappa_{\text {SM }}$ arbitrary. These hypotheses are compared to the SM Higgs boson hypothesis corresponding to $\alpha=0$ and $\kappa_{H V V}=\kappa_{A V V}=0$ and $\kappa_{\mathrm{SM}}=1$. This formalism has been adopted by the ATLAS experiment. The analysis of these benchmarks are illustrated in Fig. 11.9.

A different parametrisation of anomalous couplings of a spinzero boson with two gauge bosons $V V$ can also expressed in the general form of the scattering amplitude A :

$$
\begin{align*}
A \sim & {\left[a_{1}^{V V}-\frac{\kappa_{1}^{V V} q_{1}^{2}+\kappa_{2}^{V V} q_{2}^{2}}{\left(\Lambda_{1}^{V V}\right)^{2}}-\frac{\kappa_{3}^{V V}\left(q_{1}+q_{2}\right)^{2}}{\left(\Lambda_{Q}^{V V}\right)^{2}}\right] m_{V_{1}}^{2} \varepsilon_{V_{1}}^{*} \varepsilon_{V_{2}}^{*} } \\
& +a_{2}^{V V} f_{\mu \nu}^{*(1)} f^{*(2) \mu \nu}+a_{3}^{V V} f_{\mu \nu}^{*(1)} \tilde{f}^{*(2) \mu \nu} \tag{11.21}
\end{align*}
$$

where ε_{i} is the polarization vector of the boson $V_{i}, f_{\mu \nu}^{*(i)}=\varepsilon_{i}^{\mu} q^{\nu}-$ $\varepsilon_{i}^{\nu} q^{\mu}$ is a scalar tensor constructed from the vector boson V_{i} polarization and four momentum, $\tilde{f}_{\mu \nu}^{*(i)}=\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} f^{*(i) \rho \sigma}$ is the corresponding pseudo-scalar tensor. Λ_{1} and Λ_{Q} are new physics scales, $a_{1,2,3}$ are coupling strength modifiers and $\left|\kappa_{(1,2,3)}^{V V}\right|=0$ or 1 . The custodial symmetry would require that $a^{W W}=a^{Z Z}$ and, at treelevel, the only non-zero contributions would come from the a_{1} term. This parametrisation is used by CMS. It is fully equivalent to the interaction Lagrangian approach described above.

ii. Spin-2 model

The graviton-inspired interaction Lagrangian for a spin-2 boson $X^{\mu \nu}$ that does not carry any color, weak and electromagnetic charge and that uniquely interacts with the energy momentum tensor $\mathcal{T}^{V, f}$ of vector bosons V or fermions f, can be written as follows [221]:

$$
\begin{equation*}
\mathcal{L}_{2} \supset \frac{1}{\Lambda}\left[\sum_{V} \xi_{V} \mathcal{T}_{\mu \nu}^{V} X^{\mu \nu}+\sum_{f} \xi_{f} \mathcal{T}_{\mu \nu}^{f} X^{\mu \nu}\right] \tag{11.22}
\end{equation*}
$$

where the strength of the interaction is determined by the couplings ξ_{V} and ξ_{f}. The simplest scenarios, referred to as universal couplings (UC), correspond to $\xi_{V}=\xi_{f}$. They predict a large branching ratio to photons (of approximately 5%) and negligible couplings to massive gauge bosons (W and Z). They are therefore disfavoured, and other models are investigated where the couplings of the W, Z and γ are assumed to be independent. Universality of the couplings refers to $\xi_{g}=\xi_{q}$. Two other scenarios are considered: $\xi_{q}=0$ and $\xi_{q}=2 \xi_{g}$. In these scenarios, a large enhancement of the tail of the transverse momentum of the spin-2 state is expected and requires a further selection requirement in order to probe the models within the range of validity of the effective field theory. Two requirements are considered, $p_{T}^{X}<300 \mathrm{GeV}$ and $p_{T}^{X}<125 \mathrm{GeV}$ [219]. The analysss of these benchmarks are discussed below and results are illustrated in Fig. 11.9.

11.5.1.3 Probing fixed J^{P} scenarios

At the LHC, the determination of the spin and $C P$ properties of the Higgs boson is done independently from the total rates measurement, it uses a global angular helicity analysis and, when applicable, the study of threshold effects. The channels used for this analysis, $H \rightarrow \gamma \gamma, H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ and $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$, are those where the observation of a signal is unambiguous.

At the Tevatron, an analysis using the threshold distribution in the associated production mode $V H$ with subsequent decay to a pair of b quarks was performed by the D0 collaboration.

i. The VH production at DO

The mass of the $V H$ system is a powerful discriminant to distinguish a $J^{P}=0^{+}$, with a threshold behaviour in $d \sigma / d M^{2} \sim$ $\beta, \beta^{3}, \beta^{5}$ from a $0^{+}, 0^{-}$and 2^{+}state, respectively [222]. The $V H$ mass observable not only discriminates signal hypotheses, but also has an increased separation between the 0^{-}and 2^{+}hypotheses with respect to the backgrounds, thus allowing, with a small and not yet significant signal yield, to exclude that the observed state is 0^{-}at $98 \% \mathrm{CL}$ [223] and 2^{+}at the $99.9 \% \mathrm{CL}$ [224], assuming a signal produced with their best fit signal strength (which was $\mu=1.23)$.

ii. The $\gamma \gamma$ channel at the LHC

In the $H \rightarrow \gamma \gamma$ channel, the analysis is performed inclusively using the production angle $\cos \theta_{C S}^{*}$ and the transverse momentum of the diphoton pair [219]. The polar angle in the rest frame is defined with respect to the bisector axis of the momenta of the incoming protons and is referred to as the polar angle in the Collins-Soper frame [225]. The SM Higgs boson signal distribution is expected to be uniform with a cutoff due to the selection requirements on the photons transverse momentum. The $H \rightarrow \gamma \gamma$ channel is mostly sensitive to the gluon-initiated spin-2 production scenarios, which yield a $\cos \theta_{C S}^{*}$ distribution peaking at values close to 1. The ATLAS limits are derived from a fit of the signal in bins of $\cos \theta_{C S}^{*}$ and diphoton transverse momentum and are summarised in Fig. 11.9 (right) (only combined results are shown). The data shows a good compatibility with the $\mathrm{SM} 0^{+}$hypothesis and contributes strongly to the exclusion of several spin-2 scenarios. The conclusions are the same from CMS results [220].

iii. The $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channel at the $L H C$

In the $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channel, the production and decay angles cannot be easily reconstructed due to the presence of neu-

Figure 11.9: (Left) Definition of the production and decay angles defined for the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ final state [220]. (Right) Expected distributions of the test statistic for the SM hypothesis (in blue) and several alternative spin and parity hypotheses (in red).
trinos in the final state, however, sensitivity arises from the $V-A$ structure of the decay of the W bosons. A scalar state thus yields a clear spin correlation pattern that implies that the charged leptons e or μ from the decays of the W bosons are produced close to one another in the transverse plane. This feature impacts observables such as the azimuthal angle between the two leptons $\Delta \Phi_{\ell \ell}$ or their invariant mass $m_{\ell \ell}$ in addition to the threshold behaviour of the decay. It can be used to discriminate between various spin and parity hypotheses. The approach adopted by ATLAS uses a multivariate discriminant, whereas CMS uses a 2D-fit of the dilepton mass and the transverse mass. Figure 11.9 (right) summarises the ATLAS results of the $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ analyses alone and in combination with other channels. Spin-1 hypotheses $\left(1^{+}\right.$and $\left.1^{-}\right)$have also been tested in this channel by ATLAS and CMS. ATLAS and CMS exclude the 1^{+}and 1^{-}hypotheses at more than 95% CL.
iv. The $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ channel at the LHC

The $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ coupling analysis, as described in Section 11.3, also uses a discriminant based on the 0^{+}nature of the Higgs boson to further separate signal and background. In this analysis, this feature is used to discriminate between signal hypotheses. The observables sensitive to the spin and parity are [226] the masses of the two Z bosons (due to the threshold dependence of the mass of the off-shell Z boson), two production angle θ^{*} and Φ_{1}, and three decay angles, Φ, θ_{1} and θ_{2}. The production and decay angles are defined as:
$-\theta_{1}$ and θ_{2}, the angles between the negative final state lepton and the direction of flight of Z_{1} and Z_{2} in the rest frame.
$-\Phi$, the angle between the decay planes of the four final state leptons expressed in the four lepton rest frame.
$-\Phi_{1}$, the angle defined between the decay plane of the leading lepton pair and a plane defined by the vector of the Z_{1} in the four lepton rest frame and the positive direction of the proton axis.
$-\theta^{*}$, the production angle of the Z_{1} defined in the four lepton rest frame with respect to the proton axis.

These angles are illustrated in Fig. 11.9 (left). There are two approaches to this analysis. The first, used by CMS, is a matrix element likelihood approach where a kinematic discriminant is defined based on the ratio of the signal and background probabilities. These probabilities are defined using the leading-order matrix elements. A similar approach is also performed by ATLAS as a cross check of their main result. The main approach adopted by ATLAS is the combination of sensitive observables
with a Boosted Decision Tree. These analyses are sensitive to various J^{P} hypotheses and in particular discriminate the 0^{+}hypothesis from the 0^{-}. In all scenarios investigated, and for both ATLAS and CMS, the data is compatible with the 0^{+}hypothesis. ATLAS and CMS exclude a pure pseudo-scalar nature of the observed boson at CL_{S} levels of 98% and 99.8% [220].

11.5.1.4 Probing CP-mixing and anomalous HVV couplings

The careful study of the kinematic properties of the events observed in the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ and $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channel, and in particular the angular distributions described above, allows one to further probe the $H V V$ coupling beyond testing fixed hypotheses. Assuming that the observed particle is a spin-0 state, and using several discriminating observables in the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ and $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channels, the anomalous terms in the formalism of Eq. (11.20) can be probed. In the approach of helicity amplitudes used by CMS [220], all terms are essentially equivalent, except for one additional phase which is neglected in Eq. (11.20).

Results are derived in terms of the parameters $\tilde{\kappa}_{H V V}=$ $v \kappa_{H V V} / \Lambda$ and $\tilde{\kappa}_{A V V}=v \kappa_{A V V} / \Lambda$, and, more precisely, as measurements of $\tilde{\kappa}_{H V V} / \kappa_{\text {SM }}$ and $\tan \alpha \cdot \tilde{\kappa}_{A V V} / \kappa_{\text {SM }}$, as shown in Fig. 11.10. These parameters can be interpreted as mixing parameters of a tensor anomalous $C P$-even coupling and a $C P$-odd component. The measurements are made in the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ and $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channels independently and then combined assuming that the $\tilde{\kappa}_{H V V} / \kappa_{\mathrm{SM}}$ and $\tan \alpha \cdot \tilde{\kappa}_{A V V} / \kappa_{\mathrm{SM}}$ are the same for the W and Z vector bosons. Only the combination of the $W W$ and $Z Z$ channels is shown in Fig. 11.10. The asymmetric shape of the likelihood as a function of $\tilde{\kappa}_{H W W}, H Z Z / \kappa_{\mathrm{SM}}$ is mainly due to the interference between the BSM and the SM contributions that gives a maximal deviation from the SM predictions for negative relative values of the BSM couplings. In Fig. 11.10, the expected likelihood profiles for a SM Higgs boson are also displayed. While no significant deviation from the SM expectation is observed, the precision of the measurements of the mixing parameters is fairly low. The results and conclusions from the CMS measurements [220] are very similar.

An individual $Z Z^{*}$ channel measurement has also been carried out with a partial Run 2 dataset by ATLAS [227]. CMS has performed a $C P$-mixing analysis of a partial Run 2 dataset of $36 \mathrm{pb}^{-1}$ combined with the full Run 1 data using the $Z Z^{*}$ channel [228]. In this analysis the CMS experiment sets constraints on the following parameters defined in the scattering amplitude

Figure 11.10: Likelihood profiles for the $\tilde{\kappa}_{H V V}$ and $\tilde{\kappa}_{A V V} \cdot \tan \alpha$ parameters, representing respectively $C P$-even and $C P$-odd anomalous couplings of the Higgs boson.

Figure 11.11: Observed (solid) and expected (dashed) likelihoods as a function of $f_{a_{3}} \cos \left(\phi_{a_{3}}\right)$ (left), $f_{a_{2}} \cos \left(\phi_{a_{2}}\right)$ (right) for the Run 1 and Run 2 datasets separately and combined.
parametrisation (11.21):

$$
\begin{equation*}
f_{a_{i}}=\frac{\left|a_{i}\right|^{2} \sigma_{i}}{\sum_{j=1,2,3}\left|a_{j}\right|^{2} \sigma_{j}}, \quad \phi_{a_{i}}=\arg \left(\frac{a_{i}}{a_{1}}\right) \tag{11.23}
\end{equation*}
$$

where σ_{i} is the cross section for process with $a_{i}=1$ and $a_{j \neq i}=0$. The constraints on these parameters are shown in Fig. 11.11.
$C P$ invariance in the $H V V$ coupling can also be probed with the VBF production process in the $H \rightarrow \tau^{+} \tau^{-}$channel. CMS has performed an analysis in this channel and has combined its results with the aforementioned $Z Z^{*}$ channel using the same dataset [229].

ATLAS has also performed an analysis using optimal observables [230], defined as the ratio of the interference between the $C P$-odd and the SM contributions normalised to the SM matrix element squared, using the Run 1 data. In this study, the $C P$-mixing contributions are described in the framework of an effective field theory governed by a single parameter \tilde{d}, found to be consistent with its $S M$ value of $\tilde{d}=0$ and constrained to the interval $[-0.11,0.05]$ at the $68 \% \mathrm{CL}$.

11.5.2 Off-shell couplings of the Higgs boson

In the dominant ggF production mode with a subsequent decay of the Higgs boson into a pair of Z bosons, the production cross section of an off-shell Higgs boson is known to be sizeable. This follows as a consequence of the enhanced couplings of the Higgs boson to the longitudinal polarisation of the massive vector bosons at high energy.

The off-shell to on-shell cross section ratio is approximately 8% in the SM [231]. Still the Higgs contribution to $V V$ production at large invariant mass remains small compared to the background. It is nevertheless interesting to probe Higgs production in this regime as it is sensitive to new physics beyond the SM.

The difficulty in the off-shell $V V$ analysis, beyond the small signal-to-background ratio, is due to a large negative interference between the signal and the $g g \rightarrow V V$ background.

The resulting presence of a SM Higgs boson signal in the far off-shell domain results in a deficit of events with respect to the expectation from background only events. It is only when the off-shell couplings of the Higgs boson are larger than expected in
the SM that the presence of a signal appears as an excess over the background expectation. One additional intricacy arises from the precision in the prediction of the rate for $g g \rightarrow V V$, a loop process at lowest order, and its interference with the signal. At the time of the publication of the original ATLAS and CMS results, a full NLO prediction had not been computed.
It is interesting to note that, in this regime, the Higgs boson is studied as a propagator and not as a particle. The measurement of its off-shell couplings is therefore absolute and does not rely on the knowledge of the total Higgs boson width. The off-shell coupling constraints can then be used to indirectly constrain the width of the Higgs boson, under specific assumptions detailed in Section 11.5.3.3.
This measurement has been carried out in the $H \rightarrow Z Z \rightarrow 4 \ell$, $H \rightarrow Z Z \rightarrow \ell \ell \nu \nu$ and $H \rightarrow W W \rightarrow \ell \nu \ell \nu$ channels. To enhance the sensitivity of the analysis, the knowledge of the full kinematics of the events is important. In particular the signal and the background can be further distinguished by the invariant mass of the $V V$ system, which is more accurately accessible in the $H \rightarrow Z Z \rightarrow 4 \ell$ channel. Angular distributions also play an important role in this analysis. For these reasons, the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ channel is significantly more sensitive than $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$. The CMS results in Refs. [232] include the VBF and $V H$ processes through the selection of two additional jets in the final state. The ATLAS results do not have a specific selection for the VBF or $V H$ production processes, but their contributions are taken into account.

Limits on the off-shell rates have been reported for the two channels by ATLAS [233] and CMS [232]. The combined results, assuming that the off-shell rates in the $Z Z$ and $W W$ channels scale equally, are given for two different hypotheses on the VBF production rate: fixing it to its SM value or scaling it as the gluon fusion rate. The observed (expected) limits on the off-shell rate fraction with respect to its SM expectation is 6.7 (9.1) for ATLAS [233] with the VBF rate fixed to its SM value and 2.4 (6.2) for CMS [232] where no assumption is made on the relative production rates of gluon-fusion and VBF. In both cases, the custodial symmetry is assumed and the ratio of the rates in the $Z Z$ and $W W$ decays are fixed to those of the SM. Results without this assumption have also been reported in Ref. [232].

Both ATLAS [234] and CMS [228] have performed off-shell Higgs boson analyses to constrain the off-shell Higgs boson production rates with partial Run 2 datasets, corresponding respectively to luminosities of $36.1 \mathrm{fb}^{-1}$ and $80.2 \mathrm{fb}^{-1}$. With the increase in centre-of-mass energy and luminosities, significantly better sensitivities are achieved. The ATLAS analysis is based on two decay channels, $H \rightarrow 4 \ell$ and $H \rightarrow 2 \ell 2 \nu$, and the two main ggF and VBF production modes, while the CMS analysis is based on the $H \rightarrow 4 \ell$ channel exclusively, but uses the exclusive $V H$ categories. The results obtained have already reached an impressive sensitivity, with 95% CL upper limits on the off shell signal strength $\mu_{\text {off-shell }}$:

$$
\begin{align*}
& \text { (ATLAS) } \mu_{\text {off-shell }}<3.8 \text { (obs) [3.4 (exp)], } \\
& \text { (CMS) } \mu_{\text {off-shell }}<2.28 \text { (obs) }[3.2 \text { (exp)]. } \tag{11.24}
\end{align*}
$$

11.5.3 The Higgs boson width

In the SM, the Higgs boson width is very precisely predicted once the Higgs boson mass is known. For a mass of 125 GeV , the Higgs boson has a very narrow width of 4.1 MeV [44]. It is dominated by the fermionic decays partial width at approximately 75%, while the vector boson modes are suppressed and contribute 25% only.

At the LHC or the Tevatron, in all production modes, only the cross sections times branching fractions can be measured. As a consequence, the total width of the Higgs boson cannot be inferred from measurements of Higgs boson rates. Direct constraints on the Higgs boson width are much larger than the expected width of the SM Higgs boson.

11.5.3.1 Direct constraints

Analyses of the reconstructed mass line-shape in the two channels with a good mass resolution, the $H \rightarrow \gamma \gamma$ and $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ channels, allow for a direct measurement of the
width of the SM Higgs boson. The intrinsic mass resolution in these channels is about $1-2 \mathrm{GeV}$, much larger than the expected width of the SM Higgs boson. As a result, only upper limits on the Higgs boson width have been set by ATLAS [235] and CMS [236]. The two main challenges of direct constraints on the width through the measurement of the line-shape are: (i) the modelling of resolution uncertainties and (ii) the modelling of the interference between the signal and the continuum background which can be sizeable for large widths, in particular in the range where direct constraints are set. Given that these interference effects are small with respect to the individual channels sensitivity, they are neglected in deriving constraints on the total width. The combined constraints, however, being more precise, could be affected by the interference. ATLAS [235] has therefore not combined the constraints on the width from the two channels. The results are reported in Table 11.11. These constraints are still three orders of magnitude larger than the expected SM width and are fully compatible with the SM hypothesis.

Another direct constraint on the Higgs boson width can be obtained, in the $H \rightarrow Z Z^{(*)} \rightarrow 4 \ell$ channel, from the measurement of the average lifetime of the Higgs boson calculated from the displacement of the four-lepton vertex from the beam spot. This analysis has been carried out by CMS (see references in Ref. [123]), using the measured decay length. The measured $c \tau_{H}$ is $2_{-2}^{+25} \mu \mathrm{~m}$, yielding an observed (and expected) limit at the $95 \% \mathrm{CL}$ of $c \tau_{H}<57(56) \mu \mathrm{m}$. From this upper limit on the lifetime of the Higgs boson, the 95% CL lower limit on its width is $\Gamma_{H}>3.5 \times 10^{-12} \mathrm{GeV}$.
11.5.3.2 Indirect constraints from mass shift in the diphoton channel
In the diphoton channel, it was noticed in Ref. [237], that the effect of the interference between the main signal $g g \rightarrow H \rightarrow \gamma \gamma$ and the continuum irreducible background $g g \rightarrow \gamma \gamma$, taking into account detector resolution effects, is responsible for a non negligible mass shift. The size of the mass shift depends on the total width of the Higgs boson and it was suggested that measuring this mass shift could provide a constraint on the width [237]. It was further noticed that the mass shift has a dependence also on the diphoton transverse momentum. The total width of the Higgs boson could therefore be constrained using the diphoton channel alone.

Further studies were performed by ATLAS to estimate the size of the expected mass shift [134]. The expected shift in mass in the diphoton channel is $35 \pm 9 \mathrm{MeV}$ for the SM Higgs boson. Very preliminary studies of the sensitivity of this method to estimate the width of the Higgs boson in the High-Luminosity regime have been made by ATLAS [238] and yield an expected 95\% CL upper limit on the total width of approximately 200 MeV from $3 \mathrm{ab}^{-1}$ of 14 TeV data.

11.5.3.3 Indirect constraints from on-shell rate in the diphoton

 channelIn the diphoton channel, it was noticed in Ref. [239], that the interference between the main signal $g g \rightarrow H \rightarrow \gamma \gamma$ amplitude and the continuum irreducible background $g g \rightarrow \gamma \gamma$ amplitude generates non-negligible change in the on-shell cross sections, as a result of the existence of a relative phase between these amplitudes. The size of this on-shell interference effect depends on the total width of the Higgs boson and it was suggested that measuring this on-shell cross section precisely could provide a constraint on the Higgs total width. This interference effect yields around 2% reduction for the $g g \rightarrow H \rightarrow \gamma \gamma$ cross section measurement. The current evaluation of this interference effect is performed at NLO and has a ${ }_{-30 \%}^{+50 \%}$ uncertainty, due to the fact that the large relative phase is driven by the two-loop $g g \rightarrow \gamma \gamma$ background amplitude $[237,239]$. This on-shell interference effect has a dependence on the p_{T} of the diphoton system and the photon polar angle in the diphoton rest frame, which can be further exploited to improve the measurement to constrain the Higgs total width.

Taking the ratios of the on-shell cross section of Higgs boson to diphoton channel and the cross section of Higgs boson to fourleptons channel where the interference effect is negligible could put bound on the Higgs boson total width. This ratio is free

Table 11.11: Run 1 observed (expected) direct 95% CL constraints on the width of the 125 GeV resonance from fits to the $\gamma \gamma$ and $Z Z$ mass spectra and to the 4ℓ vertex lifetime. *The CMS measurement from the 4ℓ mass line-shape was performed using Run 2 data.

Exp.	$M_{\gamma \gamma}$ mass spectrum	$M_{4 \ell}$ spectrum	4ℓ vertex lifetime
ATLAS	$<5.0(6.2) \mathrm{GeV}$	$<2.6(6.2) \mathrm{GeV}$	$\overline{-}$
CMS	$<2.4(3.1) \mathrm{GeV}$	$<1.1(1.6) \mathrm{GeV}^{*}$	$>3.5 \times 10^{-12} \mathrm{GeV}$

from many dominant sources of systematic uncertainties for cross section measurements, i.e., PDF uncertainty and luminosity uncertainty, and can be further improved by the accumulation of the LHC data. From this cross section ratio measurement alone, a preliminary estimation of the current limit from this interference effect with current 30% precision puts an upper bound of 800 MeV on the Higgs boson total width and the limit improves to 60 MeV with $3 \mathrm{ab}^{-1}$ of 14 TeV data $[239,240]$.

11.5.3.4 Indirect constraints from off-shell couplings

Using simultaneously on-shell and off-shell measurements in the $V V$ channels, it was noticed $[231,241]$ that the total width of the Higgs boson could be constrained. This can be illustrated from the parametrisation of the signal strength measurements both on-shell ($\mu_{\text {on-shell }}$) and off-shell ($\mu_{\text {off }}$-shell $)$ as a function of the couplings modifiers κ_{g} and κ_{V} parameterising the main process $g g \rightarrow H \rightarrow V V$ (see Section 11.6.2 for the definition of these coupling modifiers). The on-shell and off-shell signal strengths can be written as:

$$
\begin{align*}
\mu_{\mathrm{on}-\text { shell }} & =\frac{\kappa_{g, \text { on }- \text { shell }}^{2} \kappa_{V, \text { on-shell }}^{2}}{\Gamma_{H} / \Gamma_{\mathrm{SM}}} \tag{11.25}\\
\mu_{\mathrm{off}-\text { shell }} & =\kappa_{g, \text { off-shell }}^{2} \kappa_{V, \text { off }- \text { shell }}^{2} .
\end{align*}
$$

A bound on the Higgs boson width can then be obtained from the measurements of the on-shell and off-shell signal strengths. This assumes that no new physics alters the Higgs boson couplings in the off-shell regime, i.e., that the running of its couplings is negligible in the off-shell regime [242,243]. Both ATLAS [233] and CMS [232] have used their off-shell production limits to constrain the width of the Higgs boson.

Both ATLAS and CMS analyses use the kinematic event characteristics to further gain in sensitivity to discriminate between the signal and background. The ATLAS analysis assumed that there are no anomalous couplings of the Higgs boson to vector bosons, and obtains 95% CL observed (expected) upper limit on the total width of $5.7 \times \Gamma_{\mathrm{SM}}\left(9.0 \times \Gamma_{\mathrm{SM}}\right)$ with the Run 1 dataset. In the CMS analysis, the observed (expected) limit on the total width is $6.2 \times \Gamma_{\mathrm{SM}}\left(9.8 \times \Gamma_{\mathrm{SM}}\right)$ for the $Z Z$ channel only at Run 1 .

In addition, in the CMS analysis, results are also derived allowing for anomalous couplings of the Higgs boson, therefore reducing the discriminating power of the kinematic variables used in the analysis but reducing the model dependence. The observed (expected) limit on the total width is $10.9 \times \Gamma_{\mathrm{SM}}\left(17.4 \times \Gamma_{\mathrm{SM}}\right)$.

CMS has also combined the $Z Z$ and $W^{+} W^{-}$channels while keeping the gluon-fusion and VBF production processes separate. For the gluon fusion mode, the observed (expected) combined upper limit at the $95 \% \mathrm{CL}$ on the total width of the Higgs boson is $2.4 \times \Gamma_{\mathrm{SM}}\left(6.2 \times \Gamma_{\mathrm{SM}}\right)$ [232], while for the VBF production mode the exclusion limits are $19.3 \times \Gamma_{\mathrm{SM}}\left(34.4 \times \Gamma_{\mathrm{SM}}\right)$ [232].

At Run 2, using the ATLAS [234] and CMS [228] analyses described in Section 11.5.2, the following bounds were obtained

$$
\begin{gather*}
(\mathrm{ATLAS}) \Gamma_{H} / \Gamma_{H}^{S M}<3.5[3.7(\exp)] \tag{11.26}\\
(\mathrm{CMS}) \Gamma_{H}<9.16[13.7(\exp)] \mathrm{MeV} \\
\text { or } \Gamma_{H} \Gamma_{H}^{S M}=3.2_{-2.2}^{+2.8}\left[4.1_{-4.0}^{+5.0}(\exp)\right] . \tag{11.27}
\end{gather*}
$$

CMS has also performed this analysis considering possible anomalous $H Z Z$ couplings as discussed in Section 11.5.1.4. Neither the results nor the sensitivities are significantly affected by allowing specific anomalous coupling parameters to float in the fits.

ATLAS and CMS have also performed a study of the prospects for measuring the Higgs boson width mainly in the four lepton channel. Projecting to a luminosity of $3 \mathrm{ab}^{-1}$, it was concluded that, within assumptions similar to the ones mentioned above and assuming the SM central value, the observed (expected) combined
upper limit at the 95% CL on the total width of the Higgs boson would be $3.8 \times \Gamma_{\mathrm{SM}}\left(3.4 \times \Gamma_{\mathrm{SM}}\right)$, i.e., the width of the Higgs boson could be constrained with the following precision [104]:

$$
\begin{equation*}
\Gamma_{H}=4.1_{-0.8}^{+0.7} \mathrm{MeV} \tag{11.28}
\end{equation*}
$$

11.6 Probing the coupling properties of the Higgs boson

As discussed in Section 11.2, within the SM, all the Higgs boson couplings are fixed unambiguously once all the particle masses are known. Any deviation in the measurement of the couplings of the Higgs boson could therefore signal BSM physics.

Measuring the Higgs boson couplings without relying on the SM assumption requires a general framework treating deviations from the SM coherently at the quantum level in order to provide theoretical predictions for relevant observables to be confronted with experimental data. An attempt in that direction has been formalised in the so-called κ-formalism [244], following earlier attempts [245] and initial phenomenological studies of the first hints of the existence of the Higgs boson [246]. In this LO-inspired approach, the SM Higgs boson couplings are rescaled by arbitrary factors, κ 's, keeping the same Lorentz structure of the interactions. This formalism allows for simple interpretation of the signal strengths measured in the various Higgs channels. It it has been utilised to test various physics scenarios, like the existence of additional new particles contributing to the radiative Higgs boson production and decays, or to probe various symmetries of the SM itself, as for example the custodial symmetry. It only compares the experimental measurements to their best SM predictions and does not require any new BSM computations per se. And, from a more theoretical perspective, its relevance arises from the fact that it actually fully captures the leading effects in single Higgs processes of well motivated scenarios. Still, the κ-formalism has obvious limitations and certainly does not capture the most general deformations of the SM, even under the assumptions of heavy and decoupling new physics. A particularly acute shortcoming at the time Higgs physics is entering a precision era is the lack of proficiency to assert the richness of kinematical distributions beyond simple signal strength measurements. Several extensions and alternative approaches are being developed as part of the activities of the LHC Higgs Cross Section Working Group [45].

The Higgs Pseudo-Observable (HPO) approach [247] allows one to report the data in terms of a finite set of on-shell form factors parametrising amplitudes of physical processes subject to constraints from Lorentz invariance and other general requirements like analyticity, unitarity, and crossing symmetry. These form factors are expanded in powers of kinematical invariants of the process around the known poles of SM particles, assuming that poles from BSM particles are absent in the relevant energy regime. A set of HPOs have been proposed to characterise both the Higgs boson decays and the EW Higgs boson production channels, thus exploring different kinematical regimes. Prospective studies concluded that these HPOs can be measured/bounded at the percent level at the HL-LHC and could therefore be used to constrain some explicit models of new physics.

Another systematic approach to characterise the possible Higgs boson coupling deviations induced by BSM physics is the use of Effective Field Theories (EFT) [248, 249]. This approach assumes again that the new physics degrees of freedom are sufficiently heavy to be integrated out and they give rise to effective interactions among the light SM particles. By construction, the effective Lagrangians cannot account for deviations in Higgs physics induced by light degrees of freedom, unless they are added themselves as extra fields in the effective Lagrangians. In Section 11.7, several examples of models with light degrees of freedom affect-
ing Higgs boson production and decay rates will be presented. The main advantage of EFTs is their prowess to relate different observables in different sectors and at different energies to constrain a finite set of effective interactions among the SM degrees of freedom. In an EFT, the SM Lagrangian is extended by a set of higher-dimensional operators, and it reproduces the low-energy limit of a more fundamental UV description. It will be assumed that the Higgs boson is part of a $C P$-even EW doublet, Φ, and that the Lagrangian is an analytic function of the gauge invariant $\Phi^{\dagger} \Phi$. This scenario is commonly refereed as SMEFT. Even though it is not fully established experimentally, this set-up is motivated by the measurements of the Higgs couplings to the different SM particles that show an alignement with their masses, such an alignement naturally follows under this assumption of a linear realisation of the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ symmetry of the SM but would require an ad-hoc tuning otherwise. General Lagrangians bypassing this linear assumption have been explicitly written down, see for instance Ref. [250]. They rely on a chiral expansion with a specific power-counting, effectively resumming the expansion in powers of the Higgs field, usually referred as HEFT as opposed to SMEFT.

11.6.1 Effective Lagrangian framework

The SMEFT has the same field content and it respects the same linearly-realised $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ local symmetry as the SM. The difference is the presence of operators with canonical mass-dimension d larger than 4 . These are organised in a systematic expansion in d, where each consecutive term is suppressed by a larger power of a high mass scale. Assuming baryon and lepton number conservation, the most general Lagrangian takes the form

$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+\sum_{j} c_{j}^{(8)} \mathcal{O}_{j}^{(8)}+\cdots \tag{11.29}
\end{equation*}
$$

The contribution of the higher order operators of dimension d to physical amplitudes is suppressed by $(E / \Lambda)^{d-4}$, where E is the relevant energy scale of the process and Λ is the energy scale suppressing the higher-dimensional operators. The Wilson coefficients $c_{i}^{(d)}$ encode the virtual effects of the heavy new physics in low-energy observables. Their precise forms in terms of masses and couplings of the new particles can be obtained via matching with the ultraviolet (UV) completion of the SM, see, e.g., Ref. [251], or inferred using specific power-counting rules [248, 252].

The list of dimension-6 operators was first classified in a systematic way in Ref. [253] after the works of Ref. [254]. Subsequent analyses pointed out the presence of redundant operators, and a minimal and complete list of operators was finally provided in Ref. [255] ${ }^{4}$. For a single family of fermions, there are 76 real ways to deform the SM generated by 59 independent operators. With the 3 families of fermions of the SM, flavour indices can be added to these 59 operators, and furthermore, new operator structures, that have been dismissed by means of Fierz transformations in the single family case, have to be considered, for a total of 2499 real deformations [258]. When considering Higgs data, one can reasonably focus on a relatively small subset of the 2499 operators of dimension 6. In particular the vast subset of 4 -fermion operators, whether flavour and $C P$ preserving or not, can be more strongly constrained by other processes. Thus, it makes sense to neglect this whole class, with the exception of one particular four-fermion interaction that contributes to the muon decay and thus directly affects the Fermi constant. The dipole operators, instead do directly affect Higgs boson production, however, under very general and plausible assumptions on the flavour structure of new physics, the coefficients of these operators display the same structure and the same chiral suppression of the Yukawa couplings. The consequence is that, with the possible exception of processes involving the top quark, their effect in Higgs boson production is expected to be negligible. Furthermore, as far as Higgs boson decays

[^27]are concerned, the dipole operators only contribute to three (or more)-body final states (for instance $H \rightarrow \bar{b} b \gamma$) and as such they can easily be neglected too. Eliminating these two classes, there remain three other classes: 1) purely bosonic operators, 2) generalised Yukawas, 3) Higgs-fermion current operators. Operators in class 2 and 3, per se, can still contain $C P$ - or flavour-violating terms, on which experimental constraints are rather strong. Under the assumption of flavour universality (respectively diagonality), one is left with 12 (14) parameters affecting EW precision measurements, diboson processes and single- and double-Higgs data and 7 (17) other parameters modifying the EW gauge boson couplings to fermions, see Ref. [44] for further technical details. Working in the unitary gauge and performing suitable redefinition of fields and input parameters the effective Lagrangian can be conveniently expressed in the parameterisation of Ref. [259], the so-called Higgs basis that conveniently single out these special less constrained parameters. Such a classification reflects the current experimental situation and the hierarchy in the sensitivity of the experimental measurements in the various sectors of the SM. As the sensitivity of the measurements in the Higgs sector improves, another and more general parametrisation of the SM deformation will have to be retained, in particular a parametrisation more suited for a treatment at the quantum level. In other bases of operators, in particular the so-called Warsaw basis [255] used in some experimental EFT analyses [128,260,261], one finds strong correlations among the operators affecting the EW gauge couplings to fermions, leaving 12 (14) linear combinations of operators with weaker constraints.

Section 11.6.2 illustrates how the Higgs data accumulated at the LHC can (partially) constrain the SM deformations, i.e., the dimension-6 operators of the SEMFT Lagrangian. Automatic tools are being developed to analyse the experimental data within an EFT framework, see the report [262] and references therein.

11.6.2 Probing coupling properties

As described in Section 11.3, a framework was developed by ATLAS and CMS [141], individually and together, to combine the very large number of exclusive categories aimed at reconstructing the five main decay modes and the five main production modes of the Higgs boson. The general conclusion of this combination, illustrating the compatibility of the observation with the SM expectations, is given in Section 11.3. The same framework with its master formula, Eq. (11.16), can be used to further measure coupling properties of the Higgs boson under specific additional assumptions.
11.6.2.1 Combined measurements of the Higgs boson coupling properties
i. From effective Lagrangians to Higgs observables

The κ framework, described in detail in Ref. [43, 244], facilitates the characterisation of Higgs coupling properties in terms of a series of Higgs coupling strength modifier parameters κ_{i}, which are defined as the ratios of the couplings of the Higgs bosons to particles i to their corresponding SM values. The κ framework assumes a single narrow resonance so that the zero-width approximation can be used to decompose the cross section as a product of two factors characterising the production and the decay of the Higgs boson. The κ parameters are introduced by expressing each of the these factors as their SM expectation multiplied by the square of a coupling strength modifier for the corresponding process at leading order:

$$
\begin{align*}
(\sigma \cdot \mathrm{BR})(i \rightarrow \mathrm{H} & \rightarrow f)
\end{aligned} \begin{aligned}
\Gamma_{H}^{S M} \kappa_{H}^{2} & \sigma_{i}^{S M} \kappa_{i}^{2} \cdot \Gamma_{f}^{S M} \kappa_{f}^{2} \tag{11.30}\\
& \rightarrow \quad \mu_{i}^{f} \equiv \frac{\sigma \cdot \mathrm{BR}}{\sigma_{\mathrm{SM}} \cdot \mathrm{BR}_{\mathrm{SM}}}=\frac{\kappa_{i}^{2} \cdot \kappa_{f}^{2}}{\kappa_{H}^{2}}
\end{align*}
$$

where μ_{i}^{f} is the rate relative to the SM expectation and κ_{H}^{2} is an expression that adjusts the SM Higgs width to take into account the modifications induced by the deformed Higgs boson couplings. When all κ_{i} are set to 1 , the SM is reproduced. For loop-induced processes, e.g. $H \rightarrow \gamma \gamma$, there is a choice of either resolving the coupling strength modification in its SM expectation,
i.e., $\kappa_{\gamma}\left(\kappa_{t}, \kappa_{W}\right)$ or keeping κ_{γ} as an effective coupling strength parameter.

The κ-framework is the simplest parametrisation directly related to experimental measurements of the Higgs boson production and decay modes. For this reason, it has been widely used by the community. It can also be connected to the SMEFT formalism as follows. Restricting to the EFT directions not probed outside Higgs physics [263], the Higgs boson couplings are written in the unitary gauge as:

$$
\begin{align*}
\mathcal{L} & =\kappa_{Z} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu} H+\kappa_{W} \frac{2 m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu} H \\
& +\kappa_{V V} \frac{\alpha}{2 \pi v}\left(\cos ^{2} \theta_{W} Z_{\mu \nu} Z^{\mu \nu}+2 W_{\mu \nu}^{+} W^{-\mu \nu}\right) H \\
& +\kappa_{g} \frac{\alpha_{s}}{12 \pi v} G_{\mu \nu}^{a} G^{a \mu \nu} H+\kappa_{\gamma} \frac{\alpha}{2 \pi v} A_{\mu \nu} A^{\mu \nu} H+\kappa_{Z \gamma} \frac{\alpha}{\pi v} A_{\mu \nu} Z^{\mu \nu} H \\
& +\kappa_{3} \frac{m_{H}^{2}}{2 v} H^{3} \\
& -\left(\kappa_{t} \sum_{f=u, c, t} \frac{m_{f}}{v}+\kappa_{b} \sum_{f=d, s, b} \frac{m_{f}}{v}+\kappa_{\tau} \sum_{f=e, \mu, \tau} \frac{m_{f}}{v}\right) f \bar{f} H . \tag{11.31}
\end{align*}
$$

The exact correspondence between the effective coefficients of the dimension- 6 operators and the κ 's can be found for instance in Ref. [44]. In the SM, the Higgs boson does not couple to massless gauge bosons at tree level, hence $\kappa_{g}=\kappa_{\gamma}=\kappa_{Z \gamma}=0$. Nonetheless, the contact operators are generated radiatively by SM particles loops. In particular, the top quark gives a contribution to the 3 coefficients $\kappa_{g}, \kappa_{\gamma}, \kappa_{Z \gamma}$ that does not decouple in the infinite top mass limit. For instance, in that limit $\kappa_{\gamma}=\kappa_{g}=1$ [23, 24, 264].

The coefficient for the contact interactions of the Higgs boson to the W and Z field strengths is not independent but obeys the relation

$$
\begin{equation*}
\left(1-\cos ^{4} \theta_{W}\right) \kappa_{V V}=\sin 2 \theta_{W} \kappa_{Z \gamma}+\sin ^{2} \theta_{W} \kappa_{\gamma \gamma} . \tag{11.32}
\end{equation*}
$$

This relation is a general consequence of the custodial symmetry [265], which also imposes $\kappa_{Z}=\kappa_{W}$ at leading order $\left(\kappa_{Z} / \kappa_{W}-1\right.$ is a measure of custodial symmetry breaking and, as such, is already constrained by electroweak precision data and the bounds on anomalous gauge couplings). When the Higgs boson is part of a $\mathrm{SU}(2)_{L}$ doublet, the custodial symmetry in the bosonic sector could only be broken by the $\mathcal{O}_{T}=\frac{1}{2}\left(\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi\right)^{2}$ operator at the level of dimension- 6 operators and it is accidentally realised among the interactions with four derivatives, like the contact interactions considered.

The coefficient κ_{3} can be accessed directly only through double Higgs boson production processes, hence it will remain largely unconstrained at the LHC. Before the associated production of a Higgs boson with a pair of top quarks was observed, the Higgs boson coupling to the top quark was only probed indirectly via the one-loop gluon fusion production or the radiative decay into two photons. However, these two processes are only sensitive to the combinations of couplings $\left(\kappa_{t}+\kappa_{g}\right)$ and $\left(\kappa_{t}+\kappa_{\gamma}\right)$ and not to the individual couplings. Therefore a deviation in the Higgs boson coupling to the top quark can in principle always be masked by new contact interactions to photons and gluons (and this is precisely what is happening in minimal incarnations of composite Higgs models [266]). The current and still limited sensitivity, of the order of 20%, in the $t \bar{t} H$ channel leaves elongated ellipses in the direction $\kappa_{g}=\kappa_{\gamma}=1-\kappa_{t}$.

The operators already bounded by EW precision data and the limits on anomalous gauge couplings modify in general the Lorentz structure of the Higgs couplings and hence induce some modifications of the kinematical differential distributions [267]. A promising way to have a direct access to the effective coefficients of these operators in Higgs physics is to study the $V H$ associated production with a W or a Z at large invariant mass of the $V H$ system [268]. These differential distributions could also be a way to test the hypothesis that the Higgs boson belongs to a $\mathrm{SU}(2)_{L}$ doublet together with the longitudinal components of the massive electroweak gauge bosons.

ii. Interpretations of the experimental data

The measurements of the coupling properties of the Higgs boson are entirely based on the formalism of the effective Lagrangian described above. Measurements of coupling properties in this framework implies assessing the parameters of the model Eq. (11.31) or combinations of these parameters with different sets of assumptions.

These measurements are carried out with the combination framework described in Section 11.4, where the μ_{i} and μ_{f} signal strength parameters are further interpreted in terms of modifiers of the SM couplings κ_{k} where $k \in\{Z, W, f, g, \gamma, Z \gamma\}$ as in Eq. (11.31). The number of signal events per category for the various production modes are typically estimated at higher orders in the analyses but are scaled by these single LO-inspired factors, thus not taking into account possible intricacies and correlations of these parameters through the higher-order corrections. This approximation is valid within the level of precision of current results and their compatibility with the SM expectation.
In this formalism, further assumptions are explicitly made: (i) the signals observed in the different search channels originate from a single narrow resonance with a mass of 125 GeV ; (ii) similarly to the combination described in Section 11.4, the narrow width approximation is assumed (to allow the decomposition of signal yields into products of production and decay signal strengths); (iii) the tensor structure of the couplings is assumed to be the same as that of a SM Higgs boson. This means in particular that the observed state is assumed to be a $C P$-even scalar as in the SM.

Loop-level couplings such as the $g g \rightarrow H, H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ can either be treated effectively, with $\kappa_{g}, \kappa_{\gamma}$ and $\kappa_{Z \gamma}$ as free parameters in the fit or these parameters can be expressed in terms of the know SM field content and as a function of the SM coupling modifiers, in the following way [269]:

$$
\begin{align*}
\kappa_{g}^{2}\left(\kappa_{t}, \kappa_{b}, \kappa_{c}\right)= & 1.042 \kappa_{t}^{2}-0.040 \kappa_{t} \kappa_{b}+0.002 \kappa_{b}^{2} \\
& -0.005 \kappa_{t} \kappa_{c}+0.0005 \kappa_{b} \kappa_{c}+0.00002 \kappa_{c}^{2}, \\
\kappa_{\gamma}^{2}\left(\kappa_{F}, \kappa_{V}\right)= & 1.59 \kappa_{V}^{2}-0.66 \kappa_{V} \kappa_{F}+0.07 \kappa_{F}^{2}, \tag{11.33}\\
\kappa_{Z \gamma}^{2}\left(\kappa_{F}, \kappa_{V}\right)= & 1.12 \kappa_{V}^{2}-0.15 \kappa_{V} \kappa_{F}+0.03 \kappa_{F}^{2} .
\end{align*}
$$

The $\kappa_{Z \gamma}$ parametrisation has been used only in the ATLAS Run 1 combined measurements of the coupling properties of the Higgs boson. The $\mu^{+} \mu^{-}$channels is included neither in the CMS and ATLAS-CMS Run 1 combinations, nor in the ATLAS [213] Run 2 individual combination, while it is included in the CMS [214] Run 2 combination.

The parametrisations are given for a Higgs boson mass hypothesis of 125.09 GeV (and in the last two expressions, all the Higgs-fermion couplings are assumed to be rescaled by an universal multiplicative factor κ_{F}). It can be noted from the expression of κ_{γ} that the coupling of the Higgs boson to photons is dominated by the loop of W bosons, and it is affected by the top quark loop mostly through its interference with the W loop. The sensitivity of the current measurements to the relative sign of the fermion and vector boson couplings to the Higgs boson is due to this large negative interference term. The κ_{g} parameter is expressed in terms of the scaling of production cross sections and therefore also depends on the $p p$ collisions centre-of-mass energy. The parametrisations of κ_{γ} and $\kappa_{Z \gamma}$ are obtained from the scaling of partial widths and are only dependent on the Higgs boson mass hypothesis. Experiments use a more complete parametrisation with the contributions from the b-quarks, τ-leptons in the loops [43, 244].

The global fit is then performed expressing the μ_{i} and μ_{f} parameters in terms of a limited number of κ_{k} parameters or their ratios, under various assumptions. The parametrisation for the main production modes are: (i) $\mu_{\mathrm{ggF}}=\kappa_{g}^{2}$ for the gluon fusion and an effective coupling of the Higgs boson to the gluons; (ii) $\mu_{\mathrm{VBF}, V H}=\kappa_{V}^{2}$ for the VBF and $V H$ processes when the W and Z couplings are assumed to scale equally, and $\mu_{\mathrm{VBF}}^{2}\left(\kappa_{W}, \kappa_{Z}\right)=$ $\left(\kappa_{W}^{2} \sigma_{W W H}+\kappa_{Z}^{2} \sigma_{Z Z H}\right) /\left(\sigma_{W W H}+\sigma_{Z Z H}\right)$, when the couplings to the W and Z bosons are varied independently ($\sigma_{W W H}$ and
$\sigma_{Z Z H}$ denote the VBF cross sections via the fusion of a W and a Z boson respectively, the small interference term is neglected); (iii) $\mu_{t \bar{t} H}=\kappa_{t}^{2}$ for the $t \bar{t} H$ production mode. Numerically the production modes signal strengths as a function of the coupling modifiers to the SM fields are:

$$
\begin{align*}
& \mu_{\mathrm{ggF}}=1.06 \kappa_{t}^{2}+0.01 \kappa_{b}^{2}-0.07 \kappa_{t} \kappa_{b}, \quad \text { and } \\
& \mu_{\mathrm{VBF}}=0.74 \kappa_{W}^{2}+0.26 \kappa_{Z}^{2} \tag{11.34}
\end{align*}
$$

The decay mode signal strengths are parametrised as $\mu_{k}=\kappa_{k}^{2} / \kappa_{H}^{2}$ where $k \in\{Z, W, f, g, \gamma, Z \gamma\}$ denotes the decay mode and κ_{H}, the overall modifier of the total width that affects all the signal yields. κ_{H} is a priori an independent parameter. However, when it is assumed that the Higgs boson cannot decay to new particles beyond those of the SM, κ_{H} can also be treated as an effective parameter and expressed in terms of the coupling modifiers to the SM field content. Its general expression is:

$$
\begin{align*}
\kappa_{H}^{2}= & 0.57 \kappa_{b}^{2}+0.06 \kappa_{\tau}^{2}+0.03 \kappa_{c}^{2}+0.22 \kappa_{W}^{2}+0.03 \kappa_{Z}^{2}+0.09 \kappa_{g}^{2} \\
& +0.0023 \kappa_{\gamma}^{2} \tag{11.35}
\end{align*}
$$

The general expression of the total width of the Higgs boson can be written as follows:

$$
\begin{equation*}
\Gamma_{H}=\frac{\kappa_{H}^{2} \Gamma_{H}^{\mathrm{SM}}}{1-\mathrm{BR}_{\mathrm{BSM}}} \tag{11.36}
\end{equation*}
$$

where Γ_{H}^{SM} is the total width of the SM Higgs boson and $\mathrm{BR}_{\mathrm{BSM}}$ is the branching fraction of the Higgs boson to new particles beyond the SM.

Specific parametrisations will be made in order to address the following aspects of the coupling properties of the Higgs boson under different assumptions: (i) the relative couplings of the Higgs boson to fermions and bosons; (ii) the potential impact of the presence of new particles beyond the SM either in the loops or both in the loops and the decay of the H; and (iii) also, more general models either of coupling modifiers or their ratios, under different assumptions.

iii. Couplings to bosons and fermions

As it will be discussed in Section 11.7.6.3, it is interesting to probe a model where no additional field content is considered in the decay width of the Higgs boson and where the relative couplings of the Higgs boson to W - and Z-bosons is fixed to its SM value, i.e., $\kappa_{W}=\kappa_{Z}$, and where all Yukawa couplings scale with one coupling modifier. In this model, only the SM particles are assumed to contribute to the gluon fusion and the diphoton loops, and all fermion couplings modifiers are required to scale simultaneously with a unique factor κ_{F} while all vector boson couplings modifiers also scale with a common factor κ_{V}. It is a two-parameter fit with κ_{V} and κ_{F} as free variables of interest. The ATLAS-CMS combined results for each channel independently, the combinations of all channels for the two experiments separately and the results of the overall combination are all shown in Fig. 11.12.

The global fit is only sensitive to the relative sign of κ_{V} and κ_{F}. By convention, either κ_{F} or κ_{V} can be considered positive and negative values of κ_{V} or κ_{F} respectively can be considered. Such values are not excluded a priori, but would imply the existence of new physics at a light scale and would also raise questions about the validity of the perturbative treatment of the SM deformations and also about the stability of the vacuum [271]. Among the five main Higgs boson decay channels, only the $\gamma \gamma$ is sensitive to the sign of $\kappa_{F}\left(\right.$ or $\left.\kappa_{V}\right)$ through the interference of the W and t loops as shown in Eq. (11.33). The current global fit disfavours a negative value of κ_{F} at more than five standard deviations. A specific analysis for the Higgs boson production in association with a single top quark has been proposed in order to more directly probe the sign of κ_{F} (see references in Ref. [123]). All available experimental data show a fair agreement of the SM prediction of the couplings of the Higgs boson to fermions and gauge bosons. The results shown in Fig. 11.12 assume that $\kappa_{F} \geq 0$, however, in Ref. [141], a similar combination is done without this assumption.

The observed exclusion is fully compatible with the SM expectation The ATLAS and CMS combined measurements with the Run 1 dataset lead to

$$
\begin{equation*}
\kappa_{V}=1.04 \pm 0.05 \quad \text { and } \quad \kappa_{F}=0.98_{-0.10}^{+0.11} \tag{11.37}
\end{equation*}
$$

and were already at an impressive 5% level of accuracy for the κ_{V} parameter. The ATLAS Run 2 combination yielded:

$$
\begin{equation*}
\kappa_{V}=1.05 \pm 0.04 \quad \text { and } \quad \kappa_{F}=1.05 \pm 0.09 \tag{11.38}
\end{equation*}
$$

And the results for the CMS Run 2 are reported as likelihood contours shown in Fig. 11.12.

iv. Probing new physics in the loops (and the decay)

A more constrained model fully focussing on BSM scenarios with new heavy particles contributing to the loops and where all couplings to the SM particles are assumed to be the same as in the $\mathrm{SM}\left(\kappa_{W}=\kappa_{Z}=\kappa_{t}=\kappa_{b}=\kappa_{\tau}=1\right)$ is also used to constrain the κ_{g} and κ_{γ} parameters only. In this model, it can be assumed that the new physics affecting the loops are either introducing new decay channels (i.e., $\mathrm{BR}_{\mathrm{BSM}}$ allowed to vary in the fit) or not (i.e., $\mathrm{BR}_{\mathrm{BSM}}=0$). In the two cases, the results on the couplings through loops (to gluons and photons) do not change significantly. The constraints on $\mathrm{BR}_{\mathrm{BSM}}$ will be discussed in the next section, while here the focus will be on the effective couplings of the Higgs boson to gluons and photons. The contours of the combined likelihood in the $\left(\kappa_{\gamma}, \kappa_{g}\right)$ plane for the ATLAS and CMS experiments and their combination are shown in Fig. 11.13. The measured values of these parameters for the ATLAS and CMS Run 1 combination are:

$$
\begin{equation*}
\kappa_{g}=0.78_{-0.10}^{+0.13} \quad \text { and } \quad \kappa_{\gamma}=0.87_{-0.09}^{+0.14} \tag{11.39}
\end{equation*}
$$

At Run 2, the ATLAS combination yielded:

$$
\begin{equation*}
\kappa_{g}=1.03_{-0.06}^{+0.07} \quad \text { and } \quad \kappa_{\gamma}=1.00 \pm 0.06 \tag{11.40}
\end{equation*}
$$

The CMS results are reported as likelihood contours in the $\left(\kappa_{g}, \kappa_{\gamma}\right)$ plane only, as shown in Fig. 11.13.

In this model as well, all results are fully compatible with the SM expectations.
v. Coupling measurements and probing BSM physics in loops and in the decay

In the models described above, it was either assumed that no new latent BSM degree of freedom distorts neither the loop-induced Higgs boson couplings to gluons and photons nor the total Higgs boson width, or that all tree level couplings to SM particles are SM-like. These assumptions can be relaxed.

In order to probe simultaneously the Higgs boson couplings to massive and massless particles, only the assumption $\mathrm{BR}_{\mathrm{BSM}}=$ 0 is kept. The couplings to photons and gluons are then parametrised by independent effective couplings, κ_{g} and κ_{γ}, and $\kappa_{Z}, \kappa_{W}, \kappa_{t},\left|\kappa_{\tau}\right|$, and $\left|\kappa_{b}\right|$ are measured simultaneously. The absolute values of certain coupling modifiers only indicate the degeneracy of combined likelihood for the two signs. It can be noted that when the coupling to gluons is not considered effective, there is some sensitivity to the sign of κ_{b} through the interference between the top- and bottom-quark loops in the gluon fusion process. In this analysis, the constraint on the top quark Yukawa coupling comes from the $t \bar{t} H$ direct search channels only. The complete set of results from this model is given in Table 11.12 for the ATLAS-CMS combination using the full Run 1 dataset [270] and for the ATLAS [213] and CMS [214] individual combinations using partial Run 2 datasets. Figure 11.14 also displays the results of the individual ATLAS and CMS combinations. A negative relative sign is allowed for the κ_{W} and κ_{Z} parameters without loss of generality. This convention is used in the ATLAS and CMS Run 1 combination and in the CMS Run 2 combination. Neglecting the very small interference between the W and Z exchanges in the VBF production and when treating the photon and gluon couplings as effective, the sensitivity to the negative signs of the

Figure 11.12: Likelihood contours in the $\left(\kappa_{F}, \kappa_{V}\right)$ plane for the ATLAS-CMS Run 1 combination [270] (left) and the ATLAS [213] (center) and CMS [214] (right) individual Run 2 combinations.

Figure 11.13: Likelihood contours in the $\left(\kappa_{g}, \kappa_{\gamma}\right)$ plane for the ATLAS-CMS [270] combination (left) and for the ATLAS [213] (center) and CMS [214] (right) individual Run 2 combinations.
couplings of the Higgs boson to the W and the top quark and that of the Z to the gluon come respectively from the $t H$ and the $g g H Z$ production processes. In the case of the ATLAS Run 2 combination, only a relative negative sign of the coupling of the Higgs boson to the top quark is allowed. The cases reported in Table 11.12 of negative values of the couplings correspond to quasi-degenerate cases and the choice of sign is therefore not significant. For instance, the negative value of κ_{W} obtained by CMS in its Run 2 combination is due to $t H$ contribution to the $t \bar{t} H$ channels as the specific $t H$ analyses described in Section 11.3.3 are not included in the combination.

It is interesting to note that, with a partial Run 2 dataset, the sensitivity of individual experiments is already better than the one obtained at Run 1. This is in large part due to the improved systematic uncertainties related to the predictions of the Higgs boson production and decay that have been discussed in Section 11.2.

The results above are obtained under the assumption that the Higgs boson decays only to SM particles. This assumption is necessary since the signal rates cannot resolve separately κ_{H} and the absolute couplings of the Higgs boson to the SM particles. This degeneracy can, however, be resolved using an independent constraint on the Higgs boson width as the one derived from offshell couplings measurements. This approach was used by the ATLAS experiment (see references in Ref. [123]), thus yielding a priori an absolute measurement of the couplings of the Higgs boson. The validity of the results obtained still relies on assumptions that have been discussed in Section 11.5.2. Another well-motivated assumption to resolve the aforementioned degeneracy preventing the determination of κ_{H} is inspired by unitarity conditions. Requiring that $\kappa_{V} \leq 1$ allows to free the $\mathrm{BR}_{\mathrm{BSM}}$ parameter and further probe new physics in the decay of the Higgs boson. An intuitive understanding of how this constraint works can be given by a simple example. In the VBF $H \rightarrow W^{+} W^{-}$ channel, the number of signal events compared to the SM prediction is rescaled by $\left(1-\mathrm{BR}_{\mathrm{BSM}}\right) \kappa_{W}^{4} / \kappa_{H}^{2}$, and, an observed signal close to the SM expectation cannot accommodate a large value of
$\mathrm{BR}_{\mathrm{BSM}}$ since the depletion factor $\left(1-\mathrm{BR}_{\mathrm{BSM}}\right)$ cannot be compensated by an enhanced value $\kappa_{W}>1$. Or, in other terms, if $\kappa_{W} \sim 1$ is preferred from other channels, a low signal in the VBF $H \rightarrow W^{+} W^{-}$channel would be a sign of the presence of BSM physics in the Higgs boson decays. Within this framework, all the Higgs boson couplings to massive and massless SM particles can be measured in addition to $\mathrm{BR}_{\mathrm{BSM}}$. The results of this combination are shown in Fig. 11.14 (left). The results for all parameters do not change significantly with respect to the previous fit that assumed $\mathrm{BR}_{\mathrm{BSM}}=0$. But a $95 \% \mathrm{CL}$ bound on this parameter can now be obtained:

$$
\begin{equation*}
\mathrm{BR}_{\mathrm{BSM}}<34 \%(\mathrm{ATLAS}), \quad \mathrm{BR}_{\mathrm{BSM}}<38 \% \quad(\mathrm{CMS}) \tag{11.41}
\end{equation*}
$$

Both ATLAS and CMS in their Run 2 combinations have included the search for invisible decays of the Higgs boson [213, 214], described in Section 11.3. This allows for a coherent interpretation of the constraints on invisible decays and the measurements in the visible channels as well as simultaneously constraining $\mathrm{BR}_{\mathrm{inv}}$ and the overall branching fraction to potentially "visible" particles but to which none of the considered measurements are sensitive, as for example Higgs boson decays to light quarks or BSM particles decaying subsequently mainly to light quarks $\left(\mathrm{BR}_{\text {und }}\right.$ referred to as branching fraction to undetected particles). The limits obtained on the invisible branching fractions are:

$$
\begin{equation*}
\mathrm{BR}_{\mathrm{inv}}<30 \%(\mathrm{ATLAS}), \quad \mathrm{BR}_{\mathrm{inv}}<22 \% \quad(\mathrm{CMS}) \tag{11.42}
\end{equation*}
$$

Models which are less sensitive to modelling systematic uncertainties and requiring no constraints on the natural width of the Higgs bosons have been considered, either through the ratio of cross section and branching ratios (see results in Ref. [123]) or through a more generic approach to avoid the degeneracy in the measurement of the coupling modifiers, probing the coupling properties of the Higgs boson through ratio of couplings. In the latter model, the cross section times branching fraction of the $g g \rightarrow H \rightarrow Z Z$ process is parametrised as a function of a single

Table 11.12: Coupling modifier combined measurements assuming the absence of perceptible new physics in the decay of the Higgs boson. No assumption is made for the loop level couplings of the Higgs boson to gluons and photons which are considered as effective.

	LHC Run 1	ATLAS Run 2	CMS Run 2	HL-LHC (expected)
κ_{γ}	$0.87_{-0.09}^{+0.14}$	1.05 ± 0.09	$1.07_{-0.14}^{+0.10}+0.09$	1.8%
κ_{W}	$0.87_{-0.09}^{+0.13}$	1.05 ± 0.09	$-1.13_{-0.10}^{+0.15}+0.06$	1.7%
κ_{Z}	-0.98 ± 0.10	1.11 ± 0.08	$1.00_{-0.09}^{+0.09}+0.07$	1.5%
κ_{g}	$0.78_{-0.10}^{+0.13}$	$0.99_{-0.10}^{+0.11}$	$1.18_{-0.09}^{+0.10+0.10}+0.12$	2.5%
κ_{t}	$1.40_{-0.21}^{+0.24}$	$1.09_{-0.14}^{+0.15}$	$0.98_{-0.08}^{+0.08+0.11}+0.12$	3.4%
κ_{b}	$0.49_{-0.15}^{+0.27}$	$1.03_{-0.18}^{+0.19}$	$1.17_{-0.29}^{+0.18+0.10}+0.20$	3.7%
κ_{τ}	$0.84_{-0.11}^{+0.15}$	$1.05_{-0.15}^{+0.16}$	$0.80_{-0.81}^{+0.56+0.17}+$	1.9%

Figure 11.14: ATLAS [213] (left) and CMS [214] (right) combined measurements of coupling modifiers in the $\kappa_{V}<1$ scenario, and in the case of the ATLAS measurements with the assumption $\mathrm{BR}_{\mathrm{BSM}}=0$ and using the off-shell Higgs measurements.
coupling modifier:

$$
\begin{equation*}
\kappa_{g Z}=\kappa_{g} \times \frac{\kappa_{Z}}{\kappa_{H}} \tag{11.43}
\end{equation*}
$$

Then all combination signals can be parametrised with the following ratios of coupling modifiers: (i) the $\lambda_{Z g}=\kappa_{Z} / \kappa_{g}$ ratio which is mainly probed by the measurements of the VBF and $Z H$ production; (ii) the $\lambda_{t g}=\kappa_{t} / \kappa_{g}$ ratio constrained by the $t \bar{t} H$ production process; (iii) the $\lambda_{W Z}=\kappa_{W} / \kappa_{Z}$ ratio mainly probed by the $W W$ and $Z Z$ decay modes; (iv) the $\lambda_{\tau Z}=\kappa_{\tau} / \kappa_{Z}$ ratio constrained by the $\tau^{+} \tau^{-}$channel; (v) the $\lambda_{b Z}=\kappa_{b} / \kappa_{Z}$ ratio probed mainly by the $V H(b \bar{b})$ channels; and (vi) the $\lambda_{\gamma Z}=\kappa_{\gamma} / \kappa_{Z}$ ratio constrained by the diphoton channel. In this parametrisation, the
$Z Z$ channel plays an important normalisation role (the results are discussed in detail in the previous edition of this review [123]).

11.6.2.2 Differential cross sections

To further characterise the production and decay properties of the Higgs boson, with the increase in size of the LHC datasets, measurements of fiducial and differential cross sections are being carried out by ATLAS and CMS both at Run 1 (the references can be found in the previous edition of this review [123]) and Run $2[260,272]$ and in several channels: (i) the diphoton, (ii) the four leptons, and (iii) the $W W$ channels.

The definition of a fiducial volume as close as possible to the reconstruction level selection criteria is very important as it will
minimise the model dependence from possible variations in the signal reconstruction efficiencies. Minimising model dependence of unfolded fiducial differential cross section measurements is also key to ensure their usefulness to further probe and tune more accurate models in the future.

As an example in the diphoton channel for the ATLAS Run 1 analysis (similar criteria are used at Run 2 and by CMS), the selection criteria defining the fiducial volume are the following: the two highest transverse momentum $\left(E_{T}\right)$, isolated final state photons, within $|\eta|<2.37$ and with $105 \mathrm{GeV}<M_{\gamma \gamma}<160 \mathrm{GeV}$ are selected (the transition region between the barrel and end-cap calorimeters is not removed); after the pair is selected, the same cut on $E_{T} / M_{\gamma \gamma}$ as in the event selection, i.e., in excess of 0.35 (0.25) for the two photons is applied. The requirement of the isolation of the photon to define the fiducial volume is particularly important to avoid potentially large variations of the reconstruction efficiency within this volume for production processes as different as the gluon fusion and $t \bar{t} H$.

While strict fiducial requirements are key to minimise model dependence, these make combinations of decay channels impossible. To gain precision in the measurement of the production properties of the Higgs boson, the fiducial volume defined on the decay products of the Higgs boson can be removed and channels can be combined relying on the extrapolation from the reconstruction acceptance using Monte Carlo simulations. This has been used to combine differential cross section for instance in the transverse momentum of the Higgs boson. Such hybrid approaches are also discussed in Section 11.6.2.4.

A large number of observables have been studied aiming at probing the accuracy of the modelling of the Higgs boson production simulations. Some examples include (i) the transverse momentum and pseudo rapidity of the objects, such as jets or leptons, produced in association with the Higgs boson in several modes, the principal distributions of the Higgs boson decay products such for instance in the diphoton channel; (ii) the production angle in the Collins-Soper frame [225] in the diphoton channel; (iii) the overall distribution of the Higgs boson transverse momentum.

The measured differential cross section in the Higgs boson transverse momentum by ATLAS and CMS using the full Run 2 datasets are illustrated in Fig. 11.15.
11.6.2.3 Constraints on non-SM Higgs boson interactions in an effective Lagrangian

An example of the possible use of differential cross sections in constraining non-SM Higgs boson couplings in an EFT is given by ATLAS [273]. In this analysis, differential cross section measured in the diphoton channel are used to constrain an effective Lagrangian where the SM is supplemented by dimension six $C P-$ even operators of the Strongly Interacting Light Higgs (SILH) formulation [248] and corresponding $C P$-odd operators. The diphoton differential cross sections are mainly sensitive to the operators that affect the Higgs boson interactions with gauge bosons. CMS has also recently analysed [260] the Higgs boson transverse momentum distribution to constrain the Higgs boson couplings to top, bottom, and charm quarks as well as the effective coupling to gluons. This analysis is, however, not performed in an EFT framework.

The differential distributions used in this combination are: (i) the transverse momentum of the Higgs boson, (ii) the number of reconstructed jets produced in association with the diphoton pair, (iii) the invariant mass of the diphoton system and (iv) the difference in azimuthal angle of the leading and sub-leading jets in events with two or more jets. This analysis shows how differential information significantly improves the sensitivity to dimension-6 operators.

11.6.2.4 Simplified Template Cross Sections (STXS)

An overarching subject of discussion between the theory and experimental communities in the field of Higgs physics has been how experimentalists could best communicate their results for them to be most efficiently used by others for further interpretation.

In the field of precision SM measurements, the commonly used practise is that results are given at particle level within a well
defined fiducial volume of phase space. The fiducial volume is usually defined close enough to the experimental reconstruction to minimise the possible variations of the reconstruction efficiency within the particle level fiducial volume. In this way, results minimise their dependence on theoretical uncertainties.

ATLAS and CMS have produced fiducial and unfolded cross sections based on all objects reconstructed in the events. These measurements could be used for further interpretation. However, performing a proper combination of channels taking into account all experimental systematic uncertainties is non trivial. A proposal $[44,274]$ was made by the LHC Higgs Cross Section Working Group to produce results in each decay channel with a well defined fiducial phase space of the Higgs boson (and not its decay products) and for other associated objects pertaining to all channels, such as jets and missing transverse momentum (MET). The definition of the fiducial regions is motivated by maximising the experimental sensitivity, isolating possible BSM effects, and minimising the dependence on theoretical uncertainties. The number of regions is also minimised to avoid the loss of experimental sensitivity. The observables that are measured in this approach are still the standard production cross sections (the gluon fusion, the vector boson fusion, the $V H$ and $t \bar{t} H$ associated production modes) within the defined fiducial volumes.

In summary, this approach is hybrid. It is fiducial on specific objects to reduce the theory dependence and inclusive in the Higgs kinematics in order to allow for a more straightforward combination. This approach also allows the use of multivariate techniques to enhance the sensitivity within given fiducial regions, at the expense of a greater extrapolation and therefore increased model dependence.

The currently used Simplified Template Cross Sections (STXS) scheme covers, with a limited number of bins, the $g g F$ process in four categories in number of jets ($0,1,2$ and 2 VBF -like jets, where VBF-like means a selection of two high invariant mass jets with large pseudo rapidity difference) further subdivided in four transverse momentum categories covering the full spectrum with the last bin being inclusive for $p_{T}>200 \mathrm{GeV}$. The $V H$ process is subdivided two categories depending on the number of reconstructed charged leptons corresponding to the decays of either a W boson or a Z boson, and two bins in transverse momentum. VBF and hadronic $V H$ categories are defined using jet cuts and two bins in transverse momentum.

Measurements in this framework have been made in various decay channels. The first measurements have been performed in the main Higgs boson discovery channels. ATLAS has produced measurements of the diphoton and the 4ℓ channels with Run 2 data $[125,227,236,275,276]$. And full Run 2 results are available for the $H \rightarrow 4 \ell$ channel from ATLAS [131] and CMS [277].

CMS has carried out a measurement of the STXS in the $H \rightarrow$ $\tau^{+} \tau^{-}$decay channel targeting the high transverse momentum of the Higgs boson [145], in particular in the channel where the Higgs boson is produced with one jet of transverse energy in excess of 200 GeV .

ATLAS [149] has made a measurement of the STXS aiming at the VH production mode in the $H \rightarrow b \bar{b}$ decay mode at high transverse momentum of the vector boson above 250 GeV , where the discrimination of the background further increases.

A combination of STXS across decay channels has also been carried out by ATLAS with a dataset corresponding to an integrated luminosity of up to $80 \mathrm{fb}^{-1}$ [213].
11.6.2.5 Indirect constraints on the Higgs boson couplings

The direct measurements at the LHC provide direct probes of the Higgs boson couplings to the vector bosons (photons, W, Z and gluons) and to a limited number of Yukawa couplings to fermions. Currently these include essentially the third generation fermions - tau leptons, bottom and top quarks. For the HighLuminosity run, prospective studies [104] have shown that a good precision will be reached in the measurement of the coupling of the Higgs boson to muons and an evidence of the Higgs boson trilinear self-coupling with a precision of the order of 50% can be achieved. For the couplings of the Higgs boson to the other light SM fermions, direct evidences will be hard to reach at the LHC. However, from the measurements of the main observed Higgs final

Figure 11.15: (Left) Fiducial differential, closely matching the reconstruction level selections, cross sections in Higgs boson transverse momentum in the $H \rightarrow 4 \ell$ channel from the CMS experiment [126]. (Right) Partially fiducial combined cross sections using the $H \rightarrow \gamma \gamma$ and $H \rightarrow 4 \ell$ channels from the ATLAS experiment [272].

Figure 11.16: Simultaneous measurement of the simplified template cross sections times the branching fraction $\mathrm{BR}(H \rightarrow Z Z)$ (normalised to their Standard Model expectations) and the ratios of branching fractions $\operatorname{BR}(f) / \mathrm{BR}(Z Z)$ [213].
states, it is possible to constrain specific couplings through their radiative corrections to dominant processes. Two prime examples are: (i) the trilinear self-coupling can be constrained through loop corrections to the single Higgs boson production [278-280], see the interpretation carried out by ATLAS of the combination of
the main decay channels [281]; (ii) the charm Yukawa coupling can be constrained from the differential cross section in Higgs boson transverse momentum [282], see the ATLAS [283] and CMS [260] analyses in the diphoton channel. These indirect constraints, however, require assumptions on the possible variations of all the other couplings.

ATLAS has also performed a preliminary combination of the single Higgs boson production measurements [284], using the approach and parametrisations of Ref. [279], which yield the following constraint:

$$
\begin{equation*}
-3.2<\kappa_{\lambda}<11.9 \tag{11.44}
\end{equation*}
$$

When combined with results of the double Higgs boson production searches, the following combined constraint on the Higgs boson trilinear coupling yields:

$$
\begin{equation*}
-2.3<\kappa_{\lambda}<10.3(\mathrm{obs}) \quad\left[-5.1<\kappa_{\lambda}<11.2 .(\exp)\right] . \tag{11.45}
\end{equation*}
$$

The direct and indirect constraints on the Higgs boson trilinear self-coupling are currently of similar strength. The double Higgs boson measurements are dominated by statistical uncertainties and are expected to improve much more rapidly than the precision on single Higgs boson measurements. Furthermore, it should be stressed that the constraints on the trilinear self-coupling obtained via the NLO fit of single Higgs boson data are less robust and more model-dependent since the NLO effects induced by a shift of the trilinear self-coupling compete with possible LO effects sourced by the deviations of the Higgs boson couplings to the other SM particles. The different effects can be disentangled by the measurements of various kinematical differential distributions in addition to the study of the inclusive rates [285], but the expected sensitivity in such global fits is not as promising as the one obtained when only the Higgs boson self-coupling is allowed to deviate from its SM value [286].

11.7 New physics models of EWSB in the light of the Higgs boson discovery

The discovery of a light scalar with couplings to gauge bosons and fermions that are consistent with SM predictions, together with the slow running of the Higgs boson self-coupling at high energies allow one to consider the SM as a valid perturbative description of nature all the way to the Planck scale. This picture is admittedly very attractive, but it posits that the Higgs boson
is an elementary scalar field, whose mass has quantum sensitivity to possible new physics scales. This EW/Higgs naturalness problem [6] has become much more definite after the Higgs boson discovery.

There are two broad classes of models addressing the naturalness problem ${ }^{5}$. One is based on SUSY [7] (for recent reviews, see Refs. $[8,9]$). This is a weakly coupled approach to EWSB, maintaining the perturbativity of the SM, and, the Higgs boson remains elementary and the corrections to its mass are screened at the scale at which SUSY is broken so the value of the weak scale remains insensitive to the details of the physics at higher scales. These theories predict at least three neutral Higgs particles and a pair of charged Higgs particles [25]. One of the neutral Higgs bosons, most often the lightest $C P$-even one, has properties that could resemble those of the SM Higgs boson (at least in some regions of the parameter space). It is referred to as a SM-like Higgs boson, meaning that its couplings are close to the ones predicted in the SM. The other approach invokes the existence of strong interactions at a scale of the order of one TeV or above and these new interactions induce the breaking of the electroweak symmetry [288]. In the original incarnation, dubbed technicolor, the strong interactions themselves trigger EWSB without the need of a Higgs boson. Another possibility, more compatible with the ATLAS and CMS discovery, is that the strong interactions produce four light resonances identified with the Higgs doublet and EWSB proceeds through vacuum misalignment [10] (see Refs. [11,12] for recent reviews). In that case, the Higgs boson itself has a finite size and thus never feels the UV degrees of freedom that would otherwise have dragged its mass to much higher scales. The Higgs boson could also correspond to the Goldstone boson associated with the spontaneous breaking of scale invariance, see Ref. [289] and references therein. However, this dilaton/radion scenario now requires a jumbled model-building to be consistent with the constraints from the coupling measurements. All these BSM scenarios can have important effects on the phenomenology of the Higgs boson. Also, in each case, the role of the Higgs boson in the unitarisation of scattering amplitudes is shared by other particles which remain targets of experimental searches.

The realisation of SUSY at low energies has many good qualities that render it attractive as a model of new physics. First of all since, for every SM degree of freedom, there is a superpartner of different spin but of equal mass and effective coupling to the SM-like Higgs boson, in the case of exact SUSY, an automatic cancellation of quantum corrections to the Higgs mass parameter holds. In practice, it is known that SUSY must be broken since no superpartners of the SM particles have been observed so far. The mass difference between the precise value of the mass of any particle and that of its corresponding superpartner is proportional to the correlated soft SUSY breaking parameter, generically called $M_{\text {SUSY }}$. The quantum corrections to the Higgs boson mass parameter are proportional to $M_{\text {SUSY }}^{2}$, and provided $M_{\text {SUSY }}$ is of order of a few TeV , the low energy mass parameters of the Higgs sector become insensitive to physics at the GUT or Planck scale. Another interesting feature of SUSY theories is related to the dynamical generation of EWSB [290]. In the SM, a negative Higgs mass parameter, m^{2}, needs to be inserted by hand to induce EWSB, see Eq. (11.1). In SUSY, instead, even if the relevant Higgs mass parameter is positive in the ultraviolet, it may become negative and induce EWSB radiatively through the strong effect of the top quark-Higgs boson coupling in its renormalisation group evolution [290].

In the following, the Higgs sector will be explored in specific SUSY models. In all of them, it is often possible to find regions of the parameter space that accommodate one neutral Higgs boson with properties that resemble those of the SM Higgs boson, whereas additional neutral and charged Higgs bosons are also predicted and are intensively being sought for at the LHC (see Section 11.7.7). In the simplest SUSY model, accommodating a SM-like Higgs boson mass of about 125 GeV results in constraints on the stop sector, with at least one stop mass in the few TeV

[^28]mass range. In non-minimal SUSY extensions of the SM (details and related references can be found in the previous edition of this review [123]), a SM-like Higgs boson with mass of 125 GeV can be accomodated with less restrictions on the stop sector. While naturalness dictates relatively light stops and - at the two loop level - also gluinos, the first and second generation of squarks and sleptons couple weakly to the Higgs sector and may be heavy. Moreover, small values of the μ parameter and therefore light Higgsinos, the fermionic superpartners of the Higgs bosons, would be a signature of a natural realization of electroweak symmetry breaking [291]. Such SUSY spectra, consisting of TeV range stop masses and light Higgsinos, continue to be under intense scrutiny by the experimental collaborations [292] in order to understand if such natural SUSY scenarios endure and can explain why the Higgs boson remains light.

In the context of weakly coupled models of EWSB, one can also consider multiple Higgs $\mathrm{SU}(2)_{L}$ doublets as well as additional Higgs singlets, triplets or even more complicated multiplet structures, with or without low energy SUSY. In general, for such models, one needs to take into account experimental constraints from precision measurements and flavour changing neutral currents. The LHC signatures of such extended Higgs sectors are largely shaped by the role of the exotic scalar fields in EWSB.

The idea that the Higgs boson itself could be a composite bound state emerging from a new strongly-coupled sector has been reconsidered thanks to the insights gained from the AdS/CFT duality. The composite Higgs boson idea is an incarnation of EWSB via strong dynamics that smoothly interpolates between the standard technicolor approach and the true SM limit. To avoid the usual conflict with EW data, it is sufficient, if not necessary, that a mass gap separates the Higgs resonance from the other resonances of the strong sector. Such a mass gap can naturally follow from dynamics if the strongly-interacting sector exhibits a global symmetry, G, broken dynamically to a subgroup H at the scale f, such that, in addition to the three Nambu-Goldstone bosons of $\mathrm{SO}(4) / \mathrm{SO}(3)$ that describe the longitudinal components of the massive W and Z, the coset G / H contains a fourth Nambu-Goldstone boson that can be identified with the physical Higgs boson. Simple examples of such a coset are $\mathrm{SU}(3) / \mathrm{SU}(2)$ or $\mathrm{SO}(5) / \mathrm{SO}(4)$, the latter being favoured since it is invariant under the custodial symmetry. It is also possible to have non-minimal custodial cosets with extra Goldstone bosons leading to additional Higgs bosons in the spectrum, see for instance Ref. [293]. Modern incarnations of composite Higgs models have been recently investigated in the framework of 5 D warped models where, according to the principles of the AdS/CFT correspondence, the holographic composite Higgs boson then originates from a component of a gauge field along the 5 th dimension with appropriate boundary conditions.

A last crucial ingredient in the construction of viable composite Higgs boson models is the concept of partial compositeness [294], i.e., the idea that there are only linear mass mixings between elementary fields and composite states. After diagonalisation of the mass matrices, the SM particles, fermions and gauge bosons, are admixtures of elementary and composite states and thus they interact with the strong sector, and in particular with the Higgs boson, through their composite component. This setup has important consequences on the flavour properties, chiefly the suppression of large flavour changing neutral currents involving light fermions. It also plays an important role in dynamically generating a potential for the would-be Goldstone bosons. Partial compositeness also links the properties of the Higgs boson to the spectrum of the fermionic resonances, i.e., the partners of the top quark. As in the MSSM, these top partners are really the agents that trigger the EWSB and also generate the mass of the Higgs boson that otherwise would remain an exact Goldstone boson and hence massless. The bounds from the direct searches for the top partners, in addition to the usual constraints from EW precision data, force the minimal composite Higgs models into some unnatural corners of their parameter spaces [295].
11.7.1 Higgs bosons in the minimal supersymmetric standard model (MSSM)

The particle masses and interactions in a SUSY theory are uniquely defined as a function of the superpotential and the Käh-
ler potential [9]. A fundamental theory of SUSY breaking, however, is unknown at this time. Nevertheless, one can parametrise the low-energy theory in terms of the most general set of soft SUSY-breaking operators [9]. The simplest realistic model of low-energy SUSY is the minimal SUSY extension of the SM (MSSM) [9, 296], that associates a SUSY partner to each gauge boson and chiral fermion of the SM, and provides a realistic model of physics at the weak scale. However, even in this minimal model with the most general set of soft SUSY-breaking terms, more than 100 new parameters are introduced. Fortunately, only a subset of these parameters impact the Higgs boson phenomenology either directly at tree-level or through quantum effects.
The MSSM contains the particle spectrum of a two-Higgsdoublet model (2HDM) extension of the SM and the corresponding SUSY partners. Two Higgs doublets, Φ_{1} and Φ_{2}, with hypercharge $Y=-1$ and $Y=1$, respectively, are required to ensure an anomaly-free SUSY extension of the SM and to generate mass for down-type quarks/charged leptons $\left(\Phi_{1}\right)$ and up-type quarks $\left(\Phi_{2}\right)$ [25]. The Higgs potential reads

$$
\begin{align*}
V= & m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}-m_{3}^{2}\left(\Phi_{1}^{T} i \sigma_{2} \Phi_{2}+\text { h.c. }\right) \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left|\Phi_{1}^{T} i \sigma_{2} \Phi_{2}\right|^{2}+\frac{1}{2} \lambda_{5}\left[\left(\Phi_{1}^{T} i \sigma_{2} \Phi_{2}\right)^{2}+\text { h.c. }\right] \tag{11.46}\\
& +\left[\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{T} i \sigma_{2} \Phi_{2}+\text { h.c. }\right]
\end{align*}
$$

where $m_{i}^{2}=\mu^{2}+m_{H_{i}}^{2}(i=1,2)$, with μ being the supersymmetric Higgsino mass parameter and m_{i} the soft supersymmetric breaking mass parameters of the two Higgs doublets; $m_{3}^{2} \equiv B \mu$ is associated to the B-term soft SUSY breaking parameter; and λ_{i}, for $i=1$ to 7 , are all the Higgs quartic couplings.

After the spontaneous breaking of the electroweak symmetry, five physical Higgs particles are left in the MSSM spectrum: one charged Higgs pair, $H^{ \pm}$, one $C P$-odd neutral scalar, A, and two $C P$-even neutral states, H and h, with h being the lightest. ${ }^{6}$ The Higgs sector at tree level depends on the electroweak gauge coupling constants and the vacuum expectation value v - or equivalently the Z gauge boson mass - and is determined by only two free parameters: $\tan \beta$ - the ratio of the two Higgs doublets' vacuum expectation values v_{2} / v_{1} - and one Higgs boson mass, conventionally chosen to be the $C P$-odd Higgs boson mass, m_{A}. The other tree-level Higgs boson masses are then given in terms of these parameters. The tree level value of m_{h} is maximised not only for $m_{A} \gg m_{Z}$ but also for $\tan \beta \gg 1$. For $m_{A} \gg m_{Z}$ it acquires a maximum value $m_{h}=m_{Z} \cos 2 \beta$.
Radiative corrections have a significant impact on the values of Higgs boson masses and couplings in the MSSM. The dominant radiative effects to the SM -like Higgs boson mass arise from the incomplete cancellation between top and scalar-top (stop) loops and at large $\tan \beta$ also from sbottom and stau loops. The stop, sbottom and stau masses and mixing angles depend on the SUSY Higgsino mass parameter μ and on the soft-SUSY-breaking parameters [9,296]: $M_{Q}, M_{U}, M_{D}, M_{L}, M_{E}$, and $A_{t}, A_{b} A_{\tau}$. The first three of these are the left-chiral and the right-chiral top and bottom scalar quark mass parameters. The next two are the leftchiral stau/sneutrino and the right-chiral stau mass parameters, and the last three are the trilinear parameters that enter in the off-diagonal squark/slepton mixing elements: $X_{t} \equiv A_{t}-\mu \cot \beta$ and $X_{b, \tau} \equiv A_{b, \tau}-\mu \tan \beta$. At one-loop, the electroweak gauginos yield a small contribution to the Higgs boson mass, and at the two-loop level, the masses of the gluinos also enter in the calculations. Radiative corrections to the Higgs boson masses have been computed using a number of techniques, with a variety of approximations; for a discussion see for example Refs. [39, 297, 298]

[^29]and the corresponding section of the previous edition of this review [123].
The discovered SM-like Higgs boson, if interpreted as the lightest MSSM Higgs boson with a mass of about 125 GeV , provides information on the possible MSSM parameter space, see Fig. 11.17.

Figure 11.17: Values of the SUSY mass scale $M_{\text {SUSY }}=M_{S}$ versus the stop mixing parameter normalised by the SUSY mass scale $X_{t} / M_{\text {SUSY }}$, for fixed $\tan \beta=20, \mu=200 \mathrm{GeV}$ and $M_{A}=A_{t}=$ $A_{b}=A_{\tau}=M_{\text {SUSY }}$. The solid black line corresponds to $m_{h}=$ 125 GeV while in the grey band m_{h} varies by $\pm 1 \mathrm{GeV}$. The red dotted lines are iso-values of the stop mass. This figure is based on Ref. [299].

The phenomenology of the Higgs sector depends on the couplings of the Higgs bosons to gauge bosons and fermions. At tree-level, the couplings of the two $C P$-even Higgs bosons to W and Z bosons are given in terms of the angles α, that diagonalises the $C P$-even Higgs boson squared-mass matrix, and β
$g_{h V V}=g_{V} m_{V} \sin (\beta-\alpha), \quad g_{H V V}=g_{V} m_{V} \cos (\beta-\alpha),(11.47)$
where $g_{V} \equiv 2 m_{V} / v$, for $V=W$ or $Z\left(g_{V} m_{V}\right.$ is the SM $h V V$ coupling). Observe that in the limit $\cos (\beta-\alpha) \rightarrow 0$, the lightest $C P$-even Higgs boson h behaves as the SM Higgs boson. This situation is called alignment and is achieved in specific regions of parameter space for $m_{A} \geq m_{Z}$ [300] or in the large $m_{A} \gg m_{Z}$ limit, in which alignment is achieved through decoupling [300, 301]. There are no tree-level couplings of A or $H^{ \pm}$to $V V$. The couplings of the Z boson to two neutral Higgs bosons are given by $g_{\phi A Z}\left(p_{\phi}-p_{A}\right)$, where $\phi=H$ or h, the momenta p_{ϕ} and p_{A} point into the vertex, and

$$
\begin{equation*}
g_{h A Z}=g_{Z} \cos (\beta-\alpha) / 2, \quad g_{H A Z}=-g_{Z} \sin (\beta-\alpha) / 2 \tag{11.48}
\end{equation*}
$$

The expressions of the couplings between a charged Higgs boson, a neutral Higgs boson and the W boson as well as the expressions of the four-point couplings of vector bosons and Higgs bosons can be found in Ref. [25].

The tree-level Higgs boson couplings to fermions obey the following property: the neutral components of one Higgs doublet, Φ_{1}, couple exclusively to down-type fermion pairs while the neutral components of the other doublet, Φ_{2}, couple exclusively to up-type fermion pairs [25]. This Higgs-fermion coupling structure defines the Type-II 2HDM. In the MSSM, fermion masses are generated when both neutral Higgs components acquire a vacuum expectation value, and the relations between Yukawa couplings and fermion masses are (in third-generation notation)

$$
\begin{equation*}
h_{b, \tau}=\sqrt{2} m_{b, \tau} /(v \cos \beta), \quad h_{t}=\sqrt{2} m_{t} /(v \sin \beta) . \tag{11.49}
\end{equation*}
$$

The couplings of the neutral Higgs bosons to $f \bar{f}$, relative to their

SM values, $g m_{f} /\left(2 m_{W}\right)$, are given by

$$
\begin{array}{ll}
h b \bar{b}:-\sin \alpha / \cos \beta, & h t \bar{t}: \cos \alpha / \sin \beta \\
H b \bar{b}: \cos \alpha / \cos \beta, & H t \bar{t}: \sin \alpha / \sin \beta, \tag{11.50}\\
A b \bar{b}: \gamma_{5} \tan \beta, & A t \bar{t}: \gamma_{5} \cot \beta
\end{array}
$$

In each relation above, the factor listed for $b \bar{b}$ also pertains to $\tau^{+} \tau^{-}$. The charged Higgs boson couplings to fermion pairs, normalised to $g /\left(\sqrt{2} m_{W}\right)$, are given by

$$
\begin{align*}
& g_{H^{-} t \bar{b}}: m_{t} \cot \beta \frac{1+\gamma_{5}}{2}+m_{b} \tan \beta \frac{1-\gamma_{5}}{2} \tag{11.51}\\
& g_{H^{-} \tau^{+}{ }_{\nu}}: m_{\tau} \tan \beta \frac{1-\gamma_{5}}{2}
\end{align*}
$$

The non-standard neutral Higgs bosons have significantly enhanced couplings to down-type fermions at sizeable $\tan \beta$. Radiative corrections can modify significantly the values of the Higgs boson couplings to fermion pairs and to vector boson pairs, through a radiatively-corrected value for $\cos (\beta-\alpha)$ as well as from the one-loop vertex corrections to tree-level Higgs-fermion Yukawa couplings, see Ref. [9] and references therein, for a detailed discussion.

11.7.1.1 MSSM Higgs boson phenomenology

The MSSM parameters have to be arranged such that the mass, the $C P$ properties, the decay and production properties of one of the neutral Higgs bosons agree with the LHC Higgs data. Given that present data allows only for moderate departures from the SM predictions, it implies that some degree of alignment is necessary.

The SM-like branching ratios of h can be modified if decays into SUSY particles are kinematically allowed, and, in particular, decays into a pair of the lightest SUSY particles - i.e., the lightest neutralinos, $\tilde{\chi}_{1}^{0}$ - can become dominant and would be invisible if R-parity is conserved [302]. Moreover, if light superpartners exist and couple to photons and/or gluons, the h loop-induced coupling to $g g$ and $\gamma \gamma$ could deviate sizeably from the corresponding SM predictions (see for instance the review [297]), and would be in conflict with present data (see Section 11.3). For the heavier Higgs states, there are two possibilities to be considered ${ }^{7}$:
i) Alignment triggered by decoupling, hence $m_{A} \geq$ several hundred GeV: The $H W W$ and $H Z Z$ couplings are very small. The dominant H, A decay branching ratios strongly depend on $\tan \beta$. The decay modes $H, A \rightarrow b \bar{b}, \tau^{+} \tau^{-}$dominate when $\tan \beta$ is large (this holds even away from decoupling). For small $\tan \beta$, the $t \bar{t}$ decay mode dominates above its kinematic threshold. For the charged Higgs boson, $H^{+} \rightarrow t \bar{b}$ dominates.
ii) Some degree of alignment without decoupling, hence $m_{A} \leq$ a few hundred GeV : The main difference with the previous case is that, in the low $\tan \beta$ regime $(\tan \beta \leq 5)$, additional decay channels may be allowed which involve decays into the lightest SM-like Higgs boson; $A \rightarrow Z h, H \rightarrow h h$ as well as $H \rightarrow W W / Z Z$ decay modes are available (they are suppressed in the strict alignment limit). When kinematically open, the decays $A / H \rightarrow t \bar{t}$ become relevant or even dominant for sufficiently small $\tan \beta$. For the charged Higgs boson, $H^{+} \rightarrow \tau^{+} \nu_{\tau}$ dominates below the $t \bar{b}$ threshold, and also $H^{ \pm} \rightarrow W^{ \pm} h$ may be searched for.

In both cases i) and ii), the heavier Higgs states, H, A and $H^{ \pm}$, are roughly mass degenerate (with masses $\pm 20 \mathrm{GeV}$ or less apart). If kinematically allowed, the heavy Higgs boson decays into charginos, neutralinos and third-generation squarks and sleptons can be important [305].

At hadron colliders, the dominant neutral Higgs boson production mechanism at moderate values of $\tan \beta$ is gluon fusion, mediated by loops containing heavy top and bottom quarks and the corresponding SUSY partners. The effect of light stops that may

[^30]contribute to the gluon fusion production can be partially cancelled by mixing effects. Higgs boson radiation off bottom quarks becomes important for large $\tan \beta$, where at least two of the three neutral Higgs bosons have enhanced couplings to bottom-type fermions $[306,307]$. Detailed discussions of the impact of radiative corrections in these search modes are presented for instance in Ref. [308]. The vector boson fusion and Higgs-strahlung production of the $C P$-even Higgs bosons as well as the associated production of neutral Higgs bosons with top quark pairs have lower production cross sections by at least an order of magnitude with respect to the dominant ones, depending on the precise region of MSSM parameter space [41-44]. Higgs boson pair production of non-standard MSSM Higgs bosons has been studied in Ref. [309]. For a discussion of charged Higgs boson production at LHC, see Refs. [42, 43, 310].

Strong production of a heavy neutral Higgs boson followed by its decay into top-quark pairs is a challenging channel, only most recently being searched for by ATLAS and CMS. Interference effects between the signal and the SM $t \bar{t}$ background need to be carefully taken into account [311].
Summarising, the additional Higgs bosons are sought for mainly via the channels:

$$
\begin{align*}
& p p \rightarrow A / H \rightarrow \tau^{+} \tau^{-} \text {(inclusive) } \\
& b \bar{b} A / H, A / H \rightarrow \tau^{+} \tau^{-} \text {(with } b \text {-tag) } \\
& b \bar{b} A / H, A / H \rightarrow b \bar{b} \text { (with } b \text {-tag) } \\
& p p \rightarrow t \bar{t} \rightarrow H^{ \pm} W^{\mp} b \bar{b}, H^{ \pm} \rightarrow \tau \nu_{\tau} \\
& g b \rightarrow H^{-} t \text { or } g \bar{b} \rightarrow H^{+} \bar{t}, H^{ \pm} \rightarrow \tau \nu_{\tau} \tag{11.52}
\end{align*}
$$

After the Higgs boson discovery, updated MSSM benchmarks scenarios have been defined to highlight interesting conditions for the MSSM Higgs boson searches [43,304,312]. The latest benchmark scenarios update [304], partly based in MSSM parameter space discussions in Ref. [312], considers six benchmarks to illustrate different aspects of Higgs phenomenology in the MSSM. They include one case with complex parameters, but they all assume R-parity conservation and no flavour mixing. Each scenario contains one $C P$-even scalar with mass around 125 GeV and SM-like couplings. These scenarios include a M_{h}^{125} scenario with relatively heavy superparticles, so the Higgs phenomenology at the LHC resembles that of a 2 HDM with MSSM-inspired Higgs boson couplings. Other two scenarios are characterised by some of the superparticles - staus or electroweakinos - being relatively light, that in turn is of relevance for heavy neutral Higgs boson searches. In particular, the traditional $A / H \rightarrow \tau^{+} \tau^{-}$search channel varies depending on the values of μ and M_{2}, that may enable the A / H decays into electroweakinos. Another two scenarios are characterised by the phenomenon of alignment without decoupling, in which one of the two neutral $C P$-even scalars has SM-like couplings independently of the mass spectrum of the remaining Higgs bosons, hence allowing for all the Higgs bosons to have relatively low mass values (about few hundred GeV). Finally there is one scenario which incorporates $C P$ violation in the Higgs sector and gives rise to a strong admixture of the two heavier neutral states. All the above scenarios assume all parameters in the mass range from 1 to a few TeV , hence they are not applicable for values of $\tan \beta$ of order a few, for which a Higgs boson mass value of 125 GeV is out of reach. An additional study, EFTMSSM [313], proposes two scenarios specifically designed for the low $\tan \beta$ region and ensures a 125 GeV Higgs boson mass in almost the entire parameter space by employing a flexible supersymmetric mass scale, reaching values of up to $10^{16} \mathrm{GeV}$.

An alternative approach to reduce the large number of parameters relevant to the Higgs sector is to consider that, in the Higgs basis, the only important radiative corrections are those affecting the Higgs boson mass [314]. This approximation is called hMSSM and works well in large regions of parameter space but it breaks down for sizeable values of μ and A_{t}, and moderate values of $\tan \beta$, for which the radiative corrections to the mixing between the two $C P$ even eigenstates become relevant. The effect of such radiative corrections is to allow for alignment for small to intermediate values of $\tan \beta$, independent of the specific value of m_{A} [315]. In
addition, the hMSSM assumption that the right value of the Higgs boson mass may be obtained for all values of m_{A} and $\tan \beta$ is in conflict with the MSSM predictions for the Higgs boson mass for small values of m_{A} and $\tan \beta \simeq \mathcal{O}(1)$. The recent M_{h}^{125} [304] and EFTMSSM benchmarks [313], are designed to address the limitations of the hMSSM, in particular the low $\tan \beta$ region for the EFTMSSM.

The M_{h}^{125} scenarios are aiming at treating more rigorously all radiative correction to the observed Higgs boson mass as well as specifically taking into possibly intermediate to light MSSM colorless states as electroweakinos or staus [304]. The main M_{h}^{125} benchmark, however, assumes that super partners are heavy, so that the phenomenology of the observed Higgs boson is not altered except in its couplings due to the existence of another doublet. Another important example scenario, referred to as $M_{h}^{125}(\tilde{\chi})$, considers light electroweakinos and therefore the heavy Higgs bosons H and A can have sizeable decay rates to charginos and neutralinos, consequently suppressing the $\tau^{+} \tau^{-}$decay rate. It is interesting to note that in this scenario the branching fraction of the Higgs boson to photons is enhanced for small values of $\tan \beta$ due to the presence of electroweakinos in the loop. These two scenarios are illustrated in Fig. 11.18.

The compatibility between the predicted and measured Higgs boson mass is an important constraint in these scenarios. The predictions are illustrated in Fig. 11.18. To use the predicted Higgs boson mass as a constraint (exclusion at nearly constant $\tan \beta$ at high M_{A} in the $\left(M_{A}, \tan \beta\right)$ plane), it is important to account for the theoretical uncertainty on the prediction which is in excess of an order of magnitude larger than the experimental uncertainty on the measured mass of the Higgs boson. The theoretical uncertainty depends itself on the specific SUSY spectrum for a given MSSM parameter set and should be estimated accordingly, however, a more generic estimate of $\pm 3 \mathrm{GeV}$ is made and found to be a conservative choice.
Reviews of the properties and phenomenology of the Higgs bosons of the MSSM can be found for example in Refs. [9,39, 297]. Future precision measurements of the Higgs boson couplings to fermions and gauge bosons together with information on heavy Higgs boson searches will provide powerful information on the SUSY parameter space [315, 316].

Improvements in our understanding of B-physics observables put indirect constraints on additional Higgs bosons in mass ranges that would be accessible in direct LHC searches. In particular, $\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), \mathrm{BR}(b \rightarrow s \gamma)$, and $\mathrm{BR}\left(B_{u} \rightarrow \tau \nu\right)$ play an important role within minimal flavour-violating (MFV) models [317], in which flavor effects proportional to the CKM matrix elements are induced as in the SM.

11.7.2 Supersymmetry with singlet extensions

The Higgs mass parameter μ is a SUSY parameter, and as such, it should naturally be of order $\mathrm{M}_{G U T}$ or $\mathrm{M}_{\text {Planck }}$. The fact that phenomenologically it is required that μ be at the electroweak/ TeV scale is known as the μ problem [318]. SUSY models with additional singlets can provide a solution to the μ problem, by promoting the μ parameter to a dynamical singlet superfield S that only interacts with the MSSM Higgs doublets through a coupling λ_{S} at the level of the superpotential. An effective μ is generated when the real scalar component of S acquires a vacuum expectation value v_{S}, yielding $\mu_{\text {eff }}=\lambda_{S} v_{S}$. After the minimization of the Higgs potential, the vacuum state relates the vacuum expectation values of the three $C P$-even neutral scalars, v_{1}, v_{2} and v_{S}, to the scalar doublet and singlet soft SUSY breaking masses, hence, one expects that these VEVs should all be of order $M_{\text {SUSY }}$ and therefore the μ problem is solved.

The addition of a singlet superfield to the MSSM may come along with additional symmetries imposed to the theory. Depending on such symmetries, different models with singlet extensions of the MSSM (xMSSM) have been proposed, see Ref. [319] for a general review. Among the most studied examples are the NMSSM with an additional discrete Z_{3} symmetry (first introduced in Ref. [320]), the Nearly-Minimal SUSY SM (nMSSM), with additional discrete Z_{5}^{R}, and Z_{7}^{R} symmetries [321], and the $\mathrm{U}(1)^{\prime}-$ extended MSSM (UMSSM) [322]. A Secluded U(1)'-extended MSSM (sMSSM) [323] contains three singlets in addition to the
standard UMSSM Higgs boson singlet; this model is equivalent to the nMSSM in the limit that the additional singlet VEV's are large, and the trilinear singlet coupling, λ_{S}, is small [324].

A singlet extended SUSY Higgs sector opens new avenues for discovery. Since the singlet pseudoscalar particle may be identified as the pseudo-Goldstone boson of a spontaneously broken PecceiQuinn symmetry, it may become naturally light [325]. Generally, there is mixing of the singlet sector with the MSSM Higgs sector, and for a sufficiently light, singlet-dominated scalar or pseudoscalar, h_{S} or A_{S}, respectively, the SM-like Higgs boson h may decay to pairs of h_{S} or A_{S}. The light scalar and/or pseudoscalar may subsequently decay to $\tau \tau$ or $b \bar{b}$ pairs. Such cascade decays are more difficult to detect than in standard searches due to the potentially soft decay products. There is also a rich phenomenology for the decays of the heavy $C P$-even and $C P$-odd doublets, H and A into two lighter Higgs bosons such as $H \rightarrow h h_{S}, h h, h_{S} h_{S}$ or $A \rightarrow A_{S} h_{S}, A_{S} h$ as well as into a light Higgs boson and a gauge boson: $H \rightarrow A_{S} Z ; A \rightarrow h_{S} Z, h Z$. If kinematically allowed, the heavy Higgs bosons decay into $t \bar{t}$. If the singlet-dominated scalar or pseudoscalar are somewhat heavier, the decays $h_{S} \rightarrow W W$ or $A_{S} \rightarrow h_{S} Z$ will be allowed.

In addition, the light singlet scenario in the NMSSM or nMSSM is typically associated with a light singlino-dominated neutralino. The recently discovered SM-like Higgs boson can then decay to pairs of this neutralino [326], opening an invisible decay mode that is not excluded by present data. All of the Higgs bosons can decay into electroweakinos depending on kinematics and on the singlino or Higgsino composition of the electroweakinos.

In models with extended singlets, at low $\tan \beta$, it is possible to trade the requirement of a large stop mixing by a sizeable trilinear Higgs-singlet Higgs coupling λ_{S}, rendering more freedom on the requirements for gluon fusion production. As in the MSSM, mixing in the Higgs sector - additionally triggered by the extra new parameter λ_{S} - can produce variations in the Higgs- $b \bar{b}$ and Higgs $-\tau^{-} \tau^{+}$couplings that can alter the Higgs to $Z Z / W W$ and to diphoton rates. Light charginos at low $\tan \beta$ can independently contribute to enhance the di-photon rate, without altering any other of the Higgs boson decay rates, see for instance Ref. [327].

There is much activity in exploring the NMSSM phenomenology in the light of the 125 GeV Higgs boson as well as in defining benchmark scenarios with new topologies including Higgs decay chains, see Refs. [44,328] and references therein. An analytic understanding of the alignment condition in the NMSSM is presented in Ref. [329]. The NMSSM with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak/TeV scale, thereby reducing the degree of fine tuning necessary to achieve electroweak symmetry breaking. Interestingly, the alignment conditions point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale and yielding a rich and interesting Higgs boson phenomenology at the LHC.

11.7.3 Supersymmetry with extended gauge sectors

In the MSSM, the tree-level value of the lightest $C P$-even Higgs boson mass originates from the D-term dependence of the scalar potential that comes from the SUSY kinetic terms in the Kähler potential. The D-terms lead to tree-level quartic couplings which are governed by the squares of the gauge couplings of the weak interactions, under which the Higgs boson has non-trivial charges. Hence, the lightest Higgs mass is bounded to be smaller than M_{Z}. In the presence of new gauge interactions at the TeV scale, and if the Higgs fields had non-trivial charges under them, new Dterm contributions would lead to an enhancement of the tree-level Higgs boson mass value. Since the low energy gauge interactions reduce to the known $\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ ones, in order for this mechanism to work, the extended gauge and Higgs sectors should be integrated out in a non-SUSY way. This means that there must be SUSY breaking terms that are of the order of, or larger than, the new gauge boson masses. The tree-level quartic couplings would then be enhanced through their dependence on the square of the gauge couplings of the extended Higgs sector. This effect will be suppressed when the heavy gauge boson masses are larger than the SUSY breaking scale and will acquire its full

Figure 11.18: The 95% CL exclusion contours in the $\left(M_{A}, \tan \beta\right.$) parameter space for the M_{h}^{125} (right) and $M_{h}^{125}(\tilde{\chi})$ (left) benchmark scenarios. The nearly vertical dotted line illustrated the lower limit on the mass of the A boson and the close-to horizontal dotted line represents the limit on $\tan \beta$ from the compatibility of the measured mass of the observed Higgs boson and the prediction using radiative corrections (mostly from the stop sector).
potential only for large values of this scale.
One of the simplest possibilities is to extend the weak interactions to a $\mathrm{SU}(2)_{1} \times \mathrm{SU}(2)_{2}$ sector, such that the known weak interactions are obtained after the spontaneous breaking of these groups to $\mathrm{SU}(2)_{L}$ [330]. This example is briefly summarized in the previous editions of this review [123]. Assuming SUSY breaking terms of the order of the new gauge boson masses, enhancements of order 50% of the MSSM D-term contribution to the Higgs boson mass may be obtained. Such enhancements are sufficient to obtain the measured Higgs mass value without the need for very heavy stops or large stop mixing parameters. This gauge extension leads to new, heavy gauge and Higgs bosons, as well as new neutralinos and charginos, that depending on the region of parameter space can induce novel phenomenology at the LHC. Gauge extensions including new abelian gauge groups have also been considered.

Gauge extensions of the MSSM can also lead to an enhancement of the Higgs boson mass value by modifying the renormalisation group evolution of the Higgs quartic coupling to low energies. In the MSSM, the evolution of the quartic coupling is governed by the top-quark Yukawa interactions and depends on the fourth power of the top-quark Yukawa coupling. The neutralino and chargino contributions, which depend on the fourth power of the weak gauge couplings, are small due to the smallness of these couplings. Depending on the values of the soft SUSY breaking parameters in the gaugino and Higgsino sectors, the $\mathrm{SU}(2)_{1}$ gauginos may become light, with masses of the order of the weak scale. Since the $\mathrm{SU}(2)_{1}$ coupling may be significantly larger than the $\mathrm{SU}(2)_{L}$ one, for small values of the Higgsino mass parameter μ, the associated charginos and neutralinos may modify the evolution of the quartic coupling in a significant way [331]. This may lead to a significant increase of the lightest $C P$-even Higgs boson mass, even for small values of $\tan \beta \simeq 1$ for which the D -term contributions become small. Radiative corrections should be properly taken into account in this scenario as they might modify the treelevel result.

11.7.4 Effects of CP violation

SUSY scenarios with $C P$-violation $(C P V)$ phases are theoretically appealing, since additional $C P V$ beyond that observed in the K, D, and B meson systems is required to explain the observed cosmic matter-antimatter asymmetry. In the MSSM, $C P$ violation effects in the Higgs sector appear at the quantum level, while in singlet extensions of the MSSM $C P$-violation effects can already be effective at tree level. In general, $C P$-violation effects in the Higgs sector have significant constraints from electric dipole moments data [332].

In the MSSM, the gaugino mass parameters $\left(M_{1,2,3}\right)$, the Higgsino mass parameter, μ, the bilinear Higgs squared-mass parameter, m_{12}^{2}, and the trilinear couplings of the squark and
slepton fields to the Higgs fields, A_{f}, may carry non-trivial phases. The two parameter combinations $\arg \left[\mu A_{f}\left(m_{12}^{2}\right)^{*}\right]$ and $\arg \left[\mu M_{i}\left(m_{12}^{2}\right)^{*}\right]$ are invariant under phase redefinitions of the MSSM fields [333, 334]. Therefore, if one of these quantities is non-zero, there would be new sources of $C P$-violation affecting the Higgs sector through radiative corrections, see Ref. [335] and references therein. The mixing of the neutral $C P$-odd and $C P$ even Higgs boson states is no longer forbidden. Hence, m_{A} is no longer a physical parameter. However, the charged Higgs boson mass $m_{H^{ \pm}}$is still physical and can be used as an input for the computation of the neutral Higgs boson spectrum of the theory. For large values of $m_{H^{ \pm}}$, corresponding to the decoupling limit, the properties of the lightest neutral Higgs boson state approach those of the SM Higgs boson. In particular, the upper bound on the lightest neutral Higgs boson mass takes the same value as in the $C P$-conserving case [334]. Nevertheless, there still can be significant mixing between the two heavier neutral mass eigenstates. For a detailed study of the Higgs boson mass spectrum and parametric dependence of the associated radiative corrections, see Ref. [335] and references therein.

Major variations to the Higgs boson phenomenology occur in the presence of explicit $C P V$ phases. In the $C P V$ case, vector boson pairs couple to all three neutral Higgs boson mass eigenstates, $H_{i}(i=1,2,3)$, with couplings

$$
\begin{align*}
g_{H_{i} V V}= & \cos \beta \mathcal{O}_{1 i}+\sin \beta \mathcal{O}_{2 i} \\
g_{H_{i} H_{j} Z} & =\mathcal{O}_{3 i}\left(\cos \beta \mathcal{O}_{2 j}-\sin \beta \mathcal{O}_{1 j}\right) \tag{11.53}\\
& -\mathcal{O}_{3 j}\left(\cos \beta \mathcal{O}_{2 i}-\sin \beta \mathcal{O}_{1 i}\right)
\end{align*}
$$

where the $g_{H_{i} V V}$ couplings are normalised to the analogous SM coupling and the $g_{H_{i} H_{j} Z}$ have been normalised to $g_{Z}^{\mathrm{SM}} / 2$. The orthogonal matrix $\mathcal{O}_{i j}$, only defined in the $p^{2} \rightarrow 0$ limit, is relating the weak eigenstates to the mass eigenstates. It has non-zero off-diagonal entries mixing the $C P$-even and $C P$-odd components of the weak eigenstates. Moreover, $C P V$ phases imply that all neutral Higgs bosons can couple to both scalar and pseudoscalar fermion bilinear densities. The couplings of the mass eigenstates H_{i} to fermions depend on the loop-corrected fermion Yukawa couplings (similarly to the $C P$ conserving ($C P C$) case), on $\tan \beta$ and on $\mathcal{O}_{j i}$ [336].

The production processes of neutral MSSM Higgs bosons in the $C P V$ scenario are similar to those in the $C P C$ scenario. Regarding the decay properties, the lightest mass eigenstate, H_{1}, predominantly decays to $b \bar{b}$ if kinematically allowed, with a smaller fraction decaying to $\tau^{+} \tau^{-}$. If kinematically allowed, a SM-like neutral Higgs boson, H_{2} or H_{3} can decay predominantly to $H_{1} H_{1}$ leading to many new interesting signals both at lepton and hadron colliders; otherwise it will decay preferentially to $b \bar{b}$.

The discovery of a 125 GeV Higgs boson has put strong constraints on the realisation of the $C P V$ scenario within the MSSM. This is partly due to the fact that the observed Higgs boson rates are close to the SM values, and a large $C P$-violating component would necessarily induce a large variation in the rate of the SMlike Higgs boson decays into the weak gauge bosons $W^{ \pm}$and Z. The measured Higgs mass imposes additional constraints on the realisation of this scenario. Once all effects are considered, the $C P$-odd Higgs boson A component of the lightest Higgs boson tends to be smaller than about 10% [337]. This restriction can be alleviated in the NMSSM or more general two Higgs doublet models. $C P$-violating effects can still be significant in the heavy Higgs sector. For instance, the Higgs bosons H_{2} and H_{3} may be admixtures of $C P$-even and $C P$-odd scalars, and therefore both may be able to decay into pairs of weak gauge bosons. The observation of such decays would be a clear signal of $C P$-violation. In the MSSM, the proximity of the masses of H_{2} and H_{3} makes the measurement of such effect quite challenging, but in generic two Higgs doublet models, the mass splitting between the two heavy mass eigenstates may become larger, facilitating the detection of $C P$-violating effects at collider experiments [338].

11.7.5 Non-supersymmetric extensions of the Higgs sector

There are many ways to extend the minimal Higgs sector of the SM. In the preceding sections the phenomenology of SUSY Higgs sectors is considered, which at tree level implies a constrained type-II 2HDM (with restrictions on the Higgs boson masses and couplings). In the following discussion, more generic 2HDM's are presented (for some comprehensive reviews, see Ref. [339]). These models are theoretically less compelling since they do not provide an explanation for the SM Higgs naturalness problem, but can lead to different patterns of Higgs-fermion couplings, hence, to different phenomenology. It is also possible to consider models with a SM Higgs boson and one or more additional scalar SU(2) doublets that acquire no VEV and hence play no role in the EWSB mechanism. Such models are dubbed Inert Higgs Doublet Models (IHD) [340]. Without a VEV associated to it, a Higgs boson from an inert doublet has no tree-level coupling to gauge bosons and hence cannot decay into a pair of them. Moreover, imposing a Z_{2} symmetry that prevents them from coupling to the fermions, it follows that, if the lightest inert Higgs boson is neutral, it becomes a good DM candidate with interesting associated collider signals. Various studies of IHD models in the light of a 125 GeV Higgs boson have been performed, see for instance Ref. [341], showing an interesting interplay between collider and direct DM detection signals.

An interesting type of 2 HDMs are those in which an abelian flavour symmetry broken at the electroweak scales creates the fermion mass hierarchies and mixing angles [17]. This idea is based on the Froggatt-Nielsen model [342], where a flavon field couples differently to the SM fermions of different flavour charges. Such flavon acquires a vacuum expectation value, breaking the flavour symmetry but leaving both the flavour breaking and the new physics scales undetermined. In Refs. [343], it was proposed to relate the flavour breaking scale to the electroweak scale by identifying the flavon with the modulus square of the Higgs field. A 2 HDM , however, provides a more compelling realisation of the electroweak scale flavour breaking idea. In the most ambitious constructions of two Higgs doublet flavour models (2HDFM), the textures of the Yukawa couplings are a result of an abelian flavour symmetry that only allows renormalisable Yukawa couplings of the top quark to the Higgs bosons. All other Yukawa couplings are generated by higher dimensional operators that produce hierarchical entries of the Yukawa matrices, explaining the observed quark masses and mixing angles. Flavour observables, LHC Higgs signal strength measurements, electroweak precision measurements, unitarity and perturbativity bounds, as well as collider searches for new scalar resonances result in precise predictions for the parameters of these 2HDFMs. In particular, correlated departures from SM Higgs boson couplings, as well as additional Higgs bosons with masses $<700 \mathrm{GeV}$ must be observed at the LHC. Other incarnations of 2HDFMs can aim at only partially explaining the fermion mass hierarchies but are therefore less restrictive.

Other extensions of the Higgs sector can include multiple copies
of $\mathrm{SU}(2)_{L}$ doublets [344], additional Higgs singlets [345], triplets or more complicated combinations of Higgs multiplets. It is also possible to enlarge the gauge symmetry beyond $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ along with the necessary Higgs field structure to generate gauge boson and fermion masses. There are two main experimental constraints on these extensions: (i) precision measurements which constrain $\rho=m_{W}^{2} /\left(m_{Z}^{2} \cos ^{2} \theta_{W}\right)$ to be very close to 1 and (ii) flavour changing neutral current (FCNC) effects. In electroweak models based on the SM gauge group, the tree-level value of ρ is determined by the Higgs multiplet structure. By suitable choices for the hypercharges, and in some cases the mass splitting between the charged and neutral Higgs sector or the vacuum expectation values of the Higgs fields, it is possible to obtain a richer combination of singlets, doublets, triplets and higher multiplets compatible with precision measurements. Concerning the constraints coming from FCNC effects, the Glashow-Weinberg (GW) criterion [346] states that, in the presence of multiple Higgs doublets, the tree-level FCNC's mediated by neutral Higgs bosons will be absent if all fermions of a given electric charge couple to no more than one Higgs doublet. An alternative way of suppressing FCNC in a two Higgs doublet model has been considered in Ref. [347], where it is shown that it is possible to have tree level FCNC completely fixed by the CKM matrix, as a result of an abelian symmetry.

11.7.5.1 Two-Higgs-doublet models

General two Higgs doublet models [339] can have a more diverse Higgs-fermion coupling structure than in SUSY, and can be viewed as a simple extension of the SM to realise the spontaneous breakdown of $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ to $\mathrm{U}(1)_{\mathrm{em}}$. Quite generally, if the two Higgs doublets contain opposite hypercharges, the scalar potential will contain mixing mass parameters of the kind $m_{12}^{2} \Phi_{1}^{T} i \sigma_{2} \Phi_{2}+h . c$. . In the presence of such terms, both Higgs doublets will acquire vacuum expectation values, $v_{1} / \sqrt{2}$ and $v_{2} / \sqrt{2}$, respectively, and the gauge boson masses will keep their SM expressions with the Higgs VEV v replaced by $\sqrt{v_{1}^{2}+v_{2}^{2}}$. Apart from the mass terms, the most generic renormalisable and gauge invariant scalar potential for two Higgs doublets with opposite hypercharges contains seven quartic couplings, as presented in Eq. (11.46).

Just as in the MSSM case, after electroweak symmetry breaking and in the absence of $C P$-violation, the physical spectrum contains a pair of charged Higgs bosons $H^{ \pm}$, a $C P$-odd Higgs boson A and two neutral $C P$-even Higgs bosons, h and H. The angles α and β diagonalise the $C P$-even, and the $C P$-odd and charged Higgs sectors, respectively. The complete 2 HDM is defined only after considering the interactions of the Higgs fields to fermions. Yukawa couplings of the generic form

$$
\begin{equation*}
-h_{i j}^{a} \bar{\Psi}_{L}^{i} H_{a} \Psi_{R}^{j}+h . c . \tag{11.54}
\end{equation*}
$$

may be added to the renormalisable Lagrangian of the theory. Contrary to the SM, the two Higgs doublet structure does not ensure the alignment of the fermion mass terms $m_{i j}=h_{i j}^{a} v_{a} / \sqrt{2}$ with the Yukawa couplings $h_{i j}^{a}$. This implies that quite generally the neutral Higgs boson will mediate flavour changing interactions between the different mass eigenstates of the fermion fields. Such flavour changing interactions should be suppressed in order to describe properly the Kaon, D and B meson phenomenology. Based on the Glashow-Weinberg criterion, it is clear that the simplest way of avoiding such transitions is to assume the existence of a symmetry that ensures the couplings of the fermions of each given quantum number (up-type and down-type quarks, charged and neutral leptons) to only one of the two Higgs doublets. Different models may be defined depending on which of these fermion fields couple to a given Higgs boson, see Table 11.13. Models of type-I are those in which all SM fermions couple to a single Higgs field. In type-II models, down-type quarks and charged leptons couple to a common Higgs field, while the up-type quarks and neutral leptons couple to the other. In models of type-III (leptonspecific), quarks couple to one of the Higgs bosons, while leptons couple to the other. Finally, in models of type-IV (flipped), uptype quarks and charged leptons couple to one of the Higgs fields while down-quarks and neutral leptons couple to the other.

Table 11.13: Higgs boson couplings to up, down and charged lepton-type $S U(2)_{L}$ singlet fermions in the four discrete types of 2 HDM models that satisfy the Glashow-Weinberg criterion.

Model	2HDM I	2HDM II	2HDM III	2HDM IV
u	Φ_{2}	Φ_{2}	Φ_{2}	Φ_{2}
d	Φ_{2}	Φ_{1}	Φ_{2}	Φ_{1}
e	Φ_{2}	Φ_{1}	Φ_{1}	Φ_{2}

The two Higgs doublet model phenomenology depends strongly on the size of the mixing angle α and therefore on the quartic couplings. For large values of $m_{A}, \sin \alpha \rightarrow-\cos \beta, \cos \alpha \rightarrow \sin \beta$, $\cos (\beta-\alpha) \rightarrow 0$, and the lightest $C P$-even Higgs boson h behaves as the SM Higgs boson. The same behaviour is obtained if the quartic couplings are such that $\mathcal{M}_{12}^{2} \sin \beta=-\left(\mathcal{M}_{11}^{2}-m_{h}^{2}\right) \cos \beta$. The latter condition represents a situation in which the couplings of h to fermions and weak gauge bosons become the same as in the SM, without decoupling the rest of the non-standard scalars and it is of particular interest due to the fact that the discovered Higgs boson has SM-like properties. This situation will be referred to as alignment, as in the MSSM case.

In analogy to the effects of $C P$ violation in the SUSY 2HDM, some parameters of the Higgs potential can be complex and one has a model that is explicitly $C P$ violating. The three neutral mass eigenstates mixed with each other and the Higgs phenomenology is analogous to the one described for the SUSY case above, with the caveat that when considering the neutral Higgs boson couplings to the scalar and pseudoscalar fermion bilinear densities, the proper weight should be considered for the respective 2 HDM 's.

In type-II Higgs doublet models, at large values of $\tan \beta$ and moderate values of m_{A}, the non-standard Higgs bosons H, A and $H^{ \pm}$couple strongly to bottom quarks and τ leptons. Hence the decay modes of the non-standard Higgs bosons tend to be dominated by the b-quark and τ-lepton modes, including top quarks or neutrinos in the case of the charged Higgs boson. However, for large and negative values of λ_{4}, the charged Higgs boson mass may be sufficiently heavy to allow on-shell decays $H^{ \pm} \rightarrow W^{ \pm}+(H, A)$, via a trilinear coupling

$$
\begin{equation*}
g_{H^{ \pm} W \mp H, A} \simeq \frac{M_{W}}{v} \sin (\beta-\alpha)\left(p_{H^{+}}-p_{H, A}\right), \tag{11.55}
\end{equation*}
$$

where $p_{H^{+}}$and $p_{H, A}$ are the charged and neutral scalar Higgs boson momenta pointing into the vertex. On the other hand, for large and positive values of λ_{5}, the above charged Higgs boson decay into a $W^{ \pm}$and the $C P$-odd Higgs boson may be allowed, but the heavy Higgs boson H may be sufficiently heavy to decay into a $C P$-odd Higgs boson and an on-shell $Z, H \rightarrow Z+A$, via

$$
\begin{equation*}
g_{H Z A} \simeq \frac{M_{Z}}{v} \sin (\beta-\alpha)\left(p_{H}-p_{A}\right) . \tag{11.56}
\end{equation*}
$$

The decay $H^{ \pm} \rightarrow W^{ \pm}+H$, on the other hand may be allowed only if $\lambda_{4}<-\lambda_{5}$. The couplings controlling all the above decay modes are proportional to $\sin (\beta-\alpha)$ and therefore they are unsuppressed in the alignment limit. Moreover, these could still be the dominant decay modes at moderate values of $\tan \beta$, offering a way to evade the current bounds obtained assuming a dominant decay into b quarks or τ-leptons.

The quartic couplings are restricted by the condition of stability of the effective potential as well as by the restriction of obtaining the proper value of the lightest $C P$-even Higgs boson mass. Close to the alignment limit, the lightest $C P$-even Higgs boson mass becomes approximately independent of m_{A} and is given by

$$
\begin{align*}
m_{h}^{2} & \simeq v^{2}\left(\lambda_{1} \cos ^{4} \beta+\lambda_{2} \sin ^{4} \beta+2 \tilde{\lambda}_{3} v^{2} \cos ^{2} \beta \sin ^{2} \beta\right. \\
& \left.+4 \lambda_{6} \cos ^{3} \beta \sin \beta+4 \lambda_{7} \sin ^{3} \beta \cos \beta\right), \tag{11.57}
\end{align*}
$$

where $\tilde{\lambda}_{3}=\lambda_{3}+\lambda_{4}+\lambda_{5}$.
The stability conditions imply the positiveness of all masses, as well as the avoidance of run-away solutions to large negative
values of the fields in the scalar potential. These conditions imply

$$
\begin{align*}
& \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0, \quad \lambda_{3}+\lambda_{4}-\left|\lambda_{5}\right| \geq-\sqrt{\lambda_{1} \lambda_{2}}, \quad \lambda_{3} \geq-\sqrt{\lambda_{1} \lambda_{2}}, \\
& 2\left|\lambda_{6}+\lambda_{7}\right|<\frac{\lambda_{1}+\lambda_{2}}{2}+\tilde{\lambda}_{3}, \tag{11.58}
\end{align*}
$$

where the first four conditions are necessary and sufficient conditions in the case of $\lambda_{6}=\lambda_{7}=0$, while the last one is a necessary condition in the case all couplings are non-zero. Therefore, to obtain the conditions that allow the decays $H^{ \pm} \rightarrow W^{ \pm} H, A$ and $H \rightarrow Z A, \lambda_{3}$ should take large positive values in order to compensate for the effects of λ_{4} and λ_{5}. For more detailed discussions about 2HDM phenomenology, see for example Refs. [44, 339].

11.7.5.2 Higgs triplets

Electroweak triplet scalars are the simplest non-doublet extension of the SM that can participate in the spontaneous breakdown of $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ to $\mathrm{U}(1)_{\mathrm{em}}$. Two types of model have been developed in enough detail to make a meaningful comparison to LHC data: the Higgs triplet model (HTM) [348] and the Georgi-Machacek model (GM) [349].
The Higgs triplet model extends the SM by the addition of a complex $\mathrm{SU}(2)_{L}$ triplet scalar field Δ with hypercharge $Y=2$, and a general gauge-invariant renormalisable potential $V(\Phi, \Delta)$ for Δ and the SM Higgs doublet Φ. The components of the triplet field can be parameterised as

$$
\Delta=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\Delta^{+} & \sqrt{2} \Delta^{++} \tag{11.59}\\
v_{\Delta}+\delta+i \xi & -\Delta^{+}
\end{array}\right) .
$$

where Δ^{+}is a singly-charged field, Δ^{++}is a doubly-charged field, δ is a neutral $C P$-even scalar, ξ is a neutral $C P$-odd scalar, and v_{Δ} is the triplet VEV. The general scalar potential mixes the doublet and triplet components. After electroweak symmetry breaking there are seven physical mass eigenstates, denoted $H^{ \pm \pm}, H^{ \pm}, A$, H, and h.
A distinguishing feature of the HTM is that it violates the custodial symmetry of the SM; thus the ρ parameter deviates from 1 even at tree level. Letting x denote the ratio of triplet and doublet VEVs, the tree level expression is

$$
\begin{equation*}
\rho=\frac{1+2 x^{2}}{1+4 x^{2}} \tag{11.60}
\end{equation*}
$$

The measured value of the ρ parameter then limits the triplet VEV to be quite small, $x \lesssim 0.03$, or $v_{\Delta}<8 \mathrm{GeV}$. This constraint severely limits the role of the triplet scalar in the EWSB mechanism.
The small VEV of the Higgs triplet in the HTM is a virtue from the point of view of generating neutrino masses without the necessity for introducing right-handed neutrino fields. The gauge invariant dimension four interaction

$$
\begin{equation*}
h_{\nu_{i j}} \ell_{i}^{T} C^{-1} i \sigma_{2} \Delta \ell_{j}, \tag{11.61}
\end{equation*}
$$

where ℓ_{i} are the lepton doublets, C is the charge conjugation matrix, and $h_{\nu_{i j}}$ is a complex symmetric coupling matrix, generates a Majorana mass matrix for the neutrinos:

$$
\begin{equation*}
m_{\nu_{i j}}=\sqrt{2} h_{\nu_{i j}} v_{\Delta} . \tag{11.62}
\end{equation*}
$$

This can be combined with the usual neutrino seesaw to produce what is known as the type-II seesaw [350].
The HTM suggests the exciting possibility of measuring parameters of the neutrino mass matrix at the LHC. If the doublycharged Higgs boson is light enough and/or its couplings to $W^{+} W^{+}$are sufficiently suppressed, then its primary decay is into same-sign lepton pairs: $H^{++} \rightarrow \ell_{i}^{+} \ell_{j}^{+}$; from Eq. (11.61) and Eq. (11.62), it is apparent that these decays are in general lepton-flavor violating with branchings proportional to elements of the neutrino mass matrix [351].
Precision electroweak data constrain the mass spectrum as well as the triplet VEV of the HTM [352]. These constraints favour a spectrum where H^{++}is the lightest of the exotic bosons, and
where the mass difference between H^{+}and H^{++}is a few hundred GeV . The favoured triplet VEV is a few GeV , which also favours H^{++}decays into $W^{+} W^{+}$over same-sign dileptons.

The GM model addresses the ρ parameter constraint directly by building in custodial symmetry. Writing the complex scalar doublet of the SM as a $(2,2)$ under $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$, it is obvious that the next simplest construction respecting custodial symmetry is a scalar transforming like a $(3,3)$ [353]. These nine real degrees of freedom correspond to a complex electroweak triplet combined with a real triplet, with the scalar potential required to be invariant under $\mathrm{SU}(2)_{R}$. Under the custodial $\mathrm{SU}(2)_{L+R}$, they transform as $1 \oplus 3 \oplus 5$, with a $C P$-even neutral scalar as the custodial singlet (thus matching the SM Higgs boson), a $C P$ odd neutral scalar in the custodial triplet, and another $C P$-even neutral scalar in the custodial 5 -plet.

The scalar components can be decomposed as

$$
\Xi=\left(\begin{array}{ccc}
\chi_{3}^{*} & \xi_{1} & \chi_{1} \tag{11.63}\\
-\chi_{2}^{*} & \xi_{2} & \chi_{2} \\
\chi_{1}^{*} & -\xi_{1}^{*} & \chi_{3}
\end{array}\right)
$$

where ξ_{2} is a real scalar and the others are complex scalars. Linear combinations of these scalars account for the neutral custodial singlet, a neutral and singly-charged field making up the custodial triplet, and neutral, singly-charged, and doubly-charged fields making up the custodial 5-plet.

When combined with the usual SM doublet field Φ, the electroweak scale v is now related to the doublet and triplet VEVs by

$$
\begin{equation*}
v^{2}=v_{\Phi}^{2}+8 v_{\Xi}^{2} \tag{11.64}
\end{equation*}
$$

Note that the GM triplets by themselves are sufficient to explain electroweak symmetry breaking and the existence of a 125 GeV neutral boson along with a custodial triplet of Goldstone bosons; the complex doublet field in the GM model is required to generate fermion masses via the usual dimension four Yukawa couplings. This raises the question of whether one can rule out the possibility that the 125 GeV boson is the neutral member of a custodial 5plet rather than a custodial singlet, without invoking decays to fermions. A conclusive answer is given by observing that the ratio of the branching fractions to W versus Z bosons is completely determined by the custodial symmetry properties of the boson. For a custodial 5-plet, the ratio of the signal strength to $W W$ over that to $Z Z$ is predicted to be $1 / 4$ that of a SM Higgs boson [353], and thus already ruled out by the experimental results presented in Section 11.6.

Another interesting general feature of Higgs triplet models is that, after mixing, the SM-like neutral boson can have stronger couplings to $W W$ and $Z Z$ than predicted by the SM [354]; this is in contrast to mixing with additional doublets and singlet, which can only reduce the $W W$ and $Z Z$ couplings versus the SM. This emphasises that LHC Higgs data cannot extract model independent coupling strengths for the Higgs boson [244].

Because of the built-in custodial symmetry, the triplet VEV in the GM model can be large compared to the doublet VEV. The custodial singlet neutral boson from the triplets mixes with the neutral boson from the doublet. Two interesting special cases are (i) the triplet VEV is small and the 125 GeV boson is SMlike except for small deviations, and (ii) the 125 GeV boson is mostly the custodial singlet neutral boson from the electroweak triplets. The phenomenology of the doubly-charged and singlycharged bosons is similar to that of the HTM. The constraints on the GM model from precision electroweak data, LEP data, and current LHC data are summarised in Ref. [44].

11.7.6 Composite Higgs models

Within the SM, EWSB is posited but has no dynamical origin. Furthermore, the Higgs boson appears to be unnaturally light. A scenario that remedies these two catches is to consider the Higgs boson as a bound state of new dynamics becoming strong around the weak scale. The Higgs boson can be made significantly lighter than the other resonances of the strong sector if it appears as a pseudo-Nambu-Goldstone boson, see Refs. [11] for reviews.
11.7.6.1 Little Higgs models

The idea behind the Little Higgs boson models [355] is to identify the Higgs doublet as a (pseudo) Nambu-Goldstone boson while keeping some sizeable non-derivative interactions, in particular a largish Higgs quartic interaction. By analogy with QCD where the pions $\pi^{ \pm, 0}$ appear as Nambu-Goldstone bosons associated to the breaking of the chiral symmetry $\mathrm{SU}(2)_{\mathrm{L}} \times$ $\mathrm{SU}(2)_{\mathrm{R}} / \mathrm{SU}(2)$, switching on some interactions that break explicitly the global symmetry will generate masses for the would-be massless Nambu-Goldstone bosons of the order of $g \Lambda_{G / H} /(4 \pi)$, where g is the coupling of the symmetry breaking interaction and $\Lambda_{G / H}=4 \pi f_{G / H}$ is the dynamical scale of the global symmetry breaking G / H. In the case of the Higgs boson, the top Yukawa interaction or the gauge interactions themselves will certainly break explicitly (part of) the global symmetry since they act non-linearly on the Higgs boson. Therefore, obtaining a Higgs boson mass around 125 GeV would demand a dynamical scale $\Lambda_{G / H}$ of the order of 1 TeV , which is known to lead to too large oblique corrections. Raising the strong dynamical scale by at least one order of magnitude requires an additional selection rule to ensure that a Higgs boson mass is generated at the 2-loop level only

$$
\begin{equation*}
m_{H}^{2}=\frac{g^{2}}{16 \pi^{2}} \Lambda_{G / H}^{2} \rightarrow m_{H}^{2}=\frac{g_{1}^{2} g_{2}^{2}}{\left(16 \pi^{2}\right)^{2}} \Lambda_{G / H}^{2} \tag{11.65}
\end{equation*}
$$

The way to enforce this selection rule is through a "collective breaking" of the global symmetry:

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{G / H}+g_{1} \mathcal{L}_{1}+g_{2} \mathcal{L}_{2} \tag{11.66}
\end{equation*}
$$

Each interaction \mathcal{L}_{1} or \mathcal{L}_{2} individually preserves a subset of the global symmetry such that the Higgs boson remains an exact Nambu-Goldstone boson whenever either g_{1} or g_{2} is vanishing. A mass term for the Higgs boson can be generated only by diagrams involving simultaneously both interactions. At one-loop, such diagrams are not quadratically divergent, so the Higgs boson mass is not UV sensitive. Explicitly, the cancellation of the SM quadratic divergences is achieved by a set of new particles around the Fermi scale: gauge bosons, vector-like quarks, and extra massive scalars, which are related, by the original global symmetry, to the SM particles with the same spin. Contrary to SUSY, the cancellation of the quadratic divergences is achieved by same-spin particles. These new particles, with definite couplings to SM particles as dictated by the global symmetries of the theory, are perfect goals for the LHC.

The simplest incarnation of the collective breaking idea, the socalled littlest Higgs boson model, is based on a non-linear σ-model describing the spontaneous breaking $\mathrm{SU}(5)$ down to $\mathrm{SO}(5)$. A subgroup $\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{1} \times \mathrm{SU}(2)_{2} \times \mathrm{U}(1)_{2}$ is weakly gauged. This model contains a weak doublet, that is identified with the Higgs doublet, and a complex weak triplet whose mass is not protected by collective breaking. Other popular little Higgs models are based on different coset spaces: minimal moose $\left(\mathrm{SU}(3)^{2} / \mathrm{SU}(3)\right)$, the simplest little Higgs $\left(\mathrm{SU}(3)^{2} / \mathrm{SU}(2)^{2}\right)$, the bestest little Higgs $\left(\mathrm{SO}(6)^{2} / \mathrm{SO}(6)\right)$. For comprehensive reviews, see Ref. [356].

Generically, oblique corrections in Little Higgs models are reduced either by increasing the coupling of one of the gauge groups (in the case of product group models) or by increasing the masses of the W and Z partners, leading ultimately to a fine-tuning of the order of a few percents (see for instance Ref. [357] and references therein). The compatibility of Little Higgs models with experimental data is significantly improved when the global symmetry involves a custodial symmetry as well as a T-parity [358] under which, in analogy with R-parity in SUSY models, the SM particles are even and their partners are odd. Such Little Higgs models would therefore appear in colliders as jet(s) with missing transverse energy [359] and the ATLAS and CMS searches for squarks and gluinos (see "Supersymmetry, Part II" in this review) can be recast to obtain limits on the masses of the heavy vector-like quarks. The T-even top partner, with an expected mass below 1 TeV to cancel the top loop quadratic divergence without too much fine-tuning, would decay dominantly into a $t+Z$ pair or into a $b+W$ pair or even into $t+H$. The latest CMS and ATLAS direct searches [360] for vector-like top partners put a lower bound
around $1.1-1.3 \mathrm{TeV}$ (for various branching fraction combinations), excluding the most natural region of the parameter space of these models, i.e., imposing a fine-tuning below the percent level.

The motivation for Little Higgs models is to solve the little hierarchy problem, i.e., to push the need for new physics (responsible for the stability of the weak scale) up to around 10 TeV . Per se, Little Higgs models are effective theories valid up to their cutoff scale $\Lambda_{G / H}$. Their UV completions could either be weakly or strongly coupled.

11.7.6.2 Models of partial compositeness

Even in composite models, the Higgs boson cannot appear as a regular resonance of the strong sector without endangering the viability of the setup when confronted to data. The way out is that the Higgs boson appears as a pseudo Nambu-Goldstone boson: the new strongly coupled sector is supposed to be invariant under a global symmetry G spontaneously broken to a subgroup H at the scale f (the typical mass scale of the resonances of the strong sector is $m_{\rho} \sim g_{\rho} f$ with g_{ρ} the characteristic coupling of the strong sector). To avoid conflict with EW precision measurements, the strong interactions themselves should better not break the EW symmetry. Hence the SM gauge symmetry itself should be contained in H. See Table 11.14 for a few examples of coset spaces.

Table 11.14: Global symmetry breaking patterns and the corresponding Goldstone boson contents of the SM, the minimal composite Higgs model, the next to minimal composite Higgs model, and the minimal composite two Higgs doublet model. Note that the $\mathrm{SU}(3)$ model does not have a custodial invariance. a denotes a $C P$ odd scalar while h and H are $C P$-even scalars.

Model	Symmetry Pattern	Goldstones
SM	$\mathrm{SO}(4) / \mathrm{SO}(3)$	W_{L}, Z_{L}
-	$\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{U}(1)$	W_{L}, Z_{L}, H
MCHM	$\mathrm{SO}(5) / \mathrm{SO}(4)$	W_{L}, Z_{L}, H
NMCHM	$\mathrm{SO}(6) / \mathrm{SO}(5)$	W_{L}, Z_{L}, H, a
MC2HM	$\mathrm{SO}(6) / \mathrm{SO}(4) \times \mathrm{SO}(2)$	$W_{L}, Z_{L}, h, H, H^{ \pm}, a$

The SM (light) fermions and gauge bosons cannot be part of the strong sector itself since LEP data have already put stringent bounds on the compositeness scale of these particles far above the TeV scale. The gauge bosons couple to the strong sector by a weak gauging of a $\mathrm{SU}(2) \times \mathrm{U}(1)$ subgroup of the global symmetry G. Inspiration for the construction of such models comes from the AdS/CFT correspondence: the components of a gauge field along an extra warped space dimension can be interpreted as the Goldstone bosons resulting from the breaking of global symmetry of the strong sector. The couplings of the SM fermions to the strong sector could a priori take two different forms:
(i) a bilinear coupling of two SM fermions to a composite scalar operator, \mathcal{O}, of the form $\mathcal{L}=y \bar{q}_{L} u_{R} \mathcal{O}+$ h.c., in simple analogy with the SM Yukawa interactions. This is the way fermion masses were introduced in technicolor theories and it generically comes with severe flavour problems and calls for extended model-building gymnastics [12] to circumvent them;
(ii) a linear mass mixing with fermionic vector-like operators: $\mathcal{L}=\lambda_{L} \bar{q}_{L} \mathcal{Q}_{R}+\lambda_{R} \mathcal{U}_{L} u_{R} . \mathcal{Q}$ and \mathcal{U} are two fermionic composite operators of mass M_{Q} and M_{U}.
Being part of the composite sector, the composite fermionic operators can have a direct coupling of generic order Y_{*} to the Higgs boson. In analogy with the photon- ρ mixing in QCD, once the linear mixings are diagonalised, the physical states are a linear combination of elementary and composite fields. Effective Yukawa couplings are generated and read for instance for the up-type quark

$$
\begin{equation*}
y=Y_{*} \sin \theta_{L} \sin \theta_{R} \tag{11.67}
\end{equation*}
$$

where $\sin \theta_{i}=\lambda_{i} / \sqrt{M_{Q, U}^{2}+\lambda_{i}^{2}}, i=L, R$, measure the amount of compositeness of the SM left- and right-handed up-type quark.

If the strong sector is flavour-anarchic, i.e., if the couplings of the Higgs boson to the composite fermions does not exhibit any particular flavour structure, the relation Eq. (11.67) implies that the light fermions are mostly elementary states $\left(\sin \theta_{i} \ll 1\right)$, while the third generation quarks need to have a sizable degree of compositeness. The partial compositeness paradigm offers an appealing dynamical explanation of the hierarchies in the fermion masses. In fact, assuming the strong sector to be almost conformal above the confinement scale, the low-energy values of the mass-mixing parameters $\lambda_{L, R}$ are determined by the (constant) anomalous dimension of the composite operator they mix with. If the UV scale at which the linear mixings are generated is large, then $\mathcal{O}(1)$ differences in the anomalous dimensions can generate naturally large hierarchies in the fermion masses via renormalisation group running [361]. While the introduction of partial compositeness greatly ameliorated the flavor problem of the original composite Higgs models, nevertheless, it did not solve the issue completely, at least in the case where the strong sector is assumed to be flavouranarchic [362]. While the partial compositeness set-up naturally emerges in models built in space-times with extra dimensions, no fully realistic microscopic realisation of partial compositeness has been proposed in the literature.

Another nice aspect of the partial compositeness structure is the dynamical generation of the Higgs potential that is not arbitrary like in the SM. The Higgs boson being a pseudo-NambuGoldstone boson, its mass does not receive any contribution from the strong sector itself but it is generated at the one-loop level via the couplings of the SM particles to the strong sector since these interactions are breaking the global symmetries under which the Higgs doublet transforms non-linearly. Obtaining $v \ll f$, as required phenomenologically, requires some degree of tuning, which scales like $\xi \equiv v^{2} / f^{2}$. A mild tuning of the order of 10% $(\xi \approx 0.1)$ is typically enough to comply with electroweak precision constraints. This is an important point: in partial compositeness models, the entire Higgs potential is generated at one loop, therefore the separation between v and f can only be obtained at a price of a tuning. This marks a difference with respect to the Little Higgs models which realise a parametric hierarchy between the quartic and mass terms through the collective symmetry breaking mechanism. In fact in Little Higgs models, the quartic coupling is a tree-level effect, leading to a potential

$$
\begin{equation*}
V(H) \approx \frac{g_{\mathrm{SM}}^{2}}{16 \pi^{2}} m_{\rho}^{2} H^{2}+g_{\mathrm{SM}}^{2} H^{4} \tag{11.68}
\end{equation*}
$$

where $g_{\text {SM }}$ generically denotes the SM couplings. The minimisation condition reads $v^{2} / f^{2} \sim g_{\rho}^{2} /\left(16 \pi^{2}\right)$, therefore v is formally loop suppressed with respect to f. This is the major achievement of the Little Higgs constructions, which however comes at the price of the presence of sub- TeV vectors carrying EW quantum numbers and therefore giving rise generically to large oblique corrections to the propagators of the W and the Z gauge bosons.

After minimisation, the dynamically generated potential leads to an estimate of the Higgs boson mass as

$$
\begin{equation*}
m_{H}^{2} \approx g_{\rho}^{3} y_{t} 2 \pi^{2} v^{2} \tag{11.69}
\end{equation*}
$$

It follows that the limit $f \rightarrow \infty$, i.e., $\xi \rightarrow 0$, is a true decoupling limit: all the resonances of the strong sector become heavy but the Higgs boson whose mass is protected by the symmetries of the coset G / H. When compared to the experimentally measured Higgs boson mass, this estimate puts an upper bound on the strength of the strong interactions: $g_{\rho} \lesssim 2$. In this limit of not so large coupling, the Higgs potential receives additional contributions. In particular, the fermionic resonances in the top sector which follow from the global symmetry structure of the new physics sector can help raising the Higgs boson mass. Using some dispersion relation techniques, the mass of the Higgs is connected to the resonance masses. In the minimal $\mathrm{SO}(5) / \mathrm{SO}(4)$ model, it was shown [363] that a 125 GeV mass can be obtained if at least one of the fermionic resonances is lighter than $\sim 1.4 f$. As in SUSY scenarios, the top sector is playing a crucial role in the dynamics of EWSB and can provide the first direct signs of new physics. The direct searches for these top partners, in particular
the ones with exotic electric charges $5 / 3$, are already exploring the natural parameter spaces of these models [364].
The main physics properties of a pseudo Nambu-Goldstone Higgs boson can be captured in a model-independent way by a small number of higher-dimensional operators. Indeed, the strong dynamics at the origin of the composite Higgs boson singles out a few operators among the complete list discussed earlier in Section 11.6: these are the operators that involve extra powers of the Higgs doublets and they are therefore generically suppressed by a factor $1 / f^{2}$ as opposed to the operators that involve extra derivatives or gauge bosons that are suppressed by a factor $1 /\left(g_{\rho}^{2} f^{2}\right)$. The relevant effective Lagrangian describing a strongly interacting light Higgs boson is:

$$
\begin{align*}
\mathcal{L}_{\mathrm{SILH}}= & \frac{c_{H}}{2 f^{2}}\left(\partial_{\mu}\left(\Phi^{\dagger} \Phi\right)\right)^{2}+\frac{c_{T}}{2 f^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi\right)^{2}-\frac{c_{6} \lambda}{f^{2}}\left(\Phi^{\dagger} \Phi\right)^{3} \\
& +\left(\sum_{f} \frac{c_{f} y_{f}}{f^{2}} \Phi^{\dagger} \Phi \bar{f}_{L} \Phi f_{R}+\text { h.c. }\right) \tag{11.70}
\end{align*}
$$

Typically, these new interactions induce deviations in the Higgs boson couplings that scale like $\mathcal{O}\left(v^{2} / f^{2}\right)$. Hence the measurements of the Higgs boson couplings can be translated into some constraints on the compositeness scale, $4 \pi f$, of the Higgs boson. The peculiarity of these composite models is that, due to the Goldstone nature of the Higgs boson, the direct couplings to photons and gluons are further suppressed and generically the coupling modifiers scale like

$$
\begin{align*}
& \kappa_{W, Z, f} \sim 1+\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right), \quad \kappa_{Z \gamma} \sim \mathcal{O}\left(\frac{v^{2}}{f^{2}}\right), \tag{11.71}\\
& \kappa_{\gamma, g} \sim \mathcal{O}\left(\frac{v^{2}}{f^{2}} \times \frac{y_{t}^{2}}{g_{\rho}^{2}}\right),
\end{align*}
$$

where g_{ρ} denotes the typical coupling strength among the states of the strongly coupled sector and y_{t} is the top Yukawa coupling, the largest interaction that breaks the Goldstone symmetry. The $\kappa_{\mathrm{Z}, \gamma, g}$ coupling modifiers are not generated by the strong coupling operators of Eq. (11.70) but by some subleading form-factor operator generated by loops of heavy resonances of the strong sector. The coupling modifiers also receive additional contributions from the other resonances of the strong sector, in particular the fermionic resonances of the top sector that are required to be light to generate a 125 GeV Higgs boson mass. Some indirect information on the resonance spectrum could thus be inferred by a precise measurement of the Higgs boson coupling deviations. However, it was realised, see in particular Ref. [266], that the task is actually complicated by the fact that, in the minimal models, these top partners give a contribution to both κ_{t} (resulting from a modification of the top Yukawa coupling) and κ_{γ} and κ_{g} (resulting from new heavy particles running into the loops) and the structure of interactions is such that the net effect vanishes for inclusive quantities like $\sigma(g g \rightarrow H)$ or $\Gamma(H \rightarrow \gamma \gamma)$ as a consequence of the Higgs low energy theorem $[23,24,264]$. So, one would need to rely on differential distribution, like the Higgs boson p_{T} distribution discussed in Section 11.2.4.1, to see the top partner effects in Higgs data [365]. The off-shell channel $g g \rightarrow H^{*} \rightarrow 4 \ell$ [243] and the double Higgs boson production $g g \rightarrow H H$ [366] can also help to resolve the gluon loop and separate the top and top-partner contributions.

11.7.6.3 Minimal composite Higgs models

The minimal composite Higgs models (MCHM) are concrete examples of the partial compositeness paradigm. The Higgs doublet is described by the coset space $\mathrm{SO}(5) / \mathrm{SO}(4)$ where a subgroup $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ is weakly gauged and under which the four Goldstone bosons transform as a doublet of hypercharge 1. There is some freedom on how the global symmetry is acting on the SM fermions: in MCHM4 the quarks and leptons are embedded into spinorial representations of $\mathrm{SO}(5)$, while in MHCM5 they are part of fundamental representations (it might also be interesting phenomenologically to consider larger representations
like MCHM14 [367] with the SM fermions inside a representation of dimension 14). It is also possible to consider that fermions of different chirality and flavour are in different representations of $\mathrm{SO}(5)$, leading to a more varied phenomenology [368]. The non-linearly realised symmetry acting on the Goldstone bosons leads to general predictions of the coupling of the Higgs boson to the EW gauge bosons. For instance, it can be shown that the quadratic terms in the W and Z bosons read

$$
\begin{equation*}
m_{W}^{2}(H)\left(W_{\mu} W^{\mu}+\frac{1}{2 \cos ^{2} \theta_{W}} Z_{\mu} Z^{\mu}\right) \tag{11.72}
\end{equation*}
$$

with $m_{W}(H)=\frac{g f}{2} \sin \frac{H}{f}$. Expanding around the EW vacuum, the expression of the weak scale is $v=f \sin (\langle H\rangle / f)$. And the values of the modified Higgs boson couplings to the W and Z become:

$$
\begin{equation*}
g_{H V V}=\frac{2 m_{V}^{2}}{v} \sqrt{1-v^{2} / f^{2}}, \quad g_{H H V V}=\frac{2 m_{V}^{2}}{v^{2}}\left(1-2 v^{2} / f^{2}\right) \tag{11.73}
\end{equation*}
$$

Note that the Higgs boson couplings to gauge bosons is always suppressed compared to the SM prediction. This is a general result [369] that holds as long as the coset space is compact.

The Higgs boson couplings to the fermions depend on the representation which the SM fermions are embedded into. The most commonly used embeddings consider all fermion doublets and singlets in the same representations. While, in MCHM4 and MCHM5, the modifications of the couplings depend only on the Higgs boson compositeness scale, in MCHM14 the leading corrections depend also on the mass spectrum of the resonances [367]. This is due to the fact that more than one $\mathrm{SO}(5)$ invariant gives rise to SM fermion masses. The $\left(\kappa_{V}, \kappa_{f}\right)$ experimental fit of the Higgs boson couplings can be used to derive a lower bound on the Higgs boson compositeness scale $4 \pi f \gtrsim 9 \mathrm{TeV}$, which is less stringent than the indirect bound obtained from EW precision data, $4 \pi f \gtrsim 15 \mathrm{TeV}$ [370] but more robust and less subject on assumptions [371].

11.7.6.4 Twin Higgs models

In all composite models presented above, the particles responsible for canceling the quadratic divergences in the Higgs boson mass are charged under the SM gauge symmetries. In particular, the top partner carries color charge, implying a reasonably large minimal production cross section at the LHC. An alternative scenario, which is experimentally quite challenging and might explain the null result in various new physics searches, is the case nowadays referred to as "neutral naturalness" [13, 14], where the particles canceling the 1-loop quadratic divergences are neutral under the SM. The canonical example for such theories is the Twin Higgs model of Ref. [13]. This is an example of a pseudoGoldstone boson model with an approximate global $\mathrm{SU}(4)$ symmetry broken to $\mathrm{SU}(3)$. The Twin Higgs model is obtained by gauging the $\mathrm{SU}(2)_{A} \times \mathrm{SU}(2)_{B}$ subgroup of $\mathrm{SU}(4)$, where $\mathrm{SU}(2)_{A}$ is identified with the $\operatorname{SM~} \mathrm{SU}(2)_{L}$, while $\mathrm{SU}(2)_{B}$ is the twin $\mathrm{SU}(2)$ group. Gauging this subgroup breaks the $\mathrm{SU}(4)$ symmetry explicitly, but quadratically divergent corrections do not involve the Higgs boson when the gauge couplings of the two $\mathrm{SU}(2)$ subgroups are equal, $g_{A}=g_{B}$. The $\mathrm{SU}(4) \rightarrow \mathrm{SU}(3)$ breaking will also result in the breaking of the twin $\mathrm{SU}(2)_{B}$ group and, as a result, three of the seven Goldstone bosons will be eaten, leaving 4 Goldstone bosons corresponding to the SM Higgs doublet. In fact, imposing the Z_{2} symmetry on the full model will ensure the cancellation of all 1-loop quadratic divergences to the Higgs boson mass. Logarithmically divergent terms can, however, arise for example from gauge loops, leading to a Higgs boson mass of order $g^{2} f / 4 \pi$, which is of the order of the physical Higgs boson mass for $f \sim 1 \mathrm{TeV}$. The quadratic divergences from the top sector can be eliminated if the Z_{2} protecting the Higgs boson mass remains unbroken by the couplings that result in the top Yukawa coupling. This can be achieved by introducing top partners charged under a twin $\mathrm{SU}(3)_{C}$. In this case, the quadratic divergences are cancelled by top partners that are neutral under the SM gauge symmetries.

Twin Higgs models are low-energy effective theories valid up to a cutoff scale of order $\Lambda \sim 4 \pi f \sim 5-10 \mathrm{TeV}$, beyond which a UV
completion has to be specified. The simplest such possibility is to also make the Higgs boson composite, and to UV complete the twin Higgs model via gauge and top partners at masses of the order of a few TeV . A concrete implementation is the holographic twin Higgs model [372], which also incorporates a custodial symmetry to protect the T-parameter from large corrections. It is based on a warped extra dimensional theory with a bulk $\mathrm{SO}(8)$ gauge group, which incorporates the $\mathrm{SU}(4)$ global symmetry discussed above enlarged to contain the $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$ custodial symmetry. In addition the bulk contains either a full $\mathrm{SU}(7)$ group or an $\mathrm{SU}(3) \times \mathrm{SU}(3) \times \mathrm{U}(1) \times \mathrm{U}(1) \times Z_{2}$ subgroup of it to incorporate the QCD , its twin, and the hypercharge local symmetries. The breaking on the UV brane is to the SM symmetries and their twin symmetries, while on the IR brane $\mathrm{SO}(8) \rightarrow \mathrm{SO}(7)$, giving rise to the 7 Goldstone bosons, three of which will be again eaten by the twin W, Z. The main difference compared to ordinary composite Higgs models is that, in composite twin Higgs models, the cancellation of the one-loop quadratic divergences is achieved by the twin partners. They have a mass of order $700 \mathrm{GeV}-1 \mathrm{TeV}$ and they are uncharged under the SM gauge group. This allows the IR scale of the warped extra dimension to be raised to the multi- TeV range without reintroducing the hierarchy problem. The role of the composite partners is to UV complete the theory, rather than to cancel the one-loop quadratic divergences. For more details about the composite twin Higgs models, see Refs. [373].

11.7.7 Searches for signatures of extended Higgs sectors

The measurements described in Sections 11.3 to 11.6 have established the existence of one state of the electroweak symmetry breaking sector, compatible with a SM Higgs boson, but not that it is the only one. As was discussed above, several classes of models beyond the SM require extended Higgs sectors. The searches are typically designed to be as model-independent as possible ${ }^{8}$ and can be categorised in the classes summarised as follows:
(i) the search for an additional $C P$-even state mostly in the high mass domain decaying to vector bosons, which would correspond either to the heavy $C P$-even state in a generic 2 HDM where the light state would be the discovered Higgs boson at 125 GeV or to a generic additional singlet;
(ii) the search for a state in the high mass domain decaying to pairs of fermions, which would correspond to the $C P$-odd A or the heavy $C P$-even state H in a generic 2HDM;
(iii) the search for charged Higgs bosons, which also appear in generic 2 HDMs ;
(iv) the search for a $C P$-odd state a in the low mass region which appears in the NMSSM in a variety of final states, e.g., with one or two a bosons decaying to pairs of photons, muons, taus, and b-quarks;
(v) the search for doubly charged Higgs bosons which are expected in extensions of the Higgs sector with triplets.
Below is a concise description of the most recent searches performed at the LHC and elsewhere. A summary of these searches in terms of final states is given in Table 11.15 where the corresponding references are given for more details.

11.7.7.1 Searches for an additional CP-even state

(a) Exclusion limits from LEP

The searches for the SM Higgs boson at LEP provided an absolute lower limit of 114 GeV on its mass. These searches are also relevant for non-SM Higgs bosons. These searches were interpreted as 95% CL upper bounds on the ratio of the coupling $g_{H Z Z}$ to its SM prediction as a function of the Higgs boson mass [122, 436]. These results have an impact on MSSM benchmarks such as the low- m_{H} scenario, which is also nearly ruled out by current direct constraints and charged Higgs boson limits from LHC. These results also impact scenarios of light $C P$-even Higgs boson of the NMSSM which are constrained to project predominantly onto the

[^31]EW singlet component. Additional interest for these scenarios is due to the slight excess observed at LEP [122] at a Higgs boson mass hypothesis of approximately 98 GeV .

(b) Searches at the LHC

At the LHC, the searches for the SM Higgs boson before the 2012 discovery covered a wide range of mass hypotheses up to approximately 1 TeV . After the discovery, the SM Higgs boson searches have been reappraised to search for a heavy $C P$ even state, extending progressively the search mass range beyond 1 TeV . This state could be the heavy $C P$-even Higgs boson of a 2HDM, or a generic additional singlet. In both cases, the natural width of the additional H state can be very different from that of the SM Higgs boson. To preserve unitarity of the longitudinal vector boson scattering and the longitudinal vector boson scattering into fermion pairs, the couplings of the additional $C P$-even Higgs boson to gauge bosons and fermions should not be too large and should constrain the natural width to be smaller than that of a unique Higgs boson at high mass with couplings to fermions and gauge bosons as predicted by the SM (and provided that trilinear and quartic couplings are not too large and that no new state affects the heavy state total width). It is therefore reasonable to consider total widths for the high mass $C P$-even state smaller than the equivalent SM width. Two specific cases have been considered: (i) the SM width using the complex pole scheme $(C P S)$, and (ii) the narrow width approximation. For the sake of generality, these searches are now done as a function of the Higgs boson mass and total width.

Searches for the Higgs boson in the channels $H \rightarrow \gamma \gamma, H \rightarrow Z \gamma$, $H \rightarrow W W^{(*)}$ leptonic and semi-leptonic, and in the $H \rightarrow Z Z^{(*)}$ searches in the $4 \ell, \ell \ell q \bar{q}$ and $\ell \ell \nu \nu$ channels have also been done, but some of them are simple reinterpretations of the SM Higgs boson search in the $C P S$ scheme. References for these searches are summarised in Table 11.15.
(c) Searches for an additional resonance decaying to a pair of Higgs bosons

In addition to the rare and expected Higgs boson pair production mode, high mass $C P$-even Higgs bosons can be searched for in the resonant double Higgs boson mode. Searches for such processes, where the Higgs boson is used as a tool for searches for BSM phenomena, have been carried out in a variety of distinct modes depending on the subsequent decays of each Higgs bosons. ATLAS and CMS have searched for the $H \rightarrow h h \rightarrow b \bar{b} \tau \tau$, $b \bar{b} \gamma \gamma$, $H \rightarrow h h \rightarrow 4 b, H \rightarrow h h \rightarrow \gamma \gamma W W^{*}, H \rightarrow h h \rightarrow b b W W^{*}$, $H \rightarrow h h \rightarrow W W^{*} W W^{*}$ and $H \rightarrow h h \rightarrow b b Z Z^{*}$ final states. For mass hypotheses of an additional Higgs boson below 500 GeV , the two dominant search channels are the $b \bar{b} \gamma \gamma$ and the $b \bar{b} \tau \tau$ channels. For masses above 500 GeV , the most powerful search is with the $4 b$ final state. As illustrated in Figure 11.19, these searches provide useful limits in the low $\tan \beta$ and high mass domain. The list of references for these searches is given in Table 11.15.
(d) Searches for an additional state with the presence of the Higgs boson
In the post-discovery era, analyses searching for additional Higgs bosons need to take into account the presence of the 125 GeV Higgs boson. For searches with sufficiently high mass resolution to disentangle the additional states which are not degenerate in mass, the strength of the observed state and limits on the signal strength of a potential additional state can be set independently, as discussed in the next section. However, in some cases where channels do not have a sufficiently fine mass resolution to resolve states nearly degenerate in mass, specific analyses need to be designed. There are two examples of such analyses: (i) the search for an additional state in the $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channel in ATLAS, and (ii) the search for nearly degenerate states in the $H \rightarrow \gamma \gamma$ channel with the CMS detector.

In the $H \rightarrow W W^{(*)} \rightarrow \ell \nu \ell \nu$ channel, the search for an additional state is done using a boosted decision tree combining several discriminating kinematic characteristics to separate both the signal from the background and a high mass signal H from the lower mass state h [437]. A simultaneous fit of the two states h

Table 11.15: Summary of references to the searches for additional states from extended Higgs sectors. (BBr) denotes the BaBar experiment and (TeV), the Tevatron experiments. Results using the full Run 2 dataset are indicated by ($*$). V denotes either the W or the Z boson. Only Run 2 searches references are indicated except when searches have been carried out using Run 1 data only. References for Run 1 searches are available in Ref. [123].

	ATLAS	CMS	Other experiments
$C P$-even H			
$\overline{H \rightarrow \gamma \gamma}$	[374]	[375]	-
$H \rightarrow \gamma \gamma$ (low mass)	[374]	[376]	-
$H \rightarrow Z \gamma$	[176]	[377]	-
$H \rightarrow Z Z \rightarrow 4 \ell$	[378]	[379]	-
$H \rightarrow Z Z \rightarrow \ell \ell \nu \nu$	[378]	[380]	-
$H \rightarrow Z Z \rightarrow \ell \ell q \bar{q}$	[381]	[382]	-
$H \rightarrow Z Z \rightarrow \nu \nu q \bar{q}$	[381]	-	-
$H \rightarrow W W \rightarrow \ell \nu \ell \nu$	[383]	* [384]	-
$H \rightarrow W W \rightarrow \ell \nu q \overline{q^{\prime}}$	[385]	[384]	-
$H \rightarrow V V \rightarrow q \overline{q^{\prime}} q \overline{q^{\prime}}(J J)$	[386, 387]	-	-
$H \rightarrow V V$ combination	[388]	-	-
$\begin{aligned} & H \rightarrow h h \rightarrow b \bar{b} \tau \tau, b \bar{b} \gamma \gamma, 4 b, \\ & \gamma \gamma W W^{*}, b b W W^{*}, W W^{*} W W^{*}, b b Z Z^{*} \end{aligned}$	* [389, 390]	[391-393]	-
$\overline{C P}$-odd A (and/or $C P$-even H)			
$H, A \rightarrow \tau^{+} \tau^{-}$	* [394]	* [395]	$\begin{array}{r} {[396,397](\mathrm{TeV})} \\ {[398](\mathrm{LHCb})} \end{array}$
$A \rightarrow \tau^{+} \tau^{-}$(low mass)	-	[399]	- -
$H, A \rightarrow \mu^{+} \mu^{-}$	[400]	[401]	-
$H \rightarrow \mu \tau, e \tau$ LFV		[402]	-
bj $\mu^{+} \mu^{-}$(low $\mu^{+} \mu^{-}$mass)	* [403]	[404]	-
$H, A \rightarrow t \bar{t}$	* [387, 405]	[406]	
$H, A \rightarrow b \bar{b}$	[407]	[408]	[409, 410] (TeV)
$A \rightarrow h V \rightarrow b \bar{b} q \overline{q^{\prime}}, b \bar{b} \ell \nu, b \bar{b} \ell \ell, \ell \ell \tau \tau, \nu \bar{\nu} b \bar{b}$	* [411]	[392, 412]	
$H \rightarrow Z A \rightarrow b \bar{b} \ell^{+} \ell^{-}$	-	[413]	-
Charged $H^{ \pm}$			
$H^{ \pm} \rightarrow \tau^{ \pm} \nu$	* [414, 415]	* [416]	-
$H^{ \pm} \rightarrow c s$	[417]	[418]	-
$H^{ \pm} \rightarrow t b$	* [419]	[420]	-
$H^{ \pm} \rightarrow W^{ \pm} Z$	[421]	* [422]	-
$H^{ \pm} \rightarrow W^{ \pm} A$	-	* [423]	-
$H^{ \pm} \rightarrow c b$	-	* [424]	-
$\overline{C P}$-odd NMSSM a			
$a \rightarrow \mu^{+} \mu^{-}$	[425]	* [426]	- -
$\begin{aligned} & h \rightarrow a a \rightarrow 4 \mu, 4 \tau, 2 \mu 2 \tau, 4 \gamma \\ & a a \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} \end{aligned}$	[427]	* [4280]	[429] (TeV)
$b b \mu \mu, b b \tau \tau$			[431] (LEP)
$\Upsilon_{1 s, 3 s} \rightarrow a \gamma$	-	-	[432, 433] (BBr)
Doubly charged $H^{ \pm \pm}$	* [434]	* [435]	-

and H is then made to test the presence of an additional state. In this case, the usual null hypothesis of background includes the SM signal.

The CMS search for nearly degenerate mass states decaying to a pair of photons [438] is more generic and could for instance apply to $C P$-odd Higgs bosons as well. It consists of a fit to the diphoton mass spectrum using two nearly degenerate mass templates.

(e) Type I 2HDM and fermiophobia

The measurements of coupling properties of the 125 GeV Higgs boson directly establish its couplings to fermions. However, the presence of an additional fermiophobic state, as predicted by Type I 2HDMs, is not excluded. Prior to the discovery, ATLAS and CMS have performed searches for a fermiophobic Higgs boson, i.e., produced through couplings with vector bosons only (VBF and $V H$) and decaying in two photons. CMS has further combined these results with searches in the $W^{+} W^{-}$and $Z Z$ channels, assuming fermiophobic production and decay. This way, CMS excluded a fermiophobic Higgs boson in the range 110 GeV $<m_{H}<188 \mathrm{GeV}$ at the 95% CL. References for these Run 1 measurements can be found in Ref. [123]
11.7.7.2 Searches for additional neutral states $(\phi \equiv h, H, A)$ decaying to fermions
(a) Exclusion limits from LEP

In $e^{+} e^{-}$collisions, around the centre-of-mass energies reached by LEP, the main production mechanisms of the neutral MSSM Higgs bosons were the Higgs-strahlung processes $e^{+} e^{-} \rightarrow h Z$, $H Z$ and the pair production processes $e^{+} e^{-} \rightarrow h A, H A$, while the vector boson fusion processes played a marginal role. Higgs boson decays to $b \bar{b}$ and $\tau^{+} \tau^{-}$were used in these searches.

The searches and limits from the four LEP experiments are described in Refs. [439]. The combined LEP data did not contain any excess of events which would imply the production of a Higgs boson. Combined limits were derived [436]. For $m_{A} \gg M_{Z}$, the limit on m_{h} is nearly that of the SM searches, as $\sin ^{2}(\beta-\alpha) \approx$ 1. For high values of $\tan \beta$ and low $m_{A}\left(m_{A} \leq m_{h}^{\max }\right)$, the $e^{+} e^{-} \rightarrow h A$ searches become the most important, and the lightest Higgs boson h is non SM-like. In this region, the 95% CL mass bounds are $m_{h}>92.8 \mathrm{GeV}$ and $m_{A}>93.4 \mathrm{GeV}$. In the $m_{h}^{\max }$ scenario [440], values of $\tan \beta$ from 0.7 to 2.0 are excluded taking $m_{t}=174.3 \mathrm{GeV}$, while a much larger $\tan \beta$ region is excluded for other benchmark scenarios such as the no-mixing one.

A flavour-independent limit for Higgs bosons in the Higgsstrahlung process at LEP has also been set at 112 GeV [441].
Neutral Higgs bosons may also be produced by Yukawa processes $e^{+} e^{-} \rightarrow f \bar{f} \phi$, where the Higgs particle $\phi \equiv h, H, A$, is radiated off a massive fermion ($f \equiv b$ or $\tau^{ \pm}$). These processes can be dominant at low masses, and whenever the $e^{+} e^{-} \rightarrow h Z$ and $h A$ processes are suppressed. The corresponding ratios of
the $f \bar{f} h$ and $f \bar{f} A$ couplings to the SM coupling are $-\sin \alpha / \cos \beta$ and $\tan \beta$, respectively. The LEP data have been used to search for $b \bar{b} b \bar{b}, b \bar{b} \tau^{+} \tau^{-}$, and $\tau^{+} \tau^{-} \tau^{+} \tau^{-}$final states [442]. Regions of low mass and high enhancement factors are excluded by these searches.

The searches for the Higgs boson at LEP also included the case where it does not predominantly decay to a pair of b quarks. All four collaborations conducted dedicated searches for the Higgs boson with reduced model dependence, assuming it is produced via the Higgs-strahlung process, and not addressing its flavour of decay, a lower limit on the Higgs boson mass of 112.9 GeV is set by combining the data of all four experiments [441].

Using an effective Lagrangian approach and combining results sensitive to the $h \gamma \gamma, h Z \gamma$ and $h Z Z$ couplings, an interpretation of several searches for the Higgs boson was made and set a lower limit of 106.7 GeV on the mass of a Higgs boson that can couple anomalously to photons [441].

(b) Searches at the Tevatron and the LHC

The best sensitivity is in the regime with low to moderate m_{A} and with large $\tan \beta$ which enhances the couplings of the Higgs bosons to down-type fermions. The corresponding limits on the Higgs boson production cross section times the branching ratio of the Higgs boson into down-type fermions can be interpreted in MSSM benchmark scenarios [443]. If $\phi=A, H$ for $m_{A}>m_{h}^{\max }$, and $\phi=A, h$ for $m_{A}<m_{h}^{\max }$, the most promising channels at the Tevatron are the inclusive $p \bar{p} \rightarrow \phi \rightarrow \tau^{+} \tau^{-}$process, with contributions from both $g g \rightarrow \phi$ and $b \bar{b} \phi$ production, and $b \bar{b} \phi, \phi \rightarrow \tau^{+} \tau^{-}$or $\phi \rightarrow b \bar{b}$, with $b \tau \tau$ or three tagged b-jets in the final state, respectively. Although the Higgs boson production via gluon fusion has a higher cross section in general than via associated production, it cannot be used to study the $\phi \rightarrow b \bar{b}$ decay mode since the signal is overwhelmed by the QCD background.

CDF and D0 have searched for neutral Higgs bosons produced in association with bottom quarks and which decay into $b \bar{b}$ [409, 410], or into $\tau^{+} \tau^{-}[396,397]$. The most recent searches in the $b \bar{b} \phi$ channel with $\phi \rightarrow b \bar{b}$ analyse approximately $2.6 \mathrm{fb}^{-1}$ (CDF) and $5.2 \mathrm{fb}^{-1}$ (D0) of data, seeking events with at least three b-tagged jets. The cross section is defined such that at least one b quark not from ϕ decay is required to have $p_{T}>20 \mathrm{GeV}$ and $|\eta|<5$. The invariant mass of the two leading jets as well as b-tagging variables are used to discriminate the signal from the backgrounds. The QCD background rates and shapes are inferred from data control samples, in particular, the sample with two b-tagged jets and a third, untagged jet. Separate-signal hypotheses are tested and limits are placed on $\sigma(p \bar{p} \rightarrow b \bar{b} \phi) \times \operatorname{BR}(\phi \rightarrow b \bar{b})$. A local excess of approximately 2.5σ significance has been observed in the mass range of $130-160 \mathrm{GeV}$, but D0's search is more sensitive and sets stronger limits. The D0 result had a $\mathcal{O}(2 \sigma)$ local upward fluctuation in the 110 to 125 GeV mass range. These results have been superseded by the LHC searches and the excess seen by D0 has not been confirmed elsewhere.

A substantially larger sensitivity in the search for the $\phi \rightarrow$ $\tau^{+} \tau^{-}$is obtained with the ATLAS and CMS analyses. The higher centre-of-mass energy reached at the Run 2 brings a substantial, though not excessively large, increase in sensitivity due to the intermediate masses probed. Both ATLAS and CMS have reported the result of their searches in this important channel with the full 2016 dataset. The searches are performed in categories of the decays of the two tau leptons: $e \tau_{\text {had }}, \mu \tau_{\text {had }}, e \mu$, and $\mu \mu$, where $\tau_{\text {had }}$ denotes a tau lepton which decays to one or more hadrons plus a tau neutrino, e denotes $\tau \rightarrow e \nu \nu$, and μ denotes $\tau \rightarrow \mu \nu \nu$. The dominant background comes from $Z \rightarrow \tau^{+} \tau^{-}$decays, although $t \bar{t}$, $W+$ jets and $Z+$ jets events contribute as well. Separating events into categories based on the number of b-tagged jets improves the sensitivity in the MSSM. The $b \bar{b}$ annihilation process and radiation of a Higgs boson from a b quark gives rise to events in which the Higgs boson is accompanied by a $b \bar{b}$ pair in the final state. Requiring the presence of one or more b-jets reduces the background from $Z+$ jets. Data control samples are used to constrain background rates. The rates for jets to be identified as a hadronically decaying tau lepton are measured in dijet samples, and $W+$ jets samples provide a measurement of the rate of
events that, with a fake hadronic tau, can pass the signal selection requirements. Lepton fake rates are measured using samples of isolated lepton candidates and same-sign lepton candidates. Constraints from the ATLAS searches are shown in Fig. 11.19 (left) in the hMSSM approximation defined in Ref. [314]. The neutral Higgs boson searches consider the contributions of both the $C P$ odd and $C P$-even neutral Higgs bosons with enhanced couplings to bottom quarks, similarly to was done for the Tevatron results. In Fig. 11.19, decays of the charged Higgs boson into $\tau \nu$ and decays of the heavy Higgs boson into a pair of SM-like Higgs bosons or gauge bosons, or decays of A into $h Z$ are also being constrained. In addition, decays of the neutral Higgs bosons into muon pairs are also being explored. In the $m_{h}-\bmod +$ scenario the region of $\tan \beta$ lower than 5 does not allow for a Higgs boson mass m_{h} close to 125 GeV . For the hMSSM scenario, instead, the SM-like Higgs boson mass is fixed as an input and hence the requirement that it is close to 125 GeV is always fulfilled, although this may imply other limitations as discussed in Section 11.7.1.1.

A search for $\phi \rightarrow \mu^{+} \mu^{-}$has also been performed by ATLAS [400] and CMS [401].

Finally searches for a resonance decaying to a top quark pair were done by ATLAS [405, 444] and CMS [406, 445]. These searches were interpreted as searches for scalar resonances by ATLAS [405], however, an important component of these searches is an accurate treatment of the interference effects between the signal and the continuum background. These effects can yield a dip and peak structure instead of a simple peak [311]. ATLAS has performed a search for a high mass state decaying to a pair of top quarks taking into account the deformation in mass shape of the signal in the presence of the continuum background [446].

The LHC has the potential to explore a broad range of SUSY parameter space through the search for non-SM-like Higgs bosons. As illustrated in Fig. 11.19, the parameter space corresponding to large $\tan \beta$ values and large masses of the A boson are covered mostly by the searches in the $A, H \rightarrow \tau^{+} \tau^{-}$channel. A projection of the combined sensitivity of ATLAS and CMS at the HL-LHC has been performed in Ref. [104], showing that, compared to the current sensitivity, the full HL-LHC luminosity can expand the exclusion domain by nearly 1 TeV . In the low $\tan \beta$ limit, the parameter space spanning large A boson masses is best excluded indirectly from the observed Higgs boson measurements. This is illustrated in the Mh125 scenario by the nearly horizontal exclusion which is due to the compatibility of the Higgs boson mass measurement with its prediction from radiative corrections (mostly from the stop sector). Nevertheless, Fig. 11.19 (right) shows a broad region with intermediate $\tan \beta$ and large values of m_{A} that is not accessed by current searches, and in which the most promising channel is the very difficult search for $t \bar{t}$ decays with its aforementioned intricacies. In this region of parameter space, it is possible that only the SM-like Higgs boson can be within the LHC's reach. If no other state of the EWSB sector than the 125 GeV state is discovered, it may be challenging to determine only from the Higgs sector whether there is a SUSY extension of the SM in nature.

11.7.7.3 Searches for a CP-odd state decaying to $h Z$

Similarly to the search for a $C P$-even high mass Higgs boson decaying to a pair of Higgs bosons, the search for a $C P$-odd states decaying to $h Z$ was carried out at the LHC by ATLAS and CMS in various channels:
(i) $(Z \rightarrow \ell \ell)(h \rightarrow b \bar{b})$,
(ii) $(Z \rightarrow \nu \nu)(h \rightarrow b \bar{b})$,
(iii) $(Z \rightarrow \ell \ell)(h \rightarrow \tau \tau)$,
(iv) and $(Z \rightarrow \ell \ell)(h \rightarrow \tau \tau)$.

The searches where the A boson decays to a pair of b quarks have been performed both in the regime where both b-jets are resolved and in the boosted regime where the two b-jets are merged in a single larger radius jet. These searches have been used to constrain the parameter space of 2 HDMs . In the MSSM, these searches place limits on small values of $\tan \beta$ for masses of A between 220 GeV and 360 GeV .

Figure 11.19: The 95% CL exclusion contours in the $\left(M_{A}, \tan \beta\right)$ parameter space for: (left) a summary of ATLAS Run 2 searches in the hMSSM and (right) the projected sensitivity for the combination of ATLAS and CMS searches in the $A, H \rightarrow \tau^{+} \tau^{-}$channel at HL-LHC and the interpretation of the constraints from the measurements of the Higgs boson couplings in the Mh125 benchmark (the projected ATLAS sensitivity in the $A, H \rightarrow \tau^{+} \tau^{-}$channel used for this projection was not optimised for high masses, when re-optimised similar sensitivities are obtained between ATLAS and CMS).

11.7.7.4 Searches for low mass states

Searches for pseudo-scalar Higgs boson at intermediate to low masses, below the Z mass (in the 25 GeV to 80 GeV mass range) have been performed by CMS both in the $\tau^{+} \tau^{-}$[447] and the $\mu^{+} \mu^{-}$[448] decay channels. A light pseudo-scalar in this mass range is excluded by current direct constraints in the MSSM but not in general 2HDMs [449]. These searches are done in the decay channels where the pseudo-scalar Higgs boson is produced in association with a pair of b-quarks and decays into a pair of taus or muons.
CMS has also reported an anomaly observed in the search for $\mu^{+} \mu^{-}$resonances produced with one jet tagged as containing a b-hadron and a forward jet in the Run 1 data. A mild excess appeared in the di-muon mass distribution at approximately 28 GeV . Another very mild excess was then also found in the 2016 Run 2 data [404]. ATLAS then performed a similar analysis with the full Run 2 dataset corresponding to an integrated luminosity of approximately $139 \mathrm{fb}^{-1}$, and no significant excess was found [403].

Searches for low mass Higgs bosons were also performed in the diphoton channel by both ATLAS and CMS [450,451] at Run 1. CMS has updated the results of this search with the full 2016 dataset [452]. A modest excess has been observed by CMS at a mass of 95.3 GeV with a local significance of 2.8σ (the corresponding global significance is 1.3σ). A slight excess was also seen by CMS in the 8 TeV data at a slightly higher mass of 97.6 GeV with a local significance of 2.0σ (1.47σ global). No significant excess has been observed in this region by ATLAS neither in the Run 1 nor Run 2 [374] data. It should, however, be noted that the ATLAS search does not reach the level of sensitivity to exclude at the 95% CL the excess seen in CMS. This mildly significant excess also coincides in mass with the excess observed at LEP and discussed in Section 11.7.7.1. It has therefore raised interest and speculations on its possible nature, see for instance Ref. [453] and references therein.

11.7.7.5 Searches for charged Higgs bosons $H^{ \pm}$

At $e^{+} e^{-}$colliders, charged Higgs bosons can be pair produced in the s-channel via γ or Z boson exchange. This process is dominant in the LEP centre-of-mass energies range, i.e., up to 209 GeV . At higher centre-of-mass energies, other processes can play an important role such as the production in top quark decays via $t \rightarrow b+H^{+}$if $m_{H^{ \pm}}<m_{t}-m_{b}$ or via the oneloop process $e^{+} e^{-} \rightarrow W^{ \pm} H^{\mp}$ [454, 455], which allows the production of a charged Higgs boson with $m_{H^{ \pm}}>\sqrt{s} / 2$, even when $H^{+} \mathrm{H}^{-}$production is kinematically forbidden. Other single charged Higgs boson production mechanisms include $t \bar{b} H^{-} / \bar{t} b H^{+}$
production [108], $\tau^{+} \nu H^{-} / \tau^{-} \bar{\nu} H^{+}$production [456], and a variety of processes in which $H^{ \pm}$is produced in association with a one or two other gauge and/or Higgs bosons [457].

At hadron colliders, charged Higgs bosons can be produced in several different modes depending on the value of its mass with respect to the top-quark mass. For light values of the charged Higgs boson mass, defined by Higgs boson masses smaller than the mass of the top quark (with experimental analyses typically considering masses up to $m_{H^{ \pm}} \leq 160 \mathrm{GeV}$), the top-quark decay $t \rightarrow H b$ is allowed and the charged Higgs boson is light enough so that topquark off-shell effects can be neglected. The cross section for the production of a light charged Higgs boson is simply given by the product of the top-pair production cross section and the branching ratio of a top quark into a charged Higgs boson. The top-pair production cross section is known up to NNLO in perturbative QCD [458], and relevant QCD and SUSY-QCD including NLO corrections to the branching ratio for $t \rightarrow H^{+} b$ have been computed in the literature, see Refs. [459-461] and references therein. At present, the theoretical accuracy for the production of a light charged Higgs boson is at the few percent level. For the intermediate mass range, values of $m_{H} \pm$ near m_{t}, the finite top-width effects as well as the interplay between top-quark resonant and non-resonant diagrams cannot be neglected. Hence, the full process $p p \rightarrow H^{ \pm} W^{\mp} b \bar{b}$ (with massive b-quarks) must be considered to perform a reliable perturbative calculation of the charged Higgs boson production cross section [461]. For heavy charged Higgs boson scenarios, with charged Higgs boson masses larger than the top-quark mass (typically above 180 GeV), the dominant charged Higgs boson production channel is the associated production with a top quark/antiquark and a (possibly low transverse momentum) bottom antiquark/quark. Theoretical calculation at NLO have been computed both at the inclusive and fully-differential level in the five-flavour scheme and in the four-flavour scheme, see Ref. [44] and references therein. Charged Higgs bosons can also be produced via associated production with $W^{ \pm}$bosons through $b \bar{b}$ annihilation and $g g$-fusion annihilation [462].

For charged Higgs boson production cross section predictions for the Tevatron and the LHC, see Refs. [42, 43, 310].

(a) Exclusion limits from LEP

Charged Higgs bosons have been searched for at LEP, where the combined data of the four experiments, ALEPH, DELPHI, L3, and OPAL, were sensitive to masses of up to about 90 GeV [436] in two decay channels, $\tau \nu$ and $c \bar{s}$. The combined LEP data exclude, at 95% CL, charged Higgs bosons with mass below 80 GeV (Type II scenario) or 72.5 GeV (Type I scenario) [463].

(b) Exclusion limits from Tevatron

Compared to the mass domain covered by LEP searches, the Tevatron covered a complementary range of charged Higgs boson masses. CDF and D0 have also searched for charged Higgs bosons in top quark decays with subsequent decays to $\tau \nu$ or to $c \bar{s}$ [464]. For the $H^{+} \rightarrow c \bar{s}$ channel, the limits on $\operatorname{BR}\left(t \rightarrow H^{+} b\right)$ from CDF and D 0 are $\approx 20 \%$ in the mass range $90 \mathrm{GeV}<m_{H^{+}}<160 \mathrm{GeV}$ and assuming a branching fraction of 100% in this specific final state. $H^{+} \rightarrow \tau^{+} \nu_{\tau}$ channel, D0's limits on $\operatorname{BR}\left(t \rightarrow H^{+} b\right)$ are also $\approx 20 \%$ in the same mass range and assuming a branching fraction of 100% in this final state. These limits are valid in general 2 HDMs , and they have also been interpreted in terms of the MSSM [464].

(c) Exclusion limits from LHC

Similarly to the Tevatron, at the LHC, light charged Higgs bosons can be searched for in the decays of top quarks. The main initial production mode for light charged Higgs bosons $\left(m_{H^{ \pm}}<m_{t}-m_{b}\right)$ is top pair production. The subsequent decay modes of the charged Higgs boson for these searches are $\tau \nu$ and $c \bar{s}$. More recently, ATLAS and CMS have also searched for higher mass charged Higgs bosons $\left(m_{H^{ \pm}}>m_{t}+m_{b}\right)$ in $H^{+} \rightarrow t \bar{b}$. The main production modes are the associated production of a charged Higgs boson in association with a top and a bottom quark or in association with a top quark only.

The decay $H^{+} \rightarrow \tau^{+} \nu_{\tau}$ is searched typically in three final state topologies:
(i) lepton+jets: with $t \bar{t} \rightarrow \bar{b} W H^{+} \rightarrow b \bar{b}\left(q \bar{q}^{\prime}\right)\left(\tau_{\text {lep }} \nu\right)$, i.e., the W boson decays hadronically and the tau decays into an electron or a muon, with two neutrinos;
(ii) τ +lepton: with $t \bar{t} \rightarrow \bar{b} W H^{+} \rightarrow b \bar{b}(l \nu)\left(\tau_{\text {had }} \nu\right)$, i.e., the W boson decays leptonically (with $\ell=e, \mu$) and the tau decays hadronically;
(iii) $\tau+$ jets: $t \bar{t} \rightarrow \bar{b} W H^{+} \rightarrow b \bar{b}\left(q \bar{q}^{\prime}\right)\left(\tau_{\text {had }} \nu\right)$, i.e., both the W boson and the τ decay hadronically.

CMS has also searched for the charged Higgs boson in the decay products of top quark pairs: $t \bar{t} \rightarrow H^{ \pm} W^{\mp} b \bar{b}$ and $t \bar{t} \rightarrow H^{+} H^{-} b \bar{b}$ as well. Three types of final states with large missing transverse energy and jets originating from b-quark hadronisation have been analysed: the fully-hadronic channel with a hadronically decaying tau in association with jets, the dilepton channel with a hadronically decaying tau in association with an electron or muon and the dilepton channel with an electron-muon pair. The results of the searches at the LHC are illustrated in Figure 11.19.

Both ATLAS and CMS have also searched for high mass charged Higgs bosons decaying to a top and bottom quarks. The main production mode for this search is the associated production with one top quark (5-flavour scheme) or a top quark and and bottom quark (4-flavour scheme) in the final state. The s-channel production mode where the charged Higgs boson is produced alone in the final state at tree level is also considered. This search is particularly intricate and it is sensitive to the modelling of the top pair production background produced in association with additional partons and in particular b-quarks. No excess was found and the results are expressed in terms of exclusion limits of cross section times branching fractions.

ATLAS and CMS have also searched for charged Higgs bosons in top quark decays assuming $\operatorname{BR}\left(H^{+} \rightarrow c \bar{s}\right)=100 \%$ [417, 418], and sets limits of $\approx 20 \%$ on $\operatorname{BR}\left(t \rightarrow H^{+} b\right)$ in the $90 \mathrm{GeV}<$ $m_{H^{+}}<160 \mathrm{GeV}$ mass range.

In 2 HDMs , the decay of the charged Higgs boson to a W and a Z boson is allowed only at loop level and is therefore suppressed. However the $H^{ \pm} \rightarrow W^{ \pm} Z$ decay channel is allowed in Higgs triplet models. ATLAS [421] has searched for such decays, requiring that the charged Higgs boson is produced through the fusion of vector bosons. No excess with respect to the SM backgrounds has been observed in this channel, and the results are interpreted in the Georgi-Machacek model [349] discussed in Section 11.7.5.2.

At the LHC, various other channels still remain to be explored, in particular searches involving additional neutral scalars in particular in the $W H, W A$ channels (A is the pseudo-scalar MSSM

Higgs boson), and in the $W a$ channel (a is the light $C P$-odd scalars of the NMSSM).
11.7.7.6 Interpretation of the measurements of the coupling properties of the Higgs boson

The 125 GeV Higgs boson being part of any hypothetically extended EWSB sector, it can be used through the compatibility of its measured couplings and mass with those predicted in specific models to provide constraints on these specific models parameters.
As discussed in Section 11.7.1.1, the mass of the Higgs boson limits drastically the MSSM parameter space and can be used to set limits on specific MSSM benchmarks. This is the case for the Mh125 scenario as illustrated in Figure 11.18 and in Figure 11.19, corresponding approximately to a lower limit on $\tan \beta$ in this model [104].

The measurements of the Higgs boson couplings, discussed in Section 11.6, can be interpreted in the framework of a constrained model where the couplings of the Higgs boson to vector bosons, up-type quarks, down-type quarks and leptons, are varied. In 2 HDMs , these couplings are functions of the mixing angle α between the observed Higgs boson and the heavy CP-even neutral scalar, and of the ratio of the vacuum expectation values of the two doublets, $\tan \beta$. In the case of the MSSM, the two parameters are the A boson mass and $\tan \beta$ (the sole two parameters needed to describe the MSSM Higgs sector at tree level). The coupling measurements have been interpreted both by ATLAS [213] and CMS [214] in specific MSSM benchmarks and in 2HDMs. The exclusion contour in the hMSSM for the ATLAS combination [213] is illustrated in Figure 11.19.

11.7.7.7 Searches for a light CP-odd Higgs boson

A light pseudo-scalar boson a is present in any two Higgs doublet model enhanced with an additional singlet field. A prominent example is the NMSSM. The theoretical motivations for singlet extensions of the MSSM are discussed in Section 11.7.2. There is also a variety of other models with light additional spin-0 bosons such as two Higgs doublet models with a scalar, Little Higgs models or light scalar mediator to a dark sector.

In the framework of the NMSSM, the searches now focus on the low a mass region for several reasons:
(i) in the NMSSM, the light pseudo-scalar a boson can, as a pseudo-Goldstone boson, be a natural candidate for an axion;
(ii) scenarios where $m_{a}>2 m_{b}$ and a $C P$-even state h decaying to a pair of $a\left(m_{h}>2 m_{a}\right)$ are excluded by direct searches at LEP in the four b 's channel [429, 436, 465];
(iii) in the pre-discovery era, LEP limits on a $C P$-even Higgs boson resulted in fine tuning MSSM constraints [466] which could be evaded through non standard decays of the Higgs boson to $a a$;
(iv) in the NMSSM, a $C P$-odd a boson with a mass in the range $9.2-12 \mathrm{GeV}$ can also account for the difference observed between the measured anomalous muon magnetic moment and its prediction [467].

The benchmark scenarios have also changed in the light of the Higgs boson discovery. The 125 GeV state could be the lightest or the next-to-lightest of the three $C P$-even states of the NMSSM. Light pseudo-scalar scenarios are still very interesting in particular for the potential axion candidate. There are three main types of direct searches for the light a boson:
(i) for masses below the Υ resonance, the search is for radiative decays $\Upsilon \rightarrow a \gamma$ at B-factories;
(ii) the inclusive search in high energy $p p$ collisions at the LHC;
(iii) the search for decays of the observed $C P$-even Higgs h boson into a pair of a bosons.

Radiative decays $\Upsilon \rightarrow a \gamma$ have been searched for in various colliders, the most recent results are searches for radiative decays of the $\Upsilon(1 s)$ to $a \gamma$ with a subsequent decay of the a boson to a pair of taus at CLEO [468], and the radiative decays of the $\Upsilon(1 s, 2 s, 3 s)$ to $a \gamma$ with subsequent decays to a pair of muons or taus by BaBar [432, 433].

Direct inclusive searches for the light pseudo scalar a boson were performed in the $a \rightarrow \mu \mu$ channel at the Tevatron by D 0 [429] and by ATLAS [425], CMS [426], and LHCb [151] at the LHC.

Finally, searches for the decays of the Higgs boson to a pair of a bosons where performed with subsequent decays to four photons, in the four muons final state, in the two muons and two taus final state, and in the four taus final state.

No significant excess in the searches for a light $C P$-odd a boson was found and limits on the production times branching fractions of the a boson have been set.

References for all these searches are summarised in Table 11.15.

11.7.7.8 Searches for doubly charged Higgs bosons $H^{ \pm \pm}$

As discussed in Section 11.7.5, the generation of small neutrino masses via the standard EWSB mechanism described in Section 11.2 requires unnaturally small Yukawa couplings, provided that neutrinos are Dirac-type fermions. A Majorana mass term with a see-saw mechanism for neutrinos, would allow for naturally small masses and would also yield a framework for the appealing scenario of leptogenesis. However, within the SM, Majorana mass terms correspond to (non-renomalizable) dimension-5 operators. Such effective interactions can be generated via renormalisable interactions with an electroweak triplet of complex scalar fields (corresponding to a type-II see-saw mechanism). Other models such as the Zee-Babu model, with the introduction of two $\mathrm{SU}(2)_{L}$ singlets, also generate Majorana mass terms. The signature of such models would be the presence of doubly charged Higgs bosons $H^{ \pm \pm}$.

The main production mechanisms of $H^{ \pm \pm}$bosons at hadron colliders are the pair production in the s-channel through the exchange of a Z boson or a photon and the associated production with a charged Higgs boson through the exchange of a W boson. Various searches for doubly charged Higgs bosons have been performed by ATLAS and CMS at Run 1 [469] and Run 2 [434, 435]. Typically, these searches aim at low values of the Higgs triplet vacuum expectation for which the doubly charged Higgs boson will decay mostly to leptons (for high values, the decay to W bosons will become predominant). These searches assume that the coupling to W bosons is negligible and that the main production mode is through the Drell-Yan process.
11.7.7.9 Searches for non-standard production processes of the Higgs boson

The discovery of the Higgs boson has also allowed for searches of BSM processes involving standard decays of the Higgs boson. One example directly pertaining to the search for additional states of the EWSB sector is the search for Higgs bosons in the cascade decay of a heavy $C P$-even Higgs boson decaying to charged Higgs boson and a W boson, and the charged Higgs boson subsequently decaying to H and another W boson. This search has been performed by ATLAS in $b \bar{b}$ decays of the 125 GeV Higgs boson [470].

11.7.7.10 Outlook on searches for additional states

The LHC program of searches for additional states covers a large variety of decay and production channels. Since the Higgs boson discovery, many new channels have been explored at the LHC, e.g., the searches for additional states decaying into $h h$ or $V h$ or $Z A$. The search for charged Higgs bosons has been extended to include the $W Z, W A$ and the very difficult $t \bar{b}$ decay channel.

11.8 Summary and outlook

Summary- The discovery of the Higgs boson is a major milestone in the history of particle physics as well as an extraordinary achievement of the LHC machine and the ATLAS and CMS experiments. Seven years after the discovery, substantial progress in the field of Higgs boson physics has been accomplished and a significant number of measurements probing the nature of this unique particle have been made. They are revealing an increasingly precise profile of the Higgs boson.

The LHC has now concluded its Run 2, delivering a dataset of $13 \mathrm{TeV} p p$ collisions corresponding to an integrated luminosity of approximately $140 \mathrm{fb}^{-1}$ of data collected by ATLAS and CMS. With the substantial increase in production rates at the higher
center-of-mass energy and the larger datasets, new landmark results in Higgs physics have been achieved.
Three new results of fundamental importance have been achieved with partial Run 2 datasets by ATLAS and CMS independently: (i) the clear and unambiguous observation of the Higgs boson decay to taus; (ii) the clear and unambiguous observation of the Higgs boson decay to a pair of b quarks; (iii) the clear and unambiguous observation of the production of the Higgs boson through the $t \bar{t} H$ process. These results provide direct evidence for the Yukawa coupling of the Higgs boson to fermions of the third generation: taus, bottom quarks and top quarks, at rates compatible with those expected in the SM. These, and all other experimental measurements, are consistent with the EWSB mechanism of the SM.

New theoretical calculations and developments in Monte-Carlo simulation pertaining to Higgs physics are still occurring at a rapid pace. For example, the theoretical prediction for the dominant gluon fusion production mode now includes the latest N3LO result, which is twice as precise as previous N2LO calculations. With these improvements in the state-of-the-art theory predictions and the increase in luminosity and center-of-mass energy, Higgs physics has definitively entered a precision era. Its impact can already be seen on the latest Run 2 combined measurements of the Higgs boson couplings (see Section 11.6).

Since the discovery of the Higgs boson, new ideas have emerged to probe its rare decays and production modes, as well as to indirectly measure the Higgs boson width through the study of its off-shell couplings, or via on-shell interference effects. The Higgs boson has now become part of the standard toolkit in searches for new physics.

Many extensions of the SM at higher energies call for an enlargement of the EWSB sector. Hence, direct searches for additional scalar states can provide valuable insights on the dynamics of the EWSB mechanism. The ATLAS and CMS experiments have searched for additional Higgs bosons in the Run 2 data, and have imposed constraints in broad ranges of mass and couplings for various scenarios with an extended Higgs sector.

The landscape of Higgs physics has been extended extraordinarily since its discovery. The current dataset is approximately only five percent of the total dataset foreseen for the High Luminosity phase of the LHC project. The current precisions on the measurements of the couplings of the Higgs boson to gauge bosons and third generation fermions are typically of the order of $10-20 \%$. The uncertainty on the Higgs boson coupling to the muon is approximately 100%, and the upper limits on the branching fraction to new invisible or undetected particles are approximately 20%. The sensitivity to the Higgs boson self-coupling has not reached the SM value yet and there is no information on how the Higgs field acquired its VEV in the early times of the Universe. This situation allows for new challenges to ultimately increase further the reach in precision and it also widens the possibilities of unveiling the true nature and the dynamics of the electroweak symmetry breaking.

Outlook- The unitarisation of the vector boson scattering (VBS) amplitudes, dominated at high energies by their longitudinal polarisation, has been the basis of the no lose theorem at the LHC, and was a determining consideration in the building of the accelerator and detectors. It motivated the existence of a Higgs boson or the observability of manifestations of strong dynamics at the TeV scale. Now that a Higgs boson has been found and its couplings to gauge bosons are consistent with the SM predictions, perturbative unitarity is preserved to a large extent with the sole exchange of the Higgs boson, and without the need for any additional states. VBS is, however, still an important channel to further investigate in order to better understand the nature of the Higgs sector and the possible completion of the SM at the TeV scale. In association with the double Higgs boson production channel by vector boson fusion, VBS could, for instance, confirm that the Higgs boson is part of a weak doublet and also establish whether it is an elementary object or a composite state that could emerge as a pseudo-Nambu-Goldstone boson from a new underlying broken symmetry.

The fermion-Higgs boson couplings are not governed by local
gauge symmetry. Thus, in addition to a new particle, the LHC has also discovered a new force, different in nature from the other fundamental interactions since it is non-universal and distinguishes between the three families of quarks and leptons. The existence of the Higgs boson embodies the problem of an unnatural cancellation among the quantum corrections to its mass if new physics is present at scales significantly higher than the EW scale. The nonobservation of additional states which could stabilise the Higgs boson mass is a challenge for natural scenarios like SUSY or models with a new strong interaction in which the Higgs boson is not a fundamental particle. This increasingly pressing paradox starts questioning the principle of naturalness.

The search for the Higgs boson has occupied the particle physics community for the last 50 years. Its discovery has shaped and sharpened the physics programs of the LHC and of prospective future accelerators [471]. With the HL-LHC, the precision will improve by a factor $5-10$ on all observables with respect to current data. Table 11.12 displays the expected sensitivities in the characterization of the Higgs boson at HL-LHC: in this table, the parameters κ_{i} specify by how much the coupling of the Higgs boson to a given particle i deviates from the SM expectation. The only channels which are expected to be limited by data statistics are the rare decays to muons and $Z \gamma$. In all other cases, the experimental systematic uncertainties are similar to the statistical uncertainties, but the dominant source of uncertainty arises from theory, and this remains the case even after assuming that, by the end of the HL-LHC run, the theory uncertainties can be reduced by a factor two compared to the current uncertainties, a hypothesis that appears realistic but still requires dedicated and concerted work [104]. For both hadron and lepton colliders, some theoretical progress is crucial to fully exploit and capitalise on the experimental data. In particular, the expected HL-LHC data together with rapid ongoing progress in theoretical calculations are defining a new era of precision Higgs boson measurements.

Acknowledgements

We would like to thank many of our colleagues for proofreading this review, for useful criticism and for their input in general: W. Altmannshofer, J. de Blas, G. Branco, J. Campbell, F. Caola, F. Cerutti, C. Csáki, R. Contino, J. Conway, N. Craig, A. David, S. Dawson, J.B. De Vivie, J. D'Hondt, G. Durieux, C. Englert, J.R. Espinosa, A. Falkowski, L. Fayard, W. Fischer, S. Forte, M. Grazzini, J. Gu, H. Haber, B. Heinemann, S. Heinemeyer, J. Hubisz, A. Korytov, B. Jäger, H. Ji, T. Junk, P. Langacker, J. Lykken, F. Maltoni, M.L. Mangano, B. Mansoulié, M. McCullough, R. Mishra, M. Mühlleitner, B. Murray, M. Neubert, A. Nisati, Y. Paul, G. Perez, G. Petrucciani, A. Pomarol, E. Pontón, R. Rattazzi, D. Rebuzzi, F. Riva, R. Salerno, E. Salvioni, N. Shah, G. Shaughnessy, M. Spira, O. Stål, A. Strumia, K. Tackmann, R. Tanaka, J. Terning, A. Vartak, C. Wagner, A. Weiler, A. Wulzer, and G. Zanderighi. We are also most grateful to the ATLAS, CDF, CMS and D0 collaborations for their help with this review.
M.C. is supported by Fermilab, that is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. C.G. is supported by the Helmholtz Association and by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 "Quantum Universe" - 390833306. V.S. is supported by the grant DE-SC0009919 of the United States Department of Energy.

References

[1] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), [arXiv:1207.7214].
[2] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), [arXiv:1207.7235].
[3] S.L. Glashow, Nucl. Phys. 20, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Elementary Particle Theory, eds.: Svartholm, Almquist and Wiksells, Stockholm, 1968; S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).
[4] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964), [,157(1964)]; P. W. Higgs, Phys. Rev. 145, 1156 (1966);
G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964), [,162(1964)].
[5] J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973), [Erratum: Phys. Rev. Lett. 31, 572 (1973)]; J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D10, 1145 (1974), [Erratum: Phys. Rev. D11, 972 (1975)]; C. H. Llewellyn Smith, Phys. Lett. 46B, 233 (1973); B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D16, 1519 (1977).
[6] K. G. Wilson, Phys. Rev. D3, 1818 (1971); G. 't Hooft, in Proc. of 1979 Cargèse Institute on Recent Developments in Gauge Theories, p. 135 Press, New York 1980; For a recent review, see G.F. Giudice, PoS EPS-HEP2013, 163 (2013).
[7] J. Wess and B. Zumino, Phys. Lett. 49B, 52 (1974).
[8] S. P. Martin, Adv. Ser. Direct. High Energy Phys. 1-98 (1998), [hep-ph/9709356].
[9] B.C, Allanach and H.E. Haber, Supersymmetry, Part I (Theory), in this volume.
[10] D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984).
[11] B. Bellazzini, C. Csaki and J. Serra, Eur. Phys. J. C74, 5, 2766 (2014), [arXiv:1401.2457]; G. Panico and A. Wulzer, Lect. Notes Phys. 913, pp. 1 (2016), [arXiv:1506.01961]; C. Csaki, C. Grojean and J. Terning, Rev. Mod. Phys. 88, 4, 045001 (2016), [arXiv:1512.00468].
[12] K.M. Black, R.S. Chivukula and M. Narain, Dynamical Electroweak Symmetry Breaking: Implications of the HO, in this volume.
[13] Z. Chacko, H.-S. Goh and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006), [hep-ph/0506256]; Z. Chacko, H.-S. Goh and R. Harnik, JHEP 01, 108 (2006), [hep-ph/0512088].
[14] N. Craig et al., JHEP 07, 105 (2015), [arXiv:1501.05310]; N. Craig, S. Knapen and P. Longhi, Phys. Rev. Lett. 114, 6, 061803 (2015), [arXiv:1410.6808].
[15] P. W. Graham, D. E. Kaplan and S. Rajendran, Phys. Rev. Lett. 115, 22, 221801 (2015), [arXiv:1504.07551]; J. R. Espinosa et al., Phys. Rev. Lett. 115, 25, 251803 (2015), [arXiv:1506.09217]; G. Dvali (2019), [arXiv:1908.05984].
[16] T. Flacke et al., JHEP 06, 050 (2017), [arXiv:1610.02025].
[17] M. Bauer, M. Carena and K. Gemmler, JHEP 11, 016 (2015), [arXiv:1506.01719]; M. Bauer, M. Carena and K. Gemmler, Phys. Rev. D94, 11, 115030 (2016), [arXiv:1512.03458].
[18] R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D74, 015007 (2006), [hep-ph/0603188].
[19] D. E. Morrissey and M. J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012), [arXiv:1206.2942].
[20] G. Degrassi et al., JHEP 08, 098 (2012), [arXiv:1205.6497]; S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B716, 214 (2012), [arXiv:1207.0980]; D. Buttazzo et al., JHEP 12, 089 (2013), [arXiv:1307.3536].
[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[22] See the particle listing section at http://pdg.lbl.gov.
[23] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B106, 292 (1976).
[24] M. A. Shifman et al., Sov. J. Nucl. Phys. 30, 711 (1979), [Yad. Fiz.30,1368(1979)].
[25] J. F. Gunion et al., The Higgs Hunter's Guide, AddisonWesley (1990).
[26] P. Sikivie et al., Nucl. Phys. B173, 189 (1980); H. Georgi, Ann. Rev. Nucl. Part. Sci. 43, 209 (1993).
[27] M. J. G. Veltman, Nucl. Phys. B123, 89 (1977).
[28] M. Luscher and P. Weisz, Nucl. Phys. B290, 25 (1987); M. Luscher and P. Weisz, Nucl. Phys. B295, 65 (1988).
[29] V. Branchina, E. Messina and M. Sher, Phys. Rev. D91, 013003 (2015), [arXiv:1408.5302].
[30] A. Hook et al., JHEP 01, 061 (2015), [arXiv:1404.5953]; J. Kearney, H. Yoo and K. M. Zurek, Phys. Rev. D91, 12, 123537 (2015), [arXiv:1503.05193].
[31] J. R. Espinosa, D. Racco and A. Riotto, Phys. Rev. Lett. 120, 12, 121301 (2018), [arXiv:1710.11196].
[32] J. R. Espinosa, D. Racco and A. Riotto, JCAP 1809, 09, 012 (2018), [arXiv:1804.07732].
[33] A. Andreassen, W. Frost and M. D. Schwartz, Phys. Rev. D97, 5, 056006 (2018), [arXiv:1707.08124]; S. Chigusa, T. Moroi and Y. Shoji, Phys. Rev. Lett. 119, 21, 211801 (2017), [arXiv:1707.09301].
[34] M. Shaposhnikov and C. Wetterich, Phys. Lett. B683, 196 (2010), [arXiv:0912.0208]; M. Holthausen, K. S. Lim and M. Lindner, JHEP 02, 037 (2012), [arXiv:1112.2415].
[35] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B659, 703 (2008), [arXiv:0710.3755]; F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Phys. Lett. B675, 88 (2009), [arXiv:0812.4950].
[36] C. P. Burgess, H. M. Lee and M. Trott, JHEP 09, 103 (2009), [arXiv:0902.4465]; J. L. F. Barbon and J. R. Espinosa, Phys. Rev. D79, 081302 (2009), [arXiv:0903.0355]; M. P. Hertzberg, JHEP 11, 023 (2010), [arXiv:1002.2995].
[37] B. A. Kniehl, Phys. Rept. 240, 211 (1994).
[38] M. Spira, Fortsch. Phys. 46, 203 (1998), [hep-ph/9705337].
[39] M. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003), [hep-ph/0208209].
[40] A. Djouadi, Phys. Rept. 457, 1 (2008), [hep-ph/0503172].
[41] S. Dittmaier et al. (LHC Higgs Cross Section Working Group), CERN Report 2011-002 (2011), [arXiv:1101.0593].
[42] S. Dittmaier et al. (LHC Higgs Cross Section Working Group), CERN Report 2012-002 (2012), [arXiv:1201.3084].
[43] S. Heinemeyer et al. (LHC Higgs Cross Section Working Group), CERN Report 2013-004 (2013), [arXiv:1307.1347].
[44] D. de Florian et al. (LHC Higgs Cross Section Working Group), CERN Report 2017-002 (2016), [arXiv:1610.07922].
[45] LHC Higgs Cross Section Working Group, https://twiki. cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.
[46] T. Aaltonen et al. (CDF, D0), Phys. Rev. D88, 5, 052014 (2013), [arXiv:1303.6346].
[47] H. M. Georgi et al., Phys. Rev. Lett. 40, 692 (1978).
[48] D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993).
[49] M. Spira et al., Nucl. Phys. B453, 17 (1995), [hepph/9504378].
[50] C. Anastasiou et al., Phys. Rev. Lett. 114, 212001 (2015), [arXiv:1503.06056]; C. Anastasiou et al., JHEP 05, 058 (2016), [arXiv:1602.00695].
[51] R. V. Harlander and K. J. Ozeren, JHEP 11, 088 (2009), [arXiv:0909.3420]; A. Pak, M. Rogal and M. Steinhauser, JHEP 02, 025 (2010), [arXiv:0911.4662].
[52] J. Davies et al., Phys. Rev. D100, 3, 034017 (2019), [arXiv:1906.00982].
[53] S. Dawson, Nucl. Phys. B359, 283 (1991); A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B264, 440 (1991).
[54] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002), [hep-ph/0201206]; C. Anastasiou and K. Melnikov, Nucl. Phys. B646, 220 (2002), [hepph/0207004]; V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B665, 325 (2003), [hep-ph/0302135].
[55] A. Djouadi and P. Gambino, Phys. Rev. Lett. 73, 2528 (1994), [hep-ph/9406432]; S. Actis et al., Phys. Lett. B670, 12 (2008), [arXiv:0809.1301]; U. Aglietti et al., Phys. Lett. B595, 432 (2004), [hep-ph/0404071]; G. Degrassi and F. Maltoni, Phys. Lett. B600, 255 (2004), [hepph/0407249].
[56] M. Bonetti, K. Melnikov and L. Tancredi, Phys. Rev. D97, 5, 056017 (2018), [Erratum: Phys. Rev. D97, 9, 099906 (2018)], [arXiv:1801.10403].
[57] C. Anastasiou, R. Boughezal and F. Petriello, JHEP 04, 003 (2009), [arXiv:0811.3458].
[58] C. Anastasiou et al., JHEP 03, 162 (2019), [arXiv:1811.11211].
[59] M. Bonvini et al., JHEP 08, 105 (2016), [arXiv:1603.08000]; B. Mistlberger, JHEP 05, 028 (2018), [arXiv:1802.00833].
[60] R. Boughezal et al., Phys. Rev. Lett. 115, 8, 082003 (2015), [arXiv:1504.07922].
[61] X. Chen et al., Phys. Lett. B740, 147 (2015), [arXiv:1408.5325].
[62] J. M. Campbell, R. K. Ellis and S. Seth (2019), [arXiv:1906.01020].
[63] J. M. Lindert et al., Phys. Rev. Lett. 118, 25, 252002 (2017), [arXiv:1703.03886]; J. M. Lindert et al., Phys. Lett. B782, 210 (2018), [arXiv:1801.08226]; S. P. Jones, M. Kerner and G. Luisoni, Phys. Rev. Lett. 120, 16, 162001 (2018), [arXiv:1802.00349]; T. Neumann, J. Phys. Comm. 2, 9, 095017 (2018), [arXiv:1802.02981].
[64] S. Forte and C. Muselli, JHEP 03, 122 (2016), [arXiv:1511.05561]; K. Melnikov and A. Penin, JHEP 05, 172 (2016), [arXiv:1602.09020]; T. Liu and A. Penin, JHEP 11, 158 (2018), [arXiv:1809.04950].
[65] F. Caola et al., JHEP 09, 035 (2018), [arXiv:1804.07632].
[66] W. Bizon et al., JHEP 02, 108 (2018), [arXiv:1705.09127]; X. Chen et al., Phys. Lett. B788, 425 (2019), [arXiv:1805.00736].
[67] S. Catani and M. Grazzini, Eur. Phys. J. C72, 2013 (2012), [Erratum: Eur. Phys. J. C72, 2132 (2012)], [arXiv:1106.4652].
[68] A. Banfi, G. P. Salam and G. Zanderighi, JHEP 06, 159 (2012), [arXiv:1203.5773]; T. Becher, M. Neubert and D. Wilhelm, JHEP 05, 110 (2013), [arXiv:1212.2621]; A. Banfi et al., JHEP 04, 049 (2016), [arXiv:1511.02886]; J. K. L. Michel, P. Pietrulewicz and F. J. Tackmann, JHEP 04, 142 (2019), [arXiv:1810.12911]; P. F. Monni, L. Rottoli and P. Torrielli (2019), [arXiv:1909.04704].
[69] I. Moult and I. W. Stewart, JHEP 09, 129 (2014), [arXiv:1405.5534].
[70] W.-Y. Keung and F. J. Petriello, Phys. Rev. D80, 013007 (2009), [arXiv:0905.2775]; S. Bühler et al., JHEP 07, 115 (2012), [arXiv:1204.4415].
[71] LHC Higgs Cross Section Working Group, "Recommended predictions for the boosted-Higgs cross section", Note LHCHXSWG-2019-002, https://cds.cern.ch/ record/2669113.
[72] V. D. Barger et al., Phys. Rev. D44, 1426 (1991).
[73] F. A. Dreyer and A. Karlberg, Phys. Rev. Lett. 117, 7, 072001 (2016), [arXiv:1606.00840].
[74] T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. 69, 3274 (1992), [hep-ph/9206246].
[75] T. Liu, K. Melnikov and A. A. Penin (2019), [arXiv:1906.10899].
[76] M. Cacciari et al., Phys. Rev. Lett. 115, 8, 082002 (2015), [Erratum: Phys. Rev. Lett. 120, 13,139901 (2018)], [arXiv:1506.02660]; J. Cruz-Martinez et al., Phys. Lett. B781, 672 (2018), [arXiv:1802.02445].
[77] M. Rauch and D. Zeppenfeld, Phys. Rev. D95, 11, 114015 (2017), [arXiv:1703.05676].
[78] S. L. Glashow, D. V. Nanopoulos and A. Yildiz, Phys. Rev. D18, 1724 (1978); T. Han and S. Willenbrock, Phys. Lett. B273, 167 (1991); T. Han, G. Valencia, and S. Willenbrock, Phys. Rev. Lett. 69, 3274 (1992); H. Baer, B. Bailey and J. F. Owens, Phys. Rev. D47, 2730 (1993); J. Ohnemus and W. J. Stirling, Phys. Rev. D47, 2722 (1993).
[79] A. Stange, W. J. Marciano and S. Willenbrock, Phys. Rev. D49, 1354 (1994), [hep-ph/9309294]; A. Stange, W. J. Marciano and S. Willenbrock, Phys. Rev. D50, 4491 (1994), [hep-ph/9404247].
[80] M. L. Ciccolini, S. Dittmaier and M. Kramer, Phys. Rev. D68, 073003 (2003), [hep-ph/0306234]; A. Denner et al., JHEP 03, 075 (2012), [arXiv:1112.5142].
[81] R. Hamberg, W. L. van Neerven and T. Matsuura, Nucl. Phys. B359, 343 (1991), [Erratum: Nucl. Phys. B644, 403 (2002)].
[82] O. Brein, A. Djouadi and R. Harlander, Phys. Lett. B579, 149 (2004), [hep-ph/0307206]; L. Altenkamp et al., JHEP 02, 078 (2013), [arXiv:1211.5015].
[83] O. Brein et al., Eur. Phys. J. C72, 1868 (2012), [arXiv:1111.0761].
[84] O. Brein, R.V. Harlander, and T.J. Zirke, Comp. Phys. Comm. 184, 998 (2013).
[85] A. Denner et al., JHEP 03, 075 (2012), [arXiv:1112.5142].
[86] G. Ferrera, M. Grazzini, and F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011).
[87] G. Ferrera, M. Grazzini and F. Tramontano, Phys. Lett. B740, 51 (2015), [arXiv:1407.4747]; J. M. Campbell, R. K. Ellis and C. Williams, JHEP 06, 179 (2016), [arXiv:1601.00658].
[88] W. Astill et al., JHEP 06, 154 (2016), [arXiv:1603.01620].
[89] F. Caola et al., Phys. Rev. D97, 7, 074022 (2018), [arXiv:1712.06954]; R. Gauld et al. (2019), [arXiv:1907.05836].
[90] J. M. Butterworth et al., Phys. Rev. Lett. 100, 242001 (2008), [arXiv:0802.2470].
[91] R. Raitio and W. W. Wada, Phys. Rev. D19, 941 (1979); Z. Kunszt, Nucl. Phys. B247, 339 (1984); J. F. Gunion, Phys. Lett. B261, 510 (1991); W. J. Marciano and F. E. Paige, Phys. Rev. Lett. 66, 2433 (1991).
[92] W. Beenakker et al., Phys. Rev. Lett. 87, 201805 (2001), [hep-ph/0107081]; L. Reina and S. Dawson, Phys. Rev. Lett. 87, 201804 (2001), [hep-ph/0107101]; S. Dawson et al., Phys. Rev. D67, 071503 (2003), [hep-ph/0211438]; W. Beenakker et al., Nucl. Phys. B653, 151 (2003), [hepph/0211352]; S. Dawson et al., Phys. Rev. D68, 034022 (2003), [hep-ph/0305087].
[93] Y. Zhang et al., Phys. Lett. B738, 1 (2014), [arXiv:1407.1110]; S. Frixione et al., JHEP 09, 065 (2014), [arXiv:1407.0823].
[94] T. Plehn, G. P. Salam and M. Spannowsky, Phys. Rev. Lett. 104, 111801 (2010), [arXiv:0910.5472].
[95] R. Frederix et al., Phys. Lett. B701, 427 (2011), [arXiv:1104.5613]; M. V. Garzelli et al., EPL 96, 1, 11001 (2011), [arXiv:1108.0387].
[96] F. Demartin et al., Eur. Phys. J. C75, 6, 267 (2015), [arXiv:1504.00611].
[97] K.A. Assamagan et al., [Higgs Working Group, "Physics at TeV Colliders" workshop, Les Houches, 2003], arXiv:hep-ph/0406152 (2004).
[98] R. V. Harlander and W. B. Kilgore, Phys. Rev. D68, 013001 (2003), [hep-ph/0304035]; J. M. Campbell et al., Phys. Rev. D67, 095002 (2003), [hep-ph/0204093]; S. Dawson et al., Phys. Rev. Lett. 94, 031802 (2005), [hep-ph/0408077]; S. Dittmaier, M. Krämer and M. Spira, Phys. Rev. D70, 074010 (2004), [hep-ph/0309204]; S. Dawson et al., Phys. Rev. D69, 074027 (2004), [hep-ph/0311067].
[99] W. J. Stirling and D. J. Summers, Phys. Lett. B283, 411 (1992); F. Maltoni et al., Phys. Rev. D64, 094023 (2001), [hep-ph/0106293].
[100] S. Dawson, S. Dittmaier and M. Spira, Phys. Rev. D58, 115012 (1998), [hep-ph/9805244].
[101] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801 (2013), [arXiv:1309.6594].
[102] S. Borowka et al., Phys. Rev. Lett. 117, 1, 012001 (2016), [Erratum: Phys. Rev. Lett. 117, 7, 079901 (2016)], [arXiv:1604.06447].
[103] J. Baglio et al., Eur. Phys. J. C79, 6, 459 (2019), [arXiv:1811.05692].
[104] M. Cepeda et al. (HL/HE WG2 group) (2019), [arXiv:1902.00134].
[105] B.L. Ioffe and V.A. Khoze, Sov. J. Nucl. Phys. 9, 50 (1978).
[106] D. R. T. Jones and S. T. Petcov, Phys. Lett. 84B, 440 (1979); R. N. Cahn and S. Dawson, Phys. Lett. 136B, 196 (1984), [Erratum: Phys. Lett. 138B, 464 (1984)]; G. L. Kane, W. W. Repko and W. B. Rolnick, Phys. Lett. 148B, 367 (1984); G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287, 205 (1987); W. Kilian, M. Kramer and P. M. Zerwas, Phys. Lett. B373, 135 (1996), [hep-ph/9512355].
[107] B. A. Kniehl, Z. Phys. C55, 605 (1992); J. Fleischer and F. Jegerlehner, Nucl. Phys. B216, 469 (1983); A. Denner et al., Z. Phys. C56, 261 (1992); B. A. Kniehl, Int. J. Mod. Phys. A17, 1457 (2002), [hep-ph/0112023].
[108] K. J. F. Gaemers and G. J. Gounaris, Phys. Lett. 77B, 379 (1978); A. Djouadi, J. Kalinowski and P. M. Zerwas, Z. Phys. C54, 255 (1992); B. A. Kniehl, F. Madricardo and M. Steinhauser, Phys. Rev. D66, 054016 (2002), [hep-ph/0205312]; S. Dittmaier et al., Phys. Lett. B441, 383 (1998), [hep-ph/9808433]; S. Dittmaier et al., Phys. Lett. B478, 247 (2000), [hep-ph/0002035]; S. Dawson and L. Reina, Phys. Rev. D59, 054012 (1999), [hepph/9808443].
[109] A. Arbey et al., Eur. Phys. J. C75, 8, 371 (2015), [arXiv:1504.01726].
[110] A. Denner et al., Eur. Phys. J. C71, 1753 (2011), [arXiv:1107.5909].
[111] A. Djouadi, J. Kalinowski, and M. Spira, Comp. Phys. Comm. 108, 56 (1998); A. Djouadi et al., arXiv:1003. 1643 [hep-ph] (2010).
[112] S. G. Gorishnii et al., Mod. Phys. Lett. A5, 2703 (1990); S. G. Gorishnii et al., Phys. Rev. D43, 1633 (1991); A. L. Kataev and V. T. Kim, Mod. Phys. Lett. A9, 1309 (1994); L. R. Surguladze, Phys. Lett. B341, 60 (1994), [hep-ph/9405325]; S. A. Larin, T. van Ritbergen and J. A. M. Vermaseren, Phys. Lett. B362, 134 (1995), [hepph/9506465]; K. G. Chetyrkin and A. Kwiatkowski, Nucl. Phys. B461, 3 (1996), [hep-ph/9505358]; K. G. Chetyrkin, Phys. Lett. B390, 309 (1997), [hep-ph/9608318]; P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 96, 012003 (2006), [hep-ph/0511063].
[113] J. Fleischer and F. Jegerlehner, Phys. Rev. D23, 2001 (1981); D. Yu. Bardin, B. M. Vilensky and P. K. Khristova, Sov. J. Nucl. Phys. 53, 152 (1991), [Yad. Fiz.53,240(1991)]; A. Dabelstein and W. Hollik, Z. Phys. C53, 507 (1992); B. A. Kniehl, Nucl. Phys. B376, 3 (1992); A. Djouadi et al., in "In *Munich/Annecy/Hamburg 1991, Proceedings, e+ ecollisions at $500-\mathrm{GeV}$, pt. A* 11-30," (1991).
[114] T. Inami, T. Kubota and Y. Okada, Z. Phys. C18, 69 (1983); K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79, 353 (1997), [hep-ph/9705240]; P. A. Baikov and K. G. Chetyrkin, Phys. Rev. Lett. 97, 061803 (2006), [hep-ph/0604194].
[115] H.-Q. Zheng and D.-D. Wu, Phys. Rev. D42, 3760 (1990); A. Djouadi et al., Phys. Lett. B257, 187 (1991); S. Dawson and R. P. Kauffman, Phys. Rev. D47, 1264 (1993); A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett.

B311, 255 (1993), [hep-ph/9305335]; K. Melnikov and O. I. Yakovlev, Phys. Lett. B312, 179 (1993), [hep-ph/9302281]; M. Inoue et al., Mod. Phys. Lett. A9, 1189 (1994).
[116] P. Maierhöfer and P. Marquard, Phys. Lett. B721, 131 (2013), [arXiv:1212.6233].
[117] U. Aglietti et al., Phys. Lett. B595, 432 (2004), [hepph/0404071]; G. Degrassi and F. Maltoni, Phys. Lett. B600, 255 (2004), [hep-ph/0407249]; S. Actis et al., Phys. Lett. B670, 12 (2008), [arXiv:0809.1301]; U. Aglietti et al., Phys. Lett. B600, 57 (2004), [hep-ph/0407162]; G. Degrassi and F. Maltoni, Nucl. Phys. B724, 183 (2005), [hepph/0504137]; U. Aglietti et al., FERMILAB-CONF (2006), [hep-ph/0612172].
[118] A. Abbasabadi et al., Phys. Rev. D55, 5647 (1997), [hepph/9611209]; A. Abbasabadi and W. W. Repko, Phys. Rev. D71, 017304 (2005), [hep-ph/0411152]; A. Abbasabadi and W. W. Repko, JHEP 08, 048 (2006), [hep-ph/0602087]; D. A. Dicus and W. W. Repko, Phys. Rev. D87, 7, 077301 (2013), [arXiv:1302.2159]; L.-B. Chen, C.-F. Qiao and R.L. Zhu, Phys. Lett. B726, 306 (2013), [arXiv:1211.6058]; Y. Sun, H.-R. Chang and D.-N. Gao, JHEP 05, 061 (2013), [arXiv:1303.2230]; G. Passarino, Phys. Lett. B727, 424 (2013), [arXiv:1308.0422].
[119] M. Spira, A. Djouadi and P. M. Zerwas, Phys. Lett. B276, 350 (1992).
[120] A. Bredenstein et al., Phys. Rev. D74, 013004 (2006), [hepph/0604011]; A. Bredenstein et al., JHEP 02, 080 (2007), [hep-ph/0611234]; A. Bredenstein et al., Prophecy4f: A Monte Carlo generator for a proper description of the Higgs decay into 4 fermions, http://omnibus.uni-freiburg.de/ ~sd565/programs/prophecy4f/prophecy4f.html.
[121] A. Ghinculov, Phys. Lett. B337, 137 (1994), [Erratum: Phys. Lett. B346, 426 (1995)], [hep-ph/9405394]; L. Durand, B. A. Kniehl and K. Riesselmann, Phys. Rev. D51, 5007 (1995), [hep-ph/9412311]; L. Durand, K. Riesselmann and B. A. Kniehl, Phys. Rev. Lett. 72, 2534 (1994), [Erratum: Phys. Rev. Lett. 74, 1699 (1995)].
[122] R. Barate et al. (LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL), Phys. Lett. B565, 61 (2003), [hep-ex/0306033].
[123] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[124] Y. L. Dokshitzer, S. I. Troian and V. A. Khoze, Sov. J. Nucl. Phys. 46, 712 (1987), [Yad. Fiz.46,1220(1987)].
[125] ATLAS Collaboration, ATLAS-CONF-2017-045 (2017).
[126] CMS Collaboration, CMS-PAS-HIG-19-001 (2019).
[127] G. Aad et al. (ATLAS, CMS), Phys. Rev. Lett. 114, 191803 (2015), [arXiv:1503.07589].
[128] ATLAS Collaboration, ATLAS-CONF-2019-029 (2019).
[129] A. M. Sirunyan et al. (CMS), JHEP 11, 185 (2018), [arXiv:1804.02716].
[130] A. M. Sirunyan et al. (CMS), JHEP 11, 047 (2017), [arXiv:1706.09936].
[131] ATLAS Collaboration, ATLAS-CONF-2019-025 (2019).
[132] M. Aaboud et al. (ATLAS), Phys. Lett. B784, 345 (2018), [arXiv:1806.00242].
[133] CMS Collaboration, CMS-PAS-HIG-18-029 (2019).
[134] ATLAS Collaboration, ATL-PHYS-PUB-2016-009 (2016).
[135] M. Dittmar and H. K. Dreiner, Phys. Rev. D55, 167 (1997), [hep-ph/9608317].
[136] G. Aad et al. (ATLAS), JHEP 08, 137 (2015), [arXiv:1506.06641].
[137] ATLAS Collaboration, ATLAS-CONF-2016-112 (2016).
[138] M. Aaboud et al. (ATLAS), Phys. Lett. B789, 508 (2019), [arXiv:1808.09054].
[139] A. M. Sirunyan et al. (CMS), Phys. Lett. B791, 96 (2019), [arXiv:1806.05246].
[140] G. Aad et al. (ATLAS), JHEP 04, 117 (2015), [arXiv:1501.04943].
[141] ATLAS and CMS Collaboration, ATLAS-CONF-2015-044 and CMS-PAS-HIG-15-002 (2015).
[142] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 072001 (2019), [arXiv:1811.08856].
[143] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 283 (2018), [arXiv:1708.00373].
[144] A. M. Sirunyan et al. (CMS), JHEP 06, 093 (2019), [arXiv:1809.03590].
[145] CMS Collaboration, CMS-PAS-HIG-18-032 (2019).
[146] T. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 109, 071804 (2012), [arXiv:1207.6436].
[147] M. Aaboud et al. (ATLAS), Phys. Lett. B786, 59 (2018), [arXiv:1808.08238].
[148] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 12, 121801 (2018), [arXiv:1808.08242].
[149] M. Aaboud et al. (ATLAS), JHEP 05, 141 (2019), [arXiv:1903.04618].
[150] LHCb Collaboration, LHCb-CONF-2016-006, CERN-LHCb-CONF-2016-006 (2016).
[151] M. Aaboud et al. (ATLAS), JHEP 11, 112 (2016), [arXiv:1606.02181].
[152] V. Khachatryan et al. (CMS), Phys. Rev. D92, 3, 032008 (2015), [arXiv:1506.01010].
[153] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 5, 052003 (2018), [arXiv:1807.08639]; CMS Collaboration, CMS-PAS-HIG-16-003 (2019).
[154] E. Gabrielli et al., Nucl. Phys. B781, 64 (2007), [hepph/0702119].
[155] ATLAS Collaboration, ATLAS-CONF-2018-052 (2018).
[156] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 7, 071802 (2018), [arXiv:1709.05543].
[157] M. Cacciari, G. P. Salam and G. Soyez, JHEP 04, 063 (2008), [arXiv:0802.1189].
[158] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 6, 251 (2015), [arXiv:1502.02485].
[159] G. Aad et al. (ATLAS), Phys. Lett. B749, 519 (2015), [arXiv:1506.05988].
[160] M. Aaboud et al. (ATLAS), Phys. Lett. B784, 173 (2018), [arXiv:1806.00425]; A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 23, 231801 (2018), [arXiv:1804.02610].
[161] ATLAS Collaboration, ATLAS-CONF-2019-004 (2019).
[162] CMS Collaboration, CMS-PAS-HIG-18-018 (2019).
[163] CMS Collaboration, CMS-PAS-HIG-18-030 (2019).
[164] ATLAS Collaboration, ATLAS-CONF-2017-077 (2017); A. M. Sirunyan et al. (CMS), JHEP 08, 066 (2018), [arXiv:1803.05485]; CMS Collaboration, CMS-PAS-HIG-18019 (2018); ATLAS Collaboration, ATLAS-CONF-2019-045 (2019).
[165] M. Farina et al., JHEP 05, 022 (2013), [arXiv:1211.3736].
[166] CMS Collaboration, CMS-PAS-HIG-17-005 (2017).
[167] CMS Collaboration, CMS-PAS-HIG-16-019 (2016).
[168] A. M. Sirunyan et al. (CMS), Phys. Rev. D99, 9, 092005 (2019), [arXiv:1811.09696].
[169] G. Aad et al. (ATLAS), JHEP 12, 061 (2015), [arXiv:1509.06047].
[170] V. Khachatryan et al. (CMS), JHEP 02, 079 (2017), [arXiv:1610.04857].
[171] ATLAS Collaboration, JHEP 129, 010 (2017).
[172] CMS Collaboration, CMS-PAS-TOP-2017-003 (2017).
[173] G. Aad et al. (ATLAS) (2019), [arXiv:1906.02025].
[174] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 12, 121803 (2019), [arXiv:1811.09689].
[175] V. Khachatryan et al. (CMS), Phys. Lett. B753, 341 (2016), [arXiv:1507.03031].
[176] M. Aaboud et al. (ATLAS), JHEP 10, 112 (2017), [arXiv:1708.00212].
[177] A. M. Sirunyan et al. (CMS), JHEP 11, 152 (2018), [arXiv:1806.05996].
[178] ATLAS Collaboration, ATLAS-CONF-2019-028 (2019).
[179] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 2, 021801 (2019), [arXiv:1807.06325].
[180] ATLAS Collaboration, ATLAS-CONF-2019-037 (2019).
[181] V. Khachatryan et al. (CMS), Phys. Lett. B749, 337 (2015), [arXiv:1502.07400].
[182] G. Aad et al. (ATLAS), JHEP 11, 211 (2015), [arXiv:1508.03372].
[183] G. Aad et al. (ATLAS), Eur. Phys. J. C77, 2, 70 (2017), [arXiv:1604.07730].
[184] CMS Collaboration, CMS-PAS-HIG-17-001 (2017).
[185] V. Khachatryan et al. (CMS), Phys. Lett. B763, 472 (2016), [arXiv:1607.03561].
[186] R. Harnik, J. Kopp and J. Zupan, JHEP 03, 026 (2013), [arXiv:1209.1397].
[187] G. Aad et al. (ATLAS) (2019), [arXiv:1907.06131].
[188] A. M. Sirunyan et al. (CMS), JHEP 06, 001 (2018), [arXiv:1712.07173].
[189] C. Delaunay et al., Phys. Rev. D89, 3, 033014 (2014), [arXiv:1310.7029].
[190] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 120, 21, 211802 (2018), [arXiv:1802.04329].
[191] CMS Collaboration, CMS-PAS-HIG-18-031 (2019).
[192] G. Isidori, A. V. Manohar and M. Trott, Phys. Lett. B728, 131 (2014), [arXiv:1305.0663]; G. T. Bodwin et al., Phys. Rev. D88, 5, 053003 (2013), [arXiv:1306.5770]; M. König and M. Neubert, JHEP 08, 012 (2015), [arXiv:1505.03870].
[193] G. Aad et al. (ATLAS), Phys. Rev. Lett. 114, 12, 121801 (2015), [arXiv:1501.03276].
[194] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 117, 11, 111802 (2016), [arXiv:1607.03400].
[195] A. M. Sirunyan et al. (CMS), Phys. Lett. B797, 134811 (2019), [arXiv:1905.10408].
[196] A. Djouadi et al., Eur. Phys. J. C73, 6, 2455 (2013), [arXiv:1205.3169].
[197] O. J. P. Eboli and D. Zeppenfeld, Phys. Lett. B495, 147 (2000), [hep-ph/0009158].
[198] M. Aaboud et al. (ATLAS), Phys. Lett. B793, 499 (2019), [arXiv:1809.06682].
[199] M. Aaboud et al. (ATLAS), Phys. Lett. B776, 318 (2018), [arXiv:1708.09624].
[200] M. Aaboud et al. (ATLAS), JHEP 10, 180 (2018), [arXiv:1807.11471].
[201] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 122, 23, 231801 (2019), [arXiv:1904.05105].
[202] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 4, 291 (2018), [arXiv:1711.00431].
[203] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 9, 092005 (2018), [arXiv:1712.02345].
[204] A. M. Sirunyan et al. (CMS), Phys. Lett. B793, 520 (2019), [arXiv:1809.05937].
[205] CMS Collaboration, CMS-PAS-HIG-18-008 (2019).
[206] M. J. Strassler and K. M. Zurek, Phys. Lett. B651, 374 (2007), [hep-ph/0604261]; M. J. Strassler and K. M. Zurek, Phys. Lett. B661, 263 (2008), [hep-ph/0605193].
[207] T. Han et al., JHEP 07, 008 (2008), [arXiv:0712.2041].
[208] A. Falkowski et al., Phys. Rev. Lett. 105, 241801 (2010), [arXiv:1007.3496].
[209] G. Aad et al. (ATLAS) (2019), [arXiv:1909.01246].
[210] CMS Collaboration, CMS-PAS-EXO-19-007 (2019).
[211] D. Tucker-Smith and N. Weiner, Phys. Rev. D64, 043502 (2001), [hep-ph/0101138].
[212] S. Chatrchyan et al. (CMS), Phys. Lett. B726, 564 (2013), [arXiv:1210.7619].
[213] G. Aad et al. (ATLAS) (2019), [arXiv:1909.02845].
[214] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 5, 421 (2019), [arXiv:1809.10733].
[215] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[216] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 1, 6 (2016), [arXiv:1507.04548].
[217] L. D. Landau, Dokl. Akad. Nauk Ser. Fiz. 60, 2, 207 (1948); C.-N. Yang, Phys. Rev. 77, 242 (1950).
[218] S. Bolognesi et al., Phys. Rev. D86, 095031 (2012), [arXiv:1208.4018].
[219] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 10, 476 (2015), [Erratum: Eur. Phys. J. C76, 3, 152 (2016)], [arXiv:1506.05669].
[220] V. Khachatryan et al. (CMS), Phys. Rev. D92, 1, 012004 (2015), [arXiv:1411.3441]; G. Aad et al. (ATLAS), Phys. Lett. B726, 120 (2013), [arXiv:1307.1432].
[221] P. Artoisenet et al., JHEP 11, 043 (2013), [arXiv:1306.6464].
[222] J. Ellis et al., JHEP 11, 134 (2012), [arXiv:1208.6002].
[223] D0 Collaboration, Note 6387-CONF (2013).
[224] D0 Collaboration, Note 6406-CONF (2013).
[225] J. C. Collins and D. E. Soper, Phys. Rev. D16, 2219 (1977).
[226] A. De Rujula et al., Phys. Rev. D82, 013003 (2010), [arXiv:1001.5300].
[227] ATLAS Collaboration, ATLAS-CONF-2017-043 (2017).
[228] A. M. Sirunyan et al. (CMS), Phys. Rev. D99, 11, 112003 (2019), [arXiv:1901.00174].
[229] A. M. Sirunyan et al. (CMS), Submitted to: Phys. Rev. (2019), [arXiv:1903.06973].
[230] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 12, 658 (2016), [arXiv:1602.04516].
[231] N. Kauer and G. Passarino, JHEP 08, 116 (2012), [arXiv:1206.4803].
[232] V. Khachatryan et al. (CMS), JHEP 09, 051 (2016), [arXiv:1605.02329].
[233] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 7, 335 (2015), [arXiv:1503.01060].
[234] M. Aaboud et al. (ATLAS), Phys. Lett. B786, 223 (2018), [arXiv:1808.01191].
[235] G. Aad et al. (ATLAS), Phys. Rev. D90, 5, 052004 (2014), [arXiv:1406.3827].
[236] CMS Collaboration, CMS-PAS-HIG-16-041 (2017).
[237] L. J. Dixon and M. S. Siu, Phys. Rev. Lett. 90, 252001 (2003), [hep-ph/0302233]; S. P. Martin, Phys. Rev. D86, 073016 (2012), [arXiv:1208.1533]; L. J. Dixon and Y. Li, Phys. Rev. Lett. 111, 111802 (2013), [arXiv:1305.3854].
[238] ATLAS Collaboration, ATL-PHYS-PUB-2013-014 (2013).
[239] J. Campbell et al., Phys. Rev. Lett. 119, 18, 181801 (2017), [Addendum: Phys. Rev. Lett.119,19,199901(2017)], [arXiv:1704.08259].
[240] ATLAS Collaboration, ATL-PHYS-PUB-2014-016 (2014).
[241] F. Caola and K. Melnikov, Phys. Rev. D88, 054024 (2013), [arXiv:1307.4935]; J. M. Campbell, R. K. Ellis and C. Williams, JHEP 04, 060 (2014), [arXiv:1311.3589]; J. M. Campbell, R. K. Ellis and C. Williams, Phys. Rev. D89, 5, 053011 (2014), [arXiv:1312.1628].
[242] C. Englert and M. Spannowsky, Phys. Rev. D90, 053003 (2014), [arXiv:1405.0285].
[243] A. Azatov et al., Zh. Eksp. Teor. Fiz. 147, 410 (2015), [J. Exp. Theor. Phys.120,354(2015)], [arXiv:1406.6338]; A. Azatov et al., JHEP 09, 123 (2016), [arXiv:1608.00977].
[244] A. David et al. (LHC Higgs Cross Section Working Group), "LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle," (2012), [arXiv:1209.0040].
[245] M. Dührssen, "Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110190 GeV ," (2003); M. Duhrssen et al., Phys. Rev. D70, 113009 (2004), [hep-ph/0406323]; R. Lafaye et al., JHEP 08, 009 (2009), [arXiv:0904.3866].
[246] J. R. Espinosa et al., JHEP 05, 097 (2012), [arXiv:1202.3697]; A. Azatov, R. Contino and J. Galloway, JHEP 04, 127 (2012), [Erratum: JHEP 04, 140 (2013)], [arXiv:1202.3415]; D. Carmi et al., JHEP 07, 136 (2012), [arXiv:1202.3144]; J. R. Espinosa et al., JHEP 12, 045 (2012), [arXiv:1207.1717].
[247] M. Gonzalez-Alonso et al., Eur. Phys. J. C75, 128 (2015), [arXiv:1412.6038]; A. Greljo et al., Eur. Phys. J. C76, 3, 158 (2016), [arXiv:1512.06135].
[248] G. F. Giudice et al., JHEP 06, 045 (2007), [hepph/0703164].
[249] S. Willenbrock and C. Zhang, Ann. Rev. Nucl. Part. Sci. 64, 83 (2014), [arXiv:1401.0470]; I. Brivio and M. Trott, Phys. Rept. 793, 1 (2019), [arXiv:1706.08945]; S. Dawson, C. Englert and T. Plehn, Phys. Rept. 816, 1 (2019), [arXiv:1808.01324]; T. Cohen, PoS TASI2018, 011 (2019), [arXiv:1903.03622].
[250] F. Feruglio, Int. J. Mod. Phys. A8, 4937 (1993), [hepph/9301281]; G. Buchalla, O. Catà and C. Krause, Nucl. Phys. B880, 552 (2014), [Erratum: Nucl. Phys. B913, 475 (2016)], [arXiv:1307.5017]; R. Alonso et al., Phys. Lett. B722, 330 (2013), [Erratum: Phys. Lett. B726, 926 (2013)], [arXiv:1212.3305]; A. V. Manohar, in "Les Houches summer school: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, July 3-28, 2017," (2018), [arXiv:1804.05863]; I. Brivio et al., JHEP 03, 024 (2014), [arXiv:1311.1823].
[251] J. de Blas et al., JHEP 03, 109 (2018), [arXiv:1711.10391].
[252] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984); M. A. Luty, Phys. Rev. D57, 1531 (1998), [hep-ph/9706235]; D. Liu et al., JHEP 11, 141 (2016), [arXiv:1603.03064].
[253] W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621 (1986).
[254] C. J. C. Burges and H. J. Schnitzer, Nucl. Phys. B228, 464 (1983); C. N. Leung, S. T. Love and S. Rao, Z. Phys. C31, 433 (1986).
[255] B. Grzadkowski et al., JHEP 10, 085 (2010), [arXiv:1008.4884].
[256] L. Lehman and A. Martin, JHEP 02, 081 (2016), [arXiv:1510.00372]; B. Henning et al., JHEP 08, 016 (2017), [arXiv:1512.03433].
[257] C. Hays et al., JHEP 02, 123 (2019), [arXiv:1808.00442].
[258] R. Alonso et al., JHEP 04, 159 (2014), [arXiv:1312.2014].
[259] A. Falkowski, LHCHXSWG-INT-2015-001 (2015); A. Falkowski, Pramana 87, 3, 39 (2016), [arXiv:1505.00046].
[260] A. M. Sirunyan et al. (CMS), Phys. Lett. B792, 369 (2019), [arXiv:1812.06504].
[261] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 052005 (2018), [arXiv:1802.04146].
[262] F. Maltoni et al. (2019), [arXiv:1906.12310].
[263] R. S. Gupta, A. Pomarol and F. Riva, Phys. Rev. D91, 3, 035001 (2015), [arXiv:1405.0181].
[264] B. A. Kniehl and M. Spira, Z. Phys. C69, 77 (1995), [hepph/9505225].
[265] R. Contino et al., JHEP 07, 035 (2013), [arXiv:1303.3876].
[266] A. Azatov and J. Galloway, Phys. Rev. D85, 055013 (2012), [arXiv:1110.5646].
[267] G. Isidori and M. Trott, JHEP 02, 082 (2014), [arXiv:1307.4051]; A. Pomarol and F. Riva, JHEP 01, 151 (2014), [arXiv:1308.2803].
[268] J. Ellis, V. Sanz and T. You, JHEP 07, 036 (2014), [arXiv:1404.3667]; A. Biekötter et al., Phys. Rev. D91, 055029 (2015), [arXiv:1406.7320].
[269] LHC Higgs Cross Section Working Group, https://twiki. cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG2KAPPA.
[270] ATLAS and C. Collaboration (CMS) (2015).
[271] M. Reece, New J. Phys. 15, 043003 (2013), [arXiv:1208.1765].
[272] ATLAS Collaboration, ATLAS-CONF-2019-032 (2019).
[273] G. Aad et al. (ATLAS), Phys. Lett. B753, 69 (2016), [arXiv:1508.02507].
[274] N. Berger et al. (2019), [arXiv:1906.02754].
[275] CMS Collaboration, CMS-PAS-HIG-16-040 (2017).
[276] ATLAS Collaboration, ATLAS-CONF-2018-028 (2018).
[277] ATLAS Collaboration, CMS-PAS-HIG-19-001 (2019).
[278] M. McCullough, Phys. Rev. D90, 1, 015001 (2014), [Erratum: Phys. Rev. D92, 3, 039903 (2015)], [arXiv:1312.3322].
[279] G. Degrassi et al., JHEP 12, 080 (2016), [arXiv:1607.04251].
[280] M. Gorbahn and U. Haisch, JHEP 10, 094 (2016), [arXiv:1607.03773].
[281] ATLAS Collaboration, ATL-PHYS-PUB-2019-009 (2019).
[282] F. Bishara et al., Phys. Rev. Lett. 118, 12, 121801 (2017), [arXiv:1606.09253].
[283] T. A. collaboration (ATLAS) (2019).
[284] ATLAS Collaboration, ATLAS-CONF-2019-049 (2019).
[285] S. Di Vita et al., JHEP 09, 069 (2017), [arXiv:1704.01953]; F. Maltoni et al., Eur. Phys. J. C77, 12, 887 (2017), [arXiv:1709.08649].
[286] B. Di Micco et al. (2019), [arXiv:1910.00012].
[287] J. Parsons, and A. Pomarol, Extra Dimenions, in this volume.
[288] S. Weinberg, Phys. Rev. D13, 974 (1976), [Addendum: Phys. Rev.D19,1277(1979)]; L. Susskind, Phys. Rev. D20, 2619 (1979); For a review, see C. T. Hill and E. H. Simmons, Phys. Reports 381, 235 (2003) [Erratum: 390, 553 (2004)], [arXiv:hep-ph/0203079].
[289] Z. Chacko, R. Franceschini and R. K. Mishra, JHEP 04, 015 (2013), [arXiv:1209.3259].
[290] L. E. Ibanez and G. G. Ross, Phys. Lett. 110B, 215 (1982); L. E. Ibanez, Phys. Lett. 118B, 73 (1982); J. R. Ellis, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. 121B, 123 (1983); L. Alvarez-Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. B221, 495 (1983).
[291] S. Dimopoulos and G. F. Giudice, Phys. Lett. B357, 573 (1995), [hep-ph/9507282]; M. Papucci, J. T. Ruderman and A. Weiler, JHEP 09, 035 (2012), [arXiv:1110.6926].
[292] ATLAS Collaboration, https://twiki.cern.ch/twiki/ bin/view/AtlasPublic/Publications; CMS Collaboration, http://cms-results.web.cern.ch/cms-results/ public-results/publications/SUS/STOP.html.
[293] J. Mrazek et al., Nucl. Phys. B853, 1 (2011), [arXiv:1105.5403].
[294] D. B. Kaplan, Nucl. Phys. B365, 259 (1991).
[295] G. Panico et al., JHEP 03, 051 (2013), [arXiv:1210.7114].
[296] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[297] A. Djouadi, Phys. Rept. 459, 1 (2008), [hep-ph/0503173].
[298] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rept. 425, 265 (2006), [hep-ph/0412214].
[299] P. Draper, G. Lee and C. E. M. Wagner, Phys. Rev. D89, 5, 055023 (2014), [arXiv:1312.5743].
[300] J. F. Gunion and H. E. Haber, Phys. Rev. D67, 075019 (2003), [hep-ph/0207010].
[301] H. E. Haber and Y. Nir, Nucl. Phys. B335, 363 (1990).
[302] E. L. Berger et al., Phys. Rev. D66, 095001 (2002), [hepph/0205342].
[303] P. Bechtle et al., Eur. Phys. J. C77, 2, 67 (2017), [arXiv:1608.00638].
[304] E. Bagnaschi et al., Eur. Phys. J. C79, 7, 617 (2019), [arXiv:1808.07542].
[305] A. Djouadi, J. Kalinowski and P. M. Zerwas, Z. Phys. C57, 569 (1993).
[306] G. Lee and C. E. M. Wagner, Phys. Rev. D92, 7, 075032 (2015), [arXiv:1508.00576].
[307] D. Dicus et al., Phys. Rev. D59, 094016 (1999), [hepph/9811492].
[308] M. Carena et al., JHEP 07, 091 (2012), [arXiv:1203.1041].
[309] A. A. Barrientos Bendezu and B. A. Kniehl, Phys. Rev. D64, 035006 (2001), [hep-ph/0103018].
[310] LHC Higgs Cross Section Working Group, https: //twiki.cern.ch/twiki/bin/view/LHCPhysics/ LHCHXSWGMSSMCharged.
[311] A. Djouadi, J. Ellis and J. Quevillon, JHEP 07, 105 (2016), [arXiv:1605.00542]; M. Carena and Z. Liu, JHEP 11, 159 (2016), [arXiv:1608.07282].
[312] M. Carena et al., Eur. Phys. J. C26, 601 (2003), [hepph/0202167]; M. Carena et al., Eur. Phys. J. C73, 9, 2552 (2013), [arXiv:1302.7033].
[313] H. Bahl, S. Liebler and T. Stefaniak, Eur. Phys. J. C79, 3, 279 (2019), [arXiv:1901.05933].
[314] L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B718, 465 (2012), [arXiv:1209.4816]; A. Djouadi and J. Quevillon, JHEP 10, 028 (2013), [arXiv:1304.1787]; A. Djouadi et al., Eur. Phys. J. C73, 2650 (2013), [arXiv:1307.5205].
[315] M. Carena et al., Phys. Rev. D91, 3, 035003 (2015), [arXiv:1410.4969].
[316] M. Carena et al., JHEP 04, 015 (2014), [arXiv:1310.2248]; K. Blum, R. T. D'Agnolo and J. Fan, JHEP 01, 057 (2013), [arXiv:1206.5303]; A. Djouadi et al., JHEP 06, 168 (2015), [arXiv:1502.05653].
[317] R. S. Chivukula and H. Georgi, Phys. Lett. B188, 99 (1987); L. J. Hall and L. Randall, Phys. Rev. Lett. 65, 2939 (1990); A. J. Buras et al., Phys. Lett. B500, 161 (2001), [hep-ph/0007085]; G. D'Ambrosio et al., Nucl. Phys. B645, 155 (2002), [hep-ph/0207036].
[318] L. J. Hall, J. D. Lykken and S. Weinberg, Phys. Rev. D27, 2359 (1983); J. E. Kim and H. P. Nilles, Phys. Lett. 138B, 150 (1984); G. F. Giudice and A. Masiero, Phys. Lett. B206, 480 (1988).
[319] U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496, 1 (2010), [arXiv:0910.1785].
[320] P. Fayet, Nucl. Phys. B90, 104 (1975).
[321] C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B469, 145 (1999), [hep-ph/9908351]; A. Dedes et al., Phys. Rev. D63, 055009 (2001), [hep-ph/0009125]; A. Menon, D. E. Morrissey and C. E. M. Wagner, Phys. Rev. D70, 035005 (2004), [hep-ph/0404184].
[322] M. Cvetic et al., Phys. Rev. D56, 2861 (1997), [Erratum: Phys. Rev. D58, 119905 (1998)], [hep-ph/9703317]; P. Langacker and J. Wang, Phys. Rev. D58, 115010 (1998), [hepph/9804428].
[323] J. Erler, P. Langacker and T.-j. Li, Phys. Rev. D66, 015002 (2002), [hep-ph/0205001]; T. Han, P. Langacker and B. McElrath, Phys. Rev. D70, 115006 (2004), [hepph/0405244]; V. Barger et al., Phys. Rev. D73, 115010 (2006), [hep-ph/0603247].
[324] V. Barger, P. Langacker and G. Shaughnessy, Phys. Rev. D75, 055013 (2007), [hep-ph/0611239].
[325] B. A. Dobrescu, G. L. Landsberg and K. T. Matchev, Phys. Rev. D63, 075003 (2001), [hep-ph/0005308]; R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005), [hepph/0502105].
[326] O. J. P. Eboli and D. Zeppenfeld, Phys. Lett. B495, 147 (2000), [hep-ph/0009158]; H. Davoudiasl, T. Han and H. E. Logan, Phys. Rev. D71, 115007 (2005), [hep-ph/0412269].
[327] J.-J. Cao et al., JHEP 03, 086 (2012), [arXiv:1202.5821].
[328] LHC Higgs Cross Section Working Group, Beyond the Standard Model Higgs - NMSSM, https://twiki.cern.ch/ twiki/bin/view/LHCPhysics/LHCHXSWGNMSSM.
[329] M. Carena et al., Phys. Rev. D93, 3, 035013 (2016), [arXiv:1510.09137].
[330] P. Batra et al., JHEP 02, 043 (2004), [hep-ph/0309149].
[331] R. Huo et al., Phys. Rev. D87, 5, 055011 (2013), [arXiv:1212.0560].
[332] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013), [arXiv:1303.2371].
[333] S. Dimopoulos and S. D. Thomas, Nucl. Phys. B465, 23 (1996), [hep-ph/9510220]; S. D. Thomas, Int. J. Mod. Phys. A13, 2307 (1998), [hep-ph/9803420].
[334] A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B553, 3 (1999), [hep-ph/9902371].
[335] M. Frank et al., JHEP 02, 047 (2007), [hep-ph/0611326].
[336] M. Carena et al., Nucl. Phys. B586, 92 (2000), [hepph/0003180].
[337] B. Li and C. E. M. Wagner, Phys. Rev. D91, 095019 (2015), [arXiv:1502.02210].
[338] M. D. Goodsell and F. Staub, Eur. Phys. J. C77, 1, 46 (2017), [arXiv:1604.05335]; A. Chakraborty et al., Phys. Rev. D90, 5, 055005 (2014), [arXiv:1301.2745]; M. Carena et al., JHEP 02, 123 (2016), [arXiv:1512.00437].
[339] J. F. Gunion and H. E. Haber, Phys. Rev. D67, 075019 (2003), [hep-ph/0207010]; G. C. Branco et al., Phys. Rept. 516, 1 (2012), [arXiv:1106.0034].
[340] N. G. Deshpande and E. Ma, Phys. Rev. D18, 2574 (1978).
[341] A. Goudelis, B. Herrmann and O. Stål, JHEP 09, 106 (2013), [arXiv:1303.3010].
[342] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277 (1979).
[343] K. S. Babu and S. Nandi, Phys. Rev. D62, 033002 (2000), [hep-ph/9907213]; G. F. Giudice and O. Lebedev, Phys. Lett. B665, 79 (2008), [arXiv:0804.1753].
[344] E. Accomando et al., CERN Report 2006-009 (2006), [hepph/0608079].
[345] T. Robens and T. Stefaniak, Eur. Phys. J. C75, 104 (2015), [arXiv:1501.02234].
[346] S. L. Glashow and S. Weinberg, Phys. Rev. D15, 1958 (1977); E. A. Paschos, Phys. Rev. D15, 1966 (1977).
[347] G. C. Branco, W. Grimus and L. Lavoura, Phys. Lett. B380, 119 (1996), [hep-ph/9601383]; F. J. Botella, G. C. Branco and M. N. Rebelo, Phys. Lett. B687, 194 (2010), [arXiv:0911.1753].
[348] J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980); T. P. Cheng and L.-F. Li, Phys. Rev. D22, 2860 (1980).
[349] H. Georgi and M. Machacek, Nucl. Phys. B262, 463 (1985); M. S. Chanowitz and M. Golden, Phys. Lett. 165B, 105 (1985); J. F. Gunion, R. Vega and J. Wudka, Phys. Rev. D42, 1673 (1990).
[350] P. Nath et al., Nucl. Phys. Proc. Suppl. 200-202, 185 (2010), [arXiv:1001.2693].
[351] J. Garayoa and T. Schwetz, JHEP 03, 009 (2008), [arXiv:0712.1453].
[352] H. E. Haber and H. E. Logan, Phys. Rev. D62, 015011 (2000), [hep-ph/9909335]; J. F. Gunion, R. Vega and J. Wudka, Phys. Rev. D43, 2322 (1991); S. Kanemura and K. Yagyu, Phys. Rev. D85, 115009 (2012), [arXiv:1201.6287].
[353] I. Low and J. Lykken, JHEP 10, 053 (2010), [arXiv:1005.0872]; I. Low, J. Lykken and G. Shaughnessy, Phys. Rev. D86, 093012 (2012), [arXiv:1207.1093].
[354] H. E. Logan and M.-A. Roy, Phys. Rev. D82, 115011 (2010), [arXiv:1008.4869]; A. Falkowski, S. Rychkov and A. Urbano, JHEP 04, 073 (2012), [arXiv:1202.1532].
[355] N. Arkani-Hamed et al., JHEP 07, 034 (2002), [hepph/0206021]; N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B513, 232 (2001), [hep-ph/0105239].
[356] M. Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007), [hepph/0512128]; M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005), [hep-ph/0502182].
[357] J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 03, 038 (2005), [hep-ph/0502066].
[358] H.-C. Cheng and I. Low, JHEP 09, 051 (2003), [hepph/0308199].
[359] M. Carena et al., Phys. Rev. D75, 091701 (2007), [hepph/0610156].
[360] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 21, 211801 (2018), [arXiv:1808.02343]; A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 4, 364 (2019), [arXiv:1812.09768].
[361] H. Georgi, A. E. Nelson and A. Manohar, Phys. Lett. 126B, 169 (1983); A. E. Nelson and M. J. Strassler, JHEP 09, 030 (2000), [hep-ph/0006251]; S. Davidson, G. Isidori and S. Uhlig, Phys. Lett. B663, 73 (2008), [arXiv:0711.3376].
[362] C. Csaki, A. Falkowski and A. Weiler, JHEP 09, 008 (2008), [arXiv:0804.1954]; B. Keren-Zur et al., Nucl. Phys. B867, 394 (2013), [arXiv:1205.5803].
[363] O. Matsedonskyi, G. Panico and A. Wulzer, JHEP 01, 164 (2013), [arXiv:1204.6333]; M. Redi and A. Tesi, JHEP 10, 166 (2012), [arXiv:1205.0232]; D. Marzocca, M. Serone and J. Shu, JHEP 08, 013 (2012), [arXiv:1205.0770]; A. Pomarol and F. Riva, JHEP 08, 135 (2012), [arXiv:1205.6434].
[364] R. Contino and G. Servant, JHEP 06, 026 (2008), [arXiv:0801.1679]; J. Mrazek and A. Wulzer, Phys. Rev. D81, 075006 (2010), [arXiv:0909.3977]; A. De Simone et al., JHEP 04, 004 (2013), [arXiv:1211.5663]; A. Azatov et al., Phys. Rev. D89, 7, 075001 (2014), [arXiv:1308.6601].
[365] A. Banfi, A. Martin and V. Sanz, JHEP 08, 053 (2014), [arXiv:1308.4771]; A. Azatov and A. Paul, JHEP 01, 014 (2014), [arXiv:1309.5273]; C. Grojean et al., JHEP 05, 022 (2014), [arXiv:1312.3317].
[366] A. Azatov et al., Phys. Rev. D92, 3, 035001 (2015), [arXiv:1502.00539].
[367] K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B719, 165 (2005), [hep-ph/0412089]; R. Contino, L. Da Rold and A. Pomarol, Phys. Rev. D75, 055014 (2007), [hepph/0612048]; D. Pappadopulo, A. Thamm and R. Torre, JHEP 07, 058 (2013), [arXiv:1303.3062]; M. Montull et al., Phys. Rev. D88, 095006 (2013), [arXiv:1308.0559].
[368] M. Carena, L. Da Rold and E. Pontón, JHEP 06, 159 (2014), [arXiv:1402.2987]; D. Liu, I. Low and C. E. M. Wagner, Phys. Rev. D96, 3, 035013 (2017), [arXiv:1703.07791].
[369] I. Low, R. Rattazzi and A. Vichi, JHEP 04, 126 (2010), [arXiv:0907.5413].
[370] M. Ciuchini et al., JHEP 08, 106 (2013), [arXiv:1306.4644].
[371] C. Grojean, O. Matsedonskyi and G. Panico, JHEP 10, 160 (2013), [arXiv:1306.4655].
[372] M. Geller and O. Telem, Phys. Rev. Lett. 114, 191801 (2015), [arXiv:1411.2974].
[373] P. Batra and Z. Chacko, Phys. Rev. D79, 095012 (2009), [arXiv:0811.0394]; R. Barbieri et al., JHEP 08, 161 (2015), [arXiv:1501.07803]; M. Low, A. Tesi and L.-T. Wang, Phys. Rev. D91, 095012 (2015), [arXiv:1501.07890].
[374] M. Aaboud et al. (ATLAS), Phys. Lett. B775, 105 (2017), [arXiv:1707.04147].
[375] CMS Collaboration, CMS-PAS-HIG-17-13 (2017); V. Khachatryan et al. (CMS), Phys. Lett. B767, 147 (2017), [arXiv:1609.02507].
[376] A. M. Sirunyan et al. (CMS), Phys. Lett. B793, 320 (2019), [arXiv:1811.08459].
[377] CMS Collaboration, CMS-PAS-HIG-16-014 (2016).
[378] ATLAS Collaboration, ATLAS-CONF-2017-058 (2017).
[379] CMS Collaboration, CMS-PAS-HIG-16-033 (2016).
[380] CMS Collaboration, CMS-PAS-HIG-16-023 (2016).
[381] ATLAS Collaboration, ATLAS-CONF-2016-082 (2016).
[382] CMS Collaboration, CMS-PAS-HIG-16-034 (2017).
[383] ATLAS Collaboration, ATLAS-CONF-2013-067 (2013).
[384] CMS Collaboration, CMS-PAS-HIG-17-033 (2019).
[385] ATLAS Collaboration, ATLAS-CONF-2012-018 (2012).
[386] M. Aaboud et al. (ATLAS), Phys. Lett. B777, 91 (2018), [arXiv:1708.04445].
[387] G. Aad et al. (ATLAS), JHEP 09, 091 (2019), [arXiv:1906.08589].
[388] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 5, 052008 (2018), [arXiv:1808.02380].
[389] ATLAS Collaboration, ATLAS-CONF-2016-004 (2016); M. Aaboud et al. (ATLAS), JHEP 05, 124 (2019), [arXiv:1811.11028]; M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 12, 1007 (2018), [arXiv:1807.08567].
[390] ATLAS Collaboration, ATLAS-CONF-2019-030 (2019); M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 19, 191801 (2018), [Erratum: Phys. Rev. Lett. 122, 089901 (2019)], [arXiv:1808.00336]; G. Aad et al. (ATLAS) (2019), [arXiv:1908.06765].
[391] CMS Collaboration, CMS-PAS-HIG-2017-008 (2016).
[392] V. Khachatryan et al. (CMS), Phys. Lett. B755, 217 (2016), [arXiv:1510.01181].
[393] CMS Collaboration, CMS-PAS-HIG-18-013 (2019).
[394] M. Aaboud et al. (ATLAS), JHEP 01, 055 (2018), [arXiv:1709.07242].
[395] A. M. Sirunyan et al. (CMS), JHEP 09, 007 (2018), [arXiv:1803.06553].
[396] V. M. Abazov et al. (D0), Phys. Rev. Lett. 104, 151801 (2010), [arXiv:0912.0968].
[397] D0 Collaboration, D0Note 5974-CONF (2011).
[398] R. Aaij et al. (LHCb), JHEP 05, 132 (2013), [arXiv:1304.2591].
[399] A. M. Sirunyan et al. (CMS), JHEP 05, 210 (2019), [arXiv:1903.10228].
[400] M. Aaboud et al. (ATLAS), JHEP 07, 117 (2019), [arXiv:1901.08144].
[401] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.03152].
[402] CMS Collaboration, CMS-PAS-HIG-18-017 (2019).
[403] ATLAS Collaboration, ATLAS-CONF-2019-036 (2019).
[404] A. M. Sirunyan et al. (CMS), JHEP 11, 161 (2018), [arXiv:1808.01890].
[405] G. Aad et al. (ATLAS), JHEP 08, 148 (2015), [arXiv:1505.07018].
[406] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1908.01115].
[407] G. Aad et al. (ATLAS) (2019), [arXiv:1907.02749].
[408] S. Chatrchyan et al. (CMS), Phys. Lett. B722, 207 (2013), [arXiv:1302.2892]; CMS Collaboration, CMS-PAS-HIG-16025 (2016); A. M. Sirunyan et al. (CMS), JHEP 08, 113 (2018), [arXiv:1805.12191].
[409] V. M. Abazov et al. (D0), Phys. Lett. B698, 97 (2011), [arXiv:1011.1931].
[410] T. Aaltonen et al. (CDF), Phys. Rev. D85, 032005 (2012), [arXiv:1106.4782].
[411] ATLAS Collaboration, ATLAS-CONF-2017-055 (2017); G. Aad et al. (ATLAS), Phys. Lett. B744, 163 (2015), [arXiv:1502.04478].
[412] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 7, 564 (2019), [arXiv:1903.00941].
[413] CMS Collaboration, CMS-PAS-HIG-18-012 (2019).
[414] M. Aaboud et al. (ATLAS), Phys. Lett. B759, 555 (2016), [arXiv:1603.09203].
[415] M. Aaboud et al. (ATLAS), JHEP 09, 139 (2018), [arXiv:1807.07915].
[416] CMS Collaboration, CMS-PAS-HIG-16-031 (2016); A. M. Sirunyan et al. (CMS), JHEP 07, 142 (2019), [arXiv:1903.04560].
[417] ATLAS Collaboration, ATLAS-CONF-2012-010 (2012).
[418] V. Khachatryan et al. (CMS), JHEP 12, 178 (2015), [arXiv:1510.04252].
[419] ATLAS Collaboration, ATLAS-CONF-2016-089 (2016); M. Aaboud et al. (ATLAS), JHEP 11, 085 (2018), [arXiv:1808.03599].
[420] V. Khachatryan et al. (CMS), JHEP 11, 018 (2015), [arXiv:1508.07774]; A. M. Sirunyan et al. (CMS) (2019), [arXiv:1908.09206].
[421] G. Aad et al. (ATLAS), Phys. Rev. Lett. 114, 23, 231801 (2015), [arXiv:1503.04233].
[422] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 119, 14, 141802 (2017), [arXiv:1705.02942].
[423] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 123, 13, 131802 (2019), [arXiv:1905.07453].
[424] CMS Collaboration, CMS-PAS-HIG-16-030 (2016).
[425] ATLAS Collaboration, ATLAS-CONF-2011-020 (2011).
[426] CMS Collaboration, CMS-PAS-HIG-15-009 (2016).
[427] G. Aad et al. (ATLAS), Phys. Rev. D92, 5, 052002 (2015), [arXiv:1505.01609]; ATLAS Collaboration, ATLAS-CONF-2012-079 (2012).
[428] CMS Collaboration, CMS-PAS-HIG-16-055 (2016); V. Khachatryan et al. (CMS), JHEP 10, 076 (2017), [arXiv:1701.02032]; A. M. Sirunyan et al. (CMS), Phys. Lett. B795, 398 (2019), [arXiv:1812.06359]; A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.07235]; A. M. Sirunyan et al. (CMS), Phys. Lett. B785, 462 (2018), [arXiv:1805.10191]; A. M. Sirunyan et al. (CMS), JHEP 11, 018 (2018), [arXiv:1805.04865]; CMS Collaboration, CMS-PAS-HIG-18-015 (2019).
[429] V. M. Abazov et al. (D0), Phys. Rev. Lett. 103, 061801 (2009), [arXiv:0905.3381].
[430] A. M. Sirunyan et al. (CMS), Phys. Lett. B796, 131 (2019), [arXiv:1812.00380].
[431] S. Schael et al. (ALEPH), JHEP 05, 049 (2010), [arXiv:1003.0705].
[432] B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 081803 (2009), [arXiv:0905.4539].
[433] B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 181801 (2009), [arXiv:0906.2219].
[434] ATLAS Collaboration, ATLAS-CONF-2016-051 (2016); ATLAS Collaboration, ATLAS-CONF-2017-053 (2017); M. Aaboud et al. (ATLAS), Eur. Phys. J. C79, 1, 58 (2019), [arXiv:1808.01899].
[435] CMS Collaboration, CMS-PAS-HIG-16-036 (2017).
[436] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches), Eur. Phys. J. C47, 547 (2006), [hep-ex/0602042].
[437] ATLAS Collaboration, ATLAS-CONF-2013-027 (2013).
[438] CMS Collaboration, CMS-PAS-HIG-13-016 (2013).
[439] A. Heister et al. (ALEPH), Phys. Lett. B526, 191 (2002), [hep-ex/0201014]; P. Achard et al. (L3), Phys. Lett. B545, 30 (2002), [hep-ex/0208042].
[440] M. Carena et al. (1999), [hep-ph/9912223].
[441] M. M. Kado and C. G. Tully, Ann. Rev. Nucl. Part. Sci. 52, 65 (2002).
[442] G. Abbiendi et al. (OPAL), Eur. Phys. J. C23, 397 (2002), [hep-ex/0111010]; J. Abdallah et al. (DELPHI), Eur. Phys. J. C38, 1 (2004), [hep-ex/0410017].
[443] M. Carena et al., Eur. Phys. J. C45, 797 (2006), [hepph/0511023].
[444] ATLAS Collaboration, ATLAS-CONF-2016-104 (2016).
[445] S. Chatrchyan et al. (CMS), JHEP 09, 029 (2012), [Erratum: JHEP 03, 132 (2014)], [arXiv:1204.2488].
[446] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 119, 19, 191803 (2017), [arXiv:1707.06025].
[447] V. Khachatryan et al. (CMS), Phys. Lett. B758, 296 (2016), [arXiv:1511.03610].
[448] A. M. Sirunyan et al. (CMS), JHEP 11, 010 (2017), [arXiv:1707.07283].
[449] J. Bernon et al., Phys. Rev. D91, 7, 075019 (2015), [arXiv:1412.3385].
[450] G. Aad et al. (ATLAS), Phys. Rev. Lett. 113, 17, 171801 (2014), [arXiv:1407.6583].
[451] CMS Collaboration, CMS-PAS-HIG-14-037 (2015).
[452] CMS Collaboration, CMS-PAS-HIG-17-013 (2017).
[453] S. Heinemeyer, Int. J. Mod. Phys. A33, 31, 1844006 (2018).
[454] S. H. Zhu, arXiv preprint (1999), [hep-ph/9901221].
[455] H. E. Logan and S.-f. Su, Phys. Rev. D66, 035001 (2002), [hep-ph/0203270].
[456] A. Gutierrez-Rodriguez and O. A. Sampayo, Phys. Rev. D62, 055004 (2000).
[457] S. Kanemura, S. Moretti and K. Odagiri, JHEP 02, 011 (2001), [hep-ph/0012030].
[458] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110, 252004 (2013), [arXiv:1303.6254].
[459] M. Carena et al., Nucl. Phys. B577, 88 (2000), [hepph/9912516].
[460] J. M. Campbell, R. K. Ellis and F. Tramontano, Phys. Rev. D70, 094012 (2004), [hep-ph/0408158].
[461] C. Degrande et al., Phys. Lett. B772, 87 (2017), [arXiv:1607.05291].
[462] A. A. Barrientos Bendezu and B. A. Kniehl, Phys. Rev. D63, 015009 (2001), [hep-ph/0007336]; A. A. Barrientos Bendezu and B. A. Kniehl, Nucl. Phys. B568, 305 (2000), [hep-ph/9908385].
[463] G. Abbiendi et al. (ALEPH, DELPHI, L3, OPAL, LEP), Eur. Phys. J. C73, 2463 (2013), [arXiv:1301.6065].
[464] B. Abbott et al. (D0), Phys. Rev. Lett. 82, 4975 (1999), [hep-ex/9902028]; A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 042003 (2006), [hep-ex/0510065]; V. M. Abazov et al. (D0), Phys. Lett. B682, 278 (2009), [arXiv:0908.1811].
[465] J. Abdallah et al. (DELPHI), Eur. Phys. J. C54, 1 (2008), [Erratum: Eur. Phys. J. C56, 165 (2008)], [arXiv:0801.3586].
[466] R. Dermisek, Mod. Phys. Lett. A24, 1631 (2009), [arXiv:0907.0297].
[467] J. F. Gunion, JHEP 08, 032 (2009), [arXiv:0808.2509].
[468] W. Love et al. (CLEO), Phys. Rev. Lett. 101, 151802 (2008), [arXiv:0807.1427].
[469] G. Aad et al. (ATLAS), Eur. Phys. J. C72, 2244 (2012), [arXiv:1210.5070]; S. Chatrchyan et al. (CMS), Eur. Phys. J. C72, 2189 (2012), [arXiv:1207.2666].
[470] G. Aad et al. (ATLAS), Phys. Rev. D89, 3, 032002 (2014), [arXiv:1312.1956].
[471] J. de Blas et al., JHEP 01, 139 (2020), [arXiv:1905.03764].

12. CKM Quark-Mixing Matrix

Revised March 2020 by A. Ceccucci (CERN), Z. Ligeti (LBNL) and Y. Sakai (KEK).

12.1 Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM). They arise from the Yukawa interactions with the Higgs condensate,

$$
\begin{equation*}
\mathcal{L}_{Y}=-Y_{i j}^{d} \overline{Q_{L i}^{I}} \phi d_{R j}^{I}-Y_{i j}^{u} \overline{Q_{L i}^{I}} \epsilon \phi^{*} u_{R j}^{I}+\text { h.c. } \tag{12.1}
\end{equation*}
$$

where $Y^{u, d}$ are 3×3 complex matrices, ϕ is the Higgs field, i, j are generation labels, and ϵ is the 2×2 antisymmetric tensor. Q_{L}^{I} are left-handed quark doublets, and d_{R}^{I} and u_{R}^{I} are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate basis. When ϕ acquires a vacuum expectation value, $\langle\phi\rangle=(0, v / \sqrt{2})$, Eq. (12.1) yields mass terms for the quarks. The physical states are obtained by diagonalizing $Y^{u, d}$
by four unitary matrices, $V_{L, R}^{u, d}$, as $M_{\text {diag }}^{f}=V_{L}^{f} Y^{f} V_{R}^{f \dagger}(v / \sqrt{2})$, $f=u, d$. As a result, the charged-current $W^{ \pm}$interactions couple to the physical $u_{L j}$ and $d_{L k}$ quarks with couplings given by

$$
\begin{align*}
& \frac{-g}{\sqrt{2}}\left(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}}\right) \gamma^{\mu} W_{\mu}^{+} V_{\mathrm{CKM}}\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\text { h.c., } \\
& V_{\mathrm{CKM}} \equiv V_{L}^{u} V_{L}^{d \dagger}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \tag{12.2}
\end{align*}
$$

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3×3 unitary matrix. It can be parameterized by three mixing angles and the $C P$-violating KM phase [2]. Of the many possible conventions, a standard choice has become [3]

$$
\begin{align*}
V_{\mathrm{CKM}} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{13} e^{-i \delta} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \tag{12.3}
\end{align*}
$$

where $s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$, and δ is the phase responsible for all $C P$-violating phenomena in flavor-changing processes in the SM . The angles $\theta_{i j}$ can be chosen to lie in the first quadrant, so $s_{i j}, c_{i j} \geq 0$.

It is known experimentally that $s_{13} \ll s_{23} \ll s_{12} \ll 1$, and it is convenient to exhibit this hierarchy using the Wolfenstein parameterization. We define [4-6]

$$
\begin{align*}
s_{12} & =\lambda=\frac{\left|V_{u s}\right|}{\sqrt{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}}, \quad s_{23}=A \lambda^{2}=\lambda\left|\frac{V_{c b}}{V_{u s}}\right| \\
s_{13} e^{i \delta} & =V_{u b}^{*}=A \lambda^{3}(\rho+i \eta)=\frac{A \lambda^{3}(\bar{\rho}+i \bar{\eta}) \sqrt{1-A^{2} \lambda^{4}}}{\sqrt{1-\lambda^{2}}\left[1-A^{2} \lambda^{4}(\bar{\rho}+i \bar{\eta})\right]} \tag{12.4}
\end{align*}
$$

These relations ensure that $\bar{\rho}+i \bar{\eta}=-\left(V_{u d} V_{u b}^{*}\right) /\left(V_{c d} V_{c b}^{*}\right)$ is phase convention independent, and the CKM matrix written in terms of $\lambda, A, \bar{\rho}$, and $\bar{\eta}$ is unitary to all orders in λ. The definitions of $\bar{\rho}, \bar{\eta}$ reproduce all approximate results in the literature; i.e., $\bar{\rho}=\rho\left(1-\lambda^{2} / 2+\ldots\right)$ and $\bar{\eta}=\eta\left(1-\lambda^{2} / 2+\ldots\right)$, and one can write V_{CKM} to $\mathcal{O}\left(\lambda^{4}\right)$ either in terms of $\bar{\rho}, \bar{\eta}$ or, traditionally,
$V_{\mathrm{CKM}}=\left(\begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)$.
The CKM matrix elements are fundamental parameters of the SM, so their precise determination is important. The unitarity of the CKM matrix imposes $\sum_{i} V_{i j} V_{i k}^{*}=\delta_{j k}$ and $\sum_{j} V_{i j} V_{k j}^{*}=\delta_{i k}$. The six vanishing combinations can be represented as triangles in a complex plane, of which those obtained by taking scalar products of neighboring rows or columns are nearly degenerate. The areas of all triangles are the same, half of the Jarlskog invariant, J [7], which is a phase-convention-independent measure of $C P$ violation, defined by $\operatorname{Im}\left[V_{i j} V_{k l} V_{i l}^{*} V_{k j}^{*}\right]=J \sum_{m, n} \varepsilon_{i k m} \varepsilon_{j l n}$.

The most commonly used unitarity triangle arises from

$$
\begin{equation*}
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \tag{12.6}
\end{equation*}
$$

by dividing each side by the best-known one, $V_{c d} V_{c b}^{*}$ (see Fig. 12.1). Its vertices are exactly $(0,0),(1,0)$, and, due to the definition in Eq. $(12.4),(\bar{\rho}, \bar{\eta})$. An important goal of flavor physics is to overconstrain the CKM elements, and many measurements can be conveniently displayed and compared in the $\bar{\rho}, \bar{\eta}$ plane. While

Figure 12.1: Sketch of the unitarity triangle.
the Lagrangian in Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence above the weak scale [8], below $\mu=m_{W}$ the CKM elements can be treated as constants, with all μ-dependence contained in the running of quark masses and higher-dimension operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM, to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes dominated by loop-level contributions in the SM are particularly sensitive to new physics beyond the SM (BSM). We give the global fit results for the CKM elements in Sec. 12.4, and discuss some implications for beyond standard model physics in Sec. 12.5.

12.2 Magnitudes of CKM elements

12.2.1 $\left|V_{u d}\right|$

The most precise determination of $\left|V_{u d}\right|$ comes from the study of superallowed $0^{+} \rightarrow 0^{+}$nuclear beta decays, which are pure vector transitions. Taking the average of the fourteen most precise determinations [9] yields [10]

$$
\begin{equation*}
\left|V_{u d}\right|=0.97370 \pm 0.00014 \tag{12.7}
\end{equation*}
$$

This value is about 2σ smaller than in the review two years ago, mainly due to adopting a recent calculation of electroweak corrections based on dispersion relations [11]. The dominant and comparable uncertainties are the experimental ones, and from the estimates of the radiative corrections. A less precise determination of $\left|V_{u d}\right|$ can be obtained from the measurement of the neutron lifetime. The theoretical uncertainties are very small, but the determination is limited by the knowledge of the ratio of the axial-
vector and vector couplings, $g_{A}=G_{A} / G_{V}$ [10]. The PIBETA experiment [12] has improved the measurement of the $\pi^{+} \rightarrow \pi^{0} e^{+} \nu$ branching ratio to 0.6%, and quotes $\left|V_{u d}\right|=0.9739 \pm 0.0029$, in agreement with the more precise result listed above. The interest in this measurement is that the determination of $\left|V_{u d}\right|$ is very clean theoretically, because it is a pure vector transition and is free from nuclear-structure uncertainties.

12.2.2 $\left|V_{u s}\right|$

The product of $\left|V_{u s}\right|$ and the form factor at $q^{2}=0,\left|V_{u s}\right| f_{+}(0)$, has been extracted traditionally from $K_{L}^{0} \rightarrow \pi e \nu$ decays in order to avoid isospin-breaking corrections ($\pi^{0}-\eta$ mixing) that affect $K^{ \pm}$semileptonic decay, and the complications induced by a second (scalar) form factor present in the muonic decays. The last round of measurements has led to enough experimental constraints to justify the comparison between different decay modes. Systematic errors related to the experimental quantities, e.g., the lifetime of neutral or charged kaons, and the form factor determinations for electron and muonic decays, differ among decay modes, and the consistency between different determinations enhances the confidence in the final result. For this reason, we follow the prescription [13] to average $K_{L}^{0} \rightarrow \pi e \nu, K_{L}^{0} \rightarrow \pi \mu \nu, K^{ \pm} \rightarrow$ $\pi^{0} e^{ \pm} \nu, K^{ \pm} \rightarrow \pi^{0} \mu^{ \pm} \nu$ and $K_{S}^{0} \rightarrow \pi e \nu$. The average of these five decay modes yields $\left|V_{u s}\right| f_{+}(0)=0.2165 \pm 0.0004$. Results obtained from each decay mode, and exhaustive references to the experimental data, are listed for instance in Ref. [10]. The form factor average $f_{+}(0)=0.9706 \pm 0.0027[14]$ from $N_{f}=2+1+1$ lattice QCD calculations gives $\left|V_{u s}\right|=0.2231 \pm 0.0007[10] .{ }^{1}$ The broadly used classic calculation of $f_{+}(0)$ [16] is in good agreement with this value, while other calculations [18] differ by as much as 2%.

The calculation of the ratio of the kaon and pion decay constants enables one to extract $\left|V_{u s} / V_{u d}\right|$ from $K \rightarrow \mu \nu(\gamma)$ and $\pi \rightarrow \mu \nu(\gamma)$, where (γ) indicates that radiative decays are included [19]. The value of $\Gamma(K \rightarrow \mu \nu(\gamma))$ [10] derived from the KLOE measurement of the corresponding branching ratio [20], combined with the lattice QCD result, $f_{K} / f_{\pi}=1.1932 \pm 0.0019$ [14], leads to $\left|V_{u s}\right|=0.2252 \pm 0.0005$, where the accuracy is limited by the knowledge of the ratio of the decay constants. The average of these two determinations, with the error scaled according to the PDG prescription [21] by $\sqrt{\chi^{2}}=2.0$, is quoted as [10]

$$
\begin{equation*}
\left|V_{u s}\right|=0.2245 \pm 0.0008 \tag{12.8}
\end{equation*}
$$

It is important to include both QED and QCD isospin violations in the lattice QCD calculations.

The latest determination from hyperon decays can be found in Ref. [22]. The authors focus on the analysis of the vector form factor, protected from first order $S U(3)$ breaking effects by the Ademollo-Gatto theorem [23], and treat the ratio between the axial and vector form factors g_{1} / f_{1} as experimental input, thus avoiding first order $S U(3)$ breaking effects in the axial-vector contribution. They find $\left|V_{u s}\right|=0.2250 \pm 0.0027$, although this does not include an estimate of the theoretical uncertainty due to second-order $S U(3)$ breaking, contrary to Eq. (12.8). Concerning hadronic τ decays to strange particles, averaging the inclusive decay and the exclusive $\tau \rightarrow h \nu(h=\pi, K)$ measurements yields $\left|V_{u s}\right|=0.2221 \pm 0.0013$ [24].

12.2.3 $\left|V_{c d}\right|$

The magnitude of $V_{c d}$ can be extracted from semileptonic charm decays, using theoretical knowledge of the form factors. In semileptonic D decays, lattice QCD calculations have predicted the normalization of the $D \rightarrow \pi \ell \nu$ and $D \rightarrow K \ell \nu$ form factors [14]. The dependence on the invariant mass of the lepton pair, q^{2}, is determined from lattice QCD and theoretical constraints from analyticity [15]. Using $N_{f}=2+1+1$ lattice QCD calculations for $D \rightarrow \pi \ell \nu, f_{+}^{D \pi}(0)=0.612 \pm 0.035$ [14], and the average [24] of the measurements of $D \rightarrow \pi \ell \nu$ decays by

[^32]BABAR [25], BESIII [26,27], CLEO-c [28], and Belle [29], one obtains $\left|V_{c d}\right|=0.2330 \pm 0.0029 \pm 0.0133$, where the first uncertainty is experimental, and the second is from the theoretical uncertainty of the form factor.

The determination of $\left|V_{c d}\right|$ is also possible from the leptonic decay $D^{+} \rightarrow \mu^{+} \nu$. The experimental uncertainties have not decreased significantly recently. Averaging the BESIII [30] and earlier CLEO [31] measurements, and using the $N_{f}=2+1+1$ lattice QCD result, $f_{D}=212.0 \pm 0.7 \mathrm{MeV}$ [14], yields $\left|V_{c d}\right|=$ $0.2173 \pm 0.0051 \pm 0.0007[24] .{ }^{2}$

Earlier determinations of $\left|V_{c d}\right|$ came from neutrino scattering data. The difference of the ratio of double-muon to single-muon production by neutrino and antineutrino beams is proportional to the charm cross section off valence d quarks, and therefore to $\left|V_{c d}\right|^{2}$ times the average semileptonic branching ratio of charm mesons, \mathcal{B}_{μ}. The method was used first by CDHS [32] and then by CCFR [33, 34] and CHARM II [35]. Averaging these results is complicated, because it requires assumptions about the scale of the QCD corrections, and because \mathcal{B}_{μ} is an effective quantity, which depends on the specific neutrino beam characteristics. With no recent experimental input available, we quote the average from a past review, $\mathcal{B}_{\mu}\left|V_{c d}\right|^{2}=(0.463 \pm 0.034) \times 10^{-2}[36]$. Analysis cuts make these experiments insensitive to neutrino energies smaller than 30 GeV . Thus, \mathcal{B}_{μ} should be computed using only neutrino interactions with visible energy larger than 30 GeV . An appraisal [37] based on charm-production fractions measured in neutrino interactions $[38,39]$ gives $\mathcal{B}_{\mu}=0.088 \pm 0.006$. Data from the CHORUS experiment [40] are sufficiently precise to extract \mathcal{B}_{μ} directly, by comparing the number of charm decays with a muon to the total number of charmed hadrons found in the nuclear emulsions. Requiring the visible energy to be larger than 30 GeV , CHORUS found $\mathcal{B}_{\mu}=0.085 \pm 0.009 \pm 0.006$. We use the average of these two determinations, $\mathcal{B}_{\mu}=0.087 \pm 0.005$, and obtain $\left|V_{c d}\right|=0.230 \pm 0.011$. Averaging the three determinations above, we find

$$
\begin{equation*}
\left|V_{c d}\right|=0.221 \pm 0.004 \tag{12.9}
\end{equation*}
$$

12.2.4 $\left|V_{c s}\right|$

The direct determination of $\left|V_{c s}\right|$ is possible from semileptonic D or leptonic D_{s} decays, using lattice QCD calculations of the semileptonic D form factor or the D_{s} decay constant. For muonic decays, the average of Belle [41], CLEO-c [42], BABAR [43], and BESIII [44, 45] is $\mathcal{B}\left(D_{s}^{+} \rightarrow \mu^{+} \nu\right)=(5.51 \pm 0.16) \times 10^{-3}$ [24]. For decays to τ leptons, the average of CLEO-c [42, 46, 47], $B A B A R$ [43], Belle [41], and BESIII [44] gives $\mathcal{B}\left(D_{s}^{+} \rightarrow \tau^{+} \nu\right)=$ $(5.52 \pm 0.24) \times 10^{-2}[24]$. From each of these values, determinations of $\left|V_{c s}\right|$ can be obtained using the PDG values for the mass and lifetime of the D_{s}, the masses of the leptons, and $f_{D_{s}}=(249.9 \pm 0.5) \mathrm{MeV}$ [14]. The average of these determinations gives $\left|V_{c s}\right|=0.992 \pm 0.012$, where the error is dominated by the experimental uncertainty. In semileptonic D decays, lattice QCD calculations of the $D \rightarrow K \ell \nu$ form factor are available [14]. Using $f_{+}^{D K}(0)=0.765 \pm 0.031$ and the average [24] of CLEO-c [28], Belle [29], BABAR [48], and recent BESIII [26, 49] measurements of $D \rightarrow K \ell \nu$ decays, one obtains $\left|V_{c s}\right|=0.939 \pm 0.038$, where the dominant uncertainty is from the theoretical calculation of the form factor. Averaging the determinations from leptonic and semileptonic decays, we find

$$
\begin{equation*}
\left|V_{c s}\right|=0.987 \pm 0.011 \tag{12.10}
\end{equation*}
$$

Measurements of on-shell $W^{ \pm}$decays sensitive to $\left|V_{c s}\right|$ were made by LEP-2. The W branching ratios depend on the six CKM elements involving quarks lighter than m_{W}. The W branching ratio to each lepton flavor is $1 / \mathcal{B}\left(W \rightarrow \ell \bar{\nu}_{\ell}\right)=3[1+$ $\left.\sum_{u, c, d, s, b}\left|V_{i j}\right|^{2}\left(1+\alpha_{s}\left(m_{W}\right) / \pi\right)+\ldots\right]$. Assuming lepton universality, the measurement $\mathcal{B}\left(W \rightarrow \ell \bar{\nu}_{\ell}\right)=(10.83 \pm 0.07 \pm 0.07) \%[50]$ implies $\sum_{u, c, d, s, b}\left|V_{i j}\right|^{2}=2.002 \pm 0.027$. This is a precise test of unitarity; however, only flavor-tagged W-decays determine $\left|V_{c s}\right|$

[^33]directly, such as DELPHI's tagged $W^{+} \rightarrow c \bar{s}$ analysis, yielding $\left|V_{c s}\right|=0.94_{-0.26}^{+0.32} \pm 0.13[51]$.
12.2.5 $\left|V_{c b}\right|$

This matrix element can be determined from exclusive and inclusive semileptonic decays of B mesons to charm. The inclusive determinations use the semileptonic decay rate measurement, together with (certain moments of) the lepton energy and the hadronic invariant-mass spectra. The theoretical basis is the operator product expansion [52,53], which allows calculation of the decay rate and various spectra as expansions in α_{s} and inverse powers of the heavy-quark mass. The dependence on m_{b}, m_{c}, and the parameters that occur at subleading order is different for different moments, and a large number of measured moments overconstrain all the parameters, and tests the consistency of the determination. The precise extraction of $\left|V_{c b}\right|$ requires using a "threshold" quark mass definition $[54,55]$. Inclusive measurements have been performed using B mesons from Z^{0} decays at LEP, and at $e^{+} e^{-}$machines operated at the $\Upsilon(4 S)$. At LEP, the large boost of B mesons from the Z^{0} decay allows the determination of the moments throughout phase space, which is not possible otherwise, but the large statistics available at the B factories lead to more precise determinations. An average of the measurements and a compilation of the references are provided in Ref. [15]: $\left|V_{c b}\right|=(42.2 \pm 0.8) \times 10^{-3}$.

Complementary determinations are based on exclusive semileptonic B decays to D and D^{*}. In the $m_{b, c} \gg \Lambda_{\mathrm{QCD}}$ limit, all form factors are given by a single Isgur-Wise function [56], which depends on the product of the four-velocities of the B and $D^{(*)}$ mesons, $w=v \cdot v^{\prime}$. Heavy-quark symmetry determines the rate at $w=1$, the maximum momentum transfer to the $\ell \bar{\nu}$ pair, and $\left|V_{c b}\right|$ is obtained from an extrapolation to $w=1$. The current update of the $V_{c b}$ and $V_{u b}$ minireview quotes from exclusive decays $\left|V_{c b}\right|=(39.5 \pm 0.9) \times 10^{-3}$ [15], based on the only unfolded measurement of $B \rightarrow D^{*}$ semileptonic decay distributions [57], and using a more general fit [58] than in earlier B factory measurements. With the uncertainty scaled by $\sqrt{\chi^{2}}=2.4$, this yields the combination [15],

$$
\begin{equation*}
\left|V_{c b}\right|=(41.0 \pm 1.4) \times 10^{-3} \tag{12.11}
\end{equation*}
$$

Less precise measurements of $\left|V_{c b}\right|$, not included in this average, can be obtained from $\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)$. The most precise data involving τ leptons are the $\left|V_{c b}\right|$-independent ratios, $\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)$ measured by BaBar, Belle, and LHCb . If the current, approximately 3σ [24], hint of lepton non-universality prevails, the determination of $\left|V_{c b}\right|$ becomes more complicated.

12.2.6 $\left|V_{u b}\right|$

The determination of $\left|V_{u b}\right|$ from inclusive $B \rightarrow X_{u} \ell \bar{\nu}$ decay is complicated due to large $B \rightarrow X_{c} \ell \bar{\nu}$ backgrounds. In most regions of phase space where the charm background is kinematically forbidden, the hadronic physics enters via unknown nonperturbative functions, so-called shape functions. (In contrast, the nonperturbative physics for $\left|V_{c b}\right|$ is encoded in a few parameters.) At leading order in $\Lambda_{\mathrm{QCD}} / m_{b}$, there is only one shape function, which can be extracted from the photon energy spectrum in $B \rightarrow X_{s} \gamma[59,60]$, and applied to several spectra in $B \rightarrow X_{u} \ell \bar{\nu}$. The subleading shape functions are modeled in the current determinations. Phase space cuts for which the rate has only subleading dependence on the shape function are also possible [61]. The measurements of both the hadronic and the leptonic systems are important for an optimal choice of phase space. A different approach is to make the measurements more inclusive by extending them deeper into the $B \rightarrow X_{c} \ell \bar{\nu}$ region, and thus reduce the theoretical uncertainties. Analyses of the electron-energy endpoint from CLEO [62], $B A B A R$ [63], and Belle [64] quote $B \rightarrow X_{u} e \bar{\nu}$ partial rates for $\left|\vec{p}_{e}\right| \geq 2.0 \mathrm{GeV}$ and 1.9 GeV , which are well below the charm endpoint. The large and pure $B \bar{B}$ samples at the B factories permit the selection of $B \rightarrow X_{u} \ell \bar{\nu}$ decays in events where the other B is fully reconstructed [65]. With this full-reconstruction tag method, the four-momenta of both the leptonic and the hadronic final states can be measured. It also gives access to a wider kine-
matic region, because of improved signal purity. Ref. [15] quotes the inclusive average, $\left|V_{u b}\right|=\left(4.25 \pm 0.12_{-0.14}^{+0.15} \pm 0.23\right) \times 10^{-3}$, where the first error is experimental, the second arises from the model dependence quoted by the individual measurements, and the third is an additional one estimated in Ref. [15].

To extract $\left|V_{u b}\right|$ from exclusive decays, the form factors have to be known. Experimentally, better signal-to-background ratios are offset by smaller yields. The $B \rightarrow \pi \ell \bar{\nu}$ branching ratio is now known to 5%. Lattice QCD calculations of the $B \rightarrow \pi \ell \bar{\nu}$ form factor are available [66] for the high q^{2} region $\left(q^{2}>16\right.$ or $\left.18 \mathrm{GeV}^{2}\right)$. A fit to the experimental partial rates and lattice QCD results versus q^{2} yields $\left|V_{u b}\right|=(3.70 \pm 0.10 \pm 0.12) \times 10^{-3}[24]$. Light-cone QCD sum rules are supposed to be applicable for $q^{2}<12 \mathrm{GeV}^{2}$ [67], yielding a combination, $\left|V_{u b}\right|=(3.67 \pm 0.09 \pm 0.12) \times 10^{-3}$ [15, 24].

The uncertainties in extracting $\left|V_{u b}\right|$ from inclusive and exclusive decays are different to a large extent. An average of these determinations, with the uncertainty scaled by $\sqrt{\chi^{2}}=1.6$, is [15]

$$
\begin{equation*}
\left|V_{u b}\right|=(3.82 \pm 0.24) \times 10^{-3} \tag{12.12}
\end{equation*}
$$

A determination of $\left|V_{u b}\right|$ not included in this average can be obtained from $\mathcal{B}(B \rightarrow \tau \bar{\nu})=(1.06 \pm 0.19) \times 10^{-4}[24]$. Using $f_{B}=(190.0 \pm 1.3) \mathrm{MeV}[14]$ and $\tau_{B^{ \pm}}=(1.638 \pm 0.004) \mathrm{ps}$ [68], we find the remarkably consistent result, $\left|V_{u b}\right|=(4.05 \pm 0.36) \times 10^{-3}$. This decay is sensitive, for example, to tree-level charged Higgs contributions, and the measured rate is consistent with the SM expectation. The LHCb measurement $\left|V_{u b} / V_{c b}\right|=0.079 \pm 0.006$ [69] from the ratio of $\Lambda_{b} \rightarrow p^{+} \mu^{-} \bar{\nu}$ and $\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}$ in different regions of q^{2}, provides another complementary determination.
12.2.7 $\left|V_{t d}\right|$ and $\left|V_{t s}\right|$

The CKM elements $\left|V_{t d}\right|$ and $\left|V_{t s}\right|$ are not likely to be precisely measurable in tree-level processes involving top quarks, so one has to rely on determinations from $B-\bar{B}$ oscillations dominated by box diagrams with top quarks, or loop-mediated rare K and B decays. Theoretical uncertainties in hadronic effects limit the accuracy of the current determinations. These can be reduced by taking ratios of processes that are equal in the flavor $S U(3)$ limit to determine $\left|V_{t d} / V_{t s}\right|$.

The mixing of the two B^{0} mesons was discovered by ARGUS [70], and the mass difference is now precisely measured as $\Delta m_{d}=$ $(0.5065 \pm 0.0019) \mathrm{ps}^{-1}[71]$. In the B_{s}^{0} system, Δm_{s} was first measured significantly by CDF [72] and the world average, dominated by an LHCb measurement [73], is $\Delta m_{s}=(17.749 \pm 0.020) \mathrm{ps}^{-1}$ [71]. Neglecting corrections suppressed by $\left|V_{t b}\right|-1$, and using the lattice QCD results $f_{B_{d}} \sqrt{\widehat{B}_{B_{d}}}=(225 \pm 9) \mathrm{MeV}$ and $f_{B_{s}} \sqrt{\widehat{B}_{B_{s}}}=(274 \pm 8) \mathrm{MeV}$ [14],

$$
\begin{equation*}
\left|V_{t d}\right|=(8.0 \pm 0.3) \times 10^{-3}, \quad\left|V_{t s}\right|=(38.8 \pm 1.1) \times 10^{-3} \tag{12.13}
\end{equation*}
$$

The uncertainties are dominated by lattice QCD. Several uncertainties are reduced in the calculation of the ratio $\xi=$ $\left(f_{B_{s}} \sqrt{\widehat{B}_{B_{s}}}\right) /\left(f_{B_{d}} \sqrt{\widehat{B}_{B_{d}}}\right)=1.206 \pm 0.038$ [14] and therefore the constraint on $\left|V_{t d} / V_{t s}\right|$ from $\Delta m_{d} / \Delta m_{s}$ is more reliable theoretically. These provide a theoretically clean and significantly improved determination,

$$
\begin{equation*}
\left|V_{t d} / V_{t s}\right|=0.205 \pm 0.001 \pm 0.006 \tag{12.14}
\end{equation*}
$$

The inclusive branching ratio $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.32 \pm 0.15) \times$ 10^{-4} extrapolated to $E_{\gamma}>E_{0}=1.6 \mathrm{GeV}[24]$ is also sensitive to $\left|V_{t b} V_{t s}\right|$. In addition to t-quark penguins, a substantial part of the rate comes from charm contributions proportional to $V_{c b} V_{c s}^{*}$ via the application of $3 \times 3 \mathrm{CKM}$ unitarity (which is used here). With the NNLO calculation of $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}} / \mathcal{B}\left(B \rightarrow X_{c} e \bar{\nu}\right)$ [74], we obtain $\left|V_{t s} / V_{c b}\right|=0.98 \pm 0.04$. The $B_{s} \rightarrow \mu^{+} \mu^{-}$rate is also proportional to $\left|V_{t b} V_{t s}\right|^{2}$ in the SM , and the world average, $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.1 \pm 0.6) \times 10^{-9}[24]$, is consistent with the SM, with sizable uncertainties.

A complementary determination of $\left|V_{t d} / V_{t s}\right|$ is possible from the ratio of $B \rightarrow \rho \gamma$ and $K^{*} \gamma$ rates. The ratio of the neutral modes
is theoretically cleaner than that of the charged ones, because the poorly known spectator-interaction contribution is expected to be smaller (W-exchange vs. weak annihilation). For now, because of low statistics, we average the charged and neutral rates assuming the isospin symmetry and heavy-quark limit motivated relation, $\left|V_{t d} / V_{t s}\right|^{2} / \xi_{\gamma}^{2}=\left[\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)+2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)\right] /\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.K^{*+} \gamma\right)+\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)\right]=(3.37 \pm 0.49) \%[24]$. Here ξ_{γ} contains the poorly known hadronic physics. Using $\xi_{\gamma}=1.2 \pm 0.2$ [75] gives $\left|V_{t d} / V_{t s}\right|=0.220 \pm 0.016 \pm 0.037$, where the first uncertainty is experimental and the second is theoretical.
A theoretically clean determination of $\left|V_{t d} V_{t s}^{*}\right|$ is possible from $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ decay [76]. Experimentally, only a handful of events have been observed [77, 78] and the rate is consistent with the SM with large uncertainties. Much more data are needed for a precision measurement.
12.2.8 $\left|V_{t b}\right|$

The determination of $\left|V_{t b}\right|$ from top decays uses the ratio of branching fractions $R=\mathcal{B}(t \rightarrow W b) / \mathcal{B}(t \rightarrow W q)=$ $\left|V_{t b}\right|^{2} /\left(\sum_{q}\left|V_{t q}\right|^{2}\right)=\left|V_{t b}\right|^{2}$, where $q=b, s, d$. The CDF and $\mathrm{D} \emptyset$ measurements performed on data collected during Run II of the Tevatron give $\left|V_{t b}\right|>0.78$ [79] and $0.99>\left|V_{t b}\right|>0.90$ [80], respectively, at 95% CL. CMS measured the same quantity at 8 TeV and obtained $\left|V_{t b}\right|>0.975$ [81] at $95 \% \mathrm{CL}$.
The direct determination of $\left|V_{t b}\right|$, without assuming unitarity, is possible from the single top quark production cross section. The $\left(3.30_{-0.40}^{+0.52}\right) \mathrm{pb}$ combined cross section [82] of DØ and CDF measurements implies $\left|V_{t b}\right|=1.02_{-0.05}^{+0.06}$. The LHC experiments, ATLAS and CMS, have measured single top quark production cross sections (and extracted $\left|V_{t b}\right|$) in t-channel, $W t$-channel, and s-channel at $7 \mathrm{TeV}, 8 \mathrm{TeV}$, and 13 TeV [83]. The average of these $\left|V_{t b}\right|$ values is calculated to be $\left|V_{t b}\right|=1.010 \pm 0.036$, where all systematic errors and theoretical errors are treated to be fully correlated. The average of Tevatron and LHC values gives

$$
\begin{equation*}
\left|V_{t b}\right|=1.013 \pm 0.030 \tag{12.15}
\end{equation*}
$$

The experimental systematic uncertainties dominate, and a dedicated combination would be welcome.

A weak constraint on $\left|V_{t b}\right|$ can be obtained from precision electroweak data, where top quarks enter in loops. The sensitivity is best in $\Gamma(Z \rightarrow b \bar{b})$ and yields $\left|V_{t b}\right|=0.77_{-0.24}^{+0.18}$ [84].

12.3 Phases of CKM elements

As can be seen from Fig. 12.1, the angles of the unitarity triangle are

$$
\begin{align*}
& \beta=\phi_{1}=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right), \\
& \alpha=\phi_{2}=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right), \\
& \gamma=\phi_{3}=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) . \tag{12.16}
\end{align*}
$$

Since $C P$ violation involves phases of CKM elements, many measurements of $C P$-violating observables can be used to constrain these angles and the $\bar{\rho}, \bar{\eta}$ parameters.

12.3.1 ϵ and ϵ^{\prime}

The measurement of $C P$ violation in $K^{0}-\bar{K}^{0}$ mixing, $|\epsilon|=$ $(2.228 \pm 0.011) \times 10^{-3}$ [85], provides important information about the CKM matrix. The phase of ϵ is determined by longdistance physics, $\epsilon=\frac{1}{2} e^{i \phi_{\epsilon}} \sin \phi_{\epsilon} \arg \left(-M_{12} / \Gamma_{12}\right)$, where $\phi_{\epsilon}=$ $\arctan \left|2 \Delta m_{K} / \Delta \Gamma_{K}\right| \simeq 43.5^{\circ}$. The SM prediction can be written as

$$
\begin{align*}
\epsilon= & \kappa_{\epsilon} e^{i \phi_{\epsilon}} \frac{G_{F}^{2} m_{W}^{2} m_{K}}{12 \sqrt{2} \pi^{2} \Delta m_{K}} f_{K}^{2} \widehat{B}_{K}\left\{\eta_{t t} S\left(x_{t}\right) \operatorname{Im}\left[\left(V_{t s} V_{t d}^{*}\right)^{2}\right]\right. \\
& \left.+2 \eta_{c t} S\left(x_{c}, x_{t}\right) \operatorname{Im}\left(V_{c s} V_{c d}^{*} V_{t s} V_{t d}^{*}\right)+\eta_{c c} x_{c} \operatorname{Im}\left[\left(V_{c s} V_{c d}^{*}\right)^{2}\right]\right\} \tag{12.17}
\end{align*}
$$

where $\kappa_{\epsilon} \simeq 0.94 \pm 0.02$ [86] includes the effects of strangeness changing $\Delta s=1$ operators and additional dependence on $\phi_{\epsilon} \neq$
$\pi / 4$ (see also Ref. [87]). The displayed terms are the shortdistance $\Delta s=2$ contribution to $\operatorname{Im} M_{12}$ in the usual phase convention, S is an Inami-Lim function [88], $x_{q}=m_{q}^{2} / m_{W}^{2}$, and $\eta_{i j}$ are perturbative QCD corrections. The constraint from ϵ in the $\bar{\rho}, \bar{\eta}$ plane is bounded by approximate hyperbolas. Lattice QCD determined the bag parameter $\widehat{B}_{K}=0.717 \pm 0.024$ [14], and the main uncertainties are from $\left(V_{t s} V_{t d}^{*}\right)^{2}$ (approximately given by that of $\left|V_{c b}\right|^{4}$ or $\left.A^{4}\right)$, the $\eta_{i j}$ coefficients, and estimates of κ_{ϵ}.

The measurement of $6 \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=1-\left|\eta_{00} / \eta_{+-}\right|^{2}$, where each $\eta_{i j}=\left\langle\pi^{i} \pi^{j}\right| \mathcal{H}\left|K_{L}\right\rangle /\left\langle\pi^{i} \pi^{j}\right| \mathcal{H}\left|K_{S}\right\rangle$ violates $C P$, provides a qualitative test of the CKM mechanism, and strong constraints on many BSM scenarios. Its nonzero value, $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(1.67 \pm 0.23) \times 10^{-3}$ [85], demonstrated the existence of direct $C P$ violation, a prediction of the KM ansatz. While $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \propto \operatorname{Im}\left(V_{t d} V_{t s}^{*}\right)$, this quantity cannot easily be used to extract CKM parameters, because cancellations between the electromagnetic and gluonic penguin contributions for large m_{t} [89] enhance the hadronic uncertainties. Most SM estimates [90] agree with the observed value, indicating that $\bar{\eta}$ is positive. Progress in lattice QCD [91] may yield a precise SM prediction in the future, and trigger new work on assessing the consistency of the SM with the measured value [92, 93].

12.3.2 β / ϕ_{1}

12.3.2.1 Charmonium modes
$C P$-violation measurements in B-meson decays provide direct information on the angles of the unitarity triangle, shown in Fig. 12.1. These overconstraining measurements serve to improve the determination of the CKM elements, and to reveal possible effects beyond the SM.

The time-dependent $C P$ asymmetry of neutral B decays to a final state f common to B^{0} and \bar{B}^{0} is given by [94-96]

$$
\begin{align*}
\mathcal{A}_{f} & =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)} \\
& =S_{f} \sin \left(\Delta m_{d} t\right)-C_{f} \cos \left(\Delta m_{d} t\right) \tag{12.18}
\end{align*}
$$

where

$$
\begin{equation*}
S_{f}=\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}, \quad C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}, \quad \lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \tag{12.19}
\end{equation*}
$$

Here, q / p describes $B^{0}-\bar{B}^{0}$ mixing and, to a good approximation in the SM, $q / p=V_{t b}^{*} V_{t d} / V_{t b} V_{t d}^{*}=e^{-2 i \beta+\mathcal{O}\left(\lambda^{4}\right)}$ in the usual phase convention. $A_{f}\left(\bar{A}_{f}\right)$ is the amplitude of the $B^{0} \rightarrow f\left(\bar{B}^{0} \rightarrow f\right)$ decay. If f is a $C P$ eigenstate, and amplitudes with one CKM phase dominate the decay, then $\left|A_{f}\right|=\left|\bar{A}_{f}\right|, C_{f}=0$, and $S_{f}=$ $\sin \left(\arg \lambda_{f}\right)=\eta_{f} \sin 2 \phi$, where η_{f} is the $C P$ eigenvalue of f and 2ϕ is the phase difference between the $B^{0} \rightarrow f$ and $B^{0} \rightarrow \bar{B}^{0} \rightarrow f$ decay paths. A contribution of another amplitude to the decay with a different CKM phase makes the value of S_{f} sensitive to relative strong-interaction phases between the decay amplitudes (it also makes $C_{f} \neq 0$ possible).
The $b \rightarrow c \bar{c} s$ decays to $C P$ eigenstates $\left(B^{0} \rightarrow\right.$ charmonium $\left.K_{S, L}^{0}\right)$ are the theoretically cleanest examples, measuring $S_{f}=$ $-\eta_{f} \sin 2 \beta$. The $b \rightarrow s$ penguin amplitudes have dominantly the same weak phase as the $b \rightarrow c \bar{c} s$ tree amplitude. Since only λ^{2} suppressed penguin amplitudes introduce a different $C P$-violating phase, amplitudes with a single weak phase dominate, and we expect $\left|\left|\bar{A}_{\psi K} / A_{\psi K}\right|-1\right|<0.01$. The $e^{+} e^{-}$asymmetric-energy B-factory experiments, $B A B A R$ [97] and Belle [98], and LHCb [99] provided precise measurements. The world average, including some other measurements, is [24]

$$
\begin{equation*}
\sin 2 \beta=0.699 \pm 0.017 \tag{12.20}
\end{equation*}
$$

This measurement has a four-fold ambiguity in β, which can be resolved by a global fit as mentioned in Sec. 12.4. Experimentally, the two-fold ambiguity $\beta \rightarrow \pi / 2-\beta$ (but not $\beta \rightarrow \pi+\beta$) can be resolved by a time-dependent angular analysis of $B^{0} \rightarrow J / \psi K^{* 0}$ $[100,101]$, or a time-dependent Dalitz plot analysis of $B^{0} \rightarrow \bar{D}^{0} h^{0}$. The time-dependent Dalitz plot analysis of $B^{0} \rightarrow \bar{D}^{0} h^{0}\left(h^{0}=\right.$ $\left.\pi^{0}, \eta, \omega\right)$ with $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$, jointly performed by Belle and $B A B A R$, excludes the $\pi / 2-\beta$ solution with 7.3σ confidence level
[102]. These results indicate that negative $\cos 2 \beta$ solutions are very unlikely, in agreement with the global CKM fit result.

The $b \rightarrow c \bar{c} d$ mediated transitions, such as $B^{0} \rightarrow J / \psi \pi^{0}$ and $B^{0} \rightarrow D^{(*)+} D^{(*)-}$, also measure approximately $\sin 2 \beta$. However, the dominant component of the $b \rightarrow d$ penguin amplitude has a different CKM phase $\left(V_{t b}^{*} V_{t d}\right)$ than the tree amplitude $\left(V_{c b}^{*} V_{c d}\right)$, and their magnitudes are of the same order in λ. Therefore, the effect of penguins could be large, resulting in $S_{f} \neq-\eta_{f} \sin 2 \beta$ and $C_{f} \neq 0$. Such decay modes have been measured by $B A B A R$, Belle, and LHCb. The world averages [24], $S_{J / \psi \pi^{0}}=-0.86 \pm 0.14$, $S_{J / \psi \rho^{0}}=-0.66_{-0.12}^{+0.16}, S_{D^{+} D^{-}}=-0.84 \pm 0.12$, and $S_{D^{*+} D^{*-}}=$ -0.71 ± 0.09 (where $\eta_{f}=+1$ for the $J / \psi \pi^{0}$ and $D^{+} D^{-}$modes, while $J / \psi \rho^{0}$ and $D^{*+} D^{*-}$ are mixtures of $C P$ even and odd states), are consistent with $\sin 2 \beta$ obtained from $B^{0} \rightarrow$ charmonium K^{0} decays, and the C_{f} 's are consistent with zero, although the uncertainties are sizable.

The $b \rightarrow c \bar{u} d$ decays $B^{0} \rightarrow \bar{D}^{0(*)} h^{0}$, with $\bar{D}^{0} \rightarrow C P$ eigenstates and $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$with Dalitz plot analysis, have no penguin contributions, and provide theoretically clean $\sin 2 \beta$ measurements. The average of joint analyses of $B A B A R$ and Belle data [102, 103] give $\sin 2 \beta=0.71 \pm 0.09[24,104]$.

12.3.2.2 Penguin-dominated modes

The $b \rightarrow s \bar{q} q$ penguin-dominated decays have the same CKM phase as the $b \rightarrow c \bar{c} s$ tree level decays, up to corrections suppressed by λ^{2}, since $V_{t b}^{*} V_{t s}=-V_{c b}^{*} V_{c s}\left[1+\mathcal{O}\left(\lambda^{2}\right)\right]$. Therefore, decays such as $B^{0} \rightarrow \phi K^{0}$ and $\eta^{\prime} K^{0}$ provide $\sin 2 \beta$ measurements in the SM. Any BSM contribution to the amplitude with a different weak phase would give rise to $S_{f} \neq-\eta_{f} \sin 2 \beta$, and possibly $C_{f} \neq 0$. Therefore, the main interest in these modes is not simply to measure $\sin 2 \beta$, but to search for new physics. Measurements of many other decay modes in this category, such as $B \rightarrow \pi^{0} K_{S}^{0}, K_{S}^{0} K_{S}^{0} K_{S}^{0}$, etc., have also been performed by $B A B A R$ and Belle. The results and their uncertainties are summarized in Fig. 12.3 and Table 12.1 of Ref. [95]. The comparison of $C P$ violation measurements between tree-dominated and penguin-dominated modes in B_{s}^{0} decays provides similar sensitivity to new physics.

12.3.3 α / ϕ_{2}

Since α is the phase between $V_{t b}^{*} V_{t d}$ and $V_{u b}^{*} V_{u d}$, only timedependent $C P$ asymmetries in decay modes dominated by $b \rightarrow$ $u \bar{u} d$ transition can directly measure $\sin 2 \alpha$, in contrast to $\sin 2 \beta$, where several different quark-level transitions can be used. Since $b \rightarrow d$ penguin amplitudes have a different CKM phase than $b \rightarrow$ $u \bar{u} d$ tree amplitudes, and their magnitudes are of the same order in λ, the penguin contribution can be sizable, which makes the determination of α complicated. To date, α has been measured in $B \rightarrow \pi \pi, \rho \pi$ and $\rho \rho$ decay modes.

12.3.3.1 $B \rightarrow \pi \pi$

It is well established from the data that there is a sizable contribution of $b \rightarrow d$ penguin amplitudes in $B \rightarrow \pi \pi$ decays. Thus, $S_{\pi^{+} \pi^{-}}$in the time-dependent $B^{0} \rightarrow \pi^{+} \pi^{-}$analysis does not measure $\sin 2 \alpha$, but

$$
\begin{equation*}
S_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}} \sin (2 \alpha+2 \Delta \alpha) \tag{12.21}
\end{equation*}
$$

where $2 \Delta \alpha$ is the phase difference between $e^{2 i \gamma} \bar{A}_{\pi^{+} \pi^{-}}$and $A_{\pi^{+} \pi^{-}}$. The value of $\Delta \alpha$, and hence α, can be extracted using the isospin relation among the amplitudes of $B^{0} \rightarrow \pi^{+} \pi^{-}$, $B^{0} \rightarrow \pi^{0} \pi^{0}$, and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays [105],

$$
\begin{equation*}
\frac{1}{\sqrt{2}} A_{\pi^{+} \pi^{-}}+A_{\pi^{0} \pi^{0}}-A_{\pi^{+} \pi^{0}}=0 \tag{12.22}
\end{equation*}
$$

and a similar expression for the $\bar{A}_{\pi \pi}$'s. This method utilizes the fact that a pair of pions from $B \rightarrow \pi \pi$ decay must be in a zero angular momentum state, and, because of Bose statistics, they must have even isospin. Consequently, $\pi^{ \pm} \pi^{0}$ is in a pure isospin- 2 state, while the penguin amplitudes only contribute to the isospin-0 final state. The latter does not hold for the electroweak penguin amplitudes, but their effect is expected to be small. The isospin
analysis uses the world averages of $B A B A R$, Belle, and LHCb measurements, $S_{\pi^{+} \pi^{-}}=-0.63 \pm 0.04, C_{\pi^{+} \pi^{-}}=-0.32 \pm 0.04$, the decay widths of all three modes, and the direct $C P$ asymmetry $C_{\pi^{0} \pi^{0}}=-0.33 \pm 0.22[24]$. This analysis leads to 16 mirror solutions for $0 \leq \alpha<2 \pi$. Because of this, and due to the experimental uncertainties, some of these solutions are not well separated [96].

12.3.3.2 $B \rightarrow \rho \rho$

The decay $B^{0} \rightarrow \rho^{+} \rho^{-}$contains two vector mesons in the final state, and so in general is a mixture of $C P$-even and $C P$-odd components. Therefore, it was thought that extracting α from this mode would be complicated.

However, the longitudinal polarization fractions in $B^{+} \rightarrow \rho^{+} \rho^{0}$ and $B^{0} \rightarrow \rho^{+} \rho^{-}$decays were measured to be close to unity [106], which implies that the final states are almost purely $C P$-even. Furthermore, $\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)=(0.95 \pm 0.16) \times 10^{-6}$ is much smaller than $\mathcal{B}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=(27.7 \pm 1.9) \times 10^{-6}$ and $\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.\rho^{+} \rho^{0}\right)=\left(24.0_{-2.0}^{+1.9}\right) \times 10^{-6}[24]$, which implies that the effect of the penguin contributions is small. The isospin analysis using the world averages, $S_{\rho^{+} \rho^{-}}=-0.14 \pm 0.13$ and $C_{\rho^{+} \rho^{-}}=0.00 \pm 0.09$ [24], together with the time-dependent $C P$ asymmetry, $S_{\rho^{0} \rho^{0}}=$ -0.3 ± 0.7 and $C_{\rho^{0} \rho^{0}}=-0.2 \pm 0.9$ [107], and the above mentioned branching fractions and longitudinal polarization fractions, gives two solutions (with mirror solutions at $3 \pi / 2-\alpha$) [96]. A possible small violation of Eq. (12.22) due to the finite width of the ρ [108] is so far neglected.

12.3.3.3 $B \rightarrow \rho \pi$

The final state in $B^{0} \rightarrow \rho^{+} \pi^{-}$decay is not a $C P$ eigenstate, but this decay proceeds via the same quark-level diagrams as $B^{0} \rightarrow$ $\pi^{+} \pi^{-}$, and both B^{0} and \bar{B}^{0} can decay to $\rho^{+} \pi^{-}$, while the final state in $B^{0} \rightarrow \rho^{0} \pi^{0}$ is a $C P$ eigenstate. Consequently, mixinginduced $C P$ violation can occur in B^{0} and \bar{B}^{0} decays to $\rho^{ \pm} \pi^{\mp}$ and $\rho^{0} \pi^{0}$. The time-dependent Dalitz plot analysis of $B^{0} \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$ decays permits the extraction of α with a single discrete ambiguity, $\alpha \rightarrow \alpha+\pi$, since one knows the variation of the strong phases in the interference regions of the $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}$, and $\rho^{0} \pi^{0}$ amplitudes in the Dalitz plot [109]. The combination of Belle [110] and $B A B A R$ [111] measurements gives only moderate constraints [96].

Combining the $B \rightarrow \pi \pi, \rho \pi$, and $\rho \rho$ decay modes $[24,96], \alpha$ is constrained as

$$
\begin{equation*}
\alpha=\left(84.9_{-4.5}^{+5.1}\right)^{\circ} \tag{12.23}
\end{equation*}
$$

Similar results can be found in Refs. [112,113].

12.3.4 γ / ϕ_{3}

By virtue of Eq. (12.16), γ does not depend on CKM elements involving the top quark, so it can be measured in tree-level B decays. This is an important distinction from the measurements of α and β, and implies that measurements of γ are unlikely to be affected by physics beyond the SM.
12.3.4.1 $B_{(s)} \rightarrow D_{(s)} K^{(*)}$

The interference of $B^{-} \rightarrow D^{0} K^{-}(b \rightarrow c \bar{u} s)$ and $B^{-} \rightarrow \bar{D}^{0} K^{-}$ $(b \rightarrow u \bar{c} s)$ transitions can be studied in final states accessible in both D^{0} and \bar{D}^{0} decays [94]. In principle, it is possible to extract the B and D decay amplitudes, the relative strong phases, and the weak phase γ from the data [96].

A practical complication is that the precision depends sensitively on the ratio of the interfering amplitudes

$$
\begin{equation*}
r_{B}=\left|A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right) / A\left(B^{-} \rightarrow D^{0} K^{-}\right)\right| \tag{12.24}
\end{equation*}
$$

which is around 0.1 . The original GLW method [114, 115] considers D decays to $C P$ eigenstates, such as $B^{ \pm} \rightarrow D_{C P}^{(*)}(\rightarrow$ $\left.\pi^{+} \pi^{-}\right) K^{(*) \pm}$. To alleviate the smallness of r_{B} and make the interfering amplitudes (which are products of the B and D decay amplitudes) comparable in magnitude, the ADS method [116] considers final states where Cabibbo-allowed \bar{D}^{0} and doubly-Cabibbo-suppressed D^{0} decays interfere. Measurements have been made by the B factories, CDF, and LHCb, using both methods [24]. The GLW method currently gives only a loose constraint on $\gamma, 14.9^{\circ}<\gamma<30.8^{\circ}, 69.9^{\circ}<\gamma<87.9^{\circ}, 92.1^{\circ}<\gamma<110.1^{\circ}$,
and $149.2^{\circ}<\gamma<165.1^{\circ}$ at 68% CL; while the ADS method provides $\gamma=\left(72_{-14}^{+12}\right)^{\circ}[24,104]$.

The BPGGSZ method $[117,118]$ utilizes that both D^{0} and \bar{D}^{0} can have large branching fractions to $C P$ self-conjugate threebody final states, such as $K_{S}^{0} \pi^{+} \pi^{-}$, and the analysis can be optimized by studying the Dalitz plot dependence of the interferences. The best present determination of γ comes from this method. Combining the measurements by Belle [119], BABAR [120] and LHCb [121], $\gamma=\left(73.8_{-7.0}^{+6.8}\right)^{\circ}$ is obtained $[24,104]$. The error is sensitive to the central value of the amplitude ratio r_{B} (and r_{B}^{*} for the $D^{*} K$ mode), for which Belle found somewhat larger central values than $B A B A R$ and LHCb. The same values of $r_{B}^{(*)}$ enter the ADS analyses, and the data can be combined to fit for $r_{B}^{(*)}$ and γ. The effect of $D^{0}-\bar{D}^{0}$ mixing on γ is far below the present experimental accuracy [122], unless $D^{0}-\bar{D}^{0}$ mixing is due to $C P-$ violating new physics, in which case it can be included in the analysis [123].

The amplitude ratio is much larger in the analogous $B_{s}^{0} \rightarrow$ $D_{s}^{ \pm} K^{\mp}$ decays, which allows a model-independent extraction of $\gamma-2 \beta_{s}$ [124] (here $\beta_{s}=\arg \left(-V_{t s} V_{t b}^{*} / V_{c s} V_{c b}^{*}\right)$ is related to the phase of B_{s} mixing). A recent measurement by LHCb [125] gives $\gamma=\left(127_{-22}^{+17}\right)^{\circ}$ using a constraint on $2 \beta_{s}$ (see Sec. 12.5).

Combining all the above measurements [24,96], γ is constrained as

$$
\begin{equation*}
\gamma=\left(72.1_{-4.5}^{+4.1}\right)^{\circ} \tag{12.25}
\end{equation*}
$$

Similar results can be found in Refs. [112, 113].
12.3.4.2 $B^{0} \rightarrow D^{(*) \pm} \pi^{\mp}$

The interference of $b \rightarrow u$ and $b \rightarrow c$ transitions can be studied in $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}(b \rightarrow c \bar{u} d)$ and $\bar{B}^{0} \rightarrow B^{0} \rightarrow D^{(*)+} \pi^{-}(\bar{b} \rightarrow$ $\bar{u} c \bar{d})$ decays and their $C P$ conjugates, since both B^{0} and \bar{B}^{0} decay to $D^{(*) \pm} \pi^{\mp}$ (or $D^{ \pm} \rho^{\mp}$, etc.). Since there are only tree and no penguin contributions to these decays, in principle, it is possible to extract from the four time-dependent rates the magnitudes of the two hadronic amplitudes, their relative strong phase, and the weak phase between the two decay paths, which is $2 \beta+\gamma$.
A complication is that the ratio of the interfering amplitudes is very small, $r_{D \pi}=A\left(B^{0} \rightarrow D^{+} \pi^{-}\right) / A\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)=\mathcal{O}(0.01)$ (and similarly for $r_{D^{*} \pi}$ and $r_{D \rho}$), and therefore it has not been possible to measure it. To obtain $2 \beta+\gamma, S U(3)$ flavor symmetry and dynamical assumptions have been used to relate $A\left(\bar{B}^{0} \rightarrow D^{-} \pi^{+}\right)$to $A\left(\bar{B}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)$, so this measurement is not model independent at present. Combining the $D^{ \pm} \pi^{\mp}, D^{* \pm} \pi^{\mp}$ and $D^{ \pm} \rho \mp$ measurements [126] gives $\sin (2 \beta+\gamma)>0.68$ at 68% CL [112], consistent with the previously discussed results for β and γ.

12.4 Global fit in the Standard Model

Using the independently measured CKM elements mentioned in the previous sections, the unitarity of the CKM matrix can be checked. We obtain $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985 \pm 0.0005$ (1st row), $\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1.025 \pm 0.022$ (2nd row), $\left|V_{u d}\right|^{2}+\left|V_{c d}\right|^{2}+\left|V_{t d}\right|^{2}=0.9970 \pm 0.0018$ (1st column), and $\left|V_{u s}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{t s}\right|^{2}=1.026 \pm 0.022$ (2nd column), respectively. Due to the recent reduction of the value of $\left|V_{u d}\right|$, there is a 3σ tension with unitarity in the 1st row, leading also to poor consistency of the SM fit below. The uncertainties in the second row and column are dominated by that of $\left|V_{c s}\right|$. For the second row, another check is obtained from the measurement of $\sum_{u, c, d, s, b}\left|V_{i j}\right|^{2}$ in Sec. 12.2.4, minus the sum in the first row above: $\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1.002 \pm 0.027$. These provide strong tests of the unitarity of the CKM matrix. With the significantly improved direct determination of $\left|V_{t b}\right|$, the unitarity checks for the third row and column have also become fairly precise, leaving decreasing room for mixing with other states. The sum of the three angles of the unitarity triangle, $\alpha+\beta+\gamma=\left(179_{-6}^{+7}\right)^{\circ}$, is also consistent with the SM expectation.

The CKM matrix elements can be most precisely determined using a global fit to all available measurements and imposing the SM constraints (i.e., three generation unitarity). The fit must also use theory predictions for hadronic matrix elements, which

Figure 12.2: Constraints on the $\bar{\rho}, \bar{\eta}$ plane. The shaded areas have 99% CL.
sometimes have significant uncertainties. There are several approaches to combining the experimental data. CKMfitter [6, 112] and Ref. [127] (which develops $[128,129]$ further) use frequentist statistics, while UTfit [113, 130] uses a Bayesian approach. These approaches provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix significantly reduce the allowed range of some of the CKM elements. The fit for the Wolfenstein parameters defined in Eq. (12.4) gives

$$
\begin{array}{lr}
\lambda=0.22650 \pm 0.00048, & A=0.790_{-0.012}^{+0.017} \\
\bar{\rho}=0.141_{-0.017}^{+0.016}, & \bar{\eta}=0.357 \pm 0.011
\end{array}
$$

These values are obtained using the method of Refs. [6,112]. Using the prescription of Refs. [113,130] gives $\lambda=0.22658 \pm 0.00044$, $A=0.818 \pm 0.012, \bar{\rho}=0.139 \pm 0.014, \bar{\eta}=0.356 \pm 0.010$ [131]. The fit results for the magnitudes of all nine CKM elements are
$V_{\text {CKM }}=$

$$
\left(\begin{array}{ccc}
0.97401 \pm 0.00011 & 0.22650 \pm 0.00048 & 0.00361_{-0.00009}^{+0.00011} \\
0.22636 \pm 0.00048 & 0.97320 \pm 0.00011 & 0.04053_{-0.00083}^{+0.00061} \\
0.00854_{-0.00016}^{+0.00023} & 0.03978_{-0.00060}^{+0.00082} & 0.999172_{-0.000035}^{+0.000024}
\end{array}\right)
$$

(12.27)
and the Jarlskog invariant is $J=\left(3.00_{-0.09}^{+0.15}\right) \times 10^{-5}$. The parameters in Eq. (12.3) are

$$
\begin{array}{lc}
\sin \theta_{12}=0.22650 \pm 0.00048, & \sin \theta_{13}=0.00361_{-0.00009}^{+0.00011} \\
\sin \theta_{23}=0.04053_{-0.00061}^{+0.00083}, & \delta=1.196_{-0.043}^{+0.045} \tag{12.28}
\end{array}
$$

Fig. 12.2 illustrates the constraints on the $\bar{\rho}, \bar{\eta}$ plane from various measurements, and the global fit result. The CL of each of the shaded regions was increased from 95% to 99% for this edition, because the reduction in $\left|V_{u d}\right|$ discussed above leads to poor consistency between the fit result (for $\bar{\rho}$ and $\bar{\eta}$) and the individual constraints shown in the plot. The shaded 99% CL regions all overlap consistently around the global fit region.

If one uses only tree-level inputs (magnitudes of CKM elements not coupling to the top quark and the angle γ), the resulting fit is almost identical for λ in Eq. (12.26), while the other parameters' central values can change by about a sigma and their uncertainties double, yielding $\lambda=0.22653 \pm 0.00048, A=0.799_{-0.028}^{+0.027}$, $\bar{\rho}=0.123_{-0.028}^{+0.032}$, and $\bar{\eta}=0.382_{-0.028}^{+0.029}$. This illustrates how the constraints can be less tight in the presence of BSM physics.

12.5 Implications beyond the SM

The effects in B, B_{s}, K, and D decays and mixings due to high-scale physics (W, Z, t, H in the SM, and unknown heavier particles) can be parameterized by operators composed of SM fields, obeying the $S U(3) \times S U(2) \times U(1)$ gauge symmetry. Flavorchanging neutral currents, suppressed in the SM, are especially sensitive to beyond SM contributions. Processes studied in great detail, both experimentally and theoretically, include neutral meson mixings, $B_{(s)} \rightarrow X \gamma, X \ell^{+} \ell^{-}, \ell^{+} \ell^{-}, K \rightarrow \pi \nu \bar{\nu}$, etc. The BSM contributions to these operators are suppressed by powers of the scale at which they are generated. Already at lowest order, there are many dimension-6 operators, and the observable effects of BSM interactions are encoded in their coefficients. In the SM, these coefficients are determined by just the four CKM parameters, and the W, Z, and quark masses. For example, $\Delta m_{d}, \Gamma(B \rightarrow \rho \gamma), \Gamma\left(B \rightarrow \pi \ell^{+} \ell^{-}\right)$, and $\Gamma\left(B \rightarrow \ell^{+} \ell^{-}\right)$are all proportional to $\left|V_{t d} V_{t b}\right|^{2}$ in the SM, however, they may receive unrelated BSM contributions. These BSM contributions may or may not obey the SM relations. (For example, the flavor sector of the MSSM contains $69 C P$-conserving parameters and 41 $C P$-violating phases, i.e., 40 new ones [132]). Thus, similar to the measurements of $\sin 2 \beta$ in tree- and loop-dominated decay modes, overconstraining measurements of the magnitudes and phases of flavor-changing neutral-current amplitudes gives good sensitivity to BSM.

To illustrate the level of suppression required for BSM contributions, consider a class of models in which the unitarity of the CKM matrix is maintained, and the dominant BSM effects modify the neutral meson mixing amplitudes [133] by $\left(z_{i j} / \Lambda^{2}\right)\left(\bar{q}_{i} \gamma^{\mu} P_{L} q_{j}\right)^{2}$, where $z_{i j}$ is an unknown coefficient and Λ is the scale suppressing this BSM contribution (see, $[134,135]$). It is only known since the measurements of γ and α that the SM gives the leading contribution to $B^{0}-\bar{B}^{0}$ mixing [6, 136]. Nevertheless, new physics with a generic weak phase may still contribute to neutral meson mixings at a significant fraction of the SM $[130,137,138]$. The existing data imply that $\Lambda /\left|z_{i j}\right|^{1 / 2}$ has to exceed about $10^{4} \mathrm{TeV}$ for $K^{0}-\bar{K}^{0}$ mixing, $10^{3} \mathrm{TeV}$ for $D^{0}-\bar{D}^{0}$ mixing, 500 TeV for $B^{0}-\bar{B}^{0}$ mixing, and 100 TeV for $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing [130, 135]. (Some other operators are even better constrained [130].) The constraints are the strongest in the kaon sector, because the CKM suppression is the most severe. Thus, if there is new physics at the TeV scale, $\left|z_{i j}\right| \ll 1$ is required. Even if $\left|z_{i j}\right|$ are suppressed by a loop factor and $\left|V_{t i}^{*} V_{t j}\right|^{2}$ (in the down quark sector), similar to the SM, one expects percent-level effects, which may be observable in forthcoming flavor physics experiments. To constrain such extensions of the SM, many measurements irrelevant for the SM-CKM fit, such as the $C P$ asymmetry in semileptonic $B_{d, s}^{0}$ decays, $A_{\mathrm{SL}}^{d, s}$, are important [139]. The current world averages [24] are consistent with the SM, with experimental uncertainties far greater than those of the theory predictions.

There are many key measurements sensitive to BSM physics, which do not constrain the unitarity triangle in Fig. 12.1. For example, a key quantity in the B_{s} system is $\beta_{s}=$ $\arg \left(-V_{t s} V_{t b}^{*} / V_{c s} V_{c b}^{*}\right)$, which is the small, λ^{2}-suppressed, angle of a "squashed" unitarity triangle, obtained by taking the scalar product of the second and third columns of the CKM matrix. This angle can be measured via time-dependent $C P$ violation in $B_{s}^{0} \rightarrow J / \psi \phi$, similar to β in $B^{0} \rightarrow J / \psi K^{0}$. Since the $J / \psi \phi$ final state is not a $C P$ eigenstate, an angular analysis of the decay products is needed to separate the $C P$-even and $C P$-odd components, which give opposite asymmetries. In the SM, the asymmetry for the $C P$-even part is $2 \beta_{s}$, when one neglects subdominant amplitudes with a weak phase $V_{u b}$. (Sometimes the notation $\phi_{s}=-2 \beta_{s}$ plus a possible BSM contribution to the B_{s} mixing phase is used.) Testing if the data agree with the SM prediction, $2 \beta_{s}=0.0383_{-0.0011}^{+0.0012}$ [112], is another sensitive probe of the SM. The current world average, dominated by LHC measurements [140] including the $B_{s} \rightarrow J / \psi K^{+} K^{-}$and $J / \psi \pi^{+} \pi^{-}$decay modes, is $2 \beta_{s}=0.051 \pm 0.023$ [71]. Since the uncertainty is much larger than that in the SM , a lot will be learned from more precise future measurements. Searches for $C P$ violation in the charm sector, in particular in $D^{0}-\bar{D}^{0}$ mixing, provide complementary sensitivity to BSM.

In the kaon sector, the $C P$-violating observables, ϵ and ϵ^{\prime}, are tiny, so models in which all sources of $C P$ violation are small were viable before the B-factory measurements. Since the measurement of $\sin 2 \beta$, we know that $C P$ violation can be an $\mathcal{O}(1)$ effect, and only flavor mixing is suppressed between the three quark generations. Thus, many models with spontaneous $C P$ violation were excluded. In the kaon sector, clean tests of the SM can come from measurements of $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ [78] and $K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$ [141]. These loop-induced rare decays are sensitive to BSM, and will allow precise tests [142] of the CKM paradigm, independent of B decays.

The CKM elements are fundamental parameters, so they should be measured as precisely as possible. The overconstraining measurements of $C P$ asymmetries, mixing, semileptonic, and rare decays severely constrain the magnitudes and phases of possible BSM contributions to flavor-changing interactions. If new particles are observed at the LHC, it will be important to explore their flavor parameters as precisely as possible to understand the underlying physics.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).
[4] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[5] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, Phys. Rev. D50, 3433 (1994), [hep-ph/9403384].
[6] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C41, 1, 1 (2005), [hep-ph/0406184].
[7] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[8] W. J. Marciano and A. Sirlin, Nucl. Phys. B93, 303 (1975); K. S. Babu, Z. Phys. C35, 69 (1987).
[9] J. Hardy and I. S. Towner, PoS CKM2016, 028 (2016).
[10] E. Blucher and W.J. Marciano, " $V_{u d}, V_{u s}$, the Cabibbo Angle and CKM Unitarity," in this Review.
[11] C.-Y. Seng et al., Phys. Rev. Lett. 121, 24, 241804 (2018), [arXiv:1807.10197].
[12] D. Pocanic et al., Phys. Rev. Lett. 93, 181803 (2004), [hepex/0312030].
[13] M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), Eur. Phys. J. C69, 399 (2010), [arXiv:1005.2323]; see also http://www.lnf.infn.it/wg/vus.
[14] S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys. J. C80, 2, 113 (2020), [arXiv:1902.08191]; The original papers that led to the quoted averages are cited in this reference or on the web page http://flag.unibe.ch/.
[15] T. Mannel and P. Urquijo, "Semileptonic b-Hadron Decays, Determination of $V_{c b}$ and $V_{u b}, "$ in this Review.
[16] H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984); For earlier fits for $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ in the 3-generation SM, see Ref. [17].
[17] R. E. Shrock and L.-L. Wang, Phys. Rev. Lett. 41, 1692 (1978).
[18] J. Bijnens and P. Talavera, Nucl. Phys. B669, 341 (2003), [hep-ph/0303103]; M. Jamin, J. A. Oller and A. Pich, JHEP 02, 047 (2004), [hep-ph/0401080]; V. Cirigliano et al., JHEP 04, 006 (2005), [hep-ph/0503108]; C. Dawson et al., PoS LAT2005, 337 (2006), [hep-lat/0510018]; N. Tsutsui et al. (JLQCD), PoS LAT2005, 357 (2006), [hep-lat/0510068]; M. Okamoto (Fermilab Lattice, MILC, HPQCD), in "3rd Conference on Flavor Physics and CP Violation (FPCP 2004) Daegu, Korea, October 4-9, 2004," (2004), [heplat/0412044].
[19] W. J. Marciano, Phys. Rev. Lett. 93, 231803 (2004), [hepph/0402299].
[20] F. Ambrosino et al. (KLOE), Phys. Lett. B632, 76 (2006), [hep-ex/0509045].
[21] See Sec. 5.2, "Averages and fits," in the Introduction to this Review, http://pdg.lbl.gov/2019/reviews/ rpp2019-rev-rpp-intro.pdf.
[22] N. Cabibbo, E. C. Swallow and R. Winston, Ann. Rev. Nucl. Part. Sci. 53, 39 (2003), [hep-ph/0307298]; N. Cabibbo, E. C. Swallow and R. Winston, Phys. Rev. Lett. 92, 251803 (2004), [hep-ph/0307214].
[23] M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1964).
[24] Y. S. Amhis et al. (HFLAV) (2019), [arXiv:1909.12524]; and updates at https://hflav.web.cern.ch/.
[25] J. P. Lees et al. (BaBar), Phys. Rev. D91, 5, 052022 (2015), [arXiv:1412.5502].
[26] M. Ablikim et al. (BESIII), Phys. Rev. D92, 7, 072012 (2015), [arXiv:1508.07560].
[27] M. Ablikim et al. (BESIII), Phys. Rev. D96, 1, 012002 (2017), [arXiv:1703.09084].
[28] D. Besson et al. (CLEO), Phys. Rev. D80, 032005 (2009), [arXiv:0906.2983].
[29] L. Widhalm et al. (Belle), Phys. Rev. Lett. 97, 061804 (2006), [hep-ex/0604049].
[30] M. Ablikim et al. (BESIII), Phys. Rev. D89, 5, 051104 (2014), [arXiv:1312.0374].
[31] B. I. Eisenstein et al. (CLEO), Phys. Rev. D78, 052003 (2008), [arXiv:0806.2112].
[32] H. Abramowicz et al., Z. Phys. C15, 19 (1982).
[33] S. A. Rabinowitz et al., Phys. Rev. Lett. 70, 134 (1993).
[34] A. O. Bazarko et al. (CCFR), Z. Phys. C65, 189 (1995), [hep-ex/9406007].
[35] P. Vilain et al. (CHARM II), Eur. Phys. J. C11, 19 (1999).
[36] F. J. Gilman, K. Kleinknecht and B. Renk (2004).
[37] G. De Lellis, P. Migliozzi and P. Santorelli, Phys. Rept. 399, 227 (2004), [Erratum: Phys. Rept.411,323(2005)].
[38] N. Ushida et al. (Fermilab E531), Phys. Lett. B206, 380 (1988).
[39] T. Bolton (1997), [hep-ex/9708014].
[40] A. Kayis-Topaksu et al. (CHORUS), Phys. Lett. B626, 24 (2005).
[41] A. Zupanc et al. (Belle), JHEP 09, 139 (2013), [arXiv:1307.6240].
[42] J. P. Alexander et al. (CLEO), Phys. Rev. D79, 052001 (2009), [arXiv:0901.1216].
[43] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D82, 091103 (2010), [Erratum: Phys. Rev.D91,no.1,019901(2015)], [arXiv:1008.4080].
[44] M. Ablikim et al. (BESIII), Phys. Rev. D94, 7, 072004 (2016), [arXiv:1608.06732].
[45] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 122, 7, 071802 (2019), [arXiv:1811.10890].
[46] P. U. E. Onyisi et al. (CLEO), Phys. Rev. D79, 052002 (2009), [arXiv:0901.1147].
[47] P. Naik et al. (CLEO), Phys. Rev. D80, 112004 (2009), [arXiv:0910.3602].
[48] B. Aubert et al. (BaBar), Phys. Rev. D76, 052005 (2007), [arXiv:0704.0020].
[49] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 122, 1, 011804 (2019), [arXiv:1810.03127].
[50] LEP W branching fraction results for this Review of Particle Physics, LEPEWWG/XSEC/2005-01, http://lepewwg. web.cern.ch/LEPEWWG/lepww/4f/Winter05.
[51] P. Abreu et al. (DELPHI), Phys. Lett. B439, 209 (1998).
[52] I. I. Y. Bigi et al., Phys. Rev. Lett. 71, 496 (1993), [hepph/9304225].
[53] A. V. Manohar and M. B. Wise, Phys. Rev. D49, 1310 (1994), [hep-ph/9308246].
[54] I. I. Y. Bigi et al., Phys. Rev. D56, 4017 (1997), [hepph/9704245].
[55] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. D59, 074017 (1999), [hep-ph/9811239]; A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett. 82, 277 (1999), [hepph/9809423]; A. H. Hoang and T. Teubner, Phys. Rev. D60, 114027 (1999), [hep-ph/9904468].
[56] N. Isgur and M. B. Wise, Phys. Lett. B237, 527 (1990); N. Isgur and M. B. Wise, Phys. Lett. B232, 113 (1989).
[57] A. Abdesselam et al. (Belle) (2017), [arXiv:1702.01521].
[58] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. D56, 6895 (1997), [hep-ph/9705252]; C. G. Boyd, B. Grinstein and R. F. Lebed, Nucl. Phys. B461, 493 (1996), [hepph/9508211].
[59] M. Neubert, Phys. Rev. D49, 3392 (1994), [hepph/9311325]; M. Neubert, Phys. Rev. D49, 4623 (1994), [hep-ph/9312311].
[60] I. I. Y. Bigi et al., Int. J. Mod. Phys. A9, 2467 (1994), [hep-ph/9312359].
[61] C. W. Bauer, Z. Ligeti and M. E. Luke, Phys. Lett. B479, 395 (2000), [hep-ph/0002161]; C. W. Bauer, Z. Ligeti and M. E. Luke, Phys. Rev. D64, 113004 (2001), [hepph/0107074].
[62] A. Bornheim et al. (CLEO), Phys. Rev. Lett. 88, 231803 (2002), [hep-ex/0202019].
[63] B. Aubert et al. (BaBar), Phys. Rev. D73, 012006 (2006), [hep-ex/0509040].
[64] A. Limosani et al. (Belle), Phys. Lett. B621, 28 (2005), [hep-ex/0504046].
[65] P. Urquijo et al. (Belle), Phys. Rev. Lett. 104, 021801 (2010), [arXiv:0907.0379]; J. P. Lees et al. (BaBar), Phys. Rev. D86, 032004 (2012), [arXiv:1112.0702].
[66] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D92, 1, 014024 (2015), [arXiv:1503.07839]; J. M. Flynn et al., Phys. Rev. D91, 7, 074510 (2015), [arXiv:1501.05373]; B. Colquhoun et al., Phys. Rev. D93, 3, 034502 (2016), [arXiv:1510.07446].
[67] P. Ball and R. Zwicky, Phys. Rev. D71, 014015 (2005), [hep-ph/0406232]; A. Khodjamirian et al., Phys. Rev. D83, 094031 (2011), [arXiv:1103.2655].
[68] Particle listing, in this Review.
[69] R. Aaij et al. (LHCb), Nature Phys. 11, 743 (2015), [arXiv:1504.01568].
[70] H. Albrecht et al. (ARGUS), Phys. Lett. B192, 245 (1987).
[71] O. Schneider, " $B^{0}-\bar{B}^{0}$ mixing," in this Review.
[72] A. Abulencia et al. (CDF), Phys. Rev. Lett. 97, 242003 (2006), [hep-ex/0609040].
[73] R. Aaij et al. (LHCb), New J. Phys. 15, 053021 (2013), [arXiv:1304.4741].
[74] M. Misiak et al., Phys. Rev. Lett. 114, 22, 221801 (2015), [arXiv:1503.01789]; M. Czakon et al., JHEP 04, 168 (2015), [arXiv:1503.01791].
[75] B. Grinstein and D. Pirjol, Phys. Rev. D62, 093002 (2000), [hep-ph/0002216]; A. Ali, E. Lunghi and A. Ya. Parkhomenko, Phys. Lett. B595, 323 (2004), [hepph/0405075]; M. Beneke, T. Feldmann and D. Seidel, Nucl. Phys. B612, 25 (2001), [hep-ph/0106067]; S. W. Bosch and G. Buchalla, Nucl. Phys. B621, 459 (2002), [hepph/0106081]; Z. Ligeti and M. B. Wise, Phys. Rev. D60, 117506 (1999), [hep-ph/9905277]; D. Becirevic et al., JHEP 05, 007 (2003), [hep-lat/0301020]; P. Ball, G. W. Jones and R. Zwicky, Phys. Rev. D75, 054004 (2007), [hepph/0612081]; W. Wang, R.-H. Li and C.-D. Lu (2007), [arXiv:0711.0432]; C.-D. Lu, W. Wang and Z.-T. Wei, Phys. Rev. D76, 014013 (2007), [hep-ph/0701265].
[76] A. J. Buras et al., Phys. Rev. Lett. 95, 261805 (2005), [hepph/0508165].
[77] A. V. Artamonov et al. (E949), Phys. Rev. Lett. 101, 191802 (2008), [arXiv:0808.2459]; A. V. Artamonov et al. (BNL-E949), Phys. Rev. D79, 092004 (2009), [arXiv:0903.0030].
[78] E. Cortina Gil et al. (NA62), Phys. Lett. B791, 156 (2019), [arXiv:1811.08508].
[79] D. Acosta et al. (CDF), Phys. Rev. Lett. 95, 102002 (2005), [hep-ex/0505091].
[80] V. M. Abazov et al. (D0), Phys. Rev. Lett. 107, 121802 (2011), [arXiv:1106.5436].
[81] V. Khachatryan et al. (CMS), Phys. Lett. B736, 33 (2014), [arXiv:1404.2292].
[82] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 115, 15, 152003 (2015), [arXiv:1503.05027].
[83] LHC Top Working Group summary plots, single top quark production, Nov. 2017, https://twiki.cern.ch/twiki/ bin/view/LHCPhysics/LHCTopWGSummaryPlots.
[84] J. Swain and L. Taylor, Phys. Rev. D58, 093006 (1998), [hep-ph/9712420].
[85] " K_{L}^{0} meson" particle listing, in this Review.
[86] A. J. Buras, D. Guadagnoli and G. Isidori, Phys. Lett. B688, 309 (2010), [arXiv:1002.3612]; For earlier discussions, see Ref. [87].
[87] E. A. Andriyash, G. G. Ovanesyan and M. I. Vysotsky, Phys. Lett. B599, 253 (2004), [hep-ph/0310314]; K. Anikeev et al., in "Workshop on B Physics at the Tevatron: Run II and Beyond Batavia, Illinois, September 23-25, 1999," (2001), [hep-ph/0201071]; A. J. Buras and D. Guadagnoli, Phys. Rev. D78, 033005 (2008), [arXiv:0805.3887].
[88] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981), [Erratum: Prog. Theor. Phys.65,1772(1981)].
[89] J. M. Flynn and L. Randall, Phys. Lett. B224, 221 (1989), [Erratum: Phys. Lett.B235,412(1990)]; G. Buchalla, A. J. Buras and M. K. Harlander, Nucl. Phys. B337, 313 (1990).
[90] M. Ciuchini et al., Phys. Lett. B301, 263 (1993), [hepph/9212203]; A. J. Buras, M. Jamin and M. E. Lautenbacher, Nucl. Phys. B408, 209 (1993), [hep-ph/9303284]; T. Hambye et al., Nucl. Phys. B564, 391 (2000), [hepph/9906434]; S. Bertolini, J. O. Eeg and M. Fabbrichesi, Phys. Rev. D63, 056009 (2001), [hep-ph/0002234]; V. Cirigliano et al., Phys. Rev. Lett. 91, 162001 (2003), [hep-ph/0307030].
[91] Z. Bai et al. (RBC, UKQCD), Phys. Rev. Lett. 115, 21, 212001 (2015), [arXiv:1505.07863].
[92] A. J. Buras et al., JHEP 11, 202 (2015), [arXiv:1507.06345].
[93] V. Cirigliano et al., JHEP 02, 032 (2020), [arXiv:1911.01359].
[94] A. B. Carter and A. I. Sanda, Phys. Rev. Lett. 45, 952 (1980); A. B. Carter and A. I. Sanda, Phys. Rev. D23, 1567 (1981).
[95] A more detailed discussion and references can be found in: T. Gershon and Y. Nir, " $C P$ violation in meson decays," in this Review.
[96] T. Gershon, M. Kenzie and K. Trabelsi, "Determination of CKM angles from B hadrons," in this Review.
[97] B. Aubert et al. (BaBar), Phys. Rev. D79, 072009 (2009), [arXiv:0902.1708].
[98] I. Adachi et al. (Belle), Phys. Rev. Lett. 108, 171802 (2012), [arXiv:1201.4643].
[99] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 3, 031601 (2015), [arXiv:1503.07089].
[100] B. Aubert et al. (BaBar), Phys. Rev. D71, 032005 (2005), [hep-ex/0411016].
[101] R. Itoh et al. (Belle), Phys. Rev. Lett. 95, 091601 (2005), [hep-ex/0504030].
[102] I. Adachi et al. (BaBar, Belle), Phys. Rev. Lett. 121, 26, 261801 (2018), [arXiv:1804.06152]; I. Adachi et al. (BaBar, Belle), Phys. Rev. D98, 11, 112012 (2018), [arXiv:1804.06153].
[103] A. Abdesselam et al. (BaBar, Belle), Phys. Rev. Lett. 115, 12, 121604 (2015), [arXiv:1505.04147].
[104] Heavy Flavor Averaging Group [24], Moriond 2020 updates for Unitarity Triangle Parameters: https://hflav-eos. web.cern.ch/hflav-eos/triangle/PDG2020/.
[105] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[106] J. Zhang et al. (Belle), Phys. Rev. Lett. 91, 221801 (2003), [hep-ex/0306007]; A. Somov et al. (Belle), Phys. Rev. Lett. 96, 171801 (2006), [hep-ex/0601024]; B. Aubert et al. (BaBar), Phys. Rev. Lett. 97, 261801 (2006), [hepex/0607092]; B. Aubert et al. (BaBar), Phys. Rev. D76, 052007 (2007), [arXiv:0705.2157].
[107] B. Aubert et al. (BaBar), Phys. Rev. D78, 071104 (2008), [arXiv:0807.4977].
[108] A. F. Falk et al., Phys. Rev. D69, 011502 (2004), [hepph/0310242].
[109] A. E. Snyder and H. R. Quinn, Phys. Rev. D48, 2139 (1993).
[110] A. Kusaka et al. (Belle), Phys. Rev. Lett. 98, 221602 (2007), [hep-ex/0701015].
[111] J. P. Lees et al. (BaBar), Phys. Rev. D88, 1, 012003 (2013), [arXiv:1304.3503].
[112] A. Hocker et al., Eur. Phys. J. C21, 225 (2001), [hepph/0104062]; and updates at http://ckmfitter.in2p3.fr/.
[113] M. Bona et al. (UTfit), JHEP 07, 028 (2005), [hepph/0501199]; and updates at http://www.utfit.org.
[114] M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
[115] M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
[116] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997), [hep-ph/9612433]; D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D63, 036005 (2001), [hep-ph/0008090].
[117] A. Bondar, talk at the Belle analysis workshop, Novosibirsk, September 2002; A. Poluektov et al. (Belle), Phys. Rev. D70, 072003 (2004), [hep-ex/0406067].
[118] A. Giri et al., Phys. Rev. D68, 054018 (2003), [hepph/0303187].
[119] A. Poluektov et al. (Belle), Phys. Rev. D81, 112002 (2010), [arXiv:1003.3360].
[120] P. del Amo Sanchez et al. (BaBar), Phys. Rev. Lett. 105, 121801 (2010), [arXiv:1005.1096].
[121] R. Aaij et al. (LHCb), JHEP 10, 097 (2014), [arXiv:1408.2748].
[122] Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D72, 031501 (2005), [hep-ph/0505270].
[123] A. Amorim, M. G. Santos and J. P. Silva, Phys. Rev. D59, 056001 (1999), [hep-ph/9807364].
[124] R. Aleksan, I. Dunietz and B. Kayser, Z. Phys. C54, 653 (1992).
[125] R. Aaij et al. (LHCb), JHEP 03, 059 (2018), [arXiv:1712.07428].
[126] B. Aubert et al. (BaBar), Phys. Rev. D71, 112003 (2005), [hep-ex/0504035]; B. Aubert et al. (BaBar), Phys. Rev. D73, 111101 (2006), [hep-ex/0602049]; F. J. Ronga et al. (Belle), Phys. Rev. D73, 092003 (2006), [hep-ex/0604013]; S. Bahinipati et al. (Belle), Phys. Rev. D84, 021101 (2011), [arXiv:1102.0888]; R. Aaij et al. (LHCb), JHEP 06, 084 (2018), [arXiv:1805.03448].
[127] G. P. Dubois-Felsmann et al., Sensitivity of CKM fits to theoretical uncertainties and their representation (2003), [hepph/0308262]; G. Eigen et al., Phys. Rev. D89, 3, 033004 (2014), [arXiv:1301.5867].
[128] D. Boutigny et al. (BaBar), in "Workshop on Physics at an Asymmetric B Factory (BaBar Collaboration Meeting) Pasadena, California, September 22-24, 1997," (1998), URL http://www-public.slac.stanford.edu/sciDoc/docMeta. aspx?slacPubNumber=SLAC-R-504.
[129] S. Plaszczynski and M.-H. Schune hf8/019 (1999), [PoShf8,019(1999)], [hep-ph/9911280].
[130] M. Bona et al. (UTfit), JHEP 03, 049 (2008), [arXiv:0707.0636].
[131] We thank the CKMfitter and UTfit groups for performing fits and preparing plots using input values from this Review.
[132] H. E. Haber, Nucl. Phys. Proc. Suppl. 62, 469 (1998), [hepph/9709450]; Y. Nir, CP violation: A New era (2001), [hepph/0109090].
[133] J. M. Soares and L. Wolfenstein, Phys. Rev. D47, 1021 (1993); T. Goto et al., Phys. Rev. D53, 6662 (1996), [hepph/9506311]; J. P. Silva and L. Wolfenstein, Phys. Rev. D55, 5331 (1997), [hep-ph/9610208].
[134] Y. Grossman, Z. Ligeti and Y. Nir, Prog. Theor. Phys. 122, 125 (2009), [arXiv:0904.4262].
[135] G. Isidori, Y. Nir and G. Perez, Ann. Rev. Nucl. Part. Sci. 60, 355 (2010), [arXiv:1002.0900]; G. Isidori, in "Proceed-
ings, 2012 European School of High-Energy Physics (ESHEP 2012): La Pommeraye, Anjou, France, June 06-19, 2012," 69-105 (2014), [arXiv:1302.0661].
[136] Z. Ligeti, Int. J. Mod. Phys. A20, 5105 (2005), [hepph/0408267].
[137] J. Charles et al., Phys. Rev. D89, 3, 033016 (2014), [arXiv:1309.2293].
[138] K. Agashe et al. (2005), [hep-ph/0509117].
[139] S. Laplace et al., Phys. Rev. D65, 094040 (2002), [hepph/0202010].
[140] R. Aaij et al. (LHCb), JHEP 08, 037 (2017), [arXiv:1704.08217]; G. Aad et al. (ATLAS) (2020), [arXiv:2001.07115]; V. Khachatryan et al. (CMS), Phys. Lett. B757, 97 (2016), [arXiv:1507.07527].
[141] J. K. Ahn et al. (KOTO), Phys. Rev. Lett. 122, 2, 021802 (2019), [arXiv:1810.09655].
[142] A. J. Buras et al., JHEP 11, 033 (2015), [arXiv:1503.02693].

13. $C P$ Violation in the Quark Sector

Revised August 2019 by T. Gershon (Warwick U.) and Y. Nir (Weizmann Inst.).

The $C P$ transformation combines charge conjugation C with parity P. Under C, particles and antiparticles are interchanged, by conjugating all internal quantum numbers, e.g., $Q \rightarrow-Q$ for electromagnetic charge. Under P, the handedness of space is reversed, $\vec{x} \rightarrow-\vec{x}$. Thus, for example, a left-handed electron e_{L}^{-}is transformed under $C P$ into a right-handed positron, e_{R}^{+}.

If $C P$ were an exact symmetry, the laws of Nature would be the same for matter and for antimatter. We observe that most phenomena are C - and P-symmetric, and therefore, also $C P$ symmetric. In particular, these symmetries are respected by the gravitational, electromagnetic, and strong interactions. The weak interactions, on the other hand, violate C and P in the strongest possible way. For example, the charged W bosons couple to left-handed electrons, e_{L}^{-}, and to their $C P$-conjugate right-handed positrons, e_{R}^{+}, but to neither their C-conjugate lefthanded positrons, e_{L}^{+}, nor their P-conjugate right-handed electrons, e_{R}^{-}. While weak interactions violate C and P separately, $C P$ is still preserved in most weak interaction processes. The $C P$ symmetry is, however, violated in certain rare processes, as discovered in neutral K decays in 1964 [1], and established later in $B(2001)$ and $D(2019)$ decays. A K_{L} meson decays more often to $\pi^{-} e^{+} \nu_{e}$ than to $\pi^{+} e^{-} \bar{\nu}_{e}$, thus allowing electrons and positrons to be unambiguously distinguished, but the decay-rate asymmetry is only at the 0.003 level. The $C P$-violating effects observed in the B system are larger: the parameter describing the $C P$ asymmetry in the decay time distribution of B^{0} / \bar{B}^{0} meson transitions to $C P$ eigenstates like $J / \psi K_{S}$ is about 0.7 [2,3]. These effects are related to $K^{0}-\bar{K}^{0}$ and $B^{0}-\bar{B}^{0}$ mixing, but $C P$ violation arising solely from decay amplitudes has also been observed, first in $K \rightarrow \pi \pi$ decays [4-6], subsequently in $B^{0}[7,8], B^{+}[9-11]$, and B_{s}^{0} [12] decays, and most recently in charm decays [13]. Similar effects could also occur in decays of baryons, but have not yet been observed. Moreover, $C P$ violation has not yet been observed in processes involving the top quark, nor in flavor-conserving processes such as electric dipole moments, nor in the lepton sector; for all of these any significant observation would be a clear indication of physics beyond the Standard Model.

In addition to parity and to continuous Lorentz transformations, there is one other spacetime operation that could be a symmetry of the interactions: time reversal $T, t \rightarrow-t$. Violations of T symmetry have been observed in neutral K decays [14]. More recently, exploiting the fact that for neutral B mesons both flavor tagging and $C P$ tagging can be used [15], T violation has been observed between states that are not $C P$-conjugate [16]. Moreover, T violation is expected as a corollary of $C P$ violation if the combined $C P T$ transformation is a fundamental symmetry of Nature [17]. All observations indicate that $C P T$ is indeed a symmetry of Nature. Furthermore, one cannot build a locally Lorentz-invariant quantum field theory with a Hermitian Hamiltonian that violates $C P T$. (At several points in our discussion, we avoid assumptions about $C P T$, in order to identify cases where evidence for $C P$ violation relies on assumptions about $C P T$.)

Within the Standard Model, $C P$ symmetry is broken by complex phases in the Yukawa couplings (that is, the couplings of the Higgs scalar to quarks). When all manipulations to remove unphysical phases in this model are exhausted, one finds that there is a single $C P$-violating parameter [18]. In the basis of mass eigenstates, this single phase appears in the 3×3 unitary matrix that gives the W-boson couplings to an up-type antiquark and a down-type quark. (If the Standard Model is supplemented with Majorana mass terms for the neutrinos, the analogous mixing matrix for leptons has three $C P$-violating phases.) The beautifully consistent and economical Standard-Model description of $C P$ violation in terms of Yukawa couplings, known as the KobayashiMaskawa (KM) mechanism [18], agrees with all measurements to date. (Some measurements are in tension with the predictions, and are discussed in more detail below. Pending verification, the results are not considered to change the overall picture of agreement with the Standard Model.) Furthermore, one can fit
the data allowing new physics contributions to loop processes to compete with, or even dominate over, the Standard Model amplitudes [19, 20]. Such an analysis provides model-independent proof that the KM phase is different from zero, and that the matrix of three-generation quark mixing is the dominant source of $C P$ violation in meson decays.

The current level of experimental accuracy and the theoretical uncertainties involved in the interpretation of the various observations leave room, however, for additional subdominant sources of $C P$ violation from new physics. Indeed, almost all extensions of the Standard Model imply that there are such additional sources. Moreover, $C P$ violation is a necessary condition for baryogenesis, the process of dynamically generating the matter-antimatter asymmetry of the Universe [21]. Despite the phenomenological success of the KM mechanism, it fails (by several orders of magnitude) to accommodate the observed asymmetry [22]. This discrepancy strongly suggests that Nature provides additional sources of $C P$ violation beyond the KM mechanism. The evidence for neutrino masses implies that $C P$ can be violated also in the lepton sector. This situation makes leptogenesis [23,24], a scenario where $C P$-violating phases in the Yukawa couplings of the neutrinos play a crucial role in the generation of the baryon asymmetry, a very attractive possibility. The expectation of new sources motivates the large ongoing experimental effort to find deviations from the predictions of the KM mechanism.
$C P$ violation can be experimentally searched for in a variety of processes, such as hadron decays, electric dipole moments of neutrons, electrons and nuclei, and neutrino oscillations. Hadron decays via the weak interaction probe flavor-changing $C P$ violation. The search for electric dipole moments may find (or constrain) sources of $C P$ violation that, unlike the KM phase, are not related to flavor-changing couplings. Following the discovery of the Higgs boson $[25,26]$, searches for $C P$ violation in the Higgs sector are becoming feasible. Future searches for $C P$ violation in neutrino oscillations might provide further input on leptogenesis.

The present measurements of $C P$ asymmetries provide some of the strongest constraints on the weak couplings of quarks. Future measurements of $C P$ violation in K, D, B, and B_{s}^{0} meson decays will provide additional constraints on the flavor parameters of the Standard Model, and can probe new physics. In this review, we give the formalism and basic physics that are relevant to present and near future measurements of $C P$ violation in the quark sector.

Before going into details, we list here the observables where $C P$ violation has been observed at a level above 5σ [27-29]:

- Indirect $C P$ violation in $K \rightarrow \pi \pi$ and $K \rightarrow \pi \ell \nu$ decays, and in the $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$decay, is given by

$$
\begin{equation*}
|\epsilon|=(2.228 \pm 0.011) \times 10^{-3} \tag{13.1}
\end{equation*}
$$

- Direct $C P$ violation in $K \rightarrow \pi \pi$ decays is given by

$$
\begin{equation*}
\mathcal{R} e\left(\epsilon^{\prime} / \epsilon\right)=(1.65 \pm 0.26) \times 10^{-3} \tag{13.2}
\end{equation*}
$$

- $C P$ violation in the interference of mixing and decay in the tree-dominated $b \rightarrow c \bar{c} s$ transitions, such as $B^{0} \rightarrow \psi K^{0}$, is given by (we use K^{0} throughout to denote results that combine K_{S} and K_{L} modes, but use the sign appropriate to $\left.K_{S}\right)$:

$$
\begin{equation*}
S_{\psi K^{0}}=+0.699 \pm 0.017 \tag{13.3}
\end{equation*}
$$

- $C P$ violation in the interference of mixing and decay in modes governed by the tree-dominated $b \rightarrow c \bar{u} d$ transitions is given by

$$
\begin{equation*}
S_{D^{(*)} h^{0}}=+0.71 \pm 0.09 \tag{13.4}
\end{equation*}
$$

- $C P$ violation in the interference of mixing and decay in various modes related to $b \rightarrow c \bar{c} d$ transitions is given by

$$
\begin{align*}
S_{\psi \pi^{0}} & =-0.86 \pm 0.14 \\
S_{D^{+} D^{-}} & =-0.84 \pm 0.12 \\
S_{D^{*+}} D^{*-} & =-0.71 \pm 0.09 \tag{13.5}
\end{align*}
$$

- $C P$ violation in the interference of mixing and decay in various modes related to $b \rightarrow q \bar{q} s$ (penguin) transitions is given by

$$
\begin{align*}
S_{\phi K^{0}} & =+0.74_{-0.13}^{+0.11}, \\
S_{\eta^{\prime} K^{0}} & =+0.63_{ \pm 0.06}, \\
S_{f_{0} K^{0}} & =+0.69_{-0.12}^{+0.10}, \\
S_{K^{+} K^{-} K_{S}} & =+0.68_{-0.10}^{+0.09} \tag{13.6}
\end{align*}
$$

- $C P$ violation in the interference of mixing and decay in the $B^{0} \rightarrow \pi^{+} \pi^{-}$mode is given by

$$
\begin{equation*}
S_{\pi^{+} \pi^{-}}=-0.63 \pm 0.04 \tag{13.7}
\end{equation*}
$$

- Direct $C P$ violation in the $B^{0} \rightarrow \pi^{+} \pi^{-}$mode is given by

$$
\begin{equation*}
C_{\pi^{+} \pi^{-}}=-0.32 \pm 0.04 \tag{13.8}
\end{equation*}
$$

- Direct $C P$ violation in $B^{+} \rightarrow D_{+} K^{+}$decays (D_{+}is the $C P_{-}$ even neutral D state) is given by

$$
\begin{equation*}
\mathcal{A}_{B^{+} \rightarrow D_{+} K^{+}}=+0.129 \pm 0.012 \tag{13.9}
\end{equation*}
$$

while the corresponding quantity in the case that the neutral D meson is reconstructed in the suppressed $K^{-} \pi^{+}$final state is

$$
\begin{equation*}
\mathcal{A}_{B^{+} \rightarrow D_{K^{-}} \pi^{+}} K^{+}=-0.41 \pm 0.06 \tag{13.10}
\end{equation*}
$$

- Direct $C P$ violation has also been observed in $B^{+} \rightarrow D K^{+}$ decays through differences between the Dalitz plot distributions of subsequent $D \rightarrow K_{S} \pi^{+} \pi^{-}$decays.
- Direct $C P$ violation in the $\bar{B}^{0} \rightarrow K^{-} \pi^{+}$mode is given by

$$
\begin{equation*}
\mathcal{A}_{\bar{B}^{0} \rightarrow K^{-} \pi^{+}}=-0.084 \pm 0.004 \tag{13.11}
\end{equation*}
$$

- Direct $C P$ violation in the $\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}$mode is given by

$$
\begin{equation*}
\mathcal{A}_{\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}}=+0.213 \pm 0.017 \tag{13.12}
\end{equation*}
$$

- Direct $C P$ violation in $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$decays is given by

$$
\begin{equation*}
\mathcal{A}_{B^{+} \rightarrow K^{+} K^{-} \pi^{+}}=-0.118 \pm 0.022 \tag{13.13}
\end{equation*}
$$

An amplitude analysis has established a large $C P$ violation effect associated with $\pi \pi \leftrightarrow K K$ S-wave rescattering in $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$decays.

- Large $C P$ violation effects have also been observed in certain regions of the phase space of $B^{+} \rightarrow K^{+} K^{-} K^{+}, \pi^{+} \pi^{-} K^{+}$ and $\pi^{+} \pi^{-} \pi^{+}$decays.
- Direct $C P$ violation has been established in the difference of asymmetries for $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays

$$
\begin{equation*}
\Delta a_{C P}=(-0.164 \pm 0.028) \times 10^{-3} \tag{13.14}
\end{equation*}
$$

13.1 Formalism

The phenomenology of $C P$ violation for neutral flavored mesons is particularly interesting, since many of the observables can be cleanly interpreted. Although the phenomenology is superficially different for K^{0}, D^{0}, B^{0}, and B_{s}^{0} decays, this is primarily because each of these systems is governed by a different balance between decay rates, oscillations, and lifetime splitting. However, the general considerations presented in this section are identical for all flavored neutral pseudoscalar mesons. The phenomenology of $C P$ violation for neutral mesons that do not carry flavor quantum numbers (such as the $\eta^{(\prime)}$ state) is quite different: such states are their own antiparticles and have definite $C P$ eigenvalues, so the signature of $C P$ violation is simply the decay to a final state with the opposite $C P$. Such decays are mediated by the electromagnetic or (OZI-suppressed) strong interaction, where $C P$ violation is not expected and has not yet been observed. In the remainder of this review, we restrict ourselves to considerations of weakly decaying hadrons.

In this section, we present a general formalism for, and classification of, $C P$ violation in the decay of a weakly decaying hadron,
denoted M. We pay particular attention to the case that M is a K^{0}, D^{0}, B^{0}, or B_{s}^{0} meson. Subsequent sections describe the $C P$-violating phenomenology, approximations, and alternative formalisms that are specific to each system.

13.1.1 Charged- and neutral-hadron decays

We define decay amplitudes of M (which could be charged or neutral) and its $C P$ conjugate \bar{M} to a multi-particle final state f and its $C P$ conjugate \bar{f} as

$$
\begin{array}{ll}
A_{f}=\langle f| \mathcal{H}|M\rangle, & \bar{A}_{f}=\langle f| \mathcal{H}|\bar{M}\rangle \\
A_{\bar{f}}=\langle\bar{f}| \mathcal{H}|M\rangle, & \bar{A}_{\bar{f}}=\langle\bar{f}| \mathcal{H}|\bar{M}\rangle \tag{13.15b}
\end{array}
$$

where \mathcal{H} is the Hamiltonian governing weak interactions. The action of $C P$ on these states introduces phases ξ_{M} and ξ_{f} that depend on their flavor content, according to

$$
\begin{array}{ll}
C P|M\rangle=e^{+i \xi_{M}}|\bar{M}\rangle, & C P|f\rangle=e^{+i \xi_{f}}|\bar{f}\rangle \\
C P|\bar{M}\rangle=e^{-i \xi_{M}}|M\rangle, & C P|\bar{f}\rangle=e^{-i \xi_{f}}|f\rangle \tag{13.16b}
\end{array}
$$

so that $(C P)^{2}=1$. The phases ξ_{M} and ξ_{f} are arbitrary and unobservable because of the flavor symmetry of the strong interaction. If $C P$ is conserved by the dynamics, $[C P, \mathcal{H}]=0$, then A_{f} and \bar{A}_{f} have the same magnitude and an arbitrary unphysical relative phase

$$
\begin{equation*}
\bar{A}_{\bar{f}}=e^{i\left(\xi_{f}-\xi_{M}\right)} A_{f} \tag{13.17}
\end{equation*}
$$

13.1.2 Neutral-meson mixing

A state that is initially a superposition of M^{0} and \bar{M}^{0}, say

$$
\begin{equation*}
|\psi(0)\rangle=a(0)\left|M^{0}\right\rangle+b(0)\left|\bar{M}^{0}\right\rangle \tag{13.18}
\end{equation*}
$$

will evolve in time acquiring components that describe all possible decay final states $\left\{f_{1}, f_{2}, \ldots\right\}$, that is,

$$
\begin{equation*}
|\psi(t)\rangle=a(t)\left|M^{0}\right\rangle+b(t)\left|\bar{M}^{0}\right\rangle+c_{1}(t)\left|f_{1}\right\rangle+c_{2}(t)\left|f_{2}\right\rangle+\cdots \tag{13.19}
\end{equation*}
$$

If we are interested in computing only the values of $a(t)$ and $b(t)$ (and not the values of all $c_{i}(t)$), and if the times t in which we are interested are much larger than the typical strong interaction scale, then we can use a much simplified formalism [30]. The simplified time evolution is determined by a 2×2 effective Hamiltonian \mathbf{H} that is not Hermitian, since otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H, can be written in terms of Hermitian matrices \mathbf{M} and $\boldsymbol{\Gamma}$ as

$$
\begin{equation*}
\mathbf{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma} \tag{13.20}
\end{equation*}
$$

\mathbf{M} and $\boldsymbol{\Gamma}$ are associated with $\left(M^{0}, \bar{M}^{0}\right) \leftrightarrow\left(M^{0}, \bar{M}^{0}\right)$ transitions via off-shell (dispersive), and on-shell (absorptive) intermediate states, respectively. Diagonal elements of \mathbf{M} and $\boldsymbol{\Gamma}$ are associated with the flavor-conserving transitions $M^{0} \rightarrow M^{0}$ and $\bar{M}^{0} \rightarrow \bar{M}^{0}$, while off-diagonal elements are associated with flavor-changing transitions $M^{0} \leftrightarrow \bar{M}^{0}$.

The eigenvectors of \mathbf{H} have well-defined masses and decay widths. To specify the components of the strong interaction eigenstates, M^{0} and \bar{M}^{0}, in the light $\left(M_{L}\right)$ and heavy $\left(M_{H}\right)$ mass eigenstates, we introduce three complex parameters: p, q, and, for the case that both $C P$ and $C P T$ are violated in mixing, z :

$$
\begin{align*}
& \left|M_{L}\right\rangle \propto p \sqrt{1-z}\left|M^{0}\right\rangle+q \sqrt{1+z}\left|\bar{M}^{0}\right\rangle \tag{13.21a}\\
& \left|M_{H}\right\rangle \propto p \sqrt{1+z}\left|M^{0}\right\rangle-q \sqrt{1-z}\left|\bar{M}^{0}\right\rangle \tag{13.21b}
\end{align*}
$$

with the normalization $|q|^{2}+|p|^{2}=1$ when $z=0$. (Another possible choice of labelling, which is in standard usage for K mesons, defines the mass eigenstates according to their lifetimes: K_{S} for the short-lived and K_{L} for the long-lived state. The K_{L} is experimentally found to be the heavier state. Yet another choice is often used for the D mesons [31]: the eigenstates are labelled according to their dominant $C P$ content.)

The real and imaginary parts of the eigenvalues $\omega_{L, H}$ corresponding to $\left|M_{L, H}\right\rangle$ represent their masses and decay widths, respectively. The mass and width splittings are

$$
\begin{array}{r}
\Delta m \equiv m_{H}-m_{L}=\mathcal{R e}\left(\omega_{H}-\omega_{L}\right) \\
\Delta \Gamma \equiv \Gamma_{H}-\Gamma_{L}=-2 \mathcal{I} m\left(\omega_{H}-\omega_{L}\right) \tag{13.22b}
\end{array}
$$

Note that here Δm is positive by definition, while the sign of $\Delta \Gamma$ must be experimentally determined. The sign of $\Delta \Gamma$ has not yet been established for B^{0} mesons, while $\Delta \Gamma<0$ is established for K and B_{s}^{0} mesons. The Standard Model predicts $\Delta \Gamma<0$ for $B_{(s)}^{0}$ mesons; for this reason, $\Delta \Gamma=\Gamma_{L}-\Gamma_{H}$, which is still a signed quantity, is often used in the $B_{(s)}^{0}$ literature and is the convention used in the PDG experimental summaries.

Solving the eigenvalue problem for \mathbf{H} yields

$$
\begin{equation*}
\left(\frac{q}{p}\right)^{2}=\frac{\mathbf{M}_{12}^{*}-(i / 2) \boldsymbol{\Gamma}_{12}^{*}}{\mathbf{M}_{12}-(i / 2) \boldsymbol{\Gamma}_{12}} \tag{13.23}
\end{equation*}
$$

and

$$
\begin{equation*}
z \equiv \frac{\delta m-(i / 2) \delta \Gamma}{\Delta m-(i / 2) \Delta \Gamma} \tag{13.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta m \equiv \mathbf{M}_{11}-\mathbf{M}_{22}, \quad \delta \Gamma \equiv \boldsymbol{\Gamma}_{11}-\boldsymbol{\Gamma}_{22} \tag{13.25}
\end{equation*}
$$

are the differences in effective mass and decay-rate expectation values for the strong interaction states M^{0} and \bar{M}^{0}.

If either $C P$ or $C P T$ is a symmetry of \mathbf{H} (independently of whether T is conserved or violated), then the values of δm and $\delta \Gamma$ are both zero, and hence $z=0$. We also find that

$$
\begin{equation*}
\omega_{H}-\omega_{L}=2 \sqrt{\left(\mathbf{M}_{12}-\frac{i}{2} \boldsymbol{\Gamma}_{12}\right)\left(\mathbf{M}_{12}^{*}-\frac{i}{2} \boldsymbol{\Gamma}_{12}^{*}\right)} \tag{13.26}
\end{equation*}
$$

If either $C P$ or T is a symmetry of \mathbf{H} (independently of whether $C P T$ is conserved or violated), then $\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}$ is real, leading to

$$
\begin{equation*}
\left(\frac{q}{p}\right)^{2}=e^{2 i \xi_{M}} \quad \Rightarrow \quad\left|\frac{q}{p}\right|=1 \tag{13.27}
\end{equation*}
$$

where ξ_{M} is the arbitrary unphysical phase introduced in Eq. (13.16). If, and only if, $C P$ is a symmetry of \mathbf{H} (independently of $C P T$ and T), then both of the above conditions hold, with the result that the mass eigenstates are orthogonal

$$
\begin{equation*}
\left\langle M_{H} \mid M_{L}\right\rangle=|p|^{2}-|q|^{2}=0 \tag{13.28}
\end{equation*}
$$

13.1.3 CP-violating observables

All $C P$-violating observables in M and \bar{M} decays to final states f and \bar{f} can be expressed in terms of phase-conventionindependent combinations of $A_{f}, \bar{A}_{f}, A_{\bar{f}}$, and $\bar{A}_{\bar{f}}$, together with, for neutral meson decays only, $q / p . C P$ violation in charged meson and all baryon decays depends only on the combination $\left|\bar{A}_{\bar{f}} / A_{f}\right|$, while $C P$ violation in flavored neutral meson decays is complicated by $M^{0} \leftrightarrow \bar{M}^{0}$ oscillations, and depends, additionally, on $|q / p|$ and on $\lambda_{f} \equiv(q / p)\left(\bar{A}_{f} / A_{f}\right)$.

The decay rates of the two neutral kaon mass eigenstates, K_{S} and K_{L}, are different enough $\left(\Gamma_{S} / \Gamma_{L} \sim 500\right)$ that one can, in most cases, actually study their decays independently. For D^{0}, B^{0}, and B_{s}^{0} mesons, however, values of $\Delta \Gamma / \Gamma\left(\right.$ where $\left.\Gamma \equiv\left(\Gamma_{H}+\Gamma_{L}\right) / 2\right)$ are relatively small, and so both mass eigenstates must be considered in their evolution. We denote the state of an initially pure $\left|M^{0}\right\rangle$ or $\left|\bar{M}^{0}\right\rangle$ after an elapsed proper time t as $\left|M_{\mathrm{phys}}^{0}(t)\right\rangle$ or $\left|\bar{M}_{\text {phys }}^{0}(t)\right\rangle$, respectively. Using the effective Hamiltonian approximation, but not assuming $C P T$ to be a good symmetry, we obtain

$$
\begin{align*}
& \left|M_{\mathrm{phys}}^{0}(t)\right\rangle=\left(g_{+}(t)+z g_{-}(t)\right)\left|M^{0}\right\rangle-\sqrt{1-z^{2}} \frac{q}{p} g_{-}(t)\left|\bar{M}^{0}\right\rangle \tag{13.29a}\\
& \left|\bar{M}_{\mathrm{phys}}^{0}(t)\right\rangle=\left(g_{+}(t)-z g_{-}(t)\right)\left|\bar{M}^{0}\right\rangle-\sqrt{1-z^{2}} \frac{p}{q} g_{-}(t)\left|M^{0}\right\rangle \tag{13.29b}
\end{align*}
$$

where

$$
\begin{equation*}
g_{ \pm}(t) \equiv \frac{1}{2}\left[\exp \left(-i m_{H} t-\frac{1}{2} \Gamma_{H} t\right) \pm \exp \left(-i m_{L} t-\frac{1}{2} \Gamma_{L} t\right)\right] \tag{13.30}
\end{equation*}
$$

and $z=0$ if either $C P T$ or $C P$ is conserved.
Defining $x \equiv \Delta m / \Gamma$ and $y \equiv \Delta \Gamma /(2 \Gamma)$, and assuming $z=0$, one obtains the following time-dependent decay rates:

$$
\begin{align*}
\frac{d \Gamma\left[M_{\mathrm{phys}}^{0}(t) \rightarrow f\right] / d t}{e^{-\Gamma t} \mathcal{N}_{f}}= & \left(\left|A_{f}\right|^{2}+\left|(q / p) \bar{A}_{f}\right|^{2}\right) \cosh (y \Gamma t) \\
& +\left(\left|A_{f}\right|^{2}-\left|(q / p) \bar{A}_{f}\right|^{2}\right) \cos (x \Gamma t) \\
& +2 \mathcal{R} e\left((q / p) A_{f}^{*} \bar{A}_{f}\right) \sinh (y \Gamma t) \\
& -2 \mathcal{I} m\left((q / p) A_{f}^{*} \bar{A}_{f}\right) \sin (x \Gamma t) \tag{13.31a}
\end{align*}
$$

$$
\begin{align*}
\frac{d \Gamma\left[\bar{M}_{\mathrm{phys}}^{0}(t) \rightarrow f\right] / d t}{e^{-\Gamma t} \mathcal{N}_{f}}= & \left(\left|(p / q) A_{f}\right|^{2}+\left|\bar{A}_{f}\right|^{2}\right) \cosh (y \Gamma t) \\
& -\left(\left|(p / q) A_{f}\right|^{2}-\left|\bar{A}_{f}\right|^{2}\right) \cos (x \Gamma t) \\
& +2 \mathcal{R} e\left((p / q) A_{f} \bar{A}_{f}^{*}\right) \sinh (y \Gamma t) \\
& -2 \mathcal{I} m\left((p / q) A_{f} \bar{A}_{f}^{*}\right) \sin (x \Gamma t) \tag{13.31b}
\end{align*}
$$

where \mathcal{N}_{f} is a common, time-independent, normalization factor that can be determined bearing in mind that the range of t is $0<t<\infty$. Decay rates to the $C P$-conjugate final state \bar{f} are obtained analogously, with $\mathcal{N}_{f}=\mathcal{N}_{\bar{f}}$ and the substitutions $A_{f} \rightarrow A_{\bar{f}}$ and $\bar{A}_{f} \rightarrow \bar{A}_{\bar{f}}$ in Eqs. (13.31a) and (13.31b). Terms proportional to $\left|A_{f}\right|^{2}$ or $\left|\bar{A}_{f}\right|^{2}$ are associated with decays that occur without any net $M^{0} \leftrightarrow \bar{M}^{0}$ oscillation, while terms proportional to $\left|(q / p) \bar{A}_{f}\right|^{2}$ or $\left|(p / q) A_{f}\right|^{2}$ are associated with decays following a net oscillation. The $\sinh (y \Gamma t)$ and $\sin (x \Gamma t)$ terms of Eqs. (13.31a) and (13.31b) are associated with the interference between these two cases. Note that, in multi-body decays, amplitudes are functions of variables that describe the phase-space of the final state. Interference may be present in some regions but not others, and is strongly influenced by resonant substructure.

When neutral pseudoscalar mesons are produced coherently in pairs from the decay of a vector resonance, $V \rightarrow M^{0} \bar{M}^{0}$ (for example, $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}, \psi(3770) \rightarrow D^{0} \bar{D}^{0}$ or $\phi \rightarrow K^{0} \bar{K}^{0}$), the time-dependence of their subsequent decays to final states f_{1} and f_{2} has a similar form to Eqs. (13.31a) and (13.31b):

$$
\begin{align*}
\frac{d \Gamma\left[V_{\text {phys }}\left(t_{1}, t_{2}\right) \rightarrow f_{1} f_{2}\right] / d(\Delta t)}{e^{-\Gamma|\Delta t|} \mathcal{N}_{f_{1} f_{2}}}= & \left(\left|a_{+}\right|^{2}+\left|a_{-}\right|^{2}\right) \cosh (y \Gamma \Delta t) \\
& +\left(\left|a_{+}\right|^{2}-\left|a_{-}\right|^{2}\right) \cos (x \Gamma \Delta t) \\
& -2 \mathcal{R} e\left(a_{+}^{*} a_{-}\right) \sinh (y \Gamma \Delta t) \\
& +2 \mathcal{I m}\left(a_{+}^{*} a_{-}\right) \sin (x \Gamma \Delta t), \tag{13.32}
\end{align*}
$$

where $\Delta t \equiv t_{2}-t_{1}$ is the difference in the production times, t_{1} and t_{2}, of f_{1} and f_{2}, respectively, and the dependence on the average decay time and on decay angles has been integrated out. The normalisation factor $\mathcal{N}_{f_{1} f_{2}}$ can be evaluated, noting that the range of Δt is $-\infty<\Delta t<\infty$. The coefficients in Eq. (13.32) are determined by the amplitudes for no net oscillation from $t_{1} \rightarrow t_{2}$, $\bar{A}_{f_{1}} A_{f_{2}}$, and $A_{f_{1}} \bar{A}_{f_{2}}$, and for a net oscillation, $(q / p) \bar{A}_{f_{1}} \bar{A}_{f_{2}}$ and $(p / q) A_{f_{1}} A_{f_{2}}$, via

$$
\begin{align*}
a_{+} \equiv & \bar{A}_{f_{1}} A_{f_{2}}-A_{f_{1}} \bar{A}_{f_{2}}, \tag{13.33a}\\
a_{-} \equiv & -\sqrt{1-z^{2}}\left(\frac{q}{p} \bar{A}_{f_{1}} \bar{A}_{f_{2}}-\frac{p}{q} A_{f_{1}} A_{f_{2}}\right) \\
& +z\left(\bar{A}_{f_{1}} A_{f_{2}}+A_{f_{1}} \bar{A}_{f_{2}}\right) . \tag{13.33b}
\end{align*}
$$

Assuming $C P T$ conservation, $z=0$, and identifying $\Delta t \rightarrow t$ and $f_{2} \rightarrow f$, we find that Eqs. (13.32) and (13.33) reduce to

Eq. (13.31a) with $A_{f_{1}}=0, \bar{A}_{f_{1}}=1$, or to Eq. (13.31b) with $\bar{A}_{f_{1}}=0, A_{f_{1}}=1$. Indeed, such a situation plays an important role in experiments that exploit the coherence of $V \rightarrow M^{0} \bar{M}^{0}$ production. Final states f_{1} with $A_{f_{1}}=0$ or $\bar{A}_{f_{1}}=0$ are called tagging states, because they identify the decaying pseudoscalar meson as, respectively, \bar{M}^{0} or M^{0}. Before one of M^{0} or \bar{M}^{0} decays, they evolve in phase, so that there is always one M^{0} and one \bar{M}^{0} present. A tagging decay of one meson sets the clock for the time evolution of the other: it starts at t_{1} as purely M^{0} or \bar{M}^{0}, with time evolution that depends only on $t_{2}-t_{1}$.

When f_{1} is a state that both M^{0} and \bar{M}^{0} can decay into, then Eq. (13.32) contains interference terms proportional to $A_{f_{1}} \bar{A}_{f_{1}} \neq$ 0 that are not present in Eqs. (13.31a) and (13.31b). Even when f_{1} is dominantly produced by M^{0} decays rather than \bar{M}^{0} decays, or vice versa, $A_{f_{1}} \bar{A}_{f_{1}}$ can be non-zero owing to doubly-CKMsuppressed decays (with amplitudes suppressed by at least two powers of λ relative to the dominant amplitude, in the language of Section 13.3), and these terms should be considered for precision studies of $C P$ violation in coherent $V \rightarrow M^{0} \bar{M}^{0}$ decays [32]. The correlations in $V \rightarrow M^{0} \bar{M}^{0}$ decays can also be exploited to determine strong phase differences between favored and suppressed decay amplitudes [33].

13.1.4 Classification of CP-violating effects

We distinguish three types of $C P$-violating effects that can occur in the quark sector:
I. $C P$ violation in decay is defined by

$$
\begin{equation*}
\left|\bar{A}_{\bar{f}} / A_{f}\right| \neq 1 \tag{13.34}
\end{equation*}
$$

In charged meson (and all baryon) decays, where mixing effects are absent, this is the only possible source of $C P$ asymmetries:
$\mathcal{A}_{f \pm} \equiv \frac{\Gamma\left(M^{-} \rightarrow f^{-}\right)-\Gamma\left(M^{+} \rightarrow f^{+}\right)}{\Gamma\left(M^{-} \rightarrow f^{-}\right)+\Gamma\left(M^{+} \rightarrow f^{+}\right)}=\frac{\left|\bar{A}_{f^{-}} / A_{f^{+}}\right|^{2}-1}{\left|\bar{A}_{f^{-}} / A_{f^{+}}\right|^{2}+1}$
Note that the usual sign convention for $C P$ asymmetries of hadrons is for the difference between the rate involving the particle that contains a heavy quark and that which contains an antiquark. Hence Eq. (13.35) corresponds to the definition for $B^{ \pm}$mesons, but the opposite sign is used for $D_{(s)}^{ \pm}$decays.
II. $C P$ (and T) violation in mixing is defined by

$$
\begin{equation*}
|q / p| \neq 1 \tag{13.36}
\end{equation*}
$$

In charged-current semileptonic neutral meson decays $\underline{M}, \bar{M} \rightarrow \ell^{ \pm} X$ (taking $\left|A_{\ell^{+} X}\right|=\left|\bar{A}_{\ell^{-} X}\right|$ and $A_{\ell^{-X}}=$ $\bar{A}_{\ell+X}=0$, as is the case in the Standard Model, to lowest order in G_{F}, and in most of its reasonable extensions), this is the only source of $C P$ violation, and can be measured via the asymmetry of "wrong-sign" decays induced by oscillations:

$$
\begin{align*}
& \mathcal{A}_{\mathrm{SL}}(t) \\
& \equiv \frac{d \Gamma / d t\left[\bar{M}_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{+} X\right]-d \Gamma / d t\left[M_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{-} X\right]}{d \Gamma / d t\left[\bar{M}_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{+} X\right]+d \Gamma / d t\left[M_{\mathrm{phys}}^{0}(t) \rightarrow \ell^{-} X\right]} \tag{13.37a}\\
& =\frac{1-|q / p|^{4}}{1+|q / p|^{4}} \tag{13.37b}
\end{align*}
$$

Note that this asymmetry of time-dependent decay rates is actually time-independent.
III. $C P$ violation in interference between a decay without mixing, $M^{0} \rightarrow f$, and a decay with mixing, $M^{0} \rightarrow \bar{M}^{0} \rightarrow f$ (such an effect occurs only in decays to final states that are common to M^{0} and \bar{M}^{0}, including all $C P$ eigenstates), is defined by

$$
\begin{equation*}
\arg \left(\lambda_{f}\right)+\arg \left(\lambda_{\bar{f}}\right) \neq 0, \quad \text { with } \quad \lambda_{f} \equiv \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \tag{13.38}
\end{equation*}
$$

For final $C P$ eigenstates, $f_{C P}$, the condition Eq. (13.38) simplifies to

$$
\begin{equation*}
\mathcal{I} m\left(\lambda_{f_{C P}}\right) \neq 0 \tag{13.39}
\end{equation*}
$$

This form of $C P$ violation can be observed, for example, using the asymmetry of neutral meson decays into $C P$ eigenstates

$$
\begin{align*}
& \mathcal{A}_{f_{C P}}(t) \equiv \\
& \equiv \frac{d \Gamma / d t\left[\bar{M}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]-d \Gamma / d t\left[M_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]}{d \Gamma / d t\left[\bar{M}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]+d \Gamma / d t\left[M_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]} \tag{13.40}
\end{align*}
$$

If $\Delta \Gamma=0$, as expected to a good approximation for B^{0} mesons but not for K^{0} and B_{s}^{0} mesons, and $|q / p|=1$, then $\mathcal{A}_{f_{C P}}$ has a particularly simple form (see Eq. (13.89), below). If, in addition, the decay amplitudes fulfill $\left|\bar{A}_{f_{C P}}\right|=$ $\left|A_{f_{C P}}\right|$, the interference between decays with and without mixing is the only source of asymmetry and $\mathcal{A}_{f_{C P}}(t)=$ $\mathcal{I} m\left(\lambda_{f_{C P}}\right) \sin (x \Gamma t)$.
Examples of these three types of $C P$ violation will be given in Sections 13.4, 13.5, and 13.6.

13.2 Theoretical Interpretation: General Considerations

Consider the $M \rightarrow \underline{f}$ decay amplitude A_{f}, and the $C P$ conjugate process, $\bar{M} \rightarrow \bar{f}$, with decay amplitude $\bar{A}_{\bar{f}}$. There are two types of phases that may appear in these decay amplitudes. Complex parameters in any Lagrangian term that contributes to the amplitude will appear in complex conjugate form in the $C P$ conjugate amplitude. Thus, their phases appear in A_{f} and $\bar{A}_{\bar{f}}$ with opposite signs. In the Standard Model, these phases occur only in the couplings of the $W^{ \pm}$bosons, and hence, are often called "weak phases." The weak phase of any single term is convention-dependent. However, the difference between the weak phases in two different terms in A_{f} is convention-independent. A second type of phase can appear in scattering or decay amplitudes, even when the Lagrangian is real. This phase originates from the possible contribution from intermediate on-shell states in the decay process. Since such phases are generated by $C P$-invariant interactions, they are the same in A_{f} and $\bar{A}_{\bar{f}}$. Usually the dominant rescattering is due to strong interactions; hence the designation "strong phases" for the phase shifts so induced. Again, only the relative strong phases between different terms in the amplitude are physically meaningful.

The "weak" and "strong" phases discussed here appear in addition to the spurious $C P$-transformation phases of Eq. (13.17). Those spurious phases are due to an arbitrary choice of phase convention, and do not originate from any dynamics or induce any $C P$ violation. For simplicity, we set them to zero from here on.

It is useful to write each contribution a_{i} to A_{f} in three parts: its magnitude $\left|a_{i}\right|$, its weak phase ϕ_{i}, and its strong phase δ_{i}. If, for example, there are two such contributions, $A_{f}=a_{1}+a_{2}$, we have

$$
\begin{align*}
& A_{f}=\left|a_{1}\right| e^{i\left(\delta_{1}+\phi_{1}\right)}+\left|a_{2}\right| e^{i\left(\delta_{2}+\phi_{2}\right)} \tag{13.41a}\\
& \bar{A}_{\bar{f}}=\left|a_{1}\right| e^{i\left(\delta_{1}-\phi_{1}\right)}+\left|a_{2}\right| e^{i\left(\delta_{2}-\phi_{2}\right)} \tag{13.41b}
\end{align*}
$$

Similarly, for neutral mesons, it is useful to write

$$
\begin{equation*}
\mathbf{M}_{12}=\left|\mathbf{M}_{12}\right| e^{i \phi_{M}}, \quad \boldsymbol{\Gamma}_{12}=\left|\boldsymbol{\Gamma}_{12}\right| e^{i \phi_{\Gamma}} \tag{13.42}
\end{equation*}
$$

Each of the phases appearing in Eqs. (13.41) and (13.42) is convention-dependent, but combinations such as $\delta_{1}-\delta_{2}, \phi_{1}-\phi_{2}$, $\phi_{M}-\phi_{\Gamma}$, and $\phi_{M}+\phi_{1}-\bar{\phi}_{1}$ (where $\bar{\phi}_{1}$ is a weak phase contributing to \bar{A}_{f}) are physical.

It is now straightforward to evaluate the various asymmetries in terms of the theoretical parameters introduced here. We will do so with approximations that are often relevant to the most interesting measured asymmetries.

1. The $C P$ asymmetry in charged meson and all baryon decays [Eq. (13.35)] is given by

$$
\begin{equation*}
\mathcal{A}_{f}=-\frac{2\left|a_{1} a_{2}\right| \sin \left(\delta_{2}-\delta_{1}\right) \sin \left(\phi_{2}-\phi_{1}\right)}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+2\left|a_{1} a_{2}\right| \cos \left(\delta_{2}-\delta_{1}\right) \cos \left(\phi_{2}-\phi_{1}\right)} \tag{13.43}
\end{equation*}
$$

The quantity of most interest to theory is the weak phase difference $\phi_{2}-\phi_{1}$. Its extraction from the asymmetry requires, however, that the amplitude ratio $\left|a_{2} / a_{1}\right|$ and the strong phase difference $\delta_{2}-\delta_{1}$ are known. Both quantities depend on nonperturbative hadronic parameters that are difficult to calculate, but in some cases can be obtained from experiment.
2. In the approximation that $\left|\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}\right| \ll 1$ (valid for B^{0} and B_{s}^{0} mesons), the $C P$ asymmetry in semileptonic neutral-meson decays [Eq. (13.37)] is given by

$$
\begin{equation*}
\mathcal{A}_{\mathrm{SL}}=-\left|\frac{\boldsymbol{\Gamma}_{12}}{\mathbf{M}_{12}}\right| \sin \left(\phi_{M}-\phi_{\Gamma}\right) \tag{13.44}
\end{equation*}
$$

The quantity of most interest to theory is the weak phase $\phi_{M}-\phi_{\Gamma}$. Its extraction from the asymmetry requires, however, that $\left|\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}\right|$ is known. State of the art calculations of this quantity for the B^{0} and B_{s}^{0} mesons have uncertainties of around 15-20\% [34].
3. In the approximations that only a single weak phase contributes to decay, $A_{f}=\left|a_{f}\right| e^{i\left(\delta_{f}+\phi_{f}\right)}$, and that $\left|\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}\right|=0$, we obtain $\left|\lambda_{f}\right|=1$, and the $C P$ asymmetries in decays to a final $C P$ eigenstate f [Eq. (13.40)] with eigenvalue $\eta_{f}= \pm 1$ are given by
$\mathcal{A}_{f_{C P}}(t)=\mathcal{I} m\left(\lambda_{f}\right) \sin (\Delta m t)$ with $\mathcal{I} m\left(\lambda_{f}\right)=\eta_{f} \sin \left(\phi_{M}+2 \phi_{f}\right)$.
Note that the phase measured is purely a weak phase, and no hadronic parameters are involved in the extraction of its value from $\mathcal{I} m\left(\lambda_{f}\right)$.

The discussion above allows us to introduce another classification of $C P$-violating effects:

1. Indirect $C P$ violation is consistent with taking $\phi_{M} \neq 0$ and setting all other $C P$ violating phases to zero. $C P$ violation in mixing (type II) belongs to this class.
2. Direct $C P$ violation cannot be accounted for by just $\phi_{M} \neq 0$. $C P$ violation in decay (type I) belongs to this class.

The historical significance of this classification is related to theory. In superweak models [35], $C P$ violation appears only in diagrams that contribute to \mathbf{M}_{12}, hence they predict that there is no direct $C P$ violation. In most models and, in particular, in the Standard Model, $C P$ violation is both direct and indirect. As concerns type III $C P$ violation, a single observation of such an
effect would be consistent with indirect $C P$ violation, but observing $\eta_{f_{1}} \mathcal{I} m\left(\lambda_{f_{1}}\right) \neq \eta_{f_{2}} \mathcal{I} m\left(\lambda_{f_{2}}\right)$ (for the same decaying meson and two different final $C P$ eigenstates f_{1} and f_{2}) would establish direct $C P$ violation. The experimental observation of $\epsilon^{\prime} \neq 0$, which was achieved by establishing that $\mathcal{I} m\left(\lambda_{\pi^{+} \pi^{-}}\right) \neq \mathcal{I} m\left(\lambda_{\pi^{0} \pi^{0}}\right)$ (see Section 13.4), excluded the superweak scenario.

13.3 Theoretical Interpretation: The KM Mechanism

Of all the Standard Model quark parameters, only the Kobayashi-Maskawa (KM) phase is $C P$-violating. Having a single source of $C P$ violation, the Standard Model is very predictive for $C P$ asymmetries: some vanish, and those that do not are correlated.

To be precise, $C P$ could be violated also by strong interactions. The experimental upper bound on the electric-dipole moment of the neutron implies, however, that θ_{QCD}, the non-perturbative parameter that determines the strength of this type of $C P$ violation, is tiny, if not zero. (The smallness of θ_{QCD} constitutes a theoretical puzzle, known as "the strong $C P$ problem.") In particular, it is irrelevant to our discussion of hadron decays.
The charged current interactions (that is, the $W^{ \pm}$interactions) for quarks are given by

$$
\begin{equation*}
-\mathcal{L}_{W \pm}=\frac{g}{\sqrt{2}} \overline{u_{L i}} \gamma^{\mu}\left(V_{\mathrm{CKM}}\right)_{i j} d_{L j} W_{\mu}^{+}+\text {h.c. } \tag{13.46}
\end{equation*}
$$

Here $i, j=1,2,3$ are generation numbers. The Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks is a 3×3 unitary matrix [36]. Ordering the quarks by their masses, i.e., $\left(u_{1}, u_{2}, u_{3}\right) \rightarrow(u, c, t)$ and $\left(d_{1}, d_{2}, d_{3}\right) \rightarrow(d, s, b)$, the elements of V_{CKM} are written as follows:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \tag{13.47}\\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

While a general 3×3 unitary matrix depends on three real angles and six phases, the freedom to redefine the phases of the quark mass eigenstates can be used to remove five of the phases, leaving a single physical phase, the Kobayashi-Maskawa phase, that is responsible for all $C P$ violation in the Standard Model.

The fact that one can parametrize $V_{\text {CKM }}$ by three real and only one imaginary physical parameters can be made manifest by choosing an explicit parametrization. The Wolfenstein parametrization [37,38] is particularly useful:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4} & \lambda & A \lambda^{3}(\rho-i \eta) \tag{13.48}\\
-\lambda+\frac{1}{2} A^{2} \lambda^{5}[1-2(\rho+i \eta)] & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right) & A \lambda^{2} \\
A \lambda^{3}\left[1-\left(1-\frac{1}{2} \lambda^{2}\right)(\rho+i \eta)\right] & -A \lambda^{2}+\frac{1}{2} A \lambda^{4}[1-2(\rho+i \eta)] & 1-\frac{1}{2} A^{2} \lambda^{4}
\end{array}\right)
$$

Here $\lambda \approx 0.23$ (not to be confused with λ_{f}), the sine of the Cabibbo angle, plays the role of an expansion parameter, and η represents the $C P$-violating phase. Terms of $\mathcal{O}\left(\lambda^{6}\right)$ have been neglected.

The unitarity of the CKM matrix, $\left(V V^{\dagger}\right)_{i j}=\left(V^{\dagger} V\right)_{i j}=\delta_{i j}$, leads to twelve distinct complex relations among the matrix elements. The six relations with $i \neq j$ can be represented geometrically as triangles in the complex plane. Two of these,

$$
\begin{align*}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \tag{13.49a}\\
& V_{t d} V_{u d}^{*}+V_{t s} V_{u s}^{*}+V_{t b} V_{u b}^{*}=0 \tag{13.49b}
\end{align*}
$$

have terms of equal order, $\mathcal{O}\left(A \lambda^{3}\right)$, and so have corresponding triangles whose interior angles are all $\mathcal{O}(1)$ physical quantities that can be independently measured. The angles of the first triangle
(see Fig. 13.1) are given by

$$
\begin{align*}
& \alpha \equiv \varphi_{2} \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \simeq \arg \left(-\frac{1-\rho-i \eta}{\rho+i \eta}\right) \tag{13.50a}\\
& \beta \equiv \varphi_{1} \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \simeq \arg \left(\frac{1}{1-\rho-i \eta}\right) \tag{13.50b}\\
& \gamma \equiv \varphi_{3} \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \simeq \arg (\rho+i \eta) \tag{13.50c}
\end{align*}
$$

The angles of the second triangle are equal to (α, β, γ) up to corrections of $\mathcal{O}\left(\lambda^{2}\right)$. The notations (α, β, γ) and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ are both in common usage but, for convenience, we only use the first convention in the following.

Another relation that can be represented as a triangle,

$$
\begin{equation*}
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0 \tag{13.51}
\end{equation*}
$$

Figure 13.1: Graphical representation of the unitarity constraint $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$ as a triangle in the complex plane.
and, in particular, its small angle, of $\mathcal{O}\left(\lambda^{2}\right)$,

$$
\begin{equation*}
\beta_{s} \equiv \arg \left(-\frac{V_{t s} V_{t b}^{*}}{V_{c s} V_{c b}^{*}}\right), \tag{13.52}
\end{equation*}
$$

is convenient for analyzing $C P$ violation in the B_{s}^{0} sector.
All unitarity triangles have the same area, commonly denoted by $J / 2$ [39]. If $C P$ is violated, J is different from zero and can be taken as the single $C P$-violating parameter. In the Wolfenstein parametrization of Eq. (13.48), $J \simeq \lambda^{6} A^{2} \eta$.

13.4 Kaons

$C P$ violation was discovered in $K \rightarrow \pi \pi$ decays in 1964 [1]. The same mode provided the first observation of direct $C P$ violation [4-6].

The decay amplitudes actually measured in neutral K decays refer to the mass eigenstates K_{L} and K_{S}, rather than to the K and \bar{K} states referred to in Eq. (13.15). The final $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$ states are $C P$-even. In the $C P$ conservation limit, $K_{S}\left(K_{L}\right)$ would be $C P$-even (odd), and therefore would (would not) decay to two pions. We define $C P$-violating amplitude ratios for two-pion final states,

$$
\begin{equation*}
\eta_{00} \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\left|K_{S}\right\rangle}, \quad \eta_{+-} \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}\left|K_{S}\right\rangle} \tag{13.53}
\end{equation*}
$$

Another important observable is the asymmetry of timeintegrated semileptonic decay rates:

$$
\begin{equation*}
\delta_{L} \equiv \frac{\Gamma\left(K_{L} \rightarrow \ell^{+} \nu_{\ell} \pi^{-}\right)-\Gamma\left(K_{L} \rightarrow \ell^{-} \bar{\nu}_{\ell} \pi^{+}\right)}{\Gamma\left(K_{L} \rightarrow \ell^{+} \nu_{\ell} \pi^{-}\right)+\Gamma\left(K_{L} \rightarrow \ell^{-} \bar{\nu}_{\ell} \pi^{+}\right)} \tag{13.54}
\end{equation*}
$$

$C P$ violation has been observed as an appearance of K_{L} decays to two-pion final states [27],

$$
\begin{array}{r}
\left|\eta_{00}\right|=(2.220 \pm 0.011) \times 10^{-3} \\
\left|\eta_{+-}\right|=(2.232 \pm 0.011) \times 10^{-3} \\
\left|\eta_{00} / \eta_{+-}\right|=0.9950 \pm 0.0007 \tag{13.55c}
\end{array}
$$

where the phase $\phi_{i j}$ of the amplitude ratio $\eta_{i j}$ has been determined both assuming $C P T$ invariance:

$$
\begin{equation*}
\phi_{00}=(43.52 \pm 0.05)^{\circ}, \quad \phi_{+-}=(43.51 \pm 0.05)^{\circ} \tag{13.56}
\end{equation*}
$$

and without assuming $C P T$ invariance:

$$
\begin{equation*}
\phi_{00}=(43.7 \pm 0.6)^{\circ}, \quad \phi_{+-}=(43.4 \pm 0.5)^{\circ} \tag{13.57}
\end{equation*}
$$

$C P$ violation has also been observed in semileptonic K_{L} decays [27]

$$
\begin{equation*}
\delta_{L}=(3.32 \pm 0.06) \times 10^{-3} \tag{13.58}
\end{equation*}
$$

where δ_{L} is a weighted average of muon and electron measurements, as well as in K_{L} decays to $\pi^{+} \pi^{-} \gamma$ and $\pi^{+} \pi^{-} e^{+} e^{-}$[27]. $C P$ violation in $K \rightarrow 3 \pi$ decays has not yet been observed [27,40].

Historically, $C P$ violation in neutral K decays has been described in terms of the complex parameters ϵ and ϵ^{\prime}. The observables η_{00}, η_{+-}, and δ_{L} are related to these parameters, and to
those of Section 13.1, by

$$
\begin{align*}
\eta_{00} & =\frac{1-\lambda_{\pi^{0} \pi^{0}}}{1+\lambda_{\pi^{0} \pi^{0}}}=\epsilon-2 \epsilon^{\prime} \tag{13.59a}\\
\eta_{+-} & =\frac{1-\lambda_{\pi^{+} \pi^{-}}}{1+\lambda_{\pi^{+} \pi^{-}}}=\epsilon+\epsilon^{\prime} \tag{13.59b}\\
\delta_{L} & =\frac{1-|q / p|^{2}}{1+|q / p|^{2}}=\frac{2 \mathcal{R} e(\epsilon)}{1+|\epsilon|^{2}} \tag{13.59c}
\end{align*}
$$

where, in the last line, we have assumed that $\left|A_{\ell+\nu_{\ell} \pi^{-}}\right|=$ $\left|\bar{A}_{\ell-\bar{\nu}_{\ell} \pi^{+}}\right|$and $\left|A_{\ell-\bar{\nu}_{\ell} \pi^{+}}\right|=\left|\bar{A}_{\ell+\nu_{\ell} \pi^{-}}\right|=0$. (The conventiondependent parameter $\tilde{\epsilon} \equiv(1-q / p) /(1+q / p)$, sometimes used in the literature, is, in general, different from ϵ but yields a similar expression, $\delta_{L}=2 \mathcal{R e} e(\tilde{\epsilon}) /\left(1+|\tilde{\epsilon}|^{2}\right)$.) A fit to the $K \rightarrow \pi \pi$ data yields [27]

$$
\begin{align*}
|\epsilon| & =(2.228 \pm 0.011) \times 10^{-3} \tag{13.60a}\\
\mathcal{R} e\left(\epsilon^{\prime} / \epsilon\right) & =(1.66 \pm 0.23) \times 10^{-3} \tag{13.60b}
\end{align*}
$$

In discussing two-pion final states, it is useful to express the amplitudes $A_{\pi^{0} \pi^{0}}$ and $A_{\pi^{+} \pi^{-}}$in terms of their isospin components via

$$
\begin{align*}
A_{\pi^{0} \pi^{0}} & =\sqrt{\frac{1}{3}}\left|A_{0}\right| e^{i\left(\delta_{0}+\phi_{0}\right)}-\sqrt{\frac{2}{3}}\left|A_{2}\right| e^{i\left(\delta_{2}+\phi_{2}\right)} \tag{13.61a}\\
A_{\pi^{+} \pi^{-}} & =\sqrt{\frac{2}{3}}\left|A_{0}\right| e^{i\left(\delta_{0}+\phi_{0}\right)}+\sqrt{\frac{1}{3}}\left|A_{2}\right| e^{i\left(\delta_{2}+\phi_{2}\right)} \tag{13.61b}
\end{align*}
$$

where we parameterize the amplitude $A_{I}\left(\bar{A}_{I}\right)$ for $K^{0}\left(\bar{K}^{0}\right)$ decay into two pions with total isospin $I=0$ or 2 as

$$
\begin{align*}
& A_{I} \equiv\left\langle(\pi \pi)_{I}\right| \mathcal{H}\left|K^{0}\right\rangle=\left|A_{I}\right| e^{i\left(\delta_{I}+\phi_{I}\right)} \tag{13.62a}\\
& \bar{A}_{I} \equiv\left\langle(\pi \pi)_{I}\right| \mathcal{H}\left|\bar{K}^{0}\right\rangle=\left|A_{I}\right| e^{i\left(\delta_{I}-\phi_{I}\right)} \tag{13.62b}
\end{align*}
$$

The smallness of $\left|\eta_{00}\right|$ and $\left|\eta_{+-}\right|$allows us to approximate

$$
\begin{equation*}
\epsilon \simeq \frac{1}{2}\left(1-\lambda_{(\pi \pi)_{I=0}}\right), \quad \epsilon^{\prime} \simeq \frac{1}{6}\left(\lambda_{\pi^{0} \pi^{0}}-\lambda_{\pi^{+} \pi^{-}}\right) \tag{13.63}
\end{equation*}
$$

The parameter ϵ represents indirect $C P$ violation, while ϵ^{\prime} parameterizes direct $C P$ violation: $\mathcal{R} e\left(\epsilon^{\prime}\right)$ measures $C P$ violation in decay (type I), $\mathcal{R} e(\epsilon)$ measures $C P$ violation in mixing (type II), and $\mathcal{I} m(\epsilon)$ and $\mathcal{I} m\left(\epsilon^{\prime}\right)$ measure the interference between decays with and without mixing (type III).

The following expressions for ϵ and ϵ^{\prime} are useful for theoretical evaluations:
$\epsilon \simeq \frac{e^{i \pi / 4}}{\sqrt{2}} \frac{\mathcal{I} m\left(\mathbf{M}_{12}\right)}{\Delta m}, \quad \epsilon^{\prime}=\frac{i}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right| e^{i\left(\delta_{2}-\delta_{0}\right)} \sin \left(\phi_{2}-\phi_{0}\right)$.
The expression for ϵ is only valid in a phase convention where $\phi_{2}=0$, corresponding to a real $V_{u d} V_{u s}^{*}$, and in the approximation that also $\phi_{0}=0$. The phase of $\epsilon, \arg (\epsilon) \approx \arctan (-2 \Delta m / \Delta \Gamma)$, is determined by non-perturbative QCD dynamics and is experimentally determined to be about $\pi / 4$. The calculation of ϵ benefits from the fact that $\operatorname{Im}\left(\mathbf{M}_{12}\right)$ is dominated by short distance physics. Consequently, the main sources of uncertainty in theoretical interpretations of ϵ are the values of matrix elements, such as $\left\langle K^{0}\right|(\bar{s} d)_{V-A}(\bar{s} d)_{V-A}\left|\bar{K}^{0}\right\rangle$. The expression for ϵ^{\prime} is valid to first order in $\left|A_{2} / A_{0}\right| \sim 1 / 20$. The phase of ϵ^{\prime} is experimentally determined, $\pi / 2+\delta_{2}-\delta_{0} \approx \pi / 4$, and is independent of the electroweak model. Note that, accidentally, $\epsilon^{\prime} / \epsilon$ is real to a good approximation. Determination of weak phase information from the measurement of $\mathcal{R} e\left(\epsilon^{\prime} / \epsilon\right)$ given in Eq. (13.60) has until now been precluded by uncertainties in the hadronic parameters, but recent advances in lattice QCD calculations [41, 42] suggest that it may become possible [43].

A future measurement of much interest is that of $C P$ violation in the rare $K \rightarrow \pi \nu \bar{\nu}$ decays. The signal for $C P$ violation is simply observing the $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ decay. The effect here is that
of interference between decays with and without mixing (type III) [44]:

$$
\begin{align*}
\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)} & =\frac{1}{2}\left[1+\left|\lambda_{\pi \nu \bar{\nu}}\right|^{2}-2 \mathcal{R e}\left(\lambda_{\pi \nu \bar{\nu}}\right)\right] \tag{13.65}\\
& \simeq 1-\mathcal{R e}\left(\lambda_{\pi \nu \bar{\nu}}\right),
\end{align*}
$$

where in the last equation we neglect $C P$ violation in decay and in mixing (expected, model-independently, to be of order 10^{-5} and 10^{-3}, respectively). Such a measurement is experimentally very challenging but would be theoretically very rewarding [45]. Similar to the $C P$ asymmetry in $B^{0} \rightarrow J / \psi K_{S}$, the $C P$ violation in $K \rightarrow \pi \nu \bar{\nu}$ decay is predicted to be large (that is, the ratio in Eq. (13.65) is neither CKM- nor loop-suppressed) and can be very cleanly interpreted.

Within the Standard Model, the $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ decay is dominated by an intermediate top quark contribution and, consequently, can be interpreted in terms of CKM parameters [46]. (For the charged mode, $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$, the contribution from an intermediate charm quark is not negligible, and constitutes a source of hadronic uncertainty.) In particular, $\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$ provides a theoretically clean way to determine the Wolfenstein parameter η [47]:

$$
\begin{equation*}
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[X\left(m_{t}^{2} / m_{W}^{2}\right)\right]^{2} A^{4} \eta^{2} \tag{13.66}
\end{equation*}
$$

where the hadronic parameter $\kappa_{L} \sim 2 \times 10^{-10}$ incorporates the value of the four-fermion matrix element which is deduced, using isospin relations, from $\mathcal{B}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right)$, and $X\left(m_{t}^{2} / m_{W}^{2}\right)$ is a known function of the top mass. An explicit calculation gives $\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(3.00 \pm 0.30) \times 10^{-11}[48]$.

The currently tightest experimental limit is $\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)<$ 3.0×10^{-9} [49], which does not yet reach the bound that can be derived from Eq. (13.65), $\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)<4.4 \times \mathcal{B}\left(K^{+} \rightarrow\right.$ $\left.\pi^{+} \nu \bar{\nu}\right)$ [44]. Significant further progress is anticipated from experiments searching for $K \rightarrow \pi \nu \bar{\nu}$ decays in the next few years [50,51].

13.5 Charm

The existence of $D^{0}-\bar{D}^{0}$ mixing is well established [52-55], with the latest experimental constraints giving $[29,56] x \equiv \Delta m / \Gamma=$ $\left(0.39_{-0.12}^{+0.11}\right) \times 10^{-2}$ and $y \equiv \Delta \Gamma /(2 \Gamma)=\left(0.65_{-0.07}^{+0.06}\right) \times 10^{-2}$. Thus, the data clearly show that $y \neq 0$, but improved measurements are needed to be sure of the size of x. Long-distance contributions make it difficult to calculate Standard Model predictions for the $D^{0}-\bar{D}^{0}$ mixing parameters. Therefore, the goal of the search for $D^{0}-\bar{D}^{0}$ mixing is not to constrain the CKM parameters, but rather to probe new physics. Here $C P$ violation plays an important role. Within the Standard Model, the CPviolating effects are predicted to be small, since the mixing and the relevant decays are described, to an excellent approximation, by the physics of the first two generations only. The expectation is that the Standard Model size of $C P$ violation in D decays is $\mathcal{O}\left(10^{-3}\right)$ or less. At present, the most sensitive searches involve the $D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-}$and $D^{0} \rightarrow K^{ \pm} \pi^{\mp}$ modes.

The neutral D mesons decay via a singly-Cabibbo-suppressed transition to the $C P$ eigenstates $K^{+} K^{-}$and $\pi^{+} \pi^{-}$. These decays are dominated by Standard-Model tree diagrams. Thus, we can write, for $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$,

$$
\begin{align*}
& A_{f}=A_{f}^{T} e^{+i \phi_{f}^{T}}\left[1+r_{f} e^{i\left(\delta_{f}+\phi_{f}\right)}\right], \tag{13.67a}\\
& \bar{A}_{f}=A_{f}^{T} e^{-i \phi_{f}^{T}}\left[1+r_{f} e^{i\left(\delta_{f}-\phi_{f}\right)}\right], \tag{13.67b}
\end{align*}
$$

where $A_{f}^{T} e^{ \pm i \phi_{f}^{T}}$ is the Standard Model tree-level contribution, ϕ_{f}^{T} and ϕ_{f} are weak, $C P$ violating phases, δ_{f} is a strong phase difference, and r_{f} is the ratio between a subleading ($r_{f} \ll 1$) contribution with a weak phase different from ϕ_{f}^{T} and the Standard Model tree-level contribution. Neglecting r_{f}, λ_{f} is universal, and we can define an observable phase ϕ_{D} via

$$
\begin{equation*}
\lambda_{f} \equiv-|q / p| e^{i \phi_{D}} \tag{13.68}
\end{equation*}
$$

(In the limit of $C P$ conservation, choosing $\phi_{D}=0$ is equivalent to defining the mass eigenstates by their $C P$ eigenvalue: $\left|D_{\mp}\right\rangle=$
$p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$, with $D_{-}\left(D_{+}\right)$being the $C P$-odd ($C P$-even) state; that is, the state that does not (does) decay into $K^{+} K^{-}$.)

We define the time integrated $C P$ asymmetry for a final $C P$ eigenstate f as follows:

$$
\begin{equation*}
a_{f} \equiv \frac{\int_{0}^{\infty} \Gamma\left(D_{\mathrm{phys}}^{0}(t) \rightarrow f\right) d t-\int_{0}^{\infty} \Gamma\left(\bar{D}_{\mathrm{phys}}^{0}(t) \rightarrow f\right) d t}{\int_{0}^{\infty} \Gamma\left(D_{\mathrm{phys}}^{0}(t) \rightarrow f\right) d t+\int_{0}^{\infty} \Gamma\left(\bar{D}_{\mathrm{phys}}^{0}(t) \rightarrow f\right) d t} \tag{13.69}
\end{equation*}
$$

(This expression corresponds to the D meson being tagged at production, hence the integration goes from 0 to $+\infty$; measurements are also possible with $\psi(3770) \rightarrow D^{0} \bar{D}^{0}$, in which case the integration goes from $-\infty$ to $+\infty$ giving slightly different results; see the discussion in Section 13.1.3.) We take $x, y, r_{f} \ll 1$ and expand to leading order in these parameters. We can then separate the contribution to a_{f} into three parts [57],

$$
\begin{equation*}
a_{f}=a_{f}^{d}+a_{f}^{m}+a_{f}^{i} \tag{13.70}
\end{equation*}
$$

with the following underlying mechanisms:

1. a_{f}^{d} signals $C P$ violation in decay (similar to Eq. (13.35)):

$$
\begin{equation*}
a_{f}^{d}=2 r_{f} \sin \phi_{f} \sin \delta_{f} \tag{13.71}
\end{equation*}
$$

2. a_{f}^{m} signals $C P$ violation in mixing (similar to Eq. (13.44)). With our approximations, it is universal:

$$
\begin{equation*}
a^{m}=-\frac{y}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) \cos \phi_{D} \tag{13.72}
\end{equation*}
$$

3. a_{f}^{i} signals $C P$ violation in the interference of mixing and decay (similar to Eq. (13.45)). With our approximations, it is universal:

$$
\begin{equation*}
a^{i}=\frac{x}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) \sin \phi_{D} \tag{13.73}
\end{equation*}
$$

One can isolate the effects of direct $C P$ violation by taking the difference between the $C P$ asymmetries in the $K^{+} K^{-}$and $\pi^{+} \pi^{-}$ modes:

$$
\begin{equation*}
\Delta a_{C P} \equiv a_{K^{+} K^{-}}-a_{\pi^{+} \pi^{-}}=a_{K^{+} K^{-}}^{d}-a_{\pi^{+} \pi^{-}}^{d} \tag{13.74}
\end{equation*}
$$

where we neglected a residual, experiment-dependent, contribution from indirect $C P$ violation due to the fact that there may be a decay time-dependent acceptance function that can be different for the $K^{+} K^{-}$and $\pi^{+} \pi^{-}$channels. The current average gives [29]:

$$
\begin{equation*}
a_{K^{+} K^{-}}^{d}-a_{\pi^{+} \pi^{-}}^{d}=(-0.164 \pm 0.028) \times 10^{-3} \tag{13.75}
\end{equation*}
$$

demonstrating $C P$ violation in charm decay.
One can also isolate the effects of indirect $C P$ violation in the following way. Consider the time-dependent decay rates in Eq. (13.31a) and Eq. (13.31b). The mixing processes modify the time dependence from a pure exponential. However, given the small values of x and y, the time dependences can be recast, to a good approximation, into purely exponential form, but with modified decay-rate parameters $[58,59]$ (given here for the $K^{+} K^{-}$final state):

$$
\begin{align*}
& \Gamma_{D^{0} \rightarrow K^{+} K^{-}}=\Gamma \times\left[1+|q / p|\left(y \cos \phi_{D}-x \sin \phi_{D}\right)\right] \tag{13.76a}\\
& \Gamma_{\bar{D}^{0} \rightarrow K^{+} K^{-}}=\Gamma \times\left[1+|p / q|\left(y \cos \phi_{D}+x \sin \phi_{D}\right)\right] \tag{13.76b}
\end{align*}
$$

One can define $C P$-conserving and $C P$-violating combinations of these two observables (normalized to the true width Γ):

$$
\begin{align*}
y_{C P} & \equiv \frac{\Gamma_{\bar{D}^{0} \rightarrow K^{+}} K^{-}+\Gamma_{D^{0} \rightarrow K^{+} K^{-}}}{2 \Gamma}-1 \\
& =(y / 2)(|q / p|+|p / q|) \cos \phi_{D}-(x / 2)(|q / p|-|p / q|) \sin \phi_{D} \\
A_{\Gamma} & \equiv \frac{\Gamma_{D^{0} \rightarrow K^{+} K^{-}}-\Gamma_{\bar{D}^{0} \rightarrow K^{+} K^{-}}}{2 \Gamma} \\
& =-\left(a^{m}+a^{i}\right)
\end{align*}
$$

In the limit of $C P$ conservation (and, in particular, within the Standard Model), $y_{C P}=\left(\Gamma_{+}-\Gamma_{-}\right) / 2 \Gamma=y$ (where $\Gamma_{+}\left(\Gamma_{-}\right)$ is the decay width of the $C P$-even (-odd) mass eigenstate) and $A_{\Gamma}=0$. Indeed, present measurements imply that $C P$ violation is small [29],

$$
\begin{align*}
y_{C P} & =(+0.72 \pm 0.11) \times 10^{-2}, \tag{13.78a}\\
A_{\Gamma} & =(-0.032 \pm 0.026) \times 10^{-2} . \tag{13.78b}
\end{align*}
$$

The $K^{ \pm} \pi^{\mp}$ states are not $C P$ eigenstates, but they are still common final states for D^{0} and \bar{D}^{0} decays. Since $D^{0}\left(\bar{D}^{0}\right) \rightarrow K^{-} \pi^{+}$ is a Cabibbo-favored (doubly-Cabibbo-suppressed) process, these processes are particularly sensitive to x and/or $y=\mathcal{O}\left(\lambda^{2}\right)$. Taking into account that $\left|\lambda_{K^{-} \pi^{+}}\right|,\left|\lambda_{K^{+} \pi^{-}}^{-1}\right| \ll 1$ and $x, y \ll 1$, assuming that there is no direct $C P$ violation (these are Standard Model tree-level decays dominated by a single weak phase, and there is no contribution from penguin-like and chromomagnetic operators), and expanding the time-dependent rates for $x t, y t \lesssim \Gamma^{-1}$, one obtains

$$
\begin{align*}
& \Gamma\left[D_{\text {phys }}^{0}(t) \rightarrow K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|\bar{A}_{K^{-} \pi^{+}}\right|^{2} \\
& \times\left[r_{d}^{2}+r_{d}\left|\frac{q}{p}\right|\left(y^{\prime} \cos \phi_{D}-x^{\prime} \sin \phi_{D}\right) \Gamma t+\left|\frac{q}{p}\right|^{2} \frac{y^{2}+x^{2}}{4}(\Gamma t)^{2}\right], \\
& \Gamma\left[\bar{D}_{\text {phys }}^{0}(t) \rightarrow K^{-} \pi^{+}\right]=e^{-\Gamma t}\left|\bar{A}_{K^{-} \pi^{+}}\right|^{2} \\
& \times\left[r_{d}^{2}+r_{d}\left|\frac{p}{q}\right|\left(y^{\prime} \cos \phi_{D}+x^{\prime} \sin \phi_{D}\right) \Gamma t+\left|\frac{p}{q}\right|^{2} \frac{y^{2}+x^{2}}{4}(\Gamma t)^{2}\right], \tag{13.79b}
\end{align*}
$$

where

$$
\begin{equation*}
y^{\prime} \equiv y \cos \delta-x \sin \delta \quad \text { and } \quad x^{\prime} \equiv x \cos \delta+y \sin \delta . \tag{13.80}
\end{equation*}
$$

The weak phase ϕ_{D} is the same as that of Eq. (13.68) (a consequence of neglecting direct $C P$ violation) and $r_{d}=$ $\mathcal{O}\left(\tan ^{2} \theta_{c}\right)$ is the amplitude ratio, $r_{d}=\left|\bar{A}_{K^{-} \pi^{+}} / A_{K^{-} \pi^{+}}\right|=$ $\left|A_{K^{+} \pi^{-}} / \bar{A}_{K^{+} \pi^{-}}\right|$, that is, $\lambda_{K^{-} \pi^{+}}=r_{d}|q / p| e^{-i\left(\delta-\phi_{D}\right)}$ and $\lambda_{K^{+} \pi^{-}}^{-1}=r_{d}|p / q| e^{-i\left(\delta+\phi_{D}\right)}$. The parameter δ is a strong-phase difference for these processes, that can be obtained from measurements of quantum correlated $\psi(3770) \rightarrow D^{0} \bar{D}^{0}$ decays [60,61]. By fitting to the six coefficients of the various time-dependences, one can determine $r_{d},|q / p|,\left(x^{2}+y^{2}\right), y^{\prime} \cos \phi_{D}$, and $x^{\prime} \sin \phi_{D}$. In particular, finding $C P$ violation ($|q / p| \neq 1$ and/or $\sin \phi_{D} \neq 0$) at a level much higher than 10^{-3} would constitute evidence for new physics. The most stringent constraints to date on $C P$ violation in charm mixing have been obtained with this method [62] and from the A_{Γ} measurement [63].
A fit to all data [29], including also results from time-dependent analyses of $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$decays, from which $x, y,|q / p|$ and ϕ_{D} can be determined directly, yields no evidence for indirect $C P$ violation:

$$
\begin{align*}
1-|q / p| & =+0.0311_{-0.050}^{+0.045} \tag{13.81a}\\
\phi_{D} & =\left(-3.9_{-4.6}^{+4.5}\right)^{\circ} \tag{13.81b}
\end{align*}
$$

With the additional assumption of no direct $C P$ violation in doubly-Cabibbo-suppressed D decays [64-66], tighter constraints are obtained:

$$
\begin{align*}
1-|q / p| & =+0.002 \pm 0.008, \tag{13.82a}\\
\phi_{D} & =(+0.08 \pm 0.31)^{\circ} . \tag{13.82b}
\end{align*}
$$

More details on various theoretical and experimental aspects of $D^{0}-\bar{D}^{0}$ mixing can be found in Ref. [31].
Searches for $C P$ violation in charged $D_{(s)}$ decays have been performed in many modes. Searches in decays mediated by Cabibbosuppressed amplitudes are particularly interesting, since in other channels effects are likely to be too small to be observable in current experiments. Examples of relevant two-body modes are $D^{+} \rightarrow \pi^{+} \pi^{0}, K_{S} K^{+}, \phi \pi^{+}$and $D_{s}^{+} \rightarrow K^{+} \pi^{0}, K_{S} \pi^{+}, \phi K^{+}$. The
most precise results are $\mathcal{A}_{D^{+} \rightarrow K_{S} K^{+}}=+0.0011 \pm 0.0017$ and $\mathcal{A}_{D_{s}^{+} \rightarrow K_{S} \pi^{+}}=+0.0038 \pm 0.0048{ }^{S}[29]$. The precision of experiments is now sufficient that the effect from $C P$ violation in the neutral kaon system can be seen in $D^{+} \rightarrow K_{S} \pi^{+}$decays [67,68].
Three- and four-body final states provide additional possibilities to search for $C P$ violation, since effects may vary over the phase-space [69]. A number of methods have been proposed to exploit this feature and search for $C P$ violation in ways that do not require modelling of the decay distribution [70-73]. Such methods are useful for analysis of charm decays since they are less sensitive to biases from production asymmetries, and are well suited to address the issue of whether or not $C P$ violation effects are present. They can also be applied to tagged neutral D meson as well as to charged $D_{(s)}$ decays (flavor tagging is typically achieved from the charge of the pion producted in $D^{*+} \rightarrow D^{0} \pi^{+}$decays). The results of all searches to date are consistent with the absence of $C P$ violation, with the most significant hint at the level of 2.7σ [74].

13.6 Beauty

13.6.1 $C P$ violation in mixing of B^{0} and B_{s}^{0} mesons

The upper bound on the $C P$ asymmetry in semileptonic B decays [28] implies that $C P$ violation in $B^{0}-\bar{B}^{0}$ mixing is a small effect (we use $\mathcal{A}_{\mathrm{SL}} / 2 \approx 1-|q / p|$, see Eq. (13.37)):

$$
\begin{equation*}
\mathcal{A}_{\mathrm{SL}}^{d}=(-2.1 \pm 1.7) \times 10^{-3} \Longrightarrow|q / p|=1.0010 \pm 0.0008 \tag{13.83}
\end{equation*}
$$

The Standard Model prediction is

$$
\begin{equation*}
\mathcal{A}_{\mathrm{SL}}^{d}=\mathcal{O}\left[\left(m_{c}^{2} / m_{t}^{2}\right) \sin \beta\right] \lesssim 0.001 \tag{13.84}
\end{equation*}
$$

An explicit calculation gives $(-4.7 \pm 0.6) \times 10^{-4}[34]$.
The experimental constraint on $C P$ violation in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing is somewhat weaker than that in the $B^{0}-\bar{B}^{0}$ system [28]

$$
\begin{equation*}
\mathcal{A}_{\mathrm{SL}}^{s}=(-0.6 \pm 2.8) \times 10^{-3} \quad \Longrightarrow \quad|q / p|=1.0003 \pm 0.0014 \tag{13.85}
\end{equation*}
$$

The Standard Model prediction is $\mathcal{A}_{\mathrm{SL}}^{s}=\mathcal{O}\left[\left(m_{c}^{2} / m_{t}^{2}\right) \sin \beta_{s}\right] \lesssim$ 10^{-4}, with an explicit calculation giving $(2.22 \pm 0.27) \times 10^{-5}$ [34].
The fit to experimental data that results in the averages quoted above has a χ^{2} probability of 4.5% indicating some tension between the different measurements [29]. This originates in part from a result from the D0 collaboration for the inclusive samesign dimuon asymmetry that deviates from the Standard Model prediction by 3.6σ [75]. As yet, this has not been confirmed by independent studies.
In models where $\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}$ is approximately real, such as the Standard Model, an upper bound on $\Delta \Gamma / \Delta m \approx \mathcal{R} e\left(\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}\right)$ provides yet another upper bound on the deviation of $|q / p|$ from one. This constraint does not hold if $\boldsymbol{\Gamma}_{12} / \mathbf{M}_{12}$ is approximately imaginary. (An alternative parameterization uses $q / p=(1-$ $\left.\tilde{\epsilon}_{B}\right) /\left(1+\tilde{\epsilon}_{B}\right)$, leading to $\left.\mathcal{A}_{\mathrm{SL}} \simeq 4 \mathcal{R} e\left(\tilde{\epsilon}_{B}\right).\right)$
13.6.2 $C P$ violation in interference of B^{0} decays with and without mixing
The small deviation (less than one percent) of $|q / p|$ from 1 implies that, at the present level of experimental precision, $C P$ violation in B^{0} mixing is a negligible effect. Thus, for the purpose of analyzing $C P$ asymmetries in hadronic B^{0} decays, we can use

$$
\begin{equation*}
\lambda_{f}=e^{-i \phi_{M\left(B^{0}\right)}}\left(\bar{A}_{f} / A_{f}\right), \tag{13.86}
\end{equation*}
$$

where $\phi_{M\left(B^{0}\right)}$ refers to the phase of \mathbf{M}_{12} appearing in Eq. (13.42) that is appropriate for $B^{0}-\bar{B}^{0}$ oscillations. Within the Standard Model, the corresponding phase factor is given by

$$
\begin{equation*}
e^{-i \phi_{M\left(B^{0}\right)}}=\left(V_{t b}^{*} V_{t d}\right) /\left(V_{t b} V_{t d}^{*}\right) . \tag{13.87}
\end{equation*}
$$

The class of $C P$ violation effects in interference between mixing and decay is studied with final states that are common to B^{0} and \bar{B}^{0} decays [76-78]. It is convenient to rewrite Eq. (13.40) for B^{0} decays as [79-81]

$$
\begin{equation*}
\mathcal{A}_{f}(t)=S_{f} \sin (\Delta m t)-C_{f} \cos (\Delta m t) \tag{13.88}
\end{equation*}
$$

$$
\begin{equation*}
S_{f} \equiv \frac{2 \mathcal{I} m\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}}, \quad C_{f} \equiv \frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \tag{13.89}
\end{equation*}
$$

where we assume that $\Delta \Gamma=0$ and $|q / p|=1$. An alternative notation in use is $A_{f} \equiv-C_{f}$ - this A_{f} should not be confused with the A_{f} of Eq. (13.15), but in the limit that $|q / p|=1$ is equivalent with the \mathcal{A}_{f} of Eq. (13.35).

A large class of interesting processes proceed via quark transitions of the form $\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}$ with $q^{\prime}=s$ or d. For $q=c$ or u, there are contributions from both tree (t) and penguin ($p^{q_{u}}$, where $q_{u}=u, c, t$ is the quark in the loop) diagrams (see Fig. 13.2) which carry different weak phases:

$$
\begin{equation*}
A_{f}=\left(V_{q b}^{*} V_{q q^{\prime}}\right) t_{f}+\sum_{q_{u}=u, c, t}\left(V_{q_{u} b}^{*} V_{q_{u} q^{\prime}}\right) p_{f}^{q_{u}} \tag{13.90}
\end{equation*}
$$

(The distinction between tree and penguin contributions is a heuristic one; the separation by the operator that enters is more precise. A more detailed discussion of the operator product expansion approach, which also includes higher order QCD corrections, can be found in Ref. [82] for example.) Using CKM unitarity, these decay amplitudes can always be written in terms of just two CKM combinations. For example, for $f=\pi \pi$, which proceeds via a $\bar{b} \rightarrow \bar{u} u \bar{d}$ transition, we can write

$$
\begin{equation*}
A_{\pi \pi}=\left(V_{u b}^{*} V_{u d}\right) T_{\pi \pi}+\left(V_{t b}^{*} V_{t d}\right) P_{\pi \pi}^{t} \tag{13.91}
\end{equation*}
$$

where $T_{\pi \pi}=t_{\pi \pi}+p_{\pi \pi}^{u}-p_{\pi \pi}^{c}$ and $P_{\pi \pi}^{t}=p_{\pi \pi}^{t}-p_{\pi \pi}^{c} . C P$-violating phases in Eq. (13.91) appear only in the CKM elements, so that

$$
\begin{equation*}
\frac{\bar{A}_{\pi \pi}}{A_{\pi \pi}}=\frac{\left(V_{u b} V_{u d}^{*}\right) T_{\pi \pi}+\left(V_{t b} V_{t d}^{*}\right) P_{\pi \pi}^{t}}{\left(V_{u b}^{*} V_{u d}\right) T_{\pi \pi}+\left(V_{t b}^{*} V_{t d}\right) P_{\pi \pi}^{t}} \tag{13.92}
\end{equation*}
$$

For $f=J / \psi K$, which proceeds via a $\bar{b} \rightarrow \bar{c} c \bar{s}$ transition, we can write

$$
\begin{equation*}
A_{\psi K}=\left(V_{c b}^{*} V_{c s}\right) T_{\psi K}+\left(V_{u b}^{*} V_{u s}\right) P_{\psi K}^{u} \tag{13.93}
\end{equation*}
$$

where $T_{\psi K}=t_{\psi_{K}}+p_{\psi K}^{c}-p_{\psi K}^{t}$ and $P_{\psi K}^{u}=p_{\psi K}^{u}-p_{\psi K}^{t} . \mathrm{A}$ subtlety arises in this decay that is related to the fact that B^{0} decays into a final $J / \psi K^{0}$ state while \bar{B}^{0} decays into a final $J / \psi \bar{K}^{0}$ state. A common final state, e.g., $J / \psi K_{S}$, is reached only via $K^{0}-\bar{K}^{0}$ mixing. Consequently, the phase factor (defined in Eq. (13.42)) corresponding to neutral K mixing, $e^{-i \phi_{M(K)}}=$ $\left(V_{c d}^{*} V_{c s}\right) /\left(V_{c d} V_{c s}^{*}\right)$, plays a role:

$$
\begin{equation*}
\frac{\bar{A}_{\psi K_{S}}}{A_{\psi K_{S}}}=-\frac{\left(V_{c b} V_{c s}^{*}\right) T_{\psi K}+\left(V_{u b} V_{u s}^{*}\right) P_{\psi K}^{u}}{\left(V_{c b}^{*} V_{c s}\right) T_{\psi K}+\left(V_{u b}^{*} V_{u s}\right) P_{\psi K}^{u}} \times \frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}} \tag{13.94}
\end{equation*}
$$

For $q=s$ or d, there are only penguin contributions to A_{f}, that is, $t_{f}=0$ in Eq. (13.90). (The tree $\bar{b} \rightarrow \bar{u} u \bar{q}^{\prime}$ transition followed by $\bar{u} u \rightarrow \bar{q} q$ rescattering is included below in the P^{u} terms.) Again, CKM unitarity allows us to write A_{f} in terms of two CKM combinations. For example, for $f=\phi K_{S}$, which proceeds via a $\bar{b} \rightarrow \bar{s} s \bar{s}$ transition, we can write

$$
\begin{equation*}
\frac{\bar{A}_{\phi K_{S}}}{A_{\phi K_{S}}}=-\frac{\left(V_{c b} V_{c s}^{*}\right) P_{\phi K}^{c}+\left(V_{u b} V_{u s}^{*}\right) P_{\phi K}^{u}}{\left(V_{c b}^{*} V_{c s}\right) P_{\phi K}^{c}+\left(V_{u b}^{*} V_{u s}\right) P_{\phi K}^{u}} \times \frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}} \tag{13.95}
\end{equation*}
$$

where $P_{\phi K}^{c}=p_{\phi K}^{c}-p_{\phi K}^{t}$ and $P_{\phi K}^{u}=p_{\phi K}^{u}-p_{\phi K}^{t}$.
Since in general the amplitude A_{f} involves two different weak phases, the corresponding decays can exhibit both $C P$ violation in the interference of decays with and without mixing, $S_{f} \neq 0$, and $C P$ violation in decay, $C_{f} \neq 0$. (At the present level of experimental precision, the contribution to C_{f} from $C P$ violation in mixing is negligible, see Eq. (13.83).) If the contribution from a second weak phase is suppressed, then the interpretation of S_{f} in terms of Lagrangian $C P$-violating parameters is clean, while C_{f} is small. If such a second contribution is not suppressed, S_{f} depends on hadronic parameters and, if the relevant strong phase difference is large, C_{f} is large.

Figure 13.2: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to $B^{0} \rightarrow f$ or $B_{s}^{0} \rightarrow f$ via a $\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}$ quark-level process.

A summary of $\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}$ modes with $q^{\prime}=s$ or d is given in Table 13.1. The $\bar{b} \rightarrow \bar{d} d \bar{q}$ transitions lead to final states that are similar to those from $\bar{b} \rightarrow \bar{u} u \bar{q}$ transitions and have similar phase dependence. Final states that consist of two vector mesons ($\psi \phi$ and $\phi \phi$) are not $C P$ eigenstates, and angular analysis is needed to separate the $C P$-even from the $C P$-odd contributions.
The cleanliness of the theoretical interpretation of S_{f} can be assessed from the information in the last column of Table 13.1. In case of small uncertainties, the expression for S_{f} in terms of CKM phases can be deduced from the fourth column of Table 13.1 in combination with Eq. (13.87) (and, for $b \rightarrow q \bar{q} s$ decays, the example in Eq. (13.94)). Here we consider several interesting examples.

For $B^{0} \rightarrow J / \psi K_{S}$ and other $\bar{b} \rightarrow \bar{c} c \bar{s}$ processes, we can neglect the P^{u} contribution to A_{f}, in the Standard Model, to an approximation that is better than one percent, giving:

$$
\begin{equation*}
\lambda_{\psi K_{S}}=-e^{-2 i \beta} \Rightarrow S_{\psi K_{S}}=\sin 2 \beta, \quad C_{\psi K_{S}}=0 \tag{13.96}
\end{equation*}
$$

It is important to verify experimentally the level of suppression of the penguin contribution. Methods based on flavor symmetries [83-86] allow limits to be obtained. All are currently consistent with the P^{u} term being negligible. Explicit calculations [86-89] also support this conclusion.

In the presence of new physics, A_{f} is still likely to be dominated by the T term, but the mixing amplitude might be modified. We learn that, model-independently, $C_{f} \approx 0$ while S_{f} cleanly determines the mixing phase $\left(\phi_{M}-2 \arg \left(V_{c b} V_{c d}^{*}\right)\right)$. The experimental measurement [29], $S_{\psi_{K}}=+0.699 \pm 0.017$, gave the first precision test of the Kobayashi-Maskawa mechanism, and its consistency with the predictions for $\sin 2 \beta$ makes it very likely that this mechanism is indeed the dominant source of $C P$ violation in the quark sector.
For $B^{0} \rightarrow \phi K_{S}$ and other $\bar{b} \rightarrow \bar{s} s \bar{s}$ processes (as well as some $\bar{b} \rightarrow \bar{u} u \bar{s}$ processes), we can neglect the subdominant contributions, in the Standard Model, to an approximation that is good to the order of a few percent:

$$
\begin{equation*}
\lambda_{\phi K_{S}}=-e^{-2 i \beta} \Rightarrow S_{\phi K_{S}}=\sin 2 \beta, \quad C_{\phi K_{S}}=0 \tag{13.97}
\end{equation*}
$$

A review of explicit calculations of the effects of subleading amplitudes can be found in Ref. [90]. In the presence of new physics, both A_{f} and \mathbf{M}_{12} can have contributions that are comparable in size to those of the Standard Model and carry new weak phases. Such a situation gives several interesting consequences for penguin-dominated $\bar{b} \rightarrow \bar{q} q \bar{s}$ decays $(q=u, d, s)$ to a final state f :

1. The value of $-\eta_{f} S_{f}$ may be different from $S_{\psi K_{S}}$ by more than a few percent, where η_{f} is the $C P$ eigenvalue of the final state.

Table 13.1: Summary of $\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}$ modes with $q^{\prime}=s$ or d. The second and third columns give examples of hadronic final states (usually those which are experimentally most convenient to study). The fourth column gives the CKM dependence of the amplitude A_{f}, using the notation of Eqs. ((13.91), (13.93), (13.95)), with the dominant term first and the subdominant second. The suppression factor of the second term compared to the first is given in the last column. "Loop" refers to a penguin versus tree-suppression factor (it is mode-dependent and roughly $\mathcal{O}(0.2-0.3)$) and $\lambda \simeq 0.23$ is the expansion parameter of Eq. (13.48).

$\overline{\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}}$	$B^{0} \rightarrow f$	$B_{s}^{0} \rightarrow f$	CKM dependence of A_{f}	Suppression
$b \rightarrow \bar{c} c \bar{s}$	ψK_{S}	$\psi \phi$	$\left(V_{c b}^{*} V_{c s}\right) T+\left(V_{u b}^{*} V_{u s}\right) P^{u}$	loop $\times \lambda^{2}$
$\bar{b} \rightarrow \bar{s} s \bar{s}$	ϕK_{S}	$\phi \phi$	$\left(V_{c b}^{*} V_{c s}\right) P^{c}+\left(V_{u b}^{*} V_{u s}\right) P^{u}$	λ^{2}
$\bar{b} \rightarrow \bar{u} u \bar{s}$	$\pi^{0} K_{S}$	$K^{+} K^{-}$	$\left(V_{c b}^{*} V_{c s}\right) P^{c}+\left(V_{u b}^{*} V_{u s}\right) T$	$\lambda^{2} /$ loop
$\bar{b} \rightarrow \bar{c} c \bar{d}$	$D^{+} D^{-}$	ψK_{S}	$\left(V_{c b}^{*} V_{c d}\right) T+\left(V_{t b}^{*} V_{t d}\right) P^{t}$	loop
$\bar{b} \rightarrow \bar{s} s \bar{d}$	$K_{S} K_{S}$	ϕK_{S}	$\left(V_{t b}^{*} V_{t d}\right) P^{t}+\left(V_{c b}^{*} V_{c d}\right) P^{c}$	$\lesssim 1$
$\bar{b} \rightarrow \bar{u} u \bar{d}$	$\pi^{+} \pi^{-}$	$\rho^{0} K_{S}$	$\left(V_{u b}^{*} V_{u d}\right) T+\left(V_{t b}^{*} V_{t d}\right) P^{t}$	loop
$\bar{b} \rightarrow \bar{c} u \bar{d}$	$D_{C P} \pi^{0}$	$D_{C P} K_{S}$	$\left(V_{c b}^{*} V_{u d}\right) T+\left(V_{u b}^{*} V_{c d}\right) T^{\prime}$	λ^{2}
$\bar{b} \rightarrow \bar{c} u \bar{s}$	$D_{C P} K_{S}$	$D_{C P} \phi$	$\left(V_{c b}^{*} V_{u s}\right) T+\left(V_{u b}^{*} V_{c s}\right) T^{\prime}$	$\lesssim 1$

2. The values of $\eta_{f} S_{f}$ for different final states f may be different from each other by more than a few percent (for example, $S_{\phi K_{S}} \neq S_{\eta^{\prime} K_{S}}$).
3. The value of C_{f} may be different from zero by more than a few percent.

While a clear interpretation of such signals in terms of Lagrangian parameters will be difficult because, under these circumstances, hadronic parameters play a role, any of the above three options will clearly signal new physics. In addition flavor symmetry relations, such as those which relate observables in $B \rightarrow K \pi$ decays $[91,92]$ can be used to provide further tests of the Standard Model. Fig. 13.3 summarizes the present experimental results: none of the possible signatures listed above is unambiguously established, but there is definitely still room for new physics.

Figure 13.3: Summary of the results [29] of time-dependent analyses of $b \rightarrow q \bar{q} s$ decays, which are potentially sensitive to new physics.

For the $\bar{b} \rightarrow \bar{u} u \bar{d}$ process $B \rightarrow \pi \pi$ and other related channels, the penguin-to-tree ratio can be estimated using $\mathrm{SU}(3)$ relations and experimental data on related $B \rightarrow K \pi$ decays. The result (for $\pi \pi$) is that the suppression is at the level of $0.2-0.3$ and so cannot be neglected. The expressions for $S_{\pi \pi}$ and $C_{\pi \pi}$ to leading order in $R_{P T} \equiv\left(\left|V_{t b} V_{t d}\right| P_{\pi \pi}^{t}\right) /\left(\left|V_{u b} V_{u d}\right| T_{\pi \pi}\right)$ are:

$$
\begin{equation*}
\lambda_{\pi \pi}=e^{2 i \alpha}\left[\left(1-R_{P T} e^{-i \alpha}\right) /\left(1-R_{P T} e^{+i \alpha}\right)\right] \Rightarrow \tag{13.98}
\end{equation*}
$$

$S_{\pi \pi} \approx \sin 2 \alpha+2 \mathcal{R} e\left(R_{P T}\right) \cos 2 \alpha \sin \alpha, \quad C_{\pi \pi} \approx 2 \mathcal{I} m\left(R_{P T}\right) \sin \alpha$.
(13.99)

Note that $R_{P T}$ is mode-dependent and, in particular, could be different for $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$. If strong phases can be neglected, then $R_{P T}$ is real, resulting in $C_{\pi \pi}=0$. The size of $C_{\pi \pi}$ is an indicator of how large the strong phase is. The present experimental average is $C_{\pi^{+} \pi^{-}}=-0.32 \pm 0.04$ [29]. As concerns $S_{\pi \pi}$, it is clear from Eq. (13.99) that the relative size or strong phase of the penguin contribution must be known to extract α. This is the problem of penguin pollution.

The cleanest solution involves isospin relations among the $B \rightarrow$ $\pi \pi$ amplitudes [93]:

$$
\begin{equation*}
\frac{1}{\sqrt{2}} A_{\pi^{+} \pi^{-}}+A_{\pi^{0} \pi^{0}}=A_{\pi^{+} \pi^{0}} \tag{13.100}
\end{equation*}
$$

The method exploits the fact that the penguin contribution to $P_{\pi \pi}^{t}$ is pure $\Delta I=1 / 2$ (this is not true for the electroweak penguins which, however, are expected to be small), while the tree contribution to $T_{\pi \pi}$ contains pieces that are both $\Delta I=1 / 2$ and $\Delta I=3 / 2$. A simple geometric construction then allows one to find $R_{P T}$ and extract α cleanly from $S_{\pi+\pi^{-}}$. The key experimental difficulty is that one must measure accurately the separate rates for B^{0} and $\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$.
$C P$ asymmetries in $B \rightarrow \rho \pi$ and $B \rightarrow \rho \rho$ can also be used to determine α. In particular, the $B \rightarrow \rho \rho$ measurements are presently very significant in constraining α. The extraction proceeds via isospin analysis similar to that of $B \rightarrow \pi \pi$. There are, however, several important differences. First, due to the finite width of the ρ mesons, a final $(\rho \rho)_{I=1}$ state is possible [94]. The effect is, however, of the order of $\left(\Gamma_{\rho} / m_{\rho}\right)^{2} \sim 0.04$. Second, due to the presence of three helicity states for the two vector mesons, angular analysis is needed to separate the $C P$-even and $C P$-odd components. The theoretical expectation is that the $C P$-odd component is small, which is supported by experiments which find that the $\rho^{+} \rho^{-}$and $\rho^{ \pm} \rho^{0}$ modes are dominantly longitudinally polarized. Third, an important advantage of the $\rho \rho$ modes is that the penguin contribution is expected to be small due to different hadronic dynamics. This expectation is confirmed by the smallness of $\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)=(0.95 \pm 0.16) \times 10^{-6}$ [29,95] compared to $\mathcal{B}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=(24.2 \pm 3.1) \times 10^{-6}$ [29]. Thus, $S_{\rho^{+} \rho^{-}}$is not far from $\sin 2 \alpha$. Finally, both $S_{\rho^{0} \rho^{0}}$ and $C_{\rho^{0} \rho^{0}}$ are experimentally accessible, which may allow a precision determination of α. However, a full isospin analysis should allow that the fractions of longitudinal polarisation in B and \bar{B} decays may differ, which has not yet been done by the experiments.

Detailed discussion of the determination of α with these methods, and the latest world average, can be found in Refs. [36, 96]. The consistency between the range of α determined by the $B \rightarrow$ $\pi \pi, \rho \pi$ and $\rho \rho$ measurements and the range allowed by CKM fits (excluding these direct determinations) provides further support to the Kobayashi-Maskawa mechanism.

All modes discussed in this Section so far have possible contributions from penguin amplitudes. As shown in Table 13.1, CP violation can also be studied with final states, typically containing charmed mesons, where no such contribution is possible. The neutral charmed meson must be reconstructed in a final state, such as a $C P$ eigenstate, common to D^{0} and \bar{D}^{0} so that the am-
plitudes for the B and \bar{B} meson decays interfere. Although there is a second tree amplitude with a different weak phase, the contributions of the different diagrams can in many cases be separated experimentally (for example by exploiting different decays of the neutral D mesons) making these channels very clean theoretically. The first determination of $\sin (2 \beta)$, with significance of $C P$ violation over 5σ, with this method has recently been reported [97]. Moreover, the interference between the two tree diagrams gives sensitivity to γ, as will be discussed in Section 13.6.4.
13.6.3 $C P$ violation in interference of B_{s}^{0} decays with and without mixing

As discussed in Section 13.6.1, the world average for $|q / p|$ in the B_{s}^{0} system currently deviates from the Standard Model expectation due to an anomalous value of the dimuon asymmetry. Attributing the dimuon asymmetry result to a fluctuation, we again neglect the deviation of $|q / p|$ from 1 , and use

$$
\begin{equation*}
\lambda_{f}=e^{-i \phi_{M}\left(B_{s}^{0}\right)}\left(\bar{A}_{f} / A_{f}\right) \tag{13.101}
\end{equation*}
$$

Within the Standard Model,

$$
\begin{equation*}
e^{-i \phi_{M\left(B_{s}^{0}\right)}}=\left(V_{t b}^{*} V_{t s}\right) /\left(V_{t b} V_{t s}^{*}\right) \tag{13.102}
\end{equation*}
$$

Note that $\Delta \Gamma / \Gamma=0.132 \pm 0.008[29]$ and therefore y should not be put to zero in Eqs. (13.31a) and (13.31b). However, $|q / p|=1$ is expected to hold to an even better approximation than for B^{0} mesons. One therefore obtains

$$
\begin{gather*}
\mathcal{A}_{f}(t)=\frac{S_{f} \sin (\Delta m t)-C_{f} \cos (\Delta m t)}{\cosh (\Delta \Gamma t / 2)-A_{f}^{\Delta \Gamma} \sinh (\Delta \Gamma t / 2)} \tag{13.103}\\
A_{f}^{\Delta \Gamma} \equiv \frac{-2 \mathcal{R} e\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \tag{13.104}
\end{gather*}
$$

The presence of the $A_{f}^{\Delta \Gamma}$ term implies that information on λ_{f} can be obtained from analyses that do not use tagging of the initial flavor, through so-called effective lifetime measurements [98].

The $B_{s}^{0} \rightarrow J / \psi \phi$ decay proceeds via the $\bar{b} \rightarrow \bar{c} c \bar{s}$ transition. The $C P$ asymmetry in this mode thus determines (with angular analysis to disentangle the $C P$-even and $C P$-odd components of the final state) $\sin 2 \beta_{s}$, where β_{s} is defined in Eq. (13.52) [99]. The $B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decay, which has a large contributions from $J / \psi f_{0}(980)$ and is assumed to also proceed dominantly via the $\bar{b} \rightarrow \bar{c} c \bar{s}$ transition, has also been used to determine β_{s}. In this case no angular analysis is necessary, since the final state has been shown to be dominated by the $C P$-odd component [100]. The combination of measurements yields [29]

$$
\begin{equation*}
-2 \beta_{s}=-0.021 \pm 0.031 \tag{13.105}
\end{equation*}
$$

consistent with the Standard Model prediction, $\beta_{s}=0.0184 \pm$ 0.0004 [19].

The experimental investigation of $C P$ violation in the B_{s}^{0} sector is still at a relatively early stage, and far fewer modes have been studied than in the B^{0} system. First results on the $\bar{b} \rightarrow \bar{q} q \bar{s}$ decays $B_{s}^{0} \rightarrow \phi \phi, K^{+} K^{-}$and $K^{* 0} \bar{K}^{* 0}$ have been reported. More channels are expected to be studied in the near future.

13.6.4 Direct $C P$ violation in the B system

An interesting class of decay modes is that of the tree-level decays $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$. These decays provide golden methods for a clean determination of the angle $\gamma[101-106]$. The method uses the decays $B^{+} \rightarrow D^{0} K^{+}$, which proceeds via the quark transition $\bar{b} \rightarrow \bar{u} c \bar{s}$, and $B^{+} \rightarrow \bar{D}^{0} K^{+}$, which proceeds via the quark transition $\bar{b} \rightarrow \bar{c} u \bar{s}$, with the D^{0} and \bar{D}^{0} decaying into a common final state. The decays into common final states, such $\left(\pi^{0} K_{S}\right)_{D} K^{+}$, involve interference effects between the two amplitudes, with sensitivity to the relative phase, $\delta+\gamma$ (δ is the relevant strong phase difference). The $C P$-conjugate processes are sensitive to $\delta-\gamma$. Measurements of branching ratios and $C P$ asymmetries allow the determination of γ and δ from amplitude triangle relations. The method suffers from discrete ambiguities but, since all hadronic parameters can be determined from the data, has negligible theoretical uncertainty [107].

Unfortunately, the smallness of the CKM-suppressed $b \rightarrow$ u transitions makes it difficult to use the simplest methods alone [101-103] to determine γ. These difficulties are overcome (and the discrete ambiguities are removed) by performing a Dalitz plot analysis for multi-body D decays [104-106]. Detailed discussion of the determination of γ with these methods can be found in Ref. [36].

Constraints on γ from combinations of results on various $B \rightarrow$ $D^{(*)} K^{(*)}$ processes have been obtained by experiments $[108,109]$. The latest world average is [29]:

$$
\begin{equation*}
\gamma=\left(71.1_{-5.3}^{+4.6}\right)^{\circ} \tag{13.106}
\end{equation*}
$$

The consistency between the range of γ determined by the $B \rightarrow$ $D K$ measurements and the range allowed by CKM fits (excluding these direct determinations) provides further support to the Kobayashi-Maskawa mechanism. As more data become available, determinations of γ from $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}[110,111]$ and $B^{0} \rightarrow D K^{* 0}[112-115]$ are expected to also give competitive measurements.

Decays to the final state $K^{\mp} \pi^{ \pm}$provided the first observations of direct $C P$ violation in both B^{0} and B_{s}^{0} systems. The asymmetry arises due to interference between tree and penguin diagrams [116], similar to the effect discussed in Section 13.6.2. In principle, measurements of $\mathcal{A}_{\bar{B}^{0} \rightarrow K^{-} \pi^{+}}$and $\mathcal{A}_{\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}}$could be used to determine the weak phase difference γ, but lack of knowledge of the relative magnitude and strong phase of the contributing amplitudes limits the achievable precision. The uncertainties on these hadronic parameters can be reduced by exploiting flavor symmetries, which predict a number of relations between asymmetries in different modes. One such relation is that the partial rate differences for B^{0} and B_{s}^{0} decays to $K^{\mp} \pi^{ \pm}$are expected to be approximately equal and opposite [117], which is consistent with current data. It is also expected that the partial rate asymmetries for $\bar{B}^{0} \rightarrow K^{-} \pi^{+}$and $B^{-} \rightarrow K^{-} \pi^{0}$ should be approximately equal; however, the experimental results currently show a significant discrepancy [29]:

$$
\begin{equation*}
\mathcal{A}_{\bar{B}^{0} \rightarrow K^{-} \pi^{+}}=-0.084 \pm 0.004, \quad \mathcal{A}_{B^{-} \rightarrow K^{-} \pi^{0}}=+0.040 \pm 0.021 \tag{13.107}
\end{equation*}
$$

It is therefore of great interest to understand whether this originates from Standard Model QCD corrections, or whether it is a signature of new dynamics. Improved tests of a more precise relation between the partial rate differences of all four $K \pi$ final states [118-121], currently limited by knowledge of the $C P$ asymmetry in $\bar{B}^{0} \rightarrow K_{S} \pi^{0}$ decays, may help to resolve the situation.

It is also of interest to investigate whether similar patterns appear among the $C P$ violating asymmetries in B meson decays to final states containing one pseudoscalar and one vector meson. Since the vector resonance decays to two particles, such channels can be studied through Dalitz plot analysis of the three-body final state. Model-independent analyses of $B^{+} \rightarrow K^{+} K^{-} K^{+}$, $\pi^{+} \pi^{-} K^{+}, \pi^{+} \pi^{-} \pi^{+}$and $K^{+} K^{-} \pi^{+}$decays have revealed large $C P$ violation effects in certain regions of phase space [122]. For the $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$decay, an amplitude analysis has established a large $C P$ violation effect associated with $\pi \pi \leftrightarrow K K$ Swave rescattering [123]. For the other channels it remains to be seen whether the $C P$ violation effects are associated to particular resonances or to interference effects, which will be necessary to understand the underlying dynamics.

13.7 Summary and Outlook

$C P$ violation has been experimentally established in K, D and B meson decays. A full list of $C P$ asymmetries that have been measured at a level higher than 5σ is given in the introduction to this review. In Section 13.1.4 we introduced three types of $C P$-violating effects. Examples of these three types include the following:

1. All three types of $C P$ violation have been observed in $K \rightarrow \pi \pi$
decays:

$$
\begin{align*}
\mathcal{R} e\left(\epsilon^{\prime}\right) & =\frac{1}{6}\left(\left|\frac{\bar{A}_{\pi^{0} \pi^{0}}}{A_{\pi^{0} \pi^{0}}}\right|-\left|\frac{\bar{A}_{\pi^{+} \pi^{-}}}{A_{\pi^{+} \pi^{-}}}\right|\right) \\
& =(2.5 \pm 0.4) \times 10^{-6} \tag{I}\\
\mathcal{R} e(\epsilon) & =\frac{1}{2}\left(1-\left|\frac{q}{p}\right|\right) \\
& =(1.66 \pm 0.02) \times 10^{-3} \tag{II}\\
\mathcal{I} m(\epsilon) & =-\frac{1}{2} \mathcal{I} m\left(\lambda_{(\pi \pi)_{I=0}}\right) \\
& =(1.57 \pm 0.02) \times 10^{-3} \tag{III}
\end{align*}
$$

(13.108a)
(13.108b)
(13.108c)
2. For D mesons, $C P$ violation in decay has been established in the difference of asymmetries for $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow$ $\pi^{+} \pi^{-}$decays.

$$
\begin{align*}
\Delta a_{C P} & =\frac{\left|\bar{A}_{K^{+} K^{-}} / A_{K^{+} K^{-}}\right|^{2}-1}{\left|\bar{A}_{K^{+} K^{-}} / A_{K^{+} K^{-}}\right|^{2}+1}-\frac{\left|\bar{A}_{\pi^{+} \pi^{-}} / A_{\pi^{+} \pi^{-}}\right|^{2}-1}{\left|\bar{A}_{\pi^{+} \pi^{-}} / A_{\pi^{+} \pi^{-}}\right|^{2}+1} \tag{13.109}\\
& =(-0.164 \pm 0.028) \times 10^{-3}, \quad \text { (I) } \tag{I}
\end{align*}
$$

3. In the B meson system, $C P$ violation in decay has been observed in, for example, $B^{0} \rightarrow K^{+} \pi^{-}$transitions, while $C P$ violation in interference of decays with and without mixing has been observed in, for example, the $B^{0} \rightarrow J / \psi K_{S}$ channel:

$$
\begin{align*}
\mathcal{A}_{K^{+} \pi^{-}} & =\frac{\left|\bar{A}_{K^{-} \pi^{+}} / A_{K^{+} \pi^{-}}\right|^{2}-1}{\left|\bar{A}_{K^{-} \pi^{+}} / A_{K^{+} \pi^{-}}\right|^{2}+1} \\
& =-0.084 \pm 0.004 \tag{I}\\
S_{\psi K} & =\mathcal{I} m\left(\lambda_{\psi K}\right) \\
& =+0.699 \pm 0.017
\end{align*}
$$

(III) (13.110b)

Based on Standard Model predictions, further observations of $C P$ violation in B^{0}, B^{+}and B_{s}^{0} decays seem likely in the near future, at both LHCb and its upgrades [124-126] as well as the Belle II experiment [127]. The first observation of $C P$ violation in b baryons is also likely to be within reach of LHCb. Further improvements in the sensitivity to $C P$ violation effects in the charm sector can also be anticipated, though uncertainty in the Standard Model predictions makes it difficult to forecast whether or not additional discoveries will be forthcoming. A number of upcoming experiments have potential to make significant progress on rare kaon decays. Observables that are subject to clean theoretical interpretation, such as β from $S_{\psi K_{S}}, \beta_{s}$ from $B_{s}^{0} \rightarrow J / \psi \phi$, $\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$ and γ from $C P$ violation in $B \rightarrow D K$ decays, are of particular value for constraining the values of the CKM parameters and probing the flavor sector of extensions to the Standard Model. Progress in lattice QCD calculations is also needed to complement the anticipated experimental results. Other probes of $C P$ violation now being pursued experimentally include the electric dipole moments of the neutron and electron, and the decays of tau leptons. Additional processes that are likely to play an important role in future $C P$ studies include top-quark production and decay, Higgs boson decays and neutrino oscillations.

All measurements of $C P$ violation to date are consistent with the predictions of the Kobayashi-Maskawa mechanism of the Standard Model. In fact, it is now established that the KM mechanism plays a major role in the $C P$ violation measured in the quark sector. However, a dynamically-generated matter-antimatter asymmetry of the universe requires additional sources of $C P$ violation, and such sources are naturally generated by extensions to the Standard Model. New sources might eventually reveal themselves as small deviations from the predictions of the KM mechanism, or else might not be observable in the quark sector at all, but observable with future probes such as neutrino oscillations or electric dipole moments. The fundamental nature of $C P$ violation demands a vigorous search.

A number of excellent reviews of $C P$ violation are available [128-135], where the interested reader may find a detailed discussion of the various topics that are briefly reviewed here.

We thank David Kirkby for significant contributions to earlier versions of this review.

References

[1] J. H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).
[2] B. Aubert et al. (BaBar), Phys. Rev. Lett. 87, 091801 (2001), [hep-ex/0107013].
[3] K. Abe et al. (Belle), Phys. Rev. Lett. 87, 091802 (2001), [hep-ex/0107061].
[4] H. Burkhardt et al. (NA31), Phys. Lett. B206, 169 (1988).
[5] V. Fanti et al. (NA48), Phys. Lett. B465, 335 (1999), [hepex/9909022].
[6] A. Alavi-Harati et al. (KTeV), Phys. Rev. Lett. 83, 22 (1999), [hep-ex/9905060].
[7] B. Aubert et al. (BaBar), Phys. Rev. Lett. 93, 131801 (2004), [hep-ex/0407057].
[8] Y. Chao et al. (Belle), Phys. Rev. Lett. 93, 191802 (2004), [hep-ex/0408100].
[9] A. Poluektov et al. (Belle), Phys. Rev. D81, 112002 (2010), [arXiv:1003.3360].
[10] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D82, 072004 (2010), [arXiv:1007.0504].
[11] R. Aaij et al. (LHCb), Phys. Lett. B712, 203 (2012), [Erratum: Phys. Lett.B713,351(2012)], [arXiv:1203.3662].
[12] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 22, 221601 (2013), [arXiv:1304.6173].
[13] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 21, 211803 (2019), [arXiv:1903.08726].
[14] See results on the "Time reversal invariance," within the review on "Tests of Conservation Laws," in this Review.
[15] J. Bernabeu, F. Martinez-Vidal and P. Villanueva-Perez, JHEP 08, 064 (2012), [arXiv:1203.0171].
[16] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 211801 (2012), [arXiv:1207.5832].
[17] See, for example, R. F. Streater and A. S. Wightman, CPT, Spin and Statistics, and All That, reprinted by AddisonWesley, New York (1989).
[18] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[19] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C41, 1, 1 (2005), updated results and plots available at: http://ckmfitter.in2p3.fr, [hep-ph/0406184].
[20] M. Bona et al. (UTfit), JHEP 10, 081 (2006), updated results and plots available at: http://www.utfit.org/UTfit, [hep-ph/0606167].
[21] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967), [Usp. Fiz. Nauk161,no.5,61(1991)].
[22] A. Riotto, in "Proceedings, Summer School in High-energy physics and cosmology: Trieste, Italy, June 29-July 17, 1998," 326-436 (1998), [hep-ph/9807454].
[23] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[24] S. Davidson, E. Nardi and Y. Nir, Phys. Rept. 466, 105 (2008), [arXiv:0802.2962].
[25] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), [arXiv:1207.7214].
[26] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), [arXiv:1207.7235].
[27] See the K-meson Listings in this Review.
[28] See the B-meson Listings in this Review.
[29] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 12, 895 (2017), [arXiv:1612.07233].
[30] V. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).
[31] See the review on " $D^{0}-\bar{D}^{0}$ Mixing" in this Review.
[32] O. Long et al., Phys. Rev. D68, 034010 (2003), [hepex/0303030].
[33] M. Gronau, Y. Grossman and J. L. Rosner, Phys. Lett. B508, 37 (2001), [hep-ph/0103110].
[34] M. Artuso, G. Borissov and A. Lenz, Rev. Mod. Phys. 88, 4, 045002 (2016), [arXiv:1511.09466].
[35] L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964).
[36] See the review on "Cabibbo-Kobayashi-Maskawa Mixing Matrix," in this Review.
[37] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[38] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, Phys. Rev. D50, 3433 (1994), [hep-ph/9403384].
[39] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[40] See the review on "CP violation in $K_{S} \rightarrow 3 \pi$," in this $R e$ view.
[41] T. Blum et al., Phys. Rev. D91, 7, 074502 (2015), [arXiv:1502.00263].
[42] Z. Bai et al. (RBC, UKQCD), Phys. Rev. Lett. 115, 21, 212001 (2015), [arXiv:1505.07863].
[43] A. J. Buras et al., JHEP 11, 202 (2015), [arXiv:1507.06345].
[44] Y. Grossman and Y. Nir, Phys. Lett. B398, 163 (1997), [hep-ph/9701313].
[45] L. S. Littenberg, Phys. Rev. D39, 3322 (1989).
[46] A. J. Buras, Phys. Lett. B333, 476 (1994), [hepph/9405368].
[47] G. Buchalla and A. J. Buras, Nucl. Phys. B400, 225 (1993).
[48] A. J. Buras et al., JHEP 11, 033 (2015), [arXiv:1503.02693].
[49] J. K. Ahn et al. (KOTO), Phys. Rev. Lett. 122, 2, 021802 (2019), [arXiv:1810.09655].
[50] T. Yamanaka (KOTO), PTEP 2012, 02B006 (2012).
[51] M. Mirra [NA62 Collab.], Nuovo Cimento C038, 13 (2015).
[52] B. Aubert et al. (BaBar), Phys. Rev. Lett. 98, 211802 (2007), [hep-ex/0703020].
[53] M. Staric et al. (BELLE), Phys. Rev. Lett. 98, 211803 (2007), [,65(2007)], [hep-ex/0703036].
[54] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 100, 121802 (2008), [arXiv:0712.1567].
[55] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 10, 101802 (2013), [arXiv:1211.1230].
[56] See the D-meson Listings in this Review.
[57] Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D75, 036008 (2007), [hep-ph/0609178].
[58] S. Bergmann et al., Phys. Lett. B486, 418 (2000), [hepph/0005181].
[59] M. Gersabeck et al., J. Phys. G39, 045005 (2012), [arXiv:1111.6515].
[60] D. M. Asner et al. (CLEO), Phys. Rev. D78, 012001 (2008), [arXiv:0802.2268].
[61] M. Ablikim et al. (BESIII), Phys. Lett. B734, 227 (2014), [arXiv:1404.4691].
[62] R. Aaij et al. (LHCb), Phys. Rev. Lett. 111, 25, 251801 (2013), [arXiv:1309.6534].
[63] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 26, 261803 (2017), [arXiv:1702.06490].
[64] M. Ciuchini et al., Phys. Lett. B655, 162 (2007), [hepph/0703204].
[65] Y. Grossman, Y. Nir and G. Perez, Phys. Rev. Lett. 103, 071602 (2009), [arXiv:0904.0305].
[66] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D80, 076008 (2009), [arXiv:0907.3917].
[67] Y. Grossman and Y. Nir, JHEP 04, 002 (2012), [arXiv:1110.3790].
[68] B. R. Ko et al. (Belle), Phys. Rev. Lett. 109, 021601 (2012), [Erratum: Phys. Rev. Lett.109,119903(2012)], [arXiv:1203.6409].
[69] See the "Review of Multibody Charm Analyses" in this Review.
[70] B. Aubert et al. (BaBar), Phys. Rev. D78, 051102 (2008), [arXiv:0802.4035].
[71] I. Bediaga et al., Phys. Rev. D80, 096006 (2009), [arXiv:0905.4233].
[72] I. Bediaga et al., Phys. Rev. D86, 036005 (2012), [arXiv:1205.3036].
[73] M. Williams, Phys. Rev. D84, 054015 (2011), [arXiv:1105.5338].
[74] R. Aaij et al. (LHCb), Phys. Lett. B769, 345 (2017), [arXiv:1612.03207].
[75] V. M. Abazov et al. (D0), Phys. Rev. D82, 032001 (2010), [arXiv:1005.2757].
[76] A. B. Carter and A. I. Sanda, Phys. Rev. Lett. 45, 952 (1980).
[77] A. B. Carter and A. I. Sanda, Phys. Rev. D23, 1567 (1981).
[78] I. I. Y. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981).
[79] I. Dunietz and J. L. Rosner, Phys. Rev. D34, 1404 (1986).
[80] Y. I. Azimov, N. G. Uraltsev and V. A. Khoze, Sov. J. Nucl. Phys. 45, 878 (1987), [Yad. Fiz.45,1412(1987)].
[81] I. I. Y. Bigi and A. I. Sanda, Nucl. Phys. B281, 41 (1987).
[82] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996), [hep-ph/9512380].
[83] R. Fleischer, Eur. Phys. J. C10, 299 (1999), [hepph/9903455].
[84] M. Ciuchini, M. Pierini and L. Silvestrini, Phys. Rev. Lett. 95, 221804 (2005), [hep-ph/0507290].
[85] S. Faller et al., Phys. Rev. D79, 014030 (2009), [arXiv:0809.0842].
[86] M. Jung, Phys. Rev. D86, 053008 (2012), [arXiv:1206.2050].
[87] H.-n. Li and S. Mishima, JHEP 03, 009 (2007), [hepph/0610120].
[88] K. De Bruyn and R. Fleischer, JHEP 03, 145 (2015), [arXiv:1412.6834].
[89] P. Frings, U. Nierste and M. Wiebusch, Phys. Rev. Lett. 115, 6, 061802 (2015), [arXiv:1503.00859].
[90] L. Silvestrini, Ann. Rev. Nucl. Part. Sci. 57, 405 (2007), [arXiv:0705.1624].
[91] R. Fleischer et al., Phys. Rev. D78, 111501 (2008), [arXiv:0806.2900].
[92] R. Fleischer et al., Eur. Phys. J. C78, 11, 943 (2018), [arXiv:1806.08783].
[93] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[94] A. F. Falk et al., Phys. Rev. D69, 011502 (2004), [hepph/0310242].
[95] R. Aaij et al. (LHCb), Phys. Lett. B747, 468 (2015), [arXiv:1503.07770].
[96] J. Charles et al., Eur. Phys. J. C77, 8, 574 (2017), [arXiv:1705.02981].
[97] A. Abdesselam et al. (BaBar, Belle), Phys. Rev. Lett. 115, 12, 121604 (2015), [arXiv:1505.04147].
[98] R. Fleischer and R. Knegjens, Eur. Phys. J. C71, 1789 (2011), [arXiv:1109.5115].
[99] A. S. Dighe, I. Dunietz and R. Fleischer, Eur. Phys. J. C6, 647 (1999), [hep-ph/9804253].
[100] R. Aaij et al. (LHCb), Phys. Rev. D89, 9, 092006 (2014), [arXiv:1402.6248].
[101] M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
[102] M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
[103] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997), [hep-ph/9612433].
[104] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D63, 036005 (2001), [hep-ph/0008090].
[105] A. Giri et al., Phys. Rev. D68, 054018 (2003), [hepph/0303187].
[106] A. Bondar, Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished.
[107] J. Brod and J. Zupan, JHEP 01, 051 (2014), [arXiv:1308.5663].
[108] J. P. Lees et al. (BaBar), Phys. Rev. D87, 5, 052015 (2013), [arXiv:1301.1029].
[109] R. Aaij et al. (LHCb), JHEP 12, 087 (2016), [arXiv:1611.03076].
[110] R. Aleksan, I. Dunietz and B. Kayser, Z. Phys. C54, 653 (1992).
[111] R. Fleischer, Nucl. Phys. B671, 459 (2003), [hepph/0304027].
[112] I. Dunietz, Phys. Lett. B270, 75 (1991).
[113] M. Gronau, Phys. Lett. B557, 198 (2003), [hepph/0211282].
[114] T. Gershon, Phys. Rev. D79, 051301 (2009), [arXiv:0810.2706].
[115] T. Gershon and M. Williams, Phys. Rev. D80, 092002 (2009), [arXiv:0909.1495].
[116] M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43, 242 (1979).
[117] X.-G. He, Eur. Phys. J. C9, 443 (1999), [hep-ph/9810397].
[118] D. Atwood and A. Soni, Phys. Rev. D58, 036005 (1998), [hep-ph/9712287].
[119] M. Gronau and J. L. Rosner, Phys. Rev. D59, 113002 (1999), [hep-ph/9809384].
[120] H. J. Lipkin, Phys. Lett. B445, 403 (1999), [hepph/9810351].
[121] M. Gronau, Phys. Lett. B627, 82 (2005), [hep-ph/0508047].
[122] R. Aaij et al. (LHCb), Phys. Rev. D90, 11, 112004 (2014), [arXiv:1408.5373].
[123] R. Aaij et al. (LHCb) (2019), [arXiv:1905.09244].
[124] A. A. Alves, Jr. et al. (LHCb), JINST 3, S08005 (2008).
[125] I. Bediaga et al. (LHCb) (2012).
[126] R. Aaij et al. [LHCb Collab.], CERN-LHCC-2017-003.
[127] T. Aushev et al. (2010), [arXiv:1002.5012].
[128] G. C. Branco, L. Lavoura and J. P. Silva, Int. Ser. Monogr. Phys. 103, 1 (1999).
[129] I. I. Bigi and A. I. Sanda (2000), [Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.9,1(2009)].
[130] A. J. Bevan et al. (BaBar, Belle), Eur. Phys. J. C74, 3026 (2014), [arXiv:1406.6311].
[131] H.R. Quinn and Y. Nir, "The Mystery of the Missing Antimatter, " Princeton University Press, Princeton (2008).
[132] T. E. Browder et al., Rev. Mod. Phys. 81, 1887 (2009), [arXiv:0802.3201].
[133] M. Ciuchini and A. Stocchi, Ann. Rev. Nucl. Part. Sci. 61, 491 (2011), [arXiv:1110.3920].
[134] R. Aaij et al. (LHCb), Eur. Phys. J. C73, 4, 2373 (2013), [arXiv:1208.3355].
[135] T. Gershon and V. V. Gligorov, Rept. Prog. Phys. 80, 4, 046201 (2017), [arXiv:1607.06746].

14. Neutrino Masses, Mixing, and Oscillations

Written August 2019 by M.C. Gonzalez-Garcia (YITP, Stony Brook; ICREA, Barcelona; ICC, U. of Barcelona) and M. Yokoyama (Tokyo U.; Kavli IPMU (WPI), U. Tokyo).
14.1 Neutrinos in the Standard Model: Massless Neu-trinos285
14.2 Extending the Standard Model to Introduce Massive Neutrinos 285
14.2.1 Dirac Neutrinos 286
14.2.2 The See-saw Mechanism 286
14.2.3 Light Sterile Neutrinos 287
14.2.4 Neutrino Masses from Generic New Physics 287
14.3 Lepton Mixing 287
14.4 Mass-Induced Flavour Oscillations in Vacuum 288
14.5 Propagation of Massive Neutrinos in Matter 889
14.5.1 The Mihheev-Smirnov-Wolfenstein Effect for Solar Neutrinos 291
14.6 Experimental Study of Neutrino Oscillations 291
14.6.1 Solar Neutrinos 291
14.6.2 Atmospheric Neutrinos. 293
14.6.3 Accelerator Neutrinos 294
14.6.4 Reactor Antineutrinos 297
14.7 Combined Analysis of Experimental Results:
The 3ν Paradigm 300
14.7.1 3ν Oscillation Probabilities 301
14.7.2 3ν Oscillation Analysis 302
14.7.3 Convention-independent Measures of Lep- tonic CP Violation in 3ν Mixing 302
14.8 Beyond 3ν : Additional Neutrinos at the eV Scale 304
14.9 Laboratory Probes of ν Mass Scale and its Nature305
14.9.1 Constraints from Kinematics of Weak Decays 30514.9.2 Dirac vs Majorana: Neutrinoless Double-beta Decay306
14.9.3 Experimental Search for Neutrinoless Double-beta Decay 307

14.1 Neutrinos in the Standard Model: Massless Neutrinos

The gauge symmetry principle is one of the pillars of the great success of modern particle physics as it establishes an unambiguous connection between local (gauge) symmetries and forces mediated by spin-1 particles. In the Standard Model (SM) of particle physics the strong, weak, and electromagnetic interactions are connected to gauge symmetry under $S U(3)_{\mathrm{C}} \times S U(2)_{L} \times U(1)_{Y}$ where C stands for colour, L for left-handedness, and Y for hypercharge. The SM gauge symmetry is spontaneously broken to $S U(3)_{\mathrm{C}} \times U(1)_{\mathrm{EM}}$ where $U(1)_{\mathrm{EM}}$ couples to the electromagnetic charge $Q_{\mathrm{EM}}=T_{L 3}+Y\left(T_{L 3}\right.$ is the weak isospin which is the third generator of $\left.S U(2)_{L}\right)$. The model explains all the interactions of the known fermions once they are assigned to well defined representation of the gauge group. The construction and tests of the Standard Model as a gauge theory are covered in the review sections on "Quantum chromodynamics" and "Electroweak model and constraints on new physics" respectively. In here we emphasize that the gauge invariance principle requires that all terms in the Lagrangian, including the mass terms, respect the local symmetry. This has important implications for the neutrino and in particular for the question of the neutrino mass ${ }^{1}$

In the SM, neutrinos are fermions that do not have strong nor electromagnetic interactions. Consequently they are singlets of the subgroup $S U(3)_{C} \times U(1)_{\mathrm{EM}}$. They are part of the lepton doublets $L_{L \ell}=\binom{\nu_{\ell}}{\ell}_{L}$ where f_{L} is the left-handed component of the fermion $f, f_{L}=P_{L} f \equiv \frac{1-\gamma_{5}}{2} f$. In what follows we will refer as active neutrinos to neutrinos that are part of these lepton doublets. In the SM there is one active neutrino for each charged

[^34]leptons, $\ell=e, \mu, \tau . S U(2)_{L}$ gauge invariance dictates the form of weak charged current (CC) interactions between the neutrinos and their corresponding charged leptons and neutral current (NC) among themselves to be:
\[

$$
\begin{gather*}
-\mathcal{L}_{\mathrm{CC}}=\frac{g}{\sqrt{2}} \sum_{\ell} \bar{\nu}_{L \ell} \gamma^{\mu} \ell_{L}^{-} W_{\mu}^{+}+\text {h.c. } \tag{14.1}\\
-\mathcal{L}_{\mathrm{NC}}=\frac{g}{2 \cos \theta_{W}} \sum_{\ell} \bar{\nu}_{L \ell} \gamma^{\mu} \nu_{L \ell} Z_{\mu}^{0} \tag{14.2}
\end{gather*}
$$
\]

In the above equations g is the coupling constant associated to $S U(2)$ and θ_{W} is the Weinberg angle.

Equations(14.1) and (14.2) describe all the neutrino interactions in the SM. In particular, Eq.(14.2) determines the decay width of the Z^{0} boson into light ($m_{\nu} \leq m_{Z^{0}} / 2$) left-handed neutrinos states. Thus from the measurement of the total decay width of the Z^{0} one can infer the number of such states. At present the measurement implies $N_{\nu}=2.984 \pm 0.008$ (see Particle Listing). As a result any extension of the SM should contain three, and only three, light active neutrinos.

Sterile neutrinos are defined as having no SM gauge interactions, that is, they are singlets of the complete SM gauge group. Thus the SM, as the gauge theory able to describe all known particle interactions, contains no sterile neutrinos.

The SM with its gauge symmetry and the particle content required for the gauge interactions, that is, in the absence of SM singlets, respects an accidental global symmetry which is not imposed but appears as consequence of the gauge symmetry and the representation of the matter fields:

$$
\begin{equation*}
G_{\mathrm{SM}}^{\text {global }}=U(1)_{B} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \tag{14.3}
\end{equation*}
$$

where $U(1)_{B}$ is the baryon number symmetry, and $U(1)_{L_{e}, L_{\mu}, L_{\tau}}$ are the three lepton flavour symmetries. The total lepton number, $L_{e}+L_{\mu}+L_{\tau}$, is then also an accidental symmetry since is a subgroup of $G_{\mathrm{SM}}^{\text {global }}$. This fact has consequences which are relevant to the question of the neutrino mass as we argue next.
In the SM, the masses of the fermions are generated via a Yukawa coupling of the scalar Higgs doublet ϕ with a fermion right-handed and left-handed component. The former is an $S U(2)_{L}$ singlet, the latter is part of a doublet. For leptons, we can one can build such term coupling the left-handed lepton doublets L_{L} with the right-handed charged lepton fields E_{R} :

$$
\begin{equation*}
-\mathcal{L}_{\text {Yukawa,lep }}=Y_{i j}^{\ell} \bar{L}_{L i} \phi E_{R j}+\text { h.c. } \tag{14.4}
\end{equation*}
$$

After spontaneous symmetry breaking these terms lead to charged lepton masses

$$
\begin{equation*}
m_{i j}^{\ell}=Y_{i j}^{\ell} \frac{v}{\sqrt{2}}, \tag{14.5}
\end{equation*}
$$

where v is the vacuum expectation value of the Higgs field. However, since the model does not contain right-handed neutrinos, no such Yukawa interaction can be built for the neutrinos, which are consequently massless at the Lagrangian level.

In principle, a neutrino mass term could be generated at loop level. With the particle content of the SM the only possible neutrino mass term that could be constructed is the bilinear $\bar{L}_{L} L_{L}^{c}$, where L_{L}^{c} is the charge conjugated field, $L_{L}^{c}=C{\overline{L_{L}}}^{T}$ and C is the charge conjugation matrix. However this term is forbidden in the SM because it violates the total lepton symmetry by two units and therefore it cannot be induced by loop corrections because it breaks the accidental symmetry of the model. Also, because $U(1)_{B-L}$ is a non-anomalous subgroup of $G_{\mathrm{SM}}^{\text {global }}$, the bilinear $\bar{L}_{L} L_{L}^{c}$, cannot be induced by nonperturbative corrections either since it breaks $B-L$.

We conclude that within the SM neutrinos are precisely massless. Consequently one must go beyond the SM in order to add a mass to the neutrino.

14.2 Extending the Standard Model to Introduce Massive Neutrinos

From the above discussion we conclude that it is not possible to construct a renormalizable mass term for the neutrinos with the
fermionic content and gauge symmetry of the SM. The obvious consequence is that in order to introduce a neutrino mass in the theory one must extend the particle content of the model, depart from gauge invariance and/or renormalizability, or do both.

As a matter of fact, neutrino mass terms can be constructed in different ways. In the following we shall assume to maintain the gauge symmetry and explore the different possibilities to introduce a neutrino mass term adding to the SM an arbitrary number of sterile neutrinos $\nu_{s i}(i=1, \ldots m)$.

In the SM extended with the addition of m number of sterile neutrinos one can construct two gauge invariant renormalizable operators leading to two type of mass terms

$$
\begin{equation*}
-\mathcal{L}_{M_{\nu}}=M_{D i j} \bar{\nu}_{s i} \nu_{L j}+\frac{1}{2} M_{N i j} \bar{\nu}_{s i} \nu_{s j}^{c}+\text { h.c. } \tag{14.6}
\end{equation*}
$$

where ν^{c} is the neutrino charge conjugated field (defined in section 14.1). M_{D} is a complex matrix of dimension $m \times 3$ and M_{N} is a symmetric $m \times m$ matrix.

The first term is generated after spontaneous electroweak symmetry breaking from Yukawa interactions,

$$
\begin{equation*}
Y_{i j}^{\nu} \bar{\nu}_{s i} \tilde{\phi}^{\dagger} L_{L j} \Rightarrow M_{D i j}=Y_{i j}^{\nu} \frac{v}{\sqrt{2}} \tag{14.7}
\end{equation*}
$$

in similarity to Eqs.(14.4) and (14.5) for the charged fermion masses. It is correspondingly called a Dirac mass term. It conserves total lepton number but it can break the lepton flavour number symmetries.

The second term in Eq.(14.6) is a Majorana mass term and it differs from the Dirac mass terms in several relevant aspects. First, it is a singlet of the SM gauge group and, as such, it can appear as a bare mass term in the Lagrangian. Second, since it involves two neutrino fields (right-handed in this case), it breaks lepton number by two units. In general such a term is not allowed if the neutrinos carry any additive conserved charge.

It is possible to rewrite Eq.(14.6) as:

$$
-\mathcal{L}_{M_{\nu}}=\frac{1}{2}\left(\overline{\vec{\nu}_{L}^{c}}, \overline{\vec{\nu}_{s}}\right)\left(\begin{array}{cc}
0 & M_{D}^{T} \tag{14.8}\\
M_{D} & M_{N}
\end{array}\right)\binom{\vec{\nu}_{L}}{\vec{\nu}_{s}^{c}}+\text { h.c. } \equiv \overline{\vec{\nu}^{c}} M_{\nu} \vec{\nu}+\text { h.c. }
$$

where $\vec{\nu}=\left(\vec{\nu}_{L}, \overrightarrow{\nu_{s}^{c}}\right)^{T}$ is a $(3+m)$-dimensional vector. The matrix M_{ν} is complex and symmetric ${ }^{2}$. Thus it can be diagonalized by a unitary matrix V^{ν} of dimension $(3+m)$, so

$$
\begin{equation*}
\left(V^{\nu}\right)^{T} M_{\nu} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{3+m}\right) \tag{14.9}
\end{equation*}
$$

One can express the original weak eigenstates in terms of the resulting $3+m$ mass eigenstates

$$
\begin{equation*}
\vec{\nu}_{\mathrm{mass}}=\left(V^{\nu}\right)^{\dagger} \vec{\nu} \tag{14.10}
\end{equation*}
$$

and in terms of the mass eigenstates Eq.(14.8) takes the form:

$$
\begin{align*}
-\mathcal{L}_{M_{\nu}} & =\frac{1}{2} \sum_{k=1}^{3+m} m_{k}\left(\bar{\nu}_{\text {mass }, k}^{c} \nu_{\text {mass }, k}+\bar{\nu}_{\text {mass }, k} \nu_{\text {mass }, k}^{c}\right) \\
& =\frac{1}{2} \sum_{k=1}^{3+m} m_{k} \bar{\nu}_{M k} \nu_{M k} \tag{14.11}
\end{align*}
$$

where

$$
\begin{equation*}
\nu_{M k}=\nu_{\text {mass }, k}+\nu_{\text {mass }, k}^{c}=\left(V^{\nu \dagger} \vec{\nu}\right)_{k}+\left(V^{\nu \dagger} \vec{\nu}\right)_{k}^{c} \tag{14.12}
\end{equation*}
$$

So these states obey the Majorana condition

$$
\begin{equation*}
\nu_{M}=\nu_{M}^{c} \tag{14.13}
\end{equation*}
$$

and are referred to as Majorana neutrinos. The Majorana condition implies that only one field describes both neutrino and antineutrino states, unlike in the case of a charge for which particle
${ }^{2}$ Notice that Eq.(14.8) corresponds to the tree-level neutrino mass matrix. Corrections are induced at the loop level, which in particular lead to non-vanishing $\bar{\nu}_{L}^{c} \nu_{L}$ entry [8].
and antiparticle are described by two different fields. So a Majorana neutrino can be described by a two-component spinor unlike the charged fermions, which are Dirac particles, and are represented by four-component spinors.

Inverting Eq.(14.12) we can write the weak-doublet components of the neutrino fields as:

$$
\begin{equation*}
\nu_{L i}=P_{L} \sum_{j=1}^{3+m} V_{i j}^{\nu} \nu_{M j} \quad i=1,2,3 \tag{14.14}
\end{equation*}
$$

where P_{L} is the left projector.
In what follows we will discuss some interesting particular cases of this general framework: light Dirac neutrinos in Sec.14.2.1, and light Majorana neutrinos and the see-saw mechanism in Sec.14.2.2. A special case of the second one is the possibility of light-sterile neutrinos discussed in Sec.14.2.3. In Sec.14.2.4 we shall discuss the effective generation of neutrino masses from nonrenormalizable operators (of which the see-saw mechanism is a particular realization).

14.2.1 Dirac Neutrinos

Imposing $M_{N}=0$ is equivalent to imposing lepton number symmetry on the model. Doing so only the first term in Eq.(14.6), the Dirac mass term, is allowed. If sterile neutrinos are three ($m=3$), we can identify them with the right-handed component of a four-spinor neutrino field. In this case the Dirac mass term can be diagonalized with two 3×3 unitary matrices, V^{ν} and V_{R}^{ν} as:

$$
\begin{equation*}
V_{R}^{\nu \dagger} M_{D} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \tag{14.15}
\end{equation*}
$$

The neutrino mass term can be written as:

$$
\begin{equation*}
-\mathcal{L}_{M_{\nu}}=\sum_{k=1}^{3} m_{k} \bar{\nu}_{D k} \nu_{D k} \tag{14.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu_{D k}=\left(V^{\nu \dagger} \vec{\nu}_{L}\right)_{k}+\left(V_{R}^{\nu \dagger} \vec{\nu}_{s}\right)_{k} \tag{14.17}
\end{equation*}
$$

so the weak-doublet components of the neutrino fields are

$$
\begin{equation*}
\nu_{L i}=P_{L} \sum_{j=1}^{3} V_{i j}^{\nu} \nu_{D j} . \quad i=1,2,3 \tag{14.18}
\end{equation*}
$$

Let's stress that in this case both the low energy matter content and the assumed symmetries are different from those of the SM. Consequently the SM is not even a good low-energy effective theory. Furthermore, this scenario does not explain the fact that neutrinos are much lighter than the corresponding charged fermions, because all acquire their mass via the same mechanism.

14.2.2 The See-saw Mechanism

If the mass eigenvalues of M_{N} are much higher than the scale of electroweak symmetry breaking v, the diagonalization of M_{ν} leads to three light neutrinos, ν_{l}, and m heavy neutrinos, N :

$$
\begin{equation*}
-\mathcal{L}_{M_{\nu}}=\frac{1}{2} \bar{\nu}_{l} M^{l} \nu_{l}+\frac{1}{2} \bar{N} M^{h} N \tag{14.19}
\end{equation*}
$$

with

$$
\begin{equation*}
M^{l} \simeq-V_{l}^{T} M_{D}^{T} M_{N}^{-1} M_{D} V_{l}, \quad M^{h} \simeq V_{h}^{T} M_{N} V_{h} \tag{14.20}
\end{equation*}
$$

and

$$
V^{\nu} \simeq\left[\begin{array}{c}
\left(1-\frac{1}{2} M_{D}^{\dagger} M_{N}^{*-1} 1 M_{N}^{-1} M_{D}\right) V_{l} \tag{14.21}\\
-M_{N}^{-1} M_{D} V_{l}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
M_{D}^{\dagger} M_{N}^{*-1} V_{h} \\
\left(1-\frac{1}{2} M_{N}{ }^{-1} M_{D} M_{D}^{\dagger} M_{N}^{*-1}\right) V_{h}
\end{array}\right],
$$

where V_{l} and V_{h} are 3×3 and $m \times m$ unitary matrices respectively. From Eq.(14.20) we see that the masses of the heavier states are proportional to M_{N} while those of the lighter ones to M_{N}^{-1}, hence the name of see-saw mechanism [9-13]. Also, as seen from Eq.(14.21), the heavy states are mostly right-handed while the light ones are mostly left-handed. Both the light and the heavy neutrinos are Majorana particles. Two well-known examples of extensions of the SM leading to a see-saw mechanism for neutrino masses are $\mathrm{SO}(10)$ Grand Unified Theories [10, 11] and left-right symmetry [13].

In this case the SM is a good effective low energy theory. Indeed the see-saw mechanism is a particular example of a full theory whose low energy effective realization is the SM with three light Majorana neutrinos which we describe in Sec.14.2.4.

14.2.3 Light Sterile Neutrinos

If the scale of some $n_{s} \leq m$ eigenvalues of M_{N} are not higher than the electroweak scale, the low energy spectrum contains n_{s} additional light states with large admixture of sterile component. As in the case with Dirac Neutrinos, the SM is not a good low energy effective theory: there are more than three $\left(3+n_{s}\right)$ light neutrinos, and they are admixtures of doublet and singlet fields. As in the general case, both light and heavy neutrinos are Majorana particles.

14.2.4 Neutrino Masses from Generic New Physics

Under the generic hypothesis that new physics (NP) beyond the SM only manifests itself directly above some scale Λ_{NP}, we can consider that the SM is an effective low energy theory which is valid to describe the physical world at energies well below Λ_{NP} with the same gauge group, fermionic spectrum, and the pattern of spontaneous symmetry breaking of the SM. However, this is an effective theory, holding only till energy below Λ_{NP}, and consequently does not need to be renormalizable. In this case the low energy Lagrangian can contain non-renormalizable higher dimensional terms whose effect will be suppressed by powers $1 / \Lambda_{\mathrm{NP}}^{\text {dim-4 }}$.

In this approach, the least suppressed NP effects at low energy are expected to come from $\operatorname{dim}=5$ operators. With the SM fields an gauge symmetry one can only construct the following set of dimension-five terms

$$
\begin{equation*}
\mathcal{O}_{5}=\frac{Z_{i j}^{\nu}}{\Lambda_{\mathrm{NP}}}\left(\bar{L}_{L i} \tilde{\phi}\right)\left(\tilde{\phi}^{T} L_{L j}^{C}\right)+\text { h.c. } \tag{14.22}
\end{equation*}
$$

This set violates (14.3) which poses no problem since in general there is no reason for the NP to respect the accidental symmetries of the SM. In particular it violates total lepton number by two units and after spontaneous symmetry breaking it generates a bilinear neutrino field term:

$$
\begin{equation*}
-\mathcal{L}_{M_{\nu}}=\frac{Z_{i j}^{\nu}}{2} \frac{v^{2}}{\Lambda_{\mathrm{NP}}} \bar{\nu}_{L i} \nu_{L j}^{c}+\text { h.c. } \tag{14.23}
\end{equation*}
$$

This is a Majorana mass term (see Eq.(14.8)). It is built with the left-handed neutrino fields and with mass matrix:

$$
\begin{equation*}
\left(M_{\nu}\right)_{i j}=Z_{i j}^{\nu} \frac{v^{2}}{\Lambda_{\mathrm{NP}}} \tag{14.24}
\end{equation*}
$$

We conclude that Eq.(14.24) would arise in a generic extension of the SM and that neutrino masses are very likely to appear if there is NP. Comparing Eq.(14.24) and Eq.(14.5), we also find that the scale of neutrino masses is suppressed by $v / \Lambda_{\mathrm{NP}}$ when compared to the scale of charged fermion masses providing an explanation for their smallness. Furthermore, both total lepton number and the lepton flavour symmetry $U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$ are broken by Eq.(14.24) which means that, generically, in the absence of additional symmetries on the coefficients $Z_{i j}$, we can expect lepton flavour mixing and CP violation as we discuss in next section.

Finally, we notice that, as mentioned in Sec.14.2.2, a theory where the NP is composed of m heavy sterile neutrinos, provides an specific example of a theory which at low energy theory contains three light mass eigenstates with an effective dim-5 interaction of the form (14.22) with $\Lambda_{\mathrm{NP}}=M_{N}$. This is, in this case the NP scale is the characteristic mass scale of the heavy sterile neutrinos.

14.3 Lepton Mixing

Let us start by considering $n=3+m$ massive neutrino states and denote the neutrino mass eigenstates by $\left(\nu_{1}, \nu_{2}, \nu_{3}, \ldots, \nu_{n}\right)$. The neutrino interaction eigenstates are denoted by $\vec{\nu}=$ $\left(\nu_{L e}, \nu_{L \mu}, \nu_{L \tau}, \nu_{s 1}, \ldots, \nu_{s m}\right)$. We label the corresponding mass and interaction eigenstates for the charged leptons as (e, μ, τ) and $\left(e^{I}, \mu^{I}, \tau^{I}\right)$ respectively. The Lagrangian for the leptonic charged current interactions in the mass basis takes the form:

$$
-\mathcal{L}_{\mathrm{CC}}=\frac{g}{\sqrt{2}}\left(\bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L}\right) \gamma^{\mu} U\left(\begin{array}{c}
\nu_{1} \tag{14.25}\\
\nu_{2} \\
\nu_{3} \\
\vdots \\
\nu_{n}
\end{array}\right) W_{\mu}^{+}+\text {h.c. }
$$

where U is a $3 \times n$ matrix [14-16]. It satisfies the unitary condition

$$
\begin{equation*}
U U^{\dagger}=I_{3 \times 3} \tag{14.26}
\end{equation*}
$$

However, in general $U^{\dagger} U \neq I_{n \times n}$.
In the interaction basis, the mass terms for the leptons are:

$$
-\mathcal{L}_{M}=\left[\left(\bar{e}_{L}^{I}, \bar{\mu}_{L}^{I}, \bar{\tau}_{L}^{I}\right) M_{\ell}\left(\begin{array}{l}
e_{R}^{I} \tag{14.27}\\
\mu_{R}^{I} \\
\tau_{R}^{I}
\end{array}\right)+\text { h.c. }\right]-\mathcal{L}_{M_{\nu}}
$$

with $\mathcal{L}_{M_{\nu}}$ given in Eq.(14.8). M_{ℓ} can be diagonalize with two 3×3 unitary matrices V^{ℓ} and V_{R}^{ℓ} which satisfy

$$
\begin{equation*}
V^{\ell \dagger} M_{\ell} V_{R}^{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \tag{14.28}
\end{equation*}
$$

Then for the charged leptons we have

$$
\begin{equation*}
-\mathcal{L}_{M_{\ell}}=\sum_{k=1}^{3} m_{\ell_{k}} \bar{\ell}_{k} \ell_{k} \tag{14.29}
\end{equation*}
$$

with

$$
\begin{equation*}
\ell_{k}=\left(V^{\ell^{\dagger}} \ell_{L}^{I}\right)_{k}+\left(V_{R}^{\ell \dagger} \ell_{R}^{I}\right)_{k} \tag{14.30}
\end{equation*}
$$

Inverting the equation above we find that the weak-doublet components of the charged lepton fields are

$$
\begin{equation*}
\ell_{L i}^{I}=P_{L} \sum_{j=1}^{3} V_{i j}^{\ell} \ell_{j} . \quad i=1,2,3 \tag{14.31}
\end{equation*}
$$

From Eqs.(14.14), (14.18) and (14.31) we find that the mixing matrix U can be expressed as:

$$
\begin{equation*}
U_{i j}=\mathcal{P}_{\ell, i i} V_{i k}^{\ell \dagger} V_{k j}^{\nu}\left(\mathcal{P}_{\nu, j j}\right) \tag{14.32}
\end{equation*}
$$

The matrix $V^{\ell^{\dagger}} V^{\nu}$ contains a number of phases that are not physical. Three of them are eliminated by the diagonal 3×3 phase matrix \mathcal{P}_{ℓ} that absorbs them in the charged lepton mass eigenstates. If neutrinos are Dirac states, further $n-1$ are similarly eliminated by absorbing them in the neutrino mass eigenstates with the diagonal $n \times n$ phase matrix \mathcal{P}_{ν}. For Majorana neutrinos, $\mathcal{P}_{\nu}=I_{n \times n}$ because one cannot rotate by an arbitrary phase a Majorana field without physical effects. If one rotates a Majorana neutrino by a phase, this phase will appear in its mass term which will no longer be real. Consequently the number of phases
that can be absorbed by redefining the mass eigenstates depends on whether the neutrinos are Dirac or Majorana particles. Altogether for $n \geq 3$ Majorana [Dirac] neutrinos the U matrix contains a total of $6(n-2)[5 n-11]$ real parameters, of which $3(n-2)$ are angles and $3(n-2)[2 n-5]$ can be interpreted as physical phases.

The possibility of arbitrary mixing between massive neutrino states was first discussed in the context of two neutrinos introduced in Ref. [17] (the possibility of two mixed massless flavour neutrino states had been previously considered in the literature [18], and even before the possibility of mixing between neutrino
and antineutrino states in the seminal paper of Pontecorvo [19]). For that case, in which only mixing between two generations is considered with $n=2$ distinct neutrino masses, the U matrix is 2×2 and contains one mixing angle if the neutrinos are Dirac and an additional physical phase if they are Majorana.

If there are only $n=3$ Majorana neutrinos, U is a 3×3 matrix analogous to the CKM matrix for the quarks $[20,21]$ but due to the Majorana nature of the neutrinos it depends on six independent parameters: three mixing angles and three phases. In this case the mixing matrix can be conveniently parametrized as:

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{\mathrm{CP}}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{\mathrm{CP}}} & 0 & c_{13}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
e^{i \eta_{1}} & 0 & 0 \\
0 & e^{i \eta_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $c_{i j} \equiv \cos \theta_{i j}$ and $s_{i j} \equiv \sin \theta_{i j}$. The angles $\theta_{i j}$ can be taken without loss of generality to lie in the first quadrant, $\theta_{i j} \in[0, \pi / 2]$ and the phases $\delta_{\mathrm{CP}}, \eta_{i} \in[0,2 \pi]$. This is to be compared to the case of three Dirac neutrinos. In this case the Majorana phases,

$$
U=\left(\begin{array}{ccl}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{\mathrm{CP}}} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta_{\mathrm{CP}}} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta_{\mathrm{CP}}} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta_{\mathrm{CP}}} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta_{\mathrm{CP}}} & c_{13} c_{23}
\end{array}\right)
$$

This matrix is often called the Pontecorvo-Maki-NakagawaSakata (PMNS) mixing matrix.

Notice that when the charged leptons have no other interactions that the SM ones, one can identify their interaction eigenstates with the corresponding mass eigenstates up to phase redefinition. This implies that, in this case, U is just a $3 \times n$ sub-matrix of the unitary neutrino mass diagonalizing matrix V^{ν}.

Finally, let us point out that for the case of 3 light Dirac neutrinos the procedure above leads to a unitary U matrix for the light states. But for three light Majorana neutrinos this is not the case when the full spectrum contains states which are heavy and are not in the low energy spectrum as seen, for example, in Eq.(14.21). This implies that, strictly speaking, the parametrization in Eq.(14.33) is not valid to describe the flavour mixing of the three light Majorana neutrinos in the see-saw mechanism. The violation of unitarity, however, is rather small, of the order $\mathcal{O}\left(M_{D} / M_{N}\right)$ as seen in Eq.(14.21). It is also severely constrained experimentally [22,23]. For all these reasons, for all practical purposes, we will consider the U matrix for the 3ν mixing case to be unitary independently of whether neutrinos are Dirac or Majorana particles.

14.4 Mass-Induced Flavour Oscillations in Vacuum

If neutrinos have masses and lepton flavours are mixed in the weak CC interactions, lepton flavour is not conserved in neutrino propagation $[19,24]$. This phenomenon is usually referred to as neutrino oscillations. In brief, a weak eigenstates, ν_{α}, which by default is the state produced in the weak CC interaction of a charged lepton ℓ_{α}, is the linear combination determined by the mixing matrix U

$$
\begin{equation*}
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{n} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \tag{14.35}
\end{equation*}
$$

where ν_{i} are the mass eigenstates and here n is the number of light neutrino species (implicit in our definition of the state $|\nu\rangle$ is its energy-momentum and space-time dependence). After travelling a distance $L(L \simeq c t$ for relativistic neutrinos), that state evolves as:

$$
\begin{equation*}
\left|\nu_{\alpha}(t)\right\rangle=\sum_{i=1}^{n} U_{\alpha i}^{*}\left|\nu_{i}(t)\right\rangle \tag{14.36}
\end{equation*}
$$

This neutrino can then undergo a charged-current (CC) interaction producing a charge lepton $\ell_{\beta}, \nu_{\alpha}(t) N^{\prime} \rightarrow \ell_{\beta} N$, with a
η_{1} and η_{2}, can be absorbed in the neutrino states so number of physical phases is one (similar to the CKM matrix). Thus we can write U as:
probability

$$
\begin{equation*}
P_{\alpha \beta}=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle\right|^{2}=\left|\sum_{i=1}^{n} \sum_{j=1}^{n} U_{\alpha i}^{*} U_{\beta j}\left\langle\nu_{j} \mid \nu_{i}(t)\right\rangle\right|^{2} \tag{14.37}
\end{equation*}
$$

Assuming that $|\nu\rangle$ is a plane wave, $\left|\nu_{i}(t)\right\rangle=e^{-i E_{i} t}\left|\nu_{i}(0)\right\rangle,{ }^{3}$ with $E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}}$ and m_{i} being, respectively, the energy and the mass of the neutrino mass eigenstate ν_{i}. In all practical cases neutrinos are very relativistic ,so $p_{i} \simeq p_{j} \equiv p \simeq E$. We can then write

$$
\begin{equation*}
E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}} \simeq p+\frac{m_{i}^{2}}{2 E} \tag{14.38}
\end{equation*}
$$

and use the orthogonality of the mass eigenstates, $\left\langle\nu_{j} \mid \nu_{i}\right\rangle=\delta_{i j}$, to arrive to the following form for $P_{\alpha \beta}$:

$$
\begin{align*}
P_{\alpha \beta} & =\delta_{\alpha \beta}-4 \sum_{i<j}^{n} \operatorname{Re}\left[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right] \sin ^{2} X_{i j} \\
& +2 \sum_{i<j}^{n} \operatorname{Im}\left[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right] \sin 2 X_{i j} \tag{14.39}
\end{align*}
$$

where

$$
\begin{equation*}
X_{i j}=\frac{\left(m_{i}^{2}-m_{j}^{2}\right) L}{4 E}=1.267 \frac{\Delta m_{i j}^{2}}{\mathrm{eV}^{2}} \frac{L / E}{\mathrm{~m} / \mathrm{MeV}} \tag{14.40}
\end{equation*}
$$

If we had made the same derivation for antineutrino states we would have ended with a similar expression but with the exchange $U \rightarrow U^{*}$. Consequently we conclude that the first term in the right-hand-side of Eq.(14.39) is CP conserving since it is the same for neutrinos and antineutrinos, while the last one is CP violating because it has opposite sign for neutrinos and antineutrinos.

Equation (14.39) oscillatory in distance with oscillation lengths

$$
\begin{equation*}
L_{0, i j}^{\mathrm{osc}}=\frac{4 \pi E}{\left|\Delta m_{i j}^{2}\right|} \tag{14.41}
\end{equation*}
$$

and with amplitudes proportional to products of elements in the mixing matrix. Thus, neutrinos must have different masses

[^35]$\left(\Delta m_{i j}^{2} \neq 0\right)$ and they must have not vanishing mixing $\left(U_{\alpha_{i}} U_{\beta i} \neq\right.$ 0) in order to undergo flavour oscillations. Also, from Eq.(14.39) we see that the Majorana phases cancel out in the oscillation probability. This is expected because flavour oscillation is a total lepton number conserving process.

Ideally, a neutrino oscillation experiment would like to measure an oscillation probability over a distance L between the source and the detector, for neutrinos of a definite energy E. In practice, neutrino beams, both from natural or artificial sources, are never monoenergetic, but have an energy spectrum $\Phi(E)$. In addition each detector has a finite energy resolution. Under these circumstances what is measured is an average probability

$$
\begin{align*}
\left\langle P_{\alpha \beta}\right\rangle & =\frac{\int d E \frac{d \Phi}{d E} \sigma(E) P_{\alpha \beta}(E) \epsilon(E)}{\int d E \frac{d \Phi}{d E} \sigma_{C C}(E) \epsilon(E)} \\
& =\delta_{\alpha \beta}-4 \sum_{i<j}^{n} \operatorname{Re}\left[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right]\left\langle\sin ^{2} X_{i j}\right\rangle \tag{14.42}\\
& +2 \sum_{i<j}^{n} \operatorname{Im}\left[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right]\left\langle\sin 2 X_{i j}\right\rangle
\end{align*}
$$

σ is the cross section for the process in which the neutrino flavour is detected, and $\epsilon(E)$ is the detection efficiency. The minimal range of the energy integral is determined by the energy resolution of the experiment.

It is clear from the above expression that if $(E / L) \gg\left|\Delta m_{i j}^{2}\right|$ $\left(L \ll L_{0, i j}^{\text {osc }}\right)$ so $\sin ^{2} X_{i j} \ll 1$, the oscillation phase does not give any appreciable effect. Conversely if $L \gg L_{0, i j}^{\text {osc }}$, many oscillation cycles occur between production and detection so the oscillating term is averaged to $\left\langle\sin ^{2} X_{i j}\right\rangle=1 / 2$.

We summarize in Table 14.1. the typical values of L / E for different types of neutrino sources and experiments and the corresponding ranges of Δm^{2} to which they can be most sensitive.

Table 14.1: Characteristic values of L and E for experiments performed using various neutrino sources and the corresponding ranges of $\left|\Delta m^{2}\right|$ to which they can be most sensitive to flavour oscillations in vacuum. SBL stands for Short Baseline and LBL for Long Baseline.

Experiment		$L(\mathrm{~m})$	$E(\mathrm{MeV})$	$\left\|\Delta m^{2}\right\|\left(\mathrm{eV}^{2}\right)$
Solar		10^{10}	1	10^{-10}
Atmospheric		$10^{4}-10^{7}$	$10^{2}-10^{5}$	$10^{-1}-10^{-4}$
Reactor	SBL	$10^{2}-10^{3}$	1	$10^{-2}-10^{-3}$
	LBL	$10^{4}-10^{5}$		$10^{-4}-10^{-5}$
Accelerator	SBL	10^{2}	$10^{3}-10^{4}$	>0.1
	LBL	$10^{5}-10^{6}$	$10^{3}-10^{4}$	$10^{-2}-10^{-3}$

Historically, the results of neutrino oscillation experiments were interpreted assuming two-neutrino states so there is only one oscillating phase, the mixing matrix depends on a single mixing angle θ and no CP violation effect in oscillations is possible. At present, as we will discuss in Sec.14.7, we need at least the mixing among three-neutrino states to fully describe the bulk of experimental results. However, in many cases, the observed results can be understood in terms of oscillations dominantly driven by one Δm^{2}. In this limit $P_{\alpha \beta}$ of Eq.(14.39) takes the form [24]

$$
\begin{equation*}
P_{\alpha \beta}=\delta_{\alpha \beta}-\left(2 \delta_{\alpha \beta}-1\right) \sin ^{2} 2 \theta \sin ^{2} X \tag{14.43}
\end{equation*}
$$

In this effective $2-\nu$ limit, changing the sign of the mass difference, $\Delta m^{2} \rightarrow-\Delta m^{2}$, and changing the octant of the mixing angle, $\theta \rightarrow \frac{\pi}{2}-\theta$, is just redefining the mass eigenstates, $\nu_{1} \leftrightarrow \nu_{2}$:
$P_{\alpha \beta}$ must be invariant under such transformation. So the physical parameter space can be covered with either $\Delta m^{2} \geq 0$ with $0 \leq \theta \leq \frac{\pi}{2}$, or, alternatively, $0 \leq \theta \leq \frac{\pi}{4}$ with either sign for Δm^{2}.

However, from Eq.(14.43) we see that $P_{\alpha \beta}$ is actually invariant under the change of sign of the mass splitting and the change of octact of the mixing angle separately. This implies that there is a two-fold discrete ambiguity since the two different sets of physical parameters, $\left(\Delta m^{2}, \theta\right)$ and $\left(\Delta m^{2}, \frac{\pi}{2}-\theta\right)$, give the same transition probability in vacuum. In other words, one could not tell from a measurement of, say, $P_{e \mu}$ in vacuum whether the larger component of ν_{e} resides in the heavier or in the lighter neutrino mass eigenstate. This symmetry is broken when one considers mixing of three or more neutrinos in the flavour evolution and/or when the neutrinos traverse regions of dense matter as we describe in Sec.14.7.1 and Sec.14.5 respectively.

14.5 Propagation of Massive Neutrinos in Matter

Neutrinos propagating in a dense medium can interact with the particles in the medium. The probability of an incoherent inelastic scattering is very small. For example the characteristic cross section for ν-proton scattering is of the order

$$
\begin{equation*}
\sigma \sim \frac{G_{F}^{2} s}{\pi} \sim 10^{-43} \mathrm{~cm}^{2}\left(\frac{E}{\mathrm{MeV}}\right)^{2} \tag{14.44}
\end{equation*}
$$

where G_{F} is the Fermi constant and s is the square of the center of mass energy of the collision.

But when neutrinos propagate in dense matter, they can also interact coherently with the particles in the medium. By definition, in coherent interactions, the medium remains unchanged so it is possible to have interference of the forward scattered and the unscattered neutrino waves which enhances the effect of matter in the neutrino propagation. In this case the effect of the medium is not on the intensity of the propagating neutrino beam, which remains unchanged, but on the phase velocity of the neutrino wave, and for this reason the effect is proportional to G_{F}, instead of the G_{F}^{2} dependence of the incoherent scattering. Coherence also allows decoupling the evolution equation of the neutrinos from those of the medium. In this limit the effect of the medium is introduced in the evolution equation for the neutrinos in the form of an effective potential which depends on the density and composition of the matter [26].

As an example, let us consider the evolution of ν_{e} in a medium with electrons, protons and neutrons with corresponding n_{e}, n_{p} and n_{n} number densities. The effective low-energy Hamiltonian describing the relevant neutrino interactions at point x is given by

$$
\begin{equation*}
H_{W}=\frac{G_{F}}{\sqrt{2}}\left[J^{(+) \alpha}(x) J_{\alpha}^{(-)}(x)+\frac{1}{4} J^{(N) \alpha}(x) J_{\alpha}^{(N)}(x)\right] \tag{14.45}
\end{equation*}
$$

where the J_{α} 's are the standard fermionic currents

$$
\begin{align*}
J_{\alpha}^{(+)}(x) & =\bar{\nu}_{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) e(x), \tag{14.46}\\
J_{\alpha}^{(-)}(x) & =\bar{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{e}(x), \tag{14.47}\\
J_{\alpha}^{(N)}(x) & =\bar{\nu}_{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{e}(x) \\
& -\bar{e}(x)\left[\gamma_{\alpha}\left(1-\gamma_{5}\right)-4 \sin ^{2} \theta_{W} \gamma_{\alpha}\right] e(x) \\
& +\bar{p}(x)\left[\gamma_{\alpha}\left(1-g_{A}^{(p)} \gamma_{5}\right)-4 \sin ^{2} \theta_{W} \gamma_{\alpha}\right] p(x) \tag{14.48}\\
& -\bar{n}(x) \gamma_{\alpha}\left(1-g_{A}^{(n)} \gamma_{5}\right) n(x),
\end{align*}
$$

and $g_{A}^{(n, p)}$ are the axial couplings for neutrons and protons, respectively.
Let as focus first on the the effect of the charged current interactions. The effective CC Hamiltonian due to electrons in the medium is

$$
\begin{align*}
H_{C}^{(e)} & \left.=\frac{G_{F}}{\sqrt{2}} \int d^{3} p_{e} f\left(E_{e}, T\right) \times\left\langle\left\langle e\left(s, p_{e}\right)\right| \bar{e}(x) \gamma^{\alpha}\left(1-\gamma_{5}\right) \nu_{e}(x) \bar{\nu}_{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) e(x) \mid e\left(s, p_{e}\right)\right\rangle\right\rangle \\
& \left.=\frac{G_{F}}{\sqrt{2}} \bar{\nu}_{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{e}(x) \int d^{3} p_{e} f\left(E_{e}, T\right)\left\langle\left\langle e\left(s, p_{e}\right)\right| \bar{e}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) e(x) \mid e\left(s, p_{e}\right)\right\rangle\right\rangle \tag{14.49}
\end{align*}
$$

In the above equation we denote by s the electron spin, and by p_{e} its momentum and $f\left(E_{e}, T\right)$, is the energy distribution function of the electrons in the medium which is assumed to be homogeneous and isotropic and is normalized as

$$
\begin{equation*}
\int d^{3} p_{e} f\left(E_{e}, T\right)=1 \tag{14.50}
\end{equation*}
$$

We denote by $\langle\ldots\rangle$ the averaging over electron spinors and summing over all electrons in the medium. Coherence dictates that s, p_{e} are the same for initial and final electrons. The axial current reduces to the spin in the non-relativistic limit and therefore averages to zero for a background of non-relativistic electrons. The spatial components of the vector current cancel because of isotropy. Therefore the only non trivial average is

$$
\begin{equation*}
\left.\int d^{3} p_{e} f\left(E_{e}, T\right)\left\langle\left\langle e\left(s, p_{e}\right)\right| \bar{e}(x) \gamma_{0} e(x) \mid e\left(s, p_{e}\right)\right\rangle\right\rangle=n_{e}(x), \tag{14.51}
\end{equation*}
$$

which gives a contribution to the effective Hamiltonian

$$
\begin{equation*}
H_{C}^{(e)}=\sqrt{2} G_{F} n_{e} \bar{\nu}_{e L}(x) \gamma_{0} \nu_{e L}(x) \tag{14.52}
\end{equation*}
$$

This can be interpreted as a contribution to the $\nu_{e L}$ potential energy

$$
\begin{equation*}
V_{C}=\sqrt{2} G_{F} n_{e} \tag{14.53}
\end{equation*}
$$

Should we have considered antineutrino states we would have ended up with $V_{C}=-\sqrt{2} G_{F} n_{e}$ For a more detailed derivation of the matter potentials see, for example, Ref. [3].
With an equivalent derivation we find that for ν_{μ} and ν_{τ}, the potential due to its CC interactions is zero for most media since neither μ 's nor $\tau^{\prime} s$ are present, while the effective potential for any active neutrino due to the neutral current interactions is found to be

$$
\begin{equation*}
V_{N C}=\frac{\sqrt{2}}{2} G_{F}\left[-n_{e}\left(1-4 \sin ^{2} \theta_{w}\right)+n_{p}\left(1-4 \sin ^{2} \theta_{w}\right)-n_{n}\right] \tag{14.54}
\end{equation*}
$$

In neutral matter $n_{e}=n_{p}$ and the contribution from electrons and protons cancel each other. So we are left only with the neutron contribution

$$
\begin{equation*}
V_{N C}=-1 / \sqrt{2} G_{F} n_{n} \tag{14.55}
\end{equation*}
$$

After including these effects, the evolution equation for n ultrarelativistic neutrinos propagating in matter written in the mass basis is (see for instance Ref. [27-29] for the derivation):

$$
\begin{equation*}
i \frac{d \vec{\nu}}{d x}=H \vec{\nu}, \quad H=H_{m}+U^{\nu \dagger} V U^{\nu} \tag{14.56}
\end{equation*}
$$

Here $\vec{\nu} \equiv\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)^{T}, H_{m}$ is the the kinetic Hamiltonian,

$$
\begin{equation*}
H_{m}=\frac{1}{2 E} \operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, \ldots, m_{n}^{2}\right) \tag{14.57}
\end{equation*}
$$

and V is the effective neutrino potential in the interaction basis. U^{ν} is the $n \times n$ submatrix of the unitary V^{ν} matrix corresponding to the n ultrarelativistic neutrino states. For the three SM active neutrinos with purely SM interactions crossing a neutral medium with electrons, protons and neutrons, the evolution equation takes the form (14.56) with $U^{\nu} \equiv U$, and the effective potential:

$$
\begin{equation*}
V=\operatorname{diag}\left(\pm \sqrt{2} G_{F} n_{e}(x), 0,0\right) \equiv \operatorname{diag}\left(V_{e}, 0,0\right) \tag{14.58}
\end{equation*}
$$

The sign $+(-)$ in Eq.(14.58) applies to neutrinos (antineutrinos), and $n_{e}(x)$ is the electron number density in the medium, which
in general is not constant along the neutrino trajectory so the potential is not constant. Characteristic value of the potential at the Earth core is $V_{e} \sim 10^{-13} \mathrm{eV}$ while at the solar core $V_{e} \sim$ $10^{-12} \mathrm{eV}$. Since the neutral current potential Eq.(14.55) is flavour diagonal, it can be eliminated from the evolution equation as it only contributes to an overall unobservable phase.

The instantaneous mass eigenstates in matter, ν_{i}^{m}, are the eigenstates of the Hamiltonian H in (14.56) for a fixed value of x, and they are related to the interaction basis by

$$
\begin{equation*}
\vec{\nu}=\tilde{U}(x) \nu^{\vec{m}} \tag{14.59}
\end{equation*}
$$

The corresponding instantaneous eigenvalues of H are $\mu_{i}(x)^{2} /(2 E)$ with $\mu_{i}(x)$ being the instantaneous effective neutrino masses.
Let us take for simplicity a neutrino state which is an admixture of only two neutrino species $\left|\nu_{\alpha}\right\rangle$ and $\left|\nu_{\beta}\right\rangle$, so the two instantaneous mass eigenstates in matter ν_{1}^{m} and ν_{2}^{m} have instantaneous effective neutrino masses

$$
\begin{align*}
\mu_{1,2}^{2}(x) & =\frac{m_{1}^{2}+m_{2}^{2}}{2}+E\left[V_{\alpha}+V_{\beta}\right] \\
& \mp \frac{1}{2} \sqrt{\left[\Delta m^{2} \cos 2 \theta-A\right]^{2}+\left[\Delta m^{2} \sin 2 \theta\right]^{2}} \tag{14.60}
\end{align*}
$$

and $\tilde{U}(x)$ is a 2×2 rotation matrix with the instantaneous mixing angle in matter given by

$$
\begin{equation*}
\tan 2 \theta_{m}=\frac{\Delta m^{2} \sin 2 \theta}{\Delta m^{2} \cos 2 \theta-A} \tag{14.61}
\end{equation*}
$$

In the Eqs.(14.60) and (14.61) A is

$$
\begin{equation*}
A \equiv 2 E\left(V_{\alpha}-V_{\beta}\right) \tag{14.62}
\end{equation*}
$$

and its sign depends on depends on the composition of the medium and on the flavour composition of the neutrino state considered. From the expressions above we see that for a given sign of A the mixing angle in matter is larger(smaller) than in vacuum if this last one is in the first (second) octant. We see that the symmetry about 45 degrees which existing in vacuum oscillations between two neutrino states is broken by the matter potential in propagation in a medium. The expressions above show that very important effects are present when A, is close to $\Delta m^{2} \cos 2 \theta$. In particular, as seen in Eq.(14.61), the tangent of the mixing angle changes sign if, along its path, the neutrino passes by some matter density region satisfying, for its energy, the resonance condition

$$
\begin{equation*}
A_{R}=\Delta m^{2} \cos 2 \theta \tag{14.63}
\end{equation*}
$$

This implies that if the neutrino is created in a region where the relevant potential satisfies $A_{0}>A_{R}\left(A_{0}\right.$ here is the value of the relevant potential at the production point), then the effective mixing angle in matter at the production point is such that $\operatorname{sgn}\left(\cos 2 \theta_{m, 0}\right)=-\operatorname{sgn}(\cos 2 \theta)$. So the flavour component of the mass eigenstates is inverted as compared to their composition in vacuum. In particular, if at production point we have $A_{0}=2 A_{R}$, then $\theta_{m, 0}=\frac{\pi}{2}-\theta$. Asymptotically, for $A_{0} \gg A_{R}, \theta_{m, 0} \rightarrow \frac{\pi}{2}$. In other words, if in vacuum the lightest (heaviest) mass eigenstate has a larger projection on the flavour $\alpha(\beta)$, inside a matter with density and composition such that $A>A_{R}$, the opposite holds. So if the neutrino system is travelling across a monotonically varying matter potential, the dominant flavour component of a given mass eigenstate changes when crossing the region with $A=A_{R}$. This phenomenon is known as level crossing.

Taking the derivative of Eq.(14.59) with respect to x and using Eq.(14.56), we find that in the instantaneous mass basis the evolution equation reads:

$$
\begin{align*}
& i \frac{d \vec{\nu}^{m}}{d x}= \\
& =\left[\frac{1}{2 E} \operatorname{diag}\left(\mu_{1}^{2}(x), \mu_{2}^{2}(x), \ldots, \mu_{n}^{2}(x)\right)-i \tilde{U}^{\dagger}(x) \frac{d \tilde{U}(x)}{d x}\right] \vec{\nu}^{m} \tag{14.64}
\end{align*}
$$

The presence of the last term, Eq.(14.64) implies that this is a system of coupled equations. So in general, the instantaneous mass eigenstates, ν_{i}^{m} are not energy eigenstates. For constant or slowly enough varying matter potential this last term can be neglected and the instantaneous mass eigenstates, ν_{i}^{m}, behave approximately as energy eigenstates and they do not mix in the evolution. This is the adiabatic transition approximation. On the contrary, when the last term in Eq.(14.64) cannot be neglected, the instantaneous mass eigenstates mix along the neutrino path. This implies there can be level-jumping [30-33] and the evolution is non-adiabatic.

For adiabatic evolution in matter the oscillation probability take a form very similar to the vacuum oscillation expression, Eq.(14.39). For example, neglecting CP violation:

$$
\begin{equation*}
P_{\alpha \beta}=\left|\sum_{i} \tilde{U}_{\alpha i}(0) \tilde{U}_{\beta i}(L) \exp \left(-\frac{i}{2 E} \int_{0}^{L} \mu_{i}^{2}\left(x^{\prime}\right) d x^{\prime}\right)\right|^{2} \tag{14.65}
\end{equation*}
$$

To compute $P_{\alpha \beta}$ in a varying potential one can always solve the evolution equation numerically. Also several analytic approximations for specific profiles of the matter potential can be found in the literature [34].

14.5.1 The Mihheev-Smirnov-Wolfenstein Effect for Solar Neutrinos

The matter effects discussed in the previous section are of special relevance for solar neutrinos. As the Sun produces ν_{e} 's in its core, here we shall consider the propagation of a $\nu_{e}-\nu_{X}$ neutrino system (X is some superposition of μ and τ, which is arbitrary because ν_{μ} and ν_{τ} have only and equal neutral current interactions) in the matter density of the Sun.

The density of solar matter is a monotonically decreasing function of the distance R from the center of the Sun, and it can be approximated by an exponential for $R<0.9 R_{\odot}$

$$
\begin{equation*}
n_{e}(R)=n_{e}(0) \exp \left(-R / r_{0}\right) \tag{14.66}
\end{equation*}
$$

with $r_{0}=R_{\odot} / 10.54=6.6 \times 10^{7} \mathrm{~m}=3.3 \times 10^{14} \mathrm{eV}^{-1}$.
As mentioned above, the nuclear reactions in the Sun produce electron neutrinos. After crossing the Sun, the composition of the neutrino state exiting the Sun will depend on the relative size of $\Delta m^{2} \cos 2 \theta$ versus $A_{0}=2 E G_{F} n_{e, 0}$ (here 0 refers to the neutrino production point which is near but no exactly at the center of the Sun, $R=0$).

If the relevant matter potential at production is well below the resonant value, $A_{R}=\Delta m^{2} \cos 2 \theta \gg A_{0}$, matter effects are negligible. With the characteristic matter density and energy of the solar neutrinos, this condition is fulfilled for values of Δm^{2} such that $\Delta m^{2} / E \gg L_{\text {Sun-Earth. }}$. So the propagation occurs as in vacuum with the oscillating phase averaged to $1 / 2$ and the survival probability at the exposed surface of the Earth is

$$
\begin{equation*}
P_{e e}\left(\Delta m^{2} \cos 2 \theta \gg A_{0}\right)=1-\frac{1}{2} \sin ^{2} 2 \theta>\frac{1}{2} \tag{14.67}
\end{equation*}
$$

If the relevant matter potential at production is only slightly below the resonant value, $A_{R}=\Delta m^{2} \cos 2 \theta \gtrsim A_{0}$, the neutrino does not cross a region with resonant density, but matter effects are sizable enough to modify the mixing. The oscillating phase is averaged in the propagation between the Sun and the Earth. This regime is well described by an adiabatic propagation, Eq.(14.65). Using that $\tilde{U}(0)$ is a 2×2 rotation of angle $\theta_{m, 0}$ - the mixing
angle in matter at the neutrino production point-, and $\tilde{U}(L)$ is the corresponding rotation with vacuum mixing angle θ, we get

$$
\begin{align*}
P_{e e}\left(\Delta m^{2} \cos 2 \theta \geq A_{0}\right) & =\cos ^{2} \theta_{m, 0} \cos ^{2} \theta+\sin ^{2} \theta_{m, 0} \sin ^{2} \theta \\
& =\frac{1}{2}\left[1+\cos 2 \theta_{m, 0} \cos 2 \theta\right] \tag{14.68}
\end{align*}
$$

This expression reflects that an electron neutrino produced at A_{0} is an admixture of ν_{1} with fraction $P_{e 1,0}=\cos ^{2} \theta_{m, 0}$ and ν_{2} with fraction $P_{e 2,0}=\sin ^{2} \theta_{m, 0}$. On exiting the Sun, ν_{1} consists of ν_{e} with fraction $P_{1 e}=\cos ^{2} \theta$, and ν_{2} consists of ν_{e} with fraction $P_{2 e}=\sin ^{2} \theta$ so $P_{e e}=P_{e 1,0} P_{1 e}+P_{e 2,0} P_{2 e}=\cos ^{2} \theta_{m, 0} \cos ^{2} \theta+$ $\sin ^{2} \theta_{m, 0} \sin ^{2} \theta \quad[35-37]$, exactly as given in Eq.(14.68). Since $A_{0}<A_{R}$ the resonance is not crossed so $\cos 2 \theta_{m, 0}$ has the same sign as $\cos 2 \theta$ and still $P_{e e} \geq 1 / 2$.

Finally, in the case that $A_{R}=\Delta m^{2} \cos 2 \theta<A_{0}$, the neutrino can cross the resonance on its way out. In the convention of $\Delta m^{2}>0$ this occurs if $\cos 2 \theta>0(\theta<\pi / 4)$. which means that in vacuum ν_{e} is a combination of ν_{1} and ν_{2} with larger ν_{1} component, while at the production point ν_{e} is a combination of ν_{1}^{m} and ν_{2}^{m} with larger ν_{2}^{m} component. In particular, if the density at the production point is much higher than the resonant density, $\Delta m^{2} \cos 2 \theta \ll A_{0}$,

$$
\begin{equation*}
\theta_{m, 0}=\frac{\pi}{2} \quad \Rightarrow \quad \cos 2 \theta_{m, 0}=-1 \tag{14.69}
\end{equation*}
$$

and the produced ν_{e} is purely ν_{2}^{m}.
In this regime, the evolution of the neutrino ensemble can be adiabatic or non-adiabatic depending on the particular values of Δm^{2} and the mixing angle. The oscillation parameters (see Secs.14.6.1 and 14.7) happen to be such that the transition is adiabatic in all ranges of solar neutrino energies. Thus the survival probability at the exposed surface of the Earth is given by Eq.(14.68) but now with mixing angle (14.69) so

$$
\begin{equation*}
P_{e e}\left(\Delta m^{2} \cos 2 \theta<A_{0}\right)=\frac{1}{2}\left[1+\cos 2 \theta_{m, 0} \cos 2 \theta\right]=\sin ^{2} \theta \tag{14.70}
\end{equation*}
$$

So in this case $P_{e e}$ can be much smaller than $1 / 2$ because $\cos 2 \theta_{m, 0}$ and $\cos 2 \theta$ have opposite signs. This is referred to as the Mihheev-Smirnov-Wolfenstein (MSW) effect $[26,38]$ which plays a fundamental role in the interpretation of the solar neutrino data.

The resulting energy dependence of the survival probability of solar neutrinos is shown in Fig. 14.3 (together with a compilation of data from solar experiments). The plotted curve corresponds to $\Delta m^{2} \sim 7.5 \times 10^{-5} \mathrm{eV}^{2}$ and $\sin ^{2} \theta \sim 0.3$ (the so-called large mixing angle, LMA, solution). The figure illustrates the regimes described above. For these values of the oscillation parameters, neutrinos with $E \ll 1 \mathrm{MeV}$ are in the regime with $\Delta m^{2} \cos 2 \theta \gg A_{0}$ so the curve represents the value of vacuum averaged survival probability, Eq.(14.67), and therefore $P_{e e}>0.5$. For $E>10 \mathrm{MeV}$, on the contrary, $\Delta m^{2} \cos 2 \theta \ll A_{0}$ and the survival probability is given by Eq.(14.70), so $P_{e e}=\sin ^{2} \theta \sim 0.3$. In between, the survival probability is given by Eq.(14.68) with θ_{0} changing rapidly from its vacuum value to the asymptotic matter value (14.69), 90°.

14.6 Experimental Study of Neutrino Oscillations

Neutrino flavour transitions, or neutrino oscillations, have been experimentally studied using various neutrino sources and detection techniques. Intense sources and large detectors are mandatory because of a large distance necessary for observable oscillation effects in addition to the small cross sections. Also, the relevant neutrino flux before oscillations should be known with sufficient precision for a definitive measurement. Here, the experimental status of neutrino oscillations with the different neutrino sources, the Sun, Earth's atmosphere, accelerators and nuclear reactors, are reviewed.

14.6.1 Solar Neutrinos

14.6.1.1 Solar neutrino flux

In the Sun, electron neutrinos are produced in the thermonuclear reactions which generate the solar energy. These reac-
tions occur via two main chains, the $p p$ chain and the CNO cycle. The $p p$ chain includes reactions $p+p \rightarrow d+e^{+}+\nu(p p)$, $p+e^{-}+p \rightarrow d+\nu(p e p),{ }^{3} \mathrm{He}+p \rightarrow{ }^{4} \mathrm{He}+e^{+}+\nu$ (hep), ${ }^{7} \mathrm{Be}+e^{-} \rightarrow{ }^{7} \mathrm{Li}+\nu(+\gamma)\left({ }^{7} \mathrm{Be}\right)$, and ${ }^{8} \mathrm{~B} \rightarrow{ }^{8} \mathrm{Be}^{*}+e^{+}+\nu\left({ }^{8} \mathrm{~B}\right)$. The CNO cycle involves ${ }^{13} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C}+e^{+}+\nu\left({ }^{13} \mathrm{~N}\right),{ }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+\nu$ $\left({ }^{15} \mathrm{O}\right)$, and ${ }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+e^{+}+\nu\left({ }^{17} \mathrm{~F}\right)$. Those reactions result in the overall fusion of protons into ${ }^{4} \mathrm{He}, 4 p \rightarrow{ }^{4} \mathrm{He}+2 e^{+}+2 \nu_{e}$, where the energy released in the reaction, $Q=4 m_{p}-m_{4}{ }_{\mathrm{He}}-2 m_{e} \sim 26$ MeV , is mostly radiated through the photons and only a small fraction is carried by the neutrinos, $\left\langle E_{2 \nu_{e}}\right\rangle=0.59 \mathrm{MeV}$. In addition, electron capture on ${ }^{13} \mathrm{~N},{ }^{15} \mathrm{O}$, and ${ }^{17} \mathrm{~F}$ produces line spectra of neutrinos called ecCNO neutrinos. Dividing the solar luminosity by the energy released per neutrino production, the total neutrino flux can be estimated. At the Earth, the $p p$ solar neutrino flux is about $6 \times 10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

The detailed calculation of the solar neutrino fluxes has been done based on the Standard Solar Model (SSM). The SSM describes the structure and evolution of the Sun based on a variety of inputs such as the mass, luminosity, radius, surface temperature, age, and surface elemental abundances. In addition, the knowledge of the absolute nuclear reaction cross sections for the relevant fusion reactions and the radiative opacities are necessary. John Bahcall and his collaborators continuously updated the SSM calculations over several decades [39, 40]. Figure 14.1 shows the solar neutrino fluxes predicted by the SSM calculation in [41] and ecCNO neutrinos in [42].

Figure 14.1: Spectrum of solar neutrino fluxes predicted by SSM calculation in [41]. In addition to standard fluxes, ecCNO neutrinos have been added based on [42]. Electron capture fluxes are given in $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. Taken from [43]
14.6.1.2 Detection of solar neutrinos and the solar neutrino problem

Experiments which observed solar neutrinos are summarized in Table 14.2.

A pioneering solar neutrino experiment was carried out by R. Davis, Jr. and collaborators at Homestake starting in the late 1960s [44]. The Davis' experiment utilizes the reaction $\nu_{e}+{ }^{37} \mathrm{Cl} \rightarrow e^{-}+{ }^{37} \mathrm{Ar}$. Because this process has an energy threshold of 814 keV , the most relevant fluxes are the ${ }^{7} \mathrm{Be}$ and ${ }^{8} \mathrm{~B}$ neutrinos. The detector contained $\sim 615 \mathrm{t}$ of $\mathrm{C}_{2} \mathrm{Cl}_{4}$. The produced ${ }^{37} \mathrm{Ar}$, which has a half life of 34.8 d , was chemically extracted and introduced into a low-background proportional chamber every few months. The Auger electrons from electron capture of ${ }^{37} \mathrm{Ar}$ were counted to determine the reaction rate.
From the beginning, the observed number of neutrinos in the Homestake mine experiment was significantly smaller than the prediction by SSM - it was almost one third. After thorough check of both experimental and theoretical work, the discrepancy remained. This became to be known as the solar neutrino problem. The final result from Homestake experiment is $2.56 \pm 0.16 \pm 0.16 \mathrm{SNU}$ [45], where SNU (solar neutrino unit) is a unit of event rate, $1 \mathrm{SNU}=10^{-36}$ captures/(s atom). On the other hand, prediction based on SSM is $8.46_{-0.88}^{+0.87} \mathrm{SNU}$ [46].

The detection of neutrinos from other production processes was recognized as an important input to investigate the origin of the solar neutrino problem. In particular, the $p p$ neutrino is most abundant, and its flux prediction has the smallest uncertainty. Using the radiochemical technique with gallium, the reaction $\nu_{e}+$ ${ }^{71} \mathrm{Ga} \rightarrow e^{-}+{ }^{71} \mathrm{Ge}$ has an energy threshold of 233 keV and can be used for the $p p$ neutrino detection. According to the SSM, more than a half of the events on ${ }^{71} \mathrm{Ga}$ are due to the $p p$ neutrinos, with the second dominant contribution coming from the ${ }^{7} \mathrm{Be}$ neutrinos. ${ }^{71} \mathrm{Ge}$ decays via electron capture with a half life of 11.4 d . The SAGE experiment in Baksan [47] used about 50 t of liquid metallic gallium as a target. The GALLEX experiment in LNGS [48] used 101 t of GaCl_{3}, containing 30.3 t of gallium. Both experiments used natural gallium, containing 39.9% of ${ }^{71} \mathrm{Ga}$ isotope. GALLEX was followed by its successor GNO experiment. The measured capture rate is $69.3 \pm 4.1 \pm 3.6 \mathrm{SNU}$ for GALLEX+GNO [49] and $65.4_{-3.0-2.8}^{+3.1+2.6} \mathrm{SNU}$ for SAGE [50]. A SSM prediction is $127.9_{-8.2}^{+8.1}$ SNU [46].

The radiochemical detectors measure the reaction rate integrated between extractions. The real time measurement of solar neutrino was realized by the Kamiokande experiment [51]. The Kamiokande detector was a 3,000-t water-Cherenkov detector in the Kamioka mine. An array of 50 cm diameter PMTs were attached onto the inner wall of the detector to detect Cherenkov light. Although the original purpose of the Kamiokande detector was search for nucleon decays, with an upgrade of detector Kamiokande-II achieved an energy threshold sufficiently low to allow for the observation of solar neutrinos using ν-e elastic scattering (ES), $\nu_{x}+e^{-} \rightarrow \nu_{x}+e^{-}$. The signal and background from radioactivity can be statistically separated by using the directional correlation between the incoming neutrino and the recoil electron. The Super-Kamiokande, the successor of Kamiokande, started operation in April 1996. It is a large upright cylindrical water Cherenkov detectorcontaining 50 kt of pure water. An inner detector volume corresponding to 32 kt water mass is viewed by more than 11,000 inward-facing 50 cm diameter PMTs.

The ES reaction occurs via both charged and neutral current interactions. Consequently, it is sensitive to all active neutrino flavours, although the cross section for ν_{e}, which is the only flavour to interact via charged current, is about six times larger than that for ν_{μ} or ν_{τ}. Because the energy threshold is 6.5 MeV for Kamiokande and 3.5 MeV for the present Super-Kamiokande (for the kinetic energy of recoil electron), these experiments are sensitive to primarily to ${ }^{8} \mathrm{~B}$ neutrinos.
The results from Kamiokande [52, 53] and SuperKamiokande [54, 55] showed significantly smaller numbers of observed solar neutrinos compared to the prediction. The latest ${ }^{8} \mathrm{~B}$ neutrino flux measured by Super-Kamiokainde is $(2.345 \pm 0.014 \pm 0.036) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad[56]$, while a prediction based on the SSM is $(5.46 \pm 0.66) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ [57]. In addition, no significant zenith angle variation nor spectrum distortion were observed in the initial phase of Super-Kamiokande, which placed strong constraints on the solution of the solar neutrino problem $[58,59]$.

14.6.1.3 Solution of the solar neutrino problem

SNO experiment in Canada used $1,000 \mathrm{t}$ of heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$ contained in a spherical acrylic vessel which was surrounded by an $\mathrm{H}_{2} \mathrm{O}$ shield. An array of PMTs installed on a stainless steel structure detected Cherenkov radiation produced in both the $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The SNO detector observed ${ }^{8} \mathrm{~B}$ neutrinos via three different reactions. In addition to the ES scattering with an electron, with $\mathrm{D}_{2} \mathrm{O}$ target the charged current (CC) $\nu_{e}+d \rightarrow e^{-}+p+p$ and the neutral current (NC) $\nu_{x}+d \rightarrow \nu_{x}+p+n$ interactions are possible. The CC reaction is sensitive to only ν_{e}, while NC reaction is sensitive to all active flavours of neutrinos with equal cross sections. Therefore, by comparing the measurements of different reactions, SNO could provide a model independent test of the neutrino flavour change.

In 2001, SNO reported the initial result of CC measurement [62]. Combined with the high statistics measurement of $\nu-e$ elastic scattering from Super-Kamiokande [58], it provided a direct evidence for existence of non- ν_{e} component in solar neutrino flux. The result of NC measurement in 2002 [63] established it

Table 14.2: List of solar neutrino experiments

Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
Homestake	$\mathrm{C}_{2} \mathrm{Cl}_{4}$	0.814	615	$1970-1994$
SAGE	Ga	0.233	50	$1989-$
GALLEX	GaCl_{3}	0.233	100 [30.3 for Ga$]$	$1991-1997$
GNO	GaCl_{3}	0.233	$100[30.3$ for Ga$]$	$1998-2003$
Kamiokande	$\mathrm{H}_{2} \mathrm{O}$	6.5	3,000	$1987-1995$
Super-Kamiokande	$\mathrm{H}_{2} \mathrm{O}$	3.5	50,000	$1996-$
SNO	$\mathrm{D}_{2} \mathrm{O}$	3.5	1,000	$1999-2006$
KamLAND	Liquid scintillator	$0.5 / 5.5$	1,000	$2001-2007$
Borexino	Liquid scintillator	0.19	300	$2007-$

Figure 14.2: Fluxes of ${ }^{8} \mathrm{~B}$ solar neutrinos, $\phi\left(\nu_{e}\right)$, and $\phi\left(\nu_{\mu, \tau}\right)$, deduced from the SNO's CC, ES, and NC results [60]. The SuperKamiokande ES flux is from [61]. The BS05(OP) standard solar model prediction [40] is also shown. The bands represent the 1σ error. The contours show the $68 \%, 95 \%$, and 99% joint probability for $\phi\left(\nu_{e}\right)$ and $\phi\left(\nu_{\mu, \tau}\right)$. The figure is from [60].
with 5.3σ of statistical significance. Figure 14.2 shows the fluxes of electron neutrinos $\left(\phi\left(\nu_{e}\right)\right)$ and muon and tau neutrinos $\left(\phi\left(\nu_{\mu, \tau}\right)\right)$ with the $68 \%, 95 \%$, and 99% joint probability contours, obtained with the SNO data. Finally, together with the reactor neutrino experiment KamLAND (see Sec.14.6.4), the solution of solar neutrino problem was found to be the MSW adiabatic flavour transitions in the solar matter, the so-called large mixing angle (LMA) solution, with parameters $\Delta m^{2} \sim 7.5 \times 10^{-5} \mathrm{eV}^{2}$ and $\sin ^{2} \theta \sim 0.3$.

From a combined result of three phases of SNO [64], the total flux of ${ }^{8} \mathrm{~B}$ solar neutrino is found to be $\left(5.25 \pm 0.16_{-0.13}^{+0.11}\right) \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, consistent with the SSM prediction. This consistency is one of major accomplishments of SSM.

In order to understand the SSM as well as to study the MSW effect for the solar neutrino, measurements of solar neutrinos other than ${ }^{8} \mathrm{~B}$ are important. The Borexino experiment at Gran Sasso, Italy, detects solar neutrino via ν-e scattering in real time with a low energy threshold. The Borexino detector consists of 300 t of ultra-pure liquid scintillator, which achieved 0.19 MeV of energy threshold and 5% energy resolution at 1 MeV . Borexino reported the first real time detection of ${ }^{7} \mathrm{Be}$ solar neutrinos [66]. They also measured the fluxes of pep [67] and pp neutrino [68] for the first time. Together with ${ }^{8} \mathrm{~B}$ [69] neutrino measurement, Borexino provides important data to study the MSW effect. The KamLAND experiment also measured ${ }^{8} \mathrm{~B}$ [70] and ${ }^{7} \mathrm{Be}$ [71] solar neutrinos. Figure 14.3 shows the survival probability of solar ν_{e} as a function of neutrino energy. The data points are from the Borexino results [72,73] except the $\mathrm{SNO}+\mathrm{SK}^{8} \mathrm{~B}$ data. The theoretical curve shows the prediction of the MSW-LMA solution. All the data shown in this plot are consistent with the theoretically calculated curve. This indicates that these solar neutrino measurements are consistent with the MSW-LMA solution of the solar neutrino problem.

The matter effects can also be relevant to the propagation of solar neutrinos through the Earth. Because solar neutrinos go through the Earth before interaction in the detector during the

Figure 14.3: Electron neutrino survival probability as a function of neutrino energy. The points represent, from left to right, the Borexino pp, ${ }^{7} \mathrm{Be}$, pep, and ${ }^{8} \mathrm{~B}$ data (red points) and the $\mathrm{SNO}+\mathrm{SK}$ ${ }^{8} \mathrm{~B}$ data (black point). The three Borexino ${ }^{8} \mathrm{~B}$ data points correspond, from left to right, to the low-energy (LE) range, $\mathrm{LE}+\mathrm{HE}$ range, and the high-energy (HE) range. The electron neutrino survival probabilities from experimental points are determined using a high metalliticy SSM from Ref. [57]. The error bars represent the $\pm 1 \sigma$ experimental + theoretical uncertainties. The curve corresponds to the $\pm 1 \sigma$ prediction of the MSW-LMA solution using the parameter values given in [65]. This figure is provided by A. Ianni.
nighttime, a comparison of measured event rate between daytime and nighttime provides a clean and direct test of matter effects on neutrino oscillations. Super-Kamiokande reported the first indication of the day/night asymmetry in ${ }^{8} \mathrm{~B}$ solar neutrinos [74]. The measured asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, is $(-3.2 \pm 1.1 \pm 0.5) \%$, corresponding to a statistical significance of 2.7σ. The measured value of the asymmetry is consistent with the LMA solution.

14.6.2 Atmospheric Neutrinos

14.6.2.1 Atmospheric neutrino flux

Atmospheric neutrinos are produced by the decays of pions and kaons generated in the interaction of cosmic rays and nucleons in the Earth's atmosphere. They have a broad range of energy $(\sim 0.1 \mathrm{GeV}$ to $>\mathrm{TeV})$ and long travel distances before detection (~ 10 to $1.3 \times 10^{4} \mathrm{~km}$). As shown in Table 14.1, atmospheric neutrino oscillation experiments are most sensitive to flavour oscillations with $\Delta m^{2} \sim 10^{-1}$ to $10^{-4} \mathrm{eV}^{2}$.

Considering their dominant production modes, some generic relations for flux ratios of different flavour of neutrinos can be derived without detailed calculations. From the decay chain of a charged pion $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ followed by $\mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu}$ (and the charge conjugate for $\left.\pi^{-}\right)$, the ratio $\left(\nu_{\mu}+\bar{\nu}_{\mu}\right) /\left(\nu_{e}+\bar{\nu}_{e}\right)$ is expected to be around 2 at low energies ($\sim 1 \mathrm{GeV}$) where most muons decay in the atmosphere. For higher energies, some of muons reach the Earth before they decay and the ratio increases. One can also expect that the zenith angle distributions of atmospheric neutrinos are symmetric between upward-going and downward-going
neutrinos. It is true for the energy above 1 GeV , but at lower energies, the Earth's geomagnetic field induces up-down asymmetries in the the primary cosmic ray. The zenith angle corresponds to the flight length of atmospheric neutrinos. Vertically upwardgoing neutrinos come from the other side of the Earth with flight lengths of $\sim 10^{4} \mathrm{~km}$, while downward-going neutrinos produced just above the experimental site travel $\sim 10 \mathrm{~km}$ before detection.

The atmospheric neutrino fluxes are calculated in detail based on the energy spectrum and composition of primary cosmic rays and their hadronic interactions in the atmosphere. The effects of solar activity and geomagnetic field should be also taken into account. Results of calculations by several groups are available [75-78]. A typical uncertainty of the absolute flux is $10-$ 20%, while the ratio of fluxes between different flavour has much smaller uncertainty ($<5 \%$).
14.6.2.2 Observation of atmospheric neutrino oscillations

The first detection of atmospheric neutrinos was reported in the 1960's by the underground experiments in the Kolar Gold Field experiment in India [79] and in South Africa [80]. In the 1980's, experiments searching for nucleon decays started operation. They used large underground detectors which could also observe atmospheric neutrinos. In these experiments, atmospheric neutrinos were studied as backgrounds to nucleon decays. Among the early experiments were Kamiokande [81] and IMB [82] using water Cherenkov detectors, and Frejus [83] and NUSEX [84] using iron tracking calorimeters.
The flavour of atmospheric neutrino can be identified in charged current interaction with nuclei, which produces the corresponding charged lepton. In order to study the neutrino oscillations, the identification of charged lepton is essential. Those detectors originally designed for nucleon decay search had capability to distinguish muons and electrons. For example, a water Cherenkov detector can utilize the information from Cherenkov ring patterns for particle identification; e-like particles ($e^{ \pm}, \gamma$) produce more diffuse ring than μ-like particles ($\mu^{ \pm}, \pi^{ \pm}$) because of electromagnetic cascades and multiple Coulomb scattering effects.

To reduce the uncertainty, in early results the flux ratio $\nu_{\mu} / \nu_{e} \equiv$ $\left(\nu_{\mu}+\bar{\nu}_{\mu}\right) /\left(\nu_{e}+\bar{\nu}_{e}\right)$ was measured, and the double ratio between observation and expectation $\left(\nu_{\mu} / \nu_{e}\right)_{\text {obs }} /\left(\nu_{\mu} / \nu_{e}\right)_{\exp }$ was reported. The Kamiokande experiment reported an indication of a deficit of $\left(\nu_{\mu}+\bar{\nu}_{\mu}\right)$ flux [81]. IMB also observed similar deficit [82], but measurements by Frejus [83] and NUSEX [84] were consistent with the expectations. This was the original formulation of the atmospheric neutrino anomaly. Kamiokande reported studies with an increased data set of the sub-GeV $(<1.33 \mathrm{GeV})$ [85] as well as the multi- $\mathrm{GeV}(>1.33 \mathrm{GeV})[86]$ samples. In the latter, they reported an analysis of zenith angle distributions, which showed an indication that the muon disappearance probability is dependent on the zenith angle, hence the travel length of neutrinos. However, the statistical significance was not sufficient to provide a conclusive interpretation.

The solution to the atmospheric neutrino anomaly was brought by Super-Kamiokande, which reported compelling evidence for neutrino oscillations in atmospheric neutrinos in 1998 [87]. The zenith angle (θ_{z}, with $\theta_{z}=0$ for vertically downward-going) distributions of μ-like events showed a clear deficit of upward-going events, while no significant asymmetry was observed for e-like events. The asymmetry is defined as $A=(U-D) /(U+D)$, where U is the number of upward-going $\left(-1<\cos \theta_{\mathrm{z}}<-0.2\right)$ events and D is the number of downward-going $\left(0.2<\cos \theta_{\mathrm{z}}<1.0\right)$ events. With multi-GeV (visible energy $>1.33 \mathrm{GeV}$) μ-like events alone, the measured asymmetry was $A=-0.296 \pm 0.048 \pm 0.001$, deviating from zero by more than 6σ. The sub-GeV $(<1.33 \mathrm{GeV})$ μ-like, upward through going, and upward stopping μ samples, which correspond to different energy range of neutrino, show the consistent behaviour, strengthening the credibility of the observation. The corresponding oscillation parameters were found to be $\Delta m^{2} \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}$ and $\theta \sim 45^{\circ}$. Super-Kamiokande's results were confirmed by other atmospheric neutrino observations MACRO [88] and Soudan2 [89].

Although the energy and zenith-angle dependent muon neutrino disappearance observed with atmospheric neutrinos could be consistently explained by the neutrino oscillations between ν_{μ}
and ν_{τ}, other exotic explanations such as neutrino decay or decoherence were not initially ruled out. By using a selected sample from Super-Kamiokande's atmospheric data with good L / E resolution, the L / E dependence of the survival probability was measured [90]. The observed dip in the L / E distribution was consistent with the expectation from neutrino oscillation, while alternative models were strongly disfavored.

As an experimental proof of $\nu_{\mu}-\nu_{\tau}$ oscillation, appearance signal of ν_{τ} was searched for in the atmospheric neutrino data. Because of the high energy threshold ($>3.5 \mathrm{GeV}$) of $\nu_{\tau} \mathrm{CC}$ interaction and the short lifetime of τ lepton $(0.3 \mathrm{ps})$, the identification of ν_{τ} appearance is experimentally very difficult. Super-Kamiokande reported evidence of tau neutrino appearance using atmospheric neutrino data with 4.6σ significance [91]. The definitive observation of ν_{τ} appearance was made by the long-baseline experiment, OPERA [92] (See Sec.14.6.3.3), and recently IceCube also reported the ν_{τ} appearance analysis [93] using atmospheric neutrinos.
14.6.2.3 Neutrino oscillation measurements using atmospheric neutrinos

Figure 14.4 shows the zenith angle distributions of atmospheric neutrino data from Super-Kamiokande. For wide range of neutrino energy and path length, the observed distributions are consistent with the expectation from neutrino oscillation. Atmospheric neutrinos in the energy region of a few to $\sim 10 \mathrm{GeV}$ provide information for the determination of the neutrino mass ordering [94].

The neutrino telescopes primarily built for the high energy neutrino astronomy such as ANTARES [95] and IceCube [96] can also measure neutrino oscillations with atmospheric neutrinos. ANTARES consists of a sparse array of PMTs deployed under the Mediterranean Sea at a depth of about 2.5 km to to instrument a $10^{5} \mathrm{~m}^{3}$ volume. IceCube is a detector deployed in ice in Antarctica at the South Pole, at depth between 1.45 and 2.45 km . In the bottom center of IceCube there is a region of $\sim 10^{7} \mathrm{~m}^{3}$ volume with denser PMT spacing called DeepCore to extend the observable energies to lower energy region. By observing the charged current interaction of up-going ν_{μ}, they measure the ν_{μ} disappearance. ANTARES reported a measurement of ν_{μ} disappearance with 20 GeV threshold [97]. With analysis of events with $6-56 \mathrm{GeV}$ energy range, the results on ν_{μ} disappearance measurements from IceCube DeepCore [98] provided a precision comparable to the measurements by Super-Kamiokande and long-baseline experiments.

There are several projects for atmospheric neutrino observations either proposed or under preparation. The atmospheric neutrino observation program is included in the plans for future neutrino telescopes, ORCA in the second phase of KM3NeT project [99] in the Mediterranean Sea, and PINGU in the upgrade of IceCube [100]. In India, a 50 kt magnetized iron tracking calorimeter ICAL is planned at the INO [101]. Future large underground detectors, Hyper-Kamiokande in Japan [102] and DUNE in US [103] can also study the atmospheric neutrinos.

14.6.3 Accelerator Neutrinos

14.6.3.1 Accelerator neutrino beams

A comprehensive description of the accelerator neutrino beams is found in [104]. Conventional neutrino beams from accelerators are produced by colliding high energy protons onto a target, producing π and K which then decay into neutrinos, and stopping undecayed mesons and muons in the beam dump and soil. Because pions are the most abundant product in the high energy collisions, a conventional neutrino beam contains dominantly muon-type neutrinos (or antineutrinos).

Focusing devices called magnetic horns are used to concentrate the neutrino beam flux towards the desired direction. A magnetic horn is a pulsed electromagnet with toroidal magnetic fields to focus charged particles that are parents of neutrinos. One can choose the dominant component of the beam to be either neutrinos or antineutrinos by selecting the direction of current in the magnetic horns. Even with the focusing with horns, wrong sign neutrinos contaminate in the beam. Also, there is small amount of contamination of ν_{e} and $\bar{\nu}_{e}$ coming primarily from kaon and

Figure 14.4: The zenith angle distributions of Super-Kamiokande atmospheric neutrino events. Fully contained 1 -ring e-like and μ-like events with visible energy $<1.33 \mathrm{GeV}$ (sub-GeV) and $>1.33 \mathrm{GeV}$ (multi-GeV), as well as upward stopping and upward stopping μ samples are shown. Partially contained (PC) events are combined with multi- $\mathrm{GeV} \mu$-like events. The blue histograms show the nonoscillated Monte Carlo events, and the red histograms show the best-fit expectations for $\nu_{\mu}-\nu_{\tau}$ oscillations. (This figure is provided by the Super-Kamiokande Collaboration)

Table 14.3: List of long-baseline neutrino oscillation experiments

Name	Beamline	Far Detector	$\mathrm{L}(\mathrm{km})$	$\mathrm{E}_{\nu}(\mathrm{GeV})$	Year
K2K	KEK-PS	Water Cherenkov	250	1.3	$1999-2004$
MINOS	NuMI	Iron-scintillator	735	3	$2005-2013$
MINOS+	NuMI	Iron-scintillator	735	7	$2013-2016$
OPERA	CNGS	Emulsion	730	17	$2008-2012$
ICARUS	CNGS	Liquid argon TPC	730	17	$2010-2012$
T2K	J-PARC	Water Cherenkov	295	0.6	$2010-$
NOvA	NuMI	Liquid scint. tracking calorimeter	810	2	$2014-$

muon decays.
In order to maximize the sensitivity of the experiment, the ratio of baseline and neutrino energy (L / E) should be chosen to match the oscillation effects to be studied. In addition to maximizing the flux of neutrinos with relevant energy, neutrinos with irrelevant energy that result in unwanted background process should be suppressed. The energy of neutrino from a pion decay is

$$
\begin{equation*}
E_{\nu}=\frac{\left[1-\left(m_{\mu} / m_{\pi}\right)^{2}\right] E_{\pi}}{1+\gamma^{2} \theta^{2}} \tag{14.71}
\end{equation*}
$$

where E_{ν} and E_{π} are the energy of neutrino and pion, respectively, θ is the angle between the pion and neutrino direction, and $\gamma=E_{\pi} / m_{\pi}$. For $\theta=0$, the energy of neutrino is linearly proportional to the energy of pion. In this case, a narrow band beam can be made by selecting the momentum of pions. On the other hand, for $\theta \neq 0$, the energy of neutrino is not strongly dependent on the parent energy for a wide range of pion energy, but dependent on the off-axis angle θ. Using this relation, a neutrino beam with narrow energy spectrum, around the energy determined by θ, can be produced. This off-axis beam method was first introduced for BNL E889 proposal [105] and adopted in T2K and NOvA experiments. For a list of neutrino beamlines, see also the review 32 . Neutrino Beam Lines at High-Energy Proton Synchrotrons.

As indicated in Table 14.1, there are two different scales of base-
lines for accelerator-based experiments to study different ranges of Δm^{2}. The atmospheric mass splitting $\Delta m^{2} \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}$ gives rise to the first oscillation maximum at $L / E \sim 500 \mathrm{GeV} / \mathrm{km}$. In order to study this parameter region with $\sim 1 \mathrm{GeV}$ accelerator neutrino beam, a long baseline of a few hundreds to thousand km is necessary. On the other hand, there have been reports of possible neutrino oscillations at $\sim 1 \mathrm{eV}$ scale, which can be studied at $\sim 1 \mathrm{~km}$ baseline with neutrinos from accelerators. These experiments are called short-baseline oscillation experiments.

The flux of a neutrino beam is calculated using Monte Carlo simulation based on the configuration of the beamline. An important ingredient of the neutrino flux prediction is the hadron production cross section. Data from dedicated hadron production experiments [106-108] are used to tune the beam simulation and constrain the uncertainty. The uncertainty of predicted neutrino flux for the most relevant energy region is $\sim 5-10 \%$ with the latest hadron production data.
14.6.3.2 Near detectors and neutrino interaction cross sections

Many long-baseline experiments use two detectors to reduce the systematic uncertainties arising from neutrino flux and neutrinonucleus interactions. The near detectors either use the same technology as the far detector or consist of sub-detectors with complementary functions to obtain detailed information of the neutrino beam and interactions. The near detectors provide information
for the neutrino flux, energy spectrum, and the interaction cross sections, which is used as an input to make predictions of observables at the far detector. However, even with the two-detector configuration, one should note that the neutrino flux is inevitably different between the near and the far detectors. In addition to the fact that the neutrino source looks like a line source for the near detector while it looks as a point source for the far detector, the neutrino oscillations alter the flavour composition of the neutrino beam quite significantly, as the design of a neutrino oscillation experiment requires.

For the precision measurements of neutrino oscillations with long-baseline experiments, the understanding of the neutrinonucleus interaction becomes crucial. Because heavy nuclei are used as the interaction target, the nuclear effects complicate the understanding of the neutrino-nucleus interaction. For more information on the neutrino cross sections, see also the review 50. Neutrino Cross Section Measurements.

14.6.3.3 Long-baseline experiments

The first long-baseline experiment was the K2K experiment which used a neutrino beam from the KEK 12 GeV proton synchrotron directed towards Super-Kamiokande with a baseline of 250 km [109]. The beam had an average energy of 1.3 GeV . The K2K near detectors, located 300 m downstream of the production target, consisted of a combination of a 1 kt water Cherenkov detector and a set of fine grained detectors. K2K reported the confirmation of muon neutrino disappearance originally reported by Super-Kamiokande atmospheric neutrino observation [110].

The MINOS experiment used a beam from Fermilab and a detector in Soudan mine 735 km away [111]. The neutrino beam is produced in NuMI beamline [112] with 120 GeV proton beam from the Main Injector. The MINOS detectors are both iron-scintillator tracking calorimeters with toroidal magnetic fields. The far detector was 5.4 kt , while the near detector had a total mass of 0.98 kt and was located 1 km downstream of the production target. The NuMI beamline can vary the neutrino energy spectrum by changing the relative position of target and horns. Most of MINOS data were taken with the "low energy" configuration with the peak energy of around 3 GeV . MINOS combined accelerator and atmospheric neutrino data in both disappearance and appearance modes to measure oscillation parameters [113,114]. Utilizing the separation of μ^{-}and μ^{+}with the magnetic field in the far detector, MINOS also reported separate measurements of atmospheric neutrinos and antineutrinos [115].
When the NuMI beamline started operation for the NOvA experiment in 2013, it was set to the "medium energy" configuration which provided a beam with the peak neutrino energy of around 7 GeV to the MINOS+ experiment, which used the same MINOS near and far detectors. MINOS+ verified the energy dependence of ν_{μ} disappearance at energies above the first oscillation maximum. Utilizing the wide neutrino energy spectrum and high intensity in the medium energy configuration, limits on sterile neutrinos is reported [116].

In Europe, the CNGS neutrino beamline provided a beam with mean energy of 17 GeV from CERN to LNGS for long-baseline experiments with 732 km of baseline. The beam energy was chosen so that charged current (CC) interaction of ν_{τ} can occur for direct confirmation of ν_{τ} appearance. There was no near detector in CNGS because it was not necessary for the ν_{τ} appearance search. The OPERA experiment used a detector consisted of an emulsion/lead target with about 1.25 kt total mass complemented by electronic detectors. The excellent spatial resolution of emulsion enabled the event-by-event identification of τ leptons. OPERA observed ten ν_{τ} CC candidate events with 2.0 ± 0.4 expected background [92] and confirmed $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation in appearance mode with a statistical significance of 6.1σ. Another neutrino experiment, ICARUS [117], which used 600 t liquid argon time projection chambers, was operated in Gran Sasso from 2010 to 2012.

The first generation of long-baseline experiments confirmed the existence of neutrino oscillation. The major initial goal of second generation experiments was the observation of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation. Using this appearance mode, by comparison of neutrino and antineutrino oscillation probabilities, search for CP violation
in the neutrino mixing becomes possible.
The T2K experiment started in 2010 using a newly constructed high-intensity proton synchrotron J-PARC and the Super-Kamiokande detector. It is the first long-baseline experiment to employ the off-axis neutrino beam. The off-axis angle of 2.5° was chosen to set the peak of neutrino energy spectrum at 0.6 GeV , matching the first maximum of oscillation probability at the 295 km baseline for $\Delta m^{2} \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}$. T2K employs a set of near detectors at about 280 m from the production target. The on-axis detector, called INGRID, is an array of iron-scintillator sandwich trackers to monitor the beam intensity, direction and profile. The off-axis detector ND280, consisting of several sub-detectors inside a magnet, is placed in the direction of far detector to measure the neutrino beam properties and to study neutrino interactions.

In 2011, T2K reported the first indication of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation with a statistical significance of 2.5σ [118]. In the framework of 3ν mixing, it corresponds to detecting non-zero amplitude generated by the mixing angle θ_{13} (see Eq.14.33). Later $\nu_{\mu} \rightarrow \nu_{e}$ oscillation was established by T2K with more than 7σ in 2014 [119]. Figure 14.5 shows the reconstructed energy distributions from T2K, for neutrino and anti-neutrino beam mode and also for muon and electron candidates. The muon type events show clear deficit in both neutrino and antineutrino mode, consistent with the energydependent disappearance probability expected from neutrino oscillations. By a combined analysis of the neutrino and antineutrino data, T2K reported a hint of CP violation with more than $2 \sigma[120,121]$.

The NOvA experiment uses the NuMI beamline with an off-axis configuration. The 14 kt NOvA far detector is located near Ash River, Minnesota, 810 km away from the source. At 14.6 mrad off-axis from the central axis of the NuMI beam, the neutrino energy spectrum at the far detector has a peak around 2 GeV , corresponding to the first oscillation maximum at 810 km baseline. The near detector, located around 1 km from the source, has a functionally identical design to the far detector with a total active mass of 193 t . Both detectors are tracking calorimeters consisting of planes of polyvinyl chloride cells alternating in vertical and horizontal orientation filled with liquid scintillator.

The physics run of NOvA was started in 2014. Although the initial data indicated non-maximal mixing [122], later analysis with increased data and improved analysis resulted in the allowed region consistent with maximal mixing [123]. After confirmation of ν_{e} appearance from ν_{μ} beam $[124,125]$, NOvA started data taking with antineutrino beam in 2016. Using the antineutrino beam data, NOvA has sreported the observation of $\bar{\nu}_{e}$ appearance from $\bar{\nu}_{\mu}$ beam with 4.4σ significance [126]. Figure 14.6 shows the reconstructed neutrino energy distributions from NOvA. Some values of the CP-violating phase δ_{CP} (see Eq.14.33) have been excluded for the inverted mass ordering $\left(m_{3}<m_{2}<m_{1}\right.$, see Sec.14.7 for definitions), while no significant limit has been set for the case of normal mass ordering $\left(m_{1}<m_{2}<m_{3}\right.$, see Sec.14.7 for definitions).

Two large-scale long-baseline experiments are under preparation or proposed in future. DUNE [103] will be a $1,300 \mathrm{~km}$ longbaseline experiment based in US. The DUNE far detector will consist of four modules of at least 10 kt fiducial mass liquid argon time projection chambers, located 1.5 km underground at the Sanford Underground Research Facility in South Dakota. The beamline for DUNE, 1.2 MW at start and upgradable to 2.4 MW , as well as the facility for near detectors will be newly constructed at Fermilab. In Japan, Hyper-Kamiokande [102] is proposed as the successor of the Super-Kamiokande detector. It will be a water Cherenkov detector with 260 (190) kt total (fiducial) mass. With upgrade of existing accelerator and beamline, J-PARC will provide a 1.3 MW neutrino beam to Hyper-Kamiokande. Both DUNE and Hyper-Kamiokande will have a rich physics program besides the long-baseline experiment, such as searches for nucleon decays and study of supernova neutrinos.

14.6.3.4 Short-baseline experiments

The LSND experiment searched for neutrino oscillation using neutrinos from stopped pions at Los Alamos. A 800 MeV linac was used to produce pions which stopped in the target. Most of

Figure 14.5: Reconstructed neutrino energy distributions from T2K. Data points with statistical error bars are shown together with the prediction without (black line) and including (red line) neutrino oscillation. Top: Single ring μ-like events. The left and right plot is for neutrino and antineutrino beam mode, respectively. Below each plot, the ratio to the prediction without oscillation is also shown. Bottom: Single ring e-like events. From left to right, 0 decay electron sample for neutrino beam, 1 decay electron sample for neutrino beam, and 0 decay electron sample for antineutrino beam. (This figure is provided by the T2K Collaboration)
$\pi^{-} \mathrm{s}$ are absorbed by the nuclei inside the target, while $\pi^{+} \mathrm{s}$ and their daughter $\mu^{+} \mathrm{s}$ decay and produce neutrinos. Therefore, the produced neutrinos are mostly $\nu_{\mu}, \bar{\nu}_{\mu}$, and ν_{e} with very small contamination of $\bar{\nu}_{e}$. The detector was a tank filled with 167 t of diluted liquid scintillator, located about 30 m from the neutrino source. LSND searched for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance using the inverse beta decay process, $\bar{\nu}_{e}+p \rightarrow e^{+}+n$, and found an excess of $87.9 \pm 22.4 \pm 6.0$ events over the expected background [127].

The KARMEN experiment was performed at the neutron spallation facility ISIS of the Rutherford Appleton Laboratory. The KARMEN 2 detector was a segmented liquid scintillation calorimeter with total volume of $65 \mathrm{~m}^{3}$ located at a mean distance of 17.7 m from the ISIS target. KARMEN found a number of events consistent with the total background expectation, showing no signal for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations [128]. The resulting limits exclude large regions of the parameter area favored by LSND.

The MiniBooNE experiment at Fermilab used a conventional neutrino beam to search for ν_{e} and $\bar{\nu}_{e}$ appearance in the same parameter region as LSND. The booster neutrino beamline (BNB) with a single magnetic horn uses a 8 GeV proton beam from the Fermilab booster to produce a neutrino (antineutrino) beam with energy spectrum peak of 600 (400) MeV. The MiniBooNE detector consists of a 12.2 m diameter sphere filled with 818 t of mineral and oil located 541 m from the target. MiniBooNE reported ν_{e} and $\bar{\nu}_{e}$ event excess in both neutrino and antineutrino running modes. In total, 460.5 ± 99.0 excess events are observed over the expected backgrounds, corresponding to 4.7σ significance [129].

Both LSND and MiniBooNE are single detector experiments. The reported excess will be further investigated with the multidetector short-baseline neutrino (SBN) program at Fermilab BNB [130]. The SBN program comprises three liquid argon time projection chambers at different baselines in the same neutrino beamline. The 112 t Short-Baseline Near Detector will be located at 110 m from the target. The 85 t MicroBooNE detector has been operated at 470 m from the target. The ICARUS detector has been transported from Europe after refurbishment at CERN and is located at a baseline of 600 m .

JSNS ${ }^{2}$ experiment at J-PARC will search for neutrino oscillations with $\Delta m^{2} \sim 1 \mathrm{eV}^{2}$ [131]. 1MW proton beam from the 3 GeV Rapid Cycling Synchrotron of J-PARC will produce neutrinos from muon decay at rest. With a detector filled with gadolinium loaded liquid scintillator of 17 t fiducial mass at 24 m from the target, JSNS^{2} is aiming to provide a direct test of the LSND anomaly.

14.6.4 Reactor Antineutrinos

14.6.4.1 Reactor antineutrino flux

Nuclear reactors are very intense sources of $\bar{\nu}_{e}$'s in the MeV energy region, which are generated in nuclear fission of heavy isotopes (mainly ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$). The $\bar{\nu}_{e}$ flux from a reactor can be estimated based on the thermal power output and fuel composition as a function of time. On average, about six $\bar{\nu}_{e}$'s are emitted and about 200 MeV of energy is released per fission. Therefore, a $1 \mathrm{GW}_{\mathrm{th}}$ (thermal power) reactor produces about $2 \times 10^{20} \bar{\nu}_{e}$'s per second.

The detailed estimate of $\bar{\nu}_{e}$ flux and energy spectrum can be obtained by either summing up the spectra of beta decays involved using available nuclear data information of each fission fragment and its decays, or using measurements of cumulative electron spectra associated with the beta decays of fission fragments. Because the fission of four main fuel isotopes involves thousands of betadecay branches, a completely ab initio calculation is challenging. The cumulative electron spectra for ${ }^{235} \mathrm{U},{ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$ were measured at the Institut Laue-Langevin (ILL) reactor in Grenoble, France in the 1980s [132-134]. For the prediction of $\bar{\nu}_{e}$ flux from ${ }^{238} \mathrm{U}$, a summation calculation in [135] was often used together with the ILL results.

A recent calculation of the reactor $\bar{\nu}_{e}$ flux [136] uses an improved $a b$ initio approach for ${ }^{238} \mathrm{U}$ and combined information from nuclear databases and electron spectra measured at ILL for ${ }^{235} \mathrm{U}$, ${ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$. Another calculation [137] is provided for ${ }^{235} \mathrm{U}$, ${ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$ based on the ILL measurement of electron spectra, taking into account higher order corrections and minimizing the use of nuclear databases. Both calculations predict about 3% higher normalization for the energy-averaged antineutrino fluxes of ${ }^{235} \mathrm{U},{ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$ compared to the original analyses of ILL data. However, the reactor antineutrino flux measurement at Daya Bay [138] is consistent with the old flux predictions and the flux measurement results. Also, an excess of $\bar{\nu}_{e}$ flux around 5 MeV , compared to the prediction, has been observed by recent reactor experiments [139-142]. Measurements of a fuel-dependent reactor $\bar{\nu}_{e}$ rate by Daya Bay [143] and RENO [144], and individual antineutrino spectra from ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ by Daya Bay [145] showed a discrepancy between the observed and predicted rate and spectrum from ${ }^{235} \mathrm{U}$.

14.6.4.2 Reactor antineutrino oscillation experiments

Charged current interaction cannot happen if a reactor $\bar{\nu}_{e}$ changes its flavour to $\bar{\nu}_{\mu}$ or $\bar{\nu}_{\tau}$, because its energy is not sufficient to produce heavier charged leptons. Thus, $\bar{\nu}_{e}$ disappearance is the

Figure 14.6: Reconstructed neutrino energy distributions from the NOvA far detector [126]. Top plots are for neutrino beam mode and bottom plots are for antineutrino beam mode. Left: muon-type candidates. Right: electron-type candidates, split into a low and high purity sample as well as the event counts in the peripheral sample which occurred near the edge of the detector.

Table 14.4: List of reactor antineutrino oscillation experiments

Name	Reactor power $\left(\mathrm{GW}_{\mathrm{th}}\right)$	Baseline (km)	Detector mass (t)	Year
KamLAND	various	$180($ ave. $)$	1,000	$2001-$
Double Chooz	4.25×2	1.05	8.3	$2011-2018$
Daya Bay	2.9×6	1.65	20×4	$2011-$
RENO	2.8×6	1.38	16	$2011-$
JUNO	26.6 (total)	53	20,000	

only channel to study neutrino flavour change with reactor experiments. The inverse beta decay $\bar{\nu}_{e}+p \rightarrow e^{+}+n$ provides a way to detect $\bar{\nu}_{e}$ in the relevant energy region. The energy of prompt signal from e^{+}, E_{p}, is related to the energy of $\bar{\nu}_{e}, E_{\bar{\nu}} \sim E_{p}+0.8 \mathrm{MeV}$. The delayed coincidence with the signal from γ ray emitted by neutron capture on nucleus after thermalization very efficiently suppresses the backgrounds. Liquid scintillator is often used to realize large detectors containing hydrogen as the target of inverse beta decay. In order to increase the neutron detection efficiency, liquid scintillator is sometimes loaded with gadolinium because of large neutron capture cross section and higher energy of emitted γ rays, the total energy of about 8 MeV , by gadolinium, in contrast
to 2.2 MeV for the capture by hydrogen.
Early reactor experiments that searched for neutrino oscillations at short or intermediate baselines reported negative results. The CHOOZ [146] and Palo Verde [147] experiments in 1990's searched for neutrino oscillations in the $\Delta m^{2} \sim 10^{-2}{ }_{-}$ $10^{-3} \mathrm{eV}^{2}$ range and set a limit on the corresponding mixing angle $\sin ^{2} 2 \theta<0.1$ at 90% CL.

Table 14.4 shows a list of reactor antineutrino experiments measuring neutrino oscillation. As was also shown in Table 14.1, experiments are designed with different baselines because of the different scale of mass splittings found by solar and atmospheric neutrino experiments. Experiments with $\mathrm{O}(100) \mathrm{km}$ baseline are
sensitive to Δm^{2} of $10^{-4}-10^{-5} \mathrm{eV}^{2}$, while $\sim 1 \mathrm{~km}$ of baseline results in a sensitivity in a range of $10^{-2}-10^{-3} \mathrm{eV}^{2}$.

The KamLAND detector consists of $1,000 \mathrm{t}$ of ultra-pure liquid scintillator contained in a $13-\mathrm{m}$ diameter spherical balloon [148]. The detector is located in the original Kamiokande cavern, where the $\bar{\nu}_{e}$ flux was dominated by a few reactors at an average distance of $\sim 180 \mathrm{~km}$ until 2011. KamLAND reported the first results in 2002 showing that the ratio of the observed number of $\bar{\nu}_{e}$ events and expectation without disappearance is $0.611 \pm 0.085 \pm 0.041$, evidence for reactor $\bar{\nu}_{e}$ disappearance at the 99.95% confidence level [148]. It confirmed a large value of the mixing angle corresponding to the LMA solution, which was reported by solar neutrino experiments. It is noted that there is a $\sim 2 \sigma$ level tension between the global solar neutrino data and KamLAND reactor data regarding the best-fit value of Δm^{2}, while the mixing angle is consistent. KamLAND also showed the evidence of $\bar{\nu}_{e}$ spectrum distortion consistent with the expectation from neutrino oscillations [149]. Figure 14.7 shows the ratio of observed $\bar{\nu}_{e}$ spectrum to the expectation for no-oscillation as a function of $L_{0} / E\left(L_{0}=\right.$ 180 km) for the KamLAND data. A clear oscillatory signature can be seen.

Figure 14.7: Ratio of the observed $\bar{\nu}_{e}$ spectrum to the expectation for no-oscillation versus L_{0} / E for the KamLAND data. L_{0} $=180 \mathrm{~km}$ is the flux-weighted average reactor baseline. The 3ν histogram is the best-fit survival probability curve from the three-flavour unbinned maximum-likelihood analysis using only the KamLAND data. This figure is taken from [150].

Following the establishment of neutrino oscillations with atmospheric, solar, accelerator, and reactor experiments, the measurement of the remaining mixing angle θ_{13} was recognized as the next major milestone. A reactor neutrino experiment with a baseline of $\sim 1 \mathrm{~km}$ can make an almost pure measurement of $\sin ^{2} 2 \theta_{13}$ from disappearance of $\bar{\nu}_{e}$. To be sensitive to a small value below the limit set by CHOOZ and Palo Verde, experiments with two detectors were proposed. Among several proposals, three experiments have been realized: Double Chooz in France [151], Daya Bay in China [152], and RENO in Korea [153].

These three experiments employ similar detector design optimized for the precise measurement of reactor antineutrino. An antineutrino detector consists of a cylindrical stainless steel vessel that houses two nested acrylic cylindrical vessels. The innermost vessel is filled with gadolinium-doped liquid scintillator as the primary antineutrino target. It is surrounded by a liquid scintillator layer to contain γ rays from the target volume. A buffer layer of mineral oil is placed an outside to shield inner volumes from radioactivity of PMTs and surrounding rock. The light from liquid scintillator is detected by an array of PMTs mounted on the stainless steel vessel. Optically separated by the stainless steel vessel, outside region is instrumented as a veto detector with either liquid scintillator (Double Chooz) or water Cherenkov (Daya Bay and RENO) detector.

The Double Chooz detector has gadolinium-doped liquid scintillator with mass of 8.3 t . The far detector at a baseline of $\sim 1050 \mathrm{~m}$ from the two $4.25 \mathrm{GW}_{\text {th }}$ reactors started physics data taking in

Figure 14.8: Energy spectra for prompt events at the far detectors for Daya Bay [139], RENO [140], and Double Chooz [141].
2011. The near detector, located at $\sim 400 \mathrm{~m}$ from the reactors, was completed in the end of 2014. Double Chooz finished data taking in early 2018. Daya Bay has two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls near six reactors with $2.9 \mathrm{GW}_{\text {th }}$ each. Daya Bay has eight antineutrino detectors in total; two detectors in each of the near detector halls, and four detectors in the far detector hall. Each detector contains 20 t of gadolinium-loaded liquid scintillator. RENO has two identical detectors located at 294 m and 1383 m from the center of an array of six $2.8 \mathrm{GW}_{\mathrm{th}}$ reactors. The mass of gadolinium-loaded liquid scintillator is 16 t per detector. RENO started data taking with both near and far detectors from August 2011.

All the three reactor neutrino experiments published first results in 2012. First, Double Chooz reported an indication of reactor electron antineutrino disappearance with the ratio of observed to expected events of $R=0.944 \pm 0.016 \pm 0.04$, ruling out the no-oscillation hypothesis at the 94.6% CL [154]. Daya Bay observed $R=0.940 \pm 0.011 \pm 0.004$, corresponding to 5.2σ significance of non-zero value of θ_{13} [155]. RENO also reported $R=0.920 \pm 0.009 \pm 0.014$, indicating a non-zero value of θ_{13} with a significance of 4.9σ [156]. These results established non-zero value of θ_{13}.

In the latest analysis, both Daya Bay [139] and RENO [140] report results constraining mass-squared difference as well as the mixing angle by using both relative $\bar{\nu}_{e}$ rate and energy spectra information. Double Chooz has reported the first analysis based on both far and near detectors [141] for the mixing angle, using neutron capture on any elements (primarily gadolinium and hydrogen) to increase the effective target mass. Figure 14.8 shows the energy spectra of the prompt signals observed in the far detector of three experiments.

In all three experiments as well as in the NEOS experiment [142], an excess of $\bar{\nu}_{e}$ events over expected energy spectrum have been observed around 5 MeV as mentioned earlier. This excess is observed in both near and far detectors and scales with the reactor power. Thanks to the cancellation between the near and far detectors, the neutrino oscillation measurements are not affected in multi-detector setup.

With a baseline of $\sim 50 \mathrm{~km}$ and an excellent energy measurement, reactor antineutrino experiments have significant sensitivity to the mass ordering. The JUNO experiment [157] aims to determine the mass ordering with this technique as its primary goal. It can also provide precision measurements of neutrino mixing parameters as well as a broad non-oscillation science program. The JUNO detector, which is under construction, will consist of 20 kt

Table 14.5: List of reactor antineutrino experiments for $\mathrm{O}\left(\mathrm{eV}^{2}\right)$ oscillations

Name	Reactor power $\left(\mathrm{MW}_{\mathrm{th}}\right)$	Baseline (m)	Detector mass (t)	Detector technology	S / B
NEOS	2,800	24	1	Gd-LS	22
DANSS	3,100	$10-12$	0.9	Gd-PS	~ 30
STEREO	57	$9-11$	1.7	Gd-LS	0.9
PROSPECT	85	$7-9$	4	${ }^{6} \mathrm{Li}-\mathrm{LS}$	1.3
NEUTRINO-4	100	$6-12$	1.5	Gd-LS	0.5
SoLid	80	$6-9$	1.6	${ }^{6} \mathrm{Li-PS}$	

liquid scintillator and be located at 53 km from two nuclear power plants in China.
14.6.4.3 New reactor experiments sensitive to $O(1) \mathrm{eV}^{2}$ oscillations

Possible hints of neutrino oscillation at a scale of $\Delta m^{2} \sim 1 \mathrm{eV}^{2}$ (see Sec.14.8) have motivated reactor experiments at a distance of $\sim 10 \mathrm{~m}$ from the core. Recent experiments searching for $\sim 1 \mathrm{eV}^{2}$ oscillation at reactors are summarized in Table 14.5.

As the antineutrino source, some use industrial reactors which can provide a large flux leading to a high statistical precision. On the other hand, though the flux is orders of magnitude smaller, a research reactor could have favorable conditions, such as relatively easier access to a short baseline, simpler fuel composition, and compact size of the core.

The detectors are based on organic scintillators, either liquid scintillator (LS) or solid plastic scintillator (PS), which contain hydrogen as the target for inverse beta decay ($\bar{\nu}_{e}+p \rightarrow e^{+}+n$). To identify the signal, neutron capture on either gadolinium (Gd) or ${ }^{6} \mathrm{Li}$ is detected with delayed coincidence. When a neutron is captured by Gd, γ rays with a total energy of 8 MeV are emitted. After neutron capture, ${ }^{6} \mathrm{Li}$ decays into triton and α. The effect of neutrino oscillation appears as a distortion of energy spectrum. To be independent from the reactor neutrino spectrum uncertainties, some experiments compare the spectra at different baselines by using a segmented detector or moving the detector.

The NEOS [142] uses about 1 t of gadolinium-loaded liquid scintillator in an unsegmented detector. It is located at 23.7 m from the center of a commercial reactor and covered by an overburden of about 20 meters of water equivalent. Thanks to the high power reactor, NEOS observes antineutrino events at a rate of 1976 per day, with a signal to background ratio of about 22 . The energy resolution is 5% at 1 MeV .

DANSS [158] is another experiment using a commercial reactor. The detector is highly segmented, consisting of 2,500 plastic scintillator strips, each with the size of $1 \times 4 \times 100 \mathrm{~cm}^{3}$ and coated with a thin gadolinium-loaded reflective layer. The detector is placed on a movable platform below the reactor core. The overburden of 50 m water-equivalent reduces the cosmic muon flux by a factor of six. Data are taken with three baselines, $10.7,11.7$, and 12.7 m for a comparison between different baselines. The energy resolution of $\sigma_{E} / E \sim 34 \%$ at 1 MeV and the large size of the reactor core, 3.7 m in height and 3.2 m in diameter, somewhat smear the oscillation pattern. However it is compensated by high statistics due to the high power reactor. The observed event rate is 4899 events per day, with less than 3% cosmic background contamination, at 10.7 m position.

The STEREO detector [159] has six identical target cells of 37 cm length, $\sim 2 \mathrm{~m}^{3}$ of volume in total, filled with gadolinium-loaded liquid scintillator. They are placed from 9.4 to 11.1 m from the compact (80 cm high, 40 cm diameter) core of the ILL research reactor. The reconstructed energy resolution $\left(\sigma_{E} / E\right)$ is about 9% at 0.835 MeV . The antineutrino event rate is 396 events per day with a signal to background ratio of about 0.9 .
The PROSPECT detector [160] consists of a segmented 4 t ${ }^{6}$ Li-doped liquid scintillator detector covering a baseline range of $7-9 \mathrm{~m}$ from the reactor core. Thin reflecting panels divide the LS volume into an 11×14 two-dimensional array of 154 optically isolated rectangular segments $\left(14.5 \times 14.5 \times 117.6 \mathrm{~cm}^{3}\right)$. The energy resolution is 4.5% at 1 MeV . The detector is placed on the ground floor with an overburden of less than 1 m water-equivalent. With
efficient background suppression by using pulse shape discrimination and 3D position reconstruction, a signal to background ratio of 1.3 is achieved. The antineutrino rate is 771 events per day.

NEUTRINO-4 [161] uses a gadolinium-loaded liquid scintillator detector segmented in 10×5 sections with a total volume of 1.8 m^{3}. The detector is installed on a movable platform and moved to various positions with baselines of $6-12 \mathrm{~m}$. With the detector location close to the surface and no pule shape discrimination capability, the signal to background ratio is about 0.5. The energy resolution is 16% at 1 MeV .

The SoLid detector [162] is a finely segmented detector made of $5 \times 5 \times 5 \mathrm{~cm}^{3}$ plastic scintillator cubes and ${ }^{6} \mathrm{LiF}: \mathrm{ZnS}$ sheets. A detector with 1.6 t of active volume is installed at a distance of 6-9 m from the research reactor core with an overburden of 10 m waterequivalent. The triton and α from neutron capture by ${ }^{6} \mathrm{Li}$ are detected by scintillation of ZnS . A high $n-\gamma$ separation capability is achieved using the difference of time constant of scintillation between ZnS and plastic scintillator. Very fine segmentation of the detector allows 3D reconstruction of events, which also provide effective background discrimination. The energy resolution $\left(\sigma_{E} / E\right)$ is expected to be $\sim 14 \%$ at 1 MeV .

14.7 Combined Analysis of Experimental Results: The 3ν Paradigm

From the experimental situation described in Sec.14.6 we conclude that

- Atmospheric ν_{μ} and $\bar{\nu}_{\mu}$ disappear most likely converting to ν_{τ} and $\bar{\nu}_{\tau}$. The results show an energy and distance dependence perfectly described by mass-induced oscillations.
- Accelerator ν_{μ} and $\bar{\nu}_{\mu}$ disappear over distances of ~ 200 to 800 km . The energy spectrum of the results show a clear oscillatory behaviour also in accordance with mass-induced oscillations with wavelength in agreement with the effect observed in atmospheric neutrinos.
- Accelerator ν_{μ} and $\bar{\nu}_{\mu}$ appear as ν_{e} and $\bar{\nu}_{e}$ at distances \sim 200 to 800 km .
- Solar ν_{e} convert to ν_{μ} and/or ν_{τ}. The observed energy dependence of the effect is well described by massive neutrino conversion in the Sun matter according to the MSW effect
- Reactor $\bar{\nu}_{e}$ disappear over distances of $\sim 200 \mathrm{~km}$ and ~ 1.5 km with different probabilities. The observed energy spectra show two different mass-induced oscillation wavelengths: at short distances in agreement with the one observed in accelerator ν_{μ} disappearance, and a long distance compatible with the required parameters for MSW conversion in the Sun.

The minimum scenario to describe these results requires the mixing between the three flavour neutrinos of the standard model in three distinct mass eigenstates. In this case U in Eq. (14.32) is a 3×3 matrix analogous to the CKM matrix for the quarks [21] but due to the possible Majorana nature of the neutrinos it can depend on six independent parameters: three mixing angles and three phases. There are several possible conventions for the ranges of the angles and ordering of the states. The community finally agreed to a parametrization of the leptonic mixing matrix as in Eq. (14.33). The angles $\theta_{i j}$ can be taken without loss of generality to lie in the first quadrant, $\theta_{i j} \in[0, \pi / 2]$, and the phase $\delta_{\mathrm{CP}} \in[0,2 \pi]$. Values of δ_{CP} different from 0 and π imply CP violation in neutrino oscillations in vacuum [163-165]. The Majorana phases η_{1} and η_{2} play no role in neutrino oscillations [164, 166].

Hence for the study of neutrino oscillations in the 3ν mixing scenario one can use the parametrization in Eq. (14.34) irrespective of whether neutrinos are Dirac or Majorana particles. Indeed, Majorana phases are very hard to measure since they are only physical if neutrino mass is non-zero and therefore the amplitude of any process involving them is suppressed a factor m_{ν} / E to some power where E is the energy involved in the process which is typically much larger than the neutrino mass. The most sensitive experimental probe of Majorana phases is the rate of neutrinoless $\beta \beta$ decay as discussed in Secs. 14.9.3 and 14.9.2.

In this convention there are two non-equivalent orderings for the spectrum of neutrino masses:

- Spectrum with Normal Ordering (NO) with $m_{1}<m_{2}<m_{3}$
- Spectrum Inverted ordering (IO) with $m_{3}<m_{1}<m_{2}$.

Furthermore the data show a hierarchy between the mass splittings, $\Delta m_{21}^{2} \ll\left|\Delta m_{31}^{2}\right| \simeq\left|\Delta m_{32}^{2}\right|$ with $\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}$.

In this section we follow the convention used in the listing section of the PDG and discuss the results for both, NO and IO, using Δm_{21}^{2}, which is always the smallest mass splitting, and Δm_{32}^{2} which, up to a sign, is the largest mass splitting for IO, while for NO the largest mass splitting is $\Delta m_{31}^{2}=\Delta m_{32}^{2}+\Delta m_{21}^{2}$.

With what we know of the mass differences (see table 14.7) and the neutrino mass scale (see Sec. 14.9), depending on the value of the lightest neutrino mass, the neutrino mass spectrum can be further classified in:

- Normal Hierarchical Spectrum (NH): $m_{1} \ll m_{2}<m_{3}$,

$$
\begin{aligned}
& \Rightarrow m_{2} \simeq \sqrt{\Delta m_{21}^{2}} \sim 8.6 \times 10^{-3} \mathrm{eV}, m_{3} \simeq \sqrt{\Delta m_{32}^{2}+\Delta m_{21}^{2}} \sim \\
& 0.05 \mathrm{eV}
\end{aligned}
$$

- Inverted Hierarchical Spectrum (IH): $m_{3} \ll m_{1}<m_{2}$,

$$
\Rightarrow m_{1} \simeq \sqrt{\left|\Delta m_{32}^{2}+\Delta m_{21}^{2}\right|} \sim 0.0492 \mathrm{eV}, m_{2} \simeq \sqrt{\left|\Delta m_{32}^{2}\right|} \sim
$$

$$
0.05 \mathrm{eV}
$$

- Quasidegenerate Spectrum (QD): $m_{1} \simeq m_{2} \simeq m_{3} \gg$ $\sqrt{\left|\Delta m_{32}^{2}\right|}$.

Sometimes in the literature the determination of the neutrino mass spectrum is refered to as determination of the neutrino hierarchy. However, as described above, with what we know so far of the neutrino mass scale, the neutrino spectrum may or may not be hierarchical. Therefore determination of neutrino mass ordering is a more precise expression and it is the one used in this review.

In total the $3-\nu$ oscillation analysis of the existing data involves six parameters: 2 mass differences (one of which can be positive or negative), 3 mixing angles, and the CP phase. The different experiments described in Sec.14.6 provide information on different subsets of these parameters. The precise statistical analysis of the data requires the numerical evaluation of the corresponding oscillation probabilities by solving the evolution equation of the neutrino ensemble from their source to the experiment. Nevertheless the dominant effects in the different experiments can be qualitatively understood in terms of approximate expressions for the oscillation probabilities which, for convenience, we briefly summarize here

14.7.1 3 3 Oscillation Probabilities

The relevant survival probabilities for solar and KamLAND experiments in the framework of three neutrino oscillations can be written as:

$$
\begin{equation*}
P_{e e}^{3 \nu}=\sin ^{4} \theta_{13}+\cos ^{4} \theta_{13} P_{e e}^{2 \nu}\left(\Delta m_{21}^{2}, \theta_{12}\right) \tag{14.72}
\end{equation*}
$$

where we have used the fact that $L_{0,32}^{\mathrm{osc}}=4 \pi E_{\nu} / \Delta m_{32}^{2}$ is much shorter than the distance travelled by both solar and KamLAND neutrinos, so that the oscillations related to $L_{0,32}^{\mathrm{osc}}$ are averaged. In presence of matter effects $P_{e e}^{2 \nu}\left(\Delta m_{21}^{2}, \theta_{12}\right)$ should be calculated taking into account the evolution in an effective matter density $n_{e}^{\text {eff }}=n_{e} \cos ^{2} \theta_{13}$. For $10^{-5} \lesssim \Delta m^{2} / \mathrm{eV}^{2} \lesssim$
$10^{-4}, P_{e e}^{2 \nu}\left(\Delta m_{21}^{2}, \theta_{12}\right)$ presents the following asymptotic behaviours [167]:

$$
\begin{array}{ll}
P_{e e}^{2 \nu, \text { sun }} \simeq 1-\frac{1}{2} \sin ^{2}\left(2 \theta_{12}\right) & \text { for } E_{\nu} \lesssim \text { few } \times 100 \mathrm{keV} \\
P_{e e}^{2 \nu, \text { sun }} \simeq \sin ^{2}\left(\theta_{12}\right) & \text { for } E_{\nu} \gtrsim \text { few } \times 1 \mathrm{MeV} \tag{14.74}
\end{array}
$$

$$
\begin{equation*}
P_{e e}^{2 \nu, \mathrm{kam}}=1-\frac{1}{2} \sin ^{2}\left(2 \theta_{12}\right) \sin ^{2} \frac{\Delta m_{21}^{2} L}{2 E_{\nu}} \tag{14.75}
\end{equation*}
$$

At present most of the precision of the solar analysis is provided by SNO and SK for which the relevant MSW survival probability provides a direct measurement of $\sin ^{2} \theta_{12}$, as seen in Eq. (14.74). In the MSW regime the determination of Δm_{21}^{2} in solar experiments comes dominantly from the ratio between the solar potential and the Δm_{21}^{2} term required to simultaneously describe the $\mathrm{CC} / \mathrm{NC}$ data at SNO and the undistorted spectra of ${ }^{8} \mathrm{~B}$ neutrinos as measured in both SK and SNO. Conversely, KamLAND $\bar{\nu}_{e}$ survival probability proceeds dominantly as vacuum oscillations and provides a most precise determination of Δm_{21}^{2} via the strong effect of the oscillating phase in the distortion of the reactor energy spectrum. On the contrary it yields a weaker constraint on θ_{12} as the vacuum oscillation probability depends on the double-valued and "flatter" function $\sin ^{2}\left(2 \theta_{12}\right)$.

In what respects the interpretation of ν_{μ} disappearance data at LBL experiments, the ν_{μ} survival probability can be expanded in the small parameters $\sin \theta_{13}$ and $\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2}$ to good accuracy as $[168,169]$

$$
\begin{align*}
P_{\nu_{\mu} \rightarrow \nu_{\mu}} & \approx 1-\sin ^{2} 2 \theta_{\mu \mu} \sin ^{2} \frac{\Delta m_{\mu \mu}^{2} L}{4 E_{\nu}} \\
& \approx 1-\cos ^{2} \theta_{13} \sin ^{2}\left(2 \theta_{23}\right) \sin ^{2} \frac{\Delta m_{32}^{2} L}{4 E_{\nu}}+\mathcal{O}\left(\alpha, s_{13}^{2}\right) \tag{14.76}
\end{align*}
$$

with

$$
\begin{aligned}
\sin ^{2} \theta_{\mu \mu}= & \cos ^{2} \theta_{13} \sin ^{2} \theta_{23} \\
\Delta m_{\mu \mu}^{2}= & \sin ^{2} \theta_{12} \Delta m_{31}^{2}+\cos ^{2} \theta_{12} \Delta m_{32}^{2} \\
& +\cos \delta_{\mathrm{CP}} \sin \theta_{13} \sin 2 \theta_{12} \tan \theta_{23} \Delta m_{21}^{2}
\end{aligned}
$$

At present ν_{μ} disappearance results at LBL provide the best determination of $\left|\Delta m_{32}^{2}\right|$ and θ_{23} but as seen above, the probability is symmetric with respect to the octant of $\theta_{\mu \mu}$ which implies symmetry around $s_{23}^{2}=0.5 / c_{13}^{2}$.

The relevant oscillation probability for ν_{e} appearance at LBL experiments can be expanded at the second order in the small parameters $\sin \theta_{13}$ and α, and assuming a constant matter density it takes the form [170-172]:

$$
\begin{align*}
& P_{\nu_{\mu} \rightarrow \nu_{e},\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)} \approx 4 \sin ^{2} \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \Delta}{(1-A)^{2}} \\
&+\alpha^{2} \sin ^{2} 2 \theta_{12} \cos ^{2} \theta_{23} \frac{\sin ^{2} A \Delta}{A^{2}} \\
&+8 \alpha J_{\mathrm{CP}}^{\max } \cos \left(\Delta \pm \delta_{\mathrm{CP}}\right) \frac{\sin \Delta A}{A} \frac{\sin \Delta(1-A)}{1-A} \tag{14.77}
\end{align*}
$$

with

$$
\begin{equation*}
J_{\mathrm{CP}}^{\max }=\cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \cos ^{2} \theta_{13} \sin \theta_{13} \tag{14.78}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \equiv \frac{\Delta m_{31}^{2} L}{4 E_{\nu}}, \quad A \equiv \frac{2 E_{\nu} V}{\Delta m_{31}^{2}} \tag{14.79}
\end{equation*}
$$

where V is the effective matter potential in the Earth crust. Results on ν_{e} appearance at LBL provide us with the dominant information on leptonic CP violation. Furthermore α, Δ, and A are sensitive to the sign of Δm_{32}^{2} (i.e., the type of the neutrino mass ordering). The plus (minus) sign in Eq. (14.77) applies for
neutrinos (antineutrinos), and for antineutrinos $V \rightarrow-V$, which implies $A \rightarrow-A$. Numerically one finds for a typical Earth crust matter density of $3 \mathrm{~g} / \mathrm{cm}^{3}$ that at T2K with $E \sim 0.7 \mathrm{GeV}$, matter effects are of order few percent, whereas in NOvA with $E \sim 2 \mathrm{GeV}$ we can have $|A| \sim 0.2$. Also $\alpha^{2} \approx 10^{-3}$, which implies that the second term in the first line of Eq. (14.77) gives a very small contribution compared to the other terms. Also, the first term in Eq. (14.77) (which dominates for large θ_{13}) depends on $\sin ^{2} \theta_{23}$ and therefore is sensitive to the octant.
The ν_{e} survival probability relevant for reactor experiments with medium baseline (MBL), $L \sim 1 \mathrm{~km}$, can be approximated as [169, 173]:

$$
\begin{equation*}
P_{\nu_{e} \rightarrow \nu_{e}}=1-\sin ^{2} 2 \theta_{13} \sin ^{2} \frac{\Delta m_{e e}^{2} L}{4 E_{\nu}}+\mathcal{O}\left(\alpha^{2}\right) \tag{14.80}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta m_{e e}^{2}=\cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2} \tag{14.81}
\end{equation*}
$$

These MBL reactor experiments provide the most precise determination of θ_{13}. Furthermore there is an additional effect sensitive to the mass ordering when comparing the disappearance of ν_{μ} at LBL experiments - which is symmetric with respect to the sign of $\Delta m_{\mu \mu}^{2}$ given in Eq.(14.7.1)- , with that of ν_{e} disappearance at MBL reactors which is symmetric with respect to the slightly different effective mass-squared difference $\Delta m_{e e}^{2}$ given in Eq. (14.81)

Finally for atmospheric neutrinos the fluxes contain $\nu_{e}, \nu_{\mu}, \bar{\nu}_{e}$ and $\bar{\nu}_{\mu}$ and for a good fraction of the events, neutrinos travel through the Earth matter. In the context of 3ν mixing, the dominant oscillation channel of atmospheric neutrinos is $\nu_{\mu} \rightarrow \nu_{\tau}$ driven by $\left|\Delta m_{32}^{2}\right|$ with an amplitude controlled by θ_{23} with subleading oscillation modes, triggered by Δm_{21}^{2} and/or θ_{13}, which depend on the octant of θ_{23}, on the mass ordering and on δ_{CP}. In that respect an interesting observable is the deviation of e-like events relative to the no-oscillation prediction N_{e}^{0}, since in the two-flavour limit one expects $N_{e}=N_{e}^{0}$. Such deviation can be written in the following way (see, e.g., [174]):

$$
\begin{align*}
\frac{N_{e}}{N_{e}^{0}}-1 & \approx\left(r \sin ^{2} \theta_{23}-1\right) P_{2 \nu}\left(\Delta m_{32}^{2}, \theta_{13}\right) \\
& +\left(r \cos ^{2} \theta_{23}-1\right) P_{2 \nu}\left(\Delta m_{21}^{2}, \theta_{12}\right) \tag{14.82}\\
& -\sin \theta_{13} \sin 2 \theta_{23} r \Re\left(A_{e e}^{*} A_{\mu e}\right)
\end{align*}
$$

Here $r \equiv \Phi_{\mu} / \Phi_{e}$ is the flux ratio with $r \approx 2$ in the sub-GeV range and $r \approx 2.6 \rightarrow 4.5$ in the multi- GeV range. $P_{2 \nu}\left(\Delta m^{2}, \theta\right)$ is an effective two-flavour oscillation probability and $A_{e e}, A_{\mu e}$ are elements of a transition amplitude matrix. The three terms appearing in Eq. (14.82) have a well defined physical interpretation. The first term is important in the multi- GeV range and is controlled by the mixing angle θ_{13} in $P_{2 \nu}\left(\Delta m_{32}^{2}, \theta_{13}\right)$. This probability can be strongly affected by resonant matter effects [175-180]. Depending on the mass ordering the resonance will occur either for neutrinos or antineutrinos. The second term is important for sub-GeV events and it takes into account the effect of oscillations due to Δm_{21}^{2} and θ_{12} [181-184]. Via the pre-factor containing the flux ratio r both, the first and second terms in Eq. (14.82) depend on the octant of θ_{23}, though in opposite directions: the multi-GeV (sub-GeV) excess is suppressed (enhanced) for $\theta_{23}<45^{\circ}$. Finally, the last term in Eq. (14.82) is an interference term between θ_{13} and Δm_{21}^{2} amplitudes and this term shows also dependence on the CP phase $\delta_{\mathrm{CP}}[174,184]$.

Subdominant three neutrino effects can also affect μ-like events. For example for multi- GeV muon events one can write the excess in μ-like events as $[185,186]$

$$
\begin{align*}
\frac{N_{\mu}}{N_{\mu}^{0}}-1 & \approx \sin ^{2} \theta_{23}\left(\frac{1}{r}-\sin ^{2} \theta_{23}\right) P_{2 \nu}\left(\Delta m_{32}^{2}, \theta_{13}\right) \tag{14.83}\\
& -\frac{1}{2} \sin ^{2} 2 \theta_{23}\left[1-\Re\left(A_{33}\right)\right]
\end{align*}
$$

The first term is controlled by θ_{13} and is subject to resonant matter effects, similar to the first term in Eq. (14.82), though with a different dependence on θ_{23} and the flux ratio. In the second term,
A_{33} is a probability amplitude satisfying $P_{2 \nu}\left(\Delta m_{32}^{2}, \theta_{13}\right)=1-$ $\left|A_{33}\right|^{2}$. In the limit $\theta_{13}=0$ we have $\Re\left(A_{33}\right)=\cos \left(\Delta m_{32}^{2} L / 2 E\right)$, such that the second term in Eq. (14.83) just describes two-flavour $\nu_{\mu} \rightarrow \nu_{\mu}$ vacuum oscillations.

14.7.2 3ν Oscillation Analysis

We summarize in Table 14.6 the different experiments which dominantly contribute to the present determination of the different parameters in the chosen convention.

The table illustrates that the determination of the leptonic parameters requires global analysis of the data from the different experiments. Over the years these analyses have been in the hands of a few phenomenological groups. We show in Table 14.7 the results from the latest analyses in Refs. [187-190]. For the sake of comparison all results are presented in the convention of the listing section as described above.

The table illustrates the dependence of the present determination of the parameters on variations of the statistical analysis performed by the different groups and on the data samples included. In that last respect the main difference resides on the results from Super-Kamiokande atmospheric data [94] which, at present, can only be included in these analysis by directy adding the χ^{2} tabulated χ^{2} map provided by the experiment.

Altogether the different analysis find consistent results, in particular on the better known parameters, θ_{12}, θ_{13} and Δm_{21}^{2} and $\left|\Delta m_{32}^{2}\right|$. The issues which still require clarification are: the mass ordering discrimination, the determination of θ_{23} and the leptonic CP phase δ_{CP} :

- In all analyses the best fit is for the normal mass ordering. Inverted ordering is disfavoured with a $\Delta \chi^{2}$ which ranges from slightly above 2σ - driven by the interplay of long-baseline accelerator and short-baseline reactor data - to 3σ when adding the atmospheric χ^{2} table from Ref. [94].
- All analyses find some preference for the second octant of θ_{23} but with statistical significance still well below 3σ.
- The best fit for the complex phase in NO is at $\delta_{\mathrm{CP}} \sim 120^{\circ}$ but CP conservation (for $\delta_{\mathrm{CP}} \sim 180^{\circ}$) is still allowed at a confidence level (CL) of 1-2 σ. We notice that, at present, the significance of CP violation in the global analysis is reduced with respect to that reported by T2K [191] because NOvA data does not show a significant indication of CP violation.

14.7.3 Convention-independent Measures of Leptonic CP Violation in 3 3 Mixing

In the framework of 3ν mixing leptonic CP violation can also be quantified in terms of the leptonic Jarlskog invariant [192], defined by:

$$
\begin{align*}
\Im\left[U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right] & \equiv \sum_{\gamma=e, \mu, \tau} \sum_{k=1,2,3} J_{\mathrm{CP}} \epsilon_{\alpha \beta \gamma} \epsilon_{i j k} \tag{14.84}\\
& \equiv J_{\mathrm{CP}}^{\max } \sin \delta_{\mathrm{CP}}
\end{align*}
$$

With the convention in Eq. (14.33) $J_{\mathrm{CP}}^{\mathrm{max}}$ is the combination of mixing angles in Eq. (14.78). For example from the analysis in Ref. [187, 188]

$$
\begin{equation*}
J_{\mathrm{CP}}^{\max }=0.03359 \pm 0.0006(\pm 0.0019) \tag{14.85}
\end{equation*}
$$

at $1 \sigma(3 \sigma)$ for both orderings, and the preference of the present data for non-zero δ_{CP} implies a non-zero best fit value $J_{\mathrm{CP}}^{\mathrm{best}}=$ -0.019.

The status of the determination of leptonic CP violation can also be graphically displayed by projecting the results of the global analysis in terms of leptonic unitarity triangles [193-195]. Since in the analysis U is unitary by construction, any given pair of rows or columns can be used to define a triangle in the complex plane. There a total of six possible triangles corresponding to the unitary conditions

$$
\begin{equation*}
\sum_{i=1,2,3} U_{\alpha i} U_{\beta i}^{*}=0 \text { with } \alpha \neq \beta, \quad \sum_{\alpha=e, \mu, \tau} U_{\alpha i} U_{\alpha j}^{*}=0 \text { with } i \neq j . \tag{14.86}
\end{equation*}
$$

Table 14.6: Experiments contributing to the present determination of the oscillation parameters.

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m_{21}^{2}, \theta_{13}$
Reactor LBL (KamLAND)	Δm_{21}^{2}	θ_{12}, θ_{13}
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$\theta_{13},\left\|\Delta m_{31,32}^{2}\right\|$	
Atmospheric Experiments (SK, IC-DC)		$\theta_{23},\left\|\Delta m_{31,32}^{2}\right\|, \theta_{13}, \delta_{\mathrm{CP}}$
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO $\left.\nu \mathrm{A}\right)$	$\left\|\Delta m_{31,32}^{2}\right\|, \theta_{23}$	
Accel LBL $\nu_{e}, \bar{\nu}_{e}$ App (MINOS, T2K, NO $\left.\nu \mathrm{A}\right)$	δ_{CP}	θ_{13}, θ_{23}

Table 14.7: 3ν oscillation parameters obtained from different global analysis of neutrino data. In all cases the numbers labeled as NO (IO) are obtained assuming NO (IO), i.e., relative to the respective local minimum. SK-ATM makes reference to the tabulated χ^{2} map from the Super-Kamiokande analysis of their data in Ref. [94].

	Ref. [188]	w/o SK-ATM	Ref. [188	v SK-ATM	Ref. [189]	w SK-ATM	Ref. [190]	, SK-ATM
NO	Best Fit Ordering							
Param	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
$\frac{\sin ^{2} \theta_{12}}{10^{-1}}$	$3.10_{-0.12}^{+0.13}$	$2.75 \rightarrow 3.50$	$3.10_{-0.12}^{+0.13}$	$2.75 \rightarrow 3.50$	$3.04{ }_{-0.13}^{+0.14}$	$2.65 \rightarrow 3.46$	$3.20_{-0.16}^{+0.20}$	$2.73 \rightarrow 3.79$
$\theta_{12} /{ }^{\circ}$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$	$33.46_{-0.88}^{+0.87}$	$30.98 \rightarrow 36.03$	$34.5_{-1.0}^{+1.2}$	$31.5 \rightarrow 38.0$
$\sin ^{2} \theta_{23}$	$5.58{ }_{-0.33}^{+0.20}$	$4.27 \rightarrow 6.09$	$5.63{ }_{-0.24}^{+0.18}$	$4.33 \rightarrow 6.09$	$5.51{ }_{-0.80}^{+0.19}$	$4.30 \rightarrow 6.02$	$5.47_{-0.30}^{+0.20}$	$4.45 \rightarrow 5.99$
$\theta_{23} /$	$48.3_{-1.9}^{+1.2}$	$40.8 \rightarrow 51.3$	$48.6_{-1.4}^{+1.0}$	$41.1 \rightarrow 51.3$	$47.9_{-4.0}^{+1.1}$	$41.0 \rightarrow 50.9$	$47.7_{-1.7}^{+1.2}$	$41.8 \rightarrow 50.7$
$\sin ^{2} \theta_{13}$	$2.241_{-0.065}^{+0.066}$	$2.046 \rightarrow 2.440$	$2.237_{-0.065}^{+0.066}$	$2.044 \rightarrow 2.435$	$2.144_{-0.07}^{+0.09}$	$1.90 \rightarrow 2.39$	$2.160_{-0.069}^{+0.083}$	$1.96 \rightarrow 2.41$
$\theta_{13} /{ }^{\circ}$	$8.61{ }_{-0.13}^{+0.13}$	$8.22 \rightarrow 8.99$	$8.60_{-0.13}^{+0.13}$	$8.22 \rightarrow 8.98$	$8.41_{-0.14}^{+0.18}$	$7.9 \rightarrow 8.9$	$8.45{ }_{-0.14}^{+0.16}$	$8.0 \rightarrow 8.9$
$\delta_{\mathrm{CP}} /$	222_{-28}^{+38}	$141 \rightarrow 370$	221_{-28}^{+39}	$144 \rightarrow 357$	$238{ }_{-33}^{+41}$	$149 \rightarrow 358$	$218{ }_{-27}^{+38}$	$157 \rightarrow 349$
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{VV}^{2}}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.34_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\begin{aligned} & 10^{-5} \mathrm{eV}^{2} \\ & \frac{\Delta m_{32}^{2}}{10^{-3} \mathrm{eV}^{2}} \end{aligned}$	$7.39_{-0.20}^{0.20}$ $2.449_{-0.030}^{+0.032}$	$2.358 \rightarrow 2.544$	$7.34_{-0.20}^{0.20}$ $2.454_{-0.031}^{+0.029}$	$2.362 \rightarrow 2.544$	$.34_{-0.14}$ $2.419_{-0.032}^{+0.035}$	$2.319 \rightarrow 2.521$	2. 2.424 ± 0.0	. $334 \rightarrow 2.524$
IO	$\Delta \chi^{2}=6.2$		$\Delta \chi^{2}=10.4$		$\Delta \chi^{2}=9.5$		$\Delta \chi^{2}=11.7$	
$\frac{\sin ^{2} \theta_{12}}{10^{-1}}$	$3.10_{-0.12}^{+0.13}$	$2.75 \rightarrow 3.50$	$3.10_{-0.12}^{+0.13}$	$2.75 \rightarrow 3.50$	$3.03{ }_{-0.13}^{+0.14}$	$2.64 \rightarrow 3.45$	$3.20_{-0.16}^{+0.20}$	$2.73 \rightarrow 3.79$
$\theta_{12} /{ }^{\circ}$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$	$33.82_{-0.75}^{+0.78}$	$31.62 \rightarrow 36.27$	$33.40_{-0.81}^{+0.87}$	$30.92 \rightarrow 35.97$	$34.5_{-1.0}^{+1.2}$	$31.5 \rightarrow 38.0$
$\sin ^{2} \theta_{23}$	$5.63{ }_{-0.26}^{+0.19}$	$4.30 \rightarrow 6.12$	$5.65{ }_{-0.22}^{+0.17}$	$4.36 \rightarrow 6.10$	$5.57{ }_{-0.24}^{+0.17}$	$4.44 \rightarrow 6.03$	$5.51{ }_{-0.30}^{+0.18}$	$4.53 \rightarrow 5.98$
$\theta_{23} /^{\circ}$	$48.6_{-1.5}^{+1.1}$	$41.0 \rightarrow 51.5$	$48.8_{-1.2}^{+1.0}$	$41.4 \rightarrow 51.3$	$48.2_{-1.4}^{+1.0}$	$41.8 \rightarrow 50.9$	$47.9_{-1.7}^{+1.0}$	$42.3 \rightarrow 50.7$
$\frac{\sin ^{2} \theta_{13}}{10^{-2}}$	$2.261_{-0.064}^{+0.067}$	$2.066 \rightarrow 2.461$	$2.259_{-0.065}^{+0.065}$	$2.064 \rightarrow 2.457$	$2.188_{-0.07}^{+0.08}$	$1.95 \rightarrow 2.43$	$2.220_{-0.076}^{+0.074}$	$1.99 \rightarrow 2.44$
$\theta_{13} /{ }^{\circ}$	$\begin{gathered} 8.65_{-0.12}^{+0.13} \\ 285_{-26}^{+24} \end{gathered}$	$8.26 \rightarrow 9.02$	$\begin{gathered} 8.64_{-0.13}^{+0.12} \\ 282^{+23} \end{gathered}$	$8.26 \rightarrow 9.02$	$\begin{gathered} 8.49_{-0.14}^{+0.15} \\ .17+26 \end{gathered}$	$8.0 \rightarrow 9.0$	$\begin{gathered} 8.53_{-0.15}^{+0.14} \\ 281+23 \end{gathered}$	$8.1 \rightarrow 9.0$
$\delta_{\mathrm{CP}} /{ }^{\circ}$		$205 \rightarrow 354$		$205 \rightarrow 348$		$193 \rightarrow 346$		$202 \rightarrow 349$
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{~V}^{2}}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.34{ }_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\begin{gathered} 10^{-5} \mathrm{eV}^{2} \\ \frac{\Delta m_{32}^{2}}{10^{-3} \mathrm{eV}^{2}} \end{gathered}$	$-2.509_{-0.032}^{+0.032}-2.603 \rightarrow-2.416$		$-2.510_{-0.031}^{+0.030}-2.601 \rightarrow-2.419$		$-2.478_{-0.033}^{+0.035}-2.577 \rightarrow-2.37$		$-2.50 \pm_{-0.03}^{+0.04}-2.59 \rightarrow-2.39$	

As illustration we show in Fig. 14.9 the recasting of the allowed regions of the analysis in Ref. [187, 188] in terms of one leptonic unitarity triangle. We show the triangle corresponding to the unitarity conditions on the first and third columns (after the shown rescaling) which is the equivalent to the one usually shown for the quark sector. In this figure the absence of CP violation would imply a flat triangle, i.e., $\Im(z)=0$. So the CL at which leptonic CP violation is being observed would be given by the CL at which the region crosses the horizontal axis. Notice however, that this representation is made under the assumption of a unitary U matrix and therefore does not provide any test of unitarity in the leptonic sector.

Figure 14.9: Leptonic unitarity triangle for the first and third columns of the mixing matrix. After scaling and rotating the triangle so that two of its vertices always coincide with $(0,0)$ and $(1,0)$ the figure shows the $1 \sigma, 90 \%, 2 \sigma, 99 \%, 3 \sigma \mathrm{CL}(2$ dof) allowed regions of the third vertex for the NO from the analysis in Ref. [187, 188].

14.8 Beyond 3 ν : Additional Neutrinos at the eV Scale

Besides the huge success of three-flavour oscillations described in Sec.14.7, as mentioned in Secs.14.6.3 and 14.6.4, there are some anomalies which cannot be explained within the 3ν framework and which might point towards the existence of additional neutrino states with masses at the eV scale. In brief:

- the LSND experiment [127] reports evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions with $E / L \sim 1 \mathrm{eV}^{2}$, where E and L are the neutrino energy and the distance between source and detector, respectively (see Short Baseline Experiments subsection of Sec.14.6.3).
- this effect has also been searched for by the MiniBooNE experiment [196], which reports a yet unexplained event excess in the low-energy region of the electron neutrino and anti-neutrino event spectra. No significant excess is found at higher neutrino energies. Interpreting the data in terms of oscillations, parameter values consistent with the ones from LSND are obtained, but the test is not definitive;
- radioactive source experiments at the Gallium solar neutrino experiments both in SAGE and GALLEX/GNO have obtained an event rate which is somewhat lower than expected. If not due to uncertainties in the interaction cross section, this effect can be explained by the hypothesis of ν_{e} disappearance due to oscillations with $\Delta m^{2} \gtrsim 1 \mathrm{eV}^{2}$ ("Gallium anomaly") [197, 198];
- new calculations of the neutrino flux emitted by nuclear reactors $[136,137]$ predict a neutrino rate which is a few percent higher than observed in short-baseline ($L \lesssim 100 \mathrm{~m}$) reactor experiments ${ }^{4}$. If not due to systematic or theoretical uncertainties, a decrease rate at those distances can be explained by assuming $\bar{\nu}_{e}$ disappearance due to oscillations with $\Delta m^{2} \sim 1 \mathrm{eV}^{2}$ ("reactor anomaly") [200]. This reactor anomaly is under study both by the experimental community - with a set of follow-up measurements performed at SBL both at reactors and accelerators (see the corresponding subsections in Sec.14.6.4 and Sec.14.6.3)- , and by the theory community for improvements of the reactor flux calculations.
As mentioned in Sec.14.1 whatever the extension of the SM we want to consider it must contain only three light active neutrinos. Therefore if we need more than three light massive neutrinos we must add sterile neutrinos to the particle content of the model.

The most immediate question as these anomalies were reported was whether they could all be consistently described in combination with the rest of the neutrino data - in particular with the negative results on disappearance of ν_{μ} at short distances - if one adds those additional sterile states. Quantitatively one can start by adding a fourth massive neutrino state to the spectrum, and perform a global data analysis to answer this question. Although the answer is always the same the physical reason behind it depends on ordering assumed for the states. In brief, there are six possible four-neutrino schemes which can in principle accommodate the results of solar + KamLAND and atmospheric + LBL neutrino experiments as well as the SBL result. They can be divided in two classes: $(2+2)$ and $(3+1)$. In the $(3+1)$ schemes, there is a group of three close-by neutrino masses (as on the 3ν schemes described in the previous section) that is separated from the fourth one by a gap of the order of 1 eV , which is responsible for the SBL oscillations. In $(2+2)$ schemes, there are two pairs of close masses (one pair responsible for solar results and the other for atmospheric [201]) separated by the $\mathcal{O}(\mathrm{eV})$ gap. The main difference between these two classes is the following: if a $(2+2)$-spectrum is realized in nature, the transition into the sterile neutrino is a solution of either the solar or the atmospheric neutrino problem, or the sterile neutrino takes part in both. Consequently a $(2+2)$-spectrum is easier to test because the required mixing of sterile neutrinos in either solar and/or atmospheric oscillations would modify their effective matter potential in the Sun

[^36]and in the Earth and giving distinctive effects in the solar and/or atmospheric neutrino observables. Those distinctive effects were not observed so oscillations into sterile neutrinos did not describe well either solar or atmospheric data. Consequently as soon as the early 2000's $2+2$ spectra could be ruled out already beyond $3-4 \sigma$ as seen in the left panel in Fig.14.10 taken from Ref. [202].

On the contrary, for a (3+1)-spectrum (and more generally for a $3+N$-spectrum with an arbitrary N number of sterile states), the sterile neutrino(s) could be only slightly mixed with the active ones and mainly provide a description of the SBL results. In this case the oscillation probabilities for experiments working at $E / L \sim 1 \mathrm{eV}^{2}$ take a simple form:

$$
P_{\alpha \alpha}=1-\sin ^{2} 2 \theta_{\alpha \alpha} \sin ^{2} \Delta, \quad P_{\mu e}=\sin ^{2} 2 \theta_{\mu e} \sin ^{2} \Delta,
$$

where $\Delta \equiv \Delta m_{41}^{2} L / 4 E$ and one can define effective mixing angles

$$
\begin{equation*}
\sin ^{2} 2 \theta_{\alpha \alpha} \equiv 4\left|U_{\alpha 4}\right|^{2}\left(1-\left|U_{\alpha 4}\right|^{2}\right), \quad \sin ^{2} 2 \theta_{\mu e} \equiv 4\left|U_{\mu 4}\right|^{2}\left|U_{e 4}\right|^{2} \tag{14.88}
\end{equation*}
$$

In here $\alpha=e, \mu$ and $U_{\alpha 4}$ are the elements of the lepton mixing matrix describing the mixing of the 4 th neutrino mass state with the electron and muon flavour. In this scenario there is no sensitivity to CP violation in the the Δ driven oscillations, so the relations above are valid for both neutrinos and antineutrinos. At linear order in the mixing elements one can derive a relation between the amplitudes of appearance and disappearance probabilities:

$$
\begin{equation*}
4 \sin ^{2} 2 \theta_{\mu e} \approx \sin ^{2} 2 \theta_{e e} \sin ^{2} 2 \theta_{\mu \mu} \tag{14.89}
\end{equation*}
$$

This relation implies a constraint between the possible results in disappearance and appearance experiments. Consequently it is not trivial to find a consistent description to all the SBL anomalies. Over the years, different groups have performed a variety of such global analysis leading to quantitative different conclusions on the statistical quality of the global fit (see for example [203-208], see also Refs. [209,210] for recent reviews on the subject). Generically the results of the global analysis show that there is significant tension between groups of different data sets - in particular between appearance and disappearance results and Eq. (14.89) makes it difficult to obtain a good global fit as illustrated in the right panel in Fig. 14.10 taken from Ref. [203] which concluded that $3+1$ scenario is excluded at 4.7σ level.

A straightforward question to ask is whether the situation improves if more neutrino states at the eV scale are introduced. Simplest extension is the introduction of 2 states with eV scale mass splittings, ν_{4} and ν_{5}. The ordering of the states can be such that Δm_{41}^{2} and Δm_{51}^{2} are both positive (" $3+2$ ") or one of them is negative (" $1+3+1$ "). From the point of view of the description of the data the most important new qualitative feature in that now non-zero CP violation at $E / L \sim \mathrm{eV}^{2}$ is possibly observable [206, 211-213]. This allows some additional freedom in fitting neutrino versus anti-neutrino data from LSND and MiniBooNE together. However, it still holds that a non-zero $\nu_{\mu} \rightarrow \nu_{e}$ appearance at SBL necessarily predicts SBL disappearance for both ν_{e} and ν_{μ}. So, generically, the tension between appearance and disappearance results remains, thought differences in the methodology of statistical quantification of the degree of agreement/disagreement in these scenarios can lead to different conclusions on whether they can provide a successful description of all the data [203,209,210]. Cosmological observations can provide complementary information on the number of relativistic neutrino states in thermal equilibrium in the early Universe and on the sum of their masses which sets further constrains on light sterile neutrino scenarios (see Section 26, Neutrinos in cosmology).

Figure 14.10: Left: Status of the $2+2$ oscillation scenarios from Ref. [202] ($\eta_{S}=\sum_{i}\left|U_{i s}\right|^{2}$ where i runs over the two massive states mostly relevant for solar neutrino oscillations). In the figure also shown are the values of χ_{PC}^{2} and χ_{PG}^{2} relevant for parameter consistency test and parameter goodness of fit respectively. Right: Present status of $3+1$ oscillation scenarios from Ref. [203].

14.9 Laboratory Probes of ν Mass Scale and its Nature

As described in Secs.14.4 and 14.5 neutrino flavour oscillations in vacuum and flavour transitions in matter only depend on the differences between the neutrino masses-squared, $\Delta m_{i j}^{2}$, and on the mixing matrix elements, $U_{i j}$. But they are insensitive to the absolute mass scale for the neutrinos, m_{i}. They also give us no information on whether they are Dirac or Majorana particles.

Clearly the observation of flavour oscillations imply a lower bound on the mass of the heavier neutrino in $\Delta m_{i j}^{2},\left|m_{i}\right| \geq$ $\sqrt{\Delta m_{i j}^{2}}$ for $\Delta m_{i j}^{2}>0$. But there is no upper bound on m_{i}. In particular, oscillation results allow neutrino spectrum to be approximately degenerate at a mass scale that is much higher than the $\sqrt{\Delta m_{i j}^{2}}$ that they determine. Information of the mass scale of the neutrino is provided by other type of experiments. In here we briefly summarize the most sensitive laboratory probes of the neutrino mass scale and on whether they are Dirac or Majorana particles. Cosmological observations provide, albeit indirectly, complementary information on the neutrino mass scale as it is reviewed in Section 26, Neutrinos in cosmology.

14.9.1 Constraints from Kinematics of Weak Decays

The only model independent information on the neutrino masses, rather than mass differences, can be extracted from energy-momentum conservation relation in reactions in which a neutrino or an anti-neutrino is involved.

Historically these bounds were labeled as limits on the mass of the flavour neutrino states corresponding to the charged flavour involved in the decay. Fermi proposed in 1933 such a kinematic search for the ν_{e} neutrino mass (which we will label here as $m_{\nu_{e}}^{\text {eff }}$) in the end part of the beta spectra in ${ }^{3} \mathrm{H}$ beta decay ${ }^{3} \mathrm{H} \rightarrow{ }^{3}$ $\mathrm{He}+e^{-}+\bar{\nu}_{e}$.

Because ${ }^{3} \mathrm{H}$ beta decay is a superallowed transition, the nuclear matrix elements are energy independent so the electron spectrum is determined exclusively by the phase space

$$
\begin{align*}
\frac{d N}{d E} & =C p E(Q-T) \sqrt{(Q-T)^{2}-\left(m_{\nu_{e}}^{\mathrm{eff}}\right)^{2}} F(E) \tag{14.90}\\
& \equiv R(E) \sqrt{\left(E_{0}-E\right)^{2}-\left(m_{\nu_{e}}^{\mathrm{eff}}\right)^{2}}
\end{align*}
$$

E_{0} is the mass difference between the inital and final nucleus, $E=T+m_{e}$ is the total electron energy, p its momentum, $Q \equiv E_{0}-m_{e}$ is the maximum kinetic energy of the electron and Final state Coulomb interactions are contained in the Fermi
function $F(E) . R(E)$ in the second equality contains all the $m_{\nu^{-}}$ independent factors.

The Kurie function is defined as $K(T) \equiv \sqrt{\frac{d N}{d E} \frac{1}{p E F(E)}}$. From Eq.(14.90) we see that if $m_{\nu_{e}}^{\text {eff }}=0 K(T)$ would depend linearly on T. A non-vanishing neutrino mass then provokes a distortion from the straight-line T-dependence at the end point, So for $m_{\nu_{e}}^{\text {eff }}=0$, $T_{\max }=Q$, while for $m_{\nu_{e}}^{\text {eff }} \neq 0, T_{\max }=Q-m_{\nu_{e}}^{\text {eff }}$. In ${ }^{3} \mathrm{H}$ beta decay $Q=18.6 \mathrm{KeV}$ is very small and therefore this decay is more sensitive to this $m_{\nu_{e}}^{\text {eff }}$-induced distorsion.

The most recent result on the kinematic search for neutrino mass in tritium decay is from KATRIN [214], experiment which has found so far no indication of $m_{\nu_{e}} \neq 0$ and sets an upper limit

$$
\begin{equation*}
m_{\nu_{e}}^{\mathrm{eff}}<1.1 \mathrm{eV} \tag{14.91}
\end{equation*}
$$

at 90% CL improving over the previous bound from the Mainz [215] and Troitsk [216] experiments which constrained $m_{\nu_{e}}^{\text {eff }}<2.2 \mathrm{eV}$ at 95% CL. KATRIN continues running with an estimated sensitivity limit of $m_{\nu_{e}}^{\text {eff }} \sim 0.2 \mathrm{eV}$. Project 8 is exploring a new technique for β-spectrometry based on cyclotron radiation [217].

An alternative isotope to Tritium is ${ }^{163} \mathrm{Ho}$ [218] which presents the advantage of a smaller $Q=2.8 \mathrm{KeV}$. It decays via electroncapture to ${ }^{163}$ Dy. Currently, there are three experiments exploring this decay to probe the neutrino mass: ECHo [219], HOLMES [220], and NuMECS [221]. These experiments are complementary to tritium-based searches from a technical point-of-view. Also the decay of ${ }^{163} \mathrm{Ho}$ determines the effective electron neutrino mass as opposed to anti-neutrino in Tritium.

For the other flavours the present limits compiled in the listing section of the PDG read

$$
\begin{array}{lll}
m_{\nu_{\mu}}^{\mathrm{eff}}<190 \mathrm{keV}(90 \% \mathrm{CL}) & \text { from } & \pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu} \\
m_{\nu_{\tau}}^{\mathrm{eff}}<18.2 \mathrm{MeV}(95 \% \mathrm{CL}) & \text { from } & \tau^{-} \rightarrow n \pi+\nu_{\tau} \tag{14.93}
\end{array}
$$

In the presence of mixing and for neutrinos with small mass differences the distortion of the beta spectrum is given by the sum of the individual spectra generated incoherently by each neutrino massive state weighted with the relevant mixing matrix element squared [222]:

$$
\begin{equation*}
\frac{d N}{d E}=R(E) \sum_{i}\left|U_{e i}\right|^{2} \sqrt{\left(E_{0}-E\right)^{2}-m_{i}^{2}} \Theta\left(E_{0}-E-m_{i}\right) \tag{14.94}
\end{equation*}
$$

Figure 14.11: Allowed 95\% CL ranges (1 dof) for the neutrino mass observable determined in ${ }^{3} \mathrm{H}$ beta decay (left panel) and in $0 \nu \beta \beta$ (right panel) in the framework of 3ν mixing as a function of the lightest neutrino mass. The ranges are obtained by projecting the results of the global analysis of oscillation data (w/o SK-atm) in Ref. [187]. The region for each ordering is defined with respect to its local minimum.

The step function, $\Theta\left(E_{0}-E-m_{i}\right)$ arises because a neutrino with a given mass m_{i} can only be produced if the available energy is larger than its mass. Equation (14.94) shows the two main effects of the neutrino masses and mixings on the electron energy spectrum: First kinks appear at the electron energies $E_{e}^{(i)}=E \sim$ $E_{0}-m_{i}$ with sizes that are determined by $\left|U_{e i}\right|^{2}$. Second the end point shifts to $E_{\mathrm{ep}}=E_{0}-m_{0}$, where m_{0} is the lightest neutrino mass. Corrections are induced once the the energy resolution of the experiment is considered [223, 224]

In the $3-\nu$ mixing scenario the distortion of the spectrum can still be effectively described by a single parameter - which we will still denote as $m_{\nu_{e}}$ - if for all neutrino states $E_{0}-E=Q-T \gg$ m_{i}. In this case one can expand Eq.(14.94) as:

$$
\begin{equation*}
\frac{d N}{d E} \simeq R(E) \sum_{i}\left|U_{e i}\right|^{2} \sqrt{\left(E_{0}-E\right)^{2}-\left(m_{\nu_{e}}^{\mathrm{eff}}\right)^{2}} \tag{14.95}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(m_{\nu_{e}}^{\mathrm{eff}}\right)^{2}=\frac{\sum_{i} m_{i}^{2}\left|U_{e i}\right|^{2}}{\sum_{i}\left|U_{e i}\right|^{2}}=\sum_{i} m_{i}^{2}\left|U_{e i}\right|^{2} \tag{14.96}
\end{equation*}
$$

where unitarity is assumed in the second equality. In this approximation the distortion of the end point of the spectrum is described by a single parameter, and with the present results from KATRIN it is bounded to be

$$
\begin{align*}
1.1 \mathrm{eV} & \geq m_{\nu_{e}}^{\mathrm{eff}}=\sqrt{\sum_{i} m_{i}^{2}\left|U_{e i}\right|^{2}} \\
& = \begin{cases}\sqrt{m_{0}^{2}+\Delta m_{21}^{2}\left(1-c_{13}^{2} c_{12}^{2}\right)+\Delta m_{32}^{2} s_{13}^{2}} & \text { in NO } \\
\sqrt{m_{0}^{2}+\Delta m_{21}^{2} c_{13}^{2} c_{12}^{2}-\Delta m_{32}^{2} c_{13}^{2}} & \text { in IO },\end{cases}
\end{align*}
$$

where $m_{0}=m_{1}\left(m_{3}\right)$ is the lightest neutrino mass in NO (IO) spectrum. Correspondingly the bounds in Eqs.(14.92) and (14.93) apply to the combinations $\sum_{i} m_{i}^{2}\left|U_{\alpha i}\right|^{2}$ for $\alpha=\mu$ and τ respectively. So with the values known of the mixing matrix elements the strongest constraint on the absolute value of the neutrino mass comes from Tritium beta decay.

From Eq.(14.97) we see that, given the present knowledge of the neutrino mass differences and their mixing from oscillation experiments, it is possible to translate the experimental information of $m_{\nu_{e}}$ on a corresponding range for the lightest neutrino mass and that such relation depends on the ordering of the states. We plot in Fig. 14.11 the recasting of the allowed regions of the analysis
in Ref. [187] in terms of the allowed range $m_{\nu_{e}}$ as a function of $m_{\text {light }} \equiv m_{0}$. In particular one finds that the results of oscillation experiments imply a lower bound on $m_{\nu_{e}}>0.048$ (0.0085) eV for IO (NO) at 95% CL.

Figure 14.12: Feynman diagram for neutrinoless double-beta decay.
14.9.2 Dirac vs Majorana: Neutrinoless Double-beta Decay

The most sensitive probe to whether neutrinos are Dirac or Majorana states is the neutrinoless double beta decay $(0 \nu \beta \beta)$:

$$
\begin{equation*}
(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-} \tag{14.98}
\end{equation*}
$$

In the presence of neutrino masses and mixing the process in Eq.(14.98) can be generated at lower order in perturbation theory by the term represented in Fig.14.12. The corresponding amplitude is proportional to the product of the two leptonic currents

$$
\begin{align*}
M_{\alpha \beta} & \propto\left[\bar{e} \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{e}\right]\left[\bar{e} \gamma_{\beta}\left(1-\gamma_{5}\right) \nu_{e}\right] \\
& \propto \sum_{i}\left(U_{e i}\right)^{2}\left[\bar{e} \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{i}\right]\left[\bar{e} \gamma_{\beta}\left(1-\gamma_{5}\right) \nu_{i}\right] \tag{14.99}
\end{align*}
$$

The neutrino propagator in Fig. 14.12 can only arise from the contraction $\langle 0| \nu_{i}(x) \nu_{i}(y)^{T}|0\rangle$. But if the neutrino is a Dirac particle ν_{i} field annihilates a neutrino states and creates an antineutrino state which are different, so the contraction $\langle 0| \nu_{i}(x) \nu_{i}(y)^{T}|0\rangle=$ 0 and $M_{\alpha \beta}=0$. On the other hand, if ν_{i} is a Majorana particle, neutrino and antineutrino are described by the same field and $\langle 0| \nu_{i}(x) \nu_{i}(y)^{T}|0\rangle \neq 0$.

The conclusion is that in order to induce the $0 \nu \beta \beta$ decay, neutrinos must be Majorana particles. This is consistent with the fact that the process (14.98) violates total lepton number by two
units. Conversely, if $0 \nu \beta \beta$ decay is observed, massive neutrinos cannot be Dirac states [225].

It is important to stress that neutrinoless double beta decay could be dominantly induced by other new physics effects beyond that of Majorana neutrino masses, Consequently the connection between the observation or limitation of the neutrinoless double beta decay and the neutrino mass can only be made under some assumption about the source of total lepton number violation in the model.

The observable determined by the experiments is the half-life of
the decay. Under the assuption that the Majorana neutrino mass is the only source of lepton number violation at low energies, the decay half-life is given by:

$$
\begin{equation*}
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=G^{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{e e}}{m_{e}}\right)^{2} \tag{14.100}
\end{equation*}
$$

where $G^{0 \nu}$ is the phase space integral taking into account the final atomic state, $\left|M^{0 \nu}\right|$ is the nuclear matrix element of the transition, and $m_{e e}$ is the effective Majorana mass of ν_{e},

$$
\begin{aligned}
& m_{e e}=\left|\sum_{i} m_{i} U_{e i}^{2}\right| \\
& =\left\{\begin{array}{l}
\left|m_{0} c_{12}^{2} c_{13}^{2}+\sqrt{\Delta m_{21}^{2}+m_{0}^{2}} s_{12}^{2} c_{13}^{2} e^{2 i\left(\eta_{2}-\eta_{1}\right)}+\sqrt{\Delta m_{32}^{2}+\Delta m_{21}^{2}+m_{0}^{2}} s_{13}^{2} e^{-2 i\left(\delta_{\mathrm{CP}}+\eta_{1}\right)}\right| \\
\left|m_{0} s_{13}^{2}+\sqrt{m_{0}^{2}-\Delta m_{32}^{2}} s_{12}^{2} c_{13}^{2} e^{2 i\left(\eta_{2}+\delta_{\mathrm{CP}}\right)}+\sqrt{m_{0}^{2}-\Delta m_{32}^{2}-\Delta m_{21}^{2}} c_{12}^{2} c_{13}^{2} e^{2 i\left(\eta_{1}+\delta_{\mathrm{CP}}\right)}\right|
\end{array} \quad \text { in NO },\right.
\end{aligned}
$$

which, in addition to the masses and mixing parameters that affect the tritium beta decay spectrum, depends also on the leptonic CP violating phases. We plot in Fig.14.11 the the recasting of the allowed regions of the analysis in Ref. [187] in terms of the allowed range $m_{e e}$ as a function of $m_{\text {light }} \equiv m_{0}$ for the two orderings. As a consquence of the dependence on the unknown Majorana phases, the allowed range of $m_{e e}$ for a given value of $m_{\text {light }}$ and ordering is substantially broader than that of $m_{\nu_{e}}$. Nevertheless, the results of oscillation experiments imply a lower bound on the effective Majorana mass for the IO, which at 95% CL reads $m_{e e}>0.016$ eV.

From Eq.(14.100) we see that nuclear structure details enter relation between the decay rate (or lifetime) and the effective Majorana mass. As a consequence uncertainties in the nuclear structure calculations result in a spread of $m_{e e}$ values for a given $T_{1 / 2}^{0 \nu}$ by a factor of $2-3$ [226].

We present in Sec.14.9.3 a brief description of the experimental searches for neutrinoless double-beta decay. At the time of writing of this review the strongest bound on $0 \nu \beta \beta$ decay lifetime comes from the search in KamLAND-Zen experiment [227] (see Sec.14.9.3) which uses 13 Tons of Xe-loaded liquid scintillator to search for the decay $0 \nu \beta \beta$ of ${ }^{136} \mathrm{Xe}$ and has set a bound on the half-life of $T_{1 / 2}^{0 \nu}>1.07 \times 10^{26} \mathrm{yr}$ at $90 \% \mathrm{CL}$. Using a variety of nuclear matrix element calculations, the corresponding upper bound on the effective Majorana mass is

$$
\begin{equation*}
m_{e e}<61-165 \mathrm{meV} \tag{14.101}
\end{equation*}
$$

14.9.3 Experimental Search for Neutrinoless Double-beta Decay

The signature of $0 \nu \beta \beta$ is that the sum of energy of two electrons is equal to the Q-value of the nuclear transition. Various requirements must be met to achieve high sensitivity such as a large source mass with isotopic enrichment, underground location to shield cosmic-ray induced background, and ultra-low background techniques to reduce radioactive background. The sensitivity to the half-life is proportional to $\varepsilon M t$ in the case of a backgroundfree measurement and $\varepsilon \sqrt{\frac{M t}{b \Delta E}}$ for the case background exists, where ε is the detection efficiency of the signal, M is the source mass, t is the measurement time, b is the background rate, and ΔE is the energy resolution.

There are 35 candidate nuclei for double-beta decay. Currently, experiments using ${ }^{136} \mathrm{Xe}$ and ${ }^{76} \mathrm{Ge}$ have reported the most sensitive results of $0 \nu \beta \beta$ search. Because of the uncertainties related to the nuclear matrix element, complementarity of technologies, different background, and the investigation of the mechanism behind the $0 \nu \beta \beta$ in case of a positive signal, it is important to pursue the searches with various isotopes.

The energy from electrons is measured with either ionization, scintillation, or through phonons. In some experiments a combination of two techniques is used. Among those using
ionization detection, ultra-high-purity germanium detector provides the best sensitivity thanks to high energy resolution and low background. GERDA uses total 20.0 kg of broad energy germanium (BEGe) and 15.6 kg of coaxial detectors, both enriched in ${ }^{76} \mathrm{Ge}$, for the second phase. Background levels of $\left(5.6_{-2.4}^{+3.4}\right) \times 10^{-4}$ counts $/(\mathrm{keV} \cdot \mathrm{kg} \cdot$ year $)$ for BEGe detectors and $\left(5.7_{-2.6}^{+4.1}\right) \times 10^{-4}$ counts $/(\mathrm{keV} \cdot \mathrm{kg} \cdot$ year $)$ for coaxial detectors have been achieved [228], which enable a background-free search. The Majorana-Demonstrator [229] consists of 44.1 kg of Ge (29.7 kg enriched to 88% in ${ }^{76} \mathrm{Ge}$) detectors split between two modules. It has achieved energy resolution of 2.5 keV FWHM at the Q-value (2.039 MeV).

Liquid scintillator detectors have simple structure and can utilize existing large detectors with low background environments. By adding an inner balloon to contain xenon-loaded liquid scintillator to the KamLAND detector, KamLAND-Zen used 380 kg of xenon with 90.1% enrichment in ${ }^{136} \mathrm{Xe}$. Reducing the background level by purification of scintillator, KamLAND-Zen reported the half-life limit above 10^{26} years at 90% CL [227]. The SNO detector has been also upgraded to be filled with liquid scintillator in $\mathrm{SNO}+$ experiment [230]. The SNO+ detector will be loaded with 0.5% natural tellurium, corresponding to approximately 1330 kg of ${ }^{130} \mathrm{Te}$ to search for $0 \nu \beta \beta$.

With a time projection chamber, one can utilize both ionization and scintillation. EXO-200 uses a liquid xenon time projection chamber with enrichment to 80.6%, corresponding to 74.7 kg of ${ }^{136} \mathrm{Xe}$ in the fiducial mass [231]. An energy resolution of 1.15% (σ / E) is achieved at the Q-value of ${ }^{136} \mathrm{Xe} 0 \nu \beta \beta$. The NEXT collaboration has been developing a high-pressure xenon gas time projection chamber with electroluminescent amplification and optical readouts. An energy resolution of 1% FWHM at the Q-value of ${ }^{136} \mathrm{Xe} 0 \nu \beta \beta$ is demonstrated with NEXT-White detector [232].

CUORE uses cryogenic bolometer to measure the energy in a calorimetric way. The detector is located in Gran Sasso and composed of $988 \mathrm{TeO}_{2}$ bolometers for a total mass of 742 kg , corresponding to 206 kg of ${ }^{130} \mathrm{Te}$. An effective energy resolution of $(7.7 \pm 0.5) \mathrm{keV}$ FWHM is achieved for the first result [233]. For further reduction of background towards future search based on the CUORE technology, CUPID proposes to simultaneously measure the calorimetric signal and the scintillation light. Using the prototype CUPID-0, the technology is demonstrated and also $0 \nu \beta \beta$ is searched for with ${ }^{82} \mathrm{Se}$ [234].

AMoRE also uses the simultaneous detection of heat and scintillation. Six ${ }^{100} \mathrm{Mo}$-enriched and ${ }^{48} \mathrm{Ca}$-depleted CaMoO_{4} crystals with a total mass of 1.9 kg (AMoRE-Pilot) are operated in Yangyang underground laboratory located in South Korea, searching for $0 \nu \beta \beta$ of ${ }^{100} \mathrm{Mo}$ [235].
A tracker-calorimeter technique is employed in NEMO. Source isotopes are hosted in thin foils surrounded by a tracking detector, which in turn is surrounded by a calorimeter. Full topological event reconstruction with this configuration enables background rejection and gives additional information after discovery. The

NEMO-3 experiment used 7 isotopes, with the largest mass comprised of ${ }^{100} \mathrm{Mo}(7 \mathrm{~kg})$ [236]. NEMO-3 also reported a first search for neutrinoless quadruple- β decay of ${ }^{150} \mathrm{Nd}$ [237].

References

[1] J. N. Bahcall, NEUTRINO ASTROPHYSICS (1989), ISBN 9780521379755.
[2] R. N. Mohapatra and P. B. Pal, World Sci. Lect. Notes Phys. 60, 1 (1998), [World Sci. Lect. Notes Phys.72,1(2004)].
[3] C. W. Kim and A. Pevsner, Contemp. Concepts Phys. 8, 1 (1993).
[4] B. Kayser, F. Gibrat-Debu and F. Perrier, World Sci. Lect. Notes Phys. 25, 1 (1989).
[5] C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (2007), ISBN 9780198508717.
[6] M. C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75, 345 (2003), [hep-ph/0202058].
[7] M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460, 1 (2008), [arXiv:0704.1800].
[8] A. Pilaftsis, Z. Phys. C55, 275 (1992), [hep-ph/9901206].
[9] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[10] P. Ramond, in "International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory Palm Coast, Florida, February 25-March 2, 1979," 265-280 (1979), [hep-ph/9809459].
[11] M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C790927, 315 (1979), [arXiv:1306.4669].
[12] T. Yanagida, Conf. Proc. C7902131, 95 (1979).
[13] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980), [,231(1979)].
[14] J. Schechter and J. W. F. Valle, Phys. Rev. D21, 309 (1980).
[15] J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980).
[16] J. Schechter and J. W. F. Valle, Phys. Rev. D24, 1883 (1981), [Erratum: Phys. Rev.D25,283(1982)].
[17] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962), [,34(1962)].
[18] Y. Katayama et al., Prog. Theor. Phys. 28, 675 (1962).
[19] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968), [Zh. Eksp. Teor. Fiz.53,1717(1967)].
[20] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963), [,648(1963)].
[21] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[22] S. Antusch et al., JHEP 10, 084 (2006), [hep-ph/0607020].
[23] S. Antusch and O. Fischer, JHEP 10, 094 (2014), [arXiv:1407.6607].
[24] V. N. Gribov and B. Pontecorvo, Phys. Lett. 28B, 493 (1969).
[25] E. Akhmedov, in "International Conference on History of the Neutrino: 1930-2018 Paris, France, September 5-7, 2018," (2019), [arXiv:1901.05232].
[26] L. Wolfenstein, Phys. Rev. D17, 2369 (1978), [,294(1977)].
[27] A. Halprin, Phys. Rev. D34, 3462 (1986).
[28] A. J. Baltz and J. Weneser, Phys. Rev. D37, 3364 (1988).
[29] P. D. Mannheim, Phys. Rev. D37, 1935 (1988).
[30] L. Landau, Phys. Z. Sov. 2, 46 (1932).
[31] C. Zener, Proc. Roy. Soc. Lond. A137, 696 (1932).
[32] E. Majorana, Nuovo Cim. 9, 43 (1932).
[33] E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).
[34] T.-K. Kuo and J. T. Pantaleone, Rev. Mod. Phys. 61, 937 (1989).
[35] S. J. Parke, Phys. Rev. Lett. 57, 1275 (1986), [,328(1986)].
[36] W. C. Haxton, Phys. Rev. Lett. 57, 1271 (1986), [,332(1986)].
[37] S. T. Petcov, Phys. Lett. B191, 299 (1987), [,427(1987)].
[38] S. P. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985), [,305(1986)].
[39] J. N. Bahcall et al., Rev. Mod. Phys. 54, 767 (1982).
[40] J. N. Bahcall, A. M. Serenelli and S. Basu, Astrophys. J. 621, L85 (2005), [arXiv:astro-ph/0412440].
[41] A. M. Serenelli, W. C. Haxton and C. Pena-Garay, Astrophys. J. 743, 24 (2011), [arXiv:1104.1639].
[42] F. L. Villante, Phys. Lett. B742, 279 (2015), [arXiv:1410.2796].
[43] A. Serenelli, Eur. Phys. J. A52, 4, 78 (2016), [arXiv:1601.07179].
[44] R. Davis, Jr., D. S. Harmer and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
[45] B. T. Cleveland et al., Astrophys. J. 496, 505 (1998).
[46] C. Pena-Garay and A. Serenelli (2008), [arXiv:0811.2424].
[47] J. N. Abdurashitov et al. (SAGE), J. Exp. Theor. Phys. 95, 181 (2002), [Zh. Eksp. Teor. Fiz.122,211(2002)], [arXiv:astro-ph/0204245].
[48] W. Hampel et al. (GALLEX), Phys. Lett. B447, 127 (1999).
[49] M. Altmann et al. (GNO), Phys. Lett. B616, 174 (2005), [hep-ex/0504037].
[50] J. N. Abdurashitov et al. (SAGE), Phys. Rev. C80, 015807 (2009), [arXiv:0901.2200].
[51] K. S. Hirata et al. (Kamiokande-II), Phys. Rev. Lett. 63, 16 (1989).
[52] K. S. Hirata et al. (Kamiokande-II), Phys. Rev. D44, 2241 (1991), [Erratum: Phys. Rev.D45,2170(1992)].
[53] Y. Fukuda et al. (Kamiokande), Phys. Rev. Lett. 77, 1683 (1996).
[54] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1158 (1998), [Erratum: Phys. Rev. Lett.81,4279(1998)], [hep-ex/9805021].
[55] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 82, 2430 (1999), [hep-ex/9812011].
[56] K. Abe et al. (Super-Kamiokande), Phys. Rev. D94, 5, 052010 (2016), [arXiv:1606.07538].
[57] N. Vinyoles et al., Astrophys. J. 835, 2, 202 (2017), [arXiv:1611.09867].
[58] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86, 5651 (2001), [hep-ex/0103032].
[59] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86, 5656 (2001), [hep-ex/0103033].
[60] B. Aharmim et al. (SNO), Phys. Rev. C72, 055502 (2005), [arXiv:nucl-ex/0502021].
[61] S. Fukuda et al. (Super-Kamiokande), Phys. Lett. B539, 179 (2002), [hep-ex/0205075].
[62] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 87, 071301 (2001), [arXiv:nucl-ex/0106015].
[63] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301 (2002), [arXiv:nucl-ex/0204008].
[64] B. Aharmim et al. (SNO), Phys. Rev. C88, 025501 (2013), [arXiv:1109.0763].
[65] J. Bergstrom et al., JHEP 03, 132 (2016), [arXiv:1601.00972].
[66] C. Arpesella et al. (Borexino), Phys. Lett. B658, 101 (2008), [arXiv:0708.2251].
[67] G. Bellini et al. (Borexino), Phys. Rev. Lett. 108, 051302 (2012), [arXiv:1110.3230].
[68] M. Agostini et al. (BOREXINO), Nature 562, 7728, 505 (2018).
[69] G. Bellini et al. (Borexino), Phys. Rev. D82, 033006 (2010), [arXiv:0808.2868].
[70] S. Abe et al. (KamLAND), Phys. Rev. C84, 035804 (2011), [arXiv:1106.0861].
[71] A. Gando et al. (KamLAND), Phys. Rev. C92, 5, 055808 (2015), [arXiv:1405.6190].
[72] M. Agostini et al. (Borexino) (2017), [arXiv:1707.09279].
[73] M. Agostini et al. (Borexino) (2017), [arXiv:1709.00756].
[74] A. Renshaw et al. (Super-Kamiokande), Phys. Rev. Lett. 112, 9, 091805 (2014), [arXiv:1312.5176].
[75] M. Honda et al., Phys. Rev. D92, 2, 023004 (2015), [arXiv:1502.03916].
[76] G. D. Barr et al., Phys. Rev. D74, 094009 (2006), [arXiv:astro-ph/0611266].
[77] G. Battistoni et al., Astropart. Phys. 19, 269 (2003), [Erratum: Astropart. Phys.19,291(2003)], [hep-ph/0207035].
[78] J. Evans et al., Phys. Rev. D95, 2, 023012 (2017), [arXiv:1612.03219].
[79] C. V. Achar et al., Phys. Lett. 18, 196 (1965).
[80] F. Reines et al., Phys. Rev. Lett. 15, 429 (1965).
[81] K. S. Hirata et al. (Kamiokande-II), Phys. Lett. B205, 416 (1988), [,447(1988)].
[82] D. Casper et al., Phys. Rev. Lett. 66, 2561 (1991).
[83] K. Daum et al. (Frejus), Z. Phys. C66, 417 (1995).
[84] M. Aglietta et al. (NUSEX), Europhys. Lett. 8, 611 (1989).
[85] K. S. Hirata et al. (Kamiokande-II), Phys. Lett. B280, 146 (1992).
[86] Y. Fukuda et al. (Kamiokande), Phys. Lett. B335, 237 (1994).
[87] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), [hep-ex/9807003].
[88] M. Ambrosio et al. (MACRO), Phys. Lett. B517, 59 (2001), [hep-ex/0106049].
[89] M. C. Sanchez et al. (Soudan 2), Phys. Rev. D68, 113004 (2003), [hep-ex/0307069].
[90] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. Lett. 93, 101801 (2004), [hep-ex/0404034].
[91] Z. Li et al. (Super-Kamiokande), Phys. Rev. D98, 5, 052006 (2018), [arXiv:1711.09436].
[92] N. Agafonova et al. (OPERA), Phys. Rev. Lett. 120, 21, 211801 (2018), [Erratum: Phys. Rev. Lett.121,no.13,139901(2018)], [arXiv:1804.04912].
[93] M. G. Aartsen et al. (IceCube), Phys. Rev. D99, 3, 032007 (2019), [arXiv:1901.05366].
[94] K. Abe et al. (Super-Kamiokande), Phys. Rev. D97, 7, 072001 (2018), [arXiv:1710.09126].
[95] M. Ageron et al. (ANTARES), Nucl. Instrum. Meth. A656, 11 (2011), [arXiv:1104.1607].
[96] M. G. Aartsen et al. (IceCube), JINST 12, 03, P03012 (2017), [arXiv:1612.05093].
[97] A. Albert et al. (ANTARES), JHEP 06, 113 (2019), [arXiv:1812.08650].
[98] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 120, 7, 071801 (2018), [arXiv:1707.07081].
[99] S. Adrian-Martinez et al. (KM3Net), J. Phys. G43, 8, 084001 (2016), [arXiv:1601.07459].
[100] M. G. Aartsen et al. (IceCube), J. Phys. G44, 5, 054006 (2017), [arXiv:1607.02671].
[101] S. Ahmed et al. (ICAL), Pramana 88, 5, 79 (2017), [arXiv:1505.07380].
[102] K. Abe et al. (Hyper-Kamiokande) (2018), [arXiv:1805.04163].
[103] B. Abi et al. (DUNE) (2018), [arXiv:1807.10334].
[104] S. E. Kopp, Phys. Rept. 439, 101 (2007), [arXiv:physics/0609129].
[105] D. Beavis et al. (E899) (1995).
[106] M. G. Catanesi et al. (HARP), Nucl. Instrum. Meth. A571, 527 (2007).
[107] J. M. Paley et al. (MIPP), Phys. Rev. D90, 3, 032001 (2014), [arXiv:1404.5882].
[108] N. Abgrall et al. (NA61), JINST 9, P06005 (2014), [arXiv:1401.4699].
[109] S. H. Ahn et al. (K2K), Phys. Lett. B511, 178 (2001), [hepex/0103001].
[110] M. H. Ahn et al. (K2K), Phys. Rev. D74, 072003 (2006), [hep-ex/0606032].
[111] D. G. Michael et al. (MINOS), Nucl. Instrum. Meth. A596, 190 (2008), [arXiv:0805.3170].
[112] P. Adamson et al., Nucl. Instrum. Meth. A806, 279 (2016), [arXiv:1507.06690].
[113] P. Adamson et al. (MINOS), Phys. Rev. Lett. 110, 25, 251801 (2013), [arXiv:1304.6335].
[114] P. Adamson et al. (MINOS), Phys. Rev. Lett. 112, 191801 (2014), [arXiv:1403.0867].
[115] P. Adamson et al. (MINOS), Phys. Rev. D86, 052007 (2012), [arXiv:1208.2915].
[116] P. Adamson et al. (MINOS+), Phys. Rev. Lett. 122, 9, 091803 (2019), [arXiv:1710.06488].
[117] C. Rubbia et al., JINST 6, P07011 (2011), [arXiv:1106.0975].
[118] K. Abe et al. (T2K), Phys. Rev. Lett. 107, 041801 (2011), [arXiv:1106.2822].
[119] K. Abe et al. (T2K), Phys. Rev. Lett. 112, 061802 (2014), [arXiv:1311.4750].
[120] K. Abe et al. (T2K), Phys. Rev. Lett. 121, 17, 171802 (2018), [arXiv:1807.07891].
[121] K. Abe et al. (T2K) (2019), [arXiv:1910.03887].
[122] P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 15, 151802 (2017), [arXiv:1701.05891].
[123] M. A. Acero et al. (NOvA), Phys. Rev. D98, 032012 (2018), [arXiv:1806.00096].
[124] P. Adamson et al. (NOvA), Phys. Rev. Lett. 116, 15, 151806 (2016), [arXiv:1601.05022].
[125] P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 23, 231801 (2017), [arXiv:1703.03328].
[126] M. A. Acero et al. (NOvA), Phys. Rev. Lett. 123, 151803 (2019), [arXiv:1906.04907].
[127] A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001), [hep-ex/0104049].
[128] B. Armbruster et al. (KARMEN), Phys. Rev. D65, 112001 (2002), [hep-ex/0203021].
[129] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 121, 22, 221801 (2018), [arXiv:1805.12028].
[130] M. Antonello et al. (MicroBooNE, LAr1-ND, ICARUSWA104) (2015), [arXiv:1503.01520].
[131] S. Ajimura et al. (2017), [arXiv:1705.08629].
[132] F. Von Feilitzsch, A. A. Hahn and K. Schreckenbach, Phys. Lett. 118B, 162 (1982).
[133] K. Schreckenbach et al., Phys. Lett. 160B, 325 (1985).
[134] A. A. Hahn et al., Phys. Lett. B218, 365 (1989).
[135] P. Vogel et al., Phys. Rev. C24, 1543 (1981).
[136] T. A. Mueller et al., Phys. Rev. C83, 054615 (2011), [arXiv:1101.2663].
[137] P. Huber, Phys. Rev. C84, 024617 (2011), [Erratum: Phys. Rev.C85,029901(2012)], [arXiv:1106.0687].
[138] D. Adey et al. (Daya Bay), Phys. Rev. D100, 5, 052004 (2019), [arXiv:1808.10836].
[139] D. Adey et al. (Daya Bay), Phys. Rev. Lett. 121, 24, 241805 (2018), [arXiv:1809.02261].
[140] G. Bak et al. (RENO), Phys. Rev. Lett. 121, 20, 201801 (2018), [arXiv:1806.00248].
[141] H. de Kerret et al. (Double Chooz) (2019), [arXiv:1901.09445].
[142] Y. J. Ko et al. (NEOS), Phys. Rev. Lett. 118, 12, 121802 (2017), [arXiv:1610.05134].
[143] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 118, 25, 251801 (2017), [arXiv:1704.01082].
[144] G. Bak et al. (RENO), Phys. Rev. Lett. 122, 23, 232501 (2019), [arXiv:1806.00574].
[145] D. Adey et al. (Daya Bay), Phys. Rev. Lett. 123, 11, 111801 (2019), [arXiv:1904.07812].
[146] M. Apollonio et al. (CHOOZ), Eur.Phys.J. C27, 331 (2003), [hep-ex/0301017].
[147] F. Boehm et al., Phys. Rev. D64, 112001 (2001), [hepex/0107009].
[148] K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 90, 021802 (2003), [hep-ex/0212021].
[149] T. Araki et al. (KamLAND), Phys. Rev. Lett. 94, 081801 (2005), [hep-ex/0406035].
[150] A. Gando et al. (KamLAND), Phys. Rev. D88, 3, 033001 (2013), [arXiv:1303.4667].
[151] F. Ardellier et al. (Double Chooz) (2006), [hep-ex/0606025].
[152] X. Guo et al. (Daya Bay) (2007), [hep-ex/0701029].
[153] J. K. Ahn et al. (RENO) (2010), [arXiv:1003.1391].
[154] Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108, 131801 (2012), [arXiv:1112.6353].
[155] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803 (2012), [arXiv:1203.1669].
[156] J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802 (2012), [arXiv:1204.0626].
[157] F. An et al. (JUNO), J. Phys. G43, 3, 030401 (2016), [arXiv:1507.05613].
[158] I. Alekseev et al. (DANSS), Phys. Lett. B787, 56 (2018), [arXiv:1804.04046].
[159] H. Almazán et al. (STEREO), Phys. Rev. Lett. 121, 16, 161801 (2018), [arXiv:1806.02096].
[160] J. Ashenfelter et al. (PROSPECT), Phys. Rev. Lett. 121, 25, 251802 (2018), [arXiv:1806.02784].
[161] A. P. Serebrov et al. (NEUTRINO-4), Pisma Zh. Eksp. Teor. Fiz. 109, 4, 209 (2019), [JETP Lett.109,no.4,213(2019)], [arXiv:1809.10561].
[162] Y. Abreu et al. (SoLid), JINST 12, 04, P04024 (2017), [arXiv:1703.01683].
[163] N. Cabibbo, Phys. Lett. 72B, 333 (1978).
[164] S. M. Bilenky, J. Hosek and S. T. Petcov, Phys. Lett. 94B, 495 (1980).
[165] V. D. Barger, K. Whisnant and R. J. N. Phillips, Phys. Rev. Lett. 45, 2084 (1980).
[166] P. Langacker et al., Nucl. Phys. B282, 589 (1987).
[167] S. Goswami and A. Yu. Smirnov, Phys. Rev. D72, 053011 (2005), [hep-ph/0411359].
[168] N. Okamura, Prog. Theor. Phys. 114, 1045 (2006), [hepph/0411388].
[169] H. Nunokawa, S. J. Parke and R. Zukanovich Funchal, Phys. Rev. D72, 013009 (2005), [hep-ph/0503283].
[170] A. Cervera et al., Nucl. Phys. B579, 17 (2000), [Erratum: Nucl. Phys.B593,731(2001)], [hep-ph/0002108].
[171] M. Freund, Phys. Rev. D64, 053003 (2001), [hepph/0103300].
[172] E. K. Akhmedov et al., JHEP 04, 078 (2004), [hepph/0402175].
[173] H. Minakata et al., Phys. Rev. D74, 053008 (2006), [hepph/0607284].
[174] O. L. G. Peres and A. Yu. Smirnov, Nucl. Phys. B680, 479 (2004), [hep-ph/0309312].
[175] S. Petcov, Phys.Lett. B434, 321 (1998), [hep-ph/9805262].
[176] E. K. Akhmedov et al., Nucl.Phys. B542, 3 (1999), [hepph/9808270].
[177] E. K. Akhmedov, Nucl.Phys. B538, 25 (1999), [hepph/9805272].
[178] M. Chizhov, M. Maris and S. Petcov (1998), [hepph/9810501].
[179] M. Chizhov and S. Petcov, Phys.Rev.Lett. 83, 1096 (1999), [hep-ph/9903399].
[180] E. K. Akhmedov, M. Maltoni and A. Y. Smirnov, JHEP 0705, 077 (2007), [hep-ph/0612285].
[181] C. Kim and U. Lee, Phys.Lett. B444, 204 (1998), [hepph/9809491].
[182] O. Peres and A. Y. Smirnov, Phys.Lett. B456, 204 (1999), [hep-ph/9902312].
[183] M. Gonzalez-Garcia, M. Maltoni and A. Y. Smirnov, Phys.Rev. D70, 093005 (2004), [hep-ph/0408170].
[184] E. K. Akhmedov, M. Maltoni and A. Y. Smirnov, JHEP 0806, 072 (2008), [arXiv:0804.1466].
[185] J. Bernabeu, S. Palomares Ruiz and S. Petcov, Nucl.Phys. B669, 255 (2003), [hep-ph/0305152].
[186] S. Petcov and T. Schwetz, Nucl.Phys. B740, 1 (2006), [hepph/0511277].
[187] I. Esteban et al., JHEP 01, 106 (2019), [arXiv:1811.05487].
[188] I. Esteban et al., "Nufit4.1 at nufit webpage," http://www.nu-fit.org.
[189] F. Capozzi et al., Prog. Part. Nucl. Phys. 102, 48 (2018), [arXiv:1804.09678].
[190] P. F. de Salas et al., Phys. Lett. B782, 633 (2018), [arXiv:1708.01186].
[191] M. Friend, "Updated Results from the T2K Experiment with 3.13×10^{21} Protons on Target," (2019), KEK/J-PARC Physics seminar, January 10, 2019, URL https://t2k.org/ docs/talk/335/2019kekseminar.
[192] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[193] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, JHEP 11, 052 (2014), [arXiv:1409.5439].
[194] Y. Farzan and A. Yu. Smirnov, Phys. Rev. D65, 113001 (2002), [hep-ph/0201105].
[195] A. Dueck, S. Petcov and W. Rodejohann, Phys. Rev. D82, 013005 (2010), [arXiv:1006.0227].
[196] A. Aguilar-Arevalo et al. (MiniBooNE) (2012), [arXiv:1207.4809].
[197] M. A. Acero, C. Giunti and M. Laveder, Phys. Rev. D78, 073009 (2008), [arXiv:0711.4222].
[198] C. Giunti and M. Laveder, Phys. Rev. C83, 065504 (2011), [arXiv:1006.3244].
[199] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 116, 6, 061801 (2016), [Erratum: Phys. Rev. Lett.118,no.9,099902(2017)], [arXiv:1508.04233].
[200] G. Mention et al., Phys. Rev. D83, 073006 (2011), [arXiv:1101.2755].
[201] J. J. Gomez-Cadenas and M. C. Gonzalez-Garcia, Z. Phys. C71, 443 (1996), [hep-ph/9504246].
[202] M. Maltoni et al., Nucl. Phys. B643, 321 (2002), [hepph/0207157].
[203] M. Dentler et al., JHEP 08, 010 (2018), [arXiv:1803.10661].
[204] C. Giunti and M. Laveder, Phys. Rev. D84, 093006 (2011), [arXiv:1109.4033].
[205] J. M. Conrad et al., Adv. High Energy Phys. 2013, 163897 (2013), [arXiv:1207.4765].
[206] J. Kopp et al., JHEP 05, 050 (2013), [arXiv:1303.3011].
[207] G. H. Collin et al., Phys. Rev. Lett. 117, 22, 221801 (2016), [arXiv:1607.00011].
[208] S. Gariazzo et al., JHEP 06, 135 (2017), [arXiv:1703.00860].
[209] A. Diaz et al. (2019), [arXiv:1906.00045].
[210] S. Böser et al. (2019), [arXiv:1906.01739].
[211] G. Karagiorgi et al., Phys. Rev. D75, 013011 (2007), [Erratum: Phys. Rev.D80,099902(2009)], [hep-ph/0609177].
[212] M. Maltoni and T. Schwetz, Phys. Rev. D76, 093005 (2007), [arXiv:0705.0107].
[213] C. Giunti and M. Laveder, Phys. Rev. D84, 073008 (2011), [arXiv:1107.1452].
[214] M. Aker et al. (KATRIN) (2019), [arXiv:1909.06048].
[215] J. Bonn et al., Nucl. Phys. Proc. Suppl. 91, 273 (2001), [PoShep2001,192(2001)].
[216] V. M. Lobashev et al., Nucl. Phys. Proc. Suppl. 91, 280 (2001), [,280(2001)].
[217] B. Monreal and J. A. Formaggio, Phys. Rev. D80, 051301 (2009), [arXiv:0904.2860].
[218] A. De Rujula and M. Lusignoli, Phys. Lett. 118B, 429 (1982).
[219] L. Gastaldo et al., J. Low Temp. Phys. 176, 5-6, 876 (2014), [arXiv:1309.5214].
[220] B. Alpert et al., Eur. Phys. J. C75, 3, 112 (2015), [arXiv:1412.5060].
[221] M. P. Croce et al., J. Low. Temp. Phys. 184, 3-4, 958 (2016), [arXiv:1510.03874].
[222] R. E. Shrock, Phys. Lett. 96B, 159 (1980).
[223] F. Vissani, Nucl. Phys. Proc. Suppl. 100, 273 (2001), [,273(2000)], [hep-ph/0012018].
[224] Y. Farzan, O. L. G. Peres and A. Yu. Smirnov, Nucl. Phys. B612, 59 (2001), [hep-ph/0105105].
[225] J. Schechter and J. W. F. Valle, Phys. Rev. D25, 2951 (1982), [,289(1981)].
[226] J. Engel and J. Menendez, Rept. Prog. Phys. 80, 4, 046301 (2017), [arXiv:1610.06548].
[227] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117, 8, 082503 (2016), [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)], [arXiv:1605.02889].
[228] M. Agostini et al. (GERDA), Science 365, 1445 (2019), [arXiv:1909.02726].
[229] S. I. Alvis et al. (Majorana) (2019), [arXiv:1902.02299].
[230] S. Andringa et al. (SNO+), Adv. High Energy Phys. 2016, 6194250 (2016), [arXiv:1508.05759].
[231] G. Anton et al. (EXO-200) (2019), [arXiv:1906.02723].
[232] J. Renner et al. (NEXT), JINST 13, 10, P10020 (2018), [arXiv:1808.01804].
[233] C. Alduino et al. (CUORE), Phys. Rev. Lett. 120, 13, 132501 (2018), [arXiv:1710.07988].
[234] O. Azzolini et al. (CUPID), Phys. Rev. Lett. 123, 3, 032501 (2019), [arXiv:1906.05001].
[235] V. Alenkov et al., Eur. Phys. J. C79, 9, 791 (2019), [arXiv:1903.09483].
[236] R. Arnold et al. (NEMO-3), Phys. Rev. D92, 7, 072011 (2015), [arXiv:1506.05825].
[237] R. Arnold et al. (NEMO-3), Phys. Rev. Lett. 119, 4, 041801 (2017), [arXiv:1705.08847].

15. Quark Model

Revised August 2019 by C. Amsler (Stefan Meyer Inst.), T. DeGrand (Colorado U., Boulder) and B. Krusche (Basel U.).

15.1 Quantum numbers of the quarks

Quantum chromodynamics (QCD) is the theory of strong interactions. QCD is a quantum field theory and its constituents are a set of fermions, the quarks, and gauge bosons, the gluons. Strongly interacting particles, the hadrons, are bound states of quark and gluon fields. As gluons carry no intrinsic quantum numbers beyond color charge, and because color is believed to be permanently confined, most of the quantum numbers of strongly interacting particles are given by the quantum numbers of their constituent quarks and antiquarks. The description of hadronic properties which strongly emphasizes the role of the minimum-quark-content part of the wave function of a hadron is generically called the quark model. It exists on many levels: from the simple, almost dynamics-free picture of strongly interacting particles as bound states of quarks and antiquarks, to more detailed descriptions of dynamics, either through models or directly from QCD itself. The different sections of this review survey the many approaches to the spectroscopy of strongly interacting particles which fall under the umbrella of the quark model.

Quarks are strongly interacting fermions with spin $1 / 2$ and, by convention, positive parity. Antiquarks have negative parity. Quarks have the additive baryon number $1 / 3$, antiquarks $-1 / 3$. Table 15.1 gives the other additive quantum numbers (flavors) for the three generations of quarks. They are related to the charge Q (in units of the elementary charge e) through the generalized Gell-Mann-Nishijima formula

$$
\begin{equation*}
\mathrm{Q}=\mathrm{I}_{z}+\frac{\mathcal{B}+\mathrm{S}+\mathrm{C}+\mathrm{B}+\mathrm{T}}{2} \tag{15.1}
\end{equation*}
$$

where \mathcal{B} is the baryon number. The convention is that the quark flavor $\left(\mathrm{I}_{z}, \mathrm{~S}, \mathrm{C}, \mathrm{B}\right.$, or T$)$ has the same sign as its charge Q . With this convention, any flavor carried by a charged meson has

Table 15.1

	d	u	s	c	b	t
\mathbf{Q} - electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
$\mathbf{I}-$ isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
$\mathbf{I} z-$ isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$\mathrm{~S}-$ strangeness	0	0	-1	0	0	0
$\mathrm{C}-$ charm	0	0	0	+1	0	0
B - bottomness	0	0	0	0	-1	0
T - topness	0	0	0	0	0	+1

the same sign as its charge, e.g., the strangeness of the K^{+}is +1 , the bottomness of the B^{+}is +1 , and the charm and strangeness of the D_{s}^{-}are each -1 . Antiquarks have the opposite flavor signs. The hypercharge is defined as

$$
\begin{equation*}
Y=\mathcal{B}+S-\frac{C-B+T}{3} \tag{15.2}
\end{equation*}
$$

Thus Y is equal to $\frac{1}{3}$ for the u and d quarks, $-\frac{2}{3}$ for the s quark, and 0 for all other quarks. More details and derivations on the quark structure of mesons and baryons can be found in Ref. [1].

15.2 Mesons

Mesons have baryon number $\mathcal{B}=0$. In the quark model, they are $q \bar{q}^{\prime}$ bound states of quarks q and antiquarks \bar{q}^{\prime} (the flavors of q and q^{\prime} may be different). If the orbital angular momentum of the $q \bar{q}^{\prime}$ state is ℓ, then the parity P is $(-1)^{\ell+1}$. The meson spin J is given by the usual relation $|\ell-s| \leq J \leq|\ell+s|$, where s is 0 (antiparallel quark spins) or 1 (parallel quark spins). The charge conjugation, or C-parity $C=(-1)^{\ell+s}$, is defined only for the $q \bar{q}$ states made of quarks and their own antiquarks. The C-parity can be generalized to the G-parity $G=(-1)^{I+\ell+s}$ for mesons made of quarks and their own antiquarks (isospin $\mathbf{I}_{z}=0$), and for the charged $u \bar{d}$ and $d \bar{u}$ states (isospin $\mathrm{I}=1$).

The mesons are classified in $J^{P C}$ multiplets. The $\ell=0$ states are the pseudoscalars $\left(0^{-+}\right)$and the vectors $\left(1^{--}\right)$. The orbital
excitations $\ell=1$ are the scalars $\left(0^{++}\right)$, the axial vectors $\left(1^{++}\right)$ and $\left(1^{+-}\right)$, and the tensors $\left(2^{++}\right)$. Assignments for many of the known mesons are given in Tables 15.2, 15.3 and 15.4. Radial excitations are denoted by the principal quantum number n. The very short lifetime of the t quark makes it likely that bound-state hadrons containing t quarks and/or antiquarks do not exist.

States in the natural spin-parity series $P=(-1)^{J}$ must, according to the above, have $s=1$ and hence, $C P=+1$. Thus, mesons with natural spin-parity and $C P=-1\left(0^{+-}, 1^{-+}, 2^{+-}\right.$, 3^{-+}, etc.) are forbidden in the $q \bar{q}^{\prime}$ model. The $J^{P C}=0^{--}$state is forbidden as well. Mesons with such exotic quantum numbers may exist, but would lie outside the $q \bar{q}^{\prime}$ model (see section below on exotic mesons).

Following $\mathrm{SU}(3)$, the nine possible $q \bar{q}^{\prime}$ combinations containing the light u, d, and s quarks are grouped into an octet and a singlet of light quark mesons:

$$
\begin{equation*}
\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1} \tag{15.3}
\end{equation*}
$$

A fourth quark such as charm c can be included by extending $\mathrm{SU}(3)$ to $\mathrm{SU}(4)$. However, $\mathrm{SU}(4)$ is badly broken owing to the much heavier c quark. Nevertheless, in an $\mathrm{SU}(4)$ classification, the sixteen mesons are grouped into a 15 -plet and a singlet:

$$
\begin{equation*}
4 \otimes \overline{4}=15 \oplus 1 \tag{15.4}
\end{equation*}
$$

Figure 15.1: $\mathrm{SU}(4)$ weight diagram showing the 16 -plets for the pseudoscalar (a) and vector mesons (b) made of the u, d, s, and c quarks as a function of isospin I_{z}, charm C , and hypercharge Y $=\mathcal{B}+\mathrm{S}-\frac{\mathrm{C}}{3}$. The nonets of light mesons occupy the central planes to which the $c \bar{c}$ states have been added.

The weight diagrams for the ground-state pseudoscalar $\left(0^{-+}\right)$ and vector (1^{--}) mesons are depicted in Fig. 15.1. The light quark mesons are members of nonets building the middle plane in Fig. 15.1(a) and (b).

Isoscalar states with the same $J^{P C}$ mix, but mixing between the two light quark isoscalar mesons, and the much heavier charmonium or bottomonium states, are generally assumed to be negligible. In the following, we shall use the generic names a for the $\mathbf{I}=1, K$ for the $\mathbf{I}=1 / 2$, and f and f^{\prime} for the $\mathbf{I}=0$ members of

Table 15.2: Suggested $q \bar{q}$ quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson Summary Table. The wave functions f and f^{\prime} are given in the text (Eqn. 15.9). The singlet-octet mixing angles from the linear mass formula (15.12) and its quadratic version (in which the masses are squared) are also given for the well established nonets. The classification of the 0^{++}mesons is tentative: the light scalars $a_{0}(980), f_{0}(980), f_{0}(500)$ and $K_{0}^{*}(700)$ are often considered to be four-quark states, and are omitted from the table, see Eqn. (15.26) below. The isoscalar 0^{++}mesons $f_{0}(1370), f_{0}(1500)$ (not shown) and $f_{0}(1710)$ are expected to mix, see the "Note on Non- $q \bar{q}$ mesons" and the "Note on Scalar Mesons below 2 GeV " in the Meson Listings for details. The isoscalar assignments in the $2^{1} S_{0}\left(0^{-+}\right)$nonet are also tentative. The $\eta(1405)$ (not shown) and $\eta(1475)$ may be manifestations of the same state, see the "Note on Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region" in the Meson Listings.
\dagger The $1^{+ \pm}$and $2^{- \pm}$isospin $\frac{1}{2}$ states mix. In particular, the $K_{1 A}$ and $K_{1 B}$ are nearly equal (45°) mixtures of the $K_{1}(1270)$ and $K_{1}(1400)$ (see [2] and references therein).
\ddagger The physical vector mesons may be mixtures of $1^{3} D_{1}$ and $2^{3} S_{1}$ [3].

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\begin{aligned} & \mathrm{I}=1 \\ & u \bar{d}, \bar{u} d, \\ & \frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u}) \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{I}=\frac{1}{2} \\ & u \bar{s}, d \bar{s} ; \\ & \bar{d} s, \bar{u} s \end{aligned}$	$\begin{gathered} \mathrm{I}=0 \\ f^{\prime} \end{gathered}$	$\begin{aligned} & \mathrm{l}=0 \\ & f \end{aligned}$	$\begin{array}{r} \theta_{\mathrm{quad}} \\ {\left[^{\circ}\right]} \end{array}$	$\begin{array}{r} \theta_{\operatorname{lin}} \\ {\left[^{\circ}\right]} \end{array}$
$1^{1} S_{0}$	0^{-+}	π	K	η	$\boldsymbol{\eta}^{\prime}(958)$	-11.3	-24.5
$1^{3} S_{1}$	1^{--}	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	39.2	36.5
$1^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1 B}{ }^{\dagger}$	$h_{1}(1415)$	$h_{1}(1170)$		
$1^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1710)$	$f_{0}(1370)$		
$1^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1 A}{ }^{\dagger}$	$f_{1}(1420)$	$f_{1}(1285)$		
$1{ }^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_{2}(1270)$	29.6	28.0
$1^{1} D_{2}$	2^{-+}	π_{2} (1670)	$K_{2}(1770)^{\dagger}$	$\eta_{2}(1870)$	$\eta_{2}(1645)$		
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680){ }^{\ddagger}$		$\omega(1650)$		
$1^{3} D_{2}$	2^{--}		$K_{2}(1820)^{\dagger}$				
$1^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$	31.8	30.8
$1^{3} F_{4}$	4^{++}	$a_{4}(1970)$	$K_{4}^{*}(2045)$	$f_{4}(2300)$	$f_{4}(2050)$		
$1^{3} G_{5}$	5^{--}	$\rho_{5}(2350)$	$K_{5}^{*}(2380)$				
$2^{1} S_{0}$	0^{-+}	$\pi(1300)$	$K(1460)$	$\eta(1475)$	$\eta(1295)$		
$2^{3} S_{1}$	1^{--}	$\rho(1450)$	$K^{*}(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$		
$2^{3} P_{1}$	1^{++}	$a_{1}(1640)$					
$2^{3} P_{2}$	2^{++}	$a_{2}(1700)$	$K_{2}^{*}(1980)$	$f_{2}(1950)$	$f_{2}(1640)$		

Table 15.3: $c \bar{c}$ quark-model assignments for the charmonium and open charm mesons with established $J^{P C}$. Mesons in bold face are included in the Meson Summary Table. The open flavor states in the 1^{+-}and 1^{++}rows are mixtures of the $1^{+ \pm}$states.
\dagger The masses are considerably smaller than most theoretical predictions.
These states have also been considered as four-quark states.
\ddagger Mixtures of the $1^{3} D_{1}$ and $2^{3} S_{1}$ states.

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\mathrm{I}=0$ $c \bar{c}$	$\mathrm{I}=\frac{1}{2}$ $c \bar{u}, c d ;$	$\mathrm{I}=0$ $c \bar{s} ;$
			$\bar{c} u, \bar{c} d$	$\bar{c} s$

Table 15.4: $b \bar{b}$ quark-model assignments for the bottomonium and B mesons with established $J^{P C}$.

$n^{2 s+1} \ell_{J}$	$\overline{J^{P C}}$	$\begin{gathered} I=0 \\ b \bar{b} \end{gathered}$	$\begin{aligned} & \hline \hline \mathrm{I}=\frac{1}{2} \\ & b \bar{u}, b \bar{d} ; \\ & \bar{b} u, \bar{b} d \end{aligned}$	$\begin{gathered} \mathrm{I}=0 \\ b \bar{s} \\ \bar{b} s \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ b \bar{c} \\ \bar{b} c \end{gathered}$
$1^{1} S_{0}$	0^{-+}	$\eta_{b}(1 S)$	B	B_{s}^{0}	$B_{c}^{ \pm}$
$1{ }^{3} S_{1}$	1^{--}	$\Upsilon(1 S)$	B^{*}	B_{s}^{*}	
$1^{3} P_{0}$	0^{++}	$\chi_{b 0}(1 P)$			
$1^{3} P_{1}$	1^{++}	$\chi_{b 1}(1 P)$			
$1^{1} P_{1}$	1^{+-}	$h_{b}(1 P)$	$B_{1}(5721)$	$B_{s 1}(5830)^{0}$	
$1{ }^{3} P_{2}$	2^{++}	$\chi_{b 2}(1 P)$	$B_{2}^{*}(5747)$	$B_{s 2}^{*}(5840)^{0}$	
$2{ }^{1} S_{0}$	0^{-+}	$\eta_{b}(2 S)$			$B_{c}(2 S)^{ \pm}$
$2{ }^{3} S_{1}$	1^{--}	$\Upsilon(2 S)$			$B_{c}^{*}(2 S)^{ \pm}$
$1^{3} D_{2}$	2^{--}	$\Upsilon_{2}(1 D)$			
$2^{3} P_{J}$	0, 1, 2^{++}	$\chi_{b 0,1,2}(2 P)$			
$2^{1} P_{1}$	1^{+-}	$h_{b}(2 P)$			
$3{ }^{3} S_{1}$	1^{--}	$\Upsilon(3 S)$			
$3^{3} P_{J}$	0, 1, 2^{++}	$\chi_{b 1,2}(3 P)$			
$4^{3} S_{1}$	1^{--}	$\Upsilon(4 S)$			

the light quark nonets. Thus, the physical isoscalars are mixtures of the $\mathrm{SU}(3)$ wave function ψ_{8} and ψ_{1} :

$$
\begin{align*}
f^{\prime} & =\psi_{8} \cos \theta-\psi_{1} \sin \theta \tag{15.5}\\
f & =\psi_{8} \sin \theta+\psi_{1} \cos \theta \tag{15.6}
\end{align*}
$$

where θ is the nonet mixing angle and

$$
\begin{align*}
\psi_{8} & =\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \tag{15.7}\\
\psi_{1} & =\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \tag{15.8}
\end{align*}
$$

These mixing relations are often rewritten to exhibit the $u \bar{u}+d \bar{d}$ and $s \bar{s}$ components which decouple for the "ideal" mixing angle θ_{i}, such that $\tan \theta_{i}=1 / \sqrt{2}$ (or $\theta_{i}=35.3^{\circ}$). Defining $\alpha=\theta+$ 54.7°, one obtains the physical isoscalar in the flavor basis

$$
\begin{equation*}
f^{\prime}=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \cos \alpha-s \bar{s} \sin \alpha \tag{15.9}
\end{equation*}
$$

and its orthogonal partner f (replace α by $\alpha-90^{\circ}$). Thus for ideal mixing $\left(\alpha_{i}=90^{\circ}\right)$, the f^{\prime} becomes pure $s \bar{s}$ and the f pure $u \bar{u}+d \bar{d}$. The mixing angle θ can be derived by diagonalizing the mass matrix

$$
\left(\begin{array}{cc}
m_{8} & m_{81} \tag{15.10}\\
m_{18} & m_{1}
\end{array}\right)
$$

The mass eigenvalues are $m_{f^{\prime}}$ and m_{f}. The mixing angle is given by

$$
\begin{equation*}
\tan \theta=\frac{m_{8}-m_{f^{\prime}}}{m_{81}} \tag{15.11}
\end{equation*}
$$

Calculating m_{8} and m_{81} from the wave functions Eq. 15.7 and Eq. 15.8, and expressing the quark masses as a function of the I $=1 / 2$ and $\mathrm{I}=1$ meson masses, one obtains

$$
\begin{equation*}
\tan \theta=\frac{4 m_{K}-m_{a}-3 m_{f^{\prime}}}{2 \sqrt{2}\left(m_{a}-m_{K}\right)} \tag{15.12}
\end{equation*}
$$

which also determines the sign of θ. Alternatively, one can express the mixing angle as a function of all nonet masses. The octet mass is given by

$$
\begin{equation*}
m_{8}=m_{f^{\prime}} \cos ^{2} \theta+m_{f} \sin ^{2} \theta \tag{15.13}
\end{equation*}
$$

whence

$$
\begin{equation*}
\tan ^{2} \theta=\frac{4 m_{K}-m_{a}-3 m_{f^{\prime}}}{-4 m_{K}+m_{a}+3 m_{f}} \tag{15.14}
\end{equation*}
$$

Eliminating θ from Eq. (15.12) and Eq. (15.14) leads to the sum rule [4]

$$
\begin{equation*}
\left(m_{f}+m_{f^{\prime}}\right)\left(4 m_{K}-m_{a}\right)-3 m_{f} m_{f^{\prime}}=8 m_{K}^{2}-8 m_{K} m_{a}+3 m_{a}^{2} \tag{15.15}
\end{equation*}
$$

This relation is verified for the ground-state vector mesons. We identify the $\phi(1020)$ with the f^{\prime} and the $\omega(783)$ with the f. Thus

$$
\begin{align*}
\phi(1020) & =\psi_{8} \cos \theta_{V}-\psi_{1} \sin \theta_{V} \\
\omega(782) & =\psi_{8} \sin \theta_{V}+\psi_{1} \cos \theta_{V} \tag{15.16}
\end{align*}
$$

with the vector mixing angle $\theta_{V}=36.4^{\circ}$ from Eq. (15.14), very close to ideal mixing. Thus $\phi(1020)$ is nearly pure $s \bar{s}$. For ideal mixing, Eq. (15.12) and Eq. (15.14) lead to the relations

$$
\begin{equation*}
m_{K}=\frac{m_{f}+m_{f^{\prime}}}{2}, \quad m_{a}=m_{f} \tag{15.17}
\end{equation*}
$$

which are satisfied for the vector mesons.
The situation for the pseudoscalar and scalar mesons is not so clear cut, either theoretically or experimentally. For the pseudoscalars, the mixing angle is small. This can be understood qualitatively via gluon-line counting of the mixing process. The size of the mixing process between the nonstrange and strange mass bases scales as α_{s}^{2}, not α_{s}^{3}, because of two rather than three gluon exchange as it does for the vector mesons. It may also be that the lightest isoscalar pseudoscalars mix more strongly with excited states or with states of substantial non- $\bar{q} q$ content, as will be discussed below.

A variety of analysis methods lead to similar results: First, for these states, Eqn. 15.15 is satisfied only approximately. Then Eqn. 15.12 and Eqn. 15.14 lead to somewhat different values for the mixing angle. Identifying the η with the f^{\prime} one gets

$$
\begin{align*}
\eta & =\psi_{8} \cos \theta_{P}-\psi_{1} \sin \theta_{P} \tag{15.18}\\
\eta^{\prime} & =\psi_{8} \sin \theta_{P}+\psi_{1} \cos \theta_{P} \tag{15.19}
\end{align*}
$$

Following chiral perturbation theory, the meson masses in the mass formulae (Eq. (15.12) and Eq. (15.14)) might be replaced by their squares. Table 15.5 lists the mixing angle $\theta_{\text {lin }}$ from Eqn. 15.14 (using the neutral members of the nonets) and the corresponding $\theta_{\text {quad }}$ obtained by replacing the meson masses by their squares throughout.

Table 15.5: Singlet-octet mixing angles for the well established nonets from the linear mass formula (15.12) and its quadratic version in which the masses are squared.

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\theta_{\text {quad }}$ $\left[{ }^{\circ}\right]$	$\theta_{\text {lin }}$ $\left[{ }^{\circ}\right]$
$1^{1} S_{0}$	0^{-+}	-11.3	-24.5
$1^{3} S_{1}$	1^{--}	39.2	36.5
$1^{3} P_{2}$	2^{++}	29.6	28.0
$1^{3} D_{3}$	3^{--}	31.8	30.8

The pseudoscalar mixing angle θ_{P} can also be measured by comparing the partial widths for radiative J / ψ decay into a vector and a pseudoscalar [5], radiative $\phi(1020)$ decay into η and η^{\prime} [6], radiative decays between pseudoscalar and vector mesons [7], or $\bar{p} p$ annihilation at rest into a pair of vector and pseudoscalar or into two pseudoscalars [8,9] One obtains a mixing angle between -10° and -20°. More recently, a lattice QCD simulation, Ref. [10], has successfully reproduced the masses of the η and η^{\prime}, and as a byproduct find a mixing angle $\theta_{\text {lin }}=-14.1(2.8)^{\circ}$. We return to this point in Sec. 15.6.

The nonet mixing angles can be measured in $\gamma \gamma$ collisions, e.g., for the $0^{-+}, 0^{++}$, and 2^{++}nonets. In the quark model, the amplitude for the coupling of neutral mesons to two photons is proportional to $\sum_{i} Q_{i}^{2}$, where Q_{i} is the charge of the i-th quark. The 2γ partial width of an isoscalar meson with mass m is then given in terms of the mixing angle α by

$$
\begin{equation*}
\Gamma_{2 \gamma}=C(5 \cos \alpha-\sqrt{2} \sin \alpha)^{2} m^{3} \tag{15.20}
\end{equation*}
$$

- for f^{\prime} and $f\left(\alpha \rightarrow \alpha-90^{\circ}\right)$. The coupling C may depend on the meson mass. It is often assumed to be a constant in the nonet. For the isovector a, one then finds $\Gamma_{2 \gamma}=9 C \mathrm{~m}^{3}$. Thus the members of an ideally mixed nonet couple to 2γ with partial widths in the ratios $f: f^{\prime}: a=25: 2: 9$. For tensor mesons, one finds from the ratios of the measured 2γ partial widths for the $f_{2}(1270)$ and $f_{2}^{\prime}(1525)$ mesons a mixing angle α_{T} of ($81 \pm$ $1)^{\circ}$, or $\theta_{T}=(27 \pm 1)^{\circ}$, in accord with the linear mass formula. For the pseudoscalars, one finds from the ratios of partial widths $\Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right) / \Gamma(\eta \rightarrow 2 \gamma)$ a mixing angle $\theta_{P}=(-18 \pm 2)^{\circ}$, while the ratio $\Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right) / \Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)$ leads to $\sim-24^{\circ} . \mathrm{SU}(3)$ breaking effects for pseudoscalars are discussed in [11].

Figure 15.2: $\mathrm{SU}(3)$ couplings as a function of mixing angle α for isoscalar decays, up to a common multiplicative factor C and for $\theta_{P}=-17.3^{\circ}$.

The partial width for the decay of a scalar or a tensor meson into a pair of pseudoscalar mesons is model-dependent. Following Ref. [13],

$$
\begin{equation*}
\Gamma=C \times \gamma^{2} \times|F(q)|^{2} \times q \tag{15.21}
\end{equation*}
$$

C is a nonet constant, q the momentum of the decay products, $F(q)$ a form factor, and γ^{2} the $\mathrm{SU}(3)$ coupling. The modeldependent form factor may be written as

$$
\begin{equation*}
|F(q)|^{2}=q^{2 \ell} \times \exp \left(-\frac{q^{2}}{8 \beta^{2}}\right) \tag{15.22}
\end{equation*}
$$

where ℓ is the relative angular momentum between the decay products. The decay of a $q \bar{q}$ meson into a pair of mesons involves the creation of a $q \bar{q}$ pair from the vacuum, and $\mathrm{SU}(3)$ symmetry assumes that the matrix elements for the creation of $s \bar{s}, u \bar{u}$, and $d \bar{d}$ pairs are equal. The couplings γ^{2} are given in Table 15.6, and

Table 15.6: $\mathrm{SU}(3)$ couplings γ^{2} for quarkonium decays as a function of nonet mixing angle α, up to a common multiplicative factor $C\left(\phi=54.7^{\circ}+\right.$ $\left.\theta_{P}\right)$.

Isospin	Decay channel	γ^{2}
0	$\pi \pi$	$3 \cos ^{2} \alpha$
	$K \bar{K}$	$(\cos \alpha-\sqrt{2} \sin \alpha)^{2}$
	$\eta \eta$	$\left(\cos \alpha \cos ^{2} \phi-\sqrt{2} \sin \alpha \sin ^{2} \phi\right)^{2}$
	$\eta \eta^{\prime}$	$\frac{1}{2} \sin ^{2} 2 \phi(\cos \alpha+\sqrt{2} \sin \alpha)^{2}$
1	$\eta \pi$	$2 \cos ^{2} \phi$
	$\eta^{\prime} \pi$	$2 \sin ^{2} \phi$
	$K \bar{K}$	1
$\frac{1}{2}$	$K \pi$	$\frac{3}{2}$
	$K \eta$	$\left(\sin \phi-\frac{\cos \phi}{\sqrt{2}}\right)^{2}$
	$K \eta^{\prime}$	$\left(\cos \phi+\frac{\sin \phi}{\sqrt{2}}\right)^{2}$

Figure 15.3: Established states populating the charmonium spectrum that are listed in the Summary Tables. The $c \bar{c}$ states are shown in black, the exotic ones are tagged by stars (red for the isoscalars, blue for the isovectors). The quantum numbers of the two states in the right colum are not firmly established.
their dependence upon the mixing angle α is shown in Fig. 15.2 for isoscalar decays. The generalization to unequal $s \bar{s}, u \bar{u}$, and $d \bar{d}$ couplings is given in Ref. [13]. An excellent fit to the tensor meson decay widths is obtained assuming $\mathrm{SU}(3)$ symmetry, with $\beta \simeq 0.5 \mathrm{GeV} / \mathrm{c}, \theta_{V} \simeq 26^{\circ}$ and $\theta_{P} \simeq-17^{\circ}[13]$.

Figure 15.4: Predicted glueball mass spectrum from the lattice in quenched approximation (from [12]).

15.3 Exotic mesons

The existence of a light nonet composed of four quarks (tetraquarks) with masses below 1 GeV was suggested a long time ago [14] [15]. Coupling two triplets of light quarks u, d, and s, one obtains nine states, of which the six symmetric (uu, dd, ss, ud+ $d u, u s+s u, d s+s d)$ form the six dimensional representation $\mathbf{6}$, while the three antisymmetric ($u d-d u, u s-s u, d s-s d$) form the three dimensional representation $\overline{\mathbf{3}}$ of $\mathrm{SU}(3)$:

$$
\begin{equation*}
\mathbf{3} \otimes \mathbf{3}=\mathbf{6} \oplus \overline{\mathbf{3}} \tag{15.23}
\end{equation*}
$$

Hence for tetraquarks one gets the reduction

$$
\begin{align*}
& \mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{3}} \otimes \overline{\mathbf{3}} \\
= & \mathbf{6} \oplus \overline{\mathbf{3}} \otimes \overline{\mathbf{6}} \otimes \mathbf{3} \\
= & \overline{\mathbf{3}} \otimes \mathbf{3} \oplus \mathbf{6} \otimes \overline{\mathbf{6}} \oplus \mathbf{6} \otimes \mathbf{3} \oplus \overline{\mathbf{3}} \otimes \overline{\mathbf{6}} \\
= & \mathbf{9} \oplus \mathbf{3 6} \oplus \mathbf{1 8} \oplus \overline{\mathbf{1 8}} . \tag{15.24}
\end{align*}
$$

Combining with spin and color and requiring antisymmetry for diquarks and antidiquarks, one finds for ground states (zero angular momenta) that the most deeply bound tetraquarks (and hence the lightest ones) lie in the nonet and are scalar mesons (see also [1]). The average mass is estimated to be around 900 MeV from the mass differences between the ρ and π masses. Letting the strange quark determine the mass splittings one obtains a mass inverted spectrum with a light isosinglet, a medium heavy isodoublet and a heavy isotriplet + isosinglet. It is then tempting to identify these mesons as the lightest scalars

$$
\begin{align*}
& f_{0}(500)=\bar{u} \bar{d} u d, \quad K_{0}^{*}(700)=(\bar{s} \bar{d} u d, \bar{s} \bar{u} u d) \quad \text { and } \quad(\bar{u} \bar{d} u s, \bar{u} \bar{d} d s) \\
& a_{0}(980)=\left(u s \bar{d} \bar{s}, \frac{1}{\sqrt{2}}[u \bar{u}-d \bar{d}] s \bar{s}, \bar{u} \bar{s} d s\right) \\
& f_{0}(980)=\frac{1}{\sqrt{2}}[u \bar{u}+d \bar{d}] s \bar{s} \tag{15.26}
\end{align*}
$$

A plethora of new states have been reported in the charmonium and bottomonium spectra. The most prominent one is the $\chi_{c 1}(3872)$ (formerly $X(3872)$), first observed in 2003 in B-decays in the final state $J / \psi \pi^{+} \pi^{-}$(see Fig. 15.3). Even more remarkable is the observation of isosovector (charged) mesons decaying into $c \bar{c}$ plus a charged pion, such as the $Z^{ \pm}$(4430) decaying into $\psi(2 S) \pi^{ \pm}$, which a priori excludes an interpretation as true $c \bar{c}$ (charmonium) state. Similar states are also observed in the bottomonium spectrum. Some of these states may be tetraquarks (e.g. $c q \bar{c} \bar{q}$), molecular structures (e.g. $c \bar{q} \bar{c} q$) made of pairs of
mesons such as D, D_{s} and D^{*}, D_{s}^{*} excitations, or their B and B^{*} counterparts. They could also be mimicked by kinematical effects. Details and references can be found in recent reviews [16], [17] and in the "Note on Non- $q \bar{q}$ Mesons" in the Meson Listings.

QCD predicts the existence of extra isoscalar mesons. In the pure gauge theory they contain only gluons, and are called glueballs. The ground state glueball is predicted by lattice gauge theories to be 0^{++}, the first excited state 2^{++}. Errors on the mass predictions are large. From Ref. [18] one obtains 1750 (50) (80) MeV for the mass of the lightest 0^{++}glueball from quenched QCD. As an example for the glueball mass spectrum, we show in Fig. 15.4 a calculation from Ref. [12]. A mass of 1710 MeV is predicted for the ground state, also with an error of about 100 MeV . Earlier work by other groups produced masses at 1650 MeV [19] and 1550 MeV [20] (see also [21]. The first excited state has a mass of about 2.4 GeV , and the lightest glueball with exotic quantum numbers $\left(2^{+-}\right)$has a mass of about 4 GeV .

These calculations are made in the so-called "quenched approximation" which neglects $q \bar{q}$ loops. However, both glue and $q \bar{q}$ states couple to singlet scalar mesons. Therefore glueballs will mix with nearby $q \bar{q}$ states of the same quantum numbers. For example, the two isoscalar 0^{++}mesons around 1500 MeV will mix with the pure ground state glueball to generate the observed physical states $f_{0}(1370), f_{0}(1500)$, and $f_{0}(1710)[13,22]$. The first results from lattice calculations, which include these effects, indicate that the mass shifts are small. We return to a discussion of this point in Sec. 15.6.

The existence of three singlet scalar mesons around 1.5 GeV suggests additional degrees of freedom such as glue, since only two mesons are predicted in this mass range. The $f_{0}(1500)[13,22]$ or, alternatively, the $f_{0}(1710)$ [19], have been proposed as candidates for the scalar glueball, both states having considerable mixing also with the $f_{0}(1370)$. Other mixing schemes, in particular with the $f_{0}(500)$ and the $f_{0}(980)$, have also been proposed [23]. According to a holographic model of low-energy QCD scalar glueballs decay strongly into kaons and η mesons, in good agreement with data on the $f_{0}(1710)$ [24]. Details can be found in the "Note on Non$q \bar{q}$ Mesons" in the Meson Listings and in Ref. [25]. See also the "Note on Scalar Mesons below 2 GeV ".

Mesons made of $q \bar{q}$ pairs bound by excited gluons g, the hybrid states $q \bar{q} g$, are also predicted. They should lie in the 1.9 GeV mass region, according to gluon flux tube models [26]. Lattice QCD also predicts the lightest hybrid, an exotic 1^{-+}, at a mass of 1.8 to 1.9 GeV [27]. However, the bag model predicts four nonets, among them an exotic 1^{-+}around or above $1.4 \mathrm{GeV}[28,29]$. There are so far two candidates for exotic states with quantum numbers 1^{-+}, the $\pi_{1}(1400)$ and $\pi_{1}(1600)$, which could be hybrids or four-quark states (see the "Note on Non- $q \bar{q}$ Mesons" in the Meson Listings and in [25]).

15.4 Baryons: $q q q$ states

Baryons are fermions with baryon number $\mathcal{B}=1$, i.e., in the most general case, they are composed of three quarks plus any number of quark - antiquark pairs. Until recently, all established baryons were 3 -quark ($q q q$) configurations, which we mainly discuss in this section. However, in 2015 the LHCb collaboration published first evidence for charmed 'pentaquark' states of minimal quark content $c \bar{c} u u d$ at invariant masses close to 4.4 GeV [30] More refined LHCb experiments have revealed evidence for three such states called $P_{c}(4312)^{+}, P_{c}(4440)^{+}$, and $P_{c}(4457)^{+}[31]$. These states are located close to the thresholds of the production of ordinary baryon-meson pairs like $\Sigma_{c}^{+} \bar{D}^{0}$ and $\Sigma_{c}^{+} \bar{D}^{\star 0}$ and are discussed in terms of molecular-like states. A nice overview on the discussion of pentaquark and tetraquark states is given in Ref. [32].

The color part of baryon state functions is an $\mathrm{SU}(3)$ singlet, a completely antisymmetric state of the three colors. Since the quarks are fermions, the state function must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus it can be written as

$$
\begin{equation*}
\left.\left.|q q q\rangle_{A}=\mid \text { color }\right\rangle_{A} \times \mid \text { space }, \text { spin, flavor }\right\rangle_{S} \tag{15.27}
\end{equation*}
$$

where the subscripts S and A indicate symmetry or antisymme-

Figure 15.5: $\operatorname{SU}(4)$ multiplets of baryons made of u, d, s, and c quarks. (a) The spin $1 / 220$-plet with an $\mathrm{SU}(3)$ octet. (b) The spin $3 / 220$-plet with an $\mathrm{SU}(3)$ decuplet.
try under interchange of any two equal-mass quarks. Note the contrast with the state function for the three nucleons in ${ }^{3} \mathrm{H}$ or ${ }^{3} \mathrm{He}$:

$$
\begin{equation*}
\left.|N N N\rangle_{A}=\mid \text { space }, \text { spin, isospin }\right\rangle_{A} \tag{15.28}
\end{equation*}
$$

This difference has major implications for internal structure, magnetic moments, etc. (For a nice discussion, see Ref. [33])

The "ordinary" baryons are made up of u, d, and s quarks. The three flavors imply an approximate flavor $\mathrm{SU}(3)$, which requires that baryons made of these quarks belong to the multiplets on the right side of

$$
\begin{equation*}
\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}=\mathbf{1 0}_{S} \oplus \mathbf{8}_{M} \oplus \mathbf{8}_{M} \oplus \mathbf{1}_{A} \tag{15.29}
\end{equation*}
$$

(see the section on " $\mathrm{SU}(n)$ Multiplets and Young Diagrams"). Here the subscripts indicate symmetric, mixed-symmetry, or antisymmetric states under interchange of any two quarks. The $\mathbf{1}$ is a $u d s$ state $\left(\Lambda_{1}\right)$, and the octet contains a similar state $\left(\Lambda_{8}\right)$. If these have the same spin and parity, they can mix. The mechanism is the same as for the mesons (see above). In the ground state multiplet, the $\mathrm{SU}(3)$ flavor singlet Λ_{1} is forbidden by Fermi statistics. The section on "SU(3) Isoscalar Factors and Representation Matrices," shows how relative decay rates in, say, $\mathbf{1 0} \rightarrow \mathbf{8} \otimes \mathbf{8}$ decays may be calculated.

The addition of the c quark to the light quarks extends the flavor symmetry to $\mathrm{SU}(4)$. However, due to the large mass of the c quark, this symmetry is much more strongly broken than the $\mathrm{SU}(3)$ of the three light quarks. Figures 15.5 (a) and 15.5 (b) show the $\mathrm{SU}(4)$ baryon multiplets that have as their bottom levels an $\mathrm{SU}(3)$ octet, such as the octet that includes the nucleon, or an $\mathrm{SU}(3)$ decuplet, such as the decuplet that includes the $\Delta(1232)$. All particles in a given $\mathrm{SU}(4)$ multiplet have the same spin and parity. The charmed baryons are discussed in more detail in the "Note on Charmed Baryons" in the Particle Listings. The same multiplets as shown in Fig. 15.5 can be constructed when the c quark is replaced by the b quark, or they can be embedded in
a larger $\mathrm{SU}(5)$ group that accounts for all baryons that can be constructed from the five quark flavors. The existence of baryons with t-quarks is very unlikely due to the short lifetime of the t quark. The heavy quark baryons have recently gained a lot of interest [34]. Their relatively narrow widths allow to isolate the states much easier than the light quark baryon resonances which require intricate partial wave analyses. The only problem on the experimental side are the small production cross sections, but the recent measurements at the $e^{+} e^{-}$colliding B factories, at the $p \bar{p}$ Tevatron collider, and at LHCb at CERN have boosted this field. The LHCb collaboration has published evidence for five new narrow Ω_{c}^{0} states (css) [35] and for a doubly charmed $\Xi_{c c}^{++}$(ccu) [36] baryon. Doubly charmed baryons have a much different structure from light baryons, more resembling a heavy 'double-star' system with an attached light 'planet' and open a new window for QCD properties. Another candidate for a doubly charmed baryon $\left(\Xi_{c c}^{+},(c c d)\right)$ had been earlier reported by the SELEX experiment $[37,38]$ but could so far not be confirmed by other experiments and the difference in mass between the LHCb $\Xi_{c c}^{++}$and the SELEX $\Xi_{c c}^{+}$would be much larger than predicted. Quark model predictions for baryons with two heavy quarks are given in Ref. [39] and lattice results for doubly and triply charmed states are discussed in Sec. 15.6 of this review.

For the "ordinary" baryons (no c or b quark), flavor and spin may be combined in an approximate flavor-spin $\mathrm{SU}(6)$, in which the six basic states are $d \uparrow, d \downarrow, \cdots, s \downarrow(\uparrow, \downarrow=$ spin up, down). Then the baryons belong to the multiplets on the right side of

$$
\mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6}=\mathbf{5 6} \mathbf{6}_{S} \oplus \mathbf{7 0}_{M} \oplus \mathbf{7 0}_{M} \oplus \mathbf{2 0}_{A}
$$

These $\mathrm{SU}(6)$ multiplets decompose into flavor $\mathrm{SU}(3)$ multiplets as follows:

$$
\begin{gather*}
\mathbf{5 6}={ }^{4} \mathbf{1 0} \oplus^{2} \mathbf{8} \tag{15.30}\\
\mathbf{7 0}={ }^{2} \mathbf{1 0} \oplus^{4} \mathbf{8} \oplus^{2} \mathbf{8} \oplus^{2} \mathbf{1} \tag{15.31}\\
\mathbf{2 0}={ }^{2} \mathbf{8} \oplus^{4} \mathbf{1} \tag{15.32}
\end{gather*}
$$

where the superscript $(2 S+1)$ gives the net spin S of the quarks for each particle in the $\mathrm{SU}(3)$ multiplet. The $J^{P}=1 / 2^{+}$octet containing the nucleon and the $J^{P}=3 / 2^{+}$decuplet containing the $\Delta(1232)$ together make up the "ground-state" 56-plet, in which the orbital angular momenta between the quark pairs are zero (so that the spatial part of the state function is trivially symmetric). The $\mathbf{7 0}$ and $\mathbf{2 0}$ require some excitation of the spatial part of the state function in order to make the overall state function symmetric. States with nonzero orbital angular momenta are classified in $\mathrm{SU}(6) \otimes \mathrm{O}(3)$ supermultiplets.

It is useful to classify the baryons into bands that have the same number N of quanta of excitation. Each band consists of a number of supermultiplets, specified by $\left(D, L_{N}^{P}\right)$, where D is the dimensionality of the $\mathrm{SU}(6)$ representation, L is the total quark orbital angular momentum, and P is the total parity. Supermultiplets contained in bands up to $\mathrm{N}=12$ are given in Ref. [40]. The $\mathrm{N}=0$ band, which contains the nucleon and $\Delta(1232)$, consists only of the $\left(56,0_{0}^{+}\right)$supermultiplet. The $\mathrm{N}=1$ band consists only of the $\left(70,1_{1}^{-}\right)$multiplet and contains the negative-parity baryons with masses below about 1.9 GeV . The $\mathrm{N}=2$ band contains five supermultiplets: $\left(56,0_{2}^{+}\right),\left(70,0_{2}^{+}\right),\left(56,2_{2}^{+}\right),\left(70,2_{2}^{+}\right)$, and $\left(20,1_{2}^{+}\right)$.

The wave functions of the non-strange baryons in the harmonic oscillator basis are often labeled by $\left|X^{2 S+1} L_{\pi} J^{P}\right\rangle$, where S, L, J, P are as above, $X=N$ or Δ, and $\pi=S, M$ or A denotes the symmetry of the spatial wave function. The possible model states for the bands with $\mathrm{N}=0,1,2$ are given in Table 15.8. The assignment of experimentally observed states is only complete and well established up to the $N=1$ band. Some more tentative assignments for higher multiplets are suggested in [41].

In Table 15.7, quark-model assignments are given for many of the established baryons whose $\mathrm{SU}(6) \otimes \mathrm{O}(3)$ compositions are relatively unmixed. One must, however, keep in mind that apart from the mixing of the Λ singlet and octet states, states with same J^{P} but different L, S combinations can also mix. In the quark model with one-gluon exchange motivated interactions, the size of the mixing is determined by the relative strength of the tensor term with respect to the contact term (see below). The

Table 15.7: Quark-model assignments for some of the known baryons in terms of a flavor-spin $\operatorname{SU}(6)$ basis. Only the dominant representation is listed. Assignments for several states, especially for the $\Lambda(1810), \Lambda(2350), \Xi(1820)$, and $\Xi(2030)$, are merely educated guesses.
\dagger suggestions for assignments and re-assignments from Ref. [42]. For assignments of the charmed baryons, see the "Note on Charmed Baryons" in the Particle Listings.

J^{P}	$\left(D, L_{N}^{P}\right)$	S		Octet members			
$1 / 2^{+}$	$\left(56,0_{0}^{+}\right)$	$1 / 2$	$N(939)$	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	Singlets
$1 / 2^{+}$	$\left(56,0_{2}^{+}\right)$	$1 / 2$	$N(1440)$	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$1 / 2$	$N(1535)$	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$1 / 2$	$N(1520)$	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$3 / 2$	$N(1650)$	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
						$\Sigma(1620)^{\dagger}$	
$3 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$3 / 2$	$N(1700)$	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$3 / 2$	$N(1675)$	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1 / 2^{+}$	$\left(70,0_{2}^{+}\right)$	$1 / 2$	$N(1710)$	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3 / 2^{+}$	$\left(56,2_{2}^{+}\right)$	$1 / 2$	$N(1720)$	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5 / 2^{+}$	$\left(56,2_{2}^{+}\right)$	$1 / 2$	$N(1680)$	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7 / 2^{-}$	$\left(70,3_{3}^{-}\right)$	$1 / 2$	$N(2190)$	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9 / 2^{-}$	$\left(70,3_{3}^{-}\right)$	$3 / 2$	$N(2250)$	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9 / 2^{+}$	$\left(56,4_{4}^{+}\right)$	$1 / 2$	$N(2220)$	$\Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	

Decuplet members						
$3 / 2^{+}$	$\left(56,0_{0}^{+}\right)$	$3 / 2$	$\Delta(1232)$	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3 / 2^{+}$	$\left(56,0_{2}^{+}\right)$	$3 / 2$	$\Delta(1600)$	$\Sigma(1690)^{\dagger}$	$\Xi(?)$	$\Omega(?)$
$1 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$1 / 2$	$\Delta(1620)$	$\Sigma(1750)^{\dagger}$	$\Xi(?)$	$\Omega(?)$
$3 / 2^{-}$	$\left(70,1_{1}^{-}\right)$	$1 / 2$	$\Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5 / 2^{+}$	$\left(56,2_{2}^{+}\right)$	$3 / 2$	$\Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7 / 2^{+}$	$\left(56,2_{2}^{+}\right)$	$3 / 2$	$\Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
$11 / 2^{+}$	$\left(56,4_{4}^{+}\right)$	$3 / 2$	$\Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

Table 15.8: N and Δ states in the $\mathrm{N}=0,1,2$ harmonic oscillator bands. L^{P} denotes angular momentum and parity, S the three-quark spin and 'sym'=A,S,M the symmetry of the spatial wave function. Listed are all possible spin/parity combinations and assignments of experimentally observed states. Only dominant components are indicated. Assignments in the $\mathrm{N}=2$ band are partly tentative.

N	sym	L^{P}	S	$N(I=1 / 2)$			
2	A	1^{+}	1/2	$1 / 2^{+}$	$3 / 2^{+}$		-
2	M	2^{+}	3/2	$1 / 2^{+}$	$3 / 2^{+}$	$5 / 2^{+}$	7/2 ${ }^{+}$
2	M	2^{+}	1/2	-	$3 / 2^{+}$	$5 / 2^{+}$	-
2	M	0^{+}	3/2	-	$3 / 2^{+}$	-	-
2	M	0^{+}	1/2	$1 / 2^{+} N(1710)$	-	-	-
2	S	2^{+}	3/2	-	-	-	-
2	S	2^{+}	1/2	-	$3 / 2^{+} N(1720)$	$5 / 2^{+} N(1680)$	-
2	S	0^{+}	3/2	-	-	-	-
2	S	0^{+}	1/2	$1 / 2^{+} N(1440)$	-	-	-
1	M	1^{-}	3/2	$1 / 2^{-} N(1650)$	$3 / 2^{-} N(1700)$	$5 / 2^{-} N(1675)$	-
1	M	1^{-}	1/2	$1 / 2^{-} N(1535)$	$3 / 2^{-} N(1520)$	-	-
0	S	0^{+}	3/2	-	-	-	-
0	S	0^{+}	1/2	$1 / 2^{+} N(938)$	-	-	-
N	sym	L^{P}	S	$\Delta(I=3 / 2)$			
2	A	1^{+}	1/2	-	-	-	-
2	M	2^{+}	3/2	-	-	-	-
2	M	2^{+}	1/2	-	$3 / 2^{+}$	5/2+	-
2	M	0^{+}	3/2	-	-	-	-
2	M	0^{+}	1/2	$1 / 2^{+} \Delta(1750)$	-	-	-
2	S	2^{+}	3/2	$1 / 2^{+} \Delta(1910)$	$3 / 2^{+} \Delta(1920)$	$5 / 2^{+} \Delta(1905)$	$7 / 2^{+} \Delta(1950)$
2	S	2^{+}	1/2	-	-	-	-
2	S	0^{+}	3/2	-	$3 / 2^{+} \Delta(1600)$	-	-
2	S	0^{+}	1/2	-	-	-	-
1	M	1^{-}	3/2	-	-	-	-
1	M	1^{-}	1/2	$1 / 2^{-} \Delta(1620)$	$3 / 2^{-} \Delta(1700)$	-	-
0	S	0^{+}	3/2	-	$3 / 2^{+} \Delta(1232)$	-	
0	S	0^{+}	1/2	-	-	-	-

mixing is more important for the decay patterns of the states than for their positions. An example are the lowest lying $\left(70,1_{1}^{-}\right)$ states with $J^{P}=1 / 2^{-}$and $3 / 2^{-}$. The physical states are:

$$
\begin{equation*}
\left|N(1535) 1 / 2^{-}\right\rangle=\cos \left(\Theta_{S}\right)\left|N^{2} P_{M} 1 / 2^{-}\right\rangle-\sin \left(\Theta_{S}\right)\left|N^{4} P_{M} 1 / 2^{-}\right\rangle \tag{15.33}
\end{equation*}
$$

$\left|N(1520) 3 / 2^{-}\right\rangle=\cos \left(\Theta_{D}\right)\left|N^{2} P_{M} 3 / 2^{-}\right\rangle-\sin (\Theta)_{D}\left|N^{4} P_{M} 3 / 2^{-}\right\rangle$
(15.34)
and the orthogonal combinations for $N(1650) 1 / 2^{-}$and $N(1700) 3 / 2^{-}$. The mixing is large for the $J^{P}=1 / 2^{-}$states $\left(\Theta_{S} \approx\right.$ $\left.-32^{\circ}\right)$, but small for the $J^{P}=3 / 2^{-}$states $\left(\Theta_{D} \approx+6^{o}\right)$ [43-45].

All baryons of the ground state multiplets are known. Many of their properties, in particular their masses, are in good agreement even with the most basic versions of the quark model, including harmonic (or linear) confinement and a spin-spin interaction, which is responsible for the octet - decuplet mass shifts. A consistent description of the ground-state electroweak properties, however, requires refined relativistic constituent quark models.

The situation for the excited states is much less clear. The assignment of some experimentally observed states with strange quarks to model configurations is only tentative and in many cases candidates are completely missing. Melde, Plessas and Sengl [42] have calculated baryon properties in relativistic constituent quark models, using one-gluon exchange and Goldstone-boson exchange for the modeling of the hyperfine interactions (see Sec. 15.5 on Dynamics). Both types of models give qualitatively comparable results, and underestimate in general experimentally observed decay widths. Nevertheless, in particular on the basis of the observed decay patterns, the authors have assigned some additional states with strangeness to the $\mathrm{SU}(3)$ multiplets and suggest reassignments for a few others. Among the new assignments are states with weak experimental evidence (two or three star ratings) and partly without firm spin/parity assignments, so that further experimental efforts are necessary before final conclusions can be drawn. We have added their suggestions in Table 15.7.

In the non-strange sector there are two main problems which are illustrated in Fig. 15.6, where the experimentally observed excitation spectrum of the nucleon (N and Δ resonances) is compared to the results of a typical quark model calculation [46]. The lowest states from the $\mathrm{N}=2$ band, the $N(1440) 1 / 2^{+}$, and the $\Delta(1600) 3 / 2^{+}$, appear lower than the negative parity states from the $\mathrm{N}=1$ band (see Table 15.8) and much lower than predicted by most models. Also negative parity Δ states from the $\mathrm{N}=3$ band $\left(\Delta(1900) 1 / 2^{-}, \Delta(1940) 3 / 2^{-}\right.$, and $\left.\Delta(1930) 5 / 2-\right)$ are too low in energy. Part of the problem could be experimental. Among the negative parity Δ states, only the $\Delta(1930) 5 / 2^{-}$has three stars and the uncertainty in the position of the $\Delta(1600) 3 / 2^{+}$is large ($1550-1700 \mathrm{MeV}$).

Furthermore, many more states are predicted than observed. This has been known for a long time as the 'missing resonance' problem [43]. Up to an excitation energy of 2.4 GeV , about $45 N$ states are predicted, but only 20 are established (four- or threestar; see Note on N and Δ Resonances for the rating of the status of resonances) and 5 are tentative (two- or one-star). Even for the $\mathrm{N}=2$ band, up to now only half of the predicted states have been observed. However, there is some recent progress. The total number of states has not much changed but the number of states with four- or three-star rating has increased from 14 to 20 compared to the 2018 PDG particle listings. Most of this progress is due to the programs concentrating on the study of meson photoproduction reactions, while the most recent partial wave analysis of elastic pion scattering and charge exchange data by Arndt and collaborators [47] found no evidence for almost half of the states listed in this review (and included in Fig. 15.6). Such analyses are of course biased against resonances which couple only weakly to the $N \pi$ channel. Quark model predictions for the couplings to other hadronic channels and to photons are given in Ref. [46]. The large experimental effort ongoing at several electron accelerators to study the baryon resonance spectrum with real and virtual photon-induced meson production reactions includes the search for as-yet-unobserved states, as well as detailed studies of the properties of the low lying states (decay patterns, electromagnetic couplings, magnetic moments, etc.) (see Ref. [48] for
reviews). There are two major new aspects of this program. The investigation of single and double polarization observables allows via the study of interference terms access to small partial waves that do not leave a footprint in unpolarized cross sections. An example for the impact of such data is given by a comparison of results from different multipole analyses of pion photoproduction [49]. It shows clearly that with the inclusion of polarization observables the reaction model results start to converge. This will in the near future much improve the data basis for excited baryons in the light quark sector.

The other aspect is the study of final states with meson pairs, in particular $\pi \pi$ and $\pi \eta$ pairs, which made large progress during the last few years. This is important for higher lying states, which in the quark model may have both possible oscillations excited. Such states can be expected to decay in sequential processes de-exciting the two oscillations step-by-step so that they couple strongly to multiple-meson final states but not to single-meson production. Detailed analyses of such data are for example given in $[50,51]$ and had already significant impact on partial wave analyses.
In quark models, the number of excited states is determined by the effective degrees of freedom, while their ordering and decay properties are related to the residual quark - quark interaction. An overview of quark models for baryons is given in [52], recent discussions of baryon spectroscopy are given in [34, 41]. The effective degrees of freedom in the standard nonrelativistic quark model are three equivalent valence quarks with onegluon exchange-motivated, flavor-independent color-magnetic interactions. The QCD aspect of gluon-gluon interactions is emphasized by the hypercentral quark model [53,54], which includes in a natural way three-body forces between the quarks. A different class of models uses interactions which give rise to a quark diquark clustering of the baryons: for a review see [55]. If there is a tightly bound diquark, only two degrees of freedom are available at low energies, and thus fewer states are predicted. Furthermore, selection rules in the decay pattern may arise from the quantum numbers of the diquark. More states are predicted by collective models of the baryon like the algebraic approach in [56]. In this approach, the quantum numbers of the valence quarks are distributed over a Y-shaped string-like configuration, and additional states arise e.g., from vibrations of the strings. More states are also predicted in the framework of flux-tube models, see [57], which are motivated by lattice QCD. In addition to the quark degrees of freedom, flux-tubes responsible for the confinement of the quarks are considered as degrees of freedom. These models include hybrid baryons containing explicit excitations of the gluon fields. However, since all half integral J^{P} quantum numbers are possible for ordinary baryons, such 'exotics' will be very hard to identify, and probably always mix with ordinary states. So far, the experimentally observed number of states is still far lower even than predicted by the quark-diquark models.

The influence of chiral symmetry on the excitation spectrum of the nucleon has been debated from a somewhat different perspective. Chiral symmetry, the fundamental symmetry of QCD, is strongly broken for the low lying states, resulting in large mass differences of parity partners like the $J^{P}=1 / 2^{+} N(938) 1 / 2^{+}$ground state and the $J^{P}=1 / 2^{-} N(1535) 1 / 2^{-}$excitation. However, at higher excitation energies there is some evidence for parity doublets and even some very tentative suggestions for full chiral multiplets of N^{\star} and Δ resonances. An effective restoration of chiral symmetry at high excitation energies due to a decoupling from the quark condensate of the vacuum has been discussed (see Ref. [58] for recent reviews) as a possible cause. In this case, the mass generating mechanisms for low and high lying states would be essentially different. As a further consequence, the parity doublets would decouple from pions, so that experimental bias would be worse. However, parity doublets might also arise from the spinorbital dynamics of the 3-quark system. Presently, the status of data does not allow final conclusions.

The most recent developments on the theory side are the first unquenched lattice calculations for the excitation spectrum discussed in Sec15.6. The results are basically consistent with the level counting of $\mathrm{SU}(6) \otimes \mathrm{O}(3)$ in the standard non-relativistic quark model and show no indication for quark-diquark structures
or parity doubling. Consequently, there is as yet no indication from lattice that the mis-match between the excitation spectrum predicted by the standard quark model and experimental observations is due to inappropriate degrees of freedom in the quark model.

15.5 Dynamics

Figure 15.6: Excitation spectrum of the nucleon. Compared are the positions of the excited states identified in experiment, to those predicted by a relativized quark model calculation. Left hand side: isospin $I=1 / 2 N$-states, right hand side: isospin $I=$ 3/2 Δ-states. Experimental: (columns labeled 'exp'), three- and four-star states are indicated by full lines (two-star dashed lines, one-star dotted lines). At the very left and right of the figure, the spectroscopic notation of these states is given. Quark model [46, 59]: (columns labeled 'QM'), all states for the $\mathrm{N}=1,2$ bands, lowlying states for the $\mathrm{N}=3,4,5$ bands. Full lines: at least tentative assignment to observed states, dashed lines: so far no observed counterparts. Many of the assignments between predicted and observed states are highly tentative.

Quantum chromodynamics (QCD) is well-established as the theory for the strong interactions. As such, one of the goals of QCD is to predict the spectrum of strongly-interacting particles. To date, the only first-principles calculations of spectroscopy from QCD use lattice methods. These are the subject of Sec. 15.6. These calculations are difficult and unwieldy, and many interesting questions do not have a good lattice-based method of solution. Therefore, it is natural to build models, whose ingredients are abstracted from QCD, or from the low-energy limit of QCD (such as chiral Lagrangians) or from the data itself. The words "quark model" are a shorthand for such phenomenological models. Many specific quark models exist, but most contain a similar basic set of dynamical ingredients. These include:

1. A confining interaction, which is generally spin-independent (e.g., harmonic oscillator or linear confinement);
2. Different types of spin-dependent interactions:
a) commonly used is a color-magnetic flavor-independent interaction modeled after the effects of gluon exchange in QCD (see e.g., Ref. [60]). For example, in the S-wave states, there is a spin-spin hyperfine interaction of the form

$$
\begin{equation*}
H_{H F}=-\alpha_{S} M \sum_{i>j}\left(\vec{\sigma} \lambda_{a}\right)_{i}\left(\vec{\sigma} \lambda_{a}\right)_{j} \tag{15.35}
\end{equation*}
$$

where M is a constant with units of energy, $\lambda_{a}(a=1, \cdots, 8$, is the set of $\mathrm{SU}(3)$ unitary spin matrices, defined in the review "SU(3) Isoscalar Factors and Representation Matrices," and the sum runs over constituent quarks or antiquarks. Spin-orbit interactions, although allowed, seem to be small in general, but a tensor term is responsible for the mixing of states with the same J^{P} but different L, S combinations.
b) other approaches include flavor-dependent short-range quark forces from instanton effects (see e.g., [61, 62]). This interaction acts only on scalar, isoscalar pairs of quarks in a relative S-wave state:

$$
\begin{equation*}
\left\langle q^{2} ; S, L, T\right| W\left|q^{2} ; S, L, T\right\rangle=-4 g \delta_{S, 0} \delta_{L, 0} \delta_{I, 0} \mathcal{W} \tag{15.36}
\end{equation*}
$$

where \mathcal{W} is the radial matrix element of the contact interaction.
c) a rather different and controversially discussed approach is based on flavor-dependent spin-spin forces arising from oneboson exchange. The interaction term is of the form:

$$
\begin{equation*}
H_{H F} \propto \sum_{i<j} V\left(\vec{r}_{i j}\right) \lambda_{i}^{F} \cdot \lambda_{j}^{F} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \tag{15.37}
\end{equation*}
$$

where the λ_{i}^{F} are in flavor space (see e.g., Ref. [63]).
3. A strange quark mass somewhat larger than the up and down quark masses, in order to split the $\mathrm{SU}(3)$ multiplets;
4. In the case of spin-spin interactions (iia,c), a flavor-symmetric interaction for mixing $q \bar{q}$ configurations of different flavors (e.g., $u \bar{u} \leftrightarrow d \bar{d} \leftrightarrow s \bar{s}$), in isoscalar channels, so as to reproduce e.g., the $\eta-\eta^{\prime}$ and $\omega-\phi$ mesons.

These ingredients provide the basic mechanisms that determine the hadron spectrum in the standard quark model.

15.6 Lattice Calculations of Hadronic Spectroscopy

Lattice calculations are a major source of information about QCD masses and matrix elements. The necessary theoretical background is given in Sec. 17 of this Review. Here we confine ourselves to some general comments and illustrations of lattice calculations for spectroscopy.

In general, the cleanest lattice results come from computations of processes in which there is only one particle in the simulation volume. These quantities include masses of hadrons, simple decay constants, like pseudoscalar meson decay constants, and semileptonic form factors (such as the ones appropriate to $B \rightarrow D l \nu, K l \nu$, $\pi l \nu)$. The cleanest predictions for masses are for states which have narrow decay widths and are far below any thresholds to open channels, since the effects of final state interactions are not yet under complete control on the lattice. As a simple corollary, the lightest state in a channel is easier to study than the heavier ones. "Difficult" states for the quark model (such as exotics) are also difficult for the lattice because of the lack of simple operators which couple well to them.

Good-quality modern lattice calculations will present multipart error budgets with their predictions. A small part of the uncertainty is statistical, from sample size. Typically, the quoted statistical uncertainty includes uncertainty from a fit: it is rare that a simulation computes one global quantity which is the desired observable. Simulations which include virtual quark-antiquark pairs (also known as "dynamical quarks" or "sea quarks") are often done at up and down quark mass values heavier than the experimental ones, and it is then necessary to extrapolate in these quark masses. Simulations can work at the physical values of the heavier quarks' masses. They are always done at nonzero lattice spacing, and so it is necessary to extrapolate to zero lattice spacing. Some theoretical input is needed to do this. Much of the uncertainty in these extrapolations is systematic, from the choice of fitting function. Other systematics include the effect of finite simulation volume, the number of flavors of dynamical quarks actually simulated, and technical issues with how these dynamical quarks are included. The particular choice of a fiducial mass (to normalize other predictions) is not standardized; there are many possible choices, each with its own set of strengths and weaknesses, and determining it usually requires a second lattice simulation from that used to calculate the quantity under consideration.

A systematic error of major historical interest is the "quenched approximation," in which dynamical quarks are simply left out of the simulation. This was done because the addition of these
virtual pairs presented an expensive computational problem. No generally-accepted methodology has ever allowed one to correct for quenching effects, short of redoing all calculations with dynamical quarks. Recent advances in algorithms and computer hardware have rendered it obsolete.

With these brief remarks, we turn to examples. The field of lattice QCD simulations is vast, and so it is not possible to give a comprehensive review of them in a small space. The history of lattice QCD simulations is a story of thirty years of incremental improvements in physical understanding, algorithm development, and ever faster computers, which have combined to bring the field to a present state where it is possible to carry out very high quality calculations. We present a few representative illustrations, to show the current state of the art.

Figure 15.7: Hadron spectrum from lattice QCD. Comprehensive results for mesons and baryons are from MILC [64, 65], PACSCS [66], BMW [67], QCDSF [68], and ETM [69]. Results for η and η^{\prime} are from RBC \& UKQCD [10], Hadron Spectrum [70] (also the only ω mass), UKQCD [71], and Michael, Ottnad, and Urbach [72]. Results for heavy-light hadrons from Fermilab-MILC [73], HPQCD [74, 75], and Mohler and Woloshyn [76]. Circles, squares, diamonds, and triangles stand for staggered, Wilson, twisted-mass Wilson, and chiral sea quarks, respectively. Asterisks represent anisotropic lattices. Open symbols denote the masses used to fix parameters. Filled symbols (and asterisks) denote results. Red, orange, yellow, green, and blue stand for increasing numbers of ensembles (i.e., lattice spacing and sea quark mass) Black symbols stand for results with $2+1+1$ flavors of sea quarks. Horizontal bars (gray boxes) denote experimentally measured masses (widths). b flavored meson masses are offset by -4000 MeV .

By far, the major part of all lattice spectroscopy is concerned with that of the light hadrons, and so we illustrate results in Fig. 15.7, a comprehensive summary provided by A. Kronfeld (private communication; see also [77]).

Flavor singlet mesons are at the frontier of lattice QCD calculations, because one must include the effects of "annihilation graphs," for the valence q and \bar{q}. Recently, several groups, Refs. [10,71,78], have reported calculations of the η and η^{\prime} mesons. The numbers of [10] are typical, finding masses of $573(6)$ and $947(142) \mathrm{MeV}$ for the η and η^{\prime}. The singlet-octet mixing angle (in the conventions of Table 15.2) is $\theta_{\text {lin }}=-14.1(2.8)^{\circ}$.

The spectroscopy of mesons containing heavy quarks has become a truly high-precision endeavor. These simulations use NonRelativistic QCD (NRQCD) or Heavy Quark Effective Theory (HQET), systematic expansions of the QCD Lagrangian in powers of the heavy quark velocity, or the heavy quark mass. Terms in the Lagrangian have obvious quark model analogs, but are derived directly from QCD. For example, the heavy quark potential is a derived quantity, extracted from simulations. Fig. 15.8 shows the mass spectrum for mesons containing at least one heavy (b or c) quark from Ref. [75]. It also contains results from Ref. [79, 80]. The calculations uses a discretization of nonrelativistic QCD for bottom quarks with charm and lighter quarks being handled with an improved relativistic action. Four flavors (u, d, s, c) of dynam-

Figure 15.8: Spectroscopy for mesonic systems containing one or more heavy quarks (adapted from Ref. [75]. Particles whose masses are used to fix lattice parameters are shown with crosses; the authors distinguish between "predictions" and "postdictions" of their calculation. Lines represent experiment.
ical quarks are included.

Figure 15.9: Comparison of lattice QCD results for the doubly and triply charmed baryon masses. Labels are Liu, et al., [81]; Briceno, et al., [82]; Namekawa, et al., [83]; Padmanath, et al., [84]; Alexandrou, et al., [69]; Brown, et al., [85]; Perez-Rubio et al., [86]; Alexandrou and Kallidonis 2017, [87]. Only calculations with dynamical light quarks are included; for the doubly charmed baryons, only calculations were performed at or extrapolated to the physical pion mass are shown. Results without estimates of systematic uncertainties are labeled "stat. only". The lattice spacing values used in the calculations are also given; $a=0$ indicates that the results have been extrapolated to the continuum limit. In the plot of the doubly charmed baryons, the recently announced experimental result for the $\Xi_{c c}^{+}$mass from LHCb [36] is shown with a horizontal line.

Fig. 15.9 shows a compilation of recent lattice results for doubly and triply charmed baryons, provided by S. Meinel [88]. The state recently announced by LHCb [36] is also shown. Note that the lattice calculations for the mass of this state were predictions, not postdictions.

Recall that lattice calculations take operators which are interpolating fields with quantum numbers appropriate to the desired states, compute correlation functions of these operators, and fit the correlation functions to functional forms parametrized by a set of masses and matrix elements. As we move away from hadrons which can be created by the simplest quark model operators (appropriate to the lightest meson and baryon multiplets) we encounter a host of new problems: either no good interpolating fields, or too many possible interpolating fields, and many states
with the same quantum numbers. Techniques for dealing with these interrelated problems vary from collaboration to collaboration, but all share common features: typically, correlation functions from many different interpolating fields are used, and the signal is extracted in what amounts to a variational calculation using the chosen operator basis. In addition to mass spectra, wave function information can be garnered from the form of the best variational wave function. Of course, the same problems which are present in the spectroscopy of the lightest hadrons (the need to extrapolate to infinite volume, physical values of the light quark masses, and zero lattice spacing) are also present. We briefly touch on three different kinds of hadrons: excited states of mesons (including hybrids), excited states of baryons, and glueballs. The quality of the data is not as good as for the ground states, and so the results continue to evolve.

Modern calculations use a large bases of trial states, which allow them to probe many quantum number channels simultaneously. This is vital for studying "difficult sectors" of QCD, such as the isoscalar mesons. A recent example of meson spectroscopy where this is done, by [89], is shown in Fig. 15.10. The quark masses are still heavier than their physical values, so the pion is at 392 MeV . The authors can assign a relative composition of nonstrange and strange quark content to their states, observing, for example, a nonstrange ω and a strange ϕ. Some states also have a substantial component of gluonic excitation. Note especially the three exotic channels $J^{P C}=1^{-+}, 0^{+-}$, and 2^{+-}, with states around 2 GeV . These calculations will continue to improve as the quark masses are carried lower.

The interesting physics questions of excited baryon spectroscopy to be addressed are precisely those enumerated in the last section. An example of a recent calculation, due to Ref. [90] is shown in Fig. 15.11. Notice that the pion is not yet at its physical value. The lightest positive parity state is the nucleon, and the Roper resonance has not yet appeared as a light state.

Figure 15.10: Isoscalar (green and black) and isovector (blue) spectrum from Ref. [89]. States are labeled $J^{P C}$. The quark mass is heavier than its physical value; $m_{\pi}=392 \mathrm{MeV}$. The vertical height of each box indicates the statistical uncertainty in the mass. Black and green indicate relative nonstrange and strange composition. Orange outlines show states with a large chromomagnetic component to their wave function, which the authors argue are hybrid states. Note the exotic states in the three rightmost columns.

Most hadrons are resonances, and lattice calculations will have to deal with this fact as the quark masses are taken ever smaller. The actual calculation is of the combined mass of two (or more) hadrons in a box of finite size. The combined mass is shifted from being the sum of the individual masses because the finite box forces the hadrons to interact with each other. The volumedependent mass shift yields the phase shift for the continuum scattering amplitude, which in turn can be used to extract the resonance mass and width, with some degree of modeling. So far only two-body resonances, the rho meson and a few others, have been well studied. This is an active research area. A recent review, [91], summarizes the situation, and example of a calculation of the rho meson decay width is [92]. The mass and decay width of the $f_{0}(500)$ have recently been computed in [93]. Ref. [94] studies the decay width of the $\Delta(1238)$. Lattice calculations relevant to the extra states observed in the charmonium spectrum (Sec. 15.3)

Figure 15.11: Spin-identified spectrum of nucleons and deltas, from lattices where $m_{\pi}=396 \mathrm{MeV}$, in units of the calculated Ω mass, from Ref. [90]. The colors just correspond to the different J assignments: grey for $J=1 / 2$, red for $J=3 / 2$, green for $5 / 2$, blue for $J=7 / 2$.
are difficult, because the states sit high in the spectrum of most channels and due to the number of nearby multiparticle states.

In Fig. 15.4 we showed a figure from [12] presenting a lattice prediction for the glueball mass spectrum in quenched approximation. A true QCD prediction of the glueball spectrum requires dynamical light quarks and (because glueball operators are intrinsically noisy) high statistics. Only recently have the first useful such calculations appeared, in [95, 96]. Fig. 15.12 shows results from [95], done with dynamical u, d and s quarks at two lattice spacings, 0.123 and 0.092 fm , along with comparisons to the quenched lattice calculation of [18] and to experimental isosinglet mesons. The dynamical simulation is, of course, not the last word on this subject, but it shows that the effects of quenching seem to be small.

Figure 15.12: Lattice QCD predictions for glueball masses. The open and closed circles are the larger and smaller lattice spacing data of the full QCD calculation of glueball masses of Ref. [95]. Squares are the quenched data for glueball masses of Ref. [18]. The bursts labeled by particle names are experimental states with the appropriate quantum numbers.

As a final part of spectroscopy we mention electromagnetic mass splittings (such as the neutron - proton mass difference). They are interesting but difficult. These calculations are important for determining the values of the quark masses (for a discussion see the review in the PDG). Knowing that the neutron is heavier than the proton tells us that these splittings have a complicated origin. One part of the shift is because the up and down quarks have slightly different masses. The second is that the quarks have (different) charges. Phenomenologists (compare Ref. [97]) combine Coulomb forces and spin-dependent electromagnetic hyperfine interactions to model their charge effects. In order to compute hadronic mass differences on the lattice, electromagnetic interactions must be included in the simulations. This creates a host of technical is-
sues. An important one is that electromagnetic interactions are long range, but lattice simulations are done in finite volumes. The theoretical situation is summarized in the recent review [98]. A recent calculation, Ref. [99], has presented the first results for electromagnetic mass splittings in the baryon octet, with good agreement with observation. Ref. [100] has calculations for meson splittings.

References

[1] C. Amsler in the Quark Structure of Hadrons, Lecture Notes in Physics 949 (2018), ed. Springer.
[2] K.-C. Yang, Nucl. Phys. B776, 187 (2007), [arXiv:0705.0692].
[3] L. Burakovsky and J. T. Goldman, Nucl. Phys. A625, 220 (1997), [hep-ph/9703272].
[4] J. Schwinger, Phys. Rev. 135, B816 (1964).
[5] A. Bramon, R. Escribano and M. D. Scadron, Phys. Lett. B403, 339 (1997), [hep-ph/9703313].
[6] A. Aloisio et al. (KLOE), Phys. Lett. B541, 45 (2002), [hepex/0206010].
[7] F. Ambrosino et al., JHEP 07, 105 (2009), [arXiv:0906.3819].
[8] C. Amsler et al. (Crystal Barrel), Phys. Lett. B294, 451 (1992).
[9] C. Amsler, Rev. Mod. Phys. 70, 1293 (1998), [hepex/9708025].
[10] N. H. Christ et al., Phys. Rev. Lett. 105, 241601 (2010), [arXiv:1002.2999].
[11] T. Feldmann, Int. J. Mod. Phys. A915, 159 (2000).
[12] Y. Chen et al., Phys. Rev. D73, 014516 (2006), [heplat/0510074].
[13] C. Amsler and F. E. Close, Phys. Rev. D53, 295 (1996), [hep-ph/9507326].
[14] R. L. Jaffe, Phys. Rev. D15, 267 (1977).
[15] R. L. Jaffe, Phys. Rev. D15, 281 (1977).
[16] S.L. Olsen, Front. Phys. 10, 121 (2015).
[17] S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, 1, 015003 (2018), [arXiv:1708.04012].
[18] C. J. Morningstar and M. J. Peardon, Phys. Rev. D60, 034509 (1999), [hep-lat/9901004].
[19] W.-J. Lee and D. Weingarten, Phys. Rev. D61, 014015 (2000), [hep-lat/9910008].
[20] G. S. Bali et al. (UKQCD), Phys. Lett. B309, 378 (1993), [hep-lat/9304012].
[21] C. Michael, AIP Conf. Proc. 432, 1, 657 (1998), [hepph/9710502].
[22] F. E. Close and A. Kirk, Eur. Phys. J. C21, 531 (2001), [hep-ph/0103173].
[23] W. Ochs, J. Phys. G40, 043001 (2013), [arXiv:1301.5183].
[24] F. Brünner and A. Rebhan, Phys. Rev. Lett. 115, 13, 131601 (2015), [arXiv:1504.05815].
[25] C. Amsler and N. A. Tornqvist, Phys. Rept. 389, 61 (2004).
[26] N. Isgur and J. E. Paton, Phys. Rev. D31, 2910 (1985).
[27] P. Lacock et al. (UKQCD), Phys. Lett. B401, 308 (1997), [hep-lat/9611011].
[28] M. S. Chanowitz and S. R. Sharpe, Nucl. Phys. B222, 211 (1983), [Erratum: Nucl. Phys.B228,588(1983)].
[29] T. Barnes et al., Nucl. Phys. B224, 241 (1983).
[30] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), [arXiv:1507.03414].
[31] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 22, 222001 (2019), [arXiv:1904.03947].
[32] Y.-R. Liu et al., Prog. Part. Nucl. Phys. 107, 237 (2019), [arXiv:1903.11976].
[33] F.E. Close, in Quarks and Nuclear Forces (Springer-Verlag, 1982), p. 56.
[34] V. Crede and W. Roberts, Rept. on Prog. in Phys. 76, 076301 (2013).
[35] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 18, 182001 (2017), [arXiv:1703.04639].
[36] R. Aaij et al. (LHCb), Phys. Rev. Lett. 119, 11, 112001 (2017), [arXiv:1707.01621].
[37] M. Mattson et al. (SELEX), Phys. Rev. Lett. 89, 112001 (2002), [hep-ex/0208014].
[38] A. Ocherashvili et al. (SELEX), Phys. Lett. B628, 18 (2005), [hep-ex/0406033].
[39] M. Karliner and J. L. Rosner, Phys. Rev. D90, 9, 094007 (2014), [arXiv:1408.5877].
[40] R.H. Dalitz and L.J. Reinders, in "Hadron Structure as Known from Electromagnetic and Strong Interactions," Proceedings of the Hadron 'r7 Conference (Veda, 1979), p. 11.
[41] E. Klempt and J.-M. Richard, Rev. Mod. Phys. 82, 1095 (2010), [arXiv:0901.2055].
[42] T. Melde, W. Plessas and B. Sengl, Phys. Rev. D77, 114002 (2008), [arXiv:0806.1454].
[43] N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978).
[44] N. Isgur and G. Karl, Phys. Rev. D19, 2653 (1979), [Erratum: Phys. Rev.D23,817(1981)].
[45] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000), [arXiv:nucl-th/0008028].
[46] S. Capstick and W. Roberts, Phys. Rev. D58, 074011 (1998), [arXiv:nucl-th/9804070].
[47] R. A. Arndt et al., Phys. Rev. C74, 045205 (2006), [arXiv:nucl-th/0605082].
[48] B. Krusche and S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003), [arXiv:nucl-ex/0306023].
[49] A. V. Anisovich et al., Eur. Phys. J. A52, 9, 284 (2016), [arXiv:1604.05704].
[50] E. Gutz et al. (CBELSA/TAPS), Eur. Phys. J. A50, 74 (2014), [arXiv:1402.4125].
[51] V. Sokhoyan et al. (CBELSA/TAPS), Eur. Phys. J. A51, 8, 95 (2015), [Erratum: Eur. Phys. J.A51,no.12,187(2015)], [arXiv:1507.02488].
[52] S. Capstick and W. Roberts, Prog. in Part. Nucl. Phys. 45, 241 (2000).
[53] M. Ferraris et al., Phys. Lett. B364, 231 (1995).
[54] M. M. Giannini and E. Santopinto, Chin. J. Phys. 53, 020301 (2015), [arXiv:1501.03722].
[55] M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993).
[56] R. Bijker, F. Iachello and A. Leviatan, Annals Phys. 236, 69 (1994), [arXiv:nucl-th/9402012].
[57] S. Capstick and P. R. Page, Phys. Rev. C66, 065204 (2002), [arXiv:nucl-th/0207027].
[58] R. L. Jaffe, D. Pirjol and A. Scardicchio, Phys. Rept. 435, 157 (2006), [hep-ph/0602010].
[59] S. Capstick, Phys. Rev. D46, 2864 (1992).
[60] A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. D12, 147 (1975).
[61] W. H. Blask et al., Z. Phys. A337, 327 (1990).
[62] U. Loring et al., Eur. Phys. J. A10, 309 (2001), [hepph/0103287].
[63] L. Ya. Glozman and D. O. Riska, Phys. Rept. 268, 263 (1996), [hep-ph/9505422].
[64] C. Aubin et al., Phys. Rev. D70, 094505 (2004), [heplat/0402030].
[65] A. Bazavov et al. (MILC), Rev. Mod. Phys. 82, 1349 (2010), [arXiv:0903.3598].
[66] S. Aoki et al. (PACS-CS), Phys. Rev. D79, 034503 (2009), [arXiv:0807.1661].
[67] S. Durr et al., Science 322, 1224 (2008), [arXiv:0906.3599].
[68] W. Bietenholz et al., Phys. Rev. D84, 054509 (2011), [arXiv:1102.5300].
[69] C. Alexandrou et al., Phys. Rev. D90, 7, 074501 (2014), [arXiv:1406.4310].
[70] J. J. Dudek et al., Phys. Rev. D83, 111502 (2011), [arXiv:1102.4299].
[71] E. B. Gregory et al. (UKQCD), Phys. Rev. D86, 014504 (2012), [arXiv:1112.4384].
[72] C. Michael, K. Ottnad and C. Urbach (ETM), Phys. Rev. Lett. 111, 18, 181602 (2013), [arXiv:1310.1207].
[73] C. Bernard et al. (Fermilab Lattice, MILC), Phys. Rev. D83, 034503 (2011), [arXiv:1003.1937].
[74] E. B. Gregory et al., Phys. Rev. D83, 014506 (2011), [arXiv:1010.3848].
[75] R. J. Dowdall et al., Phys. Rev. D86, 094510 (2012), [arXiv:1207.5149].
[76] D. Mohler and R. M. Woloshyn, Phys. Rev. D84, 054505 (2011), [arXiv:1103.5506].
[77] A. S. Kronfeld, Ann. Rev. Nucl. Part. Sci. 62, 265 (2012), [arXiv:1203.1204].
[78] K. Ottnad, C. Urbach and F. Zimmermann (OTM), Nucl. Phys. B896, 470 (2015), [arXiv:1501.02645].
[79] J. O. Daldrop, C. T. H. Davies and R. J. Dowdall (HPQCD), Phys. Rev. Lett. 108, 102003 (2012), [arXiv:1112.2590].
[80] G. C. Donald et al., Phys. Rev. D86, 094501 (2012), [arXiv:1208.2855].
[81] L. Liu et al., Phys. Rev. D81, 094505 (2010), [arXiv:0909.3294].
[82] R. A. Briceno, H.-W. Lin and D. R. Bolton, Phys. Rev. D86, 094504 (2012), [arXiv:1207.3536].
[83] Y. Namekawa et al. (PACS-CS), Phys. Rev. D87, 9, 094512 (2013), [arXiv:1301.4743].
[84] M. Padmanath et al., Phys. Rev. D90, 7, 074504 (2014), [arXiv:1307.7022].
[85] Z. S. Brown et al., Phys. Rev. D90, 9, 094507 (2014), [arXiv:1409.0497].
[86] P. Pérez-Rubio, S. Collins and G. S. Bali, Phys. Rev. D92, 3, 034504 (2015), [arXiv:1503.08440].
[87] C. Alexandrou and C. Kallidonis, Phys. Rev. D96, 3, 034511 (2017), [arXiv:1704.02647].
[88] S. Meinel, private comunication.
[89] J. J. Dudek et al. (Hadron Spectrum), Phys. Rev. D88, 9, 094505 (2013), [arXiv:1309.2608].
[90] R. G. Edwards et al., Phys. Rev. D84, 074508 (2011), [arXiv:1104.5152].
[91] R. A. Briceno, J. J. Dudek and R. D. Young, Rev. Mod. Phys. 90, 2, 025001 (2018), [arXiv:1706.06223].
[92] J. Bulava et al., Nucl. Phys. B910, 842 (2016), [arXiv:1604.05593].
[93] R. A. Briceno et al., Phys. Rev. Lett. 118, 2, 022002 (2017), [arXiv:1607.05900].
[94] C. W. Andersen et al., Phys. Rev. D97, 1, 014506 (2018), [arXiv:1710.01557].
[95] C. M. Richards et al. (UKQCD), Phys. Rev. D82, 034501 (2010), [arXiv:1005.2473].
[96] E. Gregory et al., JHEP 10, 170 (2012), [arXiv:1208.1858].
[97] M. Karliner and J. L. Rosner (2019), [arXiv:1906.07799].
[98] A. Patella, PoS LATTICE2016, 020 (2017), [arXiv:1702.03857].
[99] S. Borsanyi et al., Science 347, 1452 (2015), [arXiv:1406.4088].
[100] D. Giusti et al., Phys. Rev. D95, 11, 114504 (2017), [arXiv:1704.06561].

16. Heavy-Quark and Soft-Collinear Effective Theory

Revised August 2019 by C.W. Bauer (LBNL) and M. Neubert (PRISMA, Mainz Inst. for Theor. Physics, JG U.).

16.1 Effective Field Theories

Quantum field theories provide the most precise computational tools for describing physics at the highest energies. One of their characteristic features is that they almost inevitably involve multiple length scales. When trying to determine the value of an observable, quantum field theory demands that all possible virtual states and hence all particles be included in the calculation. Since these particles have widely different masses, the final prediction is sensitive to many scales. This fact represents a formidable challenge from a practical point of view. No realistic quantum field theories can be solved exactly, so that one needs to resort to approximation schemes; these, however, are typically most straightforward when only a single scale is involved at a time.

Effective field theories (EFTs) provide a general theoretical framework to deal with the multi-scale problems of realistic quantum field theories. This framework aims at reducing such problems to a combination of separate and simpler single-scale problems; simultaneously, however, it provides an organization scheme whereby the other scales are not omitted but allowed to play their role in a separate step of the computation. The philosophy and basic principles of this approach are very generic, and correspondingly EFTs represent a widely used method in many different areas of high-energy physics, from the low-energy scales of atomic and nuclear physics to the high-energy scales of (partly yet unknown) elementary-particle physics, see $[1-3]$ for some early references. EFTs can play a role both within analytic perturbative computations and in the context of non-perturbative numerical simulations; One of the simplest applications of EFTs to particle physics concerns the description of an underlying theory that is only probed at energy scales $E<\Lambda$. Any particle with mass $m>\Lambda$ cannot be produced as a real state and therefore only leads to short-distance virtual effects. Thus, one can construct an effective theory in which the quantum fluctuations of such heavy particles are "integrated out" from the generating functional for Green functions. This results in a simpler theory containing only those degrees of freedom that are relevant to the energy scales under consideration. In fact, the standard model of particle physics itself is widely viewed as an EFT of some yet unknown, more fundamental theory.

The development of any effective theory starts by identifying the degrees of freedom that are relevant to describe the physics at a given energy (or length) scale and constructing the Lagrangian describing the interactions among these fields. Short-distance quantum fluctuations associated with much smaller length scales are absorbed into the coefficients of the various operators in the effective theory. These coefficients are determined in a matching procedure, by requiring that the EFT reproduces the matrix elements of the full theory up to power corrections. In many cases the effective Lagrangian exhibits enhanced symmetries compared with the fundamental theory, allowing for simple and sometimes striking predictions relating different observables.

16.2 Heavy-Quark Effective Theory

Heavy-quark systems provide prime examples for applications of the EFT technology, because the hierarchy $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ (with $Q=b, c$) provides a natural separation of scales. Physics at the scale m_{Q} is of a short-distance nature and can be treated perturbatively, while for heavy-quark systems there is always also some hadronic physics governed by the confinement scale Λ_{QCD} of the strong interaction. Being able to separate the short-distance and long-distance effects associated with these two scales is crucial for any quantitative description. For instance, if the long-distance hadronic matrix elements are obtained from lattice QCD , then it is necessary to analytically compute the effects of short-wavelength modes that do not fit on the lattice. In many other instances, the long-distance physics can be encoded in a small number of hadronic parameters.

16.2.1 General idea and derivation of the effective Lagrangian

The simplest effective theory for heavy-quark systems is the heavy-quark effective theory (HQET) [4-7] (see $[8,9]$ for detailed discussions). It provides a simplified description of the soft interactions of a single heavy quark with light partons. This includes the interactions that bind the heavy quark with other light partons inside heavy mesons and baryons.

A softly interacting heavy quark is nearly on-shell. Its momentum may be decomposed as $p_{Q}=m_{Q} v+k$, where v is the 4 -velocity of the hadron containing the heavy quark. The "residual momentum" k results from the soft interactions of the heavy quark with its environment and satisfies $v \cdot k \sim \Lambda_{\mathrm{QCD}}$ and $k^{2} \sim \Lambda_{\mathrm{QCD}}^{2}$, which in the rest frame of the heavy hadron reduces to $k^{\mu} \sim \Lambda_{\mathrm{QCD}}$. In the limit $m_{Q} \gg \Lambda_{\mathrm{QCD}}$, the soft interactions do not change the 4 -velocity of the heavy quark, which is therefore a conserved quantum number that is often used as a label on the effective heavy-quark fields. A nearly on-shell Dirac spinor has two large and two small components. We define

$$
\begin{equation*}
Q(x)=e^{-i m_{Q} v \cdot x}\left[h_{v}(x)+H_{v}(x)\right], \tag{16.1}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{v}(x)=e^{i m_{Q} v \cdot x} \frac{1+\ngtr}{2} Q(x), \quad H_{v}(x)=e^{i m_{Q} v \cdot x} \frac{1-\not p}{2} Q(x) \tag{16.2}
\end{equation*}
$$

are the large ("upper") and small ("lower") components of the spinor field, respectively. The extraction of the phase factor in (16.1) implies that the fields h_{v} and H_{v} carry the residual momentum k. The field H_{v} is $1 / m_{Q}$ suppressed relative to h_{v} and describes quantum fluctuations far off the mass shell. Integrating it out using its equations of motion yields the HQET Lagrangian

$$
\begin{align*}
\mathcal{L}_{\mathrm{HQET}} & =\bar{h}_{v} i v \cdot D_{s} h_{v} \\
& +\frac{1}{2 m_{Q}}\left[\bar{h}_{v}\left(i D_{s}\right)^{2} h_{v}+C_{\operatorname{mag}}(\mu) \frac{g}{2} \bar{h}_{v} \sigma_{\mu \nu} G_{s}^{\mu \nu} h_{v}\right]+\ldots \tag{16.3}
\end{align*}
$$

The covariant derivative $i D_{s}^{\mu}=i \partial^{\mu}+g A_{s}^{\mu}$ and the field strength $G_{s}^{\mu \nu}$ contain only the soft gluon field. Hard gluons have been integrated out, and their effects are contained in the Wilson coefficients of the operators in the effective Lagrangian. From the leading operator one derives the Feynman rules of HQET. The new operators entering at subleading order are referred to as the "kinetic energy" and "chromo-magnetic interaction". The kinetic-energy operator corresponds to the first correction term in the Taylor expansion of the relativistic energy $E=m_{Q}+\vec{p}^{2} / 2 m_{Q}+\ldots$. Lorentz invariance, which is encoded as a reparametrization invariance of the effective Lagrangian [10], ensures that its Wilson coefficient is not renormalized $\left(C_{\text {kin }} \equiv 1\right)$. The coefficient $C_{\text {mag }}$ of the chromo-magnetic operator receives corrections starting at one-loop order.

16.2.2 Spin-flavor symmetry

The leading term in the HQET Lagrangian exhibits a global spin-flavor symmetry. Its physical meaning is that, in the infinite mass limit, the properties of hadronic systems containing a single heavy quark are insensitive to the spin and flavor of the heavy quark [11, 12]. The spin symmetry results from the fact that there are no Dirac matrices in the leading term of the effective Lagrangian in (16.3), implying that the interactions of the heavy quark with soft gluons leave its spin unchanged. The flavor symmetry arises since the mass of the heavy quark does not appear at leading order. For n_{Q} heavy quarks moving at the same velocity, one can simply extend (16.3) by summing over n_{Q} identical terms for heavy-quark fields h_{v}^{i}. The result is invariant under rotations in flavor space. When combined with the spin symmetry, the symmetry group becomes promoted to $S U\left(2 n_{Q}\right)$. These symmetries are broken by the operators at subleading power in the $1 / m_{Q}$ expansion.

The spin-flavor symmetry leads to many interesting relations between the properties of hadrons containing a heavy quark. The most direct consequences concern the spectroscopy of such states
[13]. In the heavy-quark limit, the spin of the heavy quark and the total angular momentum j of the light degrees of freedom are separately conserved by the strong interactions. Because of heavyquark symmetry, the dynamics is independent of the spin and mass of the heavy quark. Hadronic states can thus be classified by the quantum numbers (flavor, spin, parity, etc.) of the light degrees of freedom. The spin symmetry predicts that, for fixed $j \neq 0$, there is a doublet of degenerate states with total spin $J=j \pm \frac{1}{2}$. The flavor symmetry relates the properties of states with different heavy-quark flavor.

16.2.3 Weak decay form factors

Of particular interest are the relations between the weak decay form factors of heavy mesons, which parametrize hadronic matrix elements of currents between two mesons containing a heavy quark. These relations have been derived by Isgur and Wise [12], generalizing ideas developed by Nussinov and Wetzel [14] and Voloshin and Shifman [15]. For the purpose of this discussion, it is convenient to work with a mass-independent normalization of meson states and use velocity rather than momentum variables.

Consider the elastic scattering of a pseudoscalar meson, $P(v) \rightarrow$ $P\left(v^{\prime}\right)$, induced by an external vector current coupled to the heavy quark contained in P, which acts as a color source moving with the meson's velocity v. The action of the current is to replace instantaneously the color source by one moving at velocity v^{\prime}. Soft gluons need to be exchanged in order to rearrange the light degrees of freedom and build up the final state meson moving at velocity v^{\prime}. This rearrangement leads to a form-factor suppression. The important observation is that, in the $m_{Q} \rightarrow \infty$ limit, the form factor can only depend on the Lorentz boost $\gamma=v \cdot v^{\prime}$ connecting the rest frames of the initial and final-state mesons (as long as $\gamma=\mathcal{O}(1))$. In the effective theory the hadronic matrix element describing the scattering process can therefore be written as

$$
\begin{equation*}
\left\langle P\left(v^{\prime}\right)\right| \bar{h}_{v^{\prime}} \gamma^{\mu} h_{v}|P(v)\rangle=\xi\left(v \cdot v^{\prime}\right)\left(v+v^{\prime}\right)^{\mu} \tag{16.4}
\end{equation*}
$$

with a form factor $\xi\left(v \cdot v^{\prime}\right)$ that is real and independent of m_{Q}. By flavor symmetry, the form factor remains identical when one replaces the heavy quark Q in one of the meson states by a heavy quark Q^{\prime} of a different flavor, thereby turning P into another pseudoscalar meson P^{\prime}. At the same time, the current becomes a flavor-changing vector current. This universal form factor is called the Isgur-Wise function [12]. For equal velocities the vector current $J^{\mu}=\bar{h}_{v} \gamma^{\mu} h_{v}$ is conserved in the effective theory, irrespective of the flavor of the heavy quarks. The corresponding conserved charges are the generators of the flavor symmetry. It follows that the Isgur-Wise function is normalized at the point of equal velocities: $\xi(1)=1$. Since the recoil energy of the daughter meson P^{\prime} in the rest frame of the parent meson P is $E_{\text {recoil }}=m_{P^{\prime}}\left(v \cdot v^{\prime}-1\right)$, the point $v \cdot v^{\prime}=1$ is referred to as the zero-recoil limit. The heavy-quark spin symmetry leads to additional relations among weak decay form factors. It can be used to relate matrix elements involving vector mesons to those involving pseudoscalar mesons, which once again can be described completely in terms of the universal Isgur-Wise function.

The form factor relations imposed by heavy-quark symmetry describe the semileptonic decay processes $\bar{B} \rightarrow D \ell \bar{\nu}$ and $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ in the limit of infinite heavy-quark masses. They are model-independent consequences of QCD. The known normalization of the Isgur-Wise function at zero recoil can be used to obtain a model-independent measurement of the element $\left|V_{c b}\right|$ of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The semileptonic decay $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ is particularly well suited for this purpose [16]. Experimentally this is a very clean mode, since the reconstruction of the D^{*} meson mass provides a powerful rejection against background. From the theoretical point of view, it is ideal since the decay rate at zero recoil is protected by Luke's theorem against first-order power corrections in $1 / m_{Q}$ [17]. This is described in more detail in Section 12. Corrections to the heavy-quark symmetry relations for the $\bar{B} \rightarrow D^{(*)}$ form factors near zero recoil can also be constrained using sum rules derived in the small-velocity limit $[18,19]$.

16.2.4 Decoupling transformation

At leading order in $1 / m_{Q}$, the couplings of soft gluons to heavy quarks in the effective Lagrangian (16.3) can be removed by the field redefinition $h_{v}(x)=Y_{v}(x) h_{v}^{(0)}(x)$, where $Y_{v}(x)$ is a soft Wilson line along the direction of v, extending from minus infinity to the point x. In terms of the new fields the leading-order HQET Lagrangian becomes $\mathcal{L}_{\mathrm{HQET}}=\bar{h}_{v}^{(0)} i v \cdot \partial h_{v}^{(0)}$. It describes a free theory as far as the strong interactions of heavy quarks are concerned. However, the theory is nevertheless non-trivial in the presence of external sources. Consider, e.g., the case of a weakinteraction heavy-quark current

$$
\begin{equation*}
\bar{h}_{v^{\prime}} \gamma^{\mu}\left(1-\gamma_{5}\right) h_{v}=\bar{h}_{v^{\prime}}^{(0)} \gamma^{\mu}\left(1-\gamma_{5}\right) Y_{v^{\prime}}^{\dagger} Y_{v} h_{v}^{(0)} \tag{16.5}
\end{equation*}
$$

where v and v^{\prime} are the velocities of the heavy mesons containing the heavy quarks. Unless the two velocities are equal, corresponding to the zero-recoil limit discussed above, the object $Y_{v^{\prime}}^{\dagger} Y_{v}$ is non-trivial, and hence the soft gluons do not decouple from the heavy quarks inside the current operator. One may interpret $Y_{v^{\prime}}^{\dagger} Y_{v}$ as a Wilson loop with a cusp at the point x, where the two paths parallel to the different velocity vectors intersect. The presence of the cusp leads to non-trivial ultra-violet behavior (for $v \neq v^{\prime}$), which is described by a cusp anomalous dimension $\Gamma_{\text {cusp }}\left(v \cdot v^{\prime}\right)$ that was calculated at two-loop order in [20]. It coincides with the velocity-dependent anomalous dimension of heavyquark currents, which was introduced in the context of HQET in [21]. The interpretation of heavy quarks as Wilson lines is a useful tool, which was put forward in one of the very first papers on the subject [4]. This technology will be useful in the study of the interactions of heavy quarks with collinear degrees of freedom discussed later in this review.

16.2.5 Heavy-quark expansion for inclusive decays

The theoretical description of inclusive decays of hadrons containing a heavy quark exploits two observations [22-26]: boundstate effects related to the initial state can be calculated using the heavy-quark expansion, and the fact that the final state consists of a sum over many hadronic channels eliminates the sensitivity to the properties of individual final-state hadrons. The second feature rests on the hypothesis of quark-hadron duality, i.e. the assumption that decay rates are calculable in QCD after a smearing procedure has been applied [27]. In semileptonic decays, the integration over the lepton spectrum provides a smearing over the invariant hadronic mass of the final state (global duality). For nonleptonic decays, where the total hadronic mass is fixed, the summation over many hadronic final states provides an averaging (local duality). Since global duality is a much weaker assumption, the theoretical control of inclusive semileptonic decays is on firmer footing.

Using the optical theorem, the inclusive decay width of a hadron H_{b} containing a b quark can be written in the form

$$
\begin{equation*}
\Gamma\left(H_{b}\right)=\frac{1}{M_{H_{b}}} \operatorname{Im}\left\langle H_{b}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{\mathrm{eff}}(x), \mathcal{H}_{\mathrm{eff}}(0)\right\}\left|H_{b}\right\rangle \tag{16.6}
\end{equation*}
$$

The effective weak Hamiltonian for b-quark decays consists of dimension-6 four-fermion operators and dipole operators [28]. Because of the large mass of the b quark, it follows that the separation of fields in the time-ordered product in (16.6) is small, of order $x \sim 1 / m_{b}$. It is thus possible to construct an operator-product expansion (OPE) for the time-ordered product, in which it is represented as a series of local operators in HQET. The leading operator $\bar{h}_{v} h_{v}$ has a trivial matrix element. The next contributions arise at $\mathcal{O}\left(1 / m_{b}^{2}\right)$ and give rise to two parameters $\mu_{\pi}^{2}\left(H_{b}\right)$ and $\mu_{G}^{2}\left(H_{b}\right)$, which are defined as the matrix elements of the heavyquark kinetic energy and chromo-magnetic interaction inside the hadron H_{b}, respectively [29]. For the ground-state heavy mesons and baryons, one has $\mu_{G}^{2}(B)=3\left(m_{B^{*}}^{2}-m_{B}^{2}\right) / 4 \simeq 0.36 \mathrm{GeV}^{2}$ and $\mu_{G}^{2}\left(\Lambda_{b}\right)=0$. Thus, the total inclusive decay rate of a hadron H_{b}
can be written as $[23,24]$

$$
\begin{array}{r}
\Gamma\left(H_{b}\right)=\frac{G_{F}^{2} m_{b}^{5}\left|V_{c b}\right|^{2}}{192 \pi^{3}}\left[c_{1}+c_{2} \frac{\mu_{\pi}^{2}\left(H_{b}\right)}{2 m_{b}^{2}}+c_{3} \frac{\mu_{G}^{2}\left(H_{b}\right)}{2 m_{b}^{2}}\right. \\
\left.+\mathcal{O}\left(\frac{1}{m_{b}^{3}}\right)+\ldots\right] \tag{16.7}
\end{array}
$$

where the prefactor arises from the loop integrations and is proportional to the fifth power of the b-quark mass. The coefficient functions c_{i} are calculable order by order in perturbation theory. While c_{1} corresponds to the decay rate of a free heavy quark, the higher-order coefficients systematically account for bound-state effects. The coefficients of the subleading operators and of the leading operator at third order in $1 / m_{b}$ have recently been calculated at NLO [30-34], and the heavy-quark expansion has been pushed to fifth order in $1 / m_{b}$ [35].

From the fully inclusive width in (16.7) one can obtain the lifetime of a heavy hadron via $\tau\left(H_{b}\right)=1 / \Gamma\left(H_{b}\right)$. Due to the universality of the leading term in the heavy-quark expansion, lifetime ratios such as $\tau\left(B^{-}\right) / \tau\left(\bar{B}^{0}\right), \tau\left(\bar{B}_{s}^{0}\right) / \tau\left(\bar{B}^{0}\right)$ and $\tau\left(\Lambda_{b}\right) / \tau\left(\bar{B}^{0}\right)$ are particularly sensitive to the hadronic parameters determining the power corrections in the expansion. In order to understand these ratios theoretically, it is necessary to include phase-space enhanced power corrections of order $\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{3}[36,37]$ as well as short-distance perturbative effects [38] in the calculation (see [39] for a recent discussion of the status of the corresponding calculations).

A formula analogous to (16.7) can be derived for differential distributions in specific inclusive decay processes, assuming that these distributions are integrated over a sufficiently large region of phase space to ensure quark-hadron duality. Important examples are the distributions in the lepton energy and the lepton invariant mass, as well as moments of the invariant hadronic mass distribution in the semileptonic processes $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$. A global fit of semileptonic decay distributions can be used to determine the CKM matrix elements $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ along with heavyquark parameters such as the masses m_{b}, m_{c} and the hadronic parameters $\mu_{\pi}^{2}(B), \mu_{G}^{2}(B)$. These determinations provide some of the most accurate values for these parameters (see e.g. [40-42]).

16.2.6 Shape functions and non-local power corrections

In certain regions of phase space, in which the hadronic final state in an inclusive heavy-hadron decay is made up of light energetic partons, the local OPE for inclusive decays must be replaced by a more complicated expansion involving hadronic matrix elements of non-local light-ray operators [43, 44]. Prominent examples are the radiative decay $\bar{B} \rightarrow X_{s} \gamma$ for large photon energy E_{γ} near $m_{B} / 2$, and the semileptonic decay $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ at large lepton energy or small hadronic invariant mass. In these cases, the differential decay rates at leading order in the heavy-quark expansion can be written in the factorized form $d \Gamma=H J \otimes S$ [45], where the hard function H and the jet function J are calculable in perturbation theory. The characteristic scales for these functions are set by m_{b} and $\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$, respectively. The soft function

$$
\begin{equation*}
S(\omega)=\int \frac{d t}{4 \pi} e^{-i \omega t}\langle\bar{B}(v)| \bar{h}_{v}(t n) Y_{n}(t n) Y_{n}^{\dagger}(0) h_{v}(0)|\bar{B}(v)\rangle \tag{16.8}
\end{equation*}
$$

is a non-perturbative object called the shape function $[43,44]$. Here Y_{n} are soft Wilson lines along a light-like direction n aligned with the momentum of the hadronic final-state jet. The jet function and the shape function share a common variable $\omega \sim \Lambda_{\mathrm{QCD}}$, and the symbol \otimes denotes a convolution in this variable.

While the hard functions are different for the decays $\bar{B} \rightarrow X_{s} \gamma$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$, the jet and soft functions are identical at leading order in $\Lambda_{\mathrm{QCD}} / m_{Q}$. This is particularly important for the shape function, which introduces non-perturbative physics into the theoretical predictions for the decay rates in the regions of experimental interest. The fact that both processes depend on the same non-perturbative function makes it possible to use the measured shape of the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum to reduce the theoretical uncertainties in the determination of the CKM element $\left|V_{u b}\right|$ from semileptonic decays. In higher orders of the heavy-quark
expansion, an increasing number of subleading jet and soft functions are required to describe the decay distributions [46]. These have been analyzed in detail at order $1 / m_{b}$ [47-49]. In the case of $\bar{B} \rightarrow X_{s} \gamma$ (and also in the related case of $\bar{B} \rightarrow X_{s} \ell \bar{\ell}$), some of these non-local effects survive in the total decay rate and give rise to irreducible hadronic uncertainties [50]. The technology for deriving the corresponding factorization theorems relies on the soft-collinear effective theory, to which we now turn.

16.3 Soft-Collinear Effective Theory

As discussed in the previous section, soft gluons that bind a heavy quark inside a heavy meson cannot change the virtuality of that heavy quark by a significant amount. The ratio $\Lambda_{\mathrm{QCD}} / m_{Q}$ provides the expansion parameter in HQET, which is a small parameter since $m_{Q} \gg \Lambda_{\mathrm{QCD}}$. This obviously does not work when considering light quarks. However, if the energy Q of the quarks is large, the ratio $\Lambda_{\mathrm{QCD}} / Q$ provides a small parameter, which can be used to construct an effective theory. One major difference to HQET is that light energetic quarks cannot only emit soft gluons, but they can also emit collinear gluons (an energetic gluon in the same direction as the original quark), without parametrically changing their virtuality. Thus, to fully reproduce the longdistance physics of energetic quarks requires that one includes their interactions with both soft and collinear particles. The resulting effective theory is therefore called soft-collinear effective theory (SCET) [51-53] (see [54] for a review).
A single energetic particle can always be boosted to a frame where all momentum components have similar size, in which case there is no small expansion parameter. Thus the presence of energetic particles must refer to a reference frame defined by external kinematics. SCET has a wide range of applications; some examples are the production of energetic, light states in the decay of a heavy particle in its rest frame, the production of energetic jets in collider environments, and the scattering of energetic particles off a target at rest. In this brief review we will outline the main features of this effective theory and mention a few selected applications.

16.3.1 General idea of the expansion

Consider a quark with virtuality much less than its energy Q, moving along the direction \vec{n}. It is convenient to parameterize the momentum p_{n} of this particle in terms of its lightcone components, defined by $\left(p_{n}^{-}, p_{n}^{+}, p_{n}^{\perp}\right)=\left(\bar{n} \cdot p_{n}, n \cdot p_{n}, p_{n}^{\perp}\right)$, where $n^{\mu}=(1, \vec{n})$ and $\bar{n}^{\mu}=(1,-\vec{n})$ are light-like vectors, and $n \cdot p_{n}^{\perp}=\bar{n} \cdot p_{n}^{\perp}=0$. The subscript n on the momentum indicates the direction of the collinear particle. In terms of these lightcone components, the virtuality satisfies $p_{n}^{2}=p_{n}^{+} p_{n}^{-}+p_{n}^{\perp 2}$. The individual components of the momentum obey

$$
\begin{equation*}
\left(p_{n}^{-}, p_{n}^{+}, p_{n}^{\perp}\right) \sim Q\left(1, \lambda^{2}, \lambda\right) \tag{16.9}
\end{equation*}
$$

where $\lambda^{2}=p^{2} / Q^{2}$ is the expansion parameter of SCET. The virtuality of such an energetic particle remains parametrically unchanged if it interacts with energetic particles in the same direction n, or with soft particles with momentum scaling as

$$
\begin{equation*}
\left(p_{s}^{-}, p_{s}^{+}, p_{s}^{\perp}\right) \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \tag{16.10}
\end{equation*}
$$

SCET is constructed in such a way as to reproduce the longdistance dynamics arising from the interactions of collinear and soft degrees of freedom.

In the above power counting the transverse momenta of soft degrees of freedom scale as $p_{s}^{\perp} \sim Q \lambda^{2}$, which is much smaller than the transverse momenta $p_{c}^{\perp} \sim Q \lambda$ of collinear fields. This theory is usually called $\operatorname{SCET}_{\mathrm{I}}$. If the external kinematics require that the transverse momenta of both soft and collinear fields are of the same size, $p_{c}^{\perp} \sim p_{s}^{\perp}$, then the appropriate degrees of freedom have the scaling $p_{c} \sim Q\left(1, \lambda^{2}, \lambda\right)$ and $p_{s} \sim Q(\lambda, \lambda, \lambda)$. This theory is usually called $\mathrm{SCET}_{\mathrm{II}}$ and is required, e.g., for exclusive hadronic decays such as $\bar{B} \rightarrow D \pi$, where the virtuality of both collinear and soft degrees of freedom are set by Λ_{QCD}, or for the description of transverse-momentum distributions at colliders. $\mathrm{SCET}_{\text {I }}$ power counting is assumed in the following sections, while $\mathrm{SCET}_{\mathrm{II}}$ is discussed in more detail in 16.3.6.

16.3.2 Leading-order Lagrangian

The derivation of the SCET Lagrangian follows similar steps as described for HQET in Section 16.2.1. One begins by deriving the Lagrangian for a theory containing only a single collinear sector. Similar to HQET, one separates the full QCD field into two components, $q_{n}(x)=\psi_{n}(x)+\Xi_{n}(x)$, where (with $n \cdot \bar{n}=2$)

$$
\begin{equation*}
\psi_{n}(x)=\frac{\not n \ddot{n}}{4} q_{n}(x), \quad \Xi_{n}(x)=\frac{\vec{n} n}{4} q_{n}(x) . \tag{16.11}
\end{equation*}
$$

The degrees of freedom described by the field Ξ_{n} are far off shell and can therefore be eliminated using its equation of motion. This gives

$$
\begin{equation*}
\mathcal{L}_{n}=\bar{\psi}_{n}(x)\left[i n \cdot D+i \not D^{\perp} \frac{1}{i \bar{n} \cdot D} i \not D^{\perp}\right] \frac{\not 2}{2} \psi_{n}(x) . \tag{16.12}
\end{equation*}
$$

As a next step, one separates the large and residual momentum components by decomposing the collinear momentum into a "label" and a residual momentum, $p^{\mu}=P^{\mu}+k^{\mu}$ with $n \cdot P=0$. One then performs a phase redefinition on the collinear fields, such that $\psi_{n}(x)=e^{i P \cdot x} \xi_{n}(x)$. Derivatives acting on the fields $\xi_{n}(x)$ now only pick out the residual momentum. Since unlike in HQET the label momentum in SCET is not conserved, one defines a label operator \mathcal{P}^{μ} acting as $\mathcal{P}^{\mu} \xi_{n}(x)=P^{\mu} \xi_{n}(x)$ [52], as well as a corresponding covariant label operator $i \mathcal{D}_{n}^{\mu}=\mathcal{P}^{\mu}+g A_{n}^{\mu}(x)$. Note that at leading order in power counting $i \mathcal{D}_{n}^{\mu}$ does not contain the soft gluon field. This leads to the final SCET Lagrangian [52,53,55,56]
$\mathcal{L}_{n}=\bar{\xi}_{n}(x)\left[i n \cdot D_{n}+g n \cdot A_{s}+i \mathcal{D}_{n}^{\perp} \frac{1}{i \bar{n} \cdot \mathcal{D}_{n}} i \mathcal{D}_{n}^{\perp}\right] \frac{\vec{\not}}{2} \xi_{n}(x)+\ldots$,
where we have split in $\cdot D$ into a collinear piece $i n \cdot D_{n}=$ in $\cdot \partial+g n \cdot A_{n}$ and a soft piece $g n \cdot A_{s}$. This latter term gives rise to the only interaction between a collinear quark and soft gluons at leading power in λ. The ellipses represent higher-order interactions between soft and collinear particles.

The Lagrangian describing collinear fields in different light-like directions is simply given by the sum of the Lagrangians for each direction n, i.e. $\mathcal{L}=\sum_{n} \mathcal{L}_{n}$. The soft gluons are the same in each individual Lagrangian. An alternative way to understand the separation between large and small momentum components is to derive the Lagrangian of SCET in position space [56]. In this case no label operators are required, and the dependence on shortdistance effects is contained in non-localities at short distances. An important difference between SCET and HQET is that the SCET Lagrangian is not corrected by short distance fluctuations. The physical reason is that in the construction described above no high-momentum modes have been integrated out [56]. Such hard modes arise when different collinear sectors are coupled via some external current (e.g. in jet production at $e^{+} e^{-}$or hadron colliders), or when collinear particles are produced in the rest frame of a decaying heavy object (such as in B decays). Shortdistance effects are then incorporated in the Wilson coefficients of the external source operators.

16.3.3 Collinear gauge invariance and Wilson lines

An important aspect of SCET is the implementation of local gauge invariance. Because the effective field operators describe modes with certain momentum scalings, the effective Lagrangian respects only residual gauge symmetries. One of them satisfies the collinear scaling

$$
\begin{equation*}
\left(\bar{n} \cdot \partial, n \cdot \partial, \partial^{\perp}\right) U_{n}(x) \sim Q\left(1, \lambda^{2}, \lambda\right) U_{n}(x), \tag{16.14}
\end{equation*}
$$

and one the soft scaling

$$
\begin{equation*}
\left(\bar{n} \cdot \partial, n \cdot \partial, \partial^{\perp}\right) U_{s}(x) \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) U_{s}(x) \tag{16.15}
\end{equation*}
$$

While the soft gauge transformation is common for all fields, collinear fields in different directions each transform under their own collinear gauge transformation, which means that each collinear sector, containing particles with large momenta along a certain direction, has to be separately gauge invariant under its
collinear gauge transformation. This requires the introduction of collinear Wilson lines [52]

$$
\begin{equation*}
W_{n}(x)=\mathrm{P} \exp \left[-i g \int_{-\infty}^{0} d s \bar{n} \cdot A_{n}(s \bar{n}+x)\right] \tag{16.16}
\end{equation*}
$$

which transform under collinear gauge transformations according to $W_{n} \rightarrow U_{n} W_{n}$. Thus, the combination $\chi_{n} \equiv W_{n}^{\dagger} \psi_{n}$ is gauge invariant. In a similar manner, one can define the gauge-invariant gluon field $B_{n}^{\mu}=g^{-1} W_{n}^{\dagger} i D_{n}^{\mu} W_{n}[57,58]$. Collinear operators in SCET are typically constructed from such collinearly gaugeinvariant building blocks.

16.3.4 Derivation of factorization theorems

One of the important applications of SCET is to understand how to factorize cross sections involving energetic particles moving in different directions into simpler pieces that can either be calculated perturbatively or determined from data. Factorization theorems have been around for much longer than SCET (see [59] for a review). However, the effective theory allows for a conceptually simpler understanding of certain classes of factorization theorems [57], since most simplifications happen already at the level of the Lagrangian. The discussion in this section is valid to leading order in the power counting of the effective theory.

As discussed in the previous section, the Lagrangian of SCET does not involve any couplings between collinear particles moving in different directions. Soft gluons couple to collinear quarks only through the term $\bar{\xi}_{n} g n \cdot A_{s}(\vec{\eta} / 2) \xi_{n}$ in the effective Lagrangian in (16.13). This coupling is similar to the coupling of soft gluons to heavy quarks in HQET, see Section 16.2.4. It can be removed by means of the field redefinition [53]

$$
\begin{equation*}
\psi_{n}(x)=Y_{n}(x) \psi_{n}^{(0)}(x), \quad A_{n}^{a}(x)=Y_{n}^{a b}(x) A_{n}^{b(0)}(x) \tag{16.17}
\end{equation*}
$$

where Y_{n} and $Y_{n}^{a b}$ live in the fundamental and adjoint representations of $S U(3)$, respectively. This fact greatly facilitates proofs of factorization theorems in SCET. A QCD operator $O(x)$ describing the interactions of collinear partons moving in different directions can thus be written as (omitting color indices for simplicity)

$$
\begin{align*}
& \langle O(x)\rangle= \\
& C_{O}(\mu)\left\langle\left[\mathcal{C}_{n_{a}}^{(0)} \mathcal{C}_{n_{b}}^{(0)} \mathcal{C}_{n_{1}}^{(0)} \ldots \mathcal{C}_{n_{N}}^{(0)}\right](x)\left[\mathcal{Y}_{n_{a}} \mathcal{Y}_{n_{b}} \mathcal{Y}_{n_{1}} \ldots \mathcal{Y}_{n_{N}}\right](x)\right\rangle_{\mu} \tag{16.18}
\end{align*}
$$

Here $\mathcal{C}_{n_{i}}^{(0)}(x)$ denotes a gauge-invariant combination of collinear fields (either quark or gluon fields) in the direction n_{i}. The hard matching coefficient C_{O} accounts for short-distance effects at the scale Q. The soft Wilson lines can either be in a color triplet or color octet representation, and are collectively denoted by $\mathcal{Y}_{n_{i}}$. Both the matrix elements and the coefficient C_{O} depend on the renormalization scale μ.

Having defined the operator mediating a given process, one can calculate the cross section by squaring the operator, taking the forward matrix element and integrating over the phase space of all final-state particles. The absence of interactions between collinear degrees of freedom moving along different directions or soft degrees of freedom implies that the forward matrix element can be factorized as

$$
\begin{align*}
\langle\text { in }| O & \left.(x) O^{\dagger}(0) \mid \text { in }\right\rangle=\left|C_{O}(\mu)\right|^{2}\left\langle\operatorname{in}_{a}\right| \mathcal{C}_{n_{a}}(x) \mathcal{C}_{n_{a}}^{\dagger}(0)\left|\operatorname{in}_{a}\right\rangle_{\mu} \\
& \times\left\langle\operatorname{in}_{b}\right| \mathcal{C}_{n_{b}}(x) \mathcal{C}_{n_{b}}^{\dagger}(0)\left|\operatorname{in}_{b}\right\rangle_{\mu} \\
& \times\langle 0| \mathcal{C}_{n_{1}}(x) \mathcal{C}_{n_{1}}^{\dagger}(0)|0\rangle_{\mu} \cdots\langle 0| \mathcal{C}_{n_{N}}(x) \mathcal{C}_{n_{N}}^{\dagger}(0)|0\rangle_{\mu} \\
& \times\langle 0|\left[\mathcal{Y}_{n_{a}} \ldots \mathcal{Y}_{n_{N}}\right](x)\left[\mathcal{Y}_{n_{a}} \ldots \mathcal{Y}_{n_{N}}\right]^{\dagger}(0)|0\rangle_{\mu} \tag{16.19}
\end{align*}
$$

Thus, the matrix element can be written as a product of simpler structures, each of which can be evaluated separately.

The vacuum matrix elements of the outgoing collinear fields are determined by jet functions $J_{i}(\mu)$. As long as the relevant scale (for example the jet mass) is sufficiently large, these functions can
be calculated perturbatively. The matrix elements of the incoming collinear fields are non-perturbative objects $B_{p / N}(\mu)$ called beam functions for parton p in nucleon N [60]. For many applications they can be related perturbatively to the well-known parton distribution functions. Finally, the vacuum matrix element of the soft Wilson lines defines a so-called soft function $S_{a b \ldots N}(\mu)$. The shared dependence on x in the above equation implies that in momentum space the various components of the factorization theorem are convoluted with one another. Deriving this convolution requires a careful treatment of the phase-space integration and the factorization of the measurement defining the cross section of interest, in particular treating the large and residual components of each momentum appropriately.

Putting all information together, the differential cross section for a proton-proton collision with N jet-like objects can schematically be written as

$$
\begin{align*}
d \sigma \sim \sum_{a b} H_{a b}(\mu)\left[B_{a / P}(\mu) B_{b / P}(\mu)\right] & \otimes\left[J_{1}(\mu) \ldots J_{N}(\mu)\right] \\
& \otimes S_{a b \ldots N}(\mu) \tag{16.20}
\end{align*}
$$

The hard function is equal to the square of the matching coefficient, $H_{a b}(\mu)=\left|C_{O}(\mu)\right|^{2}$, and the beam, jet, and soft functions and their convolution structure depend on the specific N jet measurement. It should be mentioned that the most difficult part of traditional factorization proofs involves showing that socalled Glauber gluons do not spoil the above factorization theorem [61]. Significant progress toward the description of Glauber effects within SCET has been made in [62], where a closed form for the effective Lagrangian describing these interactions was derived. In this context, a proof of factorization requires demonstrating that this Lagrangian has no impact on a particular cross section, and such proofs have not yet been fully derived within SCET.

16.3.5 Resummation of large logarithms

SCET can be used to sum the large logarithms arising in perturbative calculations to all orders in the strong coupling constant α_{s}. In general, perturbation theory will generate a logarithmic dependence on any ratio of scales r in a problem. For processes that involve initial or final states with energy much in excess of their mass, there are two powers of logarithms for every power of α_{s}. These are referred to as Sudakov logarithms. For widely separated scales these large logarithms can spoil the convergence of fixed-order perturbation theory. One thus needs to reorganize the expansion in such a way that $\alpha_{s} L=\mathcal{O}(1)$ is kept fixed, with $L=\ln r$. More precisely, a proper resummation requires summing logarithms of the form $\alpha_{s}^{n} L^{m}$ with $m \leq(n+1)$ in the logarithm of a cross section, by writing $\ln \sigma \sim L g_{0}\left(\alpha_{s} L\right)+g_{1}\left(\alpha_{s} L\right)+\alpha_{s} g_{2}\left(\alpha_{s} L\right)+\ldots$, with functions $g_{n}(x)$ that need to be determined.

The important ingredient in achieving this resummation is the fact that SCET factorizes a given cross section into simpler pieces, each of which depends on a single physical scale. The only dependence on that scale can arise through logarithms of its ratio with the renormalization scale μ. Thus, for each of the components in the factorization theorem one can choose a renormalization scale μ for which the large logarithmic terms are absent. Of course, the factorization formula requires a common renormalization scale μ in all its components, and one therefore has to use the renormalization group (RG) to evolve the various component functions from their preferred scale to the common scale μ. A novel feature of RG equations in SCET, as opposed to other EFTs, is that the anomalous dimensions entering the evolution equations of the hard, beam, jet and soft functions in a factorization formula such as (16.20) contain a single power of the logarithm of the relevant energy scale. For example, the anomalous dimension γ_{H} of the hard function has the form

$$
\begin{equation*}
\gamma_{H}(\mu)=c_{H} \Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+\gamma\left(\alpha_{s}\right) \tag{16.21}
\end{equation*}
$$

where c_{H} is a process-dependent coefficient and $\Gamma_{\text {cusp }}$ denotes the
so-called cusp anomalous dimension $[20,63]$. Collinear and soft functions have similar anomalous dimensions, which also involve a cusp and a non-cusp part. The non-cusp part γ of the anomalous dimensions is process (and observable) dependent. The presence of a logarithm in the anomalous dimension is characteristic of Sudakov problems and arises since the perturbative series contains double logarithms of scale ratios.

Solving the RG equations one can systematically resum all large logarithms of scale ratios in the factorized cross section and express the functions $g_{n}\left(\alpha_{s} L\right)$ introduced above in terms of ratios of running coupling constants. In order to compute the first two terms $L g_{0}\left(\alpha_{s} L\right)+g_{1}\left(\alpha_{s} L\right)$ in $\ln \sigma$, corresponding to the next-to-leading logarithmic (NLL) approximation, one needs two-loop expressions for the cusp anomalous dimension and β function, one-loop expressions for the non-cusp pieces in the anomalous dimensions, and tree-level matching conditions for all component functions at their characteristic scales. To calculate the next term $\alpha_{s} g_{2}\left(\alpha_{s} L\right)$ in the expansion, corresponding to NNLL order, one needs to go one order higher in the loop expansion, and so on.

16.3.6 Factorization and resummation in SCET $_{\text {II }}$

The effective theory $\mathrm{SCET}_{\mathrm{II}}$ contains collinear and soft particles with momenta scaling as $\left(p_{n}^{-}, p_{n}^{+}, p_{n}^{\perp}\right) \sim Q\left(1, \lambda^{2}, \lambda\right)$ and $\left(p_{s}^{-}, p_{s}^{+}, p_{s}^{\perp}\right) \sim Q(\lambda, \lambda, \lambda)$. They have the same small virtuality ($p_{n}^{2} \sim p_{s}^{2} \sim Q^{2} \lambda^{2}$) but differ in their rapidities. An important class of observables, for which this scaling is relevant, contains cross sections for processes in which the transverse momenta of particles are constrained by external kinematics. The prime example are the transverse-momentum distributions of electroweak gauge bosons or Higgs bosons produced at hadron colliders. The parton transverse momenta are constrained by the fact that their vector sum must be equal and opposite to the transverse momentum q_{T} of the boson. Standard RG evolution in the effective theory controls the logarithms arising from the fact that the virtualities of the collinear and soft modes are much smaller than the hard scale Q in the process (the boson mass). However, additional large logarithms arise since the rapidities of collinear and soft modes are parametrically different, such that $e^{\left|y_{c}-y_{s}\right|} \sim 1 / \lambda$. These logarithms can be traced to a new source of divergences and an unusual failure of dimensional regularization. They need to be factorized in the cross section and resummed by other means.

Two equivalent approaches exist for how to deal with the additional rapidity logarithms in SCET. In the approach of [64], they are interpreted as a consequence of a "collinear anomaly" of the effective theory $\mathrm{SCET}_{\mathrm{II}}$, resulting from the fact that a classical rescaling symmetry of the effective Lagrangian is broken by quantum effects. The extra large logarithms can be resummed by means of simple differential equations, which typically state that to all orders in perturbation theory (and in an appropriate space) the logarithm of the cross section contains only a single extra logarithm of $\lambda \sim q_{T} / Q$ not contained in the hard function. Another approach to resum the rapidity logarithms uses the "rapidity renormalization group" [65], in which the relevant differential equations are obtained by considering a new type of scale variation in a parameter ν, which separates the phase space for collinear and soft particles along a hyperbola in the $\left(p_{-}, p_{+}\right)$ plane. In contrast to the standard RG, there is no running coupling involved in the ν evolution, since the different contributions live at the same virtuality.
$\mathrm{SCET}_{\mathrm{II}}$ also plays an important role in the study of factorization for a variety of exclusive B meson decays, such as $\bar{B} \rightarrow \pi \ell \bar{\nu}$, $\bar{B} \rightarrow K^{*} \gamma$ and $\bar{B} \rightarrow \pi \pi$, for which the virtualities of energetic (collinear) final-state particles are of order Λ_{QCD}, which is also the scale for the soft light degrees of freedom contained in the initial-state B meson.

16.3.7 Applications

Most of the applications of SCET are either in flavor physics, where the decay of a heavy B meson can give rise to energetic light partons, or in collider physics, where the presence of jets naturally leads to collimated sets of energetic particles. For some of these applications alternative approaches existed before the invention of SCET, but the effective theory has opened up alternative ways to understand the physics of these processes. For
many examples, however, SCET has allowed new insights and new applications. The investigation of heavy-to-light form factors has been instrumental for understanding factorization in exclusive semileptonic B decays [66]. SCET has also provided a field-theoretic basis for the QCD factorization approach to exclusive, non-leptonic decays of B mesons [67]. Using SCET methods, proofs of factorization were derived for the color-allowed decay $\bar{B}^{0} \rightarrow D^{+} \pi^{-}[68]$, the color-suppressed decay $\bar{B}^{0} \rightarrow D^{0} \pi^{0}[69]$, and the radiative decay $\bar{B} \rightarrow K^{*} \gamma[70]$. Further examples are factorization theorems and the resummation of endpoint logarithms for quarkonia production [71], the resummation of large logarithmic terms for the thrust [72] and jet broadening [73] distributions in $e^{+} e^{-}$annihilation beyond NLL order, the development of new factorizable observables to veto extra jets [60,74], all-orders factorization theorems for processes containing electroweak Sudakov logarithms [75], and the resummation of threshold (soft gluon) logarithms in momentum space for several important processes at hadron colliders [76-78]. There has also been a lot of activity describing p_{T}-based resummation at hadron colliders. Prominent examples are the transverse-momentum distributions of electroweak bosons [64, 65, 79]. Finally, SCET has given new insights into the jet substructure methods (see [80] for a recent review). We now describe a few of these applications in more detail.

Event-shape distributions, in particular the thrust distribution, have been measured to high accuracy at LEP [81]. They can be used for a determination of the strong coupling constant α_{s}. SCET has increased the theoretical accuracy in the calculations of the thrust and C-parameter distributions significantly. First, it has allowed to increase the perturbative accuracy of the thrust spectrum. The resummation of logarithms of τ, which become important for $\tau \ll 1$, has been performed to $\mathrm{N}^{3} \mathrm{LL}$ [72], two orders beyond what was previously available. Combining this resummation with the known two-loop spectrum $[82,83]$ gives precise perturbative predictions both at small and large values of τ. Second, the factorization of the cross section in SCET has made it possible to include non-perturbative physics through a shape function, in analogy with the B-physics case discussed in Section 16.2.6. Comparing the theoretical predictions to the measured thrust and C-parameter distributions yields a precise value of the strong coupling constant $\alpha_{s}\left(m_{Z}\right)$, which however is lower than the average value cited in Section 9 by several standard deviations [84, 85]. For more discussions on this, see Section 9.

The Higgs-boson production cross section in gluon fusion at the LHC, defined with a jet veto stating that no jet in the final state has transverse momentum above a threshold $p_{T}^{\text {veto }}$, can be factorized in the form $[86,87]$ (see [88] for a corresponding calculation outside the SCET framework)

$$
\begin{align*}
& \sigma\left(p_{T}^{\text {veto }}\right)= \\
& H\left(m_{H}, \mu\right)\left(\frac{\nu_{B}}{\nu_{S}}\right)^{-2 F_{g g}\left(R, p_{T}^{\text {veto }}, \mu\right)} S_{g g}\left(R, p_{T}^{\text {veto }}, \mu, \frac{\nu_{S}}{\left.p_{T}^{\text {veto }}\right)}\right. \\
& \quad \times \int_{\tau}^{1} \frac{d z}{z} B_{g / P}\left(z, R, p_{T}^{\text {veto }}, \mu, \frac{\nu_{B}}{m_{H}}\right) B_{g / P}\left(\frac{\tau}{z}, R, p_{T}^{\text {veto }}, \mu, \frac{\nu_{B}}{m_{H}}\right), \tag{16.22}
\end{align*}
$$

where $\tau=m_{H}^{2} / s$, and $\mu \sim p_{T}^{\text {veto }}$ is a common factorization scale. The beam functions $B_{g / P}$, the soft function $S_{g g}$ and the exponent $F_{g g}$ all depend on the jet radius R as well as the jet clustering algorithm. The scale dependence of the hard function H is controlled by standard RG evolution in SCET. The beam functions can be factorized further into calculable collinear kernels convoluted with parton distribution functions. In addition to the renormalization scale μ, the beam and soft functions depend on two rapidity scales $\nu_{B} \sim m_{H}$ and $\nu_{S} \sim p_{T}^{\text {veto }}$, respectively. In [86] the default values $\nu_{B}=m_{H}$ and $\nu_{S}=p_{T}^{\text {veto }}$ are used for these scales, and the soft function $S_{g g}$ is absorbed into the beam functions. In [87] the exponent $F_{g g}$ is called $-\gamma_{\nu}^{g} / 2$. The second factor on the right-hand side of the factorization formula (16.22), which resums large rapidity logarithms, implies that the logarithm of the jet-veto cross section contains a single large logarithm $\ln \sigma=-2 F_{g g}\left(R, p_{T}^{\text {veto }}, \mu\right) \ln \left(m_{H} / p_{T}^{\text {veto }}\right)+\ldots$ not contained in the hard function. Its coefficient can be calculated in fixed-order per-
turbation theory.
Obtaining more precise fixed-order calculations has been an important goal for many years. A major difficulty in these calculations is the proper handling of the infrared singularities that arise in both virtual and real contributions. A method based on N jettiness $\left(\mathcal{T}_{N}\right)$ slicing $[89,90]$ allows one to obtain the NNLO result from a much easier NLO calculation, combined with information about the singular dependence of the cross section on the \mathcal{T}_{N} resolution variable [74]. This has been used to compute various processes with final states containing up to one hard, colored particle [91-95]. While the NLO calculations can be performed using well established techniques, the singular dependence on \mathcal{T}_{N} can be calculated using SCET at NNLO. Calculations of the leading power corrections in $\mathcal{T}_{0} / Q[96,97]$ have helped to improved the numerical stability for several processes. The N-jettiness $\left(\mathcal{T}_{N}\right)$ slicing method has been used prior to the fixed-order application in the combination of higher order resummation with parton showers $[98,99]$.

More generally, there is currently a strong effort to push the applications of SCET toward factorization and resummation at subleading power in the expansion in λ. The subleading SCET Lagrangian $[56,100]$ and current operators arising in B-meson decays and their anomalous dimensions [55,56,101-103] have been studied a long time ago. More recently, the focus has shifted to subleading operators arising in important collider processes, such as Drell-Yan or Higgs production. The general set of operators for such processes have been identified [104-106], and several of their anomalous dimensions have been calculated [106, 107]. First resummed results at subleading power have been presented for event shapes [108] and the Drell-Yan process [109].

16.4 Open issues and perspectives

HQET has successfully passed many experimental tests, and there are not many open questions that still need to be addressed. One concept that has not been derived from first principles is the notion of quark-hadron duality, which underlies the application of HQET to the description of inclusive decays of B mesons. The validity of global duality (at energies even lower than those relevant in B decays) has been tested experimentally using high-precision data on semileptonic B decays and on hadronic τ decays. However, assigning a theoretical uncertainty due to possible duality violations remains a difficult task. Another known issue is that the measured values of the CKM element $\left|V_{u b}\right|$ extracted from exclusive or inclusive decays of B mesons differ from each other by several standard deviations (see Section 75). This measurement relies on the heavy-quark limit, and the uncertainty quoted includes a theoretical estimate of the effect of power corrections arising from the finite b-quark mass. It remains an open question whether the discrepancy is due to underestimated theoretical or experimental uncertainties, or whether it may hint to the existence of new physics.

SCET, on the other hand, is still an active field of research, and new results are being obtained regularly. An important example concerns the understanding of non-global logarithms arising in hadron-collider processes with jets $[110,111]$. For a long time a fully factorized form of non-global jet cross sections has not been available, despite significant progress towards this goal [112,113]. A consistent factorization formula for non-global jet observables was developed in $[114,115]$. It requires the introduction of a collinear-soft mode in the SCET Lagrangian. The first application of this formalism was to the light jet mass distribution [116], and significant steps toward an extension to NLL accuracy have been taken in [117]. It is believed that the results obtained from the factorization theorem derived in $[114,115]$ are equivalent to those obtained using the approaches proposed in [112, 113]. The various methods differ in the way in which they organize the allorder expansion for the appearing complicated multi-Wilson-line structures.
Another active field concerns the study of Glauber gluons in SCET [118] and their relation to the BFKL equation familiar from small- x physics [119]. A systematic account of the effects of Glauber gluons in the context of the SCET Lagrangian has been developed in [62]. The formalism has been extended to Glauber quarks in [120]. These developments set the basis for
a solid understanding of the impact of Glauber exchanges on factorization theorems. Glauber gluons also play an important role in SCET-based analysis of jet propagation in dense QCD media $[121,122]$, which gives rise to the jet-quenching phenomenon in heavy-ion collisions. An important open question facing some applications of SCET concerns factorized expressions containing endpoint-divergent convolution integrals.

We close this short review by mentioning a particularly nice application combining the methods of heavy-particle EFTs such as HQET and non-relativistic QCD with SCET in the context of describing the interactions of heavy dark matter (with mass $M \gg v$) with SM particles. In [123] it was realized that the interactions of heavy, weakly interacting massive particles (WIMPs) with nuclear targets can be described in a model-independent way using heavy-particle EFTs. The WIMPs are charged under $S U(2)_{L}$ and can interact with electroweak gauge bosons and the Higgs boson. The WIMP EFT was later extended by describing the produced, highly energetic electroweak gauge bosons in terms of soft or collinear fields in SCET [124-126]. This allows one to systematically separate all relevant mass scales, resum electroweak Sudakov logarithms and disentangle the so-called Sommerfeld enhancement from the short-distance hard annihilation process.

References

[1] E. Witten, Nucl. Phys. B122, 109 (1977).
[2] S. Weinberg, Phys. Lett. 91B, 51 (1980).
[3] L. J. Hall, Nucl. Phys. B178, 75 (1981).
[4] E. Eichten and B. R. Hill, Phys. Lett. B234, 511 (1990).
[5] H. Georgi, Phys. Lett. B240, 447 (1990).
[6] B. Grinstein, Nucl. Phys. B339, 253 (1990).
[7] T. Mannel, W. Roberts and Z. Ryzak, Nucl. Phys. B368, 204 (1992).
[8] M. Neubert, Phys. Rept. 245, 259 (1994), [hepph/9306320].
[9] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).
[10] M. E. Luke and A. V. Manohar, Phys. Lett. B286, 348 (1992), [hep-ph/9205228].
[11] E. V. Shuryak, Phys. Lett. 93B, 134 (1980).
[12] N. Isgur and M. B. Wise, Phys. Lett. B232, 113 (1989).
[13] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
[14] S. Nussinov and W. Wetzel, Phys. Rev. D36, 130 (1987).
[15] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 45, 292 (1987), [Yad. Fiz.45,463(1987)].
[16] M. Neubert, Phys. Lett. B264, 455 (1991).
[17] M. E. Luke, Phys. Lett. B252, 447 (1990).
[18] I. I. Y. Bigi et al., Phys. Rev. D52, 196 (1995), [hepph/9405410].
[19] N. Uraltsev, Phys. Lett. B501, 86 (2001), [,195(2000)], [hepph/0011124].
[20] G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B283, 342 (1987).
[21] A. F. Falk et al., Nucl. Phys. B343, 1 (1990).
[22] J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B247, 399 (1990).
[23] I. I. Y. Bigi, N. G. Uraltsev and A. I. Vainshtein, Phys. Lett. B293, 430 (1992), [Erratum: Phys. Lett.B297,477(1992)], [hep-ph/9207214].
[24] A. V. Manohar and M. B. Wise, Phys. Rev. D49, 1310 (1994), [hep-ph/9308246].
[25] T. Mannel, Nucl. Phys. B413, 396 (1994), [hepph/9308262].
[26] A. F. Falk, M. E. Luke and M. J. Savage, Phys. Rev. D49, 3367 (1994), [hep-ph/9308288].
[27] E. C. Poggio, H. R. Quinn and S. Weinberg, Phys. Rev. D13, 1958 (1976).
[28] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996), [hep-ph/9512380].
[29] A. F. Falk and M. Neubert, Phys. Rev. D47, 2965 (1993), [hep-ph/9209268].
[30] T. Becher, H. Boos and E. Lunghi, JHEP 12, 062 (2007), [arXiv:0708.0855].
[31] A. Alberti, P. Gambino and S. Nandi, JHEP 01, 147 (2014), [arXiv:1311.7381].
[32] T. Mannel, A. A. Pivovarov and D. Rosenthal, Phys. Lett. B741, 290 (2015), [arXiv:1405.5072].
[33] T. Mannel, A. A. Pivovarov and D. Rosenthal, Phys. Rev. D92, 5, 054025 (2015), [arXiv:1506.08167].
[34] T. Mannel and A. A. Pivovarov, Phys. Rev. D100, 9, 093001 (2019), [arXiv:1907.09187].
[35] T. Mannel, S. Turczyk and N. Uraltsev, JHEP 11, 109 (2010), [arXiv:1009.4622].
[36] M. Neubert and C. T. Sachrajda, Nucl. Phys. B483, 339 (1997), [hep-ph/9603202].
[37] M. Beneke, G. Buchalla and I. Dunietz, Phys. Rev. D54, 4419 (1996), [Erratum: Phys. Rev.D83,119902(2011)], [hepph/9605259].
[38] M. Beneke et al., Phys. Lett. B459, 631 (1999), [hepph/9808385].
[39] M. Kirk, A. Lenz and T. Rauh, JHEP 12, 068 (2017), [arXiv:1711.02100].
[40] P. Gambino and C. Schwanda, Phys. Rev. D89, 1, 014022 (2014), [arXiv:1307.4551].
[41] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 12, 895 (2017), [arXiv:1612.07233].
[42] P. Gambino, M. Jung and S. Schacht, Phys. Lett. B795, 386 (2019), [arXiv:1905.08209].
[43] M. Neubert, Phys. Rev. D49, 3392 (1994), [hepph/9311325].
[44] I. I. Y. Bigi et al., Int. J. Mod. Phys. A9, 2467 (1994), [hep-ph/9312359].
[45] G. P. Korchemsky and G. F. Sterman, Phys. Lett. B340, 96 (1994), [hep-ph/9407344].
[46] C. W. Bauer, M. E. Luke and T. Mannel, Phys. Rev. D68, 094001 (2003), [hep-ph/0102089].
[47] K. S. M. Lee and I. W. Stewart, Nucl. Phys. B721, 325 (2005), [hep-ph/0409045].
[48] S. W. Bosch, M. Neubert and G. Paz, JHEP 11, 073 (2004), [hep-ph/0409115].
[49] M. Beneke et al., JHEP 06, 071 (2005), [hep-ph/0411395].
[50] M. Benzke et al., JHEP 08, 099 (2010), [arXiv:1003.5012].
[51] C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D63, 014006 (2000), [hep-ph/0005275].
[52] C. W. Bauer and I. W. Stewart, Phys. Lett. B516, 134 (2001), [hep-ph/0107001].
[53] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D65, 054022 (2002), [hep-ph/0109045].
[54] T. Becher, A. Broggio and A. Ferroglia, Lect. Notes Phys. 896, pp. 1 (2015), [arXiv:1410.1892].
[55] J. Chay and C. Kim, Phys. Rev. D65, 114016 (2002), [hepph/0201197].
[56] M. Beneke et al., Nucl. Phys. B643, 431 (2002), [hepph/0206152].
[57] C. W. Bauer et al., Phys. Rev. D66, 014017 (2002), [hepph/0202088].
[58] R. J. Hill and M. Neubert, Nucl. Phys. B657, 229 (2003), [hep-ph/0211018].
[59] J. C. Collins, D. E. Soper and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989), [hep-ph/0409313].
[60] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. D81, 094035 (2010), [arXiv:0910.0467].
[61] J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B261, 104 (1985).
[62] I. Z. Rothstein and I. W. Stewart, JHEP 08, 025 (2016), [arXiv:1601.04695].
[63] I. A. Korchemskaya and G. P. Korchemsky, Phys. Lett. B287, 169 (1992).
[64] T. Becher and M. Neubert, Eur. Phys. J. C71, 1665 (2011), [arXiv:1007.4005].
[65] J.-Y. Chiu et al., JHEP 05, 084 (2012), [arXiv:1202.0814].
[66] M. Beneke and T. Feldmann, Nucl. Phys. B685, 249 (2004), [hep-ph/0311335].
[67] M. Beneke et al., Phys. Rev. Lett. 83, 1914 (1999), [hepph/9905312].
[68] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. Lett. 87, 201806 (2001), [hep-ph/0107002].
[69] S. Mantry, D. Pirjol and I. W. Stewart, Phys. Rev. D68, 114009 (2003), [hep-ph/0306254].
[70] T. Becher, R. J. Hill and M. Neubert, Phys. Rev. D72, 094017 (2005), [hep-ph/0503263].
[71] S. Fleming, A. K. Leibovich and T. Mehen, Phys. Rev. D68, 094011 (2003), [hep-ph/0306139].
[72] T. Becher and M. D. Schwartz, JHEP 07, 034 (2008), [arXiv:0803.0342].
[73] T. Becher and G. Bell, JHEP 11, 126 (2012), [arXiv:1210.0580].
[74] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. Lett. 105, 092002 (2010), [arXiv:1004.2489].
[75] J.-y. Chiu, R. Kelley and A. V. Manohar, Phys. Rev. D78, 073006 (2008), [arXiv:0806.1240].
[76] T. Becher, M. Neubert and G. Xu, JHEP 07, 030 (2008), [arXiv:0710.0680].
[77] V. Ahrens et al., Eur. Phys. J. C62, 333 (2009), [arXiv:0809.4283].
[78] X. Liu, S. Mantry and F. Petriello, Phys. Rev. D86, 074004 (2012), [arXiv:1205.4465].
[79] M. G. Echevarria, A. Idilbi and I. Scimemi, JHEP 07, 002 (2012), [arXiv:1111.4996].
[80] A. J. Larkoski, I. Moult and B. Nachman (2017), [arXiv:1709.04464].
[81] S. Kluth, Rept. Prog. Phys. 69, 1771 (2006), [hepex/0603011].
[82] A. Gehrmann-De Ridder et al., Phys. Rev. Lett. 99, 132002 (2007), [arXiv:0707.1285].
[83] S. Weinzierl, Phys. Rev. Lett. 101, 162001 (2008), [arXiv:0807.3241].
[84] R. Abbate et al., Phys. Rev. D83, 074021 (2011), [arXiv:1006.3080].
[85] A. H. Hoang et al., Phys. Rev. D91, 9, 094018 (2015), [arXiv:1501.04111].
[86] T. Becher and M. Neubert, JHEP 07, 108 (2012), [arXiv:1205.3806].
[87] I. W. Stewart et al., Phys. Rev. D89, 5, 054001 (2014), [arXiv:1307.1808].
[88] A. Banfi et al., Phys. Rev. Lett. 109, 202001 (2012), [arXiv:1206.4998].
[89] R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D91, 9, 094035 (2015), [arXiv:1504.02540].
[90] J. Gaunt et al., JHEP 09, 058 (2015), [arXiv:1505.04794].
[91] R. Boughezal et al., Phys. Lett. B748, 5 (2015), [arXiv:1505.03893].
[92] R. Boughezal et al., Phys. Rev. Lett. 116, 15, 152001 (2016), [arXiv:1512.01291].
[93] J. M. Campbell, R. K. Ellis and C. Williams, JHEP 06, 179 (2016), [arXiv:1601.00658].
[94] J. M. Campbell et al., JHEP 07, 148 (2016), [arXiv:1603.02663].
[95] G. Heinrich et al., JHEP 03, 142 (2018), [arXiv:1710.06294].
[96] I. Moult et al., Phys. Rev. D95, 7, 074023 (2017), [arXiv:1612.00450].
[97] R. Boughezal, X. Liu and F. Petriello, JHEP 03, 160 (2017), [arXiv:1612.02911].
[98] S. Alioli et al., JHEP 09, 120 (2013), [arXiv:1211.7049].
[99] S. Alioli et al., Phys. Rev. D92, 9, 094020 (2015), [arXiv:1508.01475].
[100] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D68, 034021 (2003), [hep-ph/0303156].
[101] D. Pirjol and I. W. Stewart, Phys. Rev. D67, 094005 (2003), [Erratum: Phys. Rev.D69,019903(2004)], [hep-ph/0211251].
[102] R. J. Hill et al., JHEP 07, 081 (2004), [hep-ph/0404217].
[103] M. Beneke and D. Yang, Nucl. Phys. B736, 34 (2006), [hepph/0508250].
[104] I. Moult, I. W. Stewart and G. Vita, JHEP 07, 067 (2017), [arXiv:1703.03408].
[105] I. Feige et al., JHEP 11, 142 (2017), [arXiv:1703.03411].
[106] M. Beneke et al., JHEP 03, 001 (2018), [arXiv:1712.04416].
[107] S. Alte, M. König and M. Neubert, JHEP 08, 095 (2018), [arXiv:1806.01278].
[108] I. Moult et al., JHEP 08, 013 (2018), [arXiv:1804.04665].
[109] M. Beneke et al., JHEP 03, 043 (2019), [arXiv:1809.10631].
[110] M. Dasgupta and G. P. Salam, Phys. Lett. B512, 323 (2001), [hep-ph/0104277].
[111] R. B. Appleby and M. H. Seymour, JHEP 12, 063 (2002), [hep-ph/0211426].
[112] S. Caron-Huot, JHEP 03, 036 (2018), [arXiv:1501.03754].
[113] A. J. Larkoski, I. Moult and D. Neill, JHEP 09, 143 (2015), [arXiv:1501.04596].
[114] T. Becher et al., Phys. Rev. Lett. 116, 19, 192001 (2016), [arXiv:1508.06645].
[115] T. Becher et al., JHEP 11, 019 (2016), [Erratum: JHEP05,154(2017)], [arXiv:1605.02737].
[116] T. Becher, B. D. Pecjak and D. Y. Shao, JHEP 12, 018 (2016), [arXiv:1610.01608].
[117] M. Balsiger, T. Becher and D. Y. Shao, JHEP 04, 020 (2019), [arXiv:1901.09038].
[118] C. W. Bauer, B. O. Lange and G. Ovanesyan, JHEP 07, 077 (2011), [arXiv:1010.1027].
[119] S. Fleming, Phys. Lett. B735, 266 (2014), [arXiv:1404.5672].
[120] I. Moult et al., JHEP 02, 134 (2018), [arXiv:1709.09174].
[121] A. Idilbi and A. Majumder, Phys. Rev. D80, 054022 (2009), [arXiv:0808.1087].
[122] G. Ovanesyan and I. Vitev, JHEP 06, 080 (2011), [arXiv:1103.1074].
[123] R. J. Hill and M. P. Solon, Phys. Lett. B707, 539 (2012), [arXiv:1111.0016].
[124] M. Bauer et al., JHEP 01, 099 (2015), [arXiv:1409.7392].
[125] M. Baumgart, I. Z. Rothstein and V. Vaidya, Phys. Rev. Lett. 114, 211301 (2015), [arXiv:1409.4415].
[126] G. Ovanesyan, T. R. Slatyer and I. W. Stewart, Phys. Rev. Lett. 114, 21, 211302 (2015), [arXiv:1409.8294].

17. Lattice Quantum Chromodynamics

Revised August 2019 by S. Hashimoto (KEK), J. Laiho (Syracuse U.) and S.R. Sharpe (U. Washington).
17.1 Lattice regularization of QCD 33317.1.1 Gauge invariance, gluon fields and the gluonaction333
17.1.2 Lattice fermions 334
17.1.3 Heavy quarks on the lattice 335
17.1.4 QED on the lattice 336
17.1.5 Basic inputs for lattice calculations 336
17.1.6 Sources of systematic error 337
17.2 Methods and status 337
17.2.1 Monte-Carlo method 338
17.2.2 Two-point functions 338
17.2.3 Three-point functions 339
17.2.4 Scattering amplitudes and resonances 339
17.2.5 Recent advances 339
17.2.6 Status of LQCD simulations 340
17.3 Physics applications 340
17.3.1 Spectrum 340
17.3.2 Decay constants and bag parameters 340
17.3.3 Form factors $(K \rightarrow \pi \ell \nu, D \rightarrow K \ell \nu, B \rightarrow$ $\left.\pi \ell \nu, B \rightarrow D^{(*)} \ell \nu\right)$ 341
17.3.4 Strong coupling constant 341
17.3.5 Quark masses 342
17.3.6 Other applications 342
17.4 Outlook 342

Many physical processes considered in the Review of Particle Properties (RPP) involve hadrons. The properties of hadronswhich are composed of quarks and gluons-are governed primarily by Quantum Chromodynamics (QCD) (with small corrections from Quantum Electrodynamics [QED]). Theoretical calculations of these properties require non-perturbative methods, and Lattice Quantum Chromodynamics (LQCD) is a tool to carry out such calculations. It has been successfully applied to many properties of hadrons. Most important for the RPP are the calculation of electroweak form factors, which are needed to extract Cabbibo-Kobayashi-Maskawa (CKM) matrix elements when combined with the corresponding experimental measurements. LQCD has also been used to determine other fundamental parameters of the standard model, in particular the strong coupling constant and quark masses, as well as to predict hadronic contributions to the anomalous magnetic moment of the muon, $g_{\mu}-2$.

This review describes the theoretical foundations of LQCD and sketches the methods used to calculate the quantities relevant for the RPP. It also describes the various sources of error that must be controlled in a LQCD calculation. Results for hadronic quantities are given in the corresponding dedicated reviews.

17.1 Lattice regularization of QCD

Gauge theories form the building blocks of the Standard Model. While the $S U(2)$ and $U(1)$ parts have weak couplings and can be studied accurately with perturbative methods, the $\mathrm{SU}(3)$ component-QCD-is only amenable to a perturbative treatment at high energies. The growth of the coupling constant in the infrared-the flip-side of asymptotic freedom-requires the use of non-perturbative methods to determine the low energy properties of QCD. Lattice gauge theory, proposed by K. Wilson in 1974 [1], provides such a method, for it gives a non-perturbative definition of vector-like gauge field theories like QCD. In lattice regularized QCD - commonly called lattice QCD or LQCD-Euclidean space-time is discretized, usually on a hypercubic lattice with lattice spacing a, with quark fields placed on sites and gauge fields on the links between sites. The lattice spacing plays the role of the ultraviolet regulator, rendering the quantum field theory finite. The continuum theory is recovered by taking the limit of vanishing lattice spacing, which can be reached by tuning the bare coupling constant to zero according to the renormalization group.

Unlike dimensional regularization, which is commonly used in continuum QCD calculations, the definition of LQCD does not
rely on the perturbative expansion. Indeed, LQCD allows nonperturbative calculations by numerical evaluation of the path integral that defines the theory.

Practical LQCD calculations are limited by the availability of computational resources and the efficiency of algorithms. Because of this, LQCD results come with both statistical and systematic errors, the former arising from the use of Monte-Carlo integration, the latter, for example, from the use of non-zero values of a. There are also different ways in which the QCD action can be discretized, and all must give consistent results in the continuum limit, $a \rightarrow 0$. It is the purpose of this review to provide an outline of the methods of LQCD, with particular focus on applications to particle physics, and an overview of the various sources of error. This should allow the reader to better understand the LQCD results that are presented in other reviews, primarily those on "Quark Masses," "Quantum Chromodynamics," "CKM quarkmixing matrix," " $V_{u d}, V_{u s}$, Cabibbo angle and CKM Unitarity," "Leptonic Decays of Charged Pseudoscalar Mesons," " $B^{0}-\bar{B}^{0}$ Mixing," and "Semileptonic b-Hadron Decays, Determination of $V_{c b}$ and $V_{u b}$." For more extensive explanations the reader should consult the available textbooks or lecture notes, the most up-todate of which are Refs. [2-4].
17.1.1 Gauge invariance, gluon fields and the gluon action

A key feature of the lattice formulation of QCD is that it preserves gauge invariance. This is in contrast to perturbative calculations, where gauge fixing is an essential step. The preservation of gauge invariance leads to considerable simplifications, e.g. restricting the form of operators that can mix under renormalization.

The gauge transformations of lattice quark fields are just as in the continuum: $q(x) \longrightarrow V(x) q(x)$ and $\bar{q}(x) \longrightarrow \bar{q}(x) V^{\dagger}(x)$, with $V(x)$ an arbitrary element of $\mathrm{SU}(3)$. The only difference is that the Euclidean space-time positions x are restricted to lie on the sites of the lattice, i.e. $x=a\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ for a hypercubic lattice, with the n_{j} being integers. Quark bilinears involving different lattice points can be made gauge invariant by introducing the gluon field $U_{\mu}(x)$. For example, for adjacent points the bilinear is $\bar{q}(x) U_{\mu}(x) q(x+a \hat{\mu})$, with $\hat{\mu}$ the unit vector in the μ 'th direction. (This form is used in the construction of the lattice covariant derivative.) This is illustrated in Fig. 17.1. The gluon field (or "gauge link") is an element of the group, $\mathrm{SU}(3)$, in contrast to the continuum field A_{μ} which takes values in the Lie algebra. The bilinear is invariant if U_{μ} transforms as $U_{\mu}(x) \rightarrow V(x) U_{\mu}(x) V^{\dagger}(x+a \hat{\mu})$. The lattice gluon field is naturally associated with the link joining x and $x+a \hat{\mu}$, and corresponds in the continuum to a Wilson line connecting these two points, $\mathrm{P} \exp \left(i \int_{x}^{x+a \hat{\mu}} d x_{\mu} A_{\mu}^{\text {cont }}(x)\right)$ (where P indicates a path-ordered integral, and the superscript on A_{μ} indicates that it is a continuum field). The trace of a product of the $U_{\mu}(x)$ around any closed loop is easily seen to be gauge invariant and is the lattice version of a Wilson loop.

Figure 17.1: Sketch of a two-dimensional slice through the $\mu-\nu$ plane of a lattice, showing gluon fields lying on links and forming either the plaquette product appearing in the gauge action or a component of the covariant derivative connecting quark and antiquark fields.

The simplest possible gauge action, usually called the Wilson gauge action, is given by the product of gauge links around elementary plaquettes:

$$
\begin{equation*}
S_{g}=\beta \sum_{x, \mu, \nu}\left[1-\frac{1}{3} \operatorname{Re} \operatorname{Tr}\left[U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right]\right] \tag{17.1}
\end{equation*}
$$

This is illustrated in Fig. 17.1. For small a, assuming that the fields are slowly varying, one can expand the action in powers of a using $U_{\mu}(x)=\exp \left(i a A_{\mu}(x)\right)$. Keeping only the leading nonvanishing term, and replacing the sum with an integral, one finds the continuum form,
$S_{g} \longrightarrow \int d^{4} x \frac{1}{4 g_{\text {lat }}^{2}} \operatorname{Tr}\left[F_{\mu \nu}^{2}(x)\right],\left(F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i\left[A_{\mu}, A_{\nu}\right]\right)$
as long as one chooses $\beta=6 / g_{\text {lat }}^{2}$ for the lattice coupling. In this expression, $g_{\text {lat }}$ is the bare coupling constant in the lattice scheme, which can be related (by combining continuum and lattice perturbation theory) to a more conventional coupling constant such as that in the $\overline{\mathrm{MS}}$ scheme (see Sec. 17.3.4 below).
In practice, the lattice spacing a is non-zero, leading to discretization errors. In particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to reduce discretization errors as much as possible. A very useful tool for understanding and then reducing discretization errors is the Symanzik effective action: the interactions of quarks and gluons with momenta low compared to the lattice cutoff $(|p| \ll 1 / a)$ are described by a continuum action consisting of the standard continuum terms (e.g. the gauge action given in Eq. (17.2)) augmented by higher dimensional operators suppressed by powers of a [5]. For the Wilson lattice gauge action, the leading corrections come in at $\mathcal{O}\left(a^{2}\right)$. They take the form $\sum_{j} a^{2} c_{j} O_{6}^{(j)}$, with the sum running over all dimension-six operators $O_{6}^{(j)}$ allowed by the lattice symmetries, and c_{j} unknown coefficients. Some of these operators violate Euclidean rotational invariance, and all of them lead to discretization errors of the form $a^{2} \Lambda^{2}$, where Λ is a typical momentum scale for the quantity being calculated. These errors can, however, be reduced by adding corresponding operators to the lattice action and tuning their coefficients to eliminate the dimension-six operators in the effective action to a given order in perturbation theory or even non-perturbatively. This is the idea of the Symanzik improvement program [5]. In the case of the gauge action, one adds Wilson loops involving six gauge links (as opposed to the four links needed for the original plaquette action, Eq. (17.1)) to define the $\mathcal{O}\left(a^{2}\right)$ improved (or "Symanzik") action [6]. In practical implementations, the improvement is either at tree-level (so that residual errors are proportional to $\alpha_{s} a^{2}$, where the coupling is evaluated at a scale $\sim 1 / a$), or at one loop order (errors proportional to $\alpha_{s}^{2} a^{2}$). Another popular choice is motivated by studies of renormalization group (RG) flow. It has the same terms as the $\mathcal{O}\left(a^{2}\right)$ improved action but with different coefficients, and is called the RG-improved or "Iwasaki" action [7].

17.1.2 Lattice fermions

Discretizing the fermion action turns out to involve subtle issues, and the range of actions being used is more extensive than for gauge fields. Recall that the continuum fermion action is $S_{f}=\int d^{4} x \bar{q}\left[i D_{\mu} \gamma_{\mu}+m_{q}\right] q$, where $D_{\mu}=\partial_{\mu}+i A_{\mu}$ is the gaugecovariant derivative. The simplest discretization replaces the derivative with a symmetric difference:

$$
\begin{equation*}
D_{\mu} q(x) \longrightarrow \frac{1}{2 a}\left[U_{\mu}(x) q(x+a \hat{\mu})-U_{\mu}(x-a \hat{\mu})^{\dagger} q(x-a \hat{\mu})\right] \tag{17.3}
\end{equation*}
$$

The factors of U_{μ} ensure that $D_{\mu} q(x)$ transforms under gauge transformations in the same way as $q(x)$, so that the discretized version of $\bar{q}(x) D_{\mu} \gamma_{\mu} q(x)$ is gauge invariant. The choice in Eq. (17.3) leads to the so-called naive fermion action. This, however, suffers from the fermion doubling problem-in d dimensions it describes 2^{d} equivalent fermion fields in the continuum limit. The appearance of the extra "doubler" fermions is related to the deeper theoretical problem of formulating chirally symmetric fermions on the lattice. This is encapsulated by the NielsenNinomiya theorem [8]: one cannot define lattice fermions having
exact, continuum-like chiral symmetry without producing doublers. Naive lattice fermions do have chiral symmetry but at the cost of introducing 15 unwanted doublers (for $d=4$).

There are a number of different strategies for dealing with the doubling problem, each with their own theoretical and computational advantages and disadvantages. Wilson fermions [1] add a term proportional to $a \bar{q} \Delta q$ to the fermion action (the "Wilson term"-in which Δ is a covariant lattice Laplacian). This gives a mass of $\mathcal{O}(1 / a)$ to the doublers, so that they decouple in the continuum limit. The Wilson term, however, violates chiral symmetry, and also introduces discretization errors linear in a. A commonly used variant that eliminates the $\mathcal{O}(a)$ discretization error is the $\mathcal{O}(a)$-improved Wilson (or "clover") fermion [9]. In this application of Symanzik improvement, methods have been developed to remove $\mathcal{O}(a)$ terms non-perturbatively using auxiliary simulations to tune parameters [10]. Such "non-perturbetive improvement" is of great practical importance as it brings the discretization error from the fermion action down to the same level as that from the gauge action.
The advantages of Wilson fermions are their theoretical simplicity and relatively low computational cost. Their main disadvantage is the lack of chiral symmetry, which makes them difficult to use in cases where mixing with wrong chirality operators can occur, particularly if this involves divergences proportional to powers of $1 / a$. A related problem is the presence of potential numerical instabilities due to spurious near-zero modes of the lattice Dirac operator. There are, however, studies that successfully ameliorate these problems and increase the range of quantities for which Wilson fermions can be used (see, e.g., Refs. [11-14]).

Twisted-mass fermions [15] are a variant of Wilson fermions in which two flavors are treated together with an isospin-breaking mass term (the "twisted mass" term). The main advantage of this approach is that all errors linear in a are automatically removed (without the need for tuning of parameters) by a clever choice of twisted mass and operators [16]. A disadvantage is the presence of isospin breaking effects (such as a splitting between charged and neutral pion masses even when up and down quarks are degenerate), which, however, vanish as $a^{2} \Lambda^{2}$ in the continuum limit. Strange and charm quarks can be added as a second pair, with a term added to split their masses $[17,18]$.

Staggered fermions are a reduced version of naive fermions in which there is only a single fermion Dirac component on each lattice site, with the full Dirac structure built up from neighboring sites [19]. They have the advantages of being somewhat faster to simulate than Wilson-like fermions, of preserving some chiral symmetry, and of having discretization errors of $\mathcal{O}\left(a^{2}\right)$. Their disadvantage is that they retain some of the doublers (3 for $d=4$). The action thus describes four degenerate fermions in the continuum limit. These are usually called "tastes", to distinguish them from physical flavors, and the corresponding $\mathrm{SU}(4)$ symmetry is referred to as the "taste symmetry". The preserved chiral symmetry in this formulation has non-singlet taste. Practical applications usually introduce one staggered fermion for each physical flavor, and remove contributions from the unwanted tastes by taking the fourth-root of the fermion determinant appearing in the path integral. The validity of this "rooting" procedure is not obvious because taste symmetry is violated for non-zero lattice spacing. Theoretical arguments, supported by numerical evidence, suggest that the procedure is valid as long as one takes the continuum limit before approaching the light quark mass region [20]. Additional issues arise for the valence quarks (those appearing in quark propagators, as described in Sec. 17.2 below), where rooting is not possible, and one must ignore the extra tastes, or account for them by dividing by appropriate factors of four [21].

Just as for Wilson fermions, the staggered action can be improved, so as to reduce discretization errors. The Asqtad (a squared tadpole improved) action [22] was used until recently in many large scale simulations [23]. More recent calculations use the HISQ (highly improved staggered quark) action, introduced in Ref. [24]. At tree-level it removes both $\mathcal{O}\left(a^{2}\right)$ errors and, to lowest order in the quark speed $v / c, \mathcal{O}\left([a m]^{4}\right)$ errors. It also substantially reduces effects caused by taste-symmetry breaking. This makes it attractive not only for light quarks, but means that it is
also quite accurate for heavy quarks because it suppresses $(a m)^{n}$ errors. It is being used to directly simulate charm quarks and to approach direct simulations of bottom quarks (see, e.g. [25, 26]).

There is an important class of lattice fermions, "GinspargWilson fermions," that possess a continuum-like chiral symmetry without introducing unwanted doublers. The lattice Dirac operator D for these fermions satisfies the Ginsparg-Wilson relation $D \gamma_{5}+\gamma_{5} D=a D \gamma_{5} D$ [27]. In the continuum, the right-handside vanishes, leading to chiral symmetry. On the lattice, it is non-vanishing, but with a particular form (with two factors of D) that restricts the violations of chiral symmetry in Ward-Takahashi identities to short-distance terms that do not contribute to physical matrix elements [28]. In fact, one can define a modified chiral transformation on the lattice (by including dependence on the gauge fields) such that Ginsparg-Wilson fermions have an exact chiral symmetry for on-shell quantities [29]. The net result is that such fermions essentially have the same properties under chiral transformations as do continuum fermions, including the index theorem [28]. Their leading discretization errors are of $\mathcal{O}\left(a^{2}\right)$.

Two types of Ginsparg-Wilson fermions are currently being used in large-scale numerical simulations. The first is Domain-wall fermions (DWF). These are defined on a five-dimensional space, in which the fifth dimension is fictitious [30]. The action is chosen so that the low-lying modes are chiral, with left- and right-handed modes localized on opposite four-dimensional surfaces. For an infinite fifth dimension, these fermions satisfy the Ginsparg-Wilson relation. In practice, the fifth dimension is kept finite, and there remains a small, controllable violation of chiral symmetry. The second type is Overlap fermions. These appeared from a completely different context and have an explicit form that exactly satisfies the Ginsparg-Wilson relation [31]. Their numerical implementation requires an approximation of the matrix sign function of a Wilson-like fermion operator, and various approaches are being used. In fact, it is possible to rewrite these approximations in terms of a five-dimensional formulation, showing that the DWF and Overlap approaches are essentially equivalent [32,33]. Numerically, the five-dimensional approach appears to be more computationally efficient.

The various lattice fermion formulations are often combined with the technique of link smearing. Here one couples the fermions to a smoother gauge link, defined by averaging with adjacent links in a gauge invariant manner. Several closely related implementations are being used. All reduce the coupling of fermions to the short-distance fluctuations in the gauge field, leading to an improvement in the numerical stability and speed of algorithms. One cannot perform this smearing too aggressively, however, since the smearing may distort short distance physics and enhance discretization errors.

As noted above, each fermion formulation has its own advantages and disadvantages. For instance, domain-wall and overlap fermions are theoretically preferred as they have chiral symmetry without doublers, but their computational cost is greater than for other choices. If the physics application of interest and the target precision do not require near-exact chiral symmetry, there is no strong motivation to use these expensive formulations. On the other hand, there is a class of applications (including the calculation of the $\Delta I=1 / 2$ amplitude for $K \rightarrow \pi \pi$ decays and the S-parameter [34]) where chiral symmetry plays an essential role and for which the use of Ginsparg-Wilson fermions is strongly favored.

17.1.3 Heavy quarks on the lattice

The fermion formulations described in the previous subsection can be used straightforwardly only for quarks whose masses are small compared to the lattice cutoff, $m_{q} \lesssim 1 / a$. This is because there are discretization errors proportional to powers of $a m_{q}$, and if $a m_{q} \gtrsim 1$ these errors are large and uncontrolled. Present LQCD simulations typically have cutoffs in the range of $1 / a=2-4 \mathrm{GeV}$ (corresponding to $a \approx 0.1-0.05 \mathrm{fm}$). Thus, while for the up, down and strange quarks one has $a m_{q} \ll 1$, for bottom quarks (with $m_{b} \approx 4.5 \mathrm{GeV}$) one must use alternative approaches. Charm quarks ($m_{c} \approx 1.5 \mathrm{GeV}$) are an intermediate case, allowing simulations using both direct and alternative approaches.

For the charm quark, the straightforward approach is to simul-
taneously reduce the lattice spacing and to improve the fermion action so as to reduce the size of errors proportional to powers of $a m_{c}$. This approach has been followed successfully using the HISQ, twisted-mass and domain-wall actions [24-26,35,36]. It is important to note, however, that reducing a increases the computational cost because an increased number of lattice points are needed for the same physical volume. One cannot reduce the spatial size below $2-3 \mathrm{fm}$ without introducing finite volume errors. Present lattices have typical sizes of $\sim 64^{3} \times 128$ (with the long direction being Euclidean time), and thus allow a lattice cutoff up to $1 / a \sim 4 \mathrm{GeV}$.

This approach can, to some extent, be extended to the bottom quark, by the use of simulations with small lattice spacings [37]. This has been pursued with the HISQ action, using lattices of size up to $144^{3} \times 288$ and lattice spacings down to $a \approx 0.03 \mathrm{fm}$ $(1 / a \approx 6.6 \mathrm{GeV})$ [38]. Extrapolation in m_{b} is still needed [39], however, and this makes use of the mass dependence predicted by Heavy Quark Effective Theory (HQET).

Alternative approaches for discretizing heavy quarks are motivated by effective field theories. For a bottom quark in heavylight hadrons, one can use HQET to expand about the infinite quark-mass limit. In this limit, the bottom quark is a static color source, and one can straightforwardly write the corresponding lattice action [40]. Corrections, proportional to powers of $1 / m_{b}$, can be introduced as operator insertions, with coefficients that can be determined non-perturbatively using existing techniques [41]. This method allows the continuum limit to be taken controlling all $1 / m_{b}$ corrections.

Another way of introducing the $1 / m_{b}$ corrections is to include the relevant terms in the effective action. This leads to a nonrelativistic QCD (NRQCD) action, in which the heavy quark is described by a two-component spinor [42]. This approach has the advantage over HQET that it can also be used for heavy-heavy systems, such as the Upsilon states. Moreover, the bottom quark can be treated without any extrapolation in m_{b}. A disadvantage is that some of the parameters in this effective theory are determined perturbatively (originally at tree-level, but more recently at one-loop [43]), which limits the precision of the final results. Although discretization effects can be controlled with good numerical precision for a range of lattice spacings, these artifacts cannot be extrapolated away by taking the lattice spacing to zero. This is because NRQCD is a nonrelativistic effective field theory and so ceases to work when the cutoff π / a becomes much larger than the heavy-quark mass. In practice these effects are accounted for in the error budget.

This problem can be avoided if one uses HQET power counting to analyze and reduce discretization effects for heavy quarks while using conventional fermion actions [44]. For instance, one can tune the parameters of an improved Wilson quark action so that the leading HQET corrections to the static quark limit are correctly accounted for. As the lattice spacing becomes finer, the action smoothly goes over to that of a light Wilson quark action, where the continuum limit can be taken as usual. In principle, one can improve the action in the heavy quark regime up to arbitrarily high orders using HQET, but so far large-scale simulations have typically used clover improved Wilson quarks, where tuning the parameters of the action corresponds to including all corrections through next-to-leading order in HQET. Three different methods for tuning the parameters of the clover action are being used: the Fermilab [44], Tsukuba [45] and Columbia [46] approaches. An advantage of this HQET approach is that the c and b quarks can be treated on the same footing. Parameter tuning has typically been done perturbatively, as in NRQCD, but recent work using the Columbia approach has used non-perturbative tuning of some of the parameters $[47,48]$. One can improve the effective theory including the terms beyond the next-to-leading order. The Oktay-Kronfeld action that includes dimension-six and -seven operators has been constructed [49] and recently used in large-scale numerical calculations [50].

Another approach is the "ratio method" introduced in Ref. [51]. Here one uses quarks with masses lying at, or slightly above, the charm mass m_{c}, which can be simulated with a relativistic action, and extrapolates to m_{b} incorporating the behavior predicted by

HQET. The particular implementation relies on the use of ratios. As an example, consider the B meson decay constant f_{B}. According to HQET, this scales as $1 / \sqrt{m_{B}}$ for $m_{B} \gg \Lambda_{\mathrm{QCD}}$, up to a logarithmic dependence that is calculable in perturbative QCD (but will be suppressed in the following). Here m_{B} is the B meson mass, which differs from m_{b} by $\sim \Lambda_{\mathrm{QCD}}$. One considers the ratio $y\left(\lambda, m_{b^{\prime}}\right) \equiv f_{B^{\prime \prime}} \sqrt{m_{B^{\prime \prime}}} / f_{B^{\prime}} \sqrt{m_{B^{\prime}}}$ for fictitious B mesons containing b quarks with unphysical masses $m_{b^{\prime}}$ and $m_{b^{\prime \prime}}=\lambda m_{b^{\prime}}$. HQET implies that $y\left(\lambda, m_{b^{\prime}}\right)$ approaches unity for large $m_{b^{\prime}}$ and any fixed $\lambda>1$. The ratios are evaluated on the lattice for the sequence of masses $m_{b^{\prime}}=m_{c}, \lambda m_{c}, \lambda^{2} m_{c}$, all well below the physical m_{b}, and for each the continuum limit is taken. The form of the ratio for larger values of $m_{b^{\prime}}$ is obtained by fitting, incorporating the constraints implied by HQET. The result for $f_{B} \sqrt{m_{B}}$ is then obtained as a product of y 's with $f_{D} \sqrt{m_{D}}$.

17.1.4 $Q E D$ on the lattice

Quarks in nature are electrically charged, and the resultant coupling to photons leads to shifts in the properties of hadrons that are generically of $\mathcal{O}\left(\alpha_{\mathrm{EM}}\right)$. Thus, for example, the proton mass is increased by $\sim 1 \mathrm{MeV}$ relative to that of the neutron due to its overall charge although this effect is more than compensated for by the $\sim 2.5 \mathrm{MeV}$ relative decrease due to the up quark being lighter than the down quark [52]. This example shows that once pure QCD, isospin-symmetric lattice calculations reach percent level accuracy, further improvement requires the inclusion of effects due to both electromagnetism and the up-down mass difference. This level of accuracy has in fact been obtained for various quantities, e.g. light hadron masses and decay constants (see Ref. [53]), and simulations including QED in addition to QCD are becoming more common.
The extension of lattice methods to include QED is straightforward, although some new subtleties arise. The essential change is that the quark must now propagate through a background field containing both gluons and photons. The gauge field U_{μ} that appears in the covariant derivative of Eq. (17.3) is extended from an $\mathrm{SU}(3)$ matrix to one living in $\mathrm{U}(3): U_{\mu} \rightarrow U_{\mu} e^{i a q e} A_{\mu}^{\mathrm{EM}}$. Here A_{μ}^{EM} is the photon field, e the electromagnetic coupling, and q the charge of the quark, e.g. $q=2 / 3$ for up and $-1 / 3$ for down and strange quarks. The lattice action for the photon that is typically used is a discretized version of the continuum action Eq. (17.2), rather than the form used for the gluons, Eq. (17.1). This "noncompact" action has the advantage that it is quadratic in A_{μ}^{EM}, which simplifies the QED part of the generation of configurations.

One subtlety that arises is that Gauss' law forbids a charged particle in a box with periodic boundary conditions. This finite volume effect can be overcome by including a uniform background charge, and this can be shown to be equivalent to removing the zero-momentum mode from the photon field. This is an example of the enhanced finite-volume effects that arise in the presence of the massless photon.

Simulations including QED have progressed over the last few years, and now a full inclusion of QED has been achieved with almost physical quark masses [52,54]. Alternative approaches have also been used: reweighting the QCD fields a posteriori $[55,56]$, and keeping only the linear term in an expansion in α_{EM} about the QCD only case [57]. In addition, some calculations have included QED effects for the valence quarks but not the sea quarks (the "electroquenched approximation") -for a recent example see Ref. [58].

The QED corrections to processes including leptons, such as the leptonic and semileptonic decays of hadrons, involve additional diagrams in which a photon propagator bridges between a hadron and a lepton. Such diagrams induce infrared divergences that cancel against soft photon radiation (Bloch-Nordsieck theorem [59]). Methods have been developed to implement this cancellation in lattice calculations, treating the soft photon analytically [60], with first results reported recently for leptonic pion and kaon decays $[61,62]$.

17.1.5 Basic inputs for lattice calculations

Since LQCD is nothing but a regularization of QCD, the renormalizability of QCD implies that the number of input parameters in LQCD is the same as for continuum QCD-the strong coupling
constant $\alpha_{s}=g^{2} /(4 \pi)$, the quark masses for each flavor, and the CP violating phase θ. The θ parameter is usually assumed to be zero, while the other parameters must be determined using experimental inputs.

17.1.5.1 Lattice spacing

In QCD, the coupling constant is a function of scale. With lattice regularization, this scale is the inverse lattice spacing $1 / a$, and choosing the bare coupling constant is equivalent to fixing the lattice spacing.

In principle, a can be determined using any dimensionful quantity measured by experiments. For example, using the mass of hadron H one has $a=\left(a m_{H}\right)^{\text {lat }} / m_{H}^{\exp }$. One chooses quantities that can be calculated accurately on the lattice, and that are only weakly dependent on the light quark masses. The latter property minimizes errors from extrapolating or interpolating to the physical light quark masses or from mistuning of these masses.

Commonly used choices are the spin-averaged 1S-1P or 1S-2S splittings in the Upsilon system, the mass of the Ω^{-}baryon, and the pion decay constant f_{π}. Ultimately, all choices must give consistent results for a, and that this is the case provides a highly non-trivial check of both the calculational method and of QCD.

17.1.5.2 Light quark masses

In LQCD simulations, the up, down and strange quarks are usually referred to as the light quarks, in the sense that $m_{q}<\Lambda_{\mathrm{QCD}}$. (The standard definition of Λ_{QCD} is given in the "Quantum Chromodynamics" review; in this review we are using it only to indicate the approximate non-perturbative scale of QCD.) This condition is stronger than that used above to distinguish quarks with small discretization errors, $m_{q}<1 / a$. Loop effects from light quarks must be included in the simulations to accurately represent QCD. At present, most simulations are done in the isospin symmetric limit $m_{u}=m_{d} \equiv m_{\ell}<m_{s}$, and are often referred to as " $N_{f}=2+1$ " simulations. Increasingly, simulations also include loops of charm quarks (denoted $N_{f}=2+1+1$ simulations), although the effect of charmed sea quarks on low-energy physics is generically expected to be at the sub-percent level [63-66]. Precision is now reaching the point where isospin breaking effects must be included. To do so without approximation requires simulating with nondegenerate up and down quarks (leading to $N_{f}=1+1+1$ or $1+1+1+1$ simulations) as well as including electromagnetism (as described above). This has been done in Ref. [52]. Alternatively, one can use a perturbative approach, expanding about the isospin symmetric theory and working to linear order in α_{EM} and $m_{u}-m_{d}[57,67]$.
We now describe the tuning of m_{ℓ}, m_{s} and m_{c} to their physical values. (For brevity, we ignore isospin violation in the following discussion.) The most commonly used quantities for these tunings are, respectively, m_{π}, m_{K} and $m_{\eta_{c}}$. If the scale is being set by m_{Ω}, then one adjusts the lattice quark masses until the ratios $m_{\pi} / m_{\Omega}, m_{K} / m_{\Omega}$ and $m_{\eta_{c}} / m_{\Omega}$ take their physical values. In the past, most calculations needed to extrapolate to the physical value of m_{ℓ} (typically using forms based on chiral perturbation theory [ChPT]), while simulating directly at or near to the physical values of m_{s} and m_{c}. Present calculations are increasingly done with physical or near physical values of m_{ℓ}, requiring at most only a short extrapolation.

17.1.5.3 Heavy quark masses

The b quark is usually treated only as a valence quark, with no loop effects included. The errors introduced by this approximation can be estimated to be $\sim \alpha_{s}\left(m_{b}\right) \Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}$ and are likely to be very small. In the past, the same approximation has been made for the c quark, leading to errors $\sim \alpha_{s}\left(m_{c}\right) \Lambda_{\mathrm{QCD}}^{2} / m_{c}^{2}$. (See Ref. [63] for a quantitative estimate of the effects of including the charm quark on some low energy physical quantities, and Ref. [68] for similar estimates for B-meson matrix elements.) For high precision, however, dynamical charm quarks are necessary, and some of the most recent simulations now include them.

The b quark mass can be tuned by setting heavy-heavy (Υ) or heavy-light (B) meson masses to their experimental values. Consistency between these two determinations provides an important check that the determination of parameters in the heavy quark lat-
tice formulations is being done correctly (see, e.g., Ref. [37,69, 70])

17.1.6 Sources of systematic error

Lattice results have statistical and systematic errors that must be quantified for any calculation in order for the result to be a useful input to phenomenology. The statistical error is due to the use of Monte Carlo importance sampling to evaluate the path integral (a method discussed below). There are, in addition, a number of systematic errors that are always present to some degree in lattice calculations, although the size of any given error depends on the particular quantity under consideration and the parameters of the ensembles being used. The most common lattice errors are reviewed below.

Although not strictly a systematic error, it is important to note that the presence of long autocorrelations in the sequence of lattice configurations generated by the Monte Carlo method can lead to underestimates of statistical errors [71]. It is known that the global topological charge of the gauge fields decorrelates very slowly with certain algorithms [71, 72]. The effect of poorly sampling topological charge is expected to be most significant for the pion mass and related quantities [73, 74]. This issue becomes more relevant as the precision of the final results increases.

17.1.6.1 Continuum limit

Physical results are obtained in the limit that the lattice spacing a goes to zero. The Symanzik effective theory determines the scaling of lattice artefacts with a. Most lattice calculations use improved actions with leading discretizations errors of $\mathcal{O}\left(a^{2} \Lambda^{2}\right)$, $\mathcal{O}\left(\alpha_{s} a^{2} \Lambda^{2}\right)$, or $\mathcal{O}\left(\alpha_{s} a \Lambda\right)$, where Λ is a typical momentum scale in the system. Knowledge of the scaling of the leading discretization errors allows controlled extrapolation to $a=0$ when multiple lattice spacings are available, as in current state-of-the-art calculations. Residual errors arise from the exclusion of subleading a dependence from the fits.

For many quantities the typical momentum scale in the system is $\sim \Lambda_{\mathrm{QCD}} \approx 300 \mathrm{MeV}$. Discretization errors are expected to be larger for quantities involving larger scales, for example form factors or decays involving particles with momenta larger than Λ_{QCD}.

17.1.6.2 Infinite volume limit

LQCD calculations are necessarily carried out in finite spacetime boxes, leading to departures of physical quantities (masses, decay constants, etc.) from their measured, infinite volume values. These finite-volume shifts are an important systematic that must be estimated and minimized.

Typical lattices are asymmetric, with N_{s} points in the three spatial directions and N_{t} in the (Euclidean) temporal direction. The spatial and temporal sizes in physical units are thus $L_{s}=a N_{s}$ and $L_{t}=a N_{t}$, respectively. (Anisotropic lattice spacings are also sometimes used, as discussed below in Sec. 17.2.2.) Typically, $L_{t} \geq 2 L_{s}$, a longer temporal direction being used to allow excitedstate contributions to correlators to decay. This means that the dominant impact of using finite volume is from the presence of a finite spatial box.

High-precision LQCD calculations are of quantities involving no more than a single particle in initial and final states (with the exception of the $K \rightarrow \pi \pi$ decay amplitudes). For such quantities, once the volume exceeds about 2 fm (so that the particle is not "squeezed"), the dominant finite-volume effect comes from virtual pions wrapping around the lattice in the spatial directions. This effect is exponentially suppressed as the volume becomes large, roughly as $\sim \exp \left(-m_{\pi} L_{s}\right)$, and has been estimated using ChPT [75] or other methods [76]. The estimates suggest that finite volume shifts are sub-percent effects when $m_{\pi} L_{s} \gtrsim 4$, and most large-scale simulations use lattices satisfying this condition. This becomes challenging as one approaches the physical pion mass, for which $L_{s} \gtrsim 5 \mathrm{fm}$ is required.

Finite volume errors are usually determined by repeating the simulations on two or more different volumes (with other parameters fixed). If different volumes are not available, the ChPT estimate can be used, often inflated to account for the fact that the ChPT calculation is truncated at some order.

In the future, LQCD calculations involving more than a single hadron will become increasingly precise. Examples include
the calculation of resonance parameters and the above-mentioned $K \rightarrow \pi \pi$ amplitudes. Finite volume effects are much larger in these cases, with power-law terms (e.g. $1 / L_{s}^{3}$) in addition to exponential dependence. Indeed, as will be discussed in Sec. 17.2.4, one can use the volume dependence to indirectly extract infinitevolume quantities such as scattering lengths. Doing so, however, requires a set of lattice volumes satisfying $m_{\pi} L_{s} \gtrsim 4$ and is thus more challenging than for single-particle quantities.

17.1.6.3 Chiral extrapolation

Until recently, an important source of systematic error in LQCD calculations was the need to extrapolate in m_{u} and m_{d} (or, equivalently, in m_{π}). This extrapolation was usually done using functional forms based on ChPT, or with analytic functions, with the difference between different fits used as an estimate of the systematic error, which was often substantial. Increasingly, however, calculations work directly at, or very close to, the physical quark masses. This either removes entirely, or greatly reduces, the uncertainties in the extrapolation, such that this error is subdominant.

17.1.6.4 Operator matching

Many of the quantities that LQCD can precisely calculate involve hadronic matrix elements of operators from the electroweak Hamiltonian. Examples include the pion and kaon decay constants, semileptonic form factors and the kaon mixing parameter B_{K} (the latter defined in Eq. (17.13)). The operators in the lattice matrix elements are defined in the lattice regularization scheme. To be used in tests of the Standard Model, however, they must be matched to the continuum regularization scheme in which the corresponding Wilson coefficients have been calculated. The only case in which such matching is not needed is if the operator is a conserved or partially conserved current. Similar matching is also needed for the conversion of lattice bare quark masses to those in the continuum $\overline{\mathrm{MS}}$ scheme.

Several methods are used to calculate the matching factors: perturbation theory (usually to one- or two-loop order), nonperturbative renormalization (NPR) using Landau-gauge quark and gluon external states [77], NPR using gauge-invariant methods based on the Schrödinger functional [78], NPR using gaugeinvariant short-distance hadron correlators [79], and NPR using gauge-invariant heavy-heavy correlators $[26,80]$. The NPR methods replace truncation errors (which can only be approximately estimated) by statistical and systematic errors that can be determined reliably and systematically reduced.

An issue that arises in some of such calculations (e.g. for quark masses and B_{K}) is that, using NPR with Landau-gauge quark and gluon external states, one ends up with operators regularized in a MOM-like scheme (or a Schrödinger-functional scheme), rather than the $\overline{\mathrm{MS}}$ scheme mostly used for calculating the Wilson coefficients. To make contact with this scheme requires a purely continuum perturbative matching calculation. The resultant truncation error can, however, be minimized by pushing up the momentum scale at which the matching is done using step-scaling techniques as part of the NPR calculation [81]. It should also be noted that this final step in the conversion to the $\overline{\mathrm{MS}}$ scheme could be avoided if continuum calculations used a MOM-like scheme or if one imposes a renormalization condition for quantities that are calculable both in the $\overline{\mathrm{MS}}$ scheme and in LQCD, such as the hadron correlators at short distances (see, e.g., Ref. [82]).

17.2 Methods and status

Once the lattice action is chosen, it is straightforward to define the quantum theory using the path integral formulation. The Euclidean-space partition function is

$$
\begin{equation*}
Z=\int[d U] \prod_{f}\left[d q_{f}\right]\left[d \bar{q}_{f}\right] e^{-S_{g}[U]-\sum_{f} \bar{q}_{f}\left(D[U]+m_{f}\right) q_{f}} \tag{17.4}
\end{equation*}
$$

where link variables are integrated over the $\mathrm{SU}(3)$ manifold, q_{f} and \bar{q}_{f} are Grassmann (anticommuting) quark and antiquark fields of flavor f, and $D[U]$ is the chosen lattice Dirac operator with m_{f} the quark mass in lattice units. Integrating out the quark
and antiquark fields, one arrives at a form suitable for simulation:

$$
\begin{equation*}
Z=\int[d U] e^{-S_{g}[U]} \prod_{f} \operatorname{det}\left(D[U]+m_{f}\right) \tag{17.5}
\end{equation*}
$$

The building blocks for calculations are expectation values of multi-local gauge-invariant operators, also known as "correlation functions",

$$
\begin{equation*}
\langle\mathcal{O}(U, q, \bar{q})\rangle=(1 / Z) \int[d U] \prod_{f}\left[d q_{f}\right]\left[d \bar{q}_{f}\right] \mathcal{O}(U, q, \bar{q}) e^{-S_{g}[U]-\sum_{f} \bar{q}_{f}\left(D[U]+m_{f}\right) q_{f}} \tag{17.6}
\end{equation*}
$$

If the operators depend on the (anti-)quark fields q_{f} and \bar{q}_{f}, then integrating these fields out leads not only to the fermion determinant but also, through Wick's theorem, to a series of quark "propagators", $\left(D[U]+m_{f}\right)^{-1}$, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the quarks in the determinant (the sea quarks) differently from those in the propagators (valence quarks). This is called "partial quenching", and is used by some calculations as a way of obtaining more data points from which to extrapolate both sea and valence quarks to their physical values.

17.2.1 Monte-Carlo method

Since the number of integration variables U is huge $\left(N_{s}^{3} \times N_{t} \times\right.$ 4×9), direct numerical integration is impractical and one has to use Monte-Carlo techniques. In this method, one generates a Markov chain of gauge configurations (a "configuration" being the set of U 's on all links) distributed according to the probability measure $[d U] e^{-S_{g}[U]} \prod_{f} \operatorname{det}\left(D[U]+m_{f}\right)$. Once the configurations are generated, expectation values $\langle\mathcal{O}(U, q, \bar{q})\rangle$ are calculated by averaging over those configurations. In this way the configurations can be used repeatedly for many different calculations, and there are several large collections of ensembles of configurations (with a range of values of a, lattice sizes and quark masses) that are publicly available through the International Lattice Data Grid (ILDG). As the number of the configurations, N, is increased, the error decreases as $1 / \sqrt{N}$.

The most challenging part of the generation of gauge configurations is the need to include the fermion determinant. Direct evaluation of the determinant is not feasible, as it requires $\mathcal{O}\left(\left(N_{s}^{3} \times N_{t}\right)^{3}\right)$ computations. Instead, one rewrites it in terms of "pseudofermion" fields ϕ (auxiliary fermion fields with bosonic statistics). For example, for two degenerate quarks one has

$$
\begin{equation*}
\operatorname{det}\left(D[U]+m_{f}\right)^{2}=\int[d \phi] e^{-\phi^{\dagger}\left(D[U]+m_{f}\right)^{-2} \phi} \tag{17.7}
\end{equation*}
$$

By treating the pseudofermions as additional integration variables in the path integral, one obtains a totally bosonic representation. The price one pays is that the pseudofermion effective action is highly non-local since it includes the inverse Dirac operator $\left(D[U]+m_{f}\right)^{-1}$. Thus, the large sparse matrix $(D[U]+m)$ has to be inverted every time one needs an evaluation of the effective action.
Present simulations generate gauge configurations using the Hybrid Monte Carlo (HMC) algorithm [83], or variants thereof. This algorithm combines molecular dynamics (MD) evolution in a fictitious time (which is also discretized) with a Metropolis "acceptreject" step. It makes a global update of the configuration, and is made exact by the Metropolis step. In its original form it can be used only for two degenerate flavors, but extensions (particularly the rational HMC [84]) are available for single flavors. Considerable speed-up of the algorithms has been achieved over the last two decades using a variety of techniques.

All these algorithms spend the bulk of their computational time on the repeated inversion of $(D[U]+m)$ acting on a source (which is required at every step of the MD evolution). Inversions are done using a variety of iterative algorithms, e.g. the conjugate gradient algorithm. In this class of algorithms, computational cost is proportional to the condition number of the matrix, which is the ratio of maximum and minimum eigenvalues. For $(D[U]+m)$ the smallest eigenvalue is $\approx m$, so the condition number and cost are
inversely proportional to the quark mass. This is a major reason why simulations at the physical quark mass are challenging.

Recent algorithmic improvements have significantly reduced this problem. The main idea is to separate different length scales. Since the low eigenvalues of $(D[U]+m)$ are associated with long wavelength quark modes, one may project the problem onto that of a coarse-grained lattice by averaging the field within a block of sublattices and carrying out the inversion on this coarse lattice. The result is then fed back to the original lattice as an efficient preconditioner for the iterative solver, and the whole procedure may be nested multiple times. Variants of such methods have been implemented, specifically domain-decomposition [11,12], deflation [85-88] and multigrid [89, 90]. They are increasingly used in large-scale lattice simulations.

A practical concern is the inevitable presence of correlations between configurations in the Markov chain. These are characterized by an autocorrelation length in the fictitious MD time. One aims to use configurations separated in MD time by greater than this autocorrelation length. In practice, it is difficult to measure this length accurately, see, e.g., [91], and this leads to some uncertainty in the resulting statistical errors, as well as the possibility of insufficient equilibration.

For most of the applications of LQCD discussed in this review, the cost of generating gauge configurations is larger than or similar to that of performing the "measurements" on those configurations. The computational cost of gauge generation grows with the lattice volume, $V_{\text {lat }}=N_{s}^{3} N_{t}$, as $V_{\text {lat }}^{1+\delta}$. Here $\delta=1 / 4$ for the HMC algorithm [92] and can be reduced slightly using modern variants. Such growth with $V_{\text {lat }}$ provides a (time-dependent) limit on the largest lattice volumes that can be simulated. At present, the largest lattices being used have $N_{s}=144$ and $N_{t}=288$. Typically one aims to create an ensemble of $\sim 10^{3}$ statistically independent configurations at each choice of parameters (a, m_{q} and $V_{\text {lat }}$). For most physical quantities of interest, this is sufficient to make the resulting statistical errors smaller than or comparable to the systematic errors.

17.2.2 Two-point functions

One can extract properties of stable hadrons using two-point correlation functions, $\left\langle O_{X}(x) O_{Y}^{\dagger}(0)\right\rangle$. Here $O_{X, Y}(x)$ are operators that have non-zero overlaps with the hadronic state of interest $|H\rangle$, i.e. $\langle 0| O_{X, Y}(x)|H\rangle \neq 0$. One usually Fourier transforms in the spatial directions and considers correlators as a function of Euclidean time:

$$
\begin{equation*}
C_{X Y}(t ; \vec{p})=\sum_{\vec{x}}\left\langle O_{X}(t, \vec{x}) O_{Y}^{\dagger}(0)\right\rangle e^{-i \vec{p} \cdot \vec{x}} \tag{17.8}
\end{equation*}
$$

(Here and throughout this section all quantities are expressed in dimensionless lattice units, so that, for example, $\vec{p}=a \vec{p}_{\mathrm{phys}}$. .) By inserting a complete set of states having spatial momentum \vec{p}, the two-point function can be written as
$C_{X Y}(t ; \vec{p})=\sum_{i=0}^{\infty} \frac{1}{2 E_{i}(\vec{p})}\langle 0| O_{X}(0)\left|H_{i}(\vec{p})\right\rangle\left\langle H_{i}(\vec{p})\right| O_{Y}^{\dagger}(0)|0\rangle e^{-E_{i}(\vec{p}) t}$,
(17.9)
where the energy of the i-th state $E_{i}(\vec{p})$ appears as an eigenvalue of the time evolution operator $e^{-H t}$ in the Euclidean time direction. The factor of $1 /\left[2 E_{i}(\vec{p})\right]$ is due to the relativistic normalization used for the states. For large enough t, the dominant contribution
is that of the lowest energy state $\left|H_{0}(\vec{p})\right\rangle$:

$$
\begin{equation*}
C_{X Y}(t) \xrightarrow{t \rightarrow \infty} \frac{1}{2 E_{0}(\vec{p})}\langle 0| O_{X}(0)\left|H_{0}(\vec{p})\right\rangle\left\langle H_{0}(\vec{p})\right| O_{Y}^{\dagger}(0)|0\rangle e^{-E_{0}(\vec{p}) t} \tag{17.10}
\end{equation*}
$$

One can thus obtain the energy $E_{0}(\vec{p})$, which equals the hadron mass m_{H} when $\vec{p}=0$, and the product of matrix elements $\langle 0| O_{X}(0)\left|H_{i}(\vec{p})\right\rangle\left\langle H_{i}(\vec{p})\right| O_{Y}^{\dagger}(0)|0\rangle$.

This method can be used to determine the masses of all the stable mesons and baryons by making appropriate choices of operators. For example, if one uses the axial current, $O_{X}=O_{Y}=$ $A_{\mu}=\bar{d} \gamma_{\mu} \gamma_{5} u$, then one can determine $m_{\pi^{+}}$from the rate of exponential fall-off, and in addition the decay constant f_{π} from the coefficient of the exponential. A complication arises for states with high spins ($j \geq 4$ for bosons) because the spatial rotation group on the lattice is a discrete subgroup of the continuum group $\mathrm{SO}(3)$. This implies that lattice operators, even when chosen to lie in irreducible representations of the lattice rotation group, have overlap with states that have a number of values of j in the continuum limit [93]. For example $j=0$ operators can also create mesons with $j=4$. Methods to overcome this problem in practice are available [94,95] and have been used successfully.

The expression given above for the correlator $C_{X Y}(t ; \vec{p})$ shows how, in principle, one can determine the energies of the excited hadron states having the same quantum numbers as the operators $O_{X, Y}$, by fitting the correlation function to a sum of exponentials, which is also important to precisely determine the ground-state exponential. In practice, in order to reliably identify the excited state, one often needs to use a large basis of operators and to adopt the variational approach such as that of Ref. [96]. One can also use an anisotropic lattice in which a_{t}, the lattice spacing in the time direction, is smaller than its spatial counterpart a_{s}. Using a combination of these and other technical improvements extensive excited-state spectra have been obtained [95, 97-100].

17.2.3 Three-point functions

Hadronic matrix elements needed to calculate semileptonic form factors and neutral meson mixing amplitudes can be computed from three-point correlation functions. We discuss here, as a representative example, the $D \rightarrow K$ amplitude. As in the case of two-point correlation functions one constructs operators O_{D} and O_{K} having overlap, respectively, with the D and K mesons. We are interested in calculating the matrix element $\langle K| V_{\mu}|D\rangle$, with $V_{\mu}=\bar{c} \gamma_{\mu} s$ the vector current calculations of this contribution.

To obtain this, we use the three-point correlator

$$
\begin{equation*}
C_{K V_{\mu} D}\left(t_{x}, t_{y} ; \vec{p}\right)=\sum_{\vec{x}, \vec{y}}\left\langle O_{K}\left(t_{x}, \vec{x}\right) V_{\mu}(0) O_{D}^{\dagger}\left(t_{y}, \vec{y}\right)\right\rangle e^{-i \vec{p} \cdot \vec{x}} \tag{17.11}
\end{equation*}
$$

and focus on the limit $t_{x} \rightarrow \infty, t_{y} \rightarrow-\infty$. In this example we set the D-meson at rest while the kaon carries three-momentum \vec{p}. Momentum conservation then implies that the weak operator V_{μ} inserts three-momentum $-\vec{p}$. Inserting a pair of complete sets of states between each pair of operators, we find

$$
\begin{align*}
& C_{K V_{\mu} D}\left(t_{x}, t_{y} ; \vec{p}\right)=\sum_{i, j} \frac{1}{2 m_{D_{i}} 2 E_{K_{j}}(\vec{p})} e^{-m_{D_{i}} t_{x}-E_{K_{j}}(\vec{p})\left|t_{y}\right|} \\
& \langle 0| O_{K}(0)\left|K_{i}(\vec{p})\right\rangle\left\langle K_{i}(\vec{p})\right| V_{\mu}(0)\left|D_{j}(\overrightarrow{0})\right\rangle\left\langle D_{j}(\overrightarrow{0})\right| O_{D}^{\dagger}(0)|0\rangle \tag{17.12}
\end{align*}
$$

The matrix element $\left\langle K_{i}(\vec{p})\right| V_{\mu}(0)\left|D_{j}(\overrightarrow{0})\right\rangle$ can then be extracted, since all other quantities in this expression can be obtained from two-point correlation functions. Typically one is interested in the weak matrix elements of ground states, such as the lightest pseudoscalar mesons. In the limit of large separation between the three operators in Euclidean time, the three-point correlation function yields the weak matrix element of the transition between ground states.

17.2.4 Scattering amplitudes and resonances

The methods described thus far yield matrix elements involving single, stable particles (where by stable we mean here absolutely stable to strong interaction decays). Most of the particles listed in the Review of Particle Properties are, however, unstable - they
are resonances decaying into final states consisting of multiple strongly interacting particles. LQCD simulations cannot directly calculate resonance properties, but methods have been developed to do so indirectly for resonances coupled to two-particle final states in the elastic regime, starting from the seminal work of Lüscher [101].
The difficulty faced by LQCD calculations is that, to obtain resonance properties, or, more generally, scattering phase-shifts, one must calculate multiparticle scattering amplitudes in momentum space and put the external particles on their mass-shells. This requires analytically continuing from Euclidean to Minkowski momenta. Although it is straightforward in LQCD to generalize the methods described above to calculate four- and higher-point correlation functions, one necessarily obtains them at a discrete and finite set of Euclidean momenta. Analytic continuation to $p_{E}^{2}=-m^{2}$ is then an ill-posed and numerically unstable problem. The same problem arises for single-particle states, but can be largely overcome by picking out the exponential fall-off of the Euclidean correlator, as described above. With a multi-particle state there is no corresponding trick, except for two particles at threshold [102], although recent ideas using smeared correlators and advanced spectral-reconstruction methods offer hope for future progress [103-105].

What LQCD can calculate are the energies of the eigenstates of the QCD Hamiltonian in a finite box. The energies of states containing two stable particles, e.g. two pions, clearly depend on the interactions between the particles. It is possible to invert this dependence and, with plausible assumptions, determine the scattering phase-shifts at a discrete set of momenta from a calculation of the two-particle energy levels for a variety of spatial volumes [101]. This is a challenging calculation, but it has recently been carried through in several channels with quark masses approaching physical values. Channels studied include $\pi \pi$ (for $I=2,1$ and 0$), \bar{K} K, K \pi, \pi \omega, \pi \phi, K D, D D^{*}$ and $B \pi$. For recent comprehensive reviews see $[106,107]$. Extensions to nucleon interactions are also being actively studied [108]. The generalization of the formalism to the case of three particles is under active development [109-111]. For a recent review, see [112].

It is also possible to extend the methodology to calculate electroweak decay amplitudes to two particles below the inelastic threshold, e.g. $\Gamma(K \rightarrow \pi \pi)$ [113]. Results for both the $\Delta I=3 / 2$ and $1 / 2$ amplitudes with physical quark masses have been obtained $[114,115]$, the former now including a controlled continuum limit [116]. First results for the CP-violating quantity ϵ^{\prime} have been obtained [115].

Partial extensions of the formalism above the elastic threshold have been worked out, in particular for the case of multiple two-particle channels [117]. Another theoretical extension is to allow the calculation of form factors between a stable particle and a resonance [118], and between two resonances [119]. The former has been used to calculate the $\gamma \pi \rightarrow \rho$ amplitude, albeit for unphysically large quark masses [120].

While a systematic extension to decays with many multiparticle channels, e.g. hadronic B decays, has, however, yet to be formulated, some interesting new ideas have been recently proposed [121, 122].

17.2.5 Recent advances

In some physics applications, one is interested in the two-point correlation function $\left\langle O_{X}(x) O_{Y}^{\dagger}(0)\right\rangle$ for all values of the separation x, not just its asymptotic form for large separations (which is used to determine the hadron spectrum as sketched above). A topical example is the hadronic vacuum polarization function $\Pi_{\mu \nu}(x)=\left\langle V_{\mu}(x) V_{\nu}(0)\right\rangle$ and its Fourier transform $\Pi_{\mu \nu}\left(q^{2}\right)$. Since the lattice is in Euclidean space-time, only space-like momenta, $q^{2}=-Q^{2}<0$, are accessible. Nevertheless, this quantity is of significant interest. It is related by a dispersion relation to the cross section for $e^{+} e^{-} \rightarrow$ hadrons, and is needed for a first-principles calculation of the "hadronic vacuum polarization" contribution to the muon anomalous magnetic moment a_{μ}. This is the contribution with the largest theoretical uncertainty at present. There are a number of lattice calculations of this contribution (see, e.g., Refs. [123-138] following the pioneering work Ref. [139]). Since the relevant scale is set by the muon mass m_{μ}, this quantity is
most sensitive to the low-energy region $Q^{2} \simeq m_{\mu}^{2}$ of $\Pi_{\mu \nu}\left(-Q^{2}\right)$, where the long-range contribution of multibody states become relevant. The lattice calculation is challenging because of this and also because the necessary precision is high (below 1\%). Many systematic effects must be carefully studied and controlled in order to achieve this precision, including finite volume errors and QED corrections.

Calculations of the light-by-light scattering contribution to a_{μ} are also underway. These involve the calculations of four-point correlation functions with various external momenta. Clever ways to sum over them to evaluate the contribution to a_{μ} are developed and first results have been reported [140-144]. Another approach to the light-by-light scattering is to decompose the amplitude to components using ChPT or phenomenological models, and to calculate the components in LQCD. Calculations of the $\pi \rightarrow \gamma^{*} \gamma^{*}$ amplitudes follow similar directions [145-147].

There are other processes for which lattice calculations can make a significant contribution to establishing a quantitative understanding. One example is the long-distance contribution to the neutral kaon mass splitting, ΔM_{K}. This also requires the evaluation of a four-point function, constructed from the two-point functions described above by the insertion of two electroweak Hamiltonians [148]. Rare kaon decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \nu \bar{\nu}$ are also important processes for which first lattice studies have recently appeared [149-153].

17.2.6 Status of $L Q C D$ simulations

Until the 1990s, most large-scale lattice simulations were limited to the "quenched" approximation, wherein the fermion determinant is omitted from the path integral. While much of the basic methodology was developed in this era, the results obtained had uncontrolled systematic errors and were not suitable for use in placing precision constraints on the Standard Model. During the 1990s, more extensive simulations including the fermion determinant (also known as simulations with "dynamical" fermions) were begun, but with unphysically heavy quark masses $\left(m_{\ell} \sim 50-100 \mathrm{MeV}\right)$, such that the extrapolation to the physical light quark masses was a source of large systematic errors [154]. During the 2000s, advances in both algorithms and computers allowed simulations to reach much smaller quark masses ($m_{\ell} \sim 10-20 \mathrm{MeV}$) such that LQCD calculations of selected quantities with all sources of error controlled and small became available. Their results played an important role in constraints on the CKM matrix and other phenomenological analyses. In the last few years, simulations directly at the physical isospinsymmetric light quark masses have become standard, removing the need for a chiral extrapolation and thus significantly reducing the overall error. The present frontier, as noted above, is the inclusion of isospin breaking. This will be needed to push the accuracy of calculations below the percent level.

On a more qualitative level, analytic and numerical results from LQCD have demonstrated that QCD confines color and spontaneously breaks chiral symmetry. Confinement can be seen as a linearly rising potential between heavy quark and anti-quark in the absence of quark loops. Analytically, this can be shown in the strong coupling limit $g_{\text {lat }} \rightarrow \infty$ [1]. At weaker couplings there are precise numerical calculations of the potential that clearly show that this behavior persists in the continuum limit [155-157].

Chiral symmetry breaking was also demonstrated in the strong coupling limit on the lattice $[19,158]$, and there have been a number of numerical studies showing that this holds also in the continuum limit. The accumulation of low-lying modes of the Dirac operator, which is the analog of Cooper pair condensation in superconductors, has been observed, yielding a determination of the chiral condensate [159-164]. Many relations among physical quantities that can be derived under the assumption of broken chiral symmetry have been confirmed by a number of lattice groups [165].

17.3 Physics applications

In this section we describe the main applications of LQCD that are both computationally mature and relevant for the determination of particle properties.

A general feature to keep in mind is that, since there are many
different choices for lattice actions, all of which lead to the same continuum theory, a crucial test is that results for any given quantity are consistent. In many cases, different lattice calculations are completely independent and often have very different systematic errors. Thus final agreement, if found, is a highly non-trivial check, just as it is for different experimental measurements.

The number, variety and precision of the calculations has progressed to the point that an international "Flavour Lattice Averaging Group" (FLAG) has been formed. The main aims of FLAG include collecting all lattice results of relevance for a variety of phenomenologically interesting quantities and providing averages of those results which pass appropriate quality criteria. The averages attempt to account for possible correlations between results (which can arise, for example, if they use common gauge configurations). The quantities considered are those we discuss in this section, with the exception of the hadron spectrum. The most recent FLAG review is from 2019 [53] (see also an older edition, Ref. [165]). The interested reader can consult this review for very extensive discussions of the details of the calculations and of the sources of systematic errors.

We stress that the results we quote below are those obtained using the physical complement of light quarks (i.e. $N_{f}=2+1$ or $2+1+1$ simulations).

17.3.1 Spectrum

The most basic prediction of LQCD is of the hadron spectrum. Once the input parameters are fixed as described in Sec. 17.1.5, the masses or resonance parameters of all other states can be predicted. This includes hadrons composed of light (u, d and s) quarks, as well as heavy-light and heavy-heavy hadrons. It also includes quark-model exotics (e.g. $J^{P C}=1^{-+}$mesons) and glueballs. Thus, in principle, LQCD calculations should be able to reproduce many of the experimental results compiled in the Review of Particle Properties. Doing so would test both that the error budgets of LQCD calculations are accurate and that QCD indeed describes the strong interactions in the low-energy domain. The importance of the latter test can hardly be overstated.

What is the status of this fundamental test? As discussed in Sec. 1.2, LQCD calculations are most straightforward for stable, low-lying hadrons. Calculations of the properties of resonances that can decay into only two particles are more challenging, though substantial progress has been made. First theoretical work on decays to more than two particles has begun, but the methodology is not yet practical. It is also more technically challenging to calculate masses of flavor singlet states (which can annihilate into purely gluonic intermediate states) than those of flavor nonsinglets, although again algorithmic and computational advances have begun to make such calculations accessible, although not yet for physical quark masses. The present status for light hadrons is that fully controlled results are available for the masses of the octet light baryons, while results with less than complete control are available for the decuplet baryon resonances, the vector meson resonances and the η and η^{\prime}. In addition, it has been possible to calculate the isospin splitting in light mesons and baryons (due to the up-down mass difference and the incorporation of QED). There are also extensive results for heavy-light (D and B systems) and heavy-heavy $(J / \psi$ and Υ systems). All present results, which are discussed in the "Quark Model" review, are consistent with experimental values, and several predictions have been made. We refer the reader to that review for references to the relevant work.

17.3.2 Decay constants and bag parameters

The pseudoscalar decay constants can be determined from twopoint correlation functions involving the axial-vector current, as discussed in Sec. 17.2.2. The decay constant f_{P} of a meson P is extracted from the weak matrix element involving the axial-vector current using the relation $\langle 0| A_{\mu}(x)|P(\vec{p})\rangle=f_{P} p_{\mu} \exp (-i p \cdot x)$, where p_{μ} is the momentum of P and $A_{\mu}(x)$ is the axial-vector current. Since they are among the simplest quantities to calculate, decay constants provide good benchmarks for lattice methods, in addition to being important inputs for flavor physics phenomenology in their own right. Results from many lattice groups for the pion and kaon decay constants now have errors at the percent level or better. The decay constants in the charm and bottom sectors,
$f_{D}, f_{D_{s}}, f_{B}$, and $f_{B_{s}}$, have also been calculated to high precision. Lattice results for all of these decay constants are discussed in detail in the review "Leptonic Decays of Charged Pseudoscalar Mesons."

Another important lattice quantity is the kaon bag parameter, B_{K}, which is needed to turn the precise measurement of CPviolation in kaon mixing into a constraint on the Standard Model. It is defined by

$$
\begin{equation*}
\frac{8}{3} m_{K}^{2} f_{K}^{2} B_{K}(\mu)=\left\langle\bar{K}^{0}\right| Q_{\Delta S=2}(\mu)\left|K^{0}\right\rangle \tag{17.13}
\end{equation*}
$$

where m_{K} is the kaon mass, f_{K} is the kaon decay constant, $Q_{\Delta S=2}=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d$ is the four-quark operator of the effective electroweak Hamiltonian and μ is the renormalization scale. The short distance contribution to the electroweak Hamiltonian can be calculated perturbatively, but the hadronic matrix element parameterized by B_{K} must be computed using non-perturbative methods. In order to be of use to phenomenology, the renormalization factor of the four-quark operator must be matched to a continuum renormalization scheme, e.g. to $\overline{\mathrm{MS}}$, as described in Sec. 17.1.6.4. Determinations with percent-level precision using different fermion actions and $N_{f}=2+1$ light sea quarks are now available using DWF [166] , staggered fermions [167], DWF valence on staggered sea quarks [168], and Wilson fermions [13]. The results are all consistent, and the present FLAG average is $\hat{B}_{K}=0.7625(97)$ [53].

The bag parameters for B and B_{s} meson mixing are defined analogously to that for kaon mixing. The B and B_{s} mesons contain a valence b-quark so that calculations of these quantities must use one of the methods for heavy quarks described above. Calculations with $N_{f}=2+1$ light fermions have been done using NRQCD [169], the Fermilab formalism [68], and static heavy quarks [170]. All results are consistent. The FLAG averages for the quantities relevant for B_{s} and B mixing are $f_{B_{s}} \sqrt{B_{B_{s}}}=274(8) \mathrm{MeV}$ and $f_{B} \sqrt{B_{B}}=225(9) \mathrm{MeV}$, with their ratio (which is somewhat better determined) being $\xi=1.206(17)$ [53]. Note that the errors for quantities involving b quarks are larger than those for quantities involving only light quarks, although the difference has decreased over the last two years.

For the K, D and B systems, one can also consider the matrix elements of four-fermion operators that arise in beyond-the-standard-model (BSM) theories, which can have a different chiral structure. Knowledge of these matrix elements allows one to constrain the parameters of the BSM theories, and is complementary to direct searches at the LHC. Reliable results are now available from lattice calculations, and are reviewed by FLAG in the case of kaon mixing [53]. Complete results for D and B mixing are presented in Ref. [171] and Ref. [68], respectively.

The results for mixing matrix elements are used in the reviews "The CKM Quark-Mixing Matrix," and " $B^{0}-\bar{B}^{0}$ Mixing."
17.3.3 Form factors $(K \rightarrow \pi \ell \nu, D \rightarrow K \ell \nu, B \rightarrow \pi \ell \nu, B \rightarrow$ $\left.D^{(*)} \ell \nu\right)$

Semileptonic decay rates can be used to extract CKM matrix elements once the semileptonic form factors are known from lattice calculations. For example, the matrix element of a pseudoscalar meson P undergoing semileptonic decay to another pseudoscalar meson D is mediated by the vector current, and can be written in terms of form factors as

$$
\left\langle D\left(p_{D}\right)\right| V_{\mu}\left|P\left(p_{P}\right)\right\rangle=f_{+}\left(q^{2}\right)\left(p_{D}+p_{P}-\Delta\right)_{\mu}+f_{0}\left(q^{2}\right) \Delta_{\mu},
$$

where $q=p_{D}-p_{P}, \Delta_{\mu}=\left(m_{D}^{2}-m_{P}^{2}\right) q_{\mu} / q^{2}$ and V_{μ} is the quark vector current. The shape of the form factor is typically well determined by experiment, and the value of $f_{+}\left(q^{2}\right)$ at some reference value of q^{2} is needed from the lattice in order to extract CKM matrix elements. Typically $f_{+}\left(q^{2}\right)$ dominates the decay rate, since the contribution from $f_{0}\left(q^{2}\right)$ is suppressed when the final state lepton is light.

The form factor $f_{+}(0)$ for $K \rightarrow \pi \ell \nu$ decays is highly constrained by the Ademollo-Gatto theorem [172] and chiral symmetry. Old estimates using chiral perturbation theory combined with quark models quote sub-percent precision [173], though they suffer from
some model dependence. Utilizing the constraint from the vector current conservation that $f_{+}(0)$ is normalized to unity in the limit of degenerate up and strange quark masses, the lattice calculation can be made very precise and has now matched the precision of the phenomenological estimates [174-181]. The present FLAG average (from $N_{f}=2+1$ simulations) is $f_{+}(0)=0.9677(27)$ [53].
Charm meson semileptonic decays have been calculated by different groups using methods similar to those used for charm decay constants, and results are steadily improving in precision [182-185]. For semileptonic decays involving a bottom quark, one uses HQET or NRQCD to control the discretization errors of the bottom quark. The form factors for the semileptonic decay $B \rightarrow \pi \ell \nu$ have been calculated in unquenched lattice QCD by a number of groups [186-191]. These B semileptonic form factors are difficult to calculate at low q^{2}, i.e. when the mass of the B-meson must be balanced by a large pion momentum, in order to transfer a large momentum to the lepton pair. The low q^{2} region has large discretization errors and very large statistical errors, while the high q^{2} region is much more accessible to the lattice. For experiment, the opposite is true. To combine lattice and experimental results it has proved helpful to use the z-parameter expansion [192]. This provides a theoretically constrained parameterization of the entire q^{2} range, and allows one to obtain $\left|V_{u b}\right|$ without model dependence [193,194].

The semileptonic decays $B \rightarrow D \ell \nu$ and $B \rightarrow D^{*} \ell \nu$ can be used to extract $\left|V_{c b}\right|$ once the corresponding form factors are known. The lattice calculation is most precise at zero recoil since the bulk of the systematic error cancels for appropriate ratios between $B \rightarrow$ $D^{(*)}$ and $B \rightarrow B$ or $D^{(*)} \rightarrow D^{(*)}[195,196]$. The unquenched calculation of the $B \rightarrow D^{(*)} \ell \nu$ form factor at zero recoil has been performed with various formulations for the heavy quark [197201]. Calculations at non-zero recoil have also been performed to constrain the functional form of the form factor, which can be used to extrapolate the experimental data to the zero-recoil point or to determine $\left|V_{c b}\right|$ directly at the non-zero recoil points [202205]. Semileptonic decays of the Λ_{b} baryon can also be used to constrain $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ using lattice calculations of the relevant form factors $[206,207]$.

The rare decays $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$involve matrix elements similar to those needed for semileptonic decays, Eq. (17.14), except that the vector current V_{μ} is replaced by the operators $\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b$ or $\bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b$. Lattice calculations of the corresponding form factors involve similar techniques to those for the semileptonic form factors. The values of q^{2} for which lattice calculations can be done are limited as for B semileptonic decays, and, in addition, the region of $c \bar{c}$ resonances has to be avoided. Recent lattice calculations [190,208-210] have been used to constrain the standard model and new physics contributions.

The results discussed in this section are used in the reviews "The CKM Quark-Mixing Matrix," " $V_{u d}, V_{u s}$, the Cabibbo Angle and CKM Unitarity," and " $V_{c b}$ and $V_{u b}$ CKM Matrix Elements."

17.3.4 Strong coupling constant

As explained in Sec. 17.1.5.1, for a given lattice action, the choice of bare lattice coupling constant, $g_{\text {lat }}$, determines the lattice spacing a. If one then calculates a as described in Sec. 17.1.5.1, one knows the strong coupling constant in the bare lattice scheme at the scale $1 / a, \alpha_{\text {lat }}=g_{\text {lat }}^{2} /(4 \pi)$. This is not, however, useful for comparing to results for α_{s} obtained from other inputs, such as deep inelastic scattering or jet shape variables. This is because the latter results give α_{s} in the $\overline{\mathrm{MS}}$ scheme, which is commonly used in such analyses, and the conversion factor between these two schemes is known to converge extremely poorly in perturbation theory. Instead one must use a method which directly determines α_{s} on the lattice in a scheme closer to $\overline{\mathrm{MS}}$.
Several such methods have been used, all following a similar strategy. One calculates a short-distance quantity K both perturbatively (K^{PT}) and non-perturbatively $\left(K^{\mathrm{NP}}\right)$ on the lattice, and requires equality: $K^{\mathrm{NP}}=K^{\mathrm{PT}}=\sum_{i=0}^{n} c_{i} \alpha_{s}^{i}$. Solving this equation one obtains α_{s} at a scale related to the quantity being used. Often, α_{s} thus obtained is not defined in the conventional $\overline{\mathrm{MS}}$ scheme, and one has to convert among the different schemes using perturbation theory. Unlike for the bare lattice scheme, the required conversion factors are reasonably convergent. As a fi-
nal step, one uses the renormalization group to run the resulting coupling to a canonical scale (such as M_{Z}).
In the work of the HPQCD collaboration $[211,212]$, the shortdistance quantities are Wilson loops of several sizes and their ratios. These quantities are perturbatively calculated through $\mathcal{O}\left(\alpha_{s}^{3}\right)$ using the V-scheme defined through the heavy quark potential. The coefficients of even higher orders are estimated using the data at various values of a. In addition, this work obtains a result for α_{s} by matching with $\alpha_{\text {lat }}$ in a tadpole-improved scheme that improves convergence.
Another choice of short-distance quantities is to use currentcurrent correlators. Appropriate moments of these correlators are ultraviolet finite, and by matching lattice results to the continuum perturbative predictions, one can directly extract the $\overline{M S}$ coupling. The method can be applied for light meson correlators $[213,214]$ as well as heavy meson correlators [36,212,215-217]. Yet another choice of short-distance quantity is the static-quark potential, where the lattice result for the potential is compared to perturbative calculations; this method was used to compute α_{s} within $2+1$ flavor QCD [218-222]. There is also a determination of α_{s} from a comparison of lattice data for the ghost-gluon coupling with that of perturbation theory [223, 224].

With a definition of α_{s} given using the Schrödinger functional, one can non-perturbatively control the evolution of α_{s} to highenergy scales, such as 100 GeV , where the perturbative expansion converges very well. This method developed by the ALPHA collaboration [81] has been applied to 2+1-flavor QCD in [225-227].

The various lattice methods for calculating α_{s} have significantly different sources of systematic error. The FLAG review [53] reported an estimate $\alpha \frac{(5)}{\mathrm{MS}}\left(M_{Z}\right)=0.11823(81)$ based on these various lattice calculations. A comparison to other phenomenological determinations can be found in the "Quantum Chromodynamics" review.

17.3.5 Quark masses

Once the quark mass parameters are tuned in the lattice action, the remaining task is to convert them to those of the conventional definition. Since the quarks do not appear as asymptotic states due to confinement, the pole mass of the quark propagator is not a physical quantity. Instead, one defines the quark mass after subtracting the ultra-violet divergences in some particular way. The conventional choice is again the $\overline{\mathrm{MS}}$ scheme at a canonical scale such as 2 or 3 GeV . Ratios such as m_{c} / m_{s} and m_{b} / m_{c} are also useful as they are free from multiplicative renormalization (in a mass-independent scheme).

As discussed in Sec. 17.1.6.4, one must convert the lattice bare quark mass to that in the $\overline{\mathrm{MS}}$ scheme. Older calculations did so directly using perturbation theory; most recent calculations use an intermediate NPR method (e.g. RI/MOM or RI/SMOM) which is then converted to the $\overline{\mathrm{MS}}$ scheme using perturbation theory (see, e.g., [166, 228, 229]).

Alternatively, one can use a definition based on the Schrödinger functional, which allows one to evolve the quark mass to a high scale non-perturbatively [230]. In practice, one can reach scales as high as $\sim 100 \mathrm{GeV}$, at which matching to the $\overline{\mathrm{MS}}$ scheme can be reliably calculated in perturbation theory.

Another approach available for heavy quarks is to match current-current correlators at short distances calculated on the lattice to those obtained in continuum perturbation theory in the $\overline{\mathrm{MS}}$ scheme [36, 212, 215-217]. This has allowed an accurate determination of m_{c} and m_{b} [80,212,216].

The ratio method for heavy quarks (discussed earlier) can also be used to determine m_{b} [231].

Results are summarized in the review of "Quark Masses."

17.3.6 Other applications

In this review we have concentrated on applications of LQCD that are relevant to the quantities discussed in the Review of Particle Properties. We have not discussed at all several other applications that are being actively pursued by simulations. Here we list the major such applications. The reader can consult the aforementioned texts [2-4] for further details, as well as the proceedings of recent lattice conferences [232], and several recent white
papers [233-239].
LQCD can be used, in principle, to simulate QCD at non-zero temperature and density, and in particular to study how confinement and chiral-symmetry breaking are lost as T and μ (the chemical potential) are increased. This is of relevance to heavy-ion collisions, the early Universe and neutron-star structure. In practice, finite temperature simulations are computationally tractable and relatively mature, while simulations at finite μ suffer from a "sign problem" and are at a rudimentary stage.

Another topic under active investigation is nucleon structure and inter-nucleon interactions. The simplest nucleon matrix elements are calculable with a precision that is now starting to rival that for some mesonic quantities. Of particular interest are those of the axial current (leading to g_{A}) and of the scalar density (with $\langle N| \bar{s} s|N\rangle$ needed for dark matter searches). Other such matrix elements provide information on the parton distribution functions (PDFs) including their low moments. More recently, methods to directly access PDFs are being developed (see, e.g., Ref. [233] for a recent summary).

Finally, we note that there is much recent interest in studying QCD-like theories with more fermions, possibly in other representations of the gauge group (see, e.g., [235]). The main interest is to find nearly conformal theories which might be candidates for "walking technicolor" models.

17.4 Outlook

While LQCD calculations have made major strides in the last decade, and are now playing an important role in constraining the Standard Model, there are many calculations that could be done in principle but are not yet mature due to limitations in computational resources. As we move to exascale resources (10 ${ }^{18}$ floating point operations per second), the list of mature calculations will grow. Examples that we expect to mature in the next few years are results for B meson and Λ_{b} baryon form factors covering the full range of q^{2}; results for excited hadrons, including quark-model exotics, at close to physical light-quark masses; results for moments of structure functions; results for the simplest nucleon matrix elements; $K \rightarrow \pi \pi$ amplitudes (allowing a prediction of $\epsilon^{\prime} / \epsilon$ from the Standard Model); hadronic vacuum polarization contributions to $g_{\mu}-2$, the running of α_{EM} and α_{s}; $\frac{\pi}{K} \rightarrow \gamma \gamma$ and related amplitudes; long-distance contributions to $\bar{K} \leftrightarrow K$ mixing; the light-by-light contribution to $g_{\mu}-2$; and determinations of long distance contributions to rare kaon decays such as $K \rightarrow \pi \nu \bar{\nu}$. There will also be steady improvement in the precision attained for the mature quantities discussed above. As already noted, this will ultimately require simulations with $m_{u} \neq m_{d}$ and including electromagnetic effects.

References

[1] K. G. Wilson, Phys. Rev. D10, 2445 (1974).
[2] T. Degrand \& C. DeTar, "Lattice Methods for Quantum Chromodynamics," World Scientific (2006).
[3] C. Gattringer \& C.B. Lang, "Quantum Chromodynamics on the Lattice: An Introductory Presentation," Springer (2009).
[4] "Modern Pespectives in Lattice QCD: quantum field theory and high performance computing" (Lecture notes of the Les Houches Summer School, Vol. 93) eds. L. Lellouch et al., Oxford Univ. Press. (Aug. 2011).
[5] W. Zimmermann, in "Lectures on Elementary Particles and Quantum Field Theory", ed. S. Deser et al., MIT Press, Cambridge, MA (1971); K. Symanzik, Nucl. Phys. B226, 187 (1983); K. Symanzik, Nucl. Phys. B226, 205 (1983).
[6] M. Luscher and P. Weisz, Commun. Math. Phys. 97, 59 (1985), [Erratum: Commun. Math. Phys.98,433(1985)].
[7] Y. Iwasaki, UT-HEP-118.
[8] H. B. Nielsen and M. Ninomiya, Phys. Lett. 105B, 219 (1981).
[9] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572 (1985).
[10] K. Jansen et al., Phys. Lett. B372, 275 (1996), [heplat/9512009].
[11] M. Luscher, JHEP 05, 052 (2003), [hep-lat/0304007].
[12] M. Luscher, Comput. Phys. Commun. 156, 209 (2004), [hep-lat/0310048]; M. Luscher, Comput. Phys. Commun. 165, 199 (2005), [hep-lat/0409106]; M. Hasenbusch, Phys. Lett. B519, 177 (2001), [hep-lat/0107019]; C. Urbach et al., Comput. Phys. Commun. 174, 87 (2006), [hep-lat/0506011].
[13] S. Durr et al., Phys. Lett. B705, 477 (2011), [arXiv:1106.3230].
[14] N. Ishizuka et al., Phys. Rev. D92, 7, 074503 (2015), [arXiv:1505.05289].
[15] R. Frezzotti et al. (Alpha), JHEP 08, 058 (2001), [heplat/0101001].
[16] R. Frezzotti and G. C. Rossi, JHEP 08, 007 (2004), [heplat/0306014].
[17] R. Frezzotti and G. C. Rossi, Nucl. Phys. Proc. Suppl. 128, 193 (2004), [hep-lat/0311008].
[18] R. Frezzotti and G. C. Rossi, JHEP 10, 070 (2004), [heplat/0407002].
[19] L. Susskind, Phys. Rev. D16, 3031 (1977).
[20] M. Golterman, PoS CONFINEMENT8, 014 (2008).
[21] C. Bernard, Phys. Rev. D73, 114503 (2006), [heplat/0603011]; S. R. Sharpe, PoS LAT2006, 022 (2006), [hep-lat/0610094].
[22] G. P. Lepage, Phys. Rev. D59, 074502 (1999), [heplat/9809157].
[23] A. Bazavov et al. (MILC), Rev. Mod. Phys. 82, 1349 (2010), [arXiv:0903.3598].
[24] E. Follana et al. (HPQCD, UKQCD), Phys. Rev. D75, 054502 (2007), [hep-lat/0610092].
[25] C. T. H. Davies et al., Phys. Rev. D82, 114504 (2010), [arXiv:1008.4018].
[26] G. C. Donald et al., Phys. Rev. D86, 094501 (2012), [arXiv:1208.2855].
[27] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D25, 2649 (1982).
[28] P. Hasenfratz, V. Laliena and F. Niedermayer, Phys. Lett. B427, 125 (1998), [hep-lat/9801021].
[29] M. Luscher, Phys. Lett. B428, 342 (1998), [heplat/9802011].
[30] D. B. Kaplan, Phys. Lett. B288, 342 (1992), [heplat/9206013]; Y. Shamir, Nucl. Phys. B406, 90 (1993), [heplat/9303005]; Y. Shamir, Nucl. Phys. B417, 167 (1994), [hep-lat/9310006].
[31] H. Neuberger, Phys. Lett. B417, 141 (1998), [heplat/9707022]; H. Neuberger, Phys. Lett. B427, 353 (1998), [hep-lat/9801031].
[32] A. Borici, NATO Sci. Ser. C 553, 41 (2000), [heplat/9912040].
[33] A. D. Kennedy (2006), [hep-lat/0607038].
[34] E. Shintani et al. (JLQCD), Phys. Rev. Lett. 101, 242001 (2008), [arXiv:0806.4222].
[35] P. A. Boyle et al., JHEP 12, 008 (2017), [arXiv:1701.02644].
[36] K. Nakayama, B. Fahy and S. Hashimoto, Phys. Rev. D94, 5, 054507 (2016), [arXiv:1606.01002].
[37] C. McNeile et al., Phys. Rev. D85, 031503 (2012), [arXiv:1110.4510].
[38] A. Bazavov et al., Phys. Rev. D98, 7, 074512 (2018), [arXiv:1712.09262].
[39] A. Bazavov et al. (Fermilab Lattice, MILC, TUMQCD), Phys. Rev. D98, 5, 054517 (2018), [arXiv:1802.04248].
[40] E. Eichten and B. R. Hill, Phys. Lett. B234, 511 (1990).
[41] J. Heitger and R. Sommer (ALPHA), JHEP 02, 022 (2004), [hep-lat/0310035]; B. Blossier et al. (ALPHA), JHEP 12, 039 (2010), [arXiv:1006.5816].
[42] B. A. Thacker and G. P. Lepage, Phys. Rev. D43, 196 (1991); G. P. Lepage et al., Phys. Rev. D46, 4052 (1992), [hep-lat/9205007].
[43] R. J. Dowdall et al. (HPQCD), Phys. Rev. D85, 054509 (2012), [arXiv:1110.6887].
[44] A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997), [hep-lat/9604004].
[45] S. Aoki, Y. Kuramashi and S.-i. Tominaga, Prog. Theor. Phys. 109, 383 (2003), [hep-lat/0107009].
[46] N. H. Christ, M. Li and H.-W. Lin, Phys. Rev. D76, 074505 (2007), [hep-lat/0608006].
[47] Y. Aoki et al. (RBC, UKQCD), Phys. Rev. D86, 116003 (2012), [arXiv:1206.2554].
[48] N. H. Christ et al., Phys. Rev. D91, 5, 054502 (2015), [arXiv:1404.4670].
[49] M. B. Oktay and A. S. Kronfeld, Phys. Rev. D78, 014504 (2008), [arXiv:0803.0523].
[50] J. A. Bailey et al., Eur. Phys. J. C77, 11, 768 (2017), [arXiv:1701.00345].
[51] B. Blossier et al. (ETM), JHEP 04, 049 (2010), [arXiv:0909.3187].
[52] S. Borsanyi et al., Science 347, 1452 (2015), [arXiv:1406.4088].
[53] S. Aoki et al. (Flavour Lattice Averaging Group) (2019), [arXiv:1902.08191].
[54] R. Horsley et al., J. Phys. G 43, no. 10, 10LT02 (2016).
[55] S. Aoki et al. [PACS-CS Collab.], PTEP 2012, 01A102 (2012).
[56] T. Ishikawa et al., Phys. Rev. Lett. 109, 072002 (2012), [arXiv:1202.6018].
[57] G. M. de Divitiis et al. (RM123), Phys. Rev. D87, 11, 114505 (2013), [arXiv:1303.4896].
[58] P. Boyle et al., JHEP 09, 153 (2017), [arXiv:1706.05293].
[59] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
[60] N. Carrasco et al., Phys. Rev. D91, 7, 074506 (2015), [arXiv:1502.00257].
[61] D. Giusti et al., Phys. Rev. Lett. 120, 7, 072001 (2018), [arXiv:1711.06537].
[62] M. Di Carlo et al. (2019), [arXiv:1904.08731].
[63] M. Bruno et al. (ALPHA), Phys. Rev. Lett. 114, 10, 102001 (2015), [arXiv:1410.8374].
[64] F. Knechtli et al. (ALPHA), Phys. Lett. B774, 649 (2017), [arXiv:1706.04982].
[65] A. Athenodorou et al. (ALPHA), Nucl. Phys. B943, 114612 (2019), [arXiv:1809.03383].
[66] S. Cali, F. Knechtli and T. Korzec, Eur. Phys. J. C79, 7, 607 (2019), [arXiv:1905.12971].
[67] D. Giusti et al., Phys. Rev. D95, 11, 114504 (2017), [arXiv:1704.06561].
[68] A. Bazavov et al. (Fermilab Lattice, MILC), Phys. Rev. D93, 11, 113016 (2016), [arXiv:1602.03560].
[69] R. J. Dowdall et al., Phys. Rev. D86, 094510 (2012), [arXiv:1207.5149].
[70] C. McNeile et al., Phys. Rev. D86, 074503 (2012), [arXiv:1207.0994].
[71] S. Schaefer, R. Sommer and F. Virotta (ALPHA), Nucl. Phys. B845, 93 (2011), [arXiv:1009.5228].
[72] M. Luscher, PoS LATTICE2010, 015 (2010), [arXiv:1009.5877].
[73] R. Brower et al., Phys. Lett. B560, 64 (2003), [heplat/0302005].
[74] S. Aoki et al., Phys. Rev. D76, 054508 (2007), [arXiv:0707.0396].
[75] G. Colangelo, S. Durr and C. Haefeli, Nucl. Phys. B721, 136 (2005), [hep-lat/0503014].
[76] M. Luscher, Commun. Math. Phys. 104, 177 (1986).
[77] G. Martinelli et al., Nucl. Phys. B445, 81 (1995), [heplat/9411010].
[78] M. Luscher et al., Nucl. Phys. B384, 168 (1992), [heplat/9207009].
[79] G. Martinelli et al., Phys. Lett. B411, 141 (1997), [heplat/9705018].
[80] B. Colquhoun et al., Phys. Rev. D91, 7, 074514 (2015), [arXiv:1408.5768].
[81] M. Luscher et al., Nucl. Phys. B413, 481 (1994), [heplat/9309005]; M. Della Morte et al. (ALPHA), Nucl. Phys. B713, 378 (2005), [hep-lat/0411025].
[82] M. Tomii et al. (JLQCD), Phys. Rev. D94, 5, 054504 (2016), [arXiv:1604.08702].
[83] S. Duane et al., Phys. Lett. B195, 216 (1987).
[84] M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007), [hep-lat/0608015].
[85] M. Luscher, JHEP 07, 081 (2007), [arXiv:0706.2298].
[86] M. Luscher, JHEP 12, 011 (2007), [arXiv:0710.5417].
[87] A. Stathopoulos and K. Orginos, SIAM J. Sci. Comput. 32, 439 (2010), [arXiv:0707.0131].
[88] P. A. Boyle (2014), [arXiv:1402.2585].
[89] R. Babich et al., Phys. Rev. Lett. 105, 201602 (2010), [arXiv:1005.3043].
[90] A. Frommer et al., SIAM J. Sci. Comput. 36, A1581 (2014), [arXiv:1303.1377].
[91] M. Bruno, S. Schaefer and R. Sommer (ALPHA), JHEP 08, 150 (2014), [arXiv:1406.5363].
[92] M. Creutz, Phys. Rev. D38, 1228 (1988); R. Gupta, G. W. Kilcup and S. R. Sharpe, Phys. Rev. D38, 1278 (1988).
[93] J. E. Mandula, G. Zweig and J. Govaerts, Nucl. Phys. B228, 91 (1983); J. E. Mandula and E. Shpiz, Nucl. Phys. B232, 180 (1984).
[94] H. B. Meyer and M. J. Teper, Nucl. Phys. B658, 113 (2003), [hep-lat/0212026].
[95] J. J. Dudek et al., Phys. Rev. D82, 034508 (2010), [arXiv:1004.4930]; J. J. Dudek et al., Phys. Rev. D83, 111502 (2011), [arXiv:1102.4299]; R. G. Edwards et al., Phys. Rev. D84, 074508 (2011), [arXiv:1104.5152].
[96] M. Luscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
[97] G. P. Engel et al. (BGR [Bern-Graz-Regensburg]), Phys. Rev. D82, 034505 (2010), [arXiv:1005.1748]; D. Mohler et al., Phys. Rev. Lett. 111, 22, 222001 (2013), [arXiv:1308.3175].
[98] M. S. Mahbub et al., Annals Phys. 342, 270 (2014), [arXiv:1310.6803].
[99] J. Bulava et al., Nucl. Phys. B910, 842 (2016), [arXiv:1604.05593].
[100] R. Brett et al., Nucl. Phys. B932, 29 (2018), [arXiv:1802.03100].
[101] M. Luscher, Commun. Math. Phys. 105, 153 (1986); M. Luscher, Nucl. Phys. B364, 237 (1991).
[102] L. Maiani and M. Testa, Phys. Lett. B245, 585 (1990).
[103] M. T. Hansen, H. B. Meyer and D. Robaina, Phys. Rev. D96, 9, 094513 (2017), [arXiv:1704.08993].
[104] M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D99, 9, 094508 (2019), [arXiv:1903.06476].
[105] J. Bulava and M. T. Hansen (2019), [arXiv:1903.11735].
[106] R. A. Briceno, J. J. Dudek and R. D. Young, Rev. Mod. Phys. 90, 2, 025001 (2018), [arXiv:1706.06223].
[107] N. Brambilla et al. (2019), [arXiv:1907.07583].
[108] M. J. Savage, Prog. Part. Nucl. Phys. 67, 140 (2012), [arXiv:1110.5943]; T. Inoue et al. (HAL QCD), Phys. Rev. C91, 1, 011001 (2015), [arXiv:1408.4892].
[109] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A48, 67 (2012), [arXiv:1203.1241]; R. A. Briceno and Z. Davoudi, Phys. Rev. D87, 9, 094507 (2013), [arXiv:1212.3398]; M. T. Hansen and S. R. Sharpe, Phys. Rev. D90, 11, 116003 (2014), [arXiv:1408.5933]; M. T. Hansen and S. R. Sharpe, Phys. Rev. D92, 11, 114509 (2015), [arXiv:1504.04248]; R. A. Briceño, M. T. Hansen and S. R. Sharpe, Phys. Rev. D95, 7, 074510 (2017), [arXiv:1701.07465]; H. W. Hammer, J. Y. Pang and A. Rusetsky, JHEP 10, 115 (2017), [arXiv:1707.02176].
[110] R. A. Briceno, M. T. Hansen and S. R. Sharpe, Phys. Rev. D99, 1, 014516 (2019), [arXiv:1810.01429].
[111] M. Mai and M. Döring, Eur. Phys. J. A53, 12, 240 (2017), [arXiv:1709.08222].
[112] M. T. Hansen and S. R. Sharpe (2019), [arXiv:1901.00483].
[113] L. Lellouch and M. Luscher, Commun. Math. Phys. 219, 31 (2001), [hep-lat/0003023].
[114] T. Blum et al., Phys. Rev. Lett. 108, 141601 (2012), [arXiv:1111.1699]; T. Blum et al., Phys. Rev. D86, 074513 (2012), [arXiv:1206.5142].
[115] Z. Bai et al. (RBC, UKQCD), Phys. Rev. Lett. 115, 21, 212001 (2015), [arXiv:1505.07863].
[116] T. Blum et al., Phys. Rev. D91, 7, 074502 (2015), [arXiv:1502.00263].
[117] V. Bernard et al., JHEP 01, 019 (2011), [arXiv:1010.6018]; M. Doring et al., Eur. Phys. J. A47, 139 (2011), [arXiv:1107.3988]; M. T. Hansen and S. R. Sharpe, Phys. Rev. D86, 016007 (2012), [arXiv:1204.0826]; R. A. Briceno and Z. Davoudi, Phys. Rev. D88, 9, 094507 (2013), [arXiv:1204.1110].
[118] R. A. Briceño, M. T. Hansen and A. Walker-Loud, Phys. Rev. D91, 3, 034501 (2015), [arXiv:1406.5965].
[119] R. A. Briceño and M. T. Hansen, Phys. Rev. D94, 1, 013008 (2016), [arXiv:1509.08507].
[120] R. A. Briceño et al., Phys. Rev. D93, 11, 114508 (2016), [arXiv:1604.03530].
[121] D. Agadjanov et al., JHEP 06, 043 (2016), [arXiv:1603.07205].
[122] S. Hashimoto, PTEP 2017, 5, 053B03 (2017), [arXiv:1703.01881].
[123] X. Feng et al., Phys. Rev. Lett. 107, 081802 (2011), [arXiv:1103.4818].
[124] P. Boyle et al., Phys. Rev. D85, 074504 (2012), [arXiv:1107.1497].
[125] M. Della Morte et al., JHEP 03, 055 (2012), [arXiv:1112.2894].
[126] F. Burger et al. (ETM), JHEP 02, 099 (2014), [arXiv:1308.4327].
[127] B. Chakraborty et al. (HPQCD), Phys. Rev. D89, 11, 114501 (2014), [arXiv:1403.1778].
[128] F. Burger, K. Jansen, M. Petschlies and G. Pientka, Eur. Phys. J. C76, 464 (2016).
[129] B. Chakraborty et al., Phys. Rev. D93, 7, 074509 (2016), [arXiv:1512.03270].
[130] B. Chakraborty et al., Phys. Rev. D96, 3, 034516 (2017), [arXiv:1601.03071].
[131] T. Blum et al. (RBC/UKQCD), JHEP 04, 063 (2016), [Erratum: JHEP05,034(2017)], [arXiv:1602.01767].
[132] S. Borsanyi et al., Phys. Rev. D96, 7, 074507 (2017), [arXiv:1612.02364].
[133] M. Della Morte et al., JHEP 10, 020 (2017), [arXiv:1705.01775].
[134] S. Borsanyi et al. (Budapest-Marseille-Wuppertal), Phys. Rev. Lett. 121, 2, 022002 (2018), [arXiv:1711.04980].
[135] T. Blum et al. (RBC, UKQCD), Phys. Rev. Lett. 121, 2, 022003 (2018), [arXiv:1801.07224].
[136] B. Chakraborty et al., Phys. Rev. D98, 9, 094503 (2018), [arXiv:1806.08190].
[137] D. Giusti, F. Sanfilippo and S. Simula, Phys. Rev. D98, 11, 114504 (2018), [arXiv:1808.00887].
[138] C. T. H. Davies et al. (Fermilab Lattice, LATTICEHPQCD, MILC) (2019), [arXiv:1902.04223].
[139] T. Blum, Phys. Rev. Lett. 91, 052001 (2003), [heplat/0212018].
[140] T. Blum et al., Phys. Rev. Lett. 114, 1, 012001 (2015), [arXiv:1407.2923].
[141] T. Blum et al., Phys. Rev. D93, 1, 014503 (2016), [arXiv:1510.07100].
[142] J. Green et al., Phys. Rev. Lett. 115, 22, 222003 (2015), [arXiv:1507.01577].
[143] T. Blum et al., Phys. Rev. Lett. 118, 2, 022005 (2017), [arXiv:1610.04603].
[144] T. Blum et al., Phys. Rev. D96, 3, 034515 (2017), [arXiv:1705.01067].
[145] X. Feng et al., Phys. Rev. Lett. 109, 182001 (2012), [arXiv:1206.1375].
[146] A. Gérardin, H. B. Meyer and A. Nyffeler, Phys. Rev. D94, 7, 074507 (2016), [arXiv:1607.08174].
[147] A. Gérardin et al., Phys. Rev. D98, 7, 074501 (2018), [arXiv:1712.00421].
[148] Z. Bai et al., Phys. Rev. Lett. 113, 112003 (2014), [arXiv:1406.0916].
[149] N. H. Christ et al. (RBC, UKQCD), Phys. Rev. D92, 9, 094512 (2015), [arXiv:1507.03094].
[150] N. H. Christ et al. (RBC, UKQCD), Phys. Rev. D93, 11, 114517 (2016), [arXiv:1605.04442].
[151] N. H. Christ et al., Phys. Rev. D94, 11, 114516 (2016), [arXiv:1608.07585].
[152] Z. Bai et al., Phys. Rev. Lett. 118, 25, 252001 (2017), [arXiv:1701.02858].
[153] Z. Bai et al., Phys. Rev. D98, 7, 074509 (2018), [arXiv:1806.11520].
[154] C. Bernard et al., Nucl. Phys. Proc. Suppl. 119, 170 (2003), [hep-lat/0209086].
[155] S. Perantonis and C. Michael, Nucl. Phys. B347, 854 (1990).
[156] G. S. Bali and K. Schilling, Phys. Rev. D46, 2636 (1992).
[157] S. Necco and R. Sommer, Nucl. Phys. B622, 328 (2002), [hep-lat/0108008].
[158] J. M. Blairon et al., Nucl. Phys. B180, 439 (1981).
[159] H. Fukaya et al. (JLQCD), Phys. Rev. Lett. 104, 122002 (2010), [Erratum: Phys. Rev. Lett.105,159901(2010)], [arXiv:0911.5555].
[160] H. Fukaya et al. (JLQCD, TWQCD), Phys. Rev. D83, 074501 (2011), [arXiv:1012.4052].
[161] L. Giusti and M. Luscher, JHEP 03, 013 (2009), [arXiv:0812.3638].
[162] K. Cichy, E. Garcia-Ramos and K. Jansen, JHEP 10, 175 (2013), [arXiv:1303.1954].
[163] G. P. Engel et al., Phys. Rev. Lett. 114, 11, 112001 (2015), [arXiv:1406.4987].
[164] G. P. Engel et al., Phys. Rev. D91, 5, 054505 (2015), [arXiv:1411.6386].
[165] S. Aoki et al., Eur. Phys. J. C77, 2, 112 (2017), [arXiv:1607.00299].
[166] T. Blum et al. (RBC, UKQCD), Phys. Rev. D93, 7, 074505 (2016), [arXiv:1411.7017].
[167] B. J. Choi et al. (SWME), Phys. Rev. D93, 1, 014511 (2016), [arXiv:1509.00592].
[168] J. Laiho and R. S. Van de Water, PoS LATTICE2011, 293 (2011), [arXiv:1112.4861].
[169] E. Gamiz et al. (HPQCD), Phys. Rev. D80, 014503 (2009), [arXiv:0902.1815].
[170] Y. Aoki et al., Phys. Rev. D91, 11, 114505 (2015), [arXiv:1406.6192].
[171] A. Bazavov et al., Phys. Rev. D97, 3, 034513 (2018), [arXiv:1706.04622].
[172] M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1964).
[173] H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984).
[174] P. A. Boyle et al., Phys. Rev. Lett. 100, 141601 (2008), [arXiv:0710.5136].
[175] V. Lubicz et al. (ETM), Phys. Rev. D80, 111502 (2009), [arXiv:0906.4728]; V. Lubicz et al. (ETM), PoS LATTICE2010, 316 (2010), [arXiv:1012.3573].
[176] P. A. Boyle et al. (RBC-UKQCD), Eur. Phys. J. C69, 159 (2010), [arXiv:1004.0886].
[177] A. Bazavov et al., Phys. Rev. D87, 073012 (2013), [arXiv:1212.4993].
[178] T. Kaneko et al. (JLQCD), PoS LATTICE2012, 111 (2012), [arXiv:1211.6180].
[179] P. A. Boyle et al., JHEP 08, 132 (2013), [arXiv:1305.7217].
[180] P. A. Boyle et al. (RBC/UKQCD), JHEP 06, 164 (2015), [arXiv:1504.01692].
[181] N. Carrasco et al., Phys. Rev. D93, 11, 114512 (2016), [arXiv:1602.04113].
[182] H. Na et al., Phys. Rev. D82, 114506 (2010), [arXiv:1008.4562].
[183] H. Na et al., Phys. Rev. D84, 114505 (2011), [arXiv:1109.1501].
[184] V. Lubicz et al. (ETM), Phys. Rev. D96, 5, 054514 (2017), [Erratum: Phys. Rev.D99,no.9,099902(2019)], [arXiv:1706.03017].
[185] T. Kaneko et al. (JLQCD), EPJ Web Conf. 175, 13007 (2018), [arXiv:1711.11235].
[186] E. Dalgic et al., Phys. Rev. D73, 074502 (2006), [Erratum: Phys. Rev.D75,119906(2007)], [hep-lat/0601021].
[187] J. M. Flynn et al., Phys. Rev. D91, 7, 074510 (2015), [arXiv:1501.05373].
[188] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D92, 1, 014024 (2015), [arXiv:1503.07839].
[189] B. Colquhoun et al., Phys. Rev. D93, 3, 034502 (2016), [arXiv:1510.07446].
[190] Z. Gelzer et al., EPJ Web Conf. 175, 13024 (2018), [arXiv:1710.09442].
[191] B. Colquhoun, S. Hashimoto and T. Kaneko, PoS LATTICE2018, 274 (2018), [arXiv:1811.00227].
[192] C. Bourrely, B. Machet and E. de Rafael, Nucl. Phys. B189, 157 (1981); C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. Lett. 74, 4603 (1995), [hep-ph/9412324]; T. Becher and R. J. Hill, Phys. Lett. B633, 61 (2006), [hep-ph/0509090]; C. Bourrely, I. Caprini and L. Lellouch, Phys. Rev. D79, 013008 (2009), [Erratum: Phys. Rev.D82,099902(2010)], [arXiv:0807.2722].
[193] M. C. Arnesen et al., Phys. Rev. Lett. 95, 071802 (2005), [hep-ph/0504209].
[194] J. A. Bailey et al., Phys. Rev. D79, 054507 (2009), [arXiv:0811.3640].
[195] S. Hashimoto et al., Phys. Rev. D61, 014502 (1999), [hepph/9906376].
[196] S. Hashimoto et al., Phys. Rev. D66, 014503 (2002), [hepph/0110253].
[197] C. Bernard et al., Phys. Rev. D79, 014506 (2009), [arXiv:0808.2519].
[198] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D89, 11, 114504 (2014), [arXiv:1403.0635].
[199] J. Harrison, C. Davies and M. Wingate (HPQCD), Phys. Rev. D97, 5, 054502 (2018), [arXiv:1711.11013].
[200] E. McLean et al., Phys. Rev. D99, 11, 114512 (2019), [arXiv:1904.02046].
[201] T. Bhattacharya et al. (LANL/SWME), PoS LATTICE2018, 283 (2018).
[202] J. A. Bailey et al. (MILC), Phys. Rev. D92, 3, 034506 (2015), [arXiv:1503.07237].
[203] H. Na et al. (HPQCD), Phys. Rev. D92, 5, 054510 (2015), [Erratum: Phys. Rev.D93,no.11,119906(2016)], [arXiv:1505.03925].
[204] A. V. Avilés-Casco et al. (Fermilab Lattice, MILC), PoS LATTICE2018, 282 (2019), [arXiv:1901.00216].
[205] T. Kaneko et al. (JLQCD), PoS LATTICE2018, 311 (2018), [arXiv:1811.00794].
[206] W. Detmold, C. Lehner and S. Meinel, Phys. Rev. D92, 3, 034503 (2015), [arXiv:1503.01421].
[207] W. Detmold and S. Meinel, Phys. Rev. D93, 7, 074501 (2016), [arXiv:1602.01399].
[208] R. R. Horgan et al., Phys. Rev. D89, 9, 094501 (2014), [arXiv:1310.3722].
[209] J. A. Bailey et al., Phys. Rev. D93, 2, 025026 (2016), [arXiv:1509.06235].
[210] D. Du et al., Phys. Rev. D93, 3, 034005 (2016), [arXiv:1510.02349].
[211] C. T. H. Davies et al. (HPQCD), Phys. Rev. D78, 114507 (2008), [arXiv:0807.1687].
[212] C. McNeile et al., Phys. Rev. D82, 034512 (2010), [arXiv:1004.4285].
[213] E. Shintani et al., Phys. Rev. D82, 7, 074505 (2010), [Erratum: Phys. Rev.D89,no.9,099903(2014)], [arXiv:1002.0371].
[214] R. J. Hudspith et al., Mod. Phys. Lett. A31, 32, 1630037 (2016).
[215] I. Allison et al. (HPQCD), Phys. Rev. D78, 054513 (2008), [arXiv:0805.2999].
[216] B. Chakraborty et al., Phys. Rev. D91, 5, 054508 (2015), [arXiv:1408.4169].
[217] Y. Maezawa and P. Petreczky, Phys. Rev. D94, 3, 034507 (2016), [arXiv:1606.08798].
[218] Q. Mason et al. (HPQCD, UKQCD), Phys. Rev. Lett. 95, 052002 (2005), [hep-lat/0503005].
[219] A. Bazavov et al., Phys. Rev. D86, 114031 (2012), [arXiv:1205.6155].
[220] A. Bazavov et al., Phys. Rev. D90, 7, 074038 (2014), [arXiv:1407.8437].
[221] F. Karbstein, M. Wagner and M. Weber, Phys. Rev. D98, 11, 114506 (2018), [arXiv:1804.10909].
[222] H. Takaura et al., JHEP 04, 155 (2019), [arXiv:1808.01643].
[223] B. Blossier et al., Phys. Rev. D85, 034503 (2012), [arXiv:1110.5829]; B. Blossier et al., Phys. Rev. Lett. 108, 262002 (2012), [arXiv:1201.5770].
[224] S. Zafeiropoulos et al., Phys. Rev. Lett. 122, 16, 162002 (2019), [arXiv:1902.08148].
[225] S. Aoki et al. (PACS-CS), JHEP 10, 053 (2009), [arXiv:0906.3906].
[226] P. Fritzsch et al., PoS LATTICE2014, 291 (2014), [arXiv:1411.7648].
[227] M. Bruno et al. (ALPHA), Phys. Rev. Lett. 119, 10, 102001 (2017), [arXiv:1706.03821].
[228] S. Durr et al., Phys. Lett. B701, 265 (2011), [arXiv:1011.2403].
[229] S. Durr et al., JHEP 08, 148 (2011), [arXiv:1011.2711].
[230] S. Capitani et al., Nucl. Phys. B544, 669 (1999), [Erratum: Nucl. Phys.B582,762(2000)], [hep-lat/9810063].
[231] A. Bussone et al. (ETM), Phys. Rev. D93, 11, 114505 (2016), [arXiv:1603.04306].
[232] SISSA, Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018), volume LATTICE2018, SISSA (2019), URL https://pos.sissa.it/334/.
[233] W. Detmold et al. (USQCD) (2019), [arXiv:1904.09512].
[234] A. S. Kronfeld et al. (USQCD) (2019), [arXiv:1904.09931].
[235] R. C. Brower et al. (USQCD) (2019), [arXiv:1904.09964].
[236] C. Lehner et al. (USQCD) (2019), [arXiv:1904.09479].
[237] A. Bazavov et al. (USQCD) (2019), [arXiv:1904.09951].
[238] V. Cirigliano et al. (USQCD) (2019), [arXiv:1904.09704].
[239] B. Joó et al. (USQCD) (2019), [arXiv:1904.09725].

18. Structure Functions

Revised August 2019 by E.C. Aschenauer (BNL), R.S. Thorne (UCL) and R. Yoshida (Jefferson Lab).

18.1 Deep inelastic scattering

High-energy lepton-nucleon scattering plays a key role in determining the partonic structure of the proton. The process $\ell N \rightarrow \ell^{\prime} X$ is illustrated in Fig. 18.1. The filled circle in this figure represents the internal structure of the proton which can be expressed in terms of structure functions.

Figure 18.1: Kinematic quantities for the description of deep inelastic scattering. The quantities k and k^{\prime} are the four-momenta of the incoming and outgoing leptons, P is the four-momentum of a nucleon with mass M, and W is the mass of the recoiling system X. The exchanged particle is a $\gamma, W^{ \pm}$, or Z; it transfers four-momentum $q=k-k^{\prime}$ to the nucleon.

Invariant quantities:
$\nu=\frac{q \cdot P}{M}=E-E^{\prime}$ is the lepton's energy loss in the nucleon rest frame (in earlier literature sometimes $\nu=q \cdot P$). Here, E and E^{\prime} are the initial and final lepton energies in the nucleon rest frame.
$Q^{2}=-q^{2}=2\left(E E^{\prime}-\vec{k} \cdot \vec{k}^{\prime}\right)-m_{\ell}^{2}-m_{\ell^{\prime}}^{2}$ where $m_{\ell}\left(m_{\ell^{\prime}}\right)$ is the initial (final) lepton mass. If $E E^{\prime} \sin ^{2}(\theta / 2) \gg$ $m_{\ell}^{2}, m_{\ell^{\prime}}^{2}$, then
$\approx 4 E E^{\prime} \sin ^{2}(\theta / 2)$, where θ is the lepton's scattering angle with respect to the lepton beam direction.
$x=\frac{Q^{2}}{2 M \nu}$ where, in the parton model, x is the fraction of the nucleon's momentum carried by the struck quark. Beyond leading order the equation remains the definition of x, but this is no longer identical to nucleon momentum fraction.
$y=\frac{q \cdot P}{k \cdot P}=\frac{\nu}{E}$ is the fraction of the lepton's energy lost in the nucleon rest frame.
$W^{2}=(P+q)^{2}=M^{2}+2 M \nu-Q^{2}$ is the mass squared of the system X recoiling against the scattered lepton.
$s=(k+P)^{2}=\frac{Q^{2}}{x y}+M^{2}+m_{\ell}^{2}$ is the center-of-mass energy squared
of the lepton-nucleon system.
The process in Fig. 18.1 is called deep ($Q^{2} \gg M^{2}$) inelastic $\left(W^{2} \gg M^{2}\right)$ scattering (DIS). In what follows, the masses of the initial and scattered leptons, m_{ℓ} and $m_{\ell^{\prime}}$, are neglected.

18.1.1 DIS cross sections

The double-differential cross section for deep inelastic scattering can be expressed in terms of kinematic variables in several ways.

$$
\begin{equation*}
\frac{d^{2} \sigma}{d x d y}=x\left(s-M^{2}\right) \frac{d^{2} \sigma}{d x d Q^{2}}=\frac{2 \pi M \nu}{E^{\prime}} \frac{d^{2} \sigma}{d \Omega_{\mathrm{Nrest}} d E^{\prime}} \tag{18.1}
\end{equation*}
$$

In lowest-order perturbation theory, the cross section for the scattering of polarized leptons on polarized nucleons can be expressed in terms of the products of leptonic and hadronic tensors associated with the coupling of the exchanged bosons at the upper and lower vertices in Fig. 18.1 (see Refs. [1-4])

$$
\begin{equation*}
\frac{d^{2} \sigma}{d x d y}=\frac{2 \pi y \alpha^{2}}{Q^{4}} \sum_{j} \eta_{j} L_{j}^{\mu \nu} W_{\mu \nu}^{j} \tag{18.2}
\end{equation*}
$$

For neutral-current processes, the summation is over $j=\gamma, Z$ and γZ representing photon and Z exchange and the interference
between them, whereas for charged-current interactions there is only W exchange, $j=W$. (For transverse nucleon polarization, there is a dependence on the azimuthal angle of the scattered lepton.) The lepton tensor $L_{\mu \nu}$ is associated with the coupling of the exchange boson to the leptons. For incoming leptons of charge $e= \pm 1$ and helicity $\lambda= \pm 1$,

$$
\begin{align*}
L_{\mu \nu}^{\gamma} & =2\left(k_{\mu} k_{\nu}^{\prime}+k_{\mu}^{\prime} k_{\nu}-\left(k \cdot k^{\prime}-m_{\ell}^{2}\right) g_{\mu \nu}-i \lambda \varepsilon_{\mu \nu \alpha \beta} k^{\alpha} k^{\prime \beta}\right) \\
L_{\mu \nu}^{\gamma Z} & =\left(g_{V}^{e}+e \lambda g_{A}^{e}\right) L_{\mu \nu}^{\gamma}, \quad L_{\mu \nu}^{Z}=\left(g_{V}^{e}+e \lambda g_{A}^{e}\right)^{2} L_{\mu \nu}^{\gamma} \\
L_{\mu \nu}^{W} & =(1+e \lambda)^{2} L_{\mu \nu}^{\gamma} \tag{18.3}
\end{align*}
$$

where $g_{V}^{e}=-\frac{1}{2}+2 \sin ^{2} \theta_{W}, \quad g_{A}^{e}=-\frac{1}{2}$.
Although here the helicity formalism is adopted, an alternative approach is to express the tensors in Eq. (18.3) in terms of the polarization of the lepton.

The factors η_{j} in Eq. (18.2) denote the ratios of the corresponding propagators and couplings to the photon propagator and coupling squared

$$
\begin{align*}
& \eta_{\gamma}=1 ; \quad \eta_{\gamma Z}=\left(\frac{G_{F} M_{Z}^{2}}{2 \sqrt{2} \pi \alpha}\right)\left(\frac{Q^{2}}{Q^{2}+M_{Z}^{2}}\right) \\
& \eta_{Z}=\eta_{\gamma Z}^{2} ; \quad \eta_{W}=\frac{1}{2}\left(\frac{G_{F} M_{W}^{2}}{4 \pi \alpha} \frac{Q^{2}}{Q^{2}+M_{W}^{2}}\right)^{2} \tag{18.4}
\end{align*}
$$

The hadronic tensor, which describes the interaction of the appropriate electroweak currents with the target nucleon, is given by

$$
\begin{equation*}
W_{\mu \nu}=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle P, S|\left[J_{\mu}^{\dagger}(z), J_{\nu}(0)\right]|P, S\rangle \tag{18.5}
\end{equation*}
$$

where J_{α} is the hadronic contribution to the electromagnetic, or weak current and S denotes the nucleon-spin 4 -vector, with $S^{2}=$ $-M^{2}$ and $S \cdot P=0$.

18.2 Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor (see Refs. [1-3])

$$
\begin{align*}
& W_{\mu \nu}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\frac{\hat{P}_{\mu} \hat{P}_{\nu}}{P \cdot q} F_{2}\left(x, Q^{2}\right) \\
& -i \varepsilon_{\mu \nu \alpha \beta} \frac{q^{\alpha} P^{\beta}}{2 P \cdot q} F_{3}\left(x, Q^{2}\right) \\
& +i \varepsilon_{\mu \nu \alpha \beta} \frac{q^{\alpha}}{P \cdot q}\left[S^{\beta} g_{1}\left(x, Q^{2}\right)+\left(S^{\beta}-\frac{S \cdot q}{P \cdot q} P^{\beta}\right) g_{2}\left(x, Q^{2}\right)\right] \\
& +\frac{1}{P \cdot q}\left[\frac{1}{2}\left(\hat{P}_{\mu} \hat{S}_{\nu}+\hat{S}_{\mu} \hat{P}_{\nu}\right)-\frac{S \cdot q}{P \cdot q} \hat{P}_{\mu} \hat{P}_{\nu}\right] g_{3}\left(x, Q^{2}\right) \\
& +\frac{S \cdot q}{P \cdot q}\left[\frac{\hat{P}_{\mu} \hat{P}_{\nu}}{P \cdot q} g_{4}\left(x, Q^{2}\right)+\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) g_{5}\left(x, Q^{2}\right)\right] \tag{18.6}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{P}_{\mu}=P_{\mu}-\frac{P \cdot q}{q^{2}} q_{\mu}, \quad \hat{S}_{\mu}=S_{\mu}-\frac{S \cdot q}{q^{2}} q_{\mu} \tag{18.7}
\end{equation*}
$$

In [2], the definition of $W_{\mu \nu}$ with $\mu \leftrightarrow \nu$ is adopted, which changes the sign of the $\varepsilon_{\mu \nu \alpha \beta}$ terms in Eq. (18.6), although the formulae given below are unchanged. Ref. [1] tabulates the relation between the structure functions defined in Eq. (18.6) and other choices available in the literature.
The cross sections for neutral- and charged-current deep inelastic scattering on unpolarized nucleons can be written in terms of
the structure functions in the generic form

$$
\begin{align*}
\frac{d^{2} \sigma^{i}}{d x d y} & =\frac{4 \pi \alpha^{2}}{x y Q^{2}} \eta^{i}\left\{\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{i}\right. \tag{18.8}\\
& \left.+y^{2} x F_{1}^{i} \mp\left(y-\frac{y^{2}}{2}\right) x F_{3}^{i}\right\}
\end{align*}
$$

where $i=\mathrm{NC}, \mathrm{CC}$ corresponds to neutral-current $(e N \rightarrow e X)$ or charged-current $(e N \rightarrow \nu X$ or $\nu N \rightarrow e X)$ processes, respectively. For incoming neutrinos, $L_{\mu \nu}^{W}$ of Eq. (18.3) is still true, but with e, λ corresponding to the outgoing charged lepton. In the last term of Eq. (18.8), the $-\operatorname{sign}$ is taken for an incoming e^{+}or $\bar{\nu}$ and the $+\operatorname{sign}$ for an incoming e^{-}or ν. The factor $\eta^{\mathrm{NC}}=1$ for unpolarized $e^{ \pm}$beams, whereas

$$
\begin{equation*}
\eta^{\mathrm{CC}}=(1 \pm \lambda)^{2} \eta_{W} \tag{18.9}
\end{equation*}
$$

with \pm for $\ell^{ \pm}$; and where λ is the helicity of the incoming lepton and η_{W} is defined in Eq. (18.4); for incoming neutrinos $\eta^{\mathrm{CC}}=$ $4 \eta_{W}$. The CC structure functions, which derive exclusively from W exchange, are

$$
\begin{equation*}
F_{1}^{\mathrm{CC}}=F_{1}^{W}, F_{2}^{\mathrm{CC}}=F_{2}^{W}, x F_{3}^{\mathrm{CC}}=x F_{3}^{W} \tag{18.10}
\end{equation*}
$$

The NC structure functions $F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}$ are, for $e^{ \pm} N \rightarrow e^{ \pm} X$, given by [5],
$F_{2}^{\mathrm{NC}}=F_{2}^{\gamma}-\left(g_{V}^{e} \pm \lambda g_{A}^{e}\right) \eta_{\gamma Z} F_{2}^{\gamma Z}+\left(g_{V}^{e{ }^{2}}+g_{A}^{e}{ }^{2} \pm 2 \lambda g_{V}^{e} g_{A}^{e}\right) \eta_{Z} F_{2}^{Z}$
(18.11)
and similarly for F_{1}^{NC}, whereas
$x F_{3}^{\mathrm{NC}}=-\left(g_{A}^{e} \pm \lambda g_{V}^{e}\right) \eta_{\gamma Z} x F_{3}^{\gamma Z}+\left[2 g_{V}^{e} g_{A}^{e} \pm \lambda\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right)\right] \eta_{Z} x F_{3}^{Z}$
(18.12)

The polarized cross-section difference

$$
\begin{equation*}
\Delta \sigma=\sigma\left(\lambda_{n}=-1, \lambda_{\ell}\right)-\sigma\left(\lambda_{n}=1, \lambda_{\ell}\right) \tag{18.13}
\end{equation*}
$$

where $\lambda_{\ell}, \lambda_{n}$ are the helicities (± 1) of the incoming lepton and nucleon, respectively, may be expressed in terms of the five structure functions $g_{1, \ldots 5}\left(x, Q^{2}\right)$ of Eq. (18.6). Explicitly,

$$
\begin{align*}
& \frac{d^{2} \Delta \sigma^{i}}{d x d y}=\frac{8 \pi \alpha^{2}}{x y Q^{2}} \eta^{i}\left\{-\lambda_{\ell} y\left(2-y-2 x^{2} y^{2} \frac{M^{2}}{Q^{2}}\right) x g_{1}^{i}\right. \\
& +\lambda_{\ell} 4 x^{3} y^{2} \frac{M^{2}}{Q^{2}} g_{2}^{i}+2 x^{2} y \frac{M^{2}}{Q^{2}}\left(1-y-x^{2} y^{2} \frac{M^{2}}{Q^{2}}\right) g_{3}^{i} \\
& \left.-\left(1+2 x^{2} y \frac{M^{2}}{Q^{2}}\right)\left[\left(1-y-x^{2} y^{2} \frac{M^{2}}{Q^{2}}\right) g_{4}^{i}+x y^{2} g_{5}^{i}\right]\right\} \tag{18.14}
\end{align*}
$$

with $i=$ NC or CC as before. The Eq. (18.13) corresponds to the difference of antiparallel minus parallel spins of the incoming particles for e^{-}or ν initiated reactions, but the difference of parallel minus antiparallel for e^{+}or $\bar{\nu}$ initiated processes. For longitudinal nucleon polarization, the contributions of g_{2} and g_{3} are suppressed by powers of M^{2} / Q^{2}. These structure functions give an unsuppressed contribution to the cross section for transverse polarization [1], but in this case the cross-section difference vanishes as $M / Q \rightarrow 0$.
Because the same tensor structure occurs in the spin-dependent and spin-independent parts of the hadronic tensor of Eq. (18.6) in the $M^{2} / Q^{2} \rightarrow 0$ limit, the differential cross-section difference of Eq. (18.14) may be obtained from the differential cross section Eq. (18.8) by replacing

$$
\begin{equation*}
F_{1} \rightarrow-g_{5}, \quad F_{2} \rightarrow-g_{4}, \quad F_{3} \rightarrow 2 g_{1} \tag{18.15}
\end{equation*}
$$

and multiplying by two, since the total cross section is the average over the initial-state polarizations. In this limit, Eq. (18.8) and Eq. (18.14) may be written in the form

$$
\begin{align*}
\frac{d^{2} \sigma^{i}}{d x d y} & =\frac{2 \pi \alpha^{2}}{x y Q^{2}} \eta^{i}\left[Y_{+} F_{2}^{i} \mp Y_{-} x F_{3}^{i}-y^{2} F_{L}^{i}\right] \\
\frac{d^{2} \Delta \sigma^{i}}{d x d y} & =\frac{4 \pi \alpha^{2}}{x y Q^{2}} \eta^{i}\left[-Y_{+} g_{4}^{i} \mp Y_{-} 2 x g_{1}^{i}+y^{2} g_{L}^{i}\right] \tag{18.16}
\end{align*}
$$

with $i=\mathrm{NC}$ or CC, where $Y_{ \pm}=1 \pm(1-y)^{2}$ and

$$
\begin{equation*}
F_{L}^{i}=F_{2}^{i}-2 x F_{1}^{i}, \quad g_{L}^{i}=g_{4}^{i}-2 x g_{5}^{i} \tag{18.17}
\end{equation*}
$$

In the naive quark-parton model, the analogy with the CallanGross relations [6] $F_{L}^{i}=0$, are the Dicus relations [7] $g_{L}^{i}=0$. Therefore, there are only two independent polarized structure functions: g_{1} (parity conserving) and g_{5} (parity violating), in analogy with the unpolarized structure functions F_{1} and F_{3}.

18.2.1 Structure functions in the quark-parton model

In the naive quark-parton model $[8,9]$, contributions to the structure functions F^{i} and g^{i} can be expressed in terms of the quark distribution functions $q\left(x, Q^{2}\right)$ of the proton, where $q=u, \bar{u}, d, \bar{d}$ etc. The quantity $q\left(x, Q^{2}\right) d x$ is the number of quarks (or antiquarks) of designated flavor that carry a momentum fraction between x and $x+d x$ of the proton's momentum in a frame in which the proton momentum is large.

Figure 18.2: The proton structure function F_{2}^{p} given at two Q^{2} values ($6.5 \mathrm{GeV}^{2}$ and $90 \mathrm{GeV}^{2}$), which exhibit scaling at the 'pivot' point $x \sim 0.14$. See the captions in Fig. 18.8 and Fig. 18.10 for the references of the data. The various data sets have been renormalized by the factors shown in brackets in the key to the plot, which were globally determined in a previous HERAPDF analysis [10]. The curves were obtained using the PDFs from the HERAPDF analysis [11]. In practice, data for the reduced cross section, $F_{2}\left(x, Q^{2}\right)-\left(y^{2} / Y_{+}\right) F_{L}\left(x, Q^{2}\right)$, were fitted, rather than F_{2} and F_{L} separately. The agreement between data and theory at low Q^{2} and x can be improved by a positive highertwist correction to $F_{L}\left(x, Q^{2}\right)$ [12, 13] (see Fig. 8 of Ref. [13]), or small- x resummation $[14,15]$.

For the neutral-current processes $e p \rightarrow e X$,

$$
\begin{align*}
{\left[F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}\right] } & =x \sum_{q}\left[e_{q}^{2}, 2 e_{q} g_{V}^{q}, g_{V}^{q}{ }^{2}+g_{A}^{q}{ }^{2}\right](q+\bar{q}) \\
{\left[F_{3}^{\gamma}, F_{3}^{\gamma Z}, F_{3}^{Z}\right] } & =\sum_{q}\left[0,2 e_{q} g_{A}^{q}, 2 g_{V}^{q} g_{A}^{q}\right](q-\bar{q}) \\
{\left[g_{1}^{\gamma}, g_{1}^{\gamma Z}, g_{1}^{Z}\right] } & =\frac{1}{2} \sum_{q}\left[e_{q}^{2}, 2 e_{q} g_{V}^{q}, g_{V}^{q 2}+g_{A}^{q 2}\right](\Delta q+\Delta \bar{q}) \\
{\left[g_{5}^{\gamma}, g_{5}^{\gamma Z}, g_{5}^{Z}\right] } & =\sum_{q}\left[0, e_{q} g_{A}^{q}, g_{V}^{q} g_{A}^{q}\right](\Delta \bar{q}-\Delta q) \tag{18.18}
\end{align*}
$$

where $g_{V}^{q}= \pm \frac{1}{2}-2 e_{q} \sin ^{2} \theta_{W}$ and $g_{A}^{q}= \pm \frac{1}{2}$, with \pm according to whether q is a u - or d-type quark respectively. The quantity Δq is the difference $q \uparrow-q \downarrow$ of the distributions with the quark spin parallel and antiparallel to the proton spin.

For the charged-current processes $e^{-} p \rightarrow \nu X$ and $\bar{\nu} p \rightarrow e^{+} X$, the structure functions are:

$$
\begin{align*}
F_{2}^{W^{-}} & =2 x(u+\bar{d}+\bar{s}+c \ldots) \\
F_{3}^{W^{-}} & =2(u-\bar{d}-\bar{s}+c \ldots) \\
g_{1}^{W^{-}} & =(\Delta u+\Delta \bar{d}+\Delta \bar{s}+\Delta c \ldots) \\
g_{5}^{W^{-}} & =(-\Delta u+\Delta \bar{d}+\Delta \bar{s}-\Delta c \ldots) \tag{18.19}
\end{align*}
$$

where only the active flavors have been kept and where CKM mixing has been neglected. For $e^{+} p \rightarrow \bar{\nu} X$ and $\nu p \rightarrow e^{-} X$, the structure functions $F^{W^{+}}, g^{W^{+}}$are obtained by the flavor interchanges $d \leftrightarrow u, s \leftrightarrow c$ in the expressions for $F^{W^{-}}, g^{W^{-}}$. The structure functions for scattering on a neutron are obtained from those of the proton by the interchange $u \leftrightarrow d$. For both the neutral- and charged-current processes, the quark-parton model predicts $2 x F_{1}^{i}=F_{2}^{i}$ and $g_{4}^{i}=2 x g_{5}^{i}$.

Neglecting masses, the structure functions g_{2} and g_{3} contribute only to scattering from transversely polarized nucleons, and have no simple interpretation in terms of the quarkparton model. They arise from off-diagonal matrix elements $\left\langle P, \lambda^{\prime}\right|\left[J_{\mu}^{\dagger}(z), J_{\nu}(0)\right]|P, \lambda\rangle$, where the proton helicities satisfy $\lambda^{\prime} \neq$ λ. In fact, the leading-twist contributions to both g_{2} and g_{3} are both twist-2 and twist-3, which contribute at the same order of Q^{2}. The Wandzura-Wilczek relation [16] expresses the twist-2 part of g_{2} in terms of g_{1} as

$$
\begin{equation*}
g_{2}^{i}(x)=-g_{1}^{i}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}^{i}(y) \tag{18.20}
\end{equation*}
$$

However, the twist-3 component of g_{2} is unknown. Similarly, there is a relation expressing the twist-2 part of g_{3} in terms of g_{4}. A complete set of relations, including M^{2} / Q^{2} effects, can be found in [17].

18.2.2 Structure functions and $Q C D$

One of the most striking predictions of the quark-parton model is that the structure functions F_{i}, g_{i} scale, i.e., $F_{i}\left(x, Q^{2}\right) \rightarrow F_{i}(x)$ in the Bjorken limit that Q^{2} and $\nu \rightarrow \infty$ with x fixed [18]. This property is related to the assumption that the transverse momentum of the partons in the infinite-momentum frame of the proton is small. In QCD, however, the radiation of hard gluons from the quarks violates this assumption, leading to logarithmic scaling violations, which are particularly large at small x, see Fig. 18.2. The radiation of gluons produces the evolution of the structure functions. As Q^{2} increases, more and more gluons are radiated, which in turn split into $q \bar{q}$ pairs. This process leads both to the softening of the initial quark momentum distributions and to the growth of the gluon density and the $q \bar{q}$ sea as x decreases.

In QCD, the above processes are described in terms of scaledependent parton distributions $f_{a}\left(x, \mu^{2}\right)$, where $a=g$ or q and, typically, μ is the scale of the probe Q. For parton distributions
x always refers to the nucleon momentum fraction of the parton, whereas for structure functions it retains the definition in Sec. 18.1. For $Q^{2} \gg M^{2}$, the structure functions are of the form

$$
\begin{equation*}
F_{i}=\sum_{a} C_{i}^{a} \otimes f_{a}+\mathcal{O}\left(M^{2} / Q^{2}\right) \tag{18.21}
\end{equation*}
$$

where \otimes denotes the convolution integral

$$
\begin{equation*}
C \otimes f=\int_{x}^{1} \frac{d y}{y} C(y) f\left(\frac{x}{y}\right) \tag{18.22}
\end{equation*}
$$

and where the coefficient functions C_{i}^{a} are given as a power series in α_{s}. The parton distribution f_{a} corresponds, at a given x, to the density of parton a in the proton integrated over transverse momentum k_{t} up to μ. Its evolution in μ is described in QCD by a DGLAP equation (see Refs. [19-22]) which has the schematic form

$$
\begin{equation*}
\frac{\partial f_{a}}{\partial \ln \mu^{2}} \sim \frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \sum_{b}\left(P_{a b} \otimes f_{b}\right) \tag{18.23}
\end{equation*}
$$

where the $P_{a b}$, which describe the parton splitting $b \rightarrow a$, are also given as a power series in α_{s}. Although perturbative QCD can predict, via Eq. (18.23), the evolution of the parton distribution functions from a particular scale, μ_{0}, these DGLAP equations cannot predict them a priori at any particular μ_{0}. Thus they must be measured at a starting point μ_{0} before the predictions of QCD can be compared to the data at other scales, μ. In general, all observables involving a hard hadronic interaction (such as structure functions) can be expressed as a convolution of calculable, process-dependent coefficient functions and these universal parton distributions, e.g. Eq. (18.21).

It is often convenient to write the evolution equations in terms of the gluon, non-singlet $\left(q^{N S}\right)$ and singlet $\left(q^{S}\right)$ quark distributions, such that

$$
\begin{equation*}
q^{N S}=q_{i}-\bar{q}_{i} \quad\left(\text { or } q_{i}-q_{j}\right), \quad q^{S}=\sum_{i}\left(q_{i}+\bar{q}_{i}\right) \tag{18.24}
\end{equation*}
$$

The non-singlet distributions have non-zero values of flavor quantum numbers, such as isospin and baryon number. The DGLAP evolution equations then take the form

$$
\begin{align*}
\frac{\partial q^{N S}}{\partial \ln \mu^{2}} & =\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} P_{q q} \otimes q^{N S} \\
\frac{\partial}{\partial \ln \mu^{2}}\binom{q^{S}}{g} & =\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\left(\begin{array}{cc}
P_{q q} & 2 n_{f} P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{q^{S}}{g} \tag{18.25}
\end{align*}
$$

where P are splitting functions that describe the probability of a given parton splitting into two others, and n_{f} is the number of (active) quark flavors. The leading-order Altarelli-Parisi [21]

Table 18.1: The main processes relevant to global PDF analyses, ordered in three groups: fixedtarget experiments, HERA and the $p \bar{p}$ Tevatron / $p p$ LHC. For each process we give an indication of their dominant partonic subprocesses, the primary partons which are probed and the approximate range of x constrained by the data.

Process	Subprocess	Partons	x range
$\ell^{ \pm}\{p, n\} \rightarrow \ell^{ \pm} X$	$\gamma^{*} q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$
$\ell^{ \pm} n / p \rightarrow \ell^{ \pm} X$	$\gamma^{*} d / u \rightarrow d / u$	d / u	$x \gtrsim 0.01$
$p p \rightarrow \mu^{+} \mu^{-} X$	$u \bar{u}, d \bar{d} \rightarrow \gamma^{*}$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$p n / p p \rightarrow \mu^{+} \mu^{-} X$	$(u \bar{d}) /(u \bar{u}) \rightarrow \gamma^{*}$	\bar{d} / \bar{u}	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \rightarrow \mu^{-}\left(\mu^{+}\right) X$	$W^{*} q \rightarrow q^{\prime}$	q, \bar{q}	$0.01 \lesssim x \lesssim 0.5$
$\nu N \rightarrow \mu^{-} \mu^{+} X$	$W^{*} s \rightarrow c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \rightarrow \mu^{+} \mu^{-} X$	$W^{*} \bar{s} \rightarrow \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{ \pm} p \rightarrow e^{ \pm} X$	$\gamma^{*} q \rightarrow q$	g, q, \bar{q}	$10^{-4} \lesssim x \lesssim 0.1$
$e^{+} p \rightarrow \bar{\nu} X$	$W^{+}\{d, s\} \rightarrow\{u, c\}$	d, s	$x \gtrsim 0.01$
$e^{ \pm} p \rightarrow e^{ \pm} c \bar{c} X, e^{ \pm} b \bar{b} X$	$\gamma^{*} c \rightarrow c, \gamma^{*} g \rightarrow c \bar{c}$	c, b, g	$10^{-4} \lesssim x \lesssim 0.01$
$e^{ \pm} p \rightarrow$ jet+X	$\gamma^{*} g \rightarrow q \bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p \bar{p}, p p \rightarrow$ jet $+X$	$g g, q g, q q \rightarrow 2 j$	g, q	$0.00005 \lesssim x \lesssim 0.5$
$p \bar{p} \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} \nu\right) X$	$u d \rightarrow W^{+}, \bar{u} \bar{d} \rightarrow W^{-}$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p p \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} \nu\right) X$	$u \bar{d} \rightarrow W^{+}, d \bar{u} \rightarrow W^{-}$	$u, d, \bar{u}, \bar{d}, g$	$x \gtrsim 0.001$
$p \bar{p}(p p) \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right) X$	$u u, d d, . .(u \bar{u}, ..) \rightarrow Z$	$u, d, . .(g)$	$x \gtrsim 0.001$
$p p \rightarrow W^{-} c, W^{+} \bar{c}$	$g s \rightarrow W^{-} c$	s, \bar{s}	$x \sim 0.01$
$p p \rightarrow\left(\gamma^{*} \rightarrow \ell^{+} \ell^{-}\right) X$	$u \bar{u}, d \bar{d}, . . \rightarrow \gamma^{*}$	\bar{q}, g	$x \gtrsim 10^{-5}$
$p p \rightarrow\left(\gamma^{*} \rightarrow \ell^{+} \ell^{-}\right) X$	$u \gamma, d \gamma, . . \rightarrow \gamma^{*}$	γ	$x \gtrsim 10^{-2}$
$p p \rightarrow b \bar{b} X, t \bar{t} X$	$g g \rightarrow b \bar{b}, t \bar{t}$	g	$x \gtrsim 10^{-5}, 10^{-2}$
$p p \rightarrow e x c l u s i v e J / \psi, \Upsilon$	$\gamma^{*}(g g) \rightarrow J / \psi, \Upsilon$	g	$x \gtrsim 10^{-5}, 10^{-4}$
$p p \rightarrow \gamma X$	$g q \rightarrow \gamma q, g \bar{q} \rightarrow \gamma \bar{q}$	g	$x \gtrsim 0.005$

Figure 18.3: Kinematic domains in x and Q^{2} probed by fixedtarget and collider experiments, where here Q^{2} can refer either the literal Q^{2} for deep inelastic scattering, or the hard scale of the process in hadron-hadron collisions, e.g. invariant mass or transverse momentum p_{T}^{2}. Some of the final states accessible at the LHC are indicated in the appropriate regions, where y is the rapidity. The incoming partons have $x_{1,2}=(Q / 14 \mathrm{TeV}) e^{ \pm y}$ where Q is the hard scale of the process shown in blue in the figure. For example, open charm production [23] and exclusive J / ψ and Υ production [24] at high $|y|$ at the LHC may probe the gluon PDF down to $x \sim 10^{-5}$.
splitting functions are

$$
\begin{align*}
& P_{q q}=\frac{4}{3}\left[\frac{1+x^{2}}{(1-x)}\right]_{+}=\frac{4}{3}\left[\frac{1+x^{2}}{(1-x)_{+}}\right]+2 \delta(1-x), \tag{18.26}\\
& P_{q g}=\frac{1}{2}\left[x^{2}+(1-x)^{2}\right], P_{g q}=\frac{4}{3}\left[\frac{1+(1-x)^{2}}{x}\right], \tag{18.27}\\
& P_{g g}=6\left[\frac{1-x}{x}+x(1-x)+\frac{x}{(1-x)_{+}}\right]+\left[\frac{11}{2}-\frac{n_{f}}{3}\right] \delta(1-x),
\end{align*}
$$

where the notation $[F(x)]_{+}$defines a distribution such that for any sufficiently regular test function, $f(x)$,

$$
\begin{equation*}
\int_{0}^{1} d x f(x)[F(x)]_{+}=\int_{0}^{1} d x(f(x)-f(1)) F(x) . \tag{18.29}
\end{equation*}
$$

In general, the splitting functions can be expressed as a power series in α_{s}. The series contains both terms proportional to $\ln \mu^{2}$ and to $\ln (1 / x)$ and $\ln (1-x)$. The leading-order DGLAP evolution sums up the $\left(\alpha_{s} \ln \mu^{2}\right)^{n}$ contributions, while at next-to-leading order (NLO) the sum over the $\alpha_{s}\left(\alpha_{s} \ln \mu^{2}\right)^{n-1}$ terms is included $[28,29]$. The NNLO contributions to the splitting functions and the DIS coefficient functions are also all known [30-32].

In the kinematic region of very small x, one may also sum leading terms in $\ln (1 / x)$, independent of the value of $\ln \mu^{2}$. At leading order, LLx, this is done by the BFKL equation for the unintegrated distributions (see Refs. [33, 34].) The leading-order $\left(\alpha_{s} \ln (1 / x)\right)^{n}$ terms result in a power-like growth, $x^{-\omega}$ with

Figure 18.4: The bands are x times the unpolarized (a, b) parton distributions $f(x)$ (where $f=u_{v}, d_{v}, \bar{u}, \bar{d}, s \simeq \bar{s}, c=\bar{c}, b=\bar{b}, g$) obtained in NNLO NNPDF3.0 global analysis [25] at scales $\mu^{2}=$ $10 \mathrm{GeV}^{2}$ (left) and $\mu^{2}=10^{4} \mathrm{GeV}^{2}$ (right), with $\alpha_{s}\left(M_{Z}^{2}\right)=0.118$. The analogous results obtained in the NNLO MMHT analysis can be found in Fig. 1 of Ref [26]. The corresponding polarized parton distributions are shown (c,d), obtained in NLO with NNPDFpol1.1 [27].
$\omega=\left(12 \alpha_{s} \ln 2\right) / \pi$, at asymptotic values of $\ln 1 / x$. The next-to-leading $\ln 1 / x$ (NLLx) contributions are also available [35, 36]. They are so large (and negative) that the results initially appeared to be perturbatively unstable. Methods, based on a combination of collinear and small- x resummations, have been developed which reorganize the perturbative series into a more stable hierarchy [37-40], and this has been used as the basis for a framework for including the corrections in phenomenological studies [41, 42]. There are some limited indications that small- x resummations become necessary for sufficient precision for $x \lesssim 10^{-3}$ at low scales $[14,15]$. There is not yet any very convincing indication for a 'non-linear' regime, for $Q^{2} \gtrsim 2 \mathrm{GeV}^{2}$, in which the gluon density would be so high that gluon-gluon recombination effects would become significant.

The precision of the experimental data demands that at least NLO, and preferably NNLO, DGLAP evolution be used in comparisons between QCD theory and experiment. Beyond the leading order, it is necessary to specify, and to use consistently, both a renormalization and a factorization scheme. The renormalization scheme used almost universally is the modified minimal subtraction $(\overline{\mathrm{MS}})$ scheme $[43,44]$. The most popular choices for the factorization scheme is also $\overline{\mathrm{MS}}$ [45]. However, sometimes the DIS [46] scheme is adopted, in which there are no higher-order corrections to the F_{2} structure function. The two schemes differ in how the non-divergent pieces are assimilated in the parton distribution functions.

The discussion above relates to the Q^{2} behavior of leadingtwist (twist-2) contributions to the structure functions. Highertwist terms, which involve their own non-perturbative input, exist. These die off as powers of Q; specifically twist- n terms are damped by $1 / Q^{n-2}$. Provided a cut, say $W^{2}>15 \mathrm{GeV}^{2}$ is imposed, the
higher-twist terms appear to be numerically unimportant for Q^{2} above a few GeV^{2}, except possibly for very small x and more definitely for x close to 1 [47-49], though it is important to note that they are likely to be larger in $x F_{3}\left(x, Q^{2}\right)$ than in $F_{2}\left(x, Q^{2}\right)$ (see e.g. [50])due to a lack of a constraining sum rule for $x F_{3}\left(x, Q^{2}\right)$.

18.3 Determination of parton distributions

The parton distribution functions (PDFs) can be determined from an analysis of data for deep inelastic lepton-nucleon scattering and for related hard-scattering processes initiated by nucleons; see Refs. [51-56] for reviews. Table 18.1 highlights some of the processes, where LHC data are playing an increasing role [57], and their primary sensitivity to PDFs. Fixed-target and collider experiments have complementary kinematic reach (as is shown in Fig. 18.3), which enables the determination of PDFs over a wide range in x and μ^{2}. As more precise LHC data for $W^{ \pm}, Z, \gamma$, jet, $b \bar{b}, t \bar{t}$ and J / ψ production become available, tighter constraints on the PDFs are expected in a wider kinematic range.

Recent determinations and releases of the unpolarized PDFs up to NNLO have been made by six groups: MMHT [26], NNPDF [58], CT(EQ) [59], HERAPDF [11], ABMP [60] and JR [61]. JR generate 'dynamical' PDFs from a valence-like input at a very low starting scale, $Q_{0}^{2}=0.5 \mathrm{GeV}^{2}$, whereas other groups start evolution at $Q_{0}^{2}=1-4 \mathrm{GeV}^{2}$. Most groups use input PDFs of the form $x f=x^{a}(\ldots)(1-x)^{b}$ with $14-28$ free parameters in total. In these cases the PDF uncertainties are made available using the "Hessian" formulation. The free parameters are expanded around their best fit values, and orthogonal eigenvector sets of PDFs depending on linear combinations of the parameter variations are obtained. The uncertainty is then the quadratic sum of the uncertainties arising from each eigenvector. The NNPDF group combines a Monte Carlo representation of the probability measure in the space of PDFs with the use of neural networks. Fits are performed to a number of "replica" data sets obtained by allowing individual data points to fluctuate randomly by amounts determined by the size of the data uncertainties. This results in a set of replicas of unbiased PDF sets. In this case the best prediction is the average obtained using all PDF replicas and the uncertainty is the standard deviation over all replicas. It is now possible to convert the eigenvectors of Hessian-based PDFs to Monte Carlo replicas [62] and vice versa [63].

In these analyses, the u, d and s quarks are taken to be massless, but the treatment of the heavy c and b quark masses, m_{Q}, differs, and has a long history, which may be traced from Refs. [64-75]. The MSTW, CT, NNPDF and HERAPDF analyses use different variants of the General-Mass Variable-Flavour-Number Scheme (GM-VFNS). This combines fixed-order contributions to the coefficient functions (or partonic cross sections) calculated with the full m_{Q} dependence, with the all-order resummation of contributions via DGLAP evolution in which the heavy quarks are treated as massless after starting evolution at some transition point. Transition matrix elements are computed, following [67], which provide the boundary conditions between n_{f} and $n_{f}+1$ PDFs. The ABMP and JR analyses use a FFNS where only the three light (massless) quarks enter the evolution, while the heavy quarks enter the partonic cross sections with their full m_{Q} dependence. The GM-VFNS and FFNS approaches yield different results: in particular $\alpha_{s}\left(M_{Z}^{2}\right)$ and the large- x gluon PDF at large Q^{2} are both significantly smaller in the FFNS. It has been argued $[48,49,74]$ that the difference is due to the slow convergence of the $\ln ^{n}\left(Q^{2} / m_{Q}^{2}\right)$ terms in certain regions in a FFNS. The final HERA combination of heavy flavour structure function data has recently been published [76], and the evolution of these measurements and their interpretation may be traced in [77].

The most recent determinations of the groups fitting a variety of data and using a GM-VFNS (MMHT, NNPDF and CT) have converged, so that now a good agreement has been achieved between the resulting PDFs. Indeed, the CT14 [59], MMHT2014 [26], and NNPDF3.0 [25] PDF sets have been combined [78] using the Monte Carlo approach [62] mentioned above. The single combined set of PDFs is discussed in detail in Ref. [78].

For illustration, we show in Fig. 18.4 the PDFs obtained in the NNLO NNPDF analysis [25] at scales $\mu^{2}=10$ and $10^{4} \mathrm{GeV}^{2}$. The
values of α_{s} found by MMHT [79] may be taken as representative of those resulting from the GM-VFNS analyses

$$
\begin{gathered}
\mathrm{NLO}: \alpha_{s}\left(M_{Z}^{2}\right)=0.1201 \pm 0.0015 \\
\mathrm{NNLO}: \alpha_{s}\left(M_{Z}^{2}\right)=0.1172 \pm 0.0012
\end{gathered}
$$

where the error (at 68% C.L.) corresponds to the uncertainties resulting from the data fitted (the uncertainty that might be expected from the neglect of higher orders is at least as large). A similar results is found by the NNPDF group [80], who find $\alpha_{s}\left(M_{Z}^{2}\right)=0.1185 \pm 0.0005$ at NNLO. The ABMP analysis [60], which uses a FFNS, finds $\alpha_{s}\left(M_{Z}^{2}\right)=0.1147 \pm 0.0011$ at NNLO.

As a first step towards the inclusion of higher order electroweak corrections a recent development has been a vastly increased understanding of the photon content of the proton. Sets of PDFs with a photon contribution were first considered in Ref. [81] and then in subsequent PDF sets [82,83]. However, due to weak data constraints, the uncertainty was extremely large. Subsequently, there has been a much improved understanding of the separation into elastic and inelastic contributions [84-86]. This gives much more theoretical precision, since the elastic contribution, arising from coherent emission of a photon from the proton, can be directly related to the well-known proton electric and magnetic form factors; the model dependence of the inelastic (incoherent) contribution, related to the quark PDFs, is at the level of tens of percent. A final development directly relating the entire photon contribution to the proton structure function [87] resulted in a determination of the photon content of the proton as precise as that of the light quarks. The framework has been applied within global fits to PDFs via an iterative procedure in [88] and to provide the low-scale input photon PDF in [89].

Nuclear PDFs: The study of the parton distributions for nucleons within nuclei, so-called nuclear parton distribution functions (nPDFs), is now reaching a level of maturity and sophistication similar to nucleon PDFs. The PDFs are now also a function of the nucleon number of the nucleus, A. The nPDFs are obtained via fits to deep inelastic scattering data and dilepton (Drell-Yan) and pion production from proton-nucleus. There are a number of recent examples of NLO analyses, DSSZ [90], nCTEQ15 [91], EPPS16 [92], while an NNLO analysis with a smaller selection of data types now also exists [93]. Much of the heavy-nucleus data included are in the form of ratios to proton or deuteron measurements. And most nuclear PDFs are related to a particular proton PDF via a nuclear modification factor, i.e.

$$
\begin{equation*}
f_{i}^{p / A}\left(x, Q^{2}\right)=R_{i}^{A}\left(x, Q^{2}\right) f_{i}^{p}\left(x, Q^{2}\right) \tag{18.30}
\end{equation*}
$$

An exception is the PDFs in [91] which parameterise the nuclear PDFs directly but are equal to proton PDFs in the limit $A=1$. There is some variation in whether charged current neutrino DIS data is used as well as neutral current DIS data since there is no clear compatibility in the modification factors obtained [94, 95]. Recently, LHC data from vector boson production [96, 97] in proton-lead collisions has been studied [98] or used directly [92], and LHC jet data [99] has been included [92], giving extra constraint on the gluon within nuclei. Further information at smaller x values should soon be extracted from heavy meson production at LHCb [100] and pion production [101]. All the PDF extractions above are based on the Hessian formulation, but the first NNPDF study of nPDFs has appeared [102], so far based on neutral current DIS data only. As well as improved constraints from further LHC data, nPDFs would be significantly improved by data from a potential high-energy Electron-Ion Collider [103].

Polarized PDFs: For spin-dependent structure functions, data exists for a more restricted range of Q^{2} and has lower precision, so that the scaling violations are not seen so clearly. However, spindependent (or polarized) parton distributions have been extracted by comparison to data using NLO global analyses which include measurements of the g_{1} structure function in inclusive polarized

DIS, 'flavour-tagged' semi-inclusive DIS data, open-charm production in DIS and results from polarized $p p$ scattering at RHIC. There are recent results on DIS from JLAB [104] (for g_{1}^{n} / F_{1}^{n}), COMPASS $[105,106]$ and CLAS [107]. NLO analyses are given in Refs. [108-111] and more recent extractions [112, 113]. Improved parton-to-hadron fragmentation functions, needed to describe the semi-inclusive DIS (SIDIS) data, can be found in Refs. [114-117]. Only the DSSV collaboration includes in their NLO analysis to extract polarized PDFs all the world data, inclusive and semiinclusive DIS, double spin asymmetries in jet, dijet and inclusive

Figure 18.5: Ensemble of replicas (dotted blue lines) for the NLO gluon helicity density $\Delta g\left(x, Q^{2}\right)$ at $Q^{2}=10 \mathrm{GeV}^{2}$ shown along with its statistical average (solid blue line) and variance (dotdashed blue lines). The corresponding results from the DSSV14 fit (black lines) [112] and the NNPDFpol1.1 analysis (green lines) [27] are shown for comparison. Figure taken from Ref. [118].
π^{0}-production as well as the single spin asymmetries in $W^{ \pm}, Z^{0}$ production. A determination [119], using the NNPDF methodology, concentrates just on the inclusive polarized DIS data, and finds the uncertainties on the polarized gluon PDF have been underestimated in the earlier analyses. An update to this [27], where jet and $W^{ \pm}$data from $p p$ collisions and open-charm DIS data have been included via reweighting, reduces the uncertainty and suggests a positive polarized gluon PDF. The DSSV group has recently implemented a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data [118].

A comparison of the polarized gluon PDFs obtained in the NLO analyses of NNPDF [27] and DSSV [118] is shown in Fig. 18.5 at scale $\mu^{2}=10 \mathrm{GeV}^{2}$. The world data of the inclusive structure function g_{1} for proton and deuterium included in these analysis are shown in Fig. 18.14 and Fig. 18.15.

Comprehensive sets of PDFs are available from the LHAPDF library [120], which can be linked directly into a user's programme to provide access to recent PDFs in a standard format.

18.4 The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to fluctuate into a hadronic state via the process $\gamma \rightarrow q \bar{q}$. While in this state, the partonic content of the photon may be resolved, for example, through the process $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma^{\star} \gamma \rightarrow e^{+} e^{-} X$, where the virtual photon emitted by the DIS lepton probes the hadronic structure of the quasi-real photon emitted by the other lepton. The perturbative LO QED contributions to this process with $\gamma \rightarrow q \bar{q}$ in conjunction with $\gamma^{\star} q(\bar{q}) \rightarrow q(\bar{q})$, are subject to QCD corrections due to the radiation of gluons from these quarks.

Often the equivalent-photon approximation is used to express the differential cross section for deep inelastic electron-photon scattering in terms of the structure functions of the transverse quasi-real photon times a flux factor N_{γ}^{T} (for these incoming
quasi-real photons of transverse polarization)

$$
\begin{equation*}
\frac{d^{2} \sigma}{d x d Q^{2}}=N_{\gamma}^{T} \frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{2}^{\gamma}\left(x, Q^{2}\right)-y^{2} F_{L}^{\gamma}\left(x, Q^{2}\right)\right] \tag{18.31}
\end{equation*}
$$

where we have used $F_{2}^{\gamma}=2 x F_{T}^{\gamma}+F_{L}^{\gamma}$ (where F_{T} is the transverse structure function), not to be confused with F_{2}^{γ} of Sec. 18.2. Complete formulae are given, for example, in the comprehensive review of [121].

The hadronic photon structure function, F_{2}^{γ}, evolves with increasing Q^{2} from the 'hadron-like' behavior, calculable via the vector-meson-dominance model, to the dominating 'point-like' behaviour, calculable in perturbative QCD. Due to the point-like coupling, the logarithmic evolution of F_{2}^{γ} with Q^{2} has a positive slope for all values of x, see Fig. 18.16. The 'loss' of quarks at large x due to gluon radiation is over-compensated by the 'creation' of quarks via the point-like $\gamma \rightarrow q \bar{q}$ coupling. The logarithmic evolution was first predicted in the quark-parton model $\left(\gamma^{\star} \gamma \rightarrow q \bar{q}\right)[122,123]$, and then an improved expression was obtained using QCD corrections in the limit of large Q^{2} [124]. The evolution is now known to NLO [125-127]. The NLO data analyses to determine the parton densities of the photon can be found in Refs. [128-130].

18.5 Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, $\gamma^{*} p \rightarrow X+p$, in which the slightly deflected proton and the cluster X of outgoing hadrons are well-separated in rapidity [131]. Besides x and Q^{2}, two extra

Figure 18.6: Diffractive parton distributions, $x_{I P} z f_{a / p}^{\mathrm{D}}$, obtained from fitting to the ZEUS data with $Q^{2}>5 \mathrm{GeV}^{2}$ [132],H1 data with $Q^{2}>8.5 \mathrm{GeV}^{2}$ assuming Regge factorization [133], and from MRW2006 [134] using a more perturbative QCD approach [134]. Only the Pomeron contributions are shown and not the secondary Reggeon contributions, which are negligible at the value of $x_{I P}=$ 0.003 chosen here. The H1 2007 Jets distribution [135] is similar to H1 2006 Fit B.
variables are needed to describe a DDIS event: the fraction $x_{I P}$ of the proton's momentum transferred across the rapidity gap and t, the square of the 4 -momentum transfer of the proton. The DDIS data $[136,137]$ are usually analysed using two levels of factorization. First, the diffractive structure function F_{2}^{D} satisfies collinear factorization, and can be expressed as the convolution [138]

$$
\begin{equation*}
F_{2}^{\mathrm{D}}=\sum_{a=q, g} C_{2}^{a} \otimes f_{a / p}^{\mathrm{D}} \tag{18.32}
\end{equation*}
$$

with the same coefficient functions as in DIS (see Eq. (18.21)), and where the diffractive parton distributions $f_{a / p}^{\mathrm{D}}(a=q, g)$ satisfy DGLAP evolution. Second, Regge factorization is assumed [139],

$$
\begin{equation*}
f_{a / p}^{\mathrm{D}}\left(x_{I P}, t, z, \mu^{2}\right)=f_{I P / p}\left(x_{I P}, t\right) f_{a / I P}\left(z, \mu^{2}\right) \tag{18.33}
\end{equation*}
$$

where $f_{a / \mathbb{I P}}$ are the parton densities of the Pomeron, which itself is treated like a hadron, and $z \in\left[x / x_{I P}, 1\right]$ is the fraction of the Pomeron's momentum carried by the parton entering the
hard subprocess. The Pomeron flux factor $f_{I P / p}\left(x_{I P}, t\right)$ is taken from Regge phenomenology. There are also secondary Reggeon contributions to Eq. (18.33). A sample of the t-integrated diffractive parton densities, obtained in this way, is shown in Fig. 18.6. A more recent extraction of the parton densities may be found in [140].

Although collinear factorization holds as $\mu^{2} \rightarrow \infty$, there are non-negligible corrections for finite μ^{2} and small $x_{I P}$. Besides the resolved interactions of the Pomeron, the perturbative QCD Pomeron may also interact directly with the hard subprocess, giving rise to an inhomogeneous evolution equation for the diffractive parton densities analogous to the photon case. The results of the MRW analysis [134], which includes these contributions, are also shown in Fig. 18.6.

Unlike the inclusive case, the diffractive parton densities cannot be directly used to calculate diffractive hadron-hadron cross sections, since account must first be taken of "soft" rescattering effects.

18.6 Generalized parton distributions

The parton distributions of the proton of Sec. 18.3 are given by the diagonal matrix elements $\langle P, \lambda| \hat{O}|P, \lambda\rangle$, where P and λ are the 4 -momentum and helicity of the proton, and \hat{O} is a twist2 quark or gluon operator. However, there is new information in the so-called generalised parton distributions (GPDs) defined in terms of the off-diagonal matrix elements $\left\langle P^{\prime}, \lambda^{\prime}\right| \hat{O}|P, \lambda\rangle$; see Refs. [141-146] for reviews. Unlike the diagonal PDFs, the GPDs cannot be regarded as parton densities, but are to be interpreted as probability amplitudes.

Figure 18.7: Schematic diagrams of the three distinct kinematic regions of the imaginary part of H_{q}. The proton and quark momentum fractions refer to \bar{P}^{+}, and x covers the interval $(-1,1)$. In the ERBL domain the GPDs are generalisations of distribution amplitudes which occur in processes such as $p \bar{p} \rightarrow J / \psi$.

The physical significance of GPDs is best seen using light-cone coordinates, $z^{ \pm}=\left(z^{0} \pm z^{3}\right) / \sqrt{2}$, and in the light-cone gauge, $A^{+}=0$. It is conventional to define the generalised quark distributions in terms of quark operators at light-like separation

$$
\begin{align*}
& F_{q}(x, \xi, t)= \\
& \qquad \begin{array}{l}
\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{P}^{+} z^{-}}\left\langle P^{\prime}\right| \bar{\psi}(-z / 2) \gamma^{+} \psi(z / 2)|P\rangle\right|_{z^{+}=z^{1}=z^{2}=0} \\
\quad=\frac{1}{2 \bar{P}^{+}} \\
\times\left(H_{q}(x, \xi, t) \bar{u}\left(P^{\prime}\right) \gamma^{+} u(P)+E_{q}(x, \xi, t) \bar{u}\left(P^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 m} u(P)\right)
\end{array}
\end{align*}
$$

with $\bar{P}=\left(P+P^{\prime}\right) / 2$ and $\Delta=P^{\prime}-P$, and where we have suppressed the helicity labels of the protons and spinors. We now have two extra kinematic variables:

$$
\begin{equation*}
t=\Delta^{2}, \quad \xi=-\Delta^{+} /\left(P+P^{\prime}\right)^{+} \tag{18.35}
\end{equation*}
$$

We see that $-1 \leq \xi \leq 1$. Similarly, we may define GPDs \tilde{H}_{q} and \tilde{E}_{q} with an additional γ_{5} between the quark operators in Eq. (18.34); and also an analogous set of gluon GPDs, $H_{g}, E_{g}, \tilde{H}_{g}$ and \tilde{E}_{g}. After a Fourier transform with respect to the transverse components of Δ, we are able to describe the spatial distribution of partons in the impact parameter plane in terms of GPDs [147, 148].

For $P^{\prime}=P, \lambda^{\prime}=\lambda$ the matrix elements reduce to the ordinary PDFs of Sec. 18.2.1
$H_{q}(x, 0,0)=q(x), \quad H_{q}(-x, 0,0)=-\bar{q}(x), \quad H_{g}(x, 0,0)=x g(x)$,
$\tilde{H}_{q}(x, 0,0)=\Delta q(x), \tilde{H}_{q}(-x, 0,0)=\Delta \bar{q}(x), \tilde{H}_{g}(x, 0,0)=x \Delta g(x)$,
(18.37)
where $\Delta q=q \uparrow-q \downarrow$ as in Eq. (18.18). No corresponding relations exist for E, \tilde{E} as they decouple in the forward limit, $\Delta=0$.

The functions H_{g}, E_{g} are even in x, and $\tilde{H}_{g}, \tilde{E}_{g}$ are odd functions of x. We can introduce valence and 'singlet' quark distributions which are even and odd functions of x respectively. For example

$$
\begin{align*}
H_{q}^{V}(x, \xi, t) & \equiv H_{q}(x, \xi, t)+H_{q}(-x, \xi, t)=H_{q}^{V}(-x, \xi, t) \tag{18.38}\\
H_{q}^{S}(x, \xi, t) & \equiv H_{q}(x, \xi, t)-H_{q}(-x, \xi, t)=-H_{q}^{S}(-x, \xi, t) \tag{18.39}
\end{align*}
$$

All the GPDs satisfy relations of the form

$$
\begin{equation*}
H(x,-\xi, t)=H(x, \xi, t) \quad \text { and } \quad H(x,-\xi, t)^{*}=H(x, \xi, t) \tag{18.40}
\end{equation*}
$$

and so are real-valued functions. Moreover, the moments of GPDs, that is the x integrals of $x^{n} H_{q}$ etc., are polynomials in ξ of order $n+1$. Another important property of GPDs are Ji's sum rule [141]

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d x x\left(H_{q}(x, \xi, t)+E_{q}(x, \xi, t)\right)=J_{q}(t) \tag{18.41}
\end{equation*}
$$

where $J_{q}(0)$ is the total angular momentum carried by quarks and antiquarks of flavour q, with a similar relation for gluons.

To_visualize the physical content of H_{q}, we Fourier expand ψ and $\bar{\psi}$ in terms of quark, antiquark creation (b, d) and annihilation $\left(b^{\dagger}, d^{\dagger}\right)$ operators, and sketch the result in Fig. 18.7. There are two types of domain: (i) the time-like or 'annihilation' domain, with $|x|<|\xi|$, where the GPDs describe the wave functions of a t channel $q \bar{q}$ (or gluon) pair and evolve according to modified ERBL equations [149,150]; (ii) the space-like or 'scattering' domain, with $|x|>|\xi|$, where the GPDs generalise the familiar \bar{q}, q (and gluon) PDFs and describe processes such as 'deeply virtual Compton scattering' $\left(\gamma^{*} p \rightarrow \gamma p\right), \gamma p \rightarrow J / \psi p$, etc., and evolve according to modified DGLAP equations. The splitting functions for the evolution of GPDs are known to NLO [151-153].

GPDs describe new aspects of proton structure and must be determined from experiment. We can parametrise them in terms of 'double distributions' $[154,155]$, which reduce to diagonal PDFs as $\xi \rightarrow 0$. Alternatively, flexible $S O(3)$-based parametrisations have been used to determine GPDs from DVCS data $[156,157]$; a more recent summary may be found in Ref. [158, 159].

18.7 Transverse momentum dependent distributions

Transverse momentum dependent distributions (TMDs) are complementary to GPDs. Together, they describe the threedimensional structure of hadrons. In contrast to GPDs that encode the transverse position of a parton in a nucleon, TMDs encompassing both the parton distributions (TMD PDF) and fragmentation functions (TMD FF) encode the transverse momenta and lead to observable transverse momenta in the final state. Both TMDs and GPDs derive, via integration over the appropriate variable, from Wigner distributions [160-162] that depend on the average transverse momentum and position of partons.

For a proton, there are eight independent TMD PDFs, at leading twist, three of which correspond to the usual unpolarized, longitudinally polarized and transversely polarized quark parton distributions [163, 164]. The novel TMD PDFs have physical interpretations. For example, the Sivers function [165] represents the distribution of unpolarized partons inside a transversely polarized hadron. For (pseudo)scalar particles, such as kaon and pions, there are two independent leading-twist TMD FFs, one being the ordinary unpolarized fragmentation function and the other the Collins FF [166] which is related to the probability of a polarized quark fragmenting into an unpolarized hadron.

Factorization of TMDs have been shown for semi-inclusive DIS, for the Drell-Yan process as well as for electron-position annihilation into dihadrons [167-172]. Recently first TMD global fits have become available [173-180], although problems with consistent descriptions still remain [181, 182].

Because TMD PDFs encode nonperturbative information about transverse momentum and polarization degrees of freedom, they are important for descriptions of multi-scale, non-inclusive collider observables, for example, production of electroweak gauge bosons at LHC [183] and can have an effect on determination of the W boson mass [184]. The combination of TMD PDFs an FFs can give consistent global description of spin and azimuthal asymmetries and provide predictions. Some recent reviews of this rapidly developing field are given here [183, 185-187].

References

[1] J. Blumlein and N. Kochelev, Nucl. Phys. B498, 285 (1997), [hep-ph/9612318].
[2] S. Forte, M. L. Mangano and G. Ridolfi, Nucl. Phys. B602, 585 (2001), [hep-ph/0101192].
[3] M. Anselmino, P. Gambino and J. Kalinowski, Z. Phys. C64, 267 (1994), [hep-ph/9401264].
[4] M. Anselmino, A. Efremov and E. Leader, Phys. Rept. 261, 1 (1995), [Erratum: Phys. Rept.281,399(1997)], [hepph/9501369].
[5] M. Klein and T. Riemann, Z. Phys. C24, 151 (1984).
[6] C. G. Callan, Jr. and D. J. Gross, Phys. Rev. Lett. 22, 156 (1969).
[7] D. A. Dicus, Phys. Rev. D5, 1367 (1972).
[8] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
[9] R.P. Feynman, Photon Hadron Interactions (Benjamin, New York, 1972).
[10] A.M. Cooper-Sarkar, private communication.
[11] H. Abramowicz et al. (H1, ZEUS), Eur. Phys. J. C75, 12, 580 (2015), [arXiv:1506.06042].
[12] L. A. Harland-Lang et al., Eur. Phys. J. C76, 4, 186 (2016), [arXiv:1601.03413].
[13] I. Abt et al., Phys. Rev. D94, 3, 034032 (2016), [arXiv:1604.02299].
[14] R. D. Ball et al., Eur. Phys. J. C78, 4, 321 (2018), [arXiv:1710.05935].
[15] H. Abdolmaleki et al. (xFitter Developers' Team), Eur. Phys. J. C78, 8, 621 (2018), [arXiv:1802.00064].
[16] S. Wandzura and F. Wilczek, Phys. Lett. 72B, 195 (1977).
[17] J. Blumlein and A. Tkabladze, Nucl. Phys. B553, 427 (1999), [hep-ph/9812478].
[18] J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
[19] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972), [Yad. Fiz.15,781(1972)].
[20] L.N. Lipatov, Sov. J. Nucl. Phys. 20, 95 (1975).
[21] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[22] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977), [Zh. Eksp. Teor. Fiz.73,1216(1977)].
[23] O. Zenaiev et al. (PROSA), Eur. Phys. J. C75, 8, 396 (2015), [arXiv:1503.04581].
[24] R. Aaij et al. (LHCb), J. Phys. G41, 055002 (2014), [arXiv:1401.3288].
[25] R. D. Ball et al. (NNPDF), JHEP 04, 040 (2015), [arXiv:1410.8849].
[26] L. A. Harland-Lang et al., Eur. Phys. J. C75, 5, 204 (2015), [arXiv:1412.3989].
[27] E. R. Nocera et al. (NNPDF), Nucl. Phys. B887, 276 (2014), [arXiv:1406.5539].
[28] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980); W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980).
[29] R.K. Ellis et al., QCD and Collider Physics (Cambridge UP, 1996).
[30] W. L. van Neerven and E. B. Zijlstra, Phys. Lett. B272, 127 (1991); E. B. Zijlstra and W. L. van Neerven, Phys. Lett. B273, 476 (1991); E. B. Zijlstra and W. L. van Neerven, Phys. Lett. B297, 377 (1992); E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B383, 525 (1992).
[31] S. Moch and J. A. M. Vermaseren, Nucl. Phys. B573, 853 (2000), [hep-ph/9912355].
[32] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B688, 101 (2004), [hep-ph/0403192]; A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B691, 129 (2004), [hepph/0404111]; S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B606, 123 (2005), [hep-ph/0411112]; J. A. M. Vermaseren, A. Vogt and S. Moch, Nucl. Phys. B724, 3 (2005), [hep-ph/0504242].
[33] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. 60B, 50 (1975); E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976), [Zh. Eksp. Teor. Fiz.71,840(1976)]; E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977), [Zh. Eksp. Teor. Fiz.72,377(1977)].
[34] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978), [Yad. Fiz.28,1597(1978)].
[35] V. S. Fadin and L. N. Lipatov, Phys. Lett. B429, 127 (1998), [hep-ph/9802290].
[36] G. Camici and M. Ciafaloni, Phys. Lett. B412, 396 (1997), [Erratum: Phys. Lett.B417,390(1998)], [hep-ph/9707390]; M. Ciafaloni and G. Camici, Phys. Lett. B430, 349 (1998), [hep-ph/9803389].
[37] M. Ciafaloni, D. Colferai and G. P. Salam, Phys. Rev. D60, 114036 (1999), [hep-ph/9905566]; M. Ciafaloni, D. Colferai and G. P. Salam, JHEP 07, 054 (2000), [hep-ph/0007240].
[38] M. Ciafaloni et al., Phys. Lett. B576, 143 (2003), [hepph/0305254]; M. Ciafaloni et al., Phys. Rev. D68, 114003 (2003), [hep-ph/0307188].
[39] G. Altarelli, R. D. Ball and S. Forte, Nucl. Phys. B742, 1 (2006), [hep-ph/0512237]; G. Altarelli, R. D. Ball and S. Forte, Nucl. Phys. B799, 199 (2008), [arXiv:0802.0032].
[40] C. D. White and R. S. Thorne, Phys. Rev. D75, 034005 (2007), [hep-ph/0611204].
[41] M. Bonvini, S. Marzani and T. Peraro, Eur. Phys. J. C76, 11, 597 (2016), [arXiv:1607.02153].
[42] M. Bonvini, S. Marzani and C. Muselli, JHEP 12, 117 (2017), [arXiv:1708.07510].
[43] G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B44, 189 (1972).
[44] G. 't Hooft, Nucl. Phys. B61, 455 (1973).
[45] W. A. Bardeen et al., Phys. Rev. D18, 3998 (1978).
[46] G. Altarelli, R. K. Ellis and G. Martinelli, Nucl. Phys. B143, 521 (1978), [Erratum: Nucl. Phys.B146,544(1978)].
[47] A. D. Martin et al., Eur. Phys. J. C35, 325 (2004), [hepph/0308087].
[48] R. D. Ball et al. (NNPDF), Phys. Lett. B723, 330 (2013), [arXiv:1303.1189].
[49] R. S. Thorne, Eur. Phys. J. C74, 7, 2958 (2014), [arXiv:1402.3536].
[50] M. Dasgupta and B. R. Webber, Phys. Lett. B382, 273 (1996), [hep-ph/9604388].
[51] A. De Roeck and R. S. Thorne, Prog. Part. Nucl. Phys. 66, 727 (2011), [arXiv:1103.0555].
[52] S. Forte and G. Watt, Ann. Rev. Nucl. Part. Sci. 63, 291 (2013), [arXiv:1301.6754].
[53] J. Blumlein, Prog. Part. Nucl. Phys. 69, 28 (2013), [arXiv:1208.6087].
[54] E. Perez and E. Rizvi, Rept. Prog. Phys. 76, 046201 (2013), [arXiv:1208.1178].
[55] R. D. Ball et al., JHEP 04, 125 (2013), [arXiv:1211.5142].
[56] J. Gao, L. Harland-Lang and J. Rojo, Phys. Rept. 742, 1 (2018), [arXiv:1709.04922].
[57] J. Rojo et al., J. Phys. G42, 103103 (2015), [arXiv:1507.00556].
[58] R. D. Ball et al. (NNPDF), Eur. Phys. J. C77, 10, 663 (2017), [arXiv:1706.00428].
[59] CT_{14}, S. Dulat et al., Phys. Rev. D93, 3, 033006 (2016), [arXiv:1506.07443].
[60] S. Alekhin et al., Phys. Rev. D96, 1, 014011 (2017), [arXiv:1701.05838].
[61] P. Jimenez-Delgado and E. Reya, Phys. Rev. D89, 7, 074049 (2014), [arXiv:1403.1852].
[62] G. Watt and R. S. Thorne, JHEP 08, 052 (2012), [arXiv:1205.4024].
[63] S. Carrazza et al., Eur. Phys. J. C75, 8, 369 (2015), [arXiv:1505.06736].
[64] J. C. Collins, F. Wilczek and A. Zee, Phys. Rev. D18, 242 (1978).
[65] E. Laenen et al., Nucl. Phys. B392, 162 (1993).
[66] M. A. G. Aivazis et al., Phys. Rev. D50, 3102 (1994), [hepph/9312319].
[67] M. Buza et al., Eur. Phys. J. C1, 301 (1998), [hepph/9612398].
[68] J. C. Collins, Phys. Rev. D58, 094002 (1998), [hepph/9806259].
[69] A. Chuvakin, J. Smith and W. L. van Neerven, Phys. Rev. D61, 096004 (2000), [hep-ph/9910250].
[70] R. S. Thorne, Phys. Rev. D73, 054019 (2006), [hepph/0601245].
[71] R. S. Thorne and W. K. Tung, in "Proceedings, HERA and the LHC Workshop Series on the implications of HERA for LHC physics: 2006-2008," 332-351 (2008), [,2(2008)], [arXiv:0809.0714].
[72] S. Alekhin and S. Moch, Phys. Lett. B699, 345 (2011), [arXiv:1011.5790].
[73] S. Forte et al., Nucl. Phys. B834, 116 (2010), [arXiv:1001.2312].
[74] R. S. Thorne, Phys. Rev. D86, 074017 (2012), [arXiv:1201.6180].
[75] E. G. de Oliveira et al., Eur. Phys. J. C73, 10, 2616 (2013), [arXiv:1307.3508].
[76] H. Abramowicz et al. (H1, ZEUS), Eur. Phys. J. C78, 6, 473 (2018), [arXiv:1804.01019].
[77] O. Behnke, A. Geiser and M. Lisovyi, Prog. Part. Nucl. Phys. 84, 1 (2015), [arXiv:1506.07519].
[78] J. Butterworth et al., J. Phys. G43, 023001 (2016), [arXiv:1510.03865].
[79] L. A. Harland-Lang et al., Eur. Phys. J. C75, 9, 435 (2015), [arXiv:1506.05682].
[80] R. D. Ball et al. (NNPDF), Eur. Phys. J. C78, 5, 408 (2018), [arXiv:1802.03398].
[81] A. D. Martin et al., Eur. Phys. J. C39, 155 (2005), [hepph/0411040].
[82] R. D. Ball et al. (NNPDF), Nucl. Phys. B877, 290 (2013), [arXiv:1308.0598].
[83] C. Schmidt et al., Phys. Rev. D93, 11, 114015 (2016), [arXiv:1509.02905].
[84] M. Gluck, C. Pisano and E. Reya, Phys. Lett. B540, 75 (2002), [hep-ph/0206126].
[85] A. D. Martin and M. G. Ryskin, Eur. Phys. J. C74, 3040 (2014), [arXiv:1406.2118].
[86] L. A. Harland-Lang, V. A. Khoze and M. G. Ryskin, Phys. Rev. D94, 7, 074008 (2016), [arXiv:1607.04635].
[87] A. Manohar et al., Phys. Rev. Lett. 117, 24, 242002 (2016), [arXiv:1607.04266].
[88] V. Bertone et al. (NNPDF), SciPost Phys. 5, 1, 008 (2018), [arXiv:1712.07053].
[89] L. A. Harland-Lang et al., Eur. Phys. J. C79, 10, 811 (2019), [arXiv:1907.02750].
[90] D. de Florian et al., Phys. Rev. D85, 074028 (2012), [arXiv:1112.6324].
[91] K. Kovarik et al., Phys. Rev. D93, 8, 085037 (2016), [arXiv:1509.00792].
[92] H. Paukkunen, Nucl. Phys. A967, 241 (2017), [arXiv:1704.04036].
[93] H. Khanpour and S. Atashbar Tehrani, Phys. Rev. D93, 1, 014026 (2016), [arXiv:1601.00939].
[94] K. Kovarik et al., Phys. Rev. Lett. 106, 122301 (2011), [arXiv:1012.0286].
[95] H. Paukkunen and C. A. Salgado, Phys. Rev. Lett. 110, 21, 212301 (2013), [arXiv:1302.2001].
[96] G. Aad et al. (ATLAS), Phys. Rev. C92, 4, 044915 (2015), [arXiv:1507.06232].
[97] V. Khachatryan et al. (CMS), Phys. Lett. B750, 565 (2015), [arXiv:1503.05825].
[98] A. Kusina et al., Eur. Phys. J. C77, 7, 488 (2017), [arXiv:1610.02925].
[99] S. Chatrchyan et al. (CMS), Eur. Phys. J. C74, 7, 2951 (2014), [arXiv:1401.4433].
[100] R. Aaij et al. (LHCb), JHEP 10, 090 (2017), [arXiv:1707.02750].
[101] S. Acharya et al. (ALICE), Eur. Phys. J. C78, 8, 624 (2018), [arXiv:1801.07051].
[102] R. Abdul Khalek, J. J. Ethier and J. Rojo (NNPDF), Eur. Phys. J. C79, 6, 471 (2019), [arXiv:1904.00018].
[103] E. C. Aschenauer et al., Phys. Rev. D96, 11, 114005 (2017), [arXiv:1708.05654].
[104] D. Flay et al. (Jefferson Lab Hall A), Phys. Rev. D94, 5, 052003 (2016), [arXiv:1603.03612].
[105] C. Adolph et al. (COMPASS), Phys. Lett. B753, 18 (2016), [arXiv:1503.08935].
[106] C. Adolph et al. (COMPASS), Phys. Lett. B769, 34 (2017), [arXiv:1612.00620].
[107] R. Fersch et al. (CLAS), Phys. Rev. C96, 6, 065208 (2017), [arXiv:1706.10289].
[108] M. Hirai and S. Kumano (Asymmetry Analysis), Nucl. Phys. B813, 106 (2009), [arXiv:0808.0413].
[109] D. de Florian et al., Phys. Rev. Lett. 101, 072001 (2008), [arXiv:0804.0422]; D. de Florian et al., Phys. Rev. D80, 034030 (2009), [arXiv:0904.3821].
[110] E. Leader, A. V. Sidorov and D. B. Stamenov, Phys. Rev. D82, 114018 (2010), [arXiv:1010.0574].
[111] J. Blumlein and H. Bottcher, Nucl. Phys. B841, 205 (2010), [arXiv:1005.3113].
[112] D. de Florian et al., Phys. Rev. Lett. 113, 1, 012001 (2014), [arXiv:1404.4293].
[113] N. Sato et al. (Jefferson Lab Angular Momentum), Phys. Rev. D93, 7, 074005 (2016), [arXiv:1601.07782].
[114] D. de Florian et al., Phys. Rev. D91, 1, 014035 (2015), [arXiv:1410.6027].
[115] D. de Florian et al., Phys. Rev. D95, 9, 094019 (2017), [arXiv:1702.06353].
[116] V. Bertone et al. (NNPDF), Eur. Phys. J. C77, 8, 516 (2017), [arXiv:1706.07049].
[117] V. Bertone et al. (NNPDF), Eur. Phys. J. C78, 8, 651 (2018), [arXiv:1807.03310].
[118] D. De Florian et al. (2019), [arXiv:1902.10548].
[119] R. D. Ball et al. (NNPDF), Nucl. Phys. B874, 36 (2013), [arXiv:1303.7236].
[120] A. Buckley et al., Eur. Phys. J. C75, 132 (2015), [arXiv:1412.7420].
[121] R. Nisius, Phys. Rept. 332, 165 (2000), [hep-ex/9912049].
[122] T. F. Walsh and P. M. Zerwas, Phys. Lett. 44B, 195 (1973).
[123] R. L. Kingsley, Nucl. Phys. B60, 45 (1973).
[124] E. Witten, Nucl. Phys. B120, 189 (1977).
[125] W. A. Bardeen and A. J. Buras, Phys. Rev. D20, 166 (1979), [Erratum: Phys. Rev.D21,2041(1980)].
[126] M. Fontannaz and E. Pilon, Phys. Rev. D45, 382 (1992).
[127] M. Gluck, E. Reya and A. Vogt, Phys. Rev. D45, 3986 (1992).
[128] F. Cornet, P. Jankowski and M. Krawczyk, Phys. Rev. D70, 093004 (2004), [hep-ph/0404063].
[129] P. Aurenche, M. Fontannaz and J. P. Guillet, Eur. Phys. J. C44, 395 (2005), [hep-ph/0503259].
[130] W. Slominski, H. Abramowicz and A. Levy, Eur. Phys. J. C45, 633 (2006), [hep-ph/0504003].
[131] H. Abramowicz and A. Caldwell, Rev. Mod. Phys. 71, 1275 (1999), [hep-ex/9903037].
[132] S. Chekanov et al. (ZEUS), Nucl. Phys. B831, 1 (2010), [arXiv:0911.4119].
[133] A. Aktas et al. (H1), Eur. Phys. J. C48, 715 (2006), [hepex/0606004].
[134] A. D. Martin, M. G. Ryskin and G. Watt, Phys. Lett. B644, 131 (2007), [hep-ph/0609273].
[135] A. Aktas et al. (H1), JHEP 10, 042 (2007), [arXiv:0708.3217].
[136] F. D. Aaron et al. (H1, ZEUS), Eur. Phys. J. C72, 2175 (2012), [arXiv:1207.4864].
[137] F. D. Aaron et al. (H1), Eur. Phys. J. C72, 2074 (2012), [arXiv:1203.4495].
[138] J. C. Collins, Phys. Rev. D57, 3051 (1998), [Erratum: Phys. Rev.D61,019902(2000)], [hep-ph/9709499].
[139] G. Ingelman and P. E. Schlein, Phys. Lett. 152B, 256 (1985).
[140] M. Goharipour, H. Khanpour and V. Guzey, Eur. Phys. J. C78, 4, 309 (2018), [arXiv:1802.01363].
[141] X.-D. Ji, J. Phys. G24, 1181 (1998), [hep-ph/9807358].
[142] K. Goeke, M. V. Polyakov and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001), [hep-ph/0106012].
[143] M. Diehl, Phys. Rept. 388, 41 (2003), [hep-ph/0307382].
[144] A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005), [hep-ph/0504030].
[145] S. Boffi and B. Pasquini, Riv. Nuovo Cim. 30, 387 (2007), [arXiv:0711.2625].
[146] K. Kumericki, S. Liuti and H. Moutarde, Eur. Phys. J. A52, 6, 157 (2016), [arXiv:1602.02763].
[147] M. Burkardt, Int. J. Mod. Phys. A18, 173 (2003), [hepph/0207047].
[148] M. Diehl, Eur. Phys. J. C25, 223 (2002), [Erratum: Eur. Phys. J.C31,277(2003)], [hep-ph/0205208].
[149] A. V. Efremov and A. V. Radyushkin, Phys. Lett. 94B, 245 (1980).
[150] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980).
[151] A. V. Belitsky, A. Freund and D. Mueller, Phys. Lett. B493, 341 (2000), [hep-ph/0008005].
[152] A. V. Belitsky, A. Freund and D. Mueller, Nucl. Phys. B574, 347 (2000), [hep-ph/9912379].
[153] V. M. Braun et al., JHEP 06, 037 (2017), [arXiv:1703.09532].
[154] A. V. Radyushkin, Phys. Rev. D59, 014030 (1999), [hepph/9805342].
[155] A. V. Radyushkin, Phys. Lett. B449, 81 (1999), [hepph/9810466].
[156] K. Kumerički and D. Mueller, Nucl. Phys. B841, 1 (2010), [arXiv:0904.0458].
[157] N. d'Hose, S. Niccolai and A. Rostomyan, Eur. Phys. J. A52, 6, 151 (2016).
[158] M. Guidal, H. Moutarde and M. Vanderhaeghen, Rept. Prog. Phys. 76, 066202 (2013), [arXiv:1303.6600].
[159] M. Anselmino, M. Guidal and P. Rossi, The European Physical Journal A 52, 6, 149 (2016), ISSN 1434-601X, URL https://doi.org/10.1140/epja/i2016-16164-4.
[160] X. Ji, Phys. Rev. Lett. 91, 062001 (2003), [hep-ph/0304037].
[161] A. V. Belitsky, X. Ji and F. Yuan, Phys. Rev. D69, 074014 (2004), [hep-ph/0307383].
[162] C. Lorce, B. Pasquini and M. Vanderhaeghen, JHEP 05, 041 (2011), [arXiv:1102.4704].
[163] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996), [Erratum: Nucl. Phys.B484,538(1997)], [hepph/9510301].
[164] D. Boer and P. J. Mulders, Phys. Rev. D57, 5780 (1998), [hep-ph/9711485].
[165] D. W. Sivers, Phys. Rev. D41, 83 (1990).
[166] J. C. Collins, Nucl. Phys. B396, 161 (1993), [hepph/9208213].
[167] X. Ji, J. Ma and F. Yuan, Phys. Rev. D71, 034005 (2005), [hep-ph/0404183].
[168] J. Collins, Foundations of perturbative QCD Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1-624 and references therein.
[169] S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 (2011), [arXiv:1101.5057].
[170] M. G. Echevarria, A. Idilbi and I. Scimemi, JHEP 07, 002 (2012), [arXiv:1111.4996].
[171] M. G. A. Buffing, A. Mukherjee and P. J. Mulders, Phys. Rev. D88, 054027 (2013), [arXiv:1306.5897].
[172] T. C. Rogers and P. J. Mulders, Phys. Rev. D81, 094006 (2010), [arXiv:1001.2977].
[173] A. Signori et al., JHEP 11, 194 (2013), [arXiv:1309.3507].
[174] M. Anselmino et al., JHEP 04, 005 (2014), [arXiv:1312.6261].
[175] U. D'Alesio et al., JHEP 11, 098 (2014), [arXiv:1407.3311].
[176] M. G. Echevarria et al., Phys. Rev. D89, 074013 (2014), [arXiv:1401.5078].
[177] P. Sun et al., Int. J. Mod. Phys. A33, 11, 1841006 (2018), [arXiv:1406.3073].
[178] A. Bacchetta et al., JHEP 06, 081 (2017), [Erratum: JHEP06,051(2019)], [arXiv:1703.10157].
[179] I. Scimemi and A. Vladimirov, Eur. Phys. J. C78, 2, 89 (2018), [arXiv:1706.01473].
[180] V. Bertone, I. Scimemi and A. Vladimirov, JHEP 06, 028 (2019), [arXiv:1902.08474].
[181] J. O. Gonzalez-Hernandez et al., Phys. Rev. D98, 11, 114005 (2018), [arXiv:1808.04396].
[182] A. Bacchetta et al., Phys. Rev. D100, 1, 014018 (2019), [arXiv:1901.06916].
[183] R. Angeles-Martinez et al., Acta Phys. Polon. B46, 12, 2501 (2015), [arXiv:1507.05267].
[184] A. Bacchetta et al., Phys. Lett. B788, 542 (2019), [arXiv:1807.02101].
[185] M. Diehl, Eur. Phys. J. A52, 6, 149 (2016),
[arXiv:1512.01328].
[186] A. Bacchetta, Eur. Phys. J. A52, 6, 163 (2016).
[187] http://hepdata.cedar.ac.uk/pdfs.

Figure 18.8: The proton structure function F_{2}^{p} measured in electromagnetic scattering of electrons and positrons on protons, and for electrons/positrons (SLAC,HERMES,JLAB) and muons (BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown. The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F_{2}^{p} with a HERAPDF NLO fit, for all measured points where the predicted ratio of F_{2}^{p} to reduced cross-section was within 10% of unity. The data are plotted as a function of Q^{2} in bins of fixed x. Some points have been slightly offset in Q^{2} for clarity. The H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to the x values of these data. For the purpose of plotting, F_{2}^{p} has been multiplied by $2^{i x}$, where i_{x} is the number of the x bin, ranging from $i_{x}=1(x=0.85)$ to $i_{x}=26(x=0.0000085)$. Only data with $W^{2}>3.5 \mathrm{GeV}^{2}$ is included. Plot from CJ collaboration (Shujie Li - private communication). References: H1 and ZEUS-H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS-A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [187]) E665-M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC-M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC-L.W. Whitlow et al., Phys. Lett. B282, 475 (1992); HERMES—A. Airapetian et al., JHEP 1105, 126 (2011);JLAB-Y. Liang et al., Jefferson Lab Hall C E94-110 collaboration, nucl-ex/0410027, M.E. Christy et al., Jefferson Lab Hall C E94-110 Collaboration, Phys. Rev. C70, 015206 (2004), S. Malace et al., Jefferson Lab Hall C E00-116 Collaboration, Phys. Rev. C80, 035207 (2009), V. Tvaskis et al., Jefferson Lab Hall C E99-118 Collaboration, Phys. Rev. C81, 055207 (2010), M. Osipenko et al., Jefferson Lab Hall B CLAS6 Collaboration, Phys. Rev. D67, 092001 (2003).

Figure 18.9: The deuteron structure function F_{2}^{d} measured in electromagnetic scattering of electrons/positrons (SLAC,HERMES,JLAB) and muons (BCDMS, E665, NMC) on a fixed target, shown as a function of Q^{2} for bins of fixed x. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, F_{2}^{d} has been multiplied by $2^{i x}$, where i_{x} is the number of the x bin, ranging from $1(x=0.85)$ to $29(x=0.00076)$. Only data with $W^{2}>3.5 \mathrm{GeV}^{2}$ is included. Plot from CJ collaboration (Shujie Li -private communication) References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC,HERMESsame references as Fig. 18.8; JLAB-S. Malace et al., Jefferson Lab Hall C E00-116 Collaboration, Phys. Rev. C80, 035207 (2009), V. Tvaskis et al., Jefferson Lab Hall C E99-118 Collaboration, Phys. Rev. C81, 055207 (2010), J. Seely (MIT, LNS) et al., Jefferson Lab Hall C E03-103 Collaboration, Phys. Rev. Lett. 103, 202301 (2009), M. Osipenko et al., Jefferson Lab Hall B CLAS6 Collaboration, Phys. Rev. C73, 045205 (2006).

Figure 18.10: a) The deuteron structure function F_{2} measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to the structure function F_{2} from neutrino-iron scattering (CCFR and NuTeV) using $F_{2}^{\mu}=(5 / 18) F_{2}^{\nu}-x(s+\bar{s}) / 6$, where heavy-target effects have been taken into account. The data are shown versus Q^{2}, for bins of fixed x. The NMC data have been rebinned to CCFR and $\mathrm{NuTeV} x$ values. For the purpose of plotting, a constant $c(x)=0.05 i_{x}$ is added to F_{2}, where i_{x} is the number of the x bin, ranging from $0(x=0.75)$ to $7(x=0.175)$. For $i_{x}=8(x=0.125)$ to $11(x=0.015), 2 c(x)$ has been added. References: NMC-M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett. 86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
b) The proton structure function F_{2}^{p} mostly at small x and Q^{2}, measured in electromagnetic scattering of electrons and positrons (H1, ZEUS), electrons (SLAC), and muons (BCDMS, NMC) on protons. Lines are ZEUS Regge and HERAPDF parameterizations for lower and higher Q^{2}, respectively. The width of the bins can be up to 10% of the stated Q^{2}. Some points have been slightly offset in x for clarity. The H1+ZEUS combined values for $Q^{2} \geq 3.5 \mathrm{GeV}^{2}$ are obtained from the measured reduced cross section and converted to F_{2}^{p} with a HERAPDF NLO fit, for all measured points where the predicted ratio of F_{2}^{p} to reduced cross-section was within 10% of unity. A turn-over is visible in the low- x points at medium $Q^{2}\left(3.5 \mathrm{GeV}^{2}\right.$ and $\left.6 \mathrm{GeV}^{2}\right)$ for the H1+ZEUS combined values. In order to obtain F_{2}^{p} from the measured reduced cross-section, F_{L} must be estimated; for the points shown, this estimate is obtained from HERAPDF2.0. No F_{L} value consistent with the HERA data can eliminate the turn-over. This may indicate that at low x and Q^{2} there are contributions to the structure functions that cannot be described in standard DGLAP evolution.
References: H1 and ZEUS-F.D. Aaron et al., JHEP 1001, 109 (2010) (data for $Q^{2}<3.5 \mathrm{GeV}^{2}$), H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (data for $Q^{2} \geq 3.5 \mathrm{GeV}^{2}$ and HERAPDF parameterization); ZEUS—J. Breitweg et al., Phys. Lett. B487, 53 (2000) (ZEUS Regge parameterization); BCDMS, NMC, SLAC-same references as Fig. 18.8.

Statistical and systematic errors added in quadrature are shown for both plots.

Figure 18.11: a) The charm-quark structure function $F_{2}^{c \bar{c}}(x)$, i.e. that part of the inclusive structure function F_{2}^{p} arising from the production of charm quarks, measured in electromagnetic scattering of positrons on protons (H1, ZEUS) (the values are obtained from the measured reduced cross section and converted to $F_{2}^{c \bar{c}}$ using the PDFs from the MMHT NNLO fit) and muons on iron (EMC). For the purpose of plotting, a constant $c(Q)=0.07 i_{Q}{ }^{1.7}$ is added to $F_{2}^{c \bar{c}}$ where i_{Q} is the number of the Q^{2} bin, ranging from 1 $\left(Q^{2}=2.5 \mathrm{GeV}^{2}\right)$ to $12\left(Q^{2}=2000 \mathrm{GeV}^{2}\right)$. References: H1 and ZEUS run I + II combination-H. Abramowicz et al., Eur. Phys. J. C78, 473 (2018); EMC—J.J. Aubert et al., Nucl. Phys. B213, 31 (1983).
b) The bottom-quark structure function $F_{2}^{b \bar{b}}(x)$. For the purpose of plotting, a constant $c(Q)=0.01 i_{Q}^{1.6}$ is added to $F_{2}^{b \bar{b}}$ where i_{Q} is the number of the Q^{2} bin, ranging from $1\left(Q^{2}=2.5 \mathrm{GeV}^{2}\right)$ to $12\left(Q^{2}=2000 \mathrm{GeV}^{2}\right)$. References: H1 and ZEUS run I combination-H. Abramowicz et al., Eur. Phys. J. C78, 473 (2018).
For both plots, statistical and systematic errors added in quadrature are shown. The data are given as a function of x in bins of Q^{2}. Points may have been slightly offset in x for clarity. Some data have been rebinned to common Q^{2} values. Also shown is the MMHT2014 parameterization given at several Q^{2} values (L. A. Harland-Lang et al., Eur. Phys. J. C75, 204 (2015)).

Figure 18.12: The structure function $x F_{3}^{\gamma Z}$ measured in electroweak scattering of a) electrons on protons (H1 and ZEUS) and b) muons on carbon (BCDMS). The line in a) is the HERAPDF parameterization. References: H1 and ZEUS-H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS-A. Argento et al., Phys. Lett. B140, 142 (1984). c) The structure function $x F_{3}$ of the nucleon measured in ν-Fe scattering. The data are plotted as a function of Q^{2} in bins of fixed x. For the purpose of plotting, a constant $c(x)=0.5\left(i_{x}-1\right)$ is added to $x F_{3}$, where i_{x} is the number of the x bin as shown in the plot. The NuTeV and CHORUS points have been shifted to the nearest corresponding x bin as given in the plot and slightly offset in Q^{2} for clarity. References: CCFR-W.G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997); NuTeV-M. Tzanov et al., Phys. Rev. D74, 012008 (2006); CHORUS—G. Önengüt et al., Phys. Lett. B632, 65 (2006).
Statistical and systematic errors added in quadrature are shown for all plots.

Figure 18.13: Top panels: The longitudinal structure function F_{L} as a function of x in bins of fixed Q^{2} measured on the proton (except for the SLAC data which also contain deuterium data). BCDMS, NMC, and SLAC results are from measurements of R (the ratio of longitudinal to transverse photon absorption cross sections) which are converted to F_{L} by using the BDCMS parameterization of F_{2} (A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989)). It is assumed that the Q^{2} dependence of the fixed-target data is small within a given Q^{2} bin. Some of the other data may have been rebinned to common Q^{2} values. Some points have been slightly offset in x for clarity. Also shown is the MSTW2008 parameterization given at three Q^{2} values (A.D. Martin et al., Eur. Phys. J. C63, 189 (2009)). References: H1-V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—S. Chekanov et al., Phys. Lett. B682, 8 (2009); H. Abramowicz et al., Phys. Rev. D90, 072002 (2014); BCDMS—A. Benvenuti et al., Phys. Lett. B223, 485 (1989); NMC-M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC-L.W. Whitlow et al., Phys. Lett. B250, 193 (1990) and numerical values from the thesis of L.W. Whitlow (SLAC-357).
Bottom panel: The longitudinal structure function F_{L} as a function of Q^{2}. Some points have been slightly offset in Q^{2} for clarity. References: H1-V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS-H. Abramowicz et al., Phys. Rev. D90, 072002 (2014).
The results shown in the bottom plot require the assumption of the validity of the QCD form for the F_{2} structure function in order to extract F_{L}. Statistical and systematic errors added in quadrature are shown for both plots.

Figure 18.14: World data on the spin-dependent structure function g_{1}^{p} as a function of Q^{2} for various values of x The lines represent the Q^{2} dependence for each value of x, as determined from a NLO QCD fit. The dashed ranges represent the region with $W^{2}<10$ $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}$. References: EMC—J. Ashman et al., Phys. Lett. B206, 363 (1988); Nucl. Phys. B328, 1 (1989); E143-K. Abe et al., Phys. Rev. D58, 112003 (1998); SMC—B. Adeva et al., Phys. Rev. D58, 112001 (1998); HERMES—A. Airapetian et al., Phys. Rev. D75, 012007 (2007); E155-P.L. Anthony et al., Phys. Lett. B493, 19 (2000); COMPASS-M.G. Alekseev et al., Phys. Lett. B690, 466 (2010), C. Adolph, et al., Phys. Lett. B753, 18 (2016); CLAS—K.V. Dharmawardane et al., Phys. Lett. B641, 11 (2006) (which also includes resonance region data not shown on this plot - there is also low W^{2} CLAS data in Y. Prok et al., Phys. Rev. C90, 025212 (2014) and N. Guler et al., Phys. Rev. C92, 055201 (2015)).

Figure 18.15: World data on the spin-dependent structure function g_{1}^{d} as a function of Q^{2} for various values of x The lines represent the Q^{2} dependence for each value of x, as determined from a NLO QCD fit. The dashed ranges represent the region with $W^{2}<10$ $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}$. CLAS—K.V. Dharmawardane et al., Phys. Lett. B641, 11 (2006) HERMES—A. Airapetian et al., Phys. Rev. D75, 012007 (2007); SMC—B. Adeva et al., Phys. Rev. D58, 112001 (1998); E155—P.L. Anthony et al., Phys. Lett. B463, 339 (1999); E143-K. Abe et al., Phys. Rev. D58, 112003 (1998); COMPASS-C. Adolph, et al., Phys. Lett. B769, 34 (2017);

Figure 18.16: The hadronic structure function of the photon F_{2}^{γ} divided by the fine structure constant α measured in $e^{+} e^{-}$scattering, shown as a function of Q^{2} for bins of x. Data points have been shifted to the nearest corresponding x bin as given in the plot. Some points have been offset in Q^{2} for clarity. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant $c(x)=1.5 i_{x}$ is added to F_{2}^{γ} / α where i_{x} is the number of the x bin, ranging from $1(x=0.0055)$ to $8(x=0.9)$. References: ALEPH-R. Barate et al., Phys. Lett. B458, 152 (1999); A. Heister et al., Eur. Phys. J. C30, 145 (2003);DELPHI-P. Abreu et al., Z. Phys. C69, 223 (1995); L3-M. Acciarri et al., Phys. Lett. B436, 403 (1998); M. Acciarri et al., Phys. Lett. B447, 147 (1999); M. Acciarri et al., Phys. Lett. B483, 373 (2000); OPAL-A. Ackerstaff et al., Phys. Lett. B411, 387 (1997); A. Ackerstaff et al., Z. Phys. C74, 33 (1997); G. Abbiendi et al., Eur. Phys. J. C18, 15 (2000); G. Abbiendi et al., Phys. Lett. B533, 207 (2002) (note that there is overlap of the data samples in these last two papers); AMY-S.K. Sahu et al., Phys. Lett. B346, 208 (1995); T. Kojima et al., Phys. Lett. B400, 395 (1997); JADE-W. Bartel et al., Z. Phys. C24, 231 (1984); PLUTO-C. Berger et al., Phys. Lett. 142B, 111 (1984); C. Berger et al., Nucl. Phys. B281, 365 (1987); TASSO-M. Althoff et al., Z. Phys. C31, 527 (1986); TOPAZ-K. Muramatsu et al., Phys. Lett. B332, 477 (1994); TPC/Two Gamma-H. Aihara et al., Z. Phys. C34, 1 (1987).

19. Fragmentation Functions in $e^{+} e^{-}, e p$, and $p p$ Collisions

Revised August 2019 by O. Biebel (Ludwig-Maximilians U.), D. de Florian (ICAS and ICIFI, UNSAM), D. Milstead (Stockholm U.) and W. Vogelsang (Tübingen U.).

19.1 Introduction to fragmentation

Quarks and gluons produced in hard-scattering reactions will ultimately give rise to the colorless hadronic bound states that may be observed in the detector. The associated hadronization process is described by fragmentation functions $D_{i}^{h}\left(x, \mu^{2}\right)(i=q, \bar{q}, g)$ which are universal functions representing, in the simplest picture, a measure of the probability density that an outgoing parton produces a hadron h. Here, x is the fraction of the parton's momentum transferred to the hadron, and μ is a 'resolution' scale known as factorization scale. The $D_{i}^{h}\left(x, \mu^{2}\right)$ may be viewed as the final-state analogs of the initial-state parton distribution functions (PDFs) addressed in Section 18 of this Review. They are also sometimes referred to as timelike distributions since they are primarily accessed in $e^{+} e^{-}$annihilation via a timelike intermediate boson. (See Refs. [1,2] for introductory reviews, and Refs. [3-5] for summaries of experimental and theoretical research in this field).

The cleanest laboratory for the study of fragmentation functions is provided by semi-inclusive electron-positron annihilation, $e^{+} e^{-} \rightarrow \gamma / Z \rightarrow h+X$. The cross section for this reaction may be expressed in terms of 'fragmentation structure functions' $F_{T, L, A}$ that are directly related to the fragmentation functions. At center-of-mass (CM) energy $\sqrt{s}=q^{2}$ we have

$$
\begin{align*}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma^{h}}{d x d \cos \theta} & =\frac{3}{8}\left(1+\cos ^{2} \theta\right) F_{T}^{h}\left(x, q^{2}\right)+\frac{3}{4} \sin ^{2} \theta F_{L}^{h}\left(x, q^{2}\right) \\
& +\frac{3}{4} \cos \theta F_{A}^{h}\left(x, q^{2}\right) \tag{19.1}
\end{align*}
$$

Here, q is the four-momentum of the intermediate photon or Z boson, with $q^{2}>0$, and $x=2 P_{h} \cdot q / q^{2}$ with the hadron's fourmomentum P_{h} is the fragmentation counterpart of the familiar DIS Bjorken variable. (Note that $x=2 E_{h} / \sqrt{s} \leq 1$ in terms of the energy E_{h} of the produced hadron in the CM frame of the electron positron pair.) Furthermore, in the same frame, θ is the hadron's angle relative to the electron beam direction. Eq. (19.1) is the most general form for unpolarized inclusive single-particle production via vector bosons [6]. The fragmentation structure functions F_{T} and F_{L} represent the contributions from γ / Z polarizations transverse or longitudinal with respect to the direction of motion of the hadron. The parity-violating term with the asymmetric fragmentation function F_{A} arises from the interference between vector and axial-vector contributions. Various normalization factors σ_{0} are used in the literature, ranging from the total cross section $\sigma_{\text {tot }}$ for $e^{+} e^{-} \rightarrow$ hadrons, including all weak and QCD contributions, to $\sigma_{0}=4 \pi \alpha^{2} N_{c} / 3 s$ with $N_{c}=3$, the lowestorder QED cross section for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$times the number of colors N_{c}. LEP1 measurements of the three fragmentation structure functions are shown in Fig. 19.1.

Integration of Eq. (19.1) over all θ yields the total fragmentation structure function $F^{h}=F_{T}^{h}+F_{L}^{h}$:

$$
\begin{align*}
\frac{1}{\sigma_{0}} \frac{d \sigma^{h}}{d x} & =F^{h}\left(x, q^{2}\right) \\
& =\sum_{i} \int_{x}^{1} \frac{d z}{z} C_{i}\left(z, \alpha_{\mathrm{s}}(\mu), \frac{q^{2}}{\mu^{2}}\right) D_{i}^{h}\left(\frac{x}{z}, \mu^{2}\right) \tag{19.2}
\end{align*}
$$

On the right we have written the factorized expression for the structure function in terms of a sum over convolutions of the fragmentation functions D_{i}^{h} for partons $i=u, \bar{u}, d, \bar{d}, \ldots, g$ with perturbative coefficient functions C_{i}. Since photons and Z bosons do not distinguish between quarks and antiquarks, $e^{+} e^{-}$annihilation primarily constrains the combinations $D_{q}^{h}+D_{\bar{q}}^{h}$. Gluon fragmentation contributes only at higher order in perturbation theory or by scaling violations. Corrections to the factorized expression in Eq. (19.2) are suppressed by inverse powers of q^{2}. They arise from quark and hadron mass terms and from non-perturbative effects.

Figure 19.1: LEP1 measurements of total transverse $\left(F_{T}\right)$, longitudinal $\left(F_{L}\right)$, and asymmetric $\left(F_{A}\right)$ fragmentation structure functions [7]. Data points with relative errors greater than 100% are omitted.

Analogous factorized expressions as in Eq. (19.2) may be written for each of the structure functions $F_{T, L, A}$ individually.

The fragmentation functions obey the momentum sum rule constraint

$$
\begin{equation*}
\sum_{h} \int_{0}^{1} d x x D_{i}^{h}\left(x, \mu^{2}\right)=1 \tag{19.3}
\end{equation*}
$$

separately for each flavor i. Note that the sum rule involves a sum over all possible produced hadrons. The dependence of the functions D_{i}^{h} on the factorization scale μ^{2} will be discussed in the next section.

Measurements of hadron production in deeply-inelastic leptonproton scattering and hadron-hadron scattering are complementary to those in $e^{+} e^{-}$annihilation. The former process, $\ell p \rightarrow$ $\ell^{\prime}+h+X$, is known as semi-inclusive deep-inelastic scattering (SIDIS). Here, in analogy with Eq. (19.2), the high virtuality of the photon in DIS also permits factorization of the cross section in terms of fragmentation functions, PDFs for the incoming proton, and perturbative hard-scattering cross sections. Likewise, factorization also occurs for $p p \rightarrow h+X$ at large transverse momentum of the produced hadron, and for $p p \rightarrow j \operatorname{jet}(h)+X$, where the hadron is part of a fully reconstructed jet. The fragmentation functions contributing to $e^{+} e^{-} \rightarrow h+X, \ell p \rightarrow \ell^{\prime}+h+X$, and $p p \rightarrow h+X, p p \rightarrow \operatorname{jet}(h)+X$ are universal in the sense that the same functions appear in the factorized expressions for the three reactions. Modern QCD analyses of fragmentation functions "globally" take into account experimental data sets for all three types of processes in order to obtain optimal sets of fragmentation functions.

Electron-positron annihilation has the advantage that there is no hadronic initial state and hence no beam remnant. This is in contrast to $\ell p \rightarrow \ell^{\prime}+h+X$ or $p p \rightarrow h+X$, which are affected by hadron remnant contributions associated with the partons of the initial-state hadron(s) which are collaterally involved in the hard lepton-parton or parton-parton collision. On the other hand,

Figure 19.2: Cross section for $e^{+} e^{-} \rightarrow h+X$ for all charged hadrons [8-26], (a) for different CM energies \sqrt{s} versus x, and (b) for various ranges of x versus \sqrt{s}. For (a) the distributions have been scaled by $c(\sqrt{s})=10^{i}$ with i ranging from $i=0(\sqrt{s}=12 \mathrm{GeV})$ to $i=13(\sqrt{s}=202 \mathrm{GeV})$.
$e^{+} e^{-} \rightarrow h+X$ has little sensitivity to D_{g}^{h} and is insensitive to the charge asymmetries $D_{q}^{h}-D_{\bar{q}}^{h}$. These quantities are best constrained in proton-(anti-)proton and electron-proton scattering, respectively. Especially the latter provides an environment that allows the study of the influence of initial-state QCD radiation on the fragmentation process, of the partonic and spin structure of the hadron target, and of the target remnant system. (See Ref. [27] for a comprehensive review of the measurements and models of fragmentation in lepton-hadron scattering).

Moreover, unlike $e^{+} e^{-}$annihilation where $q^{2}=s$ is fixed by the collider energy, lepton-hadron scattering has two independent scales, $Q^{2}=-q^{2}$ and the invariant mass squared, $W^{2} \approx$ $Q^{2}(1-x) / x$, of the hadronic final state, which both can vary by several orders of magnitudes for a given CM energy, thus allowing the study of fragmentation in different environments by a single experiment. For example, in photoproduction the exchanged photon is quasi-real ($Q^{2} \approx 0$), leading to processes akin to hadron-hadron scattering. In DIS ($Q^{2} \gg 1 \mathrm{GeV}^{2}$), using factorization, the hadronic fragments of the struck quark can be directly compared with quark fragmentation in $e^{+} e^{-}$in a suitable frame. Results from lepton-hadron experiments quoted in this report primarily concern fragmentation in the DIS regime. Studies performed by lepton-hadron experiments of fragmentation with photoproduction data containing high transverse momentum jets or particles are also reported, when these are directly comparable to DIS and $e^{+} e^{-}$results.

Fragmentation studies in lepton-hadron collisions are usually performed in one of two frames in which the target hadron and the exchanged boson are collinear. The hadronic center-of-mass frame (HCMS) is defined as the rest system of the exchanged boson and incoming hadron, with the z^{*}-axis defined along the direction of the exchanged boson. The positive z^{*} direction de-
fines the so-called current fragmentation region. Fragmentation measurements performed in the HCMS often use the Feynman- x variable $x_{F}=2 p_{z}^{*} / W$, where p_{z}^{*} is the longitudinal momentum of the particle in this frame. As W is the invariant mass of the hadronic final state, x_{F} ranges between -1 and 1 .
The Breit system [28,29] is related to the HCMS by a longitudinal boost such that the time component of q vanishes, i.e, $q=(0,0,0,-Q)$. In the parton model, the struck parton then has the longitudinal momentum $Q / 2$ which becomes $-Q / 2$ after the collision. As compared with the HCMS, the current fragmentation region of the Breit frame is more closely matched to the partonic scattering process, and is thus appropriate for direct comparisons of fragmentation functions in DIS with those from $e^{+} e^{-}$annihilation. The variable $x_{p}=2 p^{*} / Q$, where p^{*} is the particle's momentum in the current region of the Breit frame, is used at HERA for measurements in the Breit frame, enabling rather direct comparisons of DIS and $e^{+} e^{-}$results.

19.2 Scaling violations and QCD corrections

As mentioned, the coefficient functions for the fragmentation structure functions in $e^{+} e^{-} \rightarrow h+X$ are amenable to QCD perturbation theory. For each of the structure functions $F_{T, L, A}\left(x, q^{2}\right)$ in Eq. (19.1) (and hence for the total structure function F^{h} in Eq. (19.2)) the coefficient function has an expansion of the form

$$
\begin{align*}
& C_{a, i}\left(z, \alpha_{\mathrm{s}}(\mu), \frac{q^{2}}{\mu^{2}}\right)=\left(1-\delta_{a L}\right) \delta_{i q} \delta(1-z) \\
& \quad+\frac{\alpha_{\mathrm{s}}(\mu)}{2 \pi} c_{a, i}^{(1)}\left(z, \frac{q^{2}}{\mu^{2}}\right)+\left(\frac{\alpha_{\mathrm{s}}(\mu)}{2 \pi}\right)^{2} c_{a, i}^{(2)}\left(z, \frac{q^{2}}{\mu^{2}}\right)+ \tag{19,4}
\end{align*}
$$

Figure 19.3: (a) The distribution $1 / N \cdot d N / d x_{F}$ for all charged particles in DIS lepton-hadron experiments at different values of W, measured in the HCMS [30-33]. (b) Scaling violations of the fragmentation structure function for all charged particles in the current region of the Breit frame of DIS [34,35] and in $e^{+} e^{-}$interactions [19,36]. The data are shown as a function of \sqrt{s} for $e^{+} e^{-}$results, and as a function of Q for the DIS results, each within the same indicated intervals of the scaled momentum x_{p}. The data for the four lowest intervals of x_{p} are multiplied by factors $50,10,5$, and 3 , respectively for better visibility.
where $a=T, L, A$. At the zeroth order in the strong coupling α_{s} the coefficient functions C_{g} for gluons vanish, while for (anti) quarks $C_{i}=g_{i}(s) \delta(1-z)$ (except for F_{L} for which the leading contribution is of order α_{s}, as indicated in Eq. (19.4)). Here $g_{i}(s)$ is the appropriate electroweak coupling. In particular, $g_{i}(s)$ is proportional to the squared charge of the quark i at $s \ll M_{Z}^{2}$, when weak effects can be neglected. The full electroweak prefactors $g_{i}(s)$ can be found in Ref. [6]. The first-order QCD corrections to the coefficient functions have been calculated in Refs. [37,38], and the second-order terms in [39-41]. Thus, the coefficient functions are known to NNLO, except for F_{L}. We note that beyond the leading order the coefficient functions, and hence the fragmentation functions, start to depend on the choice of factorization scheme. The standard choice in the literature is the $\overline{\mathrm{MS}}$ scheme.

The simplest parton-model approach would predict scaleindependent ('scaling') x-distributions for both the structure function F^{h} and the parton fragmentation functions D_{i}^{h}. Perturbative QCD corrections lead to logarithmic scaling violations via the evolution equations [42]

$$
\begin{equation*}
\frac{\partial}{\partial \ln \mu^{2}} D_{i}^{h}\left(x, \mu^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d z}{z} P_{j i}\left(z, \alpha_{\mathrm{s}}\left(\mu^{2}\right)\right) D_{j}^{h}\left(\frac{x}{z}, \mu^{2}\right) \tag{19.5}
\end{equation*}
$$

where the functions $P_{i j}\left(z, \alpha_{\mathrm{S}}\left(\mu^{2}\right)\right)$ describe the splitting process $i \rightarrow j+X$, where parton j carries the longitudinal momentum fraction z of parton i. Note that for fragmentation the relevant splitting functions are $P_{j i}$ (rather than $P_{i j}$ as for the PDFs) since D_{j}^{h} represents the fragmentation of the final parton. Usually the system of evolution equations is decomposed into a 2×2 flavor-singlet sector comprising the gluon and the sum of all quark and antiquark fragmentation functions, and scalar ('non-singlet') equations for quark-antiquark and flavor differences.

The splitting functions in Eq. (19.5) have the perturbative expansion
$P_{j i}\left(z, \alpha_{\mathrm{s}}\right)=\frac{\alpha_{\mathrm{s}}}{2 \pi} P_{j i}^{(0)}(z)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} P_{j i}^{(1)}(z)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{3} P_{j i}^{(2)}(z)+\ldots$,
where the leading-order (LO) functions $P^{(0)}(z)$ [42,43] are the same as those for the initial-state parton distributions. The next-to-leading order (NLO) corrections $P^{(1)}(z)$ have been calculated in Refs. [44-48] (there are well-known misprints in the journal version of Ref. [45]). Ref. [48] also includes the spin-dependent case. The timelike functions are different from, but related to, their spacelike counterparts, see also Ref. [49]. The connections between the two sets of functions has facilitated recent calculations of the next-to-next-to-leading order (NNLO) quantities $P_{q q}^{(2)}(z)$ and $P_{g g}^{(2)}(z)$ in Eq. (19.6) [40,50]. In the same way, the corresponding off-diagonal quantities $P_{q g}^{(2)}$ and $P_{g q}^{(2)}$ were recently obtained in Ref. [51] with the help of constraints from the momentum sum rule Eq. (19.3) [50] and of the limit of $C_{A}=C_{F}=n_{f}$ for which QCD becomes supersymmetric. An uncertainty still remains for the $P_{q g}^{(2)}$ kernel, which however does not affect the logarithmic behavior at small and large momentum fractions. With the exception of Ref. [47], all these higher-order results refer to the standard $\overline{\mathrm{MS}}$ scheme with a fixed number n_{f} of light flavors. When the threshold for the production of a heavier quark flavor is crossed in the course of the scale evolution, fragmentation functions change. The NLO treatment of these flavor thresholds in the evolution has been addressed in Ref. [52].
The phenomenological effect of scale evolution is similar in the timelike and spacelike cases: As the scale increases, one observes a scaling violation in which the x-distribution is shifted towards lower values. This can be seen from Fig. 19.2 where a set of measurements of the total fragmentation structure function in $e^{+} e^{-}$ annihilation are shown. In particular, the figure on the right exhibits the dependence on $\sqrt{q^{2}}=\sqrt{s}$ at fixed values of x. QCD analyses of these data are discussed in Section 19.5 below.

The NLO coefficient functions for SIDIS, $e p \rightarrow e+h+X$, have been presented in Refs. [37,38] Corresponding results have also been obtained for the case that a non-vanishing hadron transverse momentum is required in the HCMS frame [53, 54].

Scaling violations in DIS are shown in Fig. 19.3 for both the HCMS and the Breit frames. In Fig. 1.3(a) the distribution in terms of $x_{F}=2 p_{z}^{*} / W$ shows a steeper slope in $e p$ data than for the lower-energy μp data for $x_{F}>0.15$, indicating the scaling
violations. At smaller values of x_{F} in the current jet region, the multiplicity of particles substantially increases with W, owing to the increased phase space available for the fragmentation process. The EMC data access both the current region and the region of the fragmenting target remnant system. At higher values of $\left|x_{F}\right|$, due to the extended nature of the remnant, the multiplicity in the target region far exceeds that in the current region. For acceptance reasons the remnant hemisphere of the HCMS is only accessible by the lower-energy fixed-target experiments.

Using hadrons from the current hemisphere in the Breit frame, measurements of fragmentation functions and the production properties of particles in $e p$ scattering have been reported in Refs. [34, 35, 55-58]. Fig. 19.3(b) compares results from ep scattering and $e^{+} e^{-}$experiments; the latter results have been divided by two as they cover both event hemispheres. The agreement between the DIS and $e^{+} e^{-}$results is fairly good. However, processes in DIS which are not present in $e^{+} e^{-}$annihilation, such as bosongluon fusion and initial-state QCD radiation, can depopulate the current region. These effects become most prominent at low values of Q and x_{p}. Hence, when compared with $e^{+} e^{-}$annihilation data at $\sqrt{s}=5.2,6.5 \mathrm{GeV}$ [59] not shown here, the DIS particle rates tend to lie below those observed in $e^{+} e^{-}$annihilation. A ZEUS study [60] finds that the direct comparability of the ep data to $e^{+} e^{-}$results at low scales is improved if twice the energy in the current hemisphere of the Breit frame, $2 E_{B}^{\mathrm{cr}}$, is used instead of $Q / 2$ as the fragmentation scale. Choosing $2 E_{B}^{\mathrm{cr}}$ for the fragmentation scale approximates QCD radiation effects relevant at low scales, as detailed in Ref. [29].

19.3 Fragmentation functions for small particle momenta

The higher-order timelike splitting functions in Eq. (19.6) are singular at small values of x. They show a double-logarithmic enhancement, with leading terms of the form $\alpha_{\mathrm{s}}^{k}\left(\ln ^{2 k-2} x\right) / x$ at the k th order of perturbation theory, corresponding to poles $\alpha_{\mathrm{s}}^{k}(N-1)^{1-2 k}$ for the Mellin moments

$$
\begin{equation*}
P^{(k)}(N)=\int_{0}^{1} d x x^{N-1} P^{(k)}(x) \tag{19.7}
\end{equation*}
$$

Despite large cancellations between leading and non-leading logarithms at non-asymptotic values of x, the resulting small- x rise in the timelike splitting functions dwarfs that of their spacelike counterparts for the evolution of the parton distributions in Section 18 of this Review, see Fig. 1 of Ref. [50]. Consequently, in fragmentation the fixed-order approximation to the evolution breaks down orders of magnitude earlier in x than in DIS.

The pattern of the known coefficients and other considerations suggest that the double-logarithmic terms sum to all-order expressions without any pole at $N=1$, such as $[61,62]$

$$
\begin{equation*}
P_{g g}^{\mathrm{LL}}(N)=-\frac{1}{4}\left(N-1-\sqrt{(N-1)^{2} \cdot 24 \alpha_{\mathrm{s}} / \pi}\right) \tag{19.8}
\end{equation*}
$$

for the gluon-to-gluon splitting function at leading logarithmic order. Keeping the first three terms in the resulting expansion of Eq. (19.5) around $N=1$ and taking the Mellin inverse yields a Gaussian in the variable $\xi=\ln (1 / x)$ for the small- x fragmentation functions,

$$
\begin{equation*}
x D\left(x, q^{2}=s\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left(\xi-\xi_{p}\right)^{2}\right] \tag{19.9}
\end{equation*}
$$

with the peak position and width varying with the energy as [63] (see also Ref. [2])

$$
\begin{equation*}
\xi_{p} \simeq \frac{1}{4} \ln \left(\frac{s}{\Lambda^{2}}\right), \quad \sigma \propto\left[\ln \left(\frac{s}{\Lambda^{2}}\right)\right]^{3 / 4} \tag{19.10}
\end{equation*}
$$

Next-to-leading logarithmic corrections to the above predictions have been calculated [64]. In the method of Ref. [65], see also Refs. [66, 67], the corrections are included in an analytical form known as the 'modified leading logarithmic approximation' (MLLA). Alternatively they can be used to compute higher-moment correc-
tions to the shape in Eq. (19.9) [68]. The small- x resummation of the coefficient functions for semi-inclusive $e^{+} e^{-}$annihilation and of the timelike spitting functions in the standard $\overline{\mathrm{MS}}$ scheme was extended in Refs. [69-73] and has reached full next-to-next-to-leading logarithmic accuracy. Applications of these results to gluon and quark jet multiplicities have been presented in Refs. [74].
Fig. 19.4 shows the ξ distribution for charged particles produced in the current region of the Breit frame in DIS and in $e^{+} e^{-}$annihilation. Consistently with Eq. (19.9) (the 'hump backed plateau') and Eq. (19.10) the distributions have a Gaussian shape, with the peak position and area increasing with CM energy ($e^{+} e^{-}$) and Q^{2} (DIS).

Figure 19.4: Distribution of the normalized fragmentation cross sections in $\xi=\ln \left(1 / x_{p}\right)$ at several CM energies $\left(e^{+} e^{-}\right)\left[10,11,16{ }^{-}\right.$ $19,57,58,75-78]$ and for intervals of Q^{2} (DIS). At each energy only one representative measurement is displayed. For clarity some measurements at intermediate CM energies $\left(e^{+} e^{-}\right)$or Q^{2} ranges (DIS) are not shown. The DIS measurements (*) have been scaled by a factor of 2 for direct comparability with the $e^{+} e^{-}$results. Fits of simple Gaussian functions are overlaid for illustration.

The predicted energy dependence of the peak in the ξ distribution (see Eq. (19.10)) is explained by soft gluon coherence (angular ordering), i.e., the destructive interference of the color wavefunction of low energy gluon radiation, which correctly predicts the suppression of hadron production at small x. Of course, a decrease at very small x is expected on purely kinematical grounds, but this would occur at particle energies proportional to their masses, i.e., at $x \propto m / \sqrt{s}$ and hence $\xi \sim \frac{1}{2} \ln s$. Thus, if the suppression were purely kinematic, the peak position ξ_{p} would vary twice as rapidly with the energy, which is ruled out by the data in Fig. 19.5. The $e^{+} e^{-}$and DIS data agree well with each other, demonstrating the universality of hadronization and the MLLA prediction. Measurements of the higher moments of the ξ distribution in $e^{+} e^{-}$[19,78-80] and DIS [58] have also been performed and show consistency with each other.

The average charged-particle multiplicity is another observable sensitive to fragmentation functions for small particle momenta. Perturbative predictions using both NLO [89] and MLLA [90, 91] have been obtained by solving Eq. (19.5) yielding

$$
\begin{equation*}
\left\langle n_{G}\left(Q^{2}\right)\right\rangle \propto \alpha_{\mathrm{S}}^{b}\left(Q^{2}\right) \cdot \exp \left[\frac{c}{4 \pi b_{0} \sqrt{\alpha_{\mathrm{s}}\left(Q^{2}\right)}} \cdot\left(1+6 a_{2} \frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{\pi}\right)\right] \tag{1}
\end{equation*}
$$

where $b=\frac{1}{4}+\frac{10}{27} \frac{n_{f}}{4 \pi b_{0}}, c=\sqrt{96 \pi}$, with $b_{0}=\left(33-2 n_{f}\right) /(12 \pi)$, cf. Section 9 of this Review, for n_{f} contributing quark flavors. Higher-order corrections to Eq. (19.11) are known up to next-to-next-to-next-to-leading order ($\mathrm{N}^{3} \mathrm{LO}$), for details and references

Figure 19.5: Evolution of the peak position, ξ_{p}, of the ξ distribution with the CM energy \sqrt{s}. The MLLA QCD prediction using $\alpha_{\mathrm{s}}\left(s=M_{Z}^{2}\right)=0.118$ is superimposed to the data of Refs. [10, 12, 15, 19, 56, 57, 76, 77, 80-88]
see [92]. The term proportional to $a_{2} \approx-0.502+0.0421 n_{f}-$ $0.00036 n_{f}^{2}$ in Eq. (19.11) is the contribution due to NNLO corrections [93]. The quantity $\left\langle n_{G}\left(Q^{2}\right)\right\rangle$ refers to the average number of gluons, while for $\left\langle n_{q}\left(Q^{2}\right)\right\rangle$ for quarks a correction factor $1 / r$ is required due to the different color factors in quark and gluon couplings, so that $\left\langle n_{q}\left(Q^{2}\right)\right\rangle=\left\langle n_{G}\left(Q^{2}\right)\right\rangle / r$. The correction factor depends only weakly on Q^{2}; higher-order corrections up to $\mathrm{N}^{3} \mathrm{LO}$ on the asymptotic value $r=C_{A} / C_{F}=9 / 4$ [94] are quoted in [92].

Figure 19.6: Average charged-particle multiplicity $\left\langle n_{\mathrm{ch}}\right\rangle$ as a function of \sqrt{s} or Q for $e^{+} e^{-}$and $p \bar{p}$ annihilations, and $p p$ and $e p$ collisions. The indicated errors are statistical and systematic uncertainties added in quadrature, except when no systematic uncertainties are given. All NNLO QCD curves are from Eq. (19.11) with fitted normalization, $K_{\text {LHPD }}$, and offset, n_{0}, using a fixed $\alpha_{\mathrm{s}}\left(M_{Z}^{2}\right)=0.1184$ [95] and for $e^{+} e^{-}$annihilation data $n_{f}=3,4$, or 5 depending on \sqrt{s}, else $n_{f}=3 . \mathbf{e}^{+} \mathbf{e}^{-}:$Contributions from K_{S}^{0} and Λ decays included. Data compiled from Refs. $[8,10,16,16,22,77,83,96-106] ; \mathbf{e}^{ \pm} \mathbf{p}:$ Multiplicities have been measured in the current fragmentation region of the Breit frame. Data compiled from Refs. [35, 57, 58, 60, 107]; $\mathbf{p}^{(\overline{\mathbf{p}})}$: Measured values above 20 GeV refer to non-single diffractive (NSD) processes. Central pseudorapidity multiplicities $\left.(\mathrm{d} n / \mathrm{d} \eta)\right|_{|\eta| \ldots}$ refer to either $|\eta|<2.5$ (CMS: $|\eta|<2.4$) or $|\eta|=0$ (UA5, CMS, ALICE: $|\eta|<0.5$). Data compiled from Refs. [108-123].

Employing the hypothesis of 'Local Parton-Hadron Duality' (LPHD) [90], i.e., that the color charge of partons is balanced locally in phase space and, hence, their hadronization occurs locally such that (Mellin transformed) parton and hadron inclusive
distributions directly correspond, Eq. (19.11) can be applied to describe average charged particle multiplicities obtained in $e^{+} e^{-}$ annihilation. The equation can also be applied to $e^{ \pm} p$ scattering if the current fragmentation region of the Breit frame is considered for measuring the average charged-particle multiplicity. Fig. 19.6 shows corresponding data and fits of Eq. (19.11) where apart from an LPHD normalization factor a constant offset has been allowed for, so that $\left\langle n_{\mathrm{ch}}(Q)\right\rangle=K_{\mathrm{LHPD}} \cdot\left\langle n_{G}(Q)\right\rangle / r+n_{0}$.

In hadron-hadron collisions beam remnants, e.g. from singlediffractive (SD) scattering where one colliding proton is negligibly deflected while hadrons related with the other colliding proton are well-separated in rapidity from the former proton, contribute to the measurement of the hadron multiplicity from a hard partonparton scattering, making interpretation of the data more model dependent. Experimental results are usually given for inelastic processes or for non-single diffractive processes (NSD). Due to the large beam particle momenta at Tevatron and LHC, not all final state particles can be detected within the limited detector acceptance. Therefore, experiments at Tevatron and LHC quote particle multiplicities for limited ranges of pseudo-rapidity $\eta=-\ln \tan (\vartheta / 2)$ or at central rapidity, i.e. $\eta=0$, as shown in Fig. 19.6.

A universality of the average particle multiplicities in $e^{+} e^{-}$and $\left.p^{(} \bar{p}\right)$ processes has been reported in Ref. [124] when considering an effective collision energy $Q_{\text {eff }}=\sqrt{s} / k$ in $p(\bar{p})$ reduced by a factor of $k \approx 3$, plus a constant offset of $n_{0} \approx 2$. A more detailed review is available in Ref. [125]. According to the investigations presented in Ref. [126] the universality of the energy dependence of average particle multiplicities also applies to hadron-hadron and nucleus-nucleus collisions for both full and central rapidity multiplicities. Evidence for this universality is given by the good agreement for the energy dependence of Eq. (19.11) when fit to the $p(\bar{p})$ data as shown in Fig. 19.6.

19.4 Fragmentation models

Although the scaling violations can be calculated perturbatively, the actual form of the parton fragmentation functions is non-perturbative. Perturbative evolution gives rise to a shower of quarks and gluons (partons). Multi-parton final states from leading and higher order matrix element calculations are linked to these parton showers using factorization prescriptions, also called matching schemes, see Ref. [127] for an overview.

Phenomenological schemes are then used to model the carryover of parton momenta and flavor to the hadrons. Implemented in Monte Carlo event generators (see Section 42 of this Review), these schemes have been tuned using $e^{+} e^{-}$data and provide good description of hadron collisions as well, thus providing evidence of the universality of fragmentation. However, $e^{+} e^{-}$mainly fix the quark jet fragmentation while it provides less constraints for modelling the gluon jet fragmentation.

19.5 Phenomenology of quark and gluon fragmentation functions

The fragmentation functions are solutions to the evolution equations Eq. (19.5), but need to be specified at some initial scale μ_{0}^{2} (usually around $1 \mathrm{GeV}^{2}$ for light quarks and gluons, and at m_{Q}^{2} for heavy quarks). A typical parameterization for a given light hadron is $[128,129,131-137]$

$$
\begin{equation*}
D_{i}^{h}\left(x, \mu_{0}^{2}\right)=N_{i} x^{\alpha_{i}}(1-x)^{\beta_{i}}\left(1+\gamma_{i}(1-x)^{\delta_{i}}\right) \tag{19.12}
\end{equation*}
$$

where as indicated the normalization N_{i}, and the parameters $\alpha_{i}, \beta_{i}, \gamma_{i}$ and δ_{i} depend on the type i of the fragmenting parton. Heavy flavor fragmentation into heavy mesons is discussed in Sec. 19.8 below. The parameters of Eq. (19.12) are obtained by performing global fits to data on various hadron types for different combinations of partons and hadrons in $e^{+} e^{-}$, lepton-hadron and hadron-hadron collisions. We note that the choice of parameterization of the fragmentation functions at the initial scale necessarily introduces a bias since it imposes a certain form of the functions. This bias is largely avoided in neural network approaches which offer a wide flexibility of the initial functions and have recently been applied to fragmentation functions as well [130]. Sets of fragmentation functions are now available for

Figure 19.7: Comparison of up, strange, charm and gluon NLO fragmentation functions for $\pi^{+}+\pi^{-}$at the mass of the Z. The different lines correspond to the results of the analyses performed in Refs. [128-130].
pions, kaons, protons, neutrons, η mesons, Λ baryons, and charged hadrons [128-130, 132-140]. They are all at NLO level, except for Refs. [130, 139] which have been performed at NNLO level. The latter sets are restricted to the analysis of $e^{+} e^{-}$annihilation data. Recently, data from hadron-hadron collisions have been added in the framework of the neural network approach at NLO accuracy for charged hadrons [141]. It is noteworthy that the NNLO effects lead to an improvement in the theoretical description of the data in $e^{+} e^{-}$annihilation.

Data from $e^{+} e^{-}$annihilation present the cleanest experimental source for the measurement of fragmentation functions, but cannot be used to disentangle quark from antiquark fragmentation. Since the bulk of the $e^{+} e^{-}$annihilation data is obtained at the mass of the Z-boson, where the electroweak couplings are roughly the same for the different partons, it provides the most precise determination of the flavor-singlet combination of quark and antiquark fragmentation functions. Flavor-tagged results [142], distinguishing between the light quark, charm and bottom contributions are of particular value for flavor decomposition, even though those measurements cannot be unambiguously interpreted in perturbative QCD.

The most relevant source for quark-antiquark (and also flavor) separation is provided by SIDIS data. Semi-inclusive measurements are usually performed at much lower scales than for $e^{+} e^{-}$ annihilation. The inclusion of SIDIS data in global fits allows for a wider coverage in the evolution of the fragmentation functions, resulting at the same time in a stringent test of the universality of the distributions. Charged-hadron production data in hadronic collisions also have sensitivity to (anti-)quark fragmentation functions.

The gluon fragmentation function $D_{g}^{h}(x)$ can be extracted, in principle, from the longitudinal fragmentation structure function F_{L} in Eq. (19.2), as the coefficient functions $C_{L, i}$ for quarks and gluons are comparable at order α_{s}. However at NLO, i.e., including the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ coefficient functions $C_{L, i}^{(2)}$ [39], quark fragmentation is dominant in F_{L} over a large part of the kinematic range, reducing the sensitivity to D_{g}^{h}. This distribution could be determined also by analyzing the scale evolution of the fragmentation functions. This possibility is limited by the lack of sufficiently precise data at energy scales away from the Z-resonance and the dominance of the quark contributions at medium and large values of x. In $e^{+} e^{-}$annihilation, D_{g}^{h} can also be deduced from the study

Figure 19.8: Scaled momentum spectra of (a) $\pi^{ \pm}$, (b) $K^{ \pm}$, and (c) p, \bar{p} at $\sqrt{s}=10,29$, and $91 \mathrm{GeV}[24,26,85,143,144]$.
of three-jet events in which the gluon jet is identified, for example, by tagging the other two jets with heavy quark decays. To leading order, the measured distributions of $x=E_{\mathrm{had}} / E_{\mathrm{jet}}$ for particles in gluon jets can be identified directly with the gluon fragmentation function $D_{g}^{h}(x)$.

Data for $\left.p^{(} \bar{p}\right) \rightarrow h+X$ provide much more direct constraint on D_{g}^{h}. At variance with $e^{+} e^{-}$annihilation and SIDIS, here gluon

Figure 19.9: (a) $1 / N \cdot d n / d x_{F}$ for identified strange particles in DIS at various values of W [145-147]. (b) $1 / N \cdot d n / d z$ for measurements of pions in fixed-target DIS experiments [148-150].

Figure 19.10: Selection of inclusive (a) π^{0} and (b) charged-hadron production data from $p p[118,151-156]$ and $p \bar{p}[114,157,158]$ collisions.
fragmentation contributes already at the lowest order in the coupling constant. At large $x \gtrsim 0.5$, where information from $e^{+} e^{-}$is sparse, data from hadronic colliders significantly improve extractions of $D_{g}^{h}[128,129,131,138]$. Recent LHC data has been included in the NLO analyses $[129,137]$ of pion-fragmentation functions; see Sec.(17.7) for more details. Note that these analyses are currently the only ones that 'globally' incorporate available data
from all sources, $e^{+} e^{-} \rightarrow h+X, e p \rightarrow e^{\prime} h+X$ and $p p \rightarrow h+X$.
We note that recently a 'hybrid' type of high $-p_{T}$ jet/hadron observable has also been considered both theoretically [159-165] and experimentally [166-173]. It is defined by an identified specific hadron found inside a fully reconstructed jet. This gives rise to a same-side hadron-jet momentum correlation that may be addressed using perturbative methods. One of several rele-

Table 19.1: Classification of spin- and transverse-momentum dependent quark fragmentation functions. For simplicity we have left out the ubiquitous label for flavor i of the fragmenting quark and for hadron species h. Each of the functions carries the argument ($x, x^{2} k_{T}^{2}$) (plus dependence on a factorization scale), where $x k_{T}=p_{T}^{h}$ is the hadron's transverse momentum. λ and Λ are the quark's and hadron's helicities, respectively, and \vec{s}_{T} and \vec{S}_{T} are their transverse spin vectors. We have defined $[\vec{a} \times \vec{b}] \equiv a^{1} b^{2}-a^{2} b^{1}$. Finally, m_{h} is the mass of the produced hadron.

hadron pol.	unpolarized	quark polarization	
long. polarized	transv. polarized		
unpol.	D	-	$\frac{\left[\vec{k}_{T} \times \vec{s}_{T}\right]}{m_{h}} H^{\perp}$
long. pol.	-	$\lambda \Lambda G_{L}$	$\frac{\vec{k}_{T} \cdot \vec{s}_{T}}{m_{h}} \Lambda H_{L}^{\perp}$
transv. pol.	$\frac{\left[\vec{k}_{T} \times \vec{S}_{T}\right]}{m_{h}} D_{T}^{\perp}$	$\frac{\vec{k}_{T} \cdot \vec{S}_{T}}{m_{h}} \lambda G_{T}^{\perp}$	$\left(\vec{s}_{T} \cdot \vec{S}_{T}\right) H_{T}+\frac{\vec{k}_{T} \cdot \vec{S}_{T}}{m_{h}} \frac{\vec{k}_{T} \cdot \vec{s}_{T}}{m_{h}} H_{T}^{\perp}$

vant kinematical variables (see [164] for an overview) is $z_{h} \equiv$ $\left(\vec{p}_{T}^{h} \cdot \vec{p}_{T}^{\text {jet }}\right) /\left(p_{T}^{\text {jet }}\right)^{2}$, where \vec{p}_{T}^{h} and $\vec{p}_{T}^{\text {jet }}$ are the transverse momenta of the hadron and the jet, respectively. The observable provides an alternative window on fragmentation functions in a more exclusive setting, enabling novel tests of the universality of fragmentation functions. Varying z_{h} and/or the hadron species, one can map out the fragmentation functions 'locally' as functions of x. This is in contrast to the single-inclusive observable $p p \rightarrow h+X$, which inevitably samples over a broad range of x. Although hadron-in-jet data are not yet routinely included in analyses of fragmentation functions, a 'proof-of-principle' analysis does exist [174] that shows the potential of the observable in providing constraint on fragmentation functions.

A comparison of recent NLO fits of fragmentation functions for $\pi^{+}+\pi^{-}$obtained by DSS14 [129], AKK08 [128] and NNPDF1.0 [130] is shown in Fig. 19.7. Differences among the functions for these sets are large, especially for the gluon fragmentation function over the full range of x and for the quark functions at large momentum fractions. The differences are even larger for other species of hadrons like kaons and protons [128, 131, 135, 138]. Recent analyses $[129,130,135,137,175,176]$ estimate the uncertainties involved in the extraction of fragmentation functions.

Photonic fragmentation functions play a relevant role in the theoretical understanding of inclusive photon production in (leptonic and hadronic) high energy processes. In the sprit of the analogy between parton fragmentation functions and parton distribution functions, also photonic fragmentation functions are analogous to the photon structure function F_{2}^{γ} and to the proton's photonic parton distributions (see review on structure functions in Section 18 of this Review). Since photons have a pointlike coupling to quarks [177], the corresponding fragmentation functions obey inhomogeneous evolution equations and are generally decomposed into a perturbative and a non-perturbative component $[134,178,179]$. The hadronic part, sometimes approximated by the Vector Meson Dominance Model, can in principle be obtained by performing a global analysis to the available prompt photon production data $[7,12,15,19-21,85,143,180,181]$, although in practice this has not been done. We note that also the cross section for photons produced in fully reconstructed jets has been proposed [182] as a new tool for obtaining access to photon fragmentation functions, in analogy to the hadron-in-jet cross section discussed above.

19.6 Identified particles in $e^{+} e^{-}$and semiinclusive DIS

There is a great wealth of measurements of $e^{+} e^{-}$fragmentation into identified particles. A collection of references for data on fragmentation into identified particles is provided in Table 52.1 of this Review. As a representative example, Figure 19.8 shows differential charged-hadron spectra as functions of the scaled hadron momentum at several CM energies.

Quantitative results of studies of scaling violations in $e^{+} e^{-}$ fragmentation have been reported in $[7,21,183,184]$. Scaling viola-
tions may be used to extract a value of α_{s}; the values obtained are consistent with the world average (see review on QCD in Section 9 of this Review).
Many studies have been made of production of identified particles in lepton-hadron scattering, although fewer particle species have been measured than in $e^{+} e^{-}$collisions. References [$145,146,148-150,185-187]$ and [147, 188-193] are representative of the data from fixed target and $e p$ collider experiments, respectively. QCD calculations performed at NLO provide an overall good description of the HERA data [33, 34, 58, 193-195], both for SIDIS [196] and for the hadron transverse momentum distribution $[53,197]$ in the kinematic regions in which the calculations are predictive. A first step towards an NNLO calculation for SIDIS has been presented in [198].
Fig. 19.9(a) compares lower-energy fixed-target and HERA data on strangeness production, showing that the HERA spectra have substantially increased multiplicities, albeit with statistical precision that is insufficient to study scaling violations. The fixedtarget data show that the Λ rate substantially exceeds the $\bar{\Lambda}$ rate in the remnant region, owing to the conserved baryon number from the baryon target. Fig. 19.9(b) shows $1 / N \cdot d n / d z$ for neutral and charged pion production, where z is defined as the ratio of the pion energy to that of the exchanged boson, both measured in the laboratory frame. Results are shown from the HERMES and the EMC experiments, where the HERMES data have been evolved to $\left\langle Q^{2}\right\rangle=25 \mathrm{GeV}^{2}$ at NLO QCD, in order to be comparable with the EMC data. Each of the experiments uses various kinematic cuts to ensure that the measured particles lie in the region that is expected to be associated with the struck quark. In the DIS kinematic regime accessed at these experiments, and over the range in z shown in Fig. 19.9, the z and x_{F} variables have similar values [30]. The precision data on identified particles can be used in the study of the quark flavor content of the proton [175, 214, 215].

Data on identified particle production can aid the investigation of the universality of jet fragmentation in $e^{+} e^{-}$and DIS. The strangeness suppression factor γ_{s}, as derived principally from tuning the Lund string model [216] within JETSET [217], is typically found to be around 0.3 in $e^{+} e^{-}$experiments [75], although values closer to 0.2 [218] have also been obtained. A number of measurements of so-called V^{0}-particles (K^{0}, Λ^{0}) and the relative rates of V^{0} 's and inclusively produced charged particles have been performed at HERA [147,188,219] and fixed target experiments [145]. These typically favour a stronger suppression $\left(\gamma_{s} \approx 0.2\right)$ than usually obtained from $e^{+} e^{-}$data, although values close to 0.3 have also been obtained [220, 221].
However, when comparing the description of QCD-based models for lepton-hadron interactions and $e^{+} e^{-}$collisions, it is important to note that the overall description by event generators of inclusively produced hadronic final states is more accurate in $e^{+} e^{-}$collisions than in lepton-hadron interactions [222]. Predictions of particle rates in lepton-hadron scattering are affected by uncertainties in the modelling of the parton composition of the

Figure 19.11: (a) Selection of inclusive charged-particle transverse momentum spectra $[114,117,119,121,157,199,200]$, normalized to the non-single diffractive cross section (NSD). (b)-(d) Selection of identified charged-particle transverse momentum spectra [201-206] normalized to the NSD cross section. All spectra are scaled to the NSD cross-section using measurements of total, inelastic, elastic, single, or non-single diffractive cross sections from [207-211,211-213]. The overall normalization uncertainty of about 3% is not shown. Superimposed are fits of the Tsallis distribution in Eq. (19.13).
proton and photon, the extended target remnant, and initial and final-state QCD radiation. Furthermore, the tuning of event generators for $e^{+} e^{-}$collisions is typically based on a larger set of parameters and uses more observables [75] than are used when optimizing models for lepton-hadron data [223].

19.7 Fragmentation in hadron-hadron collisions

An extensive set on high-transverse momentum $\left(p_{T}\right)$ singleinclusive hadron data has been collected in $h_{1} h_{2} \rightarrow h X$ scattering processes, both at high energy colliders and fixed-target experiments [151-158,181,224-246]. Fig. 19.10 shows the invariant cross sections $E \mathrm{~d}^{3} \sigma / \mathrm{d} p^{3}$ for a compilation of neutral-pion and chargedhadron production data for energies in the range $\sqrt{s} \approx 23-7000$ GeV .

The differential cross section for high-transverse momentum hadron production has been computed to NLO accuracy in perturbative QCD [247]. The NLO corrections are typically large and can even double the prediction for the cross section at fixedtarget energies. Nevertheless, the NLO calculations significantly under-predict the cross-section for several fixed-target energy data sets [242, 248, 249]. Different strategies have been developed to ameliorate the theoretical description at fixed-target energies. A possible phenomenological approach involves the introduction of a non-perturbative intrinsic partonic transverse momentum [156, 242, 250, 251]. Furthermore, the resummation of the dominant higher order corrections at threshold produces an enhancement of the theoretical calculation that significantly improves the description of the data [252, 253].
Data collected at high energy colliders are either included in global fit analyses or used as a test for the universality of fragmentation functions. A certain tension has been observed between
data sets from RHIC and the LHC [254]. The tension can be largely resolved [129] by excluding data with transverse momentum smaller than $\sim 5 \mathrm{GeV}$ from the analysis, where fixed-order pQCD calculations are not expected to provide an accurate description of the process. Still, after removing these smaller p_{T} values where the data sets appear to be mutually exclusive in the global fit, the RHIC data show a preference towards harder gluon fragmentation at large x than the LHC data.

Transverse momentum distributions can usually be fit by power laws [255]. An approach to describe the low p_{T} particle spectra is the Tsallis distribution [256-258], which is based on a nonextensive generalization of the Boltzmann-Gibbs statistics. The functional form [259]

$$
\begin{equation*}
\frac{\mathrm{d}^{2} N}{\mathrm{~d} p_{T} \mathrm{~d} y}=p_{T} \frac{\mathrm{~d} N}{\mathrm{~d} y} \frac{(n-1)(n-2)}{n T\left(n T+m_{0}(n-2)\right)}\left[1+\frac{m_{T}-m_{0}}{n T}\right]^{-n} \tag{19.13}
\end{equation*}
$$

is frequently used to fit the transverse momentum spectra, where $\mathrm{d} N / \mathrm{d} y$ is the particle's multiplicity, T and n are fit parameters of the Tsallis distribution, m_{0} is the either the mass of the most abundant particle, i.e. the pion for inclusive spectra, or the mass of an identified particle, and $m_{T}=\sqrt{p_{T}^{2}+m_{0}^{2}}$. The parameter n is related to the non-extensive parameter $q=n /(n-1)$ of the original Tsallis formula [260], and T is connected to the temperature in the Boltzmann-Gibbs statistics. The Tsallis distribution has been very successfully fit to measured transverse momentum distributions of both inclusive charged particles and identified particle spectra for hadron-hadron collisions, see for example [261-263], for collisions of heavy nuclei, see for example [264], and also for $e^{+} e^{-}$collisions, see for example [265]. The energy dependence of
the fitted Tsallis parameters has also been investigated in detail, see $[259,266]$. Fig. 19.11 shows examples of hadron production data in $p p$ and $p \bar{p}$ collisions compared to Tsallis distributions.

Hadron production provides a critical observable for probing the high energy-density matter produced in heavy-ion collisions. Measurements at colliders show a suppression of inclusive hadron yields at high transverse momentum for $A A$ collisions compared to $p p$ scattering, indicating the formation of a dense medium opaque to quark and gluons, see e.g. [267].

19.8 Heavy quark fragmentation

It was recognized very early [268] that a heavy flavored meson should retain a large fraction of the momentum of the primordial heavy quark, and therefore its fragmentation function should be much harder than that of a light hadron. In the limit of a very heavy quark, one expects the fragmentation function for a heavy quark to go into any heavy hadron to be peaked near $x=1$.

When the heavy quark is produced at a momentum much larger than its mass, one expects important perturbative effects, enhanced by powers of the logarithm of the transverse momentum over the heavy quark mass, to intervene and modify the shape of the fragmentation function. In leading logarithmic order (i.e., including all powers of $\alpha_{\mathrm{s}} \log \left(m_{\mathrm{Q}} / p_{T}\right)$), the total (i.e., summed over all hadron types) perturbative fragmentation function is simply obtained by solving the leading evolution equation for fragmentation functions, Eq. (19.5), with the initial condition due to the finite mass of the heavy quark given by $\left.D_{\mathrm{Q}}\left(x, \mu^{2}\right)\right|_{\mu^{2}=m_{\mathrm{Q}}^{2}}=$ $\delta(1-x)$ and $\left.D_{i}\left(x, \mu^{2}\right)\right|_{\mu^{2}=m_{\mathrm{Q}}^{2}}=0$ for $i \neq \mathrm{Q}$ (here $D_{i}\left(x, \mu^{2}\right)$, stands for the probability to produce a heavy quark Q from parton i with a fraction x of the parton momentum).

Several extensions of the leading logarithmic result have appeared in the literature. Next-to-leading-log (NLL) order results for the perturbative heavy quark fragmentation function have been obtained in [272]. The resummation of the dominant logarithmic contributions at large x was performed in [273] to next-to-leading-log accuracy. Fixed-order calculations of the fragmentation function at order α_{s}^{2} in $e^{+} e^{-}$annihilation have appeared in [274] while the initial condition for the perturbative heavy quark fragmentation function has been extended to NNLO in [275].

Inclusion of non-perturbative effects in the calculation of the heavy-quark fragmentation function is done by convoluting the perturbative result with a phenomenological non-perturbative form. This form follows from the simple kinematical consideration that the formation of a hadron by attaching light quarks/antiquarks to the heavy quark will slightly decelerate the heavy quark. Thus its shape will show a peak that becomes increasingly centered next to $x=1$ the higher the quark mass. Among the most popular parameterizations we have the following:

$$
\begin{equation*}
\text { Peterson et al. [276] : } D_{\mathrm{np}}(x) \propto \frac{1}{x}\left(1-\frac{1}{x}-\frac{\epsilon}{1-x}\right)^{-2} \tag{19.14}
\end{equation*}
$$

Kartvelishvili et al. [277] : $D_{\mathrm{np}}(x) \propto x^{\alpha}(1-x)$,
Collins \& Spiller [278] : $D_{\mathrm{np}}(x) \propto\left(\frac{1-x}{x}+\frac{(2-x) \epsilon_{C}}{1-x}\right) \times$

$$
\begin{equation*}
\left(1+x^{2}\right) \times\left(1-\frac{1}{x}-\frac{\epsilon_{C}}{1-x}\right)^{-2} \tag{19.16}
\end{equation*}
$$

Colangelo \& Nason [279] : $D_{\mathrm{np}}(x) \propto(1-x)^{\alpha} x^{\beta}$
Bowler [280] : $D_{\mathrm{np}}(x) \propto x^{-\left(1+b m_{h, \perp}^{2}\right)} \times$

$$
\begin{equation*}
(1-x)^{a} \exp \left(-\frac{b m_{h, \perp}^{2}}{x}\right) \tag{19.18}
\end{equation*}
$$

Braaten et al. [281] : (see Eqs. (31), (32) in [281])
where $\epsilon, \epsilon_{C}, a, b m_{h, \perp}^{2}, \alpha$, and β are non-perturbative param-
eters that depend on the heavy hadron considered. The parameters entering the non-perturbative forms are fitted together with some model of hard radiation, which can be either a shower Monte Carlo, a leading-log or NLL calculation (which may or may not include Sudakov resummation), or a fixed order calculation. In [274], for example, the Peterson et al. [276] ϵ parameter for charm and bottom production is fitted from the measured distributions of Refs. [282, 283] for charm, and of [284] for bottom. If the leading-logarithmic approximation (LLA) is used for the perturbative part, one finds $\epsilon_{c} \approx 0.05$ and $\epsilon_{b} \approx 0.006$; if a second order calculation is used one finds $\epsilon_{c} \approx 0.035$ and $\epsilon_{b} \approx 0.0033$; if a NLL improved fixed order $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ calculation is used instead of NLO $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ one finds $\epsilon_{c} \approx 0.022$ and $\epsilon_{b} \approx 0.0023$. The larger values found in the LL approximation are consistent with what is obtained in the context of parton shower models [285], as expected. The ϵ parameter for charm and bottom scales roughly with the inverse square of the heavy flavor mass. This behavior can be justified by several arguments [268, 286, 287]. It can be used to relate the non-perturbative parts of the fragmentation functions of charm and bottom quarks [274, 279, 288].

A more conventional approach [289] involves the introduction of a unique set of heavy quark fragmentation functions of nonperturbative nature that obey the usual massless evolution equations in Eq. (19.5). Finite mass terms of the form $\left(m_{\mathrm{Q}} / p_{T}\right)^{n}$ are kept in the corresponding short distance coefficient function for each scattering process. Within this approach, the initial condition for the perturbative fragmentation function provides the term needed to define the correct subtraction scheme to match the massless limit for the coefficient function (see e.g. [290]). Such an implementation is in line with the variable flavor number scheme introduced for parton distributions functions, as described in Section 18 of this Review.

High statistics data for charmed-meson production near the Υ resonance (excluding decay products of B mesons) have been published $[269,270]$. They include results for D and D^{*}, D_{s} (see also $[291,292]$) and Λ_{c}. Shown in Fig. 19.12(a) are the CLEO and BELLE inclusive cross-sections times branching ratio $\mathcal{B}, s \mathcal{B} d \sigma / d x_{p}$, for the production of D^{0} and D^{*+}. The variable x_{p} approximates the light-cone momentum fraction x, but is not identical to it. The two measurements are consistent with each other.

The branching ratio \mathcal{B} represents $D^{0} \rightarrow K^{-} \pi^{+}$for the D^{0} results and for the D^{*+} the product of the branching fractions for $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{0} \rightarrow K^{-} \pi^{+}$. Given the high precision of CLEO's and BELLE's data, a superposition of different parametric forms for the non-perturbative contribution is needed to obtain a good fit [52]. Older studies are reported in Refs. [283, 293, 294]. Charmed meson spectra on the Z peak have been published by OPAL and ALEPH [295, 296].

Charm quark production has also been extensively studied at HERA by the H1 and ZEUS collaborations. Measurements have been made of $D^{* \pm}, D^{ \pm}$, and $D_{s}^{ \pm}$mesons and the Λ_{c} baryon. See, for example, Refs. [297, 298].

Experimental studies of the fragmentation function for b quarks, shown in Fig. 19.12(b), have been performed at LEP and SLD [271, 284, 299]. Commonly used methods identify the B meson through its semileptonic decay or based upon tracks emerging from the B secondary vertex. Heavy flavor contributions from gluon splitting are usually explicitly removed before fitting for the fragmentation functions. The studies in [271] fit the B spectrum using a Monte Carlo shower model supplemented with nonperturbative fragmentation functions yielding consistent results.

The experiments measure primarily the spectrum of B mesons. This defines a fragmentation function that includes the effect of the decay of higher mass excitations, like the B^{*} and $B^{* *}$. In the literature (cf. details in Ref. [300]), there is sometimes ambiguity in what is defined to be the bottom fragmentation function. Instead of using what is directly measured (i.e., the B meson spectrum), in some cases corrections are applied to account for B^{*} or $B^{* *}$ production.
Heavy-flavor production in $e^{+} e^{-}$collisions is the primary source of information for the role of fragmentation effects in heavy-flavor production in hadron-hadron and lepton-hadron collisions. The

Figure 19.12: (a) Efficiency-corrected inclusive cross-section measurements for the production of D^{0} and D^{*+} in $e^{+} e^{-}$measurements at $\sqrt{s} \approx 10.6 \mathrm{GeV}$, excluding B decay products [269] [270]. (b) Measured $e^{+} e^{-}$fragmentation function of b quarks into B hadrons at $\sqrt{s} \approx 91 \mathrm{GeV}$ [271].

QCD calculations tend to underestimate the data in certain regions of phase space. Some experimental results from LHC summarized in [301] show such deviations e.g. at high transverse jet momentum and also at low di-jet separation angles, see [302] for details, and were already theoretically investigated in [303].

Both bottomed- and charmed-meson spectra have been measured at the Tevatron with unprecedented accuracy [304]. The measured spectra are in good agreement with QCD calculations (including non-perturbative fragmentation effects inferred from $e^{+} e^{-}$data [305]).

The HERA collaborations have produced a number of measurements of beauty production; see, for example, Refs. [297,306-309]. As for the Tevatron data, the HERA results are described well by QCD-based calculations using fragmentation models optimised with $e^{+} e^{-}$data.

Besides degrading the fragmentation function by gluon radiation, QCD evolution can also generate soft heavy quarks, increasing in the small x region as \sqrt{s} increases. Several theoretical studies are available on the issue of how often $b \bar{b}$ or $c \bar{c}$ pairs are produced indirectly via a gluon splitting mechanism [310-312]. Experimental results from studies on charm and bottom production via gluon splitting, given in [296, 313-317], yield weighted averages of $\bar{n}_{g \rightarrow c \bar{c}}=3.05 \pm 0.45 \%$ and $\bar{n}_{g \rightarrow b \bar{b}}=0.277 \pm 0.072 \%$, respectively. The production of bottom-antibottom quark pairs via gluon splitting has also been investigated at hadron colliders, see for example [318-320].

19.9 Spin-dependent and transverse-momentum dependent fragmentation functions

The fragmentation functions we have considered so far apply to the spin-averaged case in which the polarization of the produced hadron is not observed, or the hadron has spin- 0 . We have also only considered 'collinear' fragmentation functions $D_{i}^{h}\left(x, \mu^{2}\right)$ which carry only one kinematical variable, the momentum fraction x. New insights into fragmentation and hadronization become available when also the dependence of fragmentation functions on the spin of the produced hadron and/or its relative transverse momentum with respect to the fragmenting parton are considered. In the latter case, one refers to the fragmentation functions as 'transverse-momentum dependent (TMD)' fragmentation functions.
Staying first with collinear fragmentation functions, two types of spin-dependent fragmentation functions to spin- $1 / 2$ hadrons can be considered. The helicity-dependent fragmentation function measures the transfer of longitudinal spin from the fragmenting parton to the hadron [38,321-324]. It is given by

$$
\begin{equation*}
\Delta D_{i}^{h}\left(x, \mu^{2}\right) \equiv D_{i^{+}}^{h^{+}}\left(x, \mu^{2}\right)-D_{i^{+}}^{h^{-}}\left(x, \mu^{2}\right) \tag{19.20}
\end{equation*}
$$

where the superscripts \pm refer to the helicities of the parton and
hadron. Λ hyperons are ideally suited for measurements of the ΔD_{i}^{h}, thanks to their self-analyzing weak decay $\Lambda \rightarrow \pi p$. Measurements of the longitudinal spin transfer to Lambda hyperons have been presented in $e^{+} e^{-}$(on the Z resonance), ℓp, and $p p$ scattering in Refs. [325-331]. One may readily extend Eq. (19.20) to the case of transverse polarization of hadrons and quarks [332], where the corresponding fragmentation functions are known as 'transversity' fragmentation functions. There are also measurements constraining these fragmentation functions [326,333, 334].
If the transverse-momentum $\left(k_{T}\right)$ dependence of fragmentation functions is considered, there are eight types of leading-twist functions, defined by the correlations among the hadronic and partonic spin vectors and transverse-momentum vectors they represent. (For review, see [5]). We note that the eight fragmentation functions given in the table below exist separately for each quark and antiquark flavor, and a similar set may be introduced for gluons. Upon integration over the transverse momentum k_{T} the collinear unpolarized, helicity, and transversity fragmentation functions are reproduced.

The various fragmentation functions may be obtained from spin asymmetries and angular distributions in hadron production processes. There is a large body of precision data by now on transverse-momentum distributions in $e^{+} e^{-}$annihilation [335] and SIDIS $[186,336]$ that provide constraints on the unpolarized TMD fragmentation functions D_{i}^{h}, which have been analyzed theoretically, partly also including TMD evolution effects and high orders of perturbation theory [337-342].

Besides the unpolarized functions D most of the attention in experiment and theory has been on the function H^{\perp} which describes the production of unpolarized (or spin-0) hadrons by transversely polarized quarks. This function is known as the 'Collins function' [343]. Its importance also derives from the fact that it may be used to probe the quark transversity PDF of the nucleon [344] which gives the probability of finding a transversely polarized quark with its spin aligned or anti-aligned with the spin of a transversely polarized nucleon. The transversity function is chiral-odd, and therefore not accessible through measurements of inclusive lepton-hadron scattering. The Collins effect in semiinclusive DIS, on the other hand, provides an avenue for accessing transversity. The Collins fragmentation function is chiral-odd and T-odd, leading to a characteristic single-spin asymmetry in the azimuthal angular distribution of the produced hadron in the hadron scattering plane. A number of SIDIS [345-356] and $e^{+} e^{-}$experiments [357-361] have performed measurements of the Collins effect, for charged pions and kaons. These have been analyzed theoretically [362,363], leading to an extraction of the nucleon's transversity distributions [363]. The Collins effect has also been studied in $p p$ scattering, where one considers azimuthal transverse single-spin asymmetries for distributions of hadrons inside
jets [173, 364, 365].
In the context of extractions of transversity PDFs also fragmentation functions for same-side pairs of hadrons with small invariant mass, dihadrons, have been introduced and studied [366-374]. Compared to the Collins effect, dihadron fragmentation functions have the advantage that they may be defined purely in collinear factorization. The relevant spin-dependent dihadron fragmentation function exploits a correlation between the transverse polarization of the fragmenting quark and the relative momentum of the two hadrons. In SIDIS with a transversely polarized hadron beam, the dihadron cross section then contains a specific modulation in the azimuthal orientation of the plane containing the momenta of the two hadrons. The coefficient of this modulation is a product of the spin-dependent dihadron fragmentation function and the target's transversity PDF. The dihadron fragmentation functions may be separately extracted from measurements in $e^{+} e^{-}$annihiliation, and the Belle experiment has presented data [375] that have been analyzed theoretically [376, 377]. In lepton scattering, HERMES [378] and COMPASS [379, 380] have reported data sensitive to the spin-dependent dihadron fragmentation functions, and recently the STAR experiment at RHIC has presented data in the azimuthal distribution of $\pi^{+} \pi^{-}$pairs produced in $p p$ scattering with one transversely polarized proton [381]. The results have been successfully used for the extraction of transversity PDFs [377, 382-384].

References

[1] G. Altarelli, Phys. Rept. 81, 1 (1982).
[2] R.K. Ellis et al., $Q C D$ and Collider Physics, Cambridge University Press (1996).
[3] S. Albino et al. (2008), [arXiv:0804.2021].
[4] F. Arleo, Eur. Phys. J. C61, 603 (2009), [arXiv:0810.1193].
[5] A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91, 136 (2016), [arXiv:1607.02521].
[6] P. Nason and B. R. Webber, Nucl. Phys. B421, 473 (1994), [Erratum: Nucl. Phys.B480,755(1996)].
[7] D. Buskulic et al. (ALEPH), Phys. Lett. B357, 487 (1995), [Erratum: Phys. Lett.B364,247(1995)].
[8] P. Abreu et al. (DELPHI), Eur. Phys. J. C6, 19 (1999).
[9] R. Barate et al. (ALEPH), Phys. Rept. 294, 1 (1998).
[10] D. Buskulic et al. (ALEPH), Z. Phys. C73, 409 (1997).
[11] B. Adeva et al. (L3), Phys. Lett. B259, 199 (1991).
[12] Y. K. Li et al. (AMY), Phys. Rev. D41, 2675 (1990).
[13] D. Bender et al., Phys. Rev. D31, 1 (1985).
[14] G. S. Abrams et al., Phys. Rev. Lett. 64, 1334 (1990).
[15] A. Petersen et al., Phys. Rev. D37, 1 (1988).
[16] G. Alexander et al. (OPAL), Z. Phys. C72, 191 (1996).
[17] K. Ackerstaff et al. (OPAL), Z. Phys. C75, 193 (1997).
[18] G. Abbiendi et al. (OPAL), Eur. Phys. J. C16, 185 (2000), [hep-ex/0002012].
[19] W. Braunschweig et al. (TASSO), Z. Phys. C47, 187 (1990).
[20] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C7, 369 (1999), [hep-ex/9807004].
[21] P. Abreu et al. (DELPHI), Phys. Lett. B398, 194 (1997).
[22] G. Abbiendi et al. (OPAL), Eur. Phys. J. C37, 1, 25 (2004), [hep-ex/0404026].
[23] R. Brandelik et al. (TASSO), Phys. Lett. 114B, 65 (1982).
[24] K. Abe et al. (SLD), Phys. Rev. D69, 072003 (2004), [hepex/0310017].
[25] H. Aihara et al. (TPC/Two Gamma), Phys. Rev. Lett. 61, 1263 (1988).
[26] M. Leitgab et al. (Belle), Phys. Rev. Lett. 111, 062002 (2013), [arXiv:1301.6183].
[27] W. Kittel and E.A. De Wolf, Soft Multihadron Dynamics, World Scientific (2005).
[28] H.F. Jones, Nuovo Cimento 40A, 1018 (1965).
[29] K. H. Streng, T. F. Walsh and P. M. Zerwas, Z. Phys. C2, 237 (1979).
[30] M. R. Adams et al. (E-665), Phys. Lett. B272, 163 (1991).
[31] M. Arneodo et al. (European Muon), Z. Phys. C35, 417 (1987).
[32] I. Abt et al. (H1), Z. Phys. C63, 377 (1994).
[33] M. Derrick et al. (ZEUS), Z. Phys. C70, 1 (1996), [hepex/9511010].
[34] J. Breitweg et al. (ZEUS), Phys. Lett. B414, 428 (1997), [hep-ex/9710011].
[35] F. D. Aaron et al. (H1), Phys. Lett. B654, 148 (2007), [arXiv:0706.2456].
[36] P. Abreu et al. (DELPHI), Phys. Lett. B311, 408 (1993).
[37] G. Altarelli et al., Nucl. Phys. B160, 301 (1979); R. Baier and K. Fey, Z. Phys. C2, 339 (1979).
[38] D. de Florian, M. Stratmann and W. Vogelsang, Phys. Rev. D57, 5811 (1998), [hep-ph/9711387].
[39] P. J. Rijken and W. L. van Neerven, Phys. Lett. B386, 422 (1996), [hep-ph/9604436]; P. J. Rijken and W. L. van Neerven, Phys. Lett. B392, 207 (1997), [hep-ph/9609379]; P. J. Rijken and W. L. van Neerven, Nucl. Phys. B487, 233 (1997), [hep-ph/9609377].
[40] A. Mitov, S. Moch and A. Vogt, Phys. Lett. B638, 61 (2006), [hep-ph/0604053].
[41] A. Mitov and S.-O. Moch, Nucl. Phys. B751, 18 (2006), [hep-ph/0604160].
[42] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972), [Yad. Fiz.15,781(1972)]; V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 675 (1972), [Yad. Fiz.15,1218(1972)]; L.N. Lipatov, Sov. J. Nucl. Phys. 20, 95 (1975); Yu.L. Dokshitzer, Sov. Phys. JETP Lett. 46, 641 (1977); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[43] H. Georgi and H. D. Politzer, Nucl. Phys. B136, 445 (1978); J. F. Owens, Phys. Lett. 76B, 85 (1978); T. Uematsu, Phys. Lett. 79B, 97 (1978).
[44] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980).
[45] W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980).
[46] E. G. Floratos, C. Kounnas and R. Lacaze, Nucl. Phys. B192, 417 (1981).
[47] J. Kalinowski, K. Konishi and T. R. Taylor, Nucl. Phys. B181, 221 (1981).
[48] M. Stratmann and W. Vogelsang, Nucl. Phys. B496, 41 (1997), [hep-ph/9612250].
[49] Yu. L. Dokshitzer, G. Marchesini and G. P. Salam, Phys. Lett. B634, 504 (2006), [hep-ph/0511302].
[50] S. Moch and A. Vogt, Phys. Lett. B659, 290 (2008), [arXiv:0709.3899].
[51] A. A. Almasy, S. Moch and A. Vogt, Nucl. Phys. B854, 133 (2012), [arXiv:1107.2263].
[52] M. Cacciari, P. Nason and C. Oleari, JHEP 04, 006 (2006), [hep-ph/0510032]; M. Cacciari, P. Nason and C. Oleari, JHEP 10, 034 (2005), [hep-ph/0504192].
[53] P. Aurenche et al., Eur. Phys. J. C34, 277 (2004), [hepph/0312359]; A. Daleo, D. de Florian and R. Sassot, Phys. Rev. D71, 034013 (2005), [hep-ph/0411212]; B. A. Kniehl, G. Kramer and M. Maniatis, Nucl. Phys. B711, 345 (2005), [Erratum: Nucl. Phys.B720,231(2005)], [hep-ph/0411300].
[54] B. Wang et al., Phys. Rev. D99, 9, 094029 (2019), [arXiv:1903.01529].
[55] S. Aid et al. (H1), Nucl. Phys. B445, 3 (1995), [hepex/9505003].
[56] M. Derrick et al. (ZEUS), Z. Phys. C67, 93 (1995), [hepex/9501012].
[57] C. Adloff et al. (H1), Nucl. Phys. B504, 3 (1997), [hepex/9707005].
[58] J. Breitweg et al. (ZEUS), Eur. Phys. J. C11, 251 (1999), [hep-ex/9903056].
[59] J. F. Patrick et al., Phys. Rev. Lett. 49, 1232 (1982).
[60] S. Chekanov et al. (ZEUS), JHEP 06, 061 (2008), [arXiv:0803.3878].
[61] A. H. Mueller, Phys. Lett. 104B, 161 (1981).
[62] A. Bassetto et al., Nucl. Phys. B207, 189 (1982).
[63] Yu.L. Dokshitzer et al., Z. Phys. C15, 324 (1982).
[64] A. H. Mueller, Nucl. Phys. B213, 85 (1983); A. H. Mueller, Nucl. Phys. B241, 141 (1984).
[65] Y. L. Dokshitzer, V. A. Khoze and S. I. Troian, Int. J. Mod. Phys. A7, 1875 (1992).
[66] Yu.L. Dokshitzer et al., Basics of Perturbative QCD, Editions Frontières (1991).
[67] V. A. Khoze and W. Ochs, Int. J. Mod. Phys. A12, 2949 (1997), [hep-ph/9701421].
[68] C. P. Fong and B. R. Webber, Nucl. Phys. B355, 54 (1991).
[69] S. Albino et al., Phys. Rev. Lett. 95, 232002 (2005), [hepph/0503170].
[70] S. Albino et al., Phys. Rev. D73, 054020 (2006), [hepph/0510319].
[71] S. Albino et al., Nucl. Phys. B851, 86 (2011), [arXiv:1104.3018]; S. Albino et al., Nucl. Phys. B855, 801 (2012), [arXiv:1108.3948].
[72] A. Vogt, JHEP 10, 025 (2011), [arXiv:1108.2993]; C. H. Kom, A. Vogt and K. Yeats, JHEP 10, 033 (2012), [arXiv:1207.5631].
[73] D. P. Anderle et al., Phys. Rev. D95, 5, 054003 (2017), [arXiv:1611.03371].
[74] P. Bolzoni, B. A. Kniehl and A. V. Kotikov, Phys. Rev. Lett. 109, 242002 (2012), [arXiv:1209.5914]; P. Bolzoni, B. A. Kniehl and A. V. Kotikov, Nucl. Phys. B875, 18 (2013), [arXiv:1305.6017].
[75] P. Abreu et al. (DELPHI), Z. Phys. C73, 11 (1996).
[76] P. Abreu et al. (DELPHI), Z. Phys. C73, 229 (1997).
[77] P. Achard et al. (L3), Phys. Rept. 399, 71 (2004), [hepex/0406049].
[78] R. Itoh et al. (TOPAZ), Phys. Lett. B345, 335 (1995), [hepex/9412015].
[79] M. Althoff et al. (TASSO), Z. Phys. C22, 307 (1984).
[80] M. Z. Akrawy et al. (OPAL), Phys. Lett. B247, 617 (1990).
[81] W. Dunwoodie et al. (BES), Phys. Rev. D69, 072002 (2004), [hep-ex/0306055].
[82] D. Buskulic et al. (ALEPH), Z. Phys. C55, 209 (1992).
[83] A. Heister et al. (ALEPH), Eur. Phys. J. C35, 457 (2004).
[84] P. Abreu et al. (DELPHI), Phys. Lett. B275, 231 (1992).
[85] P. Abreu et al. (DELPHI), Eur. Phys. J. C5, 585 (1998).
[86] P. Abreu et al. (DELPHI), Phys. Lett. B459, 397 (1999).
[87] M. Acciarri et al. (L3), Phys. Lett. B444, 569 (1998).
[88] TPC/TWO-GAMMA Collab.: H. Aihara et al., LBL 23737.
[89] B. R. Webber, Phys. Lett. 143B, 501 (1984).
[90] Y. I. Azimov et al., Z. Phys. C27, 65 (1985).
[91] Y. I. Azimov et al., Z. Phys. C31, 213 (1986).
[92] I. M. Dremin and J. W. Gary, Phys. Rept. 349, 301 (2001), [hep-ph/0004215].
[93] I. M. Dremin and V. A. Nechitailo, Mod. Phys. Lett. A9, 1471 (1994), [hep-ex/9406002].
[94] S. J. Brodsky and J. F. Gunion, Phys. Rev. Lett. 37, 402 (1976).
[95] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[96] R. Akers et al. (OPAL), Z. Phys. C68, 203 (1995).
[97] P. D. Acton et al. (OPAL), Z. Phys. C53, 539 (1992).
[98] D. Buskulic et al. (ALEPH), Z. Phys. C69, 15 (1995).
[99] P. Abreu et al. (DELPHI), Phys. Lett. B372, 172 (1996).
[100] P. Abreu et al. (DELPHI), Phys. Lett. B416, 233 (1998).
[101] P. Abreu et al. (DELPHI), Eur. Phys. J. C18, 203 (2000), [Erratum: Eur. Phys. J.C25,493(2002)], [hep-ex/0103031].
[102] M. Acciarri et al. (L3), Phys. Lett. B371, 137 (1996).
[103] M. Acciarri et al. (L3), Phys. Lett. B404, 390 (1997).
[104] K. Nakabayashi et al. (TOPAZ), Phys. Lett. B413, 447 (1997).
[105] K. Okabe et al. (VENUS), Phys. Lett. B423, 407 (1998).
[106] H. Albrecht et al. (ARGUS), Z. Phys. C54, 13 (1992).
[107] S. Chekanov et al. (ZEUS), Phys. Lett. B510, 36 (2001), [hep-ex/0104036].
[108] J. Benecke et al. (Bonn-Hamburg-Munich), Nucl. Phys. B76, 29 (1974).
[109] W. M. Morse et al., Phys. Rev. D15, 66 (1977).
[110] W. Thome et al. (Aachen-CERN-Heidelberg-Munich), Nucl. Phys. B129, 365 (1977).
[111] A. Breakstone et al. (Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw), Phys. Rev. D30, 528 (1984).
[112] G. J. Alner et al. (UA5), Phys. Rept. 154, 247 (1987).
[113] R. E. Ansorge et al. (UA5), Z. Phys. C43, 357 (1989).
[114] C. Albajar et al. (UA1), Nucl. Phys. B335, 261 (1990).
[115] F. Abe et al. (CDF), Phys. Rev. D41, 2330 (1990), [,119(1989)].
[116] K. Aamodt et al. (ALICE), Eur. Phys. J. C68, 89 (2010), [arXiv:1004.3034].
[117] V. Khachatryan et al. (CMS), JHEP 02, 041 (2010), [arXiv:1002.0621].
[118] V. Khachatryan et al. (CMS), JHEP 01, 079 (2011), [arXiv:1011.5531].
[119] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 105, 022002 (2010), [arXiv:1005.3299].
[120] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 7, 403 (2016), [arXiv:1603.02439].
[121] M. Aaboud et al. (ATLAS), Eur. Phys. J. C76, 9, 502 (2016), [arXiv:1606.01133].
[122] J. Adam et al. (ALICE), Phys. Lett. B753, 319 (2016), [arXiv:1509.08734].
[123] J. Adam et al. (ALICE), Eur. Phys. J. C77, 1, 33 (2017), [arXiv:1509.07541].
[124] P. V. Chliapnikov and V. A. Uvarov, Phys. Lett. B251, 192 (1990).
[125] J. F. Grosse-Oetringhaus and K. Reygers, J. Phys. G37, 083001 (2010), [arXiv:0912.0023].
[126] E. K. G. Sarkisyan and A. S. Sakharov (2004), [hepph/0410324]; E. K. G. Sarkisyan and A. S. Sakharov, AIP Conf. Proc. 828, 1, 35 (2006), [hep-ph/0510191]; E. K. G. Sarkisyan and A. S. Sakharov, Eur. Phys. J. C70, 533 (2010), [arXiv:1004.4390].
[127] S. Hoeche et al., in "HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Proceedings Part A," 288-289 (2005), [hep-ph/0602031]; S. Mrenna and P. Richardson, JHEP 05, 040 (2004), [hepph/0312274]; J. Alwall et al., Eur. Phys. J. C53, 473 (2008), [arXiv:0706.2569].
[128] S. Albino, B. A. Kniehl and G. Kramer, Nucl. Phys. B803, 42 (2008), [arXiv:0803.2768].
[129] D. de Florian et al., Phys. Rev. D91, 1, 014035 (2015), [arXiv:1410.6027].
[130] V. Bertone et al. (NNPDF), Eur. Phys. J. C77, 8, 516 (2017), [arXiv:1706.07049].
[131] D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D76, 074033 (2007), [arXiv:0707.1506].
[132] S. Kretzer, E. Leader and E. Christova, Eur. Phys. J. C22, 269 (2001), [hep-ph/0108055].
[133] S. Kretzer, Phys. Rev. D62, 054001 (2000), [hepph/0003177].
[134] L. Bourhis et al., Eur. Phys. J. C19, 89 (2001), [hepph/0009101].
[135] M. Hirai et al., Phys. Rev. D75, 094009 (2007), [hepph/0702250].
[136] C. A. Aidala et al., Phys. Rev. D83, 034002 (2011), [arXiv:1009.6145].
[137] D. de Florian et al., Phys. Rev. D95, 9, 094019 (2017), [arXiv:1702.06353].
[138] D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D75, 114010 (2007), [hep-ph/0703242].
[139] D. P. Anderle, F. Ringer and M. Stratmann, Phys. Rev. D92, 11, 114017 (2015), [arXiv:1510.05845].
[140] E. Leader, A. V. Sidorov and D. B. Stamenov, Phys. Rev. D93, 7, 074026 (2016), [arXiv:1506.06381].
[141] V. Bertone et al. (NNPDF), Eur. Phys. J. C78, 8, 651 (2018), [arXiv:1807.03310].
[142] R. Barate et al. (ALEPH), Eur. Phys. J. C17, 1 (2000); R. Akers et al. (OPAL), Z. Phys. C68, 179 (1995); G. Abbiendi et al. (OPAL), Eur. Phys. J. C11, 217 (1999), [hepex/9903027].
[143] K. Abe et al. (SLD), Phys. Rev. D59, 052001 (1999), [hepex/9805029].
[144] D. Buskulic et al. (ALEPH), Z. Phys. C66, 355 (1995); H. Albrecht et al. (ARGUS), Z. Phys. C44, 547 (1989); R. Akers et al. (OPAL), Z. Phys. C63, 181 (1994).
[145] M. R. Adams et al. (E665), Z. Phys. C61, 539 (1994).
[146] M. Arneodo et al. (European Muon), Z. Phys. C34, 283 (1987).
[147] S. Aid et al. (H1), Nucl. Phys. B480, 3 (1996), [hepex/9607010].
[148] J. J. Aubert et al. (European Muon), Z. Phys. C18, 189 (1983).
[149] A. Airapetian et al. (HERMES), Eur. Phys. J. C21, 599 (2001), [hep-ex/0104004].
[150] T. P. McPharlin et al., Phys. Lett. 90B, 479 (1980).
[151] S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 91, 241803 (2003), [hep-ex/0304038].
[152] B. Abelev et al. (ALICE), Phys. Lett. B717, 162 (2012), [arXiv:1205.5724].
[153] M. Bonesini et al. (WA70), Z. Phys. C38, 371 (1988).
[154] T. Akesson et al. (Axial Field Spectrometer), Sov. J. Nucl. Phys. 51, 836 (1990), [Yad. Fiz.51,1314(1990)].
[155] C. Kourkoumelis et al., Z. Phys. C5, 95 (1980).
[156] L. Apanasevich et al. (Fermilab E706), Phys. Rev. D68, 052001 (2003), [hep-ex/0204031].
[157] F. Abe et al. (CDF), Phys. Rev. Lett. 61, 1819 (1988).
[158] M. Banner et al. (UA2), Phys. Lett. 115B, 59 (1982).
[159] M. Procura and I. W. Stewart, Phys. Rev. D81, 074009 (2010), [Erratum: Phys. Rev.D83,039902(2011)], [arXiv:0911.4980].
[160] A. Jain, M. Procura and W. J. Waalewijn, JHEP 05, 035 (2011), [arXiv:1101.4953].
[161] M. Procura and W. J. Waalewijn, Phys. Rev. D85, 114041 (2012), [arXiv:1111.6605].
[162] F. Arleo et al., JHEP 04, 147 (2014), [arXiv:1311.7356].
[163] M. Ritzmann and W. J. Waalewijn, Phys. Rev. D90, 5, 054029 (2014), [arXiv:1407.3272].
[164] T. Kaufmann, A. Mukherjee and W. Vogelsang, Phys. Rev. D92, 5, 054015 (2015), [arXiv:1506.01415].
[165] Y.-T. Chien et al., JHEP 05, 125 (2016), [arXiv:1512.06851].
[166] F. Abe et al. (CDF), Phys. Rev. Lett. 65, 968 (1990).
[167] T. A. collaboration (ATLAS) (2015).
[168] S. Chatrchyan et al. (CMS), JHEP 10, 087 (2012), [arXiv:1205.5872].
[169] X. Lu (ALICE), Nucl. Phys. A931, 428 (2014), [arXiv:1407.8385].
[170] C. Bianchin (ALICE), J. Phys. Conf. Ser. 612, 1, 012020 (2015).
[171] F. Krizek (ALICE), J. Phys. Conf. Ser. 668, 1, 012018 (2016), [arXiv:1509.02024].
[172] M. Aaboud et al. (ATLAS), Nucl. Phys. A978, 65 (2018), [arXiv:1706.02859].
[173] L. Adamczyk et al. (STAR), Phys. Rev. D97, 3, 032004 (2018), [arXiv:1708.07080].
[174] D. P. Anderle et al., Phys. Rev. D96, 3, 034028 (2017), [arXiv:1706.09857].
[175] N. Sato et al. (JAM) (2019), [arXiv:1905.03788].
[176] M. Epele et al., Phys. Rev. D86, 074028 (2012), [arXiv:1209.3240].
[177] E. Witten, Nucl. Phys. 210, 189 (1977).
[178] L. Bourhis, M. Fontannaz and J. P. Guillet, Eur. Phys. J. C2, 529 (1998), [hep-ph/9704447].
[179] M. Gluck, E. Reya and A. Vogt, Phys. Rev. D48, 116 (1993), [Erratum: Phys. Rev.D51,1427(1995)]; Erratum ibid. D51, 1427 (1995).
[180] G. Abbiendi et al. (OPAL), Eur. Phys. J. C27, 467 (2003), [hep-ex/0209048].
[181] G. Bocquet et al., Phys. Lett. B366, 434 (1996).
[182] T. Kaufmann, A. Mukherjee and W. Vogelsang, Phys. Rev. D93, 11, 114021 (2016), [arXiv:1604.07175].
[183] P. Abreu et al. (DELPHI), Eur. Phys. J. C13, 573 (2000).
[184] B. A. Kniehl, G. Kramer and B. Potter, Phys. Rev. Lett. 85, 5288 (2000), [hep-ph/0003297].
[185] M. Arneodo et al. (European Muon), Z. Phys. C33, 167 (1986).
[186] A. Airapetian et al. (HERMES), Phys. Rev. D87, 074029 (2013), [arXiv:1212.5407].
[187] C. Adolph et al. (COMPASS), Phys. Lett. B764, 1 (2017), [arXiv:1604.02695].
[188] F. D. Aaron et al. (H1), Phys. Lett. B673, 119 (2009), [arXiv:0901.0477].
[189] M. Derrick et al. (ZEUS), Z. Phys. C68, 29 (1995), [hepex/9505011].
[190] S. Chekanov et al. (ZEUS), Phys. Lett. B553, 141 (2003), [hep-ex/0211025].
[191] S. Chekanov et al. (ZEUS), Nucl. Phys. B786, 181 (2007), [arXiv:0705.3770].
[192] F. D. Aaron et al. (H1), Eur. Phys. J. C61, 185 (2009), [arXiv:0810.4036].
[193] A. Aktas et al. (H1), Eur. Phys. J. C36, 413 (2004), [hepex/0403056].
[194] P. Dixon, D. Kant and G. Thompson, J. Phys. G25, 1453 (1999).
[195] C. Adloff et al. (H1), Phys. Lett. B462, 440 (1999), [hepex/9907030].
[196] D. Graudenz, Fortsch. Phys. 45, 629 (1997), [hepph/9701334].
[197] P. M. Nadolsky, D. R. Stump and C. P. Yuan, Phys. Rev. D61, 014003 (2000), [Erratum: Phys. Rev.D64,059903(2001)], [hep-ph/9906280].
[198] D. de Florian et al., Phys. Rev. D95, 0334027 (2017).
[199] T. Aaltonen et al. (CDF), Phys. Rev. D79, 112005 (2009), [Erratum: Phys. Rev.D82,119903(2010)], [arXiv:0904.1098].
[200] G. Aad et al. (ATLAS), New J. Phys. 13, 053033 (2011), [arXiv:1012.5104].
[201] B. I. Abelev et al. (STAR), Phys. Rev. C75, 064901 (2007), [arXiv:nucl-ex/0607033].
[202] K. Aamodt et al. (ALICE), Eur. Phys. J. C71, 1655 (2011), [arXiv:1101.4110].
[203] B. B. Abelev et al. (ALICE), Phys. Lett. B736, 196 (2014), [arXiv:1401.1250].
[204] J. Adam et al. (ALICE), Eur. Phys. J. C75, 5, 226 (2015), [arXiv:1504.00024].
[205] S. Chatrchyan et al. (CMS), Eur. Phys. J. C72, 2164 (2012), [arXiv:1207.4724].
[206] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 11, 112003 (2017), [arXiv:1706.10194].
[207] G. J. Alner et al. (UA5), Z. Phys. C32, 153 (1986).
[208] B. Abelev et al. (ALICE), Eur. Phys. J. C73, 6, 2456 (2013), [arXiv:1208.4968].
[209] G. Antchev et al. (TOTEM), EPL 101, 2, 21004 (2013).
[210] A. M. Sirunyan et al. (CMS), JHEP 07, 161 (2018), [arXiv:1802.02613].
[211] F. Abe et al. (CDF), Phys. Rev. D50, 5550 (1994).
[212] F. Abe et al. (CDF), Phys. Rev. D50, 5518 (1994).
[213] S. S. Adler et al. (PHENIX), Phys. Rev. C74, 024904 (2006), [arXiv:nucl-ex/0603010].
[214] S. Albino et al., Phys. Rev. D75, 034018 (2007), [hepph/0611029].
[215] I. Borsa, R. Sassot and M. Stratmann, Phys. Rev. D96, 9, 094020 (2017), [arXiv:1708.01630].
[216] B. Andersson et al., Phys. Rept. 97, 31 (1983).
[217] T. Sjostrand and M. Bengtsson, Comput. Phys. Commun. 43, 367 (1987); T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[218] P. D. Acton et al. (OPAL), Phys. Lett. B305, 407 (1993).
[219] J. Breitweg et al. (ZEUS), Eur. Phys. J. C2, 77 (1998), [hep-ex/9711018].
[220] D. DeProspo et al. (E632), Phys. Rev. D50, 6691 (1994).
[221] S. Chekanov et al. (ZEUS), Eur. Phys. J. C51, 1 (2007), [hep-ex/0612023].
[222] G. Grindhammer et al., in: Proceedings of the Workshop on Monte Carlo Generators for HERA Physics, Hamburg, Germany, 1998/1999.
[223] N. Brook et al., in: Proceedings of the Workshop for Future HERA Physics at HERA, Hamburg, Germany, 1996.
[224] D. Acosta et al. (CDF), Phys. Rev. D72, 052001 (2005), [hep-ex/0504048].
[225] G. Arnison et al. (UA1), Phys. Lett. 118B, 167 (1982).
[226] M. Banner et al. (UA2), Phys. Lett. 122B, 322 (1983).
[227] M. Banner et al. (UA2, Bern-CERN-Copenhagen-Orsay-Pavia-Saclay), Z. Phys. C27, 329 (1985).
[228] A. Adare et al. (PHENIX), Phys. Rev. D76, 051106 (2007), [arXiv:0704.3599].
[229] A. Adare et al. (PHENIX), Phys. Rev. D83, 032001 (2011), [arXiv:1009.6224].
[230] A. Adare et al. (PHENIX), Phys. Rev. D86, 092006 (2012), [arXiv:1202.4020].
[231] A. Adare et al. (PHENIX), Phys. Rev. D88, 3, 032006 (2013), [arXiv:1209.3283].
[232] A. Adare et al. (PHENIX), Phys. Rev. D91, 3, 032001 (2015), [arXiv:1409.1907].
[233] A. Adare et al. (PHENIX), Phys. Rev. D90, 7, 072008 (2014), [arXiv:1406.3541].
[234] A. Adare et al. (PHENIX), Phys. Rev. D93, 1, 011501 (2016), [arXiv:1510.02317].
[235] I. Arsene et al. (BRAHMS), Phys. Rev. Lett. 98, 252001 (2007), [hep-ex/0701041].
[236] J. Adams et al. (STAR), Phys. Rev. Lett. 97, 152302 (2006), [arXiv:nucl-ex/0602011].
[237] J. Adams et al. (STAR), Phys. Lett. B637, 161 (2006), [arXiv:nucl-ex/0601033].
[238] B. I. Abelev et al. (STAR), Phys. Rev. D80, 111108 (2009), [arXiv:0911.2773].
[239] G. Agakishiev et al. (STAR), Phys. Rev. Lett. 108, 072302 (2012), [arXiv:1110.0579].
[240] L. Adamczyk et al. (STAR), Phys. Rev. D89, 1, 012001 (2014), [arXiv:1309.1800].
[241] B. B. Abelev et al. (ALICE), Eur. Phys. J. C73, 12, 2662 (2013), [arXiv:1307.1093].
[242] L. Apanasevich et al. (Fermilab E706), Phys. Rev. Lett. 81, 2642 (1998), [hep-ex/9711017].
[243] G. Ballocchi et al. (UA6), Phys. Lett. B436, 222 (1998).
[244] K. Aamodt et al. (ALICE), Eur. Phys. J. C71, 1594 (2011), [arXiv:1012.3257].
[245] R. Aaij et al. (LHCb), Phys. Lett. B703, 267 (2011), [arXiv:1107.3935].
[246] G. Aad et al. (ATLAS), Phys. Lett. B758, 67 (2016), [arXiv:1602.01633].
[247] F. Aversa et al., Nucl. Phys. B327, 105 (1989); D. de Florian, Phys. Rev. D67, 054004 (2003), [hep-ph/0210442]; B. Jager et al., Phys. Rev. D67, 054005 (2003), [hepph/0211007].
[248] U. Baur et al., in "QCD and weak boson physics in Run II. Proceedings, Batavia, USA, March 4-6, June 34, November 4-6, 1999," 115-164 (2000), [,115(2000)], [hep-ph/0005226], URL http://lss.fnal.gov/archive/ preprint/fermilab-conf-00-411-ae.shtml.
[249] P. Aurenche et al., Eur. Phys. J. C13, 347 (2000), [hepph/9910252].
[250] L. Apanasevich et al., Phys. Rev. D59, 074007 (1999), [hepph/9808467].
[251] U. D'Alesio and F. Murgia, Phys. Rev. D70, 074009 (2004), [hep-ph/0408092].
[252] D. de Florian and W. Vogelsang, Phys. Rev. D71, 114004 (2005), [hep-ph/0501258].
[253] P. Hinderer et al., Phys. Rev. D99, 5, 054019 (2019), [arXiv:1812.00915].
[254] D. d'Enterria et al., Nucl. Phys. B883, 615 (2014), [arXiv:1311.1415].
[255] G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A40, 299 (2009), [arXiv:0810.2939].
[256] C. Tsallis, J. Statist. Phys. 52, 479 (1988).
[257] C. Tsallis, Braz. J. Phys. 29, 1 (1999).
[258] C. Tsallis, Eur. Phys. J. A40, 257 (2009), [arXiv:0812.4370].
[259] M. D. Azmi and J. Cleymans, J. Phys. G41, 065001 (2014), [arXiv:1401.4835].
[260] G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000), [hep-ph/9908459].
[261] T. Bhattacharyya et al., J. Phys. G45, 5, 055001 (2018), [arXiv:1709.07376].
[262] S. Grigoryan, Phys. Rev. D95, 5, 056021 (2017), [arXiv:1702.04110].
[263] T. Wibig, Int. J. Mod. Phys. A29, 1450021 (2014).
[264] K. Saraswat, P. Shukla and V. Singh, J. Phys. Comm. 2, 3, 035003 (2018), [arXiv:1706.04860].
[265] K. Urmossy, G. G. Barnafoldi and T. S. Biro, Phys. Lett. B701, 111 (2011), [arXiv:1101.3023].
[266] A. S. Parvan, O. V. Teryaev and J. Cleymans, Eur. Phys. J. A53, 5, 102 (2017), [arXiv:1607.01956].
[267] K. Adcox et al. (PHENIX), Phys. Rev. Lett. 88, 022301 (2002), [arXiv:nucl-ex/0109003]; C. Adler et al. (STAR), Phys. Rev. Lett. 90, 082302 (2003), [arXiv:nuclex/0210033].
[268] V.A. Khoze et al., Proceedings, Conference on High-Energy Physics, Tbilisi 1976; J. D. Bjorken, Phys. Rev. D17, 171 (1978).
[269] M. Artuso et al. (CLEO), Phys. Rev. D70, 112001 (2004), [hep-ex/0402040].
[270] R. Seuster et al. (Belle), Phys. Rev. D73, 032002 (2006), [hep-ex/0506068].
[271] A. Heister et al. (ALEPH), Phys. Lett. B512, 30 (2001), [hep-ex/0106051]; J. Abdallah et al. (DELPHI), Eur. Phys. J. C71, 1557 (2011), [arXiv:1102.4748]; G. Abbiendi et al. (OPAL), Eur. Phys. J. C29, 463 (2003), [hep-ex/0210031]; K. Abe et al. (SLD), Phys. Rev. D65, 092006 (2002), [Erratum: Phys. Rev.D66,079905(2002)], [hep-ex/0202031].
[272] B. Mele and P. Nason, Phys. Lett. B245, 635 (1990); B. Mele and P. Nason, Nucl. Phys. B361, 626 (1991), [Erratum: Nucl. Phys.B921,841(2017)].
[273] M. Cacciari and S. Catani, Nucl. Phys. B617, 253 (2001), [hep-ph/0107138].
[274] P. Nason and C. Oleari, Phys. Lett. B418, 199 (1998), [hepph/9709358]; P. Nason and C. Oleari, Phys. Lett. B447, 327 (1999), [hep-ph/9811206]; P. Nason and C. Oleari, Nucl. Phys. B565, 245 (2000), [hep-ph/9903541].
[275] K. Melnikov and A. Mitov, Phys. Rev. D70, 034027 (2004), [hep-ph/0404143].
[276] C. Peterson et al., Phys. Rev. D27, 105 (1983).
[277] V. G. Kartvelishvili, A. K. Likhoded and V. A. Petrov, Phys. Lett. 78B, 615 (1978).
[278] P. D. B. Collins and T. P. Spiller, J. Phys. G11, 1289 (1985).
[279] G. Colangelo and P. Nason, Phys. Lett. B285, 167 (1992).
[280] M. G. Bowler, Z. Phys. C11, 169 (1981).
[281] E. Braaten et al., Phys. Rev. D51, 4819 (1995), [hepph/9409316].
[282] R. Akers et al. (OPAL), Z. Phys. C67, 27 (1995).
[283] H. Albrecht et al. (ARGUS), Z. Phys. C52, 353 (1991).
[284] D. Buskulic et al. (ALEPH), Phys. Lett. B357, 699 (1995).
[285] J. Chrin, Z. Phys. C36, 163 (1987).
[286] R. L. Jaffe and L. Randall, Nucl. Phys. B412, 79 (1994), [hep-ph/9306201].
[287] M. Cacciari and E. Gardi, Nucl. Phys. B664, 299 (2003), [hep-ph/0301047].
[288] L. Randall and N. Rius, Nucl. Phys. B441, 167 (1995), [hep-ph/9405217].
[289] J. C. Collins, Phys. Rev. D58, 094002 (1998), [hepph/9806259].
[290] B. A. Kniehl et al., Eur. Phys. J. C41, 199 (2005), [hepph/0502194].
[291] S. Ahmed et al. (CLEO), Phys. Rev. D62, 112003 (2000), [hep-ex/0008015].
[292] B. Aubert et al. (BaBar), Phys. Rev. D65, 091104 (2002), [hep-ex/0201041].
[293] D. Bortoletto et al. (CLEO), Phys. Rev. D37, 1719 (1988), [Erratum: Phys. Rev.D39,1471(1989)].
[294] H. Albrecht et al. (ARGUS), Z. Phys. C54, 1 (1992).
[295] G. Alexander et al. (OPAL), Z. Phys. C69, 543 (1996).
[296] A. Heister et al. (ALEPH), Phys. Lett. B561, 213 (2003), [hep-ex/0302003].
[297] F. D. Aaron et al. (H1), Eur. Phys. J. C65, 89 (2010), [arXiv:0907.2643].
[298] S. Chekanov et al. (ZEUS), JHEP 07, 074 (2007), [arXiv:0704.3562]; ZEUS Collab: H. Abramowicz et al., JHEP, 1309 (2013); A. Aktas et al. (H1), Eur. Phys. J. C51, 271 (2007), [hep-ex/0701023]; F. D. Aaron et al. (H1), Eur. Phys. J. C59, 589 (2009), [arXiv:0808.1003].
[299] B. Adeva et al. (L3), Phys. Lett. B261, 177 (1991).
[300] O. Biebel, P. Nason and B. R. Webber (2001), [hepph/0109282].
[301] H. Evans (ALICE, ATLAS, CMS, LHCb), in "Proceedings, 14th International Conference on Hadron spectroscopy (Hadron 2011): Munich, Germany, June 13-17, 2011," (2011), [arXiv:1110.5294]; E. Aguilo, in "Proceedings, 47th Rencontres de Moriond on QCD and High Energy Interactions: La Thuile, France, March 10-17, 2012," 115-120 (2012), [arXiv:1205.5678]; F. Simonetto, Journal of Physics: Conference Series 347, 012014 (2012).
[302] V. Khachatryan et al. (CMS), JHEP 03, 136 (2011), [arXiv:1102.3194]; G. Aad et al. (ATLAS), Eur. Phys. J. C71, 1846 (2011), [arXiv:1109.6833]; S. Chatrchyan et al. (CMS), JHEP 04, 084 (2012), [arXiv:1202.4617]; G. Aad et al. (ATLAS), Eur. Phys. J. C73, 2, 2301 (2013), [arXiv:1210.0441].
[303] H. Jung et al., Phys. Rev. D85, 034035 (2012), [arXiv:1111.1942].
[304] D. Acosta et al. (CDF), Phys. Rev. Lett. 91, 241804 (2003), [hep-ex/0307080]; D. Acosta et al. (CDF), Phys. Rev. D71, 032001 (2005), [hep-ex/0412071].
[305] M. Cacciari and P. Nason, JHEP 09, 006 (2003), [hepph/0306212]; M. Cacciari et al., JHEP 07, 033 (2004), [hep-ph/0312132]; B. A. Kniehl et al., Phys. Rev. Lett. 96, 012001 (2006), [hep-ph/0508129].
[306] H. Abramowicz et al. (ZEUS), Eur. Phys. J. C71, 1573 (2011), [arXiv:1101.3692].
[307] S. Chekanov et al. (ZEUS), Phys. Rev. D78, 072001 (2008), [arXiv:0805.4390].
[308] S. Chekanov et al. (ZEUS), JHEP 02, 032 (2009), [arXiv:0811.0894].
[309] F. D. Aaron et al. (H1), Eur. Phys. J. C72, 2148 (2012), [arXiv:1206.4346].
[310] M. L. Mangano and P. Nason, Phys. Lett. B285, 160 (1992).
[311] M. H. Seymour, Nucl. Phys. B436, 163 (1995).
[312] D. J. Miller and M. H. Seymour, Phys. Lett. B435, 213 (1998), [hep-ph/9805414].
[313] R. Barate et al. (ALEPH), Phys. Lett. B434, 437 (1998).
[314] P. Abreu et al. (DELPHI), Phys. Lett. B405, 202 (1997).
[315] M. Acciarri et al. (L3), Phys. Lett. B476, 243 (2000), [hepex/9911016].
[316] G. Abbiendi et al. (OPAL), Eur. Phys. J. C13, 1 (2000), [hep-ex/9908001].
[317] K. Abe et al. (SLD) (1999), [hep-ex/9908028], URL http://www-public.slac.stanford.edu/sciDoc/docMeta. aspx?slacPubNumber=SLAC-PUB-8157.
[318] C. Albajar et al. (UA1 Collaboration), Z. Phys. C 61, 41 (1993), URL http://cds.cern.ch/record/253028.
[319] R. Aaij et al. (LHCb), JHEP 11, 030 (2017), [arXiv:1708.05994].
[320] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 5, 052004 (2019), [arXiv:1812.09283].
[321] M. Burkardt and R. L. Jaffe, Phys. Rev. Lett. 70, 2537 (1993), [hep-ph/9302232].
[322] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996), [Erratum: Nucl. Phys.B484,538(1997)], [hepph/9510301].
[323] R. Jakob, Nucl. Phys. A711, 35 (2002), [hep-ph/0206271].
[324] D. de Florian, M. Stratmann and W. Vogelsang, Phys. Rev. Lett. 81, 530 (1998), [hep-ph/9802432].
[325] D. Buskulic et al. (ALEPH), Phys. Lett. B374, 319 (1996).
[326] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C2, 49 (1998), [hep-ex/9708027].
[327] G. Abbiendi et al. (OPAL), Phys. Lett. B444, 539 (1998), [hep-ex/9808006].
[328] M. Alekseev et al. (COMPASS), Eur. Phys. J. C64, 171 (2009), [arXiv:0907.0388].
[329] A. Airapetian et al. (HERMES), Phys. Rev. D74, 072004 (2006), [hep-ex/0607004].
[330] G. Karyan (HERMES), Int. J. Mod. Phys. Conf. Ser. 40, 1660067 (2016).
[331] J. Adam et al. (STAR), Phys. Rev. D98, 11, 112009 (2018), [arXiv:1808.07634].
[332] R. L. Jaffe, Phys. Rev. D54, 11, R6581 (1996), [hepph/9605456].
[333] A. Airapetian et al. (HERMES), Phys. Rev. D76, 092008 (2007), [arXiv:0704.3133].
[334] A. Moretti (COMPASS), PoS SPIN2018, 138 (2018), [arXiv:1901.01735].
[335] R. Seidl et al. (Belle), Phys. Rev. D99, 11, 112006 (2019), [arXiv:1902.01552].
[336] C. Adolph et al. (COMPASS), Eur. Phys. J. C73, 8, 2531 (2013), [Erratum: Eur. Phys. J.C75,no.2,94(2015)], [arXiv:1305.7317].
[337] A. Signori et al., JHEP 11, 194 (2013), [arXiv:1309.3507].
[338] M. Anselmino et al., JHEP 04, 005 (2014), [arXiv:1312.6261].
[339] M. G. Echevarria et al., Phys. Rev. D89, 074013 (2014), [arXiv:1401.5078].
[340] M. G. Echevarria, I. Scimemi and A. Vladimirov, Phys. Rev. D93, 1, 011502 (2016), [Erratum: Phys. Rev.D94,no.9,099904(2016)], [arXiv:1509.06392].
[341] M. G. Echevarria, I. Scimemi and A. Vladimirov, JHEP 09, 004 (2016), [arXiv:1604.07869].
[342] A. Bacchetta et al., JHEP 06, 081 (2017), [Erratum: JHEP06,051(2019)], [arXiv:1703.10157].
[343] J. C. Collins, Nucl. Phys. B396, 161 (1993), [hepph/9208213].
[344] J. P. Ralston and D. E. Soper, Nucl. Phys. B152, 109 (1979).
[345] H. Avakian et al. (CLAS), Phys. Rev. D69, 112004 (2004), [hep-ex/0301005].
[346] A. Airapetian et al. (HERMES), Phys. Rev. Lett. 84, 4047 (2000), [hep-ex/9910062].
[347] A. Airapetian et al. (HERMES), Phys. Rev. D64, 097101 (2001), [hep-ex/0104005].
[348] A. Airapetian et al. (HERMES), Phys. Rev. Lett. 94, 012002 (2005), [hep-ex/0408013].
[349] A. Airapetian et al. (HERMES), Phys. Lett. B693, 11 (2010), [arXiv:1006.4221].
[350] V. Yu. Alexakhin et al. (COMPASS), Phys. Rev. Lett. 94, 202002 (2005), [hep-ex/0503002].
[351] E. S. Ageev et al. (COMPASS), Nucl. Phys. B765, 31 (2007), [hep-ex/0610068].
[352] M. Alekseev et al. (COMPASS), Phys. Lett. B673, 127 (2009), [arXiv:0802.2160].
[353] M. G. Alekseev et al. (COMPASS), Phys. Lett. B692, 240 (2010), [arXiv:1005.5609].
[354] M. G. Alekseev et al. (COMPASS), Eur. Phys. J. C70, 39 (2010), [arXiv:1007.1562].
[355] C. Adolph et al. (COMPASS), Phys. Lett. B717, 376 (2012), [arXiv:1205.5121].
[356] C. Adolph et al. (COMPASS), Phys. Lett. B744, 250 (2015), [arXiv:1408.4405].
[357] K. Abe et al. (Belle), Phys. Rev. Lett. 96, 232002 (2006), [hep-ex/0507063].
[358] R. Seidl et al. (Belle), Phys. Rev. D78, 032011 (2008), [Erratum: Phys. Rev.D86,039905(2012)], [arXiv:0805.2975].
[359] J. P. Lees et al. (BaBar), Phys. Rev. D90, 5, 052003 (2014), [arXiv:1309.5278].
[360] J. P. Lees et al. (BaBar), Phys. Rev. D92, 11, 111101 (2015), [arXiv:1506.05864].
[361] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 116, 4, 042001 (2016), [arXiv:1507.06824].
[362] M. Anselmino et al., Phys. Rev. D92, 11, 114023 (2015), [arXiv:1510.05389].
[363] Z.-B. Kang et al., Phys. Rev. D93, 1, 014009 (2016), [arXiv:1505.05589].
[364] F. Yuan, Phys. Rev. Lett. 100, 032003 (2008), [arXiv:0709.3272].
[365] Z.-B. Kang et al., JHEP 11, 068 (2017), [arXiv:1705.08443].
[366] K. Konishi, A. Ukawa and G. Veneziano, Phys. Lett. 78B, 243 (1978).
[367] I. Vendramin, Nuovo Cim. A66, 339 (1981).
[368] J. C. Collins, S. F. Heppelmann and G. A. Ladinsky, Nucl. Phys. B420, 565 (1994), [hep-ph/9305309].
[369] R. L. Jaffe, X.-m. Jin and J. Tang, Phys. Rev. Lett. 80, 1166 (1998), [hep-ph/9709322].
[370] R. L. Jaffe, X.-m. Jin and J.-a. Tang, Phys. Rev. D57, 5920 (1998), [hep-ph/9710561].
[371] A. Bianconi et al., Phys. Rev. D62, 034008 (2000), [hepph/9907475].
[372] M. Radici, R. Jakob and A. Bianconi, Phys. Rev. D65, 074031 (2002), [hep-ph/0110252].
[373] D. de Florian and L. Vanni, Phys. Lett. B578, 139 (2004), [hep-ph/0310196].
[374] A. Bacchetta and M. Radici, Phys. Rev. D67, 094002 (2003), [hep-ph/0212300].
[375] A. Vossen et al. (Belle), Phys. Rev. Lett. 107, 072004 (2011), [arXiv:1104.2425].
[376] A. Courtoy et al., Phys. Rev. D85, 114023 (2012), [arXiv:1202.0323].
[377] M. Radici et al., JHEP 05, 123 (2015), [arXiv:1503.03495].
[378] A. Airapetian et al. (HERMES), JHEP 06, 017 (2008), [arXiv:0803.2367].
[379] C. Adolph et al. (COMPASS), Phys. Lett. B713, 10 (2012), [arXiv:1202.6150].
[380] C. Adolph et al. (COMPASS), Phys. Lett. B736, 124 (2014), [arXiv:1401.7873].
[381] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 115, 242501 (2015), [arXiv:1504.00415].
[382] A. Bacchetta, A. Courtoy and M. Radici, Phys. Rev. Lett. 107, 012001 (2011), [arXiv:1104.3855].
[383] A. Bacchetta, A. Courtoy and M. Radici, JHEP 03, 119 (2013), [arXiv:1212.3568].
[384] M. Radici and A. Bacchetta, Phys. Rev. Lett. 120, 19, 192001 (2018), [arXiv:1802.05212].

20. High Energy Soft QCD and Diffraction

Written February 2020 by V.A. Khoze (Durham U.; Petersburg Nuclear Phys. Inst.), M. Ryskin (Petersburg Nuclear Phys. Inst.) and M. Taševský (Prague, Inst. Phys.).

20.1 Introduction

Despite the enormous successes of Quantum Chromodynamics (QCD) (see Section 9 in [1] and [2]) there remain a number of deep questions to be answered in the domain of strong interaction physics. These concern first of all small momentum transfer processes which are generically called soft interactions.

One of the most challenging problems is the high-energy behaviour of hadronic scattering processes. At high collision energies, \sqrt{s}, soft interactions play a dominant role. Unfortunately, soft interactions cannot be described in terms of perturbative QCD. These are non-perturbative phenomena related to confinement which are generally considered in the context of the analytic S-matrix, based on first principles, such as analyticity, crossing symmetry and unitarity of partial waves, see e.g. [3,4]. At high energies the most self-consistent way to perform the calculations and to describe the data is the Regge approach (see for example [5-7]), which will be considered below. As discussed in Section 20.5 , this formalism could be smoothly matched with perturbative QCD calculations at larger transverse momenta. Therefore, here we will concentrate on the properties of high energy soft interactions that can be expected from the extension of the perturbative QCD domain.

The main aim of this review is to present the well-established theoretical framework, based on Regge theory and QCD, used for describing high-energy collisions. A limited number of some new experimental results, mainly from the LHC, are shown in order to demonstrate that the gross features of the data are in agreement with this approach. We are not focussing on any particular phenomenological or Monte Carlo model, which are covered in the dedicated reviews and books, see e.g. Section 41 in [1], [2, 8-14] and Chapter 2 in [15].

Typically, in multiparticle production, the secondaries ${ }^{1}$ fill the whole available rapidity interval. ${ }^{2}$ However, there exists an important class of events in which a large interval of rapidity (typically at least 4 units) is devoid of any hadronic activity. Such an interval is called a Large Rapidity Gap (LRG). The most frequent case with a LRG is elastic scattering. There are also events in which one of the incoming protons (or both) is transformed (dissociates) into a set of two or more final state particles with the mass $M \ll \sqrt{s}$ and proton quantum number. All these events have properties similar to those of the well-known from optics pattern of diffraction of a beam of light on an obstacle. By analogy, in high-energy physics, the corresponding processes are usually called diffractive. The classic example is the elastic scattering of hadrons on nuclei (see e.g. [16]), which manifests an angular distribution with a series of minima and maxima, analogous to the diffraction of light on a black disk. At LHC energies diffractive processes constitute up to 40% of the total $(p p)$ cross section, $\sigma_{\text {tot }}$. Therefore, we will pay special attention to the description of the elastic scattering amplitude and proton diffractive dissociation. Diffraction dissociation can be considered as a quantum mechanical process caused by the fact that different components of the incoming hadron wave function have different probabilities for interaction with a target [17]. This feature allows us to probe the transverse size of the interaction region.

Note that besides being of a fundamental interest in their own right for understanding the high energy behaviour of the QCD amplitude, there are several reasons why it is important to study soft and diffractive processes. Firstly, soft interactions unavoidably give an underlying component to rare 'hard' events, from which we hope to extract signals for New Physics. Secondly, we should be able to estimate the probability that rapidity gaps, which oc-

[^37]cur in 'hard' diffractive events, survive rescattering effects, that is, survive the population of the gaps by the secondary particles from the underlying event. Thirdly, an understanding of diffractive processes is very important for evaluation of pile-up backgrounds in high-luminosity $p p$ collisions, which have a direct impact on various experimental measurements. Pile-up corresponds to soft independent interactions in the same bunch crossing whose number rises with increasing instantaneous luminosity. And, finally, studies of diffractive processes should help in the understanding of the structure of high-energy cosmic ray cascades, which requires a very detailed knowledge of the spectra of particles carrying a large fraction x of the incoming momentum in proton-air and nucleusair interactions, see for instance [18].

Experimentally, diffractive processes are selected using two distinct features:

1. large regions (typically at least $\Delta \eta>4$) in the detector are devoid of hadronic activity (LRG) and/or
2. one or both incoming particles stay intact after collision and are registered by the dedicated forward detectors placed a few hundred meters from the interaction point. The momentum loss of the initial particle, $\xi=1-x$, is typically smaller than 0.15 .

Thus, in the case of proton-proton collisions, diffractive events correspond to elastic $p p \rightarrow p p$ scattering and to $p p \rightarrow p+X$ (Single Dissociation, SD) and $p p \rightarrow X+Y$ (Double Dissociation, $\mathrm{DD})$ processes, where the + sign denotes a large rapidity gap. Note that strictly speaking in high energy physics it is impossible to define (and select) rigorously purely diffractive events. We can always have some admixture of events of different origin. As a rule we call 'diffractive' the events with sufficiently large gap (with say $\Delta y>4$, see above) and the vacuum quantum numbers transferred across the gap. Typically at the LHC the integrated cross sections of diffractive dissociation, $\sigma_{\mathrm{SD}}, \sigma_{\mathrm{DD}}$, are of the order of 5-10 mb depending on the gap size. Schematic diagrams of all discussed processes are shown in Fig. 20.1.

20.2 Regge pole approach

In pre-QCD times, in order to describe the behaviour of scattering amplitudes at high energy, \sqrt{s}, and small momentum-transfer squared, $-t$, Regge theory was developed and successfully applied in a wide range of energies. The Regge approach [5-7] is based on the singularities of amplitudes in the complex angular momentum, j, plane.

For instance, the measured $\pi^{-} p \rightarrow \pi^{0} n$ amplitude behaves as

$$
\begin{equation*}
T_{\pi p}(s, t) \propto s^{\alpha_{\rho}(t)} \tag{20.1}
\end{equation*}
$$

where the process is described by the exchange of the ρ-trajectory, $j=\alpha_{\rho}(t) \simeq 0.5+0.9 t$ (with $t=\left(p_{\pi^{-}}-p_{\pi^{0}}\right)^{2}$ in GeV^{2}). This trajectory passes through the spin-1 ρ-meson resonance in the 'crossed' t-channel $\pi^{-} \pi^{0} \rightarrow \bar{p} n$; that is, $\alpha_{\rho}\left(t=m_{\rho}^{2}\right)=1$. The corresponding cross section decreases with increasing s.

On the other hand, high-energy total and elastic $p p$ cross sections are observed to grow slowly with energy (see e.g. Section 52 in [1]) and in terms of Regge theory are dominated by the exchange of a trajectory with vacuum quantum numbers, $\sigma_{\text {tot }} \propto s^{j-1}$. The simplest possibility is to assume that the rightmost singularity in the j-plane, which drives the high-energy behaviour of the cross section, is the leading (at $t \leq 0$) Regge pole at $j=\alpha(t)$. Then the $p p$ elastic amplitude reads

$$
\begin{equation*}
T_{\mathrm{el}}(s, t) \propto s^{\alpha_{\mathbb{P}}(t)} . \tag{20.2}
\end{equation*}
$$

The total cross section can then be conveniently expressed using the so called optical theorem which states that

$$
\begin{equation*}
s \sigma_{\mathrm{tot}}=\operatorname{Im} T_{\mathrm{el}}(s, t=0) \tag{20.3}
\end{equation*}
$$

as illustrated in the upper part of Fig. 20.2, and thus

$$
\begin{equation*}
\sigma_{\mathrm{tot}} \propto s^{\alpha_{\mathbb{P}}(0)-1} \tag{20.4}
\end{equation*}
$$

Figure 20.1: Schematic diagrams of soft $p p$ processes. (a) non-diffractive processes, (b) elastic scattering, (c) single dissociation and (d) double dissociation. The double line corresponds to the Pomeron exchange.

Figure 20.2: Illustration of the optical theorem for the total cross section and for high-mass diffractive dissociation in the absence of absorptive corrections.

The pole with the largest intercept, originally assumed to be $\alpha_{\mathbb{P}}(0)=1$ since high-energy total cross sections were thought to have a constant asymptotic behaviour, is called the Pomeron ${ }^{3}$

Prior to the LHC, the energy behaviour of $p p, p \bar{p}, \pi p, K p$ cross sections was satisfactorily reproduced by the sum of the Pomeron and secondary Reggeons (the poles at lower values of j, typically with $\alpha_{\rho}(0) \simeq 0.5$, see [22,23] and Section 51 in [24]). However, above Tevatron energies the secondary Reggeon contributions (which all have intercepts $\alpha(0) \simeq 0.5$) are highly suppressed, which enables us to study the properties of the Pomeron only.

A popular parameterization of the elastic $p p$-scattering amplitude by Donnachie-Landshoff (DL) is the Regge form [25]

$$
\begin{equation*}
T_{\mathrm{el}}(s, t)=\eta_{P} \sigma_{0} F_{1}^{2}(t) s^{\alpha_{\mathbb{P}}(t)} \tag{20.5}
\end{equation*}
$$

where $\sigma_{0}=21.7 \mathrm{mb}$ [26] and η_{P} is the signature factor

$$
\begin{equation*}
\eta_{P}=\frac{1+\exp \left(-i \pi \alpha_{\mathbb{P}}(t)\right)}{\sin \left(-\pi \alpha_{\mathbb{P}}(t)\right)} \tag{20.6}
\end{equation*}
$$

F_{1} is the Dirac electromagnetic form factor of the proton and the effective Pomeron trajectory

$$
\begin{equation*}
\alpha_{\mathbb{P}}(t)=1+\Delta+\alpha^{\prime} t \simeq 1+0.0808+0.25 t \tag{20.7}
\end{equation*}
$$

with t given in GeV^{2}. The intercept $\alpha_{\mathbb{P}}(0)$ just above 1 reproduces the observed slow growth of the total hadron-hadron cross sections at high energies.

However, this simple parameterization is becoming increasingly deficient at higher energies. This is because due to unitarity we have to take into account not only Regge poles, but also the cuts in the j-plane $[27,28]$, which correspond to the multiple exchange of Regge poles in the t-channel, see for instance [29-31]. A powerful technique to evaluate Reggeon diagrams was developed by Gribov [7,32] (Reggeon calculus or Reggeon Field Theory (RFT)), which allows us to calculate the multi-Pomeron contributions.

[^38]
20.3 Theoretical description of high-energy diffraction

Diffractive processes (see e.g. reviews [33-37]) represent a rich testing ground for the dynamics of soft interactions as well as Monte Carlo models for soft hadron-hadron physics (see for reviews e.g. [8], Section 41 in [1] and Chapter 2 in [15]).

There is no universally agreed definition of diffractive processes. Theoretically, diffraction is the effect caused by the absorption of the incoming plane-wave in some region of impact parameter, b. After a decomposition of the distorted plane-wave over the outgoing momentum, q, due to absorption we arrive at some set of plane-waves with non-zero transverse momentum, $q_{t} \neq 0$. Experimentally, we call diffractive the events with large rapidity gaps (LRG) in the distribution of the final state particles. However, this definition is appropriate only for the events with very large gap sizes $(\Delta \eta>4-5)$; otherwise gaps can also be caused by fluctuations in the hadronization process [38].

In the case of proton-proton collisions, diffraction corresponds to elastic $p p \rightarrow p p$ scattering and to the $p p \rightarrow p+X$ and $p p \rightarrow X_{1}+X_{2}$ processes where one or both protons are allowed to dissociate into a system X with the quantum numbers of the proton. The $p \rightarrow X$ dissociation is caused by the fact that the individual components of the incoming proton wave function interact differently with the target (see Section 20.3.1).

Theoretically, high-energy diffraction may be studied from either the s-channel or the t-channel viewpoint.

20.3.1 Diffraction from the s-channel viewpoint

Unitarity plays a central role in diffractive processes. To discuss unitarity effects it is convenient to work in terms of impact parameter, b. The total cross section is closely related to the elastic scattering amplitude and the scattering into inelastic final states via the s-channel unitarity of the S-matrix (see Sections 49 and 52 in [1]), $S S^{\dagger}=I$, or

$$
\begin{equation*}
d i s c T \equiv T-T^{\dagger}=i T^{\dagger} T \tag{20.8}
\end{equation*}
$$

Figure 20.3: Two-Pomeron exchange in the t channel expressed as a sum over all diffractive intermediate states in the s-channel. The crosses indicate that the particles are on the mass shell.
with $S=I+i T$. If we were to focus, for example, on the unitarity for elastic and quasielastic processes, then disc T would simply denote a cut in s-channel between incoming and outgoing particles as visualized by crosses in Fig. 20.3.

At high energies, the s-channel unitarity relation is diagonal in the b basis such that

$$
\begin{equation*}
2 \operatorname{Im} T_{\mathrm{el}}(s, b)=\left|T_{\mathrm{el}}(s, b)\right|^{2}+G_{\text {inel }}(s, b) \tag{20.9}
\end{equation*}
$$

with

$$
\begin{align*}
\sigma_{\mathrm{tot}} & =2 \int d^{2} b \operatorname{Im} T_{\mathrm{el}}(s, b) \tag{20.10}\\
\sigma_{\mathrm{el}} & =\int d^{2} b\left|T_{\mathrm{el}}(s, b)\right|^{2} \tag{20.11}\\
\sigma_{\text {inel }} & =\int d^{2} b\left[2 \operatorname{Im} T_{\mathrm{el}}(s, b)-\left|T_{\mathrm{el}}(s, b)\right|^{2}\right] \tag{20.12}
\end{align*}
$$

The general solution of Eq. (20.9) is

$$
\begin{equation*}
T_{\mathrm{el}}(b)=i\left(1-e^{-\Omega(b) / 2}\right) \tag{20.13}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\text {inel }}(s, b)=1-\mathrm{e}^{-\operatorname{Re} \Omega(b)}=1-P_{\text {nointer }}(s, b) \tag{20.14}
\end{equation*}
$$

where $G_{\text {inel }}$ is the sum over all inelastic intermediate states and $P_{\text {nointer }}$ is a probability to have no inelastic interactions. $G_{\text {inel }}(s, b)$ describes the b-profile of inelastic particle collisions. It satisfies the condition $0 \leq G_{\text {inel }} \leq 1$ and determines how absorptive the interaction region is at a given impact parameter (with $G_{\text {inel }}=1$ for full absorption and $G_{\text {inel }}=0$ for the complete dominance of elastic scattering). As seen from Eq. (20.14), $\exp (-\operatorname{Re} \Omega(s, b))$ is the probability that no inelastic interactions occur at impact parameter $b . \Omega(\operatorname{Re} \Omega \geq 0)$ is called the opacity (optical density) or eikonal. The quantity

$$
\begin{equation*}
S^{2}(b) \equiv e^{-\operatorname{Re} \Omega(b)}=P_{\text {nointer }}(b) \tag{20.15}
\end{equation*}
$$

is the so-called survival factor, which enables us to calculate the probability that the LRG survives soft rescattering.

In terms of the opacity the elastic cross section takes the form

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{~d} t} & =\frac{1}{16 \pi s^{2}}\left|T_{\mathrm{el}}(s, t)\right|^{2}=\frac{1}{4 \pi}\left|\int \mathrm{~d}^{2} b e^{i \vec{q}_{t} \cdot \vec{b}}\left(1-e^{-\Omega(b) / 2}\right)\right|^{2} \\
& =\pi\left|\int b \mathrm{~d} b J_{0}\left(q_{t} b\right)\left(1-e^{-\Omega(b) / 2}\right)\right|^{2} \tag{20.16}
\end{align*}
$$

where $q_{t}=\sqrt{|t|}$ and J_{0} is the zeroth-order Bessel function.
To describe the elastic scattering at one fixed energy we can always find an appropriate parameterization for the opacity $\Omega(b)$ and tune the parameters to reproduce the observed $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ cross
section. Moreover, we can fix the form of the parameterization, but choose, at each particular energy, the corresponding values of parameters; see, e.g. [39]. Alternatively, we may simply take the Fourier-Bessel transform from the experimental data [33, 40, 41]

$$
\begin{equation*}
\operatorname{Im} T_{\mathrm{el}}(b)=\int \frac{q_{t} \mathrm{~d} q_{t}}{4 \pi} \sqrt{\frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t} \frac{16 \pi}{1+\rho^{2}}} J_{0}\left(q_{t} b\right) \tag{20.17}
\end{equation*}
$$

where the square root represents $\operatorname{Im} T_{\mathrm{el}}\left(q_{t}\right)$, with $\rho \equiv \operatorname{Re} T_{\mathrm{el}} / \operatorname{Im} T_{\mathrm{el}}$. In this way, we first determine T_{el} from the data for $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$, and then calculate $\Omega(b)$ using Eq. (20.13), assuming in accordance with data that ρ is small (or $\rho(t)=$ constant).

At high energies $\rho^{2} \ll 1$, which is usually well justified except in the diffractive dip region (see Section 20.3.3.1 for discussion of the dip region).

The value of ρ can be derived via the dispersion relation, see [3]:
$\frac{1}{s} \operatorname{Re} T_{\mathrm{el}}(s)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-s} \sigma_{\mathrm{tot}}\left(\left|s^{\prime}\right|\right)=\frac{1}{\pi} \int_{0}^{\infty} \sigma_{\mathrm{tot}}\left(s^{\prime}\right) \frac{2 s \mathrm{~d} s^{\prime}}{s^{\prime 2}-s^{2}}$
Since we consider just the charge-parity C-even amplitude, here for negative s^{\prime} we put $\sigma_{p \bar{p}}=\sigma_{p p}$. That is, for negative s^{\prime}, which corresponds to the interaction with an antiparticle, we use the same $\sigma_{p p}\left(\left|s^{\prime}\right|\right)$. The major contribution comes from $s^{\prime} \simeq s$. Thus, with a good accuracy we can evaluate $\rho(t=0)$ as

$$
\begin{equation*}
\rho \simeq \frac{\pi}{2} \frac{\partial \ln \sigma_{\mathrm{tot}}(s)}{\partial \ln s} \tag{20.19}
\end{equation*}
$$

20.3.2 Diffractive dissociation

The elastic cross section probes the optical density of the proton. The well known example of scattering on a black disk, with $G_{\text {inel }}=1$ for $b<R$, gives $\sigma_{\text {el }}=\sigma_{\text {inel }}=\pi R^{2}$ and $\sigma_{\text {tot }}=2 \pi R^{2}$. In general, the absorption of the initial wave (due to inelastic channels) leads, via s-channel unitarity, to elastic scattering.

Inelastic diffraction (i.e. proton dissociation) is a consequence of the internal structure of hadrons. This can be conveniently described at high energies, where the lifetimes of each particular Fock component of the incoming hadron/proton wave function (the hadronic fluctuations) are large, $\tau \sim E / m^{2}$, and during these time intervals the corresponding Fock states can be considered as 'frozen'. Each hadronic constituent can undergo a scattering with its own probability and thus destroys coherence of the fluctuations ${ }^{4}$. As a result, the outgoing superposition of states will be different from the incident particle, and will most likely contain multiparticle states, so we will have inelastic, as well as elastic scattering.

To calculate diffractive dissociation we can enlarge the set of intermediate states $\left(p, N_{a}^{*}\right)$, from just the single elastic channel, and introduce a multichannel eikonal. However, it is more convenient

[^39]to follow Good and Walker [45], and to introduce states ϕ_{k} diagonalising the T matrix (which e.g. in the proton case describes different $p \rightarrow N^{*}, N_{a}^{*} \rightarrow N_{b}^{*}$ transitions). Such eigenstates only undergo elastic scattering. Since there are no off-diagonal transitions,
\[

$$
\begin{equation*}
\left\langle\phi_{i}\right| T\left|\phi_{k}\right\rangle=0 \quad \text { for } i \neq k \tag{20.20}
\end{equation*}
$$

\]

a state k cannot diffractively dissociate into a state $j \neq k$. Working in terms of the Good-Walker eigenstates ϕ_{i}, we have a simple one-channel eikonal for each state. We denote the orthogonal matrix which diagonalizes T by a, so that

$$
\begin{equation*}
T=a F a^{T} \quad \text { with } \quad\left\langle\phi_{i}\right| F\left|\phi_{k}\right\rangle=F_{k} \delta_{i k} \tag{20.21}
\end{equation*}
$$

where F_{k} is the probability amplitude of the hadronic process proceeding via the diffractive eigenstate ϕ_{k}.

Now consider the diffractive dissociation of an incoming state $|h\rangle$. We can write

$$
\begin{equation*}
|h\rangle=\sum_{k} a_{h k}\left|\phi_{k}\right\rangle \tag{20.22}
\end{equation*}
$$

The elastic scattering amplitude satisfies

$$
\begin{equation*}
\langle h| T|h\rangle=\sum_{k}\left|a_{h k}\right|^{2} F_{k}=\langle F\rangle \tag{20.23}
\end{equation*}
$$

where $F_{k} \equiv\left\langle\phi_{k}\right| F\left|\phi_{k}\right\rangle$ and where the brackets of $\langle F\rangle$ mean that we take the average of F over the initial probability distribution of diffractive eigenstates. After the diffractive scattering described by $T_{f h}$, the final state $|f\rangle$ will, in general, be a different superposition of eigenstates from that of $|h\rangle$, which was shown in Eq. (20.22). Neglecting the real parts, for the cross sections at a given impact parameter b, we have

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{\mathrm{tot}}}{\mathrm{~d}^{2} b} & =2 \operatorname{Im}\langle h| T|h\rangle=2 \sum_{k}\left|a_{h k}\right|^{2} \operatorname{Im} F_{k}=2\langle\operatorname{Im} F\rangle \\
\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{~d}^{2} b} & =|\langle h| T| h\rangle\left.\right|^{2}=\left.\left.\left|\sum_{k}\right| a_{h k}\right|^{2} F_{k}\right|^{2}=\langle | F| \rangle^{2} \\
\frac{\mathrm{~d} \sigma_{\mathrm{el}}+\mathrm{SD}}{\mathrm{~d}^{2} b} & \left.=\sum_{k}\left|\left\langle\phi_{k}\right| T\right| h\right\rangle\left.\right|^{2}=\sum_{k}\left|a_{h k}\right|^{2}\left|F_{k}^{2}\right|=\langle | F^{2}| \rangle \tag{20.24}
\end{align*}
$$

It follows that the cross section for the single diffractive dissociation of a proton,

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{SD}}}{\mathrm{~d}^{2} b}=\langle | F^{2}| \rangle-\langle | F| \rangle^{2} \tag{20.25}
\end{equation*}
$$

is given by the statistical dispersion in the absorption probabilities of the diffractive eigenstates. Here the average is taken over the components k of the incoming proton which dissociates. If the averages are taken over the components of both of the incoming particles, then Eq. (20.25) is the sum of the cross sections for single and double dissociation, see Fig. 20.3.

Note that if all the components ϕ_{k} of the incoming proton $|h\rangle$ were absorbed equally, then the diffracted superposition would be proportional to the incident one and the probability of the inelastic diffraction would be zero. Thus if, at very high energies, the amplitudes F_{k} at small impact parameters are equal to the black disk limit, $F_{k}=i$, then diffractive production will be equal to zero in this impact parameter domain, and so will only occur in the peripheral b region where the edge of the disk becomes not completely black. Hence the impact parameter structure of diffractive dissociation and elastic scattering is drastically different in the presence of absorptive s-channel unitarity effects (see the $G_{\text {inel }}$ term in Eq. (20.9)). Under the assumption that amplitudes F_{k} at high energies cannot exceed the black disk limit, $\operatorname{Im} F_{k} \leq 1$, equations 20.24 lead to the following bound

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{el}}+\mathrm{SD}_{1}+\mathrm{SD}_{2}+\mathrm{DD}}{\mathrm{~d}^{2} b} \leq \frac{1}{2} \frac{\mathrm{~d} \sigma_{\mathrm{tot}}}{\mathrm{~d}^{2} b} \tag{20.26}
\end{equation*}
$$

known as the Pumplin bound [46] ${ }^{5}$.

20.3.3 Diffraction from the t-channel viewpoint

The t-channel approach is based on the Regge model (see Section 20.2), where high-energy diffractive processes are mediated by the exchange of a Pomeron (\mathbb{P}). In the case of the elastic ppscattering amplitude in the eikonal model (see Eq. (20.13)), the opacity corresponding to the exchange of one Pomeron is

$$
\begin{equation*}
\Omega(s, b)=\int \frac{\mathrm{d}^{2} q_{t}}{4 \pi^{2}} \Omega\left(s, q_{t}\right) e^{i \vec{q}_{t} \cdot \vec{b}} \tag{20.27}
\end{equation*}
$$

with

$$
\begin{equation*}
\Omega\left(s, q_{t}\right)=\frac{1}{s} T_{\mathrm{el}}^{\prime}=-i \eta_{P}(t) g_{N}(t) g_{N}(t)\left(\frac{s}{s_{0}}\right)^{\alpha_{\mathbb{P}}(t)-1} \tag{20.28}
\end{equation*}
$$

where T_{el}^{\prime} is the two-particle s-channel irreducible elastic amplitude, cf. Eq. (20.5), and $g_{N}(t)$ is the proton-Pomeron coupling.

If we assume an exponential t-dependence of the coupling, $g_{N}(t)=g_{N}(0) \exp \left(B_{0} t\right)$, and neglect the Pomeron phase, then the opacity is

$$
\begin{equation*}
\Omega\left(s, q_{t}\right)=g_{N}(0) g_{N}(0)\left(\frac{s}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-1} e^{B t} \tag{20.29}
\end{equation*}
$$

with the t-slope given by

$$
\begin{equation*}
B=2 B_{0}+\alpha_{\mathbb{P}}^{\prime} \ln \left(\frac{s}{s_{0}}\right) \tag{20.30}
\end{equation*}
$$

At high energies the opacity has a Gaussian form in the b-space:

$$
\begin{equation*}
\Omega(s, b)=\frac{g_{N}^{2}(0)}{4 \pi B}\left(\frac{s}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-1} e^{-b^{2} / 4 B} \tag{20.31}
\end{equation*}
$$

In terms of opacity the effective radius of interaction increases at high energies as $\sqrt{\alpha_{\mathbb{P}}^{\prime} \ln \left(s / s_{0}\right)}$. This means that with energy increasing the differential cross section becomes steeper (the so called shrinkage of the diffractive peak).

If we were to take for the Pomeron the DL parametrisation $[25,26]$, that is to keep just the first, $T(b)=\Omega(b) / 2$, term in the elastic amplitude (Eq. (20.13)) then, at LHC energies, the Gaussian would exceed the black disk limit at small b. However, the eikonal unitarization reduces the power growth of the onePomeron exchange cross section. Thus, in Eq. (20.31) $\Omega(s, b) \propto$ $\left(s / s_{0}\right)^{\alpha_{\mathbb{P}}-1}$ gives an amplitude $\operatorname{Im} T_{\mathrm{el}}(s, b)=1-e^{-\Omega / 2}<1$. Hence the total cross section is limited by the size of the effective interaction area $\sigma_{\text {tot }}<2 \pi R^{2}$, where the interaction radius R can be estimated from Eq. (20.31) as the value of b where $\operatorname{Re} \Omega(b)$ becomes ~ 1.

For the parameterization of Eq. (20.31) the corresponding radius grows at very large energies as

$$
\begin{equation*}
b^{2}=R^{2}=4 B \ln \left[\frac{g_{N}^{2}(0)}{4 \pi B}\left(\frac{s}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-1}\right] \simeq 4 \Delta \alpha_{\mathbb{P}}^{\prime} \ln ^{2}\left(s / s_{0}\right) \tag{20.32}
\end{equation*}
$$

That is for $\Delta=0.1$ and $\alpha_{\mathbb{P}}^{\prime}=0.25 \mathrm{GeV}^{-2}$ we may expect that the cross section increases as

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=2 \pi R^{2} \simeq c \cdot \ln ^{2} s \tag{20.33}
\end{equation*}
$$

with $c=8 \pi \Delta \alpha_{\mathbb{P}}^{\prime}=0.24 \mathrm{mb}$. This value is close to that obtained by the COMPETE parameterization $(c=0.27 \mathrm{mb}[22,24])$ but much smaller than the Froissart-Lukaszuk-Martin (FLM) bound [47-49]. With $c^{\mathrm{FLM}}=\pi / m_{\pi}^{2} \simeq 60 \mathrm{mb}$, see Section 20.7,

$$
\begin{equation*}
\sigma_{\mathrm{tot}} \leq \frac{\pi}{m_{\pi}^{2}} \ln ^{2}\left(\frac{s}{s_{0}}\right) \tag{20.34}
\end{equation*}
$$

[^40]The fact that $c=(0.24-0.27) \mathrm{mb} \ll c^{\mathrm{FLM}}=60 \mathrm{mb}$ demonstrates that even at the LHC we are very far from true high-energy asymptotics ${ }^{6}$, and the observed growth of the cross section is driven by the interactions at relatively large transverse momenta $k_{t} \gg m_{\pi}$ rather than the smallest hadron mass m_{π} in the denominator of Eq. (20.34).
20.3.3.1 The t-slope and dip in the elastic cross section

We first start with a relatively small one-Pomeron amplitude and consider the two-Pomeron contribution corresponding to the Ω^{2} term in the expansion of the eikonal $1-\exp (-\Omega / 2)$. In this term the momentum transferred, $q_{t}=\sqrt{|t|}$, is divided between the two Pomerons so that each Pomeron carries about a momentum $q_{t} / 2$. Correspondingly, the t dependence of the whole 'twoPomeron' amplitude will be $\exp (2 B(t / 4))=\exp (B t / 2)^{7}$.

Since the two-Pomeron contribution has an opposite sign in comparison with the one-Pomeron exchange, their interference will result in the appearance of the first diffractive minimum which moves to smaller $|t|$ with energy increasing. Such interference effects are largely responsible for the zero in the imaginary part of the amplitude (with the minimum filled by the real part).

It is worth mentioning that the one-channel eikonal discussed so far is a rather oversimplified approximation. It provides some indications about the behaviour we may expect for the elastic cross section, but clearly it does not give the whole story. Moreover, even within the framework of the one-channel eikonal, the expectation for the elastic slope t-dependence could be masked by other effects. Firstly, there is no reason why the t-dependence of the proton-Pomeron coupling $g_{N}(t)$ has to be a pure exponent. Next, there exists a two-pion singularity at $t=4 m_{\pi}^{2}$ (close to the physical region) in the Pomeron trajectory which generates some curvature in the behaviour of $\mathrm{d} \sigma_{\text {el }} / \mathrm{d} t$ [50-52]. So there may be some compensation between the effects caused by the eikonal (arising from the interference between the different multiPomeron contributions), and the curvatures coming from the form of the proton-Pomeron coupling and the two-pion singularity of the Pomeron trajectory. However, an exact compensation looks quite non-trivial and a pure exponential behaviour of $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ looks highly unlikely.

Indeed, the measurements by the TOTEM collaboration at 8 TeV [53] and at 13 TeV [54] clearly demonstrate that the local slope of the elastic $p p$ cross section,

$$
\begin{equation*}
B=\mathrm{d}\left[\ln \left(\mathrm{~d} \sigma_{\mathrm{el}} / \mathrm{d} t\right)\right] / \mathrm{d} t \tag{20.35}
\end{equation*}
$$

at $-t \lesssim 0.3 \mathrm{GeV}^{2}$ varies with t.

20.3.3.2 High mass dissociation

Let us turn to inelastic diffractive processes that is, to single and double proton dissociations, $p p \rightarrow X+p$ and $p p \rightarrow X_{1}+X_{2}$, where the + sign denotes the presence of a LRG in the distribution of final state particles. For example, for the diffractive dissociation of a proton into a system of mass M, the rapidity gap between the incoming proton and the remaining hadrons is

$$
\begin{equation*}
\Delta y=\ln \left(\frac{s}{M^{2}}\right)=\ln \left(\frac{1}{\xi}\right) \tag{20.36}
\end{equation*}
$$

where $\xi=1-x$ and x is the initial momentum fraction (Feynman variable) carried by the outgoing proton. The masses, M, of the diffractively excited states, produced in high \sqrt{s} collisions, can be large. To separate dissociation from the common inelastic process, usually the condition $M^{2} \ll s$ is imposed.

The simplest multi-Pomeron diagram used to describe the diffractive dissociation is the so-called triple-Pomeron graph, shown at the end of Fig. 20.2.

In the Regge pole model, the cross section for the inclusive single diffractive (SD) dissociation process [55-57] can be written

[^41]in the form (see Fig. 20.2)
\[

$$
\begin{align*}
\frac{\xi \mathrm{d} \sigma_{\mathrm{SD}}}{\mathrm{~d} t \mathrm{~d} \xi} & =\frac{M^{2} \mathrm{~d} \sigma_{\mathrm{SD}}}{\mathrm{~d} t \mathrm{~d} M^{2}} \\
& =\frac{g_{3 \mathbb{P}}(t) g_{N}(0) g_{N}^{2}(t)}{16 \pi^{2}}\left(\frac{s}{M^{2}}\right)^{2 \alpha_{\mathbb{P}}(t)-2}\left(\frac{M^{2}}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-1} \tag{20.37}
\end{align*}
$$
\]

where $g_{3 \mathbb{P}}(t)$ is the triple-Pomeron coupling. The value of the coupling $g_{3 \mathbb{P}}$ is usually obtained from a triple-Regge analysis of lower energy data (see e.g. [34]) .

In an analogous way the cross section for double dissociation reads

$$
\begin{align*}
& \frac{\xi_{1} \xi_{2} \mathrm{~d} \sigma_{\mathrm{DD}}}{\mathrm{~d} t \mathrm{~d} \xi_{1} \xi_{2}}=\frac{M_{1}^{2} M_{2}^{2} \mathrm{~d} \sigma_{\mathrm{DD}}}{\mathrm{~d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}} \\
& \quad=\frac{g_{3 \mathbb{P}}^{2}(t) g_{N}^{2}(0)}{16 \pi^{3}}\left(\frac{s s_{0}}{M_{1}^{2} M_{2}^{2}}\right)^{2 \alpha_{\mathbb{P}}(t)-2}\left(\frac{M_{1}^{2} M_{2}^{2}}{s_{0}^{2}}\right)^{\alpha_{\mathbb{P}}(0)-1} \tag{20.38}
\end{align*}
$$

where t is the momentum squared transferred through the LRG. As discussed in Section 20.5, from a microscopic point of view the

Figure 20.4: Pomeron exchange with schematic diagrams for the enhanced and semi-enhanced exchanges.

Pomeron exchange is described by a set of ladder-type diagrams (see [58-60]), which can lead to a rescattering of the intermediate partons (produced inside this ladder during the evolution), see Fig. 20.4. The left plot shows the Pomeron exchange complemented with the rescattering of partons 1 and 2 and the scattering of a parton 3 on the target. In terms of multi-Pomeron exchanges this corresponds to the diagram on the right hand side, where the Pomeron exchange is shown by the double line of a corresponding colour. The blue one is called "enhanced" (its contribution is integrated over the rapidities of both upper and lower vertices, i.e. of partons 1 and 2). The loop formed by the Pomerons shown in red is called "semi-enhanced" (it is integrated over the rapidity of one intermediate parton).

While the rescattering of the incoming hadron (proton) is already embedded in the eikonal formula (Eq. (20.13)), the rescattering of the intermediate partons in RFT is accounted for by the so-called enhanced diagrams ${ }^{8}$ with multi-Pomeron vertices, g_{m}^{n}, which couple m to n Pomerons. It is quite a challenging task to resum all the enhanced diagrams, however this was successfully performed within the framework of the QGSJET Monte Carlo [61]. An elegant approach to sum up all enhanced diagrams in the case when each extra effective Pomeron contribution is very large was proposed in [62], assuming the analyticity of the g_{m}^{n} vertices in n and m in the right half of the complex n - and m-planes. The resulting amplitude becomes a black disk.

The simplest triple-Pomeron vertex $g_{2}^{1}=g_{3 \mathbb{P}}$ produces the first multi-Pomeron graph considered above (see the end of Fig. 20.2). However, numerically the multi-Pomeron vertices are relatively small. Note also that the value of $g_{3 \mathbb{P}}$, determined from the fit to

[^42]experimental data (e.g. [63]), is actually an effective vertex with coupling
\[

$$
\begin{equation*}
g_{\mathrm{eff}}=g_{3 \mathbb{P}}\left\langle S^{2}\right\rangle \tag{20.39}
\end{equation*}
$$

\]

which already includes the survival factor $S^{2}(b)$, see Eq. (20.15).
Since the opacity Ω increases with energy, at large Ω the number of multiple interactions grows as $N \propto \Omega$, leading to a smaller S^{2}. An explicit analysis [64] accounting for the survival effects gives a coupling $g_{3 \mathbb{P}}$ about a factor of 3 larger than $g_{\text {eff }}$, namely $g_{3 \mathbb{P}} \simeq 0.2 g_{N}$.

Recall that the Pomeron exchange simultaneously describes both the elastic scattering amplitude, $T_{\text {el }}$, and the multiparticle production cross section, $G_{\text {inel }}$. The discontinuity (disc $T_{\text {el }}$) of the ladder diagram corresponds to the production of secondary particles, practically homogeneously distributed over the whole available rapidity interval covered by the Pomeron, as illustrated by the right-hand diagram in Fig. 20.5.

Figure 20.5: Cut Pomeron contribution to the inelastic cross section.

For the one-Pomeron case this discontinuity is called the "cut Pomeron". Correspondingly each multi-Pomeron diagram describes a series of different processes. Cutting k Pomerons in the diagram with n Pomerons we get the inelastic interaction with the multiplicity (density of secondaries) k times larger than that, N_{0}, produced by one cut Pomeron, $\mathrm{d} N / \mathrm{d} y=k \cdot N_{0}$. The remaining $n-k$ (elastic) Pomerons account for the absorptive corrections to the subprocess with k cut Pomerons. Indeed, the contribution of the diagram with n Pomerons includes also the processes with larger, $(k+i) \cdot N_{0}$ multiplicities (cut Pomerons), where $(i=1,2, \ldots, n-k)$. Absorptive corrections, described by the remaining elastic Pomerons, play a role of the survival factor S^{2} for the process with the fixed particle density $k \cdot N_{0}$. They ensure probability conservation (the sum of the probabilities of all possible different channels is equal to one) and restore unitarity. Note that the multi-Pomeron diagrams represent all possible interactions between partons from the protons and partons from the Pomerons. In the case of Monte Carlo generators, the nonenhanced multi-Pomeron contributions are included in terms of the multiple parton interaction (MPI) option, see [13,65] and Section 7.2 in [2]. However, as a rule, this option accounts mainly for the multiple interactions between the partons from the protons (incoming hadrons). The energy-momentum sharing between the various inelastic rescattering processes (including the cut and uncut Pomerons) was performed at the amplitude level within the EPOS Monte Carlo [66].

20.3.3.3 AGK cutting rules

The relation between the cross sections of subprocesses with a different number of cut Pomerons within a given diagram with n Pomerons) is given by the AGK (Abramovsky-GribovKancheli [67]) cutting rules. These rules include also the cut between the Pomerons with $k=0$ which corresponds to the contribution of the particular diagram to the elastic cross section. By applying these rules, it is possible to show the self-consistency of the approach, which was lacking in the pure Regge-pole model.
Consider a diagram where the elastic scattering amplitude is mediated by an exchange of n Pomerons. The AGK cutting rules specify the coefficients c_{n}^{k} arising when k of these Pomerons are cut. Recall that the Pomeron cut discontinuities give the
corresponding inelastic contributions to $\sigma_{\text {tot }}$. The terms with $k=0$ correspond to the diffractive cutting of the diagram (that is, the cut is between the Pomeron exchanges, and not through the Pomerons themselves), while the terms with $k=1,2, \ldots$ describe the processes with k cut Pomerons. The coefficients $c_{n}^{k}=\sigma_{n}^{k} /\left|\sigma_{\text {tot }}^{(n)}\right|$ are 9

$$
c_{n}^{k=0}=(-1)^{n}\left(2^{n-1}-1\right), \quad c_{n}^{k \neq 0}=(-2)^{n-1} \frac{(-1)^{k-1} n!}{k!(n-k)!}
$$

(20.40)
where $\sigma_{\text {tot }}^{(n)}$ denotes the contribution of the n-Pomeron diagram to the total cross section. Note the alternating sign of $\sigma_{\text {tot }}^{(n)}$ expressed as $(-1)^{n-1}$.

Figure 20.6: Two-Pomeron exchange diagram as a sum of different AGK cuts shown by the dashed lines.

For the two-Pomeron exchange, $n=2$, the coefficients are +1 , -4 , or +2 according to whether $k=0,1$ or 2 Pomerons are cut, respectively. As shown in Fig. 20.6, the amplitude of the twoPomeron exchange corresponds to a sum of three processes: i) inelastic interaction with particle density twice that caused by one Pomeron (see Fig. 20.6(c)) which enters with the coefficient ' 2 ', ii) shadowing (absorptive) correction to the one-Pomeron exchange contribution, which corresponds to events with a single Pomeron density (only one Pomeron is cut), see Fig. 20.6 (b), which enters with a factor ' -4 ', and iii) diffractive elastic scattering or proton dissociation (when different components of the proton wave function correspond to different interaction cross sections), caused by the distortion of the incoming plane wave, see Fig. 20.6(a).

Note that the inclusive cross section is not affected by the multiPomeron contribution: $2 \times(2)+1 \times(-4)=0$. This is a general property of the AGK rules valid for any number of Pomerons n. Thus in order to calculate the inclusive single-particle cross section, it is sufficient to consider just the one-Pomeron exchange diagram.

Let us emphasize that the AGK rules provide a framework to consistently work with multi-Pomeron diagrams, that is, with the Regge cuts, accounting for their contributions to different processes (elastic scattering and diffractive dissociation, inelastic events with different densities, $\mathrm{d} N / \mathrm{d} y$, of secondaries, etc.).

Measurements of diffractive dissociation cross sections have been made in a wide range of pre-LHC energies, see e.g. [68-73]. At the LHC, cross sections of events with a LRG were measured by the ATLAS, CMS and ALICE collaborations at 7 and 8 TeV ,

[^43]see [74-77]. ATLAS [78] and CMS and TOTEM [79] presented first measurements of SD cross sections at 8 TeV with a tagged forward proton. While ATLAS measured inclusive SD cross section, CMS and TOTEM studied SD dijet production. Note that in [78] the measured slope $B=7.65 \pm 0.34 \mathrm{GeV}^{-2}$ of the inclusive SD cross section as well as the differential distributions $\frac{\xi \mathrm{d} \sigma_{\mathrm{SD}}}{\mathrm{d} t \mathrm{~d} \xi}$ for $0.0001 \leq \xi \leq 0.025$ are (within the experimental uncertainties) in a good agreement with the theoretical expectations [29,80]. Moreover a relatively small (in comparison with the $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$) slope B indicates that the size of the triple-Pomeron vertex is much smaller than the proton size.

20.3.4 Central Diffractive processes

Processes $p p \rightarrow p+X+p$, where an object X, produced in the central rapidity region, is separated from the outgoing protons by a LRG on each side, are called Central Exclusive Production (CEP). They are described by the double Pomeron exchange (DPE) diagrams. When the mass of the central system, M_{X}, is large and the interaction in the M_{X} region can be described by Pomeron exchange, the corresponding cross section reads

$$
\begin{align*}
\frac{\xi_{1} \xi_{2} \mathrm{~d} \sigma^{\mathrm{CEP}}}{\mathrm{~d} \xi_{1} \mathrm{~d} t_{1} \mathrm{~d} \xi_{2} \mathrm{~d} t_{2}}= & \frac{g_{N}^{2}\left(t_{1}\right) g_{N}^{2}\left(t_{2}\right)}{\left(16 \pi^{2}\right)^{2}}\left(\frac{1}{\xi_{1}}\right)^{2 \alpha_{\mathbb{P}}\left(t_{1}\right)-2}\left(\frac{1}{\xi_{2}}\right)^{2 \alpha_{\mathbb{P}}\left(t_{2}\right)-2} \\
& \times g_{3 \mathbb{P}}^{2}(0)\left(\frac{M_{X}^{2}}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-1} . \tag{20.41}
\end{align*}
$$

If the mass M_{X} is not too large or for the cases (such as exclusive Higgs boson or dijet production) where the mass M_{X} is comparable with the corresponding hard scale, the last factor $g_{3 \mathbb{P}}^{2}(0)\left(M_{X}^{2} / s_{0}\right)^{\alpha_{\mathbb{P}}(0)-1}$ should be replaced by the corresponding 'Pomeron-Pomeron cross section', see for instance [81,82].

Note that equations (20.37), (20.38) and (20.41) are written in a simplified way without accounting for absorptive corrections. That is, the cross sections in equations (20.37) (20.38) and (20.41) should be multiplied by the gap survival factor S^{2} (see Eq. (20.15)).

Since the QCD Pomeron is built mainly from gluons it is natural to search for glueballs in double Pomeron exchange processes, and in particular, in CEP.

Resonance production in the Pomeron-Pomeron fusion was extensively studied at the CERN ISR at \sqrt{s} from 22 GeV to 63 GeV (see for reviews [82-84]) and, after the ISR closure in 1983, in fixed target experiments at the CERN SPS [85] and E690 at the Tevatron [86, 87]. Glueballs were actively searched for and the properties of the f_{0} and f_{2} production studied in detail using multiparticle spectrometers, such as the Omega facility at the CERN SPS experiments (WA76, WA91 and WA102), see for a review [85].

An important property of CEP processes, which can be expected from matching with the perturbative QCD LO (leading order) calculation, is the $J_{z}=0$ dominance. Perturbatively, for the CEP of a heavy object, the leading contribution comes from a configuration with the projection of this object spin onto the beam axis $J_{z}=0$ [81]. Note that the CEP cross section is suppressed at large M_{X} by a strong bremsstrahlung off the incoming gluons (from the Pomeron) which would violate the 'exclusivity'. The small probability of not having such radiation is described by the Sudakov suppression factor, $T_{\text {Sud }},[88]$, see [81] for details.

20.3.5 Diffractive parton distributions

Selecting in Deep Inelastic Scattering (DIS) events with a LRG (see e.g. $[89,90]$) or detecting the leading proton (see Section V.C. in the review [91]) we can study the parton (quark and gluon) distributions of the Pomeron ${ }^{10}$. In other words, such events can be treated as DIS on the Pomeron target with the incoming Pomeron flux given by

$$
\begin{equation*}
f_{\mathbb{P}}\left(x_{\mathbb{P}}\right)=\int \mathrm{d} t \frac{g_{N}^{2}(t)}{16 \pi^{2}} x_{\mathbb{P}}^{2\left(1-\alpha_{\mathbb{P}}(t)\right)}, \tag{20.42}
\end{equation*}
$$

[^44]where the proton momentum fraction transferred through the Pomeron $x_{\mathbb{P}}=\xi=M^{2} / \mathrm{s}$.
These Pomeron PDFs were extracted from the HERA measurements of $e p$ scattering with leading protons or a LRG and can be used to describe the inclusive production of high E_{T} dijets or another hard process based on the collinear factorization theorem in the same way as that in non-diffractive collisions (see [91]). The inclusive measurements of these PDFs are described in [92-94], with the combined H1 and ZEUS data using tagged protons analyzed in [95]. The impact of diffractive jet measurements is addressed e.g. in [96] and the measured charm contribution is presented in [97, 98]. As far as the parton distributions are known, we can calculate the corresponding inelastic cross section of the Pomeron-proton interaction using one of the 'general purpose' Monte Carlo generators (see e.g. [13]), multiply it by the Pomeron flux and compare the obtained result with the Regge formula in Eq. (20.37). This approach provides another way to evaluate the triple-Pomeron vertex $g_{3 \text { P }}$. The corresponding analysis was performed in [99] and leads to practically the same (within the error bars) value of $g_{3 \mathbb{P}}=0.2 g_{N}(0)$.
It is worth mentioning that in DIS at large Q^{2} we are dealing with small-size objects and the rescattering effects are small. Therefore, the survival factor $S^{2} \simeq 1$ and does not affect the results.

20.4 Experimental data on diffraction at high energies

20.4.1 Total and elastic cross sections

The elastic scattering of protons is a process with a special and rather simple experimental signature: the central detector is empty while the incoming protons after the collisions are detected in the dedicated forward proton detectors (FPD) placed far from the interaction point (IP). Elastic scattering data are taken in special runs in order to be able to reach different ranges of t-values and thanks to the very large value of the cross section the data can be collected with a relatively low instantaneous luminosity and hence a negligible pile-up. ${ }^{11}$
These special runs usually have very few proton bunches and differ in the t range covered, which is governed roughly by the relation $t_{\min } \propto d^{2} / \beta^{*}$. Here d is the distance, expressed in multiples of the beam size at the detector, from the centre of the LHC beam and β^{*} is defined as the distance from the IP to the point where the transverse area of the beam is twice as wide as that at the IP (see Section 31 in [1]). Note that if we work at large β^{*}, the incoming protons have very small angular divergence leading to small average transverse momentum, which allows us to measure very small $|t|$ values. The lowest $|t|$ values measured so far at the LHC are $4 \times 10^{-4} \mathrm{GeV}^{2}$ (ALFA) and $6 \times 10^{-4} \mathrm{GeV}^{2}$ (TOTEM) reached with the 8 TeV LHC beam configured with $\beta^{*}=1 \mathrm{~km}$ optics. The largest t values of about $4 \mathrm{GeV}^{2}$ were measured by TOTEM at 8 and 13 TeV with $\beta^{*}=90 \mathrm{~m}$ thanks to special triggers. Other β^{*} values used in special runs are $3.5 \mathrm{~m}, 11 \mathrm{~m}$ and 2.5 km .

There are four ways to determine the $\sigma_{\text {tot }}$ value:

1. Elastic and Inelastic. This method does not require the optical theorem and hence no extrapolation of $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ to $t=0$ and no ρ (defined below Eq. (20.17)) but rather the luminosity and measuring rates $N_{\text {el }}$ (elastic) and $N_{\text {inel }}$ (inelastic). The total cross section is then simply:

$$
\begin{equation*}
\sigma_{\text {tot }}=\frac{1}{\mathcal{L}}\left(N_{\mathrm{el}}+N_{\mathrm{inel}}\right) \tag{20.43}
\end{equation*}
$$

Of course, both N_{el} and $N_{\text {inel }}$ should be corrected for the detector acceptance and efficiency. This is especially important for $N_{\text {inel }}$ since the detectors never cover the whole rapidity region (i.e. the whole 4π).
2. Elastic only. This approach necessitates measuring $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ and using the optical theorem with a known value of ρ. As explained in Section 20.2, the optical theorem states that

[^45]

Figure 20.7: Overview of elastic (σ_{el}), inelastic (σ_{inel}) and total (σ_{tot}) cross section data for $p p$ and $p \bar{p}$ collisions as a function of \sqrt{s}. The continuous black lines (lower for $p p$, upper for $p \bar{p}$) represent the best fits of the total cross section data by the COMPETE collaboration [22]. The dashed line is a fit of the elastic cross section data. The dashed-dotted lines refer to the inelastic cross section and are obtained from the difference between the continuous and dashed lines. Figure from Ref. [100].
$\sigma_{\text {tot }} \propto \operatorname{Im}\left[T_{\text {el }}(t \rightarrow 0)\right]$, see Eq. (20.3). Since in practice it is not possible to measure down to $t=0$, we need to extrapolate. To minimize the model dependence when extrapolating, it is vital to measure down to as low $|t|$ values as possible (i.e. high $\left.\beta^{*}\right)$. This method requires an independent luminosity measurement. Once the luminosity is known, $\mathrm{d} \sigma_{\text {el }} / \mathrm{d} t$ can be normalized and used to extract $\sigma_{\text {tot }}$ using the formula:

$$
\begin{equation*}
\sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t \rightarrow 0} \tag{20.44}
\end{equation*}
$$

3. Coulomb normalization. Similarly to the previous method, this approach relies on the elastic observables only and requires a measurement of the elastic cross section at very low values of $|t|$, where it is sensitive to the theoretically well known Coulomb QED contribution $4 \pi \alpha_{\mathrm{QED}}^{2} / t^{2}$. The normalization of $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ is then determined by fitting the experimental data at very low $|t|$ using a formula including the Coulomb amplitude and its interference with the strongly interacting (the so-called nuclear) term. This method has been successfully used by UA4/2 [101] and TOTEM [102].
4. Luminosity-independent. This method does not rely on the knowledge of luminosity but rather on the knowledge of $N_{\text {el }}$ and $N_{\text {inel }}$ and on the optical theorem:
combining equations (20.43) and (20.44) with $\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{d} t}=\frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{d} t}$ we get

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\frac{16 \pi}{1+\rho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{t=0}}{N_{\mathrm{el}}+N_{\mathrm{inel}}} \tag{20.45}
\end{equation*}
$$

where $\mathrm{d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{t=0}$ corresponds to the extrapolation to $t=0$ of the nuclear term only. By independently and simultaneously measuring N_{el} and $N_{\text {inel }}$, and applying the optical theorem, we can also determine the luminosity.
The TOTEM [100, 103-105] and ATLAS [106, 107] collaborations at CERN have covered an energy range from $\sqrt{s}=2.76 \mathrm{TeV}$ to 13 TeV . A compilation of high energy total $p p$ and $p \bar{p}$ cross section measurements is shown in Fig. 20.7 (for discussion of the pre-LHC elastic scattering data see review [108]).

Despite some tension between the Tevatron CDF [109] and E811 [110] data ${ }^{12}$ and to a lesser extent between the TOTEM $[104,105]$ and ATLAS $[106,107]$ measurements, the data clearly indicate that in the Tevatron - LHC energy interval the total cross section starts to grow faster than the power-law parametrization [26] describing the data below the Tevatron energy. In particular, while the DL fit [26] predicts $\sigma_{\text {tot }}=90.7 \mathrm{mb}$ at $\sqrt{s}=7 \mathrm{TeV}$, the TOTEM experiment observes $98.6 \pm 2.2 \mathrm{mb}[104]$.

A compilation of the high-energy data on the elastic slope is shown in Fig. 20.8. It is clearly seen that in the TeV energy range the slope increases with \sqrt{s} more rapidly than the logarithmic behaviour expected in the case of one-Pomeron exchange, see Eq. (20.30). Such an acceleration of the t-slope derivative, $\mathrm{d} B / \mathrm{d} \ln s$, is a clear manifestation of the increasing role of the multi-Pomeron exchanges, where asymptotically the slope should rise as $\ln ^{2} s$, see [117]. Finally, Fig. 20.9 illustrates the energy dependence of the differential elastic $p p$ cross section. As expected (see Section 20.3.3.1), the diffractive dip moves to smaller $|t|$ with increasing energy.

20.4.2 Diffractive vector meson production

The exclusive production of vector mesons was studied in detail at HERA (see for a review [91]). It is well described within the 'dipole model' (see for review and references [120]), where the incoming photon first fluctuates into a quark-antiquark, which then interacts with the target proton and, finally, with the probability given by the overlap integral between the vector meson wave function and the outgoing $q \bar{q}$-pair, the vector meson is produced. The crucial quantity is the value of cross section, $\sigma(q \bar{q}-p)$, of elastic scattering of the $q \bar{q}$-pair on the proton. The energy behaviour of $\sigma(q \bar{q}-p)$ is driven by the intercept, $\alpha_{\text {eff }}(0)$, of the effective Pomeron ${ }^{13}$ (rightmost singularity in the j-plane), while

[^46]

Figure 20.8: The diffractive slope B for $p p$ and $p \bar{p}$ elastic scattering as a function of \sqrt{s}. The experimental uncertainties represent the quadratic sum of statistical and systematic uncertainties. The dashed line is a result of a linear fit to data at $\sqrt{s}<3 \mathrm{TeV}$. The data points come from [103-107, 111-113]. Figure from Ref. [100].

Figure 20.9: The t-dependence of the $p p$ elastic cross section for collision energies $\sqrt{s}=2.76 \mathrm{TeV}[103], 7 \mathrm{TeV}[104,114], 8 \mathrm{TeV}$ [53,115,116] and 13 TeV [54,102]. The experimental uncertainties represent the quadratic sum of statistical and systematic uncertainties. Figure from Ref. [116].
the value of the cross section depends on the quark separation, r, in the transverse plane, $\sigma(q \bar{q}-p) \propto \alpha_{s}^{2}\left\langle r^{2}\right\rangle[43,44]$. Thus different processes with the same $\left\langle r^{2}\right\rangle$ are driven by the same $\sigma(q \bar{q}-p)$ cross section.

In the DIS case this separation in turn is controlled by the photon virtuality, Q^{2}, and the quark mass, $m_{q}:\left\langle r^{2}\right\rangle \simeq 1 /(z(1-$ $\left.z) Q^{2}+m_{q}^{2}\right)(z$ is the photon momentum fraction carried by the quark). Indeed, the cross section of the ρ meson diffractive production in DIS at $Q^{2}=M_{J / \psi}^{2}$ is close (up to the difference in the quark electric charges) to that for the J / ψ photoproduction, see Fig. 20.10 (Left).

The production cross section depends non-trivially on W, the
energy of the $\gamma^{*} p$ center of mass system. It increases with W as W^{n}, where $n=0.2$ for ρ, ω and ϕ (light quark)-mesons but $n=0.8$ for J / ψ. Note that in the J / ψ case the energy dependence is close to that of the BFKL (Balitsky-Fadin-KuraevLipatov) Pomeron [59, 122, 123], that is, the singularity calculated within the leading (and next-to-leading) approximation in perturbative QCD. But at lower scales the absorptive (multi-Pomeron) corrections tame the growth which leads to smaller values of n ([124-127]), see Fig. 20.10 (Right).

A similar situation reveals in the dependence of $\alpha_{\text {eff }}$ on Q^{2}, as can be seen in Fig. 47 of [91]. At a large scale $\mu^{2}=\left(Q^{2}+M_{V}^{2}\right) / 4$ the value of $\alpha_{\text {eff }} \simeq 1.3$ is close to the prediction for the QCD

Figure 20.10: (Left) The ρ, ω, ϕ and J / ψ elastic production cross sections as a function of the scale $\mu^{2}=\left(Q^{2}+M_{V}^{2}\right) / 4$. For readability of the figure, the J / ψ cross sections are multiplied by a factor 2. Figure from Ref. [118]. (Right) Compilation of photoproduction cross section measurements as a function of the γp centre-of-mass energy, W. The total cross section and various vector meson production cross sections are included, with the approximate power law dependences $\sigma \propto W^{\delta}$ indicated for each process. Figure from Ref. [119].

Pomeron, while for a smaller scale, the absorptive corrections described by the multi-Pomeron diagrams start to reduce the cross section, and $\alpha_{\text {eff }}$ decreases.

20.5 Pomeron in QCD

All features described in the previous Sections were based on first principles, such as analyticity (based on causality), unitarity, crossing symmetry, etc. Since QCD theory satisfies all these principles it should reveal a corresponding "Regge" behaviour. Indeed, within perturbative QCD there is a Pomeron: an even-signature singularity in the j-plane with vacuum quantum numbers. While in the old Regge theory the Regge trajectories and their couplings were phenomenological numbers fitted from experiment, perturbative QCD allows one to calculate the positions of the singularities and the corresponding couplings with $O\left(\alpha_{s}\right)$ and even with $O\left(\alpha_{s}^{2}\right)$ accuracy $[59,122,123,128-131]$.
In terms of Feynman diagrams, the QCD Pomeron may be viewed as a sum of multi-particle ladders built by the exchange of two t-channel (reggeized ${ }^{14}$) gluons, see the left-hand side of Fig. 20.5.
The sum of ladder diagrams of the type of Fig. 20.5 is the simplest multiparticle structure which reproduces the power-like s^{α} behaviour of the Pomeron pole. In other words it corresponds to a sum of completely inelastic $2 \rightarrow n$ processes, that is, to the last term $G_{\text {inel }}=1-\exp (-\Omega)$ in the unitarity equation (20.9). This set of diagrams was resummed in the limit of a small QCD coupling, $\alpha_{s} \ll 1$, but large energy, such that $\alpha_{s} \ln \left(s / s_{0}\right) \sim O(1)$ [59]. The summation results in the rightmost singularity at $j=1+\omega_{0}>1$. After accounting for the next-to-leading logarithmic (NLL) corrections, the position of the singularity (Pomeron intercept) corresponds to $\omega_{0}=0.25-0.3$ depending only weakly on the scale $[122,123,132-136]$, whose value is characterized by the transverse momentum, k_{t}, of gluons in the ladder.

It was demonstrated (see e.g. [137]) that the resummation of

[^47]the $\left(\alpha_{s} \ln (1 / x)\right)^{n}$ terms based on the QCD Pomeron results essentially improves the description of low- x inclusive HERA data within the framework of the NNLO DGLAP evolution.

At this stage the singularity is the cut in the j-plane. However we have to account for the boundary conditions at relatively small k_{t}. Imposing a reasonable boundary, we arrive at a series of Regge poles in the interval from $j=1$ to $j=1+\omega_{0}$ instead of the cut [134]. Note that the first (corresponding to the rightmost pole in the j-plane, i.e. to the pole with the largest $\operatorname{Re} j$) eigenfunction consists of gluons with relatively small k_{t}, while for the next poles the k_{t} increases. DIS inclusive $\gamma^{*} p$ cross sections were fitted in [135] using the QCD based approach in which Pomeron is represented by series of Regge poles obtained within the perturbative QCD BFKL approach. It was concluded that the first pole has a small coupling to the proton. It is possible that this small value of the coupling to the proton is related to the fact that the enhanced multi-Pomeron diagrams (i.e. the rescattering of intermediate partons) were neglected in the fit. The main effect of this enhanced contribution is the "renormalization" of the intercept which diminishes the effective value of ω_{0}. Besides this, the enhanced diagrams provide a saturation by reducing the rise of the parton densities in the $\left(b, k_{t}, y\right)$-space (see e.g. [138, 139]).

Note that perturbative QCD allows us to understand why the values of the phenomenological multi-Pomeron vertices and the shift, ω_{0}, of the intercept, are small (due to $\alpha_{s} \ll 1$ and some numerical factors such as N_{c} and π). Indeed, at the lowest α_{s} orders we get for the ω_{0} value and the simplest multi-Pomeron vertices (see e.g. [59, 139, 140]):

$$
\begin{equation*}
\omega_{0} \propto \frac{N_{c} \alpha_{s}}{\pi}, \quad g_{3 \mathbb{P}} \propto \frac{N_{c} \alpha_{s}^{2}}{\left(N_{c}^{2}-1\right) \pi^{2}} \quad \text { and } \quad g_{2}^{2} \propto \frac{N_{c} \alpha_{s}}{\left(N_{c}^{2}-1\right)^{2}} \tag{20.46}
\end{equation*}
$$

where g_{2}^{2} is the coupling corresponding to the transition of 2 into 2 Pomerons.

20.5.1 BFKL evolution in the 'dipole' representation

It was shown in [141-144] that the LO BFKL Pomeron equation [59] can be written in terms of the evolution of the dipole
density, $N\left(x_{d}, y_{d} ; y\right)$, in rapidity y (here x_{d} and y_{d} are the transverse coordinates of two t-channel gluons which form the colour singlet dipole). Indeed, after the emission of a new gluon at point z_{d}, the initial colour dipole with coordinates $\left(x_{d}, y_{d}\right)$ turns into a pair of dipoles $\left(x_{d}, z_{d}\right)$ and $\left(z_{d}, y_{d}\right)$. This can be considered as a development of a 'dipole cascade'. Moreover in this formalism it is easy to include the non-linear absorptive corrections (last term in the square brackets in Eq. (20.47)), which accounts for the rescattering of the intermediate partons (gluons) on the target proton. The corresponding contribution is described by the so-called "fan" diagrams and these are the most important corrections to the linear DGLAP (Dokshitzer-Gribov-Lipatov-AltarelliParisi) evolution [145] in the case of DIS at not large scales but at very small momentum fraction [139].

The resulting non-linear evolution (Balitsky-Kovchegov equation [146-148]) reads

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} y} N\left(x_{d}, y_{d} ; y\right)= & \frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int \mathrm{~d}^{2} z_{d} \frac{\left(x_{d}-y_{d}\right)^{2}}{\left(x_{d}-z_{d}\right)^{2}\left(y_{d}-z_{d}\right)^{2}} \\
& \times\left[N\left(x_{d}, z_{d} ; y\right)+N\left(y_{d}, z_{d} ; y\right)-N\left(x_{d}, y_{d} ; y\right)\right. \\
& \left.-N\left(x_{d}, z_{d} ; y\right) N\left(y_{d}, z_{d} ; y\right)\right] . \tag{20.47}
\end{align*}
$$

For a small density N the last term in the square brackets can be neglected, and the first three terms in Eq. (20.47) reproduce the conventional BFKL equation in the coordinate representation. However, for large $N \rightarrow 1$ the right-hand side of Eq. (20.47) vanishes and we reach the saturation $N=1$. It is worth mentioning that, as shown in [149], in terms of 'dipole' formalism, with the triple-Pomeron vertex generated by the 'one dipole to two dipoles' transition, it is possible to relate the Good-Walker approach to high mass diffraction with the triple-Pomeron diagram.

20.5.2 Distribution of secondaries: theory versus experi-

 mentAs already discussed, in terms of Feynman diagrams the cut Pomeron can be viewed as a set of ladder diagrams corresponding to a sum of completely inelastic $2 \rightarrow n$ processes, that is, to the last term $G_{\text {inel }}=1-\exp (-\Omega)$ in the unitarity equation (20.9). Here $n>2$ means the production of additional $(n-2)$ gluons which, after hadronization, form minijets. ${ }^{15}$ Therefore, in the final state driven by one Pomeron, we expect to observe gluon minijets with a flat rapidity distribution in the central (plateau) rapidity region. This would correspond to a flat pseudorapidity distribution of produced particles if they were massless. A typical pseudorapidity distribution of charged particles in inclusive events (up to $|\eta|=7$) is shown in Fig. 20.11 (left) [150] (see also Fig. 52.1 in [1]). The central part $(|\eta|<2.5)$ was measured by CMS, while the forward region was covered by TOTEM. The dip observed at $\eta=0$ is explained by the presence of massive particles (the Jaco$\operatorname{bian} J\left(p_{T}, m, \eta\right)=p_{T} / E \rightarrow p_{T} / \sqrt{p_{T}^{2}+m^{2}}$ at $\left.\eta=0\right)$. A photon energy spectrum is shown in Fig. 20.11 (right) [151], measured by LHCf inclusively and in events with a diffraction topology, i.e. no charged particles with $p_{T}>100 \mathrm{MeV}$ and $|\eta|<2.5$ observed by ATLAS. As expected in diffractive events the energy flow decreases with E_{γ} more slowly than that in the inclusive case.

The energy dependence of the particle density $\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta$ at $\eta=0$ is shown in Fig. 20.12 (left). Neglecting absorptive corrections given by the enhanced diagrams (which mainly change ('renormalize') the effective Pomeron intercept $\left.\alpha_{\text {eff }}(0)=1+\Delta[121]\right)$, we conclude that according to the AGK rules the plateau height $\mathrm{d} \sigma / \mathrm{d} \eta \propto s^{\Delta}$ is driven just by the one-Pomeron exchange with effective $\Delta \sim 0.2$ (see Section 20.3.3.3). That is, the density of secondaries observed in the inclusive process increases with increasing energy faster than the total cross section, whose growth is tamed by the multi-Pomeron diagrams. Indeed, as is seen from Fig. 20.12 (left), in the interval of collider energies $\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta=\left(1 / \sigma_{\text {inel }}\right) \mathrm{d} \sigma / \mathrm{d} \eta \propto s^{0.115}$ (i.e. $\left.\mathrm{d} \sigma / \mathrm{d} \eta \propto s^{0.215}\right)$, while $\sigma_{\text {inel }} \propto s^{0.1}$.

[^48]Contrary to the 'old' Regge theory where it was assumed (based on the experimental data existing in the 1950s and 1960s) that all transverse momenta are limited, in QCD the k_{t} distributions of jets (charged particles) have a long k_{t} tail ($\mathrm{d} \sigma / \mathrm{d} k_{t}^{2} \propto \alpha_{s}^{2}\left(k_{t}^{2}\right) / k_{t}^{4}$ at large k_{t} and very large energy $s \gg k_{t}^{2}$). An example of the p_{T} distribution of charged secondaries is shown in Fig. 20.12 (right).

Note that the mean transverse momentum of secondaries, produced via jet fragmentation, slowly increases with collision energy, see Fig. 20.13 (right). This is caused by the stronger absorption (at larger \sqrt{s}) of the gluons with a smaller $k_{t}\left(\sigma^{\text {abs }} \propto 1 / k_{t}^{2}\right)$. The growth of $\left\langle p_{T}\right\rangle$ with multiplicity (see Fig. 20.13 (left)) can be explained by the fact that events with larger $N_{\text {ch }}$ correspond to a smaller impact parameter, b, where the absorption of a low k_{t} component is stronger and, next, larger multiplicity can be originated by the events with jets/minijets with higher p_{T}. Since the mean p_{T} of secondaries grows with \sqrt{s}, the increase with \sqrt{s} of transverse energy flow is a bit faster than that of particle density.

The model [162] based on a modification of the classic RFT allows one to trace the smooth transition from the pure perturbative, large k_{t}, region into the soft domain. A strong absorption of the low k_{t} partons plays a crucial role here since it produces an effective infrared cutoff, $k_{\text {sat }}$, and provides the possibility of extending the parton approach, used for 'hard' processes, to also describe high-energy soft and semihard interactions. This approach combines a description of soft physics and diffraction with jet physics in a coherent self-consistent way.

Another way is to include the soft and hard components independently $[37,66,163,164]$. In this approach the soft part is described in terms of RFT with the phenomenological "soft" Pomeron pole while the hard part is calculated in terms of the parton model for minijet production with the energy dependent cutoff $k_{t}>k_{0}(s)$. A combined description of soft and hard processes in hadronic collisions is reached within the QGSJET Monte Carlo model (e.g. [61]) in the framework of the so-called "semihard Pomeron" approach (see e.g. [165]).

In [166] a model was constructed, which incorporated the attractive features of the two successful theoretical approaches to high energy QCD: BFKL Pomeron calculus $[59,60]$ and the Colour Glass Condensate/saturation [167].

20.5.2.1 Correlations

All LHC experiments routinely measure tracks with $p_{T}>p_{\text {min }}$, where $p_{\min }$ can vary in different studies. Typically, $p_{\min }=$ 200 MeV , where tracking reconstruction efficiencies are larger than 70%. In order to identify particle species, each experiment has sophisticated identification procedures usually based on the ionization energy loss, $\mathrm{d} E / \mathrm{d} x$, or other techniques, with different regions of applicability for different particle species. Thanks to usually relatively large cross sections of soft QCD processes, most of the results below come from event samples with very low or negligible pile-up.
Following the notation in [168], symmetrized inclusive particle number densities for q points at y_{1}, \ldots, y_{q} (where y_{i} represents the 4 -momentum of the i th particle), $\rho_{q}\left(y_{1}, \ldots, y_{q}\right)$, are related to the inclusive differential cross section by

$$
\frac{1}{\sigma_{\text {inel }}} \mathrm{d} \sigma=\rho_{1}(y) \mathrm{d} y, \quad \frac{1}{\sigma_{\text {inel }}} \mathrm{d}^{2} \sigma=\rho_{2}\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \quad \text { etc. (20.48) }
$$

By integrating we get

$$
\begin{equation*}
\int \rho_{1}(y) \mathrm{d} y=\langle n\rangle, \quad \iint \rho_{2}\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}=\langle n(n-1)\rangle \text { etc. } \tag{20.49}
\end{equation*}
$$

where the angular brackets denote averaging over the event sample and n is the particle multiplicity.

Since the inclusive q-particle densities in general contain trivial contributions from lower-order densities, it is convenient to consider quantities C_{q} which vanish when one of their arguments becomes statistically independent of (uncorrelated with) the others. These quantities C_{q}, called correlation functions (or cumulant

Figure 20.11: (Left) Charged-particle pseudorapidity distribution for inclusive events measured by CMS and TOTEM [150]. The error bars represent the statistical and uncorrelated systematic uncertainties between neighboring bins, while the shaded areas denote the combined statistical and full systematic uncertainties. The coloured lines indicate model predictions. (Right) Photon energy spectrum measured by LHCf at $|\eta|>10.94$. The filled circles show the inclusive photon spectrum measured by LHCf [152] and filled squares the spectrum for $N_{\mathrm{ch}}=0$ events where no charged particles with $p_{T}>100 \mathrm{MeV}$ and $|\eta|<2.5$ are observed by ATLAS [153]. The coloured lines indicate model predictions. The error bars correspond to the statistical uncertainties and the shaded areas denote the combined statistical and systematic uncertainties. Figure from Ref. [151].

Figure 20.12: (Left) Energy dependence of the charged particle density $\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta$ at $\eta \approx 0$ for $p p$ and $p \bar{p}$ collisions. Shown are measurements performed with different Non-SD event selections from UA1 [154], UA5 [155], CDF [156,157], ALICE [158] and CMS [159]. The dashed line is a power-law fit to the data. Figure from Ref. [150]. (Right) Differential cross section of charged particles with $|\eta|<0.8$ in inelastic $p p$ collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV as a function of p_{T}. Only statistical uncertainties are shown. Figure from Ref. [160].
functions), are defined as:

$$
\begin{aligned}
& C_{2}(1,2)=\rho_{2}(1,2)-\rho_{1}(1) \rho_{1}(2), \quad C_{3}(1,2,3) \\
& =\rho_{3}(1,2,3)-\sum_{(3)} \rho_{1}(1) \rho_{2}(2,3)+2 \rho_{1}(1) \rho_{1}(2) \rho_{1}(3) \\
& \begin{aligned}
C_{4}(1,2,3,4)= & \rho_{4}(1,2,3,4)-\sum_{(4)} \rho_{1}(1) \rho_{3}(1,2,3) \\
& -\sum_{(3)} \rho_{2}(1,2) \rho_{2}(3,4)+2 \sum_{(6)} \rho_{1}(1) \rho_{1}(2) \rho_{2}(3,4) \\
& -6 \rho_{1}(1) \rho_{1}(2) \rho_{1}(3) \rho_{1}(4)
\end{aligned}
\end{aligned}
$$

The 2D two-particle correlation function is defined as

$$
\begin{equation*}
C(\Delta \eta, \Delta \phi)=\frac{\rho_{2}(\Delta \eta, \Delta \phi)}{\rho_{1}\left(\eta_{a}, \phi_{a}\right) \rho_{1}\left(\eta_{b}, \phi_{b}\right)} \tag{20.51}
\end{equation*}
$$

The distribution $\rho_{2}(\Delta \eta, \Delta \phi)$ is usually interpreted as a conditional probability to observe a particle a at the phase-space point $\left(\eta_{a}, \phi_{a}\right)$ if a particle b at $\left(\eta_{b}, \phi_{b}\right)$ is observed as well, and $\Delta \eta=\eta_{a}-\eta_{b}$ and $\Delta \phi=\phi_{a}-\phi_{b}$. The distributions $\rho_{1}\left(\eta_{a}, \phi_{a}\right)$ and $\rho_{1}\left(\eta_{b}, \phi_{b}\right)$ are probabilities to observe a single particle at $\left(\eta_{a}, \phi_{a}\right)$ and $\left(\eta_{b}, \phi_{b}\right)$, respectively. The denominator of Eq. (20.51) is constructed as a product of two single-particle distributions using an event mixing technique, where each particle in the pair comes from a different event. Experimentally, each reconstructed track

Figure 20.13: Average p_{T} of pions, kaons and protons in the range $|\eta|<1.0$ as a function of (left) track multiplicity at $|\eta|<2.4$ and (right) of center-of-mass energy where the curves show linear fits using lns. The error bars indicate the uncorrelated combined uncertainties, while the boxes show the uncorrelated systematic uncertainties. Figures from Ref. [161].
is weighted by the inverse of an efficiency factor which accounts for the detector acceptance, the reconstruction and particle identification efficiencies, the contamination by secondary particles and the fraction of misreconstructed tracks.

An example of two-particle correlation functions measured in $p p$ collisions at 7 TeV is shown in Fig. 20.14 for identical-particle pairs (right panel) and for particle-anti-particle pairs (left panel) [169].

We observe two distinct features which can be explained by short-range (in rapidity) correlations: 1) a near-side peak at $\Delta \phi \approx$ 0 and 2) an away-side peak or rather a ridge at $\Delta \phi \approx \pi$. The nearside peak is considered to be caused by at least three effects:

- fragmentation of partons scattered at a hard scale. These relatively high p_{T} partons produce showers which after the hadronization form the mini-jets which create a broad structure extending over at least one unit in $\Delta \eta$ and $\Delta \phi$.
- resonance decays. The decay of resonances contributes to the near-side peak at $\Delta \eta \sim 0$ and extended in $\Delta \phi[170-$ 172], depending on the released kinetic energy of the given resonance. This effect is mostly visible for unlike-sign particle pairs.
- femtoscopic correlations. The term "femtoscopic" refers to a length scale of the order of $10^{-15} \mathrm{~m}$. These correlations are present at low relative momenta of the particles in a pair (representing a very small phase-space corner, so they are practically invisible in terms of $(\Delta \eta, \Delta \phi))$ and give rise to an enhancement of the correlation function (due to BoseEinstein quantum statistics for identical bosons) or its suppression (due to Fermi-Dirac quantum statistics for identical fermions). Besides this, at low relative momenta there are correlations caused by Coulomb and/or other final state interactions. The shape of all these effects in $(\Delta \eta, \Delta \phi)$ space depend strongly on the mass of the particle type as well as on the size of the particle-emitting system. The latter is traditionally measured in Bose-Einstein correlation (BEC) analyses and is not part of this review.

The away-side peak originates from energy-momentum conservation which manifests itself by the quark and the anti-quark going back-to-back in ϕ. In this case the rapidity width of the away-side peak is much larger than the near-side peak since in the original matrix element the quark and the antiquark can be separated by some $\Delta \eta$ interval.

As discussed in Sections 20.3.3.2 and 20.3.3.3, there may be several cut Pomerons in the same event, each giving rise to particle sets which are, in general, independent of each other (except for small Bose-Einstein correlations). This leads to long-range (in rapidity) correlations. Since the density of secondaries, $\mathrm{d} N / \mathrm{d} y$, is proportional to the number of cut Pomerons, k, the probability to observe at least one particle is proportional to $\langle k\rangle$, while the probability to observe simultaneously two particles separated by some (rather large) rapidity interval is proportional to $\left\langle k^{2}\right\rangle$. Thus the long-range correlations are pedicted to be $C_{2}=\left\langle k^{2}\right\rangle /\langle k\rangle^{2}-$ $1>0$ which depends weakly on the separation $\Delta \eta$ between the two particles $[173,174]$. In the case of the pure eikonal approach, neglecting the enhanced diagrams and the conservation law effects in the proton fragmentation region, we expect that these longrange correlations,

$$
\begin{equation*}
C_{2}(\Delta y)=\frac{\sigma_{\text {inel }} \mathrm{d}^{2} \sigma / \mathrm{d} y_{1} \mathrm{~d} y_{2}}{\mathrm{~d} \sigma / \mathrm{d} y_{1} \mathrm{~d} \sigma / \mathrm{d} y_{2}}-1 \sim \text { const } \tag{20.52}
\end{equation*}
$$

do not depend on the rapidity separation, $\Delta y=\left|y_{1}-y_{2}\right|$, between the two particles. The contribution of the processes with more cut Pomerons also results in a much wider multiplicity distribution and in a larger density of soft particles coming from the 'underlying event'.

20.5.2.2 Color reconnection

In this context, we have to mention also the so-called 'colour reconnection' phenomenon. This is a pure 'soft QCD' effect. The point is that after a number of coloured secondary partons are produced, there are different possibilities to form the colour flow between these partons and to group the partons into colourless clusters. In the process of reconnection, one rearranges the colour flow in such a way as to minimize the size of the clusters. This is especially important when dealing with MPI contributions. The reconnection between the different cut Pomerons diminishes the final multiplicity and can change the form of the N_{ch} distributions (see e.g. Section 41.3 .3 of [1] and [$2,13,177,178]$).

20.5.2.3 Double parton scattering

The probability of MPI depends on the spatial distribution of partons in the incoming protons. The effects of MPI are suppressed if the density of partons is low and the partons from the incoming beam particles are separated from each other by a large

Figure 20.14: Two-particle correlation functions for identical-particle pairs: $\pi^{+} \pi^{+}+\pi^{-} \pi^{-}, K^{+} K^{+}+K^{-} K^{-}, p p+\bar{p} \bar{p}$, and $\Lambda \Lambda+\bar{\Lambda} \bar{\Lambda}$ (left panel) and particle-anti-particle pairs: $\pi^{+} \pi^{-}, K^{+} K^{-}, p \bar{p}$ and $\Lambda \bar{\Lambda}$ (right panel). Figure from Ref. [169].
interval in transverse coordinate space \vec{x}_{t}. Events in which two hard subprocesses, caused by interactions of two different parton pairs (say, $\left(a_{1} b_{1}\right)$ and $\left(a_{2} b_{2}\right)$), take place simultaneously, are called Double Parton Scattering (DPS). The DPS cross section is driven by the 'double parton distributions', $D\left(y_{a_{1}}, y_{a_{2}}, \ldots\right)$, where $y_{a_{1}}$ and $y_{a_{2}}$ are momentum fractions carried by the partons from the proton a and the dots denote all other coordinates. As a rule, experiments study DPS processes at relatively small momentum fractions y_{i}. Here, correlations due to momentum conservation (like $y_{a_{1}}+y_{a_{2}}<1$) are not so important, and with a reasonable accuracy we can assume a factorization

$$
\begin{equation*}
D\left(y_{a_{1}}, y_{a_{2}}, \ldots\right) \propto F\left(y_{a_{1}}\right) \cdot F\left(y_{a_{2}}\right) \tag{20.53}
\end{equation*}
$$

where $F\left(y_{a_{i}}\right)$ are the single parton distributions. In such a case the DPS cross section takes the form

$$
\begin{equation*}
\sigma^{\mathrm{DPS}}=c \cdot \frac{\sigma_{a_{1} b_{1}} \sigma_{a_{2} b_{2}}}{\sigma_{\mathrm{eff}}} \tag{20.54}
\end{equation*}
$$

where $\sigma_{a_{1} b_{1}}$ and $\sigma_{a_{2} b_{2}}$ are cross sections for the two independent hard processes, while $\sigma_{\text {eff }}$ characterizes the mean area occupied by the partons a_{1} and b_{1}; the constant factor $c=1 / 2$ if both hard processes $\left(a_{1} b_{1}\right)$ and $\left(a_{2} b_{2}\right)$ are identical, otherwise $c=1$. Thus the DPS cross section is sensitive to the spatial separations between partons in the proton (see Section 7.2 .3 in [2] and [179, 180] for more explanations and reviews).

One problem is that within this approach we assume that the partons a_{1} and a_{2} are produced by two independent parton showers (and similarly for the other incoming proton). On the other hand, there is a probability that from the beginning we start with the evolution of a single shower which further splits into two different branches. In this case the separation between the two partons (two shower branches) becomes very small - of the order of the inverse scale $\left(\sim 1 / \sqrt{q^{2}}\right)$ at which the splitting occurs. The exact value of this 'splitting' scale q^{2} depends on the particular kinematics of the DPS process. So, different experiments (with

Figure 20.15: (Left) The two-particle cumulant, $c_{2}\{2,|\Delta \eta|>2\}$, as a function of $\left\langle N_{\mathrm{ch}}\left(p_{T}>0.4 \mathrm{GeV}\right)\right\rangle$ for $p p$ collisions at $\sqrt{s}=5.02$ and $13 \mathrm{TeV}, p P b$ collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$ and low-multiplicity PbPb collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$. The data are constructed from particles with $0.3<p_{T}<3.0 \mathrm{GeV}$. Figure from Ref. [175]. (Right) The $v_{2}\{2,|\Delta \eta|>2\}, v_{2}\{4\}$ and $v_{2}\{6\}$ values as a function of number of charged particles, averaged over $0.3<p_{T}<3.0 \mathrm{GeV}$ and $|\eta|<2.4$, in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. Figure from Ref. [176]. The error bars correspond to the statistical uncertainties, while the shaded areas denote the systematic uncertainties.
different kinematical conditions) can give somewhat different values of $\sigma_{\text {eff }}$. In general, the value of $\sigma_{\text {eff }}$ depends on the following features: a) on the measured process since the spatial $\left(b_{t}\right)$ distributions of different incoming partons (light quarks, heavy quarks, gluons) can be different; b) on the splitting scale, $\sqrt{q^{2}}$, of one parton cascade into two branches. The typically high value of the splitting scale then explains the fact that the experimentally measured values of $\sigma_{\text {eff }} \sim 7-25 \mathrm{mb}$ (see Fig. 4 of [181]) are smaller than $\sigma_{\text {tot }}$ or mostly even lower than the proton area $\pi R_{p}^{2} \sim 22$ 24 mb (see e.g. [182]); c) on the p_{T} balance, k_{T}, in the individual hard process (e.g. for two dijet productions $k_{T}=\left|\overrightarrow{p_{T 1}}+\overrightarrow{p_{T 2}}\right|$ where $p_{T 1}$ and $p_{T 2}$ are jet p_{T} 's of the first hard process (similarly for the second hard process). A small value of k_{T} indicates that there were no splittings or the splitting scale $\sqrt{q^{2}}$ was small and, therefore, we expect larger $\sigma_{\text {eff }}$; d) on the contribution of single parton scatterings misidentified as DPS. For a lower scale of the hard process this contribution is larger (see [183] for more detailed discussion).

20.5.2.4 Final state interactions

The formalism of the RFT does not include 'final state interactions' ${ }^{16}$. Therefore, besides the correlations considered in the previous Section 20.5.2.1 we have to expect the correlation caused by partons and hadrons rescattering in the final state. These effects are not crucial at lower energies, but become more important at high LHC energies, in particular in heavy-ion collisions where the particle density is large. For example, the final state interactions (FSI) lead to the formation of the collective flow of secondaries (see e.g. [185] for a review), especially in high-multiplicity events. To study the collective flow experimentally, one has to subtract correlations coming from few-particle sources such as resonance decays, mini-jets, multi-jets and BEC (so called "non-flow"). The non-flow can efficiently be suppressed using the sub-event method, that is by studying the azimuthal correlations between particles separated in η [186], or subtracted using the multi-particle correlation (or cumulant) techniques.

The cumulant method is based on calculating $2 k$-particle

[^49]azimuthal correlations, $\operatorname{corr}_{n}\{2 k\}$, and cumulants $c_{n}\{2 k\}$ (where $k=1,2, \ldots)$, for nth Fourier harmonics. The $\operatorname{corr}_{n}\{2 k\}$ are defined as [187, 188]:
$\left\langle\left\langle\operatorname{corr}_{n}\{2\}\right\rangle\right\rangle=\left\langle\left\langle e^{\mathrm{i} n\left(\phi_{1}-\phi_{2}\right)}\right\rangle\right\rangle, \quad\left\langle\left\langle\operatorname{corr}_{n}\{4\}\right\rangle\right\rangle=$ $\left\langle\left\langle e^{\mathrm{i} n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)}\right\rangle\right\rangle$,
$\left\langle\left\langle\operatorname{corr}_{n}\{6\}\right\rangle\right\rangle=\left\langle\left\langle e^{\mathrm{in}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}-\phi_{5}-\phi_{6}\right.}\right\rangle\right\rangle$
and similarly for higher numbers of correlated particles. The double-brackets $\langle\rangle\rangle$ denote averaging first over particles in an event and then over events within a given event class. For every event, the average is taken over all possible combinations of azimuthal angles $\phi_{l}(l=1, \ldots, 2 k)$ of the $2 k$ particles. The cumulants are then obtained from multi-particle azimuthal correlations after subtracting correlations between $2(k-1)$ particles according to the following formulae [187,188]:
$c_{n}\{2\}=\left\langle\left\langle\operatorname{corr}_{n}\{2\}\right\rangle\right\rangle, c_{n}\{4\}=\left\langle\left\langle\operatorname{corr}_{n}\{4\}\right\rangle\right\rangle-2\left\langle\left\langle\operatorname{corr}_{n}\{2\}\right\rangle\right\rangle^{2}$,
$c_{n}\{6\}=\left\langle\left\langle\operatorname{corr}_{n}\{6\}\right\rangle\right\rangle-9\left\langle\left\langle\operatorname{corr}_{n}\{2\}\right\rangle\right\rangle \times\left\langle\left\langle\operatorname{corr}_{n}\{4\}\right\rangle\right\rangle+$ $12\left\langle\left\langle\operatorname{corr}_{n}\{2\}\right\rangle\right\rangle^{3}$.

The cumulants for higher particle multiplicities are calculated in $[187,188]$. The cumulants then serve to estimate the Fourier harmonics v_{n} as follows [187]:
$v_{n}\{2\}=\sqrt{c_{n}\{2\}}, v_{n}\{4\}=\sqrt[4]{-c_{n}\{4\}}, v_{n}\{6\}=\sqrt[6]{c_{n}\{6\} / 4}$.
Some of the long-range correlation $(|\Delta \eta|>2)$ results obtained on a sample of charged particles with $0.3<p_{T}<3.0 \mathrm{GeV}$ and $|\eta|<2.4$ are summarized in Fig. 20.15. The left plot shows the cumulant c_{2} measured for $p p, p P b$ and $P b P b$ collisions [175], while the right plot shows the elliptical harmonics v_{2} measured for $p p$ collisions [176], both as functions of multiplicities of charged particles. The two-particle correlations are observed to be strongest and rising with $N_{\text {ch }}$ for PbPb collisions, and weakest and rather flat for $p p$ collisions. The elliptical-flow harmonics for 4 - and 6particle correlations show again a rather flat multiplicity dependence (at least for large multiplicities). Within experimental uncertainties, the values of $v_{2}\{2\}, v_{2}\{4\}$ and $v_{2}\{6\}$ measured in $p p$ collisions at 13 TeV are consistent with each other. The similarity between $v_{2}\{4\}$ and $v_{2}\{6\}$ suggests that some collective effects are occurring in $p p$ collisions at high multiplicity and the obser-

Figure 20.16: Mean charged particle density (left) and the sum of transverse momenta of secondaries (right) in events with the 'leading' high p_{T} particle as a function of $p_{T}^{\text {lead }}$ in the transverse, towards and away azimuthal regions. Secondaries with $p_{T}>0.5 \mathrm{GeV}$ and $|\eta|<2.5$ are registered. The error bars (mostly hidden by the data markers) represent combined statistical and systematic uncertainties. Figures from [184].
vations are similar to those in $P b P b$ collisions, where the $v_{2}\{4\}$ values were measured to be close to $v_{2}\{6\}$ but they are both lower than $v_{2}\{2\}$ (not shown here)).

Another example of long-range correlations is the so-called "ridge effect". Here not only the 'back-to-back' jet correlations are registered, but also an excess of particles going in the same (in the azimuthal plane) direction as the leading (relatively high p_{T}) hadron. Moreover, this excess is seen at the rapidities separated from the leading hadron by a rather large interval (see e.g. [189] for a review).

It is popular to describe such FSI effects within the hydrodynamic model [190], which operates with collective (thermodynamic) variables. In terms of microscopic interactions, the collective flow can be caused by the geometry of a particular collision (the absorption is smaller for the secondaries flying in the direction orthogonal to the impact parameter vector $\vec{b}[191,192])$, or by the colour reconnection at the hadronization stage [193], or accounting for the rescattering of secondaries directly, as was done, for example, in the AMPT model [194].

20.5.3 The underlying event

Except for the exclusive case, any 'hard' subprocess is accompanied by soft secondaries coming from initial state radiation (ISR), final state radiation (FSR) and multiple parton interaction (MPI), see Subsection 7.2.2 in [2]. These extra particles distort the signal we are looking for. In particular, they affect the isolation criteria applied to photons and charged leptons and the vertex reconstruction efficiency. In general, also the effects of colour reconnection (discussed in Section 20.5.2.2) contribute to the underlying event.

The usual procedure of estimating the amount of underlying event (UE) is to spatially divide tracks in each event according to their azimuthal angle into the Toward region (where the highest p_{T} jet points), the Away region (opposite to the Toward region) and to two Transverse regions. The standard observables are the average track multiplicity per unit area and the average scalar sum of track p_{T} per unit area. Figure 20.16 shows the particle density and the sum of p_{T} for the UE in ATLAS events containing at least one charged particle with $p_{T}>0.5 \mathrm{GeV}$ and $|\eta|<2.5$ [184].

Note that by construction the largest values of $\left\langle p_{T}\right\rangle$ are observed in the 'Toward' region, while in the 'Away' region we observe a slightly larger density than in the Toward region. These are results of the 'leading' and 'backward' jet fragmentation. In the transverse region, mostly filled by particles from the UE, the particle density and sum of p_{T} per unit $(\Delta \eta, \Delta \phi)$ area practically do not depend on the $p_{T}^{\text {lead }}$ since these secondaries come from the other cut Pomeron(s), that is, from other 'multiple interactions'. For low $p_{T}^{\text {lead }}<2 \mathrm{GeV}$ the distributions in all three regions are close to each other. These events actually do not contain a 'hard'
subprocess. Moreover, for a very small $p_{T}^{\text {lead }} \rightarrow 1 \mathrm{GeV}$ we start to select soft events with abnormally low $p_{T}<p_{T}^{\text {lead }}$ particles. Since only particles with $p_{T}>0.5 \mathrm{GeV}$ are registered, the signal drops fast for $p_{T}^{\text {lead }} \rightarrow 1 \mathrm{GeV}$. As a function of collision energy \sqrt{s}, the energy flow in the transverse region increases as $\sum p_{T} \sim s^{0.2}$ (as follows from Fig. 7 (right) in [184]) due to the larger number of MPI collisions and larger $\left\langle p_{T}\right\rangle$ in each collision ${ }^{17}$. As follows from this and other UE-dedicated LHC studies [195], from the comparisons of the data to the models with and without MPI, the necessity of MPI is convincingly demonstrated.

20.6 The Odderon

Apart from the even-signature singularity (Pomeron), in QCD with $N_{c}=3$ there exists its counterpart, the odd-signature singularity placed at $j \simeq 1$ and formed by three t-channel reggeized gluons connected in colour space by the symmetric $d^{a b c}$ tensor of the colour $S U(3)$ group $[196,197]$. This object is called the Odderon. The Odderon exchange amplitude has opposite sign for $p p$ and $p \bar{p}$ scatterings. Its intercept is predicted to be very close to $j=1[198-200]$, while according to perturbative estimates the coupling to the nucleon is rather small $[201,202]$. The corresponding amplitude is mainly real and is about 100 times smaller than the imaginary part of the Pomeron exchange amplitude. Calculating the elastic amplitude via the eikonal formula (20.13) we have to replace the opacity $\Omega(b)$ by the sum $\Omega=\Omega_{\text {even }}+\Omega_{\text {odd }}$, where $\Omega_{\text {even }}$ is mainly real and $\Omega_{\text {odd }}$ is imaginary. Note that at $t=0$ this QCD Odderon does not couple to mesons, and the t-slope of the Odderon amplitude is expected to be smaller than that for the Pomeron; instead of the singularity at $t=4 m_{\pi}^{2}$ in the Pomeron case, the nearest singularity in the Odderon channel is at $t=9 m_{\pi}^{2}$, see for instance [200]. Thus, in the impact parameter b space the QCD Odderon occupies an area of a smaller radius, see e.g. [203].
Experimentally an indication in favour of a manifestation of the high energy C-odd amplitude was observed by comparing the elastic $p p$ and $p \bar{p}$ cross sections in the dip region (where the contribution from the C-even amplitude has a minimum) at the CERNISR [205], see Fig. 20.17 (left) ${ }^{18}$.

To get a better understanding of the Odderon effects it would be very instructive to have the $\mathrm{d} \sigma_{e l} / \mathrm{d} t$ data for both $p p$ and $p \bar{p}$ reactions at the same but higher energy $\sim 1 \mathrm{TeV}$ (ideally in the same apparatus) and, in the ideal case, to study the energy de-

[^50]

Figure 20.17: Comparison of the t-dependence of the elastic cross sections from $p p$ and $p \bar{p}$ collisions. (Left) Data from the ISR energy of 53 GeV are shown by closed triangles [204] for $p p$ collisions and by open circles [205] and open squares [206] for $p \bar{p}$ collisions. Only t-dependent uncertainties are shown and the systematic scale uncertainty is estimated to be $\pm 30 \%$. Figure from Ref. [205]. (Right) Data from the D0 experiment at 1.96 TeV [207] are compared with data from the TOTEM experiment [103]. The green dashed line indicates the normalization uncertainty of the D0 measurement. Figure from Ref. [103].
pendence.
At the moment we can only compare the $p p$ cross section measured by TOTEM at $\sqrt{s}=2.76 \mathrm{TeV}$ [103] with the $\mathrm{d} \sigma / \mathrm{d} t$ values measured by the D0 collaboration at 1.96 TeV in $p \bar{p}$ collisions [207], see Fig. 20.17 (right).

The situation looks quite intriguing, but needs further investigation. Note that in the TeV energy range the ω, ρ and $\omega P, \rho P$ exchange contributions, which may be responsible for the difference between the $p p$ and $p \bar{p}$ cross sections in the dip region at the ISR energies, are practically negligible.

Another way to search for the Odderon is to measure the real part of the elastic $p p$ scattering amplitude via the interference with the pure QED one-photon exchange. Since the one-photon exchange amplitude contribution is sizeable only at very small $|t|$, this way we can study the Odderon at or near to $t=0$. Indeed, the value of the ratio $\rho \equiv \operatorname{Re} T_{\text {el }} / \operatorname{Im} T_{\text {el }}$, obtained by TOTEM at $13 \mathrm{TeV}(\rho=0.10 \pm 0.01$ [102]), turns out to be smaller than that expected for the pure even-signature amplitude, see Fig. 20.18.

Based on dispersion relations and assuming the C-even contribution only, from the known total cross sections we would rather expect $\rho \simeq 0.13-0.14$. The difference could indicate that the rise of the total cross section at energies above those of the LHC slows down (see the dispersion relation, Eq. (20.19)) or this could be attributed to an Odderon contribution (see e.g. [210]). However, the Odderon exchange amplitude extracted in this analysis has opposite sign to that for the lowest- α_{s}-order QCD Odderon, see e.g. [201, 202, 211, 212]. Besides this, the Odderon contribution to ρ, obtained in [210], grows with \sqrt{s} (for $\sqrt{s}>0.5 \mathrm{TeV}$), while in QCD we expect that the Odderon contribution to ρ decreases with energy, since the QCD Odderon intercept is smaller than that of the QCD Pomeron.

It is worth mentioning also that the Odderon contribution is strongly screened by the multi-Pomeron diagrams, which facilitate the falling-off of ρ with energy increasing, see $[213,214]$. On the other hand, analyzing the whole ensemble of high energy elastic $p p$ $(p \bar{p})$ low $|t|$ data, a reasonable description can be obtained using the even-signature amplitude only, that is, without the Odderon. In particular, the RR(PL2)qc model/version of the COMPETE parameterization is consistent with the TOTEM 13 TeV data on $\sigma_{\text {tot }}$ and ρ within $1 \sigma^{19}$. Another example is the recent analysis in [212] of the low $|t|<0.1 \mathrm{GeV}^{2}$ elastic data. Fitting all the low- t $p p$ and $p \bar{p}$ data in the range of \sqrt{s} between 13 GeV and 13 TeV without Odderon, Donnachie and Landshoff [212] succeeded to

[^51]describe the TOTEM cross section with less than 1σ deviation in each $\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{d} t$ point (see Fig. 8 of [212]). Note that in this analysis, they get a larger value of ρ close to 0.14 at 13 TeV .

It was proposed also to search for the Odderon in exclusive Ceven meson $\left(\pi^{0}, \eta, f_{2}, \eta_{c}, \ldots\right)$ photoproduction (see e.g. $\left.[215,216]\right)$. However the expected cross sections are small (e.g. for η_{c}) and in each channel there is a large background caused either by Pomeron-Pomeron fusion (such as CEP of the f_{2} meson production in $p p$ or $p P b$ collisions) or due to the vector meson radiative decay (such as $\omega \rightarrow \pi^{0} \gamma$ for the case of pion) [217]. Up to now, no definitive Odderon signal in the C-even meson production has been observed. At the moment there exist only upper limits on the photoproduction cross sections obtained in the measurements at HERA at $\sqrt{s} \simeq 200 \mathrm{GeV}$ [218-220].

To conclude, let us emphasize that the existence of the C-odd singularity with intercept
$\alpha_{\text {odd }}(0) \simeq 1$ is a firm prediction of QCD. At least in the high k_{t} region there is a well established C-odd three-gluon contribution to the scattering amplitude. However the expected coupling of such an Odderon singularity is numerically very small. Therefore it is quite challenging to observe its manifestation experimentally. Currently it seems to be a bit premature to draw any definite conclusion about an experimental observation of the Odderon signal.

20.7 Asymptotics

The high-energy behaviour of total hadronic cross sections has been one of the oldest problems of strong interactions over many decades, beginning from Heisenberg [221]. The most important bound obtained based on general analytical properties of scattering amplitudes is the FLM bound [47-49]. It states that the growth of the total hadronic cross section with energy does not exceed $\ln ^{2} s$, see Eq. (20.34).

Recall that we neglected the photon contribution as well as the whole electro-weak sector, and that the parameter in Eq. (20.34) s_{0} is an a priori unknown scale. However, if we were to assume a reasonable hadronic scale, $s_{0} \simeq 1 \mathrm{GeV}^{2}$, we would find that Eq. (20.34) implies an unrealistically high upper bound in comparison with the cross sections observed at present collider energies. Nevertheless there is a common trend in the literature (see for instance, reviews $[222,223]$ and references therein) to fit phenomenologically the total cross section with $\ln ^{2} s$, keeping in mind the saturation of the FLM bound. Such an asymptotic behaviour is assumed also by the COMPETE collaboration [22], which achieved a comprehensive description of all soft pre-LHC data measured at $\sqrt{s} \geq 4 \mathrm{GeV}$ as well as total $p p$ cross sections

Figure 20.18: The dependence of the ρ parameter on the collision energy. The $p p$ (blue) and $p \bar{p}$ (green) data are taken from [1]. The TOTEM measurements are marked in red. The two points at 13 TeV correspond to two fit cases, discussed in [102], using the same data. The lines represent fits to the data using the COMPETE parameterization [22]. Figure from Ref. [102].
from the LHC available in the first half of 2015 (see Section 51 in [24]).
It is interesting that the Froissart-type $\ln ^{2} s$ asymptotics of the $p p$ total cross section are also supported by numerical results in lattice QCD [224]. Such a behaviour is also observed in the approach [225] based on Colour Glass Condensate saturation.
Finally, it is worth mentioning that the possibility that asymptotically the Pomeron intercept becomes smaller than $1, \alpha_{\mathbb{P}}(0)<$ 1 , and at very high energies the total cross section starts to decrease with energy, though highly unlikely, is not yet completely rejected. For instance, such a behaviour is expected in a theory with only the triple-Pomeron coupling, $g_{3 \mathbb{P}}$, and which neglects the more complicated multi-Pomeron vertices g_{m}^{n}, such as the $2 \rightarrow 2$ Pomeron coupling [226, 227].
It was also argued that in the case of an increasing (with energy) cross section the only regime consistent asymptotically with both the s - and the t-channel unitarities is that of a black disc whose radius increases as $R=c \cdot \ln s$ [228] (i.e. $R \propto(\ln s)^{\gamma}$, with $\gamma=1$ exactly).

20.8 Acknowledgements

It is a pleasure to thank Michael Albrow, Robert Cahn, Robert Ciesielski, Per Grafstrom, Frank Krauss, Paul Newman, Sergey Ostapchenko and Edward Sarkisyan-Grinbaum for discussions, suggestions and comments on this review. Special thanks to Graeme Watt who read the article through and helped to improve the presentation. MT is supported by MEYS of the Czech Republic within project LTT17018. VAK thanks the Institute of Physics of the Czech Academy of Sciences in Prague for hospitality.

References

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[2] J. Campbell, J. Huston and F. Krauss, The Black Book of Quantum Chromodynamics, Oxford University Press (2017), ISBN 9780199652747, URL https://global.oup.com/academic/product/ the-black-book-of-quantum-chromodynamics-9780199652747.
[3] R. J. Eden et al., The analytic S-matrix, Cambridge Univ. Press, Cambridge (1966).
[4] A. Martin, Lect. Notes Phys. 3, 1 (1969).
[5] P. D. B. Collins, An Introduction to Regge Theory and HighEnergy Physics, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, UK (2009),

ISBN 9780521110358, URL http://www-spires.fnal.gov/ spires/find/books/www?cl=QC793.3.R4C695.
[6] S. Donnachie et al., Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19, 1 (2002).
[7] V. N. Gribov, The theory of complex angular momenta: Gribov lectures on theoretical physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007), ISBN 9780521037037, 9780521818346, 9780511055041, URL http://www.cambridge.org/uk/ catalogue/catalogue.asp?isbn=0521307848.
[8] S. Ostapchenko, in "25th European Cosmic Ray Symposium (ECRS 2016) Turin, Italy, September 04-09, 2016," (2016), [arXiv:1612.09461].
[9] T. Sjostrand, Int. J. Mod. Phys. A3, 751 (1988).
[10] B. Andersson, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7, 1 (1997).
[11] W. Kittel and E. A. De Wolf, Soft multihadron dynamics (2005), ISBN 9789812562951.
[12] I. M. Dremin and A. B. Kaidalov, Phys. Usp. 49, 263 (2006), [Usp. Fiz. Nauk176,275(2006)].
[13] A. Buckley et al., Phys. Rept. 504, 145 (2011), [arXiv:1101.2599].
[14] R. Ciesielski and K. Goulianos, PoS ICHEP2012, 301 (2013), [arXiv:1205.1446].
[15] K. Akiba et al. (LHC Forward Physics Working Group), J. Phys. G43, 110201 (2016), [arXiv:1611.05079].
[16] G. D. Alkhazov, S. L. Belostotsky and A. A. Vorobev, Phys. Rept. 42, 89 (1978).
[17] E. L. Feinberg and I. Y. Pomeranchuk, Doklady Akad. Nauk SSSR 93, 439 (1953); E. L. Feinberg and I. Y. Pomeranchuk, Suppl. Nuovo Cimento III, serie X, 652 (1956).
[18] R. Engel, D. Heck and T. Pierog, Ann. Rev. Nucl. Part. Sci. 61, 467 (2011).
[19] M. Gell-Mann, in "High-energy physics. Proceedings, 11th International Conference, ICHEP'62, Geneva, Switzerland, Jul 4-11, 1962," 533-542 (1962).
[20] S. Frautschi, M. Gell-Mann and F. Zachariasen, Phys. Rev. 126, 6, 2204 (1962).
[21] K. G. Boreskov, A. B. Kaidalov and O. V. Kancheli, Phys. Atom. Nucl. 69, 1765 (2006), [Yad. Fiz.69,1802(2006)].
[22] J. R. Cudell et al. (COMPETE), Phys. Rev. Lett. 89, 201801 (2002), [hep-ph/0206172].
[23] C. Bourrely, J. Soffer and T. T. Wu, Eur. Phys. J. C28, 97 (2003), [hep-ph/0210264].
[24] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[25] A. Donnachie and P. V. Landshoff, Nucl. Phys. B231, 189 (1984).
[26] A. Donnachie and P. V. Landshoff, Phys. Lett. B296, 227 (1992), [hep-ph/9209205].
[27] S. Mandelstam, Nuovo Cim. 30, 1148 (1963).
[28] V. N. Gribov, I. Ya. Pomeranchuk and K. A. TerMartirosian, Phys. Lett. 9, 269 (1964).
[29] V. A. Khoze, A. D. Martin and M. G. Ryskin, Int. J. Mod. Phys. A30, 08, 1542004 (2015), [arXiv:1402.2778].
[30] E. Gotsman, E. Levin and U. Maor, Int. J. Mod. Phys. A30, 08, 1542005 (2015), [arXiv:1403.4531].
[31] S. Ostapchenko, Phys. Rev. D81, 114028 (2010), [arXiv:1003.0196].
[32] V. N. Gribov, Sov. Phys. JETP 26, 414 (1968), [Zh. Eksp. Teor. Fiz.53,654(1967)].
[33] U. Amaldi, M. Jacob and G. Matthiae, Ann. Rev. Nucl. Part. Sci. 26, 385 (1976).
[34] A. B. Kaidalov, Phys. Rept. 50, 157 (1979).
[35] V. Barone and E. Predazzi, High-Energy Particle Diffraction, volume v. 565 of Texts and Monographs in Physics, Springer-Verlag, Berlin Heidelberg (2002), ISBN 3540421076, URL http://www-spires.fnal.gov/spires/ find/books/www?cl=QC794.6.C6B37::2002.
[36] A. B. Kaidalov et al., Acta Phys. Polon. B34, 3163 (2003), [hep-ph/0303111].
[37] L. Frankfurt and M. Strikman, in E. M. Henley and S. D. Ellis, editors, "100 Years of Subatomic Physics," 363-423 (2013), [arXiv:1304.4308].
[38] V. A. Khoze et al., Eur. Phys. J. C69, 85 (2010), [arXiv:1005.4839].
[39] D. A. Fagundes et al., Phys. Rev. D88, 9, 094019 (2013), [arXiv:1306.0452].
[40] R. Fiore et al., Int. J. Mod. Phys. A24, 2551 (2009), [arXiv:0810.2902].
[41] I. M. Dremin, Phys. Usp. 56, 3 (2013), [Usp. Fiz. Nauk 183, 3 (2013)], [arXiv:1206.5474].
[42] L. Frankfurt et al., Phys. Rev. Lett. 101, 202003 (2008), [arXiv:0808.0182].
[43] G. Bertsch et al., Phys. Rev. Lett. 47, 297 (1981).
[44] B. Z. Kopeliovich, L. I. Lapidus and A. B. Zamolodchikov, JETP Lett. 33, 595 (1981), [Pisma Zh. Eksp. Teor. Fiz. 33, 612 (1981)].
[45] M. L. Good and W. D. Walker, Phys. Rev. 120, 1855 (1960).
[46] J. Pumplin, Phys. Rev. D8, 2899 (1973).
[47] M. Froissart, Phys. Rev. 123, 1053 (1961).
[48] A. Martin, Nuovo Cim. A42, 930 (1965).
[49] L. Lukaszuk and A. Martin, Nuovo Cim. A52, 122 (1967).
[50] A. A. Anselm and V. N. Gribov, Phys. Lett. 40B, 487 (1972).
[51] G. Cohen-Tannoudji, V. V. Ilyin and L. L. Jenkovszky, Lett. Nuovo Cim. 5S2, 957 (1972), [Lett. Nuovo Cim.5,957(1972)].
[52] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C18, 167 (2000), [hep-ph/0007359].
[53] G. Antchev et al. (TOTEM), Nucl. Phys. B899, 527 (2015), [arXiv:1503.08111].
[54] G. Antchev et al. (TOTEM), Eur. Phys. J. C79, 10, 861 (2019), [arXiv:1812.08283].
[55] L. Caneschi and A. Pignotti, Phys. Rev. Lett. 22, 1219 (1969).
[56] O. V. Kancheli, JETP Lett. 11, 267 (1970), [Pisma Zh. Eksp. Teor. Fiz. 11, 397 (1970)].
[57] A. H. Mueller, Phys. Rev. D4, 150 (1971).
[58] D. Amati, A. Stanghellini and S. Fubini, Nuovo Cim. 26, 896 (1962).
[59] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. 60B, 50 (1975); E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976), [Zh. Eksp. Teor. Fiz. 71,840 (1976)]; E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977), [Zh. Eksp. Teor. Fiz.72,377(1977)]; I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978), [Yad. Fiz.28,1597(1978)].
[60] B. L. Ioffe, V. S. Fadin and L. N. Lipatov, Quantum chromodynamics: Perturbative and nonperturbative aspects, volume 30, Cambridge Univ. Press (2010), ISBN 9781107424753, 9780521631488, 9780511717444, URL http://www.cambridge.org/de/knowledge/isbn/ item2710695.
[61] S. Ostapchenko, Phys. Rev. D83, 014018 (2011), [arXiv:1010.1869].
[62] J. L. Cardy, Nucl. Phys. B75, 413 (1974).
[63] A. B. Kaidalov et al., Phys. Lett. 45B, 493 (1973).
[64] E. G. S. Luna et al., Eur. Phys. J. C59, 1 (2009), [arXiv:0807.4115].
[65] T. Sjöstrand, Adv. Ser. Direct. High Energy Phys. 29, 191 (2018), [arXiv:1706.02166].
[66] K. Werner, F.-M. Liu and T. Pierog, Phys. Rev. C74, 044902 (2006), [hep-ph/0506232].
[67] V. A. Abramovsky, V. N. Gribov and O. V. Kancheli, Yad. Fiz. 18, 595 (1973), [Sov. J. Nucl. Phys. 18, 308 (1974)].
[68] G. Alberi and G. Goggi, Phys. Rept. 74, 1 (1981).
[69] K. A. Goulianos, Phys. Rept. 101, 169 (1983).
[70] D. Bernard et al. (UA4), Phys. Lett. B186, 227 (1987).
[71] R. E. Ansorge et al. (UA5), Z. Phys. C33, 175 (1986).
[72] N. A. Amos et al. (E710), Phys. Lett. B301, 313 (1993).
[73] F. Abe et al. (CDF), Phys. Rev. D50, 5535 (1994).
[74] G. Aad et al. (ATLAS), Eur. Phys. J. C72, 1926 (2012), [arXiv:1201.2808].
[75] V. Khachatryan et al. (CMS), Phys. Rev. D92, 1, 012003 (2015), [arXiv:1503.08689].
[76] B. Abelev et al. (ALICE), Eur. Phys. J. C73, 6, 2456 (2013), [arXiv:1208.4968].
[77] G. Aad et al. (ATLAS), Phys. Lett. B754, 214 (2016), [arXiv:1511.00502].
[78] G. Aad et al. (ATLAS), JHEP 02, 042 (2020), [arXiv:1911.00453].
[79] A. M. Sirunyan et al. (CMS and TOTEM) (2020), [arXiv:2002.12146].
[80] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C73, 2503 (2013), [arXiv:1306.2149].
[81] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C23, 311 (2002), [hep-ph/0111078].
[82] M. G. Albrow, T. D. Coughlin and J. R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010), [arXiv:1006.1289].
[83] M. Albrow, Int. J. Mod. Phys. A29, 1402006 (2014).
[84] H. G. Fischer, W. Geist and M. Makariev, Int. J. Mod. Phys. A29, 28, 1446005 (2014).
[85] A. Kirk, Int. J. Mod. Phys. A29, 28, 1446001 (2014), [arXiv:1408.1196].
[86] M. A. Reyes et al. (E690), Phys. Rev. Lett. 81, 4079 (1998).
[87] G. Gutierrez and M. A. Reyes, Int. J. Mod. Phys. A29, 28, 1446008 (2014), [arXiv:1409.8243].
[88] Y. L. Dokshitzer, D. Diakonov and S. I. Troian, Phys. Rept. 58, 269 (1980).
[89] M. Derrick et al. (ZEUS), Phys. Lett. B315, 481 (1993).
[90] T. Ahmed et al. (H1), Nucl. Phys. B429, 477 (1994).
[91] P. Newman and M. Wing, Rev. Mod. Phys. 86, 3, 1037 (2014), [arXiv:1308.3368].
[92] A. Aktas et al. (H1), Eur. Phys. J. C48, 715 (2006), [hepex/0606004].
[93] S. Chekanov et al. (ZEUS), Nucl. Phys. B816, 1 (2009), [arXiv:0812.2003].
[94] F. D. Aaron et al. (H1), Eur. Phys. J. C72, 2074 (2012), [arXiv:1203.4495].
[95] F. D. Aaron et al. (H1, ZEUS), Eur. Phys. J. C72, 2175 (2012), [arXiv:1207.4864].
[96] A. Aktas et al. (H1), JHEP 10, 042 (2007), [arXiv:0708.3217].
[97] A. Aktas et al. (H1), Eur. Phys. J. C50, 1 (2007), [hepex/0610076].
[98] S. Chekanov et al. (ZEUS), Nucl. Phys. B672, 3 (2003), [hep-ex/0307068].
[99] E. G. de Oliveira, A. D. Martin and M. G. Ryskin, Phys. Lett. B695, 162 (2011), [arXiv:1010.1366].
[100] G. Antchev et al. (TOTEM), Eur. Phys. J. C79, 2, 103 (2019), [arXiv:1712.06153].
[101] C. Augier et al. (UA4/2), Phys. Lett. B316, 448 (1993).
[102] G. Antchev et al. (TOTEM), Eur. Phys. J. C79, 9, 785 (2019), [arXiv:1812.04732].
[103] G. Antchev et al. (TOTEM), Eur. Phys. J. C80, 2, 91 (2020), [arXiv:1812.08610].
[104] G. Antchev et al. (TOTEM), EPL 101, 2, 21002 (2013).
[105] G. Antchev et al. (TOTEM), Phys. Rev. Lett. 111, 1, 012001 (2013).
[106] G. Aad et al. (ATLAS), Nucl. Phys. B889, 486 (2014), [arXiv:1408.5778].
[107] M. Aaboud et al. (ATLAS), Phys. Lett. B761, 158 (2016), [arXiv:1607.06605].
[108] M. M. Block and R. N. Cahn, Rev. Mod. Phys. 57, 563 (1985).
[109] F. Abe et al. (CDF), Phys. Rev. D50, 5550 (1994).
[110] C. Avila et al. (E811), Phys. Lett. B445, 419 (1999).
[111] W. Guryn, "Invited talk at the Workshop on Diffraction and Low-x Physics, Reggio Calabria, Italy, August 26thSeptember 1st, 2018," .
[112] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010).
[113] F. J. Nemes, PoS DIS2017, 059 (2018).
[114] G. Antchev et al. (TOTEM), EPL 95, 4, 41001 (2011), [arXiv:1110.1385].
[115] G. Antchev et al. (TOTEM), Eur. Phys. J. C76, 12, 661 (2016), [arXiv:1610.00603].
[116] J. Kaspar, "Invited talk at the meeting of the LHC Working Group on Forward Physics and Diffraction, CERN, Switzerland, December 16-17th, 2019,"
[117] V. A. Schegelsky and M. G. Ryskin, Phys. Rev. D85, 094024 (2012), [arXiv:1112.3243].
[118] A. Bruni, X. Janssen and P. Marage, in "Proceedings, HERA and the LHC Workshop Series on the implications of HERA for LHC physics: 2006-2008," 427-439 (2008), [arXiv:0812.0539].
[119] A. Levy, in "Proceedings, 17th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2009): Madrid, Spain, April 26-30, 2009," 177 (2009), [arXiv:0907.2178].
[120] J. R. Forshaw, R. Sandapen and G. Shaw, JHEP 11, 025 (2006), [hep-ph/0608161].
[121] A. Capella et al., Nucl. Phys. B593, 336 (2001), [hepph/0005049].
[122] V. S. Fadin and L. N. Lipatov, Phys. Lett. B429, 127 (1998), [hep-ph/9802290].
[123] M. Ciafaloni and G. Camici, Phys. Lett. B430, 349 (1998), [hep-ph/9803389].
[124] F. D. Aaron et al. (H1), JHEP 05, 032 (2010), [arXiv:0910.5831].
[125] C. Adloff et al. (H1), Eur. Phys. J. C13, 371 (2000), [hepex/9902019].
[126] J. Breitweg et al. (ZEUS), Eur. Phys. J. C6, 603 (1999), [hep-ex/9808020].
[127] S. Chekanov et al. (ZEUS), PMC Phys. A1, 6 (2007), [arXiv:0708.1478].
[128] M. Ciafaloni, Nucl. Phys. B296, 49 (1988).
[129] S. Catani, F. Fiorani and G. Marchesini, Phys. Lett. B234, 339 (1990).
[130] S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B336, 18 (1990).
[131] G. Marchesini, Nucl. Phys. B445, 49 (1995), [hepph/9412327].
[132] G. P. Salam, JHEP 07, 019 (1998), [hep-ph/9806482].
[133] M. Ciafaloni and D. Colferai, Phys. Lett. B452, 372 (1999), [hep-ph/9812366].
[134] H. Kowalski, L. N. Lipatov and D. A. Ross, Eur. Phys. J. C76, 1, 23 (2016), [arXiv:1508.05744].
[135] H. Kowalski et al., Eur. Phys. J. C77, 11, 777 (2017), [arXiv:1707.01460].
[136] S. J. Brodsky et al., JETP Lett. 70, 155 (1999), [hepph/9901229].
[137] R. D. Ball et al., Eur. Phys. J. C78, 4, 321 (2018), [arXiv:1710.05935].
[138] E. M. Levin and M. G. Ryskin, Phys. Rept. 189, 267 (1990).
[139] L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rept. 100, 1 (1983).
[140] E. M. Levin, M. G. Ryskin and A. G. Shuvaev, Nucl. Phys. B387, 589 (1992).
[141] A. H. Mueller, Phys. Rept. 73, 237 (1981).
[142] A. H. Mueller, Nucl. Phys. B415, 373 (1994).
[143] A. H. Mueller and B. Patel, Nucl. Phys. B425, 471 (1994), [hep-ph/9403256].
[144] N. N. Nikolaev, B. G. Zakharov and V. R. Zoller, JETP Lett. 59, 6 (1994), [hep-ph/9312268].
[145] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972), [Yad. Fiz.15,781(1972)]; G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977); Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977), [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)].
[146] I. Balitsky, Nucl. Phys. B463, 99 (1996), [hep-ph/9509348].
[147] I. Balitsky, Phys. Rev. D60, 014020 (1999), [hepph/9812311].
[148] Y. V. Kovchegov, Phys. Rev. D60, 034008 (1999), [hepph/9901281].
[149] G. Gustafson, Phys. Lett. B718, 1054 (2013), [arXiv:1206.1733].
[150] S. Chatrchyan et al. (CMS, TOTEM), Eur. Phys. J. C74, 10, 3053 (2014), [arXiv:1405.0722].
[151] Q.-D. Zhou (LHCF, ATLAS), EPJ Web Conf. 208, 05008 (2019).
[152] O. Adriani et al. (LHCf), Phys. Lett. B780, 233 (2018), [arXiv:1703.07678].
[153] M. Aaboud et al. (ATLAS), ATLAS-CONF-2017-075.
[154] C. Albajar et al. (UA1), Nucl. Phys. B335, 261 (1990).
[155] G. J. Alner et al. (UA5), Z. Phys. C33, 1 (1986).
[156] T. Aaltonen et al. (CDF), Phys. Rev. D79, 112005 (2009), [Erratum: Phys. Rev.D82,119903(2010)], [arXiv:0904.1098].
[157] F. Abe et al. (CDF), Phys. Rev. D41, 2330 (1990), [,119(1989)].
[158] K. Aamodt et al. (ALICE), Eur. Phys. J. C68, 89 (2010), [arXiv:1004.3034].
[159] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 105, 022002 (2010), [arXiv:1005.3299].
[160] B. B. Abelev et al. (ALICE), Eur. Phys. J. C73, 12, 2662 (2013), [arXiv:1307.1093].
[161] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 11, 112003 (2017), [arXiv:1706.10194].
[162] M. G. Ryskin, A. D. Martin and V. A. Khoze, Eur. Phys. J. C71, 1617 (2011), [arXiv:1102.2844].
[163] X.-N. Wang, Phys. Rept. 280, 287 (1997), [hepph/9605214].
[164] S. Ostapchenko and M. Bleicher, Universe 5, 5, 106 (2019).
[165] F. M. Liu et al., J. Phys. G28, 2597 (2002), [hepph/0109104].
[166] E. Gotsman, E. Levin and U. Maor, Acta Phys. Polon. Supp. 8, 777 (2015).
[167] Y. V. Kovchegov and E. Levin, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33, 1 (2012).
[168] E. A. De Wolf, I. M. Dremin and W. Kittel, Phys. Rept. 270, 1 (1996), [hep-ph/9508325].
[169] J. Adam et al. (ALICE), Eur. Phys. J. C77, 8, 569 (2017), [arXiv:1612.08975].
[170] V. Khachatryan et al. (CMS), JHEP 09, 091 (2010), [arXiv:1009.4122].
[171] K. Eggert et al., Nucl. Phys. B86, 201 (1975).
[172] B. Alver et al. (PHOBOS), Phys. Rev. C75, 054913 (2007), [arXiv:0704.0966].
[173] E. M. Levin and M. G. Ryskin, Sov. J. Nucl. Phys. 20, 280 (1975), [Yad. Fiz.20,519(1974)].
[174] A. Capella and A. Krzywicki, Phys. Rev. D18, 4120 (1978).
[175] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 6, 428 (2017), [arXiv:1705.04176].
[176] V. Khachatryan et al. (CMS), Phys. Lett. B765, 193 (2017), [arXiv:1606.06198].
[177] S. Gieseke, "Invited talk at the Workshop on Multiple Partonic Interactions at the LHC, Prague, Czech Republic, November 18th-26th, 2019,".
[178] S. Kundu, B. Mohanty and D. Mallick (2019), [arXiv:1912.05176].
[179] M. Diehl, D. Ostermeier and A. Schafer, JHEP 03, 089 (2012), [Erratum: JHEP03,001(2016)], [arXiv:1111.0910].
[180] T. Sjostrand and P. Z. Skands, JHEP 03, 053 (2004), [hepph/0402078].
[181] M. Aaboud et al. (ATLAS), Phys. Lett. B790, 595 (2019), [Phys. Lett.790,595(2019)], [arXiv:1811.11094].
[182] M. G. Ryskin and A. M. Snigirev, Phys. Rev. D83, 114047 (2011), [arXiv:1103.3495].
[183] B. Blok et al., Eur. Phys. J. C74, 2926 (2014), [arXiv:1306.3763].
[184] M. Aaboud et al. (ATLAS), JHEP 03, 157 (2017), [arXiv:1701.05390].
[185] R. Snellings, New J. Phys. 13, 055008 (2011), [arXiv:1102.3010].
[186] M. Aaboud et al. (ATLAS), Phys. Rev. C97, 2, 024904 (2018), [arXiv:1708.03559].
[187] N. Borghini, P. M. Dinh and J.-Y. Ollitrault, Phys. Rev. C63, 054906 (2001), [arXiv:nucl-th/0007063].
[188] A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C83, 044913 (2011), [arXiv:1010.0233].
[189] W. Li, Mod. Phys. Lett. A27, 1230018 (2012), [arXiv:1206.0148].
[190] B. Schenke, J. Phys. G38, 124009 (2011), [arXiv:1106.6012].
[191] K. G. Boreskov, A. B. Kaidalov and O. V. Kancheli, Eur. Phys. J. C58, 445 (2008), [arXiv:0809.0625].
[192] K. G. Boreskov, A. B. Kaidalov and O. V. Kancheli, Phys. Atom. Nucl. 72, 361 (2009), [Yad. Fiz.72,390(2009)].
[193] C. Bierlich and J. R. Christiansen, Phys. Rev. D92, 9, 094010 (2015), [arXiv:1507.02091].
[194] Z.-W. Lin et al., Phys. Rev. C72, 064901 (2005), [arXiv:nucl-th/0411110].
[195] V. Khachatryan et al. (CMS), CMS-PAS-FSQ-16-008.
[196] J. Bartels, Nucl. Phys. B175, 365 (1980).
[197] J. Kwiecinski and M. Praszalowicz, Phys. Lett. 94B, 413 (1980).
[198] M. A. Braun (1998), [hep-ph/9805394].
[199] J. Bartels, L. N. Lipatov and G. P. Vacca, Phys. Lett. B477, 178 (2000), [hep-ph/9912423].
[200] C. Ewerz (2003), [hep-ph/0306137].
[201] M. Fukugita and J. Kwiecinski, Phys. Lett. 83B, 119 (1979), [,625(1979)].
[202] M. G. Ryskin, Sov. J. Nucl. Phys. 46, 337 (1987), [Yad. Fiz.46,611(1987)].
[203] J. Bartels, C. Contreras and G. P. Vacca (2019), [arXiv:1910.04588].
[204] E. Nagy et al., Nucl. Phys. B150, 221 (1979).
[205] A. Breakstone et al., Phys. Rev. Lett. 54, 2180 (1985).
[206] A. Breakstone et al. (AMES-BOLOGNA-CERN-DORTMUND-HEIDELBERG-WARSAW), Nucl. Phys. B248, 253 (1984).
[207] V. M. Abazov et al. (D0), Phys. Rev. D86, 012009 (2012), [arXiv:1206.0687].
[208] M. Bozzo et al. (UA4), Phys. Lett. 155B, 197 (1985).
[209] D. Bernard et al. (UA4), Phys. Lett. B171, 142 (1986).
[210] E. Martynov and B. Nicolescu, Eur. Phys. J. C79, 6, 461 (2019), [arXiv:1808.08580].
[211] A. Donnachie and P. V. Landshoff, Phys. Lett. 123B, 345 (1983).
[212] A. Donnachie and P. V. Landshoff, Phys. Lett. B798, 135008 (2019), [arXiv:1904.11218].
[213] J. Finkelstein et al., Phys. Lett. B232, 257 (1989).
[214] V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Lett. B780, 352 (2018), [arXiv:1801.07065].
[215] W. Kilian and O. Nachtmann, Eur. Phys. J. C5, 317 (1998), [hep-ph/9712371].
[216] J. Bartels et al., Eur. Phys. J. C20, 323 (2001), [hepph/0102221].
[217] L. A. Harland-Lang et al., Phys. Rev. D99, 3, 034011 (2019), [arXiv:1811.12705].
[218] J. Olsson (H1), in "New trends in high-energy physics: Experiment, phenomenology, theory. Proceedings, International Conference, Yalta, Crimea, Ukraine, September 2229, 2001," 79-87 (2001), [hep-ex/0112012].
[219] C. Adloff et al. (H1), Phys. Lett. B544, 35 (2002), [hepex/0206073].
[220] T. Berndt (H1), Acta Phys. Polon. B33, 3499 (2002), [,182(2002)].
[221] W. Heisenberg, Z. Phys. 133, 65 (1952).
[222] G. Pancheri and Y. N. Srivastava, Eur. Phys. J. C77, 3, 150 (2017), [arXiv:1610.10038].
[223] M. M. Block, Phys. Rept. 436, 71 (2006), [hep-ph/0606215].
[224] M. Giordano, E. Meggiolaro and N. Moretti, JHEP 09, 031 (2012), [arXiv:1203.0961].
[225] E. Ferreiro et al., Nucl. Phys. A710, 373 (2002), [hepph/0206241].
[226] P. Grassberger and K. Sundermeyer, Phys. Lett. 77B, 220 (1978).
[227] K. G. Boreskov, in M. Olshanetsky and A. Vainshtein, edi-
tors, "Multiple facets of quantization and supersymmetry," 322-351 (2001), [hep-ph/0112325].
[228] V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Lett. B787, 167 (2018), [arXiv:1809.10406].
21. Experimental tests of gravitational theory (rev.) 409
22. Big-Bang cosmology (rev.)

422
23. Inflation (rev.) . 435
24. Big-Bang nucleosynthesis (rev.) 451
25. Cosmological parameters (rev.) 458
26. Neutrinos in cosmology (new) 467
27. Dark matter (new) 474
28. Dark energy (rev.) 490
29. Cosmic microwave background (rev.) 499
30. Cosmic rays (rev.) 510

21. Experimental Tests of Gravitational Theory

Revised August 2019 by T. Damour (IHES, Bures-sur-Yvette).

21.1 General Relativity

Einstein's theory of General Relativity (GR), the current "standard" theory of gravitation, describes gravity as a universal deformation of the Minkowski metric:
$g_{\mu \nu}\left(x^{\lambda}\right)=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\lambda}\right)$, where $\eta_{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$.
GR is classically defined by two postulates, embodied in the total action defining the theory:

$$
\begin{equation*}
S_{\mathrm{tot}}\left[g_{\mu \nu}, \psi, A_{\mu}, H\right]=c^{-1} \int d^{4} x\left(\mathcal{L}_{\mathrm{Ein}}+\mathcal{L}_{\mathrm{SM}}\right) \tag{21.2}
\end{equation*}
$$

The first postulate that states that the Lagrangian density describing the propagation and self-interaction of the gravitational field is

$$
\begin{equation*}
\mathcal{L}_{\operatorname{Ein}}\left[g_{\alpha \beta}\right]=\frac{c^{4}}{16 \pi G} \sqrt{g} g^{\mu \nu} R_{\mu \nu}\left(g_{\alpha \beta}\right) \tag{21.3}
\end{equation*}
$$

where G denotes Newton's constant, $g=-\operatorname{det}\left(g_{\mu \nu}\right), g^{\mu \nu}$ is the matrix inverse of $g_{\mu \nu}$, and where the Ricci tensor $R_{\mu \nu} \equiv R^{\alpha}{ }_{\mu \alpha \nu}$ is the only independent trace of the curvature tensor

$$
\begin{align*}
R_{\mu \beta \nu}^{\alpha} & =\partial_{\beta} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\sigma \beta}^{\alpha} \Gamma_{\mu \nu}^{\sigma}-\Gamma_{\sigma \nu}^{\alpha} \Gamma_{\mu \beta}^{\sigma} \tag{21.4}\\
\Gamma_{\mu \nu}^{\lambda} & =\frac{1}{2} g^{\lambda \sigma}\left(\partial_{\mu} g_{\nu \sigma}+\partial_{\nu} g_{\mu \sigma}-\partial_{\sigma} g_{\mu \nu}\right) \tag{21.5}
\end{align*}
$$

The second postulate states that $g_{\mu \nu}$ (and its associated connection) couples universally, and minimally, to all the bosonic (respectively fermionic) fields of the Standard Model by replacing everywhere the Minkowski metric $\eta_{\mu \nu}$ (respectively the flat Minkowski connection). Schematically (suppressing matrix indices and labels for the various gauge fields and fermions and for the Higgs doublet),

$$
\begin{align*}
& \mathcal{L}_{\mathrm{SM}}\left[\psi, A_{\mu}, H, g_{\mu \nu}\right]= \\
& -\frac{1}{4} \sum \sqrt{g} g^{\mu \alpha} g^{\nu \beta} F_{\mu \nu}^{a} F_{\alpha \beta}^{a}-\sum \sqrt{g} \bar{\psi} \gamma^{\mu}\left(D_{\mu}+\frac{1}{4} \omega_{i j \mu} \gamma^{i j}\right) \psi \\
& -\frac{1}{2} \sqrt{g} g^{\mu \nu} \overline{D_{\mu} H} D_{\nu} H-\sqrt{g} V(H)-\sum \lambda \sqrt{g} \bar{\psi} H \psi \tag{21.6}
\end{align*}
$$

Here $F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{A} f^{a}{ }_{b c} A_{\mu}^{b} A_{\nu}^{c}$ and the (representationdependent) gauge-field covariant derivative $D_{\mu}=\partial_{\mu}+g_{A} A_{\mu}^{a} T_{a}^{\mathrm{rep}}$ are defined as in Special Relativity, while the derivative of spin$\frac{1}{2}$ fermions also includes a coupling to the gravitational "spinconnection" $\omega_{i j \mu}=-\omega_{j i \mu}$, via its contraction with $\gamma^{i j}=$ $\frac{1}{2}\left(\gamma^{i} \gamma^{j}-\gamma^{j} \gamma^{i}\right)$, where $i, j=0,1,2,3$ and $\gamma^{i}=e^{i}{ }_{\mu} \gamma^{\mu}$ are usual (numerical) Dirac matrices satisfying $\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}=2 \eta^{i j}$. The connection components $\omega_{i j \mu}$ are defined in terms of the local orthonormal frame (vierbein) $e^{i}{ }_{\mu}$ (such that $g_{\mu \nu}=\eta_{i j} e^{i}{ }_{\mu} e^{j}{ }_{\nu}$) used to describe the components of the various fermions ψ, and of its inverse $e_{i}{ }^{\mu}$ (such that $e_{i}{ }^{\mu} e^{j}{ }_{\mu}=\delta_{i}^{j}$), by $\omega_{i j \mu}=$ $\frac{1}{2}\left(C_{i[j k]}+C_{j[k i]}-C_{k[i j]}\right) e_{\mu}^{k}$ where $C_{i[j k]}=\eta_{i s} C^{s}{ }_{[j k]}$, with $C^{i}{ }_{[j k]} \equiv\left(\partial_{\mu} e^{i}{ }_{\nu}-\partial_{\nu} e^{i}{ }_{\mu}\right) e_{j}{ }^{\mu} e_{k}{ }^{\nu}$. From the total action follow Einstein's field equations,

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu} \tag{21.7}
\end{equation*}
$$

Here $R=g^{\mu \nu} R_{\mu \nu}$ is the scalar curvature, and $T_{\mu \nu} \equiv g_{\mu \alpha} g_{\nu \beta} T^{\alpha \beta}$ where $T^{\mu \nu}=(2 / \sqrt{g}) \delta \mathcal{L}_{\mathrm{SM}} / \delta g_{\mu \nu}$ is the (symmetric) energymomentum tensor of the Standard Model matter. The theory is invariant under arbitrary coordinate transformations: $x^{\prime \mu}=$ $f^{\mu}\left(x^{\nu}\right)$ (as well as under arbitrary local $\mathrm{SO}(3,1)$ rotations of the vierbein, $\left.e^{\prime i}{ }_{\mu}=\Lambda^{i}{ }_{j}(x) e^{\prime j}{ }_{\mu}\right)$. To solve the field equations Eq. (21.7), one needs to fix the coordinate gauge freedom, e.g., the "harmonic gauge" (which is the analogue of the Lorenz gauge, $\partial_{\mu} A^{\mu}=0$, in electromagnetism) corresponds to imposing the condition $\partial_{\nu}\left(\sqrt{g} g^{\mu \nu}\right)=0$.

In this Review, we only consider the classical limit of gravitation (i.e. classical matter and classical gravity). Quantum
gravitational effects are expected (when considered at low energy) to correct the classical action Eq. (21.2) by additional terms involving quadratic and higher powers of the curvature tensor. This suggests that the validity of classical gravity extends (at most) down to length scales of order the Planck length $L_{P}=\sqrt{\hbar G / c^{3}} \simeq 1.62 \times 10^{-33} \mathrm{~cm}$, i.e., up to energy scales of order the Planck energy $E_{P}=\sqrt{\hbar c^{5} / G} \simeq 1.22 \times 10^{19} \mathrm{GeV}$. Considering quantum matter in a classical gravitational background also poses interesting challenges, notably the possibility that the zeropoint fluctuations of the matter fields generate a nonvanishing vacuum energy density $\rho_{\text {vac }}$, corresponding to a term $-\sqrt{g} \rho_{\text {vac }}$ in $\mathcal{L}_{\mathrm{SM}}$ [1]. This is equivalent to adding a "cosmological constant" term $+\Lambda g_{\mu \nu}$ on the left-hand side of Einstein's equations, Eq. (21.7), with $\Lambda=8 \pi G \rho_{\text {vac }} / c^{4}$. Recent cosmological observations (see the following Reviews) suggest a positive value of Λ corresponding to $\rho_{\mathrm{vac}} \approx\left(2.3 \times 10^{-3} \mathrm{eV}\right)^{4}$. Such a small value has a negligible effect on the non-cosmological tests discussed below.

21.2 Key features and predictions of GR

The definition of GR recalled above makes predictions both about the coupling of gravity to matter, and about the structure of the gravitational field beyond its previously known Newtonian aspects.

21.2.1 Equivalence Principle

First, the universal nature of the coupling between $g_{\mu \nu}$ and the Standard Model matter postulated in Eq. (21.6) entails many observable consequences that go under the generic name of "Equivalence Principle".

A first aspect of the Equivalence Principle is that the outcome of a local non-gravitational experiment, referred to local standards, should not depend on where, when, and in which locally inertial frame, the experiment is performed. This means, for instance, that local experiments should neither feel the cosmological evolution of the Universe (constancy of the "constants"), nor exhibit preferred directions in spacetime (isotropy of space, local Lorentz invariance).

A second aspect of the Equivalence Principle is that the kinetic terms, $g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ or $\bar{\psi} \gamma^{i} e_{i}{ }^{\mu} \partial_{\mu} \psi$, of all the fields of Nature (including the gravitational field itself) are universally coupled to the same curved spacetime metric $g_{\mu \nu}(x)=\eta_{i j} e^{i}{ }_{\mu} e^{j}{ }_{\nu}$. This implies in particular that all massless fields should propagate with the same speed.

A third aspect of the Equivalence Principle is that two (electrically neutral) test bodies dropped at the same location and with the same velocity in an external gravitational field should fall in the same way, independently of their masses and compositions ("universality of free fall" or "Weak Equivalence Principle"). In addition, the study (using the nonlinear structure of GR) of the motion, in an external gravitational field, of bodies having a nonnegligible, or even strong, self-gravity (such as planets, neutron stars, or black holes) has shown that the latter property of free-fall universality holds equally well for self-gravitating bodies ("Strong Equivalence Principle").

A last aspect of the Equivalence Principle concerns various universality features of the gravitational redshift of clock rates. GR predicts that, when intercomparing them by means of electromagnetic signals, two (non gravity-based) clocks located along two different spacetime worldlines should exhibit a universal difference in clock rate that depends on their worldlines, but that is independent of their nature and constitution. For instance, two clocks located at two different positions in a static external Newtonian potential $U(\boldsymbol{x})=\sum G m / r$ should exhibit, when intercompared by electromagnetic signals, the difference in clock rate, $\tau_{1} / \tau_{2}=\nu_{2} / \nu_{1}=1+\left[U\left(\boldsymbol{x}_{1}\right)-U\left(\boldsymbol{x}_{2}\right)\right] / c^{2}+O\left(1 / c^{4}\right)$, ("universal gravitational redshift of clock rates"). Similarly, the comparison of atomic-transition frequencies when observing on Earth a transition that took place on a far-away galaxy should involve (at lowest order in cosmological perturbations) the universal cosmological redshift factor $1+z=a\left(t_{\text {reception }}\right) / a\left(t_{\text {emission }}\right)$ between the Friedmann scale factors $a(t)$ (see below).
21.2.2 Quasi-stationary, weak-field (post-Newtonian) gravity
When applied to quasi-stationary, weak-field gravitational fields, Einstein equations, Eq. (21.7), entail a spacetime structure which predicts deviations from Newtonian gravity of the first postNewtonian (1PN) order, i.e., fractionally smaller than Newtonian effects by a factor $O\left(v^{2} / c^{2}\right) \sim O\left(G M /\left(c^{2} r\right)\right)$. The 1PN-accurate solution of Eq. (21.7) reads (in harmonic gauge)

$$
\begin{align*}
& g_{00}=-1+\frac{2}{c^{2}} V-\frac{2}{c^{4}} V^{2}+O\left(\frac{1}{c^{6}}\right) \\
& g_{0 i}=-\frac{4}{c^{3}} V_{i}+O\left(\frac{1}{c^{5}}\right) \\
& g_{i j}=\delta_{i j}\left[1+\frac{2}{c^{2}} V\right]+O\left(\frac{1}{c^{4}}\right) \tag{21.8}
\end{align*}
$$

where $x^{0}=c t, i, j=1,2,3$, and where the scalar, V, and vector, $V_{i},($ retarded $)$ potentials are defined in terms of the sources $\sigma=$ $\frac{T^{00}+T^{i i}}{c^{2}}, \sigma_{i}=\frac{T^{0 i}}{c}$ by

$$
\begin{equation*}
V=\square_{\mathrm{ret}}^{-1}[-4 \pi G \sigma] ; V_{i}=\square_{\mathrm{ret}}^{-1}\left[-4 \pi G \sigma_{i}\right] \tag{21.9}
\end{equation*}
$$

In GR the gravitational interaction of N moving point masses (labelled by $A=1, \ldots, N)$ is described by a reduced (classical) action that admits a diagrammatic expansion:

$$
\begin{equation*}
S_{\text {reduced }}=S^{\text {free }}+S^{\text {tree-level }}+S^{\text {one-loop }}+\cdots \tag{21.10}
\end{equation*}
$$

where the free (special-relativistic) action reads

$$
\begin{align*}
S^{\text {free }} & =-\sum_{A} \int m_{A} c \sqrt{-\eta_{\mu \nu} d x_{A}^{\mu} d x_{A}^{\nu}} \\
& =-\sum_{A} \int d t m_{A} c^{2} \sqrt{1-\mathbf{v}_{A}^{2} / c^{2}} \tag{21.11}
\end{align*}
$$

while the tree-level (one-graviton-exchange) interaction term reads
$S^{\text {tree-level }}=-\frac{8 \pi G}{c^{4}} \int d^{4} x T^{\mu \nu} \square^{-1}\left(T_{\mu \nu}-\frac{1}{2} T \eta_{\mu \nu}\right)=\int d t L^{(2)}$.
Corresponding to the 1PN-accurate metric of Eq. (21.8), the 1PNaccurate expansion of the latter tree-level, two-body interaction Lagrangian $L^{(2)}$ reads (with $r_{A B} \equiv\left|\mathbf{x}_{A}-\mathbf{x}_{B}\right|, \mathbf{n}_{A B} \equiv\left(\mathbf{x}_{A}-\right.$ $\left.\mathbf{x}_{B}\right) / r_{A B}$)

$$
\begin{align*}
L^{(2)}= & \frac{1}{2} \sum_{A \neq B} \frac{G m_{A} m_{B}}{r_{A B}}\left[1+\frac{3}{2 c^{2}}\left(\boldsymbol{v}_{A}^{2}+\boldsymbol{v}_{B}^{2}\right)-\frac{7}{2 c^{2}}\left(\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{B}\right)\right. \\
& \left.-\frac{1}{2 c^{2}}\left(\boldsymbol{n}_{A B} \cdot \boldsymbol{v}_{A}\right)\left(\boldsymbol{n}_{A B} \cdot \boldsymbol{v}_{B}\right)+O\left(\frac{1}{c^{4}}\right)\right] \tag{21.13}
\end{align*}
$$

The two-body interactions, Eq. (21.13), exhibit v^{2} / c^{2} corrections to Newton's $1 / r$ potential induced by spin-2 exchange ("gravitomagnetism"). Consistency at the 1PN level, $v^{2} / c^{2} \sim G m / r c^{2}$, requires that one also considers the three-body interactions contained in the one-loop contribution $S^{\text {one-loop }}$, corresponding to terms induced by some of the three-graviton vertices and other non-linearities (terms $O\left(h^{2}\right)$ and $O(h T)$ in Eq. (21.15) below), i.e., to the $O\left(V^{2}\right)$ term in Eq. (21.8):

$$
\begin{equation*}
L^{(3)}=-\frac{1}{2} \sum_{B \neq A \neq C} \frac{G^{2} m_{A} m_{B} m_{C}}{r_{A B} r_{A C} c^{2}}+O\left(\frac{1}{c^{4}}\right) \tag{21.14}
\end{equation*}
$$

21.2.3 Gravitational Waves in GR

The linearized approximation to Einstein's field equations, Eq. (21.7), in harmonic gauge $\partial^{\nu}\left(h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}\right)=0$ (with $h \equiv \eta^{\mu \nu} h_{\mu \nu}$), reads

$$
\begin{equation*}
\square h_{\mu \nu}=-\frac{16 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} T \eta_{\mu \nu}\right)+O\left(h^{2}\right)+O(h T) \tag{21.15}
\end{equation*}
$$

Outside of any source (i.e., when $T_{\mu \nu}=0$), this yields $\square h_{\mu \nu}=0$, with $\partial^{\nu}\left(h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}\right)=0$. The generic linearized solution (modulo the diffeomorphism freedom) of the latter vacuum Einstein equations can be written as (with $k^{2}=k \cdot k=\eta_{\mu \nu} k^{\mu} k^{\nu}$, $\left.k \cdot x=k_{\mu} x^{\mu}\right)$

$$
\begin{equation*}
h_{\mu \nu}(x)=\int d^{4} k \delta\left(k^{2}\right) \epsilon_{\mu \nu}(k) e^{i k \cdot x} \tag{21.16}
\end{equation*}
$$

where the polarization tensor $\epsilon_{\mu \nu}(k)$ must be transverse $\left(\epsilon_{\mu \nu} k^{\nu}=\right.$ $0)$ and traceless $\left(\eta^{\mu \nu} \epsilon_{\mu \nu}=0\right)$. In addition, $\epsilon_{\mu \nu}(k)$ can be freely submitted to the gauge freedom $\epsilon_{\mu \nu}^{\prime}=\epsilon_{\mu \nu}+\xi_{\mu} k_{\nu}+\xi_{\nu} k_{\mu}$. This implies that gravitational waves (GW) propagate with the speed of light, and (like electromagnetic waves) have only two independent polarizations. In a frame where, say, $k^{\mu}=(c k, 0,0, k)$, the two independent linear polarization tensors can be taken to have components only in the transverse 1-2 plane, of the following form: $\epsilon_{11}^{+}=-\epsilon_{22}^{+}=\epsilon^{+}$, with $\epsilon_{12}^{+}=\epsilon_{21}^{+}=0$; or $\epsilon_{12}^{\times}=+\epsilon_{21}^{\times}=\epsilon^{\times}$, with $\epsilon_{11}^{\times}=\epsilon_{22}^{\times}=0$. Under a little-group rotation of angle θ in the 1-2 plane, the two circular polarization amplitudes $\epsilon^{(\pm)}=\epsilon^{+} \mp i \epsilon^{\times}$ vary as $\epsilon^{\prime(\pm)}=e^{ \pm 2 i \theta} \epsilon^{(\pm)}$, thereby characterizing the helicity-2 nature of GWs.

When solving the inhomogeneous equation Eq. (21.15), taking into account the nonlinear contributions $O\left(h^{2}\right)+O(h T)$, one finds that, to lowest order, the GW amplitude emitted at large distances by a matter distribution is given by the following "quadrupole formula"

$$
\begin{equation*}
h_{i j}^{\mathrm{TT}}(T, \mathbf{X}) \approx \frac{2 G}{c^{4}} P_{i j a b}^{\mathrm{TT}}(\mathbf{N}) \frac{\ddot{Q}_{a b}(T-R / c)}{R} \tag{21.17}
\end{equation*}
$$

where $Q_{i j}(t)=\int d^{3} x \sigma(t, \mathbf{x})\left(x^{i} x^{j}-\frac{1}{3} \delta_{i j} \mathbf{x}^{\mathbf{2}}\right)(a, b, i, j=1,2,3)$ is the quadrupole moment of the source, $R=|\mathbf{X}|$ the distance to the source, $\mathbf{N}=\mathbf{X} / R$ the unit direction from the source to the observer, and $P_{i j a b}^{\mathrm{TT}}(\mathbf{N})=\left(\delta_{i a}-N_{i} N_{a}\right)\left(\delta_{j b}-N_{j} N_{b}\right)-\frac{1}{2}\left(\delta_{i j}-\right.$ $\left.N_{i} N_{j}\right)\left(\delta_{a b}-N_{a} N_{b}\right)$ the transverse-traceless projector onto the 2-plane orthogonal to \mathbf{N}.

21.2.4 Strong gravitational fields: neutron stars and black holes

The nonlinear structure of Einstein's equations implies many predictions for strong gravitational fields that distinguish GR from Newtonian gravity. For instance, in Newtonian gravity, there is no upper limit to the dimensionless gravitational potential U / c^{2}, with U satisfying Poisson's equation $\Delta U=-4 \pi G \rho$, where ρ denotes the Newtonian mass density. By contrast, in GR, the dimensionless surface gravitational potential $G M /\left(c^{2} R\right)$ of a spherically symmetric (perfect fluid) body cannot exceed $\frac{4}{9}$ [2].

Given an equation of state $p=f(\rho)$ modeling the interior of a (cold) spherically symmetric body (say a non-rotating neutron star), Einstein equations, Eq. (21.7), with $T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}+$ $p g^{\mu \nu}$, and
$g_{\mu \nu} d x^{\mu} d x^{\nu}=-e^{2 \Phi(r)} c^{2} d t^{2}+\frac{d r^{2}}{1-\frac{2 G M(r)}{c^{2} r}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$,
yield the following Tolman-Oppenheimer-Volkoff radial equations:

$$
\begin{align*}
p^{\prime}(r) & =-\frac{G\left(\rho+p / c^{2}\right)\left(M(r)+4 \pi r^{3} p / c^{2}\right)}{r^{2}\left(1-2 G M(r) /\left(c^{2} r\right)\right)} \tag{21.19}\\
M^{\prime}(r) & =4 \pi r^{2} \rho \tag{21.20}\\
\Phi^{\prime}(r) & =\frac{G\left(M(r)+4 \pi r^{3} p / c^{2}\right)}{r^{2}\left(1-2 G M(r) /\left(c^{2} r\right)\right)} \tag{21.21}
\end{align*}
$$

In the exterior of the star $(r \geq R)$, the metric takes the Schwarzschild form

$$
\begin{align*}
g_{\mu \nu} d x^{\mu} d x^{\nu}= & -\left(1-\frac{2 G M}{c^{2} r}\right) c^{2} d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{c^{2} r}} \tag{21.22}\\
& +r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{align*}
$$

where $M \equiv M(R)$ is the total gravitational mass of the star. GR predicts, for any given $p=f(\rho)$, several (in principle) observable
features of neutron stars, such as: (i) the maximum mass of a neutron star; (ii) the relation between the radius R and the total mass M; (iii) the dimensionless surface gravitational potential $G M /\left(c^{2} R\right)$ (linked to the surface redshift $\sqrt{-g_{00}}=\sqrt{1-\frac{2 G M}{c^{2} R}}$ measured by an observer at infinity); (iv) the moment of inertia; and (v) the Love number (tidal polarizability). The current uncertainty on the equation of state of a neutron star yields the GR-predicted approximate range for the maximum mass of nonrotating neutron stars $1.5 M_{\odot} \lesssim M_{\max } \lesssim 2.5 M_{\odot}$, and the absolute upper bound $M_{\max }<3 M_{\odot}$ [3]. The surface gravitational potential of a typical neutron star is $G M / c^{2} R_{\mathrm{NS}} \simeq 0.17$, which is a factor $\sim 10^{8}$ higher than the surface potential of the Earth, and a mere factor 3 below the black hole limit $G M / c^{2} R_{\mathrm{BH}}=\frac{1}{2}$ to be discussed next.

The existence of a maximum mass for a neutron star led Oppenheimer and Snyder [4] to predict that the end point of stellar evolution for sufficiently heavy stars, after exhaustion of all thermonuclear sources of energy, will be what are now called "black holes." The latter are solutions of Einstein's equations whose past structure involves a gravitationally collapsing star, but whose presently observable structure is essentially described (for non-rotating black holes) by the vacuum Schwarzschild solution Eq. (21.22). It took many years for theoretical (and mathematical) physicists to understand that the apparent singularity of the Schwarzschild solution at $r=\frac{2 G M}{c^{2}}$ was a coordinate singularity and that the Schwarzschild spacetime was regular at the "black hole horizon", $R_{\mathrm{BH}} \equiv \frac{2 G M}{c^{2}}$. The rotating analog of the Schwarzschild spacetime is the Kerr black hole [5].

Black holes are outstanding consequences of GR which enjoy many remarkable properties, notably: (i) presence of a one-way surface (the horizon) for all waves and particles; (ii) absence of "hair" (i.e., barring a possible electric charge, their structure is fully described by only two parameters, total mass, M, and total angular momentum, $J \leq G M^{2} / c$); (iii) existence of a spectrum of damped quasi-normal vibrational modes; and (iv) a behavior under external perturbations similar to ordinary physical objects satisfying the laws of (dissipative) thermodynamics. Moreover, though no classical waves or particles can get out of the horizon, black holes are predicted to slowly evaporate via quantum particle creation.

21.2.5 Cosmology

To complete our short tour of the main predictions of GR, let us mention that GR offers the current standard framework for describing the large-scale structure of the Cosmos, from the nearly homogeneous Big Bang (and its plausible inflationary beginning) to the current inhomogeneous Universe undergoing an accelerated expansion. The spacetime structure on large (temporal and spatial) scales is well described by a solution of Einstein's equations of the form

$$
\begin{align*}
d s^{2}= & -(1+2 \Phi(t, \mathbf{x})) c^{2} d t^{2}+2 W_{i}(t, \mathbf{x}) d t d x^{i} \\
& +a^{2}(t)\left((1-2 \Psi(t, \mathbf{x})) \delta_{i j}+h_{i j}(t, \mathbf{x})\right) d x^{i} d x^{j} \tag{21.23}
\end{align*}
$$

where, after a suitable gauge-fixing [6], $W_{i}(t, \mathbf{x})$ is transverse, while $h_{i j}(t, \mathbf{x})$ is transverse and traceless. The source $T^{\mu \nu}$ must involve a certain number of postulated ingredients: an inflaton field; the matter of the Standard Model; a dark matter component; and a cosmological constant contribution $T_{\Lambda}^{\mu \nu}=-\rho_{\mathrm{vac}} g^{\mu \nu}$, with $\rho_{\mathrm{vac}} \equiv c^{4} \Lambda /(8 \pi G)$. The scale factor $a(t)$ of the Friedmann background metric $d s_{0}^{2}=-c^{2} d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}$ satisfies the GR-predicted Friedmann equations (with vanishing spatial curvature $k=0$),

$$
\begin{align*}
H^{2} & \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho_{\mathrm{tot}} \tag{21.24}\\
\frac{\ddot{a}}{a} & =-\frac{4 \pi G}{3}\left(\rho_{\mathrm{tot}}+\frac{3}{c^{2}} p_{\mathrm{tot}}\right) \tag{21.25}
\end{align*}
$$

while the scalar $(\Phi(t, \mathbf{x}), \Psi(t, \mathbf{x}))$, vector $\left(W_{i}(t, \mathbf{x})\right)$, and tensor ($h_{i j}(t, \mathbf{x})$) inhomogeneous perturbations satisfy some GRpredicted propagation equations (coupled to matter perturbations); see [6] and the following Reviews. When the cosmic fluid is
well approximated by a perfect fluid, Einstein's equations predict the following link between the scalar perturbations

$$
\begin{equation*}
\Phi(t, \mathbf{x})=\Psi(t, \mathbf{x}) \tag{21.26}
\end{equation*}
$$

21.3 A roadmap of parametrizations of deviations from GR, and of modified gravity

As will be discussed below, all currently performed gravitational experiments are compatible with GR. However, similarly to what is done in discussions of precision electroweak experiments, it is useful to quantify the significance of precision gravitational experiments by parameterizing possible deviations from GR. One can distinguish two main approaches to considering, and parameterizing, deviations from GR: (i) theory-agnostic phenomenological approaches; or, (ii) the study of the predictions of specific classes of alternative theories of gravity. Both types have led to useful ways of discussing tests of gravity. Both types also have their limitations. Considering them together leads to cross-fertilization.
21.3.1 Theory-agnostic phenomenological approaches to parameterizing deviations

from $G R$

The theory-agnostic phenomenological approach is the oldest, and, arguably, the most robust one. It essentially consists in starting from specific observable predictions within the considered standard theory, and of deforming them by introducing some free parameters measuring either deviations from effects already present within the standard theory, or new effects absent from the standard theory. A classic example is the periastron advance of Mercury (and the other planets). When working within Newtonian gravity as a standard theory of gravity, the rate of periastron advance of Mercury, $\dot{\omega}$, is (when neglecting the quadrupole moment of the Sun) a calculable function of the masses and semi-major axes of the other planets of the solar system, say $\dot{\omega}^{\text {Newton }}\left(m_{i}, a_{i}\right)$. However, $\dot{\omega}$ is also a directly observable quantity, so that one can parameterize the periastron advance of Mercury by writing

$$
\begin{equation*}
\dot{\omega}^{\text {obs }}=\dot{\omega}^{\text {Newton }}\left(m_{i}, a_{i}\right)+\Delta \dot{\omega} \tag{21.27}
\end{equation*}
$$

Using other observable data to determine some "observed" values of the m_{i} 's and a_{i} 's, one can then measure the anomalous periastron precession $\Delta \dot{\omega}$ and see whether it is compatible with zero, or not. As is well-known, Leverrier used such a methodology and, in 1859, measured an anomalous periastron precession of about $\Delta \dot{\omega} \simeq 38$ arcsec/century (later re-estimated at 43 arcsec/century), which was explained in 1915 as a GR prediction. Let us discuss further examples of the use of such theoryagnostic approaches for discussing deviations from GR.

21.3.2 Parameterized post-Newtonian (PPN) formalism.

When considering the weak-field slow-motion limit appropriate to describing gravitational experiments in the solar system, it has been traditional to parameterize possible (long-range) deviations from the GR-predicted 1PN metric by introducing extra dimensionless coefficients in the various terms of the metric of Eq. (21.8). The minimal version of the parameterized post-Newtonian (PPN) formalism (essentially due to Eddington) involves only two parameters β and γ, namely

$$
\begin{align*}
g_{00} & =-1+\frac{2}{c^{2}} V-\frac{2 \beta}{c^{4}} V^{2}+O\left(\frac{1}{c^{6}}\right) \tag{21.28}\\
g_{0 i} & =-\frac{2(\gamma+1)}{c^{3}} V_{i}+O\left(\frac{1}{c^{5}}\right) \tag{21.29}\\
g_{i j} & =\delta_{i j}\left[1+\frac{2 \gamma}{c^{2}} V\right]+O\left(\frac{1}{c^{4}}\right) \tag{21.30}
\end{align*}
$$

with V and V_{i} defined by Eq. (21.9), with the same vectorial source $\sigma_{i}=\frac{T^{0 i}}{c}$, but a modified scalar source

$$
\begin{equation*}
\sigma^{\mathrm{PPN}}=\frac{1}{c^{2}}\left(\left[1+(3 \gamma-2 \beta-1) \frac{V}{c^{2}}\right] T^{00}+\gamma T^{i i}\right) \tag{21.31}
\end{equation*}
$$

In $\mathrm{GR}, \beta^{\mathrm{GR}}=1$ and $\gamma^{\mathrm{GR}}=1$, so that deviations from GR are parameterized by $\bar{\beta} \equiv \beta-1$ and $\bar{\gamma} \equiv \gamma-1$. Richer versions of the

PPN formalism (involving up to ten parameters) were developed in interaction with the study of classes of alternative theories of gravity $[7,8]$. This led to parameterizing new types of contributions to the 1PN metric that are absent in the GR framework

When deriving the 1PN-accurate dynamics of N point masses predicted by the PPN-modified metric, Eq. (21.28), one finds that the free Lagrangian is not modified (because we are considering here a Lorentz-invariant subclass of PPN metrics), while there are modifications of both the two-body Lagrangian, $L^{(2)}$, Eq. (21.13), and the three-body one, $L^{(3)}$, Eq. (21.14). More precisely, denoting $\eta \equiv 4 \bar{\beta}-\bar{\gamma}$, the Newtonian interaction energy term in Eq. (21.13) is modified into $G_{A B} m_{A} m_{B} / r_{A B}$, with a body-dependent gravitational "constant"

$$
\begin{equation*}
G_{A B}=G\left[1+\eta\left(E_{A}^{\mathrm{grav}} / m_{A} c^{2}+E_{B}^{\mathrm{grav}} / m_{B} c^{2}\right)+O\left(1 / c^{4}\right)\right] \tag{21.32}
\end{equation*}
$$

where $E_{A}^{\text {grav }}$ denotes the gravitational binding energy of body A. In addition, there is the additional contribution $+\bar{\gamma}\left(\boldsymbol{v}_{A}-\boldsymbol{v}_{B}\right)^{2} / c^{2}$ in the brackets on the right-hand side of $L^{(2)}$, Eq. (21.13). As for the three-body interaction term $L^{(3)}$, Eq. (21.14), it is modified by the overall factor $1+2 \bar{\beta}$.
These results show how the introduction of the two minimal PPN deviation parameters $\bar{\beta} \equiv \beta-1$ and $\bar{\gamma} \equiv \gamma-1$ suffices to introduce many different observable effects. Some of them (the ones linked with $\bar{\gamma}$) concern deviations at the linearized (one-graviton-exchange) level (and affect, for instance, light deflection and time-delay effects), while the deviation parameter $\bar{\beta}$ parameterizes effects linked to the cubic vertex of Einstein's gravity (and affects, for instance, periastron precession). Of particular interest is the fact that Eq. (21.32) shows that the combination $\eta \equiv 4 \bar{\beta}-\bar{\gamma}$ parameterizes a violation of the Strong Equivalence Principle, because the gravitational interaction between self-gravitating bodies is seen to be influenced by the gravitational binding energy of each body [9]. As stated above, this effect is absent in GR (where $\left.\eta^{\mathrm{GR}}=0\right)$. This is an example where the fact of contrasting GR with some deviations from it gives physical significance to a null effect in GR (namely the universality of free fall of self-gravitating bodies).

Finally, one can extend the PPN formalism by allowing for a slow, phenomenological time variation of Newton's constant:

$$
\begin{equation*}
G(t)=G_{0}\left[1+\frac{\dot{G}_{0}}{G_{0}}\left(t-t_{0}\right)\right] \tag{21.33}
\end{equation*}
$$

Here, one assumes that there exist units in which the masses, m_{i}, of elementary particles stay constant, and that G is measured in such units. A possible time variation of G then corresponds to a possible common variation of the dimensionless couplings $G m_{i}^{2} /(\hbar c)$.

21.3.3 Parameterized post-Keplerian (PPK) formalism.

The discovery of pulsars (i.e., rotating neutron stars emitting a beam of radio noise) in gravitationally bound orbits [10, 11] has given us our first experimental handle on a regime of relativistic gravity going significantly beyond the uniformly weak-field, and quasi-stationary regime of solar-system gravity. Binary pulsars allow us to probe some radiative effects, and also some strong-gravitational-field effects. In these systems, the finite speed of propagation of the gravitational interaction between the pulsar and its companion generates damping-like terms at order $(v / c)^{5}$ in the equations of motion [12]. These damping forces are the local counterparts of the gravitational radiation emitted at infinity by the system ("gravitational radiation reaction"). They cause the binary orbit to shrink and its orbital period P_{b} to decrease. The remarkable stability of pulsar clocks has allowed one to measure the corresponding very small orbital period decay $\dot{P}_{b} \equiv d P_{b} / d t \sim-(v / c)^{5} \sim-10^{-12}-10^{-14}$ in several binary systems, thereby giving us a direct experimental handle on the propagation properties of the gravitational field. In addition, the large surface gravitational potential of a neutron star allows one to probe the quasi-static strong-gravitational-field regime, as is discussed below.
It is possible to extract phenomenological (theory-independent) tests of gravity from binary pulsar data by using the parameter-
ized post-Keplerian (PPK) formalism [13]. The basis of this formalism is the fact that, after correcting for the Earth's motion around the Sun and for the dispersion due to propagation in the interstellar plasma, the time of arrival of the N th pulse t_{N} can be described by a generic, parameterized "timing formula" [13, 14], whose functional form is common to the whole class of tensorscalar gravitation theories:

$$
\begin{equation*}
t_{N}-t_{0}=F\left[T_{N}\left(\nu_{p}, \dot{\nu}_{p}, \ddot{\nu}_{p}\right) ;\left\{p^{K}\right\} ;\left\{p^{P K}\right\}\right] \tag{21.34}
\end{equation*}
$$

Here, T_{N} is the pulsar proper time corresponding to the N th turn given by $N / 2 \pi=\nu_{p} T_{N}+\frac{1}{2} \dot{\nu}_{p} T_{N}^{2}+\frac{1}{6} \ddot{\nu}_{p} T_{N}^{3}$ (with $\nu_{p} \equiv 1 / P_{p}$ the spin frequency of the pulsar, etc.), $\left\{p^{K}\right\}=\left\{P_{b}, T_{0}, e, \omega_{0}, x\right\}$ is the set of "Keplerian" parameters (notably, orbital period P_{b}, eccentricity e, periastron longitude ω_{0} and projected semi-major axis $x=a \sin i / c$), and $\left\{p^{P K}\right\}=\left\{k, \gamma_{\text {timing }}, \dot{P}_{b}, r, s, \delta_{\theta}, \dot{e}, \dot{x}\right\}$ denotes the set of (separately measurable) "post-Keplerian" parameters. Most important among these are: the fractional periastron advance per orbit $k \equiv \dot{\omega} P_{b} / 2 \pi$; a dimensionful time-dilation parameter $\gamma_{\text {timing }}$; the orbital period derivative \dot{P}_{b}; and the "range" and "shape" parameters of the gravitational time delay caused by the companion, r and s.
Without assuming any specific theory of gravity, one can phenomenologically analyze the data from any binary pulsar by leastsquares fitting the observed sequence of pulse arrival times to the timing formula of Eq. (21.34). This fit yields the "measured" values of the parameters $\left\{\nu_{p}, \dot{\nu}_{p}, \ddot{\nu}_{p}\right\},\left\{p^{K}\right\},\left\{p^{P K}\right\}$. Now, each specific relativistic theory of gravity predicts that, for instance, $k, \gamma_{\text {timing }}, \dot{P}_{b}, r$, and s (to quote parameters that have been successfully measured from some binary pulsar data) are some theory-dependent functions of the Keplerian parameters and of the (unknown) masses m_{1}, m_{2} of the pulsar and its companion. For instance, in GR, one finds (with $M \equiv m_{1}+m_{2}, n \equiv 2 \pi / P_{b}$),

$$
\begin{align*}
k^{\mathrm{GR}}\left(m_{1}, m_{2}\right)= & 3\left(1-e^{2}\right)^{-1}\left(G M n / c^{3}\right)^{2 / 3}, \\
\gamma_{\mathrm{timing}}^{\mathrm{GR}}\left(m_{1}, m_{2}\right)= & e n^{-1}\left(G M n / c^{3}\right)^{2 / 3} m_{2}\left(m_{1}+2 m_{2}\right) / M^{2} \\
\dot{P}_{b}^{\mathrm{GR}}\left(m_{1}, m_{2}\right)= & -(192 \pi / 5)\left(1-e^{2}\right)^{-7 / 2}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right) \\
& \times\left(G M n / c^{3}\right)^{5 / 3} m_{1} m_{2} / M^{2}, \\
r^{\mathrm{GR}}\left(m_{1}, m_{2}\right)= & G m_{2} / c^{3}, \\
s^{\mathrm{GR}}\left(m_{1}, m_{2}\right)= & n x\left(G M n / c^{3}\right)^{-1 / 3} M / m_{2} . \tag{21.35}
\end{align*}
$$

In alternative gravity theories each of the functions $k^{\text {theory }}\left(m_{1}, m_{2}\right), \quad \gamma_{\text {timing }}^{\text {theory }}\left(m_{1}, m_{2}\right), \quad \dot{P}_{b}^{\text {theory }}\left(m_{1}, m_{2}\right), \quad$ etc.,\quad is modified by quasi-static strong field effects (associated with the self-gravities of the pulsar and its companion), while the particular function $\dot{P}_{b}^{\text {theory }}\left(m_{1}, m_{2}\right)$ is further modified by radiative effects [15-18]. If one measures $N>2$ PPK parameters from the data of a specific binary pulsar, these N measurements determine, for each given theory, N curves (defined by the N equations $\left.k_{i}^{\text {theory }}\left(m_{1}, m_{2}\right)=k_{i}^{\text {obs }}\right)$ in the two-dimensional mass plane $\left(m_{1}, m_{2}\right)$. This yields $N-2$ tests of the specified theory, according to whether the N curves (or strips) have one point in common, as they should.
21.3.4 Parameterized-post-Friedmannian (PPF) formalisms.

We have recalled above that, in GR, the two functions, $\Phi(t, \mathbf{x})$, and $\Psi(t, \mathbf{x})$, parameterizing (in the "longitudinal gauge") the scalar perturbations of the background Friedmann metric are related (in absence of anisotropic stresses) by Eq. (21.26). Several authors [19-28] have defined various types of parameterized-postFriedmannian (PPF) formalisms involving (generally space and time dependent) phenomenological parameters. The simplest versions of these formalisms involve two phenomenological parameters measuring: (i) the ratio between $\Phi(t, \mathbf{x})$, and $\Psi(t, \mathbf{x})$, say (using a parametrization which parallels the usual PPN parametrization)

$$
\begin{equation*}
\Psi(t, \mathbf{x})=\gamma_{\mathrm{cosmo}}(t, \mathbf{x}) \Phi(t, \mathbf{x}) \tag{21.36}
\end{equation*}
$$

and (ii) the effective gravitational constant entering the Poisson equation for $\Phi(t, \mathbf{x})$, say

$$
\begin{equation*}
\Delta \Phi(t, \mathbf{x})=4 \pi G_{\Phi}(t, \mathbf{x}) \delta \rho(t, \mathbf{x}) \tag{21.37}
\end{equation*}
$$

However, the peculiarities of cosmological observables limit the domain of applicability of such phenomenological approaches [26] (notably because the strong dependence of cosmological probes on epochs and scales obliges one to rely on specific parameterizations of the functions $\gamma_{\text {cosmo }}(t, \mathbf{x})$ and $G_{\Phi}(t, \mathbf{x})$, e.g., $\left.[25,28]\right)$. Approaches based on specific classes of modified-gravity theories allow for a more complete treatment involving, in principle, all existing cosmological observables: Big Bang nucleosynthesis, cosmic microwave background, large-scale structure, Hubble diagram, weak lensing, etc. Discussing the current cosmological tests using either such PPF formalisms, or comparisons with the predictions of modified-gravity theories, is beyond the scope of this review. See [29] for a comprehensive recent discussion. The bottom line is that all present cosmological data have been found to be compatible with GR (within the Friedmann-Lemaître-based Λ CDM model). Beyond the quantitative limits on various parameterized theoretical models [29], one should remember the striking (strong-field-type) qualitative verification of GR embodied in the fact that relativistic cosmological models give an accurate picture of the Universe over a period during which the spatial metric has been blown up by a gigantic factor, say $(1+z)^{2} \sim 10^{19}$ between Big Bang nucleosynthesis and now.

21.3.5 Various phenomenological tests of $G R$ from gravitational wave $(G W)$ data

The observation by the US-based Laser Interferometer Gravitational-wave Observatory (LIGO), later joined by the Europe-based Virgo detector, of gravitational-wave (GW) signals [30-34], has opened up a novel testing ground for relativistic gravity. The first two observing runs of the LIGO-Virgo Collaboration (LVC) have led to the detection of GW signals from ten binary black-hole coalescences, and one binary neutron-star merger [35].

Several approaches have been used to either test consistency with GR, or to look for special types of possible deviations. Making accurate predictions for GW signals from coalescing black holes within GR took years of both analytical [36,37] and numerical [38] work. Some works have started (both analytically [15, 39-43] and numerically [44-46]) to derive the corresponding predictions within some modified-gravity theories. Phenomenological approaches are very useful for parameterizing general, conceivable deviations from GR when analyzing the GW signals emitted by coalescing black holes or neutron stars.

A first phenomenological, global consistency test simply consists of measuring the noise-weighted correlation \mathcal{C} between each detected strain signal and the corresponding best-fit GR-predicted waveform. $\mathcal{C}^{\text {obs }}$ should be equal to 1 , modulo statistical (and/or systematic) errors.

Various other phenomenological tests of the structure of the GR-predicted waveforms emitted by coalescing compact binaries have been suggested. One general idea [47-49] (dubbed "parameterized post-Einsteinian formalism" in [50]) is to deform the existing phenomenological representation [51] of the GR-predicted phase $\psi(f)$ of the Fourier-space black-hole coalescence GW signals $h(f)=A(f) e^{i \psi(f)}$ by introducing GR-deviation parameters, say

$$
\begin{equation*}
\psi(f)=\sum_{i} p_{i}^{\mathrm{GR}}\left(m_{1}, m_{2}, S_{1}, S_{2}\right)\left(1+\delta \hat{p}_{i}\right) u_{i}(f) \tag{21.38}
\end{equation*}
$$

Here, the $u_{i}(f)$'s define a basis of functions of the GW frequency $f\left(e . g . \quad u_{0}(f)=f^{-5 / 3} \theta\left[0.018-G\left(m_{1}+m_{2}\right) f / c^{3}\right]\right.$, where θ denotes the step function, parameterizes the leadingorder (LO) term in the phase evolution during the early inspiral) while the corresponding mass- and spin-dependent GRpredicted coefficients are denoted $p_{i}^{\mathrm{GR}}\left(m_{1}, m_{2}, S_{1}, S_{2}\right)$ (e.g. , $\left.p_{0}^{\mathrm{GR}}=\frac{3\left(m_{1}+m_{2}\right)^{2}}{128 m_{1} m_{2}}\left(\pi G\left(m_{1}+m_{2}\right) / c^{3}\right)^{-5 / 3}\right)$. In GR the next-to-leading-order (NLO) term is a $O\left(v^{2} / c^{2}\right.$) correction $p_{2}^{\mathrm{GR}} u_{2}(f)$ with $u_{2}(f)=f^{-1} \theta\left[0.018-G\left(m_{1}+m_{2}\right) f / c^{3}\right]$. Each dimensionless
parameter $\delta \hat{p}_{i}$ introduces a fractional deviation from the corresponding individual phasing GR effect having the frequency dependence $u_{i}(f)$, and can, in principle, be extracted by fitting the inspiral part of the observed waveform to the deformed template of Eq. (21.38). However, one must also use this deformed template for simultaneously extracting the values of m_{1}, m_{2}, S_{1}, and S_{2}. Together with signal-to-noise ratio (SNR) considerations, and parameter-correlation issues, this limits the applicability of such a test to introducing only one deformation parameter $\delta \hat{p}_{i}$ at a time. A particularly meaningful test [47] is to leave undeformed the LO and NLO terms $p_{0}^{\mathrm{GR}} u_{0}(f)+p_{2}^{\mathrm{GR}} u_{2}(f)$ and to vary the third coefficient p_{3} parameterizing the next, " GW tail"-related $O\left(v^{3} / c^{3}\right)$ correction, with $u_{3}(f)=f^{-2 / 3} \theta\left[0.018-G\left(m_{1}+m_{2}\right) f / c^{3}\right]$. Another well-motivated test [50] is to introduce a new coefficient $\delta \hat{p}_{-2}$, which is absent in GR, and which parameterizes an $O\left(\left(\frac{v}{c}\right)^{-2}\right)$ fractional correction to the LO, quadrupolar term, thereby allowing for a possible dipolar GW flux (indeed, dipolar GW radiation generally exists in theories containing scalar excitations). As $p_{-2}^{G R}$ vanishes, $\delta \hat{p}_{-2}$ is added as an absolute deviation, scaled by the LO term p_{0}^{GR}.

The coalescence of two black holes, or of a black hole and a neutron star (or of two heavy-enough neutron stars) leads to the formation of a black hole that is initially formed in a perturbed state. The relaxation of the latter perturbed black hole into its stationary, equilibrium state leads to the emission of characteristic (rapidly decaying) ringing GW modes (a.k.a. quasi-normal modes) [52,53], whose frequencies and decay times are functions of the mass $\left(M_{f}\right)$ and $\operatorname{spin}\left(S_{f} \equiv G M_{f}^{2} a_{f} / c\right)$ of the final black hole, say

$$
\begin{equation*}
\omega_{a}=\left(c^{3} / G M_{f}\right)\left[2 \pi \hat{f}_{a}^{\mathrm{QNM}}\left(a_{f}\right)-i / \hat{\tau}_{a}^{\mathrm{QNM}}\left(a_{f}\right)\right] \tag{21.39}
\end{equation*}
$$

where $a=1,2, \ldots$ labels the various ringing modes, starting from the least-damped one. In principle, if the SNR is large enough, one can directly test for the presence of one or several of these modes in the post-merger signal, and measure both $\operatorname{Re}\left(\omega_{a}\right)$ and $\operatorname{Im}\left(\omega_{a}\right)$ in a theory-independent way. These phenomenological measurements then lead to null tests of GR, from which one can extract theoretical information about eventual deviations from GR [54, 55].

As recalled above, GR predicts that GWs propagate (in vacuum) at exactly the same speed as light (i.e., they have the same dispersion law $g^{\mu \nu} k_{\mu} k_{\nu}=0$ in curved spacetime). Deviations from such a universal, scale-free dispersion law can be phenomenologically parameterized in several ways. If one phenomenologically assumes that the graviton dispersion law includes a mass term, say $g^{\mu \nu} k_{\mu} k_{\nu}+m_{g}^{2} / \hbar^{2}=0$, or some more general type of frequencydependent modification, such changes affect the phasing of the inspiral GW signal and can be directly tested [56]. When one observes both GWs and electromagnetic waves emitted by the same system, one can also directly test whether both types of waves propagate in the same way.

Let us now present some examples of theory-dependent discussions of experimental tests based on considering specific classes of alternative theories. The most conservative deviations from Einstein's pure spin-2 theory are defined by adding new, bosonic, light or massless, macroscopically coupled fields.

21.3.6 Gravity tests within classes of tensor-scalar theories of gravity

The possible existence of new gravitational-strength couplings leading to deviations from Einsteinian (and Newtonian) gravity has been suggested by many natural extensions of GR, starting with the classic Kaluza-Klein idea, and continuing up to now with the study of extended supergravity theories, and of (super)string theory. In particular, a recurrent suggestion of such theories (which dates back to pioneering work by Jordan, and by Fierz [57]) is the existence of a scalar field φ coupled both to the scalar curvature R and to the various $F_{\mu \nu}^{a}{ }^{2}$ gauge-field actions. Such fields ("dilaton" or "moduli") generically appear in string theory and are massless at the tree-level, but could acquire a selfinteraction potential $V(\varphi)$ beyond the tree-level.
The exchange of such a dilaton-like field leads to several types of observational deviations from GR. For experimental limits on the
gravitational inverse-square-law (down to the micrometer range) see Refs. [58-60]. If the potential $V(\varphi)$ is zero or negligible for the considered range, the coupling of φ to $F_{\mu \nu}^{a}{ }^{2}$ leads to apparent violations of the weak equivalence principle, with rather specific composition-dependence [61]. Next, when neglecting the fractionally small composition-dependent effects, such a field approximately couples to the trace of the energy-momentum tensor $T=g_{\mu \nu} T^{\mu \nu}$. The most general such theory contains (after suitable field redefinitions) two arbitrary functions of the scalar field, namely the self-interaction potential $V(\varphi)$, and a matter-coupling function $a(\varphi)$:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tot}}\left[g_{\mu \nu}, \varphi, \psi, A_{\mu}, H\right] & =\frac{c^{4}}{16 \pi G_{*}} \sqrt{g}\left(R\left(g_{\mu \nu}\right)-2 g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi\right) \\
& -\sqrt{g} V(\varphi)+\mathcal{L}_{\mathrm{SM}}\left[\psi, A_{\mu}, H, \widetilde{g}_{\mu \nu}\right]
\end{aligned}
$$

Here G_{*} is a "bare" Newton constant, and the Standard Model matter is coupled not to the "Einstein" (pure spin-2) metric $g_{\mu \nu}$, but to the conformally related ("Jordan-Fierz") metric

$$
\begin{equation*}
\widetilde{g}_{\mu \nu}=\exp (2 a(\varphi)) g_{\mu \nu} \tag{21.41}
\end{equation*}
$$

The scalar field equation

$$
\begin{equation*}
\square_{g} \varphi=\frac{4 \pi G}{c^{4}}\left(-\alpha(\varphi) T+\frac{\partial V(\varphi)}{\partial \varphi}\right) \tag{21.42}
\end{equation*}
$$

features

$$
\begin{equation*}
\alpha(\varphi) \equiv \partial a(\varphi) / \partial \varphi \tag{21.43}
\end{equation*}
$$

as the basic (field-dependent) coupling between φ and matter [15, 62]. The best-known, special case of these theories is the one-parameter (ω) Jordan-Fierz-Brans-Dicke theory [63], with $V(\varphi)=0$ and $a(\varphi)=\alpha_{0} \varphi$, leading to a field-independent coupling $\alpha(\varphi)=\alpha_{0}$ (with $\left.\alpha_{0}^{2}=1 /(2 \omega+3)\right)$. More generally, if we consider the massless theories $(V(\varphi)=0)$ with arbitrary (non-linear) coupling function $a(\varphi)$, they modify Einstein's predictions in the weak-field slow-motion limit appropriate to describing gravitational experiments in the solar system (1PN approximation) only through the appearance of exactly the same two "post-Einstein" dimensionless parameters $\bar{\gamma}=\gamma-1$ and $\bar{\beta}=\beta-1$ that entered the minimal (Eddington) PPN formalism presented above. However, we now have the following theoretical expressions relating the latter phenomenological parameters to the coupling functions entering the tensor-scalar action Eq. (21.40):

$$
\begin{align*}
& \bar{\gamma}=-2 \frac{\alpha_{0}^{2}}{1+\alpha_{0}^{2}} \tag{21.44}\\
& \bar{\beta}=+\frac{1}{2} \frac{\beta_{0} \alpha_{0}^{2}}{\left(1+\alpha_{0}^{2}\right)^{2}} \tag{21.45}
\end{align*}
$$

Here $\alpha_{0} \equiv \alpha\left(\varphi_{0}\right)$, and $\beta_{0} \equiv \partial \alpha\left(\varphi_{0}\right) / \partial \varphi_{0}$, with φ_{0} denoting the vacuum expectation value (VEV) of φ around the solar system. In addition, the observable value $G^{\text {obs }}$ of the gravitational constant is found to be field-dependent and given (at a place where $\varphi=\varphi_{0}$) by

$$
\begin{equation*}
G^{\mathrm{obs}}=G\left(\varphi_{0}\right) \equiv G_{*} \exp \left[2 a\left(\varphi_{0}\right)\right]\left(1+\alpha_{0}^{2}\right) \tag{21.46}
\end{equation*}
$$

This makes it clear that the parameter $\bar{\gamma}$ is the basic post-Einstein parameter, which measures the admixture of an additional field (here a spin-0 field) to the pure spin-2 GR. One also sees how the parameter $\bar{\beta}$ is linked to non-linear effects (here coupling terms $\beta_{0}\left(\varphi-\varphi_{0}\right)^{2} T$ in the action), and how the Nordtvedt parameter $\eta \equiv 4 \bar{\beta}-\bar{\gamma}$ is related to the field-dependence of $G^{\mathrm{obs}}\left(\eta=\left(\alpha_{0} /(1+\right.\right.$ $\left.\left.\left.\alpha_{0}^{2}\right)\right) \partial \ln G\left(\varphi_{0}\right) / \partial \varphi_{0}\right)$.

The advantage of a theory-dependent approach, such as Eq. (21.40), over the phenomenological minimal PPN approach of Eq. (21.28), is that it allows one to consistently predict the observational deviations from GR in all possible gravity regimes: the quasi-stationary weak-field regime; the wavelike weak-field regime; the strong-field regime; the cosmological regime, etc. All such observational deviations can be consistently worked out once one
chooses specific forms of the coupling function $a(\varphi)$, and of $V(\varphi)$. The simple choice of a two-parameter quadratic coupling function, say $a(\varphi)=\alpha_{0}\left(\varphi-\varphi_{0}\right)+\frac{1}{2} \beta_{0}\left(\varphi-\varphi_{0}\right)^{2}$, has been found useful for describing many possible observable deviations from GR.

The observable consequences for binary pulsar observations of the strong-field and radiative effects linked to the coupling to φ have been explicitly worked out in Refs. [15,42] in the case where φ is massless (see Ref. [64] for the case where φ is massive). In particular, the strong-field nature of the pulsar tests is demonstrated by the fact that some tensor-scalar theories can be as close as desired to GR in the weak-field regime of the solar-system (i.e., $\bar{\gamma}$ and $\bar{\beta}$ can be as small as desired, or even exactly zero), while developing (via a "spontaneous scalarization" mechanism) differences of order unity with GR in binary pulsar experiments [17,18].

21.3.7 Attractor and screening mechanisms in modified gravity

As will follow from the discussion of experimental data below, the comparison between the predictions of general massless tensorscalar theories and current data shows that the basic coupling parameter α_{0} must be tuned to a small value (especially when allowing for composition-dependent effects). This raises the issue of the naturalness of such small coupling parameters. It has been shown in this respect that, in many tensor-scalar theories, there is an attractor mechanism by which the cosmological evolution naturally drives the VEV $\varphi_{0}(t)$ towards a value for which the coupling parameter $\alpha_{0}=\alpha\left(\varphi_{0}\right)$ vanishes, thereby making it natural to expect only small deviations from GR (at least for the weak-field regime) at our current cosmological epoch [65,66].

There are other theoretical mechanisms (generically called "screening mechanisms") that could explain why a theory of gravity whose theoretical content significantly differs from that of GR could naturally pass all the stringent, GR-compatible experimental limits that will be discussed below. In particular, when considering a self-interacting scalar field $(V(\varphi) \neq 0)$, the interplay between the two terms on the right-hand side of Eq. (21.42) tends to drive the local $\mathrm{VEV} \varphi_{0}$ of φ to a density-dependent value. In turn, this leads to a corresponding density-dependent effective mass $m_{0}\left(\varphi_{0}\right)=\sqrt{4 \pi G \partial^{2} V\left(\varphi_{0}\right) / \partial \varphi_{0}^{2}}$ of the φ field, and to density-dependent matter couplings [67]. Various choices of the functions $V(\varphi)$ and $a(\varphi)$ can then reduce the φ-induced deviations from GR in dense environments while still allowing for significant deviations in different (e.g., cosmological) regimes [68-72].

Other screening mechanisms have been invoked, based on an environment dependence mediated by (first or second) derivatives of a scalar degree of freedom. Roughly speaking, such mechanisms involve a (possibly effective) scalar degree of freedom φ that satisfies a field equation that is more general than Eq. (21.42) in that the left-hand side, $\square_{g} \varphi$, is replaced by a non-linear function of $\varphi, \partial \varphi$ and $\partial^{2} \varphi$. The presence of non-linear derivative self-interactions of φ can weaken the effective coupling of φ to matter. A simple toy-model showing this weakening would be to replace Eq. (21.42) by an equation of the form

$$
\begin{equation*}
Z\left(\varphi, \partial \varphi, \partial^{2} \varphi\right) \square_{g} \varphi=\frac{4 \pi G}{c^{4}}\left(-\alpha(\varphi) T+\frac{\partial V(\varphi)}{\partial \varphi}\right) \tag{21.47}
\end{equation*}
$$

Such an equation is equivalent, at a first level of approximation, to replacing the gravitational constant G entering Eq. (21.42) by $G_{\text {eff }}\left(\varphi_{0}, \partial \varphi_{0}, \partial^{2} \varphi_{0}\right) \equiv G / Z_{0}$, where $Z_{0} \equiv Z\left(\varphi_{0}, \partial \varphi_{0}, \partial^{2} \varphi_{0}\right)$. This has a screening effect if $Z_{0} \gg 1$. Indeed, the replacement $G \rightarrow$ $G_{\text {eff }}$ diminishes the strength of the interaction potential due to φ exchange by a factor of $1 / Z_{0}$. In addition, the range of this interaction is also affected: $m_{0}\left(\varphi_{0}\right)=\sqrt{4 \pi G \partial^{2} V\left(\varphi_{0}\right) / \partial \varphi_{0}^{2}} \rightarrow$ $m_{0 \mathrm{eff}}\left(\varphi_{0}, \partial \varphi_{0}, \partial^{2} \varphi_{0}\right)=\sqrt{4 \pi G_{\text {eff }} \partial^{2} V\left(\varphi_{0}\right) / \partial \varphi_{0}^{2}}=Z_{0}^{-1 / 2} m_{0}$.

Screening mechanisms based on such non-linear derivative selfinteractions are often referred to as being "Vainshtein-like" because a similar mechanism was first invoked in Ref. [73] as a conjectural way to ensure that the extra degrees of freedom associated with a massive (rather than massless) graviton become effectively weakly coupled to matter within a large domain around gravitational sources. Here, one is considering massive deformations of the massless spin- 2 metric field of GR by a very small mass,
possibly of cosmological scale: $m_{g} \sim \hbar H_{0} \sim 10^{-33} \mathrm{eV}$. The construction of ghost-free potential terms for a spin-2 field has turned out to be a delicate matter [74]. The phenomenology of a very-low-mass graviton is still partly uncontrolled, both because of the unknown extent to which the Vainshtein screening is really active, and because of subtle constraints linked to an eventual UV completion of the theory beyond the unusually low energy scale where it becomes strongly coupled:

$$
\begin{equation*}
\Lambda_{\text {strong coupling }} \sim\left(M_{\text {Planck }} m_{0}^{2}\right)^{1 / 3} \sim 10^{-13}\left(\frac{m_{0}}{\hbar H_{0}}\right)^{2 / 3} \mathrm{eV} \tag{21.48}
\end{equation*}
$$

The search for modified gravity theories incorporating an extra scalar degree of freedom potentially able to yield a Vainshteinlike screening led to writing down the following general class of tensor-scalar Lagrangian [75, 76]:

$$
\begin{aligned}
L_{\text {tot }}\left[g_{\mu \nu}, \varphi, \psi\right] & =G_{2}(\varphi, X)-G_{3}(\varphi, X) \square_{g} \varphi+G_{4}(\varphi, X) R \\
& +G_{4 X}(\varphi, X)\left[\left(\square_{g} \varphi\right)^{2}-\varphi^{\mu \nu} \varphi_{\mu \nu}\right] \\
& +G_{5}(\varphi, X) G^{\mu \nu} \varphi_{\mu \nu}-\frac{1}{6} G_{5 X}(\varphi, X)\left[\left(\square_{g} \varphi\right)^{3}\right. \\
& \left.-3 \square_{g} \varphi \varphi^{\mu \nu}+2 \varphi_{\mu \nu} \varphi^{\mu \lambda} \varphi_{\lambda}^{\nu}\right]+L_{\text {matter }}\left[g_{\mu \nu}, \psi\right] .
\end{aligned}
$$

Here $g_{\mu \nu}$ denotes the matter-coupled metric, $X \equiv-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi$, $\varphi_{\mu \nu} \equiv \nabla_{\mu} \nabla_{\nu} \varphi, G^{\mu \nu} \equiv R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}$, and the various coefficients $G_{n}(\varphi, X)$ are arbitrary functions of two variables (with $G_{n X} \equiv$ $\left.\partial G_{n} / \partial X\right)$. The field equations derived from the Lagrangian of Eq. (21.49) are only of second order in derivatives in spite of the non-linear structure of $L_{\text {tot }}$. This implies that the tensor-scalar theories defined by Eq. (21.49) feature three degrees of freedom, corresponding to a massless spin-2 excitation (GW) and a spin0 excitation. Contrary to the simpler tensor-scalar theories of Eq. (21.40), it is found that the speed of propagation of GWs implied by Eq. (21.49) is generically different from the speed of light:

$$
\begin{equation*}
\frac{c_{\mathrm{GW}}^{2}}{c^{2}}=\frac{G_{4}-X\left(\ddot{\varphi} G_{5 X}+G_{5 \varphi}\right)}{G_{4}-2 X G_{4 X}-X\left(H \dot{\varphi} G_{5 X}-G_{5 \varphi}\right)} . \tag{21.50}
\end{equation*}
$$

More general modified gravity models have been proposed (see, e.g. Refs. [77, 78]). Apart from the simplest of them, most of these models have a rather artificial flavor, and do not lead to convincing alternative explanations either of dark matter or of dark energy. In addition, many of them do not lead (contrary to GR) to mathematically "well-posed" evolution problems [79-81]. This entails a serious challenge to deriving strong-field predictions for such models. It has been argued that many of these (dark-energy motivated) models should be viewed as effective field theory (EFT) approximations that need some sort of UV completion at an unusually low frequency scale [82]. In spite of these shortcomings, such models are conceptually interesting because they give examples of deviations for various predictions of GR, existing independently from each other, in various regimes. For instance, some special tensor-scalar models lead to black hole solutions modified by scalar-hair [83, 84]. For other types of black holes with scalar-hair, see Ref. [85]. This shows the interest of phenomenologically testing, in a democratic and agnostic way, all conceivable deviations from GR.

Let us now turn to briefly presenting current experimental results of various phenomenological tests of the main GR predictions recalled in Section 21.2 above.

21.4 Experimental tests of the Equivalence Principle (i.e., of the matter-gravity coupling)
 21.4.1 Tests of the constancy of constants

Stringent limits on a possible time variation of the basic coupling constants have been obtained by analyzing a natural fission reactor phenomenon that took place at Oklo, Gabon, two billion years ago $[86,87]$. These limits are at the 1×10^{-8} level for the fractional variation of the fine-structure constant α_{em} [87], and at the
4×10^{-9} level for the fractional variation of the ratio $m_{q} / \Lambda_{\mathrm{QCD}}$ between the light quark masses and Λ_{QCD} [88]. The determination of the lifetime of Rhenium 187 from isotopic measurements of some meteorites dating back to the formation of the solar system (about 4.6 Gyr ago) yields comparably strong limits [89]. Measurements of absorption lines in astronomical spectra also give stringent limits on the variability of both α_{em} and $\mu=m_{p} / m_{e}$ at cosmological redshifts, e.g.,

$$
\begin{equation*}
\Delta \alpha_{\mathrm{em}} / \alpha_{\mathrm{em}}=\left(1.2 \pm 1.7_{\mathrm{stat}} \pm 0.9_{\mathrm{sys}}\right) \times 10^{-6} \tag{21.51}
\end{equation*}
$$

at redshifts $z=1.0-2.4$ [90], and

$$
\begin{equation*}
|\Delta \mu / \mu|<4 \times 10^{-7}(95 \% \mathrm{CL}) \tag{21.52}
\end{equation*}
$$

at a redshift $z=0.88582$ [91]. There are also significant limits on the variation of α_{em} and $\mu=m_{p} / m_{e}$ at redshift $z \sim 10^{3}$ from cosmic microwave background data, e.g., $\Delta \alpha_{\mathrm{em}} / \alpha_{\mathrm{em}}=(3.6 \pm$ $3.7) \times 10^{-3}$ [92]. Direct laboratory limits (based on monitoring the frequency ratio of several different atomic clocks) on the present time variation of $\alpha_{\mathrm{em}}, \mu=m_{p} / m_{e}$, and $m_{q} / \Lambda_{\mathrm{QCD}}$ have reached the levels [93]

$$
\begin{align*}
d \ln \left(\alpha_{\mathrm{em}}\right) / d t & =(-2.5 \pm 2.6) \times 10^{-17} \mathrm{yr}^{-1} \\
d \ln (\mu) / d t & =(-1.5 \pm 3.0) \times 10^{-16} \mathrm{yr}^{-1} \\
d \ln \left(m_{q} / \Lambda_{\mathrm{QCD}}\right) / d t & =(7.1 \pm 4.4) \times 10^{-15} \mathrm{yr}^{-1} \tag{21.53}
\end{align*}
$$

There are also experimental limits on a possible dependence of coupling constants on the gravitational potential [93, 94].

Experimental limits on the present time variation of the gravitational constant, Eq. (21.33), have been derived from planetary ephemerides [95], lunar laser ranging [96], and binary-pulsar data $[97,98]$. The most stringent limits come from lunar-laserranging data [96]:

$$
\begin{equation*}
\frac{\dot{G}_{0}}{G_{0}}=(7.1 \pm 7.6) \times 10^{-14} \mathrm{yr}^{-1} \tag{21.54}
\end{equation*}
$$

21.4.2 Tests of the isotropy of space and of Local Lorentz invariance

The highest precision tests of the isotropy of space have been performed by looking for possible quadrupolar shifts of nuclear energy levels [99]. The (null) results can be interpreted as testing the fact that the various pieces in the matter Lagrangian, Eq. (21.6), are indeed coupled to one and the same external metric $g_{\mu \nu}$ to the 10^{-29} level.

Stringent tests of possible violations of local Lorentz invariance in gravitational interactions have been obtained both from solarsystem data [8] and pulsar data [100,101]. For astrophysical constraints on possible Planck-scale violations of Lorentz invariance, see Ref. [102].
21.4.3 Tests of the universality of free fall (weak, and strong equivalence principles)

The universality of the acceleration of free fall has been verified, for laboratory bodies, both on the ground $[103,104]$ (at the 10^{-13} level), and in space $[105,106]$ (at the 10^{-14} level):

$$
\begin{align*}
(\Delta a / a)_{\mathrm{BeTi}} & =(0.3 \pm 1.8) \times 10^{-13} \\
(\Delta a / a)_{\mathrm{BeAl}} & =(-0.7 \pm 1.3) \times 10^{-13} \\
(\Delta a / a)_{\mathrm{TiPt}} & =(-1 \pm 9(\text { stat }) \pm 9(\text { syst })) \times 10^{-15} \tag{21.55}
\end{align*}
$$

The universality of free fall has also been verified when comparing the fall of classical and quantum objects $\left(6 \times 10^{-9}\right.$ level [107]), or of two quantum objects $\left((1 \pm 1.4) \times 10^{-9}\right.$ level [108]; including a test that atoms prepared in a quantum superposition of two hyperfine states fall in the same way).

The universality of free fall of self-gravitating bodies (strong equivalence principle) has been verified in both the weak-gravity, and the strong-gravity regimes. The gravitational accelerations of the Earth and the Moon toward the Sun have been checked to agree at the 10^{-13} level [96]

$$
\begin{equation*}
(\Delta a / a)_{\text {EarthMoon }}=(-3 \pm 5) \times 10^{-14} \tag{21.56}
\end{equation*}
$$

The latter result constrains the Nordtvedt PPN parameter [9] $\eta \equiv 4 \bar{\beta}-\bar{\gamma}$ to the 10^{-4} level:

$$
\begin{equation*}
\eta=(-0.2 \pm 1.1) \times 10^{-4} \tag{21.57}
\end{equation*}
$$

See below for strong-field tests of the strong equivalence principle.
Finally, the universality of the gravitational redshift of clock rates has been verified at the 10^{-4} level by comparing a hydrogenmaser clock flying on a rocket up to an altitude of about 10,000 km to a similar clock on the ground [109]. The redshift due to a height change of only 33 cm has been detected by comparing two optical clocks based on ${ }^{27} \mathrm{Al}^{+}$ions [110]. The gravitational redshift has also been detected in the orbit of a star near the supermassive black hole at the center of our Galaxy [111, 112], and its universality has been verified at the 5% level [113].

21.5 Tests of quasi-stationary, weak-field gravity

All currently performed gravitational experiments in the solar system, including perihelion advances of planetary orbits, the bending and delay of electromagnetic signals passing near the Sun, and very accurate ranging data to the Moon obtained by laser echoes, are compatible with the post-Newtonian results of Eq. (21.15), Eq. (21.13), and Eq. (21.14). The "gravito-magnetic" interactions $\propto v_{A} v_{B}$ contained in Eq. (21.13) are involved in many of these experimental tests. They have been particularly tested in lunar-laser-ranging data [114], in the combined LAGEOS-LARES satellite data $[115,116]$, and in the dedicated Gravity Probe B mission [117].

To assess in a quantitative manner the results of the various solar-system tests of gravity it is convenient to express them in terms of the PPN parameters defined above. The best current limit on the post-Einstein parameter $\bar{\gamma} \equiv \gamma-1$ is

$$
\begin{equation*}
\bar{\gamma}=(2.1 \pm 2.3) \times 10^{-5} \tag{21.58}
\end{equation*}
$$

as deduced from the additional Doppler shift experienced by radiowave beams connecting the Earth to the Cassini spacecraft when they passed near the Sun [118].

The (cubic-vertex-related) post-Einstein parameter $\bar{\beta} \equiv \beta-1$ is constrained at the 10^{-4} level both from a study of the global sensitivity of planetary ephemerides to post-Einstein parameters [95],

$$
\begin{equation*}
|\bar{\beta}|<7 \times 10^{-5} \tag{21.59}
\end{equation*}
$$

and from lunar-laser-ranging data [96]

$$
\begin{equation*}
\bar{\beta}=(-4.5 \pm 5.6) \times 10^{-5} \tag{21.60}
\end{equation*}
$$

More stringent limits on $\bar{\gamma}$ (i.e. the coupling of φ to matter) are obtained in dilaton-like models where scalar couplings violate the Equivalence Principle [119].

21.6 Tests of strong-field gravity (neutron stars and black holes)

Experimental tests of strong-field gravity have been obtained in various physical systems, notably binary pulsars and coalescing binary black holes.

It is convenient to quantitatively express binary-pulsar tests of strong-field gravity by using the PPK formalism defined above. We recall that the measurement of N phenomenological PPK parameters leads to $N-2$ tests of strong-field gravity. In all, thirteen tests of strong-field and/or radiative gravity have been obtained in the four different (double neutron-star) binary pulsar systems PSR1913+16 [10, 11, 120], PSR1534+12 [121-123], PSR J1141-6545 [124-127], and PSR J0737-3039 A,B [128-132]. These consist of $N-2=5-2=3$ tests from PSR1913+16; $5-2=3$ tests from PSR1534+12; $4-2=2$ tests from PSR J1141-6545; and $7-2=5$ tests from PSR J0737-3039 (see, also, Ref. [133] for additional, less accurate tests of relativistic gravity). Among these tests, four of them (those involving the measurement of the PPK parameter \dot{P}_{b}) probe radiative effects, and will be discussed in the following section. The four binary pulsar systems PSR1913+16, PSR1534+12, PSR J1141-6545, and PSR J0737-3039 A,B have given nine tests of quasi-static, strongfield gravity. GR passes all these tests within the measurement
accuracy. Let us only highlight here some of the most accurate strong-field tests.

In the binary pulsar PSR $1534+12$ [121] one has measured five post-Keplerian parameters: k, $\gamma_{\text {timing }}, r, s$, and (with less accuracy) $\dot{P}_{b}[122,123]$. This yields three tests of relativistic gravity. Among these tests, the two involving the measurements of $k, \gamma_{\text {timing }}, r$, and s accurately probe strong field gravity, without mixing of radiative effects [122]. The most precise (10^{-3} level) of these pure strong-field tests is the one obtained by combining the measurements of $k, \gamma_{\text {timing }}$, and s; namely, [123],

$$
\begin{equation*}
\left[\frac{s^{\mathrm{obs}}}{s^{\mathrm{GR}}\left[k^{\mathrm{obs}}, \gamma_{\mathrm{timing}}^{\mathrm{obs}}\right]}\right]_{1534+12}=1.002 \pm 0.002 \tag{21.61}
\end{equation*}
$$

The discovery of the remarkable double binary pulsar PSR J0737-3039 A and B [128, 129] has led to the measurement of seven independent parameters [130-132]: five of them are the post-Keplerian parameters $k, \gamma_{\text {timing }}, r, s$, and \dot{P}_{b} entering the relativistic timing formula of the fast-spinning pulsar PSR J0737-3039 A; a sixth is the ratio $R=x_{B} / x_{A}$ between the projected semi-major axis of the more slowly spinning companion pulsar PSR J0737-3039 B, and that of PSR J0737-3039 A (the theoretical prediction for the ratio $R=x_{B} / x_{A}$, considered as a function of the (inertial) masses $m_{1}=m_{A}$ and $m_{2}=m_{B}$, is $R^{\text {theory }}=m_{1} / m_{2}+O\left((v / c)^{4}\right)$ [13, 14], independently of the gravitational theory considered). Finally, the seventh parameter $\Omega_{\mathrm{SO}, \mathrm{B}}$ is the angular rate of (spin-orbit) precession of PSR J0737-3039 B around the total angular momentum vector $[131,132]$. These seven measurements give us five tests of relativistic gravity $[130,134,135]$, four of which are quasi-static, strong-field tests. GR passes all those tests with flying colors [135]. The most accurate is at the 5×10^{-4} level:

$$
\begin{equation*}
\left[\frac{s^{\mathrm{obs}}}{s^{\mathrm{GR}}\left[k^{\mathrm{obs}}, R^{\mathrm{obs}}\right]}\right]_{0737-3039}=1.0000 \pm 0.0005 \tag{21.62}
\end{equation*}
$$

Binary pulsar data on other types of pulsar systems can be used to test strong-field aspects of the "strong equivalence principle," namely the GR prediction that strong-self-gravity objects (such as neutron stars) should fall with the same acceleration as weak-self-gravity objects (such as white-dwarfs) in the (external) gravitational field created by other objects (such as the Galaxy, or another white dwarf). The first binary-pulsar tests of this property have been obtained in nearly circular binary systems (made of a neutron star and a white dwarf) falling in the field of the Galaxy, and have led to strong-field confirmations (at the 2×10^{-3} level) of the strong equivalence principle $[98,136-138]$. The remarkable discovery of the pulsar PSR J0337+1715 in a hierarchical triple system [139] has allowed one to derive a much more accurate test of the strong equivalence principle because the inner binary (comprising a pulsar and a close white-dwarf companion) falls toward the outer white-dwarf companion with an acceleration that is 10^{8} times larger than the Galactic acceleration. This leads to a 95% confidence level limit on a possible fractional difference in free-fall acceleration of the pulsar and its close companion of [140]

$$
\begin{equation*}
|\Delta a / a|<2.6 \times 10^{-6} \tag{21.63}
\end{equation*}
$$

This limit yields strong constraints on tensor-scalar gravity models.

Measurements over several years of the pulse profiles of various pulsars have detected secular changes compatible with the prediction [141] that the general relativistic spin-orbit coupling should cause a secular change in the orientation of the pulsar beam with respect to the line of sight ("geodetic precession"). Such confirmations of general-relativistic spin-orbit effects were obtained in PSR 1913+16 [142], PSR B1534+12 [123], PSR J1141-6545 [143], PSR J0737-3039 [131, 132], and PSR J1906+0746 [144, 145]. In some cases (notably PSR 1913+16 and PSR J1906+0746) the secular change in the orientation of the pulsar beam is expected to lead to the disappearance of the beam (as seen on the Earth) on a human time scale (the second pulsar in the double system PSR J0737-3039 already disappeared in March 2008 and is expected to reappear around 2035 [132]).

Recently, the ultimate strong-field regime of black holes has started to be quantitatively probed via GW observations. The LIGO-Virgo collaboration has detected (starting in September 2015) GW signals [146], which, besides testing the radiative structure of gravity (see next section), are in excellent qualitative and quantitative agreement with the structure and dynamics of blackhole horizons in GR. Because of the mixing of strong-field effects with radiative effects during the coalescence of two black holes, and because of the lack of detailed alternative-theory predictions for this process (see, however, Refs. [44-46]), it is not easy to set quantitative limits on possible strong-field deviations from GR, independently of radiative effects. Direct tests of the existence of black-hole horizons are scarce (see, however, the suggestion to look for GW echoes as a negative test [147]). The only sharp quantitative assessment on possible deviations from GR concerns the global agreement between the full observed GW signal of coalescing binary black holes, and the GR-predicted one. In particular, the noise-weighted correlation between the first observed strain signal GW150914 and the best-fit GR-predicted waveform was found to be $\geq 96 \%$ [49]. In other words, GR-violation effects that cannot be reabsorbed in a redefinition of physical parameters are limited (in a noise-weighted sense) to less than 4%.

Let us also mention that the Event Horizon Telescope collaboration has obtained event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87 that are "consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity" [148]. However, in view of modeling uncertainties, and of the limited accuracy of the imaging, no quantitative assessment of eventual deviations from GR can be made at this stage.

21.7 Tests of radiative gravity (both in binarypulsar data and in GW data)

Experimental confirmations of the GR predictions for the radiative structure of gravity have been obtained both in binary-pulsar data and in the observation of GW signals from coalescing compact binaries (binary black holes and binary neutron stars).

Binary-pulsar observations involving the measurement of the orbital period derivative \dot{P}_{b} give direct experimental tests of the reality of gravitational radiation, and, in particular, an experimental confirmation that the speed of propagation of gravity c_{g} is equal to the speed of light c (indeed, as recalled above, \dot{P}_{b} is a consequence of the propagation of the gravitational interaction between the two neutron stars [12]). Even in the presence of screening mechanisms within the binary system, the value of \dot{P}_{b} yields a measurement of the speed of propagation of GWs at the 10^{-2} level [149]. The currently most accurate binary-pulsar tests of the radiative properties of gravity come from the binary neutron-star systems PSR1913+16 and PSR J0737-3039 A,B, as well as from several neutron-star-white-dwarf systems, notably PSR J1738 +0333 .

After subtracting a small $\left(\sim 10^{-14}\right.$ level in $\dot{P}_{b}^{\text {obs }}=(-2.423 \pm$ $0.001) \times 10^{-12}$), but significant, "Galactic" perturbing effect (linked to Galactic accelerations and to the pulsar proper motion) [150], one finds that the phenomenological test obtained by combining the measurements of the three PPK parameters $\left(k-\gamma_{\text {timing }}-\dot{P}_{b}\right)_{1913+16}$ is passed by GR with complete success [120]:

$$
\begin{equation*}
\left[\frac{\dot{P}_{b}^{\text {obs }}-\dot{P}_{b}^{\text {gal }}}{\dot{P}_{b}^{\text {GR }}\left[k^{\text {obs }}, \gamma_{\text {timing }}^{\text {obs }}\right]}\right]_{1913+16}=0.9983 \pm 0.0016 \tag{21.64}
\end{equation*}
$$

Here $\dot{P}_{b}^{\mathrm{GR}}\left[k^{\mathrm{obs}}, \gamma_{\text {timing }}^{\text {obs }}\right]$ is the result of inserting in $\dot{P}_{b}^{\mathrm{GR}}\left(m_{1}, m_{2}\right)$ the values of the masses predicted by the two equations $k^{\text {obs }}=$ $k^{\mathrm{GR}}\left(m_{1}, m_{2}\right)$, and $\gamma_{\text {timing }}^{\mathrm{obs}}=\gamma_{\text {timing }}^{\mathrm{GR}}\left(m_{1}, m_{2}\right)$. This yields experimental evidence for the reality of gravitational radiation damping forces at the $(-1.7 \pm 1.6) \times 10^{-3}$ level.

Similarly, the combined measurement in PSR J0737-3039 A,B of the three parameters $k, R \equiv x_{B} / x_{A}$, and \dot{P}_{b} yields another experimental test of the radiative structure of gravity at the 10^{-3}
level [130-132]:

$$
\begin{equation*}
\left[\frac{\dot{P}_{b}^{\mathrm{obs}}}{\dot{P}_{b}^{\mathrm{GR}}\left[k^{\mathrm{obs}}, R^{\mathrm{obs}}\right]}\right]_{0737-3039}=1.000 \pm 0.001 \tag{21.65}
\end{equation*}
$$

In addition to the above tests, further very stringent tests of radiative gravity follow from the measurement of the orbital period decay \dot{P}_{b} of low-eccentricity pulsar-white dwarf systems. Notably, the system PSR J1738+0333 yields an intrinsic orbital decay of [151]

$$
\begin{equation*}
\left[\dot{P}_{b}^{\text {obs }}-\dot{P}_{b}^{\text {gal }}\right]_{1738+0333}=(-25.9 \pm 3.2) \times 10^{-15} \tag{21.66}
\end{equation*}
$$

to be compared to

$$
\begin{equation*}
\left[\dot{P}_{b}^{\mathrm{GR}}\right]_{1738+0333}=\left(-27.7_{-1.9}^{+1.5}\right) \times 10^{-15} \tag{21.67}
\end{equation*}
$$

The fractional agreement between the (corrected) observed period decay and the GR-predicted one seems to be quantitatively less impressive than the double-neutron-star results cited above, but the crucial point is that asymmetric binary systems (such as neutron-star-white-dwarf ones) are strong emitters of dipolar gravitational radiation in tensor-scalar theories, with \dot{P}_{b} scaling (modulo matter-scalar couplings) like $m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}(v / c)^{3}$, instead of the parametrically smaller GR-predicted quadrupolar radiation $\dot{P}_{b} \sim(v / c)^{5}[7,15]$. In view of the very small absolute value of \dot{P}_{b}, this makes such systems (and notably PSR J1738+0333) very sensitive probes of tensor-scalar gravity [97,151-154]. It is then useful to turn to a theory-dependent analysis of pulsar data. Such an analysis (see, e.g., $[17,122,151,154]$) leads to excluding a large portion of the parameter space of tensorscalar gravity allowed by solar-system tests. As a result, the basic matter-scalar coupling α_{0}^{2} is more strongly constrained, over most of the parameter space, than the best current solar-system limits of Eq. (21.58) (namely below the 10^{-5} level) [151, 154].

We now turn to the tests of radiative gravity that can be deduced from the first two observing runs of the LIGO-Virgo collaboration (LVC) (the third observing run of the LVC has started on April 1, 2019, and has already issued many alerts). The first two observing runs of the LVC have reported the detection of GW signals emitted by the inspiral and coalescence of ten binary black hole systems, and one binary neutron star system [146] (see [155] for more claimed detections from the public LVC data). The network signal-to-noise ratio (SNR) of the reported events varies between 10 and 24 for binary black hole coalescences, and is equal to 33 for the binary neutron star event. All currently detected GW signals are consistent with GR predictions. Several phenomenological approaches were used and led to setting limits on possible deviations from GR.

Besides checking the agreement between the full observed GW signals and the corresponding best-fit full signals predicted by GR, attempts were made to test the consistency between two separate parts of the signals. A first attempt [156] separated: (i) the lower-frequency (LF) signal emitted during the inspiral phase (considered up to the innermost stable circular orbit); and (ii) the higher-frequency (HF) remaining signal emitted during the late-inspiral, the merger, and the ringdown. Separately fitting each of these partial signals to GR-based templates then leads to separate estimates of the binary's parameters, leading to separate estimates of the mass M_{f} and dimensionless spin parameter $a_{f}=J_{f} /\left(G M_{f}^{2}\right)$ of the final black hole that would be formed (in GR) by the coalescence of the two initial black holes. The consistency with GR then consists in testing whether the two estimates $\left(M_{f}, a_{f}\right)_{\mathrm{LF}}$ and $\left(M_{f}, a_{f}\right)_{\mathrm{HF}}$ are compatible with each other. They were found to be consistent within statistical errors of order 30% for seven selected binary black hole events (see Fig. 2 in [156]). A second attempt [157] separately considered the post-merger signal of coalescing black holes, and tried to quantify the presence and structure of the GR-predicted ringing modes in the latter post-merger signal. Measuring, for the first event GW150914 (by using a model of the post-merger signal including the first two ringing modes), the mass and spin of the final black hole, $\left(M_{f}, a_{f}\right)_{\text {post-merger }}$, has shown consistency, at the $\sim 20 \%$
level, with the corresponding values inferred (using GR predictions) from fitting the entire signal [157].

The parametrization of Eq. (21.38) for possible deviations in the frequency dependence of the Fourier-domain phase $\psi(f)$ of the black hole coalescence GW signal was used to measure bestfit values for each fractional deviation parameter $\delta \hat{p}_{i}$, considered separately (the other ones being set to zero). In all cases, the posterior distribution for each $\delta \hat{p}_{i}$ is consistent with the GR value, i.e., $\delta \hat{p}_{i}^{\mathrm{GR}}=0$ (see figures 3 and 4 in Ref. [156]). The current limits on $\delta \hat{p}_{i}$ are (roughly) of order unity, except for the two parameters highlighted above: $\delta \hat{p}_{3}$ (parameterizing the $O\left(\left(\frac{v}{c}\right)^{3}\right)$ fractional correction to the LO, quadrupolar term); and $\delta \hat{p}_{-2}$ (parameterizing a possible dipolar-radiation-related $O\left(\left(\frac{v}{c}\right)^{-2}\right)$ fractional correction to the LO, quadrupolar term). The current combined 90% upper bound on $\delta \hat{p}_{3}$ is $\sim 10 \%$, while the corresponding bound on $\delta \hat{p}_{-2}$ is 2×10^{-3} (see figure 4 in Ref. [156]). See Ref. [158] for examples of the translation of these phenomenological constraints into bounds on specific theories.

As recalled above, GR predicts that the polarization content of GWs is pure helicity-2, i.e. described by the two independent components of a traceless tensor transverse to the propagation direction. A (massless) scalar excitation would add a pure-trace "breathing mode" in the plane transverse to the propagation direction. A phenomenological approach to generic metric theories of gravity would allow for up to six polarizations for a GW [159], namely two tensor, two vector and two scalar modes. The LVC tested possible polarization deviations from GR in the following way $[33,156]$: they assumed that the phase evolution of the GW signal was the one predicted by GR, but they replaced the polarization structure of the signal either by a generic vector-like one, or by a generic scalar-like one. The best polarization constraints have been obtained from the GW170817 event. The latter very long ($\sim 100 \mathrm{~s}$) and very loud (SNR $\simeq 33$) event was convincingly interpreted as coming from a binary neutron star inspiral $(\sim 40$ Mpc away), and was associated with a subsequent γ-ray burst, followed by transient counterparts across the electromagnetic spectrum [160]. The polarization analysis of the GW170817 data has given overwhelming evidence in favor of pure tensor polarization modes in comparison to pure vector or pure scalar modes with a base-ten logarithm of the Bayes factor of $+20.81 \pm 0.08$ and $+23.09 \pm 0.08$, respectively [156].

GR also predicts that GWs are non dispersive, and propagate at the same speed as light. One can phenomenologically modify the GR-predicted GW phase evolution by adding the putative effect of an anomalous dispersion relation of the form $E^{2}=p^{2} c^{2}+A p^{\alpha} c^{\alpha}$. GW data have been used to set bounds on the anomalous coefficient A for various values of the exponent α. The best bounds come from the analysis of the GW170104 event (see figure 5 in [32]). The case $\alpha=0$ is equivalent to assuming that gravitons disperse as a massive particle [56]. Combined GW data lead to the following phenomenological limit on the graviton mass: $m_{g} \leq 7.7 \times 10^{-23} \mathrm{eV} / c^{2}$ [32]. See Refs. [161, 162] for other graviton mass bounds.

Finally, a very constraining bound on the speed of propagation of gravity c_{GW} was derived from the observed time delay of 1.7 s between GW170817 and the associated γ-ray burst. Namely, the fractional difference between c_{GW} and $c_{\text {light }} \equiv c$ is constrained to be [163]

$$
\begin{equation*}
-3 \times 10^{-15}<\frac{c_{\mathrm{GW}}-c}{c}<+7 \times 10^{-16} \tag{21.68}
\end{equation*}
$$

When comparing the latter bound to the prediction Eq. (21.50) from general second-order tensor-scalar theories, Eq. (21.49), one is led to conclude that the coupling function $G_{5}(\varphi, X)$ has to be ignored and that the coupling function $G_{4}(\varphi, X)$ has to be restricted to depend only on φ. This drastically reduces the viable tensor-scalar modified-gravity models [164-167]. Observations from future GW detectors (both on the ground and in space) are expected to considerably strengthen the testing power of GW data $[168,169]$.

21.8 Conclusions

All present experimental tests are compatible with the predictions of the current "standard" theory of gravitation, Einstein's General Relativity. Let us recap the main tests. The universality of the coupling between matter and gravity (Equivalence Principle) has been verified at around the 10^{-14} level. Solar system experiments have tested the weak-field predictions of Einstein's theory at the few times 10^{-5} level. The propagation properties (in the near zone) of relativistic gravity, as well as several of its static strong-field aspects, have been verified at the 10^{-3} level (or better) in several binary pulsar experiments. Interferometric detectors of gravitational radiation have given direct observational proofs of the existence, and properties, of gravitational waves (in the wave zone), and of the existence of coalescing black holes, and they have already set strong limits on possible deviations; in particular: an upper bound $\left|\delta \hat{p}_{-2}\right|<2 \times 10^{-3}$ on a possible dipolar contribution to the GW flux; the $O\left(10^{-15}\right)$ bound of Eq. (21.68) on the speed of gravity; and strong evidence for the pure-tensor polarization structure of gravitational waves. In addition, laboratory experiments have set strong constraints on sub-millimeter modifications of Newtonian gravity, while many different cosmological data sets have been used to set limits on possible GR deviations on cosmological scales [29]. In spite of the uneasiness of having to assume the existence of dark matter, and the presence of an unaturally small cosmological constant (as dark energy), General Relativity stands out as a uniquely successful description of gravity on all the scales that have been explored so far. There are no modified-gravity models which naturally pass all existing experimental tests, while either explaining away the need for dark matter or for dark energy.

References

[1] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[2] H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).
[3] N. Chamel et al., Int. J. Mod. Phys. E22, 1330018 (2013), [arXiv:1307.3995].
[4] J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
[5] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[6] V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rept. 215, 203 (1992).
[7] C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press (2018).
[8] C. M. Will, Living Rev. Rel. 17, 4 (2014), [arXiv:1403.7377].
[9] K. Nordtvedt, Phys. Rev. 170, 1186 (1968).
[10] R. A. Hulse, Rev. Mod. Phys. 66, 699 (1994).
[11] J. H. Taylor, Rev. Mod. Phys. 66, 711 (1994).
[12] T. Damour and N. Deruelle, Phys. Lett. A87, 81 (1981); T. Damour, C.R. Acad. Sci. Paris 294, 1335 (1982).
[13] T. Damour and J. H. Taylor, Phys. Rev. D45, 1840 (1992).
[14] T. Damour and N. Deruelle, Ann. Inst. H. Poincare A, 44, 263 (1986).
[15] T. Damour and G. Esposito-Farese, Class. Quant. Grav. 9, 2093 (1992).
[16] C. M. Will and H. W. Zaglauer, Astrophys. J. 346, 366 (1989).
[17] T. Damour and G. Esposito-Farese, Phys. Rev. D54, 1474 (1996), [arXiv:gr-qc/9602056].
[18] T. Damour and G. Esposito-Farese, Phys. Rev. D58, 042001 (1998), [arXiv:gr-qc/9803031].
[19] J.-P. Uzan, Gen. Rel. Grav. 39, 307 (2007), [arXiv:astroph/0605313].
[20] R. Caldwell, A. Cooray and A. Melchiorri, Phys. Rev. D76, 023507 (2007), [arXiv:astro-ph/0703375].
[21] P. Zhang et al., Phys. Rev. Lett. 99, 141302 (2007), [arXiv:0704.1932].
[22] L. Amendola, M. Kunz and D. Sapone, JCAP 0804, 013 (2008), [arXiv:0704.2421].
[23] W. Hu and I. Sawicki, Phys. Rev. D76, 104043 (2007), [arXiv:0708.1190].
[24] S. F. Daniel et al., Phys. Rev. D77, 103513 (2008), [arXiv:0802.1068].
[25] G.-B. Zhao et al., Phys. Rev. D79, 083513 (2009), [arXiv:0809.3791].
[26] J.-P. Uzan, Gen. Rel. Grav. 42, 2219 (2010), [arXiv:0908.2243].
[27] E. Bertschinger, Phil. Trans. Roy. Soc. Lond. A369, 4947 (2011), [arXiv:1111.4659].
[28] T. Baker, P. G. Ferreira and C. Skordis, Phys. Rev. D87, 2, 024015 (2013), [arXiv:1209.2117].
[29] M. Ishak, Living Rev. Rel. 22, 1, 1 (2019), [arXiv:1806.10122].
[30] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 6, 061102 (2016), [arXiv:1602.03837].
[31] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 24, 241103 (2016), [arXiv:1606.04855].
[32] B. P. Abbott et al. (LIGO Scientific, VIRGO), Phys. Rev. Lett. 118, 22, 221101 (2017), [Erratum: Phys. Rev. Lett.121,no.12,129901(2018)], [arXiv:1706.01812].
[33] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 14, 141101 (2017), [arXiv:1709.09660].
[34] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 16, 161101 (2017), [arXiv:1710.05832].
[35] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X6, 4, 041015 (2016), [erratum: Phys. Rev.X8,no.3,039903(2018)], [arXiv:1606.04856].
[36] A. Buonanno and T. Damour, Phys. Rev. D62, 064015 (2000), [arXiv:gr-qc/0001013].
[37] L. Blanchet, Living Rev. Rel. 17, 2 (2014), [arXiv:1310.1528].
[38] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), [arXiv:grqc/0507014]; M. Campanelli et al., Phys. Rev. Lett. 96, 111101 (2006), [arXiv:gr-qc/0511048]; J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006), [arXiv:gr-qc/0511103].
[39] K. Yagi et al., Phys. Rev. D85, 064022 (2012), [Erratum: Phys. Rev.D93,no.2,029902(2016)], [arXiv:1110.5950].
[40] K. Yagi, L. C. Stein and N. Yunes, Phys. Rev. D93, 2, 024010 (2016), [arXiv:1510.02152].
[41] K. Prabhu and L. C. Stein, Phys. Rev. D98, 2, 021503 (2018), [arXiv:1805.02668].
[42] L. Bernard, Phys. Rev. D98, 4, 044004 (2018), [arXiv:1802.10201].
[43] F.-L. Julié and E. Berti (2019), [arXiv:1909.05258].
[44] M. Okounkova et al., Phys. Rev. D96, 4, 044020 (2017), [arXiv:1705.07924].
[45] H. Witek et al., Phys. Rev. D99, 6, 064035 (2019), [arXiv:1810.05177].
[46] M. Okounkova et al. (2019), [arXiv:1906.08789].
[47] L. Blanchet and B. S. Sathyaprakash, Phys. Rev. Lett. 74, 1067 (1995).
[48] K. G. Arun et al., Phys. Rev. D74, 024006 (2006), [arXiv:gr-qc/0604067].
[49] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 22, 221101 (2016), [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)], [arXiv:1602.03841].
[50] N. Yunes and F. Pretorius, Phys. Rev. D80, 122003 (2009), [arXiv:0909.3328].
[51] S. Khan et al., Phys. Rev. D93, 4, 044007 (2016), [arXiv:1508.07253].
[52] C. V. Vishveshwara, Nature 227, 936 (1970).
[53] S. L. Detweiler, Astrophys. J. 239, 292 (1980).
[54] V. Cardoso et al., Phys. Rev. D99, 10, 104077 (2019), [arXiv:1901.01265].
[55] R. McManus et al., Phys. Rev. D100, 4, 044061 (2019), [arXiv:1906.05155].
[56] C. M. Will, Phys. Rev. D57, 2061 (1998), [arXiv:grqc/9709011].
[57] M. Fierz, Helv. Phys. Acta 29, 128 (1956).
[58] E. G. Adelberger, B. R. Heckel and A. E. Nelson, Ann. Rev. Nucl. Part. Sci. 53, 77 (2003), [hep-ph/0307284].
[59] D. J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007), [hep-ph/0611184].
[60] A. O. Sushkov et al., Phys. Rev. Lett. 107, 171101 (2011), [arXiv:1108.2547].
[61] T. Damour and J. F. Donoghue, Phys. Rev. D82, 084033 (2010), [arXiv:1007.2792].
[62] R. V. Wagoner, Phys. Rev. D1, 3209 (1970).
[63] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961), [,142(1961)].
[64] J. Alsing et al., Phys. Rev. D85, 064041 (2012), [arXiv:1112.4903].
[65] T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70, 2217 (1993).
[66] T. Damour and A. M. Polyakov, Nucl. Phys. B423, 532 (1994), [hep-th/9401069].
[67] K. A. Olive and M. Pospelov, Phys. Rev. D77, 043524 (2008), [arXiv:0709.3825].
[68] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004), [arXiv:astro-ph/0309300].
[69] K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104, 231301 (2010), [arXiv:1001.4525].
[70] P. Brax et al., Phys. Rev. D82, 063519 (2010), [arXiv:1005.3735].
[71] A. Joyce et al., Phys. Rept. 568, 1 (2015), [arXiv:1407.0059].
[72] C. Burrage and J. Sakstein, Living Rev. Rel. 21, 1, 1 (2018), [arXiv:1709.09071].
[73] A. I. Vainshtein, Phys. Lett. 39B, 393 (1972).
[74] C. de Rham, Living Rev. Rel. 17, 7 (2014), [arXiv:1401.4173].
[75] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[76] C. Deffayet et al., Phys. Rev. D84, 064039 (2011), [arXiv:1103.3260].
[77] L. Heisenberg, Phys. Rept. 796, 1 (2019), [arXiv:1807.01725].
[78] T. Kobayashi, Rept. Prog. Phys. 82, 8, 086901 (2019), [arXiv:1901.07183].
[79] G. Papallo and H. S. Reall, Phys. Rev. D96, 4, 044019 (2017), [arXiv:1705.04370].
[80] L. Bernard, L. Lehner and R. Luna, Phys. Rev. D100, 2, 024011 (2019), [arXiv:1904.12866].
[81] A. D. Kovács, Phys. Rev. D100, 2, 024005 (2019), [arXiv:1904.00963].
[82] C. de Rham and S. Melville, Phys. Rev. Lett. 121, 22, 221101 (2018), [arXiv:1806.09417].
[83] D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, 13, 131103 (2018), [arXiv:1711.01187].
[84] H. O. Silva et al., Phys. Rev. Lett. 120, 13, 131104 (2018), [arXiv:1711.02080].
[85] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D24, 09, 1542014 (2015), [arXiv:1504.08209].
[86] A.I. Shlyakhter, Nature 264, 340 (1976).
[87] T. Damour and F. Dyson, Nucl. Phys. B480, 37 (1996), [hep-ph/9606486]; C. R. Gould, E. I. Sharapov and S. K. Lamoreaux, Phys. Rev. C74, 024607 (2006), [arXiv:nuclex/0701019]; E. D. Davis and L. Hamdan, Phys. Rev. C92, 1, 014319 (2015), [arXiv:1503.06011]; Yu. V. Petrov et al., Phys. Rev. C74, 064610 (2006), [hep-ph/0506186].
[88] V. V. Flambaum and R. B. Wiringa, Phys. Rev. C79, 034302 (2009), [arXiv:0807.4943].
[89] K. A. Olive et al., Phys. Rev. D69, 027701 (2004), [arXiv:astro-ph/0309252].
[90] M. T. Murphy, A. L. Malec and J. X. Prochaska, Mon. Not. Roy. Astron. Soc. 461, 3, 2461 (2016), [arXiv:1606.06293].
[91] N. Kanekar et al., Mon. Not. Roy. Astron. Soc. 448, 1, L104 (2015), [arXiv:1412.7757].
[92] P. A. R. Ade et al. (Planck), Astron. Astrophys. 580, A22 (2015), [arXiv:1406.7482].
[93] T. Rosenband et al., Science 319, 1808 (2008); J. Guena et al., Phys. Rev. Lett. 109, 080801 (2012); R. M. Godun et al., Phys. Rev. Lett. 113, 21, 210801 (2014), [arXiv:1407.0164].
[94] T. M. Fortier et al., Phys. Rev. Lett. 98, 070801 (2007); S. Blatt et al., Phys. Rev. Lett. 100, 140801 (2008), [arXiv:0801.1874]; T. Dent, Phys. Rev. Lett. 101, 041102 (2008), [arXiv:0805.0318].
[95] A. Fienga et al., Cel. Mech. Dyn. Astr. 123, Issue 2, 1 (2015).
[96] F. Hofmann and J. Müller, Class. Quant. Grav. 35, 3, 035015 (2018).
[97] K. Lazaridis et al., Mon. Not. R. Astron. Soc. 400, 805 (2009), [arXiv:0908.0285].
[98] W. W. Zhu et al., Mon. Not. Roy. Astron. Soc. 482, 3, 3249 (2019), [arXiv:1802.09206].
[99] M. Smiciklas et al., Phys. Rev. Lett. 107, 171604 (2011), [arXiv:1106.0738].
[100] J. F. Bell and T. Damour, Class. Quant. Grav. 13, 3121 (1996), [arXiv:gr-qc/9606062].
[101] L. Shao and N. Wex, Class. Quant. Grav. 29, 215018 (2012), [arXiv:1209.4503].
[102] S. Liberati, J. Phys. Conf. Ser. 631, 1, 012011 (2015).
[103] S. Schlamminger et al., Phys. Rev. Lett. 100, 041101 (2008), [arXiv:0712.0607].
[104] T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012), [arXiv:1207.2442].
[105] P. Touboul et al., Phys. Rev. Lett. 119, 23, 231101 (2017), [arXiv:1712.01176].
[106] P. Touboul et al. (MICROSCOPE), Class. Quant. Grav. 36, 22, 225006 (2019), [arXiv:1909.10598].
[107] S. Merlet et al., Metrologia, 47, L9-L11 (2010).
[108] G. Rosi et al., Nature Commun. 8, 5529 (2017), [arXiv:1704.02296].
[109] R.F.C. Vessot and M.W. Levine, Gen. Rel. Grav. 10, 181 (1978); R. F. C. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).
[110] C. W. Chou et al., Science 329, 1630 (2010).
[111] R. Abuter et al. (GRAVITY), Astron. Astrophys. 615, L15 (2018), [arXiv:1807.09409].
[112] T. Do et al., Science 365, 6454, 664 (2019), [arXiv:1907.10731].
[113] A. Amorim et al. (GRAVITY), Phys. Rev. Lett. 122, 10, 101102 (2019), [arXiv:1902.04193].
[114] J.G. Williams, S.G. Turyshev, and D.H. Boggs, Class. Quantum Grav. 29, 184004 (2012).
[115] I. Ciufolini and E. C. Pavlis, Nature 431, 958 (2004).
[116] I. Ciufolini et al., Eur. Phys. J. C76, 3, 120 (2016), [arXiv:1603.09674].
[117] C. W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011), [arXiv:1105.3456].
[118] B. Bertotti, L. Iess and P. Tortora, Nature 425, 374 (2003).
[119] J. Bergé et al., Phys. Rev. Lett. 120, 14, 141101 (2018), [arXiv:1712.00483].
[120] J. M. Weisberg and Y. Huang, Astrophys. J. 829, 1, 55 (2016), [arXiv:1606.02744].
[121] A. Wolszczan, Nature 350, 688 (1991).
[122] J. N. Taylor, A. Wolszczan and T. Damour, Nature 355, 132 (1993).
[123] E. Fonseca, I. H. Stairs and S. E. Thorsett, Astrophys. J. 787, 82 (2014), [arXiv:1402.4836].
[124] V. M. Kaspi et al., Astrophys. J. 528, 445 (2000), [arXiv:astro-ph/9906373].
[125] S. M. Ord, M. Bailes and W. van Straten, Astrophys. J. 574, L75 (2002), [arXiv:astro-ph/0204421].
[126] M. Bailes et al., Astrophys. J. 595, L49 (2003), [arXiv:astroph/0307468].
[127] N. D. R. Bhat, M. Bailes and J. P. W. Verbiest, Phys. Rev. D77, 124017 (2008), [arXiv:0804.0956].
[128] M. Burgay et al., Nature 426, 531 (2003), [arXiv:astroph/0312071].
[129] A. G. Lyne et al., Science 303, 1153 (2004), [arXiv:astroph/0401086].
[130] M. Kramer et al., Science 314, 97 (2006), [arXiv:astroph/0609417].
[131] R. P. Breton et al., Science 321, 104 (2008), [arXiv:0807.2644].
[132] B. Perera et al., Astrophys. J. 721, 1193 (2010), [arXiv:1008.1097].
[133] R. D. Ferdman et al., Mon. Not. Roy. Astron. Soc. 443, 3, 2183 (2014), [arXiv:1406.5507].
[134] M. Kramer and N. Wex, Class. Quant. Grav. 26, 073001 (2009).
[135] M. Kramer, in Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years; M. Kramer, IAU Symp. 291, 19 (2013), [arXiv:1211.2457].
[136] T. Damour and G. Schaefer, Phys. Rev. Lett. 66, 2549 (1991).
[137] M. E. Gonzalez et al., Astrophys. J. 743, 102 (2011), [arXiv:1109.5638].
[138] P. C. C. Freire, M. Kramer and N. Wex, Class. Quant. Grav. 29, 184007 (2012), [arXiv:1205.3751].
[139] S. M. Ransom et al., Nature 505, 520 (2014), [arXiv:1401.0535].
[140] A. M. Archibald et al., Nature 559, 7712, 73 (2018), [arXiv:1807.02059].
[141] T. Damour and R. Ruffini, C. R. Acad. Sc. Paris 279, série A, 971 (1974); B. M. Barker and R. F. O'Connell, Phys. Rev. D12, 329 (1975).
[142] M. Kramer, Astrophys. J. 509, 856 (1998), [arXiv:astroph/9808127]; J. M. Weisberg and J. H. Taylor, Astrophys. J. 576, 942 (2002), [arXiv:astro-ph/0205280].
[143] R. N. Manchester et al., Astrophys. J. 710, 1694 (2010), [arXiv:1001.1483].
[144] J. van Leeuwen et al., Astrophys. J. 798, 2, 118 (2015), [arXiv:1411.1518].
[145] G. Desvignes et al., Science 365, 6457, 1013 (2019).
[146] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X9, 3, 031040 (2019), [arXiv:1811.12907].
[147] V. Cardoso and P. Pani, Nat. Astron. 1, 9, 586 (2017), [arXiv:1709.01525].
[148] K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. 875, 1, L1 (2019), [arXiv:1906.11238].
[149] J. Beltran Jimenez, F. Piazza and H. Velten, Phys. Rev. Lett. 116, 6, 061101 (2016), [arXiv:1507.05047].
[150] T. Damour and J. H. Taylor, Astrophys. J. 366, 501 (1991).
[151] P. C. C. Freire et al., Mon. Not. Roy. Astron. Soc. 423, 3328 (2012), [arXiv:1205.1450].
[152] J. Antoniadis et al., Science 340, 6131 (2013), [arXiv:1304.6875].
[153] W. W. Zhu et al., Astrophys. J. 809, 1, 41 (2015), [arXiv:1504.00662].
[154] L. Shao et al., Phys. Rev. X7, 4, 041025 (2017), [arXiv:1704.07561].
[155] T. Venumadhav et al. (2019), [arXiv:1904.07214].
[156] B. P. Abbott et al. (LIGO Scientific, Virgo) (2019), [arXiv:1903.04467].
[157] M. Isi et al., Phys. Rev. Lett. 123, 11, 111102 (2019), [arXiv:1905.00869].
[158] N. Yunes, K. Yagi and F. Pretorius, Phys. Rev. D94, 8, 084002 (2016), [arXiv:1603.08955].
[159] D. M. Eardley, D. L. Lee and A. P. Lightman, Phys. Rev. D8, 3308 (1973).
[160] B. P. Abbott et al., Astrophys. J. 848, 2, L12 (2017), [arXiv:1710.05833].
[161] C. de Rham et al., Rev. Mod. Phys. 89, 2, 025004 (2017), [arXiv:1606.08462].
[162] C. M. Will, Class. Quant. Grav. 35, 17, 17LT01 (2018), [arXiv:1805.10523].
[163] B. P. Abbott et al. (LIGO Scientific, Virgo, FermiGBM, INTEGRAL), Astrophys. J. 848, 2, L13 (2017), [arXiv:1710.05834].
[164] T. Baker et al., Phys. Rev. Lett. 119, 25, 251301 (2017), [arXiv:1710.06394].
[165] P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 25, 251302 (2017), [arXiv:1710.05877].
[166] J. Sakstein and B. Jain, Phys. Rev. Lett. 119, 25, 251303 (2017), [arXiv:1710.05893].
[167] J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett. 119, 25, 251304 (2017), [arXiv:1710.05901].
[168] E. Barausse, N. Yunes and K. Chamberlain, Phys. Rev. Lett. 116, 24, 241104 (2016), [arXiv:1603.04075].
[169] K. Chamberlain and N. Yunes, Phys. Rev. D96, 8, 084039 (2017), [arXiv:1704.08268].

22. Big-Bang Cosmology

Revised August 2019 by K.A. Olive (Minnesota U.) and J.A. Peacock (Edinburgh U.).

22.1 Introduction to Standard Big-Bang Model

The observed expansion of the Universe [1-3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent.

The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Ralph Alpher and Robert Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has subsequently expanded and cooled to its present state $[4,5]$. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few $\mathrm{K}[6,7]$. Of course this radiation was observed 16 years later as the Cosmic Microwave Background (CMB) [8]. Indeed, it was the observation of this radiation that singled out the Big-Bang model as the prime candidate to describe our Universe. Subsequent work on Big-Bang nucleosynthesis further confirmed the necessity of our hot and dense past. (See Sec. 22.3.7 for a brief discussion of BBN and the review on BBN - Sec. 24 of this Review for a detailed discussion of BBN.) These relativistic cosmological models face severe problems with their initial conditions, to which the best modern solution is inflationary cosmology, discussed in Sec. 22.3.5 and in - Sec. 23 of this Review. If correct, these ideas would strictly render the term 'Big Bang' redundant, since it was first coined by Hoyle to represent a criticism of the lack of understanding of the initial conditions.

22.1.1 The Robertson-Walker Universe

The observed homogeneity and isotropy enable us to describe the overall geometry and evolution of the Universe in terms of two cosmological parameters accounting for the spatial curvature and the overall expansion (or contraction) of the Universe. These two quantities appear in the most general expression for a space-time metric that has a (3D) maximally symmetric subspace of a 4D space-time, known as the Robertson-Walker metric:

$$
\begin{equation*}
d s^{2}=d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] . \tag{22.1}
\end{equation*}
$$

Note that we adopt $c=1$ throughout. By rescaling the radial coordinate, we can choose the curvature constant k to take only the discrete values $+1,-1$, or 0 corresponding to closed, open, or spatially flat geometries. In this case, it is often more convenient to re-express the metric as

$$
\begin{equation*}
d s^{2}=d t^{2}-R^{2}(t)\left[d \chi^{2}+S_{k}^{2}(\chi)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{22.2}
\end{equation*}
$$

where the function $S_{k}(\chi)$ is $(\sin \chi, \chi, \sinh \chi)$ for $k=(+1,0,-1)$. The coordinate r [in Eq. (22.1)] and the 'angle' χ [in Eq. (22.2)] are both dimensionless; the dimensions are carried by the cosmological scale factor, $R(t)$, which determines proper distances in terms of the comoving coordinates. A common alternative is to define a dimensionless scale factor, $a(t)=R(t) / R_{0}$, where $R_{0} \equiv R\left(t_{0}\right)$ is R at the present epoch. It is also sometimes convenient to define a dimensionless or conformal time coordinate, η, by $d \eta=d t / R(t)$. Along constant spatial sections, the proper time is defined by the time coordinate, t. Similarly, for $d t=d \theta=d \phi=0$, the proper distance is given by $R(t) \chi$. For standard texts on cosmological models see e.g., Refs. [9-16].

22.1.2 The redshift

The cosmological redshift is a direct consequence of the Hubble expansion, determined by $R(t)$. A local observer detecting light from a distant emitter sees a redshift in frequency. We can define the redshift as

$$
\begin{equation*}
z \equiv \frac{\nu_{1}-\nu_{2}}{\nu_{2}} \simeq v_{12} \tag{22.3}
\end{equation*}
$$

where ν_{1} is the frequency of the emitted light, ν_{2} is the observed frequency, and v_{12} is the relative velocity between the emitter and the observer. While the definition, $z=\left(\nu_{1}-\nu_{2}\right) / \nu_{2}$ is valid in general, relating the redshift to a simple relative velocity is only correct on small scales (i.e., less than cosmological scales) such that the expansion velocity is non-relativistic. For light signals, we can use the metric given by Eq. (22.1) and $d s^{2}=0$ to write

$$
\begin{equation*}
v_{12}=\dot{R} \delta r=\frac{\dot{R}}{R} \delta t=\frac{\delta R}{R}=\frac{R_{2}-R_{1}}{R_{1}} \tag{22.4}
\end{equation*}
$$

where $\delta r(\delta t)$ is the radial coordinate (temporal) separation between the emitter and observer. Noting that physical distance, D, is $R \delta r$ or δt, Eq. (22.4) gives us Hubble's law, $v=H D$. In addition, we obtain the simple relation between the redshift and the scale factor

$$
\begin{equation*}
1+z=\frac{\nu_{1}}{\nu_{2}}=\frac{R_{2}}{R_{1}} \tag{22.5}
\end{equation*}
$$

This result does not depend on the non-relativistic approximation.

22.1.3 The Friedmann equations of motion

The cosmological equations of motion are derived from Einstein's equations

$$
\begin{equation*}
\mathcal{R}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathcal{R}=8 \pi G_{\mathrm{N}} T_{\mu \nu}+\Lambda g_{\mu \nu} \tag{22.6}
\end{equation*}
$$

Gliner [17] and Zeldovich [18] have pioneered the modern view, in which the Λ term is set on the rhs and interpreted as an effective energy - momentum tensor $T_{\mu \nu}$ for the vacuum of $\Lambda g_{\mu \nu} / 8 \pi G_{\mathrm{N}}$. It is common to assume that the matter content of the Universe is a perfect fluid, for which

$$
\begin{equation*}
T_{\mu \nu}=-p g_{\mu \nu}+(p+\rho) u_{\mu} u_{\nu} \tag{22.7}
\end{equation*}
$$

where $g_{\mu \nu}$ is the space-time metric described by Eq. (22.1), p is the isotropic pressure, ρ is the energy density and $u=(1,0,0,0)$ is the velocity vector for the isotropic fluid in co-moving coordinates. With the perfect fluid source, Einstein's equations lead to the Friedmann equations

$$
\begin{equation*}
H^{2} \equiv\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi G_{\mathrm{N}} \rho}{3}-\frac{k}{R^{2}}+\frac{\Lambda}{3} \tag{22.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\ddot{R}}{R}=\frac{\Lambda}{3}-\frac{4 \pi G_{\mathrm{N}}}{3}(\rho+3 p) \tag{22.9}
\end{equation*}
$$

where $H(t)$ is the Hubble parameter and Λ is the cosmological constant. The first of these is sometimes called the Friedmann equation. Energy conservation via $T_{; \mu}^{\mu \nu}=0$, leads to a third useful equation [which can also be derived from Eq. (22.8) and Eq. (22.9)]

$$
\begin{equation*}
\dot{\rho}=-3 H(\rho+p) \tag{22.10}
\end{equation*}
$$

Eq. (22.10) can also be simply derived as a consequence of the first law of thermodynamics.

Eq. (22.8) has a simple classical mechanical analog if we neglect (for the moment) the cosmological term Λ. By interpreting $-k / R^{2}$ Newtonianly as a 'total energy', then we see that the evolution of the Universe is governed by a competition between the potential energy, $8 \pi G_{\mathrm{N}} \rho / 3$, and the kinetic term $(\dot{R} / R)^{2}$. For $\Lambda=0$, it is clear that the Universe must be expanding or contracting (except at the turning point prior to collapse in a closed Universe). The ultimate fate of the Universe is determined by the curvature constant k. For $k=+1$, the Universe will recollapse in a finite time, whereas for $k=0,-1$, the Universe will expand indefinitely. These simple conclusions can be altered when $\Lambda \neq 0$ or more generally with some component with $(\rho+3 p)<0$.

22.1.4 Definition of cosmological parameters

In addition to the Hubble parameter, it is useful to define several other measurable cosmological parameters. The Friedmann equation can be used to define a critical density such that $k=0$ when $\Lambda=0$,

$$
\begin{align*}
\rho_{\mathrm{c}} \equiv \frac{3 H^{2}}{8 \pi G_{\mathrm{N}}} & =1.88 \times 10^{-26} h^{2} \mathrm{~kg} \mathrm{~m}^{-3} \tag{22.11}\\
& =1.05 \times 10^{-5} h^{2} \mathrm{GeV} \mathrm{~cm}
\end{align*}
$$

where the scaled Hubble parameter, h, is defined by

$$
\begin{align*}
H & \equiv 100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \\
\Rightarrow H^{-1} & =9.778 h^{-1} \mathrm{Gyr} \tag{22.12}\\
& =2998 h^{-1} \mathrm{Mpc}
\end{align*}
$$

The cosmological density parameter $\Omega_{\text {tot }}$ is defined as the energy density relative to the critical density,

$$
\begin{equation*}
\Omega_{\mathrm{tot}}=\rho / \rho_{\mathrm{c}} \tag{22.13}
\end{equation*}
$$

Note that one can now rewrite the Friedmann equation as

$$
\begin{equation*}
k / R^{2}=H^{2}\left(\Omega_{\mathrm{tot}}-1\right) \tag{22.14}
\end{equation*}
$$

From Eq. (22.14), one can see that when $\Omega_{\text {tot }}>1, k=+1$ and the Universe is closed, when $\Omega_{\text {tot }}<1, k=-1$ and the Universe is open, and when $\Omega_{\mathrm{tot}}=1, k=0$, and the Universe is spatially flat.

It is often necessary to distinguish different contributions to the density. It is therefore convenient to define present-day density parameters for pressureless matter $\left(\Omega_{\mathrm{m}}\right)$ and relativistic particles $\left(\Omega_{\mathrm{r}}\right)$, plus the quantity $\Omega_{\Lambda}=\Lambda / 3 H^{2}$. In more general models, we may wish to drop the assumption that the vacuum energy density is constant, and we therefore denote the present-day density parameter of the vacuum by Ω_{v}. The Friedmann equation then becomes

$$
\begin{equation*}
k / R_{0}^{2}=H_{0}^{2}\left(\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\Omega_{\mathrm{v}}-1\right) \tag{22.15}
\end{equation*}
$$

where the subscript 0 indicates present-day values. Thus, it is the sum of the densities in matter, relativistic particles, and vacuum that determines the overall sign of the curvature. Note that the quantity $-k / R_{0}^{2} H_{0}^{2}$ is sometimes referred to as Ω_{K}. This usage is unfortunate: it encourages one to think of curvature as a contribution to the energy density of the Universe, which is not correct.

22.1.5 Standard Model solutions

Much of the history of the Universe in the standard Big-Bang model can be easily described by assuming that either matter or radiation dominates the total energy density. During inflation and again today the expansion rate for the Universe is accelerating, and domination by a cosmological constant or some other form of dark energy should be considered. In the following, we shall delineate the solutions to the Friedmann equation when a single component dominates the energy density. Each component is distinguished by an equation of state parameter $w=p / \rho$. We concentrate on solutions that expand at early times, although the Friedmann equation also permits a time-reversed contracting solution.
22.1.5.1 Solutions for a general equation of state

Let us first assume a general equation of state parameter for a single component, w, which is constant. In this case, Eq. (22.10) can be written as $\dot{\rho}=-3(1+w) \rho \dot{R} / R$ and is easily integrated to yield

$$
\begin{equation*}
\rho \propto R^{-3(1+w)} \tag{22.16}
\end{equation*}
$$

Note that at early times when R is small, the less singular curvature term k / R^{2} in the Friedmann equation can be neglected so long as $w>-1 / 3$. Curvature domination occurs at rather late times (if a cosmological constant term does not dominate sooner). For $w \neq-1$, one can insert this result into the Friedmann equation Eq. (22.8), and if one neglects the curvature and cosmological constant terms, it is easy to integrate the equation to obtain,

$$
\begin{equation*}
R(t) \propto t^{2 /[3(1+w)]} \tag{22.17}
\end{equation*}
$$

22.1.5.2 A Radiation-dominated Universe

In the early hot and dense Universe, it is appropriate to assume an equation of state corresponding to a gas of radiation (or relativistic particles) for which $w=1 / 3$. In this case, Eq. (22.16) becomes $\rho \propto R^{-4}$. The 'extra' factor of $1 / R$ is due to the cosmological redshift; not only is the number density of particles in the radiation background decreasing as R^{-3} since volume scales as R^{3}, but in addition each particle's energy is decreasing as $E \propto \nu \propto R^{-1}$. Similarly, one can substitute $w=1 / 3$ into Eq. (22.17) to obtain

$$
\begin{equation*}
R(t) \propto t^{1 / 2} ; \quad H=1 / 2 t \tag{22.18}
\end{equation*}
$$

22.1.5.3 A Matter-dominated Universe

At relatively late times, non-relativistic matter eventually dominates the energy density over radiation [see Eq. (22.3.8)]. A pressureless gas $(w=0)$ leads to the expected dependence $\rho \propto R^{-3}$ from Eq. (22.16) and, if $k=0$, we obtain

$$
\begin{equation*}
R(t) \propto t^{2 / 3} ; \quad H=2 / 3 t \tag{22.19}
\end{equation*}
$$

22.1.5.4 A Universe dominated by vacuum energy

If there is a dominant source of vacuum energy, V_{0}, it would act as a cosmological constant with $\Lambda=8 \pi G_{\mathrm{N}} V_{0}$ and equation of state $w=-1$. In this case, the solution to the Friedmann equation when curvature is neglected is particularly simple and leads to an exponential expansion of the Universe:

$$
\begin{equation*}
R(t) \propto e^{\sqrt{\Lambda / 3} t} \tag{22.20}
\end{equation*}
$$

More generally we could write

$$
\begin{equation*}
a(t)=\sinh ^{2 / 3}(\sqrt{3 \Lambda} t / 2) \tag{22.21}
\end{equation*}
$$

which describes a flat Universe containing both matter and vacuum energy, with $a(t)$ being the scale factor normalized to unity when both components are equal.

A key parameter is the equation of state of the vacuum, $w \equiv p / \rho$: this need not be the $w=-1$ of Λ, and may not even be constant [19-21]. There is much interest in the more general possibility of a dynamically evolving vacuum energy, for which the name 'dark energy' has become commonly used. A variety of techniques exist whereby the vacuum density as a function of time may be measured, usually expressed as the value of w as a function of epoch [22,23]. The best current measurement for the equation of state (assumed constant, but without assuming zero curvature) is $w=-1.028 \pm 0.031$ [24]. Unless stated otherwise, we will assume that the vacuum energy is a cosmological constant with $w=-1$ exactly.

The presence of vacuum energy can dramatically alter the fate of the Universe. For example, if $\Lambda<0$, the Universe will eventually recollapse independent of the sign of k. For large values of $\Lambda>0$ (larger than the Einstein static value needed to halt any cosmological expansion or contraction), even a closed Universe will expand forever. One way to quantify this is the deceleration parameter, q_{0}, defined as

$$
\begin{equation*}
q_{0}=-\left.\frac{R \ddot{R}}{\dot{R}^{2}}\right|_{0}=\frac{1}{2} \Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\frac{(1+3 w)}{2} \Omega_{\mathrm{v}} \tag{22.22}
\end{equation*}
$$

This equation shows us that $w<-1 / 3$ for the vacuum may lead to an accelerating expansion. To the continuing astonishment of cosmologists, such an effect has been observed; one piece of direct evidence is the supernova Hubble diagram [25-30] (see Fig. 22.1 below). Current data indicate that vacuum energy is indeed the largest contributor to the cosmological density budget, with $\Omega_{\mathrm{v}}=$ 0.685 ± 0.007 and $\Omega_{\mathrm{m}}=0.315 \pm 0.007$ if $k=0$ is assumed [24].
The existence of this constituent is without doubt the greatest puzzle raised by the current cosmological model; the final section of this review discusses some of the ways in which the vacuumenergy problem is being addressed. For more details, see the review on Dark Energy - Sec. 28.

Figure 22.1: The type Ia supernova Hubble diagram, based on over 1200 publicly available supernova distance estimates [28-30]. The first panel shows that for $z \ll 1$ the large-scale Hubble flow is indeed linear and uniform; the second panel shows an expanded scale, with the linear trend divided out, and with the redshift range extended to show how the Hubble law becomes nonlinear. ($\Omega_{\mathrm{r}}=0$ is assumed.) Larger points with errors show median values in redshift bins. Comparison with the prediction of Friedmann models favors a vacuum-dominated Universe.

22.2 Introduction to Observational Cosmology

22.2.1 Fluxes, luminosities, and distances

The key quantities for observational cosmology can be deduced quite directly from the metric.
(1) The proper transverse size of an object seen by us to subtend an angle $d \psi$ is its comoving size $d \psi S_{k}(\chi)$ times the scale factor at the time of emission:

$$
\begin{equation*}
d \ell=d \psi R_{0} S_{k}(\chi) /(1+z) \tag{22.23}
\end{equation*}
$$

(2) The apparent flux density of an object is deduced by allowing its photons to flow through a sphere of current radius $R_{0} S_{k}(\chi)$; but photon energies and arrival rates are redshifted, and the bandwidth $d \nu$ is reduced. The observed photons at frequency ν_{0} were emitted at frequency $\nu_{0}(1+z)$, so the flux density is the luminosity at this frequency, divided by the total area, divided by $1+z$:

$$
\begin{equation*}
S_{\nu}\left(\nu_{0}\right)=\frac{L_{\nu}\left([1+z] \nu_{0}\right)}{4 \pi R_{0}^{2} S_{k}^{2}(\chi)(1+z)} \tag{22.24}
\end{equation*}
$$

These relations lead to the following common definitions:

$$
\begin{align*}
\text { angular-diameter distance: } & D_{\mathrm{A}}=(1+z)^{-1} R_{0} S_{k}(\chi) \tag{22.25}\\
\text { luminosity distance: } & D_{\mathrm{L}}=(1+z) R_{0} S_{k}(\chi) .
\end{align*}
$$

These distance-redshift relations are expressed in terms of observables by using the equation of a null radial geodesic $(R(t) d \chi=$
$d t)$ plus the Friedmann equation:

$$
\begin{align*}
R_{0} d \chi=\frac{1}{H(z)} d z=\frac{1}{H_{0}} & {\left[\left(1-\Omega_{\mathrm{m}}-\Omega_{\mathrm{v}}-\Omega_{\mathrm{r}}\right)(1+z)^{2}\right.} \\
& +\Omega_{\mathrm{v}}(1+z)^{3+3 w}+\Omega_{\mathrm{m}}(1+z)^{3} \\
& \left.+\Omega_{\mathrm{r}}(1+z)^{4}\right]^{-1 / 2} d z \tag{22.26}
\end{align*}
$$

The main scale for the distance here is the Hubble length, $1 / H_{0}$.
The flux density is the product of the specific intensity I_{ν} and the solid angle $d \Omega$ subtended by the source: $S_{\nu}=I_{\nu} d \Omega$. Combining the angular size and flux-density relations thus gives the relativistic version of surface-brightness conservation:

$$
\begin{equation*}
I_{\nu}\left(\nu_{0}\right)=\frac{B_{\nu}\left([1+z] \nu_{0}\right)}{(1+z)^{3}} \tag{22.27}
\end{equation*}
$$

where B_{ν} is surface brightness (luminosity emitted into unit solid angle per unit area of source). We can integrate over ν_{0} to obtain the corresponding total or bolometric formula:

$$
\begin{equation*}
I_{\mathrm{tot}}=\frac{B_{\mathrm{tot}}}{(1+z)^{4}} \tag{22.28}
\end{equation*}
$$

This cosmology-independent form expresses Liouville's Theorem: photon phase-space density is conserved along rays.

22.2.2 Distance data and geometrical tests of cosmology

In order to confront these theoretical predictions with data, we have to bridge the divide between two extremes. Nearby objects may have their distances measured quite easily, but their radial velocities are dominated by deviations from the ideal Hubble flow, which typically have a magnitude of several hundred $\mathrm{km} \mathrm{s}^{-1}$. On the other hand, objects at redshifts $z \gtrsim 0.01$ will have observed recessional velocities that differ from their ideal values by $\lesssim 10 \%$, but absolute distances are much harder to supply in this case. The traditional solution to this problem is the construction of the distance ladder: an interlocking set of methods for obtaining relative distances between various classes of object, which begins with absolute distances at the 10 to 100 pc level, and terminates with galaxies at significant redshifts. This is discussed in the article on Cosmological Parameters - Sec. 25.1 of this Review.

One of the key developments in this area has been the use of
 tive distances with 5% precision. In combination with improved Cepheid data from the HST plus improved measurements of the distance to the LMC (or alternatively a direct geometrical distance to the maser galaxy NGC4258), SNe results extend the distance ladder to the point where deviations from uniform expansion are negligible, leading to the best existing Cepheid-based value for $H_{0}: 74.03 \pm 1.42 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [31]. Better still, the analysis of high- $z \mathrm{SNe}$ has allowed a simple and direct test of cosmological geometry to be carried out: as shown in Fig. 22.1 and Fig. 22.2, supernova data and measurements of CMB anisotropies strongly favor a $k=0$ model dominated by vacuum energy. It is worth noting that there is some tension (3.7σ) between the Cepheid and CMB determinations of H_{0} (the latter is 67.4 ± 0.5 [24]. While it is remarkable that the two very different methods give such similar results, the formal disagreement shows that either there are unidentified systematic errors or that some new post-CDM physics is required; there is no current consensus in the community on these alternatives. We do note that a recent analysis of SNe Ia with a calibration of the tip of the red-giant branch gives a result close to that of the CMB: 69.8 ± 0.8 (stat.) ± 1.7 (sys.) $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ [32]. (See the review on Cosmological Parameters - Sec. 25.1 of this Review for a more comprehensive review of Hubble parameter determinations.)

22.2.3 Age of the Universe

The most striking conclusion of relativistic cosmology is that the Universe has not existed forever. The dynamical result for

Figure 22.2: Likelihood-based probability densities over the plane Ω_{Λ} (i.e., Ω_{v} assuming $\left.w=-1\right)$ vs Ω_{m}. The colored locus derives from Planck [33] and shows that the CMB alone requires a flat Universe $\Omega_{\mathrm{v}}+\Omega_{\mathrm{m}} \simeq 1$ if the Hubble constant is not too high. The SNe Ia results [34] very nearly constrain the orthogonal combination $\Omega_{\mathrm{v}}-\Omega_{\mathrm{m}}$, and the intersection of these constraints directly favors a flat model with $\Omega_{\mathrm{m}} \simeq 0.3$, as does the measurement of the Baryon Acoustic Oscillation lengthscale (for which a joint constraint is shown on this plot). The CMB alone is capable of breaking the degeneracy with H_{0} by using the measurements of gravitational lensing that can be made with modern high-resolution CMB data.
the age of the Universe may be written as

$$
\begin{align*}
H_{0} t_{0} & =\int_{0}^{\infty} \frac{d z}{(1+z) H(z)} \\
& =\int_{0}^{\infty} \frac{d z}{(1+z)\left[(1+z)^{2}\left(1+\Omega_{\mathrm{m}} z\right)-z(2+z) \Omega_{\mathrm{v}}\right]^{1 / 2}} \tag{22.29}
\end{align*}
$$

where we have neglected Ω_{r} and chosen $w=-1$. Over the range of interest $\left(0.1 \lesssim \Omega_{\mathrm{m}} \lesssim 1,\left|\Omega_{\mathrm{v}}\right| \lesssim 1\right)$, this exact answer may be approximated to a few per cent accuracy by

$$
\begin{equation*}
H_{0} t_{0} \simeq \frac{2}{3}\left(0.7 \Omega_{\mathrm{m}}+0.3-0.3 \Omega_{\mathrm{v}}\right)^{-0.3} \tag{22.30}
\end{equation*}
$$

For the special case that $\Omega_{\mathrm{m}}+\Omega_{\mathrm{v}}=1$, the integral in Eq. (22.29) can be expressed analytically as

$$
\begin{equation*}
H_{0} t_{0}=\frac{2}{3 \sqrt{\Omega_{\mathrm{v}}}} \ln \frac{1+\sqrt{\Omega_{\mathrm{v}}}}{\sqrt{1-\Omega_{\mathrm{v}}}} \quad\left(\Omega_{\mathrm{m}}<1\right) \tag{22.31}
\end{equation*}
$$

The most accurate means of obtaining ages for astronomical objects is based on the natural clocks provided by radioactive decay. The use of these clocks is complicated by a lack of knowledge of the initial conditions of the decay. In the Solar System, chemical fractionation of different elements helps pin down a precise age for the pre-Solar nebula of 4.6 Gyr, but for stars it is necessary to attempt an a priori calculation of the relative abundances of nuclei that result from supernova explosions. In this way, a lower limit for the age of stars in the local part of the Milky Way of about 11 Gyr is obtained $[35,36]$.

The other major means of obtaining cosmological age estimates is based on the theory of stellar evolution. In principle, the mainsequence turnoff point in the color-magnitude diagram of a globular cluster should yield a reliable age. But these have been controversial, owing to theoretical uncertainties in the evolution model - as well as observational uncertainties in the distance, dust extinction, and metallicity of clusters. The present consensus favors ages for the oldest clusters of about 13 Gyr [37].

These methods are all consistent with the age deduced from studies of structure formation, using the microwave background and large-scale structure: $t_{0}=13.80 \pm 0.02 \mathrm{Gyr}$ [24], where the extra accuracy comes at the price of assuming the simple 6 -parameter Λ CDM model to be true.

22.2.4 Horizon, isotropy, flatness problems

For photons, the radial equation of motion is just $c d t=R d \chi$. How far can a photon get in a given time? The answer is clearly

$$
\begin{equation*}
\Delta \chi=\int_{t_{1}}^{t_{2}} \frac{d t}{R(t)} \equiv \Delta \eta \tag{22.32}
\end{equation*}
$$

i.e., just the interval of conformal time. We can replace $d t$ by $d R / \dot{R}$, which the Friedmann equation says is $\propto d R / \sqrt{\rho R^{2}}$ at early times. Thus, this integral converges if $\rho R^{2} \rightarrow \infty$ as $t_{1} \rightarrow 0$, otherwise it diverges. Provided the equation of state is such that ρ changes faster than R^{-2}, light signals can only propagate a finite distance between the Big Bang and the present; there is then said to be a particle horizon. Such a horizon therefore exists in conventional Big-Bang models, which are dominated by radiation ($\rho \propto R^{-4}$) at early times.

At late times, the integral for the horizon is largely determined by the matter-dominated phase, for which

$$
\begin{equation*}
D_{\mathrm{H}}=R_{0} \chi_{\mathrm{H}} \equiv R_{0} \int_{0}^{t(z)} \frac{d t}{R(t)} \simeq \frac{6000}{\sqrt{\Omega_{\mathrm{m}} z}} h^{-1} \mathrm{Mpc} \quad(z \gg 1) \tag{22.33}
\end{equation*}
$$

The horizon at the time of formation of the microwave background ('last scattering': $z \simeq 1100$) was thus of order 100 Mpc in size, subtending an angle of about 1°. Why then are the large number of causally disconnected regions we see on the microwave sky all at the same temperature? The Universe is very nearly isotropic and homogeneous, even though the initial conditions appear not to permit such a state to be constructed.

A related problem is that the $\Omega=1$ Universe is unstable:

$$
\begin{equation*}
\Omega(a)-1=\frac{\Omega-1}{1-\Omega+\Omega_{\mathrm{v}} a^{2}+\Omega_{\mathrm{m}} a^{-1}+\Omega_{\mathrm{r}} a^{-2}} \tag{22.34}
\end{equation*}
$$

where Ω with no subscript is the total density parameter, and $a(t)=R(t) / R_{0}$. This requires $\Omega(t)$ to be unity to arbitrary precision as the initial time tends to zero; a Universe of non-zero curvature today requires very finely tuned initial conditions.

22.3 The Hot Thermal Universe

22.3.1 Thermodynamics of the early Universe

As alluded to above, we expect that much of the early Universe can be described by a radiation-dominated equation of state. In addition, through much of the radiation-dominated period, thermal equilibrium is established by the rapid rate of particle interactions relative to the expansion rate of the Universe (see Sec. 22.3.3 below). In equilibrium, it is straightforward to compute the thermodynamic quantities, ρ, p, and the entropy density, s. In general, the energy density for a given particle type i can be written as

$$
\begin{equation*}
\rho_{i}=\int E_{i} d n_{q_{i}} \tag{22.35}
\end{equation*}
$$

with the density of states given by

$$
\begin{equation*}
d n_{q_{i}}=\frac{g_{i}}{2 \pi^{2}}\left(\exp \left[\left(E_{q_{i}}-\mu_{i}\right) / T_{i}\right] \pm 1\right)^{-1} q_{i}^{2} d q_{i} \tag{22.36}
\end{equation*}
$$

where g_{i} counts the number of degrees of freedom for particle type $i, E_{q_{i}}^{2}=m_{i}^{2}+q_{i}^{2}, \mu_{i}$ is the chemical potential, and the \pm corresponds to either Fermi or Bose statistics. Similarly, we can define the pressure of a perfect gas as

$$
\begin{equation*}
p_{i}=\frac{1}{3} \int \frac{q_{i}^{2}}{E_{i}} d n_{q_{i}} \tag{22.37}
\end{equation*}
$$

The number density of species i is simply

$$
\begin{equation*}
n_{i}=\int d n_{q_{i}} \tag{22.38}
\end{equation*}
$$

and the entropy density is

$$
\begin{equation*}
s_{i}=\frac{\rho_{i}+p_{i}-\mu_{i} n_{i}}{T_{i}} \tag{22.39}
\end{equation*}
$$

In the Standard Model, a chemical potential is often associated with baryon number, and since the net baryon density relative to the photon density is known to be very small (of order 10^{-9}), we can neglect any such chemical potential when computing total thermodynamic quantities.

For photons, we can compute all of the thermodynamic quantities rather easily. Taking $g_{i}=2$ for the 2 photon polarization states, we have (in units where $\hbar=k_{\mathrm{B}}=1$)

$$
\begin{equation*}
\rho_{\gamma}=\frac{\pi^{2}}{15} T^{4}, \quad p_{\gamma}=\frac{1}{3} \rho_{\gamma}, \quad s_{\gamma}=\frac{4 \rho_{\gamma}}{3 T}, \quad n_{\gamma}=\frac{2 \zeta(3)}{\pi^{2}} T^{3} \tag{22.40}
\end{equation*}
$$

with $2 \zeta(3) / \pi^{2} \simeq 0.2436$. Note that Eq. (22.10) can be converted into an equation for entropy conservation. Recognizing that $\dot{p}=$ $s \dot{T}$, Eq. (22.10) becomes

$$
\begin{equation*}
d\left(s R^{3}\right) / d t=0 \tag{22.41}
\end{equation*}
$$

For radiation, this corresponds to the relationship between expansion and cooling, $T \propto R^{-1}$ in an adiabatically expanding Universe. Note also that both s and n_{γ} scale as T^{3}.

22.3.2 Radiation content of the Early Universe

At the very high temperatures associated with the early Universe, massive particles are pair produced, and are part of the thermal bath. If for a given particle species i we have $T \gg m_{i}$, then we can neglect the mass in Eq. (22.35) to Eq. (22.39), and the thermodynamic quantities are easily computed as in Eq. (22.40). In general, we can approximate the energy density (at high temperatures) by including only those particles with $m_{i} \ll T$. In this case, we have

$$
\begin{equation*}
\rho=\left(\sum_{\mathrm{B}} g_{\mathrm{B}}+\frac{7}{8} \sum_{\mathrm{F}} g_{\mathrm{F}}\right) \frac{\pi^{2}}{30} T^{4} \equiv \frac{\pi^{2}}{30} N(T) T^{4} \tag{22.42}
\end{equation*}
$$

where $g_{\mathrm{B}(\mathrm{F})}$ is the number of degrees of freedom of each boson (fermion) and the sum runs over all boson and fermion states with $m \ll T$. The factor of $7 / 8$ is due to the difference between the Fermi and Bose integrals. Eq. (22.42) defines the effective number of degrees of freedom, $N(T)$, by taking into account new particle degrees of freedom as the temperature is raised. This quantity, calculated from high temperature lattice QCD, is plotted in Fig. 22.3 [38]. Near the QCD transition, there is a slight difference between the coefficient of T^{4} for ρ and the coefficient of T^{3} for the entropy density $s=\left(2 \pi^{2} / 45\right) N_{s}(T) T^{3}$ [39], as seen in the figure.

Figure 22.3: The effective numbers of relativistic degrees of freedom as a function of temperature. The sharp drop corresponds to the quark-hadron transition. The bottom panel shows the relative ratio between the number of degrees of freedom characterizing the energy density and the entropy.

The value of $N(T)$ at any given temperature depends on the particle physics model. In the standard $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ model, we can specify $N(T)$ up to temperatures of $O(100) \mathrm{GeV}$.

The change in N (ignoring mass effects) can be seen in the table below.

Temperature	New Particles	$4 N(T)$
$T<m_{e}$	$\gamma^{\prime} \mathrm{s}+\nu^{\prime} \mathrm{s}$	29
$m_{e}<T<m_{\mu}$	$e^{ \pm}$	43
$m_{\mu}<T<m_{\pi}$	$\mu^{ \pm}$	57
$m_{\pi}<T<T_{c}{ }^{\dagger}$	π 's	69
$T_{c}<T<m_{\text {strange }}$	$\pi ' \mathrm{~s}+u, \bar{u}, d, \bar{d}+$ gluons	205
$m_{s}<T<m_{\text {charm }}$	s, \bar{s}	247
$m_{c}<T<m_{\tau}$	c, \bar{c}	289
$m_{\tau}<T<m_{\text {bottom }}$	$\tau^{ \pm}$	303
$m_{b}<T<m_{\mathrm{W}, \mathrm{Z}}$	b, \bar{b}	345
$m_{W, Z}<T<m_{\text {Higgs }}$	$W^{ \pm}, Z$	381
$m_{H}<T<m_{\text {top }}$	H^{0}	385
$m_{t}<T$	t, \bar{t}	427

${ }^{\dagger} T_{c}$ corresponds to the confinement-deconfinement transition between quarks and hadrons.

At higher temperatures, $N(T)$ will be model-dependent. For example, in the minimal $\mathrm{SU}(5)$ model, one needs to add 24 states to $N(T)$ for the charged and colored X and Y gauge bosons, another 24 from the adjoint Higgs, and another 6 scalar degrees of freedom (in addition to the 4 associated with the complex Higgs doublet already counted in the longitudinal components of $W^{ \pm}$ and Z, and in H) from the $\overline{5}$ of Higgs. Hence for $T>m_{\mathrm{X}}$ in minimal $\mathrm{SU}(5), N(T)=160.75$. In a supersymmetric model this would at least double.

In the radiation-dominated epoch, Eq. (22.10) can be integrated (neglecting the T-dependence of N) giving us a relationship between the age of the Universe and its temperature

$$
\begin{equation*}
t=\left(\frac{90}{32 \pi^{3} G_{\mathrm{N}} N(T)}\right)^{1 / 2} T^{-2} \tag{22.43}
\end{equation*}
$$

Put into a more convenient form

$$
\begin{equation*}
t T_{\mathrm{MeV}}^{2}=2.4[N(T)]^{-1 / 2} \tag{22.44}
\end{equation*}
$$

where t is measured in seconds and T_{MeV} in units of MeV .

22.3.3 Neutrinos and equilibrium

Due to the expansion of the Universe, certain rates may be too slow to either establish or maintain equilibrium. Quantitatively, for each particle i, as a minimal condition for equilibrium, we will require that some rate Γ_{i} involving that type be larger than the expansion rate of the Universe, or

$$
\begin{equation*}
\Gamma_{i}>H \tag{22.45}
\end{equation*}
$$

Recalling that the age of the Universe is determined by H^{-1}, this condition is equivalent to requiring that on average, at least one interaction has occurred over the lifetime of the Universe.
A good example for a process that goes in and out of equilibrium is the weak interaction of neutrinos. On dimensional grounds, one can estimate the thermally averaged scattering cross-section:

$$
\begin{equation*}
\langle\sigma v\rangle \sim O\left(10^{-2}\right) T^{2} / m_{\mathrm{W}}^{4} \tag{22.46}
\end{equation*}
$$

for $T \lesssim m_{\mathrm{W}}$. Recalling that the number density of leptons is $n \propto T^{3}$, we can compare the weak interaction rate, $\Gamma_{\mathrm{wk}} \sim n\langle\sigma v\rangle$, with the expansion rate,

$$
\begin{align*}
H=\left(\frac{8 \pi G_{\mathrm{N}} \rho}{3}\right)^{1 / 2} & =\left(\frac{8 \pi^{3}}{90} N(T)\right)^{1 / 2} T^{2} / M_{\mathrm{P}} \tag{22.47}\\
& \simeq 1.66 N(T)^{1 / 2} T^{2} / M_{\mathrm{P}}
\end{align*}
$$

where the Planck mass $M_{\mathrm{P}}=G_{\mathrm{N}}^{-1 / 2}=1.22 \times 10^{19} \mathrm{GeV}$.
Neutrinos will be in equilibrium when $\Gamma_{\text {wk }}>H$ or

$$
\begin{equation*}
T>\left(500 m_{\mathrm{W}}^{4} / M_{\mathrm{P}}\right)^{1 / 3} \sim 1 \mathrm{MeV} \tag{22.48}
\end{equation*}
$$

However, this condition assumes $T \ll m_{\mathrm{W}}$; for higher temperatures, we should write $\langle\sigma v\rangle \sim O\left(10^{-2}\right) / T^{2}$, so that $\Gamma \sim 10^{-2} T$. Thus, in the very early stages of expansion, at temperatures $T \gtrsim 10^{-2} M_{\mathrm{P}} / \sqrt{N}$, equilibrium will not have been established.

Having attained a quasi-equilibrium stage, the Universe then cools further to the point where the interaction and expansion timescales match once again. The temperature at which these rates are equal is commonly referred to as the neutrino decoupling or freeze-out temperature and is defined by $\Gamma_{\mathrm{wk}}\left(T_{d}\right)=H\left(T_{d}\right)$. For $T<T_{d}$, neutrinos drop out of equilibrium. The Universe becomes transparent to neutrinos and their momenta simply redshift with the cosmic expansion. The effective neutrino temperature will simply fall with $T \sim 1 / R$.

Soon after decoupling, $e^{ \pm}$pairs in the thermal background begin to annihilate (when $T \lesssim m_{e}$). Because the neutrinos are decoupled, the energy released due to annihilation heats up the photon background relative to the neutrinos. The change in the photon temperature can be easily computed from entropy conservation. The neutrino entropy must be conserved separately from the entropy of interacting particles. A straightforward computation yields

$$
\begin{equation*}
T_{\nu}=(4 / 11)^{1 / 3} T_{\gamma} \simeq 1.9 \mathrm{~K} \tag{22.49}
\end{equation*}
$$

The total entropy density is therefore given by the contribution from photons and 3 flavors of neutrinos
$s=\frac{4}{3} \frac{\pi^{2}}{30}\left(2+\frac{21}{4}\left(T_{\nu} / T_{\gamma}\right)^{3}\right) T_{\gamma}^{3}=\frac{4}{3} \frac{\pi^{2}}{30}\left(2+\frac{21}{11}\right) T_{\gamma}^{3}=7.04 n_{\gamma}$.
Similarly, the total relativistic energy density is given by

$$
\begin{equation*}
\rho_{r}=\frac{\pi^{2}}{30}\left[2+\frac{21}{4}\left(T_{\nu} / T_{\gamma}\right)^{4}\right] T_{\gamma}^{4} \simeq 1.68 \rho_{\gamma} \tag{22.51}
\end{equation*}
$$

In practice, a small correction is needed to this, since neutrinos are not totally decoupled at $e^{ \pm}$annihilation: the effective number of massless neutrino species is 3.045 , rather than 3 [40, 41].

This expression ignores neutrino rest masses, but current oscillation data require at least one neutrino eigenstate to have a mass exceeding 0.05 eV . In this minimal case, $\Omega_{\nu} h^{2}=6 \times 10^{-4}$, so the neutrino contribution to the matter budget would be negligibly small (which is our normal assumption). However, a nearly degenerate pattern of mass eigenstates could allow larger densities, since oscillation experiments only measure differences in m^{2} values. Note that a $0.05-\mathrm{eV}$ neutrino has $T_{\nu}=m_{\nu}$ at $z \simeq 296$, so the above expression for the total present relativistic density is really only an extrapolation. However, neutrinos are almost certainly relativistic at all epochs where the radiation content of the Universe is dynamically significant.

22.3.4 Field Theory and Phase transitions

It is very likely that the Universe has undergone one or more phase transitions during the course of its evolution [42-45]. Our current vacuum state is described by $\mathrm{SU}(3)_{c} \times \mathrm{U}(1)_{\mathrm{em}}$, which in the Standard Model is a remnant of an unbroken $\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ gauge symmetry. Symmetry breaking occurs when a non-singlet gauge field (the Higgs field in the Standard Model) picks up a non-vanishing vacuum expectation value, determined by a scalar potential. For example, a simple (non-gauged) potential describing symmetry breaking is $V(\phi)=\frac{1}{4} \lambda \phi^{4}-\frac{1}{2} \mu^{2} \phi^{2}+V(0)$. The resulting expectation value is simply $\langle\phi\rangle=\mu / \sqrt{\lambda}$.

In the early Universe, finite temperature radiative corrections typically add terms to the potential of the form $\phi^{2} T^{2}$. Thus, at very high temperatures, the symmetry is restored and $\langle\phi\rangle=0$. As the Universe cools, depending on the details of the potential, symmetry breaking will occur via a first-order phase transition in which the field tunnels through a potential barrier, or via a second-order transition in which the field evolves smoothly from one state to another (as would be the case for the above example potential).

The evolution of scalar fields can have a profound impact on the early Universe. The equation of motion for a scalar field ϕ can be derived from the energy-momentum tensor

$$
\begin{equation*}
T_{\mu \nu}=\partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} g_{\mu \nu} \partial_{\rho} \phi \partial^{\rho} \phi-g_{\mu \nu} V(\phi) \tag{22.52}
\end{equation*}
$$

By associating $\rho=T_{00}$ and $p=R^{-2}(t) T_{i i}$ we have

$$
\begin{align*}
& \rho=\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2} R^{-2}(t)(\nabla \phi)^{2}+V(\phi) \tag{22.53}\\
& p=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{6} R^{-2}(t)(\nabla \phi)^{2}-V(\phi),
\end{align*}
$$

and from Eq. (22.10) we can write the equation of motion (by considering a homogeneous region, we can ignore the gradient terms)

$$
\begin{equation*}
\ddot{\phi}+3 H \dot{\phi}=-\partial V / \partial \phi . \tag{22.54}
\end{equation*}
$$

22.3.5 Inflation

Inflation of early universe In Sec. 22.2.4, we discussed some of the problems associated with the standard Big-Bang model. However, during a phase transition, our assumptions of an adiabatically expanding Universe are generally not valid. If, for example, a phase transition occurred in the early Universe such that the field evolved slowly from the symmetric state to the global minimum, the Universe may have been dominated by the vacuum energy density associated with the potential near $\phi \simeq 0$. During this period of slow evolution, the energy density due to radiation will fall below the vacuum energy density, $\rho \ll V(0)$. When this happens, the expansion rate will be dominated by the constant $\mathrm{V}(0)$, and we obtain the exponentially expanding solution given in Eq. (22.20). When the field evolves towards the global minimum it will begin to oscillate about the minimum, energy will be released during its decay, and a hot thermal Universe will be restored. If released fast enough, it will produce radiation at a temperature $N T_{\mathrm{R}}{ }^{4} \lesssim V(0)$. In this reheating process, entropy has been created and the final value of $R T$ is greater than the initial value of $R T$. Thus, we see that, during a phase transition, the relation $R T \sim$ constant need not hold true. This is the basis of the inflationary Universe scenario [46-48].
If, during the phase transition, the value of $R T$ changed by a factor of $O\left(10^{29}\right)$, the cosmological problems discussed above would be solved. The observed isotropy would be generated by the immense expansion; one small causal region could get blown up, and thus our entire visible Universe would have been in thermal contact some time in the past. In addition, the density parameter Ω would have been driven to 1 (with exponential precision). Density perturbations will be stretched by the expansion, $\lambda \sim R(t)$. Thus it will appear that $\lambda \gg H^{-1}$ or that the perturbations have left the horizon, where in fact the size of the causally connected region is now no longer simply H^{-1}. However, not only does inflation offer an explanation for large scale perturbations, it also offers a source for the perturbations themselves through quantum fluctuations.

Problems with early models of inflation based on either a firstorder [49] or second-order [50, 51] phase transition of a Grand Unified Theory led to models invoking a completely new scalar field: the inflaton, ϕ. The potential of this field, $V(\phi)$, needs to have a very low gradient and curvature in order to match observed metric fluctuations. For a more thorough discussion of the problems of early models and a host of current models being studied see the review on inflation - Sec. 23 of this Review. In most current inflation models, reheated bubbles typically do not percolate, so inflation is 'eternal' and continues with exponential expansion in the region outside bubbles. These causally disconnected bubble Universes constitute a 'multiverse', where low-energy physics can vary between different bubbles. This has led to a controversial 'anthropic' approach to cosmology [52-54], where observer selection within the multiverse can be introduced as a means of understanding e.g. why the observed level of vacuum energy is so low (because larger values suppress growth of structure).

22.3.6 Baryogenesis

The Universe appears to be populated exclusively with matter rather than antimatter. Indeed antimatter is only detected in accelerators or in cosmic rays. However, the presence of antimatter in the latter is understood to be the result of collisions of primary particles in the interstellar medium. There is in fact strong evidence against primary forms of antimatter in the Universe. Furthermore, the density of baryons compared to the density of photons is extremely small, $\eta \sim 10^{-9}$.

The production of a net baryon asymmetry requires baryon number violating interactions, C and $C P$ violation, and a departure from thermal equilibrium [55]. The first two of these ingredients are expected to be contained in Grand Unified Theories (GUTs) as well as in the non-perturbative sector of the Standard Model; the third can be realized in an expanding Universe where, as we have seen, interactions come in and out of equilibrium.

There are several interesting and viable mechanisms for the production of the baryon asymmetry. While we can not review any of them here in any detail, we mention some of the important scenarios. In all cases, all three ingredients listed above are incorporated. One of the first mechanisms was based on the out of equilibrium decay of a massive particle such as a superheavy GUT gauge or Higgs boson [56,57]. A novel mechanism involving the decay of flat directions in supersymmetric models is known as the Affleck-Dine scenario [58]. There is also the possibility of generating the baryon asymmetry at the electro-weak scale using the non-perturbative interactions of sphalerons [59]. Because these interactions conserve the sum of baryon and lepton number, $B+L$, it is possible to first generate a lepton asymmetry (e.g., by the out-of-equilibrium decay of a superheavy right-handed neutrino), which is converted to a baryon asymmetry at the electro-weak scale [60]. This mechanism is known as lepto-baryogenesis.

22.3.7 Nucleosynthesis

An essential element of the standard cosmological model is BigBang nucleosynthesis (BBN), the theory that predicts the abundances of the light element isotopes $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$. Nucleosynthesis takes place at a temperature scale of order 1 MeV . The nuclear processes lead primarily to ${ }^{4} \mathrm{He}$, with a primordial mass fraction of about 25%. Lesser amounts of the other light elements are produced: about 10^{-5} of D and ${ }^{3} \mathrm{He}$ and about 10^{-10} of ${ }^{7} \mathrm{Li}$ by number relative to H . The abundances of the light elements depend almost solely on one key parameter, the baryon-tophoton ratio, η. The nucleosynthesis predictions can be compared with observational determinations of the abundances of the light elements. Consistency between theory and observations driven primarily by recent D / H measurements $[61,62$] leads to a range of

$$
\begin{equation*}
5.8 \times 10^{-10}<\eta<6.5 \times 10^{-10} \tag{22.55}
\end{equation*}
$$

η is related to the fraction of Ω contained in baryons:

$$
\begin{equation*}
\Omega_{\mathrm{b}}=3.66 \times 10^{7} \eta h^{-2} \tag{22.56}
\end{equation*}
$$

or $10^{10} \eta=274 \Omega_{\mathrm{b}} h^{2}$. The Planck result [24] for $\Omega_{\mathrm{b}} h^{2}$ of 0.0224 ± 0.0002 translates into a value of $\eta=6.12 \pm 0.04$. This result can be used to 'predict' the light element abundances, which can in turn be compared with observation [63]. The resulting D/H abundance is in excellent agreement with that found in quasar absorption systems. It is in reasonable agreement with the helium abundance observed in extragalactic HII regions (once systematic uncertainties are accounted for), but is in poor agreement with the Li abundance observed in the atmospheres of halo dwarf stars [64]. See the review on BBN - Sec. 24 of this Review for a detailed discussion of BBN or references [65-68].

22.3.8 The transition to a matter-dominated Universe

In the Standard Model, the temperature (or redshift) at which the Universe undergoes a transition from a radiation-dominated to a matter-dominated Universe is determined by the amount of dark matter. Assuming three nearly massless neutrinos, the energy density in radiation at temperatures $T \ll 1 \mathrm{MeV}$, is given by

$$
\begin{equation*}
\rho_{\mathrm{r}}=\frac{\pi^{2}}{30}\left[2+\frac{21}{4}\left(\frac{4}{11}\right)^{4 / 3}\right] T^{4} \tag{22.57}
\end{equation*}
$$

In the absence of non-baryonic dark matter, the matter density can be written as

$$
\begin{equation*}
\rho_{\mathrm{m}}=m_{\mathrm{N}} \eta n_{\gamma} \tag{22.58}
\end{equation*}
$$

where m_{N} is the nucleon mass. Recalling that $n_{\gamma} \propto T^{3}[\mathrm{cf}$. Eq. (22.40)], we can solve for the temperature or redshift at the matter-radiation equality when $\rho_{\mathrm{r}}=\rho_{\mathrm{m}}$,

$$
\begin{equation*}
T_{\mathrm{eq}}=0.22 m_{\mathrm{N}} \eta \quad \text { or } \quad\left(1+z_{\mathrm{eq}}\right)=0.22 \eta \frac{m_{\mathrm{N}}}{T_{0}} \tag{22.59}
\end{equation*}
$$

where T_{0} is the present temperature of the microwave background. For $\eta=6.1 \times 10^{-10}$, this corresponds to a temperature $T_{\text {eq }} \simeq 0.13$ eV or $\left(1+z_{\mathrm{eq}}\right) \simeq 550$. A transition this late would be problematic for structure formation (see Sec. 22.4.5).

The redshift of matter domination can be pushed back significantly if non-baryonic dark matter is present. If instead of Eq. (22.58), we write

$$
\begin{equation*}
\rho_{\mathrm{m}}=\Omega_{\mathrm{m}} \rho_{\mathrm{c}}\left(\frac{T}{T_{0}}\right)^{3} \tag{22.60}
\end{equation*}
$$

we find that

$$
\begin{equation*}
T_{\mathrm{eq}}=0.9 \frac{\Omega_{\mathrm{m}} \rho_{\mathrm{c}}}{T_{0}^{3}} \quad \text { or } \quad\left(1+z_{\mathrm{eq}}\right)=2.4 \times 10^{4} \Omega_{\mathrm{m}} h^{2} \tag{22.61}
\end{equation*}
$$

22.4 The Universe at late times

22.4.1 The $C M B$

One form of the infamous Olbers' paradox says that, in Euclidean space, surface brightness is independent of distance. Every line of sight will terminate on matter that is hot enough to be ionized and so scatter photons: $T \gtrsim 10^{3} \mathrm{~K}$, and the sky should therefore shine as brightly as the surface of the Sun. The reason the night sky is dark is entirely due to the expansion, which cools the radiation temperature to 2.73 K . This gives a Planck function peaking at around 1 mm to produce the CMB.

The CMB spectrum is a very accurate match to a Planck function [69]. (See the review on CMB - Sec. 29 of this Review.) The COBE estimate of the temperature is [70]

$$
\begin{equation*}
T=2.7255 \pm 0.0006 \mathrm{~K} \tag{22.62}
\end{equation*}
$$

The lack of any distortion of the Planck spectrum is a strong physical constraint. It is very difficult to account for in any expanding Universe other than one that passes through a hot stage. Alternative schemes for generating the radiation, such as thermalization of starlight by dust grains, inevitably generate a superposition of temperatures. What is required in addition to thermal equilibrium is that $T \propto 1 / R$, so that radiation from different parts of space arrive at an observer with the same apparent temperature.

Although it is common to speak of the CMB as originating at 'recombination', a more accurate terminology is the era of 'last scattering'. In practice, this takes place at $z \simeq 1100$, almost independently of the main cosmological parameters, at which time the fractional ionization is very small. This occurred when the age of the Universe was about 370,000 years. But the CMB photons themselves were not generated at this point, and were the result of thermalization at $z \sim 10^{7}$. (See the review on CMB - Sec. 29 of this Review for a full discussion of the CMB.)

22.4.2 Matter in the Universe

One of the main tasks of cosmology is to measure the density of the Universe, and how this is divided between dark matter and baryons. The baryons consist partly of stars, with $0.002 \lesssim \Omega_{*} \lesssim 0.003$ [71] but mainly inhabit the intergalactic medium (IGM). One powerful way in which this can be studied is via the absorption of light from distant luminous objects such as quasars. Even very small amounts of neutral hydrogen can absorb rest-frame UV photons (the Gunn-Peterson effect), and should suppress the continuum by a factor $\exp (-\tau)$, where

$$
\begin{equation*}
\tau \simeq 10^{4.62} h^{-1}\left[\frac{n_{\mathrm{HI}}(z) / \mathrm{m}^{-3}}{(1+z) \sqrt{1+\Omega_{\mathrm{m}} z}}\right] \tag{22.63}
\end{equation*}
$$

and this expression applies while the Universe is matter dominated $\left(z \gtrsim 1\right.$ in the $\Omega_{\mathrm{m}}=0.3 \Omega_{\mathrm{v}}=0.7$ model $)$. At $z<6$, the dominant effect on quasar spectra is a 'forest' of narrow absorption lines, which produce a mean $\tau=1$ in the Ly α forest at about $z=3$, and so we have $\Omega_{\mathrm{HI}} \simeq 10^{-6.7} h^{-1}$. This is such a small number that the IGM must be very highly ionized at these redshifts, apart from a few high-density clumps. But at $z>6$ there is good evidence for a 'reionization' era at which the general IGM is not so strongly ionized [72]. As discussed below, this ionized IGM at low z is also detectable via the secondary Compton scattering of CMB photons.

The Ly α forest is of great importance in pinning down the abundance of deuterium. Because electrons in deuterium differ in reduced mass by about 1 part in 4000 compared to hydrogen, each absorption system in the Ly α forest is accompanied by an offset deuterium line. By careful selection of systems with an optimal HI column density, a measurement of the D / H ratio can be made. This has now been done with high accuracy in 10 quasars, with consistent results [61]. Combining these determinations with the theory of primordial nucleosynthesis yields a baryon density of $\Omega_{\mathrm{b}} h^{2}=0.021-0.024$ (95% confidence) in excellent agreement with the Planck result. (See also the review on BBN - Sec. 24 of this Review.)

Ionized IGM can also be detected in emission when it is densely clumped, via bremsstrahlung radiation. This generates the spectacular X-ray emission from rich clusters of galaxies. Studies of this phenomenon allow us to achieve an accounting of the total baryonic material in clusters. Within the central $\simeq 1 \mathrm{Mpc}$, the masses in stars, X-ray emitting gas, and total dark matter can be determined with reasonable accuracy (perhaps $20 \% \mathrm{rms}$), and this allows a minimum baryon fraction to be determined [73, 74]:

$$
\begin{equation*}
\frac{M_{\text {baryons }}}{M_{\text {total }}} \gtrsim 0.009+(0.066 \pm 0.003) h^{-3 / 2} \tag{22.64}
\end{equation*}
$$

Because clusters are the largest collapsed structures, it is reasonable to take this as applying to the Universe as a whole. This equation implies a minimum baryon fraction of perhaps 12% (for reasonable h), which is too high for $\Omega_{\mathrm{m}}=1$ if we take $\Omega_{\mathrm{b}} h^{2} \simeq 0.02$ from nucleosynthesis. This is therefore one of the more robust arguments in favor of $\Omega_{\mathrm{m}} \simeq 0.3$. (See the review on Cosmological Parameters - Sec. 25.1 of this Review.) This argument is also consistent with the inference on Ω_{m} that can be made from Fig. 22.2.

This method is much more robust than the older classical technique for weighing the Universe: ' $L \times M / L$ '. The overall light density of the Universe is reasonably well determined from redshift surveys of galaxies, so that a good determination of mass M and luminosity L for a single object suffices to determine $\Omega_{\mathrm{m}}-$ but only if the mass-to-light ratio were universal.

22.4.3 Gravitational lensing

A robust method for determining masses in cosmology is to use gravitational light deflection. Most systems can be treated as a geometrically thin gravitational lens, where the light bending is assumed to take place only at a single distance. Simple geometry then determines a mapping between the coordinates in the intrinsic source plane (S) and the observed image plane (I):

$$
\begin{equation*}
\alpha\left(D_{\mathrm{L}} \theta_{\mathrm{I}}\right)=\frac{D_{\mathrm{S}}}{D_{\mathrm{LS}}}\left(\theta_{\mathrm{I}}-\theta_{\mathrm{S}}\right) \tag{22.65}
\end{equation*}
$$

where the angles $\theta_{\mathrm{I}}, \theta_{\mathrm{S}}$, and α are in general two-dimensional vectors on the sky. The distances D_{LS} etc. are given by an extension of the usual distance-redshift formula:

$$
\begin{equation*}
D_{\mathrm{LS}}=\frac{R_{0} S_{k}\left(\chi_{\mathrm{S}}-\chi_{\mathrm{L}}\right)}{1+z_{\mathrm{S}}} \tag{22.66}
\end{equation*}
$$

This is the angular-diameter distance for objects on the source plane as perceived by an observer on the lens.

Solutions of this equation divide into weak lensing, where the mapping between source plane and image plane is one-to-one, and strong lensing, in which multiple imaging is possible. For circularly-symmetric lenses, an on-axis source is multiply imaged into a 'caustic' ring, whose radius is the Einstein radius:

$$
\begin{align*}
\theta_{\mathrm{E}} & =\left(4 G M \frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}}\right)^{1 / 2} \\
& =\left(\frac{M}{10^{11.09} M_{\odot}}\right)^{1 / 2}\left(\frac{D_{\mathrm{L}} D_{\mathrm{S}} / D_{\mathrm{LS}}}{\mathrm{Gpc}}\right)^{-1 / 2} \quad \operatorname{arcsec} . \tag{22.67}
\end{align*}
$$

The observation of 'arcs' (segments of near-perfect Einstein rings) in rich clusters of galaxies has thus given very accurate masses for the central parts of clusters - generally in good agreement with other indicators, such as analysis of X-ray emission from the cluster IGM $[75,76]$.

Gravitational lensing has also developed into a particularly promising probe of cosmological structure on $10-\mathrm{Mpc}$ to $100-\mathrm{Mpc}$ scales. Weak image distortions manifest themselves as an additional ellipticity of galaxy images ('shear'), which can be observed by averaging many images together (the corresponding flux amplification is less readily detected). The result is a 'cosmic shear' field of order 1% ellipticity, coherent over scales of around 30 arcmin, which is directly related to the cosmic mass field. For this reason, weak lensing is seen as potentially the cleanest probe of matter fluctuations, next to the CMB. Already, impressive results have been obtained in measuring cosmological parameters, based on survey data from only $\sim 10^{3} \mathrm{deg}^{2}$ [77, 78]. A particular strength of lensing is its ability to measure the amplitude of mass fluctuations; this can be deduced from the amplitude of CMB fluctuations, but only with low precision on account of the poorly-known optical depth due to Compton scattering after reionization. However, the effect of weak lensing on the CMB map itself can be detected via the induced non-Gaussian signal, and this gives the CMB greater internal power [79]. The main difficulty of principle with lensing is that part of the signal is generated by small-scale density fluctuations; thus a model is required for nonlinear evolution, including astrophysical effects that separate baryons and dark matter. In this respect, the CMB is a cleaner probe of the primordial fluctuations.

22.4.4 Density Fluctuations

The overall properties of the Universe are very close to being homogeneous; and yet telescopes reveal a wealth of detail on scales varying from single galaxies to large-scale structures of size exceeding 100 Mpc . The existence of these structures must be telling us something important about the initial conditions of the Big Bang, and about the physical processes that have operated subsequently. This motivates the study of the density perturbation field, defined as

$$
\begin{equation*}
\delta(\mathbf{x}) \equiv \frac{\rho(\mathbf{x})-\langle\rho\rangle}{\langle\rho\rangle} \tag{22.68}
\end{equation*}
$$

A critical feature of the δ field is that it inhabits a Universe that is isotropic and homogeneous in its large-scale properties. This suggests that the statistical properties of δ should also be statistically homogeneous - i.e., it is a stationary random process.

It is often convenient to describe δ as a Fourier superposition:

$$
\begin{equation*}
\delta(\mathbf{x})=\sum \delta_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{x}} \tag{22.69}
\end{equation*}
$$

We avoid difficulties with an infinite Universe by applying periodic boundary conditions in a cube of some large volume V. The crossterms vanish when we compute the variance in the field, which is just a sum over modes of the power spectrum:

$$
\begin{equation*}
\left\langle\delta^{2}\right\rangle=\sum\left|\delta_{\mathbf{k}}\right|^{2} \equiv \sum P(k) \tag{22.70}
\end{equation*}
$$

Note that the statistical nature of the fluctuations must be isotropic, so we write $P(k)$ rather than $P(\mathbf{k})$. The $\langle\ldots\rangle$ average here is a volume average. Cosmological density fields are an example of an ergodic process, in which the average over a large volume tends to the same answer as the average over a statistical ensemble.

The statistical properties of discrete objects sampled from the density field are often described in terms of N-point correlation functions, which represent the excess probability over random for finding one particle in each of N boxes in a given configuration. For the 2-point case, the correlation function is readily shown to be identical to the autocorrelation function of the δ field: $\xi(r)=$ $\langle\delta(x) \delta(x+r)\rangle$.

The power spectrum and correlation function are Fourier conjugates, and thus are equivalent descriptions of the density field (similarly, k-space equivalents exist for the higher-order correlations). It is convenient to take the limit $V \rightarrow \infty$ and use k space integrals, defining a dimensionless power spectrum, which measures the contribution to the fractional variance in density per unit logarithmic range of scale, as $\Delta^{2}(k)=d\left\langle\delta^{2}\right\rangle / d \ln k=$
$V k^{3} P(k) / 2 \pi^{2}$:
$\xi(r)=\int \Delta^{2}(k) \frac{\sin k r}{k r} d \ln k ; \quad \Delta^{2}(k)=\frac{2}{\pi} k^{3} \int_{0}^{\infty} \xi(r) \frac{\sin k r}{k r} r^{2} d r$.
(22.71)

For many years, an adequate approximation to observational data on galaxies was $\xi=\left(r / r_{0}\right)^{-\gamma}$, with $\gamma \simeq 1.8$ and $r_{0} \simeq$ $5 h^{-1} \mathrm{Mpc}$. Modern surveys are now able to probe into the largescale linear regime where unaltered traces of the curved postrecombination spectrum can be detected [80-82].

22.4.5 Formation of cosmological structure

The simplest model for the generation of cosmological structure is gravitational instability acting on some small initial fluctuations (for the origin of which a theory such as inflation is required). If the perturbations are adiabatic (i.e., fractionally perturb number densities of photons and matter equally), the linear growth law for matter perturbations is simple:

$$
\delta \propto \begin{cases}a^{2}(t) & \text { (radiation domination; } \left.\Omega_{\mathrm{r}}=1\right) \tag{22.72}\\ a(t) & \text { (matter domination; } \left.\Omega_{\mathrm{m}}=1\right)\end{cases}
$$

For low-density Universes, the growth is slower:

$$
\begin{equation*}
d \ln \delta / d \ln a \simeq \Omega_{\mathrm{m}}^{\gamma}(a) \tag{22.73}
\end{equation*}
$$

where the parameter γ is close to 0.55 independent of the vacuum density $[83,84]$.
The alternative perturbation mode is isocurvature: only the equation of state changes, and the total density is initially unperturbed. These modes perturb the total entropy density, and thus induce additional large-scale CMB anisotropies [85]. Although the character of perturbations in the simplest inflationary theories are purely adiabatic, correlated adiabatic and isocurvature modes are predicted in many models; the simplest example is the curvaton, which is a scalar field that decays to yield a perturbed radiation density. If the matter content already exists at this time, the overall perturbation field will have a significant isocurvature component. Such a prediction is inconsistent with current CMB data [86], and most analyses of CMB and large-scale structure (LSS) data assume the adiabatic case to hold exactly.
Linear evolution preserves the shape of the power spectrum. However, a variety of processes mean that growth actually depends on the matter content.

1. Pressure opposes gravity effectively for wavelengths below the horizon length while the Universe is radiation dominated. The comoving horizon size at $z_{\text {eq }}$ is therefore an important scale:

$$
\begin{equation*}
D_{\mathrm{H}}\left(z_{\mathrm{eq}}\right)=\frac{2(\sqrt{2}-1)}{\left(\Omega_{\mathrm{m}} z_{\mathrm{eq}}\right)^{1 / 2} H_{0}}=\frac{16.0}{\Omega_{\mathrm{m}} h^{2}} \mathrm{Mpc} \tag{22.74}
\end{equation*}
$$

2. At early times, dark matter particles will undergo free streaming at the speed of light, and so erase all scales up to the horizon - a process that only ceases when the particles go nonrelativistic. For light massive neutrinos, this happens at z_{eq}; all structure up to the horizon-scale power-spectrum break is in fact erased. Hot(cold) dark matter models are thus sometimes dubbed large(small)-scale damping models.
3. A further important scale arises where photon diffusion can erase perturbations in the matter - radiation fluid; this process is named Silk damping.
The overall effect is encapsulated in the transfer function, which gives the ratio of the late-time amplitude of a mode to its initial value (see Fig. 22.4). The overall power spectrum is thus the primordial scalar-mode power law, times the square of the transfer function:

$$
\begin{equation*}
P(k) \propto k^{n_{\mathrm{s}}} T_{k}^{2} \tag{22.75}
\end{equation*}
$$

The most generic power-law index is $n_{\mathrm{s}}=1$: the 'Zeldovich' or 'scale-invariant' spectrum. Inflationary models tend to predict a small 'tilt:' $\left|n_{\mathrm{s}}-1\right| \lesssim 0.05[12,13]$. On the assumption that the dark matter is cold, the power spectrum then depends on 5 parameters: $n_{\mathrm{s}}, h, \Omega_{\mathrm{b}}, \Omega_{\mathrm{c}}\left(\equiv \Omega_{\mathrm{m}}-\Omega_{\mathrm{b}}\right)$, and an overall amplitude.

Figure 22.4: A plot of transfer functions for various models. For adiabatic models, $T_{k} \rightarrow 1$ at small k, whereas the opposite is true for isocurvature models. For dark-matter models, the characteristic wavenumber scales proportional to $\Omega_{\mathrm{m}} h^{2}$. The scaling for baryonic models does not obey this exactly; the plotted cases correspond to $\Omega_{\mathrm{m}}=1, h=0.5$.

The latter is often specified as σ_{8}, the linear-theory fractional rms in density when a spherical filter of radius $8 h^{-1} \mathrm{Mpc}$ is applied in linear theory. This scale can be probed directly via weak gravitational lensing, and also via its effect on the abundance of rich galaxy clusters. The favored value from the latter is approximately [87]

$$
\begin{equation*}
\sigma_{8} \simeq[0.746 \pm 0.012(\text { stat. }) \pm 0.022(\text { sys. })]\left(\Omega_{\mathrm{m}} / 0.3\right)^{-0.47} \tag{22.76}
\end{equation*}
$$

which is rather similar to the normalization inferred from weak lensing: $\sigma_{8} \simeq[0.745 \pm 0.039]\left(\Omega_{\mathrm{m}} / 0.3\right)^{-0.5}[77] ;$ or $[0.782 \pm$ $0.027]\left(\Omega_{\mathrm{m}} / 0.3\right)^{-0.5}[78]$. These figures are in $>2 \sigma$ tension with the Planck values of $\left(\sigma_{8}, \Omega_{\mathrm{m}}\right)=(0.811 \pm 0.006,0.315 \pm 0.007)$. If real, such a discrepancy could indicate interesting new physics; but the current evidence is not strong enough to make such a claim.

A direct measure of mass inhomogeneity is valuable, since the galaxies inevitably are biased with respect to the mass. This means that the fractional fluctuations in galaxy number, $\delta n / n$, may differ from the mass fluctuations, $\delta \rho / \rho$. It is commonly assumed that the two fields obey some proportionality on large scales where the fluctuations are small, $\delta n / n=b \delta \rho / \rho$, but even this is not guaranteed [88].

The main shape of the transfer function is a break around the horizon scale at z_{eq}, which depends just on $\Omega_{\mathrm{m}} h$ when wavenumbers are measured in observable units $\left(h \mathrm{Mpc}^{-1}\right)$. For reasonable baryon content, weak oscillations in the transfer function are also expected, and these BAOs (Baryon Acoustic Oscillations) have been clearly detected $[89,90]$. As well as directly measuring the baryon fraction, the scale of the oscillations directly measures the acoustic horizon at decoupling; this can be used as an additional standard ruler for cosmological tests, and the BAO signature has become one of the most important applications of large galaxy surveys. Overall, current power-spectrum data [80-82] favor $\Omega_{\mathrm{m}} h \simeq 0.20$ and a baryon fraction of about 0.15 for $n_{\mathrm{s}} \simeq 1$ (see Fig. 22.5).

In principle, accurate data over a wide range of k could determine both $\Omega_{\mathrm{m}} h$ and n, but in practice there is a strong degeneracy between these. In order to constrain $n_{\text {s }}$ itself, it is necessary to examine data on anisotropies in the CMB.

22.4.6 CMB anisotropies

The CMB has a clear dipole anisotropy, of magnitude $1.23 \times$ 10^{-3}. This is interpreted as being due to the Earth's motion, which is equivalent to a peculiar velocity for the Milky Way of

$$
\begin{equation*}
v_{\mathrm{MW}} \simeq 600 \mathrm{~km} \mathrm{~s}^{-1} \quad \text { towards } \quad(\ell, b) \simeq\left(270^{\circ}, 30^{\circ}\right) \tag{22.77}
\end{equation*}
$$

Figure 22.5: The galaxy power spectrum from the SDSS BOSS survey [82]. The solid points with error bars show the power estimate. The solid line shows a standard Λ CDM model with $\Omega_{\mathrm{b}} h^{2} \simeq 0.02$ and $\Omega_{\mathrm{m}} h \simeq 0.2$. The inset amplifies the region where BAO features are visible. The fact that these perturb the power by $\sim 20 \%$ rather than order unity is direct evidence that the matter content of the Universe is dominated by collisionless dark matter.

All higher-order multipole moments of the CMB are however much smaller (of order 10^{-5}), and interpreted as signatures of density fluctuations at last scattering ($\simeq 1100$). To analyze these, the sky is expanded in spherical harmonics as explained in the review on the CMB - Sec. 29 of this Review. The dimensionless power per $\ln k$ or 'bandpower' for the CMB is defined as

$$
\begin{equation*}
\mathcal{T}^{2}(\ell)=\frac{\ell(\ell+1)}{2 \pi} C_{\ell} . \tag{22.78}
\end{equation*}
$$

This function encodes information from the three distinct mechanisms that cause CMB anisotropies:

- (1) Gravitational (Sachs - Wolfe) perturbations. Photons from high-density regions at last scattering have to climb out of potential wells, and are thus redshifted.
- (2) Intrinsic (adiabatic) perturbations. In high-density regions, the coupling of matter and radiation can compress the radiation also, giving a higher temperature.
- (3) Velocity (Doppler) perturbations. The plasma has a nonzero velocity at recombination, which leads to Doppler shifts in frequency and hence shifts in brightness temperature.

Because the potential fluctuations obey Poisson's equation, $\nabla^{2} \Phi=4 \pi G \rho \delta$, and the velocity field satisfies the continuity equation $\nabla \cdot \mathbf{u}=-\dot{\delta}$, the resulting different powers of k ensure that the Sachs-Wolfe effect dominates on large scales and adiabatic effects on small scales.

The relation between angle and comoving distance on the lastscattering sphere requires the comoving angular-diameter distance to the last-scattering sphere; because of its high redshift, this is effectively identical to the horizon size at the present epoch, D_{H} :

$$
\begin{align*}
D_{\mathrm{H}} & =\frac{2}{\Omega_{\mathrm{m}} H_{0}} \quad\left(\Omega_{\mathrm{v}}=0\right) \\
D_{\mathrm{H}} & \simeq \frac{2}{\Omega_{\mathrm{m}}^{0.4} H_{0}} \quad\left(\text { flat }: \Omega_{\mathrm{m}}+\Omega_{\mathrm{v}}=1\right) \tag{22.79}
\end{align*}
$$

These relations show how the CMB is strongly sensitive to curvature: the horizon length at last scattering is $\propto 1 / \sqrt{\Omega_{\mathrm{m}}}$, so that this subtends an angle that is virtually independent of Ω_{m} for a flat model. Observations of a peak in the CMB power spectrum
at relatively large scales $(\ell \simeq 221)$ are thus strongly inconsistent with zero- Λ models with low density: current $\mathrm{CMB}+\mathrm{BAO}+$ lensing data require $\Omega_{\mathrm{m}}+\Omega_{\mathrm{v}}=0.999 \pm 0.004$ (95\%) [24]. (See e.g., Fig. 22.2).

In addition to curvature, the CMB encodes information about several other key cosmological parameters. Within the compass of simple adiabatic CDM models, there are 9 of these:

$$
\begin{equation*}
\omega_{\mathrm{c}}, \omega_{\mathrm{b}}, \Omega_{\mathrm{tot}}, h, \tau, n_{\mathrm{s}}, n_{\mathrm{t}}, r, Q \tag{22.80}
\end{equation*}
$$

The symbol ω denotes the physical density, Ωh^{2} : the transfer function depends only on the densities of CDM $\left(\omega_{c}\right)$ and baryons $\left(\omega_{\mathrm{b}}\right)$. Transcribing the power spectrum at last scattering into an angular power spectrum brings in the total density parameter $\left(\Omega_{\mathrm{tot}} \equiv \Omega_{\mathrm{m}}+\Omega_{\mathrm{v}}=\Omega_{\mathrm{c}}+\Omega_{\mathrm{b}}+\Omega_{\mathrm{v}}\right)$ and h : there is a near-exact geometrical degeneracy [91] between these that keeps the angulardiameter distance to last scattering invariant, so that models with substantial spatial curvature and large vacuum energy cannot be ruled out without prior knowledge of the Hubble parameter. Alternatively, the CMB alone cannot measure the Hubble parameter without taking into account the line-of-sight information from CMB lensing.
A further possible degeneracy involves the tensor contribution to the CMB anisotropies. These are important at large scales (up to the horizon scales); for smaller scales, only scalar fluctuations (density perturbations) are important. Each of these components is characterized by a spectral index, n, and a ratio between the power spectra of tensors and scalars (r). See the review on Cosmological Parameters - Sec. 25.1 of this Review for a technical definition of the r parameter. Finally, the overall amplitude of the spectrum must be specified (Q), together with the optical depth to Compton scattering owing to recent reionization (τ). Adding a large tensor contribution reduces the contrast between low ℓ and the peak at $\ell \simeq 221$ (because the tensor spectrum has no acoustic component). The previous relative height of the peak can be recovered by increasing n_{s} to increase the small-scale power in the scalar component; this in turn over-predicts the power at $\ell \sim 1000$, but this effect can be counteracted by raising the baryon density [92]. This approximate 3-way degeneracy is broken as we increase the range of multipoles sampled.

The reason the tensor component is introduced, and why it is so important, is that it is the only non-generic prediction of inflation. Slow-roll models of inflation involve two dimensionless parameters:

$$
\begin{equation*}
\epsilon \equiv \frac{M_{\mathrm{P}}^{2}}{16 \pi}\left(\frac{V^{\prime}}{V}\right)^{2}, \quad \eta \equiv \frac{M_{\mathrm{P}}^{2}}{8 \pi}\left(\frac{V^{\prime \prime}}{V}\right) \tag{22.81}
\end{equation*}
$$

where V is the inflaton potential, and dashes denote derivatives with respect to the inflation field. In terms of these, the tensor-toscalar ratio is $r \simeq 16 \epsilon$, and the spectral indices are $n_{\mathrm{s}}=1-6 \epsilon+2 \eta$ and $n_{\mathrm{t}}=-2 \epsilon$. The natural expectation of inflation is that the quasi-exponential phase ends once the magnitudes of the slowroll parameters become of order unity, so that both $n_{\mathrm{s}} \neq 1$ and a significant tensor component are expected. These predictions can be avoided in some models, but it is undeniable that observation of such features would be a great triumph for inflation. Cosmology therefore stands at a fascinating point given that the most recent CMB data reject the zero-tensor $n_{\mathrm{s}}=1$ model at more than 8σ : $n_{\mathrm{s}}=0.965 \pm 0.004$ [24]. This rejection is strong enough that it is also able to break the tensor degeneracy, so that no model with $n_{\mathrm{s}}=1$ is acceptable, whatever the value of r.
The current limit on r is <0.06 at 95% confidence [93]. In conjunction with the measured value of n_{s}, this upper limit sits close to the prediction of a linear potential (i.e. $|\eta| \ll|\epsilon|$). Any further reduction in the limit on r will force η to be negative - i.e. a convex potential at the point where LSS scales were generated (sometimes called a 'hilltop'), in contrast to simple early models such as $V(\phi)=m^{2} \phi^{2}$ or $\lambda \phi^{4}$, which are now excluded. Examples of models that are currently in excellent agreement with the Planck results are the Starobinsky model of $\mathcal{R}+\mathcal{R}^{2}$ gravity [94], or the Higgs-inflation model where the Higgs field is non-minimally coupled [95]. Assuming 55 e-foldings of inflation, these models predict $n_{\mathrm{s}}=0.965$ and $r=0.0035$. Assuming that no systematic error in the CMB data can be identified, cosmology has thus
passed a critical hurdle in rejecting scale-invariant fluctuations. The years ahead will be devoted to the task of searching for the tensor fluctuations - for which the main tool will be the polarization of the CMB [14].

22.4.6.1 CMB foregrounds

As the quality of CMB data improves, there is a growing interest in effects that arise along the line of sight. The CMB temperature is perturbed by dark-matter structures and by Compton scattering from ionized gas. In the former case, we have the integrated Sachs-Wolfe effect, which is sensitive to the time derivative of the gravitational potential. In the linear regime, this is damped when the Universe becomes Λ-dominated, and this is an independent way of detecting Λ [96]. The potential also causes gravitational lensing of the CMB: structures at $z \simeq 1-2$ displace features on the CMB sky by about 2 arcmin over coherent degree-scale patches. Detection of these distortions allows a map to be made of overdensity projected from $z=0$ to 1100 [79]. This is a very powerful calibration for direct studies of gravitational lensing using galaxies. Finally, Comptonization affects the CMB in two ways: the thermal Sunyaev-Zeldovich effect measures the blurring of photon energies by hot gas, and the kinetic Sunyaev-Zeldovich effect is sensitive to the bulk velocity of the gas. Both these effects start to dominate over the intrinsic CMB fluctuations at multipoles $\ell \gtrsim 2000$ [97].

22.4.7 Probing dark energy and the nature of gravity

The most radical element of our current cosmological model is the dark energy that accelerates the expansion. The energy density of this component is approximately $(2.2 \mathrm{meV})^{4}$ (for $w=-1$, $\Omega_{v}=0.68, h=0.67$), or roughly $10^{-123} M_{\mathrm{P}}^{4}$, and such an unnaturally small number is hard to understand. Various quantum effects (most simply, zero-point energy) should make contributions to the vacuum energy density. These may be truncated by new physics at high energy, but this presumably occurs at $>1 \mathrm{TeV}$ scales, not meV ; thus the apparent energy scale of the vacuum is at least 10^{15} times smaller than its natural value. A classic review of this situation is given by Weinberg [52], which lists extreme escape routes - especially the multiverse viewpoint, according to which low values of Λ are rare, but high values suppress the formation of structure and observers. It is certainly impressive that Weinberg used such reasoning to predict the value of Λ before any data strongly indicated a non-zero value.

But it may be that the phenomenon of dark energy is entirely illusory. The necessity for this constituent arises from using the Friedmann equation to describe the evolution of the cosmic expansion; if this equation is incorrect, it would require the replacement of Einstein's relativistic theory of gravity with some new alternative. A frontier of current cosmological research is to distinguish these possibilities [98, 99]. We also note that it has been suggested that dark energy might be an illusion even within general relativity, owing to an incorrect treatment of averaging in an inhomogeneous Universe $[100,101]$. Most would argue that a standard Newtonian treatment of such issues should be adequate inside the cosmological horizon, but debate on this issue continues.

Dark Energy can differ from a classical cosmological constant in being a dynamical phenomenon [102, 103], e.g., a rolling scalar field (sometimes dubbed 'quintessence'). Empirically, this means that it is endowed with two thermodynamic properties that astronomers can try to measure: the bulk equation of state, and the sound speed. If the sound speed is close to the speed of light, the effect of this property is confined to very large scales, and mainly manifests itself in the large-angle multipoles of the CMB anisotropies [104]. The equation of state parameter governs the rate of change of the vacuum density: $d \ln \rho_{v} / d \ln a=-3(1+w)$, so it can be accessed via the evolving expansion rate, $H(a)$. This can be measured most cleanly by using the inbuilt natural ruler of large-scale structure: the BAO horizon scale [105]:

$$
\begin{equation*}
D_{\mathrm{BAO}} \simeq 147\left(\Omega_{\mathrm{m}} h^{2} / 0.13\right)^{-0.25}\left(\Omega_{\mathrm{b}} h^{2} / 0.023\right)^{-0.08} \mathrm{Mpc} \tag{22.82}
\end{equation*}
$$

$H(a)$ is measured by radial clustering, since $d r / d z=c / H$; clustering in the plane of the sky measures the integral of this. The expansion rate is also measured by the growth of density fluctuations, where the pressure-free growth equation for the density
perturbation is $\ddot{\delta}+2 H(a) \dot{\delta}=4 \pi G \rho_{0} \delta$. Thus, both the scale and amplitude of density fluctuations are sensitive to $w(a)$ - but only weakly. These observables change by only typically 0.2% for a 1% change in w. Current constraints [24] place a constant w to within $5-10 \%$ of -1 , depending on the data combination chosen. A substantial improvement in this precision will require us to limit systematics in data to a few parts in 1000 .

Testing whether theories of gravity require revision can also be done using data on cosmological inhomogeneities. Two separate issues arise, concerning the metric perturbation potentials Ψ and Φ, which affect respectively the time and space parts of the metric. In Einstein gravity, these potentials are both equal to the Newtonian gravitational potential, which satisfies Poisson's equation: $\nabla^{2} \Phi / a^{2}=4 \pi G \bar{\rho} \delta$. Empirically, modifications of gravity require us to explore a change with scale and with time of the 'slip' (Ψ / Φ) and the effective G on the rhs of the Poisson equation. The former aspect can only be probed via gravitational lensing, whereas the latter can be addressed on $10-100 \mathrm{Mpc}$ scales via the growth of clustering. Various schemes for parameterising modified gravity exist, but a practical approach is to assume that the growth rate can be tied to the density parameter: $d \ln \delta / d \ln a=\Omega_{\mathrm{m}}^{\gamma}(a)[83,84]$. The parameter γ is close to 0.55 for standard relativistic gravity, but can differ by around 0.1 from this value in many non-standard models. Clearly this parameterization is incomplete, since it explicitly rejects the possibility of early dark energy $\left(\Omega_{\mathrm{m}}(a) \rightarrow 1\right.$ as $\left.a \rightarrow 0\right)$, but it is a convenient way of capturing the power of various experiments. Current data are consistent with standard Λ CDM [106], and exclude variations in slip or effective G of larger than a few times 10%.

Current planning envisages a set of satellite probes that, a decade hence, will have pursued these fundamental tests via gravitational lensing measurements over thousands of square degrees, $>10^{8}$ redshifts, and photometry of >1000 supernovae (Euclid in Europe, WFIRST in the USA) [22,23]. These experiments will measure both w and the perturbation growth rate to an accuracy of around 1%. The outcome will be either a validation of the standard relativistic vacuum-dominated Big Bang cosmology at a level of precision far beyond anything attempted to date, or the opening of entirely new directions in cosmological models. For a more complete discussion of dark energy and future probes see the review on Dark Energy - Sec. 28

References

[1] V.M. Slipher, Pop. Astr. 23, 21 (1915).
[2] K. Lundmark, Mon. Not. R. Astron. Soc 84, 747 (1924).
[3] E. Hubble and M. L. Humason, Astrophys. J. 74, 43 (1931).
[4] G. Gamow, Phys. Rev. 70, 572 (1946).
[5] R. A. Alpher, H. Bethe and G. Gamow, Phys. Rev. 73, 803 (1948).
[6] R.A. Alpher and R.C. Herman, Phys. Rev. 74, 1737 (1948).
[7] R.A. Alpher and R.C. Herman, Phys. Rev. 75, 1089 (1949).
[8] A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).
[9] P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press (1993)
[10] G. Börner, The Early Universe: Facts and Fiction, Springer-Verlag (1988).
[11] E.W. Kolb and M.S. Turner, The Early Universe, AddisonWesley (1990).
[12] J.A. Peacock, Cosmological Physics, Cambridge Univ. Press (1999).
[13] A.R. Liddle and D. Lyth, Cosmological Inflation and LargeScale Structure, Cambridge University Press (2000).
[14] S. Dodelson, Modern Cosmology, Academic Press (2003).
[15] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press (2005).
[16] S. Weinberg, Cosmology, Oxford Press (2008).
[17] E.B. Gliner, Sov. Phys. JETP 22, 378 (1966).
[18] Ya. B. Zel'dovich, A. Krasinski and Ya. B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968), [Usp. Fiz. Nauk95,209(1968)].
[19] P.M. Garnavich et al., Astrophys. J. 507, 74 (1998).
[20] S. Perlmutter, M. S. Turner and M. J. White, Phys. Rev. Lett. 83, 670 (1999), [arXiv:astro-ph/9901052].
[21] I. Maor et al., Phys. Rev. D65, 123003 (2002), [arXiv:astroph/0112526].
[22] A. Albrecht et al. (2006), [arXiv:astro-ph/0609591].
[23] J. A. Peacock et al. (2006), [arXiv:astro-ph/0610906].
[24] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
[25] A.G. Riess et al., Astrophys. J. 116, 1009 (1998).
[26] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), [arXiv:astro-ph/9812133].
[27] A. G. Riess, Publ. Astron. Soc. Pac. 112, 1284 (2000), [arXiv:astro-ph/0005229].
[28] J. L. Tonry et al. (Supernova Search Team), Astrophys. J. 594, 1 (2003), [arXiv:astro-ph/0305008].
[29] R. Amanullah et al., Astrophys. J. 716, 712 (2010), [arXiv:1004.1711].
[30] M. Betoul et al., Astron. \& Astrophys. 568, A22 (2014).
[31] A. G. Riess et al., "Astrophys. J." 876, 85 (2019), [arXiv:1903.07603].
[32] W. L. Freedman et al. (2019), [arXiv:1907.05922].
[33] Planck Collab. 2015 Results XIII, Astron. \& Astrophys. 594, A13 (2016).
[34] P. Astier et al., Astron. \& Astrophys. 447, 31 (2006).
[35] J. A. Johnson and M. Bolte, Astrophys. J. 554, 888 (2001), [arXiv:astro-ph/0103299].
[36] R. Cayrel et al., Nature 409, 691 (2001), [arXiv:astroph/0104357].
[37] D. A. Vandenberg et al., Astrophys. J. 775, 134 (2013), [arXiv:1308.2257].
[38] S. Borsanyi et al., Nature 539, 7627, 69 (2016), [arXiv:1606.07494].
[39] M. Srednicki, R. Watkins and K. A. Olive, Nucl. Phys. B310, 693 (1988), [,247(1988)].
[40] G. Mangano et al., Phys. Lett. B534, 8 (2002), [arXiv:astroph/0111408].
[41] P. F. de Salas and S. Pastor, JCAP 7, 051 (2016), [arXiv:1606.06986].
[42] A. D. Linde, Phys. Rev. D14, 3345 (1976).
[43] A. Linde, Rept. on Prog. in Phys. 42, 389 (1979).
[44] C.E. Vayonakis, Surv. High Energy Physics 5, 87 (1986).
[45] S.A. Bonometto and A. Masiero, Nuovo Cimento 9N5, 1 (1986).
[46] A. Linde, Particle Physics And Inflationary Cosmology, Harwood (1990).
[47] K. A. Olive, Phys. Rept. 190, 307 (1990).
[48] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999), [hepph/9807278].
[49] A. H. Guth, Phys. Rev. D23, 347 (1981), [Adv. Ser. Astrophys. Cosmol.3,139(1987)].
[50] A. D. Linde, Phys. Lett. 108B, 389 (1982), [Adv. Ser. Astrophys. Cosmol.3,149(1987)].
[51] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982), [Adv. Ser. Astrophys. Cosmol.3,158(1987)].
[52] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[53] L. Susskind 247-266 (2003), [hep-th/0302219].
[54] B. Carr, Universe or multiverse? C.U.P. (2007).
[55] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967), [Usp. Fiz. Nauk161,no.5,61(1991)].
[56] S. Weinberg, Phys. Rev. Lett. 42, 850 (1979).
[57] D. Toussaint et al., Phys. Rev. D19, 1036 (1979).
[58] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
[59] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. 155B, 36 (1985).
[60] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[61] S. Riemer-Sorensen and S. Jenssen, Universe 3, 44 (2017).
[62] R. J. Cooke, M. Pettini and C. C. Steidel, Astrophys. J. 855, 2, 102 (2018), [arXiv:1710.11129].
[63] R. H. Cyburt, B. D. Fields and K. A. Olive, Phys. Lett. B567, 227 (2003), [arXiv:astro-ph/0302431].
[64] R. H. Cyburt, B. D. Fields and K. A. Olive, JCAP 0811, 012 (2008), [arXiv:0808.2818].
[65] K. A. Olive, G. Steigman and T. P. Walker, Phys. Rept. 333, 389 (2000), [arXiv:astro-ph/9905320].
[66] F. Iocco et al., Phys. Rept. 472, 1 (2009), [arXiv:0809.0631].
[67] R. H. Cyburt et al., Rev. Mod. Phys. 88, 015004 (2016), [arXiv:1505.01076].
[68] C. Pitrou et al., Phys. Rept. 754, 1 (2018), [arXiv:1801.08023].
[69] D. J. Fixsen et al., Astrophys. J. 473, 576 (1996), [arXiv:astro-ph/9605054].
[70] J. C. Mather et al., Astrophys. J. 512, 511 (1999), [arXiv:astro-ph/9810373].
[71] S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 326, 255 (2001), [arXiv:astro-ph/0012429].
[72] J. Schroeder, A. Mesinger and Z. Haiman, Mon. Not. R. Astron. Soc 428, 3058 (2012).
[73] S. D. M. White et al., Nature 366, 429 (1993).
[74] S. W. Allen, R. W. Schmidt and A. C. Fabian, Mon. Not. Roy. Astron. Soc. 334, L11 (2002), [arXiv:astroph/0205007].
[75] S. W. Allen, Mon. Not. Roy. Astron. Soc. 296, 392 (1998), [arXiv:astro-ph/9710217].
[76] G. P. Smith et al., Mon. Not. Roy. Astron. Soc. 456, 1, L74 (2016), [arXiv:1511.01919].
[77] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), [arXiv:1606.05338].
[78] M. A. Troxel et al., "Phys. Rev." 98, 4, 043528 (2018), [arXiv:1708.01538].
[79] Planck Collab. 2015 Results XV, Astron. \& Astrophys. 594, A15 (2016).
[80] S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362, 505 (2005), [arXiv:astro-ph/0501174].
[81] W. J. Percival et al., Astrophys. J. 657, 645 (2007), [arXiv:astro-ph/0608636].
[82] L. Anderson et al., Mon. Not. Roy. Astron. Soc. 427, 4, 3435 (2013), [arXiv:1203.6594].
[83] E. Linder, Phys. Rev. D72, 43529 (2005).
[84] D. Polarski and R. Gannouji, Phys. Lett. B660, 439 (2008), [arXiv:0710.1510].
[85] G. Efstathiou and J. R. Bond, Mon. Not. Roy. Astron. Soc. 218, 1, 103 (1986).
[86] C. Gordon and A. Lewis, Phys. Rev. D67, 123513 (2003), [arXiv:astro-ph/0212248].
[87] A. Vikhlinin et al., Astrophys. J. 692, 1060 (2009), [arXiv:0812.2720].
[88] A. Dekel and O. Lahav, Astrophys. J. 520, 24 (1999), [arXiv:astro-ph/9806193].
[89] W. J. Percival et al., Mon. Not. Roy. Astron. Soc. 381, 1053 (2007), [arXiv:0705.3323].
[90] W. J. Percival et al. (SDSS), Mon. Not. Roy. Astron. Soc. 401, 2148 (2010), [arXiv:0907.1660].
[91] G. Efstathiou and J. R. Bond, Mon. Not. Roy. Astron. Soc. 304, 75 (1999), [arXiv:astro-ph/9807103].
[92] G. Efstathiou et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 330, L29 (2002), [arXiv:astro-ph/0109152].
[93] P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. 121, 221301 (2018), [arXiv:1810.05216].
[94] A. A. Starobinsky, Phys. Lett. B91, 99 (1980), [,771(1980)].
[95] F. Bezrukov and M. Shaposhnikov, JHEP 07, 089 (2009), [arXiv:0904.1537].
[96] Planck Collab. 2015 Results XXI, Astron. \& Astrophys. 594, A21 (2016).
[97] Planck Collab. 2015 Results XXII, Astron. \& Astrophys. 594, A22 (2016).
[98] W. Hu and I. Sawicki, Phys. Rev. D76, 4043 (2007).
[99] B. Jain and P. Zhang, Phys. Rev. D78, 3503 (2008).
[100] D. L. Wiltshire, Phys. Rev. Lett. 99, 251101 (2007), [arXiv:0709.0732].
[101] T. Buchert, Gen. Rel. Grav. 40, 467 (2008), [arXiv:0707.2153].
[102] I. Zlatev, L.-M. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999), [arXiv:astro-ph/9807002].
[103] C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, Phys. Rev. D63, 3510 (2001).
[104] S. DeDeo, R.R. Caldwell, and P.J. Steinhardt, Phys. Rev. D67, 3509 (2003).
[105] W. Hu, ASP Conf. Ser. 339, 215 (2005), [arXiv:astroph/0407158].
[106] S. F. Daniel et al., Phys. Rev. D81, 123508 (2010), [arXiv:1002.1962].

23. Inflation

Revised August 2019 by J. Ellis (King's Coll. London; CERN) and D. Wands (Portsmouth U.).

23.1 Motivation and Introduction

The standard Big-Bang model of cosmology provides a successful framework in which to understand the thermal history of our Universe and the growth of cosmic structure, but it is essentially incomplete. As described in Sec. 22.2.4, Big-Bang cosmology requires very specific initial conditions. It postulates a uniform cosmological background, described by a spatially-flat, homogeneous and isotropic Robertson-Walker (RW) metric (Eq. (22.1) in "Big Bang Cosmology" review), with scale factor $R(t)$. Within this setting, it also requires an initial almost scale-invariant distribution of primordial density perturbations as seen, for example, in the cosmic microwave background (CMB) radiation (described in Chap. 29, "Cosmic Microwave Background" review), on scales far larger than the causal horizon at the time the CMB photons last scattered.

The Hubble expansion rate, $H \equiv \dot{R} / R$, in a RW cosmology is given by the Friedmann constraint equation (Eq. (22.8) in "Big Bang Cosmology" review)

$$
\begin{equation*}
H^{2}=\frac{8 \pi \rho}{3 M_{P}^{2}}+\frac{\Lambda}{3}-\frac{k}{R^{2}} \tag{23.1}
\end{equation*}
$$

where k / R^{2} is the intrinsic spatial curvature. We use natural units such that the speed of light $c=1$ and hence we have the Planck mass $M_{P}=G_{N}^{-1 / 2} \simeq 10^{19} \mathrm{GeV}$ (see "Astrophysical Constants and Parameters"). A cosmological constant, Λ, of the magnitude required to accelerate the Universe today (see Chap. 28, "Dark Energy" review) would have been completely negligible in the early Universe where the energy density $\rho \gg M_{P}^{2} \Lambda \sim 10^{-12}(\mathrm{eV})^{4}$. The standard early Universe cosmology, described in Sec. 22.1.5 in "Big Bang Cosmology" review, is thus dominated by nonrelativistic matter $\left(p_{m} \ll \rho_{m}\right)$ or radiation ($p_{r}=\rho_{r} / 3$ for an isotropic distribution). This leads to a decelerating expansion with $\ddot{R}<0$.

The hypothesis of inflation [1,2] postulates a period of accelerated expansion, $\ddot{R}>0$, in the very early Universe, preceding the standard radiation-dominated era, which offers a physical model for the origin of these initial conditions, as reviewed in [3-7]. Such a period of accelerated expansion (i) drives a curved RobertsonWalker spacetime (with spherical or hyperbolic spatial geometry) towards spatial flatness, and (ii) it also expands the causal horizon beyond the present Hubble length, so as to encompass all the scales relevant to describe the large-scale structure observed in our Universe today, via the following two mechanisms.

1. A spatially-flat universe with vanishing spatial curvature, $k=0$, has the dimensionless density parameter $\Omega_{t o t}=1$, where we define (Eq. (22.13) in "Big Bang Cosmology" review; see Chap. 25.1, "Cosmological Parameters" review for more complete definitions)

$$
\begin{equation*}
\Omega_{t o t} \equiv \frac{8 \pi \rho_{t o t}}{3 M_{P}^{2} H^{2}} \tag{23.2}
\end{equation*}
$$

with $\rho_{\text {tot }} \equiv \rho+\Lambda M_{P}^{2} / 8 \pi$. If we re-write the Friedmann constraint (Eq. (23.1)) in terms of $\Omega_{t o t}$ we have

$$
\begin{equation*}
1-\Omega_{t o t}=-\frac{k}{\dot{R}^{2}} \tag{23.3}
\end{equation*}
$$

Observations require $\left|1-\Omega_{t o t, 0}\right|<0.005$ today [8], where the subscript 0 denotes the present-day value. Taking the time derivative of Eq. (23.3) we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(1-\Omega_{t o t}\right)=-2 \frac{\ddot{R}}{\dot{R}}\left(1-\Omega_{t o t}\right) \tag{23.4}
\end{equation*}
$$

Thus in a decelerating expansion, $\dot{R}>0$ and $\ddot{R}<0$, any small initial deviation from spatial flatness grows, $(d / d t)\left|1-\Omega_{t o t}\right|>$ 0 . A small value such as $\left|1-\Omega_{t o t, 0}\right|<0.005$ today requires an even smaller value at earlier times, e.g., $\left|1-\Omega_{\text {tot }}\right|<10^{-5}$ at
the last scattering of the CMB, which appears unlikely, unless for some reason space is exactly flat. However, an extended period of accelerated expansion in the very early Universe, with $\dot{R}>0$ and $\ddot{R}>0$ and hence $(d / d t)\left|1-\Omega_{t o t}\right|<0$, can drive $\Omega_{t o t}$ sufficiently close to unity, so that $\left|1-\Omega_{t o t, 0}\right|$ remains unobservably small today, even after the radiationand matter-dominated eras, for a wide range of initial values of $\Omega_{t o t}$.
2. The comoving distance (the present-day proper distance) traversed by light between cosmic time t_{1} and t_{2} in an expanding universe can be written, (see Eq. (22.32) in "Big Bang Cosmology" review), as

$$
\begin{equation*}
D_{0}\left(t_{1}, t_{2}\right)=R_{0} \int_{t_{1}}^{t_{2}} \frac{d t}{R(t)}=R_{0} \int_{\ln R_{1}}^{\ln R_{2}} \frac{d(\ln R)}{\dot{R}} \tag{23.5}
\end{equation*}
$$

In standard decelerated (radiation- or matter-dominated) cosmology the integrand, $1 / \dot{R}$, decreases towards the past, and there is a finite comoving distance traversed by light (a particle horizon) since the Big Bang $\left(R_{1} \rightarrow 0\right)$. For example, the comoving size of the particle horizon at the CMB lastscattering surface ($R_{2}=R_{\text {lss }}$) corresponds to $D_{0} \sim 100 \mathrm{Mpc}$, or approximately 1° on the CMB sky today (see Sec. 22.2.4 in "Big Bang Cosmology" review). However, during a period of inflation, $1 / \dot{R}$ increases towards the past, and hence the integral (Eq. (23.5)) diverges as $R_{1} \rightarrow 0$, allowing an arbitrarily large causal horizon, dependent only upon the duration of the accelerated expansion. Assuming that the Universe inflates with a finite Hubble rate H_{*} at $t_{1}=t_{*}$, ending with $H_{\text {end }}<H_{*}$ at $t_{2}=t_{\text {end }}$, we have

$$
\begin{equation*}
D_{0}\left(t_{*}, t_{e n d}\right)>\left(\frac{R_{0}}{R_{e n d}}\right) H_{*}^{-1}\left(e^{N_{*}}-1\right) \tag{23.6}
\end{equation*}
$$

where $N_{*} \equiv \ln \left(R_{\text {end }} / R_{*}\right)$ describes the duration of inflation, measured in terms of the logarithmic expansion (or "efolds") from $t_{1}=t_{*}$ up to the end of inflation at $t_{2}=t_{\text {end }}$, and $R_{0} / R_{\text {end }}$ is the subsequent expansion from the end of inflation to the present day. If inflation occurs above the TeV scale, the comoving Hubble scale at the end of inflation, $\left(R_{0} / R_{\text {end }}\right) H_{e n d}^{-1}$, is less than one astronomical unit $\left(\sim 10^{11} \mathrm{~m}\right)$, and a causally-connected patch can encompass our entire observable Universe today, which has a size $D_{0}>30 \mathrm{Gpc}$, if there were more than 40 e-folds of inflation $\left(N_{*}>40\right)$. If inflation occurs at the GUT scale $\left(10^{15} \mathrm{GeV}\right)$ then we require more than 60 e-folds.

Producing an accelerated expansion in general relativity requires an energy-momentum tensor with negative pressure, $p<$ $-\rho / 3$ (see Eq. (22.9) in "Big Bang Cosmology" review and Chap. 28, "Dark Energy" review), quite different from the hot dense plasma of relativistic particles in the hot Big Bang. However a positive vacuum energy $V>0$ does exert a negative pressure, $p_{V}=-\rho_{V}$. The work done by the cosmological expansion must be negative in this case so that the local vacuum energy density remains constant in an expanding universe, $\dot{\rho}_{V}=-3 H\left(\rho_{V}+p_{V}\right)=$ 0 . Therefore, a false vacuum state can drive an exponential expansion, corresponding to a de Sitter spacetime with a constant Hubble rate $H^{2}=8 \pi \rho_{V} / 3 M_{P}^{2}$ on spatially-flat hypersurfaces.

A constant vacuum energy V, equivalent to a cosmological constant Λ in the Friedmann equation Eq. (23.1), cannot provide a complete description of inflation in the early Universe, since inflation must necessarily have come to an end in order for the standard Big-Bang cosmology to follow. A phase transition to the present true vacuum is required to release the false vacuum energy into the energetic plasma of the hot Big Bang and produce the large total entropy of our observed Universe today. Thus we must necessarily study dynamical models of inflation, where the timeinvariance of the false vacuum state is broken by a time-dependent field. A first-order phase transition would produce a very inhomogeneous Universe [9] unless a time-dependent scalar field leads to a rapidly changing percolation rate [10-12]. However,
a second-order phase transition [13, 14], controlled by a slowlyrolling scalar field, can lead to a smooth classical exit from the vacuum-dominated phase.

As a spectacular bonus, quantum fluctuations in that scalar field could provide a source of almost scale-invariant density fluctuations $[15,16]$, as detected in the CMB (see Chap. 29), which are thought to be the origin of the structures seen in the Universe today.

Accelerated expansion and primordial perturbations can also be produced in some modified gravity theories (e.g., $[1,17]$), which introduce additional non-minimally coupled degrees of freedom. Such inflation models can often be conveniently studied by transforming variables to an 'Einstein frame' in which Einstein's equations apply with minimally coupled scalar fields [18-20].

In the following we will review scalar field cosmology in general relativity and the spectra of primordial fluctuations produced during inflation, before studying selected inflation models.

23.2 Scalar Field Cosmology

The energy-momentum tensor for a canonical scalar field ϕ with self-interaction potential $V(\phi)$ is given in Eq. (22.52) in "Big Bang Cosmology" review. In a homogeneous background this corresponds to a perfect fluid with density

$$
\begin{equation*}
\rho=\frac{1}{2} \dot{\phi}^{2}+V(\phi), \tag{23.7}
\end{equation*}
$$

and isotropic pressure

$$
\begin{equation*}
p=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \tag{23.8}
\end{equation*}
$$

while the 4 -velocity is proportional to the gradient of the field, $u^{\mu} \propto \nabla^{\mu} \phi$.

A field with vanishing potential energy acts like a stiff fluid with $p=\rho=\dot{\phi}^{2} / 2$, whereas if the time-dependence vanishes we have $p=-\rho=-V$ and the scalar field is uniform in time and space. Thus a classical, potential-dominated scalar-field cosmology, with $p \simeq-\rho$, can naturally drive a quasi-de Sitter expansion; the slow time-evolution of the energy density weakly breaks the exact $O(1,3)$ symmetry of four-dimensional de Sitter spacetime down to a Robertson-Walker (RW) spacetime, where the scalar field plays the role of the cosmic time coordinate.

In a scalar-field RW cosmology the Friedmann constraint equation (Eq. (23.1)) reduces to

$$
\begin{equation*}
H^{2}=\frac{8 \pi}{3 M_{P}^{2}}\left(\frac{1}{2} \dot{\phi}^{2}+V\right)-\frac{k}{R^{2}} \tag{23.9}
\end{equation*}
$$

while energy conservation (Eq. (22.10) in "Big Bang Cosmology" review) for a homogeneous scalar field reduces to the KleinGordon equation of motion (Eq. (22.54) in "Big Bang Cosmology" review)

$$
\begin{equation*}
\ddot{\phi}=-3 H \dot{\phi}-V^{\prime}(\phi) \tag{23.10}
\end{equation*}
$$

The evolution of the scalar field is thus driven by the potential gradient $V^{\prime}=d V / d \phi$, subject to damping by the Hubble expansion $3 H \dot{\phi}$.

If we define the Hubble slow-roll parameter

$$
\begin{equation*}
\epsilon_{H} \equiv-\frac{\dot{H}}{H^{2}} \tag{23.11}
\end{equation*}
$$

then we see that inflation $\left(\ddot{R}>0\right.$ and hence $\left.\dot{H}>-H^{2}\right)$ requires $\epsilon_{H}<1$. In this case the spatial curvature decreases relative to the scalar field energy density as the Universe expands. Hence in the following we drop the spatial curvature and consider a spatiallyflat RW cosmology, assuming that inflation has lasted sufficiently long that our observable universe is very close to spatially flatness. However, we note that bubble nucleation, leading to a first-order phase transition during inflation, can lead to homogeneous hypersurfaces with a hyperbolic ('open') geometry, effectively resetting the spatial curvature inside the bubble [21]. This is the basis of so-called open inflation models [22-24], where inflation inside the bubble has a finite duration, leaving a finite negative spatial curvature.

In a scalar field-dominated cosmology (Eq. (23.11)) gives

$$
\begin{equation*}
\epsilon_{H}=\frac{3 \dot{\phi}^{2}}{2 V+\dot{\phi}^{2}} \tag{23.12}
\end{equation*}
$$

in which case we see that inflation requires a potential-dominated expansion, $\dot{\phi}^{2}<V$.

23.2.1 Slow-Roll Inflation

It is commonly assumed that the field acceleration term, $\ddot{\phi}$, in (Eq. (23.10)) can be neglected, in which case one can give an approximate solution for the inflationary attractor [25]. This slowroll approximation reduces the second-order Klein-Gordon equation (Eq. (23.10)) to a first-order system, which is over-damped, with the potential gradient being approximately balanced against to the Hubble damping:

$$
\begin{equation*}
3 H \dot{\phi} \simeq-V^{\prime} \tag{23.13}
\end{equation*}
$$

and at the same time that the Hubble expansion (Eq. (23.9)) is dominated by the potential energy

$$
\begin{equation*}
H^{2} \simeq \frac{8 \pi}{3 M_{P}^{2}} V(\phi) \tag{23.14}
\end{equation*}
$$

corresponding to $\epsilon_{H} \ll 1$.
A necessary condition for the validity of the slow-roll approximation is that the potential slow-roll parameters

$$
\begin{equation*}
\epsilon \equiv \frac{M_{P}^{2}}{16 \pi}\left(\frac{V^{\prime}}{V}\right)^{2}, \quad \eta \equiv \frac{M_{P}^{2}}{8 \pi}\left(\frac{V^{\prime \prime}}{V}\right) \tag{23.15}
\end{equation*}
$$

are small, i.e., $\epsilon \ll 1$ and $|\eta| \ll 1$, requiring the potential to be correspondingly flat. If we identify $V^{\prime \prime}$ with the effective mass of the field, we see that the slow-roll approximation requires that the mass of the scalar field must be small compared with the Hubble scale. We note that the Hubble slow-roll parameter (Eq. (23.11)) coincides with the potential slow-roll parameter, $\epsilon_{H} \simeq \epsilon$, to leading order in the slow-roll approximation.

The slow-roll approximation allows one to determine the Hubble expansion rate as a function of the scalar field value, and vice versa. In particular, we can express, in terms of the scalar field value during inflation, the total logarithmic expansion, or number of "e-folds":

$$
\begin{align*}
N_{*} & \equiv \ln \left(\frac{R_{e n d}}{R_{*}}\right) \\
& =\int_{t_{*}}^{t_{e n d}} H d t \simeq-\int_{\phi_{*}}^{\phi_{e n d}} \sqrt{\frac{4 \pi}{\epsilon}} \frac{d \phi}{M_{P}} \text { for } V^{\prime}>0 \tag{23.16}
\end{align*}
$$

Given that the slow-roll parameters are approximately constant during slow-roll inflation, $d \epsilon / d N \simeq 2 \epsilon(\eta-2 \epsilon)=\mathcal{O}\left(\epsilon^{2}\right)$, we have

$$
\begin{equation*}
N_{*} \simeq \frac{4}{\sqrt{\epsilon}} \frac{\Delta \phi}{M_{P}} \tag{23.17}
\end{equation*}
$$

Since we require $N>40$ to solve the flatness, horizon and entropy problems of the standard Big Bang cosmology, we require either very slow roll, $\epsilon<0.01$, or a large change in the value of the scalar field relative to the Planck scale, $\Delta \phi>M_{P}$.

23.2.2 Reheating

Slow-roll inflation can lead to an exponentially large universe, close to spatial flatness and homogeneity, but the energy density is locked in the potential energy of the scalar field, and needs to be converted to particles and thermalised to recover a hot Big Bang cosmology at the end of inflation [26,27]. This process is usually referred to as reheating, although there was not necessarily any preceding thermal era. Reheating can occur when the scalar field evolves towards the minimum of its potential, converting the potential energy first to kinetic energy. This can occur either through the breakdown of the slow-roll condition in single-field models, or due to an instability triggered by the inflaton reaching
a critical value, in multi-field models known as hybrid inflation models [28].

Close to a simple minimum, the scalar field potential can be described by a quadratic function, $V=m^{2} \phi^{2} / 2$, where m is the mass of the field. We can obtain slow-roll inflation in such a potential at large field values, $\phi \gg M_{P}$. However, for $\phi \ll M_{P}$ the field approaches an oscillatory solution:

$$
\begin{equation*}
\phi(t) \simeq \frac{M_{P}}{\sqrt{3 \pi}} \frac{\sin (m t)}{m t} \tag{23.18}
\end{equation*}
$$

For $|\phi|<M_{P}$ the Hubble rate drops below the inflaton mass, $H<m$, and the field oscillates many times over a Hubble time. Averaging over several oscillations, $\Delta t \gg m^{-1}$, we find $\left\langle\dot{\phi}^{2} / 2\right\rangle_{\Delta t} \simeq\left\langle m^{2} \phi^{2} / 2\right\rangle_{\Delta t}$ and hence

$$
\begin{equation*}
\langle\rho\rangle_{\Delta t} \simeq \frac{M_{P}^{2}}{6 \pi t^{2}}, \quad\langle p\rangle_{\Delta t} \simeq 0 \tag{23.19}
\end{equation*}
$$

This coherent oscillating field corresponds to a condensate of nonrelativistic massive inflaton particles, driving a matter-dominated era at the end of inflation, with scale factor $R \propto t^{2 / 3}$.

The inflaton condensate can lose energy through perturbative decays due to terms in the interaction Lagrangian, such as

$$
\begin{equation*}
\mathcal{L}_{i n t} \subset-\lambda_{i} \sigma \phi \chi_{i}^{2}-\lambda_{j} \phi \bar{\psi}_{j} \psi_{j} \tag{23.20}
\end{equation*}
$$

that couple the inflation to scalar fields χ_{i} or fermions ψ_{j}, where σ has dimensions of mass and the λ_{i} are dimensionless couplings. When the mass of the inflaton is much larger than the decay products, the decay rate is given by [29]

$$
\begin{equation*}
\Gamma_{i}=\frac{\lambda_{i}^{2} \sigma^{2}}{8 \pi m}, \quad \Gamma_{j}=\frac{\lambda_{j}^{2} m}{8 \pi} \tag{23.21}
\end{equation*}
$$

These decay products must in turn thermalise with Standard Model particles before we recover conventional hot Big Bang cosmology. An upper limit on the reheating temperature after inflation is given by [27]

$$
\begin{equation*}
T_{r h}=0.2\left(\frac{100}{g_{*}}\right)^{1 / 4} \sqrt{M_{P} \Gamma_{t o t}} \tag{23.22}
\end{equation*}
$$

where g_{*} is the effective number of degrees of freedom and $\Gamma_{t o t}$ is the total decay rate for the inflaton, which is required to be less than m for perturbative decay.

The baryon asymmetry of the Universe must be generated after the main release of entropy during inflation, which is an important constraint on possible models. Also, the fact that the inflaton mass is much larger than the mass scale of the Standard Model opens up the possibility that it may decay into massive stable or metastable particles that could be connected with dark matter, constraining possible models. For example, in the context of supergravity models the reheat temperature is constrained by the requirement that gravitinos are not overproduced, potentially destroying the successes of Big Bang nucleosynthesis. For a range of gravitino masses one must require $T_{r h}<10^{9} \mathrm{GeV}[30,31]$.

The process of inflaton decay and reheating can be significantly altered by interactions leading to space-time dependences in the effective masses of the fields. In particular, parametric resonance can lead to explosive, non-perturbative decay of the inflaton in some cases, a process often referred to as preheating [26,32]. For example, an interaction term of the form

$$
\begin{equation*}
\mathcal{L}_{i n t} \subset-\lambda^{2} \phi^{2} \chi^{2} \tag{23.23}
\end{equation*}
$$

leads to a time-dependent effective mass for the χ field as the inflaton ϕ oscillates. This can lead to non-adiabatic particle production if the bare mass of the χ field is small for large couplings or for rapid changes of the inflaton field. The process of preheating is highly model-dependent, but it highlights the possible role of non-thermal particle production after and even during inflation.

23.3 Primordial Perturbations from Inflation

Although inflation was originally discussed as a solution to the problem of initial conditions required for homogeneous and isotropic hot Big Bang cosmology, it was soon realised that inflation also offered a mechanism to generate the inhomogeneous initial conditions required for the formation of large-scale structure [15-17, 33].

23.3.1 Metric Perturbations

In a homogeneous classical inflationary cosmology driven by a scalar field, the inflaton field is uniform on constant-time hypersurfaces, $\phi=\phi_{0}(t)$. However, quantum fluctuations inevitably break the spatial symmetry leading to an inhomogeneous field:

$$
\begin{equation*}
\phi\left(t, x^{i}\right)=\phi_{0}(t)+\delta \phi\left(t, x^{i}\right) \tag{23.24}
\end{equation*}
$$

At the same time, one should consider inhomogeneous perturbations of the RW spacetime metric (see, e.g., [34-36]):

$$
\begin{align*}
d s^{2}=(1+2 A) d t^{2} & -2 R B_{i} d t d x^{i} \\
& -R^{2}\left[(1+2 C) \delta_{i j}+\partial_{i} \partial_{j} E+h_{i j}\right] d x^{i} d x^{j} \tag{23.25}
\end{align*}
$$

where A, B, E and C are scalar perturbations while $h_{i j}$ represents transverse and tracefree, tensor metric perturbations. Vector metric perturbations can be eliminated using Einstein constraint equations in a scalar field cosmology.

The tensor perturbations remain invariant under a temporal gauge transformation $t \rightarrow t+\delta t\left(t, x^{i}\right)$, but both the scalar field and the scalar metric perturbations transform. For example, we have

$$
\begin{equation*}
\delta \phi \rightarrow \delta \phi-\dot{\phi}_{0} \delta t, \quad C \rightarrow C-H \delta t \tag{23.26}
\end{equation*}
$$

However, there are gauge invariant combinations, such as [37]

$$
\begin{equation*}
Q=\delta \phi-\frac{\dot{\phi}_{0}}{H} C \tag{23.27}
\end{equation*}
$$

which describes the scalar field perturbations on spatially-flat $(C=0)$ hypersurfaces. This is simply related to the curvature perturbation on uniform-field $(\delta \phi=0)$ hypersurfaces:

$$
\begin{equation*}
\mathcal{R}=C-\frac{H}{\dot{\phi}_{0}} \delta \phi=-\frac{H}{\dot{\phi}_{0}} Q \tag{23.28}
\end{equation*}
$$

which coincides in slow-roll inflation, $\rho \simeq \rho(\phi)$, with the curvature perturbation on uniform-density hypersurfaces [16]

$$
\begin{equation*}
\zeta=C-\frac{H}{\dot{\rho}_{0}} \delta \rho \tag{23.29}
\end{equation*}
$$

Thus scalar field and scalar metric perturbations are coupled by the evolution of the inflaton field.

23.3.2 Gravitational waves from inflation

The tensor metric perturbation, $h_{i j}$ in Eq. (23.25), is gaugeinvariant and decoupled from the scalar perturbations at first order. This represents the free excitations of the spacetime, i.e., gravitational waves, which are the simplest metric perturbations to study at linear order.

Each tensor mode, with wavevector \vec{k}, has two linearlyindependent transverse and trace-free polarization states:

$$
\begin{equation*}
h_{i j}(\vec{k})=h_{\vec{k}} q_{i j}+\bar{h}_{\vec{k}} \bar{q}_{i j} \tag{23.30}
\end{equation*}
$$

The linearised Einstein equations then yield the same evolution equation for the amplitude as that for a massless field in RW spacetime:

$$
\begin{equation*}
\ddot{h}_{\vec{k}}+3 H \dot{h}_{\vec{k}}+\frac{k^{2}}{R^{2}} h_{\vec{k}}=0 \tag{23.31}
\end{equation*}
$$

(and similarly for $\bar{h}_{\vec{k}}$). This can be re-written in terms of the conformal time, $\eta=\int d t / R$, and the conformally rescaled field:

$$
\begin{equation*}
u_{\vec{k}}=\frac{M_{P} R h_{\vec{k}}}{\sqrt{32 \pi}} . \tag{23.32}
\end{equation*}
$$

This conformal field then obeys the wave equation for a canonical scalar field in Minkowski spacetime with a time-dependent mass:

$$
\begin{equation*}
u_{\vec{k}}^{\prime \prime}+\left(k^{2}-\frac{R^{\prime \prime}}{R}\right) u_{\vec{k}}=0 \tag{23.33}
\end{equation*}
$$

During slow-roll

$$
\begin{equation*}
\frac{R^{\prime \prime}}{R} \simeq(2-\epsilon) R^{2} H^{2} \tag{23.34}
\end{equation*}
$$

This makes it possible to quantise the linearised metric fluctuations, $u_{\vec{k}} \rightarrow \widehat{u}_{\vec{k}}$, on sub-Hubble scales, $k^{2} / R^{2} \gg H^{2}$, where the background expansion can be neglected.

Crucially, in an inflationary expansion, where $\ddot{R}>0$, the comoving Hubble length $H^{-1} / R=1 / \dot{R}$ decreases with time. Thus all modes start inside the Hubble horizon and it is possible to take the initial field fluctuations to be in a vacuum state at early times or on small scales:

$$
\begin{equation*}
\left\langle u_{\vec{k}_{1}} u_{\vec{k}_{2}}\right\rangle=\frac{i}{2}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right) . \tag{23.35}
\end{equation*}
$$

In terms of the amplitude of the tensor metric perturbations, this corresponds to

$$
\begin{equation*}
\left\langle h_{\vec{k}_{1}} h_{\vec{k}_{2}}\right\rangle=\frac{1}{2} \frac{\mathcal{P}_{t}\left(k_{1}\right)}{4 \pi k_{1}^{3}}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right), \tag{23.36}
\end{equation*}
$$

where the factor $1 / 2$ appears due to the two polarization states that contribute to the total tensor power spectrum:

$$
\begin{equation*}
\mathcal{P}_{t}(k)=\frac{64 \pi}{M_{P}^{2}}\left(\frac{k}{2 \pi R}\right)^{2} \tag{23.37}
\end{equation*}
$$

On super-Hubble scales, $k^{2} / R^{2} \ll H^{2}$, we have the growing mode solution to Eq. (23.33), $u_{\vec{k}} \propto R$, corresponding to $h_{\vec{k}} \rightarrow$ constant, i.e., tensor modes are frozen-in on super-Hubble scales, both during and after inflation. Thus, connecting the initial vacuum fluctuations on sub-Hubble scales to the late-time power spectrum for tensor modes at Hubble exit during inflation, $k=R_{*} H_{*}$, we obtain

$$
\begin{equation*}
\mathcal{P}_{t}(k) \simeq \frac{64 \pi}{M_{P}^{2}}\left(\frac{H_{*}}{2 \pi}\right)^{2} \tag{23.38}
\end{equation*}
$$

In the de Sitter limit, $\epsilon \rightarrow 0$, the Hubble rate becomes timeindependent and the tensor spectrum on super-Hubble scales becomes scale-invariant [39]. However slow-roll evolution leads to weak time dependence of H_{*} and thus a scale-dependent spectrum on large scales, with a spectral tilt

$$
\begin{equation*}
n_{t} \equiv \frac{d \ln \mathcal{P}_{T}}{d \ln k} \simeq-2 \epsilon_{*} \tag{23.39}
\end{equation*}
$$

23.3.3 Density Perturbations from single-field inflation

The inflaton field fluctuations on spatially-flat hypersurfaces are coupled to scalar metric perturbations at first order, but these can be eliminated using the Einstein constraint equations to yield an evolution equation

$$
\begin{equation*}
\ddot{Q}_{\vec{k}}+3 H \dot{Q}_{\vec{k}}+\left[\frac{k^{2}}{R^{2}}+V^{\prime \prime}-\frac{8 \pi}{M_{P}^{2} R^{3}} \frac{d}{d t}\left(\frac{R^{3} \dot{\phi}^{2}}{H}\right)\right] Q_{\vec{k}}=0 \tag{23.40}
\end{equation*}
$$

Terms proportional to M_{P}^{-2} represent the effect on the field fluctuations of gravity at first order. As can be seen, this vanishes in the limit of a constant background field, and hence is suppressed in the slow-roll limit, but it is of the same order as the effective mass, $V^{\prime \prime}=3 \eta H^{2}$, so must be included if we wish to model deviations from exact de Sitter symmetry.

This wave equation can also be written in the canonical form for a free field in Minkowski spacetime if we define [37]

$$
\begin{equation*}
v_{\vec{k}} \equiv R Q_{\vec{k}} \tag{23.41}
\end{equation*}
$$

to yield

$$
\begin{equation*}
v_{\vec{k}}^{\prime \prime}+\left(k^{2}-\frac{z^{\prime \prime}}{z}\right) v_{\vec{k}}=0 \tag{23.42}
\end{equation*}
$$

where we define

$$
\begin{equation*}
z \equiv \frac{R \dot{\phi}}{H}, \quad \frac{z^{\prime \prime}}{z} \simeq(2+5 \epsilon-3 \eta) R^{2} H^{2} \tag{23.43}
\end{equation*}
$$

where the last approximate equality holds to leading order in the slow-roll approximation.

As previously done for gravitational waves, we quantise the linearised field fluctuations $v_{\vec{k}} \rightarrow \hat{v}_{\vec{k}}$ on sub-Hubble scales, $k^{2} / R^{2} \gg$ H^{2}, where the background expansion can be neglected. Thus we impose

$$
\begin{equation*}
\left\langle v_{\vec{k}_{1}} v_{\vec{k}_{2}}^{\prime}\right\rangle=\frac{i}{2} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right) \tag{23.44}
\end{equation*}
$$

In terms of the field perturbations, this corresponds to

$$
\begin{equation*}
\left\langle Q_{\vec{k}_{1}} Q_{\vec{k}_{2}}\right\rangle=\frac{\mathcal{P}_{Q}\left(k_{1}\right)}{4 \pi k_{1}^{3}}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right) \tag{23.45}
\end{equation*}
$$

where the power spectrum for vacuum field fluctuations on subHubble scales, $k^{2} / R^{2} \gg H^{2}$, is simply

$$
\begin{equation*}
\mathcal{P}_{Q}(k)=\left(\frac{k}{2 \pi R}\right)^{2} \tag{23.46}
\end{equation*}
$$

yielding the classic result for the vacuum fluctuations for a massless field in de Sitter at Hubble exit, $k=R_{*} H_{*}$:

$$
\begin{equation*}
\mathcal{P}_{Q}(k) \simeq\left(\frac{H}{2 \pi}\right)_{*}^{2} \tag{23.47}
\end{equation*}
$$

In practice there are slow-roll corrections due to the small but finite mass (η) and field evolution (ϵ) [40].

Slow-roll corrections to the field fluctuations are small on subHubble scales, but can become significant as the field and its perturbations evolve over time on super-Hubble scales. Thus it is helpful to work instead with the curvature perturbation, ζ defined in equation (Eq. (23.29)), which remains constant on superHubble scales for adiabatic density perturbations both during and after inflation $[16,41]$. Thus we have an expression for the primordial curvature perturbation on super-Hubble scales produced by single-field inflation:

$$
\begin{equation*}
\mathcal{P}_{\zeta}(k)=\left[\left(\frac{H}{\dot{\phi}}\right)^{2} \mathcal{P}_{Q}(k)\right]_{*} \simeq \frac{4 \pi}{M_{P}^{2}}\left[\frac{1}{\epsilon}\left(\frac{H}{2 \pi}\right)^{2}\right]_{*} . \tag{23.48}
\end{equation*}
$$

Comparing this with the primordial gravitational wave power spectrum (Eq. (23.38)) we obtain the tensor-to-scalar ratio for single-field slow-roll inflation

$$
\begin{equation*}
r \equiv \frac{\mathcal{P}_{t}}{\mathcal{P}_{\zeta}} \simeq 16 \epsilon_{*} \tag{23.49}
\end{equation*}
$$

Note that the scalar amplitude is boosted by a factor $1 / \epsilon_{*}$ during slow-roll inflation, because small scalar field fluctuations can lead to relatively large curvature perturbations on hypersurfaces defined with respect to the density if the potential energy is only weakly dependent on the scalar field, as in slow-roll. Indeed, the de Sitter limit is singular, since the potential energy becomes independent of the scalar field at first order, $\epsilon \rightarrow 0$, and the curvature perturbation on uniform-density hypersurfaces becomes illdefined.

We note that in single-field inflation the tensor-to-scalar ratio and the tensor tilt (Eq. (23.39)) at the same scale are both determined by the first slow-roll parameter at Hubble exit, ϵ_{*}, giving rise to an important consistency test for single-field inflation:

$$
\begin{equation*}
n_{t}=-\frac{r}{8} \tag{23.50}
\end{equation*}
$$

This may be hard to verify if r is small, making any tensor tilt n_{t} difficult to measure. On the other hand, it does offer a way to rule out single-field slow-roll inflation if either r or n_{t} is large.

Given the relatively large scalar power spectrum, it has proved easier to measure the scalar tilt, conventionally defined as $n_{s}-1$.

Figure 23.1: The marginalized joint 68 and 95% CL regions for the tilt in the scalar perturbation spectrum, n_{s}, and the relative magnitude of the tensor perturbations, r, obtained from the Planck 2018 and lensing data alone, and their combinations with BICEP2/Keck Array (BK15) and (optionally) BAO data, confronted with the predictions of some of the inflationary models discussed in this review. This figure is taken from [38].

Slow-roll corrections lead to slow time-dependence of both H_{*} and ϵ_{*}, giving a weak scale-dependence of the scalar power spectrum:

$$
\begin{equation*}
n_{s}-1 \equiv \frac{d \ln \mathcal{P}_{\zeta}}{d \ln k} \simeq-6 \epsilon_{*}+2 \eta_{*} \tag{23.51}
\end{equation*}
$$

and a running of this tilt at second-order in slow-roll:

$$
\begin{equation*}
\frac{d n_{s}}{d \ln k} \simeq-8 \epsilon_{*}\left(3 \epsilon_{*}-2 \eta_{*}\right)-2 \xi_{*}^{2} \tag{23.52}
\end{equation*}
$$

where the running introduces a new slow-roll parameter at secondorder:

$$
\begin{equation*}
\xi^{2}=\frac{M_{P}^{4}}{64 \pi^{2}} \frac{V^{\prime} V^{\prime \prime \prime}}{V^{2}} \tag{23.53}
\end{equation*}
$$

23.3.4 Observational Bounds

The observed scale-dependence of the power spectrum makes it necessary to specify the comoving scale, k, at which quantities are constrained and hence the Hubble-exit time, $k=a_{*} H_{*}$, when the corresponding theoretical quantities are calculated during inflation. This is usually expressed in terms of the number of e-folds from the end of inflation [42]:

$$
\begin{align*}
N_{*}(k) \simeq 67 & -\ln \left(\frac{k}{a_{0} H_{0}}\right)+\frac{1}{4} \ln \left(\frac{V_{*}^{2}}{M_{P}^{4} \rho_{e n d}}\right)+\frac{1}{12} \ln \left(\frac{\rho_{r h}}{\rho_{e n d}}\right) \\
& -\frac{1}{12} \ln \left(g_{*}\right) \tag{23.54}
\end{align*}
$$

where H_{0}^{-1} / a_{0} is the present comoving Hubble length. Different models of reheating and and thus different reheat temperatures and densities, $\rho_{r h}$ in Eq. (23.54), lead to a range of possible values for N_{*} corresponding to a fixed physical scale, and hence we have a range of observational predictions for a given inflation model, as seen in Fig. 23.1.

The Planck 2018 temperature and polarization data (see Chap. 29, "Cosmic Microwave Background" review) are consistent with a smooth featureless power spectrum over a range of comoving
wavenumbers, $0.008 h^{-1} \mathrm{Mpc}^{-1} \leq k \leq 0.1 h \mathrm{Mpc}^{-1}$. In the absence of running, the data measure the spectral index to be [38]

$$
\begin{equation*}
n_{s}=0.9649 \pm 0.0042 \tag{23.55}
\end{equation*}
$$

corresponding to a deviation from scale-invariance exceeding the 7σ level. If running of the spectral tilt is included in the model, this is constrained to be [38]

$$
\begin{equation*}
\frac{d n_{s}}{d \ln k}=-0.0045 \pm 0.0067 \tag{23.56}
\end{equation*}
$$

at the 95% CL, assuming no running of the running. A combined analysis of the Planck 2018 and BICEP2/Keck Array 2015 data [43] places an upper bound on the tensor-to-scalar ratio at $k=0.002 \mathrm{Mpc}^{-1}[38]$

$$
\begin{equation*}
r<0.06 \tag{23.57}
\end{equation*}
$$

at the 95% CL.
These observational bounds can be converted into bounds on the slow-roll parameters and hence the potential during slowroll inflation. Setting higher-order slow-roll parameters (beyond second-order in horizon-flow parameters [44]) to zero, the Planck collaboration obtain the following 95% CL bounds when lensing and BK15 data are included [38]

$$
\begin{align*}
\epsilon & <0.0044 \tag{23.58}\\
\eta & =-0.015 \pm 0.006 \tag{23.59}\\
\xi^{2} & =0.0029_{-0.0069}^{+0.0073} \tag{23.60}
\end{align*}
$$

which can be used to constrain models, as discussed in the next Section.

Fig. 23.1, which is taken from [38], compares observational CMB constraints on the tilt, n_{s}, in the spectrum of scalar perturbations and the ratio, r, between the magnitudes of tensor and scalar perturbations. Important rôles are played by data from the Planck satellite and on lensing, the BICEP2/Keck Array (BK15) and measurements of baryon acoustic oscillations (BAO). The reader is referred to [38] for technical details. These experimental constraints are compared with the predictions of some

Figure 23.2: The result of reconstructing a single-field inflaton potential using a cubic-spline power-spectrum mode expansion and the the full Planck, lensing, BK15 and BAO data set. This figure is taken from [38].
of the inflationary models discussed in this review. Generally speaking, models with a concave potential are favored over those with a convex potential, and models with power-law inflation are now excluded, as opposed to models with de Sitter-like (quasi)exponential expansion.

There is no significant evidence for local features within the range of inflaton field values probed by the data [38]. However, the data may be used to reconstruct partially the effective inflationary potential over a range of inflaton field values, assuming that it is suitably smooth. The result of one such exercise by the Planck collaboration [38] in the framework of a generic single-field inflaton potential is shown in Fig. 23.2. This reconstruction assumes a cubic-spline power-spectrum mode expansion and employs the full Planck, lensing, BK15 and BAO data set. The reader is again referred to [38] for technical details. We see that the effective inflaton potential is relatively well reconstructed over field values ϕ within ± 0.5 of the chosen pivot value, but the potential is only very weakly constrained for larger values of $\left|\phi-\phi_{\text {pivot }}\right|$, providing wide scope for inflationary model-builders.

23.4 Models

23.4.1 Pioneering Models

The paradigm of the inflationary Universe was proposed in [2], where it was pointed out that an early period of (near)exponential expansion, in addition to resolving the horizon and flatness problems of conventional Big-Bang cosmology as discussed above (the possibility of a de Sitter phase in the early history of the Universe was also proposed in the non-minimal gravity model of [1], with the motivation of avoiding an initial singularity), would also dilute the prior abundance of any unseen heavy, (meta-)stable particles, as exemplified by monopoles
in grand unified theories (GUTs; see Chap. 94, "Grand Unified Theories" review). The original proposal was that this inflationary expansion took place while the Universe was in a metastable state (a similar suggestion was made in [45, 46], where in [45] it was also pointed out that such a mechanism could address the horizon problem) and was terminated by a first-order transition due to tunnelling though a potential barrier. However, it was recognized already in [2] that this 'old inflation' scenario would need modification if the transition to the post-inflationary universe were to be completed smoothly without generating unacceptable inhomogeneities.

This 'graceful exit' problem was addressed in the 'new inflation' model of [13] (see also [14] and footnote [39] of [2]), which studied models based on an $\mathrm{SU}(5)$ GUT with an effective potential of the Coleman-Weinberg type (i.e., dominated by radiative corrections), in which inflation could occur during the roll-down from the local maximum of the potential towards a global minimum. However, it was realized that the Universe would evolve to a different minimum from the Standard Model [47], and it was also recognized that density fluctuations would necessarily be too large [15], since they were related to the GUT coupling strength.

These early models of inflation assumed initial conditions enforced by thermal equilibrium in the early Universe. However, this assumption was questionable: indeed, it was not made in the model of [1], in which a higher-order gravitational curvature term was assumed to arise from quantum corrections, and the assumption of initial thermal equilibrium was jettisoned in the 'chaotic' inflationary model of [48]. These are the inspirations for much recent inflationary model building, so we now discuss them in more detail, before reviewing contemporary models.

In this section we will work in natural units where we set the reduced Planck mass to unity, i.e., $8 \pi / M_{P}^{2}=1$. All masses are thus relative to the reduced Planck scale.

23.4.2 R^{2} Inflation

The first-order Einstein-Hilbert action, (1/2) $\int d^{4} x \sqrt{-g} R$, where R is the Ricci scalar curvature, is the minimal possible theory consistent with general coordinate invariance. However, it is possible that there might be non-minimal corrections to this action, and the unique second-order possibility is

$$
\begin{equation*}
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{R^{2}}{6 M^{2}}\right) \tag{23.61}
\end{equation*}
$$

It was pointed out in [1] that an R^{2} term could be generated by quantum effects, and that (Eq. (23.61)) could lead to de Sitter-like expansion of the Universe. Scalar density perturbations in this model were calculated in [17]. Because the initial phase was (almost) de Sitter, these perturbations were (approximately) scaleinvariant, with magnitude $\propto M$. It was pointed out in [17] that requiring the scalar density perturbations to lie in the range 10^{-3} to 10^{-5}, consistent with upper limits at that time, would require $M \sim 10^{-3}$ to 10^{-5} in Planck units, and it was further suggested in that these perturbations could lead to the observed large-scale structure of the Universe, including the formation of galaxies.

Although the action (Eq. (23.61)) does not contain an explicit scalar field, [17] reduced the calculation of density perturbations to that of fluctuations in the scalar curvature R, which could be identified (up to a factor) with a scalar field of mass M. The formal equivalence of R^{2} gravity (Eq. (23.61)) to a theory of gravity with a massive scalar ϕ had been shown in [18], see also [19]. The effective scalar potential for what we would nowadays call the 'inflaton' [49] takes the form

$$
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left[R+\left(\partial_{\mu} \phi\right)^{2}-\frac{3}{2} M^{2}\left(1-e^{-\sqrt{2 / 3} \phi}\right)^{2}\right]
$$

(23.62)
when the action is written in the Einstein frame, and the potential is shown as the solid black line in Fig. 23.3. Using (Eq. (23.48)), one finds that the amplitude of the scalar density perturbations in this model is given by

$$
\begin{equation*}
\Delta_{\mathcal{R}}=\frac{3 M^{2}}{8 \pi^{2}} \sinh ^{4}\left(\frac{\phi}{\sqrt{6}}\right) \tag{23.63}
\end{equation*}
$$

The measured magnitude of the density fluctuations in the CMB requires $M \simeq 1.3 \times 10^{-5}$ in Planck units (assuming $N_{*} \simeq 55$), so one of the open questions in this model is why M is so small. Obtaining $N_{*} \simeq 55$ also requires an initial value of $\phi \simeq 5.5$, i.e., a super-Planckian initial condition, and another issue for this and many other models is how the form of the effective potential is protected and remains valid at such large field values. Using Eq. (23.51) one finds that $n_{s} \simeq 0.965$ for $N_{*} \simeq 55$ and using (Eq. (23.49)) one finds that $r \simeq 0.0035$. These predictions are consistent with the present data from Planck and other experiments, as seen in Fig. 23.1.

23.4.3 Chaotic Models with Power-Law Potentials

As has already been mentioned, a key innovation in inflationary model-building was the suggestion to abandon the questionable assumption of a thermal initial state, and consider 'chaotic' initial conditions with very general forms of potential [48]. (Indeed, the R^{2} model discussed above can be regarded as a prototype of this approach.) The chaotic approach was first proposed in the context of a simple power-law potential of the form $\mu^{4-\alpha} \phi^{\alpha}$, and the specific example of $\lambda \phi^{4}$ was studied in [48]. Such models make the following predictions for the slow-roll parameters ϵ and η :

$$
\begin{equation*}
\epsilon=\frac{1}{2}\left(\frac{\alpha}{\phi}\right)^{2}, \quad \eta=\frac{\alpha(\alpha-1)}{\phi^{2}} \tag{23.64}
\end{equation*}
$$

leading to the predictions

$$
\begin{equation*}
r \approx \frac{4 \alpha}{N_{*}}, \quad n_{s}-1 \approx-\frac{\alpha+2}{2 N_{*}} \tag{23.65}
\end{equation*}
$$

which are shown in Fig. 23.1 for some illustrative values of α. We note that the prediction of the original ϕ^{4} model lies out of the frame, with values of r that are too large and values of n_{s} that are too small. The ϕ^{3} model has similar problems, and would in any case require modification in order to have a well-defined minimum. The simplest possibility is ϕ^{2}, but this is now also disfavored by the data, at the 95% CL if only the Planck data are considered, and more strongly if other data are included, as seen in Fig. 23.1. (For non-minimal models of quadratic inflation that avoid this problem, see, e.g., [51].)
Indeed, as can be seen in Fig. 23.1, all single-field models with a convex potential (i.e., one curving upwards) are disfavored compared to models with a concave potential.

23.4.4 Hilltop Models

This preference for a concave potential motivates interest in 'hilltop' models [52], whose starting-point is a potential of the form

$$
\begin{equation*}
V(\phi)=\Lambda^{4}\left[1-\left(\frac{\phi}{\mu}\right)^{p}+\ldots\right] \tag{23.66}
\end{equation*}
$$

where the ... represent extra terms that yield a positive semidefinite potential. To first order in the slow-roll parameters, when $x \equiv \phi / \mu$ is small, one has
$n_{s} \simeq 1-p(p-1) \mu^{-2} \frac{x^{p-2}}{\left(1-x^{p}\right)}-\frac{3}{8} r, \quad r \simeq 8 p^{2} \mu^{-2} \frac{x^{2 p-2}}{\left(1-x^{p}\right)^{2}}$.
(23.67)

As seen in Fig. 23.1, a hilltop model with $p=4$ can be compatible with the Planck and other measurements, if $\mu \gg M_{P}$.

23.4.5 D-Brane Inflation

Many scenarios for inflation involving extra dimensions have been proposed, e.g., the possibility that observable physics resides on a three-dimensional brane, and that there is an inflationary potential that depends on the distance between our brane and an antibrane, with a potential of the form [53]

$$
\begin{equation*}
V(\phi)=\Lambda^{4}\left[1-\left(\frac{\mu}{\phi}\right)^{p}+\ldots\right] \tag{23.68}
\end{equation*}
$$

In this scenario the effective potential vanishes in the limit $\phi \rightarrow \infty$, corresponding to complete separation between our brane and the antibrane. The predictions for n_{s} and r in this model can be obtained from (Eq. 23.67) by exchanging $p \leftrightarrow-p$, and are also consistent with the Planck and other data.

23.4.6 Natural Inflation

Also seen in Fig. 23.1 are the predictions of 'natural inflation' [54], in which one postulates a non-perturbative shift symmetry that suppresses quantum corrections, so that a hierarchically small scale of inflation, $H \ll M_{P}$, is technically natural. In the simplest models, there is a periodic potential of the form

$$
\begin{equation*}
V(\phi)=\Lambda^{4}\left[1+\cos \left(\frac{\phi}{f}\right)\right] \tag{23.69}
\end{equation*}
$$

where f is a dimensional parameter reminiscent of an axion decay constant (see the next subsection) [55], which must have a value $>M_{P}$. Natural inflation can yield predictions similar to quadratic inflation (which are no longer favored, as already discussed), but can also yield an effective convex potential. Thus, it may lead to values of r that are acceptably small, but for values of n_{s} that are in tension with the data, as seen in Fig. 23.1.

23.4.7 Axion Monodromy Models

The effective potentials in stringy models $[56,57]$ motivated by axion monodromy may be of the form

$$
\begin{equation*}
V(\phi)=\mu^{4-\alpha} \phi^{\alpha}+\Lambda^{4} e^{-C\left(\frac{\phi}{\phi_{0}}\right)^{p_{\Lambda}}} \cos \left[\gamma+\frac{\phi}{f}\left(\frac{\phi}{\phi_{0}}\right)^{p_{f}+1}\right] \tag{23.70}
\end{equation*}
$$

where μ, Λ, f and ϕ_{0} are parameters with the dimension of mass, and C, p, p_{Λ}, p_{f} and γ are dimensionless constants, generalizing the potential ([54]) in the simplest models of natural inflation. The oscillations in (Eq. 23.70) are associated with the axion field, and powers $p_{\Lambda}, p_{f} \neq 0$ may arise from ϕ-dependent evolutions of

Figure 23.3: The inflationary potential V in the R^{2} model (solid black line) compared with its form in various no-scale models discussed in detail in [50] (dashed coloured lines).
string moduli. Since the exponential prefactor in (Eq. 23.70) is due to non-perturbative effects that may be strongly suppressed, the oscillations may be unobservably small. Specific string models having ϕ^{α} with $\alpha=4 / 3,1$ or $2 / 3$ have been constructed in $[56,57]$, providing some motivation for the low-power models mentioned above.

As seen in Fig. 23.1, the simple axion monodromy models with the power $\alpha=4 / 3$ or 1 are no longer compatible with the current CMB data at the 95% CL, while $\alpha=2 / 3$ is only marginally compatible at 95% CL. The Planck Collaboration has also searched for characteristic effects associated with the second term in (Eq. (23.70)), such as a possible drift in the modulation amplitude (setting $p_{\Lambda}=C=0$), and a possible drifting frequency generated by $p_{f} \neq 0$, without finding any compelling evidence [38].

23.4.8 Higgs Inflation

Since the energy scale during inflation is commonly expected to lie between the Planck and TeV scales, it may serve as a useful bridge with contacts both to string theory or some other quantum theory of gravity, on the one side, and particle physics on the other side. However, as the above discussion shows, much of the activity in building models of inflation has been largely independent of specific connections with these subjects, though some examples of string-motivated models of inflation were mentioned above.

The most economical scenario for inflation might be to use as inflaton the only established scalar field, namely the Higgs field (see Chap.11, "Status of Higgs boson physics" review). A specific model assuming a non-minimal coupling of the Higgs field h to gravity was constructed in [58]. Its starting-point is the action

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}+\xi h^{2}}{2} R+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}\right] \tag{23.71}
\end{equation*}
$$

where v is the Higgs vacuum expectation value. The model requires $\xi \gg 1$, in which case it can be rewritten in the Einstein
frame as

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi-U(\chi)\right] \tag{23.72}
\end{equation*}
$$

where the effective potential for the canonically-normalized inflaton field χ has the form

$$
\begin{equation*}
U(\chi)=\frac{\lambda}{4 \xi^{2}}\left[1+\exp \left(-\frac{2 \chi}{\sqrt{6} M_{P}}\right)\right]^{-2} \tag{23.73}
\end{equation*}
$$

which is similar to the effective potential of the R^{2} model at large field values. As such, the model inflates successfully if $\xi \simeq 5 \times 10^{4} m_{h} /(\sqrt{2} v)$, with predictions for n_{s} and r that are indistinguishable from the predictions of the R^{2} model shown in Fig. 23.1.

This model is very appealing, but must confront several issues. One is to understand the value of ξ, and another is the possibility of unitarity violation. However, a more fundamental issue is whether the effective quartic Higgs coupling is positive at the scale of the Higgs field during inflation. Extrapolations of the effective potential in the Standard Model using the measured values of the masses of the Higgs boson and the top quark indicate that probably $\lambda<0$ at this scale [59], though there are still significant uncertainties associated with the appropriate input value of the top mass and the extrapolation to high renormalization scales.

23.4.9 Supersymmetric Models of Inflation

Supersymmetry [60] is widely considered to be a well-motivated possible extension of the Standard Model that might become apparent at the TeV scale. It is therefore natural to consider supersymmetric models of inflation. These were originally proposed because of the problems of the the new inflationary theory $[13,14]$ based on the one-loop (Coleman-Weinberg) potential for breaking $\mathrm{SU}(5)$. Several of these problems are related to the magnitude of the effective potential parameters: in any model of inflation based on an elementary scalar field, some parameter in the effective potential must be small in natural units, e.g., the quartic coupling
λ in a chaotic model with a quartic potential, or the mass parameter μ in a model of chaotic quadratic inflation. These parameters are renormalized multiplicatively in a supersymmetric theory, so that the quantum corrections to small values would be under control. Hence it was suggested that inflation cries out for supersymmetry [61], though non-supersymmetric resolutions of the problems of Coleman-Weinberg inflation are also possible: see, e.g., Ref. [62].

In the Standard Model there is only one scalar field that could be a candidate for the inflaton, namely the Higgs field discussed above, but even the minimal supersymmetric extension of the Standard Model (MSSM) contains many scalar fields. However, none of these is a promising candidate for the inflaton. The minimal extension of the MSSM that may contain a suitable candidate is the supersymmetric version of the minimal seesaw model of neutrino masses, which contains the three supersymmetric partners of the heavy singlet (right-handed) neutrinos. One of these singlet sneutrinos $\tilde{\nu}$ could be the inflaton [63]: it would have a quadratic potential, the mass coefficient required would be $\sim 10^{13} \mathrm{GeV}$, very much in the expected ball-park for singlet (right-handed) neutrino masses, and sneutrino inflaton decays also could give rise to the cosmological baryon asymmetry via leptogenesis. However, as seen in Fig. 23.1 and already discussed, a purely quadratic inflationary potential is no longer favored by the data. This difficulty could in principle be resolved in models with multiple sneutrinos [64], or by postulating a trilinear sneutrino coupling and hence a superpotential of Wess-Zumino type [65], which can yield successful inflation with predictions intermediate between those of natural inflation and hilltop inflation in Fig. 23.1.

Finally, we note that it is also possible to obtain inflation via supersymmetry breaking, as in the model [66] whose predictions are illustrated in Fig. 23.1.

23.4.10 Supergravity Models

Any model of early-Universe cosmology, and specifically inflation, must necessarily incorporate gravity. In the context of supersymmetry this requires an embedding in some supergravity theory $[67,68]$. An $\mathcal{N}=1$ supergravity theory is specified by three functions: a Hermitian function of the matter scalar fields ϕ^{i}, called the Kähler potential K, that describes its geometry, a holomorphic function of the superfields, called the superpotential W, which describes their interactions, and another holomorphic function $f_{\alpha \beta}$, which describes their couplings to gauge fields V_{α} [69].

The simplest possibility is that the Kähler metric is flat:

$$
\begin{equation*}
K=\phi^{i} \phi_{i}^{*}, \tag{23.74}
\end{equation*}
$$

where the sum is over all scalar fields in the theory, and the simplest inflationary model in minimal supergravity had the superpotential [70]

$$
\begin{equation*}
W=m^{2}(1-\phi)^{2} \tag{23.75}
\end{equation*}
$$

Where ϕ is the inflaton. However, this model predicts a tilted scalar perturbation spectrum, $n_{s}=0.933$, which is now in serious disagreement with the data from Planck and other experiments shown in Fig. 23.1.

Moreover, there is a general problem that arises in any supergravity theory coupled to matter, namely that, since its effective scalar potential contains a factor of e^{K}, scalars typically receive squared masses $\propto H^{2} \sim V$, where H is the Hubble parameter [71], an issue called the ' η problem'. The theory given by (Eq. (23.75)) avoids this η problem, but a generic supergravity inflationary model encounters this problem of a large inflaton mass. Moreover, there are additional challenges for supergravity inflation associated with the spontaneous breaking of local supersymmetry [72-74].

Various approaches to the η problem in supergravity have been proposed, including the possibility of a shift symmetry [75], and one possibility that has attracted renewed attention recently is no-scale supergravity [76,77]. This is a form of supergravity with a Kähler potential that can be written in the form [78]

$$
\begin{equation*}
K=-3 \ln \left(T+T^{*}-\frac{\sum_{i}\left|\phi^{i}\right|^{2}}{3}\right) \tag{23.76}
\end{equation*}
$$

which has the special property that it naturally has a flat potential, at the classical level and before specifying a non-trivial superpotential. As such, no-scale supergravity is well-suited for constructing models of inflation. Adding to its attraction is the feature that compactifications of string theory to supersymmetric four-dimensional models yield effective supergravity theories of the no-scale type [79]. There are many examples of superpotentials that yield effective inflationary potentials for either the T field (which is akin to a modulus field in some string compactification) or a ϕ field (generically representing matter) that are of the same form as the effective potential of the R^{2} model (Eq. (23.62)) when the magnitude of the inflaton field $\gg 1$ in Planck units, as required to obtain sufficiently many e-folds of inflation, $N_{*}[80,81]$. This framework also offers the possibility of using a suitable superpotential to construct models with effective potentials that are similar, but not identical, to the R^{2} model, as shown by the dashed coloured lines in Fig. 23.3.

23.4.11 Other Exponential Potential Models

This framework also offers the possibility [80] of constructing models in which the asymptotic constant value of the potential at large inflaton field values is approached via a different exponentially-suppressed term:

$$
\begin{equation*}
V(\phi)=A\left[1-\delta e^{-B \phi}+\mathcal{O}\left(e^{-2 B \phi}\right)\right] \tag{23.77}
\end{equation*}
$$

where the magnitude of the scalar density perturbations fixes A, but δ and B are regarded as free parameters. In the case of R^{2} inflation $\delta=2$ and $B=\sqrt{2 / 3}$. In a model such as (Eq. (23.77)), one finds at leading order in the small quantity $e^{-B \phi}$ that

$$
\begin{align*}
n_{s} & =1-2 B^{2} \delta e^{-B \phi}, \\
r & =8 B^{2} \delta^{2} e^{-2 B \phi}, \\
N_{*} & =\frac{1}{B^{2} \delta} e^{+B \phi} \tag{23.78}
\end{align*}
$$

yielding the relations

$$
\begin{equation*}
n_{s}=1-\frac{2}{N_{*}}, r=\frac{8}{B^{2} N_{*}^{2}} \tag{23.79}
\end{equation*}
$$

This model leads to the class of predictions labelled by ' α attractors' [82] in Fig. 23.1. There are generalizations of the simplest no-scale model (Eq. (23.76)) with prefactors before the $\ln (\ldots)$ that are 1 or 2 , leading to larger values of $B=\sqrt{2}$ or 1 , respectively, and hence smaller values of r than in the R^{2} model.

23.5 Model Comparison

Given a particular inflationary model, one can obtain constraints on the model parameters, informed by the likelihood, corresponding to the probability of the data given a particular choice of parameters (see Sec. 40, "Statistics" review). In the light of the detailed constraints on the statistical distribution of primordial perturbations now inferred from high-precision observations of the cosmic microwave background, it is also possible to make quantitative comparison of the statistical evidence for or against different inflationary models. This can be done either by comparing the logarithm of the maximum likelihood that can be obtained for the data using each model, i.e., the minimum χ^{2} (with some correction for the number of free parameters in each model), or by a Bayesian model comparison [83] (see also Sec. 40.3.3 in "Statistics" review).

In such a Bayesian model comparison one computes [7] the evidence, $\mathcal{E}\left(\mathcal{D} \mid \mathcal{M}_{A}\right)$ for a model, \mathcal{M}_{A}, given the data \mathcal{D}. This corresponds to the likelihood, $\mathcal{L}\left(\theta_{A j}\right)=p\left(\mathcal{D} \mid \theta_{A j}, \mathcal{M}_{A}\right)$, integrated over the assumed prior distribution, $\pi\left(\theta_{A j} \mid \mathcal{M}_{A}\right)$, for all the model parameters $\theta_{A j}$:

$$
\begin{equation*}
\mathcal{E}\left(\mathcal{D} \mid \mathcal{M}_{A}\right)=\int \mathcal{L}\left(\theta_{A j}\right) \pi\left(\theta_{A j} \mid \mathcal{M}_{A}\right) d \theta_{A j} \tag{23.80}
\end{equation*}
$$

The posterior probability of the model given the data follows from Bayes' theorem

$$
\begin{equation*}
p\left(\mathcal{M}_{A} \mid \mathcal{D}\right)=\frac{\mathcal{E}\left(\mathcal{D} \mid \mathcal{M}_{A}\right) \pi\left(\mathcal{M}_{A}\right)}{p(\mathcal{D})} \tag{23.81}
\end{equation*}
$$

Figure 23.4: The Bayes factors calculated in [84] for a large sample of inflationary models using Planck 2015 data [85]. Those highlighted in yellow are featured in this review, according to the numbers listed in the text.
where the prior probability of the model is given by $\pi\left(\mathcal{M}_{A}\right)$. Assuming that all models are equally likely a priori, $\pi\left(\mathcal{M}_{A}\right)=$ $\pi\left(\mathcal{M}_{B}\right)$, the relative probability of model A relative to a reference model, in the light of the data, is thus given by the Bayes factor

$$
\begin{equation*}
B_{A, \text { ref }}=\frac{\mathcal{E}\left(\mathcal{D} \mid \mathcal{M}_{A}\right)}{\mathcal{E}\left(\mathcal{D} \mid \mathcal{M}_{r e f}\right)} \tag{23.82}
\end{equation*}
$$

Computation of the multi-dimensional integral (Eq. (23.80)) is a challenging numerical task. Even using an efficient sampling algorithm requires hundreds of thousands of likelihood computations for each model, though slow-roll approximations can be used to calculate rapidly the primordial power spectrum using the APSIC numerical library [7] for a large number of single-field, slow-roll inflation models.

The change in χ^{2} for selected slow-roll models relative to the Starobinsky R^{2} inflationary model, used as a reference, is given in Table 23.1 (taken from [38]). All the other inflation models require a substantial amplitude of tensor modes, and so have an increased χ^{2} with respect to the Starobinsky and other models with a scalar tilt but small tensor modes. Table 23.1 also shows the Bayesian evidence for $\left(\ln B_{A, \text { ref }}>0\right)$ or against $\left(\ln B_{A, \text { ref }}<0\right)$ a selection of inflation models using the Planck analysis priors [38]. The Starobinsky R^{2} inflationary model may be chosen as a reference [38] that provides a good fit to current data. Higgs inflation [58] is indistinguishable using current data, making the model comparison "inconclusive" on the Jeffrey's scale ($\left|\ln B_{A, r e f}\right|<1$). (Recall, though, that this model is disfavored by the measured values of the Higgs and top quark masses [59].) We note that although α-attractor models can provide a good fit to the data, they are disfavored relative to the Starobinsky model due to their larger prior volume. There is now strong evidence
$\left(\left|\ln B_{A, r e f}\right|>5\right)$ against large-field models such as chaotic inflation with a quadratic or a quartic potential. Indeed, over 30% of the slow-roll inflation models considered in Ref. [7] are strongly disfavored by the Planck data.

Table 23.1: Observational evidence for and against selected inflation models: $\Delta \chi^{2}$ and the Bayes factors are calculated relative to the Starobinsky R^{2} inflationary model, which is treated as a reference. Results from Planck 2018 analysis [38].

Model	$\Delta \chi^{2}$	$\ln B_{A, r e f}$
R^{2} inflation	0	0
Power-law potential $\phi^{2 / 3}$	+4.0	-4.6
Power-law potential ϕ^{2}	+21.6	<-10
Power-law potential ϕ^{4}	+75.3	<-10
Natural inflation	+9.9	-6.6
Hilltop quartic model	-0.3	-1.4

The Bayes factors for a wide selection of slow-roll inflationary models are displayed in Fig. 23.4, which is adapted from Fig. 3 in [84], where more complete descriptions of the models and the calculations of the Bayes factors using Planck 2015 data [85] are given. Models discussed in this review are highlighted in yellow, and numbered as follows: (1) R^{2} inflation (Sec. 23.4.2) and models with similar predictions, such as Higgs inflation (Sec. 23.4.8) and no-scale supergravity inflation (Sec. 23.4.10); chaotic inflation models (2) with a ϕ^{2} potential; (3) with a ϕ^{4} potential; (4) with a $\phi^{2 / 3}$ potential, and (5) with a ϕ^{p} potential marginalising over $p \in[0.2,6]$ (Sec. 23.4.3); hilltop inflation models (6) with $p=2$;
(7) with $p=4$ and (8) marginalising over p (Sec. 23.4.4); (9) brane inflation (Sec. 23.4.5); (10) natural inflation (Sec. 23.4.6); (11) exponential potential models such as α-attractors (Sec. 23.4.11). As seen in Fig. 23.4 and discussed in the next Section, constraints on reheating are starting to provide additional information about models of inflation.

23.6 Constraints on Reheating

One connection between inflation and particle physics is provided by inflaton decay, whose products are expected to have thermalized subsequently. As seen in (Eq. (23.54)), the number of e-folds required during inflation depends on details of this reheating process, including the matter density upon reheating, denoted by $\rho_{t h}$, which depends in turn on the inflaton decay rate Γ_{ϕ}. We see in Fig. 23.1 that, within any specific inflationary model, both n_{s} and particularly r are sensitive to the value of N_{*}. In particular, the one- σ uncertainty in the experimental measurement of n_{s} is comparable to the variation in many model predictions for $N_{*} \in[50,60]$. This implies that the data start to constrain scenarios for inflaton decay in many models. For example, it is clear from Fig. 23.1 that $N_{*}=60$ would be preferred over $N_{*}=50$ in a chaotic inflationary model with a quadratic potential.

As a specific example, let us consider R^{2} models and related models such as Higgs and no-scale inflation models that predict small values of r [86]. As seen in Fig. 23.1, within these models the combination of Planck, BICEP2/Keck Array and BAO data would require a limited range of n_{s}, corresponding to a limited range of N_{*}, as seen by comparing the left and right vertical axes in Fig. 23.5:

$$
\begin{equation*}
N_{*} \gtrsim 52 \quad(68 \% \mathrm{CL}), \quad N_{*} \gtrsim 44 \quad(95 \% \mathrm{CL}) . \tag{23.83}
\end{equation*}
$$

Within any specific model for inflaton decay, these bounds can be translated into constraints on the effective decay coupling. For example, if one postulates a two-body inflaton decay coupling y, the bounds (Eq. (23.83)) can be translated into bounds on y. This is illustrated in Fig. 23.5, where any value of N_{*} (on the left vertical axis), projected onto the diagonal line representing the correlation predicted in R^{2}-like models, corresponds to a specific value of the inflaton decay rate Γ_{ϕ} / m (lower horizontal axis) and hence y (upper horizontal axis):

$$
\begin{equation*}
y \gtrsim 10^{-5} \quad(68 \% \mathrm{CL}), \quad y \gtrsim 10^{-15} \quad(95 \% \mathrm{CL}) \tag{23.84}
\end{equation*}
$$

These bounds are not very constraining - although the 68% CL lower bound on y is already comparable with the electron Yukawa coupling - but can be expected to improve significantly in the coming years and thereby provide significant information on the connections between inflation and particle physics.

23.7 Beyond Single-Field Slow-Roll Inflation
 There are numerous possible scenarios beyond the simplest

 single-field models of slow-roll inflation. These include theories in which non-canonical fields are considered, such as k-inflation [87] or DBI inflation [88], and multiple-field models, such as the curvaton scenario [89]. As well as altering the single-field predictions for the primordial curvature power spectrum (Eq. (23.48)) and the tensor-scalar ratio (Eq. (23.49)), they may introduce new quantities that vanish in single-field slow-roll models, such as isocurvature matter perturbations, corresponding to entropy fluctuations in the photon-to-matter ratio, at first order:$$
\begin{equation*}
S_{m}=\frac{\delta n_{m}}{n_{m}}-\frac{\delta n_{\gamma}}{n_{\gamma}}=\frac{\delta \rho_{m}}{\rho_{m}}-\frac{3}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} \tag{23.85}
\end{equation*}
$$

Another possibility is non-Gaussianity in the distribution of the primordial curvature perturbation (see Chap. 29, "Cosmic Microwave Background" review), encoded in higher-order correlators such as the primordial bispectrum [90]

$$
\begin{equation*}
\left\langle\zeta(\mathbf{k}) \zeta\left(\mathbf{k}^{\prime}\right) \zeta\left(\mathbf{k}^{\prime \prime}\right)\right\rangle \equiv(2 \pi)^{3} \delta\left(\mathbf{k}+\mathbf{k}^{\prime}+\mathbf{k}^{\prime \prime}\right) B_{\zeta}\left(k, k^{\prime}, k^{\prime \prime}\right) \tag{23.86}
\end{equation*}
$$

which is often expressed in terms of a dimensionless non-linearity parameter

$$
f_{N L} \propto B_{\zeta}\left(k, k^{\prime}, k^{\prime \prime}\right) / P_{\zeta}(k) P_{\zeta}\left(k^{\prime}\right)
$$

The three-point function (Eq. (23.86)) can be thought of as defined on a triangle whose sides are $\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}$, of which only two are independent, since they sum to zero. Further assuming statistical isotropy ensures that the bispectrum depends only on the magnitudes of the three vectors, k, k^{\prime} and $k^{\prime \prime}$. The search for $f_{N L}$ and other non-Gaussian effects was a prime objective of the Planck data analysis [91, 92].

23.7.1 Effective Field Theory of Inflation

Since slow-roll inflation is a phase of accelerated expansion with an almost constant Hubble parameter, one may think of inflation in terms of an effective theory where the de Sitter spacetime symmetry is spontaneously broken down to RW symmetry by the time-evolution of the Hubble rate, $\dot{H} \neq 0$. There is then a Goldstone boson, π, associated with the spontaneous breaking of time-translation invariance, which can be used to study model-independent properties of inflation. The Goldstone boson describes a spacetime-dependent shift of the time coordinate, corresponding to an adiabatic perturbation of the matter fields:

$$
\begin{equation*}
\delta \phi_{i}(t, \vec{x})=\phi_{i}(t+\pi(t, \vec{x}))-\phi_{i}(t) \tag{23.87}
\end{equation*}
$$

Thus adiabatic field fluctuations can be absorbed into the spatial metric perturbation, \mathcal{R} in Eq. (23.28) at first order, in the comoving gauge:

$$
\begin{equation*}
\mathcal{R}=-H \pi \tag{23.88}
\end{equation*}
$$

where we define π on spatially-flat hypersurfaces. In terms of inflaton field fluctuations, we can identify $\pi \equiv \delta \phi / \dot{\phi}$, but in principle this analysis is not restricted to inflation driven by scalar fields.

The low-energy effective action for π can be obtained by writing down the most general Lorentz-invariant action and expanding in terms of π. The second-order effective action for the free-field wave modes, π_{k}, to leading order in slow roll is then

$$
\begin{equation*}
S_{\pi}^{(2)}=-\int d^{4} x \sqrt{-g} \frac{M_{P}^{2} \dot{H}}{c_{s}^{2}}\left[\dot{\pi}_{k}^{2}-\frac{c_{s}^{2}}{R^{2}}(\nabla \pi)^{2}\right], \tag{23.89}
\end{equation*}
$$

where ϵ_{H} is the Hubble slow-roll parameter (Eq. (23.11)). We identify c_{s}^{2} with an effective sound speed, generalising canonical slow-roll inflation, which is recovered in the limit $c_{s}^{2} \rightarrow 1$.
The scalar power spectrum on super-Hubble scales (Eq. (23.48)) is enhanced for a reduced sound speed, leading to a reduced tensor-scalar ratio (Eq. (23.49))

$$
\begin{equation*}
\mathcal{P}_{\zeta}(k) \simeq \frac{4 \pi}{M_{P}^{2}} \frac{1}{c_{s}^{2} \epsilon}\left(\frac{H}{2 \pi}\right)_{*}^{2}, \quad r \simeq 16\left(c_{s}^{2} \epsilon\right)_{*} \tag{23.90}
\end{equation*}
$$

At third perturbative order and to lowest order in derivatives, one obtains [94]

$$
\begin{equation*}
S_{\pi}^{(3)}=\int d^{4} x \sqrt{-g} \frac{M_{P}^{2}\left(1-c_{s}^{2}\right) \dot{H}}{c_{s}^{2}}\left[\frac{\dot{\pi}(\nabla \pi)^{2}}{R^{2}}-\left(1+\frac{2}{3} \frac{\tilde{c}_{3}}{c_{s}^{2}}\right) \dot{\pi}^{3}\right] \tag{23.91}
\end{equation*}
$$

Note that this expression vanishes for canonical fields with $c_{s}^{2}=1$. For $c_{s}^{2} \neq 1$ the cubic action is determined by the sound speed and an additional parameter \tilde{c}_{3}. Both terms in the cubic action give rise to primordial bispectra that are well approximated by equilateral bispectra. However, the shapes are not identical, so one can find a linear combination for which the equilateral bispectra of each term cancel, giving rise to a distinctive orthogonal-type bispectrum [94].

Analysis based on Planck 2018 temperature and polarization data has placed bounds on several bispectrum shapes including equilateral and orthogonal shapes [92]:

$$
f_{N L}^{\text {equil }}=-26 \pm 47, \quad f_{N L}^{\text {orthog }}=-38 \pm 24 \quad(68 \% \mathrm{CL})
$$

(23.92)

For the simplest case of a constant sound speed, and marginalising over \tilde{c}_{3}, this provides a bound on the inflaton sound speed [92]

$$
\begin{equation*}
c_{s} \geq 0.021 \quad(95 \% \mathrm{CL}) \tag{23.93}
\end{equation*}
$$

For a specific model such as DBI inflation [88], corresponding to $\tilde{c}_{3}=3\left(1-c_{s}^{2}\right) / 2$, one obtains a tighter bound [92]:

$$
\begin{equation*}
c_{s}^{D B I} \geq 0.086 \quad(95 \% \mathrm{CL}) \tag{23.94}
\end{equation*}
$$

Figure 23.5: The values of N_{*} (left axis) and n_{s} (right axis) in R^{2} inflation and related models for a wide range of decay rates, Γ_{ϕ} / m, (bottom axis) and corresponding two-body couplings, y (top axis). The diagonal red line segment shows full numerical results over a restricted range of Γ_{ϕ} / m (which are shown in more detail in the insert), while the diagonal blue strip represents an analytical approximation described in [86]. The difference between these results is indistinguishable in the main plot, but is visible in the insert. The horizontal yellow and blue lines show the 68 and 95% CL lower limits from the Planck 2015 data [85], and the vertical coloured lines correspond to specific models of inflaton decay. Figure taken from [93].

The Planck team have analysed a wide range of non-Gaussian templates from different inflation models, including tests for deviations from an initial Bunch-Davies vacuum state, directiondependent non-Gaussianity, and feature models with oscillatory bispectra [92]. No individual feature or resonance is above the three- σ significance level after accounting for the look-elsewhere effect. These results are consistent with the simplest canonical, slow-roll inflation models, but do not rule out most alternative models; rather, bounds on primordial non-Gaussianity place important constraints on the parameter space for non-canonical models.

23.7.2 Multi-Field Fluctuations

There is a very large literature on two- and multi-field models of inflation, most of which lies beyond the scope of this review [95, 96]. However, two important general topics merit being mentioned here, namely residual isocurvature perturbations and the possibility of non-Gaussian effects in the primordial perturbations.

One might expect that other scalar fields besides the inflaton might have non-negligible values that evolve and fluctuate in parallel with the inflaton, without necessarily making the dominant contribution to the energy density during the inflationary epoch. However, the energy density in such a field might persist beyond the end of inflation before decaying, at which point it might come to dominate (or at least make a non-negligible contribution to) the total energy density. In such a case, its perturbations could end up generating the density perturbations detected in the CMB.

This could occur due to a late-decaying scalar field [89] or a field fluctuation that modulates the end of inflation [97] or the inflaton decay [98].

23.7.2.1 Isocurvature Perturbations

Primordial perturbations arising in single-field slow-roll inflation are necessarily adiabatic, i.e., they affect the overall density without changing the ratios of different contributions, such as the photon-matter ratio, $\delta\left(n_{\gamma} / n_{m}\right) /\left(n_{\gamma} / n_{m}\right)$. This is because inflaton perturbations represent a local shift of the time, as described in section Sec. 23.7.1:

$$
\begin{equation*}
\pi=\frac{\delta n_{\gamma}}{\dot{n}_{\gamma}}=\frac{\delta n_{m}}{\dot{n}_{m}} \tag{23.95}
\end{equation*}
$$

However, any light scalar field (i.e., one with effective mass less than the Hubble scale) acquires a spectrum of nearly scaleinvariant perturbations during inflation. Fluctuations orthogonal to the inflaton in field space are decoupled from the inflaton at Hubble-exit, but can affect the subsequent evolution of the density perturbation. In particular, they can give rise to local variations in the equation of state (non-adabatic pressure perturbations) that can alter the primordial curvature perturbation ζ on super-Hubble scales. Since these fluctuations are statistically independent of the inflaton perturbations at leading order in slow-roll [96], non-adiabatic field fluctuations can only increase the scalar power spectrum with respect to adiabatic perturbations at Hubble exit, while leaving the tensor modes unaffected at first perturbative order. Thus the single-field result for the
tensor-scalar ratio (Eq. (23.49)) becomes an inequality [99]

$$
\begin{equation*}
r \leq 16 \epsilon_{*} \tag{23.96}
\end{equation*}
$$

Hence an observational upper bound on the tensor-scalar ratio does not bound the slow-roll parameter ϵ in multi-field models.

If all the scalar fields present during inflation eventually decay completely into fully thermalized radiation, these field fluctuations are converted fully into adiabatic perturbations in the primordial plasma [100]. On the other hand, non-adiabatic field fluctuations can also leave behind primordial isocurvature perturbations (Eq. (23.85)) after inflation. In multi-field inflation models it is thus possible for non-adiabatic field fluctuations to generate both curvature and isocurvature perturbations leading to correlated primordial perturbations [101].

The amplitudes of any primordial isocurvature perturbations (Eq. (23.85)) are strongly constrained by the current CMB data, especially on large angular scales. Using temperature and lowℓ polarization data yields the following bound on the amplitude of cold dark matter isocurvature perturbations at scale $k=0.002 h^{-1} \mathrm{Mpc}^{-1}$ (marginalising over the correlation angle and in the absence of primordial tensor perturbations) [38]:

$$
\begin{equation*}
\frac{\mathcal{P}_{S_{m}}}{\mathcal{P}_{\zeta}+\mathcal{P}_{S_{m}}}<0.025(95 \% \mathrm{CL}) \tag{23.97}
\end{equation*}
$$

For fully (anti-)correlated isocurvature perturbations, corresponding to a single isocurvature field providing a source for both the curvature and residual isocurvature perturbations, the bounds become significantly tighter [38]:

$$
\begin{gather*}
\frac{\mathcal{P}_{S_{m}}}{\mathcal{P}_{\zeta}+\mathcal{P}_{S_{m}}}<0.0002(95 \% \mathrm{CL}), \text { correlated } \tag{23.98}\\
\frac{\mathcal{P}_{S_{m}}}{\mathcal{P}_{\zeta}+\mathcal{P}_{S_{m}}}<0.003(95 \% \mathrm{CL}), \text { anti-correlated } \tag{23.99}
\end{gather*}
$$

23.7.2.2 Local-Type Non-Gaussianity

Since non-adiabatic field fluctuations in multi-field inflation may lead the to evolution of the primordial curvature perturbation at all orders, it becomes possible to generate significant non-Gaussianity in the primordial curvature perturbation. Nonlinear evolution on super-Hubble scales leads to local-type nonGaussianity, where the local integrated expansion is a non-linear function of the local field values during inflation, $N\left(\phi_{i}\right)$. While the field fluctuations at Hubble exit, $\delta \phi_{i *}$, are Gaussian in the slow-roll limit, the curvature perturbation, $\zeta=\delta N$, becomes a non-Gaussian distribution [102]:

$$
\begin{equation*}
\zeta=\sum_{i} \frac{\partial N}{\partial \phi_{i}} \delta \phi_{i}+\frac{1}{2} \sum_{i, j} \frac{\partial^{2} N}{\partial \phi_{i} \partial \phi_{j}} \delta \phi_{i} \delta \phi_{j}+\ldots \tag{23.100}
\end{equation*}
$$

with non-vanishing bispectrum in the squeezed limit $\left(k_{1} \approx k_{2} \gg\right.$ k_{3}):

$$
\begin{equation*}
B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx \frac{12}{5} f_{N L}^{l o c a l} \frac{\mathcal{P}_{\zeta}\left(k_{1}\right)}{4 \pi k_{1}^{3}} \frac{\mathcal{P}_{\zeta}\left(k_{3}\right)}{4 \pi k_{3}^{3}} \tag{23.101}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{6}{5} f_{N L}^{l o c a l}=\frac{\sum_{i, j} \frac{\partial^{2} N}{\partial \phi_{i} \partial \phi_{j}}}{\left(\sum_{i} \frac{\partial N}{\partial \phi_{i}}\right)^{2}} \tag{23.102}
\end{equation*}
$$

Both equilateral and orthogonal bispectra, discussed above in the context of generalised single field inflation, vanish in the squeezed limit, enabling the three types of non-Gaussianity to be distinguished by observations, in principle.

Non-Gaussianity during multi-field inflation is highly model dependent, though $f_{N L}^{l o c a l}$ can often be smaller than unity in multifield slow-roll inflation [103]. Scenarios where a second light field plays a role during or after inflation can make distinctive predictions for $f_{N L}^{l o c a l}$, such as $f_{N L}^{l o c a l}=-5 / 4$ in some curvaton scenarios $[102,104]$ or $f_{N L}^{\text {local }}=5$ in simple modulated reheating scenarios $[98,105]$. By contrast the constancy of ζ on super-Hubble
scales in single-field slow-roll inflation leads to a very small nonGaussianity $[106,107]$, and in the squeezed limit we have the simple result $f_{N L}^{l o c a l}=5\left(1-n_{S}\right) / 12[108,109]$.

A combined analysis of the Planck 2018 temperature and polarization data [92] yields the following range for $f_{N L}^{l o c a l}$ defined in (Eq. (23.102)):

$$
\begin{equation*}
f_{N L}^{l o c a l}=-1 \pm 5 \quad(68 \% \mathrm{CL}) \tag{23.103}
\end{equation*}
$$

This sensitivity is sufficient to rule out parameter regimes giving rise to relatively large non-Gaussianity, but insufficient to probe $f_{N L}^{l o c a l}=\mathcal{O}(\epsilon)$, as expected in single-field models, or the range $f_{N L}^{l o c a l}=\mathcal{O}(1)$ found in the simplest two-field models.

Local-type primordial non-Gaussianity can also give rise to a striking scale-dependent bias in the distribution of collapsed dark matter halos and thus the galaxy distribution $[110,111]$. However, bounds from high-redshift galaxy surveys are not yet competitive with the best CMB constraints.

23.8 Initial Conditions and Fine-tuning

This review is based on the assumption that the inflationary paradigm is valid. However, it remains the object of many criticisms (see, e.g., [112]), many of them related to the perceived unnaturalness of the required initial conditions.

Most work on inflation is done in the context of RW cosmology, which assumes a high degree of symmetry, or small inhomogeneous perturbations (usually first order) about an RW cosmology. The isotropic RW space-time is an attractor for many homogeneous but anisotropic cosmologies in the presence of a false vacuum energy density [113], or a scalar field with suitable selfinteraction potential energy $[114,115]$. However it is much harder to establish the range of highly inhomogeneous initial conditions that yield a successful RW Universe, with only limited studies initially (see, e.g., $[116,117]$). A related open question is the general nature of the pre-inflationary state of the inflaton and other fields that could have provided initial conditions suitable for inflation [112]. They would need to have satisfied non-trivial homogeneity and isotropy conditions, and one may ask how these could have arisen, whether these are plausible, and whether there may be some observable signature of the pre-inflationary state. These and other criticisms of inflation were addressed in [118], which presented studies of the sensitivity of inflation to the initial conditions. Complementing the studies reported in [118], there have been numerical relativity investigations of highly inhomogeneous initial conditions [119-121]. The general conclusion is that inflation is rather robust with respect to inhomogeneities in the initial conditions in both the scalar field profile and the extrinsic curvature, including large tensor perturbations.

To quantify the fine-tuning of initial conditions requires a measure in the space of possible cosmologies [122], however it has been argued that some of the measures historically used to frame this problem are formally invalid [123]. It is sometimes also objected that inflationary models predict the existence of a multiverse, and potentially a loss of predictive power [124], if it undergoes the process termed eternal inflation [125-127]. However, whether this is actually a bug or a feature remains a topic of debate $[128,129]$. The existence of the multiverse is a purely philosophical problem, unless it has observable consequences, e.g., in the CMB.

One might expect signatures of any pre-inflationary state to appear at large angular scales, i.e., low multipoles ℓ. Indeed, various anomalies have been noted in the large-scale CMB anisotropies, as also discussed in Chap. 29, the "Cosmic Microwave Background" review, including a possible suppression of the quadrupole and other very large-scale anisotropies, an apparent feature in the range $\ell \approx 20$ to 30 , and a possible hemispheric asymmetry. However, none of these are highly significant statistically, in view of the limitations due to cosmic variance [85]. They cannot yet be regarded as signatures of initial conditions, the multiverse or some pre-inflationary dynamics, such as might emerge from string theory.

A different kind of initial condition problem, called the transPlanckian problem [130], is that the perturbations now seen in the CMB would have had wavelengths shorter than the Planck length at the onset of inflation. However, under quite general and
conservative assumptions the usual inflationary predictions would be quite robust [131], with the possibility of $\mathcal{O}\left(\left(H / m_{P}\right)^{n}\right)$ corrections that might have interesting signatures in the CMB [132].

When inflation was first proposed [1] [2] there was no evidence for the existence of scalar fields or the accelerated expansion of the universe. The situation has changed dramatically in recent years with the observational evidence that the cosmic expansion is currently accelerating and with the discovery of a scalar particle, namely the Higgs boson (see Chap. 11, "Status of Higgs boson physics" review). Combined with the lack of any widely accepted alternative model for the origin of cosmic structure, these discoveries have lent support to the idea of a primordial accelerated expansion driven by a scalar field, i.e., cosmological inflation. In parallel, successive CMB experiments have been consistent with generic predictions of inflationary models, although without yet providing irrefutable evidence. It was concluded in [118] that the inflationary paradigm is not currently in trouble. However, we note that inflation via a formally elementary scalar inflaton should probably only be regarded as an effective field theory valid at energy densities hierarchically smaller than the Planck scale. It should eventually be embedded in a suitable ultraviolet completion, on which inflationary dynamics may be our clearest window.

23.9 Future Probes of Inflation

Prospective future CMB experiments, both ground- and spacebased are reviewed in the separate PDG "Cosmic Microwave Background" review, Chap. 29. The main emphasis in CMB experiments in the coming years will be on ground-based experiments providing improved measurements of B-mode polarization and greater sensitivity to the tensor-to-scalar ratio r, and more precise measurements at higher ℓ that will constrain n_{s} better. As is apparent from Fig. 23.1 and the discussion of models such as R^{2} inflation, there is a strong incentive to reach a $5-\sigma$ sensitivity to $r \sim 3$ to 4×10^{-3}. This could be achieved with a moderately-sized space mission with large sky coverage [133], improvements in delensing and foreground measurements. The discussion in Sec. 23.3 (see also Fig. 23.5), also brought out the importance of reducing the uncertainty in n_{s}, as a way to constrain post-inflationary reheating and the connection to particle physics. CMB temperature anisotropies probe primordial density perturbations down to comoving scales of order 50 Mpc , beyond which scale secondary sources of anisotropy dominate. CMB spectral distortions could potentially constrain the amplitude and shape of primordial density perturbations on comoving scales from Mpc to kpc due to distortions caused by the Silk damping of pressure waves in the radiation dominated era, before the last scattering of the CMB photons but after the plasma can be fully thermalised [134].

Improved sensitivity to non-Gaussianities is also a priority. In addition to CMB measurements, future large-scale structure surveys will also have roles to play as probes into models of inflation, for which there are excellent prospects. High-redshift galaxy surveys are sensitive to local-type non-Gaussianity due to the scaledependent bias induced on large scales. Current surveys such as eBOSS, probing out to redshift $z \sim 2$, can reach a precision $\Delta f_{N L} \sim 15$, from measurements of the galaxy power spectrum, or possibly $\Delta f_{N L} \sim 10$, if the galaxy bias can be determined independently [135]. Upcoming surveys such as DESI may reach $\Delta f_{N L} \sim 4$ [136] comparable with the Planck sensitivity. In the future, radio surveys such as SKA will measure large-scale structure out to redshift $z \sim 3$ [137], initially through mapping the intensity of the neutral hydrogen 21-cm line, and eventually through radio galaxy surveys which will probe local-type non-Gaussianity to $f_{N L} \sim 1$.

Galaxy clustering using DESI and Euclid satellite data could also constrain the running of the scalar tilt to a precision of $\Delta \alpha_{s} \approx$ 0.0028 , a factor of 2 improvement on Planck constraints, or a precision of 0.0016 using LSST data [136].
As an example of a proposed future satellite mission, SPHEREx [138] will use measurements of the galaxy power spectrum to target a measurement of the running of the scalar spectral index with a sensitivity $\Delta \alpha_{s} \sim 10^{-3}$ and local-type primordial non-Gaussianity, $\Delta f_{N L} \sim 1$. Including information from the galaxy bispectrum one might reduce the measurement error on non-Gaussianity to $\Delta f_{N L} \sim 0.2$, making it possible to distin-
guish between single-field slow-roll models and alternatives such as the curvaton scenario for the origin of structure, which generate $f_{N L} \sim 1$.

Acknowledgements

The authors are grateful to Vincent Vennin for his careful reading of this manuscript and preparing Fig. 23.4 for this review. The work of J.E. was supported in part by the UK STFC via the research grant ST/L000258/1 and in part by the Estonian Research Council via a Mobilitas Pluss grant. The work of D.W. was supported in part by the UK STFC research grants ST/N000668/1 and ST/S000550/1.

References

[1] A. A. Starobinsky, Phys. Lett. B91, 99 (1980), [,771(1980)].
[2] A. H. Guth, Phys. Rev. D23, 347 (1981), [Adv. Ser. Astrophys. Cosmol.3,139(1987)].
[3] K. A. Olive, Phys. Rept. 190, 307 (1990).
[4] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999), [hepph/9807278].
[5] A.R. Liddle and D.H. Lyth, Cosmological inflation and large-scale structure (Cambridge University Press, 2000).
[6] D. Baumann, in "Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 126 June 2009," 523-686 (2011), [arXiv:0907.5424].
[7] J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014), [arXiv:1303.3787]; J. Martin et al., JCAP 1403, 039 (2014), [arXiv:1312.3529]; J. Martin, Astrophys. Space Sci. Proc. 45, 41 (2016), [arXiv:1502.05733].
[8] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), [arXiv:1502.01589].
[9] A. H. Guth and E. J. Weinberg, Nucl. Phys. B212, 321 (1983).
[10] D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989), [Erratum: Phys. Rev. Lett.62,1066(1989)].
[11] A. D. Linde, Phys. Lett. B249, 18 (1990).
[12] F. C. Adams and K. Freese, Phys. Rev. D43, 353 (1991), [hep-ph/0504135].
[13] A. D. Linde, Phys. Lett. 108B, 389 (1982), [Adv. Ser. Astrophys. Cosmol.3,149(1987)].
[14] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982), [Adv. Ser. Astrophys. Cosmol.3,158(1987)].
[15] W. H. Press, Phys. Scripta 21, 702 (1980); S. W. Hawking, Phys. Lett. 115B, 295 (1982); A. A. Starobinsky, Phys. Lett. 117B, 175 (1982); A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).
[16] J. M. Bardeen, P. J. Steinhardt and M. S. Turner, Phys. Rev. D28, 679 (1983).
[17] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981), [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)].
[18] K. S. Stelle, Gen. Rel. Grav. 9, 353 (1978).
[19] B. Whitt, Phys. Lett. 145B, 176 (1984).
[20] D. Wands, Class. Quant. Grav. 11, 269 (1994), [arXiv:grqc/9307034].
[21] S. R. Coleman and F. De Luccia, Phys. Rev. D21, 3305 (1980).
[22] M. Sasaki et al., Phys. Lett. B317, 510 (1993).
[23] M. Bucher, A. S. Goldhaber and N. Turok, Phys. Rev. D52, 3314 (1995), [hep-ph/9411206].
[24] A. D. Linde and A. Mezhlumian, Phys. Rev. D52, 6789 (1995), [arXiv:astro-ph/9506017].
[25] A. R. Liddle, P. Parsons and J. D. Barrow, Phys. Rev. D50, 7222 (1994), [arXiv:astro-ph/9408015].
[26] L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. D56, 3258 (1997), [hep-ph/9704452].
[27] B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006), [arXiv:astro-ph/0507632].
[28] A. D. Linde, Phys. Rev. D49, 748 (1994), [arXiv:astroph/9307002].
[29] A. D. Dolgov and A. D. Linde, Phys. Lett. 116B, 329 (1982).
[30] J. R. Ellis et al., Nucl. Phys. B238, 453 (1984), [,223(1983)].
[31] M. Kawasaki and T. Moroi, Prog. Theor. Phys. 93, 879 (1995), [hep-ph/9403364].
[32] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D42, 2491 (1990).
[33] G. V. Chibisov and V. F. Mukhanov, Mon. Not. Roy. Astron. Soc. 200, 535 (1982).
[34] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).
[35] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Phys. Rept. 215, 203 (1992).
[36] K. A. Malik and D. Wands, Phys. Rept. 475, 1 (2009), [arXiv:0809.4944].
[37] V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988), [Zh. Eksp. Teor. Fiz.94N7,1(1988)].
[38] Y. Akrami et al. (Planck) (2018), [arXiv:1807.06211].
[39] A. A. Starobinsky, JETP Lett. 30, 682 (1979), [,767(1979)].
[40] E. D. Stewart and D. H. Lyth, Phys. Lett. B302, 171 (1993), [arXiv:gr-qc/9302019].
[41] D. Wands et al., Phys. Rev. D62, 043527 (2000), [arXiv:astro-ph/0003278].
[42] A. R. Liddle and S. M. Leach, Phys. Rev. D68, 103503 (2003), [arXiv:astro-ph/0305263].
[43] P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. 121, 221301 (2018), [arXiv:1810.05216].
[44] S.M. Leach, A.R. Liddle, J. Martin, and D.J. Schwarz, Phys. Rev. D66, 23515 (2002).
[45] D. Kazanas, Astrophys. J. 241, L59 (1980).
[46] K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
[47] A. Billoire and K. Tamvakis, Nucl. Phys. B200, 329 (1982); J. D. Breit, S. Gupta and A. Zaks, Phys. Rev. Lett. 51, 1007 (1983).
[48] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[49] D. V. Nanopoulos, K. A. Olive and M. Srednicki, Phys. Lett. 127B, 30 (1983).
[50] J. Ellis, D. V. Nanopoulos and K. A. Olive, Phys. Rev. Lett. 111, 111301 (2013), [Erratum: Phys. Rev. Lett.111,no.12,129902(2013)], [arXiv:1305.1247].
[51] T. S. Koivisto and F. R. Urban, JCAP 1503, 03, 003 (2015), [arXiv:1407.3445].
[52] L. Boubekeur and D. H. Lyth, JCAP 0507, 010 (2005), [hep-ph/0502047].
[53] G. R. Dvali, Q. Shafi and S. Solganik, in "4th European Meeting From the Planck Scale to the Electroweak Scale (Planck 2001) La Londe les Maures, Toulon, France, May 11-16, 2001," (2001), [hep-th/0105203]; J. Garcia-Bellido, R. Rabadan and F. Zamora, JHEP 01, 036 (2002), [hepth/0112147]; S. Kachru et al., JCAP 0310, 013 (2003), [hepth/0308055].
[54] F. C. Adams et al., Phys. Rev. D47, 426 (1993), [hepph/9207245].
[55] E. Pajer and M. Peloso, Class. Quant. Grav. 30, 214002 (2013), [arXiv:1305.3557].
[56] E. Silverstein and A. Westphal, Phys. Rev. D78, 106003 (2008), [arXiv:0803.3085].
[57] L. McAllister, E. Silverstein and A. Westphal, Phys. Rev. D82, 046003 (2010), [arXiv:0808.0706].
[58] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B659, 703 (2008), [arXiv:0710.3755].
[59] D. Buttazzo et al., JHEP 12, 089 (2013), [arXiv:1307.3536].
[60] H. P. Nilles, Phys. Rept. 110, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[61] J.R. Ellis et al., Phys. Lett. 118B, 335 (1982).
[62] N. Okada and Q. Shafi (2013), [arXiv:1311.0921].
[63] H. Murayama et al., Phys. Rev. Lett. 70, 1912 (1993).
[64] J. Ellis, M. Fairbairn and M. Sueiro, JCAP 1402, 044 (2014), [arXiv:1312.1353].
[65] D. Croon, J. Ellis and N. E. Mavromatos, Phys. Lett. B724, 165 (2013), [arXiv:1303.6253].
[66] G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys. Rev. Lett. 73, 1886 (1994), [hep-ph/9406319].
[67] D. V. Nanopoulos et al., Phys. Lett. 123B, 41 (1983).
[68] A. B. Goncharov and A. D. Linde, Phys. Lett. 139B, 27 (1984).
[69] E. Cremmer et al., Nucl. Phys. B212, 413 (1983), [,413(1982)].
[70] R. Holman, P. Ramond and G. G. Ross, Phys. Lett. 137B, 343 (1984).
[71] E. J. Copeland et al., Phys. Rev. D49, 6410 (1994), [arXiv:astro-ph/9401011]; E. D. Stewart, Phys. Rev. D51, 6847 (1995), [hep-ph/9405389].
[72] G. D. Coughlan et al., Phys. Lett. 131B, 59 (1983); A. S. Goncharov, A. D. Linde and M. I. Vysotsky, Phys. Lett. 147B, 279 (1984); T. Banks, D. B. Kaplan and A. E. Nelson, Phys. Rev. D49, 779 (1994), [hep-ph/9308292]; B. de Carlos et al., Phys. Lett. B318, 447 (1993), [hepph/9308325]; M. Kawasaki, T. Moroi and T. Yanagida, Phys. Lett. B370, 52 (1996), [hep-ph/9509399].
[73] J. R. Ellis, D. V. Nanopoulos and M. Quiros, Phys. Lett. B174, 176 (1986).
[74] T. Moroi, M. Yamaguchi and T. Yanagida, Phys. Lett. B342, 105 (1995), [hep-ph/9409367].
[75] M. Kawasaki, M. Yamaguchi and T. Yanagida, Phys. Rev. Lett. 85, 3572 (2000), [hep-ph/0004243]; K. Nakayama, F. Takahashi and T. T. Yanagida, JCAP 1308, 038 (2013), [arXiv:1305.5099].
[76] E. Cremmer et al., Phys. Lett. 133B, 61 (1983).
[77] A. S. Goncharov and A. D. Linde, Class. Quant. Grav. 1, L75 (1984); C. Kounnas and M. Quiros, Phys. Lett. 151B, 189 (1985).
[78] J. R. Ellis, C. Kounnas and D. V. Nanopoulos, Nucl. Phys. B247, 373 (1984).
[79] E. Witten, Phys. Lett. 155B, 151 (1985).
[80] J. Ellis, D. V. Nanopoulos and K. A. Olive, JCAP 1310, 009 (2013), [arXiv:1307.3537].
[81] J. Ellis et al., Class. Quant. Grav. 33, 9, 094001 (2016), [arXiv:1507.02308].
[82] R. Kallosh, A. Linde and D. Roest, JHEP 11, 198 (2013), [arXiv:1311.0472].
[83] A. R. Liddle, Mon. Not. Roy. Astron. Soc. 377, L74 (2007), [arXiv:astro-ph/0701113].
[84] J. Martin, C. Ringeval and V. Vennin, Phys. Rev. D93, 10, 103532 (2016), [arXiv:1603.02606].
[85] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), [arXiv:1502.02114].
[86] C. T. Byrnes and E. R. M. Tarrant, JCAP 1507, 007 (2015), [arXiv:1502.07339].
[87] C. Armendariz-Picon, T. Damour and V. F. Mukhanov, Phys. Lett. B458, 209 (1999), [hep-th/9904075].
[88] M. Alishahiha, E. Silverstein and D. Tong, Phys. Rev. D70, 123505 (2004), [hep-th/0404084].
[89] K. Enqvist and M. S. Sloth, Nucl. Phys. B626, 395 (2002), [hep-ph/0109214]; D. H. Lyth and D. Wands, Phys. Lett. B524, 5 (2002), [hep-ph/0110002]; T. Moroi and T. Takahashi, Phys. Lett. B522, 215 (2001), [Erratum: Phys. Lett.B539,303(2002)], [hep-ph/0110096].
[90] N. Bartolo et al., Phys. Rept. 402, 103 (2004), [arXiv:astroph/0406398].
[91] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A17 (2016), [arXiv:1502.01592].
[92] Y. Akrami et al. (Planck) (2019), [arXiv:1905.05697].
[93] J. Ellis et al., JCAP 1507, 07, 050 (2015), [arXiv:1505.06986].
[94] L. Senatore, K. M. Smith and M. Zaldarriaga, JCAP 1001, 028 (2010), [arXiv:0905.3746].
[95] C. Gordon et al., Phys. Rev. D63, 023506 (2001), [arXiv:astro-ph/0009131]; R. Easther et al., Phys. Rev. Lett. 112, 161302 (2014), [arXiv:1312.4035]; J. Ellis et al., JCAP 1501, 010 (2015), [arXiv:1409.8197]; S. RenauxPetel and K. Turzynski, JCAP 1506, 06, 010 (2015), [arXiv:1405.6195].
[96] C. T. Byrnes and D. Wands, Phys. Rev. D74, 043529 (2006), [arXiv:astro-ph/0605679].
[97] D. H. Lyth, JCAP 0511, 006 (2005), [arXiv:astroph/0510443].
[98] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D69, 023505 (2004), [arXiv:astro-ph/0303591].
[99] D. Wands et al., Phys. Rev. D66, 043520 (2002), [arXiv:astro-ph/0205253].
[100] S. Weinberg, Phys. Rev. D67, 123504 (2003), [arXiv:astroph/0302326].
[101] D. Langlois, Phys. Rev. D59, 123512 (1999), [arXiv:astroph/9906080].
[102] D. H. Lyth and Y. Rodriguez, Phys. Rev. Lett. 95, 121302 (2005), [arXiv:astro-ph/0504045].
[103] F. Vernizzi and D. Wands, JCAP 0605, 019 (2006), [arXiv:astro-ph/0603799].
[104] M. Sasaki, J. Valiviita and D. Wands, Phys. Rev. D74, 103003 (2006), [arXiv:astro-ph/0607627].
[105] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D69, 083505 (2004), [arXiv:astro-ph/0305548].
[106] D. S. Salopek and J. R. Bond, Phys. Rev. D43, 1005 (1991).
[107] A. Gangui et al., Astrophys. J. 430, 447 (1994), [arXiv:astro-ph/9312033].
[108] J. M. Maldacena, JHEP 05, 013 (2003), [arXiv:astroph/0210603].
[109] V. Acquaviva et al., Nucl. Phys. B667, 119 (2003), [arXiv:astro-ph/0209156].
[110] N. Dalal et al., Phys. Rev. D77, 123514 (2008), [arXiv:0710.4560].
[111] S. Matarrese and L. Verde, Astrophys. J. 677, L77 (2008), [arXiv:0801.4826].
[112] A. Ijjas, P. J. Steinhardt and A. Loeb, Phys. Lett. B723, 261 (2013), [arXiv:1304.2785].
[113] R. M. Wald, Phys. Rev. D28, 2118 (1983).
[114] M. Heusler, Phys. Lett. B253, 33 (1991).
[115] Y. Kitada and K.-i. Maeda, Phys. Rev. D45, 1416 (1992).
[116] D. S. Goldwirth and T. Piran, Phys. Rept. 214, 223 (1992).
[117] T. Vachaspati and M. Trodden, Phys. Rev. D61, 023502 (1999), [arXiv:gr-qc/9811037].
[118] D. Chowdhury et al. (2019), [arXiv:1902.03951].
[119] W. E. East et al., JCAP 1609, 09, 010 (2016), [arXiv:1511.05143].
[120] K. Clough et al., JCAP 1709, 09, 025 (2017), [arXiv:1608.04408].
[121] K. Clough, R. Flauger and E. A. Lim, JCAP 1805, 05, 065 (2018), [arXiv:1712.07352].
[122] G. W. Gibbons, S. W. Hawking and J. M. Stewart, Nucl. Phys. B281, 736 (1987).
[123] J. S. Schiffrin and R. M. Wald, Phys. Rev. D86, 023521 (2012), [arXiv:1202.1818].
[124] A. Ijjas, P. J. Steinhardt and A. Loeb, Phys. Lett. B736, 142 (2014), [arXiv:1402.6980].
[125] A. Vilenkin, Phys. Rev. D27, 2848 (1983).
[126] A. D. Linde, Phys. Lett. B175, 395 (1986).
[127] A. S. Goncharov, A. D. Linde and V. F. Mukhanov, Int. J. Mod. Phys. A2, 561 (1987).
[128] A. H. Guth, D. I. Kaiser and Y. Nomura, Phys. Lett. B733, 112 (2014), [arXiv:1312.7619].
[129] A. Linde, in "Proceedings, 100th Les Houches Summer School: Post-Planck Cosmology: Les Houches, France, July 8 - August 2, 2013," 231-316 (2015), [arXiv:1402.0526].
[130] J. Martin and R. H. Brandenberger, Phys. Rev. D63, 123501 (2001), [hep-th/0005209].
[131] R. H. Brandenberger and J. Martin, Mod. Phys. Lett. A16, 999 (2001), [arXiv:astro-ph/0005432].
[132] J. Martin and R. H. Brandenberger, in "Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 9th Marcel Grossmann Meeting, MG'9, Rome, Italy, July 2-8, 2000. Pts. A-C," 2001-2002 (2000), [arXiv:astroph/0012031].
[133] A. Kogut et al., JCAP 1107, 025 (2011), [arXiv:1105.2044].
[134] J. Chluba, J. Hamann and S. P. Patil, Int. J. Mod. Phys. D24, 10, 1530023 (2015), [arXiv:1505.01834].
[135] G.-B. Zhao et al., Mon. Not. Roy. Astron. Soc. 457, 3, 2377 (2016), [arXiv:1510.08216].
[136] A. Font-Ribera et al., JCAP 1405, 023 (2014), [arXiv:1308.4164].
[137] R. Maartens et al. (SKA Cosmology SWG), PoS AASKA14, 016 (2015), [arXiv:1501.04076].
[138] O. Doré et al. (2014), [arXiv:1412.4872].

24. Big Bang Nucleosynthesis

Revised October 2019 by B.D. Fields (Astronomy, Illinois U.; Physics, Illinois U.), P. Molaro (INAF-OATS Trieste) and S. Sarkar (Rudolf Peierls, Oxford U.).

24.1 Abstract

Big-Bang nucleosynthesis (BBN) offers the deepest reliable probe of the early Universe, being based on well-understood Standard Model physics [1]. Predictions of the abundances of the light elements, $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$, synthesized at the end of the first three minutes, are in good overall agreement with the primordial abundances inferred from observational data, thus validating the standard hot Big-Bang cosmology (see [2-5] for reviews). This is particularly impressive given that these abundances span nine orders of magnitude - from ${ }^{4} \mathrm{He} / \mathrm{H} \sim 0.08$ down to ${ }^{7} \mathrm{Li} / \mathrm{H} \sim 10^{-10}$ (ratios by number). Thus BBN provides powerful constraints on possible deviations from the standard cosmology, and on new physics beyond the Standard Model [6-9].

24.2 Theory

The synthesis of the light elements is sensitive to physical conditions in the early radiation-dominated era at a temperature $T \sim 1 \mathrm{MeV}$, corresponding to an age $t \sim 1 \mathrm{~s}$. At higher temperatures, weak interactions were in thermal equilibrium, thus fixing the ratio of the neutron and proton number densities to be $n / p=\mathrm{e}^{-Q / T}$, where $Q=1.293 \mathrm{MeV}$ is the neutron-proton mass difference. As the temperature dropped, the neutron-proton inter-conversion rate per nucleon, $\Gamma_{n \leftrightarrow p} \sim G_{\mathrm{F}}^{2} T^{5}$, fell faster than the Hubble expansion rate, $H \sim \sqrt{g_{*} G_{\mathrm{N}}} T^{2}$, where g_{*} counts the number of relativistic particle species determining the energy density in radiation (see The Cosmological Parameters-Sec. 22 of this Review). This resulted in departure from chemical equilibrium (freeze-out) at $T_{\mathrm{fr}} \sim\left(g_{*} G_{\mathrm{N}} / G_{\mathrm{F}}^{4}\right)^{1 / 6} \simeq 1 \mathrm{MeV}$. The neutron fraction at this time, $n / p=\mathrm{e}^{-Q / T_{\mathrm{fr}}} \simeq 1 / 6$, is thus sensitive to every known physical interaction, since Q is determined by both strong and electromagnetic interactions while T_{fr} depends on the weak as well as gravitational interactions. Moreover, the sensitivity to the Hubble expansion rate affords a probe of, e.g., the number of relativistic neutrino species [10]. After freeze-out, the neutrons were free to β-decay, so the neutron fraction dropped to $n / p \simeq 1 / 7$ by the time nuclear reactions began. A simplified analytic model of freeze-out yields the n / p ratio to an accuracy of $\sim 1 \%[11,12]$.

The rates of these reactions depend on the density of baryons (strictly speaking, nucleons), which is usually expressed normalized to the relic blackbody photon density as $\eta \equiv n_{b} / n_{\gamma}$. As we shall see, all the light-element abundances can be explained with $\eta_{10} \equiv \eta \times 10^{10}$ in the range 5.8-6.5 (95\% CL). With n_{γ} fixed by the present CMB temperature 2.7255 K (see The Cosmological Parameters-Sec. 29 of this Review), this can be stated as the allowed range for the baryon mass density today, $\rho_{\mathrm{b}}=(3.9-4.6) \times 10^{-31} \mathrm{~g} \mathrm{~cm}^{-3}$, or as the baryonic fraction of the critical density, $\Omega_{\mathrm{b}}=\rho_{b} / \rho_{\text {crit }} \simeq \eta_{10} h^{-2} / 274=(0.021-0.024) h^{-2}$, where $h \equiv H_{0} / 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ is the present Hubble parameter (see The Cosmological Parameters-Sec. 25.1 of this Review).

The nucleosynthesis chain begins with the formation of deuterium in the process $p(n, \gamma) \mathrm{D}$. However, photo-dissociation by the high number density of photons delays production of deuterium (and other complex nuclei) until well after T drops below the binding energy of deuterium, $\Delta_{\mathrm{D}}=2.23 \mathrm{MeV}$. The quantity $\eta^{-1} \mathrm{e}^{-\Delta_{\mathrm{D}} / T}$, i.e., the number of photons per baryon above the deuterium photo-dissociation threshold, falls below unity at $T \simeq 0.1 \mathrm{MeV}$; nuclei can then begin to form without being immediately photo-dissociated again. Only 2-body reactions, such as $\mathrm{D}(p, \gamma)^{3} \mathrm{He}$ and ${ }^{3} \mathrm{He}(\mathrm{D}, p)^{4} \mathrm{He}$ are important because the density by this time has become rather low - comparable to that of air!

Nearly all neutrons end up bound in the most stable light element ${ }^{4} \mathrm{He}$. Heavier nuclei do not form in any significant quantity both because of the absence of stable nuclei with mass number 5 or 8 (which impedes nucleosynthesis via $n^{4} \mathrm{He}, p^{4} \mathrm{He}$ or ${ }^{4} \mathrm{He}^{4} \mathrm{He}$ reactions), and the large Coulomb barriers for reactions such as ${ }^{3} \mathrm{He}\left({ }^{4} \mathrm{He}, \gamma\right){ }^{7} \mathrm{Li}$ and ${ }^{3} \mathrm{He}\left({ }^{4} \mathrm{He}, \gamma\right){ }^{7} \mathrm{Be}$. Hence the primordial mass fraction of ${ }^{4} \mathrm{He}, Y_{\mathrm{p}} \equiv \rho\left({ }^{4} \mathrm{He}\right) / \rho_{\mathrm{b}}$, can be estimated by the simple
counting argument

$$
\begin{equation*}
Y_{\mathrm{p}}=\frac{2(n / p)}{1+n / p} \simeq 0.25 \tag{24.1}
\end{equation*}
$$

where strictly speaking this gives the baryon fraction in ${ }^{4} \mathrm{He}$, which is what we will quote throughout. This differs slightly from the mass fraction due to small binding energy corrections.

There is little sensitivity here to the actual nuclear reaction rates, which are, however, important in determining the other 'left-over' abundances: D and ${ }^{3} \mathrm{He}$ at the level of a few times 10^{-5} by number relative to H , and ${ }^{7} \mathrm{Li} / \mathrm{H}$ at the level of about 10^{-10} (when η_{10} is in the range $1-10$). These values can be understood in terms of approximate analytic arguments [12,13]. The experimental parameter most important in determining Y_{p} is the neutron lifetime, τ_{n}, which normalizes (the inverse of) $\Gamma_{n \leftrightarrow p}$. Its value has recently been significantly revised downwards to $\tau_{n}=879.4 \pm 0.6 \mathrm{~s}$ (see N Baryons Listing).

The elemental abundances shown in Fig. 24.1 as a function of η_{10} were calculated [14] using an updated version [15] of the Wagoner code [1]; other versions [16-19] too are publicly available. The ${ }^{4} \mathrm{He}$ curve includes small corrections due to radiative processes at zero and finite temperatures [20], non-equilibrium neutrino heating during $e^{ \pm}$annihilation [21], and finite nucleon mass effects [22]; the range primarily reflects the 2σ uncertainty in the neutron lifetime. The spread in the curves for $\mathrm{D},{ }^{3} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$ corresponds to the 2σ uncertainties in nuclear cross sections, as estimated by Monte Carlo methods [15, 23-25]. The input nuclear data have been carefully reassessed $[2,14,15,23-25,25-29,29]$, leading to improved precision for the abundance predictions. In particular, the uncertainty in ${ }^{7} \mathrm{Li} / \mathrm{H}$ at interesting values of η has been reduced recently by a factor ~ 2, a consequence of a similar reduction in the error budget [30] for the dominant mass-7 production channel ${ }^{3} \mathrm{He}\left({ }^{4} \mathrm{He}, \gamma\right){ }^{7} \mathrm{Be}$. Polynomial fits to the predicted abundances and the error correlation matrix have been given in refs. [24,31]. The boxes in Fig 24.1 show the observationally inferred primordial abundances with their associated uncertainties, as discussed below.

24.3 Light Element Abundances

BBN theory predicts the universal abundances of $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$ which are essentially fixed by $t \sim 180 \mathrm{~s}$. However, abundances are observed at much later epochs, after stellar nucleosynthesis commenced. Stars produce heavy elements such as C, N, O, and Fe ("metals"), while the ejected remains of stellar processing alters the light element abundances from their primordial values. Thus, one seeks astrophysical sites with low metal abundances to measure light element abundances that are closer to primordial.

BBN is the only significant source of deuterium which is entirely destroyed when it is cycled into stars [32]. Thus, any detection provides a lower limit to primordial D / H, and an upper limit on η_{10}. The best proxy to the primordial value of D is its measure in distant and chemically unprocessed matter, where stellar processing (astration) is minimal [32]. This has become possible with the advent of large telescopes, but after two decades of observational efforts we have only about a dozen determinations listed in Table 24.1 [33-46].

High-resolution spectra reveal the presence of D in highredshift, low-metallicity quasar absorption systems via its isotopeshifted Lyman- α absorption features, though, unfortunately, these are often obscured or contaminated by the hydrogen features of the Lyman- α forest

The nuclear reaction cross sections important for BBN have all been measured at the relevant energies. Recently however there have been substantial advances in the precision of light element observations (e.g., D/H) and in the determination of cosmological parameters (e.g., from Planck). This motivates corresponding improvement in BBN predictions and thus in the key reaction cross sections. For example, it has been suggested [48, 49] that $d(p, \gamma)^{3} \mathrm{He}$ measurements may suffer from systematic errors and be inferior to $a b$ initio theory; if so, this could alter D / H abundances at a level that is now significant. Ongoing low-background cross section measurements should resolve this issue [50].

Figure 24.1: The primordial abundances of ${ }^{4} \mathrm{He}, \mathrm{D},{ }^{3} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$ as predicted by the standard model of Big-Bang nucleosynthesis - the bands show the 95% CL range [47]. Boxes indicate the observed light element abundances. The narrow vertical band indicates the CMB measure of the cosmic baryon density, while the wider band indicates the $\mathrm{BBN} \mathrm{D}+{ }^{4} \mathrm{He}$ concordance range (both at $95 \% \mathrm{CL}$).

A few DLA systems show D lines resolved up to the higher members of the Lyman series. Recent determinations [37,39] and re-analyses $[38,46,51]$ provide strikingly improved precision over earlier work. A weighted mean of the 11 most precise measurements in Table 24.1 provides a value with a one percent precision:

$$
\begin{equation*}
\mathrm{D} /\left.\mathrm{H}\right|_{\mathrm{p}} \times 10^{6}=(25.47 \pm 0.25) . \tag{24.2}
\end{equation*}
$$

Considering all the 16 extant determinations, the weighted mean is $\mathrm{D} /\left.\mathrm{H}\right|_{\mathrm{p}} \times 10^{6}=(25.36 \pm 0.26)$, while different selections provide $\mathrm{D} /\left.\mathrm{H}\right|_{\mathrm{p}} \times 10^{6}=(25.27 \pm 0.30)[51]$ or $\mathrm{D} /\left.\mathrm{H}\right|_{\mathrm{p}} \times 10^{6}=$ (25.45 ± 0.25) [52$]$, all consistent with each other within 1σ. Metallicities of the absorbers are $(0.001-0.03) \times$ Solar, i.e. at a level where no significant astration is expected [34,53]. D/H shows no correlation with metallicity, redshift, or the hydrogen column density $N(\mathrm{H})\left(=\int_{\text {los }} n_{\mathrm{H}} d s\right)$ integrated over the line-ofsight through the absorber. In the Galaxy D/H measurements are anti-correlated with metal abundances, which suggests that interstellar D partly resides in dust particles [54]. However, in the absorbers where deuterium is measured, the dust content is quite small as implied by Solar proportions of the abundances of refractory and non refractory elements. This is consistent with the measured D / H being truly representative of the primordial value.
The primordial ${ }^{4} \mathrm{He}$ abundance is best determined through recombination emission lines of He and H in the most metal-poor extragalactic HII (ionized) regions, viz. blue compact galaxies, generally found at low redshift. There is now a large body of data on ${ }^{4} \mathrm{He}$ and CNO in these galaxies, with over 1000 such systems in the Sloan Digital Sky Survey alone [59]. These data confirm that the stellar contribution to the helium abundance is positively correlated with metal production, so extrapolation to zero metallicity gives the primordial ${ }^{4} \mathrm{He}$ abundance Y_{p}. However, HII regions are complex systems and several physical parameters enter in the He / H determination, notably the electron density and temperature, as well as reddening. Thus, systematic effects dominate the uncertainties in the abundance deter-
mination [60,61]. A major step forward has been the inclusion of the He $\lambda 10830$ infrared emission line which shows a strong dependence on the electron density and is thus useful to break the degeneracy with the temperature, allowing for a more robust helium abundance determination. In recent works the underlying ${ }^{4} \mathrm{He}$ stellar absorption, and/or the newly derived values of the HeI-recombination and H-excitation-collisional coefficients are adressed and the ${ }^{4} \mathrm{He}$ abundances have increased significantly. Some recent results are $Y_{\mathrm{p}}=0.2451 \pm 0.0026$ [62], $Y_{\mathrm{p}}=0.2449 \pm 0.0040[63]$ and $Y_{\mathrm{p}}=0.2551 \pm 0.0022$ [59] - see Ref. [64] and references therein for previous determinations. Taking all this into account our recommended ${ }^{4} \mathrm{He}$ abundance is

$$
\begin{equation*}
Y_{\mathrm{P}}=0.245 \pm 0.003, \tag{24.3}
\end{equation*}
$$

but the matter is far from settled given that the measurements are only marginally consistent.
The best suited objects for the primordial ${ }^{7} \mathrm{Li}$ determination are metal-poor stars in the Galactic halo, which have metallicities going down to 10^{-6} of the Solar value [65]. Observations have long shown [66-69] that ${ }^{7} \mathrm{Li}$ does not vary significantly in halo dwarfs with metallicities $\lesssim 1 / 30$ of Solar - the Spite plateau [66, 70]. Recent observations show a puzzling drop in the Li/H abundance in metal-poor stars with $[\mathrm{Fe} / \mathrm{H}]<-3.0[71-73]$. This becomes particularly acute at the very low metallicity end where only one star out of the seven dwarfs with metallicities $[\mathrm{Fe} / \mathrm{H}] \lesssim$ -4.5 shows a ${ }^{7} \mathrm{Li}$ abundance close to the Spite Plateau, while in the others where it ought to be present it is either lower or totally absent [65,74]. The reason for the increase in scatter at low metallicity is unknown and prevents derivation of the primordial ${ }^{7}$ Li value by extrapolating to zero metallicity [72,73].

The primordial ${ }^{7} \mathrm{Li}$ in different samples of stars or globular clusters has been reported as $\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=(1.7 \pm 0.3) \times 10^{-10}$ [69], $\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=(2.19 \pm 0.28) \times 10^{-10}[75]$, and $\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=(1.86 \pm 0.23) \times$ 10^{-10} [76]. We note that different parameters (e.g., the temperature) of the stellar atmosphere in which the ${ }^{7} \mathrm{Li}$ absorption line is formed lead to slightly different values. To estimate the primordial ${ }^{7} \mathrm{Li}$ value we consider only stars with metallicity in the range $-2.8<[\mathrm{Fe} / \mathrm{H}]<-1.5[73]$, where no scatter in excess of the observational errors is observed. This yields:

$$
\begin{equation*}
\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=(1.6 \pm 0.3) \times 10^{-10} . \tag{24.4}
\end{equation*}
$$

Strictly speaking the suggested primordial ${ }^{7} \mathrm{Li}$ abundance should be considered a lower bound rather than a measure. In fact, ${ }^{7} \mathrm{Li}$ in Pop II stars may have been partially destroyed due to mixing of the outer layers with the hotter interior [77]. Such processes can be constrained by the absence of significant scatter in ${ }^{7} \mathrm{Li}$ versus $\mathrm{T}_{\text {eff }}$ [68], but ${ }^{7} \mathrm{Li}$ depletion by a factor as large as \sim 1.8 may have occurred $[68,78]$. A recent model predicts that an initial ${ }^{7} \mathrm{Li}$ abundance of $\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=5.3 \times 10^{-10}$, corresponding to the baryon density indicated by CMB and D/H abundance, is significantly destroyed in the pre-main-sequence phase and then partially restored by late accretion of fresh ${ }^{7}$ Linormal material ending onto the Spite Plateau [79, 80].
A ${ }^{6} \mathrm{Li}$ plateau (analogous to the ${ }^{7} \mathrm{Li}$ plateau) has also been claimed [81]. This has however been challenged by new observations and analyses which show that stellar convective motions can generate asymmetries in the line shape that mimic the presence of ${ }^{6} \mathrm{Li}$ [82-84]. Recent high-precision measurements are sensitive to the tiny isotopic shift in absorption indicate ${ }^{6} \mathrm{Li} /{ }^{7} \mathrm{Li} \leq 0.05$, thus confirming that ${ }^{7} \mathrm{Li}$ is dominant $[81,82]$.
The primordial abundance of ${ }^{3} \mathrm{He}$ has the poorest observational determination of all of the light nuclides. The only data available come from the Solar system and from solar-metallicity HII regions in the Galaxy [85]. Therefore, inferring the primordial ${ }^{3} \mathrm{He}$ abundance is problematic, compounded by the fact that stellar nucleosynthesis models for ${ }^{3} \mathrm{He}$ are in conflict with observations. Consequently, we consider it inappropriate to use ${ }^{3} \mathrm{He}$ (and also $\mathrm{D}+{ }^{3} \mathrm{He}$) as a cosmological probe.

Table 24.1: D/H measurements. For systems with multiple measurements we used the most recent one which is generally more precise.

QSO	$\mathrm{z}_{e m}$	$\mathrm{z}_{e m}$	$\log (N H I)$	$[\mathrm{X} / \mathrm{H}]$	$(\mathrm{D} / \mathrm{H}) \times 10^{6}$	Ref
QSO	$2206-199$	2.56	2.076	20.436 ± 0.008	-2.04	16.5 ± 3.5
QSO	$0347-3819$	3.22	3.025	20.63 ± 0.09	-1.25	22.4 ± 6.7
SDSS J1134+5742	3.52	3.411	17.95 ± 0.05	<-4.2	20.4 ± 6.1	$[56]$
QSO CTQ 247	3.02	2.621	20.45 ± 0.10	-1.99	28.0 ± 8.0	$[43]$
SDSS	1337+3152	3.17	3.168	20.41 ± 0.15	-2.68	12.0 ± 5.0
SDSS J1419+0829	3.03	3.049	20.392 ± 0.003	-1.92	25.1 ± 0.5	$[57]$
HS	$0105+1619$	2.65	2.536	19.40 ± 0.01	-1.77	25.8 ± 1.5
QSO B0913+0715	2.78	2.618	20.312 ± 0.008	-2.40	25.3 ± 1.0	$[36]$
SDSS J1358+0349	2.89	2.853	20.524 ± 0.006	-2.33	26.2 ± 0.7	$[37]$
SDSS J1358+6522	3.17	3.067	20.50 ± 0.01	-2.33	25.8 ± 1.0	$[36]$
SDSS J1558-0031	2.82	2.702	20.75 ± 0.03	-1.55	24.0 ± 1.4	$[36]$
PKS 1937-1009	3.78	3.256	18.09 ± 0.03	-1.87	24.5 ± 2.8	$[58]$
QSO J1444+2919	2.66	2.437	19.983 ± 0.010	-2.04	19.7 ± 3.3	$[39]$
PKS $1937-1009$	3.78	3.572	17.925 ± 0.006	-2.26	26.2 ± 0.5	$[46]$
QSO	$1009+2956$	2.63	2.504	17.362 ± 0.005	-2.50	24.8 ± 4.1
QSO	$1243+307$	2.55	2.525	19.761 ± 0.026	-2.77	23.9 ± 1.0
						$[52]$
Weighted mean of all 16				25.38 ± 0.25		
Weighted mean of the most recent 11		25.47 ± 0.25				

24.4 Concordance, Dark Matter, and the CMB

We now use the observed light element abundances to test the theory. We first consider standard BBN, which is based on Standard Model physics alone, so $N_{\nu}=3$ and the only free parameter is the baryon-to-photon ratio η. (The implications of BBN for physics beyond the Standard Model will be considered below). Thus, any abundance measurement determines η, and additional measurements overconstrain the theory and thereby provide a consistency check.

While the η ranges spanned by the boxes in Fig 24.1 do not all overlap, they are all within a factor ~ 2 of each other. In particular, the lithium abundance corresponds to η values that are inconsistent with that of the (now very precise) D / H abundance as well as the less-constraining ${ }^{4} \mathrm{He}$ abundance. This discrepancy marks the lithium problem. The problem could simply reflect difficulty in determining the primordial lithium abundance, or could hint at a more fundamental omission in the theory. The possibility that lithium reveals new physics is addressed in detail in the next section. If however we exclude the lithium constraint because its inferred abundance may suffer from systematic uncertainties, then D / H and ${ }^{4} \mathrm{He}$ are in agreement. The concordant η range is essentially that implied by D / H, namely

$$
\begin{equation*}
5.8 \leq \eta_{10} \leq 6.5(95 \% \mathrm{CL}) \tag{24.5}
\end{equation*}
$$

Despite the lithium problem, the overall concordance remains remarkable: using only well-established microphysics we can extrapolate back to $t \sim 1 \mathrm{~s}$ to predict light element abundances spanning nine orders of magnitude, in approximate agreement with observation. This is a major success for the standard cosmology, and inspires confidence in extrapolation back to such early times.

This concordance provides a measure of the baryon content:

$$
\begin{equation*}
0.021 \leq \Omega_{\mathrm{b}} \mathrm{~h}^{2} \leq 0.024(95 \% \mathrm{CL}) \tag{24.6}
\end{equation*}
$$

a result that plays a key role in our understanding of the matter budget of the Universe. First of all $\Omega_{\mathrm{b}} \ll 1$, i.e., baryons cannot close the Universe [86]. Furthermore, the cosmic density of (optically) luminous matter is $\Omega_{\mathrm{lum}} \simeq 0.0024 \mathrm{~h}^{-1}$ [87], so that $\Omega_{\mathrm{b}} \gg \Omega_{\text {lum }}$: most baryons are optically dark, probably in the form of a diffuse intergalactic medium [88]. Finally, given that $\Omega_{\mathrm{m}} \sim 0.3$ (see Dark Matter and Cosmological Parameters reviews), we infer that most matter in the Universe is not only dark, but also takes some non-baryonic (more precisely, non-nucleonic) form.

The BBN prediction for the cosmic baryon density can be tested through precision measurements of CMB temperature fluctuations (see Cosmic Microwave Background review). One can de-
termine η from the amplitudes of the acoustic peaks in the CMB angular power spectrum [89], making it possible to compare two measures of η using very different physics, at two widely separated epochs. In the standard cosmology, there is no change in η between BBN and CMB decoupling, thus, a comparison of $\eta_{B B N}$ and $\eta_{C M B}$ is a key test. Agreement would endorse the standard picture, while disagreement could point to new physics during/between the BBN and CMB epochs.

The analysis described in the Cosmic Microwave Background review, based on Planck TT, TE, EE + lowE data and lensing, yields $\Omega_{\mathrm{b}} \mathrm{h}^{2}=0.02237 \pm 0.00015$ [90], which corresponds to $\eta_{10}=6.12 \pm 0.04$ [91]. This result depends weakly on the primordial helium abundance, and the fiducial Planck analysis uses BBN theory to fix $Y_{\mathrm{p}}(\eta)$. Without BBN theory, the Planck TT, $\mathrm{TE}, \mathrm{EE}+$ lowE data plus lensing give $\Omega_{\mathrm{b}} \mathrm{h}^{2}=0.02230 \pm 0.00020$, corresponding to $\eta_{10}=6.105 \pm 0.055$. As shown in Fig. 24.1, this CMB estimate of the baryon density (narrow vertical band) is consistent with the BBN range, i.e., in good agreement with the value inferred from high-redshift D / H measurements and local ${ }^{4} \mathrm{He}$ determinations; together these observations span diverse environments from redshifts $z \sim 1000$ to the present.

The ${ }^{4} \mathrm{He}$ abundance is proportional to the n / p ratio when the weak-interaction rate falls behind the Hubble expansion rate at $T_{\mathrm{fr}} \sim 1 \mathrm{MeV}$. The presence of additional neutrino flavors (or of any other relativistic species) at this time increases g_{*}, hence the expansion rate, leading to a larger value of $T_{\mathrm{fr}}, n / p$, and therefore $Y_{\mathrm{p}}[10,92]$. In the Standard Model at $T=1 \mathrm{MeV}$, $g_{*}=5.5+\frac{7}{4} N_{\nu}$, where N_{ν} is the effective number of (nearly) massless neutrino flavors. The helium curves in 24.1 were computed taking $N_{\nu}=3$; small corrections for non-equilibrium neutrino heating [21] are included in the thermal evolution and lead to an effective $N_{\nu}=3.045$ compared to assuming instantaneous neutrino freezeout (see The Cosmological ParametersSec. 22 of this Review). The computed ${ }^{4} \mathrm{He}$ abundance scales as $\Delta Y_{\mathrm{p}} \simeq 0.013 \Delta N_{\nu}$ [11]. Clearly the central value for N_{ν} from BBN will depend on η, which is independently determined (with weaker sensitivity to N_{ν}) by the adopted D or ${ }^{7} \mathrm{Li}$ abundance. For example, if the best value for the observed primordial ${ }^{4} \mathrm{He}$ abundance is 0.249 , then, for $\eta_{10} \sim 6$, the central value for N_{ν} is very close to 3 . A maximum likelihood analysis on η and N_{ν} based on ${ }^{4} \mathrm{He}$ and D abundances nearly identical to those above finds the (correlated) 95% CL ranges to be $5.6<\eta_{10}<6.6$ and $2.3<N_{\nu}<3.4$ [5]. Identical results are obtained using a simpler method to extract such bounds based on χ^{2} statistics, given a set of input abundances [93].

The CMB damping tail is sensitive to the primordial ${ }^{4} \mathrm{He}$ abundance independently of both BBN and local ${ }^{4} \mathrm{He}$ measurements
[94]. The Planck analysis using TT, TE, EE+lowE and lensing but not the BBN $Y_{\mathrm{p}}(\eta)$ relation gives a ${ }^{4} \mathrm{He}$ mass fraction $0.239_{-0.025}^{+0.024}$, and nucleon fraction $Y_{\mathrm{p}}=0.240_{-0.25}^{+0.24}$, both at 95% CL [90]. This is consistent with the HII region helium abundance determination. Moreover, this value is consistent with the Standard $\left(N_{\nu}=3\right) \mathrm{BBN}$ prediction for Y_{p} with the Planck-determined baryon density.
This concordance represents a successful CMB-only test of BBN.
The precision determination of the baryon density using the CMB motivates using this as an input to BBN calculations. Within the context of the Standard Model, BBN then becomes a zero-parameter theory, and the light element abundances are completely determined to within the uncertainties in $\eta_{C M B}$ and the BBN theoretical errors. Comparison with the observed abundances then can be used to test the astrophysics of post-BBN light element evolution [95]. Alternatively, one can consider possible physics beyond the Standard Model (e.g., which might change the expansion rate during BBN) and then use all of the abundances to test such models; this is discussed in 23.6 below.

24.5 The Lithium Problem

As Fig. 24.1 shows, stellar Li/H measurements are inconsistent with the D/H (and CMB), given the error budgets we have quoted. Recent updates in nuclear cross sections and stellar abundance systematics increase the discrepancy to over 5σ, depending on the stellar abundance analysis adopted [14]. For instance it is found $\mathrm{Li} /\left.\mathrm{H}\right|_{\mathrm{p}}=(5.623 \pm 0.247) \times 10^{-10}$ in [96], i.e. a factor 3.5 higher than equation 24.4 and at a 10σ CL.

The question then becomes pressing as to whether this mismatch comes from systematic errors in the observed abundances, and/or uncertainties in stellar astrophysics or nuclear inputs, or whether there might be new physics at work [9]. Nuclear inputs (cross sections) for BBN reactions are constrained by extensive laboratory measurements; to increase ${ }^{7} \mathrm{Be}$ destruction requires enhancement of otherwise subdominant processes that can be attained by missed resonances in a few reactions such as ${ }^{7} \operatorname{Be}(d, p) 2 \alpha$ if the compound nuclear state properties are particularly favorable [29, 97-99]. However, experimental searches have now closed off these possibilities [100-102], making a nuclear fix increasingly unlikely.

Another conventional means to solve the lithium problem is by in situ destruction over the long lifetimes of the host halo stars. Stellar depletion mechanisms include diffusion, rotationally induced mixing, or pre-main-sequence depletion. These effects certainly occur, but to reduce lithium to the required levels generally requires some $a d h o c$ mechanism and fine tuning of the initial stellar parameters [79, 80, 103]. A putative signature of diffusion has been reported for the globular clusters NGC 6397 and NGC 6752, where the "turnoff" stars exhibit slightly lower (by a factor ~ 1.3) abundances of Fe II TiII, ScII, CaI and MgI, than in more evolved stars $[78,104]]$. General features of diffusive models are a dispersion in the Li abundances and a pronounced downturn in the Li abundances at the hot end of the Li plateau. Some extra turbulence needs to be invoked to limit diffusion in the hotter stars and to restore uniform Li abundance along the Spite plateau [103]. Li destruction in the pre-Main sequence phase and partially restored by the accretion has been also proposed [80]

As nuclear and astrophysical solutions to the lithium problem become increasingly constrained (even if difficult to rule out definitively), the possibility of new physics arises. Nucleosynthesis models in which the baryon-to-photon ratio is inhomogeneous can alter abundances for a given η_{BBN}, but will overproduce ${ }^{7} \mathrm{Li}$ [105]. Entropy generation by some non-standard process could have decreased η between the BBN era and CMB decoupling, however the lack of spectral distortions in the CMB rules out any significant energy injection up to a redshift $z \sim 10^{7}$ [106]. The most intriguing resolution of the lithium problem thus involves new physics during BBN [7-9]

We summarize the general features of such solutions here, and later consider examples in the context of specific particle physics models. Many proposed solutions introduce perturbations to light-element formation during BBN ; while all element abun-
dances may suffer perturbations, the interplay of ${ }^{7} \mathrm{Li}$ and D is often the most important i.e. observations of D often provide the strongest constraints on the allowed perturbations to ${ }^{7} \mathrm{Li}$. In this connection it is important to note that the new, very precise determination of D / H will significantly constrain the ability of such models to ameliorate or solve the lithium problem.

A well studied class of models invokes the injection of suprathermal hadronic or electromagnetic particles due to decays of dark matter particles. The effects are complex and depend on the nature of the decaying particles and their branchings and spectra. However, the models that most successfully solve the lithium problem generally feature non-thermal nucleons, which dissociate all light elements. Dissociation of even a small fraction of ${ }^{4} \mathrm{He}$ introduces a large abundance of free neutrons, which quickly thermalize. The thermal neutrons drive the ${ }^{7} \mathrm{Be}(n, p)^{7} \mathrm{Li}$ conversion of ${ }^{7} \mathrm{Be}$. The resulting ${ }^{7} \mathrm{Li}$ has a lower Coulomb barrier relative to ${ }^{7} \mathrm{Be}$ and is readily destroyed via $\left.{ }^{7} \mathrm{Li}(p, \alpha)^{4} \mathrm{He}[107,108]\right]$. But ${ }^{4} \mathrm{He}$ dissociation also produces D directly as well as via nonthermal neutron $n(p, \gamma) d$ reactions. This introduces a tension between Li / H reduction and D / H enhancement that becomes increasingly restrictive with the increasing precision of deuterium observations. Indeed, this now forces particle injection scenarios to make very small ${ }^{7} \mathrm{Li}$ perturbations - far short of the level needed. An exception is a recent model wherein MeV -scale decays by construction avoid ${ }^{4} \mathrm{He}$ dissociation and associated D / H overproduction, instead borrowing neutrons by dissociating only deuterons [109].

Another important class of models retains the standard cosmic particle content, but changes their interactions via time variations in the fundamental constants [110-115]. Here too, the details are model-dependent, but scenarios that solve or alleviate the lithium problem often feature perturbations to the deuteron binding energy. A weaker D binding leads to the D bottleneck being overcome later, so that element formation commences at a lower temperature and lower density. This leads in turn to slower nuclear rates that freeze out earlier. The net result is a higher final D / H, due to less efficient processing into ${ }^{4} \mathrm{He}$, but also lower Li , due to suppressed production via ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$.

The cosmological lithium problem remains an unresolved issue in BBN. Nevertheless, the remarkable concordance between the CMB and the D (as well as ${ }^{4} \mathrm{He}$) abundance, is a non-trivial success, and provides important constraints on the early Universe.

24.6 Beyond the Standard Model

Given the simple physics underlying BBN, it is remarkable that it still provides the most effective test for the cosmological viability of ideas concerning physics beyond the Standard Model. Although baryogenesis and inflation must have occurred at higher temperatures in the early Universe, we do not as yet have 'standard models' for these, so BBN still marks the boundary between the established and the speculative in Big Bang cosmology. It might appear possible to push the boundary back to the quarkhadron transition at $T \sim \Lambda_{\mathrm{QCD}}$, or electroweak symmetry breaking at $T \sim 1 / \sqrt{G_{F}}$; however, so far no observable relics of these epochs have been identified, either theoretically or observationally. Thus, although the Standard Model provides a precise description of physics up to the Fermi scale, cosmology cannot be traced in detail before the BBN era.

The CMB power spectrum in the damping tail is independently sensitive to $N_{\nu}(e . g .[116])$. The CMB value N_{ν}^{CMB} probes the cosmic radiation content at (re)combination, so a discrepancy would imply new physics or astrophysics. Indeed, observations by the South Pole Telescope implied $N_{\nu}^{\text {CMB }}=3.85 \pm 0.62$ [117], prompting discussion of dark radiation such as sterile neutrinos [118]. However, Planck 2018 results give $N_{\nu}^{\mathrm{CMB}}=2.92_{+0.37}^{+0.36}, 95 \%$ CL, when using Planck TT, TE, EE+lowE, a result quite consistent with the 3.045 of the Standard Model neutrinos [90].

Just as one can use the measured helium abundance to place limits on $g_{*}[92,111,119-121]$, any changes in the strong, weak, electromagnetic, or gravitational coupling constants, arising e.g., from the dynamics of new dimensions, can be similarly constrained [122], as can any speed-up of the expansion rate in, e.g., scalar-tensor theories of gravity [123].

The limits on N_{ν} can be translated into limits on other types of particles or particle masses that would affect the expansion rate
of the Universe during nucleosynthesis. For example, consider sterile neutrinos with only right-handed interactions of strength $G_{\mathrm{R}}<G_{\mathrm{F}}$. Such particles would decouple at higher temperature than (left-handed) neutrinos, so their number density $\left(\propto T^{3}\right)$ relative to neutrinos would be reduced by any subsequent entropy release, e.g., due to annihilations of massive particles that become non-relativistic between the two decoupling temperatures. Thus (relativistic) particles with less than full strength weak interactions contribute less to the energy density than particles that remain in equilibrium up to the time of nucleosynthesis [124]. If we impose $N_{\nu}<4$ as an illustrative constraint, then the three righthanded neutrinos must have a temperature $3\left(T_{\nu_{\mathrm{R}}} / T_{\nu_{\mathrm{L}}}\right)^{4}<1$. Since the temperature of the decoupled ν_{R} is determined by entropy conservation (see The Cosmological Parameters-Sec. 22 of this Review), $T_{\nu_{\mathrm{R}}} / T_{\nu_{\mathrm{L}}}=\left[(43 / 4) / g_{*}\left(T_{\mathrm{d}}\right)\right]^{1 / 3}<0.76$, where T_{d} is the decoupling temperature of the ν_{R}. This requires $g_{*}\left(T_{\mathrm{d}}\right)>24$, so decoupling must have occurred at $T_{\mathrm{d}}>140 \mathrm{MeV}$. The decoupling temperature is related to G_{R} through $\left(G_{\mathrm{R}} / G_{\mathrm{F}}\right)^{2} \sim$ $\left(T_{\mathrm{d}} / 3 \mathrm{MeV}\right)^{-3}$, where 3 MeV is the decoupling temperature for $\nu_{\mathrm{L}} \mathrm{s}$. This yields a limit $G_{\mathrm{R}} \lesssim 10^{-2} G_{\mathrm{F}}$. The above argument sets lower limits on the masses of new Z^{\prime} gauge bosons to which right-handed neutrinos would be coupled in models of superstrings [125], or extended technicolour [126]. Similarly a Dirac magnetic moment for neutrinos, which would allow the right-handed states to be produced through scattering and thus increase g_{*}, can be significantly constrained [127], as can any new interactions for neutrinos that have a similar effect [128-130]. Right-handed states can be populated directly by helicity-flip scattering if the neutrino mass is large enough, and this property has been used to infer a bound of $m_{\nu_{\tau}} \lesssim 1 \mathrm{MeV}$ (taking $N_{\nu}<4$) [131]. If there is mixing between active and sterile neutrinos then the effect on BBN is more complicated [132, 133].

BBN limits on the cosmic expansion rate constrain supersymmetric scenarios in which the neutralino or gravitino are very light, so that they contribute to $g_{*}[134]$. A gravitino in the mass range $\sim 10^{-4}-10 \mathrm{eV}$ will affect the expansion rate of the Universe similarly to a light neutralino (which is however now probably ruled out by collider data, especially the decays of the Higgs-like boson). The net contribution to N_{ν} then ranges between 0.74 and 1.69, depending on the gravitino and slepton masses [135].

The limit on the expansion rate during BBN can also be translated into bounds on the mass/lifetime of non-relativistic particles that decay during BBN. This results in an even faster speed-up rate, and typically also changes the entropy [136-138]. If the decays include Standard Model particles, the resulting electromagnetic [139] [95, 125, 140] and/or hadronic [141, 142] cascades can strongly perturb the light elements, which leads to even stronger constraints. Such arguments have been applied to rule out an MeV mass for ν_{τ}, which decays during nucleosynthesis [143].

Decaying-particle arguments have proved very effective in probing supersymmetry. Light-element abundances generally are complementary to accelerator data in constraining SUSY parameter space, with BBN reaching to values kinematically inaccessible to the LHC. Much recent interest has focused on the case in which the next-to-lightest supersymmetric particle is metastable and decays during or after BBN. The constraints on unstable particles discussed above imply stringent bounds on the allowed abundance of such particles [107]; if the metastable particle is charged (e.g., the stau), then it is possible for it to form atom-like electromagnetic bound states with nuclei, and the resulting impact on light elements can be quite complex [8, 97, 144]. Moreover, SUSY decays can destroy ${ }^{7} \mathrm{Li}$ and/or produce ${ }^{6} \mathrm{Li}$, leading to a possible supersymmetric solution to the lithium problems noted above [145] (see [7] for a review).

These arguments impose powerful constraints on supersymmetric inflationary cosmology [95, 125, 140-142], particularly thermal leptogenesis [146]. These limits can be evaded only if the gravitino is massive enough to decay before BBN , i.e., $m_{3 / 2} \gtrsim 50 \mathrm{TeV}[147]$ (which would be unnatural), or if it is in fact the lightest supersymmetric particle and thus stable [125, 140, 148, 149]. Similar constraints apply to moduli - very weakly coupled fields in string theory that obtain an electroweak-scale mass from supersymmetry breaking [150].

Finally, we mention that BBN places powerful constraints on the possibility that there are new large dimensions in nature, perhaps enabling the scale of quantum gravity to be as low as the electroweak scale [151]. Thus, Standard Model fields may be localized on a brane, while gravity alone propagates in the bulk. It has been further noted that the new dimensions may be noncompact, even infinite [152], and the cosmology of such models has attracted considerable attention. The expansion rate in the early Universe can be significantly modified, so BBN is able to set interesting constraints on such possibilities $[153,154]$.

References

[1] R. V. Wagoner, W. A. Fowler and F. Hoyle, Astrophys. J. 148, 3 (1967).
[2] D. N. Schramm and M. S. Turner, Rev. Mod. Phys. 70, 303 (1998), [arXiv:astro-ph/9706069].
[3] G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007), [arXiv:0712.1100].
[4] F. Iocco et al., Phys. Rept. 472, 1 (2009), [arXiv:0809.0631].
[5] R. H. Cyburt et al., Rev. Mod. Phys. 88, 015004 (2016), [arXiv:1505.01076].
[6] S. Sarkar, Rept. on Prog. in Phys. 59, 1493 (1996).
[7] K. Jedamzik and M. Pospelov, New J. Phys. 11, 105028 (2009), [arXiv:0906.2087].
[8] M. Pospelov and J. Pradler, Ann. Rev. Nucl. Part. Sci. 60, 539 (2010), [arXiv:1011.1054].
[9] B. D. Fields, Ann. Rev. Nucl. Part. Sci. 61, 47 (2011), [arXiv:1203.3551].
[10] P.J.E. Peebles, Phys. Rev. Lett. 16, 411 (1966).
[11] J. Bernstein, L. S. Brown and G. Feinberg, Rev. Mod. Phys. 61, 25 (1989).
[12] S. Mukhanov, Int. J. Theor. Phys. 143, 669 (2004).
[13] R. Esmailzadeh, G. D. Starkman and S. Dimopoulos, Astrophys. J. 378, 504 (1991).
[14] R. H. Cyburt, B. D. Fields and K. A. Olive, JCAP 0811, 012 (2008), [arXiv:0808.2818].
[15] R. H. Cyburt, B. D. Fields and K. A. Olive, New Astron. 6, 215 (2001), [arXiv:astro-ph/0102179].
[16] L. Kawano, Technical Report FERMILAB-PUB-92-004A (1992), URL https://ui.adsabs.harvard.edu/abs/ 1992STIN. . . 9225163 K .
[17] O. Pisanti et al., Comput. Phys. Commun. 178, 956 (2008), [arXiv:0705.0290].
[18] A. Arbey, Comput. Phys. Commun. 183, 1822 (2012), [arXiv:1106.1363].
[19] R. Consiglio et al., Computer Physics Communications 233, 237 (2018), [arXiv:1712.04378].
[20] S. Esposito et al., Nucl. Phys. B568, 421 (2000), [arXiv:astro-ph/9906232].
[21] S. Dodelson and M. S. Turner, Phys. Rev. D46, 3372 (1992).
[22] D. Seckel (1993), [hep-ph/9305311].
[23] M. S. Smith, L. H. Kawano and R. A. Malaney, Astrophys. J. Suppl. 85, 219 (1993).
[24] G. Fiorentini et al., Phys. Rev. D58, 063506 (1998), [arXiv:astro-ph/9803177].
[25] A. Coc et al., Astrophys. J. 744, 158 (2012), [arXiv:1107.1117].
[26] K. M. Nollett and S. Burles, Phys. Rev. D61, 123505 (2000), [arXiv:astro-ph/0001440].
[27] R. H. Cyburt, Phys. Rev. D70, 023505 (2004), [arXiv:astroph/0401091].
[28] P. D. Serpico et al., JCAP 0412, 010 (2004), [arXiv:astroph/0408076].
[29] R. N. Boyd et al., Phys. Rev. D82, 105005 (2010), [arXiv:1008.0848].
[30] R.H. Cyburt and B. Davids, Phys. Rev. C78, 012 (2008).
[31] S. Burles, K. M. Nollett and M. S. Turner, Astrophys. J. 552, L1 (2001), [arXiv:astro-ph/0010171].
[32] R. I. Epstein, J. M. Lattimer and D. N. Schramm, Nature 263, 198 (1976).
[33] S. D'Odorico et al., Astron. \& Astrophys. 368, L21 (2001).
[34] D. Romano et al., Mon. Not. Roy. Astron. Soc. 369, 295 (2006), [arXiv:astro-ph/0603190].
[35] M. Pettini and D. V. Bowen, Astrophys. J. 560, 41 (2001), [arXiv:astro-ph/0104474].
[36] R. Cooke et al., Astrophys. J. 781, 1, 31 (2014), [arXiv:1308.3240].
[37] R. J. Cooke et al., Astrophys. J. 830, 2, 148 (2016), [arXiv:1607.03900].
[38] E.O. Zavarygin et al., arXiv:1706.09512(2017).
[39] S. A. Balashev et al., Mon. Not. Roy. Astron. Soc. 458, 2, 2188 (2016), [arXiv:1511.01797].
[40] S. A. Levshakov et al., Astrophys. J. 565, 696 (2002), [arXiv:astro-ph/0105529].
[41] M. Fumagalli, J. M. O'Meara and J. X. Prochaska, Science 334, 1245 (2011), [arXiv:1111.2334].
[42] R. Srianand et al., Mon. Not. Roy. Astron. Soc. 405, 1888 (2010), [arXiv:1002.4620].
[43] P. Noterdaeme et al., Astron. \& Astrophys. 542, L33 (2012), [arXiv:1205.3777].
[44] M. Pettini and R. Cooke, Mon. Not. Roy. Astron. Soc. 425, 2477 (2012), [arXiv:1205.3785].
[45] S. Riemer-Sørensen et al., Mon. Not. Roy. Astron. Soc. 447, 2925 (2015), [arXiv:1412.4043].
[46] S. Riemer-Sørensen et al., Mon. Not. Roy. Astron. Soc. 468, 3, 3239 (2017), [arXiv:1703.06656].
[47] B. D. Fields et al., JCAP (2019).
[48] K. M. Nollett and G. P. Holder (2011), [arXiv:1112.2683].
[49] L. E. Marcucci et al., Phys. Rev. Lett. 116, 10, 102501 (2016), [Erratum: Phys. Rev. Lett.117,no.4,049901(2016)], [arXiv:1510.07877].
[50] C. Gustavino, Euro. Phys. J. Web of Conferences, 136, 01009 (2017).
[51] R. J. Cooke, M. Pettini and C. C. Steidel, Astrophys. J. 855, 2, 102 (2018), [arXiv:1710.11129].
[52] E. O. Zavarygin et al., Mon. Not. R. Astron. Soc 477, 4, 5536 (2018), [arXiv:1706.09512].
[53] F. van de Voort et al., Mon. Not. R. Astron. Soc 477, 1, 80 (2018), [arXiv:1704.08254].
[54] J. L. Linsky et al., Astrophys. J. 647, 1106 (2006), [arXiv:astro-ph/0608308].
[55] M. Pettini and D. V. Bowen, Astrophys. J. 560, 1, 41 (2001), [arXiv:astro-ph/0104474].
[56] S. D'Odorico, M. Dessauges-Zavadsky and P. Molaro, Astron. \& Astrophys. 368, L21 (2001), [arXiv:astroph/0102162].
[57] R. Srianand et al., Mon. Not. R. Astron. Soc 405, 3, 1888 (2010), [arXiv:1002.4620].
[58] S. Riemer-Sørensen et al., Mon. Not. R. Astron. Soc 447, 3, 2925 (2015), [arXiv:1412.4043].
[59] Y. I. Izotov, T. X. Thuan and N. G. Guseva, Mon. Not. Roy. Astron. Soc. 445, 1, 778 (2014), [arXiv:1408.6953].
[60] Y. I. Izotov et al., Astrophys. J. 527, 757 (1999), [arXiv:astro-ph/9907228].
[61] K. A. Olive and E. D. Skillman, Astrophys. J. 617, 29 (2004), [arXiv:astro-ph/0405588].
[62] M. Valerdi et al., Astrophys. J. 876, 2, 98 (2019), [arXiv:1904.01594].
[63] E. Aver, K. A. Olive and E. D. Skillman, JCAP 1507, 07, 011 (2015), [arXiv:1503.08146].
[64] Y.I. Izotov et al., Astron. \& Astrophys. 558, A57 (2013).
[65] D. S. Aguado et al., Astrophys. J. Lett. 874, 2, L21 (2019), [arXiv:1904.04892].
[66] M. Spite and F. Spite, Nature 297, 483 (1982).
[67] E. Vangioni-Flam et al., New Astron. 4, 245 (1999), [arXiv:astro-ph/9811327].
[68] S. G. Ryan et al., Astrophys. J. 530, L57 (2000), [arXiv:astro-ph/9905211].
[69] P. Bonifacio and P. Molaro, Mon. Not. Roy. Astron. Soc. 285, 847 (1997), [arXiv:astro-ph/9611043].
[70] R. Rebolo, P. Molaro and J. E. Beckman, Astron. \& Astrophys. 192, 192 (1988).
[71] P. Bonifacio et al., Astron. \& Astrophys. 462, 851 (2007).
[72] W. Aoki et al., Astrophys. J. 698, 1803 (2009), [arXiv:0904.1448].
[73] L. Sbordone et al., Astron. \& Astrophys. 522, A26 (2010).
[74] P. Bonifacio et al., Astron. \& Astrophys. 612, A65 (2018), [arXiv:1801.03935].
[75] P. Bonifacio et al., Astron. \& Astrophys. 390, 91 (2002), [arXiv:astro-ph/0204332].
[76] J. Melendez et al., Astron. \& Astrophys. 515, L3 (2010).
[77] M.H. Pinsonneault et al., Astrophys. J. 574, 389 (2002).
[78] A. J. Korn et al., Nature 442, 657 (2006), [arXiv:astroph/0608201].
[79] P. Molaro et al., Memorie della Soc. Astronomica Italiana Supp. 22, 233 (2012).
[80] X. Fu et al., Mon. Not. R. Astron. Soc 452, 325 (2015).
[81] M. Asplund et al., Astrophys. J. 644, 229 (2006), [arXiv:astro-ph/0510636].
[82] K. Lind et al., Astron. \& Astrophys. 554, 96 (2013).
[83] R. Cayrel et al., Astron. \& Astrophys. 473, L37 (2007).
[84] M. Steffen et al., Memorie della Soc. Astronomica Italiana Supp. 22, 152 (2012).
[85] D. S. Balser and T. M. Bania, Astrophys. J. 156, 6, 280 (2018), [arXiv:1810.09422].
[86] H. Reeves et al., Astrophys. J. 179, 909 (1973).
[87] M. Fukugita and P. J. E. Peebles, Astrophys. J. 616, 643 (2004), [arXiv:astro-ph/0406095].
[88] R. Cen and J. P. Ostriker, Astrophys. J. 514, 1 (1999), [arXiv:astro-ph/9806281].
[89] G. Jungman et al., Phys. Rev. D54, 1332 (1996), [arXiv:astro-ph/9512139].
[90] Planck Collaboration et al., arXiv e-prints arXiv:1807.06209 (2018), [arXiv:1807.06209].
[91] P.A.R. Ade et al., Astron. \& Astrophys. 594, A13 (2016).
[92] G. Steigman, D. N. Schramm and J. E. Gunn, Phys. Lett. B66, 202 (1977), [,159(1977)].
[93] E. Lisi, S. Sarkar and F. L. Villante, Phys. Rev. D59, 123520 (1999), [hep-ph/9901404].
[94] R. Trotta and S. H. Hansen, Phys. Rev. D69, 023509 (2004), [arXiv:astro-ph/0306588].
[95] R. H. Cyburt, B. D. Fields and K. A. Olive, Phys. Lett. B567, 227 (2003), [arXiv:astro-ph/0302431].
[96] C. Pitrou et al., Phys. Rept. 754, 1 (2018), [arXiv:1801.08023].
[97] R. H. Cyburt et al., JCAP 1305, 014 (2013), [arXiv:1303.0574].
[98] N. Chakraborty, B. D. Fields and K. A. Olive, Phys. Rev. D83, 063006 (2011), [arXiv:1011.0722].
[99] C. Broggini et al., JCAP 1206, 030 (2012), [arXiv:1202.5232].
[100] P. D. O'Malley et al., Phys. Rev. C84, 042801 (2011).
[101] F. Hammache et al., Phys. Rev. C88, 6, 062802 (2013), [arXiv:1312.0894].
[102] M. W. Paris et al., Nucl. Data Sheets 120, 184 (2014), [arXiv:1304.3153].
[103] O. Richard, G. Michaud and J. Richer, Astrophys. J. 619, 538 (2005), [arXiv:astro-ph/0409672].
[104] P. Gruyters et al., Astron. Astrophys. 555, 31 (2013).
[105] K. Jedamzik and J. B. Rehm, Phys. Rev. D64, 023510 (2001), [arXiv:astro-ph/0101292].
[106] D. J. Fixsen et al., Astrophys. J. 473, 576 (1996), [arXiv:astro-ph/9605054].
[107] M. Kawasaki, K. Kohri and T. Moroi, Phys. Rev. D71, 083502 (2005), [arXiv:astro-ph/0408426].
[108] K. Jedamzik, Phys. Rev. D70, 063524 (2004), [arXiv:astroph/0402344].
[109] A. Goudelis, M. Pospelov and J. Pradler, Phys. Rev. Lett. 116, 21, 211303 (2016), [arXiv:1510.08858].
[110] J. D. Barrow, Phys. Rev. D35, 1805 (1987).
[111] B. A. Campbell and K. A. Olive, Phys. Lett. B345, 429 (1995), [hep-ph/9411272].
[112] L. Bergstrom, S. Iguri and H. Rubinstein, Phys. Rev. D60, 045005 (1999), [arXiv:astro-ph/9902157].
[113] V. V. Flambaum and E. V. Shuryak, Phys. Rev. D65, 103503 (2002), [hep-ph/0201303].
[114] A. Coc et al., Phys. Rev. D76, 023511 (2007), [arXiv:astroph/0610733].
[115] J. C. Berengut et al., Phys. Rev. D87, 8, 085018 (2013), [arXiv:1301.1738].
[116] Z. Hou et al., Phys. Rev. D87, 083008 (2013), [arXiv:1104.2333].
[117] R. Keisler et al., Astrophys. J. 743, 28 (2011), [arXiv:1105.3182].
[118] J. Hamann et al., Phys. Rev. Lett. 105, 181301 (2010), [arXiv:1006.5276].
[119] F. S. Accetta, L. M. Krauss and P. Romanelli, Phys. Lett. B248, 146 (1990).
[120] K. M. Nollett and R. E. Lopez, Phys. Rev. D66, 063507 (2002), [arXiv:astro-ph/0204325].
[121] C. Bambi, M. Giannotti and F. L. Villante, Phys. Rev. D71, 123524 (2005), [arXiv:astro-ph/0503502].
[122] E. W. Kolb, M. J. Perry and T. P. Walker, Phys. Rev. D33, 869 (1986).
[123] A. Coc et al., Phys. Rev. D73, 083525 (2006), [arXiv:astroph/0601299].
[124] K. A. Olive, D. N. Schramm and G. Steigman, Nucl. Phys. B180, 497 (1981).
[125] J. R. Ellis et al., Phys. Lett. 167B, 457 (1986).
[126] L. M. Krauss, J. Terning and T. Appelquist, Phys. Rev. Lett. 71, 823 (1993), [hep-ph/9305265].
[127] J. A. Morgan, Phys. Lett. 102B, 247 (1981).
[128] E. W. Kolb, M. S. Turner and T. P. Walker, Phys. Rev. D34, 2197 (1986).
[129] J. A. Grifols and E. Masso, Mod. Phys. Lett. A2, 205 (1987).
[130] K. S. Babu, R. N. Mohapatra and I. Z. Rothstein, Phys. Rev. Lett. 67, 545 (1991).
[131] A. D. Dolgov, S. H. Hansen and D. V. Semikoz, Nucl. Phys. B524, 621 (1998), [hep-ph/9712284].
[132] K. Enqvist, K. Kainulainen and M. J. Thomson, Nucl. Phys. B373, 498 (1992).
[133] A. D. Dolgov, Phys. Rept. 370, 333 (2002), [hepph/0202122].
[134] J. A. Grifols, R. N. Mohapatra and A. Riotto, Phys. Lett. B400, 124 (1997), [hep-ph/9612253].
[135] H. K. Dreiner et al., Phys. Rev. D85, 065027 (2012), [arXiv:1111.5715].
[136] K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775 (1977).
[137] D. A. Dicus et al., Phys. Rev. D17, 1529 (1978).
[138] R. J. Scherrer and M. S. Turner, Astrophys. J. 331, 19 (1988), [Astrophys. J.331,33(1988)].
[139] D. Lindley, Mon. Not. R. Astron. Soc 188, 15 (1979).
[140] J. R. Ellis et al., Nucl. Phys. B373, 399 (1992).
[141] M. H. Reno and D. Seckel, Phys. Rev. D37, 3441 (1988).
[142] S. Dimopoulos et al., Nucl. Phys. B311, 699 (1989).
[143] S. Sarkar and A. M. Cooper-Sarkar, Phys. Lett. 148B, 347 (1984), [,I.362(1984)].
[144] M. Kawasaki, K. Kohri and T. Moroi, Phys. Lett. B649, 436 (2007), [hep-ph/0703122].
[145] K. Jedamzik et al., JCAP 0607, 007 (2006), [hepph/0512044].
[146] S. Davidson et al., Phys. Rev. 466, 105 (2008).
[147] S. Weinberg, Phys. Rev. Lett. 48, 1303 (1982).
[148] R. H. Cyburt et al., Phys. Rev. D67, 103521 (2003), [arXiv:astro-ph/0211258].
[149] M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B606, 518 (2001), [Erratum: Nucl. Phys.B790,336(2008)], [hep-ph/0012052].
[150] G. D. Coughlan et al., Physics Letters B 131, 1-3, 59 (1983).
[151] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D59, 086004 (1999), [hep-ph/9807344].
[152] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), [hep-ph/9905221].
[153] J. M. Cline, C. Grojean and G. Servant, Phys. Rev. Lett. 83, 4245 (1999), [hep-ph/9906523].
[154] P. Binetruy et al., Phys. Lett. B477, 285 (2000), [hepth/9910219].

25. Cosmological Parameters

Updated September 2019, by O. Lahav (University College London) and A.R. Liddle (Perimeter Institute for Theoretical Physics and Universidade de Lisboa).

25.1 Parametrizing the Universe

Rapid advances in observational cosmology have led to the establishment of a precision cosmological model, with many of the key cosmological parameters determined to one or two significant figure accuracy. Particularly prominent are measurements of cosmic microwave background (CMB) anisotropies, with the highest precision observations being those of the Planck Satellite [1, 2] which supersede the landmark WMAP results [3,4]. However the most accurate model of the Universe requires consideration of a range of observations, with complementary probes providing consistency checks, lifting parameter degeneracies, and enabling the strongest constraints to be placed.
The term 'cosmological parameters' is forever increasing in its scope, and nowadays often includes the parameterization of some functions, as well as simple numbers describing properties of the Universe. The original usage referred to the parameters describing the global dynamics of the Universe, such as its expansion rate and curvature. Now we wish to know how the matter budget of the Universe is built up from its constituents: baryons, photons, neutrinos, dark matter, and dark energy. We also need to describe the nature of perturbations in the Universe, through global statistical descriptors such as the matter and radiation power spectra. There may be additional parameters describing the physical state of the Universe, such as the ionization fraction as a function of time during the era since recombination. Typical comparisons of cosmological models with observational data now feature between five and ten parameters.

25.1.1 The global description of the Universe

Ordinarily, the Universe is taken to be a perturbed RobertsonWalker space-time, with dynamics governed by Einstein's equations. This is described in detail in the Big-Bang Cosmology chapter in this volume. Using the density parameters Ω_{i} for the various matter species and Ω_{Λ} for the cosmological constant, the Friedmann equation can be written

$$
\begin{equation*}
\sum_{i} \Omega_{i}+\Omega_{\Lambda}-1=\frac{k}{R^{2} H^{2}} \tag{25.1}
\end{equation*}
$$

where the sum is over all the different species of material in the Universe. This equation applies at any epoch, but later in this article we will use the symbols Ω_{i} and Ω_{Λ} to refer specifically to the present-epoch values.
The complete present-epoch state of the homogeneous Universe can be described by giving the current-epoch values of all the density parameters and the Hubble constant h (the present-day Hubble parameter being written $H_{0}=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$). A typical collection would be baryons Ω_{b}, photons Ω_{γ}, neutrinos Ω_{ν}, and cold dark matter Ω_{c} (given charge neutrality, the electron density is guaranteed to be too small to be worth considering separately and is effectively included with the baryons). The spatial curvature can then be determined from the other parameters using Eq. (25.1). The total present matter density $\Omega_{\mathrm{m}}=\Omega_{\mathrm{c}}+\Omega_{\mathrm{b}}$ may be used in place of the cold dark matter density Ω_{c}.
These parameters also allow us to track the history of the Universe, at least back until an epoch where interactions allow interchanges between the densities of the different species; this is believed to have last happened at neutrino decoupling, shortly before Big-Bang Nucleosynthesis (BBN). To probe further back into the Universe's history requires assumptions about particle interactions, and perhaps about the nature of physical laws themselves.
The standard neutrino sector has three flavors. For neutrinos of mass in the range $5 \times 10^{-4} \mathrm{eV}$ to 1 MeV , the density parameter in neutrinos is predicted to be

$$
\begin{equation*}
\Omega_{\nu} h^{2}=\frac{\sum m_{\nu}}{93.14 \mathrm{eV}}, \tag{25.2}
\end{equation*}
$$

where the sum is over all families with mass in that range (higher masses need a more sophisticated calculation). We use units with
$c=1$ throughout. Results on atmospheric and Solar neutrino oscillations [5] imply non-zero mass-squared differences between the three neutrino flavors. These oscillation experiments cannot tell us the absolute neutrino masses, but within the simple assumption of a mass hierarchy suggest a lower limit of approximately 0.06 eV for the sum of the neutrino masses (see the Neutrino chapter).
Even a mass this small has a potentially observable effect on the formation of structure, as neutrino free-streaming damps the growth of perturbations. Analyses commonly now either assume a neutrino mass sum fixed at this lower limit, or allow the neutrino mass sum to be a variable parameter. To date there is no decisive evidence of any effects from either neutrino masses or an otherwise non-standard neutrino sector, and observations impose quite stringent limits; see the Neutrinos in Cosmology chapter. However, we note that the inclusion of the neutrino mass sum as a free parameter can affect the derived values of other cosmological parameters

25.1.2 Inflation and perturbations

A complete model of the Universe should include a description of deviations from homogeneity, at least in a statistical way. Indeed, some of the most powerful probes of the parameters described above come from the evolution of perturbations, so their study is naturally intertwined with the determination of cosmological parameters.
There are many different notations used to describe the perturbations, both in terms of the quantity used to and the definition of the statistical measure. We use the dimensionless power spectrum Δ^{2} as defined in the Big Bang Cosmology section (also denoted \mathcal{P} in some of the literature). If the perturbations obey Gaussian statistics, the power spectrum provides a complete description of their properties.
From a theoretical perspective, a useful quantity to describe the perturbations is the curvature perturbation \mathcal{R}, which measures the spatial curvature of a comoving slicing of the space-time. A simple case is the Harrison-Zeldovich spectrum, which corresponds to a constant $\Delta_{\mathcal{R}}^{2}$. More generally, one can approximate the spectrum by a power law, writing

$$
\begin{equation*}
\Delta_{\mathcal{R}}^{2}(k)=\Delta_{\mathcal{R}}^{2}\left(k_{*}\right)\left[\frac{k}{k_{*}}\right]^{n_{\mathrm{s}}-1}, \tag{25.3}
\end{equation*}
$$

where n_{s} is known as the spectral index, always defined so that $n_{\mathrm{s}}=1$ for the Harrison-Zeldovich spectrum, and k_{*} is an arbitrarily chosen scale. The initial spectrum, defined at some early epoch of the Universe's history, is usually taken to have a simple form such as this power law, and we will see that observations require n_{s} close to one. Subsequent evolution will modify the spectrum from its initial form.
The simplest mechanism for generating the observed perturbations is the inflationary cosmology, which posits a period of accelerated expansion in the Universe's early stages $[6,7]$. It is a useful working hypothesis that this is the sole mechanism for generating perturbations, and it may further be assumed to be the simplest class of inflationary model, where the dynamics are equivalent to that of a single scalar field ϕ with canonical kinetic energy slowly rolling on a potential $V(\phi)$. One may seek to verify that this simple picture can match observations and to determine the properties of $V(\phi)$ from the observational data. Alternatively, more complicated models, perhaps motivated by contemporary fundamental physics ideas, may be tested on a model-by-model basis (see more in the Inflation chapter in this volume).

Inflation generates perturbations through the amplification of quantum fluctuations, which are stretched to astrophysical scales by the rapid expansion. The simplest models generate two types, density perturbations that come from fluctuations in the scalar field and its corresponding scalar metric perturbation, and gravitational waves that are tensor metric fluctuations. The former experience gravitational instability and lead to structure formation, while the latter can influence the CMB anisotropies. Defining slow-roll parameters (with primes indicating derivatives with
respect to the scalar field) as

$$
\begin{equation*}
\epsilon=\frac{m_{\mathrm{Pl}}^{2}}{16 \pi}\left(\frac{V^{\prime}}{V}\right)^{2} \quad, \quad \eta=\frac{m_{\mathrm{Pl}}^{2}}{8 \pi} \frac{V^{\prime \prime}}{V} \tag{25.4}
\end{equation*}
$$

which should satisfy $\epsilon,|\eta| \ll 1$, the spectra can be computed using the slow-roll approximation as

$$
\begin{equation*}
\left.\Delta_{\mathcal{R}}^{2}(k) \simeq \frac{8}{3 m_{\mathrm{Pl}}^{4}} \frac{V}{\epsilon}\right|_{k=a H} \quad,\left.\quad \Delta_{\mathrm{t}}^{2}(k) \simeq \frac{128}{3 m_{\mathrm{Pl}}^{4}} V\right|_{k=a H} \tag{25.5}
\end{equation*}
$$

In each case, the expressions on the right-hand side are to be evaluated when the scale k is equal to the Hubble radius during inflation. The symbol ' \simeq ' here indicates use of the slow-roll approximation, which is expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices [8]:

$$
\begin{equation*}
n_{\mathrm{s}} \simeq 1-6 \epsilon+2 \eta \quad ; \quad n_{\mathrm{t}} \simeq-2 \epsilon \tag{25.6}
\end{equation*}
$$

Another useful quantity is the ratio of the two spectra, defined by

$$
\begin{equation*}
r \equiv \frac{\Delta_{\mathrm{t}}^{2}\left(k_{*}\right)}{\Delta_{\mathcal{R}}^{2}\left(k_{*}\right)} \tag{25.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
r \simeq 16 \epsilon \simeq-8 n_{\mathrm{t}} \tag{25.8}
\end{equation*}
$$

which is known as the consistency equation.
One could consider corrections to the power-law approximation, which we discuss later. However, for now we make the working assumption that the spectra can be approximated by such power laws. The consistency equation shows that r and n_{t} are not independent parameters, and so the simplest inflation models give initial conditions described by three parameters, usually taken as $\Delta_{\mathcal{R}}^{2}, n_{\mathrm{s}}$, and r, all to be evaluated at some scale k_{*}, usually the 'statistical center' of the range explored by the data. Alternatively, one could use the parametrization V, ϵ, and η, all evaluated at a point on the putative inflationary potential.

After the perturbations are created in the early Universe, they undergo a complex evolution up until the time they are observed in the present Universe. When the perturbations are small, this can be accurately followed using a linear theory numerical code such as CAMB or CLASS [9]. This works right up to the present for the CMB, but for density perturbations on small scales nonlinear evolution is important and can be addressed by a variety of semi-analytical and numerical techniques. However the analysis is made, the outcome of the evolution is in principle determined by the cosmological model and by the parameters describing the initial perturbations, and hence can be used to determine them.

Of particular interest are CMB anisotropies. Both the total intensity and two independent polarization modes are predicted to have anisotropies. These can be described by the radiation angular power spectra C_{ℓ} as defined in the CMB article in this volume, and again provide a complete description if the density perturbations are Gaussian.

25.1.3 The standard cosmological model

We now have most of the ingredients in place to describe the cosmological model. Beyond those of the previous subsections, we need a measure of the ionization state of the Universe. The Universe is known to be highly ionized at low redshifts (otherwise radiation from distant quasars would be heavily absorbed in the ultra-violet), and the ionized electrons can scatter microwave photons, altering the pattern of observed anisotropies. The most convenient parameter to describe this is the optical depth to scattering τ (i.e., the probability that a given photon scatters once); in the approximation of instantaneous and complete reionization, this could equivalently be described by the redshift of reionization $z_{\text {ion }}$.

As described in Sec. 25.4, models based on these parameters are able to give a good fit to the complete set of high-quality data available at present, and indeed some simplification is possible. Observations are consistent with spatial flatness, and the
inflation models so far described automatically generate negligible spatial curvature, so we can set $k=0$; the density parameters then must sum to unity, and so one of them can be eliminated. The neutrino energy density is often not taken as an independent parameter; provided that the neutrino sector has the standard interactions, the neutrino energy density, while relativistic, can be related to the photon density using thermal physics arguments, and a minimal assumption takes the neutrino mass sum to be that of the lowest mass solution to the neutrino oscillation constraints, namely 0.06 eV . In addition, there is no observational evidence for the existence of tensor perturbations (though the upper limits are fairly weak), and so r could be set to zero. This leaves seven parameters, which is the smallest set that can usefully be compared to the present cosmological data. This model is referred to by various names, including $\Lambda \mathrm{CDM}$, the concordance cosmology, and the standard cosmological model.

Of these parameters, only Ω_{γ} is accurately measured directly. The radiation density is dominated by the energy in the CMB, and the COBE satellite FIRAS experiment determined its temperature to be $T=2.7255 \pm 0.0006 \mathrm{~K}[10],{ }^{1}$ corresponding to $\Omega_{\gamma}=2.47 \times 10^{-5} h^{-2}$. It typically can be taken as fixed when fitting other data. Hence the minimum number of cosmological parameters varied in fits to data is six, though as described below there may additionally be many 'nuisance' parameters necessary to describe astrophysical processes influencing the data.

In addition to this minimal set, there is a range of other parameters that might prove important in future as the data-sets further improve, but for which there is so far no direct evidence, allowing them to be set to specific values for now. We discuss various speculative options in the next section. For completeness at this point, we mention one other interesting quantity, the helium fraction, which is a non-zero parameter that can affect the CMB anisotropies at a subtle level. It is usually fixed in microwave anisotropy studies, but the data are approaching a level where allowing its variation may become mandatory.

Most attention to date has been on parameter estimation, where a set of parameters is chosen by hand and the aim is to constrain them. Interest has been growing towards the higher-level inference problem of model selection, which compares different choices of parameter sets. Bayesian inference offers an attractive framework for cosmological model selection, setting a tension between model predictiveness and ability to fit the data [11].

25.1.4 Derived parameters

The parameter list of the previous subsection is sufficient to give a complete description of cosmological models that agree with observational data. However, it is not a unique parameterization, and one could instead use parameters derived from that basic set. Parameters that can be obtained from the set given above include the age of the Universe, the present horizon distance, the present neutrino background temperature, the epoch of matterradiation equality, the epochs of recombination and decoupling, the epoch of transition to an accelerating Universe, the baryon-to-photon ratio, and the baryon-to-dark-matter density ratio. In addition, the physical densities of the matter components, $\Omega_{i} h^{2}$, are often more useful than the density parameters. The density perturbation amplitude can be specified in many different ways other than the large-scale primordial amplitude, for instance, in terms of its effect on the CMB, or by specifying a short-scale quantity, a common choice being the present linear-theory mass dispersion on a scale of $8 h^{-1} \mathrm{Mpc}$, known as σ_{8}.

Different types of observation are sensitive to different subsets of the full cosmological parameter set, and some are more naturally interpreted in terms of some of the derived parameters of this subsection than on the original base parameter set. In particular, most types of observation feature degeneracies whereby they are unable to separate the effects of simultaneously varying specific combinations of several of the base parameters.

[^52]
25.2 Extensions to the standard model

At present, there is no positive evidence in favor of extensions of the standard model. These are becoming increasingly constrained by the data, though there always remains the possibility of trace effects at a level below present observational capability.

25.2.1 More general perturbations

The standard cosmology assumes adiabatic, Gaussian perturbations. Adiabaticity means that all types of material in the Universe share a common perturbation, so that if the space-time is foliated by constant-density hypersurfaces, then all fluids and fields are homogeneous on those slices, with the perturbations completely described by the variation of the spatial curvature of the slices. Gaussianity means that the initial perturbations obey Gaussian statistics, with the amplitudes of waves of different wavenumbers being randomly drawn from a Gaussian distribution of width given by the power spectrum. Note that gravitational instability generates non-Gaussianity; in this context, Gaussianity refers to a property of the initial perturbations, before they evolve.

The simplest inflation models, based on one dynamical field, predict adiabatic perturbations and a level of non-Gaussianity that is too small to be detected by any experiment so far conceived. For present data, the primordial spectra are usually assumed to be power laws.

25.2.1.1 Non-power-law spectra

For typical inflation models, it is an approximation to take the spectra as power laws, albeit usually a good one. As data quality improves, one might expect this approximation to come under pressure, requiring a more accurate description of the initial spectra, particularly for the density perturbations. In general, one can expand $\ln \Delta_{\mathcal{R}}^{2}$ as
$\ln \Delta_{\mathcal{R}}^{2}(k)=\ln \Delta_{\mathcal{R}}^{2}\left(k_{*}\right)+\left(n_{\mathrm{s}, *}-1\right) \ln \frac{k}{k_{*}}+\left.\frac{1}{2} \frac{d n_{\mathrm{s}}}{d \ln k}\right|_{*} \ln ^{2} \frac{k}{k_{*}}+\cdots$,
where the coefficients are all evaluated at some scale k_{*}. The term $d n_{\mathrm{s}} /\left.d \ln k\right|_{*}$ is often called the running of the spectral index [12]. Once non-power-law spectra are allowed, it is necessary to specify the scale k_{*} at which the spectral index is defined.

25.2.1.2 Isocurvature perturbations

An isocurvature perturbation is one that leaves the total density unperturbed, while perturbing the relative amounts of different materials. If the Universe contains N fluids, there is one growing adiabatic mode and $N-1$ growing isocurvature modes (for reviews see Ref. [7] and Ref. [13]). These can be excited, for example, in inflationary models where there are two or more fields that acquire dynamically-important perturbations. If one field decays to form normal matter, while the second survives to become the dark matter, this will generate a cold dark matter isocurvature perturbation.
In general, there are also correlations between the different modes, and so the full set of perturbations is described by a matrix giving the spectra and their correlations. Constraining such a general construct is challenging, though constraints on individual modes are beginning to become meaningful, with no evidence that any other than the adiabatic mode must be non-zero.

25.2.1.3 Seeded perturbations

An alternative to laying down perturbations at very early epochs is that they are seeded throughout cosmic history, for instance by topological defects such as cosmic strings. It has long been excluded that these are the sole original of structure, but they could contribute part of the perturbation signal, current limits being just a few percent [14]. In particular, cosmic defects formed in a phase transition ending inflation is a plausible scenario for such a contribution.

25.2.1.4 Non-Gaussianity

Multi-field inflation models can also generate primordial nonGaussianity (reviewed, e.g., in Ref. [7]). The extra fields can either be in the same sector of the underlying theory as the inflaton, or completely separate, an interesting example of the latter being the curvaton model [15]. Current upper limits on non-Gaussianity are
becoming stringent, but there remains strong motivation to push down those limits and perhaps reveal trace non-Gaussianity in the data. If non-Gaussianity is observed, its nature may favor an inflationary origin, or a different one such as topological defects.

25.2.2 Dark matter properties

Dark matter properties are discussed in the Dark Matter chapter in this volume. The simplest assumption concerning the dark matter is that it has no significant interactions with other matter, and that its particles have a negligible velocity as far as structure formation is concerned. Such dark matter is described as 'cold,' and candidates include the lightest supersymmetric particle, the axion, and primordial black holes. As far as astrophysicists are concerned, a complete specification of the relevant cold dark matter properties is given by the density parameter Ω_{c}, though those seeking to detect it directly need also to know its interaction properties.
Cold dark matter is the standard assumption and gives an excellent fit to observations, except possibly on the shortest scales where there remains some controversy concerning the structure of dwarf galaxies and possible substructure in galaxy halos. It has long been excluded for all the dark matter to have a large velocity dispersion, so-called 'hot' dark matter, as it does not permit galaxies to form; for thermal relics the mass must be above about 1 keV to satisfy this constraint, though relics produced non-thermally, such as the axion, need not obey this limit. However, in future further parameters might need to be introduced to describe dark matter properties relevant to astrophysical observations. Suggestions that have been made include a modest velocity dispersion (warm dark matter) and dark matter self-interactions. There remains the possibility that the dark matter is comprized of two separate components, e.g., a cold one and a hot one, an example being if massive neutrinos have a non-negligible effect.

25.2.3 Relativistic species

The number of relativistic species in the young Universe (omitting photons) is denoted $N_{\text {eff }}$. In the standard cosmological model only the three neutrino species contribute, and its baseline value is assumed fixed at 3.045 (the small shift from 3 is because of a slight predicted deviation from a thermal distribution [16]). However other species could contribute, for example an extra neutrino, possibly of sterile type, or massless Goldstone bosons or other scalars. It is hence interesting to study the effect of allowing this parameter to vary, and indeed although 3.045 is consistent with the data, most analyses currently suggest a somewhat higher value (e.g., Ref. [17]).

25.2.4 Dark energy

While the standard cosmological model given above features a cosmological constant, in order to explain observations indicating that the Universe is presently accelerating, further possibilities exist under the general headings of 'dark energy' and 'modified gravity'. These topics are described in detail in the Dark Energy chapter in this volume. This article focuses on the case of the cosmological constant, since this simple model is a good match to existing data. We note that more general treatments of dark energy/modified gravity will lead to weaker constraints on other parameters.

25.2.5 Complex ionization history

The full ionization history of the Universe is given by the ionization fraction as a function of redshift z. The simplest scenario takes the ionization to have the small residual value left after recombination up to some redshift $z_{\text {ion }}$, at which point the Universe instantaneously reionizes completely. Then there is a one-to-one correspondence between τ and $z_{\text {ion }}$ (that relation, however, also depending on other cosmological parameters). An accurate treatment of this process will track separate histories for hydrogen and helium. While currently rapid ionization appears to be a good approximation, as data improve a more complex ionization history may need to be considered.

25.2.6 Varying 'constants'

Variation of the fundamental constants of Nature over cosmological times is another possible enhancement of the standard cosmology. There is a long history of study of variation of the
gravitational constant G_{N}, and more recently attention has been drawn to the possibility of small fractional variations in the finestructure constant. There is presently no observational evidence for the former, which is tightly constrained by a variety of measurements. Evidence for the latter has been claimed from studies of spectral line shifts in quasar spectra at redshift $z \approx 2$ [18], but this is presently controversial and in need of further observational study.

25.2.7 Cosmic topology

The usual hypothesis is that the Universe has the simplest topology consistent with its geometry, for example that a flat universe extends forever. Observations cannot tell us whether that is true, but they can test the possibility of a non-trivial topology on scales up to roughly the present Hubble scale. Extra parameters would be needed to specify both the type and scale of the topology; for example, a cuboidal topology would need specification of the three principal axis lengths and orientation. At present, there is no evidence for non-trivial cosmic topology [19].

25.3 Cosmological Probes

The goal of the observational cosmologist is to utilize astronomical information to derive cosmological parameters. The transformation from the observables to the parameters usually involves many assumptions about the nature of the data, as well as of the dark sector. Below we outline the physical processes involved in each of the major probes, and the main recent results. The first two subsections concern probes of the homogeneous Universe, while the remainder consider constraints from perturbations.

In addition to statistical uncertainties we note three sources of systematic uncertainties that will apply to the cosmological parameters of interest: (i) due to the assumptions on the cosmological model and its priors (i.e., the number of assumed cosmological parameters and their allowed range); (ii) due to the uncertainty in the astrophysics of the objects (e.g., light-curve fitting for supernovae or the mass-temperature relation of galaxy clusters); and (iii) due to instrumental and observational limitations (e.g., the effect of 'seeing' on weak gravitational lensing measurements, or beam shape on CMB anisotropy measurements).

These systematics, the last two of which appear as 'nuisance parameters', pose a challenging problem to the statistical analysis. We attempt a statistical fit to the whole Universe with 6 to 12 parameters, but we might need to include hundreds of nuisance parameters, some of them highly correlated with the cosmological parameters of interest (for example time-dependent galaxy biasing could mimic the growth of mass fluctuations). Fortunately, there is some astrophysical prior knowledge on these effects, and a small number of physically-motivated free parameters would ideally be preferred in the cosmological parameter analysis.

25.3.1 Measures of the Hubble constant

In 1929, Edwin Hubble discovered the law of expansion of the Universe by measuring distances to nearby galaxies. The slope of the relation between the distance and recession velocity is defined to be the present-epoch Hubble constant, H_{0}. Astronomers argued for decades about the systematic uncertainties in various methods and derived values over the wide range $40 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \lesssim H_{0} \lesssim 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

One of the most reliable results on the Hubble constant came from the Hubble Space Telescope (HST) Key Project [20]. This study used the empirical period-luminosity relation for Cepheid variable stars, and calibrated a number of secondary distance indicators-Type Ia Supernovae (SNe Ia), the Tully-Fisher relation, surface-brightness fluctuations, and Type II Supernovae. This approach was further extended, based on HST observations of 70 long-period Cepheids in the Large Magellanic Cloud, combined with Milky Way parallaxes and masers in NGC4258, to yield $H_{0}=74.0 \pm 1.4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [21] (the SH0ES project). The major sources of uncertainty in this result are thought to be due to the heavy element abundance of the Cepheids and the distance to the fiducial nearby galaxy, the Large Magellanic Cloud, relative to which all Cepheid distances are measured.

Three other methods have been used recently. One is a calibration of the tip of the red-giant branch applied to Type Ia
supernovae, the Carnegie-Chicago Hubble Programme (CCHP) finding $H_{0}=69.8 \pm 0.8$ (stat.) ± 1.7 (sys.) $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ [22]. The second uses the method of time delay in six gravitationallylensed quasars, with the result $H_{0}=73.3_{-1.8}^{+1.7} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [23] (H0LiCOW). A third method that came to fruition recently is based on gravitational waves; the 'bright standard siren' applied to the binary neutron star GW170817 and the 'dark standard siren' implemented on the binary black hole GW170814 yield $H_{0}=70_{-8}^{+12} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}[24]$ and $H_{0}=75_{-32}^{+40} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [25] respectively. With many more gravitational-wave events the future uncertainties on H_{0} from standard sirens will get smaller.

The determination of H_{0} by the Planck Collaboration [2] gives a lower value, $H_{0}=67.4 \pm 0.5 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$. As discussed in their paper, there is strong degeneracy of H_{0} with other parameters, e.g., Ω_{m} and the neutrino mass. It is worth noting that using the 'inverse distance ladder' method gives a result $H_{0}=67.8 \pm 1.3 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [26], close to the Planck result. The inverse distance ladder relies on absolute-distance measurements from baryon acoustic oscillations (BAOs) to calibrate the intrinsic magnitude of the SNe Ia (rather than by nearby Cepheids and parallax). This measurement was derived from 207 spectroscopically-confirmed Type Ia supernovae from the Dark Energy Survey (DES), an additional 122 low-redshift SNe Ia, and measurements of BAOs. A combination of DES Y1 clustering and weak lensing with BAO and BBN (assuming $\Lambda \mathrm{CDM}$) gives $H_{0}=67.4_{-1.2}^{+1.1} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [27] .

The tension between the H_{0} values from Planck and the traditional cosmic distance ladder methods is of great interest and under investigation. For example, the SH0ES and H0LiCOW+SH0ES results deviate from Planck by 4.4σ and 5.3σ respectively, while the TRGB and standard-siren results lie between the Planck and cosmic ladder H_{0} values. There is possibly a trend for higher H_{0} derived from the nearby Universe and a lower H_{0} from the early Universe, which has led some researchers to propose a time-variation of the dark energy component or other exotic scenarios. Ongoing studies are addressing the question of whether the Hubble tension is due to systematics in at least one of the probes, or a signature of new physics.

Figure 25.1 shows a selection of recent H_{0} values, adapted from Ref. [28] which provides a very useful summary of the current status of the Hubble constant tension.

Figure 25.1: A selection of recent H_{0} measurements from the various projects as described in the text, divided into early and late Universe probes. The standard-siren determinations are omitted as they are too wide for the plot. Figure courtesy of Vivien Bonvin and Martin Millon, adapted from Ref. [28].

25.3.2 Supernovae as cosmological probes

Empirically, the peak luminosity of SNe Ia can be used as an efficient distance indicator (e.g., Ref. [29]), thus allowing cosmology to be constrained via the distance-redshift relation. The favorite theoretical explanation for SNe Ia is the thermonuclear disruption
of carbon-oxygen white dwarfs. Although not perfect 'standard candles', it has been demonstrated that by correcting for a relation between the light-curve shape, color, and luminosity at maximum brightness, the dispersion of the measured luminosities can be greatly reduced. There are several possible systematic effects that may affect the accuracy of the use of SNe Ia as distance indicators, e.g., evolution with redshift and interstellar extinction in the host galaxy and in the Milky Way.
Two major studies, the Supernova Cosmology Project and the High- z Supernova Search Team, found evidence for an accelerating Universe [30], interpreted as due to a cosmological constant or a dark energy component. When combined with the CMB data (which indicate near flatness, i.e., $\Omega_{\mathrm{m}}+\Omega_{\Lambda} \simeq 1$), the best-fit values were $\Omega_{\mathrm{m}} \approx 0.3$ and $\Omega_{\Lambda} \approx 0.7$. Most results in the literature are consistent with the $w=-1$ cosmological constant case. One study [31] deduced, from a sample of 740 spectroscopically-confirmed SNe Ia, that $\Omega_{\mathrm{m}}=0.295 \pm 0.034$ (stat+sym) for an assumed flat Λ CDM model. An analysis of a sample of spectroscopically-confirmed 207 DES SNe Ia combined with 122 low-redshift SNe [32] yielded $\Omega_{\mathrm{m}}=0.331 \pm 0.038$ for an assumed flat Λ CDM model. In combination with the CMB, for a flat w CDM these data give $w=-0.978 \pm 0.059$ and $\Omega_{\mathrm{m}}=0.321 \pm 0.018$, consistent with results from the JLA and Pantheon SNe Ia samples. Future experiments will refine constraints on the cosmic equation of state $w(z)$.

25.3.3 Cosmic microwave background

The physics of the CMB is described in detail in the CMB chapter in this volume. Before recombination, the baryons and photons are tightly coupled, and the perturbations oscillate in the potential wells generated primarily by the dark matter perturbations. After decoupling, the baryons are free to collapse into those potential wells. The CMB carries a record of conditions at the time of last scattering, often called primary anisotropies. In addition, it is affected by various processes as it propagates towards us, including the effect of a time-varying gravitational potential (the integrated Sachs-Wolfe effect), gravitational lensing, and scattering from ionized gas at low redshift.

The primary anisotropies, the integrated Sachs-Wolfe effect, and the scattering from a homogeneous distribution of ionized gas, can all be calculated using linear perturbation theory. Available codes include CAMB and CLASS [9], the former widely used embedded within the analysis package CosmoMC [33] and in higher-level analysis packages such as CosmoSIS [34] and CosmoLike [35]. Gravitational lensing is also calculated in these codes. Secondary effects, such as inhomogeneities in the reionization process, and scattering from gravitationally-collapsed gas (the Sunyaev-Zeldovich or SZ effect), require more complicated, and more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies depends on all of the cosmological parameters. In a typical cosmology, the anisotropy power spectrum [usually plotted as $\ell(\ell+1) C_{\ell}$] features a flat plateau at large angular scales (small ℓ), followed by a series of oscillatory features at higher angular scales, the first and most prominent being at around one degree ($\ell \simeq 200$). These features, known as acoustic peaks, represent the oscillations of the photon-baryon fluid around the time of decoupling. Some features can be closely related to specific parameters-for instance, the location in multipole space of the set of peaks probes the spatial geometry, while the relative heights of the peaks probe the baryon density-but many other parameters combine to determine the overall shape.

The 2018 data release from the Planck satellite [1] gives the most powerful results to date on the spectrum of CMB temperature anisotropies, with a precision determination of the temperature power spectrum to beyond $\ell=2000$. The Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments extend these results to higher angular resolution, though without full-sky coverage. Planck and the polarisation-sensitive versions of ACT and SPT give the state of the art in measuring the spectrum of E-polarization anisotropies and the correlation spectrum between temperature and polarization. These are consistent with models based on the parameters we have described, and provide accurate determinations of many of those parame-
ters [2]. Primordial B-mode polarization has not been detected (although the gravitational lensing effect on B modes has been measured).

The data provide an exquisite measurement of the location of the set of acoustic peaks, determining the angular-diameter distance of the last-scattering surface. In combination with other data this strongly constrains the spatial geometry, in a manner consistent with spatial flatness and excluding significantly-curved Universes. CMB data give a precision measurement of the age of the Universe. The CMB also gives a baryon density consistent with, and at higher precision than, that coming from BBN. It affirms the need for both dark matter and dark energy. It shows no evidence for dynamics of the dark energy, being consistent with a pure cosmological constant $(w=-1)$. The density perturbations are consistent with a power-law primordial spectrum, and there is no indication yet of tensor perturbations. The current best-fit for the reionization optical depth from CMB data, $\tau=0.054$, is in line with models of how early structure formation induces reionization.

Planck has also made the first all-sky map of the CMB lensing field, which probes the entire matter distribution in the Universe and adds some additional constraining power to the CMB-only data-sets. These measurements are compatible with the expected effect in the standard cosmology.

25.3.4 Galaxy clustering

The power spectrum of density perturbations is affected by the nature of the dark matter. Within the Λ CDM model, the power spectrum shape depends primarily on the primordial power spectrum and on the combination $\Omega_{\mathrm{m}} h$, which determines the horizon scale at matter-radiation equality, with a subdominant dependence on the baryon density. The matter distribution is most easily probed by observing the galaxy distribution, but this must be done with care since the galaxies do not perfectly trace the dark matter distribution. Rather, they are a 'biased' tracer of the dark matter [36]. The need to allow for such bias is emphasized by the observation that different types of galaxies show bias with respect to each other. In particular, scale-dependent and stochastic biasing may introduce a systematic effect on the determination of cosmological parameters from redshift surveys [37]. Prior knowledge from simulations of galaxy formation or from gravitational lensing data could help to quantify biasing. Furthermore, the observed 3D galaxy distribution is in redshift space, i.e., the observed redshift is the sum of the Hubble expansion and the line-ofsight peculiar velocity, leading to linear and non-linear dynamical effects that also depend on the cosmological parameters. On the largest length scales, the galaxies are expected to trace the location of the dark matter, except for a constant multiplier b to the power spectrum, known as the linear bias parameter. On scales smaller than 20 Mpc or so, the clustering pattern is 'squashed' in the radial direction due to coherent infall, which depends approximately on the parameter $\beta \equiv \Omega_{\mathrm{m}}^{0.6} / b$ (on these shorter scales, more complicated forms of biasing are not excluded by the data). On scales of a few Mpc, there is an effect of elongation along the line of sight (colloquially known as the 'finger of God' effect) that depends on the galaxy velocity dispersion.

25.3.4.1 Baryon acoustic oscillations

The power spectra of the 2-degree Field (2dF) Galaxy Redshift Survey and the Sloan Digital Sky Survey (SDSS) are well fit by a Λ CDM model and both surveys showed first evidence for baryon acoustic oscillations (BAOs) $[38,39]$. The Baryon Oscillation Spectroscopic Survey (BOSS) of luminous red galaxies (LRGs) in the SDSS (DR 12) found, using a sample of 1.2 million galaxies, consistency with $w=-1.01 \pm 0.06$ [40] when combined with Planck 2015. Similar results for w were obtained by the WiggleZ survey [41].

25.3.4.2 Redshift distortion

There is renewed interest in the 'redshift distortion' effect. This distortion depends on cosmological parameters [42] via the perturbation growth rate in linear theory $f(z)=d \ln \delta / d \ln a \approx \Omega^{\gamma}(z)$, where $\gamma \simeq 0.55$ for the Λ CDM model and may be different for modified gravity models. By measuring $f(z)$ it is feasible to constrain γ and rule out certain modified gravity models [43, 44].

We note the degeneracy of the redshift-distortion pattern and the geometric distortion (the so-called Alcock-Paczynski effect [45]) e.g., as illustrated by the WiggleZ survey [46] and the BOSS Survey [47].
25.3.4.3 Limits on neutrino mass from galaxy surveys and other probes

Large-scale structure data place constraints on Ω_{ν} due to the neutrino free-streaming effect [48]. Presently there is no clear detection, and upper limits on neutrino mass are commonly estimated by comparing the observed galaxy power spectrum with a four-component model of baryons, cold dark matter, a cosmological constant, and massive neutrinos. Such analyses also assume that the primordial power spectrum is adiabatic, scale-invariant, and Gaussian. Potential systematic effects include biasing of the galaxy distribution and non-linearities of the power spectrum. An upper limit can also be derived from CMB anisotropies alone, while combination with additional cosmological data-sets can improve the results.

The most recent results on neutrino mass upper limits and other neutrino properties are summarised in the Neutrinos in Cosmology chapter in this volume. While the latest cosmological data do not yet constrain the sum of neutrino masses to below 0.2 eV , since the lower limit on this sum from oscillation experiments is 0.06 eV it is expected that future cosmological surveys will soon detect effects from the neutrino mass. Also, current cosmological datasets are in good agreement with the standard value for the effective number of neutrino species $N_{\text {eff }}=3.045$.

25.3.5 Clustering in the inter-galactic medium

It is commonly assumed, based on hydrodynamic simulations, that the neutral hydrogen in the inter-galactic medium (IGM) can be related to the underlying mass distribution. It is then possible to estimate the matter power spectrum on scales of a few megaparsecs from the absorption observed in quasar spectra, the so-called Lyman- α forest. The usual procedure is to measure the power spectrum of the transmitted flux, and then to infer the mass power spectrum. Photo-ionization heating by the ultraviolet background radiation and adiabatic cooling by the expansion of the Universe combine to give a simple power-law relation between the gas temperature and the baryon density. It also follows that there is a power-law relation between the optical depth τ and ρ_{b}. Therefore, the observed flux $F=\exp (-\tau)$ is strongly correlated with ρ_{b}, which itself traces the mass density. The matter and flux power spectra can be related by a biasing function that is calibrated from simulations.

A study of 266,590 quasars in the range $1.77<z<3$ from SDSS was used to measure the BAO scale from the 3D correlation of Lyman- α and quasars [49]. Combined with the Lyman- α autocorrelation measurement presented in a companion paper [50] the BAO measurements at $z=2.34$ are within 1.7σ of the Planck 2018 人CDM model. The Lyman- α flux power spectrum has also been used to constrain the nature of dark matter, for example limiting the amount of warm dark matter [51].

25.3.6 Weak gravitational lensing

Images of background galaxies are distorted by the gravitational effect of mass variations along the line of sight. Deep gravitational potential wells, such as galaxy clusters, generate 'strong lensing' leading to arcs, arclets, and multiple images, while more moderate perturbations give rise to 'weak lensing'. Weak lensing is now widely used to measure the mass power spectrum in selected regions of the sky (see Ref. [55] for reviews). Since the signal is weak, the image of deformed galaxy shapes (the 'shear map') must be analyzed statistically to measure the power spectrum, higher moments, and cosmological parameters. There are various systematic effects in the interpretation of weak lensing, e.g., due to atmospheric distortions during observations, the redshift distribution of the background galaxies (usually depending on the accuracy of photometric redshifts), the intrinsic correlation of galaxy shapes, and non-linear modeling uncertainties.

As one example, the 'Kilo-Degree Survey' (KiDS), combined with the VISTA VIKING survey, used weak-lensing measure-

Figure 25.2: Marginalised posterior contours (inner 68% confidence level, outer 95% confidence level) in the $\Omega_{\mathrm{m}}-S_{8}$ plane. Shown are the optical-only KiDS-450 analysis (green; Ref. [52]), the fiducial KiDS+VISTA-450 setup (blue; Ref. [52]), DES Year 1 using cosmic shear only (purple; Ref. [53]), HSC-DR1 cosmic shear (orange; Ref. [54]) and the Planck Legacy analysis (red; Planck Collaboration [2] using TT $+\mathrm{TE}+\mathrm{EE}+$ lowE). Figure from Ref. [52].
ments over $450 \mathrm{deg}^{2}$ to constrain the clumpiness parameter $S_{8} \equiv$ $\sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5}=0.737_{-0.036}^{+0.040}[52]$. This is lower by 2.3σ than S_{8} derived from Planck. Figure 25.2 (which is Figure 4 from Ref. [52]) shows the $\Omega_{\mathrm{m}}-S_{8}$ constraints derived from weak lensing of KiDS, DES, and HPC versus the CMB constraint from Planck. Variations in S_{8} among the weak-lensing surveys are mainly due to difference in the procedures for photometric redshift determinations. Results from weak lensing from DES, combined with other probes, are shown in the next section.

25.3.7 Other probes

Other probes that have been used to constrain cosmological parameters, but that are not presently competitive in terms of accuracy, are the integrated Sachs-Wolfe effect [56] [57], the number density or composition of galaxy clusters [58], and galaxy peculiar velocities, which probe the mass fluctuations in the local Universe [59].

25.4 Bringing probes together

Although it contains two ingredients-dark matter and dark energy-which have not yet been verified by laboratory experiments, the Λ CDM model is almost universally accepted by cosmologists as the best description of the present data. The approximate values of some of the key parameters are $\Omega_{\mathrm{b}} \approx 0.05$, $\Omega_{\mathrm{c}} \approx 0.25, \Omega_{\Lambda} \approx 0.70$, and a Hubble constant $h \approx 0.70$. The spatial geometry is very close to flat (and usually assumed to be precisely flat), and the initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful data source is the CMB, which on its own supports all these main tenets. Values for some parameters, as given in Ref. [2], are reproduced in Table 25.1. These particular results presume a flat Universe. The constraints are somewhat strengthened by adding additional data-sets, BAO being shown in the Table as an example, though most of the constraining power resides in the CMB data. Similar constraints at lower precision were previously obtained by the $W M A P$ collaboration.

If the assumption of spatial flatness is lifted, it turns out that the primary CMB on its own constrains the spatial curvature fairly weakly, due to a parameter degeneracy in the angulardiameter distance. However, inclusion of other data readily removes this degeneracy. Simply adding the Planck lensing measurement, and with the assumption that the dark energy is a cosmological constant, yields a 68% confidence constraint on $\Omega_{\text {tot }} \equiv \sum \Omega_{i}+\Omega_{\Lambda}=1.011 \pm 0.006$ and further adding BAO makes it 0.9993 ± 0.0019 [2]. Results of this type are normally taken as justifying the restriction to flat cosmologies.
One derived parameter that is very robust is the age of the

Table 25.1: Parameter constraints reproduced from Ref. [2] (Table 2, column 5), with some additional rounding. Both columns assume the Λ CDM cosmology with a power-law initial spectrum, no tensors, spatial flatness, a cosmological constant as dark energy, and the sum of neutrino masses fixed to 0.06 eV . Above the line are the six parameter combinations actually fit to the data (θ_{MC} is a measure of the sound horizon at last scattering); those below the line are derived from these. The first column uses Planck primary CMB data plus the Planck measurement of CMB lensing. This column gives our present recommended values. The second column adds in data from a compilation of BAO measurements described in Ref. [2]. The perturbation amplitude $\Delta_{\mathcal{R}}^{2}$ (denoted A_{s} in the original paper) is specified at the scale $0.05 \mathrm{Mpc}^{-1}$. Uncertainties are shown at 68% confidence.

Planck TT,TE,EE+lowE+lensing			
+ BAO			
$\Omega_{\mathrm{b}} h^{2}$	0.02237 ± 0.00015	0.02242 ± 0.00014	
$\Omega_{\mathrm{c}} h^{2}$	0.1200 ± 0.0012	0.1193 ± 0.0009	
$100 \theta_{\mathrm{MC}}$	1.0409 ± 0.0003	1.0410 ± 0.0003	
n_{s}	0.965 ± 0.004	0.966 ± 0.004	
τ	0.054 ± 0.007	0.056 ± 0.007	
$\ln \left(10^{10} \Delta_{\mathcal{R}}^{2}\right)$	3.044 ± 0.014	3.047 ± 0.014	
h	0.674 ± 0.005	0.677 ± 0.004	
σ_{8}	0.811 ± 0.006	0.810 ± 0.006	
Ω_{m}	0.315 ± 0.007	0.311 ± 0.006	
Ω_{Λ}	0.685 ± 0.007	0.689 ± 0.006	

Universe, since there is a useful coincidence that for a flat Universe the position of the first peak is strongly correlated with the age. The CMB data give 13.797 ± 0.023 Gyr (assuming flatness). This is in good agreement with the ages of the oldest globular clusters and with radioactive dating
The baryon density Ω_{b} is now measured with high accuracy from CMB data alone, and is consistent with and much more precise than the determination from BBN. The value quoted in the Big-Bang Nucleosynthesis chapter in this volume is $0.021 \leq$ $\Omega_{\mathrm{b}} h^{2} \leq 0.024$ (95% confidence)
While Ω_{Λ} is measured to be non-zero with very high confidence, there is no evidence of evolution of the dark energy density. As described in the Dark Energy chapter in this volume, from a combination of CMB, weak gravitational lensing, SN, and BAO measurements, assuming a flat universe, Ref. [2] found $w=-1.028 \pm 0.031$, consistent with the cosmological constant case $w=-1$. Allowing more complicated forms of dark energy weakens the limits.
The data provide strong support for the main predictions of the simplest inflation models: spatial flatness and adiabatic, Gaussian, nearly scale-invariant density perturbations. But it is disappointing that there is no sign of primordial gravitational waves, with a 95% confidence upper limit from combining Planck with BICEP2/Keck Array BK15 data of $r<0.06$ at the scale $0.002 \mathrm{Mpc}^{-1}$ [60] (weakening somewhat if running is allowed). The spectral index is clearly required to be less than one by current data, though the strength of that conclusion can weaken if additional parameters are included in the model fits.
Tests have been made for various types of non-Gaussianity, a particular example being a parameter f_{NL} that measures a quadratic contribution to the perturbations. Various nonGaussian shapes are possible (see Ref. [61] for details), and current constraints on the popular 'local', 'equilateral', and 'orthogonal' types (combining temperature and polarization data) are $f_{\mathrm{NL}}^{\text {local }}=-1 \pm 5, f_{\mathrm{NL}}^{\text {equil }}=-26 \pm 47$, and $f_{\mathrm{NL}}^{\text {ortho }}=-38 \pm 24$ respectively (these look weak, but prominent non-Gaussianity requires the product $f_{\mathrm{NL}} \Delta_{\mathcal{R}}$ to be large, and $\Delta_{\mathcal{R}}$ is of order 10^{-5}). Clearly none of these give any indication of primordial non-gaussianity.

While the above results come from the CMB alone, other probes are becoming competitive (especially when considering more complex cosmological models), and so combination of data from different sources is of growing importance. We note that it has become fashionable to combine probes at the level of power-spectrum data vectors, taking into account nuisance parameters in each type of measurement. Recent examples include KiDS+GAMA [62] and Dark Energy Survey (DES) Year 1 [63]. For example, the DES analysis includes galaxy position-position clustering, galaxy-galaxy lensing, and weak lensing shear. Discussions on 'tension' in resulting cosmological parameters depend on the statistical approaches used. Commonly the cosmology community works within the Bayesian framework, and assesses agreement amongst data sets with respect to a model via Bayesian Evidence, essentially the denominator in Bayes's theorem. As an example of results, combining DES Y1 with Planck, BAO measurements from SDSS, 6dF, and BOSS, and type Ia supernovae from the Joint Lightcurve Analysis (JLA) dataset has shown the datasets to be mutually compatible and yields very tight constraints on cosmological parameters: $S_{8} \equiv \sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5}=0.799_{-0.009}^{+0.014}$, and $\Omega_{\mathrm{m}}=0.301_{-0.008}^{+0.006}$ in $\Lambda \mathrm{CDM}$, and $w=-1.00_{-0.05}^{+0.04}$ in $w \mathrm{CDM}[63]$. The combined measurement of the Hubble constant within Λ CDM gives $H_{0}=68.2 \pm 0.6 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, still leaving some level of tension with the local measurements described earlier. Future analyses and the next generation of surveys will test for deviations from $\Lambda \mathrm{CDM}$, for example epoch-dependent $w(z)$ and modifications to General Relativity.

25.5 Outlook for the future

The concordance model is now well established, and there seems little room left for any dramatic revision of this paradigm. A measure of the strength of that statement is how difficult it has proven to formulate convincing alternatives.
Should there indeed be no major revision of the current paradigm, we can expect future developments to take one of two directions. Either the existing parameter set will continue to prove sufficient to explain the data, with the parameters subject to evertightening constraints, or it will become necessary to deploy new parameters. The latter outcome would be very much the more interesting, offering a route towards understanding new physical processes relevant to the cosmological evolution. There are many possibilities on offer for striking discoveries, for example:

- the cosmological effects of a neutrino mass may be unambiguously detected, shedding light on fundamental neutrino properties;
- detection of primordial non-Gaussianities would indicate that non-linear processes influence the perturbation generation mechanism;
- detection of variation in the dark-energy density (i.e., $w \neq$ -1) would provide much-needed experimental input into its nature.

These provide more than enough motivation for continued efforts to test the cosmological model and improve its accuracy. Over the coming years, there are a wide range of new observations that will bring further precision to cosmological studies. Indeed, there are far too many for us to be able to mention them all here, and so we will just highlight a few areas.

The CMB observations will improve in several directions. A current frontier is the study of polarization, for which power spectrum measurements have now been made by several experiments. Detection of primordial B-mode anisotropies is the next major goal and a variety of projects are targeting this, though theory gives little guidance as to the likely signal level. Future CMB projects that are approved include LiteBIRD and the Simons Observatory.

An impressive array of cosmology surveys are already operational, under construction, or proposed, including the groundbased Hyper Suprime Camera (HSC) and Large Synoptic Survey Telescope (LSST) imaging surveys, spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI), and space missions Euclid and the Wide-Field Infrared Survey (WFIRST).

An exciting area for the future is radio surveys of the redshifted 21-cm line of hydrogen. Because of the intrinsic narrowness of this line, by tuning the bandpass the emission from narrow redshift slices of the Universe will be measured to extremely high redshift, probing the details of the reionization process at redshifts up to perhaps 20, as well as measuring large-scale features such as the BAOs. LOFAR and CHIME are the first instruments able to do this and have begun operations. In the longer term, the Square Kilometre Array (SKA) will take these studies to a precision level.

The development of the first precision cosmological model is a major achievement. However, it is important not to lose sight of the motivation for developing such a model, which is to understand the underlying physical processes at work governing the Universe's evolution. From that perspective, progress has been much less dramatic. For instance, there are many proposals for the nature of the dark matter, but no consensus as to which is correct. The nature of the dark energy remains a mystery. Even the baryon density, now measured to an accuracy of a percent, lacks an underlying theory able to predict it within orders of magnitude. Precision cosmology may have arrived, but at present many key questions remain to motivate and challenge the cosmology community.

References

[1] Y. Akrami et al. (Planck) (2018), [arXiv:1807.06205].
[2] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
[3] C. L. Bennett et al. (WMAP), Astrophys. J. Suppl. 208, 20 (2013), [arXiv:1212.5225].
[4] G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208, 19 (2013), [arXiv:1212.5226].
[5] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85, 3999 (2000), [hep-ex/0009001]; Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 87, 071301 (2001), [arXiv:nucl-ex/0106015].
[6] E.W. Kolb and M.S. Turner, The Early Universe, AddisonWesley (Redwood City, 1990).
[7] D.H. Lyth and A.R. Liddle, The Primordial Density Perturbation, Cambridge University Press (2009).
[8] A. R. Liddle and D. H. Lyth, Phys. Lett. B291, 391 (1992), [arXiv:astro-ph/9208007].
[9] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538, 473 (2000), [arXiv:astro-ph/9911177]; D. Blas, J. Lesgourgues and T. Tram, JCAP 1107, 034 (2011), [arXiv:1104.2933].
[10] D. J. Fixsen, Astrophys. J. 707, 916 (2009), [arXiv:0911.1955].
[11] M. Hobson et al. (eds). Bayesian Methods in Cosmology, Cambridge University Press (2009).
[12] A. Kosowsky and M. S. Turner, Phys. Rev. D52, R1739 (1995), [arXiv:astro-ph/9504071].
[13] K. A. Malik and D. Wands, Phys. Rept. 475, 1 (2009), [arXiv:0809.4944].
[14] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A25 (2014), [arXiv:1303.5085].
[15] D. H. Lyth and D. Wands, Phys. Lett. B524, 5 (2002), [hep-ph/0110002]; K. Enqvist and M. S. Sloth, Nucl. Phys. B626, 395 (2002), [hep-ph/0109214]; T. Moroi and T. Takahashi, Phys. Lett. B522, 215 (2001), [Erratum: Phys. Lett.B539,303(2002)], [hep-ph/0110096].
[16] P. F. de Salas and S. Pastor, JCAP 1607, 07, 051 (2016), [arXiv:1606.06986].
[17] S. Riemer-Sørensen, D. Parkinson, and T.M. Davis, Publications of Astronmilcal Society of the Pacific 30, e029 (2013).
[18] J. K. Webb et al., Phys. Rev. Lett. 107, 191101 (2011), [arXiv:1008.3907]; J. A. King et al., Mon. Not. Roy. Astron. Soc. 422, 3370 (2012), [arXiv:1202.4758]; P. Molaro et al., Astron. \& Astrophys. 555, 68 (2013).
[19] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A18 (2016), [arXiv:1502.01593].
[20] W. L. Freedman et al. (HST), Astrophys. J. 553, 47 (2001), [arXiv:astro-ph/0012376].
[21] A. G. Riess et al., Astrophys. J. 876, 1, 85 (2019), [arXiv:1903.07603].
[22] W.L. Freedman et al., Astrophys. J. 882, 34(2019).
[23] K. C. Wong et al. (2019), [arXiv:1907.04869].
[24] B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER), Nature 551, 7678, 85 (2017), [arXiv:1710.05835].
[25] M. Soares-Santos et al. (DES, LIGO Scientific, Virgo), Astrophys. J. 876, 1, L7 (2019), [arXiv:1901.01540].
[26] E. Macaulay et al. (DES), Mon. Not. Roy. Astron. Soc. 486, 2, 2184 (2019), [arXiv:1811.02376].
[27] T. M. C. Abbott et al. (DES), Mon. Not. Roy. Astron. Soc. 480, 3, 3879 (2018), [arXiv:1711.00403].
[28] L. Verde, T. Treu and A. G. Riess, in "Nature Astronomy 2019," (2019), [arXiv:1907.10625].
[29] B. Leibundgut, Ann. Rev. Astron. Astrophys. 39, 67 (2001).
[30] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), [arXiv:astro-ph/9805201]; P. M. Garnavich et al. (Supernova Search Team), Astrophys. J. 509, 74 (1998), [arXiv:astro-ph/9806396]; S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), [arXiv:astro-ph/9812133].
[31] M. Betoule et al. (SDSS), Astron. Astrophys. 568, A22 (2014), [arXiv:1401.4064].
[32] T. M. C. Abbott et al. (DES), Astrophys. J. 872, 2, L30 (2019), [arXiv:1811.02374].
[33] A. Lewis and S. Bridle, Phys. Rev. D66, 103511 (2002), [arXiv:astro-ph/0205436].
[34] J. Zuntz et al., Astron. Comput. 12, 45 (2015), [arXiv:1409.3409].
[35] E. Krause and T. Eifler, Mon. Not. Roy. Astron. Soc. 470, 2, 2100 (2017), [arXiv:1601.05779].
[36] N. Kaiser, Astrophys. J. 284, L9 (1984).
[37] A. Dekel and O. Lahav, Astrophys. J. 520, 24 (1999), [arXiv:astro-ph/9806193].
[38] D. J. Eisenstein et al. (SDSS), Astrophys. J. 633, 560 (2005), [arXiv:astro-ph/0501171].
[39] S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362, 505 (2005), [arXiv:astro-ph/0501174].
[40] S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 3, 2617 (2017), [arXiv:1607.03155].
[41] D. Parkinson et al., Phys. Rev. D86, 103518 (2012), [arXiv:1210.2130].
[42] N. Kaiser, Mon. Not. Roy. Astron. Soc. 227, 1 (1987).
[43] L. Guzzo et al., Nature 451, 541 (2008), [arXiv:0802.1944].
[44] A. Nusser and M. Davis, Astrophys. J. 736, 93 (2011), [arXiv:1101.1650].
[45] C. Alcock and B. Paczynski, Nature 281, 358 (1979).
[46] C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012), [arXiv:1204.3674].
[47] H. Gil-Marín et al., Mon. Not. Roy. Astron. Soc. 465, 2, 1757 (2017), [arXiv:1606.00439].
[48] J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006), [arXiv:astro-ph/0603494].
[49] M. Blomqvist et al., Astron. Astrophys. 629, A86 (2019), [arXiv:1904.03430].
[50] V. de Sainte Agathe et al., Astron. Astrophys. 629, A85 (2019), [arXiv:1904.03400].
[51] M. Viel et al., Phys. Rev. D88, 043502 (2013), [arXiv:1306.2314].
[52] H. Hildebrandt et al., Astron. Astrophys. 633, A69 (2020), [arXiv:1812.06076].
[53] M. A. Troxel et al. (DES), Phys. Rev. D98, 4, 043528 (2018), [arXiv:1708.01538].
[54] Higake M. et al, Pub. Astron. Soc. Japan 71, 43 (2018).
[55] A. Refregier, Ann. Rev. Astron. Astrophys. 41, 645 (2003), [arXiv:astro-ph/0307212]; R. Massey et al., Nature 445, 286 (2007), [arXiv:astro-ph/0701594]; H. Hoekstra and B. Jain, Ann. Rev. Nucl. Part. Sci. 58, 99 (2008), [arXiv:0805.0139].
[56] R. G. Crittenden and N. Turok, Phys. Rev. Lett. 75, 2642 (1995), [arXiv:astro-ph/9505120].
[57] Planck Collab. 2015 Results XIX, Astron. \& Astrophys. 594, A21 (2016)
[58] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A24 (2016), [arXiv:1502.01597].
[59] A. Dekel, Ann. Rev. Astron. Astrophys. 32, 371 (1994), [arXiv:astro-ph/9401022].
[60] Y. Akrami et al. (Planck) (2018), [arXiv:1807.06211].
[61] Y. Akrami et al. (Planck) (2019), [arXiv:1905.05697].
[62] E. van Uitert et al., Mon. Not. Roy. Astron. Soc. 476, 4, 4662 (2018), [arXiv:1706.05004].
[63] T. M. C. Abbott et al. (DES), Phys. Rev. D98, 4, 043526 (2018), [arXiv:1708.01530].

26. Neutrinos in Cosmology

Revised August 2019 by J. Lesgourgues (TTK, RWTH) and L. Verde (ICC, U. of Barcelona; ICREA, Barcelona).

26.1 Standard neutrino cosmology

Neutrino properties leave detectable imprints on cosmological observations that can then be used to constrain neutrino properties. This is a great example of the remarkable interconnection and interplay between nuclear physics, particle physics, astrophysics and cosmology (for general reviews see e.g., [1-4]). Present cosmological data are already providing constraints on neutrino properties not only complementary but also competitive with terrestrial experiments; for instance, upper bounds on the total neutrino mass have shrinked by a factor of about 14 in the past 17 years. Forthcoming cosmological data may soon provide key information, not obtainable in other ways like e.g., a measurement of the absolute neutrino mass scale. This new section is motivated by this exciting prospect.

A relic neutrino background pervading the Universe (the Cosmic Neutrino background, $\mathrm{C} \nu \mathrm{B}$) is a generic prediction of the standard hot Big Bang model (see Big Bang Nucleosynthesis Chap. 24 of this Review). While it has not yet been detected directly, it has been indirectly confirmed by the accurate agreement of predictions and observations of: a) the primordial abundance of light elements (see Big Bang Nucleosynthesis - Chap. 24) of this Review; b) the power spectrum of Cosmic Microwave Background (CMB) anisotropies (see Cosmic Microwave Background Chap. 29 of this Review); and c) the large scale clustering of cosmological structures. Within the hot Big Bang model such good agreement would fail dramatically without a $\mathrm{C} \nu \mathrm{B}$ with properties matching closely those predicted by the standard neutrino decoupling process (i.e., involving only weak interactions).

We will illustrate below that cosmology is sensitive to the following neutrino properties: their density, related to the number of active (i.e., left-handed, see Neutrino Mass, Mixing, and Oscillations - Chap. 14 of this Review) neutrino species, and their masses. At first order, cosmology is sensitive to the total neutrino mass, but is blind to the mixing angles and CP violation phase as discussed in Neutrino Mass, Mixing, and Oscillations (Chap. 14 of this Review). This makes cosmological constraints nicely complementary to measurements from terrestrial neutrino experiments.

The minimal cosmological model, $\Lambda \mathrm{CDM}$, currently providing a good fit to most cosmological data sets (up to moderate tensions discussed in The Cosmological Parameters Chap. 25.1 of this Review), assumes that the only massless or light (sub-keV) relic particles since the Big Bang Nucleosynthesis (BBN) epoch are photons and active neutrinos. Extended models with light sterile neutrinos, light thermal axions or other light relics -sometimes referred to as "dark radiation"- would produce effects similar to, and potentially degenerate with, those of active neutrinos. Thus neutrino bounds are often discussed together with limits on such scenarios. In case of anomalies in cosmological data, it might not be obvious to discriminate between interpretation in terms of active neutrinos with non-standard decoupling, additional production mechanisms, non-standard interactions, etc., or in terms of some additional light particles. Such extensions are currently being explored as a possible way to resolve the H_{0} tension between late and early universe determinations, but are not widely favoured [5-8].

Hence neutrino density and mass bounds can be derived under the assumption of no additional massless or light relic particles, and the neutrino density measured in that way provides a test of standard (i.e., involving only weak interactions) neutrino decoupling.

In that model, the three active neutrino types thermalize in the early Universe, with a negligible leptonic asymmetry. Then they can be viewed as three propagating mass eigenstates sharing the same temperature and identical Fermi-Dirac distributions, thus with no visible effects of flavour oscillations. Neutrinos decouple gradually from the thermal plasma at temperatures $T \sim 2 \mathrm{MeV}$. In the instantaneous neutrino decoupling limit, i.e., assuming that neutrinos were fully decoupled at the time when electron-positrons annihilate and release entropy in the thermal bath, the neutrino-
to-photon density ratio between the time of electron-positron annihilation and the non-relativistic transition of neutrinos would be given by

$$
\begin{equation*}
\frac{\rho_{\nu}}{\rho_{\gamma}}=\frac{7}{8} N_{\mathrm{eff}}\left(\frac{4}{11}\right)^{4 / 3} \tag{26.1}
\end{equation*}
$$

with $N_{\text {eff }}=3$, and the last factor comes from the fourth power of the temperature ratio $T_{\nu} / T_{\gamma}=(4 / 11)^{1 / 3}$ (see Big Bang Cosmology - Chap. 22 in this Review). In the above formula, $N_{\text {eff }}$ is called the effective number of neutrino species because it can be viewed as a convenient parametrisation of the relativistic energy density of the Universe beyond that of photons, in units of one neutrino in the instantaneous decoupling limit. Precise simulations of neutrino decoupling and electron-positron annihilation, taking into account flavor oscillations, provide precise predictions for the actual phase-space distribution of relic neutrinos [9-12]. These distributions differ from the instantaneous decoupling approximation through a combination of a small shift in the photon temperature and small non-thermal distortions, all at the percent level. The final result for the density ratio $\rho_{\nu} / \rho_{\gamma}$ in the relativistic regime can always be expressed as in Eq. (26.1), but with a different value of $N_{\text {eff }}$. The most recent analysis, that includes the effect of neutrino oscillations with the present values of the mixing parameters and an improved calculation of the collision terms, gives $N_{\text {eff }}=3.045$ [12]. The precise number density ratio n_{ν} / n_{γ} can also be derived from such studies, and is important for computing the ratio $\Omega_{\nu} h^{2} / \sum_{i} m_{i}$ (ratio of the physical density of neutrinos in units of the critical density to the sum of neutrino masses) in the non-relativistic regime.
The neutrino temperature today, $T_{\nu}^{0} \simeq 1.7 \times 10^{-4} \mathrm{eV} \simeq 1.9$ K , is smaller than at least two of the neutrino masses, since the two squared-mass differences are $\left|\Delta m_{31}^{2}\right|^{1 / 2}>\left|\Delta m_{21}^{2}\right|^{1 / 2}>T_{\nu}^{0}$ (see Neutrino mass, Mixing, and oscillations - Chap. 14 of this Review). Thus at least two neutrino mass eigenstates are nonrelativistic today and behave as a small "hot" fraction of the total dark matter (they cannot be all the dark matter, as explained in Chap. 27 in this Review). This fraction of hot dark matter can be probed by cosmological experiments, for two related reasons, as we now describe.

First, neutrinos are the only known particles behaving as radiation at early times (during the CMB acoustic oscillations) and dark matter at late times (during structure formation), which has consequences on the background evolution. Neutrinos become non-relativistic when their mass is equal to their average momentum, given for any Fermi-Dirac-distributed particle by $\langle p\rangle=3.15 T$. Thus the redshift of the non-relativistic transition is given by $z_{i}^{\mathrm{nr}}=m_{i} /\left(3.15 T_{\nu}^{0}\right)-1=m_{i} /[0.53 \mathrm{meV}]-1$ for each eigenstate of mass m_{i}, giving for instance $z_{i}^{\mathrm{nr}}=110$ for $m_{i}=60 \mathrm{meV}$, corresponding to a time deep inside the matterdominated regime. Second, until the non-relativistic transition, neutrinos travel at the speed of light, and later on they move at a typical velocity $\left\langle v_{i} / c\right\rangle=3.15 T_{\nu}(z) / m_{i}=0.53(1+z) \mathrm{meV} / m_{i}$, which is several orders of magnitude larger than that of the dominant cold (or even of possibly warm) dark matter component(s). This brings their characteristic diffusion scale, called the "freestreaming length", to cosmological relevant values, with consequences on gravitational clustering and the growth of structure.

Once neutrinos are non-relativistic, their energy density is given by $\rho_{\nu} \simeq \sum m_{i} n_{i}$. Since the number densities n_{i} are equal to each other (up to negligible corrections coming from flavour effects in the decoupling phase), the total mass $\left(\sum m_{\nu}\right)=m_{1}+m_{2}+m_{3}$ can be factorized out. It is possible that the lightest neutrino is still relativistic today, in which case this relation is slightly incorrect, but given that the total density is always strongly dominated by that of non-relativistic neutrinos, the error made is completely negligible. Using the expression for n_{i} / n_{γ} obtained from precise neutrino decoupling studies, and knowing n_{γ} from the measurement of the CMB temperature, one can compute ρ_{ν}^{0}, the total neutrino density today, in units of the critical density $\rho_{\text {crit }}^{0}$ [12]:

$$
\begin{equation*}
\Omega_{\nu}=\frac{\rho_{\nu}^{0}}{\rho_{\mathrm{crit}}^{0}}=\frac{\sum m_{\nu}}{93.14 h^{2} \mathrm{eV}} \tag{26.2}
\end{equation*}
$$

Figure 26.1: Ratio of the CMB $C_{\ell}^{T T}$ (left, including lensing effects) and matter power spectrum $P(k)$ (right, computed for each model in units of $\left.\left(h^{-1} \mathrm{Mpc}\right)^{3}\right)$ for different values of $\Delta N_{\text {eff }} \equiv N_{\text {eff }}-3.045$ over those of a reference model with $\Delta N_{\text {eff }}=0$. In order to minimize and better characterise the effect of $N_{\text {eff }}$ on the CMB, the parameters that are kept fixed are $\left\{z_{\mathrm{eq}}, z_{\Lambda}, \omega_{\mathrm{b}}, \tau\right\}$ and the primordial spectrum parameters. Fixing $\left\{z_{\mathrm{eq}}, z_{\Lambda}\right\}$ is equivalent to fixing the fractional density of total radiation, of total matter and of cosmological constant $\left\{\Omega_{\mathrm{r}}, \Omega_{\mathrm{m}}, \Omega_{\Lambda}\right\}$ while increasing the Hubble parameter as a function of $N_{\text {eff }}$. The statistical errors on the C_{ℓ} are $\sim 1 \%$ for a band power of $\Delta \ell=30$ at $\ell \sim 1000$. The error on $P(k)$ is estimated to be of the order of 5%.

Figure 26.2: Ratio of the CMB $C_{\ell}^{T T}$ and matter power spectrum $P(k)$ (computed for each model in units of $\left.\left(h^{-1} \mathrm{Mpc}\right)^{3}\right)$ for different values of $\sum m_{\nu}$ over those of a reference model with massless neutrinos. In order to minimize and better characterise the effect of $\sum m_{\nu}$ on the CMB, the parameters that are kept fixed are $\omega_{\mathrm{b}}, \omega_{\mathrm{c}}, \tau$, the angular scale of the sound horizon θ_{s} and the primordial spectrum parameters (solid lines). This implies that we are increasing the Hubble parameter h as a function of $\sum m_{\nu}$. For the matter power spectrum, in order to single out the effect of neutrino free-streaming on $P(k)$, the dashed lines show the spectrum ratio when $\left\{\omega_{\mathrm{m}}, \omega_{\mathrm{b}}, \Omega_{\Lambda}\right\}$ are kept fixed. For comparison, the error on $P(k)$ is of the order of 5% with current observations, and the fractional C_{ℓ} errors are of the order of $1 / \sqrt{\ell}$ at low ℓ.
and the total neutrino average number density today: $n_{\nu}^{0}=339.5 \mathrm{~cm}^{-3}$. Here h is the Hubble constant in units of 100 $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$.

26.2 Effects of neutrino properties on cosmological observables

As long as they are relativistic, i.e., until some time deep inside the matter-dominated regime for neutrinos with a mass $m_{i} \ll 3.15 T_{\nu}^{\text {eq }} \sim 1.5 \mathrm{eV}$ (see Big Bang Cosmology, Chap. 22 in this Review), neutrinos enhance the density of radiation: this effect is parameterised by $N_{\text {eff }}$ and can be discussed separately from the effect of the mass that will be described later in this section. Increasing $N_{\text {eff }}$ impacts the observable spectra of CMB anisotropies and matter fluctuations through background and perturbation effects.

26.2.1 Effect of $N_{\text {eff }}$ on the $C M B$

The background effects depend on what is kept fixed when increasing $N_{\text {eff }}$. If the densities of other species are kept fixed, a higher $N_{\text {eff }}$ implies a smaller redshift of radiation-to-matter equality, with very strong effects on the CMB spectrum: when the amount of expansion between radiation-to-matter equality and
photon decoupling is larger, the CMB peaks are suppressed. This effect is not truly characteristic of the neutrino density, since it can be produced by varying several other parameters. Hence, to characterise the effect of $N_{\text {eff }}$, it is more useful and illuminating to enhance the density of total radiation, of total matter and of Λ by exactly the same amount, in order to keep the redshift of radiation-to-matter equality z_{eq} and matter-to- Λ equality z_{Λ} fixed $[4,13,14]$. The primordial spectrum parameters, the baryon density $\omega_{\mathrm{b}} \equiv \Omega_{\mathrm{b}} h^{2}$ and the optical depth to reionization τ can be kept fixed at the same time, since we can simply vary $N_{\text {eff }}$ together with the Hubble parameter h with fixed $\left\{\omega_{\mathrm{b}}, \Omega_{\mathrm{c}}, \Omega_{\Lambda}\right\}$. The impact of such a transformation is shown in Fig. 26.1 for the CMB temperature spectrum $C_{\ell}^{T T}$ (defined in Chap. 29 in this Review) and for the matter power spectrum $P(k)$ (defined in Chap. 22 in this Review) for several representative values of $N_{\text {eff }}$. These effects are within the reach of cosmological observations given current error bars, as discussed in Section 26.3.1 (for instance, with the Planck satellite data, the statistical error on the C_{ℓ} 's is of the order of one per cent for a band power of $\Delta \ell=$ 30 at $\ell \sim 1000$).

With this transformation, the main background effect of $N_{\text {eff }}$
is an increase in the diffusion scale (or Silk damping scale, see Cosmic Microwave Background - Chap. 29 in this Review) at the time of decoupling, responsible for the decrease in $C_{\ell}^{T T}$ at high ℓ, plus smaller effects coming from a slight increase in the redshift of photon decoupling $[4,13,14]$. At the level of perturbations, a higher $N_{\text {eff }}$ implies that photons feel gravitational forces from a denser neutrino component; this tends to decrease the acoustic peaks (because neutrinos are distributed in a smoother way than photons) and to shift them to larger scales / smaller multipoles (because photon perturbations traveling at the speed of sound in the photon-baryon fluid feel some dragging effect from neutrino perturbations travelling at the speed of light) $[4,13,15]$. The effect of increasing $N_{\text {eff }}$ on the polarization spectrum features are the same as on the temperature spectrum: an increased Silk damping, and a shift in the acoustic peak amplitude and location - the latter effect is even more clear in the polarization spectrum, in which the location of acoustic peaks does not get further influenced by a Doppler effect like for temperature. The combination of these effects is truly characteristic of the radiation density parameter $N_{\text {eff }}$ and cannot be mimicked by other parameters; thus $N_{\text {eff }}$ can be accurately measured from the CMB alone. However, there are correlations between $N_{\text {eff }}$ and other parameters. In particular, we have seen (Fig. 26.1) that in order to minimise the effect of $N_{\text {eff }}$ on the CMB spectrum, one should vary h at the same time, hence there is a correlation between $N_{\text {eff }}$ and h, which implies that independent measurements reducing the error bar on h also reduce that on $N_{\text {eff }}$. Note that this correlation is not equivalent to a perfect degeneracy, so both parameters can anyway be constrained with CMB data alone.

26.2.2 Effect of $N_{\text {eff }}$ on the matter spectrum

We have discussed the effect of increasing $N_{\text {eff }}$ while keeping $z_{\text {eq }}$ and ω_{b} fixed, because the latter two quantities are very accurately constrained by CMB data. This implies that ω_{c} increases with $N_{\text {eff }}$, and that the ratio $\omega_{\mathrm{b}} / \omega_{\mathrm{c}}=\Omega_{\mathrm{b}} / \Omega_{\mathrm{c}}$ decreases. However, the ratio of baryonic-to-dark matter has a strong impact on the shape of the matter power spectrum, because until the time of decoupling of the baryons from the photons, CDM experiences gravitational collapse, while baryons are kept smoothly distributed by photon pressure and affected by acoustic oscillations. The decrease of $\Omega_{\mathrm{b}} / \Omega_{\mathrm{c}}$ following from the increase of $N_{\text {eff }}$ gives more weight to the most clustered of the two components, namely the dark matter one, and produces an enhancement of the small-scale matter power spectrum and a damping of the amplitude of baryon acoustic oscillations (BAOs), clearly visible in Fig. 26.1 (right plot). The scale of BAOs is also slightly shifted by the same neutrino dragging effect as for CMB peaks [19].

The increase in the small-scale matter power spectrum is also responsible for a last effect on the CMB spectra: the CMB last scattering surface is slightly more affected by weak lensing from large-scale structures. This tends to smooth the maxima, the minima, and the damping scale of the CMB spectra [20].

26.2.3 Effect of neutrino masses on the CMB

Neutrino eigenstates with a mass $m_{i} \ll 0.57 \mathrm{eV}$ become nonrelativistic after photon decoupling. They contribute to the nonrelativistic matter budget today, but not at the time of equality or recombination. If we increase the neutrino mass while keeping fixed the density of baryons and dark matter (ω_{b} and ω_{c}), the early cosmological evolution remains fixed and independent of the neutrino mass, until the time of the non-relativistic transition. Thus one might expect that the CMB temperature and polarisation power spectra are left invariant. This is not true for four reasons.

First, the neutrino density enhances the total non-relativistic density at late times, $\omega_{\mathrm{m}}=\omega_{\mathrm{b}}+\omega_{\mathrm{c}}+\omega_{\nu}$, where $\omega_{\nu} \equiv \Omega_{\nu} h^{2}$ is given as a function of the total mass $\sum m_{\nu}$ by Eq. (26.2). The late background evolution impacts the CMB spectrum through the relation between scales on the last scattering surface and angles on the sky, and through the late ISW effect (see Cosmic Microwave Background - Chap. 29 of this Review). These two effects depend respectively on the angular diameter distance to recombination, $d_{A}\left(z_{\mathrm{rec}}\right)$, and on the redshift of matter-to- Λ equality. Increasing $\sum m_{\nu}$ tends to modify these two quantities. By playing with h
and Ω_{Λ}, it is possible to keep one of them fixed, but not both at the same time. Since the CMB measures the angular scale of acoustic oscillations with exquisite precision, and is only loosely sensitive to the late ISW effect due to cosmic variance, we choose in Fig. 26.2 to play with the Hubble parameter in order to maintain a fixed scale $d_{A}\left(z_{\mathrm{rec}}\right)$. With such a choice, an increase in neutrino mass comes together with a decrease in the late ISW effect explaining the depletion of the CMB spectrum for $l \leq 20$. The fact that both $\sum m_{\nu}$ and h enter the expression of $d_{A}\left(z_{\mathrm{rec}}\right)$ implies that measurements of the neutrino mass from CMB data are strongly correlated with h. Second, the non-relativistic transition of neutrinos affects the total pressure-to-density ratio of the universe, and causes a small variation of the metric fluctuations. If this transition takes place not too long after photon decoupling, this variation is observable through the early ISW effect [4,21,22]. It is responsible for the dip seen in Fig. 26.2 for $20 \leq \ell \leq 200$. Third, when the neutrino mass is higher, the CMB spectrum is less affected by the weak lensing effect induced by the large-scale structure at small redshift. This is due to a decrease in the matter power spectrum described in the next paragraphs. This reduced lensing effect is responsible for most of the oscillatory patterns visible in Fig. 26.2 (left plot) for $\ell \geq 200$. Fourth, the neutrinos with the smallest momenta start to be non-relativistic earlier than the average ones. The photon perturbations feel this through their gravitational coupling with neutrinos. This leads to a small enhancement of $C_{l}^{T T}$ for $\ell \geq 500$, hardly visible on Fig. 26.2 because it is balanced by the lensing effect.

26.2.4 Effect of neutrino masses on the matter spectrum

The physical effect of neutrinos on the matter power spectrum is related to their velocity dispersion. Neutrinos free-stream over large distances without falling into small potential wells. The free-streaming scale is roughly defined as the distance travel by neutrinos over a Hubble time scale $t_{\mathrm{H}}=(a / \dot{a})$, and approximates the scale below which neutrinos remain very smooth. On larger scales, they cluster in the same way as cold dark matter. The power spectrum of total matter fluctuations, related to the squared fluctuation δ_{m}^{2} with $\delta_{\mathrm{m}} \equiv \delta_{\mathrm{b}}+\delta_{\mathrm{c}}+\delta_{\nu}$, gets a negligible contribution from the neutrino component on small scales, and is reduced by a factor $\left(1-2 f_{\nu}\right)$, where $f_{\nu}=\omega_{\nu} / \omega_{\mathrm{m}}$. Additionally, on scales below the free-streaming scale, the growth of ordinary cold dark matter and baryon fluctuations is modified by the fact that neutrinos contribute to the background density, but not to the density fluctuations. This changes the balance between the gravitational forces responsible for clustering, and the Hubble friction term slowing it down. Thus the growth rate of CDM and baryon fluctuations is reduced [23]. This results today in an additional suppression of the small-scale linear matter power spectrum by approximately $\left(1-6 f_{\nu}\right)$. These two effects sum up to a factor $\left(1-8 f_{\nu}\right)$ [24] (more precise approximations can be found in $[2,4])$. The non-linear spectrum is even more suppressed on mildly non-linear scales [3,25-29].
This effect is often illustrated by plots of the matter power spectrum ratio with fixed parameters $\left\{\omega_{\mathrm{m}}, \omega_{\mathrm{b}}, \Omega_{\Lambda}\right\}$ and varying f_{ν}, i.e., with the CDM density adjusted to get a fixed total dark matter density [2, 4, 24] (see Fig. 26.2, right plot, dashed lines). This transformation does not leave the redshift of equality $z_{\text {eq }}$ invariant, and has very large effects on the CMB spectra. If one follows the logic of minimizing CMB variations and fixing $z_{\text {eq }}$ like in the previous paragraphs, the increase in $\sum m_{\nu}$ must take place together with an increase of h, which tends to suppress the largescale power spectrum, by approximately the same amount as the neutrino free-streaming effect [30]. In that case, the impact of neutrino masses on the matter power spectrum appears as an overall amplitude suppression, which can be seen in Fig. 26.2 (right plot, solid lines). The oscillations on intermediate wavenumbers come from a small shift in the BAO scale [30]. This global effect is not degenerate with a variation of the primordial spectrum amplitude A_{s}, because it only affects the matter power spectrum, and not the CMB spectra. However, the amplitude of the CMB temperature and polarization spectrum is given by the combination $A_{\mathrm{s}} e^{-2 \tau}$. Hence a measurement of τ is necessary in order to fix A_{s} from CMB data, and avoid a parameter degeneracy between $\sum m_{\nu}$ and $A_{\mathrm{s}}[30-32]$.

Table 26.1: Summary of $N_{\text {eff }}$ constraints.

	Model	95% CL	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda \mathrm{CDM}+N_{\text {eff }}$	$2.92_{-0.37}^{+0.36}$	$[16]$
CMB + background evolution + LSS			
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda \mathrm{CDM}+N_{\text {eff }}$	$2.99_{-0.33}^{+0.34}$	$[16]$
$"$	+ BAO + R18	$\Lambda \mathrm{CDM}+N_{\text {eff }}$	$3.27 \pm 0.15(68 \% \mathrm{CL})$
	$"+5$-params.	$2.85 \pm 0.23(68 \% \mathrm{CL})$	$[18]$

A few of the neutrino mass effects described above -freestreaming scale, early ISW- depend on individual masses m_{i}, but most of them depend only on the total mass through $f_{\nu}-$ suppression of the matter power spectrum, CMB lensing, shift in angular diameter distance-. Because the latter effects are easier to measure, cosmology is primarily sensitive to the total mass $\sum m_{\nu}[33,34]$. The possibility that future data sets might be able to measure individual masses or the mass hierarchy, despite systematic errors and parameter degeneracies, has recently become a subject of investigation $[35,36]$.

26.3 Cosmological Constraints on neutrino properties

In this review we focus on cosmological constraints on the abundance and mass of ordinary active neutrinos. Several stringent but model-dependent constraints on non-standard neutrinos (e.g., sterile neutrinos, active neutrinos with interactions beyond the weak force, unstable neutrinos with invisible decay, etc.) can also be found in the literature.

26.3.1 Neutrino abundance

Table 26.1 shows a list of constraints on $N_{\text {eff }}$ obtained with several combination of data sets. 'Pl18' denotes the Planck 2018 data, composed of a high- ℓ temperature+polarization likelihood (TT,TE,EE), low- ℓ polarization (low E) and CMB lensing spectrum likelihood (lensing) based on lensing extraction from quadratic estimators [16]. 'BAO' refers to measurements of the BAO scale (and hence of the angular diameter distance) from various recent data sets, described in detail in the references given in the table. 'R18' refers to the distance ladder local measurement of the Hubble scale from cepheids and supernovae [37].
Within the framework of a 7-parameter cosmological model $\left(\Lambda \mathrm{CDM}+N_{\text {eff }}\right)$, the constraint on $N_{\text {eff }}$ comes from the Planck 2018 data release [TT,TE,EE+lowE] is $N_{\text {eff }}=2.92_{-0.37}^{+0.36}(95 \% \mathrm{CL})$. This number is perfectly compatible with the prediction of the standard neutrino decoupling model, $N_{\text {eff }}=3.045$, and can be viewed as a proof of self-consistency of the cosmological model.

The bounds can be tightened by adding information on the low-redshift background expansion from BAOs, or local H_{0} measurements. Finally, one can also add information on large scale structure (LSS), i.e., on the growth rate and clustering amplitude of matter as a function of scale. However, LSS data are not very constraining for the $N_{\text {eff }}$ parameter, and the only LSS data included in Table 26.1 is the measurement of the CMB lensing spectrum. All combinations of Planck 2018 data with BAO or CMB lensing constraints return measurements consistent with the standard expectation.
The situation is different with the inclusion of the low-redshift measurement of $H_{0},[37]$, known to be in tension with Planck in the $\Lambda \mathrm{CDM}$ framework. As explained in Section 26.2, the positive correlation between $N_{\text {eff }}$ and h means that inclusion of the H_{0} measurement pushes $N_{\text {eff }}$ to higher values, $N_{\text {eff }}=3.27 \pm 0.15$ ($68 \% \mathrm{CL}, \mathrm{Pl} 18[\mathrm{TT}, \mathrm{TE}, \mathrm{EE}+\mathrm{lowE}+$ lensing $]+\mathrm{BAO}+\mathrm{R} 18)$, but still compatible with the standard expectation at the $\sim 1.5 \sigma$ level.
It remains to be seen whether the $>3 \sigma$ tension between CMB data and direct measurements of H_{0} results from systematics, or from a departure from the Λ CDM model [38,39].
The error bars on $N_{\text {eff }}$ degrade mildly when the data are analysed in the context of more extended cosmological scenarios. Adding only the total neutrino mass as an 8th free parameter has a negligible impact on the bounds.
The authors of Ref. [18] take a more extreme point of view
and fit a 12-parameter model to Pl18[TT,TE,EE+lowE+lensing] data; they obtain $N_{\text {eff }}=2.95 \pm 0.24(68 \% \mathrm{CL})$, showing that it is very difficult with current cosmological data to accommodate shifts of more than 0.5 from the standard $N_{\text {eff }}$ value, and to obtain good fits with, for instance, a fourth (sterile) thermalized neutrino. This is interesting since the anomalies in some oscillation data could be interpreted as evidence for at least one sterile neutrino with a large mixing angle, which would need to be thermalised unless non-standard interactions come into play [5]. In other words cosmology disfavours the explanation of the oscillations anomalies in terms of 1 or more extra neutrinos if they are thermalized.

26.3.2 Are they really neutrinos, as expected?

While a value of $N_{\text {eff }}$ significantly different from zero (at more than 15σ) and consistent with the expected number 3.045 yields a powerful indirect confirmation of the $\mathrm{C} \nu \mathrm{B}$, departures from standard $N_{\text {eff }}$ could be caused by any ingredient affecting the earlytime expansion rate of the Universe. Extra relativistic particles (either decoupled, self-interacting, or interacting with a dark sector), a background of gravitational waves, an oscillating scalar field with quartic potential, departures from Einstein gravity, or large extra dimensions are some of the possibilities for such ingredients. In principle one could even assume that the cosmic neutrino background never existed or has decayed (like in the "neutrinoless universe" model of [40]) while another dark radiation component is responsible for $N_{\text {eff }}$. At least, cosmological data allow to narrow the range of possible interpretations of $N_{\text {eff }} \simeq 3$ to the presence of decoupled relativistic relics like standard neutrinos. Indeed, free-streaming particles leave specific signatures in the CMB and LSS spectra, because their density and pressure perturbations, bulk velocities and anisotropic stress also source the metric perturbations. These signatures can be tested in several ways.

A first approach consists of introducing a self-interaction term in the neutrino equations $[6,7]$. Ref. [8] finds that current CMB and BAO data are compatible with no self-interactions. The upper limit to the effective coupling constant $G_{\text {eff }}$ for a Fermi-like four-fermions interaction at 95% confidence is $\log _{10}\left(G_{\text {eff }} \mathrm{MeV}^{2}\right)<$ -0.8 for Pl15 +BAO . Note however that neutrino self-interactions as strong as $\log _{10}\left(G_{\text {eff }} \mathrm{MeV}^{2}\right) \simeq-1.4$ could reconcile $\mathrm{CMB}+\mathrm{BAO}$ data with the direct H_{0} measurement of Ref [37], but such interactions seem to be hardly compatible with BBN and laboratory constraints [41].

A second approach consists of introducing two phenomenological parameters, $c_{\text {eff }}$ and $c_{\text {vis }}$ (see e.g., [42-44]): $c_{\text {eff }}^{2}$ generalizes the linear relation between isotropic pressure perturbations and density perturbations, while $c_{\text {vis }}^{2}$ modifies the neutrino anisotropic stress equation. While relativistic free-streaming species have $\left(c_{\text {eff }}^{2}, c_{\text {vis }}^{2}\right)=(1 / 3,1 / 3)$, a perfect relativistic fluid would have $\left(c_{\text {eff }}^{2}, c_{\text {vis }}^{2}\right)=(1 / 3,0)$. Other values do not necessarily refer to a concrete model, but make it possible to interpolate between these limits. Planck data strongly suggests $\left(c_{\text {eff }}^{2}, c_{\text {vis }}^{2}\right)=(1 / 3,1 / 3)$ [45, 46].

Finally, Ref. [15] (resp. [19]) shows that current data are precise enough to detect the "neutrino drag" effect mentioned in Sec. 26.2 through the measurement of the CMB peak (resp. BAO) scale. These findings show that current cosmological data are able to detect not just the average density of some relativistic relics, but also their anisotropies.

Table 26.2: Summary of $\sum m_{\nu}$ constraints.

26.3.3 Neutrino masses

Table 26.2 shows a list of constraints on $\sum m_{\nu}$ obtained with several combinations of data sets. The acronyms "Pl18", "BAO" and "R18" have been described in the previous subsection, while "Pantheon" refers to the supernovae Type Ia compilation of [47].

Given that most determinations of $N_{\text {eff }}$ are compatible with the standard prediction, $N_{\text {eff }}=3.045$, it is reasonable to adopt this value as a theoretical prior and to investigate neutrino mass constraints in the context of a minimal 7-parameter model, $\Lambda \mathrm{CDM}+\sum m_{\nu}$. Under this assumption, the most robust constraints come from Planck 2018 temperature and polarization data alone: $\sum m_{\nu}<0.26 \mathrm{eV}(95 \% \mathrm{CL})$. Among the four effects of neutrino masses on the CMB spectra described before, current bounds are dominated by the first and the third effects (modified late background evolution, and distortions of the temperature and polarisation spectra through weak lensing).

Adding measurements of the BAO scale is crucial, since the measurement of the angular diameter distance at small redshift allows us to break parameter degeneracies, for instance between $\sum m_{\nu}$ and h. Combined Planck 2018 data, BAO experiments give $\sum m_{\nu}<0.13 \mathrm{eV}(95 \% \mathrm{CL})$. Supernovae data are less constraining than BAO data for the neutrino mass determination.

Because the parameter correlation between $\sum m_{\nu}$ and H_{0} is negative, the inclusion of R18 data provides stronger bounds on neutrinos masses, down to $\sum m_{\nu}<0.097 \mathrm{eV}(95 \% \mathrm{CL})$ when including Pl18[TT,TE,EE+lowE]+R18 [16], but such bounds are subject to caution, since they come from a combination of discrepant data sets (at the $>3 \sigma$ level).

It is interesting to add LSS data sets, sensitive to the small-scale suppression of the matter power spectrum due to neutrino freestreaming. The bound from Planck 18 including lensing plus BAO is very strong, $\sum m_{\nu}<0.12 \mathrm{eV}(95 \% \mathrm{CL})$, which is comparable to previous bounds derived from Planck 15 in combination with Ly α forest data or other large-scale structure data [48-50]. It can even be tightened down to $\sum m_{\nu}<0.11 \mathrm{eV}$ by further adding supernovae data from the "Pantheon" compilation. The latter bound puts some pressure on the inverted mass hierarchy that requires $\sum m_{\nu}>0.11 \mathrm{eV}$. It should however be noticed that the full DES 1-year data [51] prefer a lower σ_{8} value than the Planck best fit, relaxing the bound to $\sum m_{\nu}<0.14 \mathrm{eV}$ (95\%CL, $\mathrm{Pl} 18[\mathrm{TT}, \mathrm{TE}, \mathrm{EE}+\mathrm{lowE}+$ lensing $]+\mathrm{BAO}+\mathrm{DES})$ [16].

Upper bounds on neutrino masses become weaker when the data are analysed in the context of extended cosmological models, but only by a small amount. Floating $N_{\text {eff }}$ instead of fixing it to 3.045 has no significant impact on the neutrino mass bounds reported in the previous paragraphs. Even in the extreme case considered by Ref. [18], with 12 free cosmological parameters, one can see in Table 26.2 that the bound from Planck 2018 (without lensing) + BAO increases from 0.13 eV to $0.52 \mathrm{eV}(95 \% \mathrm{CL})$ only. This shows that current cosmological data are precise enough to disentangle the effect of several extended cosmological parameters, and that neutrino mass bounds are becoming increasingly robust.

26.4 Future prospects and outlook

The cosmic neutrino background has been detected indirectly at very high statistical significance. Direct detection experiments are now being planned, e.g., at the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) [52]. The detection prospects crucially depend on the exact value of neutrino masses and on the enhancement of their density at the location of the Earth through gravitational clustering in the Milky Way and its sub-halos - an effect however expected to be small [53-55].

Over the past few years the upper limit on the sum of neutrino masses has become increasingly stringent, first indicating that the mass ordering is hierarchical and recently putting the inverted hierarchy under pressure and favouring the normal hierarchy (although quantitative estimates of how disfavoured the inverted hierarchy is vary depending on assumptions, see e.g. [56-58]) which has consequences for planning future double beta decay experiments.

Neutrino mass and density bounds are expected to keep improving significantly over the next years, thanks to new LSS experiments like DESI [59], Euclid [60], LSST [61], and SKA [62], or possible new CMB experiments like CMB-S4 [63], Pixie [64], CMBPol or CORE [65]. If the Λ CDM model is confirmed, and if neutrinos have standard properties, the total neutrino mass should be detected at the level of at least $3-4 \sigma$ even at the minimum level allowed by oscillations. This is the conclusion reached by several independent studies, using different dataset combinations (see e.g., $[32,66-71]$). One should note that at the minimum level allowed by oscillations $\sum m_{\nu} \sim 0.06$, neutrinos constitute $\sim 0.5 \%$ of the Universe matter density, and their effects on the matter power spectrum is only at the 5% level, implying that exquisite control of systematic errors will be crucial to achieve the required accuracy. At this level, the information coming from the power spectrum shape is more powerful than that coming from geometrical measurements (e.g., BAO). But exploiting the shape information requires improved understanding of the nonlinear regime, and of galaxy bias for galaxy surveys. The fact that different surveys and different data set combinations have enough statistical power to reach this level, offers a much needed redundancy and the possibility to perform consistency checks which in turns helps immensely with the control of systematic errors and in making the measurement robust. Using the entire Universe as a particle detector, the on-going and future observational efforts hold the exciting prospect to provide a measurement of the sum of neutrino masses and possibly indication of their mass hierarchy.

References

[1] A. D. Dolgov, Phys. Rept. 370, 333 (2002), [hepph/0202122].
[2] J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006), [arXiv:astro-ph/0603494].
[3] S. Hannestad, Prog. Part. Nucl. Phys. 65, 185 (2010), [arXiv:1007.0658].
[4] J. Lesgourgues et al., Neutrino cosmology (Cambridge University Press, 2013).
[5] M. Archidiacono et al., JCAP 1608, 08, 067 (2016), [arXiv:1606.07673].
[6] L. Lancaster et al., JCAP 1707, 07, 033 (2017), [arXiv:1704.06657].
[7] I. M. Oldengott et al., JCAP 1711, 11, 027 (2017), [arXiv:1706.02123].
[8] M. Park et al. (2019), [arXiv:1904.02625].
[9] J. Birrell, C.-T. Yang and J. Rafelski, Nucl. Phys. B890, 481 (2014), [arXiv:1406.1759].
[10] G. Mangano et al., Nucl. Phys. B729, 221 (2005), [hepph/0506164].
[11] E. Grohs et al., Phys. Rev. D93, 8, 083522 (2016), [arXiv:1512.02205].
[12] P. F. de Salas and S. Pastor, JCAP 1607, 07, 051 (2016), [arXiv:1606.06986].
[13] S. Bashinsky and U. Seljak, Phys. Rev. D69, 083002 (2004), [arXiv:astro-ph/0310198].
[14] Z. Hou et al., Phys. Rev. D87, 083008 (2013), [arXiv:1104.2333].
[15] B. Follin et al., Phys. Rev. Lett. 115, 9, 091301 (2015), [arXiv:1503.07863].
[16] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
[17] Planck 2018 explanatory supplement, wiki.cosmos.esa.int/planckpla2018/, "Mission Products: Cosmological parameters: Parameter Tables".
[18] E. Di Valentino, A. Melchiorri and J. Silk, arXiv:1908.01391 Phys. Rev. D92, 12,1302 (2015).
[19] D. Baumann et al., Nature Phys. 15, 465 (2019), [arXiv:1803.10741].
[20] A. Lewis and A. Challinor, Phys. Rept. 429, 1 (2006), [arXiv:astro-ph/0601594].
[21] J. Lesgourgues and S. Pastor, Adv. High Energy Phys. 2012, 608515 (2012), [arXiv:1212.6154].
[22] Z. Hou et al., Astrophys. J. 782, 74 (2014), [arXiv:1212.6267].
[23] J. R. Bond, G. Efstathiou and J. Silk, Phys. Rev. Lett. 45, 1980 (1980), [,61(1980)].
[24] W. Hu, D. J. Eisenstein and M. Tegmark, Phys. Rev. Lett. 80, 5255 (1998), [arXiv:astro-ph/9712057].
[25] S. Bird, M. Viel and M. G. Haehnelt, Mon. Not. R. Astron. Soc 420, 2551 (2012).
[26] C. Wagner, L. Verde and R. Jimenez, Astrophys. J. 752, L31 (2012), [arXiv:1203.5342].
[27] C. J. Todero Peixoto, V. de Souza and P. L. Biermann, JCAP 1507, 07, 042 (2015), [arXiv:1502.00305].
[28] J. Brandbyge and S. Hannestad, JCAP 1710, 10, 015 (2017), [arXiv:1706.00025].
[29] J. Adamek, R. Durrer and M. Kunz, JCAP 1711, 11, 004 (2017), [arXiv:1707.06938].
[30] M. Archidiacono et al., JCAP 1702, 02, 052 (2017), [arXiv:1610.09852].
[31] A. Liu et al., Phys. Rev. D93, 4, 043013 (2016), [arXiv:1509.08463].
[32] R. Allison et al., Phys. Rev. D92, 12, 123535 (2015), [arXiv:1509.07471].
[33] J. Lesgourgues, S. Pastor and L. Perotto, Phys. Rev. D70, 045016 (2004), [hep-ph/0403296].
[34] A. Slosar, Phys. Rev. D73, 123501 (2006), [arXiv:astroph/0602133].
[35] R. Jimenez et al., JCAP 1005, 035 (2010), [arXiv:1003.5918].
[36] R. Jimenez, C. P. Garay and L. Verde, Phys. Dark Univ. 15, 31 (2017), [arXiv:1602.08430].
[37] A. G. Riess et al., Astrophys. J. 855, 2, 136 (2018), [arXiv:1801.01120].
[38] J. L. Bernal, L. Verde and A. G. Riess, JCAP 1610, 10, 019 (2016), [arXiv:1607.05617].
[39] L. Verde, T. Treu and A. G. Riess (2019), [arXiv:1907.10625].
[40] J. F. Beacom, N. F. Bell and S. Dodelson, Phys. Rev. Lett. 93, 121302 (2004), [arXiv:astro-ph/0404585].
[41] N. Blinov et al. (2019), [arXiv:1905.02727].
[42] W. Hu, Astrophys. J. 506, 485 (1998), [arXiv:astroph/9801234].
[43] W. Hu et al., Phys. Rev. D59, 023512 (1999), [arXiv:astroph/9806362].
[44] M. Gerbino, E. Di Valentino and N. Said, Phys. Rev. D88, 6, 063538 (2013), [arXiv:1304.7400].
[45] B. Audren et al., JCAP 1503, 036 (2015), [arXiv:1412.5948].
[46] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), [arXiv:1502.01589].
[47] D. M. Scolnic et al., Astrophys. J. 859, 2, 101 (2018), [arXiv:1710.00845].
[48] N. Palanque-Delabrouille et al., JCAP 1511, 11, 011 (2015), [arXiv:1506.05976].
[49] A. J. Cuesta, V. Niro and L. Verde, Phys. Dark Univ. 13, 77 (2016).
[50] S. Vagnozzi et al., Phys. Rev. D96, 12, 123503 (2017), [arXiv:1701.08172].
[51] T. M. C. Abbott et al. (DES), Phys. Rev. D98, 4, 043526 (2018), [arXiv:1708.01530].
[52] S. Betts et al., in "Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013," (2013), [arXiv:1307.4738], URL http://www.slac.stanford.edu/econf/C1307292/docs/ submittedArxivFiles/1307.4738.pdf.
[53] A. Ringwald and Y. Y. Y. Wong, JCAP 0412, 005 (2004), [hep-ph/0408241].
[54] F. Villaescusa-Navarro et al., JCAP 1303, 019 (2013), [arXiv:1212.4855].
[55] P. F. de Salas et al., JCAP 1709, 09, 034 (2017), [arXiv:1706.09850].
[56] F. Simpson et al., JCAP 1706, 06, 029 (2017), [arXiv:1703.03425].
[57] S. Hannestad and T. Schwetz, JCAP 1611, 11, 035 (2016), [arXiv:1606.04691].
[58] S. Roy Choudhury and S. Hannestad (2019), [arXiv:1907.12598].
[59] A. Aghamousa et al. (DESI) (2016), [arXiv:1611.00036].
[60] R. Laureijs et al. (EUCLID) (2011), [arXiv:1110.3193].
[61] Paul A. Abell et al., LSST Science and LSST Project Collaborations,
http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm -2495-a.pdf (2009) arXiv:0912.0201.
[62] http://www.skatelescope.org.
[63] K. N. Abazajian et al. (CMB-S4) (2016), [arXiv:1610.02743].
[64] A. Kogut et al., JCAP 1107, 025 (2011), [arXiv:1105.2044].
[65] J. Delabrouille et al. (CORE), JCAP 1804, 04, 014 (2018), [arXiv:1706.04516].
[66] C. Carbone et al., JCAP 1103, 030 (2011), [arXiv:1012.2868].
[67] J. Hamann, S. Hannestad and Y. Y. Y. Wong, JCAP 1211, 052 (2012), [arXiv:1209.1043].
[68] B. Audren et al., JCAP 1301, 026 (2013), [arXiv:1210.2194].
[69] R. Pearson and O. Zahn, Phys. Rev. D89, 4, 043516 (2014), [arXiv:1311.0905].
[70] F. Villaescusa-Navarro, P. Bull and M. Viel, Astrophys. J.

814, 2, 146 (2015), [arXiv:1507.05102].
[71] T. Brinckmann et al., JCAP 1901, 059 (2019), [arXiv:1808.05955].

27. Dark Matter

Written August 2019 by L. Baudis (Zurich U.) and S. Profumo (UC Santa Cruz).

27.1 The case for dark matter

Modern cosmological models invariably include an electromagnetically close-to-neutral, non-baryonic matter species with negligible velocity from the standpoint of structure formation, generically referred to as "cold dark matter" (CDM; see The Big-Bang Cosmology-Sec. 22 of this Review). For the benchmark Λ CDM cosmology adopted in the Cosmological Parameters-Sec. 25.1 of this Review, the DM accounts for 26.4% of the critical density in the universe, or 84.4% of the total matter density. The nature of only a small fraction, between at least 0.5% (given neutrino oscillations) and at most 1.6% (from combined cosmological constraints), of the non-baryonic matter content of the universe is known: the three Standard Model neutrinos (see the Neutrino Masses, Mixing, and Oscillations-Sec. 14 of this Review)). The fundamental makeup of the large majority of the DM is, as of yet, unknown.

Assuming the validity of General Relativity, DM is observed to be ubiquitous in gravitationally collapsed structures of size ranging from the smallest known galaxies [1] to galaxies of size comparable to the Milky Way [2], to groups and clusters of galaxies [3]. The mass-to-light ratio is observed to saturate at the largest collapsed scales to a value indicative, and close to, what inferred from other cosmological observations for the universe as a whole [4]. In such collapsed structures, the existence of DM is inferred directly using tracers of mass enclosed within a certain radius such as stellar velocity dispersion, rotation curves in axisymmetric systems, the virial theorem, gravitational lensing, and measures of the amount of non-dark, i.e. baryonic, mass such as stellar number counts and tracers of gas density such as Xray emission [5]. The global DM abundance as determined from cosmological probes is discussed in Sec. 22.

The picture of structure formation in modern cosmology heavily relies on, and can be considered an independent and exceptionally strong motivation for, DM. Baryonic density fluctuations at CMB decoupling are observed to be at most on the order of $\delta \rho_{b} /\left.\rho_{b}\right|_{\text {rec }} \approx$ 10^{-5}; since density perturbations grow linearly with the scale factor in the linear regime, absent any other matter fluid, one would predict that

$$
\begin{equation*}
\delta \rho_{b} /\left.\rho_{b}\right|_{\mathrm{today}} \approx \frac{\delta \rho_{b} /\left.\rho_{b}\right|_{\mathrm{rec}}}{a_{\mathrm{rec}}} \approx 10^{-2}, \tag{27.1}
\end{equation*}
$$

at odds with the observed highly non-linear structures in the universe, $\delta \rho_{b} /\left.\rho_{b}\right|_{\text {obs }} \gg 1$. The presence of a dominant nonrelativistic ("cold") pressure-less matter component decoupled from the thermal bath well before recombination allows instead for the prediction of a matter power spectrum in remarkable agreement with observations [6].

Assuming deviations of gravitational interactions on large scales from general relativity or from its Newtonian limit, certain effects, attributed in the standard scenario to DM, can be explained by modified gravity [7]. Usually such theories mimic the effects otherwise attributed to DM on a limited range of scales, but fail globally, and especially at the largest scales. Key issues that at present appear highly problematic in the framework of theories of modified gravity without DM include (i) predicting the correct spectrum of density perturbations, (ii) predicting the observed anisotropy power spectrum of the CMB, and (iii) explaining weak lensing and X-ray observations of merging clusters such as 1 E 0657-558 (the "Bullet" cluster) [8]. The inferred relative speed of gravitational and electromagnetic radiation in GW170817 additionally excludes a significant swath of modified theories of gravity where the two speeds (of gravitational and electromagnetic waves) differ [9].

27.2 Properties of dark matter candidates

Electric charge: The "darkness" of DM can be quantified based on constraints from the CMB and large-scale structure: if the DM is charged, or "milli-charged" (for instance via a kinetic mixing with a dark photon field, producing an effective
suppressed coupling to the visible photon field), it might impact the baryon-photon plasma during recombination; in turn, DM density fluctuations can be suppressed by radiation pressure and photon diffusion, additionally altering the baryon acoustic peak structure. [10] finds that the most stringent constraints stem from the requirement that the DM be completely decoupled from the baryon-photon plasma at recombination, yielding a maximal "milli-electric" charge, in units of the electron charge, of $3.5 \times 10^{-7}\left(m_{\mathrm{DM}} / 1 \mathrm{GeV}\right)^{0.58}$ for $m_{\mathrm{DM}}>1 \mathrm{GeV}$, and of $4.0 \times 10^{-7}\left(m_{\mathrm{DM}} / 1 \mathrm{GeV}\right)^{0.35}$ for $m_{\mathrm{DM}}<1 \mathrm{GeV}$. Limits also exist from structure formation on how optically dark and dissapationaless the DM should be.

Self-interactions: Observations of merging clusters [8] and of the ellipticity of certain galaxies as inferred from X-rays [11] constrain the level of DM-DM self interactions. The figure of merit is the ratio of the DM-DM cross section and the DM mass [12] (see Ref. [13] for a review), $\sigma_{\mathrm{DM}-\mathrm{DM}} / m_{\mathrm{DM}}<0.47 \mathrm{~cm}^{2} / \mathrm{g} \simeq$ 0.84 barn $/ \mathrm{GeV}$ at 95% C.L.. Assuming a velocity dependence in $\sigma_{\mathrm{DM}-\mathrm{DM}}$, "self-interacting DM" has been advocated as a possible solution to certain possible small-scale structure issues in the standard non-collisional ($\left.\sigma_{\mathrm{DM}-\mathrm{DM}} \simeq 0\right)$ setup [13, 14] (see Sec. 27.4).

Mass: Lower Limits: Model-independent lower limits for very small DM masses are due to quantum effects: for fermionic DM particles, the phase-space density $f(\vec{x}, \vec{p})$ is bounded from above due to Pauli's exclusion principle, $f<g h^{-3}$, with g the number of internal degrees of freedom and h Planck's constant; observations of the velocity dispersion (or, equivalently, measures of the enclosed mass) and physical density in dwarf galaxies, lead to a lower limit on fermionic DM masses, sometimes known as the Tremaine-Gunn limit [15]. Using the Fornax dwarf, Ref. [16] finds $m_{F}>70 \mathrm{eV}$. More stringent limits can be drawn from Lyman- α observations, although such limits depend on the thermal history of the DM. In the case of bosonic DM, the Compton wavelength of an ultra-light species might erase small-scale structure, in conflict with CMB and large-scale structure [17], Lyman- α observations $[18,19]$, and measurements of high-redshift galaxy luminosity functions and the Milky Way satellite luminosity function [20-22]: these observations indicate that $m_{B} \gtrsim 10^{-22} \mathrm{eV}$.

Mass: Upper Limits: General upper limits exist on the mass of the DM constituent from the stability against tidal disruption of structures immersed in DM halos, such as galactic disks and globular clusters, and of individual small galaxies. The most stringent limits can be derived using wide halo binaries [23] and the stability of the star cluster within Eridanus II [24]. Such limits constrain an individual, point-like DM constituent, assuming it makes up 100% of the DM, to be lighter than around $5 M_{\odot}$. (Notice that the mass limits discussed here do not assume any specific production mechanism, and do not depend on the observed cosmological DM density).

Stability: The DM lifetime must be long compared to cosmological timescales [25].

27.3 Genesis of dark matter

The generation of DM in the early universe can proceed via thermal or non-thermal production, or both, or it may result from a particle-antiparticle asymmetry.

Freeze-out: The process of chemical decoupling from the high-temperature, high-density thermal bath (freeze-out) as a paradigm for particle production in the early universe is both a predictive and a successful one. The possibility that just like light elements, neutrinos, and CMB photons, particle DM also originated from a thermal decoupling process has thus garnered significant attention.

A particle species chemically decouples when the rate Γ for the species' number-changing processes drops below the Hubble rate H. Rough estimates for the abundance of relics can be obtained by (i) calculating the freeze-out (i.e. "decoupling") temperature $T_{\text {f.o. }}$, corresponding to $H\left(T_{\text {f.o. }}\right) \sim \Gamma\left(T_{\text {f.o. }}\right)$, (ii) equating the comoving number density at freeze-out and today, eventually (iii) obtaining the physical density of relic particles today. This procedure assumes that entropy is conserved between $T_{\text {f.o. }}$ and today, an assumption that could well be violated, especially for
heavy relics that decouple early, for instance by entropy injection episodes [26]. Notice also that the freeze-out calculation strongly depends on the assumed background cosmology, and changes e.g. if the early universe is not radiation-dominated around DM decoupling.

The calculation of the freeze-out relic abundance hinges on a Boltzmann equation relating the Liouville operator to the collision operator acting on the phase space density. Under a variety of simplifying assumptions including homogeneity and isotropy, it is possible to reduce the relevant equation for the number density n of a single species pair-annihilating with particles in the thermal bath via 2 -to- 2 processes to

$$
\begin{equation*}
\frac{d n}{d t}-3 H n=-\langle\sigma v\rangle\left(n^{2}-n_{\mathrm{eq}}^{2}\right) \tag{27.2}
\end{equation*}
$$

where $\langle\sigma v\rangle$ is the thermally-averaged pair-annihilation cross section times relative velocity (see Ref. [27]), and $n_{\text {eq }}$ is the equilibrium number density. Relics for which the freeze-out temperature is much larger than the particle mass (and thus that freeze-out as ultra-reltivistic) are called hot relics; if the opposite is true, the relic is instead considered cold.

A straightforward calculation shows that to leading order the frozen-out density of hot relics is linearly proportional to the relic particle mass. The comoving number density $Y=n / s$, where s is the entropy density, for a hot relic is approximately given by its equilibrium value,

$$
\begin{equation*}
Y_{\mathrm{f.o} .} \simeq Y_{\mathrm{eq}} \simeq 0.278 \frac{g_{\mathrm{eff}}}{g_{* s}} \tag{27.3}
\end{equation*}
$$

where $g_{\text {eff }}$ is the relic's effective number of degrees of freedom, and $g_{* s}$ is the number of entropic relativistic degrees of freedom, both calculated at $T_{\text {f.o. }}$. The resulting relic abundance, assuming an iso-entropic expansion, is

$$
\begin{equation*}
\Omega_{\mathrm{hot}} h^{2}=\frac{m Y_{\mathrm{f.o.}} s_{0} h^{2}}{\rho_{c}} \simeq \frac{m}{93 \mathrm{eV}} \tag{27.4}
\end{equation*}
$$

with s_{0} the entropy density today, and with the latter equality holding for the case of SM neutrinos, with a freeze-out temperature around 1 MeV (which enters in the final relic abundance through the degrees of freedom dependence on the right-handside of Eq. (27.3)).

For cold relics, the leading-order dependence of the relic abundance on the DM particle properties is an inverse proportionality relation to the pair-annihilation cross section,

$$
\begin{equation*}
\Omega_{\mathrm{cold}} h^{2} \simeq 0.1\left(\frac{x_{\mathrm{f.o.}}}{20}\right)\left(\frac{10^{-8} \mathrm{GeV}^{-2}}{\sigma_{D M+D M \leftrightarrow \text { anything }}}\right) \tag{27.5}
\end{equation*}
$$

where $x \equiv m_{\mathrm{DM}} / T$. In turn, the freeze-out temperature is approximately given by the solution to the equation

$$
\begin{equation*}
\sqrt{x} \cdot e^{-x}=\left(m_{\mathrm{DM}} \cdot M_{P} \cdot \sigma_{D M+D M \leftrightarrow \text { anything }}\right)^{-1} \tag{27.6}
\end{equation*}
$$

where $M_{P} \simeq 2.435 \times 10^{18} \mathrm{GeV}$ is the reduced Planck mass. As a result, $T_{\text {f.o. }} \simeq m_{\mathrm{DM}} / x_{\text {f.o. }}$, with $x_{\text {f.o. }}$ a number between 10 and 50 , depending on the cross section, with only a logarithmic dependence on the DM mass. Since for electroweak-scale cross sections and masses $\sigma_{D M+D M} \simeq 10^{-8} \mathrm{GeV}^{-2}$, "weakly-interacting massive particles", or WIMPs have gained exceptional popularity. Notice that Eq. (27.5) bears, however, no connection to the weak scale [28], despite the relation being known as "WIMP miracle".

Numerous scenarios exist, including notably supersymmetry [29, 30] and models with universal extra dimensions [31,32] where the relic abundance of the DM is controlled by processes involving a slightly heavier, unstable, co-annihilating species [33]. In this case the calculation of the abundance of the stable species proceeds similarly to what outlined above, with an effective pair-annihilation cross section that captures the effects of coannihilation replacing the pair-annihilation cross section [30].

Freeze-in: Collisional processes can lead to the production of out-of-equilibrium particles that progressively accumulate over cosmic time, a process sometimes called freeze-in. The abundance
of the frozen-in particles produced at a given redshift depends on the product of the production rate times the Hubble time at that redshift. Freeze-in generally implies that the lightest observablesector particles decay to the DM with relatively long lifetimes, giving peculiar signals at colliders (see e.g. [34]). Gravitinos are an example of DM candidates possibly produced via a freeze-in type scenario, albeit the portal coupling is in that case via a higher dimensional, Planck-suppressed operator [35].

Cannibalization and other dark-sector numberchanging processes: Thermal processes can drive the abundance of the DM beyond simple 2 -to- 2 number-changing interactions. For instance, DM can "cannibalize" [36,37] itself if $n \rightarrow 2$ processes exist. In this case, a critical aspect is whether or not the DM sector is in thermal contact with the Standard Model thermal bath. If it is, $n \rightarrow 2$ processes can drive the relic abundance, e.g. in the Strongly Interacting Massive Particles (SIMP) scenario [38]. Models exist where the kinetic decoupling (i.e. the decoupling from the thermal equilibrium velocity distribution) of the two sectors drives the abundance of the DM (elastically decoupling relics, or ELDERs [39]). When the two sectors are not in thermal contact, $n \rightarrow 2$ processes heat the DM sector dramatically, rapidly affecting the temperature ratio between the visible and dark sectors $[36,38]$. If the relevant cross sections are large enough, and the DM mass light enough, significant effects can arise in structure formation [36].

Non-thermal production: DM production can proceed via processes out of thermal equilibrium ("non-thermal" production). These include DM production via the decay of a "mother" particle [40, 41] (or of topological defects [42], moduli [43] etc.) to the DM, or production via gravitational effects.

Asymmetric DM: An enticing alternative possibility for DM production is that of asymmetric DM [44,45]: the relic DM abundance arises from an asymmetry between anti-DM and DM. This asymmetry may or may not be related to the baryon-antibaryon asymmetry. If it is, then depending on the model and its thermal history, a relation exists between the mass of the DM and the proton mass. A variety of proposals have been put forward where alternately baryogenesis is explained from a DM sector asymmetry, or vice-versa (see e.g. Ref. [46] for a review).

Primordial Black Holes production: A qualitatively standalone class of DM candidates, primordial black holes (PBHs), arises from entirely different mechanisms from what reviewed above. PBHs are thought to originate from gravitational collapse of large density fluctuations in the early universe [47, 48]. The over-densities could be produced in a variety of ways, such as topological defects like cosmic strings, necklaces or domain walls, curvature fluctuations from a period of ultra-slow-roll, a sound speed "resonance", an early phase of matter domination, or sub-horizon phenomena including a phase transition and preheating. Albeit the calculation depends on the details of gravitational collapse, the formation time is connected to the PBH mass via $M=\gamma M_{P B H} \simeq 2 \times 10^{5} \gamma\left(\frac{t}{1 \mathrm{~s}}\right) M_{\odot}$, with $\gamma \simeq(1 / \sqrt{3})^{3}$ during radiation domination [49].

27.4 Density and velocity distribution of dark matter

27.4.1 Local density and velocity distribution

The density and distribution of DM in the Milky Way encipher relevant dynamical information about our Galaxy, and are particularly important for direct and indirect detection experiments. The local density $\left(\rho_{0}\right)$ is an average over a volume of a few hundred parsecs in the Solar neighbourhood.

To determine the local density from observations, two classes of methods are used [50]. So-called local measures rely on the vertical motion of tracer stars in the vicinity of the Sun, while global measures extrapolate ρ_{0} from the measured rotation curve, with additional assumptions about the Galactic halo shape. Conversely, by comparing the extrapolated local density with the one obtained from local measures, one can constrain the local shape of the Milky Way halo. A major source of uncertainty on ρ_{0} is the contribution of baryons (stars, gas, stellar remnants) to the local dynamical mass. For instance, the motion of tracer stars used in local measures is dictated by the total potential generated by
baryons and DM, and a robust baryonic census must be available to infer the additional contribution from DM. Recent determinations from global methods lie in the range $(0.2-0.6) \mathrm{GeV} / \mathrm{cm}^{3}$, while new studies of the local DM density from Gaia satellite data yield $(0.4-1.5) \mathrm{GeV} / \mathrm{cm}^{3}$, depending on the type of stars used in the study [51].

Other observational quantities that enter in the phase space distribution of DM, and provide constraints on mass models of the Milky Way are the local circular speed v_{c} and the escape velocity $v_{\text {esc }}$. The local circular speed is measured by various methods, roughly divided into measurements of the Sun's velocity with respect to an object assumed to be at rest with respect to the Galactic centre or direct measurements of the local radial force [52]. These methods yield values of $v_{c}=(218-246) \mathrm{km} / \mathrm{s}$. A recent estimate of the escape velocity, defined as the speed above which objects are not gravitationally bound to our galaxy, is $v_{e s c}=533_{-41}^{+54} \mathrm{~km} / \mathrm{s}$ [53].

The local velocity distribution of DM particles can not be measured directly at present, and is mostly derived from simulations. In general, experiments use the simplest, so-called Standard Halo Model (SHM) for their data analysis. It assumes an isotropic, isothermal sphere of DM particles with a density profile of $\rho(r) \propto r^{-2}$, for which the velocity distribution is Maxwellian, with a velocity dispersion $\sigma_{v}=v_{c} / \sqrt{2}$. This distribution, which formally extends to infinity, is truncated at $v_{e s c}$ [54]. Earlier high resolution, dark-matter-only simulations found velocity distributions that markedly deviated from a Maxwell-Boltzmann distribution [55] and in addition revealed components above the dominant smooth distribution, including narrow spikes due to tidal streams. Recent hydrodynamical simulations of Milky Way-like galaxies including baryons, which have a non-negligible effect on the DM distribution in the Solar neighbourhood, find velocity distributions that are indeed close to Maxwellian, arguing that the SHM is a good approximation [56-58].

Ultimately the goal is to determine the velocity distribution from observations (for example by studying the motion of stars that share the same kinematics as the DM), and the Gaia satellite data offers a unique opportunity to study the various stellar populations. Recently it was revealed that the local stellar halo has two components: a quasi-spherical, weakly rotating structure with metal-poor stars, and a flattened, radially anisotropic structure of metal-rich stars, which arose due to accretion of a large $\left(10^{11-12} \mathrm{M}_{\odot}\right)$ dwarf galaxy around $(8-10) \times 10^{9} \mathrm{y}$ ago [59]. The expectation is that the local DM halo shows a similar bimodal structure, and first velocity distributions of the two components - using the stellar populations as tracers - were inferred in [60]. In Ref. [61], an updated halo model is introduced: it includes the anisotropic structure seen in the Gaia data and provides an analytic expression for the velocity distribution. The value of the local DM density is updated to $(0.55 \pm 0.17) \mathrm{GeV} / \mathrm{cm}^{3}$, where the 30% error accounts for the systematics. The circular rotation and the escape speeds are updated to $v_{c}=(233 \pm 3) \mathrm{km} / \mathrm{s}$ and $v_{e s c}=528_{-25}^{+24} \mathrm{~km} / \mathrm{s}$.

27.4.2 Small-scale challenges

The Λ CDM framework is tremendously successful at explaining the observed large-scale structures of the Universe (corresponding to distances $\geq 1 \mathrm{Mpc}$, the typical inter-galactic distance), as well as the main properties of galaxies that form within DM haloes, see [62]. The observed large-scale structure is consistent with point-like, cold DM particles that interact purely via the gravitational force. But in the past decades, observations at scales below $\sim 1 \mathrm{Mpc}$, where structure formation becomes strongly nonlinear, turned out more problematic to be described within the Λ CDM model. The main small-scale challenges which received much attention in the recent literature $[13,62]$ are known as: the missing satellites problem, the cusp-core problem and the too-big-to-fail problem. Initially these issues, which are not all independent of one another, arose by comparing theoretical predictions from dark-matter-only simulations to observation. While their most likely solutions are in dissipative, baryonic physics (such gas cooling, star formation, supernovae feedback), see the recent review in Ref. [63], the small-scale problems could in addition call for a
modification or an extension of the Λ CDM paradigm. Most importantly, the ever increasing amount of data on the satellites of the MW and M31 are used to constrain alternative DM models.

The missing satellites problem: High-resolution cosmological simulations of DM haloes the size of the MW predict hundreds or thousands of subhaloes with masses that are in principle large enough to allow for galaxy formation $\left(>10^{7} \mathrm{M}_{\odot}\right)$. Yet less than ~ 100 satellite galaxies with masses down to $\sim 300 \mathrm{M}_{\odot}$ are known to orbit our galaxy within 300 kpc . Galaxies in the field show a similar under-abundance. One solution could be that galaxy formation becomes increasingly inefficient as the halo mass drops, and thus the smallest DM haloes have naturally failed to form galaxies.

The cusp-core problem: The mass density profiles of DM haloes in $\Lambda \mathrm{CDM}$ simulations rise steeply at small radii, $\rho(r) \propto$ $r^{-\gamma}$, with $\gamma \simeq 0.8-1.4$ [64]. This is in contrast to the observed density profiles of many low-mass galaxies (albeit not all), the rotation curves of which are best fit with constant-density cores, $\gamma \simeq 0-0.5$. A related issue is that simulations predict more DM than measured in the central regions of galaxies (also known as the central density problem). A likely solution is that baryonic feedback modifies the structure of DM haloes. Hydrodynamic simulations which include the effects of baryons on galaxy formation have shown that baryonic feedback (e.g., supernova-driven blowouts) can erase the central cusps and produce core-like density profiles.

The too-big-to-fail problem: This problem is related to the fact that the local Universe contains fewer galaxies with large central densities $\left(\simeq 10^{10} \mathrm{M}_{\odot}\right)$ compared to Λ CDM predictions. DM haloes of such masses are thought to be too massive to have failed to form stars (hence the name of the problem), especially if lowermass subhaloes are capable of doing so. The bright MW satellites are generally associated with subhaloes (e.g., from the Aquarius and Via Lactea II Λ CDM simulations), however not with the most massive ones [65]. A similar issue is present in Andromeda and in field galaxies outside the Local Group. The solutions that were briefly mentioned above do not require modifications to the Λ CDM framework. Other solutions involve either modifications of linear theory predictions (via the nature of the DM particle, e.g., Warm DM - WDM) or modifications of nonlinear predictions (via DM models that involve a self-interaction of DM particles - SIDM) [62]. WDM models postulate particles with masses at the keV -scale, and the observed number of dark-matter-dominated satellites is used to set a lower limit on the number of subhaloes in the MW and thus a lower limit on the particle's mass [63]. Current constraints are in the range $m_{W D M}>(1.6-2.3) \mathrm{keV}$. Cosmological simulations with SIDM find that $\sigma / m_{S I D M} \simeq(0.5-10) \mathrm{cm}^{2} / \mathrm{g}$ can alleviate the cusp-core and too-big-to-fail problems, giving rise to DM cores in dwarf galaxies with sizes of (0.3-1.5) kpc [13]. Galaxy clusters provide important constraints, and their large central DM densities prefer models with $\sigma / m_{\text {DM }} \lesssim 0.1 \mathrm{~cm}^{2} / \mathrm{g}[66]$. Thus, if SIDM is to solve the small-scale CDM problems (without considering the baryonic feedback however) and obey the constraints observed on the scales of clusters, σ must depend on the velocity of the particle: it must increase as the rms speed of the particle decreases from the scale of clusters $\left(v \sim 10^{3} \mathrm{~km} / \mathrm{s}\right)$ to the scale of dwarf galaxies ($v \sim 10 \mathrm{~km} / \mathrm{s}$).

27.5 Dark matter models

Particle DM model building is deeply intertwined with the question of the nature of physics beyond the Standard Model (BSM) of particle physics ${ }^{1}$. Directions in this area have followed a few strategies, including, but not limited to (1) pursuing DM candidates embedded in frameworks that include solutions to other open issues in particle physics, for example WIMPs in connection with electroweak-scale new physics that addresses the hierarchy problem, such as supersymmetry (see the Supersymmetry reviews Sec. 89 and 89); axions in connection with frameworks that address the strong CP problem (see Axions and Other Similar Particles-Sec. 91); sterile neutrinos in connection with the

[^53]problem of neutrino masses and mixing (see the Neutrino Masses, Mixing, and Oscillations-Sec. 14); or (2) ad hoc, or bottom-up models built with the intent of addressing or explaining a putative experimental (e.g. particle physical anomalies) or observational (e.g. astronomical) signal.

WIMPs: The WIMP paradigm has been a preferred framework chiefly because it often arises in beyond the Standard Model scenarios that address the hierarchy problem whilst also providing a simple mechanism to explain the observed relic abundance via the "WIMP miracle" described above. Perhaps the most notable example of a framework containing a paradigmatic WIMP is the minimal supersymmetric extension to the Standard Model, if the lightest supersymmetric particle is a neutralino (the mass eigenstate resulting from the mixing of the supersymmetric partners to the Higgses and to the $\mathrm{SU}(2)$ and hypercharge gauge bosons, and, possibly, of additional singlet scalars); purely $\operatorname{SU}(2)$ sneutrinos have long been ruled out by direct detection, but with suitable mixing with "inert" (gauge-singlet) sneutrinos they can also play the role of WIMP candidates. For more details see the the Supersymmetry-Sec. 89 and 90 in this Review. Other nonsuperysmmetric WIMP models include models with a Higgs or Z (or Z^{\prime}) portal, universal extra dimensions [32], and other models with extra (warped or flat) dimensions, little Higgs theories, technicolor and composite Higgs theories, among others (see e.g. the review in [67]).

Axions and axion-like particles: Axions are an especially compelling example of a broad category of DM candidates encompassing very light scalar or pseudoscalar fields. The QCD axion provides a solution to the strong $C P$ problem, and is at present a viable DM candidate (see Sec. 91 for details on motivations, production mechanisms, and detection prospects for the QCD axion). Ultra-light, bosonic DM generally implies the imprint of quantum effects on macroscopic scales (hence the name of wave or fuzzy DM). Specifically, some of the small-scale issues mentioned in sec. 27.4 can be addressed if the de Broglie wavelength of the DM, of mass m_{a} and velocity v_{a},

$$
\begin{equation*}
\frac{\lambda}{2 \pi}=\frac{\hbar}{m_{a} v_{a}} \simeq 1.9 \mathrm{kpc}\left(\frac{10^{-22} \mathrm{eV}}{m_{a}}\right)\left(\frac{10 \mathrm{~km} / \mathrm{s}}{v_{a}}\right) \tag{27.7}
\end{equation*}
$$

is comparable to the size of the smallest observed gravitationally collapsed structures, roughly, for a self-gravitating system of mass M, a scale $r \simeq G M / v^{2}$. The typical expectation is the formation of a soliton-like core in the DM density profile of size λ, thus inversely proportional to the DM mass, with an upper limit on the central density of around

$$
\begin{equation*}
\rho_{s} \lesssim 7 M_{\odot} / \mathrm{pc}^{3}\left(\frac{m_{a}}{10^{-22} \mathrm{eV}}\right)^{6}\left(\frac{M}{10^{9} M_{\odot}}\right) \tag{27.8}
\end{equation*}
$$

for a halo of virial mass M. Additionally, wave DM predicts that halos lighter than around $10^{7}\left(m_{a} / 10^{-22} \mathrm{eV}\right)^{-3 / 2} M_{\odot}$ should not exist [68], and that the number of halos in the local universe with a mass at or less $10^{9}\left(m_{a} / 10^{-22} \mathrm{eV}\right)^{-4 / 3} M_{\odot}$ [69] be significantly depleted, addressing in part the too big to fail and missing satellite problems (see Sec. 27.4 above). Light bosonic DM is necessarily produced non-thermally [70], and the connection with the visible sector need not, but might, exist.

Dark photons: Light vector bosons such as a "dark photon" V with a mass below $m_{V}<2 m_{e}$, can be cosmologically stable (depending upon its kinetic mixing coupling with the visible photon) and be a viable DM candidate. Light dark photons can be produced in the early universe through scattering or annihilation via processes such as $\gamma e^{ \pm} \rightarrow V e^{ \pm}$or $e^{+} e^{-} \rightarrow V \gamma$, or via resonant photon-dark photon conversion, or from a condensate seeded by inflationary perturbations [71], or from a misalignment mechanism similar to the one commonly invoked for axion production; constraints on the parameter space stem from a combination of direct detection experiments, where the dark photon is absorbed and leads to a large ionization signal, from stellar cooling constraints from the Sun, horizontal branch stars, and red giants, and from CMB and the diffuse radiation from the $V \rightarrow 3 \gamma$ decay mode. More broadly, light dark (pseudo-)scalars and vectors can be best constrained with experiments that rely on their
wave-like behaviour and/or on their possible "portal" with the visible sector. A broad assortment of experiments is sensitive to the range of masses between $10^{-22} \mathrm{eV}$ and $10^{-2} \mathrm{eV}$. Among these experimental efforts, the lowest masses are probed by torsion balance experiments $[72,73]$, atom interferometry [74], comagnetometers [75, 76], and even gravitational wave detectors [77]; at increasing masses, if the light bosons couple electromagnetically, they can generate effective currents which are detectable with different apparata depending on the relevant, mass-dependent target frequency. The experimental portfolio includes the broadband axion search ABRACADABRA [78,79], the LC resonator DM Radio [80], lumped-element LC resonators [81], and cavity resonators such as HAYSTAC [82] and ADMX [83]
Sterile Neutrinos: Sterile (gauge-singlet) neutrinos, assumed to share a Dirac mass term with ordinary, $\mathrm{SU}(2)_{L}$-active neutrinos, have long been considered viable DM candidates [84]. The mostly-sterile mass eigenstate participates in $\mathrm{SU}(2)_{L}$ interactions via a mixing parameter $\theta \ll 1$ that controls much of the particle's phenomenology. In particular, the sterile neutrino possesses an inverse-lifetime on the order of $\tau^{-1} \sim G_{F}^{2} m_{\nu}^{5} \theta^{2}$, forcing the mixing to not exceed

$$
\begin{equation*}
\theta<3.3 \times 10^{-4}\left(\frac{10 \mathrm{keV}}{m_{\nu}}\right)^{5} \tag{27.9}
\end{equation*}
$$

in order for the lifetime to exceed the age of the universe. While the main decay channel is to three active neutrinos, observationally the radiative decay mode to one neutrino plus a photon is much more relevant, giving rise to a quasi-monochromatic photon line at half the sterile neutrino mass. A recent tentative signal at 3.5 keV was reported from stacked observations of clusters of galaxies, individual clusters [85, 86], and the Galactic center [87] with both the XMM and Chandra X-ray observatories. The signal however was not detected in a large sample of galaxies and groups of galaxies [88] and dwarf galaxies [89], and especially Draco [90], shedding strong doubts on its sterile neutrino decay origin. Future observations with increased energy resolution might conclusively pinpoint the origin of the 3.5 keV emission [91].

Models with rich dark sectors: The absence of any conclusive signals from DM as a particle thus far motivates the hypothesis that the DM be charged under some new "hidden" dark-sector force, an idea that dates back many decades [92], including in the guise of "mirror DM" (more recently in the context of "neutral naturalness"). Top-down motivation for hidden-sector DM comes from string theory [93], although TeV-scale BSM framework such as supersymmetry and composite Higgs models can also naturally accommodate hidden sectors [94]. Although no coupling of the visible sector to the hidden sector need exist in principle, there are a few reasons to expect it [95]. The mass scale for hidden-sector DM is broader than, but overlapping with, that for WIMPs (this latter being limited to roughly between a few GeV and a few TeV). In particular, while some motivation exists for electroweak-scale hidden sectors, light, sub-GeV hidden sectors have a strong theoretical underpinning, and offer novel detection avenues and opportunities. The phenomenology of hidden-sector DM depends primarily on the nature of the force and its force carrier. The mostwidely considered cases are (pseudo-)scalar and (axial-)vector mediators. Among the structures for the mediators' coupling to the visible sector, renormalizable "portals" include the $H^{\dagger} H$ operator, through Lagrangian terms of the type $\left(\mu \phi+\lambda \phi^{2}\right) H^{\dagger} H$, coupling to the hypercharge field strength $B^{\mu \nu}$ via kinetic mixing, $\epsilon^{\prime} B_{\mu \nu} F^{\prime \mu \nu}$, and the "neutrino" portal, $y_{n} L H N$, where L is the lepton doublet of any generation, N is a right-handed neutrino, H is the SM Higgs doublet, and y_{n} the Yukawa coupling. Other possibilities are for instance a vector mediator directly coupled to SM fermions charged under its corresponding symmetry [96], or a Z^{\prime} associated to $\mathrm{U}(1)_{B-L}$. Additional possibilities, arising for instance from vector couplings to anomalous global symmetries of the SM like baryon or lepton number, also exist [95]. The accelerator program necessary to probe hidden-sector DM often involves small-scale colliders and fixed-target experiments, with experiments utilizing missing energy and momentum offering the best sensitivity. Beam-dump experiments can test large ranges of DM-mediator couplings as long as mediators decay or scatter
inside the detector (see e.g. the recent review [97]). Such experiments can also probe dark sectors with light vectors coupled to visible matter besides gauge kinetic mixing: an instance are neutrino trident scattering used to place bounds on e.g. $L_{\mu}-L_{\tau} Z^{\prime}$ gauge bosons. Being virtually unconstrained, the phenomenology of dark sectors can be arbitrarily rich, with possibilities ranging from dark non-Abelian gauge interactions creating non-trivial selfinteracting and/or particle number-changing dynamics, to models of "dynamical" DM, with multi-component, unstable DM candidates and a time-variable effective total DM abundance and equation of state [98].

27.6 Laboratory detection of dark matter

Laboratory searches for DM particles can be roughly classified in direct detection experiments, axion searches (see Axions and Other Similar Particles-Sec. 91), and searches at accelerators and colliders.

27.6.1 Searches at Accelerators and Colliders

Various searches for dark matter have been carried out by the CMS and ATLAS collaborations at the LHC in $p p$ collisions [99103]. In general, these assume that dark matter particles escape the detector without interacting leading to significant amounts of missing energy and momentum.

Searches for DM with the LHC and other colliders have targeted DM models that interact with the SM via Higgs or Z boson exchange, effective field theories with heavy mediators, UVcomplete models such as supersymmetry, models with long-lived particles, and models with rich dark sectors. The experimental program correspondingly includes searches for invisible-particle production mediated by a SM boson, generic searches for invisible particles produced via new particle mediators, and specific searches for complete models.

There are a variety of types of signals for DM, as noted by Ref. [99]:
(a) the imbalance in the transverse momentum in an event due to the presence of DM particles, produced together with one Standard Model particle,
(b) a bump in the di-jet or di-lepton invariant mass distributions, or
(c) an excess of events in the di-jet angular distribution, produced by a dark matter mediator. No signal for DM has been observed in the LHC experiments so far. Instead limits are set on masses, couplings, and cross-sections. The latter can be compared with direct detection experiments.

Searches strategies are designed to optimize signal-to-noise by selecting specific search-specific cuts: a model-independent instance is initial-state electromagnetic or strong-interaction radiation plus missing transverse energy. Collider searches for DM inform, and are informed, by DM searches through direct or indirect detection (see below), and, if possible, by the inferred thermal relic DM abundance. The collider searches alone cannot prove that a discovery is of dark matter.
In the latter category, searches for DM with the LHC and other colliders have targeted DM models that interact with the SM via Higgs or Z boson exchange, effective field theories with heavy mediators, UV-complete models such as supersymmetry, models with long-lived particles, and models with rich dark sectors. The experimental program correspondingly includes searches for invisible-particle production mediated by a SM boson, generic searches for invisible particles produced via new particle mediators, and specific searches for complete models. Searches strategies are designed to optimize signal-to-noise by selecting specific search-specific cuts: a model-independent instance is initial-state electromagnetic or strong-interaction radiation plus missing transverse energy.

27.6.2 Direct detection formalism

Direct detection experiments mostly aim to observe elastic or inelastic scatters of Galactic DM particles with atomic nuclei, or with electrons in the detector material. Predicted event rates assume a certain mass and scattering cross section, as well as a set of astrophysical parameters: the local density ρ_{0}, the velocity distribution $f(\vec{v})$, and the escape velocity $v_{e s c}$ (see Sec. 27.4).

Interactions with atomic nuclei: For DM scattering off nuclei, the differential scattering rate R as a function of nuclear recoil energy E_{R} is

$$
\begin{equation*}
\frac{d R\left(E_{R}, t\right)}{d E_{R}}=N_{T} \frac{\rho_{0}}{m_{\mathrm{DM}}} \int_{v>v_{m i n}} v f\left(\vec{v}+\vec{v}_{E}(t)\right) \frac{d \sigma\left(E_{R}, v\right)}{d E_{R}} d^{3} v \tag{27.10}
\end{equation*}
$$

where N_{T} is the number of target nuclei, m_{DM} is the mass of the DM particles, $v=|\vec{v}|$ is the speed of the particle in the experiment's rest frame, $f\left(\vec{v}+\vec{v}_{E}(t)\right)$ is the velocity distribution in the Earth's frame, $v_{\min }$ is the minimum speed of the DM particles that can cause a recoil energy E_{R} and σ is the scattering cross section on the nucleus [29,121]. For elastic scattering, the minimum velocity is $v_{\min }=\left(m_{N} E_{R} / 2 m_{r}^{2}\right)^{1 / 2}$, with m_{N} being the mass of the nucleus, and $m_{r}=\left(m_{N} m_{\mathrm{DM}}\right) /\left(m_{N}+m_{\mathrm{DM}}\right)$ the reduced mass of the nucleus-DM system. In case of inelastic scattering, the minimum speed becomes $v_{\text {min }}=\left(m_{N} E_{R} / 2 m_{r}^{2}\right)^{1 / 2}+$ $E^{*} /\left(2 m_{N} E_{R}\right)^{1 / 2}$, with the nuclear excitation energy E^{*}, for part of the kinetic energy of the incoming particle will be spent on exciting the nucleus. The prompt de-excitation energy, if observed in addition to the nuclear recoil energy, will boost the region-ofinterest to higher energies [122].

If one assumes the standard, leading order spin-independent (SI) and spin-dependent (SD) interactions, which couple to the charge/mass and spin of the nucleus, respectively, the differential cross section is proportional to the inverse squared speed of the DM particle, $d \sigma / d E_{R} \propto v^{-2}$, and the dependence on the velocity distribution can be expressed as:

$$
\begin{equation*}
g\left(v_{\min }, t\right)=\int_{v>v_{\min }} \frac{f\left(\vec{v}+\vec{v}_{E}(t)\right)}{v} d^{3} v \tag{27.11}
\end{equation*}
$$

This functions allows for the comparison of various experimental results independently of the underlying velocity distribution [123], for a given DM mass. The time-integrated differential cross section is the sum of the SI and SD contributions:

$$
\begin{equation*}
\frac{d \sigma\left(E_{R}, v\right)}{d E_{R}}=\frac{m_{N}}{2 m_{r}^{2} v^{2}}\left(\sigma_{0}^{S I} F_{S I}^{2}\left(E_{R}\right)+\sigma_{0}^{S D} F_{S D}^{2}\left(E_{R}\right)\right) \tag{27.12}
\end{equation*}
$$

where $F^{2}\left(E_{R}\right)$ are the nuclear form factors and σ_{0} the cross sections in the limit of zero momentum transfer. Since the incoming particle velocity is $v / c \sim 10^{-3}$, the nuclear recoil energy is at most tens of keV (much smaller than typical nuclear binding energies per nucleon), and the momentum transfer $q=\left(2 m_{N} E_{R}\right)^{1 / 2} \sim \mathcal{O}(10-100 \mathrm{MeV})$. This implies that $1 / q$ can be of the same order as nuclear radii $R \sim A^{1 / 3} \mathrm{fm}$, and that nuclei are not point-like from the perspective of a DM particle. The cross sections will thus involve nuclear form factors. These were calculated in [124] and [125] for the SI and SD case, respectively, for specific target nuclei, while the cross sections are often expressed in terms of single-nucleon cross sections and effective couplings of the DM particle to protons and neutrons. In the SI case, all the nucleons in the nucleus contribute coherently to the cross section (under the assumption of iso-spin independence in the DM couplings). Dominant sources of uncertainty are the nucleon sigma terms, especially for Higgs-dominated interactions, where the couplings are proportional to the quark masses. An overview is presented in Ref. [126]. For SD scattering, the nuclear spin contents due to the protons and neutrons must be considered.

The interactions of DM particles with nuclei can be treated in a non-relativistic effective field theory (NR-EFT) approach, which considers more general DM scenarios based on the lowest-order, four-field operators that describe the couplings to nucleons. These operators, which correspond to different types of interactions between the DM and quark fields, can be momentum- and velocitydependent, and might be leading when momentum-independent interactions are suppressed, or even vanish in the limit of zero momentum [127, 128]. In Ref. [128, 129] all 15 operators (arising from 20 possible bilinear combinations between the DM and nucleon fields) which obey Galilean-invariance, T-symmetry and are Hermitian are written out up to quadratic order in q, and the

Table 27.1: Best constraints from direct detection experiments on the SI (at high $>5 \mathrm{GeV}$ and low $<5 \mathrm{GeV}$ masses) and SD DM-nucleon couplings.

Experiment	Target	Fiducial mass $[\mathrm{kg}]$	$\begin{gathered} \text { Cross } \\ \text { section }\left[\mathrm{cm}^{2}\right] \end{gathered}$	$\begin{gathered} \text { DM } \\ \text { mass }[\mathrm{GeV}] \end{gathered}$	Ref.
Spin independent high mass ($>5 \mathbf{G e V \text {) }}$					
XENON1T	Xe	1042	4.1×10^{-47}	30	[104]
PandaX-II	Xe	364	8.6×10^{-47}	40	[105]
LUX	Xe	118	1.1×10^{-46}	50	[106]
SuperCDMS	Ge	12	1.0×10^{-44}	46	[107]
DarkSide-50	Ar	46	1.14×10^{-44}	100	[108]
DEAP-3600	Ar	2000	3.9×10^{-45}	100	[109]
Spin independent low mass ($<5 \mathbf{G e V}$)					
LUX (Migdal)	Xe	118	6.9×10^{-38}	2	[110]
XENON1T (Migdal)	Xe	1042	3×10^{-40}	2	[111]
XENON1T (ionisation only)	Xe	1042	3.6×10^{-41}	3	[112]
DarkSide-50 (ionisation only)	Ar	20	1×10^{-41}	2	[113]
SuperCDMS (CDMSlite)	Ge	0.6	2×10^{-40}	2	[114]
CRESST	$\mathrm{CaWO}_{4}-\mathrm{O}$	0.024	1×10^{-39}	2	[115]
NEWS-G	Ne	0.3	1×10^{-38}	2	[116]
Spin dependent proton					
PICO60	$\mathrm{C}_{3} \mathrm{~F}_{8}-\mathrm{F}$	49	3.2×10^{-41}	25	[117]
Spin dependent neutron					
XENON1T	Xe	1042	6.3×10^{-42}	30	[118]
PandaX-II	Xe	364	1.6×10^{-41}	40	[119]
LUX	Xe	118	1.6×10^{-41}	35	[120]

nuclear response functions evaluated in shell-model calculations for DM targets made of $\mathrm{F}, \mathrm{Na}, \mathrm{Ge}, \mathrm{I}$ and Xe isotopes. The connection to particle physics within the context of simplified $D M$ models is made in Ref. [130, 131], where the simplified models assume a single DM particle with one mediator which couples it to quarks. More recently the DM-nucleus scattering was also analysed in the framework of chiral effective field theory (Ch-EFT), a low-energy effective theory of QCD, which allows for a consistent derivation of the nuclear responses beyond the leading-order expressions [132, 133]. Ch-EFT preserves the QCD symmetries, and predicts DM couplings to two nucleons (e.g., when the hypothetical particle couples to a virtual pion exchanged between the nucleons). It also provides a power counting that suggests a hierarchy of the various NR-EFT operators, which is however approximate given that the couplings between the DM and the Standard Model fields are not known. The generalised SI structure factors for spin-1/2 and spin-0 DM particles and various isotopes of F , $\mathrm{Si}, \mathrm{Ar}, \mathrm{Ge}$ and Xe employed in direct detection experiments are provided in Ref. [133].

Scattering off bound electrons and absorption: For DM particle masses below the GeV-scale, most searches for DMnucleus scattering rapidly lose sensitivity, due to energy thresholds around a few 100 eV - few keV. As an example, a light DM particle with a mass of 100 MeV and $v \propto 10^{-3} c$ will induce a nuclear recoil energy of about 0.5 eV in a target made of argon. Another strategy is to search for DM scattering off bound electrons, allowing for all of the kinetic energy (50 eV in the above case) to be transferred to the material [134]. The leading possibilities are ionisation, excitation, and molecular dissociation processes, which typically require energies of $(1-10) \mathrm{eV}$, and thus allow to probe scattering of DM particles with masses down to the $\mathcal{O}(\mathrm{MeV})$ range.

For a bound electron with binding energy E_{B} DM particle masses of $m_{\mathrm{DM}} \geq 250 \mathrm{keV} \times \mathrm{E}_{\mathrm{B}} / 1 \mathrm{eV}$ can in principle be probed. The signal depends on the material, and can consist of one or more electrons (in semiconductors, noble liquids, graphene), one or more photons (in scintillators) or phonons (in superconductors and superfluids) and quasiparticles (in superconductors). As an example, the differential event rate for ionisation in atoms is given by

$$
\begin{equation*}
\frac{d R_{i o n}}{d \ln E_{R}}=N_{T} \frac{\rho_{0}}{m_{\mathrm{DM}}} \frac{d\left\langle\sigma_{i o n} v\right\rangle}{d \ln E_{R}} \tag{27.13}
\end{equation*}
$$

where E_{R} is the recoil energy transferred to the electron, $\left\langle\sigma_{i o n} v\right\rangle$ is the thermally averaged ionisation cross section and N_{T} is the number of target atoms per unit mass. The cross section is related
to the non relativistic DM-electron elastic scattering cross section $\left(\sigma_{e}\right):$

$$
\begin{align*}
\frac{d R_{i o n}}{d \ln E_{R}} & =\frac{6.2}{A}\left(\frac{\rho_{0}}{0.4 \mathrm{GeV} \mathrm{~cm}^{-3}}\right)\left(\frac{\sigma_{e}}{10^{-40} \mathrm{~cm}^{2}}\right)\left(\frac{10 \mathrm{MeV}}{m_{\mathrm{DM}}}\right) \\
& \times \frac{d\left\langle\sigma_{i o n} v\right\rangle / d \ln E_{R}}{10^{-3} \sigma_{e}} \frac{\text { events }}{\mathrm{kg} \mathrm{~d}} \tag{27.14}
\end{align*}
$$

Predicted differential rates in various materials (He, Ar, Ge, Xe) and for different particle masses are shown in [134], together with cross section sensitivities as a function of mass and expected background rates from neutrinos.

Two classes of DM candidates, axion-like-particles (ALPs) and dark (or hidden) photons (see Sec. 27.5), can be absorbed in a target material by interactions with bound electrons via the axioelectric effect, which is analogous to the photoelectric effect: a boson is absorbed by a bound electron, which is then ejected from the atom $[71,135,136]$. The dark photon arises in extensions of the SM by a new massive or massless $\mathrm{U}(1)^{\prime}$ field, coupled to the SM $\mathrm{U}(1)_{Y}$ via a kinetic mixing term κ, see Sec. 27.5. The absorption cross section of a massive, NR particle m_{V} with coupling $e^{\prime}=e \kappa$ to electrons is (in natural units, and for energies $E_{V} \ll m_{e}$)

$$
\begin{equation*}
\sigma_{a b s}=\frac{\alpha^{\prime}}{\alpha}\left(\frac{E_{V}}{2 m_{e}}\right)^{2} \sigma_{p e} \tag{27.15}
\end{equation*}
$$

where $\sigma_{p e}$ is the photoelectric cross section, and an analogue to the electromagnetic fine structure constant α is introduced, $\alpha^{\prime}=$ $(e \kappa)^{2} / 4 \pi$. The rate per atom is

$$
\begin{equation*}
R \simeq \frac{\rho_{0}}{m_{V}} \times \kappa^{2} \sigma_{p e} \tag{27.16}
\end{equation*}
$$

Since the kinetic energy of the dark photon is negligible compared to its rest energy, a mono-energetic peak at its mass is expected in the spectrum of a direct detection experiment. Dark photons with a thermally generated abundance are excluded by direct detection experiments [71], however non-thermal mechanisms (e.g., via perturbations during inflation) could create the relic abundance, see Section 27.3.

Similarly to axions, ALPs arise in the spontaneous breaking of a global symmetry, and are phenomenologically described by a mass m_{a} and a decay constant f_{a}. Unlike for QCD axions,
however, there is no strict relation between m_{a} and f_{a}. The coupling strength to electrons with mass m_{e} is parameterised by $g_{a e}=2 m_{e} / f_{a}$, and the absorption cross section of a particle with incoming velocity v_{a} is related to the cross section for the photoelectric effect as

$$
\begin{equation*}
\sigma_{a b s} v_{a} \simeq \frac{3 E_{a}^{2}}{4 \pi \alpha f_{a}^{2}} \sigma_{p e}=\frac{3 g_{a e}^{2}}{4 \pi \alpha}\left(\frac{E_{a}}{2 m_{e}}\right)^{2} \sigma_{p e} \tag{27.17}
\end{equation*}
$$

As in the case of the dark photon, the signature is a monoenergetic peak at the mass of the particle, broadened by the energy resolution of the detector. Constraints on the couplings of ALPs and dark photons to electrons from direct detection experiments in m_{a} and m_{V} mass ranges from $\sim\left(1-10^{4}\right) \mathrm{eV}$ were derived in Ref. [137, 138], and compared to indirect limits from anomalous energy losses in the Sun, in red-giant and horizontal-branch stars. For a detailed discussion of axion and ALP searches, we refer to the Axion review.

27.6.3 Current and future direct detection technologies

Direct detection experiments aim to observe the small (keVscale and below) and rare (fewer than ~ 1 event $/(\operatorname{kgy}))$ signals which are induced by DM particle scatters in a detector, mostly in the form of ionisation, scintillation or lattice vibrations. A majority of experiments detects more than one signal, which allows to distinguish between scattering off of electrons (electronic recoils, ER) and off of atomic nuclei (nuclear recoils, NR). A 3D position resolution is required to define central detector regions (or fiducial volumes) with low background rates from surrounding materials, and the distinction between single- versus multiple-scatters rejects a significant fraction of backgrounds, given that DM will scatter at most once. We refer to [139] for a recent review of the field.

Specific signatures: For NRs, the shape of the differential recoil spectrum is exponentially falling with recoil energy, and depends on the mass of the particle and on the nuclear mass. Unless $m_{\mathrm{DM}} \gg m_{N}, m_{\mathrm{DM}}$ can in principle be determined from the measured recoil spectrum, where multiple targets will provide tighter constraints [140]. The Earth's motion through the MW induces a seasonal variation of the total event rate and a forward-backward asymmetry in a directional signal [141, 142]. The annual modulation is due to the Earth's motion in the Galactic rest frame, which is a superposition of the Earth's rotation around the Sun and the Sun's rotation around the Galactic center. Since the Earth's orbital speed is much smaller than the Sun's speed, the expected amplitude of the modulation is $\simeq 5 \%$. In the SHM, the period is one year, and the phase is 150 d (June 2), when both speeds add up maximally. This expectation is modified for different DM distributions, e.g. in the case of sub-structures such as clumps and streams $[143,144]$ and a DM disc [145]. In addition, the modulation changes phase at a specific recoil energy (known as crossing-energy) [146], which depends on the DM and nuclear mass, allowing to in principle determine m_{DM} if low energy thresholds can be achieved. A powerful signature is provided by the ability to detect the axis and direction of the recoiling nucleus. Since the DM flux in the laboratory frame is peaked in the direction of motion of the Sun towards the constellation Cygnus, the recoil spectrum is peaked in the opposite direction. The observation of such a dipole feature would provide a 'smoking-gun' evidence for DM, where the forward-backward rates can differ by a factor of ~ 10, depending on the energy threshold. Ref. [147] provides a recent review of the theoretical framework and of the discovery reach of directional detectors.

Backgrounds, including neutrinos: Early direct detection experiments employing low-background Ge spectrometers featured background levels around 2 events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$, while the current generation of liquid Xe experiments reduced this noise by four orders of magnitude, to 2×10^{-4} events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$. Nonetheless, the measured energy spectra are still dominated by interactions due to the radioactivity of detector components, followed by cosmic muons and their secondaries such as fast neutrons. The cosmic and environmental radiation are suppressed by going deep underground and surrounding the experiments with appropriate shielding structures (mainly large water Cherenkov detectors for the current and next-generation detectors). Activation of mate-
rials via cosmic-ray interactions produce long-lived radio-nuclides (e.g., ${ }^{39} \mathrm{Ar},{ }^{60} \mathrm{Co},{ }^{68} \mathrm{Ge},{ }^{32} \mathrm{Si}$, etc), while long-lived, human-made isotopes (${ }^{85} \mathrm{Kr},{ }^{137} \mathrm{Cs}$, etc) can mix with detector materials or generate surface backgrounds. For details, we refer to Section 36.6 of this Review.

The final backgrounds will be due to the irreducible neutrino flux from the Sun, the atmosphere and the diffuse supernovae background [148]. Solar pp-neutrinos will dominate the electronic recoil background due to elastic neutrino-electron scatters, at a level of $\sim(10-25)$ events/(ty) below energies of $\sim 100 \mathrm{keV}$, while coherent elastic neutrino-nucleus scatters ($\mathrm{CE} \nu \mathrm{NS}$) from ${ }^{8} \mathrm{~B}$ solar neutrinos will induce up to $\sim 10^{3}$ events $/(\mathrm{t} y)$ for high-A targets, at nuclear recoil energies below \sim few keV . Nuclear recoils from atmospheric neutrinos and the diffuse supernovae neutrino background will yield event rates in the range $(1-5)$ events $/(100 \mathrm{t} y)$, depending on the detector material. In general, ${ }^{8} \mathrm{~B}$ and atmospheric neutrinos will impact light $(\leq 6 \mathrm{GeV})$ and heavy $(100 \mathrm{GeV}$ and above) DM searches for cross sections on nucleons below $\sim 10^{-45} \mathrm{~cm}^{2}$ and $\sim 10^{-49} \mathrm{~cm}^{2}$, respectively. The precise cross sections where neutrinos constitute a dominant background depend however on the uncertainties on the flux of each neutrino source, and on the astrophysical parameters that enter in the DM signal models [149]. For very low energy thresholds to nuclear recoils, e.g. $10-30 \mathrm{eV}$ in Ge and Si detectors, $\mathrm{CE} \nu \mathrm{NS}$ due to the ${ }^{7}$ Be neutrino flux become relevant for exposures of $\sim 50 \mathrm{~kg} \mathrm{y}$ [150]. For DM searches with electron recoils via DM-electron scattering and dark photon or ALP absorption, solar neutrinos will also limit the sensitivity to DM masses in the range $\sim\left(1-10^{3}\right) \mathrm{MeV}$ and $\sim\left(1-10^{3}\right) \mathrm{eV}$, respectively, for large exposures $\sim 1 \mathrm{ty}$, as shown in Ref. [151].

Solid-state cryogenic detectors: Current experiments using the bolometric technique (see Section 36.5 of this Review), together with either charge or light readout, are SuperCDMS (Si, Ge) at Soudan [107], EDELWEISS (Ge) at the Laboratoire Souterrain de Modane (LSM) [152] and CRESST $\left(\mathrm{CaWO}_{3}\right)$ at the Laboratori Nazionali del Gran Sasso (LNGS) [115]. These experiments are optimised for low-mass DM searches, and can probe masses down to $\sim 0.2 \mathrm{GeV}$. CDMSlite also operates detectors at higher bias voltages to amplify the phonon signals produced by drifting charges and thus have access to light DM around 1.5 GeV [114]. The goal of their future phases is to probe the lowmass region down to cross sections of $10^{-43}-10^{-44} \mathrm{~cm}^{2}$. Much smaller, gram-scale versions of cryogenic detectors can have singlecharge resolution and thus probe low-mass DM via inelastic electron recoils. A SuperCDMS single-charge sensitive Si detector placed upper limits on DM interacting with electrons for masses between $\left(0.5-10^{4}\right) \mathrm{MeV}$, as well as on dark photon kinetic mixing for dark photon masses in the range $(1.5-40) \mathrm{eV}$ [153].

Germanium ionisation detectors operated at 77 K can reach sub-keV energy thresholds and low backgrounds, but lack the ability to distinguish electronic from nuclear recoils. The current CDEX-10 experiment [154], located at the China Jinping Underground Laboratory (CJPL), uses p-type, point-contact Ge detectors operated in liquid nitrogen, and probes DM masses down to 3 GeV . The neutrinoless double beta experiment Majorana Demonstrator at SURF has obtained constraints on the couplings of ALPs and dark photons to electrons, with masses between (6-100) keV [155].

Noble liquids: Liquid argon (LAr) and liquid xenon (LXe) are employed as DM targets, while R\&D on liquid helium and neon is ongoing. We refer to Ref. [156] for a review of the liquid noble gas detector technology in low-energy physics, as well to Section 36.4 of this Review. At present the best constraints on DM-nucleus interactions come from experiments using xenon: the LUX experiment which was operated at SURF [106], PandaX-II at CJPL [105] and XENON1T at LNGS [104]. These experiments probe particle masses down to $\sim 6 \mathrm{GeV}$ (when using both light and charge signals) and the SI DM-nucleon cross section down to $4.1 \times 10^{-47} \mathrm{~cm}^{2}$ (at 30 GeV). LAr experiments use the powerful pulse shape discrimination (PSD) that allows for distinguishing between ER and NR events, at the expense of higher energy thresholds than in LXe. The DarkSide-50 TPC at LNGS [108] sets a minimum upper limit on the SI, DM-nucleon cross section

Figure 27.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.
of $1.09 \times 10^{-44} \mathrm{~cm}^{2}$ at 126 GeV , while the single-phase experiment DEAP-3600 at SNOLAB [109] constrains the SI cross section to values below $3.9 \times 10^{-45} \mathrm{~cm}^{2}$ at 100 GeV .

In noble liquids, sub-GeV DM particles can be searched for by observing inelastic, ER processes following a low-energy nuclear recoil: excitation and ionisation of the recoiling atom (the hypothetical Migdal effect) and a bremsstrahlung photon [157]. As an example, LUX and XENON1T constrained DM particle masses between $(0.3-5) \mathrm{GeV}$ via bremsstrahlung photons and Migdal electrons $[110,111]$. Even lower masses are accessible when using the amplified, charge signal only, at the expense of giving up discrimination between ERs and NRs. XENON1T probed particle masses down to 60 MeV [112], while DarkSide-50 published constraints on WIMP masses as low as 1.8 GeV [113]. DM masses at the MeV -scale can also be probed by exploiting the scattering off electrons. The XENON1T experiment recently presented a light DM search with ionisation signals, with a background level of <1 event (t d keV) above 0.4 keV [112]. LXe TPCs also search for solar axions, Galactic ALPs and dark photons. PandaX-II and LUX set upper limits on the axion-electron coupling of 3.5×10^{-12} in the mass range $\left(10^{-5}-1\right) \mathrm{eV}$ for solar axions, and probe couplings around 4×10^{-13} in the mass range $(1-10) \mathrm{keV}$ for Galactic ALPs [158, 159].

The next generation of liquefied noble gas detectors, either in construction (DarkSide-20k [160], LZ [161], PandaX-4T [162], XENONnT [163]) or at the design and R\&D stage (DARWIN [164]) will increase the sensitivity to various DM candidates by 1-2 orders of magnitude, with the ultimate goal of exploring the experimentally accessible parameter space, until the backgrounds from neutrinos will start dominating the event rates.

Room temperature scintillators: Several large DM experiments using high-purity $\mathrm{NaI}(\mathrm{Tl})$ crystals are acquiring data in various underground laboratories. Of these, DAMA/LIBRA at LNGS has the highest mass, 250 kg , and the largest exposure: 1.33 ty with an energy threshold of 1 keV and 2.46 ty with an energy threshold of 2 keV [165]. It is the only experiment in the field that reported an annually modulated event rate with a statistical significance of 12.9σ C.L. (20 annual cycles), with a modulation amplitude around 0.02 events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$ in the energy region (1-4) keV. These findings were interpreted as due to DM interactions via nuclear or electronic recoils. The ANAIS experiment at Canfranc operates 112.5 kg of $\mathrm{NaI}(\mathrm{Tl})$ scintilla-
tors with an energy threshold of 1 keV and a background rate of 3.6 events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$ in the $(1-6) \mathrm{keV}$ region. A first analysis of 1.5 y of data, for an exposure of 157.55 kg y is consistent with an absence of modulation [166], while 5 years of data are required to test the DAMA/LIBRA result at 3σ. The COSINE100 experiment, located at the Yangyang Underground Laboratory, operates 106 kg of $\mathrm{NaI}(\mathrm{Tl})$ crystals in a liquid scintillator, with an energy threshold of 2 keV and a background rate of 2.7 events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$. Results from a search based on 1.7 y of data (97.7 kg y exposure) in the (2-6) eV energy range are consistent, at 68.3% C.L., with both the null hypothesis and DAMA/LIBRA's best fit value in the same energy range. A larger exposure and a reduced energy threshold are required to test DAMA/LIBRA for 3σ coverage [167]. The SABRE experiment plans to operate a total of 50 kg of $\mathrm{NaI}(\mathrm{Tl})$ crystals, focussing on reaching a background level of 0.1 events $/(\mathrm{kg} \mathrm{d} \mathrm{keV})$, an order of magnitude below DAMA/LIBRA [168]. Twin detectors will be installed at LNGS and at the Stawell Underground Physics Laboratory in the Southern hemisphere. While a DM-induced signal is expected to have the same phase in both hemispheres, seasonal or siterelated effects would show different amplitudes and phases in the twin detectors. The COSINUS R\&D project aims to develop a cryogenic scintillating bolometer with undoped NaI crystals with phonon and light readout, the ratio of which allows for particle discrimination. The hope is that it will shed light on the type of interactions responsible for the modulated signal [169].

Room temperature ionisation detectors: Silicon chargedcoupled devices (CCDs) are employed for low-mass DM searches, as well as for hidden photon searches in the eV-mass range. Ionisation events induced in bulk silicon of high-resistivity, fully depleted CCDs are observed with charge resolutions around 1$2 \mathrm{e}^{-}$and extremely low leakage currents, at the level of few $e^{-} \mathrm{mm}^{-2} \mathrm{~d}^{-1}$. The position of an energy deposit is reconstructed in 3 dimensions and the particle type (electron, neutron, muon, α-particles, etc) is reconstructed based on the recorded track pattern.

The DAMIC experiment at SNOLAB yielded new constraints on DM-electron scattering, and on the hidden-photon kinetic mixing parameter in the mass range (1-30) eV with an exposure of $7.6 \mathrm{~kg} \mathrm{~d}[170]$. The SENSEI projects employs the skipper technology demonstrated in [171] to achieve single-electron sensitivity. A run with a prototype detector $(0.0947 \mathrm{~g})$ in a shallow
underground site at Fermilab yielded the most stringent directdetection constraints on DM-electron scattering for masses in the range $500 \mathrm{keV}-5 \mathrm{MeV}$, and on dark photon absorption below 12 eV [172]. The skipper technology will also be employed in the next stage of the DAMIC programme, DAMIC-M at LSM, which plans for a kg-size mass. The goal is to achieve thresholds of 23 electrons and to probe the DM-nucleon cross section down to few $\times 10^{-43} \mathrm{~cm}^{2}$ around $2-3 \mathrm{GeV}$ and the DM-electron cross section down to $2 \times 10^{-41} \mathrm{~cm}^{2}$ at 10 MeV mass.

The NEWS-G collaboration operates spherical proportional counters [173] filled with a noble gas. Advantages of this technology are the low intrinsic electronic noise and a high amplification gain, allowing for low energy thresholds down to single-electron detection, and the possibility to use different light targets (He, Ne, etc). A 60 cm diameter chamber operated at LSM with a gas mixture of $\mathrm{Ne}+\mathrm{CH}_{4}(0.7 \%)$ at 3.1 bar, excluded SI, WIMP-nucleon cross sections above $4.4 \times 10^{-37} \mathrm{~cm}^{2}$ at 0.5 GeV after an exposure of 9.6 kg d [116] with an energy threshold $\sim 100 \mathrm{eV}$. The next iteration, a 140 cm sphere detector made of very low radioactivity copper (few $\mu \mathrm{Bq} / \mathrm{kg}$ of ${ }^{238} \mathrm{U}$ and ${ }^{232} \mathrm{Th}$) is under construction and is to start running at SNOLAB in 2019.

Superheated liquid detectors: Investigation of the spindependent interaction channel calls for target nuclei with uneven total angular momentum. A particularly favourable candidate is ${ }^{19} \mathrm{~F}$, the spin of which is carried mostly by the unpaired proton, yielding a cross section which is almost a factor of ten higher than of other employed nuclei with spin (e.g., ${ }^{23} \mathrm{Na},{ }^{73} \mathrm{Ge},{ }^{127} \mathrm{I},{ }^{129} \mathrm{Xe}$, ${ }^{131} \mathrm{Xe}$). Fluorine is part of the target of experiments using superheated liquids, such as the ones operated by the PICO [117] and MOSCAB [174] collaborations. A search in the PICO-60 $\mathrm{C}_{3} \mathrm{~F}_{6}$ bubble chamber at SNOLAB with an exposure of 1404 kg d and an energy threshold of 2.45 keV , yielded the most stringent constraint on the DM-proton SD cross section at $3.2 \times 10^{-41} \mathrm{~cm}^{2}$ for a 25 GeV particle mass. In construction is a ton-scale detector (PICO-500) to be deployed in the cube area hall of SNOLAB. MOSCAB successfully built and tested a geyser-concept bubble chamber, the operation of which is based on a continuous process of evaporation and condensation, with the detector recovering its superheated state automatically after each event. After first results in a surface laboratory [174], the detector was moved underground to LNGS for science data taking.

Directional detectors: Detectors capable of measuring the direction of the recoiling nucleus would unequivocally confirm the Galactic origin of a signal and could probe the region below the neutrino floor $[175,176]$. Because nuclear recoils have a range which is about 10 times smaller than the one of Compton recoils of the same energy, gaseous detectors have an excellent intrinsic background rejection if they can measure the range of events precisely. Several directional detectors are presently in operation: DRIFT in the Boulby Mine [177], DMTPC at the Waste Isolation Pivot Plant [178], MIMAC at LSM [179] and NEWAGE in the Kamioka laboratory [180]. A $1 \mathrm{~m}^{3}$ detector has a typical mass of a few 100 g , depending on the target gas and its operating pressure, and can measure the sense of an incoming nuclear recoil above a few tens of keV .

A new technique is based on fine-grained nuclear emulsions (solid-state detectors with silver halide crystals uniformly dispersed in a gelatine film, where each crystal works as a sensor for charged particles), as proposed by the NEWSdm collaboration [181]. These act as target and nanometric tracking device, and the expected NR tracks are sub- $\mu \mathrm{m}$ in size. Due to the small crystal size and larger number density, a superior spatial resolution compared to gaseous detectors is obtained. Simulations show that to reach the neutrino floor, exposures of 10 t y and 100 t y are required if a 30 nm and 50 nm threshold for detecting the track length is reached. This requires further R\&D, since current emulsions allow for 100 nm tracking and target masses are around 1 kg , with 10 kg y exposures planned. A proposed approach for the directional detection of sub-GeV DM is to use two-dimensional materials such as monolayer graphene [182], from which the DM particle can eject electrons. Their energy and direction, correlated with the direction of the incoming DM, can be measured for instance with the proposed PTOLEMY experiment [183].

New techniques: To probe light (sub-GeV) DM particles, either via scatters off electrons or via couplings to phonons, new techniques beyond the ones discussed above are proposed. The DM particle mass that can be accessed in DM-electron scattering in noble liquids and semiconductors is limited by the minimum ionisation/excitation energy and the size of the band gap, respectively (at the $\sim \mathrm{eV}$-scale). To reach lower energy thresholds, materials with smaller band gaps for electron excitations $(\sim \mathrm{meV})$, such as superconductors and superfluids, as well as Dirac materials were recently proposed [184-186]. These would in principle allow for the detection of keV-scale DM. Other ideas to detect keVMeV scale DM are to observe NRs in superfluid He, via collective excitation modes in the fluid [187], or based on the breaking of chemical bonds between atoms [188].

Even lighter DM, with masses in the meV-eV range, could be detected via absorption on a conduction electron in a superconductor, followed by the emission of an athermal phonon [189]. Another proposed target for light DM are polar materials (for example GaAs, sapphire), which are especially sensitive for scattering through an ultralight dark photon, via excitation of single optical phonons [190]. If an anisotropic crystal such as sapphire is employed, a daily modulation interaction rate could be established [191]. A new class of detectors for bosonic DM, based on resonant absorption onto a gas of small polyatomic molecules, is proposed in [192]. The DM would effectively act as a laser that resonantly excites transitions in molecules when its mass closely matches the transition energy. While DM with SI couplings can efficiently excite phonons, it has been shown in [193] that if DM couples to the electron spin, magnon excitations (quanta of collective spin wave excitations) in materials with magnetic dipole order may also offer a promising detection avenue. Yet another approach for sub-GeV DM is to employ superconducting nanowires as both target and sensor, and first bounds on DM-electron interactions were already placed from a 4.3 ng tungsten-silicide prototype with a 0.8 eV energy threshold [194].

The detection of light DM via collective excitations in condensed matter systems and other methods is a rapidly evolving field, and a growing area of research at the interface of DM physics, condensed matter and materials science. We refer to Ref. [95, 195] for discussions of some of these new directions and models. Critical challenges are to detect these very small energy depositions, and to reliably asses the background noise.

Table 27.1 summarises the most stringent constraints on the DM-nucleon SI and SD cross sections, and Figure 27.1 shows the best constraints for SI couplings in the cross section versus DM mass parameter space, above masses of 0.3 GeV .

27.7 Astrophysical detection of dark matter

DM as a microscopic constituent can have measurable, macroscopic effects on astrophysical systems. Indirect DM detection refers to the search for the annihilation or decay debris from DM particles, resulting in detectable species, including especially gamma rays, neutrinos, and antimatter particles. The production rate of such particles depends on (i) the annihilation (or decay) rate (ii) the density of pairs (respectively, of individual particles) in the region of interest, and (iii) the number of final-state particles produced in one annihilation (decay) event. In formulae, the rate for production of a final state particle f per unit volume from DM annihilation can be cast as

$$
\begin{equation*}
\Gamma_{f}^{A}=c \frac{\rho_{\mathrm{DM}}^{2}}{m_{\mathrm{DM}}^{2}}\langle\sigma v\rangle N_{f}^{A} \tag{27.18}
\end{equation*}
$$

where $\langle\sigma v\rangle$ indicates the thermally-averaged cross section for DM annihilation times relative velocity [27], calculated at the appropriate temperature, ρ_{DM} is the physical density of DM , and N_{f}^{A} is the number of final state particles f produced in one individual annihilation event. The constant c depends on whether the DM is its on antiparticle, in which case $c=1 / 2$, or if there is a mixture of DM particles and antiparticles (in case there is no asymmetry, $c=1 / 4)$. The analog for decay is

$$
\begin{equation*}
\Gamma_{f}^{D}=\frac{\rho_{\mathrm{DM}}}{m_{\mathrm{DM}}} \frac{1}{\tau_{\mathrm{DM}}} N_{f}^{D} \tag{27.19}
\end{equation*}
$$

with the same conventions for the symbols, and where τ_{DM} is the DM's lifetime.

Gamma Rays: DM annihilation to virtually any final state produces gamma rays: emission processes include the dominant two-photon decay mode of neutral pions resulting from the hadronization of strongly-interacting final states; final state radiation; and internal bremsshtralung, the latter two including, possibly, the emission of massive gauge or Higgs bosons subsequently producing photons via their decay products. Similarly, neutrinos are produced from charged pion decay and from radiative processes. The flux of gamma rays and neutrinos is calculated integrating the rate Γ_{f} per steradian (simply meaning, for isotropic emission, $\left.\Gamma_{f} /(4 \pi)\right)$ along the line of sight within the appropriate angular region (the differential flux is obtained in the same way by simply replacing N_{f} with the differential flux at production, at the appropriate redshift in the case of cosmologically distant sources),

$$
\begin{equation*}
\phi_{f}=\int_{\Delta \Omega} d \Omega \int_{\text {l.o.s. }} d l \frac{\Gamma_{f}}{4 \pi} . \tag{27.20}
\end{equation*}
$$

It is customary to factor out, in the expression for the rate, a particle physics factor, depending upon the DM particle mass and its annihilation or decay rate, and an astrophysical factor, which only depends on the observational target. The latter is sometimes denoted with $J_{\Delta \Omega}(\psi)$ with ψ indicating the direction of the line of sight. Although different conventions are in use, a common choice is to define

$$
\begin{equation*}
J_{\Delta \Omega}(\psi)=\int_{\Delta \Omega} \int_{\text {l.o.s. }(\psi)} \rho_{\mathrm{DM}}^{2}(l, \Omega) d l d \Omega \tag{27.21}
\end{equation*}
$$

For a target with uniform density ρ and radius r at a distance $d \gg r$, such that the target is entirely within the solid angle $\Delta \Omega$,

$$
\begin{equation*}
J \simeq \frac{4 \pi r^{3} \bar{\rho}_{\mathrm{DM}}^{2}}{3 d^{2}} \tag{27.22}
\end{equation*}
$$

Searches for gamma-ray emission from DM annihilation have focused on targets chosen based on a variety of considerations, primarily intended to maximize signal to noise. Nearby dwarf spheroidal galaxies contain very small amounts of gas, and do not host any significant astrophysical background at gamma-ray or X-ray frequencies, and are thus an optimal target choice for DM searches. An accurate determination of the DM density profile in these objects results in somewhat large systematics when deriving constraints from the non-observation of emission from DM; future optical surveys will help pinpoint with greater accuracy stellar kinematics and thus reduce such uncertainty; a second target is the inner region of the Milky Way: while nearby and potentially hosting a large density of DM, the Galactic center region is however very bright at almost any wavelength, making the extraction of a signal highly problematic; nearby clusters of galaxies are also known to host significant astrophysical emission, but are potentially ideally suited to constrain DM decay. Finally, putative nearby DM clumps are also a possible source of a bright DM signal (albeit from an unknown direction), as is the annihilation of DM in all halos at all redshifts.

DM annihilation and decay can lead to striking spectral features. Since the process happens typically at very low particle velocities, if the DM pair-annihilates e.g. to two photons or two neutrinos, the final-state particles will be nearly monoenergetic, with an energy close to the DM particle mass and a width proportional to the DM velocity in units of c (if a $\gamma \gamma$ line is present electroweak symmetry also implies a $Z \gamma$ line, if kinematically allowed). No astrophysical processes are known to produce lines at gamma-ray or neutrino energies in the GeV and above (with, perhaps, the possible exception of cold pulsar winds [196]) making this channel virtually background-free. At lower energy, lines are expected from radiative decay modes of candidates such as sterile neutrinos (see Sec. 27.5).DM annihilation or decay can lead to additional spectral features besides lines. These include (one or more) "boxes" [197], produced by boosted final states decaying to monochromatic photons (such as e.g. neutral pions), or combinations thereof. Processes occurring at higher redshift can distort
these spectral features by smearing them to lower energies. Neglecting gamma-ray attenuation, the flux of gamma rays from all redshift can be cast as

$$
\begin{equation*}
\frac{d N_{\gamma}}{d E_{\gamma}}\left(E_{\gamma}\right)=\frac{c}{8 \pi} \int \frac{\langle\sigma v\rangle \rho_{\mathrm{DM}}(z) d z}{H(z)(1+z)^{3} m_{\mathrm{DM}}^{2}}\left(\frac{d N_{\gamma}}{d E^{\prime}}\right)_{E^{\prime}=E_{\gamma}(1+z)} \tag{27.23}
\end{equation*}
$$

While the calculation of the differential spectrum of gamma rays from a given final state $f, d N_{\gamma}^{f} / d E_{\gamma}$, is carried out using numerical tools, such as PYthia [198] that reproduce hadronization and particle decay for masses well above a few GeV , in the sub-GeV range gamma-ray production follows primarily from meson decay and radiative processes well outside the range of applicability of the Altarelli-Parisi splitting function. The MeV gamma-ray range will soon be probed with forthcoming satellites [199]. Recently a code that provides the expected gamma-ray spectrum for sub-GeV DM, Hazma, has become available [200].

Observations with the Fermi Large Area Telescope (LAT) and with ground-based facilities such as HESS, VERITAS, MAGIC, and HAWC have provided an unprecedented picture of the gamma-ray sky ideally suited to look for a signal from DM annihilation or decay for DM particles from a few GeV mass up to several TeV . The LAT has provided some of the most stringent constraints to-date on DM pair-annihilation for a variety of annihilation final states, chiefly from stacked observations of nearby satellite dwarf spheroidal galaxies [201]. Excesses of gamma rays over the expected diffuse and point-source background have been claimed, most importantly from the direction of the inner Galaxy, where a signal from DM annihilation might be especially bright [202, 203]. The nature of this excess is quite controversial: while the morphology and spectrum fall within what expected for a standard WIMP with a mass of a few tens of GeV [204], unresolved point sources, including especially an (expected) population of milli-second pulsars (MSPs) have been advocated as a possible plausible counterpart [205]. Statistical methods to discriminate between DM and MSPs have been utilized [206,207], but recent studies indicate that such results might not be conclusive [208]. Large uncertainties in the Galactic diffuse background emission model are additionally known to exist, and possible plague the morphological and spectral information [209, 210]. Other notable potential gammaray excesses include a diffuse emission from the Andromeda galaxy (M31) [211-213], possibly in excess of what expected from cosmicray models [214]; and a diffuse emission at 511 keV energy in the inner Galaxy from Integral-SPI observations [215]; such emission has known astrophysical counterparts [216], as well as several proposed DM explanations (e.g. [217]).

While DM annihilation and decay typically occurs at low velocities, the possibility of "boosted" DM has also been considered [218]. In this case, the DM particle might dominantly pairannihilate to a lighter dark species, which does interact with Standard Model particle, and could be detected with neutrino telescopes or direct detection experiments. Future facilities that promise to widen the reach of gamma-ray searches for DM include especially the Cherenkov Telescope Array (CTA), see fig. 27.2.

Neutrinos: DM can be captured in celestial bodies in significant amounts, depending on the DM scattering cross section off of nucleons, the DM mass, and the DM flux incident on the celestial body of interest. For DM masses at or around the GeV scale, evaporation from the celestial body plays an important role [219]. If enough DM accumulates, DM annihilation inside the celestial body can then lead to the production of Standard Model particles. Such particles can heat up the body, if they lose most of their energy before escaping. Utilizing models for heat production in planets, or stellar interior models in the case of stars, constraints can be put on DM particle properties. Of note are constraints from anomalous warming of cold planets such as Uranus [220], alterations to the stellar structure or the Sun's seismic activity [221], and anomalous Earth heat flow [222]. Alternately, DM annihilation in celestial bodies can result in the production of particles that can escape the body. Within the Standard Model, the only such instance is annihilation to neutrinos, but, similarly to the boosted DM case the DM can annihilate to a (stable or unstable) dark-sector particles, whose decay or interactions can be detected

Figure 27.2: Upper limits and projected sensitivity from CTA on the pair-annihilation rate versus the DM mass from gamma-ray and CMB observations (figure courtesy of Logan Morrison).
on Earth $[223,224]$. For direct annihilation to neutrinos, given the lower limit on the DM mass from evaporation, the typical neutrino energies usually exceed the energy of neutrinos from the Sun, the best target for this type of searches, making this a virtually background-free DM search. Significant neutrino fluxes can only be achieved, however, if near-equilibration is reached between the capture and annihilation rates. In turn, this requires large-enough DM-nucleon scattering cross sections, to-date very close to the limits from direct detection (see sec. 27.6). Only spin-dependent cross section, and capture in the Sun usually provide large-enough neutrino fluxes. IceCube and ANTARES searches for an anomalous flux of high-energy neutrinos from the Sun yielded null results, which can be interpreted as constraints on spin-dependent nucleon-DM interactions under the assumption of equilibration and of specific annihilation final states [225,226]. Lower-threshold detectors, including DeepCore [227] and PINGU [228], can produce interesting limits on lower-mass DM candidates above the evaporation threshold.

Cosmic-ray Antimatter: Stable charged particles produced by decays of products of, or directly from DM annihilation or decay, populate the cosmic radiation and are a prime target for indirect DM searches. To maximize signal to noise, searches focus on relatively rare particle species, such as positrons, antiprotons, and antinuclei. While in certain models the production of particles and antiparticles is not symmetric [229], generally DM annihilation or decay produces as many particles as antiparticles in the final state. Charged particles produced by DM propagate and lose energy prior to reaching detectors. The transport of charged particles is customarily carried out in the context of diffusion models such as the Galactic "leaky box" setup, see e.g. [230]. While progress in constraining the uncertain propagation and energyloss processes has been steady with improved data from new detectors such as PAMELA [231] and AMS-02 [232], the calculation of the particle flux at Earth from that at production suffers from significant uncertainties [230].

An excess of high-energy positrons over the standard secondary production from inelastic cosmic-ray interactions has been firmly established by several experiments, most recently and with the highest statistics by AMS-02 [233]. The excess has been ascribed
to DM annihilation, although strong constraints from the nonobservation of corresponding anomalies in other channels, such as antiprotons and gamma rays, and the peculiar spectral shape, force DM models to be quite convoluted (see e.g. [234]). Alternately, excess primary positrons can be produced in the magnetosphere of nearby pulsars [235, 236]. This latter explanation was questioned in [237] in connection with the detection of a TeV halo around two candidate pulsars, leading to the determination of a highly suppressed diffusion coefficient within the pulsar nebula; with such low diffusion coefficient, positrons from the pulsars would not contribute significantly to the flux at Earth; Ref. [238], however, showed that likely the diffusion coefficient is not constant, and that if it increases outside the nebula, as expected from other cosmic-ray measurements, pulsars can still be considered as the counterpart to the positron excess. Other explanations for the excess, albeit somewhat controversial, and increasingly constrained by data, also exist [239, 240].

The antiproton spectrum in the cosmic radiation as measured by AMS-02 [232] also exhibits features that might be considered as excess flux between 10 and 20 GeV , and energies above 100 GeV [241], which have been interpreted as possible signal of DM annihilation; more realistically, however, systematic uncertainties in the antiproton production cross section, in cosmic-ray transport, reacceleration at high energy and, at low energy, solar modulation make it extremely difficult to assess the robustness of the excesses [242, 243].

Antinuclei such as anti-deuterium and anti-helium could also form as a result of DM annihilation or decay. While baryon number conservation forces the typical kinetic energy of antinuclei produced in inelastic cosmic-ray processes to large values, antinuclei arising from hadronization of DM-initiated jets have low energy, offering optimal signal-to-noise when a low-energy cut on the antinucleus kinetic energy is used [244-248]. Specific detector designs have been developed to single out low-energy cosmic-ray antinuclei (e.g. $E<0.25 \mathrm{GeV} /$ nucleon in the case of the General Antiparticle Spectrometer, or GAPS [249]). The detection of even a single antinucleus would have considerable importance as a possible sign of new physics [250].

Multi-wavelength studies: Electrons and positrons from

DM lose energy quite efficiently, radiating at a variety of wavelengths. This secondary radiative emission presents spectral and morphological features that might provide an important additional indirect detection channel. The most efficient energy loss mechanisms for high-energy electrons and positrons are inverse Compton (IC) up-scattering of background photons, and synchrotron radiation in the presence of magnetic fields. Depending on the DM mass, the emitted light from synchrotron peaks at $\mathrm{MHz}-\mathrm{GHz}$ frequencies, while the IC emission at X-ray to gammaray frequencies, depending on the energy of the background radiation, typically ranging from CMB photons up to starlight photons [251-253]. The calculation of the secondary emission from DM entails both solving the transport of the electrons and positrons from DM, and for the radiative emission; codes exist that perform these calculations for certain astrophysical environments [254-256], with diffusion playing an increasingly critical role in smaller and smaller structures such as dwarf galaxies [252]. It has been demonstrated that for large magnetic fields and for certain final states, the synchrotron emission is more constraining than the gamma-ray emission [257].

Stellar Physics: Microscopic properties of the DM can meaningfully alter, and thus be constrained by, several astrophysical environments, from planets and stars, up to the universe as a whole. DM particles light enough to be produced in collisional processes inside stars, with typically temperatures in the keV , or supernovae, with energy scales in the MeV , lead to an additional energy-loss mechanism, if capable of escaping the system. If this is the case, the increased needed energy output would also result in an increased neutrino flux, leading to constraints on the masses and couplings of the DM, see e.g. [258] for a comprehensive review. DM annihilation can even have fueled early stages of stellar evolution, perhaps with measurable consequences [259]. DM capture in neutron stars could lead to the collapse of the star into black holes; the existence of neutron stars in DM-rich environments can thus be used to constrain the mass and interaction cross section of DM with nucleons [260] and even relatively light, but stable, primordial black holes [261].

Cosmology: Energy injection from DM processes in the early universe, as well as the contribution of DM to the effective relativistic degrees of freedom, are severely constrained from data on Big Bang Nucleosynthesis (see Sec. 24 in this Review) and on the energy and anisotropy power spectrum of the CMB (see Sec. 29). Codes exist that perform the calculation of the constraints on particle DM models [200,262].

PBH Detection: Macroscopic DM candidates can gravitationally perturb structure and compromise the stability of, for instance, globular clusters such as Eridanus II [24], and/or disrupt wide binaries [263]. This constrains the maximal mass of a macropscopic DM candidate to not much more than $5 M_{\odot}$ [263] (see also [24]). In the specific case or primordial black holes, strong constraints also stem from the acceleration of charged particles around and after recombination, with significant effects on the CMB [264], albeit a lively debate exists over the accretion efficiency around such objects at high redshift [265,266]. Whether or not PBH in the solar-mass range can be 100% of the DM is therefore disputed at present. Other effects produced by macroscopic, massive DM candidates are the microlensing of stars [267, 268] and quasars [269], femtolensing of gamma-ray bursts [270], and neutron star capture [261]. It is important to note that recently constraints from both microlensing and femtolensing have been corrected after the realization of important finite-size source and wave effects [268, 271, 272], leaving a substantial window, at PBH masses $10^{17} \lesssim M_{\mathrm{BH}} / \mathrm{g} \lesssim 10^{21}$ where PBH can be 100% of the DM. Light black holes, $M_{\mathrm{BH}} \lesssim 10^{17} \mathrm{~g}$, are also constrained by the non-detection of products of evaporation [273].

References

[1] J. D. Simon, arXiv e-prints arXiv:1901.05465 (2019), [arXiv:1901.05465].
[2] P. Salucci, Astron. Astrophys. Rev. 27, 1, 2 (2019), [arXiv:1811.08843].
[3] S. W. Allen, A. E. Evrard and A. B. Mantz, Annual Review of Astronomy and Astrophysics 49, 1, 409 (2011),
[arXiv:1103.4829].
[4] N. A. Bahcall et al., ApJ 541, 1 (2000).
[5] S. D. M. White, G. Efstathiou and C. S. Frenk, Mon. Not. Roy. Astron. Soc. 262, 1023 (1993).
[6] A. J. S. Hamilton and M. Tegmark, Mon. Not. Roy. Astron. Soc. 330, 506 (2002), [arXiv:astro-ph/0008392].
[7] B. Famaey and S. McGaugh, Living Rev. Rel. 15, 10 (2012), [arXiv:1112.3960].
[8] S. W. Randall et al., Astrophys. J. 679, 1173 (2008), [arXiv:0704.0261].
[9] R. H. Sanders, Int. J. Mod. Phys. D27, 14, 14 (2018), [arXiv:1805.06804].
[10] S. D. McDermott, H.-B. Yu and K. M. Zurek, Phys. Rev. D83, 063509 (2011), [arXiv:1011.2907].
[11] D. A. Buote et al., Astrophys. J. 577, 183 (2002), [arXiv:astro-ph/0205469].
[12] D. Harvey et al., Science 347, 1462 (2015), [arXiv:1503.07675].
[13] S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), [arXiv:1705.02358].
[14] D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000), [arXiv:astro-ph/9909386].
[15] S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979), [,66(1979)].
[16] L. Randall, J. Scholtz and J. Unwin, Mon. Not. Roy. Astron. Soc. 467, 2, 1515 (2017), [arXiv:1611.04590].
[17] R. Hlozek et al., Phys. Rev. D91, 10, 103512 (2015), [arXiv:1410.2896].
[18] E. Armengaud et al., Mon. Not. Roy. Astron. Soc. 471, 4, 4606 (2017), [arXiv:1703.09126].
[19] M. Nori et al., Mon. Not. Roy. Astron. Soc. 482, 3, 3227 (2019), [arXiv:1809.09619].
[20] B. Bozek et al., Mon. Not. Roy. Astron. Soc. 450, 1, 209 (2015), [arXiv:1409.3544].
[21] H.-Y. Schive et al., Astrophys. J. 818, 1, 89 (2016), [arXiv:1508.04621].
[22] E. O. Nadler et al., Astrophys. J. 878, 2, L32 (2019), [Astrophys. J. Lett.878,32(2019)], [arXiv:1904.10000].
[23] M. A. Monroy-Rodríguez and C. Allen, ApJ 790, 2, 159 (2014), [arXiv:1406.5169].
[24] T. D. Brandt, Astrophys. J. 824, 2, L31 (2016), [arXiv:1605.03665].
[25] B. Audren et al., JCAP 1412, 12, 028 (2014), [arXiv:1407.2418].
[26] M. Dutra et al., JCAP 1803, 037 (2018), [arXiv:1801.05447].
[27] P. Gondolo and G. Gelmini, Nucl. Phys. B360, 145 (1991).
[28] J. L. Feng and J. Kumar, Phys. Rev. Lett. 101, 231301 (2008), [arXiv:0803.4196].
[29] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996), [hep-ph/9506380].
[30] J. Edsjo et al., JCAP 0304, 001 (2003), [hep-ph/0301106].
[31] G. Servant and T. M. P. Tait, Nucl. Phys. B650, 391 (2003), [hep-ph/0206071].
[32] D. Hooper and S. Profumo, Phys. Rept. 453, 29 (2007), [hep-ph/0701197].
[33] K. Griest and D. Seckel, Phys. Rev. D43, 3191 (1991).
[34] R. T. Co et al., JCAP 1512, 12, 024 (2015), [arXiv:1506.07532].
[35] V. S. Rychkov and A. Strumia, Phys. Rev. D75, 075011 (2007), [hep-ph/0701104].
[36] E. D. Carlson, M. E. Machacek and L. J. Hall, Astrophys. J. 398, 43 (1992).
[37] D. Pappadopulo, J. T. Ruderman and G. Trevisan, Phys. Rev. D94, 3, 035005 (2016), [arXiv:1602.04219].
[38] Y. Hochberg et al., Phys. Rev. Lett. 113, 171301 (2014), [arXiv:1402.5143].
[39] E. Kuflik et al., Phys. Rev. Lett. 116, 22, 221302 (2016), [arXiv:1512.04545].
[40] W. B. Lin et al., Phys. Rev. Lett. 86, 954 (2001), [arXiv:astro-ph/0009003].
[41] G. B. Gelmini and P. Gondolo, Phys. Rev. D74, 023510 (2006), [hep-ph/0602230].
[42] M. Hindmarsh, R. Kirk and S. M. West, JCAP 1403, 037 (2014), [arXiv:1311.1637].
[43] T. Moroi and L. Randall, Nucl. Phys. B570, 455 (2000), [hep-ph/9906527].
[44] P. Hut and K. A. Olive, Phys. Lett. 87B, 144 (1979).
[45] S. Nussinov, Phys. Lett. 165B, 55 (1985).
[46] K. M. Zurek, Phys. Rept. 537, 91 (2014), [arXiv:1308.0338].
[47] Y. B. Zel'dovich and I. D. Novikov, Soviet Ast. 10, 602 (1967).
[48] S. Hawking, Mon. Not. R. Astron. Soc 152, 75 (1971).
[49] B. J. Carr, ApJ 201, 1 (1975).
[50] J. I. Read, J. Phys. G41, 063101 (2014), [arXiv:1404.1938].
[51] J. Buch, S. C. J. Leung and J. Fan, JCAP 1904, 026 (2019), [arXiv:1808.05603].
[52] J. Bovy et al., Astrophys. J. 759, 131 (2012), [arXiv:1209.0759].
[53] T. Piffl et al., Astron. Astrophys. 562, A91 (2014), [arXiv:1309.4293].
[54] A. M. Green, J. Phys. G44, 8, 084001 (2017), [arXiv:1703.10102].
[55] M. Vogelsberger et al., Mon. Not. Roy. Astron. Soc. 395, 797 (2009), [arXiv:0812.0362].
[56] C. Kelso et al., JCAP 1608, 071 (2016), [arXiv:1601.04725].
[57] N. Bozorgnia et al., JCAP 1605, 05, 024 (2016), [arXiv:1601.04707].
[58] J. D. Sloane et al., Astrophys. J. 831, 93 (2016), [arXiv:1601.05402].
[59] A. Helmi et al., Nature 7729, 985 (2018).
[60] L. Necib, M. Lisanti and V. Belokurov (2018), [arXiv:1807.02519].
[61] N. W. Evans, C. A. J. O'Hare and C. McCabe, Phys. Rev. D99, 2, 023012 (2019), [arXiv:1810.11468].
[62] J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), [arXiv:1707.04256].
[63] J. Zavala and C. S. Frenk (2019), [arXiv:1907.11775].
[64] J. F. Navarro et al., Mon. Not. Roy. Astron. Soc. 402, 21 (2010), [arXiv:0810.1522].
[65] M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat, Mon. Not. Roy. Astron. Soc. 415, L40 (2011), [arXiv:1103.0007].
[66] K. E. Andrade et al. (2019), [arXiv:1901.00507].
[67] G. Servant, in "Particle dark matter," 164-189 (2010).
[68] L. Hui et al., Phys. Rev. D95, 4, 043541 (2017), [arXiv:1610.08297].
[69] A. Fattahi et al. (2016), [arXiv:1607.06479].
[70] D. J. E. Marsh, Phys. Rept. 643, 1 (2016), [arXiv:1510.07633].
[71] H. An et al., Phys. Lett. B747, 331 (2015), [arXiv:1412.8378].
[72] P. W. Graham and S. Rajendran, Phys. Rev. D88, 035023 (2013), [arXiv:1306.6088].
[73] P. W. Graham et al., Phys. Rev. D93, 7, 075029 (2016), [arXiv:1512.06165].
[74] A. Arvanitaki et al., Phys. Rev. D97, 7, 075020 (2018), [arXiv:1606.04541].
[75] P. W. Graham et al., Phys. Rev. D97, 5, 055006 (2018), [arXiv:1709.07852].
[76] I. M. Bloch et al. (2019), [arXiv:1907.03767].
[77] A. Pierce, K. Riles and Y. Zhao, Phys. Rev. Lett. 121, 6, 061102 (2018), [arXiv:1801.10161].
[78] Y. Kahn, B. R. Safdi and J. Thaler, Phys. Rev. Lett. 117, 14, 141801 (2016), [arXiv:1602.01086].
[79] R. Henning et al. (ABRACADABRA), in "Proceedings, 13th Patras Workshop on Axions, WIMPs and WISPs, (PATRAS 2017): Thessaloniki, Greece, 15 May 2017-19, 2017," 28-31 (2018).
[80] S. Chaudhuri et al., Phys. Rev. D92, 7, 075012 (2015), [arXiv:1411.7382].
[81] P. Sikivie, N. Sullivan and D. B. Tanner, Phys. Rev. Lett. 112, 13, 131301 (2014), [arXiv:1310.8545].
[82] B. M. Brubaker et al., Phys. Rev. D96, 12, 123008 (2017), [arXiv:1706.08388].
[83] G. Rybka (ADMX), Phys. Dark Univ. 4, 14 (2014).
[84] S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17 (1994), [hep-ph/9303287].
[85] E. Bulbul et al., Astrophys. J. 789, 13 (2014), [arXiv:1402.2301].
[86] A. Boyarsky et al., Phys. Rev. Lett. 113, 251301 (2014), [arXiv:1402.4119].
[87] T. E. Jeltema and S. Profumo, Mon. Not. Roy. Astron. Soc. 450, 2, 2143 (2015), [arXiv:1408.1699].
[88] M. E. Anderson, E. Churazov and J. N. Bregman, Mon. Not. Roy. Astron. Soc. 452, 4, 3905 (2015), [arXiv:1408.4115].
[89] D. Malyshev, A. Neronov and D. Eckert, Phys. Rev. D90, 103506 (2014), [arXiv:1408.3531].
[90] T. E. Jeltema and S. Profumo, Mon. Not. Roy. Astron. Soc. 458, 4, 3592 (2016), [arXiv:1512.01239].
[91] F. A. Aharonian et al. (Hitomi), Astrophys. J. 837, 1, L15 (2017), [arXiv:1607.07420].
[92] I. Yu. Kobzarev, L. B. Okun and I. Ya. Pomeranchuk, Sov. J. Nucl. Phys. 3, 6, 837 (1966), [Yad. Fiz.3,1154(1966)].
[93] M. J. Strassler and K. M. Zurek, Phys. Lett. B651, 374 (2007), [hep-ph/0604261].
[94] M. J. Strassler (2006), [hep-ph/0607160].
[95] M. Battaglieri et al., in "U.S. Cosmic Visions: New Ideas in Dark Matter College Park, MD, USA, March 23-25, 2017," (2017), [arXiv:1707.04591], URL http://lss.fnal.gov/archive/2017/conf/ fermilab-conf-17-282-ae-ppd-t.pdf.
[96] Y. Kahn et al., JHEP 05, 002 (2017), [arXiv:1609.09072].
[97] J. Alexander et al. (2016), [arXiv:1608.08632], URL http://lss.fnal.gov/archive/2016/conf/ fermilab-conf-16-421.pdf.
[98] K. R. Dienes and B. Thomas, Phys. Rev. D85, 083523 (2012), [arXiv:1106.4546].
[99] N. Trevisani (ATLAS, CMS), Universe 4, 11, 131 (2018).
[100] E. Tolley (ATLAS), PoS ICHEP2018, 171 (2019).
[101] W. C. Kalderon (ATLAS), PoS DIS2018, 085 (2018).
[102] D. Vannerom (CMS), PoS DIS2019, 111 (2019).
[103] G. Gómez-Ceballos (CMS), PoS EDSU2018, 014 (2018).
[104] E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 11, 111302 (2018), [arXiv:1805.12562].
[105] X. Cui et al. (PandaX-II), Phys. Rev. Lett. 119, 18, 181302 (2017), [arXiv:1708.06917].
[106] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 2, 021303 (2017), [arXiv:1608.07648].
[107] R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 120, 6, 061802 (2018), [arXiv:1708.08869].
[108] P. Agnes et al. (DarkSide), Phys. Rev. D98, 10, 102006 (2018), [arXiv:1802.07198].
[109] R. Ajaj et al. (DEAP), Phys. Rev. D100, 022004 (2019), [arXiv:1902.04048].
[110] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 122, 13, 131301 (2019), [arXiv:1811.11241].
[111] E. Aprile et al. (XENON) (2019), [arXiv:1907.12771].
[112] E. Aprile et al. (2019), [arXiv:1907.11485].
[113] P. Agnes et al. (DarkSide), Phys. Rev. Lett. 121, 8, 081307 (2018), [arXiv:1802.06994].
[114] R. Agnese et al. (SuperCDMS), Phys. Rev. D99, 6, 062001 (2019), [arXiv:1808.09098].
[115] A. H. Abdelhameed et al. (CRESST) (2019), [arXiv:1904.00498].
[116] Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018), [arXiv:1706.04934].
[117] C. Amole et al. (PICO), Phys. Rev. D100, 2, 022001 (2019), [arXiv:1902.04031].
[118] E. Aprile et al. (XENON), Phys. Rev. Lett. 122, 14, 141301 (2019), [arXiv:1902.03234].
[119] J. Xia et al. (PandaX-II), Phys. Lett. B792, 193 (2019), [arXiv:1807.01936].
[120] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 25, 251302 (2017), [arXiv:1705.03380].
[121] J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).
[122] J. R. Ellis, R. A. Flores and J. D. Lewin, Phys. Lett. B212, 375 (1988).
[123] P. J. Fox, J. Liu and N. Weiner, Phys. Rev. D83, 103514 (2011), [arXiv:1011.1915].
[124] L. Vietze et al., Phys. Rev. D91, 4, 043520 (2015), [arXiv:1412.6091].
[125] P. Klos et al., Phys. Rev. D88, 8, 083516 (2013), [Erratum: Phys. Rev.D89,no.2,029901(2014)], [arXiv:1304.7684].
[126] J. Ellis, N. Nagata and K. A. Olive, Eur. Phys. J. C78, 7, 569 (2018), [arXiv:1805.09795].
[127] J. Fan, M. Reece and L.-T. Wang, JCAP 1011, 042 (2010), [arXiv:1008.1591].
[128] A. L. Fitzpatrick et al., JCAP 1302, 004 (2013), [arXiv:1203.3542].
[129] N. Anand, A. L. Fitzpatrick and W. C. Haxton, Phys. Rev. C89, 6, 065501 (2014), [arXiv:1308.6288].
[130] M. I. Gresham and K. M. Zurek, Phys. Rev. D89, 12, 123521 (2014), [arXiv:1401.3739].
[131] J. B. Dent et al., Phys. Rev. D92, 6, 063515 (2015), [arXiv:1505.03117].
[132] D. Gazda, R. Catena and C. Forssén, Phys. Rev. D95, 10, 103011 (2017), [arXiv:1612.09165].
[133] M. Hoferichter et al., Phys. Rev. D99, 5, 055031 (2019), [arXiv:1812.05617].
[134] R. Essig, J. Mardon and T. Volansky, Phys. Rev. D85, 076007 (2012), [arXiv:1108.5383].
[135] F. T. Avignone, III et al., Phys. Rev. D35, 2752 (1987).
[136] M. Pospelov, A. Ritz and M. B. Voloshin, Phys. Rev. D78, 115012 (2008), [arXiv:0807.3279].
[137] I. M. Bloch et al., JHEP 06, 087 (2017), [arXiv:1608.02123].
[138] Y. Hochberg, T. Lin and K. M. Zurek, Phys. Rev. D95, 2, 023013 (2017), [arXiv:1608.01994].
[139] M. Schumann (2019), [arXiv:1903.03026].
[140] M. Pato et al., Phys. Rev. D83, 083505 (2011), [arXiv:1012.3458].
[141] A. K. Drukier, K. Freese and D. N. Spergel, Phys. Rev. D33, 3495 (1986).
[142] D. N. Spergel, Phys. Rev. D37, 1353 (1988).
[143] D. Stiff, L. M. Widrow and J. Frieman, Phys. Rev. D64, 083516 (2001), [arXiv:astro-ph/0106048].
[144] K. Freese et al., Phys. Rev. Lett. 92, 111301 (2004), [arXiv:astro-ph/0310334].
[145] T. Bruch et al., Astrophys. J. 696, 920 (2009), [arXiv:0804.2896].
[146] M. J. Lewis and K. Freese, Phys. Rev. D70, 043501 (2004), [arXiv:astro-ph/0307190].
[147] F. Mayet et al., Phys. Rept. 627, 1 (2016), [arXiv:1602.03781].
[148] L. E. Strigari, New J. Phys. 11, 105011 (2009), [arXiv:0903.3630].
[149] C. A. J. O'Hare, Phys. Rev. D94, 6, 063527 (2016), [arXiv:1604.03858].
[150] L. E. Strigari, Phys. Rev. D93, 10, 103534 (2016), [arXiv:1604.00729].
[151] R. Essig, M. Sholapurkar and T.-T. Yu, Phys. Rev. D97, 9, 095029 (2018), [arXiv:1801.10159].
[152] Q. Arnaud et al. (EDELWEISS), Phys. Rev. D97, 2, 022003 (2018), [arXiv:1707.04308].
[153] R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 121, 5, 051301 (2018), [erratum: Phys. Rev. Lett.122,no.6,069901(2019)], [arXiv:1804.10697].
[154] H. Jiang et al. (CDEX), Phys. Rev. Lett. 120, 24, 241301 (2018), [arXiv:1802.09016].
[155] N. Abgrall et al. (Majorana), Phys. Rev. Lett. 118, 16, 161801 (2017), [arXiv:1612.00886].
[156] V. Chepel and H. Araujo, JINST 8, R04001 (2013), [arXiv:1207.2292].
[157] M. J. Dolan, F. Kahlhoefer and C. McCabe, Phys. Rev. Lett. 121, 10, 101801 (2018), [arXiv:1711.09906].
[158] C. Fu et al. (PandaX), Phys. Rev. Lett. 119, 18, 181806 (2017), [arXiv:1707.07921].
[159] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 26, 261301 (2017), [arXiv:1704.02297].
[160] C. E. Aalseth et al., Eur. Phys. J. Plus 133, 131 (2018), [arXiv:1707.08145].
[161] D. S. Akerib et al. (LUX-ZEPLIN) (2018), [arXiv:1802.06039].
[162] H. Zhang et al. (PandaX), Sci. China Phys. Mech. Astron. 62, 3, 31011 (2019), [arXiv:1806.02229].
[163] E. Aprile et al. (XENON), JCAP 1604, 04, 027 (2016), [arXiv:1512.07501].
[164] J. Aalbers et al. (DARWIN), JCAP 1611, 017 (2016), [arXiv:1606.07001].
[165] R. Bernabei et al., Universe 4, 11, 116 (2018), [Nucl. Phys. Atom. Energy19,no.4,307(2018)], [arXiv:1805.10486].
[166] J. Amaré et al., Phys. Rev. Lett. 123, 3, 031301 (2019), [arXiv:1903.03973].
[167] G. Adhikari et al. (COSINE-100), Phys. Rev. Lett. 123, 3, 031302 (2019), [arXiv:1903.10098].
[168] G. D'Imperio et al. (Sabre), PoS ICHEP2018, 653 (2019).
[169] K. Schäffner et al., J. Low. Temp. Phys. 193, 5-6, 1174 (2018).
[170] A. Aguilar-Arevalo et al. (DAMIC) (2019), [arXiv:1907.12628].
[171] J. Tiffenberg et al. (SENSEI), Phys. Rev. Lett. 119, 13, 131802 (2017), [arXiv:1706.00028].
[172] O. Abramoff et al. (SENSEI), Phys. Rev. Lett. 122, 16, 161801 (2019), [arXiv:1901.10478].
[173] I. Giomataris et al., JINST 3, P09007 (2008), [arXiv:0807.2802].
[174] A. Antonicci et al. (MOSCAB), Eur. Phys. J. C77, 11, 752 (2017), [arXiv:1708.00101].
[175] P. Grothaus, M. Fairbairn and J. Monroe, Phys. Rev. D90, 5, 055018 (2014), [arXiv:1406.5047].
[176] C. A. J. O'Hare et al., Phys. Rev. D92, 6, 063518 (2015), [arXiv:1505.08061].
[177] J. B. R. Battat et al. (DRIFT), Astropart. Phys. 91, 65 (2017), [arXiv:1701.00171].
[178] C. Deaconu et al., Phys. Rev. D95, 12, 122002 (2017), [arXiv:1705.05965].
[179] Y. Tao et al. (2019), [arXiv:1903.02159].
[180] T. Hashimoto et al., AIP Conf. Proc. 1921, 1, 070001 (2018), [arXiv:1707.09744].
[181] G. De Lellis, EPJ Web Conf. 209, 01019 (2019).
[182] Y. Hochberg et al., Phys. Lett. B772, 239 (2017), [arXiv:1606.08849].
[183] E. Baracchini et al. (PTOLEMY) (2018), [arXiv:1808.01892].
[184] Y. Hochberg, Y. Zhao and K. M. Zurek, Phys. Rev. Lett. 116, 1, 011301 (2016), [arXiv:1504.07237].
[185] Y. Hochberg et al., JHEP 08, 057 (2016), [arXiv:1512.04533].
[186] Y. Hochberg et al., Phys. Rev. D97, 1, 015004 (2018), [arXiv:1708.08929].
[187] S. Knapen, T. Lin and K. M. Zurek, Phys. Rev. D95, 5, 056019 (2017), [arXiv:1611.06228].
[188] R. Essig et al., Phys. Rev. D95, 5, 056011 (2017), [arXiv:1608.02940].
[189] Y. Hochberg, T. Lin and K. M. Zurek, Phys. Rev. D94, 1, 015019 (2016), [arXiv:1604.06800].
[190] S. Knapen et al., Phys. Lett. B785, 386 (2018), [arXiv:1712.06598].
[191] S. Griffin et al., Phys. Rev. D98, 11, 115034 (2018), [arXiv:1807.10291].
[192] A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Phys. Rev. X8, 4, 041001 (2018), [arXiv:1709.05354].
[193] T. Trickle, Z. Zhang and K. M. Zurek (2019), [arXiv:1905.13744].
[194] Y. Hochberg et al., Phys. Rev. Lett. 123, 15, 151802 (2019), [arXiv:1903.05101].
[195] T. Lin, PoS 333, 009 (2019), [arXiv:1904.07915].
[196] F. Aharonian, D. Khangulyan and D. Malyshev, Astron. Astrophys. 547, A114 (2012), [arXiv:1207.0458].
[197] K. K. Boddy et al., Phys. Rev. D94, 9, 095027 (2016), [arXiv:1606.07440].
[198] T. Sjöstrand (2019), [arXiv:1907.09874].
[199] M. Tavani et al. (e-ASTROGAM), JHEAp 19, 1 (2018), [arXiv:1711.01265].
[200] A. Coogan, L. Morrison and S. Profumo (2019), [arXiv:1907.11846].
[201] M. Ackermann et al. (Fermi-LAT), Phys. Rev. Lett. 115, 23, 231301 (2015), [arXiv:1503.02641].
[202] D. Hooper and L. Goodenough, Phys. Lett. B697, 412 (2011), [arXiv:1010.2752].
[203] M. Ackermann et al. (Fermi-LAT), Astrophys. J. 840, 1, 43 (2017), [arXiv:1704.03910].
[204] F. Calore, I. Cholis and C. Weniger, JCAP 1503, 038 (2015), [arXiv:1409.0042].
[205] K. N. Abazajian and M. Kaplinghat, Phys. Rev. D86, 083511 (2012), [Erratum: Phys. Rev. D87, 129902 (2013)], [arXiv:1207.6047].
[206] S. K. Lee, M. Lisanti and B. R. Safdi, JCAP 1505, 05, 056 (2015), [arXiv:1412.6099].
[207] T. Daylan et al., Phys. Dark Univ. 12, 1 (2016), [arXiv:1402.6703].
[208] R. K. Leane and T. R. Slatyer (2019), [arXiv:1904.08430].
[209] E. Carlson, T. Linden and S. Profumo, Phys. Rev. Lett. 117, 11, 111101 (2016), [arXiv:1510.04698].
[210] M. Ajello et al. (Fermi-LAT), Astrophys. J. 819, 1, 44 (2016), [arXiv:1511.02938].
[211] M. Ackermann et al. (Fermi-LAT), Astrophys. J. 836, 2, 208 (2017), [arXiv:1702.08602].
[212] A. McDaniel, T. Jeltema and S. Profumo, Phys. Rev. D97, 10, 103021 (2018), [arXiv:1802.05258].
[213] C. Karwin et al. (2019), [arXiv:1903.10533].
[214] A. McDaniel, T. Jeltema and S. Profumo, Phys. Rev. D100, 2, 023014 (2019), [arXiv:1903.06833].
[215] R. L. Kinzer et al., Astrophys. J. 559, 282 (2001).
[216] R. M. Bandyopadhyay et al., Mon. Not. Roy. Astron. Soc. 392, 1115 (2009), [arXiv:0810.3674].
[217] D. P. Finkbeiner and N. Weiner, Phys. Rev. D76, 083519 (2007), [arXiv:astro-ph/0702587].
[218] K. Agashe et al., JCAP 1410, 10, 062 (2014), [arXiv:1405.7370].
[219] T. Damour and L. M. Krauss, Phys. Rev. Lett. 81, 5726 (1998), [arXiv:astro-ph/9806165].
[220] S. L. Adler, Phys. Lett. B671, 203 (2009), [arXiv:0808.2823].
[221] J. Casanellas and I. Lopes, Astrophys. J. 765, L21 (2013), [arXiv:1212.2985].
[222] G. D. Mack, J. F. Beacom and G. Bertone, Phys. Rev. D76, 043523 (2007), [arXiv:0705.4298].
[223] J. Smolinsky and P. Tanedo, Phys. Rev. D95, 7, 075015 (2017), [Erratum: Phys. Rev.D96,no.9,099902(2017)], [arXiv:1701.03168].
[224] C. Niblaeus, A. Beniwal and J. Edsjo (2019), [arXiv:1903.11363].
[225] M. G. Aartsen et al. (IceCube), JCAP 1604, 04, 022 (2016), [arXiv:1601.00653].
[226] S. Adrian-Martinez et al. (ANTARES), Phys. Lett. B759, 69 (2016), [arXiv:1603.02228].
[227] C. R. Das et al., Phys. Lett. B725, 297 (2013), [arXiv:1110.5095].
[228] M. G. Aartsen et al. (IceCube), J. Phys. G44, 5, 054006 (2017), [arXiv:1607.02671].
[229] Y. Zhao and K. M. Zurek, JHEP 07, 017 (2014), [arXiv:1401.7664].
[230] A. W. Strong, I. V. Moskalenko and V. S. Ptuskin, Ann. Rev. Nucl. Part. Sci. 57, 285 (2007), [arXiv:astroph/0701517].
[231] O. Adriani et al. (PAMELA), Phys. Rev. Lett. 111, 081102 (2013), [arXiv:1308.0133].
[232] M. Aguilar et al. (AMS), Phys. Rev. Lett. 117, 9, 091103 (2016).
[233] M. Aguilar et al. (AMS), Phys. Rev. Lett. 110, 141102 (2013).
[234] S. Profumo, F. Queiroz and C. Siqueira (2019), [arXiv:1903.07638].
[235] D. Hooper, P. Blasi and P. D. Serpico, JCAP 0901, 025 (2009), [arXiv:0810.1527].
[236] S. Profumo, Central Eur. J. Phys. 10, 1 (2011), [arXiv:0812.4457].
[237] A. U. Abeysekara et al. (HAWC), Science 358, 6365, 911 (2017), [arXiv:1711.06223].
[238] S. Profumo et al., Phys. Rev. D97, 12, 123008 (2018), [arXiv:1803.09731].
[239] R. Cowsik, B. Burch and T. Madziwa-Nussinov, Astrophys. J. 786, 124 (2014), [arXiv:1305.1242].
[240] K. Blum, B. Katz and E. Waxman, Phys. Rev. Lett. 111, 21, 211101 (2013), [arXiv:1305.1324].
[241] M.-Y. Cui et al., Phys. Rev. Lett. 118, 19, 191101 (2017), [arXiv:1610.03840].
[242] A. Reinert and M. W. Winkler, JCAP 1801, 01, 055 (2018), [arXiv:1712.00002].
[243] M. W. Winkler, JCAP 1702, 02, 048 (2017), [arXiv:1701.04866].
[244] F. Donato, N. Fornengo and P. Salati, Phys. Rev. D62, 043003 (2000), [hep-ph/9904481].
[245] K. Mori et al., Astrophys. J. 566, 604 (2002), [arXiv:astroph/0109463].
[246] H. Baer and S. Profumo, JCAP 0512, 008 (2005), [arXiv:astro-ph/0510722].
[247] E. Carlson et al., Phys. Rev. D89, 7, 076005 (2014), [arXiv:1401.2461].
[248] M. Cirelli et al., JHEP 08, 009 (2014), [arXiv:1401.4017].
[249] R. Bird et al., in "36th International Cosmic Ray Conference (ICRC 2019) Madison, Wisconsin, USA, July 24-August 1, 2019," (2019), [arXiv:1908.03154].
[250] A. Coogan and S. Profumo, Phys. Rev. D96, 8, 083020 (2017), [arXiv:1705.09664].
[251] S. Colafrancesco, S. Profumo and P. Ullio, Astron. Astrophys. 455, 21 (2006), [arXiv:astro-ph/0507575].
[252] S. Colafrancesco, S. Profumo and P. Ullio, Phys. Rev. D75, 023513 (2007), [arXiv:astro-ph/0607073].
[253] S. Profumo and P. Ullio (2010), [arXiv:1001.4086].
[254] T. E. Jeltema and S. Profumo, JCAP 0811, 003 (2008), [arXiv:0808.2641].
[255] M. Cirelli et al., JCAP 1103, 051 (2011), [Erratum: JCAP1210,E01(2012)], [arXiv:1012.4515].
[256] A. McDaniel et al., JCAP 1709, 09, 027 (2017), [arXiv:1705.09384].
[257] E. Storm et al., Astrophys. J. 768, 106 (2013), [arXiv:1210.0872].
[258] G. G. Raffelt, Stars as laboratories for fundamental physics (1996), ISBN 9780226702728 , URL http://wwwth.mpp.mpg. de/members/raffelt/mypapers/199613.pdf.
[259] D. Spolyar, K. Freese and P. Gondolo, Phys. Rev. Lett. 100, 051101 (2008), [arXiv:0705.0521].
[260] S. Dimopoulos, J. Preskill and F. Wilczek, Phys. Lett. 119B, 320 (1982).
[261] P. Pani and A. Loeb, JCAP 1406, 026 (2014), [arXiv:1401.3025].
[262] H. Liu, G. W. Ridgway and T. R. Slatyer (2019), [arXiv:1904.09296].
[263] M. A. Monroy-Rodríguez and C. Allen, Astrophys. J. 790, 2, 159 (2014), [arXiv:1406.5169].
[264] M. Ricotti, J. P. Ostriker and K. J. Mack, Astrophys. J. 680, 829 (2008), [arXiv:0709.0524].
[265] S. Bird et al., Phys. Rev. Lett. 116, 20, 201301 (2016), [arXiv:1603.00464].
[266] V. Poulin et al., Phys. Rev. D96, 8, 083524 (2017), [arXiv:1707.04206].
[267] P. Tisserand et al. (EROS-2), Astron. Astrophys. 469, 387 (2007), [arXiv:astro-ph/0607207].
[268] H. Niikura et al., Nat. Astron. 3, 6, 524 (2019), [arXiv:1701.02151].
[269] E. Mediavilla et al., Astrophys. J. 706, 1451 (2009), [arXiv:0910.3645].
[270] A. Barnacka, J. F. Glicenstein and R. Moderski, Phys. Rev. D86, 043001 (2012), [arXiv:1204.2056].
[271] A. Katz et al., JCAP 1812, 005 (2018), [arXiv:1807.11495].
[272] N. Smyth et al. (2019), [arXiv:1910.01285].
[273] B. J. Carr et al., Phys. Rev. D81, 104019 (2010), [arXiv:0912.5297].

28. Dark Energy

Revised August 2019 by D.H. Weinberg (Ohio State U.) and M. White (UC Berkeley; LBNL).

28.1 Repulsive Gravity and Cosmic Acceleration

In the first modern cosmological model, Einstein [1] modified his field equation of General Relativity (GR), introducing a "cosmological term" that enabled a solution with time-independent, spatially homogeneous matter density ρ_{m} and constant positive space curvature. Although Einstein did not frame it this way, one can view the "cosmological constant" Λ as representing a constant energy density of the vacuum [2], whose repulsive gravitational effect balances the attractive gravity of matter and thereby allows a static solution. After the development of dynamic cosmological models [3,4] and the discovery of cosmic expansion [5], the cosmological term appeared unnecessary, and Einstein and de Sitter [6] advocated adopting an expanding, homogeneous and isotropic, spatially flat, matter-dominated Universe as the default cosmology until observations dictated otherwise. Such a model has matter density equal to the critical density, $\Omega_{\mathrm{m}} \equiv \rho_{\mathrm{m}} / \rho_{\mathrm{c}}=1$, and negligible contribution from other energy components [7].
By the mid-1990s, the Einstein-de Sitter model was showing numerous cracks, under the combined onslaught of data from the cosmic microwave background (CMB), large-scale galaxy clustering, and direct estimates of the matter density, the expansion rate $\left(H_{0}\right)$, and the age of the Universe. As noted in a number of papers from this time, introducing a cosmological constant offered a potential resolution of many of these tensions, yielding the most empirically successful version of the inflationary cold dark matter scenario. In the late 1990s, supernova surveys by two independent teams provided direct evidence for accelerating cosmic expansion $[8,9]$, establishing the cosmological constant model (with $\Omega_{\mathrm{m}} \simeq 0.3, \Omega_{\Lambda} \simeq 0.7$) as the preferred alternative to the $\Omega_{\mathrm{m}}=1$ scenario. Shortly thereafter, CMB evidence for a spatially flat Universe $[10,11]$, and thus for $\Omega_{\mathrm{tot}} \simeq 1$, cemented the case for cosmic acceleration by firmly eliminating the free-expansion alternative with $\Omega_{\mathrm{m}} \ll 1$ and $\Omega_{\Lambda}=0$. Today, the accelerating Universe is well established by multiple lines of independent evidence from a tight web of precise cosmological measurements.

As discussed in the Big Bang Cosmology article of this Review (Sec. 22), the scale factor $R(t)$ of a homogeneous and isotropic Universe governed by GR grows at an accelerating rate if the pressure $p<-\frac{1}{3} \rho$ (in $c=1$ units). A cosmological constant has $\rho_{\Lambda}=$ constant and pressure $p_{\Lambda}=-\rho_{\Lambda}$ (see Eq. 22.10), so it will drive acceleration if it dominates the total energy density. However, acceleration could arise from a more general form of "dark energy" that has negative pressure, typically specified in terms of the equation-of-state-parameter $w=p / \rho$ ($=-1$ for a cosmological constant). Furthermore, the conclusion that acceleration requires a new energy component beyond matter and radiation relies on the assumption that GR is the correct description of gravity on cosmological scales. The title of this article follows the common but inexact usage of "dark energy" as a catch-all term for the origin of cosmic acceleration, regardless of whether it arises from a new form of energy or a modification of GR. Our account here draws on the much longer review of cosmic acceleration by Ref. [12], which provides background explanation and extensive literature references for the discussion in Secs. 28.2 and 28.3.

Below we will use the abbreviation Λ CDM to refer to a model with cold dark matter, a cosmological constant, inflationary initial conditions, standard radiation and neutrino content, and a flat Universe with $\Omega_{\mathrm{tot}}=1$ (though we will sometimes describe this model as "flat Λ CDM" to emphasize this last restriction). We will use $w \mathrm{CDM}$ to denote a model with the same assumptions but a free, constant value of w. Models with the prefix "o" (e.g., owCDM) allow non-zero space curvature.

28.2 Theories of Cosmic Acceleration

28.2.1 Dark Energy or Modified Gravity?

A cosmological constant is the mathematically simplest, and perhaps the physically simplest, theoretical explanation for the accelerating Universe. The problem is explaining its unnaturally small magnitude, as discussed in Sec. 22.4.7of this Review. An alternative (which still requires finding a way to make the cos-
mological constant zero or at least negligibly small) is that the accelerating cosmic expansion is driven by a new form of energy such as a scalar field [13] with potential $V(\phi)$. The energy density and pressure of the field $\phi(\mathbf{x})$ take the same forms as for inflationary scalar fields, given in Eq. (22.52) of the Big Bang Cosmology article. In the limit that $\frac{1}{2} \dot{\phi}^{2} \ll|V(\phi)|$, the scalar field acts like a cosmological constant, with $p_{\phi} \simeq-\rho_{\phi}$. In this scenario, today's cosmic acceleration is closely akin to the epoch of inflation, but with radically different energy and timescale.
More generally, the value of $w=p_{\phi} / \rho_{\phi}$ in scalar field models evolves with time in a way that depends on $V(\phi)$ and on the initial conditions ($\phi_{i}, \dot{\phi}_{i}$); some forms of $V(\phi)$ have attractor solutions in which the late-time behavior is insensitive to initial values. Many forms of time evolution are possible, including ones where w is approximately constant and broad classes where w "freezes" towards or "thaws" away from $w=-1$, with the transition occurring when the field comes to dominate the total energy budget. If ρ_{ϕ} is even approximately constant, then it becomes dynamically insignificant at high redshift, because the matter density scales as $\rho_{\mathrm{m}} \propto(1+z)^{3}$. "Early dark energy" models are ones in which ρ_{ϕ} is a small but not negligible fraction (e.g., a few percent) of the total energy throughout the matter- and radiation-dominated eras, tracking the dominant component before itself coming to dominate at low redshift.
Instead of introducing a new energy component, one can attempt to modify gravity in a way that leads to accelerated expansion [14]. One option is to replace the Ricci scalar \mathcal{R} with a function $\mathcal{R}+f(\mathcal{R})$ in the gravitational action [15]. Other changes can be more radical, such as introducing extra dimensions and allowing gravitons to "leak" off the brane that represents the observable Universe (the "DGP" model [16]). The DGP example has inspired a more general class of "galileon" and massive gravity models. Constructing viable modified gravity models is challenging, in part because it is easy to introduce theoretical inconsistencies (such as "ghost" fields with negative kinetic energy), but above all because GR is a theory with many high-precision empirical successes on solar system scales [17]. Modified gravity models typically invoke screening mechanisms that force model predictions to approach those of GR in regions of high density or strong gravitational potential. Screening offers potentially distinctive signatures, as the strength of gravity (i.e., the effective value of G_{N}) can vary by order unity in environments with different gravitational potentials.
More generally, one can search for signatures of modified gravity by comparing the history of cosmic structure growth to the history of cosmic expansion. Within GR, these two are linked by a consistency relation, as described below (Eq. (28.2)). Modifying gravity can change the predicted rate of structure growth, and it can make the growth rate dependent on scale or environment. In some circumstances, modifying gravity alters the combinations of potentials responsible for gravitational lensing and the dynamics of non-relativistic tracers (such as galaxies or stars) in different ways (see Sec. 22.4.7 in this Review), leading to order unity mismatches between the masses of objects inferred from lensing and those inferred from dynamics in unscreened environments.
At present there are no fully realized and empirically viable modified gravity theories that explain the observed level of cosmic acceleration. The constraints on $f(\mathcal{R})$ models now force them so close to GR that they cannot produce acceleration without introducing a separate dark energy component [18]. The DGP model is empirically ruled out by several tests, including the expansion history, the integrated Sachs-Wolfe effect, and redshiftspace distortion measurements of the structure growth rate [19]. The near-simultaneous arrival of gravitational waves and electromagnetic signals from the neutron star merger event GW170817, which shows that gravitational waves travel at almost exactly the speed of light, is a further strong constraint on modified gravity theories [20]. The elimination of models should be considered an important success of the program to empirically test theories of cosmic acceleration. However, it is worth recalling that there was no fully realized gravitational explanation for the precession of Mercury's orbit prior to the completion of GR in 1915, and the fact that no complete and viable modified gravity theory exists
today does not mean that one will not arise in the future. In the meantime, we can continue empirical investigations that can tighten restrictions on such theories or perhaps point towards the gravitational sector as the origin of accelerating expansion.

28.2.2 Expansion History and Growth of Structure

The main line of empirical attack on dark energy is to measure the history of cosmic expansion and the history of matter clustering with the greatest achievable precision over a wide range of redshift. Within GR, the expansion rate $H(z)$ is governed by the Friedmann equation (see the articles on Big Bang Cosmology and Cosmological Parameters-Secs. 22 and 25.1 in this Review). For dark energy with an equation of state $w(z)$, the cosmological constant contribution to the expansion, Ω_{Λ}, is replaced by a redshift-dependent contribution. The evolution of the dark energy density follows from Eq. (22.10),

$$
\begin{align*}
\Omega_{\mathrm{de}} \frac{\rho_{\mathrm{de}}(z)}{\rho_{\mathrm{de}}(z=0)} & =\Omega_{\mathrm{de}} \exp \left[3 \int_{0}^{z}\left[1+w\left(z^{\prime}\right)\right] \frac{d z^{\prime}}{1+z^{\prime}}\right] \tag{28.1}\\
& =\Omega_{\mathrm{de}}(1+z)^{3(1+w)}
\end{align*}
$$

where the second equality holds for constant w. If $\Omega_{\mathrm{m}}, \Omega_{\mathrm{r}}$, and the present value of $\Omega_{\text {tot }}$ are known, then measuring $H(z)$ pins down $w(z)$. (Note that Ω_{de} is the same quantity denoted Ω_{v} in Sec. 22, but we have adopted the 'de' subscript to avoid implying that dark energy is necessarily a vacuum effect.)

While some observations can probe $H(z)$ directly, others measure the distance-redshift relation. The basic relations between angular diameter distance or luminosity distance and $H(z)$ are given in Ch. 22 -and these are generally unaltered in timedependent dark energy or modified gravity models. For convenience, in later sections, we will sometimes refer to the comoving angular distance, $D_{\mathrm{A}, \mathrm{c}}(z)=(1+z) D_{\mathrm{A}}(z)$.

In GR-based linear perturbation theory, the density contrast $\delta(\mathbf{x}, t) \equiv \rho(\mathbf{x}, t) / \bar{\rho}(t)-1$ of pressureless matter grows in proportion to the linear growth function $G(t)$ (not to be confused with the gravitational constant G_{N}), which follows the differential equation

$$
\begin{equation*}
\ddot{G}+2 H(z) \dot{G}-\frac{3}{2} \Omega_{\mathrm{m}} H_{0}^{2}(1+z)^{3} G=0 \tag{28.2}
\end{equation*}
$$

To a good approximation, the logarithmic derivative of $G(z)$ is

$$
\begin{equation*}
f(z) \equiv-\frac{d \ln G}{d \ln (1+z)} \simeq\left[\Omega_{\mathrm{m}}(1+z)^{3} \frac{H_{0}^{2}}{H^{2}(z)}\right]^{\gamma} \tag{28.3}
\end{equation*}
$$

where $\gamma \simeq 0.55$ for relevant values of cosmological parameters [21]. In an $\Omega_{\mathrm{m}}=1$ Universe, $G(z) \propto(1+z)^{-1}$, but growth slows when Ω_{m} drops significantly below unity. One can integrate Eq. (28.3) to get an approximate integral relation between $G(z)$ and $H(z)$, but the full (numerical) solution to Eq. (28.2) should be used for precision calculations. Even in the non-linear regime, the amplitude of clustering is determined mainly by $G(z)$, so observations of non-linear structure can be used to infer the linear $G(z)$, provided one has good theoretical modeling to relate the two.

In modified gravity models the growth rate of gravitational clustering may differ from the GR prediction. A general strategy to test modified gravity, therefore, is to measure both the expansion history and the growth history to see whether they yield consistent results for $H(z)$ or $w(z)$.

28.2.3 Parameters

Constraining a general history of $w(z)$ is nearly impossible, because the dark energy density, which affects $H(z)$, is given by an integral over $w(z)$, and distances and the growth factor involve a further integration over functions of $H(z)$. Oscillations in $w(z)$ over a range $\Delta z /(1+z) \ll 1$ are therefore extremely difficult to constrain. It has become conventional to phrase constraints or projected constraints on $w(z)$ in terms of a linear evolution model,

$$
\begin{equation*}
w(a)=w_{0}+w_{\mathrm{a}}(1-a)=w_{\mathrm{p}}+w_{\mathrm{a}}\left(a_{\mathrm{p}}-a\right) \tag{28.4}
\end{equation*}
$$

where $a \equiv(1+z)^{-1}, w_{0}$ is the value of w at $z=0$, and w_{p} is the value of w at a "pivot" redshift $z_{\mathrm{p}} \equiv a_{\mathrm{p}}^{-1}-1$, where it
is best constrained by a given set of experiments. For typical data combinations, $z_{\mathrm{p}} \simeq 0.5$. This simple parameterization can provide a good approximation to the predictions of many physically motivated models for observables measured with percentlevel precision. A widely used "Figure of Merit" (FoM) for dark energy experiments [22] is the projected combination of errors $\left[\sigma\left(w_{\mathrm{p}}\right) \sigma\left(w_{\mathrm{a}}\right)\right]^{-1}$. Ambitious future experiments with $0.1-0.3 \%$ precision on observables can constrain richer descriptions of $w(z)$, which can be characterized by principal components.

There has been less convergence on a standard parameterization for describing modified gravity theories. Deviations from the GR-predicted growth rate can be described by a deviation $\Delta \gamma$ in the index of Eq. (28.3), together with an overall multiplicative offset relative to the $G(z)$ expected from extrapolating the CMB-measured fluctuation amplitude to low redshift. However, these two parameters may not accurately capture the growth predictions of all physically interesting models. Another important parameter to constrain is the ratio of the gravitational potentials governing space curvature and the acceleration of non-relativistic test particles. The possible phenomenology of modified gravity models is rich, which enables many consistency tests but complicates the task of constructing parameterized descriptions.

The more general set of cosmological parameters is discussed elsewhere in this Review (Sec. 25.1), but here we highlight a few that are particularly important to the dark energy discussion.

- The dimensionless Hubble parameter $h \equiv$ $H_{0} / 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ determines the present day value of the critical density and the overall scaling of distances inferred from redshifts.
- Ω_{m} and Ω_{tot} affect the expansion history and the distanceredshift relation.
- The sound horizon $r_{\mathrm{s}}=\int_{0}^{t_{\mathrm{rec}}} c_{\mathrm{s}}(t) d t / a(t)$, the comoving distance that pressure waves can propagate between $t=0$ and recombination, determines the physical scale of the acoustic peaks in the CMB and the baryon acoustic oscillation (BAO) feature in low-redshift matter clustering [23].
- The amplitude of matter fluctuations, conventionally represented by the quantity $\sigma_{8}(z)$, scales the overall amplitude of growth measures such as weak lensing or redshift-space distortions (discussed in the next section).

Specifically, $\sigma_{8}(z)$ refers to the rms fluctuation of the matter overdensity $\rho / \bar{\rho}$ in spheres of radius $8 h^{-1} \mathrm{Mpc}$, computed from the linear theory matter power spectrum at redshift z, and σ_{8} on its own refers to the value at $z=0$ (just like our convention for Ω_{m}).

While discussions of dark energy are frequently phrased in terms of values and errors on quantities like $w_{\mathrm{p}}, w_{\mathrm{a}}, \Delta \gamma$, and Ω_{tot}, parameter precision is the means to an end, not an end in itself. The underlying goal of empirical studies of cosmic acceleration is to address two physically profound questions:

- 1. Does acceleration arise from a breakdown of GR on cosmological scales or from a new energy component that exerts repulsive gravity within GR?
- 2. If acceleration is caused by a new energy component, is its energy density constant in space and time, as expected for a fundamental vacuum energy, or does it show variations that indicate a dynamical field?

Substantial progress towards answering these questions, in particular any definitive rejection of the cosmological constant "null hypothesis," would be a major breakthrough in cosmology and fundamental physics.

28.3 Observational Probes

We briefly summarize the observational probes that play the greatest role in current constraints on dark energy. Further discussion can be found in other articles of this Review, in particular Secs. 25.1 (Cosmological Parameters) and 29 (The Cosmic Microwave Background), and in Ref. [12], which provides extensive references to background literature. Recent observational results from these methods are discussed in Sec. 28.4.

28.3.1 Methods, Sensitivity, Systematics

Cosmic Microwave Background Anisotropies: Although CMB anisotropies provide limited information about dark energy on their own, CMB constraints on the geometry, matter content, and radiation content of the Universe play a critical role in dark energy studies when combined with low-redshift probes. In particular, CMB data supply measurements of $\theta_{\mathrm{s}}=r_{\mathrm{s}} / D_{\mathrm{A}, \mathrm{c}}\left(z_{\mathrm{rec}}\right)$, the angular size of the sound horizon at recombination, from the angular location of the acoustic peaks, measurements of $\Omega_{\mathrm{m}} h^{2}$ and $\Omega_{\mathrm{b}} h^{2}$ from the heights of the peaks, and normalization of the amplitude of matter fluctuations at $z_{\text {rec }}$ from the amplitude of the CMB fluctuations themselves. Planck data yield a 0.18% determination of r_{s}, which scales as $\left(\Omega_{\mathrm{m}} h^{2}\right)^{-0.25}$ for cosmologies with standard matter and radiation content. The uncertainty in the matter fluctuation amplitude at the epoch of recombination is 0.5%. Secondary anisotropies, including the integrated SachsWolfe effect, the Sunyaev-Zeldovich (SZ, [24]) effect, and weak lensing of primary anisostropies, provide additional information about dark energy by constraining low-redshift structure growth. Type Ia Supernovae (SN): Type Ia supernovae, produced by the thermonuclear explosions of white dwarfs, exhibit $10-15 \%$ scatter in peak luminosity after correction for light curve duration (the time to rise and fall) and color (which is a diagnostic of dust extinction). Since the peak luminosity is not known a priori, supernova surveys constrain ratios of luminosity distances at different redshifts. If one is comparing a high-redshift sample to a local calibrator sample measured with much higher precision (and distances inferred from Hubble's law), then one essentially measures the luminosity distance in $h^{-1} \mathrm{Mpc}$, constraining the combination $h D_{\mathrm{L}}(z)$. With distance uncertainties of $5-8 \%$ per well observed supernova, a sample of around 100 SNe is sufficient to achieve sub-percent statistical precision. The $1-2 \%$ systematic uncertainties in current samples are dominated by uncertainties associated with photometric calibration and dust extinction corrections plus the observed dependence of luminosity on host galaxy properties. Another potential systematic is redshift evolution of the supernova population itself, which can be tested by analyzing subsamples grouped by spectral properties or host galaxy properties to confirm that they yield consistent results.
Baryon Acoustic Oscillations (BAO): Pressure waves that propagate in the pre-recombination photon-baryon fluid imprint a characteristic scale in the clustering of matter and galaxies, which appears in the galaxy correlation function as a localized peak at the sound horizon scale r_{s}, or in the power spectrum as a series of oscillations. Since observed galaxy coordinates consist of angles and redshifts, measuring this "standard ruler" scale in a galaxy redshift survey determines the angular diameter distance $D_{\mathrm{A}}(z)$ and the expansion rate $H(z)$, which convert coordinate separations to comoving distances. Errors on the two quantities are correlated, and in existing galaxy surveys the best determined combination is approximately $D_{\mathrm{V}}(z)=\left[c z D_{\mathrm{A}, \mathrm{c}}^{2}(z) / H(z)\right]^{1 / 3}$. As an approximate rule of thumb, a survey that fully samples structures at redshift z over a comoving volume V, and is therefore limited by cosmic variance rather than shot noise, measures $D_{\mathrm{A}, \mathrm{c}}(z)$ with a fractional error of $0.005\left(V / 10 \mathrm{Gpc}^{3}\right)^{-1 / 2}$ and $H(z)$ with a fractional error 1.6-1.8 times higher. The most precise BAO measurements to date come from large galaxy redshift surveys probing $z<0.8$, and these will be extended to higher redshifts by future projects. At redshifts $z>2$, BAO can also be measured in the Lymanα forest of intergalactic hydrogen absorption towards background quasars, where the fluctuating absorption pattern provides tens or hundreds of samples of the density field along each quasar sightline. For Lyman- α forest BAO, the best measured parameter combination is more heavily weighted towards $H(z)$ because of strong redshift-space distortions that enhance clustering in the line-ofsight direction. Radio intensity mapping, which maps large-scale structure in redshifted $21-\mathrm{cm}$ hydrogen emission without resolving individual galaxies, offers a potentially promising route to measuring BAO over large volumes at relatively low cost, but the technique is still under development. Photometric redshifts in optical imaging surveys can be used to measure BAO in the angular direction, though the typical distance precision is a factor of 3-4 lower compared to a well sampled spectroscopic survey
of the same area, and angular BAO measurements do not directly constrain $H(z)$. BAO distance measurements complement SN distance measurements by providing absolute rather than relative distances (with precise calibration of r_{s} from the CMB) and by having greater achievable precision at high redshift thanks to the increasing comoving volume available. Theoretical modeling suggests that BAO measurements from even the largest feasible redshift surveys will be limited by statistical rather than systematic uncertainties.
Weak Gravitational Lensing: Gravitational light bending by a clustered distribution of matter shears the shapes of higher redshift background galaxies in a spatially coherent manner, producing a correlated pattern of apparent ellipticities. By studying the weak lensing signal for source galaxies binned by photometric redshift (estimated from broad-band colors), one can probe the history of structure growth. "Cosmic shear" weak lensing uses the correlation of source ellipticities to deduce the clustering of intervening matter. "Galaxy-galaxy lensing" (GGL) uses the correlation between a shear map and a foreground galaxy sample to measure the average mass profile around the foreground galaxies, which can be combined with galaxy clustering to constrain total matter clustering. For a specified expansion history, the predicted signals scale approximately as $\sigma_{8} \Omega_{\mathrm{m}}^{\alpha}$, with $\alpha \simeq 0.3-0.5$. The predicted signals also depend on the distance-redshift relation, so weak lensing becomes more powerful in concert with SN or BAO measurements that can pin this relation down independently. The most challenging systematics are shape measurement biases, biases in the distribution of photometric redshifts, and intrinsic alignments of galaxy orientations that could contaminate the lensing-induced signal. Weak lensing of CMB anisotropies is an increasingly powerful tool, in part because it circumvents many of these observational and astrophysical systematics. Predicting the large-scale weak lensing signal is straightforward in principle, but the number of independent modes on large scales is small, and the inferences are therefore dominated by sample variance. Exploiting small-scale measurements, for tighter constraints, requires modeling the effects of complex physical processes such as star formation and feedback on the matter power spectrum. Strong gravitational lensing can also provide constraints on dark energy, either through time delay measurements that probe the absolute distance scale, or through measurements of multipleredshift lenses that constrain distance ratios. The primary uncertainty for strong lensing constraints is modeling the mass distribution of the lens systems.
Clusters of Galaxies: Like weak lensing, the abundance of massive dark-matter halos probes structure growth by constraining $\sigma_{8} \Omega_{\mathrm{m}}^{\alpha}$, where $\alpha \simeq 0.3-0.5$. These halos can be identified as dense concentrations of galaxies or through the signatures of hot ($10^{7}-$ $10^{8} \mathrm{~K}$) gas in X-ray emission or SZ distortion of the CMB. The critical challenge in cluster cosmology is calibrating the relation $P\left(M_{\text {halo }} \mid O\right)$ between the halo mass as predicted from theory and the observable O used for cluster identification. Measuring the stacked weak lensing signal from clusters has emerged as a promising approach to achieve percent-level accuracy in calibration of the mean relation, which is required for clusters to remain competitive with other growth probes. This method requires accurate modeling of completeness and contamination of cluster catalogs, projection effects on cluster selection and weak lensing measurements, and possible baryonic physics effects on the mass distribution within clusters.
Redshift-Space Distortions (RSD) and the Alcock-Paczynksi (AP) Effect: Redshift-space distortions of galaxy clustering, induced by peculiar motions, probe structure growth by constraining the parameter combination $f(z) \sigma_{8}(z)$, where $f(z)$ is the growth rate defined by Eq. (28.3). Uncertainties in theoretical modeling of nonlinear gravitational evolution and the non-linear bias between the galaxy and matter distributions currently limit application of the method to large scales (comoving separations $r \gtrsim 10 h^{-1} \mathrm{Mpc}$ or wavenumbers $k \lesssim 0.2 h \mathrm{Mpc}^{-1}$). A second source of anisotropy arises if one adopts the wrong cosmological metric to convert angles and redshifts into comoving separations, a phenomenon known as the Alcock-Paczynksi effect [26]. Demanding isotropy of clustering at redshift z constrains the parameter combination

Table 28.1: A selection of major dark-energy experiments, based on Ref. [25]. Abbreviations in the "Data" column refer to optical (Opt) or near-infrared (NIR) imaging (I) or spectroscopy (S). For spectroscopic experiments, the "Spec- z " column lists the primary redshift range for galaxies (gals), quasars (QSOs), or the Lyman- α forest (Ly α F). Abbreviations in the "Methods" column are weak lensing (WL), clusters (CL), supernovae (SN), baryon acoustic oscillations (BAO), and redshift-space distortions (RSD).

Project	Dates	Area/deg ${ }^{2}$	Data	Spec-z Range	Methods
BOSS	2008-2014	10,000	Opt-S	0.3-0.7 (gals)	BAO/RSD
				2-3.5 (Ly α F)	
KiDS	2011-2019	1500	Opt-I		WL/CL
DES	2013-2019	5000	Opt-I	-	WL/CL
					SN/BAO
eBOSS	2014-2018	7500	Opt-S	0.6-2.0 (gal/QSO)	BAO/RSD
				2-3.5 (Ly α F)	
SuMIRE	2014-2024	1500	$\begin{gathered} \text { Opt-I } \\ \text { Opt/NIR-S } \end{gathered}$		WL/CL
				0.8-2.4 (gals)	BAO/RSD
HETDEX	2017-2023	450	Opt-S	$1.9<z<3.5$ (gals)	BAO/RSD
DESI	2020-2025	14,000	Opt-S	0-1.7 (gals)	BAO/RSD
				2-3.5 (Ly α F)	
LSST	2022-2032	20,000	Opt-I		WL/CL
					SN/BAO
Euclid	2022-2028	15,000	Opt-I		WL/CL
			NIR-S	0.7-2.2 (gals)	BAO/RSD
WFIRST	2025-2030	2200	NIR-I		WL/CL/SN
			NIR-S	1.0-3.0 (gals)	BAO/RSD

$H(z) D_{\mathrm{A}}(z)$. The main challenge for the AP method is correcting for the anisotropy induced by peculiar velocity RSD.
Low Redshift Measurement of H_{0} : The value of H_{0} sets the current value of the critical density $\rho_{\mathrm{c}}=3 H_{0}^{2} / 8 \pi G_{\mathrm{N}}$, and combination with CMB measurements provides a long lever arm for constraining the evolution of dark energy. The challenge in conventional H_{0} measurements is establishing distances to galaxies that are "in the Hubble flow," i.e., far enough away that their peculiar velocities are small compared to the expansion velocity $v=H_{0} d$. This can be done by building a ladder of distance indicators tied to stellar parallax on its lowest rung, or by using gravitational-lens time delays or geometrical measurements of maser data to circumvent this ladder.

28.3.2 Dark Energy Experiments

Most observational applications of these methods now take place in the context of large cosmological surveys, for which constraining dark energy and modified gravity theories is a central objective. Table 28.1 lists a selection of current and planned darkenergy experiments, taken originally from the Snowmass 2013 Dark Energy Facilities review [25], which focused on projects in which the U.S. has either a leading role or significant participation. References and links to further information about these projects can be found in Ref. [25]. We have adjusted some of the dates in this Table relative to those in Ref. [25] and added the European-led KiloDegree Survey (KiDS). Dates in the Table correspond to the duration of survey observations, and the final cosmological results frequently require $1-3$ years of analysis and modeling beyond the end of data taking.

Beginning our discussion with imaging surveys, the Dark Energy Survey (DES) has observed $1 / 8$ of the sky to a depth roughly 2 magnitudes deeper than the Sloan Digital Sky Survey (SDSS), enabling weak lensing measurements with much greater statistical precision, cluster measurements calibrated by weak lensing, and angular BAO measurements based on photometric redshifts. With repeat imaging over a smaller area, DES has identified thousands of Type Ia SNe, which together with spectroscopic follow-up data enable significant improvements on the current state-of-theart for supernova (SN) cosmology. Cosmological results from weak lensing and galaxy clustering analyses of the first year DES data are presented in Ref. [27] and discussed further below, while the first cosmological results from the DES supernova survey are presented in Ref. [28]. The Hyper-Suprime Camera (HSC) on the Subaru $8.2-\mathrm{m}$ telescope is carrying out a similar type of optical imaging survey, probing a smaller area than DES but to greater
depth. First cosmological results from HSC weak lensing are reported in Refs. [29,30]. The HSC survey is one component of the Subaru Measurement of Images and Redshifts (SuMIRE) project. Beginning in the early 2020s, the dedicated Large Synoptic Survey Telescope (LSST) will scan the southern sky to SDSS-like depth every four nights. LSST imaging co-added over its decade-long primary survey will reach extraordinary depth, enabling weak lensing, cluster, and photometric BAO studies from billions of galaxies. Additionally, LSST time-domain monitoring will identify and measure light curves for thousands of Type Ia SNe per year.

Turning to spectroscopic surveys, the Baryon Oscillation Spectroscopic Survey (BOSS) and its successor eBOSS used fiber-fed optical spectrographs to map the redshift-space distributions of millions of galaxies and quasars. These 3-dimensional maps enable BAO and RSD measurements, and Lyman- α forest spectra of high-redshift quasars extend these measurements to redshifts $z>2$. As discussed below, the BOSS Collaboration has now published BAO and RSD analyses of its final data sets, and eBOSS has released BAO measurements from quasar clustering at $z=1-2$. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) uses integral field spectrographs to detect Lyman- α emission-line galaxies at $z \simeq 1.9-3.5$, probing a small sky area but a substantial comoving volume. The Dark Energy Spectroscopic Instument (DESI) will follow a strategy similar to BOSS/eBOSS but on a much grander scale, using a larger telescope ($4-\mathrm{m}$ vs. $2.5-\mathrm{m}$) and a much higher fiber multiplex (5000 vs. 1000) to survey an order-of-magnitude more galaxies. A new Prime Focus Spectrograph (PFS) for the Subaru telescope will enable the spectroscopic component of SuMIRE, with the large telescope aperture and wavelength sensitivity that extends to the near-infrared (NIR) allowing it to probe a higher redshift galaxy population than DESI, over a smaller area of sky.

Compared to ground-based observations, space observations afford higher angular resolution and a far lower NIR sky background. The Euclid and WFIRST (Wide Field Infrared Survey Telescope) missions will exploit these advantages, conducting large area imaging surveys for weak lensing and cluster studies and slitless spectroscopic surveys of emission-line galaxies for BAO and RSD studies. WFIRST will also incorporate an imaging and spectrophotometric supernova (SN) survey, extending to redshift $z \simeq 1.7$. Survey details are likely to evolve prior to launch, but in the current designs one can roughly characterize the difference between the Euclid and WFIRST dark-energy experiments as "wide vs. deep," with planned survey areas of $15,000 \mathrm{deg}^{2}$ and
$2200 \mathrm{deg}^{2}$, respectively. For weak lensing shape measurements, Euclid will use a single wide optical filter, while WFIRST will use three NIR filters. The Euclid galaxy redshift survey will cover a large volume at relatively low space density, while the WFIRST survey will provide denser sampling of structure in a smaller volume. There are numerous synergies among the LSST, Euclid, and WFIRST dark energy programs, as discussed in Ref. [31].

28.4 Current Constraints on Expansion, Growth, and Dark Energy

The last decade has seen dramatic progress in measurements of the cosmic expansion history and structure growth, leading to much tighter constraints on the parameters of dark energy models. CMB data from the WMAP and Planck satellites and from higher resolution ground-based experiments have provided an exquisitely detailed picture of structure at the recombination epoch and the first CMB-based measures of low-redshift structure through lensing and SZ cluster counts. Cosmological supernova samples have increased in size from tens to many hundreds, with continuous coverage from $z=0$ to $z \simeq 1.4$, alongside major improvements in data quality, analysis methods, and detailed understanding of local populations. BAO measurements have advanced from the first detections to $1-2 \%$ precision at multiple redshifts, with increasingly sophisticated methods for testing systematics, fitting models, and evaluating statistical errors. Advances in X-ray, SZ, and weak-lensing observations of large samples of galaxy clusters allow a multi-faceted approach to mass calibration, improving statistical precision but also revealing sources of astrophysical uncertainty. Cluster constraints have been joined by the first precise matter-clustering constraints from cosmic-shear weak lensing and galaxy-galaxy lensing, and by redshift-space distortion measurements that probe different aspects of structure growth at somewhat lower precision. The precision of low-redshift H_{0} measurements has sharpened from the roughly 10% error of the HST Key Project [32] to $2-4 \%$ in recent analyses.

As an illustration of current measurements of the cosmic expansion history, Fig. 28.1 compares distance-redshift measurements from SN and BAO data to the predictions for a flat Universe with a cosmological constant. SN cosmology relies on compilation analyses that try to bring data from different surveys probing distinct redshift ranges to a common scale. Here we use the "joint light curve analysis" (JLA) sample of Ref. [34], who carried out a careful intercalibration of the 3-year Supernova Legacy Survey (SNLS3, [35]) and the full SDSS-II Supernova Survey [3] data in combination with several local supernova samples and high-redshift supernovae from $H S T$. Results from the Union2.1 sample [36], which partly overlaps JLA but has different analysis procedures, would be similar. Other state-of-the-art supernova data sets include the Pan-STARRS1 sample incorporated in the PANTHEON compilation [37] and the first sample of spectroscopically confirmed supernovae from DES [28]. For illustration purposes, we have binned the JLA data in redshift and plotted the diagonal elements of the covariance matrix as error bars, and we have converted the SN luminosity distances to an equivalent comoving angular diameter distance. Because the peak luminosity of a fiducial SN Ia is an unknown free parameter, the SN distance measurements could all be shifted up and down by a constant multiplicative factor; cosmological information resides in the relative distances as a function of redshift. The normalization used here corresponds to a Hubble parameter $h=0.674$.

The $z<2$ BAO data points come from the 6-degree-Field Galaxy Survey 6dFGS survey [39], the SDSS-II Main Galaxy Sample [40], the final galaxy clustering data set from BOSS [38], and the first BAO measurement from quasar clustering in eBOSS [41]. For the 6dFGS, SDSS-II, and eBOSS data points, values of D_{V} have been converted to $D_{\mathrm{A}, \mathrm{c}}$. The BOSS analysis measures $D_{\mathrm{A}, \mathrm{c}}$ directly; we have taken values from the "BAO only" column of table 7 of Ref. [38]. At $z=2.34$ we plot $D_{\mathrm{A}, \mathrm{c}}$ measured from the BAO analysis of the eBOSS Lyman- α forest auto-correlation and cross-correlation with quasars [42]. The BAO measurements are converted to absolute distances using the sound horizon scale $r_{\mathrm{s}}=147.09 \mathrm{Mpc}$ from Planck 2018 CMB data, whose 0.18% uncertainty is small compared to the current BAO measurement er-

Figure 28.1: Distance-redshift relation measured from Type Ia SNe and BAO compared to the predictions (black curve) of a flat Λ CDM model with $\Omega_{\mathrm{m}}=0.315$ and $h=0.674$, the best-fit parameters inferred from Planck CMB data [33]. Circles show binned luminosity distances from the JLA SN sample [34], multiplied by $(1+z)^{-1}$ to convert to comoving angular diameter distance. Red squares show BAO distance measurements from the 6dFGS, SDSS-II, BOSS, and eBOSS surveys (see text for details and references). The lower panel plots residuals from the Λ CDM prediction, with dashed and dotted curves that show the effect of changing w by ± 0.1 while all other parameters are held fixed. Note that the SN data points can be shifted up or down by a constant factor to account for freedom in the peak luminosity, while the BAO points are calibrated to 0.2% precision by the sound horizon scale computed from Planck data. The errors on the BAO data points are approximately independent. In the upper panel, error bars are plotted only at $z>0.7$ to avoid visual confusion.
rors. The BOSS galaxy and eBOSS Lyman- α forest analyses also measure $H(z)$ at the same redshifts, providing further leverage on expansion history that is not captured in Fig. 28.1.

The plotted cosmological model has $\Omega_{\mathrm{m}}=0.315$ and $h=0.674$, the best-fit values from Planck (TT+TE $+\mathrm{EE}+$ lowE + lensing) assuming $w=-1$ and $\Omega_{\mathrm{tot}}=1$ [33]. The $\mathrm{SN}, \mathrm{BAO}$, and CMB data sets, probing a wide range of redshifts with radically different techniques, are for the most part mutually consistent with the predictions of a flat Λ CDM cosmology. The eBOSS Lyman- α forest BAO measurements lie about 1.7σ from the Planck Λ CDM prediction [42], notably closer than the 2.3σ difference obtained with earlier BOSS data and discussed in the 2018 edition of this Review. Dotted and dashed curves in the lower panel of Fig. 28.1 show the effect of changing w by ± 0.1 with all other parameters held fixed, which leads to significantly worse agreement with the data. However, such a single-parameter comparison does not capture the impact of parameter degeneracies or the ability of complementary data sets to break them, and if one instead forced a match to CMB data by changing h and Ω_{m} when changing w then the predicted BAO distances would diverge at $z=0$ rather than converging there.

Figure 28.2, taken from Ref. [38], presents constraints on models that allow a free but constant value of w with non-zero space curvature (owCDM, left panel) or the evolving equation of state of Eq. (28.4) in a flat Universe ($\mathrm{w}_{0} \mathrm{w}_{a} \mathrm{CDM}$, right panel). Green contours show constraints from the combination of Planck 2015 CMB data and the JLA supernova sample. Gray contours show the combination of Planck with BAO measurements from BOSS, 6dFGS, and SDSS-II. Red contours adopt a more aggressive anal-

Figure 28.2: Constraints on dark energy model parameters from combinations of CMB, BAO, galaxy clustering, and supernova (SN) data, taken from Ref. [38]. The left panel shows 68% and 95% confidence contours in the owCDM model, with constant equation-of-state parameter w and non-zero space curvature $\Omega_{K} \equiv 1-\Omega_{\mathrm{tot}}$. Green and gray contours show the combination of Planck CMB data with SN or BAO data, respectively. Red contours combine CMB, BAO, and the full shape (FS) of redshift-space galaxy clustering. Blue contours add SN data to this combination. The right panel shows confidence contours for the same data combinations in the $\mathrm{w}_{0} \mathrm{w}_{a} \mathrm{CDM}$ model, which assumes a flat Universe and an evolving equation of state with $w(a)=w_{0}+w_{\mathrm{a}}(1-a)$.
ysis of the BOSS galaxy data that uses the full shape (FS) of the redshift-space power spectrum and correlation function, modeled via perturbation theory, in addition to the measurement of the BAO scale itself. The full shape analysis improves the constraining power of the data, primarily because measurement of the Alcock-Paczynski effect on sub-BAO scales helps to break the degeneracy between $D_{\mathrm{A}, \mathrm{c}}(z)$ and $H(z)$. Blue contours show constraints from the full combination of CMB, BAO+FS, and SN data. Supernovae provide fine-grained relative distance measurements with good bin-by-bin precision at $z<0.7$ (see Fig. 28.1), which is complementary to BAO for constraining redshift evolution of w. In both classes of model, the flat Λ CDM parameters $\left(w=w_{0}=-1, \Omega_{\mathrm{K}}=w_{\mathrm{a}}=0\right)$ lie within the 68% confidence contour.

The precision on dark energy parameters depends, of course, on both the data being considered and the flexibility of the model being assumed. For the owCDM model and the Planck+BAO+FS+SN data combination, Ref. [38] finds $w=-1.01 \pm 0.04$. Assuming a flat Universe and incorporating Planck 2018 data and DES Year 1 weak lensing, in addition to BAO and SN, Ref. [33] finds

$$
\begin{equation*}
w=-1.028 \pm 0.031 \tag{28.5}
\end{equation*}
$$

We consider either of these results to be a reasonable characterization of current knowledge about the dark energy equation of state. In the $\mathrm{w}_{0} \mathrm{w}_{a}$ CDM model there is strong degeneracy between w_{0} and w_{a}, as one can see in Fig. 28.2. However, the value of w at the pivot redshift $z_{\mathrm{p}}=0.29$ is well constrained by the Planck $+\mathrm{BAO}+\mathrm{FS}+\mathrm{SN}$ data combination, with $w_{\mathrm{p}}=-1.05 \pm 0.06$ [38]. The constraint on the evolution parameter, by contrast, remains poor even with this data combination, $w_{\mathrm{a}}=-0.39 \pm 0.34$. For examinations of a wide range of dark energy, dark matter, neutrino content, and modified gravity models, see Refs. [33, 38, 43].

A flat Λ CDM model fit to Planck CMB data alone predicts $H_{0}=67.4 \pm 0.5 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ (see Chapter 29 of this Review). This prediction and its error bar are sensitive to the assumptions of constant dark energy and a flat Universe. However, by adding BAO and supernova data one can construct an "inverse distance ladder" to measure H_{0} precisely, even with a general dark energy model and free curvature [44]. Ref. [45] applies this approach to obtain $H_{0}=67.8 \pm 1.3 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$. As discussed in

Sec. 25.3.1of this Review, recent measurements from low-redshift data yield higher values of H_{0}. Figure 28.3 compares the CMBanchored H_{0} estimates cited above to distance-ladder estimates that use Cepheid [46] or tip-of-the-red-giant-branch (TRGB) [47] stars to calibrate SNe Ia luminosities, and to an entirely independent estimate that uses gravitational-lens time delays [48]. The Cepheid and lensing estimates are discrepant with the CMBanchored estimates at a statistically significant level (Ref. [46] quotes 4.4σ relative to Planck $\Lambda \mathrm{CDM}$), while the TRGB calibration yields an intermediate result that is consistent with either the "high" or "low" values of H_{0}.
The tension in H_{0} could reflect some combination of statistical flukes and systematic errors in one or more of the data sets employed in these analyses. However, if the resolution lies in new physics rather than measurement errors, then this is probably physics that operates in the pre-recombination Universe, rescaling the BAO standard ruler in a way that shifts the $\Lambda \mathrm{CDM}$ and inverse-distance-ladder values upward. Models with extra relativistic degrees of freedom or dark energy that is dynamically significant in the early Universe can achieve this effect by increasing the early expansion rate, but they are tightly constrained by the damping tail of CMB anisotropies. A finely tuned model in which early dark energy decays rapidly after recombination can mitigate the tension between CMB data and local H_{0} measurements [49], though it still prefers H_{0} values below those of Ref. [46].

The amplitude of CMB anisotropies is proportional to the amplitude of density fluctuations present at recombination, and by assuming GR and a specified dark energy model one can extrapolate the growth of structure forward to the present day to predict σ_{8}. Probes of low-redshift structure yield constraints in the $\left(\sigma_{8}, \Omega_{\mathrm{m}}\right)$ plane, which can be summarized in terms of the parameter combination $S_{8} \equiv \sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5}$. As discussed in earlier editions of this Review, many but not all weak-lensing and cluster studies to date yield S_{8} values lower than those predicted for Planck-normalized $\Lambda \mathrm{CDM}$. The right panel of Fig. 28.3 illustrates the current state-of-play, comparing a selection of recently published S_{8} estimates to the Planck $+\Lambda$ CDM prediction of $S_{8}=0.832 \pm 0.013$.
The first four points show cosmic-shear weak-lensing estimates from the Deep Lens Survey [50], KiDS [51], DES [52], and HSC [29]. All of these estimates lie below the Planck central value,

Figure 28.3: Tensions between low-redshift cosmological measurements and the predictions of a CMB-normalized Λ CDM model. All error bars are 1σ; see text for observational references. (Left) Open circles show values of H_{0} for flat Λ CDM with Planck parameters or a general dark energy model constrained by a combination of CMB, BAO, and supernova data. Filled circles show distance-ladder estimates based on Cepheid or TRGB calibration or an independent estimate using gravitational-lens time delays. (Right) Matter clustering characterized by the parameter combination $\sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5}$, as predicted by a Planck-normalized Λ CDM model (vertical dotted lines, black hexagon) and estimated from weak gravitational lensing using cosmic shear, galaxy-galaxy lensing and galaxy clustering, or a combination of the two constraints. Points of the same color are based on the same weak-lensing data. The "CMB lensing" point shows the value of σ_{8} for $\Omega_{\mathrm{m}}=0.3$ inferred from Planck CMB lensing, a measurement that is independent of the "Planck $+\Lambda$ CDM" prediction and weighted to somewhat higher redshift than the other weak-lensing points.
though only the KiDS estimate is discrepant by $\sim 2 \sigma$. The next four points use galaxy-galaxy lensing in combination with galaxy clustering. Ref. [53] used weak-lensing data from SDSS imaging and the SDSS main galaxy redshift catalog, restricting the analysis to scales well described by perturbation theory. Refs. [54] and [55] used the same weak-lensing data but the BOSS LOWZ galaxy sample, and they employed two quite different approaches to model the clustering and lensing signals into the strongly nonlinear regime ($r \approx 1 h^{-1} \mathrm{Mpc}$) so that they could fully exploit the constraining power of the data. Ref. [56] found a strong discrepancy on these non-linear scales between the predictions of a Planck-normalized Λ CDM model and the galaxy-galaxy lensing of BOSS CMASS galaxies, measured from $250 \mathrm{deg}^{2}$ of deep imaging from the Canada-France-Hawaii Telescope. Ref. [57], plotted in Figure 28.3, revisited these data with a more general modeling approach and showed that the discrepancy persists over a range of redshift and galaxy stellar mass.

The third set of points in this panel shows S_{8} estimates that combine cosmic shear with galaxy-galaxy lensing and galaxy clustering (a.k.a. " 3×2 " analyses because they combine three 2 -point correlations), restricted to fairly large scales in the perturbative regime. Refs. [58] and [59] use KiDS weak-lensing data but two different galaxy samples; although they are statistically consistent with each other, the difference of their central values illustrates the sensitivity to external data and analysis choices. Ref. [27] presents constraints from the 3×2 analysis of the Year 1 DES data, which yields an S_{8} value lower than the Planck prediction but consistent at the $\sim 2 \sigma$ level.

The "CMB lensing" point shows the matter-clustering amplitude inferred from Planck CMB lensing; we have evaluated Eq. (38) of Ref. [60] at $\Omega_{\mathrm{m}}=0.3$ and adopted the same fractional error. It is important to emphasize that this is a measurement of low-redshift clustering even though the background being lensed is the CMB. The CMB lensing kernels peak at $z \lesssim 1$, with tails to $z \sim 5$, so the effective redshift of the S_{8} measurement is somewhat
higher than that of the other weak-lensing data points. The result is consistent with the Planck $+\Lambda$ CDM prediction at 1σ, and it is also consistent with the lower value corresponding to the mean or median of the optical weak-lensing measurements.

No one of these analyses provides convincing evidence of a conflict with the $\Lambda \mathrm{CDM}$ cosmological model. However, the case for such a conflict has grown stronger as the low inferred clustering amplitude has persisted across multiple statistically independent weak-lensing surveys and multiple analysis methods. One possible explanation is that several of the weak lensing surveys are affected by a common, unrecognized, systematic bias. Another possibility is a true deviation between the clustering growth extrapolated forward from the early Universe and the clustering of matter at late times. The consistency of CMB lensing and Lyman- α forest measurements with Λ CDM clustering predictions suggests that any such deviation sets in mainly at $z<1$, coinciding with the era of cosmic acceleration. Because the expansion history is well constrained by BAO and supernova data, it is difficult to change low-redshift matter clustering by simply changing the equation of state of dark energy. Instead, a deviation between predicted and observed clustering might point towards modified gravity, decaying dark matter, or coupling between dark matter and dark energy.

The next $2-3$ years should see rapid progress on this conundrum. As the KiDS, DES, and HSC data sets grow in size, their statistical uncertainties will shrink, which will in turn enable more stringent internal cross-checks that test for consistent results from different redshift ranges, different scales, and different lens and source populations. Modeling methods that exploit non-linear scales will also be more stringently tested. Clusters of galaxies with weak-lensing mass calibration provide an alternative route to S_{8} measurement, with competitive statistical precision. Recent cluster-based S_{8} estimates span a wide range, some of them consistent with Planck $+\Lambda$ CDM and others implying lower matter clustering, and we have not quoted results here because it is diffi-
cult to decide which are most reliable. However, the opportunity to combine multiple cluster samples with multiple weak-lensing surveys may lead to consistent and convincing measurements in the near future. CMB lensing constraints will improve with higher angular resolution data from the South Pole Telescope and the Atacama Cosmology Telescope and their successors. Finally, the DESI survey will soon allow the first RSD-based measurements of structure growth at the $1-2 \%$ level, providing an entirely distinct route to probe the clustering tension hinted at in Fig. 28.3.

28.5 Summary and Outlook

Figure 28.2 focuses on model parameter constraints, but to describe the observational situation it is more useful to characterize the precision, redshift range, and systematic uncertainties of the basic expansion and growth measurements. At present, supernova surveys constrain distance ratios at the $1-2 \%$ level in redshift bins of width $\Delta z=0.1$ over the range $0<z<0.6$, with larger but still interesting error bars out to $z \simeq 1.3$. These measurements are currently limited by systematics tied to photometric calibration, dust reddening, host-galaxy correlations, and possible evolution of the SN population. BAO surveys have measured the absolute distance scale (calibrated to the sound horizon r_{s}) to 4% at $z=0.15$, 1% at $z=0.38$ and $z=0.61$, and 2% at $z=2.3$. Multiple studies have used clusters of galaxies or weak-lensing cosmic shear or galaxy-galaxy lensing to measure a parameter combination $\sigma_{8} \Omega_{\mathrm{m}}^{\alpha}$ with $\alpha \simeq 0.3-0.5$. The estimated errors of the most recent studies, including both statistical contributions and identified systematic uncertainties, are $3-5 \%$. RSD measurements constrain the combination $f(z) \sigma_{8}(z)$, and recent determinations span the redshift range $0<z<0.9$ with typical estimated errors of about 10%. These errors are dominated by statistics, but shrinking them further will require improvements in modeling non-linear effects on small scales. Distance-ladder estimates of H_{0} now span a small range, using overlapping data but distinct treatments of key steps; individual studies quote uncertainties of $2-5 \%$, with similar statistical and systematic contributions. Planck data and higher resolution ground-based experiments now measure CMB anisotropies with exquisite precision; for example, CMB measurements now constrain the physical size of the BAO sound horizon to 0.2% and the angular scale of the sound horizon to 0.01%.

A flat Λ CDM model with standard radiation and neutrino content can fit the CMB data and the BAO and SN distance measurements to within their estimated uncertainties. The CMB+BAO parameters for this model are in significant tension with some but not all recent measurements of H_{0} determined from low-redshift data. The discrepancy could reflect underestimated systematic errors in one or more of the input data sets. If the conflict is real, then it may point to new physics in the pre-recombination Universe that rescales the sound horizon, such as early dark energy or extra relativistic degrees of freedom. Many measurements of low-redshift matter clustering from weak lensing lie below the predictions of a Λ CDM model extrapolated forward from the Planck CMB anisotropies. No one analysis presents a convincing conflict, but the difference persists across several independent data sets and analysis methods. If real, this discrepancy could point towards modified gravity, decaying dark matter, or coupling between dark matter and dark energy. However, none of the tensions present in the data yet provides compelling evidence for new physics.

Analyses of the final KiDS and DES weak-lensing data sets and the expanding HSC weak-lensing data set should yield measurements of matter clustering that have sharper statistical precision and more stringent tests of internal consistency. Fully exploiting these data will require further development of accurate models of matter clustering, galaxy clustering, and weak lensing by galaxy clusters into the fully non-linear regime, including robust methods of accounting for uncertainties in the baryonic mass distribution. It will also require further progress on the thorny challenge of photometric redshift calibration so that these uncertainties do not dominate the error budget. Higher signal-to-noise CMB lensing maps cross-correlated with galaxies will provide independent tests that avoid some of the systematic uncertainties of optical weak lensing. H_{0} measurements will improve with increasing numbers of Cepheid or TRGB distances to supernova host galaxies, improv-
ing Gaia parallaxes of Galactic Cepheids, increasing numbers of strong gravitational-lens time delays, and continued attention to the systematic uncertainties in each method. Improving measurements of the CMB damping tail from ground-based experiments will provide increasingly strong constraints on solutions involving pre-recombination physics.

After beginning operations in early 2020, the DESI galaxy redshift survey will quickly exceed the size of the existing SDSS and BOSS surveys, enabling high precision BAO measurements of expansion history at $z \approx 0.7-1.4$ and, for the first time, percent-level measurements of structure growth through RSD. Precise BAO and RSD measurements at higher redshifts will come from DESI Lyman- α forest maps and the HETDEX and Subaru PFS galaxy surveys. The BAO measurements will complement increasingly precise measurements of the relative distance scale at $z<1$ from the DES photometric supernova sample and from improved local supernova samples $(z<0.1)$ that provide a low-redshift anchor. Large galaxy samples will also enable more powerful applications of the Alcock-Paczynski effect, which can amplify the power of BAO and supernova distance measurements by converting them to constraints on the expansion rate $H(z)$.

The early-to-mid 2020s will see another major leap in observational capabilities with the advent of LSST, Euclid, and WFIRST. LSST will be the ultimate ground-based optical weak-lensing experiment, measuring several billion galaxy shapes over $20,000 \mathrm{deg}^{2}$ of the southern hemisphere sky, and it will detect and monitor many thousands of SNe per year. Euclid and WFIRST also have weak lensing as a primary science goal, taking advantage of the high angular resolution and extremely stable image quality achievable from space. Both missions plan large spectroscopic galaxy surveys, which will provide better sampling at high redshifts than DESI or PFS because of the lower infrared sky background above the atmosphere. WFIRST is also designed to carry out what should be the ultimate supernova cosmology experiment, with deep, high resolution, near-IR observations and the stable calibration achievable with a space platform. The 2020s will also see dramatic advances in CMB lensing from the Simons Observatory and, potentially, CMB-S4 and/or a space-based probe; crosscorrelation with galaxy surveys allows precise tomographic measurements of clustering as a function of redshift.

If the anomalies suggested in Fig. 28.3 are real, then the experiments of the 2020s will map out their redshift, scale, and environment dependence in great detail, providing detailed empirical constraints on dynamical dark energy or modified gravity models. If these tensions dissipate with improved measurements, then the experiments of the 2020s will achieve much more stringent tests of the Λ CDM paradigm, with the potential to reveal deviations that are within the statistical uncertainties of current data. The critical clue to the origin of cosmic acceleration could also come from a surprising direction, such as laboratory or solarsystem tests that challenge GR, time variation of fundamental "constants," or anomalous behavior of gravity in some astronomical environments. Experimental advances along these multiple axes could confirm today's relatively simple, but frustratingly incomplete, "standard model" of cosmology, or they could force yet another radical revision in our understanding of energy, or gravity, or the spacetime structure of the Universe.

References

[1] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 142 (1917).
[2] Ya. B. Zel'dovich, A. Krasinski and Ya. B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968), [Gen. Rel. Grav.40,1557(2008); Usp. Fiz. Nauk95,209(1968)].
[3] A. Friedman, Z. Phys. 10, 377 (1922), [Gen. Rel. Grav.31,1991(1999)].
[4] G. Lemaître, Annales de la Societe Scietifique de Bruxelles 47, 49 (1927).
[5] E. Hubble, Proc. Nat. Acad. Sci. 15, 168 (1929).
[6] A. Einstein and W. de Sitter, Proc. Nat. Acad. Sci. 18, 213 (1932).
[7] For background and definitions, see Big-Bang Cosmology Sec. 22 of this Review.
[8] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), [arXiv:astro-ph/9805201].
[9] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), [arXiv:astro-ph/9812133].
[10] P. de Bernardis et al. (Boomerang), Nature 404, 955 (2000), [arXiv:astro-ph/0004404].
[11] S. Hanany et al., Astrophys. J. 545, L5 (2000), [arXiv:astroph/0005123].
[12] D. H. Weinberg et al., Phys. Rept. 530, 87 (2013), [arXiv:1201.2434].
[13] C. Wetterich, Nucl. Phys. B302, 668 (1988), [arXiv:1711.03844].
[14] A. Joyce et al., Phys. Rept. 568, 1 (2015), [arXiv:1407.0059].
[15] S. M. Carroll et al., Phys. Rev. D70, 043528 (2004), [arXiv:astro-ph/0306438].
[16] G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B485, 208 (2000), [hep-th/0005016].
[17] C.M. Will, Living Reviews in Relativity, 9,3 (2006). See also the chapter on Experimental Tests of Gravitational Theory - in this Review.
[18] J. Wang, L. Hui and J. Khoury, Phys. Rev. Lett. 109, 241301 (2012), [arXiv:1208.4612].
[19] M. Fairbairn and A. Goobar, Phys. Lett. B642, 432 (2006), [arXiv:astro-ph/0511029]; Y.-S. Song, I. Sawicki and W. Hu, Phys. Rev. D75, 064003 (2007), [arXiv:astro-ph/0606286]; C. Blake et al., Mon. Not. Roy. Astron. Soc. 415, 2876 (2011), [arXiv:1104.2948].
[20] T. Baker et al., Phys. Rev. Lett. 119, 25, 251301 (2017), [arXiv:1710.06394].
[21] E. V. Linder, Phys. Rev. D72, 043529 (2005), [arXiv:astroph/0507263].
[22] This is essentially the FoM proposed in the Dark Energy Task Force (DETF) report, A. Albrecht et al., astro-ph/0609591, though they based their FoM on the area of the 95 in the $w_{0}-w_{a}$ plane.
[23] For high accuracy, the impact of acoustic oscillations must be computed with a full Boltzmann code, but the simple integral for r_{s} captures the essential physics and the scaling with cosmological parameters.
[24] R. A. Sunyaev and Ya. B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970).
[25] D. Weinberg et al. (2013), [arXiv:1309.5380].
[26] C. Alcock and B. Paczynski, Nature 281, 358 (1979).
[27] T. M. C. Abbott et al. (DES), Phys. Rev. D98, 4, 043526 (2018), [arXiv:1708.01530].
[28] T. M. C. Abbott et al. (DES), Astrophys. J. 872, 2, L30 (2019), [arXiv:1811.02374].
[29] C. Hikage et al. (HSC), Publ. Astron. Soc. Jap. 71, 2, Publications of the Astronomical Society of Japan, Volume 71, Issue 2, April 2019, 43, https://doi.org/10.1093/pasj/psz010 (2019), [arXiv:1809.09148].
[30] T. Hamana et al. (2019), [arXiv:1906.06041].
[31] B. Jain et al. (2015), [arXiv:1501.07897].
[32] W. L. Freedman et al. (HST), Astrophys. J. 553, 47 (2001), [arXiv:astro-ph/0012376].
[33] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
[34] M. Betoule et al., Astron. \& Astrophys. 568, 22 (2014).
[35] M. Sullivan et al. (SNLS), Astrophys. J. 737, 102 (2011), [arXiv:1104.1444].
[36] N. Suzuki et al. (Supernova Cosmology Project), Astrophys. J. 746, 85 (2012), [arXiv:1105.3470].
[37] D. M. Scolnic et al., Astrophys. J. 859, 2, 101 (2018), [arXiv:1710.00845].
[38] S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 3, 2617 (2017), [arXiv:1607.03155].
[39] F. Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), [arXiv:1106.3366].
[40] A. J. Ross et al., Mon. Not. Roy. Astron. Soc. 449, 1, 835 (2015), [arXiv:1409.3242].
[41] M. Ata et al., Mon. Not. Roy. Astron. Soc. 473, 4, 4773 (2018), [arXiv:1705.06373].
[42] M. Blomqvist et al., Astron. Astrophys. 629, A86 (2019), [arXiv:1904.03430].
[43] Planck Collab. 2015 Results XIV, Astron. \& Astrophys. 594, A14 (2016).
[44] E. Aubourg et al., Phys. Rev. D92, 12, 123516 (2015), [arXiv:1411.1074].
[45] E. Macaulay et al. (DES), Mon. Not. Roy. Astron. Soc. 486, 2, 2184 (2019), [arXiv:1811.02376].
[46] A. G. Riess et al., Astrophys. J. 876, 1, 85 (2019), [arXiv:1903.07603].
[47] W.L. Friedman, Astron. J. 882 (2019) 34.
[48] K. C. Wong et al. (2019), [arXiv:1907.04869].
[49] V. Poulin et al., Phys. Rev. Lett. 122, 22, 221301 (2019), [arXiv:1811.04083].
[50] M. J. Jee et al., Astrophys. J. 824, 2, 77 (2016), [arXiv:1510.03962].
[51] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), [arXiv:1606.05338].
[52] M. A. Troxel et al. (DES), Phys. Rev. D98, 4, 043528 (2018), [arXiv:1708.01538].
[53] R. Mandelbaum et al., Mon. Not. Roy. Astron. Soc. 432, 1544 (2013), [arXiv:1207.1120].
[54] S. Singh et al., Mon. Not. Roy. Astron. Soc. 491, 1, 51 (2020), [arXiv:1811.06499].
[55] B. D. Wibking et al., Mon. Not. Roy. Astron. Soc. 492, 2, 2872 (2020), [arXiv:1907.06293].
[56] A. Leauthaud et al., Mon. Not. Roy. Astron. Soc. 467, 3, 3024 (2017), [arXiv:1611.08606].
[57] J. U. Lange et al., Mon. Not. Roy. Astron. Soc. 488, 4, 5771 (2019), [arXiv:1906.08680].
[58] S. Joudaki et al., Mon. Not. Roy. Astron. Soc. 474, 4, 4894 (2018), [arXiv:1707.06627].
[59] E. van Uitert et al., Mon. Not. Roy. Astron. Soc. 476, 4, 4662 (2018), [arXiv:1706.05004].
[60] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06210].

29. Cosmic Microwave Background

Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL).

29.1 Introduction

The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with $T=2.7255 \mathrm{~K}$. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a blackbody spectrum constrains physical processes over cosmic history at redshifts $z \lesssim 10^{7}$ (see earlier versions of this review).

Currently the key CMB observable is the angular variation in temperature (or intensity) correlations, and to a growing extent polarization $[2-4]$. Since the first detection of these anisotropies by the Cosmic Background Explorer ($C O B E$) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) [6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA's Planck mission [9, 10], which were enhanced by results from the 2015 Planck data release [11,12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB anisotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16]. Together these observations have led to a stunning confirmation of the 'Standard Model of Cosmology.' In combination with other astrophysical data, the CMB anisotropy measurements place quite precise constraints on a number of cosmological parameters, and have launched us into an era of precision cosmology. With the study of the CMB now past the half-century mark, the program to map temperature anisotropies is effectively wrapping up, and attention is increasingly focussing on polarization measurements as the future arena in which to test fundamental physics.

29.2 CMB Spectrum

It is well known that the spectrum of the microwave background is very precisely that of blackbody radiation, whose temperature evolves with redshift as $T(z)=T_{0}(1+z)$ in an expanding universe. As a direct test of its cosmological origin, this relationship has been tested by measuring the strengths of emission and absorption lines in high-redshift systems [17].

Measurements of the spectrum are consistent with a blackbody distribution over more than three decades in frequency (there is a claim by ARCADE [18] of a possible unexpected extragalactic emission signal at low frequency, but the interpretation is debated [19]). All viable cosmological models predict a very nearly Planckian spectrum to within the current observational limits. Because of this, measurements of deviations from a blackbody spectrum have received little attention in recent years, with only a few exceptions. However, that situation will eventually change, since proposed experiments (such as PIXIE [20] and PRISM [21]) have the potential to dramatically improve the constraints on energy release in the early Universe. It now seems feasible to probe spectral distortion mechanisms that are required in the standard picture, such as those arising from the damping and dissipation of relatively small primordial perturbations, or the average effect of inverse Compton scattering. A more ambitious goal would be to reach the precision needed to detect the residual lines from the cosmological recombination of hydrogen and helium and hence test whether conditions at $z \gtrsim 1000$ accurately follow those in the standard picture [22].

29.3 Description of CMB Anisotropies

Observations show that the CMB contains temperature anisotropies at the 10^{-5} level and polarization anisotropies at the 10^{-6} (and lower) level, over a wide range of angular scales. These anisotropies are usually expressed using a spherical harmonic expansion
of the CMB sky:

$$
\begin{equation*}
T(\theta, \phi)=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\theta, \phi) \tag{29.1}
\end{equation*}
$$

(with the linear polarization pattern written in a similar way using the so-called spin-2 spherical harmonics). Increasing angular resolution requires that the expansion goes to higher multipoles. Because there are only very weak phase correlations seen in the CMB sky and since we notice no preferred direction, the vast majority of the cosmological information is contained in the temperature 2 -point function, i.e., the variance as a function only of angular separation. Equivalently, the power per unit $\ln \ell$ is $\ell \sum_{m}\left|a_{\ell m}\right|^{2} / 4 \pi$.

29.3.1 The Monopole

The CMB has a mean temperature of $T_{\gamma}=2.7255 \pm 0.0006 \mathrm{~K}$ (1σ) [23], which can be considered as the monopole component of CMB maps, a_{00}. Since all mapping experiments involve difference measurements, they are insensitive to this average level; monopole measurements can only be made with absolute temperature devices, such as the FIRAS instrument on the $C O B E$ satellite [24]. The measured $k T_{\gamma}$ is equivalent to 0.234 meV or $4.60 \times 10^{-10} m_{\mathrm{e}} c^{2}$. A blackbody of the measured temperature has a number density $n_{\gamma}=\left(2 \zeta(3) / \pi^{2}\right) T_{\gamma}^{3} \simeq 411 \mathrm{~cm}^{-3}$, energy density $\rho_{\gamma}=\left(\pi^{2} / 15\right) T_{\gamma}^{4} \simeq 4.64 \times 10^{-34} \mathrm{~g} \mathrm{~cm}^{-3} \simeq 0.260 \mathrm{eV} \mathrm{cm}^{-3}$, and a fraction of the critical density $\Omega_{\gamma} \simeq 5.38 \times 10^{-5}$.

29.3.2 The Dipole

The largest anisotropy is in the $\ell=1$ (dipole) first spherical harmonic, with amplitude $3.3621 \pm 0.0010 \mathrm{mK}$ [13]. The dipole is interpreted to be the result of the Doppler boosting of the monopole caused by the Solar System motion relative to the nearly isotropic blackbody field, as broadly confirmed by measurements of the radial velocities of local galaxies (e.g., Ref. [25]); the intrinsic part of the signal is expected to be 2 orders of magnitude smaller (and fundamentally difficult to distinguish). The motion of an observer with velocity $\beta \equiv v / c$ relative to an isotropic Planckian radiation field of temperature T_{0} produces a Lorentz-boosted temperature pattern

$$
\begin{align*}
T(\theta) & =T_{0}\left(1-\beta^{2}\right)^{1 / 2} /(1-\beta \cos \theta) \\
& \simeq T_{0}\left[1+\beta \cos \theta+\left(\beta^{2} / 2\right) \cos 2 \theta+\mathrm{O}\left(\beta^{3}\right)\right] \tag{29.2}
\end{align*}
$$

At every point in the sky, one observes a blackbody spectrum, with temperature $T(\theta)$. The spectrum of the dipole has been confirmed to be the differential of a blackbody spectrum [26]. At higher order there are additional effects arising from aberration and from modulation of the anisotropy pattern, which have also been observed [27].

The implied velocity for the Solar System barycenter is $v=$ $369.82 \pm 0.11 \mathrm{~km} \mathrm{~s}^{-1}$, assuming a value $T_{0}=T_{\gamma}$, towards $(l, b)=$ $\left(264.021^{\circ} \pm 0.011^{\circ}, 48.253^{\circ} \pm 0.005^{\circ}\right)$ [13]. Such a Solar System motion implies a velocity for the Galaxy and the Local Group of galaxies relative to the CMB. The derived value is $v_{\text {LG }}=620 \pm$ $15 \mathrm{~km} \mathrm{~s}^{-1}$ towards $(l, b)=\left(271.9^{\circ} \pm 2.0^{\circ}, 29.6^{\circ} \pm 1.4^{\circ}\right)$ [13], where most of the error comes from uncertainty in the velocity of the Solar System relative to the Local Group.

The dipole is a frame-dependent quantity, and one can thus determine the 'CMB frame' (in some sense this is a special frame) as that in which the CMB dipole would be zero. Any velocity of the receiver relative to the Earth and the Earth around the Sun is removed for the purposes of CMB anisotropy studies, while our velocity relative to the Local Group of galaxies and the Local Group's motion relative to the CMB frame are normally removed for cosmological studies. The dipole is now routinely used as a primary calibrator for mapping experiments, either via the timevarying orbital motion of the Earth, or through the cosmological dipole measured by satellite experiments.

29.3.3 Higher-Order Multipoles

The variations in the CMB temperature maps at higher multipoles $(\ell \geq 2)$ are interpreted as being mostly the result of per-
turbations in the density of the early Universe, manifesting themselves at the epoch of the last scattering of the CMB photons. In the hot Big Bang picture, the expansion of the Universe cools the plasma so that by a redshift $z \simeq 1100$ (with little dependence on the details of the model), the hydrogen and helium nuclei can bind electrons into neutral atoms, a process usually referred to as recombination [28]. Before this epoch, the CMB photons were tightly coupled to the baryons, while afterwards they could freely stream towards us. By measuring the $a_{\ell m} \mathrm{~s}$ we are thus learning directly about physical conditions in the early Universe.
A statistically-isotropic sky means that all ms are equivalent, i.e., there is no preferred axis, so that the temperature correlation function between two positions on the sky depends only on angular separation and not orientation. Together with the assumption of Gaussian statistics (i.e., no correlations between the modes), the 2-point function of the temperature field (or equivalently the power spectrum in ℓ) then fully characterizes the anisotropies. The power summed over all ms at each ℓ is $(2 \ell+1) C_{\ell} /(4 \pi)$, where $\left.\left.C_{\ell} \equiv\langle | a_{\ell m}\right|^{2}\right\rangle$. Thus averages of $a_{\ell m} \mathrm{~s}$ over m can be used as estimators of the C_{ℓ} s to constrain their expectation values, which are the quantities predicted by a theoretical model. For an idealized full-sky observation, the variance of each measured C_{ℓ} (i.e., the variance of the variance) is $[2 /(2 \ell+1)] C_{\ell}^{2}$. This sampling uncertainty (known as 'cosmic variance') comes about because each C_{ℓ} is χ^{2} distributed with $(2 \ell+1)$ degrees of freedom for our observable volume of the Universe. For fractional sky coverage, $f_{\text {sky }}$, this variance is increased by $1 / f_{\text {sky }}$ and the modes become partially correlated.

It is important to understand that theories predict the expectation value of the power spectrum, whereas our sky is a single realization. Hence the cosmic variance is an unavoidable source of uncertainty when constraining models; it dominates the scatter at lower ℓ s, while the effects of instrumental noise and resolution dominate at higher $\ell \mathrm{s}$ [29].

Theoretical models generally predict that the $a_{\ell m}$ modes are Gaussian random fields to high precision, matching the empirical tests, e.g., standard slow-roll inflation's non-Gaussian contribution is expected to be at least an order of magnitude below current observational limits [30]. Although non-Gaussianity of various forms is possible in early Universe models, tests show that Gaussianity is an extremely good simplifying approximation [31]. The only current indications of any non-Gaussianity or statistical anisotropy are some relatively weak signatures at large scales, seen in both WMAP [32] and Planck data [33], but not of high enough significance to reject the simplifying assumption. Nevertheless, models that deviate from the inflationary slow-roll conditions can have measurable non-Gaussian signatures. So while the current observational limits make the power spectrum the dominant probe of cosmology, it is worth noting that higher-order correlations are becoming a tool for constraining otherwise viable theories.

29.3.4 Angular Resolution and Binning

There is no one-to-one conversion between multipole ℓ and the angle subtended by a particular spatial scale projected onto the sky. However, a single spherical harmonic $Y_{\ell m}$ corresponds to angular variations of $\theta \sim \pi / \ell$. CMB maps contain anisotropy information from the size of the map (or in practice some fraction of that size) down to the beam-size of the instrument, σ (the standard deviation of the beam, in radians). One can think of the effect of a Gaussian beam as rolling off the power spectrum with the function $\mathrm{e}^{-\ell(\ell+1) \sigma^{2}}$.

For less than full sky coverage, the ℓ modes become correlated. Hence, experimental results are usually quoted as a series of 'band powers,' defined as estimators of $\ell(\ell+1) C_{\ell} / 2 \pi$ over different ranges of ℓ. Because of the strong foreground signals in the Galactic plane, even 'all-sky' surveys, such as WMAP and Planck, involve a cut sky. The amount of binning required to obtain uncorrelated estimates of power also depends on the map size.

29.4 Cosmological Parameters

The current 'Standard Model' of cosmology contains around 10 free parameters, only six of which are required to have non-null values (see The Cosmological Parameters-Sec. 25.1 of this Re-
view). The basic framework is the Friedmann-Robertson-Walker (FRW) metric (i.e., a universe that is approximately homogeneous and isotropic on large scales), with density perturbations laid down at early times and evolving into today's structures (see Big-Bang cosmology-Sec. 22 of this Review). The most general possible set of density variations is a linear combination of an adiabatic density perturbation and some isocurvature perturbations. Adiabatic means that there is no change to the entropy per particle for each species, i.e., $\delta \rho / \rho$ for matter is $(3 / 4) \delta \rho / \rho$ for radiation. Isocurvature means that the set of individual density perturbations adds to zero, for example, matter perturbations compensate radiation perturbations so that the total energy density remains unperturbed, i.e., $\delta \rho$ for matter is $-\delta \rho$ for radiation. These different modes give rise to distinct (temporal) phases during growth, with those of the adiabatic scenario being fully consistent with the data. Models that generate mainly isocurvature type perturbations (such as most topological defect scenarios) are not viable. However, an admixture of the adiabatic mode with up to 1.7% isocurvature contribution (depending on details of the mode) is still allowed [34].

29.4.1 Initial Condition Parameters

Within the adiabatic family of models, there is, in principle, a free function describing the variation of comoving curvature perturbations, $\mathcal{R}(\mathbf{x}, t)$. The great virtue of \mathcal{R} is that, on large scales, it is constant in time on super-horizon scales for a purely adiabatic perturbation. There are physical reasons to anticipate that the variance of these perturbations will be described well by a power law in scale, i.e., in Fourier space $\left.\left.\langle | \mathcal{R}\right|_{k} ^{2}\right\rangle \propto k^{n_{\mathrm{s}}-4}$, where k is wavenumber and n_{S} is spectral index as usually defined. Socalled 'scale-invariant' initial conditions (meaning gravitational potential fluctuations that are independent of k) correspond to $n_{\mathrm{s}}=1$. In inflationary models [35] (see Inflation-Sec. 23 of this Review), perturbations are generated by quantum fluctuations, which are set by the energy scale of inflation, together with the slope and higher derivatives of the inflationary potential. One generally expects that the Taylor series expansion of $\ln \mathcal{R}_{k}(\ln k)$ has terms of steadily decreasing size. For the simplest models, there are thus two parameters describing the initial conditions for density perturbations, namely the amplitude and slope of the power spectrum. These can be explicitly defined, for example, through

$$
\begin{equation*}
\left.\left.\mathcal{P}_{\mathcal{R}}^{2} \equiv k^{3}\langle | \mathcal{R}\right|_{k} ^{2}\right\rangle / 2 \pi^{2} \simeq A_{\mathrm{s}}\left(k / k_{0}\right)^{n_{\mathrm{s}}-1} \tag{29.3}
\end{equation*}
$$

with $A_{\mathrm{s}} \equiv \mathcal{P}_{\mathcal{R}}^{2}\left(k_{0}\right)$ and $k_{0}=0.05 \mathrm{Mpc}^{-1}$, say. There are other equally valid definitions of the amplitude parameter (see also Secs. 22,23 , and 25.1 of this Review), and we caution that the relationships between some of them can be cosmology-dependent. In slow-roll inflationary models, this normalization is proportional to the combination $V^{3} /\left(V^{\prime}\right)^{2}$, for the inflationary potential $V(\phi)$. The slope n_{s} also involves $V^{\prime \prime}$, and so the combination of A_{s} and n_{s} can constrain potentials.

Inflation generates tensor (gravitational wave) modes, as well as scalar (density perturbation) modes. This fact introduces another parameter, measuring the amplitude of a possible tensor component, or equivalently the ratio of the tensor to scalar contributions. The tensor amplitude is $A_{\mathrm{t}} \propto V$, and thus one expects a larger gravitational wave contribution in models where inflation happens at higher energies. The tensor power spectrum also has a slope, often denoted n_{t}, but since this seems unlikely to be measured in the near future (and there is also a consistency relation with tensor amplitude), it is sufficient for now to focus only on the amplitude of the gravitational wave component. It is most common to define the tensor contribution through r, the ratio of tensor to scalar perturbation spectra at some fixed value of k (e.g., $k=0.002 \mathrm{Mpc}^{-1}$, although it was historically defined in terms of the ratio of contributions at $\ell=2$). Different inflationary potentials will lead to different predictions, e.g., for 50 e-folds $\lambda \phi^{4}$ inflation gives $r=0.32$ and $m^{2} \phi^{2}$ inflation gives $r=0.16$ (both now disfavored by the data), while other models can have arbitrarily small values of r. In any case, whatever the specific definition, and whether they come from inflation or something else, the 'initial conditions' give rise to a minimum of three parameters, A_{s}, n_{S}, and r.

Figure 29.1: Theoretical CMB anisotropy power spectra, using the best-fitting Λ CDM model from Planck, calculated using CAMB. The panel on the left shows the theoretical expectation for scalar perturbations, while the panel on the right is for tensor perturbations, with an amplitude set to $r=0.01$ for illustration. Note that the horizontal axis is logarithmic here. For the well-measured scalar $T T$ spectrum, the regions, each covering roughly a decade in ℓ, are labeled as in the text: the ISW rise; Sachs-Wolfe plateau; acoustic peaks; and damping tail. The $T E$ cross-correlation power spectrum changes sign, and that has been indicated by plotting the absolute value, but switching color for the negative parts.

29.4.2 Background Cosmology Parameters

The FRW cosmology requires an expansion parameter (the Hubble constant, H_{0}, often represented through $H_{0}=$ $100 \mathrm{hm} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$) and several parameters to describe the matter and energy content of the Universe. These are usually given in terms of the critical density, i.e., for species ' $\mathrm{x},{ }^{\prime} \Omega_{\mathrm{x}} \equiv \rho_{\mathrm{x}} / \rho_{\text {crit }}$, where $\rho_{\text {crit }} \equiv 3 H_{0}^{2} / 8 \pi G$. Since physical densities $\rho_{\mathrm{x}} \propto \Omega_{\mathrm{x}} h^{2} \equiv \omega_{\mathrm{x}}$ are what govern the physics of the CMB anisotropies, it is these ωs that are best constrained by CMB data. In particular, CMB observations constrain $\Omega_{\mathrm{b}} h^{2}$ for baryons and $\Omega_{\mathrm{c}} h^{2}$ for cold dark matter (with $\rho_{\mathrm{m}}=\rho_{\mathrm{c}}+\rho_{\mathrm{b}}$ for the sum).

The contribution of a cosmological constant Λ (or other form of dark energy, see Dark Energy-Sec. 28) is usually included together with a parameter that quantifies the curvature, $\Omega_{K} \equiv$ $1-\Omega_{\mathrm{tot}}$, where $\Omega_{\mathrm{tot}}=\Omega_{\mathrm{m}}+\Omega_{\Lambda}$. The radiation content, while in principle a free parameter, is precisely enough determined by the measurement of T_{γ} that it can be considered fixed, and makes a $<10^{-4}$ contribution to $\Omega_{\text {tot }}$ today.

Astrophysical processes at relatively low redshift can also affect the C_{ℓ} s, with a particularly significant effect coming through reionization. The Universe became reionized at some redshift z_{i}, long after recombination, affecting the CMB through the integrated Thomson scattering optical depth:

$$
\begin{equation*}
\tau=\int_{0}^{z_{\mathrm{i}}} \sigma_{\mathrm{T}} n_{\mathrm{e}}(z) \frac{d t}{d z} d z \tag{29.4}
\end{equation*}
$$

where σ_{T} is the Thomson cross-section, $n_{\mathrm{e}}(z)$ is the number density of free electrons (which depends on astrophysics), and $d t / d z$ is fixed by the background cosmology. In principle, τ can be determined from the small-scale matter power spectrum, together with the physics of structure formation and radiative feedback processes; however, this is a sufficiently intricate calculation that in practice τ needs to be considered as a free parameter.

Thus, we have eight basic cosmological parameters: $A_{\mathrm{s}}, n_{\mathrm{s}}, r, h$, $\Omega_{\mathrm{b}} h^{2}, \Omega_{\mathrm{c}} h^{2}, \Omega_{\mathrm{tot}}$, and τ. One can add additional parameters to this list, particularly when using the CMB in combination with other data sets. The next most relevant ones might be: $\Omega_{\nu} h^{2}$, the massive neutrino contribution; $w(\equiv p / \rho)$, the equation of state parameter for the dark energy; and $d n_{\mathrm{s}} / d \ln k$, measuring deviations from a constant spectral index. To these 11 one could of course add further parameters describing additional physics, such as details of the reionization process, features in the ini-
tial power spectrum, a sub-dominant contribution of isocurvature modes, etc.

As well as these underlying parameters, there are other (dependent) quantities that can be obtained from them. Such derived parameters include the actual $\Omega \mathrm{s}$ of the various components (e.g., Ω_{m}), the variance of density perturbations at particular scales $\left(e . g ., \sigma_{8}\right)$, the angular scale of the sound horizon $\left(\theta_{*}\right)$, the age of the Universe today $\left(t_{0}\right)$, the age of the Universe at recombination, reionization, etc. (see The Cosmological ParametersSec. 25.1).

29.5 Physics of Anisotropies

The cosmological parameters affect the anisotropies through the well understood physics of the evolution of linear perturbations within a background FRW cosmology. There are very effective, fast, and publicly-available software codes for computing the CMB temperature, polarization, and matter power spectra, e.g., CMBFAST [36], CAMB [37], and CLASS [38]. These have been tested over a wide range of cosmological parameters and are considered to be accurate to much better than the 1% level [39], so that numerical errors are less than 10% of the parameter uncertainties for Planck [8].
For pedagogical purposes, it is easiest to focus on the temperature anisotropies, before moving to the polarization power spectra. A description of the physics underlying the $C_{\ell}^{T T} \mathrm{~S}$ can be separated into four main regions (the first two combined below), as shown in the top left part of Fig. 29.1.
29.5.1 The ISW Rise, $\ell \lesssim 10$, and Sachs-Wolfe Plateau, $10 \lesssim \ell \lesssim 100$

The horizon scale (or more precisely, the angle subtended by the Hubble radius) at last scattering corresponds to $\ell \simeq 100$. Anisotropies at larger scales have not evolved significantly, and hence directly reflect the 'initial conditions.' Temperature variations are $\delta T / T=-(1 / 5) \mathcal{R}\left(\mathbf{x}_{\mathrm{LSS}}\right) \simeq(1 / 3) \delta \phi / c^{2}$, where $\delta \phi$ is the perturbation to the gravitational potential, evaluated on the last scattering surface (LSS). This is a result of the combination of gravitational redshift and intrinsic temperature fluctuations, and is usually referred to as the Sachs-Wolfe effect [40].

Assuming that a nearly scale-invariant spectrum of curvature and corresponding density perturbations was laid down at early times (i.e., $n_{\mathrm{s}} \simeq 1$, meaning equal power per decade in k), then $\ell(\ell+1) C_{\ell} \simeq$ constant at low ℓ s. This effect is hard to see unless the multipole axis is plotted logarithmically (as in Fig. 29.1, and part of Fig. 29.2).

Time variation of the potentials (i.e., time-dependent metric perturbations) at late times leads to an upturn in the C_{ℓ} s in the lowest several multipoles; any deviation from a total equation of state $w=0$ has such an effect. So the dominance of the dark energy at low redshift (see Dark Energy-Sec. 28) makes the lowest ℓ s rise above the plateau. This is usually called the integrated Sachs-Wolfe effect (or ISW rise), since it comes from the line integral of ϕ; it has been confirmed through correlations between the large-angle anisotropies and large-scale structure [41,42]. Specific models can also give additional contributions at low ℓ (e.g., perturbations in the dark-energy component itself [43]), but typically these are buried in the cosmic variance.
In principle, the mechanism that produces primordial perturbations could generate scalar, vector, and tensor modes. However, the vector (vorticity) modes decay with the expansion of the Universe. The tensors (transverse trace-free perturbations to the metric) generate temperature anisotropies through the integrated effect of the locally-anisotropic expansion of space. Since the tensor modes also redshift away after they enter the horizon, they contribute only to angular scales above about 1° (see Fig. 29.1). Hence some fraction of the low- ℓ signal could be due to a gravitational wave contribution, although small amounts of tensors are essentially impossible to discriminate from other effects that might raise the level of the plateau. Nevertheless, the tensors can be distinguished using polarization information (see Sec. ??).

29.5.2 The Acoustic Peaks, $100 \lesssim \ell \lesssim 1000$

On sub-degree scales, the rich structure in the anisotropy spectrum is the consequence of gravity-driven acoustic oscillations oc-
curring before the atoms in the Universe became neutral [44]. Perturbations inside the horizon at last scattering have been able to evolve causally and produce anisotropy at the last-scattering epoch, which reflects this evolution. The frozen-in phases of these sound waves imprint a dependence on the cosmological parameters, which gives CMB anisotropies their great constraining power.

The underlying physics can be understood as follows. Before the Universe became neutral, the proton-electron plasma was tightly coupled to the photons, and these components behaved as a single 'photon-baryon fluid.' Perturbations in the gravitational potential, dominated by the dark-matter component, were steadily evolving. They drove oscillations in the photon-baryon fluid, with photon pressure providing most of the restoring force and baryons giving some additional inertia. The perturbations were quite small in amplitude, $\mathcal{O}\left(10^{-5}\right)$, and so evolved linearly. That means each Fourier mode developed independently, and hence can be described as a driven harmonic oscillator, with frequency determined by the sound speed in the fluid. Thus the fluid density underwent oscillations, giving time variations in temperature. These combine with a velocity effect, which is $\pi / 2$ out of phase and has its amplitude reduced by the sound speed.

After the Universe recombined, the radiation decoupled from the baryons and could travel freely towards us. At that point, the (temporal) phases of the oscillations were frozen-in, and became projected on the sky as a harmonic series of peaks. The main peak is the mode that went through $1 / 4$ of a period, reaching maximal compression. The even peaks are maximal under-densities, which are generally of smaller amplitude because the rebound has to fight against the baryon inertia. The troughs, which do not extend to zero power, are partially filled by the Doppler effect because they are at the velocity maxima.

The physical length scale associated with the peaks is the sound horizon at last scattering, which can be straightforwardly calculated. This length is projected onto the sky, leading to an angular scale that depends on the geometry of space, as well as the distance to last scattering. Hence the angular position of the peaks is a sensitive probe of a particular combination of cosmological parameters. In fact, the angular scale, θ_{*}, is the most precisely measured observable, and hence is usually treated as an element of the cosmological parameter set.

One additional effect arises from reionization at redshift z_{i}. A fraction of photons (τ) will be isotropically scattered at $z<z_{i}$, partially erasing the anisotropies at angular scales smaller than those subtended by the Hubble radius at z_{i}. This corresponds typically to ℓ s above about 10, depending on the specific reionization model. The acoustic peaks are therefore reduced by a factor $e^{-2 \tau}$ relative to the plateau.

These peaks were a clear theoretical prediction going back to about 1970 [45]. One can think of them as a snapshot of stochastic standing waves. Since the physics governing them is simple and their structure rich, one can see how they encode extractable information about the cosmological parameters. Their empirical existence started to become clear around 1994 [46], and the emergence, over the following decade, of a coherent series of acoustic peaks and troughs is a triumph of modern cosmology. This picture has received further confirmation with the detection in the power spectrum of galaxies (at redshifts $z \lesssim 1$) of the imprint of these same acoustic oscillations in the baryon component [47], as well as through detection of the expected oscillations in CMB polarization power spectra (see Sec. 29.7).

29.5.3 The Damping Tail, $\ell \gtrsim 1000$

The recombination process is not instantaneous, which imparts a thickness to the last-scattering surface. This leads to a damping of the anisotropies at the highest ℓ s, corresponding to scales smaller than that subtended by this thickness. One can also think of the photon-baryon fluid as having imperfect coupling, so that there is diffusion between the two components, and hence the amplitudes of the oscillations decrease with time. These effects lead to a damping of the C_{ℓ} s, sometimes called Silk damping [48], which cuts off the anisotropies at multipoles above about 2000. So, although in principle it is possible to measure to ever smaller scales, this becomes increasingly difficult in practice.

29.5.4 Gravitational Lensing Effects

An extra effect at high ℓ s comes from gravitational lensing, caused structures at low redshift along the line of sight to the last-scattering surface. The C_{ℓ} s are convolved with a smoothing function in a calculable way, partially flattening the peaks and troughs, generating a power-law tail at the highest multipoles, and complicating the polarization signal [49]. The expected effects of lensing on the CMB have been definitively detected through the 4-point function, which correlates temperature gradients and small-scale anisotropies (enabling a map of the lensing potential to be constructed [50]), as well as through the smoothing effect on the shape of the C_{ℓ} s. Lensing is important because it gives an independent estimate of A_{s}, breaking the parameter combination $A_{\mathrm{s}} \mathrm{e}^{-2 \tau}$ that is largely degenerate in the temperature anisotropy power spectra.

Lensing is an example of a 'secondary effect,' i.e., the processing of anisotropies due to relatively nearby structures (see Sec. 29.8.2). Galaxies and clusters of galaxies give several such effects; all are expected to be of low amplitude, but are increasingly important at the highest ℓ s. Such effects carry additional cosmological information (about evolving gravitational potentials in the low-redshift Universe) and are receiving more attention as experiments push to higher sensitivity and angular resolution. The lensing power spectrum can potentially constrain dark-energy evolution, while future measurements at high ℓ are a particularly sensitive probe of the sum of the neutrino masses [51].

Figure 29.2: CMB temperature anisotropy band-power estimates from the Planck, WMAP, ACT, and SPT experiments. Note that the widths of the ℓ-bands vary between experiments and have not been plotted. This figure represents only a selection of the most recent available experimental results, and some points with large error bars have been omitted. At the higher multipoles these band-powers involve subtraction of particular foreground models, and so proper analysis requires simultaneous fitting of CMB and foregrounds over multiple frequencies. The horizontal axis here is logarithmic for the lowest multipoles, to show the Sachs-Wolfe plateau, and linear for the other multipoles. The acoustic peaks and damping region are very clearly observed, with no need for a theoretical line to guide the eye; however, the curve plotted is the best-fit Planck Λ CDM model.

29.6 Current Temperature Anisotropy Data

There has been a steady improvement in the quality of CMB data that has led to the development of the present-day cosmological model. The most robust constraints currently available come from Planck satellite [52] [53] data (together with constraints from non-CMB cosmological data sets), although smaller-scale results from the ACT [54] and SPT [55] experiments are beginning to add useful constraining power. We plot power spectrum estimates from these experiments in Fig. 29.2, along with WMAP data [7] to show the consistency (see previous versions of this review for data from earlier experiments). Comparisons among data sets show consistency, both in maps and in derived power spectra (up
to systematic uncertainties in the overall calibration for some experiments). This makes it clear that systematic effects are largely under control.

The band-powers shown in Fig. 29.2 are in very good agreement with a ' Λ CDM' model. As described earlier, several (at least seven) of the peaks and troughs are quite apparent. For details of how these estimates were arrived at, the strength of correlations between band-powers, and other information required to properly interpret them, the original papers should be consulted.

29.7 CMB Polarization

Thomson scattering of an anisotropic radiation field also generates linear polarization and the CMB is predicted to be polarized, at the level of roughly 5% of the temperature anisotropies [56]. Polarization is a spin- 2 field on the sky, and the algebra of the modes in ℓ-space is strongly analogous to spin-orbit coupling in quantum mechanics [57]. The linear polarization pattern can be decomposed in a number of ways, with two quantities required for each pixel in a map, often given as the Q and U Stokes parameters. However, the most intuitive and physical decomposition is a geometrical one, splitting the polarization pattern into a part that comes from a divergence (often referred to as the ' E mode') and a part with a curl (called the ' B mode') [58]. More explicitly, the modes are defined in terms of second derivatives of the polarization amplitude, with the Hessian for the E modes having principal axes in the same sense as the polarization, while the B mode pattern can be thought of as a 45° rotation of the E-mode pattern. Globally one sees that the E modes have $(-1)^{\ell}$ parity (like the spherical harmonics), while the B modes have $(-1)^{\ell+1}$ parity.

The existence of this linear polarization allows for six different cross-power spectra to be determined from data that measure the full temperature and polarization anisotropy information. Parity considerations make two of these zero, and we are left with four potential observables, $C_{\ell}^{T T}, C_{\ell}^{T E}, C_{\ell}^{E E}$, and $C_{\ell}^{B B}$ (see Fig. 29.1). Because scalar perturbations have no handedness, the B-mode power spectrum can only be sourced by vectors or tensors. Moreover, since inflationary scalar perturbations give only E modes, while tensors generate roughly equal amounts of E and B modes, then the determination of a non-zero B-mode signal is a way to measure the gravitational-wave contribution (and thus potentially derive the energy scale of inflation). However, since the signal is expected to be rather weak, one must first eliminate the foreground contributions and other systematic effects down to very low levels. In addition, CMB lensing creates B modes from E modes, further complicating the extraction of a tensor signal.

Like with temperature, the polarization C_{ℓ} s exhibit a series of acoustic peaks generated by the oscillating photon-baryon fluid. The main ' $E E$ ' power spectrum has peaks that are out of phase with those in the ' $T T$ ' spectrum because the polarization anisotropies are sourced by the fluid velocity. The ' $T E$ ' part of the polarization and temperature patterns comes from correlations between density and velocity perturbations on the last-scattering surface, which can be both positive and negative, and is of larger amplitude than the $E E$ signal. There is no polarization SachsWolfe effect, and hence no large-angle plateau. However, scattering during a recent period of reionization can create a polarization 'bump' at large angular scales.

Because the polarization anisotropies have only a small fraction of the amplitude of the temperature anisotropies, they took longer to detect. The first measurement of a polarization signal came in 2002 from the DASI experiment [59], which provided a convincing detection, confirming the general paradigm, but of low enough significance that it lent no real constraint to models. Despite dramatic progress since then, it is still the case that polarization data mainly support the basic paradigm, while reducing error bars on parameters by only around 20%. However, there are exceptions to this, specifically in the reionization optical depth, and the potential to constrain primordial gravitational waves. Moreover the situation is expected to change dramatically as more of the available polarization modes are measured.

Figure 29.3: Cross-power spectrum band-powers of the temperature anisotropies and E-mode polarization signal from Planck (the low multipole data have been binned here), as well as WMAP, BICEP2/Keck, ACTPol, and SPTPol. The curve is the best fit to the Planck temperature, polarization, and lensing band-powers. Note that each band-power is an average over a range of multipoles, and hence to compare in detail with a model one has to integrate the theoretical curve through the band.

29.7.1 T-E Power Spectrum

Since the T and E skies are correlated, one has to measure the $T E$ power spectrum, as well as $T T$ and $E E$, in order to extract all the cosmological information. This $T E$ signal has now been mapped out extremely accurately by Planck [53], and these bandpowers are shown in Fig. 29.3, along with those from WMAP [60] and BICEP2/Keck [61], with ACTPol [62] [63] and SPTPol [64] extending to smaller angular scales. The anti-correlation at $\ell \simeq 150$ and the peak at $\ell \simeq 300$ were the first features to become distinct, but now a whole series of oscillations is clearly seen in this power spectrum (including at least six peaks and troughs [13]). The measured shape of the cross-correlation power spectrum provides supporting evidence for the general cosmological picture, as well as directly constraining the thickness of the last-scattering surface. Since the polarization anisotropies are generated in this scattering surface, the existence of correlations at angles above about a degree demonstrates that there were superHubble fluctuations at the recombination epoch. The sign of this correlation also confirms the adiabatic paradigm.

The overall picture of the source of CMB polarization and its oscillations has also been confirmed through tests that average the maps around both temperature hot spots and cold spots [65]. One sees precisely the expected patterns of radial and tangential polarization configurations, as well as the phase shift between polarization and temperature. This leaves no doubt that the oscillation picture is the correct one and that the polarization is coming from Thomson scattering at $z \simeq 1100$.

29.7.2 E-E Power Spectrum

Experimental band-powers for $C_{\ell}^{E E}$ from Planck, WMAP, BICEP2/Keck Array [61], ACTPol [63], and SPTPol [64] are shown in Fig. 29.4. Without the benefit of correlating with the temperature anisotropies (i.e., measuring $C_{\ell}^{T E}$), the polarization anisotropies are very weak and challenging to measure. Nevertheless, the oscillatory pattern is now well established and the data closely match the $T T$-derived theoretical prediction. In Fig. 29.4 one can clearly see the 'shoulder' expected at $\ell \simeq 140$, the first main peak at $\ell \simeq 400$ (corresponding to the first trough in $C_{\ell}^{T T}$), and the series of oscillations that is out of phase with those of the temperature anisotropy power spectrum (including four or five peaks and troughs [13]).

Perhaps the most unique result from the polarization measurements is at the largest angular scales $(\ell<10)$ in $C_{\ell}^{T E}$ and $C_{\ell}^{E E}$, where there is evidence for an excess signal (not visible in Fig. 29.4) compared to that expected from the temperature power

Figure 29.4: Power spectrum of E-mode polarization from Planck, together with WMAP, BICEP2/Keck, ACTPol, and SPTPol. Note that some band-powers with larger uncertainties have been omitted and that the unbinned Planck low- ℓ data have been binned here. Also plotted is the best-fit theoretical model from Planck temperature, polarization, and lensing data.
spectrum alone. This is precisely the signal anticipated from an early period of reionization, arising from Doppler shifts during the partial scattering at $z<z_{\mathrm{i}}$. The amplitude of the signal indicates that the first stars, presumably the source of the ionizing radiation, formed around $z \simeq 8$ (although the uncertainty is still quite large). Since this corresponds to scattering optical depth $\tau \simeq 0.06$, then roughly 6% of CMB photons were re-scattered at the reionization epoch, with the other 94% last scattering at $z \simeq 1100$. However, estimates of the amplitude of this reionization excess have come down since the first measurements by WMAP (indicating that this is an extremely difficult measurement to make) and the latest Planck results have reduced the value further [14].

29.7.3 B-B Power Spectrum

The expected amplitude of $C_{\ell}^{B B}$ is very small, and so measurements of this polarization curl-mode are extremely challenging. The first indication of the existence of the $B B$ signal came from the detection of the expected conversion of E modes to B modes by gravitational lensing, through a correlation technique using the lensing potential and polarization measurements from SPT [66]. However, the real promise of B modes lies in the detection of primordial gravitational waves at larger scales. This tensor signature could be seen either in the 'recombination bump' at around $\ell=100$ (caused by an ISW effect as gravitational waves redshift away at the last-scattering epoch) or the 'reionization bump' at $\ell \lesssim 10$ (from additional scattering at low redshifts).
Results from the BICEP-2 experiment [67] in 2014 suggested a detection of the primordial B-mode signature around the recombination peak. BICEP-2 mapped a small part of the CMB sky with the best sensitivity level reached at that time (below 100 nK), but at a single frequency. Higher frequency data from Planck indicated that much of the BICEP2 signal was due to dust within our Galaxy, and a combined analysis by the BICEP-2, Keck Array, and Planck teams [68] indicated that the data are consistent with no primordial B modes. The current constraint from Planck data alone is $r<0.10$ (95% [14]) and this limit is reduced to $r<0.06$ with the inclusion of Keck Array data at 95 GHz [69].

Several experiments are continuing to push down the sensitivity of B-mode measurements, motivated by the enormous importance of a future detection of this telltale signature of inflation (or other physics at the highest energies). A compilation of experimental results for $C_{\ell}^{B B}$ is shown in Fig. 29.5, coming from a combination of direct estimates of the B modes (BICEP2/Keck Array [61], POLARBEAR [70], SPTPol [71], and ACTPol [63]) and indirect determinations of the lensing B modes based on estimating the effect of measured lensing on measured E modes (Planck [72], SPT [66], and ACT [73]). Additional band-power estimates are expected from these and other experiments in the near future,

Figure 29.5: Power spectrum of B-mode polarization, including results from the BICEP2/Keck Array/Planck combined analysis (B/K/P), Planck, POLARBEAR, SPT, and ACT. Note that some of the measurements are direct estimates of B modes on the sky, while others are only sensitive to the lensing signal and come from combining E-mode and lensing potential measurements. Several earlier experiments reported upper limits, which are all off the top of this plot. A logarithmic horizontal axis is adopted here and the y-axis has been divided by a factor of $\sqrt{\ell}$ in order to show all three theoretically expected contributions: the low- ℓ reionization bump; the $\ell \simeq 100$ recombination peak; and the high- ℓ lensing signature. The dotted line is for a tensor (primordial gravitational wave) fraction $r=0.05$, simply as an example, with all other cosmological parameters set at the best Planck-derived values, for which model the expected lensing B modes have also been shown with a dashed line.
with the Simons Observatory [74], the so-called 'Stage 4' CMB project [75] and the LiteBIRD satellite [76], holding great promise for pushing down to the $r \sim 0.001$ level.

29.7.4 $\phi-\phi$ Power Spectrum

One further CMB observable that can be measured is the gravitational lensing deflection, leading to the construction of a map of the lensing potential. The latest Planck results [77] give a map that is detected at the 40σ level using a minimum-variance procedure from the 4 -point function of temperature and polarization data. From this estimates can be constructed of $C_{\ell}^{\phi \phi}$, the lensingpotential power spectrum, and this is found to be consistent with predictions from the best-fit temperature and polarization model.
We can think of each sky pixel as possessing three independent quantities that can be measured, namely T, E, and ϕ (and potentially B, if that becomes detectable). Determining the constraining power comes down to counting $Y_{\ell m}$ modes [78], as well as appreciating that some modes help to break particular parameter degeneracies. We have only scratched the surface of CMB lensing so far, and it is expected that future small-scale experiments will lead to dramatically more of the cosmological information being extracted. Further information can also be derived about the lower- z Universe by cross-correlating CMB lensing with other cosmological tracers of large-scale structure. Additionally, small-scale lensing, combined with E-mode measurements, can be used to 'delens' CMB B-mode data, which will be important for pushing down into the $r \lesssim 0.01$ regime [79].

29.8 Complications

There are a number of issues that complicate the interpretation of CMB anisotropy data (and are considered to be signal by many astrophysicists), some of which we sketch out below.

29.8.1 Foregrounds

The microwave sky contains significant emission from our Galaxy and from extragalactic sources [80]. Fortunately, the frequency dependence of these various sources is in general substan-
tially different from that of the CMB anisotropy signals. The combination of Galactic synchrotron, bremsstrahlung, and dust emission reaches a minimum at a frequency of roughly 100 GHz (or wavelength of about 3 mm). As one moves to greater angular resolution, the minimum moves to slightly higher frequencies, but becomes more sensitive to unresolved (point-like) sources.

At frequencies around 100 GHz , and for portions of the sky away from the Galactic plane, the foregrounds are typically 1 to 10% of the CMB anisotropies. By making observations at multiple frequencies, it is relatively straightforward to separate the various components and determine the CMB signal to the few per cent level. For greater sensitivity, it is necessary to use the spatial information and statistical properties of the foregrounds to separate them from the CMB. Furthermore, at higher ℓ s it is essential to carefully model extragalactic foregrounds, particularly the clustering of infrared-emitting galaxies, which dominate the measured power spectrum as we move into the damping tail.

The foregrounds for CMB polarization follow a similar pattern to those for temperature, but are intrinsically brighter relative to CMB anisotropies. WMAP showed that the polarized foregrounds dominate at large angular scales, and that they must be well characterized in order to be discriminated [81]. Planck has shown that it is possible to characterize the foreground polarization signals, with synchrotron dominating at low frequencies and dust at high frequencies [82]. On smaller scales there are no strongly-polarized foregrounds, and hence it is in principle easier to measure foreground-free modes at high multipoles in polarization than in temperature. Although foreground contamination will no doubt become more complicated as we push down in sensitivity, and they will make analysis more difficult, for the time being, foreground contamination is not a fundamental limit for CMB experiments.

29.8.2 Secondary Anisotropies

With increasingly precise measurements of the primary anisotropies, there is growing theoretical and observational interest in 'secondary anisotropies,' pushing experiments to higher angular resolution and sensitivity. These secondary effects arise from the processing of the CMB due to ionization history and the evolution of structure, including gravitational lensing (which was already discussed) and patchy reionization effects [83]. Additional information can thus be extracted about the Universe at $z \ll 1000$. This tends to be most effectively done through correlating CMB maps with other cosmological probes of structure. Secondary signals are also typically non-Gaussian, unlike the primary CMB anisotropies.

A secondary signal of great current interest is the SunyaevZeldovich (SZ) effect [84], which is Compton scattering ($\gamma e \rightarrow$ $\gamma^{\prime} e^{\prime}$) of the CMB photons by hot electron gas. This creates spectral distortions by transferring energy from the electrons to the photons. It is particularly important for clusters of galaxies, through which one observes a partially Comptonized spectrum, resulting in a decrement at radio wavelengths and an increment in the submillimeter.

The imprint on the CMB sky is of the form $\Delta T / T=y f(x)$, with the y-parameter being the integral of Thomson optical depth times $k T_{\mathrm{e}} / m_{\mathrm{e}} c^{2}$ through the cluster, and $f(x)$ describing the frequency dependence. This is simply $x \operatorname{coth}(x / 2)-4$ for a nonrelativistic gas (the electron temperature in a cluster is typically a few keV), where the dimensionless frequency $x \equiv h \nu / k T_{\gamma}$. As well as this 'thermal' SZ effect, there is also a smaller 'kinetic' effect due to the bulk motion of the cluster gas, giving $\Delta T / T \sim \tau(v / c)$, with either sign, but having the same spectrum as the primary CMB anisotropies.

A significant advantage in finding galaxy clusters via the SZ effect is that the signal is largely independent of redshift, so in principle clusters can be found to arbitrarily large distances. The SZ effect can be used to find and study individual clusters, and to obtain estimates of the Hubble constant. There is also the potential to constrain cosmological parameters, such as the clustering amplitude σ_{8} and the equation of state of the dark energy, through counts of detected clusters as a function of redshift. The promise of the method has been realized through detections of clusters purely through the SZ effect by SPT [85], ACT [86], and

Planck [87]. Results from Planck clusters [88] suggest a somewhat lower value of σ_{8} than inferred from CMB anisotropies, but there are still systematic uncertainties that might encompass the difference, and a more recent analysis of SPT-detected clusters shows better agreement [89]. Further analysis of scaling relations among cluster properties should enable more robust cosmological constraints to be placed in future, so that we can understand whether this 'tension' might be a sign of new physics.

29.8.3 Higher-order Statistics

Although most of the CMB anisotropy information is contained in the power spectra, there will also be weak signals present in higher-order statistics. These can measure any primordial nonGaussianity in the perturbations, as well as non-linear growth of the fluctuations on small scales and other secondary effects (plus residual foreground contamination of course). There are an infinite variety of ways in which the CMB could be non-Gaussian [30]; however, there is a generic form to consider for the initial conditions, where a quadratic contribution to the curvature perturbations is parameterized through a dimensionless number f_{NL}. This weakly non-linear component can be constrained in several ways, the most popular being through measurements of the bispectrum (or 3-point function).

The constraints depend on the shape of the triangles in harmonic space, and it has become common to distinguish the 'local' or 'squeezed' configuration (in which one side is much smaller than the other two) from the 'equilateral' configuration. Other configurations are also relevant for specific theories, such as 'orthogonal' non-Gaussianity, which has positive correlations for $k_{1} \simeq 2 k_{2} \simeq 2 k_{3}$, and negative correlations for the equilateral configuration. The latest results from the Planck team [90] are $f_{\mathrm{NL}}^{\text {local }}=1 \pm 5, f_{\mathrm{NL}}^{\text {equil }}=-26 \pm 47$, and $f_{\mathrm{NL}}^{\text {ortho }}=-38 \pm 24$.

These results are consistent with zero, but are at a level that is now interesting for model predictions. The amplitude of $f_{\text {NL }}$ expected is small, so that a detection of $f_{\mathrm{NL}} \gg 1$ would rule out all single-field, slow-roll inflationary models. It is still possible to improve upon these Planck results, and it certainly seems feasible that a measurement of primordial non-Gaussianity may yet be within reach. Non-primordial detections of non-Gaussianity from expected signatures have already been made. For example, the bispectrum and trispectrum contain evidence of gravitational lensing, the ISW effect, and Doppler boosting. For now the primordial signal is elusive, but should it be detected, then detailed measurements of non-Gaussianity will become a unique probe of inflationary-era physics. Because of that, much effort continues to be devoted to honing predictions and measurement techniques, with the expectation that we will need to go beyond the CMB to dramatically improve the constraints.

29.8.4 Anomalies

Several features seen in the Planck data [33, 65, 91] confirm those found earlier with $W M A P$ [32], showing mild deviations from a simple description of the data; these are often referred to as 'anomalies.' One such feature is the lack of power in the multipole range $\ell \simeq 20-30$ [14] [53]. Other examples involve the breaking of statistical anisotropy, caused by alignment of the lowest multipoles, as well as a somewhat excessive cold spot and a power asymmetry between hemispheres. No such feature is significant at more than the roughly 3σ level, and the importance of 'a posteriori' statistics here has been emphasized by many authors. Since these effects are at large angular scales, where cosmic variance dominates, the results will not increase in significance with more data, although there is the potential for more sensitive polarization measurements to provide independent tests.

29.9 Constraints on Cosmological Parameters

The most striking outcome of the last couple of decades of experimental results is that the standard cosmological paradigm continues to be in very good shape. A large amount of highprecision data on the power spectrum is adequately fit with fewer than 10 free parameters (and only six need non-trivial values). The framework is that of FRW models, which have nearly flat geometry, containing dark matter and dark energy, and with adiabatic perturbations having close to scale-invariant initial condi-
tions.
Within this basic picture, the values of the cosmological parameters can be constrained. Of course, more stringent bounds can be placed on models that cover a restricted parameter space, e.g., assuming that $\Omega_{\mathrm{tot}}=1$ or $r=0$. More generally, the constraints depend upon the adopted prior probability distributions, even if they are implicit, for example by restricting the parameter freedom or their ranges (particularly where likelihoods peak near the boundaries), or by using different choices of other data in combination with the CMB. As the data become even more precise, these considerations will be less important, but for now we caution that restrictions on model space and choice of nonCMB data sets and priors need to be kept in mind when adopting specific parameter values and uncertainties.
There are some combinations of parameters that fit the CMB anisotropies almost equivalently. For example, there is a nearly exact geometric degeneracy, where any combination of Ω_{m} and Ω_{Λ} that provides the same angular-diameter distance to last scattering will give nearly identical C_{ℓ} s. There are also other less exact degeneracies among the parameters. Such degeneracies can be broken when using the CMB results in combination with other cosmological data sets. Particularly useful are complementary constraints from baryon acoustic oscillations, galaxy clustering, the abundance of galaxy clusters, weak gravitational lensing measurements, and Type Ia supernova distances. For an overview of some of these other cosmological constraints, see The Cosmological Parameters-Sec. 25.1 of this Review.
Within the context of a 6 -parameter family of models (which fixes $\Omega_{\mathrm{tot}}=1, d n_{\mathrm{s}} / d \ln k=0, r=0$, and $w=-1$) the Planck results for $T T$, together with $T E, E E$, and CMB lensing, yield [14]: $\ln \left(10^{10} A_{\mathrm{s}}\right)=3.044 \pm 0.014 ; n_{\mathrm{s}}=0.965 \pm 0.004$; $\Omega_{\mathrm{b}} h^{2}=0.02237 \pm 0.00015 ; \Omega_{\mathrm{c}} h^{2}=0.1200 \pm 0.0012 ; 100 \theta_{*}=$ 1.04092 ± 0.00031; and $\tau=0.054 \pm 0.007$. Other parameters can be derived from this basic set, including $h=0.674 \pm 0.005$, $\Omega_{\Lambda}=0.685 \pm 0.007\left(=1-\Omega_{\mathrm{m}}\right)$ and $\sigma_{8}=0.811 \pm 0.006$. Somewhat different (although consistent) values are obtained using other data combinations, such as including BAO, supernova, H_{0}, or weak-lensing constraints (see Sec. 25.1 of this Review). However, the results quoted above are currently the best available from CMB data alone.
The standard cosmological model still fits the data well, with the error bars on the parameters continuing to shrink. Improved measurement of higher acoustic peaks has dramatically reduced the uncertainty in the θ_{*} parameter, which is now detected at $>3000 \sigma$. The evidence for $n_{\mathrm{s}}<1$ is now at the 8σ level from Planck data alone. The value of the reionization optical depth has decreased compared with earlier estimates; it is convincingly detected, but still not at very high significance.
Constraints can also be placed on parameters beyond the basic six, particularly when including other astrophysical data sets. Relaxing the flatness assumption, the constraint on Ω_{tot} is 1.011 ± 0.006. Note that for h, the CMB data alone provide only a very weak constraint if spatial flatness is not assumed. However, with the addition of other data (particularly powerful in this context being a compilation of BAO measurements; see Sec. 25.1 of this Review), the constraints on the Hubble constant and curvature improve considerably, leading to $\Omega_{\mathrm{tot}}=0.9993 \pm 0.0019$ [14].
For $\Omega_{\mathrm{b}} h^{2}$ the CMB-derived value is generally consistent with completely independent constraints from Big Bang nucleosynthesis (see Sec. 24 of this Review). Related are constraints on additional neutrino-like relativistic degrees of freedom, which lead to $N_{\text {eff }}=2.99 \pm 0.17$ (including BAO), i.e., no evidence for extra neutrino species.
The best limit on the tensor-to-scalar ratio is $r<0.06$ (measured at $k=0.002 \mathrm{Mpc}^{-1}$) from a combination of Planck and BICEP/Keck data. This limit depends on how the slope n_{t} is restricted and whether $d n_{\mathrm{s}} / d \ln k \neq 0$ is allowed. The joint constraints on n_{s} and r allow specific inflationary models to be tested [34, 92, 93]. Looking at the ($\left.n_{\mathrm{s}}, r\right)$ plane, this means that $m^{2} \phi^{2}$ (mass-term quadratic) inflation is now disfavored by the data, as well as $\lambda \phi^{4}$ (self-coupled) inflation.

The addition of the dark-energy equation of state w adds the partial degeneracy of being able to fit a ridge in (w, h) space,
extending to low values of both parameters. This degeneracy is broken when the CMB is used in combination with other data sets, e.g., adding a compilation of BAO and supernova data gives $w=-1.028 \pm 0.031$. Constraints can also be placed on more general dark energy and modified-gravity models [94]. However, when extending the search space, one needs to be careful not to over-interpret some tensions between data sets as evidence for new physics.
For the reionization optical depth, a reanalysis of Planck data in 2016 resulted in a reduction in the value of τ, with the tightest result giving $\tau=0.055 \pm 0.009$, and the newest analysis gives similar numbers. This corresponds to $z_{\mathrm{i}}=7.8-8.8$ (depending on the functional form of the reionization history), with an uncertainty of ± 0.9 [95]. This redshift is only slightly higher that that suggested from studies of absorption lines in high- z quasar spectra [96] and Ly α-emitting galaxies [97], perhaps hinting that the process of reionization was not as complex as previously suspected. The important constraint provided by CMB polarization, in combination with astrophysical measurements, thus allows us to investigate how the first stars formed and brought about the end of the cosmic dark ages.

29.10 Particle Physics Constraints

CMB data place limits on parameters that are directly relevant for particle physics models. For example, there is a limit on the sum of the masses of the neutrinos, $\sum m_{\nu}<0.12 \mathrm{eV}$ (95\%) [14] coming from Planck together with BAO measurements (although limits are weaker when considering both $N_{\text {eff }}$ and $\sum m_{\nu}$ as free parameters). This assumes the usual number density of fermions, which decoupled when they were relativistic. The limit is tantalizingly only a factor of a few higher than the minimum value coming from neutrino mixing experiments (see Neutrino MixingsSecs. 14 and 26). As well as being an indirect probe of the neutrino background, Planck data also require that the neutrino background has perturbations, i.e., that it possesses a sound speed $c_{\mathrm{s}}^{2} \simeq 1 / 3$, as expected [12].
The current suite of data suggests that $n_{\mathrm{s}}<1$, with a bestfitting value about 0.035 below unity. This is already quite constraining for inflationary models, particularly along with r limits. There is no current evidence for running of the spectral index, with $d n_{\mathrm{s}} / d \ln k=-0.004 \pm 0.007$ from Planck alone [14] (with a similar value when BAO data are included), although this is less of a constraint on models. Similarly, primordial non-Gaussianity is being probed to interesting levels, although tests of simple inflationary models will only come with significant reductions in uncertainty.
The large-angle anomalies, such as the hemispheric modulation of power and the dip in power at $\ell \simeq 20-30$, have the potential to be hints of new physics. Such effects might be expected in a universe that has a large-scale power cut-off, or anisotropy in the initial power spectrum, or is topologically non-trivial. However, cosmic variance and a posteriori statistics limit the significance of these anomalies, absent the existence of a model that naturally yields some of these features (and ideally also predicting other phenomena that can be tested).
Constraints on 'cosmic birefringence' (i.e., rotation of the plane of CMB polarization that generates non-zero $T B$ and $E B$ power) can be used to place limits on theories involving parity violation, Lorentz violation, or axion-photon mixing [98].
It is possible to place limits on additional areas of physics [99], for example annihilating dark matter [12,12], primordial magnetic fields [100], and time variation of the fine-structure constant [101], as well as the neutrino chemical potential, a contribution of warm dark matter, topological defects, or physics beyond general relativity. Further particle physics constraints will follow as the smaller-scale and polarization measurements continue to improve.
The CMB anisotropy measurements precisely pin down physics at the time of last-scattering, and so any change of physics can be constrained if it affects the relevant energies or timescales. Future, higher sensitivity measurements of the CMB frequency spectrum will push the constraints back to cover energy injection at much earlier times (~ 1 year). Comparison of CMB and BBN observables extend these constraints to timescales of order seconds, and energies in the MeV range. And to the extent that inflation pro-
vides an effective description of the generation of perturbations, the inflationary observables may constrain physics at GUT-type energy scales.

More generally, careful measurement of the CMB power spectra and non-Gaussianity can in principle put constraints on physics at the highest energies, including ideas of string theory, extra dimensions, colliding branes, etc. At the moment any calculation of predictions appears to be far from definitive. However, there is a great deal of activity on implications of string theory for the early Universe, and hence a very real chance that there might be observational implications for specific scenarios.

29.11 Fundamental Lessons

More important than the precise values of parameters is what we have learned about the general features that describe our observable Universe. Beyond the basic hot Big Bang picture, the CMB has taught us that:

- the (observable) Universe is very close to isotropic;
- the Universe recombined at $z \sim 1000$ and started to become ionized again at $z \sim 10$;
- the geometry of the Universe is close to flat;
- both dark matter and dark energy are required;
- gravitational instability is sufficient to grow all of the observed large structures in the Universe;
- topological defects were not important for structure formation;
- there were 'synchronized' super-Hubble modes generated in the early Universe;
- the initial perturbations were predominantly adiabatic in nature;
- the primordial perturbation spectrum has a slightly red tilt;
- the perturbations had close to Gaussian (i.e., maximally random) initial conditions.
These features form the basis of the cosmological standard model, Λ CDM, for which it is tempting to make an analogy with the Standard Model of particle physics (see earlier Sections of this Review). The cosmological model is much further from any underlying 'fundamental theory,' which might ultimately provide the values of the parameters from first principles. Nevertheless, any genuinely complete 'theory of everything' must include an explanation for the values of these cosmological parameters in addition to the parameters of the Standard Model of particle physics.

29.12 Future Directions

Given the significant progress in measuring the CMB sky, which has been instrumental in tying down the cosmological model, what can we anticipate for the future? There will be a steady improvement in the precision and confidence with which we can determine the appropriate cosmological parameters. Ground-based experiments operating at smaller angular scales will continue to place tighter constraints on the damping tail, lensing, and crosscorrelations. New polarization experiments at small scales will probe further into the damping tail, without the limitation of extragalactic foregrounds. And polarization experiments at large angular scales will push down the limits on primordial B modes.

Planck, the third generation CMB satellite mission, was launched in May 2009, and has produced a large number of papers, including a set of cosmological studies based on the first two full surveys of the sky (accompanied by a public release of data products) in 2013, a further series coming from analysis of the full mission data release in 2015 (eight surveys for the Low Frequency Instrument and five surveys for the High Frequency Instrument), and a third series derived from a final analysis of the 2018 data release, including full constraints from polarization data.

A set of cosmological parameters is now known to percent-level accuracy, and that may seem sufficient for many people. However, we should certainly demand more of measurements that describe the entire observable Universe! Hence a lot of activity in the coming years will continue to focus on determining those parameters with increasing precision. This necessarily includes testing for consistency among different predictions of the cosmological

Standard Model, and searching for signals that might require additional physics.

A second area of focus will be the smaller-scale anisotropies and 'secondary effects.' There is a great deal of information about structure formation at $z \ll 1000$ encoded in the CMB sky. This may involve higher-order statistics and cross-correlations with other large-scale structure tracers, as well as spectral signatures, with many experiments targeting the galaxy cluster SZ effect. The current status of CMB lensing is similar (in terms of total signal-to-noise) to the quality of the first CMB anisotropy measurements by $C O B E$, and thus we can expect that experimental probes of lensing will improve dramatically in the coming years. All of these investigations can provide constraints on the dark-energy equation of state, for example, which is a major area of focus for several future cosmological surveys at optical wavelengths. CMB lensing also promises to yield a measurement of the sum of the neutrino masses.

A third direction is increasingly sensitive searches for specific signatures of physics at the highest energies. The most promising of these may be the primordial gravitational wave signals in $C_{\ell}^{B B}$, which could be a probe of the $\sim 10^{16} \mathrm{GeV}$ energy range. There are several ground- and balloon-based experiments underway that are designed to search for the polarization B modes. Additionally, non-Gaussianity holds the promise of constraining models beyond single-field slow-roll inflation.

Anisotropies in the CMB have proven to be the premier probe of cosmology and the early Universe. Theoretically the CMB involves well-understood physics in the linear regime, and is under very good calculational control. A substantial and improving set of observational data now exists. Systematics appear to be under control and are not currently a limiting factor. And so for the next several years we can expect an increasing amount of cosmological information to be gleaned from CMB anisotropies, with the prospect also of some genuine surprises.

References

[1] A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965); R. H. Dicke et al., Astrophys. J. 142, 414 (1965).
[2] M. White, D. Scott and J. Silk, Ann. Rev. Astron. Astrophys. 32, 319 (1994).
[3] W. Hu and S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002).
[4] A. Challinor and H. Peiris, in M. Novello and S. Perez, editors, "American Institute of Physics Conference Series," volume 1132, 86-140 (2009), [arXiv:0903.5158].
[5] G. F. Smoot et al., Astrophys. J. Lett. 396, L1 (1992).
[6] C. L. Bennett et al., Astrophys. J. Supp. 148, 1 (2003).
[7] G. Hinshaw et al., Astrophys. J. Supp. 208, 19 (2013), [arXiv:1212.5226].
[8] Planck Collab. 2013 Results XVI, Astron. Astrophys. 571, A16 (2014), [arXiv:1303.5076].
[9] J. A. Tauber et al., Astron. Astrophys. 520, A1 (2010).
[10] Planck Collab. 2013 Results I, Astron. Astrophys. 571, A1 (2014), [arXiv:1303.5062].
[11] Planck Collab. 2015 Results I, Astron. Astrophys. 594, A1 (2016), [arXiv:1502.01582].
[12] Planck Collab. 2015 Results XIII, Astron. Astrophys. 594, A13 (2016), [arXiv:1502.01589].
[13] Planck Collab. 2018 Results I, arXiv e-prints arXiv:1807.06205 (2018), [arXiv:1807.06205].
[14] Planck Collab. 2018 Results VI, arXiv e-prints arXiv:1807.06209 (2018), [arXiv:1807.06209].
[15] D. S. Swetz et al., Astrophys. J. Supp. 194, 41 (2011), [arXiv:1007.0290].
[16] J. E. Carlstrom et al., Proc. Astron. Soc. Pacific 123, 568 (2011), [arXiv:0907.4445].
[17] P. Noterdaeme et al., Astron. Astrophys. 526, L7 (2011), [arXiv:1012.3164]; S. Muller et al., Astron. \& Astrophys. 551, A109 (2013), [arXiv:1212.5456].
[18] D. J. Fixsen et al., Astrophys. J. 734, 5 (2011), [arXiv:0901.0555].
[19] J. Singal et al., Pub. Astron. Soc. Pac. 130, 985, 036001 (2018).
[20] A. Kogut et al., in "Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave," volume 9143 of Proc. SPIE, 91431E (2014).
[21] P. André et al., JCAP 2014, 2, 006 (2014), [arXiv:1310.1554].
[22] V. Desjacques et al., Mon. Not. R. Astron. Soc. 451, 4460 (2015), [arXiv:1503.05589].
[23] D. J. Fixsen, Astrophys. J. 707, 916 (2009), [arXiv:0911.1955].
[24] J. C. Mather et al., Astrophys. J. 512, 511 (1999).
[25] Y. Hoffman, H. M. Courtois and R. B. Tully, Mon. Not. R. Astron. Soc. 449, 4494 (2015), [arXiv:1503.05422].
[26] D. J. Fixsen et al., Astrophys. J. 420, 445 (1994).
[27] Planck Collab. 2013 Results XXVII, Astron. Astrophys. 571, A27 (2014), [arXiv:1303.5087].
[28] S. Seager, D. D. Sasselov and D. Scott, Astrophys. J. Supp. 128, 407 (2000).
[29] L. Knox, Phys. Rev. 4307-4318 (1995).
[30] N. Bartolo et al., Phys. Rep. 402, 103 (2004).
[31] Planck Collab. 2013 Results XXIV, Astron. Astrophys. 571, A24 (2014), [arXiv:1303.5084].
[32] C. L. Bennett et al., Astrophys. J. Supp. 192, 17 (2011), [arXiv:1001.4758].
[33] Planck Collab. 2013 Results XXIII, Astron. Astrophys. 571, A23 (2014), [arXiv:1303.5083].
[34] Planck Collab. 2018 Results X, arXiv e-prints arXiv:1807.06211 (2018), [arXiv:1807.06211].
[35] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (2000).
[36] U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996).
[37] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538, 473 (2000).
[38] D. Blas, J. Lesgourgues and T. Tram, J. Cosmology Astropart. Phys. 7, 034 (2011), [arXiv:1104.2933].
[39] U. Seljak et al., Phys. Rev. , 8, 083507 (2003).
[40] R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).
[41] R. G. Crittenden and N. Turok, Phys. Rev. Lett. 76, 575 (1996).
[42] Planck Collab. 2015 Results XXI, Astron. Astrophys. 594, A21 (2016), [arXiv:1502.01595].
[43] W. Hu et al., Phys. Rev. 59, 2, 023512 (1999).
[44] W. Hu, N. Sugiyama and J. Silk, Nature 386, 37 (1997).
[45] P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970); R. A. Sunyaev and Y. B. Zeldovich, Astron. Astrophys. Supp. 7, 3 (1970).
[46] D. Scott, J. Silk and M. White, Science 268, 829 (1995).
[47] D. J. Eisenstein, New Astron. Rev. 49, 360 (2005).
[48] J. Silk, Astrophys. J. 151, 459 (1968).
[49] M. Zaldarriaga and U. Seljak, Phys. Rev. , 2, 023003 (1998).
[50] Planck Collab. 2013 Result XVII, Astron. Astrophys. 571, A17 (2014), [arXiv:1303.5077].
[51] M. Kaplinghat, L. Knox and Y.-S. Song, Phys. Rev. Lett. 91, 24, 241301 (2003).
[52] Planck Collab. 2013 Results XV, Astron. Astrophys. 571, A15 (2014), [arXiv:1303.5075].
[53] Planck Collab. 2018 Results V, arXiv e-prints arXiv:1907.12875 (2019), [arXiv:1907.12875].
[54] S. Das et al., J. Cosmology Astropart. Phys. 4, 014 (2014), [arXiv:1301.1037].
[55] K. T. Story et al., Astrophys. J. 779, 86 (2013), [arXiv:1210.7231].
[56] W. Hu and M. White, New Astron. 2, 323 (1997).
[57] W. Hu and M. White, Phys. Rev. 596-615 (1997).
[58] M. Zaldarriaga and U. Seljak, Phys. Rev. 1830-1840 (1997).
[59] J. M. Kovac et al., Nature 420, 772 (2002).
[60] D. Larson et al., Astrophys. J. Supp. 192, 16 (2011), [arXiv:1001.4635].
[61] Keck Array and BICEP2 Collabs. V, Astrophys. J. 811, 126 (2015), [arXiv:1502.00643].
[62] S. Naess et al., J. Cosmology Astropart. Phys. 10, 007 (2014), [arXiv:1405.5524].
[63] T. Louis et al., J. Cosmology Astropart. Phys. 6, 031 (2017), [arXiv:1610.02360].
[64] A. T. Crites et al., Astrophys. J. 805, 36 (2015), [arXiv:1411.1042].
[65] Planck Collab. 2018 Results VII, arXiv e-prints arXiv:1906.02552 (2019), [arXiv:1906.02552].
[66] D. Hanson et al., Phys. Rev. Lett. 111, 14, 141301 (2013), [arXiv:1307.5830].
[67] BICEP2 Collab., Phys. Rev. Lett. 112, 24, 241101 (2014), [arXiv:1403.3985].
[68] BICEP2/Keck and Planck Collabs., Phys. Rev. Lett. 114, 10, 101301 (2015), [arXiv:1502.00612].
[69] BICEP2 Collaboration and Keck Array Collaboration, Phys. Rev. Lett. 121, 22, 221301 (2018).
[70] POLARBEAR Collab., Astrophys. J. 848, 121 (2017), [arXiv:1705.02907].
[71] R. Keisler et al., Astrophys. J. 807, 151 (2015), [arXiv:1503.02315].
[72] Planck Collab. 2015 Results XV, Astron. Astrophys. 594, A15 (2016), [arXiv:1502.01591].
[73] A. van Engelen et al., Astrophys. J. 808, 7 (2015), [arXiv:1412.0626].
[74] P. Ade et al. (The Simons Observatory collaboration), JCAP 2019, 2, 056 (2019).
[75] K. N. Abazajian et al., ArXiv e-prints (2016), [arXiv:1610.02743].
[76] Y. Sekimoto et al., in "Proc. SPIE," volume 10698 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 106981Y (2018).
[77] Planck Collab. 2018 Results VIII, arXiv e-prints arXiv:1807.06210 (2018), [arXiv:1807.06210].
[78] D. Scott et al., JCAP 2016, 6, 046 (2016), [arXiv:1603.03550].
[79] L. Knox and Y.-S. Song, Phys. Rev. Lett. 89, 1, 011303 (2002), [arXiv:astro-ph/0202286]; M. Kesden, A. Cooray and M. Kamionkowski, Phys. Rev. Lett. 89, 011304 (2002), [arXiv:astro-ph/0202434]; C. M. Hirata and U. Seljak, Phys. Rev. D68, 8, 083002 (2003), [arXiv:astro-ph/0306354].
[80] Planck Collab. 2013 Results XII, Astron. Astrophys. 571, A12 (2014), [arXiv:1303.5072].
[81] B. Gold et al., Astrophys. J. Supp. 192, 15 (2011), [arXiv:1001.4555].
[82] Planck Collab. Interm. Results XXX, Astron. Astrophys. 586, A133 (2016), [arXiv:1409.5738].
[83] M. Millea et al., Astrophys. J. 746, 4 (2012), [arXiv:1102.5195].
[84] R. A. Sunyaev and I. B. Zeldovich, Ann. Rev. Astron. Astrophys. 18, 537 (1980).
[85] R. Williamson et al., Astrophys. J. 738, 139 (2011), [arXiv:1101.1290].
[86] T. A. Marriage et al., Astrophys. J. 737, 61 (2011), [arXiv:1010.1065].
[87] Planck Collab. Early Results VIII, Astron. Astrophys. 536, A8 (2011), [arXiv:1101.2024].
[88] Planck Collab. 2013 Results XX, Astron. Astrophys. 571, A20 (2014), [arXiv:1303.5080].
[89] T. de Haan et al., Astrophys. J. 832, 95 (2016), [arXiv:1603.06522].
[90] Planck Collab. 2018 Results IX, arXiv e-prints arXiv:1905.05697 (2019), [arXiv:1905.05697].
[91] Planck Collab. 2015 Results XVI, Astron. Astrophys. 594, A16 (2016), [arXiv:1506.07135].
[92] Planck Collab. 2013 Results XXII, Astron. Astrophys. 571, A22 (2014), [arXiv:1303.5082].
[93] Planck Collab. 2015 Results XX, Astron. Astrophys. 594, A20 (2016), [arXiv:1502.02114].
[94] Planck Collab. 2015 Results XIV, Astron. Astrophys. 594, A14 (2016), [arXiv:1502.01590].
[95] Planck Collab. Interm. Results XLVI, Astron. Astrophys. 596, A107 (2016), [arXiv:1605.02985].
[96] X. Fan, C. L. Carilli and B. Keating, Ann. Rev. Astron. Astrophys. 44, 415 (2006).
[97] T. R. Choudhury et al., Mon. Not. R. Astron. Soc. 452, 261 (2015), [arXiv:1412.4790].
[98] B. Feng et al., Phys. Rev. Lett. 96, 22, 221302 (2006).
[99] M. Kamionkowski and A. Kosowsky, Ann. Rev. Nucl. Part. Sci. 49, 77 (1999).
[100] Planck Collab. 2015 Results XIX, Astron. Astrophys. 594, A19 (2016), [arXiv:1502.01594].
[101] Planck Collab. Interm. Results XXIV, Astron. Astrophys. 580, A22 (2015), [arXiv:1406.7482].

30. Cosmic Rays

Revised October 2019 by J.J. Beatty (Ohio State U.), J. Matthews (Louisiana State U.) and S.P. Wakely (Chicago U.; Chicago U., Kavli Inst.).
Cosmic rays are a population of energetic elementary particles and nuclei with a steeply falling near-power law spectrum extending from a few MeV to tens of Joules per particle. Primary cosmic rays can be measured directly by experiments in space or on balloons at energies where there is sufficient flux (§30.1). Atmospheric interactions of primary cosmic rays produce fluxes of secondary elementary particles which can be detected in the atmosphere ($\S 30.2$), at the Earth's surface ($\S 30.3$), and underground (§30.4). At high energies, air showers of particles generated by a single primary can be detected ($\S 30.5$). These showers can be reconstructed to determine the energy, direction, and composition of the incident particle. Energetic neutrinos are closely linked to high energy cosmic rays, both through their production at astrophysical sites of particle acceleration and by production during propagation of extremely high energy cosmic rays (§30.6).

30.1 Primary Spectra from Direct Measurements

The cosmic radiation incident at the top of the terrestrial atmosphere includes all stable charged particles and nuclei with lifetimes of order 10^{6} years or longer. When discussing the astrophysical origin of cosmic rays, "primary" cosmic rays are those particles accelerated at astrophysical sources and "secondaries" are those particles produced in interaction of the primaries with interstellar gas ${ }^{1}$. Thus electrons, protons and helium, as well as carbon, oxygen, iron, and other nuclei synthesized in stars, are primaries. Nuclei such as lithium, beryllium, and boron (which are not abundant end-products of stellar nucleosynthesis) are secondaries. Antiprotons and positrons are also in large part secondary. Whether a small fraction of these particles may be primary is a question of current interest.
Apart from particles associated with solar flares ${ }^{2}$, the cosmic radiation comes from outside the solar system. The incoming charged particles are "modulated" by the solar wind, the expanding magnetized plasma generated by the Sun, which decelerates and partially excludes the lower energy galactic cosmic rays from the inner solar system. There is a significant anticorrelation between solar activity (which has an alternating eleven-year cycle) and the intensity of the cosmic rays with rigidities below about 10 GV . In addition, the lower-energy cosmic rays are affected by the geomagnetic field, which they must penetrate to reach the top of the atmosphere. Thus the intensity of any component of the cosmic radiation in the GeV range depends both on the location and time.
There are four different ways to describe the spectra of the components of the cosmic radiation: (1) By particles per unit rigidity. Propagation (and probably also acceleration) through cosmic magnetic fields depends on gyroradius or magnetic rigidity, R, which is gyroradius multiplied by the magnetic field strength:

$$
\begin{equation*}
R=\frac{p c}{Z e}=r_{L} B \tag{30.1}
\end{equation*}
$$

(2) By particles per energy-per-nucleon. Fragmentation of nuclei propagating through the interstellar gas depends on energy per nucleon, since that quantity is approximately conserved when a nucleus breaks up on interaction with the gas. (3) By nucleons per energy-per-nucleon. Production of secondary cosmic rays in the atmosphere depends on the intensity of nucleons per energy-per-nucleon, approximately independently of whether the incident nucleons are free protons or bound in nuclei. (4) By particles per energy-per-nucleus. Air shower experiments that use the atmosphere as a calorimeter generally measure a quantity that is related to total energy per particle.
The units of differential intensity I are $\left[\mathrm{m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathcal{E}^{-1}\right]$, where \mathcal{E} represents the units of one of the four variables listed above.

[^54]

Figure 30.1: Fluxes of nuclei of the primary cosmic radiation in particles per energy-per-nucleus are plotted vs energy-per-nucleus using data from Refs. [1-13] The inset shows the H/He ratio as a function of rigidity $[1,3]$.

The intensity of primary nucleons in the energy range from several GeV to somewhat beyond 100 TeV is given approximately by

$$
\begin{equation*}
I_{N}(E) \approx 1.8 \times 10^{4}(E / 1 \mathrm{GeV})^{-\alpha} \frac{\text { nucleons }}{\mathrm{m}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV}} \tag{30.2}
\end{equation*}
$$

where E is the energy-per-nucleon (including rest mass energy) and $\alpha(\equiv \gamma+1) \approx 2.7$ is the differential spectral index of the cosmic-ray flux and γ is the integral spectral index. About 74% of the primary nucleons are free protons and about 70% of the rest are nucleons bound in helium nuclei. The fractions of the primary nuclei are nearly constant over this energy range (with a few interesting variations, e.g. [1]). Fractions of both primary and secondary incident nuclei are listed in Table 30.1. Figure 30.1 shows the major nuclear components for kinetic energies greater than $0.22 \mathrm{GeV} /$ nucleus. A useful compendium of experimental data for cosmic-ray nuclei and electrons is described in [14].
The composition and energy spectra of nuclei are typically interpreted in the context of propagation models, in which the sources of the primary cosmic radiation are located within the Galaxy [15]. The ratio of secondary to primary nuclei is observed to decrease with increasing energy, a fact often interpreted to mean that the lifetime of cosmic rays in the Galaxy decreases with energy. Measurements of radioactive "clock" isotopes in the low energy cosmic radiation are consistent with a lifetime in the Galaxy of about 15 Myr [16].

Cosmic rays are nearly isotropic at most energies due to diffusive propagation in the galactic magnetic field. Milagro [17], HAWC and IceCube [18], and the Tibet-III air shower array [19] have observed anisotropy at the level of about 10^{-3} for cosmic rays with energy of a few TeV , possibly due the direction of local Galactic magnetic fields, motion of the solar system in the Galaxy, and to the distribution of sources.

The spectrum of electrons and positrons incident at the top of

Figure 30.2: Differential spectrum of electrons plus positrons (except PAMELA data, which are electrons only) multiplied by $E^{3}[20-28]$ The line shows the proton spectrum [29] multiplied by 0.01 .

Figure 30.3: The positron fraction (ratio of the flux of e^{+}to the total flux of e^{+}and e^{-}) [22, 30-32]. The heavy black line is a model of pure secondary production [33] and the three thin lines show three representative attempts to model the positron excess with different phenomena: green: dark matter decay [34]; blue: propagation physics [35]; red: production in pulsars [36]. The ratio below 10 GeV is dependent on the polarity of the solar magnetic field.
the atmosphere is generally expected to steepen by one power of E above an energy of 5 GeV because of radiative energy loss effects in the Galaxy. Most modern measurements of the combined electron+positron spectrum at high energy, which includes data from spectrometers, calorimeters, and ground-based air Cherenkov telescopes, reveal a relatively smooth spectrum to approximately 1 TeV , where evidence of a cutoff has been reported [24, 26, 28].

The PAMELA $[30,31]$ and AMS-02 [37, 38] satellite experi-

Table 30.1: Relative abundances F of cosmicray nuclei at $10.6 \mathrm{GeV} /$ nucleon normalized to oxygen (三 1) [9]. The oxygen flux at kinetic energy of $10.6 \mathrm{GeV} /$ nucleon is 3.29×10^{-2} $\left(\mathrm{m}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV} / \text { nucleon }\right)^{-1}$. Abundances of hydrogen and helium are from Refs.(citerange) [2-4]. Note that one can not use these values to extend the cosmic-ray flux to high energy because the power law indices for each element may differ slightly.

Z	Element	F	Z	Element	F
1	H	550	$13-14$	$\mathrm{Al}-\mathrm{Si}$	0.19
2	He	34	$15-16$	$\mathrm{P}-\mathrm{S}$	0.03
$3-5$	$\mathrm{Li}-\mathrm{B}$	0.40	$17-18$	$\mathrm{Cl}-\mathrm{Ar}$	0.01
$6-8$	$\mathrm{C}-\mathrm{O}$	2.20	$19-20$	$\mathrm{~K}-\mathrm{Ca}$	0.02
$9-10$	$\mathrm{~F}-\mathrm{Ne}$	0.30	$21-25$	$\mathrm{Sc}-\mathrm{Mn}$	0.05
$11-12$	$\mathrm{Na}-\mathrm{Mg}$	0.22	$26-28$	$\mathrm{Fe}-\mathrm{Ni}$	0.12

ments measured the positron to electron ratio to increase above 10 GeV instead of the expected decrease [33] at higher energy, confirming earlier hints seen by the HEAT balloon-borne experiment [32]. The structure in the electron spectrum, as well as the increase in the positron fraction, may be related to contributions from individual nearby sources (supernova remnants or pulsars) emerging above a background suppressed at high energy by synchrotron losses [39]. Other explanations have invoked propagation effects [35] or dark matter decay/annihilation processes (see, e.g., [34]). The significant disagreement in the ratio below ~ 10 GeV is attributable to differences in charge-sign dependent solar modulation effects present near Earth at the times of measurement.
The ratio of antiprotons to protons is $\sim 2 \times 10^{-4}$ [40] at around $10-20 \mathrm{GeV}$, and there is clear evidence [41]for the kinematic suppression at lower energy that is the signature of secondary antiprotons. The \bar{p} / p ratio also shows a strong dependence on the phase and polarity of the solar cycle [42] in the opposite sense to that of the positron fraction. There is at this time no evidence for a significant primary component of antiprotons. No antihelium or antideuteron has been found in the cosmic radiation. The best measured upper limit on the ratio antihelium/helium is currently approximately 1×10^{-7} [43] The upper limit on the flux of antideuterons around $1 \mathrm{GeV} /$ nucleon is approximately $2 \times 10^{-4}\left(\mathrm{~m}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV} / \text { nucleon }\right)^{-1}$ [44].

A useful method for calculating the effect of solar modulation including time, charge-sign, and rididity-dependent effects is given in Ref. [45].

30.2 Cosmic Rays in the Atmosphere

Figure 30.4: Vertical fluxes of cosmic rays in the atmosphere with $E>1 \mathrm{GeV}$ estimated from the nucleon flux of Eq. (30.2). The points show measurements of negative muons with $E_{\mu}>1 \mathrm{GeV}$ [46-51].

Figure 30.4 shows the vertical fluxes of the major cosmic-ray components in the atmosphere in the energy region where the particles are most numerous (except for electrons, which are most numerous near their critical energy, which is about 81 MeV in air). Except for protons and electrons near the top of the atmosphere,
all particles are produced in interactions of the primary ${ }^{3}$ cosmic rays in the air. Muons and neutrinos are products of the decay chain of charged mesons, while electrons and photons originate in decays of neutral mesons.
Most measurements are made at ground level or near the top of the atmosphere, but there are also measurements of muons and electrons from airplanes and balloons. Fig. 30.4 shows measurements of negative muons [46-51]. Since $\mu^{+}\left(\mu^{-}\right)$are produced in association with $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$, the measurement of muons near the maximum of the intensity curve for the parent pions serves to calibrate the atmospheric ν_{μ} beam [52]. Because muons typically lose almost 2 GeV in passing through the atmosphere, the comparison near the production altitude is important for the sub -GeV range of $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ energies.

The flux of cosmic rays through the atmosphere is described by a set of coupled cascade equations with boundary conditions at the top of the atmosphere to match the primary spectrum. Numerical or Monte Carlo calculations are needed to account accurately for decay and energy-loss processes, and for the energy-dependences of the cross sections and of the primary spectral index γ. Approximate analytic solutions are, however, useful in limited regions of energy $[53,54]$. For example, the vertical intensity of charged pions with energy $E_{\pi} \ll \epsilon_{\pi}=115 \mathrm{GeV}$ is

$$
\begin{equation*}
I_{\pi}\left(E_{\pi}, X\right) \approx \frac{Z_{N \pi}}{\lambda_{N}} I_{N}\left(E_{\pi}, 0\right) e^{-X / \Lambda \frac{X E_{\pi}}{\epsilon_{\pi}}} \tag{30.3}
\end{equation*}
$$

where Λ is the characteristic length for exponential attenuation of the parent nucleon flux in the atmosphere. This expression has a maximum at $X=\Lambda \approx 121 \pm 4 \mathrm{~g} \mathrm{~cm}^{-2}$ [55], which corresponds to an altitude of 15 kilometers. The quantity $Z_{N \pi}$ is the spectrumweighted moment of the inclusive distribution of charged pions in interactions of nucleons with nuclei of the atmosphere. The intensity of low-energy pions is much less than that of nucleons because $Z_{N \pi} \approx 0.079$ is small and because most pions with energy much less than the critical energy ϵ_{π} decay rather than interact.

30.3 Cosmic rays at the surface

30.3.1 Muons

Muons are the most numerous charged particles at sea level (see Fig. 30.4). Most muons are produced high in the atmosphere (typically 15 km) and lose about 2 GeV to ionization before reaching the ground. Their energy and angular distribution reflect a convolution of the production spectrum, energy loss in the atmosphere, and decay. For example, 2.4 GeV muons have a decay length of 15 km , which is reduced to 8.7 km by energy loss. The mean energy of muons at the ground is $\approx 4 \mathrm{GeV}$. The energy spectrum is almost flat below 1 GeV , steepens gradually to reflect the primary spectrum in the $10-100 \mathrm{GeV}$ range, and steepens further at higher energies because pions with $E_{\pi}>\epsilon_{\pi}$ tend to interact in the atmosphere before they decay. Asymptotically ($E_{\mu} \gg 1 \mathrm{TeV}$), the energy spectrum of atmospheric muons is one power steeper than the primary spectrum. The integral intensity of vertical muons above $1 \mathrm{GeV} / \mathrm{c}$ at sea level is $\approx 70 \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ [56] [57], with recent measurements $[51,58,59]$ favoring a lower normalization by $10-15 \%$. Experimentalists are familiar with this number in the form $I \approx 1 \mathrm{~cm}^{-2} \mathrm{~min}^{-1}$ for horizontal detectors. The overall angular distribution of muons at the ground as a function of zenith angle θ is $\propto \cos ^{2} \theta$, which is characteristic of muons with $E_{\mu} \sim 3 \mathrm{GeV}$. At lower energy the angular distribution becomes increasingly steep, while at higher energy it flattens, approaching a $\sec \theta$ distribution for $E_{\mu} \gg \epsilon_{\pi}$ and $\theta<70^{\circ}$.

Figure 30.5 shows the muon energy spectrum at sea level for two angles. At large angles low energy muons decay before reaching the surface and high energy pions decay before they interact, thus the average muon energy increases. An approximate extrapolation formula valid when muon decay is negligible ($E_{\mu}>100 / \cos \theta \mathrm{GeV}$) and the curvature of the Earth can be neglected ($\theta<70^{\circ}$) is
${ }^{3}$ When discussing cosmic rays in the atmosphere, 'primary' is used to denote the original particle and 'secondary' to denote the particles produced in interactions.

$$
\begin{equation*}
\frac{d N_{\mu}}{d E_{\mu} d \Omega} \approx \frac{0.14 E_{\mu}^{-2.7}}{\mathrm{~cm}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV}} \times\left\{\frac{1}{1+\frac{1.1 E_{\mu} \cos \theta}{115 \mathrm{GeV}}}+\frac{0.054}{1+\frac{1.1 E_{\mu} \cos \theta}{850 \mathrm{GeV}}}\right\} \tag{30.4}
\end{equation*}
$$

where the two terms give the contribution of pions and charged kaons. Eq. (30.4) neglects a small contribution from charm and heavier flavors which is negligible except at very high energy [64].
The muon charge ratio reflects the excess of π^{+}over π^{-}and K^{+}over K^{-}in the forward fragmentation region of proton initiated interactions together with the fact that there are more free and bound protons than free and bound neutrons in the primary spectrum. The increase with energy of μ^{+} / μ^{-}shown in Fig. 30.6 reflects the increasing importance of kaons in the TeV range [65] and indicates a significant contribution of associated production by cosmic-ray protons ($p \rightarrow \Lambda+K^{+}$). The same process is even more important for atmospheric neutrinos at high energy.

30.3.2 Electromagnetic component

At the ground, this component consists of electrons, positrons, and photons primarily from cascades initiated by decay of neutral and charged mesons. Muon decay is the dominant source of low-energy electrons at sea level. Decay of neutral pions is more important at high altitude or when the energy threshold is high. Knock-on electrons also make a small contribution at low energy [66]. The integral vertical intensity of electrons plus positrons is very approximately 30,6 , and $0.2 \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ above 10,100 , and 1000 MeV respectively [57,67], but the exact numbers depend sensitively on altitude, and the angular dependence is complex because of the different altitude dependence of the different sources of electrons $[66,68]$. The ratio of photons to electrons plus positrons is approximately 1.3 above 1 GeV and 1.7 below the critical energy [68].

30.3.3 Nucleons

Nucleons above $1 \mathrm{GeV} / c$ at ground level are degraded remnants of the primary cosmic radiation. The intensity is approximately $I_{N}(E, 0) \times \exp (-X / \cos \theta \Lambda)$ for $\theta<70^{\circ}$. At sea level, about $1 / 3$ of the nucleons in the vertical direction are neutrons (up from $\approx 10 \%$ at the top of the atmosphere as the n / p ratio approaches equilib-

Figure 30.5: Spectrum of muons at $\theta=0^{\circ}\left(\right.$ [56], - [60], ${ }^{\text { }}$ [61], $\Delta[62], \times,+[58]$, ○ [51], and • [59] and $\left.\theta=75^{\circ} \diamond[63]\right)$. The line plots the result from Eq. (30.4) for vertical showers.

Table 30.2: Average muon range R and energy loss parameters calculated for standard rock. Range is given in km-water-equivalent, or $10^{5} \mathrm{~g} \mathrm{~cm}^{-2}$.

E_{μ} GeV	R $\mathrm{~km} . \mathrm{w} . \mathrm{e}$	a $\mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$	$b_{\text {brems }}$	$b_{\text {pair }}$	$b_{\text {nucl }}$ $0^{-6} \mathrm{~g}^{-1}$	$\sum_{\mathrm{cm}^{2}} b_{i}$	$\sum b_{\text {ice }}$

rium). The integral intensity of vertical protons above $1 \mathrm{GeV} / c$ at sea level is $\approx 0.9 \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}[57,69]$.

30.4 Cosmic Rays Underground

Only muons and neutrinos penetrate to significant depths underground. The muons produce tertiary fluxes of photons, electrons, and hadrons.

30.4.1 Muons

As discussed in Section 34.6 of this Review, muons lose energy by ionization and by radiative processes: bremsstrahlung, direct production of $e^{+} e^{-}$pairs, and photonuclear interactions. The total muon energy loss may be expressed as a function of the amount of matter traversed as

$$
\begin{equation*}
-\frac{d E_{\mu}}{d X}=a+b E_{\mu} \tag{30.5}
\end{equation*}
$$

where a is the ionization loss and b is the fractional energy loss by the three radiation processes. Both are slowly varying functions of energy. The quantity $\epsilon \equiv a / b$ ($\approx 500 \mathrm{GeV}$ in standard rock) defines a critical energy below which continuous ionization loss is more important than radiative losses. Table 30.2 shows a and b values for standard rock, and b for ice, as a function of muon energy. The second column of Table 30.2 shows the muon range in standard rock $\left(A=22, Z=11, \rho=2.65 \mathrm{~g} \mathrm{~cm}^{-3}\right)$. These parameters are quite sensitive to the chemical composition of the rock, which must be evaluated for each location.

The intensity of muons underground can be estimated from the muon intensity in the atmosphere and their rate of energy loss. To the extent that the mild energy dependence of a and b can be neglected, Eq. (30.5) can be integrated to provide the following relation between the energy $E_{\mu, 0}$ of a muon at production in the atmosphere and its average energy E_{μ} after traversing a thickness X of rock (or ice or water):

$$
\begin{equation*}
E_{\mu, 0}=\left(E_{\mu}+\epsilon\right) e^{b X}-\epsilon \tag{30.6}
\end{equation*}
$$

Especially at high energy, however, fluctuations are important and an accurate calculation requires a simulation that accounts for stochastic energy-loss processes [72].

There are two depth regimes for which Eq. (30.6) can be simplified. For $X \ll b^{-1} \approx 2.5 \mathrm{~km}$ water equivalent, $E_{\mu, 0} \approx$ $E_{\mu}(X)+a X$, while for $X \gg b^{-1} E_{\mu, 0} \approx\left(\epsilon+E_{\mu}(X)\right) \exp (b X)$. Thus at shallow depths the differential muon energy spectrum is approximately constant for $E_{\mu}<a X$ and steepens to reflect the surface muon spectrum for $E_{\mu}>a X$, whereas for $X>2.5 \mathrm{~km}$.w.e. the differential spectrum underground is again constant for small muon energies but steepens to reflect the surface muon spectrum

Figure 30.6: Muon charge ratio as a function of the muon momentum from Refs. $[51,59,65,70,71]$.
for $E_{\mu}>\epsilon \approx 0.5 \mathrm{TeV}$. In the deep regime the shape is independent of depth although the intensity decreases exponentially with depth. In general the muon spectrum at slant depth X is

$$
\begin{equation*}
\frac{d N_{\mu}(X)}{d E_{\mu}}=\frac{d N_{\mu}}{d E_{\mu, 0}} \frac{d E_{\mu, 0}}{d E_{\mu}}=\frac{d N_{\mu}}{d E_{\mu, 0}} e^{b X} \tag{30.7}
\end{equation*}
$$

where $E_{\mu, 0}$ is the solution of Eq. (30.6) in the approximation neglecting fluctuations.

Fig. 30.7 shows the vertical muon intensity versus depth. In constructing this "depth-intensity curve," each group has taken account of the angular distribution of the muons in the atmosphere, the map of the overburden at each detector, and the properties of the local medium in connecting measurements at various slant depths and zenith angles to the vertical intensity. Use of data from a range of angles allows a fixed detector to cover a wide range of depths. The flat portion of the curve is due to muons produced locally by charged-current interactions of ν_{μ}. The inset shows the vertical intensity curve for water and ice [79-82]. It is not as steep as the one for rock because of the lower muon energy loss in water.

30.4.2 Neutrinos

Because neutrinos have small interaction cross sections, measurements of atmospheric neutrinos require a deep detector to avoid backgrounds. There are two types of measurements: contained (or semi-contained) events, in which the vertex is determined to originate inside the detector, and neutrino-induced muons. The latter are muons that enter the detector from zenith angles so large (e.g., nearly horizontal or upward) that they cannot be muons produced in the atmosphere. In neither case is the neutrino flux measured directly. What is measured is a convolution of the neutrino flux and cross section with the properties

Figure 30.7: Vertical muon intensity vs depth (1 km.w.e. $=$ $10^{5} \mathrm{~g} \mathrm{~cm}^{-2}$ of standard rock). The experimental data are from: \diamond : the compilations of Crouch [73], \square : Baksanu [74], ○: LVD [75], \bullet : MACRO [76], ■: Frejus [77], and \triangle : SNO [78]. The shaded area at large depths represents neutrino-induced muons of energy above 2 GeV . The upper line is for horizontal neutrino-induced muons, the lower one for vertically upward muons. Darker shading shows the muon flux measured by the SuperKamiokande experiment. The inset shows the vertical intensity curve for water and ice published in Refs. [79-82]. Additional data extending to slant depths of 13 km are available in [83].

Table 30.3: Measured fluxes $\left(10^{-9} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}\right)$ of neutrino-induced muons as a function of the effective minimum muon energy E_{μ}.

$E_{\mu}>$	1 GeV	1 GeV	1 GeV	2 GeV	3 GeV	3 GeV
Ref.	CWI [84]	Baksan [85]	MACRO $[86,87]$	IMB [88,89]	Kam [90]	SuperK [91]
F_{μ}	2.17 ± 0.21	2.77 ± 0.17	2.29 ± 0.15	2.26 ± 0.11	1.94 ± 0.12	1.74 ± 0.07

of the detector (which includes the surrounding medium in the case of entering muons). This section focuses on neutrinos below about 1 TeV . For discussion of atmospheric neutrinos in the TevPeV region including a prompt component produced by charmed meson decays, see Ref. [53].

Contained and semi-contained events reflect neutrinos in the sub- GeV to multi- GeV region where the product of increasing cross section and decreasing flux is maximum. In the GeV region the neutrino flux and its angular distribution depend on the geomagnetic location of the detector and, to a lesser extent, on the phase of the solar cycle. Naively, we expect $\nu_{\mu} / \nu_{e}=2$ from counting neutrinos of the two flavors coming from the chain of pion and muon decays. Contrary to expectation, however, the numbers of the two classes of events are similar rather than different by a factor of two. This is now understood to be a consequence of neutrino flavor oscillations [92]. (See the article on neutrino properties in this Review.)

Two well-understood properties of atmospheric cosmic rays provide a standard for comparison of the measurements of atmospheric neutrinos to expectation. These are the " $\sec \theta$ effect" and the "east-west effect" [93]. The former refers originally to the enhancement of the flux of $>10 \mathrm{GeV}$ muons (and neutrinos) at large zenith angles because the parent pions propagate more in the low density upper atmosphere where decay is enhanced relative to interaction. For neutrinos from muon decay, the enhancement near the horizontal becomes important for $E_{\nu}>1 \mathrm{GeV}$ and arises mainly from the increased pathlength through the atmosphere for muon decay in flight. Fig. 14.4 from Ref. [94] shows a comparison between measurement and expectation for the zenith angle dependence of multi- GeV electron-like (mostly ν_{e}) and muonlike (mostly ν_{μ}) events separately. The ν_{e} show an enhancement near the horizontal and approximate equality for nearly upward $(\cos \theta \approx-1)$ and nearly downward $(\cos \theta \approx 1)$ events. There is, however, a very significant deficit of upward $(\cos \theta<0) \nu_{\mu}$ events, which have long pathlengths comparable to the radius of the Earth. This feature is the principal signature for atmospheric neutrino oscillations [92].

Muons that enter the detector from outside after production in charged-current interactions of neutrinos naturally reflect a higher energy portion of the neutrino spectrum than contained events because the muon range increases with energy as well as the cross section. The relevant energy range is $\sim 10<E_{\nu}<1000 \mathrm{GeV}$, depending somewhat on angle. Neutrinos in this energy range show a $\sec \theta$ effect similar to muons (see Eq. (30.4)). This causes the flux of horizontal neutrino-induced muons to be approximately a factor two higher than the vertically upward flux. The upper and lower edges of the horizontal shaded region in Fig. 30.7 correspond to horizontal and vertical intensities of neutrino-induced muons. Table 30.3 gives the measured fluxes of upward-moving neutrinoinduced muons averaged over the lower hemisphere. Generally the definition of minimum muon energy depends on where it passes through the detector. The tabulated effective minimum energy estimates the average over various accepted trajectories.

30.5 Air Showers

So far we have discussed inclusive or uncorrelated fluxes of various components of the cosmic radiation. An air shower is caused by a single cosmic ray with energy high enough for its cascade to be detectable at the ground. The shower has a hadronic core, which acts as a collimated source of electromagnetic subshowers, generated mostly from $\pi^{0} \rightarrow \gamma \gamma$ decays. The resulting electrons and positrons are the most numerous charged particles in the shower. The number of muons, produced by decays of charged mesons, is an order of magnitude lower. Air showers spread over a large area on the ground, and arrays of detectors operated for long times are useful for studying cosmic rays with primary en-

Figure 30.8: The all-particle spectrum as a function of E (energy-per-nucleus) from air shower measurements [95-105]
ergy $E_{0}>100 \mathrm{TeV}$, where the low flux makes measurements with small detectors in balloons and satellites difficult.

Greisen [106] gives the following approximate analytic expressions for the numbers and lateral distributions of particles in showers at ground level. The total number of muons N_{μ} with energies above 1 GeV is

$$
\begin{equation*}
N_{\mu}(>1 \mathrm{GeV}) \approx 0.95 \times 10^{5}\left(N_{e} / 10^{6}\right)^{3 / 4} \tag{30.8}
\end{equation*}
$$

where N_{e} is the total number of charged particles in the shower (not just $e^{ \pm}$). The number of muons per square meter, ρ_{μ}, as a function of the lateral distance r (in meters) from the center of the shower is

$$
\begin{equation*}
\rho_{\mu}=\frac{1.25 N_{\mu}}{2 \pi \Gamma(1.25)}\left(\frac{1}{320}\right)^{1.25} r^{-0.75}\left(1+\frac{r}{320}\right)^{-2.5} \tag{30.9}
\end{equation*}
$$

where Γ is the gamma function. The number density of charged particles is

$$
\begin{equation*}
\rho_{e}=C_{1}\left(s, d, C_{2}\right) x^{(s-2)}(1+x)^{(s-4.5)}\left(1+C_{2} x^{d}\right) \tag{30.10}
\end{equation*}
$$

Here s, d, and C_{2} are parameters in terms of which the overall normalization constant $C_{1}\left(s, d, C_{2}\right)$ is given by
$C_{1}\left(s, d, C_{2}\right)=\frac{N_{e}}{2 \pi r_{1}^{2}}\left[B(s, 4.5-2 s) C_{2} B(s+d, 4.5-d-2 s)\right]^{-1}$, (30.11) where $B(m, n)$ is the beta function. The values of the parameters depend on shower size $\left(N_{e}\right)$, depth in the atmosphere, identity of the primary nucleus, etc. For showers with $N_{e} \approx 10^{6}$ at sea level, Greisen uses $s=1.25, d=1$, and $C_{2}=0.088$. Finally, x is r / r_{1}, where r_{1} is the Molière radius, which depends on the density of the atmosphere and hence on the altitude at which showers are detected. At sea level $r_{1} \approx 78 \mathrm{~m}$. It increases with altitude as the air density decreases. (See the section on electromagnetic cascades in the article on the passage of particles through matter in this Review).

The lateral spread of a shower is determined largely by Coulomb scattering of the many low-energy electrons and is characterized by the Moliere radius. The lateral spread of the muons $\left(\rho_{\mu}\right)$ is larger and depends on the transverse momenta of the muons at production as well as multiple scattering.

There are large fluctuations in development from shower to shower, even for showers initiated by primaries of the same energy and mass-especially for small showers, which are usually
well past maximum development when observed at the ground. Thus the shower size N_{e} and primary energy E_{0} are only related in an average sense, and even this relation depends on depth in the atmosphere. One estimate of the relation is [98]

$$
\begin{equation*}
E_{0} \sim 3.9 \times 10^{6} \mathrm{GeV}\left(N_{e} / 10^{6}\right)^{0.9} \tag{30.12}
\end{equation*}
$$

for vertical showers with $10^{14}<E<10^{17} \mathrm{eV}$ at $920 \mathrm{~g} \mathrm{~cm}^{-2}$ (965 m above sea level). As E_{0} increases, the shower maximum (on average) moves down into the atmosphere and the relation between N_{e} and E_{0} changes. Moreover, because of fluctuations, N_{e} as a function of E_{0} is not correctly obtained by inverting Eq. (30.12). At the maximum of shower development, there are approximately $2 / 3$ particles per GeV of primary energy.

Cosmic ray shower development is sensitive to hadronic physics in the forward region above energies that can be probed at accelerators. Hadronic interaction models used to interpret air shower measurements now incorporate data from the LHC, reducing the extrapolation required. However, differences between the simulated and observed properties of showers remain. Most notably, the observed muon content of showers near $10^{19} \mathrm{eV}$ exceeds that given by models by $30-60 \%$ [107].

There are three common types of air shower detectors: shower arrays that measure a ground parameter related to shower size N_{e} and muon number N_{μ} as well as the lateral distribution on the ground, optical Cherenkov and radio detectors that detect forward-beamed emission by the charged particles of the shower, and 'fluorescence' detectors that measure nitrogen scintillation excited by the charged particles in the shower. The fluorescence light is emitted isotropically so the showers can be observed from the side. Detection of radiofrequency emission from showers via geomagnetic and Askaryan mechanisms has been successfully employed in recent experiments [108]. Detailed simulations and cross-calibrations between different types of detectors are necessary to establish the primary energy spectrum from air-shower experiments.

Figure 30.8 shows the "all-particle" spectrum. The differential energy spectrum has been multiplied by $E^{2.6}$ in order to display the features of the steep spectrum that are otherwise difficult to discern. The steepening that occurs between 10^{15} and $10^{16} \mathrm{eV}$ is known as the knee of the spectrum. Another steepening occurs around $10^{17} \mathrm{eV}$, known as the second knee. The feature around $10^{18.5} \mathrm{eV}$ is called the ankle of the spectrum.

Air shower experiments typically have uncertain energy scales, dependent on an assumed composition and on the hadronic interaction model used when interpreting the data. Their systematic errors are therefore simplest when plotting $\frac{d N}{d \ln E}=E \frac{d N}{d E}$. When the spectrum is multiplied by a different power of energy, systematic errors in energy scale result in an apparent shift in the normalization of the spectrum; for example, when the spectrum is multiplied by $E^{2.6}$ a systematic shift of 20% in the energy scale results in a 34% change in the normalization of the plotted flux. See Ref. [53],§2.5.2 for further discussion of this issue.

In the energy range above $10^{17} \mathrm{eV}$, the fluorescence technique [109] is particularly useful because it can establish the primary energy in a nearly model-independent way by observing most of the longitudinal development of each shower, from which E_{0} is obtained by integrating the energy deposition in the atmosphere. The result, however, depends strongly on the light absorption in the atmosphere and the calculation of the detector's aperture.

Assuming the cosmic-ray spectrum below $10^{18} \mathrm{eV}$ is of galactic origin, the knee could indicate that most cosmic accelerators in the Galaxy have reached their maximum energy for acceleration of protons. Some types of expanding supernova remnants, for example, are estimated not to be able to accelerate protons above energies in the range of $10^{15} \mathrm{eV}$. Effects of propagation and confinement in the Galaxy [110] also need to be considered. A discussion of models of the knee may be found in Ref. [111].

The second knee may have a similar origin to the knee, but corresponding to steepening of the spectrum of heavy nuclei, particularly iron. The Kascade-Grande experiment has reported observation of a second steepening of the spectrum near $8 \times 10^{16} \mathrm{eV}$, with evidence that this structure is accompanied by a transition to

Figure 30.9: Expanded view of the highest energy portion of the cosmic-ray spectrum from data of the Pierre Auger Observatory [104] and the Telescope Array [105].
electron-poor showers resulting from heavy primaries [101]. Kascade Grande has also reported that the spectrum of light nuclei is steeper than the all-particle spectrum below the second knee and flattens in the vicinity of the second knee [112]. IceCube has performed a composition analysis using coincident surface (IceTop) and in-ice data, and finds that the mean logarithmic mass increases between $5 \times 10^{15} \mathrm{eV}$ and $10^{17} \mathrm{eV}$ [113]. Together, these data are suggestive that the knee and second knee may result from a Peters cycle, with a steepening of the spectrum of each primary element taking place at the same rigidity but different energy per particle [114].

The Auger and Telescope Array (TA) experiments have studied composition using the depth of shower maximum $X_{\max }$, a quantity that correlates strongly with $\ln (E / A)$ and with the interaction cross section of the primary particle. The Auger collaboration [115], using a post-LHC hadronic interaction model=, reports a composition becoming light up to $2 \times 10^{18} \mathrm{eV}$ but then becoming heavier above that energy, with the mean mass intermediate between protons and iron at $3 \times 10^{19} \mathrm{eV}$. The TA collaboration [116], using a different post-LHC model, has interpreted their data as implying a light primary composition (mainly p and He) of ultrahigh-energy cosmic-rays (UHECR) from 1.3×10^{18} to $4 \times 10^{19} \mathrm{eV}$. Auger and TA have also conducted a thorough joint analysis [117] and state that, at the current level of statistics and understanding of systematics, both data sets are compatible with being drawn from the same parent distribution, and that the TA data is compatible both with a light composition below $10^{19} \mathrm{eV}$ and with the mixed composition above $10^{19} \mathrm{eV}$ as reported by Auger.

Possible contributions to the origin of the ankle include a higher energy population of particles overtaking a lower energy population, for example an extragalactic flux beginning to dominate over the Galactic flux (e.g. Ref. [109]). Another proposed mechanism is is that the dip structure in the region of the ankle is due to $p \gamma \rightarrow e^{+}+e^{-}$energy losses of extragalactic protons on the 2.7 K cosmic microwave radiation (CMB) [118].

If the cosmic-ray flux at the highest energies is extragalactic in origin, there should be a rapid steepening of the spectrum (called the GZK feature) around $5 \times 10^{19} \mathrm{eV}$, resulting from the onset of inelastic interactions of UHE cosmic rays with the cosmic microwave background [119] [120]. Photo-dissociation of heavy nuclei in the mixed composition model [121] would have a similar effect. UHECR experiments have detected events of energy above $10^{20} \mathrm{eV}[109,122]$. The HiRes fluorescence experiment [103, 123] detected evidence of a suppression consistent with the GZK effect, and the Auger observatory [104] has also presented spectra showing this suppression based on surface detector measurements calibrated against fluorescence detectors using events detected in hybrid mode, i.e. with both the surface and the fluorescence detectors. The Telescope Array (TA) [105] has also presented a spectrum showing this suppression. The differential energy spec-
tra measured by the TA and by Auger agree within systematic errors below $10^{19} \mathrm{eV}$ (Fig. 30.9).

Cosmic rays above $5 \times 10^{19} \mathrm{eV}$ are predominantly from nearby sources $(<100 \mathrm{Mpc})$. Auger has reported the observation of a dipole of amplitude $6.6_{-0.8}^{+1.2} \%$ for cosmic rays with energies above $8 \times 10^{18} \mathrm{eV}$. The direction of the dipole indicates an extragalactic origin for these particles [124]. There are also hints of structure at smaller angular scales. TA has reported a 'hot spot' in the Northern Hemisphere at energies above $5.5 \times 10^{19} \mathrm{eV}$ of radius $\sim 25^{\circ}$ with a chance probability of this excess with respect to an isotropic distribution of 2.1×10^{-3} [125]. Auger has also reported an excess of events above $3.7 \times 10^{19} \mathrm{eV}$ in a region near the radioloud active galaxy Centaurus A with a post-trial significance of 3.9σ, and a correlation of the distribution of ultrahigh energy events with several catalogs of nearby astrophysical objects, with starburst galaxies giving the highest significance at 4.5σ [126].

30.6 Neutrinos at High Energies

Figure 30.10: The best-fit IceCube astrophysical all-flavor neutrino flux [127]. Also shown are differential limits on the flux of cosmogenic neutrinos set by four experiments [128-131] The IceCube limit on cosmogenic neutrinos accounts for a nuisance background of astrophysical neutrinos. The curves show the WaxmanBahcall benchmark flux (solid grey) [132,133], cosmogenic models with cosmic ray sources with maximum proton energy of $10^{20.5}$ eV evolving with the star-formation rate in proton dip (solid red) and Galactic composition (dashed red) scenarios [134], and 'minimal' cosmogenic models with protons constituting 100\% (solid blue) and 10% (dashed red) of the cosmic rays [135].

Neutrinos are expected to be produced in hadronic interactions in a variety of astrophysical objects. IceCube has reported a population of astrophysical neutrino events extending from tens of TeV to beyond ten $\mathrm{PeV}[127,136,137]$. Multimessenger observations of the flaring blazar TXS 0506+056 have identified this object as a high-energy neutrino source $[138,139]$.

There is also expected to be a neutrino flux produced in cosmic ray GZK interactions. Measuring this cosmogenic ${ }^{4}$ neutrino flux above $10^{18} \mathrm{eV}$ would help resolve the UHECR uncertainties mentioned above. One half of the energy that UHECR protons lose in photoproduction interactions that cause the GZK effects ends up in neutrinos [140]. Heavier nuclei produce lower energy neutrinos due to the lower energy of their constituent nucleons. The magnitude of the cosmogenic neutrino flux depends strongly on the cosmic-ray spectrum at acceleration, the cosmic-ray composition, the cosmological evolution of the cosmic-ray sources, and the energy of the Galactic-extragalactic transition.

The expected rate of cosmogenic neutrinos is lower than current limits obtained by IceCube [127],the Auger observatory [130], RICE [129, 141], and ANITA [131], which are shown in Fig. 30.10 together with a models for cosmogenic neutrino production $[134,135]$ and the Waxman-Bahcall benchmark flux of

[^55]neutrinos produced in cosmic ray sources $[132,133]$. At production, the dominant component of neutrinos comes from $\pi^{ \pm}$decays and has flavor content $\nu_{e}: \nu_{\mu}: \nu_{\tau}=1: 2: 0$. After oscillations, the arriving cosmogenic neutrinos are expected to be a 1:1:1 mixture of flavors. The sensitivity of each experiment depends on neutrino flavor, and all limits are expressed as three-flavor limits assuming a $1: 1: 1$ mixture.

References

[1] O. Adriani et al. (PAMELA), Science 332, 69 (2011).
[2] M. Aguilar et al. (AMS), Phys. Rev. Lett. 114, 171103 (2015).
[3] M. Aguilar et al. (AMS), Phys. Rev. Lett. 115, 21, 211101 (2015).
[4] K. Abe et al., Astrophys. J. 822, 2, 65 (2016).
[5] M. J. Christ et al., Astrophys. J. 502, 278 (1998).
[6] A.D. Panov et al. (ATIC Collab.), Bull. Russian Acad. of Science, Physics, 73, 564 (2009).
[7] V. A. Derbina et al. (RUNJOB), Astrophys. J. 628, L41 (2005).
[8] H. S. Ahn et al., Astrophys. J. 707, 593 (2009).
[9] J.J. Engelmann et al. (HEAO3-C2 Collab.), Astron. \& Astrophys. 233, 96 (1990).
[10] D. Müller et al. (CRN Collab.), Astrophys. J. 374, 356 (1991).
[11] M. Ave et al., Astrophys. J. 678, 262 (2008).
[12] F. Aharonian et al. (H.E.S.S.), Phys. Rev. D75, 042004 (2007).
[13] A. Archer et al. (VERITAS), Phys. Rev. D98, 2, 022009 (2018).
[14] D. Maurin et al., Astron. \& Astrophys. 569, A32 (2014).
[15] A. W. Strong, I. V. Moskalenko and V. S. Ptuskin, Ann. Rev. Nucl. Part. Sci. 57, 285 (2007).
[16] R.A. Mewaldt et al., Space Science Reviews 99,27(2001).
[17] A. A. Abdo et al., Astrophys. J. 698, 2121 (2009).
[18] A. U. Abeysekara et al. (HAWC, IceCube), Astrophys. J. 871, 1, 96 (2019).
[19] M. Amenomori et al., Astrophys. J. 711, 119 (2010).
[20] O. Adriani et al. (PAMELA), Phys. Rev. Lett. 106, 201101 (2011).
[21] M. Boezio et al., Astrophys. J. 532, 653 (2000).
[22] M. Aguilar et al. (AMS), Phys. Rev. Lett. 122, 10, 101101 (2019).
[23] S. Abdollahi et al. (Fermi-LAT), Phys. Rev. D95, 8, 082007 (2017).
[24] G. Ambrosi et al. (DAMPE), Nature 552, 63 (2017).
[25] O. Adriani et al. (CALET), Phys. Rev. Lett. 122, 18, 181102 (2019).
[26] F. Aharonian et al. (H.E.S.S.), Phys. Rev. Lett. 101, 261104 (2008).
[27] F. Aharonian et al. (H.E.S.S.), Astron. Astrophys. 508, 561 (2009).
[28] A. Archer et al. (VERITAS), Phys. Rev. D98, 6, 062004 (2018).
[29] Y. Shikaze et al., Astropart. Phys. 28, 154 (2007).
[30] O. Adriani et al. (PAMELA), Nature 458, 607 (2009).
[31] O. Adriani et al., Phys. Rev. Lett. 102, 051101 (2009).
[32] J.J. Beatty et al., Phys. Rev. Lett. 93, 24112 (2004).
[33] I. V. Moskalenko and A. W. Strong, Astrophys. J. 493, 694 (1998).
[34] A. Ibarra, D. Tran and C. Weniger, Int. J. Mod. Phys. A28, 1330040 (2013).
[35] D. Gaggero et al., Phys. Rev. Lett. 111, 021102 (2013).
[36] P.-F. Yin et al., Phys. Rev. D88, 2, 023001 (2013).
[37] M. Aguilar et al. (AMS), Phys. Rev. Lett. 110, 141102 (2013).
[38] L. Accardo et al. (AMS), Phys. Rev. Lett. 113, 121101 (2014).
[39] J. Nishimura et al., Adv. Space Research 19, 767 (1997).
[40] A. S. Beach et al., Phys. Rev. Lett. 87, 271101 (2001).
[41] A. Yamamoto et al., Adv. Space Research42, 443(2008).
[42] Y. Asaoka et al., Phys. Rev. Lett. 88, 51101 (2002).
[43] K. Abe et al., Phys. Rev. Lett. 108, 131301 (2012).
[44] H. Fuke et al., Phys. Rev. Lett. 95, 081101 (2005).
[45] I. Cholis, D. Hooper and T. Linden, Phys. Rev. D93, 4, 043016 (2016).
[46] R. Bellotti et al., Phys. Rev. D53, 35 (1996).
[47] R. Bellotti et al. (WiZard/MASS2), Phys. Rev. D60, 052002 (1999).
[48] M. Boezio et al. (WiZard/CAPRICE), Phys. Rev. D62, 032007 (2000).
[49] M. Boezio et al., Phys. Rev. D67, 072003 (2003).
[50] S. Coutu et al., Phys. Rev. D62, 032001 (2000).
[51] S. Haino et al., Phys. Lett. B594, 35 (2004).
[52] T. Sanuki et al., Phys. Rev. D75, 043005 (2007).
[53] T.K. Gaisser, R. Engel, and E. Resconi, Cosmic Rays and Particle Physics (second edition), Cambridge University Press (2016).
[54] P. Lipari, Astropart. Phys. 1, 195 (1993).
[55] E. Mocchiutti et al., in Proc. 28th Int. Cosmic Ray Conf., Tsukuba, 1627 (2003). [http://adsabs.harvard.edu/abs/2003ICRC....3.1627M].
[56] M. P. De Pascale et al., J. Geophys. Res. 98, A3, 3501 (1993).
[57] P.K.F. Grieder, Cosmic Rays at Earth, Elsevier Science (2001).
[58] J. Kremer et al., Phys. Rev. Lett. 83, 4241 (1999).
[59] P. Achard et al. (L3), Phys. Lett. B598, 15 (2004).
[60] O. C. Allkofer, K. Carstensen and D. W. Dau, Phys. Lett. 36B, 425 (1971).
[61] B. C. Rastin, J. Phys. G10, 1609 (1984).
[62] C. A. Ayre et al., J. Phys. G1, 584 (1975).
[63] H. Jokisch et al., Phys. Rev. D19, 1368 (1979).
[64] C. G. S. Costa, Astropart. Phys. 16, 193 (2001).
[65] P. Adamson et al. (MINOS), Phys. Rev. D76, 052003 (2007).
[66] S. Hayakawa, Cosmic Ray Physics, Wiley, Interscience, New York (1969).
[67] R.R. Daniel and S.A. Stephens, Revs. Geophysics \& Space Sci. 12, 233 (1974).
[68] K.P. Beuermann and G. Wibberenz, Can. J. Phys. 46, S1034 (1968).
[69] I. S. Diggory et al., J. Phys. A7, 741 (1974).
[70] V. Khachatryan et al. (CMS), Phys. Lett. B692, 83 (2010).
[71] N. Agafonova et al. (OPERA), Eur. Phys. J. C67, 25 (2010).
[72] P. Lipari and T. Stanev, Phys. Rev. D44, 3543 (1991).
[73] M. Crouch, in Proc. 20th Int. Cosmic Ray Conf., Moscow, 6, 165 (1987)
[http://adsabs.harvard.edu/abs/1987ICRC....6..165C].
[74] Yu.M. Andreev, V.I. Gurentzov, and I.M. Kogai, in Proc. 20th Int. Cosmic Ray Conf., Moscow, 6, 200 (1987),
[http://adsabs.harvard.edu/abs/1987ICRC....6..200A].
[75] M. Aglietta et al. (LVD), Astropart. Phys. 3, 311 (1995).
[76] M. Ambrosio et al. (MACRO), Phys. Rev. D52, 3793 (1995).
[77] C. Berger et al. (FREJUS), Phys. Rev. D40, 2163 (1989).
[78] C. Waltham et al., in Proc. 27th Int. Cosmic Ray Conf., Hamburg, 991 (2001), [http://adsabs.harvard.edu/abs/2001ICRC....3..991W].
[79] I. A. Belolaptikov et al. (BAIKAL), Astropart. Phys. 7, 263 (1997).
[80] J. Babson et al. (DUMAND), Phys. Rev. D42, 3613 (1990).
[81] P. Desiati et al., in Proc. 28th Int. Cosmic Ray Conf., Tsukuba, 1373 (2003) [http://adsabs.harvard.edu/abs/2003ICRC....3.1373D].
[82] T. Pradier (ANTARES), in "Proceedings, 43rd Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 1-8, 2008," 423-430 (2008).
[83] S. Aiello et al. (NEMO), Astropart. Phys. 66, 1 (2015).
[84] F. Reines et al., Phys. Rev. Lett. 15, 429 (1965).
[85] M.M. Boliev et al., in Proc. 3rd Int. Workshop on Neutrino Telescopes (ed. Milla Baldo Ceolin), 235 (1991).
[86] M. Ambrosio et al. (MACRO), Phys. Lett. B434, 451 (1998).
[87] F. Ronga (MACRO), in "Proceedings, 26th International Cosmic Ray Conference (ICRC), August 17-25, 1999, Salt Lake City: Invited, Rapporteur, and Highlight Papers," volume 2, 172 (1999), URL http://krusty.physics.utah. edu/~icrc1999/root/vol2/h4_1_07.pdf.
[88] R. Becker-Szendy et al., Phys. Rev. Lett. 69, 1010 (1992).
[89] Proc. 25th Int. Conf. High-Energy Physics, Singapore (eds. K.K. Phua and Y. Yamaguchi, World Scientific), 662 1991.
[90] S. Hatakeyama et al. (Kamiokande), Phys. Rev. Lett. 81, 2016 (1998).
[91] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 82, 2644 (1999).
[92] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998).
[93] T. Futagami et al. (Super-Kamiokande), Phys. Rev. Lett. 82, 5194 (1999).
[94] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D71, 112005 (2005).
[95] R. Alfaro et al. (HAWC), Phys. Rev. D96, 12, 122001 (2017).
[96] Yu. A. Fomin et al., Proc. 22nd Int. Cosmic Ray Conf., Dublin, 2, 85 (1991) [http://adsabs.harvard.edu/abs/1991ICRC....2...85F].
[97] M. Amenomori et al., Astrophys. J. 268, 1165 (2008).
[98] M. Nagano et al., J. Phys. G10, 1295 (1984).
[99] M. A. K. Glasmacher et al., Astropart. Phys. 10, 291 (1999).
[100] T. Antoni et al. (KASCADE), Astropart. Phys. 24, 1 (2005).
[101] W. D. Apel et al. (KASCADE Grande), Phys. Rev. Lett. 107, 171104 (2011).
[102] K. Andeen, M. Plum et al., (IceCube Collab.), Proceedings of Science (ICRC2019), 172 (2019).
[103] R. U. Abbasi et al. (HiRes), Phys. Rev. Lett. 100, 101101 (2008).
[104] V. Verzi et al., (Auger Collab.), Proceedings of Science (ICRC2019), 450 (2019).
[105] D. Ivanov et al., (Telescope Array Collab.), Proceedings of Science (ICRC2019), 298 (2019).
[106] K. Greisen, Ann. Rev. Nucl. Sci. 10, 63 (1960).
[107] A. Aab et al. (Pierre Auger), Phys. Rev. Lett. 117, 19, 192001 (2016).
[108] T. Huege, Phys. Rept. 620, 1 (2016).
[109] D. J. Bird et al. (HiRes), Astrophys. J. 424, 491 (1994).
[110] V.S. Ptuskin et al., Astron. \& Astrophys. 268, 726 (1993).
[111] J. R. Hoerandel, Astropart. Phys. 21, 241 (2004).
[112] W. D. Apel et al., Phys. Rev. D87, 081101 (2013), [arXiv:1304.7114].
[113] M. G. Aartsen et al. (IceCube) (2019), [arXiv:1906.04317].
[114] B. Peters, Nuovo Cimento XXII, 800 (1961).
[115] J. Bellido et al. (Auger Collab.), Proceedings of Science(ICRC2017), 506 (2017).
[116] D. Ikeda et al. (TA Collab.), Proceedings of Science(ICRC2017), 515 (2017).
[117] V. de Souza et al. (TA and Auger Collabs.), Proceedings of Science(ICRC2017), 522 (2017).
[118] V. Berezinsky, A. Z. Gazizov and S. I. Grigorieva, Phys. Rev. D74, 043005 (2006).
[119] K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
[120] G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966), [Pisma Zh. Eksp. Teor. Fiz.4,114(1966)].
[121] D. Allard et al., Astron. \& Astrophys. 443, L29 (2005).
[122] M. Takeda et al., Astropart. Phys. 19, 447 (2003).
[123] R. U. Abbasi et al. (HiRes), Astropart. Phys. 32, 53 (2009).
[124] E. Roulet et al., (Auger Collab.), Proceedings of Science (ICRC2019), 408 (2019.
[125] K. Kawata et al., (Telescope Array Collab.), Proceedings of Science (ICRC2019), 310 (2019).
[126] L. Caccianiga et al., (Auger Collab.), Proceedings of Science (ICRC2019), 206 (2019).
[127] M. G. Aartsen et al. (IceCube), Astrophys. J. 809, 1, 98 (2015).
[128] M. G. Aartsen et al. (IceCube), Phys. Rev. D98, 6, 062003 (2018).
[129] I. Kravchenko et al., Phys. Rev. D85, 062004 (2012).
[130] F. Pedriera et al., (Auger Collab.), Proceedings of Science (ICRC2019), 172 (2019).
[131] C. Deaconu et al., (ANITA Collab.), Proceedings of Science (ICRC2019), 867 (2019).
[132] E. Waxman and J. N. Bahcall, Phys. Rev. D59, 023002 (1999).
[133] E. Waxman, 33-45 (2017).
[134] K. Kotera, D. Allard and A. V. Olinto, JCAP 1010, 013 (2010).
[135] M. Ahlers and F. Halzen, Phys. Rev. D86, 083010 (2012).
[136] M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013).
[137] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113, 101101 (2014).
[138] M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403), Science 361, eaat1378 (2018).
[139] M. G. Aartsen et al. (IceCube), Science 361, 6398, 147 (2018).
[140] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. 28B, 423 (1969).
[141] I. Kravchenko et al., Phys. Rev. D73, 082002 (2006).

Experimental Methods and Colliders

31. Accelerator physics of colliders (rev.) 521
32. High-energy collider parameters (rev.) 529
33. Neutrino beam lines at high-energy proton synchrotrons (rev.) 534
34. Passage of particles through matter (rev.) 535
35. Particle detectors at accelerators (rev.) 551
36. Particle detectors for non-accelerator phys. (rev.) 589
37. Radioactivity and radiation protection (rev.) 612
38. Commonly used radioactive sources (rev.) 618

31. Accelerator Physics of Colliders

Revised August 2019 by M.J. Syphers (Northern Illinois U.; FNAL) and F. Zimmermann (CERN).

This article provides background for the High-Energy Collider Parameter Tables that follow and some additional information.

31.1 Luminosity

The number of events, $N_{\text {exp }}$, is the product of the cross section of interest, $\sigma_{\text {exp }}$, and the time integral over the instantaneous luminosity, \mathcal{L} :

$$
\begin{equation*}
N_{\exp }=\sigma_{\exp } \times \int \mathcal{L}(t) d t \tag{31.1}
\end{equation*}
$$

Today's colliders all employ bunched beams. If two bunches containing n_{1} and n_{2} particles collide head-on with average collision frequency $f_{\text {coll }}$, a basic expression for the luminosity is

$$
\begin{equation*}
\mathcal{L}=f_{\text {coll }} \frac{n_{1} n_{2}}{4 \pi \sigma_{x}^{*} \sigma_{y}^{*}} \mathcal{F} \tag{31.2}
\end{equation*}
$$

where σ_{x}^{*} and σ_{y}^{*} characterize the rms transverse beam sizes in the horizontal (bend) and vertical directions at the interaction point, and \mathcal{F} is a factor of order 1 , that takes into account geometric effects such as a crossing angle and finite bunch length, and dynamic effects, such as the mutual focusing of the two beam during the collision. For a circular collider, $f_{\text {coll }}$ equals the number of bunches per beam times the revolution frequency. In 31.2, it is assumed that the bunches are identical in transverse profile, that the profiles are Gaussian and independent of position along the bunch, and the particle distributions are not altered during bunch crossing. Nonzero beam crossing angles θ_{c} in the horizontal plane and long bunches (rms bunch length σ_{z}) will reduce the luminosity, e.g., by a factor $\mathcal{F} \approx 1 /\left(1+\phi^{2}\right)^{1 / 2}$, where the parameter $\phi \equiv \theta_{c} \sigma_{z} /\left(2 \sigma_{x}^{*}\right)$ is known as the Piwinski angle. Another luminosity reduction for long bunches is due to the "hourglass" effect (see below).

Whatever the distribution at the source, by the time the beam reaches high energy, the normal form is a useful approximation as suggested by the σ-notation. In the case of an electron storage ring, synchrotron radiation leads to a Gaussian distribution in equilibrium, but even in the absence of radiation the central limit theorem of probability and the diminished importance of space charge effects produce a similar result. Beam tails are often modelled by the superposition of a second Gaussian distribution with larger size and much lower intensity.

The luminosity may be obtained directly by measurement of the beam properties in Eq. 31.2. For continuous measurements, an expression similar to Eq. 31.1 with $N_{r e f}$ from a known reference cross section, $\sigma_{r e f}$, may be used to determine $\sigma_{\exp }$ according to $\sigma_{e x p}=\left(N_{e x p} / N_{r e f}\right) \sigma_{r e f}$.

In the Tables, luminosity is stated in units of $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. Integrated luminosity, on the other hand, is usually quoted as the inverse of the standard measures of cross section such as femtobarns and, recently, attobarns. Subsequent sections in this report briefly expand on the dynamics behind collider design, comment on the realization of collider performance in a selection of today's facilities, and end with some remarks on future possibilities.

31.2 Beam Dynamics

The first concern of beam dynamics is stability. While a reference particle proceeds along the design, or reference, trajectory other particles in the bunch are to remain close by. Assume that the reference particle carries a right-handed Cartesian coordinate system, with the z-coordinate pointed in the direction of motion along the reference trajectory. The right-handed coordinate system would indicate the reference particle to travel clockwise around a storage ring. The independent variable is the distance s of the reference particle along this trajectory rather than time, and for simplicity this path is taken to be planar. The transverse coordinates are x and y, where $\{x, z\}$ defines the plane of the reference trajectory.

Several time scales are involved, and the approximations used in writing the equations of motion reflect that circumstance. All of today's high energy colliders are alternating-gradient synchrotrons
or, respectively, storage rings $[1,2]$, and the shortest time scale is that associated with transverse motion, that is described in terms of betatron oscillations, so called because of their analysis for the betatron accelerator species years ago. The linearized equations of motion of a particle displaced from the reference particle are

$$
\begin{align*}
x^{\prime \prime}+K_{x} x=0, \quad K_{x} \equiv \frac{q}{p} \frac{\partial B}{\partial x}+\frac{1}{\rho^{2}} \\
y^{\prime \prime}+K_{y} y=0, \quad K_{y} \equiv-\frac{q}{p} \frac{\partial B}{\partial x} \tag{31.3}\\
z^{\prime}=-x / \rho
\end{align*}
$$

where the magnetic field $B(s)$ along the design trajectory is only in the y direction, contains only dipole and quadrupole terms, and is treated as static here. The radius of curvature due to the field on the reference orbit is $\rho ; z$ represents the longitudinal distance from the reference particle; p and q are the particle's momentum and charge, respectively. The prime denotes $d / d s$. The pair $\left(x, x^{\prime}\right)$ describes approximately-canonical variables. For more general cases (e.g. acceleration) one should use (x, p_{x}) instead, where p_{x} denotes the transverse momentum in the x-direction.
The equations for x and y are those of harmonic oscillators but with a restoring force periodic in s; that is, they are instances of Hill's equation. The solution may be written in the form

$$
\begin{align*}
x(s) & =A_{x} \sqrt{\beta_{x}} \cos \psi_{x} \tag{31.4}\\
x^{\prime}(s) & =-\frac{A_{x}}{\sqrt{\beta_{x}}}\left[\alpha_{x} \cos \psi_{x}+\sin \psi_{x}\right] \tag{31.5}
\end{align*}
$$

where A_{x} is a constant of integration, $\alpha_{x} \equiv-(1 / 2) d \beta_{x}(s) / d s$, and the envelope of the motion is modulated by the amplitude function, β_{x}. A solution of the same form describes the motion in y. The subscripts will be suppressed in the following discussion.

The amplitude function satisfies

$$
\begin{equation*}
2 \beta \beta^{\prime \prime}-\beta^{2}+4 \beta^{2} K=4 \tag{31.6}
\end{equation*}
$$

and in a region free of magnetic field it should be noted that the solution of Eq. 31.6 is a parabola. Expressing A in terms of x, x^{\prime} yields

$$
\begin{align*}
& A^{2}=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2} \\
& \quad=\frac{1}{\beta}\left[x^{2}+\left(\alpha x+\beta x^{\prime}\right)^{2}\right] \tag{31.7}
\end{align*}
$$

with $\gamma \equiv\left(1+\alpha^{2}\right) / \beta$. In a single pass system such as a linac, the Courant-Snyder parameters α, β, γ may be selected to match the x, x^{\prime} distribution of the input beam; in a recursive system, the parameters are usually defined by the structure rather than by the beam.
The relationships between the parameters and the structure may be seen by treatment of a simple lattice consisting of equallyspaced thin-lens quadrupoles whose magnetic-field gradients are equal in magnitude but alternating in sign. For this discussion, the weak focusing effects of the bending magnets may be neglected. The propagation of $X \equiv\left\{x, x^{\prime}\right\}$ through a repetition period may be written $X_{2}=M X_{1}$, with the matrix $M=F O D O$ composed of the matrices

$$
F=\left(\begin{array}{cc}
1 & 0 \tag{31.8}\\
-1 / f & 1
\end{array}\right), D=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right), O=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)
$$

where f is the magnitude of the focal length and L the lens spacing. Then

$$
M=\left(\begin{array}{cc}
1+\frac{L}{f} & 2 L+\frac{L^{2}}{f} \tag{31.9}\\
-\frac{L}{f^{2}} & 1-\frac{L}{f}-\frac{L^{2}}{f^{2}}
\end{array}\right)
$$

The matrix for y is identical in form differing only by a change in sign of the terms linear in $1 / f$. An eigenvector-eigenvalue analysis of the matrix M shows that the motion is stable provided $f>$ $L / 2$. While that criterion is easily met, in practice instability may be caused by many other factors, including the beam-beam interaction.

Standard focus-drift-defocus-drift, or $F O D O$, cells such as characterized in simple form by Eq. 31.9 occupy most of the layout of
a large collider ring and may be used to set the scale of the amplitude function and related phase advance. Conversion of Eq. 31.4 to a matrix form equivalent to Eq. 31.9 (but more generally valid, i.e. for any stable periodic linear motion) gives

$$
M=\left(\begin{array}{cc}
C+\alpha S & \beta S \tag{31.10}\\
-\gamma S & C-\alpha S
\end{array}\right)
$$

where $C \equiv \cos \Delta \psi, S \equiv \sin \Delta \psi$, and the relation between structure and amplitude function is specified by setting the values of the latter to be the same at both ends of the cell. By comparison of Eq. 31.9 and Eq. 31.10 one finds $C=1-L^{2} /\left(2 f^{2}\right)$, so that the choice $f=L / \sqrt{2}$ would give a phase advance $\Delta \psi$ of 90 degrees for the standard cell. The amplitude function would have a maximum at the focusing quadrupole of magnitude $\hat{\beta}=2.7 L$, illustrating the relationship of alternating gradient focusing amplitudes to relatively local aspects of the design. Other functionalities such as injection, extraction, and HEP experiments are included by lattice sections matched to the standard cell parameters (β, α) at the insertion points.

The phase advances according to $d \psi / d s=1 / \beta$; that is, β also plays the role of a local $\lambda / 2 \pi$, and the tune, ν, is the number of such oscillations per turn about the closed path. In the neighborhood of an interaction point (IP), the beam optics of the ring is configured so as to produce a narrow focus; the value of the amplitude function at this point is designated β^{*}.
The motion as it develops with s describes an ellipse in $\left\{x, x^{\prime} \equiv\right.$ $d x / d s\}$ phase space, the area of which is πA^{2}, where A is the constant in Eq. 31.4. If the interior of that ellipse is populated by an ensemble of non-interacting particles, that area, given the name emittance and denoted by ε, would change only with energy. More precisely, for a beam with a Gaussian distribution in x, x^{\prime}, the area containing one standard deviation σ_{x}, divided by π, is used as the definition of emittance in the Tables:

$$
\begin{equation*}
\varepsilon_{x} \equiv \frac{\sigma_{x}^{2}}{\beta_{x}} \tag{31.11}
\end{equation*}
$$

with a corresponding expression in the other transverse direction, y. For most of the entries in the Tables the standard deviation is used as the beam radius.

At larger transverse amplitudes, due to the influence of nonlinear magnetic fields, the particle motion does not remain linear. Nonlinear fields arise, e.g., from the sextupole magnets deployed to correct the chromaticty (i.e., the change of focusing with particle momentum), or from persistent-current field errors in the superconducting magnets of hadron synchrotrons. At a certain amplitude the nonlinear particle motion ceases to the stable, and particles are lost after circulating for a possibly large number of turns. This limit of stability is called the "dynamic aperture".

To complete the coordinates used to describe the particle motion, and to characterize the longitudinal behavior, we take as the variable conjugate to z the fractional momentum deviation $\delta p / p$ from that of the reference particle. Radiofrequency electric fields in the s direction provide a means for longitudinal oscillations, and the frequency determines the bunch length. The frequency of this system appears in the Tables as does the rms value of $\delta p / p$ characterized as "energy spread" of the beam.

For HEP bunch length is a significant quantity for a variety of reasons, but in the present context if the bunch length, or (with nonzero crossing angle) the effective interaction length, becomes larger than β^{*} the luminosity is adversely affected. This is because β grows parabolically as one proceeds away from the interaction point and so the beam size increases thus lowering the contribution to the luminosity from such locations. This is often called the "hourglass" effect.

In a storage ring, the bunch length tends to increase with higher bunch intensity due to the so-called longitudinal "impedance" or "wake fields". Similar collective electromagnetic interactions with the beam environment can lead to longitudinal and transverse single- or multi-bunch instabilities [3,4], which may either increase energy spread or beam emittance, and even result in a beam loss.

Another major external electromagnetic field interaction, in the single particle context, is the production of synchrotron radiation
due to centripetal acceleration, given by the Larmor formula multiplied by a relativistic magnification factor of $\gamma^{4}[5]$. In the case of electron rings this process determines the equilibrium emittance through a balance between radiation damping and excitation of oscillations, and further serves as a barrier to future higher energy versions in this variety of collider. A more comprehensive discussion of betatron oscillations, longitudinal motion, and synchrotron radiation is available in the 2008 version of the PDG review [6].

Synchrotron radiation emitted during the collision in the field of the opposing beam is called beamstrahlung. Beamstrahlung is relevant for both linear colliders, where it may degrade the luminosity spectrum, and for future highest-energy circular colliders, where it may limit the beam lifetime, and also increases the energy spread and bunch length of the stored beam. For both types of colliders the beamstrahlung is mitigated by making the colliding beams as flat as possible at the interaction point $\left(\sigma_{x}^{*} \gg \sigma_{y}^{*}\right)$. The photon energy spectrum of the beamstrahlung is characterized by the parameter Upsilon $\Upsilon=(2 / 3) \hbar \omega_{c} / E_{b}[7]$, with $\hbar \omega_{c}$ denoting the critical photon energy and E_{b} the beam energy. The spectrum strongly deviates from the classical synchrotron radiation spectrum for Υ approaching 1 .

31.3 Road to High Luminosity

Eq. 31.2 can be recast in terms of emittances and amplitude functions as

$$
\begin{equation*}
\mathcal{L}=f \frac{n_{1} n_{2}}{4 \pi \sqrt{\varepsilon_{x} \beta_{x}^{*} \varepsilon_{y} \beta_{y}^{*}}} \mathcal{F} . \tag{31.12}
\end{equation*}
$$

Under the assumption $\mathcal{F} \approx 1$, to achieve high luminosity, all one has to do is make high population bunches of low emittance collide at high frequency at locations where the beam optics provides as low values of the amplitude functions as possible.

Expressions for the reductions due to crossing angle and other effects can be found elsewhere [8]. While there are no fundamental limits to producing luminosity, there are certainly challenges. Here we have space to mention only a few of these. The beambeam tune shift appears in the Tables. A bunch in beam 1 presents a (nonlinear) lens to a particle in beam 2 resulting in changes to the particle's transverse tune with a range characterized by the (vertical) beam-beam parameter [8]

$$
\begin{equation*}
\xi_{y, 2}=\frac{m_{e} r_{e} q_{1} q_{2} n_{1} \beta_{y, 2}^{*}}{2 \pi m_{A, 2} \gamma_{2} \sigma_{y, 1}^{*}\left(\sigma_{x, 1}^{*}+\sigma_{y, 1}^{*}\right)} \tag{31.13}
\end{equation*}
$$

where r_{e} denotes the classical electron radius ($r_{e} \approx 2.8 \times 10^{-15} \mathrm{~m}$), m_{e} the electron mass, $q_{1}\left(q_{2}\right)$ the particle charge of beam 1 (2) in units of the elementary charge, and $m_{A, 2}$ the mass of beam2 particles. The transverse oscillations are susceptible to resonant perturbations from a variety of sources such as imperfections in the magnetic guide field, so that certain values of the tune must be avoided. Accordingly, the tune spread arising from ξ is limited [9-11]. A glance at the Tables shows that electrons are more forgiving than protons thanks to the damping effects of synchrotron radiation; the ξ-values for the former are about an order of magnitude larger than those for protons. In linear colliders, the strength of the collision is measured by the ratio of the rms bunch length σ_{z} to the approximate (linear, thin-lens) beambeam focal length. This ratio, called disruption parameter D_{y} [7], is related to ξ_{y} via $D_{y}=4 \pi \sigma_{z} \xi_{y} / \beta_{y}^{*}$. For hadron colliders, two fundamental luminosity limits are the beam lifetime, determined by burn-off in the collisions, and the radiation from the collision debris, which affects the equipment lifetime.

A subject of present intense interest is the electron-cloud effect $[12,13]$; actually a variety of related processes come under this heading. They typically involve a buildup of electron density in the vacuum chamber due to emission from the chamber walls stimulated by electrons or photons originating from the beam itself. For instance, there is a process closely resembling the multipacting effects familiar from radiofrequency system commissioning. Low energy electrons are ejected from the walls by photons from positron or proton beam-produced synchrotron radiation. These electrons are accelerated toward a beam bunch, but by the time they reach the center of the vacuum chamber the bunch has gone
and so the now-energetic electrons strike the opposite wall to produce more secondaries. These secondaries are now accelerated by a subsequent bunch, and so on. Among the disturbances that this electron accumulation can produce is an enhancement of the tune spread within the bunch; the near-cancellation of bunch-induced electric and magnetic fields is no longer in effect.

If the luminosity of Eq. 31.12 is rewritten in terms of the beambeam parameter, Eq. 31.13, the emittance itself disappears. However, the emittance must be sufficiently small to realize a desired magnitude of beam-beam parameter, but once ξ_{y} reaches this limit, further lowering the emittance does not lead to higher luminosity.

For electron synchrotrons and storage rings, radiation damping provides an automatic route to achieve a small emittance. In fact, synchrotron radiation is of key importance in the design and optimization of $\mathrm{e}^{+} \mathrm{e}^{-}$colliders. While vacuum stability and electron clouds can be of concern in the positron rings, synchrotron radiation along with the restoration of longitudinal momentum by the RF system has the positive effect of generating very small transverse beam sizes and small momentum spread. Further reduction of beam size at the interaction points using standard beam optics techniques and successfully contending with high beam currents has led to record luminosities in these rings. To maximize integrated luminosity the beam can be "topped off" by injecting new particles without removing existing ones - a feature difficult to imitate in hadron colliders.

For hadrons, particularly antiprotons, two inventions have played a prominent role. Stochastic cooling [14] was employed first to prepare beams for the $S \bar{p} p S$ and subsequently in the Tevatron, and to cool the beams at full energy in RHIC [15-17]. Electron cooling [18] was also used in the Tevatron, RHIC and LHC complexes to great advantage. Further innovations are underway driven by the needs of potential future projects; these are noted in the final section. For future energy-frontier hadron colliders, like the proposed FCC-hh and SPPC, also synchrotron radiation damping becomes an important cooling mechanism.

31.4 Recent High Energy Colliders

Collider accelerator physics of course goes far beyond the elements of the preceding sections. In this and the following section elaboration is made on various issues associated with some of the recently operating colliders, particularly factors which impact integrated luminosity. The various colliders utilizing hadrons each have unique characteristics and are, therefore, discussed separately. As space is limited, general references are provided where much further information can be obtained. A more complete list of recent colliders and their parameters can be found in the HighEnergy Collider Parameters tables.

31.4.1 Tevatron

The first synchrotron in history using superconducting magnets, the Tevatron [19], was the highest energy collider for 25 years. Its 4.5 T dipole magnets employed superconducting $\mathrm{Nb}-$ Ti cable operating at 4.5 K [20], requiring what was then the world's largest cryogenic system [21]. Tevatron operation was terminated in September 2011, after delivering more than $10 \mathrm{fb}^{-1}$ to the p- $\overline{\mathrm{p}}$ collider experiments CDF and D0. The route to high integrated luminosity in the Tevatron was governed by the antiproton production rate, the turn-around time to produce another store, and the resulting optimization of store time. The antiproton production complex [22] consisted of three $8 \mathrm{GeV} \bar{p}$ accelerators - Accumulator, Debuncher, and Recycler - and employed 25 independent stochastic cooling systems and one high energy electron cooling set-up [23] to accumulate up to record high $25 \times 10^{10} \bar{p}$ per hour. The proton and antiproton beams in the Tevatron circulated in a single vacuum pipe and thus were placed on separated orbits which wrapped around each other in a helical pattern outside of the interaction regions. As the available aperture was limited, the long-range encounters played an important role. Despite these limitations, a total beam-beam tuneshift parameter of $N_{I P} \xi \approx 0.025-0.03$ was achieved, a record for hadron beams [24], where $N_{I P}$ denotes the number of collision points (2 for the Tevatron). Other notable advances at the Tevatron included the first permanent-magnet-based high energy accelerator
(Recycler), novel longitudinal beam manipulation techniques such as slip-stacking and momentum mining $[25,26]$, and the first use of electron lenses [27] for beam collimation and for compensation of long-range beam-beam effects. The Tevatron ultimately achieved luminosities a factor of 430 over its original design specification.

31.4.2 HERA

HERA [28], operated between 1992 and 2007, delivered nearly $1 \mathrm{fb}^{-1}$ of integrated luminosity to the electron-proton collider experiments H1 and ZEUS. HERA was the first high-energy leptonhadron collider, and also the first facility to employ both applications of superconductivity: magnets and accelerating structures. The proton beams of HERA had a maximum energy of 920 GeV . The lepton beams (positrons or electrons) were provided by the existing DESY complex, and were accelerated to 27.5 GeV using conventional magnets. At collision a 4-times higher frequency RF system, compared with the injection RF, was used to generate shorter bunches, thus helping alleviate the hourglass effect at the collision points. The lepton beam naturally would become transversely polarized (within about 40 minutes) and "spin rotators" were implemented on either side of an IP to produce longitudinal polarization at the experiment.

31.4.3 LEP

Installed in a tunnel of 27 km circumference, LEP [29] was the largest circular $\mathrm{e}^{+} \mathrm{e}^{-}$collider built so far. LEP was operated from 1989 to 2000 with beam energies ranging from 45.6 to 104.5 GeV and a maximum luminosity of $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, at 98 GeV , surpassing all relevant design parameters. Up to about 60 GeV , LEP used resonant depolarization to precisely measure the beam energy $[30,31]$.

31.4.4 SLC

Based on an existing 3-km long S-band linac, the SLC [32] was the first and only linear collider. It was operated from 1987 to 1998 with a constant beam energy of 45.6 GeV , up to about 80% electron-beam polarization, quasi-flat beams, a final-focus optics with local chromatic correction based on four interleaved sextupoles and $\beta_{y}^{*} \approx 1 \mathrm{~mm}$. In its last year, SLC achieved a peak luminosity of about $3 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, roughly half of the design value.

31.5 Present Collider Facilities
 31.5.1 LHC

The superconducting Large Hadron Collider [33] presently is the world's highest energy collider. Early operations for HEP were first at 3.5 TeV (in 2011) and then 4 TeV per proton [34] (since 2012), with the beam energy increased to 6.5 TeV in 2015. The current status is best checked at the Web site [35]. In 2017 peak luminosities above $2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (more than twice the design value) have been achieved. To meet its luminosity goals the LHC operates with a high beam current of approximately 0.5 A, leading to stored energies of several hundred MJ per beam. Component protection, beam collimation, and controlled energy deposition were given a high priority. Additionally, at energies of 5-7 TeV per particle, synchrotron radiation moves from being a curiosity to a challenge in a hadron accelerator for the first time. At design beam current the cryogenic system must remove roughly 7 kW due to synchrotron radiation, intercepted at a temperature of about $5-20 \mathrm{~K}$. As the photons are emitted their interactions with the vacuum chamber wall can generate free electrons, with consequent "electron cloud" development. Much care was taken to design a special beam screen for the chamber to mitigate this issue. The two proton beams are contained in separate pipes throughout most of the circumference, and are brought together into a single pipe at the interaction points. The large number of bunches, and subsequent short bunch spacing, would lead to approximately 30 head-on collisions through 120 m of common beam pipe at each IP. Thus, a small crossing angle is employed, which reduces the luminosity by about 15%. Still, the bunches moving in one direction experience multiple long-range encounters with the counter-rotating bunches and the resulting perturbations of the particle motion continues to remain a concern. The luminosity scale is absolutely calibrated by the "van der Meer method" as was invented for the ISR [36], and followed by multiple, re-
dundant luminosity monitors (see for example [37] and references therein). The Tables also show the LHC luminosity performance in $\mathrm{Pb}-\mathrm{Pb}$ collisions, which for the ATLAS and CMS experiments well exceeded the design value, while for the ALICE [38] experiment, the luminosity is "levelled" near the $\mathrm{Pb}-\mathrm{Pb}$ design value of $10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. The LHC can also provide $\mathrm{Pb}-\mathrm{p}$ collisions as it did in 2013 and 2016, and other ion-ion or ion-proton collisions, at different energies.

In the coming years, an ambitious upgrade program, HL-LHC [39, 40], has as its target an order-of-magnitude increase in integrated luminosity through the utilization of $\mathrm{Nb}_{3} \mathrm{Sn}$ superconducting magnets, superconducting compact "crab" cavities and luminosity leveling also for ATLAS and CMS as its key ingredients.

31.5.2 $e^{+} e^{-}$Rings

Asymmetric energies of the two beams have allowed for the enhancement of B-physics research and for interesting interaction region designs. As the bunch spacing can be quite short, the lepton beams sometimes pass through each other at an angle, which may reduce the luminosity - unless the crossing angle can be taken advantage of. KEKB [41] installed high frequency "crab crossing" schemes to fully restore the geometric overlap of the colliding bunches. It attained over $1 \mathrm{fb}^{-1}$ of integrated luminosity in a single day. A different collision approach, called "crab waist", which relies on special sextupoles together with a large crossing angle, has been successfully implemented at DA Φ NE [42]. The crab-wiast collision scheme has also been partly realized at the KEKB upgrade, SuperKEKB, and it has indeed become a key ingredient for all proposed future $\mathrm{e}^{+} \mathrm{e}^{-}$circular colliders. SuperKEKB is aiming for luminosities of $8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ [43]. Other $\mathrm{e}^{+} \mathrm{e}^{-}$ring colliders currently in operation are BEPC-II, VEPP-2000 and VEPP-4M [43].

31.5.3 RHIC

The Relativistic Heavy Ion Collider [44] employs superconducting magnets, and collides combinations of fully-stripped ions such as H-H (p-p), p-Al, p-Au, d-Au, h-Au, Cu-Cu, Cu-Au, $\mathrm{Zr}-\mathrm{Zr}, \mathrm{Ru}-$ $\mathrm{Ru}, \mathrm{Au}-\mathrm{Au}$, and $\mathrm{U}-\mathrm{U}$ over a wide energy range [45]. The high charge per particle (+79 for gold, for instance) makes intra-beam scattering of particles within the bunch a special concern, even for seemingly moderate bunch intensities. In 2012, 3-D stochastic cooling was successfully implemented in RHIC [17] and is now routinely used. With stochastic cooling, steady increases in the bunch intensity, and numerous other upgrades, RHIC now operates at 44 times the $\mathrm{Au}-\mathrm{Au}$ design average luminosity. Another special feature of accelerating heavy ions in RHIC is that the beams cross the "transition energy" during acceleration - a point where the derivative with respect to momentum of the revolution period is zero. This is more typical of low-energy accelerators, where the necessary phase jump required of the RF system is implemented rapidly and little time is spent near this condition. In the case of RHIC with heavy ions, the superconducting magnets do not ramp very quickly and the period of time spent crossing transition is long and must be dealt with carefully. For p-p operation the RHIC beams are always above their transition energy and so this condition is completely avoided. A RHIC physics program in search of a critical point in the nuclear matter phase diagram required operation below the nominal injection energy, and in order to reach the integrated luminosity goals the first bunched beam electron cooler was successfully commissioned for the lowest energies [46].

RHIC is also unique in its ability to accelerate and collide polarized proton beams. As proton beam polarization must be maintained from its low-energy source, successful acceleration through the myriad of depolarizing resonance conditions in high energy circular accelerators has taken years to accomplish. An energy of 255 GeV per proton with 55% final polarization per beam has been realized. As part of a scheme to compensate the head-on beam-beam effect, electron lenses operated routinely during the polarized proton operation at 100 GeV in 2015 [47].
Collisions between a RHIC proton beam and a electron beam stored in a new ring (eRHIC) is one of the two proposed configuration of a future US electron-ion collider (EIC) for nuclear physics
[48], the alternative being the addition of figure- 8 hadron and electron storage rings to the CEBAF facility at JLAB (JLEIC).

31.6 Future High Energy Colliders and Prospects

Recent accomplishments of particle physics have been obtained through high-energy and high-intensity experiments using hadronhadron, lepton-lepton, and lepton-proton colliders. Following the discovery of the Higgs particle at the LHC and in view of ongoing searches for "new physics" and rare phenomena, various options are under discussions and development to pursue future particlephysics research at higher energy and with appropriate luminosity. This is the basis for several new projects, ideas, and R\&D activities, which can only briefly be summarized here. Specifically, the following projects are noted: an energy upgrade of the LHC based on 16 T dipole magnets (HE-LHC) [49], two approaches to an electron-positron linear collider [50,51], larger 100-km circular tunnels supporting $\mathrm{e}^{+} \mathrm{e}^{-}$collisions up to either 240 [52] or 365 GeV [53] in the centre of mass along with a subsequent 70140 TeV or $100-\mathrm{TeV}$ proton-proton collider, possible future, or far future, muon-ring colliders [54,55], and potential use of plasma acceleration and other advanced schemes. Complementary studies are ongoing of a high-energy lepton-hadron collider bringing into collision a $60-\mathrm{GeV}$ electron beam from an energy-recovery linac with the 7 TeV protons circulating in the LHC (LHeC) [56, 57], or, much later, with the $50(35) \mathrm{TeV}$ protons of the 100 (70) TeV collider (FCC-eh, SPPC), and of $\gamma \gamma$ collider Higgs factories based on recirculating electron linacs (e.g. SAPPHiRE [58]). Tentative parameters of some of the colliders discussed, or mentioned, in this section are summarized in Table 31.1 and Table 31.2.

31.6.1 Electron-Positron Linear Colliders

For more than four decades, efforts have been devoted to develop high-gradient technology $\mathrm{e}^{+} \mathrm{e}^{-}$colliders in order to overcome the synchrotron radiation limitations of circular $\mathrm{e}^{+} \mathrm{e}^{-}$machines in the TeV energy range.

The primary challenge confronting a high energy, high luminosity single pass collider design is the power requirement, so that measures must be taken to keep the demand within bounds as illustrated in a transformed Eq. 31.2 [60]:

$$
\begin{equation*}
\mathcal{L} \approx \frac{137}{8 \pi r_{e}} \frac{P_{\mathrm{wall}}}{E_{c m}} \frac{\eta}{\sigma_{y}^{*}} N_{\gamma} H_{D} \tag{31.14}
\end{equation*}
$$

Here, $P_{\text {wall }}$ is the total wall-plug power of the collider, $\eta \equiv$ $P_{b} / P_{\text {wall }}$ the efficiency of converting wall-plug power into beam power $P_{b}=f_{\text {coll }} n E_{c m}, E_{c m}$ the cms energy, $n\left(=n_{1}=n_{2}\right)$ the bunch population, and σ_{y}^{*} the vertical rms beam size at the collision point. In formulating Eq. 31.14 the number of beamstrahlung photons emitted per $e^{ \pm}$, was approximated as $N_{\gamma} \approx 2 \alpha r_{e} n / \sigma_{x}^{*}$, where α denotes the fine-structure constant. The management of $P_{\text {wall }}$ leads to an upward push on the bunch population n with an attendant rise in the energy radiated due to the electromagnetic field of one bunch acting on the particles of the other. Keeping a significant fraction of the luminosity close to the nominal energy represents a design goal, which is met if N_{γ} does not exceed a value of about 1. A consequence is the use of flat beams, where N_{γ} is managed by the beam width, and luminosity adjusted by the beam height, thus the explicit appearance of the vertical beam size σ_{y}^{*}. The final factor in Eq. 31.14, H_{D}, represents the enhancement of luminosity due to the pinch effect during bunch crossing (the effect of which has been neglected in the expression for N_{γ}).

The approach designated by the International Linear Collider (ILC) is presented in the Tables, and the contrast with the collision-point parameters of the circular colliders is striking, though reminiscent in direction of those of the SLAC Linear Collider. The ILC Technical Design Report $[50,61]$ has a baseline cms energy of 500 GeV with upgrade provision for 1 TeV , and luminosity comparable to the LHC; recent tendancies have been toward a baseline of 250 GeV . The ILC is based on superconducting accelerating structures of the 1.3 GHz TESLA variety. Progress toward higher field gradients and Q values continues to be made, with nitrogen-doping techniques being a recent example [62].

At CERN, a design effort is underway on the Compact Linear

Table 31.1: Tentative parameters of selected future $e^{+} e^{-}$highenergy colliders. Parameters associated with different beam energy scenarios are comma-separated.

	FCC-ee	CEPC	ILC	CLIC
Species	$e^{+} e^{-}$	$e^{+} e^{-}$	$e^{+} e^{-}$	$e^{+} e^{-}$
Beam energy (GeV)	46, 120, 183	46, 120	125, 250	190, 1500
Circumference / Length (km)	97.75	100	20.5, 31	11, 50
Interaction regions	2	2	1	1
Est. integrated luminosity per experiment $\left(\mathrm{ab}^{-1} /\right.$ year $)$	26, 0.9, 0.17	4, 0.4	0.2, 0.2	0.2, 0.6
Peak luminosity ($10^{34} / \mathrm{cm}^{2} / \mathrm{s}$)	230, 8.5, 1.6	32, 3	1.4, 1.8	1.5, 6
Time between collisions ($\mu \mathrm{s}$)	0.015, 0.75, 8.5	0.025, 0.68	0.55	0.0005
Energy spread (rms, 10^{-3})	1.3, 1.65, 2.0	0.4, 1.0	$\begin{aligned} & e^{-}: 1.9,1.2 \\ & e^{+}: 1.5,0.7 \end{aligned}$	3.5
Bunch length (rms, mm)	12.1, 5.3, 3.8	8.5, 3.3	0.3	0.09, 0.044
IP beam size ($\mu \mathrm{m}$)	$\begin{gathered} \text { H: } 6.3,14,38 \\ \mathrm{~V}: 0.03,0.04,0.07 \end{gathered}$	$\begin{gathered} \text { H: 5.9, } 21 \\ \mathrm{~V}: 0.04,0.07 \end{gathered}$	$\begin{gathered} \mathrm{H}: 0.52,0.47 \\ \mathrm{~V}: 0.008,0.006 \end{gathered}$	$\begin{gathered} \mathrm{H}: 0.15,0.04 \\ \mathrm{~V}: 0.003, \\ 0.001 \end{gathered}$
Injection energy (GeV)	on energy (topping off)	on energy (topping off)	5.0 (linac)	9.0 (linac)
Transv. rms emittance (pm)	$\begin{gathered} \mathrm{H}: 270,630,1340 \\ \mathrm{~V}: 1,1,3 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}: 170,1210 \\ \mathrm{~V}: 2,3 \end{gathered}$	$\begin{gathered} \mathrm{H}: 20,10 \\ \mathrm{~V}: 0.14,0.07 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{H}: 2.4,0.22 \\ & \mathrm{~V}: 0.8,0.01 \\ & \hline \end{aligned}$
β^{*} at interaction point (cm)	$\begin{gathered} \mathrm{H}: 15,30,100 \\ \mathrm{~V}: 0.08,0.1,0.16 \end{gathered}$	$\begin{gathered} \mathrm{H}: 20,36 \\ \mathrm{~V}: 0.1,0.15 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}: 1.3,2.2 \\ \mathrm{~V}: 0.041,0.048 \\ \hline \end{gathered}$	$\begin{gathered} \text { H: } 0.8,0.69 \\ \text { V: } 0.01,0.0068 \end{gathered}$
Full crossing angle (mrad)	30	33	14	20
Crossing scheme	crab waist	crab waist	crab crossing	crab crossing
Piwinski angle $\phi=\sigma_{z} \theta_{c} /\left(2 \sigma_{x}^{*}\right)$) $28.5,5.8,1.5$	23.8, 2.6	0	0
Beam-beam param. $\xi_{y}\left(10^{-3}\right)$	133, 118,144	72, 109	n / a	n/a
Disruption parameter D_{y}	$0.9,1.1,1.9$	0.3, 1.0	34, 25	8, 12
Average Upsilon Υ	0.0002,0.0004,0.0006	0.0001,0.0005	0.03, 0.06	0.26, 3.4
RF frequency (MHz)	400, 400, 800	650	1300	11994
Particles per bunch (10^{10})	17, 15, 27	8,15	2	0.52, 0.37
Bunches per beam	16640, 328, 33	12000, 242	1312 (pulse)	352,312 (trains at 50 Hz)
Average beam current (mA)	1390, 29, 5.4	19.2	6 (in train)	1660, 1200 (in train)
$\underline{\text { RF gradient (MV/m) }}$	1.3, 9.8, 19.8	3.6, 19.7	31.5	72, 100
Polarization (\%)	$\geq 10,0,0$	5-10, 0	$\begin{aligned} & e^{-}: 80 \% \\ & e^{+}: 30 \% \end{aligned}$	$e^{-}: 70 \%$ at IP
SR power loss (MW)	100	64	n/a	n/a
Beam power/beam (MW)	n / a	n / a	5.3, 10.5	3, 14
Novel technology	-	- \quad l	high grad. SC RF	two-beam accel.

Collider (CLIC), each linac of which is itself a two-beam accelerator, in that a high energy, low current beam is fed by a low energy, high current driver [63]. The CLIC design employs normal conducting 12 GHz accelerating structures at a gradient of $100 \mathrm{MeV} / \mathrm{m}$, some three times the current capability of the superconducting ILC cavities. The design cms energy is 3 TeV , though recent staging options $-0.38,1.5$, and 3 TeV - have been developed [51].

31.6.2 Future Circular Colliders

The discovery, in 2012, of the Higgs boson at the LHC has stimulated interest in constructing a large circular tunnel which could host a variety of energy-frontier machines, including highenergy electron-positron, proton-proton, and lepton-hadron colliders. Such projects are under study by a global collaboration hosted at CERN (FCC) [53, 64, 65] and another one centered in China (CEPC/SPPC) [52], following earlier proposals for a Very Large Hadron Collider (VLHC) [66] and a Very Large Lepton Collider (VLLC) in the US, which would have been housed in the same $230-\mathrm{km}$ long tunnel.

The maximum beam energy of a hadron collider is directly proportional to the magnetic field and to the ring circumference. The LHC magnets, based on $\mathrm{Nb}-\mathrm{Ti}$ superconductor, achieve a maximum operational field of 8.33 T . The HL-LHC project develops the technology of higher field $\mathrm{Nb}_{3} \mathrm{Sn}$ magnets as well as cables made from high-temperature superconductor (HTS). $\mathrm{Nb}_{3} \mathrm{Sn}$ dipoles could ultimately reach an operational field around 16 T , and HTS inserts, requiring new engineering materials and substantial dedicated $\mathrm{R} \& \mathrm{D}$, could boost this further. More costeffective hybrid magnet designs incorporating $\mathrm{Nb}-\mathrm{Ti}$, two types of $\mathrm{Nb}_{3} \mathrm{Sn}$, and an inner layer of HTS providing fields of about

20 T have been examined [67]. However present project efforts are not utilizing this hybrid approach as of yet.

Aside from the magnets, the cryogenic beam vacuum system is another key component of any future hadron collider. A beam screen inside the cold bore of the magnets can intercept the synchrotron radiation at an elevated temperature, allowing a more efficient extraction of the synchrotron-radiation heat load. While the LHC beam screen has a temperature of 5-20 K, future, higherenergy machines are likely to raise this temperature to 50 K or 100 K.

Further substantial increases in collision energy are possible only with a larger tunnel. The FCC hadron collider (FCC-hh) [64,68,69], formerly called VHE-LHC, is based on a new tunnel of about 100 km circumference, which would allow exploring energies up to 100 TeV in the centre of mass with proton-proton collisions, using 16 T magnets. This new tunnel could also accommodate a high-luminosity circular $\mathrm{e}^{+} \mathrm{e}^{-}$Higgs factory (FCC-ee) as well as a lepton-hadron collider (FCC-eh). The SPPC is a 100 km hadron collider based on 12 T (later 24 T) iron-based high-temperature superconducting magnets, which could be installed in the same tunnel as the $\mathrm{e}^{+} \mathrm{e}^{-}$collider CEPC.

In order to serve as a Higgs factory a new circular $\mathrm{e}^{+} \mathrm{e}^{-}$collider needs to achieve a cms energy of at least 240 GeV . FCC-ee [53, 68] (formerly TLEP), installed in the $\sim 100 \mathrm{~km}$ tunnel of the FCC-hh, could reach even higher energies, e.g. 365 GeV cms for $t \bar{t}$ production. At these energies, the luminosity, limited by the synchrotron radiation power, would still be above $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at each of two or four collision points. At lower energies (Z pole and WW threshold) FCC-ee could deliver two to three orders of magnitude higher luminosities, and also profit from radiative self polarization for

Table 31.2: Tentative parameters of selected future high-energy hadronic colliders. Parameters associated with different beam energy scenarios for a μ collider are comma-separated. Parameters of HL-LHC can be found in the High-Energy Collider Parameters review tables. The listed luminosity for the LHeC refers to parasitic operation in parallel to the HL-LHC $p p$ collisions; it could be significantly increased for dedicated operation [59].

	LHeC	HE-LHC	FFC-hh	SPPC	μ collider
Species	$e p$	$p p$	$p p$	$p p$	$\mu^{+} \mu^{-}$
Beam Energy (TeV)	0.06(e), 7 (p)	13.5	50	37.5	0.063, 3
Circumference (km)	$9(e), 26.7$ (p)	26.7	97.75	100	0.3, 6
Interaction regions	1	2 (4)	4	2	1, 2
Estimated integrated luminosity per experiment ($\mathrm{ab}^{-1} /$ year)	0.1	0.5	0.2-1.0	0.4	0.001, 1.0
Peak luminosity ($10^{34} / \mathrm{cm}^{2} / \mathrm{s}$)	0.8	16	5-30	10	2.2, 71
Time between collisions ($\mu \mathrm{s}$)	0.025	0.025	0.025	0.025	1, 20
Energy spread (rms, 10^{-3})	0.03 (e), 0.1(p)	0.1	0.1	0.2	0.04, 1
Bunch length (rms, mm)	0.06 (e), 75.5 p)	80	80	75.5	63, 2
IP beam size ($\mu \mathrm{m}$)	4.3 (round)	8.8	6.7-3.5 (init.)	6.8 (init.)	75, 1.5
Injection energy (GeV)	$1(e), 450(p)$	1300	3300	2100	on energy
Transverse emittance (rms, nm)	$\begin{gathered} 0.45(e), \\ 0.27(p) \end{gathered}$	0.17	0.04 (init.)	0.06 (init.)	335, 0.9
β^{*}, amplitude fcn. at IP (cm)	$\begin{aligned} & 5.0(e), \\ & 7.0(p) \end{aligned}$	45	110-30	75	1.7, 0.25
Beam-beam parameter/IP (10 ${ }^{-3}$)	$-(e), 0.4(p)$	12	5-15	7.5	20, 90
RF frequency (MHz)	$800(e), 400(p)$	400	400	400/200	805
Particles per bunch (10^{10})	0.23(e), 22(p)	22	10	15	400, 200
Bunches per beam	-(e), 2808(p)	2808	10600	10080	1
Average beam current (mA)	$15(e), 883(p)$	1120	500	730	640, 16 (peak)
Length of standard cell (m)	52.4(e arc), 107(p)	137	213	148	N/A
Phase advance per cell (deg)	$\begin{gathered} \hline 310 / 90(e \mathrm{H} / \mathrm{V}) \\ 90(p) \end{gathered}$	90	90	90	N/A
Peak magnetic field (T)	0.264(e), 8.33(p)	16	16	12	10
Polarization (\%)	$90(e), 0(p)$	0	0	0	0
SR power loss/beam (MW)	$30(e), 0.01(p)$	0.1	2.4	1.1	$3 \times 10^{-5}, 0.068$
Novel technology	high-energy ERL	$\begin{gathered} 16 \mathrm{~T} \mathrm{Nb}_{3} \mathrm{Sn} \\ \text { magnets } \end{gathered}$	$\begin{gathered} 16 \mathrm{~T} \mathrm{Nb}_{3} \mathrm{Sn} \\ \text { magnets } \\ \hline \end{gathered}$	$\begin{gathered} \text { HTS } \\ \text { magnets } \end{gathered}$	muon prod.

precise energy calibration. The short beam lifetime at the high target luminosity, due to radiative Bhabha scattering, requires FCC-ee to be constructed as a double ring, where the collider rings operating at constant energy are complemented by a full-energy injector ring installed in the same tunnel to "top off" the collider current. Beamstrahlung, i.e. synchrotron radiation emitted during the collision in the field of the opposing beam, introduces an additional beam lifetime limitation depending on momentum acceptance (so that achieving sufficient off-momentum dynamic aperture becomes one of the design challenges), as well as some bunch lengthening.

31.6.3 Muon Collider

The muon to electron mass ratio of 210 implies less concern about synchrotron radiation by a factor of about 2×10^{9} and its 2.2μ s lifetime means that it will last for some $300 B$ turns in a ring with an average bending magnets field of B (Tesla). Design effort became serious in the mid 1990s and a collider outline emerged quickly.

Removal of the synchrotron radiation barrier reduces the scale of a muon collider facility to a level compatible with on-site placement at existing accelerator laboratories. The Higgs production cross section in the s-channel is enhanced by a factor of $\left(m_{\mu} / m_{e}\right)^{2}$ compared to that in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions. The obvious advantage in colliding muons rather than protons is that the muon collider center of mass energy \sqrt{s}, is entirely available to produce shortdistance reactions rather than being spread among proton constituents and, e.g., a 14 TeV muon collider with sufficient luminosity might be very effective as a direct exploration machine, with a physics potential similar to that of a 100 TeV proton-proton collider [70]. Muon colliders are expected to be more compact, power efficient and significantly less expensive than equivalent energy frontier hadron or $e^{+} e^{-}$machines, and a neutrino factory could
potentially be realized in the course of construction [71].
The challenges to luminosity achievement are clear and amenable to immediate study: targeting, collection, and emittance reduction are paramount, as well as the bunch manipulation required to produce $>10^{12}$ muons per bunch without emittance degradation. A multi- TeV c.m.e. high luminosity $O\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ muon collider would consist of [72, 73] : (i) a high power proton driver (SRF $8 \mathrm{GeV} 2-4 \mathrm{MW} \mathrm{H}{ }^{-}$linac), (ii) pretarget accumulation and compressor rings, in which high intensity $1-3 \mathrm{~ns}$ long proton bunches are formed, (iii) a liquid-mercury target for converting the proton beam into a tertiary muon beam with energy of about 200 MeV , (iv) a multi-stage ionization cooling section that reduces transverse and longitudinal emittances and creates a low emittance beam, (v) a multistage acceleration system, possibly employing recirculating linear accelerators (RLA) to accelerate muons in a modest number of turns up to 2 TeV using superconducting RF technology, and, finally, (vi) a $2-6 \mathrm{~km}$ diameter collider ring located some 100 m underground, where counter-propagating muon beams are stored and collide over the roughly 1000-2000 turns corresponding to the muon lifetime.

Collection of muons from the decay of pions produced in protonnucleus interactions results in a large initial 6D phase volume for the muons, which must be reduced (cooled) by a factor of 10^{6}, otherwise, the luminosity reach will not exceed $O\left(10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$. The technique of ionization cooling $[74,75]$ is uniquely applicable to muons because of their minimal interaction with matter [76]; a proof-of-principle was recently demonstrated in the pioneering MICE experiment at RAL [77]. Muon collider R\&D has led to a number of remarkable advances in the past decade [78], including a novel concept to generate muon pairs at threshold using the annihilation of 45 GeV positrons with electrons at rest [79,80], and alternative concepts based on laser-hadron collisions [55,81,82], all of which might allow low emittance beams to be obtained directly,
without any cooling.
31.6.4 Plasma Acceleration and Other Advanced Concepts

At the 1956 CERN Symposium, a paper by Veksler, in which he suggested acceleration of protons to the TeV scale using a bunch of electrons, anticipated current interest in plasma acceleration [83]. A half-century later this became more than a suggestion, with the demonstration, as a striking example, of electron energy doubling from 42 to 84 GeV over 85 cm at SLAC [84], the creation of a 1 GeV electron bunch with relatively small energy spread accelerated through a cm-scale plasma [85], and the achievement of proton-driven plasma acceleration of electrons at CERN [86].

Whether plasma acceleration will find application in an HEP facility is not yet clear, given the necessity of staging and phaselocking acceleration in multiple plasma chambers. However, strides continue to be made, as multi-stage coupling of independent laser plasma accelerators have been demonstrated recently [87]. Another critical issue is the power efficiency η for a collider based on plasma acceleration, whose luminosity would still be described by 31.14. Maintaining beam quality and beam position as well as the acceleration of high-repetition bunch trains are also primary feasibility issues, addressed by active R\&D. For a recent status report on laser-plasma acceleration and the steps towards a future electron positron collider based on this technology, see [88].

Additional approaches aiming at accelerating gradients higher, or much higher, than those achievable with conventional metal cavities include the use of dielectric materials and, for the longterm future, crystals. Combining several innovative ideas, even a linear crystal muon collider driven by X-ray lasers has been proposed [89], as well as "accelerators on a chip" [90,91]. Not only the achievable accelerating gradient, but also the overall power efficiency, e.g. the attainable luminosity as a function of electrical input power, along with the beam stability [92] will determine the suitability of any novel technology for use in future high-energy accelerators.

References

[1] E. D. Courant and H. S. Snyder, Annals Phys. 3, 1 (1958), Annals Phys.281,360(2000). This is the classic article on the alternating gradient synchrotron.
[2] A. W. Chao et al., editors, Handbook of accelerator physics and engineering, World Scientific, Hackensack, USA (2013), ISBN 9789814415842, URL http://www.worldscientific. com/worldscibooks/10.1142/8543.
[3] A. W. Chao, Physics of collective beam instabilities in high energy accelerators, Wiley, New York, NY (1993), URL https://cds.cern.ch/record/246480.
[4] K. Y. Ng, Physics of intensity dependent beam instabilities, World Scientific, Hoboken, NJ (2006), URL https://cds. cern.ch/record/1012829.
[5] H. Wiedemann, in Handbook of Accelerator Physics and Engineering [2], ibid, Sec. 3.1.
[6] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).
[7] K. Yokoya and P. Chen, Lect. Notes Phys. 400, 415 (1992).
[8] M.A. Furman and M.S. Zisman, Handbook of Accelerator Physics and Engineering [2], ibid, Sec. 4.1.
[9] R. Assmann and K. Cornelis, in "Particle accelerator. Proceedings, 7 th European Conference, EPAC 2000, Vienna, Austria, June 26-30, 2000. Vol. 1-3," 1187-1189 (2000), URL http://weblib.cern.ch/abstract?CERN-SL-2000-046-OP.
[10] J. Gao, Nucl. Instrum. Meth. A533, 270 (2004).
[11] K. Ohmi and F. Zimmermann, Phys. Rev. ST Accel. Beams 18, 12, 121003 (2015).
[12] M.A. Furman, Handbook of Accelerator Physics and Engineering [2], ibid, Sec. 2.4.14.
[13] http://ab-abp-rlc.web.cern.ch/ab-abp-rlc-ecloud/. This site contains many references as well as videos of electron cloud simulations.
[14] D. Mohl et al., Phys. Rept. 58, 73 (1980).
[15] M. Blaskiewicz and J. M. Brennan, Phys. Rev. ST Accel. Beams 10, 061001 (2007).
[16] M. Blaskiewicz, J. M. Brennan and F. Severino, Phys. Rev. Lett. 100, 174802 (2008).
[17] M. Blaskiewicz, J. M. Brennan and K. Mernick, Phys. Rev. Lett. 105, 094801 (2010).
[18] G. I. Budker, Sov. Atom. Energ. 22, 438 (1967), [At. Energ.22,346(1967)].
[19] H. T. Edwards, Ann. Rev. Nucl. Part. Sci. 35, 605 (1985).
[20] A. Tollestrup and E. Todesco, in "Reviews Of Accelerator Science And Technology: Volume 1," 185-210, World Scientific (2008).
[21] W. Fowler, Particle Accelerators 26, 179 (1990).
[22] M. Church and J. Marriner, Annual Review of Nuclear and Particle Science 43, 1, 253 (1993).
[23] S. Nagaitsev et al., Physical Review Letters 96, 4, 044801 (2006).
[24] V. Shiltsev et al., Physical Review Special TopicsAccelerators and Beams 8, 10, 101001 (2005).
[25] K. Koba and J. Steimel, in "AIP Conference Proceedings," volume 642, 223-225, AIP (2002).
[26] C. Bhat, Physics Letters A 330, 6, 481 (2004).
[27] V. D. Shiltsev, Electron lenses for super-colliders, Springer (2016).
[28] Brief history at http://en.wikipedia.org/wiki/Hadron_E Elektron_Ring_Anlage.
[29] R. Assmann, M. Lamont and S. Myers, Nucl. Phys. Proc. Suppl. 109B, 17 (2002), [,17(2002)].
[30] R. Assmann et al., Eur. Phys. J. C6, 187 (1999).
[31] R. Assmann et al., in "Proceedings, 1999 Particle Accelerator Conference (PAC'99): New York, New York, March 29April 2, 1999," 2999-3001 (1999), URL http://accelconf. web.cern.ch/AccelConf/p99/PAPERS/THP23.PDF.
[32] N. Phinney, eConf C00082, MO102 (2000), [,1(2000)], [arXiv:physics/0010008].
[33] L. Evans, Ann. Rev. Nucl. Part. Sci. 61, 435 (2011).
[34] M. Draper, editor, Proceedings, LHC Performance Workshop (Chamonix 2014), CERN, CERN, Geneva (2015), ISBN 9789290834137.
[35] Detailed information from the multi-volume design report to present status may be found at http://lhc.web.cern.ch/lhc/.
[36] S. van der Meer (1968).
[37] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 8, 2518 (2013), [arXiv:1302.4393].
[38] http://aliceinfo.cern.ch/Public/Welcome.html.
[39] http://hilumilhc.web.cern.ch.
[40] G. Apollinari et al., CERN Yellow Rep. Monogr. 4, 1 (2017).
[41] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. A499, 1 (2003).
[42] M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010).
[43] An overview of electron-positron colliders past and present may be found in ICFA Beam Dynamics Newsletter No. 46, April 2009, http://icfa-bd.kek.jp/. A daily account of the luminosity progress at SuperKEKB may be found at http://www-linac.kek.jp/skekb/snapshot/dailysnap.html.
[44] M. Harrison et al., Nucl. Instrum. Meth. A499, 1 (2003).
[45] http://www.rhichome.bnl.gov/RHIC/Runs/.
[46] A. Fedotov, et al., Proceedings NAPAC 2019 (2019).
[47] W. Fischer et al., Phys. Rev. Lett. 115, 26, 264801 (2015).
[48] F. Pilat, in "Proceedings, 9th International Particle Accelerator Conference (IPAC 2018): Vancouver, BC Canada," TUXGBD3 (2018).
[49] F. Zimmermann et al., The European Physical Journal Special Topics 228, 5, 1109 (2019), ISSN 1951-6401, URL https: //doi.org/10.1140/epjst/e2019-900088-6.
[50] P. Bambade et al. (2019), [arXiv:1903.01629].
[51] T. K. Charles et al. (CLICdp, CLIC), CERN Yellow Rep. Monogr. 1802, 1 (2018), [arXiv:1812.06018].
[52] CEPC Study Group (2018), [arXiv:1809.00285].
[53] M. Benedikt et al., The European Physical Journal Special Topics 228, 2, 261 (2019).
[54] D. Neuffer and V. Shiltsev, JINST 13, 10, T10003 (2018), [arXiv:1811.10694].
[55] F. Zimmermann MOPMF065 (2018), [J. Phys. Conf. Ser.1067,no.2,022017(2018)].
[56] J. L. Abelleira Fernandez et al. (LHeC Study Group), J. Phys. G39, 075001 (2012), [arXiv:1206.2913].
[57] J. L. Abelleira Fernandez et al. (LHeC Study Group) (2012), [arXiv:1211.5102].
[58] S. A. Bogacz et al. (2012), [arXiv:1208.2827].
[59] F. Bordry et al. (2018), [arXiv:1810.13022].
[60] F. Zimmermann, AIP Conf. Proc. 592, 1, 494 (2001).
[61] http://www.linearcollider.org/ILC/Publications/ Technical-Design-Report.
[62] A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013), [arXiv:1306.0288].
[63] http://lcd.web.cern.ch/lcd/CDR/CDR.html.
[64] M. Benedikt et al., The European Physical Journal Special Topics 228, 4, 755 (2019), ISSN 1951-6401, URL https:// doi.org/10.1140/epjst/e2019-900087-0.
[65] M. Mangano et al., The European Physical Journal C 79, 6, 474 (2019), ISSN 1434-6052, URL https://doi.org/10. 1140/epjc/s10052-019-6904-3.
[66] http://vlhc.org.
[67] E. Todesco and F. Zimmermann, editors, Proceedings, EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider (HE-LHC10): Villa Bighi, Malta, Republic of Malta, October 14-16, 2010. EuCARD-AccNetEuroLumi Workshop: The High-Energy Large Hadron Collider, CERN, CERN, Geneva (2011), 29 lectures, 156 pages, published as CERN Yellow Report, URL https://cds.cern. ch/record/1344820.
[68] http://fcc.web.cern.ch.
[69] M. Benedikt, D. Schulte and F. Zimmermann, Phys. Rev. ST Accel. Beams 18, 101002 (2015).
[70] D. Neuffer and V. Shiltsev, Journal of Instrumentation 13, 10, T10003 (2018).
[71] http://en.wikipedia.org/wiki/Neutrino_Factory.
[72] C. M. Ankenbrandt et al., Physical Review Special TopicsAccelerators and Beams 2, 8, 081001 (1999).
[73] J.-P. Delahaye et al., in "Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013," (2013), [arXiv:1308.0494], URL http://www.slac.stanford.edu/econf/C1307292/ docs/submittedArxivFiles/1308.0494.pdf.
[74] A. Skrinsky and V. Parkhomchuk, Sov. J. Part. Nucl 12, 223, 210 (1981).
[75] D. Neuffer, Particle Accelerators 14, 75 (1983).
[76] R. Palmer, Reviews of Accelerator Science and Technology 7, 137 (2014).
[77] M. Bogomilov et al., arXiv preprint arXiv:1907.08562 (2019).
[78] M. Boscolo, J. P. Delahaye and M. Palmer, Reviews of Accelerator Science and Technology 10, 189 (2019), arXiv preprint arXiv:1808.01858.
[79] M. Antonelli et al., Nucl. Instrum. Meth. A807, 101 (2016), [arXiv:1509.04454].
[80] M. Biagini et al., in "Proceedings, 10th International Particle Accelerator Conference (IPAC2019): Melbourne, Australia, May 19-24, 2019," MOZZPLS2 (2019).
[81] C. Curatolo, F. Broggi and L. Serafini, Nucl. Instrum. Meth. A865, 128 (2017).
[82] M. W. Krasny (2015), [arXiv:1511.07794].
[83] V. I. Veksler (1956), URL http://cds.cern.ch/record/ 1241563.
[84] I. Blumenfeld et al., Nature 445, 741 (2007).
[85] W. P. Leemans et al., Nature Phys. 2, 696 (2006).
[86] E. Gschwendtner and M. Turner (AWAKE) (2019), [arXiv:1901.04171].
[87] S. Steinke et al., Nature 530, 7589, 190 (2016).
[88] ALEGRO Collab., Towards an Advanced Linear International Collider, arXiv:1901.10370 .
[89] V. D. Shiltsev, Phys. Usp. 55, 965 (2012), [arXiv:1205.3087].
[90] J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 13, 134803 (2013), [arXiv:1308.0464].
[91] E. A. Peralta et al., Nature 503, 91 (2013).
[92] V. Lebedev, A. Burov and S. Nagaitsev, Phys. Rev. Accel. Beams 20, 12, 121301 (2017), [Erratum: Phys. Rev. Accel. Beams 21, 059901 (2018)], [arXiv:1701.01498].

32. High-Energy Collider Parameters

High-Energy Collider Parameters: $e^{+} e^{-}$Colliders (I)

Table 32.1: Updated in March 2020 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter values achieved. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, TRISTAN, and VEPP-2M colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I).

	$\begin{aligned} & \hline \hline \text { VEPP-2000 } \\ & \text { (Novosibirsk) } \\ & \hline \end{aligned}$	VEPP-4M (Novosibirsk)	$\begin{gathered} \hline \text { BEPC } \\ \text { (China) } \\ \hline \end{gathered}$	BEPC-II (China)	DA $\$$ NE (Frascati)
Physics start date	2010	1994	1989	2008	1999
Physics end date	-	-	2005	-	-
Maximum beam energy (GeV)	1.0	6	2.5	1.89 (2.35 max)	0.510
Delivered integrated luminosity per exp. (fb ${ }^{-1}$)	0.25	0.05	0.11	24.6	$\begin{gathered} \approx 4.7 \text { in } 2001-2007 \\ \approx 2.7 \text { w/crab-waist } \\ \approx 1.8 \text { since Nov } 2014 \end{gathered}$
Luminosity ($10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)	50	20	12.6 at 1.843 GeV 5 at 1.55 GeV	1000	453
Time between collisions ($\mu \mathrm{s}$)	0.04	0.6	0.8	0.008	0.0027
Full crossing angle ($\mu \mathrm{rad}$)	0	0	0	2.2×10^{4}	5×10^{4}
Energy spread (units 10^{-3})	0.71	1	0.58 at 2.2 GeV	0.52	0.40
Bunch length (cm)	4	5	≈ 5	≈ 1.2	low current: 1 at 15 mA : 2
Beam radius ($10^{-6} \mathrm{~m}$)	125 (round)	$\begin{gathered} \mathrm{H}: 1000 \\ \mathrm{~V}: 30 \end{gathered}$	$\begin{gathered} \hline \mathrm{H}: 890 \\ \mathrm{~V}: 37 \end{gathered}$	$\begin{gathered} \mathrm{H}: 347 \\ \mathrm{~V}: 4.5 \end{gathered}$	$\begin{gathered} \mathrm{H}: 260 \\ \mathrm{~V}: 4.8 \end{gathered}$
Free space at interaction point (m)	± 0.5	± 2	± 2.15	± 0.63	± 0.295
Luminosity lifetime (hr)	continuous	2	7-12	1.5	0.2
Turn-around time (min)	continuous	18	32	4 (topping up)	2 (topping up)
Injection energy (GeV)	0.2-1.0	1.8	1.55	1.89	on energy
Transverse emittance $\left(10^{-9} \mathrm{~m}\right)$	$\begin{aligned} & \mathrm{H}: 150 \\ & \mathrm{~V}: 150 \end{aligned}$	$\begin{gathered} \mathrm{H}: 200 \\ \mathrm{~V}: 20 \end{gathered}$	$\begin{gathered} \mathrm{H}: 660 \\ \mathrm{~V}: 28 \end{gathered}$	$\begin{aligned} & \mathrm{H}: 121 \\ & \mathrm{~V}: 1.56 \end{aligned}$	$\begin{aligned} & \mathrm{H}: 260 \\ & \mathrm{~V}: 2.6 \end{aligned}$
β^{*}, amplitude function at interaction point (m)	$\begin{aligned} & \mathrm{H}: 0.05-0.11 \\ & \mathrm{~V}: 0.05-0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H}: 0.75 \\ & \mathrm{~V}: 0.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{H}: 1.2 \\ \mathrm{~V}: 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}: 1.0 \\ \mathrm{~V}: 0.0129 \end{gathered}$	$\begin{gathered} \mathrm{H}: 0.26 \\ \mathrm{~V}: 0.009 \\ \hline \end{gathered}$
Beam-beam tune shift per crossing (units 10^{-4})	$\begin{aligned} & \mathrm{H}: 850 \\ & \mathrm{~V}: 850 \\ & \hline \end{aligned}$	500	350	383	440 (crab-waist test)
RF frequency (MHz)	172	180	199.53	499.8	356
Particles per bunch (units 10^{10})	8	15	$\begin{gathered} 20 \text { at } 2 \mathrm{GeV} \\ 11 \text { at } 1.55 \mathrm{GeV} \end{gathered}$	3.8	$\begin{aligned} & e^{-}: 3.2 \\ & e^{+}: 2.1 \\ & \hline \end{aligned}$
Bunches per ring per species	1	2	1	119	$\begin{gathered} 100 \text { to } 105 \\ (120 \text { buckets }) \\ \hline \end{gathered}$
Average beam current per species (mA)	160	80	$\begin{gathered} 40 \text { at } 2 \mathrm{GeV} \\ 22 \text { at } 1.55 \mathrm{GeV} \end{gathered}$	851	$\begin{gathered} e^{-}: 1250 \\ e^{+}: 800 \\ \hline \end{gathered}$
Circumference or length (km)	0.024	0.366	0.2404	0.23753	0.098
Interaction regions	2	1	2	1	1
Magnetic length of dipole (m)	1.1	2	1.6	outer ring: 1.6 inner ring: 1.41	outer ring: 1.2 inner ring: 1
Length of standard cell (m)	12	7.2	6.6	$\begin{aligned} & \hline \text { outer ring: } 6.6 \\ & \text { inner ring: } 6.2 \\ & \hline \end{aligned}$	n / a
Phase advance per cell (deg)	$\begin{aligned} & \mathrm{H}: 745 \\ & \mathrm{~V}: 385 \end{aligned}$	65	≈ 60	$\begin{gathered} 60-90 \\ \text { non-standard cells } \end{gathered}$	-
Dipoles in ring	8	78	$40+4$ weak	$84+8$ weak	8
Quadrupoles in ring	$24+4$ s.c.	150	68	$134+2$ s.c.	48
Peak magnetic field (T)	2.4	0.6	$\begin{gathered} 0.903 \\ \text { at } 2.8 \mathrm{GeV} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { outer ring: } 0.677 \\ & \text { inner ring: } 0.766 \\ & \hline \end{aligned}$	1.2

High-Energy Collider Parameters: $e^{+} e^{-}$Colliders (II)

Table 32.2: Updated in March 2020 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter values achieved. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting. ILC and CLIC parameters are documented in the Accelerator physics of colliders review.

	$\begin{gathered} \text { CESR } \\ (\text { Cornell }) \end{gathered}$	CESR-C (Cornell)	$\begin{gathered} \hline \text { LEP } \\ (\mathrm{CERN}) \end{gathered}$	$\begin{gathered} \text { SLC } \\ \text { (SLAC) } \end{gathered}$
Physics start date	1979	2002	1989	1989
Physics end date	2002	2008	2000	1998
Maximum beam energy (GeV)	6	6	100-104.6	50
Delivered integrated luminosity per experiment (fb^{-1})	41.5	2.0	$\begin{aligned} & 0.221 \text { at Z peak } \\ & 0.501 \text { at } 65-100 \mathrm{GeV} \\ & 0.275 \text { at }>100 \mathrm{GeV} \end{aligned}$	0.022
Luminosity ($10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)	$\begin{aligned} & 1280 \mathrm{at} \\ & 5.3 \mathrm{GeV} \end{aligned}$	$\begin{gathered} 76 \mathrm{at} \\ 2.08 \mathrm{GeV} \\ \hline \end{gathered}$	24 at Z peak 100 at $>90 \mathrm{GeV}$	2.5
Time between collisions ($\mu \mathrm{s}$)	0.014 to 0.22	0.014 to 0.22	22	8300
Full crossing angle ($\mu \mathrm{rad}$)	± 2000	± 3300	0	0
Energy spread (units 10^{-3})	0.6 at 5.3 GeV	0.82 at 2.08 GeV	$0.7 \rightarrow 1.5$	1.2
Bunch length (cm)	1.8	1.2	1.0	0.1
Beam radius ($\mu \mathrm{m}$)	$\begin{gathered} \mathrm{H}: 460 \\ \mathrm{~V}: 4 \end{gathered}$	$\begin{aligned} & \hline \mathrm{H}: 340 \\ & \mathrm{~V}: 6.5 \end{aligned}$	$\begin{gathered} \mathrm{H}: 200 \rightarrow 300 \\ \mathrm{~V}: 2.5 \rightarrow 8 \end{gathered}$	$\begin{aligned} & \mathrm{H}: 1.5 \\ & \mathrm{~V}: 0.5 \end{aligned}$
Free space at interaction point (m)	$\begin{gathered} \pm 2.2 \text { (} \pm 0.6 \\ \text { to REC quads) } \\ \hline \end{gathered}$	$\begin{gathered} \pm 2.2(\pm 0.3 \\ \text { to PM quads) } \\ \hline \end{gathered}$	± 3.5	± 2.8
Luminosity lifetime (hr)	2-3	2-3	$\begin{gathered} 20 \text { at Z peak } \\ 10 \text { at }>90 \mathrm{GeV} \\ \hline \end{gathered}$	-
Turn-around time (min)	5 (topping up)	1.5 (topping up)	50	120 Hz (pulsed)
Injection energy (GeV)	1.8-6	1.5-6	22	45.64
Transverse emittance $\left(10^{-9} \mathrm{~m}\right)$	$\begin{gathered} 210 \\ 1 \end{gathered}$	$\begin{gathered} 120 \\ 3.5 \end{gathered}$	$\begin{gathered} \mathrm{H}: 20-45 \\ \mathrm{~V}: 0.25 \rightarrow 1 \end{gathered}$	$\begin{aligned} & \text { H:0.5 } \\ & \text { V:0.05 } \end{aligned}$
β^{*}, amplitude function at interaction point (m)	$\begin{gathered} \hline 1.0 \\ 0.018 \end{gathered}$	$\begin{gathered} 0.94 \\ 0.012 \end{gathered}$	$\begin{gathered} 1.5 \\ 0.05 \end{gathered}$	$\begin{aligned} & \hline 0.0025 \\ & 0.0015 \end{aligned}$
Beam-beam tune shift per crossing $\left(10^{-4}\right)$ or disruption	$\begin{aligned} & 250 \\ & 620 \end{aligned}$	$\begin{aligned} & e^{-}: 420(H), 280(V) \\ & e^{+}: 410(H), 270(V) \end{aligned}$	830	$\begin{gathered} \hline 0.75(H) \\ 2.0(V) \\ \hline \end{gathered}$
RF frequency (MHz)	500	500	352.2	2856
Particles per bunch (units 10^{10})	1.15	4.7	45 in collision 60 in single beam	4.0
Bunches per ring per species	9 trains of 5 bunches	8 trains of 3 bunches	4 trains of 1 or 2	1
Average beam current per species (mA)	340	72	$\begin{gathered} 4 \text { at Z peak } \\ 4 \rightarrow 6 \text { at }>90 \mathrm{GeV} \end{gathered}$	0.0008
Beam polarization (\%)	-	-	$\begin{gathered} 55 \text { at } 45 \mathrm{GeV} \\ 5 \text { at } 61 \mathrm{GeV} \\ \hline \end{gathered}$	$e^{-}: 80$
Circumference or length (km)	0.768	0.768	26.66	$1.45+1.47$
Interaction regions	1	1	4	1
Magnetic length of dipole (m)	1.6-6.6	1.6-6.6	11.66/pair	2.5
Length of standard cell (m)	16	16	79	5.2
Phase advance per cell (deg)	$\begin{gathered} 45-90(\mathrm{no} \\ \text { standard cell) } \\ \hline \end{gathered}$	$\begin{gathered} 45-90(\text { no } \\ \text { standard cell) } \\ \hline \end{gathered}$	102/90	108
Dipoles in ring	86	84	$3280+24$ inj. +64 weak	$460+440$
Quadrupoles in ring	$101+4$ s.c.	$101+4$ s.c.	$520+288+8$ s.c.	-
Peak magnetic field (T)	$\begin{aligned} & 0.3 / 0.8 \\ & \text { at } 8 \mathrm{GeV} \end{aligned}$	$0.3 / 0.8$ at 8 GeV , 2.1 wigglers at 1.9 GeV	0.135	0.597

High-Energy Collider Parameters: $e^{+} e^{-}$Colliders (III)

Table 32.3: Updated in March 2020 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter values achieved. Design parameters for SuperKEKEB may be found in our 2018 edition (Phys. Rev. D98, 030001 (2018)) Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

	$\begin{aligned} & \hline \text { KEKB } \\ & \text { (KEK) } \end{aligned}$	$\begin{aligned} & \hline \hline \text { PEP-II } \\ & \text { (SLAC) } \\ & \hline \end{aligned}$	SuperKEKB (KEK)
Physics start date	1999	1999	2018
Physics end date	2010	2008	-
Maximum beam energy (GeV)	$\begin{aligned} & \hline e^{-}: 8.33(8.0 \text { nominal }) \\ & e^{+}: 3.64(3.5 \text { nominal } \end{aligned}$	$\begin{aligned} & e^{-}: 7-12 \quad(9.0 \text { nominal }) \\ & e^{+}: 2.5-4 \quad(3.1 \text { nominal }) \end{aligned}$	$\begin{aligned} & \hline e^{-}: 7 \\ & e^{+}: 4 \end{aligned}$
Delivered integrated luminosity per exp. (fb ${ }^{-1}$)	1040	557	10.57
Luminosity ($10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)	21083	$\begin{gathered} 12069 \\ \text { (design: } 3000 \text {) } \end{gathered}$	1.88×10^{4}
Time between collisions ($\mu \mathrm{s}$)	0.00590 or 0.00786	0.0042	0.0065
Full crossing angle ($\mu \mathrm{rad}$)	$\pm 11000^{*}$	0	± 41500
Energy spread (units 10^{-3})	0.7	$e^{-} / e^{+}: 0.61 / 0.77$	$e^{-} / e^{+}: 0.64 / 0.81$
Bunch length (cm)	0.65	$e^{-} / e^{+}: 1.1 / 1.0$	$e^{-} / e^{+}: 0.5 / 0.6$
Beam radius ($\mu \mathrm{m}$)	$\begin{gathered} \mathrm{H}: 124\left(e^{-}\right), 117\left(e^{+}\right) \\ \mathrm{V}: 1.9 \end{gathered}$	$\begin{gathered} 157 \\ 4.7 \end{gathered}$	$\begin{aligned} & e^{-}: 16.6(H), 0.25(V) \\ & e^{+}: 12.6(H), 0.25(V) \end{aligned}$
Free space at interaction point (m)	$\begin{gathered} +0.75 /-0.58 \\ (+300 /-500) \mathrm{mrad} \text { cone } \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.2 \\ \pm 300 \text { mrad cone } \end{gathered}$	$\begin{gathered} e^{-}:+1.20 /-1.28, e^{+}:+0.78 /-0.73 \\ (+300 /-500) \mathrm{mrad} \text { cone } \\ \hline \end{gathered}$
Luminosity lifetime (hr)	continuous	continuous	continuous
Turn-around time (min)	continuous	continuous	continuous
Injection energy (GeV)	$e^{-} / e^{+}: 8.0 / 3.5$ (nominal)	$e^{-} / e^{+}: 9.0 / 3.1$ (nominal)	$e^{-} / e^{+}: 7 / 4$
Transverse emittance $\left(10^{-9} \mathrm{~m}\right)$	$\begin{aligned} & \hline e^{-}: 24\left(57^{\dagger}\right)(H), 0.61(V) \\ & e^{+}: 18\left(55^{\dagger}\right)(H), 0.56(V) \end{aligned}$	$\begin{aligned} & e^{-}: 48(H), 1.8(V) \\ & e^{+}: 24(H), 1.8(V) \end{aligned}$	$\begin{aligned} & \hline e^{-}: 4.7(H), 0.061(V) \\ & e^{+}: 2.0(H), 0.061(V) \end{aligned}$
β^{*}, amplitude function at interaction point (m)	$\begin{aligned} & e^{-}: 1.2\left(0.27^{\dagger}\right)(H), 0.0059(V) \\ & e^{+}: 1.2\left(0.23^{\dagger}\right)(H), 0.0059(V) \end{aligned}$	$\begin{aligned} & e^{-}: 0.50(H), 0.012(V) \\ & e^{+}: 0.50(H), 0.012(V) \end{aligned}$	$\begin{aligned} & e^{-}: 0.060(H), 1 \times 10^{-3}(V) \\ & e^{+}: 0.080(H), 1 \times 10^{-3}(V) \end{aligned}$
Beam-beam tune shift per crossing (units 10^{-4})	$\begin{aligned} & e^{-}: 1020(H), 900(V) \\ & e^{+}: 1270(H), 1290(V) \end{aligned}$	$\begin{aligned} & e^{-}: 703(H), 498(V) \\ & e^{+}: 510(H), 727(V) \end{aligned}$	$\begin{aligned} & e^{-}: 12(H), 270(V) \\ & e^{+}: 23(H), 270(V) \end{aligned}$
RF frequency (MHz)	508.887	476	508.887
Particles per bunch (units 10^{10})	$e^{-} / e^{+}: 4.7 / 6.4$	$e^{-} / e^{+}: 5.2 / 8.0$	$e^{-} / e^{+}: 2.76 / 3.52$
Bunches per ring per species	1585	1732	1476
Average beam current per species (mA)	$e^{-} / e^{+}: 1188 / 1637$	$e^{-} / e^{+}: 1960 / 3026$	$e^{-} / e^{+}: 640 / 819$
Beam polarization (\%)	-	-	-
Circumference or length (km)	3.016	2.2	3.016
Interaction regions	1	1	1
Magnetic length of dipole (m)	$e^{-} / e^{+}: 5.86 / 0.915$	$e^{-} / e^{+}: 5.4 / 0.45$	$e^{-} / e^{+}: 5.9 / 4.0$
Length of standard cell (m)	$e^{-} / e^{+}: 75.7 / 76.1$	15.2	$e^{-} / e^{+}: 75.7 / 76.1$
Phase advance per cell (deg)	450	$e^{-} / e^{+}: 60 / 90$	450
Dipoles in ring	$e^{-} / e^{+}: 116 / 112$	$e^{-} / e^{+}: 192 / 192$	$e^{-} / e^{+}: 116 / 112$
Quadrupoles in ring	$e^{-} / e^{+}: 452 / 452$	$e^{-} / e^{+}: 290 / 326$	$e^{-} / e^{+}: 466 / 460$
Peak magnetic field (T)	$e^{-} / e^{+}: 0.25 / 0.72$	$e^{-} / e^{+}: 0.18 / 0.75$	$e^{-} / e^{+}: 0.22 / 0.19$

[^56]
High-Energy Collider Parameters: $e \mathbf{p}, \overline{\mathrm{p}} \mathbf{p}$, pp Colliders

Table 32.4: Updated in March 2020 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter values achieved. Parameters for the defunct $\mathrm{Sp} \bar{p} \mathrm{~S}$ collider may be found in our 2002 edition (Phys. Rev. D66, 010001 (2002)). Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

	$\begin{aligned} & \hline \text { HERA } \\ & \text { (DESY) } \end{aligned}$	$\begin{gathered} \text { TEVATRON* } \\ \text { (Fermilab) } \end{gathered}$	RHIC Brookhaven	$\begin{gathered} \hline \hline \text { LHC } \\ (\mathrm{CERN}) \end{gathered}$			
Physics start date	1992	1987	2001	2009	2015	2026 (HL-LHC)	
Physics end date	2007	2011	-	-			
Particles collided	$e p$	$p \bar{p}$	$p p$ (polarized)	$p p$			
Maximum beam energy (TeV)	$\begin{gathered} e: 0.030 \\ p: 0.92 \end{gathered}$	0.980	0.255 55% polarization	4.0	6.5	7.0	
Max. delivered integrated luminosity per exp. (fb^{-1})	0.8	12	0.38 at 100 GeV 1.3 at $250 / 255 \mathrm{GeV}$	$\begin{gathered} 23.3 \text { at } 4.0 \mathrm{TeV} \\ 6.1 \text { at } 3.5 \mathrm{TeV} \end{gathered}$	160	250/y	
$\begin{aligned} & \text { Luminosity } \\ & \left(10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \end{aligned}$	75	431	$\begin{gathered} \hline 245(\mathrm{pk}) \\ 160(\mathrm{avg}) \end{gathered}$	7.7×10^{3}	2.1×10^{4}	$\begin{gathered} \hline 5.0 \times 10^{4} \\ \text { (leveled) } \end{gathered}$	
Time between collisions (ns)	96	396	107	49.90	24.95	24.95	
Full crossing angle ($\mu \mathrm{rad}$)	0	0	0	290	$320 \rightarrow 260^{\dagger}$	500	
Energy spread (units 10^{-3})	$\begin{gathered} \hline e: 0.91 \\ p: 0.2 \\ \hline \end{gathered}$	0.14	0.15	0.1445	0.105	0.129	
Bunch length (cm)	$\begin{gathered} e: 0.83 \\ p: 8.5 \end{gathered}$	$\begin{aligned} & p: 50 \\ & \bar{p}: 45 \end{aligned}$	60	9.4	8	9	
$\begin{aligned} & \text { Beam radius } \\ & \left(10^{-6} \mathrm{~m}\right) \end{aligned}$	$\begin{aligned} & \hline e: 110(\mathrm{H}), 30(\mathrm{~V}) \\ & p: 111(\mathrm{H}), 30(\mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & p: 28 \\ & \bar{p}: 16 \end{aligned}$	85	18.8	8.5^{\ddagger}	$7{ }^{\ddagger}$	
Free space at interaction point (m)	± 2	± 6.5	16	38	38	38	
Initial luminosity decay time, $-L /(d L / d t)(\mathrm{hr})$	10	6 (avg)	7.5	≈ 6	≈ 8	≈ 7.5 (leveled)	
Turn-around time (min)	$e: 75, p: 135$	90	25	180	150	145	
Injection energy (TeV)	$\begin{gathered} e: 0.012 \\ p: 0.040 \\ \hline \end{gathered}$	0.15	0.023	0.450	0.450	0.450	
Transverse emittance $\left(10^{-9} \mathrm{~m}\right)$	$\begin{gathered} e: 20(\mathrm{H}), 3.5(\mathrm{~V}) \\ p: 5(\mathrm{H}), 5(\mathrm{~V}) \\ \hline \end{gathered}$	$\begin{array}{lll} \hline p: & 3 \\ \bar{p}: & 1 \\ \hline \end{array}$	11	0.59	0.3	0.33	
β^{*}, ampl. function at interaction point (m)	$\begin{gathered} e: 0.6(\mathrm{H}), 0.26(\mathrm{~V}) \\ p: 2.45(\mathrm{H}), 0.18(\mathrm{~V}) \\ \hline \end{gathered}$	0.28	0.65	0.6	$0.3 \rightarrow 0.29 \S$	$0.6 \rightarrow 0.15$ §	
Beam-beam tune shift per crossing (units 10^{-4})	$\begin{gathered} e: 190(\mathrm{H}), 450(\mathrm{~V}) \\ p: 12(\mathrm{H}), 9(\mathrm{~V}) \\ \hline \end{gathered}$	$p: 120 \bar{p}: 120$	73	72	45	86	
RF frequency (MHz)	$\begin{gathered} e: 499.7 \\ p: 208.2 / 52.05 \\ \hline \end{gathered}$	53	accel: 9 store: 28	400.8	400.8	400.8	
Particles per bunch (units 10^{10})	$\begin{aligned} & e: 3 \\ & p: 7 \end{aligned}$	$\begin{gathered} p: 26 \\ \bar{p}: 9 \end{gathered}$	18.5	16	11	22	
Bunches per ring per species	$\begin{aligned} & e: 189 \\ & p: 180 \end{aligned}$	36	111	1380	$\begin{array}{\|c\|} \hline 2556 \\ 2544 \text { (i.r. } 1 / 5 \text { I }) \\ \hline \end{array}$	$\begin{gathered} 2760 \\ 2748 \text { (i.r. } 1 / 5 \boldsymbol{\top} \text {) } \end{gathered}$	
Average beam current per species (mA)	$\begin{aligned} & e: 40 \\ & p: 90 \\ & \hline \end{aligned}$	$\begin{aligned} & p: 70 \\ & \bar{p}: 24 \\ & \hline \end{aligned}$	257	400	510	1100	
Circumference (km)	6.336	6.28	3.834	26.659			
Interaction regions	2 colliding beams 1 fixed target (e beam)	2 high \mathfrak{L}	6 total, 2 high \mathfrak{L}	4 total, 2 high \mathfrak{L}			
Magnetic length of dipole (m)	$\begin{aligned} & e: 9.185 ; \\ & p: 8.82 \end{aligned}$	6.12	9.45	14.3			
Length of standard cell (m)	$\begin{gathered} \hline e: 23.5 \\ p: 47 \\ \hline \end{gathered}$	59.5	29.7	106.90			
Phase advance per cell (deg)	$\begin{aligned} & \hline e: 60 \\ & p: 90 \\ & \hline \end{aligned}$	67.8	84	90			
Dipoles in ring	$\begin{aligned} & e: 396 \\ & p: 416 \end{aligned}$	774	$\begin{aligned} & 192 \text { per ring } \\ & +12 \text { common } \end{aligned}$	$\begin{gathered} 1232 \\ \text { main dipoles } \end{gathered}$			
Quadrupoles in ring	$\begin{aligned} & e: 580 \\ & p: 280 \\ & \hline \end{aligned}$	216	246 per ring	$\begin{gathered} 482 \text { 2-in-1 } \\ 24 \text { 1-in-1 } \end{gathered}$			
Magnet types	$e:$ C-shaped $p:$ s.c., col., warm iron	$\begin{aligned} & \hline \text { s.c., } \cos \theta \\ & \text { warm iron } \end{aligned}$	s.c., $\cos \theta$ cold iron	$\begin{gathered} \text { s.c., } 2 \text {-in- } 1 \\ \text { cold iron } \end{gathered}$			
Peak magnetic field (T)	$e: 0.274 ; \quad p: 5$	4.4	3.5	8.3 \|			

[^57]
High-Energy Collider Parameters: Heavy Ion Colliders

Table 32.5: Updated in March 2020 with numbers received from representatives of the collider (contact E. Pianori, LBNL) The table shows the parameter values achieved. For the LHC, only maximum values for the ATLAS and CMS experiments are provided (ALICE and LHCb have different requirements for energy and luminosity). Design values for a high-luminosity upgrade are also given. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; s.c. stands for superconducting. pk and avg denote peak and average values.

		RHIC (Brookhaven)	LHC (CERN)			
Physics start date	2000	$\begin{gathered} 2012 / 2018 / 2018 / 2012 / 2004 \\ 2014 / 2002 / 2015 / 2015 \end{gathered}$	2010	2012	2017	$\underset{(\text { high lum.) }}{\geq 2021}$
$\underline{\text { Physics end date }}$		-	-			
Particles collided	Au Au	$\mathrm{U} \mathrm{U} / \mathrm{Zr} \mathrm{Zr} / \mathrm{Ru} \mathrm{Ru} / \mathrm{Cu} \mathrm{Au}$ $\mathrm{Cu} \mathrm{Cu} / \mathrm{h} \mathrm{Au} \mathrm{d} \mathrm{Au/p} \mathrm{Au} / \mathrm{p} \mathrm{Al}$	Pb Pb	p Pb	Xe Xe	Pb Pb
Max. beam energy ($\mathrm{TeV} / \mathrm{n}$)	0.1	0.1	2.51	$\begin{gathered} p: 6.5 \\ \mathrm{~Pb}: 2.56 \\ \hline \end{gathered}$	2.72	2.76
$\sqrt{\sqrt{s_{N N}}(\mathrm{TeV})}$	0.2	0.2	5.02	8.16	5.44	5.5
Max. delivered int. nucleonpair lumin. per exp. (pb^{-1})	$\begin{gathered} 2639 \\ \text { (at } 100 \mathrm{GeV} / \mathrm{n} \text {) } \end{gathered}$	$\begin{gathered} \hline 21 / 36 / 36.9 / 167 / 60 \\ 43 / 169 / 124 / 63 \\ \text { (all at } 100 \mathrm{GeV} / \mathrm{n} \text {) } \\ \hline \end{gathered}$	77.8	194	0.05	$\approx 121 / y$
Luminosity $\left(10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	pk: 15.5 avg: 8.7	pk: $0.4 / 4.8 / 3.8 / 12 / 21$ $170 / 850 / 880 / 7600$ avg: $0.6 / 2.2 / 2.1 / 10 / 8$ $100 / 500 / 450 / 3800$	6.1	900	0.4	6.4 (leveled)
Time between collisions (ns)	107	$107 / 107 / 107107 / 107 / 321$ $107 / 107 / 107 / 107$	74.9 / 149.7	99.8 / 149.7	≈ 5500	49.9
Full crossing angle ($\mu \mathrm{rad}$)	0	0	320	280	300	340
Energy spread (units 10^{-3})	0.75	0.75	0.11	0.11	0.11	0.11
Bunch length (cm)	30	30	8.0	p / Pb: 9 / 11.5	11	7.9
Beam radius $\left(10^{-6} \mathrm{~m}\right)$	114^{\dagger}	$123^{\dagger} / 87^{\dagger} / 88^{\dagger} / 163^{\dagger} / 145^{\dagger}$ $136^{\dagger} / 124^{\dagger} / 147^{\dagger} / 128^{\dagger}$	21	19	12	17
Free space at inter. point (m)	16	16	38	38	38	38
Initial luminosity decay $\underline{\text { time }, ~}-L /(d L / d t)(\mathrm{hr})$	1	$\begin{gathered} -0.35^{\ddagger} / \infty^{\S} / \infty^{\S} / \infty^{\ddagger} / 1.8 \\ 0.6 / \infty^{\ddagger} / 0.5 / 0.25 \\ \hline \end{gathered}$	3.3	≈ 2	≈ 6	∞
Turn-around time (min)	30		≈ 180	150	180	≈ 200
Injection energy (TeV/n)	0.011	0.011	0.177	p / Pb: 0.45 / 0.177	0.188	0.177
Transverse emittance $\left(10^{-9} \mathrm{~m}\right)$	19^{\dagger}	$22^{\dagger} / 10.7^{\dagger} / 11.2^{\dagger} / 38^{\dagger} / 23^{\dagger}$ $19^{\dagger} / 22^{\dagger} / 26^{\dagger} / 21^{\dagger}$	0.85	0.29	0.3	0.5
β^{*}, ampl. function at interaction point (m)	0.7	$\begin{gathered} 0.7 / 0.7 / 0.7 / 0.7 / 0.9 \\ 1.0 / 0.7 / 0.8 / 0.8 \\ \hline \end{gathered}$	0.5	0.5	0.4	0.5
Beam-beam tune shift per crosssing (units 10^{-4})	39^{\dagger}	$\begin{gathered} 6^{\dagger} / 18^{\dagger} / 21^{\dagger} / 14^{\dagger}, 14^{\dagger} / 30^{\dagger} / 42^{\dagger}, 22^{\dagger} \\ 40^{\dagger}, 27^{\dagger} / 53^{\dagger}, 41^{\dagger} / 80^{\dagger}, 59^{\dagger} \\ \hline \end{gathered}$	15	15	≈ 10	11
RF frequency (MHz)		accel: 28 , store: 197	400.8	400.8	400.8	400.8
Particles per bunch (units 10^{10})	0.20	$\begin{gathered} 0.03 / 0.1 / 0.1 / 0.4,0.13 / 0.45 \\ 4.5,0.13 / 13,0.20 / 22.5,0.16 / 24,1.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.022 \\ \text { (r.m.s.) } \\ \hline \end{gathered}$	$\mathrm{p}: 2.6 \quad \mathrm{~Pb}: 0.022$	0.027	0.018
Bunches per ring per species	111	$\begin{gathered} 111 / 111 / 111 / 111 / 37 \\ 111 / 111 / 111 / 111 \\ \hline \end{gathered}$	733	$\begin{gathered} \mathrm{p}: 540 \\ \mathrm{~Pb}: 684 \end{gathered}$	16	1232
Average beam current per species (mA)	224	$38 / 56 / 61 / 160,138 / 60 / 125,143$ $181,213 / 313,176 / 334,199$	23.8	$\begin{gathered} \mathrm{p}: 16 \\ \mathrm{~Pb}: 15 \end{gathered}$	0.54	32
Circumference (km)		3.834		26.659		
Interaction regions		6 total, 2 high \mathfrak{L}		4 total, 3 high	\sim	
Magnetic length of dipole (m)		9.45		14.3		
Length of standard cell (m)		29.7		106.90		
Phase advance per cell (deg)	93	$84 / 84 / 84 / 84 / 84$ $93 / 84(d), 93 / 84(p), 93 / 84(p), 93$		90		
Dipoles in ring		192 per ring, +12 common		1232, main dipo	les	
Quadrupoles in ring		246 per ring		482 2-in-1, 24 1-i	in-1	
Magnet Type		s.c. $\cos \theta$, cold iron		s.c., 2 in 1, cold	iron	
Peak magnetic field (T)		3.5		8.3		

[^58]
33. Neutrino Beam Lines at High-Energy Proton Synchrotrons

Revised August 2019 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino beam lines the latest achieved (design) values are given.

The main source of neutrinos at proton synchrotrons is from the decay of pions and kaons produced by protons striking a nuclear target. There are different schemes to focus the secondary particles to enhance neutrino flux and/or tune the neutrino energy profile. In wide-band beams (WBB), the neutrino parent mesons are focused over a wide momentum range to obtain maximum neutrino intensity. In narrow-band beams (NBB), the secondary particles are first momentum-selected to produce a monochromatic parent beam. Another approach to generate a narrow-band neutrino spectrum is to select neutrinos that are emitted off-axis relative to the momentum of the parent mesons. For a comprehensive review of the topic, including other historical neutrino beam lines, see the article by S. E. Kopp, "Accelerator-based neutrino beams," Phys. Rept. 439, 101 (2007).

	$\begin{gathered} \text { PS } \\ (\text { CERN }) \end{gathered}$				SPS(CERN)				$\begin{gathered} \text { PS } \\ (\mathrm{KEK}) \end{gathered}$	Main Ring (JPARC)
Date	1963	1969	1972	1983	1977	1977	1995	2006	1999	2017
Proton Kinetic Energy (GeV)	20.6	20.6	26	19	350	350	450	400	12	$\begin{gathered} \hline 30 \\ (50) \end{gathered}$
$\begin{aligned} & \hline \text { Protons per } \\ & \text { Cycle }\left(10^{12}\right) \end{aligned}$	0.7	0.6	5	5	10	10	36	48	6	$\begin{gathered} \hline 240 \\ (330) \end{gathered}$
Cycle Time (s)	3	2.3	-	-	-	-	14.4	6	2.2	$\begin{aligned} & \hline 2.48 \\ & (3.5) \end{aligned}$
Beam Power (kW)	0.8	0.9	-	-	-	-	180	510	5	$\begin{gathered} \hline 500 \\ (750) \end{gathered}$
Target	-	-	-	-	-	-	Be	Graphite	Al	Graphite
Target Length (cm)	-	-	-	-	-	-	290	130	66	91
Secondary Focussing	$\begin{aligned} & \hline \text { 1-horn } \\ & \text { WBB } \end{aligned}$	3-horn WBB	$\begin{aligned} & \hline \text { 2-horn } \\ & \text { WBB } \end{aligned}$	bare target	dichromatic NBB	$\begin{aligned} & \hline \text { 2-horn } \\ & \text { WBB } \end{aligned}$	$\begin{aligned} & \hline \text { 2-horn } \\ & \text { WBB } \end{aligned}$	$\begin{aligned} & \hline \text { 2-horn } \\ & \text { WBB } \end{aligned}$	2-horn WBB	3-horn off-axis
Decay Pipe Length (m)	-	-	-	-	-	-	110	1090	200	96
$\overline{\left\langle E_{\nu}\right\rangle(\mathrm{GeV})}$	1.5	1.5	1.5	1	$50,150^{\dagger}$	20	24.3	17	1.3	0.6
Experiments	HLBC, Spark Ch.	HLBC, Spark Ch.		CDHS, CHARM	$\begin{gathered} \hline \text { CDHS, } \\ \text { CHARM, } \\ \text { BEBC } \end{gathered}$	$\begin{gathered} \hline \text { GGM,CDHS, } \\ \text { CHARM, } \\ \text { BEBC } \end{gathered}$	NOMAD, CHORUS	OPERA, ICARUS	K2K	T2K

	Main Ring (Fermilab)					Booster (Fermilab)	Main Injector (Fermilab)			
Date	1974	1979	1976	1991	1998	2002, (2020)	2005	2017	(2020)	(2026)
Proton Kinetic Energy (GeV)	300	400	350	800	800	8	120	120	120	($60-120$)
$\begin{aligned} & \hline \text { Protons per } \\ & \text { Cycle }\left(10^{12}\right) \end{aligned}$	10	10	13	10	12	4.5	37	54	(65)	(75)
Cycle Time (s)	-	-	-	60	60	0.2	2	1.333	(1.2)	(1.2)
Beam Power (kW)	-	-	-	20	25	29	350	720	(1000)	(1200)
Target	-	-	-	-	BeO	Be	Graphite	Graphite	Graphite	(Graphite)
Target Length (cm)	-	-	-	-	31	71	95	120	120	(150-220)
Secondary Focussing	dichromatic NBB	$\begin{aligned} & \hline \text { 2-horn } \\ & \text { WBB } \end{aligned}$	1-horn WBB	quad trip.	$\begin{aligned} & \hline \text { SSQT } \\ & \text { WBB } \end{aligned}$	1-horn WBB	2-horn WBB	2-horn off-axis	2-horn off-axis	(3-horn WBB)
Decay Pipe Length (m)	400	400	400	400	400	50	675	675	675	(220)
$\overline{\left\langle E_{\nu}\right\rangle(\mathrm{GeV})}$	50,180 ${ }^{\dagger}$	25	100	90,260	70,180	1	$3-20^{\ddagger}$	2	2	(2.5)
Experiments	CITF, HPWF, 15 ' BC	$15^{\prime} \mathrm{BC}$	$\begin{aligned} & \text { HPWF } \\ & 15 \text { ' BC } \end{aligned}$	$15^{\prime} \mathrm{BC}$ CCFRR	NuTeV	MiniBooNE, SciBooNE, MicroBooNE, (SBND,ICARUS)	MINOS, MINER $\nu \mathrm{A}$	$\mathrm{NO} \nu \mathrm{A}$, MINER $\nu \mathrm{A}$, MINOS+	$\mathrm{NO} \nu \mathrm{A}$	$\begin{aligned} & \hline \text { LBNF/ } \\ & \text { DUNE } \end{aligned}$

${ }^{\dagger}$ Pion and kaon peaks in the momentum-selected channel.
${ }^{\ddagger}$ Tunable WBB energy spectrum.

34. Passage of Particles Through Matter

Revised August 2019 by D.E. Groom (LBNL) and S.R. Klein (NSD LBLN).
34.1 Notation 535
34.2 Electronic energy loss by heavy particles 535
34.2.1 Moments and cross sections 535
34.2.2 Maximum energy transfer in a single collision535
34.2.3 Stopping power at intermediate energies 536
34.2.4 Mean excitation energy 538
34.2.5 Density effect 538
34.2.6 Energy loss at low energies 538
34.2.7 Energetic knock-on electrons (δ rays) 538
34.2.8 Restricted energy loss rates for relativisticionizing particles539
34.2.9 Fluctuations in energy loss 539
34.2.10 Energy loss in mixtures and compounds 540
34.2.11 Ionization yields 540
34.3 Multiple scattering through small angles 540
34.4 Photon and electron interactions in matter 541
34.4.1 Collision energy losses by $e^{ \pm}$ 541
34.4.2 Radiation length 541
34.4.3 Bremsstrahlung energy loss by $e^{ \pm}$ 542
34.4.4 Critical energy 542
34.4.5 Energy loss by photons 543
34.4.6 Bremsstrahlung and pair production at very high energies 54334.4.7 Photonuclear and electronuclear interac-tions at still higher energies544
34.5 Electromagnetic cascades 545
34.6 Muon energy loss at high energy 546
34.7 Cherenkov and transition radiation 547
34.7.1 Optical Cherenkov radiation 547
34.7.2 Coherent radio Cherenkov radiation 547
34.7.3 Transition radiation 548

This review covers the interactions of photons and electrically charged particles in matter, concentrating on energies of interest for high-energy physics and astrophysics and processes of interest for particle detectors (ionization, Cherenkov radiation, transition radiation). Much of the focus is on particles heavier than electrons ($\pi^{ \pm}, p$, etc.). Although the charge number z of the projectile is included in the equations, only $z=1$ is discussed in detail. Muon radiative losses are discussed, as are photon/electron interactions at high to ultrahigh energies. Neutrons are not discussed.

34.1 Notation

The notation and important numerical values are shown in Table 34.1

34.2 Electronic energy loss by heavy particles 34.2.1 Moments and cross sections

The electronic interactions of fast charged particles with speed $v=\beta c$ occur in single collisions with energy losses W [1], leading to ionization, atomic, or collective excitation. Most frequently the energy losses are small (for 90% of all collisions the energy losses are less than 100 eV). In thin absorbers few collisions will take place and the total energy loss will show a large variance [1]; also see Sec. 34.2 .9 below. For particles with charge ze more massive than electrons ("heavy" particles), scattering from free electrons is adequately described by the Rutherford differential cross section [2],

$$
\begin{equation*}
\frac{d \sigma_{R}(W ; \beta)}{d W}=\frac{2 \pi r_{e}^{2} m_{e} c^{2} z^{2}}{\beta^{2}} \frac{\left(1-\beta^{2} W / W_{\max }\right)}{W^{2}} \tag{34.1}
\end{equation*}
$$

where $W_{\max }$ is the maximum energy transfer possible in a single collision. But in matter electrons are not free. W must be finite and depends on atomic and bulk structure. For electrons bound in atoms Bethe [3] used "Born Theorie" to obtain the differential cross section

$$
\begin{equation*}
\frac{d \sigma_{B}(W ; \beta)}{d W}=\frac{d \sigma_{R}(W, \beta)}{d W} B(W) \tag{34.2}
\end{equation*}
$$

Electronic binding is accounted for by the correction factor $B(W)$. Examples of $B(W)$ and $d \sigma_{B} / d W$ can be seen in Figs. 5 and 6 of Ref. [1].

Table 34.1: Summary of variables used in this section. The kinematic variables β and γ have their usual relativistic meanings.

Symb.	Definition	Value or (usual) units
$m_{e} c^{2}$	electron mass $\times c^{2}$	$0.51099895000(15) \mathrm{MeV}$
r_{e}	classical electron radius $e^{2} / 4 \pi \epsilon_{0} m_{e} c^{2}$	$2.8179403262(13) \mathrm{fm}$
α	fine structure constant $e^{2} / 4 \pi \epsilon_{0} \hbar c$	1/137.035 $999084(21)$
N_{A}	Avogadro's number	$\begin{aligned} & 6.02214076 \\ & \times 10^{23} \mathrm{~mol}^{-1} \end{aligned}$
ρ	density	$\mathrm{g} \mathrm{cm}^{-3}$
x	mass per unit area	$\mathrm{g} \mathrm{cm}^{-2}$
M	incident particle mass	MeV / c^{2}
E	incident part. energy $\gamma M c^{2}$	MeV
T	kinetic energy, $(\gamma-1) M c^{2}$	MeV
W	energy transfer to an electron in a single collision	MeV
$W_{\text {max }}$	Maximum possible energy transfer MeV to an electron in a single collision	
k z Z	bremsstrahlung photon energy charge number of incident particle	MeV
Z	atomic number of absorber	
A	atomic mass of absorber	$\mathrm{g} \mathrm{mol}^{-1}$
K	$\begin{aligned} & 4 \pi N_{A} r_{e}^{2} m_{e} c^{2} \\ & \text { (Coefficient for } d E / d x \text {) } \end{aligned}$	$0.307075 \mathrm{MeV} \mathrm{mol}{ }^{-1} \mathrm{~cm}^{2}$
I	mean excitation energy	eV (Nota bene!)
$\delta(\beta \gamma)$	density effect correction to ionizatio	on energy loss
$\hbar \omega_{p}$	plasma energy $\sqrt{4 \pi N_{e} r_{e}^{3}} m_{e} c^{2} / \alpha$	$\begin{gathered} \sqrt{\rho\langle Z / A\rangle} \times 28.816 \mathrm{eV} \\ \longrightarrow \rho \text { in } \mathrm{g} \mathrm{~cm}^{-3} \end{gathered}$
N_{e}	electron density	(units of $\left.r_{e}\right)^{-3}$
w_{j}	weight fraction of the j th element in	in a compound or mixt.
n_{j}	\propto number of j th kind of atoms in a	compound or mixture
X_{0}	radiation length	$\mathrm{g} \mathrm{cm}^{-2}$
E_{c}	critical energy for electrons	MeV
$E_{\mu c}$	critical energy for muons	GeV
E_{s}	scale energy $\sqrt{4 \pi / \alpha} m_{e} c^{2}$	21.2052 MeV
$\underline{R M}^{\text {M }}$	Molière radius	$\mathrm{g} \mathrm{cm}^{-2}$

Bethe's original theory applies only to energies above which atomic effects are not important. The free-electron cross section (Eq. (34.1)) can be used to extend the cross section to $W_{\text {max }}$. At high energies σ_{B} is further modified by polarization of the medium, and this "density effect," discussed in Sec. 34.2.5, must also be included. Smaller corrections are discussed below.

The mean number of collisions with energy loss between W and $W+d W$ occurring in a distance δx is $N_{e} \delta x(d \sigma / d W) d W$, where $d \sigma(W ; \beta) / d W$ contains all contributions. It is convenient to define the moments

$$
\begin{equation*}
M_{j}(\beta)=N_{e} \delta x \int W^{j} \frac{d \sigma(W ; \beta)}{d W} d W \tag{34.3}
\end{equation*}
$$

so that M_{0} is the mean number of collisions in $\delta x, M_{1}$ is the mean energy loss in $\delta x,\left(M_{2}-M_{1}\right)^{2}$ is the variance, etc. The number of collisions is Poisson-distributed with mean $M_{0} . N_{e}$ is either measured in electrons $/ \mathrm{g}\left(N_{e}=N_{A} Z / A\right)$ or electrons $/ \mathrm{cm}^{3}$ $\left(N_{e}=N_{A} \rho Z / A\right)$. The former is used throughout this chapter, since quantities of interest ($d E / d x, X_{0}$, etc.) vary smoothly with composition when there is no density dependence.

34.2.2 Maximum energy transfer in a single collision

For a particle with mass M,

$$
\begin{equation*}
W_{\max }=\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{1+2 \gamma m_{e} / M+\left(m_{e} / M\right)^{2}} \tag{34.4}
\end{equation*}
$$

In older references $[2,7]$ the "low-energy" approximation $W_{\max }=2 m_{e} c^{2} \beta^{2} \gamma^{2}$, valid for $2 \gamma m_{e} \ll M$, is often implicit. For

Figure 34.1: Mass stopping power $(=\langle-d E / d x\rangle)$ for positive muons in copper as a function of $\beta \gamma=p / M c$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power. Data below the break at $\beta \gamma \approx 0.1$ are taken from ICRU 49 [4] assuming only β dependence, and data at higher energies are from [5]. Vertical bands indicate boundaries between different approximations discussed in the text. The short dotted lines labeled " μ^{-}" illustrate the "Barkas effect", the dependence of stopping power on projectile charge at very low energies [6]. $d E / d x$ in the radiative region is not simply a function of β.
a pion in copper, the error thus introduced into $d E / d x$ is greater than 6% at 100 GeV . For $2 \gamma m_{e} \gg M, W_{\max }=M c^{2} \beta^{2} \gamma$.

At energies of order 100 GeV , the maximum 4-momentum transfer to the electron can exceed $1 \mathrm{GeV} / c$, where hadronic structure effects modify the cross sections. This problem has been investigated by J.D. Jackson [8], who concluded that for incident hadrons (but not for large nuclei) corrections to $d E / d x$ are negligible below energies where radiative effects dominate. While the cross section for rare hard collisions is modified, the average stopping power, dominated by many softer collisions, is almost unchanged.

34.2.3 Stopping power at intermediate energies

The mean rate of energy loss by moderately relativistic charged heavy particles is well described by the "Bethe equation,"

$$
\begin{equation*}
\left\langle-\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} W_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right] \tag{34.5}
\end{equation*}
$$

Eq. (34.5) is valid in the region $0.1 \lesssim \beta \gamma \lesssim 1000$ with an accuracy of a few percent. Small corrections are discussed below.

This is the mass stopping power; with the symbol definitions and values given in Table 34.1, the units are $\mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$. As can be seen from Fig. 34.2, $\langle d E / d x\rangle$ defined in this way is about the same for most materials, decreasing slowly with Z. The linear stopping power, in $\mathrm{MeV} / \mathrm{cm}$, is $\rho\langle d E / d x\rangle$, where ρ is the density in $\mathrm{g} / \mathrm{cm}^{3}$.
At $\beta \gamma \sim 0.1$ the projectile velocity is comparable to atomic electron "velocities" (Sec. 34.2.6), and at $\beta \gamma \sim 1000$ radiative effects begin to be important (Sec. 34.6). Both limits are Z dependent. A minor dependence on M at high energies is introduced through $W_{\max }$, but for all practical purposes $\langle d E / d x\rangle$ in a given material is a function of β alone.

The stopping power at first falls as $1 / \beta^{\alpha}$ where $\alpha \approx 1.4-1.7$,
depending slightly on the incident particle's mass and decreasing somewhat with Z, and reaches a broad minimum at $\beta \gamma=3.5-3.0$ as Z goes from 7 to 100 . It then inexorably rises as the argument of the logarithmic term increases. Two independent mechanisms contribute. Two thirds of the rise is produced by the explicit $\beta^{2} \gamma^{2}$ dependence through the relativistic flattening and extension of the particle's electric field. Rather than producing ionization at greater and greater distances, the field polarizes the medium, cancelling the increase in the logarithmic term at high energies. This is taken into account by the density-effect correction $\delta(\beta \gamma)$. The other third is introduced by the $\beta^{2} \gamma$ dependence of $W_{\max }$, the maximum possible energy transfer to a recoil electron. "Hard collision" events increasingly extend the tail of the energy loss distribution, increasing the mean but with little effect on the position of the maximum, the most probable energy loss.

Few concepts in high-energy physics are as misused as $d E / d x$, since the mean is weighted by rare events with large singlecollision energy losses. Even with samples of hundreds of events in a typical detector, the mean energy loss cannot be obtained dependably. Far better and more easily measured is the most probable energy loss, discussed in Sec. 34.2.9. The most probable energy loss in a typical detector is considerably smaller than the mean given by the Bethe equation. It does not continue to rise with the mean stopping power, but approaches a "Fermi plateau."

In analysing TPC data (Sec. 35.6.5), the same end is often accomplished by using the mean of $50 \%-70 \%$ of the samples with the smallest signals as the estimator.

Although it must be used with cautions and caveats, $\langle d E / d x\rangle$ as described in Eq. (34.5) still forms the basis of much of our understanding of energy loss by charged particles. Extensive tables are available $[4,5]$ and pdg.lbl.gov/AtomicNuclearProperties/.

For heavy projectiles, like ions, additional terms are required to account for higher-order photon coupling to the target, and to account for the finite target radius. These can change $d E / d x$ by a

Figure 34.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher- Z absorbers. See Fig. 34.23.
factor of two or more for the heaviest nuclei in certain kinematic regimes [9].

Figure 34.3: Mass stopping power at minimum ionization for the chemical elements. The straight line is fitted for $Z>6$. A simple functional dependence on Z is not to be expected, since $\langle-d E / d x\rangle$ also depends on other variables.

The function as computed for muons on copper is shown as the "Bethe" region of Fig. 34.1. Mean energy loss behavior below this region is discussed in Sec. 34.2.6, and the radiative effects at high energy are discussed in Sec. 34.6. Only in the Bethe region is it a function of β alone; the mass dependence is more complicated elsewhere. The stopping power in several other materials is shown in Fig. 34.2. Except in hydrogen, particles with the same velocity have similar rates of energy loss in different materials, although there is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior difference at high energies between a gas (He in the figure) and the other materials shown in the figure is due to the density-effect correction, $\delta(\beta \gamma)$, discussed in Sec. 34.2.5. The stopping power functions are characterized by broad minima whose position drops from $\beta \gamma=3.5$ to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function of atomic number are shown in Fig. 34.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy loss rates close to the minimum; they are "minimum-ionizing particles," or mip's.

Figure 34.4: Range of heavy charged particles in liquid (bubble chamber) hydrogen, helium gas, carbon, iron, and lead. For example: For a K^{+}whose momentum is $700 \mathrm{MeV} / c, \beta \gamma=1.42$. For lead we read $R / M \approx 396$, and so the range is $195 \mathrm{~g} \mathrm{~cm}^{-2}$ (17 cm).

Eq. (34.5) may be integrated to find the total (or partial) "continuous slowing-down approximation" (CSDA) range R for a particle which loses energy only through ionization and atomic excitation. Since $d E / d x$ depends only on $\beta, R / M$ is a function of E / M or $p c / M$. In practice, range is a useful concept only for low-energy hadrons $\left(R \lesssim \lambda_{I}\right.$, where λ_{I} is the nuclear interaction length), and for muons below a few hundred GeV (above which radiative effects dominate). Fig. 34.4 shows R / M as a function of $\beta \gamma(=p / M c)$ for a variety of materials.

The mass scaling of $d E / d x$ and range is valid for the electronic losses described by the Bethe equation, but not for radiative losses.

Figure 34.5: Mean excitation energies (divided by Z) as adopted by the ICRU [10]. Those based on experimental measurements are shown by symbols with error flags; the interpolated values are simply joined. The grey point is for liquid H_{2}; the black point at 19.2 eV is for H_{2} gas. The open circles show more recent determinations by Bichsel [11]. The dash-dotted curve is from the approximate formula of Barkas [12] used in early editions of this Review.

34.2.4 Mean excitation energy

"The determination of the mean excitation energy is the principal non-trivial task in the evaluation of the Bethe stoppingpower formula" [13]. Recommended values have varied substantially with time. Estimates based on experimental stopping-power measurements for protons, deuterons, and alpha particles and on oscillator-strength distributions and dielectric-response functions were given in ICRU 49 [4]. See also ICRU 37 [10]. These values, shown in Fig. 34.5, have since been widely used. Machine-readable versions can also be found [14].

34.2.5 Density effect

As the particle energy increases, its electric field flattens and extends, so that the distant-collision contribution to the logarithmic term in Eq. (34.5) increases as $\beta^{2} \gamma^{2}$. However, real media become polarized, limiting the field extension and effectively truncating this part of the logarithmic rise $[2-5,15,16]$. At very high energies,

$$
\begin{equation*}
\delta(\beta \gamma) / 2 \rightarrow \ln \left(\hbar \omega_{p} / I\right)+\ln \beta \gamma-1 / 2 \tag{34.6}
\end{equation*}
$$

where $\delta(\beta \gamma) / 2$ is the density effect correction introduced in Eq. (34.5) and $\hbar \omega_{p}$ is the plasma energy defined in Table 34.1. A comparison with Eq. (34.5) shows that $|d E / d x|$ then grows as $\ln T_{\text {max }}$ rather than $\ln \beta^{2} \gamma^{2} T_{\text {max }}$, and that the mean excitation energy I is replaced by the plasma energy $\hbar \omega_{p}$. An example of the ionization stopping power as calculated with and without the density effect correction is shown in Fig. 34.1. Since the plasma frequency scales as the square root of the electron density, the correction is much larger for a liquid or solid than for a gas, as is illustrated in Fig. 34.2.
The density effect correction is usually computed using Sternheimer's parameterization [15]:
$\delta(\beta \gamma)= \begin{cases}2(\ln 10) x-\bar{C} & \text { if } x \geq x_{1} ; \\ 2(\ln 10) x-\bar{C}+a\left(x_{1}-x\right)^{k} & \text { if } x_{0} \leq x<x_{1} ; \\ 0 & \text { if } x<x_{0} \text { (nonconductors) } ; \\ \delta_{0} 10^{2\left(x-x_{0}\right)} & \text { if } x<x_{0} \text { (conductors) }\end{cases}$
Here $x=\log _{10} \beta \gamma=\log _{10}(p / M c) . \quad \bar{C}$ (the negative of the C used in Ref. [15]) is obtained by equating the high-energy case of Eq. (34.7) with the limit given in Eq. (34.6). The other parameters are adjusted to give a best fit to the results of detailed calculations for momenta below $M c \exp \left(x_{1}\right)$. For nonconductors the correction is 0 below $\beta \gamma=10^{x_{0}}$, corresponding to $100-200 \mathrm{MeV}$ for pions and $1-2 \mathrm{GeV}$ for protons. For conductors it decreases rapidly below this point. Parameters for the elements and nearly 200 compounds and mixtures of interest are published in a variety of places, notably in Ref. [16]. A recipe for finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17] and is summarized in Ref. [5].
The remaining relativistic rise comes from the $\beta^{2} \gamma$ growth of $W_{\max }$, which in turn is due to (rare) large energy transfers to a few electrons. When these events are excluded, the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau (see Sec. 34.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and at a considerably higher energy for protons in iron), radiative effects are more important than ionization losses. These are especially relevant for high-energy muons, as discussed in Sec. 34.6.

34.2.6 Energy loss at low energies

The theory of energy loss by ionization and excitation as given by Bethe is based on a first-order Born approximation. It assumes free electrons, and should be valid when the projectile's velocity is large compared to that of the atomic electrons. This presents a problem at low energies, where $W_{\text {max }}$ is less than the K shell binding energy. However, Mott showed that the Born approximation can be applied at energies much smaller than atomic binding energies [18]; the incident particle can be treated by classical mechanics since its wavelength is shorter than atomic dimensions. The Born method is actually better justified when its velocity is not large compared to the K electron velocity [19].

Higher-order corrections must still be made to extend the Bethe equation Eq. (34.5) to low energies, e.g. below 10 MeV for protons.

An improved approximation for the terms in the square brackets of Eq. (34.5) at low energies is obtained with

$$
\begin{equation*}
L(\beta)=L_{a}(\beta)-\frac{C(\beta)}{Z}+z L_{1}(\beta)+z^{2} L_{2}(\beta) \tag{34.8}
\end{equation*}
$$

Here L_{a} is the square-bracketed terms of Eq. (34.5), C / Z is the sum of shell corrections and $z L_{1}$ and $z^{2} L_{2}$ are Barkas and Bloch correction terms $[4,20]$. With these corrections, the Bethe treatment is accurate to about 1% down to $\beta \approx 0.05$, or about 1 MeV for protons.

Shell correction $-C / Z$. As the velocity of the projectile decreases, the contribution to the stopping power from K shell electrons decreases, and at even lower velocities contributions from L and higher shells further reduce it. The correction $\left(C_{\mathrm{K}}+C_{\mathrm{L}}+\ldots\right) / Z$ is should be included in the square brackets of Eq. (34.5). It is calculated and tabulated (for a few common materials) in a number of places; Refs. [4, 10, 20] are especially useful. As an example, the shell correction for a 30 MeV proton traversing aluminum is 0.6%, but increases to 9.9% as the proton's energy decreases to 0.3 MeV .

Barkas correction $z L_{1}$. Qualitatively, one might imagine an atom's electron cloud slightly recoiling at the approach of a negative projectile and being attracted toward an approaching positive projectile. Hence the stopping power for negative particles should be slightly smaller than the stopping power for positive particles. In a 1956 paper, Barkas et al. noted that negative pions possibly had a longer range than positive pions [6]. The effect has been measured for a number of negative/positive particle pairs, and more recently in detailed studies with antiprotons at the CERN LEAR facility [21]. Since no complete theory exists, an empirical approach is necessary. A 1972 harmonic-oscillator model by Ashley et al. [22] is often used; it has two parameters determined by experimental data.
Bloch correction $z^{2} L_{2}$. Bloch's extension of Bethe's theory introduced a low-energy correction that takes account of perturbations of the atomic wave functions. The form obtained by Lindhard and Sørensen [9] is used e.g. in Refs. [4, 20].

For the interval $0.01<\beta<0.05$ there is no satisfactory theory. For protons, one usually relies on the phenomenological fitting formulae developed by Andersen and Ziegler [4, 23]. As tabulated in ICRU 49 [4], the nuclear plus electronic proton stopping power in copper is $113 \mathrm{MeV} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$ at $T=10 \mathrm{keV}(\beta \gamma=0.005)$, rises to a maximum of $210 \mathrm{MeV} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$ at $T \approx 120 \mathrm{keV}(\beta \gamma=0.016)$, then falls to $118 \mathrm{MeV} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ at $T=1 \mathrm{MeV}(\beta \gamma=0.046)$. Above $0.5-1.0 \mathrm{MeV}$ the corrected Bethe theory is adequate.

For particles moving more slowly than $\approx 0.01 c$ (more or less the velocity of the outer atomic electrons), Lindhard has been quite successful in describing electronic stopping power, which is proportional to β [24]. Finally, we note that at even lower energies, e.g., for protons of less than several hundred eV , non-ionizing nuclear recoil energy loss dominates the total energy loss [4,24,25].

34.2.7 Energetic knock-on electrons (δ rays)

The distribution of secondary electrons with kinetic energies $T \gg I$ is [2]

$$
\begin{equation*}
\frac{d^{2} N}{d T d x}=\frac{1}{2} K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \frac{F(T)}{T^{2}} \tag{34.9}
\end{equation*}
$$

for $I \ll T \leq W_{\max }$, where $W_{\max }$ is given by Eq. (34.4). Here β is the velocity of the primary particle. The factor F is spindependent, but is about unity for $T \ll W_{\max }$. For spin-0 particles $F(T)=\left(1-\beta^{2} T / W_{\max }\right)$; forms for spins $1 / 2$ and 1 are also given by Rossi [2] (Sec. 2.3, Eqs. 7 and 8). Additional formulae are given in [26]. Equation Eq. (34.9) is inaccurate for T close to I [27].
δ rays of even modest energy are rare. For a $\beta \approx 1$ particle, for example, on average only one collision with $T_{e}>10 \mathrm{keV}$ will occur along a path length of 90 cm of argon gas [1].

A δ ray with kinetic energy T_{e} and corresponding momentum p_{e} is produced at an angle θ given by

$$
\begin{equation*}
\cos \theta=\left(T_{e} / p_{e}\right)\left(p_{\max } / W_{\max }\right) \tag{34.10}
\end{equation*}
$$

where $p_{\text {max }}$ is the momentum of an electron with the maximum possible energy transfer $W_{\text {max }}$.
34.2.8 Restricted energy loss rates for relativistic ionizing particles

Further insight can be obtained by examining the mean energy deposit by an ionizing particle when energy transfers are restricted to $T \leq W_{\text {cut }} \leq W_{\text {max }}$. The restricted energy loss rate is

$$
\begin{align*}
-\left.\frac{d E}{d x}\right|_{T<W_{\mathrm{cut}}}=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} & {\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} W_{\mathrm{cut}}}{I^{2}}\right.} \tag{34.11}\\
& \left.-\frac{\beta^{2}}{2}\left(1+\frac{W_{\mathrm{cut}}}{W_{\mathrm{max}}}\right)-\frac{\delta}{2}\right] .
\end{align*}
$$

This form approaches the normal Bethe function (Eq. (34.5)) as $W_{\text {cut }} \rightarrow W_{\text {max }}$. It can be verified that the difference between Eq. (34.5) and Eq. (34.11) is equal to $\int_{W_{\text {cut }}}^{W_{\max }} T\left(d^{2} N / d T d x\right) d T$, where $d^{2} N / d T d x$ is given by Eq. (34.9).

Figure 34.6: Bethe $d E / d x$, two examples of restricted energy loss, and the Landau most probable energy per unit thickness in silicon. The change of $\Delta_{\mathrm{p}} / \mathrm{x}$ with thickness x illustrates its $a \ln x+b$ dependence. Minimum ionization $\left(d E /\left.d x\right|_{\min }\right)$ is $1.664 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$. Radiative losses are excluded. The incident particles are muons.

Since $W_{\text {cut }}$ replaces $W_{\text {max }}$ in the argument of the logarithmic term of Eq. (34.5), the $\beta \gamma$ term producing the relativistic rise in the close-collision part of $d E / d x$ is replaced by a constant, and $|d E / d x|_{T<W_{\text {cut }}}$ approaches the constant "Fermi plateau." (The density effect correction δ eliminates the explicit $\beta \gamma$ dependence produced by the distant-collision contribution.) This behavior is illustrated in Fig. 34.6, where restricted loss rates for two examples of $W_{\text {cut }}$ are shown in comparison with the full Bethe $d E / d x$ and the Landau-Vavilov most probable energy loss (to be discussed in Sec. 34.2.9 below).
"Restricted energy loss" is cut at the total mean energy, not the single-collision energy above $W_{\text {cut }}$ It is of limited use. The most probable energy loss, discussed in the next Section, is far more useful in situations where single-particle energy loss is observed.

34.2.9 Fluctuations in energy loss

For detectors of moderate thickness x (e.g. scintillators or LAr cells), ${ }^{1}$ the energy loss probability distribution $f(\Delta ; \beta \gamma, x)$ is adequately described by the highly-skewed Landau (or LandauVavilov) distribution [28, 29].

The most probable energy loss is $[30]^{2}$

$$
\begin{equation*}
\Delta_{p}=\xi\left[\ln \frac{2 m c^{2} \beta^{2} \gamma^{2}}{I}+\ln \frac{\xi}{I}+j-\beta^{2}-\delta(\beta \gamma)\right] \tag{34.12}
\end{equation*}
$$

[^59]where $\xi=(K / 2)\langle Z / A\rangle z^{2}\left(x / \beta^{2}\right) \mathrm{MeV}$ for a detector with a thickness x in $\mathrm{g} \mathrm{cm}^{-2}$, and $j=0.200[30] .{ }^{3}$ While $d E / d x$ is independent of thickness, Δ_{p} / x scales as $a \ln x+b$. The density correction $\delta(\beta \gamma)$ was not included in Landau's or Vavilov's work, but it was later included by Bichsel [30]. The high-energy behavior of $\delta(\beta \gamma)$ (Eq. (34.6)) is such that
\[

$$
\begin{equation*}
\Delta_{p} \underset{\beta \gamma \gtrsim 100}{\longrightarrow} \xi\left[\ln \frac{2 m c^{2} \xi}{\left(\hbar \omega_{p}\right)^{2}}+j\right] \tag{34.13}
\end{equation*}
$$

\]

Thus the Landau-Vavilov most probable energy loss, like the restricted energy loss, reaches a Fermi plateau. The Bethe $d E / d x$ and Landau-Vavilov-Bichsel Δ_{p} / x in silicon are shown as a function of muon energy in Fig. 34.6. The energy deposit in the $1600 \mu \mathrm{~m}$ case is roughly the same as in a 3 mm thick plastic scintillator.

Figure 34.7: Electronic energy deposit distribution for a 10 GeV muon traversing 1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVT-based scintillator [1, 11, 32]. The Landau-Vavilov function (dot-dashed) uses a Rutherford cross section without atomic binding corrections but with a kinetic energy transfer limit of $W_{\max }$. The solid curve was calculated using Bethe-Fano theory. $M_{0}(\Delta)$ and $M_{1}(\Delta)$ are the cumulative 0th moment (mean number of collisions) and 1st moment (mean energy loss) in crossing the silicon. (See Sec. 34.2.1). The fwhm of the Landau-Vavilov function is about 4ξ for detectors of moderate thickness. Δ_{p} is the most probable energy loss, and $\langle\Delta\rangle$ divided by the thickness is the Bethe $\langle d E / d x\rangle$.

Figure 34.8: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value Δ_{p} / x. The width w is the full width at half maximum.

The distribution function for the energy deposit by a 10 GeV muon going through a detector of about this thickness is shown

[^60]in Fig. 34.7. In this case the most probable energy loss is 62% of the mean $\left(M_{1}(\langle\Delta\rangle) / M_{1}(\infty)\right)$. Folding in experimental resolution displaces the peak of the distribution, usually toward a higher value. 90% of the collisions $\left(M_{1}(\langle\Delta\rangle) / M_{1}(\infty)\right)$ contribute to energy deposits below the mean. It is the very rare high-energytransfer collisions, extending to $W_{\max }$ at several GeV , that drives the mean into the tail of the distribution. The large weight of these rare events makes the mean of an experimental distribution consisting of a few hundred events subject to large fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe equation, Eq. (34.5), is thus ill-defined experimentally and is not useful for describing energy loss by single particles. ${ }^{4}$ It rises as $\ln \gamma$ because $W_{\text {max }}$ increases as γ at high energies. The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm) of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the most probable E loss rate to the mean loss rate via the Bethe equation is $[0.69,0.57,0.49,0.42,0.38]$ for $T_{\mu}=$ $[0.01,0.1,1,10,100] \mathrm{GeV}$. Radiative losses add less than 0.5% to the total mean energy deposit at 10 GeV , but add 7% at 100 GeV . The most probable E loss rate rises slightly beyond the minimum ionization energy, then is essentially constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC cells [1] and Si detectors [30], as can be seen e.g. in Fig. 1 of Ref. [1] for an argon-filled TPC cell. Also see Talman [31]. While Δ_{p} / x may be calculated adequately with Eq. (34.12), the distributions are significantly wider than the Landau width $w=4 \xi$ Ref. [30], Fig. 15. Examples for 500 MeV pions incident on thin silicon detectors are shown in Fig. 34.8. For very thick absorbers the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization, is shown in Fig. 34.9 for several silicon detector thicknesses.

Figure 34.9: Most probable energy loss in silicon, scaled to the mean loss of a minimum ionizing particle, $388 \mathrm{eV} / \mu \mathrm{m}(1.66 \mathrm{MeV}$ $\mathrm{g}^{-1} \mathrm{~cm}^{2}$).

34.2.10 Energy loss in mixtures and compounds

A mixture or compound can be thought of as made up of thin layers of pure elements in the right proportion (Bragg additivity). In this case,

$$
\begin{equation*}
\left\langle\frac{d E}{d x}\right\rangle=\sum w_{j}\left\langle\frac{d E}{d x}\right\rangle_{j} \tag{34.14}
\end{equation*}
$$

where $d E /\left.d x\right|_{j}$ is the mean rate of energy loss (in $\mathrm{MeV} \mathrm{g} \mathrm{cm}^{-2}$) in the j th element. Eq. (34.5) can be inserted into Eq. (34.14) to find expressions for $\langle Z / A\rangle,\langle I\rangle$, and $\langle\delta\rangle$; for example, $\langle Z / A\rangle=$ $\sum w_{j} Z_{j} / A_{j}=\sum n_{j} Z_{j} / \sum n_{j} A_{j}$. However, $\langle I\rangle$ as defined this way is an underestimate, because in a compound electrons are more tightly bound than in the free elements, and $\langle\delta\rangle$ as calculated this way has little relevance, because it is the electron density that matters. If possible, one uses the tables given in

[^61]Refs. [16, 33], or the recipes given in [17] (repeated in Ref. [5]), that include effective excitation energies and interpolation coefficients for calculating the density effect correction for the chemical elements and nearly 200 mixtures and compounds. Otherwise, use the recipe for δ given in Refs. [5,17], and calculate $\langle I\rangle$ following the discussion in Ref. [13]. (Note the " 13% " rule!)

34.2.11 Ionization yields

The Bethe equation describes energy loss via excitation and ionization. Many gaseous detectors (proportional counters or TPCs) or liquid ionization detectors count the number of electrons or positive ions from ionization, rather than the ionization energy. As a further complication, the electron liberated in the initial ionization often has enough energy to ionize other atoms or molecules; this process can happen several times. The number of electron-ion pairs per unit length is typically three or more times the original number. Ion or electron counting is a proxy for a direct $d E / d x$ measurement. Calibrations link the number of observed ions to the traversing particle's $d E / d x$.

The details depend on the gases (or liquids) and the particular detector involved. A useful discussion of the physics is provided in Sec.35.6 of this Review.

34.3 Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters. Most of this deflection is due to Coulomb scattering from nuclei as described by the Rutherford cross section. (However, for hadronic projectiles, the strong interactions also contribute to multiple scattering.) For many small-angle scatters the net scattering and displacement distributions are Gaussian via the central limit theorem. Less frequent "hard" scatters produce non-Gaussian tails. These Coulomb scattering distributions are well-represented by the theory of Molière [34]. Accessible discussions are given by Rossi [2] and Jackson [35], and exhaustive reviews have been published by Scott [36] and Motz et al. [37]. Experimental measurements have been published by Bichsel [38] (low energy protons) and by Shen et al. [39] (relativistic pions, kaons, and protons). ${ }^{5}$

If we define

$$
\begin{equation*}
\theta_{0}=\theta_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{\sqrt{2}} \theta_{\mathrm{space}}^{\mathrm{rms}} \tag{34.15}
\end{equation*}
$$

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with an rms width given by Lynch \& Dahl [40]:

$$
\begin{align*}
\theta_{0} & =\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}}\left[1+0.088 \log _{10}\left(\frac{x z^{2}}{X_{0} \beta^{2}}\right)\right] \\
& =\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}}\left[1+0.038 \ln \left(\frac{x z^{2}}{X_{0} \beta^{2}}\right)\right] \tag{34.16}
\end{align*}
$$

Here $p, \beta c$, and z are the momentum, velocity, and charge number of the incident particle, and x / X_{0} is the thickness of the scattering medium in radiation lengths (defined below). This takes into account the p and z dependence quite well at small Z, but for large Z and small x the β-dependence is not well represented. Further improvements are discussed in Ref. [40].

Eq. (34.16) describes scattering from a single material, while the usual problem involves the multiple scattering of a particle traversing many different layers and mixtures. Since it is from a fit to a Molière distribution, it is incorrect to add the individual θ_{0} contributions in quadrature; the result is systematically too small. It is much more accurate to apply Eq. (34.16) once, after finding x and X_{0} for the combined scatterer.

The nonprojected (space) and projected (plane) angular distributions are given approximately by [34]

$$
\begin{equation*}
\frac{1}{2 \pi \theta_{0}^{2}} \exp \left(-\frac{\theta_{\text {space }}^{2}}{2 \theta_{0}^{2}}\right) d \Omega \tag{34.17}
\end{equation*}
$$

[^62]

Figure 34.10: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi} \theta_{0}} \exp \left(-\frac{\theta_{\text {plane }}^{2}}{2 \theta_{0}^{2}}\right) d \theta_{\text {plane }} \tag{34.18}
\end{equation*}
$$

where θ is the deflection angle. In this approximation, $\theta_{\mathrm{space}}^{2} \approx$ ($\theta_{\text {plane }, x}^{2}+\theta_{\text {plane }, y}^{2}$), where the x and y axes are orthogonal to the direction of motion, and $d \Omega \approx d \theta_{\text {plane, } x} d \theta_{\text {plane }, y}$. Deflections into $\theta_{\text {plane }, x}$ and $\theta_{\text {plane }, y}$ are independent and identically distributed. Fig. 34.10 shows these and other quantities sometimes used to describe multiple Coulomb scattering. They are

$$
\begin{gather*}
\psi_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{\sqrt{3}} \theta_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{\sqrt{3}} \theta_{0} \tag{34.19}\\
y_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{\sqrt{3}} x \theta_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{\sqrt{3}} x \theta_{0} \tag{34.20}\\
s_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{4 \sqrt{3}} x \theta_{\mathrm{plane}}^{\mathrm{rms}}=\frac{1}{4 \sqrt{3}} x \theta_{0} \tag{34.21}
\end{gather*}
$$

All the quantitative estimates in this section apply only in the limit of small $\theta_{\text {plane }}^{\mathrm{rms}}$ and in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a given plane are correlated. Obviously, $y \approx x \psi$. In addition, y and θ have the correlation coefficient $\rho_{y \theta}=\sqrt{3} / 2 \approx 0.87$. For Monte Carlo generation of a joint ($y_{\text {plane }}, \theta_{\text {plane }}$) distribution, or for other calculations, it may be most convenient to work with independent Gaussian random variables $\left(z_{1}, z_{2}\right)$ with mean zero and variance one, and then set

$$
\begin{align*}
y_{\text {plane }} & =z_{1} x \theta_{0}\left(1-\rho_{y \theta}^{2}\right)^{1 / 2} / \sqrt{3}+z_{2} \rho_{y \theta} x \theta_{0} / \sqrt{3} \tag{34.22a}\\
& =z_{1} x \theta_{0} / \sqrt{12}+z_{2} x \theta_{0} / 2 \tag{34.22b}\\
\theta_{\text {plane }} & =z_{2} \theta_{0} . \tag{34.22c}
\end{align*}
$$

Note that the second term for $y_{\text {plane }}$ equals $x \theta_{\text {plane }} / 2$ and represents the displacement that would have occurred had the deflection $\theta_{\text {plane }}$ all occurred at the single point $x / 2$.

For heavy ions the multiple Coulomb scattering has been measured and compared with various theoretical distributions [41].

34.4 Photon and electron interactions in matter

At low energies electrons and positrons primarily lose energy by ionization, although other processes (Møller scattering, Bhabha scattering, e^{+}annihilation) contribute, as shown in Fig. 34.11. While ionization loss rates rise logarithmically with energy, bremsstrahlung losses rise nearly linearly (fractional loss is nearly independent of energy), and dominates above the critical energy (Sec. 34.4.4 below), a few tens of MeV in most materials

34.4.1 Collision energy losses by $e^{ \pm}$

Stopping power differs somewhat for electrons and positrons, and both differ from stopping power for heavy particles because of the kinematics, spin, charge, and the identity of the incident electron with the electrons that it ionizes. Complete discussions and tables can be found in Refs. [10, 13, 33].

For electrons, large energy transfers to atomic electrons (taken as free) are described by the Møller cross section. From Eq. (34.4), the maximum energy transfer in a single collision should be the entire kinetic energy, $W_{\max }=m_{e} c^{2}(\gamma-1)$, but because the particles are identical, the maximum is half this, $W_{\max } / 2$. (The results are the same if the transferred energy is ϵ or if the transferred energy is $W_{\max }-\epsilon$. The stopping power is by convention calculated
for the faster of the two emerging electrons.) The first moment of the Møller cross section [26] (divided by $d x$) is the stopping power:

$$
\begin{align*}
\left\langle-\frac{d E}{d x}\right\rangle & =\frac{1}{2} K \frac{Z}{A} \frac{1}{\beta^{2}}\left[\ln \frac{m_{e} c^{2} \beta^{2} \gamma^{2}\left\{m_{e} c^{2}(\gamma-1) / 2\right\}}{I^{2}}+\left(1-\beta^{2}\right)\right. \\
& \left.-\frac{2 \gamma-1}{\gamma^{2}} \ln 2+\frac{1}{8}\left(\frac{\gamma-1}{\gamma}\right)^{2}-\delta\right] \tag{34.23}
\end{align*}
$$

The logarithmic term can be compared with the logarithmic term in the Bethe equation (Eq. (34.2)) by substituting $W_{\max }=$ $m_{e} c^{2}(\gamma-1) / 2$.

Electron-positron scattering is described by the fairly complicated Bhabha cross section [26]. There is no identical particle problem, so $W_{\max }=m_{e} c^{2}(\gamma-1)$. The first moment of the Bhabha equation yields

$$
\begin{align*}
\left\langle-\frac{d E}{d x}\right\rangle & =\frac{1}{2} K \frac{Z}{A} \frac{1}{\beta^{2}}\left[\ln \frac{m_{e} c^{2} \beta^{2} \gamma^{2}\left\{m_{e} c^{2}(\gamma-1)\right\}}{2 I^{2}}+2 \ln 2\right. \\
& \left.-\frac{\beta^{2}}{12}\left(23+\frac{14}{\gamma+1}+\frac{10}{(\gamma+1)^{2}}+\frac{4}{(\gamma+1)^{3}}\right)-\delta\right] \tag{34.24}
\end{align*}
$$

Following ICRU 37 [10], the density effect correction δ has been added to Uehling's equations [26] in both cases.

For heavy particles, shell corrections were developed assuming that the projectile is equivalent to a perturbing potential whose center moves with constant velocity. This assumption has no sound theoretical basis for electrons. The authors of ICRU 37 [10] estimated the possible error in omitting it by assuming the correction was twice as great as for a proton of the same velocity. At $T=10 \mathrm{keV}$, the error was estimated to be $\approx 2 \%$ for water, $\approx 9 \%$ for Cu , and $\approx 21 \%$ for Au .

As shown in Fig. 34.11, stopping powers for e^{-}, e^{+}, and heavy particles are not dramatically different. In silicon, the minimum value for electrons is $1.50 \mathrm{MeV} \mathrm{cm}^{2} / \mathrm{g}$ (at $\gamma=3.3$); for positrons, $1.46 \mathrm{MeV} \mathrm{cm}^{2} / \mathrm{g}($ at $\gamma=3.7)$, and for muons, $1.66 \mathrm{MeV} \mathrm{cm}^{2} / \mathrm{g}$ (at $\gamma=3.58)$.

34.4.2 Radiation length

High-energy electrons predominantly lose energy in matter by bremsstrahlung, and high-energy photons by $e^{+} e^{-}$pair production. The characteristic amount of matter traversed for these related interactions is called the radiation length X_{0}, usually measured in $\mathrm{g} \mathrm{cm}^{-2}$. It is the mean distance over which a high-energy electron loses all but $1 / e$ of its energy by bremsstrahlung. It is also the appropriate scale length for describing high-energy electromagnetic cascades. X_{0} has been calculated and tabulated by Y.S. Tsai [42]:

$$
\begin{equation*}
\frac{1}{X_{0}}=4 \alpha r_{e}^{2} \frac{N_{A}}{A}\left\{Z^{2}\left[L_{\mathrm{rad}}-f(Z)\right]+Z L_{\mathrm{rad}}^{\prime}\right\} \tag{34.25}
\end{equation*}
$$

For $A=1 \mathrm{~g} \mathrm{~mol}^{-1}, 4 \alpha r_{e}^{2} N_{A} / A=\left(716.408 \mathrm{~g} \mathrm{~cm}^{-2}\right)^{-1} . L_{\mathrm{rad}}$ and $L_{\mathrm{rad}}^{\prime}$ are given in Table 34.2. The function $f(Z)$ is an infinite sum, but for elements up to uranium can be represented to 4 -place accuracy by

$$
\begin{align*}
f(Z)= & a^{2}\left[\left(1+a^{2}\right)^{-1}+0.20206\right. \\
& \left.-0.0369 a^{2}+0.0083 a^{4}-0.002 a^{6}\right] \tag{34.26}
\end{align*}
$$

where $a=\alpha Z$ [43].
The radiation length in a mixture or compound may be approximated by

$$
\begin{equation*}
1 / X_{0}=\sum w_{j} / X_{j} \tag{34.27}
\end{equation*}
$$

where w_{j} and X_{j} are the fraction by weight and the radiation length for the j th element.

Table 34.2: Tsai's L_{rad} and $L_{\mathrm{rad}}^{\prime}$, for use in calculating the radiation length in an element using Eq. (34.25).

Element	Z	L_{rad}	$L_{\mathrm{rad}}^{\prime}$
H	1	5.31	6.144
He	2	4.79	5.621
Li	3	4.74	5.805
Be	4	4.71	5.924
Others	>4	$\ln \left(184.15 Z^{-1 / 3}\right)$	$\ln \left(1194 Z^{-2 / 3}\right)$

Figure 34.11: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization when the energy loss per collision is below 0.255 MeV , and as Møller (Bhabha) scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use $X_{0}(\mathrm{~Pb})=5.82 \mathrm{~g} / \mathrm{cm}^{2}$, but we have modified the figures to reflect the value given in the Table of Atomic and Nuclear Properties of Materials $\left(X_{0}(\mathrm{~Pb})=6.37 \mathrm{~g} / \mathrm{cm}^{2}\right)$.

34.4.3 Bremsstrahlung energy loss by $e^{ \pm}$

At very high energies and except at the high-energy tip of the bremsstrahlung spectrum, the cross section can be approximated in the "complete screening case" as [42]

$$
\begin{gather*}
d \sigma / d k=(1 / k) 4 \alpha r_{e}^{2}\left\{\left(\frac{4}{3}-\frac{4}{3} y+y^{2}\right)\left[Z^{2}\left(L_{\mathrm{rad}}-f(Z)\right)+Z L_{\mathrm{rad}}^{\prime}\right]\right. \\
\left.+\frac{1}{9}(1-y)\left(Z^{2}+Z\right)\right\}, \tag{34.28}
\end{gather*}
$$

where $y=k / E$ is the fraction of the electron's energy transferred to the radiated photon. At small y (the "infrared limit") the term on the second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total. If it is ignored and the first line simplified with the definition of X_{0} given in Eq. (34.25), we have

$$
\begin{equation*}
\frac{d \sigma}{d k}=\frac{A}{X_{0} N_{A} k}\left(\frac{4}{3}-\frac{4}{3} y+y^{2}\right) . \tag{34.29}
\end{equation*}
$$

This cross section (times k) is shown by the top curve in Fig. 34.12.
This formula is accurate except near $y=1$, where screening may become incomplete, and near $y=0$, where the infrared divergence is removed by the interference of bremsstrahlung amplitudes from nearby scattering centers (the LPM effect) $[44,45]$ and dielectric suppression $[46,47]$. These and other suppression effects in bulk media are discussed in Sec. 34.4.6.

With decreasing energy $(E \lesssim 10 \mathrm{GeV})$ the high- y cross section drops and the curves become rounded as $y \rightarrow 1$. Curves of this familar shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by Koch \& Motz [48].

Except at these extremes, and still in the complete-screening approximation, the number of photons with energies between $k_{\text {min }}$

Figure 34.12: The normalized bremsstrahlung cross section $k d \sigma_{L P M} / d k$ in lead versus the fractional photon energy $y=k / E$. The vertical axis has units of photons per radiation length.

Figure 34.13: Two definitions of the critical energy E_{c}.
and $k_{\text {max }}$ emitted by an electron travelling a distance $d \ll X_{0}$ is

$$
\begin{equation*}
N_{\gamma}=\frac{d}{X_{0}}\left[\frac{4}{3} \ln \left(\frac{k_{\max }}{k_{\min }}\right)-\frac{4\left(k_{\max }-k_{\min }\right)}{3 E}+\frac{k_{\max }^{2}-k_{\min }^{2}}{2 E^{2}}\right] \tag{34.30}
\end{equation*}
$$

Figure 34.14: Electron critical energy for the chemical elements, using Rossi's definition [2]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases.

34.4.4 Critical energy

An electron loses energy by bremsstrahlung at a rate nearly proportional to its energy, while the ionization loss rate varies only logarithmically with the electron energy. The critical energy E_{c} is sometimes defined as the energy at which the two loss rates
are equal [49]. Among alternate definitions is that of Rossi [2], who defines the critical energy as the energy at which the ionization loss per radiation length is equal to the electron energy. Equivalently, it is the same as the first definition with the approximation $|d E / d x|_{\mathrm{brems}} \approx E / X_{0}$. This form has been found to describe transverse electromagnetic shower development more accurately (see below). These definitions are illustrated in the case of copper in Fig. 34.13.

The accuracy of approximate forms for E_{c} has been limited by the failure to distinguish between gases and solid or liquids, where there is a substantial difference in ionization at the relevant energy because of the density effect. We distinguish these two cases in Fig. 34.14. Fits were also made with functions of the form $a /(Z+b)^{\alpha}$, but α was found to be essentially unity. Since E_{c} also depends on A, I, and other factors, such forms are at best approximate.

Values of E_{c} for both electrons and positrons in more than 300 materials can be found at

pdg.lbl.gov/AtomicNuclearProperties.

34.4.5 Energy loss by photons

Contributions to the photon cross section in a light element (carbon) and a heavy element (lead) are shown in Fig. 34.15. At low energies it is seen that the photoelectric effect dominates, although Compton scattering, Rayleigh scattering, and photonuclear absorption also contribute. The photoelectric cross section is characterized by discontinuities (absorption edges) as thresholds for photoionization of various atomic levels are reached. Photon attenuation lengths for a variety of elements are shown in Fig. 34.16, and data for $30 \mathrm{eV}<k<100 \mathrm{GeV}$ for all elements are available from the web pages given in the caption. Here k is the photon energy.

The increasing domination of pair production as the energy increases is shown in Fig. 34.17. Using approximations similar to those used to obtain Eq. (34.29), Tsai's formula for the differential cross section [42] reduces to

$$
\begin{equation*}
\frac{d \sigma}{d x}=\frac{A}{X_{0} N_{A}}\left[1-\frac{4}{3} x(1-x)\right] \tag{34.31}
\end{equation*}
$$

in the complete-screening limit valid at high energies. Here $x=$ E / k is the fractional energy transfer to the pair-produced electron (or positron), and k is the incident photon energy. The cross section is very closely related to that for bremsstrahlung, since the Feynman diagrams are variants of one another. The cross section is of necessity symmetric between x and $1-x$, as can be seen by the solid curve in Fig. 34.18. See the review by Motz, Olsen, \& Koch for a more detailed treatment [54]. Eq. (34.31) may be integrated to find the high-energy limit for the total $e^{+} e^{-}$ pair-production cross section:

$$
\begin{equation*}
\sigma=\frac{7}{9}\left(A / X_{0} N_{A}\right) \tag{34.32}
\end{equation*}
$$

Equation Eq. (34.32) is accurate to within a few percent down to energies as low as 1 GeV , particularly for high- Z materials.

34.4.6 Bremsstrahlung and pair production at very high en-

 ergiesAt ultrahigh energies, Eqns. 34.28-34.32 will fail because of quantum mechanical interference between amplitudes from different scattering centers. Since the longitudinal momentum transfer to a given center is small $(\propto k / E(E-k)$, in the case of bremsstrahlung), the interaction is spread over a comparatively long distance called the formation length $(\propto E(E-k) / k)$ via the uncertainty principle. In alternate language, the formation length is the distance over which the highly relativistic electron and the photon "split apart." The interference is usually destructive. Calculations of the "Landau-Pomeranchuk-Migdal" (LPM) effect may be made semi-classically based on the average multiple scattering, or more rigorously using a quantum transport approach $[44,45]$.

In amorphous media, bremsstrahlung is suppressed if the pho-

Figure 34.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [50]:

$$
\left.\begin{array}{rl}
\sigma_{\text {p.e. }}= & \begin{array}{l}
\text { Atomic photoelectric effect (electron ejection } \\
\text { photon absorption) }
\end{array} \\
\sigma_{\text {Rayleigh }}= & \begin{array}{l}
\text { Rayleigh (coherent) scattering-atom neither } \\
\text { ionized nor excited }
\end{array} \\
\sigma_{\text {Compton }}= & \begin{array}{l}
\text { Incoherent scattering (Compton scattering off } \\
\text { an electron) }
\end{array} \\
\kappa_{\text {nuc }}= & \text { Pair production, nuclear field } \\
\kappa_{e}= & \text { Pair production, electron field }
\end{array}\right\} \begin{aligned}
& \sigma_{\text {g.d.r. }}= \text { Photonuclear interactions, most notably the Gi- } \\
& \text { ant Dipole Resonance [51]. In these interactions } \\
& \text { the target nucleus is usually broken up. }
\end{aligned}
$$

ton energy k is less than $E^{2} /\left(E+E_{L P M}\right)$ [45], where ${ }^{6}$

$$
\begin{equation*}
E_{L P M}=\left(m_{e} c^{2}\right)^{2} \alpha \frac{X_{0}}{4 \pi \hbar c \rho}=(7.7 \mathrm{TeV} / \mathrm{cm}) \times \frac{X_{0}}{\rho} \tag{34.33}
\end{equation*}
$$

Since physical distances are involved, X_{0} / ρ, in cm, appears. The energy-weighted bremsstrahlung spectrum for lead, $k d \sigma_{L P M} / d k$, is shown in Fig. 34.12. With appropriate scaling by X_{0} / ρ, other materials behave similarly.
For photons, pair production is reduced for $E(k-E)>$ $k E_{L P M}$. The pair-production cross sections for different photon energies are shown in Fig. 34.18.

If $k \ll E$, several additional mechanisms can also produce suppression. When the formation length is long, even weak factors

[^63]

Figure 34.16: The photon mass attenuation length (or mean free path) $\lambda=1 /(\mu / \rho)$ for various elemental absorbers as a function of photon energy. The mass attenuation coefficient is μ / ρ, where ρ is the density. The intensity I remaining after traversal of thickness t (in mass/unit area) is given by $I=I_{0} \exp (-t / \lambda)$. The accuracy is a few percent. For a chemical compound or mixture, $1 / \lambda_{\text {eff }} \approx \sum_{\text {elements }} w_{Z} / \lambda_{Z}$, where w_{Z} is the proportion by weight of the element with atomic number Z. The processes responsible for attenuation are given in Fig. 34.11. Since coherent processes are included, not all these processes result in energy deposition. The data for $30 \mathrm{eV}<E<1 \mathrm{keV}$ are from Ref. [52], those for $1 \mathrm{keV}<E<100 \mathrm{GeV}$ from Ref. [53].

Figure 34.17: Probability P that a photon interaction will result in conversion to an $e^{+} e^{-}$pair. Except for a few-percent contribution from photonuclear absorption around 10 or 20 MeV , essentially all other interactions in this energy range result in Compton scattering off an atomic electron. For a photon attenuation length λ (Fig. 34.16), the probability that a given photon will produce an electron pair (without first Compton scattering) in thickness t of absorber is $P[1-\exp (-t / \lambda)]$.

Figure 34.18: The normalized pair production cross section $d \sigma_{L P M} / d x$, versus fractional electron energy $x=E / k$.
can perturb the interaction. For example, the emitted photon can coherently forward scatter off of the electrons in the media. Because of this, for $k<\omega_{p} E / m_{e} \sim 10^{-4}$, bremsstrahlung is sup-
pressed by a factor $\left(k m_{e} / \omega_{p} E\right)^{2}$ [47]. Magnetic fields can also suppress bremsstrahlung.

In crystalline media, the situation is more complicated, with coherent enhancement or suppression possible. The cross section depends on the electron and photon energies and the angles between the particle direction and the crystalline axes [56].

34.4.7 Photonuclear and electronuclear interactions at still higher energies

At still higher photon and electron energies, where the bremsstrahlung and pair production cross-sections are heavily suppressed by the LPM effect, photonuclear and electronuclear interactions predominate over electromagnetic interactions.

At photon energies above about $10^{20} \mathrm{eV}$, for example, photons usually interact hadronically. The exact cross-over energy depends on the model used for the photonuclear interactions. These processes are illustrated in Fig. 34.19. At still higher energies ($\gtrsim 10^{23} \mathrm{eV}$), photonuclear interactions can become coherent, with the photon interaction spread over multiple nuclei. Essentially, the photon coherently converts to a ρ^{0}, in a process that is somewhat similar to kaon regeneration [57].

Figure 34.19: Interaction length for a photon in ice as a function of photon energy for the Bethe-Heitler (BH), LPM (Mig) and photonuclear (γA) cross sections [57]. The Bethe-Heitler interaction length is $9 X_{0} / 7$, and X_{0} is 0.393 m in ice.

Similar processes occur for electrons. As electron energies increase and the LPM effect suppresses bremsstrahlung, electronu-
clear interactions become more important. At energies above $10^{21} \mathrm{eV}$, these electronuclear interactions dominate electron energy loss [57].

34.5 Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates an electromagnetic cascade as pair production and bremsstrahlung generate more electrons and photons with lower energy. The longitudinal development is governed by the high-energy part of the cascade, and therefore scales as the radiation length in the material. Electron energies eventually fall below the critical energy, and then dissipate their energy by ionization and excitation rather than by the generation of more shower particles. In describing shower behavior, it is therefore convenient to introduce the scale variables

$$
\begin{equation*}
t=x / X_{0}, \quad y=E / E_{c} \tag{34.34}
\end{equation*}
$$

so that distance is measured in units of radiation length and energy in units of critical energy.

Figure 34.20: An EGS4 simulation of a 30 GeV electron-induced cascade in iron. The histogram shows fractional energy deposition per radiation length, and the curve is a gamma-function fit to the distribution. Circles indicate the number of electrons with total energy greater than 1.5 MeV crossing planes at $X_{0} / 2$ intervals (scale on right) and the squares the number of photons with $E \geq$ 1.5 MeV crossing the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles from an EGS4 [58] simulation of a 30 GeV electron-induced cascade in iron are shown in Fig. 34.20. The number of particles crossing a plane (very close to Rossi's Π function [2]) is sensitive to the cutoff energy, here chosen as a total energy of 1.5 MeV for both electrons and photons. The electron number falls off more quickly than energy deposition. This is because, with increasing depth, a larger fraction of the cascade energy is carried by photons. Exactly what a calorimeter measures depends on the device, but it is not likely to be exactly any of the profiles shown. In gas counters it may be very close to the electron number, but in glass Cherenkov detectors and other devices with "thick" sensitive regions it is closer to the energy deposition (total track length). In such detectors the signal is proportional to the "detectable" track length T_{d}, which is in general less than the total track length T. Practical devices are sensitive to electrons with energy above some detection threshold E_{d}, and $T_{d}=T F\left(E_{d} / E_{c}\right)$. An analytic form for $F\left(E_{d} / E_{c}\right)$ obtained by Rossi [2] is given by Fabjan in Ref. [59]; see also Amaldi [60].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade is reasonably well described by a gamma distribution [61]:

$$
\begin{equation*}
\frac{d E}{d t}=E_{0} b \frac{(b t)^{a-1} e^{-b t}}{\Gamma(a)} \tag{34.35}
\end{equation*}
$$

The maximum $t_{\text {max }}$ occurs at $(a-1) / b$. We have made fits to shower profiles in elements ranging from carbon to uranium, at energies from 1 GeV to 100 GeV . The energy deposition profiles
are well described by Eq. (34.35) with

$$
\begin{equation*}
t_{\max }=(a-1) / b=1.0 \times\left(\ln y+C_{j}\right), \quad j=e, \gamma \tag{34.36}
\end{equation*}
$$

where $C_{e}=-0.5$ for electron-induced cascades and $C_{\gamma}=+0.5$ for photon-induced cascades. To use Eq. (34.35), one finds $(a-1) / b$ from Eq. (34.36) and Eq. (34.34), then finds a either by assuming $b \approx 0.5$ or by finding a more accurate value from Fig. 34.21. The results are very similar for the electron number profiles, but there is some dependence on the atomic number of the medium. A similar form for the electron number maximum was obtained by Rossi in the context of his "Approximation B," [2] (see Fabjan's review in Ref. [59]), but with $C_{e}=-1.0$ and $C_{\gamma}=-0.5$; we regard this as superseded by the EGS4 result.

Figure 34.21: Fitted values of the scale factor b for energy deposition profiles obtained with EGS4 for a variety of elements for incident electrons with $1 \leq E_{0} \leq 100 \mathrm{GeV}$. Values obtained for incident photons are essentially the same.

The "shower length" $X_{s}=X_{0} / b$ is less conveniently parameterized, since b depends upon both Z and incident energy, as shown in Fig. 34.21. As a corollary of this Z dependence, the number of electrons crossing a plane near shower maximum is underestimated using Rossi's approximation for carbon and seriously overestimated for uranium. Essentially the same b values are obtained for incident electrons and photons. For many purposes it is sufficient to take $b \approx 0.5$.

The length of showers initiated by ultra-high energy photons and electrons is somewhat greater than at lower energies since the first or first few interaction lengths are increased via the mechanisms discussed above.

The gamma function distribution is very flat near the origin, while the EGS4 cascade (or a real cascade) increases more rapidly. As a result Eq. (34.35) fails badly for about the first two radiation lengths; it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (34.35) should be used only in applications where average behavior is adequate. Grindhammer et al. have developed fast simulation algorithms in which the variance and correlation of a and b are obtained by fitting Eq. (34.35) to individually simulated cascades, then generating profiles for cascades using a and b chosen from the correlated distributions [62].

The transverse development of electromagnetic showers in different materials scales fairly accurately with the Molière radius R_{M}, given by $[63,64]$

$$
\begin{equation*}
R_{M}=X_{0} E_{s} / E_{c} \tag{34.37}
\end{equation*}
$$

where $E_{s} \approx 21 \mathrm{MeV}$ (Table 34.1), and the Rossi definition of E_{c} is used.

In a material containing a weight fraction w_{j} of the element with critical energy $E_{c j}$ and radiation length X_{j}, the Molière radius is
given by

$$
\begin{equation*}
\frac{1}{R_{M}}=\frac{1}{E_{s}} \sum \frac{w_{j} E_{c j}}{X_{j}} \tag{34.38}
\end{equation*}
$$

Measurements of the lateral distribution in electromagnetic cascades are shown in Refs. [63,64]. On the average, only 10% of the energy lies outside the cylinder with radius R_{M}. About 99% is contained inside of $3.5 R_{M}$, but at this radius and beyond composition effects become important and the scaling with R_{M} fails. The distributions are characterized by a narrow core, and broaden as the shower develops. They are often represented as the sum of two Gaussians.

At high enough energies, the LPM effect (Sec. 34.4.6) reduces the cross sections for bremsstrahlung and pair production, and hence can cause significant elongation of electromagnetic cascades [45].

34.6 Muon energy loss at high energy

At sufficiently high energies, radiative processes become more important than ionization for all charged particles. For muons and pions in materials such as iron, this "critical energy" occurs at several hundred GeV . (There is no simple scaling with particle mass, but for protons the "critical energy" is much, much higher.) Radiative effects dominate the energy loss of energetic muons found in cosmic rays or produced at the newest accelerators. These processes are characterized by small cross sections, hard spectra, large energy fluctuations, and the associated generation of electromagnetic and (in the case of photonuclear interactions) hadronic showers [65-73] As a consequence, at these energies the treatment of energy loss as a uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss as [74]

$$
\begin{equation*}
-d E / d x=a(E)+b(E) E \tag{34.39}
\end{equation*}
$$

Here $a(E)$ is the ionization energy loss given by Eq. (34.5), and $b(E)$ is the sum of $e^{+} e^{-}$pair production, bremsstrahlung, and photonuclear contributions. To the approximation that these slowly-varying functions are constant, the mean range x_{0} of a muon with initial energy E_{0} is given by

$$
\begin{equation*}
x_{0} \approx(1 / b) \ln \left(1+E_{0} / E_{\mu c}\right) \tag{34.40}
\end{equation*}
$$

where $E_{\mu c}=a / b$.
Fig. 34.22 shows contributions to $b(E)$ for iron. Since $a(E) \approx$ $0.002 \mathrm{GeV} \mathrm{g}{ }^{-1} \mathrm{~cm}^{2}, b(E) E$ dominates the energy loss above several hundred GeV , where $b(E)$ is nearly constant. The rates of energy loss for muons in hydrogen, uranium, and iron are shown in Fig. 34.23 [5].

Figure 34.22: Contributions to the fractional energy loss by muons in iron due to $e^{+} e^{-}$pair production, bremsstrahlung, and photonuclear interactions, as obtained from Groom et al. [5] except for post-Born corrections to the cross section for direct pair production from atomic electrons.

Figure 34.23: The average energy loss of a muon in hydrogen, iron, and uranium as a function of muon energy. Contributions to $d E / d x$ in iron from ionization and pair production, bremsstrahlung and photonuclear interactions are also shown.

The "muon critical energy" $E_{\mu c}$ can be defined more exactly as the energy at which radiative and ionization losses are equal, and can be found by solving $E_{\mu c}=a\left(E_{\mu c}\right) / b\left(E_{\mu c}\right)$. This definition corresponds to the solid-line intersection in Fig. 34.13, and is different from the Rossi definition we used for electrons. It serves the same function: below $E_{\mu c}$ ionization losses dominate, and above $E_{\mu c}$ radiative effects dominate. The dependence of $E_{\mu c}$ on atomic number Z is shown in Fig. 34.24.

Figure 34.24: Muon critical energy for the chemical elements, defined as the energy at which radiative and ionization energy loss rates are equal [5]. The equality comes at a higher energy for gases than for solids or liquids with the same atomic number because of a smaller density effect reduction of the ionization losses. The fits shown in the figure exclude hydrogen. Alkali metals fall $3-4 \%$ above the fitted function, while most other solids are within 2% of the function. Among the gases the worst fit is for radon (2.7% high).

The radiative cross sections are expressed as functions of the fractional energy loss ν. The bremsstrahlung cross section goes roughly as $1 / \nu$ over most of the range, while for the pair production case the distribution goes as ν^{-3} to ν^{-2} [75]. "Hard" losses are therefore more probable in bremsstrahlung, and in fact energy losses due to pair production may very nearly be treated as continuous. The simulated momentum distribution of an incident $1 \mathrm{TeV} / c$ muon beam after it crosses 3 m of iron is shown in Fig. 34.25 [5]. The most probable loss is 8 GeV , or 3.4 MeV $\mathrm{g}^{-1} \mathrm{~cm}^{2}$. The full width at half maximum is $9 \mathrm{GeV} / c$, or 0.9%. The radiative tail is almost entirely due to bremsstrahlung, although most of the events in which more than 10% of the incident energy lost experienced relatively hard photonuclear interactions. The latter can exceed detector resolution [76], necessitating the

Figure 34.25: The momentum distribution of $1 \mathrm{TeV} / c$ muons after traversing 3 m of iron as calculated by S.I. Striganov [5].
reconstruction of lost energy. Tables in Ref. [5] list the stopping power as $9.82 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ for a 1 TeV muon, so that the mean loss should be $23 \mathrm{GeV}(\approx 23 \mathrm{GeV} / c)$, for a final momentum of $977 \mathrm{GeV} / c$, far below the peak. This agrees with the indicated mean calculated from the simulation. Electromagnetic and hadronic cascades in detector materials can obscure muon tracks in detector planes and reduce tracking efficiency [77].

34.7 Cherenkov and transition radiation [35, 78, 79]

A charged particle radiates if its velocity is greater than the local phase velocity of light (Cherenkov radiation) or if it crosses suddenly from one medium to another with different optical properties (transition radiation). Neither process is important for energy loss, but both are used in high-energy and cosmic-ray physics detectors.

34.7.1 Optical Cherenkov radiation

The angle θ_{c} of Cherenkov radiation, relative to the particle's direction, for a particle with velocity βc in a medium with index of refraction n is

$$
\begin{aligned}
& \cos \theta_{c}=(1 / n \beta) \\
& \text { or } \quad \tan \theta_{c}=\sqrt{\beta^{2} n^{2}-1} \\
& \quad \approx \sqrt{2(1-1 / n \beta)} \text { for small } \theta_{c}, \text { e.g. in gases. }(34.41)
\end{aligned}
$$

The threshold velocity β_{t} is $1 / n$, and $\gamma_{t}=1 /\left(1-\beta_{t}^{2}\right)^{1 / 2}$. Therefore, $\beta_{t} \gamma_{t}=1 /\left(2 \delta+\delta^{2}\right)^{1 / 2}$, where $\delta=n-1$. Values of δ for various commonly used gases are given as a function of pressure and wavelength in Ref. [80]. See its Table 6.1 for values at atmospheric pressure. Data for other commonly used materials are given in Ref. [81].

Figure 34.26: Cherenkov light emission and wavefront angles. In a dispersive medium, $\theta_{c}+\eta \neq 90^{\circ}$.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon's frequency, and let $k=2 \pi / \lambda$ be its wavenumber. The photons propage at the group velocity $v_{g}=d \omega / d k=c /[n(\omega)+$ $\omega(d n / d \omega)]$. In a non-dispersive medium, this simplies to $v_{g}=c / n$.

In his classical paper, Tamm [82] showed that for dispersive media the radiation is concentrated in a thin conical shell whose vertex is at the moving charge, and whose opening half-angle η is

$$
\begin{align*}
\cot \eta & =\left[\frac{d}{d \omega}\left(\omega \tan \theta_{c}\right)\right]_{\omega_{0}} \\
& =\left[\tan \theta_{c}+\beta^{2} \omega n(\omega) \frac{d n}{d \omega} \cot \theta_{c}\right]_{\omega_{0}} \tag{34.42}
\end{align*}
$$

where ω_{0} is the central value of the small frequency range under consideration. (See Fig. 34.26.) This cone has a opening halfangle η, and, unless the medium is non-dispersive $(d n / d \omega=0)$, $\theta_{c}+\eta \neq 90^{\circ}$. The Cherenkov wavefront 'sideslips' along with the particle [83]. This effect has timing implications for ring imaging Cherenkov counters [84], but it is probably unimportant for most applications.

The number of photons produced per unit path length of a particle with charge ze and per unit energy interval of the photons is

$$
\begin{align*}
\frac{d^{2} N}{d E d x} & =\frac{\alpha z^{2}}{\hbar c} \sin ^{2} \theta_{c}=\frac{\alpha^{2} z^{2}}{r_{e} m_{e} c^{2}}\left(1-\frac{1}{\beta^{2} n^{2}(E)}\right) \\
& \approx 370 \sin ^{2} \theta_{c}(E) \mathrm{eV}^{-1} \mathrm{~cm}^{-1} \quad(z=1) \tag{34.43}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{d^{2} N}{d x d \lambda}=\frac{2 \pi \alpha z^{2}}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n^{2}(\lambda)}\right) \tag{34.44}
\end{equation*}
$$

The index of refraction n is a function of photon energy $E=\hbar \omega$, as is the sensitivity of the transducer used to detect the light. For practical use, Eq. (34.43) must be multiplied by the the transducer response function and integrated over the region for which $\beta n(\omega)>1$. Further details are given in the discussion of Cherenkov detectors in the Particle Detectors section (Sec. 35.5 of this Review).

When two particles are close together (lateral separation $\lesssim 1$ wavelength), the electromagnetic fields from the particles may add coherently, affecting the Cherenkov radiation. Because of their opposite charges, the radiation from an $e^{+} e^{-}$pair at close separation is suppressed compared to two independent leptons [85].

34.7.2 Coherent radio Cherenkov radiation

Coherent Cherenkov radiation is produced by many charged particles with a non-zero net charge moving through matter on an approximately common "wavefront"-for example, the electrons and positrons in a high-energy electromagnetic cascade. The signals can be visible for energies above $10^{16} \mathrm{eV}$; see Sec. 36.3.3.3 for more details. The phenomenon is called the Askaryan effect [86]. Near the end of a shower, when typical particle energies are below E_{c} (but still relativistic), a charge imbalance develops. Photons can Compton-scatter atomic electrons, and positrons can annihilate with atomic electrons to contribute even more photons which can in turn Compton scatter. These processes result in a roughly 20% excess of electrons over positrons in a shower. The net negative charge leads to coherent radio Cherenkov emission. The radiation includes a component from the decelerating charges (as in bremsstrahlung). Because the emission is coherent, the electric field strength is proportional to the shower energy, and the signal power increases as its square. The electric field strength also increases linearly with frequency, up to a maximum frequency determined by the lateral spread of the shower. This cutoff occurs at about 1 GHz in ice, and scales inversely with the Moliere radius. At low frequencies, the radiation is roughly isotropic, but, as the frequency rises toward the cutoff frequency, the radiation becomes increasingly peaked around the Cherenkov angle. The radiation is linearly polarized in the plane containing the shower axis and the photon direction. A measurement of the signal polarization can be used to help determine the shower direction. The characteristics of this radiation have been nicely demonstrated in a series of experiments at SLAC [87]. A detailed discussion of the radiation can be found in Ref. [88].

34.7.3 Transition radiation

The energy radiated when a particle with charge ze crosses the boundary between vacuum and a medium with plasma frequency ω_{p} is

$$
\begin{equation*}
I=\alpha z^{2} \gamma \hbar \omega_{p} / 3 \tag{34.45}
\end{equation*}
$$

where

$$
\begin{equation*}
\hbar \omega_{p}=\sqrt{4 \pi N_{e} r_{e}^{3}} m_{e} c^{2} / \alpha=\sqrt{\rho\left(\text { in } \mathrm{g} / \mathrm{cm}^{3}\right)\langle Z / A\rangle} \times 28.81 \mathrm{eV} \tag{34.46}
\end{equation*}
$$

For styrene and similar materials, $\hbar \omega_{p} \approx 20 \mathrm{eV}$; for air it is 0.7 eV .

Figure 34.27: X-ray photon energy spectra for a radiator consisting of $20025 \mu \mathrm{~m}$ thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single surface (dashed line). Curves are shown with and without absorption. Adapted from Ref. [89].

The number spectrum $d N_{\gamma} / d(\hbar \omega$ diverges logarithmically at low energies and decreases rapidly for $\hbar \omega / \gamma \hbar \omega_{p}>1$. About half the energy is emitted in the range $0.1 \leq \hbar \omega / \gamma \hbar \omega_{p} \leq 1$. Inevitable absorption in a practical detector removes the divergence. For a particle with $\gamma=10^{3}$, the radiated photons are in the soft x-ray range 2 to 40 keV . The γ dependence of the emitted energy thus comes from the hardening of the spectrum rather than from an increased quantum yield.

The number of photons with energy $\hbar \omega>\hbar \omega_{0}$ is given by the answer to problem 13.15 in Ref. [35],

$$
\begin{equation*}
N_{\gamma}\left(\hbar \omega>\hbar \omega_{0}\right)=\frac{\alpha z^{2}}{\pi}\left[\left(\ln \frac{\gamma \hbar \omega_{p}}{\hbar \omega_{0}}-1\right)^{2}+\frac{\pi^{2}}{12}\right] \tag{34.47}
\end{equation*}
$$

within corrections of order $\left(\hbar \omega_{0} / \gamma \hbar \omega_{p}\right)^{2}$. The number of photons above a fixed energy $\hbar \omega_{0} \ll \gamma \hbar \omega_{p}$ thus grows as $(\ln \gamma)^{2}$, but the number above a fixed fraction of $\gamma \hbar \omega_{p}$ (as in the example above) is constant. For example, for $\hbar \omega>\gamma \hbar \omega_{p} / 10, N_{\gamma}=2.519 \alpha z^{2} / \pi=$ $0.59 \% \times z^{2}$.

The particle stays "in phase" with the x ray over a distance called the formation length, $d(\omega)=(2 c / \omega)\left(1 / \gamma^{2}+\theta^{2}+\omega_{p}^{2} / \omega^{2}\right)^{-1}$. Most of the radiation is produced in this distance. Here θ is the x-ray emission angle, characteristically $1 / \gamma$. For $\theta=1 / \gamma$ the formation length has a maximum at $d\left(\gamma \omega_{p} / \sqrt{2}\right)=\gamma c / \sqrt{2} \omega_{p}$. In practical situations it is tens of $\mu \mathrm{m}$.

Since the useful x-ray yield from a single interface is low, in practical detectors it is enhanced by using a stack of N foil radiators-foils L thick, where L is typically several formation lengths-separated by gas-filled gaps. The amplitudes at successive interfaces interfere to cause oscillations about the singleinterface spectrum. At increasing frequencies above the position of the last interference maximum $(L / d(w)=\pi / 2)$, the formation zones, which have opposite phase, overlap more and more and the
spectrum saturates, $d I / d \omega$ approaching zero as $L / d(\omega) \rightarrow 0$. This is illustrated in Fig. 34.27 for a realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for the intensity have been obtained [89, 90]. Although one might expect the intensity of coherent radiation from the stack of foils to be proportional to N^{2}, the angular dependence of the formation length conspires to make the intensity $\propto N$.

References

[1] H. Bichsel, Nucl. Instrum. Meth. A562, 154 (2006).
[2] B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952.
[3] H.A. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, H. Bethe, Ann. Phys. 5, 325 (1930).
[4] "Stopping Powers and Ranges for Protons and Alpha Particles," ICRU Report No. 49 (1993); Tables and graphs are available at
http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html and http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.
[5] D.E. Groom, N.V. Mokhov, and S.I. Striganov, "Muon stopping-power and range tables: $10 \mathrm{MeV}-100 \mathrm{TeV}$," Atomic Data and Nuclear Data Tables 78, 183-356 (2001). Since submission of this paper it has become likely that postBorn corrections to the direct pair production cross section should be made. Code used to make Figs. 34.2234.24 included these corrections [D.Yu. Ivanov et al., Phys. Lett. B442, 453 (1998)]. The effect is negligible except at high Z. (It is less than 1% for iron.); Extensive printable and machine-readable tables are given at http://pdg.lbl.gov/AtomicNuclearProperties/.
[6] W. H. Barkas, W. Birnbaum and F. M. Smith, Phys. Rev. 101, 778 (1956).
[7] U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
[8] J. D. Jackson, Phys. Rev. D59, 017301 (1999).
[9] J. Lindhard and A. H. Sørensen, Phys. Rev. A53, 2443 (1996).
[10] "Stopping Powers for Electrons and Positrons," ICRU Report No. 37 (1984); Tables and graphs are available at http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
[11] H. Bichsel, Phys. Rev. A46, 5761 (1992).
[12] W.H. Barkas and M.J. Berger, Tables of Energy Losses and Ranges of Heavy Charged Particles, NASA-SP-3013 (1964).
[13] S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 33, 1189 (1982).
[14] http://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html.
[15] R. M. Sternheimer, Phys. Rev. 88, 851 (1952).
[16] R. M. Sternheimer, M. J. Berger and S. M. Seltzer, Atom. Data Nucl. Data Tabl. 30, 261 (1984); Minor errors are corrected in Ref. 5. Chemical composition for the tabulated materials is given in Ref. 10.
[17] R. M. Sternheimer and R. F. Peierls, Phys. Rev. B3, 3681 (1971).
[18] N. F. Mott, Proceedings of the Cambridge Philosophical Society 27, 553 (1931).
[19] M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 245 (1937).
[20] H. Bichsel, Phys. Rev. A65, 5, 052709 (2002).
[21] S. P. Møller et al., Phys. Rev. A56, 4, 2930 (1997).
[22] J. C. Ashley, R. H. Ritchie and W. Brandt, Phys. Rev. B5, 2393 (1972).
[23] H.H. Andersen and J.F. Ziegler, Hydrogen: Stopping Powers and Ranges in All Elements. Vol. 3 of The Stopping and Ranges of Ions in Matter (Pergamon Press 1977).
[24] J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.Fys. Medd. 28, No. 8 (1954); J. Lindhard, M. Scharff, and H.E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.Fys. Medd. 33, No. 14 (1963).
[25] J.F. Ziegler, J.F. Biersac, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press 1985.
[26] E.A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954) (For heavy particles with unit charge, but $e^{ \pm}$cross sections and stopping powers are also given).
[27] N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Oxford Press, London, 1965.
[28] P. V. Vavilov, Sov. Phys. JETP 5, 749 (1957), [Zh. Eksp. Teor. Fiz.32,920(1957)].
[29] L.D. Landau, J. Exp. Phys. (USSR) 8, 201 (1944).
[30] H. Bichsel, Rev. Mod. Phys. 60, 663 (1988).
[31] R. Talman, Nucl. Instrum. Meth. 159, 189 (1979).
[32] H. Bichsel, Ch. 87 in the Atomic, Molecular and Optical Physics Handbook, G.W.F. Drake, editor (Am. Inst. Phys. Press, Woodbury NY, 1996).
[33] S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 35, 665 (1984). This paper corrects and extends the results of Ref. [13].
[34] H. A. Bethe, Phys. Rev. 89, 1256 (1953).
[35] J.D. Jackson, Classical Electrodynamics, 3rd edition, (John Wiley and Sons, New York, 1998).
[36] W. T. Scott, Rev. Mod. Phys. 35, 231 (1963).
[37] J. W. Motz, H. Olsen and H. W. Koch, Rev. Mod. Phys. 36, 881 (1964).
[38] H. Bichsel, Phys. Rev. 112, 182 (1958).
[39] G. Shen et al., Phys. Rev. D20, 1584 (1979).
[40] G. R. Lynch and O. I. Dahl, Nucl. Instrum. Meth. B58, 6 (1991).
[41] M. Wong et al., Med. Phys. 17, 163 (1990).
[42] Y.-S. Tsai, Rev. Mod. Phys. 46, 815 (1974), [Erratum: Rev. Mod. Phys.49,521(1977)].
[43] H. Davies, H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 788 (1954).
[44] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953); 92, 735 (1953). These papers are available in English in L. Landau, The Collected Papers of L.D. Landau, Pergamon Press, 1965; A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[45] S. Klein, Rev. Mod. Phys. 71, 1501 (1999).
[46] M.L. Ter-Mikaelian, SSSR 94, 1033 (1954); M.L. TerMikaelian, High Energy Electromagnetic Processes in Condensed Media (John Wiley and Sons, New York, 1972).
[47] P. L. Anthony et al., Phys. Rev. Lett. 76, 3550 (1996).
[48] H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959).
[49] M.J. Berger and S.M. Seltzer, "Tables of Energy Losses and Ranges of Electrons and Positrons," National Aeronautics and Space Administration Report NASA-SP-3012 (Washington DC 1964).
[50] Curves for these and other elements, compounds, and mixtures may be obtained from https://www.nist.gov/pml/xcom-photon-cross-sections-da . The photon total cross section is approximately flat for at least two decades beyond the energy range shown.
[51] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).
[52] http://www.cxro.lbl.gov/optical_constants/pert_form.htm]
[55] P. L. Anthony et al., Phys. Rev. Lett. 75, 1949 (1995).
[56] U. I. Uggerhøj, Rev. Mod. Phys. 77, 1131 (2005).
[57] L. Gerhardt and S. R. Klein, Phys. Rev. D82, 074017 (2010).
[58] W.R. Nelson, H. Hirayama, and D.W.O. Rogers, "The EGS4 Code System," SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).
[59] Experimental Techniques in High Energy Physics, ed. T. Ferbel (Addison-Wesley, Menlo Park CA 1987).
[60] U. Amaldi, Phys. Scripta 23, 409 (1981).
[61] E. Longo and I. Sestili, Nucl. Instrum. Meth. 128, 283 (1975), [Erratum: Nucl. Instrum. Meth.135,587(1976)].
[62] G. Grindhammer et al., in Proceedings of the 1988 Summer Study on High Energy Physics in the 1990's, Snowmass, CO, June 27 - July 15, 1990, edited by F.J. Gilman and S. Jensen, (World Scientific, Teaneck, NJ, 1989) p. 151.
[63] W. R. Nelson et al., Phys. Rev. 149, 201 (1966).
[64] G. Bathow et al., Nucl. Phys. B20, 592 (1970).
[65] H. Bethe and W. Heitler, Proc. Roy. Soc. Lond. A146, 83 (1934); H.A. Bethe, Proc. Cambridge Phil. Soc. 30, 542 (1934).
[66] A.A. Petrukhin and V.V. Shestakov, Can. J. Phys. 46, S377 (1968).
[67] V.M. Galitskii and S.R. Kel'ner, Sov. Phys. JETP 25, 948 (1967).
[68] S.R. Kel'ner and Yu.D. Kotov, Sov. J. Nucl. Phys. 7, 237 (1968).
[69] R.P. Kokoulin and A.A. Petrukhin, in Proceedings of the International Conference on Cosmic Rays, Hobart, Australia, August 16-25, 1971, Vol. 4, p. 2436.
[70] A. I. Nikishov, Sov. J. Nucl. Phys. 27, 677 (1978), [Yad. Fiz.27,1281(1978)].
[71] Yu. M. Andreev, L. B. Bezrukov and E. V. Bugaev, Phys. Atom. Nucl. 57, 2066 (1994), [Yad. Fiz.57,2146(1994)].
[72] L. B. Bezrukov and E. V. Bugaev, Yad. Fiz. 33, 1195 (1981), [Sov. J. Nucl. Phys.33,635(1981)].
[73] N.V. Mokhov and C.C. James, The MARS Code System User's Guide, Fermilab-FN-1058-APC (2018), https://mars.fnal.gov/; N. Mokhov et al., Prog. Nucl. Sci. Tech. 4, 496 (2014).
[74] P. H. Barrett et al., Rev. Mod. Phys. 24, 3, 133 (1952).
[75] A. Van Ginneken, Nucl. Instrum. Meth. A251, 21 (1986).
[76] U. Becker et al., Nucl. Instrum. Meth. A253, 15 (1986).
[77] J.J. Eastman and S.C. Loken, in Proceedings of the Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider, Berkeley, CA, July 7-17, 1987, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Singapore, 1988), p. 542.
[78] Methods of Experimental Physics, L.C.L. Yuan and C.S. Wu, editors, Academic Press, 1961, Vol. 5A, p. 163.
[79] W.W.M. Allison and P.R.S. Wright, "The Physics of Charged Particle Identification: $d E / d x$, Cherenkov Radiation, and Transition Radiation," p. 371 in Experimental Techniques in High Energy Physics, T. Ferbel, editor, (Addison-Wesley 1987).
[80] E.R. Hayes, R.A. Schluter, and A. Tamosaitis, "Index and eDispersion of Some Cherenkov Counter Gases," ANL-6916 (1964).
[81] T. Ypsilantis, in "Proceedings of the Symposium on Particle Identification at High Luminosity Hadron Colliders, Apr 5-7, 1989 Batavia, Ill.", 0661-676 (1989).
[82] I. Tamm, J. Phys. U.S.S.R., 1, 439 (1939).
[83] H. Motz and L.I. Schiff, Am. J. Phys. 21, 258 (1953).
[53] https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.hfril]. B. N. Ratcliff, Nucl. Instrum. Meth. A502, 211 (2003).
[54] J. W. Motz, H. A. Olsen and H. W. Koch, Rev. Mod. Phys. 41, 581 (1969).
[85] S. K. Mandal, S. R. Klein and J. D. Jackson, Phys. Rev. D72, 093003 (2005).
[86] G. A. Askar'yan, Sov. Phys. JETP 14, 2, 441 (1962), [Zh. Eksp. Teor. Fiz.41,616(1961)].
[87] P. W. Gorham et al., Phys. Rev. D72, 023002 (2005).
[88] E. Zas, F. Halzen and T. Stanev, Phys. Rev. D45, 362 (1992).
[89] M. L. Cherry et al., Phys. Rev. D10, 3594 (1974); M. L. Cherry, Phys. Rev. D17, 2245 (1978).
[90] B. Dolgoshein, Nucl. Instrum. Meth. A326, 434 (1993).

35. Particle Detectors at Accelerators

Revised 2019. See the various sections for authors.
35.1 Introduction 551
35.2 Photon detectors 551
35.2.1 Vacuum photodetectors 552
35.2.2 Gaseous photon detectors 553
35.2.3 Solid-state photon detectors 553
35.3 Organic scintillators 554
35.3.1 Scintillation mechanism 554
35.3.2 Caveats and cautions 555
35.3.3 Scintillating and wavelength-shifting fibers 555
35.4 Inorganic scintillators 555
35.5 Cherenkov detectors 558
35.6 Gaseous detectors 560
35.6.1 Energy loss and charge transport in gases 560
35.6.2 Multi-Wire Proportional and Drift Chambers562
35.6.3 High Rate Effects 563
35.6.4 Micro-Pattern Gas Detectors 563
35.6.5 Time-projection chambers 565
35.6.6 Transition radiation detectors (TRD's) 567
35.6.7 Resistive-plate chambers 568
35.7 Semiconductor detectors 569
35.7.1 Materials Requirements 569
35.7.2 Detector Configurations 570
35.7.3 Signal Formation 570
35.7.4 Radiation Damage 571
35.8 Low-noise electronics 571
35.9 Calorimeters 573
35.9.1 Introduction 573
35.9.2 Electromagnetic calorimeters 574
35.9.3 Hadronic calorimeters 575
35.9.4 Free electron drift velocities in liquid ion- ization chambers 578
35.10 Accelerator-based neutrino detectors 579
35.10.1 Introduction 579
35.10.2 Signals and Backgrounds 579
35.10.3 Instances of Neutrino Detector Technology 579
35.10.4 Outlook 582
35.11 Superconducting magnets for collider detectors 582
35.11.1 Solenoid Magnets 582
35.11.2 Properties of collider detector magnets 583
35.11.3 Toroidal magnets 584
35.12 Measurement of particle momenta in a uniform magnetic field 584

35.1 Introduction

This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such applications will be provided. The detector techniques which are specific to non-accelerator particle physics experiments are the subject of Chap. 36. More detailed discussions of detectors and their underlying physics can be found in books by Ferbel [1], Kleinknecht [2], Knoll [3], Green [4], Leroy \& Rancoita [5], and Grupen [6].

In Table 35.1 are given typical resolutions and deadtimes of common charged particle detectors. The quoted numbers are usually based on typical devices, and should be regarded only as rough approximations for new designs. The spatial resolution refers to the intrinsic detector resolution, i.e. without multiple scattering. We note that analog detector readout can provide better spatial resolution than digital readout by measuring the deposited charge in neighboring channels. Quoted ranges attempt to be representative of both possibilities. The time resolution is defined by how accurately the time at which a particle crossed the detector can be determined. The deadtime is the minimum separation in time between two resolved hits on the same channel. Typical performance of calorimetry and particle identification are provided in the relevant sections below.

Table 35.1: Typical resolutions and deadtimes of common charged particle detectors. Revised November 2011.

Detector Type	Intrinsinc Spatial Resolution (rms)	Time Resolution	Dead Time
Resistive plate chamber	$\lesssim 10 \mathrm{~mm}$	$1 \mathrm{~ns}\left(50 \mathrm{ps}{ }^{*}\right)$	-
Streamer chamber	$300 \mu \mathrm{~m}^{\dagger}$	$2 \mu \mathrm{~s}$	100 ms
Liquid argon drift [7]	$\sim 175-450 \mu \mathrm{~m}$	$\sim 200 \mathrm{~ns}$	$\sim 2 \mu \mathrm{~s}$
Scintillation tracker	$\sim 100 \mu \mathrm{~m}$	$100 \mathrm{ps} / \mathrm{n}^{\ddagger}$	10 ns
Bubble chamber	$10-150 \mu \mathrm{~m}$	1 ms	$50 \mathrm{~ms}^{\S}$
Proportional chamber	$50-100 \mu \mathrm{~m}$	2 ns	$20-200 \mathrm{~ns}$
Drift chamber	$50-100 \mu \mathrm{~m}$	2 ns	$20-100 \mathrm{~ns}$
Micro-pattern gas detect. $30-40 \mu \mathrm{~m}$	$<10 \mathrm{~ns}$	$10-100 \mathrm{~ns}$	
Silicon strip	pitch $/(3 \mathrm{to} \mathrm{7)}$	few ns	
Silicon pixel	$\lesssim 10 \mu \mathrm{~m}$	few ns ${ }^{\dagger \dagger}$	$\lesssim 50 \mathrm{~ns}^{\dagger \dagger}$
Emulsion	$1 \mu \mathrm{~m}$	-	-

* For multiple-gap RPCs
${ }^{\dagger} 300 \mu \mathrm{~m}$ is for 1 mm pitch (wirespacing $/ \sqrt{12}$).
$\ddagger n=$ index of refraction.
§Multiple pulsing time.
${ }^{\text {I }}$ Delay line cathode readout can give $\pm 150 \mu \mathrm{~m}$ parallel toanode wire.
${ }^{\|}$For two chambers
** The highest resolution (" 7 ") is obtained for small-pitch detectors (\lesssim $25 \mu \mathrm{~m}$) with pulse-height-weighted center finding.
${ }^{\dagger \dagger}$ Limited by the readout electronics [8]

35.2 Photon detectors

Revised August 2011 by D. Chakraborty (Northern Illinois U.) and T. Sumiyoshi (Tokyo Metropolitan U.).

Most detectors in high-energy, nuclear, and astrophysics rely on the detection of photons in or near the visible range, $100 \mathrm{~nm} \lesssim$ $\lambda \lesssim 1000 \mathrm{~nm}$, or $E \approx$ a few eV . This range covers scintillation and Cherenkov radiation as well as the light detected in many astronomical observations.

Generally, photodetection involves generating a detectable electrical signal proportional to the (usually very small) number of incident photons. The process involves three distinct steps:

1. generation of a primary photoelectron or electron-hole $(e-h)$ pair by an incident photon by the photoelectric or photoconductive effect,
2. amplification of the p.e. signal to detectable levels by one or more multiplicative bombardment steps and/or an avalanche process (usually), and,
3. collection of the secondary electrons to form the electrical signal.

The important characteristics of a photodetector include the following in statistical averages:

1. quantum efficiency (QE or ϵ_{Q}): the number of primary photoelectrons generated per incident photon $\left(0 \leq \epsilon_{Q} \leq 1\right.$; in silicon more than one $e-h$ pair per incident photon can be generated for $\lambda \lesssim 165 \mathrm{~nm}$),
2. collection efficiency (CE or ϵ_{C}): the overall acceptance factor other than the generation of photoelectrons $\left(0 \leq \epsilon_{C} \leq 1\right)$,
3. gain (G) : the number of electrons collected for each photoelectron generated,
4. dark current or dark noise: the electrical signal when there is no photon,
5. energy resolution: electronic noise (ENC or N_{e}) and statistical fluctuations in the amplification process compound the Poisson distribution of n_{γ} photons from a given source:

$$
\begin{equation*}
\frac{\sigma(E)}{\langle E\rangle}=\sqrt{\frac{f_{N}}{n_{\gamma} \epsilon_{Q} \epsilon_{C}}+\left(\frac{N_{e}}{G n_{\gamma} \epsilon_{Q} \epsilon_{C}}\right)^{2}}, \tag{35.1}
\end{equation*}
$$

where f_{N}, or the excess noise factor (ENF), is the contribution to the energy distribution variance due to amplification statistics [9],
6. dynamic range: the maximum signal available from the detector (this is usually expressed in units of the response to noise-equivalent power, or NEP, which is the optical input power that produces a signal-to-noise ratio of 1),
7. time dependence of the response: this includes the transit time, which is the time between the arrival of the photon and the electrical pulse, and the transit time spread, which contributes to the pulse rise time and width, and
8. rate capability: inversely proportional to the time needed, after the arrival of one photon, to get ready to receive the next.

The QE is a strong function of the photon wavelength (λ), and is usually quoted at maximum, together with a range of λ where the QE is comparable to its maximum. Spatial uniformity and linearity with respect to the number of photons are highly desirable in a photodetector's response.
Optimization of these factors involves many trade-offs and vary widely between applications. For example, while a large gain is desirable, attempts to increase the gain for a given device also increases the ENF and after-pulsing ("echos" of the main pulse). In solid-state devices, a higher QE often requires a compromise in the timing properties. In other types, coverage of large areas by focusing increases the transit time spread.
Other important considerations also are highly applicationspecific. These include the photon flux and wavelength range, the total area to be covered and the efficiency required, the volume available to accommodate the detectors, characteristics of the environment such as chemical composition, temperature, magnetic field, ambient background, as well as ambient radiation of different types and, mode of operation (continuous or triggered), bias (high-voltage) requirements, power consumption, calibration needs, aging, cost, and so on. Several technologies employing different phenomena for the three steps described above, and many variants within each, offer a wide range of solutions to choose from. The salient features of the main technologies and the common variants are described below. Some key characteristics are summarized in Table 35.2.

35.2.1 Vacuum photodetectors

Vacuum photodetectors can be broadly subdivided into three types: photomultiplier tubes, microchannel plates, and hybrid photodetectors.

35.2.1.1 Photomultiplier tubes

A versatile class of photon detectors, vacuum photomultiplier tubes (PMT) has been employed by a vast majority of all particle physics experiments to date [9]. Both "transmission-" and "reflection-type" PMT's are widely used. In the former, the photocathode material is deposited on the inside of a transparent window through which the photons enter, while in the latter, the photocathode material rests on a separate surface that the incident photons strike. The cathode material has a low work function, chosen for the wavelength band of interest. When a photon hits the cathode and liberates an electron (the photoelectric effect), the latter is accelerated and guided by electric fields to impinge on a secondary-emission electrode, or dynode, which then emits a few (~ 5) secondary electrons. The multiplication process is repeated typically 10 times in series to generate a sufficient number of electrons, which are collected at the anode for delivery to the external circuit. The total gain of a PMT depends on the applied high voltage V as $G=A V^{k n}$, where $k \approx 0.7-0.8$ (depending on the dynode material), n is the number of dynodes in the chain, and A a constant (which also depends on n). Typically, G is in the range of $10^{5}-10^{6}$. Pulse risetimes are usually in the few nanosecond range. With e.g. two-level discrimination the effective time resolution can be much better.
A large variety of PMT's, including many just recently developed, covers a wide span of wavelength ranges from infrared (IR) to extreme ultraviolet (XUV) [10]. They are categorized by the window materials, photocathode materials, dynode struc-
tures, anode configurations, etc. Common window materials are borosilicate glass for IR to near-UV, fused quartz and sapphire $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ for UV, and MgF_{2} or LiF for XUV. The choice of photocathode materials include a variety of mostly Cs- and/or Sb-based compounds such as CsI, CsTe, bi-alkali (SbRbCs, SbKCs), multialkali $\left(\mathrm{SbNa}_{2} \mathrm{KCs}\right), \mathrm{GaAs}(\mathrm{Cs}), \mathrm{GaAsP}$, etc. Sensitive wavelengths and peak quantum efficiencies for these materials are summarized in Table-35.3. Typical dynode structures used in PMT's are circular cage, line focusing, box and grid, venetian blind, and fine mesh. In some cases, limited spatial resolution can be obtained by using a mosaic of multiple anodes. Fast PMT's with very large windows-measuring up to 508 mm across-have been developed in recent years for detection of Cherenkov radiation in neutrino experiments such as Super-Kamiokande and KamLAND among many others. Specially prepared low-radioactivity glass is used to make these PMT's, and they are also able to withstand the high pressure of the surrounding liquid.
PMT's are vulnerable to magnetic fields-sometimes even the geomagnetic field causes large orientation-dependent gain changes. A high-permeability metal shield is often necessary. However, proximity-focused PMT's, e.g. the fine-mesh types, can be used even in a high magnetic field ($\geq 1 \mathrm{~T}$) if the electron drift direction is parallel to the field. CMS uses custom-made vacuum phototriodes (VPT) mounted on the back face of projective lead tungstate crystals to detect scintillation light in the endcap sections of its electromagnetic calorimeters, which are inside a 3.8 T superconducting solenoid. A VPT employs a single dynode (thus, $G \approx 10$) placed close to the photocathode, and a mesh anode plane between the two, to help it cope with the strong magnetic field, which is not too unfavorably oriented with respect to the photodetector axis in the endcaps (within 25°), but where the radiation level is too high for Avalanche Photodiodes (APD's) like those used in the barrel section.

35.2.1.2 Microchannel plates

A typical Microchannel plate (MCP) photodetector consists of one or more $\sim 2 \mathrm{~mm}$ thick glass plates with densely packed $O(10$ $\mu \mathrm{m}$)-diameter cylindrical holes, or "channels", sitting between the transmission-type photocathode and anode planes, separated by $O(1 \mathrm{~mm})$ gaps. Instead of discrete dynodes, the inner surface of each cylindrical tube serves as a continuous dynode for the entire cascade of multiplicative bombardments initiated by a photoelectron. Gain fluctuations can be minimized by operating in a saturation mode, whence each channel is only capable of a binary output, but the sum of all channel outputs remains proportional to the number of photons received so long as the photon flux is low enough to ensure that the probability of a single channel receiving more than one photon during a single time gate is negligible. MCP's are thin, offer good spatial resolution, have excellent time resolution ($\sim 20 \mathrm{ps}$), and can tolerate random magnetic fields up to 0.1 T and axial fields up to $\sim 1 \mathrm{~T}$. However, they suffer from relatively long recovery time per channel and short lifetime. MCP's are widely employed as image-intensifiers, although not so much in HEP or astrophysics.

35.2.1.3 Hybrid photon detectors

Hybrid photon detectors (HPD) combine the sensitivity of a vacuum PMT with the excellent spatial and energy resolutions of a Si sensor [11]. A single photoelectron ejected from the photocathode is accelerated through a potential difference of $\sim 20 \mathrm{kV}$ before it impinges on the silicon sensor/anode. The gain nearly equals the maximum number of $e-h$ pairs that could be created from the entire kinetic energy of the accelerated electron: $G \approx \mathrm{eV} / w$, where e is the electronic charge, V is the applied potential difference, and $w \approx 3.7 \mathrm{eV}$ is the mean energy required to create an $e-h$ pair in Si at room temperature. Since the gain is achieved in a single step, one might expect to have the excellent resolution of a simple Poisson statistic with large mean, but in fact it is even better, thanks to the Fano effect discussed in Sec. 35.7.

Low-noise electronics must be used to read out HPD's if one intends to take advantage of the low fluctuations in gain, e.g. when counting small numbers of photons. HPD's can have the same $\epsilon_{Q} \epsilon_{C}$ and window geometries as PMT's and can be segmented down to $\sim 50 \mu \mathrm{~m}$. However, they require rather high biases and

Table 35.2: Representative characteristics of some photodetectors commonly used in particle physics. The time resolution of the devices listed here vary in the $10-2000$ ps range.

Type	λ (nm)	$\epsilon_{Q} \epsilon_{C}$	Gain	Risetime (ns)	Area $\left(\mathrm{mm}^{2}\right)$	1-p.e noise (Hz)	HV (V)	Price (USD)
PMT *	$115-1700$	$0.15-0.25$	$10^{3}-10^{7}$	$0.7-10$	$10^{2}-10^{5}$	$10-10^{4}$	$500-3000$	$100-5000$
MCP^{*}	$100-650$	$0.01-0.10$	$10^{3}-10^{7}$	$0.15-0.3$	$10^{2}-10^{4}$	$0.1-200$	$500-3500$	$10-6000$
HPD *	$115-850$	$0.1-0.3$	$10^{3}-10^{4}$	7	$10^{2}-10^{5}$	$10-10^{3}$	$\sim 2 \times 10^{4}$	~ 600
GPM *	$115-500$	$0.15-0.3$	$10^{3}-10^{6}$	$O(0.1)$	$O(10)$	$10-10^{3}$	$300-2000$	$O(10)$
APD	$300-1700$	~ 0.7	$10-10^{8}$	$O(1)$	$10-10^{3}$	$1-10^{3}$	$400-1400$	$O(100)$
PPD	$320-900$	$0.15-0.3$	$10^{5}-10^{6}$	~ 1	$1-10$	$O\left(10^{6}\right)$	$30-60$	$O(100)$
VLPC	$500-600$	~ 0.9	$\sim 5 \times 10^{4}$	~ 10	1	$O\left(10^{4}\right)$	~ 7	~ 1

${ }^{*}$ These devices often come in multi-anode configurations. In such cases, area, noise, and price are to be considered on a "per readout-channel" basis.
will not function in a magnetic field. The exception is proximityfocused devices (\Rightarrow no (de)magnification) in an axial field. With time resolutions of $\sim 10 \mathrm{ps}$ and superior rate capability, proximityfocused HPD's can be an alternative to MCP's. Current applications of HPD's include the CMS hadronic calorimeter and the RICH detector in LHCb. Large-size HPD's with sophisticated focusing may be suitable for future water Cherenkov experiments.

Hybrid APD's (HAPD's) add an avalanche multiplication step following the electron bombardment to boost the gain by a factor of ~ 50. This affords a higher gain and/or lower electrical bias, but also degrades the signal definition.

Table 35.3: Properties of photocathode and window materials commonly used in vacuum photodetectors

Photocathode material	λ (nm)	Window material	Peak ϵ_{Q} (λ / nm)
CsI	$115-200$	MgF_{2}	$0.11(140)$
CsTe	$115-320$	MgF_{2}	$0.14(240)$
Bi-alkali	$300-650$	Borosilicate	$0.27(390)$
"Ultra Bi-alkali"	$160-650$	Synthetic Silica	$0.27(390)$
	$160-650$	Borosilicate	$0.43(350)$
Multi-alkali	$300-850$	Synthetic Silica	$0.43(350)$
	$160-850$	Syorosilicate	$0.20(360)$
GaAs $(\mathrm{Cs})^{*}$	$160-930$	Synthetic Silica	$0.20(360)$
$\mathrm{GaAsP}(\mathrm{Cs})$	$300-750$	Borosilicate	$0.23(280)$
$\mathrm{InP} / \mathrm{InGaAsP}{ }^{\dagger}$	$350-1700$	Borosilicate	$0.50(500)$

*Reflection type photocathode is used.
${ }^{\dagger}$ Requires cooling to $\sim-80^{\circ} \mathrm{C}$.

35.2.2 Gaseous photon detectors

In gaseous photomultipliers (GPM) a photoelectron in a suitable gas mixture initiates an avalanche in a high-field region, producing a large number of secondary impact-ionization electrons. In principle the charge multiplication and collection processes are identical to those employed in gaseous tracking detectors such as multiwire proportional chambers, micromesh gaseous detectors (Micromegas), or gas electron multipliers (GEM). These are discussed in Sec. 35.6.4.

The devices can be divided into two types depending on the photocathode material. One type uses solid photocathode materials much in the same way as PMT's. Since it is resistant to gas mixtures typically used in tracking chambers, CsI is a common choice. In the other type, photoionization occurs on suitable molecules vaporized and mixed in the drift volume. Most gases have photoionization work functions in excess of 10 eV , which would limit their sensitivity to wavelengths far too short. However, vapors of TMAE (tetrakis dimethyl-amine ethylene) or TEA (tri-ethyl-amine), which have smaller work functions (5.3 eV for TMAE and 7.5 eV for TEA), are suited for XUV photon detection [12]. Since devices like GEM's offer sub-mm spatial resolution, GPM's are often used as position-sensitive photon detectors.

They can be made into flat panels to cover large areas $\left(O\left(1 \mathrm{~m}^{2}\right)\right)$, can operate in high magnetic fields, and are relatively inexpensive. Many of the ring imaging Cherenkov (RICH) detectors to date have used GPM's for the detection of Cherenkov light [13-16]. Special care must be taken to suppress the photon-feedback process in GPM's. It is also important to maintain high purity of the gas as minute traces of O_{2} can significantly degrade the detection efficiency.

35.2.3 Solid-state photon detectors

In a phase of rapid development, solid-state photodetectors are competing with vacuum- or gas-based devices for many existing applications and making way for a multitude of new ones. Compared to traditional vacuum- and gaseous photodetectors, solidstate devices are more compact, lightweight, rugged, tolerant to magnetic fields, and often cheaper. They also allow fine pixelization, are easy to integrate into large systems, and can operate at low electric potentials, while matching or exceeding most performance criteria. They are particularly well suited for detection of γ - and X-rays. Except for applications where coverage of very large areas or dynamic range is required, solid-state detectors are proving to be the better choice. Some hybrid devices attempt to combine the best features of different technologies while applications of nanotechnology are opening up exciting new possibilities.

Silicon photodiodes (PD) are widely used in high-energy physics as particle detectors and in a great number of applications (including solar cells!) as light detectors. The structure is discussed in some detail in Sec. 35.7. In its simplest form, the PD is a reverse-biased $p-n$ junction. Photons with energies above the indirect bandgap energy (wavelengths shorter than about 1050 nm , depending on the temperature) can create $e-h$ pairs (the photoconductive effect), which are collected on the p and n sides, respectively. Often, as in the PD's used for crystal scintillator readout in CLEO, L3, Belle, BaBar, and GLAST, intrinsic silicon is doped to create a $p-i-n$ structure. The reverse bias increases the thickness of the depleted region; in the case of these particular detectors, to full depletion at a depth of about $100 \mu \mathrm{~m}$. Increasing the depletion depth decreases the capacitance (and hence electronic noise) and extends the red response. Quantum efficiency can exceed 90%, but falls toward the red because of the increasing absorption length of light in silicon. The absorption length reaches $100 \mu \mathrm{~m}$ at 985 nm . However, since $G=1$, amplification is necessary. Optimal low-noise amplifiers are slow, but, even so, noise limits the minimum detectable signal in room-temperature devices to several hundred photons.

Very large arrays containing $O\left(10^{7}\right)$ of $O\left(10 \mu \mathrm{~m}^{2}\right)$-sized photodiodes pixelizing a plane are widely used to photograph all sorts of things from everyday subjects at visible wavelengths to crystal structures with X-rays and astronomical objects from infrared to UV. To limit the number of readout channels, these are made into charge-coupled devices (CCD), where pixel-to-pixel signal transfer takes place over thousands of synchronous cycles with sequential output through shift registers [17]. Thus, high spatial resolution is achieved at the expense of speed and timing precision. Custom-made CCD's have virtually replaced photographic plates and other imagers for astronomy and in spacecraft. Typical QE's
exceed 90% over much of the visible spectrum, and "thick" CCD's have useful QE up to $\lambda=1 \mu \mathrm{~m}$. Active Pixel Sensor (APS) arrays with a preamplifier on each pixel and CMOS processing afford higher speeds, but are challenged at longer wavelengths. Much $R \& D$ is underway to overcome the limitations of both CCD and CMOS imagers.

In APD's, an exponential cascade of impact ionizations initiated by the original photogenerated $e-h$ pair under a large reverse-bias voltage leads to an avalanche breakdown [18-21]. As a result, detectable electrical response can be obtained from low-intensity optical signals down to single photons. Excellent junction uniformity is critical, and a guard ring is generally used as a protection against edge breakdown. Well-designed APD's, such as those used in CMS' crystal-based electromagnetic calorimeter, have achieved $\epsilon_{Q} \epsilon_{C} \approx 0.7$ with sub-ns response time. The sensitive wavelength window and gain depend on the semiconductor used. The gain is typically $10-200$ in linear and up to 10^{8} in Geiger mode of operation. Stability and close monitoring of the operating temperature are important for linear-mode operation, and substantial cooling is often necessary. Position-sensitive APD's use time information at multiple anodes to calculate the hit position.

One of the most promising recent developments in the field is that of devices consisting of large arrays $\left(O\left(10^{3}\right)\right)$ of tiny APD's packed over a small area $\left(O\left(1 \mathrm{~mm}^{2}\right)\right)$ and operated in a limited Geiger mode [22-24]. Among different names used for this class of photodetectors, "PPD" (for "Pixelized Photon Detector") is most widely accepted (formerly "SiPM"). Although each cell only offers a binary output, linearity with respect to the number of photons is achieved by summing the cell outputs in the same way as with a MCP in saturation mode (see above). PPD's are being adopted as the preferred solution for various purposes including medical imaging, e.g. positron emission tomography (PET). These compact, rugged, and economical devices allow auto-calibration through decent separation of photoelectron peaks and offer gains of $O\left(10^{6}\right)$ at a moderate bias voltage $(\sim 50 \mathrm{~V})$. However, the singlephotoelectron noise of a PPD, being the logical "or" of $O\left(10^{3}\right)$ Geiger APD's, is rather large: $O\left(1 \mathrm{MHz} / \mathrm{mm}^{2}\right)$ at room temperature. PPD's are particularly well-suited for applications where triggered pulses of several photons are expected over a small area, e.g. fiber-guided scintillation light. Intense $\mathrm{R} \& \mathrm{D}$ is expected to lower the noise level and improve radiation hardness, resulting in coverage of larger areas and wider applications. Attempts are being made to combine the fabrication of the sensors and the front-end electronics (ASIC) in the same process with the goal of making PPD's and other finely pixelized solid-state photodetectors extremely easy to use.

Of late, much $\mathrm{R} \& \mathrm{D}$ has been directed to $p-i-n$ diode arrays based on thin polycrystalline diamond films formed by chemical vapor deposition (CVD) on a hot substrate ($\sim 1000 \mathrm{~K}$) from a hydrocarbon-containing gas mixture under low pressure (~ 100 mbar). These devices have maximum sensitivity in the extreme- to moderate-UV region [25-27]. Many desirable characteristics, including high tolerance to radiation and temperature fluctuations, low dark noise, blindness to most of the solar radiation spectrum, and relatively low cost make them ideal for spacebased UV/XUV astronomy, measurement of synchrotron radiation, and luminosity monitoring at (future) lepton collider(s).

Visible-light photon counters (VLPC) utilize the formation of an impurity band only 50 meV below the conduction band in Asdoped Si to generate strong $\left(G \approx 5 \times 10^{4}\right)$ yet sharp response to single photons with $\epsilon_{Q} \approx 0.9$ [28-30]. The smallness of the band gap considerably reduces the gain dispersion. Only a very small bias $(\sim 7 \mathrm{~V})$ is needed, but high sensitivity to infrared photons requires cooling below 10 K . The dark noise increases sharply and exponentially with both temperature and bias. The Run 2 DØ detector used 86000 VLPC's to read the optical signal from its scintillating-fiber tracker and scintillator-strip preshower detectors.

35.3 Organic scintillators

Revised August 2017 by K.F. Johnson (Florida State U.).
Organic scintillators are broadly classed into three types, crystalline, liquid, and plastic, all of which utilize the ionization produced by charged particles (see Sec. 34.2 of this Review) to generate optical photons, usually in the blue to green wavelength regions [31]. Plastic scintillators are by far the most widely used, liquid organic scintillator is finding increased use, and crystal organic scintillators are practically unused in high-energy physics. Plastic scintillator densities range from 1.03 to $1.20 \mathrm{~g} \mathrm{~cm}^{-3}$. Typical photon yields are about 1 photon per 100 eV of energy deposit [32]. A one-cm-thick scintillator traversed by a minimum-ionizing particle will therefore yield $\approx 2 \times 10^{4}$ photons. The resulting photoelectron signal will depend on the collection and transport efficiency of the optical package and the quantum efficiency of the photodetector.

Organic scintillator does not respond linearly to the ionization density. Very dense ionization columns emit less light than expected on the basis of $d E / d x$ for minimum-ionizing particles. A widely used semi-empirical model by Birks posits that recombination and quenching effects between the excited molecules reduce the light yield [33]. These effects are more pronounced the greater the density of the excited molecules. Birks' formula is

$$
\begin{equation*}
\frac{d \mathcal{L}}{d x}=\mathcal{L}_{0} \frac{d E / d x}{1+k_{B} d E / d x} \tag{35.2}
\end{equation*}
$$

where \mathcal{L} is the luminescence, \mathcal{L}_{0} is the luminescence at low specific ionization density, and k_{B} is Birks' constant, which must be determined for each scintillator by measurement. Decay times are in the ns range; rise times are much faster.

The high light yield and fast response time allow the possibility of sub-ns timing resolution [34]. The fraction of light emitted during the decay "tail" can depend on the exciting particle. This allows pulse shape discrimination as a technique to carry out particle identification. Because of the hydrogen content (carbon to hydrogen ratio ≈ 1) plastic scintillator is sensitive to proton recoils from neutrons.

Ease of fabrication into desired shapes and low cost has made plastic scintillator a common detector element. In the form of scintillating fiber it has found widespread use in tracking and calorimetry [35].

Demand for large volume detectors has lead to increased use of liquid organic scintillator, which has the same scintillation mechanism as plastic scintillator, due to its cost advantage. The containment vessel defines the detector shape; photodetectors or waveshifters may be immersed in the liquid.

35.3.1 Scintillation mechanism

A charged particle traversing matter leaves behind it a wake of excited molecules. Certain types of molecules, however, will release a small fraction $(\approx 3 \%)$ of this energy as optical photons. This process, scintillation, is especially marked in those organic substances which contain aromatic rings, such as polystyrene (PS) and polyvinyltoluene (PVT). Liquids which scintillate include toluene, xylene and pseudocumene.

In fluorescence, the initial excitation takes place via the absorption of a photon, and de-excitation by emission of a longer wavelength photon. Fluors are used as "waveshifters" to shift scintillation light to a more convenient wavelength. Occurring in complex molecules, the absorption and emission are spread out over a wide band of photon energies, and have some overlap, that is, there is some fraction of the emitted light which can be re-absorbed [36]. This "self-absorption" is undesirable for detector applications because it causes a shortened attenuation length. The wavelength difference between the major absorption and emission peaks is called the Stokes' shift. It is usually the case that the greater the Stokes' shift, the smaller the self absorption thus, a large Stokes' shift is a desirable property for a fluor.

The plastic scintillators used in high-energy physics are binary or ternary solutions of selected fluors in a plastic base containing aromatic rings. (See appendix in Ref. [37] for a comprehensive list of components.) Virtually all plastic scintillators contain as a base either PVT or PS. PVT-based scintillator can be up to 50% brighter.

Figure 35.1: Cartoon of scintillation "ladder" depicting the operating mechanism of organic scintillator. Approximate fluor concentrations and energy transfer distances for the separate subprocesses are shown.

Ionization in the plastic base produces UV photons with short attenuation length (several mm). Longer attenuation lengths are obtained by dissolving a "primary" fluor in high concentration (1% by weight) into the base, which is selected to efficiently reradiate absorbed energy at wavelengths where the base is more transparent (see Fig. 35.1).

The primary fluor has a second important function. The decay time of the scintillator base material can be quite long - in pure polystyrene it is 16 ns , for example. The addition of the primary fluor in high concentration can shorten the decay time by an order of magnitude and increase the total light yield. At the concentrations used (1% and greater), the average distance between a fluor molecule and an excited base unit is around $100 \AA$, much less than a wavelength of light. At these distances the predominant mode of energy transfer from base to fluor is not the radiation of a photon, but a resonant dipole-dipole interaction, first described by Foerster, which strongly couples the base and fluor [38]. The strong coupling sharply increases the speed and the light yield of the plastic scintillators.

Normally a fluor which fulfills other requirements is not adequate with respect to emission wavelength or attenuation length, so it is necessary to add yet another waveshifter (the "secondary" fluor), at fractional percent levels, and occasionally a third (not shown in Fig. 35.1).

External wavelength shifters are widely used to aid light collection in complex geometries. Scintillation light is captured by a lightpipe comprising a wave-shifting fluor dissolved in a nonscintillating base. The wavelength shifter must be insensitive to ionizing radiation and Cherenkov light. A typical wavelength shifter uses an acrylic base because of its good optical qualities, a single fluor to shift the light emerging from the plastic scintillator to the blue-green, and contains ultra-violet absorbing additives to deaden response to Cherenkov light.

By drastically increasing fluor concentrations beyond those discussed above, scintillators of increased radiation resistance or with special properties such as neutron/gamma discrimination may be made [39].

35.3.2 Caveats and cautions

Plastic scintillators are reliable, robust, and convenient. However, exposure to solvent vapors, high temperatures, mechanical flexing, irradiation, or rough handling will cause degradation. A The surface is particularly fragile region and can "craze" - develop microcracks which degrade transmission of light by total internal reflection. Crazing is particularly likely where oils, solvents, or fingerprints have contacted the surface.

They have a long-lived luminescence which does not follow a simple exponential decay. Intensities at the 10^{-4} level of the initial fluorescence can persist for hundreds of ns [31] [40].

They can decrease their light yield with increasing partial pressure of oxygen. This can be a 10% effect in an artificial atmosphere [41].

Their light yield may be changed by a magnetic field. Increases of $\approx 3 \%$ at 0.45 T have been reported [42].

Irradiation of plastic scintillator creates color centers which absorb light more strongly in the UV and blue than at longer wavelengths. This poorly understood effect appears as a reduction both of light yield and attenuation length. Radiation damage depends not only on the integrated dose, but on the dose rate, atmosphere, and temperature, before, during and after irradiation, as well as the materials properties of the base such as glass transition temperature, polymer chain length, etc. Annealing also occurs, accelerated by the diffusion of atmospheric oxygen and elevated temperatures. The phenomena are complex, unpredictable, and not well understood [43]. Since color centers are most disruptive at shorter wavelengths, the most reliable method of mitigating radiation damage is to shift emissions at every step to the longest practical wavelengths, e.g., utilize fluors with large Stokes' shifts (aka the "Better red than dead" strategy).

35.3.3 Scintillating and wavelength-shifting fibers

The clad optical fiber comprising scintillator and wavelength shifter (WLS) is particularly useful [44]. Since the initial demonstration of the scintillating fiber (SCIFI) calorimeter [45], SCIFI techniques have become mainstream [46]. SCIFI calorimeters are fast, dense, radiation hard, and can have leadglass-like resolution. SCIFI trackers can handle high rates and are radiation tolerant, but the low photon yield at the end of a long fiber (see below) requires use of sensitive photodetectors. WLS-only fiber readout of a calorimeter allows a very high level of hermeticity since the solid angle blocked by the fiber on its way to the photodetector is very small.

The sensitive region of scintillating fibers can be controlled by splicing them onto clear (non-scintillating/non-WLS) fibers.

A typical configuration would be fibers with a core of polystyrene-based scintillator or WLS (index of refraction $n=$ $1.59)$, surrounded by a cladding of PMMA $(n=1.49)$ a few microns thick, or, for added light capture, with another cladding of fluorinated PMMA with $n=1.42$, for an overall diameter of 0.5 to 1 mm . The fraction of generated light which is transported down the optical fiber is denoted the capture fraction and is about 6% for the single-clad fiber and 10% for the double-clad fiber. A minimum-ionizing particle traversing a high-quality 1 mm diameter fiber perpendicular to its axis will produce fewer than 2000 photons, of which about 200 are captured. Attenuation may eliminate 95% of these photons in a large collider tracker.

A scintillating or WLS fiber is often characterized by its attenuation length, over which the signal is attenuated to $1 / e$ of its original value. Factors determining attenuation length include reabsorption of emitted photons by the polymer base or dissolved fluors, the level of crystallinity of the base polymer, variation of photodetector sensitivity to emitted wavelengths, and the quality of the internal surface [47]. Attenuation lengths of several meters are obtained by high quality fibers.

35.4 Inorganic scintillators

Revised August 2019 by C.L. Woody (BNL) and R.-Y. Zhu (HEP California Inst. of Technology).

Inorganic crystals form a class of scintillating materials with much higher densities than organic plastic scintillators (typically $\sim 4-8 \mathrm{~g} / \mathrm{cm}^{3}$) with a variety of different properties for use as scintillation detectors. Due to their high density and high effective atomic number, they can be used in applications where high stopping power or a high conversion efficiency for electrons or photons is required. These include total absorption electromagnetic calorimeters (see Sec. 35.9.2), which consist of a totally active absorber (as opposed to a sampling calorimeter), as well as serving as gamma ray detectors over a wide range of energies. Many of these crystals also have very high light output, and can therefore provide excellent energy resolution down to very low energies (\sim few hundred keV).

Some crystals are intrinsic scintillators in which the luminescence is produced by a part of the crystal lattice itself. However, other crystals require the addition of a dopant, typically fluorescent ions such as thallium (Tl) or cerium (Ce) which is responsible for producing the scintillation light. However, in both cases, the

Table 35.4: Properties of several inorganic crystals. Most of the notation is defined in Sec. 6 of this Review.

Parameter:	ρ	MP	$X_{0}{ }^{*}$	$R_{M}{ }^{*}$	$d E / d x^{*}$	$\lambda_{I}{ }^{*}$	$\tau_{\text {decay }}$	$\lambda_{\text {max }}$	n^{\dagger}	Relative output ${ }^{\ddagger}$	$\text { Hygro- } d(\mathrm{LY}) / d T$ scopic?	
Units:	$\mathrm{g} / \mathrm{cm}^{3}$	${ }^{\circ} \mathrm{C}$	cm	cm	$\mathrm{MeV} / \mathrm{cm}$	cm	ns	nm				$\% /{ }^{\circ} \mathrm{C}$ §
$\mathrm{NaI}(\mathrm{Tl})$	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_{2}	4.89	1280	2.03	3.10	6.5	30.7	$650^{\text {s }}$	300^{s}	1.50	36^{s}	no	$-1.9{ }^{\text {s }}$
							$<0.6{ }^{f}$	$220{ }^{\text {f }}$		$4.1{ }^{f}$		$0.1{ }^{\text {f }}$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(Na)	4.51	621	1.86	3.57	5.6	39.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^{s}	310	1.95	$3.6{ }^{\text {s }}$	slight	-1.4
							6^{f}			$1.1{ }^{f}$		
PbWO_{4}	8.30	1123	0.89	2.00	10.1	20.7	30^{s}	$425^{\text {s }}$	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		$0.077{ }^{f}$		
$\underline{\mathrm{LSO}}(\mathrm{Ce})$	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
$\overline{\mathrm{PbF}}_{2}$	7.77	824	0.93	2.21	9.4	21.0	-	-	-	Cherenkov	no	-
CeF_{3}	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
$\mathrm{LaBr}_{3}(\mathrm{Ce})$	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
CeBr_{3}	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1

*Numerical values calculated using formulae in this review.
${ }^{\dagger}$ Refractive index at the wavelength of the emission maximum.
${ }^{\ddagger}$ Relative light output measured for samples of $1.5 \mathrm{X}_{0}$ cube with a Tyvek paper wrapping and a full end face coupled to a photodetector. The quantum efficiencies of the photodetector are taken out.
§Variation of light yield with temperature evaluated at the room temperature.
$f=$ fast component, $s=$ slow component
scintillation mechanism is the same. Energy is deposited in the crystal by ionization, either directly by charged particles, or by the conversion of photons into electrons or positrons which subsequently produce ionization. This energy is transferred to the luminescent centers which then radiate scintillation photons. The light yield L in terms of the number of scintillation photons produced per MeV of energy deposit in the crystal can be expressed as [48]

$$
\begin{equation*}
L=10^{6} S \cdot Q /\left(\beta \cdot E_{g}\right) \tag{35.3}
\end{equation*}
$$

where $\beta \cdot E_{g}$ is the energy required to create an e-h pair expressed as a multiple of the band gap energy $\mathrm{Eg}(\mathrm{eV}), S$ is the efficiency of energy transfer to the luminescent center and Q is the quantum efficiency of the luminescent center. The values of β, S and Q are crystal dependent and are the main factors in determining the intrinsic light yield of the scintillator. The decay time of the scintillator is mainly dominated by the decay time of the luminescent center.

Table-35.4 lists the basic properties of some commonly used inorganic crystals. $\mathrm{NaI}(\mathrm{Tl})$ is one of the most common and widely used scintillators, with an emission that is well matched to a bialkali photomultiplier tube, but it is highly hygroscopic and difficult to work with, and has a rather low density. $\mathrm{CsI}(\mathrm{Tl})$ and $\mathrm{CsI}(\mathrm{Na})$ have high light yield, low cost, and are mechanically robust (high plasticity and resistance to cracking). However, they need careful surface treatment and are slightly and highly hygroscopic respectively. Pure CsI has identical mechanical properties as $\operatorname{CsI}(\mathrm{Tl})$, but a faster emission at shorter wavelength and a much lower light output.

Undoped BaF_{2} has a fast component with a less than 0.6 ns decay time, and is the fastest known scintillator. However, it also has a slow component with a much longer decay time (~ 630 $\mathrm{ns})$. Bismuth gemanate $\left(\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}\right.$ or BGO$)$ has a high density, and consequently a short radiation length X_{0} and Molière radius R_{M}. Similar to $\operatorname{CsI}(\mathrm{Tl})$, BGO's emission is well-matched to the spectral sensitivity of photodiodes, and it is easy to handle and not hygroscopic. Lead tungstate $\left(\mathrm{PbWO}_{4}\right.$ or PWO$)$ has a very high density, with a very short X_{0} and R_{M}, but its intrinsic light yield is rather low.
Cerium doped lutetium oxyorthosilicate $\left(\mathrm{Lu}_{2} \mathrm{SiO}_{5}: \mathrm{Ce}\right.$, or LSO:Ce) [49] and cerium doped lutetium-yttrium oxyorthosilicate $\left(\mathrm{Lu}_{2(1-x)} \mathrm{Y}_{2 x} \mathrm{SiO}_{5}, \mathrm{LYSO}: \mathrm{Ce}\right)$ [50] are dense crystal scintillators which have a high light yield and a fast decay time. Only the properties of LSO:Ce are listed in Table- 35.4 since the properties of LYSO:Ce are similar to that of LSO:Ce except a slightly lower density than LSO: Ce depending on the yttrium fraction (typically

5 to 10%) in LYSO:Ce. This material is also featured with excellent radiation hardness $[51,52]$, so is expected to be used where extraordinary radiation hardness is required.

Also listed in Table-35.4 are other fluoride crystals such as PbF_{2} as a Cherenkov material and CeF_{3}, which have been shown to provide excellent energy resolution in calorimeter applications. Table-35.4 also includes cerium doped lanthanum tri-halides, such as LaBr_{3} [53] and CeBr_{3} [54], which are brighter and faster than LSO: Ce, but they are highly hygroscopic and have a lower density. The FWHM energy resolution measured for these materials coupled to a PMT with bi-alkali photocathode for $0.662 \mathrm{MeV} \gamma$-rays from a ${ }^{137} C$ s source is about 3%, and has recently been improved to 2% by co-doping with cerium and strontium [55], which is the best among all inorganic crystal scintillators. For this reason, LaBr_{3} and CeBr_{3} are expected to be used in applications where a good energy resolution for low energy photons are required, such as homeland security.

Beside the crystals listed in Table-35.4, a number of new crystals are being developed that may have potential applications in high energy or nuclear physics. Of particular interest is the family of yttrium and lutetium perovskites and garnet, which include YAP $\left(\mathrm{YAlO}_{3}: \mathrm{Ce}\right)$, LuAP $\left(\mathrm{LuAlO}_{3}: \mathrm{Ce}\right)$, YAG $\left(\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}: \mathrm{Ce}\right)$ and $\mathrm{LuAG}\left(\mathrm{Lu}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}: \mathrm{Ce}\right)$ and their mixed compositions. These have been shown to be linear over a large energy range [56], and have the potential for providing good intrinsic energy resolution.

Aiming at the best jet-mass resolution inorganic scintillators are being investigated for HEP calorimeters with dual readout for both Cherenkov and scintillation light to be used at future linear lepton colliders. These materials may be used for an electromagnetic calorimeter [57] or a homogeneous hadronic calorimetry (HHCAL) detector concept, including both electromagnetic and hadronic parts $[58,59]$. Because of the unprecedented volume (70 to $100 \mathrm{~m}^{3}$) foreseen for the HHCAL detector concept the materials must be (1) dense (to minimize the leakage) and (2) cost-effective. It should also be UV transparent (for effective collection of the Cherenkov light) and allow for a clear discrimination between the Cherenkov and scintillation light. The preferred scintillation light is thus at a longer wavelength, and not necessarily bright or fast. Dense crystals, scintillating glasses and ceramics offer a very attractive implementation for this detector concept [60].

The fast scintillation light provides timing information about electromagnetic interactions and showers, which may be used to mitigate pile-up effects and/or for particle identification since the time development of electromagnetic and hadronic showers, as well as minimum ionizing particles, are different. The timing in-
formation is primarily determined by the scintillator rise time and decay time, and the number of photons produced. For fast timing, it is important to have a large number of photons emitted in the initial part of the scintillation pulse, e.g. in the first ns, since one is often measuring the arrival time of the particle in the crystal using the leading edge of the light pulse. A good example of this is BaF_{2}, which has $\sim 10 \%$ of its light in its fast component with a decay time of less than 0.6 ns . Recent investigation shows that doping with yttrium in BaF_{2} reduces its slow component significantly, while keeping its ultrafast scintillation component unchanged $[61,62]$. The light propagation can spread out the arrival time of the scintillation photons at the photodetector due to time dispersion [63]. The time response of the photodetector also plays a major role in achieving good time resolution with fast scintillating crystals.

Table-35.4 gives the light output of other crystals relative to $\mathrm{NaI}(\mathrm{Tl})$ and their dependence to the temperature variations measured for $1.5 X_{0}$ cube crystal samples with a Tyvek paper wrapping and a full end face coupled to a photodetector [64]. The quantum efficiency of the photodetector is taken out to facilitate a direct comparison of crystal's light output. However, the useful signal produced by a scintillator is usually quoted in terms of the number of photoelectrons per MeV produced by a given photodetector. The relationship between the light yield ($L Y$) in number of photons $/ \mathrm{MeV}$ produced $\left(N_{\text {photons }} / \mathrm{MeV}\right)$ and the light output in number of photoelectrons $/ \mathrm{MeV}$ detected involves the factors for the light collection efficiency $(L C)$ and the quantum efficiency $(Q E)$ of the photodetector:

$$
\begin{equation*}
N_{\text {p.e. }} / \mathrm{MeV}=L Y \cdot L C \cdot Q E \tag{35.4}
\end{equation*}
$$

$L C$ depends on the size and shape of the crystal, and includes effects such as the transmission of scintillation light within the crystal (i.e., the bulk attenuation length of the material), scattering from within the crystal, reflections and scattering from the crystal surfaces, and re-bouncing back into the crystal by wrapping materials. These factors can vary considerably depending on the sample, but can be in the range of $\sim 10-60 \%$. The internal light transmission depends on the intrinsic properties of the material, e.g. the density and type of the scattering centers and defects that can produce internal absorption within the crystal, and can be highly affected by factors such as radiation damage, as discussed below.

The quantum efficiency depends on the type of photodetector used to detect the scintillation light, which is typically $\sim 15-30 \%$ for photomultiplier tubes and $\sim 70 \%$ for silicon photodetectors for visible wavelengths. The quantum efficiency of the detector is usually highly wavelength dependent and should be matched to the particular crystal of interest to give the highest quantum yield at the wavelength corresponding to the peak of the scintillation emission. Fig. 35.2 shows the quantum efficiencies of two photodetectors, a Hamamatsu R2059 PMT with bi-alkali cathode and quartz window and a Hamamatsu S8664 avalanche photodiode (APD) as a function of wavelength. Also shown in the figure are emission spectra of three crystal scintillators, BGO, LSO:Ce/LYSO:Ce and $\mathrm{CsI}(\mathrm{Tl})$, and the numerical values of the emission weighted quantum efficiency. The area under each emission spectrum is proportional to crystal's light yield, as shown in Table-35.4, where the quantum efficiencies of the photodetector has been taken out. Results with different photodetectors can be significantly different. For example, the response of $\mathrm{CsI}(\mathrm{Tl})$ relative to $\mathrm{NaI}(\mathrm{Tl})$ with a standard photomultiplier tube with a bi-alkali photo-cathode, e.g. Hamamatsu R2059, would be 45 rather than 165 because of the photomultiplier's low quantum efficiency at longer wavelengths. For scintillators which emit in the UV, a detector with a quartz window should be used.

For very low energy applications (typically below 1 MeV), nonproportionality of the scintillation light yield may be important. It has been known for a long time that the conversion factor between the energy deposited in a crystal scintillator and the number of photons produced is not constant. It is also known that the energy resolution measured by all crystal scintillators for low energy γ-rays is significantly worse than the contribution from photo-electron statistics alone, indicating an intrinsic contribu-

Figure 35.2: The quantum efficiencies of two photodetectors, a Hamamatsu R2059 PMT with bi-alkali cathode and a Hamamatsu S8664 avalanche photodiode (APD), are shown as a function of wavelength. Also shown in the figure are emission spectra of three crystal scintillators, BGO, LSO and $\mathrm{CsI}(\mathrm{Tl})$, and the numerical values of the emission weighted quantum efficiencies. The area under each emission spectrum is proportional to crystal's light yield.
tion from the scintillator itself. Precision measurement using low energy electron beam shows that this non-proportionality is crystal dependent [65]. Recent study on this issue also shows that this effect is also sample dependent even for the same crystal [66]. Further work is therefore needed to fully understand this subject.

One important issue related to the application of a crystal scintillator is its radiation hardness. Stability of its light output, or the ability to track and monitor the variation of its light output in a radiation environment, is required for high resolution and precision calibration [67]. All known crystal scintillators suffer from ionization dose induced radiation damage [68], where a common damage phenomenon is the appearance of radiation induced absorption caused by the formation of color centers originated from the impurities or point defects in the crystal. This radiation induced absorption reduces the light attenuation length in the crystal, and hence its light output. For crystals with high defect density, a severe reduction of light attenuation length may cause a distortion of the light response uniformity, leading to a degradation of the energy resolution. Additional radiation damage effects may include a reduced intrinsic scintillation light yield (damage to the luminescent centers) and an increased phosphorescence (afterglow). For crystals to be used in a high precision calorimeter in a radiation environment, its scintillation mechanism must not be damaged and its light attenuation length in the expected radiation environment must be long enough so that its light response uniformity, and thus its energy resolution, does not change.

While radiation damage induced by ionization dose is well understood [69], investigation is on-going to understand radiation damage caused by hadrons, including both charged hadrons [70] and neutrons [71]. Two additional fundamental processes may cause defects by hadrons: displacement damage and nuclear breakup. While charged hadrons can produce all three types of damage (and it's often difficult to separate them), neutrons can produce only the last two, and electrons and photons only produce ionization damage. Studies on hadron induced radiation damage to lead tungstate [72] show a proton-specific damage component caused by fragments from fission induced in lead and tungsten by particles in the hadronic shower. The fragments cause a severe, local damage to the crystalline lattice due to their extremely high energy loss over a short distance [72]. Recent investigation also sees evidence of neutron-specfic damage in various crystals [71].

Most of the crystals listed in Table-35.4 have been used in high energy or nuclear physics experiments when the ultimate energy resolution for electrons and photons is desired. Examples are the Crystal Ball $\mathrm{NaI}(\mathrm{Tl})$ calorimeter at SPEAR, the L3 BGO
calorimeter at LEP, the CLEO $\mathrm{CsI}(\mathrm{Tl})$ calorimeter at CESR, the KTeV CsI calorimeter at the Tevatron, and the BaBar, BELLE and BES III CsI(Tl) calorimeters at PEP-II, KEK and BEPC II, respectively. Because of their high density and relative low cost, PWO calorimeters are used by CMS and ALICE at LHC, by CLAS and PrimEx at CEBAF and by PANDA at GSI. Similarly, PbF_{2} calorimeters are used by the A4 experiment at MAINZ and by the g-2 experiment at Fermilab. A CsI calorimeter is being built for the Mu2e experiment at Fermilab. An LYSO:Ce calorimeter is being built for the COMET experiment at J-PARC, and an LYSO:Ce crystal-based precision timing layer is being built for the CMS experiment at the HL-LHC.

35.5 Cherenkov detectors

Revised July 2019 by B.N. Ratcliff (SLAC) and J. Schwiening (GSI Darmstadt).
Although devices using Cherenkov radiation are often thought of as only particle identification (PID) detectors, in practice they are used over a much broader range of applications including; (1) fast particle counters; (2) hadronic PID; (3) electromagnetic calorimeters (EMC); and (4) tracking detectors performing complete event reconstruction. Examples of applications from each category include; (1) the BaBar luminosity detector [73] and the Quartic fast timing counter for the ATLAS Forward Proton Detector, designed to measure small angle scatters at the LHC [74]; (2) the hadronic PID detectors at the B factory detectors-DIRC in BaBar [75], and the modern Imaging Aerogel and TOP counters at Belle II [76]; (3) the CMS Hadron Forward calorimeter based on Cherenkov light emitted in quartz fibers embedded in a steel absorber [77]; and (4) large water Cherenkov counters such as Super-Kamiokande [78].
Cherenkov counters contain two main elements; (1) a radiator through which the charged particle passes, and (2) a photodetector. As Cherenkov radiation is a weak source of photons, light collection and detection must be as efficient as possible. The refractive index n and the particle's path length through the radiator L appear in the Cherenkov relations allowing the tuning of these quantities for particular applications. One or more of the properties of Cherenkov radiation discussed in the Passages of Particles through Matter section (Sec. 34 of this Review) are utilized in Cherenkov detectors: the prompt emission of a light pulse; the existence of a velocity threshold for radiation; and the dependence of the Cherenkov cone half-angle θ_{c} and the number of emitted photons on the velocity of the particle v_{p} and the refractive index n of the medium. The Cherenkov angle can be calculated as

$$
\begin{equation*}
\cos \theta_{c}=\frac{1}{n(E) \beta}, \tag{35.5}
\end{equation*}
$$

where $\beta=v_{p} / c$ with c being the speed of light, and E the photon energy. The number of photoelectrons ($N_{\text {p.e. }}$) detected in a given device with radiator of length L is

$$
\begin{equation*}
N_{\text {p.e. }}=L \frac{\alpha^{2} z^{2}}{r_{e} m_{e} c^{2}} \int \epsilon(E) \sin ^{2} \theta_{c}(E) d E \tag{35.6}
\end{equation*}
$$

where $\epsilon(E)$ is the efficiency for collecting the Cherenkov light and transducing it into photoelectrons, and $\alpha^{2} /\left(r_{e} m_{e} c^{2}\right)=$ $370 \mathrm{~cm}^{-1} \mathrm{eV}^{-1}$. The quantities ϵ and θ_{c} are functions of the photon energy. As the typical energy dependent variation of the index of refraction is modest, a quantity called the Cherenkov detector quality factor N_{0} can be defined as

$$
\begin{equation*}
N_{0}=\frac{\alpha^{2} z^{2}}{r_{e} m_{e} c^{2}} \int \epsilon d E \tag{35.7}
\end{equation*}
$$

so that, taking the charge number $z=1$ (the usual case in highenergy physics),

$$
\begin{equation*}
N_{\text {p.e. }} \approx L N_{0}\left\langle\sin ^{2} \theta_{c}\right\rangle . \tag{35.8}
\end{equation*}
$$

This definition of the quality factor N_{0} is not universal, nor, indeed, very useful for those common situations where ϵ factorizes as $\epsilon=\epsilon_{\text {coll }} \epsilon_{\text {det }}$ with the geometrical photon collection efficiency ($\epsilon_{\text {coll }}$) varying substantially for different tracks while the
photon detector efficiency (ϵ_{det}) remains nearly track independent. In this case, it can be useful to explicitly remove ($\epsilon_{\text {coll }}$) from the definition of N_{0}. A typical value of N_{0} for a photomultiplier (PMT) detection system working in the visible and near UV, and collecting most of the Cherenkov light, is about $100 \mathrm{~cm}^{-1}$. Practical counters, utilizing a variety of different photodetectors, have values ranging between about 30 and $180 \mathrm{~cm}^{-1}$. Radiators can be chosen from a variety of transparent materials (Sec. 34 of this Review and Table 6.1). In addition to refractive index, the choice requires consideration of factors such as material density, radiation length and radiation hardness, transmission bandwidth, absorption length, chromatic dispersion, optical workability (for solids), availability, and cost. When the momenta of particles to be identified is high, the refractive index must be set close to one, so that the photon yield per unit length is low and a long particle path in the radiator is required. Recently, the gap in refractive index that has traditionally existed between gases and liquid or solid materials has been partially closed with transparent silica aerogels with indices that range between about 1.007 and 1.13.

Cherenkov counters may be classified as either imaging or threshold types, depending on whether they do or do not make use of Cherenkov angle $\left(\theta_{c}\right)$ information. Imaging counters may be used to track particles as well as identify them. The recent development of very fast photodetectors such as micro-channel plate PMTs (MCP PMT) (see 35.2 of this Review) also potentially allows very fast Cherenkov based time of flight (TOF) detectors of either class [79]. The track timing resolution of imaging detectors can be extremely good as it scales approximately as $\frac{1}{\sqrt{N_{\text {p.e. }}}}$
Threshold Cherenkov detectors [80], in their simplest form, make a yes/no decision based on whether the particle is above or below the Cherenkov threshold velocity $\beta_{t}=1 / n$. A straightforward enhancement of such detectors uses the number of observed photoelectrons (or a calibrated pulse height) to discriminate between species or to set probabilities for each particle species [81]. This strategy can increase the momentum range of particle separation by a modest amount (to a momentum some 20% above the threshold momentum of the heavier particle in a typical case)
Careful designs give $\left\langle\epsilon_{\text {coll }}\right\rangle \gtrsim 90 \%$. For a photomultiplier with a typical bialkali cathode, $\int \epsilon_{\text {det }} d E \approx 0.27 \mathrm{eV}$, so that

$$
\begin{equation*}
N_{\text {p.e. }} / L \approx 90 \mathrm{~cm}^{-1}\left\langle\sin ^{2} \theta_{c}\right\rangle \quad\left(\text { i.e., } N_{0}=90 \mathrm{~cm}^{-1}\right) . \tag{35.9}
\end{equation*}
$$

Suppose, for example, that n is chosen so that the threshold for species a is p_{t}; that is, at this momentum species a has velocity $\beta_{a}=1 / n$. A second, lighter, species b with the same momentum has velocity β_{b}, so $\cos \theta_{c}=\beta_{a} / \beta_{b}$, and

$$
\begin{equation*}
N_{\text {p.e. }} / L \approx 90 \mathrm{~cm}^{-1} \frac{m_{a}^{2}-m_{b}^{2}}{p_{t}^{2}+m_{a}^{2}} . \tag{35.10}
\end{equation*}
$$

For K / π separation at $p=p_{t}=1(5) \mathrm{GeV} / c, N_{\text {p.e. }} / L \approx$ $16(0.8) \mathrm{cm}^{-1}$ for π 's and (by design) 0 for K 's.
For limited path lengths $N_{\text {p.e. will usually be small. The over- }}$ all efficiency of the device is controlled by Poisson fluctuations, which can be especially critical for separation of species where one particle type is dominant. Moreover, the effective number of photoelectrons is often less than the average number calculated above due to additional equivalent noise from the photodetector (see the discussion of the excess noise factor in 35.2 of this Review). It is common to design for at least 10 photoelectrons for the high velocity particle in order to obtain a robust counter. As rejection of the particle that is below threshold depends on not seeing a signal, electronic and other background noise, especially overlapping tracks, can be important. Physics sources of light production for the below threshold particle, such as decay to an above threshold particle, scintillation light, or the production of delta rays in the radiator, often limit the separation attainable, and need to be carefully considered. Well designed, modern multi-channel counters, such as the ACC at Belle [82], can attain adequate particle separation performance over a substantial momentum range.
Imaging counters make the most powerful use of the information available by measuring the ring-correlated angles of emission
of the individual Cherenkov photons. They typically provide positive ID information both for the "wanted" and the "unwanted" particles, thus reducing mis-identification substantially. Since low-energy photon detectors can measure only the position (and, perhaps, a precise detection time) of the individual Cherenkov photons (not the angles directly), the photons must be "imaged" onto a detector so that their angles can be derived [83]. Typically the optics map the Cherenkov cone onto (a portion of) a distorted "circle" at the photodetector. Though the imaging process is directly analogous to familiar imaging techniques used in telescopes and other optical instruments, there is a somewhat bewildering variety of methods used in a wide variety of counter types with different names. Some of the imaging methods used include (1) focusing by a lens or mirror; (2) proximity focusing (i.e., focusing by limiting the emission region of the radiation); and (3) focusing through an aperture (a pinhole). In addition, the prompt Cherenkov emission coupled with the speed of some modern photon detectors allows the use of (4) time imaging, a method which is little used in conventional imaging technology, and may allow some separation with particle TOF. Finally, (5) correlated tracking (and event reconstruction) can be performed in large water counters by combining the individual space position and time of each photon together with the constraint that Cherenkov photons are emitted from each track at the same polar angle (Sec. 36.3.1of this Review).

In a simple model of an imaging PID counter, the fractional error on the particle velocity $\left(\delta_{\beta}\right)$ is given by

$$
\begin{equation*}
\delta_{\beta}=\frac{\sigma_{\beta}}{\beta}=\tan \theta_{c} \sigma\left(\theta_{c}\right) \tag{35.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma\left(\theta_{c}\right)=\frac{\left\langle\sigma\left(\theta_{i}\right)\right\rangle}{\sqrt{N_{\text {p.e. }}}} \oplus C \tag{35.12}
\end{equation*}
$$

and $\left\langle\sigma\left(\theta_{i}\right)\right\rangle$ is the average single photoelectron resolution, as defined by the optics, detector resolution and the intrinsic chromaticity spread of the radiator index of refraction averaged over the photon detection bandwidth. C combines a number of other contributions to resolution including, (1) correlated terms such as tracking, alignment, and multiple scattering, (2) hit ambiguities, (3) background hits from random sources, and (4) hits coming from other tracks. The actual separation performance is also limited by physics effects such as decays in flight and particle interactions in the material of the detector. In many practical cases, the performance is limited by these effects.

For a $\beta \approx 1$ particle of momentum (p) well above threshold entering a radiator with index of refraction (n), the number of σ separation $\left(N_{\sigma}\right)$ between particles of mass m_{1} and m_{2} is approximately

$$
\begin{equation*}
N_{\sigma} \approx \frac{\left|m_{1}^{2}-m_{2}^{2}\right|}{2 p^{2} \sigma\left(\theta_{c}\right) \sqrt{n^{2}-1}} \tag{35.13}
\end{equation*}
$$

In practical counters, the angular resolution term $\sigma\left(\theta_{c}\right)$ varies between about 0.1 and 5 mrad depending on the size, radiator, and photodetector type of the particular counter. The range of momenta over which a particular counter can separate particle species extends from the point at which the number of photons emitted becomes sufficient for the counter to operate efficiently as a threshold device ($\sim 20 \%$ above the threshold for the lighter species) to the value in the imaging region given by the equation above. For example, for $\sigma\left(\theta_{c}\right)=2 \mathrm{mrad}$, a fused silica radiator $(n=1.474)$, or a fluorocarbon gas radiator $\left(\mathrm{C}_{5} \mathrm{~F}_{12}\right.$, $n=1.0017$), would separate π / K 's from the threshold region starting around $0.15(3) \mathrm{GeV} / c$ through the imaging region up to about $4.2(18) \mathrm{GeV} / c$ at better than 3σ.

Many different imaging counters have been built during the last several decades [79]. Among the earliest examples of this class of counters are the very limited acceptance Differential Cherenkov detectors, designed for particle selection in high momentum beam lines. These devices use optical focusing and/or geometrical masking to select particles having velocities in a specified region. With careful design, a velocity resolution of $\sigma_{\beta} / \beta \approx 10^{-4}-10^{-5}$ can be obtained [80].

Practical multi-track Ring-Imaging Cherenkov detectors (generically called RICH counters) are a more recent development. RICH counters are sometimes further classified by 'generations' that differ based on historical timing, performance, design, and photodetection techniques.

Prototypical examples of first generation RICH counters are those used in the DELPHI and SLD detectors at the LEP and SLC Z factory $e^{+} e^{-}$colliders [79]. They have both liquid $\left(\mathrm{C}_{6} \mathrm{~F}_{14}, n=1.276\right)$ and gas ($\mathrm{C}_{5} \mathrm{~F}_{12}, n=1.0017$) radiators, the former being proximity imaged with the latter using mirrors. The phototransducers are a TPC/wire-chamber combination. They are made sensitive to photons by doping the TPC gas (usually, ethane/methane) with $\sim 0.05 \%$ TMAE (tetrakis(dimethylamino)ethylene). Great attention to detail is required, (1) to avoid absorbing the UV photons to which TMAE is sensitive, (2) to avoid absorbing the single photoelectrons as they drift in the long TPC, and (3) to keep the chemically active TMAE vapor from interacting with materials in the system. In spite of their unforgiving operational characteristics, these counters attained good $e / \pi / K / p$ separation over wide momentum ranges (from about 0.25 to $20 \mathrm{GeV} / c$) during several years of operation at LEP and SLC. Related but smaller acceptance devices include the OMEGA RICH at the CERN SPS, and the RICH in the balloon-borne CAPRICE detector [79].

Later generation counters [79] generally operate at much higher rates, with more detection channels, than the first generation detectors just described. They also utilize faster, more forgiving photon detectors, covering different photon detection bandwidths. Radiator choices have broadened to include materials such as lithium fluoride, fused silica, and aerogel. Vacuum-based photodetection systems (e.g., single or multi anode PMTs, MCPPMTs, or hybrid photodiodes (HPD)) have become increasingly common (see 35.2 of this Review). They handle high rates, and can be used with a wide choice of radiators. Examples include (1) the SELEX RICH at Fermilab, which mirror focuses the Cherenkov photons from a neon radiator onto a camera array made of $\sim 2000 \mathrm{PMTs}$ to separate hadrons over a wide momentum range (to well above $200 \mathrm{GeV} / c$ for heavy hadrons); (2) the NA62 RICH at CERN, which uses a 17 m long tank filled with neon gas as radiator and spherical mirrors to focus the photons on two arrays of 2000 PMTs to separate pions from muons for momenta between 15 and $35 \mathrm{GeV} / c$; (3) the CBM RICH under construction at FAIR where the Cherenkov photons, produced in about $30 \mathrm{~m}^{3}$ of CO_{2} radiator gas, are mirror-focused on arrays of multi-anode PMTs (MaPMTs) with a total of about 55,000 pixels, to identify electrons with momenta up to $10 \mathrm{GeV} / c$; and (4) the LHCb detector now running at the LHC. It uses two separate counters. One volume contains $\mathrm{C}_{4} \mathrm{~F}_{10}$ (originally in combination with aerogel, which was removed in 2015) while the second volume contains CF_{4}. Photons are mirror-focused onto detector arrays of HPDs to cover a π / K separation momentum range between 1 and $150 \mathrm{GeV} / c$. Further upgrades, including the replacement of the HPDs by MaPMTs and improved readout electronics, are necessary to deal with increases in luminosity.

Other fast detection systems that use solid cesium iodide (CsI) photocathodes or triethylamine (TEA) doping in proportional chambers are useful with certain radiator types and geometries. Examples include (1) the CLEO-III RICH at CESR that uses a LiF radiator with TEA doped proportional chambers; (2) the ALICE detector at the LHC that uses proximity focused liquid ($\mathrm{C}_{6} \mathrm{~F}_{14}$ radiators and solid CsI photocathodes (similar photodectors have been used for several years by the HADES and COMPASS detectors), and the hadron blind detector (HBD) in the PHENIX detector at RHIC that couples a low index CF_{4} radiator to a photodetector based on electron multiplier (GEM) chambers with reflective CsI photocathodes [79].

Recent technological advances in the production of aerogel with improved transparency in the UV range and finely tuned refractive indices enable several new RICH designs. The innovative hybrid geometry of the CLAS12 RICH, with complex photon paths that feature multiple passes through the aerogel tiles, is only possible due to the improved scattering length of the aerogel. It minimizes the material inside of the detector acceptance as well as the
cost of the photon sensor array. Beam tests have demonstrated that the counter will be able to provide clean π / K separation up to $8 \mathrm{GeV} / c$. The forward endcap Aerogel RICH (ARICH) for the Belle II upgrade at KEKB, designed to provide clean π / K separation for momenta up to $3.5 \mathrm{GeV} / c$, is an example of the socalled focusing aerogel approach [84]. The radiator is a dual-layer aerogel, with a thickness of 20 mm for each layer and increasing refractive indices of $n=1.045$ and $n=1.055$ along the particle path. The Cherenkov ring images from the two layers overlap on the array of Hybrid Avalanche Photo Detectors (HAPDs), which provide efficient single photon detection in the 1.5 T magnetic field.
A DIRC (Detection [of] Internally Reflected Cherenkov [light]) is a distinctive, compact RICH subtype first used in the BaBar detector [75]. A DIRC "inverts" the usual RICH principle for use of light from the radiator by collecting and imaging the total internally reflected light rather than the transmitted light. It utilizes the optical material of the radiator in two ways, simultaneously: as a Cherenkov radiator and as a light pipe. The magnitudes of the photon angles are preserved during transport by the flat, rectangular cross section radiators, allowing the photons to be efficiently transported to a detector outside the path of the particle where they may be imaged in up to three independent dimensions (the usual two in space and, due to the long photon paths lengths, one in time). Because the index of refraction in the radiator is large ($n \sim 1.47$ for fused silica), the momentum range with good π / K separation goes up to $4-5 \mathrm{GeV} / c$. It is plausible, but difficult, to extend it up to about $10 \mathrm{GeV} / c$ with an improved design.

The BaBar experiment at the asymmetric PEP-II $e^{+} e^{-}$collider studied CP violation in $\Upsilon(4 S)$ decays. Excellent pion/kaon separation for particle momenta up to $4 \mathrm{GeV} / c$ was required. The BaBar DIRC used 4.9 m long, rectangular bars made from synthetic fused silica as radiator and light guide. The photons were imaged via a "pin-hole" through an expansion region filled with 6000 liters of purified water onto an array of 10752 densely packed photomultiplier tubes placed at a distance of about 1.2 m from the bar end. During more than 8 years of operation, the BaBar DIRC achieved π / K separation of 2.5 standard deviations or more up to $4 \mathrm{GeV} / c$ momentum. For a pion identification rate around 85% the DIRC provided a kaon misidentification rate well below 1% up to $3 \mathrm{GeV} / c$.

The next generation of DIRC detectors takes advantage of the new, very fast, pixelated photodetectors becoming available, such as MaPMTs and MCP-PMTs. They typically utilize either time imaging or lens/mirror-focused optics, or both, leading not only to a precision measurement of the Cherenkov angle, but in some cases, to a precise measurement of the particle time of flight, and/or to correction of the chromatic dispersion in the radiator. Examples [79] include (1) the Belle II Time of Propagation (TOP) counter that emphasizes precision timing for both Cherenkov imaging and TOF to perform π / K separation of at least 3 standard deviations up to $4 \mathrm{GeV} / c ;(2)$ the DIRC upgrade of the GlueX experiment at Jefferson Lab that places four decommissioned BaBar DIRC modules, coupled to upgraded optics and readout, perpendicular to the beamline and will be the first application of a DIRC in a detector endcap; (3) the PANDA Barrel DIRC at FAIR, to be installed in 2023, that will be the first DIRC counter to use lens focusing and is expected to provide more than 3 standard deviations π / K separation up to $3.5 \mathrm{GeV} / c$; and (4) the TORCH proposal being developed for an LHCb upgrade in 2024 which uses DIRC imaging for individual photons with fast photon detectors to provide particle separation via particle TOF with a precision of $10-15$ ps per track over a flight path length of 9.5 m .

35.6 Gaseous detectors

35.6.1 Energy loss and charge transport in gases

Revised March 2010 by F. Sauli (CERN) and M. Titov (CEA Saclay, DSM/IRFU/SPP).

Gas-filled detectors localize the ionization produced by charged particles, generally after charge multiplication. The statistics of
ionization processes having asymmetries in the ionization trails, affect the coordinate determination deduced from the measurement of drift time, or of the center of gravity of the collected charge. For thin gas layers, the width of the energy loss distribution can be larger than its average, requiring multiple sample or truncated mean analysis to achieve good particle identification. In the truncated mean method for calculating $\langle d E / d x\rangle$, the ionization measurements along the track length are broken into many samples and then a fixed fraction of high-side (and sometimes also low-side) values are rejected [85].

The energy loss of charged particles and photons in matter is discussed in Sec. 34. Table 35.5 provides values of relevant parameters in some commonly used gases at NTP (normal temperature, $20^{\circ} C$, and pressure, 1 atm) for unit-charge minimum-ionizing particles (MIPs) [86, 87].

Values often differ, depending on the source, so those in the table should be taken only as approximate. For different conditions and for mixtures, and neglecting internal energy transfer processes (e.g., Penning effect), one can scale the density, N_{P}, and N_{T} with temperature and pressure assuming a perfect gas law.

Table 35.5: Properties of noble and molecular gases at normal temperature and pressure (NTP: $20^{\circ} \mathrm{C}$, one atm). E_{X}, E_{I} : first excitation, ionization energy; W_{I} : average energy per ion pair; $d E /\left.d x\right|_{\min }, N_{P}, N_{T}$: differential energy loss, primary and total number of electron-ion pairs per cm , for unit charge minimum ionizing particles.

Gas	Density, $\mathrm{mg} \mathrm{cm}^{-3}$	E_{x} eV	E_{I} eV	W_{I} eV	$d E /\left.d x\right\|_{\text {min }}$ $\mathrm{keV} \mathrm{cm}^{-1}$	N_{P} $\mathrm{~cm}^{-1}$	N_{T} $\mathrm{~cm}^{-1}$
He	0.179	19.8	24.6	41.3	0.32	3.5	8
Ne	0.839	16.7	21.6	37	1.45	13	40
Ar	1.66	11.6	15.7	26	2.53	25	97
Xe	5.495	8.4	12.1	22	6.87	41	312
CH_{4}	0.667	8.8	12.6	30	1.61	28	54
$\mathrm{C}_{2} \mathrm{H}_{6}$	1.26	8.2	11.5	26	2.91	48	112
$\mathrm{iC}_{4} \mathrm{H}_{10}$	2.49	6.5	10.6	26	5.67	90	220
CO_{2}	1.84	7.0	13.8	34	3.35	35	100
CF_{4}	3.78	10.0	16.0	54	6.38	63	120

When an ionizing particle passes through the gas it creates electron-ion pairs, but often the ejected electrons have sufficient energy to further ionize the medium. As shown in Table 35.5, the total number of electron-ion pairs $\left(N_{T}\right)$ is usually a few times larger than the number of primaries $\left(N_{P}\right)$.

The probability for a released electron to have an energy E or larger follows an approximate $1 / E^{2}$ dependence (Rutherford law), taking into account the electronic structure of the medium

The probability for a released electron to have an energy E or larger follows an approximate $1 / E^{2}$ dependence (Rutherford law), shown in Fig. 35.3 for $\mathrm{Ar} / \mathrm{CH}_{4}$ at NTP (dotted line, left scale). More detailed estimates taking into account the electronic structure of the medium are shown in the figure, for three values of the particle velocity factor $\beta \gamma[88]$. The dot-dashed line provides, on the right scale, the practical range of electrons (including scattering) of energy E. As an example, about 0.6% of released electrons have 1 keV or more energy, substantially increasing the ionization loss rate. The practical range of 1 keV electrons in argon (dotdashed line, right scale) is $70 \mu \mathrm{~m}$ and this can contribute to the error in the coordinate determination.

The number of electron-ion pairs per primary ionization, or cluster size, has an exponentially decreasing probability; for argon, there is about 1% probability for primary clusters to contain ten or more electron-ion pairs [89].

Once released in the gas, and under the influence of an applied electric field, electrons and ions drift in opposite directions and diffuse towards the electrodes. The drift velocity and diffusion of electrons depend very strongly on the nature of the gas. Large drift velocities are achieved by adding polyatomic gases (usually $\mathrm{CH}_{4}, \mathrm{CO}_{2}$, or CF_{4}) having large inelastic cross sections at moderate energies, which results in "cooling" electrons into the energy range of the Ramsauer-Townsend minimum (at $\sim 0.5 \mathrm{eV}$) of the

Figure 35.3: Probability of single collisions in which released electrons have an energy E or larger (left scale) and practical range of electrons in $\mathrm{Ar} / \mathrm{CH}_{4}$ (P10) at NTP (dot-dashed curve, right scale) [88].
elastic cross-section of argon. In a simple approximation, gas kinetic theory provides the drift velocity v as a function of the mean collision time τ and the electric field $E: v=e E \tau / m_{e}$ (Townsend's expression). In the presence of an external magnetic field, the Lorentz force acting on electrons between collisions deflects the drifting electrons and modifies the drift properties.

Once released in the gas, and under the influence of an applied electric field, electrons and ions drift in opposite directions and diffuse towards the electrodes. The scattering cross section is determined by the details of atomic and molecular structure. Therefore, the drift velocity and diffusion of electrons depend very strongly on the nature of the gas, specifically on the inelastic cross-section involving the rotational and vibrational levels of molecules. In noble gases, the inelastic cross section is zero below excitation and ionization thresholds. Large drift velocities are achieved by adding polyatomic gases (usually $\mathrm{CH}_{4}, \mathrm{CO}_{2}$, or CF_{4}) having large inelastic cross sections at moderate energies, which results in "cooling" electrons into the energy range of the Ramsauer-Townsend minimum (at $\sim 0.5 \mathrm{eV}$) of the elastic cross-section of argon. The reduction in both the total electron scattering cross-section and the electron energy results in a large increase of electron drift velocity (for a compilation of electronmolecule cross sections see Ref. [90]). Another principal role of the polyatomic gas is to absorb the ultraviolet photons emitted by the excited noble gas atoms. Extensive collections of experimental data [91] and theoretical calculations based on transport theory [92] permit estimates of drift and diffusion properties in pure gases and their mixtures. In a simple approximation, gas kinetic theory provides the drift velocity v as a function of the mean collision time τ and the electric field $E: v=e E \tau / m_{e}$ (Townsend's expression). Values of drift velocity and diffusion for some commonly used gases at NTP are given in Fig. 35.4 and Fig. 35.5.

These have been computed with the MAGBOLTZ program [87]. For different conditions, the horizontal axis must be scaled inversely with the gas density. Standard deviations for longitudinal $\left(\sigma_{L}\right)$ and transverse diffusion $\left(\sigma_{T}\right)$ are given for one cm of drift, and scale with the the square root of the drift distance. Since the collection time is inversely proportional to the drift velocity, diffusion is less in gases such as CF_{4} that have high drift velocities. In the presence of an external magnetic field, the Lorentz force acting on electrons between collisions deflects the drifting electrons and modifies the drift properties. The electron trajectories, velocities and diffusion parameters can be computed with MAGBOLTZ. A simple theory, the friction force model, provides an expression for the vector drift velocity v as a function of electric and magnetic field vectors \boldsymbol{E} and \boldsymbol{B}, of the Larmor frequency $\omega=e B / m_{e}$, and of the mean collision time τ :

$$
\begin{equation*}
\boldsymbol{v}=\frac{e}{m_{e}} \frac{\tau}{1+\omega^{2} \tau^{2}}\left(\boldsymbol{E}+\frac{\omega \tau}{B}(\boldsymbol{E} \times \boldsymbol{B})+\frac{\omega^{2} \tau^{2}}{B^{2}}(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{B}\right) \tag{35.14}
\end{equation*}
$$

To a good approximation, and for moderate fields, one can as-
sume that the energy of the electrons is not affected by B, and use for τ the values deduced from the drift velocity at $B=0$ (the Townsend expression). For \boldsymbol{E} perpendicular to \boldsymbol{B}, the drift angle to the relative to the electric field vector is $\tan \theta_{B}=\omega \tau$ and $v=(E / B)\left(\omega \tau / \sqrt{1+\omega^{2} \tau^{2}}\right)$. For parallel electric and magnetic fields, drift velocity and longitudinal diffusion are not affected, while the transverse diffusion can be strongly reduced: $\sigma_{T}(B)=\sigma_{T}(B=0) / \sqrt{1+\omega^{2} \tau^{2}}$. The dotted line in Fig. 35.5 represents σ_{T} for the classic $\mathrm{Ar} / \mathrm{CH}_{4}(90: 10)$ mixture at 4 T . Large values of $\omega \tau \sim 20$ at 5 T are consistent with the measurement of diffusion coefficient in $\mathrm{Ar} / \mathrm{CF}_{4} / \mathrm{iC}_{4} \mathrm{H}_{10}$ (95:3:2). This reduction is exploited in time projection chambers (Sec. 35.6.5) to improve spatial resolution.

Figure 35.4: Computed electron drift velocity as a function of electric field in several gases at NTP and $B=0$ [87].

In mixtures containing electronegative molecules, such as O_{2} or $\mathrm{H}_{2} \mathrm{O}$, electrons can be captured to form negative ions. Capture cross-sections are strongly energy-dependent, and therefore the capture probability is a function of applied field. For example, the electron is attached to the oxygen molecule at energies below 1 eV . The three-body electron attachment coefficients may differ greatly for the same additive in different mixtures. As an example, at moderate fields (up to $1 \mathrm{kV} / \mathrm{cm}$) the addition of 0.1% of oxygen to an $\mathrm{Ar} / \mathrm{CO}_{2}$ mixture results in an electron capture probability about twenty times larger than the same addition to $\mathrm{Ar} / \mathrm{CH}_{4}$.

Carbon tetrafluoride is not electronegative at low and moderate fields, making its use attractive as drift gas due to its very low diffusion. However, CF_{4} has a large electron capture cross section at fields above $\sim 8 \mathrm{kV} / \mathrm{cm}$, before reaching avalanche field strengths. Depending on detector geometry, some signal reduction and resolution loss can be expected using this gas.

If the electric field is increased sufficiently, electrons gain enough energy between collisions to ionize molecules. Above a gasdependent threshold, the mean free path for ionization, λ_{i}, decreases exponentially with the field; its inverse, $\alpha=1 / \lambda_{i}$, is the first Townsend coefficient. In wire chambers, most of the increase of avalanche particle density occurs very close to the anode wires, and a simple electrostatic consideration shows that the largest fraction of the detected signal is due to the motion of positive ions receding from the wires. The electron component, although very fast, contributes very little to the signal. This determines the characteristic shape of the detected signals in the proportional mode: a fast rise followed by a gradual increase.

The slow component, the so-called "ion tail" that limits the time resolution of the detector, is usually removed by differentiation of the signal. In uniform fields, N_{0} initial electrons multiply over a length x forming an electron avalanche of size $N=N_{0} e^{\alpha x}$; N / N_{0} is the gain of the detector. Fig. 35.6 shows examples of Townsend coefficients for several gas mixtures, computed with MAGBOLTZ [87].

Positive ions released by the primary ionization or produced in the avalanches drift and diffuse under the influence of the electric field. Negative ions may also be produced by electron attachment to gas molecules. The drift velocity of ions in the fields encoun-

Figure 35.5: Electron longitudinal diffusion $\left(\sigma_{L}\right)$ (dashed lines) and transverse diffusion $\left(\sigma_{T}\right)$ (full lines) for 1 cm of drift at NTP and $B=0$. The dotted line shows σ_{T} for the P 10 mixture at 4 T [87].

Figure 35.6: Computed first Townsend coefficient α as a function of electric field in several gases at NTP [87].
tered in gaseous detectors (up to few $\mathrm{kV} / \mathrm{cm}$) is typically about three orders of magnitude less than for electrons. The ion mobility μ, the ratio of drift velocity to electric field, is constant for a given ion type up to very high fields. Values of mobility at NTP for ions in their own and other gases are given in Table 35.6 [93]. For different temperatures and pressures, the mobility can be scaled inversely with the density assuming an ideal gas law. For mixtures, due to a very effective charge transfer mechanism, only ions with the lowest ionization potential survive after a short path in the gas. Both the lateral and transverse diffusion of ions are proportional to the square root of the drift time, with a coefficient that depends on temperature but not on the ion mass. Accumulation of ions in the gas drift volume may induce field distortions (see Sec. 35.6.5).

Table 35.6: Mobility of ions in gases at NTP [93].

Gas	Ion	Mobility μ $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$
He	He^{+}	10.4
Ne	Ne^{+}	4.7
Ar	Ar^{+}	1.54
$\mathrm{Ar} / \mathrm{CH}_{4}$	CH_{4}^{+}	1.87
$\mathrm{Ar} / \mathrm{CO}_{2}$	CO_{2}^{+}	1.72
CH_{4}	CH_{4}^{+}	2.26
CO_{2}	CO_{2}^{+}	1.09

35.6.2 Multi-Wire Proportional and Drift Chambers

Revised March 2010 by F. Sauli (CERN) and M. Titov (CEA

Saclay, DSM/IRFU/SPP).

Single-wire counters that detect the ionization produced in a gas by a charged particle, followed by charge multiplication and collection around a thin wire have been used for decades. Good energy resolution is obtained in the proportional amplification mode, while very large saturated pulses can be detected in the streamer and Geiger modes [94].

Multiwire proportional chambers (MWPCs) [95,96], introduced in the late '60's, detect, localize and measure energy deposit by charged particles over large areas. A mesh of parallel anode wires at a suitable potential, inserted between two cathodes, acts almost as a set of independent proportional counters (see Fig. 35.7a). Electrons released in the gas volume drift towards the anodes and produce avalanches in the increasing field. Analytic expressions for the electric field can be found in many textbooks. The fields close to the wires $E(r)$, in the drift region E_{D}, and the capacitance C per unit length of anode wire are approximately given by

$$
E(r)=\frac{C V_{0}}{2 \pi \epsilon_{0}} \frac{1}{r} \quad E_{D}=\frac{C V_{0}}{2 \epsilon_{0} s} \quad C=\frac{2 \pi \epsilon_{0}}{\pi(\ell / s)-\ln (2 \pi a / s)}
$$

(35.15)
where r is the distance from the center of the anode, s the wire spacing, ℓ and V_{0} the distance and potential difference between anode and cathode, and a the anode wire radius.

Because of electrostatic forces, anode wires are in equilibrium only for a perfect geometry. Small deviations result in forces displacing the wires alternatively below and above the symmetry plane, sometimes with catastrophic results. These displacement forces are countered by the mechanical tension of the wire, up to a maximum unsupported stable length, L_{M} [97], above which the wire deforms:

$$
\begin{equation*}
L_{M}=\frac{s}{C V_{0}} \sqrt{4 \pi \epsilon_{0} T_{M}} \tag{35.16}
\end{equation*}
$$

The maximum tension T_{M} depends on the wire diameter and modulus of elasticity. Table 35.7 gives approximate values for tungsten and the corresponding maximum stable wire length under reasonable assumptions for the operating voltage $\left(V_{0}=5 \mathrm{kV}\right)$ [98]. Internal supports and spacers can be used in the construction of longer detectors to overcome limits on the wire length imposed by Eq. (35.16).

Table 35.7: Maximum tension T_{M} and stable unsupported length L_{M} for tungsten wires with spacing s, operated at $V_{0}=5 \mathrm{kV}$. No safety factor is included.

Wire diameter $(\mu \mathrm{m})$	T_{M} (newton)	$s(\mathrm{~mm})$	$L_{M}(\mathrm{~cm})$
10	0.16	1	25
20	0.65	2	85

Detection of charge on the wires over a predefined threshold provides the transverse coordinate to the wire with an accuracy comparable to that of the wire spacing. The coordinate along each wire can be obtained by measuring the ratio of collected charge at the two ends of resistive wires. Making use of the charge profile induced on segmented cathodes, the so-called center-of gravity (COG) method, permits localization of tracks to sub-mm accuracy. Due to the statistics of energy loss and asymmetric ionization clusters, the position accuracy is $\sim 50 \mu \mathrm{~m} \mathrm{rms}$ for tracks perpendicular to the wire plane, but degrades to $\sim 250 \mu \mathrm{~m}$ at 30° to the normal [99]. The intrinsic bi-dimensional characteristic of the COG readout has found numerous applications in medical imaging.

Drift chambers, developed in the early '70's, can be used to estimate the longitudinal position of a track by exploiting the arrival time of electrons at the anodes if the time of interaction is known [100]. The distance between anode wires is usually several cm , allowing coverage of large areas at reduced cost. In the original design, a thicker wire (the field wire) at the proper voltage, placed between the anode wires, reduces the field at the mid-point between anodes and improves charge collection (Fig. 35.7b). In some drift chamber designs, and with the help of suitable voltages

Figure 35.7: Electric field lines and equipotentials in (a) a multiwire proportional chamber and (b) a drift chamber.
applied to field-shaping electrodes, the electric field structure is adjusted to improve the linearity of space-to-drift-time relation, resulting in better spatial resolution [101].

Drift chambers can reach a longitudinal spatial resolution from timing measurement of order $100 \mu \mathrm{~m}$ (rms) or better for minimum ionizing particles, depending on the geometry and operating conditions. However, a degradation of resolution is observed [102] due to primary ionization statistics for tracks close to the anode wires, caused by the spread in arrival time of the nearest ionization clusters. The effect can be reduced by operating the detector at higher pressures. Sampling the drift time on rows of anodes led to the concept of multiple arrays such as the multidrift module [103] and the JET chamber [104]. A measurement of drift time, together with the recording of charge sharing from the two ends of the anode wires provides the coordinates of segments of tracks. The total charge gives information on the differential energy loss and is exploited for particle identification. The time projection chamber (TPC) [105] combines a measurement of drift time and charge induction on cathodes, to obtain excellent tracking for high multiplicity topologies occurring at moderate rates (see Sec. 35.6.5). In all cases, a good knowledge of electron drift velocity and diffusion properties is required. This has to be combined with the knowledge of the electric fields in the structures, computed with commercial or custom-developed software $[106,107]$. For an overview of detectors exploiting the drift time for coordinate measurement see Refs. [108] and [97].

Multiwire and drift chambers have been operated with a variety of gas fillings and operating modes, depending on experimental requirements. The so-called "Magic Gas," a mixture of argon, isobutane and Freon [96], permits very high and saturated gains $\left(\sim 10^{6}\right)$. This gas mixture was used in early wire chambers, but was found to be susceptible to severe aging processes. With present-day electronics, proportional gains around 10^{4} are sufficient for detection of minimum ionizing particles, and noble gases with moderate amounts of polyatomic gases, such as methane or carbon dioxide, are used.

Although very powerful in terms of performance, multi-wire structures have reliability problems when used in harsh or hard-to-access environments, since a single broken wire can disable the entire detector. Introduced in the ' 80 's, straw and drift tube systems make use of large arrays of wire counters encased in individual enclosures, each acting as an independent wire counter [109]. Techniques for low-cost mass production of these detectors have been developed for large experiments, such as the Transition Radiation Tracker and the Drift Tubes arrays for CERN's LHC ex-
periments [110].

35.6.3 High Rate Effects

Revised March 2010 by F. Sauli (CERN) and M. Titov (CEA Saclay, DSM/IRFU/SPP).

The production of positive ions in the avalanches and their slow drift before neutralization result in a rate-dependent accumulation of positive charge in the detector. This may result in significant field distortion, gain reduction and degradation of spatial resolution. As shown in Fig. 35.8 [111], the proportional gain drops above a charge production rate around 10^{9} electrons per second and mm of wire, independently of the avalanche size. For a proportional gain of 10^{4} and 100 electrons per track, this corresponds to a particle flux of $10^{3} \mathrm{~s}^{-1} \mathrm{~mm}^{-1}\left(1 \mathrm{kHz} / \mathrm{mm}^{2}\right.$ for 1 mm wire spacing).

Figure 35.8: Charge rate dependence of normalized gas gain G / G_{0} (relative to zero counting rate) in proportional thin-wire detectors [111]. Q is the total charge in single avalanche; N is the particle rate per wire length.

At high radiation fluxes, a fast degradation of detectors due to the formation of polymers deposits (aging) is often observed. The process has been extensively investigated, often with conflicting results. Several causes have been identified, including organic pollutants and silicone oils. Addition of small amounts of water in many (but not all) cases has been shown to extend the lifetime of the detectors. Addition of fluorinated gases (e.g., CF_{4}) or oxygen may result in an etching action that can overcome polymer formation, or even eliminate already existing deposits. However, the issue of long-term survival of gas detectors with these gases is controversial [112]. Under optimum operating conditions, a total collected charge of a few coulombs per cm of wire can usually be reached before noticeable degradation occurs. This corresponds, for one mm spacing and at a gain of 10^{4}, to a total particle flux of $\sim 10^{14}$ MIPs $/ \mathrm{cm}^{2}$.

35.6.4 Micro-Pattern Gas Detectors

Revised March 2010 by F. Sauli (CERN) and M. Titov (CEA Saclay, DSM/IRFU/SPP).

Despite various improvements, position-sensitive detectors based on wire structures are limited by basic diffusion processes and space charge effects to localization accuracies of $50-100 \mu \mathrm{~m}$ [113]. Modern photolithographic technology led to the development of novel Micro-Pattern Gas Detector (MPGD) concepts [114], revolutionizing cell size limitations for many gas detector applications. By using pitch size of a few hundred $\mu \mathrm{m}$, an order of magnitude improvement in granularity over wire chambers, these detectors offer intrinsic high rate capability $\left(>10^{6} \mathrm{~Hz} / \mathrm{mm}^{2}\right)$, excellent spatial resolution ($\sim 30 \mu \mathrm{~m}$), multi-particle resolution ($\sim 500 \mu \mathrm{~m}$), and single photo-electron time resolution in the ns range.

The Micro-Strip Gas Chamber (MSGC), invented in 1988, was the first of the micro-structure gas chambers [115]. It consists of a set of tiny parallel metal strips laid on a thin resistive support, alternatively connected as anodes and cathodes. Owing to
the small anode-to-cathode distance ($\sim 100 \mu \mathrm{~m}$), the fast collection of positive ions reduces space charge build-up, and provides a greatly increased rate capability. Unfortunately, the fragile electrode structure of the MSGC turned out to be easily destroyed by discharges induced by heavily ionizing particles [116]. Nevertheless, detailed studies of their properties, and in particular, on the radiation-induced processes leading to discharge breakdown, led to the development of the more powerful devices: GEM and Micromegas. These have improved reliability and radiation hardness. The absence of space-charge effects in GEM detectors at the highest rates reached so far and the fine granularity of MPGDs improve the maximum rate capability by more than two orders of magnitude (Fig. 35.9) [117] [118]. Even larger rate capability has been reported for Micromegas [119].

Figure 35.9: Normalized gas gain as a function of particle rate for MWPC [117] and GEM [118].

The Gas Electron Multiplier (GEM) detector consists of a thinfoil copper-insulator-copper sandwich chemically perforated to obtain a high density of holes in which avalanches occur [120]. The hole diameter is typically between $25 \mu \mathrm{~m}$ and $150 \mu \mathrm{~m}$, while the corresponding distance between holes varies between $50 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$. The central insulator is usually (in the original design) the polymer Kapton, with a thickness of $50 \mu \mathrm{~m}$. Application of a potential difference between the two sides of the GEM generates the electric fields indicated in Fig. 35.10. Each hole acts as an independent proportional counter. Electrons released by the primary ionization particle in the upper conversion region (above the GEM foil) drift into the holes, where charge multiplication occurs in the high electric field $(50-70 \mathrm{kV} / \mathrm{cm})$. Most of avalanche electrons are transferred into the gap below the GEM. Several GEM foils can be cascaded, allowing the multi-layer GEM detectors to operate at overall gas gain above 10^{4} in the presence of highly ionizing particles, while strongly reducing the risk of discharges. This is a major advantage of the GEM technology [121]. Localization can then be performed by collecting the charge on a patterned one- or two-dimensional readout board of arbitrary pattern, placed below the last GEM.
The micro-mesh gaseous structure (Micromegas) is a thin parallel-plate avalanche counter, as shown in Fig. 35.11 [122]. It consists of a drift region and a narrow multiplication gap (25$150 \mu \mathrm{~m}$) between a thin metal grid (micromesh) and the readout electrode (strips or pads of conductor printed on an insulator board). Electrons from the primary ionization drift through the holes of the mesh into the narrow multiplication gap, where they are amplified. The electric field is homogeneous both in the drift (electric field $\sim 1 \mathrm{kV} / \mathrm{cm}$) and amplification ($50-70 \mathrm{kV} / \mathrm{cm}$) gaps. In the narrow multiplication region, gain variations due to small variations of the amplification gap are approximately compensated by an inverse variation of the amplification coefficient, resulting in a more uniform gain. The small amplification gap produces a narrow avalanche, giving rise to excellent spatial resolution: $12 \mu \mathrm{~m}$ accuracy, limited by the micro-mesh pitch, has been achieved for MIPs, as well as very good time resolution and energy resolution ($\sim 12 \%$ FWHM with 6 keV x rays) [123].

The performance and robustness of GEM and Micromegas have

Figure 35.10: Schematic view and typical dimensions of the hole structure in the GEM amplification cell. Electric field lines (solid) and equipotentials (dashed) are shown.

Figure 35.11: Schematic drawing of the Micromegas detector.
encouraged their use in high-energy and nuclear physics, UV and visible photon detection, astroparticle and neutrino physics, neutron detection and medical physics. Most structures were originally optimized for high-rate particle tracking in nuclear and highenergy physics experiments. COMPASS, a high-luminosity experiment at CERN, pioneered the use of large-area ($\sim 40 \times 40 \mathrm{~cm}^{2}$) GEM and Micromegas detectors close to the beam line with particle rates of $25 \mathrm{kHz} / \mathrm{mm}^{2}$. Both technologies achieved a tracking efficiency of close to 100% at gas gains of about 10^{4}, a spatial resolution of $70-100 \mu \mathrm{~m}$ and a time resolution of $\sim 10 \mathrm{~ns}$. GEM detectors are also used for triggering in the LHCb Muon System and for tracking in the TOTEM Telescopes. Both GEM and Micromegas devices are foreseen for the upgrade of the LHC experiments and for one of the readout options for the Time Projection Chamber (TPC) at the International Linear Collider (ILC). The development of new fabrication techniques-"bulk" Micromegas technology [124] and single-mask GEMs [125]-is a big step toward industrial production of large-size MPGDs. In some applications requiring very large-area coverage with moderate spatial resolution, coarse macro-patterned detectors, such as Thick GEMs (THGEM) [126] or patterned resistive-plate devices [127] might offer economically interesting solutions.

Sensitive and low-noise electronics enlarge the range of the MPGD applications. Recently, the GEM and Micromegas detectors were read out by high-granularity ($\sim 50 \mu \mathrm{~m}$ pitch) CMOS chips assembled directly below the GEM or Micromegas amplification structures [128]. These detectors use the bump-bonding pads of a pixel chip as an integrated charge collecting anode. With this arrangement signals are induced at the input gate of a charge-
sensitive preamplifier (top metal layer of the CMOS chip). Every pixel is then directly connected to the amplification and digitization circuits, integrated in the underlying active layers of the CMOS technology, yielding timing and charge measurements as well as precise spatial information in 3D.

The operation of a MPGD with a Timepix CMOS chip has demonstrated the possibility of reconstructing 3D-space points of individual primary electron clusters with $\sim 30 \mu \mathrm{~m}$ spatial resolution and event-time resolution with nanosecond precision. This has become indispensable for tracking and triggering and also for discriminating between ionizing tracks and photon conversions. The GEM, in conjunction with a CMOS ASIC, ${ }^{1}$ can directly view the absorption process of a few keV x-ray quanta and simultaneously reconstruct the direction of emission, which is sensitive to the x-ray polarization. Thanks to these developments, a micropattern device with finely segmented CMOS readout can serve as a high-precision "electronic bubble chamber." This may open new opportunities for x-ray polarimeters, detection of weakly interacting massive particles (WIMPs) and axions, Compton telescopes, and 3D imaging of nuclear recoils.

An elegant solution for the construction of the Micromegas with pixel readout is the integration of the amplification grid and CMOS chip by means of an advanced "wafer post-processing" technology [129]. This novel concept is called "Ingrid" (see Fig. 35.12). With this technique, the structure of a thin ($1 \mu \mathrm{~m}$) aluminum grid is fabricated on top of an array of insulating pillars. which stands $\sim 50 \mu \mathrm{~m}$ above the CMOS chip. The sub- $\mu \mathrm{m}$ precision of the grid dimensions and avalanche gap size results in a uniform gas gain. The grid hole size, pitch and pattern can be easily adapted to match the geometry of any pixel readout chip.

Figure 35.12: Photo of the Micromegas "Ingrid" detector. The grid holes can be accurately aligned with readout pixels of CMOS chip. The insulating pillars are centered between the grid holes, thus avoiding dead regions.

Recent developments in radiation hardness research with state-of-the-art MPGDs are reviewed in Ref. [130]. Earlier aging studies of GEM and Micromegas concepts revealed that they might be even less vulnerable to radiation-induced performance degradation than standard silicon microstrip detectors.

The RD51 collaboration was established in 2008 to further advance technological developments of micro-pattern detectors and associated electronic-readout systems for applications in basic and applied research [131].

35.6.5 Time-projection chambers

Revised August 2019 by C. Lippmann (GSI Darmstadt).
The Time Projection Chamber (TPC) concept was invented by David Nygren in the 1970's [132]. It consists of a cylindrical or square field cage that is filled with a gaseous (or liquid) detection medium. Charged particles produce tracks of ionization electrons that drift in a uniform electric field towards a position-sensitive amplification stage which provides a 2D projection of the particle

[^64]trajectories. The third coordinate can be calculated from the arrival times of the drifted electrons. The start for this drift time measurement is usually derived from an external detector, e.g. a fast interaction trigger detector.
This section focuses on the gas-filled TPCs that are often used in particle or nuclear physics experiments at accelerators on account of their low material budget. For neutrino physics (Sec. 35.10) or for detecting rare events (Sec. 36.4), on the contrary, usually high density and large active mass are required, and a liquid detection medium is favored.

The TPC enables full 3D measurements of charged particle tracks, which gives it a distinct advantage over other tracking detector designs which record information only in two-dimensional detector planes and have less overall segmentation. The track points recorded in a TPC are basically adjacent, which facilitates the track finding enormously. This advantage is often exploited for pattern recognition in events with large numbers of particles, e.g. heavy-ion collisions. Two examples of modern large-volume gaseous TPCs are shown in (Figure 35.13) and (Figure 35.14).

Figure 35.13: Schematic view of the ALICE TPC [133]. The drift volume with 5 m diameter is divided into two halves, each providing 2.5 m drift length.

Identification of the charged particles crossing the TPC is possible by simultaneously measuring their momentum and specific energy deposit through ionisation $(\mathrm{d} E / \mathrm{d} x)$. The momentum, as well as the charge sign, are calculated from a helix fit to the particle trajectory in the presence of a magnetic field (typically parallel to the drift field). For this application, precise spatial measurements in the plane transverse to the magnetic field are most important. The specific energy deposit is estimated from many charge measurements along the particle trajectory (e.g. one measurement per anode wire or per row of readout pads). As the charge collected per readout segment depends on the track angle and on the ambient conditions, the measured values are corrected for the effective length of the track segments and for variations of the gas temperature and pressure. The most probable value of the corrected signal amplitudes provides the best estimator for the specific energy deposit (see Sec. 34.2.3); it is usually approximated by the truncated mean, i.e. the average of the $50 \%-70 \%$ smallest values. The resulting particle identification performance is illustrated in (Figure 35.15), for the ALICE TPC.

The dependence of the achievable energy resolution on the number of measurements N, on the thickness of the sampling layers t, and on the gas pressure P can be estimated using an empirical formula [135]:

$$
\begin{equation*}
\sigma_{d E / d x}=0.41 N^{-0.43}(t P)^{-0.32} \tag{35.17}
\end{equation*}
$$

Typical values at nominal pressure are $\sigma_{d E / d x}=4.5$ to 7.5%, with $t=0.4$ to 1.5 cm and $N=40$ up to more than 300 . Due to the high gas pressure of 8.5 bar, the resolution achieved with the PEP-4/9 TPC was an unprecedented 3% [136].

The greatest challenges for a large TPC are due to the length of the drift of up to several meters. In particular, it can make

Figure 35.14: One of the 3 TPC modules for the near detector of the T2K experiment [134]. The size is $2 \times 2 \times 0.8 \mathrm{~m}^{3}$. Micromegas devices are used for gas amplification and readout.

Figure 35.15: Energy deposit versus momentum measured in the ALICE TPC.
the device sensitive to small distortions in the electric field. Such distortions can arise from a number of sources, e.g. imperfections in the field cage construction or the presence of ions in the drift volume. The electron drift in a TPC in the presence of a magnetic field is defined by Eq. (35.14). The $E \times B$ term of Eq. (35.14) vanishes for perfectly aligned electric and magnetic fields, which can however be difficult to achieve in practice. Furthermore, the electron drift depends on the $\omega \tau$ factor, which is defined by the gas mixture and the magnetic field strength. The electrons will tend to follow the magnetic field lines for $\omega \tau>1$ or the electric field lines for $\omega \tau<1$. The former mode of operation makes the TPC less sensitive to non-uniformities of the electric field, which is usually desirable.

The drift of the ionization electrons is superposed with a random diffusion motion which degrades their position information. The ultimate resolution of a single position measurement is limited to around

$$
\begin{equation*}
\sigma_{x}=\frac{\sigma_{D} \sqrt{L}}{\sqrt{n}} \tag{35.18}
\end{equation*}
$$

where σ_{D} is the transverse diffusion coefficient for 1 cm drift, L is the drift length in cm and n is the effective number of electrons collected. Without a magnetic field, $\sigma_{D, B=0} \sqrt{L}$ is typically a few mm after a drift of $L=100 \mathrm{~cm}$. However, in a strong magnetic field parallel to the drift field, a large value of $\omega \tau$ can significantly reduce diffusion:

$$
\begin{equation*}
\frac{\sigma_{D, B>0}}{\sigma_{D, B=0}}=\frac{1}{\sqrt{1+\omega^{2} \tau^{2}}} \tag{35.19}
\end{equation*}
$$

This factor can reach values of up to 10 . In practice, the final resolution limit due to diffusion will typically be around $\sigma_{x}=$ $100 \mu \mathrm{~m}$.
The drift and diffusion of electrons depend strongly on the gas mixture. The optimal gas mixture varies according to the environment in which the TPC will operate. In all cases, the oxygen concentration must be kept very low (few ten parts per million in a large TPC) in order to avoid electron loss through attachment.

Ideally, the drift velocity should depend only weakly on the electric field at the nominal operating condition. The classic Ar/ CH_{4} (90:10) mixture, known as P10, has a drift velocity maximum of $5 \mathrm{~cm} / \mu \mathrm{s}$ at an electric field of only $125 \mathrm{~V} / \mathrm{cm}$ (Figure 35.4). In this regime, the electron arrival time is not affected by small variations in the ambient conditions. Moreover, low electric fields simplify the design and operation of the field cage. The mixture has a large transverse diffusion at $B=0$, but this can be reduced significantly in a strong magnetic field due to the relatively large value of $\omega \tau$.

For some applications organic gases like CH_{4} are not desirable since they may cause aging. An alternative is to replace CH_{4} with CO_{2}. An $\mathrm{Ar} / \mathrm{CO}_{2}(90: 10)$ mixture features a low transverse diffusion at all magnetic field strengths, but does not provide a saturated drift velocity for the typical electric fields used in TPCs (up to a few $100 \mathrm{~V} / \mathrm{cm}$), so it is quite sensitive to the ambient conditions. Freon admixtures like CF_{4} can be an attractive option for a TPC as well, since the resulting gas mixtures provide high drift velocities at low electric fields. However, the use of CF_{4} always needs to be thoroughly validated for compatibility with all materials of the detector and the gas system.

Historically, the amplification stages used in gaseous TPCs have been planes of anode wires operated in proportional mode. The performance is limited by effects related to the feature size of a few mm (wire spacing). Since near the wires the electric and magnetic fields are not parallel, the incoming ionisation electrons are displaced in the direction of the wires ("wire $E \times B$ effect"), which degrades the resolution. The smaller feature sizes of MicroPattern Gas Detectors (MPGDs) like GEMs and Micromegas lead to many advantages as compared to wire planes (see Sec. 35.6.4). In particular, $E \times B$ effects in the amplification stage are much smaller. Moreover, the signal induction process in MPGDs leads to a very narrow pad response, allowing for a much finer segmentation and improving the separation of two nearby tracks. Combinations of MPGDs with silicon sensors have resulted in the highest granularity readout systems so far (see Sec. 35.6.4). These devices make it possible to count the number of ionization clusters along the length of a track, which can, in principle, improve the particle identification capability. However, the big challenge for such a system is the huge number of readout channels for a TPC of a typical size.

The accumulation of the positive ions created by the ionization from the particle tracks can lead to time-dependent distortions of the drift field. Due to their low drift velocity, ions from many events may coexist in the drift volume. To reduce the effect of such a build-up of space charge, Argon can be replaced by Neon as the main component of the gas mixture. Neon features a lower number of ionisation electrons per unit of track length (see 35.5) and a higher ion mobility (see 35.6).

Of much greater concern are the ions produced in the gas amplification stage. In order to prevent them from entering the drift volume, large TPCs built until now usually have a gating grid. The gating grid can be switched to transparent mode (usually in the presence of an interaction trigger) to allow the ionization electrons to pass into the amplification region. After all electrons have reached the amplification region, it is usually closed such that it is rendered opaque to electrons and ions.

A gating grid implies a principal rate limitation to a few kHz . Different groups are therefore working towards the goal of continuous readout for applications where a triggered operation would lead to inacceptable data loss (e.g. ALICE [137], sPHENIX [138]).

New readout schemes using MPGDs enable continuous readout, as they can be optimised in order to limit the ion back-flow at the same effective gain as MWPCs. Extensive work has been carried out during the 2010's to design such readout structures. In ALICE and sPHENIX ion back-flow values below 1% are achieved with a thorough adjustment of the various fields in a quadruple GEM system. Similar levels of ion back-flow can be reached with Micromegas detectors [139].

On the other hand, combinations of MPGDs and a gating structure may be used for triggered operation.

35.6.6 Transition radiation detectors (TRD's)

Revised August 2019 by P. Nevski (BNL) and A. Romaniouk (MEPhI Moscow).

Transition radiation (TR) x-rays are produced when a highly relativistic particle $\left(\gamma \gtrsim 10^{3}\right)$ crosses a refractive index interface, as discussed in Sec. 34.7. Since the TR yield is about 1% per boundary crossing, radiation from multiple surface crossings (e.g., a stack of foils) is used in practical detectors. The x-rays, ranging from a few keV to a few dozen keV or more, are emitted in a forward direction at small angles (within few mrad) to the particle trajectory. The TR intensity for a single boundary crossing always increases with γ, but, for multiple boundary crossings, interference leads to saturation above a Lorentz factor $\gamma_{\text {sat }}=$ $0.6 \omega_{1} \sqrt{\ell_{1} \ell_{2}} / c$ [140], where ω_{1} is the radiator material plasma frequency, ℓ_{1} is its thickness, and ℓ_{2} the spacing between material elements. The probability density function of TR is a fairly complex function of γ, radiator parameters, angle (θ) and photon energy (ω). For well defined radiator parameters a measured two-dimensional energy vs angule distribution is in a very good agreement with the theory predictions [141]. Integration over the angle yields the TR spectrum, which typically features many maxima (see Sec. 34.7). Most of the TR energy is emitted near the last maximum of the spectra determined by radiator material parameters at $\omega_{\max }=\ell_{1} \omega_{1}^{2} / 2 \pi c$. The effective TR photon emission starts at about $\gamma_{t h r}=\ell_{1} \omega_{1} / c$. By varying radiator parameters one may optimize the particle separation for a given range of the γ-factor. The angular distribution of TR photons has a few maxima and extends up to $\theta_{\max }=\left(1 / \gamma^{2}+\omega_{1}^{2} / \omega^{2}\right)^{1 / 2}$ [142]. For a single foil the largest part of the TR energy is emitted around the most probable angle $\theta=\left(1 / \gamma^{2}+\omega_{2}^{2} / \omega^{2}\right)^{1 / 2}$, where ω_{2} is the plasma frequency of the gas surrounding the radiator material elements. However, in case of multiple interfaces, interference effects may significantly change this angle. For instance, for a stack of foils of $15.5 \mu \mathrm{~m}$ thickness spaced by $210 \mu \mathrm{~m}$ TR produced by 20 GeV electrons is emitted mostly around $\theta \sim 0.9 \mathrm{mrad}$ [143].

In the simplest concept, a detector module might consist of a low- Z TR radiator followed by a high- Z active layer made of proportional counters filled with a Xe-rich gas mixture. The atomic number considerations follow from the dominant photoelectric absorption cross section per atom going roughly as Z^{n} / ω^{3}, where n varies between 4 and 5 over the region of interest. ${ }^{2}$ To minimize self-absorption, materials such as polypropylene, Mylar, carbon, and (rarely) lithium in the form of foils, fibers or foams are used as radiators. The TR signal in the active regions is in most cases superimposed upon the particle ionization losses, which are proportional to Z. In most of the detectors used in particle physics the radiator parameters are chosen to provide $\gamma_{\text {sat }} \approx 2000$. Those detectors normally work as threshold devices, ensuring the best electron/pion separation in the momentum range $1 \mathrm{GeV} / c \lesssim p \lesssim 150 \mathrm{GeV} / c$.

One can distinguish two design concepts-"thick" and "thin" detectors:

In "thick" detectors the radiator, optimized for a minimum total radiation length at maximum TR yield and total TR absorption in the detector, consists of few hundred foils (for instance 300 $20 \mu \mathrm{~m}$ thick polypropylene foils). Most of the TR photons are absorbed in the radiator itself. To maximise the number of TR photons reaching the detector, part of the radiator far from the active layers is often made of thicker foils, which shifts the x-ray

[^65]spectrum to higher energies. The detector thickness, about $2-4 \mathrm{~cm}$ for Xe-filled gas chambers, is optimized to absorb the incoming x ray spectrum. A classical detector is composed of several similar modules which respond nearly independently. Such detectors were used in the UA2, NA34 and other experiments [144], and are being used in the ALICE experiment [145] [146].
In another TRD concept a fine granular radiator/detector structure exploits the soft part of the TR spectrum more efficiently and thereby may act also as an integral part of the tracking detector providing many points of measurements on the particle track. This can be achieved, for instance, by distributing small-diameter straw-tube detectors uniformly or in thin layers throughout the radiator material. Even with a relatively thin radiator stack, radiation below 4 keV is mostly lost in the radiators themselves. However, for photon energies above this value, the absorption is reduced and the radiation can be registered by several consecutive detector layers, thus creating a strong TR build-up effect. This approach allows to realise a TRD as an integral part of a tracking detector. Descriptions of detectors using this approach in both accelerator and space experiments can be found in [145, 147-150]. For example, in the ATLAS TR tracker (TRT), charged particles on average cross about 35 straw tube layers embedded in the radiator material [147]. The effective thickness of the Xe gas per straw is about 2.5 mm and the average number of foils per straw is about 40 with an effective foil thickness of about $18 \mu \mathrm{~m}$. In this approach straw walls also act as radiators and make some contribution to the TR spectrum.

Although the values mentioned above are typical for most of the plastic radiators used with Xe-based detectors, they vary significantly depending on the detector requirements. Careful simulations are usually needed to build a detector optimized for a particular application. For TRD simulations the codes are based on well understood TR emission formulas (see for instance [142]). They are realised as the stand-alone simulation programs [151] and GEANT4 based ones [152] and give both a good agreement of the TR energy spectra with data $[141,143,153]$.

The discrimination between electrons and pions can be based on the charge deposition measured in each detection module, on the number of clusters - energy depositions observed above an optimal threshold (usually it is $5-7 \mathrm{keV}$), or on more sophisticated methods such as analyzing the pulse shape as a function of time. The total energy measurement technique is more suitable for thick gas volumes, which absorb most of the TR radiation and where the ionization loss fluctuations are relatively small. The clustercounting method works better for detectors with thin gas layers, where the fluctuations of the ionization losses are bigger. Clustercounting replaces the Landau-Vavilov distribution of background ionization energy losses with the Poisson statistics of δ-electrons, responsible for the distribution tails. The latter distribution is narrower than the Landau-Vavilov distribution. In practice, most of the experiments use a likelihood method, which exploits detailed knowledge of the detector response for different particles and gives the best separation. The more parameters are considered, the better achievable separation power. For example, for the TRD in the AMS experiment the rejection power achieved in the real experiment is better by almost one order of magnitude than that obtained in the beam test if stringent criteria for track selection are applied, see in [150]. Another example is the neural network method used by the ALICE TRD (ALICE point in 35.16) which gives another factor of $2-3$ in rejection power with respect to the likelihood method [145].

The major factor in the performance of any TRD is its overall length. This is illustrated in Fig. 35.16, which shows, for a variety of detectors, the pion efficiency at a fixed electron efficiency of 90% as a function of the overall detector length. As TRD performance depends on particle energy, the experimental data in this figure covering a range of particle energies from 1 GeV to 40 GeV , are rescaled to an energy of 10 GeV when possible. Phenomenologically, the rejection power against pions increases as $5 \cdot 10^{L / 38}$, where the range of validity is $L \approx 20-100 \mathrm{~cm}$. Apart from the beam energy variations, the observed scattering of the points in the plot reflects how effectively the detector space is used and how well the exact response to different particles is taken into account
in the analysis. For instance, the ATLAS TRT was built as a compromise between TR and tracking requirements; that is why the test-beam prototype result (lower point) is better than the real End-Cap TRT performance at the LHC shown in Fig. 35.16 for different regions in the detector (in agreement with MC).

Figure 35.16: Pion efficiency measured (or predicted) for different TRDs as a function of the detector length for a fixed electron efficiency of 90%. The plot is based on the table given in [144]. Results from more recent detectors are added from [145, 148-150, 154].

In most cases, recent TRDs combine particle identification with charged-track measurement in the same detector [145, 149, 155]. This is particularly important for collider experiments, where the available space for the inner detector is very limited. For a modest increase of the radiation length due to the radiator ($\sim 4 \% \mathrm{X} 0$), a significant enhancement of the electron identification was obtained in the case of the ATLAS TRT. Here, the combination of the two detector functions provides a powerful tool for electron identification even at very high particle densities.

In addition to the enhancement of the electron identification during offline data analysis, TRD signatures are often used in the trigger algorithms at collider experiments. The ALICE experiment [146] is a good example for the use of the TRD in a First Level Trigger. In the ATLAS experiment, the TRT information is used in the High Level Trigger (HLT) algorithms. At increasing luminosities, the electron trigger output rate becomes so high, that a significant increase of the calorimeter energy threshold is required to keep it at an acceptable level. This may affect the trigger efficiency of very important physics channels (e.g. $W \rightarrow e \nu$ inclusive decay). Even a very soft TR cut at the HLT level, which preserves high electron efficiency (98\%), allows to suppress a significant part of fake triggers and enhance the purity for physics events with electrons in a final state. The TRT also plays a crucial role in the studies where an electron suppression is required (e.g. hadronic mode of τ-decays). TR information is a completely independent tool for electron identification and allows to study systematic uncertainties of other electron reconstruction methods.

Electron identification is not the only TRD application. Some TRDs for particle astrophysics are designed to directly measure the Lorentz factor of high-energy nuclei by using the quadratic dependence of the TR yield on nuclear charge; see, for instance, in [156]. The radiator configuration $\left(\ell_{1}, \ell_{2}\right)$ is tuned to extend the TR yield rise up to $\gamma \approx 10^{5}$ using the more energetic part of the TR spectrum (up to 100 keV). High density radiator materials (such as Al) are the best for this purpose. Direct absorption of the TR-photons of these energies with thin detectors becomes problematic and TR detection methods based on Compton scattering have been proposed, see in [156].

The high granularity of the semiconductor pixel or microstrip detectors provides spatial separation of the TR photons and $d E / d x$ losses at relatively modest distances between radiator and detector. These detectors may be the basis for novel devices which
combine precise tracking and PID properties [141,143]. Use of the TR production angle in addition to its energy can help to improve PID properties of the TRD. The presence of a magnetic field could enhance the separation between TR photons and $d E / d x$ losses [157]. New detector techniques for TRDs are also under consideration. GasPixel detectors allow to reconstruct a track segment with a space point accuracy of $<30 \mu m$ and exploit all details of the particle tracks to highlight individual TR clusters in the gas, see in [158]. Thin films of heavy scintillators might be a very attractive option for non-gas based TRD [159].

35.6.7 Resistive-plate chambers

Revised October 2019 by G. Aielli (Rome U. Tor Vergata).
The resistive-plate chamber (RPC) is a gaseous detector developed by R. Santonico and R. Cardarelli in the early 1980's [160] ${ }^{3}$. Although its original purpose was to provide a competitive alternative to large scintillator counters, the RPC's potential for timing tracker systems was quickly recognized given its high detection efficiency ($>95 \%$), excellent temporal and spatial resolutions and ease of constructing large-format single frame detectors. The RPC, as sketched in Fig. 35.17, is a large planar capacitor with two parallel high bulk resistivity electrode plates $\left(10^{9}-10^{13} \Omega \cdot \mathrm{~cm}\right)$ separated by a set of insulating spacers. The spacers define a gap in the range from a few millimeters down to 0.1 mm with a precision of a few $\sim \mu \mathrm{m}$. The gap is filled with a suitable atmo-spheric-pressure gas mixture which serves as a target for ionizing radiation. The gas gap thickness practically determines the time resolution of the RPC, on the other side the limit for reaching full detection efficiency (depending also on the gas density) is typically 1 mm . Since the primary ionization for sub-millimeter gas gaps is insufficient, multiple gaps can be combined to ensure high detection efficiency [162]. The electrodes are most commonly made of high pressure phenolic-melaminic laminate (HPL), improperly referred to as "bakelite", or glass. A moderate electrode resistivity

Figure 35.17: Schematic cross section of a generic single gap RPC.
$\left(\sim 10^{5} \Omega / \square\right)$ establishes a uniform electric field of several $\mathrm{kV} / \mathrm{mm}$ across the gap, which initiates an electron avalanche following primary ionization. The above resistivity is low enough to ensure uniformity of the electric field, yet still transparent to fast signal transients from avalanches. Due to the high electrode resistivity in RPCs, the electrode time constant is much longer than discharge processes. Therefore only the locally-stored electrostatic energy contributes to the discharge, which prevents the formation of sparks and leaves the rest of the detector field unaffected. This field configuration and resistive feedback offers, besides the excellent time resolution, an excellent spacial localization of the discharge, without the need of micro-patterned electrodes. The gas-facing surface of HPL electrodes are commonly coated with a few μ m-thick layer of polymerized linseed oil. This layer has a similar resistivity as the electrode, and is smooth to aid the uniformity of the electric field. It also protects the electrode from the free radicals generated in the discharge e.g. in presence of hydrocarbons or fluorocarbons. As with other gaseous detectors, the gas mixture is optimized for each specific application. In general it needs to contain a UV photons absorber, to quench the spurious counts and an electronegative component to limit the avalanche growth in presence of very high electric fields [163] [164]. According to a first order approximation, each primary ionization in an RPC is exponentially amplified according to its distance from the anode, due to the uniform field. Therefore RPC signals span a large dynamic range (unlike gaseous detectors where

[^66]ionization and amplification occur in separate regions) following the exponential distribution, having the most probable signals toward the zero. For increasingly stronger fields, the avalanche exponential growth progressively saturates to linear and the signal amplitude distribution peak detaches from zero, making easier to distinguish the signal and the noise, [165], and finally reaches a strongly-saturated "streamer" transition which exhausts all the locally-available energy [166], generating an almost fixed amplitude signal. Any of this operating regimes can be used, in function of the front-end electronics sensitivity, and depending on the operating environment. A set of metallic readout electrodes (e.g. pads or strips) placed behind the resistive electrodes detect the charge pulse induced by the fast movement of the avalanche electrons. The signal is isotropically distributed with respect to the field direction and present with equal but opposite amplitude on the two electrodes. This feature allows for 2D localization of the signal with uniform spatial resolution. The induced charge density projected in 1D can be calculated for a simplified RPC model [167] as: $\sigma(x)=A / \cosh [(x-\bar{x}) / \delta]$ where \bar{x} is the center of the avalanche and $\delta=(g+2 d) / \pi$ depends on the gap and electrode width (g and d, respectively). The spatial extent of actual signals are generally larger than those given by this model [168] [169]. Conductivity of the graphite layer results in the most prominent broadening. Cross-talk from parasitic coupling of neighboring electrodes can also spread the signal spatially. Although the broadened charge distribution preserves most of the original spatial resolution, it can adversely impact signal clustering, so the detector layout must be calculated according to the expected application requirements. Sensitivity to high-frequency electron avalanche signals over large RPC areas requires a correspondingly adequate Faraday cage and readout structure design. To preserve the excellent timing features of the RPC signal, the front end electronics should have a short rise time (ideally \ll than the signal rise time) and low noise, although these requirements are usually in competition [170].

35.6.7.1 $R P C$ types and applications

RPCs are generally classified in two categories depending on the gas gap structure: single gap RPCs (described above) and multiple gap RPCs (typically referred as mRPCs or timing RPCs). While they are both based on the same principle they have different construction techniques, performance and limitations, making them suitable for different applications. Due to its simplicity and robustness, the single gap RPC is ideal for covering very large surfaces. Typical detector systems can have sensitive surface areas up to $\sim 10^{4} \mathrm{~m}^{2}$, with single module areas of a few m^{2}, and a space-time resolution down to $\sim 0.4 \mathrm{~ns} \times 100 \mu \mathrm{~m}$ [171] [172]. Sensible example are the ATLAS [173] and CMS [174] muon systems or ground and underground based cosmic rays and neutrino arrays [175]. Moreover, single gap RPCs have recently found an application in tracking calorimetry [176]. The mRPC allows for smaller gas gap thicknesses while still maintaining a sufficient gaseous target. The most common version [177] consists of a stack of floating glass electrodes separated by monofilament (i.e. fishing line), sandwiched between two external electrodes which provide the high-voltage bias. The floating glass electrodes assume a potential determined by the avalanche processes occurring between them. mRPCs have been largely used in TOF systems and in applications such as timing PET.

35.6.7.2 Time and space resolution

The RPC field configuration generates an avalanche which is strongly correlated in space and time to the original ionizing event. Space-time uncertainties generally arise from the statistical fluctuations of the ionization and multiplication processes, and from the characteristics of the readout and front-end electronics. The intrinsic signal latency is commonly in a few ns range, making the RPC suitable for applications where a low latency is essential. A higher time resolution and shorter signal duration is correlated with a thinner gas gap, although a higher electric field is required for sufficient avalanche development [177] [178]. Typical timing performances range from around 1 ns with a 2 mm gas gap, down to 20 ps for a stack of several 0.1 mm gaps [179]. The mechanical delicacy of sub-mm-gap structures makes this technique less suitable for very large detector areas. Digital strip
readouts are commonly used, with spatial resolution determined by the strip pitch and the cluster size $(\sim 0.5 \mathrm{~cm})$. A more precise measurement of the charge in each strip involved in the cluster, and demonstrated recently, through charge centroid techniques that the RPC avalanche space-time localization is better than $\sim 50 \mathrm{ps} \times 40 \mu \mathrm{~m}$ [180].

35.6.7.3 Rate capability and ageing

RPC rate capability is limited by the voltage drop on resistive electrodes, $\Delta V=V_{\mathrm{a}}-V_{\text {gas }}=I \cdot R$ [181]. Here V_{a} is the applied voltage, $V_{\text {gas }}$ is the effective voltage on the gas, $R=\rho \cdot d / S$ is the total electrode resistance and I is the working current. Expressing I as the particle flux Φ times an average charge per avalanche $\langle Q\rangle$ gives $\Delta V / \Phi=\rho \cdot d \cdot\langle Q\rangle$. A large I not only limits the rate capability but also affects the long term performance of the detector. Discharges deplete the conductive properties of HPL electrodes [182]. In the presence of fluorocarbons and water, discharges generate hydrofluoric acid (HF) which damages internal detector surfaces, particularly glass electrodes [183]. HF damage can be mitigated by preventing water vapor contamination (for glass electrodes) or by sufficient flushing of the gas gap (for HPL electrodes where water vapor in unavoidable). Operating in the streamer regime puts low requirements on the front end electronics sensitivity, but generally limits the counting rate capability to $\sim 100 \mathrm{~Hz} / \mathrm{cm}^{2}$ and requires stability over a large gain range. Higher-rate operation can be achieved by reducing gas gain in favor of electronic amplification, operating the detector in avalanche mode. Increasing concentrations of electronegative gases, such as $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{4}$ and SF_{6} [164], shifts the streamer transition to higher gains. The avalanche signal has a higher dynamic range, a drawback which can be compensated with appropriate electronics. With these techniques, stable performance at high rates (e.g. $10 \mathrm{kHz} / \mathrm{cm}^{2}$) has been achieved for large area single gap RPCs [170]. Complementary strategies rely on the natural redundancy and higher signal yield of multiple micro gap structures [184] and electrodes made with lower resistivity materials [185]. Lowering the electrode resistivity finds a limit in the increasing probability of discharge in presence of high uniform field, thus lowering the average charge per count, i.e. the applied electric field is also a gateway to further lower the electrode resistivity without spoiling the detector stability.

35.7 Semiconductor detectors

Revised November 2013 by H. Spieler (LBNL).
Semiconductor detectors provide a unique combination of energy and position resolution. In collider detectors they are most widely used as position sensing devices and photodetectors (Sec. 35.2).

Integrated circuit technology allows the formation of highdensity micron-scale electrodes on large ($15-20 \mathrm{~cm}$ diameter) wafers, providing excellent position resolution. Furthermore, the density of silicon and its small ionization energy yield adequate signals with active layers only $100-300 \mu \mathrm{~m}$ thick, so the signals are also fast (typically tens of ns). The high energy resolution is a key parameter in x-ray, gamma, and charged particle spectroscopy, e.g., in neutrinoless double beta decay searches. Silicon and germanium are the most commonly used materials, but gallium-arsenide, $\mathrm{CdTe}, \mathrm{CdZnTe}$, and other materials are also useful. CdZnTe provides a higher stopping power and the ratio of Cd to Zn concentrations changes the bandgap. Ge detectors are commonly operated at liquid nitrogen temperature to reduce the bias current, which depends exponentially on temperature. Semiconductor detectors depend crucially on low-noise electronics (see Sec. 35.8), so the detection sensitivity is determined by signal charge and capacitance. For a comprehensive discussion of semiconductor detectors and electronics see [186] or the tutorial website http://www-physics.lbl.gov/ spieler.

35.7.1 Materials Requirements

Semiconductor detectors are essentially solid state ionization chambers. Absorbed energy forms electron-hole pairs, i.e., negative and positive charge carriers, which under an applied electric field move towards their respective collection electrodes, where
they induce a signal current. The energy required to form an electron-hole pair is proportional to the bandgap. In tracking detectors the energy loss in the detector should be minimal, whereas for energy spectroscopy the stopping power should be maximized, so for gamma rays high- Z materials are desirable.

Measurements on silicon photodiodes [187] show that for photon energies below 4 eV one electron-hole $(e-h)$ pair is formed per incident photon. The mean energy E_{i} required to produce an $e-$ h pair peaks at 4.4 eV for a photon energy around 6 eV . Above $\sim 1.5 \mathrm{keV}$ it assumes a constant value, 3.67 eV at room temperature. It is larger than the bandgap energy because momentum conservation requires excitation of lattice vibrations (phonons). For minimum-ionizing particles, the most probable charge deposition in a $300 \mu \mathrm{~m}$ thick silicon detector is about $3.5 \mathrm{fC}(22000$ electrons). Other typical ionization energies are 2.96 eV in Ge , 4.2 eV in GaAs , and 4.43 eV in CdTe.

Since both electronic and lattice excitations are involved, the variance in the number of charge carriers $N=E / E_{i}$ produced by an absorbed energy E is reduced by the Fano factor F (about 0.1 in Si and Ge). Thus, $\sigma_{N}=\sqrt{F N}$ and the energy resolution $\sigma_{E} / E=\sqrt{F E_{i} / E}$. However, the measured signal fluctuations are usually dominated by electronic noise or energy loss fluctuations in the detector.

The electronic noise contributions depend on the pulse shaping in the signal processing electronics, so the choice of the shaping time is critical (see Sec. 35.8).

A smaller bandgap would produce a larger signal and improve energy resolution, but the intrinsic resistance of the material is critical. Thermal excitation, given by the Fermi-Dirac distribution, promotes electrons into the conduction band, so the thermally excited carrier concentration increases exponentially with decreasing bandgaps. In pure Si the carrier concentration is $\sim 10^{10} \mathrm{~cm}^{-3}$ at 300 K , corresponding to a resistivity $\rho \approx 400 \mathrm{k} \Omega \mathrm{cm}$. In reality, crystal imperfections and minute impurity concentrations limit Si carrier concentrations to $\sim 10^{11} \mathrm{~cm}^{-3}$ at 300 K , corresponding to a resistivity $\rho \approx 40 \mathrm{k} \Omega \mathrm{cm}$. In practice, resistivities up to $20 \mathrm{k} \Omega \mathrm{cm}$ are available, with mass production ranging from 5 to $10 \mathrm{k} \Omega \mathrm{cm}$. Signal currents at keV scale energies are of order $\mu \mathrm{A}$. However, for a resistivity of $10^{4} \Omega \mathrm{~cm}$ a $300 \mu \mathrm{~m}$ thick sensor with $1 \mathrm{~cm}^{2}$ area would have a resistance of 300Ω, so 30 V would lead to a current flow of 100 mA and a power dissipation of 3 W . On the other hand, high-quality single crystals of Si and Ge can be grown economically with suitably large volumes, so to mitigate the effect of resistivity one resorts to reverse-biased diode structures. Although this reduces the bias current relative to a resistive material, the thermally excited leakage current can still be excessive at room temperature, so Ge diodes are typically operated at liquid nitrogen temperature (77 K).

A major effort is to find high- Z materials with a bandgap that is sufficiently high to allow room-temperature operation while still providing good energy resolution. Compound semiconductors, e.g., CdZnTe, can allow this, but typically suffer from charge collection problems, characterized by the product $\mu \tau$ of mobility and carrier lifetime. In Si and Ge $\mu \tau>1 \mathrm{~cm}^{2} \mathrm{~V}^{-1}$ for both electrons and holes, whereas in compound semiconductors it is in the range $10^{-3}-10^{-8}$. Since for holes $\mu \tau$ is typically an order of magnitude smaller than for electrons, detector configurations where the electron contribution to the charge signal dominates-e.g., strip or pixel structures-can provide better performance.

35.7.2 Detector Configurations

A $p-n$ junction operated at reverse bias forms a sensitive region depleted of mobile charge and sets up an electric field that sweeps charge liberated by radiation to the electrodes. Detectors typically use an asymmetric structure, e.g., a highly doped p electrode and a lightly doped n region, so that the depletion region extends predominantly into the lightly doped volume.
In a planar device the thickness of the depleted region is

$$
\begin{equation*}
W=\sqrt{2 \epsilon\left(V+V_{b i}\right) / N e}=\sqrt{2 \rho \mu \epsilon\left(V+V_{b i}\right)} \tag{35.20}
\end{equation*}
$$

where $V=$ external bias voltage

$$
\begin{aligned}
& V_{b i}=\text { "built-in" voltage }(\approx 0.5 \mathrm{~V} \text { for resistivities } \\
& \text { typically used in Si detectors }) \\
& \begin{aligned}
N & =\text { doping concentration } \\
e & =\text { electronic charge } \\
\epsilon & =\text { dielectric constant }=11.9 \epsilon_{0} \approx 1 \mathrm{pF} / \mathrm{cm} \text { in } \mathrm{Si} \\
\rho & =\text { resistivity (typically } 1-10 \mathrm{k} \Omega \mathrm{~cm} \text { in } \mathrm{Si}) \\
\mu & =\text { charge carrier mobility } \\
& =1350 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1} \text { for electrons in } \mathrm{Si} \\
& =450 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1} \text { for holes in } \mathrm{Si}
\end{aligned}
\end{aligned}
$$

In Si
$W=0.5[\mu \mathrm{~m} \sqrt{\Omega-\mathrm{cm} \cdot V}] \times \sqrt{\rho\left(V+V_{b i}\right)}$ for n-type Si , and
$W=0.3[\mu \mathrm{~m} \sqrt{\Omega-\mathrm{cm} \cdot V}] \times \sqrt{\rho\left(V+V_{b i}\right)}$ for p-type Si.
The conductive p and n regions together with the depleted volume form a capacitor with the capacitance per unit area

$$
\begin{equation*}
C=\epsilon / W \approx 1[\mathrm{pF} / \mathrm{cm}] / W \text { in } \mathrm{Si} . \tag{35.21}
\end{equation*}
$$

In strip and pixel detectors the capacitance is dominated by the fringing capacitance to neighboring electrodes. For example, the strip-to-strip Si fringing capacitance is $\sim 1-1.5 \mathrm{pF} \mathrm{cm}^{-1}$ of strip length at a strip pitch of $25-50 \mu \mathrm{~m}$.
Large volume ($\sim 10^{2}-10^{3} \mathrm{~cm}^{3}$) Ge detectors are commonly configured as coaxial detectors, e.g., a cylindrical n-type crystal with $5-10 \mathrm{~cm}$ diameter and 10 cm length with an inner $5-10 \mathrm{~mm}$ diameter n^{+}electrode and an outer p^{+}layer forming the diode junction. Ge can be grown with very low impurity levels, $10^{9}-$ $10^{10} \mathrm{~cm}^{-3}$ (HPGe), so these large volumes can be depleted with several kV .

35.7.3 Signal Formation

The signal pulse shape depends on the instantaneous carrier velocity $v(x)=\mu E(x)$ and the electrode geometry, which determines the distribution of induced charge (e.g., see [186], pp. 7183). Charge collection time decreases with increasing bias voltage, and can be reduced further by operating the detector with "overbias," i.e., a bias voltage exceeding the value required to fully deplete the device. Note that in partial depletion the electric field goes to zero, whereas going beyond full depletion adds a constantly distributed field. The collection time is limited by velocity saturation at high fields (in Si approaching $10^{7} \mathrm{~cm} / \mathrm{s}$ at $\left.E>10^{4} \mathrm{~V} / \mathrm{cm}\right)$; at an average field of $10^{4} \mathrm{~V} / \mathrm{cm}$ the collection time is about $15 \mathrm{ps} / \mu \mathrm{m}$ for electrons and $30 \mathrm{ps} / \mu \mathrm{m}$ for holes. In typical fully-depleted detectors $300 \mu \mathrm{~m}$ thick, electrons are collected within about 10 ns , and holes within about 25 ns .

Position resolution is limited by transverse diffusion during charge collection (typically $5 \mu \mathrm{~m}$ for $300 \mu \mathrm{~m}$ thickness) and by knock-on electrons. Resolutions of $2-4 \mu \mathrm{~m}$ (rms) have been obtained in beam tests. In magnetic fields, the Lorentz drift deflects the electron and hole trajectories and the detector must be tilted to reduce spatial spreading (see "Hall effect" in semiconductor textbooks).

Electrodes can be in the form of cm-scale pads, strips, or $\mu \mathrm{m}$ scale pixels. Various readout structures have been developed for pixels, e.g., CCDs, DEPFETs, monolithic pixel devices that integrate sensor and electronics (MAPS), and hybrid pixel devices that utilize separate sensors and readout ICs connected by twodimensional arrays of solder bumps. For an overview and further discussion see Ref. [186].

In gamma ray spectroscopy ($\mathrm{E}_{\gamma}>10^{2} \mathrm{keV}$) Compton scattering dominates, so for a significant fraction of events the incident gamma energy is not completely absorbed, i.e., the Compton scattered photon escapes from the detector and the energy deposited by the Compton electron is only a fraction of the total. Distinguishing multi-interaction events, e.g., multiple Compton scatters with a final photoelectric absorption, from single Compton scatters allows background suppression. Since the individual interactions take place in different parts of the detector volume, these events can be distinguished by segmenting the outer electrode of a coaxial detector and analyzing the current pulse shapes. The
different collection times can be made more distinguishable by using "point" electrodes, where most of the signal is induced when charges are close to the electrode, similarly to strip or pixel detectors. Charge clusters arriving from different positions in the detector will arrive at different times and produce current pulses whose major components are separated in time. Point electrodes also reduce the electrode capacitance, which reduces electronic noise, but careful design is necessary to avoid low-field regions in the detector volume.

35.7.4 Radiation Damage

Radiation damage occurs through two basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice sites. This leads to increased leakage current, carrier trapping, and build-up of space charge that changes the required operating voltage. Displacement damage depends on the nonionizing energy loss and the energy imparted to the recoil atoms, which can initiate a chain of subsequent displacements, i.e., damage clusters. Hence, it is critical to consider both particle type and energy.
2. Surface damage due to charge build-up in surface layers, which leads to increased surface leakage currents. In strip detectors the inter-strip isolation is affected. The effects of charge build-up are strongly dependent on the device structure and on fabrication details. Since the damage is proportional to the absorbed energy (when ionization dominates), the dose can be specified in rad (or Gray) independent of particle type.

The increase in reverse bias current due to bulk damage is $\Delta I_{r}=\alpha \Phi$ per unit volume, where Φ is the particle fluence and α the damage coefficient $\left(\alpha \approx 3 \times 10^{-17} \mathrm{~A} / \mathrm{cm}\right.$ for minimum ionizing protons and pions after long-term annealing; $\alpha \approx 2 \times 10^{-17} \mathrm{~A} / \mathrm{cm}$ for 1 MeV neutrons). The reverse bias current depends strongly on temperature

$$
\begin{equation*}
\frac{I_{R}\left(T_{2}\right)}{I_{R}\left(T_{1}\right)}=\left(\frac{T_{2}}{T_{1}}\right)^{2} \exp \left[-\frac{E}{2 k}\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right)\right] \tag{35.22}
\end{equation*}
$$

where $E=1.2 \mathrm{eV}$, so rather modest cooling can reduce the current substantially (~ 6-fold current reduction in cooling from room temperature to $0^{\circ} \mathrm{C}$).

Displacement damage forms acceptor-like states. These trap electrons, building up a negative space charge, which in turn requires an increase in the applied voltage to sweep signal charge through the detector thickness. This has the same effect as a change in resistivity, i.e., the required voltage drops initially with fluence, until the positive and negative space charge balance and very little voltage is required to collect all signal charge. At larger fluences the negative space charge dominates, and the required operating voltage increases $(V \propto N)$. The safe limit on operating voltage ultimately limits the detector lifetime. Strip detectors specifically designed for high voltages have been extensively operated at bias voltages $>500 \mathrm{~V}$. Since the effect of radiation damage depends on the electronic activity of defects, various techniques have been applied to neutralize the damage sites. For example, additional doping with oxygen can increase the allowable charged hadron fluence roughly three-fold [188]. Detectors with columnar electrodes normal to the surface can also extend operational lifetime [189]. The increase in leakage current with fluence, on the other hand, appears to be unaffected by resistivity and whether the material is n or p-type. At fluences beyond $10^{15} \mathrm{~cm}^{-2}$ decreased carrier lifetime becomes critical [190] [191].

Strip and pixel detectors have remained functional at fluences beyond $10^{15} \mathrm{~cm}^{-2}$ for minimum ionizing protons. At this damage level, charge loss due to recombination and trapping becomes significant and the high signal-to-noise ratio obtainable with low-capacitance pixel structures extends detector lifetime. The higher mobility of electrons makes them less sensitive to carrier lifetime than holes, so detector configurations that emphasize the electron contribution to the charge signal are advantageous, e.g., n^{+}strips or pixels on a p- or n-substrate. The occupancy of the defect charge states is strongly temperature dependent; competing processes can increase or decrease the re-
quired operating voltage. It is critical to choose the operating temperature judiciously $\left(-10\right.$ to $0^{\circ} \mathrm{C}$ in typical collider detectors) and limit warm-up periods during maintenance. For a more detailed summary see [192] and and the web-sites of the ROSE and RD50 collaborations at http://RD48.web.cern.ch/rd48 and http://RD50.web.cern.ch/rd50. Materials engineering, e.g., introducing oxygen interstitials, can improve certain aspects and is under investigation. At high fluences diamond is an alternative, but operates as an insulator rather than a reverse-biased diode.

Currently, the lifetime of detector systems is still limited by the detectors; in the electronics use of standard "deep submicron" CMOS fabrication processes with appropriately designed circuitry has increased the radiation resistance to fluences $>10^{15}$ cm^{-2} of minimum ionizing protons or pions. For a comprehensive discussion of radiation effects see [193].

35.8 Low-noise electronics

Revised November 2013 by H. Spieler (LBNL).
Many detectors rely critically on low-noise electronics, either to improve energy resolution or to allow a low detection threshold. A typical detector front-end is shown in Fig. 35.18.

Figure 35.18: Typical detector front-end circuit.
The detector is represented by a capacitance C_{d}, a relevant model for most detectors. Bias voltage is applied through resistor R_{b} and the signal is coupled to the preamplifier through a blocking capacitor C_{c}. The series resistance R_{s} represents the sum of all resistances present in the input signal path, e.g. the electrode resistance, any input protection networks, and parasitic resistances in the input transistor. The preamplifier provides gain and feeds a pulse shaper, which tailors the overall frequency response to optimize signal-to-noise ratio while limiting the duration of the signal pulse to accommodate the signal pulse rate. Even if not explicitly stated, all amplifiers provide some form of pulse shaping due to their limited frequency response.

The equivalent circuit for the noise analysis (Fig. 35.19) includes both current and voltage noise sources. The leakage current of a semiconductor detector, for example, fluctuates due to continuous electron emission statistics. The statistical fluctuations in the charge measurement will scale with the square root of the total number of recorded charges, so this noise contribution increases with the width of the shaped output pulse. This "shot noise" $i_{n d}$ is represented by a current noise generator in parallel with the detector. Resistors exhibit noise due to thermal velocity fluctuations of the charge carriers. This yields a constant noise power density vs. frequency, so increasing the bandwidth of the shaped output pulse, i.e. reducing the shaping time, will increase the noise. This noise source can be modeled either as a voltage or current generator. Generally, resistors shunting the input act as noise current sources and resistors in series with the input act as noise voltage sources (which is why some in the detector community refer to current and voltage noise as "parallel" and "series" noise). Since the bias resistor effectively shunts the input, as the capacitor C_{b} passes current fluctuations to ground, it acts as a current generator $i_{n b}$ and its noise current has the same effect as the shot noise current from the detector. Any other shunt resistances can be incorporated in the same way. Conversely, the series resistor R_{s} acts as a voltage generator. The electronic noise of the amplifier is described fully by a combination of voltage and current sources at its input, shown as $e_{n a}$ and $i_{n a}$.

Figure 35.19: Equivalent circuit for noise analysis.

Shot noise and thermal noise have a "white" frequency distribution, i.e. the spectral power densities $d P_{n} / d f \propto d i_{n}^{2} / d f \propto d e_{n}^{2} / d f$ are constant with the magnitudes

$$
\begin{align*}
i_{n d}^{2} & =2 e I_{d} \\
i_{n b}^{2} & =\frac{4 k T}{R_{b}} \\
e_{n s}^{2} & =4 k T R_{s} \tag{35.23}
\end{align*}
$$

where e is the electronic charge, I_{d} the detector bias current, k the Boltzmann constant and T the temperature. Typical amplifier noise parameters $e_{n a}$ and $i_{n a}$ are of order $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ and $\mathrm{pA} / \sqrt{\mathrm{Hz}}$. Trapping and detrapping processes in resistors, dielectrics and semiconductors can introduce additional fluctuations whose noise power frequently exhibits a $1 / f$ spectrum. The spectral density of the $1 / f$ noise voltage is

$$
\begin{equation*}
e_{n f}^{2}=\frac{A_{f}}{f} \tag{35.24}
\end{equation*}
$$

where the noise coefficient A_{f} is device specific and of order $10^{-10}-10^{-12} \mathrm{~V}^{2}$.

A fraction of the noise current flows through the detector capacitance, resulting in a frequency-dependent noise voltage $i_{n} /\left(\omega C_{d}\right)$, which is added to the noise voltage in the input circuit. Thus, the current noise contribution increases with lowering frequency, so its contribution increases with shaping pulse width. Since the individual noise contributions are random and uncorrelated, they add in quadrature. The total noise at the output of the pulse shaper is obtained by integrating over the full bandwidth of the system. Superimposed on repetitive detector signal pulses of constant magnitude, purely random noise produces a Gaussian signal distribution.

Since radiation detectors typically convert the deposited energy into charge, the system's noise level is conveniently expressed as an equivalent noise charge Q_{n}, which is equal to the detector signal that yields a signal-to-noise ratio of one. The equivalent noise charge is commonly expressed in Coulombs, the corresponding number of electrons, or the equivalent deposited energy (eV). For a capacitive sensor

$$
\begin{equation*}
Q_{n}^{2}=i_{n}^{2} F_{i} T_{S}+e_{n}^{2} F_{v} \frac{C^{2}}{T_{S}}+F_{v f} A_{f} C^{2} \tag{35.25}
\end{equation*}
$$

where C is the sum of all capacitances shunting the input, F_{i}, F_{v}, and $F_{v f}$ depend on the shape of the pulse determined by the shaper and T_{s} is a characteristic time, for example, the peaking time of a semi-gaussian pulse or the sampling interval in a correlated double sampler. The form factors F_{i}, F_{v} are easily calculated

$$
\begin{equation*}
F_{i}=\frac{1}{2 T_{S}} \int_{-\infty}^{\infty}[W(t)]^{2} d t, \quad F_{v}=\frac{T_{S}}{2} \int_{-\infty}^{\infty}\left[\frac{d W(t)}{d t}\right]^{2} d t \tag{35.26}
\end{equation*}
$$

where for time-invariant pulse-shaping $W(t)$ is simply the system's impulse response (the output signal seen on an oscilloscope) for a short input pulse with the peak output signal normalized to unity. For more details see Refs. [194, 195] and [196, 197].

A pulse shaper formed by a single differentiator and integrator with equal time constants has $F_{i}=F_{v}=0.9$ and $F_{v f}=4$, in-
dependent of the shaping time constant. The overall noise bandwidth, however, depends on the time constant, i.e. the characteristic time T_{s}. The contribution from noise currents increases with shaping time, i.e., pulse duration, whereas the voltage noise decreases with increasing shaping time, i.e. reduced bandwidth. Noise with a $1 / f$ spectrum depends only on the ratio of upper to lower cutoff frequencies (integrator to differentiator time constants), so for a given shaper topology the $1 / f$ contribution to Q_{n} is independent of T_{s}. Furthermore, the contribution of noise voltage sources to Q_{n} increases with detector capacitance. Pulse shapers can be designed to reduce the effect of current noise, e.g., mitigate radiation damage. Increasing pulse symmetry tends to decrease F_{i} and increase F_{v} (e.g., to 0.45 and 1.0 for a shaper with one $C R$ differentiator and four cascaded integrators). For the circuit shown in Fig. 35.19,

$$
\begin{align*}
Q_{n}^{2} & =\left(2 e I_{d}+4 k T / R_{b}+i_{n a}^{2}\right) F_{i} T_{S} \\
& +\left(4 k T R_{s}+e_{n a}^{2}\right) F_{v} C_{d}^{2} / T_{S}+F_{v f} A_{f} C_{d}^{2} \tag{35.27}
\end{align*}
$$

As the characteristic time T_{S} is changed, the total noise goes through a minimum, where the current and voltage contributions are equal. Fig. 35.20 shows a typical example. At short shaping times the voltage noise dominates, whereas at long shaping times the current noise takes over. The noise minimum is flattened by the presence of $1 / f$ noise. Increasing the detector capacitance will increase the voltage noise and shift the noise minimum to longer shaping times.

Figure 35.20: Equivalent noise charge vs shaping time. Changing the voltage or current noise contribution shifts the noise minimum. Increased voltage noise is shown as an example.

For quick estimates, one can use the following equation, which assumes an FET amplifier (negligible $i_{n a}$) and a simple $C R-R C$ shaper with time constants τ (equal to the peaking time):

$$
\begin{align*}
&\left(Q_{n} / e\right)^{2}=12\left[\frac{1}{\mathrm{nA} \cdot \mathrm{~ns}}\right] I_{d} \tau+6 \times 10^{5}\left[\frac{\mathrm{k} \Omega}{\mathrm{~ns}}\right] \frac{\tau}{R_{b}} \\
& \quad+3.6 \times 10^{4}\left[\frac{\mathrm{~ns}}{(\mathrm{pF})^{2}(\mathrm{nV})^{2} / \mathrm{Hz}}\right] e_{n}^{2} \frac{C^{2}}{\tau} \tag{35.28}
\end{align*}
$$

Noise is improved by reducing the detector capacitance and leakage current, judiciously selecting all resistances in the input circuit, and choosing the optimum shaping time constant. Another noise contribution to consider is that noise cross-couples from the neighboring front-ends in strip and pixel detectors through the inter-electrode capacitance.

The noise parameters of the amplifier depend primarily on the input device. In field effect transistors, the noise current contribution is very small, so reducing the detector leakage current and increasing the bias resistance will allow long shaping times with correspondingly lower noise. In bipolar transistors, the base current sets a lower bound on the noise current, so these devices are
best at short shaping times. In special cases where the noise of a transistor scales with geometry, i.e., decreasing noise voltage with increasing input capacitance, the lowest noise is obtained when the input capacitance of the transistor is equal to the detector capacitance, albeit at the expense of power dissipation. Capacitive matching is useful with field-effect transistors, but not bipolar transistors. In bipolar transistors, the minimum obtainable noise is independent of shaping time, but only at the optimum collector current I_{C}, which does depend on shaping time.

$$
\begin{equation*}
Q_{n, \min }^{2}=4 k T \frac{C}{\sqrt{\beta_{D C}}} \sqrt{F_{i} F_{v}} \text { at } I_{c}=\frac{k T}{e} C \sqrt{\beta_{D C}} \sqrt{\frac{F_{v}}{F_{i}}} \frac{1}{T_{S}} \tag{35.29}
\end{equation*}
$$

where $\beta_{D C}$ is the DC current gain. For a $C R-R C$ shaper and $\beta_{D C}=100$,

$$
\begin{equation*}
Q_{n, \min } / e \approx 250 \sqrt{C / \mathrm{pF}} \tag{35.30}
\end{equation*}
$$

Practical noise levels range from $\sim 1 e$ for CCD's at long shaping times to $\sim 10^{4} e$ in high-capacitance liquid argon calorimeters. Silicon strip detectors typically operate at $\sim 10^{3}$ electrons, whereas pixel detectors with fast readout provide noise of several hundred electrons.

In timing measurements, the slope-to-noise ratio must be optimized, rather than the signal-to-noise ratio alone, so the rise time t_{r} of the pulse is important. The "jitter" σ_{t} of the timing distribution is

$$
\begin{equation*}
\sigma_{t}=\frac{\sigma_{n}}{(d S / d t)_{S_{T}}} \approx \frac{t_{r}}{S / N} \tag{35.31}
\end{equation*}
$$

where σ_{n} is the rms noise and the derivative of the signal $d S / d t$ is evaluated at the trigger level S_{T}. To increase $d S / d t$ without incurring excessive noise, the amplifier bandwidth should match the rise-time of the detector signal. The 10 to 90% rise time of an amplifier with bandwidth f_{U} is $0.35 / f_{U}$. For example, an oscilloscope with 350 MHz bandwidth has a 1 ns rise time. When amplifiers are cascaded, which is invariably necessary, the individual rise times add in quadrature.

$$
\begin{equation*}
t_{r} \approx \sqrt{t_{r 1}^{2}+t_{r 2}^{2}+\ldots+t_{r n}^{2}} \tag{35.32}
\end{equation*}
$$

Increasing signal-to-noise ratio also improves time resolution, so minimizing the total capacitance at the input is also important. At high signal-to-noise ratios, the time jitter can be much smaller than the rise time. The timing distribution may shift with signal level ("walk"), but this can be corrected by various means, either in hardware or software [198].

The basic principles discussed above apply to both analog and digital signal processing. In digital signal processing the pulse shaper shown in Fig. 35.18 is replaced by an analog to digital converter (ADC) followed by a digital processor that determines the pulse shape. Digital signal processing allows great flexibility in implementing filtering functions. The software can be changed readily to adapt to a wide variety of operating conditions and it is possible to implement filters that are impractical or even impossible using analog circuitry. However, this comes at the expense of increased circuit complexity and increased demands on the ADC compared to analog shaping.

If the sampling rate of the ADC is too low, high frequency components will be transferred to lower frequencies ("aliasing"). The sampling rate of the ADC must be high enough to capture the maximum frequency component of the input signal. Apart from missing information on the fast components of the pulse, undersampling introduces spurious artifacts. If the frequency range of the input signal is much greater, the noise at the higher frequencies will be transferred to lower frequencies and increase the noise level in the frequency range of pulses formed in the subsequent digital shaper. The Nyquist criterion states that the sampling frequency must be at least twice the maximum relevant input frequency. This requires that the bandwith of the circuitry preceding the ADC must be limited. The most reliable technique is to insert a low-pass filter.

The digitization process also introduces inherent noise, since the voltage range ΔV corresponding to a minimum bit introduces
quasi-random fluctuations relative to the exact amplitude

$$
\begin{equation*}
\sigma_{n}=\frac{\Delta V}{\sqrt{12}} \tag{35.33}
\end{equation*}
$$

When the Nyquist condition is fulfilled the noise bandwidth Δf_{n} is spread nearly uniformly and extends to $1 / 2$ the sampling frequency f_{S}, so the spectral noise density

$$
\begin{equation*}
e_{n}=\frac{\sigma_{n}}{\sqrt{\Delta f_{n}}}=\frac{\Delta V}{\sqrt{12}} \cdot \frac{1}{\sqrt{f_{S} / 2}}=\frac{\Delta V}{\sqrt{6 f_{S}}} \tag{35.34}
\end{equation*}
$$

Sampling at a higher frequency spreads the total noise over a larger frequency range, so oversampling can be used to increase the effective resolution. In practice, this quantization noise is increased by differential nonlinearity. Furthermore, the equivalent input noise of ADCs is often rather high, so the overall gain of the stages preceding the ADC must be sufficiently large for the preamplifier input noise to override.
When implemented properly, digital signal processing provides significant advantages in systems where the shape of detector signal pulses changes greatly, for example in large semiconductor detectors for gamma rays or in gaseous detectors (e.g. TPCs) where the duration of the current pulse varies with drift time, which can range over orders of magnitude. Where is analog signal processing best (most efficient)? In systems that require fast time response the high power requirements of high-speed ADCs are prohibitive. Systems that are not sensitive to pulse shape can use fixed shaper constants and rather simple filters, which can be either continuous or sampled. In high density systems that require small circuit area and low power (e.g. strip and pixel detectors), analog filtering often yields the required response and tends to be most efficient.
It is important to consider that additional noise is often introduced by external electronics, e.g. power supplies and digital systems. External noise can couple to the input. Often the "common grounding" allows additional noise current to couple to the current loop connecting the detector to the preamp. Recognizing additional noise sources and minimizing cross-coupling to the detector current loop is often important. Understanding basic physics and its practical effects is important in forming a broad view of the detector system and recognizing potential problems (e.g. modified data), rather than merely following standard recipes.

For a more detailed introduction to detector signal processing and electronics see Ref. [199] or the tutorial website http://wwwphysics.lbl.gov/ spieler.

35.9 Calorimeters

35.9.1 Introduction

Revised August 2019 by D.E. Groom (LBNL).
A calorimeter is designed to measure a particle's (or jet's) energy and direction for an (ideally) contained electromagnetic (EM) or hadronic shower. The characteristic interaction distance for an electromagnetic interaction is the radiation length X_{0}, which ranges from $13.8 \mathrm{~g} \mathrm{~cm}^{-2}$ in iron to $6.0 \mathrm{~g} \mathrm{~cm}^{-2}$ in uranium. ${ }^{4}$ Similarly, the characteristic nuclear interaction length λ_{I} varies from $132.1 \mathrm{~g} \mathrm{~cm}^{-2}$ (Fe) to $209 \mathrm{~g} \mathrm{~cm}^{-2}$ (U)..5 In either case, a calorimeter must be many interaction lengths deep, where "many" is determined by physical size, cost, and other factors. EM calorimeters tend to be $15-30 X_{0}$ deep, while hadronic calorimeters are usually compromised at $5-8 \lambda_{I}$. In real experiments the shower begins in the EM calorimeter and then develops in a succession of different structures.
There is a premium on small λ_{I} / ρ and X_{0} / ρ (both with units of length). These quantities are shown for $Z>20$ for the chemical elements in Fig. 35.21. For the hadronic case, metallic absorbers in the $\mathrm{W}-\mathrm{Au}$ region are best, followed by U . Elements in the $\mathrm{Ru}-\mathrm{Pd}$ region are not used since they are too rare and expensive.

[^67]Given cost considerations, Fe, Cu, or Pb are generally appropriate. For EM calorimeters high Z is preferred; tungsten and lead are popular choices.

These considerations are for sampling calorimeters consisting of metallic absorber sandwiched or (threaded) with an active material which generates signal. The active medium may be a scintillator, an ionizing noble liquid, a gas, silicon, or a Cherenkov radiator. The average interaction length is thus greater than that of the absorber alone, sometimes substantially so.

There are also homogeneous calorimeters, in which the entire volume is sensitive, i.e., contributes signal. Homogeneous calorimeters may be built with inorganic heavy (high density, high $\langle Z\rangle)$ scintillating crystals or non-scintillating Cherenkov radiators such as lead glass and lead fluoride. Scintillation light and/or ionization in noble liquids can be detected. Nuclear interaction lengths in inorganic crystals range from $17.8 \mathrm{~cm}\left(\mathrm{LuAlO}_{3}\right)$ to $42.2 \mathrm{~cm}(\mathrm{NaI})$. Popular choices have been BGO with $\lambda_{I}=22.3 \mathrm{~cm}$ and $X_{0}=1.12 \mathrm{~cm}$, and $\mathrm{PbWO}_{4}(20.3 \mathrm{~cm}$ and 0.89 cm$)$. Properties of these and other commonly used inorganic crystal scintillators can be found in Table-35.4.

Homogeneous calorimeters at accelerators are usually electromagnetic, but in non-accelerator physics experiments the sensitive medium can be water or ice, scintillator, or the atmosphere itself.

Figure 35.21: Nuclear interaction length λ_{I} / ρ (circles) and radiation length X_{0} / ρ (+'s) in cm for the chemical elements with $Z>20$ and $\lambda_{I}<50 \mathrm{~cm}$.

Comprehensive tables of particle-physics calorimeters are given as Appendix C in Ref. [200].

35.9.2 Electromagnetic calorimeters

Revised August 2019 by C.L. Woody (BNL) and R.-Y. Zhu (HEP California Inst. of Technology).
The development of electromagnetic showers is discussed in the section on "Passage of Particles Through Matter" (Sec. 34 of this Review). Formulae are given which approximately describe average showers, but since the physics of electromagnetic showers is well understood, a detailed and reliable Monte Carlo simulation is possible. EGS4 [201] and GEANT [202] have emerged as the standards.

Electromagnetic calorimeters are devices that are designed to measure the total energy of electrons and photons by total absorption. They come in two general categories: homogeneous and sampling. In a homogeneous calorimeter, all of the particle's energy is deposited in the active detector volume and is used to produce a measurable signal (either scintillation light, Cherenkov light or charge). Homogeneous electromagnetic calorimeters are typically constructed using high density, high Z inorganic scintillating crystals such as BaF_{2}, BGO , $\mathrm{CsI}, \mathrm{CsI}(\mathrm{Tl}), \mathrm{LYSO}, \mathrm{NaI}(\mathrm{Tl})$ and PWO , non-scintillating Cherenkov radiators such as lead glass and lead fluoride (PbF_{2}), or ionizing noble liquids such as liquid argon, liquid krypton or liquid xenon. The properties of some commonly used inorganic crystal scintillators can be found in Table-35.4. Total absorption homogeneous calorimeters such as those built with heavy crystal scintillators provide the best energy resolution for
measuring electromagnetic showers and are generally used when the best possible performance is required, particularly at lower energies.

A sampling calorimeter consists of an active medium which generates a signal and a passive medium which functions as an absorber. In this case, most of the particle's energy is deposited in the absorber and only a fraction of the energy is detected in the active medium. The ratio of energy in the sampling medium to the total enegy in calorimeter is called the sampling fraction. The active medium may be a scintillator, an ionizing noble liquid, a semiconductor, or a gas ionization detector. The absorber is typically a heavy metal with a high Z such as lead, tungsten, iron, copper, or depleted uranium. The active material is interspersed with the passive absorber in a variety of ways, e.g. by using alternating plates of active material and absorber or embedding the active material, such as scintillating fibers, into the absorber. The main difficulty in this approach is extracting the signal from the active material. This can be done using a so-called "spaghetti" design, where scintillating fibers are brought to the front or back of the detector and read out. This can also be done with either wavelength shifting plates or fibers, such as in a so-called "shashlik" design where wavelength shifting fibers run through the stack of alternating scintillator and absorber plates and are read out at one end, or embedding wavelength shifting fibers in the scintillating plates which are then brought out to the edges or back of the detector and read out. For ionization detectors, there is also an "accordion" design where the absorber plates are folded into an accordian shape along with interspersed electrodes to collect the ionization charge [203]. While these readout schemes are generally more complicated than those for homogeneous calorimeters, the sampling calorimeter design allows the construction of large calorimeters at much lower cost than homogeneous calorimeters.

The energy resolution σ_{E} / E of a calorimeter can be parameterized as $a / \sqrt{E} \oplus b \oplus c / E$, where \oplus represents addition in quadrature and E is in GeV . The stochastic term a represents statisticsrelated fluctuations such as intrinsic shower fluctuations, photoelectron statistics, dead material at the front of the calorimeter, and sampling fluctuations for minimum ionizing particles. For a fixed number of radiation lengths, the stochastic term a for a sampling calorimeter is expected to be proportional to $\sqrt{t / f}$, where t is plate thickness and f is sampling fraction [204-206]. The stochastic term a is typically on the order of a few percent level for a homogeneous calorimeter, and is generally in the range of 10 to 20% for sampling calorimeters, depending on the sampling fraction.
The main contributions to the systematic, or constant, term b are detector non-uniformity and calibration uncertainties. In the case of hadronic cascades discussed below, non-compensation also contributes deviations from \sqrt{E} scaling. Another important contribution to the energy resolution of calorimeters that are used in high radiation environments such as high lumnosity colliders is radiation damage of the active medium. Radiation damage can induce optical absorption in scintillating materials which reduces the measured light output and produces non-uniformities in light collection. This can be mitigated by developing radiation-hard active media [68], by reducing the signal path length [207] and by frequent in situ calibration and monitoring [67,206]. With effort, the constant term b can be reduced to below one percent. The term c is due mainly to electronic noise summed over the readout channels required to measure the shower energy (typically a few Molière radii).

The position resolution depends on the effective Molière radius and the transverse granularity of the calorimeter. Like the energy resolution, it can be factored as $a / \sqrt{E} \oplus b$, where a is the stochastic term, typically on the order a few mm to 20 mm , and b can be as small as a fraction of mm for a dense calorimeter with fine granularity. Electromagnetic calorimeters may also provide directionality measurements for electrons and photons. This is particularly important for photon-related physics when there are uncertainties in the event origin, since photons are not detected by the tracking system of the overall experiment. The typical photon angular resolution is about $45 \mathrm{mrad} / \sqrt{E}$, which can be achieved by implementing longitudinal segmentation [203] for a

Table 35.8: Resolution of typical electromagnetic calorimeters. E is in GeV .

Technology (Experiment)	Depth	Energy resolution	Date
$\mathrm{NaI}^{(\mathrm{Tl})}$ (Crystal Ball)	$20 X_{0}$	$2.7 \% / \mathrm{E}^{1 / 4}$	1983
$\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$ (BGO) (L3)	$22 X_{0}$	$2 \% / \sqrt{E} \oplus 0.7 \%$	1993
$\mathrm{CsI}(\mathrm{KTeV})$	$27 X_{0}$	$2 \% / \sqrt{E} \oplus 0.45 \%$	1996
$\mathrm{CsI}(\mathrm{Tl})$ (BaBar)	$16-18 X_{0}$	$2.3 \% / E^{1 / 4} \oplus 1.4 \%$	1999
$\mathrm{CsI}(\mathrm{Tl})$ (BELLE)	$16 X_{0}$	1.7% for $E_{\gamma}>3.5 \mathrm{GeV}$	1998
$\mathrm{CsI}(\mathrm{Tl})$ (BES III)	$15 X_{0}$	2.5% for $E_{\gamma}=1 \mathrm{GeV}$	2010
PbWO_{4} (CMS)	$25 X_{0}$	$3 \% / \sqrt{E} \oplus 0.5 \% \oplus 0.2 / E$	1997
PbWO_{4} (ALICE)	$19 X_{0}$	$3.6 \% / \sqrt{E} \oplus 1.2 \%$	2008
Lead glass (OPAL)	$20.5 X_{0}$	$5 \% / \sqrt{E}$	1990
Liquid Kr (NA48)	$27 X_{0}$	$3.2 \% / \sqrt{E} \oplus 0.42 \% \oplus 0.09 / E$	1998
Scintillator/depleted U	$20-30 X_{0}$	$18 \% / \sqrt{E}$	1988
\quad (ZEUS)			1988
Scintillator/Pb (CDF)	$18 X_{0}$	$13.5 \% / \sqrt{E}$	1995
Scintillator fiber/Pb	$15 X_{0}$	$5.7 \% / \sqrt{E} \oplus 0.6 \%$	
\quad spaghetti (KLOE)			1988
Liquid Ar/Pb (NA31)	$27 X_{0}$	$7.5 \% / \sqrt{E} \oplus 0.5 \% \oplus 0.1 / E$	1993
Liquid Ar/Pb (SLD)	$21 X_{0}$	$8 \% / \sqrt{E}$	1998
Liquid Ar/Pb (H1)	$20-30 X_{0}$	$12 \% / \sqrt{E} \oplus 1 \%$	1993
Liquid Ar/depl. U (DØ)	$20.5 X_{0}$	$16 \% / \sqrt{E} \oplus 0.3 \% \oplus 0.3 / E$	1996
Liquid Ar/Pb accordion	$25 X_{0}$	$10 \% / \sqrt{E} \oplus 0.4 \% \oplus 0.3 / E$	
\quad (ATLAS)			

sampling calorimeter or by adding a preshower detector [208] for a homogeneous calorimeter without longitudinal segmentation.

There have been many electromagnetic calorimeters built and used in particle physics experiments for a variety of applications. Table-35.8 provides a short list of the major ones used in some of the larger experiments. Also listed are calorimeter depths in radiation lengths $\left(X_{0}\right)$ and the achieved energy resolution. Whenever possible, the performance of the calorimeters in situ are quoted, which is usually in good agreement with prototype test beam results as well as EGS or GEANT simulations, provided that all systematic effects are properly included. Details about detector design and performance can be found in Appendix C of reference [206] and Proceedings of the International Conference series on Calorimetry in High Energy Physics.

35.9.3 Hadronic calorimeters

Revised August 2019 by D.E. Groom (LBNL).
Hadronic calorimetry [200, 209] is considerably more difficult than electromagnetic (EM) calorimetry due to the large differences in the character of energy deposition processes, the length of shower development, and the lumpy character of the depositions. Nuclear disassociation results in undetectable energy loss. For the same cascade containment fraction discussed in the previous section, the calorimeter would need to be ~ 10 times deeper. Electromagnetic energy deposit from the decay of π^{0} 's produced in the cascade is usually detected with greater efficiency than are the hadronic parts of the cascade, themselves subject to large fluctuations in neutron production, undetectable energy loss to nuclear disassociation, and other effects [200].

Most large hadron calorimeters are parts of large 4π detectors at colliding beam facilities. These have been sampling calorimeters: plates of absorber ($\mathrm{Fe}, \mathrm{Pb}, \mathrm{U}$, or occasionally Cu or W) alternating with plastic scintillators (plates, tiles, bars, fibers), crystals, silicon, liquid argon (LAr), or gaseous detectors. The ionization is measured directly, or via scintillation or Cherenkov light observed by conventional photomultipliers (PMT's), photodiodes or silicon photomultipliers (SiPM's). Wavelength-shifting fibers are often used to solve difficult problems of geometry and light collection uniformity. There are as many variants of these schemes as there are calorimeters, including variations in geometry of the absorber and sensors, e.g., scintillating fibers threading an absorber [210], and the "accordion" LAr detector [211]. The latter has zig-zag absorber plates to minimize channeling effects; the calorimeter is hermetic (no cracks), and plates are oriented so that cascades cross the same plate repeatedly. Another departure
from the traditional sandwich structure is the LAr-tube design shown in Fig. 35.22(a) [212].

Ideally the calorimeter is segmented in ϕ and θ (or $\eta=$ $-\ln \tan (\theta / 2))$. An example, a wedge of the ATLAS central barrel calorimeter, is shown in Fig. 35.22(b) [213].

Calorimeters based on Cherenkov light detection are more usual in EM calorimeters, since comparatively little Cherenkov radiation is produced by the hadronic fraction of a shower. An important exception is the radiation-hard forward calorimeter in CMS, with iron absorber and quartz fibers read out by PMT's, and Cherenkov light detection is an essential half of dual-readout calorimetry.

Figure 35.22: (a) ATLAS forward hadronic calorimeter structure (FCal2, 3) [212]. Tubes containing LAr are embedded in a mainly tungsten matrix. (b) ATLAS central calorimeter wedge; iron with plastic scintillator tile with wavelength-shifting fiber readout [213].

The SICAPO collaboration has demonstrated the possibility of operating hadronic calorimeters using silicon sensors [214]. These satisfy the requirements required by the new generation of experiments, including compactness, high granularity, radiation hardness $[215,216]$, fast charge collection, and compensation via local hardening effects [217]. They are being studied for ILC detectors, and are part of the CMS HCAL upgrade.

High-granularity calorimeters play an increasingly important role. Greater segmentation has accordingly been an important part of LHC detector upgrades. For some time, the CALICE collaboration has built and tested an increasingly sophisticated
series of "tracking" calorimeters with a highly granular readout [218]. Most are EM (ECAL) and hadronic (HCAL) calorimeters with analog readout (scintillator plates), but digital (Sec. 35.6.7) and semidigital (Sec. 35.6.4) readouts are also explored. A recent example is a SiPM-on-tile readout HCAL with $>22,000$ channels [219].

Much of the following discussion assumes an idealized calorimeter, with the same structure throughout and without leakage.
In an inelastic hadronic collision a significant fraction $f_{\text {em }}$ of the energy is removed from further hadronic interaction by the production of secondary π^{0} / η^{\prime} s, whose decay photons generate highenergy electromagnetic showers. Charged secondaries ($\pi^{ \pm}, p, \ldots$) deposit energy via ionization and excitation, but also interact with nuclei, producing evaporation neutrons, spallation protons and neutrons, and heavier spallation fragments. The charged collision products produce detectable ionization, as do the showering γ-rays from the prompt de-excitation of highly excited nuclei. The recoiling nuclei generate little or no detectable signal. The neutrons lose kinetic energy in elastic collisions, thermalize on a time scale of several $\mu \mathrm{s}$, and are captured, with the production of more γ-rays-usually outside the acceptance gate of the electronics. Between endothermic spallation losses, nuclear recoils, and late neutron capture, a significant fraction of the hadronic energy ($20 \%-40 \%$, depending on the absorber and energy of the incident particle) is used to overcome nuclear binding energies and is therefore lost or "invisible."

In contrast to EM showers, hadronic cascade processes are characterized by the production of relatively few high-energy particles. The lost energy and $f_{\text {em }}$ are highly variable from event to event. Unless there is event-by-event knowledge of both the EM fraction and the invisible energy loss, the energy resolution of a hadron calorimeter is significantly worse than that of its EM counterpart.

The efficiency e with which EM deposit is detected varies from event to event, but because of the large multiplicity in EM showers the variation is small. In contrast, because a variable fraction of the hadronic energy deposit is detectable, the efficiency h with which hadronic energy is detected is subject to considerably larger fluctuations. It thus makes sense to consider the ratio h / e as a stochastic variable.
Most energy deposit is by very low-energy electrons and charged hadrons. Because so many generations are involved in a highenergy cascade, the hadron spectra in a given material are essentially independent of energy except for overall normalization [220,221]. For this reason $\langle h / e\rangle$ is a robust concept, independently of hadron energy and species.

If the detection efficiency for the EM sector is e and that for the hadronic sector is h, then the ratio of the mean response to a pion relative to that for an electron is

$$
\begin{equation*}
\langle\pi / e\rangle=\left\langle f_{e m}\right\rangle+\left\langle f_{h}\right\rangle\langle h / e\rangle=1-(1-\langle h / e\rangle)\left\langle f_{h}\right\rangle \tag{35.35}
\end{equation*}
$$

It has been shown by a simple induction argument and verified by simulation and experiment that the decrease in the average value of the hadronic energy fraction $\left\langle f_{h}\right\rangle=1-\left\langle f_{e m}\right\rangle$ as the projectile energy E increases is fairly well described by the power law [220, 221]

$$
\begin{equation*}
\left\langle f_{h}\right\rangle \approx\left(E / E_{0}\right)^{m-1} \quad\left(\text { for } E>E_{0}\right) \tag{35.36}
\end{equation*}
$$

at least up to a few hundred GeV . The exponent m depends logarithmically on the mean multiplicity and the mean fractional loss to π^{0} production in a single interaction. It is in the range $0.80-$ 0.87 , depending on the composition of the absorber. The scale factor E_{0}, roughly the energy for the onset of inelastic collisions, is 1 GeV or a little less for incident pions [221]. Both m and E_{0} must be obtained experimentally for a given calorimeter configuration.

Only the product $(1-\langle h / e\rangle) E_{0}^{1-m}$ can be obtained by measuring $\langle\pi / e\rangle$ as a function of energy. Since $1-m$ is small and $E_{0} \approx 1 \mathrm{GeV}$ for pion-induced cascades, this fact is usually ignored and $\langle h / e\rangle$ or the usual $\langle e / h\rangle$ is reported.
In a hadron-nucleus collision a large fraction of the incident energy is carried by a "leading particle" with the same quark content as the incident hadron. If the projectile is a charged pion, the
leading particle is usually a pion, which can be neutral and hence contributes to the EM sector. This is not true for incident protons. The result is an increased mean hadronic fraction for incident protons: The power m is the same, but $E_{0} \approx 2.6 \mathrm{GeV}[221-224]$. Data obtained by Akchurin et al. [223] with a quartz-fiber calorimeter indicate that proton-induced showers are shorter than pioninduced showers, and the resolution is substantially better. The "leading particle" effect evidently persists as the shower develops.

By definition, $0 \leq f_{e m} \leq 1$. With increasing energy $\left\langle f_{e m}\right\rangle \rightarrow 1$, while its variance, $\sigma_{f_{e m}}^{2}$, decreases slowly [222]. For $\langle h / e\rangle \neq 1$ (noncompensation), fluctuations in $f_{e m}$ significantly contribute to or even dominate the resolution. Since the $f_{e m}$ distribution has a high-energy tail, the calorimeter response is non-Gaussian with a high-energy tail if $\langle h / e\rangle<1$. Noncompensation thus seriously degrades resolution and produces a nonlinear response. It is clearly desirable to compensate the response, i.e., to design the calorimeter such that $\langle h / e\rangle=1$. This is possible only with a sampling calorimeter, where several variables can be chosen or tuned:

1. Decrease the EM sensitivity. EM cross sections increase with $Z, \|$ and most of the energy in an EM shower is deposited by low-energy electrons. A disproportionate fraction of the EM energy is thus deposited in the higher- Z absorber. Lower- Z cladding, such as the steel cladding on ZEUS U plates, preferentially absorbs low-energy γ 's in EM showers and thus also lowers the electronic response. The degree of EM signal suppression can be tuned by varying the sensor/absorber thickness ratio.
Hardening: The SICIPO collaboration has shown that the response of a W (or Pb) plate EM calorimeter is reduced by low- Z absorbers (G10) in contact with the silicon sensors. This is understood to result of the G10 absorbing electrons below the critical energy $\left(E_{c}\right)$ in the W or Pb [225]. They also showed that interspersing low- Z layers (Fe , with large E_{c}) with high- Z layers (Pb , low E_{c}) dramatically modified the response of a hadron calorimeter. In either case, ionization energy losses begin to dominate below E_{c}. The energy spectrum of shower electrons becomes softer when moving from the Pb to the Fe , with the Fe producing the same filtering effect as G10. $\langle e / h\rangle$ ranging from 0.89 to 1.11 was obtained with various combinations of Pb and Fe plates [217].
2. Software compensation provides another approach to decreasing the EM sensitivity. It takes advantage of the fact than in heavy absorbers the radiation length is much smaller than the nuclear interaction length. As a result, showers from π^{0} / η decay are fairly local. Given sufficient segmentation, the contribution of these "hot spots" can be given lower weight in summing the energy deposit, effectively decreasing $f_{\text {em }}$. Software compensation was first exploited in the CDMS detector [226]. Even with its few longitudinal segments, resolution was substantially improved for single particles of known high energy. It was further developed for the H1 [227] and ATLAS [228] detectors. Three-dimensional granularity considerably extends these techniques. For example, a 2007 CERN SPS study with the CALICE analog scintillator-steel hadronic calorimeter (AHCAL, with 7608 scintillator cells) obtained a $12-25 \%$ resolution improvement for $10-80 \mathrm{GeV}$ incident $\pi^{ \pm}$'s $[229,230]$. Jets are more problematical, in part because of the nonliner response to the large fraction of their particles with $E<10 \mathrm{GeV}$.
3. Increase the hadronic sensitivity. The abundant neutrons produced in the cascade have large $n-p$ elastic scattering cross sections, so that low-energy scattered protons are produced in hydrogenous sampling materials such as butane-filled proportional counters or plastic scintillator. The number of spallation neutrons is highly correlated with missing energy. (The maximal fractional energy loss when a neutron scatters from a nucleus with mass number A is $4 A /(1+A)^{2}$.) The down side in the scintillator case is that the signal from a highlyionizing stopping proton can be reduced by as much as 90%

[^68]by recombination and quenching (Birks' Law, Eq. (35.2)).
4. Fabjan and Willis proposed that the additional signal generated in the aftermath of fission in ${ }^{238} \mathrm{U}$ absorber plates should compensate nuclear fluctuations [231]. The production of fission fragments due to fast n capture was later observed [232]. However, while a very large amount of energy is released, it is mostly carried by low-velocity, very highly ionizing fission fragments produce very little observable signal because of recombination and quenching. In fact much of the compensation observed with the ZEUS and D $\varnothing^{238} \mathrm{U} /$ scintillator calorimeters was mainly the result of mechanisms 1 and 3 above.

Motivated very much by the work of Brau, Gabriel, Brückmann, and Wigmans in 1985-87 [233-236], several groups explored a variety of compensation mechanisms and built calorimeters which were very nearly compensating. The degree of compensation was sensitive to the acceptance gate width, and so could be somewhat further tuned. Examples are given in Table 35.9.

Another approach to compensation is provided by a dualreadout calorimeter, in which the signal is sensed by two readout systems with highly contrasting $\langle h / e\rangle$. The concept, proposed by Mockett in 1983 [246], has been explored by a number of others since. Winn and Worstell, for example, proposed using an "orange" scintillator, observing the ionization contribution through an orange filter and the Cherenkov contribution through a blue filter [247]. The dual-readout technique was implemented by the DREAM collaboration in the late 1990's [248,249]. The test beam calorimeter consisted of copper tubes, each filled with scintillator and quartz fibers. If the two signals C and S (quartz and scintillator) are both normalized to electron response, then for each event Eq. (35.35)

$$
\begin{align*}
C & =E\left[f_{e m}+\left.\langle h / e\rangle\right|_{C}\left(1-f_{e m}\right)\right] \\
S & =E\left[f_{e m}+\left.\langle h / e\rangle\right|_{S}\left(1-f_{e m}\right)\right] \tag{35.37}
\end{align*}
$$

On a scatter plot of C vs S (or C / E vs S / E), events scatter about a line-segment locus, as shown in Fig. 35.23 [222]. With increasing energy the distribution moves upward along the locus and becomes tighter. Equations 35.37 are linear in $1 / E$ and $f_{e m}$, and are easily solved to obtain estimators of the corrected energy and $f_{\text {em }}$ for each event. Both are subject to resolution effects, but contributions due to fluctuations in $f_{e m}$ are eliminated. The solution for the corrected energy is given by [222]:

$$
\begin{equation*}
E=\frac{\xi S-C}{\xi-1}, \text { where } \xi=\frac{1-\left.\langle h / e\rangle\right|_{C}}{1-\left.\langle h / e\rangle\right|_{S}} \tag{35.38}
\end{equation*}
$$

Here ξ is the energy-independent slope of the event locus on a plot of C vs S. It can be found either from the fitted slope or by measuring π / e as a function of E. The slope ξ must be as far from unity as possible to optimize resolution, which in practical terms means that the scintillator readout of the calorimeter must be as compensating as possible [250].

The fractional energy resolution in an ideal calorimeter can be represented by

$$
\begin{equation*}
\frac{\sigma}{E}=\frac{a_{1}(E)}{\sqrt{E}} \oplus|1-\langle h / e\rangle| \sigma_{f_{e m}} \tag{35.39}
\end{equation*}
$$

where $\sigma_{f_{e m}}^{2}$ is the variance of $f_{e m}$ [222]. The coefficient a_{1} is expected to have mild energy dependence for a number of reasons. For example, the sampling variance contribution to a_{1} is $(\pi / e) E$ rather than $E . \sigma_{f_{e m}}$ slowly decreases with increasing energy, as discussed above. Usually a plot of $(\sigma / E)^{2}$ vs $1 / E$ ia well described by a straight line (constant a_{1}) with a finite intercept-the right term in Eq. (35.39), is called "the constant term." Precise data show the slight downturn of a_{1} [210, 222].

Although the usually-dominant contribution of the $f_{e m}$ distribution to the resolution can be minimized by compensation or the use of dual calorimetry, there remain significant contributions to the resolution:

1. Incomplete corrections for leakage, differences in light collection efficiency, and electronics calibration.

Figure 35.23: Scatter plot of Monte Carlo C / E (Cherenkov) vs S / E (scintillator) signals for individual events in a dual readout calorimeter. Hadronic events are shown in blue, and scatter about the indicated event locus. Electromagnetic events cluster about $(C / E, S / E)=(1,1)$. In this case worse resolution (fewer p.e.'s) was assumed for the Cherenkov events, leading to the "elliptical" distribution.
2. Readout transducer shot noise (usually photoelectron statistics), plus electronic noise.
3. Sampling fluctuations. Only a small part of the energy deposit takes place in the scintillator or other sensor, and that fraction is subject to large fluctuations. It depends on the sensor/absorber ratio, often chosen to achieve compensation. If this is the case, it is small in the scint/Fe and somewhat more forgiving in the scint/U case.
4. Intrinisic fluctuations. The many ways ionization can be produced in a hadronic shower have different detection efficiencies and are subject to stochastic fluctuations. In particular, a very large fraction of the hadronic energy is "invisible." The lost fraction depends on the readout-it will be greater for a Cherenkov readout, less for an organic scintillator readout.

Except in a sampling calorimeter especially designed for the purpose, sampling and intrinsic resolution contributions cannot be separated. This may have been best studied by Drews et al. [240], who used a calorimeter in which even- and odd-numbered scintillators were separately read out. Sums and differences of the variances were used to separate sampling and intrinsic contributions.

The above discussion concerns stand-alone hadron calorimeters that exist only in test beams. In a collider experiment there is a central tracker in a magnetic field, then an EM calorimeter, a sequence of calorimeters, and finally a possible muon detector. Particle flow analysis uses all available information in analyzing the event [251, 252]. The tracker supplies the charged particle positions and momenta, the EM calorimeter the γ energy (and some hadronic energy), and the hadron calorimeter the energy deposit from neutral hadrons as well as the most of the energy deposit from the particles observed in the tracker. Good calorimeter granularity is essential. Simulations via GEANT4 [253, 254] support the analysis as well as the development of new analysis algorithms.

Despite the central importance of particle flow analysis, further discussion is beyond the scope of this specialized description of hadron calorimeters.

As a last topic, we discuss the mean spatial distribution of

Table 35.9: Examples of near-compensating sampling hadron calorimeters. For our present purposes some calorimeter structure variation and "constant terms" in the fitted resolution have been ignored.

Calorimeter	Passive	Active	Resolution	$\langle e / h\rangle$	Reference
(Akesson et al.)	$\mathrm{U}, \mathrm{U} / \mathrm{Cu}(3 / 5 \mathrm{~m})$	Scint (2.5 mm)	$36 \% / \sqrt{E}$	1.11	[237]
HELIOS	$\mathrm{U}(3 \mathrm{~mm})$	Scint (2.5 mm)	$34 \% / \sqrt{E}$	1.016 ± 0.006	[238]
(Drews et al.)	$\mathrm{Pb}(10 \mathrm{~mm})$	Scint (2.5 mm)	$44 \% / \sqrt{E}$	1.10 ± 0.01	[239, 240]
(Drews et al.)	$\mathrm{U}(3.2 \mathrm{~mm})$	Scint (3.0 mm)	$36 \% / \sqrt{E}$	1.02 ± 0.01	[240]
WA80	$\mathrm{U}(3 \mathrm{~mm})$	Scint (3 mm)	67\%/ \sqrt{E}	1.12	[241]
ZEUS FCAL	U ($3.0 / 3.2 \mathrm{~mm}$)	Scint (2,5/3.0 mm)	$35 \% / \sqrt{E}$	0.97	[242, 243]
SPACAL	$\mathrm{Pb}(4 \times$ scint vol $)$	1 mm scint fibers	$30 \% / \sqrt{E}$	1.15 ± 0.02	[244]
SICAPO	$\mathrm{Fe} / \mathrm{Pb}$	Si		1.11-0.89*	[217]
DØ	$\mathrm{U}(6 \mathrm{~mm})^{\dagger}$	LAr (2×2.3)	$44 \% / \sqrt{E}$	1.08	[245]

* SICAPO: Various $\mathrm{Fe} / \mathrm{Pb}$ configurations, G10 plates next to Si detectors.
$\dagger \mathrm{D} \varnothing: 1 \mathrm{~mm}$ G10 between LAr gaps may help compensation
hadronic cascades. After the first interaction of the incident hadron, the average longitudinal distribution rises to a smooth peak whose position increases slowly with energy. The distribution becomes nearly exponential after several interaction lengths. Examples from the CDHS magnetized iron-scintillator sandwich calorimeter test beam calibration runs [255] and the ATLAS TileCal results [224] are shown in Fig. 35.24. Proton-induced cascades are somewhat shorter and broader than pion-induced cascades [224]. A gamma distribution fairly well describes the longitudinal development of an EM shower, as discussed in Sec. 34.5. Following this logic, Bock et al. suggested that the profile of a hadronic cascade could be fitted by the sum of two Γ distributions, one with a characteristic length X_{0} and the other with length $\lambda_{I}[256,257]$. Fits to this 4-parameter function are commonly used, e.g., by the ATLAS TileCal collaboration [224]. If the interaction point is not known (the usual case), the distribution must be convoluted with an exponential in the interaction length of the incident particle. Adragna et al. give an analytic form for the convoluted function [224].

Figure 35.24: Mean profiles of π^{+}(mostly) induced cascades in the CDHS neutrino detector [255] and in the ATLAS tile calorimeter [224]. Measurements are front of the calorimeter, and so are convoluted with the first interaction distance.

The transverse energy deposit is characterized by a central core dominated by EM cascades, together with a wide "skirt" produced by wide-angle hadronic interactions [258].

While the average distributions might be useful in designing a calorimeter, they have little meaning for individual events, whose distributions are extremely variable because of the small number of particles involved early in the cascade.

Particle identification, primarily $e-\pi$ discrimination, is accomplished in most calorimeters by observing the depth development. An EM shower is mostly contained in $15 X_{0}$ while a
hadronic shower takes about $4 \lambda_{I}$. In high- A absorbers such as $\mathrm{Pb}, X_{0} / \lambda_{I} \sim 0.03$. In a fiber calorimeter, such as the RD52 dual-readout calorimeter, $e-\pi$ discrimination is achieved by differences in the Cerenkov and scintillation signals, lateral spread, and timing differences, ultimately achieving about 500:1 discrimination [259].
35.9.4 Free electron drift velocities in liquid ionization chambers
Revised August 2009 by W. Walkowiak (Siegen U.).

Figure 35.25: Drift velocity of free electrons as a function of electric field strength for LAr [260], $\mathrm{LAr}+0.5 \% \mathrm{CH}_{4}$ [261] and LXe [262]. The average temperatures of the liquids are indicated. Results of a fit to an empirical function [263] are superimposed. In case of LAr at 91 K the error band for the global fit [260] including statistical and systematic errors as well as correlations of the data points is given. Only statistical errors are shown for the individual LAr data points.

Drift velocities of free electrons in LAr [260] are given as a function of electric field strength for different temperatures of the medium in Fig. 35.25. The drift velocites in LAr have been measured using a double-gridded drift chamber with electrons produced by a laser pulse on a gold-plated cathode. The average temperature gradient of the drift velocity of the free electrons in LAr is described [260] by

$$
\begin{equation*}
\frac{\Delta v_{d}}{\Delta T v_{d}}=(-1.72 \pm 0.08) \% / \mathrm{K} \tag{35.40}
\end{equation*}
$$

Previous measurements [261, 262, 264, 265] range from 13% higher [262] to 18% lower [264] than these measurements. They
used different techniques and show drift velocities for free electrons which cannot be explained by the temperature dependence mentioned above.

Drift velocities of free electrons in LXe [261] as a function of electric field strength are also displayed in Fig. 35.25. The drift velocity saturates for $|E|>3 \mathrm{kV} / \mathrm{cm}$, and decreases with increasing temperature for LXe as well as measured e.g. by [266].

The addition of small concentrations of other molecules like N_{2}, H_{2} and CH_{4} in solution to the liquid typically increases the drift velocities of free electrons above the saturation value [261, 264], see example for CH_{4} admixture to LAr in Fig. 35.25. Therefore, actual drift velocities are critically dependent on even small additions or contaminations.

35.10 Accelerator-based neutrino detectors

Revised August 2017 by M.O. Wascko (Imperial Coll. London).

35.10.1 Introduction

Accelerator-based neutrino experiments span many orders of magnitude in neutrino energy, from a few MeV to hundreds of GeV . This wide range of neutrino energy is driven by the many physics applications of accelerator-based neutrino beams. Foremost among them is neutrino oscillation, which varies as the ratio L / E_{ν}, where L is the neutrino baseline (distance traveled), and E_{ν} is the neutrino energy. But accelerator-based neutrino beams have also been used to study the nature of the weak interaction, to probe nucleon form factors and structure functions, and to study nuclear structure.

The first accelerator-based neutrino experiment used neutrinos from the decays of high energy pions in flight to show that the neutrinos emitted from pion decay are different from the neutrinos emitted by beta decay [267]. The field of accelerator-based neutrino experiments would likely not have expanded beyond this without Simon van der Meer's invention of the magnetic focusing horn [268], which significantly increased the flux of neutrinos aimed toward the detector. In this mini-review, we focus on experiments employing decay-in-flight beams-pions, kaons, charmed mesons, and taus-producing fluxes of neutrinos and antineutrinos from $\sim 10 \mathrm{MeV}$ to $\sim 100 \mathrm{GeV}$.

Neutrino interactions with matter proceed only through the weak interaction, making the cross section extremely small and requiring high fluxes of neutrinos and large detector masses in order to achieve satisfactory event rates. Therefore, neutrino detector design is a balancing act taking into account sufficient numbers of nuclear targets (often achieved with inactive detector materials), adequate sampling/segmentation to ensure accurate reconstruction of the tracks and showers produced by neutrino-interaction secondary particles, and practical readout systems to allow timely analysis of data.

35.10.2 Signals and Backgrounds

The neutrino interaction processes available increase with increasing neutrino energy as interaction thresholds are crossed; in general neutrino-interaction cross sections grow with energy; for a detailed discussion of neutrino interactions see [269]. The multiplicity of secondary particles from each interaction process grows in complexity with neutrino energy, while the forward-boost due to increasing E_{ν} compresses the occupied phase space in the lab frame, impacting detector designs. Because decay-in-fight beams produce neutrinos at well-defined times, leading to very small duty factors, the predominant backgrounds usually stem from unwanted beam-induced neutrino interactions, i.e. neutrinos interacting via other processes than the one being studied. A noteworthy exception is time projection chambers, wherein the long drift times can admit substantially more cosmic backgrounds than most other detection methods. Cosmic backgrounds are more rare at higher energies because the secondary particles produced by neutrino interactions yield detector signals that resemble cosmic backgrounds less and less.

Below, we describe a few of the dominant neutrino interaction processes, with a focus on the final state particle content and topologies.
35.10.2.1 Charged-Current Quasi-Elastic Scattering and Pion Production
Below $\sim 2 \mathrm{GeV}$ neutrino energy, the dominant neutrino-nucleus interaction process is quasi-elastic (QE) scattering. In the charged current (CC) mode, the CCQE base neutrino reaction is $\nu_{\ell} n \rightarrow$ $\ell^{-} p$, where $\ell=e, \mu, \tau$, and similarly for antineutrinos, $\bar{\nu}_{\ell} p \rightarrow$ $\ell^{+} n$. The final state particles are a charged lepton, and perhaps a recoiling nucleon if it is given enough energy to escape the nucleus. Detectors designed to observe this process should have good single-particle track resolution for muon neutrino interactions, but should have good μ / e separation for electron neutrino interactions. Because the interaction cross section falls sharply with Q^{2}, the lepton typically carries away more of the neutrino's kinetic energy than the recoiling nucleon. The fraction of backwardscattered leptons is large, however, so detectors with 4π coverage are desirable. The dominant backgrounds in this channel tend to come from single pion production events in which the pion is not detected.

Near 1 GeV , the quasi-elastic cross section is eclipsed by pion production processes. A typical single pion production (CC1 π) reaction is $\nu_{\ell} n \rightarrow \ell^{-} \pi^{+} n$, but many more final state particle combinations are possible. Single pion production proceeds through the coherent channel and many incoherent processes, dominated by resonance production. With increasing neutrino energy, higher-order resonances can be excited, leading to multiple pions in the final state. Separating these processes from quasielastic scattering, and indeed from each other, requires tagging, and ideally reconstructing, the pions. Since these processes can produce neutral pions, electromagnetic (EM) shower reconstruction is more important here than it is for the quasi-elastic channel. The predominant backgrounds for pion production change with increasing neutrino energy. Detection of pion processes is also complicated because near threshold the quasi-elastic channel creates pion backgrounds through final state interactions of the recoiling nucleon, and at higher energies backgrounds come from migration of multiple pion events in which one or more pions is not detected.

35.10.2.2 Deep Inelastic Scattering

Beyond a few GeV , the neutrino has enough energy to probe the nucleon at the parton scale, leading to deep inelastic scattering (DIS). In the charged-current channel, the DIS neutrino reaction is $\nu_{\ell} N \rightarrow \ell^{-} X$, where N is a nucleon and X encompasses the entire recoiling hadronic system. The final state particle reconstruction revolves around accurate reconstruction of the lepton momentum and containment and reconstruction of the hadronic shower energy. Because of the high neutrino energies involved, DIS events are very forward boosted, and can have extremely long particle tracks. For this reason, detectors measuring DIS interactions must be large to contain the hadronic showers in the detector volume.

35.10.2.3 Neutral Currents

Neutrino interactions proceeding through the neutral current (NC) channel are identified by the lack of a charged lepton in the final state. For example, the NC elastic reaction is $\nu_{l} N \rightarrow \nu_{l} N$, and the NC DIS reaction is $\nu_{l} N \rightarrow \nu_{l} X$. NC interactions are suppressed relative to CC interactions by a factor involving the weak mixing angle; the primary backgrounds for NC interactions come from CC interactions in which the charged lepton is misidentified.

35.10.3 Instances of Neutrino Detector Technology

Below we describe many of the actual detectors that have been built and operated for use in accelerator-based neutrino beams.

35.10.3.1 Spark Chambers

In the first accelerator-based neutrino beam experiment, Lederman, Schwartz, and Steinberger [267] used an internally-triggered spark chamber detector, filled with 10 tons of Al planes and surrounded by external scintillator veto planes, to distinguish muon tracks from electron showers, and hence muon neutrinos from electron neutrinos. The inactive Al planes served as the neutrino interaction target and as radiators for EM shower development. The detector successfully showed the presence of muon tracks from neutrino interactions. It was also sensitive to the hadronic show-

Table 35.10: Properties of detectors for accelerator-based neu-
trino beams.

Name	Type	Target	Mass* (t)	Location	$\left\langle\mathrm{E}_{\nu}\right\rangle(\mathrm{GeV})$	Dates
Lederman et al.	Spark	Al	10	BNL	0.2-2	1962
CERN-spark	Spark	Al	20	CERN	1.5	1964
Serpukhov	Spark	Al	20	IHEP	4	1977
Aachen-Padova	Spark	Al	30	CERN	1.5	1976-77
Gargamelle	Bubble	Freon	6	CERN	1.5,20	1972,1977
BEBC	Bubble	H,D,Ne-H	2-42	CERN	50,150 \& 20	1977-84
SKAT	Bubble	Freon	8	IHEP	4	1977-1987
ANL-12ft	Bubble	H,D	1-2	ANL	0.5	1970
BNL-7ft	Bubble	H,D	0.4-0.9	BNL	1.3,3	1976-82
Fermilab-15ft	Bubble	D, Ne	1-20	FNAL	50,180\&25,100	1974-92
CITF	Iron	Fe	92	FNAL	50,180	1977-83
CDHS	Iron	Fe	750	CERN	50,150	1977-83
MINOS	Iron	Fe	980,5.4k	FNAL	4-15	2005-2016
INGRID	Iron	Fe	99	J-PARC	0.7-3	2009-
Super-Kamiokande	Cherenkov	$\mathrm{H}_{2} \mathrm{O}$	22,500	Kamioka	0.6	1996-
K2K-1kt	Cherenkov	$\mathrm{H}_{2} \mathrm{O}$	25	KEK	0.8	1998-2004
MiniBooNE	Cherenkov	CH_{2}	440	FNAL	0.6	2002-12
HWPF	Scintillation	CH_{2}	2	FNAL	2	2014-
LSND	Scintillation	CH_{2}	130	LANL	0.06	1993-98
NOvA	Scintillation	CH_{2}	300,14k	FNAL/Ash River	2	2013-
SciBar	Scintillation	CH	12	KEK/FNAL	0.8,0.6	2004,2007-8
ICARUS	LArTPC	Ar	760	LNGS	20	2006-12
Argoneut	LArTPC	Ar	0.025	FNAL	3	2009-10
MicroBooNE	LArTPC	Ar	170	FNAL	0.8	2014-
FNAL-E-531	Emulsion	Ag, Br	0.009	FNAL	25	1984
CHORUS	Emulsion	Ag, Br	1.6	CERN	20	1995
DONuT	Emulsion	Fe	0.26	FNAL	100	1997
OPERA	Emulsion	Pb	1.3 k	LNGS	20	2006-12
NINJA	Emulsion	Fe	0.001	J-PARC	0.6	2016-
CHARM	Hybrid	CaCO_{3}	150	CERN	20	1977
CHARM-II	Hybrid	glass	692	CERN	20	1983
BNL-E-734	Hybrid	CH_{2}	172	BNL	1.3	1987
BNL-E-776	Hybrid	concrete	240	BNL	3	1990
NOMAD	Hybrid	CH	3	CERN	20	1995-98
CCFR	Hybrid	Fe	690	FNAL	90,260	1991
NuTeV	Hybrid	Fe	690	FNAL	70,180	1996-97
MINERvA	Hybrid	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}, \mathrm{Pb}, \mathrm{C}, \mathrm{He}$	8	FNAL	3,8	2009-
T2K-ND280	Hybrid	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Pb}, \mathrm{Cu}$	4	J-PARC	0.6	2009 -

*Fiducial.
ers induced by NC interactions, which were unknown at the time. In 1963, CERN also built and ran a large (20 ton) Al plane spark chamber in a wideband beam based on the PS accelerator [270]. More than a decade later, the Aachen-Padova [271] experiment at CERN employed a 30 ton Al spark chamber in the PS-WBB.

35.10.3.2 Bubble Chambers

Several large bubble chamber detectors were employed as accelerator neutrino detectors in the 1970s and 80s, performing many of the first studies of the properties of the weak interaction. Bubble chambers provide exquisite granularity in the reconstruction of secondary particles, allowing very accurate separation of interaction processes. However, the extremely slow and labor-intensive acquisition and analysis of the data from photographic film led to them being phased out in favor of electronically read out detectors.

The Gargamelle [272] detector at CERN used Freon and propane gas targets to make the first observation of neutrinoinduced NC interactions and more. The BEBC [273] detector at CERN was a bubble chamber that was alternately filled with liquid hydrogen, deuterium, and a neon-hydrogen mixture; BEBC was also outfitted with a track-sensitive detector to improve event tagging, and sometimes used with a small emulsion chamber. The SKAT [274] Freon bubble chamber was exposed to wideband neutrino and antineutrino beams at the Serpukhov laboratory in the former Soviet Union. A series of American bubble chambers in the 1970's and 1980's made measurements on free nucleons that
are still crucial inputs for neutrino-nucleus scattering predictions. The 12 -foot bubble chamber at ANL [275] in the USA used both deuterium and hydrogen targets, as did the 7 -foot bubble chamber at BNL [276]. Fermilab's 15 foot bubble chamber [277] used deuterium and neon targets.

35.10.3.3 Iron Tracking Calorimeters

Because of the forward boost of high energy interactions, long detectors made of magnetized iron interspersed with active detector layers have been very successfully employed. The long magnetized detectors allow measurements of the momentum of penetrating muons. The iron planes also act as shower-inducing layers, allowing separation of EM and hadronic showers; the large number of iron planes provide enough mass for high statistics and/or shower containment. Magnetized iron spectrometers have been used for studies of the weak interaction, measurements of structure functions, and searches for neutrino oscillation. Nonmagnetized iron detectors have also been successfully employed as neutrino monitors for oscillation experiments and also for neutrino-nucleus interaction studies.

The Caltech-Fermilab counter (CITF) [275] combined a 92 ton iron-scintillator target-calorimeter detector with a downstream toroidal magnet to perform early studies of weak interactionsincluding observations of neutral currents. The CDHS [278] detector used layers of magnetized iron modules interspersed with wire drift chambers, with a fiducial mass of 750 t , to detector neutrinos in the range $30-300 \mathrm{GeV}$. Within each iron module,

5 cm (or 15 cm) iron plates were interspersed with scintillation counters. The MINOS [279] detectors, a near detector of 980 t at FNAL and a far detector of 5400 t in the Soudan mine, were functionally identical magnetized iron calorimeters, comprised of iron plates interleaved with layers of 4 cm wide plastic scintillator strips in alternating orientations. The T2K [280] on-axis detector, INGRID, consists of 16 non-magnetized iron scintillator sandwich detectors, each with nine 6.5 cm iron plane (7.1 t total) interspersed between layers of 5 cm wide plastic scintillator strips readout out by multi-pixel photon counters (MPPCs) coupled to WLS fibers. Fourteen of the INGRID modules are arranged in a cross-hair configuration centered on the neutrino beam axis.

35.10.3.4 Cherenkov Detectors

Open volume water Cherenkov detectors were originally built to search for proton decay. Large volumes of ultra-pure water were lined with photomultipliers to collect Cherenkov light emitted by the passage of relativistic charged particles. See Sec. 36.3.1 for a detailed discussion of deep liquid detectors for rare processes. The Cherenkov light, which has significant production in the visible range, appears on the walls of the detectors in distinctive ring patterns, and topological characteristics of the rings are employed to separate muon-induced rings from electron-induced with very high accuracy. As neutrino detectors, Cherenkov detectors optimize the design balance since the entire neutrino target is also active detector medium.

When used to detect $\sim \mathrm{GeV}$ neutrinos, the detector medium acts as a natural filter for final state particles below the Cherenkov threshold; this feature has been exploited successfully by the K2K, MiniBooNE (using mineral oil instead of water), and T2K neutrino oscillation experiments. This makes event reconstruction simple and robust since electrons and muons have very different signatures, but does require making assumptions when inferring neutrino energy since not all final state particles are observed. At higher energies Cherenkov detectors become less accurate because the overlapping rings from many final state particles become increasingly difficult to resolve.

The second-generation Cherenkov detector in Japan, SuperKamiokande [78] (Super-K), comprises 22.5 kt of water viewed by 50 cm photomultiplier tubes with 40% photocathode coverage; it is surrounded by an outer detector region viewed by 20 cm photomultipliers. Super-K is the far detector for K2K and T2K, and is described in greater detail elsewhere in this review. The K2K experiment also employed a 1 kt water Cherenkov detector in the suite of near detectors [281], with 40% photocathode coverage. The MiniBooNE detector at FNAL was a 0.8 kt [282] mineral oil Cherenkov detector, with 20 cm photomultipliers giving 10% photocathode coverage, surrounded by a veto detector also with 20 cm photomultipliers.

35.10.3.5 Scintillation Detectors

Liquid and solid scintillator detectors also employ fully (or nearly fully) active detector media. Typically organic scintillators, which emit into the ultraviolet range, are dissolved in mineral oil or plastic and read out by photomultipliers coupled to wavelength shifters (WLS). Open volume scintillation detectors lined with photomultipliers are conceptually similar to Cherenkov detectors, although energy reconstruction is calorimetric in nature as opposed to kinematic (see also Sec. 36.3.1). For higher energies and higher particle multiplicities, it becomes beneficial to use segmented detectors to help distinguish particle tracks and showers from each other.

The HWPF collaboration [283] employed a 2 t liquid scintillator total-absorption hadron calorimeter followed by a magnetic spectrometer to observe neutral current events in the early days of Fermilab. The LSND [284] detector at LANL was a 130 t open volume liquid scintillator detector employed to detect relatively low energy $(<300 \mathrm{MeV})$ neutrinos. The NOvA [285] detectors use segmented volumes of liquid scintillator in which the scintillation light is collected by WLS fibers in the segments that are coupled to avalanche photodiodes (APDs) at the ends of the volumes. The NOvA far detector, located in Ash River, MN, is comprised of 896 layers of 15.6 m long extruded PVC scintillator cells for a total mass of 14 kt ; the $\mathrm{NO} \nu \mathrm{A}$ near detector is comprised of 214 layers
of 4.1 m scintillator volumes for a total mass of of 300 t . Both are placed in the NuMI beamline at 0.8° off-axis. The SciBar (Scintillation Bar) detector was originally built for K2K at KEK in Japan and then re-used for SciBooNE [286] at FNAL. SciBar used plastic scintillator strips with $1.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ rectangular cross section, read out by multianode photomultipliers (MAPMTs) coupled to WLS fibers, arranged in alternating horizontal and vertical layers. Both SciBooNE and K2K employed an EM calorimeter downstream of SciBar and a muon range detector (MRD) downstream of that.

35.10.3.6 Liquid Argon Time Projection Chambers

Liquid argon time projection chambers (LAr-TPCs) were conceived in the 1970s as a way to achieve a fully active detector with sub-centimeter track reconstruction [287]. A massive volume of purified liquid argon is put under a strong electric field (hundreds of V / cm), so that the liberated electrons from the paths of ionizing particles can be drifted to the edge of the volume and read out, directly by collecting charge from wire planes or non-destructively through charge induction in the wire planes. A dual-phase readout method is also being developed, in which the charge is drifted vertically and then passed through an amplification region inside a gas volume above the liquid volume; the bottom of the liquid volume is equipped with a PMT array for detecting scintillation photons form the liquid argon. The first large scale LAr-TPC was the ICARUS T-600 module [288], comprising 760 t of liquid argon with a charge drift length of 1.5 m read out by wires with 3 mm pitch, which operated in LNGS, both standalone and also exposed to the CNGS high energy neutrino beam. The ICARUS detector has been transported to Fermilab and is being installed in an onaxis position in the Booster Neutrino Beamline, where it will also be exposed to off-axis neutrinos from the NuMI beamline. The ArgoNeuT [289] detector at FNAL, with fiducial mass 25 kg of argon read out with 4 mm pitch wires, was exposed to the NuMI neutrino and antineutrino beams. The MicroBooNE [290] detector at FNAL comprises 170 t of liquid Ar , read out with 3 mm wire pitch, which began collecting data in the Booster Neutrino Beam Oct 2015. A LAr-TPC has also been chosen as the detector design for the future DUNE neutrino oscillation experiment, from FNAL to Sanford Underground Research Facility; both single and dual phase modules are planned.

35.10.3.7 Emulsion Detectors

Photographic film emulsions have been employed in particle physics experiments since the 1940s [291]. Thanks to advances in scanning technology and automation [292], they have been successfully employed as neutrino detectors. Emulsions are used for experiments observing CC tau neutrino interactions, where the short lifetime of the tau, $\tau_{\tau}=2.90 \times 10^{-13} \mathrm{~s}$, leading to the short mean path length, $c \times \tau=87 \mu \mathrm{~m}$, requires extremely precise track resolution. They are employed in hybrid detectors in which the emulsion bricks are embedded inside fine-grained tracker detectors. In the data analysis, the tracker data are used to select events with characteristics typical of a tau decay in the final state, such as missing energy and unbalanced transverse momentum. The reconstructed tracks are projected back into an emulsion brick and used as the search seed for a neutrino interaction vertex.
E531 [293] at Fermilab tested many of the emulsion-tracker hybrid techniques employed by later neutrino experiments, in a detector with approximately 9 kg of emulsion target. The CHORUS [292] experiment at CERN used $1,600 \mathrm{~kg}$ of emulsion, in a hybrid detector with a fiber tracker, high resolution calorimeter, and muon spectrometer, to search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation. The DONuT [294] experiment at FNAL used a hybrid detector, with 260 kg of emulsion bricks interspersed with fiber trackers, followed by a magnetic spectrometer, and calorimeter, to make the first direct observation of tau neutrino CC interactions. The OPERA [295] [296] [297] experiment used an automated hybrid emulsion detector, with $1,300 \mathrm{t}$ of emulsion, to make the first direct observation of the appearance of ν_{τ} in a ν_{μ} beam. Recently, the NINJA collaboration has developed an emulsion cloud chamber detector to observe neutrinos in the J-PARC neutrino beam [298].

35.10.3.8 Hybrid Detectors

In the previous neutrino detector examples, one can point to a specific detection technology or configuration that defines a category of detectors. In this section we look at detectors that combine multiple elements or techniques, without one facet being specifically dominant or crucial; we call these detectors hybrids.
The CHARM detector [299] at CERN was built to study neutral-current interactions and search for muon neutrino oscillation. It was a fine-grained ionization calorimeter tracker with approximately 150 t of marble as neutrino target, surrounded by a magnetized iron muon system for tagging high angle muons, and followed downstream by a muon spectrometer. The CHARM II detector [300] at CERN comprised a target calorimeter followed by a downstream muon spectrometer. Each target calorimeter module consists of a 4.8 cm thick glass plate followed by a layer of plastic streamer tubes, with spacing 1 cm , instrumented with 2 cm wide pickup strips. Every fifth module is followed by a 3 cm thick scintillator layer. The total mass of the target calorimeter was 692 t .
The Brookhaven E-734 [301] detector was a tracking calorimeter made up of 172 t liquid scintillator modules interspersed with proportional drift tubes, followed by a dense EM calorimeter and a muon spectrometer downstream of that. The detector was exposed to a wideband horn-focused beam with peak neutrino energy near 1 GeV . The Brookhaven E-776 [302] experiment comprised a finely segmented EM calorimeter, with 2.54 cm concrete absorbers interspersed with planes of drift tubes and acrylic scintillation counters, with total mass 240 t , followed by a muon spectrometer.

The FNAL Lab-E neutrino detector was used by the CCFR [303] and NuTeV [304] collaborations to perform a series of experiments in the Fermilab high energy neutrino beam ($50 \mathrm{GeV}<$ $\left.E_{\nu}<300 \mathrm{GeV}\right)$. The detector was comprised of six iron target calorimeter modules, with 690 t total target mass, followed by three muon spectrometer modules, followed by two drift chambers. Each iron target calorimeter module comprised 5.2 cm thick steel plates interspersed with liquid scintillation counters and drift chambers.

The NOMAD [305] detector at CERN consisted of central tracker detector inside a 0.4 T dipole magnet (the magnet was originally used by the UA1 experiment at CERN) followed by a hadronic calorimeter and muon detectors downstream of the magnet. The main neutrino target is 3 t of drift chambers followed downstream by transition radiation detectors which are followed by an EM calorimeter. NOMAD was exposed to the same wideband neutrino beam as was CHORUS.

MINERvA [306] is a hybrid detector based around a central plastic scintillator tracker: 8.3 t of plastic scintillator strips with triangular cross section read out by MAPMTs coupled to WLS fibers. The scintillator tracker is surrounded by electromagnetic and hadronic calorimetry, which is achieved by interleaving thin lead (steel) layers between the scintillator layers for the ECAL (HCAL). MINERvA is situated upstream of the MINOS near detector which acts as a muon spectrometer. Upstream of the scintillator tracker is a nuclear target region containing inactive layers of C (graphite), Pb, Fe (steel), and O (water). MINERvA's physics goals span a wide range of neutrino-nucleus interaction studies, from form factors to nuclear effects.
T2K [280] in Japan employs two near detectors at 280 m from the neutrino beam target, one centered on the axis of the hornfocused J-PARC neutrino beam and one placed 2.5° off-axis. The on-axis detector, INGRID, is described above. The 2.5° off-axis detector, ND280, employs the UA1 magnet (at 0.2 T) previously used by NOMAD. Inside the magnet volume are three separate detector systems: the trackers, the Pi0 Detector (P0D), and several ECal modules. The tracker detectors comprise two fine-grained scintillator detectors (FGDs), read out by MPPCs coupled to WLS fibers, interleaved between three gas TPCs read out by micromegas planes. The downstream FGD contains inactive water layers in addition to the scintillators. Upstream of the tracker is the P 0 D , a sampling tracker calorimeter with active detector materials comprising plastic scintillator read out by MPPCs and WLS fibers, and inactive sheets of brass radiators and refillable
water modules. Surrounding the tracker and P0D, but still inside the magnet, are lead-scintillator EM sampling calorimeters.

35.10.4 Outlook

Detectors for accelerator-based neutrino beams have been in use, and constantly evolving, for six decades now. The rich program of neutrino oscillation physics and attendant need for newer and better neutrino-nucleus scattering measurements means that more neutrino detectors with broader capabilities will be needed in the coming decades.

One of the most intriguing prospects is a large volume, high pressure gas time projection chamber (HPTPC). With the prospect of megawatt power accelerator-based neutrino beams, it is entirely feasible to collect high statistics data sets with a gas target. The low momentum thresholds for particle detection, and excellent momentum resolution and particle identification capabilities, of an HPTPC would open a new window into the physics of neutrino-nucleus scattering. Moreover, the ability to change the gas mixtures in the HPTPC would allow measurements in the same detector on multiple nuclear targets, which would, in turn, allow unprecedentedly accurate constraints and tuning of neutrino-nucleus interaction models.

35.11 Superconducting magnets for collider detectors

Revised August 2019 by Y. Makida (KEK).

35.11.1 Solenoid Magnets

In all cases SI unit are assumed, so that the magnetic field, B, is in Tesla, the stored energy, E, is in joules, the dimensions are in meters, and vacuum permeability of $\mu_{0}=4 \pi \times 10^{-7}$.

The magnetic field (B) in an simple solenoid with a flux return iron yoke, in which the magnetic field is lower than magnetic saturation of $<2 \mathrm{~T}$, is given by

$$
\begin{equation*}
B=\frac{\mu_{0} n I}{L} \tag{35.41}
\end{equation*}
$$

where n is the number of turns, I is the current and L is the coil length.

In an air-core solenoid case, the central field is given by

$$
\begin{equation*}
B(0,0)=\mu_{0} n I \frac{1}{\sqrt{L^{2}+4 R^{2}}} \tag{35.42}
\end{equation*}
$$

where R is the coil radius.
In most cases, momentum analysis is made by measuring the circular trajectory of the passing particles according to $p=m v=$ $q r B$, where p is the momentum, m the mass, q the charge, r the bending radius. The sagitta, s, of the trajectory is given by

$$
\begin{equation*}
s=q B \ell^{2} / 8 p \tag{35.43}
\end{equation*}
$$

where ℓ is the path length in the magnetic field. In a practical momentum measurement in colliding beam detectors, it is more effective to increase the magnetic volume than the field strength, since

$$
\begin{equation*}
d p / p \propto p / B \ell^{2} \tag{35.44}
\end{equation*}
$$

where ℓ corresponds to the solenoid coil radius R. The energy stored in the magnetic field of any magnet is calculated by integrating B^{2} over all space:

$$
\begin{equation*}
E=\frac{1}{2 \mu_{0}} \int B^{2} d V \tag{35.45}
\end{equation*}
$$

If the coil thin and inside an iron return yoke, (which is the case if it is to superconducting coil), then

$$
\begin{equation*}
E \approx\left(B^{2} / 2 \mu_{0}\right) \pi R^{2} L \tag{35.46}
\end{equation*}
$$

For a detector in which the calorimetry is outside the aperture of the solenoid, the coil must be transparent in terms of radiation and absorption lengths. This usually means that the superconducting solenoid and its cryostat is of minimum real thickness and is made of a material with long radiation length. There are two major contributors to the thickness of a thin solenoid:

Table 35.11: Progress of superconducting magnets for particle physics detectors.

Experiment	Laboratory	B	Radius	Length	Energy	X / X_{0}	E / M
		[T]	[m]	[m]	[MJ]		[kJ/kg]
TOPAZ*	KEK	1.2	1.45	5.4	20	0.70	4.3
CDF*	Tsukuba/Fermi	1.5	1.5	5.07	30	0.84	5.4
VENUS*	KEK	0.75	1.75	5.64	12	0.52	2.8
AMY*	KEK	3	1.29	3	40	\dagger	
CLEO-II*	Cornell	1.5	1.55	3.8	25	2.5	3.7
ALEPH*	Saclay/CERN	1.5	2.75	7.0	130	2.0	5.5
DELPHI*	RAL/CERN	1.2	2.8	7.4	109	1.7	4.2
ZEUS*	INFN/DESY	1.8	1.5	2.85	11	0.9	5.5
H1*	RAL/DESY	1.2	2.8	5.75	120	1.8	4.8
BaBar*	INFN/SLAC	1.5	1.5	3.46	27	\dagger	3.6
D0*	Fermi	2.0	0.6	2.73	5.6	0.9	3.7
BELLE*	KEK	1.5	1.8	4	42	\dagger	5.3
BES-III	IHEP	1.0	1.475	3.5	9.5	\dagger	2.6
ATLAS-CS	ATLAS/CERN	2.0	1.25	5.3	38	0.66	7.0
ATLAS-BT	ATLAS/CERN	1	4.7-9.75	26	1080	(Toroid) ${ }^{\dagger}$	
ATLAS-ET	ATLAS/CERN	1	0.825-5.35	5	2×250	(Toroid) ${ }^{\dagger}$	
CMS	CMS/CERN	4	6	12.5	2600	\dagger	12
SiD**	ILC	5	2.9	5.6	1560	\dagger	12
ILD**	ILC	4	3.8	7.5	2300	\dagger	13
SiD**	CLIC	5	2.8	6.2	2300	\dagger	14
ILD**	CLIC	4	3.8	7.9	2300	\dagger	
FCC**		6	6	23	54000	\dagger	12
${ }^{\text {* }}$ No longer in service Conceptual $\begin{aligned} & \text { design in future }\end{aligned}$							

1. The conductor consisting of the current-carrying superconducting material (usually $\mathrm{Nb}-\mathrm{Ti} / \mathrm{Cu}$) and the quench protecting stabilizer (usually aluminum) are wound on the inside of a structural support cylinder (usually aluminum also). The coil thickness scales as $B^{2} R$, so the thickness in radiation lengths $\left(X_{0}\right)$ is

$$
\begin{equation*}
t_{\mathrm{coil}} / X_{0}=\left(R / \sigma_{h} X_{0}\right)\left(B^{2} / 2 \mu_{0}\right) \tag{35.47}
\end{equation*}
$$

where $t_{\text {coil }}$ is the physical thickness of the coil, X_{0} the average radiation length of the coil/stabilizer material, and σ_{h} is the hoop stress in the coil [307]. $B^{2} / 2 \mu_{0}$ is the magnetic pressure. In large detector solenoids, the aluminum stabilizer and support cylinders dominate the thickness; the superconductor $(\mathrm{Nb}-\mathrm{TI} / \mathrm{Cu})$ contributes a smaller fraction. The main coil and support cylinder components typically contribute about $2 / 3$ of the total thickness in radiation lengths.
2. Another contribution to the material comes from the outer cylindrical shell of the vacuum vessel. Since this shell is susceptible to buckling collapse, its thickness is determined by the diameter, length and the modulus of the material of which it is fabricated. The outer vacuum shell represents about $1 / 3$ of the total thickness in radiation length.

35.11.2 Properties of collider detector magnets

The physical dimensions, central field stored energy and thickness in radiation lengths normal to the beam line of the superconducting solenoids associated with the major collider are given in Table 35.11 [308]. Fig. 35.26 shows thickness in radiation lengths as a function of $B^{2} R$ in various collider detector solenoids.

The ratio of stored energy to cold mass (E / M) is a useful performance measure. It can also be expressed as the ratio of the stress, σ_{h}, to twice the equivalent density, ρ, in the coil [307]:

$$
\begin{equation*}
\frac{E}{M}=\frac{E}{\rho 2 \pi t_{\mathrm{coil}} R L} \approx \frac{\sigma_{h}}{2 \rho} \tag{35.48}
\end{equation*}
$$

The E / M ratio in the coil is approximately equivalent to H, ${ }^{* *}$ the enthalpy of the coil, and it determines the average coil temperature rise after energy absorption in a quench:

$$
\begin{equation*}
E / M=H\left(T_{2}\right)-H\left(T_{1}\right) \approx H\left(T_{2}\right) \tag{35.49}
\end{equation*}
$$

${ }^{* *}$ The enthalpy, or heat content, is called H in the thermodynamics literature. It is not to be confused with the magnetic field intensity B / μ.

Figure 35.26: Magnet wall thickness in radiation length as a function of $B^{2} R$ for various detector solenoids. Gray entries are for magnets no longer in use, and entries underlined are not listed in Table 35.11. Open circles are for magnets not designed to be "thin." The SSC-SDC prototype provided important R\&D for LHC magnets.
where T_{2} is the average coil temperature after the full energy absorption in a quench, and T_{1} is the initial temperature. E / M ratios of 5,10 , and $20 \mathrm{~kJ} / \mathrm{kg}$ correspond to $\sim 65, \sim 80$, and $\sim 100 \mathrm{~K}$, respectively. The E / M ratios of various detector magnets are shown in Fig. 35.27 as a function of total stored energy. One would like the cold mass to be as small as possible to minimize the thickness, but temperature rise during a quench must also be minimized. An E / M ratio as large as $12 \mathrm{~kJ} / \mathrm{kg}$ is designed into the CMS solenoid, with the possibility that about half of the stored energy can go to an external dump resistor. Thus the coil temperature can be kept below 80 K if the energy extraction system works well. The limit is set by the maximum temperature that the coil design can tolerate during a quench. This maximum local temperature should be $<130 \mathrm{~K}(50 \mathrm{~K}+80 \mathrm{~K})$, so that thermal expansion effects, which are remarkable beyond 80 K , in
the coil are manageable less than 50 K .

Figure 35.27: Ratio of stored energy to cold mass for major detector solenoids. Gray indicates magnets no longer in operation.

35.11.3 Toroidal magnets

Toroidal coils uniquely provide a closed magnetic field without the necessity of an iron flux-return yoke. Because no field exists at the collision point and along the beam line, there is, in principle, no effect on the beam. On the other hand, the field profile generally has $1 / r$ dependence. The particle momentum may be determined by measurements of the deflection angle combined with the sagitta. The deflection (bending) power $B L$ is

$$
\begin{equation*}
B L \approx \int_{R_{i}}^{R_{0}} \frac{B_{i} R_{i} d R}{R \sin \theta}=\frac{B_{i} R_{i}}{\sin \theta} \ln \left(R_{0} / R_{i}\right) \tag{35.50}
\end{equation*}
$$

where R_{i} is the inner coil radius, R_{0} is the outer coil radius, and θ is the angle between the particle trajectory and the beam line axis. The momentum resolution given by the deflection may be expressed as

$$
\begin{equation*}
\frac{\Delta p}{p} \propto \frac{p}{B L} \approx \frac{p \sin \theta}{B_{i} R_{i} \ln \left(R_{0} / R_{i}\right)} \tag{35.51}
\end{equation*}
$$

The momentum resolution is better in the forward/backward (smaller θ) direction. The geometry has been found to be optimal when $R_{0} / R_{i} \approx 3-4$. In practical designs, the coil is divided into $6-12$ lumped coils in order to have reasonable acceptance and accessibility. This causes the coil design to be much more complex. The mechanical structure needs to sustain the decentering force between adjacent coils, and the peak field in the coil is $3-5$ times higher than the useful magnetic field for the momentum analysis [309].

35.12 Measurement of particle momenta in a uniform magnetic field

The trajectory of a particle with momentum p (in GeV / c) and charge ze in a constant magnetic field \vec{B} is a helix, with radius of curvature R and pitch angle λ. The radius of curvature and momentum component perpendicular to \vec{B} are related by

$$
\begin{equation*}
p \cos \lambda=0.3 z B R \tag{35.52}
\end{equation*}
$$

where B is in tesla and R is in meters.
The distribution of measurements of the curvature $k \equiv 1 / R$ is approximately Gaussian. The curvature error for a large number of uniformly spaced measurements on the trajectory of a charged particle in a uniform magnetic field can be approximated by

$$
\begin{array}{ll}
& (\delta k)^{2}=\left(\delta k_{\mathrm{res}}\right)^{2}+\left(\delta k_{\mathrm{ms}}\right)^{2}, \\
\text { where } & \begin{array}{l}
= \\
\delta k \\
\delta k_{\mathrm{res}}
\end{array}=\text { curvature error } \\
& \\
& \text { resolution }
\end{array}
$$

If many (≥ 10) uniformly spaced position measurements are made along a trajectory in a uniform medium,

$$
\begin{equation*}
\delta k_{\mathrm{res}}=\frac{\epsilon}{L^{\prime 2}} \sqrt{\frac{720}{N+4}} \tag{35.54}
\end{equation*}
$$

where $N=$ number of points measured along track
$L^{\prime}=$ the projected length of the track onto the bending plane
$\epsilon=$ measurement error for each point, perpendicular to the trajectory.
If a vertex constraint is applied at the origin of the track, the coefficient under the radical becomes 320 .

For arbitrary spacing of coordinates s_{i} measured along the projected trajectory and with variable measurement errors ϵ_{i} the curvature error $\delta k_{\text {res }}$ is calculated from:

$$
\begin{equation*}
\left(\delta k_{\mathrm{res}}\right)^{2}=\frac{4}{w} \frac{V_{s s}}{V_{s s} V_{s^{2} s^{2}}-\left(V_{s s^{2}}\right)^{2}} \tag{35.55}
\end{equation*}
$$

where V are covariances defined as $V_{s} m_{s^{n}}=\left\langle s^{m} s^{n}-\right\rangle s^{m}\left\langle s^{n}\right.$ with $\rangle s^{m}=w^{-1} \sum\left(s_{i}^{m} / \epsilon_{i}^{2}\right)$ and $w=\sum \epsilon_{i}{ }^{-2}$.

The contribution due to multiple Coulomb scattering is approximately

$$
\begin{equation*}
\delta k_{\mathrm{ms}} \approx \frac{(0.016)(\mathrm{GeV} / c) z}{L p \beta \cos ^{2} \lambda} \sqrt{\frac{L}{X_{0}}} \tag{35.56}
\end{equation*}
$$

where $p=$ momentum (GeV / c)
$z=$ charge of incident particle in units of e
$L=$ the total track length
$X_{0}=$ radiation length of the scattering medium
(in units of length; the X_{0} defined elsewhere must be multiplied by density)
$\beta=$ the kinematic variable v / c.
More accurate approximations for multiple scattering may be found in the section on Passage of Particles Through Matter (Sec. 34 of this Review). The contribution to the curvature error is given approximately by $\delta k_{\mathrm{ms}} \approx 8 s_{\text {plane }}^{\mathrm{rms}} / L^{2}$, where $s_{\text {plane }}^{\mathrm{rms}}$ is defined there.

References

[1] T. Ferbel (ed.), Experimental Techniques in High Energy Physics, Addison-Wesley, Menlo Park, CA (1987).
[2] K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, Cambridge (1998).
[3] G.F. Knoll, Radiation Detection and Measurement, 3nd edition, John Wiley \& Sons, New York (1999).
[4] D.R. Green, The Physics of Particle Detectors, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge (2000).
[5] C. Leroy and P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific, Singapore (2004).
[6] C. Grupen, Particle Detectors, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press (2008).
[7] ICARUS Collab., ICARUS-TM/2001-09 [LGNS-EXP 13/89 add.2/01] (2001).
[8] H. Spieler, ieeetNS29,1142(1982).
[9] K. Arisaka, Nucl. Instrum. Meth. A442, 80 (2000).
[10] T. Hakamata (ed.), Photomultiplier Tubes: Basics and Applications, 3rd edition, Hamamatsu Photonics K.K., Hamamatsu (2006).
[11] A. Braem et al., Nucl. Instrum. Meth. A518, 574 (2004).
[12] R. Arnold et al., Nucl. Instrum. Meth. A314, 465 (1992).
[13] P. Mangeot et al., Nucl. Instrum. Methods A216, 79 (1983).
[14] R. Apsimon et al., IEEE Trans. NS33, 112 (1986).
[15] R. Arnold et al., Nucl. Instrum. Meth. A270, 255 (1988).
[16] D. Aston et al., Nucl. Instrum. Meth. A283, 582 (1989).
[17] J. Janesick, Scientific charge-coupled devices, SPIE Press, Bellingham, WA (2001).
[18] R. Haitz et al., J. Appl. Phys. 36, 3123 (1965).
[19] R. McIntyre, IEEE Trans. Electron Devices 13, 164 (1966).
[20] H. Dautet et al., Applied Optics, 32, 3894 (1993).
[21] Perkin-Elmer Optoelectronics, Avalanche Photodiodes: A User's Guide, (2003).
[22] P. Buzhan et al., Nucl. Instrum. Meth. A504, 48 (2003).
[23] Z. Sadygov et al., Nucl. Instrum. Methods A504, 301 (2003).
[24] V. Golovin and V. Savelev, Nucl. Instrum. Meth. A518, 560 (2004).
[25] M. Landstrass et al., Diam. \& Rel. Matter, 2, 1033 (1993).
[26] R. McKeag and R. Jackman, Diam. \& Rel. Matter, 7, 513 (1998).
[27] R. Brascia et al., Phys. Stat. Sol. 199, 113 (2003).
[28] M. Petrov, M. Stapelbroek, and W. Kleinhans, Appl. Phys. Lett. 51, 406 (1987).
[29] M. Atac and M. Petrov, IEEE Trans. NS36, 163 (1989).
[30] M. Atac et al., Nucl. Instrum. Meth. A314, 56 (1992).
[31] J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon, London (1964).
[32] D. Clark, Nucl. Instrum. Methods 117, 295 (1974).
[33] J. B. Birks, Proc. Phys. Soc. A64, 874 (1951).
[34] B. Bengston and M. Moszynski, Nucl. Instrum. Methods 117, 227 (1974) ; J. Bialkowski et al., Nucl. Instrum. Methods 117, 221 (1974).
[35] C. P. Achenbach (2004), [arXiv:nucl-ex/0404008].
[36] I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd edition, Academic Press, New York (1971).
[37] F. Sauli (ed.), Instrumentation in High Energy Physics, World Scientific, Singapore (1992), see pp. 218-279 by C. Zorn.
[38] T. Foerster, Ann. Phys. 2, 55 (1948).
[39] N. Zaitseva et al., Nucl. Instrum. Methods A668, 88 (2012)
[40] J.M. Fluornoy, Rad. Phys. and Chem. 41, 389 (1993).
[41] D. Horstman and U. Holm, Rad. Phys. and Chem. 41, 395 (1993).
[42] D. Blomker et al., Nucl. Instrum. Meth. A311, 505 (1992).
[43] K.F. Johnson and R.L. Clough (eds.), Proceedings of the International Conference on Radiation-Tolerant Plastic Scintillators and Detectors, Rad. Phys. and Chem. 41 (1993).
[44] S.R. Borenstein and R.C. Strand, IEEE Trans. NS31, 396 (1984).
[45] P. Sonderegger, Nucl. Instrum. Meth. A257, 523 (1987).
[46] P. Achenbach et al., Nucl. Instrum. Meth. A593, 353 (2008), [arXiv:0802.2830].
[47] C. M. Hawkes et al., Nucl. Instrum. Meth. A292, 329 (1990).
[48] S.E. Derenzo, W.-S. Choong and W.W. Moses, Phys. Med. Biol. 59, 3261 (2014).
[49] C. Melcher and J. Schweitzer, Nucl. Instrum. Methods A314, 212 (1992).
[50] D.W. Cooke et al., J. Appl. Phys. 88, 7360 (2000).
[51] J.M. Chen et al., IEEE Trans. NS54, 718 (2007).
[52] J.M. Chen et al., IEEE Trans. NS54, 1319 (2007).
[53] E.V.D. van Loef et al., Nucl. Instrum. Methods A486, 254 (2002).
[54] W. Drozdowski et al., IEEE Trans. NS55, 1391 (2008).
[55] M.S. Alekhin et al., Appl. Phys. Lett. 102, 161915 (2013).
[56] C. Kuntner et al. (Crystal Clear), Nucl. Instrum. Meth. A493, 131 (2002).
[57] N. Akchurin et al., Nucl. Instrum. Meth. A595, 359 (2008).
[58] A. Para, FERMILAB-CONF-11-519-CD (2011).
[59] H. Wenzel et al., FERMILAB-PUB-11-531-CD-E (2011).
[60] R.H. Mao, L.Y. Zhang and R.Y. Zhu, IEEE Trans. NS59, 2229 (2012).
[61] R. Y. Zhu, TIPP 2017, SPPHY 213, 70 (2018).
[62] C. Hu et al., IEEE Trans. NS66, DOI: 10.1109/TNS.2019.2918305 (2019).
[63] W.W. Moses, W.-S. Choong and S.E. Derenzo, Acta Physica Polonica B7, 725 (2014).
[64] R.H. Mao, L.Y. Zhang and R.Y. Zhu, IEEE Trans. NS55, 2425 (2008).
[65] B.D. Rooney and J.D. Valentine, IEEE Trans. NS44, 509 (1997).
[66] W.W. Moses et al., IEEE Trans. NS55, 1049 (2008).
[67] G. Gratta, H. Newman and R. Y. Zhu, Ann. Rev. Nucl. Part. Sci. 44, 453 (1994).
[68] R. Y. Zhu, Nucl. Instrum. Meth. A413, 297 (1998).
[69] F. Yang et al., IEEE Trans. NS63, 612 (2016).
[70] F. Yang et al., IEEE Trans. NS64, 665 (2017).
[71] C. Hu et al., Journal of Physics: Conference Series (Calor2018), 1162012020 (2019).
[72] G. Dissertori et al., Nucl. Instrum. Methods 745, 1 (2014), and references therein.
[73] S. Ecklund, C. Field and G. Mazaheri, Nucl. Instr. and Meth. Res. Sect. A463, 68 (2001).
[74] M. G. Albrow et al., JINST 7, P10027 (2012), [arXiv:1207.7248].
[75] B. Aubert et al. (BaBar), Nucl. Instr. and Meth. Res. Sect. A479, 1 (2002), [hep-ex/0105044].
[76] E. Torassa (Belle-II PID Group), Nucl. Instr. and Meth. Res. Sect. A824, 152 (2016).
[77] G. Bayatian et al. (CMS), Eur. Phys. J. C53, 139 (2008).
[78] Y. Fukuda et al. (Super-Kamiokande), Nucl. Instrum. Meth. A501, 418 (2003).
[79] Proceedings of the International Workshops on Ring Imaging Cherenkov Detectors, Nucl. Instr. and Meth. Res. Sect. A343, 1 (1993); Nucl. Instr. and Meth. Res. Sect. A371, 1 (1996); Nucl. Instr. and Meth. Res. Sect. A433, 1 (1999); Nucl. Instr. and Meth. Res. Sect. A502, 1 (2003); Nucl. Instr. and Meth. Res. Sect. A553, 1 (2005); Nucl. Instr. and Meth. Res. Sect. A595, 1 (2008); Nucl. Instr. and Meth. Res. Sect. A639, 1 (2011); Nucl. Instr. and Meth. Res. Sect. A766, 1 (2014); Nucl. Instr. and Meth. Res. Sect. A876, 1 (2017); Nucl. Instr. and Meth. Res. Sect. A 952, 1 (2019).
[80] J. Litt and R. Meunier, Ann. Rev. Nucl. Part. Sci. 23, 1 (1973).
[81] D. Bartlett et al., Nucl. Instr. and Meth. Res. Sect. A260, 55 (1987).
[82] A. Abashian et al., Nucl. Instr. and Meth. Res. Sect. A479, 117 (2002).
[83] B. N. Ratcliff, Nucl. Instr. and Meth. Res. Sect. A502, 211 (2003).
[84] T. Iijima et al., Nucl. Instr. and Meth. Res. Sect. A548, 383 (2005), [arXiv:physics/0504220].
[85] W. Blum, W. Riegler, and L. Rolandi, Particle Detection with Drift Chambers, Springer-Verlag, Berlin (2008).
[86] L.G. Christophorou, Atomic and Molecular Radiation Physics, John Wiley \& Sons, Hoboken (1971).
[87] http://consult.cern.ch/writeup/magboltz/.
[88] H. Bichsel, Nucl. Instrum. Meth. A562, 154 (2006).
[89] H. Fischle, J. Heintze and B. Schmidt, Nucl. Instrum. Meth. A301, 202 (1991).
[90] http://rjd.web.cern.ch/rjd/cgi-bin/cross.
[91] A. Peisert and F. Sauli (1984).
[92] S. F. Biagi, Nucl. Instrum. Meth. A421, 1-2, 234 (1999).
[93] E. McDaniel and E. Mason, The Mobility and Diffusion of Ions in Gases, John Wiley \& Sons, Hoboken (1973); G. Schultz, G. Charpak and F. Sauli, Rev. Phys. Appl. 12, 1, 67 (1977).
[94] G.F. Knoll, Radiation Detection and Measurement, 3nd edition, John Wiley \& Sons, New York (1999).
[95] G. Charpak et al., Nucl. Instrum. Methods A62, 262 (1968).
[96] G. Charpak and F. Sauli, Ann. Rev. Nucl. Sci. 34, 285 (1984).
[97] W. Blum, W. Riegler, and L. Rolandi, Particle Detection with Drift Chambers, Springer-Verlag, Berlin (2008).
[98] T. Ferbel (ed.), Experimental Techniques in High Energy Physics, Addison-Wesley, Menlo Park, CA (1987), see "Principles of Operation of Multiwire Proportional and Drift Chambers".
[99] G. Charpak et al., Nucl. Instrum. Methods A167, 455 (1979).
[100] A.H. Walenta et al., Nucl. Instrum. Methods A92, 373 (1971).
[101] A. Breskin et al., Nucl. Instrum. Methods A124, 189 (1975).
[102] A. Breskin et al., Nucl. Instrum. Methods A156, 147 (1978).
[103] R. Bouclier et al., Nucl. Instrum. Meth. A265, 78 (1988), [,556(1987)].
[104] H. Drumm et al., Nucl. Instrum. Methods A176, 333 (1980).
[105] D.R. Nygren and J.N. Marx, Phys. Today 31N10, 46 (1978).
[106] http://consult.cern.ch/writeup/magboltz/ .
[107] http://www.ansoft.com.
[108] C. Grupen, Particle Detectors, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press (2008).
[109] P. S. Baringer et al., Nucl. Instrum. Meth. A254, 542 (1987).
[110] J. Virdee, Phys. Reports 403, 401 (2004).
[111] A. H. Walenta, Phys. Scripta 23, 354 (1981).
[112] J. Va'vra, ICFA Instrum. Bull. 24, 1 (2002), [,1(2002)].
[113] M. Aleksa et al., Nucl. Instrum. Meth. A446, 435 (2000).
[114] F. Sauli and A. Sharma, Ann. Rev. Nucl. Part. Sci. 49, 341 (1999).
[115] A. Oed, Nucl. Instrum. Meth. A263, 351 (1988), [,124(1988)].
[116] Y. Bagaturia et al. (HERA-B Inner Tracker), Nucl. Instrum. Meth. A490, 223 (2002), [ICFA Instrum. Bull.24,54(2002)], [hep-ex/0204011].
[117] A. Breskin et al., Nucl. Instrum. Methods A124, 189 (1975).
[118] J. Benlloch et al., IEEE Trans. NS45, 234 (1998).
[119] Y. Giomataris, Nucl. Instrum. Meth. A419, 239 (1998).
[120] F. Sauli, Nucl. Instrum. Meth. A386, 531 (1997); A. Bressan et al., Nucl. Instrum. Meth. A425, 262 (1999).
[121] S. Bachmann et al., Nucl. Instrum. Meth. A479, 294 (2002); A. Bressan et al., Nucl. Instrum. Meth. A424, 321 (1999).
[122] Y. Giomataris et al., Nucl. Instrum. Meth. A376, 29 (1996).
[123] J. Derre et al., Nucl. Instrum. Meth. A459, 523 (2001); G. Charpak et al., Nucl. Instrum. Meth. A478, 26 (2002).
[124] I. Giomataris et al., Nucl. Instrum. Meth. A560, 405 (2006), [arXiv:physics/0501003].
[125] S. Duarte Pinto et al., IEEE NSS Conf. Record N08-4, 1426 (2008).
[126] L. Periale et al., Nucl. Instrum. Meth. A478, 377 (2002), [arXiv:physics/0106048]; R. Chechik et al., Nucl. Instrum. Meth. A535, 303 (2004), [arXiv:physics/0404119]; A. Breskin et al., Nucl. Instrum. Meth. A598, 107 (2009), [arXiv:0807.2026].
[127] A. Di Mauro et al., Nucl. Instrum. Meth. A581, 225 (2007), [arXiv:0706.0102].
[128] R. Bellazzini et al., Nucl. Instrum. Meth. A535, 477 (2004), [arXiv:physics/0403019]; M. Campbell et al., Nucl. Instrum. Meth. A540, 295 (2005), [arXiv:physics/0409048]; A. Bamberger et al., Nucl. Instrum. Meth. A573, 361 (2007), [arXiv:physics/0611229].
[129] M. Chefdeville et al., Nucl. Instrum. Meth. A556, 490 (2006).
[130] M. P. Titov, ICFA Instrum. Bull. 26, 002 (2004), [,199(2004)], [arXiv:physics/0403055].
[131] http://rd51-public.web.cern.ch/RD51-Public.
[132] D.R. Nygren and J.N. Marx, Phys. Today 31N10, 46 (1978).
[133] J. Alme et al., Nucl. Instrum. Meth. A622, 316 (2010), [arXiv:1001.1950].
[134] N. Abgrall et al. (T2K ND280 TPC), Nucl. Instrum. Meth. A637, 25 (2011), [arXiv:1012.0865].
[135] A. H. Walenta et al., Nucl. Instrum. Meth. 161, 45 (1979).
[136] H. Aihara et al., IEEE Trans. NS30, 63 (1983).
[137] T. A. collaboration (ALICE) (2014).
[138] K. Dehmelt (sPHENIX), PoS MPGD2017, 044 (2019).
[139] P. Colas, I. Giomataris and V. Lepeltier, Nucl. Instrum. Meth. A535, 226 (2004).
[140] X. Artru, G. B. Yodh and G. Mennessier, Phys. Rev. D12, 1289 (1975).
[141] E. J. Schioppa et al., Nucl. Instrum. Meth. A936, 523 (2019).
[142] M. L. Cherry et al., Phys. Rev. D10, 3594 (1974).
[143] J. Alozy et al., Nucl. Instrum. Meth. A927, 1 (2019), [arXiv:1901.11265].
[144] B. Dolgoshein, Nucl. Instrum. Meth. A326, 434 (1993).
[145] A. Andronic and J. P. Wessels, Nucl. Instrum. Meth. A666, 130 (2012).
[146] S. Acharya et al. (ALICE), Nucl. Instrum. Meth. A881, 88 (2018), [arXiv:1709.02743].
[147] T. Akesson et al. (ATLAS TRT), Nucl. Instrum. Meth. A522, 131 (2004).
[148] M. Ambriola et al., Nucl. Instrum. Meth. A522, 77 (2004).
[149] J. Adelman (ATLAS), Nucl. Instrum. Meth. A706, 33 (2013).
[150] T. Kirn (AMS 02 TRD), Nucl. Instrum. Meth. A706, 43 (2013).
[151] P. Nevski, Nucl. Instrum. Meth. A522, 116 (2004).
[152] V. M. Grishin and S. S. Sadilov, Nucl. Instrum. Meth. A522, 122 (2004).
[153] B. Beischer et al., Nucl. Instrum. Meth. A583, 485 (2007).
[154] T. Akesson et al. (ATLAS TRT), Nucl. Instrum. Meth. A412, 200 (1998).
[155] M. Petris et al., Nucl. Instrum. Meth. A714, 17 (2013).
[156] M. L. Cherry, Nucl. Instrum. Meth. A706, 39 (2013).
[157] M. Brigida et al., Nucl. Instrum. Meth. A706, 69 (2013).
[158] F. Hartjes et al., Nucl. Instrum. Meth. A706, 59 (2013).
[159] V. V. Berdnikov et al., Nucl. Instrum. Meth. A706, 65 (2013).
[160] R. Santonico and R. Cardarelli, Nucl. Instrum. Methods A187, 377 (1981).
[161] V.V. Parkhomchuck, Yu.N. Pestov, and N.V. Petrovykh, Nucl. Instrum. Methods 93, 269 (1971).
[162] E. Cerron Zeballos et al., Nucl. Instrum. Meth. A374, 132 (1996).
[163] R. Cardarelli, A. Di Ciaccio and R. Santonico, Nucl. Instrum. Meth. A333, 399 (1993).
[164] P. Camarri et al., Nucl. Instrum. Meth. A414, 317 (1998).
[165] G. Aielli et al., Nucl. Instrum. Meth. A508, 6 (2003).
[166] R. Cardarelli, R. Santonico and V. Makeev, Nucl. Instrum. Meth. A382, 470 (1996).
[167] I. Crotty et al., Nucl. Instrum. Methods A505, 203 (2006).
[168] R. Santonico, Nucl. Instrum. Meth. A456, 1 (2000).
[169] W. Riegler and D. Burgarth, Nucl. Instrum. Meth. A481, 130 (2002).
[170] R. Cardarelli et al., JINST 8, P01003 (2013).
[171] G. Aielli et al., JINST 9, 09, C09030 (2014).
[172] R. Santonico, JINST 9, 11, C11007 (2014).
[173] G. Aad et al. (ATLAS), JINST 3, S08003 (2008).
[174] S. Chatrchyan et al. (CMS), JINST 3, S08004 (2008).
[175] R. Santonico, Nucl. Instrum. Meth. A661, S2 (2012).
[176] M. Bedjidian et al., JINST 6, P02001 (2011), [arXiv:1011.5969].
[177] P. Fonte, A. Smirnitsky and M. C. S. Williams (ALICE), Nucl. Instrum. Meth. A443, 201 (2000).
[178] L. Paolozzi et al., PoS RPC2012, 065 (2012).
[179] S. An et al., Nucl. Instrum. Meth. A594, 39 (2008).
[180] C. Iacobaeus et al., Nucl. Instrum. Meth. A513, 244 (2003), [arXiv:physics/0210006].
[181] G. Aielli et al., Nucl. Instrum. Meth. A456, 82 (2000).
[182] G. Aielli et al., IEEE Trans. NS53, 567 (2006).
[183] H. Sakai et al., Nucl. Instrum. Meth. A484, 153 (2002).
[184] R. Santonico, JINST 8, P04023 (2013).
[185] L. Lopes et al., Nucl. Instrum. Meth. A533, 69 (2004).
[186] H. Spieler, Semiconductor Detector Systems, Oxford Univ. Press, Oxford (2005).
[187] F. Scholze et al., Nucl. Instrum. Methods A439, 208 (2000).
[188] G. Lindstrom et al. (ROSE), Nucl. Instrum. Meth. A465, 60 (2000), [,280(2000)].
[189] C. Da Via et al., Nucl. Instrum. Meth. A509, 86 (2003).
[190] G. Kramberger et al., Nucl. Instrum. Meth. A481, 297 (2002).
[191] O. Krasel et al., IEEE Trans. NS51, 3055 (2004).
[192] G. Lindstrom, M. Moll and E. Fretwurst, Nucl. Instrum. Meth. A426, 1 (1999).
[193] A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects, 2nd edition, Oxford Univ. Press, Oxford (2002).
[194] V. Radeka, IEEE Trans. NS15, 455 (1968).
[195] V. Radeka, IEEE Trans. NS21, 51 (1974).
[196] F. S. Goulding, Nucl. Instrum. Meth. 100, 493 (1972).
[197] F.S. Goulding and D.A. Landis, IEEE Trans. NS29, 1125 (1982).
[198] H. Spieler, IEEE Trans. NS29, 1142 (1982).
[199] H. Spieler, Semiconductor Detector Systems, Oxford Univ. Press, Oxford (2005).
[200] R. Wigmans, Calorimetry, International Series of Monographs on Physics, Oxford University Press (2017).
[201] W.R. Nelson, H. Hirayama, and D.W.O. Rogers, SLAC-265 (1985) .
[202] R. Brun et al., CERN DD/EE/84-1 (1987).
[203] ATLAS Collab., CERN/LHCC 96-41 (1996).
[204] D. Hitlin et al., Nucl. Instrum. Meth. 137, 225 (1976).
[205] W. J. Willis and V. Radeka, Nucl. Instrum. Meth. 120, 221 (1974).
[206] R. Wigmans, Calorimetry: Energy Measurement in Particle Physics, Inter. Series of Monographs on Phys. 107, Second Edition, Oxford Schlarship Online (2017).
[207] R.Y. Zhu, Journal of Physics: Conference Series 587, 012055 (2015).
[208] CMS Collab., CERN/LHCC 97-33 (1997).
[209] C. Leroy and P. Rancoita, Rept. Prog. Phys. 63, 505 (2000).
[210] N. Akchurin et al., Nucl. Instrum. Meth. A399, 202 (1997).
[211] B. Aubert et al., Nucl. Instrum. Meth. A321, 467 (1992).
[212] A. Artamonov et al., JINST 3, P02010 (2008).
[213] F. Ariztizabal et al. (RD-34), Nucl. Instrum. Meth. A349, 384 (1994).
[214] E. Borchi et al. (SICAPO), Nucl. Instrum. Meth. A279, 57 (1989).
[215] G. Abbiendi, R. G. Kellogg and D. M. Strom, in "Calorimetry in particle physics. Proceedings, 10th International Conference, CALOR 2002, Pasadena, USA, March 25-29, 2002," 287-295 (2002), [hep-ex/0206074].
[216] S. C. Berridge et al., IEEE Trans. Nucl. Sci. 39, 1242 (1992).
[217] E. Borchi et al., IEEE Transactions on Nuclear Science 40, 508 (1993).
[218] https://twiki.cern.ch/twiki/bin/view/CALICE/CaliceDetectors.
[219] F. Sefkow and F. Simon (CALICE), J. Phys. Conf. Ser. 1162, 1, 012012 (2019), [arXiv:1808.09281].
[220] D. E. Groom, in "ECFA Study Week on Instrumentation Technology for High Luminosity Hadron Colliders Barcelona, Spain, September 14-21, 1989," URL http://lss. fnal.gov/cgi-bin/find_paper.pl?other/ssc/ssc-227.pdf.
[221] T. A. Gabriel et al., Nucl. Instrum. Meth. A338, 336 (1994).
[222] D. E. Groom, Nucl. Instrum. Meth. A572, 633 (2007), erratum: Nucl. Instrum. Meth. A593, 628 (2008).
[223] N. Akchurin et al., Nucl. Instr. Methods A408, 380 (1998); An energy-independent analysis of these data is given in [222].
[224] P. Adragna et al., Nucl. Instrum. Meth. A615, 158 (2010).
[225] F. Lemeilleur et al., Physics Letters B 222, 3, 518 (1989), ISSN 0370-2693, URL http://www.sciencedirect. com/science/article/pii/0370269389903560.
[226] H. Abramowicz et al., Nucl. Instrum. Meth. 180, 429 (1981).
[227] B. Andrieu et al. (H1 Calorimeter Group), Nucl. Instrum. Meth. A336, 499 (1993).
[228] C. Cojocaru et al. (ATLAS), Nucl. Instrum. Meth. A531, 3, 481 (2004).
[229] C. Adloff et al. (CALICE), J. Instr. 7, 09, P09017 (2012).
[230] C. Adloff et al. (CALICE), JINST 8, 07005 (2013).
[231] C. W. Fabjan et al., Phys. Lett. 60B, 105 (1975).
[232] C. Leroy, J. Sirois, and R. Wigmans, Nucl. Instrum. Methods A252, 4 (1986).
[233] J. Brau et al., Nucl. Instrum. Meth. A238, 489 (1985).
[234] H. Brückmann and H. Kowalski, ZEUS Int. Note 86/026 DESY, Hamburg (1986).
[235] R. Wigmans, Nucl. Instrum. Meth. A259, 389 (1987).
[236] R. Wigmans, Nucl. Instrum. Meth. A265, 273 (1988).
[237] T. Akesson et al., Nucl. Instrum. Meth. A241, 17 (1985).
[238] T. Akesson et al., Nucl. Instrum. Meth. A262, 243 (1987).
[239] E. Bernardi et al., Nucl. Instrum. Meth. A262, 229 (1987).
[240] G. Drews et al., Nucl. Instrum. Meth. A290, 335 (1990).
[241] G. R. Young et al., Nucl. Instrum. Meth. A279, 503 (1989).
[242] A. Andresen et al. (ZEUS Calorimeter Group, ZEUS), Nucl. Instrum. Meth. A309, 101 (1991).
[243] www-zeus.desy.de/bluebook/ch05/subsection2_4_15_3.html
[244] D. Acosta et al., Nucl. Instrum. Meth. A308, 481 (1991).
[245] S. Abachi et al. (D0), Nucl. Instrum. Meth. A338, 185 (1994).
[246] P. Mockett, SLAC-267, 335 (1983).
[247] D.R. Winn and W.A. Worstell, "Compensating Hadron Calorimeters with Cerenkov Light", IEEE TNS, NS-36, 334 (1989).
[248] R. Wigmans, Proc. 7th Inter. Conf. on Calorimetry in High Energy Physics, 182 World Scientific, River Edge, NJ, (1998);
[249] S. Lee, M. Livan and R. Wigmans, Rev. Mod. Phys. 90, 2, 025002 (2018).
[250] D. E. Groom, Nucl. Instrum. Meth. A705, 24 (2013).
[251] J.-C. Brient, J. Phys. Conf. Ser. 160, 012025 (2009).
[252] F. Sefkow et al., Rev. Mod. Phys. 88, 015003 (2016).
[253] J. Apostolakis et al., J. Phys. Conf. Ser. 160, 012073 (2009).
[254] J. Allison et al., Nucl. Instrum. Meth. A835, 186 (2016).
[255] M. Holder et al., Nucl. Instrum. Meth. 151, 69 (1978).
[256] R.K. Bock, T. Hansl-Kozanecka, and T.P. Shah, Nucl. Instrum. Methods 186, 533 (1981) Y.A. Kulchitsky and V.B. Vinogradov, Nucl. Instrum. Methods A455, 499 (2000).
[257] Y.A. Kulchitsky and V.B. Vinogradov, Nucl. Instrum. Methods A455, 499 (2000).
[258] D. Acosta et al., Nucl. Instrum. Meth. A316, 184 (1992).
[259] N. Akchurin et al., Nucl. Instrum. Meth. A735, 120 (2014).
[260] W. Walkowiak, Nucl. Instrum. Meth. A449, 288 (2000).
[261] E. Shibamura et al., Nucl. Instrum. Methods A316, 184 (1975).
[262] L. S. Miller, S. Howe and W. E. Spear, Phys. Rev. 166, 871 (1968).
[263] A.M. Kalinin et al., ATLAS-LARG-NO-058 (1996).
[264] K. Yoshino, U. Sowada and W. F. Schmidt, Phys. Rev. A14, 438 (1976).
[265] A.O. Allen et al., NSRDS-NBS-58 (1976).
[266] P. Benetti et al., Nucl. Instrum. Methods A32, 361 (1993).
[267] G. Danby et al., Phys. Rev. Lett. 9, 36 (1962).
[268] S. van der Meer (1961).
[269] J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012), [arXiv:1305.7513].
[270] H. Faissner, "CERN Spark Chamber Neutrino Experiment", INSPIRE-1377455.
[271] H. Faissner et al., Phys. Lett. 68B, 377 (1977).
[272] F. J. Hasert et al. (Gargamelle Neutrino), Nucl. Phys. B73, 1 (1974).
[273] N. Armenise et al. (BEBC TST Neutrino), Phys. Lett. 81B, 385 (1979).
[274] A.E. Asratien et al., Phys. Lett. 79, 497 (1978).
[275] S. J. Barish et al., Phys. Rev. D16, 3103 (1977).
[276] N. J. Baker et al., Phys. Rev. D23, 2499 (1981).
[277] J. W. Chapman et al., Phys. Rev. D14, 5 (1976).
[278] M. Holder et al., Nucl. Instrum. Meth. 148, 235 (1978).
[279] I. Ambats et al. (MINOS) (1998).
[280] K. Abe et al. (T2K), Nucl. Instrum. Meth. A659, 106 (2011), [arXiv:1106.1238].
[281] M. H. Ahn et al. (K2K), Phys. Rev. D74, 072003 (2006), [hep-ex/0606032].
[282] A. A. Aguilar-Arevalo et al. (MiniBooNE), Nucl. Instrum. Meth. A599, 28 (2009), [arXiv:0806.4201].
[283] A. C. Benvenuti et al., Nucl. Instrum. Meth. 125, 447 (1975).
[284] C. Athanassopoulos et al. (LSND), Nucl. Instrum. Meth. A388, 149 (1997), [arXiv:nucl-ex/9605002].
[285] D. S. Ayres et al. (NOvA) (2007).
[286] K. Hiraide et al. (SciBooNE), Phys. Rev. D78, 112004 (2008), [arXiv:0811.0369].
[287] C. Rubbia, CERN-EP-INT-77-08 (1977).
[288] S. Amerio et al. (ICARUS), Nucl. Instrum. Meth. A527, 329 (2004).
[289] C. Anderson et al., JINST 7, 10020 (2012).
[290] H. Chen et al., FERMILAB-PROPOSAL-0974 (2007).
[291] D. H. Perkins, Nature 159, 126 (1947).
[292] S. Aoki et al., Nucl. Instrum. Meth. A447, 361 (2000).
[293] N. Uhida et al., Nucl. Instrum. Methods 224, 50 (1984).
[294] K. Kodama et al., Nucl. Instrum. Meth. B93, 340 (1994).
[295] T. Adam et al., Nucl. Instrum. Meth. A577, 523 (2007), [arXiv:physics/0701153].
[296] D. Di Ferdinando (OPERA), Radiat. Meas. 44, 840 (2009), [arXiv:0812.0451].
[297] R. Acquafredda et al. (OPERA), New J. Phys. 8, 303 (2006), [hep-ex/0611023].
[298] T. Fukuda et al., PTEP 2017, no. 6, 063C02 (2017).
[299] A. N. Diddens et al. (CERN-Hamburg-Amsterdam-RomeMoscow), Nucl. Instrum. Meth. 178, 27 (1980).
[300] D. Geiregat et al. (CHARM-II), Nucl. Instrum. Meth. A325, 92 (1993).
[301] L. A. Ahrens et al., Nucl. Instrum. Meth. A254, 515 (1987).
[302] G. Gidal, LBL-91 Suppl., Rev. (1985).
[303] W. K. Sakumoto et al., Nucl. Instrum. Meth. A294, 179 (1990).
[304] D. A. Harris et al. (NuTeV), Nucl. Instrum. Meth. A447, 377 (2000), [hep-ex/9908056].
[305] J. Altegoer et al. (NOMAD), Nucl. Instrum. Meth. A404, 96 (1998).
[306] L. Aliaga et al. (MINERvA), Nucl. Instrum. Meth. A743, 130 (2014), [arXiv:1305.5199].
[307] A. Yamamoto, Nucl. Instrum. Meth. A453, 445 (2000).
[308] A. Yamamoto and Y. Makida, Nucl. Instrum. Meth. A494, 255 (2002).
[309] T. M. Taylor, Phys. Scripta 23, 459 (1981).
[310] R. L. Gluckstern, Nucl. Instrum. Meth. 24, 381 (1963).
[311] V. Karimaki, Nucl. Instrum. Meth. A410, 284 (1998).

36. Particle Detectors for Non-Accelerator Physics

36.1 Introduction 589
36.2detectors589
36.2.1 Atmospheric fluorescence detectors 589
36.2.2 Atmospheric Cherenkov telescopes for high- energy gamma ray astronomy 591
36.3 Large neutrino detectors 592
36.3.1 Deep liquid detectors for rare processes 592
36.3.2 Neutrino telescopes. 594
36.3.3 Radio emission from (ultra-)high energy particle showers 598
36.4 Large time-projection chambers for rare event detection 601
36.4.1 Dark matter and other low energy signals 601
36.4.2 $0 \nu \beta \beta$ Decay 603
36.5 Sub-Kelvin detectors 603
36.5.1 Equilibrium thermal detectors 603
36.5.2 Nonequilibrium Detectors 604
36.6 Low-radioactivity background techniques 605
36.6.1 Defining the problem 606
36.6.2 Environmental radioactivity 606
36.6.3 Radioactive impurities in detector and shielding components 606
36.6.4 Radon and its progeny 607
36.6.5 Cosmic rays 608
36.6.6 Neutrons 608

36.1 Introduction

Non-accelerator experiments have become increasingly important in particle physics. These include cosmic ray experiments (with surface, space and underground detectors), neutrino oscillation measurements with solar and atmospheric neutrinos in underground laboratories, searches for neutrino-less double beta decays and dark matter candidates again in underground laboratories, and searches for more exotic phenomena. The detectors are in the majority of the cases different from those used at accelerators. Even when the detectors are based on the same physics (e. g. tracking detectors), they are employed in radically different ways. The methods range from atmospheric scintillation detectors to massive Cherenkov detectors, from large liquid scintillator detectors to dual phase TPCs, from ultrapure ionization calorimeters to cryogenic solid state detectors. With the exception of the cosmic ray detectors, techniques for producing and testing radiologically ultra-pure materials are constantly developed. Progress is linked to pushing forward the ultra-low background frontier. In this section, some important technologies relevant for detectors on the surface and underground are discussed. Space-based detectors also use some unique instrumentation, but these are beyond the present scope of this review.

36.2 High-energy cosmic-ray hadron and gamma-ray detectors

36.2.1 Atmospheric fluorescence detectors

Revised August 2019 by L.R. Wiencke (Colorado School of Mines).
Cosmic-ray fluorescence detectors (FDs) use the atmosphere as a giant calorimeter to measure isotropic scintillation light that traces the development profiles of extensive air showers. An extensive air shower (EAS) is produced by the interactions of ultra high-energy ($E>10^{17} \mathrm{eV}$) subatomic particles in the stratosphere and upper troposphere. The amount of scintillation light generated by an EAS is proportional to the energy deposited in the atmosphere and nearly independent of the primary species. With energies extending beyond $10^{20} \mathrm{eV}$ these are the highest energy subatomic particles known to exist. In addition to particle arrival directions, energy spectra and primary composition, the astroparticle science investigated with FDs also includes multimessenger studies, searches for high energy photons, neutrinos, monopoles and deeply penetrating forms of dark matter.

Previous experiments with FDs included the pioneering Fly's Eye [1,2], and the High Resolution Fly's Eye (HiRes and HiRes prototype) [3]. The current generation of experiments include the Telescope Array (TA) [4] in the northern hemisphere, and the much larger Pierre Auger Observatory (Auger) [5] in the southern hemisphere. Both are hybrid observatories. Their FD telescopes overlook sparse arrays of particle detectors on the ground. Select parameters are listed in Table 36.1. TA and Auger have each one FD site populated with additional telescopes that view up to 60° in elevation to measure lower EASs using a combination of scintillation and direct Cherenkov light. The Auger FD also measures UV scintillation that traces the development of atmospheric transient luminous events called "Elves" that are initiated by lightning [6]. At TA a prototype FD telescope, dubbed FAST [7], has observed EASs using wide field of view PMTs and fast timing.
The fluorescence light is emitted primarily between 290 and 430 nm (Figure 36.1) with major lines at 337, 357, and 391 nm , when relativistic charged particles, primarily electrons and positrons, excite nitrogen molecules in air, resulting in transitions of the 1 P and 2 P systems. Reviews and references for the pioneering and recent laboratory measurements of fluorescence yield, $Y(\lambda, P, T, u)$, including dependence on wavelength (λ), temperature (T), pressure (p), and humidity (u) may be found in Refs. [8-10]. The results of various laboratory experiments have been combined (Figure 36.2) to obtain an absolute average and uncertainty for $\mathrm{Y}(337 \mathrm{~nm}, 800 \mathrm{hPa}, 293 \mathrm{~K}$, dry air) of $7.04 \pm 0.24 \mathrm{ph} / \mathrm{MeV}$ after corrections for different electron beam energies and other factors. The units of $\mathrm{ph} / \mathrm{MeV}$ correspond to the number of fluorescence photons produced per MeV of energy deposited in the atmosphere by the electromagnetic component of an EAS.

Figure 36.1: Measured fluorescence spectrum excited by 3 MeV electrons in dry air at 800 hPa and 293 K . Airfly experiment. Figure from Ref [11].

An FD element (telescope) consists of a non-tracking spherical mirror of less than astronomical quality, a close-packed "camera" of photomultiplier tubes (PMTs) near the focal plane, and a flash ADC readout system with a pulse and track-finding trigger scheme $[5,13]$. The major experiments listed in Table 36.1 all use conventional PMTs (for example, Hamamatsu R9508 or Photonis XP3062) with grounded cathodes and AC coupled readout. Segmented mirrors have been fabricated from slumped or slumped/polished glass with an anodized aluminum coating or fabricated using shaped aluminum that was then chemically anodized with $\mathrm{AlMgSiO}_{5}$. A broadband UV filter (custom fabricated or Schott MUG-6) reduces background light such as starlight, airglow, man-made light pollution, and airplane strobe-lights.

At $10^{20} \mathrm{eV}$, where the flux drops below $1 \mathrm{EAS} / \mathrm{km}^{2}$ century, the aperture for an eye of adjacent FD telescopes that span the horizon can reach $10^{4} \mathrm{~km}^{2}$ sr. FD operation requires (nearly) moonless nights and clear atmospheric conditions, which imposes a duty cycle of about 10%. Arrangements of LEDs, calibrated diffuse sources [14], pulsed UV lasers [15], LIDARs ${ }^{1}$ and IR detectors

[^69]Table 36.1: Parameters of major fluorescence detectors. Note 1: Year when all FD sites were operational. Note 2: At TA 1 of the 3 FD sites features 24 telescopes from the HiRes experiment. Note 3: A-C for one telescope where A is the full area and C the area obscured by the camera and support structures. Thus A-C is the effective light collecting area. For the modified Schmidt design at Auger, the area of the entrance pupil, A, is listed because the pupil is smaller than the mirror and thus defines the entrance aperture. For the other experiments, the area of the mirror, A, is listed

Observatory	Fly's Eye	HiRes	Telescope Array	Pierre Auger
Location	Dugway UT US	Dugway UT US	Delta UT US	Malargüe AR
Start-End	$1981-1992$	$1996-2006$	2008 -present	2005-present
Sites (note 1)	$2(1986)$	$2(1999)$	$3(2008)$	$4(2008)$
Separation	3.3 km	12.6 km	$31-40 \mathrm{~km}$	$39-62 \mathrm{~km}$
Telescopes/site	67,18	21,42	$12,12,14+10$	$6,6,6,6+3$
Pixel FOV	5.5°	1°	1°	1.5°
Telescope FOV	$\approx 18^{\circ} \times \approx 18^{\circ}$	$16^{\circ} \times 13.5^{\circ}$	$18^{\circ} \times 15^{\circ}($ note 2$)$	$30^{\circ} \times 28.1^{\circ}$
\quad Azi \times Elv				
Light collection area (note 3)	$1.95 \mathrm{~m}^{2}-0.25 \mathrm{~m}^{2}$	$3.72 \mathrm{~m}^{2}-0.5 \mathrm{~m}^{2}$	$6.8 \mathrm{~m}^{2}-0.85 \mathrm{~m}^{2}$	$3.80 \mathrm{~m}^{2}-0.80 \mathrm{~m}^{2}$
Energy Scale	$\leq 40 \%$	$\approx 20 \%$	$($ for 2 sites$)$	$($ modified schmidt)
Uncertainty			$\approx 20 \%$	14%

Figure 36.2: Fluorescence yield values and associated uncertainties at $337 \mathrm{~nm}\left(\mathrm{Y}_{337}\right)$ in dry air at 800 hPa and 293 K The methodology and corrections that were applied to obtain the average and the uncertainty are discussed extensively in this reference. The vertical axis denotes different laboratory experiments that measured FY. The gray bars show three of the original measurements to illustrate the scale of the corrections applied. Figure from Ref [12].
that are sensitive to clouds are used for photometric calibration, atmospheric calibration [16], and determination of exposure [17]. For purposes of optical transmission, the atmosphere is treated as having a dominant molecular component and a secondary aerosol component. The latter is well described [18] by molecular scattering theory and models derived from radiosonde measurements. The aerosol component can include dust, haze and pollution and the aerosol optical depth profile must be measured on site in the UV during FD data taking.

The EAS generates a track consistent with a light source moving at $v=c$ across the FOV. The number of photons $\left(N_{\gamma}\right)$ as a function of atmospheric depth (X) can be expressed as [9]

$$
\begin{equation*}
\frac{\mathrm{d} N_{\gamma}}{\mathrm{d} X}=\frac{d E_{\mathrm{dep}}^{\mathrm{tot}}}{d X} \int Y(\lambda, P, T, u) \cdot \tau_{\mathrm{atm}}(\lambda, X) \cdot \varepsilon_{\mathrm{FD}}(\lambda) \mathrm{d} \lambda \tag{36.1}
\end{equation*}
$$

where $\tau_{a t m}(\lambda, X)$ is the atmospheric transmission, including wavelength (λ) dependence, and $\varepsilon_{\mathrm{FD}}(\lambda)$ is the FD efficiency. $\varepsilon_{\mathrm{FD}}(\lambda)$ includes geometric factors and collection efficiency of the optics, quantum efficiency of the PMTs, and other throughput factors. The typical systematic uncertainties, $\tau_{\text {atm }}(10 \%)$ and $\varepsilon_{\text {FD }}$ (photometric calibration 10%), currently dominate the systematic uncertainty the absolute EAS energy scale. FD energy resolu-
systems that measure atmospheric properties from the light scattered backwards from laser pulses directed into the sky.
tion, defined as event-to-event statistical uncertainty, is typically less than 10% for final data samples used for science analysis.

Figure 36.3: Example light profile (left) of one EAS recorded by the Pierre Auger FD and the corresponding profile (right) of energy deposited in the atmosphere vs atmospheric slant depth. The light profiles include the estimated components of Cherenkov light that have been scattered out of the forward beam by the molecular and aerosol (Mie) components of the atmosphere. The reconstructed energy of this EAS was $3.0 \pm 0.2 \times 10^{19} \mathrm{eV}$. Figure from Ref [19].

Analysis methods to reconstruct the EAS profile and deconvolve the contributions of re-scattered scintillation light, and direct and scattered Cherenkov light are described in [1] and more recently in [20]. The EAS energy is typically obtained by integrating over the Gaisser-Hillas function [21]
$E_{\text {cal }}=\int_{0}^{\infty}\left[w_{\max }\left(\frac{X-X_{0}}{X_{\max }-X_{0}}\right)^{\left(X_{\max }-X_{0}\right) / \lambda} e^{(X \max -X) / \lambda}\right] \mathrm{d} X$,
where $E_{\text {cal }}$ is the energy of electromagnetic energy component of the EAS and $X_{\text {max }}$ is the atmospheric slant depth at which the shower reaches its maximum energy deposit rate. This maximum $\mathrm{dE} / \mathrm{dX}$ is denoted as $w_{\max } . X_{0}$ and λ are two shape parameters. The energy of the primary cosmic ray is obtained by correcting $E_{\text {cal }}$ upward by about 10% to account for the invisible energy carried by particles that do not interact in the atmosphere. Energy resolution, $\Delta E / E$, of $15-20 \%$ is achievable, provided the geometric fit of the EAS axis is constrained, typically by multi-eye stereo projection or hybrid observations, and the profile fit of EAS development along the track is constrained by the observed rise and fall about $X_{\max }$. An example of a recorded EAS light profile and its corresponding $\mathrm{dE} / \mathrm{dX}$ development profile are shown in Fig. 36.3.

The EAS generates a track consistent with a light source moving at $v=c$ across the FOV. The number of photons $\left(N_{\gamma}\right)$ as a function of atmospheric depth (X) can be expressed as [9]
$\mathrm{R} \& \mathrm{D}$ toward an FD in space is at the design and prototype phase. A proposed space based FD instrument [22] by the JEMEUSO collaboration would look down on the earth's atmosphere from space to view a much larger area than ground based instruments. Prototypes that have been built and flown include the TUS instrument [23], operated 2016-2018 onboard the Lomonosov satellite, and two FD telescopes flown on stratospheric balloons in 2014 [24] and 2017 [25]. The prototype instrument MiniEUSO [26] (25 cm diameter aperture), currently at the International Space Station (ISS), will survey terrestial UV emission by looking down through a UV window from inside the ISS beginning late 2019. The proposed POEMMA twin-satellite space mission [27] would record scintillation and Cherenkov light from EASs the atmosphere to measure UHECRs and PeV scale cosmogenic tau neutrinos.

36.2.2 Atmospheric Cherenkov telescopes for high-energy gamma ray astronomy

Revised August 2019 by J. Holder (Delaware U.; Delaware U., Bartol Inst.).

A wide variety of astrophysical objects are now known to produce high-energy γ-ray photons. Leptonic or hadronic particles, accelerated to relativistic energies in the source, produce γ-rays typically through inverse Compton boosting of ambient photons or through the decay of neutral pions produced in hadronic interactions. At energies below $\sim 30 \mathrm{GeV}, \gamma$-ray emission can be efficiently detected using satellite or balloon-borne instrumentation, with an effective area approximately equal to the size of the detector (typically $<1 \mathrm{~m}^{2}$). At higher energies, a technique with much larger effective collection area is desirable to measure astrophysical γ-ray fluxes, which decrease rapidly with increasing energy. Atmospheric Cherenkov detectors achieve effective collection areas of $>10^{5} \mathrm{~m}^{2}$ by employing the Earth's atmosphere as an intrinsic part of the detection technique.

As described in Chapter 30, a hadronic cosmic ray or high energy γ-ray incident on the Earth's atmosphere triggers a particle cascade, or air shower. Relativistic charged particles in the cascade generate Cherenkov radiation, which is emitted along the shower direction, resulting in a light pool on the ground with a radius of $\sim 130 \mathrm{~m}$. Cherenkov light is produced throughout the cascade development, with the maximum emission occurring when the number of particles in the cascade is largest, at an altitude of $\sim 10 \mathrm{~km}$ for primary energies of $100 \mathrm{GeV}-1 \mathrm{TeV}$. Following absorption and scattering in the atmosphere, the Cherenkov light at ground level peaks at a wavelength, $\lambda \approx 300-350 \mathrm{~nm}$. The photon density is typically ~ 100 photons $/ \mathrm{m}^{2}$ for a 1 TeV primary, arriving in a brief flash of a few nanoseconds duration. This Cherenkov pulse can be detected from any point within the light pool radius by using large reflecting surfaces to focus the Cherenkov light on to fast photon detectors (Fig. 36.4).

Modern atmospheric Cherenkov telescopes, such as those built and operated by the VERITAS [28], H.E.S.S. [29] and MAGIC [30]

Figure 36.4: A schematic illustration of an imaging atmospheric Cherenkov telescope array. The primary particle initiates an air shower, resulting in a cone of Cherenkov radiation. Telescopes within the Cherenkov light pool record elliptical images; the intersection of the long axes of these images indicates the arrival direction of the primary, and hence the location of a γ-ray source in the sky
collaborations, consist of large ($>100 \mathrm{~m}^{2}$) segmented mirrors on steerable altitude-azimuth mounts. A camera made from an array of photosensors is placed at the focus of each mirror and used to record a Cherenkov image of each air shower. In these imaging atmospheric Cherenkov telescopes, single-anode photomultipliers tubes (PMTs) have traditionally been used (2048, in the case of H.E.S.S. II), but silicon devices now feature in more modern designs. The telescope cameras typically cover a field-of-view of $3-10^{\circ}$ in diameter. Images are recorded at kHz rates, the vast majority of which are due to showers with hadronic cosmic-ray primaries. The shape and orientation of the Cherenkov images are used to discriminate γ-ray photon events from this cosmic-ray background, and to reconstruct the photon energy and arrival direction. γ-ray images result from purely electromagnetic cascades and appear as narrow, elongated ellipses in the camera plane. The long axis of the ellipse corresponds to the vertical extension of the air shower, and points back towards the source position in the field-of-view. If multiple telescopes are used to view the same shower ("stereoscopy"), the source position is simply the intersection point of the various image axes. Cosmic-ray primaries produce secondaries with large transverse momenta, which initiate sub-showers. Their images are consequently wider and less regular than those with γ-ray primaries and, since the original charged particle has been deflected by Galactic magnetic fields before reaching the Earth, the images have no preferred orientation.
The measurable differences in Cherenkov image orientation and morphology provide the background discrimination which makes ground-based γ-ray astronomy possible. For point-like sources, such as distant active galactic nuclei, modern instruments can reject over 99.999% of the triggered cosmic-ray events, while retaining up to 50% of the γ-ray population. In the case of spatially extended sources, such as Galactic supernova remnants, the background rejection is less efficient, but the technique can be used to produce γ-ray maps of the emission from the source. The angular resolution depends upon the number of telescopes which view the image and the energy of the primary γ-ray, but is typically less than 0.1° per event (68% containment radius) at energies above a few hundred GeV .

The total Cherenkov yield from the air shower is proportional to the energy of the primary particle. The image intensity, combined with the reconstructed distance of the shower core from each
telescope, can therefore be used to estimate the primary energy. The energy resolution of this technique, also energy-dependent, is typically $15-20 \%$ at energies above a few hundred GeV. Energy spectra of γ-ray sources can be measured over a wide range, depending upon the instrument characteristics, source properties (flux, spectral slope, elevation angle, etc.), and exposure time. The effective energy range is typically from 30 GeV to 100 TeV and peak sensitivity lies in the range from 100 GeV to a few TeV .
The first astrophysical source to be convincingly detected using the imaging atmospheric Cherenkov technique was the Crab Nebula [31], with an integral flux of 2.1×10^{-11} photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ above 1 TeV [32]. Modern imaging atmospheric Cherenkov telescopes have sensitivity sufficient to detect sources with less than 1% of the Crab Nebula flux in a few tens of hours. The TeV source catalog now consists of over 200 sources (see e.g. Ref. [33]). A large fraction of these were detected by scanning the Galactic plane from the southern hemisphere with the H.E.S.S. telescope array [34]. Recent reviews of the field include [35] and [36], and a historical overview can be found in [37].
Major upgrades of the existing telescope arrays have recently been completed, including the addition of a 28 m diameter central telescope to H.E.S.S. (H.E.S.S. II). Development is also underway for the next generation instrument, the Cherenkov Telescope Array (CTA), which will consist of a northern and a southern hemisphere observatory, with a combined total of more than 100 telescopes [38]. Telescopes of three different sizes are planned, spread over an area of $>1 \mathrm{~km}^{2}$, providing wider energy coverage, improved angular and energy resolutions, and an order of magnitude improvement in sensitivity relative to existing imaging atmospheric Cherenkov telescopes. Baseline telescope designs are similar to existing devices, but exploit technological developments such as dual mirror optics and silicon photo-detectors.

36.3 Large neutrino detectors

36.3.1 Deep liquid detectors for rare processes

Revised August 2018 by K. Scholberg (Duke U.) and C.W. Walter (Duke U.).

Deep, large detectors for rare processes tend to be multipurpose with physics reach that includes not only solar, reactor, supernova and atmospheric neutrinos, but also searches for baryon number violation, searches for exotic particles such as magnetic monopoles, and neutrino and cosmic-ray astrophysics in different energy regimes. The detectors may also serve as targets for long-baseline neutrino beams for neutrino oscillation physics studies. In general, detector design considerations can be divided into high-and low-energy regimes, for which background and event reconstruction issues differ. The high-energy regime, from about 100 MeV to a few hundred GeV , is relevant for proton decay searches, atmospheric neutrinos and high-energy astrophysical neutrinos. The low-energy regime (a few tens of MeV or less) is relevant for supernova, solar, reactor and geological neutrinos.

Large water Cherenkov and scintillator detectors (see Table 36.2) usually consist of a volume of transparent liquid viewed by photomultiplier tubes (PMTs) (see Sec 35.2); the liquid serves as active target. PMT hit charges and times are recorded and digitized, and triggering is usually based on coincidence of PMT hits within a time window comparable to the detector's light-crossing time. Because photosensors lining an inner surface represent a driving cost that scales as surface area, very large volumes can be used for comparatively reasonable cost. Some detectors are segmented into subvolumes individually viewed by PMTs, and may include other detector elements (e.g., tracking detectors). Devices to increase light collection, e.g., reflectors or waveshifter plates, may be employed. A common configuration is to have at least one concentric outer layer of liquid material separated from the inner part of the detector to serve as shielding against ambient background. If optically separated and instrumented with PMTs, an outer layer may also serve as an active veto against entering cosmic rays and other background events. The PMTs for large detectors typically range in size from 20 cm to 51 cm diameter, and typical quantum efficiencies are in the $20-25 \%$ range for scintillation and water-Cherenkov photons. PMTs with higher quantum
efficiencies, 35% or higher, have recently become available. The active liquid volume requires purification and there may be continuous recirculation of liquid. For large homogeneous detectors, the event interaction vertex is determined using relative timing of PMT hits, and energy deposition is determined from the number of recorded photoelectrons. A "fiducial volume" is usually defined within the full detector volume, some distance away from the PMT array. Inside the fiducial volume, enough PMTs are illuminated per event that reconstruction is considered reliable, and furthermore, entering background from the enclosing walls is suppressed by a buffer of self-shielding. PMT and detector optical parameters are calibrated using laser, LED, or other light sources. Quality of event reconstruction typically depends on photoelectron yield, pixelization and timing.

Because in most cases one is searching for rare events, large detectors are usually sited underground to reduce cosmic-ray-related background (see Chapter 30). The minimum depth required varies according to the physics goals [39].

36.3.1.1 Liquid scintillator detectors

Past and current large underground detectors based on hydrocarbon scintillators include LVD, MACRO, Baksan, Borexino, KamLAND and SNO+; JUNO is a future detector. Experiments at nuclear reactors include CHOOZ, Double CHOOZ, Daya Bay, and RENO. Organic liquid scintillators (see Section 35.3) for large detectors are chosen for high light yield and attenuation length, good stability, compatibility with other detector materials, high flash point, low toxicity, appropriate density for mechanical stability, and low cost. They may be doped with waveshifters and stabilizing agents. Popular choices are pseudocumene (1,2,4-trimethylbenzene) with a few g / L of the PPO (2,5-diphenyloxazole) fluor, and linear alkylbenzene (LAB). In a typical detector configuration there will be active or passive regions of undoped scintillator, non-scintillating mineral oil or water surrounding the inner neutrino target volume. A thin vessel or balloon made of nylon, acrylic or other material transparent to scintillation light may contain the inner target; if the scintillator is buoyant with respect to its buffer, ropes may hold the balloon in place. For phototube surface coverages in the $20-40 \%$ range, yields in the few hundreds of photoelectrons per MeV of energy deposition can be obtained. Typical energy resolution is about $7 \% / \sqrt{E(\mathrm{MeV})}$, and typical position reconstruction resolution is a few tens of cm at $\sim 1 \mathrm{MeV}$, scaling as $\sim N^{-1 / 2}$, where N is the number of photoelectrons detected.

Shallow detectors for reactor neutrino oscillation experiments require excellent muon veto capabilities. For $\bar{\nu}_{e}$ detection via inverse beta decay on free protons, $\bar{\nu}_{e}+p \rightarrow n+e^{+}$, the neutron is captured by a proton on a $\sim 180 \mu$ s timescale, resulting in a $2.2 \mathrm{MeV} \gamma$ ray, observable by Compton scattering and which can be used as a tag in coincidence with the positron signal. The positron annihilation γ rays may also contribute. Inverse beta decay tagging may be improved by addition of Gd at $\sim 0.1 \%$ by mass, which for natural isotope abundance has a $\sim 49,000$ barn cross-section for neutron capture (in contrast to the 0.3 barn crosssection for capture on free protons). Gd capture takes $\sim 30 \mu \mathrm{~s}$, and is followed by a cascade of γ rays adding up to about 8 MeV . Gadolinium doping of scintillator requires specialized formulation to ensure adequate attenuation length and stability.

Scintillation detectors have an advantage over water Cherenkov detectors in the lack of Cherenkov threshold and the high light yield. However, scintillation light emission is nearly isotropic, and therefore directional capabilities are relatively weak. Liquid scintillator is especially suitable for detection of low-energy events. Radioactive backgrounds are a serious issue, and include longlived cosmogenics. To go below a few MeV , very careful selection of materials and purification of the scintillator is required (see Section 36.6). Fiducialization and tagging can reduce background. One can also dissolve neutrinoless double beta decay $(0 \nu \beta \beta)$ isotopes in scintillator. This has been realized by KamLAND-Zen, which deployed a 1.5 m-radius balloon containing enriched Xe dissolved in scintillator inside KamLAND, and ${ }^{130} \mathrm{Te}$ is planned for $\mathrm{SNO}+$. Although for this approach, energy resolution is poor compared to other $0 \nu \beta \beta$ search experiments, the quantity of iso-

Table 36.2: Properties of large detectors for rare processes. If total target mass is divided into large submodules, the number of subdetectors is indicated in parentheses. Projects with first data expected in 2021 or later are indicated in italics.

Detector	Mass, kton (modules)	PMTs (diameter, cm)	ξ	p.e./MeV	Dates	
Baksan	0.33 , scint (3150)	1/module (15)	segmented	40	1980-	
MACRO	0.56 , scint (476)	2-4/module (20)	segmented	18	1989-2000	
LVD	1, scint. (840)	3/module (15)	segmented	15	1992-	
KamLAND	0.41^{*}, scint	$1325(43)+554(51)^{\dagger}$	34%	460	2002-	
Borexino	0.1^{*}, scint	2212 (20)	30\%	500	2007-	
SNO+	0.78 , scint ${ }^{\ddagger}$	9394 (20)	47\%	400-600	2019 (exp.)	
CHOOZ	0.005 , scint (Gd)	192 (20)	15\%	130	1997-1998	
Double Chooz	0.017, scint (Gd)(2)	534/module (20)	13\%	180	2011-	
Daya Bay	0.160, scint (Gd)(8)	192/module (20)	5.6\%§	100	2011-	
RENO	0.032, scint (Gd)(2)	342/module (25)	12.6\%	100	2011-	
JUNO	20.0*, scint	17613 (51)/25600 (8)	77.9\%	1200	2021 (exp.)	
IMB-1	$3.3 *$, $\mathrm{H}_{2} \mathrm{O}$	2048 (12.5)	1\%	0.25	1982-1985	
IMB-2	$3.3{ }^{*}, \mathrm{H}_{2} \mathrm{O}$	2048 (20)	4.5\%	1.1	1987-1990	
Kam I	0.88/0.78*, $\mathrm{H}_{2} \mathrm{O}$	1000/948 (51)	20\%	3.4	1983-1985	
Kam II	$1.04 *, \mathrm{H}_{2} \mathrm{O}$	948 (51)	20\%	3.4	1986-1990	
Kam III	1.04*, $\mathrm{H}_{2} \mathrm{O}$	948 (51)	20\% ${ }^{\text {¢ }}$	4.3	1990-1995	
SK I	22.5*, $\mathrm{H}_{2} \mathrm{O}$	11146 (51)	40\%	6	1996-2001	
SK II	22.5*, $\mathrm{H}_{2} \mathrm{O}$	5182 (51)	19\%	3	2002-2005	
SK III-V	22.5*, $\mathrm{H}_{2} \mathrm{O}$	11129 (51)	40\%	6	2006-	
SK-Gd	$22.5{ }^{*}, \mathrm{H}_{2} \mathrm{O}$ (Gd)	11129 (51)	40\%	6	2020 (exp.)	
Hyper-K	$187^{*}, \mathrm{H}_{2} \mathrm{O}^{\\| \prime}$	40000 (51)	40\%	12	2027 (exp.)	
SNO	1, $\mathrm{D}_{2} \mathrm{O} / 1.7, \mathrm{H}_{2} \mathrm{O}$	9438 (20)	$31 \% * *$	9	1999-2006	

* Indicates typical fiducial mass used for data analysis; this may vary by physics topic.
${ }^{\dagger}$ Measurements made before 2003 only considered data from the 43 cm PMTs.
${ }^{\ddagger}$ SNO+ ran with water fill from May 2017 to July 2019.
§ The effective Daya Bay coverage is 12% with top and bottom reflectors
${ }^{\top}$ The effective Kamiokande III coverage was 25% with light collectors.
${ }^{\|}$A second staged module is planned.
${ }^{* *}$ The effective SNO coverage was 54% with light collectors.
tope can be so large that the kinematic signature of $0 \nu \beta \beta$ would be visible as a clear feature in the spectrum.

36.3.1.2 Water Cherenkov detectors

Very large imaging water detectors reconstruct ten-meter-scale Cherenkov rings produced by charged particles (see Section 35.5). The first such large detectors were IMB and Kamiokande. The only currently existing instance of this class of detector, with fiducial mass of 22.5 kton and total mass of 50 kton, is SuperKamiokande (Super-K, SK). Hyper-Kamiokande (Hyper-K) plans at least one, and possibly two, detectors with 187-kton fiducial mass. For volumes of this scale, absorption and scattering of Cherenkov light are non-negligible, and a wavelength-dependent factor $\exp (-d / L(\lambda))$ (where d is the distance from emission to the sensor and $L(\lambda)$ is the attenuation length of the medium) must be included in the integral of Eq. (35.6) for the photoelectron yield. Attenuation lengths on the order of 100 meters have been achieved.

Cherenkov detectors are excellent electromagnetic calorimeters, and the number of Cherenkov photons produced by an e / γ is nearly proportional to its kinetic energy. For massive particles, the number of photons produced is also related to the energy, but not linearly. For any type of particle, the visible energy $E_{\text {vis }}$ is defined as the energy of an electron which would produce the same number of Cherenkov photons. The number of collected photoelectrons depends on the scattering and attenuation in the water along with the photo-cathode coverage, quantum efficiency and the optical parameters of any external light collection systems or protective material surrounding them. Event-by-event corrections are made for geometry and attenuation. For a typical case, in water $N_{\text {p.e. }} \sim 15 \xi E_{\text {vis }}(\mathrm{MeV})$, where ξ is the effective fractional photosensor coverage. Cherenkov photoelectron yield per MeV of energy is relatively small compared to that for scintillator, e.g., \sim $6 \mathrm{pe} / \mathrm{MeV}$ for Super-K with a PMT surface coverage of $\sim 40 \%$. In spite of light yield and Cherenkov threshold issues, the intrinsic directionality of Cherenkov light allows individual particle tracks to be reconstructed. Vertex and direction fits are performed us-
ing PMT hit charges and times, requiring that the hit pattern be consistent with a Cherenkov ring.

High-energy ($\sim 100 \mathrm{MeV}$ or more) neutrinos from the atmosphere or beams interact with nucleons; for the nucleons bound inside the ${ }^{16} \mathrm{O}$ nucleus, nuclear effects must be considered both at the interaction and as the particles leave the nucleus. Various event topologies can be distinguished by their timing and fit patterns, and by presence or absence of light in a veto. "Fullycontained" events are those for which the neutrino interaction final state particles do not leave the inner part of the detector; these have their energies relatively well measured. Neutrino interactions for which the lepton is not contained in the inner detector sample have higher-energy parent neutrino energy distributions. For example, in "partially-contained" events, the neutrino interacts inside the inner part of the detector but the lepton (almost always a muon, since only muons are penetrating) exits. "Upward-going muons" can arise from neutrinos which interact in the rock below the detector and create muons which enter the detector and either stop, or go all the way through (entering downward-going muons cannot be distinguished from cosmic rays). At high energies, multi-photoelectron hits are likely and the charge collected by each PMT (rather than the number of PMTs firing) must be used; this degrades the energy resolution to approximately $2 \% / \sqrt{\xi E_{\mathrm{vis}}(\mathrm{GeV})}$. The absolute energy scale in this regime can be known to $\sim 2-3 \%$ using cosmic-ray muon energy deposition, Michel electrons and π^{0} from atmospheric neutrino interactions. Typical vertex resolutions for GeV energies are a few tens of cm [40]. Angular resolution for determination of the direction of a charged particle track is a few degrees. For a neutrino interaction, because some final-state particles are usually below Cherenkov threshold, knowledge of direction of the incoming neutrino direction itself is generally worse than that of the lepton direction, and dependent on neutrino energy.

Multiple particles in an interaction (so long as they are above Cherenkov threshold) may be reconstructed, allowing for the exclusive reconstruction of final states. In searches for proton decay,
multiple particles can be kinematically reconstructed to form a decaying nucleon．High－quality particle identification is also pos－ sible：γ rays and electrons shower，and electrons scatter，which results in fuzzy rings，whereas muons，pions and protons make sharp rings．These patterns can be quantitatively separated with high reliability using maximum likelihood methods［41］．A e / μ misidentification probability of $\sim 0.4 \% / \xi$ in the sub－ GeV range is consistent with the performance of several experiments for $4 \%<\xi<40 \%$ ．Sources of background for high energy inter－ actions include misidentified cosmic muons and anomalous light patterns when the PMTs sometimes＂flash＂and emit photons themselves．The latter class of events can be removed using its distinctive PMT signal patterns，which may be repeated．More information about high energy event selection and reconstruction may be found in reference［42］．

In spite of the fairly low light yield，large water Cherenkov detectors may be employed for reconstructing low－energy events， down to e．g．$\sim 4-5 \mathrm{MeV}$ for Super－K［43］．Low－energy neutrino interactions of solar neutrinos in water are predominantly elastic scattering off atomic electrons；single electron events are then re－ constructed．At solar neutrino energies，the visible energy resolu－ tion $\left(\sim 30 \% / \sqrt{\xi E_{\text {vis }}(\mathrm{MeV})}\right)$ is about 20% worse than photoelec－ tron counting statistics would imply．Using an electron LINAC and／or nuclear sources，approximately 0.5% determination of the absolute energy scale has been achieved at solar neutrino energies． Angular resolution is limited by multiple scattering in this energy regime $\left(25-30^{\circ}\right)$ ．At these energies，radioactive backgrounds be－ come a dominant issue．These backgrounds include radon in the water itself or emanated from detector materials，and γ rays from the rock and detector materials．In the few to few tens of MeV range，radioactive products of cosmic－ray－muon－induced spalla－ tion are troublesome，and are removed by proximity in time and space to preceding muons，at some cost in dead time．Gadolinium doping using $0.2 \% \mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is planned for Super－K to improve selection of low－energy $\bar{\nu}_{e}$ and other events with accompanying neutrons［44］．
The Sudbury Neutrino Observatory（SNO）detector［45］is the only instance of a large heavy water detector and deserves men－ tion here．In addition to an outer 1.7 kton of light water，SNO contained 1 kton of $\mathrm{D}_{2} \mathrm{O}$ ，giving it unique sensitivity to neutrino neutral current $\left(\nu_{x}+d \rightarrow \nu_{x}+p+n\right)$ ，and charged current （ $\nu_{e}+d \rightarrow p+p+e^{-}$）deuteron breakup reactions．The neu－ trons were detected in three ways：In the first phase，via the reaction $n+d \rightarrow t+\gamma+6.25 \mathrm{MeV}$ ；Cherenkov radiation from electrons Compton－scattered by the γ rays was observed．In the second phase， NaCl was dissolved in the water．${ }^{35} \mathrm{Cl}$ captures neutrons，$n+{ }^{35} \mathrm{Cl} \rightarrow{ }^{36} \mathrm{Cl}+\gamma+8.6 \mathrm{MeV}$ ．The γ rays were ob－ served via Compton scattering．In a final phase，specialized low－ background ${ }^{3} \mathrm{He}$ counters（＂neutral current detectors＂or NCDs） were deployed in the detector．These counters detected neutrons via $n+{ }^{3} \mathrm{He} \rightarrow p+t+0.76 \mathrm{MeV}$ ；ionization charge from energy loss of the products was recorded in proportional counters．

36．3．2 Neutrino telescopes

Revised August 2019 by U．F．Katz（Erlangen U．）and C．Spiering （DESY，Zeuten）．

The primary goal of neutrino telescopes（NTs）is the detec－ tion of astrophysical neutrinos，in particularly those which are expected to accompany the production of high－energy cosmic rays in astrophysical accelerators．NTs in addition address a variety of other fundamental physics issues like indirect search for dark matter，study of neutrino oscillations，search for exotic particles like magnetic monopoles or study of cosmic rays and their interac－ tions［46－48］．Electromagnetic radio frequency detectors for high energy neutrinos are discussed in＂Radio emission from（ultra－） high energy particle showers＂section 36．3．3．

NTs are large－volume arrays of＂optical modules＂（OMs）in－ stalled in open transparent media like water or ice，at depths that completely block the daylight．The OMs record the Cherenkov light induced by charged secondary particles produced in reac－ tions of high－energy neutrinos in or around the instrumented vol－ ume．The neutrino energy，E_{ν} ，and direction can be reconstructed from the hit pattern recorded．NTs typically target an energy

Figure 36．5：Effective ${ }^{〔}{ }_{\nu}{ }_{\mu}$ area for IceCube as an example of a cubic－kilometre NT，as a function of neutrino energy for three intervals of the zenith angle θ ．The values shown here correspond to a specific event selection for point source searches．
range $E_{\nu} \gtrsim 100 \mathrm{GeV}$ ；sensitivity to lower energies is achieved in dedicated setups with denser instrumentation．
In detecting cosmic neutrinos，three sources of backgrounds have to be considered：（i）atmospheric neutrinos from cosmic－ray interactions in the atmosphere，which can be separated from cos－ mic neutrinos on a statistical basis，or，for down－going neutrinos， by vetoing accompanying muons；（ii）down－going punch－through atmospheric muons from cosmic－ray interactions，which are sup－ pressed by several orders of magnitude with respect to the ground level due to the large detector depths．They can be further re－ duced by selecting upward－going or high－energy neutrinos or by self－veto methods；（iii）random backgrounds due to photomulti－ plier（PMT）dark counts，${ }^{40} \mathrm{~K}$ decays（mainly in sea water）or bioluminescence（only water），which impact adversely on event recognition and reconstruction．Note that atmospheric neutrinos and muons allow for investigating neutrino oscillations and cosmic ray anisotropies，respectively．

Recently，it has become obvious that a precise measurement of the energy－zenith－distribution of atmospheric neutrinos may allow for determining the neutrino mass hierarchy by exploiting matter－induced oscillation effects in the Earth［49，50］．

Neutrinos can interact with target nucleons N through charged current $\left({ }^{〔} \stackrel{\nu}{\nu}_{\ell} N \rightarrow \ell^{\mp} X, \mathrm{CC}\right)$ or neutral current $\left({ }^{〔} \vec{\nu}_{\ell} N \rightarrow{ }^{`} \stackrel{\rightharpoonup}{\nu}_{\ell} X\right.$ ， $\mathrm{NC})$ processes．A CC reaction of a ${ }^{〔} \stackrel{\nu}{\nu}_{\mu}^{\prime}$ produces a muon track and a hadronic particle cascade，whereas all NC reactions and CC reactions of ${ }^{〔} \widehat{\nu}_{e}^{\prime}$ produce particle cascades only．CC interactions of ${ }^{{ }^{\bullet}} \stackrel{\rightharpoonup}{\nu}_{\tau}$ can have either signature，depending on the τ decay mode．In most astrophysical models，neutrinos are expected to be produced through the $\pi / K \rightarrow \mu \rightarrow e$ decay chain，i．e．，with a flavour ratio $\nu_{e}: \nu_{\mu}: \nu_{\tau} \approx 1: 2: 0$ ．For sources outside the solar system， neutrino oscillations turn this ratio to $\nu_{e}: \nu_{\mu}: \nu_{\tau} \approx 1: 1: 1$ upon arrival on Earth．

The total neutrino－nucleon cross section is about $10^{-35} \mathrm{~cm}^{2}$ at $E_{\nu}=1 \mathrm{TeV}$ and rises roughly linearly with E_{ν} below this en－ ergy and as $E_{\nu}^{0.3-0.5}$ above，flattening out towards high energies． The CC：NC cross－section ratio is about $2: 1$ ．At energies above some TeV ，neutrino absorption in the Earth becomes noticeable； for vertically upward－moving neutrinos（zenith angle $\theta=180^{\circ}$ ）， the survival probability is $74(27,<2) \%$ for $10(100,1000) \mathrm{TeV}$ ． On average，between 50%（ 65% ）and 75% of E_{ν} is transfered to the final－state lepton in neutrino（antineutrino）reactions between 100 GeV and 10 PeV ．

The final－state lepton follows the initial neutrino direction with a RMS mismatch angle $\left\langle\phi_{\nu \ell}\right\rangle \approx 1.5^{\circ} / \sqrt{E_{\nu}[\mathrm{TeV}]}$ ，indicating the intrinsic kinematic limit to the angular resolution of NTs．For $\mathrm{CC}{ }^{`} \vec{\nu}_{\mu}$ r reactions at energies above about 10 TeV ，the angular resolution is dominated by the muon reconstruction accuracy of a few times 0.1° at most．For muon energies $E_{\mu} \gtrsim 1 \mathrm{TeV}$ ，the increasing light emission due to radiative processes allows for re－
constructing E_{μ} from the measured $d E_{\mu} / d x$ with an accuracy of $\sigma\left(\log E_{\mu}\right) \approx 0.3$; at lower energies, E_{μ} can be estimated from the length of the muon track if it is contained in the detector. These properties make CC ${ }^{\stackrel{ }{\nu}}{ }_{\mu}$ reactions the prime channel for the identification of individual astrophysical neutrino sources.

Hadronic and electromagnetic particle cascades at the relevant energies are $5-20 \mathrm{~m}$ long, i.e., short compared to typical OM distances. The total amount of Cherenkov light provides a direct measurement of the cascade energy with an accuracy of about 20% at energies above 10 TeV and 10% beyond 100 TeV for events contained in the instrumented volume. Neutrino flavour and reaction mechanism can, however, hardly be determined and neutrinos from NC reactions or τ decays may carry away significant "invisible" energy. Above 100 TeV , the average directional reconstruction accuracy of cascades is $10-15$ degrees in polar ice and better than 2 degrees in water, the difference being due to the inhomogeneity of the ice and stronger light scattering in ice. These features, together with the small background of atmospheric ${ }^{\text {' }}{ }_{\nu}{ }_{e}$ and ' ${ }_{\nu}^{\nu}$ ' events, makes the cascade channel particularly interesting for searches for a diffuse, high-energy excess of extraterrestrial over atmospheric neutrinos. In water, cascade events can also be used for the search for point sources of cosmic neutrinos, albeit the inferior angular accuracy compared to muon tracks leads to a higher background from atmospheric neutrinos.

The detection efficiency of a NT is quantified by its effective area, e.g., the fictitious area for which the full incoming neutrino flux would be recorded (see Figure 36.5). The increase with E_{ν} is due to the rise of neutrino cross section and muon range, while neutrino absorption in the Earth causes the decrease at large θ. Identification of downward-going neutrinos requires strong cuts
against atmospheric muons, hence the cut-off towards low E_{ν}. Due to the small cross section, the effective area is many orders of magnitude smaller than the geometrical dimension of the detector; a ' $\stackrel{\rightharpoonup}{\nu}_{\mu}$ ' with 1 TeV can, e.g., be detected with a probability of the order 10^{-6} if the NT is on its path.

Detection of upward-going muons allows for identifying neutrino interactions far outside the instrumented volume. This method, however, is only sensitive to $\mathrm{CC}{ }^{`} \stackrel{\rightharpoonup}{\nu}_{\mu}$ interactions and cannot be extended to more than 5-10 degrees above the geometric horizon, where the background of atmospheric muons becomes prohibitive. Alternatively, one can select events that start inside the instrumented volume and thus remove incoming muons that generate early hits in the outer layers of the detector. Such a vetobased event selection is sensitive to neutrinos of all flavours from all directions, albeit with a reduced efficiency since a part of the instrumented volume is sacrificed for the veto. Such a muon veto, or vetoing events with a coincident signal in the surface array, also rejects down-going atmospheric neutrinos that are accompanied by muons from the same air shower and thus reduces the atmospheric-neutrino background. Actually, the breakthrough in detecting high-energy cosmic neutrinos has been achieved with this technique.

Note that the fields of view of NTs at the South Pole and in the Northern hemisphere are complementary for each reaction channel and neutrino energy.

36.3.2.1 The Projects

Table 36.3 lists past, present and future neutrino telescope projects and their main parameters.

Table 36.3: Past, present and future NT projects and their main parameters. The milestone years give the times of project start, of first data taking with partial configurations, of detector completion, and of project termination. Projects with first data expected past 2020 are indicated in italics. The size refers to the largest instrumented volume reached during the project development. See [48] for references to the different projects where unspecified.

Experiment	Milestones	Location	Size $\left(\mathrm{km}^{3}\right)$	Remarks		
DUMAND	$1978 /-/-/ 1995$	Pacific Ocean		Terminated due to technical/funding problems		
NT-200	$1980 / 1993 / 1998 / 2015$	Lake Baikal	10^{-4}	First proof of principle		
GVD [51]	$2012 / 2015 /-/-$	Lake Baikal	$0.5-1.5$	High-energy ν astronomy first 5 clusters installed		
NESTOR				2004 data taking with prototype		
NEMO	$1991 /-/-/-$	Med. Sea		R\&D project, prototype tests		
AMANDA	$1998 /-/-/-$	Med. Sea		0.015	First deep-ice NT	Fouth Pole
:---						
ANTARES						

36.3.2.2 Properties of media

The efficiency and quality of event reconstruction depend strongly on the optical properties (absorption and scattering length, intrinsic optical activity) of the medium in the spectral range of bialkali photocathodes $(300-550 \mathrm{~nm})$. Large absorption lengths result in a better light collection, large scattering lengths in superior angular resolution. Deep-sea sites typically have effective scattering lengths of $>100 \mathrm{~m}$ and, at their peak transparency around 450 nm , absorption lengths of $50-65 \mathrm{~m}$. The absorption length for Lake Baikal is $22-24 \mathrm{~m}$. The properties of South Polar ice vary strongly with depth; at the peak transparency wave length (400 nm), the scattering length is between 5 and 75 m and the absorption length between 15 and 250 m , with the best values in the depth region $2200-2450 \mathrm{~m}$ and the worst ones in the layer

1950-2100 m.
Noise rates measured by 25 cm PMTs in deep polar ice are about 0.5 kHz per PMT and almost entirely due to radioactivity in the OM components. The corresponding rates in sea water are typically 60 kHz , mostly due to ${ }^{40} \mathrm{~K}$ decays. Bioluminescence activity can locally cause rates on the MHz scale for seconds; the frequency and intensity of such "bursts" depends strongly on the sea current, the season, the geographic location, and the detector geometry. Experience from ANTARES shows that these backgrounds are manageable without a major loss of efficiency or experimental resolution.
36.3.2.3 Technical realisation

Optical modules (OMs) and PMTs: An OM is a pressure-tight glass sphere housing one or several PMTs with a time resolu-
tion in the nanosecond range，and in most cases also electronics for control，HV generation，operation of calibration LEDs，time synchronisation and signal digitisation．

Hybrid PMTs with 37 cm diameter have been used for NT－200， conventional hemispheric PMTs for AMANDA（ 20 cm ）and for ANTARES，IceCube and Baikal－GVD（ 25 cm ）．A novel concept has been chosen for KM 3 NeT ．The OMs（ 43 cm ）are equipped with 31 PMTs（ 7.5 cm ），plus control，calibration and digitisation electronics．The main advantages are that（i）the overall pho－ tocathode area exceeds that of a 25 cm PMT by more than a factor of 3 ；（ii）the individual readout of the PMTs results in a very good separation between one－and two－photoelectron signals which is essential for online data filtering and random background suppression；（iii）the hit pattern on an OM provides directional in－ formation；（iv）no mu－metal shielding against the Earth magnetic field is required．Figure 36.6 shows the OM designs of IceCube and KM3NeT．
Readout and data filtering：In current NTs the PMT data are digitised in situ，for ANTARES and Baikal－GVD in special elec－ tronics containers close to the OMs，for IceCube and KM3NeT inside the OMs．For IceCube，data are transmitted via electrical cables of up to 3.3 km length，depending on the location of the strings and the depth of the OMs；for ANTARES，KM3NeT and Baikal－GVD optical fibre connections have been chosen（several 10 km for the first two and 4 km for GVD）．

The full digitised waveforms of the IceCube OMs are transmit－ ted to the surface for pulses appearing in local coincidences on a string；for other pulses，only time and charge information is pro－ vided．For ANTARES（time and charge）and KM3NeT（time over threshold），all PMT signals above an adjustable noise threshold are sent to shore．

The raw data are subsequently processed on online computer farms，where multiplicity and topology－driven filter algorithms are applied to select event candidates．The filter output data rate is about 10 GByte／day for ANTARES and of the order 1 TByte／day for IceCube（100 GByte／day transfered via satellite） and KM3NeT．
Calibration：For efficient event recognition and reconstruction，the OM timing must be synchronised at the few－nanosecond level and the OM positions and orientations must be known to a few 10 cm and a few degrees，respectively．Time calibration is achieved by sending time synchronisation signals to the OM electronics and also by light calibration signals emitted in situ at known times by LED or laser flashers（ANTARES，KM3NeT）．Precise posi－ tion calibration is achieved by measuring the travel time of light calibration signals sent from OM to OM（IceCube）or acoustic signals sent from transducers at the sea floor to receivers on the detector strings（ANTARES，KM3NeT，Baikal－GVD）．Absolute pointing and angular resolution can be determined by measuring the＂shadow of the moon＂（i．e．，the directional depletion of muons generated in cosmic－ray interactions）．IceCube has shown that both are below 1° ，confirming MC calculations which indicate a precision of $\approx 0.5^{\circ}$ for energies above 10 TeV ．For KM3NeT，simu－ lations indicate that sub－degree precision in the absolute pointing can be reached within a few weeks of operation．
Detector configurations：IceCube（see Figure 36．7）consists of 5160 Digital OMs（DOMs）installed on 86 strings at depths of 1450 to 2450 m in the Antarctic ice；except for the DeepCore re－ gion，string distances are 125 m and vertical distances between OMs 17 m .324 further DOMs are installed in IceTop，an array of detector stations on the ice surface above the strings．DeepCore is a high－density sub－array at large depths（i．e．，in the best ice layer）at the centre of IceCube．

The NT200 detector in Lake Baikal at a depth of 1100 m con－ sisted of 8 strings attached to an umbrella－like frame，with 12 pairs of OMs per string．The diameter of the instrumented volume was 42 m ，its height 70 m ．Meanwhile（2019），the Baikal collaboration has installed the first five clusters of a future cubic－kilometre ar－ ray．A first phase，covering a volume of about $0.4 \mathrm{~km}^{3}$ ，will consist of 9 clusters，each with 288 OMs at 8 strings；its completion is scheduled for 2021．A next stage could comprise about 20 clusters and cover up to $1.5 \mathrm{~km}^{3}$ ．

ANTARES comprises 12 strings with lateral distances of 60－

70 m ，each carrying 25 triplets of OMs at vertical distances of 14.5 m ．The OMs are located at depths of $2.1-2.4 \mathrm{~km}$ ，starting 100 m above the sea floor．A further string carries devices for calibration and environmental monitoring．A system to investi－ gate the feasibility of acoustic neutrino detection has also been implemented．
KM3NeT will consist of building blocks of 115 strings each，with 18 OMs per string．Operation of prototypes and the first strings deployed have successfully verified the KM3NeT technology［53］． In the upcoming phase 2.0 of its staged implementation，KM3NeT aims at two building blocks for neutrino astronomy，with vertical distances between OMs of 36 m and a lateral distance between adjacent strings of 90 m （ARCA，for Astroparticle Research with Cosmics in the Abyss）and at one block for the measurement of the neutrino mass hierarchy，with vertical distances between OMs of 9 m and a lateral distance between adjacent strings of about 20 m （ORCA，for Oscillation Research with Cosmics in the Abyss）［50］．A first installation phase of ARCA near Capo Passero，East of Sicily and of ORCA near Toulon has started in 2015 and comprises 24 （6）ARCA（ORCA）strings to be deployed by 2021 （2019）．Completion of the full ARCA（ORCA）arrays is planned for 2026 （2024）．The possibility of directing a neutrino beam from the Protvino accelerator to ORCA（P2O）is also under study［54］．

36．3．2．4 Results

Atmospheric neutrino fluxes have been precisely measured with AMANDA and ANTARES（ $\left.{ }^{〔} \stackrel{\nu}{\mu}_{\mu}\right)$ and with IceCube $\left({ }^{〔} \vec{\nu}_{\mu},{ }^{〔} \vec{\nu}_{e}\right)$ ；the results are in agreement with predicted spectra．

In 2013，an excess of track and cascade events between 30 TeV and 1 PeV above background expectations was reported by Ice－ Cube；this analysis used the data taken in 2010 and 2011 and for the first time employed containment conditions and an at－ mospheric muon veto for suppression of down－going atmospheric neutrinos（High－Energy Starting Event analysis，HESE）．The ob－ served excess reached a significance of 5.7σ in a subsequent analy－ sis of 3 years of data［56］and increased in significance since then． It cannot be explained by atmospheric neutrinos and misiden－ tified atmospheric muons alone．A consistent observation has also been made by ANTARES［57］，albeit with much lower sig－ nificance．The skymap of HESE and high－energy through－going muon events（see Figure 36．8）does not indicate statistically sig－ nificant event clusters，nor deviations from an isotropic cosmic neutrino flux．Meanwhile the energy range of the IceCube HESE analysis has been extended down to 1 TeV and the high－energy excess confirmed；also，events with through－going muons showed a corresponding excess of cosmic origin．In［58］，the various anal－ yses have been combined．Assuming the cosmic neutrino flux to be isotropic，flavour－symmetric and ν－ $\bar{\nu}$－symmetric at Earth，the all－flavour spectrum is well described by a power law with nor－ malisation $6.7_{-1.2}^{+1.1} \times 10^{-18} \mathrm{GeV}^{-1} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~cm}^{-2}$ at 100 TeV and a spectral index -2.50 ± 0.09 for energies between 25 TeV and 2.8 PeV ．A spectral index of -2 ，an often quoted benchmark value， is disfavoured with a significance of 3.8σ ．

Multi－messenger observations triggered by a high－energy Ice－ Cube neutrino event in 2017 （see Figure 36.9 for an event dis－ play），together with a neutrino excess from the same celestial direction in the 2014／15 archival IceCube data，yielded evidence for a first neutrino signal related to a known astronomical object， the blazar ${ }^{2}$ TXS 0506＋056［59，60］．Multi－messenger investiga－ tions in conjunction with gravitational waves，ultra－high－energy cosmic rays or gamma－ray observations have not revealed fur－ ther matching neutrino signals to date．Also，no further astro－ physical neutrino sources were found in a recent combined Ice－ Cube／ANTARES search for steady sources［61］．

IceCube has reported an energy－dependent anisotropy of cosmic－ray induced muons and a measurement of the neutrino－ nucleon cross section using neutrino absorption in Earth．

No indications for neutrino fluxes from dark matter annihila－ tions or for other exotic phenomena have been found．
${ }^{2}$ An Active Galactic Nucleus with a relativistic jet outflow pointing to the observer．

Figure 36.6: Schematic views of the digital OMs of IceCube (left) and KM3NeT (right).

Figure 36.7: Schematic view of the IceCube neutrino observatory comprising the deep-ice detector including its nested dense part DeepCore, and the surface air shower array IceTop. The IceCube Lab houses data acquisition electronics and the computer farm for online processing. Operation of AMANDA was terminated in 2009.

At lower energies, down to 10 GeV , IceCube/DeepCore and ANTARES have identified clear signals of oscillations of atmospheric neutrinos. The closely spaced OMs of DeepCore allow for selecting a very pure sample of low-energy ${ }^{〔} \vec{\nu}_{\mu}(6-56 \mathrm{GeV})$ that produce upward moving muons inside the detector. The neutrino energy is determined from the energy of the hadronic shower at the vertex and the muon range. Fits to the energy/zenith-dependent deficit of muon neutrinos provide constraints on the oscillation pa-

Figure 36.8: Arrival directions of IceCube candidate events for cosmic neutrinos in equatorial coordinates. The plot contains 82 HESE events, with shower-like events marked as blue \times and muon tracks as orange + , and in addition 36 through-going muons tracks with an energy deposit exceeding 200 TeV (green circles). Approximately 40% of the events are expected to originate from atmospheric backgrounds. The grey curve denotes the Galactic Plane and the grey circle the Galactic Centre (from [55]).

Figure 36.9: Display of the neutrino event IceCube-170922A pointing to the blazar TXS $0506+056$. The deposited energy is 24 TeV , the neutrino energy is estimated to be 290 TeV . The colour code indicates the signal timing (blue: early; yellow: late), the size of the coloured circles is a logarithmic measure of the light intensity registered per DOM. The arrow indicates the reconstructed direction, corresponding to a zenith angle of $5.7_{-0.3}^{+0.5}$ degrees below horizon. Figure from [59].
rameters $\sin ^{2} \theta_{23}$ and Δm_{23}^{2}. The analysis of the same dependence for cascade-like events provides a 3σ evidence for ν_{τ} appearance

- an important measurement to test the unitarity of the PNMS matrix [62].
See [63] and [64] for summaries of recent results of IceCube and ANTARES/KM3NeT, respectively.

36.3.2.5 Plans beyond 2020

Within the future IceCube-Gen2 project, it is planned to extend the sensitivity of IceCube towards both lower and higher energies. A substantially denser instrumentation of a sub-volume of DeepCore would lead to an energy threshold for neutrino detection of a few GeV , aiming primarily at measuring the neutrino mass hierarchy. For higher energies, a large-volume extension, combined with a powerful surface veto, is envisaged [52]. A very first phase with 7 closely spaced strings is in preparation for deployment in $2022 / 23$, aiming to cover part of the low-enery program, to better calibrate the existing IceCube detector and the archival data, and to test new technologies. More information on the future extensions of GVD and KM3NeT are given above, in Table 36.3 and in [50].

36.3.3 Radio emission from (ultra-)high energy particle showers

Revised October 2019 by S.R. Klein (NSD LBNL; UC Berkeley).
Coherent radio-frequency (RF) electromagnetic radiation is an attractive signature to search for particle cascades produced by interactions of high-energy particles. RF signatures have been used to study both cosmic-ray air showers and to search for neutrinoinduced showers. The difference in length scale $\left(X_{0}\right)$ between air and the solid materials used for other neutrino searches leads to surprisingly large differences in signal generation. This article will begin with neutrino-induced showers, with air showers covered in subsection 36.3.3.3. At lower energies, incoherent optical Cherenkov radiation is frequently used, as discussed in "Neutrino telescopes" section 36.3.2.

RF detectors can be used to search for energetic neutrinos from three types of sources: astrophysical objects (i.e. extending measurements the neutrino energy spectrum observed at TeV to PeV energies upward in energy), searching for cosmogenic neutrinos associated with cosmic-ray-cosmic microwave background radiation interactions, and searching for neutrinos from beyond-standardmodel physics. These types are roughly associated with energies below $10^{18} \mathrm{eV}$, the energy range 10^{18} to $10^{20} \mathrm{eV}$, and above 10^{20} eV . Cosmogenic neutrinos are produced when ultra-high energy (UHE) protons with energy $E>4 \times 10^{19} \mathrm{eV}$ interact with photons from the cosmic-microwave background radiation, infrared light from old stars, and other extragalactic background light. These protons are excited to a Δ^{+}resonance which may decay via $\Delta^{+} \rightarrow n \pi^{+}$, leading to the production of neutrinos with energies above $10^{18} \mathrm{eV}[65,66]$. Neutrinos are the only long-range probe of the ultra-high energy cosmos, because protons, heavier nuclei and photons with energies above $5 \times 10^{19} \mathrm{eV}$ are limited to ranges of less than 100 Mpc by interactions with the CMB and early starlight.

The cosmogenic neutrino signal depends heavily on the fraction of UHE cosmic-rays that are protons. For a 100% proton composition (disfavored by most data), observing a cosmogenic neutrino signal of at least a few events per year requires a detector with an active volume of about $100 \mathrm{~km}^{3}$, made out of a non-conducting solid (or potentially liquid) medium, with a long absorption length for radio waves. The huge volumes require that this be a common material. A dense medium would reduce the detector volume, but, unfortunately, the available natural media have only moderate density. Optical Cherenkov and acoustical detectors are limited by short ($<300 \mathrm{~m}$) attenuation lengths [67] so would require a prohibitively expensive number of sensors. Radio-detection is the only current approach that can scale to this volume. The two most commonly used media are glacial ice, in Antarctica or Greenland, or the lunar regolith [68].

Electromagnetic and hadronic showers produce radio pulses via the Askaryan effect $[69,70]$, as discussed in "Passage of Particles Through Matter" review Sec. 34. The shower contains more electrons than positrons. At wavelengths longer than the transverse size of the shower, this leads to coherent Cherenkov emission, where the electric field scales as the square of the net charge ex-
cess. This may also be described more generally as being due to radiation from a time-varying net charge [71]; this latter description also applies to radio emission in cosmic-ray air showers.

High-frequency radiation is concentrated around the Cherenkov angle. Viewed directly on the Cherenkov cone, the electric field strength, ϵ_{Ch} at a frequency f from an electromagnetic shower from a ν_{e} may be roughly parameterized as $[72,73]$

$$
\begin{equation*}
\epsilon_{\mathrm{Ch}}(V / \mathrm{mMHz})=2.53 \times 10^{-7} \frac{E_{\nu}}{1 \mathrm{TeV}} \frac{f}{f_{c}}\left[\frac{1}{1+\left(f / f_{c}\right)^{1.44}}\right] \tag{36.3}
\end{equation*}
$$

The electric field strength increases linearly with frequency, up to a cut-off frequency f_{c}, which is set by the transverse size of the shower $[74,75]$. The maximum wavelength c / f_{c} is roughly the Moliere radius divided by $\cos \left(\theta_{C}\right)$ where θ_{C} is the Cherenkov angle. The cutoff frequencies depend on the density (which affects the Moliere radius). They are about 1 GHz in ice, and about 3 GHz in the lunar regolith. Near f_{c}, radiation is narrowly concentrated around the Cherenov angle [74, 75]. At lower frequencies, the limited length of the emitting region leads to a broadening in emission angle around the Cherenkov cone. Away from θ_{C}, the electric field from Eq. (36.3) is reduced by [72],

$$
\begin{equation*}
\frac{\epsilon}{\epsilon_{\mathrm{Ch}}}=\exp \left(-\frac{1}{2} \frac{\left(\theta-\theta_{C}\right)^{2}}{\left(2.2^{\circ} \times[1 \mathrm{GHz} / f]\right)^{2}}\right) \tag{36.4}
\end{equation*}
$$

In both ice and the lunar regolith, the Cherenkov angle is about 56°. At very low frequencies, the distribution is very broad, with $f=50 \mathrm{MHz}$ corresponding to a shower with an angular spread of $\sigma=45^{\circ}$.

More accurate calculations of the predicted radio signal from a neutrino require detailed Monte Carlo simulations. These simulations begin with a neutrino induced shower, and then calculate (directly or from a parameterization) the Askaryan signal. The Askaryan signal calculation is tough for two reasons. First, much of the excess charge comes from the lowest energy particles in the shower. Second, it is necessary to keep track of the phase of the signal from each particle, as well as the amplitude and the time (or frequency) dependence. This signal is then propagated through the medium and into an antenna model [73].

Along the Cherenkov cone, the 1 GHz maximum frequency leads to a generated pulse width of $\approx 1 \mathrm{nsec}$. This pulse broaden by dispersion as it propagates, particularly for signals from the Moon traversing the ionosphere. As long as the dispersion can be compensated for and backgrounds controlled, a large bandwidth detector is the most sensitive. Spectral information can be used to reject background, and to help reconstruct the neutrino direction, because the cutoff frequency depends on the observation angle with respect to the Cherenkov cone.

The electric field is linearly proportional to the neutrino energy, so the power (field strength squared) is proportional to the square of the neutrino energy. Since the signal is a radio wave, the field amplitude decreases as $1 / R$, plus absorption in the intervening medium. The detection threshold is determined by the distance to the antenna and the noise characteristics of the detector. For an antenna located in the detection medium, the typical threshold is around $10^{17} \mathrm{eV}$; for stand-off (remote sensing) detectors, the threshold rises roughly linearly with the distance. These thresholds can be reduced significantly by using directional antennas and/or combining the signals from multiple antennas using beamforming techniques. Experiments have used both approaches to reduce trigger-level noise, or to reject background at the analysis level. For multi-element arrays, the threshold drops as the square root of number of antennas, since the signal adds in-phase while the backgrounds add with random phases [76].

Some common background sources are anthropogenic noise, antenna/preamp noise, cosmic-ray air showers, charge generated by blowing snow, lightning, and, at low frequencies, radiation from the Milky Way. The need to limit anthropogenic noise has led most experimental groups to select remote locations for their detectors.

Reconstruction of the neutrino arrival direction depends on several aspects of the signal. First, the direction from the antenna
to the interaction site must be determined. This can be done by using the relative timing from separated antennas, or using beam-forming techniques with multi-element arrays. If the radio signal encounters media where the index of refraction vary (like the firn of glacial ice), then it may be necessary to use ray-tracing techniques to follow the signal back to interaction point. The distance (and hence the neutrino energy) can be difficult to determine unless the signal can be triangulated, either using multiple, separated antennas, or observing two pulses with different flight paths ($i . e$. with one including a reflection) in a single antenna.

The neutrino arrival direction can be determined with respect to that direction via two angles, which are determined using very different methods. The first uses the measured frequency spectrum. Equation 36.4 can be used to determine the angular distance between the detector vector and the Cherenkov cone. The second angle can be determined by the polarization of the signal. The radio signal is produced with a linear polarization in the plane containing both the neutrino direction and the photon direction. These two angles can be combined to determine the direction, subject to a (usually) four-fold ambiguity, due to uncertainty as to whether the antenna is inside or outside the Cherenkov cone, and because the neutrino direction can be flipped 180° without affecting the observed signal. Often, some of these solutions can be rejected because they correspond to long path lengths through the Moon or the Earth, where the neutrino would be absorbed.

At energies above $10^{16} \mathrm{eV}$ in ice, the Landau-PomeranchukMigdal effect lengthens electromagnetic showers, by reducing the cross-sections for bremsstrahlung and pair production [77]. The lengthening of the shower leads to a narrowing of the radio emission around the Cherenkov cone, and a reduction in highfrequency emission away from the cone [73]. At higher energies, this leads two separate components of the Askaryan radiation: an un-altered component from the hadronic portion of the shower (on average 20% of the total energy) and a an angularly narrowed component from the LPM-lengthened electromagnetic shower. The angular narrowing scales as $E_{\nu}^{1 / 3}$; If these two components can be observed separately, they could, in principle, be combined to determine the inelasticity of the neutrino interaction [78], allowing for improved measurements of parton distributions, and searches for beyond-standard-model interactions.

At still higher energies, above $10^{20} \mathrm{eV}$, the LPM effect becomes stronger, and the electromagnetic shower splits into multiple subshowers with significant separation. When this separations become large enough, the subshowers will effectively become independent radiators, with the total emission showing substantial event-by-event variation, depending on the division into subshowers [77]. Because of this, many of the experiments that study higher energy (well above $10^{20} \mathrm{eV}$) neutrinos focus on the hadronic shower from the struck nucleus. This contains an average of only about 20% of the energy, but with smaller large fluctuations.

Figure 36.10 shows some of the current limits from neutrino searches, including from prototype arrays. Except for LOFAR, which is fully operational, projected limits from future experiments are not shown in the figure.

One variation on the radio-detection approach is to look for radio signals from Earth-skimming ν_{τ}. Although ν_{τ} are much less commonly produced than ν_{μ} and ν_{e}, as they travel astrophysical distances, oscillations lead to a $\nu_{e}: \nu_{\mu}: \nu_{\tau}$ ratio near $1: 1: 1$, for almost all non-exotic acceleration and propagation mechanisms [90].

If the ν_{τ} traverse the Earth and interact while traveling upward, near the surface, the resulting $\tau^{ \pm}$may exit the Earth before decaying. 83% of the time, the decay produces a hadronic or electromagnetic shower in the atmosphere [91]. Experiments have searched for this upgoing shower, and for the resulting optical Cherenkov and coherent RF radiation. The threshold energy dependence for these searches depends on several factors, notably including the average $\tau^{ \pm}$decay length, which increases linearly with energy; the Pierre Auger observatory set limits on the neutrino flux at energies above $10^{17} \mathrm{eV}$ [80]. Radio-detection efforts have similar or slightly higher thresholds. Detection in low-density (compared to rock or ice) air introduces a number of new complications, including the much larger length scale and the effects

Figure 36.10: Representative 3-flavor (summed, assuming equal fluxes of each flavor) differential (over one decade in energy) limits from different experiments and prototype experiments. Shown are limits from the IceCube ultra-high energy ν search [79], the Auger search for earth-skimming ν_{τ} [80], the LUNASKA/Parkes [81] and NuMoon lunar searches [82], the ANITA balloon experiment [83], ARA [84] and ARIANNA prototypes [85], along with projections for the LOFAR array [86]. The dashed blue line is the extrapolation of the IceCube through-going ν_{μ} flux measured at lower energies (few 10 s of TeV to 10 PeV), with spectral index $\alpha=-2.28$ [87]. Because of the long extrapolation, this should only be treated as a rough reference. The ARA and ARIANNA limits are from prototype arrays, and indicate the energy range that might be covered, with far higher sensitivity by larger arrays. The shaded area is the allowed region for neutrinos, from a recent global analysis that included the measured cosmic-ray spectrum and composition [88]. Thanks to Anna Nelles (DESY-Zeuthen) for preparing this figure, which is adapted from Ref. [89].
of the Earth's magnetic field. These issues are similar to those inherent in studies of radio signals from cosmic-ray air showers, discussed later.

The ANITA balloon-based radio-detection experiment has even reported two anomalous events [92] which the collaboration has indicated might be from Earth-skimming ν_{τ}. However, this interpretation is controversial.

A number of prototype ν_{τ} radio-detection experiments exist. The GRAND Collaboration recently proposed to deploy a 10,000 antenna array, eventually growing to 200,000 antennas spread over $200,000 \mathrm{~km}^{2}$ [93]. The latter array would be sensitive to cosmogenic neutrinos, unless the UHE cosmic-ray flux is mostly heavier nuclei.

Magnetic monopoles would also emit radio waves, and neutrino experiments have also set monpole flux limits [94].

36.3.3.1 The Moon as a target

Because of its large size and non-conducting regolith, and the availability of large radio-telescopes, the Moon is an attractive target [95]. Conventional radio-telescopes are quite well suited to lunar neutrino searches, with natural beam widths not too dissimilar from the size of the Moon. Still, there are experimental challenges. The attenuation length is typically estimated to be $9 m / f(\mathrm{GHz})$, so only near-surface interactions can be studied. The composition of the lunar regolith is not well known, so there are significant uncertainties on this attenuation. And, there is a background from cosmic-ray interactions in the Moon. One big limitation of lunar experiments is that the $240,000 \mathrm{~km}$ targetantenna separation leads to neutrino energy thresholds above 10^{20} eV.

The effective volume probed by experiments depends on the geometry, which itself depends on the frequency range used. At high frequencies f, the electric field strength is high, leading to a lower energy threshold, but the sensitive volume is limited because
the Cherenkov cone only points toward the Earth for a narrow range of geometries. Lower frequency radiation is more isotropic, so the effective volume is larger, but, because the electric field is weaker, the energy threshold is higher. The $1 / f$ dependence of the attenuation length in the lunar regolith further increases the effective volume at low frequencies. The frequency range affects the energy dependence of the sensitivity. As can be seen in Fig. 36.10, a low-frequency experiment like NuMoon (which covered $115-180 \mathrm{MHz}$) has good sensitivity, but only above about 10^{14} GeV , while Lunaska/Parkes, which observed in the range 12001500 MHz , has a higher flux limit, but is sensitive above about $10^{12.5} \mathrm{GeV}$.

With modern technology, it is increasingly viable to search over very broad frequency ranges [96]. One technical challenge is due to dispersion (frequency dependent time delays) in the ionosphere. Dispersion can be largely removed with a de-dispersion filter, using either analog circuitry or post-collection digital processing.

Lunar experiments use different techniques to reduce the anthropogenic background. Some experiments use multiple antennas, separated by at least hundreds of meters; by requiring a coincidence within a small time window, anthropogenic noise can be rejected. With good enough timing, beam-forming techniques can be used to further reduce the background. An alternative approach is to use beam forming with multiple feed antennas viewing a single reflector, to ensure that the signal points back to the moon.

In the near future, several large radio detector arrays should reach significantly lower limits. The LOFAR array is taking data with 36 detector clusters spread over Northwest Europe [86]. In the longer term, the Square Kilometer Array (SKA) with its 1 km^{2} effective area will push thresholds down to near $10^{20} \mathrm{eV}$ [96]. It should be noted that current limits and projected sensitivities are sensitive to many details, and different analyses make different assumptions. A recent review [97] compared different radiodetection experiments using a common framework, and found some significant shifts in sensitivities.

36.3.3.2 Ice-based detectors

Detecting neutrinos with a lower energy threshold requires a smaller antenna-target separation. Natural ice is an attractive medium for this, offering a stable construction platform, with radio attenuation lengths from over 300 m to 1 km . The attenuation length varies with the frequency and ice temperature, with higher attenuation in warmer ice.

Although glacial ice is mostly uniform, the top $\approx 100 \mathrm{~m}$ of ice, the 'firn,' exhibits a gradual transition from packed snow at the surface (typical density $0.35 \mathrm{~g} / \mathrm{cm}^{3}$) to solid ice (density 0.92 $\mathrm{g} / \mathrm{cm}^{3}$) below [98]. The thickness of the firn varies with location; it is thicker in central Antarctica than in the coastal ice sheets or in Greenland. The varying density has several implications.

The index of refraction depends linearly on the density, so radio waves curve downward in the firn. This bending reduces the effective volume of surface or aerial antennas. A surface antenna cannot see near-surface interactions at large horizontal distances. The bending also means that the arrival direction of radio waves do not point directly back to the neutrino source. One must use ray tracing to determine the direction of neutrino interactions.

The bending also creates an opportunity to measure the distance from the detector to the neutrino interaction. For some geometries with buried antennas, there may be two paths to the detector: one 'direct' path, with minor bending, and a second where the signal is bent beyond vertical, bouncing off the surface before reaching the antenna. By measuring the time difference between the two paths, the distance to the interaction vertex may be determined; this greatly improves the energy determination [99, 100].

There are also indications that the increase in firn density is non-monotonic $[101,102]$. This can lead to a non-monotonic change in index of refraction which may create waveguides which trap a small fraction of the radio energy and propagate it horizontally.

In one type of experiment, antennas mounted on scientific balloons observe the ice from above. Radio signals from in-ice neutrino interactions propagate to the surface, traverse the ice-air
interface, and then travel to the balloon. The surface roughness of the ice can affect signals as they transition from the ice to the atmosphere. The best known example, ANITA, has made four flights around Antarctica, floating at an altitude around 35 km [103]. Its 32/40/48 (depending on the flight) dual-polarization horn antennas scanned the surrounding ice, out to the horizon (650 km away). Because of the small angle of incidence, ANITA could use polarization to separate signals from background; ν signals should be vertically polarized, while most background from cosmic-ray air showers should be horizontally polarized.

Because of the significant source-detector separation, ANITA is most sensitive at energies above $10^{19} \mathrm{eV}$, above the peak of the cosmogenic neutrino spectrum. As with all radio-detection experiments, ANITA had to contend with anthropogenic backgrounds. The ANITA collaboration uses their multiple antennas as a phased array to achieve good pointing accuracy. They rejected all events that pointed toward known or suspected areas of human habitation. By using the several-meter separation between antennas, they achieved a pointing accuracy of $0.2-0.4^{\circ}$ in elevation, and $0.5-1.1^{\circ}$ in azimuth. ANITA has set the most stringent flux limits yet on neutrinos with energies above $10^{20} \mathrm{eV}$ [83].

Other ice based experiments use antennas located within the active volume, allowing them to reach thresholds around 10^{17} eV , or lower with phased array antennas. This approach was pioneered by the RICE experiment [104] which buried 18 halfwave dipole antennas in holes drilled for AMANDA at the South Pole, at depths from 100 to 300 m . The hardware was sensitive from 200 MHz to 1 GHz . Each antenna fed an in-situ preamplifier which transmitted the signals to surface digitizing electronics.
Two groups have deployed prototype arrays which have explored different detector concepts. The Askaryan Radio Array (ARA) deployed surface and buried antennas at the South Pole [105], while the Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) installed surface antennas on the Ross Ice Shelf [85], about 110 km north of McMurdo station. ARIANNA offered the possibility of detecting downward-going ν, from the radio waves reflected off the ice-sea water interface on the bottom of the Ross Ice Shelf, while ARA took advantage of the colder ice at the South Pole, with its longer radio attenuation length. ARA buried antennas up to 200 m deep, be able to observe a larger portion of ice, due to the refraction of the signal in the firn. In contrast, ARIANNA deployed antennas just below the surface, allowing them to use high-gain, but large log periodic dipole antennas. Recently, phased-array trigger techniques have been demonstrated that can reduce the energy threshold by a factor of several [76,106].

Both experiments use stations which operate independently, spaced far enough to maximize sensitivity, but where only a small fraction of neutrino events will be visible in multiple stations. Each station includes multiple antennas, which will include both horizontal and vertical polarization. The collaborations can determine the neutrino arrival direction (modulo a (usually) 4-fold directional ambiguity) by using relative timing to find the direction from the station to the interaction, and the neutrino arrival direction by using the frequency spectrum to find the angular distance from the Cherenkov cone and by measuring the linear polarization of the radio signal. The expected angular resolution is a few degrees.

Looking ahead, the RNO [89] and ARIANNA [107] Collaborations have proposed next-generation experiments combining the best features from ARA and ARIANNA. Both experiments have been proposed for the South Pole, although operation in Greenland may also be considered. Further out, the proposed IceCube Gen2 expansion includes a substantial radio array component [52]

36.3.3.3 Radio-detection of cosmic-ray air showers

The physics of radio-wave generation in air showers is more complex than for neutrino-induced showers [108], although there are enough similarities that some experiments are sensitive to both sources. Particularly in the upper atmosphere, air is much less dense than rock or ice, so the showers develop over much larger distance scales. These larger distance scales lead to significant effects from the Earth's magnetic field.

For cosmic-rays arrival directions that are perpendicular to the magnetic field, the field produces significant charge separation,
as electrons and positrons are bent in different directions as they propagate. This leads to a growing charge dipole (transverse current) [109]. This time-varying transverse current emits radiation, spread over the transverse size of the shower, with a Cherenkov ring around the primary trajectory. Electrons in the shower may also emit synchrotron radiation due to bending in the Earth's field. Since the radiating particles are moving relativistically downward, a ground-based observer sees a Lorentz contracted pulse which can have frequency components reaching the GHz range, limited by the thickness of the particle shower. However, for most geometries, the bulk of the energy is at frequencies below 100 MHz , and most experiments are focused at frequencies below that.

There is still a contribution from coherent radio Cherenkov signals, but it is subdominant. Its most notable effect is to create an azimuthal (around the shower axis) interference pattern, destroying the radial symmetry of the radiation [110].

Since they observe the atmosphere, one of the major issues for radio-detection experiments is anthropogenic noise. Most manmade noise has distinctive characteristics (such as being narrowband, and coming from near the horizon) which makes it relatively easy to reject during data analysis, via narrow-band filters and other techniques [111]. However, these factors complicate triggering. This is even an issue in Antarctica, where communication radios and passing satellites can mimic showers, at least at the trigger level. For this reason, most experiments have used radio antennas in combination with at least one other detector technology, such as scintillation counters. One exception is ARIANNA, which is located in an uninhabited part of Antarctica, enabling them to self-trigger on air showers [112]. With careful choice of frequency band, it may be possible to reach PeV energies with Antarctic detectors [113]. In more populous areas, the triggering challenges are likely to be bigger.

Radio-detection can be used to determine the shower energy, as done by the Auger and Tunka-Rex experiments [114,115]. Radio signals can also be used to infer the altitude for shower-maximum, where the shower contains the most particles, as done by the LOPES and Tunka-Rex collaborations [115, 116]. This altitude is sensitive to the cosmic-ray composition. Radio-detection is also useful for energy cross-calibrations between different experiments, and, with improved simulations, may be able to provide an independent energy scale calibration for air shower arrays.

36.4 Large time-projection chambers for rare event detection

Revised October 2019 by T. Shutt (SLAC).
Rare event searches require detectors that combine large target masses and low levels of radioactivity, and that are located deep underground to eliminate cosmic-ray related backgrounds. Past and present efforts include searches for the scattering of particle dark matter, neutrinoless double beta decay, and the measurement of solar neutrinos, while next generation experiments will also probe coherent scattering of solar, atmospheric and diffuse supernova background neutrinos. Large time project chambers (TPCs) [117], adapted from particle collider experiments, have emerged as a leading technology for these efforts. Events are measured in a central region confined by a field cage and usually filled with a liquid noble element target. Ionization electrons are drifted (in the z direction) to an anode region by use of electrode grids and field shaping rings, where their magnitude and $x-y$ location is measured. In rare event searches (with no external trigger available) scintillation generated at the initial event site is also measured, and the time difference between this prompt signal and the later-arriving charge signal gives the event location in z for a known electron drift speed. Thus, 3D imaging is a achieved in a monolithic central volume. The relatively slow readout due to the drift of charges $(\sim 1 / 2 \mathrm{~ms} / \mathrm{m}$ at $1 \mathrm{kV} / \mathrm{cm})$ [118] is not a major pileup concern in low background experiments. Noble elements have relatively high light yields (comparable to or exceeding the best inorganic scintillators), and the charge signal can be amplified by multiplication or electroluminescence. Radioactive backgrounds are distinguished by event imaging, the separate measurements of charge and light, and scintillation pulse shape. For recent reviews
of noble element detectors, see [119] [120] [121] [122].
Methods for achieving very low radioactive backgrounds are discussed in general in section 35.6. The basic architecture of large TPCs is very favorable for this application because gas or liquid targets can be relatively easily purified, while the generally more radioactive readout and support materials are confined to the periphery. The 3D imaging of the TPC then allows self shielding in the target material, which is quite powerful when the target is large compared to mean scattering lengths of order $\sim 10 \mathrm{~cm}$ for $\sim \mathrm{MeV}$ neutrons and gammas from radioactivity. Most recent experiments have immersed the TPCs in hermetic water shields to eliminate external radioactive backgrounds, and several are also using an active scintillator inner layer to further veto backgrounds from detector materials. While other target fluids are possible, almost all recent efforts have used Xe and Ar. In LHe and LNe the mobility of electrons is $\sim 10^{3}$ times lower than in the heaver noble elements due to the formation "bubbles" around electrons. [123] [124] It is worth noting that scintillation and electron drift are possible in a number of organic fluids, possibly providing a route to economical large detectors, but with much reduced performance compared to noble elements.

In noble element targets, all non-noble impurities are readily removed (e.g., by chemical reaction in a commercial getter) so that only radioactive noble isotopes are a significant background concern. Xe, Ne and He have have no long lived radioactive isotopes (apart from the ${ }^{136} \mathrm{Xe}$, discussed below, and the very long-lived ${ }^{124} \mathrm{Xe}$ [125]). Kr has $\sim 0.3 \mathrm{MBq} / \mathrm{kg}$ of the beta emitter ${ }^{85} \mathrm{Kr}$ created by nuclear fuel reprocessing [126], making it unusable as a target, while the $\sim 1 \mathrm{~Bq} / \mathrm{kg}$ level of the beta emitter ${ }^{39} \mathrm{Ar}$ [127] is a nuisance for Ar-based experiments. Both of these can be backgrounds in other target materials, as can Rn emanating from detector components. Relatively low background materials are available for most of the structures surrounding the central target, with the exception of radioactive glasses and ceramics usually present in PMTs, feedthroughs and electrical components. Very low background PMTs with synthetic quartz windows, available over the last 15 years (see, e.g., [128]), have been a key enabling technology for dark matter searches. Radio-clean SiPMs and related Si-based photon detectors are increasingly being used in cases where their dark rates (which are significantly higher than PMTs) can be tolerated.
An important technical challenge in liquid detectors is achieving the high voltages needed for electron drift and measurement. In general, quench gases which stabilize charge gain and speed electron transport in wire chambers cannot be used, since these absorb and/or quench scintillation light and can trap electrons. It is also important to suppress low-level emission of electrons and associated photons which can otherwise swamp low energy signals. Drift of electrons over meter scales with minimal loss from attachment on trace levels of dissolved impurities (e.g., O_{2}) has so far required continuous circulating purification.

36.4.1 Dark matter and other low energy signals

A major goal of low background experiments is detection of WIMP (Weakly Interacting Massive Particle) dark matter through scattering on nuclei in a terrestrial detector (for a recent review, see [129]). Energy transfers are generally small, a few tens of keV at most. Liquid noble TPCs distinguish single nuclear recoils (NR) from dark matter from the dominant background of electron recoils (ER) from gamma rays and beta decays by rejecting multiple scatters, and, as described below, based on both the ratio of charge to light and the scintillation pulse shape. Neutrons are a NR background, but are present at much lower rates than gammas and betas, and also undergo significant multiply scattering. To detect small charge signals, a dual phase technique is used wherein electrons from interactions in the liquid target are drifted to the liquid surface and extracted with high field $(\sim 5 \mathrm{kV} / \mathrm{cm})$ into the gas phase where they create an amplified electroluminescence signal which is usually measured by an array of PMTs located just above the liquid. (While both charge multiplication and electroluminescence are possible in liquid, they require very high fields created by very small electron structures and thus have not seen widespread adoption. For recent progress see [130]) This technique readily measures single electrons with \sim
cm $x-y$ resolution.
The measurement of the initial scintillation signal, by contrast, suffers from loss upon reflection from the TPC walls, and inefficiency in the readout, and usually limits the energy threshold. In LXe, the $\sim 178 \mathrm{~nm}$ wavelength is just long enough to be transmitted through high purity synthetic quartz PMTs windows, and, remarkably, PTFE immersed in LXe has $\sim 97 \%$ reflectivity. [131] The $\sim 128 \mathrm{~nm}$ scintillation light of LAr requires waveshifting (usually using TPB) both for reflectivity (usually on PTFE) and for efficient measurement. With both liquids, a second sensor array at the bottom of the TPC is used to maximize light collection, and total photon efficiencies have been in the $10-15 \%$ range. Typical raw yields for ER are several tens of electrons and photons per keV, and, in LXe, a NR threshold of $\sim 5 \mathrm{keV}$ has been achieved [132].

The microscopic processes leading to signals in liquid nobles are complex. Energy deposited by an event generates pairs of free electron and ions, and also atoms in their lowest excited state. The latter rapidly form excimers which de-excite by emitting light. Excimers arise in both triplet and singlet states which have the same energy but different decay times. In an event track, some fraction of electrons recombine with ions, while the rest escape and are measured. Each recombined ion creates an additional excimer, and hence another photon. Finally, some part of the energy is lost as heat - a small fraction for ER but a dominant and energy dependent fraction for NR. The branching into these various modes depends on drift field, energy, and particle type, requiring extensive calibrations. These have largely been carried out for LXe (see, e.g., [133]), and have been incorporated into the NEST Monte Carlo framework. [134]

This complexity also gives rise to discrimination between ER and NR: for the same visible energy, the slower NR create short, denser tracks and generate a higher fraction of initial excitons, leading to a smaller ratio of measured charge to light. NR also generate a higher ratio of short-lived singlet state to long-lived triplet states than ER, so that the scintillation signal itself gives pulse shape discrimination (PSD). Charge/light discrimination has been well mapped in LXe, and, remarkably, is very high ($>99.9 \%$) below $\sim 10 \mathrm{keV}$ for NR. [132] It has only recently been measured in LAr [135], and has not yet played an important role in LAr based experiments. Qualitatively, PSD is similar in LXe and LAr - strong at high energy and weak at low energy. However it is well mapped only in LAr where it is very high above $\sim 50 \mathrm{keV}$, achieving values above $\sim 10^{8}$. [136]

This extremely powerful PSD in LAr is sufficient to overcome the ER background from ${ }^{39} \mathrm{Ar}$, which is roughly 10^{7} times higher than the fundamental low energy ER background from p-p solar neutrinos. In a multi-ton detector the event rate from ${ }^{39} \mathrm{Ar}$ poses a significant pile-up challenge, and the DarkSide collaboration is pursuing ${ }^{39} \mathrm{Ar}$ reduction through two methods. One, for which a factor 1400 reduction in $\sim 50 \mathrm{~kg}$ Ar has been demonstrated, is extracting "aged" Ar from underground (cosmic ray shielded) gas deposits in which the 269 yr half-life ${ }^{39} \mathrm{Ar}$ has decayed. [137] The other method is removal by distillation. The need for ${ }^{39} \mathrm{Ar}$ depleted Ar negates the much lower raw material cost of Ar compared to Xe. Kr must also be removed from both Xe and Ar experiments (and Ar must be from Xe experiments), comparatively easy tasks compared to isotopic separation. This is done through distillation or a chromatographic technique. In current LXe experiments the remaining dominant ER backgrounds is the beta decay of a daughter of ${ }^{222} \mathrm{Rn}$ in the active LXe, where the Rn has emanated from detector materials or external plumbing. Rn will be even more important as experiments scale up in size, but can in principle be reduced by better materials screening and online Rn separation, again by either distillation or chromatography. Neutrons are in general some six orders of magnitude less abundant than gamma rays and betas in U and Th decay chains, but they naturally scatter in the WIMP energy range, and their single scatters cannot be discriminated against. Self shielding is less powerful for neutrons than gamma rays, so that they are an increasingly important background at the current ton scale and future larger experiments, both in Ar and Xe. Active outer shielding layers which tag and veto neutrons are being included in most
next generation experiments
The WIMP sensitivity is a combination of backgrounds, discrimination, and WIMP scattering rates. The scattering rates are model dependent, but are in general dominated by spinindependent coherent scattering on the full nucleus. This has an A^{2} dependence, favoring high mass targets. The energy spectrum is close to a falling exponential, so that the lowest possible energy threshold maximizes sensitivity. Experiments using LXe TPCs have had the leading sensitivity for standard WIMP dark matter for well over a decade, for all but the lowest WIMP masses. The ton-scale XENON1T [138] achieved a WIMP-nucleon sensitivity of $4.1 \times 10^{-47} \mathrm{~cm}^{2}$ at 30 GeV mass, closely followed by PANDAXII [139] and LUX [140]. The next generation ~ 7 tonne experiments LZ [141] and XENONnT [142], and ~ 4 tonne PandaX4 T [143] are currently in late stages of construction. The DarkSide program is carrying out WIMP searches with LAr TPCs. The 50 kg DarkSide- 50 achieved a sensitivity $\gtrsim 40$ times poorer than XENON1T. A 50 ton scale-up, DarkSide-20 is being pursued which features SiPMs instead of PMTs. [144]. (The best current limit using LAr is not from a TPC, but instead the scintillationonly DEAP-3600 experiment. [136])

LZ and XENONnT project sensitivity to WIMPs about a decade above the"floor" of coherent scattering of astrophysical neutrinos, which, absent a directional measurement (see below), are essentially indistinguishable from WIMPs. DARWIN, a proposed a 50 ton LXe TPC would approach the practical limit set by this floor for WIMP masses above $\sim 5 \mathrm{GeV}$ [145], while ARGO $\mathrm{a} \sim 200$ ton LAr detector would achieve similar sensitivity for WIMPs masses well above $\sim 50 \mathrm{GeV}$. [144]

There has been recent interest in models featuring low mass dark matter. These give rise to low energy recoils, and also strongly favor low mass target nuclei (despite the A^{2} rate penalty). This has led to renewed focus on events below the scintillation threshold, where the charge signal alone achieves very low threshold due to the gain of the electroluminescence readout. This preserves $x-y$ spatial information, but only very weak depth information based on electron diffusion. Thus it is subject to the high backgrounds at the top and bottom of the active region, and decays of Rn daughters on grids. While the first such results came from XENON10, a recent result in LAr from DarkSide-50 extends to much lower dark matter mass because of the lower mass of Ar. To maximize the sensitivity of such searches in the future, studies have begun to understand and minimize the sources of electron backgrounds from both radioactivity and spurious sources such as field emission from grids. There is also an effort to develop a superfluid He TPC [146] read out with superconducting sensors (similar to the proposed HERON solar neutrino experiment). The rich set of signals in this case - scintillation, rotons, and ionization potentially offer significant background rejection.
Measurement of NR recoil track direction would provide proof of the galactic origin of a dark matter signal since the prevailing WIMP direction varies on a daily basis as the earth spins. This cannot be achieved for the sub-micron tracks in any existing solid or liquid technology, but the mm-scale tracks in a low pressure gas (typically, $\mathrm{P} \sim 50$ Torr) could be imaged with sufficiently dense instrumentation. Directionality can be established with $O\left(10^{2}\right)$ events by measuring just the track direction, while, with finer resolution that distinguishes the diffuse (dense) tail and dense (diffuse) head of NR (ER) tracks, only $O(10)$ events are required. Such imaging requires a high energy threshold, decreasing WIMP sensitivity, but also powerfully rejecting less dense ER background tracks.

A variety of TPC configurations are being pursued to accomplish this, most with a CF_{4} target. The longest established effort, DRIFT, avoids diffusion washing out tracks for electron drift distances greater than $\sim 20 \mathrm{~cm}$ by attaching electrons to CS_{2}, which drifts with vastly reduced diffusion. Other efforts drift electrons directly and use a variety of techniques for their measurement: DMTPC (electroluminescence + CCDs), MIMAC (MicroMegas), NEWAGE (GEMs), and D^{3} (Si pixels). A related suggestion is that the amount of recombination in a high pressure Xe gas with an electron-cooling additive could be sensitive to the angle between the track and electric field [147], eliminating the need for
track imaging. Directional measurements appear to be the only possibility to push beyond the floor of coherent neutrino scatters [148], though at the cost of enormous target mass and channel count.

36.4.2 0 $\nu \beta \beta$ Decay

Another major class of rare event search is neutrinoless double beta decay $(0 \nu \beta \beta)$. A limited set of nuclei are unstable against simultaneous beta decay of two neutrons. Fortuitously, this includes the Xe isotope ${ }^{136} \mathrm{Xe}$ (Q-value 2458 keV), which can be used as the active material in a detector, and which, as an inert gas, can also be more readily enriched from its natural 8.9% abundance than any other $\beta \beta$ isotope. Observation of the lepton-number violating neutrinoless version of this decay would establish that neutrinos are Majorana particles and provide a direct measure of neutrino mass. For a recent review, see [149] [122]. The signal in $0 \nu \beta \beta$ decay is distinctive: the full Q -value energy of the nuclear decay appears as equal energy back-to-back recoil electrons. A large TPC is advantageous for observing this low rate decay for all the reasons described above. The first detector to observe the standard model process two neutrino double beta decay was a gaseous TPC which imaged the two electrons tracks from ${ }^{82} \mathrm{Se}$ embedded in a foil. [150] Modern TPCs use Xe as the detector medium.

The dominant background is gamma rays originating outside the active volume. Most of these undergo multiple Comptonscatters which are efficiently recognized and rejected through subcm position resolution, though the few percent of gammas at this energy that photoabsorb are not. Self shielding of gamma rays in the double beta decay energy window is less powerful than in the low energy dark matter window, since in the former case there is some small probability of penetrating to some depth followed by the modestly small probability of photo-absorption. The latter case consists of three small probability processes: penetration to some depth, a very low-energy scatter, and the gamma exiting without a second interaction. Because of this and the fact that background and the signal are both electron recoils (i.e., NR/ER discrimination is of no value), the requirements on radioactivity in all the surrounding materials of a $\beta \beta$ TPC are much more stringent than an otherwise similar dark matter detector, unless other background rejection tools are available. However $\beta \beta$ searches are insensitive to low energy backgrounds (e.g., ${ }^{85} \mathrm{Kr}$ and ${ }^{39} \mathrm{Ar}$) important for dark matter.

Very good energy resolution is crucial to avoid background from $2 \nu \beta \beta$ decays and gammas including the prominent 2615 keV line from ${ }^{208} \mathrm{Tl}$ in the Th chain. Here a combined charge and light measurement largely eliminates the otherwise dominant fluctuations in recombination which lead to anti-correlated fluctuations in charge and light. Because of the high energy of the $\beta \beta$ signal, charge can be read out directly, and the scintillation measurement is easily tolerant of the dark rates of SiPMs. These goals have led $\beta \beta$ detectors to have somewhat different optimization than dark matter detectors, although the next generation large Xe dark matter experiments (LZ, XENONnT, DARWIN) have significant $\beta \beta$ reach.

The recently completed EXO-200 experiment used a singlephase LXe TPC with roughly 110 active kg of Xe enriched to $80.7 \%{ }^{136} \mathrm{Xe}$ to achieve one of the best $\beta \beta$ search limits [151]. The energy resolution obtained is (FWHM) of 2.71% (at 2458 keV), and lower values in LXe appear possible. A multi-ton successor experiment, nEXO, has been proposed which would fully cover the inverted neutrino mass hierarchy. [152] EXO-200 featured LAAPDs for light readout, and direct charge readout, while nEXO will use SiPMs.

A related but different approach is to use high pressure gaseous Xe TPC. [153] The lower density requires a large apparatus for given target mass, but has two significant advantages. The larger track size allows the two-electron topology of $0 \nu \beta \beta$ events to be distinguished from single electrons from photoabsorption of background gammas. In addition, the low recombination fraction in the gas phase suppresses recombination fluctuations, allowing higher energy resolution. Recent progress with a 5 kg prototype by the NEXT collaboration has demonstrated the topology based discrimination, and, notably, 1% (FWHM) energy resolution. A
$\sim 100 \mathrm{~kg}$ detector is now under construction, and ton-scale designs being studied. Finally, a long-standing idea that would provide definitive identification of a $0 \nu \beta \beta$ signal is to extract and tag the ionized Ba daughter via atomic physics techniques [154], either in gas or liquid and gas phases. Significant recent progress by both the EXO and NEXT collaborations has now achieved the key milestone of demonstrating single Ba ion sensitivity in test setups. [155] [156] [157]

36.5 Sub-Kelvin detectors

Revised August 2018 by K.D. Irwin (Stanford U.; SLAC).
Many particle physics experiments utilize detectors operated at temperatures below 1 K . These include WIMP searches, betadecay experiments to measure the absolute mass of the electron neutrino, and searches for neutrinoless-double-beta decay $(0 \nu \beta \beta)$ to probe the properties of Majorana neutrinos. Sub-Kelvin detectors also provide important cosmological constraints on particle physics through sensitive measurement of the cosmic microwave background (CMB). CMB measurements probe the physics of inflation at $\sim 10^{16} \mathrm{GeV}$, and the absolute mass, hierarchy, and number of neutrino species.

Detectors that operate below 1 K benefit from reduced thermal noise and lower material specific heat and thermal conductivity. At these temperatures, superconducting materials, sensors with high responsivity, and cryogenic preamplifiers and multiplexers are available. We provide a simple overview of the techniques and the experiments using sub-K detectors. A useful review of the broad application of low-temperature detectors is provided in [158], and the proceedings of the International Workshop on Low Temperature Detectors [159] provide an overview of the field.

Sub-Kelvin detectors can be categorized as equilibrium thermal detectors or non-equilibrium detectors. Equilibrium detectors measure a temperature rise in a material when energy is deposited. Non-equilibrium detectors are based on the measurement of prompt, non-equilibrated signals and on the excitation of materials with an energy gap.

36.5.1 Equilibrium thermal detectors

An equilibrium thermal detector consists of a thermometer and absorber with combined heat capacity C coupled to a heat bath through a weak thermal conductance G. The rise time of a thermal detector is limited by the internal equilibration time of the thermometer-absorber system and the electrical time constant of the thermometer. The thermal relaxation time over which heat escapes to the heat bath is $\tau=C / G$. Thermal detectors are often designed so that an energy input to the absorber is thermalized and equilibrated through the absorber and thermometer on timescales shorter than τ, making the operation particularly simple. An equilibrium thermal detector can be operated as either a calorimeter, which measures an incident energy deposition E, or as a bolometer, which measures an incident power P.

In a calorimeter, an energy E deposited by a particle interaction causes a transient change in the temperature $\Delta T=E / C$, where the heat capacity C can be dominated by the phonons in a lattice, the quasiparticle excitations in a superconductor, or the electronic heat capacity of a metal. The thermodynamic energy fluctuations in the absorber and thermometer have variance

$$
\begin{equation*}
\Delta E_{\mathrm{rms}}^{2}=k_{\mathrm{B}} T^{2} C \tag{36.5}
\end{equation*}
$$

when operated near equilibrium, where ΔE_{rms} is the root-meansquare energy fluctuation, k_{B} is the Boltzmann constant and T is the equilibrium temperature. When a sufficiently sensitive thermometer is used, and the energy is thermalized at frequencies large compared to the thermal response frequency $\left(f_{\mathrm{th}}=1 / 2 \pi \tau\right)$, the signal-to-noise ratio is nonzero at frequencies higher than f_{th}. In this case, detector energy resolution can be somewhat better than $\Delta E_{\text {rms }}$ [160]. Deviations from the ideal calorimeter model can cause excess noise and position and energy dependence in the signal shape, leading to degradation in achieved energy resolution.

In a bolometer, a power P deposited by a stream of particles causes a change in the equilibrium temperature $\Delta T=P / G$. The weak thermal conductance G to the heat bath is usually limited by

Table 36.4: Some selected experiments using sub-Kelvin equilibrium bolometers to measure the CMB. These experiments constrain the physics of inflation and the absolute mass, hierarchy, and number of neutrino species. The experiment location determines the part of the sky that is observed. The size of the aperture determines the angular resolution. The table also indicates the type of sensor used, the number of sensors, the frequency range, and the number of frequency bands. The number of sensors and frequency range and bands for ongoing upgrades are provided for some experiments in parentheses.

Sub-K CMB Experiment	Location	Aperture	$\begin{gathered} \text { Sensor } \\ \text { type } \end{gathered}$	\# Sensors (planned)	Frequency (planned)	Bands (planned)
Ground-based						
Atacama Cosmology Telescope (2007-)	Chile	6 m	TES	$\begin{gathered} 1,800 \\ (5,334) \end{gathered}$	$90-150 \mathrm{GHz}$ $(28-220 \mathrm{GHz})$	$\begin{gathered} 2 \\ (5) \end{gathered}$
BICEP/Keck (2006-)	South Pole	$26 / 68 \mathrm{~cm}$	TES	3,200	$95-220 \mathrm{GHz}$	3
$\begin{aligned} & \text { CLASS } \\ & (2015-) \end{aligned}$	Chile	60 cm	TES	$\begin{gathered} 36 \\ (5,108) \end{gathered}$	$\begin{gathered} 40 \mathrm{GHz} \\ (40-220 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} 1 \\ (4) \end{gathered}$
POLARBEAR / Simons (2012-)	Chile	3.5 m	TES	$\begin{gathered} 1,274 \\ (22,764) \end{gathered}$	$\begin{gathered} 150 \mathrm{GHz} \\ (90-220 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} 1 \\ (3) \end{gathered}$
South Pole Telescope (2007-)	South Pole	10 m	TES	$\begin{gathered} 1,536 \\ (16,260) \\ \hline \end{gathered}$	$\begin{gathered} 95-150 \mathrm{GHz} \\ (95-220 \mathrm{GHz}) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (3) \\ \hline \end{gathered}$
Balloon						
EBEX (2013-)	McMurdo	1.5 m	TES	$\sim 1,000$	150-410 GHz	3
PIPER (2016-)	New Mexico	2 m	TES	5,120	200-600 GHz	4
SPIDER (2014-)	McMurdo	30 cm	TES	1,959	90-280 GHz	3
Satellite						
Planck HFI (2003-)	L2	1.5 m	NTD	52	$100-857 \mathrm{GHz}$	9

the flow of heat through a phonon or electron system. The thermodynamic power fluctuations in the absorber and thermometer have power spectral density

$$
\begin{equation*}
S_{\mathrm{P}}=N E P^{2}=4 k_{\mathrm{B}} T^{2} G \tag{36.6}
\end{equation*}
$$

when operated near equilibrium, where the units of NEP (noise equivalent power) are $\mathrm{W} / \sqrt{\mathrm{Hz}}$.

The minimization of thermodynamic energy and power fluctuations is a primary motivation for the use of sub-Kelvin thermal detectors. These low temperatures also enable the use of materials and structures with extremely low C and G, and the use of superconducting materials and amplifiers.
When very large absorbers are required (e.g. WIMP dark matter searches), dielectric crystals with extremely low specific heat are often used. These materials are operated well below the Debye temperature T_{D} of a crystal, where the specific heat scales as T^{3}. In this low-temperature limit, the dimensionless phononic heat capacity at fixed volume reduces to

$$
\begin{equation*}
\frac{C_{\mathrm{V}}}{N k_{\mathrm{B}}}=\frac{12 \pi^{4}}{5}\left(\frac{T}{T_{\mathrm{D}}}\right)^{3} \tag{36.7}
\end{equation*}
$$

where N is the number of atoms in the crystal. Normal metals have higher low-temperature specific heat than dielectric crystals, but they also have superior thermalization properties, making them attractive for some applications in which extreme precision and high energy resolution are required (e.g. beta endpoint experiments to measure neutrino mass using ${ }^{163} \mathrm{Ho}$). At low temperature, the heat capacity of normal metals is dominated by electrons, and is linear in temperature, with convenient form

$$
\begin{equation*}
C=\frac{\rho}{A} \gamma V T \tag{36.8}
\end{equation*}
$$

where V is the sample volume, γ is the molar specific heat of the material, ρ is the mass density, and A is the atomic weight. Superconducting absorbers are also used. Superconductors combine some of the thermalization advantages of normal metals with the lower specific heats associated with insulators when operated well below T_{c}, where the electronic heat capacity freezes out, and the material is dominated by phononic heat capacity. At higher temperatures, superconducting materials have more complicated heat capacities, but at their transition temperature T_{C}, BCS theory predicts that the electronic heat capacity of a superconductor is ~ 2.43 times the normal metal value.

When very low thermal conductances are required for power measurement (e.g. the measurement of the cosmic microwave
background), the weak thermal link is sometimes provided by thin membranes of non-stoichiometric silicon nitride. The thermal conductance of these membranes is:

$$
\begin{equation*}
G=4 \sigma A T^{3} \xi \tag{36.9}
\end{equation*}
$$

where σ has a value of $15.7 \mathrm{~mW} / \mathrm{cm}^{2} \mathrm{~K}^{4}, A$ is the cross-sectional area perpendicular to the heat flow, and ξ is a numerical factor with a value of one in the case of specular surface scattering but less than one for diffuse surface scattering. The thermal impedance between the electron and phonon systems can also limit the thermal conductance.

The most commonly used sub-Kelvin thermometer is the superconducting transition-edge sensor (TES) [161]. The TES consists of a superconductor biased at the transition temperature T_{c}, in the region between the superconducting and normal state, where its resistance is a strong function of temperature. The TES is voltage biased. The Joule power provides strong negative electrothermal feedback, which improves linearity, speeds up response to faster than $\tau=C / G$, and provides tolerance for T_{c} variation between multiple TESs in a large array. The current flowing through a TES is read out by a superconducting quantum interference device (SQUID) amplifier. These amplifiers can be cryogenically multiplexed, allowing a large number of TES devices to be read out with a small number of wires to room temperature.

Neutron-transmutation-doped (NTD) germanium and implanted silicon semiconductors read out by cryogenic FET amplifiers are also used as thermometers [160]. Their electrical resistance is exponentially dependent on $1 / T$, and is determined by phonon-assisted hopping conduction between impurity sites. Finally, the temperature dependence of the permeability of a paramagnetic material is used as a thermometer. Detectors using these thermometers are referred to as metallic magnetic calorimeters (MMC) [162]. These detectors operate without dissipation and are inductively readout by SQUIDs.

Equilibrium thermal detectors are simple, and they have important advantages in precision measurements because of their insensitivity to statistical variations in energy down-conversion pathways, as long as the incident energy equilibrates into an equilibrium thermal distribution that can be measured by a thermometer.

36.5.2 Nonequilibrium Detectors

Nonequilibrium detectors use many of the same principles and techniques as equilibrium detectors, but are also sensitive to details of the energy down-conversion before thermalization. SubKelvin nonequilibrium detectors measure athermal phonon sig-

Table 36.5: Selected experiments using sub-Kelvin calorimeters. The table shows only currently operated experiments, and is not exhaustive. WIMP experiments search for dark matter, and beta-decay and neutrinoless double beta decay ($0 \nu \beta \beta$) experiments constrain neutrino mass, hierarchy, and Majorana nature. The experiment location determines the characteristics of the radioactive background. The dates of current program phase, detection mode (equilibrium or nonequilibrium phonon measurements, and measurement of ionization or scintillation signals), the absorber and total mass, the sensor type, and the number of sensors and crystals (if different) are given. Many sub-K calorimeter experiments are also in planning and construction phases, including EURECA (dark matter), HOLMES and NuMECs (beta decay), and CUPID-0 ($0 \nu \beta \beta$ decay). Many of the existing experiments are being upgraded to larger mass absorbers, different absorber materials, or lower energy threshhold.

Sub-K Calorimeter	Location	Detection mode	Absorber Total mass	Sensor type	$\begin{aligned} & \text { \# Sensor } \\ & \text { \# Crystal } \end{aligned}$
WIMP					
$\begin{aligned} & \text { CRESST II } \\ & (2003-) \end{aligned}$	$\begin{aligned} & \text { Gran Sasso } \\ & \text { Italy } \end{aligned}$	Noneq. phon. and scint.	$\begin{gathered} \mathrm{CaWO}_{4} \\ 5.4 \mathrm{~kg} \end{gathered}$	TES	18
$\begin{aligned} & \text { EDELWEISS III } \\ & (2015-) \end{aligned}$	LSM Modane France	Eq. thermal and ion.	$\begin{gathered} \mathrm{Ge} \\ 22 \mathrm{~kg} \end{gathered}$	NTD Ge	36
$\begin{aligned} & \text { SuperCDMS } \\ & (2012-) \end{aligned}$	Soudan, USA SNOLAB, Canada	Noneq. phon. and ion.	$\begin{gathered} \mathrm{Ge} \\ 9 \mathrm{~kg} \end{gathered}$	$\begin{gathered} \text { TES } \\ +\mathrm{JFET} \end{gathered}$	$\begin{gathered} 120 \\ 15 \end{gathered}$
Beta decay					
$\begin{aligned} & \hline \text { ECHo } \\ & (2012-) \\ & \hline \end{aligned}$	Heidelberg Germany	Eq. thermal	$\begin{gathered} \mathrm{Au}::^{163} \mathrm{Ho} \\ 0.2 \mu \mathrm{~g} \\ \hline \end{gathered}$	MMC	16
$\overline{0 \nu \beta \beta \text { decay }}$					
$\begin{aligned} & \text { CUORE } \\ & (2015-) \end{aligned}$	$\begin{gathered} \text { Gran Sasso } \\ \text { Italy } \end{gathered}$	Eq. thermal	$\begin{gathered} \mathrm{TeO}_{2} \\ 741 \mathrm{~kg} \end{gathered}$	NTD Ge	988
AMoRe Pilot (2015-)	Yang Yang S. Korea	Noneq. phon. and scint.	$\begin{gathered} \mathrm{CaMoO}_{4} \\ 1.5 \mathrm{~kg} \end{gathered}$	MMC	5
$\begin{aligned} & \text { LUCIFER } \\ & (2010-) \end{aligned}$	Gran Sasso Italy	Eq. thermal and scint.	$\begin{aligned} & \mathrm{ZnSe} \\ & 431 \mathrm{~g} \end{aligned}$	NTD Ge	1

nals in a dielectric crystal, electron-hole pairs in a semiconductor crystal, athermal quasiparticle excitations in a superconductor, photon emission from a scintillator, or a combination of two of the above to better discriminate recoils from nuclei or electrons. Because the phonons are athermal, sub-Kelvin nonequilibrium detectors can use absorbers with larger heat capacity, and they use information about the details of energy down-conversion pathways in order to better discriminate signal from background.

In WIMP and neutrino experiments using sub-Kelvin dielectric semiconductors, the recoil energy is typically $\gtrsim 0.1 \mathrm{keV}$. The majority of the energy is deposited in phonons and a minority in ionization and, in some cases, scintillation. The semiconductor bandgap is typically $\sim \mathrm{eV}$, and $k_{\mathrm{B}} T<10 \mu \mathrm{eV}$ at $T<1$ K. Thus, high-energy charge pairs and athermal phonons are initially produced. The charge pairs cascade quickly to the gap edge. The high-energy phonons experience isotopic scattering and anharmonic decay, which downshifts the phonon spectrum until the phonon mean free path approaches the characteristic dimension of the absorber. If the crystal is sufficiently pure, these phonons propagate ballistically, preserving information about the interaction location. They are not thermalized, and thus not affected by an increase in the crystal heat capacity, allowing the use of larger absorbers. Sensors similar to those used in sub-K equilibrium thermal detectors measure the athermal phonons at the crystal surface.

Superconductors can also be used as absorbers in sub-Kelvin detectors when $T \ll T_{\mathrm{c}}$. The superconducting gap is typically $\sim \mathrm{meV}$. Energy absorption breaks Cooper pairs and produces quasiparticles. These particles cascade to the superconducting gap edge, and then recombine after a material-dependent lifetime. During the quasiparticle lifetime, they diffuse through the material. In superconductors with large mean free path, the diffusion length can be more than 1 mm , allowing diffusion to a detector.

In some experiments (e.g. SuperCDMS and CRESST), athermal phonons and quasiparticle diffusion are combined to increase achievable absorber mass. Athermal phonons in a threedimensional dielectric crystal break Cooper pairs in a twodimensional superconducting film on the detector surface. The resulting quasiparticles diffuse to thermal sensors (typically a TES) where they are absorbed and detected. While thin superconducting films have diffusion lengths shorter than the diffusion lengths in single crystal superconductors, segmenting the films into small
sections and coupling them to multiple TES sensors allows the instrumentation of large absorber volume. The TES sensors can be wired in parallel to combine their output signal.
The combined measurement of the phonon signal and a secondary signal (ionization or scintillation) can provide a powerful discrimination of signal from background events. Nuclear-recoil events in WIMP searches produce proportionally smaller ionization or scintillation signal than electron-scattering events. Since many of the background events are electron recoils, this discrimination provides a powerful veto. Similarly, beta-decay events produce proportionally smaller scintillation signal than alpha-particle events, allowing rejection of alpha backgrounds in neutrino experiments.

Combined phonon and ionization measurement has been implemented in experiments including CDMS I/II, SuperCDMS, and EDELWEISS I/II/III. These experiments use semiconductor crystal absorbers, in which dark-matter scattering events would produce recoiling particles and generate electron-hole pairs and phonons. The electron-hole pairs are separated and drifted to the surface of the crystal by applying an electric field, where they are measured by a JFET or HEMT using similar techniques to those used in $77 \mathrm{~K} \mathrm{Ge} \mathrm{x-ray} \mathrm{spectrometers}. \mathrm{However}$, must be much lower in sub-K detectors to limit the generation of phonon signals by the Neganov-Luke effect, which can confuse the background discrimination. For detectors with very low threshhold, the Neganov-Luke effect can also be used to detect generated charge through the induced phonon signal.
Combined phonon and scintillation measurement has been implemented in CRESST II, ROSEBUD, AMoRE and LUCIFER. For example, the CRESST-II experiment uses CaWO_{4} crystal absorbers, and measures both the phonon signal and the scintillation signal with TES calorimeters. A wide variety of scintillating crystals are under consideration, including different tungstates and molybdates, $\mathrm{BaF}_{2}, \mathrm{ZnSe}$, and bismuth germanate (BGO).

36.6 Low-radioactivity background techniques

Revised November 2019 by A. Piepke (Alabama U.).
The physics reach of low-energy rare-event experiments is often limited by background caused by radioactivity. The problems to be addressed span a wide range of energies, particle types, and interactions. Experiments searching for double beta decay, low energy solar neutrinos or neutrino interactions at nuclear reactors
are often concerned about electron recoils and therefore β-decays and γ-ray scattering. The energy scales of interest reach from few keV to few MeV . Dark Matter searches, looking for nuclear recoils, often focus their attention on neutron-induced energy deposits, with electron recoils being of secondary importance. While the energy scales of interest are typically in the keV range, the hadronic physics responsible for the neutron production and interaction spans MeV to GeV . The utilized detector technologies are just as varied, including, among others, large liquid scintillation detectors, solid state calorimeters, gaseous and liquid tracking detectors and crystal scintillators. Except for reactor bound experiments, these searches are typically performed underground to limit the impact of the cosmic radiation. The depth requirements vary depending on the problem and the chosen detector concept. Depending on the chosen detector design, the separation of the physics signal from this unwanted interference can be achieved on an event-by-event basis by active event tagging, utilizing some unique event features, or by reducing the flux of the backgroundcreating radiation by appropriate shielding, material selection and surface cleaning. In all cases, the background rate is proportional to the flux of the interfering radiation. Its reduction is, thus, essential for realizing the full physics potential of the experiment. In this context, "low energy" may be defined as the regime of natural, anthropogenic, or cosmogenic radioactivity; all at energies of up to about 10 MeV . See [163] [164] for in-depth reviews of this subject. Following the classification of [163], sources of background may be categorized into the following classes:

1. environmental radioactivity,
2. radio-impurities in detector or shielding components,
3. radon and its progeny,
4. cosmic rays,
5. neutrons from natural fission, (α, n) reactions and from cosmic-ray muon spallation and capture.

36.6.1 Defining the problem

The application defines the requirements. Background goals can be as demanding as a few low-energy events per year in a ton-size detector. The maximal strength of the physics signal of interest can often be estimated theoretically or from limits derived by earlier experiments. The experiments are then designed for the desired signal-to-background ratio. This requires finding the right balance between "clarity of measurement", ease of construction, schedule and budget.

It is good practice to use detector simulations to translate the background requirements into limits for the radioactivity content of various detector components, requirements for radiation shielding, and allowable cosmic-ray fluxes. This strategy allows the identification of the most critical components early and facilitates the allocation of analysis and development resources in a rational way. The CERN code GEANT4 [165] is a widely used tool for this purpose. It has incorporated sufficient nuclear physics to allow accurate background estimations. Custom-written event generators, modeling e.g., particle correlations in complex decay schemes, deviations from allowed beta spectra or $\gamma-\gamma$-angular correlations, are used as well.

36.6.2 Environmental radioactivity

The long-lived, naturally occurring radio-nuclides ${ }^{40} \mathrm{~K},{ }^{232} \mathrm{Th}$, and ${ }^{238} \mathrm{U}$ have average abundances of $1.6,11$ and 2.7 ppm (corresponding to 412,45 and $33 \mathrm{~Bq} / \mathrm{kg}$, respectively) in the earth's crust, with large local variations [166]. In most applications, γ radiation emitted in the decay of natural radioactivity and its unstable daughters constitutes the dominant contribution to the local radiation field. Typical low-background applications require levels of natural radioactivity on the order of ppb or ppt in the detector components. Passive or active shielding is used to suppress external γ radiation down to an equivalent level. Fig 36.11 shows the attenuation length $\lambda\left(E_{\gamma}\right)$ as a function of γ-ray energy E_{γ} for three common shielding materials: water, copper, lead. Assuming exponential damping, the thickness ℓ required to reduce the external flux by a factor $f>1$, is:

$$
\begin{equation*}
\ell=\lambda\left(E_{\gamma}\right) \cdot \ln f \tag{36.10}
\end{equation*}
$$

At 100 keV , a typical energy scale for dark matter searches (or 2.615 MeV for a typical double-beta decay experiment), attenuation by a factor $f=10^{5}$ requires $67(269) \mathrm{cm}$ of $\mathrm{H}_{2} \mathrm{O}, 2.8(34) \mathrm{cm}$ of Cu , or $0.18(23) \mathrm{cm}$ of Pb . Such estimates allow for an order-of-magnitude determination of the experiment dimensions.

Figure 36.11: γ-ray attenuation lengths in some common shielding materials. The mass attenuation data has been taken from the NIST data base XCOM; see "Atomic Nuclear Properties" at pdg.lbl.gov.

As discussed in the following section, shielding materials contain radioactivity too. Consequently, they are chosen such as to contribute as little as possible to the overall background budget. The shielding materials discussed above, when properly selected, fit that requirement. Th/U concentrations in selected $\mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}$ and Pb are $\leq 0.1 \mathrm{ppt}[167], \leq 0.5 \mathrm{ppt}[168]$ and $\leq 1 \mathrm{ppt}$ [169], respectively. Although cost effectively available in bulk quantity, steel is often not utilized as it can contain Th / U at concentrations of $\leq 1 \mathrm{ppb}$.

A precise estimation of the the magnitude of the external gamma-ray background, including scattering and the effect of analysis-energy cuts, requires Monte Carlo simulations based on the knowledge of the radioactivity present in the laboratory. Detailed modeling of the γ-ray flux in a large laboratory, or inside the hermetic shielding, needs to cope with a very small probability of generating any signal in the detector. It is often advantageous to calculate the solid angle of the detector to the background sources and mass attenuation of the radiation shield separately, or to employ importance sampling. The former method can lead to loss of energy-direction correlations while in the latter has to balance CPU-time consumption against the loss of statistical independence. These approaches reduce the computation time required for a statistically meaningful number of detector hits to manageable levels.

Water is commonly used as shielding medium for large detectors. It can be obtained cheaply and purified effectively in large quantity. Water purification technology is commercially available. Ultra-pure water, instrumented with photomultiplier tubes, can serve as active cosmic-ray veto system. Water is also an effective neutron moderator and shield. In more recent underground experiments that involve detectors operating at cryogenic temperature, liquefied gases (e.g. argon) are being used for shielding as well.

36.6.3 Radioactive impurities in detector and shielding com-

 ponentsAfter suppressing the effect of external radioactivity, radioactive impurities, contained in the detector components or attached to their surfaces, become important. Every material contains radioactivity at some level. The activity can be natural, cosmogenic, man-made, or a combination of them. The determination of the
activity content of a specific material or component requires case-by-case analyses, and is rarely obtainable from the manufacturer. However, there are some general rules that can be used to guide the pre-selection. For detectors designed to look for electrons (for example in double-beta decay searches or neutrino detection via inverse beta decay or elastic scattering), intrinsic radioactivity is often the principal source of background. For devices detecting nuclear recoils (for example in dark matter searches), this is often of secondary importance as ionization signals can be actively discriminated on an event-by-event basis. In the latter case radioactive decay-induced nuclear reactions, resulting in the emission of energetic neutrons, become a concern. Scattering of these neutrons on the detector material can lead to nuclear-recoil and, thus, background.

For natural radioactivity, a rule of thumb is that refined materials are more radiopure than their source in nature. Substances with high standard reduction potential tend to be cleaner as the refining process preferentially segregates K , Th , and U from electrodeposited materials. For example, Al is often found to contain considerable amounts of Th and U , while electrolytic Cu is very low in primordial activities. K, Th, and U tend to exist as or form compounds with low vapor pressure. Plastics or liquid hydrocarbons, having been refined by distillation, are often quite radiopure. Zone refining utilizes differences in solubility in the liquid and solid phase of the host material to segregate unwanted impurities. This technique is often used in the production of semiconductor detectors. Depending on the material processing, differences in standard reduction potential, boiling point and vapor pressure (for example for U and Ra) may lead to a breakage of decay chain equilibrium. Tabulated radioassay results for a wide range of materials can be found in Refs. [170], [169], [171] and [168]. Radioassay results from previous experiments are being archived at an online database [167].

The long-lived ${ }^{238} \mathrm{U}$ daughter ${ }^{210} \mathrm{~Pb}\left(T_{1 / 2}=22.3 \mathrm{y}\right)$ is found in all shielding lead. It is a background concern at low energies. This is due to the relatively high endpoint energy ($\mathrm{Q}_{\beta}=1.162 \mathrm{MeV}$) of its beta-unstable daughter ${ }^{210} \mathrm{Bi}$. Lead refined from selected lowU ore typically has specific activities of about $5-30 \mathrm{~Bq} / \mathrm{kg}$. For applications that require lower specific activity, ancient lead (for example from Roman ships) is sometimes used. Because the ore processing and lead refining removed most of the ${ }^{238} \mathrm{U}$, the ${ }^{210} \mathrm{~Pb}$ decayed during the long waiting time to the level supported by the U-content of the refined lead. Lining the lead with copper to range out the low-energy radiation is another remedy. However, intermediate- Z materials carry additional cosmogenic-activation risks when handled above ground, as will be discussed below. ${ }^{210} \mathrm{~Pb}$ is also found in solders, even lead free types.

Man-made radioactivity, released during above-ground nuclear testing and nuclear power production, is a source of background. The fission product ${ }^{137} \mathrm{Cs}$ can often be found attached to the surface of materials. The radioactive noble gas ${ }^{85} \mathrm{Kr}$, released into the atmosphere by nuclear reactors and nuclear fuel re-processing, is sometimes a background concern, especially due to its high solubility in organic materials. Post-World War II steel typically contains a few tens of $\mathrm{mBq} / \mathrm{kg}$ of ${ }^{60} \mathrm{Co}$.

Surface activity is not a material property per se but is added during manufacturing and handling. Surface contamination can be effectively removed by clean machining, solvent washing, etching, leaching with dilute acid or their combination. However, different chemical elements for example the decay chain members Ra, Po and Pb have different attachment characteristics and, therefore may react differently to solvents, leading to incomplete cleaning and chain equilibrium breakage. The assembly of low-background detectors is often performed in controlled enclosures (e.g. clean rooms or glove boxes) to avoid contaminating surfaces with environmental substances, such as dust, containing radioactivity at much higher concentrations than the detector components. Due to the small size of dust particles, a fairly large fraction of ${ }^{226} \mathrm{Ra}$ α-decays results in ${ }^{222} \mathrm{Rn}$ being ejected into the surrounding gas. This fraction can approach 20% for ultra fine dust. Because of its low reactivity, radon can then spread throughout the detector. When not being processed, components are best stored in sealed bags to limit dust deposition on the surface, even inside
clean rooms, and to separate them from radon contained in the air. Nylon bags are also good radon barriers. Storage of parts under vacuum is an alternative solution to limit dust deposition and radon daughter attachment. Surface contamination with environmental dust can be quantified by means of wipe-testing with acid or alcohol wetted Whatman 41 filters. Analysis of acid cleaned paper wipes by means of mass spectroscopy or neutron activation analysis is capable of detecting less than $1 \mathrm{pg} / \mathrm{cm}^{2}$ of $T h$ and U.
The most demanding low-rate experiments require screening of all components for low levels of radioactivity, which can be a time consuming task. The requirements for activity characterization depend on the experiment, the location and amount of a particular component. Monte Carlo simulations are used to quantify these requirements. Sensitivities of the order $\mu \mathrm{Bq} / \mathrm{kg}$ or less are sometimes required for the most critical detector components. At such a level of sensitivity, the characterization becomes a challenging problem in itself. Low-background α, β, and γ-ray counting, mass spectroscopy, and neutron activation analysis are commonly used diagnostic techniques.

36.6.4 Radon and its progeny

The noble gas ${ }^{222} \mathrm{Rn}$, a pure α-emitter, is a ${ }^{238} \mathrm{U}$ decay product. Due to its relatively long half-life of 3.8 d it is released by surface soil and is found in the atmosphere everywhere. ${ }^{220} \mathrm{Rn}$ (a ${ }^{232} \mathrm{Th}$ decay product) is unimportant for most low-background experiments because of its short half-life of 55.6 s . It has only very little time to escape from its host material before decaying, with its daughters being immobile. The ${ }^{222} \mathrm{Rn}$ activity of air ranges from 10 to $100 \mathrm{mBq} / \mathrm{L}$ outdoors and 100 to thousands of $\mathrm{mBq} / \mathrm{L}$ indoors. The natural radon concentration depends on the weather and shows daily and seasonal variations. Radon levels are lowest above the oceans. For electron detectors, it is not the Rn itself that creates background, but its progeny ${ }^{214} \mathrm{~Pb},{ }^{214} \mathrm{Bi}$, ${ }^{210} \mathrm{Bi}$, which emit energetic beta and γ radiation. Thus, not only the detector itself has to be separated from contact with air, but also air-containing internal voids can be a background concern. Radon is soluble in water and even more so in organic solvents. For large liquid scintillation detectors, radon mobility due to convection and diffusion is a concern. To define a scale: typical double-beta-decay searches are restricted to $<\mu \mathrm{Bq} / \mathrm{kg}_{\text {detector }}$ (or 1 decay per $\mathrm{kg}_{\text {detector }}$ and per 11.6 days) activities of ${ }^{222} \mathrm{Rn}$ in the active medium. This corresponds to a steady-state population of 0.5 atoms $/ \mathrm{kg}_{\text {detector }}$. The decay of Rn itself is a concern for some recoil type detectors, as nuclear recoil energies in α decays are substantial (100 keV in the case of ${ }^{222} \mathrm{Rn}$ decays).
Low-background detectors are often kept sealed from the air and continuously flushed with boil-off nitrogen, which contains only small amounts of Rn. For the most demanding applications, the nitrogen is purified by multiple distillations, or by using pressure swing adsorption chromatography. Then only the Rn outgassing of the piping (due to its intrinsic U content) determines the radon concentration. Radon diffuses readily through thin plastic barriers. If the detector is to be isolated from its environment by means of a membrane, the choice of material is important [172].
Prolonged exposure of detector components or raw materials to air leads to the accumulation of the long-lived radon daughter ${ }^{210} \mathrm{~Pb}$ on surfaces. Due to its low Q-value of $63.5 \mathrm{keV},{ }^{210} \mathrm{~Pb}$ itself is only a problem when extreme low energy response is important. However, because of its higher Q-value, the lead daughter ${ }^{210} \mathrm{Bi}$, is a concern up to the MeV scale. The alpha unstable Bi-daughter ${ }^{210} \mathrm{Po}\left(E_{\alpha}=5304 \mathrm{keV}\right)$ contributes not only to the alpha background but can also induce the emission of energetic neutrons via (α, n) reactions on low-Z materials (such as F, C, Si...etc). The neutrons, in turn, may capture on other detector components, creating energetic background. The (α, n) reaction yield induced by the α decay of ${ }^{210} \mathrm{Po}$ is typically small (about $6 \cdot 10^{-6} n / \alpha$ in Teflon, for example). This creates a memory effect, the air exposure history impacts the (α, n) background component.
Some data is available on the deposition of radon daughters from air onto materials, see e.g. [173], [174] and [175]. This data indicates a large spread of effective radon daughter collection distances ranging from a few cm to a few m in air. This large spread may indicate dependence on hidden, uncontrolled variables. These considerations limit the allowable air exposure
time but only within a wide range. Many experiments therefore adopt to perform the assembly of detector components in a radonreduced atmosphere to counter this uncertainty.

In case raw materials (e.g. in the form of granules) were exposed to air at the production site, the bulk (instead of the surface as discussed before) of the finished detector components may be loaded with ${ }^{210} \mathrm{~Pb}$ and its daughters. These are difficult to detect as no energetic gamma radiation is emitted in their decays. Careful air-exposure management is the only way to reduce this source of background. This can be achieved by storing the parts under a protective low-radon cover gas or keeping them sealed from radon.

State-of-the-art detectors can detect radon outgassing even at the level of few atoms. Solid state, scintillation, or gas detectors utilize alpha spectroscopy or are exploiting the fast $\beta-\alpha$ decay sequences of ${ }^{214} \mathrm{Bi}$ and ${ }^{214} \mathrm{Po}$. The efficiency of these devices is sometimes boosted by electrostatic collection of radon ions from a large gas volume onto a small detector. Cryogenic radon collection can also boost the radon sensitivity. Radon outgassing measurement campaigns, similar to the radioactivity measurements discussed above, are conducted by collaborations to assure that the internal radon production stays within its allowance.

36.6.5 Cosmic rays

Cosmic radiation, discussed in detail in Chapter 30, is a source of background for just about any non-accelerator experiment. Primary cosmic rays are about 90% protons, 9% alpha particles, and the rest heavier nuclei (Fig 30.1).They are totally attenuated within the first few $\mathrm{hg} / \mathrm{cm}^{2}$ of atmospheric thickness. At sea level secondary particles ($\left.\pi^{ \pm}: p: e^{ \pm}: n: \mu^{ \pm}\right)$are observed with relative intensities $1: 13: 340: 480: 1420$ ([176]; also see Fig 30.3).

All but the muon and the neutron components are readily absorbed by overburden such as building ceilings and passive shielding. Only if there is very little overburden ($\lesssim 10 \mathrm{~g} / \mathrm{cm}^{2}$ [163]) do pions and protons need to be considered when estimating the production rate of cosmogenic radioactivity.

Sensitive experiments are, thus, operated deep underground where essentially only muons can penetrate. As shown in Fig30.7 , the muon intensity falls off rapidly with depth. Active detection systems, capable of tagging events correlated in time with cosmic-ray activity, are needed, depending on the overburden.

The muonic background is related to low-radioactivity techniques insofar as photo-nuclear interactions with atomic nuclei can produce long-lived radioactivity directly or indirectly via the creation of neutrons. This happens at any overburden, however, at strongly depth dependent rates. Muon bremsstrahlung, created in high-Z shielding materials, contributes to the low energy background too. Active muon detection systems are effective in reducing cosmogenic background, but only for activities with sufficiently short half-lives, allowing vetoing with reasonable detector dead time.

Cosmogenic activation of detector components at the surface can be an issue for low-background experiments. Proper management of parts and materials above ground during manufacturing and detector assembly minimizes the accumulation of longlived activity. Cosmogenic activation is most important for intermediate- Z materials such as Cu and Fe . For the most demanding applications, metals are stored and transported under sufficient shielding to stop the hadronic component of the cosmic rays. Parts can be stored underground for long periods before being used. Underground machine shops are sometimes used to limit the duration of exposure at the surface. Some experiments are even electro-forming copper underground.

36.6.6 Neutrons

Neutrons contribute to the background of low-energy experiments in different ways: directly through nuclear recoil in the detector medium, and indirectly, through the production of radionuclides, capture $\gamma \mathrm{s}$ and inelastic scattering inside the detector and its components. The indirect mechanisms allow even remote materials to contribute to the background by means of penetrating γ radiation. Neutrons are thus an important source of low-energy background. They are produced in different ways:

1. At the earth's surface the flux of cosmic-ray secondary neutrons is exceeded only by that of muons;
2. Energetic tertiary neutrons are produced by cosmic-ray muons by nuclear spallation in the detector and laboratory walls;
3. In high- Z materials, often used in radiation shields, nuclear capture of negative muons results in the emission of neutrons;
4. Natural radioactivity has a neutron component through spontaneous fission and (α, n)-reactions.

A calculation with the hadronic simulation code FLUKA [177], using the known energy distribution of secondary neutrons at the earth's surface [178], yields a mass attenuation of $1.5 \mathrm{hg} / \mathrm{cm}^{2}$ in concrete for secondary neutrons. In case energy-dependent neutron-capture cross sections are known, such calculations can be used to obtain the production rate of particular radio-nuclides.

At an overburden of only few meters water equivalent, neutron production by muons becomes the dominant mechanism. Neutron production rates are high in high- Z shielding materials. A high- Z radiation shield, discussed earlier as being effective in reducing background due to external radioactivity, thus acts as a source for cosmogenic tertiary high-energy neutrons. Depending on the overburden and the radioactivity content of the laboratory, there is an optimal shielding thickness. Water shields, although bulky, are an attractive alternative due to their low neutron production yield and self-shielding.
Shields made from plastic or water are commonly used to reduce the neutron flux. The shield is sometimes doped with a substance having a high thermal neutron capture cross section (such as boron) to absorb thermal neutrons more quickly. The hydrogen, contained in these shields, serves as a target for elastic scattering, and is effective in reducing the neutron energy. Neutrons from natural radioactivity have relatively low energies and can be effectively suppressed by a neutron shield. Ideally, such a neutron shield should be inside the lead to be effective for tertiary neutrons. However, this is rarely done as it increases the neutron production target (in form of the passive shield), and the costs increase as the cube of the linear dimensions. An active cosmic-ray veto is an effective solution, correlating a neutron with its parent muon. This solution works best if the veto system is as far away from the detector as feasible (outside the radiation shield) in order to correlate as many background-producing muons with neutrons as possible. The vetoed time after a muon hit needs to be sufficiently long to assure muon bremsstrahlung and neutron-induced backgrounds are sufficiently suppressed. An upper limit to the allowable veto period is given by the veto-induced deadtime, which is related to the muon hit rate on the veto detector. This consideration also constitutes the limiting factor for the physical size of the veto system (besides the cost). The background caused by neutron-induced radioactivity with live-times far exceeding the veto time cannot be addressed in this way. Moving the detector deep underground, and thus reducing the muon flux, is the only technique that addresses all sources of cosmogenic the neutron background.

References

[1] R. M. Baltrusaitis et al., Nucl. Instrum. Meth. A240, 410 (1985).
[2] D. J. Bird et al. (HiRes), Astrophys. J. 424, 491 (1994).
[3] T. Abu-Zayyad et al., Nucl. Instrum. Meth. A450, 253 (2000).
[4] H. Tokuno et al., Nucl. Instrum. Meth. A676, 54 (2012), [arXiv:1201.0002].
[5] J. Abraham et al. (Pierre Auger), Nucl. Instrum. Meth. A620, 227 (2010), [arXiv:0907.4282].
[6] R. Mussa and G. Ciaccio (Pierre Auger), Eur. Phys. J. Plus 127, 94 (2012).
[7] T. Fujii et al., Astropart. Phys. 74, 64 (2016), [arXiv:1504.00692].
[8] F. Arqueros, J. R. Hoerandel and B. Keilhauer, Nucl. Instrum. Meth. A597, 23 (2008), [arXiv:0807.3844].
[9] F. Arqueros, J. R. Hoerandel and B. Keilhauer, Nucl. Instrum. Meth. A597, 1 (2008), [arXiv:0807.3760].
[10] J. Rosado, F. Blanco and F. Arqueros, Astropart. Phys. 34, 164 (2010), [arXiv:1004.3971].
[11] M. Ave et al. (AIRFLY), Astropart. Phys. 28, 41 (2007), [arXiv:astro-ph/0703132].
[12] J. Rosado, F. Blanco and F. Arqueros, Astropart. Phys. 55, 51 (2014), [arXiv:1401.4310].
[13] J. H. Boyer et al., Nucl. Instrum. Meth. A482, 457 (2002).
[14] J. T. Brack et al., Astropart. Phys. 20, 653 (2004).
[15] B. Fick et al., JINST 1, 11, P11003 (2006).
[16] J. Abraham et al. (Pierre Auger), Astropart. Phys. 33, 108 (2010), [arXiv:1002.0366].
[17] P. Abreu et al. (Pierre Auger), Astropart. Phys. 34, 368 (2011), [arXiv:1010.6162].
[18] R. Thalman et al. Journal of Quantitative Spectroscopy and Radiative Transfer , 147, 171 (2014), Erratum-ibid. 189, 281 (2017).
[19] J.Abraham et al. [Pierre Auger Collab.], Nucl. Instrum. Methods A789, 172 (2015).
[20] M. Unger et al., Nucl. Instrum. Meth. A588, 433 (2008), [arXiv:0801.4309].
[21] T.K. Gaisser and A.M. Hillas, Proc. 15th Int. Cosmic Ray Conf. Bulgarska Akademiia na Naukite, Conf. Papers 8, 353 (1978), (archived at http://adsabs.harvard.edu/abs/1977ICRC....8..353G).
[22] A. Huangs, G. Medina-Tanco and A. Santangelo, Experimental Astronomy 40, 1 (2015).
[23] P. A. Klimov et al., Space Sci. Rev. 212, 3-4, 1687 (2017), [arXiv:1706.04976].
[24] G. Abdellaoui et al. (JEM-EUSO), Journal of Instrumentation 13, 5 (2018), ISSN 17480221.
[25] L. Wiencke and A. Olinto (JEM-EUSO), PoS ICRC2017, 1097 (2018).
[26] F. Capel et al., Advances in Space Research 62, 2954 (2018).
[27] A. V. Olinto et al., PoS ICRC2017, 542 (2018), [35,542(2017)], [arXiv:1708.07599].
[28] J. Holder et al., AIP Conf. Proc. 1085, 657 (2009), [arXiv:0810.0474].
[29] F. Aharonian et al. (H.E.S.S.), Astron. Astrophys. 457, 899 (2006), [arXiv:astro-ph/0607333].
[30] J. Albert et al. (MAGIC), Astrophys. J. 674, 1037 (2008), [arXiv:0705.3244].
[31] T. C. Weekes et al., Astrophys. J. 342, 379 (1989).
[32] A. M. Hillas et al., Astrophys. J. 503, 744 (1998).
[33] http://tevcat.uchicago.edu/.
[34] F. Aharonian et al. (H.E.S.S.), Astrophys. J. 636, 777 (2006), [arXiv:astro-ph/0510397].
[35] M. de Naurois and D. Mazin, Comptes Rendus Physique 16, 610 (2015), [arXiv:1511.00463].
[36] N. Park, PoS ICRC2017, arXiv:1808.10495 (2018), [arXiv:1808.10495].
[37] A. M. Hillas, Astropart. Phys. 43, 19 (2013).
[38] B. S. Acharya et al. (CTA Consortium), Astropart. Phys. 43, 3 (2013).
[39] A. Bernstein et al., Report on the Depth Requirements for a Massive Detector at Homestake (2009), [arXiv:0907.4183].
[40] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D71, 112005 (2005), [hep-ex/0501064].
[41] S. Kasuga et al., Phys. Lett. B374, 238 (1996).
[42] M. Shiozawa (Super-Kamiokande), Nucl. Instrum. Meth. A433, 240 (1999).
[43] K. Abe et al. (Super-Kamiokande), Phys. Rev. D83, 052010 (2011), [arXiv:1010.0118].
[44] J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93, 171101 (2004), [hep-ph/0309300].
[45] J. Boger et al. (SNO), Nucl. Instrum. Meth. A449, 172 (2000), [arXiv:nucl-ex/9910016].
[46] T. K. Gaisser, F. Halzen and T. Stanev, Phys. Rept. 258, 173 (1995), [Erratum: Phys. Rept.271,355(1996)], [hepph/9410384].
[47] J.G. Learned and K. Mannheim, Ann. Rev. Nucl. and Part. Sci. 50, 679 (2000).
[48] U. F. Katz and C. Spiering, Prog. Part. Nucl. Phys. 67, 651 (2012), [arXiv:1111.0507].
[49] M. G. Aartsen et al. (IceCube), J. Phys. G44, 5, 054006 (2017), [arXiv:1607.02671].
[50] S. Adrián-Martínez et al. (KM3NeT), J. Phys. G43, 8, 084001 (2016), [arXiv:1601.07459].
[51] A. D. Avrorin et al., Phys. Part. Nucl. 46, 2, 211 (2015).
[52] M. G. Aartsen et al. (IceCube) (2014), [arXiv:1412.5106].
[53] S. Adrián-Martínez et al. (KM3NeT), Eur. Phys. J. C74, 9, 3056 (2014), [arXiv:1405.0839].
[54] A. V. Akindinov et al., Eur. Phys. J. C79, 9, 758 (2019), [arXiv:1902.06083].
[55] C. Kopper (for the IceCube Collab.), contribution to ICRC2017.
[56] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113, 101101 (2014), [arXiv:1405.5303].
[57] A. Albert et al. (ANTARES), Astrophys. J. 853, 1, L7 (2018), [arXiv:1711.07212].
[58] M. G. Aartsen et al. (IceCube), Phys. Rev. D91, 7, 072004 (2015), [arXiv:1410.7227].
[59] M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403), Science 361, 6398, eaat1378 (2018), [arXiv:1807.08816].
[60] M. G. Aartsen et al. (IceCube), Science 361, 6398, 147 (2018), [arXiv:1807.08794].
[61] G. Illuminati (for the ANTARES and IceCube Collabs.), contribution to ICRC2019.
[62] M. G. Aartsen et al. (IceCube), Phys. Rev. D99, 3, 032007 (2019), [arXiv:1901.05366].
[63] D. Williams (for the IceCube Collab.), contribution to ICRC2019.
[64] R. Coniglione (for the ANTARES and KM3NeT Collabs.), contribution to ICRC2019.
[65] K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
[66] G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966), [Pisma Zh. Eksp. Teor. Fiz.4,114(1966)].
[67] R. Abbasi et al. (IceCube), Astropart. Phys. 34, 382 (2011), [arXiv:1004.1694].
[68] S. R. Klein, Nucl. Phys. Proc. Supl. 229-232, 284 (2012), [arXiv:1012.1407].
[69] G. A. Askar'yan, Sov. Phys. JETP 14, 2, 441 (1962), [Zh. Eksp. Teor. Fiz.41,616(1961)].
[70] G.A. Askaryan, Sov. Phys. JETP 21, 658 (1965).
[71] C. W. James et al., Phys. Rev. E84, 056602 (2011), [arXiv:1007.4146].
[72] J. Alvarez-Muniz, R. A. Vazquez and E. Zas, Phys. Rev. D62, 063001 (2000), [arXiv:astro-ph/0003315].
[73] C. Glaser et al. (2019), [arXiv:1906.01670].
[74] D. Saltzberg et al., Phys. Rev. Lett. 86, 2802 (2001), [hepex/0011001].
[75] O. Scholten et al., J. Phys. Conf. Ser. 81, 012004 (2007).
[76] A. G. Vieregg, K. Bechtol and A. Romero-Wolf, JCAP 1602, 02, 005 (2016), [arXiv:1504.08006].
[77] L. Gerhardt and S. R. Klein, Phys. Rev. D82, 074017 (2010), [arXiv:1007.0039].
[78] J. Alvarez-Muniz, R. A. Vazquez and E. Zas, Phys. Rev. D61, 023001 (2000), [arXiv:astro-ph/9901278].
[79] M. G. Aartsen et al. (IceCube), Phys. Rev. D98, 6, 062003 (2018), [arXiv:1807.01820].
[80] A. Aab et al. (Pierre Auger), JCAP 1910, 10, 022 (2019), [arXiv:1906.07422].
[81] J. D. Bray et al., Phys. Rev. D91, 6, 063002 (2015), [arXiv:1502.03313].
[82] O. Scholten et al., Phys. Rev. Lett. 103, 191301 (2009), [arXiv:0910.4745].
[83] P. W. Gorham et al. (ANITA), Phys. Rev. D99, 12, 122001 (2019), [arXiv:1902.04005].
[84] P. Allison et al. (ARA), in "36th International Cosmic Ray Conference (ICRC 2019) Madison, Wisconsin, USA, July 24-August 1, 2019," (2019), [arXiv:1907.11125].
[85] A. Anker et al. (2019), [arXiv:1909.00840].
[86] T. Winchen et al., J. Phys. Conf. Ser. 1181, 1, 012077 (2019), [arXiv:1903.08472].
[87] J. Stettner (IceCube), in "HAWC Contributions to the 36th International Cosmic Ray Conference (ICRC2019)," (2019), [arXiv:1908.09551].
[88] A. van Vliet, J. R. Horandel and R. Alves Batista, PoS ICRC2017, 562 (2018), [35,562(2017)], [arXiv:1707.04511].
[89] J. A. Aguilar et al. (2019), [arXiv:1907.12526].
[90] J. G. Learned and S. Pakvasa, Astropart. Phys. 3, 267 (1995), [hep-ph/9405296].
[91] J. L. Feng et al., Phys. Rev. Lett. 88, 161102 (2002), [hepph/0105067].
[92] P. W. Gorham et al. (ANITA), Phys. Rev. Lett. 121, 16, 161102 (2018), [arXiv:1803.05088].
[93] J. Álvarez Muñiz et al. (GRAND), Sci. China Phys. Mech. Astron. 63, 1, 219501 (2020), [arXiv:1810.09994].
[94] M. Detrixhe et al. (ANITA-II), Phys. Rev. D83, 023513 (2011), [arXiv:1008.1282].
[95] R.D. Dagkesamanskii and I.M. Zheleznykh, Sov. Phys. JETP Lett. 50, 233 (1989).
[96] C. W. James et al., EPJ Web Conf. 135, 04001 (2017), [arXiv:1704.05336].
[97] J. D. Bray, Astropart. Phys. 77, 1 (2016), [arXiv:1601.02980].
[98] J.A. Dowdeswell and S. Evans, Rept. on Prog. in Phys. 67, 1821 (2004).
[99] P. Allison et al., Astropart. Phys. 108, 63 (2019), [arXiv:1712.03301].
[100] A. Anker et al., JCAP 1911, 030 (2019), [arXiv:1909.02677].
[101] S. W. Barwick et al., JCAP 1807, 07, 055 (2018), [arXiv:1804.10430].
[102] C. Deaconu et al., Phys. Rev. D98, 4, 043010 (2018), [arXiv:1805.12576].
[103] P. W. Gorham et al. (ANITA), Phys. Rev. Lett. 103, 051103 (2009), [arXiv:0812.2715].
[104] I. Kravchenko et al., Phys. Rev. D73, 082002 (2006), [arXiv:astro-ph/0601148].
[105] P. Allison et al. (ARA), Phys. Rev. D93, 8, 082003 (2016), [arXiv:1507.08991].
[106] J. Avva et al., Nucl. Instrum. Meth. A869, 46 (2017), [arXiv:1605.03525].
[107] A. Anker et al. (ARIANNA), Adv. Space Res. 64, 2595 (2019), [arXiv:1903.01609].
[108] F. G. Schroder, Prog. Part. Nucl. Phys. 93, 1 (2017), [arXiv:1607.08781].
[109] T. Huege, Braz. J. Phys. 44, 520 (2014), [,1294(2013)], [arXiv:1310.6927].
[110] S. Buitink et al., Phys. Rev. D90, 8, 082003 (2014), [arXiv:1408.7001].
[111] T. Huege, Phys. Rept. 620, 1 (2016), [arXiv:1601.07426].
[112] S. W. Barwick et al., Astropart. Phys. 90, 50 (2017), [arXiv:1612.04473].
[113] A. Balagopal V. et al., Eur. Phys. J. C78, 2, 111 (2018), [erratum: Eur. Phys. J. C78, 1017 (2018)], [arXiv:1712.09042].
[114] A. Aab et al. (Pierre Auger), Phys. Rev. Lett. 116, 24, 241101 (2016), [arXiv:1605.02564].
[115] P. A. Bezyazeekov et al., Phys. Rev. D97, 12, 122004 (2018), [arXiv:1803.06862].
[116] W. D. Apel et al. (LOPES), Phys. Rev. D90, 6, 062001 (2014), [arXiv:1408.2346].
[117] D. R. Nygren, in "Proceedings, 1975 PEP Summer Study, Berkeley, July 28-August 20, 1975," 126-133 (1975).
[118] L. S. Miller, S. Howe and W. E. Spear, Phys. Rev. 166, 871 (1968), URL https://link.aps.org/doi/10.1103/ PhysRev.166.871.
[119] E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010), [arXiv:0910.4956].
[120] V. Chepel and H. Araujo, JINST 8, R04001 (2013), [arXiv:1207.2292].
[121] D. Gonzalez-Diaz, F. Monrabal and S. Murphy, Nucl. Instrum. Meth. A878, 200 (2018), [arXiv:1710.01018].
[122] J. J. Gomez-Cadenas, F. Monrabal Capilla and P. Ferrario, Front.in Phys. 7, 51 (2019), [arXiv:1903.02435].
[123] H. J. Maris, Journal of the Physical Society of Japan 77, 11, 111008 (2008), URL https://doi.org/10.1143/JPSJ.77. 111008.
[124] L. Bruschi, G. Mazzi and M. Santini, Phys. Rev. Lett. 28, 1504 (1972), URL https://link.aps.org/doi/10.1103/ PhysRevLett.28.1504.
[125] E. Aprile et al., Nature 568, 7753, 532 (2019), URL https: //doi.org/10.1038/s41586-019-1124-4.
[126] K. Winger et al., Journal of Environmental Radioactivity 80, 2, 183 (2005), ISSN 0265-931X, URL http://www. sciencedirect.com/science/article/pii/S0265931X04002887.
[127] H. Loosli, Earth and Planetary Science Letters 63, 1, 51 (1983), ISSN 0012-821X, URL http://www.sciencedirect. com/science/article/pii/0012821X83900213.
[128] E. Aprile et al. (XENON), Eur. Phys. J. C75, 11, 546 (2015), [arXiv:1503.07698].
[129] M. Schumann, J. Phys. G46, 10, 103003 (2019), [arXiv:1903.03026].
[130] E. Aprile et al., JINST 9, 11, P11012 (2014), [arXiv:1408.6206].
[131] F. Neves et al., JINST 12, 01, P01017 (2017), [arXiv:1612.07965].
[132] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. D 97, 102008 (2018), URL https://link.aps.org/doi/10.1103/ PhysRevD.97.102008.
[133] D. S. Akerib et al. (LUX), Phys. Rev. D95, 1, 012008 (2017), [arXiv:1610.02076].
[134] M. Szydagis et al., Journal of Instrumentation 6, 10, P10002 (2011), URL https://doi.org/10.1088\%2F1748-0221\%2F6\% 2F10\%2Fp10002.
[135] M. Kimura et al., Phys. Rev. D100, 3, 032002 (2019), [arXiv:1902.01501].
[136] R. Ajaj et al. (DEAP), Phys. Rev. D100, 2, 022004 (2019), [arXiv:1902.04048].
[137] P. Agnes et al. (DarkSide), Phys. Rev. D93, 8, 081101 (2016), [Addendum: Phys. Rev.D95,no.6,069901(2017)], [arXiv:1510.00702].
[138] E. Aprile et al. (XENON), Phys. Rev. Lett. 119, 18, 181301 (2017), [arXiv:1705.06655].
[139] X. Cui et al. (PandaX-II), Phys. Rev. Lett. 119, 18, 181302 (2017), [arXiv:1708.06917].
[140] D. S. Akerib et al., Phys. Rev. Lett. 118, 25, 251302 (2017).
[141] D. S. Akerib et al. (LUX-ZEPLIN) (2018), [arXiv:1802.06039].
[142] E. Aprile et al. (XENON), JCAP 1604, 04, 027 (2016), [arXiv:1512.07501].
[143] H. Zhang et al. (PandaX), Sci. China Phys. Mech. Astron. 62, 3, 31011 (2019), [arXiv:1806.02229].
[144] C. E. Aalseth et al., Eur. Phys. J. Plus 133, 131 (2018), [arXiv:1707.08145].
[145] J. Aalbers et al., Journal of Cosmology and Astroparticle Physics 2016, 11, 017 (2016), URL https://doi.org/10. $1088 \% 2$ F1475-7516\%2F2016\%2F11\%2F017.
[146] W. Guo and D. N. McKinsey, Phys. Rev. D87, 11, 115001 (2013), [arXiv:1302.0534].
[147] D. R. Nygren, J. Phys. Conf. Ser. 460, 012006 (2013).
[148] C. A. J. O'Hare et al., Phys. Rev. D92, 6, 063518 (2015), [arXiv:1505.08061].
[149] S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A27, 1230015 (2012), [arXiv:1203.5250].
[150] S. R. Elliott, A. A. Hahn and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987), URL http://link.aps.org/doi/10. 1103/PhysRevLett.59.2020.
[151] G. Anton et al. (EXO-200), Phys. Rev. Lett. 123, 16, 161802 (2019), [arXiv:1906.02723].
[152] S. A. Kharusi et al. (nEXO) (2018), [arXiv:1805.11142].
[153] D. Nygren, Nucl. Instrum. Meth. A603, 337 (2009).
[154] M. K. Moe, Phys. Rev. C44, 931 (1991), [,1019(1991)].
[155] A. D. McDonald et al., Phys. Rev. Lett. 120, 13, 132504 (2018), [arXiv:1711.04782].
[156] C. Chambers et al. (nEXO), Nature 569, 7755, 203 (2019), [arXiv:1806.10694].
[157] P. Thapa et al. (2019), [arXiv:1904.05901].
[158] C. Enss, editor, Cryogenic particle detection, volume 99 of Topics in applied physics, Springer, Berlin, Germany (2005).
[159] E. Shirokoff (ed.), Proc. 15th Int. Workshop on Low Temperature Detectors (LTD-15), J. Low Temp. Phys. 176, 131-1108 (2014).
[160] S.H. Moseley, J.C. Mather, and D. McCammon, J. Appl. Phys. 56, 1257 (1984).
[161] K.D. Irwin, Appl. Phys. Lett. 66, 1998 (1995).
[162] S.R. Bandler et al., J. Low. Temp. Phys. 93, 709 (1993).
[163] G. Heusser, Ann. Rev. Nucl. Part. Sci. 45, 543 (1995).
[164] J. A. Formaggio and C. J. Martoff, Ann. Rev. Nucl. Part. Sci. 54, 361 (2004).
[165] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A506, 250 (2003).
[166] U. N. S. C. on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, p233, United Nations (2010).
[167] http://www.radiopurity.org.
[168] N. Abgrall et al., Nucl. Instrum. Meth. A828, 22 (2016), [arXiv:1601.03779].
[169] D. S. Leonard et al., Nucl. Instrum. Meth. A591, 490 (2008), [arXiv:0709.4524].
[170] J. Jagam and J. Simpson, Nucl. Instrum. Meth. A324, 389 (1993).
[171] D. S. Leonard et al., Nucl. Instrum. Meth. A871, 169 (2017), [arXiv:1703.10799].
[172] M. Wojcik et al., Nucl. Instrum. Meth. A449, 158 (2000).
[173] V. E. Guiseppe et al., AIP Conf. Proc. 1338, 95 (2011), [arXiv:1101.0126].
[174] M. Stein et al., Nucl. Instrum. Meth. A880, 92 (2018), [arXiv:1708.09476].
[175] E. S. Morrison et al., AIP Conf. Proc. 1921, 1, 090002 (2018), [arXiv:1708.08534].
[176] National Council on Radiation Protection and Measurement, Report 94, Bethesda, MD (1987).
[177] T. Boehlen et al., Nuclear Data Sheets 120, 211 (2014), http://www.fluka.org/fluka.php.
[178] M.S. Gordon et al., IEEE Trans. NS51, 3427 (2004).

37. Radioactivity and Radiation Protection

Revised August 2019 by S. Roesler and M. Silari (CERN).
Table 37.1: Radiation weighting factors, w_{R}.

37.1. Definitions $[1,2,3]$

It would be desirable if legal protection limits could be expressed in directly measurable physical quantities. However, this does not allow quantifying biological effects of the exposure of the human body and its detriment to ionizing radiation.

For this reason, protection limits are expressed in terms of so-called protection quantities which, although calculable, are not measurable. Protection quantities quantify the extent of exposure of the human body to ionizing radiation from both whole and partial body external irradiation and from intakes of radionuclides.

In order to demonstrate compliance with dose limits, so-called operational quantities are typically used, which aim at providing conservative estimates of protection quantities. Often radiation protection detectors used for individual and area monitoring are calibrated in terms of operational quantities and, thus, these quantities become "measurable".

37.1.1. Physical quantities :

- Fluence, Φ (unit: $1 / \mathrm{m}^{2}$): The fluence is the quotient of the sum of the particle track lengths $d l$ in the volume $d V$

$$
\begin{equation*}
\Phi=d l / d V \tag{37.1}
\end{equation*}
$$

It can also be expressed in terms of number of particles $d N$ incident upon a small sphere of cross-sectional area $d a$

$$
\Phi=d N / d a
$$

- Absorbed dose, D (unit: gray, $1 \mathrm{~Gy}=1 \mathrm{~J} / \mathrm{kg}=100 \mathrm{rad}$): The absorbed dose is the energy imparted by ionizing radiation in a volume element of a specified material divided by the mass of this volume element.
- Kerma, K (unit: gray): Kerma is the sum of the initial kinetic energies of all charged particles set in motion by indirectly ionizing radiation in a volume element of the specified material divided by the mass of this volume element.
- Linear energy transfer, L or $L E T$ (unit: J / m, often given in $\left.\mathrm{keV} / \mu \mathrm{m}, 1 \mathrm{keV} / \mu \mathrm{m} \approx 1.602 \times 10^{-10} \mathrm{~J} / \mathrm{m}\right)$: The linear energy transfer is the mean energy, $d E$, lost by a charged particle owing to collisions with electrons in traversing a distance $d l$ in matter. Low-LET radiation: X rays and gamma rays (accompanied by charged particles due to interactions with the surrounding medium) or light charged particles such as electrons that produce sparse ionizing events far apart at a molecular scale $(L<10 \mathrm{keV} / \mu \mathrm{m})$. High-LET radiation: neutrons and heavy charged particles that produce ionizing events densely spaced at a molecular scale $(L>10 \mathrm{keV} / \mu \mathrm{m})$. While the above LET definition refers to electronic stopping power only, at low energy nuclear stopping power could be a significant fraction of the total stopping power.
- Activity, A (unit: becquerel, $1 \mathrm{~Bq}=1 / \mathrm{s}=27 \mathrm{pCi}$): Activity is the expectation value of the number of nuclear decays occurring in a given quantity of material per unit time.

37.1.2. Protection quantities :

- Organ absorbed dose, D_{T} (unit: gray): The mean absorbed dose in an organ or tissue T of mass m_{T} is defined as

$$
D_{T}=\frac{1}{m_{T}} \int_{m_{T}} D d m
$$

- Equivalent dose, H_{T} (unit: sievert, $1 \mathrm{~Sv}=100 \mathrm{rem}$): The equivalent dose H_{T} in an organ or tissue T is equal to the sum of the absorbed doses $D_{T, R}$ in the organ or tissue caused by different radiation types R weighted with so-called radiation weighting factors w_{R} :

$$
\begin{equation*}
H_{T}=\sum_{R} w_{R} \times D_{T, R} \tag{37.2}
\end{equation*}
$$

Radiation type	w_{R}
Photons, electrons and muons	1
Neutrons, $E_{n}<1 \mathrm{MeV}$	$2.5+18.2 \times \exp \left[-\left(\ln E_{n}\right)^{2} / 6\right]$
$\quad 1 \mathrm{MeV} \leq E_{n} \leq 50 \mathrm{MeV}$	$5.0+17.0 \times \exp \left[-\left(\ln \left(2 E_{n}\right)\right)^{2} / 6\right]$
$E_{n}>50 \mathrm{MeV}$	$2.5+3.25 \times \exp \left[-\left(\ln \left(0.04 E_{n}\right)\right)^{2} / 6\right]$
Protons and charged pions	2
Alpha particles, fission fragments, heavy ions	20

It expresses long-term risks (primarily cancer and leukemia) from low-level chronic exposure. The values for w_{R} recommended by ICRP [2] are given in Table 37.1.

- Effective dose, E (unit: sievert): The sum of the equivalent doses, weighted by the tissue weighting factors $w_{T}\left(\sum_{T} w_{T}=1\right)$ of several organs and tissues T of the body that are considered to be most sensitive [2], is called "effective dose":

$$
\begin{equation*}
E=\sum_{T} w_{T} \times H_{T} \tag{37.3}
\end{equation*}
$$

37.1.3. Operational quantities :

- Dose equivalent, H (unit: sievert): The dose equivalent at a point in tissue is given by:

$$
\begin{equation*}
H=D \times Q \tag{37.4}
\end{equation*}
$$

where D is the absorbed dose and Q is the quality factor at that point. The quality factor at a point in tissue, is given by:

$$
Q=\frac{1}{D} \int_{L=0}^{\infty} Q(L) D_{L} d L
$$

where D_{L} is the distribution of D in unrestricted linear energy transfer L at the point of interest, and $Q(L)$ is the quality factor as a function of L. The integration is to be performed over D_{L}, due to all charged particles, excluding their secondary electrons.

- Ambient dose equivalent, $H^{*}(10)$ (unit: sievert): The dose equivalent at a point in a radiation field that would be produced by the corresponding expanded and aligned field in a 30 cm diameter sphere of unit density tissue (ICRU sphere) at a depth of 10 mm on the radius vector opposing the direction of the aligned field. Ambient dose equivalent is the operational quantity for area monitoring.
- Personal dose equivalent, $H_{p}(d)$ (unit: sievert): The dose equivalent in ICRU tissue at an appropriate depth, d, below a specified point on the human body. The specified point is normally taken to be where the individual dosimeter is worn. For the assessment of effective dose, $H_{p}(10)$ with a depth $d=10 \mathrm{~mm}$ is chosen, and for the assessment of the dose to the skin and to the hands and feet the personal dose equivalent, $H_{p}(0.07)$, with a depth $d=0.07 \mathrm{~mm}$, is used. Personal dose equivalent is the operational quantity for individual monitoring.

37.1.4. Dose conversion coefficients :

Dose conversion coefficients allow direct calculation of protection or operational quantities from particle fluence and are functions of particle type, energy and irradiation configuration. The most common coefficients are those for effective dose and ambient dose equivalent. The former are based on simulations in which the dose to organs of anthropomorphic phantoms is calculated for approximate actual conditions of exposure, such as irradiation of the front of the body (antero-posterior irradiation) or isotropic irradiation.

Conversion coefficients from fluence to effective dose are given for anterior-posterior irradiation and various particles in Fig. 37.1 [4]. For example, the effective dose from an anterior-posterior irradiation in a field of $1-\mathrm{MeV}$ neutrons with a fluence of 1 neutron per cm^{2} is about 290 pSv . In Monte Carlo simulations such coefficients allow multiplication with fluence at scoring time such that effective dose to a human body at the considered location is directly obtained.

Figure 37.1: Fluence to effective dose conversion coefficients for anterior-posterior irradiation and various particles [4].

37.2. Radiation levels [5]

- Natural background radiation: On a worldwide average, the annual whole-body dose equivalent due to all sources of natural background radiation ranges from 1.0 to 13 mSv ($0.1-1.3 \mathrm{rem}$) with an annual average of 2.4 mSv [6]. In certain areas values up to 50 mSv (5 rem) have been measured. A large fraction (typically more than 50%) originates from inhaled natural radioactivity, mostly radon and radon daughters. The latter can vary by more than one order of magnitude: it is $0.1-0.2 \mathrm{mSv}$ in open areas, 2 mSv on average in a house and more than 20 mSv in poorly ventilated mines.
- Cosmic ray background radiation: At sea level, the wholebody dose equivalent due to cosmic ray background radiation is dominated by muons; at higher altitudes also nucleons contribute. Dose equivalent rates range from less than $0.1 \mu \mathrm{~Sv} / \mathrm{h}$ at sea level to a few $\mu \mathrm{Sv} / \mathrm{h}$ at aircraft altitudes. Details on cosmic ray fluence levels are given in the Cosmic Rays section (Sec. 30 of this Review).

37.3. Health effects of ionizing radiation

Radiation can cause two types of health effects, deterministic and stochastic:

- Deterministic effects are tissue reactions which cause injury to a population of cells if a given threshold of absorbed dose is exceeded. The severity of the reaction increases with dose. The quantity in use for tissue reactions is the absorbed dose, D. When particles other than photons and electrons (low-LET radiation) are involved, a Relative Biological Effectiveness ($R B E$)-weighted dose may be used. The $R B E$ of a given radiation is the reciprocal of the ratio of the absorbed dose of that radiation to the absorbed dose of a reference radiation (usually X rays) required to produce the same degree of biological effect. It is a complex quantity that depends on many factors such as cell type, dose rate, fractionation, etc.
- Stochastic effects are malignant diseases and heritable effects for which the probability of an effect occurring, but not its severity, is a function of dose without threshold.
- Lethal dose: The whole-body dose from penetrating ionizing radiation resulting in 50% mortality in 30 days (assuming no medical treatment) is $2.5-4.5 \mathrm{~Gy}(250-450 \mathrm{rad})^{\dagger}$, as measured internally on the body longitudinal center line. The surface dose varies due to variable body attenuation and may be a strong function of energy.
- Cancer induction: The cancer induction probability is about 5% per Sv on average for the entire population [3].
- Recommended effective dose limits: The International Commission on Radiological Protection (ICRP) recommends a limit for radiation workers of 20 mSv effective dose per year averaged over 5 years, with the provision that the dose should not exceed 50 mSv in any single year [3]. The limit in the EU-countries and Switzerland is

[^70]20 mSv per year, in the U.S. it is 50 mSv per year (5 rem per year) Many physics laboratories in the U.S. and elsewhere set lower limits. The effective dose limit for general public is typically 1 mSv per year.

37.4. Prompt neutrons at accelerators

Neutrons dominate the radiation environment outside thick shielding (e.g., $>1 \mathrm{~m}$ of concrete) for high energy ($>$ a few hundred MeV) electron and hadron accelerators. In addition, for accelerators with energies above about 10 GeV , muons contribute significantly at small angles with regard to the beam, even behind several meters of shielding. Another special case are synchrotron light sources where particular care has to be taken to shield the very intense low-energy photons extracted from the electron synchrotron into the experimental areas. Due to its importance at high energy accelerators this section focuses on prompt neutrons.

37.4.1. Electron accelerators :

At electron accelerators, neutrons are generated via photonuclear reactions from bremsstrahlung photons. Neutron production takes place above a threshold value which varies from 10 to 19 MeV for light nuclei (with important exceptions, such as 2.23 MeV for deuterium and 1.67 MeV for beryllium) and from 4 to 6 MeV for heavy nuclei. It is commonly described by different mechanisms depending on the photon energy: the giant dipole resonance interactions (from threshold up to about 30 MeV , often the dominant process), the quasi-deuteron effect (between 30 MeV and a few hundred MeV), the delta resonance mechanism (between 200 MeV and a few GeV) and the vector meson dominance model at higher energies.

The giant dipole resonance reaction consists in a collective excitation of the nucleus, in which neutrons and protons oscillate in the direction of the photon electric field. The oscillation is damped by friction in a few cycles, with the photon energy being transferred to the nucleus in a process similar to evaporation. Nucleons emitted in the dipolar interaction have an anisotropic angular distribution, with a maximum at 90°, while those leaving the nucleus as a result of evaporation are emitted isotropically with a Maxwellian energy distribution described as [7]:

$$
\begin{equation*}
\frac{d N}{d E_{n}}=\frac{E_{n}}{T^{2}} e^{-E_{n} / T} \tag{37.5}
\end{equation*}
$$

where T is a nuclear 'temperature' (in units of MeV) characteristic of the particular target nucleus and its excitation energy. For heavy nuclei the 'temperature' generally lies in the range of $T=0.5-1.0$ MeV . Neutron yields from semi-infinite targets per kW of electron beam power are plotted in Fig. 37.2 as a function of the electron beam energy [7].

While for thick targets neutron production is mainly due to photonuclear interactions, for thin targets (thickness of fractions of the radiation length) electronuclear interactions are the dominating process.

Typical neutron energy spectra outside of concrete (80 cm thick, $2.35 \mathrm{~g} / \mathrm{cm}^{3}$) and iron (40 cm thick) shields are shown in Fig. 37.3. In order to compare these spectra to those caused by proton beams (see below) the spectra are scaled by a factor of 100 , which roughly corresponds to the difference in the high energy hadronic cross sections for photons and hadrons (e.g., the fine structure constant). The shape of these spectra are generally characterized by a low-energy peak at around 1 MeV (evaporation neutrons) and a high-energy shoulder at around $70-80 \mathrm{MeV}$. In case of concrete shielding, the spectrum also shows a pronounced peak at thermal neutron energies.

37.4.2. Proton accelerators :

At proton accelerators, neutron yields emitted per incident proton by different target materials are roughly independent of proton energy between 20 MeV and 1 GeV , and are given by the ratio $\mathrm{C}: \mathrm{Al}: \mathrm{Cu}-\mathrm{Fe}$: $\mathrm{Sn}: \mathrm{Ta}-\mathrm{Pb}=0.3: 0.6: 1.0: 1.5: 1.7[10]$. Above about 1 GeV , the neutron yield is proportional to E^{m}, where $0.80 \leq m \leq 0.85$ [11].

Typical neutron energy spectra outside of concrete and iron shielding are shown in Fig. 37.3. Here, the radiation fields are caused

Figure 37.2: Neutron yields from semi-infinite targets per kW of electron beam power, as a function of the electron beam energy, disregarding target self-shielding [7].

Figure 37.3: Neutron energy spectra calculated with the FLUKA code [8,9] from 25 GeV proton and electron beams on a thick copper target. Spectra are evaluated at 90° to the beam direction behind 80 cm of concrete or 40 cm of iron. All spectra are normalized per beam particle. For better visualization, spectra for electron beam are multiplied by a factor of 100 .
by a 25 GeV proton beam interacting with a thick copper target. The comparison of these spectra with those for an electron beam of the same energy reflects the difference in the hadronic cross sections between photons and hadrons above a few 100 MeV . Differences are increasing towards lower energies because of different interaction mechanisms. Furthermore, the slight shift in energy above about 100 MeV follows from the fact that the energies of the interacting photons are lower than 25 GeV . Apart from this the shapes of the two spectra are similar.

The neutron-attenuation length is shown in Fig. 37.4 for concrete and mono-energetic broad-beam conditions. It reaches an asymptotic value of about $117 \mathrm{~g} / \mathrm{cm}^{2}$ above 200 MeV . As the cascade through thick shielding is carried by particles with energies between about 100 MeV and 300 MeV (in this energy range non-elastic cross sections are at minimum and are dominated by quasi-elastic processes leading to low attenuation) this value is equal to the equilibrium attenuation length for particles emitted at 90 degrees in concrete.

Figure 37.4: The variation of the attenuation length for mono-energetic neutrons in concrete as a function of neutron energy [10].

37.5. Photon sources

The dose equivalent rate in tissue (in $\mathrm{mSv} / \mathrm{h}$) from a gamma point source emitting one photon of energy E (in MeV) per second at a distance of 1 m is $4.6 \times 10^{-9} \mu_{e n} / \rho E$, where $\mu_{e n} / \rho$ is the mass energy absorption coefficient. The latter has a value of $0.029 \pm 0.004 \mathrm{~cm}^{2} / \mathrm{g}$ for photons in tissue over an energy range between 60 keV and 2 MeV (see Ref. 12 for tabulated values).

Similarly, the dose equivalent rate in tissue (in $\mathrm{mSv} / \mathrm{h}$) at the surface of a semi-infinite slab of uniformly activated material containing $1 \mathrm{~Bq} / \mathrm{g}$ of a gamma emitter of energy E (in MeV) is $2.9 \times 10^{-4} R_{\mu} E$, where R_{μ} is the ratio of the mass energy absorption coefficients of the photons in tissue and in the material.

37.6. Accelerator-induced radioactivity

Typical medium- and long-lived activation products in metallic components of accelerators are ${ }^{22} \mathrm{Na},{ }^{46} \mathrm{Sc},{ }^{48} \mathrm{~V},{ }^{51} \mathrm{Cr},{ }^{54} \mathrm{Mn},{ }^{55} \mathrm{Fe}$, ${ }^{59} \mathrm{Fe},{ }^{56} \mathrm{Co},{ }^{57} \mathrm{Co},{ }^{58} \mathrm{Co},{ }^{60} \mathrm{Co},{ }^{63} \mathrm{Ni}$ and ${ }^{65} \mathrm{Zn}$. Gamma-emitting nuclides dominate doses by external irradiation at longer decay times (more than one day) while at short decay times β^{+}emitters are also important (through photons produced by β^{+}annihilation). Due to their short range, β^{-}emitters are relevant, for example, only for dose to the skin and eyes or for doses due to inhalation or ingestion. Fig. 37.5 and Fig. 37.6 show the contributions of gamma and β^{+} emitters to the total dose rate at 12.4 cm distance to a copper sample [13]. The sample was activated by the stray radiation field created by a 120 GeV mixed hadron beam dumped in a copper target during about 8 hours at intensities between $10^{7}-10^{8}$ hadrons per second. Typically, dose rates at a certain decay time are mainly determined by radionuclides having a half-life of the order of the decay time. Extended irradiation periods might be an exception to this general rule as in this case the activity of long-lived nuclides can build up sufficiently so that it dominates that one of short-lived even at short cooling times.

Activation in concrete is dominated by ${ }^{24} \mathrm{Na}$ (short decay time) and ${ }^{22} \mathrm{Na}$ (long decay time). Both nuclides can be produced either by low-energy neutron reactions on the sodium-component in the concrete or by spallation reactions on silicon, calcium and other constituents such as aluminum. At long decay times nuclides of radiological interest in activated concrete can also be ${ }^{60} \mathrm{Co},{ }^{152} \mathrm{Eu},{ }^{154} \mathrm{Eu}$ and ${ }^{134} \mathrm{Cs}$, all of which produced by (n, γ)-reactions with traces of natural cobalt, europium and cesium, Thus, such trace elements might be important even if their content in concrete is only a few parts per million or less by weight.

The explicit simulation of radionuclide production with generalpurpose Monte Carlo codes has become the most commonly applied method to calculate induced radioactivity and its radiological consequences $[13]$ (see also Sec. 37.8). They are complemented by
analytical codes based on folding particle fluence spectra with nuclide production cross sections. ActiWiz $[14,15]$ is an example of such a code targeting the domain of radiological characterization and material optimization. It allows for calculating nuclide inventories by convolution of fluence spectra with nuclide production data for 85 chemical elements and arbitrary compounds from threshold to an energy of 100 TeV .

Figure 37.5: Contribution of individual gamma-emitting nuclides to the total dose rate at 12.4 cm distance to an activated copper sample [13].

Figure 37.6: Contribution of individual positron-emitting nuclides to the total dose rate at 12.4 cm distance to an activated copper sample [13].

37.7. Radiation protection instrumentation

The capacity to distinguish and measure the high-LET (mostly neutrons) and the low-LET components (photons, electrons, muons) of the radiation field at workplaces is of primary importance to evaluate the exposure of personnel. At proton machines the prompt dose equivalent outside a shield is mainly due to neutrons, with some contribution from photons and, to a minor extent, charged particles. At high-energy electron accelerators the dominant stray radiation during operation consists of high-energy neutrons, because the shielding is normally thick enough to absorb most of the bremsstrahlung photons. Most of the personnel exposure at accelerator facilities is often received during maintenance interventions, and is due to gamma/beta radiation coming from residual radioactivity in accelerator components.

Radiation detectors used both for radiation surveys and area monitoring are normally calibrated in ambient dose equivalent $H^{*}(10)$.

37.7.1. Neutron detectors :

- Rem counters: A rem counter [16] is a portable detector consisting of a thermal neutron counter embedded in a polyethylene moderator, with a response function that approximately follows the curve of the conversion coefficients from neutron fluence to $H^{*}(10)$ over a wide energy range. Conventional rem counters provide a response to neutrons up to approximately $10-15 \mathrm{MeV}$, extended-range units are heavier as they include a high-A converter but correctly measure $H^{*}(10)$ up to several hundred MeV [17].
- Bonner Sphere Spectrometer (BSS): A BSS [18] is made up of a thermal neutron detector at the centre of moderating spheres of different diameters made of polyethylene (PE) or a combination of PE and a high-A material to enhance its response to high energy neutrons (similar to rem counters). Each sphere has a different response function versus neutron energy, and the neutron energy, at which the sensitivity peaks, increases with sphere diameter. The energy resolution of the system is rather low but satisfactory for radiation protection purposes. The neutron spectrum is obtained by unfolding the experimental counts of the BSS with its response matrix by a computer code that is often based on an iterative algorithm such as GRAVEL [19] and MAXED [20]. BSS exist in active (using ${ }^{3} \mathrm{He}$ or BF_{3} proportional counters or ${ }^{6} \mathrm{LiI}$ scintillators) and passive versions (using CR-39 track detectors or LiF), for use e.g. in strongly pulsed fields. With ${ }^{3} \mathrm{He}$ counters the discrimination with respect to gamma rays and noise is excellent.
- Bubble detectors: A bubble detector [21] is a dosimeter based on a super-heated emulsion (super-heated droplets suspended in a gel) contained in a vial and acting as a continuously sensitive, miniature bubble chamber. The total number of bubbles evolved from the radiation-induced nucleation of drops gives an integrated measure of the total neutron exposure. Various techniques exist to record and count the bubbles, e.g., visual inspection, automated reading with video cameras or acoustic counting. Bubble detectors are insensitive to low-LET radiation. Super-heated emulsions are used as personal, area and environmental dosimeters, as well as neutron spectrometers.
- Track etched detectors: Track etched detectors (TEDs) [22] are based on the preferential dissolution of suitable, mostly insulator, materials along the damage trails of charged particles of sufficiently high-energy deposition density. The detectors are effectively not sensitive to radiation which deposits the energy through the interactions of particles with low LET. These dosimeters are generally able to determine neutron ambient dose equivalent down to around $100 \mu \mathrm{~Sv}$. They are used both as personal dosimeters and for area monitoring, e.g., in BSS.

37.7.2. Photon detectors [23] :

- GM counters: Geiger Müller (GM) counters are low cost devices simple to operate. They work in pulse mode and since they only count radiation-induced events, any spectrometric information is lost. In general they are calibrated in terms of air kerma, for instance in a ${ }^{60} \mathrm{Co}$ field. The response of GM counters to photons is constant within 15% for energies up to 2 MeV and shows considerable energy dependence above.
- Ionization chambers: Ionization chambers are gas-filled detectors used both as hand-held instruments (e.g., for radiation surveys) and environmental monitors. They are normally operated in current mode although pulse-mode operation is also possible. They possess a relatively flat response to a wide range of X - and gamma ray energies (typically from 10 keV to several MeV), can measure radiation over a wide intensity range and are capable of discriminating between the beta and gamma components of a radiation field (by use of, e.g., a beta window). Pressurized ion chambers (filled, e.g., with Ar or H gas to several tens of bars) are used for environmental monitoring applications. They have good sensitivity to neutrons and charged hadrons in addition to low LET radiation (gammas and muons), with the response function to the former being strongly non-linear with energy.
- Scintillators: Scintillation-based detectors are used in radiation protection as hand-held probes and in fixed installations, e.g., portal monitors. A scintillation detector or counter is obtained coupling a scintillator to an electronic light sensor such as a photomultiplier tube (PMT), a photodiode or a silicon photomultiplier (SiPM). There is a wide range of scintillating materials, inorganic (such as CsI and BGO), organic or plastic; they find application in both photon dosimetry and spectrometry.

37.7.3. Operation in pulsed radiation fields :

There are many practical situations with particle accelerators used for scientific, industrial and medical applications where the time structure of the stray radiation limits the use of active monitors or requires specifically designed electronics. Pulsed neutron and gamma fields may be present because of beam losses at, e.g., targets, collimators and beam dumps. The time duration of a single burst can range from a few ns to about 1 ms with a typical repetition rate in the range $0.1-100 \mathrm{~Hz}$. Conventional detectors generally suffer from dead time effects and have strong limitations in the measurements of pulsed fields. Severe under response has been observed, e.g., in commercial rem counters, with tremendous underestimation of the ambient dose equivalent, $H^{*}(10)$, up to three orders of magnitude. The common techniques used to correct the response of radiation detectors which include dead-time corrections operate properly in a steady-state radiation field, whereas it is much more difficult to cope with dead time losses in a pulsed radiation field of unknown time structure and burst dose. Generally speaking the monitoring instrumentation must be chosen on the basis of the knowledge of the radiation field. Detectors with specifically designed electronics must be employed in pulsed field conditions, such as the recently developed LUPIN [24] in place of conventional rem counters for neutrons. If real-time monitoring is not required, passive detectors or dosimeters such as TEDs mentioned in Sec. 37.7.1 or LiF mentioned in Sec. 37.7.4 can be employed, as they are insensitive to the time structure of the radiation.

37.7.4. Personal dosimeters :

Personal dosimeters, calibrated in $H_{p}(10)$, are worn by persons exposed to ionizing radiation for professional reasons to record the dose received. They are typically passive detectors, either film, track etched detectors, ${ }^{6} \mathrm{Li} /{ }^{7} \mathrm{Li}$-based dosimeters (e.g. LiF), optically stimulated luminescence (OSL) or radiophotoluminescence detectors (RPL) but semi-active dosimeters using miniaturized ion-chambers also exist, like the Direct Ion Storage (DIS) dosimeters in use at CERN.

Electronic personal dosimeters are small active units for on-line monitoring of individual exposure, designed to be worn on the body. They can give an alarm on both the integral dose received or dose rate once a pre-set threshold is exceeded.

37.8. Monte Carlo codes for radiation protection studies

The use of general-purpose particle interaction and transport Monte Carlo codes is often the most accurate and efficient choice for assessing radiation protection quantities at accelerators. Due to the vast spread of such codes to all areas of particle physics and the associated extensive benchmarking with experimental data, the modeling has
reached an unprecedented accuracy. Furthermore, most codes allow the user to simulate all aspects of a high energy particle cascade in one and the same run: from the first interaction of a TeV nucleus over the transport and re-interactions (hadronic and electromagnetic) of the produced secondaries, to detailed nuclear fragmentation, the calculation of radioactive decays and even of the electromagnetic shower caused by the radiation from such decays. A brief account of the codes most widely used for radiation protection studies at high energy accelerators is given in the following.

- FLUKA $[8,9]$: FLUKA is a general-purpose particle interaction and transport code. It comprises all features needed for radiation protection, such as detailed hadronic and nuclear interaction models up to 10 PeV , full coupling between hadronic and electromagnetic processes and numerous variance reduction options. The latter include weight windows, region importance biasing, and leading particle, interaction, and decay length biasing (among others). The capabilities of FLUKA are unique for studies of induced radioactivity, especially with regard to nuclide production, decay, and transport of residual radiation. In particular, particle cascades by prompt and residual radiation are simulated in parallel based on the microscopic models for nuclide production and a solution of the Bateman equations for activity build-up and decay.
- GEANT4 [25,26,27]: GEANT4 is an object-oriented toolkit consisting of a kernel that provides the framework for particle transport, including tracking, geometry description, material specifications, management of events and interfaces to external graphics systems. The kernel also provides interfaces to physics processes. It allows the user to freely select the physics models that best serve the particular application needs. Implementations of interaction models exist over an extended range of energies, from optical photons and thermal neutrons to high-energy interactions required for the simulation of accelerator and cosmic ray experiments. To facilitate the use of variance reduction techniques, general-purpose biasing methods such as importance biasing, weight windows, and a weight cut-off method have been introduced directly into the toolkit. Other variance reduction methods, such as leading particle biasing for hadronic processes, come with the respective physics packages.
- MARS15 [28,29]: The MARS15 code system is a set of Monte Carlo programs for the simulation of hadronic and electromagnetic cascades. It covers a wide energy range: 1 keV to 100 TeV for muons, charged hadrons, heavy ions and electromagnetic showers; and 0.00215 eV to 100 TeV for neutrons. Hadron-nucleus interactions as well as practically all other strong, weak and electromagnetic interactions in the entire energy range can be simulated either inclusively or exclusively. MARS15 uses ENDFB-VII nuclear data to handle interactions of neutrons with energies below 14 MeV . Several variance reduction techniques, such as weight windows, particle splitting, and Russian roulette, are available. A tagging module allows tagging the origin of a given signal for source term or sensitivity analyses. The geometry module allows either a basic solid body representation option or a ROOT-based powerful engine. Further features of MARS15 include a MAD-MARS merge for a convenient creation of accelerator models and multi-turn tracking and cascade simulation in accelerator and beamline lattices.
- MCNP6 [30,31]: MCNP6 is the latest version of the Monte Carlo N-Particle transport (MCNP) family of neutron interaction and transport codes and, therefore, features one of the most comprehensive and detailed descriptions of the related physical processes. It transports 37 different particle types, including ions and electromagnetic particles. The neutron interaction and transport modules use standard evaluated data libraries mixed with physics models where such libraries are not available. The transport is continuous in energy. MCNP6 contains one of the most powerful implementations of variance reduction techniques. Spherical mesh weight windows can be created by a generator in order to focus the simulation time on certain spatial regions of interest. In addition, a more generalized phase space biasing is also possible through energyand time-dependent weight windows. Other biasing options include pulse-height tallies with variance reduction and criticality source convergence acceleration.
- PHITS [32,33]: The Particle and Heavy-Ion Transport code System PHITS was among the first general-purpose codes to simulate the transport and interactions of heavy ions in a wide energy range, from $10 \mathrm{MeV} /$ nucleon to $100 \mathrm{GeV} /$ nucleon. It is based on the high-energy hadron transport code NMTC/JAM that was extended to heavy ions. The transport of low-energy neutrons employs cross sections from evaluated nuclear data libraries such as ENDF and JENDL below 20 MeV . Electromagnetic interactions are simulated based on the ITS code in the energy range between 1 keV and 100 MeV for electrons and positrons and between 1 keV and 100 GeV for photons. Several variance reduction techniques, including weight windows and region importance biasing, are available.

References:

1. International Commission on Radiation Units and Measurements, Fundamental Quantities and Units for Ionizing Radiation, ICRU Report 60 (1998).
2. ICRP, 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures, ICRP Publication 116, Annals of the ICRP 40(2-5).
3. ICRP Publication 103, The 2007 Recommendations of the International Commission on Radiological Protection, Annals of the ICRP, Elsevier (2007).
4. M. Pelliccioni, Radiation Protection Dosimetry 88, 279 (2000).
5. E. Pochin, Nuclear Radiation: Risks and Benefits, Clarendon Press, Oxford, 1983.
6. United Nations, Report of the United Nations Scientific Committee on the Effect of Atomic Radiation, General Assembly, Official Records A/63/46 (2008).
7. W.P. Swanson, Radiological Safety Aspects of the Operation of Electron Linear Accelerators, IAEA Technical Reports Series No. 188 (1979).
8. A. Ferrari, et al., FLUKAr:, A Multi-particle Transport Code, CERN-2005-010 (2005), http://www.fluka. org.
9. T.T. Böhlen, et al., The FLUKA code: Developments and Challenges for High Energy and Medical Applications, Nuclear Data Sheets 120, 211 (2014).
10. R.H. Thomas and G.R. Stevenson, Radiological Safety Aspects of the Operation of Proton Accelerators, IAEA Technical Report Series No. 283 (1988).
11. T.A. Gabriel, et al., Nucl. Instrum. Methods A338, 336 (1994).
12. http://physics.nist.gov/PhysRefData/XrayMassCoef/ cover.html.
13. S. Roesler, et al., "Simulation of Remanent Dose Rates and Benchmark Measurements at the CERN-EU High Energy Reference Field Facility," in Proceedings of the Sixth International Meeting on Nuclear Applications of Accelerator Technology, San Diego, CA, 1-5 June 2003, 655-662 (2003).
14. C. Theis and H. Vincke, "The use of ActiWiz in operational radiation protection," in Proceedings of the Twelfth Meeting of Task-Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities of Accelerator Technology, SATIF12 FNAL, 28-30 April 2014, Nuclear Science Report NEA/NSC/R 3, (2015).
15. C. Theis and H. Vincke, "ActiWiz3 an overview of the concepts, architecture and new features," CERN Technical Note CERN-RP-2016-117-REPORTS-TN (2016),
http://actiwiz.web.cern.ch.
16. I.O. Andersson and J. Braun, A neutron rem counter with uniform sensitivity from 0.025 eV to 10 MeV in Proceedings of the IAEA Symposium on Neutron dosimetry, IAEA, Vienna, Vol. II, 87-95, (1963).
17. C. Birattari, et al., Radiation Protection Dosimetry 76, 135 (1998).
18. R.L. Bramblett, R.I. Ewing and T.W. Bonner, Nucl. Instrum. Methods 9, 1 (1960).
19. M. Matzke, PTB, Braunschweig PTBN-19, (1994).
20. M. Reginatto and P. Goldhagen, Health Physics 77, 579 (1999).
21. F. d'Errico, Nucl. Instrum. Methods B184, 229 (2001).
22. K. Becker, Dosimetric applications of track etching, in Topics in Radiation Dosimetry Ed. F.H. Attix, Academic Press, London, 79-143, (1972).
23. G.F. Knoll, Radiation detection and measurements, Wiley (2010).
24. M. Caresana, et al., A new version of the LUPIN detector: Improvements and latest experimental verification, Review of Scientific Instruments 85, 065102 (2014).
25. S. Agostinelli, et al., Nucl. Instrum. Methods A506, 250 (2003).
26. J. Allison, et al., IEEE Transactions on Nuclear Science 53, 270 (2006).
27. J. Allison, et al., Nucl. Instrum. Methods A835, 186 (2016), http://geant4.cern.ch.
28. N.V. Mokhov and C.C. James The MARS Code System Users Guide, Fermilab-FN-1058-APC (2018), https://mars.fnal.gov.
29. N.V. Mokhov, et al., Prog. Nucl. Sci. Technol. 4, 496 (2014).
30. D. Pelowitz, et al., Los Alamos National Laboratory report, LA-CP-14-00745 (2014), https://mcnp.lanl.gov.
31. J.T. Goorley, et al., Nuclear Technology 180, 298 (2012).
32. T. Sato, et al., Journal of Nuclear Science and Technology 55, 684 (2018).
33. T. Sato, et al., PHITS Particle and Heavy Ion Transport code System, Version 3.10 (2019), https://phits.jaea.go.jp.

38. Commonly Used Radioactive Sources

Table 38.1. Revised September 2019 by D.E. Groom (LBNL).

$\frac{\text { Nuclide }}{{ }_{11}^{22} \mathrm{Na}}$	Half-life	Particle		Photon
		Type of Energy E decay (MeV)	Emission prob.	Energy Emission (MeV) prob.
	2.603 y β	β^{+}, EC 0.546	90\%	0.511 Annih. 1.275 100%
${ }_{24}^{51} \mathrm{Cr}$	27.70 d	$\begin{array}{ll}\text { EC } & \\ & \\ & \text { Neutrino }\end{array}$	o calibration	$0.320 \quad 10 \%$ V K x rays 100% on source
${ }_{25}^{54} \mathrm{Mn}$	0.855 y	EC		$\begin{aligned} & \hline 0.835 \quad 100 \% \\ & \text { Cr K x rays } 26 \% \end{aligned}$
${ }_{26}^{55} \mathrm{Fe}$	2.747 y	EC		$\begin{aligned} & \text { Mn K x rays: } \\ & 0.0059024 .4 \% \\ & 0.00649 \quad 2.86 \% \end{aligned}$
${ }_{27}^{57} \mathrm{Co}$	271.8 d	EC		0.014 9% 0.122 86% 0.136 11% Fe K x rays 58%
${ }_{27}^{60} \mathrm{Co}$	5.271 y	$\beta^{-} 0.317$	99.9\%	1.173 99.9% 1.333 99.9%
${ }_{32}^{68} \mathrm{Ge}$	271.0 d	EC		Ga K x rays 42%
$\rightarrow{ }_{31}^{68} \mathrm{Ga}$	67.8 m	${ }^{+}$, EC 1.899	90\%	$\begin{array}{cc} 0.511 & \text { Annih. } \\ 1.077 & 3 \% \end{array}$
${ }_{38}^{90} \mathrm{Sr}$	28.8 y	$\beta^{-} 0.546$	100\%	
$\rightarrow{ }_{39}^{90} \mathrm{Y}$	2.67 d	$\beta^{-} \quad 2.279$	100\%	
${ }_{14}^{106} \mathrm{Ru}$	371.5 d	$\beta^{-} 0.039$	100\%	
$\rightarrow{ }_{45}^{106} \mathrm{Rh}$	30.1 s	$\beta^{-} 3.546$	79%	$\begin{array}{ll} 0.512 & 21 \% \\ 0.622 & 10 \% \end{array}$
${ }_{48}^{109} \mathrm{Cd}$	1.265 y	$\begin{array}{ll} \hline \mathrm{EC} & 0.063 e^{-} \\ & 0.084 e^{-} \end{array}$	$\begin{aligned} & 42 \% \\ & 44 \% \end{aligned}$	$\begin{aligned} & \hline 0.088 \quad 3.7 \% \\ & \mathrm{Ag} \mathrm{~K} \mathrm{x} \mathrm{rays} 100 \% \end{aligned}$
${ }_{50}^{113} \mathrm{Sn}$	115.1 d	EC $0.364 e^{-}$ $0.388 e^{-}$	$\begin{array}{r} 28 \% \\ 6 \% \end{array}$	$0.392 \quad 65 \%$ In K x rays 97%
${ }^{137} 5$	30.0 y	$\begin{array}{ll} \hline \beta^{-} & 0.514 \\ & 1.176 \end{array}$	$\begin{array}{r} 94 \% \\ 6 \% \end{array}$	$0.662 \quad 85 \%$
${ }_{56}^{133} \mathrm{Ba}$	10.55 y	EC $0.045 e^{-}$ $0.075 e^{-}$	$\begin{array}{r} 50 \% \\ 6 \% \end{array}$	0.081 33% 0.356 62% Cs K x rays 121%
${ }_{63}{ }_{6} \mathrm{Eu}$	13.537 y	$\begin{aligned} & \mathrm{EC} \\ & \beta^{-} \end{aligned}$	$\begin{aligned} & \hline 72.1 \% \\ & 27.9 \% \end{aligned}$	$\begin{aligned} & \text { Many } \gamma \text { 's } \\ & 0.1218-1.408 \mathrm{MeV} \end{aligned}$
${ }_{83}^{207} \mathrm{Bi}$	32.9 y	EC $0.481 e^{-}$ $0.975 e^{-}$ $1.047 e^{-}$	$\begin{aligned} & 2 \% \\ & 7 \% \\ & 2 \% \end{aligned}$	0.569 98% 1.063 75% 1.770 7% Pb K x rays 78%
${ }_{90}^{228} \mathrm{Th}$ $\begin{aligned} & \left(\rightarrow{ }_{88}^{224} \mathrm{Ra}\right. \\ & \left(\begin{array}{c} 361 \mathrm{~d} \end{array}\right. \end{aligned}$	$\begin{gathered} 1.912 \mathrm{y} \\ \\ \rightarrow{ }_{86}^{220} \mathrm{R} \\ 55.8 \end{gathered}$	$6 \alpha:$ 5.341 to 8 $3 \beta^{-}:$ 0.334 to 2 n $\rightarrow{ }_{84}^{216} \mathrm{Po}$ s 0.148 s	$\begin{aligned} & \hline 8.785 \\ & 2.246 \\ & \\ & \rightarrow \quad{ }_{82} 2 \mathrm{~Pb} \\ & 10.64 \mathrm{~h} \end{aligned}$	0.239 44% 0.583 31% 2.614 36% $\rightarrow 212 \mathrm{Bi}$ $\left.\rightarrow{ }_{83}{ }_{84} \mathrm{Po}\right)$ 60.54 m $300 \mathrm{~ns})$
${ }_{95}^{241} \mathrm{Am}$	432.6 y	α 5.443 5.486	$\begin{aligned} & 13 \% \\ & 84 \% \end{aligned}$	$\begin{aligned} & \hline 0.060 \quad 36 \% \\ & \text { Np L x rays } 38 \% \\ & \hline \end{aligned}$
${ }_{95}^{241} \mathrm{Am} / \mathrm{Be}$	432.6 y	$\begin{aligned} & 6 \times 10^{-5} \text { neutro } \\ & 4 \times 10^{-5} \gamma^{\prime} \text { s } \end{aligned}$	$\text { ons }(\langle E\rangle=$ 43 MeV fr	$=4 \mathrm{MeV}$) and om $\left.{ }_{4}^{9} \mathrm{Be}(\alpha, n)\right)$
${ }_{96}^{244} \mathrm{Cm}$	18.11 y	α 5.763 5.805	$\begin{aligned} & \hline 24 \% \\ & 76 \% \end{aligned}$	Pu L x rays $\sim 9 \%$
${ }_{98}^{252} \mathrm{Cf}$	2.645 y α	$\begin{array}{r} \hline \alpha(97 \%) \\ 6.076 \\ 6.118 \end{array}$	$\begin{aligned} & 15 \% \\ & 82 \% \end{aligned}$	

Fission (3.1\%): Average 7.8γ 's/fission; $\left\langle E_{\gamma}\right\rangle=0.88 \mathrm{MeV}$ ≈ 4 neutrons/fission; $\left\langle E_{n}\right\rangle=2.14 \mathrm{MeV}$
"Emission probability" is the probability per decay of a given emission; because of cascades these may total more than 100%. Only principal emissions are listed. EC means electron capture, and e^{-}means monoenergetic internal conversion (Auger) electron. The intensity of $0.511 \mathrm{MeV} e^{+} e^{-}$annihilation photons depends upon the number of stopped positrons. Endpoint $\beta^{ \pm}$energies are listed. In some cases when energies are closely spaced, the γ-ray values are approximate weighted averages. Radiation from short-lived daughter isotopes is included where relevant.

Half-lives, energies, and intensities may be found in www-pub.iaea.org/books/IAEABooks/7551/Update-of-X-Ray-and-Gamma-Ray-Decay-Data-Standards-for-Detector-Calibration-and-Other-Applications, IAEA (2007) or Nuclear Data Sheets (www.journals.elsevier.com/nuclear-data-sheets) (2007).
Neutron sources: See e.g. "Neutron Calibration Sources in the Daya Bay Experiment," J. Liu et al., Nuclear Instrum. Methods A797, 260 (2005) (arXiv.1504.07911).
${ }_{24}^{51} \mathrm{Cr}$ calibration of neutrino detectors is discussed in e.g. J.N. Abdurashitov et al. [SAGE Collaboration], Phys. Rev. C59, 2246 (1999). The use of ${ }_{34}^{75} \mathrm{Se}$ and other isotopes has also been proposed.
39. Probability (rev.) 621
40. Statistics (rev.)

626
41. Monte Carlo techniques (rev.) 642
42. Monte Carlo event generators 646
43. Monte Carlo neutrino event generators (rev.) 657
44. Monte Carlo particle numbering scheme (rev.) 661
45. Clebsch-Gordan coefficients, spherical harmonics, and d functions 665
46. $\mathrm{SU}(3)$ isoscalar factors and representation matrices 666
47. $\mathrm{SU}(n)$ multiplets and Young diagrams 667

39. Probability

Revised August 2019 by G. Cowan (RHUL).

39.1 General

[1-8] An abstract definition of probability can be given by considering a set S, called the sample space, and possible subsets A, B, \ldots, the interpretation of which is left open. The probability P is a real-valued function defined by the following axioms due to Kolmogorov [9]:

1. For every subset A in $S, P(A) \geq 0$;
2. For disjoint subsets (i.e., $A \cap B=\emptyset), P(A \cup B)=P(A)+$ $P(B)$;
3. $P(S)=1$.

In addition, one defines the conditional probability $P(A \mid B)$ (read as P of A given B) as

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{39.1}
\end{equation*}
$$

From this definition and using the fact that $A \cap B$ and $B \cap A$ are the same, one obtains Bayes' theorem,

$$
\begin{equation*}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \tag{39.2}
\end{equation*}
$$

From the three axioms of probability and the definition of conditional probability, one obtains the law of total probability,

$$
\begin{equation*}
P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \tag{39.3}
\end{equation*}
$$

for any subset B and for disjoint A_{i} with $\cup_{i} A_{i}=S$. This can be combined with Bayes' theorem (Eq. (39.2)) to give

$$
\begin{equation*}
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)} \tag{39.4}
\end{equation*}
$$

where the subset A could, for example, be one of the A_{i}.
The most commonly used interpretation of the elements of the sample space are outcomes of a repeatable experiment. The probability $P(A)$ is assigned a value equal to the limiting frequency of occurrence of A. This interpretation forms the basis of frequentist statistics.

The elements of the sample space might also be interpreted as hypotheses, i.e., statements that are either true or false, such as 'The mass of the W boson lies between 80.3 and 80.5 GeV .' Upon repetition of a measurement, however, such statements are either always true or always false, i.e., the corresponding probabilities in the frequentist interpretation are either 0 or 1 . Using subjective probability, however, $P(A)$ is interpreted as the degree of belief that the hypothesis A is true. Subjective probability is used in Bayesian (as opposed to frequentist) statistics. Bayes' theorem can be written

$$
\begin{equation*}
P(\text { theory } \mid \text { data }) \propto P(\text { data } \mid \text { theory }) P(\text { theory }) \tag{39.5}
\end{equation*}
$$

where 'theory' represents some hypothesis and 'data' is the outcome of the experiment. Here P (theory) is the prior probability for the theory, which reflects the experimenter's degree of belief before carrying out the measurement, and P (data|theory) is the probability to have gotten the data actually obtained, given the theory, which is also called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability, which may depend on previous measurements, theoretical prejudices, etc. Once this has been specified, however, Eq. (39.5) tells how the probability for the theory must be modified in the light of the new data to give the posterior probability, P (theory|data). As Eq. (39.5) is stated as a proportionality, the probability must be normalized by summing (or integrating) over all possible hypotheses.

39.2 Random variables

A random variable is a numerical characteristic assigned to an element of the sample space. In the frequency interpretation of probability, it corresponds to an outcome of a repeatable experiment. Let x be a possible outcome of an observation. If x can take on any value from a continuous range, we write $f(x ; \theta) d x$ as the probability that the measurement's outcome lies between x and $x+d x$. The function $f(x ; \theta)$ is called the probability density function (p.d.f.), which may depend on one or more parameters θ. If x can take on only discrete values (e.g., the non-negative integers), then we use $f(x ; \theta)$ to denote the probability to find the value x. In the following the term p.d.f. is often taken to cover both the continuous and discrete cases, although technically the term density should only be used in the continuous case.

The p.d.f. is always normalized to unity. Both x and θ may have multiple components and are then often written as vectors. If θ is unknown, we may wish to estimate its value from a given set of measurements of x; this is a central topic of statistics (see Sec. 40).
The cumulative distribution function $F(a)$ is the probability that $x \leq a$:

$$
\begin{equation*}
F(a)=\int_{-\infty}^{a} f(x) d x \tag{39.6}
\end{equation*}
$$

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a is expressly included in the integral or sum. Then $0 \leq F(x) \leq 1, F(x)$ is nondecreasing, and $P(a<x \leq$ $b)=F(b)-F(a)$. If x is discrete, $F(x)$ is flat except at allowed values of x, where it has discontinuous jumps equal to $f(x)$.

Any function of random variables is itself a random variable, with (in general) a different p.d.f. The expectation value of any function $u(x)$ is

$$
\begin{equation*}
E[u(x)]=\int_{-\infty}^{\infty} u(x) f(x) d x \tag{39.7}
\end{equation*}
$$

assuming the integral is finite. The expectation value is linear, i.e., for any two functions u and v of x and constants c_{1} and c_{2}, $E\left[c_{1} u+c_{2} v\right]=c_{1} E[u]+c_{2} E[v]$.

The $n^{t h}$ moment of a random variable x is

$$
\begin{equation*}
\alpha_{n} \equiv E\left[x^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x \tag{39.8a}
\end{equation*}
$$

and the $n^{t h}$ central moment of x (or moment about the mean, $\left.\alpha_{1}\right)$ is

$$
\begin{equation*}
m_{n} \equiv E\left[\left(x-\alpha_{1}\right)^{n}\right]=\int_{-\infty}^{\infty}\left(x-\alpha_{1}\right)^{n} f(x) d x \tag{39.8b}
\end{equation*}
$$

The most commonly used moments are the mean μ and variance σ^{2} :

$$
\begin{align*}
\mu & \equiv \alpha_{1} \tag{39.9a}\\
\sigma^{2} & \equiv V[x] \equiv m_{2}=\alpha_{2}-\mu^{2} \tag{39.9b}
\end{align*}
$$

The mean is the location of the "center of mass" of the p.d.f., and the variance is a measure of the square of its width. Note that $V[c x+k]=c^{2} V[x]$. It is often convenient to use the standard deviation of x, σ, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness of the p.d.f. The simplest of these is the dimensionless coefficient of skewness $\gamma_{1}=m_{3} / \sigma^{3}$.

The fourth central moment m_{4} provides a convenient measure of the tails of a distribution. For the Gaussian distribution (see Sec. 39.4), one has $m_{4}=3 \sigma^{4}$. The kurtosis is defined as $\gamma_{2}=m_{4} / \sigma^{4}-3$, i.e., it is zero for a Gaussian, positive for a leptokurtic distribution with longer tails, and negative for a platykurtic distribution with tails that die off more quickly than those of a Gaussian.

The quantile x_{α} is the value of the random variable x at which the cumulative distribution is equal to α. That is, the quantile
is the inverse of the cumulative distribution function, i.e., $x_{\alpha}=$ $F^{-1}(\alpha)$. An important special case is the median, $x_{\text {med }}$, defined by $F\left(x_{\mathrm{med}}\right)=1 / 2$, i.e., half the probability lies above and half lies below $x_{\text {med }}$. (More rigorously, $x_{\text {med }}$ is a median if $P(x \geq$ $\left.x_{\text {med }}\right) \geq 1 / 2$ and $P\left(x \leq x_{\text {med }}\right) \geq 1 / 2$. If only one value exists, it is called 'the median.')
Under a monotonic change of variable $x \rightarrow y(x)$, the quantiles of a distribution (and hence also the median) obey $y_{\alpha}=y\left(x_{\alpha}\right)$. In general the expectation value and mode (most probable value) of a distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. $f(x, y)$. The marginal p.d.f. of x (the distribution of x with y unobserved) is

$$
\begin{equation*}
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y \tag{39.10}
\end{equation*}
$$

and similarly for the marginal p.d.f. $f_{2}(y)$. The conditional p.d.f. of y given fixed x (with $f_{1}(x) \neq 0$) is defined by $f_{3}(y \mid x)=$ $f(x, y) / f_{1}(x)$, and similarly $f_{4}(x \mid y)=f(x, y) / f_{2}(y)$. From these, we immediately obtain Bayes' theorem (see Eqs. (39.2) and (39.4)),

$$
\begin{equation*}
f_{4}(x \mid y)=\frac{f_{3}(y \mid x) f_{1}(x)}{f_{2}(y)}=\frac{f_{3}(y \mid x) f_{1}(x)}{\int f_{3}\left(y \mid x^{\prime}\right) f_{1}\left(x^{\prime}\right) d x^{\prime}} \tag{39.11}
\end{equation*}
$$

The mean of x is

$$
\begin{equation*}
\mu_{x}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{-\infty}^{\infty} x f_{1}(x) d x \tag{39.12}
\end{equation*}
$$

and similarly for y. The covariance of x and y is

$$
\begin{equation*}
\operatorname{cov}[x, y]=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=E[x y]-\mu_{x} \mu_{y} \tag{39.13}
\end{equation*}
$$

A dimensionless measure of the covariance of x and y is given by the correlation coefficient,

$$
\begin{equation*}
\rho_{x y}=\operatorname{cov}[x, y] / \sigma_{x} \sigma_{y} \tag{39.14}
\end{equation*}
$$

where σ_{x} and σ_{y} are the standard deviations of x and y. It can be shown that $-1 \leq \rho_{x y} \leq 1$.

Two random variables x and y are independent if and only if

$$
\begin{equation*}
f(x, y)=f_{1}(x) f_{2}(y) \tag{39.15}
\end{equation*}
$$

If x and y are independent, then $\rho_{x y}=0$; the converse is not necessarily true. If x and y are independent, $E[u(x) v(y)]=$ $E[u(x)] E[v(y)]$, and $V[x+y]=V[x]+V[y]$; otherwise, $V[x+y]=$ $V[x]+V[y]+2 \operatorname{cov}[x, y]$, and $E[u v]$ does not necessarily factorize.

Consider a set of n continuous random variables $\boldsymbol{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$ with joint p.d.f. $f(\boldsymbol{x})$, and a set of n new variables $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, related to \boldsymbol{x} by means of a function $\boldsymbol{y}(\boldsymbol{x})$ that is one-to-one, i.e., the inverse $\boldsymbol{x}(\boldsymbol{y})$ exists. The joint p.d.f. for \boldsymbol{y} is given by

$$
\begin{equation*}
g(\boldsymbol{y})=f(\boldsymbol{x}(\boldsymbol{y}))|J| \tag{39.16}
\end{equation*}
$$

where $|J|$ is the absolute value of the determinant of the square matrix $J_{i j}=\partial x_{i} / \partial y_{j}$ (the Jacobian determinant). If the transformation from \boldsymbol{x} to \boldsymbol{y} is not one-to-one, the \boldsymbol{x}-space must be broken into regions where the function $\boldsymbol{y}(\boldsymbol{x})$ can be inverted, and the contributions to $g(\boldsymbol{y})$ from each region summed.

Given a set of functions $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$ with $m<n$, one can construct $n-m$ additional independent functions, apply the procedure above, then integrate the resulting $g(\boldsymbol{y})$ over the unwanted y_{i} to find the marginal distribution of those of interest.

For a one-to-one transformation of discrete random variables, the probability is obtained by simple substitution; no Jacobian is necessary because in this case f is a probability rather than a probability density. If the transformation is not one-to-one, then one must sum the probabilities for all values of the original variable that contribute to a given value of the transformed variable. If f depends on a set of parameters $\boldsymbol{\theta}$, a change to a different parameter set $\boldsymbol{\eta}(\boldsymbol{\theta})$ is made by simple substitution; no Jacobian is used.

39.3 Characteristic functions

The characteristic function $\phi(u)$ associated with the p.d.f. $f(x)$ is essentially its Fourier transform, or the expectation value of $e^{i u x}$:

$$
\begin{equation*}
\phi(u)=E\left[e^{i u x}\right]=\int_{-\infty}^{\infty} e^{i u x} f(x) d x \tag{39.17}
\end{equation*}
$$

Once $\phi(u)$ is specified, the p.d.f. $f(x)$ is uniquely determined and vice versa; knowing one is equivalent to the other. Characteristic functions are useful in deriving a number of important results about moments and sums of random variables.

It follows from Eqs. (39.8) and (39.17) that the $n^{t h}$ moment of a random variable x that follows $f(x)$ is given by

$$
\begin{equation*}
\left.i^{-n} \frac{d^{n} \phi}{d u^{n}}\right|_{u=0}=\int_{-\infty}^{\infty} x^{n} f(x) d x=\alpha_{n} \tag{39.18}
\end{equation*}
$$

Thus it is often easy to calculate all the moments of a distribution defined by $\phi(u)$, even when $f(x)$ cannot be written down explicitly.

If the p.d.f.s $f_{1}(x)$ and $f_{2}(y)$ for independent random variables x and y have characteristic functions $\phi_{1}(u)$ and $\phi_{2}(u)$, then the characteristic function of the weighted sum $a x+b y$ is $\phi_{1}(a u) \phi_{2}(b u)$. The rules of addition for several important distributions (e.g., that the sum of two Gaussian distributed variables also follows a Gaussian distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the conditional p.d.f. $f_{2}(x \mid z)$ be $\phi_{2}(u \mid z)$, and the p.d.f. of z be $f_{1}(z)$. The characteristic function after integration over the conditional value is

$$
\begin{equation*}
\phi(u)=\int \phi_{2}(u \mid z) f_{1}(z) d z \tag{39.19}
\end{equation*}
$$

Suppose we can write ϕ_{2} in the form

$$
\begin{equation*}
\phi_{2}(u \mid z)=A(u) e^{i g(u) z} \tag{39.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\phi(u)=A(u) \phi_{1}(g(u)) \tag{39.21}
\end{equation*}
$$

The cumulants (semi-invariants) κ_{n} of a distribution with characteristic function $\phi(u)$ are defined by the relation

$$
\begin{equation*}
\phi(u)=\exp \left[\sum_{n=1}^{\infty} \frac{\kappa_{n}}{n!}(i u)^{n}\right]=\exp \left(i \kappa_{1} u-\frac{1}{2} \kappa_{2} u^{2}+\ldots\right) \tag{39.22}
\end{equation*}
$$

The values κ_{n} are related to the moments α_{n} and m_{n}. The first few relations are

$$
\begin{align*}
& \kappa_{1}=\alpha_{1}(=\mu, \text { the mean }) \\
& \kappa_{2}=m_{2}=\alpha_{2}-\alpha_{1}^{2}\left(=\sigma^{2}, \text { the variance }\right) \tag{39.23}\\
& \kappa_{3}=m_{3}=\alpha_{3}-3 \alpha_{1} \alpha_{2}+2 \alpha_{1}^{3}
\end{align*}
$$

39.4 Commonly used probability distributions

Table 39.1 gives a number of common probability density functions and corresponding characteristic functions, means, and variances. Further information may be found in Refs. [1-8] [10], and [11], which has particularly detailed tables. Monte Carlo techniques for generating each of them may be found in our Sec. 41.4 and in Ref. [10]. We comment below on all except the trivial uniform distribution.

39.4.1 Binomial and multinomial distributions

A random process with exactly two possible outcomes which occur with fixed probabilities is called a Bernoulli process. If the probability of obtaining a certain outcome (a "success") in an individual trial is p, then the probability of obtaining exactly r successes $(r=0,1,2, \ldots, N)$ in N independent trials, without regard to the order of the successes and failures, is given by the binomial distribution $f(r ; N, p)$ in Table 39.1. If r and s are binomially distributed with parameters $\left(N_{r}, p\right)$ and $\left(N_{s}, p\right)$, then $t=r+s$ follows a binomial distribution with parameters $\left(N_{r}+N_{s}, p\right)$. If
there are are m possible outcomes for each trial having probabilities $p_{1}, p_{2}, \ldots, p_{m}$, then the joint probability to find $r_{1}, r_{2}, \ldots, r_{m}$ of each outcome after a total of N independent trials is given by the multinomial distribution as shown in Table 39.1. We can regard outcome i as "success" and all the rest as "failure", so individually, any of the r_{i} follow a binomial distribution for N trials and a success probability p_{i}.

39.4.2 Poisson distribution

The Poisson distribution $f(n ; \nu)$ gives the probability of finding exactly n events in a given interval of x (e.g., space or time) when the events occur independently of one another and of x at an average rate of ν per the given interval. The variance σ^{2} equals ν. It is the limiting case $p \rightarrow 0, N \rightarrow \infty, N p=\nu$ of the binomial distribution. The Poisson distribution approaches the Gaussian distribution for large ν.

For example, a large number of radioactive nuclei of a given type will result in a certain number of decays in a fixed time interval. If this interval is small compared to the mean lifetime, then the probability for a given nucleus to decay is small, and thus the number of decays in the time interval is well modeled as a Poisson variable.

39.4.3 Normal or Gaussian distribution

The normal (or Gaussian) probability density function $f\left(x ; \mu, \sigma^{2}\right)$ given in Table 39.1 has mean $E[x]=\mu$ and variance $V[x]=\sigma^{2}$. Comparison of the characteristic function $\phi(u)$ given in Table 39.1 with Eq. (39.22) shows that all cumulants κ_{n} beyond κ_{2} vanish; this is a unique property of the Gaussian distribution. Some other properties are:

$$
\begin{align*}
& P(x \text { in range } \mu \pm \sigma)=0.6827 \\
& P(x \text { in range } \mu \pm 0.6745 \sigma)=0.5 \\
& E[|x-\mu|]=\sqrt{2 / \pi} \sigma=0.7979 \sigma \tag{39.25}
\end{align*}
$$

$$
\text { half-width at half maximum }=\sqrt{2 \ln 2} \sigma=1.177 \sigma
$$

For a Gaussian with $\mu=0$ and $\sigma^{2}=1$ (the standard normal)
the cumulative distribution, often written $\Phi(x)$, is related to the error function erf by

$$
\begin{equation*}
F(x ; 0,1) \equiv \Phi(x)=\frac{1}{2}[1+\operatorname{erf}(x / \sqrt{2})] \tag{39.24}
\end{equation*}
$$

The error function and standard Gaussian are tabulated in many references (e.g., Ref. [11,12]) and are available in software packages such as ROOT [13]. For a mean μ and variance σ^{2}, replace x by $(x-\mu) / \sigma$. The probability of x in a given range can be calculated with Eq. (40.70).

For x and y independent and normally distributed, $z=a x+b y$ follows a normal p.d.f. $f\left(z ; a \mu_{x}+b \mu_{y}, a^{2} \sigma_{x}^{2}+b^{2} \sigma_{y}^{2}\right)$; that is, the weighted means and variances add.

The Gaussian derives its importance in large part from the central limit theorem:

If independent random variables x_{1}, \ldots, x_{n} are distributed according to any p.d.f. with finite mean and variance, then the sum $y=\sum_{i=1}^{n} x_{i}$ will have a p.d.f. that approaches a Gaussian for large n. If the p.d.f.s of the x_{i} are not identical, the theorem still holds under somewhat more restrictive conditions. The mean and variance are given by the sums of corresponding terms from the individual x_{i}. Therefore, the sum of a large number of fluctuations x_{i} will be distributed as a Gaussian, even if the x_{i} themselves are not.

For a set of n Gaussian random variables \boldsymbol{x} with means $\boldsymbol{\mu}$ and covariances $V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]$, the p.d.f. for the one-dimensional Gaussian is generalized to

$$
f(\boldsymbol{x} ; \boldsymbol{\mu}, V)=\frac{1}{(2 \pi)^{n / 2} \sqrt{|V|}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} V^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]
$$

where the determinant $|V|$ must be greater than 0 . For diagonal V (independent variables), $f(\boldsymbol{x} ; \boldsymbol{\mu}, V)$ is the product of the p.d.f.s of n Gaussian distributions.

For $n=2, f(\boldsymbol{x} ; \boldsymbol{\mu}, V)$ is

$$
\begin{equation*}
f\left(x_{1}, x_{2} ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \times \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \tag{39.26}
\end{equation*}
$$

The characteristic function for the multivariate Gaussian is

$$
\begin{equation*}
\phi(\boldsymbol{u} ; \boldsymbol{\mu}, V)=\exp \left[i \boldsymbol{\mu} \cdot \boldsymbol{u}-\frac{1}{2} \boldsymbol{u}^{T} V \boldsymbol{u}\right] \tag{39.27}
\end{equation*}
$$

If the components of \boldsymbol{x} are independent, then Eq. (39.27) is the product of the characteristic functions of n Gaussians.

For an n-dimensional Gaussian distribution for \boldsymbol{x} with mean $\boldsymbol{\mu}$ and covariance matrix V, the marginal distribution for any single x_{i} is is a one-dimensional Gaussian with mean μ_{i} and variance $V_{i i}$. The equation $(\boldsymbol{x}-\boldsymbol{a})^{T} V^{-1}(\boldsymbol{x}-\boldsymbol{a})=C$, where C is any positive number, defines an n-dimensional ellipse centered about a. If \boldsymbol{a} is equal to the mean $\boldsymbol{\mu}$, then C is a random variable obeying the χ^{2} distribution for n degrees of freedom, which is discussed in the following section. The probability that \boldsymbol{x} lies outside the ellipsoid for a given value of C is given by $1-F_{\chi^{2}}(C ; n)$, where $F_{\chi^{2}}$ is the cumulative χ^{2} distribution. This may be read from Fig. 40.1. For example, the " s-standard-deviation ellipsoid" occurs at $C=s^{2}$. For the two-variable case $(n=2)$, the point x lies outside the one-standard-deviation ellipsoid with 61% probability. The use of these ellipsoids as indicators of probable error is described in Sec. 40.4.2.2; the validity of those indicators assumes that $\boldsymbol{\mu}$ and V are correct.

39.4.4 Log-normal distribution

If a random variable y follows a Gaussian distribution with mean μ and variance σ^{2}, then $x=e^{y}$ follows a log-normal distribution, as given in Table 39.1. As a consequence of the central limit theorem described in Sec. 39.4.3, the distribution of the product of a large number of positive random variables approaches
a log-normal. It is bounded below by zero and is thus well suited for modeling quantities that are intrinsically non-negative such as an efficiency. One can implement a log-normal model for a random variable x by defining $y=\ln x$ so that y follows a Gaussian distribution.
39.4.5 χ^{2} distribution

If x_{1}, \ldots, x_{n} are independent Gaussian random variables, the sum $z=\sum_{i=1}^{n}\left(x_{i}-\mu_{i}\right)^{2} / \sigma_{i}^{2}$ follows the χ^{2} p.d.f. with n degrees of freedom, which we denote by $\chi^{2}(n)$. More generally, for n correlated Gaussian variables as components of a vector \boldsymbol{X} with covariance matrix $V, z=\boldsymbol{X}^{T} V^{-1} \boldsymbol{X}$ follows $\chi^{2}(n)$ as in the previous section. For a set of z_{i}, each of which follows $\chi^{2}\left(n_{i}\right), \sum z_{i}$ follows $\chi^{2}\left(\sum n_{i}\right)$. For large n, the χ^{2} p.d.f. approaches a Gaussian with a mean and variance given by $\mu=n$ and $\sigma^{2}=2 n$, respectively (here the formulae for μ and σ^{2} are valid for all n).

The χ^{2} p.d.f. is often used in evaluating the level of compatibility between observed data and a hypothesis for the p.d.f. that the data might follow. This is discussed further in Sec. 40.3.2 on significance tests.

39.4.6 Student's t distribution

Suppose that y and x_{1}, \ldots, x_{n} are independent and Gaussian distributed with mean 0 and variance 1 . We then define

$$
\begin{equation*}
z=\sum_{i=1}^{n} x_{i}^{2} \quad \text { and } \quad t=\frac{y}{\sqrt{z / n}} \tag{39.28}
\end{equation*}
$$

The variable z thus follows a $\chi^{2}(n)$ distribution. Then t is distributed according to Student's t distribution with n degrees of

Table 39.1: Some common probability density functions, with corresponding characteristic functions and means and variances. In the Table, $\Gamma(k)$ is the gamma function, equal to $(k-1)!$ when k is an integer; ${ }_{1} F_{1}$ is the confluent hypergeometric function of the 1st kind [11].

freedom, $f(t ; n)$, given in Table 39.1.
If defined through gamma functions as in Table 39.1, the parameter n is not required to be an integer. As $n \rightarrow \infty$, the distribution approaches a Gaussian, and for $n=1$ it is a Cauchy or Breit-Wigner distribution.
As an example, consider the sample mean $\bar{x}=\sum x_{i} / n$ and the sample variance $s^{2}=\sum\left(x_{i}-\bar{x}\right)^{2} /(n-1)$ for normally distributed x_{i} with unknown mean μ and variance σ^{2}. The sample mean has a Gaussian distribution with a variance σ^{2} / n, so the variable $(\bar{x}-\mu) / \sqrt{\sigma^{2} / n}$ is normal with mean 0 and variance 1 . The quantity $(n-1) s^{2} / \sigma^{2}$ is independent of this and follows $\chi^{2}(n-1)$. The ratio

$$
\begin{equation*}
t=\frac{(\bar{x}-\mu) / \sqrt{\sigma^{2} / n}}{\sqrt{(n-1) s^{2} / \sigma^{2}(n-1)}}=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \tag{39.29}
\end{equation*}
$$

is distributed as $f(t ; n-1)$. The unknown variance σ^{2} cancels, and t can be used to test the hypothesis that the true mean is some particular value μ.

39.4.7 Gamma distribution

For a process that generates events as a function of x (e.g., space or time) according to a Poisson distribution, the distance in x from an arbitrary starting point (which may be some particular event) to the $k^{t h}$ event follows a gamma distribution, $f(x ; \lambda, k)$. The Poisson parameter μ is λ per unit x. The special case $k=1$ (i.e., $f(x ; \lambda, 1)=\lambda e^{-\lambda x}$) is called the exponential distribution. A sum of k^{\prime} exponential random variables x_{i} is distributed as $f\left(\sum x_{i} ; \lambda, k^{\prime}\right)$.
The parameter k is not required to be an integer. For $\lambda=$ $1 / 2$ and $k=n / 2$, the gamma distribution reduces to the $\chi^{2}(n)$ distribution.

39.4.8 Beta distribution

The beta distribution describes a continuous random variable x in the interval $[0,1]$. By scaling and translation one can easily
generalize it to have arbitrary endpoints. In Bayesian inference about the parameter p of a binomial process, if the prior p.d.f. is a beta distribution $f(p ; \alpha, \beta)$ then the observation of r successes out of N trials gives a posterior beta distribution $f(p ; r+\alpha, N-r+\beta)$ (Bayesian methods are discussed further in Sec. 40). The uniform distribution is a beta distribution with $\alpha=\beta=1$.

References

[1] H. Cramér, Mathematical Methods of Statistics, (Princeton Univ. Press, New Jersey, 1958).
[2] A. Stuart and J.K. Ord, Kendall's Advanced Theory of Statistics, Vol. 1 Distribution Theory 6th Ed., (Halsted Press, New York, 1994), and earlier editions by Kendall and Stuart.
[3] F.E. James, Statistical Methods in Experimental Physics, 2nd Ed., (World Scientific, Singapore, 2006).
[4] L. Lyons, Statistics for Nuclear and Particle Physicists, (Cambridge University Press, New York, 1986).
[5] B.R. Roe, Probability and Statistics in Experimental Physics, 2nd Ed., (Springer, New York, 2001).
[6] R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, (John Wiley, New York, 1989).
[7] S. Brandt, Data Analysis, 3rd Ed., (Springer, New York, 1999).
[8] G. Cowan, Statistical Data Analysis, (Oxford University Press, Oxford, 1998).
[9] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, (Springer, Berlin, 1933); Foundations of the Theory of Probability, 2nd Ed., (Chelsea, New York 1956).
[10] Ch. Walck, Hand-book on Statistical Distributions for Experimentalists, University of Stockholm Internal Report SUF-PFY/96-01, available from www.physto.se/~walck.
[11] M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions, (Dover, New York, 1972).
[12] F.W.J. Olver et al., eds., NIST Handbook of Mathematical Functions, (Cambridge University Press, 2010); A companion Digital Library of Mathematical Functions is available at
dlmf.nist.gov.
[13] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A389, 81 (1997); See also root.cern.ch.

40. Statistics

Revised October 2019 by G. Cowan (RHUL)

This chapter gives an overview of statistical methods used in high-energy physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model's validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian.

In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 40.2, statistical tests, discussed in Section 40.3, and confidence intervals, which are constructed so as to cover the true value of a parameter with a specified probability, as described in Section 40.4.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more general and includes degree of belief (called subjective probability). One can then speak of a probability density function (p.d.f.) for a parameter, which expresses one's state of knowledge about where its true value lies. Bayesian methods provide a natural means to include additional information, which in general may be subjective; in fact they require prior probabilities for the hypotheses (or parameters) in question, i.e., the degree of belief about the parameters' values, before carrying out the measurement. Using Bayes' theorem (Eq. (39.4)), the prior degree of belief is updated by the data from the experiment. Bayesian methods for interval estimation are discussed in Sections 40.4.1 and 40.4.2.4.

For many inference problems, the frequentist and Bayesian approaches give similar numerical values, even though they answer different questions and are based on fundamentally different interpretations of probability. In some important cases, however, the two approaches may yield very different results. For a discussion of Bayesian vs. non-Bayesian methods, see references written by a statistician [1], by a physicist [2], or the detailed comparison in Ref. [3].

40.1 Fundamental concepts

Consider an experiment whose outcome is characterized by one or more data values, which we can write as a vector \boldsymbol{x}. A hypothesis H is a statement about the probability for the data, often written $P(x \mid H)$. (We will usually use a capital letter for a probability and lower case for a probability density. Often the term p.d.f. is used loosely to refer to either a probability or a probability density.) This could, for example, define completely the p.d.f. for the data (a simple hypothesis), or it could specify only the functional form of the p.d.f., with the values of one or more parameters not determined (a composite hypothesis).

If the probability $P(\boldsymbol{x} \mid H)$ for data \boldsymbol{x} is regarded as a function of the hypothesis H, then it is called the likelihood of H, usually written $L(H)$. Often the hypothesis is characterized by one or more parameters $\boldsymbol{\theta}$, in which case $L(\boldsymbol{\theta})=P(\boldsymbol{x} \mid \boldsymbol{\theta})$ is called the likelihood function.

In some cases one can obtain at least approximate frequentist results using the likelihood evaluated only with the data obtained. In general, however, the frequentist approach requires a full specification of the probability model $P(\boldsymbol{x} \mid H)$ both as a function of the data \boldsymbol{x} and hypothesis H.

In the Bayesian approach, inference is based on the posterior probability for H given the data \boldsymbol{x}, which represents one's degree of belief that H is true given the data. This is obtained from Bayes' theorem (39.4), which can be written

$$
\begin{equation*}
P(H \mid \boldsymbol{x})=\frac{P(\boldsymbol{x} \mid H) \pi(H)}{\int P\left(\boldsymbol{x} \mid H^{\prime}\right) \pi\left(H^{\prime}\right) d H^{\prime}} \tag{40.1}
\end{equation*}
$$

Here $P(\boldsymbol{x} \mid H)$ is the likelihood for H, which depends only on the data actually obtained. The quantity $\pi(H)$ is the prior probability for H, which represents one's degree of belief for H before carrying out the measurement. The integral in the denominator (or sum, for discrete hypotheses) serves as a normalization factor. If H is characterized by a continuous parameter θ then the posterior
probability is a p.d.f. $p(\theta \mid \boldsymbol{x})$. Note that the likelihood function itself is not a p.d.f. for θ.

40.2 Parameter estimation

Here we review point estimation of parameters, first with an overview of the frequentist approach and its two most important methods, maximum likelihood and least squares, treated in Sections 40.2 .2 and 40.2 .3 . The Bayesian approach is outlined in Sec. 40.2.5.

An estimator $\widehat{\theta}$ (written with a hat) is a function of the data used to estimate the value of the parameter θ. Sometimes the word 'estimate' is used to denote the value of the estimator when evaluated with given data. There is no fundamental rule dictating how an estimator must be constructed. One tries, therefore, to choose that estimator which has the best properties. The most important of these are (a) consistency, (b) bias, (c) efficiency, and (d) robustness.
(a) An estimator is said to be consistent if the estimate $\widehat{\theta}$ converges in probability (see Ref. [3]) to the true value θ as the amount of data increases. This property is so important that it is possessed by all commonly used estimators.
(b) The bias, $b=E[\widehat{\theta}]-\theta$, is the difference between the expectation value of the estimator and the true value of the parameter. The expectation value is taken over a hypothetical set of similar experiments in which $\widehat{\theta}$ is constructed in the same way. When $b=0$, the estimator is said to be unbiased. The bias depends on the chosen metric, i.e., if $\widehat{\theta}$ is an unbiased estimator of θ, then $\widehat{\theta}^{2}$ is not in general an unbiased estimator for θ^{2}.
(c) Efficiency is the ratio of the minimum possible variance for any estimator of θ to the variance $V[\widehat{\theta}]$ of the estimator $\widehat{\theta}$. For the case of a single parameter, under rather general conditions the minimum variance is given by the Rao-Cramér-Fréchet bound,

$$
\begin{equation*}
\sigma_{\min }^{2}=\left(1+\frac{\partial b}{\partial \theta}\right)^{2} / I(\theta) \tag{40.2}
\end{equation*}
$$

where

$$
\begin{equation*}
I(\theta)=E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right] \tag{40.3}
\end{equation*}
$$

is the Fisher information, L is the likelihood, and the operator $E[]$ in (40.3) is the expectation value with respect to the data. For the final equality to hold, the range of allowed data values must not depend on θ.

The mean-squared error,

$$
\begin{equation*}
\mathrm{MSE}=E\left[(\widehat{\theta}-\theta)^{2}\right]=V[\widehat{\theta}]+b^{2} \tag{40.4}
\end{equation*}
$$

is a measure of an estimator's quality which combines bias and variance.
(d) Robustness is the property of being insensitive to departures from assumptions in the p.d.f., e.g., owing to uncertainties in the distribution's tails.
It is not in general possible to optimize simultaneously for all the measures of estimator quality described above. For some common estimators, the properties above are known exactly. More generally, it is possible to evaluate them by Monte Carlo simulation. Note that they will in general depend on the unknown θ.

40.2.1 Estimators for mean, variance, and median

Suppose we have a set of n independent measurements, x_{1}, \ldots, x_{n}, each assumed to follow a p.d.f. with unknown mean μ and unknown variance σ^{2} (the measurements do not necessarily have to follow a Gaussian distribution). Then

$$
\begin{align*}
\widehat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{40.5}\\
\widehat{\sigma^{2}} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2} \tag{40.6}
\end{align*}
$$

are unbiased estimators of μ and σ^{2}. The variance of $\widehat{\mu}$ is σ^{2} / n and the variance of $\widehat{\sigma^{2}}$ is

$$
\begin{equation*}
V\left[\widehat{\sigma^{2}}\right]=\frac{1}{n}\left(m_{4}-\frac{n-3}{n-1} \sigma^{4}\right) \tag{40.7}
\end{equation*}
$$

where m_{4} is the $4^{\text {th }}$ central moment of x (see Eq. (39.8)). For Gaussian distributed x_{i}, this becomes $2 \sigma^{4} /(n-1)$ for any $n \geq$ 2 , and for large n the standard deviation of $\widehat{\sigma}$ is $\sigma / \sqrt{2 n}$. For any n and Gaussian $x_{i}, \widehat{\mu}$ is an efficient estimator for μ, and the estimators $\widehat{\mu}$ and $\widehat{\sigma^{2}}$ are uncorrelated. Otherwise the arithmetic mean (40.5) is not necessarily the most efficient estimator; this is discussed further in Sec. 8.7 of Ref. [4].

If σ^{2} is known, it does not improve the estimate $\widehat{\mu}$, as can be seen from Eq. (40.5); however, if μ is known, one can substitute it for $\widehat{\mu}$ in Eq. (40.6) and replace $n-1$ by n to obtain an estimator of σ^{2} still with zero bias but smaller variance. If the x_{i} have different, known variances σ_{i}^{2}, then the weighted average

$$
\begin{equation*}
\widehat{\mu}=\frac{1}{w} \sum_{i=1}^{n} w_{i} x_{i} \tag{40.8}
\end{equation*}
$$

where $w_{i}=1 / \sigma_{i}^{2}$ and $w=\sum_{i} w_{i}$, is an unbiased estimator for μ with a smaller variance than an unweighted average. The standard deviation of $\widehat{\mu}$ is $1 / \sqrt{w}$.

As an estimator for the median $x_{\text {med }}$, one can use the value $\widehat{x}_{\text {med }}$ such that half the x_{i} are below and half above (the sample median). If there are an even number of observations and the sample median lies between two observed values, the estimator is set by convention to their arithmetic average. If the p.d.f. of x has the form $f(x-\mu)$ and μ is both mean and median, then for large n the variance of the sample median approaches $1 /\left[4 n f^{2}(0)\right]$, provided $f(0)>0$. Although estimating the median can often be more difficult computationally than the mean, the resulting estimator is generally more robust, as it is insensitive to the exact shape of the tails of a distribution.

40.2.2 The method of maximum likelihood

Suppose we have a set of measured quantities \boldsymbol{x} and the likelihood $L(\boldsymbol{\theta})=P(\boldsymbol{x} \mid \boldsymbol{\theta})$ for a set of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{N}\right)$. The maximum likelihood (ML) estimators for $\boldsymbol{\theta}$ are defined as the values that give the maximum of L. Because of the properties of the logarithm, it is usually easier to work with $\ln L$, and since both are maximized for the same parameter values $\boldsymbol{\theta}$, the ML estimators can be found by solving the likelihood equations,

$$
\begin{equation*}
\frac{\partial \ln L}{\partial \theta_{i}}=0, \quad i=1, \ldots, N \tag{40.9}
\end{equation*}
$$

Often the solution must be found numerically. Maximum likelihood estimators are important because they are asymptotically (i.e., for large data samples) unbiased, efficient and have a Gaussian sampling distribution under quite general conditions, and the method has a wide range of applicability.

In general the likelihood function is obtained from the probability of the data under assumption of the parameters. An important special case is when the data consist of i.i.d. (independent and identically distributed) values. Here one has a set of n statistically independent quantities $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where each component follows the same p.d.f. $f(x ; \boldsymbol{\theta})$. In this case the joint p.d.f. of the data sample factorizes and the likelihood function is

$$
\begin{equation*}
L(\boldsymbol{\theta})=\prod_{i=1}^{n} f\left(x_{i} ; \boldsymbol{\theta}\right) \tag{40.10}
\end{equation*}
$$

In this case the number of events n is regarded as fixed. If however the probability to observe n events itself depends on the parameters $\boldsymbol{\theta}$, then this dependence should be included in the likelihood. For example, if n follows a Poisson distribution with mean μ and the independent x values all follow $f(x ; \boldsymbol{\theta})$, then the likelihood becomes

$$
\begin{equation*}
L(\boldsymbol{\theta})=\frac{\mu^{n}}{n!} e^{-\mu} \prod_{i=1}^{n} f\left(x_{i} ; \boldsymbol{\theta}\right) \tag{40.11}
\end{equation*}
$$

Equation (40.11) is often called the extended likelihood (see, e.g., Refs. [5-7]). If μ is given as a function of $\boldsymbol{\theta}$, then including the probability for n given $\boldsymbol{\theta}$ in the likelihood provides additional information about the parameters. This therefore leads to a reduction in their statistical uncertainties and in general changes their estimated values.

In evaluating the likelihood function, it is important that any normalization factors in the p.d.f. that involve $\boldsymbol{\theta}$ be included. However, we will only be interested in the maximum of L and in ratios of L at different values of the parameters; hence any multiplicative factors that do not involve the parameters that we want to estimate may be dropped, including factors that depend on the data but not on $\boldsymbol{\theta}$.

Under a one-to-one change of parameters from $\boldsymbol{\theta}$ to $\boldsymbol{\eta}$, the ML estimators $\widehat{\boldsymbol{\theta}}$ transform to $\boldsymbol{\eta}(\widehat{\boldsymbol{\theta}})$. That is, the ML solution is invariant under change of parameter. However, other properties of ML estimators, in particular the bias, are not invariant under change of parameter.

The inverse V^{-1} of the covariance matrix $V_{i j}=\operatorname{cov}\left[\widehat{\theta_{i}}, \widehat{\theta_{j}}\right]$ for a set of ML estimators can be estimated by using

$$
\begin{equation*}
\left(\widehat{V}^{-1}\right)_{i j}=-\left.\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right|_{\widehat{\boldsymbol{\theta}}} \tag{40.12}
\end{equation*}
$$

For finite samples, however, Eq. (40.12) can result in a misestimation of the variances. In the large sample limit (or in a linear model with Gaussian data), L has a Gaussian form and $\ln L$ is (hyper)parabolic. In this case, s times the standard deviations σ_{i} of the estimators for the parameters can be obtained from the hypersurface defined by the $\boldsymbol{\theta}$ such that

$$
\begin{equation*}
\ln L(\boldsymbol{\theta})=\ln L_{\max }-s^{2} / 2 \tag{40.13}
\end{equation*}
$$

where $\ln L_{\text {max }}$ is the value of $\ln L$ at the solution point (compare with Eq. (40.73)). The minimum and maximum values of θ_{i} on the hypersurface then give an approximate s-standard deviation confidence interval for θ_{i} (see Section 40.4.2.2).

40.2.2.1 ML with binned data

If the total number of data values $x_{i},\left(i=1, \ldots, n_{\text {tot }}\right)$, is small, the unbinned maximum likelihood method, i.e., use of Equation (40.10) (or (40.11) for extended ML), is preferred since binning can only result in a loss of information, and hence larger statistical errors for the parameter estimates. If the sample is large, it can be convenient to bin the values in a histogram with N bins, so that one obtains a vector of data $\boldsymbol{n}=\left(n_{1}, \ldots, n_{N}\right)$ with expectation values $\boldsymbol{\mu}=E[\boldsymbol{n}]$ and probabilities $f(\boldsymbol{n} ; \boldsymbol{\mu})$. Suppose the mean values $\boldsymbol{\mu}$ can be determined as a function of a set of parameters $\boldsymbol{\theta}$. Then one may maximize the likelihood function based on the contents of the bins.

As mentioned in Sec. 40.2.2, the total number of events $n_{\text {tot }}=$ $\sum_{i} n_{i}$ can be regarded either as fixed or as a random variable. If it is fixed, the histogram follows a multinomial distribution,

$$
\begin{equation*}
f_{\mathrm{M}}(\boldsymbol{n} ; \boldsymbol{\theta})=\frac{n_{\mathrm{tot}}!}{n_{1}!\cdots n_{N}!} p_{1}^{n_{1}} \cdots p_{N}^{n_{N}} \tag{40.14}
\end{equation*}
$$

where we assume the probabilities p_{i} are given functions of the parameters $\boldsymbol{\theta}$. The distribution can be written equivalently in terms of the expected number of events in each bin, $\mu_{i}=n_{\text {tot }} p_{i}$. If the n_{i} are regarded as independent and Poisson distributed, then the data are instead described by a product of Poisson probabilities,

$$
\begin{equation*}
f_{\mathrm{P}}(\boldsymbol{n} ; \boldsymbol{\theta})=\prod_{i=1}^{N} \frac{\mu_{i}^{n_{i}}}{n_{i}!} e^{-\mu_{i}} \tag{40.15}
\end{equation*}
$$

where the mean values μ_{i} are given functions of $\boldsymbol{\theta}$. The total number of events $n_{\text {tot }}$ thus follows a Poisson distribution with mean $\mu_{\text {tot }}=\sum_{i} \mu_{i}$.

When using maximum likelihood with binned data, one can find the ML estimators and at the same time obtain a statistic usable for a test of goodness-of-fit (see Sec. 40.3.2). Maximizing the likelihood $L(\boldsymbol{\theta})=f_{\mathrm{M} / \mathrm{P}}(\boldsymbol{n} ; \boldsymbol{\theta})$ is equivalent to maximizing
the likelihood ratio $\lambda(\boldsymbol{\theta})=f_{\mathrm{M} / \mathrm{P}}(\boldsymbol{n} ; \boldsymbol{\theta}) / f(\boldsymbol{n} ; \hat{\boldsymbol{\mu}})$, where in the denominator $f(\boldsymbol{n} ; \boldsymbol{\mu})$ is a model with an adjustable parameter for each bin, $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{N}\right)$, and the corresponding estimators are $\hat{\boldsymbol{\mu}}=\left(n_{1}, \ldots, n_{N}\right)$ (called the "saturated model"). Equivalently one often minimizes the quantity $-2 \ln \lambda(\boldsymbol{\theta})$. For independent Poisson distributed n_{i} this is [8]

$$
\begin{equation*}
-2 \ln \lambda(\boldsymbol{\theta})=2 \sum_{i=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \ln \frac{n_{i}}{\mu_{i}(\boldsymbol{\theta})}\right] \tag{40.16}
\end{equation*}
$$

where for bins with $n_{i}=0$, the last term in (40.16) is zero. The expression (40.16) without the terms $\mu_{i}-n_{i}$ also gives $-2 \ln \lambda(\boldsymbol{\theta})$ for multinomially distributed n_{i}, i.e., when the total number of entries is regarded as fixed. In the limit of zero bin width, minimizing (40.16) is equivalent to maximizing the unbinned extended likelihood function (40.11); in the corresponding multinomial case without the $\mu_{i}-n_{i}$ terms one obtains Eq. (40.10).

A smaller value of $-2 \ln \lambda(\widehat{\boldsymbol{\theta}})$ corresponds to better agreement between the data and the hypothesized form of $\boldsymbol{\mu}(\boldsymbol{\theta})$. The value of $-2 \ln \lambda(\widehat{\boldsymbol{\theta}})$ can thus be translated into a p-value as a measure of goodness-of-fit, as described in Sec. 40.3.2. Assuming the model is correct, then according to Wilks' theorem [9], for sufficiently large μ_{i} and provided certain regularity conditions are met, the minimum of $-2 \ln \lambda$ as defined by Eq. (40.16) follows a χ^{2} distribution (see, e.g., Ref. [8]). If there are N bins and m fitted parameters, then the number of degrees of freedom for the χ^{2} distribution is $N-m$ if the data are treated as Poisson-distributed, and $N-m-1$ if the n_{i} are multinomially distributed.

Suppose the n_{i} are Poisson-distributed and the overall normalization $\mu_{\text {tot }}=\sum_{i} \mu_{i}$ is taken as an adjustable parameter, so that $\mu_{i}=\mu_{\text {tot }} p_{i}(\boldsymbol{\theta})$, where the probability to be in the i th bin, $p_{i}(\boldsymbol{\theta})$, does not depend on $\mu_{\text {tot }}$. Then by minimizing Eq. (40.16), one obtains that the area under the fitted function is equal to the sum of the histogram contents, i.e., $\sum_{i} \hat{\mu}_{i}=\sum_{i} n_{i}$. This is a property not possessed by the estimators from the method of least squares (see, e.g., Sec. 40.2.3 and Ref. [7]).

40.2.2.2 Frequentist treatment of nuisance parameters

Suppose we want to determine the values of parameters $\boldsymbol{\theta}$ using a set of measurements \boldsymbol{x} described by a probability model $P_{\boldsymbol{x}}(\boldsymbol{x} \mid \boldsymbol{\theta})$. In general the model is not perfect, which is to say it cannot provide an accurate description of the data even at the most optimal point of its parameter space. As a result, the estimated parameters can have a systematic bias.
One can improve the model by including in it additional parameters. That is, $P_{\boldsymbol{x}}(\boldsymbol{x} \mid \boldsymbol{\theta})$ is replaced by a more general model $P_{\boldsymbol{x}}(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{\nu})$, which depends on parameters of interest $\boldsymbol{\theta}$ and nuisance parameters $\boldsymbol{\nu}$. The additional parameters are not of intrinsic interest but must be included for the model to be accurate for some point in the enlarged parameter space.

Although including additional parameters may eliminate or at least reduce the effect of systematic uncertainties, their presence will result in increased statistical uncertainties for the parameters of interest. This occurs because the estimators for the nuisance parameters and those of interest will in general be correlated, which results in an enlargement of the contour defined by Eq. (40.13).

To reduce the impact of the nuisance parameters one often tries to constrain their values by means of control or calibration measurements, say, having data \boldsymbol{y}. For example, some components of \boldsymbol{y} could represent estimates of the nuisance parameters, often from separate experiments. Suppose the measurements \boldsymbol{y} are statistically independent from \boldsymbol{x} and are described by a model $P_{\boldsymbol{y}}(\boldsymbol{y} \mid \boldsymbol{\nu})$. The joint model for both \boldsymbol{x} and \boldsymbol{y} is in this case therefore the product of the probabilities for \boldsymbol{x} and \boldsymbol{y}, and thus the likelihood function for the full set of parameters is

$$
\begin{equation*}
L(\boldsymbol{\theta}, \boldsymbol{\nu})=P_{\boldsymbol{x}}(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{\nu}) P_{\boldsymbol{y}}(\boldsymbol{y} \mid \boldsymbol{\nu}) \tag{40.17}
\end{equation*}
$$

Note that in this case if one wants to simulate the experiment by means of Monte Carlo, both the primary and control measurements, \boldsymbol{x} and \boldsymbol{y}, must be generated for each repetition under assumption of fixed values for the parameters $\boldsymbol{\theta}$ and $\boldsymbol{\nu}$.

Using all of the parameters ($\boldsymbol{\theta}, \boldsymbol{\nu}$) in Eq. (40.13) to find the statistical errors in the parameters of interest $\boldsymbol{\theta}$ is equivalent to using the profile likelihood, which depends only on $\boldsymbol{\theta}$. It is defined as

$$
\begin{equation*}
L_{\mathrm{p}}(\boldsymbol{\theta})=L(\boldsymbol{\theta}, \widehat{\widehat{\boldsymbol{\nu}}}(\boldsymbol{\theta})) \tag{40.18}
\end{equation*}
$$

where the double-hat notation indicates the profiled values of the parameters $\boldsymbol{\nu}$, defined as the values that maximize L for the specified $\boldsymbol{\theta}$. The profile likelihood is discussed further in Section 40.3.2.1 in connection with hypothesis tests.

40.2.3 The method of least squares

The method of least squares (LS) coincides with the method of maximum likelihood in the following special case. Consider a set of N independent measurements y_{i} at known points x_{i}. The measurement y_{i} is assumed to be Gaussian distributed with mean $\mu\left(x_{i} ; \boldsymbol{\theta}\right)$ and known variance σ_{i}^{2}. The goal is to construct estimators for the unknown parameters $\boldsymbol{\theta}$. The log-likelihood function contains the sum of squares

$$
\begin{equation*}
\chi^{2}(\boldsymbol{\theta})=-2 \ln L(\boldsymbol{\theta})+\mathrm{constant}=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu\left(x_{i} ; \boldsymbol{\theta}\right)\right)^{2}}{\sigma_{i}^{2}} \tag{40.19}
\end{equation*}
$$

The parameter values that maximize L are the same as those which minimize χ^{2}.

The minimum of the chi-square function in Equation (40.19) defines the least-squares estimators $\widehat{\boldsymbol{\theta}}$ for the more general case where the y_{i} are not Gaussian distributed as long as they are independent. If they are not independent but rather have a covariance matrix $V_{i j}=\operatorname{cov}\left[y_{i}, y_{j}\right]$, then the LS estimators are determined by the minimum of

$$
\begin{equation*}
\chi^{2}(\boldsymbol{\theta})=(\boldsymbol{y}-\boldsymbol{\mu}(\boldsymbol{\theta}))^{T} V^{-1}(\boldsymbol{y}-\boldsymbol{\mu}(\boldsymbol{\theta})) \tag{40.20}
\end{equation*}
$$

where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)$ is the (column) vector of measurements, $\boldsymbol{\mu}(\boldsymbol{\theta})$ is the corresponding vector of predicted values, and the superscript T denotes the transpose. If the y_{i} are not Gaussian distributed, then the LS and ML estimators will not in general coincide.

Often one further restricts the problem to the case where $\mu\left(x_{i} ; \boldsymbol{\theta}\right)$ is a linear function of the parameters, i.e.,

$$
\begin{equation*}
\mu\left(x_{i} ; \boldsymbol{\theta}\right)=\sum_{j=1}^{m} \theta_{j} h_{j}\left(x_{i}\right) \tag{40.21}
\end{equation*}
$$

Here the $h_{j}(x)$ are m linearly independent functions, e.g., $1, x, x^{2}, \ldots, x^{m-1}$ or Legendre polynomials. We require $m<N$ and at least m of the x_{i} must be distinct.

Minimizing χ^{2} in this case with m parameters reduces to solving a system of m linear equations. Defining $H_{i j}=h_{j}\left(x_{i}\right)$ and minimizing χ^{2} by setting its derivatives with respect to the θ_{i} equal to zero gives the LS estimators,

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=\left(H^{T} V^{-1} H\right)^{-1} H^{T} V^{-1} \boldsymbol{y} \equiv D \boldsymbol{y} \tag{40.22}
\end{equation*}
$$

The covariance matrix for the estimators $U_{i j}=\operatorname{cov}\left[\widehat{\theta}_{i}, \widehat{\theta}_{j}\right]$ is given by

$$
\begin{equation*}
U=D V D^{T}=\left(H^{T} V^{-1} H\right)^{-1} \tag{40.23}
\end{equation*}
$$

or equivalently, its inverse U^{-1} can be found from

$$
\begin{equation*}
\left(U^{-1}\right)_{i j}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \theta_{i} \partial \theta_{j}}\right|_{\theta=\widehat{\boldsymbol{\theta}}}=\sum_{k, l=1}^{N} h_{i}\left(x_{k}\right)\left(V^{-1}\right)_{k l} h_{j}\left(x_{l}\right) \tag{40.24}
\end{equation*}
$$

The LS estimators can also be found from the expression

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=U \boldsymbol{g} \tag{40.25}
\end{equation*}
$$

where the vector \boldsymbol{g} is defined by

$$
\begin{equation*}
g_{i}=\sum_{j, k=1}^{N} y_{j} h_{i}\left(x_{k}\right)\left(V^{-1}\right)_{j k} \tag{40.26}
\end{equation*}
$$

For the case of uncorrelated y_{i}, for example, one can use (40.25) with

$$
\begin{align*}
\left(U^{-1}\right)_{i j} & =\sum_{k=1}^{N} \frac{h_{i}\left(x_{k}\right) h_{j}\left(x_{k}\right)}{\sigma_{k}^{2}} \tag{40.27}\\
g_{i} & =\sum_{k=1}^{N} \frac{y_{k} h_{i}\left(x_{k}\right)}{\sigma_{k}^{2}} \tag{40.28}
\end{align*}
$$

Expanding $\chi^{2}(\boldsymbol{\theta})$ about $\widehat{\boldsymbol{\theta}}$, one finds that the contour in parameter space defined by

$$
\begin{equation*}
\chi^{2}(\boldsymbol{\theta})=\chi^{2}(\widehat{\boldsymbol{\theta}})+1=\chi_{\min }^{2}+1 \tag{40.29}
\end{equation*}
$$

has tangent planes located at plus-or-minus-one standard deviation $\sigma_{\widehat{\boldsymbol{\theta}}}$ from the LS estimates $\widehat{\boldsymbol{\theta}}$ (the relation is approximate if the fit function $\mu(x ; \boldsymbol{\theta})$ is nonlinear in the parameters).

In constructing the quantity $\chi^{2}(\boldsymbol{\theta})$ one requires the variances or, in the case of correlated measurements, the covariance matrix. Often these quantities are not known a priori and must be estimated from the data. In this case the least-squares and maximumlikelihood methods are no longer exactly equivalent even for Gaussian distributed measurements. An important example is where the measured value y_{i} represents the event count in a histogram bin. If, for example, y_{i} represents a Poisson variable, for which the variance is equal to the mean, then one can either estimate the variance from the predicted value, $\mu\left(x_{i} ; \boldsymbol{\theta}\right)$, or from the observed number itself, y_{i}. In the first option, the variances become functions of the parameters, and as a result the estimators may need to be found numerically. The second option can be undefined if y_{i} is zero, and for small y_{i}, the variance will be poorly estimated. In either case, one should constrain the normalization of the fitted curve to the correct value, i.e., one should determine the area under the fitted curve directly from the number of entries in the histogram (see Ref. [7], Section 7.4). As noted in Sec. 40.2.2.1, this issue is avoided when using the method of extended maximum likelihood with binned data by minimizing Eq. (40.16). In that case if the expected number of events $\mu_{\text {tot }}$ does not depend on the other fitted parameters $\boldsymbol{\theta}$, then its extended ML estimator is equal to the observed total number of events.

As the minimum value of the χ^{2} represents the level of agreement between the measurements and the fitted function, it can be used for assessing the goodness-of-fit; this is discussed further in Section 40.3.2.

40.2.4 Parameter estimation with constraints

In some applications one is interested in using a set of measured quantities $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)$ to estimate a set of parameters $\boldsymbol{\theta}=$ $\left(\theta_{1}, \ldots, \theta_{M}\right)$ subject to a number of constraints. For example, one may have measured coordinates from two tracks, and one wishes to estimate their momentum vectors subject to the constraint that the tracks have a common vertex. The parameters can also include momenta of undetected particles such as neutrinos, as long as the constraints from conservation of energy and momentum and from known masses of particles involved in the reaction chain provide enough information for these quantities to be inferred.

A set of K constraints can be given in the form of equations

$$
\begin{equation*}
c_{k}(\boldsymbol{\theta})=0, \quad k=1, \ldots, K \tag{40.30}
\end{equation*}
$$

In some problems it may be possible to define a new set of parameters $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{L}\right)$ with $L=M-K$ such that every point in $\boldsymbol{\eta}$-space automatically satisfies the constraints. If this is possible then the problem reduces to one of estimating $\boldsymbol{\eta}$ with, e.g., maximum likelihood or least squares and then transforming the estimators back into $\boldsymbol{\theta}$-space.

In many cases it may be difficult or impossible to find an appropriate transformation $\boldsymbol{\eta}(\boldsymbol{\theta})$. Suppose that the parameters are determined through minimizing an objective function such as $\chi^{2}(\boldsymbol{\theta})$ in the method of least squares. Here one may enforce the con-
straints by finding the stationary points of the Lagrange function

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{y})=\chi^{2}(\boldsymbol{\theta}, \boldsymbol{y})+\sum_{k=1}^{K} \lambda_{k} c_{k}(\boldsymbol{\theta}) \tag{40.31}
\end{equation*}
$$

with respect to both the parameters $\boldsymbol{\theta}$ and a set of Lagrange multipliers $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$. Combining the parameters and Lagrange multipliers into an $(M+K)$-component vector $\gamma=$ $\left(\theta_{1}, \ldots, \theta_{M}, \lambda_{1}, \ldots, \lambda_{K}\right)$, the solutions for $\gamma, i . e .$, the estimators $\hat{\gamma}$, are found (e.g., numerically) from the system of equations

$$
\begin{equation*}
F_{i}(\gamma, \boldsymbol{y}) \equiv \frac{\partial \mathcal{L}}{\partial \gamma_{i}}=0, \quad i=1, \ldots, M+K \tag{40.32}
\end{equation*}
$$

To obtain the covariance matrix of the estimated parameters one can find solutions $\tilde{\gamma}$ corresponding to the expectation values of the data $\langle\boldsymbol{y}\rangle$ and expand $F_{i}(\hat{\gamma}, \boldsymbol{y})$ to first order about these values. This gives (see, e.g., Sec. 11.6 of Ref. [7]) linearized approximations for the estimators, $\hat{\gamma}(\boldsymbol{y}) \approx \tilde{\gamma}+C(\boldsymbol{y}-\langle\boldsymbol{y}\rangle)$, where the matrix $C=-A^{-1} B$, and A and B are given by

$$
\begin{equation*}
A_{i j}=\left[\frac{\partial F_{i}}{\partial \gamma_{j}}\right]_{\tilde{\gamma},\langle\boldsymbol{y}\rangle} \quad \text { and } \quad B_{i j}=\left[\frac{\partial F_{i}}{\partial y_{j}}\right]_{\tilde{\gamma},\langle\boldsymbol{y}\rangle} \tag{40.33}
\end{equation*}
$$

In practice the values $\langle\boldsymbol{y}\rangle$ and corresponding solutions $\tilde{\gamma}$ are estimated using the data from the actual measurement. Using this approximation for $\hat{\gamma}(\boldsymbol{y})$, one can find the covariance matrix $U_{i j}=\operatorname{cov}\left[\hat{\gamma}_{i}, \hat{\gamma}_{j}\right]$ of the the estimators for the γ_{i} in terms of that of the data $V_{i j}=\operatorname{cov}\left[y_{i}, y_{j}\right]$ using error propagation (cf. Eqs. (40.42) and (40.43)),

$$
\begin{equation*}
U=C V C^{T} \tag{40.34}
\end{equation*}
$$

The upper-left $M \times M$ block of the matrix U gives the covariance matrix for the estimated parameters $\operatorname{cov}\left[\hat{\theta}_{i}, \hat{\theta}_{j}\right]$. One can show for linear constraints that $\operatorname{cov}\left[\hat{\theta}_{i}, \hat{\theta}_{j}\right]$ is also given by the upper-left $M \times M$ block of $2 A^{-1}$. If the parameters are estimated using the method of least squares, then the number of degrees of freedom for the distribution of the minimized χ^{2} is increased by the number of constraints, i.e., it becomes $N-M+K$. Further details can be found in, e.g., Ch. 8 of Ref. [4] and Ch. 7 of Ref. [10].

40.2.5 The Bayesian approach

In the frequentist methods discussed above, probability is associated only with data, not with the value of a parameter. This is no longer the case in Bayesian statistics, however, which we introduce in this section. For general introductions to Bayesian statistics see, e.g., Refs. [11-14].

Suppose the outcome of an experiment is characterized by a vector of data \boldsymbol{x}, whose probability distribution depends on an unknown parameter (or parameters) $\boldsymbol{\theta}$ that we wish to determine. In Bayesian statistics, all knowledge about $\boldsymbol{\theta}$ is summarized by the posterior p.d.f. $p(\boldsymbol{\theta} \mid \boldsymbol{x})$, whose integral over any given region gives the degree of belief for $\boldsymbol{\theta}$ to take on values in that region, given the data \boldsymbol{x}. It is obtained by using Bayes' theorem,

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{x})=\frac{P(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}^{\prime}\right) \pi\left(\boldsymbol{\theta}^{\prime}\right) d \boldsymbol{\theta}^{\prime}} \tag{40.35}
\end{equation*}
$$

where $P(\boldsymbol{x} \mid \boldsymbol{\theta})$ is the likelihood function, i.e., the joint p.d.f. for the data viewed as a function of $\boldsymbol{\theta}$, evaluated with the data actually obtained in the experiment, and $\pi(\boldsymbol{\theta})$ is the prior p.d.f. for $\boldsymbol{\theta}$. Note that the denominator in Eq. (40.35) serves to normalize the posterior p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. $p(\boldsymbol{\theta} \mid \boldsymbol{x})$, one would usually summarize it with statistics such as the mean (or median) value, and covariance matrix. In addition one may construct intervals with a given probability content, as is discussed in Sec. 40.4.1 on Bayesian interval estimation.

40.2.5.1 Priors

Bayesian statistics supplies no unique rule for determining the prior $\pi(\boldsymbol{\theta})$; this reflects the analyst's subjective degree of belief (or state of knowledge) about $\boldsymbol{\theta}$ before the measurement was carried out. For the result to be of value to the broader community,
whose members may not share these beliefs, it is important to carry out a sensitivity analysis, that is, to show how the result changes under a reasonable variation of the prior probabilities.

One might like to construct $\pi(\boldsymbol{\theta})$ to represent complete ignorance about the parameters by setting it equal to a constant. A problem here is that if the prior p.d.f. is flat in $\boldsymbol{\theta}$, then it is not flat for a nonlinear function of $\boldsymbol{\theta}$, and so a different parametrization of the problem would lead in general to a non-equivalent posterior p.d.f.

For the special case of a constant prior, one can see from Bayes' theorem (40.35) that the posterior is proportional to the likelihood, and therefore the mode (peak position) of the posterior is equal to the ML estimator. The posterior mode, however, will change in general upon a transformation of parameter. One may use as the Bayesian estimator a summary statistic other than the mode, such as the median, which is invariant under parameter transformation. But this will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge into priors has led to what is called objective Bayesian statistics, where prior probabilities are based not on an actual degree of belief but rather derived from formal rules. These give, for example, priors which are invariant under a transformation of parameters, or ones which result in a maximum gain in information for a given set of measurements. For an extensive review see, e.g., [15].

Objective priors do not in general reflect degree of belief, but they could in some cases be taken as possible, although perhaps extreme, subjective priors. The posterior probabilities as well therefore do not necessarily reflect a degree of belief. However one may regard investigating a variety of objective priors to be an important part of the sensitivity analysis. Furthermore, use of objective priors with Bayes' theorem can be viewed as a recipe for producing estimators or intervals which have desirable frequentist properties.

An important procedure for deriving objective priors is due to Jeffreys. According to Jeffreys' rule one takes the prior as

$$
\begin{equation*}
\pi(\boldsymbol{\theta}) \propto \sqrt{\operatorname{det}(I(\boldsymbol{\theta}))} \tag{40.36}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i j}(\boldsymbol{\theta})=-E\left[\frac{\partial^{2} \ln P(\boldsymbol{x} \mid \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right] \tag{40.37}
\end{equation*}
$$

is the Fisher information matrix. One can show that the Jeffreys prior leads to inference that is invariant under a transformation of parameters. One should note that the Jeffreys prior does not in general correspond to one's degree of belief about the value of a parameter. As examples, the Jeffreys prior for the mean μ of a Gaussian distribution is a constant, and for the mean of a Poisson distribution one finds $\pi(\mu) \propto 1 / \sqrt{\mu}$.

Neither the constant nor $1 / \sqrt{\mu}$ priors can be normalized to unit area and are therefore said to be improper. This can be allowed because the prior always appears multiplied by the likelihood function, and if the likelihood falls to zero sufficiently quickly then one may have a normalizable posterior density.

An important type of objective prior is the reference prior due to Bernardo and Berger [16]. To find the reference prior for a given problem one considers the Kullback-Leibler divergence $D_{n}[\pi, p]$ of the posterior $p(\boldsymbol{\theta} \mid \boldsymbol{x})$ relative to a prior $\pi(\boldsymbol{\theta})$, obtained from a set of i.i.d. data $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{equation*}
D_{n}[\pi, p]=\int p(\boldsymbol{\theta} \mid \boldsymbol{x}) \ln \frac{p(\boldsymbol{\theta} \mid \boldsymbol{x})}{\pi(\boldsymbol{\theta})} d \boldsymbol{\theta} \tag{40.38}
\end{equation*}
$$

This is effectively a measure of the gain in information provided by the data. The reference prior is chosen so that the expectation value of this information gain is maximized for the limiting case of $n \rightarrow \infty$, where the expectation is computed with respect to the marginal distribution of the data,

$$
\begin{equation*}
p(\boldsymbol{x})=\int p(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d \boldsymbol{\theta} \tag{40.39}
\end{equation*}
$$

For a single, continuous parameter the reference prior is usually identical to the Jeffreys prior. In the multiparameter case an iterative algorithm exists, which requires sorting the parameters by order of inferential importance. Often the result does not depend on this order, but when it does, this can be part of a sensitivity analysis. Further discussion and applications to particle physics problems can be found in Ref. [17].

40.2.5.2 Bayesian treatment of nuisance parameters

As discussed in Sec. 40.2.2, a model may depend on parameters of interest $\boldsymbol{\theta}$ as well as on nuisance parameters $\boldsymbol{\nu}$, which must be included for an accurate description of the data. Knowledge about the values of $\boldsymbol{\nu}$ may be supplied by control measurements, theoretical insights, physical constraints, etc. Suppose, for example, one has data \boldsymbol{y} from a control measurement which is characterized by a probability $P_{\boldsymbol{y}}(\boldsymbol{y} \mid \boldsymbol{\nu})$. Suppose further that before carrying out the control measurement one's state of knowledge about $\boldsymbol{\nu}$ is described by an initial prior $\pi_{0}(\boldsymbol{\nu})$, which in practice is often taken to be a constant or in any case very broad. By using Bayes' theorem (40.1) one obtains the updated prior $\pi(\boldsymbol{\nu})$ (i.e., now $\pi(\boldsymbol{\nu})=\pi(\boldsymbol{\nu} \mid \boldsymbol{y})$, the probability for $\boldsymbol{\nu}$ given $\boldsymbol{y})$,

$$
\begin{equation*}
\pi(\boldsymbol{\nu} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{\nu}) \pi_{0}(\boldsymbol{\nu}) \tag{40.40}
\end{equation*}
$$

In the absence of a model for $P(\boldsymbol{y} \mid \boldsymbol{\nu})$ one may make some reasonable but ad hoc choices. For a single nuisance parameter ν, for example, one might characterize the uncertainty by a p.d.f. $\pi(\nu)$ centered about its nominal value with a certain standard deviation σ_{ν}. Often a Gaussian p.d.f. provides a reasonable model for one's degree of belief about a nuisance parameter; in other cases, more complicated shapes may be appropriate. If, for example, the parameter represents a non-negative quantity then a log-normal or gamma p.d.f. can be a more natural choice than a Gaussian truncated at zero. Note also that truncation of the prior of a nuisance parameter ν at zero will in general make $\pi(\nu)$ nonzero at $\nu=0$, which can lead to an unnormalizable posterior for a parameter of interest that appears multiplied by ν.

The likelihood function, prior, and posterior p.d.f.s all depend on both $\boldsymbol{\theta}$ and $\boldsymbol{\nu}$, and are related by Bayes' theorem, as usual. Note that the likelihood here only refers to the primary measurement \boldsymbol{x}. Once any control measurements \boldsymbol{y} are used to find the updated prior $\pi(\boldsymbol{\nu})$ for the nuisance parameters, this information is fully encapsulated in $\pi(\boldsymbol{\nu})$ and the control measurements do not appear further.

One can obtain the posterior p.d.f. for $\boldsymbol{\theta}$ alone by integrating over the nuisance parameters, i.e.,

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{x})=\int p(\boldsymbol{\theta}, \boldsymbol{\nu} \mid \boldsymbol{x}) d \boldsymbol{\nu} \tag{40.41}
\end{equation*}
$$

Such integrals can often not be carried out in closed form, and if the number of nuisance parameters is large, then they can be difficult to compute with standard Monte Carlo methods. Markov Chain Monte Carlo (MCMC) techniques are often used for computing integrals of this type (see Sec. 41.5).

40.2.6 Propagation of errors

Consider a set of n quantities $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ and a set of m functions $\boldsymbol{\eta}(\boldsymbol{\theta})=\left(\eta_{1}(\boldsymbol{\theta}), \ldots, \eta_{m}(\boldsymbol{\theta})\right)$. Suppose we have estimated $\widehat{\boldsymbol{\theta}}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{n}\right)$, using, say, maximum-likelihood or leastsquares, and we also know or have estimated the covariance matrix $V_{i j}=\operatorname{cov}\left[\widehat{\theta}_{i}, \widehat{\theta}_{j}\right]$. The goal of error propagation is to determine the covariance matrix for the functions, $U_{i j}=\operatorname{cov}\left[\widehat{\eta}_{i}, \widehat{\eta}_{j}\right]$, where $\widehat{\boldsymbol{\eta}}=\boldsymbol{\eta}(\widehat{\boldsymbol{\theta}})$. In particular, the diagonal elements $U_{i i}=V\left[\widehat{\eta}_{i}\right]$ give the variances. The new covariance matrix can be found by expanding the functions $\boldsymbol{\eta}(\boldsymbol{\theta})$ about the estimates $\widehat{\boldsymbol{\theta}}$ to first order in a Taylor series. Using this one finds

$$
\begin{equation*}
\left.U_{i j} \approx \sum_{k, l} \frac{\partial \eta_{i}}{\partial \theta_{k}} \frac{\partial \eta_{j}}{\partial \theta_{l}}\right|_{\widehat{\boldsymbol{\theta}}} V_{k l} \tag{40.42}
\end{equation*}
$$

This can be written in matrix notation as $U \approx A V A^{T}$ where the matrix of derivatives A is

$$
\begin{equation*}
A_{i j}=\left.\frac{\partial \eta_{i}}{\partial \theta_{j}}\right|_{\widehat{\boldsymbol{\theta}}} \tag{40.43}
\end{equation*}
$$

and A^{T} is its transpose. The approximation is exact if $\boldsymbol{\eta}(\boldsymbol{\theta})$ is linear (it holds, for example, in Equation (40.23)). If this is not the case, the approximation can break down if, for example, $\boldsymbol{\eta}(\boldsymbol{\theta})$ is significantly nonlinear close to $\widehat{\boldsymbol{\theta}}$ in a region of a size comparable to the standard deviations of $\widehat{\boldsymbol{\theta}}$.

40.3 Statistical tests

In addition to estimating parameters, one often wants to assess the validity of certain statements concerning the data's underlying distribution. Frequentist hypothesis tests, described in Sec. 40.3.1, provide a rule for accepting or rejecting hypotheses depending on the outcome of a measurement. In significance tests, covered in Sec. 40.3.2, one gives the probability to obtain a level of incompatibility with a certain hypothesis that is greater than or equal to the level observed with the actual data. In the Bayesian approach, the corresponding procedure is based fundamentally on the posterior probabilities of the competing hypotheses. In Sec. 40.3.3 we describe a related construct called the Bayes factor, which can be used to quantify the degree to which the data prefer one or another hypothesis.

40.3.1 Hypothesis tests

A frequentist test of a hypothesis (often called the null hypothesis, H_{0}) is a rule that states for which data values \boldsymbol{x} the hypothesis is rejected. A region of \boldsymbol{x}-space called the critical region, w, is specified such that there is no more than a given probability under H_{0}, α, called the size or significance level of the test, to find $\boldsymbol{x} \in w$. If the data are discrete, it may not be possible to find a critical region with exact probability content α, and thus we require $P\left(\boldsymbol{x} \in w \mid H_{0}\right) \leq \alpha$. If the data are observed in the critical region, H_{0} is rejected.

The data \boldsymbol{x} used to construct a test could be, for example, a set of values that characterizes an individual event. In this case the test corresponds to classification as, e.g., signal or background. Alternatively the data could represent a set of values from a collection of events. Often one is interested in knowing whether all of the events are of a certain type (background), or whether the sample contains at least some events of a new type (signal). Here the background-only hypothesis plays the role of H_{0}, and in the alternative H_{1} both signal and background are present. Rejecting H_{0} is, from the standpoint of frequentist statistics, the required step to establish discovery of the signal process.

The critical region is not unique. Its choice should take into account the probabilities for the data predicted by some alternative hypothesis (or set of alternatives) H_{1}. Rejecting H_{0} if it is true is called a type-I error, and occurs by construction with probability no greater than α. Not rejecting H_{0} if an alternative H_{1} is true is called a type-II error, and for a given test this will have a certain probability $\beta=P\left(\boldsymbol{x} \notin w \mid H_{1}\right)$. The quantity $1-\beta$ is called the power of the test of H_{0} with respect to the alternative H_{1}. A strategy for defining the critical region can therefore be to maximize the power with respect to some alternative (or alternatives) given a fixed size α.

To maximize the power of a test of H_{0} with respect to the alternative H_{1}, the Neyman-Pearson lemma states that the critical region w should be chosen such that for all data values \boldsymbol{x} inside w, the likelihood ratio

$$
\begin{equation*}
\lambda(\boldsymbol{x})=\frac{f\left(\boldsymbol{x} \mid H_{1}\right)}{f\left(\boldsymbol{x} \mid H_{0}\right)} \tag{40.44}
\end{equation*}
$$

is greater than or equal to a given constant c_{α}, and everywhere outside the critical region one has $\lambda(\boldsymbol{x})<c_{\alpha}$, where the value of c_{α} is determined by the size of the test α. Here H_{0} and H_{1} must be simple hypotheses, i.e., they should not contain undetermined parameters.

It is convenient to define the test using a scalar function of the data \boldsymbol{x} called a test statistic, $t(\boldsymbol{x})$, such that the boundary
of the critical region is given by a surface of constant $t(\boldsymbol{x})$. The Neyman-Pearson lemma is equivalent to the statement that the likelihood ratio (40.44) represents the optimal test statistic. It can be difficult in practice, however, to determine $\lambda(\boldsymbol{x})$, since this requires knowledge of the joint p.d.f.s $f\left(\boldsymbol{x} \mid H_{0}\right)$ and $f\left(\boldsymbol{x} \mid H_{1}\right)$. Often one does not have explicit formulae for these, but rather Monte Carlo models that allow one to generate instances of \boldsymbol{x} that follow the p.d.f.s.
In the case where the likelihood ratio (40.44) cannot be used explicitly, there exist a variety of other multivariate methods for constructing a test statistic that may approach its performance. These are based on machine-learning algorithms that use samples of training data corresponding to the hypotheses in question, often generated from Monte Carlo models. Methods often used in HEP include Fisher Discriminants, Neural Networks, Boosted Decision Trees and Support Vector Machines. Descriptions of these and other methods can be found in Refs. [18-21], in Proceedings of the PHYSTAT conference series [22], and in the HEP Community White Paper [23]. Software for HEP includes the TMVA [24] and scikit-learn [25] packages.

An important issue in constructing a test is the choice of variables that enter into the data vector \boldsymbol{x}. For purposes of classification one may choose, for example, to form certain functions of particle momenta such as, e.g., invariant masses that are felt to be physically meaningful in the context of a particular event type. It may be difficult to know, however, whether there may exist further features that would help distinguish between signal and background. Recently, so-called Deep Neural Networks containing several or more hidden layers have been applied in HEP [26, 27]; these allow one to use directly as inputs the elements of the data vector \boldsymbol{x} (features) that represent lower-level quantities such as individual particle momenta, rather than needing to first construct "by hand" higher level features. Each hidden layer then allows the network to construct significant high-level features in an automatic way.

The multivariate algorithms designed to classify events into signal and background types also form the basis of tests of the hypothesis that a sample of events consists of background only. Such a test can be constructed using the distributions of the test statistic $t(\boldsymbol{x})$ for event classification obtained from a multivariate algorithm such as a Neural Network output. The distributions $p(t \mid s)$ and $p(t \mid b)$ for signal and background events, respectively, are used to construct the likelihood ratio of the signal-plus-background hypothesis relative to that of background only. To the extent that the test statistic $t(\boldsymbol{x})$ approximates the likelihood ratio (or a monotonic function thereof) for individual events given by (40.44), the resulting test of the background-only hypothesis for the event sample will have maximum power with respect to the signal-plusbackground alternative (see Ref. [28]).

40.3.2 Tests of significance (goodness-of-fit)

Often one wants to quantify the level of agreement between the data and a hypothesis without explicit reference to alternative hypotheses. This can be done by defining a statistic t whose value reflects in some way the level of agreement between the data and the hypothesis. The analyst must decide what values of the statistic correspond to better or worse levels of agreement with the hypothesis in question; the choice will in general depend on the relevant alternative hypotheses.

The hypothesis in question, H_{0}, will determine the p.d.f. $f\left(t \mid H_{0}\right)$ for the statistic. The significance of a discrepancy between the data and what one expects under the assumption of H_{0} is quantified by giving the p-value, defined as the probability to find t in the region of equal or lesser compatibility with H_{0} than the level of compatibility observed with the actual data. For example, if t is defined such that large values correspond to poor agreement with the hypothesis, then the p-value would be

$$
\begin{equation*}
p=\int_{t_{\mathrm{obs}}}^{\infty} f\left(t \mid H_{0}\right) d t \tag{40.45}
\end{equation*}
$$

where $t_{\text {obs }}$ is the value of the statistic obtained in the actual experiment.

The p-value is a function of the data, and is therefore itself a random variable. If the hypothesis used to compute the p-value is true, then for continuous data p will be uniformly distributed between zero and one. Note that the p-value is not the probability for the hypothesis; in frequentist statistics, this is not defined.

The p-value should not be confused with the size (significance level) of a test, or the confidence level of a confidence interval (Section 40.4), both of which are pre-specified constants. We may formulate a hypothesis test, however, by defining the critical region to correspond to the data outcomes that give the lowest p values, so that finding $p \leq \alpha$ implies that the data outcome was in the critical region. When constructing a p-value, one generally chooses the region of data space deemed to have lower compatibility with the model being tested as one having higher compatibility with a given alternative, such that the corresponding test will have a high power with respect to this alternative.
When searching for a new phenomenon, one tries to reject the hypothesis H_{0} that the data are consistent with known (e.g., Standard Model) processes. If the p-value of H_{0} is sufficiently low, then one is willing to accept that some alternative hypothesis is true. Often one converts the p-value into an equivalent significance Z, defined so that a Z standard deviation upward fluctuation of a Gaussian random variable would have an upper tail area equal to p, i.e.,

$$
\begin{equation*}
Z=\Phi^{-1}(1-p) \tag{40.46}
\end{equation*}
$$

Here Φ is the cumulative distribution of the standard Gaussian, and Φ^{-1} is its inverse (quantile) function. Often in HEP the level of significance where an effect is said to qualify as a discovery is $Z=5$, i.e., a 5σ effect, corresponding to a p-value of 2.87×10^{-7}. One's actual degree of belief that a new process is present, however, will depend in general on other factors as well, such as the plausibility of the new signal hypothesis and the degree to which it can describe the data, one's confidence in the model that led to the observed p-value, and possible corrections for multiple observations out of which one focuses on the smallest p-value obtained (the "look-elsewhere effect", discussed in Section 40.3.2.2).
40.3.2.1 Treatment of nuisance parameters for frequentist tests

Suppose one wants to test hypothetical values of parameters $\boldsymbol{\theta}$, but the model also contains nuisance parameters $\boldsymbol{\nu}$. To find a p-value for $\boldsymbol{\theta}$ we can construct a test statistic $q_{\boldsymbol{\theta}}$ such that larger values constitute increasing incompatibility between the data and the hypothesis. Then for an observed value of the statistic $q_{\boldsymbol{\theta}, \mathrm{obs}}$, the p-value of $\boldsymbol{\theta}$ is

$$
\begin{equation*}
p_{\boldsymbol{\theta}}(\boldsymbol{\nu})=\int_{q_{\boldsymbol{\theta}, \mathrm{obs}}}^{\infty} f\left(q_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}, \boldsymbol{\nu}\right) d q_{\boldsymbol{\theta}} \tag{40.47}
\end{equation*}
$$

which depends in general on the nuisance parameters $\boldsymbol{\nu}$. In the strict frequentist approach, $\boldsymbol{\theta}$ is rejected only if the p-value is less than α for all possible values of the nuisance parameters.

The difficulty described above is effectively solved if we can define the test statistic $q_{\boldsymbol{\theta}}$ in such a way that its distribution $f\left(q_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right)$ is independent of the nuisance parameters. Although exact independence is only found in special cases, it can be achieved approximately by use of the profile likelihood ratio. This is given by the profile likelihood from Eq.(40.18) divided by the value of the likelihood at its maximum, i.e., when evaluated with the ML estimators $\widehat{\boldsymbol{\theta}}$ and $\widehat{\boldsymbol{\nu}}$:

$$
\begin{equation*}
\lambda_{p}(\boldsymbol{\theta})=\frac{L(\boldsymbol{\theta}, \widehat{\widehat{\boldsymbol{\nu}}}(\boldsymbol{\theta}))}{L(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\nu}})} \tag{40.48}
\end{equation*}
$$

Wilks' theorem [9] states that, providing certain general conditions are satisfied, the distribution of $-2 \ln \lambda_{\mathrm{p}}(\boldsymbol{\theta})$, under assumption of $\boldsymbol{\theta}$, approaches a χ^{2} distribution in the limit where the data sample is very large, independent of the values of the nuisance parameters $\boldsymbol{\nu}$. Here the number of degrees of freedom is equal to the number of components of $\boldsymbol{\theta}$. More details on use of the profile likelihood are given in Refs. [29,30] and in contributions to the PHYSTAT conferences [22]; explicit formulae for special cases can be found in Ref. [31]. Further discussion on how to incorporate systematic uncertainties into p-values can be found in Ref. [32].

Even with use of the profile likelihood ratio, for a finite data sample the p-value of hypothesized parameters $\boldsymbol{\theta}$ will retain in general some dependence on the nuisance parameters $\boldsymbol{\nu}$. Ideally one would find the the maximum of $p_{\theta}(\boldsymbol{\nu})$ from Eq. (40.47) explicitly, but that is often impractical. An approximate and computationally feasible technique is to use $p_{\theta}(\widehat{\widehat{\boldsymbol{\nu}}}(\theta))$, where $\widehat{\hat{\boldsymbol{\nu}}}(\theta)$ are the profiled values of the nuisance parameters as defined in Section 40.2.2.2. The resulting p-value is correct if the true values of the nuisance parameters are equal to the profiled values used; otherwise it could be either too high or too low. This is discussed further in Section 40.4.2 on confidence intervals.

One may also treat model uncertainties in a Bayesian manner but then use the resulting model in a frequentist test. Suppose the uncertainty in a set of nuisance parameters $\boldsymbol{\nu}$ is characterized by a Bayesian prior p.d.f. $\pi(\boldsymbol{\nu})$. This can be used to construct the marginal (also called the prior predictive) model for the data \boldsymbol{x} and parameters of interest $\boldsymbol{\theta}$,

$$
\begin{equation*}
P_{\mathrm{m}}(\boldsymbol{x} \mid \boldsymbol{\theta})=\int P(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{\nu}) \pi(\boldsymbol{\nu}) d \boldsymbol{\nu} \tag{40.49}
\end{equation*}
$$

The marginal model does not represent the probability of data that would be generated if one were really to repeat the experiment, as in that case one would assume that the nuisance parameters do not vary. Rather, the marginal model represents a situation in which every repetition of the experiment is carried out with new values of $\boldsymbol{\nu}$, randomly sampled from $\pi(\boldsymbol{\nu})$. It is in effect an average of models each with a given $\boldsymbol{\nu}$, where the average is carried out with respect to the prior p.d.f. $\pi(\boldsymbol{\nu})$.

The marginal model for the data \boldsymbol{x} can be used to determine the distribution of a test statistic Q, which can be written

$$
\begin{equation*}
P_{\mathrm{m}}(Q \mid \boldsymbol{\theta})=\int P(Q \mid \boldsymbol{\theta}, \boldsymbol{\nu}) \pi(\boldsymbol{\nu}) d \boldsymbol{\nu} \tag{40.50}
\end{equation*}
$$

In a search for a new signal process, the test statistic can be based on the ratio of likelihoods corresponding to the experiments where signal and background events are both present, L_{s+b}, to that of background only, L_{b}. Often the likelihoods are evaluated with the profiled values of the nuisance parameters, which may give improved performance. It is important to note, however, that it is through use of the marginal model for the distribution of Q that the uncertainties related to the nuisance parameters are incorporated into the result of the test. Different choices for the test statistic itself only result in variations of the power of the test with respect to different alternatives.

40.3.2.2 The look-elsewhere effect

The "look-elsewhere effect" relates to multiple measurements used to test a single hypothesis. The classic example is when one searches in a distribution for a peak whose position is not predicted in advance. Here the no-peak hypothesis is tested using data in a given range of the distribution. In the frequentist approach the correct p-value of the no-peak hypothesis is the probability, assuming background only, to find a signal as significant as the one found or more so anywhere in the search region. This can be substantially higher than the probability to find a peak of equal or greater significance in the particular place where it appeared. There is in general some ambiguity as to what constitutes the relevant search region or even the broader set of relevant measurements. Although the desired p-value is well defined once the search region has been fixed, an exact treatment can require extensive computation.

The "brute-force" solution to this problem by Monte Carlo involves generating data under the background-only hypothesis and for each data set, fitting a peak of unknown position and recording a measure of its significance. To establish a discovery one often requires a p-value smaller than 2.87×10^{-7}, corresponding to a 5σ or larger effect. Determining this with Monte Carlo thus requires generating and fitting a very large number of experiments, perhaps several times 10^{7}. In contrast, if the position of the peak is fixed, then the fit to the distribution is much easier, and furthermore one can in many cases use formulae valid for sufficiently large samples that bypass completely the need for Monte Carlo
(see, e.g., [31]). However, this fixed-position or "local" p-value would not be correct in general, as it assumes the position of the peak was known in advance.

A method that allows one to modify the local p-value computed under assumption of a fixed position to obtain an approximation to the correct "global" value using a relatively simple calculation is described in Ref. [33]. Suppose a test statistic q_{0}, defined so that larger values indicate increasing disagreement with the data, is observed to have a value u. Furthermore suppose the model contains a nuisance parameter θ (such as the peak position) which is only defined under the signal model (there is no peak in the background-only model). An approximation for the global p-value is found to be

$$
\begin{equation*}
p_{\text {global }} \approx p_{\text {local }}+\left\langle N_{u}\right\rangle \tag{40.51}
\end{equation*}
$$

where $\left\langle N_{u}\right\rangle$, which is much smaller than one in cases of interest, is the mean number of "upcrossings" of the statistic q_{0} above the level u in the range of the nuisance parameter considered (e.g., the mass range).

The value of $\left\langle N_{u}\right\rangle$ can be estimated from the number of upcrossings $\left\langle N_{u_{0}}\right\rangle$ above some much lower value, u_{0}, by using a relation due to Davis [34],

$$
\begin{equation*}
\left\langle N_{u}\right\rangle \approx\left\langle N_{u_{0}}\right\rangle e^{-\left(u-u_{0}\right) / 2} \tag{40.52}
\end{equation*}
$$

By choosing u_{0} sufficiently low, the value of $\left\langle N_{u}\right\rangle$ can be estimated by simulating only a very small number of experiments, or even from the observed data, rather than the 10^{7} needed if one is dealing with a 5σ effect.

40.3.2.3 Goodness-of-fit with the method of least squares

When estimating parameters using the method of least squares, one obtains the minimum value of the quantity χ^{2} (40.19). This statistic can be used to test the goodness-of-fit, i.e., the test provides a measure of the significance of a discrepancy between the data and the hypothesized functional form used in the fit. It may also happen that no parameters are estimated from the data, but that one simply wants to compare a histogram, e.g., a vector of Poisson distributed numbers $\boldsymbol{n}=\left(n_{1}, \ldots, n_{N}\right)$, with a hypothesis for their expectation values $\mu_{i}=E\left[n_{i}\right]$. As the distribution is Poisson with variances $\sigma_{i}^{2}=\mu_{i}$, the $\chi^{2}(40.19)$ becomes Pearson's χ^{2} statistic,

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N} \frac{\left(n_{i}-\mu_{i}\right)^{2}}{\mu_{i}} \tag{40.53}
\end{equation*}
$$

If the hypothesis $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{N}\right)$ is correct, and if the expected values μ_{i} in (40.53) are sufficiently large (or equivalently, if the measurements n_{i} can be treated as following a Gaussian distribution), then the χ^{2} statistic will follow the χ^{2} p.d.f. with the number of degrees of freedom equal to the number of measurements N minus the number of fitted parameters.

Alternatively, one may fit parameters and evaluate goodness-of-fit by minimizing $-2 \ln \lambda$ from Eq. (40.16). One finds that the distribution of this statistic approaches the asymptotic limit faster than does Pearson's χ^{2}. Therefore if one uses the asymptotic χ^{2} p.d.f. as the statistic's approximate sampling distribution to compute a p-value, one obtains in general a more accurate result from $-2 \ln \lambda$ than from Pearson's χ^{2} (see Ref. [8] and references therein).

Assuming the goodness-of-fit statistic follows a χ^{2} p.d.f., the p-value for the hypothesis is then

$$
\begin{equation*}
p=\int_{\chi^{2}}^{\infty} f\left(z ; n_{\mathrm{d}}\right) d z \tag{40.54}
\end{equation*}
$$

where $f\left(z ; n_{\mathrm{d}}\right)$ is the χ^{2} p.d.f. and n_{d} is the appropriate number of degrees of freedom. Values are shown in Fig. 40.1 or obtained from the ROOT function TMath: : Prob. If the conditions for using the χ^{2} p.d.f. do not hold, the statistic can still be defined as before, but its p.d.f. must be determined by other means in order to obtain the p-value, e.g., using a Monte Carlo calculation.

Since the mean of the χ^{2} distribution is equal to n_{d}, one expects in a "reasonable" experiment to obtain $\chi^{2} \approx n_{\mathrm{d}}$. Hence the quantity $\chi^{2} / n_{\mathrm{d}}$ is sometimes reported. Since the p.d.f. of $\chi^{2} / n_{\mathrm{d}}$
depends on n_{d}, however, one must report n_{d} as well if one wishes to determine the p-value. The p-values obtained for different values of $\chi^{2} / n_{\mathrm{d}}$ are shown in Fig. 40.2.

If the minimized χ^{2} value indicates a low level of agreement between data and hypothesis, one may be tempted to expect a high degree of uncertainty for any fitted parameters. Poor goodness-of-fit, however, does not mean that one will have large statistical errors for parameter estimates. If, for example, the error bars (or covariance matrix) used in constructing the χ^{2} are underestimated, then this will lead to underestimated statistical errors for the fitted parameters. The standard deviations of estimators that one finds from, say, Eq. (40.13) reflect how widely the estimates would be distributed if one were to repeat the measurement many times, assuming that the hypothesis and measurement errors used in the χ^{2} are also correct. They do not include the systematic error which may result from an incorrect hypothesis or incorrectly estimated measurement errors in the χ^{2}.

Figure 40.1: One minus the χ^{2} cumulative distribution, 1 $F\left(\chi^{2} ; n\right)$, for n degrees of freedom. This gives the p-value for the χ^{2} goodness-of-fit test as well as one minus the coverage probability for confidence regions (see Sec. 40.4.2.2).

Figure 40.2: The 'reduced' χ^{2}, equal to χ^{2} / n, for n degrees of freedom. The curves show as a function of n the χ^{2} / n that corresponds to a given p-value.

40.3.3 Bayes factors

In Bayesian statistics, all of one's knowledge about a model is contained in its posterior probability, which one obtains using Bayes' theorem (Eq. (40.35)). Thus one could reject a hypothesis H if its posterior probability $P(H \mid \boldsymbol{x})$ is sufficiently small. The difficulty here is that $P(H \mid \boldsymbol{x})$ is proportional to the prior probability $P(H)$, and there will not be a consensus about the prior probabilities for the existence of new phenomena. Nevertheless one can construct a quantity called the Bayes factor (described below), which can be used to quantify the degree to which the
data prefer one hypothesis over another, and is independent of their prior probabilities.

Consider two models (hypotheses), H_{i} and H_{j}, described by vectors of parameters $\boldsymbol{\theta}_{i}$ and $\boldsymbol{\theta}_{j}$, respectively. Some of the components will be common to both models and others may be distinct. The full prior probability for each model can be written in the form

$$
\begin{equation*}
\pi\left(H_{i}, \boldsymbol{\theta}_{i}\right)=P\left(H_{i}\right) \pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right) \tag{40.55}
\end{equation*}
$$

Here $P\left(H_{i}\right)$ is the overall prior probability for H_{i}, and $\pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right)$ is the normalized p.d.f. of its parameters. For each model, the posterior probability is found using Bayes' theorem,

$$
\begin{equation*}
P\left(H_{i} \mid \boldsymbol{x}\right)=\frac{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{i}, H_{i}\right) P\left(H_{i}\right) \pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right) d \boldsymbol{\theta}_{i}}{P(\boldsymbol{x})}, \tag{40.56}
\end{equation*}
$$

where the integration is carried out over the internal parameters $\boldsymbol{\theta}_{i}$ of the model. The ratio of posterior probabilities for the models is therefore

$$
\begin{equation*}
\frac{P\left(H_{i} \mid \boldsymbol{x}\right)}{P\left(H_{j} \mid \boldsymbol{x}\right)}=\frac{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{i}, H_{i}\right) \pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right) d \boldsymbol{\theta}_{i}}{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{j}, H_{j}\right) \pi\left(\boldsymbol{\theta}_{j} \mid H_{j}\right) d \boldsymbol{\theta}_{j}} \frac{P\left(H_{i}\right)}{P\left(H_{j}\right)} \tag{40.57}
\end{equation*}
$$

The Bayes factor is defined as

$$
\begin{equation*}
B_{i j}=\frac{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{i}, H_{i}\right) \pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right) d \boldsymbol{\theta}_{i}}{\int P\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{j}, H_{j}\right) \pi\left(\boldsymbol{\theta}_{j} \mid H_{j}\right) d \boldsymbol{\theta}_{j}} . \tag{40.58}
\end{equation*}
$$

This gives what the ratio of posterior probabilities for models i and j would be if the overall prior probabilities for the two models were equal. If the models have no nuisance parameters, i.e., no internal parameters described by priors, then the Bayes factor is simply the likelihood ratio. The Bayes factor therefore shows by how much the probability ratio of model i to model j changes in the light of the data, and thus can be viewed as a numerical measure of evidence supplied by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the overall prior probabilities $P\left(H_{i}\right)$ and $P\left(H_{j}\right)$, it does require priors for all internal parameters of a model, i.e., one needs the functions $\pi\left(\boldsymbol{\theta}_{i} \mid H_{i}\right)$ and $\pi\left(\boldsymbol{\theta}_{j} \mid H_{j}\right)$. In a Bayesian analysis where one is only interested in the posterior p.d.f. of a parameter, it may be acceptable to take an unnormalizable function for the prior (an improper prior) as long as the product of likelihood and prior can be normalized. But improper priors are only defined up to an arbitrary multiplicative constant, and so the Bayes factor would depend on this constant. Furthermore, although the range of a constant normalized prior is unimportant for parameter determination (provided it is wider than the likelihood), this is not so for the Bayes factor when such a prior is used for only one of the hypotheses. So to compute a Bayes factor, all internal parameters must be described by normalized priors that represent meaningful probabilities over the entire range where they are defined.

An exception to this rule may be considered when the identical parameter appears in the models for both numerator and denominator of the Bayes factor. In this case one can argue that the arbitrary constants would cancel. One must exercise some caution, however, as parameters with the same name and physical meaning may still play different roles in the two models.

Both integrals in Equation (40.58) are of the form

$$
\begin{equation*}
m=\int P(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d \boldsymbol{\theta} \tag{40.59}
\end{equation*}
$$

which is the marginal likelihood seen previously in Eq. (40.49) (in some fields this quantity is called the evidence). Computing marginal likelihoods can be difficult; in many cases it can be done with the nested sampling algorithm [35] as implemented, e.g., in the program MultiNest [36]. A review of Bayes factors can be found in Ref. [37].

40.4 Intervals and limits

When the goal of an experiment is to determine a parameter θ, the result is usually expressed by quoting, in addition to the point estimate, some sort of interval which reflects the statistical precision of the measurement. In the simplest case, this can be given by the parameter's estimated value $\widehat{\theta}$ plus or minus an estimate of the standard deviation of $\widehat{\theta}, \widehat{\sigma}_{\widehat{\theta}}$. If, however, the p.d.f. of the estimator is not Gaussian or if there are physical boundaries on the possible values of the parameter, then one usually quotes instead an interval according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

- communicate as objectively as possible the result of the experiment;
- provide an interval that is constructed to cover on average the true value of the parameter with a specified probability;
- provide the information needed by the consumer of the result to draw conclusions about the parameter or to make a particular decision;
- draw conclusions about the parameter that incorporate stated prior beliefs.
With a sufficiently large data sample, the point estimate and standard deviation (or for the multiparameter case, the parameter estimates and covariance matrix) satisfy essentially all of these goals. For finite data samples, no single method for quoting an interval will achieve all of them.

In addition to the goals listed above, the choice of method may be influenced by practical considerations such as ease of producing an interval from the results of several measurements. Of course the experimenter is not restricted to quoting a single interval or limit; one may choose, for example, first to communicate the result with a confidence interval having certain frequentist properties, and then in addition to draw conclusions about a parameter using a judiciously chosen subjective Bayesian prior. It is recommended, however, that there be a clear separation between these two aspects of reporting a result. In the remainder of this section, we assess the extent to which various types of intervals achieve the goals stated here.

40.4.1 Bayesian intervals

As described in Sec. 40.2.5, a Bayesian posterior probability may be used to determine regions that will have a given probability of containing the true value of a parameter. In the single parameter case, for example, an interval (called a Bayesian or credible interval) $\left[\theta_{\text {lo }}, \theta_{\text {up }}\right]$ can be determined which contains a given fraction $1-\alpha$ of the posterior probability, i.e.,

$$
\begin{equation*}
1-\alpha=\int_{\theta_{\mathrm{lo}}}^{\theta_{\mathrm{up}}} p(\theta \mid \boldsymbol{x}) d \theta \tag{40.60}
\end{equation*}
$$

Sometimes an upper or lower limit is desired, i.e., $\theta_{\text {lo }}$ or $\theta_{\text {up }}$ can be set to a physical boundary or to plus or minus infinity. In other cases, one might be interested in the set of θ values for which $p(\theta \mid \boldsymbol{x})$ is higher than for any θ not belonging to the set, which may constitute a single interval or a set of disjoint regions; these are called highest posterior density (HPD) intervals. Note that HPD intervals are not invariant under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be set to zero for negative values. An important example is the case of a Poisson variable n, which counts signal events with unknown mean s, as well as background with mean b, assumed known. For the signal mean s, one often uses the prior

$$
\pi(s)= \begin{cases}0 & s<0 \tag{40.61}\\ 1 & s \geq 0\end{cases}
$$

This prior may be regarded as providing an interval whose frequentist properties can be studied, rather than as representing a degree of belief. For example, to obtain an upper limit on s, one may proceed as follows. The likelihood for s is given by the Poisson distribution for n with mean $s+b$,

$$
\begin{equation*}
P(n \mid s)=\frac{(s+b)^{n}}{n!} e^{-(s+b)} \tag{40.62}
\end{equation*}
$$

along with the prior (40.61) in (40.35) gives the posterior density for s. An upper limit $s_{\text {up }}$ at confidence level (or here, rather, credibility level) $1-\alpha$ can be obtained by requiring

$$
\begin{equation*}
1-\alpha=\int_{-\infty}^{s_{\mathrm{up}}} p(s \mid n) d s=\frac{\int_{-\infty}^{s_{\mathrm{up}}} P(n \mid s) \pi(s) d s}{\int_{-\infty}^{\infty} P(n \mid s) \pi(s) d s} \tag{40.63}
\end{equation*}
$$

where the lower limit of integration is effectively zero because of the cut-off in $\pi(s)$. By relating the integrals in Eq. (40.63) to incomplete gamma functions, the solution for the upper limit is found to be

$$
\begin{equation*}
s_{\mathrm{up}}=\frac{1}{2} F_{\chi^{2}}^{-1}[p, 2(n+1)]-b \tag{40.64}
\end{equation*}
$$

where $F_{\chi^{2}}^{-1}$ is the quantile of the χ^{2} distribution (inverse of the cumulative distribution). Here the quantity p is

$$
\begin{equation*}
p=1-\alpha\left(1-F_{\chi^{2}}[2 b, 2(n+1)]\right) \tag{40.65}
\end{equation*}
$$

where $F_{\chi^{2}}$ is the cumulative χ^{2} distribution. For both $F_{\chi^{2}}$ and $F_{\chi^{2}}^{-1}$ above, the argument $2(n+1)$ gives the number of degrees of freedom. For the special case of $b=0$, the limit reduces to

$$
\begin{equation*}
s_{\mathrm{up}}=\frac{1}{2} F_{\chi^{2}}^{-1}(1-\alpha ; 2(n+1)) \tag{40.66}
\end{equation*}
$$

It happens that for the case of $b=0$, the upper limit from Eq. (40.66) coincides numerically with the frequentist upper limit discussed in Section 40.4.2.3. Values for $1-\alpha=0.9$ and 0.95 are given by the values $\mu_{\text {up }}$ in Table 40.3. The frequentist properties of confidence intervals for the Poisson mean found in this way are discussed in Refs. [2] and [38].

As in any Bayesian analysis, it is important to show how the result changes under assumption of different prior probabilities. For example, one could consider the Jeffreys prior as described in Sec. 40.2.5. For this problem one finds the Jeffreys prior $\pi(s) \propto$ $1 / \sqrt{s+b}$ for $s \geq 0$ and zero otherwise. As with the constant prior, one would not regard this as representing one's prior beliefs about s, both because it is improper and also as it depends on b. Rather it is used with Bayes' theorem to produce an interval whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated by marginalizing, as in Eq. (40.41), to obtain the p.d.f. for the parameters of interest. For example, if the parameter b in the Poisson counting problem above were to be characterized by a prior p.d.f. $\pi(b)$, then one would first use Bayes' theorem to find $p(s, b \mid n)$. This is then marginalized to find $p(s \mid n)=\int p(s, b \mid n) \pi(b) d b$, from which one may determine an interval for s. One may not be certain whether to extend a model by including more nuisance parameters. In this case, a Bayes factor may be used to determine to what extent the data prefer a model with additional parameters, as described in Section 40.3.3.

40.4.2 Frequentist confidence intervals

The unqualified phrase "confidence intervals" refers to frequentist intervals obtained with a procedure due to Neyman [39], described below. The boundary of the interval (or in the multiparameter case, region) is given by a specific function of the data, which would fluctuate if one were to repeat the experiment many times. The coverage probability refers to the fraction of intervals in such an ensemble that contain the true parameter value. Confidence intervals are constructed so as to have a coverage probability greater than or equal to a given confidence level, regardless of the true parameter's value. It is important to note that in the frequentist approach, such a probability is not meaningful for a fixed interval. In this section we discuss several techniques for producing intervals that have, at least approximately, this property of coverage.
40.4.2.1 The Neyman construction for confidence intervals

Consider a p.d.f. $f(x ; \theta)$ where x represents the outcome of the experiment and θ is the unknown parameter for which we want to construct a confidence interval. The variable x could (and often does) represent an estimator for θ. Using $f(x ; \theta)$, we can find using a pre-defined rule and probability $1-\alpha$ for every value of θ, a set of values $x_{1}(\theta, \alpha)$ and $x_{2}(\theta, \alpha)$ such that

$$
\begin{equation*}
P\left(x_{1}<x<x_{2} ; \theta\right)=\int_{x_{1}}^{x_{2}} f(x ; \theta) d x \geq 1-\alpha \tag{40.67}
\end{equation*}
$$

If x is discrete, the integral is replaced by the corresponding sum. In that case there may not exist a range of x values whose summed probability is exactly equal to a given value of $1-\alpha$, and one requires by convention $P\left(x_{1}<x<x_{2} ; \theta\right) \geq 1-\alpha$.

This is illustrated for continuous x in Fig. 40.3: a horizontal line segment $\left[x_{1}(\theta, \alpha), x_{2}(\theta, \alpha)\right]$ is drawn for representative values of θ. The union of such intervals for all values of θ, designated in the figure as $D(\alpha)$, is known as a confidence belt. Typically the curves $x_{1}(\theta, \alpha)$ and $x_{2}(\theta, \alpha)$ are monotonic functions of θ, which we assume for this discussion.

Figure 40.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x_{0}, one draws a vertical line through x_{0}. The confidence interval for θ is the set of all values of θ for which the corresponding line segment $\left[x_{1}(\theta, \alpha), x_{2}(\theta, \alpha)\right]$ is intercepted by this vertical line. Such confidence intervals are said to have a confidence level (CL) equal to $1-\alpha$.
Now suppose that the true value of θ is θ_{0}, indicated in the figure. We see from the figure that θ_{0} lies between $\theta_{1}(x)$ and $\theta_{2}(x)$ if and only if x lies between $x_{1}\left(\theta_{0}\right)$ and $x_{2}\left(\theta_{0}\right)$. The two events thus have the same probability, and since this is true for any value θ_{0}, we can drop the subscript 0 and obtain

$$
\begin{equation*}
1-\alpha=P\left(x_{1}(\theta)<x<x_{2}(\theta)\right)=P\left(\theta_{2}(x)<\theta<\theta_{1}(x)\right) \tag{40.68}
\end{equation*}
$$

In this probability statement, $\theta_{1}(x)$ and $\theta_{2}(x)$, i.e., the endpoints of the interval, are the random variables and θ is an unknown constant. If the experiment were to be repeated a large number of times, the interval $\left[\theta_{1}, \theta_{2}\right]$ would vary, covering the fixed value θ in a fraction $1-\alpha$ of the experiments.

The condition of coverage in Eq. (40.67) does not determine x_{1} and x_{2} uniquely, and additional criteria are needed. One possibility is to choose central intervals such that the probabilities to find x below x_{1} and above x_{2} are each $\alpha / 2$. In other cases, one may want to report only an upper or lower limit, in which case one of $P\left(x \leq x_{1}\right)$ or $P\left(x \geq x_{2}\right)$ can be set to α and the other to zero. Another principle based on likelihood ratio ordering for determining which values of x should be included in the confidence belt is discussed below.

When the observed random variable x is continuous, the coverage probability obtained with the Neyman construction is $1-\alpha$, regardless of the true value of the parameter. Because of the requirement $P\left(x_{1}<x<x_{2}\right) \geq 1-\alpha$ when x is discrete, one obtains
in that case confidence intervals that include the true parameter with a probability greater than or equal to $1-\alpha$.

An equivalent method of constructing confidence intervals is to consider a test (see Sec. 40.3) of the hypothesis that the parameter's true value is θ (assume one constructs a test for all physical values of θ). One then excludes all values of θ where the hypothesis would be rejected in a test of size α or less. The remaining values constitute the confidence interval at confidence level $1-\alpha$. If the critical region of the test is characterized by having a p value $p_{\theta} \leq \alpha$, then the endpoints of the confidence interval are found in practice by solving $p_{\theta}=\alpha$ for θ.

In the procedure outlined above, one is still free to choose the test to be used; this corresponds to the freedom in the Neyman construction as to which values of the data are included in the confidence belt. One possibility is to use a test statistic based on the likelihood ratio,

$$
\begin{equation*}
\lambda(\theta)=\frac{f(x ; \theta)}{f(x ; \widehat{\theta})}, \tag{40.69}
\end{equation*}
$$

where $\widehat{\theta}$ is the value of the parameter which, out of all allowed values, maximizes $f(x ; \theta)$. This results in the intervals described in Ref. [40] by Feldman and Cousins. The same intervals can be obtained from the Neyman construction described above by including in the confidence belt those values of x which give the greatest values of $\lambda(\theta)$.

If the model contains nuisance parameters ν, then these can be incorporated into the test (or the p-values) used to determine the limit by profiling as discussed in Section 40.3.2.1. As mentioned there, the strict frequentist approach is to regard the parameter of interest θ as excluded only if it is rejected for all possible values of $\boldsymbol{\nu}$. The resulting interval for θ will then cover the true value with a probability greater than or equal to the nominal confidence level for all points in $\boldsymbol{\nu}$-space.

If the p-value is based on the profiled values of the nuisance parameters, i.e., with $\boldsymbol{\nu}=\widehat{\widehat{\boldsymbol{\nu}}}(\theta)$ used in Eq. (40.47), then the resulting interval for the parameter of interest will have the correct coverage if the true values of $\boldsymbol{\nu}$ are equal to the profiled values. Otherwise the coverage probability may be too high or too low. This procedure has been called profile construction in HEP [41] (see also [32]).

40.4.2.2 Gaussian distributed measurements

An important example of constructing a confidence interval is when the data consists of a single random variable x that follows a Gaussian distribution; this is often the case when x represents an estimator for a parameter and one has a sufficiently large data sample. If there is more than one parameter being estimated, the multivariate Gaussian is used. For the univariate case with known σ, the probability that the measured value x will fall within $\pm \delta$ of the true value μ is

$$
\begin{align*}
1-\alpha & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mu-\delta}^{\mu+\delta} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& =\operatorname{erf}\left(\frac{\delta}{\sqrt{2} \sigma}\right)=2 \Phi\left(\frac{\delta}{\sigma}\right)-1 \tag{40.70}
\end{align*}
$$

where erf is the Gaussian error function, which is rewritten in the final equality using Φ, the Gaussian cumulative distribution. Fig. 40.4 shows a $\delta=1.64 \sigma$ confidence interval unshaded. The choice $\delta=\sigma$ gives an interval called the standard error which has $1-\alpha=68.27 \%$ if σ is known. Values of α for other frequently used choices of δ are given in Table 40.1.

We can set a one-sided (upper or lower) limit by excluding above $x+\delta$ (or below $x-\delta$). The values of α for such limits are half the values in Table 40.1.

The relation (40.70) can be re-expressed using the cumulative distribution function for the χ^{2} distribution as

$$
\begin{equation*}
\alpha=1-F\left(\chi^{2} ; n\right) \tag{40.71}
\end{equation*}
$$

for $\chi^{2}=(\delta / \sigma)^{2}$ and $n=1$ degree of freedom. This can be seen as the $n=1$ curve in Fig. 40.1 or obtained by using the ROOT function TMath: : Prob. For multivariate measurements of, say, n parameter estimates $\widehat{\boldsymbol{\theta}}=\left(\widehat{\theta_{1}}, \ldots, \widehat{\theta_{n}}\right)$, construction of the confidence

Figure 40.4: Illustration of a symmetric 90% confidence interval (unshaded) for a Gaussian-distributed measurement of a single quantity. Integrated probabilities, defined by $\alpha=0.1$, are as shown.

Table 40.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian distribution.

α	δ	α	δ
0.3173	1σ	0.2	1.28σ
4.55×10^{-2}	2σ	0.1	1.64σ
2.7×10^{-3}	3σ	0.05	1.96σ
6.3×10^{-5}	4σ	0.01	2.58σ
5.7×10^{-7}	5σ	0.001	3.29σ
2.0×10^{-9}	6σ	10^{-4}	3.89σ

region requires the full covariance matrix $V_{i j}=\operatorname{cov}\left[\widehat{\theta}_{i}, \widehat{\theta}_{j}\right]$, which can be estimated as described in Sections 40.2.2 and 40.2.3. Under fairly general conditions with the methods of maximum-likelihood or least-squares in the large sample limit, the estimators will be distributed according to a multivariate Gaussian centered about the true (unknown) values $\boldsymbol{\theta}$, and furthermore, the likelihood function itself will take on a Gaussian shape.

The standard error ellipse for the pair $\left(\widehat{\theta}_{i}, \widehat{\theta}_{j}\right)$ is shown in Fig. 40.5, corresponding to a contour $\chi^{2}=\chi_{\text {min }}^{2}+1$ or $\ln L=$ $\ln L_{\max }-1 / 2$. The ellipse is centered about the estimated values $\widehat{\boldsymbol{\theta}}$, and the tangents to the ellipse give the standard deviations of the estimators, σ_{i} and σ_{j}. The angle of the major axis of the ellipse is given by

$$
\begin{equation*}
\tan 2 \phi=\frac{2 \rho_{i j} \sigma_{i} \sigma_{j}}{\sigma_{j}^{2}-\sigma_{i}^{2}} \tag{40.72}
\end{equation*}
$$

where $\rho_{i j}=\operatorname{cov}\left[\widehat{\theta}_{i}, \widehat{\theta}_{j}\right] / \sigma_{i} \sigma_{j}$ is the correlation coefficient.
The correlation coefficient can be visualized as the fraction of the distance σ_{i} from the ellipse's horizontal center-line at which the ellipse becomes tangent to vertical, i.e., at the distance $\rho_{i j} \sigma_{i}$ below the center-line as shown. As $\rho_{i j}$ goes to +1 or -1 , the ellipse thins to a diagonal line.

It could happen that one of the parameters, say, θ_{j}, is known from previous measurements to a precision much better than σ_{j}, so that the current measurement contributes almost nothing to the knowledge of θ_{j}. However, the current measurement of θ_{i} and its dependence on θ_{j} may still be important. In this case, instead of quoting both parameter estimates and their correlation, one sometimes reports the value of θ_{i}, which minimizes χ^{2} at a fixed value of θ_{j}, such as the PDG best value. This θ_{i} value lies along the dotted line between the points where the ellipse becomes tangent to vertical, and has statistical error $\sigma_{\text {inner }}$ as shown on the figure, where $\sigma_{\text {inner }}=\left(1-\rho_{i j}^{2}\right)^{1 / 2} \sigma_{i}$. Instead of the correlation $\rho_{i j}$, one reports the dependency $d \widehat{\theta}_{i} / d \theta_{j}$, which is the slope of the dotted line. This slope is related to the correlation coefficient by

$$
d \widehat{\theta}_{i} / d \theta_{j}=\rho_{i j} \times \frac{\sigma_{i}}{\sigma_{j}}
$$

Figure 40.5: Standard error ellipse for the estimators $\widehat{\theta}_{i}$ and $\widehat{\theta}_{j}$. In the case shown the correlation is negative.

As in the single-variable case, because of the symmetry of the Gaussian function between $\boldsymbol{\theta}$ and $\widehat{\boldsymbol{\theta}}$, one finds that contours of constant $\ln L$ or χ^{2} cover the true values with a certain, fixed probability. That is, the confidence region is determined by

$$
\begin{equation*}
\ln L(\theta) \geq \ln L_{\max }-\Delta \ln L \tag{40.73}
\end{equation*}
$$

or where a χ^{2} has been defined for use with the method of leastsquares,

$$
\begin{equation*}
\chi^{2}(\boldsymbol{\theta}) \leq \chi_{\min }^{2}+\Delta \chi^{2} \tag{40.74}
\end{equation*}
$$

Values of $\Delta \chi^{2}$ or $2 \Delta \ln L$ are given in Table 40.2 for several values of the coverage probability $1-\alpha$ and number of fitted parameters m. For Gaussian distributed data, these are related by $\Delta \chi^{2}=2 \Delta \ln L=F_{\chi_{m}^{2}}^{-1}(1-\alpha)$, where $F_{\chi_{m}^{2}}^{-1}$ is the chi-square quantile (inverse of the cumulative distribution) for m degrees of freedom.

Table 40.2: Values of $\Delta \chi^{2}$ or $2 \Delta \ln L$ corresponding to a coverage probability $1-\alpha$ in the large data sample limit, for joint estimation of m parameters.

$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

For non-Gaussian data samples, the probability for the regions determined by Equations (40.73) or (40.74) to cover the true value of $\boldsymbol{\theta}$ becomes independent of $\boldsymbol{\theta}$ only in the large-sample limit. So for a finite data sample these are not exact confidence regions according to our previous definition. Nevertheless, they can still have a coverage probability only weakly dependent on the true parameter, and approximately as given in Table 40.2. In any case, the coverage probability of the intervals or regions obtained according to this procedure can in principle be determined as a function of the true parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed from the log-likelihood function or χ^{2} is that it is relatively simple to produce the interval for the combination of several experiments. If N independent measurements result in \log-likelihood functions $\ln L_{i}(\boldsymbol{\theta})$, then the combined log-likelihood function is simply the sum,

$$
\begin{equation*}
\ln L(\boldsymbol{\theta})=\sum_{i=1}^{N} \ln L_{i}(\boldsymbol{\theta}) \tag{40.75}
\end{equation*}
$$

This can then be used to determine an approximate confidence interval or region with Eq. (40.73), just as with a single experiment.

40.4.2.3 Poisson or binomial data

Another important class of measurements consists of counting a certain number of events, n. In this section, we will assume these are all events of the desired type, i.e., there is no background. If n represents the number of events produced in a reaction with cross section σ, say, in a fixed integrated luminosity \mathcal{L}, then it follows a Poisson distribution with mean $\mu=\sigma \mathcal{L}$. If, on the other hand, one has selected a larger sample of N events and found n of them to have a particular property, then n follows a binomial distribution where the parameter p gives the probability for the event to possess the property in question. This is appropriate, e.g., for estimates of branching ratios or selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, limits on the mean value μ can be found from the Neyman procedure as discussed in Section 40.4.2.1 with n used directly as the statistic x. The upper and lower limits are found to be

$$
\begin{align*}
\mu_{\mathrm{lo}} & =\frac{1}{2} F_{\chi^{2}}^{-1}\left(\alpha_{\mathrm{lo}} ; 2 n\right) \tag{40.76a}\\
\mu_{\mathrm{up}} & =\frac{1}{2} F_{\chi^{2}}^{-1}\left(1-\alpha_{\mathrm{up}} ; 2(n+1)\right) \tag{40.76b}
\end{align*}
$$

where confidence levels of $1-\alpha_{\text {lo }}$ and $1-\alpha_{\text {up }}$ refer separately to the corresponding intervals $\mu \geq \mu_{\text {lo }}$ and $\mu \leq \mu_{\mathrm{up}}$, and $F_{\chi^{2}}^{-1}$ is the quantile of the χ^{2} distribution (inverse of the cumulative distribution). For central confidence intervals at confidence level $1-\alpha$, set $\alpha_{\mathrm{lo}}=\alpha_{\mathrm{up}}=\alpha / 2$.

Table 40.3: Lower and upper (one-sided) limits for the mean μ of a Poisson variable given n observed events in the absence of background, for confidence levels of 90% and 95%.

$1-\alpha=90 \%$			$1-\alpha=95 \%$	
n	μ_{lo}	μ_{up}	μ_{lo}	μ_{up}
0	-	2.30	-	3.00
1	0.105	3.89	0.051	4.74
2	0.532	5.32	0.355	6.30
3	1.10	6.68	0.818	7.75
4	1.74	7.99	1.37	9.15
5	2.43	9.27	1.97	10.51
6	3.15	10.53	2.61	11.84
7	3.89	11.77	3.29	13.15
8	4.66	12.99	3.98	14.43
9	5.43	14.21	4.70	15.71
10	6.22	15.41	5.43	16.96

It happens that the upper limit from Eq. (40.76b) coincides numerically with the Bayesian upper limit for a Poisson parameter, using a uniform prior p.d.f. for μ. Values for confidence levels of 90% and 95% are shown in Table 40.3. For the case of binomially distributed n successes out of N trials with probability of success p, the upper and lower limits on p are found to be

$$
\begin{align*}
p_{\mathrm{lo}} & =\frac{n F_{F}^{-1}\left[\alpha_{\mathrm{lo}} ; 2 n, 2(N-n+1)\right]}{N-n+1+n F_{F}^{-1}\left[\alpha_{\mathrm{lo}} ; 2 n, 2(N-n+1)\right]} \tag{40.77a}\\
p_{\mathrm{up}} & =\frac{(n+1) F_{F}^{-1}\left[1-\alpha_{\mathrm{up}} ; 2(n+1), 2(N-n)\right]}{(N-n)+(n+1) F_{F}^{-1}\left[1-\alpha_{\mathrm{up}} ; 2(n+1), 2(N-n)\right]} \tag{40.77b}
\end{align*}
$$

Here F_{F}^{-1} is the quantile of the F distribution (also called the Fisher-Snedecor distribution; see Ref. [4]).

40.4.2.4 Parameter exclusion in cases of low sensitivity

An important example of a statistical test arises in the search for a new signal process. Suppose the parameter μ is defined such that it is proportional to the signal cross section. A statistical test may be carried out for hypothesized values of μ, which may be done by computing a p-value, p_{μ}, for all μ. Those values not rejected in a test of size α, i.e., for which one does not find $p_{\mu} \leq \alpha$, constitute a confidence interval with confidence level $1-\alpha$.

In general one will find that for some regions in the parameter space of the signal model, the predictions for data are almost indistinguishable from those of the background-only model. This corresponds to the case where μ is very small, as would occur, e.g., in a search for a new particle with a mass so high that its production rate in a given experiment is negligible. That is, one has essentially no experimental sensitivity to such a model.

One would prefer that if the sensitivity to a model (or a point in a model's parameter space) is very low, then it should not be excluded. Even if the outcomes predicted with or without signal are identical, however, the probability to reject the signal model will equal α, the type-I error rate. As one often takes α to be 5%, this would mean that in a large number of searches covering a broad range of a signal model's parameter space, there would inevitably be excluded regions in which the experimental sensitivity is very small, and thus one may question whether it is justified to regard such parameter values as disfavored.

Exclusion of models to which one has little or no sensitivity occurs, for example, if the data fluctuate very low relative to the expectation of the background-only hypothesis. In this case the resulting upper limit on μ may be anomalously low. As a means of controlling this effect one often determines the mean or median limit under assumption of the background-only hypothesis, as discussed in Sec. 40.5.

One way to mitigate the problem of excluding models to which one is not sensitive is the CL_{s} method, where the measure used to test a parameter is increased for decreasing sensitivity [42, 43]. The procedure is based on a statistic called CL_{s}, which is defined as

$$
\begin{equation*}
\mathrm{CL}_{\mathrm{s}}=\frac{p_{\mu}}{1-p_{\mathrm{b}}} \tag{40.78}
\end{equation*}
$$

where p_{b} is the p-value of the background-only hypothesis. In the usual formulation of the method, both p_{μ} and p_{b} are defined using a single test statistic, and the definition of CL_{s} above assumes this statistic is continuous; more details can be found in Refs. [42,43].

A point in a model's parameter space is regarded as excluded if one finds $\mathrm{CL}_{\mathrm{s}} \leq \alpha$. As the denominator in Eq. (40.78) is always less than or equal to unity, the exclusion criterion based on CL_{s} is more stringent than the usual requirement $p_{\mu} \leq \alpha$. In this sense the CL_{s} procedure is conservative, and the coverage probability of the corresponding intervals will exceed the nominal confidence level $1-\alpha$. If the experimental sensitivity to a given value of μ is very low, then one finds that as p_{μ} decreases, so does the denominator $1-p_{\mathrm{b}}$, and thus the condition $\mathrm{CL}_{\mathrm{s}} \leq \alpha$ is effectively prevented from being satisfied. In this way the exclusion of parameters in the case of low sensitivity is suppressed.

The CL_{s} procedure has the attractive feature that the resulting intervals coincide with those obtained from the Bayesian method in two important cases: the mean value of a Poisson or Gaussian distributed measurement with a constant prior. The CL_{s} intervals overcover for all values of the parameter μ, however, by an amount that depends on μ.

The problem of excluding parameter values to which one has little sensitivity is particularly acute when one wants to set a onesided limit, e.g., an upper limit on a cross section. Here one tests a value of a rate parameter μ against the alternative of a lower rate, and therefore the critical region of the test is taken to correspond to data outcomes with a low event yield. If the number of events found in the search region fluctuates low enough, however, it can happen that all physically meaningful signal parameter values, including those to which one has very little sensitivity, are rejected by the test.

Another solution to this problem, therefore, is to replace the one-sided test by one based on the likelihood ratio, where the critical region is not restricted to low rates. This is the approach followed in the Feldman-Cousins procedure described in Section 40.4.2.1. The critical region for the test of a given value of μ contains data values characteristic of both higher and lower rates. As a result, for a given observed rate one can in general obtain a two-sided interval. If, however, the parameter estimate $\hat{\mu}$ is sufficiently close to the lower limit of zero, then only high values of μ are rejected, and the lower edge of the confidence interval is at zero. Note, however, that the coverage property of
$1-\alpha$ pertains to the entire interval, not to the probability for the upper edge $\mu_{\text {up }}$ to be greater than the true value μ. For parameter estimates increasingly far away from the boundary, i.e., for increasing signal significance, the point $\mu=0$ is excluded and the interval has nonzero upper and lower edges.

An additional difficulty arises when a parameter estimate is not significantly far away from the boundary, in which case it is natural to report a one-sided confidence interval (often an upper limit). It is straightforward to force the Neyman prescription to produce only an upper limit by setting $x_{2}=\infty$ in Eq. (40.67). Then x_{1} is uniquely determined and the upper limit can be obtained. If, however, the data come out such that the parameter estimate is not so close to the boundary, one might wish to report a central confidence interval (i.e., an interval based on a two-sided test with equal upper and lower tail areas). As pointed out by Feldman and Cousins [40], if the decision to report an upper limit or two-sided interval is made by looking at the data ("flip-flopping"), then in general there will be parameter values for which the resulting intervals have a coverage probability less than $1-\alpha$. With the confidence intervals suggested in [40], the prescription determines whether the interval is one- or two-sided in a way which preserves the coverage probability (and are thus said to be unified).
The intervals according to this method for the mean of Poisson variable in the absence of background are given in Table 40.4. (Note that α in Ref. [40] is defined following Neyman [39] as the coverage probability; this is opposite the modern convention used here in which the coverage probability is $1-\alpha$.) The values of $1-\alpha$ given here refer to the coverage of the true parameter by the whole interval $\left[\mu_{1}, \mu_{2}\right]$. In Table 40.3 for the one-sided upper limit, however, $1-\alpha$ refers to the probability to have $\mu_{\mathrm{up}} \geq \mu$ (or $\mu_{\mathrm{lo}} \leq \mu$ for lower limits).

Table 40.4: Unified confidence intervals $\left[\mu_{1}, \mu_{2}\right.$] for a the mean of a Poisson variable given n observed events in the absence of background, for confidence levels of 90% and 95%.

$1-\alpha=90 \%$			$1-\alpha=95 \%$	
n	μ_{1}	μ_{2}	μ_{1}	μ_{2}
0	0.00	2.44	0.00	3.09
1	0.11	4.36	0.05	5.14
2	0.53	5.91	0.36	6.72
3	1.10	7.42	0.82	8.25
4	1.47	8.60	1.37	9.76
5	1.84	9.99	1.84	11.26
6	2.21	11.47	2.21	12.75
7	3.56	12.53	2.58	13.81
8	3.96	13.99	2.94	15.29
9	4.36	15.30	4.36	16.77
10	5.50	16.50	4.75	17.82

A potential difficulty with unified intervals arises if, for example, one constructs such an interval for a Poisson parameter s of some yet to be discovered signal process with, say, $1-\alpha=0.9$. If the true signal parameter is zero, or in any case much less than the expected background, one will usually obtain a one-sided upper limit on s. In a certain fraction of the experiments, however, a two-sided interval for s will result. Since, however, one typically chooses $1-\alpha$ to be only 0.9 or 0.95 when setting limits, the value $s=0$ may be found below the lower edge of the interval before the existence of the effect is well established. It must then be communicated carefully that in excluding $s=0$ at, say, 90% or 95% confidence level from the interval, one is not necessarily claiming to have discovered the effect, for which one would usually require a higher level of significance (e.g., 5σ).

Another possibility is to construct a Bayesian interval as described in Section 40.4.1. The presence of the boundary can be incorporated simply by setting the prior density to zero in the unphysical region. More specifically, the prior may be chosen using formal rules such as the reference prior or Jeffreys prior mentioned in Sec. 40.2.5.

In HEP a widely used prior for the mean μ of a Poisson distributed measurement has been the uniform distribution for
$\mu \geq 0$. This prior does not follow from any fundamental rule nor can it be regarded as reflecting a reasonable degree of belief, since the prior probability for μ to lie between any two finite values is zero. The procedure above can be more appropriately regarded as a way for obtaining intervals with frequentist properties that can be investigated. The resulting upper limits have a coverage probability that depends on the true value of the Poisson parameter, and is nowhere smaller than the stated probability content. Lower limits and two-sided intervals for the Poisson mean based on flat priors undercover, however, for some values of the parameter, although to an extent that in practical cases may not be too severe [2,38].

In any case, it is important to always report sufficient information so that the result can be combined with other measurements. Often this means giving an unbiased estimator and its standard deviation, even if the estimated value is in the unphysical region.

It can also be useful with a frequentist interval to calculate its subjective probability content using the posterior p.d.f. based on one or several reasonable guesses for the prior p.d.f. If it turns out to be significantly less than the stated confidence level, this warns that it would be particularly misleading to draw conclusions about the parameter's value from the interval alone.

40.5 Experimental sensitivity

In this section we describe methods for characterizing the sensitivity of a search for a new physics signal. As discussed in Sec. 40.3, an experimental analysis can often be formulated as a test of hypothetical model parameters. Therefore we may quantify the sensitivity by giving the results that we expect from such a test under specific assumptions about the signal process.

Here to be concrete we will consider a parameter μ proportional to the rate of a signal process, although the concepts described in this section may be easily generalized to other parameters. One may wish to establish discovery of the signal process by testing and rejecting the hypothesis that $\mu=0$, and in addition one often wants to test nonzero values of μ to construct a confidence interval (e.g., limits) as described in Sec. 40.4. In the frequentist framework, the result of each tested value of μ is the p-value p_{μ} or equivalently the significance $Z_{\mu}=\Phi^{-1}\left(1-p_{\mu}\right)$, where as usual Φ is the standard Gaussian cumulative distribution and its inverse Φ^{-1} is the standard Gaussian quantile.

Prior to carrying out the experiment, one generally wants to quantify what significance Z_{μ} is expected under given assumptions for the presence or absence of the signal process. Specifically, for the significance of a test of $\mu=0$ (the discovery significance) one usually quotes the Z_{0} one would expect if the signal is present at a given nominal rate, which we can define in general to correspond to $\mu=1$. For limits, one often gives the expected limit under assumption of the background-only $(\mu=0)$ model. These quantities are used to optimize the analysis and to quantify the experimental sensitivity, that is, to characterize how likely it is to make a discovery if the signal is present, and to say what values of μ one may be able to exclude if the signal is in fact absent.

First we clarify the notion of expected significance. Because the significance Z_{μ} is a function of the data, it is itself a random quantity characterized by a certain sampling distribution. This distribution depends on the assumed value of μ, which is not necessarily the same as the hypothesized value of μ being tested. We may therefore consider the distribution $f\left(Z_{\mu} \mid \mu^{\prime}\right)$, i.e., the distribution of Z_{μ} that would be obtained by considering data samples generated under assumption of μ^{\prime}. In a similar way one can talk about the sampling distribution of an upper limit for μ, $f\left(\mu_{\text {up }} \mid \mu^{\prime}\right)$.

One can identify the expected significance or limit with either the mean or median of these distributions, but the median may be preferred since it is invariant under monotonic transformations. For example, the monotonic relation between p-value and significance, $p=1-\Phi(Z)$, then gives $\operatorname{med}\left[p_{\mu} \mid \mu^{\prime}\right]=1-\Phi\left(\operatorname{med}\left[Z_{\mu} \mid \mu^{\prime}\right]\right)$, whereas the corresponding relation does not hold in general for the mean.

In some cases one may be able to write down approximate formulae for the distributions of Z_{μ} and for limits, but more generally they must be determined from Monte Carlo calculations. In many
cases of interest, the significance Z_{μ} and the limits on μ will have approximate Gaussian distributions.
As an example, consider a Poisson counting experiment, where the result consists of an observed number n of events, modeled as a Poisson distributed variable with a mean of $\mu s+b$. Here s and b, the expected numbers of events from signal and background processes, are taken to be known. If we are interested in discovering the signal process we test and try to reject the hypothesis $\mu=0$. To characterize the experimental sensitivity, we want to give the discovery significance expected under the assumption of $\mu=1$.
In the limit where its mean value is large, the Poisson variable n can be approximated as an almost continuous Gaussian variable with mean $\mu s+b$ and standard deviation $\sigma=\sqrt{\mu s+b}$. In the usual case where a physical signal model corresponds to $\mu>0$, the p-value of $\mu=0$ is the probability to find n greater than or equal to the value observed,

$$
\begin{equation*}
p_{0}=\Phi\left(\frac{n-b}{\sqrt{b}}\right) \tag{40.79}
\end{equation*}
$$

and the corresponding significance is $Z_{0}=\Phi^{-1}\left(1-p_{0}\right)=(n-$ $b) / \sqrt{b}$. The median (here equal to the mean) of n assuming $\mu=1$ is $s+b$, and therefore the median discovery significance is

$$
\begin{equation*}
\operatorname{med}\left[Z_{0} \mid \mu=1\right]=\frac{s}{\sqrt{b}} \tag{40.80}
\end{equation*}
$$

The figure of merit " s / \sqrt{b} " has been widely used in HEP as a measure of expected discovery significance. A better approximation for the Poisson counting experiment, however, may be obtained by testing $\mu=0$ using the likelihood ratio (40.48) $\lambda(0)=L(0) / L(\hat{\mu})$, where

$$
\begin{equation*}
L(\mu)=\frac{(\mu s+b)^{n}}{n!} e^{-(\mu s+b)} \tag{40.81}
\end{equation*}
$$

is the likelihood function, $\hat{\mu}=(n-b) / s$ is the ML estimator. In this example there are no nuisance parameters, as s and b are taken to be known. For the case where the relevant signal models correspond to positive μ, one may test the $\mu=0$ hypothesis with the statistic $q_{0}=-2 \ln \lambda(0)$ when $\hat{\mu}>0$, i.e., an excess is observed, and $q_{0}=0$ otherwise. One can show (see, e.g., [31]) that in the large-sample limit, the discovery significance is then $Z_{0}=\sqrt{q_{0}}$, for which one finds

$$
\begin{equation*}
Z_{0}=\sqrt{2\left(n \ln \frac{n}{b}+b-n\right)} \tag{40.82}
\end{equation*}
$$

for $n>b$ and $Z_{0}=0$ otherwise. To approximate the expected discovery significance assuming $\mu=1$, one may simply replace n with the expected value $E[n \mid \mu=1]=s+b$ (the so-called "Asimov data set"), giving

$$
\begin{equation*}
\operatorname{med}\left[Z_{0} \mid \mu=1\right]=\sqrt{2\left((s+b) \ln \left(1+\frac{s}{b}\right)-s\right)} \tag{40.83}
\end{equation*}
$$

This has been shown in Ref. [31] to provide a good approximation to the median discovery significance for values of s of several and for b well below unity. The right-hand side of Eq. (40.83) reduces to s / \sqrt{b} in the limit $s \ll b$.

Beyond the simple Poisson counting experiment, in general one may test values of a parameter μ with more complicated functions of the measured data to obtain a p-value p_{μ}, and from this one can quote the equivalent significance Z_{μ} or find, e.g., an upper limit $\mu_{\text {up }}$. In this case as well one may quantify the experimental sensitivity by giving the significance Z_{μ} expected if the data are generated with a different value of the parameter μ^{\prime}. In some problems, finding the sampling distribution of the significance or limits may be possible using large-sample formulae as described, e.g., in Ref. [31]. In other cases a Monte Carlo study may be needed. Using whatever method of calculation is most appropriate, one usually quotes the expected (mean or, preferably, median) significance or limit as the primary measures of experimental sensitivity.

Even if the true signal is present at its nominal rate, the actual discovery significance Z_{0} obtained from the real data is subject to statistical fluctuations and will not in general be equal to its expected value. In an analogous way, the observed limit will differ from the expected limit even if the signal is absent. Upon observing such a difference one would like to know how large this is compared to expected statistical fluctuations. Therefore, in addition to the observed significance and limits it is useful to communicate not only their expected values but also a measure of the width of their distributions.

As the distributions of significance and limits are often well approximated by a Gaussian, one may indicate the intervals corresponding to plus-or-minus one and/or two standard deviations. If the distributions are significantly non-Gaussian, one may use instead the quantiles that give the same probability content, i.e., [$0.1587,0.8413]$ for $\pm 1 \sigma$, [$0.02275,0.97725]$ for $\pm 2 \sigma$. An upper limit found significantly below the background-only expectation may indicate a strong downward fluctuation of the data, or perhaps as well an incorrect estimate of the background rate.

The procedures described above pertain to frequentist hypothesis tests and limits. Bayesian limits, just like those found from a frequentist procedure, are functions of the data and one may therefore find, usually with approximations or Monte Carlo studies, their sampling distribution and corresponding mean (or, preferably, median) and standard deviation.

When trying to establish discovery of a signal process, the Bayesian approach may employ a Bayes factor as described in Sec. 40.3.3. In the case of the Poisson counting experiment with the likelihood from Eq. (40.81), the log of the Bayes factor that compares $\mu=1$ to $\mu=0$ is $\ln B_{10}=\ln (L(1) / L(0))=$ $n \ln (1+s / b)-s$. That is, the expectation value, assuming $\mu=1$, of $\ln B_{10}$ for this problem is

$$
\begin{equation*}
E\left[\ln B_{10} \mid \mu=1\right]=(s+b) \ln \left(1+\frac{s}{b}\right)-s \tag{40.84}
\end{equation*}
$$

Comparing this to Eq. (40.83), one finds $\operatorname{med}\left[Z_{0} \mid 1\right]=$ $\sqrt{2 E\left[\ln B_{10} \mid 1\right]}$. Thus for this particular problem the frequentist median discovery significance can be related to the corresponding Bayes factor in a simple way.

In some analyses, the goal may not be to establish discovery of a signal process but rather to measure, as accurately as possible, the signal rate. If we consider again the Poisson counting experiment described by the likelihood function of Eq. (40.81), the ML estimator $\hat{\mu}=(n-b) / s$ has a variance, assuming $\mu=1$, of

$$
\begin{equation*}
V[\hat{\mu}]=V\left[\frac{n-b}{s}\right]=\frac{1}{s^{2}} V[n]=\frac{s+b}{s^{2}} \tag{40.85}
\end{equation*}
$$

so that the standard deviation of $\hat{\mu}$ is $\sigma_{\hat{\mu}}=\sqrt{s+b} / s$. One may therefore use $s / \sqrt{s+b}$ as a figure of merit to be maximized in order to obtain the best measurement accuracy of a rate parameter. The quantity $s / \sqrt{s+b}$ is also the expected significance with which one rejects s assuming the signal is absent, and thus can be used to optimize the expected upper limit on s.

References

[1] B. Efron, Am. Stat. 40, 11 (1986).
[2] R. D. Cousins, Am. J. Phys. 63, 398 (1995).
[3] A. Stuart, J.K. Ord, and S. Arnold, Kendall's Advanced Theory of Statistics, Vol. 2A: Classical Inference and the Linear Model, 6th ed., Oxford Univ. Press (1999), and earlier editions by Kendall and Stuart. The likelihood-ratio ordering principle is described at the beginning of Ch. 23. Chapter 26 compares different schools of statistical inference.
[4] F. James, Statistical methods in experimental physics (2006), ISBN 9789812567956.
[5] L. Lyons, Statistics for Nuclear and Particle Physicists (1986), ISBN 9780521379342, URL http://www. cambridge. org/uk/catalogue/catalogue.asp?isbn=0521255406.
[6] R. J. Barlow, Nucl. Instrum. Meth. A297, 496 (1990).
[7] G. Cowan, Statistical data analysis (1998), ISBN 9780198501565.
[8] S. Baker and R. D. Cousins, Nucl. Instrum. Meth. 221, 437 (1984).
[9] S. S. Wilks, Annals Math. Statist. 9, 1, 60 (1938).
[10] O. Behnke et al., editors, Data analysis in high energy physics, Wiley-VCH, Weinheim, Germany (2013), ISBN 9783527410583, 9783527653447, 9783527653430, URL http://www.wiley-vch.de/publish/dt/books/ ISBN3-527-41058-9.
[11] A. O'Hagan and J.J. Forster, Bayesian Inference, (2nd edition, volume 2B of Kendall's Advanced Theory of Statistics, Arnold, London, 2004).
[12] D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, (Oxford University Press, 2006).
[13] P.C. Gregory, Bayesian Logical Data Analysis for the Physical Sciences, (Cambridge University Press, 2005).
[14] J.M. Bernardo and A.F.M. Smith, Bayesian Theory, (Wiley, 2000).
[15] Robert E. Kass and Larry Wasserman, J. Am. Stat. Assoc. 91, 1343 (1996).
[16] J.M. Bernardo, J. R. Statist. Soc. B41, 113 (1979); J.M. Bernardo and J.O. Berger, J. Am. Stat. Assoc. 84, 200 (1989). See also J.M. Bernardo, Reference Analysis, in Handbook of Statistics, 25 (D.K. Dey and C.R. Rao, eds.), 17-90, Elsevier (2005) and references therein.
[17] L. Demortier, S. Jain and H. B. Prosper, Phys. Rev. D82, 034002 (2010), [arXiv:1002.1111].
[18] Christopher M. Bishop, Pattern Recognition and Machine Learning, (Springer, New York, 2006).
[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, (2nd edition, Springer, New York, 2009).
[20] A. Webb, Statistical Pattern Recognition, 2nd ed., (Wiley, New York, 2002).
[21] L.I. Kuncheva, Combining Pattern Classifiers, (Wiley, New York, 2004).
[22] Links to the Proceedings of the PHYSTAT conference series (Durham 2002, Stanford 2003, Oxford 2005, and Geneva 2007, 2011) can be found at phystat.org.
[23] K. Albertsson et al. (2018), [arXiv:1807.02876].
[24] A. Hocker et al. (2007), [arXiv:physics/0703039]; Software available from tmva.sourceforge.net.
[25] F. Pedregosa et al., J. Machine Learning Res. 12, 2825 (2011), [arXiv:1201.0490].
[26] P. Baldi, P. Sadowski and D. Whiteson, Nature Commun. 5, 4308 (2014), [arXiv:1402.4735].
[27] D. Guest, K. Cranmer and D. Whiteson, Ann. Rev. Nucl. Part. Sci. 68, 161 (2018), [arXiv:1806.11484].
[28] K. Cranmer, J. Pavez and G. Louppe (2015), [arXiv:1506.02169].
[29] N. Reid, Likelihood Inference in the Presence of Nuisance Parameters, Proceedings of PHYSTAT2003, L. Lyons, R. Mount, and R. Reitmeyer, eds., eConf C030908, Stanford, 2003.
[30] W. A. Rolke, A. M. Lopez and J. Conrad, Nucl. Instrum. Meth. A551, 493 (2005), [arXiv:physics/0403059].
[31] G. Cowan et al., Eur. Phys. J. C71, 1554 (2011), [Erratum: Eur. Phys. J.C73,2501(2013)], [arXiv:1007.1727].
[32] L. Demortier, P-Values and Nuisance Parameters, Proceedings of PHYSTAT 2007, CERN-2008-001, p. 23.
[33] E. Gross and O. Vitells, Eur. Phys. J. C70, 525 (2010), [arXiv:1005.1891].
[34] R. B. Davies, Biometrika 74, 33 (1987).
[35] J. Skilling, Nested Sampling, AIP Conference Proceedings, 735, 395-405 (2004).
[36] F. Feroz, M. P. Hobson and M. Bridges, Mon. Not. Roy. Astron. Soc. 398, 1601 (2009), [arXiv:0809.3437].
[37] R. E. Kass and A. E. Raftery, J. Am. Statist. Assoc. 90, 430, 773 (1995).
[38] B. P. Roe and M. B. Woodroofe, Phys. Rev. D63, 013009 (2001), [hep-ex/0007048].
[39] J. Neyman, Phil. Trans. Roy. Soc. Lond. A236, 767, 333 (1937); Reprinted in A Selection of Early Statistical Papers on J. Neyman, (University of California Press, Berkeley, 1967).
[40] G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 3873 (1998), [arXiv:physics/9711021]; This paper does not specify what to do if the ordering principle gives equal rank to some values of x. Eq. 21.6 of Ref. [3] gives the rule: all such points are included in the acceptance region (the domain $D(\alpha)$)/ Some authors have assumed the contrary, and shown that one can then jbtain null intervals.
[41] K. Cranmer, in "Statistical Problems in Particle Physics, Astrophysics and Cosmology (PHYSTAT 05): Proceedings, Oxford, UK, September 12-15, 2005," 112-123 (2005), [arXiv:physics/0511028], URL http://www.physics.ox.ac.uk/phystat05/proceedings/ files//Cranmer_LHCStatisticalChallenges.ps.
[42] A. L. Read, in "Workshop on confidence limits, CERN, Geneva, Switzerland, 17-18 Jan 2000: Proceedings," 81-101 (2000), URL http://weblib.cern.ch/abstract? CERN-OPEN-2000-205.
[43] T. Junk, Nucl. Instrum. Meth. A434, 435 (1999), [hepex/9902006].

41. Monte Carlo Techniques

Revised August 2019 by G. Cowan (RHUL).
Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions. Here we describe an assortment of methods for sampling some commonly occurring probability density functions.

41.1 Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a "random number generator," which generates uniform statistically independent values on the half open interval $[0,1)$; for reviews see, e.g., Refs. [1, 2].

Uniform random number generators are available in software libraries such as CLHEP [3], and ROOT [4]. For example, in addition to a basic congruential generator TRandom (see below), ROOT provides three more sophisticated routines: TRandom1 implements the RANLUX generator [5] based on the method by Lüscher, and allows the user to select different quality levels, trading off quality with speed; TRandom2 is based on the maximally equidistributed combined Tausworthe generator by L'Ecuyer [6]; the TRandom3 generator implements the Mersenne twister algorithm of Matsumoto and Nishimura [7]. All of the algorithms produce a periodic sequence of numbers, and to obtain effectively random values, one must not use more than a small subset of a single period. The Mersenne twister algorithm has an extremely long period of $2^{19937}-1$.

The performance of the generators can be investigated with tests such as DIEHARD [8] or TestU01 [9]. Many commonly available congruential generators fail these tests and often have sequences (typically with periods less than 2^{32}), which can be easily exhausted on modern computers. A short period is a problem for the TRandom generator in ROOT, which, however, has the advantage that its state is stored in a single 32 -bit word. The generators TRandom1, TRandom2, or TRandom3 have much longer periods, with TRandom3 being recommended by the ROOT authors as providing the best combination of speed and good random properties. For further information see, e.g., Ref. [10]

41.2 Inverse transform method

If the desired probability density function is $f(x)$ on the range $-\infty<x<\infty$, its cumulative distribution function (expressing the probability that $x \leq a$) is given by Eq. (39.6). If a is chosen with probability density $f(a)$, then the integrated probability up to point $a, F(a)$, is itself a random variable which will occur with uniform probability density on $[0,1]$. Suppose u is generated according to a uniformly distributed in $(0,1)$. If x can take on any value, and ignoring the endpoints, we can then find a unique x chosen from the p.d.f. $f(x)$ for a given u if we set

$$
\begin{equation*}
u=F(x) \tag{41.1}
\end{equation*}
$$

provided we can find an inverse of F, defined by

$$
\begin{equation*}
x=F^{-1}(u) . \tag{41.2}
\end{equation*}
$$

This method is shown in Fig. 41.1a. It is most convenient when one can calculate by hand the inverse function of the indefinite integral of f. This is the case for some common functions $f(x)$ such as $\exp (x),(1-x)^{n}$, and $1 /\left(1+x^{2}\right)$ (Cauchy or Breit-Wigner), although it does not necessarily produce the fastest generator. Standard libraries contain software to implement this method numerically, working from functions or histograms in one or more dimensions, e.g., the UNU.RAN package [11], available in ROOT. For a discrete distribution, $F(x)$ will have a discontinuous jump of size $f\left(x_{k}\right)$ at each allowed $x_{k}, k=1,2, \cdots$. Choose u from a uniform distribution on $(0,1)$ as before. Find x_{k} such that

$$
\begin{equation*}
F\left(x_{k-1}\right)<u \leq F\left(x_{k}\right) \equiv \operatorname{Prob}\left(x \leq x_{k}\right)=\sum_{i=1}^{k} f\left(x_{i}\right) \tag{41.3}
\end{equation*}
$$

then x_{k} is the value we seek (note: $F\left(x_{0}\right) \equiv 0$). This algorithm is illustrated in Fig. 41.1b.

Figure 41.1: Use of a random number u chosen from a uniform distribution $(0,1)$ to find a random number x from a distribution with cumulative distribution function $F(x)$.

41.3 Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for $F(x)$ is unknown or too complex to work with, so that obtaining an inverse as in Eq. (41.2) is impractical. We suppose that for any given value of x, the probability density function $f(x)$ can be computed, and further that enough is known about $f(x)$ that we can enclose it entirely inside a shape which is C times an easily generated distribution $h(x)$, as illustrated in Fig. 41.2. That is, $C h(x) \geq f(x)$ must hold for all x. Frequently $h(x)$ is uniform or is a normalized

Figure 41.2: Illustration of the acceptance-rejection method. Random points are chosen inside the upper bounding figure, and rejected if the ordinate exceeds $f(x)$. The lower figure illustrates a method to increase the efficiency (see text).
sum of uniform distributions. Note that both $f(x)$ and $h(x)$ must be normalized to unit area, and therefore, the proportionality constant $C>1$. To generate $f(x)$, first generate a candidate x according to $h(x)$. Calculate $f(x)$ and the height of the envelope $C h(x)$; generate u and test if $u C h(x) \leq f(x)$. If so, accept x; if not reject x and try again. If we regard x and $u C h(x)$ as the abscissa and ordinate of a point in a two-dimensional plot, these points will populate the entire area $C h(x)$ in a smooth manner; then we accept those which fall under $f(x)$. The efficiency is the ratio of areas, which must equal $1 / C$; therefore we must keep C as close as possible to 1.0. Therefore, we try to choose $C h(x)$ to be as close to $f(x)$ as convenience dictates, as in the lower part of Fig. 41.2.

41.4 Algorithms

Algorithms for generating random numbers belonging to many different distributions are given for example by Press [12], Ahrens and Dieter [13], Rubinstein [14], Devroye [15], Walck [16] and Gentle [17]. For many distributions, alternative algorithms exist, varying in complexity, speed, and accuracy. For time-critical applications, these algorithms may be coded in-line to remove the significant overhead often encountered in making function calls.

In the examples given below, we use the notation for the variables and parameters given in Table 39.1. Variables named " u " are assumed to be independent and uniform on $[0,1)$. Denominators must be verified to be non-zero where relevant.

41.4.1 Exponential decay

This is a common application of the inverse transform method, and uses the fact that if u is uniformly distributed in $[0,1]$, then $(1-u)$ is as well. Consider an exponential p.d.f. $f(t)=$ $(1 / \tau) \exp (-t / \tau)$ that is truncated so as to lie between two values, a and b, and renormalized to unit area. To generate decay times t according to this p.d.f., first let $\alpha=\exp (-a / \tau)$ and $\beta=\exp (-b / \tau)$; then generate u and let

$$
\begin{equation*}
t=-\tau \ln (\beta+u(\alpha-\beta)) \tag{41.4}
\end{equation*}
$$

For $(a, b)=(0, \infty)$, we have simply $t=-\tau \ln u$. (See also Sec. 41.4.6.)

41.4.2 Isotropic direction in $3 D$

Isotropy means the density is proportional to solid angle, the differential element of which is $d \Omega=d(\cos \theta) d \phi$. Hence $\cos \theta$ is uniform $\left(2 u_{1}-1\right)$ and ϕ is uniform $\left(2 \pi u_{2}\right)$. For alternative generation of $\sin \phi$ and $\cos \phi$, see the next subsection.

41.4.3 Sine and cosine of random angle in $2 D$

Generate u_{1} and u_{2}. Then $v_{1}=2 u_{1}-1$ is uniform on $(-1,1)$, and $v_{2}=u_{2}$ is uniform on $(0,1)$. Calculate $r^{2}=v_{1}^{2}+v_{2}^{2}$. If $r^{2}>1$, start over. Otherwise, the sine (S) and cosine (C) of a random angle (i.e., uniformly distributed between zero and 2π) are given by

$$
\begin{equation*}
S=2 v_{1} v_{2} / r^{2} \quad \text { and } \quad C=\left(v_{1}^{2}-v_{2}^{2}\right) / r^{2} \tag{41.5}
\end{equation*}
$$

41.4.4 Gaussian distribution

If u_{1} and u_{2} are uniform on $(0,1)$, then

$$
\begin{equation*}
z_{1}=\sin \left(2 \pi u_{1}\right) \sqrt{-2 \ln u_{2}} \quad \text { and } \quad z_{2}=\cos \left(2 \pi u_{1}\right) \sqrt{-2 \ln u_{2}} \tag{41.6}
\end{equation*}
$$

are independent and Gaussian distributed with mean 0 and $\sigma=1$.
There are many variants of this basic algorithm, which may be faster. For example, construct $v_{1}=2 u_{1}-1$ and $v_{2}=2 u_{2}-1$, which are uniform on $(-1,1)$. Calculate $r^{2}=v_{1}^{2}+v_{2}^{2}$, and if $r^{2}>1$ start over. If $r^{2}<1$, it is uniform on $(0,1)$. Then

$$
\begin{equation*}
z_{1}=v_{1} \sqrt{\frac{-2 \ln r^{2}}{r^{2}}} \quad \text { and } \quad z_{2}=v_{2} \sqrt{\frac{-2 \ln r^{2}}{r^{2}}} \tag{41.7}
\end{equation*}
$$

are independent numbers chosen from a normal distribution with mean 0 and variance 1. $z_{i}^{\prime}=\mu+\sigma z_{i}$ distributes with mean μ and variance σ^{2}.

For a multivariate Gaussian with an $n \times n$ covariance matrix V, one can start by generating n independent Gaussian variables, $\left\{\eta_{j}\right\}$, with mean 0 and variance 1 as above. Then the new set $\left\{x_{i}\right\}$ is obtained as $x_{i}=\mu_{i}+\sum_{j} L_{i j} \eta_{j}$, where μ_{i} is the mean of x_{i}, and $L_{i j}$ are the components of L, the unique lower triangular matrix that fulfils $V=L L^{T}$. The matrix L can be easily computed by the following recursive relation (Cholesky's method):

$$
\begin{align*}
L_{j j} & =\left(V_{j j}-\sum_{k=1}^{j-1} L_{j k}^{2}\right)^{1 / 2} \tag{41.8a}\\
L_{i j} & =\frac{V_{i j}-\sum_{k=1}^{j-1} L_{i k} L_{j k}}{L_{j j}}, j=1, \ldots, n ; i=j+1, \ldots, n \tag{41.8b}
\end{align*}
$$

where $V_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$ are the components of V. For $n=2$ one has

$$
L=\left(\begin{array}{cc}
\sigma_{1} & 0 \tag{41.9}\\
\rho \sigma_{2} & \sqrt{1-\rho^{2}} \sigma_{2}
\end{array}\right)
$$

and therefore the correlated Gaussian variables are generated as $x_{1}=\mu_{1}+\sigma_{1} \eta_{1}, x_{2}=\mu_{2}+\rho \sigma_{2} \eta_{1}+\sqrt{1-\rho^{2}} \sigma_{2} \eta_{2}$.
41.4.5 $\chi^{2}(n)$ distribution

To generate a variable following the χ^{2} distribution for n degrees of freedom, use the Gamma distribution with $k=n / 2$ and $\lambda=1 / 2$ using the method of Sec. 41.4.6.

41.4.6 Gamma distribution

All of the following algorithms are given for $\lambda=1$. For $\lambda \neq 1$, divide the resulting random number x by λ.

- If $k=1$ (the exponential distribution), accept $x=-\ln u$. (See also Sec. 41.4.1.)
- If $0<k<1$, initialize with $v_{1}=(e+k) / e$ (with $e=2.71828 \ldots$ being the natural log base). Generate u_{1}, u_{2}. Define $v_{2}=$ $v_{1} u_{1}$.

Case 1: $v_{2} \leq 1$. Define $x=v_{2}^{1 / k}$. If $u_{2} \leq e^{-x}$, accept x and stop, else restart by generating new u_{1}, u_{2}.
Case 2: $v_{2}>1$. Define $x=-\ln \left(\left[v_{1}-v_{2}\right] / k\right)$. If $u_{2} \leq x^{k-1}$, accept x and stop, else restart by generating new u_{1}, u_{2}. Note that, for $k<1$, the probability density has a pole at $x=0$, so that return values of zero due to underflow must be accepted or otherwise dealt with.

- Otherwise, if $k>1$, initialize with $c=3 k-0.75$. Generate u_{1} and compute $v_{1}=u_{1}\left(1-u_{1}\right)$ and $v_{2}=\left(u_{1}-0.5\right) \sqrt{c / v_{1}}$. If $x=k+v_{2}-1 \leq 0$, go back and generate new u_{1}; otherwise generate u_{2} and compute $v_{3}=64 v_{1}^{3} u_{2}^{2}$. If $v_{3} \leq 1-2 v_{2}^{2} / x$ or if $\ln v_{3} \leq 2\left\{[k-1] \ln [x /(k-1)]-v_{2}\right\}$, accept x and stop; otherwise go back and generate new u_{1}.

41.4.7 Binomial distribution

Begin with $k=0$ and generate u uniform in $[0,1)$. Compute $P_{k}=(1-p)^{n}$ and store P_{k} into B. If $u \leq B$ accept $r_{k}=k$ and stop. Otherwise, increment k by one; compute the next P_{k} as $P_{k} \cdot(p /(1-p)) \cdot(n-k) /(k+1)$; add this to B. Again, if $u \leq B$, accept $r_{k}=k$ and stop, otherwise iterate until a value is accepted. If $p>1 / 2$, it will be more efficient to generate r from $f(r ; n, q)$, i.e., with p and q interchanged, and then set $r_{k}=n-r$.

41.4.8 Poisson distribution

Iterate until a successful choice is made: Begin with $k=1$ and set $A=1$ to start. Generate u. Replace A with $u A$; if now $A<\exp (-\mu)$, where μ is the Poisson parameter, accept $n_{k}=k-1$ and stop. Otherwise increment k by 1, generate a new u and repeat, always starting with the value of A left from the previous try.

Note that the Poisson generator used in ROOT's TRandom classes before version 5.12 (including the derived classes TRandom1, TRandom2, TRandom3) uses a Gaussian approximation when μ exceeds a given threshold. This may be satisfactory (and much faster) for some applications. To do this, generate z from a Gaussian with zero mean and unit standard deviation; then use $x=\max (0,[\mu+z \sqrt{\mu}+0.5])$ where [] signifies the greatest integer \leq the expression. The routines from Numerical Recipes [12] and CLHEP's routine RandPoisson do not make this approximation (see, e.g., Ref. [10]).

41.4.9 Student's t distribution

Generate u_{1} and u_{2} uniform in $(0,1)$; then $t=$ $\sin \left(2 \pi u_{1}\right)\left[n\left(u_{2}^{-2 / n}-1\right)\right]^{1 / 2}$ follows the Student's t distribution for $n>0$ degrees of freedom (n not necessarily an integer).

Alternatively, generate x from a Gaussian with mean 0 and $\sigma^{2}=1$ according to the method of 41.4.4. Next generate y,
an independent gamma random variate, according to 41.4 .6 with $\lambda=1 / 2$ and $k=n / 2$. Then $z=x / \sqrt{y / n}$ is distributed as a t with n degrees of freedom.

For the special case $n=1$, the Breit-Wigner distribution, generate u_{1} and u_{2}; set $v_{1}=2 u_{1}-1$ and $v_{2}=2 u_{2}-1$. If $v_{1}^{2}+v_{2}^{2} \leq 1$ accept $z=v_{1} / v_{2}$ as a Breit-Wigner distribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. For center M_{0} and FWHM Γ, use $W=z \Gamma / 2+M_{0}$.

41.4.10 Beta distribution

The choice of an appropriate algorithm for generation of beta distributed random numbers depends on the values of the parameters α and β. For, e.g., $\alpha=1$, one can use the transformation method to find $x=1-u^{1 / \beta}$, and similarly if $\beta=1$ one has $x=u^{1 / \alpha}$. For more general cases see, e.g., Refs. $[16,17]$ and references therein.

41.5 Markov Chain Monte Carlo

In applications involving generation of random numbers following a multivariate distribution with a high number of dimensions, the transformation method may not be possible and the acceptance-rejection technique may have too low of an efficiency to be practical. If it is not required to have independent random values, but only that they follow a certain distribution, then Markov Chain Monte Carlo (MCMC) methods can be used. In depth treatments of MCMC can be found, e.g., in the texts by Robert and Casella [18], Liu [19], and the review by Neal [20]. HEP-oriented software for MCMC is available from the Bayesian Analysis Toolkit (BAT) [21].

MCMC is particularly useful in connection with Bayesian statistics, where a p.d.f. $p(\boldsymbol{\theta})$ for an n-dimensional vector of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ is obtained, and one needs the marginal distribution of a subset of the components. Here one samples $\boldsymbol{\theta}$ from $p(\boldsymbol{\theta})$ and simply records the marginal distribution for the components of interest.

A simple and broadly applicable MCMC method is the Metropolis-Hastings algorithm, which allows one to generate multidimensional points $\boldsymbol{\theta}$ distributed according to a target p.d.f. that is proportional to a given function $p(\boldsymbol{\theta})$. It is not necessary to have $p(\boldsymbol{\theta})$ normalized to unit area, which is useful in Bayesian statistics, as posterior probability densities are often determined only up to an unknown normalization constant.

To generate points that follow $p(\boldsymbol{\theta})$, one first needs a proposal p.d.f. $q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}_{0}\right)$, which can be (almost) any p.d.f. from which independent random values $\boldsymbol{\theta}$ can be generated, and which contains as a parameter another point in the same space $\boldsymbol{\theta}_{0}$. For example, a multivariate Gaussian centered about $\boldsymbol{\theta}_{0}$ can be used. Beginning at an arbitrary starting point $\boldsymbol{\theta}_{0}$, the Hastings algorithm iterates the following steps:

1. Generate a value $\boldsymbol{\theta}$ using the proposal density $q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}_{0}\right)$;
2. Form the Hastings test ratio, $\alpha=\min \left[1, \frac{p(\boldsymbol{\theta}) q\left(\boldsymbol{\theta}_{0} ; \boldsymbol{\theta}\right)}{p\left(\boldsymbol{\theta}_{0}\right) q\left(\boldsymbol{\theta} ; \boldsymbol{\theta}_{0}\right)}\right]$;
3. Generate a value u uniformly distributed in $[0,1]$;
4. If $u \leq \alpha$, take $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}$. Otherwise, repeat the old point, i.e., $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{0}$.
5. Set $\boldsymbol{\theta}_{0}=\boldsymbol{\theta}_{1}$ and return to step 1 .

If one takes the proposal density to be symmetric in $\boldsymbol{\theta}$ and $\boldsymbol{\theta}_{0}$, then this is the Metropolis-Hastings algorithm, and the test ratio becomes $\alpha=\min \left[1, p(\boldsymbol{\theta}) / p\left(\boldsymbol{\theta}_{0}\right)\right]$. That is, if the proposed $\boldsymbol{\theta}$ is at a value of probability higher than $\boldsymbol{\theta}_{0}$, the step is taken. If the proposed step is rejected, the old point is repeated.
Methods for assessing and optimizing the performance of the algorithm are discussed in, e.g., Refs. [18-20]. One can, for example, examine the autocorrelation as a function of the lag k, i.e., the correlation of a sampled point with that k steps removed. This should decrease as quickly as possible for increasing k.

Generally one chooses the proposal density so as to optimize some quality measure such as the autocorrelation. For certain problems it has been shown that one achieves optimal performance
when the acceptance fraction, that is, the fraction of points with $u \leq \alpha$, is around 40%. This can be adjusted by varying the width of the proposal density. For example, one can use for the proposal p.d.f. a multivariate Gaussian with the same covariance matrix as that of the target p.d.f., but scaled by a constant.

41.6 Generative Adversarial Networks

Recent developments in Machine Learning have led to new types of Monte Carlo methods based on generative models. The goal is to generate events each consisting of a vector of quantities \boldsymbol{x}, which could represent the set of pixels in an image or energy deposits in the cells of a calorimeter. Suppose, however, that we do not have direct access to the underlying probability density $f(\boldsymbol{x})$, but rather we only have an implicit model (e.g., a computer program able to simulate the complexities of the physical system), which can provide a set of events usable as training data. In the case of a calorimeter, for example, this could represent real events from a control measurement or simply the output from a detailed simulation.

Generative models such as such as Variational Autoencoders (VAEs) [22,23] and Generative Adversarial Networks (GANs) [24] are algorithms for generating events that mimic the training data. Recently GANs have been investigated in HEP for simulation of energy deposits in calorimeters, so far in a simplified setting. They are able to generate events that capture detailed properties of those from a detailed Monte Carlo simulation but require far less computing time (for a recent example see, e.g., Ref. [25]).
Here we sketch the main ideas behind GANs used to simulate a random vector \boldsymbol{x}. This follows some distribution $f(\boldsymbol{x})$ which itself is not known, but we have a set of instances (events) $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ as training data, here regarded as representative of the true distribution. We seek a function (the generator) $G(\boldsymbol{z})$ which takes as input a vector of random numbers \boldsymbol{z} and produces directly as output an event vector, i.e., $\boldsymbol{x}=G(\boldsymbol{z})$. The method is in this sense similar to the transformation method described in 41.2, but here both the function G and the input of random values \boldsymbol{z} are multidimensional. As a prototypical example we can take the components of \boldsymbol{z} as independent and Gaussian distributed about zero with unit variance.

The GAN makes use of two functions, the generator $G(\boldsymbol{z})$ and a discriminator $D(\boldsymbol{x})$. The generator tries to produce events \boldsymbol{x} that mimic the (real) training data and thus look as if they were sampled from the unknown distribution $f(\boldsymbol{x})$. Simultaneously, the discriminator is trained to do its best to distinguish the generated events from the real ones.

To find the function $G(\boldsymbol{z})$ that generates events that are as similar as possible to the training data, one may use a Deep Neural Network (DNN), i.e., a neural network with a sufficiently large number of hidden layers, and thus having a large set of parameters $\boldsymbol{\theta}_{g}$. This is needed so that network is capable of modelling accurately the potentially complex density $f(\boldsymbol{x})$. The input layer corresponds to the components of the random vector \boldsymbol{z} and the multidimensional output layer to \boldsymbol{x}. The goal is thus reduced to finding optimal values of the parameters $\boldsymbol{\theta}_{g}$ using the training data.

The discriminator function $D\left(\boldsymbol{x} ; \boldsymbol{\theta}_{d}\right)$ can also be a DNN containing parameters $\boldsymbol{\theta}_{d}$. It takes as input an event (an instance in \boldsymbol{x}-space) and provides a single scalar output in $[0,1]$, which should be as close as possible to zero for generated and one for real events.

The parameters of the generator and discriminator are chosen such that the function

$$
\begin{equation*}
V\left(\boldsymbol{\theta}_{g}, \boldsymbol{\theta}_{d}\right)=E_{\boldsymbol{x}}\left[\log \left(D\left(\boldsymbol{x} ; \boldsymbol{\theta}_{d}\right)\right)\right]+E_{\boldsymbol{z}}\left[\log \left(1-D\left(G\left(\boldsymbol{z} ; \boldsymbol{\theta}_{g}\right) ; \boldsymbol{\theta}_{d}\right)\right)\right] \tag{41.10}
\end{equation*}
$$

is minimized with respect to $\boldsymbol{\theta}_{g}$ and simultaneously maximized with respect to $\boldsymbol{\theta}_{\boldsymbol{d}}$. For the expectation value in the first term, \boldsymbol{x} is sampled from the (real) training data; for the second term \boldsymbol{z} follows its given distribution, e.g., a multivariate standard Gaussian. That is, the discriminator is adjusted to maximize the probability that it will correctly identify an event as real or generated, and simultaneously the generator is tuned such that it produces
events which appear as real as possible when evaluated by the discriminator.

Challenges with GANs such as difficulty training the networks are an active area of research in Machine Learning. Once an optimal set of parameters is found, the transformation $\boldsymbol{x}=G\left(\boldsymbol{z} ; \boldsymbol{\theta}_{g}\right)$ can be used to generate events in \boldsymbol{x}-space that capture detailed properties of the training data. Further information on applications, network architecture and training procedures can be found in, e.g., Ref. [25] and references therein.

References

[1] F. James, Comput. Phys. Commun. 60, 329 (1990).
[2] P. L'Ecuyer, Proc. 1997 Winter Simulation Conference, IEEE Press, Dec. 1997, 127-134.
[3] L. Lonnblad, Comput. Phys. Commun. 84, 307 (1994).
[4] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A389, 81 (1997); See also root. cern.ch.
[5] F. James, Comput. Phys. Commun. 79, 111 (1994), [Erratum: Comput. Phys. Commun.97,357(1996)]; M. Luscher, Comput. Phys. Commun. 79, 100 (1994), [hep-lat/9309020].
[6] P. L'Ecuyer, Mathematics of Computation, 65, 213 (1996) and 65, 225 (1999).
[7] M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, 3-30.
[8] Much of DIEHARD is described in: G. Marsaglia, A Current View of Random Number Generators, keynote address, Computer Science and Statistics: 16th Symposium on the Interface, Elsevier (1985).
[9] P. L'Ecuyer and R. Simard, ACM Transactions on Mathematical Software 33, 4, Article 1, December 2007.
[10] J. Heinrich, CDF Note CDF/MEMO/STATISTICS/PUBLIC /8032, 2006.
[11] UNU.RAN is described at statmath.wu.ac.at/software/ unuran; See also W. Hörmann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random Variate Generation, (Springer, New York, 2004).
[12] W.H. Press et al., Numerical Recipes, 3rd edition, (Cambridge University Press, New York, 2007).
[13] J.H. Ahrens and U. Dieter, Computing 12, 223 (1974).
[14] R.Y. Rubinstein, Simulation and the Monte Carlo Method, (John Wiley and Sons, Inc., New York, 1981).
[15] L. Devroye, Non-Uniform Random Variate Generation, (Springer-Verlag, New York, 1986); Available online at luc.devroye.org/rnbookindex.html.
[16] C. Walck, Handbook on Statistical Distributions for Experimentalists, University of Stockholm Report SUF-PFY/96-01, available from www.fysik.su.se/~walck.
[17] J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed., (Springer, New York, 2003).
[18] C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., (Springer, New York, 2004).
[19] J.S. Liu, Monte Carlo Strategies in Scientific Computing, (Springer, New York, 2001).
[20] R.M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, available from www.cs.toronto.edu/~radford/res-mcmc.html.
[21] A. Caldwell, D. Kollar, K. Kröninger, Comput. Phys. Commun. 180 (2009) pages 2197-2209.
[22] D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, Int. Conf. on Learning Representations, ICLR, 2014; E-print: arXiv:1312.6114 [stat.ML].
[23] D.J. Rezende, S. Mohamed and D. Wierstra, Stochastic Backpropagation and Approximate Inference in Deep Generative Models, Proc. 31st Int. Conf. on Machine Learning, Beijing, 2014. JMLR: W\&CP vol. 32; E-print: arXiv:1401.4082 [stat.ML].
[24] I.J. Goodfellow et al., Generative Adversarial Nets, Proceedings of Advances in Neural Information Processing Systems 27 (Z. Ghahramani et al., eds., NIPS 2014) pages 2672-2680; E-print: arXiv:1406.2661 [stat.ML].
[25] M. Paganini, L. de Oliveira and B. Nachman, Phys. Rev. Lett. 120, 4, 042003 (2018), [arXiv:1705.02355].

42. Monte Carlo Event Generators

Revised September 2017 by P. Nason (INFN, Milan) and P.Z. Skands (Monash University).

General-purpose Monte Carlo (GPMC) generators like HERWIG [1,2,3], PYTHIA [4,5], and SHERPA [6], provide detailed simulations of high-energy collisions. They play an essential role in QCD modeling (in particular for aspects beyond fixed-order perturbative QCD) and in data analysis and the planning of new experiments, where they are used together with detector simulation to estimate signals and backgrounds in high-energy processes. They are built from several components, that describe the physics starting from very short distance scales, up to the typical scale of hadron formation and decay. Since QCD is weakly interacting at short distances (below a femtometer), the components of the GPMC dealing with short-distance physics are based upon perturbation theory. At larger distances, all soft hadronic phenomena, like hadronization and the formation of the underlying event in hadron collisions, cannot be computed from first principles at present, and one must rely upon QCD-inspired models.

The purpose of this review is to illustrate the main components of these generators. It is divided into four sections. The first one deals with short-distance, perturbative phenomena. The basic concepts leading to the simulations of the dominant QCD processes are illustrated here. In the second section, the nonperturbative transition from partons to hadrons ("hadronization") is treated. The two most popular hadronization models, the string and cluster models, are illustrated. The basics of the implementation of decay chains of unstable "primary" hadrons into stable "secondaries" is also illustrated here. In the third section, models for soft hadron physics are discussed. These include models for the underlying event and for minimum-bias interactions. Issues of Bose-Einstein and color-reconnection effects are also discussed here. The fourth section briefly introduces the challenges of MC uncertainty estimates and tuning.

We use natural units throughout, such that $c=1$ and $\hbar=1$, with energy, momenta and masses measured in GeV , and time and distances measured in GeV^{-1}

42.1. Short-distance physics in GPMC generators

The short-distance components of a GPMC generator deal with the computation of the primary process at hand, with decays of short-lived particles, and with the generation of QCD and QED radiation. QCD radiation is computable in perturbation theory as long as the time scales involved are well below $1 / \Lambda$, where Λ is a typical hadronic scale of few hundred MeV . Because of the presence of logarithmic enhancements due to both collinear and soft emissions, this description involves an indefinite number of final-state particles that are emitted at time scales below $1 / \Lambda$. In $e^{+} e^{-}$annihilation into hadrons, for example, the time scale of the primary process is of the order of the inverse of the annihilation energy Q. Collinear and soft emissions take place at all time scales between $1 / Q$ and $1 / \Lambda$, Technically, the computation of the dominant collinear and soft radiation is carried out by the so called shower algorithms. Historically, such algorithms were first developed for resummation of collinear singularities, leading to the so called "Parton Shower" algorithms. We will briefly describe this approach in this section. We stress, however, that many modern generators adopt approaches that focus initially upon soft singularities, leading to the so called "Dipole Showers" discussed in Sec. 42.1.3.

Collinear singularities arise when the angle between two emitted light partons becomes small. For example, in a process in which a quark and a gluon are emitted, if the angle θ among them is very small (and is smaller than the angles among all other pairs of light partons in the process) the squared amplitude factorizes as follows

$$
\begin{equation*}
\left|M_{q g}\right|^{2} \mathrm{~d} \Phi_{q g} \approx\left|M_{q}\right|^{2} \mathrm{~d} \Phi_{q} \frac{\alpha_{s}}{2 \pi} P_{q, q g}(z) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi} \frac{\mathrm{~d} \theta^{2}}{\theta^{2}} \tag{42.1}
\end{equation*}
$$

where $M_{q g}, \mathrm{~d} \Phi_{q g}$ are the amplitude and phase space when both the gluon and the quark are emitted; $M_{q}, \mathrm{~d} \Phi_{q}$ are the amplitude and phase space when only the quark is emitted; $z=E_{q} /\left(E_{q}+E_{g}\right)$ is the fraction of energy carried by the quark; ϕ is the azimuth of the splitting plane, and $P_{q, q g}(z)=C_{F}\left(1+z^{2}\right) /(1-z)$ is the Altarelli-Parisi
splitting kernel for gluon emission from a quark line, with color factor $C_{F}=4 / 3$. The factorized form of Eq. (42.1) is due to the fact that for small angle the process is dominated by a single amplitude in which the splitting quark is almost on shell and hence propagates for long distances. We define the energy scale corresponding to the inverse of this distance as the hardness of the splitting process, so that larger hardness corresponds to shorter distance. We can define the hardness t as the product $E^{2} \theta^{2}$, or as the virtuality of the splitting parton p^{2}, or as a measure of the relative transverse momentum in the splitting such as the k_{t} of an emitted parton relative to its parent, defined by $p^{2}=2 E^{2} z(1-z)(1-\cos \theta) \approx z(1-z) E^{2} \theta^{2}, \quad k_{T}^{2}=z^{2}(1-z)^{2} E^{2} \theta^{2}$

If the region of small values of z and $1-z$ was not important, these definitions would be equivalent. In QCD we also have soft divergences, arising when soft gluons are emitted. In Eq. (42.1) they appear as $z \rightarrow 1$, because of the $1 /(1-z)$ singularity of $P_{q, q g}(z)$. Thus, we expect that the choice of the appropriate ordering variable will be relevant when dealing with soft divergences (see Sec. 42.3). The $\mathrm{d} \theta^{2} / \theta^{2}$ factor in Eq. (42.1) can be equivalently written in terms of the hardness $\mathrm{d} t / t$. After integration it gives rise to a logarithmic factor $\log \left(Q^{2} / \Lambda^{2}\right)$. We can have many subsequent splittings, that we can describe by applying Eq. (42.1) recursively, as long as the splittings are strongly ordered in decreasing hardness. This means that, from a typical final-state configuration, by clustering together final-state parton pairs with the smallest hardness recursively, we can reconstruct a branching tree, that may be viewed as the splitting history of the event. We stress that all hardness values between the hardness of the primary process and the cutoff scale Λ are equally involved here. The collinear approximation is applied recursively to splitting processes that have much smaller hardness with respect to all previous ones.

By integrating over the phase space, a process with n collinear splittings will be of order $\left(\alpha_{S}\left(Q^{2}\right) \log \left(Q^{2} / \Lambda^{2}\right)\right)^{n}$ with respect to the primary process. Since $\alpha_{S}\left(Q^{2}\right) \propto 1 / \log \left(Q^{2} / \Lambda^{2}\right)[7]$, these corrections are not small. The so-called KLN theorem [8,9] guarantees that large logarithmic enhancements arising from final-state collinear splitting cancel against the virtual corrections in inclusive cross sections, order by order in perturbation theory. Furthermore, the factorization theorem guarantees that initial-state collinear singularities can be factorized into the parton density functions (PDFs) [7]. Therefore, the cross section for the basic process remains accurate up to corrections of higher orders in $\alpha_{\mathrm{S}}(Q)$, provided it is interpreted as an inclusive cross section, rather than as a bare partonic cross section. For example, the leading order (LO) cross section for $e^{+} e^{-} \rightarrow q \bar{q}$ is a good LO estimate of the $e^{+} e^{-}$cross section for the production of a pair of quarks accompanied by an arbitrary number of collinear and soft gluons, but is not a good estimate of the cross section for the production of a $q \bar{q}$ pair with no extra radiation. In summary, perturbation theory at fixed order can yield increasingly accurate predictions for inclusive observables, but cannot be used to describe the indefinite sequence of collinear and soft radiations that accompany the hard partons.

Parton-Shower algorithms are used to compute the cross section for generic hard processes including all dominant collinear radiation. These algorithms begin with the generation of the kinematics of the basic process, performed with a probability proportional to its LO partonic cross section. This is interpreted physically as the inclusive cross section for the basic process, followed by an arbitrary sequence of shower splittings. The algorithm then assigns a probability to each splitting sequence, so that the initial LO cross section is partitioned into the cross sections for a multitude of final states of arbitrary multiplicity, with their sum equal to the cross section of the primary process. This property of the GPMCs reflects the KLN cancellation mentioned earlier, and it is often called "unitarity of the shower process", a name that reminds us that the KLN cancellation itself is a consequence of unitarity. The fact that a quantum mechanical process can be described in terms of composition of probabilities, rather than amplitudes, follows from the collinear approximation. In fact, because of strong ordering, a radiated parton cannot be collinear to more than one parton in the amplitude, and this suppresses interference effects.

We now illustrate the basic parton-shower algorithm, as first introduced in Ref. 11. (For more pedagogical introductions see Ref. 18
and references therein.) For simplicity, we consider the example of $e^{+} e^{-}$annihilation into $q \bar{q}$ pairs, where we only have to deal with final state radiation (FSR). We consider all final states that can be built by dressing the q and \bar{q} partons with an indefinite number of splitting processes. By recursively clustering together final state parton pairs with the smallest relative hardness, from each final state configuration we can construct two trees rooted at the q and \bar{q} partons The momenta of all intermediate lines of the tree diagrams are then uniquely determined from the final-state momenta. Hardnesses in the trees are ordered. One assigns to each splitting vertex the hardness t, the energy fractions z and $1-z$ of the two generated partons, and the azimuth ϕ of the splitting process with respect to the momentum of the incoming parton. For definiteness, we assume that z and ϕ are defined in the center-of-mass (CM) frame of the $e^{+} e^{-}$collision. The differential cross section for a given final state is given by the product of the differential cross section for the initial $e^{+} e^{-} \rightarrow q \bar{q}$ process, multiplied by a factor

$$
\begin{equation*}
\Delta_{i}\left(t_{m}, t_{n}\right) \frac{\alpha_{\mathrm{S}}(t)}{2 \pi} P_{i, j k}(z) \frac{d t_{m}}{t_{m}} d z \frac{d \phi}{2 \pi} \tag{42.3}
\end{equation*}
$$

for each intermediate line arising from the $n^{\text {th }}$ and ending in the $m^{\text {th }}$ splitting vertex. $\Delta\left(t_{m}, t_{n}\right)$ is the so-called Sudakov form factor

$$
\begin{equation*}
\Delta_{i}\left(t_{m}, t_{n}\right)=\exp \left[-\int_{t_{m}}^{t_{n}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}\left(q^{2}\right)}{2 \pi} \sum_{j k} P_{i, j k}(z) d z \frac{d \phi}{2 \pi}\right] . \tag{42.4}
\end{equation*}
$$

The suffixes i and $j k$ represent the parton species of the incoming and final partons, respectively, and $P_{i, j k}(z)$ are the Altarelli-Parisi [12] splitting kernels. Notice that the endpoints on the z integration depend upon the definition of hardness. For example, in case of virtuality or transverse momentum ordering, the z integration is automatically cut-off near the extremes, see eq. (1.2). When this is not the case (as, for example, for angular ordering) an explicit cut-off on z must be introduced, corresponding to the requirement that an emission must have some mininum energy to be distinguishable from no emission. For lines originating at the primary vertex, the scale t_{n} is replaced by the typical scale of the primary process and for lines ending without any further splitting the scale t_{m} is replaced by t_{0}, an infrared cutoff defined by the shower hadronization scale (at which the charges are screened by hadronization) or, for an unstable particle, its width (a source cannot emit radiation with a period exceeding its lifetime).

Eq. (42.3) can be obtained by iterating formula Eq. (42.1) recursively, with two important corrections: a) the strong coupling is evaluated at a scale corresponding to the hardness of the splitting process; b) the presence of the Sudakov form factor. Both these modifications arise from the inclusion of all collinear-dominant virtual corrections.

Notice that the Sudakov form factor for a small hardness interval $\Delta_{i}(t, t+\delta t)$ is equal to one minus the integrated emission probability of Eq. (42.3), i.e. it can be interpreted as the probability of no emission in the interval $t, t+\delta t$. From this, it immediately follows that $\Delta_{i}\left(t_{m}, t_{n}\right)$ can be interpreted as the no-emission probability in the full t_{m}, t_{n} interval. This interpretation allows to formulate the shower process as a probabilistic algorithm. We first notice that $0<\Delta_{i}\left(t_{m}, t_{n}\right) \leq 1$, where the upper extreme is reached for $t_{m}=t_{n}$, and the lower extreme is approached for $t_{m}=t_{0}$. Starting from each of the partons in the primary process (e.g., $\left.e^{+} e^{-} \rightarrow q \bar{q}\right)$, event generation then proceeds recursively as follows. Given a parton exiting a vertex with hardness t_{n}, (taken to be of order the annihilation scale Q^{2} for the first branching) one seeks a solution of the equation $r=\Delta_{i}\left(t_{m}, t_{n}\right)$, with $r \in[0,1]$ a uniform random number, and solves it for the hardness of the next branching t_{m}. If $t_{m} \leq t_{0}$, no splitting is generated and the line is interpreted as a final parton. If $t_{m}>t_{0}$, a branching is generated at the scale t_{m}. Its z value and the final parton species $j k$ are generated with a probability proportional to $P_{i, j k}(z)$. The azimuth is generated uniformly, neglecting angular correlations (see Sec. 42.1.1). This procedure is started with each of the primary process partons, and is applied recursively to all generated partons. It
may generate an arbitrary number of partons, and it stops when no final-state partons undergo further splitting.

The four-momenta of the final-state partons are reconstructed from the momenta of the initial ones, and from the whole sequence of splitting variables, subject to overall momentum conservation. Different algorithms employ different strategies to treat recoil effects due to momentum conservation, which may be applied either locally for each splitting, or globally for the entire set of partons (a procedure called momentum reshuffing.) This has a subleading effect with respect to the collinear approximation.

We emphasize that the shower cross sections described above can be derived from perturbative QCD by keeping only the collineardominant real and virtual contributions to the cross section. As such it is unpredictive for large-angle radiation. It is thus unsafe to rely upon Parton Shower Monte Carlo alone to compute backgrounds to new physics signals that are characterized by several widely separated jets.

A Shower Monte Carlo builds its final state as if it developed from an iterative process, often with each intermediate stage made available to the user. It should be remarked that the meaning of these intermediate stages is only relevant within the approximation adopted by the generator, and could also differ in different implementations.

42.1.1. Angular correlations :

In gluon-splitting processes $(g \rightarrow q \bar{q}, g \rightarrow g g)$ in the collinear approximation, the distribution of the split pair is not uniform in azimuth, and the Altarelli-Parisi splitting functions are recovered only after azimuthal averaging. This dependence is due to the interference of positive and negative helicity states for the gluon that undergoes splitting. Spin correlations propagate through the splitting process, and determine acausal correlations of the EPR kind [13]. A method to partially account for these effects was introduced in Ref. 14, in which the azimuthal correlation between two successive splittings is computed by averaging over polarizations. This can then be applied at each branching step. Acausal correlations are argued to be small, and are discarded with this method, that is still used in PYTHIA [4]. A method that fully includes spin correlation effects was later proposed [15], and has been implemented in HERWIG $[16,3]$.

42.1.2. Initial-state radiation:

Initial-state radiation (ISR) arises because incoming particles may undergo collinear radiation before entering the hard-scattering process. In doing so, they acquire a non-vanishing transverse momentum, and their virtuality becomes negative (spacelike). It turns out to be convenient to develop the ISR shower starting with the highest hardness (i.e. with the hard process) and ending with the smallest (i.e. with the incoming parton in the hadron). Unlike the case of FSR, however, hardness ordering is opposite to time ordering in the ISR case. A corresponding backwards-evolution algorithm was formulated by Sjöstrand [17], and was basically adopted in all shower models. It can be illustrated by considering a primary interaction initiated by a quark where no collinear emission of hardness $\geq t$ have taken place, and the same process where the quark also emits a collinear gluon of hardness t. The respective cross sections are proportional to

$$
\begin{equation*}
\left|M_{q}(x)\right|^{2} \mathrm{~d} x f_{q}(x, t), \text { and }\left|M_{q}(x)\right|^{2} \mathrm{~d} x \frac{\alpha_{s}(t)}{2 \pi} f_{q}(x / z, t) P_{q, q g}(z) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi} \frac{\mathrm{~d} t}{t} \tag{42.5}
\end{equation*}
$$

Here f_{q} is the quark PDF in the incoming hadron, x is the fraction of momentum of the incoming quark that enters the basic process, while x / z is the fraction of momentum of the incoming quark before it emits the collinear gluon. The elementary emission probability is the ratio of the second over the first expression in Eq. (42.5). In analogy with the final state radiation case, this ratio will appear in the exponent of the Sudakov form factor, that (after the inclusion of all splitting subprocesses) is given by

$$
\begin{equation*}
\Delta_{i}^{\mathrm{ISR}}\left(t, t^{\prime}\right)=\exp \left[-\int_{t^{\prime}}^{t} \frac{d t^{\prime \prime}}{t^{\prime \prime}} \frac{\alpha_{\mathrm{S}}\left(t^{\prime \prime}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z} \sum_{j k} P_{j, i k}(z) \frac{f_{j}\left(t^{\prime \prime}, x / z\right)}{f_{i}\left(t^{\prime \prime}, x\right)}\right] \tag{42.6}
\end{equation*}
$$

Notice that there are two uses of the PDFs: they are used to compute the cross section for the basic hard process, and they control

ISR via backward evolution. Since the evolution is generated with leading-logarithmic accuracy, it is acceptable to use two different PDF sets for these two tasks, provided they agree at the LO level.

In the context of GPMC evolution, each ISR emission generates a finite amount of transverse momentum. Details on how the recoils generated by these transverse "kicks" are distributed among other partons in the event, in particular the ones involved in the hard process, constitute one of the main areas of difference between existing algorithms, see Ref. 18. An additional $\mathcal{O}(1 \mathrm{GeV})$ of "primordial k_{T} " is typically added, to represent the sum of unresolved and/or non-perturbative motion below the shower cutoff scale.

42.1.3. Soft emissions and $Q C D$ coherence

Soft singularities arise in QCD due to the real or virtual emission of soft gluons. For example, the cross section for the emission of a soft gluon in $e^{+} e^{-}$annihilation into hadrons is given by

$$
\begin{align*}
\mathrm{d} \sigma_{q \bar{q} g} \approx & \mathrm{~d} \sigma_{q \bar{q}} \frac{4}{3}\left(4 \pi \alpha_{s}\right)\left[\frac{2 p_{q} \cdot p_{\bar{q}}}{p_{q} \cdot l p_{\bar{q}} \cdot l}\right] \frac{\mathrm{d}^{3} l}{2 l^{0}(2 \pi)^{3}} \\
& =\mathrm{d} \sigma_{q \bar{q}} \frac{\alpha_{s}}{2 \pi} \frac{4}{3} \frac{\mathrm{~d} l^{0}}{l^{0}} \frac{\mathrm{~d} \phi}{2 \pi} \frac{\mathrm{~d} \cos \theta}{1-\cos ^{2} \theta}, \tag{42.7}
\end{align*}
$$

where $p_{q}, p_{\bar{q}}$ and l are the quark, antiquark and gluon momentum, and θ and ϕ are the polar and azimuthal angle of the gluon momentum with respect to the quark direction. Since the gluon is soft, we may assume that p_{q} and $p_{\bar{q}}$ are unaffected by the gluon emission. The soft singularity is manifest in the $\mathrm{d} l^{0} / l^{0}$ factor. Notice that also collinear singularities are present at the same time when $\theta \rightarrow 0$ and $\theta \rightarrow \pi$, corresponding to the gluon becoming collinear to either the quark or the antiquark. It is easy to check that in the collinear limits Eq. (42.7) becomes equivalent to Eq. (42.1) with $P_{q, q g}(z)=(4 / 3) 2 /(1-z)$, i.e. the limiting form of $P_{q, q g}(z)$ when z approaches 1 . Thus, soft singularities coexist with collinear ones, so that two potentially large logarithms can arise simultaneously due to gluon emission.

Unlike the case of collinear emission, soft emission is not tied to a single emitting particle. The amplitude for the emission of a soft gluon from an external (incoming or outgoing) line with momentum p is proportional to $p \cdot \epsilon / p \cdot l$. When squaring the amplitude, products like the one appearing in the square bracket of Eq. (42.1) arise for all pairs of external particles, with the product of a single emission amplitude with itself appearing only if $p^{2}>0$, i.e. for massive coloured particles. Thus interference plays here a crucial role. This is unlike the case of collinear singularities, where because of strong ordering a radiated parton cannot be collinear to more than one other parton.

It was shown in a set of publications (see Ref. 19) that, within the conventional parton-shower formalism based on collinear factorization, the region of collinear and soft emissions can be correctly described by using the angle of the emissions as the ordering variable, rather than the virtuality, and by setting the argument of α_{S} at the splitting vertex equal to the relative parton transverse momentum after the splitting. Physically, the ordering in angle approximates the coherent interference arising from large-angle soft emission from a bunch of collinear partons. Without this effect, the particle multiplicity would grow too rapidly with energy, in conflict with $e^{+} e^{-}$data. For this reason, angular ordering is used as the default evolution variable in all versions of HERWIG (see Ref. 20). To partially account for soft interference effects, an angular veto is imposed on the virtuality-ordered evolution in PYTHIA 6 [21].

A radical alternative formulation of QCD cascades first proposed in Ref. 22 focuses upon soft emission, rather than collinear emission, as the basic splitting mechanism. It then becomes natural to consider a branching process where it is a parton pair (i.e. a dipole) rather than a single parton, that emits a soft parton. Adding a suitable correction for non-soft, collinear partons, one can simultaneously achieve the correct logarithmic structure for both the collinear and soft emissions in the so called leading color approximation, i.e. when terms suppressed by a power of the number of colors are neglected. The ARIADNE [23] and VINCIA [25] programs are based on this approach. Dipole-type showers [26] are also used by default in SHERPA [27] and exist as an option in HERWIG [28]. An alternative dipole-based model is available in PYTHIA and SHERPA via the DIRE [29]
plugin. The p_{\perp}-ordered showers in PYTHIA 6 and 8 represent a hybrid, combining collinear splitting kernels with dipole kinematics [30].

42.1.4. Resummation :

It is notoriously difficult to assess the accuracy of shower Monte Carlos in comparison with QCD resummation calculations [7]. The latter start from the definition of a specific infrared-safe observable, which develops towers of large logarithms in certain regions of phase space. A dedicated resummation calculation must in general be performed for each new observable. The predictions of shower MCs, on the other hand, are cast in terms of complete sets of final-state momenta, on which one can evaluate any observable; i.e., the shower algorithm itself is normally independent of the specific observable(s) under study.

Generally, shower MCs perform much better than strict LL resummations; this is related to their inclusion of several universal but formally subleading aspects. But there are no guarantees. A shower MC may do well for some specific observables, and not for others. At present, it is difficult to make more precise and general statements than that. Instead, it is common to specify what kind of corrections are included. Typically, collinear emissions are accounted for, although not always including angular correlations. Soft emissions are dealt with to some extent via angular ordering or dipole approaches. The most important and ubiquitous aspects beyond the strict LL approximation are momentum conservation and optimised scale choices. The former is obviously physical, hence including it should yield better results than not doing so (indeed, momentum conservation does become an aspect of QCD resummation calculations beyond LL), although the precise way of how the resulting recoil effects are handled in the shower is ambiguous. The latter can be tied, e.g., to reaching NLL accuracy for soft emissions for observables such as the transverse momentum of Drell-Yan pairs [101].

42.1.5. Massive quarks :

Quark masses act as a cut-off on collinear singularities. If the mass of a quark is below, or of the order of Λ, its effect in the shower is small. For larger quark masses, like in c, b, or t production, it is the mass, rather than the typical hadronic scale, that cuts off collinear radiation. For a quark with energy E and mass m_{Q}, the divergent behavior $d \theta / \theta$ of the collinear splitting process is regulated for $\theta \leq \theta_{0}=m_{Q} / E$. We thus expect less collinear activity for heavy quarks than for light ones, which in turn is the reason why heavy quarks carry a larger fraction of the momentum acquired in the hard production process.

This feature can be implemented with different levels of sophistication. Using the fact that soft emission exhibits a zero at zero emission angle, older parton shower algorithms simply limited the shower emission to be not smaller than the angle θ_{0}. More modern approaches are used in both PYTHIA, where mass effects are included using a kind of matrix-element correction method [31], and in HERWIG++ and SHERPA, where a generalization of the Altarelli-Parisi splitting kernel is used for massive quarks [32].

42.1.6. Color information :

In event generators, quarks and antiquarks are represented by color lines, with arrows indicating the direction of color flow. In the limit of infinitely many colors (called the leading color approximation), each such line can be associated with a unique label; the probability for two quarks (or antiquarks) to have the same color (anticolor) vanishes. Moreover, in the same limit gluons can be represented by a pair of color lines with opposite arrows, as can be realised e.g. from the $\mathrm{SU}(3)$ group relation $8=3 \otimes \overline{3} \ominus 1$. The rules for color propagation are:
\rightarrow 的 $\rightarrow \leqslant$ мек $\rightarrow \Rightarrow$
During the shower development, partons are connected by color lines. We can have a quark directly connected by a color line to an antiquark, or via an arbitrary number of intermediate gluons, as shown in Fig. 42.1. It is also possible for a set of gluons to be connected cyclically in color, as e.g. in the decay $\Upsilon \rightarrow g g g$.

The color information is used in angular-ordered showers, where the angle of color-connected partons (i.e. partons connected by the same color line) determines the initial angle for the shower development, and in dipole showers, where dipoles are always color-connected partons. It is also used in hadronization models, where the initial strings or

Figure 42.1: Color development of a shower in $e^{+} e^{-}$annihilation. Color-neutral clusters of partons are indicated by the dashed under-brackets.
clusters used for hadronization are formed by color-neutral clusters of partons.

42.1.7. Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower MC algorithm. High-energy electrons and quarks, for example, are accompanied by bremsstrahlung photons. Also here, similarly to the QCD case, electromagnetic corrections are of order $\alpha_{\mathrm{em}} \ln (Q / m)$, where m is the mass of the radiating particle, or even of order $\alpha_{\mathrm{em}} \ln (Q / m) \ln \left(E_{\gamma} / E\right)$ in the region where soft photon emission is important, so that, especially for the case of electrons, their inclusion in the simulation process is mandatory. This is done in most of the GPMC's (for a recent comparative study see [33]) . The specialized generator PHOTOS [34] is sometimes used as an afterburner for an improved treatment of QED radiation in non-hadronic resonance decays.

For photon emissions off leptons, the shower can be continued down to virtualities arbitrarily close to the lepton mass shell (unlike the case in QCD). In practice, an infrared cutoff is still required for the shower algorithm to terminate. Therefore, there is always an energy cut-off for emitted photons that depends upon the implementations [33]. In the case of electrons, this energy is typically of the order of its mass. Electromagnetic radiation below this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the electron momentum is not affected by it.

For photons emitted from quarks, we have instead the obvious limitation that the photon wavelength cannot exceed the typical hadronic size. Longer-wavelength photons are in fact emitted by hadrons, rather than quarks. This last effect is in practice never modeled by existing shower MC implementations. Thus, electromagnetic radiation from quarks is cut off at a typical hadronic scale. Finally, hadron (and τ) decays involving charged particles can produce additional soft bremsstrahlung. This is implemented in a general way in HERWIG++/HERWIG 7 [35] and SHERPA [36].

42.1.8. Beyond-the-Standard-Model Physics :

The inclusion of processes for physics beyond the Standard Model (BSM) in event generators is to some extent only a matter of implementing the relevant hard processes and (chains of) decays, with the level of difficulty depending on the complexity of the model and the degree of automation [37,38]. Notable exceptions are long-lived colored particles [39], particles in exotic color representations, and particles showering under new gauge symmetries, with a growing set of implementations documented in the individual GPMC manuals. Further complications that may be relevant are finite-width effects (discussed in Sec. 42.1.9) and the assumed threshold behavior.

In addition to code-specific implementations [18], there are a few commonly adopted standards that are useful for transferring information and events between codes. Currently, the most important of these is the Les Houches Event File (LHEF) standard [40], normally used to transfer parton-level events from a hard-process generator to a shower generator. Another important standard is the Supersymmetry Les Houches Accord (SLHA) format [41], originally used to transfer information on supersymmetric particle spectra and couplings, but by now extended to apply also to more general BSM frameworks and incorporated within the LHEF standard [42].

42.1.9. Decay Chains and Particle Widths :

In most BSM processes and some SM ones, an important aspect of the event simulation is how decays of short-lived particles, such as top quarks, EW and Higgs bosons, and new BSM resonances, are
handled. We here briefly summarize the spectrum of possibilities, but emphasize that there is no universal standard. Users are advised to check whether the treatment of a given code is adequate for the physics study at hand.

The appearance of an unstable resonance as a physical particle at an intermediate stage of the event generation implies that its production and decay processes are treated as being factorized. This is valid up to corrections of order Γ / m_{0}, with Γ the width and m_{0} the pole mass. States whose widths are a substantial fraction of their mass should instead be treated as intrinsically off-shell internal propagator lines.

For states treated as physical particles, two aspects are relevant: the mass distribution of the decaying particle itself and the distributions of its decay products. For the former, matrix-element generators often use a simple δ function at m_{0}. The next level up, typically used in GPMCs, is to use a Breit-Wigner distribution (relativistic or nonrelativistic), which formally resums higher-order virtual corrections to the mass distribution. Note, however, that this still only generates an improved picture for moderate fluctuations away from m_{0}. Similarly to above, particles that are significantly off-shell (in units of Γ) should not be treated as resonant, but rather as internal off-shell propagator lines. In most GPMCs, further refinements are included, for instance by letting Γ be a function of m ("running widths") and by limiting the magnitude of the allowed fluctuations away from m_{0}. We finally point out that recently NLO+PS generators have appeared that can deal with resonances including off-shell effects, non-resonance contributions and interference of radiation generated in resonance decay and production, see [24] and references therein.

For the distributions of the decay products, the simplest treatment is again to assign them their respective m_{0} values, with a uniform phase-space distribution. A more sophisticated treatment distributes the decay products according to the differential decay matrix elements, capturing at least the internal dynamics and helicity structure of the decay process, including EPR-like correlations. Further refinements include polarizations of the external states [43] and assigning the decay products their own Breit-Wigner distributions, the latter of which opens the possibility to include also intrinsically off-shell decay channels, like $H \rightarrow W W^{*}$.

GPMC manuals often give instructions on how to include new decay modes, at varying levels of sophistications ranging from simple uniform phase-space sampling (which the user can reweight a posteriori) and step-function thresholds, to fully matrix-element weighted decay implementations including potential off-shell / threshold effects.

During subsequent showering of the decay products, most partonshower models will preserve the total invariant mass of the decayed resonance, so as not to skew the original resonance shape. In the context of passing externally generated LHEF files [40] to a GPMC for showering, note that this is only possible if the intermediate resonances are present (with status code 2) in the LHEF event record [44].

42.1.10. Matching with Matrix Elements :

Shower algorithms are based upon a combination of the collinear (small-angle) and soft (small-energy) approximations and are thus normally inaccurate for hard, wide-angle emissions (i.e., additional well-resolved jets). They also contain only the leading singular pieces of next-to-leading order (NLO) and higher corrections to the basic process.

Traditional GPMCs, like HERWIG and PYTHIA, have included for a long time the so called Matrix Element Corrections (MEC), first formulated in Ref. 45 with later developments summarized in Ref. 18. They are typically available for $2 \rightarrow 1$ or $1 \rightarrow 2$ processes, like DIS, vector boson and Higgs production and decays, and top decays. The MEC corrects the emission of the hardest jet at large angles, so that it becomes exact at LO. A generalization of the method to multiple emissions was formulated recently [46].

Aside from MECs implemented directly in the GPMCs, the improvements on the parton-shower description of hard collisions have been made in two main directions: the so called Matrix Elements and Parton Shower matching (ME +PS from now on), and the matching of NLO calculations and Parton Showers (NLO+PS). We now discuss
each of these, and then briefly summarise techniques becoming available for combining them.

The ME+PS method allows one to use tree-level matrix elements for hard, large-angle emissions. It was first formulated in the so-called CKKW paper [47], and several variants have appeared, including the CKKW-L, MLM, and pseudoshower methods, see Refs. 48, 18 for summaries. So called "Truncated Showers" are required [49] to maintain color coherence when interfacing to angular-ordered parton showers, and care must be taken to use consistent α_{S} choices for the real (ME-driven) and virtual (PS-driven) corrections [50].

In the ME +PS method one typically starts by generating LO matrix elements for the production of the basic process plus a certain number $\leq n$ of other partons. A minimum separation is imposed on the produced partons, requiring, for example, that the relative transverse momentum in any pair of partons is above a given cut $Q_{\text {cut }}$. One then reweights these amplitudes in such a way that, in the strongly ordered region, the virtual effects that are included in the shower algorithm (i.e. running couplings and Sudakov form factors) are also accounted for. At this stage, before parton showers are added, the generated configurations are tree-level accurate at large angle, and at small angle they match the results of the shower algorithm, except that there are no emissions below the scale $Q_{\text {cut }}$, and no final states with more than n partons. These kinematic configurations are thus fed into a GPMC, that must generate all splittings with relative transverse momentum below the scale $Q_{\text {cut }}$, for initial events with less than n partons, or below the scale of the smallest pair transverse momentum, for events with n partons. The matching parameter $Q_{\text {cut }}$ must be chosen to be large enough for fixed-order perturbation theory to hold, but small enough so that the shower is accurate for emissions below it. Notice that the accuracy achieved with MEC is equivalent to that of ME + PS with $n=1$, where MEC has the advantage of not having a matching parameter $Q_{\text {cut }}$.

The popularity of the $\mathrm{ME}+\mathrm{PS}$ method is due to the fact that processes with many jets appear often as backgrounds to new-physics searches. These jets are typically required to be well separated, and to have large transverse momenta. These kinematical configurations are exactly those for which pure shower algorithms are unreliable, hence it is mandatory to describe them using at least LO matrix elements.

Several ME+PS implementations use existing LO generators, like ALPGEN [51], MADGRAPH [52], and others summarized in Ref. 48, for the calculation of the matrix elements, and feed the partonic events to a GPMC like PYTHIA or HERWIG using the Les Houches Interface for User Processes (LHI/LHEF) [44,40]. SHERPA and HERWIG 7 also include their own matrix-element generators.

The NLO + PS methods promote the accuracy of the generation of the basic process from LO to NLO in QCD. They must thus include the radiation of one extra parton with tree-level accuracy, since this radiation constitutes a NLO correction to the basic process. They must also include NLO virtual corrections. They can be viewed as an extension of the MEC methods with the inclusion of NLO virtual corrections. They are however more general, since they are applicable to processes of arbitrary complexity. Two of these methods are now widely used: MC@NLO [53] and POWHEG [49,54], with several alternative methods now also being pursued, see Ref. 18 and references therein.
$\mathrm{NLO}+\mathrm{PS}$ generators produce NLO accurate distributions for inclusive quantities, and generate the hardest jet with tree-level accuracy. It should be recalled, though, that in $2 \rightarrow 1$ processes like Z / W production, GPMCs including MEC and weighted by a constant K factor may perform nearly as well, and, if suitably tuned, may even yield a better description of data. In this context, note also that the optimal tuning of an NLO+PS generator may well be different from that of the pure PS.

Several NLO+PS processes are implemented in the MC@NLO program [53], together with the new AMC@NLO development [55], and in the POWHEG BOX framework [54]. HERWIG 7 supports now its own variants of POWHEG and MC@NLO for several processes. SHERPA instead implements a variant of the MC@NLO method.

For applications that require an accurate description of more than one hard, large-angle jet associated with the primary process, $\mathrm{ME}+\mathrm{PS}$ schemes are still superior to NLO+PS ones. Ideally, one
would like to improve NLO generators in such a way that also the production of associated jets achieves NLO accuracy. The FXFX [57], UNLOPS [58], MiNLO [59] and MEPS@NLO [60] methods address this problem. In turn, its solution is a prerequisite for the construction of NNLO + PS generators, that in fact have already appeared for the $g g \rightarrow H$ and Drell-Yan processes (see ref. [61] and references therein).

42.2. Hadronization Models

In the context of GPMCs, hadronization denotes the process by which a set of colored partons (after showering) is transformed into a set of "primary hadrons", which may then subsequently decay further (to "secondary hadrons"). This non-perturbative transition takes place at the hadronization scale $Q_{\text {had }}$, which by construction is equal to the infrared cutoff of the parton shower. In the absence of a first-principles solution to the relevant dynamics, GPMCs use QCD-inspired phenomenological models to describe this transition.

An important result in "quenched" lattice QCD (see Chap. 17 of PDG book) is that the potential energy between two partons with opposite color charges grows linearly with their separation, at distances greater than about a femtometer. This is known as "linear confinement", and it forms the starting point for the string model of hadronization, discussed below in Sec. 42.2.1. Alternatively, a property of perturbative QCD called "preconfinement" is the basis of the cluster model of hadronization, discussed in Sec. 42.2.2.

A key difference between MC hadronization models and the fragmentation-function (FF) formalism used to describe inclusive hadron spectra in perturbative QCD (see Chap. 9 and Chap. 19 of PDG book) is that FFs can be defined at an arbitrary perturbative scale Q while MC hadronization models are intrinsically defined at the scale $Q_{\text {had }}$. Direct comparisons are therefore only meaningful if the perturbative evolution between Q and $Q_{\text {had }}$ is taken into account. FFs are calculable in pQCD , given a non-perturbative initial condition obtained by fits to hadron spectra. In the MC context, one can prove that the correct QCD evolution of the FFs arises from the shower formalism, with the hadronization model providing an explicit parameterization of the non-perturbative component. However, the MC modeling of shower and hadronization includes much more information on the final state since it is fully exclusive (i.e., it addresses all particles in the final state explicitly), while FFs only describe inclusive spectra. This exclusivity also enables MC models to make use of the color-flow information coming from the perturbative shower evolution (see Sec. 42.1.6) to determine between which partons confining potentials should arise. E.g., in the string picture, the nonperturbative limit of a QCD dipole is a string piece [62].

Given an exact hadronization model, its dependence on the scale $Q_{\text {had }}$ should in principle be compensated by the corresponding scale dependence of the shower algorithm, which stops generating branchings at the scale $Q_{\text {had }}$. However, due to their complicated and fully exclusive nature, it is generally not possible to enforce this compensation automatically in MC models. One must therefore be aware that the nonperturbative model parameters must be "retuned" by hand if the infrared cutoff is modified. Any other changes to the perturbative part of the calculation, such as matching to further (fixed-order or resummed) coefficients, may also necessitate a retuning. Tuning is discussed briefly in Sec. 42.4 .

Finally, it should be emphasized that the so-called "parton level" that can be obtained by switching off hadronization in a GPMC, is not a universal concept, since each model defines $Q_{\text {had }}$ differently (e.g. via a cutoff in p_{\perp}, invariant mass, etc., with different tunes using different values for the cutoff). Comparisons to distributions at this level may therefore be used to provide an idea of the overall impact of hadronization corrections within a given model, but should be avoided in the context of physical observables.

42.2.1. The String Model:

Starting from early concepts [63], several hadronization models based on strings have been proposed [18]. Of these, the most widely used today is the so-called Lund model $[64,65]$, implemented in PYTHIA $[4,5]$. We concentrate on that particular model here, though many of the overall concepts would be shared by any string-inspired method.

Consider a color-connected quark-antiquark pair emerging from the parton shower (like the $\bar{q} q$ pair in the center of Fig. 42.1). As the charges move apart, linear confinement implies that a potential $V(r)=\kappa r$ is reached for large distances r. (At short distances, there is a Coulomb term $\propto 1 / r$ as well, but this is neglected in the Lund string.) This potential describes a string with tension $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm} \sim 0.2 \mathrm{GeV}^{2}$. The physical picture is that of a color flux tube being stretched between the q and the \bar{q}.

Figure 42.2: Illustration of string breaking by quark paircreation in the string field.

As the string grows, the nonperturbative creation of quark-antiquark pairs can break the string, via the process illustrated in Fig. 42.2. The model is Lorentz invariant, so considerations involving boosted string systems are straightforward, involving the usual Lorentz effects. More complicated configurations involving intermediate gluons are treated by representing gluons as transverse "kinks", illustrated in Fig. 42.3, and considerations involving boosted string systems are subject to the usual Lorentz effects. In the leading-color approximation, the order of these kinks follows directly from the color ordering produced by the parton shower, cf. the $\bar{q} g g g q$ and $\bar{q} g q$ systems on the left and right part of Fig. 42.1. (Modifications to this order, by possible color reconnection/rearrangement effects, are discussed in Sec. 42.3.3.)

Figure 42.3: Schematic illustration of an $e^{+} e^{-} \rightarrow q g \bar{q}$ configuration emerging from the parton shower (PS). Snapshots of string positions are shown at two different times (full and shaded lines respectively). The gluon forms a transverse kink which grows in the y direction until all the gluon's kinetic energy has been used up.

Thus gluons effectively build up a transverse structure in the originally one-dimensional object, with infinitely soft ones smoothly absorbed into the string. Note: cyclic topologies made entirely of gluons (closed strings) are also possible, e.g. in decays such as $H \rightarrow g g$ or $\Upsilon \rightarrow g g g$. The space-time evolution is more involved when kinks are taken into account [65], but no additional free parameters need to be introduced. The main difference between quark and gluon hadronization stems from the fact that gluons are connected to two string pieces (one on either side), while quarks are only connected to a single string piece. Hence, the relative rate of energy loss per unit invariant time - and consequently also the rate of hadron production - is larger by a factor of 2 for gluons (similar to the ratio of color Casimirs $\left.C_{A} / C_{F}=2.25\right)$.

To convert a set of partons to hadrons, the first step is thus to map color-connected pairs of partons to string pieces, with quarks as endpoints and gluons as kinks. Next, the strings evolve, with a constant probability density for string breaks to occur per unit string space-time area. In this context, it is important to note that the individual string breaks are causally disconnected [65], hence they do not have to be generated in any particular time-ordered sequence. This is exploited in the Lund model to allow to consider the formation of a single on-shell hadron at a time, in an order that corresponds to decreasing average absolute rapidity (along the string). Selecting randomly between the left and right sides of the string, the first hadron to be generated is thus the "outermost" one, formed by combining
the original hadronizing endpoint quark (or antiquark) q_{0} with an antiquark (or quark) \bar{q}_{1} produced by a breakup. The new leftover quark (or antiquark) q_{1} becomes the string endpoint for the next iteration, in a Markov chain which continues, alternating randomly between the left and right ends of the string, until finally a small last bit of string is decayed directly to two hadrons, with no energy left over.

For each breakup vertex, quantum mechanical tunneling is assumed to control the masses and p_{\perp} kicks (transverse to the string axis, in a frame in which the string itself has no transverse motion) that can be produced, leading to a Gaussian suppression

$$
\begin{equation*}
\operatorname{Prob}\left(m_{q}^{2}, p_{\perp q}^{2}\right) \propto \exp \left(\frac{-\pi m_{q}^{2}}{\kappa}\right) \exp \left(\frac{-\pi p_{\perp q}^{2}}{\kappa}\right) \tag{42.8}
\end{equation*}
$$

where m_{q} is the mass of the produced quark flavor and p_{\perp} is the nonperturbative transverse momentum imparted to it by the breakup process, with a universal average value of $\left\langle p_{\perp q}^{2}\right\rangle=\kappa / \pi \sim(250 \mathrm{MeV})^{2}$. The antiquark has the same mass and opposite p_{\perp}.

In an MC model with a fixed shower cutoff t_{0}, the effective amount of p_{\perp} in string breaks may be larger than the purely nonperturbative κ / π above, to account for effects of additional (unresolved) radiation below t_{0}.

From the mass term in Eq. (42.8), one concludes that charm and bottom quarks are too heavy to be produced in string breaks, while strange quarks will be suppressed relative to up and down ones. Lacking unambiguous and precise mass definitions for light quarks, however, the effective amount of strangeness suppression is normally extracted from experimental data, using observables such as K / π and K^{*} / ρ ratios.

Baryon production can also be incorporated, by allowing string breaks to produce pairs of diquarks, loosely bound states of two quarks in an overall $\overline{3}$ representation. Again, since diquark masses are difficult to define, the relative rate of diquark to quark production is extracted, e.g. from the p / π ratio. Since the perturbative shower splittings do not produce diquarks, the optimal value for this parameter is mildly correlated with the amount of $g \rightarrow q \bar{q}$ splittings produced by the shower. More advanced scenarios for baryon production have also been proposed, see Ref. 65. Within the PYTHIA framework, a hadronization model including baryon string junctions [66] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron multiplets. Using a nonrelativistic classification of spin states, the hadronizing q may combine with the \bar{q}^{\prime} from a newly created breakup to produce a meson - or baryon, if diquarks are involved - of a given spin S and angular momentum L. The lowest-lying pseudoscalar and vector meson multiplets, and spin- $1 / 2$ and $-3 / 2$ baryons, are assumed to dominate in a string framework ${ }^{1}$, but individual rates are not predicted by the model. This is therefore the sector that contains the largest amount of free parameters. The ratio V / P of vectors to pseudoscalars is expected to be 3 , but in practice it is only in the B meson sector that this is approximately true. For lighter flavors, the difference in phase space caused by the $V-P$ mass splittings implies a suppression of vector production. When extracting the corresponding parameters from data, it is advisable to begin with the heaviest states, since so-called feed-down from the decays of higher-lying hadron states complicates the extraction for lighter particles, see Sec. 42.2.3. For baryons, additional parameters control the relative rates of spin- 1 diquarks vs. spin- 0 ones.

With p_{\perp}^{2} and m^{2} now fixed, the final step is to select the longitudinal momentum component of the created hadron along the string axis. This is parameterized by a nonperturbative fragmentation function, $f(z)$, which governs the probability for a hadron to take a fraction $z \in[0,1]$ of the total available momentum. In a string framework, the requirement that the hadronization be independent of

1 PYTHIA includes the lightest pseudoscalar and vector mesons, with the four $L=1$ multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several states are poorly known and thus may result in a worse overall description when included. For baryons, the lightest spin- $1 / 2$ and $-3 / 2$ multiplets are included.
the sequence in which breakups are considered (causality) imposes a "left-right symmetry" which strongly constrains the functional form of $f(z)$, with the solution

$$
\begin{equation*}
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right) \tag{42.9}
\end{equation*}
$$

This is known as the Lund symmetric fragmentation function (normalized to unit integral). The dimensionless parameter a dampens the hard tail of the fragmentation function, towards $z \rightarrow 1$, and may in principle be flavor-dependent, while b, with dimension GeV^{-2}, is a universal constant related to the string tension [65] which determines the behavior in the soft limit, $z \rightarrow 0$. Note that the dependence on the hadron mass, m_{h}, in $f(z)$ implies that heavier hadrons have higher $\langle z\rangle$.

As a by-product, the probability distribution in invariant time τ of $q^{\prime} \bar{q}$ breakup vertices, or equivalently $\Gamma=(\kappa \tau)^{2}$, is also obtained, with $d P / d \Gamma \propto \Gamma^{a} \exp (-b \Gamma)$ implying an area law for the color flux, and the average breakup time lying along a hyperbola of constant invariant time $\tau_{0} \sim 10^{-23}{ }_{\mathrm{S}}[65]$.

For massive endpoints (e.g. c and b quarks), which do not move along straight lightcone sections, the exponential suppression with string area leads to modifications of the form $f(z) \rightarrow f(z) / z^{b m_{Q}^{2}}$, with m_{Q} the mass of the heavy quark [67]. Although different forms, such as the Peterson formula [68], can also be used to describe inclusive heavy-meson spectra (see Sec 19.8 of PDG book), such choices are not strictly consistent with causality in the string framework.

42.2.2. The Cluster Model :

The cluster hadronization model is based on preconfinement, i.e., on the observation $[69,70]$ that the color structure of a perturbative QCD shower evolution at any scale Q_{0} is such that color-singlet subsystems of partons (labeled "clusters") occur with a universal invariant mass distribution which is power suppressed at large masses. For any starting scale $Q \gg Q_{0} \gg \Lambda_{\mathrm{QCD}}$, only the number of such clusters depends on Q, while the shape of their mass distribution only depends on Q_{0} and on Λ_{QCD}.

Following early models based on this universality [11,71], the cluster model developed by Webber [72] has for many years been a hallmark of the HERWIG generators, with an alternative implementation [73] now available in the SHERPA generator. The key idea, in addition to preconfinement, is to force "by hand" all gluons to split into quark-antiquark pairs at the end of the parton shower. Compared with the string description, this effectively amounts to viewing gluons as "seeds" for string breaks, rather than as kinks in a continuous object. After the splittings, a new set of low-mass color-singlet clusters is obtained, formed only by quark-antiquark pairs. These can be decayed to on-shell hadrons in a simple manner, with the relative yields of different hadron species mainly governed by their masses and the size of the phase space.

The algorithm starts by generating the forced $g \rightarrow q \bar{q}$ breakups, and by assigning flavors and momenta to the produced quark pairs. For a typical shower cutoff corresponding to a gluon virtuality of $Q_{\text {had }} \sim 1 \mathrm{GeV}$, the p_{\perp} generated by the splittings can be neglected. The constituent light-quark masses, $m_{u, d} \sim 300 \mathrm{MeV}$ and $m_{s} \sim 450 \mathrm{MeV}$, imply a suppression (typically even an absence) of strangeness production. In principle, the model also allows for diquarks to be produced at this stage, but due to the larger constituent masses this would only become relevant for shower cutoffs larger than 1 GeV .

If a cluster formed in this way has an invariant mass above some cutoff value, typically $3-4 \mathrm{GeV}$, it is forced to undergo sequential $1 \rightarrow 2$ cluster breakups, along an axis defined by the constituent partons of the original cluster, until all sub-cluster masses fall below the cutoff value. Due to the preservation of the original axis in these breakups, this treatment has some resemblance to the string-like picture, though the nonperturbative p_{\perp} kicks generated in this way are generally larger, up to half the allowed cluster mass.

Next, on the low-mass side of the spectrum, some clusters are allowed to decay directly to a single hadron, with nearby clusters
absorbing any excess momentum. This improves the description of the high- z part of the spectrum - where the hadron carries almost all the momentum of its parent jet - at the cost of introducing one additional parameter, controlling the probability for single-hadron cluster decay.

Having obtained a final distribution of small-mass clusters, now with a strict cutoff at $3-4 \mathrm{GeV}$ and with the component destined to decay to single hadrons already removed, the remaining clusters are interpreted as a smoothed-out spectrum of excited mesons, each of which decays isotropically to two hadrons, with relative probabilities proportional to the available phase space for each possible two-hadron combination that is consistent with the cluster's internal flavors, including spin degeneracy. It is important that all the light members (containing only $u d s$) of each hadron multiplet be included, as the absence of members can lead to unphysical isospin or $\mathrm{SU}(3)$ flavor violation. Typically, the lightest pseudoscalar, vector, scalar, even and odd charge conjugation pseudovector, and tensor multiplets of light mesons are included. In addition, some excited vector multiplets of light mesons may be available. For baryons, usually only the lightest flavor-octet, -decuplet and -singlet baryons are present, although both the HERWIG++ and SHERPA implementations now include some heavier baryon multiplets as well.

Differently from the string model, the mechanism of phase-space suppression employed here leads to a natural enhancement of the lighter pseudoscalars, and no parameters beyond the spectrum of hadron masses need to be introduced at this point. The phase space also limits the transverse momenta of the produced hadrons relative to the jet axis.

Note that, since the masses and decays of excited heavy-flavor hadrons in particular are not well known, there is some freedom in the model to adjust these, which in turn will affect their relative phase-space populations.

42.2.3. Hadron and τ Decays :

Of the so-called primary hadrons, originating directly from string breaks and/or cluster decays (see above), many are unstable and so decay further, until a set of particles is obtained that can be considered stable on time scales relevant to the given measurement. (A typical hadron-collider definition of a "stable particle" $c \tau \geq 10 \mathrm{~mm}$ includes weakly-decaying strange hadrons $K, \Lambda, \Sigma^{ \pm}, \bar{\Sigma}^{ \pm}, \Xi, \Omega$.) The decay modeling can therefore have a significant impact on final particle yields and spectra, especially for the lowest-lying hadronic states, which receive the largest relative contributions from decays (feed-down). This interplay also implies that hadronization parameters may need to be retuned if significant changes to the decay treatment are made.

Particle summary tables, such as those given elsewhere in this Review, represent a condensed summary of the available experimental measurements and hence may be incomplete and/or exhibit inconsistencies within the experimental precision. In an MC decay package, on the other hand, all information must be quantified and consistent, with all branching ratios summing to unity. When adapting particle summary information for use in a decay package, a number of choices must therefore be made. The amount of ambiguity increases as more excited hadron multiplets are added to the simulation, about which less and less is known from experiment, with each GPMC making its own choices.

A related choice is how to distribute the decay products differentially in phase space, in particular which matrix elements to use. Historically, MC generators contained matrix elements only for selected (generator-specific) classes of hadron and τ decays, coupled with a Breit-Wigner smearing of the masses, truncated at the edges of the physical decay phase space (the treatment of decay thresholds can be important for certain modes [18]) . A more sophisticated treatment can then be obtained by reweighting the generated events using the obtained particle four-momenta and/or by using specialized external packages such as EVTGEN [74] for hadron decays and TAUOLA [75] for τ decays.

More recently, HERWIG++ and SHERPA include helicity-dependence in τ decays $[76,6]$, with a more limited treatment available in PYTHIA 8 [5]. The HERWIG++ and SHERPA generators have also included significantly improved internal simulations of hadronic
decays, which include spin correlations between those decays for which matrix elements are used. Photon-bremsstrahlung effects are discussed in Sec. 42.1.7.

HERWIG++ and PYTHIA include the probability for B mesons to oscillate into \bar{B} ones before decay. SHERPA and EVTGEN also include CP-violating effects and, for common decay modes of the neutral meson and its antiparticle, the interference between the direct decay and oscillation followed by decay.

We end on a note of warning on double counting. This may occur if a particle can decay via an intermediate on-shell resonance. An example is $a_{1} \rightarrow \pi \pi \pi$ which may proceed via $a_{1} \rightarrow \rho \pi, \rho \rightarrow \pi \pi$. If these decay channels of the a_{1} are both included, each with their full partial width, a double counting of the on-shell $a_{1} \rightarrow \rho \pi$ contribution would result. Such cases are normally dealt with consistently in the default MC generator packages, so this warning is mostly for users that wish to edit decay tables on their own.

42.3. Models for Soft Hadron-Hadron Physics

42.3.1. Minimum-Bias and Diffraction:

The term "minimum bias" (MB) originates from the experimental requirement of a minimal number of tracks (or hits) in a given instrumented region. In order to make MC predictions for such observables, all possible contributions to the relevant phase-space region must be accounted for. There are essentially four types of physics processes, which together make up the total hadronhadron ($h h$) cross section: 1) elastic scattering ${ }^{2}: h h \rightarrow h h, 2$) single diffractive dissociation: $h h \rightarrow h+$ gap $+X$, with X denoting anything that is not the original beam particle, and "gap" denoting a rapidity region devoid of observed activity; 3) double diffractive dissociation: $h h \rightarrow X+$ gap $+X$, and 4) inelastic non-diffractive scattering: everything else. A fifth class may also be defined, called central diffraction ($h h \rightarrow h+$ gap $+X+$ gap $+h$). Note that different terminologies exist [77]: in experimental settings, diffraction is typically defined by an observable gap, of some minimal size in rapidity, while in the MC context, each diffractive physics process produces a whole spectrum of gaps, with small ones suppressed but not excluded.

The inelastic non-diffractive part of the cross section is typically modeled either by smoothly regulating and extending the perturbative QCD scattering cross sections all the way to zero $p_{\perp}[78]$ (PYTHIA and SHERPA), or by regulating the QCD cross sections with a sharp cutoff [79] and adding a separate class of nonperturbative scatterings below that scale [80](HERWIG). See also Sec. 42.3.2. In all cases, the most important ingredients are: 1) the IR regularization of the perturbative scattering cross sections, including their PDF dependence, 2) the assumed matter distribution of the colliding hadrons, possibly including multi-parton correlations [66] and/or x dependence [81], and 3) additional soft-QCD effects such as color reconnections, discussed in Sec. 42.3.3.

Currently, there are essentially three methods for simulating diffraction in the main MC models: 1) in PYTHIA 6, one picks a diffractive mass according to parameterized cross sections \propto $\mathrm{d} M^{2} / M^{2}$ [82]. This mass is represented as a string, which is hadronized as described in Sec. 42.2.1, though differences in the effective scale of the hadronization may necessitate a (re)tuning of the hadronization parameters for diffraction; 2) in PYTHIA 8, the high-mass tail beyond $M \sim 10 \mathrm{GeV}$ is augmented by a partonic description in terms of pomeron PDFs [83], allowing diffractive jet production including showers and underlying event [84]; 3) the PHOJET and DPMJET programs also include central diffraction and rely directly on a formulation in terms of pomerons (color-singlet multi-gluon states) [85-87]. . Cut pomerons correspond to exchanges of soft gluons while uncut ones give elastic and diffractive topologies as well as virtual corrections that help preserve unitarity. So-called "hard pomerons" provide a transition to the perturbative regime. Hadronization is still handled using the Lund string model, so there is some overlap with the above models at the hadronization stage.
${ }^{2}$ The QED elastic cross section diverges and is normally a nondefault option.

In addition, a pomeron-based package exists for HERWIG [88], and an effort is underway to construct an MC implementation of the "KMR" model [89] within the SHERPA generator. Color reconnections (Sec. 42.3.3) may also play a role in creating rapidity gaps and the underlying event (Sec. 42.3.2) in filling them.

42.3.2. Underlying Event and Jet Pedestals :

In the GPMC context, "underlying event" (UE) denotes any additional activity beyond the basic process and its associated ISR and FSR activity. The UE is thus only defined in the context of events selected with a "hard" (i.e., high- p_{\perp}) trigger which defines the basic process at hand. (This is distinct from the MB selection which does not require any hard perturbative activity.) The dominant contribution to the UE is believed to come from additional color exchanges between the colliding hadronic states. These multiple exchanges can be modeled either as additional perturbative (mainly t-channel gluon) exchanges, called multiple parton-parton interactions (MPI), or nonperturbatively using so-called cut pomerons (roughly equivalent to exchange of gluons with $p_{\perp} \rightarrow 0$). The experimental observation that events with a hard trigger are accompanied by a higher-than-average level of associated activity (UE particle densities and related quantities are greater than those of MB events at the same CM energy) is called the "jet pedestal" effect.

The most clearly identifiable consequence of MPI is arguably the possibility of observing several hard parton-parton interactions in one and the same hadron-hadron event. Typically, these are QCD $2 \rightarrow 2$ interactions, which produce additional back-to-back jet pairs, with each pair having a small value of $\operatorname{sum}\left(\vec{p}_{\perp}\right)$. The fraction of MPI that give rise to additional reconstructible jets is, however, small. Soft interactions, that exchange color and a small amount of momentum without giving rise to observable jets, are much more plentiful, and can give significant corrections to the color flow and total scattered energy of the event. This affects the final-state activity in a more global way, increasing hadron-multiplicity and summed E_{T} distributions, and contributing to the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in Ref. 78, and with some variation this still forms the basis for most modern implementations. Some useful additional references can be found in Ref. 18. The first crucial observation is that the t-channel propagators appearing in perturbative QCD $2 \rightarrow 2$ scattering almost go on shell at low p_{\perp}, causing the differential cross sections to behave roughly as

$$
\begin{equation*}
d \sigma_{2 \rightarrow 2} \propto \frac{d t}{t^{2}} \sim \frac{d p_{\perp}^{2}}{p_{\perp}^{4}} \tag{42.10}
\end{equation*}
$$

This cross section represents the inclusive scattering of partons against partons in perturbative QCD, summed over all partons. Thus, if a single hadron-hadron scattering contains two parton-parton interactions, that event will contribute twice to the parton-parton cross section $\sigma_{2 \rightarrow 2}$ but only once to the hadron-hadron one $\sigma_{\text {tot }}$, and so on. In the limit that all the parton-parton interactions are independent and equivalent, one has

$$
\begin{equation*}
\sigma_{2 \rightarrow 2}=\langle n\rangle \sigma_{\text {tot }}, \tag{42.11}
\end{equation*}
$$

with $\langle n\rangle$ the average number of parton-parton interactions, typically defined with some minimal $p_{\perp}>p_{\perp \text { min }}$ to render the parton-parton cross section finite. The probability for n parton-parton scatterings then follows a Poisson distribution,

$$
\begin{equation*}
\mathcal{P}_{n}=\langle n\rangle^{n} \frac{\exp (-\langle n\rangle)}{n!} \tag{42.12}
\end{equation*}
$$

This simple argument expresses unitarity; instead of the total hadronhadron interaction cross section diverging as the parton-parton $p_{\perp} \rightarrow 0$ (which would violate unitarity), we have restated the problem so that it is now the number of parton-parton interactions per hadron-hadron collision that diverges, with the total hadron-hadron cross section remaining finite. At LHC energies, the parton-parton scattering cross sections computed using the LO QCD cross section folded with modern PDFs become larger than the total $p p$ one for $p_{\perp \min }$ values of
order $4-5 \mathrm{GeV}$ (see e.g. $[90,91]$) . One therefore expects the average number of perturbative MPI to exceed unity at around that scale.

Two ingredients remain to fully regulate the remaining divergence Firstly, the interactions cannot use up more momentum than is available in the parent hadron. This suppresses the large- n tail of the estimate above. In PYTHIA-based models, the MPI are ordered in p_{\perp}, and the parton densities for each successive interaction are explicitly constructed so that the sum of x fractions can never be greater than unity. In the HERWIG models, the Poisson estimate of $\langle n\rangle$ above is used as an initial guess, but the generation of actual MPI is stopped once the energy-momentum conservation limit is reached. Both of these approaches generate momentum (conservation) correlations among the MPI.

The second ingredient invoked to suppress the number of interactions, at low p_{\perp} and x, is color screening; if the wavelength \sim $1 / p_{\perp}$ of an exchanged colored parton becomes larger than a typical color-anticolor separation distance, it will only see an average color charge that vanishes in the limit $p_{\perp} \rightarrow 0$. This provides an infrared cutoff for MPI similar to that provided by the hadronization scale for parton showers. A first estimate of the color-screening cutoff would be the proton size, $p_{\perp \min } \approx \hbar / r_{p} \approx 0.3 \mathrm{GeV} \approx \Lambda_{\mathrm{QCD}}$, but empirically this appears to be far too low. In current models, one replaces the proton radius r_{p} in the above formula by a "typical color screening distance," i.e., an average size of a region within which the net compensation of a given color charge occurs. This number is not known from first principles [89] and is perceived of simply as an effective cutoff parameter. The simplest choice is to introduce a step function $\Theta\left(p_{\perp}-p_{\perp \text { min }}\right)$. Alternatively, one may note that the jet cross section is divergent like $\alpha_{\mathrm{S}}^{2}\left(p_{\perp}^{2}\right) / p_{\perp}^{4}$, cf. Eq. (42.10), and that therefore a factor

$$
\begin{equation*}
\frac{\alpha_{\mathrm{S}}^{2}\left(p_{\perp 0}^{2}+p_{\perp}^{2}\right)}{\alpha_{\mathrm{S}}^{2}\left(p_{\perp}^{2}\right)} \frac{p_{\perp}^{4}}{\left(p_{\perp 0}^{2}+p_{\perp}^{2}\right)^{2}} \tag{42.13}
\end{equation*}
$$

would smoothly regulate the divergences, now with $p_{\perp 0}$ as the free parameter. Regardless of whether it is imposed as a smooth (PYTHIA and SHERPA) or steep (HERWIG++) function, this is effectively the main "tuning" parameter in such models.

Note that the numerical value obtained for the cross section depends upon the PDF set used, and therefore the optimal value to use for the cutoff will also depend on this choice. Note also that the cutoff does not have to be energy-independent. Higher energies imply that parton densities can be probed at smaller x values, where the number of partons rapidly increases. Partons then become closer packed and the color screening distance d decreases. The uncertainty on the energy and/or x scaling of the cutoff is a major concern when extrapolating between different collider energies [92].

We now turn to the origin of the observational fact that hard jets appear to sit on top of a higher "pedestal" of underlying activity than events with no hard jets. This is interpreted as a consequence of impact-parameter-dependence: in peripheral collisions, only a small fraction of events contain any high- p_{\perp} activity, whereas central collisions are more likely to contain at least one hard scattering; a high- p_{\perp} triggered sample will therefore be biased towards small impact parameters, b. The ability of a model to describe the shape of the pedestal (e.g. to describe both MB and UE distributions simultaneously) therefore depends upon its modeling of the b-dependence, and correspondingly the impact-parameter shape constitutes another main tuning parameter.

For each impact parameter b, the number of interactions $\tilde{n}(b)$ can still be assumed to be distributed according to Eq. (42.12), again modulo momentum conservation, but now with the mean value of the Poisson distribution depending on impact parameter, $\langle\tilde{n}(b)\rangle$. This causes the final n-distribution (integrated over b) to be wider than a Poissonian.

Finally, there are two perturbative modeling aspects which go beyond the introduction of MPI themselves: 1) parton showers off the MPI, and 2) perturbative parton-rescattering effects. Without showers, MPI models would generate very sharp peaks for back-to-back MPI jets, caused by unshowered partons passed directly to
the hadronization model. However, with the exception of the oldest PYTHIA6 model, all GPMC models do include such showers [18], and hence should exhibit more realistic (i.e., broader and more decorrelated) MPI jets. On the initial-state side, the main questions are whether and how correlated multi-parton densities are taken into account and, as discussed previously, how the showers are regulated at low p_{\perp} and/or low x. Although none of the MC models currently impose a rigorous correlated multi-parton evolution, all of them include some elementary aspects. The most significant for parton-level results is arguably momentum conservation, which is enforced explicitly in all the models. The so-called "interleaved" models [30] attempt to go a step further, generating an explicitly correlated multi-parton evolution in which flavor sum rules are imposed to conserve, e.g. the total numbers of valence and sea quarks [66].

Perturbative rescattering in the final state can occur if partons are allowed to undergo several distinct interactions, with showering activity possibly taking place in-between. This has so far not been studied extensively, but a first exploratory model is available [93]. In the initial state, parton rescattering/recombination effects have so far not been included in any of the GPMC models.

42.3.3. Bose-Einstein and Color-Reconnection Effects :

In the context of $e^{+} e^{-}$collisions, Bose-Einstein (BE) correlations have mostly been discussed as a source of uncertainty on high-precision W mass determinations at LEP [94]. In hadron-hadron (and nucleusnucleus) collisions, however, BE correlations are used extensively to study the space-time structure of hadronizing matter ("femtoscopy").

In MC models of hadronization, each string break or particle/cluster decay is normally factorized from all other ones. This reduces the number of variables that must be considered in each step, but also makes it intrinsically difficult to introduce correlations among particles from different breaks/decays. In GPMCs, a few semi-classical models are available within the PYTHIA 6 and 8 generators [95], in which the BE effect is mimicked by an attractive interaction between pairs of identical particles in the final state, with no higher correlations included. Variants of this model differ mainly by the assumed shape of the correlation function and how overall momentum conservation is handled.

As discussed in Sec. 42.2, leading-color ("planar") color flows are used to set up the hadronizing systems (clusters or strings) at the hadronization stage. If the systems do not overlap significantly in space and time, subleading-color ambiguities and/or nonperturbative reconnections are expected to be small. However, if the density of displaced color charges is sufficiently high that several systems can overlap significantly, full-color and/or reconnection effects should become progressively larger.

In the specific context of MPI, a crucial question is how color is neutralized between different MPI systems, including the remnants. The large rapidity differences involved imply large invariant masses (though normally low p_{\perp}), and hence large amounts of (soft) particle production. Indeed, in the context of soft-inclusive physics, it is these "inter-system" strings/clusters that furnish the dominant particleproduction mechanism, and hence their modeling is an essential part of the soft-physics description, affecting topics such as MB/UE multiplicity and p_{\perp} distributions, rapidity gaps, and precision mass measurements. Reviews of color-reconnection effects can be found in Refs. 18,96.

42.4. Uncertainties and Tuning

The accuracy that can be achieved by a GPMC model depends on the sophistication of the theory models it incorporates, on the available constraints on its free parameters, and on the nature of the observable(s) under study. Using existing data (or more accurate theory calculations) to constrain the model parameters is referred to as generator tuning. Although tuned models do tend to yield improved results also for observables that they have not been tuned to, the question of evaluating the remaining uncertainties reliably is still far from solved. It is worth noting, however, that all of the GPMCs now provide options for automatic evaluation of perturbative shower uncertainties (e.g., via renormalization-scale variations), in the form
of vectors of alternative event weights [97,98,99] although significant weight fluctuations can be a problem for processes with many or large shower phase spaces. One must be aware that these variations are not necessarily exhaustive and care must be taken in their interpretation. Nonperturbative uncertainties must normally still be evaluated by varying salient model parameters by hand. A general method called eigentunes [100] is also available, based on global fits to data.

Typically, the overall event properties are determined by only a few, very important parameters, such as the value of α_{S}, for perturbative corrections, and the shape of the fragmentation functions, for nonperturbative ones. More parameters may then be introduced to describe successively more detailed aspects (e.g., the rates and decays of individual hadron species), but these should have progressively less impact on the overall modeling. One may therefore take a factorized approach, first constraining the perturbative parameters and thereafter the nonperturbative ones, in order of decreasing significance to the overall modeling. Furthermore, by identifying which measurements are most sensitive to each parameter, this ordering can be reflected in the way that data is selected and applied to constrain the models. Thus, measurements sensitive to global event properties would typically be applied first, to constrain the most inclusive parameters, and so on for progressively more exclusive aspects.

At $\mathrm{LO} \times \mathrm{LL}$, perturbation theory is doing well if it agrees with an IR safe measurement within $\sim 10 \%$. It would therefore not make much sense to tune a GPMC beyond roughly 5% (it might even be dangerous, due to overfitting). The advent of NLO Monte Carlos may reduce this number slightly, but only for quantities for which one expects NLO precision. For quantities governed by nonperturbative physics, uncertainties are larger. For some quantities, e.g. ones for which the underlying modeling is known to be poor, an order-ofmagnitude agreement or worse may have to be accepted. Note further that the unitarity of shower and hadronization models implies that the Born-level cross-section normalization is not tunable, hence in tuning contexts one tends to focus on the shapes of distributions rather than their normalizations.

In the context of $\mathrm{LO} \times \mathrm{LL}$ GPMC tuning, subleading aspects of coupling-constant and PDF choices are relevant. In particular, one should be aware that the choice of QCD Λ parameter $\Lambda_{\mathrm{MC}}=1.569 \Lambda_{\overline{\mathrm{MS}}}$ (for 5 active flavors) improves the predictions of coherent shower algorithms at the NLL level for a class of relevant observables [101], and hence this scheme is often considered the baseline for shower tuning. The question of LO vs. NLO PDFs is more involved [18], but it should be emphasized that the gluon PDF at (very) low x is important for determining the level of the underlying event in MPI models (Sec. 42.3.2), and hence the MB/UE tuning (and energy scaling [92]) is linked to the choice of PDF in such models. Further issues and an example of a specific recipe that could be followed in a realistic set-up can be found in Ref. 90. A useful online resource can be found at the mcplots.cern.ch web site [102], based on the RIVET tool [103].

Recent years have seen the emergence of automated tools to reduce the amount of both computer and manpower required for tuning [100]. Automating the human expert input is more difficult. In the tools currently on the market, this is addressed by a combination of input solicited from the GPMC authors (e.g., which parameters and ranges to consider, which observables constitute a complete set, etc) and a set of weights determining the relative priority given to each bin in each distribution. The final result is therefore still subjective but at least reproducible. When backed by careful demonstrations of sensitivities, correlations, and uncertainties, the quality of the resulting tunes is by now competitive. The field is still burgeoning, with future sophistications to be expected.

References:

1. G. Corcella et al., JHEP 0101, 010 (2001), hep-ph/0011363.
2. M.Bähr et al., Eur. Phys. J. C58, 639 (2008), arXiv:0803. 0883.
3. J. Bellm et al., Eur. Phys. J. C76, 196 (2016), arXiv:1512.01178.
4. T. Sjöstrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006), hep-ph/0603175.
5. T. Sjöstrand et al., Comp. Phys. Comm. 191, 159 (2015), arXiv:1410. 3012.
6. T. Gleisberg et al., JHEP 0902, 007 (2009), arXiv:0811. 4622.
7. QCD summary, PDG..
8. T. Kinoshita, J. Math. Phys. 3, 650 (1962).
9. T. Lee and M. Nauenberg, Phys. Rev. 133, 1549 (1964).
10. A. Buckley et al., arXiv:1101.2599, and references therein..
11. G.C. Fox and S. Wolfram, Nucl. Phys. B168, 285 (1980).
12. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
13. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
14. B.R. Webber, Phys. Lett. B193, 91 (1987).
15. J.C. Collins, Nucl. Phys. B304, 794 (1988).
16. I.G. Knowles, Comp. Phys. Comm. 58, 271 (1990).
17. T. Sjöstrand, Phys. Lett. B157, 321 (1985).
18. A. Buckley et al., Phys. Reports 504, 145 (2011), arXiv:1101. 2599.
19. G. Marchesini and B.R. Webber, Nucl. Phys. B310, 461 (1988).
20. S. Gieseke, P. Stephens, and B. Webber, JHEP 0312, 045 (2003), hep-ph/0310083.
21. M. Bengtsson and T. Sjöstrand, Nucl. Phys. B289, 810 (1987).
22. G. Gustafson and U. Pettersson, Nucl. Phys. B306, 746 (1988).
$23 . ~ L . ~ L o ̈ n n b l a d, ~ C o m p . ~ P h y s . ~ C o m m . ~ 71, ~ 15 ~(1992) . ~$
23. T. Ježo et al., Eur. Phys. J. C76, 691 (2016), arXiv:1607.04538.
24. W.T. Giele, D.A. Kosower, and P.Z. Skands, Phys. Rev. D78, 014026 (2008), arXiv:0707.3652.
25. Z. Nagy and D.E. Soper, JHEP 0510, 024 (2005), hepph/0503053.
26. S. Schumann and F. Krauss, JHEP 0803, 038 (2008), arXiv:0709.1027.
27. S. Plätzer and S. Gieseke, Eur. Phys. J. C72, 2187 (2012), arXiv:1109. 6256.
28. S. Höche and S. Prestel, Eur. Phys. J. C75, 461 (2015), arXiv:1506. 05057.
29. T. Sjöstrand and P.Z. Skands, Eur. Phys. J. C39, 129 (2005), hep-ph/0408302.
30. E. Norrbin and T. Sjöstrand, Nucl. Phys. B603, 297 (2001), hep-ph/0010012.
31. S. Catani et al., Nucl. Phys. B627, 189 (2002), hep-ph/0201036.
32. J. Cembranos et al., (2013), arXiv:1305.2124.
33. N. Davidson, T. Przedzinski, and Z. Was, (2010), arXiv:1011.0937.
34. K. Hamilton and P. Richardson, JHEP 0607, 010 (2006), hep-ph/0603034.
35. M. Schönherr and F. Krauss, JHEP 0812, 018 (2008), arXiv:0810.5071.
36. A. Semenov, Comp. Phys. Comm. 180, 431 (2009), arXiv:0805. 0555.
37. N.D. Christensen and C. Duhr, Comp. Phys. Comm. 180, 1614 (2009), arXiv:0806.4194.
38. M. Fairbairn et al., Phys. Reports 438, 1 (2007), hepph/0611040.
39. J. Alwall et al., Comp. Phys. Comm. 176, 300 (2007), hep-ph/0609017.
40. P.Z. Skands et al., JHEP 0407, 036 (2004), hep-ph/0311123.
41. J. Alwall et al., (2007), arXiv:0712.3311.
42. P. Richardson, JHEP 0111, 029 (2001), hep-ph/0110108.
43. E. Boos et al., (2007), hep-ph/0109068.
44. M. Bengtsson and T. Sjöstrand, Phys. Lett. B185, 435 (1987).
45. W. T. Giele, D. A. Kosower and P. Z. Skands, Phys. Rev. D84, 054003 (2011), arXiv:1102.2126.
46. S. Catani et al., JHEP 11, 063 (2001), hep-ph/0109231.
47. J. Alwall et al., Eur. Phys. J. C53, 473 (2008), arXiv:0706. 2569.
48. P. Nason, JHEP 11, 040 (2004), hep-ph/0409146.
49. B. Cooper et al., Eur. Phys. J. C72, 2078 (2012), arXiv:1109. 5295.
50. M.L. Mangano et al., JHEP 0307, 001 (2003), hep-ph/0206293.
51. J. Alwall et al., JHEP 1106, 128 (2011), arXiv:1106. 0522.
52. S. Frixione and B.R. Webber, JHEP 06, 029 (2002), hepph/0204244.
53. S. Alioli et al., JHEP 1006, 043 (2010), arXiv:1002. 2581.
54. J. Alwall et al., JHEP 07, 079 (2014), arXiv:1405.0301.
55. S. Alioli, K. Hamilton, and E. Re, JHEP 09, 104 (2011), arXiv:1108.0909
56. R. Frederix and S. Frixione, JHEP 12, 061 (2012), arXiv:1209. 6215.
57. L. Lönnblad and S. Prestel, JHEP 03, 166 (2013), arXiv:1211.7278.
58. K. Hamilton, P. Nason and G. Zanderighi, JHEP 10, 155 (2012), arXiv:1206. 3572.
59. S. Höche et al., JHEP 04, 027 (2013), arXiv:1207. 5030.
60. K. Hamilton, P. Nason and G. Zanderighi, JHEP 05, 140 (2015), arXiv:1501. 04637.
61. G. Gustafson, Phys. Lett. B175, 453 (1986).
62. X. Artru and G. Mennessier, Nucl. Phys. B70, 93 (1974).
63. B. Andersson et al., Phys. Reports 97, 31 (1983).
64. B. Andersson, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997).
65. T. Sjöstrand and P.Z. Skands, JHEP 0403, 053 (2004), hep-ph/0402078.
66. M. Bowler, Z. Phys. C11, 169 (1981).
67. C. Peterson et al., Phys. Rev. D27, 105 (1983).
68. D. Amati and G. Veneziano, Phys. Lett. B83, 87 (1979).
69. A. Bassetto, M. Ciafaloni, and G. Marchesini, Phys. Lett. B83, 207 (1979).
70. R.D. Field and S. Wolfram, Nucl. Phys. B213, 65 (1983).
71. B.R. Webber, Nucl. Phys. B238, 492 (1984).
72. J.-C. Winter, F. Krauss, and G. Soff, Eur. Phys. J. C36, 381 (2004), hep-ph/0311085.
73. D. Lange, Nucl. Instrum. Methods A462, 152 (2001).
74. S. Jadach et al., Comp. Phys. Comm. 76, 361 (1993).
75. D. Grellscheid and P. Richardson, (2007), arXiv:0710.1951.
76. V. Khoze et al., Eur. Phys. J. C69, 85 (2010), arXiv:1005. 4839.
77. T. Sjöstrand and M. van Zijl, Phys. Rev. D36, 2019 (1987).
78. J.M. Butterworth, J.R. Forshaw, and M.H. Seymour, Z. Phys. C72, 637 (1996), hep-ph/9601371.
79. M. Bähr et al., (2009), arXiv:0905.4671.
80. R. Corke and T. Sjöstrand, JHEP 1105, 009 (2011), 1101.5953.
81. G.A. Schuler and T. Sjöstrand, Phys. Rev. D49, 2257 (1994).
82. G. Ingelman and P. Schlein, Phys. Lett. B152, 256 (1985).
83. S. Navin, (2010), arXiv:1005.3894.
84. P. Aurenche et al., Comp. Phys. Comm. 83, 107 (1994), hep-ph/9402351.
85. F.W. Bopp, R. Engel, and J. Ranft, (1998), hep-ph/9803437.
86. S. Roesler, R. Engel, and J. Ranft, p. 1033 (2000), hepph/0012252.
87. B.E. Cox and J.R. Forshaw, Comp. Phys. Comm. 144, 104 (2002), hep-ph/0010303.
88. M. Ryskin, A. Martin, and V. Khoze, Eur. Phys. J. C71, 1617 (2011), arXiv:1102.2844.
89. P. Skands, S. Carrazza and J. Rojo, Eur. Phys. J. C74, 3024 (2014), arXiv:1404.5630.
90. M. Bähr, J.M. Butterworth, and M.H. Seymour, JHEP 01, 065 (2009), arXiv:0806. 2949.
91. H. Schulz and P.Z. Skands, Eur. Phys. J. C71, 1644 (2011), arXiv:1103.3649.
92. R. Corke and T. Sjöstrand, JHEP 01, 035 (2009), arXiv:0911.1901.
93. LEP Electroweak Working Group, (2005), hep-ex/0511027.
94. L. Lönnblad and T. Sjöstrand, Eur. Phys. J. C2, 165 (1998), hep-ph/9711460.
95. J. R. Christiansen and P. Z. Skands, JHEP 08, 003 (2015), arXiv:1505.01681.
96. J. Bellm et al., Phys. Rev. D94, 034028 (2016), arXiv:1605.08256.
97. S. Mrenna and P. Skands, Phys. Rev. D94, 074005 (2016), arXiv:1605.08352.
98. E. Bothmann, M. Schnherr and S. Schumann, Eur. Phys. J. C76, 590 (2016), arXiv:1606. 08753.
99. A. Buckley et al., Eur. Phys. J. C65, 331 (2010), arXiv:0907. 2973.
100. S. Catani, B. R. Webber, and G. Marchesini, Nucl. Phys. B349, 635 (1991).
101. A. Karneyeu et al., Eur. Phys. J. C74, 2714 (2013), arXiv:1306.3436.
102. A. Buckley et al., Comp. Phys. Comm. 184, 2803 (2010), arXiv:1003.0694.

43. Monte Carlo Neutrino Generators

Revised August 2019 by H. Gallagher (Tufts U.) and Y. Hayato (Kamioka Observatory, ICRR, UTokyo).

Monte Carlo neutrino generators are programs or libraries which simulate neutrino interactions with electrons, nucleons and nuclei. In this capacity their usual task is to take an input neutrino and nucleus and produce a set of 4 -vectors for particles emerging from the interaction, which are then input to full detector simulations. Since these generators have to simulate not only the initial interaction of neutrinos with target particles, but reinteractions of the generated particles in the nucleus, they contain a wide range of elementary particle and nuclear physics. Viewed more broadly, they are the access point for neutrino experimentalists to the theory inputs needed for analysis. Examples include cross section libraries for event rate calculations and parameter uncertainties and reweighting tools for systematic error evaluation.

Neutrino experiments typically operate in neutrino beams that are neither completely pure nor mono-energetic. Generators are a crucial component in the convolution of beam flux, neutrino interaction physics, and detector response that is necessary to make predictions about observable quantities. Similarly they are used to relate reconstructed quantities back to true quantities. In these various capacities they are used from the detector design stage through the extraction of physics measurements from reconstructed observables. Monte Carlo neutrino generators play unique and important roles in the experimental study of neutrino interactions and oscillations.

There are several neutrino event generators available, such as ANIS [1], GENIE [2], GiBUU [3, 4], MARLEY [5], NEGN [6], NEUT [7], NUANCE [8], the FLUKA routines NUNDIS/NUNRES [9] [10], and NuWro [11], as well as tools to facilitate cross-generator comparisons [12]. Historically, experiments would develop their own generators. This was often because they were focused on a particular measurement, energy range, or target, and wanted to ensure that the best physics was included for it. These 'home-grown' generators were often tuned primarily or exclusively to the neutrino data most similar to the data that the experiment would be collecting. A major advance in the field was the introduction of conference series devoted to the topic of neutrino interaction physics, NuINT (https://nuint2017.physics.utoronto.ca) and NuFACT (https://indico.uu.se/event/324/) in particular. Event generator comparisons have been a regular staple of the NuINT conference series from its inception, and a great deal of information on this topic can be found in the Proceedings of these meetings. These meetings have facilitated experiment-theory discussions leading to the first generator developed by a theory group (NuWro) [11], the extension of established nuclear interaction codes (FLUKA and GiBUU) to include neutrino-nuclear processes [3] [4] [9] [10], and inclusion of theorists in existing generator development teams.

These activities have led to more careful scrutiny of the crucial nuclear theory inputs to these generators, which is evaluated in particular through comparisons to electron-scattering data. At this point in time all simulation codes face challenges in describing the full extent of the lepton scattering data, and the tension between incorporating the best available theory versus obtaining the best agreement with the data plays out in a variety of ways within the field. For the field to make progress, inclusion of state of the art theory needs to be coupled to global analyses that correctly incorporate correlations between measurements. Given the rapid pace of new data and the complexity of analyses, this is a significant challenge for the field in the coming years.

There are many neutrino experiments which use various sources of neutrinos, from reactors, accelerators, the atmosphere, and astrophysical sources, thereby covering a range of energies from MeV to TeV . Much of the emphasis has been on the few-GeV region in the generators, as this is the relevant energy range for shortand long-baseline neutrino oscillation experiments. These generators use the impulse approximation, which treats the nucleus as a collection of independent nucleons and the primary interaction occurs between the probe and a single nucleon, for most
of the initial interaction, and subsequently simulates the interactions of secondary particles in the nucleus in semi-classical ways. Semi-classical hadron transport approaches are commonly used as they are able simulate a variety of nuclei in a single model, and for practical considerations as these approaches are fast. However, there are several challenges facing these simulations coming mainly from the complexity of the nuclear physics, and avoiding double counting in combining perturbative and non-perturbative models for the neutrino-nucleon scattering processes. The overall validity of this impulse approximation-based scheme, and in particular the importance of scattering channels that involve more than one nucleon, is a crucial question that is the topic of much current work. While generators share many common ingredients, differences in implementation, parameter values, and approaches to avoid double counting can yield dramatically different predictions [13]. In the following sections, interaction models and their implementations including the interactions of generated particles in the nuclei are described.

In order to assure its validity, neutrino event generators are tuned and validated against a wide variety of data, including data from photon, charged lepton, neutrino, and hadron probes. The results from these external data tuning exercises are important for experiments as they quantify the uncertainty on model parameters, needed by experiments in the evaluation of generator-related systematic errors. Electron scattering data plays an important role in determining the vector contribution to the form-factors and structure functions, as well as in evaluating specific aspects of the nuclear model [14]. Hadron scattering data is used in validating the nuclear model, in particular of interactions between hadrons produced in the primary interaction and the residual target nucleus (final state interactions). Tuning of neutrino-nucleon scattering and hadronization models relies heavily on the previous generation of high energy neutrino scattering and hydrogen and deuterium bubble chamber experiments, and more recent data from the K2K, MiniBooNE, NOMAD, SciBooNE, MINOS, T2K, ArgoNEUT, MINERvA, NOvA, MicroBooNE, and SBND experiments either has been, or will be, used for this purpose.

43.1 Neutrino-Nucleon Scattering

Event generators typically begin with free-nucleon cross sections which are then embedded into a nuclear physics model. The most important processes are quasi-elastic (elastic for neutral current (NC)) scattering, resonance production, and non-resonant inelastic scattering, which make comparable contributions for fewGeV interactions. The neutrino cross sections in this energy range can be seen in Figures 51.1 through 51.3 of this Review.

43.1.1 Quasi-Elastic Scattering

The cross section for the neutrino nucleon charged current quasi-elastic scattering is described in terms of the leptonic and hadronic weak currents, where dominant contributions to the hadronic current come from the vector (V) and axial-vector (A) form factors. Contributions from the pseudo-scalar form factor (P) are typically small for muon and electron neutrinos and are related to the axial form factor (A) assuming partially conserved axial currents (PCAC). The vector form factors are related via the conserved vector current (CVC) hypothesis to those measured by precise electron scattering experiments, which are known to have some deviation from the simple dipole form [15]. Therefore, most of the generators use parametrizations of this form factor taken directly from the data. For the axial form factor there is no such precise experiment, and most of the generators use a dipole form [16]. Generally, the value of axial form factor at $q^{2}=0$ (q is the four-momentum transfer) is extracted from the polarized nucleon beta decay experiment. However, the selection of the axial vector mass parameter depends on each generator, with values typically around $1.00 \mathrm{GeV} / \mathrm{c}^{2}$. Recently, there are several attempts to use the other functions for the axial form factors $[17,18]$ and some generators have already implemented these form factors [19].

43.1.2 Resonance Production

Most generators use the prescriptions of Rein-Sehgal [20] to simulate neutrino-induced single pion production. To obtain the
cross section for a particular channel, they calculate the amplitude for the production of each resonance multiplied by the probability for the decay of that resonance into that particular channel. Implementation differences include the number of resonances included, whether the amplitudes are added coherently or incoherently, the invariant mass range over which the model is used, how non-resonant backgrounds are included, inclusion of lepton mass terms, and the model parameter values (in particular the axial mass). In this model it is also possible to calculate the crosssections of single photon, kaon and η productions by changing the decay probability of the resonances, which are included in some of the programs. However, it is known that discrepancies exist between the recent pion electro/photoproduction data and the results from the simulation data with the same framework, i.e. vector part of this model. There are several attempts to overcome this issue [21] and some of the generators started using more appropriate form factors. Recently, there is another attempt to further improve the model itself and make it possible to reproduce both electron and neutrino scatterings [22]. This work is expected to be implemented in the generators soon. GiBUU and NuWro generators do not use the Rein-Sehgal model, and instead rely directly on electro-production data for the vector contribution and fit bubble chamber data to determine the remaining parameters for the axial contribution [23-25]. The dynamical coupled-channel model, which has been developed to simulate various electro- and photo-meson productions, was extended to simulate the neutrino single pion production [26]. This model is also being implemented and expected to be available in some of the generators in future.

43.1.3 Deep and Shallow Inelastic Scattering

For this process the fundamental target shifts from the nucleon to its quark constituents. Therefore, the generators use the standard expression for the constructions for the nucleon structure functions F_{2} and $x F_{3}$ from parton distributions for high Q^{2} (the DIS regime: $\mathrm{W}>2 \mathrm{GeV} / \mathrm{c}^{2}$ and $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$) to calculate direction and momentum of lepton. The first challenge is in extending this picture to the lower values of Q^{2} and W that dominate the available phase space for few- GeV interactions (the so-called 'shallow inelastic scattering', or SIS regime). GRV98LO parton distribution functions [27] with the corrections proposed in [28] are widely used, while others [9] implement their own modifications to the parton distributions at low Q^{2}. Both DIS and SIS generates hadrons but their production depends on each generator's implementation of a hadronization model as described in the next section. There are various difficulties not only in the actual hadronization but the relation with the single meson production. It is necessary to avoid double counting between the resonance and SIS/DIS models, and all generators are different in this regard. The scheme chosen can have a significant impact on the results of simulations at a few- GeV neutrino energies.

43.2 Hadronization Models

For hadrons produced via baryonic resonances, the underlying model amplitudes and resonance branching fractions can be used to fully characterize the hadronic system. For non-resonant production, a hadronization model is required. Most generators use PYTHIA [29] for this purpose, although some with modified parameters. In addition some implement their own models to handle invariant masses that are too low for PYTHIA, typically somewhere around $2.0 \mathrm{GeV} / \mathrm{c}^{2}$. Such models rely heavily on measurements of neutrino hadro-production in high-resolution devices, such as bubble chambers and the CHORUS [30] and NOMAD experiments [31], to construct empirical parametrizations that reproduce the key features of the data $[32,33]$. The basic ingredients are the empirical observations that average charged particle multiplicities increase logarithmically with the invariant mass of the hadronic system, and that the distribution of charged particle multiplicities about this average are described by a single function (an observation known as KNO scaling [34]). Neutral particles are assumed to be produced with an average multiplicity that is 50% of the charged particle multiplicity. Simple parametrizations to more accurately reproduce differences observed in the forward/backward hemispheres of hadronic systems are included in GENIE, NEUT, and NuWro.

43.3 Nuclear Physics

The nuclear physics relevant to neutrino-nucleus scattering at few-GeV energies is complicated, involving Fermi motion, nuclear binding, Pauli blocking, in-medium modifications of form factors and hadronization, intranuclear rescattering of hadrons, and many-body scattering mechanisms including long- and shortrange nucleon-nucleon correlations.

43.3.1 Treatments of scattering kinematics in nucleus

In order to obtain the cross-section off nucleons in the nucleus, it is necessary to take into account various in-medium effects. Most of the models used for neutrino-nuclear scattering kinematics were developed in the context of few-GeV inclusive electron scattering, by experiments going back nearly 50 years. The basic models employed in event generators rely on impulse approximation schemes, the most simple of which is the Relativistic Fermi Gas Model. The most common implementations have been the Smith-Moniz [35] and Bodek-Ritchie [36] models. However, the results from neutrino-nucleus scattering experiments in 2000 and afterwards, such as K2K, MiniBooNE have shown large discrepancies from the naive expectation from the models. Most striking differences are a suppression of forward going muons (low Q^{2}), a high Q^{2} enhancement in the event rate, and an overall larger than expected number of observed events. In order to reproduce the data, the quasi-elastic axial mass was used as the effective parameter and increased by roughly 20% from the nominal values obtained by an earlier generation of bubble chamber experiments using hydrogen or deuterium [16]. These inconsistency between nucleon and nucleus targets suggests that the simple nuclear model is not appropriate in describing the data. Moreover, these simple Fermi-Gas models are not expected to describe the kinematical distributions of final state nucleons. Actually, recent hadronic energy measurements by MINERvA have shown that the simple global Fermi-gas model is not appropriate to reproduce the small energy deposit. Therefore, several generators have to implement better models, such as local Fermi-Gas model or more sophisticated models. Within the electron scattering community, the analogous calculations have for decades relied on spectral functions, which incorporate information about nucleon momenta and binding energies in the impulse approximation scheme. Therefore, most of the generators have implemented the spectral functions in their latest releases.

Actually, the discrepancies in small q^{2} could not be solved alone by just introducing the local Fermi-gas model nor spectral function models. This implies that the additional medium correction effects are needed to be taken into account. One of the implemented solutions is the local Fermi-Gas model with medium correction calculated using the random phase approximation, which is known to give large suppression in small q^{2}. Although, the fundamental parts of the models are same, actual implementations are quite different between the generators. Especially, the constructions of the final state hadron kinematics are quite different. Especially for the quasi-elastic scattering case, treatment of the nucleon masses in the nucleus, the binding and the separation energies are sometimes quite different. Recently, Super-Scaling model with relativistic mean field theory effects (SuSAv2) [37] was also implemented.

The cause of the discrepancy of small q^{2} seems to be identified but the issue of the observed interaction rates are not solved. This implies that there must be some interaction channels which are missing and not considered in the generators.

These led to a revisitation of the role played by scattering from multi-particle/hole states in the nucleus, and the experimental search for evidence of these scattering channels is an area of intense experimental interest [38]. The contribution of these scattering processes is an extremely active area of theoretical research as well, with significant implications for generators and analyses [39]. Several approaches, ranging from strictly phenomenological descriptions to full theoretical calculations, have recently been incorporated into generators [40-42]. One example of a phenomenological approach utilizes an Effective Spectral Function [43] and a Transverse Enhancement Model [44], which together encapsulate information derived from electron scattering experiments at relevant kinematics. The microscopic model of Nieves and collab-
orators is now available in GENIE and NEUT [45, 46]. SuSAv2 model also has capability to simulate this multi-nucleon quasielastic like interaction and is also implemented in GENIE.

One of the challenges in incorporating full theoretical models of these processes is that they are typically slow, so generators have developed new approaches whereby much of the computation is done offline, and the generators simply read in the hadronic tensor components. This allows for a full prediction of the lepton kinematics, however the ability to simulate the hadronic component of these multinucleon states then relies on separate models. The other challenges is that the theoretical models are not designed to describe exclusive final states Precisely speaking, some of the neutrino interactions could not be separated each other because of the interference between those channels. Also, there are limitation of the model itself to describe some of the kinematic regions. However, the generators need to simulate final all the state particles and thus, several assumptions are made by authors of the generators from time to time.

Also, it is known from photo and electro-nuclear scattering that the Delta width is affected by Pauli blocking and collisional broadening. These effects are included in some, but not all generators.

When scattering from a nucleus, coherent scattering of various kinds is possible. Most simulations incorporate, at least, neutral and charged coherent single pion production. While the interaction rate for these interactions is typically around a percent of the total yield, the unique kinematic features of these events can make them potential backgrounds for oscillation searches. Implemented in Monte Carlo are several PCAC-based methods [47, 48], and microscopic models $[49,50]$, valid at lower neutrino energies, have also been implemented in several generators. One of the commonly used model by Rein and Sehgal [47] predicts much larger charged current cross-section compared to the recent measurements of MINER $\nu \mathrm{A}$ and T2K gives a few times smaller crosssection for the charged current coherent pion production. However, the cross-section is sensitive to the pion cross-section used in the model as parameters and improved models with lepton mass correction [48] give better agreement with the recent data. This improved model is implemented in most of the generators.

43.3.2 Hadron Production in Nuclei

Neutrino pion production is one of the dominant interactions in a few-GeV region and the interaction cross sections of pions in nucleus from those interactions are quite large. Therefore, the interactions of pions in nucleus changes the kinematics of the pions and can have large effects on the results of simulations at these energies. Most generators implement this physics through an intranuclear cascade simulation. In generators which utilize cascade models, a hadron, which has been formed in the nucleus, is moved step by step until it interacts with the other nucleon or escapes from the nucleus. The probabilities of each interaction in nucleus are usually given as the mean free paths and used to determine whether the hadron is interacted or not. If the hadron is found to be interacted, appropriate interactions are selected and simulated. Usually, absorption, elastic, charge exchange, and inelastic scatterings including particle productions are simulated as intranuclear interactions. The determination method of the kinematics for the final state particles heavily depends on the generators but most of them use experimentally validated models to simulate hadron interactions in nucleus. No two interanuclear cascade simulations implemented in neutrino event generators are the same. In all cases hadrons propagate from an interaction vertex chosen based on the density distribution of the target nucleus. In determining the generated position of the hadrons in nucleus, the concept of the formation length is sometimes employed. Based on this idea, the hadronization process is not instantaneous and it takes some time before generating the hadrons [11]. The basis for formation times are measurements at relatively high energy and Q^{2}, and most generators that employ the concept do not apply them to resonance interactions.

GiBUU does not employ an intranuclear cascade simulation, instead, it utilizes a semi-classical transport model in coupled channels that describes the space-time evolution of a many body system in the presence of potentials and a collision term [3]. This approach assures consistency between nuclear effects in the initial
state, such as Fermi motion, Pauli blocking, hadron self-energies, and modified cross sections, and the final state, such as particle re-interactions, since the two are derived from the same model. This model has been previously used to describe a wide variety of nuclear interaction data. Similarly, the hadronic simulation of the NUNDIS/NUNRES programs are handled by the well-established FLUKA hadronic simulation package [9].

References

[1] A. Gazizov and M. P. Kowalski, Comput. Phys. Commun. 172, 203 (2005), [arXiv:astro-ph/0406439].
[2] C. Andreopoulos et al., Nucl. Instrum. Meth. A614, 87 (2010), [arXiv:0905.2517].
[3] O. Buss et al., Phys. Rept. 512, 1 (2012), [arXiv:1106.1344].
[4] K. Gallmeister, U. Mosel and J. Weil, Phys. Rev. C94, 3, 035502 (2016), [arXiv:1605.09391].
[5] S. Gardiner, C. Grant, E. Panic, and R. Svoboda, http://www.marleygen.org.
[6] D. Autiero, Nucl. Phys. Proc. Suppl. 139, 253 (2005).
[7] Y. Hayato, Nucl. Phys. Proc. Suppl. 112, 171 (2002).
[8] D. Casper, Nucl. Phys. Proc. Suppl. 112, 161 (2002), [hepph/0208030].
[9] G. Battistoni et al., Acta Phys. Polon. B40, 2491 (2009).
[10] T. T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014).
[11] T. Golan, C. Juszczak and J. T. Sobczyk, Phys. Rev. C86, 015505 (2012), [arXiv:1202.4197].
[12] P. Stowell et al., JINST 12, 01, P01016 (2017), [arXiv:1612.07393].
[13] S. Boyd et al., AIP Conf. Proc. 1189, 1, 60 (2009).
[14] O. Benhar, D. day and I. Sick, Rev. Mod. Phys. 80, 189 (2008), [arXiv:nucl-ex/0603029].
[15] A. Bodek et al., Eur. Phys. J. C53, 349 (2008), [arXiv:0708.1946].
[16] H. Gallagher, G. Garvey and G. P. Zeller, Ann. Rev. Nucl. Part. Sci. 61, 355 (2011).
[17] E. Tomasi-Gustafsson, G. I. Gakh and C. Adamuscin, Phys. Rev. C73, 045204 (2006), [arXiv:nucl-th/0512039].
[18] B. Bhattacharya, R. J. Hill and G. Paz, Phys. Rev. D84, 073006 (2011), [arXiv:1108.0423].
[19] A. S. Meyer et al., Phys. Rev. D93, 11, 113015 (2016), [arXiv:1603.03048].
[20] D. Rein and L. M. Sehgal, Annals Phys. 133, 79 (1981).
[21] K. M. Graczyk and J. T. Sobczyk, Phys. Rev. D77, 053001 (2008), [Erratum: Phys. Rev.D79,079903(2009)], [arXiv:0707.3561].
[22] M. Kabirnezhad, Phys. Rev. D97, 1, 013002 (2018), [arXiv:1711.02403].
[23] O. Lalakulich and E. A. Paschos, Phys. Rev. D71, 074003 (2005), [hep-ph/0501109].
[24] J. A. Nowak, Phys. Scripta T127, 70 (2006), [hepph/0607081].
[25] L. Alvarez-Ruso, S. K. Singh and M. J. Vicente Vacas, Phys. Rev. C57, 2693 (1998), [arXiv:nucl-th/9712058].
[26] S. X. Nakamura, H. Kamano and T. Sato, Phys. Rev. D92, 7, 074024 (2015), [arXiv:1506.03403].
[27] M. Glück, E. Reya and A. Vogt, Eur. Phys. J. C5, 461 (1998), [hep-ph/9806404].
[28] A. Bodek and U. K. Yang, J. Phys. G29, 1899 (2003), [hepex/0210024].
[29] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 05, 026 (2006), [hep-ph/0603175].
[30] A. Kayis-Topaksu et al. (CHORUS), Eur. Phys. J. C51, 775 (2007), [arXiv:0707.1586].
[31] J. Altegoer et al. (NOMAD), Phys. Lett. B445, 439 (1999).
[32] T. Yang et al., Eur. Phys. J. C63, 1 (2009), [arXiv:0904.4043].
[33] J. A. Nowak and J. T. Sobczyk, Acta Phys. Polon. B37, 2371 (2006), [hep-ph/0608108].
[34] Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B40, 317 (1972).
[35] R. A. Smith and E. J. Moniz, Nucl. Phys. B43, 605 (1972), [Erratum: Nucl. Phys.B101,547(1975)].
[36] A. Bodek and J. L. Ritchie, Phys. Rev. D24, 1400 (1981).
[37] J. A. Caballero et al., Phys. Lett. B653, 366 (2007), [arXiv:0705.1429].
[38] P. A. Rodrigues et al. (MINERvA), Phys. Rev. Lett. 116, 071802 (2016), [Addendum: Phys. Rev. Lett.121,no.20,209902(2018)], [arXiv:1511.05944].
[39] L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100, 1 (2018), [arXiv:1706.03621].
[40] T. Katori, AIP Conf. Proc. 1663, 1, 030001 (2015), [arXiv:1304.6014].
[41] M. Alam et al. (2015), [arXiv:1512.06882].
[42] C. Wilkinson et al., Phys. Rev. D93, 7, 072010 (2016), [arXiv:1601.05592].
[43] A. Bodek, M. E. Christy and B. Coopersmith, Eur. Phys. J. C74, 10, 3091 (2014), [arXiv:1405.0583].
[44] A. Bodek, H. S. Budd and M. E. Christy, Eur. Phys. J. C71, 1726 (2011), [arXiv:1106.0340].
[45] J. Nieves, I. Ruiz Simo and M. J. Vicente Vacas, Phys. Rev. C83, 045501 (2011), [arXiv:1102.2777].
[46] R. Gran et al., Phys. Rev. D88, 11, 113007 (2013), [arXiv:1307.8105].
[47] D. Rein and L. M. Sehgal, Nucl. Phys. B223, 29 (1983).
[48] C. Berger and L. M. Sehgal, Phys. Rev. D79, 053003 (2009), [arXiv:0812.2653].
[49] L. Alvarez-Ruso et al., Phys. Rev. C75, 055501 (2007), [Erratum: Phys. Rev.C80,019906(2009)], [arXiv:nucl-th/0701098].
[50] L. Alvarez-Ruso, L. S. Geng and M. J. Vicente Vacas, Phys. Rev. C76, 068501 (2007), [Erratum: Phys. Rev.C80,029904(2009)], [arXiv:0707.2172].

44. Monte Carlo Particle Numbering Scheme

Revised August 2019 by F. Krauss (Durham U.), S. Navas (Dp.de Fisica. U. de Granada), P. Richardson (Durham U.) and T. Sjöstrand (Lund U.).

The Monte Carlo particle numbering scheme presented here is intended to facilitate interfacing between event generators, detector simulators, and analysis packages used in particle physics. The numbering scheme was introduced in 1988 [1] and a revised version [2,3] was adopted in 1998 in order to allow systematic inclusion of quark model states which are as yet undiscovered and hypothetical particles such as SUSY particles. The numbering scheme is used in several event generators, e.g. HERWIG, PYTHIA, and SHERPA, and interfaces, e.g. /HEPEVT/ and НерМС.

The general form is a 7 -digit number:

$$
\pm n n_{r} n_{L} n_{q_{1}} n_{q_{2}} n_{q_{3}} n_{J}
$$

This encodes information about the particle's spin, flavor content, and internal quantum numbers. The details are as follows:

1. Particles are given positive numbers, antiparticles negative numbers. The PDG convention for mesons is used, so that K^{+}and B^{+}are particles.
2. Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to do this they are first ordered by family and within families by weak isospin.
3. In composite quark systems (diquarks, mesons, and baryons) $n_{q_{1-3}}$ are quark numbers used to specify the quark content, while the rightmost digit $n_{J}=2 J+1$ gives the system's spin (except for the K_{S}^{0} and K_{L}^{0}). The scheme does not cover particles of spin $J>4$.
4. Diquarks have 4-digit numbers with $n_{q_{1}} \geq n_{q_{2}}$ and $n_{q_{3}}=0$.
5. The numbering of mesons is guided by the nonrelativistic ($L-$ S decoupled) quark model, as listed in Tables $15.2,15.3$, and 15.4.
(a) The numbers specifying the meson's quark content conform to the convention $n_{q_{1}}=0$ and $n_{q_{2}} \geq n_{q_{3}}$. The special case K_{L}^{0} is the sole exception to this rule.
(b) The quark numbers of flavorless, light (u, d, s) mesons are: 11 for the member of the isotriplet $\left(\pi^{0}, \rho^{0}, \ldots\right)$, 22 for the lighter isosinglet (η, ω, \ldots), and 33 for the heavier isosinglet ($\eta^{\prime}, \phi, \ldots$). Since isosinglet mesons are often large mixtures of $u \bar{u}+d \bar{d}$ and $s \bar{s}$ states, 22 and 33 are assigned by mass and do not necessarily specify the dominant quark composition.
(c) The special numbers 310 and 130 are given to the K_{S}^{0} and K_{L}^{0} respectively.
(d) The fifth digit n_{L} is reserved to distinguish mesons of the same total (J) but different spin (S) and orbital (L) angular momentum quantum numbers. For $J>0$ the numbers are: $(L, S)=(J-1,1) n_{L}=0,(J, 0) n_{L}=$ 1 , $(J, 1) n_{L}=2$ and $(J+1,1) n_{L}=3$. For the exceptional case $J=0$ the numbers are $(0,0) n_{L}=0$ and $(1,1) n_{L}=1$ (i.e. $n_{L}=L$). See Table 44.1.
(e) If a set of physical mesons correspond to a (nonnegligible) mixture of basis states, differing in their internal quantum numbers, then the lightest physical state gets the smallest basis state number. For example the $K_{1}(1270)$ is numbered $10313\left(1^{1} P_{1} K_{1 B}\right)$ and the $K_{1}(1400)$ is numbered $20313\left(1^{3} P_{1} K_{1 A}\right)$.
(f) The sixth digit n_{r} is used to label mesons radially excited above the ground state.
(g) Numbers have been assigned for complete $n_{r}=0 S$ and P-wave multiplets, even where states remain to be identified.
(h) In some instances assignments within the $q \bar{q}$ meson model are only tentative; here best guess assignments are made.
(i) Many states appearing in the Meson Listings are not yet assigned within the $q \bar{q}$ model. Here $n_{q_{2-3}}$ and n_{J}

Table 44.1: Meson numbering logic. Here $q q$ stands for $n_{q 2} n_{q 3}$.

	$L=J-1, S=1$			$L=J, S=0$			$L=J, S=1$			$L=J+1, S=1$		
J	code	$J^{P C}$	L									
0	-	-	-	$00 q q 1$	0^{-+}	0	-	-	-	$10 q q 1$	0^{++}	1
1	$00 q q 3$	1^{--}	0	$10 q q 3$	1^{+-}	1	$20 q q 3$	1^{++}	1	$30 q q 3$	1^{--}	2
2	$00 q q 5$	2^{++}	1	$10 q q 5$	2^{-+}	2	$20 q q 5$	2^{--}	2	$30 q q 5$	2^{++}	3
3	$00 q q 7$	3^{--}	2	$10 q q 7$	3^{+-}	3	$20 q q 7$	3^{++}	3	$30 q q 7$	3^{--}	4
4	$00 q q 9$	4^{++}	3	$10 q q 9$	4^{-+}	4	$20 q q 9$	4^{--}	4	$30 q q 9$	4^{++}	5

are assigned according to the state's likely flavors and spin; all such unassigned light isoscalar states are given the flavor code 22 . Within these groups $n_{L}=0,1,2, \ldots$ is used to distinguish states of increasing mass. These states are flagged using $n=9$. It is to be expected that these numbers will evolve as the nature of the states are elucidated. Codes are assigned to all mesons which are listed in the one-page table at the end of the Meson Summary Table as long as they have a prefered or established spin. Additional heavy meson states expected from heavy quark spectroscopy are also assigned codes.
6. The numbering of baryons is again guided by the nonrelativistic quark model, see Table 15.7. This numbering scheme is illustrated through a few examples in Table 44.2.
(a) The numbers specifying a baryon's quark content are such that in general $n_{q_{1}} \geq n_{q_{2}} \geq n_{q_{3}}$.
(b) Two states exist for $J=1 / 2$ baryons containing 3 different types of quarks. In the lighter baryon $(\Lambda, \Xi, \Omega, \ldots)$ the light quarks are in an antisymmetric $(J=0)$ state while for the heavier baryon $\left(\Sigma^{0}, \Xi^{\prime}, \Omega^{\prime}, \ldots\right)$ they are in a symmetric $(J=1)$ state. In this situation $n_{q_{2}}$ and $n_{q_{3}}$ are reversed for the lighter state, so that the smaller number corresponds to the lighter baryon.
(c) For excited baryons a scheme is adopted, where the n_{r} label is used to denote the excitation bands in the harmonic oscillator model, see Sec. 15.4. Using the notation employed there, n_{r} is given by the N-index of the D_{N} band identifier.
(d) Further degeneracies of excited hadron multiplets with the same excitation number n_{r} and spin J are lifted by labelling such multiplets with the n_{L} index according to their mass, as given by its N or Δ-equivalent.
(e) In such excited multiplets extra singlets may occur, the $\Lambda(1520)$ being a prominent example. In such cases the ordering is reversed such that the heaviest quark label is pushed to the last position: $n_{q_{3}}>n_{q_{1}}>n_{q_{2}}$.
(f) For pentaquark states $n=9, n_{r} n_{L} n_{q_{1}} n_{q_{2}}$ gives the four quark numbers in order $n_{r} \geq n_{L} \geq n_{q_{1}} \geq n_{q_{2}}, n_{q_{3}}$ gives the antiquark number, and $n_{J}=2 J+1$, with the assumption that $J=1 / 2$ for the states currently reported.
7. The gluon, when considered as a gauge boson, has official number 21. In codes for glueballs, however, 9 is used to allow a notation in close analogy with that of hadrons.
8. The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD are assigned codes 990, 9990, and 110 respectively, where the final 0 indicates the indeterminate nature of the spin, and the other digits reflect the expected "valence" flavor content. We do not attempt a complete classification of all reggeon trajectories, since there is currently no need to distinguish a specific such trajectory from its lowestlying member.
9. Two-digit numbers in the range $21-30$ are provided for the Standard Model gauge bosons and Higgs.
10. Codes 81-100 are reserved for generator-specific pseudoparticles and concepts. Codes 901-930, 1901-1930, 2901-2930, and 3901-3930 are for additional components of Standard Model parton distribution functions, where the latter three

Table 44.2: Some examples of octet (top) and decuplet (bottom) members for the numbering scheme for excited baryons. Here $q q q$ stands for $n_{q_{1}} n_{q_{2}} n_{q_{3}}$. See the text for the definition of the notation. The numbers in parenthesis correspond to the mass of the baryons. The states marked as (?) are not experimentally confirmed.

J^{P}	(D, L_{N}^{P})	$n_{r} n_{L} n_{q_{1}} n_{q_{2}} n_{q_{3}} n_{J}$	N	Λ_{8}	Σ	Ξ	Λ_{1}
Octet			211,221	312	311,321,322	331,332	213
$1 / 2^{+}$	(56, 0_{0}^{+})	$00 q q q 2$	(939)	(1116)	(1193)	(1318)	-
$1 / 2^{+}$	(56, 0_{2}^{+})	$20 q q q 2$	(1440)	(1600)	(1660)	(1690)	-
$1 / 2^{+}$	(70, $\mathbf{0}_{2}^{+}$)	$21 q q q 2$	(1710)	(1810)	(1880)	(?)	(?)
$1 / 2^{-}$	(70, $\mathbf{1}_{1}^{-}$)	$10 q q q 2$	(1535)	(1670)	(1620)	(1750)	(1405)
J^{P}	(D, L_{N}^{P})	$n_{r} n_{L} n_{q_{1}} n_{q_{2}} n_{q_{3}} n_{J}$	$\stackrel{\Delta}{111,211,221,222}$		Σ	Ξ	Ω
Decuplet					311,321,322	331,332	333
$3 / 2^{+}$	$\left(56,0_{0}^{+}\right)$	00qqq4	(1232)		(1385)	(1530)	(1672)
$3 / 2^{+}$	(56, 0_{2}^{+})	$20 q q q 4$	(1600)		(1690)	(?)	(?)
$1 / 2^{-}$	(70, $\mathbf{1}_{1}^{-}$)	$11 q q q 2$	(1620)		(1750)	(?)	(?)
$3 / 2^{-}$	$\left(\mathbf{7 0 , 1} 1_{1}^{-}\right)$	$12 q q q 4$	(1700)		(?)	(?)	(?)

ranges are intended to distinguish left/ right/ longitudinal components. Codes 998 and 999 are reserved for GEANT tracking purposes.
11. The search for physics beyond the Standard Model is an active area, so these codes are also standardized as far as possible.
(a) A standard fourth generation of fermions is included by analogy with the first three.
(b) The graviton and the boson content of a two-Higgsdoublet scenario and of additional $\mathrm{SU}(2) \times \mathrm{U}(1)$ groups are found in the range 31-40.
(c) "One-of-a-kind" exotic particles are assigned numbers in the range 41-80.The subrange 61-80 can be used for new heavier fermions in generic models, where partners to the SM fermions would have codes offset by 60 . If required, however, other assignments could be made.
(d) Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number. The superpartner of a boson or a left-handed fermion has $n=1$ while the superpartner of a right-handed fermion has $n=2$. When mixing occurs, such as between the winos and charged Higgsinos to give charginos, or between left and right sfermions, the lighter physical state is given the smaller basis state number.
(e) Technicolor states have $n=3$, with technifermions treated like ordinary fermions. States which are ordinary color singlets have $n_{r}=0$. Color octets have $n_{r}=1$. If a state has non-trivial quantum numbers under the topcolor groups $\mathrm{SU}(3)_{1} \times \mathrm{SU}(3)_{2}$, the quantum numbers are specified by tech, $i j$, where i and j are 1 or 2. n_{L} is then $2 i+j$. The coloron, V_{8}, is a heavy gluon color octet and thus is 3100021 .
(f) Excited (composite) quarks and leptons are identified by setting $n=4$ and $n_{r}=0$.
(g) Within several scenarios of new physics, it is possible to have colored particles sufficiently long-lived for colorsinglet hadronic states to form around them. In the context of supersymmetric scenarios, these states are called R-hadrons, since they carry odd R-parity. R-hadron codes, defined here, should be viewed as templates for corresponding codes also in other scenarios, for any longlived particle that is either an unflavored color octet or a flavored color triplet. The R-hadron code is obtained by combining the SUSY particle code with a code for the light degrees of freedom, with as many intermediate zeros removed from the former as required to make place for the latter at the end. (To exemplify, a sparticle $n 00000 n_{\tilde{q}}$ combined with quarks q_{1} and q_{2} obtains code $n 00 n_{\tilde{q}} n_{q_{1}} n_{q_{2}} n_{J}$.) Specifically, the new-particle spin decouples in the limit of large masses, so that the final n_{J} digit is defined by the spin state of the light-quark system alone. An appropriate number of n_{q} digits is used to define the ordinary-quark content. As usual, 9
rather than 21 is used to denote a gluon/gluino in composite states. The sign of the hadron agrees with that of the constituent new particle (a color triplet) where there is a distinct new antiparticle, and else is defined as for normal hadrons. Particle names are R with the flavor content as lower index.
(h) A black hole in models with extra dimensions has code 5000040. Kaluza-Klein excitations in models with extra dimensions have $n=5$ or $n=6$, to distinquish excitations of left- or right-handed fermions or, in case of mixing, the lighter or heavier state (cf. 11d). The nonzero n_{r} digit gives the radial excitation number, in scenarios where the level spacing allow these to be distinguished. Should the model also contain supersymmetry, excited SUSY states would be denoted by an $n_{r}>0$, with n $=1$ or 2 as usual. Should some colored states be longlived enough that hadrons would form around them, the coding strategy of 11 g applies, with the initial two $n n_{r}$ digits preserved in the combined code.
(i) Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a variable integer number $n_{q 1} n_{q_{2}} n_{q_{3}}$ units of electric charge. Codes $411 n_{q 1} n_{q_{2}} n_{q_{3}} 0$ are then used when the magnetic and electrical charge sign agree and $412 n_{q 1} n_{q_{2}} n_{q_{3}} 0$ when they disagree, with the overall sign of the particle set by the magnetic charge. For now no spin information is provided.
(j) The nature of Dark Matter (DM) is not known, and therefore a definitive classification is too early. Candidates within specific scenarios are classified therein, such as 1000022 for the lightest neutralino. Generic fundamental states can be given temporary codes in the range $51-60$, with 51,52 and 53 reserved for spin $0,1 / 2$ and 1 ones (this could also be an axion state). Generic mediators of s-channel DM pair creation of annihilation can be given codes 54 and 55 for spin 0 or 1 ones. Separate antiparticles, with negative codes, may or may not exist. More elaborate new scenarios should be constructed with $n=5$ and $n_{r}=9$.
(k) Hidden Valley particles have $n=4$ and $n_{r}=9$, and trailing numbers in agreement with their nearest-analog standard particles, as far as possible. Thus 4900021 is the gauge boson g_{v} of a confining gauge field, $490000 n_{q_{v}}$ and $490001 n_{\ell_{v}}$ fundamental constituents charged or not under this, 4900022 is the γ_{v} of a non-confining field, and $4900 n_{q_{v 1}} n_{q_{v 2}} n_{J}$ a Hidden Valley meson.
12. Occasionally program authors add their own states. To avoid confusion, these should be flagged by setting $n n_{r}=99$.
13. Concerning the non-99 numbers, it may be noted that only quarks, excited quarks, squarks, and diquarks have $n_{q_{3}}=$ 0 ; only diquarks, baryons (including pentaquarks), and the odderon have $n_{q_{1}} \neq 0$; and only mesons, the reggeon, and the pomeron have $n_{q_{1}}=0$ and $n_{q_{2}} \neq 0$. Concerning mesons
(not antimesons), if $n_{q_{1}}$ is odd then it labels a quark and an antiquark if even.
14. Nuclear codes are given as 10-digit numbers $\pm 10 L Z Z Z A A A I$. For a (hyper)nucleus consisting of n_{p} protons, n_{n} neutrons and $n_{\Lambda} \Lambda$'s, $A=n_{p}+n_{n}+n_{\Lambda}$ gives the total baryon number, $Z=n_{p}$ the total charge and $L=n_{\Lambda}$ the total number of strange quarks. I gives
the isomer level, with $I=0$ corresponding to the ground state and $I>0$ to excitations, see [4], where states denoted m, n, p, q translate to $I=1-4$. As examples, the deuteron is 1000010020 and ${ }^{235} \mathrm{U}$ is 1000922350 . To avoid ambiguities, nuclear codes should not be applied to a single hadron, like p, n or Λ^{0}, where quark-contents-based codes already exist.

QUARKS	
d	1
u	2
s	3
c	4
b	5
t	6
b^{\prime}	7
t^{\prime}	8
LEPTONS	
e^{-}	11
ν_{e}	12
μ^{-}	13
ν_{μ}	14
τ^{-}	15
ν_{τ}	16
$\tau^{\prime-}$	17
$\nu^{\prime}{ }^{\prime}$	18
GAUGE AND HIGGS BOSONS	
g	(9) 21
γ	22
z^{0}	23
W^{+}	24
h^{0} / H_{1}^{0}	25
Z^{\prime} / Z_{2}^{0}	32
$Z^{\prime \prime} / Z_{3}^{0}$	33
W^{\prime} / W_{2}^{+}	34
H^{0} / H_{2}^{0}	35
A^{0} / H_{3}^{0}	36
$H^{+}{ }^{\text {a }}$	37
\mathbf{H}^{++}	38*
$\mathrm{a}^{0} / \mathrm{H}_{4}^{0}$	40^{*}
$\begin{gathered} \hline \text { SPECIAL } \\ \text { PARTICLES } \end{gathered}$	
G (graviton)	39
R^{0}	41
$L Q^{c}$	42
DM ($S=0$)	51
DM ($S=\frac{1}{2}$)	52
DM ($S=1$)	53
reggeon	110
pomeron	990
odderon	9990

for MC internal use 81-100,
901-930,998-999*
1901-1930,
2901-2930, and
3901-3930

DIQUARKS	
$(d d)_{1}$	1103
$(u d){ }_{0}$	2101
$(u d)_{1}$	2103
$(u u)_{1}$	2203
$(s d)_{0}$	3101
$(s d)_{1}$	3103
$(s u)_{0}$	3201
$(s u)_{1}$	3203
$(s s)_{1}$	3303
$(c d)_{0}$	4101
$(c d)_{1}$	4103
$(c u)_{0}$	4201
$(c u)_{1}$	4203
$(c s)_{0}$	4301
$(c s)_{1}$	4303
$(c c)_{1}$	4403
$(b d)_{0}$	5101
$(b d)_{1}$	5103
$(b u)_{0}$	5201
$(b u)_{1}$	5203
$(b s)_{0}$	5301
$(b s)_{1}$	5303
$(b c)_{0}$	5401
$(b c)_{1}$	5403
$(b b)_{1}$	5503
$\begin{gathered} \text { SUSY } \\ \text { PARTICLES } \end{gathered}$	
$\widetilde{\sim}_{L}$	1000001
$\sim_{\sim}^{\sim}{ }_{L}$	1000002
$\stackrel{s}{s}_{\sim}^{\sim}$	1000003
$\stackrel{c}{c}_{L}$	1000004
\widetilde{b}_{1}	$1000005^{\text {a }}$
\widetilde{t}_{1}	1000006^{a}
$\widetilde{\sim}_{\sim}^{\sim}{ }_{L}^{-}$	1000011
$\nu_{e L}$	1000012
${ }_{\sim}^{\mu}{ }_{L}^{-}$	1000013
${ }_{\mu}^{\mu} L_{L}$	1000014
$\sim_{1}{ }^{-}$	$1000015^{\text {a }}$
$\nu_{\tau L}$	1000016
$\stackrel{\sim}{d}_{\sim}$	2000001
\sim_{\sim}^{\sim}	2000002
$\stackrel{s}{s}_{\sim}^{\sim}$	2000003
${ }^{c_{R}}$	2000004
$\stackrel{\sim}{\sim_{2}}$	$2000005^{\text {a }}$
$\stackrel{\sim}{t}_{\sim}$	2000006^{a}
\widetilde{e}_{\sim}^{-}	2000011
${ }_{\sim}^{\mu}{ }_{R}^{-}$	2000013
$\widetilde{\tau}_{\sim}^{-}$	2000015^{a}
\underline{g}	1000021
$\sim_{\sim}^{\sim}{ }_{1}^{0}$	$1000022^{\text {b }}$
$\sim_{\sim}^{\chi}{ }_{2}^{0}$	1000023^{b}
$\widetilde{\sim}_{\sim}^{\sim}{ }_{1}^{+}$	1000024^{b}
$\sim_{\sim}^{\chi}{ }_{3}^{0}$	$1000025^{\text {b }}$
$\widetilde{\sim}_{\sim}^{\sim}{ }_{4}^{0}$	$1000035^{\text {b }}$
$\widetilde{\chi}^{+}$	$1000037{ }^{\text {b }}$
G	1000039

LIGHT $\boldsymbol{I}=\mathbf{1}$	
MESONS	
π^{0}	1111
π^{+}	211
$a_{0}(980)^{0}$	9000111
$a_{0}(980)^{+}$	9000211
$\pi(1300)^{0}$	100111
$\pi(1300)^{+}$	100211
$a_{0}(1450)^{0}$	10111
$a_{0}(1450)^{+}$	10211
$\pi(1800)^{0}$	9010111
$\pi(1800)^{+}$	9010211
$\rho(770)^{0}$	1113
$\rho(770)^{+}$	213
$b_{1}(1235)^{0}$	10113
$b_{1}(1235)^{+}$	10213
$a_{1}(1260)^{0}$	20113
$a_{1}(1260)^{+}$	20213
$\pi_{1}(1400)^{0}$	9000113
$\pi_{1}(1400)^{+}$	9000213
$\rho(1450)^{0}$	100113
$\rho(1450)^{+}$	100213
$\pi_{1}(1600)^{0}$	9010113
$\pi_{1}(1600)^{+}$	9010213
$a_{1}(1640)^{0}$	9020113
$a_{1}(1640)^{+}$	9020213
$\rho(1700)^{0}$	30113
$\rho(1700)^{+}$	30213
$\rho(1900)^{0}$	9030113
$\rho(1900)^{+}$	9030213
$\rho(2150)^{0}$	9040113
$\rho(2150)^{+}$	9040213
$a_{2}(1320)^{0}$	115
$a_{2}(1320)^{+}$	215
$\pi_{2}(1670)^{0}$	10115
$\pi_{2}(1670)^{+}$	10215
$a_{2}(1700)^{0}$	9000115
$a_{2}(1700)^{+}$	9000215
$\pi_{2}(2100)^{0}$	9010115
$\pi_{2}(2100)^{+}$	9010215
$\rho_{3}(1690)^{0}$	1117
$\rho_{3}(1690)^{+}$	217
$\rho_{3}(1990)^{0}$	9000117
$\rho_{3}(1990)^{+}$	9000217
$\rho_{3}(2250)^{0}$	9010117
$\rho_{3}(2250)^{+}$	9010217
$a_{4}(2040)^{0}$	1119
$a_{4}(2040)^{+}$	219

$a_{4}(2040)^{+} \quad 219$

LIGHT I $\boldsymbol{I}=\mathbf{0}$	
MESONS	
$(u \bar{u}, \bar{d}, s \bar{s}$	
admixtures $)$	
η	221
$\eta^{\prime}(958)$	331
$f_{0}(500)$	9000221
$f_{0}(980)$	9010221
$\eta(1295)$	100221
$f_{0}(1370)$	10221
$\eta(1405)$	9020221
$\eta(1475)$	100331
$f_{0}(1500)$	9030221
$f_{0}(1710)$	10331
$\eta(1760)$	9040221
$f_{0}(2020)$	9050221
$f_{0}(2100)$	9060221
$f_{0}(2200)$	9070221
$\eta(2225)$	9080221
$\omega(782)$	223
$\phi(1020)$	333
$h_{1}(1170)$	10223
$f_{1}(1285)$	20223
$h_{1}(1380)$	10333
$f_{1}(1420)$	20333
$\omega(1420)$	1000223
$f_{1}(1510)$	9000223
$h_{1}(1595)$	9010223
$\omega(1650)$	30223
$\phi(1680)$	100333
$f_{2}(1270)$	225
$f_{2}(1430)$	9000225
$f_{2}^{\prime}(1525)$	335
$f_{2}(1565)$	9010225
$f_{2}(1640)$	9020225
$\eta_{2}(1645)$	10225
$f_{2}(1810)$	9030225
$\eta_{2}(1870)$	10335
$f_{2}(1910)$	9040225
$f_{2}(1950)$	9050225
$f_{2}(2010)$	9060225
$f_{2}(2150)$	9070225
$f_{2}(2300)$	9080225
$f_{2}(2340)$	9090225
$\omega_{3}(1670)$	227
$\phi_{3}(1850)$	337
$f_{4}(2050)$	229
$f_{J}(2220)$	9000229
$f_{4}(2300)$	9010229

9010229

$\begin{aligned} & \hline \text { STRANGE } \\ & \text { MESONS } \end{aligned}$	
K_{L}^{0}	130
K_{S}^{0}	310
K^{0}	311
K^{+}	321
$K_{0}^{*}(700)^{0}$	9000311
$K_{0}^{*}(700)^{+}$	9000321
$K_{0}^{*}(1430)^{0}$	10311
$K_{0}^{*}(1430)^{+}$	10321
$K(1460)^{0}$	100311
$K(1460)^{+}$	100321
$K(1830)^{0}$	9010311
$K(1830)^{+}$	9010321
$K_{0}^{*}(1950)^{0}$	9020311
$K_{0}^{*}(1950)^{+}$	9020321
$K^{*}(892)^{0}$	313
$K^{*}(892)^{+}$	323
$K_{1}(1270)^{0}$	10313
$K_{1}(1270)^{+}$	10323
$K_{1}(1400)^{0}$	20313
$K_{1}(1400)^{+}$	20323
$K^{*}(1410)^{0}$	100313
$K^{*}(1410)^{+}$	100323
$K_{1}(1650)^{0}$	9000313
$K_{1}(1650)^{+}$	9000323
$K^{*}(1680)^{0}$	30313
$K^{*}(1680)^{+}$	30323
$K_{2}^{*}(1430)^{0}$	315
$K_{2}^{*}(1430)^{+}$	325
$K_{2}(1580)^{0}$	9000315
$K_{2}(1580)^{+}$	9000325
$K_{2}(1770)^{0}$	10315
$K_{2}(1770)^{+}$	10325
$K_{2}(1820)^{0}$	20315
$K_{2}(1820)^{+}$	20325
$K_{2}^{*}(1980)^{0}$	9010315
$K_{2}^{*}(1980)^{+}$	9010325
$K_{2}(2250)^{0}$	9020315
$K_{2}(2250)^{+}$	9020325
$K_{3}^{*}(1780)^{0}$	317
$K_{3}^{*}(1780)^{+}$	327
$K_{3}(2320)^{0}$	9010317
$K_{3}(2320)^{+}$	9010327
$K_{4}^{*}(2045)^{0}$	319
$K_{4}^{*}(2045)^{+}$	329
$K_{4}(2500)^{0}$	9000319
$K_{4}(2500)^{+}$	9000329

$\begin{aligned} & \text { CHARMED } \\ & \text { MESONS } \\ & \hline \end{aligned}$		$\begin{gathered} B_{c 0}^{*+} \\ B_{c}^{*+} \\ B_{c 1}^{*}(L)^{+} \\ B_{c 1}(H)^{+} \\ B_{c 2}^{*+} \end{gathered}$	$\begin{array}{r} 10541 \\ 543 \\ 10543 \\ 20543 \\ 545 \end{array}$	$\begin{gathered} \Upsilon(11020) \\ \chi_{b 2}(1 P) \\ \eta_{b 2}(1 D) \\ \Upsilon_{2}(1 D) \end{gathered}$	9010553 555 10555 20555	CHARMED BARYONS		BOTTOM BARYONS	
D^{+}	411					Λ_{c}^{+}	4122	Λ_{b}^{0}	5122
D^{0}	421					Σ_{c}^{++}	4222	Σ_{b}^{-}	5112
$D_{0}^{*}(2400)^{+}$	10411			$\chi_{b 2}(2 P)$	100555	Σ_{c}^{+}	4212	Σ_{b}^{0}	5212
$D_{0}^{*}(2400)^{0}$	10421			$\eta_{b 2}(2 D)$	110555	Σ_{c}^{0}	4112	Σ_{b}^{+}	5222
$D^{*}(2010)^{+}$	413			$\Upsilon_{2}(2 D)$	120555	Σ_{c}^{*++}	4224	Σ_{b}^{*-}	5114
$D^{*}(2007)^{0}$	423	$c \bar{c}$ MESONS		$\chi_{b 2}(3 P)$	200555	Σ_{c}^{*+}	4214	$\Sigma_{b}^{* *}$	5214
$D_{1}(2420)^{+}$	10413	$\eta_{c}(1 S)$	441	$\Upsilon_{3}(1 D)$	557	$\Sigma_{c}^{* 0}$	4114	Σ_{b}^{*+}	5224
$D_{1}(2420)^{0}$	10423	$\chi_{c 0}(1 P)$	10441	$\Upsilon_{3}(2 D)$	100557	Ξ_{c}^{+}	4232	Ξ_{b}^{-}	5132
$D_{1}(H)^{+}$	20413	$\eta_{c}(2 S)$	100441			Ξ_{c}^{0}	4132	Ξ_{b}^{0}	5232
$D_{1}(2430)^{0}$	20423	$J / \psi(1 S)$	443			$\Xi_{c}^{\prime+}$	4322	E ${ }_{\text {- }}{ }^{\text {b }}$	5312
$D_{2}^{*}(2460)^{+}$	415	$h_{c}(1 P)$	10443	LIGHT BARYONS			4312	$\Xi_{\Xi_{b}^{\prime 0}}$	5322
$D_{2}^{*}(2460)^{0}$	425	$\chi_{c 1}(1 P)$	20443			Ξ_{c}^{*+}	4324	$\Xi_{\Xi_{6}^{*-}}$	53324
${ }^{*} D_{s}^{+}+$	431	$\psi(2 S)$	100443	p	2212	$\Xi_{c}^{* 0}$	4314	$\stackrel{\rightharpoonup}{b}_{\Xi_{6}^{* 0}}$	5324
$D_{s 0}^{*}(2317)^{+}$	10431	$\psi(3770)$	30443	Δ^{++}	2112	Ω_{c}^{0} $\Omega_{\text {co }}^{0}$	4332	Ξ_{b}^{-} Ω_{b}^{-}	5324 5332
D_{s}^{*+}	433	$\psi(4040)$	9000443	Δ^{++}	2224	$\Omega_{c}^{* 0}$	4334	$\Omega^{*}{ }^{\text {b }}$	
$D_{s 1}(2536){ }^{+}$	10433	$\psi(4160)$	9010443	Δ^{+}	2214	$\Xi_{c c}^{+}$	4412	Ω_{b}^{*-} Ξ^{0}	5334
$D_{s 1}(2460)^{+}$	20433	$\psi(4415)$	9020443	Δ^{0}	2114	$\Xi_{c c}^{++}$	4422	$\Xi_{b_{+}}^{0}$	5142
$D_{s 2}^{*}(2573){ }^{+}$	435	$\chi_{c 2}(1 P)$	445	Δ^{-}	1114	$\Xi_{c c}^{*+}$	4414	$\Xi_{b c}^{+}$	5242
		$\chi_{c 2}(3930)$	100445			$\Xi_{c c}^{*++}$	4424	$\Xi_{b c}^{\text {b }}$	5412
BOTTOM MESONS				STRANGE BARYONS		$\Omega_{c c}^{+}$	4432	${ }_{\square}{ }^{*} 0$	5422
						$\begin{aligned} & \Omega_{c c}^{*+} \\ & \Omega_{c c c}^{++} \end{aligned}$	44344444	$\begin{aligned} & \Xi_{b c} \\ & \Xi_{b c}^{*+q} \\ & \Omega_{1}^{0} \end{aligned}$	5424
$B^{0} \quad 511$		$b \bar{b}$ MESONS		$\stackrel{\Lambda}{\Sigma^{+}}$					5342
B^{+}	521	$\eta_{b}(1 S)$	10551		3122 3222			$\Omega_{b c}^{\text {b }}$	5432
$B_{0}^{* 0}$	10511	$\chi_{b 0}(1 P)$ $\eta_{b}(2 S)$		Σ^{0}	3222 3212			$\Omega_{b c}^{* * \delta}$	5434
B_{0}^{*+}	10521	$\begin{gathered} \eta_{b}(2 S) \\ \chi_{b 0}(2 P) \end{gathered}$	100551	$\begin{gathered} \Sigma^{-} \\ \Sigma^{*+} \end{gathered}$	3112				5442
$B^{* 0}$	513		110551	$\begin{gathered} \Sigma^{*+} \\ \Sigma^{* 0} \end{gathered}$	$3224{ }^{\text {c }}$			$\Omega_{b c c}^{*+}$	5444
B^{*+}	523	$\begin{gathered} \chi_{b 0}(2 P) \\ \eta_{b}(3 S) \end{gathered}$	200551		$3214^{\text {c }}$			$\Xi_{b b}^{\text {c }}$	5512
$B_{1}(L)^{0}$	10513	$\begin{gathered} \eta_{b}(3 S) \\ \chi_{b 0}(3 P) \end{gathered}$	210551553		$3114{ }^{\text {c }}$			$\Xi_{b b}^{\text {b }}$	5522
$B_{1}(L)^{+}$	10523	$\Upsilon(1 S)$			3322				5514
$B_{1}(H)^{0}$	20513	$h_{b}(1 P)$	10553	$\begin{aligned} & \Xi^{0} \\ & \Xi^{-} \end{aligned}$	3312			$\stackrel{\text { bb }}{ }{ }^{*} 0$	5524
$B_{1}(H)+$	20523	$\chi_{b 1}(1 P)$ $\mathbf{\Upsilon}_{\mathbf{1}}(\mathbf{1 D})$	30553	$\begin{aligned} & \Xi^{-} \\ & \Xi^{* 0} \end{aligned}$	$3324^{\text {c }}$ c				5532
$B_{2}^{* 0}$	515	$\mathbf{\Upsilon}_{1}(\mathbf{1 D})$ $(2 S)$	100553	Ξ^{*-}	3334			$\Omega_{b b}^{*-}$	5534
B_{2}^{*+}	525	$h_{b}(2 P)$		Ω^{-}				$\Omega_{b b c}^{\text {b }}$	5542
B_{s}^{0} $B_{s 0}^{* 0}$	531 10531	$\chi_{b 1}(2 P)$	120553					$\Omega_{b b c}^{* 0}$	5544
${ }_{\text {B }}{ }_{s}^{* 0}$	533	$\Upsilon_{1}(2 D)$	130553					$\Omega_{b b b}^{-}$	5554
$B_{s 1}(L)^{0}$	10533	r $h_{\text {(}}(3 S)$	200553						
$B_{s 1}(H)^{0}$	20533	$h_{b}(3 P)$	210553						
$B_{s 2}^{* 0}$	535	$\chi_{b 1}(3 P)$ $\gamma(4 S)$	220553					PENTAQUARKS	
B_{C}^{+}	541	$\Upsilon(4 S)$	300553					Θ^{+}	9221132
		$\Upsilon(10860)$	9000553					Φ^{--}	9331122

Footnotes to the Tables:

*) Numbers or names in bold face are new or have changed since the 2018 Review.
a) Particulary in the third generation, the left and right sfermion states may mix, as shown. The lighter mixed state is given the smaller number.
b) The physical $\tilde{\chi}$ states are admixtures of the pure $\tilde{\gamma}, \widetilde{Z}^{0}, \widetilde{W}^{+}$, $\widetilde{H}_{1}^{0}, \widetilde{H}_{2}^{0}$, and \widetilde{H}^{+}states.
c) Σ^{*} and Ξ^{*} are alternate names for $\Sigma(1385)$ and $\Xi(1530)$.

This text and full lists of particle numbers can be found on-
line [5].
References
[1] G. P. Yost et al. (Particle Data Group), Phys. Lett. B204, 1 (1988).
[2] I.G.Knowles et al., CERN 96-01, p. 103.
[3] C. Caso et al. (Particle Data Group), Eur. Phys. J. C3, 1 (1998).
[4] G. Audi et al., Nucl. Phys. A729, 3 (2003).
[5] http://pdg.lbl.gov/current/mc-particle-id.

45. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

46. $\mathrm{SU}(3)$ isoscalar factors and representation matrices

Written by R.L. Kelly (LBNL).
The most commonly used $\mathrm{SU}(3)$ isoscalar factors, corresponding to the singlet, octet, and decuplet content of $8 \otimes 8$ and $10 \otimes 8$, are shown at the right. The notation uses particle names to identify the coefficients, so that the pattern of relative couplings may be seen at a glance. We illustrate the use of the coefficients below. See J.J de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations and phase conventions.
$A \sqrt{ }$ is to be understood over every integer in the matrices; the exponent $1 / 2$ on each matrix is a reminder of this. For example, the $\Xi \rightarrow \Omega K$ element of the $10 \rightarrow 10 \otimes 8$ matrix is $-\sqrt{6} / \sqrt{24}=-1 / 2$.

Intramultiplet relative decay strengths may be read directly from the matrices. For example, in decuplet \rightarrow octet + octet decays, the ratio of $\Omega^{*} \rightarrow \Xi \bar{K}$ and $\Delta \rightarrow N \pi$ partial widths is, from the $10 \rightarrow 8 \times 8$ matrix,

$$
\begin{equation*}
\frac{\Gamma\left(\Omega^{*} \rightarrow \Xi \bar{K}\right)}{\Gamma(\Delta \rightarrow N \pi)}=\frac{12}{6} \times(\text { phase space factors }) \tag{46.1}
\end{equation*}
$$

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

$$
\begin{equation*}
\frac{\Gamma\left(\Omega^{*-} \rightarrow \Xi^{0} K^{-}\right)}{\Gamma\left(\Delta^{+} \rightarrow p \pi^{0}\right)}=\frac{1 / 2}{2 / 3} \times \frac{12}{6} \times p . s . f .=\frac{3}{2} \times p . s . f . \tag{46.2}
\end{equation*}
$$

Partial widths for $8 \rightarrow 8 \otimes 8$ involve a linear superposition of 8_{1} (symmetric) and 8_{2} (antisymmetric) couplings. For example,

$$
\begin{equation*}
\Gamma\left(\Xi^{*} \rightarrow \Xi \pi\right) \sim\left(-\sqrt{\frac{9}{20}} g_{1}+\sqrt{\frac{3}{12}} g_{2}\right)^{2} \tag{46.3}
\end{equation*}
$$

The relations between g_{1} and g_{2} (with de Swart's normalization) and the standard D and F couplings that appear in the interaction Lagrangian,

$$
\begin{equation*}
\mathscr{L}=-\sqrt{2} D \operatorname{Tr}(\{\bar{B}, B\} M)+\sqrt{2} F \operatorname{Tr}([\bar{B}, B] M) \tag{46.4}
\end{equation*}
$$

where $[\bar{B}, B] \equiv \bar{B} B-B \bar{B}$ and $\{\bar{B}, B\} \equiv \bar{B} B+B \bar{B}$, are

$$
\begin{equation*}
D=\frac{\sqrt{30}}{40} g_{1}, \quad F=\frac{\sqrt{6}}{24} g_{2} \tag{46.5}
\end{equation*}
$$

Thus, for example,

$$
\begin{equation*}
\Gamma\left(\Xi^{*} \rightarrow \Xi \pi\right) \sim(F-D)^{2} \sim(1-2 \alpha)^{2} \tag{46.6}
\end{equation*}
$$

where $\alpha \equiv F /(D+F)$. (This definition of α is de Swart's. The alternative $D /(D+F)$, due to Gell-Mann, is also used.)

The generators of $\mathrm{SU}(3)$ transformations, $\lambda_{a}(a=1,8)$, are 3×3 matrices that obey the following commutation and anticommutation relationships:

$$
\begin{gather*}
{\left[\lambda_{a}, \lambda_{b}\right] \equiv \lambda_{a} \lambda_{b}-\lambda_{b} \lambda_{a}=2 i f_{a b c} \lambda_{c}} \tag{46.7}\\
\left\{\lambda_{a}, \lambda_{b}\right\} \equiv \lambda_{a} \lambda_{b}+\lambda_{b} \lambda_{a}=\frac{4}{3} \delta_{a b} I+2 d_{a b c} \lambda_{c} \tag{46.8}
\end{gather*}
$$

where I is the 3×3 identity matrix, and $\delta_{a b}$ is the Kronecker delta symbol. The $f_{a b c}$ are odd under the permutation of any pair of indices, while the $d_{a b c}$ are even. The nonzero values are
$1 \rightarrow 8 \otimes 8$

$8 \rightarrow 10 \otimes 8$
$\left(\begin{array}{l}N \\ \Sigma \\ \Lambda \\ \Xi\end{array}\right) \rightarrow\left(\begin{array}{cccc}\Delta \bar{K} & \Delta \pi & \Sigma K & \\ \Delta \bar{K} & \Sigma \eta & \Xi K \\ & \Sigma \pi & \Xi K & \\ \Sigma \bar{K} & \Xi \pi & \Xi \eta & \Omega K\end{array}\right) \quad=\frac{1}{\sqrt{15}}\left(\begin{array}{rrrr} & -12 & 3 & \\ 8 & -2 & -3 & 2 \\ & -9 & 6 & \\ 3 & -3 & -3 & 6\end{array}\right)^{1 / 2}$
$10 \rightarrow 10 \otimes 8$
$\left(\begin{array}{c}\Delta \\ \Sigma \\ \Xi \\ \Omega\end{array}\right) \rightarrow\left(\begin{array}{ccc}\Delta \pi & \Delta \eta & \Sigma K \\ \Delta \bar{K} & \Sigma \pi & \Sigma \eta \\ \hline K K \\ \Sigma \bar{K} & \Xi \pi & \Xi \eta \\ & \Omega K \\ & \Xi \bar{K} & \Omega \eta\end{array}\right) \quad=\frac{1}{\sqrt{24}}\left(\begin{array}{cccc}15 & 3 & -6 \\ 8 & 8 & 0 & -8 \\ 12 & 3 & -3 & -6\end{array}\right)^{1 / 2}$

$a b c$	$f_{a b c}$		$a b c$	$d_{a b c}$		$a b c$
	1	$d_{a b c}$				
123	1	118	$1 / \sqrt{3}$	355	$1 / 2$	
147	$1 / 2$	146	$1 / 2$	366	$-1 / 2$	
156	$-1 / 2$	157	$1 / 2$	377	$-1 / 2$	
246	$1 / 2$	228	$1 / \sqrt{3}$	448	$-1 /(2 \sqrt{3})$	
257	$1 / 2$	247	$-1 / 2$	558	$-1 /(2 \sqrt{3})$	
345	$1 / 2$	256	$1 / 2$	668	$-1 /(2 \sqrt{3})$	
367	$-1 / 2$	338	$1 / \sqrt{3}$	778	$-1 /(2 \sqrt{3})$	
458	$\sqrt{3} / 2$	344	$1 / 2$	888	$-1 / \sqrt{3}$	
678	$\sqrt{3} / 2$					

The λ_{a} 's are

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \lambda_{5}=\left(\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda_{7}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Equation (46.7) defines the Lie algebra of $\mathrm{SU}(3)$. A general d dimensional representation is given by a set of $d \times d$ matrices satisfying Eq. (46.7) with the $f_{a b c}$ given above. Equation (46.8) is specific to the defining 3-dimensional representation.

47. SU(n) Multiplets and Young Diagrams

Written by C.G. Wohl (LBNL).
This note tells (1) how $\mathrm{SU}(n)$ particle multiplets are identified or labeled, (2) how to find the number of particles in a multiplet from its label, (3) how to draw the Young diagram for a multiplet, and (4) how to use Young diagrams to determine the overall multiplet structure of a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word "representation" is used where we use "multiplet," and "tableau" is used where we use "diagram."

47.1. Multiplet labels

An $\mathrm{SU}(n)$ multiplet is uniquely identified by a string of $(n-1)$ nonnegative integers: $(\alpha, \beta, \gamma, \ldots)$. Any such set of integers specifies a multiplet. For an $\mathrm{SU}(2)$ multiplet such as an isospin multiplet, the single integer α is the number of steps from one end of the multiplet to the other (i.e., it is one fewer than the number of particles in the multiplet). In $\mathrm{SU}(3)$, the two integers α and β are the numbers of steps across the top and bottom levels of the multiplet diagram. Thus the labels for the $\mathrm{SU}(3)$ octet and decuplet

are $(1,1)$ and $(3,0)$. For larger n, the interpretation of the integers in terms of the geometry of the multiplets, which exist in an ($n-1$)-dimensional space, is not so readily apparent.

The label for the $\mathrm{SU}(n)$ singlet is $(0,0, \ldots, 0)$. In a flavor $\mathrm{SU}(n)$, the n quarks together form a $(1,0, \ldots, 0)$ multiplet, and the n antiquarks belong to a $(0, \ldots, 0,1)$ multiplet. These two multiplets are conjugate to one another, which means their labels are related by $(\alpha, \beta, \ldots) \leftrightarrow(\ldots, \beta, \alpha)$.

47.2. Number of particles

The number of particles in a multiplet, $N=N(\alpha, \beta, \ldots)$, is given as follows (note the pattern of the equations).
In $\mathrm{SU}(2), N=N(\alpha)$ is

$$
\begin{equation*}
N=\frac{(\alpha+1)}{1} \tag{47.1}
\end{equation*}
$$

In $\mathrm{SU}(3), N=N(\alpha, \beta)$ is

$$
\begin{equation*}
N=\frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} \tag{47.2}
\end{equation*}
$$

In $\mathrm{SU}(4), N=N(\alpha, \beta, \gamma)$ is

$$
\begin{equation*}
N=\frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\gamma+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} \cdot \frac{(\beta+\gamma+2)}{2} \cdot \frac{(\alpha+\beta+\gamma+3)}{3} \tag{47.3}
\end{equation*}
$$

Note that in Eq. (47.3) there is no factor with $(\alpha+\gamma+2)$: only a consecutive sequence of the label integers appears in any factor. One more example should make the pattern clear for any $\operatorname{SU}(n)$. In $\operatorname{SU}(5)$, $N=N(\alpha, \beta, \gamma, \delta)$ is

$$
\begin{aligned}
N & =\frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\gamma+1)}{1} \cdot \frac{(\delta+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} \cdot \frac{(\beta+\gamma+2)}{2} \\
& \times \frac{(\gamma+\delta+2)}{2} \cdot \frac{(\alpha+\beta+\gamma+3)}{3} \cdot \frac{(\beta+\gamma+\delta+3)}{3} \cdot \frac{(\alpha+\beta+\gamma+\delta+4)}{4}(47.4)
\end{aligned}
$$

From the symmetry of these equations, it is clear that multiplets that are conjugate to one another have the same number of particles, but so can other multiplets. For example, the $\mathrm{SU}(4)$ multiplets $(3,0,0)$ and $(1,1,0)$ each have 20 particles. Try the equations and see.

47.3. Young diagrams

A Young diagram consists of an array of boxes (or some other symbol) arranged in one or more left-justified rows, with each row being at least as long as the row beneath. The correspondence between a diagram and a multiplet label is: The top row juts out α boxes to the right past the end of the second row, the second row juts out β boxes to the right past the end of the third row, etc. A diagram in $\mathrm{SU}(n)$ has at most n rows. There can be any number of "completed" columns of n boxes buttressing the left of a diagram; these don't affect the label. Thus in $\mathrm{SU}(3)$ the diagrams

represent the multiplets $(1,0),(0,1),(0,0),(1,1)$, and $(3,0)$. In any $\mathrm{SU}(n)$, the quark multiplet is represented by a single box, the antiquark multiplet by a column of $(n-1)$ boxes, and a singlet by a completed column of n boxes.

47.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur in coupling two multiplets together. To couple together more than two multiplets, first couple two, then couple a third with each of the multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a, b, c, \ldots is admissible if at any point in the sequence at least as many a 's have occurred as b 's, at least as many b 's have occurred as c 's, etc. Thus $a b c d$ and $a a b c b$ are admissible sequences and $a b b$ and $a c b$ are not. Now the recipe:
(a) Draw the Young diagrams for the two multiplets, but in one of the diagrams replace the boxes in the first row with a 's, the boxes in the second row with b 's, etc. Thus, to couple two $\mathrm{SU}(3)$ octets (such as the π-meson octet and the baryon octet), we start with \square_{\square} and a a . The unlettered diagram forms the upper left-hand corner of all the enlarged diagrams constructed below.
(b) Add the a 's from the lettered diagram to the right-hand ends of the rows of the unlettered diagram to form all possible legitimate Young diagrams that have no more than one a per column. In general, there will be several distinct diagrams, and all the a 's appear in each diagram. At this stage, for the coupling of the two $\mathrm{SU}(3)$ octets, we have:

(c) Use the b 's to further enlarge the diagrams already obtained, subject to the same rules. Then throw away any diagram in which the full sequence of letters formed by reading right to left in the first row, then the second row, etc., is not admissible.
(d) Proceed as in (c) with the c 's (if any), etc.

The final result of the coupling of the two $\mathrm{SU}(3)$ octets is:

Here only the diagrams with admissible sequences of a 's and b 's and with fewer than four rows (since $n=3$) have been kept. In terms of multiplet labels, the above may be written

$$
(1,1) \otimes(1,1)=(2,2) \oplus(3,0) \oplus(0,3) \oplus(1,1) \oplus(1,1) \oplus(0,0)
$$

In terms of numbers of particles, it may be written

$$
\mathbf{8} \otimes \mathbf{8}=\mathbf{2 7} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}
$$

The product of the numbers on the left here is equal to the sum on the right, a useful check. (See also Sec. 15 on the Quark Model.)

Kinematics, Cross-Section Formulae, and Plots
48. Kinematics (rev.) 671
49. Resonances (rev.) 675
50. Cross-section formulae for specific processes (rev.) 682
51. Neutrino cross section measurements (rev.) 691
52. Plots of cross sections and related quantities (rev.) 696

48. Kinematics

Reviewed August 2019 by D. Miller (Glasgow), D.R. Tovey (Sheffield) and January 2000 by J.D. Jackson (LBNL).
Throughout this section units are used in which $\hbar=c=1$. The following conversions are useful: $\hbar c=197.3 \mathrm{MeV} \mathrm{fm},(\hbar c)^{2}=$ $0.3894(\mathrm{GeV})^{2} \mathrm{mb}$.

48.1 Lorentz transformations

The energy E and 3-momentum \boldsymbol{p} of a particle of mass m form a 4 -vector $p=(E, \boldsymbol{p})$ whose square $p^{2} \equiv E^{2}-|\boldsymbol{p}|^{2}=m^{2}$. The velocity of the particle is $\beta=\boldsymbol{p} / E$. The energy and momentum $\left(E^{*}, \boldsymbol{p}^{*}\right)$ viewed from a frame moving with velocity $\boldsymbol{\beta}_{f}$ are given by

$$
\binom{E^{*}}{p_{\|}^{*}}=\left(\begin{array}{cc}
\gamma_{f} & -\gamma_{f} \beta_{f} \tag{48.1}\\
-\gamma_{f} \beta_{f} & \gamma_{f}
\end{array}\right)\binom{E}{p_{\|}}, \quad p_{T}^{*}=p_{T}
$$

where $\gamma_{f}=\left(1-\beta_{f}^{2}\right)^{-1 / 2}$ and $p_{T}\left(p_{\|}\right)$are the components of \boldsymbol{p} perpendicular (parallel) to $\boldsymbol{\beta}_{f}$. Other 4 -vectors, such as the spacetime coordinates of events, of course transform in the same way. The scalar product of two 4 -momenta $p_{1} \cdot p_{2}=E_{1} E_{2}-\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}$ is invariant (frame independent).

48.2 Center-of-mass energy and momentum

In the collision of two particles of masses m_{1} and m_{2} the total center-of-mass energy can be expressed in the Lorentz-invariant form

$$
\begin{align*}
E_{\mathrm{cm}} & =\left[\left(E_{1}+E_{2}\right)^{2}-\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\right)^{2}\right]^{1 / 2} \\
& =\left[m_{1}^{2}+m_{2}^{2}+2 E_{1} E_{2}\left(1-\beta_{1} \beta_{2} \cos \theta\right)\right]^{1 / 2} \tag{48.2}
\end{align*}
$$

where θ is the angle between the particles. In the frame where one particle (of mass m_{2}) is at rest (lab frame),

$$
\begin{equation*}
E_{\mathrm{cm}}=\left(m_{1}^{2}+m_{2}^{2}+2 E_{1 \mathrm{lab}} m_{2}\right)^{1 / 2} \tag{48.3}
\end{equation*}
$$

The velocity of the center-of-mass in the lab frame is

$$
\begin{equation*}
\boldsymbol{\beta}_{\mathrm{cm}}=\boldsymbol{p}_{\mathrm{lab}} /\left(E_{1 \mathrm{lab}}+m_{2}\right) \tag{48.4}
\end{equation*}
$$

where $\boldsymbol{p}_{\text {lab }} \equiv \boldsymbol{p}_{1 \text { lab }}$ and

$$
\begin{equation*}
\gamma_{\mathrm{cm}}=\left(E_{1 \mathrm{lab}}+m_{2}\right) / E_{\mathrm{cm}} \tag{48.5}
\end{equation*}
$$

The c.m. momenta of particles 1 and 2 are of magnitude

$$
\begin{equation*}
p_{\mathrm{cm}}=p_{\mathrm{lab}} \frac{m_{2}}{E_{\mathrm{cm}}} \tag{48.6}
\end{equation*}
$$

For example, if a $0.80 \mathrm{GeV} / c$ kaon beam is incident on a proton target, the center of mass energy is 1.699 GeV and the center of mass momentum of either particle is $0.442 \mathrm{GeV} / c$. It is also useful to note that

$$
\begin{equation*}
E_{\mathrm{cm}} d E_{\mathrm{cm}}=m_{2} d E_{1 \mathrm{lab}}=m_{2} \beta_{1 \mathrm{lab}} d p_{\mathrm{lab}} \tag{48.7}
\end{equation*}
$$

48.3 Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an invariant amplitude $-i \mathscr{M}$. As an example, the S-matrix for $2 \rightarrow 2$ scattering is related to \mathscr{M} by

$$
\begin{align*}
\left\langle p_{1}^{\prime} p_{2}^{\prime}\right| S\left|p_{1} p_{2}\right\rangle & =I-i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \\
& \times \frac{\mathscr{M}\left(p_{1}, p_{2} ; p_{1}^{\prime}, p_{2}^{\prime}\right)}{\left(2 E_{1}\right)^{1 / 2}\left(2 E_{2}\right)^{1 / 2}\left(2 E_{1}^{\prime}\right)^{1 / 2}\left(2 E_{2}^{\prime}\right)^{1 / 2}} \tag{48.8}
\end{align*}
$$

The state normalization is such that

$$
\begin{equation*}
\left\langle p^{\prime} \mid p\right\rangle=(2 \pi)^{3} \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \tag{48.9}
\end{equation*}
$$

For a $2 \rightarrow 2$ scattering process producing unstable particles 1^{\prime} and 2^{\prime} decaying via $1^{\prime} \rightarrow 3^{\prime} 4^{\prime}$ and $2^{\prime} \rightarrow 5^{\prime} 6^{\prime}$ the matrix element
for the complete process can be written in the narrow width approximation as:

$$
\begin{align*}
& \mathscr{M}\left(12 \rightarrow 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}\right)= \\
& \sum_{h_{1^{\prime}}, h_{2^{\prime}}} \frac{\mathscr{M}\left(12 \rightarrow 1^{\prime} 2^{\prime}\right) \mathscr{M}\left(1^{\prime} \rightarrow 3^{\prime} 4^{\prime}\right) \mathscr{M}\left(2^{\prime} \rightarrow 5^{\prime} 6^{\prime}\right)}{\left(m_{3^{\prime} 4^{\prime}}^{2}-m_{1^{\prime}}^{2}+i m_{1^{\prime}} \Gamma_{1^{\prime}}\right)\left(m_{5^{\prime} 6^{\prime}}^{2}-m_{2^{\prime}}^{2}+i m_{2^{\prime}} \Gamma_{2^{\prime}}\right)} . \tag{48.10}
\end{align*}
$$

Here, $m_{i j}$ is the invariant mass of particles i and j, m_{k} and Γ_{k} are the mass and total width of particle k, and the sum runs over the helicities of the intermediate particles. This enables the cross section for such a process to be written as the product of the cross section for the initial $2 \rightarrow 2$ scattering process with the branching ratios (relative partial decay rates) of the subsequent decays.

48.4 Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms of the Lorentz-invariant matrix element \mathscr{M} by

$$
\begin{equation*}
d \Gamma=\frac{(2 \pi)^{4}}{2 M}|\mathscr{M}|^{2} d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right) \tag{48.11}
\end{equation*}
$$

where $d \Phi_{n}$ is an element of n-body phase space given by

$$
\begin{equation*}
d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=\delta^{4}\left(P-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}} \tag{48.12}
\end{equation*}
$$

This phase space can be generated recursively, viz.

$$
\begin{align*}
& d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=d \Phi_{j}\left(q ; p_{1}, \ldots, p_{j}\right) \\
& \quad \times d \Phi_{n-j+1}\left(P ; q, p_{j+1}, \ldots, p_{n}\right)(2 \pi)^{3} d q^{2} \tag{48.13}
\end{align*}
$$

where $q^{2}=\left(\sum_{i=1}^{j} E_{i}\right)^{2}-\left|\sum_{i=1}^{j} \boldsymbol{p}_{i}\right|^{2}$. This form is particularly useful in the case where a particle decays into another particle that subsequently decays.

48.4.1 Survival probability

If a particle of mass M has mean proper lifetime $\tau(=1 / \Gamma)$ and has momentum (E, \boldsymbol{p}), then the probability that it lives for a time t_{0} or greater before decaying is given by

$$
\begin{equation*}
P\left(t_{0}\right)=e^{-t_{0} \Gamma / \gamma}=e^{-M t_{0} \Gamma / E} \tag{48.14}
\end{equation*}
$$

and the probability that it travels a distance x_{0} or greater is

$$
\begin{equation*}
P\left(x_{0}\right)=e^{-M x_{0} \Gamma /|\boldsymbol{p}|} \tag{48.15}
\end{equation*}
$$

48.4.2 Two-body decays

Figure 48.1: Definitions of variables for two-body decays.
In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2, menta using Eq. (48.2) with $M=E_{\mathrm{cm}}$.

$$
\begin{gather*}
E_{1}=\frac{M^{2}-m_{2}^{2}+m_{1}^{2}}{2 M} \tag{48.16}\\
=\frac{\left|\boldsymbol{p}_{1}\right|=\left|\boldsymbol{p}_{2}\right|}{2 M}
\end{gather*}
$$

and

$$
\begin{equation*}
d \Gamma=\frac{1}{32 \pi^{2}}|\mathscr{M}|^{2} \frac{\left|\boldsymbol{p}_{1}\right|}{M^{2}} d \Omega \tag{48.18}
\end{equation*}
$$

where $d \Omega=d \phi_{1} d\left(\cos \theta_{1}\right)$ is the solid angle of particle 1 . The invariant mass M can be determined from the energies and mo-
and

[^71]
48.4.3 Three-body decays

Figure 48.2: Definitions of variables for three-body decays.
Defining $p_{i j}=p_{i}+p_{j}$ and $m_{i j}^{2}=p_{i j}^{2}$, then $m_{12}^{2}+m_{23}^{2}+m_{13}^{2}=$ $M^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$ and $m_{12}^{2}=\left(P-p_{3}\right)^{2}=M^{2}+m_{3}^{2}-2 M E_{3}$, where E_{3} is the energy of particle 3 in the rest frame of M. In that frame, the momenta of the three decay particles lie in a plane. The relative orientation of these three momenta is fixed if their energies are known. The momenta can therefore be specified in space by giving three Euler angles (α, β, γ) that specify the orientation of the final system relative to the initial particle. The direction of any one of the particles relative to the frame in which the initial particle is described can be specified in space by two angles (α, β) while a third angle, γ, can be set as the azimuthal angle of a second particle around the first [1]. Then

$$
\begin{equation*}
d \Gamma=\frac{1}{(2 \pi)^{5}} \frac{1}{16 M}|\mathscr{M}|^{2} d E_{1} d E_{3} d \alpha d(\cos \beta) d \gamma \tag{48.19}
\end{equation*}
$$

Alternatively

$$
\begin{equation*}
d \Gamma=\frac{1}{(2 \pi)^{5}} \frac{1}{16 M^{2}}|\mathscr{M}|^{2}\left|\boldsymbol{p}_{1}^{*}\right|\left|\boldsymbol{p}_{3}\right| d m_{12} d \Omega_{1}^{*} d \Omega_{3} \tag{48.20}
\end{equation*}
$$

where $\left(\left|\boldsymbol{p}_{1}^{*}\right|, \Omega_{1}^{*}\right)$ is the momentum of particle 1 in the rest frame of 1 and 2 , and Ω_{3} is the angle of particle 3 in the rest frame of the decaying particle. $\left|\boldsymbol{p}_{1}^{*}\right|$ and $\left|\boldsymbol{p}_{3}\right|$ are given by

$$
\begin{equation*}
\left|\boldsymbol{p}_{1}^{*}\right|=\frac{\left[\left(m_{12}^{2}-\left(m_{1}+m_{2}\right)^{2}\right)\left(m_{12}^{2}-\left(m_{1}-m_{2}\right)^{2}\right)\right]^{1 / 2}}{2 m_{12}} \tag{48.21a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\boldsymbol{p}_{3}\right|=\frac{\left[\left(M^{2}-\left(m_{12}+m_{3}\right)^{2}\right)\left(M^{2}-\left(m_{12}-m_{3}\right)^{2}\right)\right]^{1 / 2}}{2 M} \tag{48.21b}
\end{equation*}
$$

[Compare with Eq. (48.17).]
If the decaying particle is a scalar or we average over its spin states, then integration over the angles in Eq. (48.19) gives

$$
\begin{align*}
& d \Gamma=\frac{1}{(2 \pi)^{3}} \frac{1}{8 M} \overline{|\mathscr{M}|^{2}} d E_{1} d E_{3} \\
& \quad=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \overline{|\mathscr{M}|^{2}} d m_{12}^{2} d m_{23}^{2} \tag{48.22}
\end{align*}
$$

This is the standard form for the Dalitz plot.

48.4.3.1 Dalitz plot

For a given value of m_{12}^{2}, the range of m_{23}^{2} is determined by its values when \boldsymbol{p}_{2} is parallel or antiparallel to \boldsymbol{p}_{3} :

$$
\begin{gather*}
\left(m_{23}^{2}\right)_{\max }= \\
\left(E_{2}^{*}+E_{3}^{*}\right)^{2}-\left(\sqrt{E_{2}^{* 2}-m_{2}^{2}}-\sqrt{E_{3}^{* 2}-m_{3}^{2}}\right)^{2} \tag{48.23a}\\
\left(m_{23}^{2}\right)_{\min }= \\
\left(E_{2}^{*}+E_{3}^{*}\right)^{2}-\left(\sqrt{E_{2}^{* 2}-m_{2}^{2}}+\sqrt{E_{3}^{* 2}-m_{3}^{2}}\right)^{2} \tag{48.23b}
\end{gather*}
$$

Here $E_{2}^{*}=\left(m_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right) / 2 m_{12}$ and $E_{3}^{*}=\left(M^{2}-m_{12}^{2}-\right.$ $\left.m_{3}^{2}\right) / 2 m_{12}$ are the energies of particles 2 and 3 in the m_{12} rest frame. The scatter plot in m_{12}^{2} and m_{23}^{2} is called a Dalitz plot. If $\overline{|\mathscr{M}|^{2}}$ is constant, the allowed region of the plot will be uniformly populated with events [see Eq. (48.22)]. A nonuniformity
in the plot gives immediate information on $|\mathscr{M}|^{2}$. For example, in the case of $D \rightarrow K \pi \pi$, bands appear when $m_{(K \pi)}=m_{K^{*}(892)}$, reflecting the appearance of the decay chain $D \rightarrow K^{*}(892) \pi \rightarrow$ $K \pi \pi$.

Figure 48.3: Dalitz plot for a three-body final state. In this example, the state is $\pi^{+} \bar{K}^{0} p$ at 3 GeV . Four-momentum conservation restricts events to the shaded region.

48.4.4 Kinematic limits

48.4.4.1 Three-body decays

In a three-body decay (Fig. 48.2) the maximum of $\left|\boldsymbol{p}_{3}\right|$, [given by Eq. (48.21)], is achieved when $m_{12}=m_{1}+m_{2}$, i.e., particles 1 and 2 have the same vector velocity in the rest frame of the decaying particle. If, in addition, $m_{3}>m_{1}, m_{2}$, then $\left|\boldsymbol{p}_{3}\right|_{\max }>\left|\boldsymbol{p}_{1}\right|_{\max }$, $\left|\boldsymbol{p}_{2}\right|_{\text {max }}$. The distribution of m_{12} values possesses an end-point or maximum value at $m_{12}=M-m_{3}$. This can be used to constrain the mass difference of a parent particle and one invisible decay product.
48.4.4.2 Sequential two-body decays

Figure 48.4: Particles participating in sequential two-body decay chain. Particles labeled 1 and 2 are visible while the particle terminating the chain (a) is invisible.

When a heavy particle initiates a sequential chain of two-body decays terminating in an invisible particle, constraints on the masses of the states participating in the chain can be obtained from end-points and thresholds in invariant mass distributions of the aggregated decay products. For the two-step decay chain depicted in Fig. 48.4 the invariant mass distribution of the two visible particles possesses an end-point given by:

$$
\begin{equation*}
\left(m_{12}^{\max }\right)^{2}=\frac{\left(m_{\mathrm{c}}^{2}-m_{\mathrm{b}}^{2}\right)\left(m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}\right)}{m_{\mathrm{b}}^{2}} \tag{48.24}
\end{equation*}
$$

provided particles 1 and 2 are massless. If visible particle 1 has non-zero mass m_{1} then Eq. (48.24) is replaced by

$$
\begin{gather*}
\left(m_{12}^{\max }\right)^{2}=m_{1}^{2}+\frac{\left(m_{\mathrm{c}}^{2}-m_{\mathrm{b}}^{2}\right)}{2 m_{\mathrm{b}}^{2}} \times \\
\left(m_{1}^{2}+m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}+\sqrt{\left(-m_{1}^{2}+m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}\right)^{2}-4 m_{1}^{2} m_{\mathrm{a}}^{2}}\right) \tag{8.25}
\end{gather*}
$$

See Refs. [2] and [3] for other cases.

48.4.5 Multibody decays

The above results may be generalized to final states containing any number of particles by combining some of the particles into "effective particles" and treating the final states as 2 or 3 "effective particle" states. Thus, if $p_{i j k \ldots}=p_{i}+p_{j}+p_{k}+\ldots$, then

$$
\begin{equation*}
m_{i j k \ldots}=\sqrt{p_{i j k \ldots}^{2}} \tag{48.26}
\end{equation*}
$$

and $m_{i j k \ldots}$ may be used in place of e.g., m_{12} in the relations in Sec. 48.4.3 or Sec. 48.4.4 above.

48.5 Cross sections

Figure 48.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

$$
\begin{align*}
& d \sigma=\frac{(2 \pi)^{4}|\mathscr{M}|^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \\
& \times \quad d \Phi_{n}\left(p_{1}+p_{2} ; p_{3}, \ldots, p_{n+2}\right) . \tag{48.27}
\end{align*}
$$

[See Eq. (48.12).] In the rest frame of m_{2} (lab),

$$
\begin{equation*}
\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=m_{2} p_{1 \mathrm{lab}} \tag{48.28a}
\end{equation*}
$$

while in the center-of-mass frame

$$
\begin{equation*}
\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=p_{1 \mathrm{~cm}} \sqrt{s} \tag{48.28b}
\end{equation*}
$$

48.5.1 Two-body reactions

Figure 48.6: Definitions of variables for a two-body final state.
Two particles of momenta p_{1} and p_{2} and masses m_{1} and m_{2} scatter to particles of momenta p_{3} and p_{4} and masses m_{3} and m_{4}; the Lorentz-invariant Mandelstam variables are defined by

$$
\begin{align*}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
& =m_{1}^{2}+2 E_{1} E_{2}-2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}+m_{2}^{2} \tag{48.29}\\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
& =m_{1}^{2}-2 E_{1} E_{3}+2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{3}+m_{3}^{2} \tag{48.30}\\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2} \\
& =m_{1}^{2}-2 E_{1} E_{4}+2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{4}+m_{4}^{2} \tag{48.31}
\end{align*}
$$

and they satisfy

$$
\begin{equation*}
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} \tag{48.32}
\end{equation*}
$$

The two-body cross section may be written as

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{64 \pi s} \frac{1}{\left|\boldsymbol{p}_{1 \mathrm{~cm}}\right|^{2}}|\mathscr{M}|^{2} \tag{48.33}
\end{equation*}
$$

In the center-of-mass frame

$$
\begin{align*}
t= & \left(E_{1 \mathrm{~cm}}-E_{3 \mathrm{~cm}}\right)^{2}-\left(p_{1 \mathrm{~cm}}-p_{3 \mathrm{~cm}}\right)^{2} \\
& -4 p_{1 \mathrm{~cm}} p_{3 \mathrm{~cm}} \sin ^{2}\left(\theta_{\mathrm{cm}} / 2\right) \\
= & t_{0}-4 p_{1 \mathrm{~cm}} p_{3 \mathrm{~cm}} \sin ^{2}\left(\theta_{\mathrm{cm}} / 2\right) \tag{48.34}
\end{align*}
$$

where θ_{cm} is the angle between particle 1 and 3 . The limiting values $t_{0}\left(\theta_{\mathrm{cm}}=0\right)$ and $t_{1}\left(\theta_{\mathrm{cm}}=\pi\right)$ for $2 \rightarrow 2$ scattering are

$$
\begin{equation*}
t_{0}\left(t_{1}\right)=\left[\frac{m_{1}^{2}-m_{3}^{2}-m_{2}^{2}+m_{4}^{2}}{2 \sqrt{s}}\right]^{2}-\left(p_{1 \mathrm{~cm}} \mp p_{3 \mathrm{~cm}}\right)^{2} \tag{48.35}
\end{equation*}
$$

In the literature the notation $t_{\min }\left(t_{\max }\right)$ for $t_{0}\left(t_{1}\right)$ is sometimes used, which should be discouraged since $t_{0}>t_{1}$. The center-ofmass energies and momenta of the incoming particles are

$$
\begin{equation*}
E_{1 \mathrm{~cm}}=\frac{s+m_{1}^{2}-m_{2}^{2}}{2 \sqrt{s}}, \quad E_{2 \mathrm{~cm}}=\frac{s+m_{2}^{2}-m_{1}^{2}}{2 \sqrt{s}} \tag{48.36}
\end{equation*}
$$

For $E_{3 \mathrm{~cm}}$ and $E_{4 \mathrm{~cm}}$, change m_{1} to m_{3} and m_{2} to m_{4}. Then

$$
\begin{equation*}
p_{i \mathrm{~cm}}=\sqrt{E_{i \mathrm{~cm}}^{2}-m_{i}^{2}} \text { and } p_{1 \mathrm{~cm}}=\frac{p_{1 \mathrm{lab}} m_{2}}{\sqrt{s}} \tag{48.37}
\end{equation*}
$$

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see Eqs. (48.2)-(48.4).]

48.5.2 Inclusive reactions

Choose some direction (usually the beam direction) for the z axis; then the energy and momentum of a particle can be written as

$$
\begin{equation*}
E=m_{T} \cosh y, p_{x}, p_{y}, p_{z}=m_{T} \sinh y \tag{48.38}
\end{equation*}
$$

where m_{T}, conventionally called the 'transverse mass', is given by

$$
\begin{equation*}
m_{T}^{2}=m^{2}+p_{x}^{2}+p_{y}^{2} \tag{48.39}
\end{equation*}
$$

and the rapidity y is defined by

$$
\begin{gather*}
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right) \\
=\ln \left(\frac{E+p_{z}}{m_{T}}\right)=\tanh ^{-1}\left(\frac{p_{z}}{E}\right) \tag{48.40}
\end{gather*}
$$

Note that the definition of the transverse mass in Eq. (48.39) differs from that used by experimentalists at hadron colliders (see Sec. 48.6 .1 below). Under a boost in the z-direction to a frame with velocity $\beta, y \rightarrow y-\tanh ^{-1} \beta$. Hence the shape of the rapidity distribution $d N / d y$ is invariant, as are differences in rapidity. The invariant cross section may also be rewritten

$$
\begin{equation*}
E \frac{d^{3} \sigma}{d^{3} p}=\frac{d^{3} \sigma}{d \phi d y p_{T} d p_{T}} \Longrightarrow \frac{d^{2} \sigma}{\pi d y d\left(p_{T}^{2}\right)} \tag{48.41}
\end{equation*}
$$

The second form is obtained using the identity $d y / d p_{z}=1 / E$, and the third form represents the average over ϕ.

Feynman's x variable is given by

$$
\begin{equation*}
x=\frac{p_{z}}{p_{z \max }} \approx \frac{E+p_{z}}{\left(E+p_{z}\right)_{\max }} \quad\left(p_{T} \ll\left|p_{z}\right|\right) \tag{48.42}
\end{equation*}
$$

In the c.m. frame,

$$
\begin{equation*}
x \approx \frac{2 p_{z \mathrm{~cm}}}{\sqrt{s}}=\frac{2 m_{T} \sinh y_{\mathrm{cm}}}{\sqrt{s}} \tag{48.43}
\end{equation*}
$$

and

$$
\begin{equation*}
=\left(y_{\mathrm{cm}}\right)_{\max }=\ln (\sqrt{s} / m) \tag{48.44}
\end{equation*}
$$

The invariant mass M of the two-particle system described in Sec. 48.4.2 can be written in terms of these variables as

$$
\begin{equation*}
M^{2}=m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \Delta y-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right] \tag{48.45}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{T}(i)=\sqrt{\left|\boldsymbol{p}_{T}(i)\right|^{2}+m_{i}^{2}} \tag{48.46}
\end{equation*}
$$

and $\boldsymbol{p}_{T}(i)$ denotes the transverse momentum vector of particle i.

For $p \gg m$, the rapidity [Eq. (48.40)] may be expanded to obtain

$$
\begin{gather*}
y=\frac{1}{2} \ln \frac{\cos ^{2}(\theta / 2)+m^{2} / 4 p^{2}+\ldots}{\sin ^{2}(\theta / 2)+m^{2} / 4 p^{2}+\ldots} \\
\approx-\ln \tan (\theta / 2) \equiv \eta \tag{48.47}
\end{gather*}
$$

where $\cos \theta=p_{z} / p$. The pseudorapidity η defined by the second line is approximately equal to the rapidity y for $p \gg m$ and $\theta \gg 1 / \gamma$, and in any case can be measured when the mass and momentum of the particle are unknown. From the definition one can obtain the identities

$$
\begin{equation*}
\sinh \eta=\cot \theta, \quad \cosh \eta=1 / \sin \theta, \quad \tanh \eta=\cos \theta \tag{48.48}
\end{equation*}
$$

48.6 Transverse variables

At hadron colliders, a significant and unknown proportion of the energy of the incoming hadrons in each event escapes down the beam-pipe. Consequently if invisible particles are created in the final state, their net momentum can only be constrained in the plane transverse to the beam direction. Defining the z-axis as the beam direction, this net momentum is equal to the missing transverse energy vector

$$
\begin{equation*}
\boldsymbol{E}_{T}^{\mathrm{miss}}=-\sum_{i} \boldsymbol{p}_{T}(i) \tag{48.49}
\end{equation*}
$$

where the sum runs over the transverse momenta of all visible final state particles.

48.6.1 Single production with semi-invisible final state

Consider a single heavy particle of mass M produced in association with visible particles which decays as in Fig. 48.1 to two particles, of which one (labeled particle 1) is invisible. The mass of the parent particle can be constrained with the quantity M_{T} defined by

$$
\begin{align*}
M_{T}^{2} & \equiv\left[E_{T}(1)+E_{T}(2)\right]^{2}-\left[\boldsymbol{p}_{T}(1)+\boldsymbol{p}_{T}(2)\right]^{2} \\
& =m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2)-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right] \tag{48.50}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{p}_{T}(1)=\boldsymbol{E}_{T}^{\mathrm{miss}} \tag{48.51}
\end{equation*}
$$

This quantity is called the 'transverse mass' by hadron collider experimentalists but it should be noted that it is quite different from that used in the description of inclusive reactions [Eq. (48.39)]. The distribution of event M_{T} values possesses an end-point at $M_{T}^{\max }=M$. If $m_{1}=m_{2}=0$ then

$$
\begin{equation*}
M_{T}^{2}=2\left|\boldsymbol{p}_{T}(1)\right|\left|\boldsymbol{p}_{T}(2)\right|\left(1-\cos \phi_{12}\right), \tag{48.52}
\end{equation*}
$$

where $\phi_{i j}$ is defined as the angle between particles i and j in the transverse plane.

48.6.2 Pair production with semi-invisible final states

Figure 48.7: Definitions of variables for pair production of semiinvisible final states. Particles 1 and 3 are invisible while particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such that their combined center-of-mass is at rest in the transverse plane (Fig. 48.7). Each particle decays to a final state consisting of an invisible particle of fixed mass m_{1} together with an additional visible particle. M and m_{1} can be constrained with the variables $M_{T 2}$ and $M_{C T}$ which are defined in Refs. [4] and [5].

References

[1] J.D. Jackson in High Energy Physics, Les Houches 1965 Summer School, GORDON AND BREACH Science Publishers (1965), p. 348.
[2] I. Hinchliffe et al., Phys. Rev. D55, 5520 (1997), [hepph/9610544].
[3] B. C. Allanach et al., JHEP 09, 004 (2000), [hep-ph/0007009].
[4] C. G. Lester and D. J. Summers, Phys. Lett. B463, 99 (1999), [hep-ph/9906349].
[5] D. R. Tovey, JHEP 04, 034 (2008), [arXiv:0802.2879].

49. Resonances

Revised August 2019 by D.M. Asner (BNL), C. Hanhart (Jülich) and E. Klempt (Bonn U.).

49.1 General Considerations

Perturbative methods can be applied to systems of quarks and gluons only for large momentum transfers (see review on 'Quantum Chromodynamics') and, under certain conditions, to some properties of systems that contain heavy quarks or very large momentum scales (see review on "Heavy-Quark and Soft-Collinear Effective Theory"). Dealing with Quantum Chromodynamics (QCD) in the low momentum transfer region is a very complicated, non-perturbative problem. The physical states appear as poles of the S-matrix either on physical sheet (bound states) or on the unphysical sheets (resonances) and manifest themselves as structures in experimental observables.

Resonances can show up either in so-called formation experiments, typically of the kind

$$
A+B \rightarrow \mathbf{R} \rightarrow C_{1}+\ldots+C_{n}
$$

where they become visible in an energy scan (a perfect example of this being the R-function measured in $e^{+} e^{-}$annihilations - $c f$. the corresponding plots in the review on "Plots of Cross Sections and Related Quantities"), or together with a spectator particle S in production experiments of the kind

$$
\begin{aligned}
A+B & \rightarrow \mathbf{R}+S \rightarrow\left[C_{1}+\ldots+C_{n}\right]+S \\
Z & \rightarrow \mathbf{R}+S \rightarrow\left[C_{1}+\ldots+C_{n}\right]+S
\end{aligned}
$$

where the first reaction corresponds to an associated production, the second is a decay (see "Review of Multibody Charm Analyses"). In the latter case the resonance properties are commonly extracted from a Dalitz plot analysis (see review on "Kinematics") or projections thereof.

Resonance phenomena are very rich: while typical hadronic widths are of the order of 100 MeV (e.g., for the meson resonances $\rho(770)$ or $\psi(4040)$ or the baryon resonance $\Delta(1232))$ corresponding to a lifetime of $10^{-23} \mathrm{~s}$, the widths can also be as small as a few MeV (e.g. of $\phi(1020)$ or J / ψ) or as large as several hundred

MeV (e.g. of the meson resonances $f_{0}(500)$ or $D_{1}(2430)$ or the baryon resonance $N(2190)$).

Typically, a resonance appears as a peak in the total cross section. If the structure is narrow and if there are no relevant thresholds or other resonances nearby, the resonance properties may be extracted employing a standard Breit-Wigner parameterization, if necessary improved by using an energy-dependent width ($c f$. Sec. 49.3.1 of this review). However, in general, unitarity and analyticity call for the use of more refined tools. When there are overlapping resonances with the same quantum numbers, the resonance terms should not simply be added but combined in a nontrivial way either in a K-matrix approximation ($c f$. Sec. 49.3.2 of this review) or using other advanced methods ($c f$. Sec. 49.3.6 of this review). Additional constraints from the S-matrix allow one to build more reliable amplitudes and in turn to reduce the systematic uncertainties of the resonance parameters: pole locations and residues. In addition, for broad resonances there is no direct relation anymore between pole location and the total width/lifetime - then the pole residues need to be used in order to quantify the decay properties.

For simplicity, throughout this review the formulas are given for distinguishable, scalar particles. The additional complications that appear in the presence of spins can be controlled in the helicity framework developed by Jacob and Wick [1], or in a non-covariant [2] or covariant [3] tensor operator formalism. Within these approaches, sequential (cascade) decays are commonly treated as a coherent sum of two-body interactions. Most of the expressions below are given for two-body kinematics.

49.1.1 Properties of the S-matrix

The unitary operator that connects asymptotic in and out states is called the S-matrix. The scattering amplitude is defined as the interacting part of the S matrix. For the case of two interacting particles, it reads: (cf. Eq. (8) of the review on "Kinematics" but note: we here use a different sign convention as well as a different normalisation of the fields to be consistent with most books on field theory)

$$
\begin{equation*}
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \mathcal{M}\left(p_{1}, p_{2} ; p_{1}, p_{2}^{\prime}\right)_{b a}=\text { out }\left\langle p_{1}^{\prime} p_{2}^{\prime}, b\right| S-1\left|p_{1} p_{2}, a\right\rangle_{\mathrm{in}} \tag{49.1}
\end{equation*}
$$

where $\left|p_{1} p_{2}, a\right\rangle$ and $\left|p_{1}^{\prime} p_{2}^{\prime}, b\right\rangle$ are asymptotic states of two noninteracting particles with momentum p_{1}, p_{2} and $p_{1}^{\prime}, p_{2}^{\prime}$. The channel labels a and b are multi-indices specifying all additional properties of the channel. In general, \mathcal{M} is a matrix in channel space. For single particle states we employ the common relativistic normalization,

$$
\begin{equation*}
\left\langle p^{\prime} \mid p\right\rangle=(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\vec{p}^{\prime}-\vec{p}\right) \tag{49.2}
\end{equation*}
$$

with $E_{p}=\sqrt{\vec{p}^{2}+m^{2}}$. The scattering amplitude an analytic function of the Mandelstam variables s, t and u up to poles and kinematic singularities. Branch points appear whenever there is a channel opening - at each two-particle threshold the number of Riemann sheets doubles. Triangle topologies can induce logarithmic singularities on the unphysical sheets often called triangle singularities (TS) [4-6]. Analyticity and unitarity principles of the S-matrix put strong constraints to the function $\mathcal{M}(s, t)$. Poles refer either to bound states or to resonances. The former poles are located on the physical sheet, the latter are located on unphysical sheets. Naturally those located on the unphysical sheet closest to the physical one, often called the second sheet, have usually the largest impact on observables. Moreover, as follows from analyticity, if there is a pole at some complex value of s, there must be another pole at its complex conjugate value, s^{*}. The pole with a negative imaginary part is closer to the physical axis and thus influences the observables in the vicinity of the resonance region more strongly (see Fig. 49.1). However, at the threshold both poles are always equally important. If there are
resonances in subsystems of multi-particle states, branch points appear in the complex plane of the unphysical sheet(s) [6]. Any of these singularities can lead to some structure in the observables (see also Ref. [7]). If certain kinematical constraints are met, especially the TS can mimic resonance signals, as claimed in Refs. [8-13] or could in certain channels lead to significant shifts of resonance signals [14]. For a partial-wave-projected amplitude (see Sec. 49.1.3) additional singularities not related to resonance physics may emerge as a result of the partial-wave projection [15].

Further constraints come, e.g., from crossing symmetry and duality [16]. Approaches based on analyticity and crossing symmetry, implemented via dispersion theory, like the Roy equations [17] or variants thereof, were developed and applied to $\pi \pi \rightarrow \pi \pi$ scattering [18-20], πK scattering [21], $\gamma \gamma \rightarrow \pi \pi$ [22] as well as pionnucleon scattering [23].

49.1.2 Consequences from unitarity

In what follows, scattering amplitudes \mathcal{M} and production amplitudes \mathcal{A} will be distinguished, since unitarity puts different constraints on these. For the production amplitudes we require that the initial state is weakly coupled and, hence, the probability of the time-reversed reaction is negligibly small compared to the other coupled channels.

The discontinuity of the scattering amplitude over the unitarity

Figure 49.1: Imaginary part of a typical single-channel scattering amplitude with an isolated resonance. The solid red line shows the physical range of the Mandelstam variable s : It is real valued and starts from threshold shown by the red dot. The left plot shows the imaginary part of the amplitude in the complex S-plane that corresponds to the first physical sheet (green surface). The right plot shows analytic continuation of the same amplitude to the lower plane of the unphysical sheet (yellow surface). The latter contains the resonance pole. The two sheets are connected smoothly along the real axis above the threshold.
cut is constrained by unitarity [24] to

$$
\begin{equation*}
\operatorname{Disc} \mathcal{M}_{b a}=\left[\mathcal{M}_{b a}-\mathcal{M}_{a b}^{*}\right]=i(2 \pi)^{4} \sum_{c} \int d \Phi_{c} \mathcal{M}_{c b}^{*} \mathcal{M}_{c a} \tag{49.3}
\end{equation*}
$$

with Φ_{c} being the invariant phase space for channel c. The sum includes only open channels, i.e. those for which the production threshold is below the energy of the scattered system. Using timereversal symmetry, and $\operatorname{Disc} \mathcal{M}(s, t)=2 i \operatorname{Im}(\mathcal{M}(s+i \epsilon, t))$ for the s-channel, the optical theorem follows

$$
\begin{equation*}
\operatorname{Im} \mathcal{M}_{a a}(s, 0)=2 q_{a} \sqrt{s} \sigma_{\mathrm{tot}}(a \rightarrow \text { anything }) \tag{49.4}
\end{equation*}
$$

where q_{a} denotes the relative momentum of the particles of channel a (see Eq. (17) of the review on "Kinematics"). The value $t=0$ in Eq. (49.4) corresponds to forward scattering.
The unitarity relation for a production amplitude for a channel a is given by

$$
\begin{equation*}
\left[\mathcal{A}_{a}-\mathcal{A}_{a}^{*}\right]=i(2 \pi)^{4} \sum_{c} \int d \Phi_{c} \mathcal{M}_{c a}^{*} \mathcal{A}_{c} \tag{49.5}
\end{equation*}
$$

One application of the two-body-unitarity constraint from Eq. (49.5) is studies of the three-body decays in the KhuriTreiman framework [25]. The standard procedure here is to derive the equations for the production amplitude for small values of the mass of the decaying particle in the scattering domain and relate it to the decay kinematics by an analytic continuation in the decay mass. Note that in this kinematics the connection between imaginary part and discontinuity employed to derive Eq. (49.4) no longer holds. The method was successfully applied to various decays of light mesons, $\eta \rightarrow 3 \pi$ in Refs. [26-28], $\phi / \omega \rightarrow 3 \pi$ in Ref. [29,30], $\eta^{\prime} \rightarrow \eta \pi \pi$ in Ref. [31], as well as to the charm-mesons decays $D^{+} \rightarrow K^{0 /-} \pi^{0 /+} \pi^{+}[32,33]$.

49.1.3 Partial-wave decomposition

It is often convenient to expand the scattering amplitude in partial waves. Since resonances have a well-defined spin, in the s-channel they appear only in the corresponding partial waves. For scalar particles only one may write

$$
\begin{equation*}
\mathcal{M}_{b a}(s, t)=\sum_{j=0}^{\infty}(2 j+1) \mathcal{M}_{b a}^{j}(s) P_{j}(\cos (\theta)) \tag{49.6}
\end{equation*}
$$

where j denotes the total angular momentum. For scalar particles it coincides with the orbital angular momentum of the particle

Figure 49.2: Argand plot showing a diagonal element of a partialwave amplitude, $a_{b b}$, as a function of energy. The amplitude leaves the unitary circle (solid line) as soon as inelasticity sets in, $\eta<1$ (dashed line).
pairs in the initial and the final state. To simplify notations we will drop the label j for the single-argument function $\mathcal{M}_{b a}(s)$. The unitarity constraint for $\mathcal{M}_{b a}(s)$ reads,

$$
\begin{equation*}
\operatorname{Im} \mathcal{M}_{b a}=\sum_{c} \mathcal{M}_{c b}^{*} \rho_{c} \mathcal{M}_{c a} \tag{49.7}
\end{equation*}
$$

with ρ_{c} being a factor that is related to the two-body phase space in Eq. (12) of the review on "Kinematics",

$$
\begin{equation*}
\rho_{c}(s)=\frac{(2 \pi)^{4}}{2} \int \mathrm{~d} \Phi_{2}=\frac{1}{16 \pi} \frac{2\left|\vec{q}_{c}\right|}{\sqrt{s}} \tag{49.8}
\end{equation*}
$$

The partial-wave amplitudes $f_{b a}(s)$ are connected to $\mathcal{M}_{b a}(s)$ via

$$
\begin{equation*}
f_{b a}(s)=\sqrt{\rho_{b}} \mathcal{M}_{b a}(s) \sqrt{\rho_{a}} \tag{49.9}
\end{equation*}
$$

From this definition it follows for the unitarity condition that $\operatorname{Im} f_{b a}^{-1}=-\delta_{b a}$. Moreover, $\mathbb{I}+2 i f$ is a unitary matrix. Hence, it
can be parameterized as,

$$
\begin{equation*}
f_{b b}=\left(\eta_{b} \exp \left(2 i \delta_{b}\right)-1\right) / 2 i \tag{49.10}
\end{equation*}
$$

where δ_{b} denotes the phase shift for the scattering from channel b to channel b, η_{b} is elasticity parameter - also called inelasticity. One has $0 \leq \eta_{b} \leq 1$, where $\eta_{b}=1$ refers to purely elastic scattering. The evolution with energy of a partial-wave amplitude $f_{b b}$ can be displayed as a trajectory in an Argand plot, as shown in Fig. 49.2. In case of a two-channel problem, $\eta_{b}=\eta_{a}=\eta$, and the off-diagonal element is $f_{b a}=\sqrt{1-\eta^{2}} / 2 \exp \left(i\left(\delta_{b}+\delta_{a}\right)\right)$.

The partial-wave-projected production amplitude $\mathcal{A}(s)$ (the label j is dropped for consistency) is also constrained by unitarity. From Eq. (49.5) follows,

$$
\begin{equation*}
\operatorname{Im} \mathcal{A}_{a}=\sum_{b} \mathcal{M}_{a b}^{*} \rho_{b} \mathcal{A}_{b} \tag{49.11}
\end{equation*}
$$

where the sum runs over all open channels. For purely elastic scattering, where the sum collapses to just the channel a, the Watson theorem, stating that the phase of \mathcal{A}_{a} agrees with that of $\mathcal{M}_{a a}$, follows straightforwardly, since the left-hand side of Eq. (49.11) is a real number.

49.2 Properties of resonances

The main characteristics of a resonance is its pole position, s_{R}, in the complex s-plane that is independent of the reaction studied. The more traditional parameters mass M_{R} and total width Γ_{R} may be introduced via the pole parameters

$$
\begin{equation*}
\sqrt{s_{\mathrm{R}}}=M_{\mathrm{R}}-i \Gamma_{\mathrm{R}} / 2 \tag{49.12}
\end{equation*}
$$

Note that the standard Breit-Wigner parameters M_{BW} and Γ_{BW}, also introduced below, in general deviate from the pole parameters, e.g., due to finite width effects and the influence of thresholds.

In addition to the pole location a resonance is characterized also by its residues that quantify its couplings to the various channels and allow one to define branching ratios. In the Meson Particle Listings the two-photon width of $f_{0}(500)$ is defined in terms of the corresponding residue. The Baryon Particle Listings give the elastic pole residues and normalized transition residues. However, different conventions are used in the two sectors, which are shortly outlined here.

In the close vicinity of the resonance pole the scattering matrix \mathcal{M} can be written as

$$
\begin{equation*}
\lim _{s \rightarrow s_{R}}\left(s-s_{R}\right) \mathcal{M}_{b a}=-\mathcal{R}_{b a} \tag{49.13}
\end{equation*}
$$

The residues may be calculated via an integration along a closed contour around the pole using

$$
\begin{equation*}
\mathcal{R}_{b a}=-\frac{1}{2 \pi i} \oint d s \mathcal{M}_{b a} \tag{49.14}
\end{equation*}
$$

The factorization of the residue $\left(\mathcal{R}_{b a}\right)^{2}=\mathcal{R}_{a a} \times \mathcal{R}_{b b}$ allows one to introduce pole couplings according to

$$
\begin{equation*}
\tilde{g}_{a}=\mathcal{R}_{b a} / \sqrt{\mathcal{R}_{b b}} \tag{49.15}
\end{equation*}
$$

The pole couplings are the only quantities that characterize the transition strength of a given resonance to some channel a independently of how the particular resonance was produced. One may define a partial width and a branching fraction even for a broad resonance via

$$
\begin{equation*}
\Gamma_{\mathrm{R} \rightarrow a}=\frac{\left|\tilde{g}_{a}\right|^{2}}{M_{\mathrm{R}}} \rho_{a}\left(M_{\mathrm{R}}^{2}\right) \quad \text { and } \quad \operatorname{Br}_{a}=\Gamma_{\mathrm{R} \rightarrow a} / \Gamma_{\mathrm{R}} \tag{49.16}
\end{equation*}
$$

where M_{R} and Γ_{R} were introduced in Eq. (49.12). This expression was used to define a two-photon width for the broad $f_{0}(500)$ (also called σ) [34,35]. Eq. (49.16) defines a partial-decay width independent of the reaction used to extract the parameters. For a narrow resonance it maps smoothly onto the other common definition of the branching fraction, discussed in Eq. (49.22).

In the baryon sector it is common to define the residue with respect to the partial-wave amplitudes $f_{b a}(s)$ defined in Eq. (49.9) and with respect to \sqrt{s} instead of s. Accordingly in the baryon listings the elastic pole residue, which refers to $\pi N \rightarrow \pi N$ scattering, is related to the residues introduced above via

$$
\begin{equation*}
r_{\pi N, \pi N}=\frac{\rho_{\pi N}\left(s_{\mathrm{R}}\right)}{\sqrt{4 s_{\mathrm{R}}}} \mathcal{R}_{\pi N, \pi N} \tag{49.17}
\end{equation*}
$$

where the phase-space factor is to be evaluated at the pole.

49.3 Common parameterizations

Up to a few exceptions where sophisticated dispersive methods can be used or one restricts oneself to a very small energy range, there is in general no universal model-independent recipe to build the scattering amplitude. The resonance parameters extracted should not depend on the approach used, however, assuming that the amplitude fits relevant data of sufficient quality well. Deviations of resonance parameters obtained in different models which equally-well describe the data must be attributed to the systematic theory uncertainties.

49.3.1 The Breit-Wigner paramerization

First we focus on the most common case of resonances that appear in production reactions and consider the simplest approximation that is only appropriate for a narrow resonance located far from all relevant thresholds. In this case, one may use the constant-width Breit-Wigner parameterization,

$$
\begin{equation*}
\mathcal{A}(s)=\frac{\tilde{\alpha}}{M_{\mathrm{BW}}^{2}-s-i \sqrt{s} \Gamma_{\mathrm{BW}}} \approx \frac{\tilde{\alpha}}{M_{\mathrm{BW}}^{2}-s-i M_{\mathrm{BW}} \Gamma_{\mathrm{BW}}} \tag{49.18}
\end{equation*}
$$

where $\tilde{\alpha}$ contains the resonance coupling to the source as well as to the final state. It is common to replace \sqrt{s} by M_{BW} as done in the right expression.

To use a constant partial width for a resonance coupling to some channel a in an analysis is justified only, if $2\left(M_{\mathrm{R}}-\sqrt{s_{\mathrm{thr}_{a}}}\right) / \Gamma_{\mathrm{R}} \gg$ 1 , where $\sqrt{s_{\text {thr }_{a}}}$ denotes the location of the threshold for channel a. Otherwise, it is important to build in the appropriate threshold behavior and use the energy-dependent expression for the denominator.

$$
\begin{equation*}
\mathcal{A}_{a}(s)=\frac{\alpha g_{a} n_{a}(s)}{M_{\mathrm{BW}}^{2}-s-i \sum_{b} g_{b}^{2} \rho_{b}(s) n_{b}^{2}(s)} \tag{49.19}
\end{equation*}
$$

where the sum in the denominator is taken over all open channels, n_{a} combines the threshold and barrier factors, $n_{a}=$ $\left(q_{a} / q_{\mathrm{o}}\right)^{l_{a}} F_{l_{a}}\left(q_{a}, q_{\mathrm{o}}\right)$, with l_{a} being the orbital angular momentum in channel a, q_{a} is given by Eq. (17) of the review on "Kinematics", and q_{o} denotes a mometum scale. The factor $\left(q_{a}\right)^{l}$ guarantees the correct threshold behavior. The rapid growth of this factor for angular momenta $l>0$ is commonly compensated at higher energies by a phenomenological form factor, here denoted by $F_{l_{a}}\left(q_{a}, q_{\mathrm{o}}\right)$. Often the Blatt-Weisskopf form factors are used [36-38], where $F_{j}\left(q, q_{0}\right)=F_{j}\left(q / q_{0}\right)$ and, e.g. $F_{0}^{2}(z)=1, F_{1}^{2}(z)=1 /(1+z)$ and $F_{2}^{2}(z)=1 /\left(9+3 z+z^{2}\right)$. The denominator can be written as $M_{\mathrm{BW}}^{2}-s-i M_{\mathrm{BW}} \Gamma_{\mathrm{tot}}(s)$, with

$$
\begin{equation*}
\Gamma_{\mathrm{tot}}(s)=\sum_{b} \Gamma_{b}(s) \tag{49.20}
\end{equation*}
$$

for the energy-dependent total width. An often used parameterization for the partial width $\Gamma_{a}(s)$ trades the coupling for the resonance width:

$$
\begin{equation*}
\Gamma_{a}(s)=\Gamma_{\mathrm{BW} a} \frac{\rho_{a}(s)}{\rho_{a}\left(M_{\mathrm{BW}}^{2}\right)}\left(\frac{q_{a}}{q_{a \mathrm{R}}}\right)^{2 l_{a}} \frac{F_{l_{a}}^{2}\left(q_{a}, q_{\mathrm{o}}\right)}{F_{l_{a}}^{2}\left(q_{a \mathrm{R}}, q_{\mathrm{o}}\right)} \tag{49.21}
\end{equation*}
$$

Here $q_{a \mathrm{R}}$ are the values of the break-up momentum evaluated at $s=M_{\mathrm{BW}}^{2}$. The Breit-Wigner parameters M_{BW} and Γ_{BW} in Eq. (49.18) as well as the coupling g_{a} in Eq. (49.19) allow for an effective description of resonance phenomena but in general do not have strict physical meaning. The mass and width agree with the pole parameters only if the resonance is narrow in the sense
defined above. Otherwise, the Breit-Wigner parameters deviate from the pole parameters and are in general reaction dependent.

Branching fractions for individual, isolated resonances may be

$$
\begin{equation*}
\operatorname{Br}_{a}^{\prime \prime}=\int_{s_{\mathrm{thr}, a}}^{\infty} \mathrm{d} s \frac{\left|g_{a}\right|^{2} n_{a}^{2} \rho_{a}(s)}{\left|M_{\mathrm{BW}}^{2}-s-i M_{\mathrm{BW}} \Gamma_{\mathrm{tot}}(s)\right|^{2}} / \sum_{c} \int_{s_{\mathrm{thr}, c}}^{\infty} \mathrm{d} s \frac{\left|g_{c}\right|^{2} n_{c}^{2} \rho_{c}(s)}{\left|M_{\mathrm{BW}}^{2}-s-i M_{\mathrm{BW}} \Gamma_{\mathrm{tot}}(s)\right|^{2}} \tag{49.23}
\end{equation*}
$$

is also often used.
If there is more than one resonance in one partial wave that significantly couples to the same channel, it is in general incorrect to use a sum of Breit-Wigner functions, for this usually leads to violation of unitarity constraints. Then, more refined methods should be used, like the K-matrix approximation described in the next section.

49.3.2 K-matrix approximation and Flatté parameterizations

The K-matrix method is a general construction for coupledchannel scattering amplitudes $\mathcal{M}_{b a}$ that guarantees two-particle unitarity, but does not allow for the inclusion of left-hand cuts [39]. The amplitude reads,

$$
\begin{equation*}
n_{b} \mathcal{M}_{b a}^{-1} n_{a}=\mathcal{K}_{b a}^{-1}-i \delta_{b a} \rho_{a} n_{a}^{2} \tag{49.24}
\end{equation*}
$$

where $\mathcal{K}_{b a}$ is an arbitrary real function. The factor n_{a} becomes important for the waves with non-zero angular momentum. As mentioned before $n_{a}=q_{a}^{l_{a}}$ or $n_{a}=\left(q_{a} / q_{\mathrm{o}}\right)^{l_{a}} F_{l_{a}}\left(q_{a}, q_{\mathrm{o}}\right)$.

As there is no unique rigorous recipe to build \mathcal{K}, various parameterizations thereof have to be studied, in order to get access to the theoretical systematic uncertainty. One possible choice for the K-matrix is

$$
\begin{equation*}
\mathcal{K}_{b a}(s)=\sum_{R} \frac{g_{b}^{R} g_{a}^{R}}{M_{R}^{2}-s}+\sum_{i=0}^{N_{\mathrm{b} . \mathrm{g} .}} b_{b a}^{(i)} s^{i} \tag{49.25}
\end{equation*}
$$

where M_{R} is referred to as the bare mass of the resonance R, g_{a}^{R} is the bare coupling of the resonance R to the channel a and the $b_{b a}^{(i)}$ are matrices parameterizing the non-pole parts of the K-matrix. As long as all parameters appearing in Eq. (49.25) are real the amplitude is unitary. From the ansatz given above the scattering amplitude \mathcal{M} can be calculated directly using the matrix form,

$$
\begin{equation*}
\mathcal{M}=n\left[1-\mathcal{K} i \rho n^{2}\right]^{-1} \mathcal{K} n \tag{49.26}
\end{equation*}
$$

This solution also applies in those cases in which the inverse of \mathcal{K} does not exist.

As an alternative to Eq. (49.25), the same functional form as on the right side of Eq. (49.25) can be used to parameterize the inverse K-matrix, called by authors of Ref. [40] the M-matrix. The K-matrix framework is extensively used to parameterize the scattering amplitudes needed to analyse the data from lattice QCD calculations [41-43]

One notices that the evaluation of the K-matrix amplitude for the multichannel problem requires an analytic continuation already on the real axis. For a given closed channel c (the channel c is called closed, if $\left.s<s_{\mathrm{thr}, \mathrm{c}}\right)$, the factor $q_{c}(s)$ that enters ρ_{c} and n_{c} has to be calculated below the corresponding threshold, i.e. in the unphysical region of the particular channel c. This is done using analytic continuation as described e.g. in Refs. [44, 45]:

$$
\begin{equation*}
q_{c}=i \sqrt{-q_{c}^{2}} \quad \text { for } \quad q_{c}^{2}<0 \tag{49.27}
\end{equation*}
$$

The resulting line shape above and below the threshold of channel c is called the Flatté parameterization [44]. The contiuation given
introduced based on the parameters introduced above:

$$
\begin{equation*}
\mathrm{Br}_{a}^{\prime}=\frac{\Gamma_{\mathrm{BW} a}}{\Gamma_{\mathrm{BW}, \text { tot }}} \tag{49.22}
\end{equation*}
$$

where $\Gamma_{\mathrm{BW}, \text { tot }}=\sum_{a} \Gamma_{\mathrm{BW} a}$ denotes the total width evaluated at the Breit-Wigner mass.

The branching fraction definition based on a probability of the decay to a certain channel,
above stays on the physical sheet. To reach the unphysical sheet the negative square root needs to be chosen. If the coupling of a resonance to the channel opening nearby is very strong, the Flatté parameterization shows a scaling invariance and does not allow for an extraction of individual partial decay widths, but only of ratios [46]. The position of the resonance poles can be determined by a study of the zeros of the analytic function $\operatorname{det}\left[1-\mathcal{K} i \rho n^{2}\right]$. Due to the ρ factor, this determinant has a complicated multisheet structure, however, the closest unphysical sheet is always the one which is determined by the heaviest threshold below the studied point s.

49.3.3 Scattering-length approximation

A scattering length, a, is introduced as the first term in an expansion of the scattering phase shift introduced in Eq. (49.10). For S-waves one finds

$$
\begin{equation*}
q \cot \delta=1 / a+O\left(q^{2}\right) \tag{49.28}
\end{equation*}
$$

where q is a break-up momentum of the scattering system. In this approximation, the scattering amplitude reads

$$
\begin{equation*}
\mathcal{M}(s)=\frac{8 \pi \sqrt{s}}{1 / a-i q(s)} \tag{49.29}
\end{equation*}
$$

The scattering length is proportional to the value of the amplitude at threshold. The sign of the scattering length is a matter of convention - notably in nuclear physics a sign convention different from Eq. (49.28) is common. A scattering length approximation is applicable only in a very limited energy range, however, might well be appropriate to analyse the recently discovered narrow near-threshold states $[47,48]$ from this point of view, e.g., in Refs. [49-51]. Moreover, it is possible to introduce the effect of a weakly coupled lower channel. To see this one might start from

$$
\mathcal{K}=\left(\begin{array}{ll}
\gamma & \beta \tag{49.30}\\
\beta & 0
\end{array}\right),
$$

with β, γ being real numbers. It leads to

$$
\begin{equation*}
\mathcal{M}_{\mathrm{el} .}(s)=\frac{1}{1 /\left(\gamma+i \beta^{2} \rho_{\text {inel. }}(s)\right)-i \rho(s)} \tag{49.31}
\end{equation*}
$$

with $\rho_{\text {inel. }}(s)$ being the phase-space factor of the inelastic channel. The scattering length for the amplitude in Eq. (49.31) obtains an imaginary part due to the coupling to the lower channel,

$$
\begin{equation*}
a=\frac{1}{8 \pi \sqrt{s_{\mathrm{thr}}}}\left(\gamma+i \beta^{2} \rho_{\text {inel. }}\left(s_{\mathrm{thr}}\right)\right) \tag{49.32}
\end{equation*}
$$

If the function $\beta^{2} \rho_{\text {inel. }}(s)$ does not vary significantly in the energy range studied, the scattering length approximation with a complex value is justified. For large values of a the amplitude of Eq. (49.31) develops a near threshold pole located on the physical or unphysical sheet for negative or positive values of γ, respectively. While easy to use, it is important to stress, however, that the approximation in Eq. (49.30) is a specific choice of the dynamic function that produces a single pole near the physical
region pointing at a hadronic molecule nature of the state studied [51-53]. For practical analyses, various modifications of the parameterization have to be tested.

49.3.4 Two methods to build the production amplitude

When the unitary scattering amplitude is fixed, it can be used to build the production amplitude in a way that it is consistent with unitarity $[38,54]$.

1. The Q-vector approach is discussed in Ref. $[38,40,55]$. It reads,

$$
\begin{equation*}
\mathcal{A}_{a}(s)=\sum_{c} \mathcal{M}_{a c}(s) Q_{c}(s) / n_{c}, \quad Q_{c}(s)=\sum Q_{c}^{(i)} s^{i} \tag{49.33}
\end{equation*}
$$

The unitarity condition of Eq. (49.11) is satisfied when $Q_{c}(s)$ is a real function and in particular does not have singularities above the lowest threshold for all channels c. Besides these conditions $Q_{c}(s)$ is arbitrary. Note that in the Q-vector approach the left hand cuts of the scattering matrix $\mathcal{M}_{a c}(s)$ get imported to the production amplitude which might generate a wrong analytic structure. If this problem is relevant needs to be investigated on a case-by-case basis. In a study of $\gamma \gamma \rightarrow \pi \pi$, cf. Ref. [34,35] a low-order polynomial is claimed to be sufficient to parametrize the energy dependence of the function $Q_{c}(s)$. The Q-vector method is convenient, if the full matrix \mathcal{M} is known, $c f$. Ref. [40].
2. The P-vector is a parameterization that exploits the $K-$ matrix of the scattering amplitude [39,54]. It contains two components: the background term B_{c} that is coupled to the $K-$ matrix via an intermediate loop represented by the $i \rho$ factor, and the "direct" resonance production term with couplings α_{c}^{R} :

$$
\begin{equation*}
\mathcal{A}_{a}(s)=n_{a} \sum_{c}\left[1-\mathcal{K} i \rho n^{2}\right]_{a c}^{-1} P_{c}, \quad P_{c}=\sum_{R} \frac{\alpha^{R} g_{c}^{R}}{M_{R}^{2}-s}+B_{c} \tag{49.34}
\end{equation*}
$$

Again, unitarity requires the parameters B_{c} and α^{R} to be real. Importantly, the masses M_{R} need to agree with those in \mathcal{K} in Eq. (49.25).

An important difference between the methods is to be noticed [54]: When the two-particle scattering amplitude goes to zero, the production amplitude in the Q-vector method vanishes for finite values of Q_{c}, while it stays finite in the $P-$ vector approach. An advanced version of the P-vector approach that exploits analytic properties of production amplitude $[54,56,57]$ is widely used, e.g. in the dispersive Khuri-Treiman framework $[25,58]$ for construction of three-body-decay amplitude.

49.3.5 Further improvements: Chew-Mandelstam function

The K-matrix described above usually allows one to get a proper fit of physical amplitudes and it is easy to deal with, however, it also has an important deficit: it violates constraints from analyticity - e.g., ρ_{a}, given by Eq. (49.8), is ill-defined at $s=0$, and for unequal masses it develops an unphysical cut (see Fig. 49.3). A method to improve the analytic properties was suggested in Refs. [59-63]. It replaces the phase-space factor $i \rho_{a}(s)$ in Eq. (49.24) by the analytic function $\Sigma_{a}(s)$ that produces the identical imaginary part on the right-hand cut. This function is called the Chew-Mandelstam function and for S-waves it reads [56, 61]:

$$
\begin{align*}
\Sigma_{a}(s) & =\frac{1}{16 \pi^{2}}\left[\frac{2 q_{a}}{\sqrt{s}} \log \frac{m_{1}^{2}+m_{2}^{2}-s+2 \sqrt{s} q_{a}}{2 m_{1} m_{2}}\right. \tag{49.35}\\
& \left.-\left(m_{1}^{2}-m_{2}^{2}\right)\left(\frac{1}{s}-\frac{1}{\left(m_{1}+m_{2}\right)^{2}}\right) \log \frac{m_{1}}{m_{2}}\right] \tag{49.36}
\end{align*}
$$

where m_{1} and m_{2} are masses of the final-state particles in channel $a, s_{\mathrm{thr}_{a}}=\left(m_{1}+m_{2}\right)^{2}$. The function along the real axis is plotted on the right pane of Fig. 49.1. For channels with $j>0$, the threshold behavior has to be incorporated properly. This can be
done, e.g., by computing the dispersion integral

$$
\begin{equation*}
\Sigma_{a}(s+i 0)=\frac{s-s_{\mathrm{thr}_{a}}}{\pi} \int_{s_{\mathrm{thr}_{a}}}^{\infty} \frac{\rho_{a}\left(s^{\prime}\right) n_{a}^{2}\left(s^{\prime}\right)}{\left(s^{\prime}-s_{\mathrm{thr}_{a}}\right)\left(s^{\prime}-s-i 0\right)} \mathrm{d} s^{\prime} \tag{49.37}
\end{equation*}
$$

A further discussion of the calculation of the Chew-Mandelstam function can be found in Ref. [64].

If there is only a single resonance in a given channel, it is possible to feed the imaginary part of the Breit-Wigner function, Eq. (49.19) with an energy-dependent width, directly into a dispersion integral to get a resonance propagator with the correct analytic structure $[65,66]$.

49.3.6 Two-potential decomposition

The other advanced technique to construct the scattering amplitude which is widely used in the literature [67-71] is based on the two-potential formalism [72]. The method is usually formulated for the full unprojected amplitude $\mathcal{M}_{b a}(s, t)$, however, in order to simplify the discussion we present the equations in the partial-wave-projected form.

The scattering amplitude \mathcal{M} is decomposed into a pole part and a non-pole part, often called background (b.g.)

$$
\begin{equation*}
\mathcal{M}(s)=\mathcal{M}^{\text {b.g. }}(s)+\mathcal{M}^{\text {pole }}(s) \tag{49.38}
\end{equation*}
$$

The splitting given in Eq. (49.38) is not unique and modeldependent (see, e.g., the discussions in Refs. [73, 74]). The background scattering matrix is assumed to be unitary by itself. One option is to parameterize it, e.g. at low energies directly in terms of phase shifts and inelasticities - see, e.g., Refs. [71,75]. In this case the vertex functions $\Omega(s)_{a b}$ introduced below can be written in terms of an Omnes matrix [75], which reduces to the well known Omnes function in the single channel case [57]. Alternatively, it can be computed based on some potential, $V^{\text {b.g. }}$, fed into a proper scattering equation.

The complete amplitude \mathcal{M} of Eq. (49.38) is unitary if the pole part is chosen as

$$
\begin{equation*}
\mathcal{M}^{\text {pole }}(s)=\Omega(s)\left[1-V^{\mathrm{R}}(s) \Sigma^{u}(s)\right]^{-1} V^{\mathrm{R}}(s) \Omega^{T}(s) \tag{49.39}
\end{equation*}
$$

where the resonance potential reads in channel space

$$
\begin{equation*}
V_{a b}^{\mathrm{R}}(s)=\sum_{R} \frac{g_{a}^{R} g_{b}^{R}}{M_{R}^{2}-s} \tag{49.40}
\end{equation*}
$$

$\Sigma_{a b}^{u}$ denotes the self-energy matrix, and g_{a}^{R} and M_{R} denote the bare coupling of the resonance R to channel a and its bare mass, respectively. A relation analogous to Eq. (49.5) holds for the normalized vertex functions, however, with the final state interaction provided by $\mathcal{M}^{\text {b.g. }}$

$$
\begin{equation*}
\operatorname{Disc} \Omega_{a b}(s)=2 i \sum_{c} \mathcal{M}_{c a}^{\mathrm{b} . \mathrm{g} \cdot *}(s) \rho_{c}(s) \Omega_{c b}(s) \tag{49.41}
\end{equation*}
$$

The discontinuity of the self-energy matrix $\Sigma^{u}(s)$ is

$$
\begin{equation*}
\operatorname{Disc} \Sigma_{a b}^{u}(s)=2 i \sum_{c} \Omega_{c a}^{*}(s) \rho_{c}(s) \Omega_{c b}(s) \tag{49.42}
\end{equation*}
$$

The real part of Σ^{u} can be calculated from Eq. (49.42) via a properly subtracted dispersion integral. If $\mathcal{M}^{\text {b.g. }}$ is unitary, the use of Eq. (49.39) leads to a unitary full amplitude, cf. Eq. (49.38). However, the pole term alone is unitary only for a vanishing background amplitude. In this situation the amplitude just described reduces to the analytically improved K-matrix of Sec. 49.3.5. While the omission of non-pole terms is a bad approximation for, e.g., scalar-isoscalar $\pi \pi$ interactions at low energies [76], it typically works well for higher partial waves.
The algebra of the two potential splitting presented in Eq. (49.38) is found to be very practical in various other cases, beyond the pole-background separation. It was employed in Refs. [71, 75] to treat the pion vector and scalar form factor, respectively, over a sizable energy range including inelasticities. A

Figure 49.3: Comparison of the $i \rho$ function (left plot) to the Chew-Mandelstam function from Eq. (49.36) (right plot), evaluated for the case of S-wave $\eta \pi$ scattering. The values of s are taken slightly above the real axis, $s+i 0$. The solid red line shows the imaginary part that is the same for both functions above threshold. The dashed black line presents the real part. One finds indications of the unphysical left-hand singularities of the function $i \rho$ on the left plot, while the Chew-Mandelstam function in analytic below the two-particle threshold.
similar decomposition applied to the $3 \rightarrow 3$ scattering problem provided a way to isolate the non-separable one-particle exchange singularity from the short-range resonance interaction [77].

Acknowledgement

We are very grateful to Mikhail Mikhasenko, who gave vital input to improve this review.

References

[1] M. Jacob and G. C. Wick, Annals Phys. 7, 404 (1959), [Annals Phys.281,774(2000)].
[2] C. Zemach, Phys. Rev. 140B, 97, 109 (1965).
[3] A. V. Anisovich et al., J. Phys. G28, 15 (2002), [hepph/0105330].
[4] L. Landau, Nucl. Phys. 13, 181 (1959).
[5] R. Cutkosky, J. Math. Phys. 1, 429 (1960).
[6] V. N. Gribov, Y. L. Dokshitzer and J. Nyiri, Strong Interactions of Hadrons at High Energies - Gribov Lectures on Theoretical Physics, Cambridge University Press, Cambridge (2009).
[7] A rapid change in an amplitude is not an unambiguous signal of a singularity of the S-matrix [78], however, for realistic interactions this connection holds.
[8] S. Coleman and R. E. Norton, Nuovo Cim. 38, 438 (1965).
[9] C. Schmid, Phys. Rev. 154, 5, 1363 (1967).
[10] I. J. R. Aitchison and C. Kacser, Il Nuovo Cimento A (19651970) 40, 2, 576 (1965), ISSN 1826-9869, URL https://doi. org/10.1007/BF02721045.
[11] M. Mikhasenko, B. Ketzer and A. Sarantsev, Phys. Rev. D91, 9, 094015 (2015), [arXiv:1501.07023].
[12] M. Bayar et al., Phys. Rev. D94, 7, 074039 (2016), [arXiv:1609.04133].
[13] F. Aceti, L. R. Dai and E. Oset, Phys. Rev. D94, 9, 096015 (2016), [arXiv:1606.06893].
[14] J.-J. Wu et al., Phys. Rev. Lett. 108, 081803 (2012), [arXiv:1108.3772].
[15] G. Höhler, Pion-Nucleon Scattering - Methods and Results of Phenomenological Analyses, Springer-Verlag Berlin, Heidelberg, New York, 1983.
[16] M. Fukugita and K. Igi, Phys. Rept. 31, 237 (1977).
[17] S. M. Roy, Phys. Lett. 36B, 353 (1971).
[18] B. Ananthanarayan et al., Phys. Rept. 353, 207 (2001), [hepph/0005297].
[19] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B603, 125 (2001), [hep-ph/0103088].
[20] R. Garcia-Martin et al., Phys. Rev. D83, 074004 (2011), [arXiv:1102.2183].
[21] P. Buettiker, S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C33, 409 (2004), [hep-ph/0310283].
[22] M. Hoferichter, D. R. Phillips and C. Schat, Eur. Phys. J. C71, 1743 (2011), [arXiv:1106.4147].
[23] M. Hoferichter et al., Phys. Rept. 625, 1 (2016), [arXiv:1510.06039].
[24] M. P. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, 1995.
[25] N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).
[26] P. Guo et al., Phys. Lett. B771, 497 (2017), [arXiv:1608.01447].
[27] M. Albaladejo and B. Moussallam, Eur. Phys. J. C77, 8, 508 (2017), [arXiv:1702.04931].
[28] G. Colangelo et al., Eur. Phys. J. C78, 11, 947 (2018), [arXiv:1807.11937].
[29] F. Niecknig, B. Kubis and S. P. Schneider, Eur. Phys. J. C72, 2014 (2012), [arXiv:1203.2501].
[30] I. V. Danilkin et al., Phys. Rev. D91, 9, 094029 (2015), [arXiv:1409.7708].
[31] T. Isken et al., Eur. Phys. J. C77, 7, 489 (2017), [arXiv:1705.04339].
[32] F. Niecknig and B. Kubis, JHEP 10, 142 (2015), [arXiv:1509.03188].
[33] F. Niecknig and B. Kubis, Phys. Lett. B780, 471 (2018), [arXiv:1708.00446].
[34] D. Morgan and M. R. Pennington, Z. Phys. C37, 431 (1988), [Erratum: Z. Phys.C39,590(1988)].
[35] D. Morgan and M. R. Pennington, Z. Phys. C48, 623 (1990).
[36] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics, Springer, New York (1952), ISBN 9780471080190.
[37] F. Von Hippel and C. Quigg, Phys. Rev. D5, 624 (1972).
[38] S. U. Chung et al., Annalen Phys. 4, 404 (1995).
[39] I. J. R. Aitchison, Nucl. Phys. A189, 417 (1972).
[40] K. L. Au, D. Morgan and M. R. Pennington, Phys. Rev. D35, 1633 (1987).
[41] J. J. Dudek, R. G. Edwards and D. J. Wilson (Hadron Spectrum), Phys. Rev. D93, 9, 094506 (2016), [arXiv:1602.05122].
[42] R. A. Briceno et al., Phys. Rev. D97, 5, 054513 (2018), [arXiv:1708.06667].
[43] A. J. Woss et al. (2019), [arXiv:1904.04136].
[44] S. M. Flatte, Phys. Lett. 63B, 224 (1976).
[45] V. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A16, 229 (2003), [hep-ph/0204328].
[46] V. Baru et al., Eur. Phys. J. A23, 523 (2005), [arXiv:nuclth/0410099].
[47] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003), [hep-ex/0309032].
[48] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 22, 222001 (2019), [arXiv:1904.03947].
[49] E. Braaten and J. Stapleton, Phys. Rev. D81, 014019 (2010), [arXiv:0907.3167].
[50] V. Baru et al., Eur. Phys. J. A44, 93 (2010), [arXiv:1001.0369].
[51] C. Fernández-Ramírez et al. (JPAC), Phys. Rev. Lett. 123, 9, 092001 (2019), [arXiv:1904.10021].
[52] D. Morgan, Nucl. Phys. A543, 632 (1992).
[53] V. Baru et al., Phys. Lett. B586, 53 (2004), [hepph/0308129].
[54] I. J. R. Aitchison (2015), [arXiv:1507.02697].
[55] R. N. Cahn and P. V. Landshoff, Nucl. Phys. B266, 451 (1986).
[56] J. L. Basdevant and E. L. Berger, Phys. Rev. D16, 657 (1977).
[57] R. Omnes, Nuovo Cim. 8, 316 (1958).
[58] I. J. R. Aitchison and R. Pasquier, Phys. Rev. 152, 4, 1274 (1966).
[59] G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
[60] M. R. Pennington et al., Eur. Phys. J. C56, 1 (2008), [arXiv:0803.3389].
[61] J. A. Oller and E. Oset, Phys. Rev. D60, 074023 (1999), [hep-ph/9809337].
[62] N. N. Achasov and A. V. Kiselev, Phys. Rev. D83, 054008 (2011), [arXiv:1011.4446].
[63] A. V. Anisovich et al., Phys. Rev. D84, 076001 (2011).
[64] J. H. Reid and N. N. Trofimenkoff, J. Math. Phys. 25, 3540 (1984).
[65] E. L. Lomon and S. Pacetti, Phys. Rev. D85, 113004 (2012), [Erratum: Phys. Rev.D86,039901(2012)], [arXiv:1201.6126].
[66] B. Moussallam, Eur. Phys. J. C73, 2539 (2013), [arXiv:1305.3143].
[67] I. R. Afnan and B. Blankleider, Phys. Rev. C22, 1638 (1980).
[68] A. D. Lahiff and I. R. Afnan, Phys. Rev. C60, 024608 (1999), [arXiv:nucl-th/9903058].
[69] A. Matsuyama, T. Sato and T. S. H. Lee, Phys. Rept. 439, 193 (2007), [arXiv:nucl-th/0608051].
[70] D. Ronchen et al., Eur. Phys. J. A49, 44 (2013), [arXiv:1211.6998].
[71] C. Hanhart, Phys. Lett. B715, 170 (2012), [arXiv:1203.6839].
[72] K. Nakano, Phys. Rev. C26, 1123 (1982).
[73] D. Djukanovic, J. Gegelia and S. Scherer, Phys. Rev. D76, 037501 (2007), [arXiv:0707.2030].
[74] M. Doring et al., Phys. Lett. B681, 26 (2009), [arXiv:0903.1781].
[75] S. Ropertz, C. Hanhart and B. Kubis, Eur. Phys. J. C78, 12, 1000 (2018), [arXiv:1809.06867].
[76] J. Gasser and U. G. Meissner, Nucl. Phys. B357, 90 (1991).
[77] M. Mikhasenko et al., JHEP 08, 080 (2019), [arXiv:1904.11894].
[78] G. Calucci, L. Fonda and G. C. Ghirardi, Phys. Rev. 166, 1719 (1968).

50. Cross-Section Formulae for Specific Processes

Revised August 2019 by H. Baer (Oklahoma U.) and R.N. Cahn (LBNL).

PART I: STANDARD MODEL PROCESSES

Setting aside leptoproduction (for which, see Sec. 16 of this Review), the cross sections of primary interest are those with light incident particles, $e^{+} e^{-}, \gamma \gamma, q \bar{q}, g q, g g$, etc., where g and q represent gluons and light quarks. The produced particles include both light particles and heavy ones $-t, W, Z$, and the Higgs boson H. We provide the production cross sections calculated within the Standard Model for several such processes.

50.1 Resonance Formation

Resonant cross sections are generally described by the BreitWigner formula (Sec. 18 of this Review).

$$
\begin{equation*}
\sigma(E)=\frac{2 J+1}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}}\left[\frac{\Gamma^{2} / 4}{\left(E-E_{0}\right)^{2}+\Gamma^{2} / 4}\right] B_{i n} B_{o u t} \tag{50.1}
\end{equation*}
$$

where E is the c.m. energy, J is the spin of the resonance, and the number of polarization states of the two incident particles are $2 S_{1}+1$ and $2 S_{2}+1$. The c.m. momentum in the initial state is k, E_{0} is the c.m. energy at the resonance, and Γ is the full width at half maximum height of the resonance. The branching fraction for the resonance into the initial-state channel is $B_{i n}$ and into the final-state channel is $B_{\text {out }}$. For a narrow resonance, the factor in square brackets may be replaced by $\pi \Gamma \delta\left(E-E_{0}\right) / 2$.

50.2 Production of light particles

The production of point-like, spin- $1 / 2$ fermions in $e^{+} e^{-}$annihilation through a virtual photon, $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}$, at c.m. energy squared s is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=N_{c} \frac{\alpha^{2}}{4 s} \beta\left[1+\cos ^{2} \theta+\left(1-\beta^{2}\right) \sin ^{2} \theta\right] Q_{f}^{2}, \tag{50.2}
\end{equation*}
$$

where β is v / c for the produced fermions in the c.m., θ is the c.m. scattering angle, and Q_{f} is the charge of the fermion. The factor N_{c} is 1 for charged leptons and 3 for quarks. In the ultrarelativistic limit, $\beta \rightarrow 1$,

$$
\begin{equation*}
\sigma=N_{c} Q_{f}^{2} \frac{4 \pi \alpha^{2}}{3 s}=N_{c} Q_{f}^{2} \frac{86.8 \mathrm{nb}}{s\left(\mathrm{GeV}^{2}\right)} \tag{50.3}
\end{equation*}
$$

The cross section for the annihilation of a $q \bar{q}$ pair into a distinct pair $q^{\prime} \bar{q}^{\prime}$ through a gluon is completely analogous up to color factors, with the replacement $\alpha \rightarrow \alpha_{s}$. Treating all quarks as massless, averaging over the colors of the initial quarks and defining $t=-s \sin ^{2}(\theta / 2), u=-s \cos ^{2}(\theta / 2)$, one finds [1]

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(q \bar{q} \rightarrow q^{\prime} \bar{q}^{\prime}\right)=\frac{\alpha_{s}^{2}}{9 s} \frac{t^{2}+u^{2}}{s^{2}} \tag{50.4}
\end{equation*}
$$

Crossing symmetry gives

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(q q^{\prime} \rightarrow q q^{\prime}\right)=\frac{\alpha_{s}^{2}}{9 s} \frac{s^{2}+u^{2}}{t^{2}} \tag{50.5}
\end{equation*}
$$

If the quarks q and q^{\prime} are identical, we have

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(q \bar{q} \rightarrow q \bar{q})=\frac{\alpha_{s}^{2}}{9 s}\left[\frac{t^{2}+u^{2}}{s^{2}}+\frac{s^{2}+u^{2}}{t^{2}}-\frac{2 u^{2}}{3 s t}\right] \tag{50.6}
\end{equation*}
$$

and by crossing

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(q q \rightarrow q q)=\frac{\alpha_{s}^{2}}{9 s}\left[\frac{t^{2}+s^{2}}{u^{2}}+\frac{s^{2}+u^{2}}{t^{2}}-\frac{2 s^{2}}{3 u t}\right] \tag{50.7}
\end{equation*}
$$

Annihilation of $e^{+} e^{-}$into $\gamma \gamma$ has the cross section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2}}{2 s} \frac{u^{2}+t^{2}}{t u} \tag{50.8}
\end{equation*}
$$

The related QCD process also has a triple-gluon coupling. The cross section is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(q \bar{q} \rightarrow g g)=\frac{8 \alpha_{s}^{2}}{27 s}\left(t^{2}+u^{2}\right)\left(\frac{1}{t u}-\frac{9}{4 s^{2}}\right) \tag{50.9}
\end{equation*}
$$

The crossed reactions are

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(q g \rightarrow q g)=\frac{\alpha_{s}^{2}}{9 s}\left(s^{2}+u^{2}\right)\left(-\frac{1}{s u}+\frac{9}{4 t^{2}}\right) \tag{50.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(g g \rightarrow q \bar{q})=\frac{\alpha_{s}^{2}}{24 s}\left(t^{2}+u^{2}\right)\left(\frac{1}{t u}-\frac{9}{4 s^{2}}\right) \tag{50.11}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(g g \rightarrow g g)=\frac{9 \alpha_{s}^{2}}{8 s}\left(3-\frac{u t}{s^{2}}-\frac{s u}{t^{2}}-\frac{s t}{u^{2}}\right) \tag{50.12}
\end{equation*}
$$

Lepton-quark scattering is analogous (neglecting Z exchange)

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(e q \rightarrow e q)=\frac{\alpha^{2}}{2 s} e_{q}^{2} \frac{s^{2}+u^{2}}{t^{2}} \tag{50.13}
\end{equation*}
$$

where e_{q} is the charge of the quark. For neutrino scattering with the four-Fermi interaction

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(\nu d \rightarrow \ell^{-} u\right)=\frac{G_{F}^{2} s}{4 \pi^{2}} \tag{50.14}
\end{equation*}
$$

where the Cabibbo angle suppression is ignored. Similarly

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(\nu \bar{u} \rightarrow \ell^{-} \bar{d}\right)=\frac{G_{F}^{2} s}{4 \pi^{2}} \frac{(1+\cos \theta)^{2}}{4} \tag{50.15}
\end{equation*}
$$

To obtain the formulae for deep inelastic scattering (presented in more detail in Section 18) we consider quarks of type i carrying a fraction $x=Q^{2} /(2 M \nu)$ of the nucleon's energy, where $\nu=$ $E-E^{\prime}$ is the energy lost by the lepton in the nucleon rest frame. With $y=\nu / E$ we have the correspondences

$$
\begin{gather*}
1+\cos \theta \rightarrow 2(1-y) \\
d \Omega_{c m} \rightarrow 4 \pi f_{i}(x) d x d y \tag{50.16}
\end{gather*}
$$

where the latter incorporates the quark distribution, $f_{i}(x)$. In this way we find

$$
\begin{aligned}
& \frac{d \sigma}{d x d y}(e N \rightarrow e X)=\frac{4 \pi \alpha^{2} x s}{Q^{4}} \frac{1}{2}\left[1+(1-y)^{2}\right] \\
& \quad \times\left[\frac{4}{9}(u(x)+\bar{u}(x)+\ldots)+\frac{1}{9}(d(x)+\bar{d}(x)+\ldots)\right](50.17)
\end{aligned}
$$

where now $s=2 M E$ is the cm energy squared for the electronnucleon collision and we have suppressed contributions from higher mass quarks.

Similarly,

$$
\begin{equation*}
\frac{d \sigma}{d x d y}\left(\nu N \rightarrow \ell^{-} X\right)=\frac{G_{F}^{2} x s}{\pi}\left[(d(x)+\ldots)+(1-y)^{2}(\bar{u}(x)+\ldots)\right] \tag{50.18}
\end{equation*}
$$

and
$\frac{d \sigma}{d x d y}\left(\bar{\nu} N \rightarrow \ell^{+} X\right)=\frac{G_{F}^{2} x s}{\pi}\left[(\bar{d}(x)+\ldots)+(1-y)^{2}(u(x)+\ldots)\right]$.
Quasi-elastic neutrino scattering $\left(\nu_{\mu} n \rightarrow \mu^{-} p, \bar{\nu}_{\mu} p \rightarrow \mu^{+} n\right)$ is directly related to the crossed reaction, neutron decay. The formula for the differential cross section is presented, for example, in N.J. Baker et al., Phys. Rev. D23, 2499 (1981).

50.3 Hadroproduction of heavy quarks

For hadroproduction of heavy quarks $Q=c, b, t$, it is important to include mass effects in the formulae. For $q \bar{q} \rightarrow Q \bar{Q}$, one has

$$
\begin{align*}
\frac{d \sigma}{d \Omega}(q \bar{q} \rightarrow Q \bar{Q}) & =\frac{\alpha_{s}^{2}}{9 s^{3}} \sqrt{1-\frac{4 m_{Q}^{2}}{s}} \\
& {\left[\left(m_{Q}^{2}-t\right)^{2}+\left(m_{Q}^{2}-u\right)^{2}+2 m_{Q}^{2} s\right] } \tag{50.20}
\end{align*}
$$

while for $g g \rightarrow Q \bar{Q}$ one has

$$
\begin{align*}
& \frac{d \sigma}{d \Omega}(g g \rightarrowQ \bar{Q})= \\
& \quad \frac{\alpha_{s}^{2}}{32 s} \sqrt{1-\frac{4 m_{Q}^{2}}{s}}\left[\frac{6}{s^{2}}\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)-\right. \\
&-\frac{m_{Q}^{2}\left(s-4 m_{Q}^{2}\right)}{3\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)}+ \\
& \frac{4}{3} \frac{\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)-2 m_{Q}^{2}\left(m_{Q}^{2}+t\right)}{\left(m_{Q}^{2}-t\right)^{2}} \\
&+ \frac{4}{3} \frac{\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)-2 m_{Q}^{2}\left(m_{Q}^{2}+u\right)}{\left(m_{Q}^{2}-u\right)^{2}} \\
&-3 \frac{\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)+m_{Q}^{2}(u-t)}{s\left(m_{Q}^{2}-t\right)} \tag{50.21}\\
&- 3 \frac{\left(m_{Q}^{2}-t\right)\left(m_{Q}^{2}-u\right)+m_{Q}^{2}(t-u)}{s\left(m_{Q}^{2}-u\right)}
\end{align*}
$$

50.4 Production of Weak Gauge Bosons 50.4.1 W and Z resonant production

Resonant production of a single W or Z is governed by the partial widths

$$
\begin{gather*}
\Gamma\left(W \rightarrow \ell_{i} \bar{\nu}_{i}\right)=\frac{\sqrt{2} G_{F} m_{W}^{3}}{12 \pi} \tag{50.22}\\
\Gamma\left(W \rightarrow q_{i} \bar{q}_{j}\right)=3 \frac{\sqrt{2} G_{F}\left|V_{i j}\right|^{2} m_{W}^{3}}{12 \pi} \tag{50.23}\\
\Gamma(Z \rightarrow f \bar{f})= \\
N_{c} \frac{\sqrt{2} G_{F} m_{Z}^{3}}{6 \pi} \tag{50.24}\\
\times\left[\left(T_{3}-Q_{f} \sin ^{2} \theta_{W}\right)^{2}+\left(Q_{f} \sin ^{2} \theta_{W}\right)^{2}\right]
\end{gather*}
$$

The weak mixing angle is θ_{W}. The CKM matrix elements are indicated by $V_{i j}$ and N_{c} is 3 for $q \bar{q}$ final states and 1 for leptonic final states.

The full differential cross section for $f_{i} \bar{f}_{j} \rightarrow(W, Z) \rightarrow f_{i^{\prime}} \bar{f}_{j^{\prime}}$ is given by

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\frac{N_{c}^{f}}{N_{c}^{i}} \cdot \frac{1}{256 \pi^{2} s} \cdot \frac{s^{2}}{\left(s-M^{2}\right)^{2}+s \Gamma^{2}} \\
& \times\left[\left(L^{2}+R^{2}\right)\left(L^{\prime 2}+R^{\prime 2}\right)\left(1+\cos ^{2} \theta\right)\right. \\
& \left.+\left(L^{2}-R^{2}\right)\left(L^{\prime 2}-R^{\prime 2}\right) 2 \cos \theta\right] \tag{50.25}
\end{align*}
$$

where M is the mass of the W or Z. The couplings for the W are $L=\left(8 G_{F} m_{W}^{2} / \sqrt{2}\right)^{1 / 2} V_{i j} / \sqrt{2} ; R=0$ where $V_{i j}$ is the corresponding CKM matrix element, with an analogous expression for L^{\prime} and R^{\prime}. For Z, the couplings are $L=\left(8 G_{F} m_{Z}^{2} / \sqrt{2}\right)^{1 / 2}\left(T_{3}-\right.$
$\left.\sin ^{2} \theta_{W} Q\right) ; R=-\left(8 G_{F} m_{Z}^{2} / \sqrt{2}\right)^{1 / 2} \sin ^{2} \theta_{W} Q$, where T_{3} is the weak isospin of the initial left-handed fermion and Q is the initial fermion's electric charge. The expressions for L^{\prime} and R^{\prime} are analogous. The color factors $N_{c}^{i, f}$ are 3 for initial or final quarks and 1 for initial or final leptons.

50.4.2 Production of pairs of weak gauge bosons

The cross section for $f \bar{f} \rightarrow W^{+} W^{-}$is given in term of the couplings of the left-handed and right-handed fermion $f, \ell=$ $2\left(T_{3}-Q x_{W}\right), r=-2 Q x_{W}$, where T_{3} is the third component of weak isospin for the left-handed f, Q is its electric charge (in units of the proton charge), and $x_{W}=\sin ^{2} \theta_{W}$:

$$
\begin{align*}
\frac{d \sigma}{d t}= & \frac{2 \pi \alpha^{2}}{N_{c} s^{2}}\left\{\left[\left(Q+\frac{\ell+r}{4 x_{W}} \frac{s}{s-m_{Z}^{2}}\right)^{2}\right.\right. \\
& \left.+\left(\frac{\ell-r}{4 x_{W}} \frac{s}{s-m_{Z}^{2}}\right)^{2}\right] A(s, t, u) \\
& +\frac{1}{2 x_{W}}\left(Q+\frac{\ell}{2 x_{W}} \frac{s}{s-m_{Z}^{2}}\right) \\
& (\Theta(-Q) I(s, t, u)-\Theta(Q) I(s, u, t)) \\
& \left.+\frac{1}{8 x_{W}^{2}}(\Theta(-Q) E(s, t, u)+\Theta(Q) E(s, u, t))\right\} \tag{50.26}
\end{align*}
$$

where $\Theta(x)$ is 1 for $x>0$ and 0 for $x<0$, and where

$$
\begin{aligned}
& A(s, t, u)=\left(\frac{t u}{m_{W}^{4}}-1\right)\left(\frac{1}{4}-\frac{m_{W}^{2}}{s}+3 \frac{m_{W}^{4}}{s^{2}}\right)+\frac{s}{m_{W}^{2}}-4 \\
& I(s, t, u)=\left(\frac{t u}{m_{W}^{4}}-1\right)\left(\frac{1}{4}-\frac{m_{W}^{2}}{2 s}-\frac{m_{W}^{4}}{s t}\right)+\frac{s}{m_{W}^{2}}-2+2 \frac{m_{W}^{2}}{t} \\
& E(s, t, u)=\left(\frac{t u}{m_{W}^{4}}-1\right)\left(\frac{1}{4}+\frac{m_{W}^{4}}{t^{2}}\right)+\frac{s}{m_{W}^{2}}
\end{aligned}
$$

and s, t, u are the usual Mandelstam variables with $s=\left(p_{f}+\right.$ $\left.p_{\bar{f}}\right)^{2}, t=\left(p_{f}-p_{W^{-}}\right)^{2}, u=\left(p_{f}-p_{W^{+}}\right)^{2}$. The factor N_{c} is 3 for quarks and 1 for leptons.

The analogous cross-section for $q_{i} \bar{q}_{j} \rightarrow W^{ \pm} Z^{0}$ is

$$
\begin{aligned}
\frac{d \sigma}{d t} & =\frac{\pi \alpha^{2}\left|V_{i j}\right|^{2}}{6 s^{2} x_{W}^{2}}\left\{(\frac { 1 } { s - m _ { W } ^ { 2 } }) ^ { 2 } \left[\left(\frac{9-8 x_{W}}{4}\right)\left(u t-m_{W}^{2} m_{Z}^{2}\right)\right.\right. \\
& \left.+\left(8 x_{W}-6\right) s\left(m_{W}^{2}+m_{Z}^{2}\right)\right] \\
& +\left[\frac{u t-m_{W}^{2} m_{Z}^{2}-s\left(m_{W}^{2}+m_{Z}^{2}\right)}{s-m_{W}^{2}}\right]\left[\frac{\ell_{j}}{t}-\frac{\ell_{i}}{u}\right] \\
& \left.+\frac{u t-m_{W}^{2} m_{Z}^{2}}{4\left(1-x_{W}\right)}\left[\frac{\ell_{j}^{2}}{t^{2}}+\frac{\ell_{i}^{2}}{u^{2}}\right]+\frac{s\left(m_{W}^{2}+m_{Z}^{2}\right)}{2\left(1-x_{W}\right)} \frac{\ell_{i} \ell_{j}}{t u}\right\}
\end{aligned}
$$

where ℓ_{i} and ℓ_{j} are the couplings of the left-handed q_{i} and q_{j} as defined above. The CKM matrix element between q_{i} and q_{j} is $V_{i j}$.

The cross section for $q_{i} \bar{q}_{i} \rightarrow Z^{0} Z^{0}$ is
$\frac{d \sigma}{d t}=\frac{\pi \alpha^{2}}{96} \frac{\ell_{i}^{4}+r_{i}^{4}}{x_{W}^{2}\left(1-x_{W}^{2}\right)^{2} s^{2}}\left[\frac{t}{u}+\frac{u}{t}+\frac{4 m_{Z}^{2} s}{t u}-m_{Z}^{4}\left(\frac{1}{t^{2}}+\frac{1}{u^{2}}\right)\right]$.

50.5 Production of Higgs Bosons

50.5.1 Resonant Production

The Higgs boson of the Standard Model can be produced resonantly in the collisions of quarks, leptons, W or Z bosons, gluons, or photons. The production cross section is thus controlled by the partial width of the Higgs boson into the entrance channel and its total width. The branching fractions for the Standard Model Higgs boson are shown in Fig. 1 of the "Searches for Higgs bosons" review in the Particle Listings section, as a function of the Higgs boson mass. The partial widths are given by the relations

$$
\begin{gather*}
\Gamma(H \rightarrow f \bar{f})=\frac{G_{F} m_{f}^{2} m_{H} N_{c}}{4 \pi \sqrt{2}}\left(1-4 m_{f}^{2} / m_{H}^{2}\right)^{3 / 2} \tag{50.30}\\
\Gamma\left(H \rightarrow W^{+} W^{-}\right)=\frac{G_{F} m_{H}^{3} \beta_{W}}{32 \pi \sqrt{2}}\left(4-4 a_{W}+3 a_{W}^{2}\right), \tag{50.31}\\
\Gamma(H \rightarrow Z Z)=\frac{G_{F} m_{H}^{3} \beta_{Z}}{64 \pi \sqrt{2}}\left(4-4 a_{Z}+3 a_{Z}^{2}\right) \tag{50.32}
\end{gather*}
$$

where N_{c} is 3 for quarks and 1 for leptons and where $a_{W}=$ $1-\beta_{W}^{2}=4 m_{W}^{2} / m_{H}^{2}$ and $a_{Z}=1-\beta_{Z}^{2}=4 m_{Z}^{2} / m_{H}^{2}$. The decay to two gluons proceeds through quark loops, with the t quark dominating [2]. Explicitly,

$$
\begin{equation*}
\Gamma(H \rightarrow g g)=\frac{\alpha_{s}^{2} G_{F} m_{H}^{3}}{36 \pi^{3} \sqrt{2}}\left|\sum_{q} I\left(m_{q}^{2} / m_{H}^{2}\right)\right|^{2} \tag{50.33}
\end{equation*}
$$

where $I(z)$ is complex for $z<1 / 4$. For $z<2 \times 10^{-3},|I(z)|$ is small so the light quarks contribute negligibly. For $m_{H}<2 m_{t}$, $z>1 / 4$ and

$$
\begin{equation*}
I(z)=3\left[2 z+2 z(1-4 z)\left(\sin ^{-1} \frac{1}{2 \sqrt{z}}\right)^{2}\right] \tag{50.34}
\end{equation*}
$$

which has the limit $I(z) \rightarrow 1$ as $z \rightarrow \infty$.

50.5.2 Higgs Boson Production in W^{*} and Z^{*} decay

The Standard Model Higgs boson can be produced in the decay of a virtual W or Z ("Higgstrahlung") [3,4]: In particular, if k is the c.m. momentum of the Higgs boson,

$$
\begin{align*}
\sigma\left(q_{i} \bar{q}_{j} \rightarrow W H\right) & =\frac{\pi \alpha^{2}\left|V_{i j}\right|^{2}}{36 \sin ^{4} \theta_{W}} \frac{2 k}{\sqrt{s}} \frac{k^{2}+3 m_{W}^{2}}{\left(s-m_{W}^{2}\right)^{2}} \tag{50.35}\\
\sigma(f \bar{f} \rightarrow Z H) & =\frac{2 \pi \alpha^{2}\left(\ell_{f}^{2}+r_{f}^{2}\right)}{48 N_{c} \sin ^{4} \theta_{W} \cos ^{4} \theta_{W}} \frac{2 k}{\sqrt{s}} \frac{k^{2}+3 m_{Z}^{2}}{\left(s-m_{Z}^{2}\right)^{2}}, \tag{50.36}
\end{align*}
$$

where ℓ and r are defined as above.
50.5.3 W and Z Fusion

Just as high-energy electrons can be regarded as sources of virtual photon beams, at very high energies they are sources of virtual W and Z beams. For Higgs boson production, it is the longitudinal components of the $W \mathrm{~s}$ and $Z \mathrm{~s}$ that are important [5]. The distribution of longitudinal W s carrying a fraction y of the electron's energy is [6]

$$
\begin{equation*}
f(y)=\frac{g^{2}}{16 \pi^{2}} \frac{1-y}{y} \tag{50.37}
\end{equation*}
$$

where $g=e / \sin \theta_{W}$. In the limit $s \gg m_{H} \gg m_{W}$, the partial decay rate is $\Gamma\left(H \rightarrow W_{L} W_{L}\right)=\left(g^{2} / 64 \pi\right)\left(m_{H}^{3} / m_{W}^{2}\right)$ and in the equivalent W approximation [7]

$$
\begin{align*}
\sigma\left(e^{+} e^{-} \rightarrow\right. & \left.\bar{\nu}_{e} \nu_{e} H\right)=\frac{1}{16 m_{W}^{2}}\left(\frac{\alpha}{\sin ^{2} \theta_{W}}\right)^{3} \\
& \times\left[\left(1+\frac{m_{H}^{2}}{s}\right) \log \frac{s}{m_{H}^{2}}-2+2 \frac{m_{H}^{2}}{s}\right] \tag{50.38}
\end{align*}
$$

There are significant corrections to this relation when m_{H} is not large compared to m_{W} [8]. For $m_{H}=150 \mathrm{GeV}$, the estimate is too high by 51% for $\sqrt{s}=1000 \mathrm{GeV}, 32 \%$ too high at $\sqrt{s}=2000$ GeV , and 22% too high at $\sqrt{s}=4000 \mathrm{GeV}$. Fusion of $Z Z$ to make a Higgs boson can be treated similarly. Identical formulae apply for Higgs production in the collisions of quarks whose charges permit the emission of a W^{+}and a W^{-}, except that QCD corrections and CKM matrix elements are required. Even in the absence of QCD corrections, the fine-structure constant ought to be evaluated at the scale of the collision, say m_{W}. All quarks contribute to the $Z Z$ fusion process.

50.6 Inclusive hadronic reactions

One-particle inclusive cross sections $E d^{3} \sigma / d^{3} p$ for the production of a particle of momentum p are conveniently expressed in terms of rapidity y (see above) and the momentum p_{T} transverse to the beam direction (in the c.m.):

$$
\begin{equation*}
E \frac{d^{3} \sigma}{d^{3} p}=\frac{d^{3} \sigma}{d \phi d y p_{T} d p_{T}} \tag{50.39}
\end{equation*}
$$

In appropriate circumstances, the cross section may be decomposed as a partonic cross section multiplied by the probabilities of finding partons of the prescribed momenta:

$$
\begin{equation*}
\sigma_{\text {hadronic }}=\sum_{i j} \int d x_{1} d x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) d \widehat{\sigma}_{\text {partonic }} \tag{50.40}
\end{equation*}
$$

The probability that a parton of type i carries a fraction of the incident particle's that lies between x_{1} and $x_{1}+d x_{1}$ is $f_{i}\left(x_{1}\right) d x_{1}$ and similarly for partons in the other incident particle. The partonic collision is specified by its c.m. energy squared $\hat{s}=x_{1} x_{2} s$ and the momentum transfer squared \hat{t}. The final hadronic state is more conveniently specified by the rapidities y_{1}, y_{2} of the two jets resulting from the collision and the transverse momentum p_{T}. The connection between the differentials is

$$
\begin{equation*}
d x_{1} d x_{2} d \hat{t}=d y_{1} d y_{2} \frac{\hat{s}}{s} d p_{T}^{2} \tag{50.41}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d^{3} \sigma}{d y_{1} d y_{2} d p_{T}^{2}}=\frac{\hat{s}}{s}\left[f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \frac{d \hat{\sigma}}{d \hat{t}}(\hat{s}, \hat{t}, \hat{u})+f_{i}\left(x_{2}\right) f_{j}\left(x_{1}\right) \frac{d \hat{\sigma}}{d \hat{t}}(\hat{s}, \hat{u}, \hat{t})\right] \tag{50.42}
\end{equation*}
$$

where we have taken into account the possibility that the incident parton types might arise from either incident particle. The second term should be dropped if the types are identical: $i=j$.

50.7 Two-photon processes

In the Weizsäcker-Williams picture, a high-energy electron beam is accompanied by a spectrum of virtual photons of energies ω and invariant-mass squared $q^{2}=-Q^{2}$, for which the photon number density is

$$
\begin{equation*}
d n=\frac{\alpha}{\pi}\left[1-\frac{\omega}{E}+\frac{\omega^{2}}{E^{2}}-\frac{m_{e}^{2} \omega^{2}}{Q^{2} E^{2}}\right] \frac{d \omega}{\omega} \frac{d Q^{2}}{Q^{2}} \tag{50.43}
\end{equation*}
$$

where E is the energy of the electron beam. The cross section for $e^{+} e^{-} \rightarrow e^{+} e^{-} X$ is then [9]

$$
\begin{equation*}
d \sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}(s)=d n_{1} d n_{2} d \sigma_{\gamma \gamma \rightarrow X}\left(W^{2}\right) \tag{50.44}
\end{equation*}
$$

where $W^{2}=m_{X}^{2}$. Integrating from the lower limit $Q^{2}=$ $m_{e}^{2} \frac{\omega_{i}^{2}}{E_{i}\left(E_{i}-\omega_{i}\right)}$ to a maximum Q^{2} gives

$$
\begin{align*}
& \sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}(s)=\frac{\alpha^{2}}{\pi^{2}} \int_{z_{t h}}^{1} \frac{d z}{z} \\
& \times\left[\left(\ln \frac{Q_{\max }^{2}}{z m_{e}^{2}}-1\right)^{2} f(z)+\frac{1}{3}(\ln z)^{3}\right] \sigma_{\gamma \gamma \rightarrow X}(z s), \tag{50.45}
\end{align*}
$$

where

$$
\begin{equation*}
f(z)=\left(1+\frac{1}{2} z\right)^{2} \ln (1 / z)-\frac{1}{2}(1-z)(3+z) \tag{50.46}
\end{equation*}
$$

The appropriate value of $Q_{\max }^{2}$ depends on the properties of the produced system X. For production of hadronic systems, $Q_{\max }^{2} \approx m_{\rho}^{2}$, while for lepton-pair production, $Q^{2} \approx W^{2}$. For production of a resonance with spin $J \neq 1$, we have

$$
\begin{align*}
& \sigma_{e^{+} e^{-} \rightarrow} e^{+} e^{-} R_{R}(s)=(2 J+1) \frac{8 \alpha^{2} \Gamma_{R \rightarrow \gamma \gamma}}{m_{R}^{3}} \\
& \times\left[f\left(m_{R}^{2} / s\right)\left(\ln \frac{m_{V}^{2} s}{m_{e}^{2} m_{R}^{2}}-1\right)^{2}-\frac{1}{3}\left(\ln \frac{s}{M_{R}^{2}}\right)^{3}\right] \tag{50.47}
\end{align*}
$$

where m_{V} is the mass that enters into the form factor for the $\gamma \gamma \rightarrow R$ transition, typically m_{ρ}.

PART II: PROCESSES BEYOND THE STANDARD MODEL

50.8 Production of supersymmetric particles

In supersymmetric (SUSY) theories (see Supersymmetric Particle Searches in this Review), every boson has a fermionic superpartner, and every fermion has a bosonic superpartner. The minimal supersymmetric Standard Model (MSSM) is a direct supersymmetrization of the Standard Model (SM), although a second Higgs doublet is needed to avoid triangle anomalies [10]. Under soft SUSY breaking, superpartner masses are lifted above the SM particle masses. In weak scale SUSY, the superpartners are invoked to stabilize the weak scale under radiative corrections, so the superpartners are expected to have masses of order the TeV scale.

50.8.1 Gluino and squark production

The superpartners of gluons are the color octet, spin $-\frac{1}{2}$ gluinos (\tilde{g}), while each helicity component of quark flavor has a spin0 squark partner, e.g. \tilde{q}_{L} and \tilde{q}_{R}. Third generation left- and right- squarks are expected to have large mixing, resulting in mass eigenstates \tilde{q}_{1} and \tilde{q}_{2}, with $m_{\tilde{q}_{1}}<m_{\tilde{q}_{2}}$ (here, q denotes any of the SM flavors of quarks and \tilde{q}_{i} the corresponding flavor and type ($i=L, R$ or 1,2) of squark). Gluino pair production ($\tilde{g} \tilde{g})$ takes place via either glue-glue or quark-antiquark annihilation [11].

The subprocess cross sections are usually presented as differential distributions in the Mandelstam variables s, t and u. Note that for a $2 \rightarrow 2$ scattering subprocess $a b \rightarrow c d$, the Mandelstam variable $s=\left(p_{a}+p_{b}\right)^{2}=\left(p_{c}+p_{d}\right)^{2}$, where p_{a} is the 4-momentum of particle a, and so forth. The variable $t=\left(p_{c}-p_{a}\right)^{2}$, where c and a are taken conventionally to be the most similar particles in the subprocess. The variable u would then be equal to $\left(p_{d}-p_{a}\right)^{2}$. Note that since s, t and u are squares of 4 -vectors, they are invariants in any inertial reference frame.

Gluino pair production at hadron colliders is described by:

$$
\begin{array}{r}
\frac{d \sigma}{d t}(g g \rightarrow \tilde{g} \tilde{g})=\frac{9 \pi \alpha_{s}^{2}}{4 s^{2}}\left\{\frac{2\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)}{s^{2}}\right. \\
+\frac{\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)-2 m_{\tilde{g}}^{2}\left(m_{\tilde{g}}^{2}+t\right)}{\left(m_{\tilde{g}}^{2}-t\right)^{2}} \\
+\frac{\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)-2 m_{\tilde{g}}^{2}\left(m_{\tilde{g}}^{2}+u\right)}{\left(m_{\tilde{g}}^{2}-u\right)^{2}}+\frac{m_{\tilde{g}}^{2}\left(s-4 m_{\tilde{g}}^{2}\right)}{\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)}
\end{array}
$$

$$
\begin{equation*}
\left.-\frac{\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)+m_{\tilde{g}}^{2}(u-t)}{s\left(m_{\tilde{g}}^{2}-t\right)}-\frac{\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-u\right)+m_{\tilde{g}}^{2}(t-u)}{s\left(m_{\tilde{g}}^{2}-u\right)}\right\} \tag{50.48}
\end{equation*}
$$

where α_{s} is the strong fine structure constant. Also,

$$
\begin{align*}
\frac{d \sigma}{d t}(q \bar{q} \rightarrow \tilde{g} \tilde{g}) & =\frac{8 \pi \alpha_{s}^{2}}{9 s^{2}}\left\{\frac{4}{3}\left(\frac{m_{\tilde{g}}^{2}-t}{m_{\tilde{q}}^{2}-t}\right)^{2}+\frac{4}{3}\left(\frac{m_{\tilde{\tilde{g}}}^{2}-u}{m_{\tilde{q}}^{2}-u}\right)^{2}\right. \\
& +\frac{3}{s^{2}}\left[\left(m_{\tilde{g}}^{2}-t\right)^{2}+\left(m_{\tilde{g}}^{2}-u\right)^{2}+2 m_{\tilde{g}}^{2} s\right] \\
& -3 \frac{\left[\left(m_{\tilde{g}}^{2}-t\right)^{2}+m_{\tilde{g}}^{2} s\right]}{s\left(m_{\tilde{q}}^{2}-t\right)} \\
& \left.-3 \frac{\left[\left(m_{\tilde{g}}^{2}-u\right)^{2}+m_{\tilde{g}}^{2} s\right]}{s\left(m_{\tilde{q}}^{2}-u\right)}+\frac{1}{3} \frac{m_{\tilde{g}}^{2} s}{\left(m_{\tilde{q}}^{2}-t\right)\left(m_{\tilde{q}}^{2}-u\right)}\right\} \tag{50.49}
\end{align*}
$$

Gluinos can also be produced in association with squarks: $\tilde{g} \tilde{q}_{i}$ production, where \tilde{q}_{i} represents any of the various types (left, right- or mixed) and flavors of squarks. The subprocess cross section is independent of whether the squark is the right-, left- or mixed type:

$$
\begin{aligned}
\frac{d \sigma}{d t}\left(g q \rightarrow \tilde{g} \tilde{q}_{i}\right) & =\frac{\pi \alpha_{s}^{2}}{24 s^{2}} \frac{\left[\frac{16}{3}\left(s^{2}+\left(m_{\tilde{q}_{i}}^{2}-u\right)^{2}\right)+\frac{4}{3} s\left(m_{\tilde{q}_{i}}^{2}-u\right)\right]}{s\left(m_{\tilde{g}}^{2}-t\right)\left(m_{\tilde{q}_{i}}^{2}-u\right)^{2}} \\
& \times\left(\left(m_{\tilde{g}}^{2}-u\right)^{2}+\left(m_{\tilde{q}_{i}}^{2}-m_{\tilde{g}}^{2}\right)^{2}+\frac{2 s m_{\tilde{g}}^{2}\left(m_{\tilde{q}_{i}}^{2}-m_{\tilde{g}}^{2}\right)}{\left(m_{\tilde{g}}^{2}-t\right)}\right)
\end{aligned}
$$

There are many different subprocesses for production of squark pairs. Since left- and right- squarks generally have different masses and different decay patterns, we present the differential cross section for each subprocess of $\tilde{q}_{i}(i=L, R$ or 1,2$)$ separately. (In early literature, the following formulae were often combined into a single equation which didn't differentiate the various squark types.) The result for $g g \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{i}$ is:

$$
\begin{align*}
\frac{d \sigma}{d t}(g g & \left.\rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{i}\right)=\frac{\pi \alpha_{s}^{2}}{4 s^{2}}\left\{\frac{1}{3}\left(\frac{m_{\tilde{q}}^{2}+t}{m_{\tilde{q}}^{2}-t}\right)^{2}+\frac{1}{3}\left(\frac{m_{\tilde{q}}^{2}+u}{m_{\tilde{q}}^{2}-u}\right)^{2}\right. \\
& +\frac{3}{32 s^{2}}\left(8 s\left(4 m_{\tilde{q}}^{2}-s\right)+4(u-t)^{2}\right)+\frac{7}{12} \\
& -\frac{1}{48} \frac{\left(4 m_{\tilde{q}}^{2}-s\right)^{2}}{\left(m_{\tilde{q}}^{2}-t\right)\left(m_{\tilde{q}}^{2}-u\right)} \\
& +\frac{3}{32} \frac{\left[(t-u)\left(4 m_{\tilde{q}}^{2}+4 t-s\right)-2\left(m_{\tilde{q}}^{2}-u\right)\left(6 m_{\tilde{q}}^{2}+2 t-s\right)\right]}{s\left(m_{\tilde{q}}^{2}-t\right)} \\
& +\frac{3}{32} \frac{\left[(u-t)\left(4 m_{\tilde{q}}^{2}+4 u-s\right)-2\left(m_{\tilde{q}}^{2}-t\right)\left(6 m_{\tilde{q}}^{2}+2 u-s\right)\right]}{s\left(m_{\tilde{q}}^{2}-u\right)} \\
& \left.+\frac{7}{96} \frac{\left[4 m_{\tilde{q}}^{2}+4 t-s\right]}{m_{\tilde{q}}^{2}-t}+\frac{7}{96} \frac{\left[4 m_{\tilde{q}}^{2}+4 u-s\right]}{m_{\tilde{q}}^{2}-u}\right\} \tag{50.51}
\end{align*}
$$

which has an obvious $u \leftrightarrow t$ symmetry.
For $q \bar{q} \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{i}$ with the same initial and final state flavors, we have

$$
\begin{align*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{i}\right) & =\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}}\left\{\frac{1}{\left(t-m_{\tilde{g}}^{2}\right)^{2}}+\frac{2}{s^{2}}-\frac{2 / 3}{s\left(t-m_{\tilde{g}}^{2}\right)}\right\} \\
& \times\left[-s t-\left(t-m_{\tilde{q}_{i}}^{2}\right)^{2}\right] \tag{50.52}
\end{align*}
$$

while if initial and final state flavors are different $\left(q \bar{q} \rightarrow \tilde{q}_{i}^{\prime} \tilde{\tilde{q}}_{i}^{\prime}\right)$ we instead have

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{q}_{i}^{\prime} \overline{\tilde{q}}_{i}^{\prime}\right)=\frac{4 \pi \alpha_{s}^{2}}{9 s^{4}}\left[-s t-\left(t-m_{\tilde{q}_{i}^{\prime}}^{2}\right)^{2}\right] . \tag{50.53}
\end{equation*}
$$

If the two initial state quarks are of different flavors, then we have

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q \bar{q}^{\prime} \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{i}^{\prime}\right)=\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \frac{-s t-\left(t-m_{\tilde{q}_{i}}^{2}\right)^{2}}{\left(t-m_{\tilde{g}}^{2}\right)^{2}} . \tag{50.54}
\end{equation*}
$$

If the initial quarks are of different flavor and final state squarks are of different type $(i \neq j)$ then

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q \bar{q}^{\prime} \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{j}^{\prime}\right)=\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \frac{m_{\tilde{\tilde{g}}}{ }^{2} s}{\left(t-m_{\tilde{g}}^{2}\right)^{2}} . \tag{50.55}
\end{equation*}
$$

For same-flavor initial state quarks, but final state unlike-type squarks, we also have

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{q}_{i} \overline{\tilde{q}}_{j}\right)=\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \frac{m_{\tilde{\tilde{g}}}{ }^{2} s}{\left(t-m_{\tilde{g}}^{2}\right)^{2}} . \tag{50.56}
\end{equation*}
$$

There also exist cross sections for quark-quark annihilation to squark pairs. For same flavor quark-quark annihilation to same flavor/same type final state squarks,

$$
\begin{gather*}
\frac{d \sigma}{d t}\left(q q \rightarrow \tilde{q}_{i} \tilde{q}_{i}\right)= \\
=\frac{\pi \alpha_{s}^{2}}{9 s^{2}} m_{\tilde{g}}^{2} s\left\{\frac{1}{\left(t-m_{\tilde{g}}^{2}\right)^{2}}+\frac{1}{\left(u-m_{\tilde{g}}^{2}\right)^{2}}-\frac{2 / 3}{\left(t-m_{\tilde{g}}^{2}\right)\left(u-m_{\tilde{g}}^{2}\right)}\right\} \tag{50.57}
\end{gather*}
$$

while if the final type squarks are different $(i \neq j)$, we have

$$
\frac{d \sigma}{d t}\left(q q \rightarrow \tilde{q}_{i} \tilde{q}_{j}\right)=
$$

$\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \times$
$\left\{\frac{\left[-s t-\left(t-m_{\tilde{q}_{i}}^{2}\right)\left(t-m_{\tilde{q}_{j}}^{2}\right)\right]}{\left(t-m_{\tilde{g}}^{2}\right)}+\frac{\left[-s u-\left(u-m_{\tilde{q}_{i}}^{2}\right)\left(u-m_{\tilde{q}_{j}}^{2}\right)\right]}{\left(u-m_{\tilde{g}}^{2}\right)}\right\}$.

If initial/final state flavors are different, but final state squark types are the same, then

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q q^{\prime} \rightarrow \tilde{q}_{i} \tilde{q}_{i}^{\prime}\right)=\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \frac{m_{\tilde{\tilde{g}}}{ }^{2} s}{\left(t-m_{\tilde{g}}^{2}\right)^{2}} . \tag{50.59}
\end{equation*}
$$

If initial quark flavors are different and final squark types are different, then

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q q^{\prime} \rightarrow \tilde{q}_{i} \tilde{q}_{j}^{\prime}\right)=\frac{2 \pi \alpha_{s}^{2}}{9 s^{2}} \frac{-s t-\left(t-m_{\tilde{q}_{i}}^{2}\right)\left(t-m_{\tilde{q}_{j}}^{2}\right)}{\left(t-m_{\tilde{g}}^{2}\right)^{2}} \tag{50.60}
\end{equation*}
$$

50.8.2 Gluino and squark associated production

In the MSSM, the charged spin- $\frac{1}{2}$ winos and higgsinos mix to make chargino states $\chi_{1}^{ \pm}$and $\chi_{2}^{ \pm}$, with $m_{\chi_{1}^{ \pm}}<m_{\chi_{2}^{ \pm}}$. The spin $-\frac{1}{2}$ neutral bino, wino and higgsino fields mix to give four neutralino mass eigenstates $\chi_{1,2,3,4}^{0}$ ordered according to mass. We sometimes denote the charginos and neutralinos collectively as -inos for notational simplicity
For gluino and squark production in association with charginos and neutralinos [12], the quark-squark-neutralino couplings ${ }^{1}$ are

[^72]defined by the interaction Lagrangian terms
$$
\mathcal{L}_{\tilde{f} f \tilde{\chi}_{i}^{0}}=\left[i A_{\tilde{\chi}_{i}^{0}}^{f} \tilde{f}_{L}^{\dagger} \overline{\tilde{\chi}}_{i}^{0} P_{L} f+i B_{\tilde{\chi}_{i}^{0}}^{f} \tilde{f}_{R}^{\dagger} \overline{\tilde{\chi}}_{i}^{0} P_{R} f+\text { h.c. }\right]
$$
, where $A_{\tilde{\chi}_{i}^{0}}^{f}$ and $B_{\tilde{\chi}_{i}^{0}}^{f}$ are coupling constants involving gauge couplings, neutralino mixing elements and in the case of third generation fermions, Yukawa couplings. Their form depends on the conventions used for setting up the MSSM Lagrangian, and can be found in various reviews [14] and textbooks [13,15]. P_{L} and P_{R} are the usual left- and right- spinor projection operators and f denotes any of the SM fermions u, d, e, ν_{e}, \cdots. The fermion-sfermion- chargino couplings have the form $\mathcal{L}=$ $\left[i A_{\tilde{\chi}_{i}^{-}}^{d} \tilde{u}_{L}^{\dagger} \overline{\tilde{\chi}_{i}^{-}} P_{L} d+i A_{\tilde{\chi}_{i}^{-}}^{u} \tilde{d}_{L}^{\dagger} \overline{\tilde{\chi}_{i}^{c}} P_{L} u+\right.$ h.c. $]$ for u and d quarks, where the $A_{\tilde{\chi}_{i}^{-}}^{d}$ and $A_{\tilde{\chi}_{i}^{-}}^{u}$ couplings are again conventiondependent, and can be found in textbooks. The superscript c denotes "charge conjugate spinor", defined by $\psi^{c} \equiv C \bar{\psi}^{T}$.
The subprocess cross sections for chargino-squark associated production occur via squark exchange and are given by
\[

$$
\begin{align*}
& \frac{d \sigma}{d t}\left(\bar{u} g \rightarrow \tilde{\chi}_{i}^{-} \overline{\tilde{d}}_{L}\right)=\frac{\alpha_{s}}{24 s^{2}}\left|A_{\tilde{\chi}_{i}^{-}}^{u}\right|^{2} \psi\left(m_{\tilde{d}_{L}}, m_{\tilde{\chi}_{i}^{-}}, t\right), \tag{50.61}\\
& \frac{d \sigma}{d t}\left(d g \rightarrow \tilde{\chi}_{i}^{-} \tilde{u}_{L}\right)=\frac{\alpha_{s}}{24 s^{2}}\left|A_{\tilde{\chi}_{i}^{-}}^{d}\right|^{2} \psi\left(m_{\tilde{u}_{L}}, m_{\tilde{\chi}_{i}^{-}}, t\right), \tag{50.62}
\end{align*}
$$
\]

while neutralino-squark production is given by

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q g \rightarrow \tilde{\chi}_{i}^{0} \tilde{q}\right)=\frac{\alpha_{s}}{24 s^{2}}\left(\left|A_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}+\left|B_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}\right) \psi\left(m_{\tilde{q}}, m_{\tilde{\chi}_{i}^{0}}, t\right), \tag{50.63}
\end{equation*}
$$

where

$$
\begin{gather*}
\psi\left(m_{1}, m_{2}, t\right)=\frac{s+t-m_{1}^{2}}{2 s}-\frac{m_{1}^{2}\left(m_{2}^{2}-t\right)}{\left(m_{1}^{2}-t\right)^{2}} \\
+\frac{t\left(m_{2}^{2}-m_{1}^{2}\right)+m_{2}^{2}\left(s-m_{2}^{2}+m_{1}^{2}\right)}{s\left(m_{1}^{2}-t\right)} \tag{50.64}
\end{gather*}
$$

Here, the variable t is given by the square of "squark-minusquark" four-momentum. The neutralino-gluino associated production cross section also occurs via squark exchange and is given by

$$
\begin{align*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{\chi}_{i}^{0} \tilde{g}\right) & =\frac{\alpha_{s}}{18 s^{2}}\left(\left|A_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}+\left|B_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}\right)\left[\frac{\left(m_{\tilde{\chi}_{i}^{0}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-t\right)}{\left(m_{\tilde{q}}^{2}-t\right)^{2}}\right. \\
& \left.+\frac{\left(m_{\tilde{\chi}_{i}^{0}}^{2}-u\right)\left(m_{\tilde{g}}^{2}-u\right)}{\left(m_{\tilde{q}}^{2}-u\right)^{2}}-\frac{2 \eta_{i} \eta_{\tilde{g}} m_{\tilde{g}} m_{\tilde{\chi}_{i}^{0}} s}{\left(m_{\tilde{q}}^{2}-t\right)\left(m_{\tilde{q}}^{2}-u\right)}\right], \tag{50.65}
\end{align*}
$$

where η_{i} is the sign of the neutralino mass eigenvalue and $\eta_{\tilde{g}}$ is the sign of the gluino mass eigenvalue. We also have chargino-gluino associated production:

$$
\begin{gathered}
\frac{d \sigma}{d t}\left(\bar{u} d \rightarrow \tilde{\chi}_{i}^{-} \tilde{g}\right)=\frac{\alpha_{s}}{18 s^{2}}\left[\left|A_{\tilde{\chi}_{i}^{-}}^{u}\right|^{2} \frac{\left(m_{\tilde{\chi}_{i}^{-}}^{2}-t\right)\left(m_{\tilde{g}}^{2}-t\right)}{\left(m_{\tilde{d}_{L}}^{2}-t\right)^{2}}\right. \\
\left.+\left|A_{\tilde{\chi}_{i}^{-}}^{d}\right|^{2} \frac{\left(m_{\tilde{\chi}_{i}^{-}}^{2}-u\right)\left(m_{\tilde{g}}^{2}-u\right)}{\left(m_{\tilde{u}_{L}}^{2}-u\right)^{2}}+\frac{2 \eta_{\tilde{g}} R e\left(A_{\tilde{\chi}_{i}^{-}}^{u} A_{\tilde{\chi}_{i}^{-}}^{d}\right) m_{\tilde{g}} m_{\tilde{\chi}_{i}} s}{\left(m_{\tilde{d}_{L}}^{2}-t\right)\left(m_{\tilde{u}_{L}}^{2}-u\right)}\right]
\end{gathered}
$$

(50.66)
where $\hat{t}=(\tilde{g}-d)^{2}$ and in the third term one must take the real part of the in general complex coupling constant product.

50.8.3 Slepton and sneutrino production

The subprocess cross section for $\tilde{\ell}_{L} \overline{\tilde{\nu}}_{\ell_{L}}$ production $(\ell=e$ or $\mu)$ occurs via s-channel W exchange and is given by

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(d \bar{u} \rightarrow \tilde{\ell}_{L} \overline{\tilde{\nu}}_{\ell_{L}}\right)=\frac{g^{4}\left|D_{W}(s)\right|^{2}}{192 \pi s^{2}}\left(t u-m_{\tilde{\ell}_{L}}^{2} m_{\tilde{\nu}_{\ell_{L}}}^{2}\right) \tag{50.67}
\end{equation*}
$$

where $D_{W}(s)=1 /\left(s-M_{W}^{2}+i M_{W} \Gamma_{W}\right)$ is the W-boson propagator denominator. The production of $\tilde{\tau}_{1} \overline{\tilde{\nu}}_{\tau}$ is given as above, but replacing $m_{\tilde{\ell}_{L}} \rightarrow m_{\tilde{\tau}_{1}}, m_{\tilde{\nu}_{\ell_{L}}} \rightarrow m_{\tilde{\nu}_{\tau}}$ and multiplying by an overall factor of $\cos ^{2} \theta_{\tau}$ (where θ_{τ} is the tau-slepton mixing angle). Similar substitutions hold for $\tilde{\tau}_{2} \overline{\tilde{\nu}}_{\tau}$ production, except the overall factor is $\sin ^{2} \theta_{\tau}$.

Table 50.1: The constants α_{f} and β_{f} that appear in in the $S M$ neutral current Lagrangian. Here $t \equiv \tan \theta_{W}$ and $c \equiv \cot \theta_{W}$.

f	q_{f}	α_{f}	β_{f}
ℓ	-1	$\frac{1}{4}(3 t-c)$	$\frac{1}{4}(t+c)$
ν_{ℓ}	0	$\frac{1}{4}(\mathrm{t}+\mathrm{c})$	$-\frac{1}{4}(t+c)$
u	$\frac{2}{3}$	$-\frac{5}{12} t+\frac{1}{4} c$	$-\frac{1}{4}(t+c)$
d	$-\frac{1}{3}$	$\frac{1}{12} t-\frac{1}{4} c$	$\frac{1}{4}(t+c)$

The subprocess cross section for $\tilde{\ell}_{L} \overline{\tilde{\ell}}_{L}$ production occurs via s channel γ and Z exchange, and depends on the neutral current interaction, with fermion couplings to γ and Z^{0} given by $\mathcal{L}_{\text {neutral }}=-e q_{f} \bar{f} \gamma^{\mu} f A_{\mu}+e \bar{f} \gamma^{\mu}\left(\alpha_{f}+\beta_{f} \gamma_{5}\right) f Z_{\mu}$ (with values of q_{f}, α_{f}, and β_{f} given in Table-50.1.

The subprocess cross section is given by

$$
\begin{gather*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{\ell}_{L} \overline{\tilde{\ell}}_{L}\right)=\frac{e^{4}}{24 \pi s^{2}}\left(t u-m_{\tilde{\ell}_{L}}^{4}\right) \times \\
\left\{\frac{q_{\ell}^{2} q_{q}^{2}}{s^{2}}+\left(\alpha_{\ell}-\beta_{\ell}\right)^{2}\left(\alpha_{q}^{2}+\beta_{q}^{2}\right)\left|D_{Z}(s)\right|^{2}\right. \\
\left.+\frac{2 q_{\ell} q_{q} \alpha_{q}\left(\alpha_{\ell}-\beta_{\ell}\right)\left(s-M_{Z}^{2}\right)}{s}\left|D_{Z}(s)\right|^{2}\right\} \tag{50.68}
\end{gather*}
$$

where $D_{Z}(s)=1 /\left(s-M_{Z}^{2}+i M_{Z} \Gamma_{Z}\right)$. The cross section for sneutrino production is given by the same formula, but with α_{ℓ}, β_{ℓ}, q_{ℓ} and $m_{\tilde{\ell}_{L}}$ replaced by $\alpha_{\nu}, \beta_{\nu}, 0$ and $m_{\tilde{\nu}_{L}}$, respectively. The cross section for $\tilde{\tau}_{1} \overline{\tilde{\tau}}_{1}$ production is obtained by replacing $m_{\tilde{\ell}_{L}} \rightarrow$ $m_{\tilde{\tau}_{1}}$ and $\beta_{\ell} \rightarrow \beta_{\ell} \cos 2 \theta_{\tau}$. The cross section for $\tilde{\ell}_{R} \overline{\tilde{\ell}}_{R}$ production is given by substituting $\alpha_{\ell}-\beta_{\ell} \rightarrow \alpha_{\ell}+\beta_{\ell}$ and $m_{\tilde{\ell}_{L}} \rightarrow m_{\tilde{\ell}_{R}}$ in the equation above. The cross section for $\tilde{\tau}_{2} \overline{\tilde{\tau}}_{2}$ production is obtained from the formula for $\tilde{\ell}_{R} \bar{\ell}_{R}$ production by replacing $m_{\tilde{\ell}_{R}} \rightarrow m_{\tilde{\tau}_{2}}$ and $\beta_{\ell} \rightarrow \beta_{\ell} \cos 2 \theta_{\tau}$.

Finally, the cross section for $\tilde{\tau}_{1} \overline{\tilde{\tau}}_{2}$ production occurs only via Z exchange, and is given by

$$
\begin{gather*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{\tau}_{1} \overline{\tilde{\tau}}_{2}\right)=\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \overline{\tilde{\tau}}_{1} \tilde{\tau}_{2}\right)= \\
\frac{e^{4}}{24 \pi s^{2}}\left(\alpha_{q}^{2}+\beta_{q}^{2}\right) \beta_{\ell}^{2} \sin ^{2} 2 \theta_{\tau}\left|D_{Z}(s)\right|^{2}\left(u t-m_{\tilde{\tau}_{1}}^{2} m_{\tilde{\tau}_{2}}^{2}\right) \tag{50.69}
\end{gather*}
$$

50.8.4 Chargino and neutralino pair production

50.8.4.1 $\tilde{\chi}_{i}^{-} \tilde{\chi}_{j}^{0}$ production

The subprocess cross section for $d \bar{u} \rightarrow \tilde{\chi}_{i}^{-} \tilde{\chi}_{j}^{0}$ depends on Lagrangian couplings

$$
\begin{gathered}
\mathcal{L}_{W} \bar{u} d=-\frac{g}{\sqrt{2}} \bar{u} \gamma_{\mu} P_{L} d W^{+\mu}+\text { h.c. } \\
\mathcal{L}_{W \tilde{\chi}_{i}^{-} \tilde{\chi}_{j}^{0}}=-g(-i)^{\theta_{j}} \overline{\tilde{\chi}}^{-}{ }_{i}\left[X_{i}^{j}+Y_{i}^{j} \gamma_{5}\right] \gamma_{\mu} \tilde{\chi}_{j}^{0} W^{-\mu}+\text { h.c. }
\end{gathered}
$$

$$
\mathcal{L}_{q \tilde{q} \tilde{\chi}_{i}^{-}}=i A_{\tilde{\chi}_{i}^{-}}^{d} \tilde{u}_{L}^{\dagger} \overline{\tilde{\chi}_{i}^{-}} P_{L} d+i A_{\tilde{\chi}_{i}^{-}}^{u} \tilde{d}_{L}^{\dagger} \overline{\tilde{\chi}_{i}^{c}} P_{L} u+\text { h.c. }
$$

and

$$
\mathcal{L}_{q \tilde{q} \tilde{\chi}_{j}^{0}}=i A_{\tilde{\chi}_{j}^{0}}^{q} \tilde{q}_{L}^{\dagger}{\overline{\tilde{\chi}^{0}}}_{j} P_{L} q+\text { h.c. }
$$

Contributing diagrams include W exchange and also \tilde{d}_{L} and \tilde{u}_{L} squark exchange. The X_{i}^{j} and Y_{i}^{j} couplings are new, and again convention-dependent: the cross section formulae works if the interaction Lagrangian is written in the above form, so that the couplings can be suitably extracted. The term $\theta_{j}=0$ (1) if $m_{\tilde{\chi}_{j}^{0}}>0(<0)$; it comes about because the neutralino field must be re-defined by a $-i \gamma_{5}$ transformation if its mass eigenvalue is negative [13]. The subprocess cross section is given in terms of dot products of four momenta, where particle labels are used to denote their four-momenta; note that all mass terms in the cross section formulae are positive definite, so that the signs of mass eigenstates have been absorbed into the Lagrangian couplings, as for instance in Ref. [13]. We then have

$$
\begin{gather*}
\frac{d \sigma}{d t}\left(d \bar{u} \rightarrow \tilde{\chi}_{i}^{-} \tilde{\chi}_{j}^{0}\right)=\frac{1}{192 \pi s^{2}} \\
{\left[T_{W}+T_{\tilde{d}_{L}}+T_{\tilde{u}_{L}}+T_{W \tilde{d}_{L}}+T_{W \tilde{u}_{L}}+T_{\tilde{d}_{L} \tilde{u}_{L}}\right]} \tag{50.70}
\end{gather*}
$$

where

$$
\begin{aligned}
T_{W} & =8 g^{4}\left|D_{W}(s)\right|^{2}\left\{\left[X_{i}^{j 2}+Y_{i}^{j 2}\right]\left(\tilde{\chi}_{j}^{0} \cdot d \tilde{\chi}_{i}^{-} \cdot \bar{u}+\tilde{\chi}_{j}^{0} \cdot \bar{u} \tilde{\chi}_{i}^{-} \cdot d\right)\right. \\
& +2\left(X_{i}^{j} Y_{i}^{j}\right)\left(\tilde{\chi}_{j}^{0} \cdot d \tilde{\chi}_{i}^{-} \cdot \bar{u}-\tilde{\chi}_{j}^{0} \cdot \bar{u} \tilde{\chi}_{i}^{-} \cdot d\right) \\
& \left.+\left[X_{i}^{j 2}-Y_{i}^{j 2}\right] m_{\tilde{\chi}_{i}^{-}} m_{\tilde{\chi}_{j}^{0}} d \cdot \bar{u}\right\}
\end{aligned}
$$

$$
\begin{align*}
& T_{W \tilde{d}_{L}}=\frac{-\sqrt{2} g^{2} \operatorname{Re}\left[A_{\tilde{\chi}_{j}^{0}}^{d *} A_{\tilde{\chi}_{i}^{-}}^{u}(-i)^{\theta_{j}}\right]\left(s-M_{W}^{2}\right)\left|D_{W}(s)\right|^{2}}{\left(\tilde{\chi}_{i}^{-}-\bar{u}\right)^{2}-m_{\tilde{d}_{L}}^{2}} \\
& \times\left\{8\left(X_{i}^{j}+Y_{i}^{j}\right) \tilde{\chi}_{j}^{0} \cdot d \bar{u} \cdot \tilde{\chi}_{i}^{-}+4\left(X_{i}^{j}-Y_{i}^{j}\right) m_{\tilde{\chi}_{i}^{-}} m_{\tilde{\chi}_{j}^{0}} d \cdot \bar{u}\right\} \tag{50.74}
\end{align*}
$$

$$
\begin{aligned}
& T_{W \tilde{u}_{L}}=\frac{\sqrt{2} g^{2} \operatorname{Re}\left[A_{\tilde{\chi}_{i}^{-}}^{d *} A_{\tilde{\chi}_{j}^{0}}^{u}(-i)^{\theta_{j}}\right]\left(s-M_{W}^{2}\right)\left|D_{W}(s)\right|^{2}}{\left(\tilde{\chi}_{j}^{0}-\bar{u}\right)^{2}-m_{\tilde{u}_{L}}^{2}} \\
& \times\left\{8\left(X_{i}^{j}-Y_{i}^{j}\right) \tilde{\chi}_{j}^{0} \cdot \bar{u} d \cdot \tilde{\chi}_{i}^{-}+4\left(X_{i}^{j}+Y_{i}^{j}\right) m_{\tilde{\chi}_{i}^{-}} m_{\tilde{\chi}_{j}^{0}} d \cdot \bar{u}\right\}(50
\end{aligned}
$$

and

$$
\begin{equation*}
T_{\tilde{d}_{L} \tilde{u}_{L}}=-\frac{4 \operatorname{Re}\left[A_{\tilde{\chi}_{j}^{0}}^{d} A_{\tilde{\chi}_{i}^{-}}^{u *} A_{\tilde{\chi}_{i}^{-}}^{d *} A_{\tilde{\chi}_{j}^{0}}^{u}\right] m_{\tilde{\chi}_{i}^{-}} m_{\tilde{\chi}_{j}^{0}} d \cdot \bar{u}}{\left[\left(\tilde{\chi}_{i}^{-}-\bar{u}\right)^{2}-m_{\tilde{d}_{L}}^{2}\right]\left[\left(\tilde{\chi}_{j}^{0}-\bar{u}\right)^{2}-m_{\tilde{u}_{L}}^{2}\right]} \tag{50.76}
\end{equation*}
$$

50.8.4.2 Chargino pair production

The subprocess cross section for $d \bar{d} \rightarrow \tilde{\chi}_{i}^{-} \tilde{\chi}_{i}^{+}(i=1,2)$ depends on Lagrangian couplings $\mathcal{L}=e \overline{\tilde{\chi}_{i}^{-}} \gamma_{\mu} \tilde{\chi}_{i}^{-} A^{\mu}-e \cot \underline{\theta_{W}} \tilde{\chi}_{i}^{-} \gamma_{\mu}\left(x_{i}-\right.$ $\left.y_{i} \gamma_{5}\right) \tilde{\chi}_{i}^{-} Z^{\mu}$ and also $\mathcal{L} \ni i A_{\tilde{\chi}_{i}^{-}}^{d} \tilde{u}_{L}^{\dagger}{\tilde{\chi^{i}}}_{-} P_{L} d+i A_{\tilde{\chi}_{i}^{-}}^{u} \tilde{d}_{L}^{\dagger} \overline{\tilde{\chi}_{i}^{-c}} P_{L} u+$ h.c.. Contributing diagrams include s-channel γ, Z^{0} exchange and t channel \tilde{u}_{L} exchange $[16,17]$. The couplings x_{i} and y_{i} are again new and as usual convention-dependent.
The subprocess cross section is given by

$$
\begin{aligned}
& \frac{d \sigma}{d t}\left(d \bar{d} \rightarrow \tilde{\chi}_{i}^{-} \tilde{\chi}_{i}^{+}\right)= \\
& \quad \frac{1}{192 \pi s^{2}}\left[T_{\gamma}+T_{Z}+T_{\tilde{u}_{L}}+T_{\gamma Z}+T_{\gamma \tilde{u}_{L}}+T_{Z \tilde{u}_{L}}\right](50.77)
\end{aligned}
$$

where

$$
\begin{gather*}
T_{\gamma}=\frac{32 e^{4} q_{d}^{2}}{s^{2}}\left[d \cdot \tilde{\chi}_{i}^{+} \bar{d} \cdot \tilde{\chi}_{i}^{-}+d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}+m_{\tilde{\chi}_{i}^{-}}^{2} d \cdot \bar{d}\right] \quad(50.78) \tag{50.78}\\
T_{Z}=32 e^{4} \cot ^{2} \theta_{W}\left|D_{Z}(s)\right|^{2} \\
\left\{\left(\alpha_{d}^{2}+\beta_{d}^{2}\right)\left(x_{i}^{2}+y_{i}^{2}\right)\left[d \cdot \tilde{\chi}_{i}^{+} \bar{d} \cdot \tilde{\chi}_{i}^{-}+d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}+m_{\tilde{\chi}_{i}^{-}}^{2} d \cdot \bar{d}\right]\right. \\
\left.\mp 4 \alpha_{d} \beta_{d} x_{i} y_{i}\left[d \cdot \tilde{\chi}_{i}^{+} \bar{d} \cdot \tilde{\chi}_{i}^{-}-d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}\right]-2 y_{i}^{2}\left(\alpha_{d}^{2}+\beta_{d}^{2}\right) m_{\tilde{\chi}_{i}^{-}}^{2} d \cdot \bar{d}\right\}
\end{gather*}
$$

$$
\begin{equation*}
T_{\tilde{u}_{L}}=\frac{4\left|A_{\tilde{\chi}_{i}^{-}}^{d}\right|^{4}}{\left[\left(d-\tilde{\chi}_{i}^{-}\right)^{2}-m_{\tilde{u}_{L}}^{2}\right]^{2}} d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+} \tag{50.79}
\end{equation*}
$$

$T_{\gamma \tilde{u}_{L}}=\mp \frac{8 e^{2} q_{d}}{s} \frac{\left|A_{\tilde{\chi}_{i}^{-}}^{d}\right|^{2}}{\left[\left(d-\tilde{\chi}_{i}^{-}\right)^{2}-m_{\tilde{u}_{L}}^{2}\right]}\left\{2 \bar{d} \cdot \tilde{\chi}_{i}^{+} d \cdot \tilde{\chi}_{i}^{-}+m_{\tilde{\chi}_{i}^{-}}^{2} d \cdot \bar{d}\right\}$

$$
T_{\gamma Z}=\frac{64 e^{4} \cot \theta_{W} q_{d}\left(s-M_{Z}^{2}\right)\left|D_{Z}(s)\right|^{2}}{s} \times
$$

$$
\left\{\alpha_{d} x_{i}\left(d \cdot \tilde{\chi}_{i}^{+} \bar{d} \cdot \tilde{\chi}_{i}^{-}+d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}+m_{\tilde{\chi}_{i}^{-}}^{2} d \cdot \bar{d}\right)\right.
$$

$$
\begin{equation*}
\left.\pm \beta_{d} y_{i}\left(d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}-d \cdot \tilde{\chi}_{i}^{+} \bar{d} \cdot \tilde{\chi}_{i}^{-}\right)\right\} \tag{50.81}
\end{equation*}
$$

and

$$
\begin{align*}
T_{Z \tilde{u}_{L}} & =\mp 8 e^{2} \cot \theta_{W}\left|D_{Z}(s)\right|^{2} \frac{\left|A_{\tilde{\chi}_{i}^{-}}^{d}\right|^{2}\left(s-M_{Z}^{2}\right)}{\left[\left(d-\tilde{\chi}_{i}^{-}\right)^{2}-m_{\tilde{u}_{L}}^{2}\right]}\left(\alpha_{d}-\beta_{d}\right) \\
& \times\left\{2\left(x_{i} \mp y_{i}\right) d \cdot \tilde{\chi}_{i}^{-} \bar{d} \cdot \tilde{\chi}_{i}^{+}+m_{\tilde{\chi}_{i}^{-}}^{2}\left(x_{i} \pm y_{i}\right) d \cdot \bar{d}\right\} \tag{50.83}
\end{align*}
$$

using the upper of the sign choices.
The cross section for $u \bar{u} \rightarrow \tilde{\chi}_{i}^{+} \tilde{\chi}_{i}^{-}$can be obtained from the above by replacing $\alpha_{d} \rightarrow \alpha_{u}, \beta_{d} \rightarrow \beta_{u}, q_{d} \rightarrow q_{u}, \tilde{u}_{L} \rightarrow \tilde{d}_{L}$, $A_{\tilde{\chi}_{i}^{-}}^{d} \rightarrow A_{\tilde{\chi}_{i}^{-}}^{u}, d \rightarrow \bar{u}, \bar{d} \rightarrow u$ and adopting the lower of the sign choices everywhere.
The cross section for $q \bar{q} \rightarrow \tilde{\chi}_{1}^{-} \tilde{\chi}_{2}^{+}, \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-}$can occur via Z and \tilde{q}_{L} exchange. It is usually much smaller than $\tilde{\chi}_{1,2}^{-} \tilde{\chi}_{1,2}^{+}$production, so the cross section will not be presented here. It can be found in Appendix A of Ref. [13].

50.8.4.3 Neutralino pair production

Neutralino pair production via $q \bar{q}$ fusion takes place via s channel Z exchange plus t - and u-channel left- and right- squark exchange (5 diagrams) $[17,18]$. The Lagrangian couplings (see previous footnote*) needed include terms given above plus terms of the form $\mathcal{L}=W_{i j} \overline{\tilde{\chi}}^{0}{ }_{i} \gamma_{\mu}\left(\gamma_{5}\right)^{\theta_{i}+\theta_{j}+1} \tilde{\chi}_{j}^{0} Z^{\mu}$. The couplings $W_{i j}$
depend only on the higgsino components of the neutralinos i and j. The subprocess cross section is given by:

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(q \bar{q} \rightarrow \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}\right)=\frac{1}{192 \pi s^{2}}\left[T_{Z}+T_{\tilde{q}_{L}}+T_{\tilde{q}_{R}}+T_{Z \tilde{q}_{L}}+T_{Z \tilde{q}_{R}}\right] \tag{50.84}
\end{equation*}
$$

where

$$
\begin{gathered}
T_{Z}=128 e^{2}\left|W_{i j}\right|^{2}\left(\alpha_{q}^{2}+\beta_{q}^{2}\right)\left|D_{Z}(s)\right|^{2} \\
{\left[q \cdot \tilde{\chi}_{i}^{0} \bar{q} \cdot \tilde{\chi}_{j}^{0}+q \cdot \tilde{\chi}_{j}^{0} \bar{q} \cdot \tilde{\chi}_{i}^{0}-\eta_{i} \eta_{j} m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}\right],} \\
T_{\tilde{q}_{L}}=4\left|A_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}\left|A_{\tilde{\chi}_{j}^{0}}^{q}\right|^{2}\left\{\frac{q \cdot \tilde{\chi}_{i}^{0} \bar{q} \cdot \tilde{\chi}_{j}^{0}}{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]^{2}}+\frac{q \cdot 85)}{\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]^{2}} \overline{\chi_{i}}\right. \\
\left.-\eta_{i} \eta_{j} \frac{m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}}{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]}\right\}
\end{gathered}
$$

$$
T_{\tilde{q}_{R}}=4\left|B_{\tilde{\chi}_{i}^{0}}^{q}\right|^{2}\left|B_{\tilde{\chi}_{j}^{0}}^{q}\right|^{2}\left\{\frac{q \cdot \tilde{\chi}_{i}^{0} \bar{q} \cdot \tilde{\chi}_{j}^{0}}{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{R}}^{2}\right]^{2}}+\frac{q \cdot \tilde{\chi}_{j}^{0} \bar{q} \cdot \tilde{\chi}_{i}^{0}}{\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{R}}^{2}\right]^{2}}\right.
$$

$$
\left.-\eta_{i} \eta_{j} \frac{m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}}{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{R}}^{2}\right]\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{R}}^{2}\right]}\right\}
$$

$$
T_{Z \tilde{q}_{L}}=16 e\left(\alpha_{q}-\beta_{q}\right)\left(s-M_{Z}^{2}\right)\left|D_{Z}(s)\right|^{2}
$$

$$
\left\{\begin{array}{l}
\operatorname{Re}\left(W_{i j} A_{\tilde{\chi}_{i}^{0}}^{q *} A_{\tilde{\chi}_{j}^{0}}^{q}\right) \\
{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]}
\end{array} 2 q \cdot \tilde{\chi}_{i}^{0} \bar{q} \cdot \tilde{\chi}_{j}^{0}-\eta_{i} \eta_{j} m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}\right]
$$

$$
\left.+\eta_{i} \eta_{j} \frac{\operatorname{Re}\left(W_{i j} A_{\tilde{\chi}_{i}^{0}}^{q} A_{\tilde{\chi}_{j}^{0}}^{q *}\right)}{\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{L}}^{2}\right]}\left[2 q \cdot \tilde{\chi}_{j}^{0} \bar{q} \cdot \tilde{\chi}_{i}^{0}-\eta_{i} \eta_{j} m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}\right]\right\}
$$

$$
\begin{equation*}
T_{Z \tilde{q}_{R}}=16 e\left(\alpha_{q}+\beta_{q}\right)\left(s-M_{Z}^{2}\right)\left|D_{Z}(s)\right|^{2} \tag{50.88}
\end{equation*}
$$

$$
\left\{\frac{\operatorname{Re}\left(W_{i j} B_{\tilde{\chi}_{i}^{0}}^{q *} B_{\tilde{\chi}_{j}^{0}}^{q}\right)}{\left[\left(\tilde{\chi}_{i}^{0}-q\right)^{2}-m_{\tilde{q}_{R}}^{2}\right]}\left[2 q \cdot \tilde{\chi}_{i}^{0} \bar{q} \cdot \tilde{\chi}_{j}^{0}-\eta_{i} \eta_{j} m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}\right]\right.
$$

$$
\begin{equation*}
\left.-\frac{\operatorname{Re}\left(W_{i j} B_{\tilde{\chi}_{i}^{0}}^{q} B_{\tilde{\chi}_{j}^{0}}^{q *}\right)}{\left[\left(\tilde{\chi}_{j}^{0}-q\right)^{2}-m_{\tilde{q}_{R}^{2}}^{2}\right]}\left[2 q \cdot \tilde{\chi}_{j}^{0} \bar{q} \cdot \tilde{\chi}_{i}^{0}-\eta_{i} \eta_{j} m_{\tilde{\chi}_{i}^{0}} m_{\tilde{\chi}_{j}^{0}} q \cdot \bar{q}\right]\right\} \tag{50.89}
\end{equation*}
$$

As before, $\eta_{i}= \pm 1$ corresponding to whether the neutralino mass eigenvalue is positive or negative. When $i=j$ in the above formula, one must remember to integrate over just 2π steradians of solid angle to avoid double counting in the total cross section.

50.9 Universal extra dimensions

In the Universal Extra Dimension (UED) model of Ref. [19] (see Ref. [20] for a review of models with extra spacetime dimensions), the Standard Model is embedded in a five dimensional theory, where the fifth dimension is compactified on an S_{1} / Z_{2} orbifold. Each SM chirality state is then the zero mode of an infinite tower of Kaluza-Klein excitations labelled by $n=0-\infty$. A KK parity is usually assumed to hold, where each state is assigned KK-parity $P=(-1)^{n}$. If the compactification scale is around a TeV , then the $n=1$ (or even higher) KK modes may be accessible to collider searches.

Of interest for hadron colliders are the production of massive $n \geq 1$ quark or gluon pairs. These production cross sections have been calculated in Ref. [21,22]. We list here results for the $n=1$ case only with $M_{1}=1 / R$ (R is the compactification radius) and s, t and u are the usual Mandelstam variables; more general formulae can be found in Ref. [22]. The superscript $*$ stands for any KK excited state, while • stands for left chirality states and - stands for right chirality states.

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{16 \pi s^{2}} T \tag{50.90}
\end{equation*}
$$

where

$$
\begin{align*}
T\left(q \bar{q} \rightarrow g^{*} g^{*}\right) & =\frac{2 g_{s}^{4}}{27}\left[M_{1}^{2}\left(-\frac{4 s^{3}}{t^{\prime 2} u^{\prime 2}}+\frac{57 s}{t^{\prime} u^{\prime}}-\frac{108}{s}\right)\right. \\
& \left.+\frac{20 s^{2}}{t^{\prime} u^{\prime}}-93+\frac{108 t^{\prime} u^{\prime}}{s^{2}}\right] \tag{50.91}
\end{align*}
$$

and

$$
\begin{gather*}
T\left(g g \rightarrow g^{*} g^{*}\right)= \\
\frac{9 g_{s}^{4}}{27}\left[3 M_{1}^{4} \frac{s^{2}+t^{\prime 2}+u^{\prime 2}}{t^{\prime 2} u^{\prime 2}}-3 M_{1}^{2} \frac{s^{2}+t^{\prime 2}+u^{\prime 2}}{s t^{\prime} u^{\prime}}+1\right. \\
\left.+\frac{\left(s^{2}+t^{\prime 2}+u^{\prime 2}\right)^{3}}{4 s^{2} t^{\prime 2} u^{\prime 2}}-\frac{t^{\prime} u^{\prime}}{s^{2}}\right] \tag{50.92}
\end{gather*}
$$

where $t^{\prime}=t-M_{1}^{2}$ and $u^{\prime}=u-M_{1}^{2}$.
Also,

$$
\begin{aligned}
& T\left(q \bar{q} \rightarrow q_{1}^{*^{\prime}} \bar{q}_{1}^{*^{\prime}}\right)=\frac{4 g_{s}^{4}}{9}\left[\frac{2 M_{1}^{2}}{s}+\frac{t^{\prime 2}+u^{\prime 2}}{s^{2}}\right], \\
& T\left(q \bar{q} \rightarrow q_{1}^{*} \bar{q}_{1}^{*}\right)=\frac{g_{2}^{4}}{9}\left[2 M_{1}^{2}\left(\frac{4}{s}+\frac{s}{t^{\prime 2}}-\frac{1}{t^{\prime}}\right)\right. \\
& \left.+\frac{23}{6}+\frac{2 s^{2}}{t^{\prime 2}}+\frac{8 s}{3 t^{\prime}}+\frac{6 t^{\prime}}{s}+\frac{8 t^{\prime 2}}{s^{2}}\right], \\
& T\left(q q \rightarrow q_{1}^{*} q_{1}^{*}\right)=\frac{g_{s}^{4}}{27}\left[M_{1}^{2}\left(6 \frac{t^{\prime}}{u^{\prime 2}}+6 \frac{u^{\prime}}{t^{\prime 2}}-\frac{s}{t^{\prime} u^{\prime}}\right)\right. \\
& \left.+2\left(3 \frac{t^{\prime 2}}{u^{\prime 2}}+3 \frac{u^{\prime 2}}{t^{\prime 2}}+4 \frac{s^{2}}{t^{\prime} u^{\prime}}-5\right)\right], \\
& T\left(g g \rightarrow q_{1}^{*} \bar{q}_{1}^{*}\right)=g_{s}^{4}\left[M_{1}^{4} \frac{-4}{t^{\prime} u^{\prime}}\left(\frac{s^{2}}{6 t^{\prime} u^{\prime}}-\frac{3}{8}\right)\right. \\
& \left.+M_{1}^{2} \frac{4}{s}\left(\frac{s^{2}}{6 t^{\prime} u^{\prime}}-\frac{3}{8}\right)+\frac{s^{2}}{6 t^{\prime} u^{\prime}}-\frac{17}{24}+\frac{3 t^{\prime} u^{\prime}}{4 s^{2}}\right], \\
& T\left(g q \rightarrow g^{*} q_{1}^{*}\right)=\frac{-g_{s}^{4}}{3}\left[\frac{5 s^{2}}{12 t^{\prime 2}}+\frac{s^{3}}{t^{\prime 2} u^{\prime}}+\frac{11 s u^{\prime}}{6 t^{\prime 2}}+\frac{5 u^{\prime 2}}{12 t^{\prime 2}}+\frac{u^{\prime 3}}{s t^{\prime 2}}\right], \\
& T\left(q \bar{q}^{\prime} \rightarrow q_{1}^{*} \bar{q}_{1}^{*^{\prime}}\right)=\frac{g_{s}^{4}}{18}\left[4 M_{1}^{4} \frac{s}{t^{\prime 2}}+5+4 \frac{s^{2}}{t^{\prime 2}}+8 \frac{s}{t^{\prime}}\right], \\
& T\left(q q^{\prime} \rightarrow q_{1}^{*} q_{1}^{*^{\prime}}\right)=\frac{2 g_{s}^{4}}{9}\left[-M_{1}^{2} \frac{s}{t^{\prime 2}}+\frac{1}{4}+\frac{s^{2}}{t^{\prime 2}}\right], \\
& T\left(q q \rightarrow q_{1}^{\bullet} q_{1}^{\circ}\right)= \\
& \frac{g_{s}^{4}}{9}\left[M_{1}^{2}\left(\frac{2 s^{3}}{t^{\prime 2} u^{\prime 2}}-\frac{4 s}{t^{\prime} u^{\prime}}\right)+2 \frac{s^{4}}{t^{\prime 2} u^{\prime 2}}-8 \frac{s^{2}}{t^{\prime} u^{\prime}}+5\right], \\
& T\left(q \bar{q}^{\prime} \rightarrow q_{1}^{\bullet} \bar{q}_{1}^{\prime}{ }^{\circ}\right)=\frac{g_{s}^{4}}{9}\left[2 M_{1}^{2}\left(\frac{1}{t^{\prime}}+\frac{u^{\prime}}{t^{\prime 2}}\right)+\frac{5}{2}+\frac{4 u^{\prime}}{t^{\prime}}+\frac{2 u^{\prime 2}}{t^{\prime 2}}\right],
\end{aligned}
$$

and

$$
T\left(q q^{\prime} \rightarrow q_{1}^{\bullet} q_{1}^{\prime \circ}\right)=\frac{g_{s}^{4}}{9}\left[-2 M_{1}^{2}\left(\frac{1}{t^{\prime}}+\frac{u^{\prime}}{t^{\prime 2}}\right)+\frac{1}{2}+\frac{2 u^{\prime 2}}{t^{\prime 2}}\right]
$$

50.10 Large extra dimensions

In the ADD theory [23] with large extra dimensions (LED), the SM particles are confined to a 3 -brane, while gravity propagates in the bulk. It is assumed that the n extra dimensions are compactified on an n-dimensional torus of volume $(2 \pi r)^{n}$, so that the fundamental $4+n$ dimensional Planck scale M_{*} is related to the usual 4-dimensional Planck scale $M_{P l}$ by $M_{P l}^{2}=M_{*}^{n+2}(2 \pi r)^{n}$. If $M_{*} \sim 1 \mathrm{TeV}$, then the $M_{W}-M_{P l}$ hierarchy problem is just due to gravity propagating in the large extra dimensions.

In these theories, the KK-excited graviton states $G_{\mu \nu}^{n}$ for $n=$ $1-\infty$ can be produced at collider experiments. The graviton couplings to matter are suppressed by $1 / M_{P l}$, so that graviton emission cross sections $d \sigma / d t \sim 1 / M_{P l}^{2}$. However, the mass splittings between the excited graviton states can be tiny, so the graviton eigenstates are usually approximated by a continuum distribution. A summation (integration) over all allowed graviton emissions ends up cancelling the $1 / M_{P l}^{2}$ factor, so that observable cross section rates can be attained. Some of the fundamental production formulae for a KK graviton (denoted G) of mass m at hadron colliders include the subprocesses

$$
\begin{equation*}
\frac{d \sigma_{m}}{d t}(f \bar{f} \rightarrow \gamma G)=\frac{\alpha Q_{f}^{2}}{16 N_{f}} \frac{1}{s M_{P l}^{2}} F_{1}\left(\frac{t}{s}, \frac{m^{2}}{s}\right), \tag{50.93}
\end{equation*}
$$

where Q_{f} is the charge of fermion f and N_{f} is the number of QCD colors of f. Also,

$$
\begin{align*}
& \frac{d \sigma_{m}}{d t}(q \bar{q} \rightarrow g G)=\frac{\alpha_{s}}{36} \frac{1}{s M_{P l}^{2}} F_{1}\left(\frac{t}{s}, \frac{m^{2}}{s}\right), \tag{50.94}\\
& \frac{d \sigma_{m}}{d t}(q g \rightarrow q G)=\frac{\alpha_{s}}{96} \frac{1}{s M_{P l}^{2}} F_{2}\left(\frac{t}{s}, \frac{m^{2}}{s}\right), \tag{50.95}\\
& \frac{d \sigma_{m}}{d t}(g g \rightarrow g G)=\frac{3 \alpha_{s}}{16} \frac{1}{s M_{P l}^{2}} F_{3}\left(\frac{t}{s}, \frac{m^{2}}{s}\right), \tag{50.96}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{1}(x, y)=\frac{1}{x(y-1-x)}\left[-4 x(1+x)\left(1+2 x+2 x^{2}\right)+\right. \\
& \left.\quad y\left(1+6 x+18 x^{2}+16 x^{3}\right)-6 y^{2} x(1+2 x)+y^{3}(1+4 x)\right](50.97)
\end{aligned}
$$

$$
\begin{equation*}
F_{2}(x, y)=-(y-1-x) F_{1}\left(\frac{x}{y-1-x}, \frac{y}{y-1-x}\right) \tag{50.98}
\end{equation*}
$$

and

$$
\begin{align*}
F_{3}(x, y) & =\frac{1}{x(y-1-x)}\left[1+2 x+3 x^{2}+2 x^{3}+x^{4}\right. \\
& \left.-2 y\left(1+x^{3}\right)+3 y^{2}\left(1+x^{2}\right)-2 y^{3}(1+x)+y^{4}\right] 50 \tag{50.99}
\end{align*}
$$

These formulae must then be multiplied by the graviton density of states formula $d N=S_{n-1} \frac{M_{P l}^{2}}{M_{*}^{n+2}} m^{n-1} d m$ to gain the cross section

$$
\begin{equation*}
\frac{d^{2} \sigma}{d t d m}=S_{n-1} \frac{M_{P l}^{2}}{M_{*}^{n+2}} m^{n-1} \frac{d \sigma_{m}}{d t} \tag{50.100}
\end{equation*}
$$

where $S_{n}=\frac{(2 \pi)^{n / 2}}{\Gamma(n / 2)}$ is the surface area of an n-dimensional sphere of unit radius.
Virtual graviton processes can also be searched for at colliders. For instance, in Ref. [24] the cross section for Drell-Yan production of lepton pairs via gluon fusion was calculated, where it is found that, in the center-of-mass system

$$
\begin{equation*}
\frac{d \sigma}{d z}\left(g g \rightarrow \ell^{+} \ell^{-}\right)=\frac{\lambda^{2} s^{3}}{64 \pi M_{*}^{8}}\left(1-z^{2}\right)\left(1+z^{2}\right) \tag{50.101}
\end{equation*}
$$

where $z=\cos \theta$ and λ is a model-dependent coupling constant ~ 1. Formulae for Drell-Yan production via $q \bar{q}$ fusion can also be found in Refs. [24, 25].

50.11 Warped extra dimensions

In the Randall-Sundrum model [26] of warped extra dimensions, the arena for physics is a 5 -d anti-deSitter $\left(A d S_{5}\right)$ spacetime, for which a non-factorizable metric exists with a metric warp factor $e^{-2 \sigma(\phi)}$. It is assumed that two opposite tension 3-branes exist within $A d S_{5}$ at the two ends of an S_{1} / Z_{2} orbifold parametrized by co-ordinate ϕ which runs from $0-\pi$. The 4 -D solution of the Einstein equations yields $\sigma(\phi)=k r_{c}|\phi|$, where r_{c} is the compactification radius of the extra dimension and $k \sim M_{P l}$. The 4-D effective action allows one to identify $\bar{M}_{P l}^{2}=\frac{M^{3}}{k}\left(1-e^{-2 k r_{c} \pi}\right)$, where M is the 5-D Planck scale. Physical particles on the TeV scale (SM) brane have mass $m=e^{-k r_{c} \pi} m_{0}$, where m_{0} is a fundamental mass of order the Planck scale. Thus, the weak scale-Planck scale hierarchy occurs due to the existence of the exponential warp factor if $k r_{c} \sim 12$.
In the simplest versions of the RS model, the TeV -scale brane contains only SM particles plus a tower of KK gravitons. The RS gravitons have mass $m_{n}=k x_{n} e^{-k r_{c} \pi}$, where the x_{i} are roots of Bessel functions $J_{1}\left(x_{n}\right)=0$, with $x_{1} \simeq 3.83, x_{2} \simeq 7.02$ etc. While the RS zero-mode graviton couplings suppressed by $1 / \bar{M}_{P l}$ and are thus inconsequential for collider searches, the $n=1$ and higher modes have couplings suppressed instead by $\Lambda_{\pi}=e^{-k r_{c} \pi} \bar{M}_{P l} \sim T e V$. The $n=1 \mathrm{RS}$ graviton should have width $\Gamma_{1}=\rho m_{1} x_{1}^{2}\left(k / \bar{M}_{P l}\right)^{2}$, where ρ is a constant depending on how many decay modes are open. The formulae for dilepton production via virtual RS graviton exchange can be gained from the above formulae for the ADD scenario via the replacement [27]

$$
\begin{equation*}
\frac{\lambda}{M_{*}^{4}} \rightarrow \frac{i^{2}}{8 \Lambda_{\pi}^{2}} \sum_{n=1}^{\infty} \frac{1}{s-m_{n}^{2}+i m_{n} \Gamma_{n}} \tag{50.102}
\end{equation*}
$$

References

[1] J. F. Owens, E. Reya and M. Gluck, Phys. Rev. D18, 1501 (1978).
[2] F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977).
[3] B. L. Ioffe and V. A. Khoze, Sov. J. Part. Nucl. 9, 50 (1978), [Fiz. Elem. Chast. Atom. Yadra9,118(1978)].
[4] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B106, 292 (1976).
[5] R. N. Cahn and S. Dawson, Phys. Lett. 136B, 196 (1984), [Erratum: Phys. Lett.138B, 464(1984)].
[6] S. Dawson, Nucl. Phys. B249, 42 (1985).
[7] M. S. Chanowitz and M. K. Gaillard, Phys. Lett. 142B, 85 (1984).
[8] R. N. Cahn, Nucl. Phys. B255, 341 (1985), [Erratum: Nucl. Phys.B262,744(1985)].
[9] V. M. Budnev et al., Phys. Rept. 15, 181 (1975), see for an exhaustive treatment.
[10] See e.g. H.Haber, Supersymmetry, Part I (Theory), this Review.
[11] P. R. Harrison and C. H. Llewellyn Smith, Nucl. Phys. B213, 223 (1983), [Erratum: Nucl. Phys.B223,542(1983)]; S. Dawson, E. Eichten and C. Quigg, Phys. Rev. D31, 1581 (1985); V. D. Barger et al., Phys. Rev. D31, 528 (1985); H. Baer and X. Tata, Phys. Lett. 160B, 159 (1985).
[12] H. Baer, D. D. Karatas and X. Tata, Phys. Rev. D42, 2259 (1990).
[13] Weak Scale Supersymmetry: From Superfields to Scattering Events, H. Baer and X. Tata (Cambridge University Press) 2006.
[14] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[15] Theory and Phenomenology of Sparticles, M. Drees, R. Godbole, and P. Roy (World Scientific) 2005.
[16] A. Bartl, H. Fraas and W. Majerotto, Z. Phys. C30, 441 (1986).
[17] H. Baer et al., Int. J. Mod. Phys. A4, 4111 (1989).
[18] A. Bartl, H. Fraas and W. Majerotto, Nucl. Phys. B278, 1 (1986).
[19] T. Appelquist, H.-C. Cheng and B. A. Dobrescu, Phys. Rev. D64, 035002 (2001), [hep-ph/0012100].
[20] For a review of models with extra spacetime dimensions, see G. Guidice and J. Wells, Extra Dimensions, this Review.
[21] J. M. Smillie and B. R. Webber, JHEP 10, 069 (2005), [hepph/0507170].
[22] C. Macesanu, C. D. McMullen and S. Nandi, Phys. Rev. D66, 015009 (2002), [hep-ph/0201300].
[23] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B429, 263 (1998), [hep-ph/9803315]; N. ArkaniHamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D59, 086004 (1999), [hep-ph/9807344].
[24] J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999), [hepph/9811356].
[25] G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B544, 3 (1999), [hep-ph/9811291]; E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Lett. 82, 2236 (1999), [hep-ph/9811337]; T. Han, J. D. Lykken and R.-J. Zhang, Phys. Rev. D59, 105006 (1999), [hep-ph/9811350].
[26] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), [hep-ph/9905221].
[27] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000), [hep-ph/9909255].

51. Neutrino Cross Section Measurements

Revised August 2019 by G.P. Zeller (FNAL).

Neutrino cross sections are an essential ingredient in all neutrino experiments. Interest in neutrino scattering has recently increased due to the need for such information in the interpretation of neutrino oscillation data [1]. Historically, neutrino scattering results on both charged current (CC) and neutral current (NC) channels have been collected over many decades using a variety of targets, analysis techniques, and detector technologies. With the advent of intense neutrino sources constructed for neutrino oscillation investigations, experiments are now remeasuring these cross sections with a renewed appreciation for nuclear effects ${ }^{1}$ and the importance of improved neutrino flux estimations. This work summarizes accelerator-based neutrino cross section measurements performed in the $\sim 0.1-300 \mathrm{GeV}$ range with an emphasis on inclusive, quasi-elastic (pionless), and pion production processes, areas where we have the most experimental input at present (Table 51.1). For a more comprehensive discussion of neutrino cross sections, including neutrino-electron elastic scattering and lower energy neutrino measurements, the reader is directed to a review of this subject [2]. Here, we survey existing experimental data on neutrino interactions and do not attempt to provide a census of the associated theoretical calculations [3], which are both critical and plentiful, or the important constraints being gleaned from electron-nucleus scattering as input to neutrino event generators.

Table 51.1: List of beam properties, nuclear targets, and run durations for modern acceleratorbased neutrino experiments studying neutrino scattering.

Experiment	beam	$\begin{gathered} \hline \hline\left\langle E_{\nu}\right\rangle,\langle E \bar{\nu}\rangle \\ \mathrm{GeV} \end{gathered}$	neutrino	run period
ArgoNeuT	ν, ν	4.3, 3.6	Ar	2009-2010
ICARUS				
(at CNGS)	ν	20.0	Ar	2010-2012
K2K	ν	1.3	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}$	2003-2004
MicroBooNE	ν	0.8	Ar	2015 -
MINERvA	$\nu, \bar{\nu}$	$\begin{aligned} & 3.5 \text { (LE), } \\ & 5.5 \text { (ME) } \end{aligned}$	$\begin{gathered} \mathrm{He}, \mathrm{C}, \mathrm{CH} \\ \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}, \mathrm{~Pb} \end{gathered}$	2009-2019
MiniBooNE	$\nu, \bar{\nu}$	0.8, 0.7	CH_{2}	2002-2019
MINOS	$\nu, \bar{\nu}$	3.5, 6.1	Fe	2004-2016
NOMAD	$\nu, \bar{\nu}$	23.4, 19.7	C-based	1995-1998
NOvA	$\nu, \bar{\nu}$	2.0, 2.0	CH_{2}	2010 -
SciBooNE	$\nu, \bar{\nu}$	0.8, 0.7	CH	2007-2008
T2K	$\nu, \bar{\nu}$	0.6, 0.6	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}$	2010 -

51.1 Inclusive Scattering

Over the years, many experiments have measured the total inclusive charged current cross section for neutrino $\left(\nu_{\mu} N \rightarrow \mu^{-} X\right)$ and antineutrino ($\bar{\nu}_{\mu} N \rightarrow \mu^{+} X$) scattering off nucleons covering a broad range of neutrino energies. As can be seen in Fig. 51.1, the inclusive cross section approaches a linear dependence on neutrino energy. This behavior is expected for point-like scattering of neutrinos from quarks, an assumption which breaks down at lower energies. Modern measurements of such inclusive scattering cross sections and their target nuclei are summarized in Table 51.2.

To provide a more complete picture, single and double differential cross sections for such inclusive scattering processes have been reported - these include measurements on iron from NuTeV [4] and, more recently, on a variety of nuclear targets from ArgoNeuT [5, 6], MicroBooNE [7], MINERvA [8], and T2K [9, 10]. More recently, MicroBooNE has measured the multiplicity of charged tracks emanating from neutrino scattering on argon [11] and T2K has reported detailed ratios of CC cross sections on hydrocarbon, water, and iron [12]. T2K has also provided the first measurement of the antineutrino CC inclusive cross section at low energy [13]

[^73](Fig. 51.1). At high energy, the inclusive cross section is dominated by deep inelastic scattering (DIS). Several neutrino experiments have measured DIS cross sections for specific targets and final states, for example, MINERvA has measured ratios of muon neutrino inclusive and DIS cross sections on a variety of nuclear targets including lead, iron, and carbon $[14,15]$. Other experiments have measured opposite-sign dimuon production, the most recent being from CHORUS [16], NOMAD [17], and NuTeV [18]. At lower neutrino energies, the inclusive cross section is an additionally complex combination of quasi-elastic scattering and pion production processes, two areas we discuss next.

Table 51.2: Published measurements of neutrino and antineutrino CC inclusive cross sections from modern accelerator-based neutrino experiments.

experiment	measurement	target
ArgoNeuT	$\nu_{\mu}[5,6], \bar{\nu}_{\mu}[6]$	Ar
MicroBooNE	$\nu_{\mu}[7]$	Ar
MINER $\nu \mathrm{A}$	$\nu_{\mu}[8,14,15,19], \bar{\nu}_{\mu}[19], \bar{\nu}_{\mu} / \nu_{\mu}[20] \mathrm{CH}, \mathrm{C} / \mathrm{CH}$,	
		$\mathrm{Fe} / \mathrm{CH}, \mathrm{Pb} / \mathrm{CH}$
MINOS	$\nu_{\mu}[21], \bar{\nu}_{\mu}[21]$	Fe
NOMAD	$\nu_{\mu}[22]$	C
SciBooNE	$\nu_{\mu}[23]$	CH
T2K	$\nu_{\mu}[9,10,12,24,25], \nu_{e}[26,27]$,	
	$\bar{\nu}_{\mu} / \nu_{\mu}[13]$	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}$

51.2 Quasi-elastic scattering

Quasi-elastic (QE) scattering is the dominant neutrino interaction for neutrino energies less than $\sim 1 \mathrm{GeV}$ and represents a large fraction of the signal samples in many neutrino oscillation experiments, which is why this process has received considerable attention in recent years. Historically, neutrino (antineutrino) quasi-elastic scattering refers to the process, $\nu_{\mu} n \rightarrow \mu^{-} p$ $\left(\bar{\nu}_{\mu} p \rightarrow \mu^{+} n\right)$, where a charged lepton and single nucleon are ejected in the elastic interaction of a neutrino (or antineutrino) with a nucleon in the target material. This is the final state one would strictly observe, for example, in scattering off of a free nucleon target. There were many early measurements of neutrino QE scattering that span back to the 1970's [2]. In many of these initial measurements, bubble chamber experiments employed light targets (hydrogen or deuterium) and required both the detection of the final state muon and single nucleon ${ }^{2}$; thus the final state was clear and elastic kinematic conditions could be verified. The situation is more complicated, of course, for heavier nuclear targets used in modern neutrino experiments. In this case, nuclear effects can impact the size and shape of the cross section as well as the final state composition, kinematics, and topology. Due to intranuclear hadron rescattering and the effects of correlations between target nucleons, additional particles may be ejected in the final state; hence, a QE interaction on a nuclear target does not necessarily imply the ejection of a lepton and a single nucleon. One therefore needs to take care in defining what one means by neutrino QE scattering when scattering off targets heavier than hydrogen or deuterium. Because of this, modern experiments tend to instead report cross sections for processes involving pionless (e.g., nucleon-only) final states, often referred to as CC 0π or QE-like reactions in recent literature. Such measurements are summarized in Table 51.3. Many modern experiments have also recently opted to report nucleon-only cross sections as a function of final state particle kinematics [28-36]. Such distributions can be more difficult to directly compare between experiments but are much less model-dependent and provide more stringent tests of the theory than historical cross sections as a function of neutrino energy $\left(E_{\nu}\right)$ or 4-momentum transfer $\left(Q^{2}\right)$. Recent work has been done to develop a means to directly compare experimental measurements produced in these less model-dependent forms [37].

Figure 51.1: Measurements of per nucleon ν_{μ} and $\bar{\nu}_{\mu}$ CC inclusive scattering cross sections divided by neutrino energy as a function of neutrino energy. Note the transition between logarithmic and linear scales occurring at 100 GeV . Neutrino cross sections are typically twice as large as their corresponding antineutrino counterparts, although this difference can be larger at lower energies. NC cross sections (not shown) are generally smaller compared to the CC case.

Table 51.3: Published measurements of CC and NC scattering cross sections with nucleon-only final states from modern neutrino experiments.

experiment	measurement	target	
ArgoNeuT	$2 \mathrm{p}[38]$	Ar	
K2K	$M_{A}[39]$	H, O	
MINER $\nu \mathrm{A}$	$\frac{d \sigma}{d Q^{2}}[40-42], 1 \mathrm{p}[43], \nu_{e}[44], \frac{d^{2} \sigma}{d p_{T} d p_{\\|}}[28,29], \frac{d \sigma}{d p_{n}} \frac{d \sigma}{d \delta \alpha_{T}}[30], \frac{d^{2} \sigma}{d E_{\text {avail }} d q_{3}}[45]$	$\mathrm{CH}, \mathrm{Fe}, \mathrm{Pb}$	
MiniBooNE	$\frac{d^{2} \sigma}{d T_{\mu} d \theta_{\mu}}[31,32], M_{A}[46], \mathrm{NC}[47,48]$	CH_{2}	
MINOS	$M_{A}[49]$	Fe	
NOMAD	$M_{A}, \sigma\left(E_{\nu}\right)[50]$	C	
Super-K	$\mathrm{NC}[51]$	$\mathrm{H}_{2} \mathrm{O}$	
T2K	$\frac{d^{2} \sigma}{d T_{\mu} d \theta_{\mu}}[33-35], \sigma\left(E_{\nu}\right)[52], M_{A}[53], \mathrm{NC}[54], \frac{d \sigma}{d \delta p_{T}} \frac{d \sigma}{d \delta \alpha_{T}}[36]$	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}$	

The topic of neutrino QE scattering began drawing increased attention following the first double differential cross section measurements of this process that revealed a significantly larger cross section than originally anticipated, predominantly in the backwards muon scattering region $[31,32]$. Such an enhancement was observed many years prior in transverse electron-nucleus scattering [55] and was attributed to the presence of correlations between target nucleons in the nucleus. As a result, the impact of such nuclear effects on neutrino QE scattering has recently become the subject of intense experimental and theoretical scrutiny with implications on event rates, nucleon emission, neutrino energy reconstruction, and neutrino versus antineutrino cross sections. The reader is referred to reviews of the situation in $[3,56,57]$. To help drive further progress in understanding the underlying nuclear contributions, pionless (e.g., nucleon-only)
cross sections have been reported for the first time in the form of double-differential distributions by MiniBooNE [31, 32], MINERvA [28, 29, 45], and T2K [33-35]. Such double-differential cross sections in terms of final state particle kinematics reduce some of the model-dependence of the reported data, provide the most robust measurements available, and allow a more rigorous twodimensional test of the underlying nuclear theory. MINERvA and T2K have been especially prolific in recent years in probing this interaction process (Table 51.3). Neutrino experiments have also launched dedicated studies of the hadronic side of these interactions, including ArgoNeuT [38,58], MINERvA [43], and T2K [36]. MINERvA has been the first modern experiment to measure neutron emission in antineutrino interactions [59]. In addition, the exploration of transverse kinematic variables in neutrino scattering is allowing better constraints on the various contributions to the
cross section, including recent evaluations from MINERvA [28-30] and T2K [36]. With the MiniBooNE results having first revealed these additional complexities in neutrino-nucleus QE scattering, measurements from multiple neutrino experiments, on other targets, and using additional kinematics are crucial for getting a better handle on the underlying nuclear physics impacting neutrinonucleus interactions. What we once thought was "simple" QE scattering is in fact not so simple.

In addition to such charged current investigations, measurements of the neutral current counterpart of this channel have also been performed. The most recent NC elastic scattering cross section measurements include those from BNL E734 [60], MiniBooNE [47, 48], Super-K [51], and T2K [54]. A number of measurements of the Cabibbo-suppressed antineutrino QE hyperon production cross section have additionally been reported [61,62], although not in recent years.

51.3 Pion Production

In addition to such elastic scattering processes, neutrinos can also inelastically scatter producing a nucleon excited state (Δ, $\left.N^{*}\right)$. Such baryonic resonances quickly decay, most often to a nucleon and single-pion final state. Historically, experiments have measured various exclusive final states associated with these reactions, the majority of which have been on hydrogen and deuterium targets [2]. There have been several recent re-analyses of this data to better understand the consistency between data sets [63], nucleon form factors [64], and non-resonant contributions [65]. Also, modern measurements of neutrino-induced pion production have since been performed on a variety of nuclear targets (Table 51.4).

Table 51.4: Summary of modern measurements of NC and CC scattering cross sections involving a pion (or pions) in the final state.

experiment	$\pi^{ \pm}$	π^{0}	target
	measurement	measurement	
ArgoNeuT	$\mathrm{CC}[66]$	$\mathrm{NC}[67]$	Ar
K2K	$\mathrm{CC}[68,69]$	$\mathrm{CC}[70], \mathrm{NC}[71]$	$\mathrm{CH}, \mathrm{H}_{2} \mathrm{O}$
MicroBooNE	-	$\mathrm{CC}[72]$	Ar
MINER $\nu \mathrm{A}$	$\mathrm{CC}[73-77]$	$\mathrm{CC}[74,78,79], \mathrm{NC}[80]$	CH
MiniBooNE	$\mathrm{CC}[81,82]$	$\mathrm{CC}[83], \mathrm{NC}[84,85]$	CH_{2}
MINOS	-	$\mathrm{NC}[86]$	Fe
NOMAD	-	$\mathrm{NC} \mathrm{[87]}$	C
NOvA	-	$\mathrm{NC} \mathrm{[88]}$	C
SciBooNE	$\mathrm{CC}[89]$	$\mathrm{NC}[90,91]$	CH
T2K	$\mathrm{CC}[92,93]$	-	CH,
			$\mathrm{H}_{2} \mathrm{O}$

Figure 51.2: Differential cross sections for CC and NC pion production from MiniBooNE at a mean neutrino energy of 0.8 GeV . Shown here are the measurements as a function of the momentum of the outgoing pion in the interaction, a kinematic that is particularly sensitive to final state interactions. Other distributions are also available in the publications listed in the legend.

In addition to resonance production processes, neutrinos can also coherently scatter off of the entire nucleus and produce a distinctly forward-scattered single pion final state. Both CC $\left(\nu_{\mu} A \rightarrow\right.$ $\left.\mu^{-} A \pi^{+}, \bar{\nu}_{\mu} A \rightarrow \mu^{+} A \pi^{-}\right)$and NC $\left(\nu_{\mu} A \rightarrow \nu_{\mu} A \pi^{0}, \bar{\nu}_{\mu} A \rightarrow\right.$ $\bar{\nu}_{\mu} A \pi^{0}$) processes are possible in this case. Even though the level of coherent pion production is small compared to their resonant counterpart, observations exist across a broad energy range and on multiple nuclear targets [94]. More recently, several modern neutrino experiments have either measured or set limits on coherent pion production cross sections including ArgoNeuT [66], K2K [69], MINERvA [75, 77], MiniBooNE [85], MINOS [86], NOMAD [87], NOvA [88], SciBooNE [89, 91], and T2K [69].

Figure 51.3: Differential cross sections for neutrino ($\mathrm{W}<1.4 \mathrm{GeV}$) and antineutrino $(\mathrm{W}<1.8 \mathrm{GeV})$ CC π^{0} production from MINERvA at a mean neutrino energy of 3.3 GeV . Shown here are the measurements as a function of the momentum of the outgoing pion in the interaction, a kinematic that is particularly sensitive to final state interactions. Other distributions are available in the publications listed in the legend as well as for charged pion production [74].

As with QE scattering, a new appreciation for the significance of nuclear effects has surfaced in pion production channels, again due to the use of heavy nuclear targets in modern neutrino experiments. Many experiments have been careful to report cross sections for various detected final states, thereby not correcting for large and uncertain nuclear effects (e.g., pion rescattering, charge exchange, and absorption) which can introduce significant sources of uncertainty and model dependence. Providing the most comprehensive survey of neutrino single-pion production to date, MiniBooNE has published a total of 16 single- and doubledifferential cross sections for both the final state muon (in the case of CC scattering) and pions in these interactions; thus, providing the first measurements of these distributions (Fig. 51.2) [81-84]. MINERvA has recently produced similar kinematic measurements at higher neutrino energies (Fig. 51.3) $[74,76,79]$ and T2K at lower energies [92]. Importantly, MINERvA has been working towards an improved nuclear model that can describe all of the pion reaction channels simultaneously, an issue that many experiments have struggled with up until now [74]. ArgoNeuT [67] and MicroBooNE [72] have been adding new information on single pion production in argon. Regardless of the interaction channel or target material, differential cross section measurements in terms of observed final state particle kinematics are preferred for their reduced model dependence and for the additional kinematic information they provide. Such a new direction has been the focus of modern measurements as opposed to the reporting of more model-dependent, historical cross sections as a function of E_{ν} or Q^{2}. Together with similar results for other interaction channels, a better understanding and modeling of nuclear effects will be possible moving forward. MINERvA [95] has already taken a large step in this direction by explicitly tuning the physics in existing neutrino event generators to best fit the experimental data on pion production.

It should be noted that baryonic resonances can also decay to multi-pion, other mesonic (K, η, ρ, etc.), and even photon final states. Experimental results for these channels are typically sparse or non-existent [2]; however, photon production processes can be an important background for $\nu_{\mu} \rightarrow \nu_{e}$ appearance searches and thus have become the focus of recent experimental investigations, most notably in NOMAD [96] and T2K [97]. There have also been several recent measurements of kaon final states produced in neutrino NC and CC scattering in MINERvA [98-100] that are providing needed background constraints for certain nucleon decay searches.

51.4 Outlook

Currently operating experiments will continue to produce additional neutrino cross section measurements as they accumulate additional statistics, while a few new experiments will soon be coming online. Analysis of a broad energy range of data from MINERvA is providing some of the most detailed analysis of nuclear effects in neutrino interactions by examining multiple nuclei in a single experiment. Data from ArgoNeuT, ICARUS, MicroBooNE, and SBND will probe deeper into complex neutrino final states using the superior capabilities of liquid argon time projection chambers, while the T2K and NOvA near detectors will continue to collect high statistics samples in intense neutrino beams. Together with dedicated discussions between the experiments on how best to report neutrino cross section measurements [101] and accompanying improvements in nuclear model calculations [3], these investigations are crucial for significantly advancing our understanding of neutrino-nucleus scattering.

51.5 Acknowledgments

The author thanks Anne Schukraft (Fermilab) for her help in preparing the plots and content of this review.

References

[1] O. Benhar et al., Phys. Rept. 700, 1 (2017), [arXiv:1501.06448].
[2] J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012), [arXiv:1305.7513].
[3] L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100, 1 (2018), [arXiv:1706.03621].
[4] M. Tzanov et al. (NuTeV), Phys. Rev. D74, 012008 (2006), [hep-ex/0509010].
[5] C. Anderson et al. (ArgoNeuT), Phys. Rev. Lett. 108, 161802 (2012), [arXiv:1111.0103].
[6] R. Acciarri et al. (ArgoNeuT), Phys. Rev. D89, 11, 112003 (2014), [arXiv:1404.4809].
[7] P. Abratenko et al. (MicroBooNE), Phys. Rev. Lett. 123, 13, 131801 (2019), [arXiv:1905.09694].
[8] P. A. Rodrigues et al. (MINERvA), Phys. Rev. Lett. 116, 071802 (2016), [Addendum: Phys. Rev. Lett.121,no.20,209902(2018)], [arXiv:1511.05944].
[9] K. Abe et al. (T2K), Phys. Rev. D87, 9, 092003 (2013), [arXiv:1302.4908].
[10] K. Abe et al. (T2K), Phys. Rev. D98, 012004 (2018), [arXiv:1801.05148].
[11] C. Adams et al. (MicroBooNE), Eur. Phys. J. C79, 3, 248 (2019), [arXiv:1805.06887].
[12] K. Abe et al. (T2K) (2019), [arXiv:1904.09611].
[13] K. Abe et al. (T2K), Phys. Rev. D96, 5, 052001 (2017), [arXiv:1706.04257].
[14] B. G. Tice et al. (MINERvA), Phys. Rev. Lett. 112, 23, 231801 (2014), [arXiv:1403.2103].
[15] J. Mousseau et al. (MINERvA), Phys. Rev. D93, 7, 071101 (2016), [arXiv:1601.06313].
[16] A. Kayis-Topaksu et al. (CHORUS), Nucl. Phys. B798, 1 (2008), [arXiv:0804.1869].
[17] O. Samoylov et al. (NOMAD), Nucl. Phys. B876, 339 (2013), [arXiv:1308.4750].
[18] D. Mason et al. (NuTeV), Phys. Rev. Lett. 99, 192001 (2007).
[19] J. Devan et al. (MINERvA), Phys. Rev. D94, 11, 112007 (2016), [arXiv:1610.04746].
[20] L. Ren et al. (MINERvA), Phys. Rev. D95, 7, 072009 (2017), [Addendum: Phys. Rev.D97,no.1,019902(2018)], [arXiv:1701.04857].
[21] P. Adamson et al. (MINOS), Phys. Rev. D81, 072002 (2010), [arXiv:0910.2201].
[22] Q. Wu et al. (NOMAD), Phys. Lett. B660, 19 (2008), [arXiv:0711.1183].
[23] Y. Nakajima et al. (SciBooNE), Phys. Rev. D83, 012005 (2011), [arXiv:1011.2131].
[24] K. Abe et al. (T2K), Phys. Rev. D90, 5, 052010 (2014), [arXiv:1407.4256].
[25] K. Abe et al. (T2K), Phys. Rev. D93, 7, 072002 (2016), [arXiv:1509.06940].
[26] K. Abe et al. (T2K), Phys. Rev. Lett. 113, 24, 241803 (2014), [arXiv:1407.7389].
[27] K. Abe et al. (T2K), Phys. Rev. D91, 112010 (2015), [arXiv:1503.08815].
[28] D. Ruterbories et al. (MINERvA), Phys. Rev. D99, 1, 012004 (2019), [arXiv:1811.02774].
[29] C. E. Patrick et al. (MINERvA), Phys. Rev. D97, 5, 052002 (2018), [arXiv:1801.01197].
[30] X. G. Lu et al. (MINERvA), Phys. Rev. Lett. 121, 2, 022504 (2018), [arXiv:1805.05486].
[31] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D81, 092005 (2010), [arXiv:1002.2680].
[32] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D88, 3, 032001 (2013), [arXiv:1301.7067].
[33] K. Abe et al. (T2K), Phys. Rev. D93, 11, 112012 (2016), [arXiv:1602.03652].
[34] K. Abe et al. (T2K), Phys. Rev. D97, 1, 012001 (2018), [arXiv:1708.06771].
[35] K. Abe et al. (2019), [arXiv:1908.10249].
[36] K. Abe et al. (T2K), Phys. Rev. D98, 3, 032003 (2018), [arXiv:1802.05078].
[37] K. Mahn, C. Marshall and C. Wilkinson, Ann. Rev. Nucl. Part. Sci. 68, 105 (2018), [arXiv:1803.08848].
[38] R. Acciarri et al. (ArgoNeuT), Phys. Rev. D90, 1, 012008 (2014), [arXiv:1405.4261].
[39] R. Gran et al. (K2K), Phys. Rev. D74, 052002 (2006), [hepex/0603034].
[40] G. A. Fiorentini et al. (MINERvA), Phys. Rev. Lett. 111, 022502 (2013), [arXiv:1305.2243].
[41] L. Fields et al. (MINERvA), Phys. Rev. Lett. 111, 2, 022501 (2013), [arXiv:1305.2234].
[42] M. Betancourt et al. (MINERvA), Phys. Rev. Lett. 119, 8, 082001 (2017), [arXiv:1705.03791].
[43] T. Walton et al. (MINERvA), Phys. Rev. D91, 7, 071301 (2015), [arXiv:1409.4497].
[44] J. Wolcott et al. (MINERvA), Phys. Rev. Lett. 116, 8, 081802 (2016), [arXiv:1509.05729].
[45] R. Gran et al. (MINERvA), Phys. Rev. Lett. 120, 22, 221805 (2018), [arXiv:1803.09377].
[46] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 100, 032301 (2008), [arXiv:0706.0926].
[47] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D82, 092005 (2010), [arXiv:1007.4730].
[48] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D91, 1, 012004 (2015), [arXiv:1309.7257].
[49] P. Adamson et al. (MINOS), Phys. Rev. D91, 1, 012005 (2015), [arXiv:1410.8613].
[50] V. Lyubushkin et al. (NOMAD), Eur. Phys. J. C63, 355 (2009), [arXiv:0812.4543].
[51] L. Wan et al. (Super-Kamiokande), Phys. Rev. D99, 3, 032005 (2019), [arXiv:1901.05281].
[52] K. Abe et al. (T2K), Phys. Rev. D91, 11, 112002 (2015), [arXiv:1503.07452].
[53] K. Abe et al. (T2K), Phys. Rev. D92, 11, 112003 (2015), [arXiv:1411.6264].
[54] K. Abe et al. (T2K), Phys. Rev. D90, 7, 072012 (2014), [arXiv:1403.3140].
[55] J. Carlson et al., Phys. Rev. C65, 024002 (2002), [arXiv:nucl-th/0106047].
[56] H. Gallagher, G. Garvey and G. P. Zeller, Ann. Rev. Nucl. Part. Sci. 61, 355 (2011).
[57] G. T. Garvey et al., Phys. Rept. 580, 1 (2015), [arXiv:1412.4294].
[58] O. Palamara (ArgoNeuT), JPS Conf. Proc. 12, 010017 (2016).
[59] M. Elkins et al. (MINERvA), Phys. Rev. D100, 5, 052002 (2019), [arXiv:1901.04892].
[60] L. A. Ahrens et al., Phys. Rev. D35, 785 (1987).
[61] J. Brunner et al. (SKAT), Z. Phys. C45, 551 (1990).
[62] V. V. Ammosov et al., Z. Phys. C36, 377 (1987); O. Erriquez et al., Phys. Lett. 70B, 383 (1977); T. Eichten et al., Phys. Lett. 40B, 593 (1972).
[63] C. Wilkinson et al., Phys. Rev. D90, 11, 112017 (2014), [arXiv:1411.4482].
[64] A. S. Meyer et al., Phys. Rev. D93, 11, 113015 (2016), [arXiv:1603.03048].
[65] P. Rodrigues, C. Wilkinson and K. McFarland, Eur. Phys. J. C76, 8, 474 (2016), [arXiv:1601.01888].
[66] R. Acciarri et al. (ArgoNeuT), Phys. Rev. Lett. 113, 26, 261801 (2014), [erratum: Phys. Rev. Lett.114,no.3,039901(2015)], [arXiv:1408.0598].
[67] R. Acciarri et al. (ArgoNeuT), Phys. Rev. D96, 1, 012006 (2017), [arXiv:1511.00941].
[68] A. Rodriguez et al. (K2K), Phys. Rev. D78, 032003 (2008), [arXiv:0805.0186].
[69] M. Hasegawa et al. (K2K), Phys. Rev. Lett. 95, 252301 (2005), [hep-ex/0506008].
[70] C. Mariani et al. (K2K), Phys. Rev. D83, 054023 (2011), [arXiv:1012.1794].
[71] S. Nakayama et al. (K2K), Phys. Lett. B619, 255 (2005), [hep-ex/0408134].
[72] C. Adams et al. (MicroBooNE), Phys. Rev. D99, 9, 091102 (2019), [arXiv:1811.02700].
[73] B. Eberly et al. (MINERvA), Phys. Rev. D92, 9, 092008 (2015), [arXiv:1406.6415].
[74] C. L. McGivern et al. (MINERvA), Phys. Rev. D94, 5, 052005 (2016), [arXiv:1606.07127].
[75] A. Higuera et al. (MINERvA), Phys. Rev. Lett. 113, 26, 261802 (2014), [arXiv:1409.3835].
[76] T. Le et al. (MINERvA), Phys. Rev. D100, 5, 052008 (2019), [arXiv:1906.08300].
[77] A. Mislivec et al. (MINERvA), Phys. Rev. D97, 3, 032014 (2018), [arXiv:1711.01178].
[78] T. Le et al. (MINERvA), Phys. Lett. B749, 130 (2015), [arXiv:1503.02107].
[79] O. Altinok et al. (MINERvA), Phys. Rev. D96, 7, 072003 (2017), [arXiv:1708.03723].
[80] J. Wolcott et al. (MINERvA), Phys. Rev. Lett. 117, 11, 111801 (2016), [arXiv:1604.01728].
[81] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D83, 052007 (2011), [arXiv:1011.3572].
[82] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 103, 081801 (2009), [arXiv:0904.3159].
[83] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D83, 052009 (2011), [arXiv:1010.3264].
[84] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D81, 013005 (2010), [arXiv:0911.2063].
[85] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Lett. B664, 41 (2008), [arXiv:0803.3423].
[86] P. Adamson et al. (MINOS), Phys. Rev. D94, 7, 072006 (2016), [arXiv:1608.05702].
[87] C. T. Kullenberg et al. (NOMAD), Phys. Lett. B682, 177 (2009), [arXiv:0910.0062].
[88] M. A. Acero et al. (NOvA) (2019), [arXiv:1902.00558].
[89] K. Hiraide et al. (SciBooNE), Phys. Rev. D78, 112004 (2008), [arXiv:0811.0369].
[90] Y. Kurimoto et al. (SciBooNE), Phys. Rev. D81, 033004 (2010), [arXiv:0910.5768].
[91] Y. Kurimoto et al. (SciBooNE), Phys. Rev. D81, 111102 (2010), [arXiv:1005.0059].
[92] K. Abe et al. (T2K), Phys. Rev. D95, 1, 012010 (2017), [arXiv:1605.07964].
[93] K. Abe et al. (T2K), Phys. Rev. Lett. 117, 19, 192501 (2016), [arXiv:1604.04406].
[94] P. Vilain et al. (CHARM-II), Phys. Lett. B313, 267 (1993); A compilation of historical coherent pion production data.
[95] P. Stowell et al. (MINERvA), Phys. Rev. D100, 7, 072005 (2019), [arXiv:1903.01558].
[96] C. T. Kullenberg et al. (NOMAD), Phys. Lett. B706, 268 (2012), [arXiv:1111.3713].
[97] K. Abe et al. (T2K), J. Phys. G46, 8, 08LT01 (2019), [arXiv:1902.03848].
[98] C. M. Marshall et al. (MINERvA), Phys. Rev. D94, 1, 012002 (2016), [arXiv:1604.03920].
[99] C. M. Marshall et al. (MINERvA), Phys. Rev. Lett. 119, 1, 011802 (2017), [arXiv:1611.02224].
[100] Z. Wang et al. (MINERvA), Phys. Rev. Lett. 117, 6, 061802 (2016), [arXiv:1606.08890].
[101] M. Betancourt et al., Phys. Rept. 773-774, 1 (2018), [arXiv:1805.07378].

52. Plots of Cross Sections and Related Quantities

Updated in 2019. See various sections for details.
52.1 Pseudorapidity Distributions in $p p$ and $\bar{p} p$ Interactions 696
52.2 Average Hadron Multiplicities in Hadronic $e^{+} e^{-}$Annihilation Events 697
52.3 $\quad \sigma$ and R in $e^{+} e^{-}$Collisions 699
52.4 Annihilation Cross Section Near M_{Z} 701
52.5 Total Hadronic Cross Sections 702
52.1 Pseudorapidity Distributions in $p p$ and $\bar{p} p$ Interactions Revised August 2013 by D.R. Ward (Cavendish Lab.).

Pseudorapidity Distributions in $p p$ and $\bar{p} p$ Interactions

Figure 52.1: Charged particle pseudorapidity distributions in $p \bar{p}$ collisions for $53 \mathrm{GeV} \leq \sqrt{s} \leq 1800 \mathrm{GeV}$. UA5 data from the $\mathrm{S} p \bar{p} \mathrm{~S}$ are taken from [1], and from the ISR from [2]. The UA5 data are shown for both the full inelastic cross-section and with singly diffractive events excluded. Additional non single-diffractive measurements are available from CDF at the Tevatron [3] and from P238 at the $\mathrm{S} p \bar{p} \mathrm{~S}$ [4]. These may be compared with both inclusive and non single-diffractive measurements in $p p$ collisions at the LHC from ALICE [5] and for non single-diffractive interactions from CMS [6, 7]. (Courtesy of D.R. Ward, Cambridge Univ., 2013)

52.2 Average Hadron Multiplicities in Hadronic $e^{+} e^{-}$Annihilation Events

Revised August 2019 by O. Biebel (Ludwig-Maximilians U.).
Table 52.1: Average hadron multiplicities per hadronic $e^{+} e^{-}$annihilation event at $\sqrt{s} \approx 10,29-35$, 91 , and $130-200 \mathrm{GeV}$. The rates given include decay products from resonances with $c \tau<10 \mathrm{~cm}$, and include the corresponding anti-particle state. Correlations of the systematic uncertainties were considered for the calculation of the averages. Quoted errors are not increased by scale factor S.

Particle	$\sqrt{s} \approx 10 \mathbf{G e V}$	$\sqrt{s}=29-35 \mathbf{G e V}$	$\sqrt{s}=91 \mathbf{G e V}$	$\sqrt{s}=130-200 \mathbf{G e V}$
$\Sigma(1385)^{ \pm}$	$0.0106 \pm 0.00200 .033 \pm 0.008$	0.0472 ± 0.0027	$[59,82,84$,	
$\Xi(1530)^{0}$	$0.00130 \pm 0.00010^{(a)}$	-	0.00694 ± 0.00049	$85,93]$
				$[59,82,83$,
Ω^{-}	$0.00060 \pm 0.00033^{(a)} 0.014 \pm 0.007$	0.00124 ± 0.00018	$85,94]$	
			$[59,77,82$,	
Λ_{c}^{+}	$0.0479 \pm 0.0038^{(a, m)} 0.110 \pm 0.050$	0.078 ± 0.017	$83,85,86]$	
Λ_{b}^{0}	-	-	0.031 ± 0.016	$[47,49,77$,
Σ_{c}^{0}	$0.0025 \pm 0.0004^{(a)}$	-	-	$83,95]$
$\Lambda(1520)$	$0.0046 \pm 0.0004^{(a)}$	-	0.0222 ± 0.0027	$[83]$

(a) $\sigma_{\text {had }}=3.33 \pm 0.05 \pm 0.21 \mathrm{nb}$ (CLEO: [98]) has been used in converting the measured cross sections to average hadron multiplicities.
(b) $\mathrm{B}\left(D_{s} \rightarrow \eta \pi, \eta^{\prime} \pi\right)$ was used (RPP 1994).
(c) Comprises both charged and neutral B meson states.
(d) The Standard Model $\mathrm{B}(Z \rightarrow b \bar{b})=0.217$ was used.
(e) $x_{p}=p / p_{\text {beam }}>0.1$ only .
(f) Both charge states.
(g) $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right) \times \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$has been used (RPP 2000).
(h) $\mathrm{B}\left(D_{s}^{*} \rightarrow D_{S}^{+} \gamma\right), \mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right), \mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)$have been used (RPP 1998).
(i) Any charge state (i.e., B_{d}^{*}, B_{u}^{*}, or $\left.B_{s}^{*}\right)$.
(j) $\mathrm{B}(Z \rightarrow$ hadrons $)=0.699$ was used (RPP 1994).
(k) Any charge state (i.e., $B_{d}^{* *}, B_{u}^{* *}$, or $\left.B_{s}^{* *}\right)$.
(ℓ) Assumes $\mathrm{B}\left(D_{s 1}^{+} \rightarrow D^{*+} K^{0}+D^{* 0} K^{+}\right)=100 \%$ and $\mathrm{B}\left(D_{s 2}^{+} \rightarrow D^{0} K^{+}\right)=45 \%$.
(m) The value was derived from the cross section of $\Lambda_{c}^{+} \rightarrow p \pi K$ using (a) and assuming the branching fraction to be (5.0 $\left.\pm 1.3\right) \%$ (RPP 2004).

References grouped by collaboration for Table-52.1:

- RPP: [12]
- ALEPH: [13, 20, 40, 58, 59, 63, 70, 81],
- ARGUS: [8, 24, 37, 41, 57, 82, 90, 97],
- BaBar: [10, 48, 68, 95],
- Belle: [44, 69, 83],
- CELLO: $[19,26]$,
- CLEO: [9, 45, 49, 98],
- Crystal Ball: [38],
- DELPHI: [14, 17, 21, 25, 33, 46, 50-52, 55, 61, 66, 71, 76, 80, 84, 86, 89, 91, 94],
- HRS: [27, 54, 78, 93],
- L3: $[22,34,42,67,72,74,87]$
- MARK II: $[29,39]$,
- JADE: $[18,28]$,
- OPAL: $[15,23,35,43,47,53,56,60,62,64,65,73,75,79,85,88,92,96]$,
- PLUTO: [30]
- SLD: $[16,36]$,
- TASSO: [31]
- TPC: [32].
52.3σ and R in $e^{+} e^{-}$Collisions

$$
\sigma \text { and } R \text { in } e^{+} e^{-} \text {Collisions }
$$

Figure 52.2: World data on the total cross section of $e^{+} e^{-} \rightarrow$ hadrons and the ratio $R(s)=\sigma\left(e^{+} e^{-} \rightarrow h a d r o n s, s\right) / \sigma\left(e^{+} e^{-} \rightarrow\right.$ $\left.\mu^{+} \mu^{-}, s\right) . \sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons, $\left.s\right)$ is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, s\right)=4 \pi \alpha^{2}(s) / 3 s$. Data errors are total below 2 GeV and statistical above 2 GeV . The curves are an educative guide: the broken one (green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see "Quantum Chromodynamics" section of this Review, Eq. (9.7) or, for more details [99], Breit-Wigner parameterizations of $J / \psi, \psi(2 S)$, and $\Upsilon(n S), n=1,2,3,4$ are also shown. The full list of references to the original data and the details of the R ratio extraction from them can be found in [100]. Corresponding computer-readable data files are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2019. Corrections by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Figure 52.3: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV . The curves are the same as in Fig. 52.2. Note: CLEO data above $\Upsilon(4 S)$ were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8 . The full list of references to the original data and the details of the R ratio extraction from them can be found in [100]. The computer-readable data are available at http: //pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2019.)
52.4 Annihilation Cross Section Near M_{Z}

Courtesy of M. Grünewald and the LEP Electroweak Working Group, 2007.

Figure 52.4: Combined data from the ALEPH, DELPHI, L3, and OPAL Collaborations for the cross section in $e^{+} e^{-}$annihilation into hadronic final states as a function of the center-of-mass energy near the Z pole. The curves show the predictions of the Standard Model with two, three, and four species of light neutrinos. The asymmetry of the curve is produced by initial-state radiation. Note that the error bars have been increased by a factor ten for display purposes. References: ALEPH [101], DELPHI [102], L3 [103], OPAL [104], Combination [105],

52.5 Total Hadronic Cross Sections

Revised August 2019 by COMPAS Group (NRC KI - IHEP, Protvino).
In this section, plots of total cross section for various processes are presented. The plots include data from hadronic collisions such as $p p$ and $\bar{p} p$, as well as $\gamma p, \gamma d$, and $\gamma \gamma$ processes. The cross section data provide crucial inputs to the study of QCD physics. In particular, to probe the non-perturbative part of QCD processes which are described by a number of diffractive models. We begin by introducing some models of diffractive scatterings and listing references for further reading.

Diffractive scattering here means scattering of hadrons at small angles and exhibiting typical diffraction pattern in angular distribution of scattered particles. Beyond purely elastic scattering diffraction phenomena include inelastic processes with large rapidity gaps: those of single and double diffractive dissociation and "central diffractive" events. In distinction from the most of other processes considered in the SM diffraction processes (DP) are related to large spatio-temporal scales growing with energy of collision. Being caused by strong interactions DP are a subject of the fundamental strong interaction theory, QCD, and hereby a part of the longstanding problem of QCD at large distances.

One of the most important basic notions and tools in general theoretical framework related to the diffractive processes is the notion of the Regge poles, or Reggeons, generalizing the simple one-particle exchange (of Yukawa type) by virtual particles of fixed spin to exchanges by states with "running spin" dependent on the transferred momenta $[106,107]$. The simplest case of the one-Reggeon exchange amplitude is given by the amplitude (at high c.m. energy \sqrt{s} and fixed (small) transferred momentum squared, t): $T(s, t)=\beta(t) s^{\alpha(t)}$ which qualitatively exhibits many typical features of generic diffractive processes (e.g. the growth of the interaction radius with energy). In practice the single-pole Reggeon model is insufficient for many diffractive processes but still serves a building block for more sophisticated schemes. Up to now no firm results concerning Regge trajectories $\alpha(t)$ and Regge residues $\beta(t)$ were obtained from the first principles of QCD. General principles imply that both $\alpha(t)$ and $\beta(t)$ are analytic functions with right cuts from some $t_{0}>0$ to positive infinity.

The theoretical requisite for analyzing diffractive phenomena is therefore represented by various model approaches. The more commonly discussed models in the literatures are:

- Regge -Eikonal approach [108-115]: this approach automatically satisfy the s-channel unitarity condition and generalizes the impact parameter approximation to the relativistic case.
- Regge pole models with minimal corrections due to two-Reggeon exchanges [116-118]: in this model, contribution of the leading trajectory is supplemented by a two-Reggeon exchange with arbitrary coefficient chosen from the fitting details.
- U-matrix (or resonance) approach [119, 120]: the unitarity respecting approach with the scattering amplitude defined by a reaction matrix.
- Direct functional modelling of the amplitudes without Regge trajectories [121,122]: this approach appeals to only very general properties of the amplitudes leaving aside all dynamical assumptions and mostly aiming at the best phenomenological description of the data.
- Quasi-classical approach [123-126]: based on the observation that diffractive processes deal with high quantum numbers, in particular with large number of virtual quanta.
For readers who are interested in examples of both total and elastic cross section parametrizations and fits, see previous edition of the Plots of Cross Sections and Related Quantities review [127]. For the cross section plots shown in the following pages, the example fits are using parametrizations as described in [127] with the fit range starting at about $\sqrt{s}=5 \mathrm{GeV}$.

Figure 52.5: Summary of hadronic, $\gamma p, \gamma d$, and $\gamma \gamma$ total cross sections, and ratio of the real to imaginary parts of the forward hadronic amplitudes. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.6: Total and elastic cross sections for $p p$ and $\bar{p} p$ collisions as a function of laboratory beam momentum and total center-ofmass energy. $\sigma_{\text {el }}$ is computed using the nuclear part of the elastic scattering amplitude [126]. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.7: Total and elastic cross sections for $p d$ (total only), $n p, \bar{p} d$ (total only), and $\bar{p} n$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS Group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.8: Total and elastic cross sections for $\pi^{ \pm} p$ and $\pi^{ \pm} d$ (total only) collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS Group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.9: Total and elastic cross sections for $K^{-} p$ and $K^{-} d$ (total only), and $K^{-} n$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS Group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.10: Total and elastic cross sections for $K^{+} p$ and total cross sections for $K^{+} d$ and $K^{+} n$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS Group, NRC KI - IHEP, Protvino, August 2019.)

Figure 52.11: Total and elastic cross sections for Λp, total cross section for $\Sigma^{-} p$, and total hadronic cross sections for γd, γp, and $\gamma \gamma$ collisions as a function of laboratory beam momentum and the total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, NRC KI - IHEP, Protvino, August 2019.)

References

[1] G. J. Alner et al. (UA5), Z. Phys. C33, 1 (1986).
[2] K. Alpgard et al. (UA5), Phys. Lett. 112B, 183 (1982).
[3] F. Abe et al. (CDF), Phys. Rev. D41, 2330 (1990), [,119(1989)].
[4] R. Harr et al., Phys. Lett. B401, 176 (1997), [hepex/9703002].
[5] K. Aamodt et al. (ALICE), Eur. Phys. J. C68, 89 (2010), [arXiv:1004.3034].
[6] V. Khachatryan et al. (CMS), JHEP 02, 041 (2010), [arXiv:1002.0621].
[7] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 105, 022002 (2010), [arXiv:1005.3299].
[8] H. Albrecht et al. (ARGUS), Z. Phys. C54, 1 (1992).
[9] S. Behrends et al. (CLEO), Phys. Rev. D31, 2161 (1985).
[10] J. P. Lees et al. (BaBar), Phys. Rev. D88, 032011 (2013), [arXiv:1306.2895].
[11] H. Albrecht et al., Phys. Lett. 102B, 291 (1981).
[12] K. Hikasa et al. (Particle Data Group), Phys. Rev. D45, S1 (1992), [Erratum: Phys. Rev.D46,5210(1992)].
[13] R. Barate et al. (ALEPH), Eur. Phys. J. C5, 205 (1998).
[14] P. Abreu et al. (DELPHI), Eur. Phys. J. C5, 585 (1998).
[15] R. Akers et al. (OPAL), Z. Phys. C63, 181 (1994).
[16] K. Abe et al. (SLD), Phys. Rev. D69, 072003 (2004), [hepex/0310017].
[17] P. Abreu et al. (DELPHI), Eur. Phys. J. C18, 203 (2000), [Erratum: Eur. Phys. J.C25,493(2002)], [hep-ex/0103031].
[18] D. D. Pitzl et al. (JADE), Z. Phys. C46, 1 (1990), [Erratum: Z. Phys.C47,676(1990)].
[19] H. J. Behrend et al. (CELLO), Z. Phys. C47, 1 (1990).
[20] R. Barate et al. (ALEPH), Eur. Phys. J. C16, 613 (2000).
[21] W. Adam et al. (DELPHI), Z. Phys. C69, 561 (1996).
[22] M. Acciarri et al. (L3), Phys. Lett. B371, 126 (1996).
[23] G. Abbiendi et al. (OPAL), Eur. Phys. J. C17, 373 (2000), [hep-ex/0007017].
[24] H. Albrecht et al. (ARGUS), Z. Phys. C44, 547 (1989).
[25] P. Abreu et al. (DELPHI), Nucl. Phys. B444, 3 (1995).
[26] H. J. Behrend et al. (CELLO), Z. Phys. C46, 397 (1990).
[27] M. Derrick et al., Phys. Rev. D35, 2639 (1987).
[28] W. Bartel et al. (JADE), Z. Phys. C20, 187 (1983).
[29] H. Schellman et al., Phys. Rev. D31, 3013 (1985).
[30] C. Berger et al. (PLUTO), Phys. Lett. 104B, 79 (1981).
[31] M. Althoff et al. (TASSO), Z. Phys. C27, 27 (1985).
[32] H. Aihara et al. (TPC/Two Gamma), Phys. Rev. Lett. 53, 2378 (1984).
[33] P. Abreu et al. (DELPHI), Z. Phys. C65, 587 (1995).
[34] M. Acciarri et al. (L3), Phys. Lett. B407, 389 (1997), [Erratum: Phys. Lett.B427,409(1998)].
[35] R. Akers et al. (OPAL), Z. Phys. C67, 389 (1995).
[36] K. Abe et al. (SLD), Phys. Rev. D59, 052001 (1999), [hepex/9805029].
[37] H. Albrecht et al. (ARGUS), Z. Phys. C46, 15 (1990).
[38] C. Bieler et al. (Crystal Ball), Z. Phys. C49, 225 (1991).
[39] G. Wormser et al., Phys. Rev. Lett. 61, 1057 (1988).
[40] A. Heister et al. (ALEPH), Phys. Lett. B528, 19 (2002), [hep-ex/0201012].
[41] H. Albrecht et al. (ARGUS), Z. Phys. C58, 199 (1993).
[42] M. Acciarri et al. (L3), Phys. Lett. B393, 465 (1997).
[43] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C5, 411 (1998), [hep-ex/9805011].
[44] R. Seuster et al. (Belle), Phys. Rev. D73, 032002 (2006), [hep-ex/0506068].
[45] M. Artuso et al. (CLEO), Phys. Rev. D70, 112001 (2004), [hep-ex/0402040].
[46] P. Abreu et al. (DELPHI), Z. Phys. C59, 533 (1993), [Erratum: Z. Phys.C65,709(1995)].
[47] G. Alexander et al. (OPAL), Z. Phys. C72, 1 (1996).
[48] B. Aubert et al. (BaBar), Phys. Rev. D65, 091104 (2002), [hep-ex/0201041].
[49] D. Bortoletto et al. (CLEO), Phys. Rev. D37, 1719 (1988), [Erratum: Phys. Rev.D39,1471(1989)].
[50] P. Abreu et al. (DELPHI), Z. Phys. C57, 181 (1993).
[51] J. Abdallah et al. (DELPHI), Phys. Lett. B576, 29 (2003), [hep-ex/0311005].
[52] P. Abreu et al. (DELPHI), Z. Phys. C61, 407 (1994).
[53] R. Akers et al. (OPAL), Z. Phys. C66, 555 (1995).
[54] S. Abachi et al., Phys. Rev. Lett. 57, 1990 (1986).
[55] P. Abreu et al. (DELPHI), Phys. Lett. B449, 364 (1999).
[56] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C4, 19 (1998), [hep-ex/9802013].
[57] H. Albrecht et al. (ARGUS), Z. Phys. C61, 1 (1994).
[58] D. Buskulic et al. (ALEPH), Z. Phys. C69, 379 (1996).
[59] R. Barate et al. (ALEPH), Phys. Rept. 294, 1 (1998).
[60] P. D. Acton et al. (OPAL), Phys. Lett. B305, 407 (1993).
[61] P. Abreu et al. (DELPHI), Z. Phys. C73, 61 (1996).
[62] K. Ackerstaff et al. (OPAL), Phys. Lett. B412, 210 (1997), [hep-ex/9708022].
[63] R. Barate et al. (ALEPH), Eur. Phys. J. C16, 597 (2000), [hep-ex/9909032].
[64] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C1, 439 (1998), [hep-ex/9708021].
[65] K. Ackerstaff et al. (OPAL), Eur. Phys. J. C5, 1 (1998), [hep-ex/9802008].
[66] P. Abreu et al. (DELPHI), Z. Phys. C68, 353 (1995).
[67] M. Acciarri et al. (L3), Phys. Lett. B345, 589 (1995).
[68] B. Aubert et al. (BaBar), Phys. Rev. Lett. 87, 162002 (2001), [hep-ex/0106044].
[69] K. Abe et al. (Belle), Phys. Rev. Lett. 88, 052001 (2002), [hep-ex/0110012].
[70] D. Buskulic et al. (ALEPH), Phys. Lett. B295, 396 (1992).
[71] P. Abreu et al. (DELPHI), Phys. Lett. B341, 109 (1994).
[72] M. Acciarri et al. (L3), Phys. Lett. B453, 94 (1999).
[73] G. Alexander et al. (OPAL), Z. Phys. C70, 197 (1996).
[74] M. Acciarri et al. (L3), Phys. Lett. B407, 351 (1997).
[75] G. Alexander et al. (OPAL), Phys. Lett. B370, 185 (1996).
[76] J. Abdallah et al. (DELPHI), Phys. Lett. B569, 129 (2003), [hep-ex/0309057].
[77] A. De Angelis, J. Phys. G19, 1233 (1993).
[78] S. Abachi et al., Phys. Lett. B199, 151 (1987).
[79] R. Akers et al. (OPAL), Z. Phys. C68, 1 (1995).
[80] P. Abreu et al. (DELPHI), Phys. Lett. B345, 598 (1995).
[81] A. Heister et al. (ALEPH), Phys. Lett. B526, 34 (2002), [hep-ex/0112010].
[82] H. Albrecht et al. (ARGUS), Z. Phys. C39, 177 (1988).
[83] M. Niiyama et al. (Belle), Phys. Rev. D97, 7, 072005 (2018), [arXiv:1706.06791].
[84] P. Abreu et al. (DELPHI), Z. Phys. C67, 543 (1995).
[85] G. Alexander et al. (OPAL), Z. Phys. C73, 569 (1997).
[86] W. Adam et al. (DELPHI), Z. Phys. C70, 371 (1996).
[87] M. Acciarri et al. (L3), Phys. Lett. B479, 79 (2000), [hepex/0002066].
[88] G. Alexander et al. (OPAL), Z. Phys. C73, 587 (1997).
[89] P. Abreu et al. (DELPHI), Phys. Lett. B475, 429 (2000), [hep-ex/0103020].
[90] H. Albrecht et al. (ARGUS), Phys. Lett. B230, 169 (1989).
[91] P. Abreu et al. (DELPHI), Phys. Lett. B361, 207 (1995).
[92] G. Alexander et al. (OPAL), Phys. Lett. B358, 162 (1995).
[93] S. Abachi et al., Phys. Rev. Lett. 58, 2627 (1987), [Erratum: Phys. Rev. Lett.59,2388(1987)].
[94] J. Abdallah et al. (DELPHI), Eur. Phys. J. C44, 299 (2005), [hep-ex/0510023].
[95] B. Aubert et al. (BaBar), Phys. Rev. D75, 012003 (2007), [hep-ex/0609004].
[96] P. D. Acton et al. (OPAL), Phys. Lett. B281, 394 (1992).
[97] H. Albrecht et al. (ARGUS), Phys. Rept. 276, 223 (1996).
[98] R. Giles et al. (CLEO), Phys. Rev. D29, 1285 (1984).
[99] K. G. Chetyrkin, R. V. Harlander and J. H. Kuhn, Nucl. Phys. B586, 56 (2000), [Erratum: Nucl. Phys.B634,413(2002)], [hep-ph/0005139].
[100] V. V. Ezhela, S. B. Lugovsky and O. V. Zenin (2003), [hepph/0312114].
[101] R. Barate et al. (ALEPH), Eur. Phys. J. C14, 1 (2000).
[102] P. Abreu et al. (DELPHI), Eur. Phys. J. C16, 371 (2000).
[103] M. Acciarri et al. (L3), Eur. Phys. J. C16, 1 (2000), [hepex/0002046].
[104] G. Abbiendi et al. (OPAL), Eur. Phys. J. C19, 587 (2001), [hep-ex/0012018].
[105] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427, 257 (2006), [hepex/0509008].
[106] P. Collins, An Introduction to Regge Theory and HighEnergy Physics, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, UK (2009), ISBN 9780521110358.
[107] G. Pancheri and Y. N. Srivastava, Eur. Phys. J. C77, 3, 150 (2017), [arXiv:1610.10038].
[108] L. A. Harland-Lang, V. A. Khoze and M. G. Ryskin, Int. J. Mod. Phys. A30, 1542013 (2015).
[109] V. A. Petrov and A. Prokudin, Phys. Rev. D87, 3, 036003 (2013), [arXiv:1212.1924].
[110] C. Bourrely, J. Soffer and T. T. Wu, Eur. Phys. J. C28, 97 (2003), [hep-ph/0210264].
[111] M. M. Block et al., Phys. Rev. D92, 1, 014030 (2015), [arXiv:1505.04842].
[112] O. V. Selyugin, Phys. Rev. D91, 11, 113003 (2015), [Erratum: Phys. Rev.D92,no.9,099901(2015)], [arXiv:1505.02426].
[113] L. G. Dakhno and V. A. Nikonov, Eur. Phys. J. A5, 209 (1999), [hep-ph/9902320].
[114] A. A. Godizov, Phys. Lett. B735, 57 (2014), [arXiv:1404.2851].
[115] E. Gotsman, E. M. Levin and U. Maor, Phys. Rev. D49, R4321 (1994), [hep-ph/9310257].
[116] A. Donnachie and P. V. Landshoff, Phys. Lett. B727, 500 (2013), [Erratum: Phys. Lett.B750,669(2015)], [arXiv:1309.1292].
[117] E. Martynov, Phys. Rev. D87, 11, 114018 (2013), [arXiv:1305.3093].
[118] L. Jenkovszky, Nuovo Cim. C037, 02, 99 (2014).
[119] S. M. Troshin and N. E. Tyurin, Int. J. Mod. Phys. A32, 17, 1750103 (2017), [arXiv:1704.00443].
[120] V. V. Anisovich, Phys. Usp. 58, 10, 963 (2015).
[121] D. A. Fagundes, M. J. Menon and P. V. R. G. Silva, Nucl. Phys. A946, 194 (2016), [arXiv:1509.04108].
[122] E. Martynov and B. Nicolescu, Eur. Phys. J. C56, 57 (2008), [arXiv:0712.1685].
[123] W. Heisenberg, Z. Phys. 133, 65 (1952).
[124] J. R. Cudell et al., Phys. Rev. D65, 074024 (2002), [hepph/0107219].
[125] H. Nastase and J. Sonnenschein, Phys. Rev. D92, 105028 (2015), [arXiv:1504.01328].
[126] V. I. Belousov et al., Phys. Atom. Nucl. 79, 1, 113 (2016), [Yad. Fiz.79,no.1,55(2016)].
[127] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).

Particle Properties

Gauge Bosons
53. Mass and width of the W boson (rev.) 715
54. Z boson 717
Charged Leptons
55. Muon anomalous magnetic moment (rev.) 722
56. Muon decay parameters (rev.) 725
57. τ branching fractions (rev.) 728
58. τ-lepton decay parameters 731
Quarks
59. Quark masses (rev.) 733
60. Top quark (rev.) 741
Mesons
61. Form factors for rad. pion 762
\& kaon decays (rev.)
62. Scalar mesons below 2 GeV (rev.) 764
63. Pseudoscalar and pseudovector mesons 771
in the 1400 MeV region (rev.)
64. Rare kaon decays (rev.) 774
65. $C P T$ invariance tests in 779
neutral kaon decay (rev.)
66. $V_{u d}, V_{u s}$, Cabibbo angle, 781
and CKM unitarity (rev.)
67. $C P$-violation in K_{L} decays 784
68. Review of multibody charm 788
analyses (rev.)
69. $D^{0}-\bar{D}^{0}$ mixing (rev.) 792
70. D_{s}^{+}branching fractions (rev.) 801
71. Leptonic decays of charged 803
pseudoscalar mesons (rev.)
72. Production and decay of 814
b-flavored hadrons (rev.)
73. Polarization in B decays (rev.) 824
74. $B^{0}-\bar{B}^{0}$ mixing (rev.) 828
75. Semileptonic B decays, $V_{c b}$ and $V_{u b}$ (rev.) 835
76. CKM angles from B hadrons, 849
Determination of (new)
77. Spectroscopy of mesons containing 854
two heavy quarks (rev.)
78. Non- $q \bar{q}$ mesons (rev.) 861
Baryons
79. Baryon decay parameters 868
80. N and Δ resonances (rev.) 869
81. Baryon magnetic moments 874
82. Λ and Σ resonances (rev.) 875
83. Pole structure of the $\Lambda(1405)$ region (rev.) 878
84. Charmed baryons (rev.) 879
85. Pentaquarks (rev.) 881
Notes in Volume 2
Extraction of triple 1017
gauge couplings (TGC's)
Anomalous $Z Z \gamma, Z \gamma \gamma$, and $Z Z V$ couplings 1042
Anomalous W / Z quartic couplings 1043
Neutrino properties (rev.) 1135
Sum of neutrino masses (rev.) 1138
Number of light neutrino types 1143
from collider experiments
Neutrinoless double- β decay (rev.) 1145
Three-neutrino mixing parameters (rev.) 1155
$\rho(770)$ (rev.) 1221
$\rho(1450)$ and the $\rho(1700)$ (rev.) 1302
Charged kaon mass 1337
Dalitz plot parameters for $K \rightarrow 3 \pi$ decays 1345
$K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ form factors 1347
$C P$-violation in $K_{S} \rightarrow 3 \pi$ 1357
Heavy Flavor Averaging Group (rev.) 1465
Charmonium system (rev.) 1668
Branching ratios of $\psi(2 S)$ and $\chi_{c 0,1,2}$ (rev.) 1698
Bottomonium system (rev.) 1782
Width determination of the Υ states 1782
$\Sigma(1670)$ region 1938
Radiative hyperon decays 1960
Ξ resonances 1964

53. Mass and Width of the W Boson

Revised June 2019 by M.W. Grünewald (U. College Dublin) and A. Gurtu (Kyung Hee U.).

Precision determination of the W -mass is of great importance in testing the internal consistency of the Standard Model. From the time of its discovery in 1983, the W-boson has been studied and its mass determined in $p \bar{p}$ and $e^{+} e^{-}$interactions; it is currently studied in pp interactions at the LHC. The W mass and width definition used here corresponds to a Breit-Wigner with mass-dependent width.

Production of on-shell W bosons at hadron colliders is tagged by the high p_{T} charged lepton from its decay. Owing to the unknown parton-parton effective energy and missing energy in the longitudinal direction, the collider experiments reconstruct the transverse mass of the W , and derive the W mass from comparing the transverse mass distribution with Monte Carlo predictions as a function of M_{W}. These analyses use the electron and muon decay modes of the W boson.

In the $\mathrm{e}^{+} \mathrm{e}^{-}$collider (LEP) a precise knowledge of the beam energy enables one to determine the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$cross section as a function of center of mass energy, as well as to reconstruct the W mass precisely from its decay products, even if one of them decays leptonically. Close to the $\mathrm{W}^{+} \mathrm{W}^{-}$threshold (161 GeV), the dependence of the W-pair production cross section on M_{W} is large, and this was used to determine M_{W}. At higher energies (172 to 209 GeV) this dependence is much weaker and W-bosons were directly reconstructed and the mass determined as the invariant mass of its decay products, improving the resolution with a kinematic fit.

Figure 53.1: Measurements of the W -boson mass by the LEP, Tevatron and LHC experiments.

In order to compute the LEP average W mass, each experiment provided its measured W mass for the $q \bar{q} q \bar{q}$ and $q \bar{q} \ell \overline{\nu_{\ell}}, \ell=e, \mu, \tau$ channels at each center-of-mass energy, along with a detailed break-up of errors: statistical, uncorrelated, partially correlated and fully correlated systematics [1]. These have been combined to obtain a LEP W mass of $M_{W}=80.376 \pm 0.033 \mathrm{GeV}$. Errors due to uncertainties in LEP energy (9 MeV), and possible effect of color reconnection (CR) and Bose-Einstein correlations (BEC) between quarks from different W's (8 MeV) are included. The mass difference between $q \bar{q} q \bar{q}$ and
$q \bar{q} \ell \overline{\nu_{\ell}}$ final states (due to possible CR and BEC effects) is -12 ± 45 MeV . In a similar manner, the width results obtained at LEP have been combined, resulting in $\Gamma_{W}=2.195 \pm 0.083 \mathrm{GeV}[1]$.

Figure 53.2: Measurements of the W -boson width by the LEP and Tevatron experiments.

The two Tevatron experiments have also identified common systematic errors. Between the two experiments, uncertainties due to the parton distribution functions, radiative corrections, and choice of mass (width) in the width (mass) measurements are treated as correlated. An average W width of $\Gamma_{W}=2.046 \pm 0.049 \mathrm{GeV}[2]$ is obtained. Errors of 20 MeV and 7 MeV accounting for PDF and radiative correction uncertainties in this width combination dominate the correlated uncertainties. At the 2011/12 winter conferences, the CDF and D0 experiments have presented new results for the mass of the W boson based on $2-4 \mathrm{fb}^{-1}$ of Run-II data, 80.387 ± 0.019 GeV [3] and $80.375 \pm 0.023 \mathrm{GeV}$ [4], respectively. The W-mass determination from the Tevatron experiments has thus become very precise. Combining all Tevatron results from Run-I and Run-II using an improved treatment of correlations, a new average of 80.387 ± 0.016 GeV is obtained [5], with common uncertainties of 10 MeV (PDF) and 4 MeV (radiative corrections).

Good agreement between the LEP and Tevatron results is observed. Combining these results, assuming no common systematic uncertainties between the LEP and the Tevatron measurements, yields an average W mass of $M_{W}=80.385 \pm 0.015 \mathrm{GeV}$ and a W width of $\Gamma_{W}=2.085 \pm 0.042 \mathrm{GeV}$.

At the $2016 / 17$ winter conferences, the ATLAS collaboration presented a measurement of the mass of the W boson in pp collisions at $\sqrt{s}=7 \mathrm{TeV}, M_{W}=80.370 \pm 0.019 \mathrm{GeV}$, since then published [6], which is compatible with the above world average and of similar precision to the best measurements of CDF and D0. Assuming a Tevtaron/LHC common PDF uncertainty of 7 MeV [7], this results in a new world average of $M_{W}=80.379 \pm 0.012 \mathrm{GeV}$.

The LEP, Tevatron and LHC results on mass and width, which are based on all results available, are compared in Fig. 53.1 and Fig. 53.2. The Standard Model prediction from the electroweak fit, including Z-pole data and $m_{\text {top }}$ and M_{H} measurements, gives a W-boson mass of $M_{W}=80.354 \pm 0.007 \mathrm{GeV}$ and a W -boson width of $\Gamma_{W}=2.091 \pm 0.001 \mathrm{GeV} \quad[8]$.

References:

1. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, CERN-PH-EP/2013-022, arXiv:1302. 3415 [hep-ex], Phys.Rept. 532 (2013) 119-244.
2. The Tevatron Electroweak Working Group, for the CDF and D0 Collaborations: Combination of CDF and DO Results on the Width of the W Boson, March 2010, arXiv:1003. 2826 [hep-ex].
3. The CDF Collaboration, Precise measurement of the W-boson mass with the CDF II detector, arXiv:1203.0275 [hep-ex], Phys. Rev. Lett. 108, 151803 (2012).
4. The D0 Collaboration, Measurement of the W Boson Mass with the D0 Detector, arXiv:1203.0293 [hep-ex], Phys. Rev. Lett. 108, 151804 (2012).
5. The CDF and D0 Collabs: Combination of CDF and D0 W-Boson Mass Measurements, July 2013, arXiv:1307.7627 [hep-ex], Phys. Rev. D88, 052018 (2013).
6. The ATLAS Collaboration, Measurement of the W-boson mass in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector, January 2017, arXiv:1701:07240 [hep-ex], Eur.Phys.J. C78 (2018) no.2, 110.
7. Jens Erler, Precision in EW measurements at Run 2 and beyond, Talk presented at the 52nd Rencontres de Moriond EW, March 2017.
8. J. Haller et al., Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C78, 675 (2018).

54. Z Boson

Revised September 2013 by M.W. Grünewald (U. College Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

Precision measurements at the Z-boson resonance using electronpositron colliding beams began in 1989 at the SLC and at LEP. During 1989-95, the four LEP experiments (ALEPH, DELPHI, L3, OPAL) made high-statistics studies of the production and decay properties of the Z. Although the SLD experiment at the SLC collected much lower statistics, it was able to match the precision of LEP experiments in determining the effective electroweak mixing angle $\sin ^{2} \bar{\theta}_{W}$ and the rates of Z decay to b - and c-quarks, owing to availability of polarized electron beams, small beam size, and stable beam spot.

The Z-boson properties reported in this section may broadly be categorized as:

- The standard 'lineshape' parameters of the Z consisting of its mass, M_{Z}, its total width, Γ_{Z}, and its partial decay widths, Γ (hadrons), and $\Gamma(\overline{\ell \ell})$ where $\ell=e, \mu, \tau, \nu$;
- Z asymmetries in leptonic decays and extraction of Z couplings to charged and neutral leptons;
- The b - and c-quark-related partial widths and charge asymmetries which require special techniques;
- Determination of Z decay modes and the search for modes that violate known conservation laws;
- Average particle multiplicities in hadronic Z decay;
- Z anomalous couplings.

The effective vector and axial-vector coupling constants describing the Z-to-fermion coupling are also measured in $p \bar{p}$ and $e p$ collisions at the Tevatron and at HERA. The corresponding cross-section formulae are given in Section 39 (Cross-section formulae for specific processes) and Section 16 (Structure Functions) in this Review. In this minireview, we concentrate on the measurements in $e^{+} e^{-}$collisions at LEP and SLC.

The standard 'lineshape' parameters of the Z are determined from an analysis of the production cross sections of these final states in $e^{+} e^{-}$collisions. The $Z \rightarrow \nu \bar{\nu}(\gamma)$ state is identified directly by detecting single photon production and indirectly by subtracting the visible partial widths from the total width. Inclusion in this analysis of the forward-backward asymmetry of charged leptons, $A_{F B}^{(0, \ell)}$, of the τ polarization, $P(\tau)$, and its forward-backward asymmetry, $P(\tau)^{f b}$, enables the separate determination of the effective vector $\left(\bar{g}_{V}\right)$ and axial vector $\left(\bar{g}_{A}\right)$ couplings of the Z to these leptons and the ratio $\left(\bar{g}_{V} / \bar{g}_{A}\right)$, which is related to the effective electroweak mixing angle $\sin ^{2} \bar{\theta}_{W}$ (see the "Electroweak Model and Constraints on New Physics" review).

Determination of the b - and c-quark-related partial widths and charge asymmetries involves tagging the b and c quarks for which various methods are employed: requiring the presence of a high momentum prompt lepton in the event with high transverse momentum with respect to the accompanying jet; impact parameter and lifetime tagging using precision vertex measurement with highresolution detectors; application of neural-network techniques to classify events as b or non- b on a statistical basis using event-shape variables; and using the presence of a charmed meson $\left(D / D^{*}\right)$ or a kaon as a tag.

54.1. Z-parameter determination

LEP was run at energy points on and around the Z mass (8894 GeV) constituting an energy 'scan.' The shape of the cross-section variation around the Z peak can be described by a Breit-Wigner ansatz with an energy-dependent total width $[1-3]$. The three main properties of this distribution, viz., the position of the peak, the width of the distribution, and the height of the peak, determine respectively the values of M_{Z}, Γ_{Z}, and $\Gamma\left(e^{+} e^{-}\right) \times \Gamma(f \bar{f})$, where $\Gamma\left(e^{+} e^{-}\right)$and $\Gamma(f \bar{f})$ are the electron and fermion partial widths of the Z. The quantitative determination of these parameters is done by writing analytic expressions for these cross sections in terms of the parameters, and fitting the calculated cross sections to the measured ones by varying these parameters, taking properly into account all the
errors. Single-photon exchange $\left(\sigma_{\gamma}^{0}\right)$ and $\gamma-Z$ interference $\left(\sigma_{\gamma Z}^{0}\right)$ are included, and the large ($\sim 25 \%$) initial-state radiation (ISR) effects are taken into account by convoluting the analytic expressions over a 'Radiator Function' [1-5] $H\left(s, s^{\prime}\right)$. Thus for the process $e^{+} e^{-} \rightarrow f \bar{f}$:

$$
\begin{align*}
\sigma_{f}(s)= & \int H\left(s, s^{\prime}\right) \sigma_{f}^{0}\left(s^{\prime}\right) d s^{\prime} \tag{54.1}\\
\sigma_{f}^{0}(s)= & \sigma_{Z}^{0}+\sigma_{\gamma}^{0}+\sigma_{\gamma Z}^{0} \tag{54.2}\\
\sigma_{Z}^{0}= & \frac{12 \pi}{M_{Z}^{2}} \frac{\Gamma\left(e^{+} e^{-}\right) \Gamma(f \bar{f})}{\Gamma_{Z}^{2}} \frac{s \Gamma_{Z}^{2}}{\left(s-M_{Z}^{2}\right)^{2}+s^{2} \Gamma_{Z}^{2} / M_{Z}^{2}} \tag{54.3}\\
\sigma_{\gamma}^{0}= & \frac{4 \pi \alpha^{2}(s)}{3 s} Q_{f}^{2} N_{c}^{f} \tag{54.4}\\
\sigma_{\gamma Z}^{0}= & -\frac{2 \sqrt{2} \alpha(s)}{3}\left(Q_{f} G_{F} N_{c}^{f} \mathcal{G}_{V}^{e} \mathcal{G}_{V}^{f}\right) \\
& \times \frac{\left(s-M_{Z}^{2}\right) M_{Z}^{2}}{\left(s-M_{Z}^{2}\right)^{2}+s^{2} \Gamma_{Z}^{2} / M_{Z}^{2}} \tag{54.5}
\end{align*}
$$

where Q_{f} is the charge of the fermion, $N_{c}^{f}=3$ for quarks and 1 for leptons, and \mathcal{G}_{V}^{f} is the vector coupling of the Z to the fermion-antifermion pair $f \bar{f}$.

Since $\sigma_{\gamma Z}^{0}$ is expected to be much less than σ_{Z}^{0}, the LEP Collaborations have generally calculated the interference term in the framework of the Standard Model. This fixing of $\sigma_{\gamma Z}^{0}$ leads to a tighter constraint on M_{Z}, and consequently a smaller error on its fitted value. It is possible to relax this constraint and carry out the fit within the S-matrix framework, which is briefly described in the next section.

In the above framework, the QED radiative corrections have been explicitly taken into account by convoluting over the ISR and allowing the electromagnetic coupling constant to run [6]: $\alpha(s)=\alpha /(1-\Delta \alpha)$. On the other hand, weak radiative corrections that depend upon the assumptions of the electroweak theory and on the values of $M_{\text {top }}$ and $M_{\text {Higgs }}$ are accounted for by absorbing them into the couplings, which are then called the effective couplings \mathcal{G}_{V} and \mathcal{G}_{A} (or alternatively the effective parameters of the $*$ scheme of Kennedy and Lynn [7].)
\mathcal{G}_{V}^{f} and \mathcal{G}_{A}^{f} are complex numbers with small imaginary parts. As experimental data does not allow simultaneous extraction of both real and imaginary parts of the effective couplings, the convention $g_{A}^{f}=\operatorname{Re}\left(\mathcal{G}_{A}^{f}\right)$ and $g_{V}^{f}=\operatorname{Re}\left(\mathcal{G}_{V}^{f}\right)$ is used and the imaginary parts are added in the fitting code [4].

Defining

$$
\begin{equation*}
A_{f}=2 \frac{g_{V}^{f} \cdot g_{A}^{f}}{\left(g_{V}^{f}\right)^{2}+\left(g_{A}^{f}\right)^{2}} \tag{54.6}
\end{equation*}
$$

the lowest-order expressions for the various lepton-related asymmetries on the Z pole are $[8-10] A_{F B}^{(0, \ell)}=(3 / 4) A_{e} A_{f}, P(\tau)=-A_{\tau}$, $P(\tau)^{f b}=-(3 / 4) A_{e}, A_{L R}=A_{e}$. The full analysis takes into account the energy-dependence of the asymmetries. Experimentally $A_{L R}$ is defined as $\left(\sigma_{L}-\sigma_{R}\right) /\left(\sigma_{L}+\sigma_{R}\right)$, where $\sigma_{L(R)}$ are the $e^{+} e^{-} \rightarrow Z$ production cross sections with left- (right)-handed electrons.

The definition of the partial decay width of the Z to $f \bar{f}$ includes the effects of QED and QCD final-state corrections, as well as the contribution due to the imaginary parts of the couplings:

$$
\begin{equation*}
\Gamma(f \bar{f})=\frac{G_{F} M_{Z}^{3}}{6 \sqrt{2} \pi} N_{c}^{f}\left(\left|\mathcal{G}_{A}^{f}\right|^{2} R_{A}^{f}+\left|\mathcal{G}_{V}^{f}\right|^{2} R_{V}^{f}\right)+\Delta_{e w / \mathrm{QCD}} \tag{54.7}
\end{equation*}
$$

where R_{V}^{f} and R_{A}^{f} are radiator factors to account for final state QED and QCD corrections, as well as effects due to nonzero fermion masses, and $\Delta_{e w / \mathrm{QCD}}$ represents the non-factorizable electroweak/QCD corrections.

54.2. S-matrix approach to the Z

While most experimental analyses of LEP/SLC data have followed the 'Breit-Wigner' approach, an alternative S-matrix-based analysis is also possible. The Z, like all unstable particles, is associated with a complex pole in the S matrix. The pole position is process-independent and gauge-invariant. The mass, \bar{M}_{Z}, and width, $\bar{\Gamma}_{Z}$, can be defined in terms of the pole in the energy plane via [11-14]

$$
\begin{equation*}
\bar{s}=\bar{M}_{Z}^{2}-i \bar{M}_{Z} \bar{\Gamma}_{Z} \tag{54.8}
\end{equation*}
$$

leading to the relations

$$
\begin{align*}
\bar{M}_{Z} & =M_{Z} / \sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}} \\
& \approx M_{Z}-34.1 \mathrm{MeV} \tag{54.9}\\
\bar{\Gamma}_{Z} & =\Gamma_{Z} / \sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}} \\
& \approx \Gamma_{Z}-0.9 \mathrm{MeV} \tag{54.10}
\end{align*}
$$

The LEP collaborations [15] have analyzed their data using the S-matrix approach as defined in Eq. (54.8), in addition to the conventional one. They observe a downward shift in the Z mass as expected.

54.3. Handling the large-angle $e^{+} e^{-}$final state

Unlike other $f \bar{f}$ decay final states of the Z, the $e^{+} e^{-}$final state has a contribution not only from the s-channel but also from the t-channel and s - t interference. The full amplitude is not amenable to fast calculation, which is essential if one has to carry out minimization fits within reasonable computer time. The usual procedure is to calculate the non-s channel part of the cross section separately using the Standard Model programs ALIBABA [16] or TOPAZ0 [17], with the measured value of $M_{\text {top }}$, and $M_{\text {Higgs }}=150 \mathrm{GeV}$, and add it to the s-channel cross section calculated as for other channels. This leads to two additional sources of error in the analysis: firstly, the theoretical calculation in ALIBABA itself is known to be accurate to $\sim 0.5 \%$, and secondly, there is uncertainty due to the error on $M_{\text {top }}$ and the unknown value of $M_{\text {Higgs }}(100-1000 \mathrm{GeV})$. These errors are propagated into the analysis by including them in the systematic error on the $e^{+} e^{-}$final state. As these errors are common to the four LEP experiments, this is taken into account when performing the LEP average.

54.4. Errors due to uncertainty in LEP energy determination

The systematic errors related to the LEP energy measurement, see Refs. 18-23, can be classified as:

- The absolute energy scale error;
- Energy-point-to-energy-point errors due to the nonlinear response of the magnets to the exciting currents;
- Energy-point-to-energy-point errors due to possible higher-order effects in the relationship between the dipole field and beam energy;
- Energy reproducibility errors due to various unknown uncertainties in temperatures, tidal effects, corrector settings, RF status, etc.

Precise energy calibration was done outside normal data-taking using the resonant depolarization technique. Run-time energies were determined every 10 minutes by measuring the relevant machine parameters and using a model which takes into account all the known effects, including leakage currents produced by trains in the Geneva area and the tidal effects due to gravitational forces of the Sun and the Moon. The LEP Energy Working Group has provided a covariance matrix from the determination of LEP energies for the different running periods during 1993-1995 [18].

54.5. Choice of fit parameters

The LEP Collaborations have chosen the following primary set of parameters for fitting: $M_{Z}, \Gamma_{Z}, \sigma_{\text {hadron }}^{0}, R$ (lepton), $A_{F B}^{(0, \ell)}$, where $R($ lepton $)=\Gamma($ hadrons $) / \Gamma$ (lepton), $\sigma_{\text {hadron }}^{0}=$ $12 \pi \Gamma\left(e^{+} e^{-}\right) \Gamma$ (hadrons) $/ M_{Z}^{2} \Gamma_{Z}^{2}$. With a knowledge of these fitted parameters and their covariance matrix, any other parameter can be derived. The main advantage of these parameters is that they form a physics motivated set of parameters with much reduced correlations.

Thus, the most general fit carried out to cross section and asymmetry data determines the nine parameters: $M_{Z}, \Gamma_{Z}, \sigma_{\text {hadron }}^{0}$, $R(e), R(\mu), R(\tau), A_{F B}^{(0, e)}, A_{F B}^{(0, \mu)}, A_{F B}^{(0, \tau)}$. Assumption of lepton universality leads to a five-parameter fit determining M_{Z}, Γ_{Z}, $\sigma_{\text {hadron }}^{0}, R($ lepton $), A_{F B}^{(0, \ell)}$.

54.6. Combining results from LEP and SLC experiments

With a steady increase in statistics over the years and improved understanding of the common systematic errors between LEP experiments, the procedures for combining results have evolved continuously [24]. The Line Shape Sub-group of the LEP Electroweak Working Group investigated the effects of these common errors, and devised a combination procedure for the precise determination of the Z parameters from LEP experiments. Using these procedures, this note also gives the results after combining the final parameter sets from the four experiments, and these are the results quoted as the fit results in the Z listings below. Transformation of variables leads to values of derived parameters like partial decay widths and branching ratios to hadrons and leptons. Finally, transforming the LEP combined nine parameter set to $\left(M_{Z}, \Gamma_{Z}, \sigma_{\text {hadron }}^{\circ}, g_{A}^{f}, g_{V}^{f}\right.$, $f=e, \mu, \tau)$ using the average values of lepton asymmetry parameters $\left(A_{e}, A_{\mu}, A_{\tau}\right)$ as constraints, leads to the best fitted values of the vector and axial-vector couplings $\left(g_{V}, g_{A}\right)$ of the charged leptons to the Z.

Brief remarks on the handling of common errors and their magnitudes are given below. The identified common errors are those coming from
(a) LEP energy-calibration uncertainties, and
(b) the theoretical uncertainties in (i) the luminosity determination using small angle Bhabha scattering, (ii) estimating the non-s channel contribution to large angle Bhabha scattering, (iii) the calculation of QED radiative effects, and (iv) the parametrization of the cross section in terms of the parameter set used.

54.7. Common LEP energy errors

All the collaborations incorporate in their fit the full LEP energy error matrix as provided by the LEP energy group for their intersection region [18]. The effect of these errors is separated out from that of other errors by carrying out fits with energy errors scaled up and down by $\sim 10 \%$ and redoing the fits. From the observed changes in the overall error matrix, the covariance matrix of the common energy errors is determined. Common LEP energy errors lead to uncertainties on M_{Z}, Γ_{Z}, and $\sigma_{\text {hadron }}^{\circ}$ of $1.7,1.2 \mathrm{MeV}$, and 0.011 nb , respectively.

54.8. Common luminosity errors

BHLUMI 4.04 [25] is used by all LEP collaborations for small-angle Bhabha scattering leading to a common uncertainty in their measured cross sections of 0.061% [26]. BHLUMI does not include a correction for production of light fermion pairs. OPAL explicitly corrects for this effect and reduces their luminosity uncertainty to 0.054%, which is taken fully correlated with the other experiments. The other three experiments among themselves have a common uncertainty of 0.061%.

54.9. Common non-s channel uncertainties

The same standard model programs ALIBABA [16] and TOPAZ0 [17] are used to calculate the non-s channel contribution to the large angle Bhabha scattering [27]. As this contribution is a function of the Z mass, which itself is a variable in the fit, it is parametrized as a function of M_{Z} by each collaboration to properly track this contribution as M_{Z} varies in the fit. The common errors on R_{e} and $A_{F B}^{(0, e)}$ are 0.024 and 0.0014 respectively, and are correlated between them.

54.10. Common theoretical uncertainties: QED

There are large initial-state photon and fermion pair radiation effects near the Z resonance, for which the best currently available evaluations include contributions up to $\mathcal{O}\left(\alpha^{3}\right)$. To estimate the remaining uncertainties, different schemes are incorporated in the standard model programs ZFITTER [5], TOPAZ0 [17], and MIZA [28]. Comparing the different options leads to error estimates of 0.3 and 0.2 MeV on M_{Z} and Γ_{Z} respectively, and of 0.02% on $\sigma_{\text {hadron }}^{\circ}$

54.11. Common theoretical uncertainties: parametrization of lineshape and asymmetries

To estimate uncertainties arising from ambiguities in the modelindependent parametrization of the differential cross-section near the Z resonance, results from TOPAZ0 and ZFITTER were compared by using ZFITTER to fit the cross sections and asymmetries calculated using TOPAZ0. The resulting uncertainties on $M_{Z}, \Gamma_{Z}, \sigma_{\text {hadron }}^{\circ}$, R (lepton), and $A_{F B}^{(0, \ell)}$ are $0.1 \mathrm{MeV}, 0.1 \mathrm{MeV}, 0.001 \mathrm{nb}, 0.004$, and 0.0001 respectively.

Thus, the overall theoretical errors on $M_{Z}, \Gamma_{Z}, \sigma_{\text {hadron }}^{\circ}$ are $0.3 \mathrm{MeV}, 0.2 \mathrm{MeV}$, and 0.008 nb respectively; on each R (lepton) is 0.004 and on each $A_{F B}^{(0, \ell)}$ is 0.0001 . Within the set of three R (lepton)'s and the set of three $A_{F B}^{(0, \ell)}$,s, the respective errors are fully correlated.

All the theory-related errors mentioned above utilize Standard Model programs which need the Higgs mass and running electromagnetic coupling constant as inputs; uncertainties on these inputs will also lead to common errors. All LEP collaborations used the same set of inputs for Standard Model calculations: $M_{Z}=91.187 \mathrm{GeV}$, the Fermi constant $G_{F}=(1.16637 \pm 0.00001) \times 10^{-5} \mathrm{GeV}^{-2} \quad[29]$, $\alpha^{(5)}\left(M_{Z}\right)=1 / 128.877 \pm 0.090 \quad[30], \quad \alpha_{s}\left(M_{Z}\right)=0.119 \quad[31]$, $M_{\text {top }}=174.3 \pm 5.1 \mathrm{GeV}$ [31] and $M_{\text {Higgs }}=150 \mathrm{GeV}$. The only observable effect, on M_{Z}, is due to the variation of $M_{\text {Higgs }}$ between $100-1000 \mathrm{GeV}$ (due to the variation of the γ / Z interference term which is taken from the Standard Model): M_{Z} changes by +0.23 MeV per unit change in $\log _{10} M_{\text {Higgs }} / \mathrm{GeV}$, which is not an error but a correction to be applied once $M_{\text {Higgs }}$ is determined. The effect is much smaller than the error on $M_{Z}(\pm 2.1 \mathrm{MeV})$.

54.12. Methodology of combining the LEP experimental results

The LEP experimental results actually used for combination are slightly modified from those published by the experiments (which are given in the Listings below). This has been done in order to facilitate the procedure by making the inputs more consistent. These modified results are given explicitly in [24]. The main differences compared to the published results are (a) consistent use of ZFITTER 6.23 and TOPAZ0 (the published ALEPH results used ZFITTER 6.10); (b) use of the combined energy-error matrix, which makes a difference of 0.1 MeV on the M_{Z} and Γ_{Z} for L3 only as at that intersection the RF modeling uncertainties are the largest.

Thus, nine-parameter sets from all four experiments with their covariance matrices are used together with all the common errors correlations. A grand covariance matrix, V, is constructed and a combined nine-parameter set is obtained by minimizing $\chi^{2}=\Delta^{T} V^{-1} \Delta$, where Δ is the vector of residuals of the combined parameter set to the results of individual experiments. Imposing
lepton universality in the combination results in the combined five parameter set.

54.13. Study of $Z \rightarrow b \bar{b}$ and $Z \rightarrow c \bar{c}$

In the sector of c - and b-physics, the LEP experiments have measured the ratios of partial widths $R_{b}=\Gamma(Z \rightarrow b \bar{b}) / \Gamma(Z \rightarrow$ hadrons), and $R_{c}=\Gamma(Z \rightarrow c \bar{c}) / \Gamma(Z \rightarrow$ hadrons $)$, and the forwardbackward (charge) asymmetries $A_{F B}^{b \bar{b}}$ and $A_{F B}^{c \bar{c}}$. The SLD experiment at SLC has measured the ratios R_{c} and R_{b} and, utilizing the polarization of the electron beam, was able to obtain the final state coupling parameters A_{b} and A_{c} from a measurement of the left-right forward-backward asymmetry of $b-$ and c-quarks. The high precision measurement of R_{c} at SLD was made possible owing to the small beam size and very stable beam spot at SLC, coupled with a highly precise CCD pixel detector. Several of the analyses have also determined other quantities, in particular the semileptonic branching ratios, $\mathrm{B}\left(b \rightarrow \ell^{-}\right), \mathrm{B}\left(b \rightarrow c \rightarrow \ell^{+}\right)$, and $\mathrm{B}\left(c \rightarrow \ell^{+}\right)$, the average time-integrated $B^{0} \bar{B}^{0}$ mixing parameter $\bar{\chi}$ and the probabilities for a c-quark to fragment into a D^{+}, a D_{s}, a D^{*+}, or a charmed baryon. The latter measurements do not concern properties of the Z boson, and hence they do not appear in the Listing below. However, for completeness, we will report at the end of this minireview their values as obtained fitting the data contained in the Z section. All these quantities are correlated with the electroweak parameters, and since the mixture of b hadrons is different from the one at the $\Upsilon(4 S)$, their values might differ from those measured at the $\Upsilon(4 S)$.

All the above quantities are correlated to each other since:

- Several analyses (for example the lepton fits) determine more than one parameter simultaneously;
- Some of the electroweak parameters depend explicitly on the values of other parameters (for example R_{b} depends on R_{c});
- Common tagging and analysis techniques produce common systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has developed [32] a procedure for combining the measurements taking into account known sources of correlation. The combining procedure determines fourteen parameters: the six parameters of interest in the electroweak sector, $R_{b}, R_{c}, A_{F B}^{b \bar{b}}, A_{F B}^{c \bar{c}}, A_{b}$ and A_{c} and, in addition, $\mathrm{B}\left(b \rightarrow \ell^{-}\right), \mathrm{B}\left(b \rightarrow c \rightarrow \ell^{+}\right), \mathrm{B}\left(c \rightarrow \ell^{+}\right), \bar{\chi}, f\left(D^{+}\right), f\left(D_{s}\right), f\left(c_{\text {baryon }}\right)$ and $P\left(c \rightarrow D^{*+}\right) \times \mathrm{B}\left(D^{*+} \rightarrow \pi^{+} D^{0}\right)$, to take into account their correlations with the electroweak parameters. Before the fit both the peak and off-peak asymmetries are translated to the common energy $\sqrt{s}=91.26 \mathrm{GeV}$ using the predicted energy-dependence from ZFITTER [5].

54.14. Summary of the measurements and of the various kinds of analysis

The measurements of R_{b} and R_{c} fall into two classes. In the first, named single-tag measurement, a method for selecting b and c events is applied and the number of tagged events is counted. A second technique, named double-tag measurement, has the advantage that the tagging efficiency is directly derived from the data thereby reducing the systematic error on the measurement.

The measurements in the b - and c-sector can be essentially grouped in the following categories:

- Lifetime (and lepton) double-tagging measurements of R_{b}. These are the most precise measurements of R_{b} and obviously dominate the combined result. The main sources of systematics come from the charm contamination and from estimating the hemisphere b-tagging efficiency correlation;
- Analyses with $D / D^{* \pm}$ to measure R_{c}. These measurements make use of several different tagging techniques (inclusive/exclusive double tag, exclusive double tag, reconstruction of all weakly decaying charmed states) and no assumptions are made on the energy-dependence of charm fragmentation;
- A measurement of R_{c} using single leptons and assuming $\mathrm{B}\left(b \rightarrow c \rightarrow \ell^{+}\right)$;
- Lepton fits which use hadronic events with one or more leptons in the final state to measure the asymmetries $A_{F B}^{b \bar{b}}$ and $A_{F B}^{c \bar{c}}$. Each analysis usually gives several other electroweak parameters. The dominant sources of systematics are due to lepton identification, to other semileptonic branching ratios and to the modeling of the semileptonic decay;
- Measurements of $A_{F B}^{b \bar{b}}$ using lifetime tagged events with a hemisphere charge measurement. These measurements dominate the combined result;
- Analyses with $D / D^{* \pm}$ to measure $A_{F B}^{c \bar{c}}$ or simultaneously $A_{F B}^{b \bar{b}}$ and $A_{F B}^{c \bar{c}}$;
- Measurements of A_{b} and A_{c} from SLD, using several tagging methods (lepton, kaon, D / D^{*}, and vertex mass). These quantities are directly extracted from a measurement of the left-right forward-backward asymmetry in $c \bar{c}$ and $b \bar{b}$ production using a polarized electron beam.

54.15. Averaging procedure

All the measurements are provided by the LEP and SLD Collaborations in the form of tables with a detailed breakdown of the systematic errors of each measurement and its dependence on other electroweak parameters

The averaging proceeds via the following steps:

- Define and propagate a consistent set of external inputs such as branching ratios, hadron lifetimes, fragmentation models etc. All the measurements are checked to ensure that all use a common set of assumptions (for instance, since the QCD corrections for the forward-backward asymmetries are strongly dependent on the experimental conditions, the data are corrected before combining);
- Form the full (statistical and systematic) covariance matrix of the measurements. The systematic correlations between different analyses are calculated from the detailed error breakdown in the measurement tables. The correlations relating several measurements made by the same analysis are also used;
- Take into account any explicit dependence of a measurement on the other electroweak parameters. As an example of this dependence, we illustrate the case of the double-tag measurement of R_{b}, where c-quarks constitute the main background. The normalization of the charm contribution is not usually fixed by the data and the measurement of R_{b} depends on the assumed value of R_{c}, which can be written as:

$$
\begin{equation*}
R_{b}=R_{b}^{\text {meas }}+a\left(R_{c}\right) \frac{\left(R_{c}-R_{c}^{\mathrm{used}}\right)}{R_{c}} \tag{54.11}
\end{equation*}
$$

where $R_{b}^{\text {meas }}$ is the result of the analysis which assumed a value of $R_{c}=R_{c}^{\text {used }}$ and $a\left(R_{c}\right)$ is the constant which gives the dependence on R_{c};

- Perform a χ^{2} minimization with respect to the combined electroweak parameters.

After the fit the average peak asymmetries $A_{F B}^{c \bar{c}}$ and $A_{F B}^{b \bar{b}}$ are corrected for the energy shift from 91.26 GeV to M_{Z} and for QED (initial state radiation), γ exchange, and γZ interference effects, to obtain the corresponding pole asymmetries $A_{F B}^{0, c}$ and $A_{F B}^{0, b}$.

This averaging procedure, using the fourteen parameters described above, and applied to the data contained in the Z particle listing below, gives the following results (where the last 8 parameters do not depend directly on the Z):

$$
\begin{aligned}
R_{b}^{0} & =0.21629 \pm 0.00066 \\
R_{c}^{0} & =0.1721 \pm 0.0030 \\
A_{F B}^{0, b} & =0.0992 \pm 0.0016 \\
A_{F B}^{0, c} & =0.0707 \pm 0.0035
\end{aligned}
$$

$$
\begin{aligned}
A_{b} & =0.923 & \pm 0.020 \\
A_{c} & =0.670 & \pm 0.027 \\
B\left(b \rightarrow \ell^{-}\right) & =0.1071 & \pm 0.0022 \\
\mathrm{~B}\left(b \rightarrow c \rightarrow \ell^{+}\right) & =0.0801 & \pm 0.0018 \\
B\left(c \rightarrow \ell^{+}\right) & =0.0969 & \pm 0.0031 \\
\bar{\chi} & =0.1250 & \pm 0.0039 \\
f\left(D^{+}\right) & =0.235 & \pm 0.016 \\
f\left(D_{s}\right) & =0.126 & \pm 0.026 \\
f\left(c_{\text {baryon }}\right) & =0.093 & \pm 0.022 \\
P\left(c \rightarrow D^{*+}\right) \times \mathrm{B}\left(D^{*+} \rightarrow \pi^{+} D^{0}\right) & =0.1622 & \pm 0.0048
\end{aligned}
$$

Among the non-electroweak observables, the B semileptonic branching fraction $B\left(b \rightarrow \ell^{-}\right)$is of special interest, since the dominant error source on this quantity is the dependence on the semileptonic decay model for $b \rightarrow \ell^{-}$, with $\Delta B\left(b \rightarrow \ell^{-}\right)_{b \rightarrow \ell^{-}-\text {model }}=0.0012$. Extensive studies have been made to understand the size of this error. Among the electroweak quantities, the quark asymmetries with leptons depend also on the semileptonic decay model, while the asymmetries using other methods usually do not. The fit implicitely requires that the different methods give consistent results and this effectively constrains the decay model, and thus reduces in principle the error from this source in the fit result.

To obtain a conservative estimate of the modelling error, the above fit has been repeated removing all asymmetry measurements. The results of the fit on B-decay related observables are [24]: $B\left(b \rightarrow \ell^{-}\right)=0.1069 \pm 0.0022$, with $\Delta B\left(b \rightarrow \ell^{-}\right)_{b \rightarrow \ell^{-}-\text {model }}=$ $0.0013, B\left(b \rightarrow c \rightarrow \ell^{+}\right)=0.0802 \pm 0.0019$ and $\bar{\chi}=0.1259 \pm 0.0042$.

References:

1. R.N. Cahn, Phys. Rev. D36, 2666 (1987).
2. F.A. Berends et al., "Z Physics at LEP 1," CERN Report 89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 89.
3. A. Borrelli et al., Nucl. Phys. B333, 357 (1990).
4. D. Bardin and G. Passarino, "Upgrading of Precision Calculations for Electroweak Observables," hep-ph/9803425;
D. Bardin, G. Passarino, and M. Grünewald, "Precision Calculation Project Report," hep-ph/9902452.
5. D. Bardin et al., Z. Phys. C44, 493 (1989); Comp. Phys. Comm. 59, 303 (1990);
D. Bardin et al., Nucl. Phys. B351, 1 (1991); Phys. Lett. B255, 290 (1991), and CERN-TH/6443/92 (1992); Comp. Phys. Comm. 133, 229 (2001).
6. G. Burgers et al., " Z Physics at LEP 1," CERN Report 89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 55.
7. D.C. Kennedy and B.W. Lynn, Nucl. Phys. B322, 1 (1989).
8. M. Consoli et al., "Z Physics at LEP 1," CERN Report 89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 7.
9. M. Bohm et al., ibid, p. 203.
10. S. Jadach et al., ibid, p. 235.
11. R. Stuart, Phys. Lett. B262, 113 (1991).
12. A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991).
13. A. Leike, T. Riemann, and J. Rose, Phys. Lett. B273, 513 (1991).
14. See also D. Bardin et al., Phys. Lett. B206, 539 (1988).
15. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, CERN-PH-EP/2013-022, arXiv:1302. 3415 [hep-ex], Phys.Rept. 532 (2013) 119-244.
16. W. Beenakker, F.A. Berends, and S.C. van der Marck, Nucl. Phys. B349, 323 (1991).
17. G. Montagna et al., Nucl. Phys. B401, 3 (1993); Comp. Phys. Comm. 76, 328 (1993); Comp. Phys. Comm. 93, 120 (1996); G. Montagna et al., Comp. Phys. Comm. 117, 278 (1999).
18. R. Assmann et al., (Working Group on LEP Energy), Eur. Phys. J. C6, 187 (1999).
19. R. Assmann et al., (Working Group on LEP Energy), Z. Phys. C66, 567 (1995).
20. L. Arnaudon et al., (Working Group on LEP Energy and LEP Collabs.), Phys. Lett. B307, 187 (1993).
21. L. Arnaudon et al., (Working Group on LEP Energy), CERN-PPE/92-125 (1992).
22. L. Arnaudon et al., Phys. Lett. B284, 431 (1992).
23. R. Bailey et al., 'LEP Energy Calibration' CERN-SL-90-95AP, Proceedings of the "2nd European Particle Accelerator Conference," Nice, France, 12-16 June 1990, pp. 1765-1767.
24. The LEP Collabs.: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour Group: Phys. Reports 427, 257 (2006).
25. S. Jadach et al., BHLUMI 4.04, Comp. Phys. Comm. 102, 229 (1997);
S. Jadach and O. Nicrosini, Event generators for Bhabha scattering, in Physics at LEP2, CERN-96-01 Vol. 2, February 1996.
26. B.F.L. Ward et al., Phys. Lett. B450, 262 (1999).
27. W. Beenakker and G. Passarino, Phys. Lett. B425, 199 (1998).
28. M. Martinez et al., Z. Phys. C49, 645 (1991); M. Martinez and F. Teubert, Z. Phys. C65, 267 (1995), updated with results summarized in S. Jadach, B. Pietrzyk, and M. Skrzypek, Phys. Lett. B456, 77 (1999) and Reports of the working group on precision calculations for the Z resonance, CERN 95-03, ed. D. Bardin, W. Hollik, and G. Passarino, and references therein.
29. T. van Ritbergen and R. Stuart, Phys. Lett. B437, 201 (1998); Phys. Rev. Lett. 82, 488 (1999).
30. S. Eidelman and F. Jegerlehner, Z. Phys. C67, 585 (1995); M. Steinhauser, Phys. Lett. B429, 158 (1998).
31. Particle Data Group (D.E. Groom et al.), Eur. Phys. J. C15, 1 (2000).
32. The LEP Experiments: ALEPH, DELPHI, L3, and OPAL Nucl. Instrum. Methods A378, 101 (1996).

55. Muon Anomalous Magnetic Moment

Updated August 2019 by A. Hoecker (CERN) and W.J. Marciano (BNL).

The Dirac equation predicts a muon magnetic moment, $\vec{M}=$ $g_{\mu} \frac{e}{2 m_{\mu}} \vec{S}$, with gyromagnetic ratio $g_{\mu}=2$. Quantum loop effects lead to a small calculable deviation from $g_{\mu}=2$, parameterized by the anomalous magnetic moment

$$
\begin{equation*}
a_{\mu} \equiv \frac{g_{\mu}-2}{2} \tag{55.1}
\end{equation*}
$$

That quantity can be accurately measured and, within the Standard Model (SM) framework, precisely predicted. Hence, comparison of experiment and theory tests the SM at its quantum loop level. A deviation in $a_{\mu}^{\exp }$ from the SM expectation would signal effects of new physics, with current sensitivity reaching up to mass scales of $\mathcal{O}(\mathrm{TeV})[1,2]$. For recent thorough muon $g-2$ reviews, see e.g. Refs. [3-5].

The E821 experiment at Brookhaven National Lab (BNL) studied the precession of μ^{+}and μ^{-}in a constant external magnetic field as they circulated in a confining storage ring. It found ${ }^{1}$ [6]

$$
\begin{align*}
& a_{\mu+}^{\exp }=11659204(6)(5) \times 10^{-10} \\
& a_{\mu-}^{\exp }=11659215(8)(3) \times 10^{-10} \tag{55.2}
\end{align*}
$$

where the first errors are statistical and the second systematic. Assuming CPT invariance and taking into account correlations between systematic uncertainties, one finds for their average $[6,7]$

$$
\begin{equation*}
a_{\mu}^{\exp }=11659209.1(5.4)(3.3) \times 10^{-10} \tag{55.3}
\end{equation*}
$$

These results represent about a factor of 14 improvement over the classic CERN experiments of the 1970's [8]. Improvement of the measurement by a factor of four by setting up the E821 storage ring at Fermilab, and utilizing a cleaner and more intense muon beam and improved detectors [9] is in progress with the commissioning of the experiment having started in 2017. First results are expected in 2019. Another muon $g-2$ experiment with similar sensitivity but using an alternative zero-electric-field technique with a low-emittance and low-momentum muon beam is currently under construction at J-PARC in Japan [10].

The SM prediction for a_{μ}^{SM} is generally divided into three parts (see Fig. 55.1 for representative Feynman diagrams)

$$
\begin{equation*}
a_{\mu}^{\mathrm{SM}}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{EW}}+a_{\mu}^{\mathrm{Had}} \tag{55.4}
\end{equation*}
$$

The QED part includes all photonic and leptonic (e, μ, τ) loops starting with the classic $\alpha / 2 \pi$ Schwinger contribution. It has been computed through 5 loops [11]

$$
\begin{align*}
a_{\mu}^{\mathrm{QED}}= & \frac{\alpha}{2 \pi}+0.765857425(17)\left(\frac{\alpha}{\pi}\right)^{2}+24.05050996(32)\left(\frac{\alpha}{\pi}\right)^{3} \\
& +130.8796(63)\left(\frac{\alpha}{\pi}\right)^{4}+752.2(1.0)\left(\frac{\alpha}{\pi}\right)^{5}+\cdots \tag{55.5}
\end{align*}
$$

with little change in the coefficients since our last update of this review. Employing $\alpha^{-1}=137.035999046(27)$, obtained from the precise measurements of h / m_{Cs} [12], the Rydberg constant, and m_{Cs} / m_{e} leads to [11]

$$
\begin{equation*}
a_{\mu}^{\mathrm{QED}}=116584718.92(0.03) \times 10^{-11} \tag{55.6}
\end{equation*}
$$

where the small error results mainly from the uncertainty in α.
1 The results reported by the experiment have been updated in Eqs. (55.2) and (55.3) to the newest value for the absolute muon-toproton magnetic ratio $\lambda=3.183345107(84)[7]$. The change induced in $a_{\mu}^{\exp }$ with respect to the value of $\lambda=3.18334539(10)$ used in Ref. 6 amounts to $+1.12 \times 10^{-10}$.

Figure 55.1: Representative diagrams contributing to a_{μ}^{SM}. From left to right: first order QED (Schwinger term), lowestorder weak, lowest-order hadronic.

Loop contributions involving heavy $W^{ \pm}, Z$ or Higgs particles are collectively labeled as a_{μ}^{EW}. They are suppressed by at least a factor of $(\alpha / \pi) \cdot\left(m_{\mu}^{2} / m_{W}^{2}\right) \simeq 4 \times 10^{-9}$. At 1-loop order [13]

$$
\begin{align*}
a_{\mu}^{\mathrm{EW}}[1 \text {-loop }] & =\frac{G_{\mu} m_{\mu}^{2}}{8 \sqrt{2} \pi^{2}}\left[\frac{5}{3}+\frac{1}{3}\left(1-4 \sin ^{2} \theta_{\mathrm{W}}\right)^{2}+\mathcal{O}\left(\frac{m_{\mu}^{2}}{M_{W}^{2}}\right)+\mathcal{O}\left(\frac{m_{\mu}^{2}}{m_{H}^{2}}\right)\right] \\
& =194.8 \times 10^{-11} \tag{55.7}
\end{align*}
$$

for $\sin ^{2} \theta_{\mathrm{W}} \equiv 1-M_{W}^{2} / M_{Z}^{2} \simeq 0.223$, and where $G_{\mu} \simeq 1.166 \times$ $10^{-5} \mathrm{GeV}^{-2}$ is the Fermi coupling constant. Two-loop corrections are relatively large and negative [14]. For a Higgs boson mass of 125 GeV it amounts to $a_{\mu}^{\mathrm{EW}}[2$-loop $]=-41.2(1.0) \times 10^{-11}$ [14], where the uncertainty stems from quark triangle loops. The 3-loop leading logarithms are negligible, $\mathcal{O}\left(10^{-12}\right)$ [14,15]. A recent full 2-loop numerical evaluation of the electroweak correction [16] reproduces the total $1+2$-loop contribution when adjusted for appropriate light quark masses

$$
\begin{equation*}
a_{\mu}^{\mathrm{EW}}=153.6(1.0) \times 10^{-11} \tag{55.8}
\end{equation*}
$$

Hadronic (quark and gluon) loop contributions to a_{μ}^{SM} give rise to its main theoretical uncertainties. At present, those effects are not precisely calculable from first principles, but such an approach, at least partially, may become possible as lattice QCD matures [17]. Instead, one currently relies on a dispersion relation approach to evaluate the lowest-order $\mathcal{O}\left(\alpha^{2}\right)$ hadronic vacuum polarization contribution $a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]$ from corresponding cross section measurements [18]

$$
\begin{equation*}
a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K(s)}{s} R^{(0)}(s) \tag{55.9}
\end{equation*}
$$

where $K(s)$ is a QED kernel function [19], and where $R^{(0)}(s)$ denotes the ratio of the bare ${ }^{2}$ cross section for $e^{+} e^{-}$annihilation into hadrons to the pointlike muon-pair cross section at center-of-mass energy \sqrt{s}. The function $K(s) \sim 1 / s$ in Eq. (55.9) emphasizes the low-energy part of the integral so that $a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]$ is dominated by the $\rho(770) \rightarrow \pi^{+} \pi^{-}$ resonance.

The analysis of Eq. (55.9) results in the representative value [20]

$$
\begin{equation*}
a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]=6939(39)(7) \times 10^{-11} \tag{55.10}
\end{equation*}
$$

where the first error is experimental, dominated by systematic uncertainties in the $e^{+} e^{-} \rightarrow$ hadrons cross-section data, and the second due to perturbative QCD, which is used at intermediate and large energies in the dispersion integral to predict the contribution from the quark-antiquark continuum. The experimental precision is currently limited by a discrepancy between the most precise $\pi^{+} \pi^{-}$ data from the BABAR and KLOE experiments [20]. Other recent evaluations [31,32] of $a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]$ find consistent results with Eq. (55.10).

Alternatively, one can use precise vector spectral functions from $\tau \rightarrow \nu_{\tau}+$ hadrons decays [21] that can be related to isovector $e^{+} e^{-} \rightarrow$ hadrons cross sections by isospin symmetry. Analyses replaced $e^{+} e^{-}$data in the two-pion and four-pion channels by

2 The bare cross section is defined as the measured cross section corrected for initial-state radiation, electron-vertex loop contributions and vacuum-polarization effects in the photon propagator. However, QED effects in the hadron vertex and final state, as photon radiation, are included.
the corresponding isospin-transformed τ data, and applied isospinviolating corrections [22]. Owing to the progress in the precision of the $e^{+} e^{-}$data, the τ data are now less precise and less reliable due to additional theoretical uncertainties, so that recent $a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]$ evaluations ignored them.

Higher order hadronic contributions are obtained from dispersion relations using the same $e^{+} e^{-} \rightarrow$ hadrons data [23], giving $a_{\mu}^{\mathrm{Had}, \mathrm{Disp}}[\mathrm{NLO}]=(-98.7 \pm 0.9) \times 10^{-11}$ and $a_{\mu}^{\text {Had,Disp }}[\mathrm{NNLO}]=$ $(12.4 \pm 0.1) \times 10^{-11}[24]$, along with model-dependent estimates of the hadronic light-by-light scattering contribution, $a_{\mu}^{\mathrm{Had}, \mathrm{LBL}}$ [NLO], motivated by large- N_{C} QCD [25-30]. . ${ }^{3}$ Following [29], one finds for the sum of the three terms

$$
\begin{equation*}
a_{\mu}^{\mathrm{Had}}[\mathrm{~N}(\mathrm{~N}) \mathrm{LO}]=19(26) \times 10^{-11}, \tag{55.11}
\end{equation*}
$$

where the error is dominated by hadronic light-by-light uncertainty.
Adding Eqs. (55.6), (55.8), (55.10) and (55.11) gives the representative SM prediction

$$
\begin{equation*}
a_{\mu}^{\mathrm{SM}}=116591830(1)(40)(26) \times 10^{-11} \tag{55.12}
\end{equation*}
$$

where the errors are due to the electroweak, lowest-order hadronic, and higher-order hadronic contributions, respectively. The difference between experiment and theory

$$
\begin{equation*}
\Delta a_{\mu}=a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=261(63)(48) \times 10^{-11} \tag{55.13}
\end{equation*}
$$

where the errors are from experiment and theory prediction (with all errors combined in quadrature), respectively, represents an interesting but not conclusive discrepancy of 3.3 times the combined 1σ error. All the recent estimates for the hadronic contribution compiled in Fig. 55.2 exhibit similar discrepancies.

Figure 55.2: Compilation of recent results for a_{μ} (in units of 10^{-11}), subtracted by the central value of the experimental average (55.3). The shaded (dark shaded) vertical band indicates the total (systematic) experimental uncertainty. The SM predictions are taken from: DHMZ 2019 [20], KNT 2018 [31], and J 2017 [32]. Note that the quoted errors in the figure do not include the uncertainty on the subtracted experimental value. To obtain for each theory calculation a result equivalent to Eq. (55.13), the errors from theory and experiment must be added in quadrature.

[^74]An exciting interpretation is that Δa_{μ} may be a new physics signal with supersymmetric particle loops as the leading candidate explanation. Such a scenario is quite natural, since generically, supersymmetric models predict [1] an additional contribution to a_{μ}^{SM}

$$
\begin{equation*}
a_{\mu}^{\mathrm{SUSY}} \simeq \pm 130 \times 10^{-11} \cdot\left(\frac{100 \mathrm{GeV}}{m_{\mathrm{SUSY}}}\right)^{2} \tan \beta \tag{55.14}
\end{equation*}
$$

where $m_{\text {SUSY }}$ is a representative supersymmetric mass scale, $\tan \beta \simeq 3-$ 40 a potential enhancement factor, and ± 1 corresponds to the sign of the μ term in the supersymmetric Lagrangian. Supersymmetric particles in the mass range $100-500 \mathrm{GeV}$ could be the source of the deviation Δa_{μ}. If so, those particles should be directly observable at the Large Hadron Collider at CERN. So far, there is however no direct evidence in support of the supersymmetry interpretation.

New physics effects [1] other than supersymmetry could also explain a non-vanishing Δa_{μ}. A popular scenario involves the "dark photon", a relatively light hypothetical vector boson from the dark matter sector that couples to our world of particle physics through mixing with the ordinary photon [33-35]. . As a result, it couples to ordinary charged particles with strength $\varepsilon \cdot e$ and gives rise to an additional muon anomalous magnetic moment contribution

$$
\begin{equation*}
a_{\mu}^{\text {dark photon }}=\frac{\alpha}{2 \pi} \varepsilon^{2} F\left(m_{V} / m_{\mu}\right) \tag{55.15}
\end{equation*}
$$

where $F(x)=\int_{0}^{1} 2 z(1-z)^{2} /\left[(1-z)^{2}+x^{2} z\right] d z$. For values of $\varepsilon \sim 1-$ 2×10^{-3} and $m_{V} \sim 10-100 \mathrm{MeV}$, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon $g-2$ discrepancy. However, recent experimental constraints disfavor such a scenario [36] under the assumption that the dark photon decays primarily into charged lepton pairs. Direct searches for the dark photon continue to be well motivated [37], but with primary guidance coming from phenomena outside the muon anomalous magnetic moment discrepancy. More recent popular solutions to the muon anomaly discrepancy have focused on loop contributions coming from relatively light new scalar or pseudoscalar particle appendages from physics beyond the SM.

References:

1. A. Czarnecki and W.J. Marciano, Phys. Rev. D64, 013014 (2001).
2. M. Davier and W.J. Marciano, Ann. Rev. Nucl. and Part. Sci. 54, 115 (2004).
3. J. Miller, E. de Rafael, and B. Lee Roberts, Rept. Prog. Phys. 70, 795 (2007).
4. F. Jegerlehner and A. Nyffeler, Phys. Reports 477, 1 (2009).
5. J.P. Miller et al., Ann. Rev. Nucl. and Part. Sci. 62, 237 (2012).
6. G.W. Bennett et al., Phys. Rev. Lett. 89, 101804 (2002); Erratum ibid. Phys. Rev. Lett. 89, 129903 (2002);
G.W. Bennett et al., Phys. Rev. Lett. 92, 161802 (2004); G.W. Bennett et al., Phys. Rev. D73, 072003 (2006).
7. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Group, Rev. Mod. Phys. 84, 1527 (2012).
8. J. Bailey et al., Nucl. Phys. B150, 1 (1979).
9. J. Grange et al., FERMILAB-DESIGN-2014-02, arXiv : 1501.06858 (2015).
10. M. Abe et al., Prog. Theor. Exp. Phys. 053C02 (2019), arXiv:1901. 03047.
11. T. Aoyama et al., Phys. Rev. Lett. 109, 111808 (2012); T. Aoyama et al., Phys. Rev. Lett. 109, 111807 (2012); T. Kinoshita and M. Nio, Phys. Rev. D73, 013003 (2006); T. Aoyama et al., Phys. Rev. Lett. 99, 110406 (2007); T. Kinoshita and M. Nio, Phys. Rev. D70, 113001 (2004); T. Kinoshita, Nucl. Phys. B144, 206 (2005)(Proc. Supp.); T. Kinoshita and M. Nio, Phys. Rev. D73, 053007 (2006); S. Laporta, Phys. Lett. B772, 232 (2017); A. Kurz et al., Phys. Rev. D93, 053017 (2016); A.L. Kataev, arXiv:hep-ph/0602098 (2006); M. Passera, J. Phys. G31, 75 (2005).
12. R.H. Parker et al., Science Vol. 360, Issue 6385, 191 (2018).
13. R. Jackiw and S. Weinberg, Phys. Rev. D5, 2396 (1972); G. Altarelli et al., Phys. Lett. B40, 415 (1972);
I. Bars and M. Yoshimura, Phys. Rev. D6, 374 (1972);
K. Fujikawa, B.W. Lee, and A.I. Sanda, Phys. Rev. D6, 2923 (1972).
14. C. Gnendiger, D. Stöckinger, H. Stöckinger-Kim, Phys. Rev. D88, 053005 (2013);
A. Czarnecki et al., Phys. Rev. D67, 073006 (2003); Erratum ibid. Phys. Rev. D73, 119901 (2006);
S. Heinemeyer, D. Stockinger, and G. Weiglein, Nucl. Phys. B699, 103 (2004);
T. Gribouk and A. Czarnecki, Phys. Rev. D72, 053016 (2005);
A. Czarnecki, B. Krause, and W.J. Marciano, Phys. Rev. Lett. 76, 3267 (1996);
A. Czarnecki, B. Krause, and W.J. Marciano, Phys. Rev. D52, 2619, (1995);
S. Peris, M. Perrottet, and E. de Rafael, Phys. Lett. B355, 523 (1995);
T. Kukhto et al, Nucl. Phys. B371, 567 (1992).
15. G. Degrassi and G.F. Giudice, Phys. Rev. D58, 053007 (1998).
16. T. Ishikawa, N. Nakazawa, and Y. Yasui, Phys. Rev. D99, 073004 (2019).
17. BMW Collaboration, Phys. Rev. Lett. 121, 022002 (2018);

HPQCD Collaboration, arXiv:1902. 04223 (2019);
RBC and UKQCD Collaborations, Phys. Rev. Lett. 121, 022003 (2018);
A. Gérardin et al., Phys. Rev. D100, 014510 (2019);
D. Giusti, F. Sanfilippo, and S. Simula, Phys. Rev. D98, 114504 (2018);
B. Chakraborty et al., Phys. Rev. D96, 034516 (2017);
T. Blum et al., Phys. Rev. D96, 034515 (2017);
T. Blum, Phys. Rev. Lett. 118, 022005 (2017);
B. Chakraborty et al., Phys. Rev. D93, 074509 (2016);
C. Lehner, arXiv: 1710.06874 (2017).
18. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961); M. Gourdin and E. de Rafael, Nucl. Phys. B10, 667 (1969).
19. S.J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620 (1968).
20. M. Davier et al., arXiv:1908. 00921 (2019).

1. R. Alemany et al., Eur. Phys. J. C2, 123 (1998).
2. M. Davier et al., Eur. Phys. J. C71, 1515 (2011).
3. B. Krause, Phys. Lett. B390, 392 (1997).
4. A. Kurz et al., Phys. Lett. B734, 144 (2014).
5. J. Bijnens and J. Prades, Mod. Phys. Lett. A22, 767 (2007).
6. K. Melnikov and A. Vainshtein, Phys. Rev. D70, 113006 (2004).
7. M. Knecht and A. Nyffeler, Phys. Rev. D65, 073034 (2002); M. Knecht et al., Phys. Rev. Lett. 88, 071802 (2002).
8. G. Colangelo et al., JHEP 1409, 091 (2014).
9. J. Prades, E. de Rafael, and A. Vainshtein, Advanced series on directions in high energy physics 20, Editors B.L. Roberts and W. Marciano, arXiv:0901. 0306 (2009).
10. E. de Rafael, Phys. Lett. B322, 239 (1994).
11. A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D97, 114025 (2018).
12. F. Jegerlehner, EPJ Web of Conferences 166, 00022 (2018).
13. P. Fayet, Phys. Rev. D75, 115017 (2007).
14. M. Pospelov, Phys. Rev. D80, 095002 (2009).
15. D. Tucker-Smith and I. Yavin, Phys. Rev. D83, 101702 (R)(2011).
16. NA48/2 Collaboration (J.R. Batley et al.), Phys. Lett. B746, 178 (2015).
17. J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, arXiv:1608. 08632 (2017).

56. Muon Decay Parameters

Revised March 2019 by W. Fetscher (ETH Zurich) and H.-J. Gerber (ETH Zurich).

56.1 Introduction:

All measurements in direct muon decay, $\mu^{-} \rightarrow e^{-}+2$ neutrals, and its inverse, $\nu_{\mu}+e^{-} \rightarrow \mu^{-}+$neutral, are successfully described by the " $V-A$ interaction," which is a particular case of a local, derivative-free, lepton-number-conserving, four-fermion interaction [1]. As shown below, within this framework, the Standard Model assumptions, such as the $V-A$ form and the nature of the neutrals (ν_{μ} and $\bar{\nu}_{e}$), and hence the doublet assignments $\left(\nu_{e} e^{-}\right)_{L}$ and $\left(\nu_{\mu} \mu^{-}\right)_{L}$, have been determined from experiments [2,3]. All considerations on muon decay are valid for the leptonic tau decays $\tau^{-} \rightarrow \ell^{-}+\nu_{\tau}+\bar{\nu}_{\ell}$ with the replacements $m_{\mu} \rightarrow m_{\tau}, m_{e} \rightarrow m_{\text {ell }}$, $\ell^{-}=e^{-}, \mu^{-}$.

56.2 Parameters:

The differential decay probability to obtain an $e^{ \pm}$with (reduced) energy between x and $x+\mathrm{d} x$, emitted in the direction $\widehat{\boldsymbol{x}}_{3}$ at an angle between ϑ and $\vartheta+\mathrm{d} \vartheta$ with respect to the muon polarization vector \boldsymbol{P}_{μ}, and with its spin parallel to the arbitrary direction $\widehat{\boldsymbol{\zeta}}$, neglecting radiative corrections, is given by

$$
\begin{align*}
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} x \mathrm{~d} \cos \vartheta} & =\frac{m_{\mu}}{4 \pi^{3}} W_{e \mu}^{4} G_{\mathrm{F}}^{2} \sqrt{x^{2}-x^{2_{0}}} \\
& \times\left(F_{\mathrm{IS}}(x) \pm P_{\mu} \cos \vartheta F_{\mathrm{AS}}(x)\right) \\
& \times\left[1+\widehat{\zeta} \cdot \boldsymbol{P}_{e}(x, \vartheta)\right] \tag{56.1}
\end{align*}
$$

Here, $W_{e \mu}=\max \left(E_{e}\right)=\left(m_{\mu}^{2}+m_{e}^{2}\right) / 2 m_{\mu}$ is the maximum $e^{ \pm}$ energy, $x=E_{e} / W_{e \mu}$ is the reduced energy, $x_{0}=m_{e} / W_{e \mu}=$ 9.67×10^{-3}, and $P_{\mu}=\left|\boldsymbol{P}_{\mu}\right|$ is the degree of muon polarization. $\widehat{\boldsymbol{\zeta}}$ is the direction in which a perfect polarization-sensitive electron detector is most sensitive. The isotropic part of the spectrum, $F_{\mathrm{IS}}(x)$, the anisotropic part $F_{\mathrm{AS}}(x)$, and the electron polarization, $\boldsymbol{P}_{e}(x, \vartheta)$, may be parametrized by the Michel parameter ρ [1], by η [4], by ξ and $\delta[5,6]$, etc. These are bilinear combinations of the coupling constants $g_{\varepsilon \mu}^{\gamma}$, which occur in the matrix element (given below).

If the masses of the neutrinos as well as x_{0}^{2} are neglected, the energy and angular distribution of the electron in the rest frame of a muon $\left(\mu^{ \pm}\right)$measured by a polarization insensitive detector, is given by

$$
\begin{align*}
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} x \mathrm{~d} \cos \vartheta} & \sim x^{2} \cdot\left\{3(1-x)+\frac{2 \rho}{3}(4 x-3)+3 \eta x_{0}(1-x) / x\right. \\
& \left. \pm P_{\mu} \cdot \xi \cdot \cos \vartheta\left[1-x+\frac{2 \delta}{3}(4 x-3)\right]\right\} \tag{56.2}
\end{align*}
$$

Here, ϑ is the angle between the electron momentum and the muon spin, and $x \equiv 2 E_{e} / m_{\mu}$. For the Standard Model coupling, we obtain $\rho=\xi \delta=3 / 4, \xi=1, \eta=0$ and the differential decay rate is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} x \mathrm{~d} \cos \vartheta}=\frac{G_{\mathrm{F}}^{2} m_{\mu}^{5}}{192 \pi^{3}}\left[3-2 x \pm P_{\mu} \cos \vartheta(2 x-1)\right] \cdot x^{2} \tag{56.3}
\end{equation*}
$$

The coefficient in front of the square bracket is the total decay rate.

If only the neutrino masses are neglected, and if the $e^{ \pm}$polarization is detected, then the functions in Eq. (56.1) become

$$
\begin{equation*}
F_{\mathrm{IS}}(x)=x(1-x)+\frac{2}{9} \rho\left(4 x^{2}-3 x-x_{0}^{2}\right)+\eta \cdot x_{0}(1-x) \tag{56.4a}
\end{equation*}
$$

$$
\begin{align*}
F_{\mathrm{AS}}(x)=\frac{1}{3} & \xi \sqrt{x^{2}-x_{0}^{2}} \\
& \times\left[(1-x)+\frac{2}{3} \delta\left\{(4 x-3)+\left(\sqrt{1-x_{0}^{2}}-1\right)\right\}\right] \tag{56.4~b}
\end{align*}
$$

$\boldsymbol{P}_{e}(x, \vartheta)=P_{\mathrm{T}_{1}} \cdot \widehat{\boldsymbol{x}}_{1}+P_{\mathrm{T}_{2}} \cdot \widehat{\boldsymbol{x}}_{2}+P_{\mathrm{L}} \cdot \widehat{\boldsymbol{x}}_{3}$

Here $\widehat{\boldsymbol{x}}_{1}, \widehat{\boldsymbol{x}}_{2}$, and $\widehat{\boldsymbol{x}}_{3}$ are orthogonal unit vectors defined as follows:

$$
\begin{aligned}
\frac{\widehat{\boldsymbol{x}}_{3} \times \boldsymbol{P}_{\mu}}{\left|\widehat{\boldsymbol{x}}_{3} \times \boldsymbol{P}_{\mu}\right|}=\widehat{\boldsymbol{x}}_{3} & \begin{array}{l}
\text { is along the } e \text { momentum } \boldsymbol{p}_{e} \\
\text { is transverse to } \boldsymbol{p}_{e} \text { and perpendicular to } \\
\widehat{\boldsymbol{x}}_{2} \times \widehat{\boldsymbol{x}}_{3}=\widehat{\boldsymbol{x}}_{1}
\end{array} \quad \begin{array}{l}
\text { is thansverse to } \boldsymbol{p}_{e} \text { and in the decay plane }
\end{array}
\end{aligned}
$$

The components of \boldsymbol{P}_{e} then are given by

$$
\begin{equation*}
P_{\mathrm{T}_{1}}(x, \vartheta)=P_{\mu} \sin \vartheta \cdot F_{\mathrm{T}_{1}}(x) /\left\{F_{\mathrm{IS}}(x) \pm P_{\mu} \cos \vartheta \cdot F_{\mathrm{AS}}(x)\right\} \tag{56.5a}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{T}_{2}}(x, \vartheta)=P_{\mu} \sin \vartheta \cdot F_{\mathrm{T}_{2}}(x) /\left\{F_{\mathrm{IS}}(x) \pm P_{\mu} \cos \vartheta \cdot F_{\mathrm{AS}}(x)\right\} \tag{56.5b}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{L}}(x, \vartheta)=\frac{ \pm F_{\mathrm{IP}}(x)+P_{\mu} \cos \vartheta \cdot F_{\mathrm{AP}}(x)}{F_{\mathrm{IS}}(x) \pm P_{\mu} \cos \vartheta \cdot F_{\mathrm{AS}}(x)} \tag{56.5c}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{\mathrm{T}_{1}}(x)= \frac{1}{12}\left\{-2\left[\xi^{\prime \prime}+12\left(\rho-\frac{3}{4}\right)\right](1-x) x_{0}\right. \\
&-\left.3 \eta\left(x^{2}-x_{0}^{2}\right)+\eta^{\prime \prime}\left(-3 x^{2}+4 x-x_{0}^{2}\right)\right\} \tag{56.6a}\\
& F_{\mathrm{T}_{2}}(x)= \frac{1}{3} \sqrt{x^{2}-x_{0}^{2}} \cdot\left\{3 \frac{\alpha^{\prime}}{A}(1-x)+2 \frac{\beta^{\prime}}{A} \sqrt{1-x_{0}^{2}}\right\} \tag{56.6b}\\
& \begin{aligned}
F_{\mathrm{IP}}(x)= & \frac{1}{54} \sqrt{x^{2}-x_{0}^{2}} \cdot\left\{9 \xi^{\prime}\left(-2 x+2+\sqrt{1-x_{0}^{2}}\right)\right. \\
& \left.+4 \xi\left(\delta-\frac{3}{4}\right) 4 x-4+\sqrt{1-x_{0}^{2}}\right\}
\end{aligned} \\
& \begin{aligned}
F_{\mathrm{AP}}(x)= & \frac{1}{6}\left\{\xi^{\prime \prime}\left(2 x^{2}-x-x_{0}^{2}\right)+4\left(\rho-\frac{3}{4}\right)\left(4 x^{2}-3 x-x_{0}^{2}\right)\right. \\
& \left.+2 \eta^{\prime \prime}(1-x) x_{0}\right\} .
\end{aligned} \tag{56.6c}
\end{align*}
$$

For the experimental values of the parameters $\rho, \xi, \xi^{\prime}, \xi^{\prime \prime}, \delta$, $\eta, \eta^{\prime \prime}, \alpha / A, \beta / A, \alpha^{\prime} / A, \beta^{\prime} / A$, which are not all independent, see the Data Listings below. Experiments in the past have also been analyzed using the parameters $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, \alpha / A, \beta / A$, $\alpha^{\prime} / A, \beta^{\prime} / A$ (and $\left.\eta=(\alpha-2 \beta) / 2 A\right)$, as defined by Kinoshita and Sirlin [5] [6]. They serve as a model-independent summary of all possible measurements on the decay electron (see Listings below). The relations between the two sets of parameters are

$$
\begin{equation*}
\rho-\frac{3}{4}=\frac{3}{4}(-a+2 c) / A \tag{56.7a}
\end{equation*}
$$

$$
\begin{equation*}
\delta-\frac{3}{4}=\frac{9}{4} \cdot \frac{\left(a^{\prime}-2 c^{\prime}\right) / A}{1-\left[a+3 a^{\prime}+4\left(b+b^{\prime}\right)+6 c-14 c^{\prime}\right] / A} \tag{56.7c}
\end{equation*}
$$

$$
\begin{align*}
1-\xi \frac{\delta}{\rho} & =4 \frac{\left[\left(b+b^{\prime}\right)+2\left(c-c^{\prime}\right)\right] / A}{1-(a-2 c) / A} \tag{56.7e}\\
1-\xi & =\left[\left(a+a^{\prime}\right)+4\left(b+b^{\prime}\right)+6\left(c+c^{\prime}\right)\right] / A \tag{56.7f}\\
1-\xi^{\prime \prime} & =(-2 a+20 c) / A
\end{align*}
$$

with $\quad A=a+4 b+6 c$
The differential decay probability to obtain a left-handed ν_{e} with (reduced) energy between y and $y+d y$, neglecting radiative corrections as well as the masses of the electron and of the neutrinos, is given by [7]

$$
\begin{equation*}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} y}=\frac{m_{\mu}^{5} G_{\mathrm{F}}^{2}}{16 \pi^{3}} \cdot Q_{L}^{\nu_{e}} \cdot y^{2}\left\{(1-y)-\omega_{L} \cdot\left(y-\frac{3}{4}\right)\right\} \tag{56.8}
\end{equation*}
$$

Here, $y=2 E_{\nu_{e}} / m_{\mu} . Q_{L}^{\nu_{e}}$ and ω_{L} are parameters. ω_{L} is the neutrino analog of the spectral shape parameter ρ of Michel. Since in the Standard Model, $Q_{L}^{\nu_{e}}=1, \omega_{L}=0$, the measurement of $\mathrm{d} \Gamma / \mathrm{d} y$ has allowed a null-test of the Standard Model (see Listings below).

Table 56.1: Coupling constants $g_{\varepsilon \mu}^{\gamma}$ and some combinations of them. Ninety-percent confidence level experimental limits. The limits on $\left|g_{L L}^{S}\right|$ and $\left|g_{L L}^{V}\right|$ are from [8-10], and the others from a general analysis of muon decay measurements. Top three rows: [11], fourth row: [12], next three rows: [13], last row: [14]. The experimental uncertainty on the muon polarization in pion decay is included. Note that, by definition, $\left|g_{\varepsilon \mu}^{S}\right| \leq 2$, $\left|g_{\varepsilon \mu}^{V}\right| \leq 1$ and $\left|g_{\varepsilon \mu}^{T}\right| \leq 1 / \sqrt{3}$.

$$
\begin{array}{rrl}
\hline \hline\left|g_{R R}^{S}\right|<0.035 & \left|g_{R R}^{V}\right|<0.017 & \left|g_{R R}^{T}\right| \equiv 0 \\
\left|g_{L R}^{S}\right|<0.050 & \left|g_{L R}^{V}\right|<0.023 & \left|g_{L R}^{T}\right|<0.015 \\
\left|g_{R L}^{S}\right|<0.420 & \left|g_{R L}^{V}\right|<0.105 & \left|g_{R L}^{T}\right|<0.105 \\
\left|g_{L L}^{S}\right|<0.550 & \left|g_{L L}^{V}\right|>0.960 & \left|g_{L L}^{T}\right| \equiv 0 \\
\left|g_{L R}^{S}+6 g_{L R}^{T}\right|<0.143 & \left|g_{R L}^{S}+6 g_{R L}^{T}\right|<0.418 & \\
\left|g_{L R}^{S}+2 g_{L R}^{T}\right|<0.108 & \left|g_{R L}^{S}+2 g_{R L}^{T}\right|<0.417 & \\
\left|g_{L R}^{S}-2 g_{L R}^{T}\right|<0.070 & \left|g_{R L}^{S}-2 g_{R L}^{T}\right|<0.418 & \\
Q_{R R}+Q_{L R}<8.2 \times 10^{-4} &
\end{array}
$$

56.3 Matrix element:

All results in direct muon decay (energy spectra of the electron and of the neutrinos, polarizations, and angular distributions), and in inverse muon decay (the reaction cross section) at energies well below $m_{W} c^{2}$, may be parametrized in terms of amplitudes $g_{\varepsilon \mu}^{\gamma}$ and the Fermi coupling constant G_{F}, using the matrix element

$$
\begin{equation*}
\left.\frac{4 G_{\mathrm{F}}}{\sqrt{2}} \sum_{\substack{\gamma=S, V, T \\ \varepsilon, \mu=R, L}} g_{\varepsilon \mu}^{\gamma}\left\langle\bar{e}_{\varepsilon}\right| \Gamma^{\gamma}\left|\left(\nu_{e}\right)_{n}\right\rangle\left\langle\bar{\nu}_{\mu}\right)_{m}\left|\Gamma_{\gamma}\right| \mu_{\mu}\right\rangle \tag{56.9}
\end{equation*}
$$

We use the notation of Fetscher et al. [2], who in turn use the sign conventions and definitions of Scheck [15]. Here, $\gamma=S, V, T$ indicates a scalar, vector, or tensor interaction; and $\varepsilon, \mu=R, L$ indicate a right- or left-handed chirality of the electron or muon. The chiralities n and m of the ν_{e} and $\bar{\nu}_{\mu}$ are then determined by the values of γ, ε, and μ. The particles are represented by fields of definite chirality [16].

As shown by Langacker and London [17], explicit lepton-number nonconservation still leads to a matrix element equivalent to Eq. (56.9). They conclude that it is not possible, even in principle, to test lepton-number conservation in (leptonic) muon decay if the final neutrinos are massless and are not observed.

The ten complex amplitudes $g_{\varepsilon \mu}^{\gamma}\left(g_{R R}^{T}\right.$ and $g_{L L}^{T}$ are identically zero) and G_{F} constitute 19 independent (real) parameters to be determined by experiment. The Standard Model interaction corresponds to one single amplitude $g_{L L}^{V}$ being unity and all the others being zero.

The (direct) muon decay experiments are compatible with an arbitrary mix of the scalar and vector amplitudes $g_{L L}^{S}$ and $g_{L L}^{V}-$ in the extreme even with purely scalar $g_{L L}^{S}=2, g_{L L}^{V}=0$. The decision in favour of the Standard Model comes from the quantitative observation of inverse muon decay, which would be forbidden for pure $g_{L L}^{S}$ [2].

56.4 Experimental determination of $V-A$:

In order to determine the amplitudes $g_{\varepsilon \mu}^{\gamma}$ uniquely from experiment, the following set of equations, where the left-hand sides
represent experimental results, has to be solved.

$$
\begin{align*}
a & =16\left(\left|g_{R L}^{V}\right|^{2}+\left|g_{L R}^{V}\right|^{2}\right)+\left|g_{R L}^{S}+6 g_{R L}^{T}\right|^{2}+\mid g_{L R}^{S}+\underset{(56.10 \mathrm{a})}{\left.6 g_{L R}^{T}\right|^{2}} \\
a^{\prime} & =16\left(\left|g_{R L}^{V}\right|^{2}-\left|g_{L R}^{V}\right|^{2}\right)+\left|g_{R L}^{S}+6 g_{R L}^{T}\right|^{2}-\left|g_{L R}^{S}+\underset{(56.10 \mathrm{~b})}{6} g_{L R}^{T}\right|^{2} \\
\alpha & =8 \operatorname{Re}\left\{g_{R L}^{V}\left(g_{L R}^{S *}+6 g_{L R}^{T *}\right)+g_{L R}^{V}\left(g_{R L}^{S *}+6 g_{R L}^{T *}\right)\right\}^{(56.10 \mathrm{c})} \\
\alpha^{\prime} & =8 \operatorname{Im}\left\{g_{R L}^{V}\left(g_{L R}^{S *}+6 g_{L R}^{T *}\right)-g_{L R}^{V}\left(g_{R L}^{S *}+6 g_{R L}^{T *}\right)\right\} \\
b & =4\left(\left|g_{R R}^{V}\right|^{2}+\left|g_{L L}^{V}\right|^{2}\right)+\left|g_{R R}^{S}\right|^{2}+\left|g_{L L}^{S}\right|^{2} \tag{56.10c}\\
b^{\prime} & =4\left(\left|g_{R R}^{V}\right|^{2}-\left|g_{L L}^{V}\right|^{2}\right)+\left|g_{R R}^{S}\right|^{2}-\left|g_{L L}^{S}\right|^{2} \tag{56.10d}\\
c & =\frac{1}{2}\left\{\left|g_{R L}^{S}-2 g_{R L}^{T}\right|^{2}+\left|g_{L R}^{S}-2 g_{L R}^{T}\right|^{2}\right\} \tag{56.10e}\\
c^{\prime} & =\frac{1}{2}\left\{\left|g_{R L}^{S}-2 g_{R L}^{T}\right|^{2}-\left|g_{L R}^{S}-2 g_{L R}^{T}\right|^{2}\right\} \tag{56.10f}
\end{align*}
$$

and
$Q_{L}^{\nu_{e}}=1-\left\{\frac{1}{4}\left|g_{L R}^{S}\right|^{2}+\frac{1}{4}\left|g_{L L}^{S}\right|^{2}+\left|g_{R R}^{V}\right|^{2}+\left|g_{R L}^{V}\right|^{2}+3\left|g_{L R}^{T}\right|^{2}\right\}$

$$
\begin{equation*}
\omega_{L}=\frac{3}{4} \frac{\left|g_{R R}^{S}\right|^{2}+4\left|g_{L R}^{V}\right|^{2}+\left|g_{R L}^{S}+2 g_{L R}^{T}\right|^{2}}{\left|g_{R L}^{S}\right|^{2}+\left|g_{R R}^{S}\right|^{2}+4\left|g_{L L}^{V}\right|^{2}+4\left|g_{L R}^{V}\right|^{2}+12\left|g_{R L}^{T}\right|^{2}} \tag{56.10j}
\end{equation*}
$$

It has been noted earlier by C. Jarlskog [18], that certain experiments observing the decay electron are especially informative if they yield the $V-A$ values. The complete solution is now found as follows. Fetscher et al. [2] introduced four probabilities $Q_{\varepsilon \mu}(\varepsilon, \mu=R, L)$ for the decay of a μ-handed muon into an ε handed electron, and showed that there exist upper bounds on $Q_{R R}, Q_{L R}$, and $Q_{R L}$, and a lower bound on $Q_{L L}$. These probabilities are given in terms of the $g_{\varepsilon \mu}^{\gamma}$'s by

$$
\begin{equation*}
Q_{\varepsilon \mu}=\frac{1}{4}\left|g_{\varepsilon \mu}^{S}\right|^{2}+\left|g_{\varepsilon \mu}^{V}\right|^{2}+3\left(1-\delta_{\varepsilon \mu}\right)\left|g_{\varepsilon \mu}^{T}\right|^{2} \tag{56.11}
\end{equation*}
$$

where $\delta_{\varepsilon \mu}=1$ for $\varepsilon=\mu$, and $\delta_{\varepsilon \mu}=0$ for $\varepsilon \neq \mu$. They are related to the parameters $a, b, c, a^{\prime}, b^{\prime}$, and c^{\prime} by

$$
\begin{align*}
Q_{R R} & =2\left(b+b^{\prime}\right) / A \tag{56.12a}\\
Q_{L R} & =\left[\left(a-a^{\prime}\right)+6\left(c-c^{\prime}\right)\right] / 2 A \tag{56.12b}\\
Q_{R L} & =\left[\left(a+a^{\prime}\right)+6\left(c+c^{\prime}\right)\right] / 2 A \tag{56.12c}\\
Q_{L L} & =2\left(b-b^{\prime}\right) / A \tag{56.12d}
\end{align*}
$$

with $A=16$. In the Standard Model, $Q_{L L}=1$ and the others are zero.

Since the upper bounds on $Q_{R R}, Q_{L R}$, and $Q_{R L}$ are found to be small, and since the helicity of the ν_{μ} in pion decay is known from experiment $[19,20]$ to very high precision to be $-1[21]$, the cross section S of inverse muon decay, normalized to the $V-A$ value, yields [2]

$$
\begin{equation*}
\left|g_{L L}^{S}\right|^{2} \leq 4(1-S) \tag{56.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{L L}^{V}\right|^{2}=S \tag{56.13b}
\end{equation*}
$$

Thus the Standard Model assumption of a pure V - A leptonic charged weak interaction of e and μ is derived (within errors)
from experiments at energies far below the mass of the $W^{ \pm}$: Eq. $(56.13 \mathrm{~b})$ gives a lower limit for $V-A$, and Eqs. (56.12 a, b, c) and (56.13 a) give upper limits for the other four-fermion interactions. The existence of such upper limits may also be seen from $Q_{R R}+Q_{R L}=\left(1-\xi^{\prime}\right) / 2\left(e^{+}\right.$longitudinal polarization) and $Q_{R R}+Q_{L R}=\frac{1}{2}(1+\xi / 3-16 \xi \delta / 9)$ (decay asymmetry). Table 56.1 gives the current experimental limits on the magnitudes of the $g_{\varepsilon \mu}^{\gamma}$'s. More stringent limits on the six coupling constants $g_{L R}^{S}, g_{L R}^{V}, g_{L R}^{T}, g_{R L}^{S}, g_{R L}^{V}$, and $g_{R L}^{T}$ have been derived from upper limits on the neutrino mass [22]. Limits on the "charge retention" coordinates, as used in the older literature (e.g., Ref. [23]), are given by Burkard et al. [24].

References

[1] L. Michel, Proc. Phys. Soc. A63, 514 (1950).
[2] W. Fetscher, H. J. Gerber and K. F. Johnson, Phys. Lett. B173, 102 (1986).
[3] P. Langacker, Comments Nucl. Part. Phys. 19, 1, 1 (1989).
[4] C. Bouchiat and L. Michel, Phys. Rev. 106, 170 (1957).
[5] T. Kinoshita and A. Sirlin, Phys. Rev. 107, 593 (1957).
[6] T. Kinoshita and A. Sirlin, Phys. Rev. 108, 844 (1957).
[7] W. Fetscher, Phys. Rev. D49, 5945 (1994).
[8] S. R. Mishra et al., Phys. Lett. B252, 170 (1990).
[9] S. R. Mishra, private communication.
[10] P. Vilain et al. (CHARM-II), Phys. Lett. B364, 121 (1995).
[11] A. Hillairet et al. (TWIST), Phys. Rev. D85, 092013 (2012), [arXiv:1112.3606].
[12] R. P. MacDonald et al. (TWIST), Phys. Rev. D78, 032010 (2008), [arXiv:0807.1125].
[13] C. A. Gagliardi, R. E. Tribble and N. J. Williams, Phys. Rev. D72, 073002 (2005), [hep-ph/0509069].
[14] R. Bayes et al. (TWIST), Phys. Rev. Lett. 106, 041804 (2011).
[15] F. Scheck, in Electroweak and Strong Interactions (Springer Verlag, 1996).
[16] K. Mursula and F. Scheck, Nucl. Phys. B253, 189 (1985).
[17] P. Langacker and D. London, Phys. Rev. D39, 266 (1989).
[18] C. Jarlskog, Nucl. Phys. 75, 659 (1966).
[19] A. Jodidio et al., Phys. Rev. D34, 1967 (1986), [Erratum: Phys. Rev.D37,237(1988)].
[20] L. P. Roesch et al., Helv. Phys. Acta 55, 74 (1982).
[21] W. Fetscher, Phys. Lett. 140B, 117 (1984).
[22] G. Prezeau and A. Kurylov, Phys. Rev. Lett. 95, 101802 (2005), [hep-ph/0409193].
[23] S. E. Derenzo, Phys. Rev. 181, 1854 (1969).
[24] H. Burkard et al., Phys. Lett. 160B, 343 (1985).

57. τ Branching Fractions

Revised May 2019 by Sw. Banerjee (Louisville U.) and A. Lusiani (SNS, Pisa; INFN, Pisa).

57.1τ Branching Fractions

The τ Listings contains 244 entries that correspond to either a τ partial decay fraction into a specific decay mode (branching fraction) or a ratio of two τ partial decay fractions (branching ratio). Experimental information provides values for 147 of these quantities, upper limits for 61 branching fractions to Lepton Family number, Lepton number, or Baryon number violating modes, and 36 additional upper limits for other modes. A total of 170 measurements of τ branching fraction and branching ratio measurements is used for a global fit that determines 129 quantities.

57.2 The constrained fit to τ branching fractions

The τ branching fractions fit uses the reported values, uncertanties and statistical correlations of the τ branching fractions and branching ratios measurements. Asymmetric uncertainties are symmetrized as $\sigma_{\text {symm }}^{2}=\left(\sigma_{+}^{2}+\sigma_{-}^{2}\right) / 2$. Additionally, the most precise experimental inputs are treated according to how they depend on external parameters on the basis of their documentation [1]. The τ measurements may depend on parameters such as the τ pair production cross-section in $e^{+} e^{-}$annihilations at the $\Upsilon(4 S)$ peak. In some cases, measurements reported in different papers by the same collaboration may depend on common parameters like the estimate of the integrated luminosity or of particle identification efficiencies. For all the significant detected dependencies, the τ measurements and their uncertainties are updated to account for the updated values of the external parameters. The dependencies on common systematic effects are also determined in size and sign, and all the common systematic dependencies of different measurements are used together with the published statistical and systematic uncertainties and correlations in order to compute a single all-inclusive variance and covariance matrix of the experimental inputs of the fit.
The fit procedure parameters correspond to τ quantities that are fit to the experimental measurements while respecting relations described by a series of constraint equations. All the experimental inputs and all the constraint equations are reported in the τ Listings section that follows this review. With respect to the 2016, 2017 and 2018 editions, the fit uses one more experimental measurement, published by the BaBar collaboration in 2018, on $\mathcal{B}\left(\tau \rightarrow K^{-} K^{0} \nu_{\tau}\right)$ [2]. If only a few measurements are correlated, the correlation coefficients are listed in the footnote for each measurement (see for example Γ (particle ${ }^{-} \geq 0$ neutrals \geq $0 K^{0} \nu_{\tau}$ ("1-prong")) $/ \Gamma_{\text {total }}$). If a large number of measurements are correlated, then the full correlation matrix is listed in the footnote to the measurement that first appears in the τ Listings. Footnotes to the other measurements refer to the first one. For example, the large correlation matrices for the branching fraction or ratio measurements contained in Refs. [3] [4] are listed in Footnotes to the $\Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ and $\Gamma\left(h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurements respectively. The constraints between the τ branching fractions and ratios include coefficients that correspond to physical quantities, like for instance the branching fractions of the η and ω mesons. All quantities are taken from the 2018 edition of the Review of Particle Physics. Their uncertainties are neglected in the fit.

We obtain the branching fraction of $\tau \rightarrow a_{1}^{-}\left(\rightarrow \pi^{-} \gamma\right) \nu_{\tau}$ using the ALEPH estimate for $\mathcal{B}\left(a_{1}^{-} \rightarrow \pi^{-} \gamma\right)$ [3], which uses the measurement of $\Gamma\left(a_{1}^{-} \rightarrow \pi^{-} \gamma\right)$ [5]. In the fit, we assume that $\mathcal{B}\left(\tau^{-} \rightarrow a_{1}^{-} \nu_{\tau}\right)$ is equal to $\mathcal{B}\left(\tau \rightarrow \pi^{-} \pi^{-} \pi^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}, \omega\right)\right)+$ $\mathcal{B}\left(\tau \rightarrow \pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$, neglecting the observed but negligible branching fractions to other modes, including $\mathcal{B}\left(a_{1}^{-} \rightarrow \pi^{-} \gamma\right)$.

In some cases, constraints describe approximate relations that nevertheless hold within the present experimental precision. For instance, the constraint $\mathcal{B}\left(\tau \rightarrow K^{-} K^{-} K^{+} \nu_{\tau}\right)=\mathcal{B}(\tau \rightarrow$ $\left.K^{-} \phi \nu_{\tau}\right) \times \mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)$is justified within the current experimental evidence.

In the fit, scale factors are applied to the published uncertainties of measurements only if significant inconsistency between different measurements remain after accounting for all relevant uncertainties and correlations. After examining the data and the fit pulls,

Figure 57.1: Pulls of individual measurements against the respective fitted quantity. No scale factor is used.
it has been decided to apply just one scale factor of 5.4 on the measurements of $\mathcal{B}\left(\tau \rightarrow K^{-} K^{-} K^{+} \nu_{\tau}\right)$. The scale factor has been computed and applied according to the standard PDG procedure. Without the scale factor applied, the χ^{2} probability of the fit is about 2%. On a per-measurement basis, the pull distribution in figure 57.1 indicates that just a few measurements have more than 3σ pulls. (The uncertainties to obtain the pulls are computed using the measurements variance matrix and the variance matrix of the result, accounting for the fact that the variance matrix of the result is obtained from the measurement variance with the fit.) The pull probability distribution in figure 57.2 is reasonably flat. With many measurements some entries on the tails of the normal distribution must be expected. There are 170 pulls, one per measurement. They are partially correlated, and the effective number of independent pulls is equal to the number of degrees of freedom of the fit, 125 . Only the $\tau \rightarrow K^{-} K^{-} K^{+} \nu_{\tau}$ decay mode has a pull that is inconsistent at the level of more than 3σ even if considered as the largest pull in a set of 125 . This confirms the choice of adopting just that one scale factor.

Figure 57.2: Probability of individual measurement pulls against the respective fitted quantity. No scale factor is used.

After scaling the error, the constrained fit has a χ^{2} of 135 for 125 degrees of freedom, corresponding to a χ^{2} probability of 26%. We use 170 measurements and 84 constraints on the branching fractions and ratios to determine 129 quantities, consisting of 112 branching fractions and 17 branching ratios. A total of 85 quantities have at least one measurement in the fit. The constraints include the unitarity constraint on the sum of all the exclusive τ decay modes, $\mathcal{B}_{\text {all }}=1$. If the unitarity constraint is released, the fit result for $\mathcal{B}_{\text {all }}$ is consistent with unitarity with $1-\mathcal{B}_{\text {all }}=(0.00 \pm 0.10) \%$.

For the convenience of summarizing the fit results, we list in the following the values and uncertainties for a set of 46 "basis" decay modes, from which all remaining branching fractions and ratios can be obtained using the constraints. The basis decay modes are not intended to sum up to 1 . Since some basis quantities represent multiple branching fractions that are related by constraint
equations, they are properly weighted and the unitarity constraint corresponds to a linear combination whose coefficients are listed in the following. The correlation matrix between the basis modes is reported in the τ Listings.

decay mode	fit result (\%)	coefficient
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$	17.3937 ± 0.0384	1.0000
$e^{-} \bar{\nu}_{e} \nu_{\tau}$	17.8175 ± 0.0399	1.0000
$\pi^{-} \nu_{\tau}$	10.8164 ± 0.0512	1.0000
$K^{-} \nu_{\tau}$	0.6964 ± 0.0096	1.0000
$\pi^{-} \pi^{0} \nu_{\tau}$	25.4941 ± 0.0893	1.0000
$K^{-} \pi^{0} \nu_{\tau}$	0.4328 ± 0.0148	1.0000
$\pi^{-} 2 \pi^{0} \nu_{\tau}$ (ex. K^{0})	9.2595 ± 0.0964	1.0021
$K^{-2} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0647 ± 0.0218	1.0000
$\pi^{-} 3 \pi^{0} \nu_{\tau}$ (ex. K^{0})	1.0429 ± 0.0707	1.0000
$K^{-3} 3 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \eta\right)$	0.0478 ± 0.0212	1.0000
$h^{-4 \pi^{0} \nu_{\tau}\left(\text { ex. } K^{0}, \eta\right)}$	0.1118 ± 0.0391	1.0000
$\pi^{-} \bar{K}^{0} \nu_{\tau}$	0.8384 ± 0.0138	1.0000
$K^{-} K^{0} \nu_{\tau}$	0.1486 ± 0.0034	1.0000
$\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$	0.3817 ± 0.0129	1.0000
$K^{-} \pi^{0} K^{0} \nu_{\tau}$	0.1500 ± 0.0070	1.0000
$\pi^{-} \bar{K}^{0} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. K^{0})	0.0263 ± 0.0226	1.0000
$\pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}$	0.0235 ± 0.0006	2.0000
$\pi^{-} K_{S}^{0} K_{L}^{0} \nu_{\tau}$	0.1081 ± 0.0241	1.0000
$\pi^{-} \pi^{0} K_{S}^{0} K_{S}^{0} \nu_{\tau}$	0.0018 ± 0.0002	2.0000
$\pi^{-} \pi^{0} K_{S}^{0} K_{L}^{0} \nu_{\tau}$	0.0325 ± 0.0119	1.0000
$\bar{K}^{0} h^{-} h^{-} h^{+} \nu_{\tau}$	0.0247 ± 0.0199	1.0000
$\pi^{-} \pi^{-} \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega\right)$	8.9868 ± 0.0513	1.0021
$\pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega\right)$	2.7404 ± 0.0710	1.0000
$h^{-} h^{-} h^{+} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega, \eta\right)$	0.0981 ± 0.0356	1.0000
$\pi^{-} K^{-} K^{+} \nu_{\tau}$	0.1435 ± 0.0027	1.0000
$\pi^{-} K^{-} K^{+} \pi^{0} \nu_{\tau}$	0.0061 ± 0.0018	1.0000
$\pi^{-} \pi^{0} \eta \nu_{\tau}$	0.1389 ± 0.0072	1.0000
$K^{-} \eta \nu_{\tau}$	0.0155 ± 0.0008	1.0000
$K^{-} \pi^{0} \eta \nu_{\tau}$	0.0048 ± 0.0012	1.0000
$\pi^{-} \bar{K}^{0} \eta \nu_{\tau}$	0.0094 ± 0.0015	1.0000
$\pi^{-} \pi^{+} \pi^{-} \eta \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0220 ± 0.0013	1.0000
$K^{-} \omega \nu_{\tau}$	0.0410 ± 0.0092	1.0000
$h^{-} \pi^{0} \omega \nu_{\tau}$	0.4085 ± 0.0419	1.0000
$K^{-} \phi \nu_{\tau}$	0.0044 ± 0.0016	0.8320
$\pi^{-} \omega \nu_{\tau}$	1.9494 ± 0.0645	1.0000
$K^{-} \pi^{-} \pi^{+} \nu_{\tau}\left(\mathrm{ex}. K^{0}, \omega\right)$	0.2927 ± 0.0068	1.0000
$K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega, \eta\right)$	0.0394 ± 0.0142	1.0000
$\pi^{-} 2 \pi^{0} \omega \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0072 ± 0.0016	1.0000
$2 \pi^{-} \pi^{+} 3 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \eta, \omega, f_{1}\right)$	0.0014 ± 0.0027	1.0000
$3 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega, f_{1}\right)$	0.0775 ± 0.0030	1.0000
$K^{-2} \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.$ ex. K^{0})	0.0001 ± 0.0001	1.0000
$2 \pi^{-} \pi^{+} \omega \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0084 ± 0.0006	1.0000
$3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \eta, \omega, f_{1}\right)$	0.0038 ± 0.0009	1.0000
$K^{-2} 2 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. K^{0})	0.0001 ± 0.0001	1.0000
$\pi^{-} f_{1} \nu_{\tau}\left(f_{1} \rightarrow 2 \pi^{-} 2 \pi^{+}\right)$	0.0052 ± 0.0004	1.0000
$\pi^{-} 2 \pi^{0} \eta \nu_{\tau}$	0.0195 ± 0.0038	1.0000

In defining the fit constraints and in selecting the modes that sum up to one we made some assumptions and choices. We assume that some channels, like $\tau^{-} \rightarrow \pi^{-} K^{+} \pi^{-} \geq 0 \pi^{0} \nu_{\tau}$ and $\tau^{-} \rightarrow \pi^{+} K^{-} K^{-} \geq 0 \pi^{0} \nu_{\tau}$, have negligible branching fractions as expected from the Standard Model, even if the experimental limits for these branching fractions are not very stringent. The 95% confidence level upper limits are $\mathcal{B}\left(\tau^{-} \rightarrow \pi^{-} K^{+} \pi^{-} \geq 0 \pi^{0} \nu_{\tau}\right)<$ 0.25% and $\mathcal{B}\left(\tau^{-} \rightarrow \pi^{+} K^{-} K^{-} \geq 0 \pi^{0} \nu_{\tau}\right)<0.09 \%$, values not so different from measured branching fractions for allowed 3-prong modes containing charged kaons. For decays to final states containing one neutral kaon we assume that the branching fraction with the K_{L}^{0} are the same as the corresponding one with a K_{S}^{0}. On decays with two neutral kaons we assume that the branching fractions with $K_{L}^{0} K_{L}^{0}$ are the same as the ones with $K_{S}^{0} K_{S}^{0}$.

57.3 BaBar and Belle measure on average lower branching fractions and ratios.

We compare the BaBar and Belle measurements with the results of a fit where all their measurements have been excluded. We find that that BaBar and Belle measure on average lower τ branching
fractions and ratios than the other experiments. Figures 57.3 and 57.4 show histograms of the 28 normalized differences between the B-factory measurements and the respective non- B-factory fit results. The normalization is the uncertainty on the difference. The average normalized difference between the two sets of measurements is $-0.8 \sigma(-0.7 \sigma$ for the 16 Belle measurements and -0.8σ for the 12 BaBar measurements).

Figure 57.3: Distribution of the normalized difference between 12 measurements of branching fractions and ratios published by the BaBar collaboration and the respective averages computed using only non- B-factory measurements.

Figure 57.4: Distribution of the normalized difference between 16 measurements of branching fractions and ratios published by the Belle collaboration and the respective averages computed using only non- B-factory measurements.

57.4 Overconsistency of Leptonic Branching Fraction Measurements.

As observed in the previous editions of this review, measurements of the leptonic branching fractions are more consistent with each other than expected from the quoted errors on the individual measurements. The χ^{2} is 0.34 for \mathcal{B}_{e} and 0.08 for \mathcal{B}_{μ}. Assuming normal errors, the probability of a smaller χ^{2} is 1.3% for B_{e} and 0.08% for B_{μ}.

57.5 Technical implementation of the fit

The fit computes a set of quantities denoted with q_{i} by minimizing a χ^{2} while respecting a series of equality constraints on the q_{i}. The χ^{2} is computed using the measurements m_{i} and their covariance matrix $E_{i j}$ as $\chi^{2}=\left(m_{i}-A_{i k} q_{k}\right)^{t} E_{i j}^{-1}\left(m_{j}-A_{j l} q_{l}\right)$, where the model matrix $A_{i j}$ is used to get the vector of the predicted measurements m_{i}^{\prime} from the vector of the fit parameters q_{j} as $m_{i}^{\prime}=A_{i j} q_{j}$. In this particular implementation the measurements are grouped by the quantity that they measure, and all quantities with at least one measurement correspond to a fit parameter. Therefore, the matrix $A_{i j}$ has one row per measurement m_{i} and one column per fitted quantity q_{j}, with unity coefficients for the rows and column that identify a measurement m_{i} of the quantity q_{j}, respectively. The constraints are equations involving the fit parameters. The fit does not impose limitations on the functional form of the constraints. In summary, the fit requires:

$$
\begin{align*}
\min \left[\chi^{2}\left(q_{k}\right)\right]= & \min \left[\left(m_{i}-A_{i k} q_{k}\right)^{t} E_{i j}^{-1}\left(m_{j}-A_{j l} q_{l}\right)\right] \tag{57.1}\\
& \text { subjected to } \quad f_{r}\left(q_{s}\right)-c_{r}=0 \tag{57.2}
\end{align*}
$$

where the left term of Eq. 57.2 defines the constraint expressions. Using the method of Lagrange multipliers, a set of equations is
obtained by taking the derivatives with respect to the fitted quantities q_{k} and the Lagrange multipliers λ_{r} of the sum of the χ^{2} and the constraint expressions multiplied by the Lagrange multipliers λ_{r}, one for each constraint:

$$
\begin{gather*}
\min \left[\left(A_{i k} q_{k}-m_{i}\right)^{t} E_{i j}^{-1}\left(A_{j l} q_{l}-m_{j}\right)+2 \lambda_{r}\left(f_{r}\left(q_{s}\right)-c_{r}\right)\right]= \\
=\min \left[\tilde{\chi}^{2}\left(q_{k}, \lambda_{r}\right)\right] \\
\left(\partial / \partial q_{k}, \partial / \partial \lambda_{r}\right)\left[\tilde{\chi}^{2}\left(q_{k}, \lambda_{r}\right)\right]=0 \tag{57.3}
\end{gather*}
$$

Eq. 57.3 defines a set of equations for the vector of the unknowns $\left(q_{k}, \lambda_{r}\right)$, some of which may be non-linear, in case of non-linear constraints. An iterative minimization procedure approximates at each step the non-linear constraint expressions by their first order Taylor expansion around the current values of the fitted quantities, \bar{q}_{s} :

$$
f_{r}\left(q_{s}\right)-c_{r}=f_{r}\left(\bar{q}_{s}\right)+\left.\frac{\partial f_{r}\left(q_{s}\right)}{\partial q_{s}}\right|_{\bar{q}_{s}}\left(q_{s}-\bar{q}_{s}\right)-c_{r}
$$

which can be written as

$$
B_{r s} q_{s}-c_{r}^{\prime}
$$

where c_{r}^{\prime} are the resulting constant known terms, independent of q_{s} at first order. After linearization, the differentiation by q_{k} and λ_{r} is trivial and leads to a set of linear equations

$$
\begin{gather*}
A_{k i}^{t} E_{i j}^{-1} A_{j l} q_{l}+B_{k r}^{t} \lambda_{r}=A_{k i}^{t} E_{i j}^{-1} m_{j}, \tag{57.4}\\
B_{r s} q_{s}=c_{r}^{\prime}, \tag{57.5}
\end{gather*}
$$

which can be expressed as

$$
\begin{equation*}
F_{i j} u_{j}=v_{i} \tag{57.6}
\end{equation*}
$$

where $u_{j}=\left(q_{k}, \lambda_{r}\right)$ and v_{i} is the vector of the known constant terms running over the index k and then r in the right terms of Eq. 57.4 and Eq. 57.5 , respectively. Solving the equation set in Eq. 57.6 by matrix inversion gives the the fitted quantities and their variance and covariance matrix, using the measurements and their variance and covariance matrix. The fit procedure starts by computing the linear approximation of the non-linear constraint expressions around the quantities seed values. With an iterative procedure, the unknowns are updated at each step by solving the equations and the equations are then linearized around the updated values, until the variation of the fitted unknowns is reduced below a numerically small threshold.

References
[1] D. Asner et al. (Heavy Flavor Averaging Group) (2010), [arXiv:1010.1589].
[2] J. P. Lees et al. (BaBar), Phys. Rev. D98, 3, 032010 (2018), [arXiv:1806.10280].
[3] S. Schael et al. (ALEPH), Phys. Rept. 421, 191 (2005), [hepex/0506072].
[4] J. Abdallah et al. (DELPHI), Eur. Phys. J. C46, 1 (2006), [hep-ex/0603044].
[5] M. Zielinski et al., Phys. Rev. Lett. 52, 1195 (1984).

58. τ-Lepton Decay Parameters

Updated August 2011 by A. Stahl (RWTH Aachen).
The purpose of the measurements of the decay parameters (also known as Michel parameters) of the τ is to determine the structure (spin and chirality) of the current mediating its decays

58.1. Leptonic Decays:

The Michel parameters are extracted from the energy spectrum of the charged daughter lepton $\ell=e, \mu$ in the decays $\tau \rightarrow \ell \nu_{\ell} \nu_{\tau}$. Ignoring radiative corrections, neglecting terms of order $\left(m_{\ell} / m_{\tau}\right)^{2}$ and $\left(m_{\tau} / \sqrt{s}\right)^{2}$, and setting the neutrino masses to zero, the spectrum in the laboratory frame reads

$$
\begin{align*}
& \frac{d \Gamma}{d x}=\frac{G_{\tau \ell}^{2} m_{\tau}^{5}}{192 \pi^{3}} \times \\
& \left\{f_{0}(x)+\rho f_{1}(x)+\eta \frac{m_{\ell}}{m_{\tau}} f_{2}(x)-P_{\tau}\left[\xi g_{1}(x)+\xi \delta g_{2}(x)\right]\right\}, \tag{58.1}\\
& \text { with } \\
& \qquad \begin{array}{ll}
f_{0}(x)=2-6 x^{2}+4 x^{3} \\
f_{1}(x)=-\frac{4}{9}+4 x^{2}-\frac{32}{9} x^{3} & g_{1}(x)=-\frac{2}{3}+4 x-6 x^{2}+\frac{8}{3} x^{3} \\
\quad f_{2}(x)=12(1-x)^{2} & g_{2}(x)=\frac{4}{9}-\frac{16}{3} x+12 x^{2}-\frac{64}{9} x^{3} .
\end{array}
\end{align*}
$$

The quantity x is the fractional energy of the daughter lepton ℓ, i.e., $x=E_{\ell} / E_{\ell, \max } \approx E_{\ell} /(\sqrt{s} / 2)$ and P_{τ} is the polarization of the tau leptons. The integrated decay width is given by

$$
\begin{equation*}
\Gamma=\frac{G_{\tau \ell}^{2} m_{\tau}^{5}}{192 \pi^{3}}\left(1+4 \eta \frac{m_{\ell}}{m_{\tau}}\right) \tag{58.2}
\end{equation*}
$$

The situation is similar to muon decays $\mu \rightarrow e \nu_{e} \nu_{\mu}$. The generalized matrix element with the couplings $g_{\varepsilon \mu}^{\gamma}$ and their relations to the Michel parameters ρ, η, ξ, and δ have been described in the "Note on Muon Decay Parameters." The Standard Model expectations are 3/4, 0,1 , and $3 / 4$, respectively. For more details, see Ref. 1.

58.2. Hadronic Decays:

In the case of hadronic decays $\tau \rightarrow h \nu_{\tau}$, with $h=\pi, \rho$, or a_{1}, the ansatz is restricted to purely vectorial currents. The matrix element is

$$
\begin{equation*}
\frac{G_{\tau h}}{\sqrt{2}} \sum_{\lambda=R, L} g_{\lambda}\left\langle\bar{\Psi}_{\omega}\left(\nu_{\tau}\right)\right| \gamma^{\mu}\left|\Psi_{\lambda}(\tau)\right\rangle \quad J_{\mu}^{h} \tag{58.3}
\end{equation*}
$$

with the hadronic current J_{μ}^{h}. The neutrino chirality ω is uniquely determined from λ. The spectrum depends only on a single parameter ξ_{h}

$$
\begin{equation*}
\frac{d^{n} \Gamma}{d x_{1} d x_{2} \ldots d x_{n}}=f(\vec{x})+\xi_{h} P_{\tau} g(\vec{x}) \tag{58.4}
\end{equation*}
$$

with f and g being channel-dependent functions of the n observables $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (see Ref. 2). The parameter ξ_{h} is related to the couplings through

$$
\begin{equation*}
\xi_{h}=\left|g_{L}\right|^{2}-\left|g_{R}\right|^{2} \tag{58.5}
\end{equation*}
$$

ξ_{h} is the negative of the chirality of the τ neutrino in these decays. In the Standard Model, $\xi_{h}=1$. Also included in the Data Listings for ξ_{h} are measurements of the neutrino helicity which coincide with ξ_{h}, if the neutrino is massless (ASNER 00 [3], ACKERSTAFF 97R [4], AKERS 95P [5], ALBRECHT 93C [6], and ALBRECHT 90I [7])

58.3. Combination of Measurements:

The individual measurements are combined, taking into account the correlations between the parameters. In a first fit, universality between the two leptonic decays, and between all hadronic decays, is assumed. A second fit is made without these assumptions. The results of the two fits are provided as OUR FIT in the Data Listings below in the tables whose title includes "(e or mu)" or "(all hadronic modes)," and "(e)," "(mu)" etc., respectively. The measurements show good agreement with the Standard Model. The χ^{2} values with respect to the Standard model predictions are 24.1 for 41 degrees of freedom and 26.8 for 56 degrees of freedom, respectively. The correlations are reduced through this combination to less than 20%, with the exception of ρ and η which are correlated by $+23 \%$, for the fit with universality and by $+70 \%$ for $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$.

58.4. Model-independent Analysis:

From the Michel parameters, limits can be derived on the couplings $g_{\varepsilon \lambda}^{\kappa}$ without further model assumptions. In the Standard model $g_{L L}^{V}=1$ (leptonic decays), and $g_{L}=1$ (hadronic decays) and all other couplings vanish. First, the partial decay widths have to be compared to the Standard Model predictions to derive limits on the normalization of the couplings $A_{x}=G_{\tau x}^{2} / G_{F}^{2}$ with Fermi's constant G_{F} :

$$
\begin{align*}
& A_{e}=1.0029 \pm 0.0046 \\
& A_{\mu}=0.981 \pm 0.018 \\
& A_{\pi}=1.0020 \pm 0.0073 \tag{58.6}
\end{align*}
$$

Then limits on the couplings (95% CL) can be extracted (see Ref. 8 and Ref. 9). Without the assumption of universality, the limits given in Table 58.1 are derived.

Table 58.1: Coupling constants g_{ε}^{γ}. 95% confidence level experimental limits. The limits include the quoted values of A_{e}, A_{μ}, and A_{π} and assume $A_{\rho}=A_{a_{1}}=1$.

$\tau \rightarrow e \nu_{e} \nu_{\tau}$		
$\left\|g_{R R}^{S}\right\|<0.70$	$\left\|g_{R R}^{V}\right\|<0.17$	$\left\|g_{R R}^{T}\right\| \equiv 0$
$\left\|g_{L R}^{S}\right\|<0.99$	$\left\|g_{L R}^{V}\right\|<0.13$	$\left\|g_{L R}^{T}\right\|<0.082$
$\left\|g_{R L}^{S}\right\|<2.01$	$\left\|g_{R L}^{V}\right\|<0.52$	$\left\|g_{R L}^{T}\right\|<0.51$
$\left\|g_{L L}^{S}\right\|<2.01$	$\left\|g_{L L}^{V}\right\|<1.005$	$\left\|g_{L L}^{T}\right\| \equiv 0$
$\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$		
$\left\|g_{R R}^{S}\right\|<0.72$	$\left\|g_{R R}^{V}\right\|<0.18$	$\left\|g_{R R}^{T}\right\| \equiv 0$
$\left\|g_{L R}^{S}\right\|<0.95$	$\left\|g_{L R}^{V}\right\|<0.12$	$\left\|g_{L R}^{T}\right\|<0.079$
$\left\|g_{R L}^{S}\right\|<2.01$	$\left\|g_{R L}^{V}\right\|<0.52$	$\left\|g_{R L}^{T}\right\|<0.51$
$\left\|g_{L L}^{S}\right\|<2.01$	$\left\|g_{L L}^{V}\right\|<1.005$	$\left\|g_{L L}^{T}\right\| \equiv 0$
$\tau \rightarrow \pi \nu_{\tau}$		
$\left\|g_{R}^{V}\right\|<0.15$	$\left\|g_{L}^{V}\right\|>0.992$	
$\tau \rightarrow \rho \nu_{\tau}$		
$\left\|g_{R}^{V}\right\|<0.10$	$\left\|g_{L}^{V}\right\|>0.995$	
$\tau \rightarrow a \nu_{\tau}$		
$\left\|g_{R}^{V}\right\|<0.16$	$\left\|g_{L}^{V}\right\|>0.987$	

58.5. Model-dependent Interpretation:

More stringent limits can be derived assuming specific models. For example, in the framework of a two Higgs doublet model, the measurements correspond to a limit of $m_{H^{ \pm}}>1.9 \mathrm{GeV} \times \tan \beta$ on the mass of the charged Higgs boson, or a limit of 253 GeV on the mass of the second W boson in left-right symmetric models for arbitrary mixing (both 95% CL). See Ref. 9 and Ref. 10.

References:

1. F. Scheck, Phys. Reports 44, 187 (1978);
W. Fetscher and H.J. Gerber in Precision Tests of the Standard Model, edited by P. Langacker, World Scientific, 1993;
A. Stahl, Physics with τ Leptons, Springer Tracts in Modern Physics.
2. M. Davier et al., Phys. Lett. B306, 411 (1993).
3. CLEO Collab., D.M. Asner et al., Phys. Rev. D61, 012002 (2000).
4. OPAL Collab., K. Ackerstaff et al., Z. Phys. C75, 593 (1997).
5. OPAL Collab., R. Akers et al., Z. Phys. C67, 45 (1995).
6. ARGUS Collab., H. Albrecht et al., Z. Phys. C58, 61 (1993).
7. ARGUS Collab., H. Albrecht et al., Phys. Lett. B250, 164 (1990).
8. OPAL Collab., K. Ackerstaff et al., Eur. Phys. J. C8, 3 (1999).
9. A. Stahl, Nucl. Phys. (Proc. Supp.) B76, 173 (1999).
10. M.-T. Dova et al., Phys. Rev. D58, 015005 (1998);
T. Hebbeker and W. Lohmann, Z. Phys. C74, 399 (1997);
A. Pich and J.P. Silva, Phys. Rev. D52, 4006 (1995).

59. Quark Masses

Updated August 2019 by A.V. Manohar (UC, San Diego), L.P. Lellouch (CNRS \& Aix-Marseille U.), and R.M. Barnett (LBNL).

59.1. Introduction

This note discusses some of the theoretical issues relevant for the determination of quark masses, which are fundamental parameters of the Standard Model of particle physics. Unlike the leptons, quarks are confined inside hadrons and are not observed as physical particles. Quark masses therefore cannot be measured directly, but must be determined indirectly through their influence on hadronic properties. Although one often speaks loosely of quark masses as one would of the mass of the electron or muon, any quantitative statement about the value of a quark mass must make careful reference to the particular theoretical framework that is used to define it. It is important to keep this scheme dependence in mind when using the quark mass values tabulated in the data listings.

Historically, the first determinations of quark masses were performed using quark models. These are usually called constituent quark masses and are of order 350 MeV for the u and d quarks. Constituent quark masses model the effects of dynamical chiral symmetry breaking discussed below, and are not directly related to the quark mass parameters m_{q} of the QCD Lagrangian of Eq. (59.1). The resulting masses only make sense in the limited context of a particular quark model, and cannot be related to the quark mass parameters, m_{q}, of the Standard Model. In order to discuss quark masses at a fundamental level, definitions based on quantum field theory must be used, and the purpose of this note is to discuss these definitions and the corresponding determinations of the values of the masses.

59.2. Mass parameters and the QCD Lagrangian

The QCD [1] Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\sum_{q=u, d, s, \ldots, t} \bar{q}\left(i \not D-m_{q}\right) q-\frac{1}{2} \operatorname{tr} G_{\mu \nu} G^{\mu \nu}, \tag{59.1}
\end{equation*}
$$

where the sum runs over the quark flavors u, d, s, c, b and t. $\not D=\left(\partial_{\mu}-i g A_{\mu}\right) \gamma^{\mu}$ is the gauge covariant derivative, A_{μ} is the $s u(3)$-valued gluon field, $G_{\mu \nu}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right]$ is the gluon field strength, m_{q} is the mass parameter of quark flavor q, and q is the quark Dirac field. After renormalization, the QCD Lagrangian Eq. (59.1) gives finite values for physical quantities, such as scattering amplitudes. Renormalization is a procedure that invokes a subtraction scheme to render the amplitudes finite, and requires the introduction of a dimensionful scale parameter μ. The mass parameters in the QCD Lagrangian Eq. (59.1) depend on the renormalization scheme used to define the theory, and also on the scale parameter μ. The most commonly used renormalization scheme for QCD perturbation theory is the $\overline{\mathrm{MS}}$ scheme.

The QCD Lagrangian has a chiral symmetry in the limit that the quark masses vanish. This symmetry is spontaneously broken by dynamical chiral symmetry breaking, and explicitly broken by the quark masses. The non-perturbative scale of dynamical chiral symmetry breaking, Λ_{χ}, is around 1 GeV [2]. It is conventional to call quarks heavy if $m_{q}>\Lambda_{\chi}$, so that explicit chiral symmetry breaking dominates (c, b, and t quarks are heavy), and light if $m_{q}<\Lambda_{\chi}$, so that spontaneous chiral symmetry breaking dominates (the u and d are light and the s is considered to be light when using $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ chiral perturbation theory). The determination of light- and heavy-quark masses is considered separately in Sec. 59.4 and Sec. 59.5 below.

At high energies or short distances, non-perturbative effects, such as chiral symmetry breaking, become small and one can, in principle, determine quark masses by analyzing mass-dependent effects using QCD perturbation theory. Such computations are conventionally performed using the $\overline{\mathrm{MS}}$ scheme at a scale $\mu \gg \Lambda_{\chi}$, and give the $\overline{\mathrm{MS}}$ "running" mass $\bar{m}(\mu)$. We use the $\overline{\mathrm{MS}}$ scheme when reporting quark masses; one can readily convert these values into other schemes using perturbation theory.

The μ dependence of $\bar{m}(\mu)$ at short distances can be calculated using the renormalization group (RG) equation,

$$
\begin{equation*}
\mu^{2} \frac{\mathrm{~d} \bar{m}(\mu)}{\mathrm{d} \mu^{2}}=-\gamma\left(\bar{\alpha}_{s}(\mu)\right) \bar{m}(\mu) \tag{59.2}
\end{equation*}
$$

where γ is the anomalous dimension which is now known to four-loop order in perturbation theory [3,4]. $\quad \bar{\alpha}_{s}$ is the coupling constant [1] in the $\overline{\mathrm{MS}}$ scheme. Defining the expansion coefficients γ_{r} by

$$
\gamma\left(\bar{\alpha}_{s}\right) \equiv \sum_{r=1}^{\infty} \gamma_{r}\left(\frac{\bar{\alpha}_{s}}{4 \pi}\right)^{r}
$$

the first four coefficients are given by

$$
\begin{aligned}
\gamma_{1} & =4 \\
\gamma_{2} & =\frac{202}{3}-\frac{20 N_{L}}{9} \\
\gamma_{3} & =1249+\left(-\frac{2216}{27}-\frac{160}{3} \zeta(3)\right) N_{L}-\frac{140}{81} N_{L}^{2} \\
\gamma_{4} & =\frac{4603055}{162}+\frac{135680}{27} \zeta(3)-8800 \zeta(5) \\
& +\left(-\frac{91723}{27}-\frac{34192}{9} \zeta(3)+880 \zeta(4)+\frac{18400}{9} \zeta(5)\right) N_{L} \\
& +\left(\frac{5242}{243}+\frac{800}{9} \zeta(3)-\frac{160}{3} \zeta(4)\right) N_{L}^{2} \\
& +\left(-\frac{332}{243}+\frac{64}{27} \zeta(3)\right) N_{L}^{3}
\end{aligned}
$$

where N_{L} is the number of active light quark flavors at the scale μ, i.e. flavors with masses $<\mu$, and ζ is the Riemann zeta function $(\zeta(3) \simeq 1.2020569, \zeta(4) \simeq 1.0823232$, and $\zeta(5) \simeq 1.0369278)$. Eq. (59.2) must be solved in conjunction with the RG equation for $\bar{\alpha}_{s}(\mu)$ given in [1]. In addition, as the renormalization scale crosses quark mass thresholds one needs to match the scale dependence of \bar{m} below and above the threshold. There are finite threshold corrections; the necessary formulae can be found in Ref. [5].

59.3. Lattice QCD

The use of lattice QCD calculations for ab initio determinations of the fundamental parameters of QCD, including the coupling constant and quark masses (except for the top-quark mass) is a very active area of research (see the review on Lattice Quantum Chromodynamics in this Review). Here we only briefly recall those features which are required for the determination of quark masses. In order to determine the lattice spacing (a, i.e. the distance between neighboring points of the lattice) and quark masses, one computes a convenient and appropriate set of physical quantities (frequently chosen to be a set of hadronic masses) for a variety of input values of the quark masses in units of the lattice spacing. These input quark masses are then tuned to their true (physical) values by requiring that the calculation correctly reproduces the set of physical quantities being used for the calibration.

The resulting values of the quark masses are bare quark masses, corresponding to a particular discretization of QCD and with the lattice spacing as the ultraviolet cut-off. In order for these results to be useful in phenomenological applications, it is necessary to relate them to renormalized masses defined in some standard renormalization scheme such as $\overline{\mathrm{MS}}$. Provided that both the ultraviolet cut-off a^{-1} and the renormalization scale μ are much greater than Λ_{QCD}, the bare and renormalized masses can be related in perturbation theory. However, in order to avoid uncertainties due to the unknown higher-order coefficients in lattice perturbation theory, most results obtained recently use non-perturbative renormalization to relate the bare masses to those defined in renormalization schemes which can be realized directly in lattice QCD (e.g. those obtained from quark and gluon Green functions at specified momenta in the Landau gauge [6]
or those defined using finite-volume techniques and the Schrödinger functional [7], but not $\overline{\mathrm{MS}}$ that is only defined for dimensional regularization). These methods require $\mu \gg \Lambda_{\mathrm{QCD}}$ so that unwanted (non-perturbative) corrections proportional to inverse powers of μ, which appear in some approaches, remain small corrections that can be identified and removed. This condition is also necessary so that matching to other schemes can be performed reliably in perturbation theory. Moreover, these methods require $a^{-1} \gg \mu$ so that cutoff effects are small enough to be extrapolated away. Thus, the calculations are repeated for finer and finer lattices spacings and the continuum limit, $a \rightarrow 0$, of these non-perturbatively renormalized masses is taken to eliminate all cutoff effects. The conversion to the $\overline{\mathrm{MS}}$ scheme is then performed using continuum perturbation theory, which is more readily obtained to higher orders and is usually better behaved than its lattice counterpart.

It is important to note that the issues surrounding the renormalization of quark masses disappear when considering pairwise ratios of these masses (up to electromagnetic effects for quarks of different charge, which are negligible compared to other uncertainties at present). Indeed, if the same scheme and scale are implemented, QCD renormalization factors are identical for all quark flavors, and these factors therefore cancel exactly in quark-mass ratios. In particular, this means that these ratios are scheme and scale independent. Moreover, these ratios suffer little from the uncertainties in the determination of the lattice scale because they are dimensionless. Thus, quark-mass ratios are typically determined with significantly higher precision using lattice QCD than are the individual masses.

The determination of quark masses using lattice simulations is well established and the current emphasis is on the reduction and control of the systematic uncertainties. With improved algorithms and access to more powerful computing resources, the precision of the results has improved immensely in recent years. Vacuum polarization effects are included with $N_{f}=2,2+1$ or $N_{f}=2+1+1$ flavors of sea quarks. The number 2 here indicates that the up and down quarks are degenerate. Simulations with $2+1$ and $2+1+1$ flavors represent controlled approximations to physical QCD at the low energies considered for quark mass determinations, up to corrections of $O\left(\left(\Lambda_{\mathrm{QCD}} / m_{c}\right)^{2} / N_{c}\right)$ and $O\left(\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{2} / N_{c}\right)$, respectively. This is not the case for simulations with $N_{f}=2$ or in which vacuum polarization effects are completely neglected (this is the so-called quenched approximation) and results obtained in such frameworks will not enter the discussion here.

Particularly pleasing is the observation that different formulations of lattice QCD, with different systematic uncertainties, yield results which are largely consistent with each other. This gives us broad confidence in the estimates of the systematic errors. As the precision of the results approaches (or even exceeds in some cases) 1%, isospin breaking effects, including electromagnetic corrections need to be included and this is beginning to be done as will be discussed below. In particular, a reliable estimate of these effects is required for determining the individual u and d quark masses.

Members of the lattice QCD community have organized a Flavour Lattice Averaging Group (FLAG) which critically reviews quantities computed in lattice QCD relevant to flavor physics, including the determination of quark masses, against stated quality criteria and presents its view of the current status of the results. The latest edition reviews lattice results published before September 30th 2018 [8]. Since that deadline, only a single lattice determination of quark masses has appeared [9]. It is a computation of m_{c} and m_{b} in $N_{f}=2+1$ QCD, based on the method of Euclidean-time moments of pseudoscalar, two-point functions of $c \bar{c}$ quark-bilinear operators described below. Its results are fully consistent with the lattice averages quoted later.

59.4. Light quarks

In this section we review the determination of the masses of the light quarks u, d and s from lattice simulations and then discuss the consequences of the approximate chiral symmetry.

59.4.1. Lattice $Q C D$ results :

The most reliable determinations of the strange quark mass m_{s} and of the average of the up and down quark masses $m_{u d}=\left(m_{u}+m_{d}\right) / 2$ are obtained from lattice simulations. As explained in Sec. 59.3 above, the simulations are generally performed with degenerate up and down quarks $\left(m_{u}=m_{d}\right)$ and so it is the average which is obtained directly from the computations. Below we discuss the derivation of m_{u} and m_{d} separately, but we start by briefly presenting our estimate of the current status of the latest lattice results in the isospin symmetric limit. The FLAG Review [8] bases its summary numbers for these quark masses largely on references $[10-15]$ for $N_{f}=2+1$ and references [16-19] for $N_{f}=2+1+1$ flavors of sea quarks, which its authors consider to have the most reliable estimates of the systematic uncertainties. For $N_{f}=2+1$ flavors, they quote $\bar{m}_{u d}=(3.364 \pm 0.041) \mathrm{MeV}$, $\bar{m}_{s}=(92.03 \pm 0.88) \mathrm{MeV}$ and $\left(\bar{m}_{s} / \bar{m}_{u d}\right)=27.42 \pm 0.12$. These numbers are $\bar{m}_{u d}=(3.410 \pm 0.043) \mathrm{MeV}, \bar{m}_{s}=(93.44 \pm 0.68) \mathrm{MeV}$ and $\left(\bar{m}_{s} / \bar{m}_{u d}\right)=27.23 \pm 0.10$ for $N_{f}=2+1+1$ simulations. The masses are given in the $\overline{\mathrm{MS}}$ scheme at a renormalization scale of 2 GeV . Because of the systematic errors, these results are not simply the combinations of all the results in quadrature, but include a judgement of the remaining uncertainties. Since the different collaborations use different formulations of lattice QCD, the (relatively small) variations of the results between the groups provides important information about the reliability of the estimates.

Despite being reported in the $\overline{\mathrm{MS}}$ scheme at a renormalization scale of 2 GeV , the results for $\bar{m}_{u d}$ and \bar{m}_{s} in the two frameworks differ in their renormalization schemes, since $N_{f}=2+1$ results are renormalized with $N_{L}=3$ and $N_{f}=2+1+1$ ones with $N_{L}=4$. Thus, for a comparison, in principle one should convert the results to the same scheme. This is not the case for $\left(\bar{m}_{s} / \bar{m}_{u d}\right)$, where renormalization factors cancel. The conversion of the $N_{f}=2+1$ results to the $N_{L}=4$ scheme can be performed, for instance, by running them down to the charm threshold in the $N_{L}=3$ theory, matching the results to the $N_{L}=4$ theory and running them back up to 2 GeV in that theory. Such a conversion, however, leads to shifts in the values of the quark masses that are well within the quoted errors. Thus, we choose simply to average the results from the two frameworks, yielding as a final lattice QCD estimate in the $\overline{\mathrm{MS}}$ scheme at $\mu=2 \mathrm{GeV}$ in the $N_{L}=4$ theory:

$$
\begin{align*}
\bar{m}_{u d} & =(3.39 \pm 0.04) \mathrm{MeV} \tag{59.3}\\
\bar{m}_{s} & =(92.9 \pm 0.7) \mathrm{MeV} \tag{59.4}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\bar{m}_{s}}{\bar{m}_{u d}}=27.37 \pm 0.10 \tag{59.5}
\end{equation*}
$$

where the error bars encompass statistical and systematic errors combined in quadrature. In performing these averages, the only slight tension found is in \bar{m}_{s} where the weighted average carries a $\chi^{2} / d o f=1.6$, used to increase the error by the usual $\sqrt{\chi^{2} / d o f}$ scale factor. Note also that we do not allow the errors to become smaller than those on the individual averages because of possible common systematics.

To obtain the individual values of \bar{m}_{u} and \bar{m}_{d} requires the introduction of isospin breaking effects, including electromagnetism. This is now being done completely using lattice field theory, albeit neglecting electromagnetic effects in the sea in most cases (see the computation of the neutron-proton mass splitting [20] for an exception). The effect of this neglect on the u and d quark masses has been estimated in [21], to induce a contribution to the uncertainty that ranges from about 3% in $\bar{m}_{u} / \bar{m}_{d}$ to less than 1% in \bar{m}_{d}. FLAG has reviewed these quantities in [8]. Again, they separate results obtained from $N_{f}=2+1$ and $N_{f}=2+1+1$ simulations. For the former, their final averages are the results of [21], and for the latter, those of [22]. Thus, for $N_{f}=2+1$ they quote $\bar{m}_{u}=2.27(9) \mathrm{MeV}$, $\bar{m}_{d}=4.67(9) \mathrm{MeV},\left(\bar{m}_{u} / \bar{m}_{d}\right)=0.485(19)$ and, for $N_{f}=2+1+1$, $\bar{m}_{u}=2.50(17) \mathrm{MeV}, \bar{m}_{d}=4.88(20) \mathrm{MeV},\left(\bar{m}_{u} / \bar{m}_{d}\right)=0.513(31)$. As for the light quark masses in the isospin limit, we average the results obtained with different numbers of sea-quark flavors. Here, only the \bar{m}_{u} average has a $\chi^{2} / d o f=1.4>1$, and its error is thus appropriately
scaled. Again, we do not allow the errors to become smaller than those on the individual averages because of possible common systematics. Thus, we give as a final lattice QCD estimate in the $\overline{\mathrm{MS}}$ scheme at $\mu=2 \mathrm{GeV}$ in the $N_{L}=4$ theory:

$$
\begin{equation*}
\bar{m}_{u}=2.32(10) \mathrm{MeV}, \bar{m}_{d}=4.71(9) \mathrm{MeV}, \frac{\bar{m}_{u}}{\bar{m}_{d}}=0.493(19) \tag{59.6}
\end{equation*}
$$

Of particular importance is the fact that $m_{u} \neq 0$ to more than 20 standard deviations, since there would have been no strong $C P$ problem had m_{u} been equal to zero.

The results for the light quark masses given in the listings are dominated by the lattice values, since most continuum extractions have larger uncertainties.

59.4.2. Chiral Perturbation Theory:

For light quarks, one can use the techniques of chiral perturbation theory $[23-25]$ to extract quark mass ratios. The mass term for light quarks in the QCD Lagrangian is

$$
\begin{equation*}
\bar{\Psi} M \Psi=\bar{\Psi}_{L} M \Psi_{R}+\bar{\Psi}_{R} M^{\dagger} \Psi_{L} \tag{59.7}
\end{equation*}
$$

where M is the light quark mass matrix,

$$
M=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \tag{59.8}\\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right)
$$

$\Psi=(u, d, s)$, and L and R are the left- and right-chiral components of Ψ given by $\Psi_{L, R}=P_{L, R} \Psi, P_{L}=\left(1-\gamma_{5}\right) / 2, P_{R}=\left(1+\gamma_{5}\right) / 2$. The mass term is the only term in the QCD Lagrangian that mixes leftand right-handed quarks. In the limit $M \rightarrow 0$, there is an independent $\mathrm{SU}(3) \times \mathrm{U}(1)$ flavor symmetry for the left- and right-handed quarks. The vector $U(1)$ symmetry is baryon number; the axial $U(1)$ symmetry of the classical theory is broken in the quantum theory due to the anomaly. The remaining $G_{\chi}=\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ chiral symmetry of the QCD Lagrangian is spontaneously broken to $\mathrm{SU}(3)_{V}$, which, in the limit $M \rightarrow 0$, leads to eight massless Goldstone bosons, the π 's, K 's, and η.

The symmetry G_{χ} is only an approximate symmetry, since it is explicitly broken by the quark mass matrix M. The Goldstone bosons acquire masses which can be computed in a systematic expansion in M, in terms of low-energy constants, which are unknown nonperturbative parameters of the effective theory, and are not fixed by the symmetries. One treats the quark mass matrix M as an external field that transforms under G_{χ} as $M \rightarrow L M R^{\dagger}$, where $\Psi_{L} \rightarrow L \Psi_{L}$ and $\Psi_{R} \rightarrow R \Psi_{R}$ are the $\mathrm{SU}(3)_{L}$ and $\mathrm{SU}(3)_{R}$ transformations, and writes down the most general Lagrangian invariant under G_{χ}. Then one sets M to its given constant value Eq. (59.8), which implements the symmetry breaking. To first order in M one finds that [26]

$$
\begin{align*}
m_{\pi^{0}}^{2} & =B\left(m_{u}+m_{d}\right) \\
m_{\pi^{ \pm}}^{2} & =B\left(m_{u}+m_{d}\right)+\Delta_{\mathrm{em}} \\
m_{K^{0}}^{2} & =m_{\bar{K}}^{2}=B\left(m_{d}+m_{s}\right) \tag{59.9}\\
m_{K^{ \pm}}^{2} & =B\left(m_{u}+m_{s}\right)+\Delta_{\mathrm{em}} \\
m_{\eta}^{2} & =\frac{1}{3} B\left(m_{u}+m_{d}+4 m_{s}\right)
\end{align*}
$$

with two unknown constants B and Δ_{em}, the electromagnetic mass difference. From Eq. (59.9), one can determine the quark mass ratios [26]

$$
\begin{align*}
& \frac{m_{u}}{m_{d}}=\frac{2 m_{\pi^{0}}^{2}-m_{\pi^{+}}^{2}+m_{K^{+}}^{2}-m_{K^{0}}^{2}}{m_{K^{0}}^{2}-m_{K^{+}}^{2}+m_{\pi^{+}}^{2}}=0.56 \\
& \frac{m_{s}}{m_{d}}=\frac{m_{K^{0}}^{2}+m_{K^{+}}^{2}-m_{\pi^{+}}^{2}}{m_{K^{0}}^{2}+m_{\pi^{+}}^{2}-m_{K^{+}}^{2}}=20.2 \tag{59.10}
\end{align*}
$$

to lowest order in chiral perturbation theory, with an error which will be estimated below. Since the mass ratios extracted using chiral perturbation theory use the symmetry transformation property of M under the chiral symmetry G_{χ}, it is important to use a renormalization scheme for QCD that does not change this transformation law. Any mass independent subtraction scheme such as $\overline{\mathrm{MS}}$ is suitable. The ratios of quark masses are scale independent in such a scheme (up to electromagnetic corrections), and Eq. (59.10) can be taken to be the ratio of $\overline{\mathrm{MS}}$ masses. Chiral perturbation theory cannot determine the overall scale of the quark masses, since it uses only the symmetry properties of M, and any multiple of M has the same G_{χ} transformation law as M.

Chiral perturbation theory is a systematic expansion in powers of the light quark masses. The typical expansion parameter is $m_{K}^{2} / \Lambda_{\chi}^{2} \sim 0.25$ if one uses $\mathrm{SU}(3)$ chiral symmetry, and $m_{\pi}^{2} / \Lambda_{\chi}^{2} \sim 0.02$ if instead one uses $\mathrm{SU}(2)$ chiral symmetry. Electromagnetic effects at the few percent level also break $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ symmetry. The mass formulæ Eq. (59.9) were derived using $\mathrm{SU}(3)$ chiral symmetry, and are expected to have approximately a 25% uncertainty due to second order corrections. This estimate of the uncertainty is consistent with the lattice results summarized in Eq. (59.4) - Eq. (59.5).

There is a subtlety which arises when one tries to determine quark mass ratios at second order in chiral perturbation theory. The second order quark mass term [27]

$$
\begin{equation*}
\left(M^{\dagger}\right)^{-1} \operatorname{det} M^{\dagger} \tag{59.11}
\end{equation*}
$$

(which can be generated by instantons) transforms in the same way under G_{χ} as M. Chiral perturbation theory cannot distinguish between M and $\left(M^{\dagger}\right)^{-1} \operatorname{det} M^{\dagger}$; one can make the replacement $M \rightarrow M(\lambda)=M+\lambda M\left(M^{\dagger} M\right)^{-1} \operatorname{det} M^{\dagger}$ in the chiral Lagrangian,

$$
\begin{align*}
& M(\lambda)=\operatorname{diag}\left(m_{u}(\lambda), m_{d}(\lambda), m_{s}(\lambda)\right) \\
& =\operatorname{diag}\left(m_{u}+\lambda m_{d} m_{s}, m_{d}+\lambda m_{u} m_{s}, m_{s}+\lambda m_{u} m_{d}\right) \tag{59.12}
\end{align*}
$$

and leave all observables unchanged.
The combination

$$
\begin{equation*}
\left(\frac{m_{u}}{m_{d}}\right)^{2}+\frac{1}{Q^{2}}\left(\frac{m_{s}}{m_{d}}\right)^{2}=1 \tag{59.13}
\end{equation*}
$$

where

$$
Q^{2}=\frac{m_{s}^{2}-m_{u d}^{2}}{m_{d}^{2}-m_{u}^{2}}, \quad m_{u d}=\frac{1}{2}\left(m_{u}+m_{d}\right)
$$

is insensitive to the transformation in Eq. (59.12). Eq. (59.13) gives an ellipse in the $m_{u} / m_{d}-m_{s} / m_{d}$ plane. The ellipse is well-determined by chiral perturbation theory, but the exact location on the ellipse, and the absolute normalization of the quark masses, has larger uncertainties. Q is determined to be 22.1(7) from $\eta \rightarrow 3 \pi$ decay and the electromagnetic contribution to the $K^{+}-K^{0}$ and $\pi^{+} \pi^{0}$ mass differences [28]. Lattice QCD collaborations have also reported determinations of Q. Using $N_{f}=2+1$ simulations, [21] obtains $Q=23.4(6)$ and [22] determines $Q=23.8(1.1)$ with $N_{f}=2+1+1$ simulations, which are fully compatible. The $N_{f}=2+1$ result is about 2 standard deviations larger than the one from phenomenology given above [28]. These values can also be compared to the leading-order result for Q in $\mathrm{SU}(3)$ chiral perturbation theory, that can be derived using Eq. (59.9) and the values for the relevant meson masses given in this review. This result also holds to next-to-leading order, thus: $Q{ }^{\mathrm{NLO}} 24.3$.

The absolute normalization of the quark masses cannot be determined using chiral perturbation theory. Other methods, such as lattice simulations discussed above, or spectral function sum rules $[29,30]$ for hadronic correlation functions reviewed next, are necessary.

59.4.3. Sum rules :

Sum rule methods have been used extensively to determine quark masses and for illustration we briefly discuss here their application to hadronic τ decays [31]. Other applications involve very similar techniques.

Figure 59.1: The analytic structure of $\Pi(s)$ in the complex s-plane. The contours C_{1} and C_{2} are the integration contours discussed in the text, and the integral over the closed contour $C_{1}+C_{2}$ vanishes. m_{τ}^{2} has not been drawn to scale; $m_{\tau}^{2} \sim 40\left(4 m_{\pi}^{2}\right)$.

The experimentally measured quantity is R_{τ},

$$
\begin{equation*}
\frac{\mathrm{d} R_{\tau}}{\mathrm{d} s}=\frac{\mathrm{d} \Gamma / \mathrm{d} s\left(\tau^{-} \rightarrow \text { hadrons }+\nu_{\tau}(\gamma)\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}(\gamma)\right)} \tag{59.14}
\end{equation*}
$$

the hadronic invariant mass spectrum in semihadronic τ decay, normalized to the leptonic τ decay rate. It is useful to define q as the total momentum of the hadronic final state, so $s=q^{2}$ is the hadronic invariant mass. The total hadronic τ decay rate R_{τ} is then given by integrating $\mathrm{d} R_{\tau} / \mathrm{d} s$ over the kinematically allowed range $0 \leq s \leq M_{\tau}^{2}$.
R_{τ} can be written as

$$
\begin{align*}
R_{\tau}= & 12 \pi \int_{0}^{M_{\tau}^{2}} \frac{\mathrm{~d} s}{M_{\tau}^{2}}\left(1-\frac{s}{M_{\tau}^{2}}\right)^{2} \\
& \times\left[\left(1+2 \frac{s}{M_{\tau}^{2}}\right) \operatorname{Im} \Pi^{T}(s)+\operatorname{Im} \Pi^{L}(s)\right] \tag{59.15}
\end{align*}
$$

where the hadronic spectral functions $\Pi^{L, T}$ are defined from the time-ordered correlation function of two weak currents $\left(j^{\mu}(x)\right.$ and $\left.j^{\nu}(0)\right)$ by

$$
\begin{align*}
& \Pi^{\mu \nu}(q)=i \int \mathrm{~d}^{4} x e^{i q \cdot x}\langle 0| T\left(j^{\mu}(x) j^{\nu}(0)^{\dagger}\right)|0\rangle \tag{59.16}\\
& \Pi^{\mu \nu}(q)=\left(-g^{\mu \nu}+q^{\mu} q^{\nu}\right) \Pi^{T}(s)+q^{\mu} q^{\nu} \Pi^{L}(s) \tag{59.17}
\end{align*}
$$

and the decomposition Eq. (59.17) is the most general possible structure consistent with Lorentz invariance.

By the optical theorem, the imaginary part of $\Pi^{\mu \nu}$ is proportional to the total cross-section for the current to produce all possible states. A detailed analysis including the phase space factors leads to Eq. (59.15). The spectral functions $\Pi^{L, T}(s)$ are analytic in the complex s plane, with singularities along the real axis. There is an isolated pole at $s=m_{\pi}^{2}$, and single- and multi-particle singularities for $s \geq 4 m_{\pi}^{2}$, the two-particle threshold. The discontinuity along the real axis is $\Pi^{L, T}\left(s+i 0^{+}\right)-\Pi^{L, T}\left(s-i 0^{+}\right)=2 i \operatorname{Im} \Pi^{L, T}(s)$. As a result, Eq. (59.15) can be rewritten with the replacement $\operatorname{Im} \Pi^{L, T}(s) \rightarrow-i \Pi^{L, T}(s) / 2$, and the integration being over the contour C_{1}. Finally, the contour
C_{1} can be deformed to $-C_{2}$ without crossing any singularities, and so leaving the integral unchanged, i.e. the integral over the closed contour $C_{1}+C_{2}$ vanishes. One can derive a series of sum rules analogous to Eq. (59.15) by weighting the differential τ hadronic decay rate by different powers of the hadronic invariant mass [32],

$$
\begin{equation*}
R_{\tau}^{k l}=\int_{0}^{M_{\tau}^{2}} \mathrm{~d} s\left(1-\frac{s}{M_{\tau}^{2}}\right)^{k}\left(\frac{s}{M_{\tau}^{2}}\right)^{l} \frac{\mathrm{~d} R_{\tau}}{\mathrm{d} s} \tag{59.18}
\end{equation*}
$$

where $\mathrm{d} R_{\tau} / \mathrm{d} s$ is the hadronic invariant mass distribution in τ decay normalized to the leptonic decay rate. This leads to the final form of the sum rule(s),

$$
\begin{align*}
R_{\tau}^{k l}= & -6 \pi i \int_{C_{2}} \frac{\mathrm{~d} s}{M_{\tau}^{2}}\left(1-\frac{s}{M_{\tau}^{2}}\right)^{2+k}\left(\frac{s}{M_{\tau}^{2}}\right)^{l} \\
& \times\left[\left(1+2 \frac{s}{M_{\tau}^{2}}\right) \Pi^{T}(s)+\Pi^{L}(s)\right] \tag{59.19}
\end{align*}
$$

The manipulations so far are completely rigorous and exact, relying only on the general analytic structure of quantum field theory. The left-hand side of the sum rule Eq. (59.19) is obtained from experiment. The right hand-side can be computed for s far away from any physical cuts using the operator product expansion (OPE) for the time-ordered product of currents in Eq. (59.16), and QCD perturbation theory. The OPE is an expansion for the time-ordered product Eq. (59.16) in a series of local operators, and is an expansion about the $q \rightarrow \infty$ limit. It gives $\Pi^{L, T}(s)$ as an expansion in powers of $\alpha_{s}(s)$ and $\Lambda_{\mathrm{QCD}}^{2} / s$, and is valid when s is far (in units of $\Lambda_{\mathrm{QCD}}^{2}$) from any singularities in the complex s-plane.

The OPE gives $\Pi^{L, T}(s)$ as a series in α_{s}, quark masses, and various non-perturbative vacuum matrix elements. By computing $\Pi^{L, T}(s)$ theoretically, and comparing with the experimental values of $R_{\tau}^{k l}$, one determines various parameters such as α_{s} and the quark masses. The theoretical uncertainties in using Eq. (59.19) arise from neglected higher order corrections (both perturbative and non-perturbative), and because the OPE is no longer valid near the real axis, where $\Pi^{L, T}$ have singularities. The contribution of neglected higher order corrections can be estimated as for any other perturbative computation. The error due to the failure of the OPE is more difficult to estimate. In Eq. (59.19), the OPE fails on the endpoints of C_{2} that touch the real axis at $s=M_{\tau}^{2}$. The weight factor $\left(1-s / M_{\tau}^{2}\right)$ in Eq. (59.19) vanishes at this point, so the importance of the endpoint can be reduced by choosing larger values of k.

Light quark masses are often determined using QCD sum rules [30], which are similar to the τ sum rules. One takes the correlator of two light-quark-bilinear operators (e.g. an axial vector current), as in Eq. (59.16), and computes their Laplace transforms or moments

$$
\mathcal{L}_{n}(\tau)=\int_{0}^{\infty} \mathrm{d} s s^{n} e^{-\tau s} \operatorname{Im} \Pi(s), \mathcal{M}_{n}\left(Q^{2}\right)=\int_{0}^{\infty} \frac{\mathrm{d} s}{\left(s+Q^{2}\right)^{n}} \operatorname{Im} \Pi(s)
$$

to get Laplace or moment sum rules, respectively. The quark masses are extracted by comparing the theoretical and experimental values of $\mathcal{L}_{n}(\tau)$ and $\mathcal{M}_{n}\left(Q^{2}\right)$. Considerable theoretical effort has gone into optimizing n and Q^{2} to improve the precision of the resulting light quark masses.

59.5. Heavy quarks

59.5.1. Continuum approaches and results :

For heavy quark physics one can exploit the fact that $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ to construct effective theories $\left(m_{Q}\right.$ is the mass of the heavy quark $Q)$. The masses and decay rates of hadrons containing a single heavy quark, such as the B and D mesons can be determined using the heavy quark effective theory (HQET) [33]. The theoretical calculations involve radiative corrections computed in perturbation theory with an expansion in $\alpha_{s}\left(m_{Q}\right)$ and non-perturbative corrections with an expansion in powers of $\Lambda_{\mathrm{QCD}} / m_{Q}$. Due to the asymptotic nature of the QCD perturbation series, the two kinds of corrections are intimately related; an example of this are renormalon effects in the
perturbative expansion which are associated with non-perturbative corrections.

Systems containing two heavy quarks such as the Υ or J / Ψ are treated using non-relativistic QCD (NRQCD) [34]. The typical momentum and energy transfers in these systems are $\alpha_{s} m_{Q}$, and $\alpha_{s}^{2} m_{Q}$, respectively, so these bound states are sensitive to scales much smaller than m_{Q}. However, smeared observables, such as the cross-section for $e^{+} e^{-} \rightarrow \bar{b} b$ averaged over some range of s that includes several bound state energy levels, are better behaved and only sensitive to scales near m_{Q}. For this reason, most determinations of the c, b quark masses using perturbative calculations compare smeared observables with experiment [35-37]. The method is similar to that outlined for τ decays. The current correlator in Eq. (59.16) is the electromagnetic current, and the experimental data is the value of $R(s)$ in the threshold region for $e^{+} e^{-} \rightarrow Q \bar{Q}$. The theoretical values for the moments are computed using renormalization group improved calculations in non-relativistic QCD.

There are many continuum extractions of the c and b quark masses, some with quoted errors of 10 MeV or smaller. There are systematic effects of comparable size, which are typically not included in these error estimates. Reference [38], for example, shows that even though the error estimate of m_{c} using the rapid convergence of the α_{s} perturbation series is only a few MeV , the central value of m_{c} can differ by a much larger amount depending on which algorithm (all of which are formally equally good) is used to determine m_{c} from the data. This leads to a systematic error from perturbation theory of around 20 MeV for the c quark and 25 MeV for the b quark. Electromagnetic effects, which also are important at this precision, are often not included. For this reason, we inflate the errors on the continuum extractions of m_{c} and m_{b}. The average values of m_{c} and m_{b} from continuum determinations are (see Sec. G for the 1S scheme)

$$
\begin{gathered}
\bar{m}_{c}\left(\bar{m}_{c}\right)=(1.280 \pm 0.025) \mathrm{GeV} \\
\bar{m}_{b}\left(\bar{m}_{b}\right)=(4.18 \pm 0.03) \mathrm{GeV}, \quad m_{b}^{1 \mathrm{~S}}=(4.65 \pm 0.03) \mathrm{GeV}
\end{gathered}
$$

59.5.2. Lattice approaches and results :

Lattice simulations of QCD lead to discretization errors which are powers of $a m_{Q}$ (modulated by logarithms); the power depends on the formulation of lattice QCD being used and in most cases is quadratic. Clearly these errors can be reduced by performing simulations at smaller lattice spacings, but also by using improved discretizations of the theory. Recently, with more powerful computing resources, better algorithms and techniques, it has become possible to perform simulations in the charm quark region and beyond, also decreasing the extrapolation which has to be performed to reach the b-quark.

Traditionally the charm quark mass is obtained by tuning its bare, simulation value to reproduce the physical mass of charmonium mesons or of the D, D_{s} mesons (requiring a more precise tuning of the light quark masses). This mass can then be renormalized to the $\overline{\mathrm{MS}}$ scheme using the methods discussed for the light quarks.

An alternative approach for obtaining the $\overline{\mathrm{MS}}$ mass from the tuned bare quark mass was proposed in [39]. Euclidean-time moments of pseudoscalar, two-point functions of $c \bar{c}$ quark-bilinear operators can readily be computed on the lattice and extrapolated to the continuum limit where they can be compared to perturbative calculations of the same quantities at 4 -loop order. In this way, both the strong coupling constant and the charm quark mass can be determined with remarkably small errors. As this approach uses the same perturbative expressions for two-point correlators as the continuum determinations discussed above, it suffers from similar perturbation-theory, systematic errors. FLAG [8] has reviewed lattice determinations of the charm quark mass obtained using both approaches. The most advanced calculations are performed with $N_{f}=2+1+1$ simulations. For these, the quoted average is

$$
\bar{m}_{c}\left(\bar{m}_{c}\right)=1.280(13) \mathrm{GeV}
$$

based on the calculations performed in $[17,16,40,18,19]$, in good agreement with the continuum result quoted above, but with a smaller
error. It is worth noting that while three $[17,18,19]$ of the four calculations entering this average agree, the fourth $[16,40]$ is about two standard deviations larger, and this is taken into account in the error bar. It should also be remembered that these results were obtained in QCD with exact isospin symmetry, though isospin breaking corrections to the physical inputs, including electromagnetism, are accounted for using phenomenology.

Historically, the main approach to controlling the discretization errors in lattice studies of b quark physics was to perform simulations of effective theories such as HQET and NRQCD. This remains an important technique, both in its own right and in providing additional information for extrapolations from lower masses to the bottom region. Using effective theories, m_{b} is obtained from what is essentially a computation of the difference of $M_{H_{b}}-m_{b}$, where $M_{H_{b}}$ is the mass of a hadron H_{b} containing a b-quark. The relative error on m_{b} is therefore much smaller than that for $M_{H_{b}}-m_{b}$. The principal systematic errors are the matching of the effective theories to QCD and the presence of power divergences in a^{-1} in the $1 / m_{b}$ corrections which have to be subtracted numerically. A procedure for performing these subtractions fully non-perturbatively was proposed and implemented for the first time in [41].

The most recent lattice QCD determinations of the b quark mass rely on a variety of approaches, including Euclidean-time moments of correlation functions with [42] or without NRQCD [17] and HQET based interpolations [43,44] or extrapolations [18] from above the charm to the b region. The overall agreement of the results obtained using these very different approaches, which have different systematic errors, is a confirmation that the various groups control these uncertainties. As the range of heavy-quark masses which can be used in numerical simulations increases, results obtained by extrapolating the results to b-physics are becoming ever more reliable (see e.g. [18]) FLAG's compilation [8] of the above $N_{f}=2+1+1$ results yields

$$
\bar{m}_{b}\left(\bar{m}_{b}\right)=4.198(12) \mathrm{GeV}
$$

Again, this result is compatible with the average value of continuum results, but with a significantly smaller uncertainty.

As explained in Sec. 59.3, ratios of quark masses can have significantly smaller errors than the individual masses if they are computed in the same lattice QCD framework and in the same renormalization scheme at identical scales. This led HPQCD to leverage their precise determination of m_{c} [39] to determine m_{s} and $m_{u d}$ [57], through a precise computation of m_{c} / m_{s} [57] and of $m_{s} / m_{u d}$ [58]. This $N_{f}=2+1$ calculation was updated using $N_{f}=2+1+1$ simulations in [17]. The ratio m_{s} / m_{c} was also computed in $[15,59]$ with $N_{f}=2+1$ simulations and in $[16,18]$ with $N_{f}=2+1+1$ ones. Based on [57,59], FLAG quotes [8] $m_{c} / m_{s}=11.82(16)$ for $N_{f}=2+1$, and $m_{c} / m_{s}=11.768(33)$ for $N_{f}=2+1+1$, based on $[16,17,18]$, where a 50% stretch of the combined error was applied due to a tension between the results of [16] and [17]. As a final lattice number we give the $N_{f}=2+1+1$ average

$$
m_{c} / m_{s}=11.768(33)
$$

which is renormalization scheme and scale independent.
The ratio m_{b} / m_{c} has also been computed on the lattice. The most advanced calculations have been performed with $N_{f}=2+1+1$ simulations [17,43,18]. Averaging these results using the FLAG [8] procedure yields

$$
m_{b} / m_{c}=4.576(11)
$$

where a scale factor of $\sqrt{\chi^{2} / d o f}=1.45$ has been applied to the error bar. Indeed, [43] contributes 3.3 to the total χ^{2}.

59.5.3. Warnings concerning the use of the pole mass:

For an observable particle such as the electron, the position of the pole in the propagator is the definition of its mass. In QCD this definition of the quark mass is known as the pole mass. It is known that the on-shell quark propagator has no infrared divergences in perturbation theory [45,46], so this provides a perturbative definition of the quark mass. However, the pole mass cannot be used to arbitrarily high accuracy because of non-perturbative infrared effects
in QCD. In fact the full quark propagator has no pole because the quarks are confined, so that the pole mass cannot be defined outside of perturbation theory. The relation between the pole mass m_{Q} and the $\overline{\mathrm{MS}}$ mass \bar{m}_{Q}, used throughout this review, is known to three loops [47-50]

$$
\begin{align*}
& m_{Q}=\bar{m}_{Q}\left(\bar{m}_{Q}\right)\left\{1+\frac{4 \bar{\alpha}_{s}\left(\bar{m}_{Q}\right)}{3 \pi}\right. \\
& +\left[-1.0414 \sum_{q}\left(1-\frac{4}{3} \bar{m}_{q} \bar{m}_{Q}\right)+13.4434\right]\left[\frac{\bar{\alpha}_{s}\left(\bar{m}_{Q}\right)}{\pi}\right]^{2} \\
& \left.+\left[0.6527 N_{L}^{2}-26.655 N_{L}+190.595\right]\left[\frac{\bar{\alpha}_{s}\left(\bar{m}_{Q}\right)}{\pi}\right]^{3}\right\} \tag{59.20}
\end{align*}
$$

where $\bar{\alpha}_{S}(\mu)$ is the strong interaction coupling constants in the $\overline{\mathrm{MS}}$ scheme, and the sum over q extends over the N_{L} flavors lighter than Q. The complete mass dependence of the α_{s}^{2} term can be found in [47]; the mass dependence of the α_{s}^{3} term is not known. For the b-quark, Eq. (59.20) reads

$$
\begin{equation*}
m_{b}=\bar{m}_{b}\left(\bar{m}_{b}\right)[1+0.10+0.05+0.03] \tag{59.21}
\end{equation*}
$$

where the contributions from the different orders in α_{s} are shown explicitly. The two and three loop corrections are comparable in size and have the same sign as the one loop term. This is a signal of the asymptotic nature of the perturbation series (there is a renormalon in the pole mass [51]). Such a badly behaved perturbation expansion can be avoided by directly extracting, from data, the mass defined in the $\overline{\mathrm{MS}}$ (used in this review) or other short-distance schemes (see below), without invoking the pole mass as an intermediate step.

59.6. Numerical values and caveats

The quark masses in the particle data listings have been obtained by using a wide variety of methods. Each method involves its own set of approximations and uncertainties. In most cases, the errors are an estimate of the size of neglected higher-order corrections or other uncertainties. The expansion parameters for some of the approximations are not very small (for example, they are $m_{K}^{2} / \Lambda_{\chi}^{2} \sim 0.25$ for the $\mathrm{SU}(3)$ chiral expansion and $\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.1$ for the heavy-quark expansion), so an unexpectedly large coefficient in a neglected higher-order term could significantly alter the results. Thus, before using a particular result, it is important to understand the possible limitations of the approach used to obtain it. It is also important to note that the quark mass values can be significantly different in the different schemes.

Figure 59.2: The allowed region (shown in white) for up quark and down quark masses renormalized in the $\overline{\mathrm{MS}}$ scheme at 2 GeV . This region was determined in part from papers reporting values for m_{u} and m_{d} (data points shown) and in part from an analysis of the allowed ranges of other mass parameters (see Fig. 59.3). The parameter $\left(m_{u}+m_{d}\right) / 2$ yields the two downward-sloping lines, while m_{u} / m_{d} yields the two rising lines originating at $(0,0)$. There are two overlapping data points, so one of them is shown as a white diamond (it has very small error bars).

We have specified all masses in the $\overline{\mathrm{MS}}$ scheme. For light quarks, the renormalization scale has been chosen to be $\mu=2 \mathrm{GeV}$. Quoting these masses at smaller values of μ, where perturbative corrections become significantly larger, would introduce unnecessary uncertainties in the results. In fact, as lattice calculations, performed on finer and finer lattices, allow to determine quark masses, fully non-perturbatively, at larger and larger values of μ, it may become advantageous to quote quark mass results at renormalization scales above 2 GeV , where perturbative uncertainties are smaller.

Given the small size of the charm quark mass, in the future it may become advantageous to quote its value at larger values of μ so as not to introduce unnecessary perturbative uncertainties (see discussion above). Analyses of inclusive B meson decays have shown that other mass definitions lead to a better behaved perturbation series than for the $\overline{\mathrm{MS}}$ mass, and hence to more accurate mass values $[52,53,54,56]$. Thus, we have chosen to also give values for one of these, the b quark mass in the 1 S -scheme $[52,53]$. Other schemes that have been proposed are the PS-scheme [54], the kinetic scheme [55] and, most

Figure 59.3: The values of each quark mass parameter taken from the Data Listings. The points are in chronological order with the more recent measurements at the top. The shaded regions indicate values excluded by our evaluations; some regions were determined in part through examination of Fig. 59.2.

The heavy quark masses obtained using HQET, QCD sum rules, or lattice gauge theory are consistent with each other if they are all converted into the same scheme and scale. For these quarks it is conventional to choose the renormalization scale equal to the quark mass, so we have quoted $\bar{m}_{Q}(\mu)$ at $\mu=\bar{m}_{Q}$ for the c and b quarks.
recently, the minimal renormalon-subtracted mass (MRS) [56] used in the lattice calculation [18].

If necessary, we have converted values in the original papers to our chosen scheme using two-loop formulæ. It is important to realize that our conversions introduce significant additional errors. In converting to the $\overline{\mathrm{MS}} b$-quark mass, for example, the three-loop
conversions from the 1 S and pole masses give values about 35 MeV and 135 MeV lower than the two-loop conversions. The uncertainty in $\alpha_{s}\left(M_{Z}\right)=0.1179 \pm 0.0010$ [1] gives an uncertainty of $\pm 9 \mathrm{MeV}$ and $\pm 21 \mathrm{MeV}$ respectively in the same conversions. We have not added these additional errors when we do our conversions. The α_{s} value in the conversion is correlated with the α_{s} value used in determining the quark mass, so the conversion error is not a simple additional error on the quark mass.

References:

1. See the review of QCD in this volume..
2. A.V. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
K.G. Chetyrkin, Phys. Lett. B404, 161 (1997).
J.A.M. Vermaseren, S.A. Larin, and T. van Ritbergen, Phys. Lett. B405, 327 (1997).
3. K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Nucl. Phys. B510, 61 (1998).
4. G. Martinelli et al., Nucl. Phys. B445, 81 (1995).
5. K. Jansen et al., Phys. Lett. B372, 275 (1996).
6. S. Aoki et al. [Flavour Lattice Averaging Group], [arXiv:1902.08191 [hep-lat]].
7. P. Petreczky and J. H. Weber, arXiv:1901.06424 [hep-lat].
8. A. Bazavov et al. [MILC collaboration], PoS CD09 (2009) 007.
9. A. Bazavov et al., PoS LATTICE2010 (2010) 083.
10. S. Durr et al., Phys. Lett. B701, 265 (2011).
11. S. Durr et al., JHEP 1108, 148 (2011).
12. T. Blum et al. [RBC and UKQCD collaborations], Phys. Rev. D93, 074505 (2016).
13. Y. Maezawa and P. Petreczky, Phys. Rev. D94, 034507 (2016).
14. N. Carrasco et al. [ETM collaboration], Nucl. Phys. B887, 19 (2014).
15. B. Chakraborty et al. [HPQCD collaboration], Phys. Rev. D91, 054508 (2015).
16. A. Bazavov et al. [Fermilab Lattice and MILC and TUMQCD collaborations], Phys. Rev. D98, 054517 (2018).
17. A. T. Lytle et al. [HPQCD collaboration], Phys. Rev. D98, 014513 (2018).
18. S. Borsanyi et al.[BMW collaboration], Science 347, 1452 (2015).
19. Z. Fodor et al.[BMW collaboration], Phys. Rev. Lett. 117, 082001 (2016).
20. D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, S. Sanfilippo, S. Simula and N. Tantalo [RM123 collaboration], Phys. Rev. D95, 114504 (2017).
21. S. Weinberg, Physica 96A, 327 (1979).
22. J. Gasser and H. Leutwyler, Ann. Phys. 158, 142 (1984).
23. For a review, see A. Pich, Rept. on Prog. in Phys. 58, 563 (1995).
24. S. Weinberg, Trans. N.Y. Acad. Sci. 38, 185 (1977).
25. D.B. Kaplan and A.V. Manohar, Phys. Rev. Lett. 56, 2004 (1986).
26. G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, Eur. Phys. J. C 78, no. 11, 947 (2018).
27. S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).
28. M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl. Phys. B147, 385 (1979).
29. E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992).
30. F. Le Diberder and A. Pich, Phys. Lett. B286, 147 (1992) doi:10.1016/0370-2693(92)90172-Z.
31. N. Isgur and M.B. Wise, Phys. Lett. B232, 113 (1989), ibid, B237, 527 (1990).
32. G.T. Bodwin, E. Braaten, and G.P. Lepage, Phys. Rev. D51, 1125 (1995).
33. A.H. Hoang, Phys. Rev. D61, 034005 (2000).
34. K. Melnikov and A. Yelkhovsky, Phys. Rev. D59, 114009 (1999).
35. M. Beneke and A. Signer, Phys. Lett. B471, 233 (1999).
36. B. Dehnadi, A. H. Hoang, V. Mateu and S. M. Zebarjad, JHEP 1309, 103 (2013).
37. I. Allison et al. [HPQCD collaboration], Phys. Rev. D78, 054513 (2008).
38. C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis and G. Koutsou, Phys. Rev. D 90, no. 7, 074501 (2014).
39. J. Heitger et al. [ALPHA collaboration], JHEP 0402, 022 (2004).
40. B. Colquhoun, R. J. Dowdall, C. T. H. Davies, K. Hornbostel and G. P. Lepage [HPQCD collaboration], Phys. Rev. D 91, no. 7, 074514 (2015).
41. A. Bussone et al. [ETM collaboration], Phys. Rev. D 93, no. 11, 114505 (2016).
42. P. Gambino, A. Melis and S. Simula, Phys. Rev. D 96, no. 1, 014511 (2017).
43. R. Tarrach, Nucl. Phys. B183, 384 (1981).
44. A. Kronfeld, Phys. Rev. D58, 051501 (1998).
45. N. Gray et al., Z. Phys. C48, 673 (1990).
46. D.J. Broadhurst, N. Gray, and K. Schilcher, Z. Phys. C52, 111 (1991).
47. K.G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83, 4001 (1999).
48. K. Melnikov and T. van Ritbergen, Phys. Lett. B482, 99 (2000).
49. M. Beneke and V. M. Braun, Nucl. Phys. B 426, 301 (1994).
50. A.H. Hoang, Z. Ligeti, A.V. Manohar, Phys. Rev. Lett. 82, 277 (1999).
51. A.H. Hoang, Z. Ligeti, A.V. Manohar, Phys. Rev. D59, 074017 (1999).
52. M. Beneke, Phys. Lett. B434, 115 (1998).
53. P. Gambino and N. Uraltsev, Eur. Phys. J. C34, 181 (2004).
54. N. Brambilla et al. [TUMQCD collaboration], Phys. Rev. D 97, no. 3, 034503 (2018).
55. C.T.H. Davies et al. [HPQCD collaboration], Phys. Rev. Lett. 104, 132003 (2010).
56. A. Bazavov et al. [MILC Collaboration], Rev. Mod. Phys. 82, 1349 (2010).
57. Y. B. Yang et al. [χ QCD collaboration], Phys. Rev. D 92, no. 3, 034517 (2015).

60. Top Quark

Revised August 2019 by T.M. Liss (City Coll. of New York), F. Maltoni (CP3 U. catholique de Louvain; Bologna U.) and A. Quadt (Göttingen U.).

60.1 Introduction

In the Standard Model (SM), the left-handed top quark is the $Q=2 / 3, T_{3}=+1 / 2$ member of the weak-isospin doublet containing the bottom quark, while the right-handed top is an $S U(2)_{L}$ singlet (see, e.g., the review "Electroweak Model and Constraints on New Physics"). Its phenomenology is driven by its large mass. Being heavier than a W boson, it is the only quark that decays semi-weakly, i.e., into a real W boson and a b quark. Therefore, it has a very short lifetime and decays before hadronization can occur. In addition, it is the only quark whose Yukawa coupling to the Higgs boson is of order unity. For these reasons, the top quark plays a special role in the Standard Model and in many extensions thereof. Top quark physics provides a unique laboratory where our understanding of the strong interactions, both in the perturbative and non-perturbative regimes, can be tested. An accurate knowledge of its properties (mass, couplings, production cross sections, decay branching ratios, etc.) can bring key information on fundamental interactions at the electroweak symmetry-breaking scale and beyond. This review provides a concise discussion of the experimental and theoretical issues involved in the determination of the top-quark properties.

60.2 Top-quark production at the Tevatron and LHC

In hadron collisions, top quarks are produced dominantly in pairs through the processes $q \bar{q} \rightarrow t \bar{t}$ and $g g \rightarrow t \bar{t}$, at leading order in QCD. Approximately 85% of the production cross section at the Tevatron ($p \bar{p}$ at 1.96 TeV) is from $q \bar{q}$ annihilation, with the remainder from gluon-gluon fusion, while at LHC $(p p)$ energies about 90% of the production is from the latter process at $\sqrt{s}=$ $14 \mathrm{TeV}(\approx 80 \%$ at $\sqrt{s}=7 \mathrm{TeV})$.

Predictions for the top-quark production total cross sections are available at next-to-next-to leading order (NNLO) [1,2], also including next-to-next-to-leading-log (NNLL) soft gluon resummation. Assuming a top-quark mass of $173.3 \mathrm{GeV} / \mathrm{c}^{2}$, close to the Tevatron + LHC average [3], the resulting theoretical prediction of the top-quark pair cross-section at NNLO+NNLL accuracy at the Tevatron at $\sqrt{s}=1.96 \mathrm{TeV}$ is $\sigma_{t \bar{t}}=7.16_{-0.20}^{+0.11+0.17} \mathrm{pb}$ where the first uncertainty is from scale dependence and the second from parton distribution functions. At the LHC, assuming a top-quark mass of $172.5 \mathrm{GeV} / \mathrm{c}^{2}$ the cross sections are: $\sigma_{t \bar{t}}=177.3_{-6.0}^{+4.6+9.0}+\mathrm{pb}$ at $\sqrt{s}=7 \mathrm{TeV}, \sigma_{t \bar{t}}=252.9_{-8.6-11.5}^{+6.4+11.5} \mathrm{pb}$ at $\sqrt{s}=8 \mathrm{TeV}, \sigma_{t \bar{t}}=831.8_{-29.2-35.1}^{+19.8+35.1} \mathrm{pb}$ at $\sqrt{s}=13 \mathrm{TeV}$, and $\sigma_{t \bar{t}}=984.5_{-34.7}^{+23.2+41.3} \mathrm{pb}$ at $\sqrt{s}=14 \mathrm{TeV}[1]$.

Electroweak single top-quark production mechanisms, namely from $q \bar{q}^{\prime} \rightarrow t \bar{b}[4], q b \rightarrow q^{\prime} t[5]$, mediated by virtual s-channel and t-channel W-bosons, and $W t$-associated production, through $b g \rightarrow W^{-} t$, lead to somewhat smaller cross sections. For example, t-channel production, while suppressed by the weak coupling with respect to the strong pair production, is kinematically enhanced, resulting in a sizeable cross section both at Tevatron and LHC energies. At the Tevatron, the t - and s-channel cross sections for top quarks are identical to those for antitop quarks, while at the LHC they are not, due to the charge-asymmetric initial state. Approximate NNLO cross sections for t-channel single top-quark production $(t+\bar{t})$ are calculated for $m_{t}=173.3 \mathrm{GeV} / \mathrm{c}^{2}$ to be $2.06_{-0.13}^{+0.13} \mathrm{pb}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ (scale and parton distribution functions uncertainties are combined in quadrature) [6]. Recently, calculations at NNLO accuracy for the t channel cross section at the LHC have appeared [7,8], predicting $\left(m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}\right): \sigma_{t+\bar{t}}=64.0_{-0.38}^{+0.77} \mathrm{pb}$ at $\sqrt{s}=7 \mathrm{TeV}$, $\sigma_{t+\bar{t}}=84.6_{-0.51}^{+1.0} \mathrm{pb}$ at $\sqrt{s}=8 \mathrm{TeV}, \sigma_{t+\bar{t}}=215_{-1.3}^{+2.1} \mathrm{pb}$ at $\sqrt{s}=13 \mathrm{TeV}$, and $\sigma_{t+\bar{t}}=245_{-1.3}^{+2.7} \mathrm{pb}$ at $\sqrt{s}=14 \mathrm{TeV}$, where the quoted uncertainties are from scale variation only. For the s-channel, NNLO approximated calculations yield $1.03_{-0.05}^{+0.05} \mathrm{pb}$ for the Tevatron, and $4.5_{-0.2}^{+0.2}\left(5.5_{-0.2}^{+0.2}\right) \mathrm{pb}$ for $\sqrt{s}=7$ (8) TeV at the LHC, with 69% (31\%) of top (anti-top) quarks [9]. While negligible at the Tevatron, at LHC energies the $W t$-associated
production becomes relevant. At $\sqrt{s}=7$ (8) TeV , an approximate NNLO calculation gives $15.5_{-1.2}^{+1.2}\left(22.1_{-1.5}^{+1.5}\right) \mathrm{pb}(t+\bar{t})$, with an equal proportion of top and anti-top quarks [10].

Assuming $\left|V_{t b}\right| \gg\left|V_{t d}\right|,\left|V_{t s}\right|$ (see the review "The CKM QuarkMixing Matrix" for more information), the cross sections for single top production are proportional to $\left|V_{t b}\right|^{2}$, and no extra hypothesis is needed on the number of quark families or on the unitarity of the CKM matrix in extracting $\left|V_{t b}\right|$. Separate measurements of the s and t-channel processes provide sensitivity to physics beyond the Standard Model [11].

With a mass above the $W b$ threshold, and $\left|V_{t b}\right| \gg\left|V_{t d}\right|,\left|V_{t s}\right|$, the decay width of the top quark is expected to be dominated by the two-body channel $t \rightarrow W b$. Neglecting terms of order m_{b}^{2} / m_{t}^{2}, α_{s}^{2}, and $\left(\alpha_{s} / \pi\right) M_{W}^{2} / m_{t}^{2}$, the width predicted in the SM at NLO is [12]:
$\Gamma_{t}=\frac{G_{F} m_{t}^{3}}{8 \pi \sqrt{2}}\left(1-\frac{M_{W}^{2}}{m_{t}^{2}}\right)^{2}\left(1+2 \frac{M_{W}^{2}}{m_{t}^{2}}\right)\left[1-\frac{2 \alpha_{s}}{3 \pi}\left(\frac{2 \pi^{2}}{3}-\frac{5}{2}\right)\right]$
(60.1) where m_{t} refers to the top-quark pole mass. The width for a value of $m_{t}=173.3 \mathrm{GeV} / \mathrm{c}^{2}$ is $1.35 \mathrm{GeV} / \mathrm{c}^{2}\left(\right.$ we use $\left.\alpha_{s}\left(M_{Z}\right)=0.118\right)$ and increases with mass. With its correspondingly short lifetime of $\approx 0.5 \times 10^{-24} \mathrm{~s}$, the top quark is expected to decay before topflavored hadrons or $t \bar{t}$-quarkonium-bound states can form [13]. In fact, since the decay time is close to the would-be-resonance binding time, a peak will be visible in $e^{+} e^{-}$scattering at the $t \bar{t}$ threshold [14] and it is in principle present (yet very difficult to measure) in hadron collisions, too [15]. The order $\alpha_{s}^{2} \mathrm{QCD}$ corrections to Γ_{t} are also available [16], thereby improving the overall theoretical accuracy to better than 1%.

The final states for the leading pair-production process can be divided into three classes:
A. $t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow q \bar{q}^{\prime} b q^{\prime \prime} \bar{q}^{\prime \prime \prime} \bar{b}$,
B. $\quad t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow q \bar{q}^{\prime} b \ell^{-} \bar{\nu}_{\ell} \bar{b}+\ell^{+} \nu_{\ell} b q^{\prime \prime} \bar{q}^{\prime \prime \prime} \bar{b}$,
C. $t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow \ell^{+} \nu_{\ell} b \ell^{\prime-} \bar{\nu}_{\ell^{\prime}} \bar{b}$.

The quarks in the final state evolve into jets of hadrons. A, B, and C are referred to as the all-hadronic, lepton + jets $(\ell+$ jets $)$, and dilepton ($\ell \ell$) channels, respectively. Their relative contributions, including hadronic corrections, are given in parentheses assuming lepton universality. While ℓ in the above processes refers to e, μ, or τ, most of the analyses distinguish the e and μ from the τ channel, which is more difficult to reconstruct. Therefore, in what follows, we will use ℓ to refer to e or μ, unless otherwise noted. Here, typically leptonic decays of τ are included. In addition to the quarks resulting from the top-quark decays, extra QCD radiation (quarks and gluons) from the colored particles in the event can lead to extra jets.

The number of jets reconstructed in the detectors depends on the decay kinematics, as well as on the algorithm for reconstructing jets used by the analysis. Information on the transverse momenta of neutrinos is obtained from the imbalance in transverse momentum measured in each event (missing p_{T}, which is here also called missing E_{T}).

The identification of top quarks in the electroweak single top channel is much more difficult than in the QCD $t \bar{t}$ channel, due to a less distinctive signature and significantly larger backgrounds, mostly due to $t \bar{t}$ and $W+$ jets production.

Fully exclusive predictions via Monte Carlo generators for the $t \bar{t}$ and single top production processes at NLO accuracy in QCD, including top-quark decays and possibly off-shell effects are available [17,18] through the MC@NLO [19] and POWHEG [20] methods.

Besides fully inclusive QCD or EW top-quark production, more exclusive final states can be accessed at hadron colliders, whose cross sections are typically much smaller, yet can provide key information on the properties of the top quark. For all relevant final states (e.g., $t \bar{t} V, t \bar{t} V V$ with $V=\gamma, W, Z, t \bar{t} H, t \bar{t}+$ jets, $t \bar{t} b \bar{b}, t \bar{t} t \bar{t})$ automatic or semi-automatic predictions at NLO accuracy in QCD also in the form of event generators, i.e., interfaced
to parton-shower programs, are available (see the review "Monte Carlo event generators" for more information).

60.3 Top-quark measurements

Since the discovery of the top quark, direct measurements of $t \bar{t}$ production have been made at six center-of-mass energies in $p p$ or $p \bar{p}$ and one in $p P b$ collisions, providing stringent tests of QCD. The first measurements were made in Run I at the Tevatron at $\sqrt{s}=1.8 \mathrm{TeV}$. In Run II at the Tevatron relatively precise measurements were made at $\sqrt{s}=1.96 \mathrm{TeV}$. Finally, beginning in 2010, measurements have been made at the LHC at $\sqrt{s}=$ $7 \mathrm{TeV}, \sqrt{s}=8 \mathrm{TeV}$, and $\sqrt{s}=13 \mathrm{TeV}$, and recently also in a dedicated low energy run at $\sqrt{s}=5.02 \mathrm{TeV}$ and at 8.16 TeV in $p P b$ collisions.

Production of single top quarks through electroweak interactions has now been measured with good precision at the Tevatron at $\sqrt{s}=1.96 \mathrm{TeV}$, and at the LHC at $\sqrt{s}=7 \mathrm{TeV}, \sqrt{s}=8 \mathrm{TeV}$, and also at $\sqrt{s}=13 \mathrm{TeV}$. Measurements at the Tevatron have managed to separate the s - and t-channel production cross sections, and at the LHC, the $t W$ mechanism as well, though the t-channel is measured with best precision to date. The measurements allow an extraction of the CKM matrix element $V_{t b}$. Also more exclusive production modes and top-quark properties have been measured in single-top production.

With approximately $10 \mathrm{fb}^{-1}$ of Tevatron data, and almost $5 \mathrm{fb}^{-1}$ at $7 \mathrm{TeV}, 20 \mathrm{fb}^{-1}$ at 8 TeV and $139 \mathrm{fb}^{-1}$ at 13 TeV at the LHC, many properties of the top quark have been measured with high precision. These include properties related to the production mechanism, such as $t \bar{t}$ spin correlations, forward-backward or charge asymmetries, and differential production cross sections, as well as properties related to the $t W b$ decay vertex, such as the helicity of the W-bosons from the top-quark decay. Also studies of the $t \bar{t} \gamma, t \bar{t} Z$ vertices as well as contact $t \bar{t} b \bar{b}$, and $t \bar{t} t \bar{t}$ interactions have been made. In addition, many searches for physics beyond the Standard Model or $t \bar{t} h$ or $t h$ production are being performed with increasing reach in both production and decay channels.

In the following sections we review the current status of measurements of the characteristics of the top quark.

60.3.1 Top-quark production

60.3.1.1 t̄ production

Fig. 60.1 summarizes the $t \bar{t}$ production cross-section measurements from both the Tevatron and LHC. Please note that some cross section measurements at the LHC have luminosity-related uncertainties which have improved in the meantime [21]. The most recent measurement from $\mathrm{D} \emptyset[22](p \bar{p}$ at $\sqrt{s}=1.96 \mathrm{TeV})$, combining the measurements from the dilepton and lepton plus jets final states in $9.7 \mathrm{fb}^{-1}$, is $7.26 \pm 0.13_{-0.50}^{+0.57} \mathrm{pb}$.

From CDF the most precise measurement made recently [23] is in $8.8 \mathrm{fb}^{-1}$ in the dilepton channel requiring at least one b-tag, yielding $7.09 \pm 0.84 \mathrm{pb}$. Both of these measurements assume a topquark mass of $172.5 \mathrm{GeV} / \mathrm{c}^{2}$. The dependence of the cross-section measurements on the value chosen for the mass is less than that of the theory calculations because it only affects the determination of the acceptance. In some analyses also the shape of topological variables might be modified.

Combining the recent cross section measurements with older ones in other channels yields $\sigma_{t \bar{t}}=7.63 \pm 0.50 \mathrm{pb}(6.6 \%)$ for $\mathrm{CDF}, \sigma_{t \bar{t}}=7.56 \pm 0.59 \mathrm{pb}(7.8 \%)$ for $\mathrm{D} \emptyset$ and $\sigma_{t \bar{t}}=7.60 \pm 0.41 \mathrm{pb}$ (5.4\%) for the Tevatron combination [24] in good agreement with the SM expectation of $7.35_{-0.33}^{+0.28} \mathrm{pb}$ at NNLO+NNLL in perturbative QCD [1] for a top mass of 172.5 GeV . The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity.

CDF has measured the $t \bar{t}$ production cross section in the dilepton channel with one hadronically decaying tau in $9.0 \mathrm{fb}^{-1}$, yielding $\sigma_{t \bar{t}}=8.1 \pm 2.1 \mathrm{pb}$. By separately identifying the single-tau and the ditau components, they measure the branching fraction of the top quark into the tau lepton, tau neutrino, and bottom quark to be (9.6 ± 2.8)\% [25]. CDF also performs measurements of the $t \bar{t}$ production cross section normalized to the Z production cross section in order to reduce the impact of the luminosity uncertainty [26].
$\mathrm{D} \emptyset$ has performed a measurement of differential $t \bar{t}$ cross sections in $9.7 \mathrm{fb}^{-1}$ of lepton + jets data as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t \bar{t}$ pair [27]. Observed differential cross sections are consistent with SM predictions.

The LHC experiments ATLAS and CMS use similar techniques to measure the $t \bar{t}$ cross section in $p p$ collisions. The most precise measurements come from the dilepton channel, and in particular the $e \mu$ channel. At $\sqrt{s}=7 \mathrm{TeV}$, ATLAS uses $4.6 \mathrm{fb}^{-1}$ of $e \mu$ events in which they select an extremely clean sample and determine the $t \bar{t}$ cross section simultaneously with the efficiency to reconstruct and tag b-jets, yielding $\sigma_{t \bar{t}}=182.9 \pm 7.1 \mathrm{pb}$, corresponding to 3.9% precision [28]. Other measurements by ATLAS at $\sqrt{s}=7 \mathrm{TeV}$, include a measurement in $0.7 \mathrm{fb}^{-1}$ in the lepton+jets channel [29], in the dilepton channel [30], and in $1.02 \mathrm{fb}^{-1}$ in the all-hadronic channel [31], which together yield a combined value of $\sigma_{t \bar{t}}=177 \pm 3$ (stat. $)_{-7}^{+8}$ (syst.) ± 7 (lumi.) pb (6.2%) assuming $m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}$ [32]. In $4.7 \mathrm{fb}^{-1}$ of allhadronic events, they obtain $\sigma_{t \bar{t}}=168 \pm 62 \mathrm{pb}$ [33]. Further analyses in the hadronic τ plus jets channel in $1.67 \mathrm{fb}^{-1}$ [34] and the hadronic $\tau+$ lepton channel in $2.05 \mathrm{fb}^{-1}$ [35], and the all-hadronic channel in $4.7 \mathrm{fb}^{-1}$ [33] yield consistent albeit less precise results. Another simultaneous measurement of the $t \bar{t}, W^{+} W^{-}$, and $Z / \gamma^{*} \rightarrow \tau \tau$ cross section using the full 7 TeV dataset with $4.6 \mathrm{fb}^{-1}$ yields $\sigma_{t \bar{t}}=181 \pm 11 \mathrm{pb}$, corresponding to a 6% precision [36]. The most precise measurement from CMS at $\sqrt{s}=7 \mathrm{TeV}$ is also obtained in the dilepton channel, where they measure $\sigma_{t \bar{t}}=$ 162 ± 2 (stat.) ± 5 (syst.) ± 4 (lumi.) pb, corresponding to a 4.2% precision [37]. Other measurements at $\sqrt{s}=7 \mathrm{TeV}$ from CMS include measurements with $2.3 \mathrm{fb}^{-1}$ in the $e / \mu+$ jets channel [38], with $3.5 \mathrm{fb}^{-1}$ in the all-hadronic channel [39], with $2.2 \mathrm{fb}^{-1}$ in the lepton $+\tau$ channel [40], and with $3.9 \mathrm{fb}^{-1}$ in the $\tau+$ jets channel [41]. ATLAS and CMS also provide a combined cross section at $\sqrt{s}=7 \mathrm{TeV}$ of 173.3 ± 2.3 (stat.) ± 7.6 (syst.) ± 6.3 (lumi.) pb using slightly older results based on $0.7-1.1 \mathrm{fb}^{-1}$ [42].

At $\sqrt{s}=8 \mathrm{TeV}$, ATLAS measures the $t \bar{t}$ cross section with $20.3 \mathrm{fb}^{-1}$ using $e \mu$ dilepton events, with a simultaneous measurement of the b-tagging efficiency, yielding $\sigma_{t \bar{t}}=242.4 \pm 1.7$ (stat.) \pm 5.5 (syst.) ± 7.5 (lumi.) ± 4.2 (beam energy) pb [43] assuming $m_{t}=$ $172.5 \mathrm{GeV} / \mathrm{c}^{2}$, which corresponds to a 4.7% precision. In the lepton + jets channel, they measure $\sigma_{t \bar{t}}=260 \pm 1(\text { stat. })_{-23}^{+20}$ (syst.) \pm 8 (lumi.) ± 4 (beam energy) pb [29] in $20.3 \mathrm{fb}^{-1}$ using a likelihood discriminant fit and b-jet identification. Subsequently, ATLAS performed a new analysis in $20.2 \mathrm{fb}^{-1}$ lepton+jets events. They model the $W+$ jets background using $Z+$ jets data and employ neural networks in three jet-multiplicity and b-jet multiplicity regions for the signal and background separation, yielding $\sigma_{t \bar{t}}=248.3 \pm 0.7($ stat. $) \pm 13.4($ syst. $) \pm 4.7$ (lumi.) pb [44]. ATLAS also performed a cross section measurement in the hadronic $\tau+$ jets channel yielding consistent, albeit less precise results [45]. CMS performs a template fit to the $M_{l b}$ mass distribution using $19.6 \mathrm{fb}^{-1}$ in the lepton+jets channel yielding $\sigma_{t \bar{t}}=228.5 \pm$ 3.8 (stat.) ± 13.7 (syst.) ± 6 (lumi.) pb $[46,47]$. These 8 TeV measurements are in agreement with QCD predictions up to NLO accuracy. In the $e \mu$ channel, initially using $5.3 \mathrm{fb}^{-1}$ [47] and then using $19.7 \mathrm{fb}^{-1}$, the cross sections are extracted using a binned likelihood fit to multi-differential final state distributions related to identified b quark and other jets in the event, yielding $\sigma_{t \bar{t}}=244.9 \pm 1.4(\text { stat. })_{-5.5}^{+6.3}$ (sys.) $\pm 6.4($ lumi. $) \mathrm{pb}[48]$. The cross section and its ratio between 7 TeV and 8 TeV measurements are found to be consistent with pQCD calculations. The cross section is also measured in the hadronic $\tau+$ jets channel, yielding $\sigma_{t \bar{t}}=257 \pm 3$ (stat.) ± 24 (syst.) ± 7 (lumi.) pb [49] and in the allhadronic final state giving $\sigma_{t \bar{t}}=275.6 \pm 6.1$ (stat.) ± 37.8 (syst.) \pm 7.2 (lumi.) pb [50]. In combination of the most precise $e \mu$ measurements in $5.3-20.3 \mathrm{fb}^{-1}$, ATLAS and CMS together yield at $8 \mathrm{TeV} \sigma_{t \bar{t}}=241.5 \pm 1.4$ (stat.) ± 5.7 (syst.) ± 6.2 (lumi.) pb [51], which corresponds to a 3.5% precision, challenging the precision of the corresponding theoretical predictions. The LHCb collaboration presented the first observation of top-quark production in the forward region in $p p$-collisions. The $W+b$ final state with $W \rightarrow \mu \nu$ is reconstructed using muons with a transverse momentum, p_{T}, larger than 25 GeV in the pseudorapidity range $2.0<\eta<4.5$.

The b-jets are required to have $50 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<100 \mathrm{GeV}$ and $2.2<\eta<4.2$, while the transverse component of the sum of the muon and b-jet momenta must satisfy $p_{T}>20 \mathrm{GeV}$. The results are based on data corresponding to integrated luminosities of 1.0 and $2.0 \mathrm{fb}^{-1}$ collected at center-of-mass energies of 7 and 8 TeV by LHCb . The inclusive top quark production cross sections in the fiducial region are $\sigma_{t \bar{t}}=239 \pm 53$ (stat.) ± 38 (syst.) pb at 7 TeV , and $\sigma_{t \bar{t}}=289 \pm 43$ (stat.) ± 46 (syst.) pb at 8 TeV [52].

ATLAS and CMS have also measured the $t \bar{t}$ production cross section with Run-II data at $\sqrt{s}=13 \mathrm{TeV}$. In the $e \mu$ events with at least one b-tag, ATLAS uses $78 \mathrm{pb}^{-1}$ and obtains $\sigma_{t \bar{t}}=$ $825 \pm 114 \mathrm{pb}$ [53]. This measurement is updated with lepton identification and trigger efficiencies to give $\sigma_{t \bar{t}}=829 \pm 50($ stat $) \pm$ 56 (syst) ± 83 (lumi) pb [54]. In this note, ATLAS also presents a $t \bar{t}$ cross section measurement in the $e e$ and $\mu \mu$ dilepton channel with one and two b-tags using a counting approach, yielding $\sigma_{t \bar{t}}=749 \pm 57($ stat $) \pm 79($ syst $) \pm 74$ (lumi) pb. In the lepton-plus-jets channel, using $85 \mathrm{pb}^{-1}$, the cross-section is extracted by counting the number of events with exactly one electron or muon and at least four jets, at least one of which is identified as originating from a b-quark, yielding $\sigma_{t \bar{t}}=817 \pm 13($ stat $) \pm$ 103 (syst) ± 88 (lumi) pb, both assuming $m_{t}=172.5 \mathrm{GeV}$ [54]. The cross section measurement in the $e \mu$ channel counting events with one or with two b-tags is also repeated using $3.2 \mathrm{pb}^{-1}$ and yields $\sigma_{t \bar{t}}=818 \pm 8($ stat $) \pm 27$ (syst) ± 19 (lumi) ± 12 (beam) pb [55], consistent with theoretical QCD calculations at NNLO. Very recently, ATLAS measures the inclusive $t \bar{t}$ cross section in $139 \mathrm{fb}^{-1}$ in the lepton-plus-jets channel through a profile-likelihood fit to be $\sigma_{t \bar{t}}=830.4 \pm 0.4(\text { stat })_{-37.0}^{+38.2}($ syst $) \mathrm{pb}$, with a relative uncertainty of 4.6% [56]. The result is consistent with the theoretical calculations at NLO order in QCD perturbation theory. In $36.1 \mathrm{fb}^{-1}$ of $e \mu$ data with one or two b-tags, ATLAS measures the $t \bar{t}$ cross section to $\sigma_{t \bar{t}}=826.4 \pm 3.6($ stat $) \pm 11.5($ syst $) \pm$ 15.7 (lumi) ± 1.9 (beam) pb, giving a total of 2.4%. This measurement is also used to determine the top quark pole mass and to derive ratios and double ratios of $t \bar{t}$ and Z cross-sections at different energies as well as absolute and normalised differential cross-sections as functions of single lepton and dilepton kinematic variables [57]. CMS uses $43 \mathrm{pb}^{-1}$ in the $e \mu$ channel to measure $\sigma_{t \bar{t}}=746 \pm 58$ (stat) ± 53 (syst) ± 36 (lumi) pb, in agreement with the expectation from the standard model [58]. Using $2.2 \mathrm{fb}^{-1}$ in the $e \mu$ channel with at least one b-jet, CMS measures $\sigma_{t \bar{t}}=815 \pm 9($ stat $) \pm 38($ syst $) \pm 19$ (lumi) pb, in agreement with the expectation from the Standard Model [59]. A first measurement of the total inclusive and the normalized differential cross section in the lepton-plus-jets channel is made in $42 \mathrm{pb}^{-1}$ yielding $\sigma_{t \bar{t}}=836 \pm 27$ (stat) ± 88 (syst) ± 100 (lumi) pb [60]. In $2.2 \mathrm{fb}^{-1}$, lepton-plus-jets events are categorized according to the accompanying jet multiplicity. From a likelihood fit to the invariant mass distribution of the isolated lepton and a b-jet, the cross section is measured to be $\sigma_{t \bar{t}}=888 \pm 2(\text { stat })_{-28}^{+26}($ syst $) \pm 20$ (lumi) pb , in agreement with the SM prediction [61]. This result is also used to extract the top-quark mass. Using $35.9 \mathrm{fb}^{-1}$ of dilepton data, CMS measures the $t \bar{t}$ cross section using a likelihood fit $\sigma_{t \bar{t}}=803 \pm 2($ stat $) \pm 25($ syst $) \pm 20$ (lumi) pb, in agreement with the expectation from the SM calculation at NLO order. This result is also used to extract the top quark mass and the strong coupling constant [62]. Very recently, using the same dataset in the dilepton channel with a hadronically decaying τ, they measure $\sigma_{t \bar{t}}=781 \pm 7$ (stat) ± 62 (syst) ± 20 (lumi) pb [63]. In the allhadronic channel, CMS uses $2.53 \mathrm{fb}^{-1}$ of data, yielding a cross section of $\sigma_{t \bar{t}}=834 \pm 25$ (stat.) ± 23 (lumi.) pb [64]. Also differential cross sections as a function of the leading top quark transverse momentum are measured. As general feature found across channels, it is found that measured top quark p_{T} spectrum is significantly softer than the theory predictions.

In addition, CMS has also measured the top-quark pair production cross section in a special LHC run with $\sqrt{s}=5.02 \mathrm{TeV}$, accumulating $27.4 \mathrm{pb}^{-1}$. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is $\sigma_{t \bar{t}}=69.5 \pm 8.4 \mathrm{pb}$ [65], in agreement with the expectation from the Standard Model. In order to test consistency of the cross-section measurements with some systematic uncertain-
ties cancelling out while testing pQCD and PDFs, cross-section ratios between mesurements at 7 TeV and at 8 TeV are performed and cited in several cases. In other cases, the cross-section ratio between $t \bar{t}$ - and Z-production is determined as that is independent of luminosity uncertainties, but keeps its sensitivity to the ratio of gluon versus quark PDFs. These experimental results should be compared to the theoretical calculations at NNLO+NNLL that yield $7.16_{-0.23}^{+0.20} \mathrm{pb}$ for top-quark mass of $173.3 \mathrm{GeV} / \mathrm{c}^{2}$ [1] at $\sqrt{s}=1.96 \mathrm{TeV}$, and for top-quark mass of $173.2 \mathrm{GeV} / \mathrm{c}^{2}$ $\sigma_{t \bar{t}}=173.6_{-5.9-8.9}^{+4.5+8.9} \mathrm{pb}$ at $\sqrt{s}=7 \mathrm{TeV}, \sigma_{t \bar{t}}=247.7_{-8.5-11.5}^{+6.3+11.5} \mathrm{pb}$ at $\sqrt{s}=8 \mathrm{TeV}$, and $\sigma_{t \bar{t}}=816.0_{-28.6-34.4}^{+19.4+34.4} \mathrm{pb}$ at $\sqrt{s}=13 \mathrm{TeV}$, at the LHC [1]. CMS also performed a measurement of top-quark pair production in $p P b$ heavy ion collisions at $\sqrt{s}=8.16 \mathrm{TeV}$ in $174 \mathrm{nb}^{-1}$ of lepton + jets events. They measure a cross section of $\sigma_{t \bar{t}}=45 \pm 8 \mathrm{pb}$, which is consistent with pQCD calculations and with the scaled $p p$ data [66].

Figure 60.1: Measured and predicted $t \bar{t}$ production cross sections from Tevatron energies in $p \bar{p}$ collisions to LHC energies in $p p$ collisions. Tevatron data points at $\sqrt{s}=1.8 \mathrm{TeV}$ are from Refs. [67, 68]. Those at $\sqrt{s}=1.96 \mathrm{TeV}$ are from Refs. [22-24]. The ATLAS, CMS, and LHCb data points are from Refs. [28, 37, 42, 47, 51, 52, 55, 62], and [65], respectively. Theory curves and uncertainties are generated using [1] for $m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}$, the m_{t} value assumed in the cross-section measurements. Figure adapted from Ref. [69].

In Fig. 60.1, one sees the importance of $p \bar{p}$ at Tevatron energies where the valence antiquarks in the antiprotons contribute to the dominant $q \bar{q}$ production mechanism. At LHC energies, the dominant production mode is gluon-gluon fusion and the $p p-p \bar{p}$ difference nearly disappears. The excellent agreement of these measurements with the theory calculations is a strong validation of QCD and the soft-gluon resummation techniques employed in the calculations. The measurements reach high precision and provide stringent tests of pQCD calculations at NNLO+NNLL level including their respective PDF uncertainties.

Most of these measurements assume a $t \rightarrow W b$ branching ratio of 100%. CDF and D \emptyset have made direct measurements of the $t \rightarrow W b$ branching ratio [70]. Comparing the number of events with 0,1 and 2 tagged b jets in the lepton + jets channel, and also in the dilepton channel, using the known b-tagging efficiency, the ratio $R=B(t \rightarrow W b) / \sum_{q=d, s, b} B(t \rightarrow W q)$ can be extracted. In $5.4 \mathrm{fb}^{-1}$ of data, $\mathrm{D} \emptyset$ measures $R=0.90 \pm 0.04,2.5 \sigma$ from unity. The currently most precise measurement was made by CMS in $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$. They find $R=1.014 \pm$ 0.003 (stat.) ± 0.032 (syst.) and $R>0.955$ at 95% C.L. [71]. A significant deviation of R from unity would imply either non-SM top-quark decay (for example a flavor-changing neutral-current decay), or a fourth generation of quarks.

Thanks to the large available event samples, the Tevatron and the LHC experiments also performed differential cross-section measurements in $t \bar{t}$ production. Such measurements are crucial, as they allow even more stringent tests of perturbative QCD as description of the production mechanism, allow the extraction or the use of PDF fits, and enhance the sensitivity to possible
new physics contributions, especially now that NNLO predictions for the main differential observables in $t \bar{t}$ prediction have become available [72] and recently confirmed [2]. Furthermore, such measurements reduce the uncertainty in the description of $t \bar{t}$ production as background in Higgs physics and searches for rare processes or beyond Standard Model physics. Differential cross sections are typically measured by a selection of candidate events, their kinematic reconstruction and subsequent unfolding of the obtained event counts in bins of kinematic distributions in order to correct for detector resolution effects, acceptance and migration effects. In some cases a bin-by-bin unfolding is used, while other analyses use more sophisticated techniques.

Experiments at Tevatron and LHC measure the differential cross section with respect to the $t \bar{t}$ invariant mass, $d \sigma / d M_{t \bar{t}}$. The spectra are fully corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations as well as selected theoretical calculations.

Using $9.45 \mathrm{fb}^{-1}$, CDF measured $d \sigma / d M_{t \bar{t}}$, in the lepton+jets channel providing sensitivity to a variety of exotic particles decaying into $t \bar{t}$ pairs [73]. In $9.7 \mathrm{fb}^{-1}$ of lepton+jets data, $\mathrm{D} \emptyset$ measured the differential $t \bar{t}$ production cross section with respect to the transverse momentum and absolute rapidity of the top quarks as well as of the invariant mass of the $t \bar{t}$ pair [27], which are all found to be in good agreement with the SM predictions.

ATLAS measured the differential $t \bar{t}$ production cross section with respect to the top-quark transverse momentum, and of the mass, transverse momentum and rapidity of the top quark, the antitop quark as well as the $t \bar{t}$ system in $4.6 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ in the lepton+jets channel [74-76]. It is found that data is softer than all predictions for higher values of the mass of the $t \bar{t}$ system as well as in the tail of the top-quark p_{T} spectrum beginning at 200 GeV , particularly in the case of the Alpgen+Herwig generator. The $M_{t \bar{t}}$ spectrum is not well described by NLO+NNLL calculations and there are also disagreements between the measured rapidity of the $t \bar{t}$ system spectrum and the MC@NLO+Herwig and POWHEG+Herwig generators, both evaluated with the CT10 PDF set. All distributions show a preference for HERAPDF1.5 when used for the NLO QCD predictions. In $5.0 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ data in the lepton+jets and the dilepton channels, CMS measured normalised differential $t \bar{t}$ cross sections with respect to kinematic properties of the final-state charged leptons and jets associated to b-quarks, as well as those of the top quarks and the $t \bar{t}$ system. The data are compared with several predictions from perturbative QCD calculations and found to be consistent [77]. ATLAS uses $4.6 \mathrm{fb}^{-1}$ of data at 7 TeV and $20.2 \mathrm{fb}^{-1}$ at 8 TeV to measure the differential $t \bar{t}$ cross section in the dilepton final state as a function of the mass, the transverse momentum and the rapidity of the $t \bar{t}$ system [78]. The results are compared with different Monte Carlo generators and theoretical calculations of $t \bar{t}$ production and found to be consistent with the majority of predictions in a wide kinematic range. Using $20.3 \mathrm{fb}^{-1}$ of $t \bar{t}$ events in the lepton + jets channel, ATLAS measures the normalized differential cross sections of $t \bar{t}$ production as a function of the top-quark, $t \bar{t}$ system and event-level kinematic observables [79]. The observables have been chosen to emphasize the $t t$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings in the Monte Carlo programs and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used. Using $20.3 \mathrm{fb}^{-1}$ of 8 TeV data, ATLAS performed a dedicated differential $t \bar{t}$ cross-section measurement of highly boosted top quarks in the lepton+jets channel, where the hadronically decaying top quark has a transverse momentum above 300 GeV [80]. Jet substructure techniques are employed to identify top quarks, which are reconstructed with an anti- k_{t} jet with a radius param-
eters $R=1.0$. The predictions of NLO and LO matrix element plus parton shower Monte Carlo generators are found to generally overestimate the measured cross sections.

Using $5.0 \mathrm{fb}^{-1}$ of data at 7 TeV and $19.7 \mathrm{fb}^{-1}$ at 8 TeV in the lepton+jets channel, CMS reports measurements of normalized differential cross sections for $t \bar{t}$ production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum $\left(p_{T}\right)$; the scalar sum of the p_{T} of all objects in the event; and the p_{T} of leptonically decaying W bosons from top quark decays [81]. No significant deviations from the predictions of several SM event generators are observed. Using the full $19.7 \mathrm{fb}^{-1}$ data in the $e \mu$ channel, CMS measures normalized double-differential cross sections for $t \bar{t}$ production as a function of various pairs of observables characterizing the kinematics of the top quark and $t \bar{t}$ system [82]. The data are compared to calculations using perturbative QCD at NLO and approximate NNLO orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets (as determined here by CMS) of proton parton distribution functions are used. The inclusion of the measured $t \bar{t}$ cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution [82]. Another analysis at high transverse momentum regime for the top quarks, is performed by the CMS collaboration in $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ [83]. The measurement is performed for events in electron/muon plus jets final states where the hadronically decaying top quark is reconstructed as a single large-radius jet and identified as a top candidate using jet substructure techniques. The integrated cross section is measured at particle-level within a fiducial region resembling the detector-level selection as well as at parton-level. At particle-level, the fiducial cross section is measured to be $\sigma_{t \bar{t}}=$ 1.28 ± 0.09 (stat. + syst.) $\pm 0.10(p d f) \pm 0.09$ (scales) ± 0.03 (lumi.) pb for $p_{T}>400 \mathrm{GeV}$. At parton-level, it translates to $\sigma_{t \bar{t}}=$ $1.44 \pm 0.10($ stat. + syst. $) \pm 0.13(p d f) \pm 0.15($ scales $) \pm 0.04($ lumi. $)$ pb.

At parton-level, interactions between incoming partons (quarks or gluons) are considered via a gauge interaction yielding final state partons. While such interactions can be well described theoretically, partons are not visible in the detector. At the particlelevel, visible and measurable hadrons, i.e. bound states of quarks and anti-quarks, are considered to form jets. The hadronisation process takes us from one level to the other.
In $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$, CMS repeated those measurements in the lepton + jets and in the dilepton channels [84]. While the overall precision is improved, no significant deviations from the Standard Model are found, yet a softer spectrum for the top quark at high p_{T} with respect to theoretical available predictions has been observed. This behaviour has been also observed in the all-hadronic final state [85], where also a total cross measurement is performed, yielding $\sigma_{t \bar{t}}=275.6 \pm 6.1$ (stat) ± 37.8 (syst) \pm 7.2 (lumi) pb is obtained. In $3.2 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$, ATLAS measured the differential $t \bar{t}$ cross section as a function of the transverse momentum and absolute rapidity of the top quark, and of the transverse momentum, absolute rapidity and invariant mass of the $t \bar{t}$ system [86, 87]. The measured differential cross sections are compared to predictions of NLO generators matched to parton showers and the measurements are found to be consistent with all models within the experimental uncertainties with the exception of the Powheg-Box+ Herwig++ predictions, which differ significantly from the data in both the transverse momentum of the top quark and the mass of the $t \bar{t}$ system. Using $3.2 \mathrm{fb}^{-1}$ of data in the lepton+jets channel, ATLAS measured the differential cross sections of $t \bar{t}$ production in fiducial phase-spaces as a function of top-quark and $t \bar{t}$ system kinematic observables [88]. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t \bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated χ^{2} and p-values. At a center-of-mass energy of 13 TeV , ATLAS presents a measurement of the boosted top quark
differential cross section in the all-hadronic decay mode [89]. They require two top-quark candidates, one with $p_{T}>500 \mathrm{GeV}$ and a second with $p_{T}>350 \mathrm{GeV}$, with each candidate reconstructed as an anti- k_{T} jet with radius parameter $R=1.0$. The top-quark candidates are separated from the multijet background using the jet substructure and the presence of a b-quark tag in each jet. The observed kinematic distributions are unfolded to recover the differential cross sections in a limited phase-space region and compared with SM predictions, showing agreement. In addition, ATLAS measures the differential $t \bar{t}$ cross section of highly boosted top-quarks decaying to all-hadronic final states in $36.1 \mathrm{fb}^{-1}$ using jet substructure information [90]. In $36 \mathrm{fb}^{-1}$, ATLAS measures the single- and double-differential $t \bar{t}$ cross-section in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t \bar{t}$ system and jet multiplicities. Overall, there is good agreement between the theoretical predictions and the data [91]. In $2.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$, CMS measures the normalized differential cross sections for $t \bar{t}$ production in the dilepton channels as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels [92]. The results are compared to several Monte Carlo generators that implement calculations up to NLO in perturbative QCD interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to NNLO, showing agreement. In $2.3 \mathrm{fb}^{-1}$ of events in the lepton+jets channel, CMS measures the differential and doubledifferential cross sections for the $t \bar{t}$ production as a function of jet multiplicity and of kinematic variables of the top quarks and the $t \bar{t}$ system [93]. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several SM predictions. Using $35.9 \mathrm{fb}^{-1}$, CMS measures the differential $t \bar{t}$ cross section in the single-lepton decay channel, as a function of a number of kinematic event variables. The data are compared to a variety of state-of-the-art LO and NLO simulations [94]. In $35.8 \mathrm{fb}^{-1}$, CMS measures the differential and double-differential $t \bar{t}$ cross sections in the lepton-plus-jets channel as a function of kinematic variables of the top quarks and the top quark-antiquark $(t \bar{t})$ system. In addition, kinematic variables and multiplicities of jets associated with the $t \bar{t}$ production are measured. The kinematic variables of the top quarks and the $t \bar{t}$ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of NLO calculations and parton shower models [95]. In the dilepton channel, CMS measures differential $t \bar{t}$ cross sections in $35.9 \mathrm{fb}^{-1}$ as functions of kinematic observables of the top quarks and their decay products, the $t \bar{t}$ system, and the total number of jets in the event. All results are compared with SM predictions from Monte Carlo simulations with NLO accuracy in QCD at matrix-element level interfaced to parton-shower simulations. Where possible, partonlevel results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $t \bar{t}$ and leptonic charge asymmetries [96]. In $35.9 \mathrm{fb}^{-1}$ of dilepton events, CMS measures normalised multi-differential $t \bar{t}$ cross sections as a function of the kinematic properties of the top quark and of the $t \bar{t}$ system at parton level in the full phase space. A triple-differential measurement is performed as a function of the invariant mass and rapidity of the $t \bar{t}$ system and the multiplicity of additional jets at particle level. The data are compared to predictions of Monte Carlo event generators that complement NLO QCD calculations with parton showers. The measurement is used to extract the strong coupling constant and the top-quark pole mass and parton distribution functions [97]. Further cross-section measurements are performed by ATLAS for $t \bar{t}+$ heavy flavour [98] and $t \bar{t}+$ jets production as well as the differential measurement of
the jet multiplicity in $t \bar{t}$ events [99, 100]. Here, MC@NLO+Herwig MC is found to predict too few events at higher jet multiplicities. In addition, CMS measured the cross-section ratio $\sigma_{t \bar{t} b \bar{b}} / \sigma_{t \bar{t} j j}$ using $19.6 \mathrm{fb}^{-1}$ of 8 TeV data [101]. This is of high relevance for top quark production as background to searches, for example for measurements of $t \bar{t} h$ production and ongoing searches for 4 -top quark production. Later, ATLAS also measured the $t \bar{t}$ production cross section along with as the branching ratios into channels with leptons and quarks using $4.6 \mathrm{fb}^{-1}$ of 7 TeV data [102]. They find agreement with the standard model at the level of a few percent. In $36.1 \mathrm{fb}^{-1}$, ATLAS measures the $t \bar{t} b \bar{b}$ cross section in the dilepton and the lepton-plus-jet channels. Results are presented at particle level in the form of inclusive cross-sections of $t \bar{t}$ final states with three and four b-jets as well as differential cross-sections as a function of global event properties and properties of b-jet pairs. The measured inclusive fiducial cross-sections generally exceed the $t \bar{t} b \bar{b}$ predictions from various NLO matrix element calculations matched to a parton shower, but are compatible within the total uncertainties [103]. In $2.3 \mathrm{fb}^{-1}$, CMS measures the $t \bar{t} b \bar{b}$ cross section in the dilepton channel [104]. They also determine the cross section ratio $\sigma_{t \bar{t} b \bar{b}} / \sigma_{t \bar{t} j j}$. In $35.9 \mathrm{fb}^{-1}$, CMS recently measured the cross section $t \bar{t} b \bar{b}$ as well as the cross section ratio $\sigma_{t \bar{t} b \bar{b}} / \sigma_{t \bar{t} j j}$ in the dilepton and the lepton+jets channel [105]. They fit the distribution of the b tagging discriminant variable of the two jets that do not belong to the $t \bar{t}$ decay. In the same dataset, CMS measures the $t \bar{t} b \bar{b}$ cross section in the all-jet channel by selecting events containing at least eight jets, of which at least two are identified as b-jets. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The measured cross sections are found to be larger than theoretical predictions by a factor of $1.5-2.4$, corresponding to $1-2$ standard deviations [106].

60.3.1.2 Single-top production

Single-top quark production was first observed in 2009 by D \varnothing [107] and CDF $[108,109]$ at the Tevatron. The production cross section at the Tevatron is roughly half that of the $t \bar{t}$ cross section, but the final state with a single W-boson and typically two jets is less distinct than that for $t \bar{t}$ and much more difficult to distinguish from the background of $W+$ jets and other sources. A comprehensive review of the first observation and the techniques used to extract the signal from the backgrounds can be found in [110].

The dominant production at the Tevatron is through s-channel and t-channel W-boson exchange. Associated production with a W-boson ($t W$ production) has a cross section that is too small to observe at the Tevatron. The t-channel process is $q b \rightarrow q^{\prime} t$, while the s-channel process is $q \overline{q^{\prime}} \rightarrow t \bar{b}$. The s - and t-channel productions can be separated kinematically. This is of particular interest because potential physics beyond the Standard Model, such as fourth-generation quarks, heavy W and Z bosons, flavor-changing-neutral-currents [11], or a charged Higgs boson, would affect the s - and t-channels differently. However, the separation is difficult and initial observations and measurements at the Tevatron by both experiments were of combined $s+t$-channel production. The two experiments combined their measurements for maximum precision with a resulting $s+t$-channel production cross section of $2.76_{-0.47}^{+0.58} \mathrm{pb}$ [111]. The measured value assumes a topquark mass of $170 \mathrm{GeV} / \mathrm{c}^{2}$. The mass dependence of the result comes both from the acceptance dependence and from the $t \bar{t}$ background evaluation. Also the shape of discriminating topological variables is sensitive to m_{t}. The dependence on m_{T} is therefore not necessarily a simple linear dependence but amounts to only a few tenths of picobarns over the range $170-175 \mathrm{GeV} / \mathrm{c}^{2}$. The measured value agrees well with the theoretical calculation at $m_{t}=173 \mathrm{GeV} / \mathrm{c}^{2}$ of $\sigma_{s+t}=3.12 \mathrm{pb}$ (including both top and anti-top production) [6,9].

Using the full Run-II data set of up to $9.7 \mathrm{fb}^{-1}, \mathrm{CDF}$ and $\mathrm{D} \varnothing$ have measured the t-channel single-top quark production to be $\sigma_{t+\bar{t}}=2.25_{-0.31}^{+0.29} \mathrm{pb}[112,113]$. In the same publication, they also present the simultaneously measured s - and t-channel cross
sections and the $s+t$ combined cross section measurement resulting in $\sigma_{s+t}=3.30_{-0.40}^{+0.52} \mathrm{pb}$, without assuming the SM ratio of σ_{s} / σ_{t}. The modulus of the CKM matrix element obtained from the $s+t$-channel measurement is $\left|V_{t b}\right|=1.02_{-0.05}^{+0.06}$ and its value is used to set a lower limit of $\left|V_{t b}\right|>0.92$ at 95% C.L. Those results are in good agreement with the theoretical value at the mass $172.5 \mathrm{GeV} / \mathrm{c}^{2}$ of $\sigma_{t}=2.08 \pm 0.13 \mathrm{pb}[6]$. It should be noted that the theory citations here list cross sections for t or \bar{t} alone, whereas the experiments measure the sum. At the Tevatron, these cross sections are equal. The theory values quoted here already include this factor of two.

Using datasets of $9.7 \mathrm{fb}^{-1}$ each, CDF and DØ combine their analyses and report the first observation of single-top-quark production in the s-channel, yielding $\sigma_{s}=1.29_{-0.24}^{+0.26} \mathrm{pb}$ [114]. The probability of observing a statistical fluctuation of the background of the given size is 1.8×10^{-10}, corresponding to a significance of 6.3 standard deviations.

At the LHC, the t-channel cross section is expected to be more than three times as large as s-channel and $t W$ production, combined. Both ATLAS and CMS have measured single top production cross sections at $\sqrt{s}=7 \mathrm{TeV}$ in $p p$ collisions (assuming $m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}$ unless noted otherwise).

Using $4.59 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7 \mathrm{TeV}$, ATLAS measures the t channel single-top quark cross section in the lepton plus 2 or 3 jets channel with one b-tag by fitting the distribution of a multivariate discriminant constructed with a neural network, yielding $\sigma_{t}=$ $46 \pm 6 \mathrm{pb}, \sigma_{\bar{t}}=23 \pm 4 \mathrm{pb}$ with a ratio $R_{t}=\sigma_{t} / \sigma_{\bar{t}}=2.04 \pm 0.18$ and $\sigma_{t+\bar{t}}=68 \pm 8 \mathrm{pb}$, consistent with SM expectations [115,116]. CMS follows two approaches in $1.6 \mathrm{fb}^{-1}$ of lepton plus jets events. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. They find $\sigma_{t+\bar{t}}^{t-\text { channel }}=67.2 \pm 6.1 \mathrm{pb}$, and $\left|V_{t b}\right|=1.020 \pm 0.046($ exp. $) \pm$ 0.017 (th.) [117].

At $\sqrt{s}=8 \mathrm{TeV}$, both experiments repeat and refine their measurements. ATLAS uses $20.2 \mathrm{fb}^{-1}$ of data. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production [118]. An artificial neural network is employed to separate signal from background. The fiducial crosssection is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{t}^{t-c h a n n e l}(t q)=56.7_{-3.8}^{+4.3} \mathrm{pb}$ for top-quark production and $\sigma_{\bar{t}}^{t-\text { channel }}(\bar{t} q)=32.9_{-2.7}^{+3.0} \mathrm{pb}$ for top-antiquark production, in agreement with the SM prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_{t}=1.72 \pm 0.09$. The total cross-section is used to extract the $W t b$ coupling: $f_{L V} \cdot\left|V_{t b}\right|=1.029 \pm 0.048$, which corresponds to $\left|V_{t b}\right|>0.92$ at the 95% confidence level, when assuming $f_{L V}=1$ and restricting the range of $\left|V_{t b}\right|$ to the interval $[0,1]$. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixedorder QCD calculations where available. The SM predictions provide good descriptions of the data. Using the same dataset, ATLAS probes the $W t b$ vertex structure from polarisation observables in t-channel single-top quark events. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W-boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W-boson polarisation values are in agreement with the Standard Model predictions [119]. CMS uses $19.7 \mathrm{fb}^{-1}$ in the electron or muon plus jets channel, exploiting the pseudorapidity distribution of the recoil jet. They find
$\sigma_{t}=53.8 \pm 1.5($ stat. $) \pm 4.4$ (syst.) pb and $\sigma_{\bar{t}}=27.6 \pm 1.3($ stat. $) \pm$ 3.7 (syst.) pb, resulting in an inclusive t-channel cross section of $\sigma_{t+\bar{t}}=83.6 \pm 2.3$ (stat.) ± 7.4 (syst.) [120]. They measure a cross section ratio of $R_{t}=\sigma_{t} / \sigma_{\bar{t}}=1.95 \pm 0.10$ (stat.) ± 0.19 (syst.), in agreement with the SM. The CKM matrix element $V_{t b}$ is extracted to be $\left|V_{t b}\right|=0.998 \pm 0.038($ exp. $) \pm 0.016(t h$.$) . Later,$ CMS has also provided a fiducial cross section measurement for t-channel single top at $\sqrt{s}=8 \mathrm{TeV}$ with $19.7 \mathrm{fb}^{-1}$ of data in signal events with exactly one muon or electron and two jets, one of which is associated with a b-hadron [121]. The definition of the fiducial phase space follows closely the constraints imposed by event-selection criteria and detector acceptance. The total fiducial cross section is measured using different generators at next-to-leading order plus parton-shower accuracy. Using as reference the aMC@NLO MC predictions in the four-flavour scheme a $\sigma_{t}^{\text {fid }}=3.38 \pm 0.25(e x p.) \pm 0.20(t h)$.pb is obtained, in good agreement with the theory predictions. At 13 TeV , ATLAS uses $3.2 \mathrm{fb}^{-1}$ to measurement the t-channel cross section. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma_{t}(t q)=156 \pm 5($ stat. $) \pm 27($ syst.) ± 3 (lumi.) pb and $\sigma(\bar{t} q)=$ 91 ± 4 (stat.) ± 18 (syst.) ± 2 (lumi.) pb [122]. The cross-section ratio is measured to be $R_{t}=\sigma_{t} / \sigma_{\bar{t}}=1.72 \pm 0.09$ (stat.) ± 0.18 (syst.). All results are in agreement with SM predictions. A measurement of the t-channel single top-quark cross section is also available at 13 TeV with the CMS detector, corresponding to an integrated luminosity of $2.2 \mathrm{fb}^{-1}$. Fits to the transverse W-mass and the output of an artificial neural network allow the determination of the background and the signal contribution. The measured crosssection is $\sigma_{t}=238 \pm 13 \pm 29 \mathrm{pb}$ [123]. The CKM matrix is determined to $\left|V_{t b}\right|=1.05 \pm 0.07$ (exp.) ± 0.02 (th.). Using $35.9 \mathrm{fb}^{-1}$ of data, CMS performs measurements of the t-channel cross sections of single top quarks and antiquarks in the t channel, and their ratio. Events with one muon or electron are selected, and different categories of jet and b-jet multiplicity and multivariate discriminators are applied to separate the signal from the background, resulting in $\sigma_{t}(t q)=136 \pm 1$ (stat) ± 22 (syst) pb and $\sigma_{t}(\bar{t} q)=82 \pm 1($ stat $) \pm 14($ syst $) \mathrm{pb}$, respectively, and their ratio is 1.66 ± 0.02 (stat) ± 0.05 (syst). The results are in agreement with the predictions from the Standard Model [124].

The predicted cross section for $t W$ process at the LHC $\sqrt{s}=$ 7 TeV is $15.6 \pm 1.2 \mathrm{pb}$ [10]. This is of interest because it probes the $W t b$ vertex in a different kinematic region than s - and t-channel production, and because of its similarity to the associated production of a charged-Higgs boson and a top quark. The signal is difficult to extract because of its similarity to the $t \bar{t}$ signature. Furthermore, it is difficult to uniquely define because at NLO a subset of diagrams have the same final state as $t \bar{t}$ and the two interfere [125]. The cross section is calculated using the diagram removal technique [126] to define the signal process. In the diagram removal technique the interfering diagrams are removed, at the amplitude level, from the signal definition (an alternative technique, diagram subtraction removes these diagrams at the crosssection level and yields similar results [126]). These techniques work provided the selection cuts are defined such that the interference effects are small, which is usually the case.

Both, ATLAS and CMS, also provide evidence for the associate $t W$ production at $\sqrt{s}=7 \mathrm{TeV}[127,128]$. ATLAS uses $2.05 \mathrm{fb}^{-1}$ in the dilepton plus missing E_{T} plus jets channel, where a template fit to the final classifier distributions resulting from boosted decision trees as signal to background separation is performed. The result is incompatible with the backgroundonly hypothesis at the 3.3σ (3.4 σ expected) level, yielding $\sigma_{t W}=$ 16.8 ± 2.9 (stat.) ± 4.9 (syst.) pb and $\left|V_{t b}\right|=1.03_{-0.19}^{+0.16}$ [127]. CMS uses $4.9 \mathrm{fb}^{-1}$ in the dilepton plus jets channel with at least one b-tag. A multivariate analysis based on kinematic properties is utilized to separate the $t \bar{t}$ background from the signal. The observed signal has a significance of 4.0σ and corresponds to a cross section of $\sigma_{t W}=16_{-4}^{+5} \mathrm{pb}[128]$.

Both experiments repeated their $t W$-analyses at $\sqrt{s}=8 \mathrm{TeV}$. ATLAS uses $20.3 \mathrm{fb}^{-1}$ to select events with two leptons and one central b-jet. The $t W$ signal is separated from the backgrounds using boosted decision trees, each of which combines a number
of discriminating variables into one classifier. Production of $t W$ events is observed with a significance of 7.7σ. The cross section is extracted in a profile likelihood fit to the classifier output distributions. The $t W$ cross section, inclusive of decay modes, is measured to be $\sigma_{t W}=23.0 \pm 1.3(\text { stat. })_{-3.5}^{+3.2}$ (syst.) ± 1.1 (lumi.) pb, yielding a value for the CKM matrix element $\left|V_{t b}\right|=1.01 \pm 0.10$ and a lower limit of 0.80 at the 95% C.L. [129]. A fiducial cross section is also measured. CMS uses $12.2 \mathrm{fb}^{-1}$ in events with two leptons and a jet originated from a b quark. A multivariate analysis based on kinematic properties is utilized to separate the signal and background. The $t W$ associate production signal is observed at the level of 6.1σ, yielding $\sigma_{t W}=23.4 \pm 5.4 \mathrm{pb}$ and $\left|V_{t b}\right|=1.03 \pm 0.12($ exp. $) \pm 0.04(t h$.$) [130]. ATLAS and CMS also$ combine their measurements and obtain $\sigma_{t W}=25.0 \pm 1.4($ stat. $) \pm$ 4.4 (syst.) ± 0.7 (lumi.) $\mathrm{pb}=25.0 \pm 4.7 \mathrm{pb}$ [131], in agreement with the NLO+NNLL expectation. They extract a 95% C.L. lower limit on the CKM matrix element of $\left|V_{t b}\right|>0.79$.

At 13 TeV in the $t W$-channel, ATLAS uses $3.2 \mathrm{fb}^{-1}$ of events with two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets with b-tags. Signal is separated from background in two regions using boosted decision trees. The cross section is extracted by fitting templates to the data distributions, and is measured to be $\sigma_{t W}=94 \pm 10(\text { stat. })_{-22}^{+28}($ syst. $) \pm$ 2 (lumi.) pb [132]. The measurement is in agreement with the SM prediction. CMS uses $36 \mathrm{fb}^{-1}$ of events with two opposite sign isolated leptons, one tight and one loose jet and one b-tag. Signal and background is separated in categories depending on the number of jets and the subset of b-tagged jets using a boosted decision tree. A maximum likelihood fits yields $\sigma_{t W}=63.1 \pm 6.6 \mathrm{pb}$ [133].

The s-channel production cross section is expected to be $4.6 \pm$ 0.3 pb for $m_{t}=173 \mathrm{GeV} / \mathrm{c}^{2}$ at $\sqrt{s}=7 \mathrm{TeV}$ [9]. At ATLAS, a search for s-channel single top quark production is performed in $0.7 \mathrm{fb}^{-1}$ at 7 TeV using events containing one lepton, missing transverse energy and two b-jets. Using a cut-based analysis, an observed (expected) upper limit at 95% C.L. on the s channel cross-section of $\sigma_{s}<26.5(20.5) \mathrm{pb}$ is obtained [134]. At 8 TeV , ATLAS uses $20.3 \mathrm{fb}^{-1}$ of data with one lepton, large missing transverse momentum and exactly two b-tagged jets. They perform a maximum-likelihood fit of a discriminant based on a Matrix Element Method and optimized in order to separate single top-quark s-channel events from the main background contributions which are top-quark pair production and W boson production in association with heavy flavour jets. They find $\sigma_{s}=4.8 \pm 0.8(\text { stat. })_{-1.3}^{+1.6}($ syst. $) \mathrm{pb}$ with a signal significance of 3.2 standard deviations [135], which provides first evidence for s channel single-top production at 8 TeV . The signal is extracted through a maximum-likelihood fit to the distribution of a multivariate discriminant defined using boosted decision trees to separate the expected signal contribution from background processes. At 7 TeV and 8 TeV , CMS uses $5.1 \mathrm{fb}^{-1}$ and $19.3 \mathrm{fb}^{-1}$, respectively, and analyses leptonic decay modes by performing a maximum likelihood fit to a multivariate discriminant defined using a Boosted Decision Tree, yielding cross sections of $\sigma_{s}=7.1 \pm 8.1 \mathrm{pb}$ and $\sigma_{s}=13.4 \pm 7.3 \mathrm{pb}$, respectively, and a best fit value of 2.0 ± 0.9 for the combined ratio of the measured σ_{s} values and the ones expected in the Standard Model [136]. The signal significance is 2.5 standard deviations. ALTAS and CMS present the combinations of their single-top-quark production cross-section measurements, using Run-I data corresponding to integrated luminosities of 1.17 to $5.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ and 12.2 to $20.3 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$. These combinations are performed per centre-ofmass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are $67.5 \pm 5.7 \mathrm{pb}$ and $87.7 \pm 5.8 \mathrm{pb}$ at $\sqrt{s}=7$ and 8 TeV , respectively. The combined tW cross-sections are $16.3 \pm 4.1 \mathrm{pb}$ and $23.1 \pm 3.6 \mathrm{pb}$ at $\sqrt{s}=7$ and 8 TeV , respectively. For the s-channel crosssection, the combination yields $4.9 \pm 1.4 \mathrm{pb}$ at $\sqrt{s}=8 \mathrm{TeV}$. The square of the magnitude of the CKM matrix element $V_{t b}$ multiplied by a form factor $f_{L V}$ is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. All combined measurements are consistent with their corresponding SM pre-
dictions [137]. Both, ATLAS and CMS, also measured the electroweak production of single top-quarks in association with a Zboson, see section C.2.4 of this review.

Figure 60.2: Measured and predicted single top production cross sections from Tevatron energies in $p \bar{p}$ collisions to LHC energies in $p p$ collisions. Tevatron data points at $\sqrt{s}=1.96 \mathrm{TeV}$ are from Refs. $[113,114]$. The ATLAS and CMS data points at $\sqrt{s}=$ 7 TeV are from Refs. $[115,117,127,128,134,136]$. The ones at $\sqrt{s}=8 \mathrm{TeV}$ are from Refs. $[118,120,129,130,135,136]$. The ones at $\sqrt{s}=13 \mathrm{TeV}$ are from Refs. $[122,123]$ Theory curves are generated using $[6,9,10]$.

Fig. 60.2 provides a summary of all single top cross-section measurements at the Tevatron and the LHC as a function of the center-of-mass energy. All cross-section measurements are very well described by the theory calculation within their uncertainty.

Thanks to the large statistics now available at the LHC, both CMS and ATLAS experiments also performed differential crosssection measurements in single-top t-channel production [115], [138]. Such measurements are extremely useful as they test our understanding of both QCD and EW top-quark interactions. The CMS collaboration has measured differential single top quark t channel production cross sections as functions of the transverse momentum and the absolute value of the rapidity of the top quark. The analysis is performed in the leptonic decay channels of the top quark, with either a muon or an electron in the final state, using data collected with the CMS experiment at the LHC at $\sqrt{s}=8 \mathrm{TeV}$ and corresponding to an integrated luminosity of $19.7 \mathrm{fb}^{-1}$. Neural networks are used to discriminate the signal process from the various background contributions. The results are found to agree with predictions from Monte Carlo generators [138]. Using the same data set and under the assumption that the spin analyzing power of a charged lepton is 100% as predicted in the SM, they are also able to measure the polarization of the top quark $P_{t}=0.82 \pm 0.12$ (stat.) ± 0.32 (syst.) [139]. At 13 TeV , using $35.9 \mathrm{fb}^{-1}$, CMS measures the differential t-channel cross sections, for the first time in single-top production, and charge ratios for t-channel single top quark production [140]. The results are found to be in agreement with SM predictions using various NLO event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.439 ± 0.062, in agreement with the SM prediction. This disfavours the results obtained at 8 TeV .

ATLAS has measured the differential $t W$ cross section in $36.1 \mathrm{fb}^{-1}$ at 13 TeV with respect to the energy of the b-jet, the energy of the system of the two leptons and b-jet, and the transverse mass or mass of combinations of leptons, the b-jet and neutrinos [141].

In $35.9 \mathrm{fb}^{-1}$, CMS managed to establish the first ecidence for the production of a single top quark in association with a photon [142]. A multivariate discriminant based on topological and kinematic event properties is employed to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations.
60.3.1.3 Top-Quark Forward-Backward \& Charge Asymmetry

A forward-backward asymmetry in $t \bar{t}$ production at a $p \bar{p}$ collider arises starting at order α_{S}^{3} in QCD from the interference between the Born amplitude $q \bar{q} \rightarrow t \bar{t}$ with 1-loop box production diagrams and between diagrams with initial- and final-state gluon radiation. The asymmetry, $A_{F B}$, is defined by

$$
\begin{equation*}
A_{F B}=\frac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)} \tag{60.2}
\end{equation*}
$$

where $\Delta y=y_{t}-y_{\bar{t}}$ is the rapidity difference between the topand the anti-top quark. Calculations at α_{S}^{3} predict a measurable $A_{F B}$ at the Tevatron. The most recent calculations up to order α_{S}^{4}, including electromagnetic and electroweak corrections, yield a predicted asymmetry of $\approx(9.5 \pm 0.7) \%$ [143]. This is about 10% higher than the previous calculation at NLO [144, 145], and improves the agreement with experiment.

Both CDF and DØ measured asymmetry values in excess of the SM prediction, fueling speculation about exotic production mechanisms (see, for example, [146] and references therein). The first measurement of this asymmetry by $\mathrm{D} \varnothing$ in $0.9 \mathrm{fb}^{-1}$ [147] found an asymmetry at the detector level of $(12 \pm 8) \%$. The first CDF measurement in $1.9 \mathrm{fb}^{-1}$ [148] yielded $(24 \pm 14) \%$ at parton level. Both values were higher, though statistically consistent with the SM expectation. With the addition of more data, the uncertainties have been reduced, and the central values, if somewhat smaller, have remained consistent with the first measurements. At the same time, the improved calculations from theory have increased the predicted asymmetry values to the point where the discrepancy is no longer statistically significant.

CDF and DØ have now combined results using the full Tevatron dataset at $\sqrt{s}=1.96 \mathrm{TeV}$ [149]. Three combined asymmetries are reported: $A_{F B}^{t \bar{t}}$ as defined in Eq. 2 for fully-reconstructed $t \bar{t}$ events, a single-lepton asymmetry, $A_{F B}^{\ell}$ defined as in Eq. 2 but with Δy replaced by the product of the lepton charge and pseudorapidity, and a dilepton asymmetry, $A_{F B}^{\ell \ell}$, defined as in Eq. 2 but with Δy replaced by $\Delta \eta$ between the two leptons. The combined results are $A_{F B}^{t \bar{t}}=0.128 \pm 0.021 \pm 0.014, A_{F B}^{\ell}=0.073 \pm 0.016 \pm$ 0.012 , and $A_{F B}^{\ell \ell}=0.108 \pm 0.043 \pm 0.016$, where the first uncertainty is statistical and the second systematic. These are to be compared to SM predictions at NNLO QCD and NLO electroweak of $A_{F B}^{t \bar{t}}=$ 0.095 ± 0.007 [143], $A_{F B}^{\ell}=0.038 \pm 0.003$, and $A_{F B}^{\ell \ell}=0.048 \pm$ 0.004 [145], respectively. Both experiments have also measured differential asymmetries, in bins of $M_{t \bar{t}}, \Delta y, q_{\ell} \times \eta_{\ell}$, and $\Delta \eta_{\ell \ell}$, with consistent results, though the growth of $A_{F B}^{t \bar{t}}$ with increasing $M_{t \bar{t}}$ and Δy appears somewhat more rapid than the SM prediction [149].

At the LHC, where the dominant $t \bar{t}$ production mechanism is the charge-symmetric gluon-gluon fusion, the measurement is more difficult. For the sub-dominant $q \bar{q}$ production mechanism, the symmetric $p p$ collision does not define a forward and backward direction. Instead, the charge asymmetry, A_{C}, is defined in terms of a positive versus a negative $t-\bar{t}$ rapidity difference, Δy

$$
\begin{equation*}
A_{C}^{t \bar{t}}=\frac{N(\Delta|y|>0)-N(\Delta|y|<0)}{N(\Delta|y|>0)+N(\Delta|y|<0)} \tag{60.3}
\end{equation*}
$$

Both CMS and ATLAS have measured A_{C} in the LHC dataset. Using lepton+jets events in $4.7 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7 \mathrm{TeV}$, ATLAS measures $A_{C}^{t \bar{t}}=(0.6 \pm 1.0) \%$ [150]. ATLAS has reported on the same measurement performed at $\sqrt{s}=8 \mathrm{TeV}$ with $20.3 \mathrm{fb}^{-1}$ of data, with a result of $A_{C}^{t \bar{t}}=(0.009 \pm 0.005)$ [151]. In the dilepton channel at $\sqrt{s}=8 \mathrm{TeV}$, ATLAS measures [152] $A_{C}^{t \bar{t}}=0.021 \pm 0.016$, and $A_{C}^{\ell \ell}=0.008 \pm 0.006$ (defined in terms of the $\Delta \eta$ of the two leptons) in agreement with the SM predictions of $(1.11 \pm 0.04) \%$ and $(0.64 \pm 0.03) \%$, respectively [145]. Using lepton+jets events CMS has measured A_{C} at both $\sqrt{s}=7$ and 8 TeV . They measure $A_{C}^{t \bar{t}}=(0.4 \pm 1.5) \%$ and $A_{C}^{t \bar{t}}=(0.33 \pm 0.26($ stat. $) \pm 0.33($ syst. $)) \%$ in $5.0 \mathrm{fb}^{-1}$ at $\sqrt{s}=7$ TeV and In $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$, respectively [153, 154]. Both measurements are consistent with the SM expectations of
$A_{C}^{t \bar{t}}=1.23 \pm 0.05 \%$ at $\sqrt{s}=7 \mathrm{TeV}$ and $1.11 \pm 0.04 \%$ at $\sqrt{s}=8$ TeV [145], although the uncertainties are still too large for a precision test. In $19.5 \mathrm{fb}^{-1}$ of dilepton events at $\sqrt{s}=8 \mathrm{TeV}$, CMS measures $A_{C}^{t \bar{t}}=0.011 \pm .013$ and $A_{C}^{\ell \ell}=0.003 \pm 0.007$ [155], consistent with SM expectations [156].
In their 7 and 8 TeV analyses ATLAS and CMS also provide differential measurements as a function of $M_{t \bar{t}}$ and the transverse momentum p_{T} and rapidity y of the $t \bar{t}$ system. To reduce modeldependence, the CMS Collaboration has performed a measurement in a reduced fiducial phase space [157], with a result of $A_{C}=-0.0035 \pm 0.0072$ (stat.) ± 0.0031 (syst.), in agreement with SM expectations.

To specifically address the dependence of the asymmetry on $M_{t \bar{t}}$, ATLAS has performed a measurement in boosted $t \bar{t}$ events [158]. In $20.3 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$, in events with $M_{t \bar{t}}>$ 0.75 TeV , and $|(\Delta|y|)|<2$, ATLAS measures $A_{C}^{t \bar{t}}=(4.2 \pm 3.2) \%$ compared to a NLO SM prediction of $(1.60 \pm 0.04) \%$. The measurement is also presented in three bins of $M_{t \bar{t}}$, each in agreement, though with large uncertainties, with the SM expectations.

Both ATLAS and CMS have measured asymmetries in the distribution of leptons from $t \bar{t}$ decays. ATLAS, in $4.6 \mathrm{fb}^{-1}$ of $\sqrt{s}=7$ TeV data, has measured $A^{\ell \ell}=(2.4 \pm 1.5$ (stat.) ± 0.9 (sys.) $) \%$ in dilepton events [159]. Using a neutrino weighting technique in the same dataset to reconstruct the top quarks, ATLAS measures $A_{C}=(2.1 \pm 2.5$ (stat.) ± 1.7 (sys.)) \%. CMS, in $5.0 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ data, uses dilepton events to measure $A_{C}=(1.0 \pm 1.5$ (stat.) ± 0.6 (sys.))\%, where a matrix weighting technique is used to reconstruct the top quarks, and $A^{\ell \ell}=(0.9 \pm 1.0$ (stat.) ± 0.6 (sys.) $) \%$ [160]. An earlier result using lepton + jets events from the same CMS dataset found $A_{C}=(0.4 \pm 1.0 \pm 1.1) \%$ [153]. Combined results from ATLAS and CMS have recently been released [161]. At $\sqrt{s}=7 \mathrm{TeV}$ the combined result is $A_{C}=(0.5 \pm 0.7$ (stat.) ± 0.6 (sys.) $) \%$, and at $\sqrt{s}=8 \mathrm{TeV}$ it is $A_{C}=(0.55 \pm 0.23 \pm 0.25) \%$. These results are all consistent, within their large uncertainties, with the SM expectations of $A^{\ell \ell}=(0.70 \pm 0.03) \%$ and $A_{C}=(1.23 \pm 0.05) \%[145]$.

A model-independent comparison of the Tevatron and LHC results is made difficult by the differing $t \bar{t}$ production mechanisms at work at the two accelerators and by the symmetric nature of the $p p$ collisions at the LHC. A recent result from the CMS Collaboration [162] in $35.9 \mathrm{fb}^{-1}$ of lepton plus jets events at $\sqrt{s}=13$ TeV , uses a likelihood analysis in to separate the $q \bar{q}$ process from production via gluon-gluon and gluon-quark interactions and extract $A_{F B}=0.048_{-0.084}^{+0.088}$ (stat.) ± 0.028 (sys.). In addition, given a particular model of BSM physics, a comparison can be obtained through the resulting asymmetry predicted by the model at the two machines, see for example [158].

60.3.2 Top-Quark Properties

60.3.2.1 Top-Quark Mass Measurements

The most precisely studied property of the top quark is its mass. The top-quark mass has been measured in the lepton+jets, the dilepton, and the all-jets channel by all four Tevatron and LHC experiments. The latest and/or most precise results are summarized in Table 60.1. The lepton + jets channel yields the most precise single measurements because of good signal to background ratio (in particular after b-tagging) and the presence of only a single neutrino in the final state. The momentum of a single neutrino can be reconstructed (up to a quadratic ambiguity) via the missing E_{T} measurement and the constraint that the lepton and neutrino momenta reconstruct to the known W boson mass. In the large data samples available at the LHC, measurements in the dilepton channel can be competitive and certainly complementary to those in the lepton + jets final state.

A large number of techniques have now been applied to measuring the top-quark mass. The original 'template method' [163], in which Monte Carlo templates of reconstructed mass distributions are fit to data, has evolved into a precision tool in the lepton+jets channel, where the systematic uncertainty due to the jet energy scale (JES) uncertainty is controlled by a simultaneous, in situ fit to the $W \rightarrow j j$ hypothesis [164]. All the latest measurements in the lepton + jets and the all-jets channels use this technique in one way or another. In $20.2 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$ in the lep-
ton + jets channel, ATLAS achieves a total uncertainty of 0.53% with a statistical component of 0.23% [165]. The measurement is based on a 3 -dimensional template fit, determining the top-quark mass, the global jet energy scale and a b-to-light jet energy scale factor. The most precise CMS result in the lepton+jets channel uses an ideogram method and comes from a so-called 'hybrid' approach in which the prior knowledge about the jet energy scale is incorporated as a Gaussian constraint, with a width determined by the uncertainty on the jet energy corrections. In $19.7 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV}$ data, CMS achieves a total uncertainty of 0.30% with a statistical component of 0.09% with the hybrid approach [166]. Using this same method, CMS has recently released the first topmass measurement from $\sqrt{s}=13 \mathrm{TeV}$ data. Using $35.9 \mathrm{fb}^{-1}$ of lepton + jets events they measure the top mass with a precision of 0.36%, with a statistical component of 0.05% [167]. The measurements at $\sqrt{s}=13 \mathrm{TeV}$ include, for the first time, an uncertainty due to 'color recoonection' $[168,169]$. In this same dataset, CMS has extracted a top mass from highly boosted top-quark decays by selecting events in which the hadronic-side top decay is reconstructed as a single jet with $P_{T}>400 \mathrm{GeV}$. The cross section as a function of jet mass is unfolded at the particle level to extract a top mass with a precision of 1.4% [170].

The template method is complemented by the 'matrix element' method. This method was first applied by the DØ Collaboration [171], and is similar to a technique originally suggested by Kondo et al. [172] and Dalitz and Goldstein [173]. In the matrix element method a probability for each event is calculated as a function of the top-quark mass, using a LO matrix element for the production and decay of $t \bar{t}$ pairs. The in situ calibration of dijet pairs to the $W \rightarrow j j$ hypothesis is now also used with the matrix element technique to constrain the jet energy scale uncertainty. In the lepton+jets channel, $\mathrm{D} \varnothing$ uses the full Tevatron dataset of $9.7 \mathrm{fb}^{-1}$ and yields an uncertainty of about 0.43% [174].

In the dilepton channel, the signal to background is typically very good, but reconstruction of the mass is non-trivial because there are two neutrinos in the final state, yielding a kinematically unconstrained system. A variety of techniques have been developed to handle this. An analytic solution to the problem has been proposed [175], but this has not yet been used in the mass measurement. One of the most precise measurements in the dilepton channel comes from using the invariant mass of the charged lepton and b-quark system $\left(M_{\ell b}\right)$, which is sensitive to the top-quark mass and avoids the kinematic difficulties of the two-neutrino final state. In $4.6 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ data, ATLAS has measured the top-quark mass in the dilepton channel to a precision of 0.53% using a template fit to the $M_{\ell b}$ distribution [176]. Using $19.7 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$, CMS has released [177] a mass measurement in the dilepton channel based on a simultaneous fit to $M_{\ell b}$ and a transverse-mass-like variable $M_{T 2}$ [178]. The most precise result in this analysis, which comes from a linear combination of fits with the jet energy scale fixed at its nominal value and one that simultaneously determines the top mass and jet energy scale, has a total uncertainty of 0.54%. At the LHC, because of their precision, these techniques have largely displaced a number of earlier techniques in the dilepton channel, though these techniques are still included, and described, in the combined results from CMS, reported in Ref. [166].

In the neutrino weighting technique, used by CDF to analyze the full Run 2 dilepton dataset of $9.1 \mathrm{fb}^{-1}$, a weight is assigned by assuming a top-quark mass value and applying energy-momentum conservation to the top-quark decay, resulting in up to four possible pairs of solutions for the neutrino and anti-neutrino momenta. The missing E_{T} calculated in this way is then compared to the observed missing E_{T} to assign a weight [182]. The CDF result achieves a precision of 1.8% using a combination of neutrino weighting and an "alternative mass", which is insensitive to the jet energy scale [183]. The alternative mass depends on the angles between the leptons and the leading jets and the lepton four-momenta.

In the all-jets channel there is no ambiguity due to neutrino momenta, but the signal to background is significantly poorer due to the severe QCD multijets background. The emphasis therefore has been on background modeling, and reduction through event
selection. The most recent measurement in the all-jets channel, by CMS in $35.9 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ data [179], uses an ideogram method and a 2-dimensional simultaneous fit for m_{t} and the jet energy scale to extract the top-quark mass and achieves a precision of 0.36%. A recent measurement from ATLAS [180] uses a template fit to the ratio of three-jet $\left(m_{t}\right)$ to two-jet $\left(M_{W}\right)$ mass in the all-hadronic channel, the two-jet denominator provides an in situ, fit to the $W \rightarrow j j$ hypothesis. In $20.2 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$, the result has a precision of 0.65%. A measurement from CDF in $9.3 \mathrm{fb}^{-1}$ uses a two-dimensional template fit and achieves a precision of 1.1% [184].

The CMS Collaboration has, for the first time, extracted a topquark mass measurement from single-top events [185], something not previously done because of the poor signal to background ratio. The mass is extracted from the invariant mass of the muon, bottom quark, and missing transverse energy. In $19.7 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$, a precision of 0.71% is achieved.

A dominant systematic uncertainty in these methods is the understanding of the jet energy scale, and so several techniques have been developed that have little sensitivity to the jet energy scale uncertainty. In addition to Reference [183] mentioned above, these include the measurement of the top-quark mass using the following techniques: Fitting of the lepton p_{T} spectrum of candidate events [186]; fitting of the transverse decay length of the b-jet $\left(L_{x y}\right)$ [187]; fitting the invariant mass of a lepton from the W-decay and a muon from the semileptonic b decay [188], kinematic properties of secondary vertices from b-quark fragmentation [189], the invariant mass of the $J / \psi+\ell$ system in events in which a b-quark fragments to a J / ψ particle [190], fitting the b-jet energy peak [191], and dilepton kinematics in $e \mu$ events [192].

Several measurements have now been made in which the topquark mass is extracted from the measured $t \bar{t}$ cross section using the theoretical relationship between the mass and the production cross section. These determinations make use of predictions calculated at higher orders, where the top mass enters as an input parameter defined in a given scheme. At variance with the usual methods, which involve the kinematic properties of the final states and therefore the pole mass, this approach can also directly determine a short-distance mass, such as the $\overline{\mathrm{MS}}$ mass [193]. With an alternative method ATLAS recently extracted the top-quark pole mass using $t \bar{t}$ events with at least one additional jet, basing the measurement on the relationship between the differential rate of gluon radiation and the mass of the quark [194]. A similar analysis by CMS used the differential cross section as a function of the invariant mass of the $t \bar{t}$ system and the leading jet not associated with the top decays [195].

Each of the experiments has produced a measurement combining its various results. The combined measurement from CMS with up to $19.7 \mathrm{fb}^{-1}$ of data achieves statistical and systematic uncertainties of 0.08% and 0.27%, respectively [166]. The combined measurement from ATLAS, with up to $20.3 \mathrm{fb}^{-1}$ yields statistical and systematic uncertainties of 0.14% and 0.24%, respectively [165]. CDF has combined measurements with up to $9.3 \mathrm{fb}^{-1}$ [196] and achieves a statistical precision of 0.33% and a systematic uncertainty of 0.43%. D \varnothing achieves a 0.33% statistical+JES and a 0.28% systematic uncertainty by combining results in $9.7 \mathrm{fb}^{-1}$ [197].

Combined measurements from the Tevatron experiments and from the LHC experiments take into account the correlations between different measurements from a single experiment and between measurements from different experiments. The Tevatron average [181], using up to $9.7 \mathrm{fb}^{-1}$ of data, now has a precision of 0.37%. The LHC combination, using up to $4.9 \mathrm{fb}^{-1}$ of data, has a precision of 0.56% [198], where more work on systematic uncertainties is required. A Tevatron-LHC combination has been released, combining the results of all four experiments, using the full Tevatron dataset and the $\sqrt{s}=7 \mathrm{TeV}$ LHC data, with a resulting precision of 0.44% [3]

The direct measurements of the top-quark mass, such as those shown in Table 60.1, correspond to the parameter used in the Monte Carlo generators, which is generally agreed to be the pole mass. The relation between the pole mass and short-distance

Table 60.1: Measurements of top-quark mass from Tevatron and LHC. $\int \mathcal{L} \mathrm{dt}$ is given in fb^{-1}. The results are a selection of both published and preliminary (not yet submitted for publication as of September 2019) measurements. For a complete set of published results see the Listings. Statistical uncertainties are listed first, followed by systematic uncertainties.

$m_{t}\left(\mathrm{GeV} / c^{2}\right)$	Source	$\int \mathcal{L} \mathrm{dt}$	Ref.	Channel
$172.08 \pm 0.25 \pm 0.41$	ATLAS	20.2	$[165]$	$\ell+$ jets $+\ell \ell+$ All jets
$172.44 \pm 0.13 \pm 0.47$	CMS	19.7	$[166]$	$\ell+$ jets $+\ell \ell+$ All jets
$172.35 \pm 0.16 \pm 0.48$	CMS	19.7	$[166]$	$\ell+$ jets
$172.34 \pm 0.20 \pm 0.70$	CMS	35.9	$[179]$	$\ell \ell$
$173.72 \pm 0.55 \pm 1.01$	ATLAS	20.2	$[180]$	All jets
$172.25 \pm 0.08 \pm 0.62$	CMS	35.9	$[167]$	$\ell+$ jets
$174.30 \pm 0.35 \pm 0.54$	CDF,DØ (I+II)	≤ 9.7	$[181]$	publ. or prelim.
$173.34 \pm 0.27 \pm 0.71$	Tevatron+LHC	$\leq 8.7+\leq 4.9$	$[3]$	publ. or prelim.

masses, such as $\overline{\mathrm{MS}}$, is affected by non-perturbative effects. Recent calculations evaluate the size of this ambiguity to be below 250 MeV and therefore still smaller than the current measurement uncertainty [199, 200].

As a result of renormalization at higher-orders in perturbation theory, the top quark mass depends on the scale at which is it evaluated. The CMS collaboration has made the first measurement of the so-called running of the top-quark mass in the $\bar{M} S$ scheme [201]. The running mass is extracted from a measurement of the differential cross section as a function of the $t \bar{t}$ invariant mass, unfolded back to the parton level, in $e \mu$ final states. The running mass varies by about 15% from $M_{t \bar{t}}=400 \mathrm{GeV}$ to $M_{t \bar{t}} \approx 1 \mathrm{TeV}$, in good agreement with the renormalization group calculation at one-loop level. Compared to the hypothesis of no running, the significance of the measured running is 2.6σ.

With the discovery of a Higgs boson at the LHC with a mass of about $125 \mathrm{GeV} / \mathrm{c}^{2}$ [202,203], the precision measurement of the top-quark mass takes a central role in the question of the stability of the electroweak vacuum because top-quark radiative corrections tend to drive the Higgs quartic coupling, λ, negative, potentially leading to an unstable vacuum. A recent calculation at NNLO [204] leads to the conclusion of vacuum stability for a Higgs mass satisfying $M_{H} \geq 129.4 \pm 5.6 \mathrm{GeV} / \mathrm{c}^{2}$ [205]. Given the uncertainty, a Higgs mass of $125 \mathrm{GeV} / \mathrm{c}^{2}$ satisfies the limit, but the central values of the Higgs and top-quark masses put the electroweak vacuum squarely in the metastable region. The uncertainty is dominated by the precision of the top-quark mass measurement and its interpretation as the pole mass. For more details, see the Higgs boson review in this volume.
As a test of the CPT-symmetry, the mass difference of top- and antitop-quarks $\Delta m_{t}=m_{t}-m_{\bar{t}}$, which is expected to be zero, can be measured. CDF measures the mass difference in $8.7 \mathrm{fb}^{-1}$ of 1.96 TeV data in the lepton+jets channel using a template methode to find $\Delta m_{t}=-1.95 \pm 1.11$ (stat.) ± 0.59 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$ [206] while $\mathrm{D} \emptyset$ uses $3.6 \mathrm{fb}^{-1}$ of lepton+jets events and the matrix element method with at least one b-tag. They find $\Delta m_{t}=0.8 \pm$ 1.8 (stat.) ± 0.5 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$ [207]. In $4.7 \mathrm{fb}^{-1}$ of 7 TeV data, ATLAS measures the mass difference in lepton+jets events with a double b-tag requirement and hence very low background to find $\Delta m_{t}=0.67 \pm 0.61$ (stat.) ± 0.41 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$ [208]. CMS measures the top-quark mass difference in $5 \mathrm{fb}^{-1}$ of 7 TeV data in the lepton + jets channel and finds $\Delta m_{t}=-0.44 \pm 0.46($ stat. $) \pm$ 0.27 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$ [209]. They repeat this measurement with $19.6 \mathrm{fb}^{-1}$ of 8 TeV data to find $\Delta m_{t}=-0.15 \pm 0.19$ (stat.) \pm 0.09 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$ [210]. All measurements are consistent with the SM expectation.
60.3.2.2 Top-Quark Spin Correlations, Polarization, and Width

One of the unique features of the top quark is that it decays before its spin can be flipped by the strong interaction. Thus the top-quark polarization is directly observable via the angular distribution of its decay products and it is possible to define and measure observables sensitive to the top-quark spin and its production mechanism. Although the top- and antitop-quarks produced by strong interactions in hadron collisions are essentially unpolarized, the spins of t and \bar{t} are correlated. For QCD production at threshold, the $t \bar{t}$ system is produced in a ${ }^{3} S_{1}$ state with parallel spins for $q \bar{q}$ annihilation or in a ${ }^{1} S_{0}$ state with antiparal-
lel spins for gluon-gluon fusion. The situations at the Tevatron, where the production is primarily from $q \bar{q}$ annihilation, and at the LHC, where the production is primarily from gluon-gluon fusion, are therefore somewhat complementary. However, at the LHC production of $t t$ pairs at large invariant mass occurs primarily via fusion of gluons with opposite helicities, and the $t \bar{t}$ pairs so produced have parallel spins as in production at the Tevatron via $q \bar{q}$ annihilation. The direction of the top-quark spin is 100% correlated to the angular distributions of the down-type fermion (charged leptons or d-type quarks) in the decay. The joint angular distribution [211-213]

$$
\begin{align*}
\frac{1}{\sigma} \frac{d^{2} \sigma}{d\left(\cos \theta_{+}\right) d\left(\cos \theta_{-}\right)}=\frac{1}{4}(1 & +B_{+} \cos \theta_{+}+B_{-} \cos \theta_{-} \tag{60.4}\\
& \left.+\kappa \cdot \cos \theta_{+} \cdot \cos \theta_{-}\right)
\end{align*}
$$

where θ_{+}and θ_{-}are the angles of the daughters in the topquark rest frame with respect to a particular spin quantization axis (assumed here to be the same for θ_{+}and θ_{-}), is a very sensitive observable. The maximum value for $\kappa, 0.782$ at NLO at the Tevatron [214], is found in the off-diagonal basis [211], while at the LHC the value at NLO is 0.326 in the helicity basis [214]. The coefficients B_{+}and B_{-}are near zero in the SM because the top quarks are unpolarized in $t \bar{t}$ production. In place of $\kappa, A \alpha_{+} \alpha_{-}$ is often used, where α_{i} is the spin analyzing power, and A is the spin correlation coefficient, defined as

$$
\begin{equation*}
A=\frac{N(\uparrow \uparrow)+N(\downarrow \downarrow)-N(\uparrow \downarrow)-N(\downarrow \uparrow)}{N(\uparrow \uparrow)+N(\downarrow \downarrow)+N(\uparrow \downarrow)+N(\downarrow \uparrow)} \tag{60.5}
\end{equation*}
$$

where the first arrow represents the direction of the top-quark spin along a chosen quantization axis, and the second arrow represents the same for the antitop-quark. The spin analyzing power α_{i} is +0.998 for positively charged leptons, -0.966 for down-type quarks from W decays, and -0.393 for bottom quarks [215]. The sign of α flips for the respective antiparticles. The spin correlation could be modified by a new $t \bar{t}$ production mechanism such as through a Z^{\prime} boson, Kaluza-Klein gluons, a dark-matter mediator, or a Higgs boson.
The experiments typically use a Monte Carlo to provide templates for the measured distributions, or alternatively a matrixelement technique, and fit a parameter f, representing the fraction of events with the expected Standard Model correlation, with $(1-f)$ the fraction with no correlation. The correlation coefficient is extracted via $A_{\text {meas }}=f \cdot A_{\mathrm{SM}}$. A 'fraction' $f>1$ means that the measured correlation coefficient is larger than the Standard Model expectation.

CDF used $5.1 \mathrm{fb}^{-1}$ in the dilepton channel to measure the correlation coefficient in the beam axis [216]. The measurement was made using the expected distributions of $\left(\cos \theta_{+}, \cos \theta_{-}\right)$and $\left(\cos \theta_{b}, \cos \theta_{\bar{b}}\right)$ of the charged leptons or the b-quarks in the $t \bar{t}$ signal and background templates to calculate a likelihood of observed reconstructed distributions as a function of assumed κ. They determined the 68% confidence interval for the correlation coefficient κ as $-0.52<\kappa<0.61$ or $\kappa=0.04 \pm 0.56$ assuming $m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}$.

CDF also analyzed lepton+jets events in $5.3 \mathrm{fb}^{-1}$ [217] assuming $m_{t}=172.5 \mathrm{GeV} / \mathrm{c}^{2}$. They form three separate tem-
plates - the same-spin template, the opposite-spin template, and the background template for the 2-dimensional distributions in $\cos \left(\theta_{l}\right) \cos \left(\theta_{d}\right)$ vs. $\cos \left(\theta_{l}\right) \cos \left(\theta_{b}\right)$. The fit to the data in the helicity basis returns an opposite helicity fraction of $F_{O H}=$ 0.74 ± 0.24 (stat.) ± 0.11 (syst.). Converting this to the spin correlation coefficient yields $\kappa_{\text {helicity }}=0.48 \pm 0.48$ (stat.) ± 0.22 (syst.). In the beamline basis, they find an opposite spin fraction of $F_{O S}=0.86 \pm 0.32$ (stat.) ± 0.13 (syst.) which can be converted into a correlation coefficient of $\kappa_{\text {beam }}=0.72 \pm 0.64$ (stat.) ± 0.26 (syst.).
$\mathrm{D} \emptyset$ performed a measurement of the ratio f of events with correlated t and \bar{t} spins to the total number of $t \bar{t}$ events. Combining dilepton and lepton plus jets events, and using a matrixelement technique in $9.7 \mathrm{fb}^{-1}$ of Tevatron data, $\mathrm{D} \emptyset$ measures $f=1.16 \pm 0.21$, corresponding to $A_{\text {exp }}=0.89 \pm 0.22($ stat.+ syst. $)$ in the off-diagonal basis [218].

In Ref. [219] $\mathrm{D} \emptyset$ presents a measurement of top-quark polarization in $t \bar{t}$ production at the Tevatron. In $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions, $\mathrm{D} \emptyset$ uses lepton angular distributions in lepton+jets events to measure polarization in the beam, helicity, and transverse bases. The measurements are, respectively, $0.081 \pm 0.048,-0.102 \pm 0.061$ and, 0.040 ± 0.035, where the beam-basis result is a combination with an earlier D \varnothing result in dilepton events [220]. These results are all consistent near-zero polarization, as predicted in the SM.

Spin correlations have been conclusively measured at the LHC by both the ATLAS and CMS collaborations. In the dominant gluon fusion production mode for $t \bar{t}$ pairs at the LHC, the angular distribution between the two leptons in $t \bar{t}$ decays to dileptons is sensitive to the degree of spin correlation [221].

Measurements have been made at 7,8 , and now 13 TeV . While there is some interest in the \sqrt{s} dependence of the correlations as a test of the the production mechanism ($q \bar{q}$ vs gluon-gluon and possible sensitivity to new physics) the earlier measurements at 7 and 8 TeV [222-227] had relatively large uncertainties and have now been overtaken by the high-statistics 13 TeV measurements, which we review here.

The most recent result from ATLAS, in $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=$ 13 TeV , uses $\Delta \phi$, the azimuthal angle between the two charged leptons in $e \mu$ events in an analysis that also measures the differential cross sections in $\Delta \phi$ and $\Delta \eta$ between the two leptons [228]. The result, measured by comparison with NLO Monte Carlo generators, is $f=1.249 \pm 0.024 \pm 0.061 \pm 0.040$, where the uncertainties are statistical, systematic, and theoretical, is again greater than 1.0. Whereas the previous results were statistically consistent with the Standard Model expectation of 1.0, this result is inconsistent at the level of 3.2σ. The NLO generators are NLO in QCD only (and only at the production level). Including electroweak couplings produces a expected Standard Model distribution consistent with the data, but results in a large scale uncertainty, giving $f=1.03 \pm 0.13$.

In $35.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=13 \mathrm{TeV}$, CMS has measured spin correlations in dilepton events using $\Delta \phi$ and found $f=$ $1.05 \pm 0.03 \pm 0.08_{-0.12}^{+0.09}$ [229], where the uncertainties are statistical, systematic, and theoretical. The correlation is also measured using the coefficient κ in Eq. 60.4 (called $-C_{i j}$ in Reference [229]) using three orthogonal spin quantization axes defined in Ref. [230]. All results are consistent with $f=1$. Measurements of the coefficients B_{i} in Eq. 60.4 in this analysis, which are expected to be nearly zero in the SM , yield $B_{+}=0.005 \pm 0.023$ and $B_{-}=0.007 \pm 0.023$, consistent with the SM predictions at NLO of $0.0040_{-0.0012}^{+0.0017}$ [230]. These results are part of a complete study of the top-quark spin density matrix at $\sqrt{s}=13 \mathrm{TeV}$, through the measurement of the coefficients of Eq. 60.4.

In a similar ATLAS measurement at $\sqrt{s}=8 \mathrm{TeV}$ [231], the spincorrelation coefficient κ is measured in the helicity basis to be $\kappa=$ 0.296 ± 0.093 in good agreement with the SM expectation of 0.318 (corresponding to a central value of f of 0.931). The polarization coefficients, B, in Eq. 60.4 are measured, also in the helicity basis, to be $B_{+}=-0.044 \pm 0.038$ and $B_{-}=-0.064 \pm 0.040$, consistent with the SM predictions of 0.0030 ± 0.0010 and 0.0034 ± 0.00104, respectively.

Observation of top-quark spin correlations requires a top-quark lifetime less than the spin decorrelation timescale [232]. The topquark width, inversely proportional to its lifetime, is expected
to be of order $1 \mathrm{GeV} / \mathrm{c}^{2}$ (Eq. 1). Early measurements made at CDF [233] and CMS [234] established confidence-level intervals for the width, but did not have the sensitivity to make a direct measurement.

The first direct measurement comes from an ATLAS analysis that directly fits reconstructed lepton+jets events in $20.2 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=8 \mathrm{TeV}$. They find $\Gamma_{t}=1.76 \pm 0.33_{-0.68}^{+0.79} \mathrm{GeV} / \mathrm{c}^{2}$ [235]. A more recent measurement from ATLAS with $139 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=13 \mathrm{TeV}$ [236], uses a template fit to the lepton-b-quark invariant mass in dilepton final states. The result, $\Gamma_{t}=$ $(1.9 \pm 0.5) \mathrm{GeV} / \mathrm{c}^{2}$, is the most precise measurement to date.

The total width of the top-quark can also be determined from the partial decay width $\Gamma(t \rightarrow W b)$ and the branching fraction $B(t \rightarrow W b)$. D \varnothing obtains $\Gamma(t \rightarrow W b)$ from the measured t channel cross section for single top-quark production in $5.4 \mathrm{fb}^{-1}$, and $B(t \rightarrow W b)$ is extracted from a measurement of the ratio $R=B(t \rightarrow W b) / B(t \rightarrow W q)$ in $t \bar{t}$ events in lepton+jets channels with 0,1 and 2 b-tags. Assuming $B(t \rightarrow W q)=1$, where q includes any kinematically accessible quark, the result is: $\Gamma_{t}=2.00_{-0.43}^{+0.47} \mathrm{GeV} / \mathrm{c}^{2}$ which translates to a top-quark lifetime of $\tau_{t}=\left(3.29_{-0.63}^{+0.90}\right) \times 10^{-25} \mathrm{~s}$. Assuming a high mass fourth generation b^{\prime} quark and unitarity of the four-generation quarkmixing matrix, they set the first upper limit on $\left|V_{t b^{\prime}}\right|<0.59$ at 95% C.L. [237]. A similar analysis has performed by CMS in $19.7 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV}$ data. It provides a better determination of the total width with respect to the measurement by $\mathrm{D} \emptyset$ giving $\Gamma_{t}=1.36 \pm 0.02(\text { stat. })_{-0.11}^{+0.14}\left(\right.$ syst.) $\mathrm{GeV} / \mathrm{c}^{2}[71]$.
60.3.2.3 W-Boson Helicity in Top-Quark Decay

The Standard Model dictates that the top quark has the same vector-minus-axial-vector $(V-A)$ charged-current weak interactions $\left(-i \frac{g}{\sqrt{2}} V_{t b} \gamma^{\mu} \frac{1}{2}\left(1-\gamma_{5}\right)\right)$ as all the other fermions. In the SM, the fraction of top-quark decays to longitudinally polarized W bosons is proportional to its Yukawa coupling and hence enhanced with respect to the weak coupling. It is expected to be $[238] \mathcal{F}_{0}^{\mathrm{SM}} \approx x /(1+x), x=m_{t}^{2} / 2 M_{W}^{2}\left(\mathcal{F}_{0}^{\mathrm{SM}} \sim 70 \%\right.$ for $\left.m_{t}=175 \mathrm{GeV} / c^{2}\right)$. Fractions of left-handed, right-handed, or longitudinal W bosons are denoted as $\mathcal{F}_{-}, \mathcal{F}_{+}$, and \mathcal{F}_{0} respectively. In the $\mathrm{SM}, \mathcal{F}_{-}$is expected to be $\approx 30 \%$ and $\mathcal{F}_{+} \approx 0 \%$. Predictions for the W polarization fractions at NNLO in QCD are available [239].
The Tevatron and the LHC experiments use various techniques to measure the helicity of the W boson in top-quark decays, in both the lepton + jets and in dilepton channels in $t \bar{t}$ production.

The first method uses a kinematic fit, similar to that used in the lepton+jets mass analyses, but with the top-quark mass constrained to a fixed value, to improve the reconstruction of final-state observables, and render the under-constrained dilepton channel solvable. Alternatively, in the dilepton channel the final-state momenta can also be obtained through an algebraic solution of the kinematics. The distribution of the helicity angle $\left(\cos \theta^{*}\right)$ between the lepton and the b quark in the W rest frame provides the most direct measure of the W helicity. In a simplified version of this approach, the $\cos \theta^{*}$ distribution is reduced to a forward-backward asymmetry.

The second method $\left(p_{T}^{\ell}\right)$ uses the different lepton p_{T} spectra from longitudinally or transversely polarized W-decays to determine the relative contributions.

A third method uses the invariant mass of the lepton and the b-quark in top-quark decays $\left(M_{\ell b}^{2}\right)$ as an observable, which is directly related to $\cos \theta^{*}$

At the LHC, top-quark pairs in the dilepton channels are reconstructed by solving a set of six independent kinematic equations in the missing transverse energy in x - and in y-direction, two W masses, and the two top/antitop-quark masses. In addition, the two jets with the largest p_{T} in the event are interpreted as b-jets. The pairing of the jets to the charged leptons is based on the minimization of the sum of invariant masses $M_{\min }$. Simulations show that this criterion gives the correct pairing in 68% of the events.
Finally, the Matrix Element Method (MEM) has also been used [172], in which a likelihood is formed from a product of event probabilities calculated from the MEM for a given set of measured
kinematic variables and assumed W-helicity fractions
The results of recent CDF, D , ATLAS, and CMS analyses are summarized in Table 60.2. The datasets are now large enough to allow for a simultaneous fit of $\mathcal{F}_{0}, \mathcal{F}_{-}$and \mathcal{F}_{+}, which we denote by '3-param' or \mathcal{F}_{0} and \mathcal{F}_{+}, which we denote by '2-param' in the table. Results with either \mathcal{F}_{0} or \mathcal{F}_{+}fixed at its SM value are denoted '1-param'. For the simultaneous fits, the correlation coefficient between the two values is about -0.8 . A complete set of published results can be found in the Listings. All results are in agreement with the SM expectation.

CDF and $\mathrm{D} \emptyset$ combined their results based on $2.7-5.4 \mathrm{fb}^{-1}$ [240] for a top-quark mass of $172.5 \mathrm{GeV} / \mathrm{c}^{2}$. ATLAS presents results from $1.04 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ data using a template method for the $\cos \theta^{*}$ distribution and angular asymmetries from the unfolded $\cos \theta^{*}$ distribution in the lepton + jets and the dilepton channel [241]. CMS performs a similar measurement based on template fits to the $\cos \theta^{*}$ distribution with $5.0 \mathrm{fb}^{-1}$ of 7 TeV data in the lepton + jets final state [242]. As the polarization of the W bosons in top-quark decays is sensitive to the $W t b$ vertex Lorentz structure and anomalous couplings, both experiments also derive limits on anomalous contributions to the $W t b$ couplings. Recently, both experiments also combined their results from 7 TeV data to obtain values on the helicity fractions as well as limits on anomalous couplings [243].

At 8 TeV , ATLAS came out with a measurement of the Whelicity fractions in $20.2 \mathrm{fb}^{-1}$ in lepton + jets events with at least one b-tag [244]. Using $19.8 \mathrm{fb}^{-1}$ of 8 TeV data, CMS measured the W -helicity in lepton +4 jet events with two b-tags [245]. In $t \bar{t}$ events with two opposite-sign leptons (electron or muon) in the final state in this dataset, CMS applied six kinematic constraints on the kinematics of the produced particles [246]. Also, using the same dataset a first measurement of the W-boson helicity in topquark decays was made in electroweak single top production [247], yielding similarly precise and consistent results.

60.3.2.4 Top-Quark Electroweak Charges and Couplings

The top quark is the only quark whose electric charge has not been measured through production at threshold in $e^{+} e^{-}$collisions. Furthermore, it is the only quark whose electromagnetic coupling has not been observed and studied until recently. Since the CDF and $\mathrm{D} \varnothing$ analyses on top-quark production did not associate the b, \bar{b}, and $W^{ \pm}$uniquely to the top or antitop, decays such as $t \rightarrow W^{+} \bar{b}, \bar{t} \rightarrow W^{-} b$ were not excluded. A charge $4 / 3$ quark of this kind is consistent with current electroweak precision data. The $Z \rightarrow \ell^{+} \ell^{-}$and $Z \rightarrow b \bar{b}$ data, in particular the discrepancy between $A_{L R}$ from SLC at SLAC and $A_{F B}^{0, b}$ of b-quarks and $A_{F B}^{0, \ell}$ of leptons from LEP at CERN, can be fitted with a top quark of mass $m_{t}=270 \mathrm{GeV} / \mathrm{c}^{2}$, provided that the right-handed b quark mixes with the isospin $+1 / 2$ component of an exotic doublet of charge $-1 / 3$ and $-4 / 3$ quarks, $\left(Q_{1}, Q_{4}\right)_{R}[249,250]$. Also the third component of the top quark's weak isospin has not been measured so far.
$\mathrm{D} \varnothing$ studied the top-quark charge in double-tagged lepton + jets events, CDF did it in single tagged lepton+jets and dilepton events. Assuming the top- and antitop-quarks have equal but opposite electric charge, then reconstructing the charge of the b quark through jet charge discrimination techniques, the $\left|Q_{t o p}\right|=$ $4 / 3$ and $\left|Q_{t o p}\right|=2 / 3$ scenarios can be differentiated. For the exotic model of Chang et al. [250] with a top-quark charge $\left|Q_{t o p}\right|=$ $4 / 3$, CDF excluded the model at 99% C.L. [251] in $5.6 \mathrm{fb}^{-1}$, while D \varnothing excluded the model at a significance greater than 5 standard deviations using $5.3 \mathrm{fb}^{-1}$ and set an upper limit of 0.46 on the fraction of such quarks in the selected sample [252]. These results indicate that the observed particle is indeed consistent with being a $\operatorname{SM}|Q|=2 / 3$ quark.
In $2.05 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$, ATLAS performed a similar analysis, reconstructing the b-quark charge either via a jet-charge technique or via the lepton charge in soft muon decays in combination with a kinematic likelihood fit. They measure the top-quark charge to be 0.64 ± 0.02 (stat.) ± 0.08 (syst.) from the charges of the top-quark decay products in single lepton $t \bar{t}$ events, and hence exclude the exotic scenario with charge $-4 / 3$ at more than 8σ [253].

In $4.6 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$, CMS discriminates between the SM
and the exotic top-quark charge scenario in the muon + jets final states in $t \bar{t}$ events. They exploit the charge correlation between high- p_{t} muons from W-boson decays and soft muons from B hadron decays in b-jets. Using an asymmetry technique, where $A=-1$ represent the exotic $Q=-4 / 3$ scenario and $A=+1$ the SM $Q=+2 / 3$ scenario, they find $A_{\text {meas }}=0.97 \pm 0.12($ stat. $) \pm$ 0.31 (sys.), which agrees with the Standard Model expectation and excludes the exotic scenario at 99.9% C.L. [254].

The electromagnetic or the weak coupling of the top quark can be probed directly by investigating $t \bar{t}$ events with an additional gauge boson, such as $t \bar{t} \gamma, t \bar{t} W$, and $t \bar{t} Z$ events. The corresponding coupling can be extracted from the corresponding cross section or extracted from effective field theory (EFT) fits to various measured distributions and differential cross sections.

CDF performed a search for events containing a lepton, a photon, significant missing transverse momentum, and a jet identified as containing a b-quark and at least three jets and large total transverse energy in $6.0 \mathrm{fb}^{-1}$. They reported evidence for the observation of $t \bar{t} \gamma$ production with a cross section $\sigma_{t \bar{t} \gamma}=$ $0.18 \pm 0.08 \mathrm{pb}$ and a ratio of $\sigma_{t \bar{t} \gamma} / \sigma_{t \bar{t}}=0.024 \pm 0.009$ [255].

ATLAS performed a first measurement of the $t \bar{t} \gamma$ cross section in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ using $4.6 \mathrm{fb}^{-1}$ of data. Events are selected that contain a large transverse momentum electron or muon and a large transverse momentum photon, yielding 140 and 222 events in the electron and muon samples, respectively. The production of $t \bar{t} \gamma$ events was observed with a significance of 5.3 standard deviations. The resulting cross section times branching ratio into the single lepton channel for $t \bar{t} \gamma$ production with a photon with transverse momentum above 20 GeV is $\sigma^{\text {fid. }}(t \bar{t} \gamma) \times B R=63 \pm 8(\text { stat. })_{-13}^{+17}($ syst. $) \pm 1$ (lumi.) pb per lepton flavour [256], which is consistent with leading-order theoretical calculations.

At 8 TeV , ATLAS has used $20.2 \mathrm{fb}^{-1}$ of data to measure the $t \bar{t} \gamma$ cross section with a photon above 15 GeV and $|\eta|<2.37$. The fiducial cross section is measured to be $139 \pm 18 \mathrm{fb}$ [257], in good agreement with the NLO prediction [258]. Using $19.7 \mathrm{fb}^{-1}$ of data at 8 TeV , CMS performed a similar measurement of the $t \bar{t} \gamma$ production cross section in the lepton+jets decay mode with a photon transverse momentum above 25 GeV and $|\eta|<1.44$. They obtain a normalized cross section $\mathcal{R}=\sigma_{t \bar{t}+\gamma} / \sigma_{t \bar{t}}=(5.7 \pm 1.8) \times 10^{-4}$ in $e+$ jets and $(4.7 \pm 1.3) \times 10^{-4}$ in $\mu+$ jets. The fiducial $t \bar{t} \gamma$ cross section is obtained by multiplying by the measured $t \bar{t}$ fiducial cross section of $244.9 \pm 1.4(\text { stat. })_{-5.5}^{+6.3}$ (sys.) ± 6.4 (lumi.)pb. Extrapolating to the full phase space, the result is $\sigma_{t \bar{t} \gamma} \times \mathrm{BR}=(515 \pm 108)$ fb , per lepton + jets final state [259], in good agreement with the theoretical prediction.

At $\sqrt{s}=13 \mathrm{TeV}$, using $36.1 \mathrm{fb}^{-1}$ of single-lepton and dilepton events with exactly one photon, ATLAS measures the $t \bar{t} \gamma$ cross section. They employ neural network algorithms to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 ± 9 (stat.) ± 41 (sys.) fb and 69 ± 3 (stat.) ± 4 (sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions [260]. Very recently, ATLAS uses $139 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ $e \mu+\gamma$ events with at least two jets, out of which at least one is b-tagged, to measure the inclusive and differential cross-sections for the production of a top-quark pair in association with a photon. The fiducial cross-section is measured to be $44.2 \pm 2.6 \mathrm{fb}$. Differential cross-sections as functions of several observables are compared to state-of-the-art Monte Carlo simulations and next-to-leading order theoretical calculations. These include crosssections as functions of the photon transverse momentum and absolute pseudorapidity and angular variables related to the photon and the leptons and between the two leptons in the event. All measurements are in agreement with the predictions [261]. In $35.9 \mathrm{fb}^{-1}$ of lepton-plus-photon-plus-jets events, CMS manages to establish the first evidence for the associated production of a single-top quark and a photon at $\sqrt{s}=13 \mathrm{TeV}$. They employ

Table 60.2: Measurement and 95% C.L. upper limits of the W helicity in top-quark decays. The table includes both preliminary, as of October 2019, and published results. A full set of published results is given in the Listings.

W Helicity	Source	$\int_{\left(\mathrm{fb}^{-1}\right)} \mathcal{L} \mathrm{dt}$	Ref.	Method
$\mathcal{F}_{0}=0.722 \pm 0.081$	CDF+DØ Run II	2.7-5.4	[240]	$\cos \theta^{*}$ 2-param
$\mathcal{F}_{0}=0.682 \pm 0.057$	CDF + D \emptyset Run II	2.7-5.4	[240]	$\cos \theta^{*}$ 1-param
$\mathcal{F}_{0}=0.726 \pm 0.094$	CDF Run II	8.7	[248]	ME 2-param
$\mathcal{F}_{0}=0.67 \pm 0.07$	ATLAS (7 TeV)	1.0	[241]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.682 \pm 0.045$	CMS (7 TeV)	5.0	[242]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.626 \pm 0.059$	ATLAS+CMS (7 TeV)	2.2	[243]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.709 \pm 0.019$	ATLAS (8 TeV)	20.2	[244]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.681 \pm 0.026$	CMS (8 TeV)	19.8	[245]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.653 \pm 0.029$	CMS (8 TeV)	19.7	[246]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{0}=0.720 \pm 0.054$	CMS (8 TeV)	19.7	[247]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=-0.033 \pm 0.046$	CDF+DØ Run II	2.7-5.4	[240]	$\cos \theta^{*} 2$-param
$\mathcal{F}_{+}=-0.015 \pm 0.035$	CDF + D ${ }^{\text {d R }}$ R II	2.7-5.4	[240]	$\cos \theta^{*} 1$-param
$\mathcal{F}_{+}=-0.045 \pm 0.073$	CDF Run II	8.7	[248]	ME 2-param
$\mathcal{F}_{+}=0.01 \pm 0.05$	ATLAS (7 TeV)	1.0	[241]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=0.008 \pm 0.018$	CMS (7 TeV)	5.0	[242]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=0.015 \pm 0.034$	ATLAS+CMS (7 TeV)	2.2	[243]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=-0.008 \pm 0.014$	ATLAS (8 TeV)	20.2	[244]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=-0.004 \pm 0.015$	CMS (8 TeV)	19.8	[245]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=0.018 \pm 0.027$	CMS (8 TeV)	19.7	[246]	$\cos \theta^{*} 3$-param
$\mathcal{F}_{+}=-0.018 \pm 0.022$	CMS (8 TeV)	19.7	[247]	$\cos \theta^{*} 3$-param

a multivariate discriminant based on topological and kinematic event properties to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations. A fiducial cross section is measured for isolated photons with transverse momentum greater than 25 GeV in the central region of the detector. The measured product of the cross section and branching fraction is $\sigma(p p \rightarrow t \gamma j) B(t \rightarrow \mu \gamma b)=115 \pm 17($ stat $) \pm 30($ syst $) \mathrm{fb}$, which is consistent with the SM prediction [262]. A precision test of the vector and axial vector couplings in $t \bar{t} \gamma$ events or searches for possible tensor couplings of top-quarks to photons will only be feasible with an integrated luminosity of several hundred fb^{-1} in the future [263].

ATLAS and CMS have also studied the associate production of top-antitop quark pairs along with an electroweak gauge boson, where in the Standard Model the W-boson is expected to be produced via initial state radiation, while the Z-boson can also be radiated from a final-state top-quark and hence provides sensitivity to the top-quark neutral current weak gauge coupling, which implies a sensitivity to the third component of the top-quark's weak isospin, which has not been measured so far.

CMS performed measurements of the $t \bar{t} W$ and $t \bar{t} Z$ production cross section at $\sqrt{s}=7 \mathrm{TeV}$ with $5 \mathrm{fb}^{-1}$, yielding $\sigma_{t \bar{t} V}=0.43_{-0.15}^{+0.17}(\text { stat. })_{-0.07}^{+0.09}$ (syst.) $\mathrm{pb}(V=Z, W)$ and $\sigma_{t \bar{t} Z}=$ $0.28_{-0.11}^{+0.14}(\text { stat. })_{-0.03}^{+0.06}($ syst. $) \mathrm{fb}$, at about 3 standard deviations significance [264] and compatible with the SM expectations of $0.306_{-0.053}^{+0.031} \mathrm{pb}$ and $0.137_{-0.016}^{+0.012} \mathrm{pb}$, respectively $[265,266]$. ATLAS performed a similar analysis with $4.7 \mathrm{fb}^{-1}$ in the three-lepton channel and set an upper limit of 0.71 pb at 95% C.L. [267].

Using $20.3 \mathrm{fb}^{-1}$ of 8 TeV data, ATLAS performs a simultaneous measurement of the $t \bar{t} W$ and $t \bar{t} Z$ cross section. They observe the $t \bar{t} W$ and $t \bar{t} Z$ production at the 5.0σ and 4.2σ level, respectively, yielding $\sigma_{t \bar{t} W}=369_{-91}^{+100} \mathrm{fb}$ and $\sigma_{t \bar{t} Z}=176_{-52}^{+58} \mathrm{fb}$ [268]. CMS performs an analysis where signal events are identified by matching reconstructed objects in the detector to specific final state particles from $t \bar{t} W$ and $t \bar{t} Z$ decays using $19.5 \mathrm{fb}^{-1}$ of 8 TeV data. They obtain $\sigma_{t \bar{t} W}=382_{-102}^{+117} \mathrm{fb}$ and $\sigma_{t \bar{t} Z}=242_{-55}^{+65} \mathrm{fb}$, yielding a significance of 4.8 and 6.4 standard, respectively [269]. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the $t \bar{t} W$ and $t \bar{t} Z$ cross sections.

The most recent measurements in these channels are made at 13 TeV from ATLAS and CMS in multilepton final states. ATLAS made a measurement using $36.1 \mathrm{fb}^{-1}$ of events with two, three or four leptons. In multiple regions, the $t \bar{t} Z$ and $t \bar{t} W$ cross
sections are simultaneously measured using a combined fit to all regions, yielding $\sigma_{t \bar{t} Z}=0.95 \pm 0.08$ (stat) ± 0.10 (syst) pb and $\sigma_{t \bar{t} W}=0.87 \pm 0.13($ stat $) \pm 0.14$ (syst) pb [270] to be compared with the NLO+NLL (QCD) and NLO (EW) SM predictions, $\sigma_{t \bar{t} W}=579_{-9 \%}^{+14 \%} \mathrm{fb}$ and $\sigma_{t \bar{t} Z}=811_{-10 \%}^{+11 \%} \mathrm{fb}[271]$.

CMS uses $35.9 \mathrm{fb}^{-1}$ of data to measure $t \bar{t} W$ and $t \bar{t} Z$ production cross sections of $0.77_{-0.11}^{+0.12}{ }_{-0.12}^{+0.13} \mathrm{pb}$ and $0.99_{-0.08}^{+0.09}{ }_{-0.10}^{+0.12} \mathrm{pb}$, and significances over the background-only hypotheses of 5.5σ and 9.5σ, respectively [272], firmly establishing the observation of these processes. Very recently, CMS measured the inclusive $t \bar{t} Z$ cross section in $77.5 \mathrm{fb}^{-1}$ of events with three or four charged leptons, and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(t \bar{t} Z)=0.95 \pm 0.05($ stat $) \pm 0.06$ (syst) pb . This measurement includes differential cross sections as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay as well as stringent direct limits on the anomalous $t Z$ couplings [273].

The electroweak couplings can also be probed in single-top production in association with a Z boson. The $p p \rightarrow t Z q$ process at the LHC probes both the $W W Z$ coupling in the case where the Z emerges from the t-channel W in single-top production and, in the case where the Z is radiated from the top quark, the $t Z$ coupling. A CMS search at 8 TeV produced a hint of a $t Z q$ signal in tri-lepton events, with a significance compared to the background-only hypothesis of 2.4σ [274]. At 13 TeV the signal has begun to emerge. In $35.9 \mathrm{fb}^{-1}$ of events with three leptons, the $t Z q$ production cross section is measured to be $\sigma_{t Z q}=123_{-31}^{+33}(\text { stat })_{-23}^{+29}$ (syst) fb , where ℓ also includes tau leptons, with observed and expected significances of 3.7 and 3.1 standard deviations, respectively [262].

Searches for and now also measurements of the associate production of a top-antitop quark pair along with a Higgs boson, t $\bar{t} h$, with various subsequent decays provide sensitivity to the topHiggs Yukawa coupling. For further details, see the review on "Higgs".

60.3.3 Searches for Physics Beyond the Standard Model

The top quark plays a special role in the SM. Being the only quark with a coupling to the Higgs boson of order one, it provides the most important contributions to the quadratic radiative corrections to the Higgs mass exposing the issue of the naturalness of the SM. It is therefore very common for models where the naturalness problem is addressed to have new physics associated with the top quark. In SUSY, for instance, naturalness predicts the scalar top partners to be the lightest among the squarks and to
be accessible at the LHC energies (see the review "Supersymmetry: Theory"). In models where the Higgs is a pseudo-Goldstone boson, such as Little Higgs models, naturalness predicts the existence of partners of the top quarks with the same spin and color, but with different electroweak couplings, the so-called vectorial t^{\prime}. Stops and t^{\prime} 's are expected to have sizeable branching ratios to top quarks. Another intriguing prediction of SUSY models with universal couplings at the unification scale is that for a top-quark mass close to the measured value, the running of the Yukawa coupling down to 1 TeV naturally leads to the radiative breaking of the electroweak symmetry [275]. In fact, the top quark plays a role in the dynamics of electroweak symmetry breaking in many models [276]. One example is topcolor [277], where a large topquark mass can be generated through the formation of a dynamic $t \bar{t}$ condensate, X, which is formed by a new strong gauge force coupling preferentially to the third generation. Another example is topcolor-assisted technicolor [278], predicting the existence of a heavy Z^{\prime} boson that couples preferentially to the third generation of quarks. If light enough such a state might be directly accessible at the present hadron collider energies, or if too heavy, lead to four-top interactions possibly visible in the $t \bar{t} t \bar{t}$ final state. This final state has been recently observed by CMS [279] and limits are provided by ATLAS [280].

Current strategies to search for new physics in top-quark events at hadron colliders are either tailored to the discovery of specific models or model independent. They can be broadly divided in two classes. In the first class new resonant states are looked for through decay processes involving the top quarks. Current searches for bosonic resonances in $t \bar{t}$ final states, or for direct stop and t^{\prime} production, or for a charged Higgs in $H^{+} \rightarrow t \bar{b}$ fall in the category. On the other hand, if new states are too heavy to be directly produced, they might still give rise to deviations from the SM predictions for the strength and Lorentz form of the top-quark couplings to other SM particles. Accurate SM predictions and measurements are therefore needed and the results be efficiently interpreted in the framework of an effective field theory [281,282] as done for example in recent analyses sensitive to the strength and structure of the top quark couplings [270,279]. Global effective field theory interpretations based on publicly available measurements in the top quark sector have also appeared [283-285].

60.3.3.1 New Physics in Top Quark Production

Theoretical $[286,287]$ and experimental efforts have been devoted to the searches of $t \bar{t}$ resonances.

At the Tevatron, both the CDF and $\mathrm{D} \varnothing$ collaborations have searched for resonant production of $t \bar{t}$ pairs in the lepton+jets channel [288,289]. In both analyses, the data indicate no evidence of resonant production of $t \bar{t}$ pairs. They place upper limits on the production cross section times branching fraction to $t \bar{t}$ in comparison to the prediction for a narrow $\left(\Gamma_{Z^{\prime}}=0.012 M_{Z^{\prime}}\right)$ leptophobic topcolor Z^{\prime} boson. Within this model, they exclude Z^{\prime} bosons with masses below 915 (CDF-full data set) and 835 (DØ, $5 \mathrm{fb}^{-1}$) $\mathrm{GeV} / \mathrm{c}^{2}$ at the 95% C.L. These limits turn out to be independent of couplings of the $t \bar{t}$ resonance (pure vector, pure axial-vector, or SM-like Z^{\prime}). A similar analysis has been performed by CDF in the all-hadronic channel using $2.8 \mathrm{fb}^{-1}$ of data [290].
At the LHC, both the CMS and ATLAS collaborations have searched for resonant production of $t \bar{t}$ pairs, employing different techniques and final-state signatures (all-hadronic, lepton + jets, dilepton) at $\sqrt{s}=7,8$ and 13 TeV . In the low mass range, from the $t \bar{t}$ threshold to about one TeV / c^{2}, standard techniques based on the reconstruction of each of the decay objects (lepton, jets and b-jets, missing E_{T}) are used to identify the top quarks, while at higher invariant mass, the top quarks are boosted and the decay products more collimated and can appear as large-radius jets with substructure. Dedicated reconstruction techniques have been developed in recent years for boosted top quarks [291] that are currently employed at the LHC. Most of the analyses are modelindependent (i.e., no assumption on the quantum numbers of the resonance is made) yet they assume a small width and no signalbackground interference.

Using lepton+jets and fully hadronic channels in a data set corresponding to an integrated luminosity of $35.9 \mathrm{fb}^{-1}$ at 13 TeV , the CMS collaboration finds no significant deviations from the SM
background [292]. In particular, the existence of a leptophobic topcolor particle Z^{\prime} is excluded at the 95% confidence level for resonances in the mass range $0.6<M_{Z^{\prime}}<3.8 \mathrm{TeV} / \mathrm{c}^{2}, 0.5<$ $M_{Z^{\prime}}<5.25 \mathrm{TeV} / \mathrm{c}^{2}$, and $0.5<M_{Z^{\prime}}<6.65 \mathrm{TeV} / \mathrm{c}^{2}$ for $\Gamma_{Z^{\prime}}=$ $1 \%, 10 \%, 30 \% M_{Z^{\prime}}$, respectively [293]. Kaluza-Klein excitations of a gluon with $M_{G_{K K}}<4.55 \mathrm{TeV} / \mathrm{c}^{2}$ (at 95% confidence level) in the Randall-Sundrum model are also excluded.

The ATLAS collaboration has performed a search for resonant $t \bar{t}$ production in the lepton + jets channel using $36.1 \mathrm{fb}^{-1}$ of proton-proton (pp) collision data collected at a center-of-mass energy $\sqrt{s}=13 \mathrm{TeV}$ [294]. A search for local excesses in the number of data events compared to the Standard Model expectation in the $t \bar{t}$ invariant mass spectrum is performed. No evidence for a $t \bar{t}$ resonance is found and 95% confidence-level limits on the production rate are determined for massive states predicted in several benchmark models. For instance, a narrow leptophobic topcolor Z^{\prime} boson with a mass below $3.0 \mathrm{TeV} / \mathrm{c}^{2}$ is excluded. A Kaluza-Klein excitation of the graviton is excluded for masses in the range $0.45 \mathrm{TeV} / \mathrm{c}^{2}<m_{G}<0.65 \mathrm{TeV} / \mathrm{c}^{2}$. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below $3.8 \mathrm{TeV} / \mathrm{c}^{2}$.

ATLAS has also conducted a search for resonances in the all-jet final state at 13 TeV corresponding to an integrated luminosity of $36.1 \mathrm{fb}^{-1}$ [295]. The $t \bar{t}$ events are reconstructed by selecting two top quarks in their fully hadronic decay modes. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z^{\prime} bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. For example, the Z^{\prime} in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to $0.9 \mathrm{TeV} / \mathrm{c}^{2}$ and from 2.0 to $2.2 \mathrm{TeV} / \mathrm{c}^{2}$, and the Kaluza-Klein gluon is excluded for masses up to $3.4 \mathrm{TeV} / \mathrm{c}^{2}$, depending on the decay widths of the particles.

Heavy charged bosons, such as W^{\prime} or H^{+}, can also be searched for in $t \bar{b}, t j$ final states (for more information see the review " W^{\prime} boson searches" and "Higgs Bosons: theory and searches"), while heavy fermion resonances, such as vectorial or excited quarks, in final states such as $t Z, t H, t W, b W$.

CMS has performed several searches in this context, the most stringent limits coming from those at at $\sqrt{s}=13 \mathrm{TeV}$ [296-302]. For instance, a $W^{\prime} \rightarrow t \bar{b}$ has been searched for in lepton+jets in $35.9 \mathrm{fb}^{-1}$. No evidence has been found for a right-handed W^{\prime} boson and masses below $3.6 \mathrm{TeV} / \mathrm{c}^{2}$ are excluded at 95% confidence level providing the most stringent limits for right-handed W^{\prime} bosons in the top and bottom quark decay channel to date [296].

Single production of a vector-like quark decaying to a W boson and a top quark, with one lepton in the final state, also been searched in the same data set. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03 pb for vectorlike quark masses of 700 to $2000 \mathrm{GeV} / \mathrm{c}^{2}$. Mass exclusion limits up to $1660 \mathrm{GeV} / \mathrm{c}^{2}$ are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel. [303]

In the same data set, searches for pair production of vector-like T or B quarks in fully hadronic final states have been performed based on two different techniques. A first cut-based analysis targets the $b W$ decay mode of the T quark, while a second analysis, a multi-classification algorithm is deployed to label candidate jets as originating from top quarks, and W, Z, and H . Both analyses probe all possible branching fraction combinations of the T and B quarks and set limits at 95% confidence level on their masses, ranging from 740 to $1370 \mathrm{GeV} / \mathrm{c}^{2}$ [304].

ATLAS has performed searches for heavy bosons and fermions decaying to one top quark at $\sqrt{s}=7,8$ and 13 TeV . A $W^{\prime} \rightarrow t \bar{b}$
has been searched for at 13 TeV in lepton+jets in $36.1 \mathrm{fb}^{-1}$. No evidence has been found for a right-handed W^{\prime} boson with a mass below $3.25 \mathrm{TeV} / \mathrm{c}^{2}$ are excluded at 95% [305]. ATLAS has conducted a search for the single and pair production of a new charge $+2 / 3$ quark (T) decaying via $T \rightarrow Z t$ (and also $-1 / 3$ quark (B) decaying via $B \rightarrow Z b$) in a dataset corresponding to $36.1 \mathrm{fb}^{-1}$ luminosity at $\sqrt{s}=13 \mathrm{TeV}$ [306]. The final state used is characterized by the presence of b-tagged jets, as well as a Z boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. No significant excess of events above the SM expectation is observed, and upper limits are derived for vector-like quarks of various masses in a two-dimensional plane of branching ratios. Under branching ratio assumptions corresponding to a weak-isospin singlet scenario, a T quark with mass lower than $1030 \mathrm{GeV} / \mathrm{c}^{2}\left(1010 \mathrm{GeV} / \mathrm{c}^{2}\right.$ for a B quark) is excluded at the 95% confidence level. Under branching ratio assumptions corresponding to a particular weak-isospin doublet scenario, a T quark with mass lower than $1210 \mathrm{GeV} / \mathrm{c}^{2}\left(1140 \mathrm{GeV} / \mathrm{c}^{2}\right.$ for a B quark) is excluded at the 95% confidence level.

In the same dataset, ATLAS combines the searches for pairproduced vector-like partners of the top and bottom quarks in various decay channels $(T \rightarrow Z t / W b / H t, B \rightarrow Z b / W t / H b)$. The observed data are found to be in good agreement with the Standard Model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross-section for a range of vector-like quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vector-like quarks decay to Standard Model particles. A singlet T is excluded for masses below $1.31 \mathrm{TeV} / \mathrm{c}^{2}$ and a singlet B is excluded for masses below $1.22 \mathrm{TeV} / \mathrm{c}^{2}$. Assuming a weak isospin (T, B) doublet and $\left|V_{T b}\right| \ll\left|V_{t B}\right|, T$ and B masses below $1.37 \mathrm{TeV} \mathrm{GeV} / \mathrm{c}^{2}$ are excluded [307].

In many models top-quark partners preferably decay to top quarks and weakly interacting neutral stable particles, i.e., possibly dark matter candidates, that are not detected. An observable especially sensitive to new physics effects in $t \bar{t}$ production is therefore the missing transverse momentum.

CMS has presented a differential cross section measurement of top-quark pair and single production with missing transverse energy and corresponding interpretations in the context of dark matter (effective and simplified) models at 8 and 13 TeV [308-311]. The results obtained so far are consistent with the SM expectations. In particular the search performed at 13 TeV [311] is based on $35.9 \mathrm{fb}^{-1}$ of integrated luminosity. Upper limits are derived on the production cross section and interpreted in terms of a simplified model with a scalar/pseudoscalar mediator. Scalar and pseudoscalar mediator particles with masses below 290 and $300 \mathrm{GeV} / \mathrm{c}^{2}$, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of $1 \mathrm{GeV} / \mathrm{c}^{2}$ and mediator couplings to fermions and dark matter particles equal to unity.

A search for top squarks at a center-of-mass energy of 13 TeV in $36 \mathrm{fb}^{-1}$ of data has been performed by ATLAS [312] in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. The analysis also targets spin- 0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. No significant excess over the Standard Model prediction is observed. For pair-produced top-squarks decaying into top quarks, top-squark masses up to $940 \mathrm{GeV} / \mathrm{c}^{2}$ are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.

Flavor-changing-neutral-currents (FCNC) are hugely suppressed in the SM as non zero contributions only arise at one-loop and are proportional to the splitting between the quark masses. In the case of the top quark $B(t \rightarrow B q)$ with $B=g, \gamma, Z, H$ and $q=u, c$ are predicted to be order of $10^{-12}(t \rightarrow c g)$ or much smaller [313]. Several observables are accessible at colliders to test and constrain such couplings.

CMS has performed several studies on the search for FCNC in top-quark production. They have considered single-top quark production in the t-channel in $5 \mathrm{fb}^{-1}$ integrated luminosity at 7 TeV
and $19.7 \mathrm{fb}^{-1}$ integrated luminosity at 8 TeV [314]. Events with the top quark decaying into a muon, neutrino and two or three jets are selected. The upper limits on effective coupling strength can be translated to the 95% upper limits on the corresponding branching ratios $B(t \rightarrow g u) \leq 2.0 \cdot 10^{-5}, B(t \rightarrow g c) \leq 4.1 \cdot 10^{-4}$. They have performed a search for a single top quark produced in association with a photon in $19.1 \mathrm{fb}^{-1}$ integrated luminosity at 8 TeV [315]. The event selection requires the presence of one isolated muon and jets in the final state. The upper limits on effective coupling strength can be translated to the 95% upper limits on the corresponding branching ratios $B(t \rightarrow \gamma u) \leq 0.0161 \%$, $B(t \rightarrow \gamma c) \leq 0.182 \%$.

Recently, a search for flavor-changing neutral currents in associated production of a top quark with a Higgs boson decaying into $b \bar{b}$ has also been presented by CMS, corresponding to an integrated luminosity of $35.9 \mathrm{fb}^{-1}$ at 13 TeV . Two complementary channels are considered: top quark pair production, with FCNC decay of the top quark or antiquark, and single top associated production. A final state with one isolated lepton and at least three reconstructed jets, among which at least two are identified as b quark jets, is considered. No significant deviation is observed from predicted background and upper limits at 95% confidence level are set on the branching ratios of top quark decays, $B(t \rightarrow u H)<0.47 \%$ and $B(t \rightarrow c H)<0.47 \%$ [316], which are similar to the combined limits on all decay channels obtained with the full data set at 8 TeV [317].

ATLAS has presented results on the search for single top-quark production via FCNC's in strong interactions using data collected at $\sqrt{s}=8 \mathrm{TeV}$ and corresponding to an integrated luminosity of $20.3 \mathrm{fb}^{-1}$. Flavor-changing-neutral-current events are searched for in which a light quark (u or c) interacts with a gluon to produce a single top quark, either with or without the associated production of another light quark or gluon. Candidate events of top quarks decaying into leptons and jets are selected and classified into signal- and background-like events using a neural network. The observed 95% C.L. limit is $\sigma_{q q \rightarrow t} \times B(t \rightarrow W b)<3.4$ pb that can be interpreted as limits on the branching ratios, $B(t \rightarrow u g)<4 \cdot 10^{-5}$ and $B(t \rightarrow c g)<1.7 \cdot 10^{-4}$ [318].

ATLAS has set limits on the coupling of a top quark, a photon, and an up or charm quark using $81 \mathrm{fb}^{-1}$ of data 13 TeV . Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $t q \gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on $t \rightarrow u \gamma$ branching ratio via a left-handed (right-handed) interaction of $2.8 \times 10^{-5}(6.1 \times$ 10^{-5}) and on the $t \rightarrow c \gamma$ branching ratio for of $22 \times 10^{-5}(18 \times$ 10^{-5}) [319].

Constraints on FCNC couplings of the top quark can also be obtained from searches for anomalous single top-quark production in $e^{+} e^{-}$collisions, via the process $e^{+} e^{-} \rightarrow \gamma, Z^{*} \rightarrow t \bar{q}$ and its charge-conjugate $(q=u, c)$, or in $e^{ \pm} p$ collisions, via the process $e^{ \pm} u \rightarrow e^{ \pm} t$. For a leptonic W decay, the topology is at least a high- p_{T} lepton, a high- p_{T} jet and missing E_{T}, while for a hadronic W-decay, the topology is three high- p_{T} jets. Limits on the cross section for this reaction have been obtained by the LEP collaborations [320] in $e^{+} e^{-}$collisions, and by H1 [321] and ZEUS [322] in $e^{ \pm} p$ collisions. When interpreted in terms of branching ratios in top decay $[323,324]$, the LEP limits lead to typical 95% C.L. upper bounds of $B(t \rightarrow q Z)<0.137$. Assuming no coupling to the Z boson, the 95% C.L. limits on the anomalous FCNC coupling $\kappa_{\gamma}<0.13$ and <0.27 by ZEUS and H1, respectively, are stronger than the CDF limit of $\kappa_{\gamma}<0.42$, and improve over LEP sensitivity in that domain. The H1 limit is slightly weaker than the ZEUS limit due to an observed excess of five-candidate events over an expected background of 3.2 ± 0.4. If this excess is attributed to FCNC top-quark production, this leads to a total cross section of $\sigma(e p \rightarrow e+t+X, \sqrt{s}=319 \mathrm{GeV})<0.25 \mathrm{pb}[321,325]$.

60.3.3.2 New Physics in Top-Quark decays

The large sample of top quarks produced at the Tevatron and the LHC allows to measure or set stringent limits on the branching ratios of rare top-quark decays. For example, the existence of a light H^{+}can be constrained by looking for $t \rightarrow H^{+} b$ decay, in
particular with tau-leptons in the final state (for more information see the review "Higgs Bosons: theory and searches").

A first class of searches for new physics focuses on the structure of the $W t b$ vertex. Using up to $2.7 \mathrm{fb}^{-1}$ of data, $\mathrm{D} \emptyset$ has measured the $W t b$ coupling form factors by combining information from the W-boson helicity in top-quark decays in $t \bar{t}$ events and single topquark production, allowing to place limits on the left-handed and right-handed vector and tensor couplings [326-328].

ATLAS has published the results of a search for $C P$-violation in the decay of single top quarks produced in the t-channel where the top quarks are predicted to be highly polarized, using the lepton+jets final state [329]. The data analyzed are from $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ and correspond to an integrated luminosity of $4.7 \mathrm{fb}^{-1}$. In the Standard Model, the couplings at the $W t b$ vertex are left-handed, right-handed couplings being absent. A forward-backward asymmetry with respect to the normal to the plane defined by the W-momentum and the top-quark polarization has been used to probe the complex phase of a possibly non-zero value of the right-handed coupling, signaling a source of $C P$-violation beyond the SM. The measured value of the asymmetry is $0.031 \pm 0.065(\text { stat. })_{-0.031}^{+0.029}($ syst. $)$ in good agreement with the Standard Model.

A second class of searches focuses on FCNC's in the top-quark decays. Both, CDF and DØ, have provided the first limits for FCNC's in Run I and II. The most recent results from CDF give $B(t \rightarrow q Z)<3.7 \%$ and $B(t \rightarrow q \gamma)<3.2 \%$ at the 95% C.L. [330] while DØ $[331,332]$ sets $B(t \rightarrow q Z)(q=u, c$ quarks $)<3.2 \%)$ at 95% C.L., $B(t \rightarrow g u)<2.0 \cdot 10^{-4}$, and $B(t \rightarrow g c)<3.9 \cdot 10^{-3}$ at the 95% C.L. At the LHC, CMS has used a sample at a center-of-mass energy of 8 TeV corresponding to $19.7 \mathrm{fb}^{-1}$ of integrated luminosity to perform a search for flavor changing neutral current top-quark decay $t \rightarrow Z q$. Events with a topology compatible with the decay chain $t \bar{t} \rightarrow W b+Z q \rightarrow \ell \nu b+\ell \ell q$ are searched for. There is no excess seen in the observed number of events relative to the SM prediction; thus no evidence for flavor changing neutral current in top-quark decays is found. A combination with a previous search at 7 TeV excludes a $t \rightarrow Z q$ branching fraction greater than 0.05% at the 95% confidence level [333]. CMS has also performed a search for the production of a single top quark in association with a Z boson in the same data set at 8 TeV . Final states with three leptons (electrons or muons) and at least one jet are investigated. Exclusion limits at 95% confidence level on the branching fractions are found to be $B(t \rightarrow u Z)<0.022 \%$ and $B(t \rightarrow c Z)<0.049 \%$ [334].

The ATLAS collaboration has also searched for FCNC processes in $31.1 \mathrm{fb}^{-1}$ of $t \bar{t}$ events at a center-of-mass energy of 13 TeV , with one top quark decaying through FCNC $(t \rightarrow q Z)$ and the other through the SM dominant mode $(t \rightarrow b W)$. Only the decays of the Z boson to charged leptons and leptonic W boson decays were considered as signal, leading to a final state topology characterized by the presence of three isolated leptons, at least two jets and missing transverse energy from the undetected neutrino. No evidence for an FCNC signal was found. An upper limit on the $t \rightarrow q Z$ branching ratio of $B(t \rightarrow Z u(c))<1.7(2.4) \times 10^{-4}$ is set at the 95% confidence level [335].

Another search for FCNCs is the interactions of a top-quark to a Higgs boson and a light parton, $t q H, q=u, c$. The CMS collaboration has performed a search using a sample at a center-of-mass energy of 13 TeV corresponding to $35.9 \mathrm{fb}^{-1}$ of integrated luminosity, [336], combining single top quark FCNC production in association with the Higgs boson $(p p \rightarrow t H)$, and top quark pair production with FCNC decay of the top quark $(t \rightarrow q H)$. The combined analysis sets an upper limit on the $t \rightarrow u / \mathrm{cH}$ branching ratios of $B(t \rightarrow u / c H)<0.47 \%$ at 95% confidence level. The ATLAS collaboration considers $t \rightarrow q H, q=u, c$ with $36.1 \mathrm{fb}^{-1}$ of $t \bar{t}$ events at $\sqrt{s}=13 \mathrm{TeV}$. A combined measurement including $H \rightarrow b b$ and $H \rightarrow \tau \tau$ modes yields a 95% C.L. upper limit of 0.11% and 0.12% on the branching ratios of $B(t \rightarrow c H)$ and $B(t \rightarrow u H)$, respectively [337].

60.4 Outlook

Top-quark physics at hadron colliders has developed into precision physics. Various properties of the top quark have been measured with high precision, where the LHC has by now surpassed
the Tevatron precision and reach in the majority of relevant observables. Several \sqrt{s}-dependent physics quantities, such as the production cross-section, have been measured at several energies at the Tevatron and the LHC. Up to now, all measurements are consistent with the SM predictions and allow stringent tests of the underlying production mechanisms by strong and weak interactions. Given the very large event samples available at the LHC, top-quark properties will be further determined in $t \bar{t}$ as well as in electroweak single top-quark production. At the Tevatron, the $t-$ and s-channels for electroweak single top-quark production have been measured separately. At the LHC, quick progress has been achieved in the last years making all three relevant channels measured with more than 5 sigma significance. Furthermore, $t \bar{t} \gamma, t \bar{t} Z$, and $t \bar{t} W$ together with $t \bar{t} H$ associated production have started to provide key information on the top-quark electroweak couplings. At the same time various models of physics beyond the SM involving top-quark production are being constrained. With the first results from LHC Run-II at a higher center-of-mass energy and much higher luminosity starting to be released, top-quark physics has the potential to shed light on open questions and new aspects of physics at the TeV scale.
CDF note references can be retrieved from
https://www-cdf.fnal.gov/physics/new/top/top.html, and $D Ø$ note references from
https://www-d0.fnal.gov/Run2Physics/WWW/documents/ Run2Results.htm,
and ATLAS note references from
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ TopPublicResults,
and CMS note references from
https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsTOP.

References

[1] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110, 252004 (2013), [arXiv:1303.6254].
[2] S. Catani et al., JHEP 07, 100 (2019), [arXiv:1906.06535].
[3] ATLAS,CMS, CDF, \& D0 Collab, Phys. Rev. Lett. , 110, 25204 (2013); [arXive:403,4427].
[4] S. Cortese and R. Petronzio, Phys. Lett. B253, 494 (1991).
[5] S. S. D. Willenbrock and D. A. Dicus, Phys. Rev. D34, 155 (1986).
[6] N. Kidonakis, Phys. Rev. D83, 091503 (2011), [arXiv:1103.2792].
[7] M. Brucherseifer, F. Caola and K. Melnikov, Phys. Lett. B736, 58 (2014), [arXiv:1404.7116].
[8] E. L. Berger, J. Gao and H. X. Zhu, JHEP 11, 158 (2017), [arXiv:1708.09405].
[9] N. Kidonakis, Phys. Rev. D81, 054028 (2010), [arXiv:1001.5034].
[10] N. Kidonakis, Phys. Rev. D82, 054018 (2010), [arXiv:1005.4451].
[11] T. M. P. Tait and C. P. Yuan, Phys. Rev. D63, 014018 (2000), [hep-ph/0007298].
[12] M. Jezabek and J. H. Kuhn, Nucl. Phys. B314, 1 (1989).
[13] I. I. Y. Bigi et al., Phys. Lett. B181, 157 (1986).
[14] A. H. Hoang et al., Phys. Rev. D65, 014014 (2002), [hepph/0107144].
[15] K. Hagiwara, Y. Sumino and H. Yokoya, Phys. Lett. B666, 71 (2008), [arXiv:0804.1014].
[16] A. Czarnecki and K. Melnikov, Nucl. Phys. B544, 520 (1999), [hep-ph/9806244]; K. G. Chetyrkin et al., Phys. Rev. D60, 114015 (1999), [hep-ph/9906273].
[17] S. Frixione, P. Nason and B. R. Webber, JHEP 08, 007 (2003), [hep-ph/0305252]; W. Kim and H. Shin, JHEP 07, 070 (2007), [arXiv:0706.3563]; S. Frixione, P. Nason and G. Ridolfi, JHEP 09, 126 (2007), [arXiv:0707.3088]; J. M. Campbell et al., JHEP 04, 114 (2015), [arXiv:1412.1828]; T. Ježo et al., Eur. Phys. J. C76, 12, 691 (2016), [arXiv:1607.04538].
[18] S. Frixione et al., JHEP 03, 092 (2006), [hep-ph/0512250]; V. Marotta and A. Naddeo, JHEP 08, 029 (2008), [arXiv:0810.4759]; S. Alioli et al., JHEP 09, 111 (2009), [Erratum: JHEP02,011(2010)], [arXiv:0907.4076]; E. Re, Eur. Phys. J. C71, 1547 (2011), [arXiv:1009.2450]; R. Frederix, E. Re and P. Torrielli, JHEP 09, 130 (2012), [arXiv:1207.5391]; R. Frederix et al., JHEP 06, 027 (2016), [arXiv:1603.01178].
[19] S. Frixione and B. R. Webber, JHEP 06, 029 (2002), [hepph/0204244].
[20] P. Nason, JHEP 11, 040 (2004), [hep-ph/0409146].
[21] E. Todesco and J. Wenninger, Phys. Rev. Accel. Beams 20, 8, 081003 (2017).
[22] V. M. Abazov et al. (D0), Phys. Rev. D94, 092004 (2016), [arXiv:1605.06168].
[23] T. Aaltonen et al. (CDF), Phys. Rev. D88, 091103 (2013), [arXiv:1304.7961].
[24] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. D89, 7, 072001 (2014), [arXiv:1309.7570].
[25] T. A. Aaltonen et al. (CDF), Phys. Rev. D89, 9, 091101 (2014), [arXiv:1402.6728].
[26] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 105, 012001 (2010), [arXiv:1004.3224].
[27] V. M. Abazov et al. (D0), Phys. Rev. D90, 9, 092006 (2014), [arXiv:1401.5785].
[28] G. Aad et al. (ATLAS), Eur. Phys. J. C74, 10, 3109 (2014), [Addendum: Eur. Phys. J.C76,no.11,642(2016)], [arXiv:1406.5375].
[29] G. Aad et al. (ATLAS), Phys. Rev. D91, 11, 112013 (2015), [arXiv:1504.04251].
[30] G. Aad et al. (ATLAS), JHEP 05, 059 (2012), [arXiv:1202.4892].
[31] ATLAS Collab., ATLAS-CONF-2011-140.
[32] ATLAS Collab., ATLAS-CONF-2012-024.
[33] ATLAS Collab., ATLAS-CONF-2012-031.
[34] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 3, 2328 (2013), [arXiv:1211.7205].
[35] G. Aad et al. (ATLAS), Phys. Lett. B717, 89 (2012), [arXiv:1205.2067].
[36] G. Aad et al. (ATLAS), Phys. Rev. D91, 5, 052005 (2015), [arXiv:1407.0573].
[37] S. Chatrchyan et al. (CMS), JHEP 11, 067 (2012), [arXiv:1208.2671].
[38] S. Chatrchyan et al. (CMS), Phys. Lett. B720, 83 (2013), [arXiv:1212.6682].
[39] S. Chatrchyan et al. (CMS), JHEP 05, 065 (2013), [arXiv:1302.0508].
[40] S. Chatrchyan et al. (CMS), Phys. Rev. D85, 112007 (2012), [arXiv:1203.6810].
[41] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 4, 2386 (2013), [arXiv:1301.5755].
[42] ATLAS \& CMS Collab., ATLAS-CONF-2012-134, CMS-PAS-TOP-12-003.
[43] G. Aad et al. (ATLAS), Eur. Phys. J. C74, 10, 3109 (2014), [Addendum: Eur. Phys. J.C76,no.11,642(2016)], [arXiv:1406.5375].
[44] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 487 (2018), [arXiv:1712.06857].
[45] M. Aaboud et al. (ATLAS), Phys. Rev. D95, 7, 072003 (2017), [arXiv:1702.08839].
[46] V. Khachatryan et al. (CMS), Eur. Phys. J. C77, 1, 15 (2017), [arXiv:1602.09024].
[47] S. Chatrchyan et al. (CMS), JHEP 02, 024 (2014), [Erratum: JHEP02,102(2014)], [arXiv:1312.7582].
[48] V. Khachatryan et al. (CMS), JHEP 08, 029 (2016), [arXiv:1603.02303].
[49] V. Khachatryan et al. (CMS), Phys. Lett. B739, 23 (2014), [arXiv:1407.6643].
[50] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 3, 128 (2016), [arXiv:1509.06076].
[51] ATLAS Collab., ATLAS-CONF-2014-053, CMS Collab., CMS-PAS-TOP-14-016.
[52] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 11, 112001 (2015), [arXiv:1506.00903].
[53] ATLAS Collab., ATLAS-CONF-2015-033.
[54] ATLAS collab., ATLAS-CONF-2015-049.
[55] M. Aaboud et al. (ATLAS), Phys. Lett. B761, 136 (2016), [Erratum: Phys. Lett.B772,879(2017)], [arXiv:1606.02699].
[56] ATLAS Collab., ATLAS-CONF-2019-044.
[57] ATLAS Collab., ATLAS-CONF-2019-041 (2019).
[58] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 116, 5, 052002 (2016), [arXiv:1510.05302].
[59] V. Khachatryan et al. (CMS), Eur. Phys. J. C77, 172 (2017), [arXiv:1611.04040].
[60] CMS Collab., CMS-PAS-TOP-15-005.
[61] A. M. Sirunyan et al. (CMS), JHEP 09, 051 (2017), [arXiv:1701.06228].
[62] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 5, 368 (2019), [arXiv:1812.10505].
[63] CMS Collab., CMS-PAS-TOP-18-005.
[64] CMS Collab., CMS-PAS-TOP-16-013.
[65] A. M. Sirunyan et al. (CMS), JHEP 03, 115 (2018), [arXiv:1711.03143].
[66] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 119, 24, 242001 (2017), [arXiv:1709.07411].
[67] V. M. Abazov et al. (D0), Phys. Rev. D67, 012004 (2003), [hep-ex/0205019].
[68] T. Affolder et al. (CDF), Phys. Rev. D64, 032002 (2001), [Erratum: Phys. Rev.D67,119901(2003)], [hep-ex/0101036].
[69] ATLAS Collab., ATLAS-CONF-2011-108.
[70] V. M. Abazov et al. (D0), Phys. Rev. Lett. 107, 121802 (2011), [arXiv:1106.5436]; D. Acosta et al. (CDF), Phys. Rev. Lett. 95, 102002 (2005), [hep-ex/0505091].
[71] V. Khachatryan et al. (CMS), Phys. Lett. B736, 33 (2014), [arXiv:1404.2292].
[72] M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116, 8, 082003 (2016), [arXiv:1511.00549].
[73] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 110, 12, 121802 (2013), [arXiv:1211.5363].
[74] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 1, 2261 (2013), [arXiv:1207.5644].
[75] G. Aad et al. (ATLAS), Phys. Rev. D90, 7, 072004 (2014), [arXiv:1407.0371].
[76] G. Aad et al. (ATLAS), JHEP 06, 100 (2015), [arXiv:1502.05923].
[77] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 3, 2339 (2013), [arXiv:1211.2220].
[78] M. Aaboud et al. (ATLAS), Phys. Rev. D94, 9, 092003 (2016), [arXiv:1607.07281].
[79] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 10, 538 (2016), [arXiv:1511.04716].
[80] G. Aad et al. (ATLAS), Phys. Rev. D93, 3, 032009 (2016), [arXiv:1510.03818].
[81] V. Khachatryan et al. (CMS), Phys. Rev. D94, 5, 052006 (2016), [arXiv:1607.00837].
[82] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 7, 459 (2017), [arXiv:1703.01630].
[83] V. Khachatryan et al. (CMS), Phys. Rev. D94, 7, 072002 (2016), [arXiv:1605.00116].
[84] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 11, 542 (2015), [arXiv:1505.04480].
[85] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 3, 128 (2016), [arXiv:1509.06076].
[86] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 5, 292 (2017), [arXiv:1612.05220].
[87] CMS Collab., CMS-PAS-TOP-15-010.
[88] M. Aaboud et al. (ATLAS), JHEP 11, 191 (2017), [arXiv:1708.00727].
[89] ATLAS collab., ATLAS-CONF-2016-100.
[90] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 1, 012003 (2018), [arXiv:1801.02052].
[91] G. Aad et al. (ATLAS) (2019), [arXiv:1908.07305].
[92] A. M. Sirunyan et al. (CMS), JHEP 04, 060 (2018), [arXiv:1708.07638].
[93] V. Khachatryan et al. (CMS), Phys. Rev. D95, 9, 092001 (2017), [arXiv:1610.04191].
[94] A. M. Sirunyan et al. (CMS), JHEP 06, 002 (2018), [arXiv:1803.03991].
[95] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 11, 112003 (2018), [arXiv:1803.08856].
[96] A. M. Sirunyan et al. (CMS), JHEP 02, 149 (2019), [arXiv:1811.06625].
[97] A. M. Sirunyan et al. (CMS), Submitted to: Eur. Phys. J. (2019), [arXiv:1904.05237].
[98] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 1, 11 (2016), [arXiv:1508.06868].
[99] G. Aad et al. (ATLAS), JHEP 01, 020 (2015), [arXiv:1407.0891].
[100] S. Chatrchyan et al. (CMS), Eur. Phys. J. C74, 3014 (2015), [Erratum: Eur. Phys. J.C75,no.5,216(2015)], [arXiv:1404.3171].
[101] V. Khachatryan et al. (CMS), Phys. Lett. B746, 132 (2015), [arXiv:1411.5621].
[102] G. Aad et al. (ATLAS), Phys. Rev. D92, 7, 072005 (2015), [arXiv:1506.05074].
[103] M. Aaboud et al. (ATLAS), JHEP 04, 046 (2019), [arXiv:1811.12113].
[104] A. M. Sirunyan et al. (CMS), Phys. Lett. B776, 355 (2018), [arXiv:1705.10141].
[105] CMS Collab., CMS-PAS-TOP-18-002.
[106] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1909.05306].
[107] V. M. Abazov et al. (D0), Phys. Rev. Lett. 103, 092001 (2009), [arXiv:0903.0850]; V. M. Abazov et al. (D0), Phys. Rev. D78, 012005 (2008), [arXiv:0803.0739]; V. M. Abazov et al. (D0), Phys. Rev. Lett. 98, 181802 (2007), [hepex/0612052].
[108] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 103, 092002 (2009), [arXiv:0903.0885]; T. Aaltonen et al. (CDF), Phys. Rev. D81, 072003 (2010), [arXiv:1001.4577].
[109] T. Aaltonen et al. (CDF), Phys. Rev. D82, 112005 (2010), [arXiv:1004.1181].
[110] A. Heinson and T. R. Junk, Ann. Rev. Nucl. Part. Sci. 61, 171 (2011), [arXiv:1101.1275].
[111] Tevatron Electroweak Working Group, (2009), [arXiv:0908.2171].
[112] CDF Collab., CDF conference note 11113 (2014), DØ Collab., DØ conference note 6448 (2014).
[113] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 115, 15, 152003 (2015), [arXiv:1503.05027].
[114] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 112, 231803 (2014), [arXiv:1402.5126].
[115] G. Aad et al. (ATLAS), Phys. Rev. D90, 11, 112006 (2014), [arXiv:1406.7844].
[116] G. Aad et al. (ATLAS), Phys. Lett. B717, 330 (2012), [arXiv:1205.3130].
[117] S. Chatrchyan et al. (CMS), JHEP 12, 035 (2012), [arXiv:1209.4533].
[118] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 8, 531 (2017), [arXiv:1702.02859].
[119] M. Aaboud et al. (ATLAS), JHEP 04, 124 (2017), [arXiv:1702.08309].
[120] V. Khachatryan et al. (CMS), JHEP 06, 090 (2014), [arXiv:1403.7366].
[121] CMS Collab., CMS-PAS-TOP-15-007.
[122] M. Aaboud et al. (ATLAS), JHEP 04, 086 (2017), [arXiv:1609.03920].
[123] A. M. Sirunyan et al. (CMS), Phys. Lett. B772, 752 (2017), [arXiv:1610.00678].
[124] A. M. Sirunyan et al. (CMS) (2018), [arXiv:1812.10514].
[125] C. D. White et al., JHEP 11, 074 (2009), [arXiv:0908.0631].
[126] S. Frixione et al., JHEP 07, 029 (2008), [arXiv:0805.3067].
[127] G. Aad et al. (ATLAS), Phys. Lett. B716, 142 (2012), [arXiv:1205.5764].
[128] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 110, 022003 (2013), [arXiv:1209.3489].
[129] G. Aad et al. (ATLAS), JHEP 01, 064 (2016), [arXiv:1510.03752].
[130] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 23, 231802 (2014), [arXiv:1401.2942].
[131] ATLAS Collab., ATLAS-CONF-2014-052, CMS Collab., CMS-PAS-TOP-14-009.
[132] M. Aaboud et al. (ATLAS), JHEP 01, 063 (2018), [arXiv:1612.07231].
[133] A. M. Sirunyan et al. (CMS), JHEP 10, 117 (2018), [arXiv:1805.07399].
[134] ATLAS Collab., ATLAS-CONF-2011-118.
[135] G. Aad et al. (ATLAS), Phys. Lett. B756, 228 (2016), [arXiv:1511.05980].
[136] V. Khachatryan et al. (CMS), JHEP 09, 027 (2016), [arXiv:1603.02555].
[137] M. Aaboud et al. (ATLAS, CMS), JHEP 05, 088 (2019), [arXiv:1902.07158].
[138] CMS Collab., CMS-PAS-TOP-14-004.
[139] CMS Collab., CMS-PAS-TOP-13-001.
[140] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.08330].
[141] ATLAS collab., ATLAS-CONF-2016-012.
[142] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 22, 221802 (2018), [arXiv:1808.02913].
[143] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 115, 5, 052001 (2015), [arXiv:1411.3007].
[144] W. Hollik and D. Pagani, Phys. Rev. D84, 093003 (2011), [arXiv:1107.2606].
[145] W. Bernreuther and Z.-G. Si, Phys. Rev. D86, 034026 (2012), [arXiv:1205.6580].
[146] S. Jung et al., Phys. Rev. D81, 015004 (2010), [arXiv:0907.4112].
[147] V. M. Abazov et al. (D0), Phys. Rev. Lett. 100, 142002 (2008), [arXiv:0712.0851].
[148] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 202001 (2008), [arXiv:0806.2472].
[149] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 120, 4, 042001 (2018), [arXiv:1709.04894].
[150] G. Aad et al. (ATLAS), JHEP 02, 107 (2014), [arXiv:1311.6724].
[151] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 2, 87 (2016), [Erratum: Eur. Phys. J.C77,564(2017)], [arXiv:1509.02358].
[152] G. Aad et al. (ATLAS), Phys. Rev. D94, 3, 032006 (2016), [arXiv:1604.05538].
[153] S. Chatrchyan et al. (CMS), Phys. Lett. B717, 129 (2012), [arXiv:1207.0065].
[154] V. Khachatryan et al. (CMS), Phys. Rev. D93, 3, 034014 (2016), [arXiv:1508.03862].
[155] V. Khachatryan et al. (CMS), Phys. Lett. B760, 365 (2016), [arXiv:1603.06221].
[156] M. Czakon et al., Phys. Rev. D98, 1, 014003 (2018), [arXiv:1711.03945].
[157] V. Khachatryan et al. (CMS), Phys. Lett. B757, 154 (2016), [arXiv:1507.03119].
[158] G. Aad et al. (ATLAS), Phys. Lett. B756, 52 (2016), [arXiv:1512.06092].
[159] G. Aad et al. (ATLAS), JHEP 05, 061 (2015), [arXiv:1501.07383].
[160] S. Chatrchyan et al. (CMS), JHEP 04, 191 (2014), [arXiv:1402.3803].
[161] M. Aaboud et al. (ATLAS, CMS), JHEP 04, 033 (2018), [arXiv:1709.05327].
[162] C. Collaboration (CMS) (2019).
[163] F. Abe et al. (CDF), Phys. Rev. D50, 2966 (1994).
[164] A. Abulencia et al. (CDF), Phys. Rev. D73, 032003 (2006), [hep-ex/0510048].
[165] M. Aaboud et al. (ATLAS), Eur. Phys. J. C79, 4, 290 (2019), [arXiv:1810.01772].
[166] V. Khachatryan et al. (CMS), Phys. Rev. D93, 7, 072004 (2016), [arXiv:1509.04044].
[167] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 11, 891 (2018), [arXiv:1805.01428].
[168] S. Argyropoulos and T. Sjöstrand, JHEP 11, 043 (2014), [arXiv:1407.6653].
[169] J. R. Christiansen and P. Z. Skands, JHEP 08, 003 (2015), [arXiv:1505.01681].
[170] C. Collaboration (CMS) (2019).
[171] V. M. Abazov et al. (D0), Nature 429, 638 (2004), [hepex/0406031].
[172] K. Kondo, T. Chikamatsu and S. H. Kim, J. Phys. Soc. Jap. 62, 1177 (1993).
[173] R. H. Dalitz and G. R. Goldstein, Phys. Rev. D45, 1531 (1992); R. H. Dalitz and G. R. Goldstein, Phys. Lett. B287, 225 (1992).
[174] V. M. Abazov et al. (D0), Phys. Rev. Lett. 113, 032002 (2014), [arXiv:1405.1756].
[175] L. Sonnenschein, Phys. Rev. D73, 054015 (2006), [Erratum: Phys. Rev.D78,079902(2008)], [hep-ph/0603011].
[176] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 7, 330 (2015), [arXiv:1503.05427].
[177] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 3, 032002 (2017), [arXiv:1704.06142].
[178] C. G. Lester and D. J. Summers, Phys. Lett. B463, 99 (1999), [hep-ph/9906349].
[179] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 4, 313 (2019), [arXiv:1812.10534].
[180] M. Aaboud et al. (ATLAS), JHEP 09, 118 (2017), [arXiv:1702.07546].
[181] The Tevatron Electroweak Working Group and Aaltonen, T., For the CDF and D0 Collab., arXiv:1608.01881, FERMILAB-CONF-16-298-E.
[182] B. Abbott et al. (D0), Phys. Rev. D60, 052001 (1999), [hepex/9808029]; F. Abe et al. (CDF), Phys. Rev. Lett. 82, 271 (1999), [Erratum: Phys. Rev. Lett.82,2808(1999)], [hepex/9810029].
[183] T. Aaltonen et al. (CDF), Phys. Rev. D92, 3, 032003 (2015), [arXiv:1505.00500].
[184] T. A. Aaltonen et al. (CDF), Phys. Rev. D90, 9, 091101 (2014), [arXiv:1409.4906].
[185] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 5, 354 (2017), [arXiv:1703.02530].
[186] T. Aaltonen et al. (CDF), Phys. Lett. B698, 371 (2011), [arXiv:1101.4926].
[187] CMS Collab., CMS-PAS-TOP-12-030.
[188] T. Aaltonen et al. (CDF), Phys. Rev. D80, 051104 (2009), [arXiv:0906.5371].
[189] V. Khachatryan et al. (CMS), Phys. Rev. D93, 9, 092006 (2016), [arXiv:1603.06536].
[190] V. Khachatryan et al. (CMS), JHEP 12, 123 (2016), [arXiv:1608.03560].
[191] CMS Collab., CMS-PAS-TOP-15-002.
[192] CMS Collab., CMS-PAS-TOP-16-002.
[193] V. M. Abazov et al. (D0), Phys. Rev. Lett. 100, 192004 (2008), [arXiv:0803.2779]; S. Chatrchyan et al. (CMS), Phys. Lett. B728, 496 (2014), [Erratum: Phys. Lett.B738,526(2014)], [arXiv:1307.1907]; V. M. Abazov et al. (D0), Phys. Lett. B703, 422 (2011), [arXiv:1104.2887]; ATLAS Collab., ATLAS-CONF-2019-041; U. Langenfeld, S. Moch and P. Uwer, Phys. Rev. D80, 054009 (2009), [arXiv:0906.5273].
[194] G. Aad et al. (ATLAS) (2019), [arXiv:1905.02302].
[195] CMS Collab., CMS-PAS-TOP-13-006 (2016).
[196] CDF Collab., CDF conference note 11080 (2014).
[197] V. M. Abazov et al. (D0), Phys. Rev. D91, 11, 112003 (2015), [arXiv:1501.07912].
[198] CMS Collab., CMS-PAS-TOP-13-005.
[199] M. Beneke et al., Phys. Lett. B775, 63 (2017), [arXiv:1605.03609].
[200] A. H. Hoang, C. Lepenik and M. Preisser, JHEP 09, 099 (2017), [arXiv:1706.08526].
[201] C. Collaboration (CMS) (2019), [arXiv:1909.09193].
[202] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), [arXiv:1207.7214].
[203] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), [arXiv:1207.7235].
[204] G. Degrassi et al., JHEP 08, 098 (2012), [arXiv:1205.6497].
[205] S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B716, 214 (2012), [arXiv:1207.0980].
[206] T. Aaltonen et al. (CDF), Phys. Rev. D87, 5, 052013 (2013), [arXiv:1210.6131].
[207] V. M. Abazov et al. (D0), Phys. Rev. D84, 052005 (2011), [arXiv:1106.2063].
[208] G. Aad et al. (ATLAS), Phys. Lett. B728, 363 (2014), [arXiv:1310.6527].
[209] S. Chatrchyan et al. (CMS), JHEP 06, 109 (2012), [arXiv:1204.2807].
[210] S. Chatrchyan et al. (CMS), Phys. Lett. B770, 50 (2017), [arXiv:1610.09551].
[211] G. Mahlon and S. J. Parke, Phys. Rev. D53, 4886 (1996), [hep-ph/9512264]; G. Mahlon and S. J. Parke, Phys. Lett. B411, 173 (1997), [hep-ph/9706304].
[212] G.R. Goldstein, in Spin 96: Proceedings of the 12th International Symposium on High Energy Spin Physics, Amsterdam, 1996, ed. C.W. Jager (World Scientific, Singapore, 1997), p. 328.
[213] T. Stelzer and S. Willenbrock, Phys. Lett. B374, 169 (1996), [hep-ph/9512292].
[214] W. Bernreuther et al., Nucl. Phys. B690, 81 (2004), [hepph/0403035].
[215] A. Brandenburg, Z. G. Si and P. Uwer, Phys. Lett. B539, 235 (2002), [hep-ph/0205023].
[216] CDF Collab., CDF conference note 10719 (2011).
[217] CDF Collab., CDF conference note 10211 (2010).
[218] V. M. Abazov et al. (D0), Phys. Lett. B757, 199 (2016), [arXiv:1512.08818].
[219] V. M. Abazov et al. (D0), Phys. Rev. D95, 1, 011101 (2017), [arXiv:1607.07627].
[220] V. M. Abazov et al. (D0), Phys. Rev. D92, 052007 (2015), [arXiv:1507.05666].
[221] G. Mahlon and S. J. Parke, Phys. Rev. D81, 074024 (2010), [arXiv:1001.3422].
[222] G. Aad et al. (ATLAS), Phys. Rev. D90, 11, 112016 (2014), [arXiv:1407.4314].
[223] G. Aad et al. (ATLAS), Phys. Rev. Lett. 114, 14, 142001 (2015), [arXiv:1412.4742].
[224] G. Aad et al. (ATLAS), Phys. Rev. D93, 1, 012002 (2016), [arXiv:1510.07478].
[225] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 18, 182001 (2014), [arXiv:1311.3924].
[226] V. Khachatryan et al. (CMS), Phys. Lett. B758, 321 (2016), [arXiv:1511.06170].
[227] V. Khachatryan et al. (CMS), Phys. Rev. D93, 5, 052007 (2016), [arXiv:1601.01107].
[228] M. Aaboud et al. (ATLAS), Submitted to: Eur. Phys. J. (2019), [arXiv:1903.07570].
[229] A. M. Sirunyan et al. (CMS), Phys. Rev. D100, 7, 072002 (2019), [arXiv:1907.03729].
[230] W. Bernreuther, D. Heisler and Z.-G. Si, JHEP 12, 026 (2015), [arXiv:1508.05271].
[231] M. Aaboud et al. (ATLAS), JHEP 03, 113 (2017), [arXiv:1612.07004].
[232] A. F. Falk and M. E. Peskin, Phys. Rev. D49, 3320 (1994), [hep-ph/9308241].
[233] T. A. Aaltonen et al. (CDF), Phys. Rev. Lett. 111, 20, 202001 (2013), [arXiv:1308.4050].
[234] CMS Collab., CMS-PAS-TOP-16-019.
[235] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 2, 129 (2018), [arXiv:1709.04207].
[236] ATLAS-CONF-2019-038.
[237] V. M. Abazov et al. (D0), Phys. Rev. D85, 091104 (2012), [arXiv:1201.4156].
[238] G. L. Kane, G. A. Ladinsky and C. P. Yuan, Phys. Rev. D45, 124 (1992).
[239] A. Czarnecki, J. G. Korner and J. H. Piclum, Phys. Rev. D81, 111503 (2010), [arXiv:1005.2625].
[240] T. Aaltonen et al. (CDF, D0), Phys. Rev. D85, 071106 (2012), [arXiv:1202.5272].
[241] G. Aad et al. (ATLAS), JHEP 06, 088 (2012), [arXiv:1205.2484].
[242] S. Chatrchyan et al. (CMS), JHEP 10, 167 (2013), [arXiv:1308.3879].
[243] ATLAS and CMS Collab., ATLAS-CONF-2013-033, CMS-PAS-TOP-11-025.
[244] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 4, 264 (2017), [Erratum: Eur. Phys. J.C79,no.1,19(2019)], [arXiv:1612.02577].
[245] V. Khachatryan et al. (CMS), Phys. Lett. B762, 512 (2016), [arXiv:1605.09047].
[246] CMS Collab., CMS-PAS-TOP-14-017.
[247] V. Khachatryan et al. (CMS), JHEP 01, 053 (2015), [arXiv:1410.1154].
[248] T. Aaltonen et al. (CDF), Phys. Rev. D87, 3, 031104 (2013), [arXiv:1211.4523].
[249] D. Choudhury, T. M. P. Tait and C. E. M. Wagner, Phys. Rev. D65, 053002 (2002), [hep-ph/0109097].
[250] D. Chang, W.-F. Chang and E. Ma, Phys. Rev. D59, 091503 (1999), [hep-ph/9810531]; D. Chang, W.-F. Chang and E. Ma, Phys. Rev. D61, 037301 (2000), [hep-ph/9909537].
[251] T. Aaltonen et al. (CDF), Phys. Rev. D88, 3, 032003 (2013), [arXiv:1304.4141].
[252] V. M. Abazov et al. (D0), Phys. Rev. D90, 5, 051101 (2014), [Erratum: Phys. Rev.D90,no.7,079904(2014)], [arXiv:1407.4837].
[253] G. Aad et al. (ATLAS), JHEP 11, 031 (2011).
[254] CMS Collab., CMS-PAS-TOP-11-031.
[255] T. Aaltonen et al. (CDF), Phys. Rev. D84, 031104 (2011), [arXiv:1106.3970].
[256] G. Aad et al. (ATLAS), Phys. Rev. D91, 7, 072007 (2015), [arXiv:1502.00586].
[257] M. Aaboud et al. (ATLAS), JHEP 11, 086 (2017), [arXiv:1706.03046].
[258] K. Melnikov, M. Schulze and A. Scharf, Phys. Rev. D83, 074013 (2011), [arXiv:1102.1967].
[259] A. M. Sirunyan et al. (CMS), JHEP 10, 006 (2017), [arXiv:1706.08128].
[260] M. Aaboud et al. (ATLAS), Eur. Phys. J. C79, 5, 382 (2019), [arXiv:1812.01697].
[261] ATLAS Collab., ATLAS-CONF-2019-042.
[262] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 358 (2018), [arXiv:1712.02825].
[263] M. Cepeda et al. (HL/HE WG2 group) (2019), [arXiv:1902.00134].
[264] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 110, 172002 (2013), [arXiv:1303.3239].
[265] J. M. Campbell and R. K. Ellis, JHEP 07, 052 (2012), [arXiv:1204.5678].
[266] M. V. Garzelli et al., JHEP 11, 056 (2012), [arXiv:1208.2665].
[267] ATLAS Collab., ATLAS-CONF-2012-126.
[268] G. Aad et al. (ATLAS), JHEP 11, 172 (2015), [arXiv:1509.05276].
[269] V. Khachatryan et al. (CMS), JHEP 01, 096 (2016), [arXiv:1510.01131].
[270] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 7, 072009 (2019), [arXiv:1901.03584].
[271] A. Broggio et al., JHEP 08, 039 (2019), [arXiv:1907.04343].
[272] A. M. Sirunyan et al. (CMS), JHEP 08, 011 (2018), [arXiv:1711.02547].
[273] (2019), [arXiv:1907.11270].
[274] A. M. Sirunyan et al. (CMS), JHEP 07, 003 (2017), [arXiv:1702.01404].
[275] S. P. Martin 1-98 (1997), [Adv. Ser. Direct. High Energy Phys.18,1(1998)], [hep-ph/9709356].
[276] C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003), [Erratum: Phys. Rept.390,553(2004)], [hep-ph/0203079].
[277] C. T. Hill, Phys. Lett. B266, 419 (1991).
[278] C. T. Hill, Phys. Lett. B345, 483 (1995), [hep-ph/9411426].
[279] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1908.06463].
[280] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 5, 052009 (2019), [arXiv:1811.02305].
[281] C. Zhang and S. Willenbrock, Phys. Rev. D83, 034006 (2011), [arXiv:1008.3869].
[282] J. A. Aguilar-Saavedra, Nucl. Phys. B843, 638 (2011), [Erratum: Nucl. Phys.B851,443(2011)], [arXiv:1008.3562].
[283] A. Buckley et al., JHEP 04, 015 (2016), [arXiv:1512.03360].
[284] N. P. Hartland et al., JHEP 04, 100 (2019), [arXiv:1901.05965].
[285] I. Brivio et al. (2019), [arXiv:1910.03606].
[286] V. Barger, T. Han and D. G. E. Walker, Phys. Rev. Lett. 100, 031801 (2008), [hep-ph/0612016].
[287] R. Frederix and F. Maltoni, JHEP 01, 047 (2009), [arXiv:0712.2355].
[288] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 110, 12, 121802 (2013), [arXiv:1211.5363].
[289] D. Acosta et al. (CDF), Phys. Rev. Lett. 94, 211801 (2005), [hep-ex/0501050].
[290] T. Aaltonen et al. (CDF), Phys. Rev. D84, 072003 (2011), [arXiv:1108.4755].
[291] A. Altheimer et al., J. Phys. G39, 063001 (2012), [arXiv:1201.0008].
[292] A. M. Sirunyan et al. (CMS), JHEP 04, 031 (2019), [arXiv:1810.05905].
[293] A. M. Sirunyan et al. (CMS), JHEP 07, 001 (2017), [arXiv:1704.03366].
[294] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 7, 565 (2018), [arXiv:1804.10823].
[295] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 9, 092004 (2019), [arXiv:1902.10077].
[296] A. M. Sirunyan et al. (CMS), Phys. Lett. B777, 39 (2018), [arXiv:1708.08539].
[297] A. M. Sirunyan et al. (CMS), Phys. Lett. B781, 574 (2018), [arXiv:1708.01062].
[298] A. M. Sirunyan et al. (CMS), JHEP 08, 073 (2017), [arXiv:1705.10967].
[299] A. M. Sirunyan et al. (CMS), Phys. Lett. B772, 634 (2017), [arXiv:1701.08328].
[300] V. Khachatryan et al. (CMS), Phys. Lett. B771, 80 (2017), [arXiv:1612.00999].
[301] A. M. Sirunyan et al. (CMS), JHEP 04, 136 (2017), [arXiv:1612.05336].
[302] A. M. Sirunyan et al. (CMS), JHEP 05, 029 (2017), [arXiv:1701.07409].
[303] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 90 (2019), [arXiv:1809.08597].
[304] A. M. Sirunyan et al. (CMS), Phys. Rev. D100, 7, 072001 (2019), [arXiv:1906.11903].
[305] M. Aaboud et al. (ATLAS), Phys. Lett. B788, 347 (2019), [arXiv:1807.10473].
[306] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 11, 112010 (2018), [arXiv:1806.10555].
[307] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 21, 211801 (2018), [arXiv:1808.02343].
[308] CMS Collab. CMS-PAS-TOP-12-042 (2013).
[309] V. Khachatryan et al. (CMS), JHEP 06, 121 (2015), [arXiv:1504.03198].
[310] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 12, 845 (2017), [arXiv:1706.02581].
[311] A. M. Sirunyan et al. (CMS), JHEP 03, 141 (2019), [arXiv:1901.01553].
[312] M. Aaboud et al. (ATLAS), JHEP 06, 108 (2018), [arXiv:1711.11520].
[313] J. A. Aguilar-Saavedra, Acta Phys. Polon. B35, 2695 (2004), [hep-ph/0409342].
[314] V. Khachatryan et al. (CMS), JHEP 02, 028 (2017), [arXiv:1610.03545].
[315] CMS Collab., CMS-PAS-TOP-14-003.
[316] CMS Collab., CMS-PAS-TOP-17-003.
[317] V. Khachatryan et al. (CMS), JHEP 02, 079 (2017), [arXiv:1610.04857].
[318] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 2, 55 (2016), [arXiv:1509.00294].
[319] G. Aad et al. (ATLAS), Phys. Lett. B800, 135082 (2020), [arXiv:1908.08461].
[320] A. Heister et al. (ALEPH), Phys. Lett. B543, 173 (2002), [hep-ex/0206070]; J. Abdallah et al. (DELPHI), Phys. Lett. B590, 21 (2004), [hep-ex/0404014]; P. Achard et al. (L3), Phys. Lett. B549, 290 (2002), [hep-ex/0210041]; G. Abbiendi et al. (OPAL), Phys. Lett. B521, 181 (2001), [hepex/0110009].
[321] F. D. Aaron et al. (H1), Phys. Lett. B678, 450 (2009), [arXiv:0904.3876].
[322] H. Abramowicz et al. (ZEUS), Phys. Lett. B708, 27 (2012), [arXiv:1111.3901].
[323] M. Beneke et al., in "1999 CERN Workshop on standard model physics (and more) at the LHC, CERN, Geneva, Switzerland, 25-26 May: Proceedings," 419-529 (2000), [hep-ph/0003033], URL http://weblib.cern.ch/ abstract?CERN-TH-2000-100.
[324] V. F. Obraztsov, S. R. Slabospitsky and O. P. Yushchenko, Phys. Lett. B426, 393 (1998), [hep-ph/9712394].
[325] T. Carli, D. Dannheim and L. Bellagamba, Mod. Phys. Lett. A19, 1881 (2004), [hep-ph/0402012].
[326] V. M. Abazov et al. (D0), Phys. Rev. Lett. 102, 092002 (2009), [arXiv:0901.0151].
[327] V.M. Abazov et al. (DØ Collab.), D \varnothing conference note 5838 (2009).
[328] V. M. Abazov et al. (D0), Phys. Lett. B708, 21 (2012), [arXiv:1110.4592].
[329] ATLAS Collab., ATLAS-CONF-2013-032.
[330] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 192002 (2008), [arXiv:0805.2109].
[331] V. M. Abazov et al. (D0), Phys. Lett. B701, 313 (2011), [arXiv:1103.4574].
[332] V. M. Abazov et al. (D0), Phys. Lett. B693, 81 (2010), [arXiv:1006.3575].
[333] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 17, 171802 (2014), [arXiv:1312.4194].
[334] A. M. Sirunyan et al. (CMS), JHEP 07, 003 (2017), [arXiv:1702.01404].
[335] M. Aaboud et al. (ATLAS), JHEP 07, 176 (2018), [arXiv:1803.09923].
[336] A. M. Sirunyan et al. (CMS), JHEP 06, 102 (2018), [arXiv:1712.02399].
[337] M. Aaboud et al. (ATLAS), JHEP 05, 123 (2019), [arXiv:1812.11568].

61. Form Factors for Radiative Pion and Kaon Decays

Revised August 2019 by M.A. Bychkov (Virginia U.) and G. D'Ambrosio (INFN, Napoli).
The radiative decays, $\pi^{ \pm} \rightarrow l^{ \pm} \nu \gamma$ and $K^{ \pm} \rightarrow l^{ \pm} \nu \gamma$, with l standing for an e or a μ, and γ for a real or virtual photon $\left(e^{+} e^{-}\right.$ pair), provide a powerful tool to investigate the hadronic structure of pions and kaons. The structure-dependent part SD_{i} of the amplitude describes the emission of photons from virtual hadronic states, and is parametrized in terms of form factors V, A, (vector, axial vector), in the standard description [1-4]. Note that in the Listings and some literature, equivalent nomenclature F_{V} and F_{A} for the vector and axial form factors is often used. Exotic, nonstandard contributions like $i=T, S$ (tensor, scalar) have also been considered. Apart from the SD terms, there is also the Inner Bremsstrahlung amplitude, IB, corresponding to photon radiation from external charged particles and described by Low theorem in terms of the physical decay $\pi^{ \pm}\left(K^{ \pm}\right) \rightarrow l^{ \pm} \nu$. Experiments try to optimize their kinematics so as to minimize the IB part of the amplitude.
The SD amplitude in its standard form is given as

$$
\begin{align*}
M\left(\mathrm{SD}_{V}\right) & =\frac{-e G_{F} U_{q q^{\prime}}}{\sqrt{2} m_{P}} \epsilon^{\mu} l^{\nu} V^{P} \epsilon_{\mu \nu \sigma \tau} k^{\sigma} q^{\tau} \tag{61.1}\\
M\left(\mathrm{SD}_{A}\right) & =\frac{-i e G_{F} U_{q q^{\prime}}}{\sqrt{2} m_{P}} \epsilon^{\mu} l^{\nu}\left\{A^{P}\left[\left(q k-k^{2}\right) g_{\mu \nu}-q_{\mu} k_{\nu}\right]\right. \\
& \left.+R^{P} k^{2} g_{\mu \nu}\right\}, \tag{61.2}
\end{align*}
$$

which contains an additional axial form factor R^{P} which only can be accessed if the photon remains virtual. $U_{q q^{\prime}}$ is the Cabibbo-Kobayashi-Maskawa mixing-matrix element; ϵ^{μ} is the polarization vector of the photon (or the effective vertex, $\epsilon^{\mu}=$ $\left(e / k^{2}\right) \bar{u}\left(p_{-}\right) \gamma^{\mu} v\left(p_{+}\right)$, of the $e^{+} e^{-}$pair $) ; \ell^{\nu}=\bar{u}\left(p_{\nu}\right) \gamma^{\nu}(1-$ $\left.\gamma_{5}\right) v\left(p_{\ell}\right)$ is the lepton-neutrino current; q and k are the meson and photon four-momenta ($k=p_{+}+p_{-}$for virtual photons); and P stands for π or K.
For decay processes where the photon is real, the partial decay width can be written in analytical form as a sum of IB, SD, and IB/SD interference terms INT [1,4]:

$$
\begin{align*}
& \frac{d^{2} \Gamma_{P \rightarrow \ell \nu \gamma}}{d x d y}=\frac{d^{2}\left(\Gamma_{\mathrm{IB}}+\Gamma_{\mathrm{SD}}+\Gamma_{\mathrm{INT}}\right)}{d x d y} \\
& \quad=\frac{\alpha}{2 \pi} \Gamma_{P \rightarrow \ell \nu} \frac{1}{(1-r)^{2}}\{\operatorname{IB}(x, y) \\
& +\frac{1}{r}\left(\frac{m_{P}}{2 f_{P}}\right)^{2}\left[(V+A)^{2} \mathrm{SD}^{+}(x, y)+(V-A)^{2} \mathrm{SD}^{-}(x, y)\right] \\
& \left.+\epsilon_{P} \frac{m_{P}}{f_{P}}\left[(V+A) \mathrm{S}_{\mathrm{INT}}^{+}(x, y)+(V-A) \mathrm{S}_{\mathrm{INT}}^{-}(x, y)\right]\right\} \tag{61.3}
\end{align*}
$$

Here

$$
\begin{align*}
& \operatorname{IB}(x, y)=\left[\frac{1-y+r}{x^{2}(x+y-1-r)}\right] \\
& \\
& \mathrm{SD}^{+}(x, y)=(x+y-1-r)[(x+y-1)(1-x)-r] \\
& \mathrm{SD}^{-}(x, y)=(1-y+r)[(1-x)(1-y)+r] \\
& \mathrm{S}_{\mathrm{INT}}^{+}(x, y)=\left[\frac{1-y+r}{x(x+y-1-r)}\right][(1-x)(1-x-y)+r] \\
& \mathrm{S}_{\mathrm{INT}}^{-}(x, y)=\left[\frac{1-y+r}{x(x+y-1-r)}\right]\left[x^{2}-(1-x)(1-x-y)-r\right] \tag{61.4}
\end{align*}
$$

where $x=2 E_{\gamma} / m_{P}, y=2 E_{\ell} / m_{P}, r=\left(m_{\ell} / m_{P}\right)^{2}, f_{P}$ is the meson decay constant, and ϵ_{P} is +1 for pions and -1 for kaons. The
structure dependent terms $S D^{+}$and $S D^{-}$are shown in Fig. 1. The $S D^{-}$term is maximized in the same kinematic region where overwhelming $I B$ term dominates (along $x+y=1$ diagonal). Thus experimental yields with less background are dominated by $S D^{+}$contribution and proportional to $A^{P}+V^{P}$ making simultaneous precise determination of the form factors difficult.
Recently, formulas 61.3 and 61.4 have been extended to describe polarized distributions in radiative meson and muon decays [5].

The "helicity" factor r is responsible for the enhancement of the SD over the IB amplitude in the decays $\pi^{ \pm} \rightarrow e^{ \pm} \nu \gamma$, while $\pi^{ \pm} \rightarrow \mu^{ \pm} \nu \gamma$ is dominated by IB. Interference terms are important for the decay $K^{ \pm} \rightarrow \mu^{ \pm} \nu \gamma[6]$, but contribute only a few percent correction to pion decays. However, they provide the basis for determining the signs of V and A. Radiative corrections to the decay $\pi^{+} \rightarrow e^{+} \nu \gamma$ have to be taken into account in the analysis of the precision experiments. They make up to 4% corrections in the total decay rate [7]. In $\pi^{ \pm} \rightarrow e^{ \pm} \nu e^{+} e^{-}$and $K^{ \pm} \rightarrow \ell^{ \pm} \nu e^{+} e^{-}$ decays, all three form factors, V^{P}, A^{P}, and R^{P}, can be determined $[8,9]$.
Theoretically, the first non-trivial $\chi P T$ contributions to A^{P} and V^{P} appear at $\mathcal{O}\left(p^{4}\right)$ [4], respectively from Gasser-Leutwyler coefficients, L_{i} 's, and the anomalous lagrangian:

$$
\begin{equation*}
A^{P}=\frac{4 \sqrt{2} M_{P}}{F_{\pi}}\left(L_{9}^{r}+L_{10}^{r}\right), \quad V^{P}=\frac{\sqrt{2} M_{P}}{8 \pi^{2} F_{\pi}} . \tag{61.5}
\end{equation*}
$$

In case of the kaon $A^{K}=0.042$ and $V^{K}=0.096 . \mathcal{O}\left(p^{6}\right)$ contributions to A^{K} can be predicted accurately: they are flat in the momentum dependence and shift the $\mathcal{O}\left(p^{4}\right)$ value to 0.034. $\mathcal{O}\left(p^{6}\right)$ contributions to V^{K} are model dependent and can be approximated by a form factor linearly dependent on momentum. For example, when looking at the spread of results obtained within two different models, the constant piece of this linear form factor is shifted to $0.078 \pm 0.005[1,2,4]$.

We give the experimental $\pi^{ \pm}$form factors V^{π}, A^{π}, and R^{π} in the Listings. In the $K^{ \pm}$Listings, we give the extracted sum $A^{K}+V^{K}$ and difference $A^{K}-V^{K}$, as well as V^{K}, A^{K} and R^{K}. In particular KLOE has measured for the constant piece of the form factor $A^{K}+V^{K}=0.125 \pm 0.007 \pm 0.001$ [10] while ISTRA + , $V^{K}-A^{K}=0.21 \pm 0.04 \pm 0.04$ [11].

The pion vector form factor, V^{π}, is related via CVC (Conserved Vector Current) to the $\pi^{0} \rightarrow \gamma \gamma$ decay width. The constant term is given by $\left|V^{\pi}(0)\right|=(1 / \alpha) \sqrt{2 \Gamma_{\pi^{0} \rightarrow \gamma \gamma} / \pi m_{\pi^{0}}}$ [3]. The resulting value, $V^{\pi}(0)=0.0259(9)$, has been confirmed by calculations based on chiral perturbation theory $(\chi P T)$ [4], and by two experiments given in the Listings. A recent experiment by the PIBETA collaboration [12] obtained a $V^{\pi}(0)$ that is in excellent agreement with the CVC hypothesis. It also measured the slope parameter a in $V^{\pi}(s)=V^{\pi}(0)(1+a \cdot s)$, where $s=\left(1-2 E_{\gamma} / m_{\pi}\right)$, and E_{γ} is the gamma energy in the pion rest frame: $a=0.095 \pm 0.058$. A functional dependence on s is expected for all form factors. It becomes non-negligible in the case of $V^{\pi}(s)$ when a wide range of photon momenta is recorded; proper treatment in the analysis of K decays is mandatory.

The form factor, R^{P}, can be related to the electromagnetic radius, r_{P}, of the meson [2]: $R^{P}=\frac{1}{3} m_{P} f_{P}\left\langle r_{P}^{2}\right\rangle$ using PCAC (Partial Conserved Axial vector Current).

In lowest order $\chi P T$, the ratio A^{π} / V^{π} is related to the pion electric polarizability $\alpha_{E}=\left[\alpha /\left(8 \pi^{2} m_{\pi} f_{\pi}^{2}\right)\right] \times A^{\pi} / V^{\pi}$ [13]. Direct experimental and theoretical status of pion polarizability studies currently is not settled. Most recent theoretical predictions from $\chi P T$ [14] and experimental results from COMPASS collaboration [15] favor a small value of pion polarizability $\alpha_{\pi} \sim(2 \div 3) \times$ $10^{-4} \mathrm{fm}^{3}$. Dispersive analysis of $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$crossection [16] and experimental results from MAMI collaboration [17] report a much larger value of $\alpha_{\pi} \sim 6 \times 10^{-4} \mathrm{fm}^{3}$. Precise measurement of the pion form factors by PIBETA collaboration favors smaller values of polarizability $\alpha_{\pi}=2.7_{-0.5}^{+0.6} \times 10^{-4} \mathrm{fm}^{3}$.

Several searches for the exotic form factors F_{T}^{π}, F_{T}^{K} (tensor), and F_{S}^{K} (scalar) have been pursued in the past. In particular, F_{T}^{π} has been brought into focus by experimental as well as theoretical work [18]. New high-statistics data from the PIBETA collabora-

Figure 61.1: Components of the structure dependent terms of the decay width. Left: $S D^{+}$, right: $S D^{-}$
tion have been re-analyzed together with an additional data set optimized for low backgrounds in the radiative pion decay. In particular, lower beam rates have been used in order to reduce the accidental background, thereby making the treatment of systematic uncertainties easier and more reliable. The PIBETA analysis now restricts F_{T}^{π} to the range $-5.2 \times 10^{-4}<F_{T}^{\pi}<4.0 \times 10^{-4}$ at a 90% confidence limit [12]. This result is in excellent agreement with the most recent theoretical work [4].

Precision measurements of radiative pion and kaon decays are effective tools to study QCD in the non-perturbative region and are of interest beyond the scope of radiative decays. Meanwhile other processes such as $\pi^{+} \rightarrow e^{+} \nu$ that seem to be better suited to search for new physics at the precision frontier are currently studied. The advantages of such process are the very accurate and reliable theoretical predictions and the more straightforward experimental analysis.

References

[1] D. A. Bryman, P. Depommier and C. Leroy, Phys. Rept. 88, 151 (1982), see our note on "Decay Constants of Charged Pseudoscalar Mesons" elsewhere in this Review; S. G. Brown and S. A. Bludman, Phys. Rev. 136, B1160 (1964); P. DeBaenst and J. Pestieau, Nuovo Cimento A53, 137 (1968).
[2] W. T. Chu, T. Ebata and D. M. Scott, Phys. Rev. 166, 1577 (1968); D. Yu. Bardin and E. A. Ivanov, Sov. J. Part. Nucl. 7, 286 (1976), [Fiz. Elem. Chast. Atom. Yadra7,726(1976)]; A. Kersch and F. Scheck, Nucl. Phys. B263, 475 (1986).
[3] V.G. Vaks and B.L. Ioffe, Nuovo Cimento 10, 342 (1958); V.F. Muller, Z. Phys. 173, 438 (1963).
[4] C. Q. Geng, I.-L. Ho and T. H. Wu, Nucl. Phys. B684, 281 (2004), [hep-ph/0306165]; J. Bijnens and P. Talavera, Nucl. Phys. B489, 387 (1997), [hep-ph/9610269]; V. Mateu and J. Portoles, Eur. Phys. J. C52, 325 (2007), [arXiv:0706.1039]; R. Unterdorfer and H. Pichl, Eur. Phys. J. C55, 273 (2008), [arXiv:0801.2482]; V. Cirigliano et al., Rev. Mod. Phys. 84, 399 (2012), [arXiv:1107.6001].
[5] E. Gabrielli and L. Trentadue, Nucl. Phys. B792, 48 (2008), [hep-ph/0507191].
[6] S. Adler et al. (E787), Phys. Rev. Lett. 85, 2256 (2000), [hep-ex/0003019].
[7] E. A. Kuraev, Yu. M. Bystritsky and E. P. Velicheva, Phys. Rev. D69, 114004 (2004), [hep-ph/0310275]; R. Unterdorfer and H. Pichl have treated radiative corrections of the structure terms to lowest order within $\chi P T$ for the first time. See the reference under [4].
[8] S. Egli et al. (SINDRUM), Phys. Lett. B175, 97 (1986).
[9] A. A. Poblaguev et al., Phys. Rev. Lett. 89, 061803 (2002), [hep-ex/0204006].
[10] F. Ambrosino et al. (KLOE), Eur. Phys. J. C64, 627 (2009), [Erratum: Eur. Phys. J.65,703(2010)], [arXiv:0907.3594].
[11] V. A. Duk et al. (ISTRA+), Phys. Lett. B695, 59 (2011), [arXiv:1005.3517].
[12] D. Pocanic et al., Phys. Rev. Lett. 93, 181803 (2004), [hepex/0312030]; E. Frlez et al., Phys. Rev. Lett. 93, 181804 (2004), [hep-ex/0312029]; M. Bychkov et al., Phys. Rev. Lett. 103, 051802 (2009), [arXiv:0804.1815].
[13] J. F. Donoghue and B. R. Holstein, Phys. Rev. D40, 2378 (1989).
[14] J. Gasser, M. A. Ivanov and M. E. Sainio, Nucl. Phys. B745, 84 (2006), [hep-ph/0602234].
[15] C. Adolph et al. (COMPASS), Phys. Rev. Lett. 114, 062002 (2015), [arXiv:1405.6377].
[16] L. V. Fil'kov and V. L. Kashevarov, Phys. Rev. C73, 035210 (2006), [arXiv:nucl-th/0512047].
[17] J. Ahrens et al., Eur. Phys. J. A23, 113 (2005), [arXiv:nuclex/0407011].
[18] A. A. Poblaguev, Phys. Lett. B238, 108 (1990); V. N. Bolotov et al., Phys. Lett. B243, 308 (1990); V. M. Belyaev and I. I. Kogan, Phys. Lett. B280, 238 (1992); A. V. Chernyshev et al., Mod. Phys. Lett. A12, 1669 (1997); A. A. Poblaguev, Phys. Rev. D68, 054020 (2003), [hep-ph/0307166]; M. V. Chizhov, Phys. Part. Nucl. Lett. 2, 193 (2005), [Pisma Fiz. Elem. Chast. Atom. Yadra2005,no.4,7(2005)], [hepph/0402105].

62. Scalar Mesons below 2 GeV

Revised August 2019 by C. Amsler (Stefan Meyer Inst.), S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), T. Gutsche (Tübingen U.), C. Hanhart (Jülich) and S. Spanier (Tennessee U.).

62.1 Introduction

In contrast to the vector and tensor mesons, the identification of the scalar mesons is a long-standing puzzle. Scalar resonances are difficult to resolve because some of them have large decay widths which cause a strong overlap between resonances and background. In addition, several decay channels sometimes open up within a short mass interval (e.g. at the $K \bar{K}$ and $\eta \eta$ thresholds), producing cusps in the line shapes of the near-by resonances. Furthermore, one expects non- $q \bar{q}$ scalar objects, such as glueballs and multiquark states in the mass range below 2 GeV (for reviews see, e.g., Refs. $[1-5]$ and the mini-review on non $-\bar{q} q$ states in this Review of Particle Physics (RPP)).

Light scalars are produced, for example, in πN scattering on polarized/unpolarized targets, $p \bar{p}$ annihilation, central hadronic production, $J / \Psi, B$-, D - and K-meson decays, $\gamma \gamma$ formation, and ϕ radiative decays. Especially for the lightest scalar mesons simple parameterizations fail and more advanced theory tools are necessary to extract the resonance parameters from data. In the analyses available in the literature fundamental properties of the amplitudes such as unitarity, analyticity, Lorentz invariance, chiral and flavor symmetry are implemented at different levels of rigor. Especially, chiral symmetry implies the appearance of zeros close to the threshold in elastic S-wave scattering amplitudes involving soft pions [6,7], which may be shifted or removed in associated production processes [8]. The methods employed are the K-matrix formalism, the N / D-method, the Dalitz-Tuan ansatz, unitarized quark models with coupled channels, effective chiral field theories and the linear sigma model, etc. Dynamics near the lowest two-body thresholds in some analyses are described by crossed channel (t, u) meson exchange or with an effective range parameterization instead of, or in addition to, resonant features in the s-channel. Dispersion theoretical approaches are applied to pin down the location of resonance poles for the low-lying states [9-12].

The mass and width of a resonance are found from the position of the nearest pole in the process amplitude (T-matrix or S-matrix) at an unphysical sheet of the complex energy plane, traditionally labeled as

$$
\begin{equation*}
\sqrt{s_{\text {Pole }}}=M-i \Gamma / 2 \tag{62.1}
\end{equation*}
$$

It is important to note that the pole of a Breit-Wigner parameterization agrees with this pole position only for narrow and well-separated resonances, far away from the opening of decay channels. For a detailed discussion of this issue we refer to the review on Resonances in this RPP.

In this note, we discuss the light scalars below 2 GeV organized in the listings under the entries $(I=1 / 2) K_{0}^{*}(700)$ (or κ), $K_{0}^{*}(1430),(I=1) a_{0}(980), a_{0}(1450)$, and $(I=0) f_{0}(500)$ (or $\sigma), f_{0}(980), f_{0}(1370), f_{0}(1500)$, and $f_{0}(1710)$. This list is minimal and does not necessarily exhaust the list of actual resonances. The $(I=2) \pi \pi$ and $(I=3 / 2) K \pi$ phase shifts do not exhibit any resonant behavior.

62.2 The $I=1 / 2$ States

The $\boldsymbol{K}_{0}^{*}(\mathbf{1 4 3 0})$ [13] is perhaps the least controversial of the light scalar mesons. The $K \pi S$-wave scattering has two possible isospin channels, $I=1 / 2$ and $I=3 / 2$. The $I=3 / 2$ wave is elastic and repulsive up to 1.7 GeV [14] and contains no known resonances. The $I=1 / 2 K \pi$ phase shift, measured from about 100 MeV above threshold in $K p$ production, rises smoothly, passes 90° at 1350 MeV , and continues to rise to about 170° at 1600 MeV . The first important inelastic threshold is $K \eta^{\prime}(958)$. In the inelastic region the continuation of the amplitude is uncertain since the partial-wave decomposition has several solutions. The data are extrapolated towards the $K \pi$ threshold using effective range type formulas $[13,15]$ or chiral perturbation predictions [16, 17]. From analyses using unitarized amplitudes there is agreement on the presence of a resonance pole around 1410 MeV having a width of
about 300 MeV . With reduced model dependence, Ref. [18] finds a larger width of 500 MeV .

Similar to the situation for the $f_{0}(500)$, discussed in the next section, the presence and properties of the light $\boldsymbol{K}_{\mathbf{0}}^{*}(\mathbf{7 0 0})$ (or $\boldsymbol{\kappa})$ meson in the $700-900 \mathrm{MeV}$ region are difficult to establish since it appears to have a very large width $(\Gamma \approx 500 \mathrm{MeV})$ and resides close to the $K \pi$ threshold. Hadronic D - and B-meson decays provide additional data points in the vicinity of the $K \pi$ threshold and are discussed in detail in the Review on Multibody Charm Analyses in this RPP. Precision information from semileptonic D decays avoiding the theoretically more demanding final states with three strongly interacting particles is not available. BES II [19] (re-analyzed in [20]) finds a $K_{0}^{*}(700)$-like structure in J / ψ decays to $\bar{K}^{* 0}(892) K^{+} \pi^{-}$where $K_{0}^{*}(700)$ recoils against the $K^{*}(892)$. Also clean with respect to final-state interaction is the decay $\tau^{-} \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$ studied by Belle [21], with $K_{0}^{*}(700)$ parameters fixed to those of Ref. [19].

Figure 62.1: Location of the $K_{0}^{*}(700)$ (or κ) poles in the complex energy plane. Circles denote the results of the most refined analyses based on dispersion relations, while all other analyses quoted in the listings are denoted by triangles. The corresponding references are given in the listing.

Some authors find a K_{0}^{*} (700) pole in their phenomenological analysis (see, e.g., [22-33]), while others do not need to include it in their fits (see, e.g., $[17,34-37]$). Similarly to the case of the $f_{0}(500)$ discussed below, all works including constraints from chiral symmetry at low energies naturally seem to find a light $K_{0}^{*}(700)$ below 800 MeV , see, e.g., [38-42]. In these works the $K_{0}^{*}(700), f_{0}(500), f_{0}(980)$ and $a_{0}(980)$ appear to form a nonet [39, 40]. Additional evidence for this assignment is presented in Ref. [12], where the couplings of the nine states to $\bar{q} q$ sources were compared. The same low-lying scalar nonet was also found earlier in the unitarized quark model of Ref. [41]. The analysis of Ref. [43] is based on the Roy-Steiner equations, which include analyticity and crossing symmetry. Ref. [44] uses the Padé method to extract pole parameters after refitting scattering data constrained to satisfy forward dispersion relations. Both arrive at compatible pole positions for the $K_{0}^{*}(700)$ that are consistent with the pole parameters deduced either from other theoretical methods or Breit-Wigner fits. This is illustrated in Fig. 62.1. The compilation in this figure is used as justification for the range of pole parameters of the $K_{0}^{*}(700)$ we quote as "our estimate", namely

$$
\begin{equation*}
\sqrt{s_{\text {Pole }}^{\kappa}}=(630-730)-i(260-340) \mathrm{MeV} \tag{62.2}
\end{equation*}
$$

62.3 The $I=1$ States

Two isovector scalar states are known below 2 GeV , the $\boldsymbol{a}_{\mathbf{0}}(\mathbf{9 8 0})$ and the $a_{\mathbf{0}} \mathbf{(1 4 5 0)}$. Independent of any model, the $K \bar{K}$ component in the $a_{0}(980)$ wave function must be large: it lies just below the opening of the $K \bar{K}$ channel to which it strongly couples $[15,45]$. This generates an important cusp-like behavior in the resonant amplitude. Hence, its mass and width parameters are strongly distorted. To reveal its true coupling constants, a coupled-channel model with energy-dependent widths and mass
shift contributions is necessary. All listed $a_{0}(980)$ measurements agree on a mass position value near 980 MeV , but the width takes values between 50 and 100 MeV , mostly due to the different models. For example, the analysis of the $p \bar{p}$-annihilation data [15] using a unitary K-matrix description finds a width as determined from the T-matrix pole of $92 \pm 8 \mathrm{MeV}$, while the observed width of the peak in the $\pi \eta$ mass spectrum is about 45 MeV .

The relative coupling $K \bar{K} / \pi \eta$ is determined indirectly from $f_{1}(1285)$ [46-48] or $\eta(1410)$ decays [49-51], from the line shape observed in the $\pi \eta$ decay mode [52-55], or from the coupled-channel analysis of the $\pi \pi \eta$ and $K \bar{K} \pi$ final states of $p \bar{p}$ annihilation at rest [15].

The $a_{0}(1450)$ is seen in $p \bar{p}$ annihilation experiments with stopped and higher momenta antiprotons, with a mass of about 1450 MeV or close to the $a_{2}(1320)$ meson which is typically a dominant feature. A contribution from $a_{0}(1450)$ is also found in the analysis of the $D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}[56]$ and $D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \quad[57]$ decay.

62.4 The $I=0$ States

The $I=0, J^{P C}=0^{++}$sector is the most complex one, both experimentally and theoretically. The data have been obtained from the $\pi \pi, K \bar{K}, \eta \eta, 4 \pi$, and $\eta \eta^{\prime}(958)$ systems produced in S wave. Analyses based on several different production processes conclude that probably four poles are needed in the mass range from $\pi \pi$ threshold to about 1600 MeV . The claimed isoscalar resonances are found under separate entries $f_{0}(500)$ (or σ), $f_{0}(980)$, $f_{0}(1370)$, and $f_{0}(1500)$.

For discussions of the $\pi \pi S$ wave below the $K \bar{K}$ threshold and on the long history of the $f_{0}(500)$, which was suggested in linear sigma models more than 50 years ago, see our reviews in previous editions and the review [5].

Information on the $\pi \pi S$-wave phase shift $\delta_{J}^{I}=\delta_{0}^{0}$ was already extracted many years ago from πN scattering [58-60], and near threshold from the $K_{e 4}$-decay [61]. The kaon decays were later revisited leading to consistent data, however, with very much improved statistics [62,63]. The reported $\pi \pi \rightarrow K \bar{K}$ cross sections [64-67] have large uncertainties. The πN data have been analyzed in combination with high-statistics data (see entries labeled as RVUE for re-analyses of the data). The $2 \pi^{0}$ invariant mass spectra of the $p \bar{p}$ annihilation at rest [68-70] and the central collision [71] do not show a distinct resonance structure below 900 MeV , but these data are consistently described with the standard solution for πN data [59,72] which allows for the existence of the broad $f_{0}(500)$. An enhancement is observed in the $\pi^{+} \pi^{-}$invariant mass near threshold in the decays $D^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$[73-75] and $J / \psi \rightarrow \omega \pi^{+} \pi^{-}[76,77]$, and in $\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$with very limited phase space $[78,79]$.

The precise $\boldsymbol{f}_{\mathbf{0}}(\mathbf{5 0 0})$ (or $\boldsymbol{\sigma}$) pole is difficult to establish because of its large width, and because it can certainly not be modeled by a naive Breit-Wigner resonance. The $\pi \pi$ scattering amplitude shows an unusual energy dependence due to the presence of a zero in the unphysical regime close to the threshold $[6,7]$, required by chiral symmetry, and possibly due to crossed channel exchanges, the $f_{0}(1370)$, and other dynamical features. However, most of the analyses listed under $f_{0}(500)$ agree on a pole position near $(500-i 250 \mathrm{MeV})$. In particular, analyses of $\pi \pi$ data that include unitarity, $\pi \pi$ threshold behavior, strongly constrained by the $K_{e 4}$ data, and the chiral symmetry constraints from Adler zeroes and/or scattering lengths find a light $f_{0}(500)$, see, e.g., $[80,81]$.

Precise pole positions with an uncertainty of less than 20 MeV (see our table for the T-matrix pole) were extracted by use of Roy equations, which are twice subtracted dispersion relations derived from crossing symmetry and analyticity. In Ref. [10] the subtraction constants were fixed to the S-wave scattering lengths a_{0}^{0} and a_{0}^{2} derived from matching Roy equations and two-loop chiral perturbation theory [9]. The only additional relevant input to fix the $f_{0}(500)$ pole turned out to be the $\pi \pi$-wave phase shifts at 800 MeV . The analysis was improved further in Ref. [12]. Alternatively, in Ref. [11] only data were used as input inside Roy equations. In that reference also once-subtracted Roy-like equations, called GKPY equations, were used, since the extrapolation
into the complex plane based on the twice subtracted equations leads to larger uncertainties mainly due to the limited experimental information on the isospin $-2 \pi \pi$ scattering length. Ref. [82] uses Padé approximants for the analytic continuation. All these extractions find consistent results. Using analyticity and unitarity only to describe data from $K_{2 \pi}$ and $K_{e 4}$ decays, Ref. [83] finds consistent values for the pole position and the scattering length a_{0}^{0}. The importance of the $\pi \pi$ scattering data for fixing the $f_{0}(500)$ pole is nicely illustrated by comparing analyses of $\bar{p} p \rightarrow 3 \pi^{0}$ omitting $[68,84]$ or including $[69,85]$ information on $\pi \pi$ scattering: while the former analyses find an extremely broad structure above 1 GeV , the latter find $f_{0}(500)$ masses of the order of 400 MeV .

Figure 62.2: Location of the $f_{0}(500)$ (or σ) poles in the complex energy plane. Circles denote the recent analyses based on Roy(like) dispersion relations, while all other analyses are denoted by triangles. The corresponding references are given in the listing.

As a result of the sensitivity of the extracted $f_{0}(500)$ pole position on the high accuracy low energy $\pi \pi$ scattering data [62, 63], the currently quoted range of pole positions for the $f_{0}(500)$, namely

$$
\begin{equation*}
\sqrt{s_{\text {Pole }}^{\sigma}}=(400-550)-i(200-350) \mathrm{MeV} \tag{62.3}
\end{equation*}
$$

in the listing was fixed including only those analyses consistent with these data, Refs. [26] [29] [39] [41] [42] [54] [69] [78-81, 83] $[75,86-99]$ as well as the advanced dispersion analyses $[9-12,82]$. The pole positions from those references are compared to the range of pole positions quoted above in Fig. 62.2. Note that this range is labeled as 'our estimate' - it is not an average over the quoted analyses but is chosen to include the bulk of the analyses consistent with the mentioned criteria. An averaging procedure is not justified, since the analyses use overlapping or identical data sets.

If one uses just the most advanced dispersive analyses of Refs. [9-12] shown as solid dots in Fig. 62.2 to determine the pole location of the $f_{0}(500)$ the range narrows down to [5]

$$
\begin{equation*}
\sqrt{s_{\text {Pole }}^{\sigma}}=\left(449_{-16}^{+22}\right)-i(275 \pm 12) \mathrm{MeV} \tag{62.4}
\end{equation*}
$$

which is labeled as 'conservative dispersive estimate' in this reference.

Due to the large strong width of the $f_{0}(500)$ an extraction of its two-photon width directly from data is not possible. Thus, the values for $\Gamma(\gamma \gamma)$ quoted in the literature as well as the listing are based on the expression in the narrow width approximation [100] $\Gamma(\gamma \gamma) \simeq \alpha^{2}\left|g_{\gamma}\right|^{2} /\left(4 \operatorname{Re}\left(\sqrt{s_{\text {Pole }}^{\sigma}}\right)\right)$ where g_{γ} is derived from the residue at the $f_{0}(500)$ pole to two photons and α denotes the electromagnetic fine structure constant. The explicit form of the expression may vary between different authors due to different definitions of the coupling constant, however, the expression given for $\Gamma(\gamma \gamma)$ is free of ambiguities. According to Refs. [101, 102], the data for $f_{0}(500) \rightarrow \gamma \gamma$ are consistent with what is expected for a
two-step process of $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$via pion exchange in the t - and u-channel, followed by a final state interaction $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$. The same conclusion is drawn in Ref. [103] where the bulk part of the $f_{0}(500) \rightarrow \gamma \gamma$ decay width is dominated by re-scattering. Therefore, it might be difficult to learn anything new about the nature of the $f_{0}(500)$ from its $\gamma \gamma$ coupling. For the most recent work on $\gamma \gamma \rightarrow \pi \pi$, see [83-106]. There are theoretical indications (e.g., $[107-137])$ that the $f_{0}(500)$ pole behaves differently from a $q \bar{q}$-state - see next section and the mini-review on non $q \bar{q}$-states in this RPP for details.

The $f_{0}(\mathbf{9 8 0})$ overlaps strongly with the background represented mainly by the $f_{0}(500)$ and the $f_{0}(1370)$. This can lead to a dip in the $\pi \pi$ spectrum at the $K \bar{K}$ threshold. It changes from a dip into a peak structure in the $\pi^{0} \pi^{0}$ invariant mass spectrum of the reaction $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ [111], with increasing four-momentum transfer to the $\pi^{0} \pi^{0}$ system, which means increasing the a_{1}-exchange contribution in the amplitude, while the π-exchange decreases. The $f_{0}(500)$ and the $f_{0}(980)$ are also observed in data for radiative decays $\left(\phi \rightarrow f_{0} \gamma\right)$ from SND [112,113], CMD2 [114], and KLOE [115, 116]. A dispersive analysis was used to simultaneously pin down the pole parameters of both the $f_{0}(500)$ and the $f_{0}(980)$ [11]; the uncertainty in the pole position quoted for the latter state is of the order of 10 MeV , only. We now quote for the mass

$$
\begin{equation*}
M_{f_{0}(980)}=990 \pm 20 \mathrm{MeV} \tag{62.5}
\end{equation*}
$$

which is a range not an average, but is labeled as 'our estimate'.
Analyses of $\gamma \gamma \rightarrow \pi \pi$ data [117-119] underline the importance of the $K \bar{K}$ coupling of $f_{0}(980)$, while the resulting two-photon width of the $f_{0}(980)$ cannot be determined precisely [120]. The prominent appearance of the $f_{0}(980)$ in the semileptonic D_{s} decays and decays of B and B_{s}-mesons implies a dominant ($\bar{s} s$) component: those decays occur via weak transitions that alternatively result in $\phi(1020)$ production. Ratios of decay rates of B and/or B_{s} mesons into J / ψ plus $f_{0}(980)$ or $f_{0}(500)$ were proposed to allow for an extraction of the flavor mixing angle and to probe the tetraquark nature of those mesons within a certain model [121] [122]. The phenomenological fits of the LHCb collaboration using the isobar model do neither allow for a contribution of the $f_{0}(980)$ in the $B \rightarrow J / \psi \pi \pi$ [123] nor for an $f_{0}(500)$ in $B_{s} \rightarrow J / \psi \pi \pi$ decays [124]. From the former analysis the authors conclude that their data is incompatible with a model where $f_{0}(500)$ and $f_{0}(980)$ are formed from two quarks and two antiquarks (tetraquarks) at the eight standard deviation level. In addition, they extract an upper limit for the mixing angle of 17° at 90% C.L. between the $f_{0}(980)$ and the $f_{0}(500)$ that would correspond to a substantial $(\bar{s} s)$ content in $f_{0}(980)$ [123]. However, in a dispersive analysis of the same data that allows for a modelindependent inclusion of the hadronic final state interactions in Ref. [125] a substantial $f_{0}(980)$ contribution is also found in the B-decays putting into question the conclusions of Ref. [123].

Let us now deal with the f_{0} 's above 1 GeV . A meson resonance that is very well studied experimentally, is the $f_{0}(1500)$ seen by the Crystal Barrel experiment in five decay modes: $\pi \pi, K \bar{K}$, $\eta \eta, \eta \eta^{\prime}(958)$, and $4 \pi[15,69,70]$. Due to its interference with the $f_{0}(1370)$ (and $\boldsymbol{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$), the peak attributed to the $f_{0}(1500)$ can appear shifted in invariant mass spectra. Therefore, the application of simple Breit-Wigner forms arrives at slightly different resonance masses for $f_{0}(1500)$. Analyses of central-production data of the likewise five decay modes Refs. $[126,127]$ agree on the description of the S-wave with the one above. The $p \bar{p}, p \bar{n} / n \bar{p}$ measurements [70,128-130] show a single enhancement at 1400 MeV in the invariant 4π mass spectra, which is resolved into $f_{0}(1370)$ and $f_{0}(1500)$ [131] [132]. The data on 4π from central production [133] require both resonances, too, but disagree on the relative content of $\rho \rho$ and $f_{0}(500) f_{0}(500)$ in 4π. All investigations agree that the 4π decay mode represents about half of the $f_{0}(1500)$ decay width and is dominant for $f_{0}(1370)$.

The determination of the $\pi \pi$ coupling of $f_{0}(\mathbf{1 3 7 0})$ is aggravated by the strong overlap with the broad $f_{0}(500)$ and $f_{0}(1500)$. Since it does not show up prominently in the 2π spectra, its mass and width are difficult to determine. Multichannel analyses of hadronically produced two- and three-body final states agree on
a mass between 1300 MeV and 1400 MeV and a narrow $f_{0}(1500)$, but arrive at a somewhat smaller width for $f_{0}(1370)$.

The existence of the $f_{0}(1370)$ is questioned in the analysis of the $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$ data from COMPASS [138]. However, $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$data from CLEO-c require a contribution from $f_{0}(500) f_{0}(1370) \rightarrow 4 \pi$ [139].

62.5 Interpretation of the scalars below 1 GeV

In the literature, many suggestions are discussed, such as conventional $q \bar{q}$ mesons, compact $(q q)(\bar{q} \bar{q})$ structures (tetraquarks) or meson-meson bound states. In addition, one expects a scalar glueball in this mass range. In reality, there can be superpositions of these components, and one often depends on models to determine the dominant one. Although we have seen progress in recent years, this question remains open. Here, we mention some of the present conclusions.

The $f_{0}(980)$ and $a_{0}(980)$ are often interpreted as compact tetraquark states states [134-137, 140] or $K \bar{K}$ bound states [141]. The insight into their internal structure using two-photon widths [113] [142-148] is not conclusive. The $f_{0}(980)$ appears as a peak structure in $J / \psi \rightarrow \phi \pi^{+} \pi^{-}$and in D_{s} decays without $f_{0}(500)$ background, while being nearly invisible in $J / \psi \rightarrow \omega \pi^{+} \pi^{-}$. Based on that observation it is suggested that $f_{0}(980)$ has a large $s \bar{s}$ component, which according to Ref. [149] is surrounded by a virtual $K \bar{K}$ cloud (see also Ref. [150]). Data on radiative decays $\left(\phi \rightarrow f_{0} \gamma\right.$ and $\phi \rightarrow a_{0} \gamma$) from SND, CMD2, and KLOE (see above) are consistent with a prominent role of kaon loops. This observation is interpreted as evidence for a compact four-quark [151] or a molecular $[152,153]$ nature of these states. Details of this controversy are given in the comments [154,155]; see also Ref. [156]. It remains quite possible that the states $f_{0}(980)$ and $a_{0}(980)$, together with the $f_{0}(500)$ and the $K_{0}^{*}(700)$, form a new low-mass state nonet of predominantly four-quark states, where at larger distances the quarks recombine into a pair of pseudoscalar mesons creating a meson cloud (see, e.g., Ref. [157]). Different QCD sum rule studies $[158-162]$ do not agree on a tetraquark configuration for the same particle group.

Models that start directly from chiral Lagrangians, either in non-linear $[25,42,80,152]$ or in linear [163-169] realization, predict the existence of the $f_{0}(500)$ meson near 500 MeV . Here the $f_{0}(500), a_{0}(980), f_{0}(980)$, and $K_{0}^{*}(700)$ (in some models the $K_{0}^{*}(1430)$) would form a nonet (not necessarily $\left.q \bar{q}\right)$. In the linear sigma models the lightest pseudoscalars appear as their chiral partners. In these models the light $f_{0}(500)$ is often referred to as the "Higgs boson of strong interactions", since here the $f_{0}(500)$ plays a role similar to the Higgs particle in electro-weak symmetry breaking: within the linear sigma models it is important for the mechanism of chiral symmetry breaking, which generates most of the proton mass, and what is referred to as the constituent quark mass.

In the non-linear approaches of Refs. [25] and [80] the above resonances together with the low lying vector states are generated starting from chiral perturbation theory predictions near the first open channel, and then by extending the predictions to the resonance regions using unitarity and analyticity.

Ref. [163] uses a framework with explicit resonances that are unitarized and coupled to the light pseudoscalars in a chirally invariant way. Evidence for a non- $\bar{q} q$ nature of the lightest scalar resonances is derived from their mixing scheme. In Ref. [164] the scheme is extended and applied to the decay $\eta^{\prime} \rightarrow \eta \pi \pi$, which lead to the same conclusions. To identify the nature of the resonances generated from scattering equations, in Ref. [170] the large N_{c} behavior of the poles was studied, with the conclusion that, while the light vector states behave consistent with what is predicted for $\bar{q} q$ states, the light scalars behave very differently. This finding provides strong support for a non $-\bar{q} q$ nature of the light scalar resonances. Note, the more refined study of Ref. [107] found, in case of the $f_{0}(500)$, in addition to a dominant non- $\bar{q} q$ nature, indications for a subdominant $\bar{q} q$ component located around 1 GeV . Additional support for the non $q \bar{q}$ nature of the $f_{0}(500)$ is given in Ref. [171], where the connection between the pole of resonances and their Regge trajectories is analyzed.

A model-independent method to identify hadronic molecules goes back to a proposal by Weinberg [172], shown to be equiva-
lent to the pole counting arguments of [173-182] in Ref. [176]. The formalism allows one to extract the amount of molecular component in the wave function from the effective coupling constant of a physical state to a nearby continuum channel. It can be applied to near threshold states only and provided strong evidence that the $f_{0}(980)$ is a $\bar{K} K$ molecule, while the situation turned out to be less clear for the $a_{0}(980)$ (see also Refs. [146, 148]) Further insights into $a_{0}(980)$ and $f_{0}(980)$ are expected from their mixing [177]. The corresponding signal predicted in Refs. [178, 179] was recently observed at BES III [180]. It turned out that in order to get a quantitative understanding of those data in addition to the mixing mechanism itself, some detailed understanding of the production mechanism seems necessary [181].

In the unitarized quark model with coupled $q \bar{q}$ and mesonmeson channels, the light scalars can be understood as additional manifestations of bare $q \bar{q}$ confinement states, strongly mass shifted from the $1.3-1.5 \mathrm{GeV}$ region and very distorted due to the strong ${ }^{3} P_{0}$ coupling to S-wave two-meson decay channels [182, 183]. Thus, in these models the light scalar nonet comprising the $f_{0}(500), f_{0}(980), K_{0}^{*}(700)$, and $a_{0}(980)$, as well as the nonet consisting of the $f_{0}(1370), f_{0}(1500)$ (or $f_{0}(1710)$), $K_{0}^{*}(1430)$, and $a_{0}(1450)$, respectively, are two manifestations of the same bare input states (see also Ref. [184]).

Other models with different groupings of the observed resonances exist and may, e.g., be found in earlier versions of this review.

62.6 Interpretation of the f_{0} 's above $1 \mathbf{G e V}$

The $f_{0}(1370)$ and $f_{0}(1500)$ decay mostly into pions $(2 \pi$ and $4 \pi)$ while the $f_{0}(1710)$ decays mainly into the $K \bar{K}$ final states. The $K \bar{K}$ decay branching ratio of the $f_{0}(1500)$ is small [126] [185].

If one uses the naive quark model, it is natural to assume that the $f_{0}(1370), a_{0}(1450)$, and the $K_{0}^{*}(1430)$ are in the same $\mathrm{SU}(3)$ flavor nonet, being the $(u \bar{u}+d \bar{d})$, $u \bar{d}$ and $u \bar{s}$ states, probably mixing with the light scalars [186], while the $f_{0}(1710)$ is the $s \bar{s}$ state. Indeed, the production of $f_{0}(1710)$ (and $\left.f_{2}^{\prime}(1525)\right)$ is observed in $p \bar{p}$ annihilation [187] but the rate is suppressed compared to $f_{0}(1500)$ (respectively, $f_{2}(1270)$), as would be expected from the OZI rule for $s \bar{s}$ states. The $f_{0}(1500)$ would also qualify as a $(u \bar{u}+d \bar{d})$ state, although it is very narrow compared to the other states and too light to be the first radial excitation.

However, in $\gamma \gamma$ collisions leading to $K_{S}^{0} K_{S}^{0}$ [188] a spin-0 signal is observed at the $f_{0}(1710)$ mass (together with a dominant spin-2 component), while the $f_{0}(1500)$ is not observed in $\gamma \gamma \rightarrow K \bar{K}$ nor $\pi^{+} \pi^{-}$[189]. In $\gamma \gamma$ collisions leading to $\pi^{0} \pi^{0}$ Ref. [190] reports the observation of a scalar around 1470 MeV albeit with large uncertainties on the mass and $\gamma \gamma$ couplings. This state could be the $f_{0}(1370)$ or the $f_{0}(1500)$. The upper limit from $\pi^{+} \pi^{-}$[189] excludes a large $n \bar{n}$ (here n stands for the two lightest quarks) content for the $f_{0}(1500)$ and hence points to a mainly $s \bar{s}$ state [191]. This appears to contradict the small $K \bar{K}$ decay branching ratio of the $f_{0}(1500)$ and makes a $q \bar{q}$ assignment difficult for this state. Hence the $f_{0}(1500)$ could be mainly glue due the absence of a 2γ coupling, while the $f_{0}(1710)$ coupling to 2γ would be compatible with an $s \bar{s}$ state. This is in accord with the recent high-statistics Belle data in $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$ [192] in which the $f_{0}(1500)$ is absent, while a prominent peak at 1710 MeV is observed with quantum numbers 0^{++}, compatible with the formation of an $s \bar{s}$ state. However, the 2γ-couplings are sensitive to glue mixing with $q \bar{q}$ [193].

Note that an isovector scalar, possibly the $a_{0}(1450)$ (albeit at a lower mass of 1317 MeV) is observed in $\gamma \gamma$ collisions leading to $\eta \pi^{0}$ [194]. The state interferes destructively with the nonresonant background, but its $\gamma \gamma$ coupling is comparable to that of the $a_{2}(1320)$, in accord with simple predictions (see, e.g., Ref. [191]).

The small width of $f_{0}(1500)$, and its enhanced production at low transverse momentum transfer in central collisions [195-197] also favor $f_{0}(1500)$ to be non- $q \bar{q}$. In the mixing scheme of Ref. [193], which uses central production data from WA102 and the recent hadronic J / ψ decay data from $\operatorname{BES}[198,199]$, glue is shared between $f_{0}(1370), f_{0}(1500)$ and $f_{0}(1710)$. The $f_{0}(1370)$ is mainly $n \bar{n}$, the $f_{0}(1500)$ mainly glue and the $f_{0}(1710)$ dominantly $s \bar{s}$. This agrees with previous analyses [200, 201].

However, alternative schemes have been proposed (e.g., in [202-208], for detailed reviews see, e.g., Ref. [1] and the minireview on non $-\bar{q} q$ states in this Review of Particle Physics (RPP)). In Ref. [208], a large $K^{+} K^{-}$scalar signal reported by Belle in B decays into $K K \bar{K}$ [209], compatible with the $f_{0}(1500)$, is explained as due to constructive interference with a broad glueball background. However, the Belle data are inconsistent with the BaBar measurements which show instead a broad scalar at this mass for B decays into both $K^{ \pm} K^{ \pm} K^{\mp}[210]$ and $K^{+} K^{-} \pi^{0}$ [211].

The $f_{0}(1500)$ has also been proposed as a tetraquarks state [212]. Whether the $f_{0}(1500)$ is observed in 'gluon rich' radiative J / ψ decays is debatable [213] because of the limited amount of data - more data for this and the $\gamma \gamma$ mode are needed. In Ref. [214], further refined in Ref. [215], $f_{0}(1370)$ and $f_{0}(1710)$ (together with $f_{2}(1270)$ and $f_{2}^{\prime}(1525)$) were interpreted as bound systems of two vector mesons. This picture could be tested in radiative J / ψ decays [216] as well as radiative decays of the states themselves [217]. The vector-vector component of the $f_{0}(1710)$ might also be the origin of the enhancement seen in $J / \psi \rightarrow \gamma \phi \omega$ near threshold [218] observed at BES [219]. Note that the results of Refs. [214] [215] were challenged in Ref. [220] where in a covariant formalism, e.g., the $f_{2}(1270)$ did not not emerge as a $\rho \rho$-bound state.

References

[1] C. Amsler and N. A. Tornqvist, Phys. Rept. 389, 61 (2004).
[2] D. V. Bugg, Phys. Rept. 397, 257 (2004), [hep-ex/0412045].
[3] F. E. Close and N. A. Tornqvist, J. Phys. G28, R249 (2002), [hep-ph/0204205].
[4] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007), [arXiv:0708.4016].
[5] J. R. Pelaez, Phys. Rept. 658, 1 (2016), [arXiv:1510.00653].
[6] S. L. Adler, Phys. Rev. 137, B1022 (1965), [,140(1964)].
[7] S. L. Adler, Phys. Rev. 139, B1638 (1965), [,152(1965)].
[8] J. A. Oller, Phys. Rev. D71, 054030 (2005), [hepph/0411105].
[9] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B603, 125 (2001), [hep-ph/0103088].
[10] I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006).
[11] R. Garcia-Martin et al., Phys. Rev. Lett. 107, 072001 (2011), [arXiv:1107.1635].
[12] B. Moussallam, Eur. Phys. J. C71, 1814 (2011), [arXiv:1110.6074].
[13] D. Aston et al., Nucl. Phys. B296, 493 (1988).
[14] P. Estabrooks et al., Nucl. Phys. B133, 490 (1978).
[15] A. Abele et al., Phys. Rev. D57, 3860 (1998).
[16] V. Bernard, N. Kaiser and U. G. Meissner, Phys. Rev. D43, 2757 (1991).
[17] S. N. Cherry and M. R. Pennington, Nucl. Phys. A688, 823 (2001), [hep-ph/0005208].
[18] J. M. Link et al. (FOCUS), Phys. Lett. B648, 156 (2007), [hep-ex/0612032].
[19] M. Ablikim et al. (BES), Phys. Lett. B633, 681 (2006), [hep-ex/0506055].
[20] F.-K. Guo et al., Nucl. Phys. A773, 78 (2006), [hepph/0509050].
[21] D. Epifanov et al. (Belle), Phys. Lett. B654, 65 (2007), [arXiv:0706.2231].
[22] C. Cawlfield et al. (CLEO), Phys. Rev. D74, 031108 (2006), [hep-ex/0606045].
[23] A. V. Anisovich and A. V. Sarantsev, Phys. Lett. B413, 137 (1997), [hep-ph/9705401].
[24] R. Delbourgo and M. D. Scadron, Int. J. Mod. Phys. A13, 657 (1998), [hep-ph/9807504].
[25] J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D59, 074001 (1999), [Erratum: Phys. Rev.D75,099903(2007)], [hep-ph/9804209].
[26] J. A. Oller and E. Oset, Phys. Rev. D60, 074023 (1999), [hep-ph/9809337].
[27] C. M. Shakin and H. Wang, Phys. Rev. D63, 014019 (2001).
[28] M. D. Scadron et al., Nucl. Phys. A724, 391 (2003), [hepph/0211275].
[29] D. V. Bugg, Phys. Lett. B572, 1 (2003), [Erratum: Phys. Lett.B595,556(2004)].
[30] M. Ishida, Prog. Theor. Phys. Suppl. 149, 190 (2003), [hepph/0212383].
[31] H. Q. Zheng et al., Nucl. Phys. A733, 235 (2004), [hepph/0310293].
[32] Z. Y. Zhou and H. Q. Zheng, Nucl. Phys. A775, 212 (2006), [hep-ph/0603062].
[33] J. M. Link et al. (FOCUS), Phys. Lett. B653, 1 (2007), [arXiv:0705.2248].
[34] B. Aubert et al. (BaBar), Phys. Rev. D76, 011102 (2007), [arXiv:0704.3593].
[35] S. Kopp et al. (CLEO), Phys. Rev. D63, 092001 (2001), [hep-ex/0011065].
[36] J. M. Link et al. (FOCUS), Phys. Lett. B535, 43 (2002), [hep-ex/0203031].
[37] J. M. Link et al. (FOCUS), Phys. Lett. B621, 72 (2005), [hep-ex/0503043].
[38] M. Jamin, J. A. Oller and A. Pich, Nucl. Phys. B587, 331 (2000), [hep-ph/0006045].
[39] D. Black et al., Phys. Rev. D64, 014031 (2001), [hepph/0012278].
[40] J. A. Oller, Nucl. Phys. A727, 353 (2003), [hepph/0306031].
[41] E. van Beveren et al., Z. Phys. C30, 615 (1986), [arXiv:0710.4067].
[42] J. R. Pelaez, Mod. Phys. Lett. A19, 2879 (2004), [hepph/0411107].
[43] S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C48, 553 (2006), [hep-ph/0607133].
[44] J. R. Peláez, A. Rodas and J. Ruiz de Elvira, Eur. Phys. J. C77, 2, 91 (2017), [arXiv:1612.07966].
[45] M. Bargiotti et al. (OBELIX), Eur. Phys. J. C26, 371 (2003).
[46] D. Barberis et al. (WA102), Phys. Lett. B440, 225 (1998), [hep-ex/9810003].
[47] M. J. Corden et al., Nucl. Phys. B144, 253 (1978).
[48] C. Defoix et al., Nucl. Phys. B44, 125 (1972).
[49] Z. Bai et al. (MARK-III), Phys. Rev. Lett. 65, 2507 (1990).
[50] T. Bolton et al., Phys. Rev. Lett. 69, 1328 (1992).
[51] C. Amsler et al. (Crystal Barrel), Phys. Lett. B353, 571 (1995).
[52] S. M. Flatte, Phys. Lett. 63B, 224 (1976).
[53] C. Amsler et al. (Crystal Barrel), Phys. Lett. B333, 277 (1994).
[54] G. Janssen et al., Phys. Rev. D52, 2690 (1995), [arXiv:nuclth/9411021].
[55] D. V. Bugg, Phys. Rev. D78, 074023 (2008), [arXiv:0808.2706].
[56] P. Rubin et al. (CLEO), Phys. Rev. D78, 072003 (2008), [arXiv:0807.4545].
[57] R. Aaij et al. (LHCb), Phys. Rev. D93, 5, 052018 (2016), [arXiv:1509.06628].
[58] S. D. Protopopescu et al., Phys. Rev. D7, 1279 (1973).
[59] G. Grayer et al., Nucl. Phys. B75, 189 (1974).
[60] H. Becker et al. (CERN-Cracow-Munich), Nucl. Phys. B151, 46 (1979).
[61] L. Rosselet et al., Phys. Rev. D15, 574 (1977).
[62] S. Pislak et al. (BNL-E865), Phys. Rev. Lett. 87, 221801 (2001), [Erratum: Phys. Rev. Lett.105,019901(2010)], [hepex/0106071].
[63] J. R. Batley et al. (NA48-2), Eur. Phys. J. C70, 635 (2010).
[64] W. Wetzel et al., Nucl. Phys. B115, 208 (1976).
[65] V. A. Polychronakos et al., Phys. Rev. D19, 1317 (1979).
[66] D. H. Cohen et al., Phys. Rev. D22, 2595 (1980).
[67] A. Etkin et al., Phys. Rev. D25, 1786 (1982).
[68] C. Amsler et al., Phys. Lett. B342, 433 (1995).
[69] C. Amsler et al. (Crystal Barrel), Phys. Lett. B355, 425 (1995).
[70] A. Abele et al. (Crystal Barrel), Phys. Lett. B380, 453 (1996).
[71] D.M. Alde et al., Phys. Lett. B397, 250 (1997).
[72] R. Kaminski, L. Lesniak and K. Rybicki, Z. Phys. C74, 79 (1997), [hep-ph/9606362].
[73] E. M. Aitala et al. (E791), Phys. Rev. Lett. 86, 770 (2001), [hep-ex/0007028].
[74] J. M. Link et al. (FOCUS), Phys. Lett. B585, 200 (2004), [hep-ex/0312040].
[75] G. Bonvicini et al. (CLEO), Phys. Rev. D76, 012001 (2007), [arXiv:0704.3954].
[76] J. E. Augustin et al. (DM2), Nucl. Phys. B320, 1 (1989).
[77] M. Ablikim et al. (BES), Phys. Lett. B598, 149 (2004), [hep-ex/0406038].
[78] A. Gallegos, J. L. Lucio M. and J. Pestieau, Phys. Rev. D69, 074033 (2004), [hep-ph/0311133].
[79] M. Ablikim et al. (BES), Phys. Lett. B645, 19 (2007), [hepex/0610023].
[80] A. Dobado and J. R. Pelaez, Phys. Rev. D56, 3057 (1997), [hep-ph/9604416].
[81] I. Caprini, Phys. Rev. D77, 114019 (2008), [arXiv:0804.3504].
[82] P. Masjuan, J. Ruiz de Elvira, J.J. Sanz-Cillero, Phys. Rev. D90, 097901 (2014).
[83] F. J. Yndurain, R. Garcia-Martin and J. R. Pelaez, Phys. Rev. D76, 074034 (2007), [hep-ph/0701025].
[84] V.V. Anisovich et al., Sov. Phys. Usp. 41, 419 (1998).
[85] V. V. Anisovich, Int. J. Mod. Phys. A21, 3615 (2006), [hepph/0510409].
[86] B. S. Zou and D. V. Bugg, Phys. Rev. D48, R3948 (1993).
[87] N. A. Tornqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996), [hep-ph/9511210].
[88] R. Kaminski, L. Lesniak and J. P. Maillet, Phys. Rev. D50, 3145 (1994), [hep-ph/9403264].
[89] N. N. Achasov and G. N. Shestakov, Phys. Rev. D49, 5779 (1994).
[90] M. P. Locher, V. E. Markushin and H. Q. Zheng, Eur. Phys. J. C4, 317 (1998), [hep-ph/9705230].
[91] J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997), [Erratum: Nucl. Phys.A652,407(1999)], [hep-ph/9702314].
[92] T. Hannah, Phys. Rev. D60, 017502 (1999), [hepph/9905236].
[93] R. Kaminski, L. Lesniak and B. Loiseau, Phys. Lett. B413, 130 (1997), [hep-ph/9707377].
[94] R. Kaminski, L. Lesniak and B. Loiseau, Eur. Phys. J. C9, 141 (1999), [hep-ph/9810386].
[95] M. Ishida et al., Prog. Theor. Phys. 104, 203 (2000), [hepph/0005251].
[96] Y.S. Surovtsev et al., Phys. Rev. D61, 054024 (2001).
[97] M. Ishida et al., Phys. Lett. B518, 47 (2001).
[98] Z. Y. Zhou et al., JHEP 02, 043 (2005), [hep-ph/0406271].
[99] D. V. Bugg, J. Phys. G34, 151 (2007), [hep-ph/0608081].
[100] D. Morgan and M. R. Pennington, Z. Phys. C48, 623 (1990).
[101] M. R. Pennington, Phys. Rev. Lett. 97, 011601 (2006).
[102] M. R. Pennington, Mod. Phys. Lett. A22, 1439 (2007), [arXiv:0705.3314].
[103] G. Mennessier, S. Narison and W. Ochs, Phys. Lett. B665, 205 (2008), [arXiv:0804.4452].
[104] R. Garcia-Martin and B. Moussallam, Eur. Phys. J. C70, 155 (2010), [arXiv:1006.5373].
[105] M. Hoferichter, D. R. Phillips and C. Schat, Eur. Phys. J. C71, 1743 (2011), [arXiv:1106.4147].
[106] L.-Y. Dai and M. R. Pennington, Phys. Rev. D90, 3, 036004 (2014), [arXiv:1404.7524].
[107] J. R. Pelaez and G. Rios, Phys. Rev. Lett. 97, 242002 (2006), [hep-ph/0610397].
[108] H.-X. Chen, A. Hosaka and S.-L. Zhu, Phys. Lett. B650, 369 (2007), [hep-ph/0609163].
[109] F. Giacosa, Phys. Rev. D75, 054007 (2007), [hepph/0611388].
[110] L. Maiani et al., Eur. Phys. J. C50, 609 (2007), [hepph/0604018].
[111] N. N. Achasov and G. N. Shestakov, Phys. Rev. D58, 054011 (1998), [hep-ph/9802286].
[112] M. N. Achasov et al., Phys. Lett. B479, 53 (2000), [hepex/0003031].
[113] M. N. Achasov et al., Phys. Lett. B485, 349 (2000), [hepex/0005017].
[114] R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B462, 371 (1999), [hep-ex/9907005].
[115] A. Aloisio et al. (KLOE), Phys. Lett. B536, 209 (2002), [hep-ex/0204012].
[116] F. Ambrosino et al. (KLOE), Eur. Phys. J. C49, 473 (2007), [hep-ex/0609009].
[117] M. Boglione and M. R. Pennington, Eur. Phys. J. C9, 11 (1999), [hep-ph/9812258].
[118] T. Mori et al. (Belle), Phys. Rev. D75, 051101 (2007), [hepex/0610038].
[119] N. N. Achasov and G. N. Shestakov, Phys. Rev. D77, 074020 (2008), [arXiv:0712.0885].
[120] M. R. Pennington et al., Eur. Phys. J. C56, 1 (2008), [arXiv:0803.3389].
[121] R. Fleischer, R. Knegjens and G. Ricciardi, Eur. Phys. J. C71, 1832 (2011), [arXiv:1109.1112].
[122] S. Stone and L. Zhang, Phys. Rev. Lett. 111, 6, 062001 (2013), [arXiv:1305.6554].
[123] R. Aaij et al. (LHCb), Phys. Rev. D90, 1, 012003 (2014), [arXiv:1404.5673].
[124] R. Aaij et al. (LHCb), Phys. Rev. D89, 9, 092006 (2014), [arXiv:1402.6248].
[125] J. T. Daub, C. Hanhart and B. Kubis, JHEP 02, 009 (2016), [arXiv:1508.06841].
[126] D. Barberis et al. (WA102), Phys. Lett. B462, 462 (1999), [hep-ex/9907055].
[127] D. Barberis et al. (WA102), Phys. Lett. B479, 59 (2000), [hep-ex/0003033].
[128] M. Gaspero, Nucl. Phys. A562, 407 (1993).
[129] A. Adamo et al., Nucl. Phys. A558, 13C (1993).
[130] C. Amsler et al. (Crystal Barrel), Phys. Lett. B322, 431 (1994).
[131] A. Abele et al. (Crystal Barrel), Eur. Phys. J. C19, 667 (2001).
[132] A. Abele et al. (CRYSTAL BARREL), Eur. Phys. J. C21, 261 (2001).
[133] D. Barberis et al. (WA102), Phys. Lett. B471, 440 (2000), [hep-ex/9912005].
[134] R. L. Jaffe, Phys. Rev. D15, 267 (1977).
[135] M. G. Alford and R. L. Jaffe, Nucl. Phys. B578, 367 (2000), [hep-lat/0001023].
[136] L. Maiani et al., Phys. Rev. Lett. 93, 212002 (2004), [hepph/0407017].
[137] L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B651, 129 (2007), [hep-ph/0703272].
[138] C. Adolph et al. (COMPASS), Phys. Rev. D95, 3, 032004 (2017), [arXiv:1509.00992].
[139] P. d'Argent et al., JHEP 05, 143 (2017), [arXiv:1703.08505].
[140] G. 't Hooft et al., Phys. Lett. B662, 424 (2008), [arXiv:0801.2288].
[141] J. D. Weinstein and N. Isgur, Phys. Rev. D41, 2236 (1990).
[142] T. Barnes, Phys. Lett. 165B, 434 (1985).
[143] Z. P. Li, F. E. Close and T. Barnes, Phys. Rev. D43, 2161 (1991).
[144] R. Delbourgo, D.-s. Liu and M. D. Scadron, Phys. Lett. B446, 332 (1999), [hep-ph/9811474].
[145] J. L. Lucio Martinez and M. Napsuciale, Phys. Lett. B454, 365 (1999), [hep-ph/9903234].
[146] C. Hanhart et al., Phys. Rev. D75, 074015 (2007), [hepph/0701214].
[147] R. H. Lemmer, Phys. Lett. B650, 152 (2007), [hepph/0701027].
[148] T. Branz, T. Gutsche and V. E. Lyubovitskij, Eur. Phys. J. A37, 303 (2008), [arXiv:0712.0354].
[149] A. Deandrea et al., Phys. Lett. B502, 79 (2001), [hepph/0012120].
[150] K. M. Ecklund et al. (CLEO), Phys. Rev. D80, 052009 (2009), [arXiv:0907.3201].
[151] N. N. Achasov and V. N. Ivanchenko, Nucl. Phys. B315, 465 (1989).
[152] J. A. Oller, Nucl. Phys. A714, 161 (2003), [hepph/0205121].
[153] Yu. S. Kalashnikova et al., Eur. Phys. J. A24, 437 (2005), [hep-ph/0412340].
[154] Yu. S. Kalashnikova et al., Phys. Rev. D78, 058501 (2008), [arXiv:0711.2902].
[155] N. N. Achasov and A. V. Kiselev, Phys. Rev. D78, 058502 (2008), [arXiv:0806.2993].
[156] M. Boglione and M. R. Pennington, Eur. Phys. J. C30, 503 (2003), [hep-ph/0303200].
[157] F. Giacosa and G. Pagliara, Phys. Rev. C76, 065204 (2007), [arXiv:0707.3594].
[158] S. Narison, Nucl. Phys. B96, 244 (2001).
[159] H.-J. Lee, Eur. Phys. J. A30, 423 (2006), [hep-ph/0512212].
[160] H.-X. Chen, A. Hosaka and S.-L. Zhu, Phys. Rev. D76, 094025 (2007), [arXiv:0707.4586].
[161] J. Sugiyama et al., Phys. Rev. D76, 114010 (2007), [arXiv:0707.2533].
[162] T. Kojo and D. Jido, Phys. Rev. D78, 114005 (2008), [arXiv:0802.2372].
[163] D. Black et al., Phys. Rev. D59, 074026 (1999), [hepph/9808415].
[164] A. H. Fariborz et al., Phys. Rev. D90, 3, 033009 (2014), [arXiv:1407.3870].
[165] M. D. Scadron, Eur. Phys. J. C6, 141 (1999), [hepph/9710317].
[166] M. Ishida, Prog. Theor. Phys. 101, 661 (1999), [hepph/9902260].
[167] N. A. Tornqvist, Eur. Phys. J. C11, 359 (1999), [hepph/9905282].
[168] M. Napsuciale and S. Rodriguez, Phys. Lett. B603, 195 (2004), [hep-ph/0403072].
[169] M. Napsuciale and S. Rodriguez, Phys. Rev. D70, 094043 (2004), [hep-ph/0407037].
[170] J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004), [hepph/0309292].
[171] J. T. Londergan et al., Phys. Lett. B729, 9 (2014), [arXiv:1311.7552].
[172] S. Weinberg, Phys. Rev. 130, 776 (1963).
[173] D. Morgan and M. R. Pennington, Phys. Lett. B258, 444 (1991), [Erratum: Phys. Lett.B269,477(1991)].
[174] D. Morgan, Nucl. Phys. A543, 632 (1992).
[175] N. A. Tornqvist, Phys. Rev. D51, 5312 (1995), [hepph/9403234].
[176] V. Baru et al., Phys. Lett. B586, 53 (2004), [hepph/0308129].
[177] N. N. Achasov, S. A. Devyanin and G. N. Shestakov, Phys. Lett. 88B, 367 (1979).
[178] J.-J. Wu, Q. Zhao and B. S. Zou, Phys. Rev. D75, 114012 (2007), [arXiv:0704.3652].
[179] C. Hanhart, B. Kubis and J. R. Pelaez, Phys. Rev. D76, 074028 (2007), [arXiv:0707.0262].
[180] M. Ablikim et al. (BESIII), Phys. Rev. D83, 032003 (2011), [arXiv:1012.5131].
[181] L. Roca, Phys. Rev. D88, 014045 (2013), [arXiv:1210.4742].
[182] N. A. Tornqvist, Z. Phys. C68, 647 (1995), [hepph/9504372].
[183] E. van Beveren and G. Rupp, Eur. Phys. J. C22, 493 (2001), [hep-ex/0106077].
[184] M. Boglione and M. R. Pennington, Phys. Rev. D65, 114010 (2002), [hep-ph/0203149].
[185] A. Abele et al. (Crystal Barrel), Phys. Lett. B385, 425 (1996).
[186] D. Black, A. H. Fariborz and J. Schechter, Phys. Rev. D61, 074001 (2000), [hep-ph/9907516].
[187] C. Amsler et al. (Crystal Barrel), Phys. Lett. B639, 165 (2006).
[188] M. Acciarri et al. (L3), Phys. Lett. B501, 173 (2001), [hepex/0011037].
[189] R. Barate et al. (ALEPH), Phys. Lett. B472, 189 (2000), [hep-ex/9911022].
[190] S. Uehara et al. (Belle), Phys. Rev. D78, 052004 (2008), [arXiv:0805.3387].
[191] C. Amsler, Phys. Lett. B541, 22 (2002), [hep-ph/0206104].
[192] S. Uehara, et al., Prog. Theor. Exp. Phys. 2013, 123C01 (2013).
[193] F. E. Close and Q. Zhao, Phys. Rev. D71, 094022 (2005), [hep-ph/0504043].
[194] S. Uehara et al. (Belle), Phys. Rev. D80, 032001 (2009), [arXiv:0906.1464].
[195] F. E. Close and A. Kirk, Phys. Lett. B397, 333 (1997), [hep-ph/9701222].
[196] F. E. Close, Phys. Lett. B419, 387 (1998), [hepph/9710450].
[197] A. Kirk, Phys. Lett. B489, 29 (2000), [hep-ph/0008053].
[198] M. Ablikim et al. (BES), Phys. Lett. B603, 138 (2004), [hep-ex/0409007].
[199] M. Ablikim et al. (BES), Phys. Lett. B607, 243 (2005), [hep-ex/0411001].
[200] C. Amsler and F. E. Close, Phys. Rev. D53, 295 (1996), [hep-ph/9507326].
[201] F. E. Close and A. Kirk, Eur. Phys. J. C21, 531 (2001), [hep-ph/0103173].
[202] P. Minkowski and W. Ochs, Eur. Phys. J. C9, 283 (1999), [hep-ph/9811518].
[203] W.-J. Lee and D. Weingarten, Phys. Rev. D61, 014015 (2000), [hep-lat/9910008].
[204] M. Chanowitz, Phys. Rev. Lett. 95, 172001 (2005), [hepph/0506125].
[205] F. Brünner and A. Rebhan, Phys. Rev. Lett. 115, 13, 131601 (2015), [arXiv:1504.05815].
[206] S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D90, 11, 114005 (2014), [arXiv:1408.4921].
[207] M. Albaladejo and J. A. Oller, Phys. Rev. Lett. 101, 252002 (2008), [arXiv:0801.4929].
[208] P. Minkowski and W. Ochs, Eur. Phys. J. C39, 71 (2005), [hep-ph/0404194].
[209] A. Garmash et al. (Belle), Phys. Rev. D71, 092003 (2005), [hep-ex/0412066].
[210] B. Aubert et al. (BaBar), Phys. Rev. D74, 032003 (2006), [hep-ex/0605003].
[211] B. Aubert et al. (BaBar), Phys. Rev. Lett. 99, 161802 (2007), [arXiv:0706.3885].
[212] L. Zou et al., Phys. Rev. D99,114024 (2019).
[213] M. Ablikim et al., Phys. Lett. B642, 441 (2006), [hepex/0603048].
[214] R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D78, 114018 (2008), [arXiv:0809.2233].
[215] C. García-Recio et al., Phys. Rev. D87, 9, 096006 (2013), [arXiv:1304.1021].
[216] L. S. Geng et al., Eur. Phys. J. A44, 305 (2010), [arXiv:0910.5192].
[217] T. Branz, L. S. Geng and E. Oset, Phys. Rev. D81, 054037 (2010), [arXiv:0911.0206].
[218] A. Martinez Torres et al., Phys. Lett. B719, 388 (2013), [arXiv:1210.6392].
[219] M. Ablikim et al. (BES), Phys. Rev. Lett. 96, 162002 (2006), [hep-ex/0602031].
[220] D. Gülmez, U. G. Meißner and J. A. Oller, Eur. Phys. J. C77, 7, 460 (2017), [arXiv:1611.00168].

63. Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region

Revised August 2019 by C. Amsler (Stefan Meyer Inst.) and A. Masoni (INFN, Cagliari).

This minireview deals with some of the 0^{-+}and 1^{++}mesons reported in the $1200-1500 \mathrm{MeV}$ region, namely the $\eta(1295), \eta(1405)$, $\eta(1475), f_{1}(1285) f_{1}(1420), a_{1}(1420)$ and $f_{1}(1510)$. The first observation of a pseudoscalar resonance around 1400 MeV - the $\eta(1440)$ - was made in $p \bar{p}$ annihilation at rest into $\eta(1440) \pi^{+} \pi^{-}$, $\eta(1440) \rightarrow K \bar{K} \pi$ [1]. This state was reported to decay into $a_{0}(980) \pi$ and $K^{*}(892) \bar{K}$ with roughly equal contributions. The $\eta(1440)$ was also observed in radiative $J / \psi(1 S)$ decay into $K \bar{K} \pi$ [2-4] and $\gamma \rho$ [5] and was in the eighties considered as a glueball candidate

However, two pseudoscalars are now observed in this mass region, the $\eta(1405)$ and $\eta(1475)$. The former decays mainly through $a_{0}(980) \pi$ (or direct $K \bar{K} \pi$) and the latter mainly to $K^{*}(892) \bar{K}$. The simultaneous observation of two pseudoscalars is reported in three production mechanisms: $\pi^{-} p[6,7]$; radiative $J / \psi(1 S)$ decay $[8,9]$; and $\bar{p} p$ annihilation at rest [10-13]. All of them give values for the masses, widths, and decay modes that are in reasonable agreement. (However, Ref. [9] favors a state decaying into $K^{*}(892) \bar{K}$ at a lower mass than the state decaying into $a_{0}(980) \pi$.) In $J / \psi(1 S)$ radiative decay, the $\eta(1405)$ decays into $K \bar{K} \pi$ through $a_{0}(980) \pi$, and hence a signal is also expected in the $\eta \pi \pi$ mass spectrum. This was indeed observed by MARK III in $\eta \pi^{+} \pi^{-}$[14], which reported a mass of 1400 MeV , in line with the existence of the $\eta(1405)$ decaying into $a_{0}(980) \pi$.

BESII [15] observes an enhancement in $K^{+} K^{-} \pi^{0}$ around 1.44 GeV in $J / \psi(1 S)$ decay, recoiling against an ω (but not a ϕ) without resolving the presence of two states nor performing a spinparity analysis, due to low statistics. This state could also be the $f_{1}(1420)$ (see below). On the other hand, BESII observes $\eta(1405) \rightarrow \eta \pi \pi$ in $J / \psi(1 S)$ decay, recoiling against an ω [16]. A single unresolved broad peak is also observed by BESIII in the decay $\psi(2 S) \rightarrow \omega K^{*} K$ which could be due to $\eta(1405), \eta(1475)$ and $f_{1}(1420)$ [17]. The $\eta(1405)$ is also observed in $\bar{p} p$ annihilation at rest into $\eta \pi^{+} \pi^{-} \pi^{0} \pi^{0}$, where it decays into $\eta \pi \pi$ [18]. The intermediate $a_{0}(980) \pi$ accounts for roughly half of the $\eta \pi \pi$ signal, in agreement with MARK III [14] and DM2 [4].

Whether one or two pseudoscalar mesons exist in this mass region is still an open issue. According to Ref. [19] the splitting of a single state is due to nodes in the decay amplitudes which differ in $\eta \pi \pi$ and $K^{*}(892) \bar{K}$. Based on the isospin violating decay $J / \psi(1 S) \rightarrow \gamma 3 \pi$ observed by BESIII [20] the splitting could also be due to a triangular singularity mixing $\eta \pi \pi$ and $K^{*}(892) \bar{K}[21$, 22]. In a further paper [23], using the approach of [21], the authors conclude that the BESIII results can be reproduced either with the $\eta(1405)$ or the $\eta(1475)$, or by a mixture of these two states.

The $\eta(1295)$ has been observed by four $\pi^{-} p$ experiments [7,24-26], and evidence is reported in $\bar{p} p$ annihilation [27-29]. In $J / \psi(1 S)$ radiative decay, the $\eta(1295)$ signal is evident in the $0^{-+} \eta \pi \pi$ wave of the DM2 data [9]. Also BaBar [30] reports evidence for a signal around 1295 MeV in B decays into $\eta \pi \pi K$. Nonetheless, the existence of the $\eta(1295)$ is questioned in Refs. [19] and [31] in which the authors also claim the existence of a single pseudoscalar meson at 1440 MeV , the first radial excitation of the η. This conclusion is mainly based on a PhD thesis of the annihilation channel $\bar{p} p \rightarrow 4 \pi \eta$ with Crystal Barrel data [32].

Since the $\eta(1295)$ has been reported by several experiments, using different production mechanisms, let us assume this state to be established. The $\eta(1475)$ could then be the first radial excitation of the η^{\prime}, with the $\eta(1295)$ being the first radial excitation of the η. Ideal mixing, suggested by the $\eta(1295)$ and $\pi(1300)$ mass degeneracy, would then imply that the second isoscalar in the nonet is mainly $s \bar{s}$, and hence couples to $K^{*} \bar{K}$, in agreement with properties of the $\eta(1475)$. Also, its width matches the expected width for the radially excited $s \bar{s}$ state [33,34]. A study of radial excitations of pseudoscalar mesons [35] favors the $s \bar{s}$ interpretation of the $\eta(1475)$. However, due to the strong kinematical suppression the data are not sufficient to exclude a sizeable $s \bar{s}$ admixture also in the $\eta(1405)$.

The $K \bar{K} \pi$ and $\eta \pi \pi$ channels were studied in $\gamma \gamma$ collisions by

L3 [36]. The analysis led to a clear $\eta(1475)$ signal in $K \bar{K} \pi$, decaying into $K^{*} \bar{K}$, very well identified in the untagged data sample, where contamination from spin 1 resonances is not allowed. At the same time, L3 [36] did not observe the $\eta(1405)$, neither in $K \bar{K} \pi$ nor in $\eta \pi \pi$. The observation of the $\eta(1475)$, combined with the absence of an $\eta(1405)$ signal, strengthens the two-resonances hypothesis. Since gluonium production is presumably suppressed in $\gamma \gamma$ collisions, the L3 results [36] suggest that $\eta(1405)$ has a large gluonic content (see also Refs. [37] and [38]). The L3 result is somewhat in disagreement with that of CLEO-II, which did not observe any pseudoscalar signal in $\gamma \gamma \rightarrow \eta(1475) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ [39]. However, more data are required. Moreover, after the CLEO-II result, L3 performed a further analysis with full statistics [40], confirming their previous evidence for the $\eta(1475)$. The CLEO upper limit [39] for $\Gamma_{\gamma \gamma}(\eta(1475))$, and the L3 results [40], are consistent with the world average for the $\eta(1475)$ width.

BaBar [30] also reports the $\eta(1475)$ in B decays into $K \bar{K}^{*}$ recoiling against a K, but upper limits only are given for the $\eta(1405)$. As mentioned above, in B decays into $\eta \pi \pi K$ the $\eta(1295) \rightarrow \eta \pi \pi$ is observed while only upper limits are given for the $\eta(1405)$. The $f_{1}(1420)$ (and $f_{1}(1285)$) are not seen.

Under the assumption that two pseudoscalars exist in the 1400 MeV region, the $\eta(1405)$ could be a glueball, but this interpretation for the $\eta(1405)$ is not favored by lattice gauge theories which predict the 0^{-+}state above $2 \mathrm{GeV}[41,42]$ (see also the article on the "Quark model" in this issue of the Review). However, the $\eta(1405)$ is an excellent candidate for the 0^{-+}glueball in the fluxtube model [43]. In this model, the $0^{++} f_{0}(1500)$ glueball is also naturally related to a 0^{-+}glueball with mass degeneracy broken in QCD. Also, Ref. [44] shows that the pseudoscalar glueball could lie at a lower mass than predicted from lattice calculation. In this model the $\eta(1405)$ appears as the natural glueball candidate, see also Refs. [45-47]. A detailed review of the experimental situation is available in Ref. [48].

Let us now deal with the 1^{++}mesons. The pseudovector nonet is believed to consist of the isovector $a_{1}(1260)$, the isoscalars $f_{1}(1285)$ and $f_{1}(1420)$, and the $K_{1 A}$, which is a superposition with mixing angle $\sim 34^{\circ}$ of $K_{1}(1270)$ and $K_{1}(1400)$ [49]. The $f_{1}(1285)$ could also be a $K^{*} \bar{K}$ molecule [50] or as a tetraquark state [51] and the $f_{1}(1420)$ a $K^{*} \bar{K}$ molecule, due to the proximity of the $K^{*} \bar{K}$ threshold [52]. LHCb has analyzed the decays \bar{B}^{0} and $\bar{B}_{s}^{0} \rightarrow J / \psi(1 S) f_{1}(1285)$ and determined the nonet mixing angle to be consistent with a mostly $u \bar{u}+d \bar{d}$ structure [53] without specifying the identity of its isoscalar partner. This is consistent with earlier determinations assuming the $f_{1}(1420)$ as the isoscalar partner [54] and the ratio of $\bar{B}^{0} / \bar{B}_{s}^{0}$ decay rates excludes the tetraquark interpretation of this state [53].

The $f_{1}(1420)$, decaying into $K^{*} \bar{K}$, was first reported in $\pi^{-} p$ reactions at $4 \mathrm{GeV} / c$ [55]. However, later analyses found that the $1400-1500 \mathrm{MeV}$ region was far more complex [56-58]. A reanalysis of the MARK III data in radiative $J / \psi(1 S)$ decay into $K \bar{K} \pi$ [8] shows the $f_{1}(1420)$ decaying into $K^{*} \bar{K}$. A $C=+1$ state is also seen in tagged $\gamma \gamma$ collisions (e.g., Ref. [59]).

In $\pi^{-} p \rightarrow \eta \pi \pi n$ charge-exchange reactions at $8-9 \mathrm{GeV} / c$ the $\eta \pi \pi$ mass spectrum is dominated by the $\eta(1440)$ and $\eta(1295)$ [24, 60], and at $100 \mathrm{GeV} / c$ Ref. [25] reports the $\eta(1295)$ and $\eta(1440)$ decaying into $\eta \pi^{0} \pi^{0}$ with a weak $f_{1}(1285)$ signal, and no evidence for the $f_{1}(1420)$.

Axial $\left(1^{++}\right)$mesons are not observed in $\bar{p} p$ annihilation at rest in liquid hydrogen, which proceeds dominantly through S-wave annihilation. However, in gaseous hydrogen, P-wave annihilation is enhanced and, indeed, Ref. [11] reports $f_{1}(1420)$ decaying into $K^{*} \bar{K}$. The $f_{1}(1420)$, decaying into $K \bar{K} \pi$, is also seen in $p p$ central production, together with the $f_{1}(1285)$. The latter decays via $a_{0}(980) \pi$, and the former only via $K^{*} \bar{K}$, while the $\eta(1440)$ is absent $[61,62]$. The $K_{S}^{0} K_{S}^{0} \pi^{0}$ decay mode of the $f_{1}(1420)$ establishes unambiguously ${ }^{S} C=+1$. On the other hand, there is no evidence for any state decaying into $\eta \pi \pi$ around 1400 MeV , and hence the $\eta \pi \pi$ mode of the $f_{1}(1420)$ must be suppressed [63].

The COMPASS Collaboration has recently reported an isovector state at 1411 MeV , the $a_{1}(1420)$ [64] [65]. This relatively
narrow state (161 MeV) is produced by diffractive dissociation with 190 GeV pions in $\pi N \rightarrow 3 \pi N$, decays into $f_{0}(980) \pi \rightarrow 3 \pi$ (P-wave) and has therefore the quantum numbers $\left(I^{G}\right) J^{P C}=$ $\left(1^{-}\right) 1^{++}$. The pseudovector nonet already contains the established $a_{1}(1260)$ as the $I=1$ state. As mentioned above, the $f_{1}(1420)$ has been interpreted as a $K^{*} \bar{K}$ molecule [52]. The new $a_{1}(1420)$ could be its isovector partner. Arguments favoring the $f_{1}(1420)$ being a hybrid $q \bar{q} g$ meson [66] or a four-quark state [67] were also put forward. The $q \bar{q}$ state would then remain to be identified, with the $f_{1}(1510)$ (see below) as a candidate. However, alternative explanations are suggested: A single 1^{++} isovector around 1400 MeV , can lead to two peaks in the 3π mass spectrum, depending on the production mechanism, $\rho \pi$ [68] or $K^{*} \bar{K} \rightarrow K \bar{K} \pi \rightarrow f_{0}(980) \pi$ [69] for the $a_{1}(1260)$ and $f_{0}(980) \pi$ for the $a_{1}(1420)$.

A similar mechanism is invoked for the $f_{1}(1420)$, which is claimed to result from the $K^{*} \bar{K}$ and $a_{0}(980) \pi$ decay modes of the $f_{1}(1285)$ [70]. The absence of $f_{1}(1420)$ in $K^{-} p$ [71] indeed argues against the $f_{1}(1420)$ being the $s \bar{s}$ member of the 1^{++}nonet. However, the $f_{1}(1420)$ was reported in $K^{-} p$ but not in $\pi^{-} p$ [72], while two experiments do not observe the $f_{1}(1510)$ in $K^{-} p$ [72,73]. The latter is also not seen in central collisions [62], nor $\gamma \gamma$ collisions [74], although, surprisingly for an $s \bar{s}$ state, a signal is reported in 4π decays [75].
We now turn to the experimental evidence for the $f_{1}(1510)$ which competes with the $f_{1}(1420)$ to be the $s \bar{s} 1^{++}$meson. The $f_{1}(1510)$ was seen in $K^{-} p \rightarrow \Lambda K \bar{K} \pi$ at $4 \mathrm{GeV} / c$ [76], and at 11 GeV / c [71]. Evidence is also reported in $\pi^{-} p$ at $8 \mathrm{GeV} / c$, based on the phase motion of the $1^{++} K^{*} \bar{K}$ wave [58]. A somewhat broader 1^{++}signal is also observed in $J / \psi(1 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}[77]$ as well as a small signal in $J / \psi(1 S) \rightarrow \gamma \eta^{\prime} \pi^{+} \pi^{-}$, attributed to the $f_{1}(1510)$ [78]. The $f_{1}(1510)$ is not well established [79].

Summarizing, there is evidence for two isovector 1^{++}states in the 1400 MeV region, the $a_{1}(1260)$ and $a_{1}(1420)$, which cannot be both $q \bar{q}$ states. These two states could stem from the same pole, or the latter be exotic (tetraquark or hybrid) or a molecular state. The $f_{1}(1285)$ and the $f_{1}(1420)$ are well known but their nature ($q \bar{q}$, tetraquark or molecular) remains to be established. In the 0^{-+}sector there is evidence for two pseudoscalars in the 1400 MeV region, the $\eta(1405)$ and $\eta(1475)$, decaying into $a_{0}(980) \pi$ and $K^{*} K$, respectively. These two structures could originate from a single pole. Doubts have been expressed on the existence of the $\eta(1295)$. The $f_{1}(1510)$ remains to be firmly established.

References

[1] P. H. Baillon et al., Nuovo Cim. A50, 393 (1967).
[2] D. L. Scharre et al., Phys. Lett. 97B, 329 (1980).
[3] C. Edwards et al., Phys. Rev. Lett. 49, 259 (1982), [Erratum: Phys. Rev. Lett.50,219(1983)].
[4] J. E. Augustin et al. (DM2), Phys. Rev. D42, 10 (1990).
[5] J. Z. Bai et al. (BES), Phys. Lett. B594, 47 (2004), [hepex/0403008].
[6] M. G. Rath et al., Phys. Rev. D40, 693 (1989).
[7] G. S. Adams et al. (E852), Phys. Lett. B516, 264 (2001), [hep-ex/0107042].
[8] Z. Bai et al. (MARK-III), Phys. Rev. Lett. 65, 2507 (1990).
[9] J. E. Augustin et al. (DM2), Phys. Rev. D46, 1951 (1992).
[10] A. Bertin et al. (OBELIX), Phys. Lett. B361, 187 (1995).
[11] A. Bertin et al. (OBELIX), Phys. Lett. B400, 226 (1997).
[12] C. Cicalo et al. (OBELIX), Phys. Lett. B462, 453 (1999).
[13] F. Nichitiu et al. (OBELIX), Phys. Lett. B545, 261 (2002).
[14] T. Bolton et al., Phys. Rev. Lett. 69, 1328 (1992).
[15] M. Ablikim et al. (BES), Phys. Rev. D77, 032005 (2008), [arXiv:0712.1411].
[16] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 107, 182001 (2011), [arXiv:1107.1806].
[17] M. Ablikim et al. (BESIII), Phys. Rev. D87, 092006 (2013), [arXiv:1303.6360].
[18] C. Amsler et al. (Crystal Barrel), Phys. Lett. B358, 389 (1995).
[19] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007), [arXiv:0708.4016].
[20] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 108, 182001 (2012), [arXiv:1201.2737].
[21] J.-J. Wu et al., Phys. Rev. Lett. 108, 081803 (2012), [arXiv:1108.3772].
[22] X.-G. Wu et al., Phys. Rev. D87, 1, 014023 (2013), [arXiv:1211.2148].
[23] F. Aceti et al., Phys. Rev. D86, 114007 (2012), [arXiv:1209.6507].
[24] S. Fukui et al., Phys. Lett. B267, 293 (1991), [,293(1991)].
[25] D. Alde et al. (GAMS), Phys. Atom. Nucl. 60, 386 (1997), [Yad. Fiz.60,458(1997)].
[26] J. J. Manak et al. (E852), Phys. Rev. D62, 012003 (2000), [hep-ex/0001051].
[27] A. V. Anisovich et al., Nucl. Phys. A690, 567 (2001).
[28] A. Abele et al., Phys. Rev. D57, 3860 (1998).
[29] C. Amsler et al., Eur. Phys. J. C33, 23 (2004).
[30] B. Aubert et al. (BaBar), Phys. Rev. Lett. 101, 091801 (2008), [arXiv:0804.0411].
[31] E. Klempt, Int. J. Mod. Phys. A21, 739 (2006).
[32] J. Reinnarth, PhD Thesis, University of Bonn (2003), unpublished.
[33] F. E. Close and A. Kirk, Phys. Lett. B397, 333 (1997), [hepph/9701222].
[34] T. Barnes et al., Phys. Rev. D55, 4157 (1997), [hepph/9609339].
[35] T. Gutsche, V. E. Lyubovitskij and M. C. Tichy, Phys. Rev. D79, 014036 (2009), [arXiv:0811.0668].
[36] M. Acciarri et al. (L3), Phys. Lett. B501, 1 (2001), [hepex/0011035].
[37] F. E. Close, G. R. Farrar and Z.-p. Li, Phys. Rev. D55, 5749 (1997), [hep-ph/9610280].
[38] D. M. Li, H. Yu and S. S. Fang, Eur. Phys. J. C28, 335 (2003).
[39] R. Ahohe et al. (CLEO), Phys. Rev. D71, 072001 (2005), [hep-ex/0501026].
[40] P. Achard et al. (L3), JHEP 03, 018 (2007).
[41] G. S. Bali et al. (UKQCD), Phys. Lett. B309, 378 (1993), [hep-lat/9304012].
[42] C. J. Morningstar and M. J. Peardon, Phys. Rev. D60, 034509 (1999), [hep-lat/9901004].
[43] L. Faddeev, A. J. Niemi and U. Wiedner, Phys. Rev. D70, 114033 (2004), [hep-ph/0308240].
[44] H.-Y. Cheng, H.-n. Li and K.-F. Liu, Phys. Rev. D79, 014024 (2009), [arXiv:0811.2577].
[45] G. Li, Q. Zhao and C.-H. Chang, J. Phys. G35, 055002 (2008), [hep-ph/0701020].
[46] T. Gutsche, V. E. Lyubovitskij and M. C. Tichy, Phys. Rev. D80, 014014 (2009), [arXiv:0904.3414].
[47] B. A. Li, Phys. Rev. D81, 114002 (2010), [arXiv:0912.2323].
[48] A. Masoni, C. Cicalo and G. L. Usai, J. Phys. G32, R293 (2006).
[49] H.-Y. Cheng, Phys. Lett. B707, 116 (2012), [arXiv:1110.2249].
[50] F. Aceti, J.-J. Xie and E. Oset, Phys. Lett. B750, 609 (2015), [arXiv:1505.06134].
[51] S. Stone and L. Zhang, Phys. Rev. Lett. 111, 6, 062001 (2013), [arXiv:1305.6554].
[52] R. S. Longacre, Phys. Rev. D42, 874 (1990).
[53] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 9, 091802 (2014), [arXiv:1310.2145].
[54] G. Gidal et al., Phys. Rev. Lett. 59, 2012 (1987).
[55] C. Dionisi et al. (CERN-College de France-MadridStockholm), Nucl. Phys. B169, 1 (1980).
[56] S. U. Chung et al., Phys. Rev. Lett. 55, 779 (1985), [Erratum: Phys. Rev. Lett.55,2093(1985)].
[57] D. F. Reeves et al., Phys. Rev. D34, 1960 (1986).
[58] A. Birman et al., Phys. Rev. Lett. 61, 1557 (1988), [Erratum: Phys. Rev. Lett.62,1577(1989)].
[59] H. J. Behrend et al. (CELLO), Z. Phys. C42, 367 (1989).
[60] A. Ando et al., Phys. Rev. Lett. 57, 1296 (1986).
[61] T. A. Armstrong et al. (WA76), Phys. Lett. B221, 216 (1989).
[62] D. Barberis et al. (WA102), Phys. Lett. B413, 225 (1997), [hep-ex/9707022].
[63] T. A. Armstrong et al. (WA76, Athens-Bari-Birmingham-CERN-College de France), Z. Phys. C52, 389 (1991).
[64] C. Adolph et al. (COMPASS), Phys. Rev. Lett. 115, 8, 082001 (2015), [arXiv:1501.05732].
[65] M. Aghasyan et al. (COMPASS), Phys. Rev. D98, 9, 092003 (2018), [arXiv:1802.05913].
[66] S. Ishida et al., Prog. Theor. Phys. 82, 119 (1989).
[67] D.O. Caldwell, Hadron 89 Conf., Ajaccio, Corsica, p. 127.
[68] J.-L. Basdevant and E. L. Berger, Phys. Rev. Lett. 114, 19, 192001 (2015), [arXiv:1504.05955].
[69] M. Mikhasenko, B. Ketzer and A. Sarantsev, Phys. Rev. D91, 9, 094015 (2015), [arXiv:1501.07023].
[70] V. R. Debastiani et al., Phys. Rev. D95, 3, 034015 (2017), [arXiv:1611.05383].
[71] D. Aston et al., Phys. Lett. B201, 573 (1988).
[72] P. F. Ermolov et al., Sov. J. Nucl. Phys. 39, 738 (1984), [Yad. Fiz.39,1170(1984)].
[73] J. Dowd et al., Nucl. Phys. Proc. Suppl. 21, 11 (1991).
[74] H. Aihara et al. (TPC/Two Gamma), Phys. Rev. D38, 1 (1988).
[75] D. A. Bauer et al. (TPC/Two Gamma), Phys. Rev. D48, 3976 (1993).
[76] P. Gavillet et al., Z. Phys. C16, 119 (1982).
[77] J. Z. Bai et al. (BES), Phys. Lett. B446, 356 (1999).
[78] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 106, 072002 (2011), [arXiv:1012.3510].
[79] F. E. Close and A. Kirk, Z. Phys. C76, 469 (1997), [hepph/9706543].

64. Rare Kaon Decays

Revised August 2019 by L. Littenberg (BNL) and G. Valencia (Monash U.).

64.1 Introduction

There are several useful reviews on rare kaon decays and related topics [1-12]. Activity in rare kaon decays can be divided roughly into four categories:

1. Searches for explicit violations of the Standard Model (SM)
2. The golden modes: $K \rightarrow \pi \nu \bar{\nu}$
3. Other constraints on SM parameters
4. Studies of strong interactions at low energy.

The paradigm of Category 1 is the lepton flavor violating decay $K_{L} \rightarrow \mu e$. Category 2 includes the two modes that can be calculated with negligible theoretical uncertainty, $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ and $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$. These modes can lead to precision determinations of CKM parameters or, in combination with other measurements of these parameters, they can constrain new interactions. They constitute the main focus of the current experimental kaon program. Category 3 is focused on decays with charged leptons, such as $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$or $K_{L} \rightarrow \ell^{+} \ell^{-}$where $\ell \equiv e, \mu$. These modes are sensitive to CKM parameters but they suffer from multiple hadronic uncertainties that can be addressed, at least in part, through a systematic study of the peripheral modes indicated in Fig. 64.1. The interplay between Categories $3-4$ and their complementarity to Category 2 is illustrated in the figure. Category 4 includes reactions like $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$where long distance contributions are dominant and which constitute a testing ground for the ideas of chiral perturbation theory. Other decays in this category are $K_{L} \rightarrow \pi^{0} \gamma \gamma$ and $K_{L} \rightarrow \ell^{+} \ell^{-} \gamma$. The former is important in understanding a $C P$-conserving contribution to $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$, whereas the latter could shed light on long distance contributions to $K_{L} \rightarrow \mu^{+} \mu^{-}$.

64.2 Explicit violations of the Standard Model

Figure 64.1: Role of rare kaon decays in determining the unitarity triangle. The solid arrows point to auxiliary modes needed to interpret the main results, or potential backgrounds to them.

Much activity has focussed on searches for lepton flavor violation (LFV). This is motivated by the fact that many extensions of the minimal Standard Model violate lepton flavor and by the potential to access very high energy scales. For example, the treelevel exchange of a LFV vector boson of mass M_{X} that couples to left-handed fermions with electroweak strength and without mixing angles yields $\mathrm{B}\left(K_{L} \rightarrow \mu e\right)=4.7 \times 10^{-12}\left(148 \mathrm{TeV} / M_{X}\right)^{4}[2]$. This simple dimensional analysis may be used to read from Table 64.1 that the reaction $K_{L} \rightarrow \mu e$ is already probing scales of over 100 TeV . Table 64.1 summarizes the present experimental situation vis-à-vis LFV. The decays $K_{L} \rightarrow \mu^{ \pm} e^{\mp}$ and $K^{+} \rightarrow \pi^{+} e^{\mp} \mu^{ \pm}$(or $K_{L} \rightarrow \pi^{0} e^{\mp} \mu^{ \pm}$) provide complementary information on potential family number violating interactions, since the former is sensitive to parity-odd couplings and the latter is sensitive to parity-even couplings.

Limits on certain lepton-number violating (LNV) kaon decays also have been obtained, with recent interest arising from their role in constraining possible extensions of the neutrino sector [13,

14], and we list those in the table as well. Related searches in μ and τ processes are discussed in our section "Tests of Conservation Laws."

Table 64.1: Searches for lepton flavor and lepton number violation in K decay

LFV mode	90% CL upper limit	Experiment	Yr./Ref.	Type
$K^{+} \rightarrow \pi^{+} e^{-} \mu^{+}$	1.3×10^{-11}	BNL-865	$2005 /[15]$	LFV
$K^{+} \rightarrow \pi^{+} e^{+} \mu^{-}$	5.2×10^{-10}	BNL-865	$2000 /[16]$	LFV
$K_{L} \rightarrow \mu e$	4.7×10^{-12}	BNL-871	$1998 /[17]$	LFV
$K_{L} \rightarrow \pi^{0} e \mu$	7.6×10^{-11}	KTeV	$2008 /[18]$	LFV
$K_{L} \rightarrow \pi^{0} \pi^{0} e \mu$	1.7×10^{-10}	KTeV	$2008 /[18]$	LFV
$K^{+} \rightarrow \pi^{-} e^{+} e^{+}$	2.2×10^{-10}	NA-62	$2019 /[19]$	LNV
$K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	4.2×10^{-11}	NA-62	$2019 /[19]$	LNV
$K^{ \pm} \rightarrow \pi^{\mp} \mu^{ \pm} \mu^{ \pm}$	8.6×10^{-11}	NA48/2	$2017 /[20]$	LNV
$K_{L} \rightarrow e^{ \pm} e^{ \pm} \mu^{\mp} \mu^{\mp}$	4.12×10^{-11}	KTeV	$2003 /[21]$	LNV
$K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$	5.0×10^{-10}	BNL-865	$2000 /[16]$	LNFV

Physics beyond the SM is also pursued through the search for $K^{+} \rightarrow \pi^{+} X^{0}$, where X^{0} is a new light particle. The searches cover both long-lived particles (e.g., hyperphoton, axion, familon, etc.), and short-lived ones that decay to muon, electron or photon pairs. The 90% CL upper limit on $K^{+} \rightarrow \pi^{+} X^{0}$ is 7.3×10^{-11} [22] for the case of massless X^{0}; additional results as a function of the X^{0} mass can be found in [23]. Recently these limits have been reinterpreted in connection with a dark photon [24] or dark Z [25]. Such vectors have also been sought in their $e^{+} e^{-}$decay mode by NA48/2 [26]. Additional bounds for a short lived pseudoscalar X^{0} decaying to muons or photons are $B\left(K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-}\right)<$ 1×10^{-10} [27] and $B\left(K_{L} \rightarrow \pi^{0} \pi^{0} \gamma \gamma\right)<2.4 \times 10^{-7}$ [28].

64.3 The golden modes: $K \rightarrow \pi \nu \bar{\nu}$

In the SM , the decay $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ is dominated by one-loop diagrams with top-quark intermediate states while long-distance contributions are known to be quite small [29-31]. This permits a precise calculation of this rate in terms of SM parameters. Studies of this process are thus motivated by the possibility of detecting non-SM physics when comparing with the results of global fits [32, 33].

The branching ratio can be written in a compact form that exhibits the different ingredients that go into the calculation [34],

$$
\begin{align*}
& \mathrm{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)\left[\left(\frac{\operatorname{Im}\left(V_{t s}^{\star} V_{t d}\right)}{\lambda^{5}} X_{t}\right)^{2}\right. \\
& \left.+\left(\frac{\operatorname{Re}\left(V_{c s}^{\star} V_{c d}\right)}{\lambda}\left(P_{c}+\delta P_{c, u}\right)+\frac{\operatorname{Re}\left(V_{t s}^{\star} V_{t d}\right)}{\lambda^{5}} X_{t}\right)^{2}\right] \tag{64.1}
\end{align*}
$$

The parameters in Eq. 64.1 incorporate the a priori unknown hadronic matrix element in terms of the very well-measured $K_{e 3}$ rate [29] in κ_{+}; long distance QED corrections in Δ_{EM} [35]; the Inami-Lim function for the short distance top-quark contribution [36] including NLO QCD corrections [37,38] and the twoloop electroweak correction [34], all in X_{t}; and the charm-quark contributions due to short distance effects including NNLO QCD corrections $[39,40]$ and NLO electroweak corrections via $P_{c}[41]$, as well as certain long distance effects via $\delta P_{c, u}[31,42]$. An interesting approximate way to cast this result in terms of the CKM parameters $\lambda, V_{c b}, \bar{\rho}$ and $\bar{\eta}$ (see our Section on "The Cabibbo-Kobayashi-Maskawa mixing matrix") [43] is:

$$
\mathrm{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right) \approx 1.6 \times 10^{-5}\left|V_{c b}\right|^{4}\left[\sigma \bar{\eta}^{2}+\left(\rho_{c}-\bar{\rho}\right)^{2}\right],(64.2)
$$

where $\rho_{c} \approx 1.45$ and $\sigma \equiv \frac{1}{\left(1-\frac{1}{2} \lambda^{2}\right)^{2}}$. Thus, $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$ determines an ellipse in the $\bar{\rho}, \bar{\eta}$ plane with center $\left(\rho_{c}, 0\right)$ and semiaxes $\approx \frac{1}{\left|V_{c b}\right|^{2}} \sqrt{\frac{\mathrm{~B}\left(K^{+} \rightarrow \pi^{+}+\bar{\nu}\right)}{1.6 \times 10^{-5}}}$ and $\frac{1}{\sigma\left|V_{c b}\right|^{2}} \sqrt{\frac{\mathrm{~B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)}{1.6 \times 10^{-5}}}$.

BNL-787 observed two candidate events $[44,45]$ in the clean high π^{+}momentum and one event [46] in the low-momentum region. The successor experiment BNL-949 observed one more
in the high-momentum region [22] and three more in the lowmomentum region [47], yielding a branching ratio of $\left(1.73_{-1.05}^{+1.15}\right) \times$ 10^{-10} [23].

The NA62 experiment, performed with in-flight decays at CERN, aims to reach a sensitivity of $\sim 10^{-12}$ /event. NA62 was commissioned in 2015 and has taken data in 2016, 2017 and 2018. The short 2016 run resulted in the observation of one event over an expected background of 0.152 events, which allowed a 95% C.L. limit of 14×10^{-10} to be set [48]. Very recently, preliminary results from the 2017 run have been announced. Two additional events were observed, over an expected background of 1.5 events. Combining this data with that of 2016, they obtain a a 90% C.L. limit of 1.85×10^{-10} [49].

Using the latest CKMfitter input [32], we estimate $\mathrm{B}\left(K^{+} \rightarrow\right.$ $\left.\pi^{+} \nu \bar{\nu}\right)=(8.5 \pm 0.5) \times 10^{-11}$, near the lower end of the measurement of BNL-787 and 949. However, current parametric uncertainty in the CKM angles can result in numbers with central values differing from this one by up to 10% [50].

The second golden mode is the neutral counterpart to our preceeding discussion: $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$. It is dominantly $C P$-violating and free of hadronic uncertainties $[29,51,52]$. In the Standard Model, this mode is dominated by an intermediate top-quark state and does not suffer from the small uncertainty associated with the charm-quark intermediate state that affects $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$. The branching ratio is given by Ref. [43]:

$$
\begin{align*}
\mathrm{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) & =\kappa_{L}\left(\frac{\operatorname{Im}\left(V_{t s}^{\star} V_{t d}\right)}{\lambda^{5}} X_{t}\right)^{2} \\
& \approx 7.6 \times 10^{-5}\left|V_{c b}\right|^{4} \bar{\eta}^{2} . \tag{64.3}
\end{align*}
$$

As with the charged mode, the hadronic matrix element can be related to that measured in $K_{\ell 3}$ decay and is parameterized in κ_{L}.

Our estimate for the branching ratio, using the latest CKMfitter input [32], is $(3.0 \pm 0.2) \times 10^{-11}$. But similarly to the charged kaon case, parametric uncertainty in the CKM angles can result in a central value that differs from this one by up to almost 20% [50].

Grossman and Nir (GN) [53] pointed out that, in a nearly model-independent manner, the two golden modes satisfy the relation $\mathrm{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) \lesssim 4.4 \mathrm{~B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$. Using the BNL $787 / 94990 \% \mathrm{CL}$ bound on $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$, GN then predict $B\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)<1.46 \times 10^{-9}$. Using instead the latest NA62 result, the GN upper bound becomes $B\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)<$ 8.14×10^{-10} as can be seen in Figure 64.2.

The KOTO experiment at J-PARC, whose initial goal is to observe this decay, has been running since 2013 and in 2018 published a 90% CL upper limit of 3.0×10^{-9} [54], based on their 2015 data. They have run every year since, making incremental upgrades to the experimental configuration between runs.

It was pointed out in a recent paper that the GN bound obtained from the BNL result applies to the three body decay $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ and not necessarily to two body modes such as $K_{L} \rightarrow \pi^{0} X^{0}$. In this case KOTO can provide interesting constraints on new physics even at the current sensitivity level [55]. Using the 2015 data, they have established a 90% CL upper limit of 2.4×10^{-9} on $K_{L} \rightarrow \pi^{0} X^{0}$ for $m_{X^{0}} \approx m_{\pi^{0}}$ [54].

Much theoretical work has explored beyond the SM scenarios that can populate this window as well as their correlations with other rare processes outside kaon physics. Although it would be relatively straight forward to establish the existence of new physics by observing deviations from their SM values in the $K \rightarrow \pi \nu \bar{\nu}$ modes, it would take much more extensive global fits to pinpoint the origin of any such deviation. Partial summaries with references can be found in Refs. [9,56-58]. There has also been a recent classification of the different possibilities in terms of the neutrino couplings [59], and several studies on the effect of neutrinos with different lepton flavor. [60-62].

The current theoretical and experimental situation for the golden modes is summarized in Fig. 64.2. The red area corresponds to the $1 \sigma \mathrm{SM}$ prediction we obtain with the latest input available from CKMfitter (summer 2018) [32]. The yellow region shows the result established by the combined BNL-787 and BNL949 results, whereas the green region marks the new 90% CL upper bound from NA62 for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$. The black shaded region

Figure 64.2: Summary of current situation for the golden modes $K \rightarrow \pi \nu \bar{\nu}$. The red ellipse shows the 1σ SM prediction with input from CKMfitter; the yellow region corresponds to the BNL 1σ measurement; the vertical green line marks the 90% CL upper bound from NA62, with the corresponding exclusion region shaded green; and the dashed orange line marks the 90% CL KOTO upper bound. The black shaded region shows the GN exclusion.
marks the GN exclusion, which lies significantly above the SM expectation leaving a large window for discovery of new physics contributions by experiments seeking to measure $\mathrm{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$. The 90% CL upper bound on this mode from KOTO is shown as a dashed orange line, and is seen to still lie in the GN excluded zone.

Related modes with one extra pion, $K \rightarrow \pi \pi \nu \bar{\nu}$, are similarly dominated by short distance contributions [63-65]. However, they occur at much lower rates with branching ratios of order 10^{-13}. The current best bound comes from KEK-391a, it is $B\left(K_{L} \rightarrow\right.$ $\left.\pi^{0} \pi^{0} \nu \bar{\nu}\right)<8.1 \times 10^{-7}$ at 90% CL [66]. There is also a bound $B\left(K^{+} \rightarrow \pi^{+} \pi^{0} \nu \bar{\nu}\right)<4.3 \times 10^{-5}$ at 90% CL [67] from BNL-787.

64.4 Other constraints on Standard Model parameters

The decay $K_{L} \rightarrow \mu^{+} \mu^{-}$has a short distance contribution sensitive to the CKM parameter $\bar{\rho}$, given by [43]:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{SD}}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right) \approx 2.7 \times 10^{-4}\left|V_{c b}\right|^{4}\left(\rho_{c}^{\prime}-\bar{\rho}\right)^{2} \tag{64.4}
\end{equation*}
$$

where ρ_{c}^{\prime} depends on the charm quark mass and is approximately 1.2. This decay, however, is dominated by a long-distance contribution from a two-photon intermediate state. The absorptive (imaginary) part of the long-distance component is determined by the measured rate for $K_{L} \rightarrow \gamma \gamma$ to be $\mathrm{B}_{\mathrm{abs}}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)=$ $(6.64 \pm 0.07) \times 10^{-9}$; and it almost completely saturates the observed rate $\mathrm{B}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)=(6.84 \pm 0.11) \times 10^{-9}$ [68]. The difference between the observed rate and the absorptive component can be attributed to the (coherent) sum of the short-distance amplitude and the real part of the long-distance amplitude. The latter cannot be derived directly from experiment [69], but can be estimated with certain assumptions [70, 71].
By contrast, the decay $K_{L} \rightarrow e^{+} e^{-}$is completely dominated by long distance physics and is easier to estimate. The result, $B\left(K_{L} \rightarrow e^{+} e^{-}\right) \sim 9 \times 10^{-12}[69,72]$, is in good agreement with the BNL-871 measurement, $\left(8.7_{-4.1}^{+5.7}\right) \times 10^{-12}$ [73].

The mode $K_{S} \rightarrow \mu^{+} \mu^{-}$similarly has a short distance contribution proportional to the square of the CKM parameter $\bar{\eta}$ entering at the 10^{-13} level [10]. It also has long distance contributions arising from the two photon intermediate state which result in a rate $B\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)_{L D}=5.1 \times 10^{-12}$ [10]. A 90% CL limit $B\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)<2.1 \times 10^{-10}$ was recently obtained by LHCb [74,75]. The interplay between $K_{L} \rightarrow \mu^{+} \mu^{-}$and $K_{S} \rightarrow \mu^{+} \mu^{-}$has been the subject of $[76,77]$.

The decay $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$is sensitive to the CKM parameter η through its $C P$-violating component. There are both direct and indirect $C P$-violating amplitudes that can interfere. The direct $C P$-violating amplitude is short distance dominated and has been calculated in detail within the SM [5]. The indirect $C P$-violating
amplitude can be inferred from a measurement of $K_{S} \rightarrow \pi^{0} e^{+} e^{-}$. The complete $C P$-violating contribution to the rate can be written as [78-80]:

$$
\begin{align*}
\mathrm{B}_{\mathrm{CPV}} \approx 10^{-12}\left[15.7\left|a_{S}\right|^{2}\right. & \pm 1.4\left(\frac{\left|V_{c b}\right|^{2} \bar{\eta}}{10^{-4}}\right)\left|a_{S}\right| \\
& \left.+0.12\left(\frac{\left|V_{c b}\right|^{2} \bar{\eta}}{10^{-4}}\right)^{2}\right] \tag{64.5}
\end{align*}
$$

where the three terms correspond to the indirect CP violation, the interference, and the direct CP violation, respectively. The parameter a_{S} has been extracted by NA48/1 from a measurement of $K_{S} \rightarrow \pi^{0} e^{+} e^{-}$with the result $\left|a_{S}\right|=1.06_{-0.21}^{+0.26} \pm 0.07$ [81], as well as from a measurement of $K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}$with the result $\left|a_{S}\right|=1.54_{-0.32}^{+0.40} \pm 0.06[82]$. With current constraints on the CKM parameters, and assuming a positive sign for the interference term $[80,83]$, this implies that $\mathrm{B}_{\mathrm{CPV}}\left(K_{L} \rightarrow \pi^{0} e^{+} e^{-}\right) \approx(3.1 \pm 0.9) \times$ 10^{-11}, where the three contributions to the central value from indirect, interference and direct CP violation are $(1.76,0.9,0.45) \times$ 10^{-11} respectively. It should be noted that more recent studies suggest a much larger uncertainty in the value of a_{S} [84]. The complete $C P$ violating amplitude for the related mode $K_{L} \rightarrow$ $\pi^{0} \mu^{+} \mu^{-}$is predicted to be $\mathrm{B}_{\mathrm{CPV}}\left(K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) \approx(1.4 \pm 0.5) \times$ $10^{-11}[10,85]$.
$K_{L} \rightarrow \pi^{0} e^{+} e^{-}$also has a $C P$-conserving component dominated by a two-photon intermediate state. This component can be decomposed into an absorptive and a dispersive part. The absorptive part can be extracted from the measurement of the low $m_{\gamma \gamma}$ region of the $K_{L} \rightarrow \pi^{0} \gamma \gamma$ spectrum. The rate and the shape of the distribution $d \Gamma / d m_{\gamma \gamma}$ in $K_{L} \rightarrow \pi^{0} \gamma \gamma$ are well described in chiral perturbation theory in terms of three (a priori) unknown parameters [86-89].

Both KTeV and NA48 have studied the mode $K_{L} \rightarrow \pi^{0} \gamma \gamma$, reporting similar results. KTeV finds $B\left(K_{L} \rightarrow \pi^{0} \gamma \gamma\right)=(1.29 \pm$ $\left.0.03_{\text {stat }} \pm 0.05_{\text {sys }}\right) \times 10^{-6}$ [90], while NA48 finds $B\left(K_{L} \rightarrow \pi^{0} \gamma \gamma\right)=$ $\left(1.36 \pm 0.03_{\text {stat }} \pm 0.03_{\text {sys }} \pm 0.03_{\text {norm }}\right) \times 10^{-6}$ [91]. Both experiments are consistent with a negligible rate in the low $m_{\gamma \gamma}$ region, suggesting a very small $C P$-conserving component $B_{\mathrm{CP}}\left(K_{L} \rightarrow\right.$ $\left.\pi^{0} e^{+} e^{-}\right) \sim \mathcal{O}\left(10^{-13}\right)[80,89,91]$. There remains some model dependence in the estimate of the dispersive part of the $C P$ conserving $K_{L} \rightarrow \pi^{0} e^{+} e^{-}[80]$.

The related process, $K_{L} \rightarrow \pi^{0} \gamma e^{+} e^{-}$, is potentially an additional background to $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$in some region of phase space [92]. This process has been observed with a branching ratio of $\left(1.62 \pm 0.14_{\text {stat }} \pm 0.09_{\text {sys }}\right) \times 10^{-8}$ [93].

The decay $K_{L} \rightarrow \gamma \gamma e^{+} e^{-}$constitutes the dominant background to $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$. It was first observed by BNL-845 [94], and subsequently confirmed with a much larger sample by KTeV [95]. It has been estimated that this background will enter at about the 10^{-10} level [96,97], comparable to or larger than the signal level. Because of this, the observation of $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$ at the SM level will depend on background subtraction with good statistics. Possible alternative strategies are discussed in Ref. [80] and references cited therein.

The 90% CL upper bound for the process $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$is 2.8×10^{-10} [97]. For the closely related muonic process, the published upper bound is $\mathrm{B}\left(K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}\right) \leq 3.8 \times 10^{-10}$ [98], compared with the SM prediction of $(1.5 \pm 0.3) \times 10^{-11}$ [85] (assuming positive interference between the direct- and indirect-CP violating components).
A study of $K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$has indicated that it might be possible to extract the direct $C P$-violating contribution by a joint study of the Dalitz plot variables and the components of the μ^{+} polarization [99]. The latter tends to be quite substantial so that large statistics may not be necessary.

Combined information from $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$as well as $K_{L} \rightarrow$ $\mu^{+} \mu^{-}$complements the $K \rightarrow \pi \nu \bar{\nu}$ measurements in constraining physics beyond the SM [100].

64.5 Other long distance dominated modes

The decays $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}(\ell=e$ or $\mu)$ have received considerable attention. The rate and spectrum have been measured for both the electron and muon modes [101-106]. The theoretical status of these modes has been summarized recently [84, 107].

The measurements have been used to exclude new physics such as a dark photon [24]. Ref. [78, 79] has proposed a parameterization inspired by chiral perturbation theory, which provides a successful description of data but indicates the presence of large corrections beyond leading order. More work is needed to fully understand the origin of these large corrections. The mode $K^{+} \rightarrow \pi^{+} \pi^{0} e^{+} e^{-}$, recently analyzed by NA48/2 [108], is also dominated by long distance physics but it has been argued that measuring asymmetries can provide information on the short distance components [109]. The related mode $K_{S} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$, which was measured by NA48/1 [110], has received new interest by $\mathrm{LHCb}[111]$ as an important background to other rare decays. An update of the theory for these modes can be found in [112].

The decay $K^{+} \rightarrow \pi^{+} \gamma \gamma$ can be predicted in terms of one unknown parameter to leading order in $\chi \mathrm{PT}$ resulting in a correlation between the rate and the diphoton mass spectrum [113]. Certain important corrections at the next order are also known [114]. The rate was first measured by E787 [115], and more recently NA48/2 [116] has obtained a more precise result with a 6% error, as well as the corresponding spectrum fits. The most recent, and precise, result is from NA62 based on a sample of 232 events [117] but is still insufficient to distinguish between the leading order and next order $\chi \mathrm{PT}$ parameterizations.

Much information has been recorded by KTeV and NA48 on the rates and spectrum for the Dalitz pair conversion modes $K_{L} \rightarrow \ell^{+} \ell^{-} \gamma[118,119]$, and $K_{L} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$ for $\ell, \ell^{\prime}=e$ or μ [21, 120]. More recently, LHCb has performed preliminary studies of $K_{S} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$ [111]. All these results are used to test hadronic models and should eventually help unravel the underlying physics in $K_{L} \rightarrow \mu^{+} \mu^{-}[71,76,121]$.

References

[1] L. Littenberg and G. Valencia, Ann. Rev. Nucl. Part. Sci. 43, 729 (1993), [hep-ph/9303225].
[2] J. L. Ritchie and S. G. Wojcicki, Rev. Mod. Phys. 65, 1149 (1993).
[3] B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65, 1113 (1993).
[4] A. Pich, Rept. Prog. Phys. 58, 563 (1995), [hepph/9502366].
[5] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996), [hep-ph/9512380].
[6] G. D'Ambrosio and G. Isidori, Int. J. Mod. Phys. A13, 1 (1998), [hep-ph/9611284].
[7] P. Buchholz and B. Renk, Prog. Part. Nucl. Phys. 39, 253 (1997).
[8] A. R. Barker and S. H. Kettell, Ann. Rev. Nucl. Part. Sci. 50, 249 (2000), [hep-ex/0009024].
[9] A. J. Buras, F. Schwab and S. Uhlig, Rev. Mod. Phys. 80, 965 (2008), [hep-ph/0405132].
[10] V. Cirigliano et al., Rev. Mod. Phys. 84, 399 (2012), [arXiv:1107.6001].
[11] D. Bryman et al., Ann. Rev. Nucl. Part. Sci. 61, 331 (2011).
[12] T. K. Komatsubara, Prog. Part. Nucl. Phys. 67, 995 (2012), [arXiv:1203.6437].
[13] A. Atre et al., JHEP 05, 030 (2009), [arXiv:0901.3589].
[14] L. S. Littenberg and R. Shrock, Phys. Lett. B491, 285 (2000), [hep-ph/0005285].
[15] A. Sher et al., Phys. Rev. D72, 012005 (2005), [hepex/0502020].
[16] R. Appel et al., Phys. Rev. Lett. 85, 2877 (2000), [hepex/0006003].
[17] D. Ambrose et al. (BNL), Phys. Rev. Lett. 81, 5734 (1998), [hep-ex/9811038].
[18] E. Abouzaid et al. (KTeV), Phys. Rev. Lett. 100, 131803 (2008), [arXiv:0711.3472].
[19] E. Cortina Gil et al. (NA62), Phys. Lett. B797, 134794 (2019), [arXiv:1905.07770].
[20] J. R. Batley et al. (NA48/2), Phys. Lett. B769, 67 (2017), [arXiv:1612.04723].
[21] A. Alavi-Harati et al. (KTeV), Phys. Rev. Lett. 90, 141801 (2003), [hep-ex/0212002].
[22] V. V. Anisimovsky et al. (E949), Phys. Rev. Lett. 93, 031801 (2004), [hep-ex/0403036].
[23] A. V. Artamonov et al. (BNL-E949), Phys. Rev. D79, 092004 (2009), [arXiv:0903.0030].
[24] M. Pospelov, Phys. Rev. D80, 095002 (2009), [arXiv:0811.1030].
[25] H. Davoudiasl, H.-S. Lee and W. J. Marciano, Phys. Rev. D89, 9, 095006 (2014), [arXiv:1402.3620].
[26] J. R. Batley et al. (NA48/2), Phys. Lett. B746, 178 (2015), [arXiv:1504.00607].
[27] E. Abouzaid et al. (KTeV), Phys. Rev. Lett. 107, 201803 (2011), [arXiv:1105.4800].
[28] Y. C. Tung et al. (E391a), Phys. Rev. Lett. 102, 051802 (2009), [arXiv:0810.4222].
[29] J. S. Hagelin and L. S. Littenberg, Prog. Part. Nucl. Phys. 23, 1 (1989).
[30] M. Lu and M. B. Wise, Phys. Lett. B324, 461 (1994), [hepph/9401204].
[31] A. F. Falk, A. Lewandowski and A. A. Petrov, Phys. Lett. B505, 107 (2001), [hep-ph/0012099].
[32] J. Charles et al., Phys. Rev. D84, 033005 (2011), [arXiv:1106.4041].
[33] M. Bona et al. (UTfit), JHEP 03, 049 (2008), [arXiv:0707.0636].
[34] J. Brod, M. Gorbahn and E. Stamou, Phys. Rev. D83, 034030 (2011), [arXiv:1009.0947].
[35] F. Mescia and C. Smith, Phys. Rev. D76, 034017 (2007), [arXiv:0705.2025].
[36] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981), [Erratum: Prog. Theor. Phys.65,1772(1981)].
[37] G. Buchalla and A. J. Buras, Nucl. Phys. B548, 309 (1999), [hep-ph/9901288].
[38] M. Misiak and J. Urban, Phys. Lett. B451, 161 (1999), [hep-ph/9901278].
[39] A. J. Buras et al., Phys. Rev. Lett. 95, 261805 (2005), [hepph/0508165].
[40] A. J. Buras et al., JHEP 11, 002 (2006), [Erratum: JHEP11,167(2012)], [hep-ph/0603079].
[41] J. Brod and M. Gorbahn, Phys. Rev. D78, 034006 (2008), [arXiv:0805.4119].
[42] G. Isidori, F. Mescia and C. Smith, Nucl. Phys. B718, 319 (2005), [hep-ph/0503107].
[43] A. J. Buras and R. Fleischer, Adv. Ser. Direct. High Energy Phys. 15, 65 (1998), [,65(1997)], [hep-ph/9704376].
[44] S. Adler et al. (E787), Phys. Rev. Lett. 88, 041803 (2002), [hep-ex/0111091].
[45] S. Adler et al. (E787), Phys. Rev. Lett. 84, 3768 (2000), [hep-ex/0002015].
[46] S. S. Adler et al. (E787), Phys. Lett. B537, 211 (2002), [hep-ex/0201037].
[47] A. V. Artamonov et al. (E949), Phys. Rev. Lett. 101, 191802 (2008), [arXiv:0808.2459].
[48] E. Cortina Gil et al. (NA62), Phys. Lett. B791, 156 (2019), [arXiv:1811.08508].
[49] G. Ruggiero, NA62 collaboration "Latest measurement of $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ with the NA62 experiment at CERN", talk at KAON 2019, [https://indico.cern.ch/event/769729/].
[50] A. J. Buras et al., JHEP 11, 033 (2015), [arXiv:1503.02693].
[51] L. S. Littenberg, Phys. Rev. D39, 3322 (1989).
[52] G. Buchalla and G. Isidori, Phys. Lett. B440, 170 (1998), [hep-ph/9806501].
[53] Y. Grossman and Y. Nir, Phys. Lett. B398, 163 (1997), [hep-ph/9701313].
[54] J. K. Ahn et al. (KOTO), Phys. Rev. Lett. 122, 2, 021802 (2019), [arXiv:1810.09655].
[55] K. Fuyuto, W.-S. Hou and M. Kohda, Phys. Rev. Lett. 114, 171802 (2015), [arXiv:1412.4397].
[56] G. D'Ambrosio and G. Isidori, Phys. Lett. B530, 108 (2002), [hep-ph/0112135].
[57] D. Bryman et al., Int. J. Mod. Phys. A21, 487 (2006), [hepph/0505171].
[58] A. J. Buras, D. Buttazzo and R. Knegjens, JHEP 11, 166 (2015), [arXiv:1507.08672].
[59] X.-G. He, G. Valencia and K. Wong, Eur. Phys. J. C78, 6, 472 (2018), [arXiv:1804.07449].
[60] M. Bordone et al., Eur. Phys. J. C77, 9, 618 (2017), [arXiv:1705.10729].
[61] X.-G. He, J. Tandean and G. Valencia, JHEP 07, 022 (2019), [arXiv:1903.01242].
[62] X.-G. He, J. Tandean and G. Valencia, Phys. Lett. B797, 134842 (2019), [arXiv:1904.04043].
[63] L. S. Littenberg and G. Valencia, Phys. Lett. B385, 379 (1996), [hep-ph/9512413].
[64] C.-W. Chiang and F. J. Gilman, Phys. Rev. D62, 094026 (2000), [hep-ph/0007063].
[65] C. Q. Geng, I. J. Hsu and Y. C. Lin, Phys. Rev. D50, 5744 (1994), [hep-ph/9406313].
[66] R. Ogata et al. (E391a), Phys. Rev. D84, 052009 (2011), [arXiv:1106.3404].
[67] S. Adler et al. (E787), Phys. Rev. D63, 032004 (2001), [hepex/0009055].
[68] D. Ambrose et al. (E871), Phys. Rev. Lett. 84, 1389 (2000).
[69] G. Valencia, Nucl. Phys. B517, 339 (1998), [hepph/9711377].
[70] G. D'Ambrosio, G. Isidori and J. Portoles, Phys. Lett. B423, 385 (1998), [hep-ph/9708326].
[71] G. Isidori and R. Unterdorfer, JHEP 01, 009 (2004), [hepph/0311084].
[72] D. Gomez Dumm and A. Pich, Phys. Rev. Lett. 80, 4633 (1998), [hep-ph/9801298].
[73] D. Ambrose et al. (BNL E871), Phys. Rev. Lett. 81, 4309 (1998), [hep-ex/9810007].
[74] R. Aaij et al. (LHCb), Eur. Phys. J. C77, 10, 678 (2017), [arXiv:1706.00758].
[75] Miguel Ramos Pernas, LHCb collaboration "Search for $K_{S} \rightarrow \mu^{+} \mu^{-}$at LHCb", talk at KAON 2019, [https://indico.cern.ch/event/769729/].
[76] G. D'Ambrosio and T. Kitahara, Phys. Rev. Lett. 119, 20, 201802 (2017), [arXiv:1707.06999].
[77] V. Chobanova et al., JHEP 05, 024 (2018), [arXiv:1711.11030].
[78] G. D'Ambrosio et al., JHEP 08, 004 (1998), [hepph/9808289].
[79] C. Dib, I. Dunietz and F. J. Gilman, Phys. Rev. D39, 2639 (1989).
[80] G. Buchalla, G. D'Ambrosio and G. Isidori, Nucl. Phys. B672, 387 (2003), [hep-ph/0308008].
[81] J. R. Batley et al. (NA48/1), Phys. Lett. B576, 43 (2003), [hep-ex/0309075].
[82] J. R. Batley et al. (NA48/1), Phys. Lett. B599, 197 (2004), [hep-ex/0409011].
[83] S. Friot, D. Greynat and E. De Rafael, Phys. Lett. B595, 301 (2004), [hep-ph/0404136].
[84] G. D'Ambrosio, D. Greynat and M. Knecht, JHEP 02, 049 (2019), [arXiv:1812.00735].
[85] G. Isidori, C. Smith and R. Unterdorfer, Eur. Phys. J. C36, 57 (2004), [hep-ph/0404127].
[86] G. Ecker, A. Pich and E. de Rafael, Phys. Lett. B237, 481 (1990).
[87] L. Cappiello, G. D'Ambrosio and M. Miragliuolo, Phys. Lett. B298, 423 (1993).
[88] A. G. Cohen, G. Ecker and A. Pich, Phys. Lett. B304, 347 (1993).
[89] F. Gabbiani and G. Valencia, Phys. Rev. D66, 074006 (2002), [hep-ph/0207189].
[90] E. Abouzaid et al. (KTeV), Phys. Rev. D77, 112004 (2008), [arXiv:0805.0031].
[91] A. Lai et al. (NA48), Phys. Lett. B536, 229 (2002), [hepex/0205010].
[92] J. F. Donoghue and F. Gabbiani, Phys. Rev. D56, 1605 (1997), [hep-ph/9702278].
[93] E. Abouzaid et al. (KTeV), Phys. Rev. D76, 052001 (2007), [arXiv:0706.4074].
[94] W. M. Morse et al., Phys. Rev. D45, 36 (1992).
[95] A. Alavi-Harati et al. (KTeV), Phys. Rev. D64, 012003 (2001), [hep-ex/0010059].
[96] H. B. Greenlee, Phys. Rev. D42, 3724 (1990).
[97] A. Alavi-Harati et al. (KTeV), Phys. Rev. Lett. 93, 021805 (2004), [hep-ex/0309072].
[98] A. Alavi-Harati et al. (KTEV), Phys. Rev. Lett. 84, 5279 (2000), [hep-ex/0001006].
[99] M. V. Diwan, H. Ma and T. L. Trueman, Phys. Rev. D65, 054020 (2002), [hep-ph/0112350].
[100] F. Mescia, C. Smith and S. Trine, JHEP 08, 088 (2006), [hep-ph/0606081].
[101] R. Appel et al. (E865), Phys. Rev. Lett. 83, 4482 (1999), [hep-ex/9907045].
[102] J. R. Batley et al. (NA48/2), Phys. Lett. B677, 246 (2009), [arXiv:0903.3130].
[103] S. Adler et al. (E787), Phys. Rev. Lett. 79, 4756 (1997), [hep-ex/9708012].
[104] H. Ma et al. (e865), Phys. Rev. Lett. 84, 2580 (2000), [hepex/9910047].
[105] H. K. Park et al. (HyperCP), Phys. Rev. Lett. 88, 111801 (2002), [hep-ex/0110033].
[106] J. R. Batley et al. (NA48/2), Phys. Lett. B697, 107 (2011), [arXiv:1011.4817].
[107] G. D'Ambrosio, D. Greynat and M. Knecht, Phys. Lett. (2019), [arXiv:1906.03046].
[108] J. R. Batley et al. (NA48/2), Phys. Lett. B788, 552 (2019), [arXiv:1809.02873].
[109] L. Cappiello et al., Eur. Phys. J. C72, 1872 (2012), [Erratum: Eur. Phys. J.C72,2208(2012)], [arXiv:1112.5184].
[110] J. R. Batley et al. (NA48/1), Phys. Lett. B694, 301 (2011).
[111] C. Marin Benito (LHCb), J. Phys. Conf. Ser. 800, 1, 012031 (2017).
[112] L. Cappiello, O. Catà and G. D'Ambrosio, Eur. Phys. J. C78, 3, 265 (2018), [arXiv:1712.10270].
[113] G. Ecker, A. Pich and E. de Rafael, Nucl. Phys. B303, 665 (1988).
[114] G. D'Ambrosio and J. Portoles, Phys. Lett. B386, 403 (1996), [Erratum: Phys. Lett.B395,389(1997)], [hepph/9606213].
[115] P. Kitching et al. (E787), Phys. Rev. Lett. 79, 4079 (1997), [hep-ex/9708011].
[116] J. R. Batley et al. (NA48/2), Phys. Lett. B730, 141 (2014), [arXiv:1310.5499].
[117] C. Lazzeroni et al. (NA62), Phys. Lett. B732, 65 (2014), [arXiv:1402.4334].
[118] A. Alavi-Harati et al. (KTeV), Phys. Rev. Lett. 87, 071801 (2001).
[119] E. Abouzaid et al. (KTeV), Phys. Rev. Lett. 99, 051804 (2007), [hep-ex/0702039].
[120] V. Fanti et al. (NA48), Phys. Lett. B458, 553 (1999).
[121] G. D'Ambrosio, D. Greynat and G. Vulvert, Eur. Phys. J. C73, 12, 2678 (2013), [arXiv:1309.5736].

65. CPT Invariance Tests in Neutral Kaon Decay

Revised August 2019 by M. Antonelli (INFN, Frascati), G. D'Ambrosio (INFN, Napoli) and M.S. Sozzi (Pisa U.).
$C P T$ theorem is based on three assumptions: quantum field theory, locality, and Lorentz invariance, and thus it is a fundamental probe of our basic understanding of particle physics. Strangeness oscillation in $K^{0}-\bar{K}^{0}$ system, described by the equation

$$
i \frac{d}{d t}\left[\begin{array}{l}
\frac{K}{0}^{0} \\
\bar{K}^{0}
\end{array}\right]=[M-i \Gamma / 2]\left[\begin{array}{l}
K^{0} \\
\bar{K}^{0}
\end{array}\right],
$$

where M and Γ are hermitian matrices (see PDG review [1], references [2,3], and KLOE paper [4] for notations and previous literature), allows a very accurate test of $C P T$ symmetry; indeed since $C P T$ requires $M_{11}=M_{22}$ and $\Gamma_{11}=\Gamma_{22}$, the mass and width eigenstates, $K_{S, L}$, have a $C P T$-violating piece, δ, in addition to the usual $C P T$-conserving parameter ϵ :

$$
\begin{gathered}
K_{S, L}=\frac{1}{\sqrt{2\left(1+\left|\epsilon_{S, L}\right|^{2}\right)}}\left[\left(1+\epsilon_{S, L}\right) K^{0} \pm\left(1-\epsilon_{S, L}\right) \bar{K}^{0}\right] \\
\epsilon_{S, L}=\frac{-i \Im\left(M_{12}\right)-\frac{1}{2} \Im\left(\Gamma_{12}\right) \mp \frac{1}{2}\left[M_{11}-M_{22}-\frac{i}{2}\left(\Gamma_{11}-\Gamma_{22}\right)\right]}{m_{L}-m_{S}+i\left(\Gamma_{S}-\Gamma_{L}\right) / 2}
\end{gathered}
$$

$$
\begin{equation*}
\equiv \epsilon \pm \delta \tag{65.1}
\end{equation*}
$$

Using the phase convention $\Im\left(\Gamma_{12}\right)=0$, we determine the phase of ϵ to be $\varphi_{S W} \equiv \arctan \frac{2\left(m_{L}-m_{S}\right)}{\Gamma_{S}-\Gamma_{L}}$. Imposing unitarity to an arbitrary combination of K^{0} and \bar{K}^{0} wave functions, we obtain the Bell-Steinberger relation [5] connecting $C P$ and $C P T$ violation in the mass matrix to $C P$ and $C P T$ violation in the decay; in fact, neglecting $\mathcal{O}(\epsilon)$ corrections to the coefficient of the $C P T$-violating parameter, δ, we can write [4]

$$
\begin{array}{r}
{\left[\frac{\Gamma_{S}+\Gamma_{L}}{\Gamma_{S}-\Gamma_{L}}+i \tan \phi_{\mathrm{SW}}\right]\left[\frac{\Re(\epsilon)}{1+|\epsilon|^{2}}-i \Im(\delta)\right]=} \\
\frac{1}{\Gamma_{S}-\Gamma_{L}} \sum_{f} A_{L}(f) A_{S}^{*}(f) \tag{65.2}
\end{array}
$$

where $A_{L, S}(f) \equiv A\left(K_{L, S} \rightarrow f\right)$. We stress that this relation is phase-convention-independent. The advantage of the neutral kaon system is that only a few decay modes give significant contributions to the r.h.s. in Eq. (65.2); in fact, defining for the hadronic modes

$$
\begin{align*}
\alpha_{i} & \equiv \frac{1}{\Gamma_{S}}\left\langle\mathcal{A}_{L}(i) \mathcal{A}_{S}^{*}(i)\right\rangle=\eta_{i} \mathcal{B}\left(K_{S} \rightarrow i\right) \\
i & =\pi^{0} \pi^{0}, \pi^{+} \pi^{-}(\gamma), 3 \pi^{0}, \pi^{0} \pi^{+} \pi^{-}(\gamma) \tag{65.3}
\end{align*}
$$

the recent data from CPLEAR, KLOE, KTeV, and NA48 have led to the following determinations (the analysis described in Ref. [4] has been updated by using the recent measurements of K_{L} branching ratios from $\mathrm{KTeV}[6,7]$, NA48 [8, 9], the results described in the $C P$ violation in K_{L} decays minireview, and the KLOE result [10])

$$
\begin{align*}
\alpha_{\pi^{+} \pi^{-}} & =((1.121 \pm 0.010)+i(1.061 \pm 0.010)) \times 10^{-3}, \\
\alpha_{\pi^{0} \pi^{0}} & =((0.493 \pm 0.005)+i(0.471 \pm 0.005)) \times 10^{-3}, \\
\alpha_{\pi^{+} \pi^{-} \pi^{0}} & =((0 \pm 2)+i(0 \pm 2)) \times 10^{-6}, \\
\left|\alpha_{\pi^{0} \pi^{0} \pi^{0}}\right| & <1.5 \times 10^{-6} \text { at } 95 \% \mathrm{CL} . \tag{65.4}
\end{align*}
$$

The semileptonic contribution to the right-handed side of Eq. (65.2) requires the determination of several observables: we
define $[2,3]$

$$
\begin{align*}
& \mathcal{A}\left(K^{0} \rightarrow \pi^{-} l^{+} \nu\right)=\mathcal{A}_{0}(1-y), \\
& \mathcal{A}\left(K^{0} \rightarrow \pi^{+} l^{-} \nu\right)=\mathcal{A}_{0}^{*}\left(1+y^{*}\right)\left(x_{+}-x_{-}\right)^{*}, \\
& \mathcal{A}\left(\bar{K}^{0} \rightarrow \pi^{+} l^{-} \nu\right)=\mathcal{A}_{0}^{*}\left(1+y^{*}\right), \\
& \mathcal{A}\left(\bar{K}^{0} \rightarrow \pi^{-} l^{+} \nu\right)=\mathcal{A}_{0}(1-y)\left(x_{+}+x_{-}\right), \tag{65.5}
\end{align*}
$$

where $x_{+}\left(x_{-}\right)$describes the violation of the $\Delta S=\Delta Q$ rule in $C P T$-conserving (violating) decay amplitudes, and y parametrizes $C P T$ violation for $\Delta S=\Delta Q$ transitions. Taking advantage of their tagged $K^{0}\left(\bar{K}^{0}\right)$ beams, CPLEAR has measured $\Im\left(x_{+}\right)$, $\Re\left(x_{-}\right), \Im(\delta)$, and $\Re(\delta)$ [11]. These determinations have been improved in Ref. [4] by including the information $A_{S}-A_{L}=$ $4\left[\Re(\delta)+\Re\left(x_{-}\right)\right]$(valid at first order in the small parameters), where $A_{L, S}$ are the K_{L} and K_{S} semileptonic charge asymmetries, respectively, from the PDG [12] and the new KLOE semileptonic measurement [13]. Here we are also including the T-violating asymmetry measurement from CPLEAR [14] with a finer binning than appearing in the published article.

Table 65.1: Values, errors, and correlation coefficients for $\Re(\delta), \Im(\delta), \Re\left(x_{-}\right), \Im\left(x_{+}\right)$, and $A_{S}+A_{L}$ obtained from a combined fit, including KLOE [4, 13] and CPLEAR [14].

	value						
$\Re(\delta)$	$(4.3 \pm 2.7) \times 10^{-4}$	1					
$\Im(\delta)$	$(-0.9 \pm 0.6) \times 10^{-2}$	-0.40	1				
$\Re\left(x_{-}\right)$	$(-0.22 \pm 0.10) \times 10^{-2}$	-0.14	-0.30	1			
$\Im\left(x_{+}\right)$	$(0.06 \pm 0.19) \times 10^{-2}$	-0.12	-0.02	0.34	1		
$A_{S}+A_{L}$	$(-0.23 \pm 0.38) \times 10^{-2}$	-0.12	-0.29	0.94	0.18	1	

The value $A_{S}+A_{L}$ in Table 65.1 can be directely included in the semileptonic contributions to the Bell Steinberger relations in Eq. (65.2)

$$
\begin{align*}
\sum_{\pi \ell \nu} & \left\langle\mathcal{A}_{L}(\pi \ell \nu) \mathcal{A}_{S}^{*}(\pi \ell \nu)\right\rangle \\
& =2 \Gamma\left(K_{L} \rightarrow \pi \ell \nu\right)\left(\Re(\epsilon)-\Re(y)-i\left(\Im\left(x_{+}\right)+\Im(\delta)\right)\right) \\
& =2 \Gamma\left(K_{L} \rightarrow \pi \ell \nu\right)\left(\left(A_{S}+A_{L}\right) / 4-i\left(\Im\left(x_{+}\right)+\Im(\delta)\right)\right) \tag{65.6}
\end{align*}
$$

Defining

$$
\begin{equation*}
\alpha_{\pi \ell \nu} \equiv \frac{1}{\Gamma_{S}} \sum_{\pi \ell \nu}\left\langle\mathcal{A}_{L}(\pi \ell \nu) \mathcal{A}_{S}^{*}(\pi \ell \nu)\right\rangle+2 i \frac{\tau_{K_{S}}}{\tau_{K_{L}}} \mathcal{B}\left(K_{L} \rightarrow \pi \ell \nu\right) \Im(\delta) \tag{65.7}
\end{equation*}
$$

we find:

$$
\begin{equation*}
\alpha_{\pi \ell \nu}=((-0.1 \pm 0.2)+i(-0.1 \pm 0.5)) \times 10^{-5} \tag{65.8}
\end{equation*}
$$

Table 65.2: Summary of results: values, errors, and correlation coefficients for $\Re(\epsilon), \Im(\delta), \Re(\delta)$, and $\Re\left(x_{-}\right)$.

	value		Correlations coefficients				
$\Re(\epsilon)$	$(161.2 \pm 0.5) \times 10^{-5}$	+1					
$\Im(\delta)$	$(-0.3 \pm 1.4) \times 10^{-5}$	+0.08	1				
$\Re(\delta)$	$(2.6 \pm 2.5) \times 10^{-4}$	+0.00	-0.05	1			
$\Re\left(x_{-}\right)$	$(-2.7 \pm 1.0) \times 10^{-3}$	+0.05	0.13	-0.30	1		

Inserting the values of the α parameters into Eq. (65.2), we find

$$
\begin{align*}
& \Re(\epsilon)=(161.2 \pm 0.5) \times 10^{-5} \\
& \Im(\delta)=(-0.3 \pm 1.4) \times 10^{-5} \tag{65.9}
\end{align*}
$$

The complete information on Eq. (65.9) is given in Table 65.2.
Now the agreement with CPT conservation, $\Im(\delta)=\Re(\delta)=$ $\Re\left(x_{-}\right)=0$, is at 18% C.L.

Figure 65.1: Top: allowed region at 68% and 95% C.L. in the $\Re(\epsilon), \Im(\delta)$ plane. Bottom: allowed region at 68% and 95% C.L. in the $\Delta M, \Delta \Gamma$ plane.

The allowed region in the $\Re(\epsilon)-\Im(\delta)$ plane at $68 \% \mathrm{CL}$ and 95% C.L. is shown in the top panel of Fig. 65.1.

The process giving the largest contribution to the size of the allowed region is $K_{L} \rightarrow \pi^{+} \pi^{-}$, through the uncertainty on ϕ_{+-}.

The limits on $\Im(\delta)$ and $\Re(\delta)$ can be used to constrain the $K^{0}-$ \bar{K}^{0} mass and width difference
$\delta=\frac{i\left(m_{K^{0}}-m_{\bar{K}^{0}}\right)+\frac{1}{2}\left(\Gamma_{K^{0}}-\Gamma_{\bar{K}^{0}}\right)}{\Gamma_{S}-\Gamma_{L}} \cos \phi_{S W} e^{i \phi_{S W}}[1+\mathcal{O}(\epsilon)]$.
The allowed region in the $\Delta M=\left(m_{K^{0}}-m_{\bar{K}^{0}}\right), \Delta \Gamma=\left(\Gamma_{K^{0}}-\right.$ $\Gamma_{\bar{K}^{0}}$) plane is shown in the bottom panel of Fig. 65.1. As a result, we improve on the previous limits (see for instance, P. Bloch in Ref. [12]) and in the limit $\Gamma_{K^{0}}-\Gamma_{\bar{K}^{0}}=0$ we obtain
$-4.0 \times 10^{-19} \mathrm{GeV}<m_{K^{0}}-m_{\bar{K}^{0}}<4.0 \times 10^{-19} \mathrm{GeV}$ at 95% C.L .

References

[1] See the "CP Violation in Meson Decays," in this Review.
[2] L. Maiani, " $C P$ And $C P T$ Violation in Neutral Kaon Decays," L. Maiani, G. Pancheri, and N. Paver, The Second DAФNE Physics Handbook, Vol. 1,2.
[3] G. D'Ambrosio, G. Isidori and A. Pugliese, in "2nd DA Φ NE Physics Handbook:63-96," 63-96 (1994), [hepph/9411389], URL http://preprints.cern.ch/cgi-bin/ setlink?base=preprint\&categ=cern\&id=th-7504-94.
[4] G. D'Ambrosio and G. Isidori (KLOE), JHEP 12, 011 (2006), [hep-ex/0610034].
[5] J. S. Bell and J. Steinberger, in "Wolfenstein, L. (eq.): $C P$ violation, 42-57. (In Oxford International Symposium Conference on Elementary Particles) ," 195-208, 221-222 (1966), (See Book Index).
[6] T. Alexopoulos et al. (KTeV), Phys. Rev. D70, 092006 (2004), [hep-ex/0406002].
[7] E. Abouzaid et al. (KTeV), Phys. Rev. D83, 092001 (2011), [arXiv:1011.0127].
[8] A. Lai et al. (NA48), Phys. Lett. B645, 26 (2007), [hepex/0611052]; A. Lai et al. (NA48), Phys. Lett. B602, 41 (2004), [hep-ex/0410059].
[9] We thanks G. Isidori and M. Palutan for their contribution to the original analysis [4] performed with KLOE data.
[10] D. Babusci et al. (KLOE), Phys. Lett. B723, 54 (2013), [arXiv:1301.7623].
[11] A. Angelopoulos et al. (CPLEAR), Phys. Lett. B444, 52 (1998).
[12] W. M. Yao et al. (Particle Data Group), J. Phys. G33, 1 (2006).
[13] A. Anastasi et al. (KLOE-2), JHEP 09, 021 (2018), [arXiv:1806.08654].
[14] P. Bloch, M. Fidecaro, private communication of the data in a finer binning format; A. Angelopoulos et al. (CPLEAR), Phys. Lett. B444, 43 (1998).

66. $V_{u d}, V_{u s}$, the Cabibbo Angle, and CKM Unitarity

Updated November 2019 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

The Cabibbo-Kobayashi-Maskawa (CKM) [1,2] three-generation quark mixing matrix written in terms of the Wolfenstein parameters (λ, A, ρ, η) [3] nicely illustrates the orthonormality constraint of unitarity as well as central role played by λ.

$$
\begin{array}{r}
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) . \tag{66.1}
\end{array}
$$

That cornerstone is a carryover from the two-generation Cabibbo angle, $\lambda=\sin \left(\theta_{\text {Cabibbo }}\right)=V_{u s}$. Its value is an important component in tests of CKM unitarity.

For some time, the precise value of λ was controversial, with kaon decays suggesting [4] $\lambda \simeq 0.220$, while indirect determinations via $V_{u d}$ obtained from nuclear β-decays implied a somewhat larger $\lambda \simeq 0.225-0.230$. This difference resulted in a $2-2.5$ sigma deviation from the first row unitarity requirement

$$
\begin{equation*}
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1 \tag{66.2}
\end{equation*}
$$

a potential signal [5] for new physics effects. Below, we describe the current status of $V_{u d}, V_{u s}$, and their associated unitarity test in Eq. (66.2). (Since $\left|V_{u b}\right|^{2} \simeq 1.7 \times 10^{-5}$ is negligibly small, it is ignored in this discussion.) Eq. (66.2) is currently the most stringent test of unitarity in the CKM matrix. However, as we shall see, it is again showing signs of 2 to 3 sigma inconsistency.

66.1. $V_{u d}$

Precise values of $V_{u d}$ have been obtained from superallowed nuclear, neutron and pion beta decays. Currently, the best determination of $V_{u d}$ comes from analysis of a set of 14 measured superallowed nuclear beta-decays $[5]\left(0^{+} \rightarrow 0^{+}\right.$transitions). Measuring their half-lives, t, and Q values gives the decay rate factors, f, which lead to a precise determination of $V_{u d}$ via [6-10]. . Based on those studies, one finds the average [11]

$$
\begin{equation*}
\left|V_{u d}\right|^{2}=0.97148(20) /\left(1+\Delta_{\mathrm{R}}^{\mathrm{V}}\right) \tag{66.3}
\end{equation*}
$$

where Δ_{R}^{V} denotes the so-called inner or universal electroweak radiative corrections (RC) to superallowed nuclear beta decays. A dispersion relation (DR) calculational approach [12] to quantum loop corrections, specifically the gamma-W box diagram, gives $\Delta_{R}^{V}=0.02467(22)$. Because of its small uncertainty and more rigorous theoretical footing, we use that value below. A somewhat different approach [13] found $\Delta_{R}^{V}=0.02426(32)$. These recent values are roughly consistent. Both are larger than the 2018 PDG value of $0.02361(38)$. Implications and possible nuclear physics modifications of those studies are still under scrutiny [14]. Nevertheless, currently the 14 most precisely measured superallowed transitions [11] lead to the DR based weighted average of

$$
\begin{equation*}
V_{u d}=0.97370(10)_{\exp ., \text { nucl }}(10)_{\mathrm{RC}}(\text { superallowed }) \tag{66.4}
\end{equation*}
$$

which, assuming unitarity, corresponds to the relatively large $\lambda=0.2278(6)$. This recent determination of $V_{u d}$ has shifted significantly down compared to the 2018 value [11] of $0.97420(21)$. Taken at face value, that reduced $V_{u d}$ would seem to violate the first row unitarity requirement and thus suggest the presence of "new physics".

Measurements of the neutron lifetime, τ_{n}, the ratio of axialvector/vector couplings, $g_{A} \equiv G_{A} / G_{V}$, via neutron decay asymmetries combined with the inner radiative corrections can also be used to determine $V_{u d}$:

$$
\begin{equation*}
\left|V_{u d}\right|^{2}=\frac{5024.7 \mathrm{~s}}{\tau_{n}\left(1+3 g_{A}^{2}\right)\left(1+\Delta_{R}^{V}\right)} \tag{66.5}
\end{equation*}
$$

where Δ_{R}^{V} represents the same inner electroweak radiative corrections $[7,8]$ as discussed above.

Using the current world averages

$$
\begin{align*}
& \tau_{n}^{\text {ave }}=879.4(6) \mathrm{s} \quad(1.5 \mathrm{PDG} \text { scale factor }) \\
& g_{A}^{\text {ave }}=1.2762(5) \tag{66.6}
\end{align*}
$$

leads to

$$
\begin{equation*}
\left|V_{u d}\right|=0.9733(3)_{\tau_{n}}(3)_{g_{A}}(1)_{\mathrm{RC}} \tag{66.7}
\end{equation*}
$$

for an inner radiative correction of $0.02467(22)$ while for $0.02426(32)$ it increases to $0.9735(5)$. Those values are both low, compared with CKM unitarity expectations and the superallowed nuclear beta decay result reported above. Reconciliation suggests a shorter neutron lifetime near 878 s or a somewhat smaller g_{A}. Future neutron studies [15] are expected to resolve any current inconsistencies and significantly reduce the uncertainties in g_{A} and τ_{n}.

The PIBETA experiment at PSI measured the very small $\left(\mathcal{O}\left(10^{-8}\right)\right)$ branching ratio for $\pi^{+} \rightarrow \pi^{o} e^{+} \nu_{e}$ with about $\pm 0.6 \%$ precision. Its result gives [16]

$$
\begin{equation*}
\left|V_{u d}\right|=0.9739(27)\left[\frac{B R\left(\pi^{+} \rightarrow e^{+} \nu_{e}(\gamma)\right)}{1.2325 \times 10^{-4}}\right]^{\frac{1}{2}} \tag{66.8}
\end{equation*}
$$

which is normalized using the very precisely measured $B R\left(\pi^{+} \rightarrow\right.$ $\left.e^{+} \nu_{e}(\gamma)\right)=1.2325(23) \times 10^{-4}[6], \quad$ rather than the theoretical branching ratio of $1.2350(2) \times 10^{-4}$ which if used, would increase $\left|V_{u d}\right|$ to $0.9749(27)$. Theoretical uncertainties in pion beta decay are very small and would allow for a factor of 2 to 3 improvement of its small branching ratio. However, it would be difficult to have it compete with superallowed beta decays or future neutron decay efforts at direct $\left|V_{u d}\right|$ determination.

66.2. Vus

$\left|V_{u s}\right|$ may be directly obtained from kaon decays, hyperon decays, and tau decays. Early determinations most often used $K \ell 3$ decays:

$$
\begin{equation*}
\Gamma_{K \ell 3}=\frac{G_{F}^{2} M_{K}^{5}}{192 \pi^{3}} S_{E W}\left(1+\delta_{K}^{\ell}+\delta_{S U 2}\right) C^{2}\left|V_{u s}\right|^{2} f_{+}^{2}(0) I_{K}^{\ell} \tag{66.9}
\end{equation*}
$$

Here, ℓ refers to either e or μ, G_{F} is the Fermi constant, M_{K} is the kaon mass, $S_{E W}$ is the short-distance radiative correction, δ_{K}^{ℓ} is the mode-dependent long-distance radiative correction, $f_{+}(0)$ is the calculated form factor at zero momentum transfer for the $\ell \nu$ system, and I_{K}^{ℓ} is the phase-space integral, which depends on measured semileptonic form factors. For charged kaon decays, $\delta_{S U 2}$ is the deviation from one of the ratio of $f_{+}(0)$ for the charged to neutral kaon decay; it is zero for the neutral kaon. C^{2} is $1(1 / 2)$ for neutral (charged) kaon decays. Most early determinations of $\left|V_{u s}\right|$ were based solely on $K \rightarrow \pi e \nu$ decays; $K \rightarrow \pi \mu \nu$ decays were not used because of large uncertainties in I_{K}^{μ}. The experimental measurements are the semileptonic decay widths (based on the semileptonic branching fractions and lifetime) and form factors (allowing calculation of the phase space integrals). Theory is needed for $S_{E W}, \delta_{K}^{\ell}, \delta_{S U 2}$, and $f_{+}(0)$.

Many measurements during the last 15 years have resulted in a shift in $\left|V_{u s}\right|$. Most importantly, the $K \rightarrow \pi e \nu$ branching fractions are significantly different than earlier PDG averages, probably as a result of inadequate treatment of radiation in older experiments. This effect was first observed by BNL E865 [17] in the charged kaon system and then by $\mathrm{KTeV}[18,19]$ in the neutral kaon system; subsequent measurements were made by KLOE [20-23], , NA48 [24-26], , and ISTRA $+[27]$. Current averages (e.g., by the PDG [28] or Flavianet [29]) of the semileptonic branching fractions are based only on recent, high-statistics experiments where the treatment of radiation is clear. In addition to measurements of branching fractions, new measurements of lifetimes [30] and form factors [31-35], , have resulted in improved precision for all of the experimental inputs to $\left|V_{u s}\right|$. Precise measurements of form factors for $K_{\mu 3}$ decay make it possible to use both semileptonic decay modes to extract $V_{u s}$.

Following the analysis of Moulson [36], the Flavianet group [29], and more recent updates [37], one finds, after including the isospin violating effect, $\delta_{S U 2}$, the values of $\left|V_{u s}\right| f_{+}(0)$ in Table 66.1. The average of these measurements, including correlation effects [36], gives

$$
\begin{equation*}
f_{+}(0)\left|V_{u s}\right|=0.2165(4) \tag{66.10}
\end{equation*}
$$

Lattice QCD calculations of $f_{+}(0)$ have been carried out for $2,2+1$, and $2+1+1$ quark flavors and range from about 0.96 to 0.97 . Here, we use recent FLAG averages [38] for $2+1$ and $2+1+1$ flavors:

$$
\begin{align*}
& f_{+}(0)=0.9677(27) \quad N_{f}=2+1 \\
& f_{+}(0)=0.9706(27) \quad N_{f}=2+1+1 \tag{66.11}
\end{align*}
$$

One finds from Eq. (66.10) and Eq. (66.11),

$$
\begin{aligned}
\left|V_{u s}\right| & =0.2237(4)_{\exp +\mathrm{RC}}(6)_{\text {lattice }}\left(N_{f}=2+1, K_{\ell 3} \text { decays }\right) \\
& =0.2231(4)_{\exp +\mathrm{RC}}(6)_{\text {lattice }}\left(N_{f}=2+1+1, K_{\ell 3} \text { decays }\right)
\end{aligned}
$$

Table 66.1: $\left|V_{u s}\right| f_{+}(0)$ from $K \ell 3$.

Decay Mode	$\left\|V_{u s}\right\| f_{+}(0)$
$K^{ \pm} e 3$	0.2169 ± 0.0008
$K^{ \pm} \mu 3$	0.2167 ± 0.0011
$K_{L} e 3$	0.2164 ± 0.0006
$K_{L} \mu 3$	0.2167 ± 0.0006
$K_{S} e 3$	$0.2156] \pm 0.0013$
Average (including correlation effects [36])	0.2165 ± 0.0004

A value of $V_{u s}$ can also be obtained from a comparison of the radiative inclusive decay rates for $K \rightarrow \mu \nu(\gamma)$ and $\pi \rightarrow \mu \nu(\gamma)$ combined with a lattice gauge theory calculation of $f_{K^{+}} / f_{\pi^{+}}$via

$$
\begin{equation*}
\frac{\left|V_{u s}\right| f_{K^{+}}}{\left|V_{u d}\right| f_{\pi^{+}}}=0.23871(20)\left[\frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))}\right]^{\frac{1}{2}} \tag{66.13}
\end{equation*}
$$

with the small error coming from electroweak radiative corrections [39]. Employing

$$
\begin{equation*}
\frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))}=1.3367(28) \tag{66.14}
\end{equation*}
$$

which includes $\Gamma(K \rightarrow \mu \nu(\gamma))=5.134(11) \times 10^{7} s^{-1}[36,40]$, leads to

$$
\begin{equation*}
\frac{\left|V_{u s}\right| f_{K^{+}}}{\left|V_{u d}\right| f_{\pi^{+}}}=0.27600(37) \tag{66.15}
\end{equation*}
$$

Employing the FLAG [38] lattice QCD averages for the isospin broken decay constants

$$
\begin{align*}
\frac{f_{K^{+}}}{f_{\pi^{+}}} & =1.1917(37) \quad N_{f}=2+1 \\
& =1.1932(19) \quad N_{f}=2+1+1 \tag{66.16}
\end{align*}
$$

along with the value of $\left|V_{u d}\right|$ in Eq. (66.4) leads to

$$
\begin{align*}
\left|V_{u s}\right| & =0.2255(8)\left(N_{f}=2+1, K_{\mu 2} \text { decays }\right) \\
& =0.2252(5)\left(N_{f}=2+1+1, K_{\mu 2} \text { decays }\right) \tag{66.17}
\end{align*}
$$

Together, weighted averages of the $K \ell 3$ (Eq. (66.12)) and $K \mu 2$ (Eq. (66.17)) values give similar results for $N_{f}=2+1$ and $2+1+1$ flavors:

$$
\begin{array}{ll}
\left|V_{u s}\right|=0.2245(5) & N_{f}=2+1 \\
\left|V_{u s}\right|=0.2245(4) & N_{f}=2+1+1 \tag{66.18}
\end{array}
$$

Note that the differences between $K \ell 3$ and $K \mu 2$ values for $V_{u s}$ differ by 2 and 3 sigma, respectively, for $N_{f}=2+1$ and $2+1+1$ flavors. One should, therefore, scale the uncertainties in Eq. (66.18) accordingly. For that reason, we employ an error scale factor of 2 in the uncertainty, $\left|V_{u s}\right|=0.2245(8)$, when we consider the first row test of CKM unitarity.

It should be mentioned that hyperon decay fits suggest [41]

$$
\begin{equation*}
\left|V_{u s}\right|=0.2250(27) \text { (Hyperon Decays) } \tag{66.19}
\end{equation*}
$$

modulo $\mathrm{SU}(3)$ breaking effects that could shift that value up or down. We note that a representative effort [42] that incorporates $\mathrm{SU}(3)$ breaking found $V_{u s}=0.226(5)$. Strangeness changing tau decays, averaging both inclusive and exclusive measurements, give [43]

$$
\begin{equation*}
\left|V_{u s}\right|=0.2221(13) \text { (Tau Decays) } \tag{66.20}
\end{equation*}
$$

which differs by about 2 sigma from the kaon determination discussed above, and would, if combined with $V_{u d}$ from super-allowed beta decays, lead to a 4 sigma deviation from unitarity. This discrepancy results mainly from the inclusive tau decay results that rely on Finite Energy Sum Rule techniques and assumptions, as well as experimental uncertainties. Recent investigation of that approach suggests a larger value for $V_{u s}$, which is more in accord with other determinations [44].

Employing the values of $V_{u d}$ and $V_{u s}$ with an error scale factor of 2 from Eq. (66.4) and Eq. (66.18), respectively, leads to the unitarity consistency check

$$
\begin{equation*}
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(3)(4) \tag{66.21}
\end{equation*}
$$

where the first error is the uncertainty from $\left|V_{u d}\right|^{2}$ and the second error is the uncertainty from $\left|V_{u s}\right|^{2}$ for both $N_{f}=2+1+1$. and $N_{f}=2+1$. One finds an overall 3 sigma deviation from unitarity. That deviation could be due a problem with $\left|V_{u d}\right|$ theory (RC or NP), the lattice determination of $f_{+}(0)$ or new physics.

66.3. CKM Unitarity Constraints

The current 3 sigma experimental disagreement with unitarity, $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(5)$, still provides strong confirmation of Standard Model radiative corrections (which range between $3-4 \%$ depending on the nucleus used) at a high significance level [45]. In addition, it implies constraints on "New Physics" effects at both the tree and quantum loop levels. Those effects could be in the form of contributions to nuclear beta decays, K decays and/or muon decays, with the last of these providing normalization via the muon lifetime [46], which is used to obtain the Fermi constant, $G_{\mu}=1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}$.

In the following examples, we illustrate the implications of CKM unitarity for (1) exotic muon decays [47](beyond ordinary muon decay $\mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu}$) and (2) new heavy quark mixing $V_{u D}$ [48]. Other examples in the literature $[49,50]$ include Z_{χ} boson quantum loop effects, supersymmetry, leptoquarks, compositeness etc.

Exotic Muon Decays

If additional lepton flavor violating decays such as $\mu^{+} \rightarrow e^{+} \bar{\nu}_{e} \nu_{\mu}$ (wrong neutrinos) occur, they would cause confusion in searches for neutrino oscillations at, for example, muon storage rings/neutrino factories or other neutrino sources from muon decays. Calling the rate for all such decays Γ (exotic μ decays), they should be subtracted before the extraction of G_{μ} and normalization of the CKM matrix. Since that is not done and unitarity works, one has (at one-sided 95% CL)

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1-B R(\text { exotic } \mu \text { decays }) \geq 0.9977 \text { (66.22) }
$$

or

$$
\begin{equation*}
B R(\text { exotic } \mu \text { decays }) \leq 0.0023 \tag{66.23}
\end{equation*}
$$

This bound is a factor of 10 better than the direct experimental bound on $\mu^{+} \rightarrow e^{+} \bar{\nu}_{e} \nu_{\mu}$.

New Heavy Quark Mixing

Heavy D quarks naturally occur in fourth quark generation models and some heavy quark "new physics" scenarios such as E_{6} grand unification. Their mixing with ordinary quarks gives rise to $V_{u D}$, which is constrained by unitarity (one sided 95% CL)

$$
\begin{gather*}
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1-\left|V_{u D}\right|^{2} \geq 0.9977 \\
\left|V_{u D}\right| \leq 0.05 \tag{66.24}
\end{gather*}
$$

A similar constraint applies to heavy neutrino mixing and the couplings $V_{\mu N}$ and $V_{e N}$.

References:

1. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
2. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
3. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
4. S. Eidelman et al. [Particle Data Group], Phys. Lett. B592, 1 (2004).
5. I.S. Towner and J.C. Hardy Rep. Prog. Phys. 73, 046301 (2010).
6. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
7. A. Czarnecki, W.J. Marciano, and A. Sirlin, Phys. Rev. D70, 093006 (2004) [hep-ph/0406324].
8. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006) [hep-ph/0510099].
9. I.S. Towner and J.C. Hardy, Phys. Rev. C77, 025501 (2008).
10. J.C. Hardy and I.S. Towner, Phys. Rev. C79, 055502 (2009).
11. J.C. Hardy and I.S. Towner, Phys. Rev. C91, 0255012 (2015); PoS CKM 2016, 028 (2016).
12. C. Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018).
13. A.Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D100, 073008 (2019).
14. C. Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D100, 013001 (2019); M. Gorchtein, Phys. Rev. D123, 042503 (2019).
15. H. Abele, Prog. in Part. Nucl. Phys. 60, 1 (2008).
16. D. Pocanic et al., Phys. Rev. Lett. 93, 181803 (2004) [hepex/0312030]; A. Czarnecki, W. J. Marciano and A. Sirlin, arXiv:1911.04685 [hep-ph].
17. A. Sher et al., Phys. Rev. Lett. 91, 261802 (2003).
18. T. Alexopoulos et al. [KTeV Collab.], Phys. Rev. Lett. 93, 181802 (2004) [hep-ex/0406001].
19. T. Alexopoulos et al. [KTeV Collab.], Phys. Rev. D70, 092006 (2004) [hep-ex/0406002].
20. F. Ambrosino et al. [KLOE Collab.], Phys. Lett. B632, 43 (2006) [hep-ex/0508027].
21. F. Ambrosino et al. [KLOE Collab.], Phys. Lett. B638, 140 (2006) [hep-ex/0603041].
22. F. Ambrosino et al. [KLOE Collab.], Phys. Lett. B636, 173 (2006) [hep-ex/0601026].
23. F. Ambrosino et al. [KLOE Collab.], PoS HEP2005, 287 (2006) [hep-ex/0510028].
24. A. Lai et al. [NA48 Collab.], Phys. Lett. B602, 41 (2004) [hep-ex/0410059].
25. A. Lai et al. [NA48 Collab.], Phys. Lett. B645, 26 (2007) [hep-ex/0611052].
26. J.R. Batley et al. [NA48/2 Collab.], Eur. Phys. J. C50, 329 (2007) [hep-ex/0702015].
27. V.I. Romanovsky et al., [hep-ex/0704.2052].
28. K.A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
29. Flavianet Working Group on Precise SM Tests in K Decays, M. Antonelli et al., Eur. Phys. J. C69, 399 (2010). For a detailed review, see M. Antonelli et al., [hep-ph/0907.5386].
30. F. Ambrosino et al. [KLOE Collab.], Phys. Lett. B626, 15 (2005) [hep-ex/0507088].
31. T. Alexopoulos et al. [KTeV Collab.], Phys. Rev. D70, 092007 (2004) [hep-ex/0406003].
32. E. Abouzaid et al. [KTeV Collab.], Phys. Rev. D74, 097101 (2006) [hep-ex/0608058].
33. F. Ambrosino et al. [KLOE Collab.], Phys. Lett. B636, 166 (2006) [hep-ex/0601038].
34. A. Lai et al. [NA48 Collab.], Phys. Lett. B604, 1 (2004) [hep-ex/0410065].
35. O.P. Yushchenko et al., Phys. Lett. B589, 111 (2004) [hepex/0404030].
36. M. Moulson, [hep-ex/1704.04104];PoS CKM 2016, 033 (2017).
37. E. Passemar, talk at CKM2018, https://zenodo.org/record/2565480.
38. S. Aoki et al. [Flavour Lattice Averaging Group], arXiv:1902.08191 [hep-lat] based on A. Bazavov et al., Phys. Rev. Lett. 112, 112001 (2014) [arXiv:1312.1228 [hep-ph]]; N. Carrasco, P. Lami, V. Lubicz, L. Riggio, S. Simula and C. Tarantino, Phys. Rev. D93, 114512 (2016) [arXiv:1602.04113 [hep-lat]]; A. Bazavov et al., Phys. Rev. D87, 073012 (2013) [arXiv:1212.4993 [hep-lat]]; P. A. Boyle et al. [RBC/UKQCD Collaboration], JHEP 1506, 164 (2015) [arXiv:1504.01692 [hep-lat]] A. Bazavov et al., Phys. Rev. D98, 074512 (2018) [arXiv:1712.09262 [hep-lat]]; T. Blum et al. [RBC and UKQCD Collaborations], Phys. Rev. D93, 074505 (2016) [arXiv:1411.7017 [hep-lat]]; R. J. Dowdall, C. T. H. Davies, G. P. Lepage and C. McNeile, Phys. Rev. D88, 074504 (2013) [arXiv:1303.1670 [hep-lat]]; N. Carrasco et al., Phys. Rev. D91, 054507 (2015) [arXiv:1411.7908 [hep-lat]]; E. Follana et al. [HPQCD and UKQCD Collaborations], Phys. Rev. Lett. 100, 062002 (2008) [arXiv:0706.1726 [hep-lat]]; A. Bazavov et al. [MILC Collaboration], PoS LATTICE 2010, 074 (2010) [arXiv:1012.0868 [hep-lat]]; S. Durr et al., Phys. Rev. D81, 054507 (2010) [arXiv:1001.4692 [hep-lat]]; S. Durr et al., Phys. Rev. D95, 054513 (2017) [arXiv:1601.05998 [hep-lat]] V. G. Bornyakov et al. [QCDSF-UKQCD Collaboration], Phys. Lett. B767, 366 (2017) [arXiv:1612.04798 [hep-lat]].
39. V. Cirigliano and H. Neufeld, Phys. Lett. B700, 7 (2011); W.J. Marciano, Phys. Rev. Lett. 93, 231803 (2004) [hepph/0402299].
40. D. Babusci et al. [KLOE Collab.], Phys. Lett. B738, 128 (2014) [arXiv:1407.2028].
41. N. Cabibbo, E.C. Swallow, and R. Winston, Phys. Rev. Lett. 92, 251803 (2004) [hep-ph/0307214].
42. V. Mateu and A. Pich, JHEP 0510, 041 (2005).
43. Y. S. Amhis et al. [HFLAV Collaboration], arXiv:1909.12524 [hep-ex].
44. R. J. Hudspith, R. Lewis, K. Maltman and J. Zanotti, Phys. Lett. B781, 206 (2018) [arXiv:1702.01767 [hep-ph]]; P. Boyle et al. [RBC and UKQCD Collaborations], Phys. Rev. Lett. 121, 202003 (2018) [arXiv:1803.07228 [hep-lat]].
45. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978).
46. D. Webber et al. [MuLan Collab.], Phys. Rev. Lett. 106, 041803 (2011); V. Tishchenko et al. [MuLan Collab.], Phys. Rev. D87, 052003 (2013).
47. K.S. Babu and S. Pakvasa, hep-ph/0204236.
48. W. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986); P. Langacker and D. London, Phys. Rev. D38, 886 (1988).
49. W. Marciano and A. Sirlin, Phys. Rev. D35, 1672 (1987).
50. R. Barbieri et al., Phys. Lett. 156B, 348 (1985); K. Hagiwara et al., Phys. Rev. Lett. 75, 3605 (1995); A. Kurylov and M. Ramsey-Musolf, Phys. Rev. Lett. 88, 071804 (2000); S. Bauman, J, Erler, and M. Ramsey-Musolf, Phys. Rev. D87, 035012 (2013).

67. $C P$ Violation in K_{L} Decays

Updated April 2016 by L. Wolfenstein (Carnegie-Mellon University), C.-J. Lin (LBNL), and T.G. Trippe (LBNL).

The symmetries C (particle-antiparticle interchange) and P (space inversion) hold for strong and electromagnetic interactions. After the discovery of large C and P violation in the weak interactions, it appeared that the product $C P$ was a good symmetry. In $1964 C P$ violation was observed in K^{0} decays at a level given by the parameter $\epsilon \approx 2.3 \times 10^{-3}$.

A unified treatment of $C P$ violation in K, D, B, and B_{s} mesons is given in " $C P$ Violation in Meson Decays" by D. Kirkby and Y. Nir in this Review. A more detailed review including a thorough discussion of the experimental techniques used to determine $C P$ violation parameters is given in a book by K. Kleinknecht [1]. Here we give a concise summary of the formalism needed to define the parameters of $C P$ violation in K_{L} decays, and a description of our fits for the best values of these parameters.

67.1. Formalism for $\boldsymbol{C P}$ violation in Kaon decay

$C P$ violation has been observed in the semi-leptonic decays $K_{L}^{0} \rightarrow \pi^{\mp} \ell^{ \pm} \nu$, and in the nonleptonic decay $K_{L}^{0} \rightarrow 2 \pi$. The experimental numbers that have been measured are

$$
\begin{align*}
A_{L} & =\frac{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)-\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \ell^{-} \nu\right)}{\Gamma\left(K_{L}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)+\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \ell^{-} \nu\right)} \tag{67.1a}\\
\eta_{+-} & =A\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / A\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =\left|\eta_{+-}\right| e^{i \phi_{+-}} \tag{67.1b}\\
\eta_{00} & =A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / A\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right) \\
& =\left|\eta_{00}\right| e^{i \phi_{00}} . \tag{67.1c}
\end{align*}
$$

$C P$ violation can occur either in the $K^{0}-\bar{K}^{0}$ mixing or in the decay amplitudes. Assuming $C P T$ invariance, the mass eigenstates of the $K^{0}-\bar{K}^{0}$ system can be written

$$
\begin{equation*}
\left|K_{S}\right\rangle=p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle, \quad\left|K_{L}\right\rangle=p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle \tag{67.2}
\end{equation*}
$$

If $C P$ invariance held, we would have $q=p$ so that K_{S} would be $C P$-even and $K_{L} C P$-odd. (We define $\left|\bar{K}^{0}\right\rangle$ as $C P\left|K^{0}\right\rangle$). $C P$ violation in $K^{0}-\bar{K}^{0}$ mixing is then given by the parameter $\widetilde{\epsilon}$ where

$$
\begin{equation*}
\frac{p}{q}=\frac{(1+\widetilde{\epsilon})}{(1-\widetilde{\epsilon})} \tag{67.3}
\end{equation*}
$$

$C P$ violation can also occur in the decay amplitudes

$$
\begin{equation*}
A\left(K^{0} \rightarrow \pi \pi(I)\right)=A_{I} e^{i \delta_{I}}, \quad A\left(\bar{K}^{0} \rightarrow \pi \pi(I)\right)=A_{I}^{*} e^{i \delta_{I}} \tag{67.4}
\end{equation*}
$$

where I is the isospin of $\pi \pi, \delta_{I}$ is the final-state phase shift, and A_{I} would be real if $C P$ invariance held. The $C P$-violating observables are usually expressed in terms of ϵ and ϵ^{\prime} defined by

$$
\begin{equation*}
\eta_{+-}=\epsilon+\epsilon^{\prime}, \quad \eta_{00}=\epsilon-2 \epsilon^{\prime} \tag{67.5a}
\end{equation*}
$$

One can then show [2]

$$
\begin{equation*}
\epsilon=\tilde{\epsilon}+i\left(\operatorname{Im} A_{0} / \operatorname{Re} A_{0}\right) \tag{67.5b}
\end{equation*}
$$

$\sqrt{2} \epsilon^{\prime}=i e^{i\left(\delta_{2}-\delta_{0}\right)}\left(\operatorname{Re} A_{2} / \operatorname{Re} A_{0}\right)\left(\operatorname{Im} A_{2} / \operatorname{Re} A_{2}-\operatorname{Im} A_{0} / \operatorname{Re} A_{0}\right)$,

$$
\begin{equation*}
A_{L}=2 \operatorname{Re} \epsilon /\left(1+|\epsilon|^{2}\right) \approx 2 \operatorname{Re} \epsilon \tag{67.5c}
\end{equation*}
$$

In Eqs. (67.5a), small corrections [3] of order $\epsilon^{\prime} \times \operatorname{Re}\left(A_{2} / A_{0}\right)$ are neglected, and Eq. $(67.5 d)$ assumes the $\Delta S=\Delta Q$ rule.

The quantities $\operatorname{Im} A_{0}, \operatorname{Im} A_{2}$, and $\operatorname{Im} \tilde{\epsilon}$ depend on the choice of phase convention, since one can change the phases of K^{0} and \bar{K}^{0} by a transformation of the strange quark state $|s\rangle \rightarrow|s\rangle e^{i \alpha}$; of course, observables are unchanged. It is possible by a choice of phase convention to set $\operatorname{Im} A_{0}$ or $\operatorname{Im} A_{2}$ or $\operatorname{Im} \widetilde{\epsilon}$ to zero, but none of these is zero with the usual phase conventions in the Standard Model. The choice $\operatorname{Im} A_{0}=0$ is called the Wu-Yang phase convention [4], in which
case $\epsilon=\tilde{\epsilon}$. The value of ϵ^{\prime} is independent of phase convention, and a nonzero value demonstrates $C P$ violation in the decay amplitudes, referred to as direct $C P$ violation. The possibility that direct $C P$ violation is essentially zero, and that $C P$ violation occurs only in the mixing matrix, was referred to as the superweak theory [5].

By applying $C P T$ invariance and unitarity the phase of ϵ is given approximately by

$$
\begin{equation*}
\phi_{\epsilon} \approx \tan ^{-1} \frac{2\left(m_{K_{L}}-m_{K_{S}}\right)}{\Gamma_{K_{S}}-\Gamma_{K_{L}}} \approx 43.52 \pm 0.05^{\circ} \tag{67.6a}
\end{equation*}
$$

while Eq. $(67.5 c)$ gives the phase of ϵ^{\prime} to be

$$
\begin{equation*}
\phi_{\epsilon^{\prime}}=\delta_{2}-\delta_{0}+\frac{\pi}{2} \approx 42.3 \pm 1.5^{\circ} \tag{67.6b}
\end{equation*}
$$

where the numerical value is based on an analysis of $\pi-\pi$ scattering using chiral perturbation theory [6]. The approximation in Eq. (67.6a) depends on the assumption that direct $C P$ violation is very small in all K^{0} decays. This is expected to be good to a few tenths of a degree, as indicated by the small value of ϵ^{\prime} and of η_{+-0} and η_{000}, the $C P$-violation parameters in the decays $K_{S} \rightarrow \pi^{+} \pi^{-} \pi^{0}[7]$, and $K_{S} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ [8]. The relation in Eq. (67.6a) is exact in the superweak theory, so this is sometimes called the superweak-phase ϕ_{SW}. An important point for the analysis is that $\cos \left(\phi_{\epsilon^{\prime}}-\phi_{\epsilon}\right) \simeq 1$. The consequence is that only two real quantities need be measured, the magnitude of ϵ and the value of $\left(\epsilon^{\prime} / \epsilon\right)$, including its sign. The measured quantity $\left|\eta_{00} / \eta_{+-}\right|^{2}$ is very close to unity so that we can write

$$
\begin{gather*}
\left|\eta_{00} / \eta_{+-}\right|^{2} \approx 1-6 \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \approx 1-6 \epsilon^{\prime} / \epsilon \tag{67.7a}\\
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \approx \frac{1}{3}\left(1-\left|\eta_{00} / \eta_{+-}\right|\right) \tag{67.7b}
\end{gather*}
$$

From the experimental measurements in this edition of the Review, and the fits discussed in the next section, one finds

$$
\begin{gather*}
|\epsilon|=(2.228 \pm 0.011) \times 10^{-3} \tag{67.8a}\\
\phi_{\epsilon}=(43.5 \pm 0.5)^{\circ} \tag{67.8b}\\
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \approx \epsilon^{\prime} / \epsilon=(1.66 \pm 0.23) \times 10^{-3} \tag{67.8c}\\
\phi_{+-}=(43.4 \pm 0.5)^{\circ} \tag{67.8d}\\
\phi_{00}-\phi_{+-}=(0.34 \pm 0.32)^{\circ} \tag{67.8e}\\
A_{L}=(3.32 \pm 0.06) \times 10^{-3} \tag{67.8f}
\end{gather*}
$$

Direct $C P$ violation, as indicated by $\epsilon^{\prime} / \epsilon$, is expected in the Standard Model. However, the numerical value cannot be reliably predicted because of theoretical uncertainties [9]. The value of A_{L} agrees with Eq. $(67.5 d)$. The values of ϕ_{+-}and $\phi_{00}-\phi_{+-}$are used to set limits on CPT violation [see "Tests of Conservation Laws"].

67.2. Fits for $K_{L}^{0} C P$-violation parameters

In recent years, $K_{L}^{0} C P$-violation experiments have improved our knowledge of $C P$-violation parameters, and their consistency with the expectations of $C P T$ invariance and unitarity. To determine the best values of the $C P$-violation parameters in $K_{L}^{0} \rightarrow \pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$ decay, we make two types of fits, one for the phases ϕ_{+-}and ϕ_{00} jointly with Δm and τ_{S}, and the other for the amplitudes $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ jointly with the $K_{L}^{0} \rightarrow \pi \pi$ branching fractions.
67.2.1. Fits to $\phi_{+-}, \phi_{00}, \Delta \phi, \Delta m$, and τ_{S} data:

These are joint fits to the data on ϕ_{+-}, ϕ_{00}, the phase difference $\Delta \phi=\phi_{00}-\phi_{+-}$, the $K_{L}^{0}-K_{S}^{0}$ mass difference Δm, and the K_{S}^{0} mean life τ_{S}, including the effects of correlations.

Measurements of ϕ_{+-}and ϕ_{00} are highly correlated with Δm and τ_{S}. Some measurements of τ_{S} are correlated with Δm. The correlations are given in the footnotes of the ϕ_{+-}and ϕ_{00} sections of the K_{L}^{0} Listings, and the τ_{S} section of the K_{S}^{0} Listings.

In most cases, the correlations are quoted as 100%, i.e., with the value and error of ϕ_{+-}or ϕ_{00} given at a fixed value of Δm and τ_{S}, with additional terms specifying the dependence of the value on Δm and τ_{S}. These cases lead to diagonal bands in Figs. 67.1 and 67.2 . The KTeV experiment [10] quotes its results as values of $\Delta m, \tau_{S}, \phi_{\epsilon}, \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$, and $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ with correlations, leading to the ellipses labeled "b." The correlations for the KTeV measurements are given in the $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ section of the K_{L}^{0} Listings. For small $\left|\epsilon^{\prime} / \epsilon\right|$, $\phi_{+-} \approx \phi_{\epsilon}+\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$.

Figure 67.1: $\quad \phi_{+-}$vs Δm for experiments which do not assume $C P T$ invariance. Δm measurements appear as vertical bands spanning $\Delta m \pm 1 \sigma$, cut near the top and bottom to aid the eye. Most ϕ_{+-}measurements appear as diagonal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. Data are labeled by letters: "b"-FNAL KTeV, "c"-CERN CPLEAR, "d"-FNAL E773, "e"-FNAL E731, " f "CERN, "g"-CERN NA31, and are cited in Table 67.1. The narrow band " j " shows ϕ_{SW}. The ellipse "a" shows the $\chi^{2}=1$ contour of the fit result.

Table 67.1: References, Document ID's, and sources corresponding to the letter labels in the figures. The data are given in the ϕ_{+-}and Δm sections of the K_{L} Listings, and the τ_{S} section of the K_{S} Listings.

Label Source	PDG Document ID	Ref.	
a	this Review	OUR FIT	
b	FNAL KTeV	ABOUZAID 11	$[10]$
c	CERN CPLEAR	APOSTOLAKIS 99C	$[11]$
d	FNAL E773	SCHWINGENHEUER 95	$[12]$
e	FNAL E731	GIBBONS 93,93C	$[13,14]$
f	CERN	GEWENIGER 74B,74C	$[15,16]$
g	CERN NA31	CAROSI 90	$[17]$
h	CERN NA48	LAI 02C	$[18]$
i	CERN NA31	BERTANZA 97	$[19]$
j	this Review	SUPERWEAK 16	

The data on $\tau_{S}, \Delta m$, and ϕ_{+-}shown in Figs. 67.1 and 67.2 are combined with data on ϕ_{00} and $\phi_{00}-\phi_{+-}$in two fits, one without assuming $C P T$, and the other with this assumption. The results without assuming $C P T$ are shown as ellipses labeled "a." These ellipses are seen to be in good agreement with the superweak phase

$$
\begin{equation*}
\phi_{\mathrm{SW}}=\tan ^{-1}\left(\frac{2 \Delta m}{\Delta \Gamma}\right)=\tan ^{-1}\left(\frac{2 \Delta m \tau_{S} \tau_{L}}{\hbar\left(\tau_{L}-\tau_{S}\right)}\right) \tag{67.9}
\end{equation*}
$$

In Figs. 67.1 and $67.2, \phi_{\mathrm{SW}}$ is shown as narrow bands labeled "j."
Table 67.2 column 2, "Fit w/o $C P T$," gives the resulting fitted parameters, while Table 67.3 gives the correlation matrix for this fit. The white ellipses labeled "a" in Fig. 67.1 and Fig. 67.2 are the $\chi^{2}=1$ contours for this fit.

Figure 67.2: $\quad \phi_{+-}$vs $\tau_{S} . \tau_{S}$ measurements appear as vertical bands spanning $\tau_{S} \pm 1 \sigma$, some of which are cut near the top and bottom to aid the eye. Most ϕ_{+-}measurements appear as diagonal or horizontal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. Data are labeled by letters: "b"-FNAL KTeV, "c"-CERN CPLEAR, "d"FNAL E773, "e"-FNAL E731, "f"-CERN, "g"-CERN NA31, "h"-CERN NA48, "i"-CERN NA31, and are cited in Table 67.1. The narrow band " j " shows ϕ_{SW}. The ellipse "a" shows the fit result's $\chi^{2}=1$ contour.

For experiments which have dependencies on unseen fit parameters, that is, parameters other than those shown on the x or y axis of the figure, their band positions are evaluated using the fit results and their band widths include the fitted uncertainty in the unseen parameters. This is also true for the ϕ_{SW} bands.

If $C P T$ invariance and unitarity are assumed, then by Eq. (67.6a), the phase of ϵ is constrained to be approximately equal to
$\phi_{\mathrm{SW}}=(43.50258 \pm 0.00021)^{\circ}+54.1(\Delta m-0.5289)^{\circ}+32.0\left(\tau_{S}-0.89564\right)$
where we have linearized the Δm and τ_{S} dependence of Eq. (67.9). The error ± 0.00021 is due to the uncertainty in τ_{L}. Here Δm has units $10^{10} \hbar \mathrm{~s}^{-1}$ and τ_{S} has units $10^{-10} \mathrm{~s}$.

If in addition we use the observation that $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \ll 1$ and $\cos \left(\phi_{\epsilon^{\prime}}-\phi_{\epsilon}\right) \simeq 1$, as well as the numerical value of $\phi_{\epsilon^{\prime}}$ given in Eq. (67.6b), then Eqs. (67.5a), which are sketched in Fig. 67.3, lead to the constraint

$$
\begin{align*}
\phi_{00}-\phi_{+-} & \approx-3 \operatorname{Im}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) \\
& \approx-3 \operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) \tan \left(\phi_{\epsilon^{\prime}}-\phi_{\epsilon}\right) \\
& \approx 0.006^{\circ} \pm 0.008^{\circ}, \tag{67.11}
\end{align*}
$$

so that $\phi_{+-} \approx \phi_{00} \approx \phi_{\epsilon} \approx \phi_{\mathrm{SW}}$.
In the fit assuming $C P T$, we constrain $\phi_{\epsilon}=\phi_{\mathrm{SW}}$ using the linear expression in Eq. (67.10), and constrain $\phi_{00}-\phi_{+-}$using Eq. (67.11). These constraints are inserted into the Listings with the Document ID of SUPERWEAK 16. Some additional data for which the authors assumed $C P T$ are added to this fit or substitute for other less precise data for which the authors did not make this assumption. See the Listings for details.

The results of this fit are shown in Table 67.2, column 3, "Fit $\mathrm{w} / C P T, "$ and the correlation matrix is shown in Table 67.4. The Δm precision is improved by the $C P T$ assumption.

Table 67.2: Fit results for $\phi_{+-}, \Delta m, \tau_{S}, \phi_{00}, \Delta \phi=\phi_{00}-\phi_{+-}$, and ϕ_{ϵ} without and with the $C P T$ assumption.

Quantity(units)	Fit w/o $C P T$	Fit w/ $C P T$
$\phi_{+-}\left({ }^{\circ}\right)$	$43.4 \pm 0.5(\mathrm{~S}=1.2)$	$43.51 \pm 0.05(\mathrm{~S}=1.2)$
$\Delta m\left(10^{10} \hbar \mathrm{~s}^{-1}\right)$	0.5289 ± 0.0010	$0.5293 \pm 0.0009(\mathrm{~S}=1.3)$
$\tau_{S}\left(10^{-10} \mathrm{~s}\right)$	0.89564 ± 0.00033	$0.8954 \pm 0.0004(\mathrm{~S}=1.1)$
$\phi_{00}\left({ }^{\circ}\right)$	$43.7 \pm 0.6(\mathrm{~S}=1.2)$	$43.52 \pm 0.05(\mathrm{~S}=1.3)$
$\Delta \phi\left(^{\circ}\right)$	0.34 ± 0.32	$0.006 \pm 0.014(\mathrm{~S}=1.7)$
$\phi_{\epsilon}\left({ }^{\circ}\right)$	$43.5 \pm 0.5(\mathrm{~S}=1.3)$	$43.52 \pm 0.05(\mathrm{~S}=1.2)$
χ^{2}	16.4	20.0
$\#$ Deg. Free.	14	16

Table 67.3: Correlation matrix for the results of the fit without the $C P T$ assumption

	ϕ_{+-}	Δm	τ_{S}	ϕ_{00}	$\Delta \phi$	ϕ_{ϵ}
ϕ_{+-}	1.000	0.596	-0.488	0.827	-0.040	0.976
Δm	0.596	1.000	-0.572	0.487	-0.035	0.580
τ_{S}	-0.488	-0.572	1.000	-0.423	-0.014	-0.484
ϕ_{00}	0.827	0.487	-0.423	1.000	0.529	0.929
$\Delta \phi$	-0.040	-0.035	-0.014	0.529	1.000	0.178
ϕ_{ϵ}	0.976	0.580	-0.484	0.929	0.178	1.000

Table 67.4: Correlation matrix for the results of the fit with the $C P T$ assumption

	ϕ_{+-}	Δm	τ_{S}	ϕ_{00}	$\Delta \phi$	ϕ_{ϵ}
ϕ_{+-}	1.000	0.972	-0.311	0.957	-0.105	0.995
Δm	0.972	1.000	-0.509	0.958	-0.007	0.977
τ_{S}	-0.311	-0.509	1.000	-0.306	0.004	-0.312
ϕ_{00}	0.957	0.958	-0.306	1.000	0.189	0.981
$\Delta \phi$	-0.105	-0.007	0.004	0.189	1.000	-0.006
ϕ_{ϵ}	0.995	0.977	-0.312	0.981	-0.006	1.000

67.2.2. Fits for $\epsilon^{\prime} / \epsilon,\left|\eta_{+-}\right|,\left|\eta_{00}\right|$, and $B\left(K_{L} \rightarrow \pi \pi\right):$

We list measurements of $\left|\eta_{+-}\right|,\left|\eta_{00}\right|,\left|\eta_{00} / \eta_{+-}\right|$, and $\epsilon^{\prime} / \epsilon$. Independent information on $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ can be obtained from measurements of the K_{L}^{0} and K_{S}^{0} lifetimes $\left(\tau_{L}, \tau_{S}\right)$, and branching ratios (B) to $\pi \pi$, using the relations

$$
\begin{align*}
\left|\eta_{+-}\right| & =\left[\frac{\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\tau_{L}} \frac{\tau_{S}}{\mathrm{~B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right]^{1 / 2}, \tag{67.12a}\\
\left|\eta_{00}\right| & =\left[\frac{\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{\tau_{L}} \frac{\tau_{S}}{\mathrm{~B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)}\right]^{1 / 2} . \tag{67.12b}
\end{align*}
$$

For historical reasons, the branching ratio fits and the $C P$-violation fits are done separately, but we want to include the influence of $\left|\eta_{+-}\right|,\left|\eta_{00}\right|,\left|\eta_{00} / \eta_{+-}\right|$, and $\epsilon^{\prime} / \epsilon$ measurements on $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$ and $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ and vice versa. We approximate a global fit to all of these measurements by first performing two independent fits: 1) BRFIT, a fit to the K_{L}^{0} branching ratios, rates, and mean life, and 2) ETAFIT, a fit to the $\left|\eta_{+-}\right|,\left|\eta_{00}\right|,\left|\eta_{+-} / \eta_{00}\right|$, and $\epsilon^{\prime} / \epsilon$ measurements. The results from fit 1 , along with the K_{S}^{0} values from this edition, are used to compute values of $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$, which are included as measurements in the $\left|\eta_{00}\right|$ and $\left|\eta_{+-}\right|$sections with a document ID of BRFIT 16. Thus, the fit values of $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ given in this edition include both the direct measurements and the results from the branching ratio fit.

The process is reversed in order to include the direct $|\eta|$ measurements in the branching ratio fit. The results from fit 2 above (before including BRFIT 16 values) are used along with the K_{L}^{0} and K_{S}^{0} mean lives and the $K_{S}^{0} \rightarrow \pi \pi$ branching fractions to compute the K_{L}^{0} branching ratio $\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$. This branching ratio value is included as a measurement in the branching ratio section with a document ID of ETAFIT 16. Thus, the K_{L}^{0} branching ratio fit values in this edition include the results of the direct measurement of $\left|\eta_{00} / \eta_{+-}\right|$and $\epsilon^{\prime} / \epsilon$. Most individual measurements of $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ enter our fits directly via the corresponding measurements of $\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma($ total $)$ and $\Gamma\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma$ (total), and those that do not have too large errors to have any influence on the fitted values of these branching ratios. A more detailed discussion of these fits is given in the 1990 edition of this Review [20].

References:

1. K. Kleinknecht, "Uncovering $C P$ violation: experimental clarification in the neutral K meson and B meson systems," Springer Tracts in Modern Physics, vol. 195 (Springer Verlag 2003).
2. B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65, 1113 (1993).
3. M.S. Sozzi, Eur. Phys. J. C36, 37 (2004).
4. T.T. Wu and C.N. Yang, Phys. Rev. Lett. 13, 380 (1964).
5. L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964); L. Wolfenstein, Comm. Nucl. Part. Phys. 21, 275 (1994).
6. G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B603, 125 (2001).
7. R. Adler et al., (CPLEAR Collab.), Phys. Lett. B407, 193 (1997);
P. Bloch, Proceedings of Workshop on K Physics (Orsay 1996), ed. L. Iconomidou-Fayard, Edition Frontieres, Gif-sur-Yvette, France (1997) p. 307.
8. A. Lai et al., Phys. Lett. B610, 165 (2005).
9. G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996);
S. Bosch et al., Nucl. Phys. B565, 3 (2000);
S. Bertolini, M. Fabrichesi, and J.O. Egg, Rev. Mod. Phys. 72, 65 (2000).
10. E. Abouzaid et al., Phys. Rev. D83, 092001 (2011).
11. A. Apostolakis et al., Phys. Lett. B458, 545 (1999).
12. B. Schwingenheuer et al., Phys. Rev. Lett. 74, 4376 (1995).
13. L.K. Gibbons et al., Phys. Rev. Lett. 70, 1199 (1993) and footnote in Ref. 12.
14. L.K. Gibbons, Thesis, RX-1487, Univ. of Chicago, 1993.
15. C. Geweniger et al., Phys. Lett. 48B, 487 (1974).
16. C. Geweniger et al., Phys. Lett. 52B, 108 (1974).
17. R. Carosi et al., Phys. Lett. B237, 303 (1990).
18. A. Lai et al., Phys. Lett. B537, 28 (2002).
19. L. Bertanza et al., Z. Phys. C73, 629 (1997).
20. J.J. Hernandez et al., Particle Data Group, Phys. Lett. B239, 1 (1990).

68. Review of Multibody Charm Analyses

Revised 2019 by D. M. Asner (Brookhaven National Laboratory) and J. Rademacker (University of Bristol)

68.1. Kinematics \& Models

The differential decay rate to a point $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ in n dimensional phase space can be expressed as

$$
\begin{equation*}
d \Gamma=|\mathcal{M}(\mathbf{s})|^{2}\left|\frac{\partial^{n} \phi}{\partial\left(s_{1} \ldots s_{n}\right)}\right| d^{n} s \tag{68.1}
\end{equation*}
$$

where $\left|\partial^{n} \phi / \partial\left(s_{1} \ldots s_{n}\right)\right|$ represents the density of states at \mathbf{s}, and \mathcal{M} the matrix element for the decay at that point in phase space, which is $2,5,8, \ldots$ dimensional for D decays to $3,4,5, \ldots$ spinless particles. Additional parameters are required to fully describe decays involving particles with non-zero spin in the initial or final state.

For the important case of D decays to 3 pseudoscalars, the decay kinematics can be represented in a two dimensional Dalitz plot [1]. This is usually parametrized in terms of $s_{12} \equiv\left(p_{1}+p_{2}\right)^{2}$ and $s_{23} \equiv\left(p_{2}+p_{3}\right)^{2}$, where p_{1}, p_{2}, p_{3} are the four-momenta of the final state particles. In terms of these variables, phase-space density is constant across the kinematically allowed region, so that any structure seen in the Dalitz plot is a direct consequence of the dynamics encoded in $|\mathcal{M}|^{2}$. Note that here, because the 3 -momenta of the decay products are confined to a plane, no parity violating kinematic observables can be constructed (unless they also violate rotational invariance). This is not the case for decays to four or more particles. These can therefore not be unambiguously described in terms of analogously-defined variables $s_{i j}, s_{i j k}$, which are parity-even. The use of parity-odd observables in four body decays is discussed below.

In the widely-used isobar approach, the matrix element \mathcal{M} is modeled as a sum of interfering decay amplitudes, each proceeding through resonant two-body decays [2]. See Refs. 2-4 for a review of resonance phenomenology. In most analyses, each resonance is described by a Breit-Wigner [5] or Flatté [6] lineshape, and the model includes a non-resonant term with a constant phase and magnitude. This approach has well-known theoretical limitations, such as the violation of unitarity and analyticity, which can break the relationship between magnitude and phase across phase space. This motivates the use of more sophisticated descriptions, especially for broad, overlapping resonances (frequently found in S-wave components) where these limitations are particularly problematic. In charm analyses, these approaches have included the K-matrix approach [5-8] which respects two-body unitarity; the use of LASS scattering data [9]; dispersive methods [10-13]; methods based on chiral symmetry [14-16], QCD factorisation (although this seems better suited to B decays) [17-19]; and quasi model-independent parametrizations which use generic lineshapes, with minimal theory input and many free parameters, for a subset of resonances [20-23]. An important example, with a rich resonance structure, is $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$, which is a key channel in Charge-Parity $(C P)$ violation and charm mixing analyses. The first analysis by CLEO [24] described the Dalitz plot with 5k signal events with 10 resonant components. This and later analyses by Belle [25] and CDF [26] model the Dalitz plot as a sum of Breit Wigner and Flatté line shapes, and a non-resonant component. BaBar [27] on the other hand use a K-matrix description for the $\pi \pi \mathrm{S}$-wave based on [28] and input from LASS scattering data for the $K-\pi$ S-wave, with no need to add a non-resonant component to describe the data. This approach is also followed in the latest analysis of this channel, published jointly by BaBar and Belle [29]. In total 18 resonant components, including four doubly Cabibbo suppressed ones, are required to describe the Dalitz plot with $1.1 \mathrm{M} D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$events. Belle's and BaBar's data have been re-analyzed by [17] in a QCD factorization framework, using line-shape parametrizations for the
S [30,31] and P wave [11] contributions that preserve 2-body unitarity and analyticity. The measurements give compatible results for the components they share.

The field of amplitude analyses remains very active. Publications since the last update of this review two years ago include Dalitz plot analyses of $D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta$ by BES III [32]; $D^{+} \rightarrow K^{+} K^{-} K^{+}$by LHCb [33]; $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ by BaBar [34]; BaBar and Belle's joint
analysis of $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \quad[29]$; and a re-analysis of $D^{+} \rightarrow K_{S} \pi^{0} \pi^{+}$ and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$data from FOCUS, CLEO and BES III by Niecknig and Kubis [13]. Ahn, Yang and Nam developed amplitude models for $\Lambda_{c}^{+} \rightarrow K^{-} p \pi^{+}$and $\Lambda_{c}^{+} \rightarrow K_{S} p \pi^{0}$ [35] based on BELLE data [36]. There has also been significant progress in four body amplitude analyses: $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ using CLEO data [22]; $D^{+} \rightarrow K_{S} \pi^{+} \pi^{+} \pi^{-}, D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$ and $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0} \pi^{0}$ by BES III [37-39]; and $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$, $D^{0} \rightarrow K^{\mp} \pi^{ \pm} \pi^{\mp} \pi^{ \pm}[23,40]$ by LHCb. Noteworthy is the increasing sophistication of recent amplitude analyses, most of which go substantially beyond the isobar model with Breit Wigner and Flatté lineshapes. However, with the notable exception of [13] and [33], they remain within the isobar framework which describes the decay as a series of 2-body processes; even if these are modeled with increasing sophistication, the approach ignores long-range hadronic effects such as re-scattering and does not respect 3 (or 4)-body unitarity and analyticity.

Several groups work on improved models. Dispersive techniques, which respect 3 -body unitarity and analyticity, have been successfully applied to regions of the $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$and $D^{+} \rightarrow K_{S} \pi^{0} \pi^{+}$Dalitz plots below the $\eta^{\prime} K$ threshold [12,13], where they provide a good description of the data with fewer fit parameters than the isobar approach. Ref. [41] uses a unitary coupled channel approach to describe $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$, which has no restrictions on the kinematic range, but requires additional parameters to describe the Dalitz plot above the $\eta^{\prime} K$ threshold. Using an effective chiral Lagrangian, the authors of Ref. [16] provide a description of the annihilation contribution to the decay amplitude which respects 3 -body unitarity. This approach provides a good description of LHCb $D^{+} \rightarrow K^{+} K^{-} K^{+}$ data, with fewer parameters than an equivalent isobar model [33].

Limitations in the theoretical description of interfering resonances are the leading source of systematic uncertainty in many analyses. This is set to become increasingly problematic given the statistical precision achievable with the vast, clean charm samples available at the B factories, LHCb , and their upgrades. In some cases, the model uncertainty can be removed through model-independent methods, often relying on input from the charm threshold, as discussed below. Ref. 42 expand the scope and applicability of the quasi model-independent approach in amplitude fits. At the same time, increasingly sophisticated models are being developed, and applied to data.

68.2. Applications of multibody charm analyses

Amplitude analyses provide sensitivity to both relative magnitudes and phases of the interfering decay amplitudes. It is especially this sensitivity to phases that makes amplitude analyses such a uniquely powerful tool for studying a wide range of phenomena. Here we concentrate on their use for $C P$ violation and mixing measurements in charm, and charm inputs to $C P$ violation analyses in B meson decays (see also $[43,44]$). The properties of light-meson resonances determined in D amplitude analyses are reported in the light-unflavored-meson section of this Review.
68.2.1. Time-integrated searches for $C P$ violation in charm :

Comparing the results of amplitude fits for $C P$-conjugate decay modes provides a measure of $C P$ violation. Recent $C P$ violation searches using this method include amplitude analyses of $D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ and $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$by LHCb [45,40], and $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}[46,22]$ using CLEO data.

A widely-used amplitude model-independent technique to search for local $C P$ violation is based on performing a χ^{2} comparison of $C P$-conjugate phase-space distributions. This method was pioneered by BaBar [47] and developed further in [48-50], with recent results reported by BaBar [51] and LHCb in $D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$[52,53], CDF in $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}[26]$, and LHCb in $D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$[55], $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$[50]. Un-binned methods can increase the sensitivity [54] and have been applied by LHCb to $D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi[55,56,73]$.

An alternative model-independent approach is based on constructing observables in four body decays that are odd under motion reversal
("naïve T") [58-66], which is equivalent to P for scalar particles [66]. One such observable is $C_{T}=\vec{p}_{2} \cdot\left(\vec{p}_{3} \times \vec{p}_{4}\right)=\left(1 / m_{D}\right) \epsilon_{\alpha \beta \gamma \delta} p_{1}^{\alpha} p_{2}^{\beta} p_{3}^{\gamma} p_{4}^{\delta}$, where \vec{p}_{i} are the decay products' three momenta in the decay's restframe, and p_{i} are their four-momenta. Identical particles (as in $D^{0} \rightarrow K^{+} \underline{\pi}^{-} \pi^{+} \underline{\pi}^{-}$) are ordered by momentum magnitude. Comparing the P violating asymmetry $A_{T} \equiv \frac{\Gamma\left(C_{T}>0\right)-\Gamma\left(C_{T}<0\right)}{\Gamma\left(C_{T}>0\right)+\Gamma\left(C_{T}<0\right)}$ with its C-conjugate in \bar{D}^{0} decays, provides sensitivity to $C P$ violation. Searches for $C P$ violation in this manner have been carried out for $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$by FOCUS, BaBar, LHCb and Belle [67,68,69,70], where LHCb increase the sensitivity of the method by analysing the data in bins of phase space, and Belle's analysis considers several new, hitherto unused P-odd variables; $D^{+} \rightarrow K^{+} K_{S} \pi^{+} \pi^{-}$ and $D_{s}^{+} \rightarrow K^{+} K_{S} \pi^{+} \pi^{-}$by BaBar [71]; and $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}$ by Belle [72]. LHCb's unbinned comparison of kinematic distributions in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$is sensitive to $C P$ violation in both P even and P-odd kinematic variables [73].

The results of all measurements described in this section are compatible with $C P$ conservation in charm. Given the recent discovery of $C P$ violation in $D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-}$decays, and in view of the vast data samples about to be collected, one might expect this to change in the foreseeable future.
68.2.2. Charm Mixing and CP violation: Time-dependent amplitude analyses in decays to final states that are accessible to both D^{0} and \bar{D}^{0} have unique sensitivity to mixing parameters. A Dalitz plot analysis of a self-conjugate final state, such as $K_{S} \pi^{+} \pi^{-}$ and $K_{S} K^{+} K^{-}$, allows the measurement of the phase difference between the relevant D^{0} and \bar{D}^{0} decay amplitudes, and thus a direct measurement of x and y, the normalised mass and width difference of the $D^{0}-\bar{D}^{0}$ system's mass eigenstates. This is in contrast to decays like $D^{0} \rightarrow K \pi$ [74] which only provide access to the decay-specific parameters $x^{\prime 2}, y^{\prime}$. Multibody charm analyses are also sensitive to $C P$ violation in mixing and in the interference between mixing and decay; these results are summarised in $[43,44]$.
68.2.3. CP violation in decays of Beauty to Charm : Neutral D mesons originating from $B^{-} \rightarrow D K^{-}$(here denoted as $D_{B^{-}}$) are a superposition of D^{0} and \bar{D}^{0} with a relative phase that depends on the CKM unitarity triangle parameter γ / ϕ_{3},

$$
D_{B^{-}} \propto D^{0}+r_{B} e^{i\left(\delta_{B}-\gamma\right)} \bar{D}^{0},
$$

where δ_{B} is a $C P$ conserving strong phase, and $r_{B} \sim 0.1$. In the corresponding $C P$-conjugate expression, γ / ϕ_{3} changes sign. An amplitude analysis of the subsequent decay of the $D_{B^{ \pm}}$to a state accessible to both D^{0} and \bar{D}^{0} allows the measurement of $\gamma / \phi_{3}[75-79]$. The method generalizes to similar B hadron decays, such as $B^{0} \rightarrow D K^{* 0}$. Measurements based on this technique have been reported by BaBar $[80,81]$, Belle $[25,82]$ and LHCb [83-92]. The most precise individual results come from the study of $D_{B^{-}} \rightarrow K_{S} \pi^{+} \pi^{-}$ and $D_{B^{-}} \rightarrow K_{S} K^{+} K^{-}$with an uncertainty of $\sim 10^{\circ}[25,80,82,86,92]$; combining measurements in multiple decay modes leads to a current uncertainty on γ / ϕ_{3} of less than 6°.

The interference between mixing and decay in $B^{0} \rightarrow D^{0} h^{0}$ with $h^{0}=\pi^{0}, \eta, \omega$ provides sensitivity to β, which can be extracted from the Dalitz plot of the subsequent $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$decay [29,93-96]. The combined BaBar/Belle analysis based on this technique resolved the ambiguity in β present in other measurements, such as $B^{0} \rightarrow J / \psi K_{S}$, in favour of the solution compatible with other unitarity triangle constraints [29].

68.3. Model Independent Methods and the Charm Threshold

The precision measurement of mixing or $C P$ violation parameters such γ / ϕ_{3} from multibody charm decays requires as input the phasedifferences between the D^{0} and \bar{D}^{0} amplitudes across phase space, as well as their magnitudes, for each final state of interest. While the magnitudes are fairly easily measured, the phase information requires either amplitude models with reliable phase motion, or model-independent approaches.

Model-independent measurements of the relevant phase differences rely on interference effects in the decays of well-defined coherent superpositions of D^{0} and \bar{D}^{0}. These are accessible at the charm threshold, where CLEO-c and BES III operate [43,97-104]. Charm mixing also results in a (time-dependent) $D^{0}-\bar{D}^{0}$ superposition, that can be used to measure the relevant phase information as input to γ / ϕ_{3} measurements. This method is particularly powerful in doubly Cabibbo-suppressed decays such as $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$, and when used in combination with threshold data $[105,106]$. Under some circumstances, with large data sets, the relevant strong phases and γ / ϕ_{3} can be extracted simultaneously without external input, for example in simultaneous analysis of the $B^{0} \rightarrow D K^{+} \pi^{-}$Dalitz plot and that of the subsequent $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decay [115]. However, the global effort to achieve a measurement of γ / ϕ_{3} to sub-degree precision will continue to rely critically on input from the charm threshold.

The model-independent phase information is provided either integrated over the entire phase space of the decay, or in subregions/bins. The results can be expressed in terms of one complex parameter $\mathcal{Z}=R e^{-i \delta}=c+i s$ per pair of $C P$-conjugate bins, with magnitude $R \leq 1$. Larger R values lead to higher sensitivity to γ / ϕ_{3}. Amplitude models can be used to optimise the binning for sensitivity to γ / ϕ_{3}, without introducing a model-dependent bias in the result.

CLEO-c data have been analyzed to provide binned \mathcal{Z} for the self-conjugate decays $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}, D^{0} \rightarrow K_{S} K^{+} K^{-}$, $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, and $D^{0} \rightarrow K_{S} \pi^{-} \pi^{+} \pi^{0} \quad[107-110] ;$ and phase space-integrated values for $D^{0}, \bar{D}^{0} \rightarrow K_{S} K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$ and $K^{+} \pi^{-} \pi^{+} \pi^{-} \quad[111,112]$. Adding input from LHCb's charm mixing analysis significantly improves the constraints on \mathcal{Z} for $D^{0}, \bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}[112,113]$. A recent study based on LHCb's $D^{0}, \bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$amplitude models [23] and CLEO-c data indicates that a binned analysis of $D^{0}, \bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$could lead to the most precise individual measurement of γ / ϕ_{3} [114]. For self-conjugate decays such as $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, analysed with a single pair of bins, \mathcal{Z} is real-valued, and usually expressed in terms of the $C P$-even fraction $F_{+} \equiv \frac{1}{2}(\operatorname{Re}(\mathcal{Z})+1)$, defined such that a $C P$-even eigenstate has $F_{+}=1$, while a $C P$-odd eigenstate has $F_{+}=0$ [102]. Recent analyses of CLEO-c data reveal that $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is compatible with being completely $C P$-even with $F_{+}=0.973 \pm 0.017$, while $D^{0} \rightarrow K^{+} K^{-} \pi^{0}$ has $F_{+}=0.732 \pm 0.055$, $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$has $F_{+}=0.769 \pm 0.023$ and $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}$ has 0.238 ± 0.020 [103,109,110].

It is interesting to compare these values with those obtained from amplitude models as a cross check of the models' phasemotion. $F_{+}^{4 \pi \text { model }}=0.729 \pm 0.020$ calculated from Ref. 22's $D^{0} \rightarrow$ $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$model, compares well to the measured value given above, as does $\mathcal{Z}^{K 3 \pi \text { model }}=0.459 \pm 0.025 \quad[23]$ to $\mathcal{Z}^{K 3 \pi \text { meas }}=$ $\left(0.32_{-0.13}^{+0.17}\right) \exp \left(-i\left(128_{-17^{\circ}}{ }^{+28^{\circ}}\right)\right)$ [112,113]. Binwise comparisons for $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}, D^{0} \rightarrow K_{S} K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, and $D^{0}, \bar{D}^{0} \rightarrow$ $K^{+} \pi^{-} \pi^{+} \pi^{-}$can be found in [107-109,114].

68.4. Summary

Multibody charm decays offer a rich phenomenology, including unique sensitivity to $C P$ violation and charm mixing. This is a highly dynamic field with many new results (some of which we presented here) and rapidly increasing, high quality datasets. These datasets constitute a huge opportunity, but also a challenge to improve the theoretical descriptions of soft hadronic effects in multibody decays. For some measurements, model-independent methods, many relying on input from the charm threshold, provide a way of removing model-induced uncertainties. At the same time, substantial progress in the theoretical description of multibody decays is being made.

References:

1. R.H. Dalitz, Phil. Mag. 44, 1068 (1953).
2. M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C4, 103 (1987); P. Bedaque, A. Das, and V.S. Mathur, Phys. Rev. D49, 269 (1994); L.-L. Chau and H.-Y. Cheng, Phys. Rev. D36, 137 (1987); K. Terasaki, Int. J. Mod. Phys. A10, 3207 (1995); F. Buccella, M. Lusignoli, and A. Pugliese, Phys. Lett. B379, 249 (1996).
3. J.D. Jackson, Nuovo Cimento 34, 1644 (1964).
4. See the note on Resonances in this Review.
5. E.P. Wigner, Phys. Rev. 70, 15 (1946).
6. S. M. Flatté, Phys. Lett. 63B, 224 (1976) Phys. Lett. 63B, 224 (1976).
7. S.U. Chung et al., Ann. Phys. 4, 404 (1995).
8. I.J.R. Aitchison, Nucl. Phys. A189, 417 (1972).
9. D. Aston et al. (LASS Collab.), Nucl. Phys. B296, 493 (1988).
10. R. Omnes, Nuovo Cimento 8, 316 (1958).
11. C. Hanhart, Phys. Lett. B715, 170 (2012).
12. F. Niecknig and B. Kubis, JHEP 1510, 142 (2015).
13. F. Niecknig and B. Kubis, Phys. Lett. B780, 471 (2018).
14. P. C. Magalhães and M. R. Robilotta, Phys. Rev. D 92,9,094005(2015).
15. P. C. Magalhães et al., Phys. Rev. D 84,094001(2011).
16. R. T. Aoude, P. C. Magalhães, A. C. Dos Reis and M. R. Robilotta, Phys. Rev. D97, 5,056021 (2018).
17. J.P. Dedonder et al. Phys. Rev. D89, 094018 (2014).
18. D. Boito, J.-P. Dedonder, B. El-Bennich, R. Escribano, R. Kaminski, L. Lesniak and B. Loiseau, Phys. Rev. D96, 11,113003 (2017).
19. R. Klein, T. Mannel, J. Virto and K. K. Vos, JHEP 1710, 117 (2017).
20. E.M. Aitala et al. (E791 Collab.), Phys. Rev. D73, 032004 (2006) [Phys. Rev. D74, 059901 (E)(2006)].
21. G. Bonvicini et al. (CLEO Collab.), Phys. Rev. D78, 052001 (2008).
22. P. d'Argent et al., JHEP 1705, 142 (2017).
23. R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C78, 6,443 (2018).
24. H. Muramatsu et al. (CLEO Collab.), Phys. Rev. Lett. 89, 251802 (2002).
25. A. Poluektov et al. (Belle Collab.), Phys. Rev. D81, 112002 (2010).
26. T. Aaltonen et al. (CDF Collab.), Phys. Rev. D86, 032007 (2012).
27. P. del Amo Sanchez et al. (BaBar Collab.), Phys. Rev. Lett. 105, 081803 (2010).
28. V. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A16, 229 (2018).
29. I. Adachi et al. [BaBar and Belle Collaborations], Phys. Rev. Lett. 121, 26,261801 (2018) Phys. Rev. D98, 11,112012 (2018).
30. B. El-Bennich et al. Phys. Rev. D79, 094005 (2009) [Phys. Rev. D83, 039903(E) (2011)].
31. J.P. Dedonder et al. Acta Phys. Polon. B 42 (2011) 2013.
32. M. Ablikim et al. [BESIII Collaboration], arXiv:1903.04118 [hep-ex]. (remove if still unbpublished by end of review, otherwise update).
33. R. Aaij et al. [LHCb Collaboration], JHEP 1904, 063 (2019).
34. J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 93,11,112014(2016).
35. J. K. Ahn, S. Yang and S. I. Nam, Phys. Rev. D 100,3,034027(2019).
36. analysing data published in S. B. Yang et al. [Belle Collaboration], Phys. Rev. Lett. 117, 1,011801 (2016).
37. M. Ablikim et al. [BESIII Collaboration], arXiv:1901.05936 [hep-ex]. (remove if still unbpublished by end of the review, otherwise update).
38. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 95,7,072010(2017).
39. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D99, 9,092008 (2019).
40. R. Aaij et al. [LHCb Collaboration], JHEP 1902, 126 (2019).
41. S. X. Nakamura, Phys. Rev. D 93,1,014005(2016).
42. F. Krinner, D. Greenwald, D. Ryabchikov, B. Grube and S. Paul, Phys. Rev. D 97,11,114008(2018).
43. See the note on $D^{0}-\bar{D}^{0}$ Mixing in this Review.
44. See the note CP violation in the quark sector in this Review.
45. R. Aaij et al. [LHCb Collaboration], Phys. Rev. D93, 052018 (2016).
46. M. Artuso et al. (CLEO Collab.), Phys. Rev. D85, 122002 (2012).
47. B. Aubert et al. (BABAR Collab.), Phys. Rev. D78, 051102 (2008).
48. I. Bediaga et al., Phys. Rev. D80, 096006 (2009).
49. I. Bediaga et al., Phys. Rev. D86, 036005 (2012).
50. R. Aaij et al. (LHCb Collab.), Phys. Lett. B726, 623 (2013).
51. J.P. Lees et al. (BaBar Collab.), Phys. Rev. D87, 052010 (2013).
52. R. Aaij et al. (LHCb Collab.), Phys. Rev. D84, 112008 (2011).
53. R. Aaij et al. (LHCb Collab.), JHEP 1306, 112 (2013).
54. M. Williams, Phys. Rev. D84, 054015 (2011).
55. R. Aaij et al. (LHCb Collab.), Phys. Lett. B728, 585 (2014).
56. R. Aaij et al. (LHCb Collab.), Phys. Lett. B740, 158 (2015).
57. R. Aaij et al. [LHCb Collaboration], Phys. Lett. B769, 345 (2017).
58. E. Golowich and G. Valencia, Phys. Rev. D40, 112, (1989).
59. G. Valencia, Phys. Rev. D39, 3339 (1989).
60. W. Bensalem and D. London, Phys. Rev. D64, 116003 (2001).
61. I.I.Y. Bigi, hep-ph/0107102.
62. W. Bensalem, A. Datta, and D. London, Phys. Rev. D66, 094004 (2002).
63. W. Bensalem, A. Datta, and D. London, Phys. Lett. B538, 309 (2002).
64. A. Datta and D. London, Int. J. Mod. Phys. A19, 2505 (2004).
65. M. Gronau and J.L. Rosner, Phys. Rev. D84, 096013 (2011).
66. G. Durieux and Y. Grossman, Phys. Rev. D92, 076013 (2015).
67. J.M. Link et al. (FOCUS Collab.), Phys. Lett. B622, 239 (2005).
68. P. del Amo Sanchez et al. (BaBar Collab.), Phys. Rev. D81, 111103 (2010).
69. R. Aaij et al. (LHCb Collab.), JHEP 1410, 005 (2014).
70. J. B. Kim et al. [Belle Collaboration], Phys. Rev. D99, 1,011104 (2019).
71. J.P. Lees et al. (BaBar Collab.), Phys. Rev. D84, 031103 (2011).
72. K. Prasanth et al. [Belle Collaboration], Phys. Rev. D95, 9,091101 (2017).
73. R. Aaij et al. [LHCb Collaboration], Phys. Lett. B769, 345 (2017).
74. D.M. Asner et al. (CLEO Collab.), Phys. Rev. D72, 012001 (2005).
75. M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
76. M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
77. D. Atwood et al., Phys. Rev. Lett. 78, 17, 3257 (1997).
78. A. Poluektov et al. (Belle Collab.), Phys. Rev. D70, 7, 072003 (2004).
79. J. Rademacker and G. Wilkinson, Phys. Lett. B647, 400 (2007).
80. P. del Amo Sanchez et al. (BaBar Collab.), Phys. Rev. Lett. 105, 121801 (2010).
81. J.P. Lees et al. (BaBar Collab.), Phys. Rev. D84, 012002 (2011).
82. H. Aihara et al. (Belle Collab.), Phys. Rev. D85, 112014 (2012).
83. R. Aaij et al. (LHCb Collab.), Phys. Lett. B726, 151 (2013).
84. R. Aaij et al. (LHCb Collab.), Phys. Lett. B723, 44 (2013).
85. R. Aaij et al. (LHCb Collab.), Phys. Lett. B718, 43 (2012).
86. R. Aaij et al. (LHCb Collab.), JHEP 1410, 97 (2014).
87. R. Aaij et al. (LHCb Collab.), Phys. Lett. B733, 36 (2014).
88. R. Aaij et al. (LHCb Collab.), Nucl. Phys. B888, 169 (2014).
89. R. Aaij et al. (LHCb Collab.), Phys. Rev. D91, 112014 (2015).
90. R. Aaij et al. [LHCb Collaboration], JHEP 1606, 131 (2016).
91. R. Aaij et al. [LHCb Collaboration], JHEP 1612, 087 (2016).
92. R. Aaij et al. [LHCb Collaboration], JHEP 1808, 176 (2018), Erratum: JHEP 1810, 107 (2018).
93. A. Bondar, T. Gershon and P. Krokovny, Phys. Lett. B624, 1 (2005).
94. P. Krokovny et al. [Belle Collaboration], Phys. Rev. Lett. 97, 1,081801 (2006).
95. B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 99, 231802 (2007).
96. V. Vorobyev et al. [Belle Collaboration], Phys. Rev. D94, 5,052004 (2016).
97. A. Giri et al., Phys. Rev. D68, 5, 054018 (2003).
98. D. Atwood and A. Soni, Phys. Rev. D68, 033003 (2003).
99. S. Malde and G. Wilkinson, Phys. Lett. B701, 353 (2011).
100. A. Bondar et al., Phys. Rev. D82, 034033 (2010).
101. C. Thomas and G. Wilkinson, JHEP 1210, 184 (2012).
102. M. Nayak et al. Phys. Lett. B740, 1 (2015).
103. S. Malde et al. Phys. Lett. B747, 9 (2015).
104. S. Malde, C. Thomas, and G. Wilkinson, Phys. Rev. D91, 094032 (2015).
105. S. Harnew and J. Rademacker, Phys. Lett. B728, 296 (2014).
106. S. Harnew and J. Rademacker, JHEP 1503, 169 (2015).
107. J. Libby et al. (CLEO Collab.), Phys. Rev. D82, 112006 (2010).
108. R.A. Briere et al. (CLEO Collab.), Phys. Rev. D80, 032002 (2009).
109. S. Harnew et al., JHEP 1801, 144 (2018).
110. P.K. Resmi et al., JHEP 1801, 082 (2018).
111. J. Insler et al. (CLEO Collab.), Phys. Rev. D85, 092016 (2012) erratum Phys. Rev. D 94,9,09905(2016).
112. T. Evans et al., Phys. Lett. B757, 520 (2017), erratum Phys. Lett. B765, 402, (2017).
113. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117, 24,241801 (2016).
114. T. Evans et al., arXiv:1909.10196 [hep-ex].
115. D. Craik, T. Gershon and A. Poluektov, Phys. Rev. D97, 5,056002 (2018).
116. $D^{0}-\bar{D}^{0}$ Mixing

Revised August 2019 by D.M. Asner (BNL) and A.J. Schwartz (Cincinnati U.).
The formalism for $D^{0}-\bar{D}^{0}$ mixing is closely related to that for $C P$ violation, which is also presented in the note " $C P$ Violation in the Quark Sector" in this Review. The time evolution of the $D^{0}-\bar{D}^{0}$ system is described by the Schrödinger equation

$$
\begin{equation*}
i \frac{\partial}{\partial t}\binom{D^{0}(t)}{D^{0}(t)}=\left(\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}\right)\binom{D^{0}(t)}{\bar{D}^{0}(t)} \tag{69.1}
\end{equation*}
$$

where the \mathbf{M} and $\boldsymbol{\Gamma}$ matrices are Hermitian, and $C P T$ invariance requires that $M_{11}=M_{22} \equiv M$ and $\Gamma_{11}=\Gamma_{22} \equiv \Gamma$. The offdiagonal elements of \mathbf{M} and $\boldsymbol{\Gamma}$ are referred to as the dispersive and absorptive parts, respectively, of the mixing. The mass eigenstates D_{1} and D_{2} of the Hamiltonian $\mathbf{M}-i \boldsymbol{\Gamma} / 2$ are defined as

$$
\begin{equation*}
\left|D_{1,2}\right\rangle \equiv p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \tag{69.2}
\end{equation*}
$$

where normalization imposes $|p|^{2}+|q|^{2}=1$. If $p=q$, then the mass eigenstates are $C P$ eigenstates and $C P$ is conserved. Our phase convention is $C P\left|D^{0}\right\rangle=-\left|\bar{D}^{0}\right\rangle$, which implies that, in the absence of $C P$ violation, D_{2} is $C P$-even and D_{1} is $C P$-odd.

The eigenvalues of $\mathbf{M}-i \boldsymbol{\Gamma} / 2$ are

$$
\begin{equation*}
\omega_{1,2}=\left(M-\frac{i}{2} \Gamma\right) \pm \frac{q}{p}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) \equiv m_{1,2}-\frac{i}{2} \Gamma_{1,2} \tag{69.3}
\end{equation*}
$$

where $m_{1,2}$ and $\Gamma_{1,2}$ are real and correspond to the masses and decay widths, respectively, of the $D_{1,2}$ mass eigenstates. As the trace $\Gamma_{11}+\Gamma_{22}=2 \Gamma$ is unchanged by diagonalizing $\Gamma, \Gamma=$ $\left(\Gamma_{1}+\Gamma_{2}\right) / 2$, i.e., the mean decay width. Solving for the eigenstates of the eigenvalues yields

$$
\begin{equation*}
\left(\frac{q}{p}\right)^{2}=\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}} \tag{69.4}
\end{equation*}
$$

If $C P$ is conserved, $(q / p)=1$ and thus M_{12} and Γ_{12} must be real. In this case the difference in eigenvalues is $\Delta m \equiv m_{2}-m_{1}=$ $2 M_{12}$ and $\Delta \Gamma \equiv \Gamma_{2}-\Gamma_{1}=2 \Gamma_{12}$. The signs of Δm and $\Delta \Gamma$ are difficult to predict from theory and thus must be determined experimentally.
We define dimensionless mixing parameters x and y as

$$
\begin{align*}
x & \equiv \frac{\Delta m}{\Gamma} \tag{69.5}\\
y & \equiv \frac{\Delta \Gamma}{2 \Gamma} \tag{69.6}
\end{align*}
$$

These parameters are measured in several ways. The most precise values are obtained using the time dependence of D^{0} decays. For all methods, the initial flavor of the D^{0} or \bar{D}^{0} (at the production point) must be determined. The most common method used for this is to reconstruct $D^{*+} \rightarrow D^{0} \pi^{+}$or $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$ decays; the charge of the accompanying pion (which has low momentum in the lab frame and is often referred to as the "soft" pion) determines the flavor of the neutral D. BaBar and LHCb have also identified the flavor of the neutral D by reconstructing semileptonic $B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu, B^{0} \rightarrow D^{*-} \ell^{+} \nu, B^{-} \rightarrow D^{0} \ell^{-} \nu$, and $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \nu$ decays; in this case the charge of the accompanying lepton determines the D flavor. At $e^{+} e^{-}$collider experiments such as Belle, BaBar, and BESIII, the D flavor can also be determined by fully reconstructing a D decay on the "opposite side" of an event, i.e., recoiling against the signal-side D decay.

At BESIII, where $D \bar{D}$ pairs are produced near their threshold via $e^{+} e^{-} \rightarrow \psi(3770) \rightarrow D^{0} \bar{D}^{0}$, there is relatively little background and the purity of opposite-side tagging is equivalent to that achieved using $D^{* \pm}$ decays. However, BESIII operates at a symmetric $e^{+} e^{-}$collider, and the $D \bar{D}$ pairs are produced almost at rest in the lab frame. As a consequence, the D 's do not travel any appreciable distance before decaying, and timedependent analyses are not possible. To overcome this, measurements of mixing at BESIII utilize the quantum coherence of the initial $\psi(3770) \rightarrow D^{0} \bar{D}^{0}$ state and time-integrated measurements [1-5].

69.1 Time-Dependent Analyses

We extend the formalism of this Review's note on " $C P$ Violation in Meson Decays." Our notation is as follows: Cabibbo-favored ("right-sign") decay amplitudes are denoted $\bar{A}_{f} \equiv\langle f| H\left|\bar{D}^{0}\right\rangle$ and $A_{\bar{f}} \equiv\langle\bar{f}| H\left|D^{0}\right\rangle$; i.e, the final state is $f=K^{+} \ell^{-} \nu, K^{+} \pi^{-}$, $K^{+} \pi^{-} \pi^{0}$, etc. Doubly-Cabibbo-suppressed ("wrong-sign") decay amplitudes are denoted $A_{f} \equiv\langle f| H\left|D^{0}\right\rangle$ and $\bar{A}_{\bar{f}} \equiv\langle\bar{f}| H\left|\bar{D}^{0}\right\rangle$.
Starting from a pure $\left|D^{0}\right\rangle$ or $\left|\bar{D}^{0}\right\rangle$ state at $t=0$, the timedependent decay rates to wrong-sign final states are

$$
\begin{gather*}
\left.r(t) \equiv|\langle f| H| D^{0}(t)\right\rangle\left.\right|^{2}=\left|\bar{A}_{f}\right|^{2}\left|\frac{q}{p}\right|^{2}\left|g_{+}(t) \lambda_{f}^{-1}+g_{-}(t)\right|^{2} \\
\left.\bar{r}(t) \equiv|\langle\bar{f}| H| \bar{D}^{0}(t)\right\rangle\left.\right|^{2}=\left|A_{\bar{f}}\right|^{2}\left|\frac{p}{q}\right|^{2}\left|g_{+}(t) \lambda_{\bar{f}}+g_{-}(t)\right|^{2}, \tag{69.7}
\end{gather*}
$$

where

$$
\begin{equation*}
\lambda_{f} \equiv \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}, \quad \lambda_{\bar{f}} \equiv \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}} \tag{69.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{ \pm}(t)=\frac{1}{2}\left(e^{-i \omega_{1} t} \pm e^{-i \omega_{2} t}\right) \tag{69.10}
\end{equation*}
$$

A change in convention for the relative phase of D^{0} and \bar{D}^{0} would cancel between q / p and \bar{A}_{f} / A_{f} (or $\bar{A}_{\bar{f}} / A_{\bar{f}}$), leaving λ_{f} (or $\lambda_{\bar{f}}$) unchanged. For multibody final states, these equations apply separately to each point in phase-space. Integrating over regions of phase-space can lead to enhanced sensitivity to $C P$ violation; see the discussion below on multibody decays and the "Review of Multibody Charm Analyses" in this Review [6]. As the mixing parameters x and y are very small, $r(t)$ and $\bar{r}(t)$ are usually expanded to second order in x and y.

69.2 Semileptonic decays

Consider the final state $f=K^{+} \ell^{-} \bar{\nu}_{\ell}$, where $A_{f}=\bar{A}_{\bar{f}}=0$ is an excellent approximation in the Standard Model. The final state f is accessible from a D^{0} only via mixing, ${ }^{1}$ and the decay rate is

$$
\begin{equation*}
r(t)=\left|\bar{A}_{f}\right|^{2}\left|\frac{q}{p}\right|^{2}\left|g_{-}(t)\right|^{2} \approx\left|\bar{A}_{f}\right|^{2}\left|\frac{q}{p}\right|^{2}\left(\frac{x^{2}+y^{2}}{4}\right)(\Gamma t)^{2} e^{-\Gamma t} . \tag{69.11}
\end{equation*}
$$

For $\bar{r}(t), q / p$ is replaced by p / q. In the Standard Model, $C P$ violation in charm mixing is small and $|q / p| \approx 1$. In the limit of $C P$ conservation, $r(t)=\bar{r}(t)$, and the time-integrated mixing rate relative to the time-integrated right-sign decay rate for semileptonic decays is

$$
\begin{equation*}
\frac{\int_{0}^{\infty} r(t) d t}{\int_{0}^{\infty}\left|\bar{A}_{f}\right|^{2} e^{-\Gamma t} d t}=\frac{x^{2}+y^{2}}{2} \equiv R_{M} \tag{69.12}
\end{equation*}
$$

Table 69.1 summarizes results for R_{M} from semileptonic decays; the world average from the Heavy Flavor Averaging Group (HFLAV) [7] is $R_{M}=(1.30 \pm 2.69) \times 10^{-4}$.

69.3 Wrong-sign decays to hadronic non- $C P$ eigenstates

Consider the final state $f=K^{+} \pi^{-}$, i.e., A_{f} and $\bar{A}_{\bar{f}}$ are doubly Cabibbo-suppressed. Allowing for $C P$ violation, the ratio of decay amplitudes can be parameterized as

$$
\begin{equation*}
\frac{A_{f}}{\bar{A}_{f}}=-\sqrt{R_{D}^{+}} e^{-i \delta_{f}} \quad \frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}}=-\sqrt{R_{D}^{-}} e^{-i \delta_{f}} \tag{69.13}
\end{equation*}
$$

where δ_{f} is the strong phase difference. The minus sign orig-

[^75]Table 69.1: Results for R_{M} in D^{0} semileptonic decays. The HFLAV average assumes reported statistical and systematic uncertainties are uncorrelated. When a single uncertainty is listed, that corresponds to statistical and systematic uncertainties combined. The measurements with an asterisk $\left(^{*}\right)$ have been superseded and thus are not included in the HFLAV average.

Year	Experiment	Final state (s)	$R_{M}\left(\times 10^{-3}\right)$	90% C.L. $\left(\times 10^{-3}\right)$
2008	Belle $\left(492 \mathrm{fb}^{-1}\right)[8]$	$K^{(*)+} e^{-} \bar{\nu}_{e}$	$0.13 \pm 0.22 \pm 0.20$	<0.61
2007	BaBar $\left(344 \mathrm{fb}^{-1}\right)[9]$	$K^{(*)+} e^{-} \bar{\nu}_{e}$	$0.044_{-0.60}^{+0.70}$	$(-1.3,1.2)$
2005	CLEO $\left(9.0 \mathrm{fb}^{-1}\right)[10]$	$K^{(*)+} e^{-} \bar{\nu}_{e}$	$1.6 \pm 2.9 \pm 2.9$	<7.8
1996	E791 $\left(2 \times 10^{10}\right.$ evts $)[11]$	$K^{+} \ell^{-} \bar{\nu}_{\ell}$	$1.1_{-2.7}^{+3.0}+0.0$	<5.0
HFLAV Average $[7]$				
2005^{*} Belle $\left(253 \mathrm{fb}^{-1}\right)[12]$	$K^{(*)+} e^{-} \bar{\nu}_{e}$	$0.02 \pm 0.47 \pm 0.14$	<1.0	
$2004^{*} \operatorname{BaBar}\left(87 \mathrm{fb}^{-1}\right)[13]$	$K^{(*)+} e^{-} \bar{\nu}_{e}$	$2.3 \pm 1.2 \pm 0.4$	<4.2	

Table 69.2: Results for R, R_{D}, and A_{D} as measured using $D^{0} \rightarrow K^{ \pm} \pi^{\mp}$ decays. When a single uncertainty is listed, that corresponds to statistical and systematic uncertainties combined. The measurements with an asterisk (*) have been superseded and thus are not included in the HFLAV average. The measurements with a dagger $\left({ }^{\dagger}\right)$ are not included in the HFLAV average due to poorer precision.

Year	Experiment	$R\left(\times 10^{-3}\right)$	$R_{D}\left(\times 10^{-3}\right)$	$A_{D}(\%)$
2018	LHCb (5.0 fb ${ }^{-1} D^{*} \mathrm{tag}$) [14]	-	3.454 ± 0.031	-0.01 ± 0.91
2017	LHCb (3.0 fb ${ }^{-1} B$ tag) [15]	-	3.48 ± 0.10	
2014	Belle (976 fb- ${ }^{-1}$) [16]	3.86 ± 0.06	3.53 ± 0.13	-
2013	$\operatorname{CDF}\left(9.6 \mathrm{fb}^{-1}\right)$ [17]	4.30 ± 0.05	3.51 ± 0.35	
$\underline{2007}$	BaBar (384 fb ${ }^{-1}$) [18]	$3.53 \pm 0.08 \pm 0.04$	$3.03 \pm 0.16 \pm 0.10$	$-2.1 \pm 5.2 \pm 1.5$
HFLAV Average [7]			$\mathbf{3 . 4 3 5} \pm \mathbf{0 . 0 2 2}$	-0.55 ${ }_{-0.51}^{+0.49}$
2013b*	LHCb (3.0 fb ${ }^{-1} D^{*}$ tag) [19]	-	3.568 ± 0.066	-0.7 ± 1.9
2013a*	$\mathrm{LHCb}\left(1.0 \mathrm{fb}^{-1}\right)[20]$	4.25 ± 0.04	3.52 ± 0.15	-
2008*	CDF (1.5 fb ${ }^{-1}$) [21]	4.15 ± 0.10	3.04 ± 0.55	-
2006*	Belle (400 fb-1) [22]	$3.77 \pm 0.08 \pm 0.05$	3.64 ± 0.18	2.3 ± 4.7
2005^{\dagger}	FOCUS (234 evts) [23]	$4.29{ }_{-0.61}^{+0.63} \pm 0.27$	$5.17{ }_{-1.58}^{+1.47} \pm 0.76$	$13_{-25}^{+33} \pm 10$
2000^{\dagger}	CLEO (9.0 fb ${ }^{-1}$) [24]	$3.32{ }_{-0.65}^{+0.63} \pm 0.40$	$4.8 \pm 1.2 \pm 0.4$	$-1_{-17}^{+16} \pm 1$
$1998{ }^{\dagger}$	E791 (5643 evts) [25]	$6.8_{-3.3}^{+3.4} \pm 0.7$	-	-

inates from the weak phase difference between the amplitudes, specifically, the relative signs of $V_{u s}$ and $V_{c d}$. The parameters R_{D}^{+} and R_{D}^{-}are the ratios of the doubly Cabibbo-suppressed (DCS) decay rate to the Cabibbo-favored (CF) decay rate. From the relevant CKM matrix elements, one estimates $R_{D}^{+}, R_{D}^{-} \sim \tan ^{4} \theta_{c}$, where θ_{c} is the Cabibbo angle. With this parameterization, Eq. (69.9) becomes

$$
\begin{align*}
\lambda_{f}^{-1} & =\frac{p}{q} \frac{A_{f}}{\bar{A}_{f}}=-\sqrt{R_{D}^{+}}\left|\frac{p}{q}\right| e^{-i\left(\delta_{f}+\phi\right)} \tag{69.14}\\
\lambda_{\bar{f}} & =\frac{q}{p} \frac{\overline{A_{\bar{f}}}}{A_{\bar{f}}}=-\sqrt{R_{D}^{-}}\left|\frac{q}{p}\right| e^{-i\left(\delta_{f}-\phi\right)} \tag{69.15}
\end{align*}
$$

where ϕ is a weak phase difference. In the Standard Model, the weak phase of A_{f} / \bar{A}_{f} or $\bar{A}_{\bar{f}} / A_{\bar{f}}$ is, to excellent approximation, -1 , which is already factored out, and thus $\phi=\operatorname{Arg}(q / p)$. As ϕ is essentially independent of the final state, it is referred to as "universal." $C P$ violation in mixing is characterized by $|q / p| \neq$ $|p / q| \neq 1 . C P$ violation in the decay amplitudes $A_{f}, \bar{A}_{f}, A_{\bar{f}}$, $\bar{A}_{\bar{f}}$ is referred to as direct $C P$ violation and is parameterized by $A_{D} \equiv\left(R_{D}^{+}-R_{D}^{-}\right) /\left(R_{D}^{+}+R_{D}^{-}\right)$. The mean value is denoted $R_{D} \equiv\left(R_{D}^{+}+R_{D}^{-}\right) / 2$.

With these definitions, we expand the decay rates Eqs. (69.7) and (69.8) to second order in the small mixing parameters x and y to obtain [26,27]:

$$
\begin{aligned}
r(t)= & \left|\bar{A}_{f}\right|^{2} e^{-\Gamma t} \times\left[R_{D}\left(1+A_{D}\right)\right. \\
& \left.+\sqrt{R_{D}\left(1+A_{D}\right)}\left|\frac{q}{p}\right| y_{+}^{\prime}(\Gamma t)+\left|\frac{q}{p}\right|^{2} \frac{\left(x_{+}^{\prime 2}+y_{+}^{\prime 2}\right)}{4}(\Gamma t)^{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{r}(t)= & \left|A_{\bar{f}}\right|^{2} e^{-\Gamma t} \times\left[R_{D}\left(1-A_{D}\right)\right. \\
& \left.+\sqrt{R_{D}\left(1-A_{D}\right)}\left|\frac{p}{q}\right| y_{-}^{\prime}(\Gamma t)+\left|\frac{p}{q}\right|^{2} \frac{\left(x_{-}^{\prime 2}+y_{-}^{\prime 2}\right)}{4}(\Gamma t)^{2}\right]
\end{aligned}
$$

where

$$
\begin{align*}
x_{ \pm}^{\prime} & =x \cos \left(\delta_{f} \pm \phi\right)+y \sin \left(\delta_{f} \pm \phi\right) \\
& \equiv x^{\prime} \cos \phi \pm y^{\prime} \sin \phi, \tag{69.16}\\
y_{ \pm}^{\prime} & =y \cos \left(\delta_{f} \pm \phi\right)-x \sin \left(\delta_{f} \pm \phi\right) \\
& \equiv y^{\prime} \cos \phi \mp x^{\prime} \sin \phi, \tag{69.17}
\end{align*}
$$

and

$$
\begin{align*}
x^{\prime} & =x \cos \delta_{f}+y \sin \delta_{f} \tag{69.18}\\
y^{\prime} & =y \cos \delta_{f}-x \sin \delta_{f} \tag{69.19}
\end{align*}
$$

In Eqs. (69.16) and (69.16), a fourth term $R_{D}\left(1 \pm A_{D}\right)\left(x_{ \pm}^{2}-\right.$ $\left.y_{ \pm}^{2}\right) / 4 \times(\Gamma t)^{2}$ has been dropped, as, for the range of decay times measured by experiments, it is negligible relative to the other terms.

The parameters $\left(x^{\prime}, y^{\prime}\right)$ are the mixing parameters (x, y) rotated by the strong phase δ_{f}. The parameters $\left(x_{ \pm}^{\prime}, y_{ \pm}^{\prime}\right)$ are the parameters $\left(x^{\prime}, y^{\prime}\right)$ rotated by the weak phase $\pm \phi$. Note that $x_{+}^{\prime 2}+y_{+}^{\prime 2}=x_{-}^{\prime 2}+y_{-}^{\prime 2}=x^{\prime 2}+y^{\prime 2}=x^{2}+y^{2}$. Comparing Eqs. (69.16) and (69.16), ones sees that $r(t) \neq \bar{r}(t)(C P$ is violated) if either $A_{D} \neq 0,|q / p| \neq 1$, or $\phi \neq 0$. These three inequalities correspond, respectively, to the three types of $C P$ violation: in the (doubly Cabibbo-suppressed) decay amplitudes; in the mixing; and due to interference between a mixed amplitude and an unmixed decay amplitude. Whereas $C P$ violation in the decay amplitudes is parameterized by $A_{D}, C P$ violation in the mixing is parameterized by $A_{M} \equiv(|q / p|-|p / q|) /(|q / p|+|p / q|)$.

Table 69.3: Results for $x^{\prime 2}$ and y^{\prime}, as measured using $D^{0} \rightarrow K^{ \pm} \pi^{\mp}$ decays. When a single uncertainty is listed, that corresponds to statistical and systematic uncertainties combined. The measurements with an asterisk (*) have been superseded and thus are not included in the HFLAV global fit. The measurements with a dagger (${ }^{\dagger}$) are not included in the HFLAV global fit due to poorer precision. All confidence limits and intervals correspond to 95% C.L. The Belle 2006 results restrict $x^{\prime 2}$ to the physical region. The BaBar confidence intervals are obtained from the fit, whereas Belle uses a Feldman-Cousins method, and CDF uses a Bayesian method.

Year	Experiment	No $C P$ violation		Allowing for $C P$ violation	
		$x^{\prime 2}\left(\times 10^{-3}\right)$	$y^{\prime}(\%)$	$x^{\prime 2}\left(\times 10^{-3}\right)$	$y^{\prime}(\%)$
2018	LHCb $\binom{5.0 \mathrm{fb}^{-1}}{D^{*} \mathrm{tag}}[14]$	0.039 ± 0.027	0.528 ± 0.052	$\left\{\begin{array}{l}D^{0}: 0.061 \pm 0.037 \\ \bar{D}^{0}: 0.016 \pm 0.039\end{array}\right.$	0.501 ± 0.074 0.554 ± 0.074
2017	LHCb $\binom{3.0 \mathrm{fb}^{-1}}{B \mathrm{tag}}[15]$	0.028 ± 0.310	0.46 ± 0.37	$\left\{\begin{array}{c}D^{0}:-0.019 \pm 0.447 \\ \bar{D} 0\end{array}\right.$	$\begin{aligned} & 0.581 \pm 0.526 \\ & 0.332 \pm 0.523 \end{aligned}$
2014	Belle ($976 \mathrm{fb}^{-1}$) [16]	0.09 ± 0.22	0.46 ± 0.34	-	
2013	CDF (9.6 fb ${ }^{-1}$) [17]	0.08 ± 0.18	0.43 ± 0.43		
2007	$\operatorname{BaBar}\left(384 \mathrm{fb}^{-1}\right)[18]$	-0.22 ± 0.37	0.97 ± 0.54	$\left\{\begin{array}{l}D^{0}:-0.24 \pm 0.52 \\ D^{0}:-0.20 \pm 0.50\end{array}\right.$	$\begin{aligned} & 0.98 \pm 0.78 \\ & 0.96 \pm 0.75 \end{aligned}$
2006	Belle ($400 \mathrm{fb}^{-1}$) [22]	$(0.18-0.23)^{+0.21}$	$\left(0.06_{-0.39}^{+0.40}\right)^{*}$	< 0.72	$-2.8<y^{\prime}<2.1$
2013b	$\operatorname{LHCb}\binom{3.0 \mathrm{fb}^{-1}}{D^{*} \mathrm{tag}}[19]$	0.055 ± 0.049	0.48 ± 0.10	$\left\{\begin{array}{l} D^{0}: 0.049 \pm 0.070 \\ \bar{D}^{0}: 0.060 \pm 0.068 \end{array}\right.$	$\begin{aligned} & \hline 0.51 \pm 0.14 \\ & 0.45 \pm 0.14 \end{aligned}$
2013a*	LHCb (1.0 fb ${ }^{-1}$) [20]	-0.09 ± 0.13	0.72 ± 0.24	-	
2008*	$\mathrm{CDF}\left(1.5 \mathrm{fb}^{-1}\right)$ [21]	-0.12 ± 0.35	0.85 ± 0.76		
$2005{ }^{\dagger}$	FOCUS (234 evts) [23]	< 8.3	$-7.2<y^{\prime}<4.1$	< 8.0	$11.2<y^{\prime}<6.7$
2000^{\dagger}	CLEO (9.0 fb-1) [24]	0.00 ± 0.23	$-2.3{ }_{-1.4}^{+1.3}$	0.00 ± 0.23	$-2.5{ }_{-1.6}^{+1.4}$
$1998{ }^{\dagger}$	E791 (5643 evts) [25]	<17	<13	-	-

Table 69.4: Results from time-dependent multibody analyses. The errors are statistical, systematic, and, when a third error is listed, due to the decay-model, respectively. The measurement with an asterisk $\left(^{*}\right.$) has been superseded and thus is not included in the HFLAV global fit. The measurement with a dagger $\left(^{\dagger}\right.$) is not included in the HFLAV global fit due to poorer precision. The 2019 LHCb result utilizes strong-phase measurements from CLEO-c [28] and thus is decay-model independent. This fit determines $C P$-violating parameters Δx and Δy; the translation of these parameters to $|q / p|$ and ϕ is given in Ref. [29].

	No $\boldsymbol{C P}$ Violation			
Year	Experiment	Final State(s)	$x\left(\times 10^{-3}\right)$	$y\left(\times 10^{-3}\right)$
2019	LHCb $\left(3.0 \mathrm{fb}^{-1} B \mathrm{tag}\right)[30]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$2.7 \pm 1.6 \pm 0.4$	$7.4 \pm 3.6 \pm 1.1$
2016	LHCb $\left(1.0 \mathrm{fb}^{-1} D^{*} \mathrm{tag}\right)[31]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$-8.6 \pm 5.3 \pm 1.7$	$0.3 \pm 4.6 \pm 1.3$
2016	BaBar $\left(468 \mathrm{fb}^{-1}\right)[32]$	$\pi^{+} \pi^{-} \pi^{0}$	$15 \pm 12 \pm 6$	$2 \pm 9 \pm 5$
2014	Belle $\left(921 \mathrm{fb}^{-1}\right)[33]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$5.6 \pm 1.9_{-0.9}^{+0.3}{ }_{-0.9}^{0.6}$	$3.0 \pm 1.5_{-0.5}^{+0.4+0.3}$
2010	BaBar $\left(469 \mathrm{fb}^{-1}\right)[34]$	$\left\{K_{S}^{0} \pi^{+} \pi^{-}\right.$	$1.6 \pm 2.3 \pm 1.2 \pm 0.8$	$5.7 \pm 2.0 \pm 1.3 \pm 0.7$
$K_{S}^{0} K^{+} K^{-}$				
2007^{*}	Belle $\left(540 \mathrm{fb}^{-1}\right)[35]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$8.0 \pm 2.9_{-0.7}^{+0.9+1.0}$	$3.3 \pm 2.44_{-1.2}^{+0.8}+0.6 .8$
2005^{\dagger}	CLEO $\left(9.0 \mathrm{fb}^{-1}\right)[36]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$19_{-33}^{+32} \pm 4 \pm 4$	$-14 \pm 24 \pm 8 \pm 4$

With CPP Violation				
Year	Experiment	Final State(s)	$\|q / p\|$	ϕ
2019	$\mathrm{LHCb}\left(3.0 \mathrm{fb}^{-1}\right)[30]$	$K_{S}^{0} \pi^{+} \pi^{-}$	$\left\{\begin{array}{l} 1.05_{-0.17}^{+0.22} \\ \Delta x \times 10^{-3}= \\ -0.53 \pm 0.70 \pm 0.22 \end{array}\right.$	$\left\{\begin{array}{c}\left(-5.2^{+6.3}{ }^{+9.2}\right)^{\circ} \\ \Delta y \times 10^{-3}= \\ 0.6 \pm 1.6 \pm 0.3\end{array}\right.$
2014	Belle (921 fb ${ }^{-1}$) [33]	$K_{S}^{0} \pi^{+} \pi^{-}$	$0.90{ }_{-0.15}^{+0.16}{ }_{-0.04}^{+0.05}{ }_{-0.05}^{+0.06}$	$\left(-6 \pm 11 \pm 3_{-4}^{+3}\right)^{\circ}$
2007* \ddagger	Belle (540 fb ${ }^{-1}$) [35]	$K_{S}^{0} \pi^{+} \pi^{-}$	$0.86{ }_{-0.29}^{+0.30}{ }_{-0.03}^{+0.06} \pm 0.08$	$\left(-14_{-18}^{+16}{ }_{-3}^{+5+2}{ }_{-4}\right)^{\circ}$

\ddagger This result allows for all $C P$ violations and is superseded by Ref. [33], which assumes no direct $C P$ violation in doubly Cabibbo-suppressed decays.

In the limit of $C P$ conservation, $A_{D}=0,|q / p|=1$, and $\phi=0$. In this case

$$
\begin{align*}
r(t) & =\bar{r}(t) \\
& =\left|A_{\bar{f}}\right|^{2} e^{-\Gamma t}\left[R_{D}+\sqrt{R_{D}} y^{\prime}(\Gamma t)+\frac{x^{\prime 2}+y^{\prime 2}}{4}(\Gamma t)^{2}\right], \tag{69.20}
\end{align*}
$$

and the number of wrong-sign decays divided by the number of right-sign decays is

$$
\begin{equation*}
R=\frac{\int_{0}^{\infty} r(t) d t}{\int_{0}^{\infty}\left|A_{\bar{f}}\right|^{2} e^{-\Gamma t} d t}=R_{D}+\sqrt{R_{D}} y^{\prime}+\frac{x^{\prime 2}+y^{\prime 2}}{2} \tag{69.21}
\end{equation*}
$$

The ratio R is straightforward to measure, as there is no timedependence. In Table 69.2 we report measurements of R, R_{D}, and A_{D} in $D^{0} \rightarrow K^{+} \pi^{-}$decays, and HFLAV world averages [7] obtained from a global fit that allows for both mixing and $C P$ violation. Typically, the experimental fitted parameters are R_{D}, $x^{\prime 2}$, and y^{\prime}; the results for $x^{\prime 2}$ and y^{\prime} are summarized in Table 69.3. Allowing for $C P$ violation, the parameters $\left(R_{D}^{+}, x_{+}^{\prime 2}, y_{+}^{\prime}\right)$ and $\left(R_{D}^{-}, x_{-}^{\prime 2}, y_{-}^{\prime}\right)$ [or equivalently $\left(R_{D}, A_{D}\right)$ instead of $\left.\left(R_{D}^{+}, R_{D}^{-}\right)\right]$ are obtained by separately fitting $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{-} \pi^{+}$ event samples.

Extraction of the mixing parameters x and y from measurements of x^{\prime} and y^{\prime} requires knowledge of the strong phase difference $\delta_{K \pi}$. This can be determined from the decay rates of $D_{ \pm} \rightarrow K^{+} \pi^{-}$, where $D_{+}\left(D_{-}\right)$denotes the $C P$-even ($C P$-odd)

Table 69.5: Results for $y_{C P}$ and A_{Γ} from $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays. When a single uncertainty is listed, that corresponds to statistical and systematic uncertainties combined. The measurements with an asterisk (*) have been superseded and thus are not included in the HFLAV average. Results from LHCb labeled " B tag" have the D^{0} or \bar{D}^{0} flavor identified via $B^{ \pm} \rightarrow D \mu^{ \pm} \nu_{\mu} X$ decays.

Year	Experiment	final state(s)	$y_{C P}(\%)$	$A_{\Gamma}\left(\times 10^{-3}\right)$
2020	LHCb (8.4 fb ${ }^{-1} B+D^{*}$ tags) [37]	$K^{+} K^{-+} \pi^{+} \pi^{-}$	-	$-0.29 \pm 0.20 \pm 0.06$
2020	LHCb ($5.4 \mathrm{fb}^{-1} B \mathrm{tag}$) [37]	$K^{+} K^{-}$	-	$-0.43 \pm 0.36 \pm 0.05$
2020	LHCb ($5.4 \mathrm{fb}^{-1} B$ tag) [37]	$\pi^{+} \pi^{-}$		$0.22 \pm 0.70 \pm 0.08$
2019	LHCb (3 fb ${ }^{-1} B$ tag) [38]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$0.57 \pm 0.13 \pm 0.09$	
2017	LHCb (3 fb $\left.{ }^{-1} D^{*} \mathrm{tag}\right)[39]$	$K^{+} K^{-}+\pi^{+} \pi^{-}$	-	$-0.13 \pm 0.28 \pm 0.10$
2017	LHCb (3 fb ${ }^{-1} D^{*}$ tag) [39]	$K^{+} K^{-}$	-	$-0.30 \pm 0.32 \pm 0.10$
2017	LHCb (3 fb $\left.{ }^{-1} D^{*} \mathrm{tag}\right)[39]$	$\pi^{+} \pi$	-	$0.46 \pm 0.58 \pm 0.12$
2016	Belle ($976 \mathrm{fb}^{-1}$) [40]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$1.11 \pm 0.22 \pm 0.09$	$-0.3 \pm 2.0 \pm 0.7$
2015	$\mathrm{LHCb}\left(3 \mathrm{fb}^{-1} B \mathrm{tag}\right)$ [41]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	-	-1.25 ± 0.73
2015	$\mathrm{LHCb}\left(3 \mathrm{fb}^{-1} B \mathrm{tag}\right)$ [41]	$K^{+} K^{-}$		$-1.34 \pm 0.77_{-0.34}^{+0.26}$
2015	$\mathrm{LHCb}\left(3 \mathrm{fb}^{-1} B \mathrm{tag}\right)$ [41]	$\pi^{+} \pi^{-}$	-	$-0.92 \pm 1.45{ }_{-0.33}^{+0.25}$
2015	BES III ($2.9 \mathrm{fb}^{-1}$) [42]	$\left\{\begin{array}{c} K^{+} K^{-}, \pi^{+} \pi^{-} \\ K_{S}^{0} \pi^{0}, K_{S}^{0} \pi^{0} \pi^{0} \\ K_{S}^{0} \eta, K_{S}^{0} \omega \end{array}\right.$	$-2.0 \pm 1.3 \pm 0.7$	-
2014	CDF (9.7 fb ${ }^{-1}$) [43]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	-	-1.2 ± 1.2
2014	CDF (9.7 fb ${ }^{-1}$) [43]	$K^{+} K^{-}$	-	$-1.9 \pm 1.5 \pm 0.4$
2014	CDF (9.7 fb ${ }^{-1}$) [43]	$\pi^{+} \pi^{-}$		$-0.1 \pm 1.8 \pm 0.3$
2012	$\operatorname{BaBar}\left(468 \mathrm{fb}^{-1}\right.$) [44]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$0.72 \pm 0.18 \pm 0.12$	$0.9 \pm 2.6 \pm 0.6$
2009	Belle ($673 \mathrm{fb}^{-1}$) [45]	$K_{S}^{0} K^{+} K^{-}$	$0.11 \pm 0.61 \pm 0.52$	-
2002	CLEO (9.0 fb ${ }^{-1}$) [46]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$-1.2 \pm 2.5 \pm 1.4$	-
2000	FOCUS (1×10^{6} evts) [47]	$K^{+} K^{-}$	$3.42 \pm 1.39 \pm 0.74$	-
1999	E791 (2×10^{10} evts) [48]	$K^{+} K^{-}$	$0.73 \pm 2.89 \pm 1.03$	-
	HFLAV Average [7]		$\mathbf{0 . 7 1 5} \pm 0.111$	-0.32 ± 0.26
2013*	LHCb (1.0 fb $\left.{ }^{-1} D^{*} \mathrm{tag}\right)$ [49]	$K^{+} K^{-}$	-	$-0.35 \pm 0.62 \pm 0.12$
2013*	LHCb (1.0 fb ${ }^{-1} D^{*}$ tag) [49]	$\pi^{+} \pi^{-}$	-	$0.33 \pm 1.06 \pm 0.14$
2011*	LHCb (29 pb ${ }^{-1} D^{*}$ tag) [50]	$K^{+} K^{-}$	$0.55 \pm 0.63 \pm 0.41$	$-5.9 \pm 5.9 \pm 2.1$
2009*	$\operatorname{BaBar}\left(384 \mathrm{fb}^{-1}\right)$ [51]	$K^{+} K^{-}$	$1.16 \pm 0.22 \pm 0.18$	-
2008*	$\operatorname{BaBar}\left(384 \mathrm{fb}^{-1}\right)$ [52]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$1.03 \pm 0.33 \pm 0.19$	$2.6 \pm 3.6 \pm 0.8$
2007*	Belle (540 fb ${ }^{-1}$) [53]	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$1.31 \pm 0.32 \pm 0.25$	$0.1 \pm 3.0 \pm 1.5$
2003*	$\operatorname{BaBar}\left(91 \mathrm{fb}^{-1}\right)[54]$	$K^{+} K^{-}+\pi^{+} \pi^{-}$	$0.8 \pm 0.4_{-0.4}^{+0.5}$	-
2001*	Belle (23.4 fb-1) [55]	$K^{+} K^{-}$	$-0.5 \pm 1.0_{-0.8}^{+0.7}$	-

${ }^{\ddagger}$ This result for $y_{C P}$ is not superseded but is not included in the HFLAV average due to having some correlations with, and much poorer precision than, the result of Ref. ${ }^{[38]}$.
eigenstate. Since $\left|D_{ \pm}\right\rangle=\left(\left|D^{0}\right\rangle \mp\left|\bar{D}^{0}\right\rangle\right) / \sqrt{2}$,

$$
\begin{equation*}
\sqrt{2} A\left(D_{ \pm} \rightarrow K^{+} \pi^{-}\right)=A\left(D^{0} \rightarrow K^{+} \pi^{-}\right) \mp A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right) \tag{69.22}
\end{equation*}
$$

Squaring this amplitude and using Eq. (69.13) yields the relation

$$
\cos \delta_{K \pi}=\frac{\left|A\left(D_{+} \rightarrow K^{+} \pi^{-}\right)\right|^{2}-\left|A\left(D_{-} \rightarrow K^{+} \pi^{-}\right)\right|^{2}}{2\left|A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)\right|\left|A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)\right|}
$$

(69.23)

Measuring the right-hand side is possible only if one can identify pure D_{+}, D_{-}, D^{0}, and \bar{D}^{0} initial states. This is accomplished at CLEOc and BESIII utilizing the processes $e^{+} e^{-} \rightarrow \psi(3770) \rightarrow$ $\bar{D}^{0} D^{0} \rightarrow\left(f_{C P}\right)\left(K^{+} \pi^{-}\right)$, or $\psi(3770) \rightarrow \bar{D}^{0} D^{0} \rightarrow\left(f_{\bar{D}^{0}}\right)\left(K^{+} \pi^{-}\right)$. In the first case, quantum coherence and $C P$ symmetry insures that the $K^{+} \pi^{-}$state originates from a neutral D with $C P$ opposite that of $f_{C P}$. In the second case, at the time when the \bar{D}^{0} decays, the opposite side is D^{0}. However, it can potentially mix to \bar{D}^{0} before decaying to $K^{+} \pi^{-}$, and this introduces some dependence on the mixing parameters x and y. This dependence is seen explicitly in the observable

$$
\begin{equation*}
A_{K \pi}^{C P} \equiv \frac{\left|A\left(D_{-} \rightarrow K^{-} \pi^{+}\right)\right|^{2}-\left|A\left(D_{+} \rightarrow K^{-} \pi^{+}\right)\right|^{2}}{\left|A\left(D_{-} \rightarrow K^{-} \pi^{+}\right)\right|^{2}+\left|A\left(D_{+} \rightarrow K^{-} \pi^{+}\right)\right|^{2}} \tag{69.24}
\end{equation*}
$$

To lowest order in the mixing parameters [56],

$$
\begin{equation*}
A_{K \pi}^{C P}=\frac{2 \sqrt{R_{D}} \cos \delta_{K \pi}+y}{1+R} \tag{69.25}
\end{equation*}
$$

where R is defined in Eq. (69.21).
69.3.1 Wrong-sign decays to multibody final states

For multibody final states, Eqs. (69.13)-(69.21) apply essentially to each point in phase-space. Although x and y do not vary across phase-space, knowledge of the resonant substructure is needed to extrapolate the strong phase difference δ from point to point to determine x and y. Alternatively, model-independent methods to determine x and y require knowledge of the relative phases of D^{0} and \bar{D}^{0} decay amplitudes across the phase-space distribution [6]. This required phase information can be measured at the charm threshold, where CLEO-c and BESIII took data.

A time-dependent analysis of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays at BaBar [66, 67] determined the relative strong phase variation across the Dalitz plot and reported $x^{\prime \prime}=\left(2.61_{-0.68}^{+0.57} \pm 0.39\right) \%$ and $y^{\prime \prime}=$ $\left(-0.06_{-0.64}^{+0.55} \pm 0.34\right) \%$. These mixing parameters are defined as

$$
\begin{align*}
x^{\prime \prime} & =x \cos \delta_{K \pi \pi^{0}}+y \sin \delta_{K \pi \pi^{0}} \\
y^{\prime \prime} & =y \cos \delta_{K \pi \pi^{0}}-x \sin \delta_{K \pi \pi^{0}} \tag{69.26}
\end{align*}
$$

in analogy with x^{\prime}, y^{\prime}, and $\delta_{K \pi}$ of Eqs. (69.18) and (69.19). Here, $\delta_{K \pi \pi^{0}}$ is the strong phase difference between the amplitudes $A\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)$ and $A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)$ at a "reference point" of the Dalitz plot. In this case the reference point chosen is $m_{\pi^{-} \pi^{0}}=m_{\rho^{-}}$. The strong phase difference $\delta_{K \pi \pi^{0}}$ can be determined in a manner similar to that for $\delta_{K \pi}$: by using Eq. (69.23) and quantum-correlated measurements of the branching fractions $B\left(D_{+} \rightarrow K^{+} \rho^{-}\right), B\left(D_{-} \rightarrow K^{+} \rho^{-}\right), B\left(D^{0} \rightarrow K^{+} \rho^{-}\right)$, and $B\left(\bar{D}^{0} \rightarrow K^{+} \rho^{-}\right)$in $e^{+} e^{-} \rightarrow \psi(3770)$ events.

For the decay modes D^{0} and $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$, Belle measured $R=(0.324 \pm 0.008 \pm 0.007) \%$ [68]. Subsequently, a phase-space-integrated analysis from LHCb [69] measured the product of a coherence factor $R_{D}^{K 3 \pi}$ and the strong-phase-rotated mixing

Table 69.6: Results for the difference in time-integrated $C P$ asymmetries $\Delta A_{C P}$ between $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays. When a single uncertainty is listed, that corresponds to statistical and systematic uncertainties combined. The measurements with an asterisk (${ }^{*}$) have been either superseded or combined with subsequent results and thus are not included in the HFLAV global fit.

Year	Experiment	$\Delta A_{C P}\left(\times 10^{-3}\right)$
2019	LHCb $\left(8.9 \mathrm{fb}^{-1} B+D^{*}\right.$ tags) $[57]$	-1.54 ± 0.29
2013	CDF $\left(9.7 \mathrm{fb}^{-1} D^{*}\right.$ tag $)[58]$	$-6.2 \pm 2.1 \pm 1.0$
2008	BaBar $\left(386 \mathrm{fb}^{-1}\right)[59]$	$2.4 \pm 6.2 \pm 2.6$
2008	Belle $\left(540 \mathrm{fb}^{-1}\right)[60]$	$-8.6 \pm 6.0 \pm 0.7$
2016^{*}	LHCb $\left(3.0 \mathrm{fb}^{-1} D^{*} \mathrm{tag}\right)[61]$	$-1.0 \pm 0.8 \pm 0.3$
2014^{*}	LHCb $\left(3.0 \mathrm{fb}^{-1} B \mathrm{tag}\right)[62]$	$1.4 \pm 1.6 \pm 0.8$
2013^{*}	LHCb $\left(1.0 \mathrm{fb}^{-1} B\right.$ tag $)[63]$	$4.9 \pm 3.0 \pm 1.4$
2012^{*}	LHCb $\left(0.6 \mathrm{fb}^{-1} D^{*}\right.$ tag $)[64]$	$-8.2 \pm 2.1 \pm 1.1$
2012^{\ddagger}	Belle $\left(976 \mathrm{fb}^{-1}\right)[65]$	$-8.7 \pm 4.1 \pm 0.6$

\ddagger This preliminary result was not published and thus is not included in the HFLAV global fit.
Table 69.7: HFLAV global fit results (see text) [7].

Parameter	No $C P$ Violation	No $C P$ Violation in DCS Decays	All $C P$ Violatio Allowed	5% C.L. Interva $C P V$ Allowed
x (\%)	$0.50{ }_{-0.14}^{+0.13}$	$0.43{ }_{-0.11}^{+0.10}$	$0.39{ }^{+0.11}$	
y (\%)	0.62 ± 0.07	0.63 ± 0.06	$0.651_{-0.069}^{+0.063}$	[0.51, 0.77]
$\delta_{K \pi}\left({ }^{\circ}\right)$	$8.9{ }_{-8.9}^{+8.2}$	$9.3{ }_{-9.2}^{+8.3}$	$12.1{ }_{-10.2}^{+8.6}$	[-10.4, 28.2]
$R_{D}{ }^{\pi}(\%)$	0.344 ± 0.002	0.344 ± 0.002	0.344 ± 0.002	[0.339, 0.348]
$A_{D}(\%)$	-	-	$-0.55{ }_{-0.51}^{+0.49}$	$[-1.5,0.4]$
$\|q / p\|$	-	0.998 ± 0.008	$0.969_{-0.045}^{+0.050}$	[0.89, 1.07]
$\phi\left({ }^{\circ}\right)$	-	0.08 ± 0.31	${ }_{-3.9}{ }^{+0.54 .5}$	[-13.2, 5.1]
$\delta_{K \pi \pi}\left({ }^{\circ}\right)$	$18.5{ }_{-23.4}^{+22.7}$	$22.1{ }_{-23.4}^{+22.6}$		$[-21.3,70.3]$
$A_{C P}^{\pi \pi \pi}(\%)$	$18.5-23.4$	0.05 ± 0.16	$25.8_{-23.8}^{+23.0}$	[-0.25, 0.38]
$A_{C P}^{K K}(\%)$	-	-0.11 ± 0.16	0.06 ± 0.16	[-0.40, 0.22]
x_{12} (\%)	-	$0.43{ }_{-0.11}^{+0.10}$	-0.09 ± 0.16	[0.22, 0.63]
$y_{12}(\%)$	-	0.63 ± 0.06		[0.50, 0.75]
$\phi_{12}\left({ }^{\circ}\right)$	-	$-0.25{ }_{-0.99}^{+0.96}$		[-2.5, 1.8]

Figure 69.1: Two-dimensional $1 \sigma-5 \sigma$ contours for (x, y) (left) and for $(|q / p|, \operatorname{Arg}(q / p))$ (right) as obtained by HFLAV [7], from measurements of $D^{0} \rightarrow K^{(*)+} \ell \nu, h^{+} h^{-}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{+} \pi^{-}, K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$, and $\pi^{+} \pi^{-} \pi^{0}$ decays, and double-tagged branching fractions measured at the $\psi(3770)$ resonance.
parameter $y_{K 3 \pi}^{\prime \prime}$. This measurement resulted in an observation of charm mixing with 8.2σ significance.

Both the sign and magnitude of x and y without strong phases entering or sign ambiguity can be measured using the time-dependent resonant substructure of multibody D^{0} decays $[35,36]$. In $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$, the DCS and CF decay amplitudes populate the same Dalitz plot, which allows for di-
rect measurement of the relative strong phases. Belle [33, 35], BaBar [34], and CLEO [70] have measured the relative strong phase between $D^{0} \rightarrow K^{*}(892)^{-} \pi^{+}$and $D^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$ to be $(173.9 \pm 0.7 \text { (stat. only) })^{\circ},(177.6 \pm 1.1 \text { (stat. only) })^{\circ}$, and $\left(189 \pm 10 \pm 3_{-5}^{+15}\right)^{\circ}$, respectively. These results are close to the 180° expected from Cabibbo factors and a small strong phase. Two LHCb measurements $[30,31]$ of x, y are decay-model inde-
pendent, i.e., the model of resonances in the intermediate state is replaced by strong-phase measurements from CLEO-c [28]. Table 69.4 summarizes mixing results from time-dependent multibody analyses. World average values for the measurements listed are given later, as a result of the HFLAV global fit.

In addition, Belle [33,35] has measured the relative strong phase (statistical errors only) and the ratio R (central values only) of the DCS fit fraction relative to the CF fit fraction for five excited K states: $K^{*}(892)^{+} \pi^{-}, K_{0}^{*}(1430)^{+} \pi^{-}, K_{2}^{*}(1430)^{+} \pi^{-}$, $K^{*}(1410)^{+} \pi^{-}$, and $K^{*}(1680)^{+} \pi^{-}$. Similarly, BaBar [34, 71, 72] has reported central values of R for $K^{*}(892)^{+} \pi^{-}, K_{0}^{*}(1430)^{+} \pi^{-}$, and $K_{2}^{*}(1430)^{+} \pi^{-}$. The systematic uncertainties on R are not evaluated. Large differences in R are observed among these final states, which indicates interesting hadronic effects.

69.4 Decays to $C P$ Eigenstates

When the final state f is a $C P$ eigenstate, there is no distinction between f and \bar{f}. Thus $A_{f}=A_{\bar{f}}$ and $\bar{A}_{\bar{f}}=\bar{A}_{f}$. We denote final states with $C P$ eigenvalues ± 1 by $f_{ \pm}$and write $\lambda_{ \pm}$for $\lambda_{f_{ \pm}}$.

The quantity y may be measured by comparing the rate for D^{0} decays to $C P$ eigenstates such as $K^{+} K^{-}$with the rate to non$C P$ states such as $K^{-} \pi^{+}$[27]. If decays to $K^{+} K^{-}$have a shorter effective lifetime than those to $K^{-} \pi^{+}$, then $\Gamma_{+}>\Gamma_{-}$, or, since $C P$ violation is very small, $\Gamma_{2}>\Gamma_{1}$ and y is positive.

In the limit of small mixing ($x, y \ll 1$) and the absence of direct $C P$ violation in DCS decays $\left(A_{D}=0\right)$, one can write

$$
\begin{equation*}
\lambda_{ \pm}=\left|\frac{q}{p}\right| e^{ \pm i \phi} \tag{69.27}
\end{equation*}
$$

In this scenario, to a good approximation, the decay rates for states that are initially D^{0} and \bar{D}^{0} to a $C P$ eigenstate have exponential time dependence:

$$
\begin{align*}
r_{ \pm}(t) & \propto \exp \left(-\Gamma_{ \pm} t\right) \tag{69.28}\\
\bar{r}_{ \pm}(t) & \propto \exp \left(-\bar{\Gamma}_{ \pm} t\right) \tag{69.29}
\end{align*}
$$

The effective decay widths are given by

$$
\begin{gather*}
\Gamma_{ \pm}=1 \pm\left|\frac{q}{p}\right|(y \cos \phi-x \sin \phi) \tag{69.30}\\
\bar{\Gamma}_{ \pm}=1 \pm\left|\frac{p}{q}\right|(y \cos \phi+x \sin \phi) \tag{69.31}
\end{gather*}
$$

Thus the effective decay rate to a $C P$ eigenstate combining both D^{0} and \bar{D}^{0} decays is

$$
\begin{equation*}
r_{ \pm}(t)+\bar{r}_{ \pm}(t) \propto e^{-\left(1 \pm y_{C P}\right) t} \tag{69.32}
\end{equation*}
$$

where

$$
\begin{align*}
y_{C P} & =\frac{1}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) y \cos \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) x \sin \phi \tag{69.33}\\
& \approx y \cos \phi-A_{M} x \sin \phi \tag{69.34}
\end{align*}
$$

If $C P$ is conserved, $y_{C P}=y$. Almost all measurements of $y_{C P}$ are relative to the $D^{0} \rightarrow K^{-} \pi^{+}$decay rate. Belle [45] has reported $y_{C P}$ also for the final state $K_{S}^{0} K^{+} K^{-}$, which is dominated by the $C P$-odd final state $K_{S}^{0} \phi$. Table 69.5 summarizes the current status of measurements.

In addition to $y_{C P}$, Belle [40], BaBar [44], LHCb [50], and CDF [43] have reported measurements of the decay-rate asymmetry for $C P$-even final states

$$
\begin{align*}
A_{\Gamma} & \equiv \frac{\Gamma_{+}-\bar{\Gamma}_{+}}{\Gamma_{+}+\bar{\Gamma}_{+}}=\frac{\left(1 / \tau_{+}\right)-\left(1 / \bar{\tau}_{+}\right)}{\left(1 / \tau_{+}\right)+\left(1 / \bar{\tau}_{+}\right)}=\frac{\bar{\tau}_{+}-\tau_{+}}{\bar{\tau}_{+}+\tau_{+}} \tag{69.35}\\
& \approx \frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi \tag{69.36}
\end{align*}
$$

$$
\begin{equation*}
\approx A_{M} y \cos \phi-x \sin \phi \tag{69.37}
\end{equation*}
$$

If $C P$ is conserved, $A_{\Gamma}=0$.

The asymmetry A_{Γ} relates to the full decay width. An asymmetry in partial widths is referred to as $A_{C P}$ and is final-state dependent:

$$
\begin{equation*}
A_{C P} \equiv \frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow \bar{f}\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow \bar{f}\right)} \tag{69.38}
\end{equation*}
$$

Unlike $A_{\Gamma}, A_{C P}$ is a time-integrated quantity, i.e., it does not require measuring decay times. For neutral D decays, $A_{C P}$ receives contributions from both direct (in the decay amplitudes) and indirect (due to mixing) processes: $A_{C P}\left(D^{0} \rightarrow f\right)=A_{C P}^{f}+A_{C P}^{\text {indirect }}$. The latter indirect contribution depends on the mixing parameters x and y :

$$
\begin{align*}
A_{C P}^{\text {indirect }} & =\frac{1}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi \\
& =-A_{\Gamma} \tag{69.39}
\end{align*}
$$

Numerous measurements of $A_{C P}$ for decays to $C P$ eigenstates are listed in this Review [73]. Table 69.6 summarizes the current status of measurements of the difference in $A_{C P}$ for $D^{0} \rightarrow K^{+} K^{-}$ and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays: $\Delta A_{C P} \equiv A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)$. Measuring the difference is advantagous, as numerous systematic uncertainties cancel. As $A_{C P}^{\text {indirect }}$ is universal (independent of final state), it subtracts out of the difference $\Delta A_{C P}$. However, at hadron experiments such as LHCb , there are differences in efficiencies between $K^{+} K^{-}$and $\pi^{+} \pi^{-}$final states, and a small contribution to $\Delta A_{C P}$ remains. The most recent result from LHCb [57], based on $8.9 \mathrm{fb}^{-1}$ of data, differs from zero with a statistical significance of 5.3σ. Thus, this measurement constitutes the first observation of $C P$ violation in charm meson or charm baryon decays. These $C P$ asymmetries are included in HFLAV's global fit for charm mixing parameters discussed below; the fit shows that the $C P$ violation observed is due to the direct contributions $A_{C P}^{K K}$ and $A_{C P}^{\pi \pi}$.

69.5 Quantum-correlated $D^{0} \bar{D}^{0}$ Analyses

Measurements of $R_{D}, \cos \delta_{K \pi}, \sin \delta_{K \pi}, x$, and y can be obtained from a combined fit to time-integrated yields of singletagged (ST) and double-tagged (DT) $D^{0} \bar{D}^{0}$ events produced at the $\psi(3770)$ resonance [74,75]. Single-tagged events are those in which either the D^{0} or \bar{D}^{0} decay is reconstructed (identified), and the other neutral D decays generically. Double-tagged events are those in which both D^{0} and \bar{D}^{0} decays are identified. Due to quantum correlations, the decay of a $D^{0}, \bar{D}^{0}, D_{+}$, or D_{-}projects the other neutral D into a state $\bar{D}^{0}, D^{0}, D_{-}$, and D_{+}, respectively. The $C P$-specific D_{-}and D_{+}decays (or, neglecting $C P$ violation, D_{1} and D_{2} decays) include interference between D^{0} and \bar{D}^{0} amplitudes, and this provides sensitivity to R_{D} and $\cos \delta_{K \pi}$. The flavor-specific D^{0} and \bar{D}^{0} decays include interference between D_{1} and D_{2} amplitudes, and this provides sensitivity to x and y. For details of this method, see Refs. [1-5].

BESIII has reported results using $2.92 \mathrm{fb}^{-1}$ of $e^{+} e^{-} \rightarrow \psi(3770)$ data, where the quantum-correlated $D^{0} \bar{D}^{0}$ pairs are produced in a $C=-1$ state. They measure $y_{C P}=(-2.0 \pm 1.3 \pm 0.7) \%$ [42] from DT yields using a $C P$ eigenstate tag for one D and a semileptonic tag for the other; and they measure $A_{K \pi}^{C P}=(12.7 \pm 1.3 \pm 0.7) \%$ [56] from DT yields using a $C P$ tag for one D and a $K^{ \pm} \pi^{\mp}$ tag for the other. For $y_{C P}$, the $C P$ eigenstates used are $K^{-} K^{+}\left(f_{+}\right)$, $\pi^{+} \pi^{-}\left(f_{+}\right), K_{S}^{0} \pi^{0} \pi^{0}\left(f_{+}\right), K_{S}^{0} \pi^{0}\left(f_{-}\right), K_{S}^{0} \eta\left(f_{-}\right)$, and $K_{S}^{0} \omega$ $\left(f_{-}\right)$. For $A_{K \pi}^{C P}$, additional $C P$ eigenstates included are $\pi^{0} \pi^{0}$ $\left(f_{+}\right)$and $\rho^{0} \pi^{0}\left(f_{+}\right)$. Using external inputs for R_{D} and y from HFLAV [76], and R from the PDG [77] (see Eq. (69.25)), BESIII obtains $\cos \delta_{K \pi}=1.02 \pm 0.11 \pm 0.06 \pm 0.01$ [56], where the third uncertainty is due to the external inputs.

CLEO-c has reported results using $0.82 \mathrm{fb}^{-1}$ of $e^{+} e^{-} \rightarrow$ $\psi(3770)$ data [78-80]. The values of $y, R_{M}, \cos \delta_{K \pi}$, and $\sin \delta_{K \pi}$ are determined from a combined fit to the ST (hadronic only) and DT yields. The DT yields include events in which one D is reconstructed in a hadronic mode and the other D is partially reconstructed in either $D \rightarrow K^{\mp} e^{ \pm} \nu$ or $D \rightarrow K^{\mp} \mu^{ \pm} \nu$.

The CLEO-c analysis obtains $\cos \delta_{K \pi}=0.81_{-0.18}^{+0.22}{ }_{-0.05}^{+0.07}$ and $\sin \delta_{K \pi}=-0.01 \pm 0.41 \pm 0.04$. These fits allow $\cos \delta_{K \pi}, \sin \delta_{K \pi}$, and x^{2} to be unphysical. Constraining $\cos \delta_{K \pi}$ and $\sin \delta_{K \pi}$ to the physical range $[-1,+1]$ (i.e., interpreting $\delta_{K \pi}$ as an angle) and also using external inputs for x, y and $y_{C P}$ from HFLAV [81], CLEO-c obtains $\delta_{K \pi}=\left(18_{-17}^{+11}\right)^{\circ}$ [80].

69.6 Summary of Experimental Results

Several recent results indicate that charm mixing is at the upper end of the range of Standard Model predictions. For $D^{0} \rightarrow K^{+} \pi^{-}$, LHCb [19, 20], CDF [17], and Belle [16] each exclude the nomixing hypothesis by more than 5 standard deviations. For $y_{C P}$ in $D^{0} \rightarrow K^{+} K^{-}$and $\pi^{+} \pi^{-}$, BaBar [44], Belle [40], and LHCb [38] measure $3.3 \sigma, 4.7 \sigma$, and 3.6σ effects, respectively. The most sensitive measurements of x and y are from $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays at Belle [33] and LHCb [30]. In a similar analysis using $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $D^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays, BaBar [34] finds the no-mixing solution excluded at 1.9σ. LHCb [69] has reported the observation of charm mixing in $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$with 8.2σ significance. However, the strong phase difference for this decay is not known, and thus x and y cannot be extracted. The current situation would benefit from better knowledge of the strong phase difference $\delta_{K \pi}$ than provided by the current CLEO-c [80] and BESIII [56] results, and knowledge of the strong phase difference $\delta_{K \pi \pi \pi}$. Such knowledge would allow one to extract x and y from $D^{0} \rightarrow K^{+} \pi^{-}$measurements of $\left(x^{\prime 2}, y^{\prime}\right)$, and from $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$measurements of ($x^{\prime \prime 2}, y^{\prime \prime}$). In fact, the most precise knowledge of $\delta_{K \pi}$ comes from combining measurements of y^{\prime} (Table 69.3) with measurements of y (Table 69.4) and $y_{C P}$ (Table 69.5), as done in the HFLAV global fit described below.
The experimental data consistently indicate that the D^{0} and \bar{D}^{0} mesons mix. The mixing is presumably dominated by long-range processes. Under the assumption that the observed mixing is due entirely to non-Standard Model processes, significant constraints on New Physics models can be obtained [82]. A serious limitation to the interpretation of charm mixing in terms of New Physics is the theoretical uncertainty on the Standard Model predictions [83, 84].

69.7 HFLAV Global Fit for Charm Mixing Parameters

The Heavy Flavor Averaging Group (HFLAV) performs a global fit to all relevant mixing measurements to obtain world average values for 10 fitted parameters: $x, y, \delta_{K \pi}, \delta_{K \pi \pi^{0}}, R_{D}\left(K^{+} \pi^{-}\right)$, $A_{D}\left(K^{+} \pi^{-}\right),|q / p|, \operatorname{Arg}(q / p) \equiv \phi$, and the direct $C P$-violating asymmetries $A_{C P}^{K K}$ and $A_{C P}^{\pi \pi}$. Correlations among observables are taken into account by using the error matrices provided by the experiments. Measurements of $D^{0} \rightarrow K^{(*)+} \ell^{-} \bar{\nu}, K^{+} K^{-}$, $\pi^{+} \pi^{-}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{+} \pi^{-}, K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$, and $\pi^{+} \pi^{-} \pi^{0}$ decays are used, as well as CLEO-c and BESIII results for double-tagged branching fractions measured at the $\psi(3770)$. There are three observables input to the fit that are themselves world average values calculated by HFLAV: R_{M} from $D^{0} \rightarrow K^{(*)+} \ell^{-} \bar{\nu}$ decays (Table 69.1), and $y_{C P}$ and A_{Γ} from $D^{0} \rightarrow f_{C P}$ decays (Table 69.5). A measurement by LHCb of R_{M} using $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$decays is input separately. Details of the fitting procedure are given in Ref. [7].

The results of the fit as of March 2019 are listed in Table 69.7. Three separate fits are performed: (a) assuming no $C P$ violation; (b) assuming no $C P$ violation in doubly Cabibbo-suppressed decays; and (c) allowing all $C P$ violation. The second fit (b) corresponds to the theory expectation $[85,86]$; in this case four fitted parameters are reduced to three using the relationship $\tan \phi=(x / y) \cdot\left(1-|q / p|^{2}\right) /\left(1+|q / p|^{2}\right)$ [85-87]. Alternatively, one can fit for the three parameters $x_{12} \equiv 2\left|M_{12}\right| / \Gamma, y_{12} \equiv\left|\Gamma_{12}\right| / \Gamma$, and $\phi_{12} \equiv \operatorname{Arg}\left(M_{12} / \Gamma_{12}\right)$, from which $x, y,|q / p|$, and ϕ can be derived.

Confidence contours in the two dimensions (x, y) and $(|q / p|, \phi)$ from the fit are plotted in Fig. 69.1. These contours are obtained by letting, for any point in the two-dimensional plane, all other fit parameters take their preferred values. The $1 \sigma-5 \sigma$ boundaries drawn are the loci of points in which the χ^{2} has risen above the minimum by $2.30,6.18,11.83,19.33$, and 28.67 units. The fit
excludes the no-mixing point $x=y=0$ at more than 11.5σ, when $C P$ violation is allowed. The fit is consistent with no $C P$ violation $(|q / p|=1, \phi=0)$ at the 63% confidence level.

One-dimensional likelihood functions for parameters are obtained by allowing, for any value of the parameter, all other fit parameters to take their preferred values. The resulting likelihood functions give central values, 68.3% C.L. intervals, and 95% C.L. intervals as listed in Table 69.7. The parameter ranges $x \leq 0$ and $y \leq 0$ are excluded at 3.1σ and $>11.4 \sigma$ significance, respectively. The χ^{2} of the fit is 60.7 for $49-10=39$ degrees of freedom, indicating some disagreement among the measurements.

From the results of the HFLAV averaging, the following can be concluded: (1) Since $C P$ violation is small and $y_{C P}$ is positive, the $C P$-even state is shorter-lived, as in the $K^{0} \bar{K}^{0}$ system. (2) However, since x appears to be positive, the $C P$-even state is heavier, unlike in the $K^{0} \bar{K}^{0}$ system. (3) The strong phase difference $\delta_{K \pi}$ is consistent with the $S U(3)$ expectation of zero, and large values are unlikely (its magnitude is $<30^{\circ}$ at 95% C.L.) (4) While direct $C P$ violation has now been observed in D decays, there is no evidence for indirect $C P$ violation, i.e., $|q / p| \neq 1$ or $\phi \neq 0$. Observing such $C P$ violation at the current level of sensitivity would indicate new physics.

69.8 Future Data

Current results are based primarily upon CLEO-c ($0.82 \mathrm{fb}^{-1}$ of $e^{+} e^{-} \rightarrow \psi(3770)$ data), Belle and BaBar ($\sim 1.4 \mathrm{ab}^{-1}$ of $e^{+} e^{-} \rightarrow$ $\Upsilon(4 S)$ data $)$, and LHCb Runs 1 and $2\left(3.0 \mathrm{fb}^{-1}+5.9 \mathrm{fb}^{-1}\right.$ of $p p$ collision data at $\sqrt{s}=7,8,13 \mathrm{TeV})$.

BESIII has accumulated $2.9 \mathrm{fb}^{-1}$ of $e^{+} e^{-} \rightarrow \psi(3770)$ data and plans to collect up to $20 \mathrm{fb}^{-1}$ in the next few years. These data should provide strong phase measurements that enable improved model-independent determinations of mixing parameters from Belle II and LHCb. In 2019, Belle II began accumulating $50 \mathrm{ab}^{-1}$ of $e^{+} e^{-} \rightarrow \Upsilon(4 S)$ data [88], which is expected to take approximately ten years to collect. At LHCb, Run 2 was completed in 2018, Run 3 is planned for 2021-23, and Run 4 is planned for 2026-29 [89]. The goal for Runs $3+4$ is to accumulate an additional $50 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=14 \mathrm{TeV}$. These data, along with the large $e^{+} e^{-}$dataset from Belle II, should provide significantly greater sensitivity to $D^{0}-\bar{D}^{0}$ mixing and direct and indirect $C P$ violation in D^{0} decays.

References

[1] D. M. Asner and W. M. Sun, Phys. Rev. D73, 034024 (2006), [Erratum: Phys. Rev. D77, 019901 (2008)], [hepph/0507238].
[2] D. Atwood and A. A. Petrov, Phys. Rev. D71, 054032 (2005), [hep-ph/0207165].
[3] M. Gronau, Y. Grossman and J. L. Rosner, Phys. Lett. B508, 37 (2001), [hep-ph/0103110].
[4] Z.-z. Xing, Phys. Rev. D55, 196 (1997), [hep-ph/9606422].
[5] M. Goldhaber and J. L. Rosner, Phys. Rev. D15, 1254 (1977).
[6] See "Review of Multibody Charm Analyses" in this Review.
[7] Y. Amhis et al. (Heavy Flavor Averaging Group) (2019), [arXiv:1909.12524].
[8] U. Bitenc et al. (Belle), Phys. Rev. D77, 112003 (2008), [arXiv:0802.2952].
[9] B. Aubert et al. (BaBar), Phys. Rev. D76, 014018 (2007), [arXiv:0705.0704].
[10] C. Cawlfield et al. (CLEO), Phys. Rev. D71, 077101 (2005), [hep-ex/0502012].
[11] E. M. Aitala et al. (E791), Phys. Rev. Lett. 77, 2384 (1996), [hep-ex/9606016].
[12] U. Bitenc et al. (Belle), Phys. Rev. D72, 071101 (2005), [hepex/0507020].
[13] B. Aubert et al. (BaBar), Phys. Rev. D70, 091102 (2004), [hep-ex/0408066].
[14] R. Aaij et al. (LHCb), Phys. Rev. D97, 3, 031101 (2018), [arXiv:1712.03220].
[15] R. Aaij et al. (LHCb), Phys. Rev. D95, 5, 052004 (2017), [Erratum: Phys. Rev. D96, 099907 (2017)], [arXiv:1611.06143].
[16] B. R. Ko et al. (Belle), Phys. Rev. Lett. 112, 11, 111801 (2014), [Addendum: Phys. Rev. Lett. 112, 139903 (2014)], [arXiv:1401.3402].
[17] T. A. Aaltonen et al. (CDF), Phys. Rev. Lett. 111, 23, 231802 (2013), [arXiv:1309.4078].
[18] B. Aubert et al. (BaBar), Phys. Rev. Lett. 98, 211802 (2007), [hep-ex/0703020].
[19] R. Aaij et al. (LHCb), Phys. Rev. Lett. 111, 25, 251801 (2013), [arXiv:1309.6534].
[20] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 10, 101802 (2013), [arXiv:1211.1230].
[21] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 100, 121802 (2008), [arXiv:0712.1567].
[22] L. M. Zhang et al. (Belle), Phys. Rev. Lett. 96, 151801 (2006), [hep-ex/0601029].
[23] J. M. Link et al. (FOCUS), Phys. Lett. B618, 23 (2005), [hep-ex/0412034].
[24] R. Godang et al. (CLEO), Phys. Rev. Lett. 84, 5038 (2000), [hep-ex/0001060].
[25] E. M. Aitala et al. (E791), Phys. Rev. D57, 13 (1998), [hepex/9608018].
[26] Y. Nir, Lectures given at 27th SLAC Summer Institute on Particle Physics: "CP Violation in and Beyond the Standard Model (SSI 99)," Stanford, California, 7-16 July 1999. Published in Trieste 1999, Particle Physics, pp. 165-243.
[27] S. Bergmann et al., Phys. Lett. B486, 418 (2000), [hepph/0005181].
[28] J. Libby et al. (CLEO), Phys. Rev. D82, 112006 (2010), [arXiv:1010.2817].
[29] A. Di Canto et al., Phys. Rev. D99, 1, 012007 (2019), [arXiv:1811.01032].
[30] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 23, 231802 (2019), [arXiv:1903.03074].
[31] R. Aaij et al. (LHCb), JHEP 04, 033 (2016), [arXiv:1510.01664].
[32] J. P. Lees et al. (BaBar), Phys. Rev. D93, 11, 112014 (2016), [arXiv:1604.00857].
[33] T. Peng et al. (Belle), Phys. Rev. D89, 9, 091103 (2014), [arXiv:1404.2412].
[34] P. del Amo Sanchez et al. (BaBar), Phys. Rev. Lett. 105, 081803 (2010), [arXiv:1004.5053].
[35] K. Abe et al. (Belle), Phys. Rev. Lett. 99, 131803 (2007), [arXiv:0704.1000].
[36] D. M. Asner et al. (CLEO), Phys. Rev. D72, 012001 (2005), [hep-ex/0503045].
[37] R. Aaij et al. (LHCb), Phys. Rev. D101, 1, 012005 (2020), [arXiv:1911.01114].
[38] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 1, 011802 (2019), [arXiv:1810.06874].
[39] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 26, 261803 (2017), [arXiv:1702.06490].
[40] M. Starič et al. (Belle), Phys. Lett. B753, 412 (2016), [arXiv:1509.08266].
[41] R. Aaij et al. (LHCb), JHEP 04, 043 (2015), [arXiv:1501.06777].
[42] M. Ablikim et al. (BESIII), Phys. Lett. B744, 339 (2015), [arXiv:1501.01378].
[43] T. A. Aaltonen et al. (CDF), Phys. Rev. D90, 11, 111103 (2014), [arXiv:1410.5435].
[44] J. P. Lees et al. (BaBar), Phys. Rev. D87, 1, 012004 (2013), [arXiv:1209.3896].
[45] A. Zupanc et al. (Belle), Phys. Rev. D80, 052006 (2009), [arXiv:0905.4185].
[46] S. E. Csorna et al. (CLEO), Phys. Rev. D65, 092001 (2002), [hep-ex/0111024].
[47] J. M. Link et al. (FOCUS), Phys. Lett. B485, 62 (2000), [hep-ex/0004034].
[48] E. M. Aitala et al. (E791), Phys. Rev. Lett. 83, 32 (1999), [hep-ex/9903012].
[49] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 4, 041801 (2014), [arXiv:1310.7201].
[50] R. Aaij et al. (LHCb), JHEP 04, 129 (2012), [arXiv:1112.4698].
[51] B. Aubert et al. (BaBar), Phys. Rev. D80, 071103 (2009), [arXiv:0908.0761].
[52] B. Aubert et al. (BaBar), Phys. Rev. D78, 011105 (2008), [arXiv:0712.2249].
[53] M. Staric et al. (BELLE), Phys. Rev. Lett. 98, 211803 (2007), [,65(2007)], [hep-ex/0703036].
[54] B. Aubert et al. (BaBar), Phys. Rev. Lett. 91, 121801 (2003), [hep-ex/0306003].
[55] K. Abe et al. (Belle), Phys. Rev. Lett. 88, 162001 (2002), [hep-ex/0111026].
[56] M. Ablikim et al. (BESIII), Phys. Lett. B734, 227 (2014), [arXiv:1404.4691].
[57] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 21, 211803 (2019), [arXiv:1903.08726].
[58] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 109, 111801 (2012), [arXiv:1207.2158].
[59] B. Aubert et al. (BaBar), Phys. Rev. Lett. 100, 061803 (2008), [arXiv:0709.2715].
[60] M. Staric et al. (Belle), Phys. Lett. B670, 190 (2008), [arXiv:0807.0148].
[61] R. Aaij et al. (LHCb), Phys. Rev. Lett. 116, 19, 191601 (2016), [arXiv:1602.03160].
[62] R. Aaij et al. (LHCb), JHEP 07, 041 (2014), [arXiv:1405.2797].
[63] R. Aaij et al. (LHCb), Phys. Lett. B723, 33 (2013), [arXiv:1303.2614].
[64] R. Aaij et al. (LHCb), Phys. Rev. Lett. 108, 111602 (2012), [arXiv:1112.0938].
[65] B. R. Ko (Belle), in "7th International Workshop on the CKM Unitarity Triangle (CKM 2012) Cincinnati, Ohio, USA, September 28-October 2, 2012," (2012), [arXiv:1212.5320].
[66] B. Aubert et al. (BaBar), Phys. Rev. Lett. 97, 221803 (2006), [hep-ex/0608006].
[67] B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 211801 (2009), [arXiv:0807.4544].
[68] E. White et al. (Belle), Phys. Rev. D88, 5, 051101 (2013), [arXiv:1307.5935].
[69] R. Aaij et al. (LHCb), Phys. Rev. Lett. 116, 24, 241801 (2016), [arXiv:1602.07224].
[70] H. Muramatsu et al. (CLEO), Phys. Rev. Lett. 89, 251802 (2002), [Erratum: Phys. Rev. Lett. 90, 059901 (2003)], [hepex/0207067].
[71] B. Aubert et al. (BaBar), Phys. Rev. Lett. 95, 121802 (2005), [hep-ex/0504039].
[72] B. Aubert et al. (BaBar), Phys. Rev. D78, 034023 (2008), [arXiv:0804.2089].
[73] See the tabulation of $A_{C P}$ results in the D^{0} and D^{+}Listings in this Review.
[74] R.A. Briere et al., (CLEO Collab.), CLNS 01-1742, (2001).
[75] D. M. Asner et al., (BES-III Collab.), Int. J. Mod. Phys. A, 24 (2009).
[76] Heavy Flavor Averaging Group, https://hflav-eos.web. cern.ch/hflav-eos/charm/CHARM13/results_mix_cpv. html.
[77] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[78] J. L. Rosner et al. (CLEO), Phys. Rev. Lett. 100, 221801 (2008), [arXiv:0802.2264].
[79] D. M. Asner et al. (CLEO), Phys. Rev. D78, 012001 (2008), [arXiv:0802.2268].
[80] D. M. Asner et al. (CLEO), Phys. Rev. D86, 112001 (2012), [arXiv:1210.0939].
[81] Heavy Flavor Averaging Group, https://hflav-eos.web. cern.ch/hflav-eos/charm/March12/results_mix_cpv. html.
[82] E. Golowich et al., Phys. Rev. D76, 095009 (2007), [arXiv:0705.3650].
[83] G. Isidori et al., Phys. Lett. B711, 46 (2012), [arXiv:1111.4987].
[84] E. Franco, S. Mishima and L. Silvestrini, JHEP 05, 140 (2012), [arXiv:1203.3131].
[85] Y. Grossman, Y. Nir and G. Perez, Phys. Rev. Lett. 103, 071602 (2009), [arXiv:0904.0305].
[86] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D80, 076008 (2009), [arXiv:0907.3917].
[87] M. Ciuchini et al., Phys. Lett. B655, 162 (2007), [hepph/0703204].
[88] E. Kou et al. (Belle-II) (2018), [arXiv:1808.10567].
[89] R. Aaij et al. (LHCb) (2018), [arXiv:1808.08865].

70. D_{s}^{+}Branching Fractions

Updated September 2019 by J.L. Rosner (University of Chicago) and C.G. Wohl (LBNL).

Figure 70.1 shows a partial breakdown of the D_{s}^{+}branching fractions. The rest of this note is about how the figure was constructed. The values shown make heavy use of CLEO measurements of inclusive branching fractions [1]. For references to other data cited in the following, see the Listings.

70.1. Modes with leptons

The bottom $(18.0 \pm 1.0) \%$ of Fig. 70.1 shows the fractions for the modes that include leptons. The measured $K^{0} e^{+} \nu_{e}$ and $K^{* 0} e^{+} \nu_{e}$ fractions have been doubled to take account of the corresponding $\mu^{+} \nu_{\mu}$ fractions. The sum of the exclusive $X e^{+} \nu_{e}$ fractions is $(6.0 \pm 0.3) \%$, consistent with an inclusive semileptonic measurement of $(6.5 \pm 0.4) \%$. There seems to be little missing here.

70.2. Inclusive hadronic $K \bar{K}$ fractions

The Cabibbo-favored $c \rightarrow s$ decay in D_{s}^{+}decay produces a final state with both an s and an \bar{s}; and thus modes with a $K \bar{K}$ pair or with an $\eta, \omega, \eta^{\prime}$, or ϕ predominate (as may already be seen in Fig. 70.1 in the semileptonic fractions). We consider the $K \bar{K}$ modes first. A complete picture of the exclusive $K \bar{K}$ charge modes is not yet possible, because branching fractions for many of those modes have not yet been measured. However, CLEO has measured the inclusive $K^{+}, K^{-}, K_{S}^{0}, K^{+} K^{-}, K^{+} K_{S}^{0}, K^{-} K_{S}^{0}$, and $2 K_{S}^{0}$ fractions (these include modes with leptons) [1]. And each of these inclusive fractions with a K_{S}^{0} is equal to the corresponding fraction with a $K_{L}^{0}: f\left(K^{+} K_{L}^{0}\right)=f\left(K^{+} K_{S}^{0}\right), f\left(2 K_{L}^{0}\right)=f\left(2 K_{S}^{0}\right)$, etc. Therefore, of all inclusive fractions pairing a K^{+}, K_{S}^{0}, or K_{L}^{0} with a K^{-}, K_{S}^{0}, or K_{L}^{0}, we know all but $f\left(K_{S}^{0} K_{L}^{0}\right)$.

We can get that fraction. The total K_{S}^{0} fraction is

$$
\begin{aligned}
f\left(K_{S}^{0}\right) & =f\left(K^{+} K_{S}^{0}\right)+f\left(K^{-} K_{S}^{0}\right)+2 f\left(2 K_{S}^{0}\right)+f\left(K_{S}^{0} K_{L}^{0}\right) \\
& +f\left(\text { single } K_{S}^{0}\right)
\end{aligned}
$$

where f (single K_{S}^{0}) is the sum of the branching fractions for modes such as $K_{S}^{0} \pi^{+} 2 \pi^{0}$ with a K_{S}^{0} and no second K. The $K_{S}^{0} \pi^{+} 2 \pi^{0}$ mode is in fact the only unmeasured single- K_{S}^{0} mode (throughout, we shall assume that fractions for modes with a K or $K \bar{K}$ and more than three pions are negligible), and we shall take its fraction to be the same as for the $K_{S}^{0} 2 \pi^{+} \pi^{-}$mode, $(0.30 \pm 0.11) \%$. Any reasonable deviation from this value would be too small to matter much in the following. Adding the several small single- K_{S}^{0} branching fractions, including those from semileptonic modes, we get $f\left(\right.$ single $\left.K_{S}^{0}\right)=(1.7 \pm 0.2) \%$.

Using this, we have:

$$
\begin{aligned}
f\left(K_{S}^{0} K_{L}^{0}\right)= & f\left(K_{S}^{0}\right)-f\left(K^{+} K_{S}^{0}\right)-f\left(K^{-} K_{S}^{0}\right) \\
& -2 f\left(2 K_{S}^{0}\right)-f\left(\text { single } K_{S}^{0}\right) \\
= & (19.0 \pm 1.1)-(5.8 \pm 0.5)-(1.9 \pm 0.4) \\
& -2 \times(1.7 \pm 0.3)-(1.7 \pm 0.2) \\
= & (6.2 \pm 1.4) \%
\end{aligned}
$$

Here and below we treat the errors as uncorrelated, although often they are not. However, our main aim is to get numbers for Fig. 70.1; errors are secondary.

There is a check on our result: The ϕ inclusive branching fraction is $(15.7 \pm 1.0) \%$, of which 34%, or $(5.34 \pm 0.34) \%$ of D_{s}^{+}decays, produces a $K_{S}^{0} K_{L}^{0}$. Our $f\left(K_{S}^{0} K_{L}^{0}\right)=(6.2 \pm 1.4) \%$ has to be at least this large - and it is, within the sizable error.

We now have all the inclusive $K \bar{K}$ fractions. We use $f\left(K^{+} \bar{K}^{0}\right)=$ $2 f\left(K^{+} K_{S}^{0}\right)$, and likewise for $f\left(K^{-} K^{0}\right)$. For $K^{+} K^{-}$and $K_{S}^{0} K_{L}^{0}$, we subtract off the contributions from $\phi \ell^{+} \nu$ decay to get the purely

Figure 70.1: A partial breakdown of D_{s}^{+}branching fractions. The hadronic bins in the left column show inclusive fractions. Shading within a bin shows how much of the inclusive fraction is not yet accounted for by adding up all the relevant exclusive fractions. The inclusive hadronic ϕ fraction is spread over three bins, in proportion to its decay fractions into $K^{+} K^{-}, K_{S}^{0} K_{L}^{0}$, and no- $K \bar{K}$ modes.
hadronic $K \bar{K}$ inclusive fractions:

$$
\begin{aligned}
f\left(K^{+} K^{-}, \text {hadronic }\right) & =(15.8 \pm 0.7)-(2.1 \pm 0.3) \\
& =(13.7 \pm 0.8) \% \\
f\left(K^{+} \bar{K}^{0}, \text { hadronic }\right) & =(11.6 \pm 1.0) \% \\
f\left(K^{-} K^{0}, \text { hadronic }\right) & =(3.8 \pm 0.8) \% \\
f\left(2 K_{S}^{0}+2 K_{L}^{0}, \text { hadronic }\right) & =(3.4 \pm 0.6) \% \\
f\left(K_{S}^{0} K_{L}^{0}, \text { hadronic }\right) & =(6.2 \pm 1.4)-(1.5 \pm 0.2) \\
& =(4.7 \pm 1.4) \% .
\end{aligned}
$$

The fractions are shown in Fig. 70.1. They total $(37.2 \pm 2.2) \%$ of D_{s}^{+} decays.

We can add more information to the figure by summing up measured branching fractions for exclusive modes within each bin:
$K^{+} K^{-}$modes - The sum of measured $K^{+} K^{-} \pi^{+}, K^{+} K^{-} \pi^{+} \pi^{0}$, and $K^{+} K^{-} 2 \pi^{+} \pi^{-}$branching fractions is $(12.6 \pm 0.6) \%$. That leaves $(1.1 \pm 1.0) \%$ for the $K^{+} K^{-} \pi^{+} 2 \pi^{0}$ mode, which is the only other $K^{+} K^{-}$mode with three or fewer pions. In Fig. 70.1, this unmeasured part of the $K^{+} K^{-}$bin is shaded.
$K^{+} \bar{K}^{0}$ modes - Two times the sum of the measured $K^{+} K_{S}^{0}$, $K^{+} K_{S}^{0} \pi^{0}$, and $K^{+} K_{S}^{0} \pi^{+} \pi^{-}$branching fractions is $(8.0 \pm 0.5) \%$. This leaves $(3.6 \pm 1.1) \%$ for the unmeasured $K^{+} \bar{K}^{0}$ modes (there are three such modes with three or fewer pions). This is shaded in the figure.
$K^{-} K^{0}$ modes-Twice the $K^{-} K_{S}^{0} 2 \pi^{+}$fraction is (3.4 $\left.\pm 0.2\right) \%$, which leaves about $(0.4 \pm 0.8) \%$ for $K^{-} K^{0} 2 \pi^{+} \pi^{0}$, the only other $K^{-} K^{0}$ mode with three or fewer pions.
$2 K_{S}^{0}+2 K_{L}^{0}$ modes - The $2 K_{S}^{0} \pi^{+}$and $2 K_{S}^{0} 2 \pi^{+} \pi^{-}$fractions sum to (0.86 ± 0.07) \%; this times two (for the corresponding $2 K_{L}^{0}$ modes) is $(1.72 \pm 0.14) \%$. This leaves about $(1.7 \pm 0.7) \%$ for other $2 K_{S}^{0}+2 K_{L}^{0}$ modes.
$K_{S}^{0} K_{L}^{0}$ modes-Most of the $K_{S}^{0} K_{L}^{0}$ fraction is accounted for by ϕ decays (see below).

70.3. Inclusive hadronic $\eta, \omega, \eta^{\prime}$, and ϕ fractions

These are easier. We start with the inclusive branching fractions, and then, to avoid double counting, subtract: (1) fractions for modes with leptons; (2) η mesons that are included in the inclusive η^{\prime} fraction; and (3) $K^{+} K^{-}$and $K_{S}^{0} K_{L}^{0}$ from ϕ decays:

$$
\begin{aligned}
f(\eta \text { hadronic }) & =f(\eta \text { inclusive })-0.65 f\left(\eta^{\prime} \text { inclusive }\right) \\
-f\left(\eta \ell^{+} \nu\right) & =(18.5 \pm 3.0) \% \\
f(\omega \text { hadronic }) & =f(\omega \text { inclusive })-0.026 f\left(\eta^{\prime} \text { inclusive }\right) \\
& =(5.8 \pm 1.4) \% \\
f\left(\eta^{\prime} \text { hadronic }\right) & =f\left(\eta^{\prime} \text { inclusive }\right)-f\left(\eta^{\prime} \ell^{+} \nu\right) \\
& =(8.5 \pm 1.5) \% \\
f(\phi \text { hadronic, } \nrightarrow K \bar{K}) & =0.17\left[f(\phi \text { inclusive })-f\left(\phi \ell^{+} \nu\right)\right] \\
& =(1.9 \pm 0.2) \%
\end{aligned}
$$

The factors $0.65,0.026$, and 0.17 are the $\eta^{\prime} \rightarrow \eta, \eta^{\prime} \rightarrow \omega$, and $\phi \nrightarrow K \bar{K}$ branching fractions. Figure 70.1 shows the results; the sum is $(34.7 \pm 3.6) \%$, which is about equal to the hadronic $K \bar{K}$ total.

Note that the bin marked ϕ near the top of Fig. 70.1 includes neither the $\phi \ell^{+} \nu$ decays nor the 83% of other ϕ decays that produce a $K \bar{K}$ pair. There is twice as much ϕ in the $K_{S}^{0} K_{L}^{0}$ bin, and nearly three times as much in the $K^{+} K^{-}$bin. These contributions are indicated in those bins.

Again, we can show how much of each bin is accounted for by measured exclusive branching fractions:
η modes - The sum of $\eta \pi^{+}, \eta \pi^{+} \pi^{0}$ (nearly all $\eta \rho^{+}$), and ηK^{+} branching fractions is $(11.1 \pm 1.2) \%$, which leaves a good part of the inclusive hadronic η fraction, $(18.5 \pm 3.0) \%$, to be accounted for. This is shaded in the figure.
ω modes-The sum of $\omega \pi^{+}, \omega \pi^{+} \pi^{0}$, and $\omega 2 \pi^{+} \pi^{-}$fractions is $(4.6 \pm 0.9) \%$, which is nearly as large as the inclusive hadronic ω fraction, $(5.8 \pm 1.4) \%$.
η^{\prime} modes-The sum of $\eta^{\prime} \pi^{+}, \eta^{\prime} \rho^{+}$, and $\eta^{\prime} K^{+}$fractions is $(9.9 \pm 1.5) \%$, which is larger than but not in serious disagreement with the inclusive hadronic η^{\prime} fraction, $(8.5 \pm 1.5) \%$.

70.4. Cabibbo-suppressed modes

The sum of the fractions for modes with a $K \bar{K}, \eta, \omega, \eta^{\prime}$, or leptons is $(89.9 \pm 4.4) \%$. The remaining $(10.1 \pm 4.4) \%$ is to Cabibbosuppressed modes, mainly single- $K+$ pions and multiple-pion modes (see below). However, it should be noted that some small parts of the modes already discussed are Cabibbo-suppressed. For example, the $(1.1 \pm 0.2) \%$ of D_{s}^{+}decays to $K^{0} \ell \nu$ or $K^{* 0} \ell \nu$ is already in the $X \ell \nu$ bin in Fig. 70.1. And the inclusive measurements of η, ω, and η^{\prime} fractions do not distinguish between (and therefore include both) Cabibbo-allowed and -suppressed modes. We shall not try to make a separation here.
$K^{0}+$ pions-Above, we found that $f\left(\right.$ single $\left.K_{S}^{0}\right)=(1.7 \pm 0.2) \%$. Subtracting semileptonic fractions with a K_{S}^{0} leaves $(1.3 \pm 0.2) \%$. The hadronic single- K^{0} fraction is twice this, about $(2.6 \pm 0.4) \%$. The sum of measured $K^{0} \pi^{+}, K^{0} \pi^{+} \pi^{0}$, and $K^{0} 2 \pi^{+} \pi^{-}$fractions is $(1.8 \pm 0.3) \%$, about two-thirds as much.
$K^{+}+$pions-The $K^{+} \pi^{0}$ and $K^{+} \pi^{+} \pi^{-}$fractions sum to ($0.72 \pm 0.05) \%$. The total K^{+}fraction wanted here is probably in the 1-to- 2% range.

Multi-pions-The $2 \pi^{+} \pi^{-}, \pi^{+} 2 \pi^{0}$, and $3 \pi^{+} 2 \pi^{-}$fractions total $(2.5 \pm 0.2) \%$. Modes not measured might double this.

The sum of the actually measured fractions is, including the semileptonics, $(4.9 \pm 0.3) \%$. The error on our Cabibbo-suppressed total, $(10.1 \pm 4.4) \%$ is too large to know how much we might be missing.

References:

1. S. Dobbs et al., Phys. Rev. D79, 112008 (2009).

71. Leptonic Decays of Charged Pseudoscalar Mesons

Revised September 2019 by J.L. Rosner (Chicago U.), S.L. Stone (Syracuse U.) and R. Van de Water (FNAL).

71.1 Introduction

Charged mesons formed from a quark and antiquark can decay to a lepton-neutrino pair when these objects annihilate via a virtual W boson. Fig. 71.1 illustrates this process for the purely leptonic decay of a D^{+}meson.

Figure 71.1: The annihilation process for pure D^{+}leptonic decays in the standard model.

Similar quark-antiquark annihilations via a virtual W^{+}to the $\ell^{+} \nu$ final states occur for the $\pi^{+}, K^{+}, D_{s}^{+}$, and B^{+}mesons. (Whenever pseudoscalar-meson charges are specified in this article, use of the charge-conjugate particles and corresponding decays are also implied.) Let P be any of these pseudoscalar mesons. To lowest order, the decay width is

$$
\begin{equation*}
\Gamma^{(0)}(P \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi} f_{P}^{2} m_{\ell}^{2} M_{P}\left(1-\frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2}\left|V_{q_{1} q_{2}}\right|^{2} \tag{71.1}
\end{equation*}
$$

Here M_{P} is the P mass, m_{ℓ} is the ℓ mass, $V_{q_{1} q_{2}}$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element between the quarks $q_{1} \bar{q}_{2}$ in P, and G_{F} is the Fermi coupling constant. The decay constant f_{P} is proportional to the matrix element of the axial current between the one- P-meson state and the vacuum:

$$
\begin{equation*}
\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i p_{\mu} f_{P} \tag{71.2}
\end{equation*}
$$

and can be thought of as the "wavefunction overlap" of the quark and antiquark. In this article we use the convention in which $f_{\pi} \approx$ 130 MeV . For brevity, we will often denote the purely leptonic decay width in Eq. (71.1) by $\Gamma^{(0)}$.

The decay of $P^{ \pm}$starts with a spin-0 meson, and ends up with a left-handed neutrino or right-handed antineutrino. By angular momentum conservation, the $\ell^{ \pm}$must then also be left-handed or right-handed, respectively. In the $m_{\ell}=0$ limit, the decay is forbidden, and can only occur as a result of the finite ℓ mass. This helicity suppression is the origin of the m_{ℓ}^{2} dependence of the decay width.

Experimentally, it is difficult to isolate events in which there are only a lepton and neutrino in the final state from those with a lepton, neutrino, and soft photon. Thus, radiative contributions must be removed from the experimental measurements a posteriori to obtain $\Gamma^{(0)}$. The radiative contributions can be broken into three pieces: the short-distance contribution to leptonic and semileptonic decays mediated by a $W^{ \pm}$boson that accounts for electroweak corrections not included in the definition of G_{F}, the long-distance internal bremsstrahlung (IB) contribution, and the contribution from photon emission that depends upon the hadron's structure. The universal electroweak correction was calculated at $\mathcal{O}(\alpha)$ by Sirlin [1], and increases the purely leptonic decay rate by $\sim 1.8-2.2 \%$ depending on the decaying meson. The $\mathcal{O}(\alpha)$ IB contribution was calculated by Kinoshita [2], and again is universal for all leptonic decays at this order. Numerically, the universal long-distance contribution lowers the purely leptonic decay rate by $\sim 0.4-2.4 \%$, where the correction is smallest for pions and largest for $D_{(s)}$ mesons. The structure-dependent contributions have been estimated within various effective theories to increase the purely leptonic rate by one to a few percent $[3-8]$.

In this review we treat the radiative corrections differently for the light, charm, and bottom meson systems for several reasons. First, the experimental uncertainties on the decay widths vary
substantially. Thus, while the inclusion of radiative corrections is essential for the pion, kaon, and D-meson decay widths, which have been measured to (sub)-percent precision, radiative corrections can be neglected (for now) for $B \rightarrow \tau \nu$ decay. Second, the photons are treated differently on the experimental side for the different decay processes. For pions and kaons, the experimental measurements of $\Gamma_{P \ell 2[\gamma]}$ are fully inclusive, while for D mesons, the experiments impose cuts on the energy of any neutral cluster deposited in the calorimeter, which reduce the soft-photon background substantially. Some experiments also remove the QED bremsstrahlung in the leading-logarithmic approximation using the PHOTOS Monte-Carlo generator [9]. Third, the theoretical knowledge of the structure-dependent corrections varies for each meson system.

Once radiative corrections have been accounted for, measurements of purely leptonic decay branching fractions and lifetimes allow an experimental determination of the product $\left|V_{q_{1} q_{2}}\right| f_{P}$. If the decay constant f_{P} is known to sufficient precision from theory, one can obtain the corresponding CKM element within the standard model. If, on the other hand, one takes the value of $\left|V_{q_{1} q_{2}}\right|$ assuming CKM unitarity, one can infer an "experimental measurement" of the decay constant that can then be compared with theory.

The importance of measuring $\Gamma(P \rightarrow \ell \nu)$ depends on the particle being considered. Leptonic decays of charged pseudoscalar mesons occur at tree level within the standard model. Thus one does not expect large new-physics contributions to measurements of $\Gamma(P \rightarrow \ell \nu)$ for the lighter mesons $P=\pi^{+}, K^{+}$, and these processes in principle provide clean standard-model determinations of $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$. The situation is different for leptonic decays of charm and bottom mesons. The presence of new heavy particles such as charged Higgs bosons or leptoquarks could lead to observable effects in $\Gamma(P \rightarrow \ell \nu)$ for $P=D_{(s)}^{+}, B^{+}[10-14]$. Thus the determination of $\left|V_{u b}\right|$ from $B^{+} \rightarrow \tau \nu$ decay, in particular, should be considered a probe of new physics. More generally, the ratio of leptonic decays to $\tau \nu$ over $\mu \nu$ final states probes lepton universality $[10,15]$.

The determinations of CKM elements from leptonic decays of charged pseudoscalar mesons provide complementary information to those from other decay processes. The decay $P \rightarrow \ell \nu$ proceeds in the standard model via the axial-vector current $\overline{q_{1}} \gamma_{\mu} \gamma_{5} q_{2}$, whereas semileptonic pseudoscalar meson decays $P_{1} \rightarrow P_{2} \ell \nu$ proceed via the vector current $\overline{q_{1}} \gamma_{\mu} q_{2}$. Thus the comparison of determinations of $\left|V_{q_{1} q_{2}}\right|$ from leptonic and semileptonic decays tests the $V-A$ structure of the standard-model electroweak chargedcurrent interaction. More generally, a small right-handed admixture to the standard-model weak current would lead to discrepancies between $\left|V_{q_{1} q_{2}}\right|$ obtained from leptonic pseudoscalar-meson decays, exclusive semileptonic pseudoscalar-meson decays, exclusive semileptonic baryon decays, and inclusive semileptonic decays $[16,17]$.

Both measurements of the decay rates $\Gamma(P \rightarrow \ell \nu)$ and theoretical calculations of the decay constants f_{P} for $P=\pi^{+}, K^{+}, D_{(s)}^{+}$ from numerical lattice-QCD simulations are now quite precise. As a result, the elements of the first row of the CKM matrix $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ can be obtained to sub-percent precision from $\pi^{+} \rightarrow \ell \nu$ and $K^{+} \rightarrow \ell \nu$, where the limiting error is from theory. The elements of the second row of the CKM matrix $\left|V_{c d(s)}\right|$ can be obtained from leptonic decays of charged pseudoscalar mesons to few-percent precision, where here the limiting error is from experiment. These enable stringent tests of the unitarity of the first and second rows of the CKM matrix.

This review is organized as follows. Because the experimental and theoretical issues associated with measurements of pions and kaons, charmed mesons, and bottom mesons differ, we discuss each one separately. We begin with the pion and kaon system in Sec. 71.2. First, in Sec. 71.2 .1 we review current measurements of the experimental decay rates. We provide tables of branching-ratio measurements and determinations of the product $\left|V_{u d(s)}\right| f_{\pi^{+}\left(K^{+}\right)}$, as well as average values for these quantities including correlations and other effects needed to combine results.

Then, in Sec. 71.2.2 we summarize the status of theoretical calculations of the decay constants. We provide tables of recent latticeQCD results for $f_{\pi^{+}}, f_{K^{+}}$, and their ratio from simulations including dynamical u, d, s, and (in some cases c) quarks, along with averages including correlations and strong $\mathrm{SU}(2)$-isospin breaking corrections as needed. We next discuss the charmed meson system in Sec. 71.3, again reviewing current experimental rate measurements in Sec. 71.3.1 and theoretical decay-constant calculations in Sec. 71.3.2. Last, we discuss the bottom meson system in Sec. 71.4, following the same organization as the two previous sections. For almost all of the decay constants presented in Secs. 71.2.2, 71.3.2, and 71.4.2, we take as our preferred values the four-flavor averages from 2019 Flavor Lattice Averaging Group (FLAG) review [18], which incorporate all lattice-QCD results that appeared before 30 September 2018. There have not been any new decay-constant results that would qualify for the FLAG average since then.

After having established the status of both experimental measurements and theoretical calculations of leptonic charged pseudoscalar-meson decays, we discuss some implications for phenomenology in Sec. 71.5. For each process discussed in Secs. 71.271.4 , we combine the average $\mathcal{B}(P \rightarrow \ell \nu)$ with the decay constant f_{P} to infer the associated CKM matrix element. We then compare these results with determinations of the same CKM elements from other processes. We also use the CKM elements obtained from leptonic decays to test the unitarity of the first and second rows of the CKM matrix. Further, as in previous reviews, we combine the experimental $\mathcal{B}(P \rightarrow \ell \nu)$ s with the associated CKM elements obtained from CKM unitarity to infer "experimental" values for the decay constants. The comparison of these values with theory provides a test of lattice and other QCD approaches, assuming that new-physics contributions to these processes are not significant.

71.2 Pions and kaons

71.2.1 Experimental rate measurements

Experimental rate measurements of pion and kaon leptonic decays are fully radiation inclusive. Following Refs. [19, 20], and references therein, we combine the $\mathcal{O}(\alpha)$ radiative corrections to the purely leptonic rate as follows:

$$
\begin{equation*}
\Gamma(P \rightarrow \ell \nu[\gamma])=\Gamma(P \rightarrow \ell \nu)\left[1+\frac{\alpha}{\pi} C_{P}\right] \tag{71.3}
\end{equation*}
$$

where $P=\pi, K$. The full expressions for C_{π} and C_{K} are given in Eq. (114) of Ref. [5]. In addition to the universal short- [1] and long-distance [2] corrections, C_{π} and C_{K} include hadronicstructure dependent contributions [3] through $\mathcal{O}\left(\alpha p^{4}\right)$ in chiral perturbation theory $(\chi \mathrm{PT})$, where p is the pion or kaon momentum. The inclusion of radiative corrections to the purely leptonic rates is numerically important given the level of precision achieved on the experimental measurements of the $\pi^{ \pm} \rightarrow \mu^{ \pm} \nu$ and $K^{ \pm} \rightarrow \mu^{ \pm} \nu$ decay widths.

We evaluate $\delta_{P} \equiv(\alpha / \pi) C_{P}$ using the latest experimentallymeasured meson and lepton masses and coupling constants from the Particle Data group [21], and taking the low-energy constants (LECs) that parameterize the hadronic contributions from Refs. [5, 22, 23]. Because the finite non-logarithmic parts of the LECs were estimated within the large- N_{C} approximation assuming that contributions from the lowest-lying resonances dominate, we conservatively assign a 100% uncertainty to the LECs, which leads to a ± 0.9 error in $C_{\pi, K} \cdot{ }^{1}$ We obtain the following correction factors to the individual charged pion and kaon decay widths:

$$
\begin{equation*}
\delta_{\pi}=0.0176(21) \quad \text { and } \quad \delta_{K}=0.0107(21) \tag{71.4}
\end{equation*}
$$

The error on the ratio of kaon-to-pion leptonic decay widths is under better theoretical control because the hadronic contributions

[^76]from low-energy constants estimated within the large- N_{c} framework cancel at lowest order in the chiral expansion. For the ratio, we use the correction factor
\[

$$
\begin{equation*}
\delta_{K / \pi}=-0.0069(17) \tag{71.5}
\end{equation*}
$$

\]

where we take the estimated error due to higher-order corrections in the chiral expansion from Ref. [25].

There have been no new measurements of the pion leptonic decay rate since our previous review [26]. The sum of branching fractions for $\pi^{-} \rightarrow \mu^{-} \bar{\nu}$ and $\pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma$ is 99.98770(4)\% [21]. Together with the lifetime 26.033(5) ns [21] this implies $\Gamma\left(\pi^{-} \rightarrow\right.$ $\left.\mu^{-} \bar{\nu}[\gamma]\right)=3.8408(7) \times 10^{7} \mathrm{~s}^{-1}$. We then subtract the estimated radiative correction factor δ_{π} in Eq. (71.4) to obtain the purely leptonic rate $\Gamma^{(0)}\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}\right)$. Using this rate and the masses from the 2014 PDG review [21] in Eq. (71.1) gives

$$
\begin{equation*}
f_{\pi^{-}}\left|V_{u d}\right|=(127.13 \pm 0.02 \pm 0.13) \mathrm{MeV} \tag{71.6}
\end{equation*}
$$

where the errors are from the experimental rate measurement and the radiative correction factor, respectively.

The uncertainty on $f_{\pi^{-}}\left|V_{u d}\right|$ is dominated by that from theoretical estimate of the hadronic structure-dependent radiative corrections. Recently the first direct lattice-QCD calculation of the radiative corrections to the pion and kaon leptonic decay rates was performed by the RM123-Soton Collaboration [8]. The results for both $\delta_{\pi}=0.0153(19)$ and $\delta_{K}=0.0088(9)$, which are given in the Gasser-Rusetsky-Scimemi scheme [27], are compatible with our chiral-perturbation-theory estimates above and have smaller quoted uncertainties, especially for δ_{K}. While independent confirmation of these results is needed, they demonstrate a promising approach for reducing the theoretical uncertainties on the pion and kaon leptonic decay rates in the future.

The world average for the $K \rightarrow \mu \nu$ decay rate is obtained from a global fit of several kaon-decay branching ratios and lifetime measurements, and was last updated by the FlaviaNet Working Group on Kaon Decays in 2014 [37]. Thus, the radiation-inclusive branching ratio $\mathcal{B}\left(K^{-} \rightarrow \mu^{-} \bar{\nu}[\gamma]\right)=63.58(11) \%$ and lifetime $\tau_{K^{ \pm}}=12.384(15) \mathrm{ns}$ are unchanged from our previous review. These measurements imply $\Gamma\left(K^{-} \rightarrow \mu^{-} \bar{\nu}[\gamma]\right)=5.134(11) \times 10^{7}$ s^{-1}. As before, we subtract δ_{K} in Eq. (71.4) from the radiationinclusive decay width to obtain $\Gamma^{(0)}\left(K^{-} \rightarrow \mu^{-} \bar{\nu}\right)$. We then use Eq. (71.1) to obtain

$$
\begin{equation*}
f_{K^{+}}\left|V_{u s}\right|=(35.09 \pm 0.04 \pm 0.04) \mathrm{MeV} \tag{71.7}
\end{equation*}
$$

where the errors are from the experimental rate measurement and the radiative correction factor, respectively.

Short-distance radiative corrections cancel in the ratio of pion-to-kaon decay rates [38]:

$$
\begin{equation*}
\frac{\Gamma_{K_{\ell 2[\gamma]}}}{\Gamma_{\pi_{\ell 2[\gamma]}}}=\frac{\left|V_{u s}^{2}\right| f_{K}^{2}}{\left|V_{u d}\right|^{2} f_{\pi^{-}}^{2}} \frac{m_{K}\left(1-m_{\ell}^{2} / m_{K}^{2}\right)^{2}}{m_{\pi}\left(1-m_{\ell}^{2} / m_{\pi}^{2}\right)^{2}}\left(1+\delta_{K / \pi}\right) \tag{71.8}
\end{equation*}
$$

where $\delta_{K / \pi}$ is given in Eq. (71.5). The left-hand side of Eq. (71.8) is $1.3367(28)$, which implies

$$
\begin{equation*}
\frac{\left|V_{u s}\right| f_{K^{-}}}{\left|V_{u d}\right| f_{\pi^{-}}}=0.27599 \pm 0.00029 \pm 0.00024 \tag{71.9}
\end{equation*}
$$

where the first uncertainty is from the branching fractions and the second is from $\delta_{K / \pi}$. Here, the estimated error on the hadronic structure-dependent radiative corrections is commensurate with the experimental error.
In summary, the main experimental results pertaining to charged pion and kaon leptonic decays are

$$
\begin{align*}
\left|V_{u d}\right| f_{\pi^{-}} & =(127.13 \pm 0.02 \pm 0.13) \mathrm{MeV} \tag{71.10}\\
\left|V_{u s}\right| f_{K^{+}} & =(35.09 \pm 0.04 \pm 0.04) \mathrm{MeV} \tag{71.11}\\
\frac{\left|V_{u s}\right| f_{K^{+}}}{\left|V_{u d}\right| f_{\pi^{-}}} & =0.27599 \pm 0.00029 \pm 0.00024 \tag{71.12}
\end{align*}
$$

where the errors are from the experimental uncertainties in the branching fractions and the theoretical uncertainties in the radiative correction factors δ_{P}, respectively. All of these values are the same as in our previous review [26].

Table 71.1: Recent published lattice-QCD results for $f_{\pi^{+}}, f_{K^{+}}$, and their ratio. The upper and lower panels show $(2+1+1)$-flavor and $(2+1)$-flavor determinations, respectively. When two errors are shown, they are statistical and systematic, respectively. Results for f_{π} and f_{K} in the isospin-symmetric limit $m_{u}=m_{d}$ are noted with an " \ddagger "; they are corrected for isospin breaking via Eq. (71.13) before computing the averages.

Reference	N_{f}	$f_{\pi^{+}}(\mathrm{MeV})$	$f_{K^{+}}(\mathrm{MeV})$	$f_{K+} / f_{\pi+}$
Fermilab/MILC 17 [28] *	$2+1+1$	-	-	$1.1950(15)\left({ }_{-18}^{+6}\right)$
ETM 14 [29] *	$2+1+1$	-	154.4(1.5)(1.3)	1.184(12)(11)
Fermilab/MILC 14 [7] *	$2+1+1$	-	$155.92(13)\left({ }_{-34}^{+42}\right)$	$1.1956(10)\left({ }_{-18}^{+26}\right)^{\dagger}$
HPQCD 13 [30] *	$2+1+1$	-	155.37(20)(28)	$1.1916(15)(16)$
FLAG 19 average [18]	$2+1+1$	-	155.7(3)	1.1932(19)
QCDSF/UKQCD 16 [31]	$2+1$	-	-	1.190(10)(13)
BMW 16 [32]	$2+1$	-	-	$1.178(10)(26)$
RBC/UKQCD 14 [33] ${ }^{\ddagger}$	$2+1$	130.19(89)	155.51(83)	$1.1945(45)$
MILC 10 [34]	$2+1$	129.2(0.4)(1.4)	$156.1(4)\left({ }_{-9}^{+6}\right)$	$1.197(2)\left({ }_{-7}^{+3}\right)$
BMW 10 [35] ${ }^{\ddagger}$	$2+1$	-)	$1.192(7)(6)$
HPQCD/UKQCD 07 [36] ${ }^{\ddagger}$	$2+1$	132(2)	157(2)	$1.189(2)(7)$
FLAG 19 average [18]	$2+1$	130.2(8)	155.7(7)	$1.1917(37)$

*PDG 2014 value of $f_{\pi}+=130.41(21) \mathrm{MeV}$ used to set absolute lattice scale.
${ }^{\dagger}$ Superseded by $f_{K+} / f_{\pi+}$ from Fermilab/MILC 17.

71.2.2 Theoretical decay-constant calculations

Table 71.1 presents recent published results for the charged pion and kaon decay constants and their ratio from numerical lattice-QCD simulations with three $\left(N_{f}=2+1\right)$ or four flavors $\left(N_{f}=2+1+1\right)$ of dynamical quarks. The uncertainties on both the individual decay constants and their ratio are at the sub-percent level. The $\mathrm{SU}(3)$-breaking ratio $f_{K^{+}} / f_{\pi^{+}}$can be obtained with especially small errors because statistical errors associated with the Monte Carlo simulations are correlated between the numerator and denominator, as are some systematics. The results in Table 71.1 were obtained using several independent sets of gauge-field configurations, and a variety of lattice fermion actions that are sensitive to different systematic uncertainties. ${ }^{2}$ Thus, the good agreement between them indicates that the lattice-QCD uncertainties are controlled and the associated error estimates are reliable. ${ }^{3}$

Table 71.1 also shows the three- and four-flavor averages for the pion and kaon decay constants and their ratio from the 2019 Flavour Lattice Averaging Group (FLAG) review [18] in the lines labeled "FLAG 19 average." There is no four-flavor average for the pion decay constant in Table 71.1 because all of the fourflavor calculations use the quantity $f_{\pi^{+}}$as an input to fix the absolute lattice scale needed to convert from lattice-spacing units to $\mathrm{GeV}[7,29,30]$.

All of the results in Table 71.1 were obtained using isospinsymmetric gauge-field configurations, i.e., the dynamical up and down quarks have the same mass. Fortunately, however, the dominant effect of strong-isospin breaking is easily included in latticeQCD calculations as follows. Because the up-down mass difference $\Delta m_{u d} \equiv\left(m_{u}-m_{d}\right) \sim-2.5 \mathrm{MeV}[18,49]$ is much less than typical hadronic scales, the strong-isospin breaking corrections to physical observables can systematically expanded in the small parameter $\delta m_{u d} \equiv \Delta m_{u d} / \Lambda_{\mathrm{QCD}}$. The leading strong-isospin-breaking corrections to pseudoscalar-meson decay constants arise from the light valence quarks in the initial- and final-state hadrons. (See, e.g., the discussion in Ref. [50], for a detailed discussion of isospinbreaking effects in pion and kaon observables.) Thus, to include the effect of nondegenerate up- and down-quark masses, most recent lattice-QCD calculations of $f_{\pi^{+}}$and $f_{K^{+}}$evaluate the masses of the valence quarks in the pion at the physical m_{u} and m_{d}, and the mass of the valence light quark in the kaon at the physical m_{u}.

[^77]This procedure yields a correction to the kaon decay constant below 0.5%. Consequently, strong-isospin breaking corrections from the light sea-quark masses - which are suppressed by an additional power of $\delta m_{u d}$ - can be neglected given present uncertainties.

Some earlier lattice-QCD calculations, however, only provide the decay constants and their ratio in the $S U(2)$ isospinsymmetric limit $[33,35,36]$. The Flavour Lattice Averaging Group corrects these results for strong-isospin breaking using chiral perturbation theory before including them in the averages. The leading strong-isospin-breaking corrections to the pion and kaon decay constants in $\chi \mathrm{PT}$ can be parameterized as $[25,51]$

$$
\begin{equation*}
f_{\pi^{+}}=f_{\pi}, \quad f_{K^{+}}=f_{K} \sqrt{1+\delta_{\mathrm{SU}(2)}} \tag{71.13}
\end{equation*}
$$

where f_{π} and f_{K} denote the values of the decay constants in the isospin-symmetric limit. The pion decay constant does not receive corrections linear in $m_{u}-m_{d}$ because of the G-parity symmetry of the pion triplet, so at first order the $\delta m_{u d}$ expansion, strong-isospin breaking corrections are characterized by a single parameter, $\delta_{\mathrm{SU}(2)}$. Next-to-leading order χ PT yields numerical values for $\delta_{\mathrm{SU}(2)}$ of approximately -0.004 . Recent direct latticeQCD calculations of $\delta_{\mathrm{SU}(2)}$ give larger values of around -0.005 to $-0.008[8,28-30,50,52]$, but further studies are needed. Thus, to be conservative, FLAG includes an uncertainty of 100% on the χ PT estimate for $\delta_{\mathrm{SU}(2)}$ when correcting those decay-constant values that are quoted in the isospin-symmetric limit.

The errors on the decay-constant results in Table 71.1 obtained from $(2+1)$-flavor lattice-QCD simulations do not include an estimate of the systematic uncertainty from the omission of charm sea quarks in the simulation. Consequently, when the uncertainty on the $(2+1+1)$-flavor FLAG average is comparable to or better than that on the $(2+1)$-flavor FLAG average, we simply use the four-flavor average as our preferred value. This is not possible, however, for the pion decay constant. To account for this, we first estimate the systematic uncertainty on pseudoscalar-meson decay constants associated with the omission of charm sea quarks. We then add this estimate in quadrature to the quoted error on the $(2+1)$-flavor FLAG average for for $f_{\pi^{+}}$to obtain our preferred value.

The error introduced by omitting charm sea quarks can be roughly estimated by expanding the charm-quark determinant in powers of $1 / m_{c}$ [53]; the resulting leading contribution is of order $\alpha_{s}\left(\Lambda_{\mathrm{QCD}} / 2 m_{c}\right)^{2}$ [54]. Taking the $\overline{\mathrm{MS}}$ values $\bar{m}_{c}\left(\bar{m}_{c}\right)=$ $1.275 \mathrm{GeV}, \bar{\Lambda}_{\mathrm{QCD}} \sim 340 \mathrm{MeV}$ from FLAG [40], and $\bar{\alpha}\left(\bar{m}_{c}\right) \sim 0.4$, leads to an estimate of about 0.7% for the contribution to the decay constants from charm sea quarks. We can compare this power-counting estimate of charm sea-quark contributions with

Table 71.2: Experimental results for $\mathcal{B}\left(D^{+} \rightarrow \mu^{+} \nu[\gamma]\right), \mathcal{B}\left(D^{+} \rightarrow \tau^{+} \nu[\gamma]\right)$, and $\left|V_{c d}\right| f_{D^{+}}$. The systematic errors on the inferred values of $\left|V_{c d}\right| f_{D^{+}}$include those from the D^{+}lifetime and mass. The error from radiative corrections is only included in the entries labeled "our average."

Experiment	Mode	\mathcal{B}	$\left\|V_{c d}\right\| f_{D^{+}}(\mathrm{MeV})$
CLEO-c [43,44]	$\mu^{+} \nu$	$(3.93 \pm 0.35 \pm 0.09) \times 10^{-4}$	$46.70 \pm 2.10 \pm 0.55$
CLEO-c [43,44]	$\mu^{+} \nu+\tau^{+} \nu$	$(3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$	$46.00 \pm 1.91 \pm 0.56$
BES III [45]	$\mu^{+} \nu$	$(3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$	$45.33 \pm 1.17 \pm 0.38$
Our average	Lines 2+3	$(3.74 \pm 0.17) \times 10^{-4}$	45.50 ± 1.22
CLEO-c [46, 47]	$\tau^{+} \nu\left(\pi^{+} \bar{\nu}\right)$	$<1.2 \times 10^{-3}$	
BES III [48]	$\tau^{+} \nu\left(\pi^{+} \bar{\nu}\right)$	$(1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$	49.95 ± 2.48
Our average	$\mu^{+} \nu+\tau^{+} \nu$		46.17 ± 1.16

the observed differences between the (2+1)- and $(2+1+1)$-flavor lattice-QCD averages for kaon, $D_{(s)}$-meson, and $B_{(s)}$-decay constants in Tables 71.1, 71.4, and 71.6. Looking at Table 71.1, the three- and four-flavor averages for $f_{K^{+}}$agree to much better than our simple power-counting estimate. Inspection of Tables 71.4 and 71.6 shows, however, that charm sea-quark effects of this size are still allowed for both $D_{(s)}$-meson and $B_{(s)}$-meson decay constants.

Our final preferred theoretical values for the charged pion and kaon decay constants are
$f_{\pi^{+}}=130.2(1.2) \mathrm{MeV}, \quad f_{K^{+}}=155.7(3) \mathrm{MeV}, \quad \frac{f_{K^{+}}}{f_{\pi^{+}}}=1.193(2)$,
where $f_{K^{+}}$and $f_{K^{+}} / f_{\pi^{+}}$are simply the four-flavor FLAG 2019 averages [18], and $f_{\pi^{+}}$is the three-flavor flavor FLAG 2019 average with the error increased by the estimated 0.7% charm sea-quark contribution. The errors on all three quantities in Eq. (71.14) have decreased since our previous review [26,55].

71.3 Charmed mesons

71.3.1 Experimental rate measurements

Measurements have been made of the branching fractions for D^{+}and D_{s}^{+}mesons decaying to both $\mu^{+} \nu$ and $\tau^{+} \nu$ final states. The CLEO-c, BES, and BES III experiments have made measurements of D^{+}decays using $e^{+} e^{-}$collisions at the $\psi(3770)$ resonant energy where $D^{-} D^{+}$pairs are copiously produced. They fully reconstruct one of the D 's; for concreteness, we will take this to be the D^{-}. Counting the number of these events provides the normalization for the branching fraction measurement. The experimental analyses then proceed by identifying a candidate μ^{+}and forming the missing-mass squared, $M M^{2}=\left(E_{\mathrm{CM}}-E_{D^{-}}\right)^{2}-$ $\left(\vec{p}_{\mathrm{CM}}-\vec{p}_{D^{-}}-\vec{p}_{\mu^{+}}\right)^{2}$, where E_{CM} and p_{CM} are the center-ofmass energy (which is known) and momentum (which equals zero in $e^{+} e^{-}$collisions). A peak at zero $M M^{2}$ implies the existence of a missing neutrino, and hence the $\mu^{+} \nu$ decay of the D^{+}. CLEO-c does not explicitly identify the muon, so their data consists of a combination of $\mu^{+} \nu$ and $\tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$ events. This permits them to do two fits: in one they fit for the individual components, and in the other they fix the ratio of $\tau^{+} \nu / \mu^{+} \nu$ events to be that given by the standard-model expectation. Thus, the former measurement should be used for new-physics searches, and the latter for standard-model predictions. Our average uses the fixed-ratio value.

Table 71.2 shows the available measurements of $D^{+} \rightarrow \mu^{+} \nu$, as an upper limit on $D^{+} \rightarrow \tau^{+} \nu$ from CLEO-c and the first measurement of this decay from BES III. To extract the values of $\left|V_{c d}\right| f_{D^{+}}$via Eq. (71.1), we use values of $m_{D^{+}}=1.86961 \mathrm{GeV}$ and the well-measured D^{+}lifetime of $1.040(7) \mathrm{ps}$ [64], and apply radiative corrections as described below. For calculating the average $\mu^{+} \nu$ number, we use the CLEO-c result from $\mu^{+} \nu^{+}+\tau^{+} \nu$.

To obtain the purely leptonic rates $\Gamma^{(0)}\left(D^{+} \rightarrow \mu^{+}\left(\tau^{+}\right) \nu\right)$, we subtract the radiative contributions as in Sec. 71.2 .1 , but use numerical values for the corrections appropriate for D mesons. First, we reduce both the $\mu^{+} \nu$ and $\tau^{+} \nu$ branching fractions in Table 71.2 by 1.8%, which is the universal short-distance electroweak contribution of Sirlin [1] evaluated using the D-meson mass for the factorization scale. We do not adjust the experimental rates
by the universal long-distance correction [2]. This is because QED bremsstrahlung contributions have already been subtracted at leading-log order from the measurements in Table 71.2 using Monte-Carlo estimates computed with PHOTOS [9]. The $\mu^{+} \nu$ rates should also be reduced by the 1% estimate of the structuredependent contributions from Dobrescu and Kronfeld [14]. This correction accounts for tree-level radiative processes in which the D meson decays into a real photon and an off-shell vector meson, which subsequently decays weakly to a charged lepton and neutrino. It is estimated using Eq. (12) of Burdman et al. [4] with the CLEO-c cut on the photon energy from Ref. [65], which is typical of all the measurements. We do not need to apply the structure-dependent correction to the $\mu^{+} \nu$ branching fractions in Table 71.2, however, because the experiments have already included it in their quoted results. Therefore, in summary, we reduce both the $D^{+} \rightarrow \mu^{+} \nu$ and the $D^{+} \rightarrow \tau^{+} \nu$ rates by 1.8% to account for radiative corrections. It is worth noting, however, that the universal long-distance electromagnetic contribution estimated for point-like charged mesons by Kinoshita [2], which we are not including because IB contributions are already subtracted from the measurements via PHOTOS, would increase both rates by about 2.5%.

We now discuss the D_{s}^{+}decay process. Measurements of the leptonic decay rate have been made by several groups and are listed in Table 71.3. We exclude older values obtained by normalizing to D_{s}^{+}decay modes that are not well defined. Many measurements, for example, used the $\phi \pi^{+}$mode. This decay is a subset of the $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$channel which has interferences from other modes populating the $K^{+} K^{-}$mass region near the ϕ, the most prominent of which is the $f_{0}(980)$. Thus, the extraction of the effective $\phi \pi^{+}$rate is sensitive to the mass resolution of the experiment and the cuts used to define the ϕ mass region [66]. ${ }^{4}$

To find D_{s} decays in the $\mu^{+} \nu$ signal channels, the experiments rely on fully reconstructing all of the final state particles except for the neutrino and using a missing-mass technique to infer the existence of the neutrino. CLEO and BES III use $e^{+} e^{-} \rightarrow D_{s} D_{s}^{*}$ collisions at 4170 MeV , while Babar and Belle use $e^{+} e^{-} \rightarrow D K n \pi D_{s}^{*}$ collisions at energies near the $\Upsilon(4 S)$. CLEO and BES III do a similar analysis as was done for the D^{+}above. Babar and Belle do a similar $M M^{2}$ calculation by using the reconstructed hadrons, the photon from the D_{s}^{*+} decay and a detected μ^{+}. To get the normalization they do a $M M^{2}$ fit without the μ^{+}and use the signal at the D_{s}^{+}mass squared to determine the total D_{s}^{+}yield.

When selecting the $\tau^{+} \rightarrow \pi^{+} \bar{\nu}$ and $\tau^{+} \rightarrow \rho^{+} \bar{\nu}$ decay modes, CLEO uses both the calculation of the missing-mass and the fact that there should be no extra energy in the event beyond that deposited by the measured tagged D_{s}^{-}and the τ^{+}decay products. The $\tau^{+} \rightarrow e^{+} \nu \bar{\nu}$ mode, however, uses only extra energy. Babar and Belle also use the extra energy to discriminate signal from background in their $\tau^{+} \nu$ measurements. BES III uses $\tau^{+} \rightarrow \pi^{+} \bar{\nu}$ decays, where they calculate the $M M^{2}$ and discriminate against μ^{+}from $D_{s}^{+} \rightarrow \mu^{+} \nu$ decays.

When extracting $\left|V_{c s}\right| f_{D_{s}^{+}}$via Eq. (71.1), we first apply the -1.8% universal electroweak correction [1] to all of the $\mu^{+} \nu$ and

[^78]Table 71.3: Experimental results for $\mathcal{B}\left(D_{s}^{+} \rightarrow \mu^{+} \nu[\gamma]\right), \mathcal{B}\left(D_{s}^{+} \rightarrow \tau^{+} \nu[\gamma]\right)$, and $\left|V_{c s}\right| f_{D_{s}^{+}}$. The systematic errors on the inferred values of $\left|V_{c s}\right| f_{D_{s}^{+}}$include those from the D^{+}lifetime and mass. The entries labeled "our average" take into account correlations between systematic errors common to the experiments, and also include errors from radiative corrections.

Experiment	Mode	$\mathcal{B}(\%)$	$\left\|V_{c s}\right\| f_{D_{s}^{+}}(\mathrm{MeV})$
CLEO-c [46,47]	$\mu^{+} \nu$	$(0.565 \pm 0.045 \pm 0.017)$	$247.6 \pm 9.9 \pm 4.1$
BaBar* [57]	$\mu^{+} \nu$	$(0.602 \pm 0.038 \pm 0.034)$	$254.3 \pm 8.0 \pm 7.4$
Belle [58]	$\mu^{+} \nu$	$(0.531 \pm 0.028 \pm 0.020)$	$238.8 \pm 6.3 \pm 4.8$
BES [II [59]	$\mu^{+} \nu$	$(0.549 \pm 0.016 \pm 0.015)$	$244.9 \pm 3.6 \pm 3.7$
Our average	$\mu^{+} \nu$	$(6.42 \pm 0.81 \pm 0.16)$	244.0 ± 5.2
CLEO-c [46, 47]	$\tau^{+} \nu\left(\pi^{+} \bar{\nu}\right)$	$267.3 \pm 16.9 \pm 4.2$	
CLEO-c [60]	$\tau^{+} \nu\left(\rho^{+} \bar{\nu}\right)$	$(5.30 \pm 0.57 \pm 0.21)$	$247.9 \pm 12.8 \pm 5.0$
CLEO-c [61,62]	$\tau^{+} \nu\left(e^{+} \nu \bar{\nu}\right)$	$(5.00 \pm 0.35 \pm 0.22)$	$242.9 \pm 10.8 \pm 5.3$
BaBar [57]	$\tau^{+} \nu\left(e^{+}\left(\mu^{+}\right) \nu \bar{\nu}\right)$	$\left(6.04 \pm 0.43_{-0.40}^{+0.46}\right)$	$236.9 \pm 8.3 \pm 11.7$
Belle [58]	$\tau^{+} \nu\left(\pi^{+} \bar{\nu}\right)$	$260.3 \pm 9.3_{-8.1}^{+10.1}$	
Belle [58]	$\tau^{+} \nu\left(e^{+} \nu \bar{\nu}\right)$	$\left(5.37 \pm 0.33_{-0.31}^{+0.35}\right)$	$244.5 \pm 7.5_{-7.4}^{+8.2}$
Belle [58]	$\tau^{+} \nu\left(\mu^{+} \nu \bar{\nu}\right)$	$\left(5.86 \pm 0.37_{-0.59}^{+0.34}\right)$	$255.4 \pm 8.0_{-1.6}^{+7.6}$
BES III [63]	$\tau^{+} \nu\left(\pi^{+} \bar{\nu}\right)$	$(0.483 \pm 0.65 \pm 0.26)$	$231.9 \pm 15.7 \pm 6.5$
Our average	$\tau^{+} \nu$	(5.51 ± 0.20)	248.3 ± 6.1
Our average	$\mu^{+} \nu+\tau^{+} \nu$		245.7 ± 4.6

[56].

$\tau^{+} \nu$ branching fractions in Table 71.3; this is the same as for D^{+}mesons. We also decrease the Babar and Belle $\mu^{+} \nu$ branching fractions by the 1% structure-dependent correction [14]. This correction was already included in CLEO and BES results for the $\mu^{+} \nu$ branching fractions in Table 71.3. We use the masses and lifetimes $m_{D_{s}^{+}}=1.96834(7) \mathrm{GeV}, m_{\tau^{+}}=1.7686(12) \mathrm{GeV}$, and $\tau_{D_{s}^{+}}=0.504(4) \mathrm{ps}$ [64]. The inferred values for $f_{D_{s}^{+}}\left|V_{c s}\right|$ are in good agreement for the $\mu^{+} \nu$ and $\tau^{+} \nu$ decay modes.

It is clear from the discussion of radiative corrections in this section that they are less well understood theoretically for D^{+}and D_{s}^{+}meson decays than for pions and kaons. We therefore assign a 2.8% systematic uncertainty to the purely leptonic decay rates, which is the full size of the applied radiative corrections. This translates to a 1.4% error on the products of the decay constant times CKM matrix element. Putting everything together, the main experimental pertaining charmed meson leptonic decays are (see the bottom lines of Tables 71.2 and 71.3):

$$
\begin{align*}
& \left|V_{c d}\right| f_{D^{+}}=46.2 \pm 1.0 \pm 0.6 \mathrm{MeV} \tag{71.15}\\
& \left|V_{c s}\right| f_{D_{s}^{+}}=245.7 \pm 3.1 \pm 3.4 \mathrm{MeV} \tag{71.16}
\end{align*}
$$

where the errors are from the measured branching fractions and the applied radiative corrections, respectively.

71.3.2 Theoretical decay-constant calculations

Table 71.4 presents recent theoretical calculations of charmed heavy-light meson decay constants and their ratio in the isospinsymmetric limit $m_{u}=m_{d}$. (As in Sec. 71.2 .2 , we denote the physical D^{+}-meson decay constant by $f_{D^{+}}$, and use f_{D} for the isospin-symmetric value.) The upper two panels show results from lattice-QCD simulations with three $\left(N_{f}=2+1\right)$ or four flavors $\left(N_{f}=2+1+1\right)$ of dynamical quarks. Although there are fewer available results than for the pion and kaon sector, both f_{D} and $f_{D_{s}}$ have been obtained using multiple sets of gauge-field configurations with different lattice fermion actions, providing independent confirmation. For comparison, the bottom panel of Table 71.4 shows QCD-model calculations of the D - and D_{s}-meson decay constants for which uncertainty estimates are provided. The lattice and non-lattice results agree, but numerical lattice-QCD simulations have now reached significantly greater precision than other approaches.

The lattice-QCD decay-constant results in Table 71.4 were all obtained using isospin-symmetric gauge-field configurations. As discussed in Sec. 71.2.2, however, the leading strong-isospin breaking corrections to heavy-light pseudoscalar-meson decay constants can be accounted for by using the physical down (or up) quark in
the D (or B) meson. Strong-isospin breaking corrections to heavystrange meson decay constants are roughly an order-of-magnitude smaller because there are no light valence quarks involved. Recently, the Fermilab Lattice and MILC Collaborations used this approach to calculate directly the dominant strong-isospin breaking corrections to both f_{D} and f_{B}, finding [28]
$f_{D^{+}}-f_{D}=0.58(1)(7) \mathrm{MeV}, \quad f_{B^{+}}-f_{B}=-0.53(5)(7) \mathrm{MeV}$. (71.17)

These results agree with independent estimates of the strong-isospin-breaking corrections to heavy-light meson decay constants from Borelized sum rules [80]. Combined with the determinations of f_{D} and f_{B} from the same work, Eq. (71.17) implies that the corrections to the $\mathrm{SU}(3)$-flavor breaking ratios are

$$
\begin{equation*}
\frac{f_{D_{s}}}{f_{D^{+}}}=\frac{f_{D_{s}}}{f_{D}}(1-0.0027(3)), \quad \frac{f_{B_{s}}}{f_{B^{+}}}=\frac{f_{B_{s}}}{f_{B}}(1+0.0028(5)) \tag{71.18}
\end{equation*}
$$

These estimated strong-isospin-breaking corrections to f_{D} and $f_{D_{s}} / f_{D}$ above are commensurate with the uncertainties on the $(2+1+1)$-flavor FLAG averages in Table 71.4. Consequently, it is important to account isospin-breaking effects before combining the theoretical decay constants with the corresponding experimental decay rates.
To obtain the charged D^{+}-meson decay constant, we apply the correction in Eq. (71.17) to the (2+1+1)-flavor 2019 FLAG average for the D-meson decay constant in the isospin-symmetric limit. Similarly we use Eq. (71.18) to correct the $(2+1+1)$-flavor 2019 FLAG average for $f_{D_{s}} / f_{D}$. We take the four-flavor FLAG 2019 average for $f_{D_{s}}$ directly. Our final preferred theoretical values for the charmed pseudoscalar-meson decay constants are

$$
\begin{align*}
& f_{D^{+}}=212.6(7) \mathrm{MeV} \\
& f_{D_{s}}=249.9(5) \mathrm{MeV} \tag{71.19}\\
& \frac{f_{D_{s}}}{f_{D^{+}}}=1.175(2)
\end{align*}
$$

For all three quantities in Eq. (71.19), the uncertainties are roughly half the size of those in our previous review [26,55].

Table 71.4: Recent theoretical determinations of $f_{D}, f_{D_{s}}$, and their ratio in the isospin-symmetric limit. The upper panels show results from lattice-QCD simulations with $(2+1+1)$ and $(2+1)$ dynamical quark flavors, respectively. Statistical and systematic errors are quoted separately. The bottom panel shows estimates from QCD sum rules (QCD SR) and the light-front quark model (LFQM). These are not used to obtain our preferred decay-constant values.

Reference	Method	N_{f}	$f_{D}(\mathrm{MeV})$	$f_{D_{s}}(\mathrm{MeV})$	$f_{D_{s} / f_{D}}$
Fermilab/MILC 17 [28]	LQCD	$2+1+1$	$212.1(0.3)(0.5)$	$249.9(0.3)(0.3)$	$1.1782(06)(15)^{*}$
ETM 14 [29]	LQCD	$2+1+1$	$207.4(3.7)(0.9)$	$247.2(3.9)(1.4)$	$1.192(19)(11)$
FLAG 19 average [18]	LQCD	$2+1+1$	$212.0(0.7)$	$249.9(0.5)$	$1.1783(16)$
RBC/UKQCD 18 [68] ${ }^{\dagger}$	LQCD	$2+1$	-	-	$1.1652(35)\left({ }_{-52}^{+120}\right)$
RBC/UKQCD 17 [69]	LQCD	$2+1$	$208.7(2.8)\left({ }_{-1.8}^{+2.1}\right)$	$246.4(1.3)\left({ }_{-1.9}^{+1.3}\right)$	$1.1667(77)\left({ }_{-43}^{+57}\right)$
थQCD 14 [70]	LQCD	$2+1$	-	$254(2)(4)$	-
HPQCD 12 [71]	LQCD	$2+1$	$208.3(1.0)(3.3)$	-	$1.187(4)(12)$
Fermilab/MILC 11 [72]	LQCD	$2+1$	$218.9(9.2)(6.6)$	$260.1(8.9)(6.1)$	$1.188(14)(21)$
HPQCD 10 [73]	LQCD	$2+1$	-	$248.0(1.4)(2.1)$	-
FLAG 19 average [18]	LQCD	$2+1$	$209.0(2.4)$	$248.0(1.6)$	$1.174(7)$
Wang 15 [74]	QCD SR		$208(10)$	$240(10)$	$1.15(6)$
Gelhausen 13 [75]	QCD SR		$201\left({ }_{-13}^{+12}\right)$	$238\left({ }_{-23}^{+13}\right)$	$1.15\left({ }_{-0.05}^{+0.04}\right)$
Narison 12 [76]	QCD SR		$204(6)$	$246(6)$	$1.21(4)$
Lucha 11 [77]	QCD SR		$206.2(8.9)$	$245.3(16.3)$	$1.193(26)$
Hwang 09 [78]	LFQM		-	$264.5(17.5)^{\S}$	$1.29(7)$

[^79]
71.4 Bottom mesons

71.4.1 Experimental rate measurements

The Belle and BaBar collaborations have found evidence for $B^{-} \rightarrow \tau^{-} \bar{\nu}$ decay in $e^{+} e^{-} \rightarrow B^{-} B^{+}$collisions at the $\Upsilon(4 S)$ energy. The analysis relies on reconstructing a hadronic or semileptonic B decay tag, finding a τ candidate in the remaining track and photon candidates, and examining the extra energy in the event which should be close to zero for a real τ^{-}decay to $e^{-} \nu \bar{\nu}$ or $\mu^{-} \nu \bar{\nu}$ opposite a B^{+}tag. While the BaBar results have remained unchanged, Belle reanalyzed both samples of their data. The branching fraction using hadronic tags changed from $1.79_{-0.49}^{+0.56+0.46} \times 10_{-0.51}^{-4}[81]$ to $0.72_{-0.25}^{+0.27} \pm 0.11 \times 10^{-4}[82]$, while the corresponding change using semileponic tags was from $1.54_{-0.37-0.31}^{+0.38+0.29}$ to $1.25 \pm 0.28 \pm 0.27$. These changes demonstrate the difficulty of the analysis. The results are listed in Table 71.5.

Table 71.5: Experimental results for $\mathcal{B}\left(B^{-} \rightarrow\right.$ $\left.\tau^{-} \bar{\nu}\right)$ and $\left|V_{u b}\right| f_{B^{+}}$. To extract the values of $\left|V_{u b}\right| f_{B^{+}}$via Eq. (71.1), we use the PDG 2018 value of the B^{+}lifetime of $1.638 \pm 0.004 \mathrm{ps}$, and the τ^{+}and B^{+}masses of 1.77686 and 5.27933 GeV , respectively.

Experiment	Tag	\mathcal{B} (units of 10^{-4})	$\left\|V_{u b}\right\| f_{B^{+}}(\mathrm{MeV})$
Belle [82]	Hadronic	$0.72_{-0.25}^{+0.27} \pm 0.11$	
Belle [83]	Semileptonic	$1.25 \pm 0.28 \pm 0.27$	
Belle [83]	Average	0.91 ± 0.22	0.72 ± 0.09
BaBar [84]	Hadronic	$1.83{ }_{-0.49}^{+0.53} \pm 0.24$	
BaBar [85]	Semileptonic	$1.7 \pm 0.8 \pm 0.2$	
BaBar [84]	Average	1.79 ± 0.48	1.01 ± 0.14
Our average		1.06 ± 0.20	0.77 ± 0.07

Because there are large backgrounds under the signals for these measurements, as well as substantial systematic errors, the significances of the individual results are still below the 5σ discovery threshold. Belle quotes 4.6σ for their combined hadronic and semileptonic tags, while BaBar quotes 3.3σ and 2.3σ, for hadronic and semileptonic tags. Greater precision is necessary to determine if any effects beyond the Standard Model are present.

We do not correct the measured branching ratios in Table 71.5 for radiative corrections because the experimental uncertainties are so large. The radiative corrections are expected to be bigger, however, for $B \rightarrow \mu \nu$ leptonic decays because the corrections are
no longer helicity suppressed [6], and may be a significant fraction of the purely leptonic rate. More theoretical work is needed to understand radiative corrections to leptonic B decays in anticipation of future measurements with greater precision, and of new decay channels.

71.4.2 Theoretical decay-constant calculations

Table 71.6 presents recent theoretical calculations of bottom heavy-light meson decay constants and their ratio in the isospinsymmetric limit $m_{u}=m_{d}$. The upper two panels show results from lattice-QCD simulations with three $\left(N_{f}=2+1\right)$ or four flavors $\left(N_{f}=2+1+1\right)$ of dynamical quarks. For all decay constants, calculations using different gauge-field configurations, light-quark actions, and b-quark actions provide independent confirmation. For comparison, the bottom panel of Table 71.6 shows QCD-model calculations of the B - and B_{s}-meson decay constants for which uncertainty estimates are provided. These are consistent with the lattice values, but with much larger uncertainties.

The lattice-QCD decay-constant results in Table 71.6 were all obtained using isospin-symmetric gauge-field configurations. Some calculations, however, account for the dominant effect of strong-isospin-breaking by using the correct value for the valence light-quark mass in the B meson $\left(m_{u}\right.$ for $f_{B^{+}}$and m_{d} for $\left.f_{B^{0}}\right)$. Early estimates of the strong-isospin-breaking correction obtained $f_{B^{+}}-f_{B} \sim 2 \mathrm{MeV}$ [88, 90], which would significant given the present lattice-QCD uncertainties. It turns out, however, that these calculations inadvertently introduced a spurious sea-quark contribution, and therefore overestimated the size of the effect. A more recent calculation by the Fermilab/MILC Collaboration finds very little evidence for isospin violation $\left(f_{B+}-f_{B} \sim 0.5 \mathrm{MeV}\right)$ [28], which is more than two times smaller than the total uncertainties on present lattice-QCD calculations. For this reason, we quote isospin averages in the current review.

Our preferred theoretical values for the bottom pseudoscalarmeson decay constants are

$$
\begin{align*}
& f_{B}=190.0(1.3) \mathrm{MeV} \\
& f_{B_{s}}=230.0(1.3) \mathrm{MeV} \tag{71.20}\\
& \frac{f_{B_{s}}}{f_{B}}=1.209(5)
\end{align*}
$$

which are simply the $N_{f}=2+1+1$ FLAG 2019 averages [18]. Because the uncertainties on the three-flavor results in Table 71.6

Table 71.6: Recent theoretical determinations of $f_{B}, f_{B_{s}}$, and their ratio in the isospin-symmetric limit. The upper panels show results from lattice-QCD simulations with $(2+1+1)$ and $(2+1)$ dynamical quark flavors, respectively. When available, statistical and systematic errors are quoted separately. The bottom panel shows estimates from the relativistic potential model (RPM), QCD sum rules, and the light-front quark model, which are not used to obtain our preferred decay-constant values.

Reference	Method	N_{f}	$f_{B}(\mathrm{MeV})$	$f_{B_{s}}(\mathrm{MeV})$	$f_{B_{s}} / f_{B}$
FNAL/MILC 17 [28]	LQCD	$2+1+1$	189.9(1.4)	230.7(1.2)	1.2180(49)
HPQCD 17 [86]*	LQCD	$2+1+1$	196(6)	236(7)	$1.207(7)$
ETM 16 [87]	LQCD	$2+1+1$	193(6)	229(5)	1.184(25)
HPQCD 13 [88]	LQCD	$2+1+1$	186(4)	224(5)	1.217(8)
FLAG 19 average [18]	LQCD	$2+1+1$	190.0(1.3)	230.3(1.3)	$1.209(5)$
Aoki 14 [89] ${ }^{\dagger}$	LQCD	$2+1$	218.8(6.5)(30.8)	263.5(4.8)(36.7)	$1.193(20)(44)$
RBC/UKQCD 14 [90] ${ }^{\ddagger}$	LQCD	$2+1$	195.6(6.4)(13.3)	235.4(5.2)(11.1)	$1.223(14)(70)$
HPQCD 12 [91]	LQCD	$2+1$	191(1)(8)	228(3)(10)	$1.188(12)(13)$
HPQCD 12 [91]	LQCD	$2+1$	189(3)(3)*	-	-
HPQCD 11 [92]	LQCD	$2+1$	-	225(3)(3)	-
Fermilab/MILC 11 [72]	LQCD	$2+1$	196.9(5.5)(7.0)	242.0(5.1)(8.0)	$1.229(13)(23)$
FLAG 19 average [18]	LQCD	$2+1$	192.0(4.3)	228.4(3.7)	1.201(16)
Sun 16 [93] ${ }^{\text {§ }}$	RPM		219(15)	266(19)	1.21(9)
Wang 15 [74]§	QCD SR		194(15)	231(16)	1.19(10)
Baker 13 [94]	QCD SR		186(14)	222 (12)	1.19(4)
Lucha 13 [95]	QCD SR		192.0(14.6)	228.0(19.8)	1.184(24)
Gelhausen 13 [75]	QCD SR		$207\binom{+17}{-9}$	$242\binom{+17}{-12}$	$1.17\binom{+3}{-4}$
Narison 12 [76]	QCD SR		206(7)	234(5)	$1.14(3)$
Hwang 09 [78]	LFQM		-	270.0(42.8) ${ }^{\text {¢ }}$	1.32(8)

* Re-analysis of data from HPQCD 13
\dagger Obtained with static b quarks (i.e. $m_{b} \rightarrow \infty$).
${ }^{\ddagger}$ Ref. [90] does not provide results in the isospin-symmetric limit, so we show f_{B+} and $f_{B_{S}} / f_{B^{+}}$for this work.dsdecaycons:foot:ddag3
§ Obtained using $m_{b}^{\overline{\mathrm{MS}}}$; results using $m_{b}^{\text {pole }}$ are also given in the paper
ब Obtained by combining PDG value $f_{B}=204(31) \mathrm{MeV}$ [79] with $f_{B_{s}} / f_{B}$ from this work. dsdecaycons:foot:mpar3
are substantially larger than those on the four-flavor results, including them in the average leaves the central values unchanged, and decreases the errors only slightly.

71.5 Phenomenological implications

71.5.1 $\left|V_{u d}\right|,\left|V_{u s}\right|$, and status of first-row unitarity

Using the average values for $f_{\pi^{+}}\left|V_{u d}\right|, f_{K^{+}}\left|V_{u s}\right|$, and their ratio from Eqs. (71.10)-(71.12) and for $f_{\pi^{+}}, f_{K^{+}}$, and their ratio from Eq. (71.14), we obtain the following determinations of the CKM matrix elements $\left|V_{u d}\right|,\left|V_{u s}\right|$, and their ratio from leptonic decays within the standard model:

$$
\begin{align*}
& \left|V_{u d}\right|=0.9764(2)(90)(10), \quad\left|V_{u s}\right|=0.2254(3)(4)(3), \\
& \left.\quad \frac{\left|V_{u s}\right|}{\left|V_{u d}\right|}=0.2313(2) 4\right)(2) \tag{71.21}
\end{align*}
$$

where the errors are from the experimental branching fraction(s), the pseudoscalar decay constant(s), and radiative corrections, respectively. These results enable a precise test of the unitarity of the first row of the CKM matrix from leptonic decays alone (the contribution from $\left|V_{u b}\right|$ is negligible). Using the values of $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ from Eq. (71.21), we find

$$
\begin{equation*}
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=0.004(18) \tag{71.22}
\end{equation*}
$$

which is consistent with three-generation unitarity at the fewpercent level.

The determinations of $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ from leptonic decays in Eq. (71.21) can be compared to those obtained from other processes. The result above for $\left|V_{u d}\right|$ agrees with the determination from superallowed β-decay, $\left|V_{u d}\right|=0.97420(21)$ [96], but has an error about forty times larger that is primarily due to the uncertainty in the theoretical determination of $f_{\pi^{+}}$. The CKM element $\left|V_{u s}\right|$ can be determined from semileptonic $K^{+} \rightarrow \pi^{0} \ell^{+} \nu$ decay. Here experimental measurements provide a value for the product $f_{+}^{K \pi}(0)\left|V_{u s}\right|$, where $f_{+}^{K \pi}(0)$ is the form-factor at zero fourmomentum transfer between the initial state kaon and the final state pion. Taking the most recent experimental determination
of $\left|V_{u s}\right| f_{+}^{K \pi}(0)=0.2165(4)$ from Moulson [37] ${ }^{5}$ and the 2019 $(2+1+1)$-flavor FLAG average for $f_{+}(0)^{K \pi}=0.9706(27)$ [18] based on the calculations of ETM [100] and Fermilab/MILC [101] gives $\left|V_{u s}\right|=0.2231(6)_{\mathrm{LQCD}}(4)_{\exp }$ from $K_{\ell 3}$ decay. The determinations of $\left|V_{u s}\right|$ from leptonic and semileptonic kaon decays are both quite precise (with the error from leptonic decay being about 25% smaller), but the central values differ by 2.5σ. (This difference would be reduced to 1.8σ, but not eliminated, using the $(2+1)$-flavor FLAG average for $f_{+}(0)^{K \pi}=0.9677(27)$ instead.) Finally, the combination of the ratio $\left|V_{u s}\right| /\left|V_{u d}\right|$ from leptonic decays [Eq. (71.21)] with $\left|V_{u d}\right|$ from β decay implies an alternative determination of $\left|V_{u s}\right|=0.2254(5)$ which agrees with the value from leptonic kaon decay, but disagrees with the $K_{\ell 3}$-decay result at the 1.8σ level.

Given the roughly 2σ tension between $\left|V_{u s}\right|$ from leptonic and semileptonic kaon decays, it is important to scrutinize the uncertainties on the theoretical and experimental inputs to $\left|V_{u s}\right|$ and other elements of the first row of the CKM matrix. Recently, Seng et al. introduced a new approach for calculating radiative corrections to neutron and nuclear beta decays using dispersion relations [102-105]. These calculations imply a lower value of $\left|V_{u d}\right|=0.97395(23)$ than the Hardy and Towner analysis [106] by almost 1σ. An independent calculation of the radiative corrections by Czarnecki and Marciano using QCD sum rules yields similar results [107]. Using this value of $\left|V_{u d}\right|$ with the determination of $\left|V_{u s}\right|$ from leptonic kaon decays in Eq. (71.21), we obtain $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=-0.0006(5)$, again (roughly) consistent with first-row unitarity.

Last, we combine the experimental measurement of $f_{\pi+}\left|V_{u d}\right|$ in Eq. (71.10) with $\left|V_{u d}\right|$ from superallowed β-decay [96] to infer an "experimental" value for the pion decay constant:

$$
\begin{equation*}
f_{\pi^{-}}^{" \exp "}=130.50(2)(3)(13) \mathrm{MeV} \tag{71.23}
\end{equation*}
$$

[^80]where the uncertainties are from the errors on $\Gamma,\left|V_{u d}\right|$, and higher-order corrections, respectively. Many recent $(2+1+1)$ flavor lattice-QCD calculations use this quantity to set the overall physical scale in their simulations, e.g., Refs. [7,28-30]. Conversely, comparing $f_{\pi^{-}}$exp" with the 2019 FLAG (2+1)-flavor average $f_{\pi^{+}}=130.2(8) \mathrm{MeV}$, which only includes lattice-QCD results that employ observables to set the scale [31-36], provides a test of lattice-QCD methods. The values are in good agreement within present uncertainties. We do not quote an "experimental" value for the kaon decay constant because the value of $\left|V_{u s}\right|$ is less clear given the $\sim 2 \sigma$ tension between the values of $\left|V_{u s}\right|$ obtained from leptonic and semileptonic kaon decays.
71.5.2 $\left|V_{c d}\right|,\left|V_{c s}\right|$, and status of second-row unitarity

Using the average values for $\left|V_{c d}\right| f_{D^{+}}$and $\left|V_{c s}\right| f_{D_{s}^{+}}$from Eqs. (71.15) and (71.16), and for $f_{D^{+}}$and $f_{D_{s}^{+}}$from Eq. (71.19), we obtain the following determinations of the CKM matrix elements $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$ from leptonic decays within the standard model:

$$
\left|V_{c d}\right|=0.217(5)(3)(1) \quad \text { and } \quad\left|V_{c s}\right|=0.983(13)(14)(2), \quad(71.24)
$$

where the errors are from the measured branching fractions, radiative corrections, and decay constants, respectively. These results enable a test of the unitarity of the second row of the CKM matrix. We obtain

$$
\begin{equation*}
\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}-1=0.016(37) \tag{71.25}
\end{equation*}
$$

in agreement with three-generation unitarity.
The uncertainty on $\left|V_{c d}\right|$ in Eq. (71.24) is limited by the measurement error on the $D^{+} \rightarrow \mu^{+} \nu$ decay rate. For $\left|V_{c s}\right|$, however, the experimental and radiative-correction errors are commensurate. It is worth noting that the value of $\left|V_{c s}\right|$ from leptonic D_{s} decays has decreased substantially from the value of 1.007 (17) in the previous version of this review $[26,55]$, and is now below unity as expected in the three-generation CKM framework. This change is due to our new, more consistent treatment of the radiative corrections, which lower the purely leptonic decay rates for the $\mu^{+} \nu$ and $\tau^{+} \nu$ channels by 2.8% and 1%, respectively. We emphasize, however, that we have taken a generous 100% uncertainty on these estimates, and that more theoretical work is needed to really pin down the sizes of the radiative corrections to $D_{(s)}$-meson leptonic decays.

The CKM matrix elements $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$ can also be obtained from semileptonic $D^{+} \rightarrow \pi^{0} \ell^{+} \nu$ and $D_{s}^{+} \rightarrow K^{0} \ell^{+} \nu$ decays, respectively. Here experimental measurements determine the product of the form factor times the CKM element, and theory provides the value for the form factor at zero four-momentum transfer between the initial $D_{(s)}$ meson and the final pion or kaon. The latest experimental averages from the Heavy Flavor Averaging Group (HFLAV) are $f_{+}^{D \pi}(0)\left|V_{c d}\right|=0.1426(19)$ and $f_{+}^{D_{s} K}(0)\left|V_{c s}\right|=0.7226(34)$ [108]. There are not enough published lattice-QCD calculations of the zero-momentum $D_{(s)^{-}}$ meson semileptonic form factors with $N_{f} \geq 3$ to permit an average by the FLAG Collaboration. Taking the most precise three-flavor form-factor results $f_{+}^{D \pi}(0)=0.666(29)$ and $f_{+}^{D_{s} K}(0)=0.747(19)$ from the HPQCD Collaboration $[109,110]$ gives for the CKM matrix elements $\left|V_{c d}\right|=0.2141(97)$ and $\left|V_{c s}\right|=0.967(25)$, in agreement with those from leptonic decays in Eq. (71.24). A newer, four-flavor calculation of the form factors by the ETM Collaboration, however, yields a smaller value of $f_{+}^{D \pi}(0)=0.612(35)$ by 1.2σ and a larger $f_{+}^{D{ }_{s} K}(0)=0.765(31)$ by 0.5σ. These imply $\left|V_{c d}\right|=0.233(14)$ and $\left|V_{c s}\right|=0.945(39)$, which are about 1σ above and below the values from leptonic decays in Eq. (71.24), respectively. Independent lattice-QCD calculations of the $D^{+} \rightarrow \pi^{0} \ell^{+} \nu$ and $D_{s}^{+} \rightarrow K^{0} \ell^{+} \nu$ form factors now in progress [111,112] may help clarify the picture.
We can combine the experimental measurements of $f_{D^{+}}\left|V_{c d}\right|$ and $f_{D_{s}^{+}}\left|V_{c s}\right|$ from Tables 71.2 and 71.3 with $\left|V_{c d}\right|=0.22438(44)$ and $\left|V_{c s}^{s}\right|=0.97359(10)$ from the PDG 2018 global unitaritytriangle analysis [64] to infer "experimental" values for the decay
constants within the standard model. We take the CKM elements from the global fit because they are based on many input quantities, thereby reducing the sensitivity to any one outlying measurement or calculation. We obtain for the decay constants

$$
\begin{align*}
& f_{D+}^{\text {"exp" }}=205.8(4.5)(0.4)(2.7) \mathrm{MeV}, \\
& f_{D_{s}^{+}}^{f^{+}+}=252.4(3.2)(0.03)(3.5) \mathrm{MeV}, \tag{71.26}\\
& \left(\frac{f_{D_{s}^{+}}^{+}}{f_{D^{+}}}\right)^{\text {"exp" }}=1.226(31)(2)(3) .
\end{align*}
$$

where the uncertainties are from the errors on $\Gamma^{(0)}$, CKM matrix elements, and radiative corrections, respectively. For the decayconstant ratio, we expect most of the radiative corrections to cancel, and therefore multiply the 1.4% error from Sec. 71.3 .1 by the $\mathrm{SU}(3)$-breaking factor $\left(m_{s}-m_{d}\right) / \Lambda_{\mathrm{QCD}} \sim 1 / 5$. The "experimental" values $f_{D^{+}}\left(f_{D_{s}^{+}} / f_{D^{+}}\right)$are about 1.3σ lower (1.6σ higher) than the $(2+1+1)$-flavor lattice-QCD averages in Eq. (71.19). The CKM matrix element $\left|V_{c d}\right|$ is, however, proportional to $\left|V_{u s}\right|$ within the Wolfenstein parameterization [113, 114]. Thus, resolving the inconsistencies between determinations of $\left|V_{u s}\right|$ from leptonic and semileptonic decays discussed in Sec. 71.5.1 may also reduce the mild tensions observed here.
Last, we can test lepton-flavor universality in charm meson decays by checking the following relationship derived from Eq. (71.1):

$$
\begin{equation*}
\frac{\Gamma\left(D_{s}^{+} \rightarrow \tau^{+} \nu\right)}{\Gamma\left(D_{s}^{+} \rightarrow \mu^{+} \nu\right)}=\frac{m_{\tau}^{2}\left(1-m_{\tau}^{2} / M_{D_{s}}^{2}\right)^{2}}{m_{\mu}^{2}\left(1-m_{\mu}^{2} / M_{D_{s}}^{2}\right)^{2}}=9.75 \tag{71.27}
\end{equation*}
$$

where the uncertainties from the masses are negligible to the number of digits quoted. The measured ratio of $\tau^{+} \nu$ to $\mu^{+} \nu$ rates is 9.98 ± 0.46, consistent with the standard-model expectation.

71.5.3 $\left|V_{u b}\right|$ and other applications

Using the average value for $\left|V_{u b}\right| f_{B^{+}}$from Table 71.5, and for $f_{B^{+}}$from Eq. (71.20), we obtain the following determination of the CKM matrix element $\left|V_{u b}\right|$ from leptonic decays within the standard model:

$$
\begin{equation*}
\left|V_{u b}\right|=4.05(37)(3) \times 10^{-3}, \tag{71.28}
\end{equation*}
$$

where the errors are from experiment and theory, respectively. One should bear in mind when interpreting Eq. (71.28) that none of the experimental measurements that enter the average for $\left|V_{u b}\right| f_{B^{+}}$have individually reached the 5σ discovery level (see Sec. 71.4.1). Further, decays involving the third generation of quarks and leptons may be particularly sensitive to new physics associated with electroweak symmetry breaking due to their larger masses $[10,12]$, so Eq. (71.28) is more likely to be influenced by new physics than the determinations of the elements of the first and second rows of the CKM matrix in the previous sections.

The CKM element $\left|V_{u b}\right|$ can also be obtained from semileptonic B-meson decays. For more than a decade, there has remained a persistent 2-3 3 tension between the determinations of $\left|V_{u b}\right|$ from exclusive $B \rightarrow \pi \ell \nu$ decay and from inclusive $B \rightarrow X_{u} \ell \nu$ decay, where X_{u} denotes all hadrons which contain a constituent up quark [21, 108, 115-118]. The currently most precise determination of $\left|V_{u b}\right|^{\text {excl }}=3.73(14) \times 10^{-3}$ is obtained from a joint z fit by FLAG [18] of the vector and scalar form factors $f_{+}^{B \pi}\left(q^{2}\right)$ and $f_{0}^{B \pi}\left(q^{2}\right)$ calculated in (2+1)-flavor lattice QCD [119-121] and experimental measurements of the differential decay rate from BaBar [122,123] and Belle [124,125]. On the other hand, the PDG 2018 inclusive determination obtained using the theoretical frameworks in Refs. [126-128] is $\left|V_{u b}\right|^{\text {incl }}=4.49(28) \times 10^{-3}[64,129]$. The value of $\left|V_{u b}\right|$ from leptonic $B \rightarrow \tau \nu$ decay in Eq. (71.28) splits the difference between the inclusive and exclusive determinations, and is compatible (within large uncertainties) with both.
Given the large uncertainties on the experimental measurements of $\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}\right)$, and the more than 2σ disagreement between $\left|V_{u b}\right|$ obtained from inclusive and exclusive semileptonic B decays, we do not present an "experimental" value of the decay constant f_{B+}.

Acknowledgements

We thank V. Cirigliano, C. Davies, A. El Khadra, A. Khodjamirian, A. Kronfeld, J. Laiho, W. Marciano, M. Moulson, S. Narison, S. Sharpe, and Z.-G. Wang for useful discussions on this and previous versions of the review. We thank M. Della Morte and S. Simula for valuable feedback on the manuscript, and for providing information on the 2019 FLAG lattice averages. We gratefully acknowledge support of the U. S. National Science Foundation and the U. S. Department of Energy through Grant No. DE-FG02-13ER41598. The work of J. L. R. was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1066293. Fermilab is operated by the Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

References

[1] A. Sirlin, Nucl. Phys. B196, 83 (1982).
[2] T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).
[3] M. Knecht et al., Eur. Phys. J. C12, 469 (2000), [hepph/9909284].
[4] G. Burdman, J. T. Goldman and D. Wyler, Phys. Rev. D51, 111 (1995), [hep-ph/9405425].
[5] V. Cirigliano and I. Rosell, JHEP 10, 005 (2007), [arXiv:0707.4464].
[6] D. Becirevic, B. Haas and E. Kou, Phys. Lett. B681, 257 (2009), [arXiv:0907.1845].
[7] A. Bazavov et al. (Fermilab Lattice and MILC), Phys. Rev. D90, 074509 (2014), [arXiv:1407.3772].
[8] M. Di Carlo et al., Phys. Rev. D100, 034514 (2019), [arXiv:1904.08731].
[9] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[10] W.-S. Hou, Phys. Rev. D48, 2342 (1993).
[11] A. G. Akeroyd and S. Recksiegel, Phys. Lett. B554, 38 (2003), [hep-ph/0210376].
[12] A. G. Akeroyd and S. Recksiegel, J. Phys. G29, 2311 (2003), [hep-ph/0306037].
[13] A. G. Akeroyd, Prog. Theor. Phys. 111, 295 (2004), [hepph/0308260].
[14] B. A. Dobrescu and A. S. Kronfeld, Phys. Rev. Lett. 100, 241802 (2008), [arXiv:0803.0512].
[15] J. L. Hewett, in "Heavy flavor physics. Proceedings, LISHEP 95, LAFEX International School on High-Energy Physics, session C, cbt Workshop, Rio de Janeiro, Brazil, February 21-23, 1995," 171-187 (1995), [hep-ph/9505246], URL http://www-public.slac.stanford.edu/sciDoc/ docMeta.aspx?slacPubNumber=SLAC-PUB-6821.
[16] A. Crivellin, Phys. Rev. D81, 031301 (2010), [arXiv:0907.2461].
[17] F. U. Bernlochner, Z. Ligeti and S. Turczyk, Phys. Rev. D90, 094003 (2014), [arXiv:1408.2516].
[18] S. Aoki et al. (Flavour Lattice Averaging Group) (2019), [arXiv:1902.08191].
[19] W. J. Marciano, Phys. Rev. Lett. 93, 231803 (2004), [hepph/0402299].
[20] V. Cirigliano et al., Rev. Mod. Phys. 84, 399 (2012), [arXiv:1107.6001].
[21] K. A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014).
[22] B. Ananthanarayan and B. Moussallam, JHEP 06, 047 (2004), [hep-ph/0405206].
[23] S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C42, 403 (2005), [hep-ph/0505077].
[24] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
[25] V. Cirigliano and H. Neufeld, Phys. Lett. B700, 7 (2011), [arXiv:1102.0563].
[26] J. L. Rosner, S. Stone and R. S. Van de Water (2015), review prepared for PDG 2015 edition, [arXiv:1509.02220].
[27] J. Gasser, A. Rusetsky and I. Scimemi, Eur. Phys. J. C32, 97 (2003), [hep-ph/0305260].
[28] A. Bazavov et al., Phys. Rev. D98, 7, 074512 (2018), [arXiv:1712.09262].
[29] N. Carrasco et al. (ETM), Phys. Rev. D91, 054507 (2015), [arXiv:1411.7908].
[30] R. Dowdall et al. (HPQCD), Phys.Rev. D88, 074504 (2013), [arXiv:1303.1670].
[31] V. G. Bornyakov et al. (QCDSF-UKQCD), Phys. Lett. B767, 366 (2017), [arXiv:1612.04798].
[32] S. Durr et al., Phys. Rev. D95, 5, 054513 (2017), [arXiv:1601.05998].
[33] T. Blum et al. (RBC, UKQCD), Phys. Rev. D93, 074505 (2016), [arXiv:1411.7017].
[34] A. Bazavov et al. (MILC), PoS LATTICE2010, 074 (2010), [arXiv:1012.0868].
[35] S. Durr et al. (BMW), Phys. Rev. D81, 054507 (2010), [arXiv:1001.4692].
[36] E. Follana et al. (HPQCD, UKQCD), Phys. Rev. Lett. 100, 062002 (2008), [arXiv:0706.1726].
[37] M. Moulson, in "8th International Workshop on the CKM Unitarity Triangle (CKM2014) Vienna, Austria, September 8-12, 2014," (2014), [arXiv:1411.5252].
[38] M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), Eur. Phys. J. C69, 399 (2010), [arXiv:1005.2323].
[39] S. Hashimoto, J. Laiho and S. R. Sharpe, "Lattice Quantum Chromodynamics," http://pdg.lbl.gov/ 2019/reviews/rpp2018-rev-lattice-qcd.pdf (2017), review prepared for PDG 2018 edition.
[40] S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys. J. C74, 2890 (2014), [arXiv:1310.8555].
[41] S. Aoki et al., Eur. Phys. J. C77, 2, 112 (2017), [arXiv:1607.00299].
[42] A. S. Kronfeld, Ann. Rev. Nucl. Part. Sci. 62, 265 (2012), [arXiv:1203.1204].
[43] M. Artuso et al. (CLEO), Phys. Rev. Lett. 95, 251801 (2005), [hep-ex/0508057].
[44] B. I. Eisenstein et al. (CLEO), Phys. Rev. D78, 052003 (2008), [arXiv:0806.2112].
[45] M. Ablikim et al. (BESIII), Phys. Rev. D89, 051104 (2014), [arXiv:1312.0374].
[46] M. Artuso et al. (CLEO), Phys. Rev. Lett. 99, 071802 (2007), [arXiv:0704.0629].
[47] J. P. Alexander et al. (CLEO), Phys. Rev. D79, 052001 (2009), [arXiv:0901.1216].
[48] M. Ablikim et al. (BESIII) (2019), [arXiv:1908.08877].
[49] A. V. Manohar, C. T. Sachrajda and R. M. Barnett, "Quark Masses," http://pdg.lbl.gov/2019/reviews/ rpp2018-rev-quark-masses.pdf (2018), review prepared for PDG 2018 update.
[50] G. M. de Divitiis et al., JHEP 04, 124 (2012), [arXiv:1110.6294].
[51] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[52] G. M. de Divitiis et al. (RM123), Phys. Rev. D87, 11, 114505 (2013), [arXiv:1303.4896].
[53] M. Nobes (2005), [hep-lat/0501009].
[54] A. Bazavov et al. (Fermilab Lattice, MILC), Phys. Rev. D93, 11, 113016 (2016), [arXiv:1602.03560].
[55] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[56] J. P. Lees et al. (BaBar) (2010), [arXiv:1003.3063].
[57] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D82, 091103 (2010), [Erratum: Phys. Rev.D91,no.1,019901(2015)], [arXiv:1008.4080].
[58] A. Zupanc et al. (Belle), JHEP 1309, 139 (2013), [arXiv:1307.6240].
[59] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 122, 071802 (2019), [arXiv:1811.10890].
[60] P. Naik et al. (CLEO), Phys. Rev. D80, 112004 (2009), [arXiv:0910.3602].
[61] K. M. Ecklund et al. (CLEO), Phys. Rev. Lett. 100, 161801 (2008), [arXiv:0712.1175].
[62] P. U. E. Onyisi et al. (CLEO), Phys. Rev. D79, 052002 (2009), [arXiv:0901.1147].
[63] M. Ablikim et al. (BESIII), Phys. Rev. D94, 072004 (2016), [arXiv:1608.06732].
[64] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[65] T. K. Pedlar et al. (CLEO), Phys. Rev. D76, 072002 (2007), [arXiv:0704.0437].
[66] J. P. Alexander et al. (CLEO), Phys. Rev. Lett. 100, 161804 (2008), [arXiv:0801.0680].
[67] B. Aubert et al. (BaBar), Phys. Rev. Lett. 98, 141801 (2007), [hep-ex/0607094].
[68] P. A. Boyle et al. (RBC/UKQCD) (2018), [arXiv:1812.08791].
[69] P. A. Boyle et al., JHEP 12, 008 (2017), [arXiv:1701.02644].
[70] Y.-B. Yang et al. (χ QCD), Phys. Rev. D92, 034517 (2015), [arXiv:1410.3343].
[71] H. Na et al. (HPQCD), Phys. Rev. D86, 054510 (2012), [arXiv:1206.4936].
[72] A. Bazavov et al. (Fermilab Lattice and MILC), Phys. Rev. D85, 114506 (2012), [arXiv:1112.3051].
[73] C. T. H. Davies et al. (HPQCD), Phys. Rev. D82, 114504 (2010), [arXiv:1008.4018].
[74] Z.-G. Wang, Eur. Phys. J. C75, 427 (2015), [arXiv:1506.01993].
[75] P. Gelhausen et al., Phys.Rev. D88, 014015 (2013), [arXiv:1305.5432].
[76] S. Narison, Phys. Lett. B718, 1321 (2013), [arXiv:1209.2023].
[77] W. Lucha, D. Melikhov and S. Simula, Phys. Lett. B701, 82 (2011), [arXiv:1101.5986].
[78] C.-W. Hwang, Phys. Rev. D81, 054022 (2010), [arXiv:0910.0145].
[79] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008), and 2009 partial update for the 2010 edition.
[80] W. Lucha, D. Melikhov and S. Simula, Eur. Phys. J. C78, 2, 168 (2018), [Erratum: Eur. Phys. J.C78,no.11,936(2018)], [arXiv:1702.07537].
[81] K. Ikado et al. (Belle), Phys. Rev. Lett. 97, 251802 (2006), [hep-ex/0604018].
[82] I. Adachi et al. (Belle), Phys. Rev. Lett. 110, 131801 (2013), [arXiv:1208.4678].
[83] B. Kronenbitter et al. (Belle), Phys. Rev. D92, 051102 (2015), [arXiv:1503.05613].
[84] J. P. Lees et al. (BaBar), Phys. Rev. D88, 031102 (2013), [arXiv:1207.0698].
[85] B. Aubert et al. (BaBar), Phys. Rev. D81, 051101 (2010), [arXiv:0912.2453].
[86] C. Hughes, C. T. H. Davies and C. J. Monahan, Phys. Rev. D97, 5, 054509 (2018), [arXiv:1711.09981].
[87] A. Bussone et al. (ETM), Phys. Rev. D93, 11, 114505 (2016), [arXiv:1603.04306].
[88] R. Dowdall et al. (HPQCD), Phys. Rev. Lett. 110, 222003 (2013), [arXiv:1302.2644].
[89] Y. Aoki et al., Phys. Rev. D91, 114505 (2015), [arXiv:1406.6192].
[90] N. H. Christ et al. (RBC/UKQCD), Phys. Rev. D91, 054502 (2015), [arXiv:1404.4670].
[91] H. Na et al. (HPQCD), Phys. Rev. D86, 034506 (2012), [arXiv:1202.4914].
[92] C. McNeile et al. (HPQCD), Phys. Rev. D85, 031503 (2012), [arXiv:1110.4510].
[93] H.-K. Sun and M.-Z. Yang, Phys. Rev. D95, 11, 113001 (2017), [arXiv:1609.08958].
[94] M. J. Baker et al., JHEP 07, 032 (2014), [arXiv:1310.0941].
[95] W. Lucha, D. Melikhov and S. Simula, Phys.Rev. D88, 056011 (2013), [arXiv:1305.7099].
[96] J. Hardy and I. S. Towner, PoS CKM2016, 028 (2016).
[97] F. Ambrosino et al. (KLOE), Eur. Phys. J. C71, 1604 (2011), [arXiv:1011.2668].
[98] E. Abouzaid et al. (KTeV), Phys. Rev. D83, 092001 (2011), [arXiv:1011.0127].
[99] D. Babusci et al. (KLOE KLOE-2), Phys. Lett. B738, 128 (2014), [arXiv:1407.2028].
[100] N. Carrasco et al., Phys. Rev. D93, 11, 114512 (2016), [arXiv:1602.04113].
[101] A. Bazavov et al. (Fermilab Lattice and MILC), Phys. Rev. Lett. 112, 112001 (2014), [arXiv:1312.1228].
[102] C.-Y. Seng et al., Phys. Rev. Lett. 121, 241804 (2018), [arXiv:1807.10197].
[103] C. Y. Seng, M. Gorchtein and M. J. Ramsey-Musolf, Phys. Rev. D100, 013001 (2019), [arXiv:1812.03352].
[104] M. Gorchtein, Phys. Rev. Lett. 123, 042503 (2019), [arXiv:1812.04229].
[105] C.-Y. Seng and U.-G. Meißner, Phys. Rev. Lett. 122, 211802 (2019), [arXiv:1903.07969].
[106] J. C. Hardy and I. S. Towner, Phys. Rev. C91, 025501 (2015), [arXiv:1411.5987].
[107] A. Czarnecki, W. J. Marciano and A. Sirlin (2019), [arXiv:1907.06737].
[108] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 12, 895 (2017), [arXiv:1612.07233].
[109] H. Na et al. (HPQCD), Phys. Rev. D82, 114506 (2010), [arXiv:1008.4562].
[110] H. Na et al. (HPQCD), Phys. Rev. D84, 114505 (2011), [arXiv:1109.1501].
[111] B. Chakraborty et al., EPJ Web Conf. 175, 13027 (2018), [arXiv:1710.07334].
[112] R. Li et al. (Fermilab Lattice, MILC), PoS LATTICE2018, 269 (2019), [arXiv:1901.08989].
[113] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[114] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C41, 1 (2005), updated results and plots available at: http:// ckmfitter.in2p3.fr, [hep-ph/0406184].
[115] M. Antonelli et al., Phys. Rept. 494, 197 (2010), [arXiv:0907.5386].
[116] J. N. Butler et al. (Quark Flavor Physics Working Group), in "Community Summer Study 2013: Snowmass on the Mississippi (CSS2013) Minneapolis, MN, USA, July 29-August 6, 2013," (2013), [arXiv:1311.1076], URL http://www.slac.stanford.edu/econf/C1307292/docs/ IntensityFrontier/QuarkFl-15.pdf.
[117] Y. Amhis et al. (Heavy Flavor Averaging Group) (2014), [arXiv:1412.7515].
[118] A. J. Bevan et al. (Belle, BaBar), Eur. Phys. J. C74, 3026 (2014), [arXiv:1406.6311].
[119] E. Dalgic et al., Phys. Rev. D73, 074502 (2006), [Erratum: Phys. Rev.D75,119906(2007)], [hep-lat/0601021].
[120] J. M. Flynn et al. (RBC/UKQCD), Phys. Rev. D91, 074510 (2015), [arXiv:1501.05373].
[121] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D92, 014024 (2015), [arXiv:1503.07839].
[122] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D83, 032007 (2011), [arXiv:1005.3288].
[123] J. P. Lees et al. (BaBar), Phys. Rev. D86, 092004 (2012), [arXiv:1208.1253].
[124] H. Ha et al. (Belle), Phys. Rev. D83, 071101 (2011), [arXiv:1012.0090].
[125] A. Sibidanov et al. (Belle), Phys.Rev. D88, 032005 (2013), [arXiv:1306.2781].
[126] S. W. Bosch et al., Phys. Rev. Lett. 93, 221801 (2004), [hep-ph/0403223].
[127] J. R. Andersen and E. Gardi, JHEP 01, 097 (2006), [hepph/0509360].
[128] P. Gambino et al., JHEP 10, 058 (2007), [arXiv:0707.2493].
[129] R. Kowalewski and T. Mannel, "Semileptonic b-Hadron Decays, Determination of $V_{c b}, V_{u b}, "$ http://pdg.lbl. gov/2019/reviews/rpp2018-rev-vcb-vub.pdf (2017), review prepared for PDG 2018 update.

72. Production and Decay of b-flavored Hadrons

Revised April 2020 by P. Eerola (Helsinki U.), M. Kreps (Warwick U.) and Y. Kwon (Yonsei U., Seoul).

The b quark belongs to the third generation of quarks and is the weak-doublet partner of the t quark. The existence of the thirdgeneration quark doublet was proposed in 1973 by Kobayashi and Maskawa [1] in their model of the quark mixing matrix ("CKM" matrix), and confirmed four years later by the first observation of a $b \bar{b}$ meson [2]. In the KM model, $C P$ violation is explained within the Standard Model (SM) by an irreducible phase of the 3×3 unitary matrix. The regular pattern of the three lepton and quark families is one of the most intriguing puzzles in particle physics. The existence of families gives rise to many of the free parameters in the SM, including the fermion masses, and the elements of the CKM matrix.

Since the b quark is the lighter element of the third-generation quark doublet, the decays of b-flavored hadrons occur via generation-changing processes through CKM matrix. Because of this, and the fact that the CKM matrix is close to a 3×3 unit matrix, many interesting features such as loop and box diagrams, flavor oscillations, as well as large $C P$ asymmetries, can be observed in the weak decays of b-flavored hadrons.

The CKM matrix is parameterized by three real parameters and one complex phase. This complex phase can become a source of $C P$ violation in B meson decays. A crucial milestone was the first observation of $C P$ violation in the B meson system in 2001, by the BaBar [3] and Belle [4] collaborations. They measured a large value for the parameter $\sin 2 \beta\left(=\sin 2 \phi_{1}\right)$ [5], almost four decades after the discovery of a small $C P$ asymmetry in neutral kaons. A more detailed discussion of the CKM matrix and $C P$ violation can be found elsewhere in this Review $[6,7]$.

The structure of this mini-review is organized as follows. After a discussion of b-quark production and current results on spectroscopy, we discuss lifetimes of b-flavored hadrons. We then discuss some basic properties of B-meson decays, followed by summaries of hadronic, rare, and electroweak penguin decays of B mesons. There are separate mini-reviews for $B^{0}-\bar{B}^{0}$ mixing [8] and the extraction of the CKM matrix elements $V_{c b}$ and $V_{u b}$ from B-meson decays [9] in this Review.

72.1 Production and spectroscopy

The bound states of a \bar{b} antiquark and a u, d, s, or c quark are referred to as the $B_{u}\left(B^{+}\right), B_{d}\left(B^{0}\right), B_{s}\left(B_{s}^{0}\right)$, and $B_{c}\left(B_{c}^{+}\right)$mesons, respectively. The B_{c}^{+}is the heaviest of the ground-state b-flavored mesons, and the most difficult to produce: it was observed for the first time in the semileptonic mode by CDF in 1998 [10], but its mass was accurately determined only in 2006, from the fully reconstructed mode $B_{c}^{+} \rightarrow J / \psi \pi^{+}$[11]. Many exclusive decay channels can now be used for the accurate mass measurements, given the large statistics available at the LHC. Currently the most precise measurement is made by LHCb using the $B_{c}^{+} \rightarrow J / \psi D^{0} K^{+}$decay, yielding $m\left(B_{c}^{+}\right)=6274.28 \pm 1.40 \pm 0.32 \mathrm{MeV} / c^{2}$ [12].

The first excited meson is called the B^{*} meson, while $B^{* *}$ is the generic name for the four orbitally excited $(L=1) B$-meson states that correspond to the P-wave mesons in the charm system, $D^{* *}$. Excited states of the B_{s}^{0} meson are similarly named B_{s}^{*} and $B_{s}^{* *}$. Of the possible bound $\bar{b} b$ states, the $\Upsilon(n S)$ and $\chi_{b J}(n P)$ states are well studied.

The pseudoscalar ground state η_{b} has been observed for the first time by BaBar [13] indirectly through the decay $\Upsilon(3 S) \rightarrow \gamma \eta_{b}$, and then confirmed by Babar in $\Upsilon(2 S)$ decays [14] and CLEO in $\Upsilon(3 S)$ decays [15]. The most accurate mass and width measurements come now from Belle, using decays $\Upsilon(5 S) \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}$, $h_{b}(1 P) \rightarrow \gamma \eta_{b}(1 S)[16]$ and $\Upsilon(4 S) \rightarrow \eta h_{b}(1 P), h_{b}(1 P) \rightarrow \gamma \eta_{b}(1 S)$ [17]. Belle has also reported first evidence for the $\eta_{b}(2 S)$ in the $h_{b}(2 P) \rightarrow \eta_{b}(2 S) \gamma$ transition [16]. See Ref. [18] for classification and naming of these and other states.

Experimental studies of b decays have been performed in $e^{+} e^{-}$ collisions at the $\Upsilon(4 S)$ (ARGUS, CLEO, Belle, BaBar) and $\Upsilon(5 S)$ (CLEO, Belle) resonances. The full data samples of BaBar and Belle are $560 \mathrm{fb}^{-1}$ and $1020 \mathrm{fb}^{-1}$, respectively, of which $433 \mathrm{fb}^{-1}$ and $710 \mathrm{fb}^{-1}$ are at the $\Upsilon(4 S)$ resonance. The Belle II experiment at SuperKEKB has started recording data in 2019, and the
experiment has so far collected about $12.4 \mathrm{fb}^{-1}$ of data (March 2020). The $e^{+} e^{-} \rightarrow b \bar{b}$ production cross-section at the $\Upsilon(4 S)$ $(\Upsilon(5 S))$ resonance is about $1.1 \mathrm{nb}(0.3 \mathrm{nb})$. At the Z resonance (SLC, LEP) all species of b-flavored hadrons could be studied for the first time. The $e^{+} e^{-} \rightarrow b \bar{b}$ production cross-section at the Z resonance is about 6.6 nb .

High-energy $p \bar{p}$ (Tevatron) and $p p$ collisions (LHC) produce b-flavored hadrons of all species with large cross-sections. At the Tevatron $(\sqrt{s}=1.96 \mathrm{TeV})$ the visible cross section $\sigma(p \bar{p} \rightarrow$ $b X,|\eta|<1$) is about $30 \mu \mathrm{~b}$. CDF and D0 experiments at the Tevatron have accumulated by the end of their running about $10 \mathrm{fb}^{-1}$ each.

At the LHC $p p$ collider at $\sqrt{s}=7-13 \mathrm{TeV}$, the visible b hadron cross section at the LHCb experiment with pseudorapidity acceptance $2<\eta<5$ has been measured to be $\sim 72 \mu$ b at 7 TeV and $\sim 144 \mu \mathrm{~b}$ at 13 TeV [19] (cross section at 13 TeV corrected in Erratum). LHCb has collected about $1 \mathrm{fb}^{-1}$ at $7 \mathrm{TeV}, 2 \mathrm{fb}^{-1}$ at 8 TeV , and close to $5.9 \mathrm{fb}^{-1}$ at 13 TeV during LHC Runs 1 and 2. CMS and ATLAS have collected each about $5 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7,20 \mathrm{fb}^{-1}$ at 8 TeV and about $150 \mathrm{fb}^{-1}$ at 13 TeV during LHC Runs 1 and 2. The LHCb experiment is ungergoing currently major upgrade. The LHC operation is planned to resume in 2021.

In hadron collisions, production happens as $b \bar{b}$ pairs via leading order flavor creation or higher order processes such as gluonsplitting. Single b-quarks can be produced by flavor excitation. The total b-production cross section is an interesting test of our understanding of leading and higher order QCD processes. With a wealth of measurements at LHC and at Tevatron (see Ref. [19] and references therein), and improved calculations [20], there is a reasonable agreement between measurements and predictions.

Each quark of a $b \bar{b}$ pair produced in hadron collisions hadronizes separately and incoherently from the other, but it is still possible to obtain a statistical indication of the charge of a produced b / \bar{b} quark ("flavor tag" or "charge tag") from the accompanying particles produced in the hadronization process, or from the decay products of the other quark. The momentum spectrum of produced b-quarks typically peaks near the b-quark mass, and extends to much higher momenta, dropping by about a decade for every ten GeV . Typical decay lengths are of the order of a centimeter at $13 \mathrm{TeV} p p$ collisions; the resolution for the decay vertex must be more precise than this to resolve the fast oscillations of B_{s}^{0} mesons.

In $e^{+} e^{-}$colliders, since the B mesons are very slow in the $\Upsilon(4 S)$ rest frame, asymmetric beam energies are used to boost the decay products to allow time-dependent measurements that are crucial for the study of $C P$ violation. At KEKB, the boost was $\beta \gamma=0.43$, while PEP-II used a slightly larger boost, $\beta \gamma=0.55$. The typical B-meson decay length is dilated from $\approx 20 \mu \mathrm{~m}$ to $\approx 200 \mu \mathrm{~m}$. At SuperKEKB the boost is lower, $\beta \gamma=0.28$, which puts more demanding requirements on the track reconstruction precision at Belle II to reach a resolution in decay time measurements similar to Belle. The two B mesons produced in $\Upsilon(4 S)$ decay are in a coherent quantum state, which makes it easier than in hadron collisions to infer the charge state of one B meson from observation of the other; however, the coherence also requires determination of the decay time of both mesons, rather than just one, in order to perform time-dependent $C P$-violation measurements. For B_{s}^{0}, which can be produced at $\Upsilon(5 S)$ the situation is less favourable, as boost is not high enough to provide sufficient time resolution to resolve the fast B_{s}^{0} oscillations.

For the measurement of branching fractions, the initial composition of the data sample must be known. The $\Upsilon(4 S)$ resonance decays predominantly to $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$; the current experimental upper limit for non- $B \bar{B}$ decays of the $\Upsilon(4 S)$ is less than 4% at the 95% confidence level (CL) [21]. The observed modes of this category are decays to lower Υ states and a pion pair, η, or η^{\prime}, measured branching fractions being of order $10^{-4}-10^{-5}$ [22], and decays to $h_{b}(1 P) \eta$ with branching fraction of order 10^{-3} [17].

The ratio f_{+} / f_{0} of the fractions of charged to neutral B productions from $\Upsilon(4 S)$ decays has been measured by CLEO, BaBar, and Belle in various ways. They typically use pairs of isospinrelated decays of B^{+}and B^{0}, such that it can be assumed that
$\Gamma\left(B^{+} \rightarrow x^{+}\right)=\Gamma\left(B^{0} \rightarrow x^{0}\right)$. In this way, the ratio of the number of events observed in these modes is proportional to $\left(f_{+} \tau_{+}\right) /\left(f_{0} \tau_{0}\right)[23,24]$. BaBar has also performed an independent measurement of f_{0} with a different method that does not require isospin symmetry or the value of the lifetime ratio, based on the number of events with one or two reconstructed $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ decays [25]. The combined result, from the current average of τ_{+} / τ_{0}, is $f_{+} / f_{0}=1.058 \pm 0.024$ [26]. The result is consistent within 2.4σ with equal production of $B^{+} B^{-}$and $B^{0} \bar{B}^{0}$ pairs, and we assume $f_{+} / f_{0}=1$ in this mini-review except where explicitly stated otherwise. This assumption is also supported by the near equality of the B^{+}and B^{0} masses: our fit yields $m\left(B^{0}\right)=$ $5279.65 \pm 0.12 \mathrm{MeV} / c^{2}, m\left(B^{+}\right)=5279.34 \pm 0.12 \mathrm{MeV} / c^{2}$, and $m\left(B^{0}\right)-m\left(B^{+}\right)=0.31 \pm 0.05 \mathrm{MeV} / c^{2}$.

Data collected at the $\Upsilon(5 S)$ resonance gave CLEO, Belle and BaBar access to B_{s}^{0} decays. In $\Upsilon(5 S)$ decays there are seven possible final states including a pair of non-strange B mesons and 0, 1 or 2 pions, and three with a pair of strange B mesons $\left(B_{s}^{* 0} \bar{B}_{s}^{* 0}\right.$, $B_{s}^{* 0} \bar{B}_{s}^{0}$, and $B_{s}^{0} \bar{B}_{s}^{0}$). The fraction of events with a pair of B_{s}^{0} mesons over the total number of events with a pair of b-flavored hadrons has been measured to be $f_{s}[\Upsilon(5 S)]=0.199_{-0.029}^{+0.030}[27]$, of which 88% is $B_{s}^{* 0} \bar{B}_{s}^{* 0}$ events. However, the small boost of B_{s}^{0} mesons produced in this way prevents resolution of their fast oscillations for time-dependent measurements; these are only accessible in hadron collisions (or at the Z peak).

In high-energy collisions, the produced b or \bar{b} quarks can hadronize with different probabilities into the full spectrum of b hadrons, either in their ground or excited states. The hadronization does not have to be identical in $p \bar{p}$ or $p p$ collisions and in Z decay, because of the different momentum distributions of the b-quark in these processes; the sample used in the $p \bar{p}$ measurements has momenta close to the b mass, rather than $m_{Z} / 2$. The available data from Tevatron and LHC show that the production fractions f_{d}, f_{u}, f_{s}, and $f_{\text {baryon }}$ of B^{0}, B^{+}, B_{s}^{0}, and b baryons, respectively, of weakly decaying b hadrons depend on the kinematics of the produced b hadron. The production fractions of b hadrons are discussed in more detail in the $B^{0}-\bar{B}^{0}$ mixing section in this Review [8].

Excited B-meson states have been thoroughly studied by CLEO, LEP, CUSB, D0 and CDF (an admixture of B mesons) and $\mathrm{LHCb}\left(B^{*+}\right.$-meson). The current world average of the $B^{*}-B$ mass difference is $45.21 \pm 0.21 \mathrm{MeV} / c^{2}$. Excited B_{s}^{*}-meson states have observed in $\Upsilon(5 S)$ decays by CUSB, CLEO and Belle.

For orbitally excited B meson states, with relative angular momentum $\mathrm{L}=1$ of the two quarks, there exist four states $\left(J, j_{q}\right)=$ $(0,1 / 2),(1,1 / 2),(1,3 / 2),(2,3 / 2)$, where j_{q} is the total angular momentum of the light u, d or s quark and J is the total angular momentum of the B meson. These states are collectively called as $B_{(s)}^{* *}$ mesons. The $j_{q}=1 / 2$ states are named $B_{(s) 0}^{*}$ $(J=0)$ and $B_{(s) 1}(J=1)$ mesons, while the states with $j_{q}=3 / 2$ are named $B_{(s) 1}(J=1)$ and $B_{(s) 2}^{*}(J=2)$ mesons. The states with $j_{q}=1 / 2$ can decay through an S-wave transition and are expected to have a large width, but the $j_{q}=3 / 2$ states are narrow D-wave decays. Evidence for $B^{* *}$ production has been initially obtained at LEP as a broad $B \pi$ resonance [28] or a $B^{+} K^{-}$enhancement [29]. Detailed results have been obtained for the narrow states $B_{1}(5721)^{0,+}$ and $B_{2}(5747)^{0,+}$ at the Tevatron and by LHCb , and clear enhancements compatible with the higher mass states $B_{J}(5840)^{0,+}$ and $B_{J}(5970)^{0,+}$ have been observed $[30,31]$. Also the narrow $B_{s}^{* *}$ states $B_{s 1}(5830)^{0}$ and $B_{s 2}(5840)^{0}$ have been measured at the CDF [30], LHCb [32], and CMS [33].

Excited states of B_{c}^{+}mesons will provide important information about the strong potential. A $B_{c}^{+} \pi^{+} \pi^{-}$resonance has been observed for the first time by ATLAS [34]. The mass of the resonance has been measured precisely by CMS and LHCb as $6871.6 \pm 1.1 \mathrm{MeV} / c^{2}[35,36]$. The resonance may be interpreted as the second S-wave state of the B_{c}^{+}meson, $B_{c}^{+}(2 S)$, but the quantum numbers are to be confirmed.

Baryon states containing a b quark are labeled according to the same scheme used for non- b baryons, with the addition of a b subscript [18]. The first observed b baryon was the Λ_{b}^{0} (quark composition $u d b)$. Thanks to the large samples accumulated at
the Tevatron and specially at the LHC many new b baryons have been found. The masses of all these new baryons have been measured to a precision of a few MeV / c^{2}, and found to be in agreement with predictions from Heavy Quark Effective Theory (HQET).

Clear signals of four strongly-decaying baryon states, $\Sigma_{b}^{+}, \Sigma_{b}^{*+}$ $(u u b), \Sigma_{b}^{-}, \Sigma_{b}^{*-}(d d b)$ have been obtained by CDF [37] and LHCb [38]. LHCb has also observed two new mass peaks in the $\Lambda_{b}^{0} \pi^{ \pm}$systems, consistent with single resonances and named as $\Sigma_{b}^{ \pm}(6097)$ [38]. The nature of these resonances is, however, not yet clear. The isodublet of strange b baryons $\Xi_{b}^{0}(u s b)$ and $\Xi_{b}^{ \pm}(d s b)$ has been observed by CDF and D0 [39]. Masses, lifetimes, and branching ratios have been accurately measured by LHCb [40] and CDF [41]. LHCb has also measured several parameters sensitive to P and $C P$ violation [42]. Other observed Ξ_{b} baryons are spin$3 / 2$ states $\Xi_{b}(5945)^{0}\left(\Xi_{b}^{* 0}\right)[43,44]$ and $\Xi_{b}(5955)^{*-}[45]$, a spin$1 / 2$ state $\Xi_{b}^{\prime}(5935)^{-}[45]$, and a resonance state $\Xi_{b}^{-}(6227)$ [46]. The doubly-strange bottom baryon Ω_{b}^{-}has been observed first by D0 and CDF [47]. Mass and mean life have been measured precisely by LHCb [48] and CDF [41].

The so-called exotic states have raised a lot of interest recently. While many exotic states were seen in the charm sector, in bottom sector there are fewer seen. The D0 Collaboration claimed a narrow state $X(5568)$ decaying into a $B_{s}^{0} \pi^{ \pm}$final state [49]. While this would be an interesting addition to the observed states as the first exotic state with constituent quarks with four different flavours (b, s, u, d), analysis by LHCb yields negative result [50]. Also CMS finds no such a state [51].

72.2 Lifetimes

Precise lifetimes are key in extracting the weak parameters that are important for understanding the role of the CKM matrix in $C P$ violation, such as the determination of $V_{c b}$ and $B_{s}^{0} \bar{B}_{s}^{0}$ mixing parameters. In the naive spectator model, the heavy quark can decay only via the external spectator mechanism, and thus, the lifetimes of all mesons and baryons containing b quarks would be equal. Non-spectator effects, such as the interference between contributing amplitudes, modify this simple picture and give rise to a lifetime hierarchy for b-flavored hadrons similar to the one in the charm sector. However, since the lifetime differences are expected to scale as $1 / m_{Q}^{2}$, where m_{Q} is the mass of the heavy quark, the variations in the b system are expected to be only 10% or less $[52,53]$. We expect:

$$
\begin{equation*}
\tau\left(B^{+}\right) \geq \tau\left(B^{0}\right) \approx \tau\left(B_{s}^{0}\right)>\tau\left(\Lambda_{b}^{0}\right) \gg \tau\left(B_{c}^{+}\right) \tag{72.1}
\end{equation*}
$$

For the B_{c}^{+}, both quarks decay weakly, so the lifetime is much shorter.

Measurements of the lifetimes of the different b-flavored hadrons thus provide a means to determine the importance of nonspectator mechanisms in the b sector. Availability of large samples of fully-reconstructed decays of different b-hadron species has resulted in precise measurements with small statistical and systematic uncertainties ($\sim 1 \%$). The world averages given in Table 72.1 have been determined by the Heavy Flavor Averaging Group (HFLAV) [27].

Table 72.1: Summary of i world-average bhadron lifetime measurements. For the B_{s}^{0} lifetimes, see text below.

$\overline{\text { Particle }}$	Lifetime [ps]
B^{+}	1.638 ± 0.004
B^{0}	1.519 ± 0.004
B_{s}^{0}	1.515 ± 0.004
B_{s}^{0}	1.423 ± 0.005
$B_{s H}^{0}$	1.620 ± 0.007
B_{c}^{+}	0.510 ± 0.009
Λ_{b}^{0}	1.471 ± 0.009
Ξ_{b}^{-}	1.572 ± 0.040
Ξ_{b}^{0}	1.480 ± 0.030
Ω_{b}^{-}	$1.64_{-0.17}^{+0.18}$

The B_{s}^{0} lifetime in Table 72.1 is defined as $1 / \Gamma_{s}$, where Γ_{s} is the average width of the light (L) and heavy (H) mass eigenstates, $\left(\Gamma_{L}+\Gamma_{H}\right) / 2$. In the absence of $C P$ violation, the light (heavy) B_{s}^{0} mass eigenstate is the CP-even (CP-odd) eigenstate. Thus, the lifetime of the light (heavy) mass eigenstate can be measured from $C P$-even (odd) final states. The lifetimes can also be obtained from time-dependent angular analysis of $B_{s}^{0} \rightarrow J / \psi \phi$ decays.

The short B_{c}^{+}lifetime is in good agreement with predictions [54]. With large samples of B_{c}^{+}mesons at the LHC precision on the lifetimes can still improve. The measurement using semileptonic decays gives $\tau_{B_{c}^{+}}=0.509 \pm 0.008 \pm 0.012 \mathrm{ps}$ [55] while using decays $B_{c}^{+} \rightarrow J / \psi \pi^{+}$yields $\tau_{B_{c}^{+}}=0.5134 \pm 0.0110 \pm 0.0057$ ps [56]. Each of these is more precise than the combination of all previous experiments.

The recent Λ_{b}^{0} lifetime measurements from LHC experiments and CDF are precise and favour lifetime close to the lifetime of B^{0} meson, in agreement with theory.

For precision comparisons with theory, lifetime ratios are more sensitive. Experimentally it is found [27]:

$$
\begin{gathered}
\frac{\tau_{B^{+}}}{\tau_{B^{0}}}=1.076 \pm 0.004, \frac{\tau_{B_{s}^{0}}}{\tau_{B^{0}}}=0.998 \pm 0.004 \\
\frac{\tau_{\Lambda_{b}^{0}}}{\tau_{B^{0}}}=0.969 \pm 0.006
\end{gathered}
$$

while recent Heavy Quark Expansion (HQE) predictions give [53]:

$$
\begin{gathered}
\frac{\tau_{B^{+}}}{\tau_{B^{0}}}=1.04_{-0.01}^{+0.05} \\
\pm 0.02 \pm 0.01, \frac{\tau_{B_{s}^{0}}}{\tau_{B^{0}}}=1.001 \pm 0.002 \\
\frac{\tau_{\Lambda_{b}^{0}}}{\tau_{B^{0}}}=0.935 \pm 0.054
\end{gathered}
$$

The ratio of B^{+}to B^{0} lifetimes has a precision of better than 1%, and is significantly different from 1.0 , in agreement with predictions [52]. The ratio of B_{s}^{0} to B^{0} lifetimes is expected to be very close to 1.0.

For a detailed discussion on neutral B^{0} and B_{s}^{0} oscillation and relevant $C P$ violation measurements see Ref. [8].

72.3 Features of decays

The ground states of b-flavored hadrons decay via weak interactions. In most decays of the b-flavored hadrons, where the b-quark is accompanied by lighter partner quarks $(d, u, s$, or $c)$, the decay modes are well described by the decay of the b quark (spectator model) [57]. The dominant decay mode of a b quark is $b \rightarrow c W^{*-}$ (referred to as a "tree" or "spectator" decay), where the virtual W materializes either into a pair of leptons $\ell \bar{\nu}$ ("semileptonic decay"), or into a pair of quarks which then hadronizes. The transition $b \rightarrow u$ is suppressed by $\left|V_{u b} / V_{c b}\right|^{2} \sim(0.1)^{2}$ relative to $b \rightarrow c$ transitions. The decays in which the spectator quark combines with one of the quarks from W^{*} to form one of the final state hadrons are suppressed by a factor $\sim(1 / 3)^{2}$, because the colors of the two quarks from different sources must match ("color-suppression").

Semileptonic B decays $B \rightarrow X_{c} \ell \nu$ and $B \rightarrow X_{u} \ell \nu$ provide an excellent way to measure the magnitude of the CKM elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ respectively, because the strong interaction effects are much simplified due to the two leptons in the final state. Both exclusive and inclusive decays can be used with dominant uncertainties being complementary. For exclusive decay analysis, knowledge of the form factors for the exclusive hadronic system $X_{c(u)}$ is required. For inclusive analysis, it is usually necessary to restrict the available phase-space of the decay products to suppress backgrounds; subsequently uncertainties are introduced in the extrapolation to the full phase-space. Moreover, restriction to a small corner of the phase-space may result in breakdown of the operator-product expansion scheme, thus making theoretical calculations unreliable. One of the recent unexpected results was determination of $\left|V_{u b}\right|$ using $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$ decays by LHCb [58]. Besides, there have been measurements of inclusive semileptonic decays rates of B_{s}^{0} [59] and $B_{c}^{+}[60]$ mesons. A more detailed discussion of B semileptonic decays and the extraction of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ is given elsewhere in this Review [9].

On the other hand, hadronic B decays are complicated because of strong interaction effects caused by the surrounding cloud of light quarks and gluons. While this complicates the extraction of CKM matrix elements, it also provides a great opportunity to study perturbative and non-perturbative QCD, hadronization, and Final State Interaction (FSI) effects.

Many aspects of B decays can be understood through the Heavy Quark Effective Theory (HQET) [61]. This has been particularly successful for semileptonic decays. For further discussion of HQET, see for instance Ref. [62]. For hadronic decays, one typically uses effective Hamiltonian calculations that rely on a perturbative expansion with Wilson coefficients. In addition, some form of the factorization hypothesis is commonly used, where, in analogy with semileptonic decays, two-body hadronic decays of B mesons are expressed as the product of two independent hadronic currents, one describing the formation of a charm meson (in case of the dominant $b \rightarrow c W^{*-}$ decays), and the other the hadronization of the remaining $\bar{u} d$ (or $\bar{c} s$) system from the virtual W^{-}. Qualitatively, for B decays with a large energy release, e.g. $b \rightarrow u W^{*-}$ transitions, the $\bar{u} d$ pair (produced as a color singlet) travels fast enough to leave the interaction region without influencing the charm meson. This is known to work well for the dominant spectator decays [63]. There are several common implementations of these ideas for hadronic B decays, the most common of which are QCD factorization (QCDF) [64-67], perturbative QCD (pQCD) [68-72], and soft collinear effective theory (SCET) [73-75].

The transitions $b \rightarrow s$ and $b \rightarrow d$ are flavor-changing neutralcurrent (FCNC) processes. Although they are not allowed in the SM as a tree-process, they can occur via more complicated loop diagrams (denoted "penguin" decays). The rates for $b \rightarrow s$ penguin decays are comparable to the CKM-suppressed $b \rightarrow u$ tree processes. Pure-penguin decays were first established by the observation of $B \rightarrow K^{*}(892) \gamma$ [76]. Penguin processes involving $b \rightarrow d$ transitions are further suppressed by CKM, and have been observed for $B \rightarrow(\rho / \omega) \gamma$ decays [77,78]. LHCb has observed a $b \rightarrow d$ penguin transition in the $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$mode and measured its branching fraction to be $(1.83 \pm 0.24 \pm 0.05) \times 10^{-8}[79]$.

Other decay processes discussed in this Review include W exchange (a W is exchanged between initial-state quarks), penguin annihilation (the gluon from a penguin loop attaches to the spectator quark, similar to an exchange diagram), and pureannihilation (the initial quarks annihilate to a virtual W, which then decays). Some observed decay modes such as $B^{0} \rightarrow D_{s}^{-} K^{+}$, may be interpreted as evidence of a W-exchange process [80]. The evidence for the purely leptonic decay $B^{+} \rightarrow \tau^{+} \nu$ from Belle [81] and BaBar [82] is the first sign of a pure annihilation decay. The average branching fraction is $(1.09 \pm 0.24) \times 10^{-4}$, which is somewhat larger than, though consistent with, the value expected in the SM. A substantial region of parameter space of charged Higgs mass vs. $\tan \beta$ is excluded by the measurements of this mode. A dedicated discussion of purely leptonic decays of charged pseudoscalar mesons is given elsewhere in this Review [83].

72.4 Dominant hadronic decays

Most of the hadronic B decays involve $b \rightarrow c$ transition at the quark level, resulting in a charmed hadron or charmonium in the final state. Other types of hadronic decays are very rare and will be discussed separately in the next section. The experimental results on hadronic B decays have steadily improved over the years, and the measurements have reached sufficient precision to challenge our understanding of the dynamics of these decays. With good particle detection and hadron identification capabilities of B-factory detectors, a substantial fraction (roughly on the order of a few per mill) of hadronic B decay events can be fully reconstructed. In particular, good performances for detecting π^{0} and other neutral particles helped Belle and BaBar to make comprehensive measurements of the decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ [84], where h^{0} stands for light neutral mesons such as $\pi^{0}, \eta^{\left({ }^{\prime}\right)}, \rho^{0}, \omega$. The measurements are being complemented by LHCb, in decays like $\overline{B^{0}} \rightarrow D^{0} \pi^{+} \pi^{-}$[85], where no neutral particles reconstruction is needed. These decays proceed through color-suppressed diagrams, hence they provide useful tests on the factorization models.

Because of the kinematic constraint of $\Upsilon(4 S) \rightarrow B \bar{B}$, the energy sum of the final-state particles of a B meson decay is always equal to one half of the total energy in the center of mass frame. As a result, the two variables, ΔE (energy difference) and M_{B} (B candidate mass with a beam-energy constraint) are very effective for reducing combinatorial background both from $\Upsilon(4 S)$ and $e^{+} e^{-} \rightarrow q \bar{q}$ continuum events. In particular, the energyconstraint in M_{B} improves the signal resolution by almost an order of magnitude.

The kinematically clean environment of B meson decays provides an excellent opportunity to search for new states. For instance, quark-level $b \rightarrow c \bar{c} s$ decays have been used to search for new charmonium and charm-strange mesons and study their properties in detail. While narrow charm-strange states $D_{s 0}^{*}(2317)$ [86] and $D_{s 1}(2460)$ [87] were discovered by BaBar and CLEO, respectively, the properties of these new states were revealed by studying the B meson decays, $B \rightarrow D D_{s 0}^{*}(2317)$ and $B \rightarrow D D_{s 1}(2460)$ by Belle [88] and BaBar [89]. Another example is Dalitz plot analysis of decay $B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$in which the decay to spin-3 resonance was observed for the first time [90].

Information on B_{s}^{0}, B_{c}^{+}and Λ_{b}^{0} decays have been remarkably improved with recent studies of large samples from LHCb. Noticeable additions in B_{s} include decay modes to $D_{s}^{(*)+} D_{s}^{(*)-}, \bar{D}^{0} \bar{K}^{0}$, and $J / \psi \bar{K}^{*}(892)^{0}$. The $B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$ decays were first observed by CDF [91], followed by Belle [92]. LHCb has improved the precision with $\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right)=(3.07 \pm 0.22 \pm 0.33) \%$ [93], which suggests that $B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$ decays do not saturate the $C P$-even modes of the B_{s} decays. The $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{0}$ decay occurs mostly via a color-suppressed tree diagram, and has a small theoretical uncertaintiy in the SM, thus this mode can significantly improve the determination of the $C P$-violation angle ϕ_{s}. LHCb has observed this decay and the branching fraction is $(4.3 \pm 0.5 \pm 0.7) \times 10^{-4}[94]$. The $B_{s}^{0} \rightarrow J / \psi \bar{K}^{*}(892)^{0}$ decay can be used to constrain the penguin pollution in determing ϕ_{s}. LHCb has updated the branching fraction and measured the $C P$ asymmetries of this decay, thereby constraining the penguin pollution in ϕ_{s} [95], although a much more stringent constraint on penguin polltion can come from $B^{0} \rightarrow J / \psi \rho^{0}$ which has been observed by BaBar [96] and LHCb [97]. The $B_{c}^{+} \rightarrow B_{s}^{0} \pi^{+}$decay is unique as the only observed mode of b flavored hadron decays where the partner quark decays (c in this case) while the b quark remains a spectator. LHCb has observed this mode and measured $\left[\sigma\left(B_{c}^{+}\right) / \sigma\left(B_{s}^{0}\right)\right] \times \mathcal{B}\left(B_{c}^{+} \rightarrow B_{s}^{0} \pi^{+}\right)=$ $\left(2.37 \pm 0.31 \pm 0.11_{-0.13}^{+0.17}\right) \times 10^{-3}$ [98]. In addition, LHCb [99] and ATLAS [100] have measured $B_{c}^{+} \rightarrow J / \psi D_{s}^{(*)+}$, which, by comparing with $B_{c}^{+} \rightarrow B_{s}^{0} \pi^{+}$, provides a ratio of exclusive $b \rightarrow c$ and $c \rightarrow s$ decays of B_{c}^{+}. For $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-} \quad$ [101], not only the total rate is measured, but also structure involving decays through excited Λ_{c} and Σ_{c} baryons.

In addition, a variety of exotic particles that do not fit the conventional meson spectroscopy have been discovered in B decays. Belle found the $X(3872)$ state by studying $B^{+} \rightarrow J / \psi \pi^{+} \pi^{-} K^{+}$ [102], which was confirmed by CDF [103], D0 [104] and BaBar [105]. Production of $X(3872)$ has been studied by the LHC experiments, LHCB [106], CMS [107] and ATLAS [108].

A charged charmonium-like state $X(4430)^{ \pm}$that decays to $\psi(2 S) \pi^{ \pm}$was observed by Belle in $B \rightarrow \psi(2 S) K \pi^{ \pm}$[109]. Since it is charged, it could not be an ordinary charmonium state. A highstatistics study by LHCb confirmed the existence of the $X(4430)^{ \pm}$ in decays $B \rightarrow \psi(2 S) K \pi^{ \pm}$[110], demonstrated its resonance character by studying the phase motion, unambiguously determined its spin-parity, and saw evidence for another state. In a Dalitz plot analysis of $\bar{B}^{0} \rightarrow J / \psi K^{-} \pi^{+}$[111], Belle has found another state, labelled as $X(4200)^{+}$in this Review, adding to the list of exotic charged charmonium-like states. In an amplitude analysis of the decay $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$, LHCb observed exotic structures, labelled as $P_{c}(4380)^{+}$and $P_{c}(4450)^{+}$in this Review, in the $J / \psi p$ channel [112]. The subsequent analysis with significantly increased statistics observed additional state and resolved the peak at 4450 MeV / c^{2} as being due to the two states close in the mass [113]. They are referred to as charmonium-pentaquark states. More detailed discussions of exotic meson-like states and pentaquarks are
given elsewhere in this Review [114].

72.5 Rare hadronic decays

All B-meson decays that do not occur through the $b \rightarrow c$ transition are usually called rare B decays. These include both semileptonic and hadronic $b \rightarrow u$ decays that are suppressed at leading order by the small CKM matrix element $V_{u b}$, as well as higherorder $b \rightarrow s(d)$ processes such as electroweak and gluonic penguin decays. In this section, we review hadronic rare B decays, while electroweak penguin decays and others are discussed in the next.

Charmless B meson decays into two-body hadronic final states such as $B \rightarrow \pi \pi$ and $K \pi$ are experimentally clean, and provide good opportunities to probe new physics and search for indirect and direct $C P$ violations. Since the final state particles in these decays tend to have larger momenta than average B decay products, the event environment is cleaner than for $b \rightarrow c$ decays. Branching fractions are typically around 10^{-5}. Over the past decade, many such modes have been observed not only by $e^{+} e^{-}$ collider experiments such as BaBar and Belle, but also by hadron collider experiments such as $\operatorname{CDF}(p \bar{p})$ and $\mathrm{LHCb}(p p)$. In the latter cases, huge data samples of the modes with all charged final-state particles have been reconstructed by triggering on the impact parameter of the charged tracks. This has also allowed observation of charmless decays of the B_{s}, in final states such as $\phi \phi[115,116], K^{+} K^{-}[117,118]$, and $K^{-} \pi^{+}[118,119]$, and of charmless decays of the Λ_{b}^{0} baryon [119]. The large samples available at LHCb experiment allow to perform also time-dependent $C P$ violation measurements $[120,121]$. Charmless B_{s} modes are related to corresponding B^{0} modes by U-spin symmetry, and are determined by similar amplitudes. Combining the observables from B_{s}^{0} and B^{0} modes is a further way of eliminating hadronic uncertainties and extracting relevant CKM information [122].
Because of relatively high-momenta for final state particles, the dominant source of background in $e^{+} e^{-}$collisions is $q \bar{q}$ continuum events; sophisticated background suppression techniques exploiting event shape variables are essential for these analyses. In hadron collisions, the dominant background comes from QCD or partially reconstructed heavy flavors, and is similarly suppressed by a combination of kinematic and isolation requirements. The results are in general consistent among the experiments.

Most rare decay modes including $B^{0} \rightarrow K^{+} \pi^{-}$have contributions from both $b \rightarrow u$ tree and $b \rightarrow s g$ penguin processes. If the size of the two contributions are comparable, the interference between them may result in direct $C P$ violation, seen experimentally as a charge asymmetry in the decay rate measurement. BaBar [123], Belle [124], CDF [117], and LHCb [120] have measured the direct $C P$ violating asymmetry in $B^{0} \rightarrow K^{+} \pi^{-}$ decays. Direct $C P$ violation has been observed in this decay with a significance of more than 5σ. The world average value of the asymmetry is now rather precise, $A_{C P}\left(K^{+} \pi^{-}\right)=-0.083 \pm 0.004$. The $C P$ asymmetry in $B^{+} \rightarrow K^{+} \pi^{0}$ mode has been measured by BaBar [125] and Belle [124] with the average value $A_{C P}\left(K^{+} \pi^{0}\right)=0.037 \pm 0.021$. These two asymmetries differ by more than 5σ significance, in constrast to a naive expectation based on simplified picture in the SM. For more detailed tests, there are sum rules [126] that relate the decay rates and decayrate asymmetries between the four $K \pi$ charge states. With the future improvements via Belle II and upgraded LHCb , the measurements are expected to become precise enough to test these sum rules. The $C P$ asymmetry in the $\pi^{+} K^{-}$mode has also been measured in B_{s}^{0} decays, by CDF [117] and LHCb [120]. The combined value is $A_{C P}\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right)=0.221 \pm 0.015$.

In addition to $B_{(s)} \rightarrow K \pi$ modes, significant $(>3 \sigma)$ non-zero $C P$ asymmetries have been measured in several other rare decay modes: $A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{+}\right)=0.37 \pm 0.10[127], A_{C P}\left(B^{+} \rightarrow\right.$ $\left.\eta K^{+}\right)=-0.37 \pm 0.08[128], A_{C P}\left(B^{0} \rightarrow \eta K^{* 0}\right)=0.19 \pm 0.05$ [129], and $A_{C P}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right)=-0.68_{-0.17}^{+0.19}$ [127]. In at least the first two cases, a large direct $C P$ violation might be expected since the penguin amplitude is suppressed so the tree and penguin amplitudes may have comparable magnitudes. There are also measurements by LHCb of $C P$ asymmetries in several 3body modes: $A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)=0.057 \pm 0.013, A_{C P}\left(B^{+} \rightarrow\right.$ $\left.K^{+} \pi^{-} \pi^{+}\right)=0.027 \pm 0.008, A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=-0.122 \pm$ 0.0021 , and $A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)=-0.033 \pm 0.008[130,131]$.

Many of these analyses now include Dalitz plot treatments with many intermediate resonances.
BaBar [132] and Belle [124, 133] have observed the decays $B^{+} \rightarrow \bar{K}^{0} K^{+}$and $B^{0} \rightarrow K^{0} \bar{K}^{0}$. The world-average branching fractions are $\mathcal{B}\left(B^{0} \rightarrow K^{0} \bar{K}^{0}\right)=(1.21 \pm 0.16) \times 10^{-6}$ and $\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{K}^{0} K^{+}\right)=(1.31 \pm 0.17) \times 10^{-6}$. These are the first observations of hadronic $b \rightarrow d$ transitions, with significance bigger than 5σ for all four measurements. $C P$ asymmetries have been measured for these modes, but with large errors. LHCb has observed $B^{0} \rightarrow K^{+} K^{-}$mode which occurs via a weak-annihilation process and is the rarest hadronic B-meson decay thus far observed, with $\mathcal{B}\left(B^{0} \rightarrow K^{+} K^{-}\right)=(7.80 \pm 1.52) \times 10^{-8}[134] . B_{s}^{0} \rightarrow K^{+} K^{-}$ decay mode, which occurs mostly via $b \rightarrow s$ penguin process, has been observed by Belle [135], CDF [136] and LHCb [118]. The average branching fraction is $\mathcal{B}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=(25.4 \pm 1.6) \times 10^{-6}$. Belle has also observed $B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}$ which also occurs via $b \rightarrow s$ penguin transition in the SM . The branching fraction is $\left(1.96_{-0.56}^{+0.62}\right) \times 10^{-5}$ [137].

The decay $B^{0} \rightarrow \pi^{+} \pi^{-}$can be used to extract the CKM angle α (for details see elsewhere in this Review [138]). This is complicated by the presence of significant contributions from penguin diagrams. An isospin analysis [139] can be used to untangle the penguin complications. The decay $B^{0} \rightarrow \pi^{0} \pi^{0}$ is crucial in this analysis. Both BaBar and Belle have observed $B^{0} \rightarrow \pi^{0} \pi^{0}$, with a mild tension in the measured branching fractions: $(1.83 \pm 0.25) \times 10^{-6}$ for BaBar [123] and $(1.31 \pm 0.26) \times 10^{-6}$ for Belle [140]. It turns out that the amount of penguin pollution in the $B \rightarrow \pi \pi$ system is rather large. In the past few years, measurements in the $B^{0} \rightarrow \rho \rho$ system have produced more precise values of α, since penguin amplitudes are generally smaller for decays with vector mesons. An important ingredient in the analysis is the $B^{0} \rightarrow \rho^{0} \rho^{0}$ branching fraction. The average of measurements from BaBar [141] and Belle [142] yields a branching fraction of $(0.96 \pm 0.15) \times 10^{-6}$. This is only 3% of the $\rho^{+} \rho^{-}$branching fraction, much smaller than the corresponding ratio ($\gtrsim 20 \%$) in the $\pi \pi$ system.

Since $B \rightarrow \rho \rho$ has two vector mesons in the final state, the $C P$ eigenvalue of the final state depends on the longitudinal polarization fraction f_{L} for the decay. Therefore, a measurement of f_{L} is needed to extract the CKM angle α. Both BaBar and Belle have measured f_{L} for the decays $\rho^{+} \rho^{-}$[143] and $\rho^{+} \rho^{0}$ [144] and in both cases the measurements show $f_{L}>0.9$, making a complete angular analysis unnecessary. In $B^{0} \rightarrow \rho^{0} \rho^{0}, f_{L}$ is measured by BaBar [141], Belle [142] and LHCb [145], with the average value being $0.71_{-0.09}^{+0.08}$.

By analyzing the angular distributions of the B decays to two vector mesons, we can learn a lot about both weak- and stronginteraction dynamics in B decays. Decays that are penguindominated surprisingly have values of f_{L} near 0.5 . The list of such decays has now grown to include $B \rightarrow \phi K^{*}(892), B \rightarrow \rho K^{*}(892)$, and $B \rightarrow \omega K^{*}(892)$. The reasons for this "polarization puzzle" are not fully understood. A detailed description of the angular analysis of B decays to two vector mesons can be found in a separate mini-review [146] in this Review .

72.6 Electroweak penguin decays

Electroweak decays are one-loop FCNC decays proceeding through penguin or box Feynman diagrams with final state including real photon or pair of leptons. Such decays were first observed by CLEO experiment when it observed decay $B \rightarrow K^{*}(892) \gamma$ [76]. Since then significant amount of experimental information was obtained. Branching fractions for these decays are 10^{-5} or less, which makes them excellent candidates for searches for new physics beyond SM. Often several observables are available, which allows for stringent tests of the SM.

Starting with radiative decays, experimentally easiest to study are exclusive decays with a fully reconstructed final state. The best studied decay in this class is $B \rightarrow K^{*}(892) \gamma$ seen by CLEO, Belle, BaBar experiments [147-149] with world average branching fraction $\mathcal{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)=(41.8 \pm 2.5) \times 10^{-6}$. Decays through several other kaon resonances such as $B \rightarrow K_{1}(1270) \gamma$, $K_{2}^{*}(1430) \gamma$, etc. were studied at B-factories [150-153]. It is worth to mention decay $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma$ for which besides measure-
ments of the branching fraction [151,154,155] one can also use the angular distribution to access photon polarisation. Such a measurement was done by the LHCb experiment, which was able to clearly demonstrate that the photon in $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma$ decay is polarised [156]. Unfortunately given non-trivial hadronic structure, more work is needed before turning this into test of the SM. The latest addition to the observed exclusive radiative decays is $B_{s}^{0} \rightarrow \phi \gamma$, seen by the Belle and LHCb experiments [157, 158] with an average branching fraction of $(3.4 \pm 0.4) \times 10^{-5}$.

Compared to $b \rightarrow s \gamma$, the $b \rightarrow d \gamma$ transitions such as $B \rightarrow \rho \gamma$, are suppressed by the CKM elements ratio $\left|V_{t d} / V_{t s}\right|^{2}$. Both Belle and BaBar have observed these decays [77,78]. The world average $\mathcal{B}(B \rightarrow(\rho, \omega) \gamma)=(1.30 \pm 0.23) \times 10^{-6}$. This can be used to calculate $\left|V_{t d} / V_{t s}\right|$ [159]; the measured values are $0.195_{-0.024}^{+0.025}$ from Belle [77] and 0.233 ${ }_{-0.032}^{+0.033}$ from BaBar [78].

The observed radiative penguin branching fractions can constrain a large class of SM extensions [160]. However, due to the uncertainties in the hadronization, only the inclusive $b \rightarrow s \gamma$ rate can be reliably compared with theoretical calculations. This rate can be measured from the endpoint of the inclusive photon spectrum in B decay. By combining the measurements of $B \rightarrow X_{s} \gamma$ from the CLEO, BaBar, and Belle experiments [161-163], HFLAV obtains the new average: $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.32 \pm 0.15) \times 10^{-4}[27]$ for $E_{\gamma} \geq 1.6 \mathrm{GeV}$, averaging over B^{+}and B^{0}. Consistent but less precise results have been reported by ALEPH for inclusive b-hadrons produced at the Z, which includes also contribution from B_{s}^{0} and Λ_{b}^{0} hadrons. Using the sum of seven exclusive final states, the BaBar experiment measured the branching fraction of inclusive $b \rightarrow d \gamma$ decays to be $(9.2 \pm 2.0 \pm 2.3) \times 10^{-6}$ [164]. The measured branching fraction can be compared to theoretical calculations. Recent calculations of $\mathcal{B}(b \rightarrow s \gamma)$ at NNLO level predict for the $E_{\gamma} \geq 1.6 \mathrm{GeV}$ values of $(3.36 \pm 0.23) \times 10^{-4}$ for $b \rightarrow s \gamma$ and $\left(1.73_{-0.22}^{+0.12}\right) \times 10^{-5}$ for $b \rightarrow d \gamma$ decays [165].

The $C P$ asymmetry in $b \rightarrow s \gamma$ is extensively studied theoretically both in the SM and beyond [166]. According to the SM, the $C P$ asymmetry in $b \rightarrow s \gamma$ is smaller than 1%, but some non-SM models allow significantly larger $C P$ asymmetry ($\sim 10 \%$) without altering the branching fraction. The current world average is $A_{C P}=0.015 \pm 0.011$, again dominated by BaBar and Belle [167]. In addition to the $C P$ asymmetry, BaBar and Belle also measured the isospin asymmetry $\Delta_{0-}=-0.006 \pm 0.020$ in $b \rightarrow s \gamma$ measured using sum of exclusive decays $[167,168]$. An alternative measurement using full reconstruction of the companion B in the hadronic decay modes yields a consistent, but less precise result [169]. Both Belle and BaBar experiments measured the isospin asymmetry in exclusive $B \rightarrow K^{*}(892) \gamma$ decay with average of $6.3 \pm 1.7 \%[148,149]$ and therefore providing evidence for the non-zero isospin asymmetry.

In addition, experiments have measured the inclusive photon energy spectrum for $b \rightarrow s \gamma$, and by analyzing the shape of the spectrum they obtain the first and second moments for photon energies. Belle has measured these moments covering the widest range in the photon energy $\left(1.7<E_{\gamma}<2.8 \mathrm{GeV}\right)$ [163]. The measurement by BaBar has slightly smaller range with lower limit at 1.8 GeV [170]. These results can be used to extract nonperturbative HQET parameters that are needed for precise determination of the CKM matrix element $V_{u b}$.

Additional information on FCNC processes can be obtained from $b \rightarrow s \ell^{+} \ell^{-}$decays. These processes are studied as a function of dilepton invariant mass squared, q^{2}. Different q^{2} regions are sensitive to different physics. Starting at the very low q^{2} decays exhibit sensitivity to the same physics as the radiative decays. Then for the q^{2} in region 1.1 to $6.0 \mathrm{GeV}^{2} / c^{4}$ the SM and new physics have best chance to compete. At the high q^{2} above the $\psi(2 S)$ mass, the interference of SM and new physics is to some extend complementary to that in lower q^{2}. Regions around J / ψ and $\psi(2 S)$ is normally excluded from measurements as these are dominated by the $b \rightarrow c$ transitions to charmonia. For exclusive decays, theory predictions require calculations of hadronic form factors. With current theory predictions, the most useful are measurements within the q^{2} regions 1.1 to $6.0 \mathrm{GeV}^{2} / c^{4}$ and from 16.0 GeV^{2} / c^{4} up to the kinematic limit. From this reason in the listing we provide results mainly in those two regions.

Similar as for radiative decays, also for the $b \rightarrow s \ell^{+} \ell^{-}$decays the inclusive measurements provide some benefits. Both Belle and BaBar performed such measurement without reconstructing hadronic part exclusively and measure a branching fraction of $(5.8 \pm 1.3) \times 10^{-6}[171]$. Unfortunately this measurement is not trivially possible at hadron colliders and also does not easily allow the angular distributions of the decay products to be exploited. One alternative is to extract information on the inclusive decay as sum of exclusive decays. Such a measurement was performed by Belle [172], but in this case the difficulty lies in extrapolation for the missing hadronic states.

Turning to the exclusive decays, the initial measurements performed by B-factories typically averaged between charged and neutral B mesons as well as between $e^{+} e^{-}$and $\mu^{+} \mu^{-}$finals states. The experiments CDF, LHCb, ATLAS and CMS are much better suited for the $\mu^{+} \mu^{-}$finals states compared to the $e^{+} e^{-}$final states. As such most measurements at hadron colliders are done only with $\mu^{+} \mu^{-}$decays and by separating charged and neutral B mesons. The best studied decays are $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$and $B^{0} \rightarrow K^{*}(892)^{0} \ell^{+} \ell^{-}$. At hadron colliders other b hadrons are produced and as such CDF and LHCb experiments did observe also $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}[173,174], \Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}[173,175]$ and $\Lambda_{b}^{0} \rightarrow$ $p K^{-} \mu^{+} \mu^{-}$decays [176]. The total branching fractions integrated over whole q^{2} regions are $(5.5 \pm 0.7) \times 10^{-7}$ for $B^{+} \rightarrow K^{+} e^{+} e^{-}$, $(4.41 \pm 0.23) \times 10^{-7}$ for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-},\left(1.03_{-0.17}^{+0.19}\right) \times 10^{-6}$ for $B^{0} \rightarrow K^{*}(892)^{0} e^{+} e^{-}$and $(0.94 \pm 0.05) \times 10^{-6}$ for $B^{0} \rightarrow$ $K^{*}(892)^{0} \mu^{+} \mu^{-}$decays [177-180]. The total branching fractions for $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$and $\Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}$decays are $(8.2 \pm 1.2) \times 10^{-7}$ $[173,174]$ and $(1.08 \pm 0.28) \times 10^{-6}[173,175]$ respectively. With increased precision of $B^{0} \rightarrow K^{*}(892)^{0} \ell^{+} \ell^{-}$decay, there is a question on what fraction of the seen branching fraction is due to the $K^{*}(892)^{0}$ resonance and what fraction is due to the $K \pi$ in s-wave. This has been studied by LHCb which found that the $K \pi$ in swave fraction varies between 1% and about 10% depending on the q^{2} region [180]. It should be noted, that for all relevant B meson decays the branching fractions so far studied are consistently below the SM expectation.

In the $b \rightarrow s \ell^{+} \ell^{-}$decays angular distributions offer rich source of information. For the decays $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$and $B^{0} \rightarrow K^{*}(892)^{0} \ell^{+} \ell^{-}$full angular analysis was already performed [181-186], while for other decays only partial angular analyses are available $[174,187]$. Recently a lot of progress was done by constructing observables, which have reduced theory uncertainties and measurements of these are done. Most notably the observable called P_{5}^{\prime} [188] shows a discrepancy with the SM in the q^{2} region which is highly sensitive to new physics [185,186$]$. Measurements of the $C P$ asymmetries [176, 178, 189], the isospin asymmetry [177-179] were also performed. All these measurements are well consistent with the small $A_{C P}$ and small isospin asymmetry expected in the SM [190]. With statistics available at the LHC, the measurement of phase difference between long- and short-distance contribution in $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$decays became possible [191].

With the data samples available at LHC, the lepton universality in $b \rightarrow s \ell^{+} \ell^{-}$can be tested. While in the SM decays to electronpositron and muon pairs are expected to be same up to small corrections due to the different masses of leptons, in extensions of the SM this does not have to hold. The angular analysis of $B^{0} \rightarrow$ $K^{*}(892)^{0} e^{+} e^{-}$decays was performed by LHCb at low dilepton invariant masses [192] and Belle in several regions over whole q^{2} range [186]. The most notable result on lepton universality test is the ratio of branching fractions between $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$and $B^{+} \rightarrow K^{+} e^{+} e^{-}$and between $B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}$and $B^{0} \rightarrow$ $K^{*}(892)^{0} e^{+} e^{-}$decays. In both cases, the measurements by LHCb show similar discrepancy from the SM, each being in the region of $2.1-2.6 \sigma[193,194]$. Recently, LHCb experiment performed similar test with $\Lambda_{b}^{0} \rightarrow p K^{-} \ell^{+} \ell^{-}$decays [195].

While $b \rightarrow d \ell^{+} \ell^{-}$decays are further suppressed, they recently became accessible. Signals were observed for $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$[79], $B^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$[196] and $\Lambda_{b}^{0} \rightarrow p \pi^{-} \mu^{+} \mu^{-}$[197] decays. The total branching fractions are only quantities measured and these are about 2×10^{-8} for the meson decays and about 7×10^{-8} for the Λ_{b}^{0} decay.

Finally the decays $B_{(s)}^{0} \rightarrow e^{+} e^{-}$and $\mu^{+} \mu^{-}$are interesting since they only proceed at second order in weak interactions in the SM, but may have large contributions from supersymmetric loops, proportional to $(\tan \beta)^{6}$. First limits were published 30 years ago and since then experiments at Tevatron, B-factories and LHC gradually improved those and effectively excluded whole models of new physics and significantly constrained allowed parameter space of others. For the decays to $\mu^{+} \mu^{-}$, Tevatron experiments pushed the limits down to roughly factor of $5-10$ above the SM expectation [198, 199]. The long journey in the search for these decays culminated in 2012, when first evidence for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$ decay was seen [200]. Subsequently, LHC experiments ATLAS [201], CMS [202] and LHCb [203] observed statitically significant signal for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$decay. The average branching fraction is found to be $(3.0 \pm 0.4) \times 10^{-9}$. In experiments at hadron colliders searches for $B^{0} \rightarrow \mu^{+} \mu^{-}$decays are performed at the same time. The best limit on $B\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<3.4 \times 10^{-10}$ at 95% C.L. [203]. The limits for the $e^{+} e^{-}$modes are: $<2.8 \times 10^{-7}$ and $<8.3 \times 10^{-8}$, respectively, for B_{s}^{0} and B^{0} [204]. The searches for decays to $\tau^{+} \tau^{-}$are more challenging with current best limits of $B\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right)<2.1 \times 10^{-3}$ and $B\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right)<6.8 \times$ 10^{-3} at 95% C.L. [205]. All existing measurements of B^{0} and B_{s}^{0} decays to same flavour dilepton pair is consistent with SM expectation [206]. With $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$decay observed, it was suggested that the effective lifetime is useful further test of the decay [207]. Attempt was made by LHCb experiment, but its precision is not yet sufficient to provide test of the SM [203]. It will take couple of years until interesting precision is reached. The searches were also performed for lepton flavour violating decays to two leptons with best limits in $e^{ \pm} \mu^{\mp}$ channel, where limits are $<3.7 \times 10^{-9}$ for B^{0} and $<1.4 \times 10^{-8}$ for B_{s}^{0}, at 95% confidence level [208].

Several theory groups performed global analysis of electroweak decays concluding that significant tension between data and SM is present [209]. The tension can be relieved by new physics beyond SM. For more detailed reviews see e.g. Ref. [210].

72.7 Summary and Outlook

The study of B mesons continues to be one of the most productive fields in particle physics. With the two asymmetric B-factory experiments Belle and BaBar, we now have a combined data sample of well over $1 \mathrm{ab}^{-1}$. $C P$ violation has been firmly established in many decays of B mesons. Evidence for direct $C P$ violation has been observed. Many rare decays resulting from hadronic $b \rightarrow u$ transitions and $b \rightarrow s(d)$ penguin decays have been observed, and the emerging pattern is still full of surprises. Despite the remarkable successes of the B-factory experiments, many fundamental questions in the flavor sector remain unanswered.

At Fermilab, CDF and D0 each has accumulated about $10 \mathrm{fb}^{-1}$, which is the equivalent of about $10^{12} b$-hadrons produced. In spite of the low trigger efficiency of hadronic experiments, a selection of modes have been reconstructed in large quantities, giving a start to a program of studies on B_{s} and b-flavored baryons, in which a first major step has been the determination of the B_{s} oscillation frequency.

As Tevatron and B-factories finished their taking data, the new experiments at the LHC have become very active. LHCb has collected about $1 \mathrm{fb}^{-1}$ at $7 \mathrm{TeV}, 2 \mathrm{fb}^{-1}$ at 8 TeV , and close to $5.9 \mathrm{fb}^{-1}$ at 13 TeV during LHC Runs 1 and 2. CMS and ATLAS have collected each about $5 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7 \mathrm{TeV}, 20 \mathrm{fb}^{-1}$ at 8 TeV and about $150 \mathrm{fb}^{-1}$ at 13 TeV during LHC Runs 1 and 2. LHCb , which is dedicated to the studies of b - and c-hadrons, has a data sample that is for many decays larger than the sum of all previous experiments. With it, we are entering to regime of precision physics even for many rare decays, which allows much more detailed measurements.

The Belle II experiment at the SuperKEKB has started recording data in 2019 and has so far collected about $12.4 \mathrm{fb}^{-1}$ of data (March 2020). The aim to increase sample to $\sim 50 \mathrm{ab}^{-1}$ will make it possible to explore the indirect evidence of new physics beyond the SM in the heavy-flavor particles (b, c, and τ), in a way that is complementary to the LHC. In the same time period, LHCb Collaboration is working on the upgrade of its detector,
installation of which is ongoing. The aim of the upgrade is to increase flexibility of the trigger, which will allow about a factor of five increase in instantaneous luminosity and of about a factor of two in efficiencies on triggering on purely hadronic decays. The plan is to integrate about $50 \mathrm{fb}^{-1}$ of data starting from 2021.

These experiments promise a rich spectrum of rare and precise measurements that have the potential to fundamentally affecting our understanding of the SM and $C P$-violating phenomena.

References

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] S. W. Herb et al., Phys. Rev. Lett. 39, 252 (1977).
[3] B. Aubert et al. (BaBar), Phys. Rev. Lett. 87, 091801 (2001), [hep-ex/0107013].
[4] K. Abe et al. (Belle), Phys. Rev. Lett. 87, 091802 (2001), [hep-ex/0107061].
[5] Currently two different notations $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ and (α, β, γ) are used in the literature for CKM unitarity angles. In this mini-review, we use the latter notation following the other mini-reviews in this Review. The two notations are related by $\phi_{1}=\beta, \phi_{2}=\alpha$ and $\phi_{3}=\gamma$.
[6] See the "CP Violation in Meson Decays" by D. Kirkby and Y. Nir in this Review.
[7] See the "CKM Quark Mixing Matrix," by A. Cecucci, Z. Ligeti, and Y. Sakai, in this Review.
[8] See the note on " $B^{0}-\bar{B}^{0}$ mixing," by O. Schneider in this Review.
[9] See the "Determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ "" by R . Kowalewski and T. Mannel in this Review.
[10] F. Abe et al. (CDF), Phys. Rev. Lett. 81, 2432 (1998), [hepex/9805034]; F. Abe et al. (CDF), Phys. Rev. D58, 112004 (1998), [hep-ex/9804014].
[11] A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 082002 (2006), [hep-ex/0505076].
[12] R. Aaij et al. (LHCb), Phys. Rev. D95, 3, 032005 (2017), [arXiv:1612.07421].
[13] B. Aubert et al. (BaBar), Phys. Rev. Lett. 101, 071801 (2008), [Erratum: Phys. Rev. Lett.102,029901(2009)], [arXiv:0807.1086].
[14] B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 161801 (2009), [arXiv:0903.1124].
[15] G. Bonvicini et al. (CLEO), Phys. Rev. D81, 031104 (2010), [arXiv:0909.5474].
[16] R. Mizuk et al. (Belle), Phys. Rev. Lett. 109, 232002 (2012), [arXiv:1205.6351].
[17] U. Tamponi et al. (Belle), Phys. Rev. Lett. 115, 14, 142001 (2015), [arXiv:1506.08914].
[18] See the note on "Naming scheme for hadrons," by M. Roos and C.G. Wohl in this Review.
[19] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 5, 052002 (2017), [Erratum: Phys. Rev. Lett.119,no.16,169901(2017)], [arXiv:1612.05140].
[20] M. Cacciari et al., JHEP 10, 137 (2012), [arXiv:1205.6344]; B. A. Kniehl et al., Phys. Rev. D84, 094026 (2011), [arXiv:1109.2472]; M. Cacciari, M. L. Mangano and P. Nason, Eur. Phys. J. C75, 12, 610 (2015), [arXiv:1507.06197].
[21] B. Barish et al. (CLEO), Phys. Rev. Lett. 76, 1570 (1996).
[22] E. Guido et al. (Belle), Phys. Rev. Lett. 121, 062001 (2018), [arXiv:1803.10303]; E. Guido et al. (Belle), Phys. Rev. D96, 052005 (2017), [arXiv:1707.04973]; A. Sokolov et al. (Belle), Phys. Rev. D79, 051103 (2009), [arXiv:0901.1431]; B. Aubert et al. (BaBar), Phys. Rev. D78, 112002 (2008), [arXiv:0807.2014].
[23] J. P. Alexander et al. (CLEO), Phys. Rev. Lett. 86, 2737 (2001), [hep-ex/0006002]; S. B. Athar et al. (CLEO), Phys. Rev. D66, 052003 (2002), [hep-ex/0202033].
[24] N. C. Hastings et al. (Belle), Phys. Rev. D67, 052004 (2003), [hep-ex/0212033].
[25] B. Aubert et al. (BaBar), Phys. Rev. Lett. 95, 042001 (2005), [hep-ex/0504001].
[26] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 12, 895 (2017), [arXiv:1612.07233].
[27] Y. S. Amhis et al. (HFLAV) (2019), and online update at https://hflav.web.cern.ch/content/lifetimes-and-oscillation-parameters, [arXiv:1909.12524].
[28] P. Abreu et al. (DELPHI), Phys. Lett. B345, 598 (1995).
[29] R. Akers et al. (OPAL), Z. Phys. C66, 19 (1995).
[30] T. A. Aaltonen et al. (CDF), Phys. Rev. D90, 1, 012013 (2014), [arXiv:1309.5961].
[31] R. Aaij et al. (LHCb), JHEP 04, 024 (2015), [arXiv:1502.02638].
[32] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 15, 151803 (2013), [arXiv:1211.5994].
[33] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 939 (2018), [arXiv:1809.03578].
[34] G. Aad et al. (ATLAS), Phys. Rev. Lett. 113, 21, 212004 (2014), [arXiv:1407.1032].
[35] A. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 132001 (2019), [arXiv:1902.00571].
[36] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 232001 (2019), [arXiv:1904.00081].
[37] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 99, 202001 (2007), [arXiv:0706.3868]; T. Aaltonen et al. (CDF), Phys. Rev. D85, 092011 (2012), [arXiv:1112.2808].
[38] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 012001 (2019), [arXiv:1809.07752].
[39] V. M. Abazov et al. (D0), Phys. Rev. Lett. 99, 052001 (2007), [arXiv:0706.1690]; T. Aaltonen et al. (CDF), Phys. Rev. Lett. 99, 052002 (2007), [arXiv:0707.0589].
[40] R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 032001 (2014), [arXiv:1405.7223]; R. Aaij et al. (LHCb), Phys. Lett. B736, 154 (2014), [arXiv:1405.1543]; R. Aaij et al. (LHCb), Phys. Rev. D89, 3, 032001 (2014), [arXiv:1311.4823]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 24, 242002 (2014), [arXiv:1409.8568]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 24, 241801 (2015), [arXiv:1510.03829]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 7, 071801 (2017), [arXiv:1612.02244]; R. Aaij et al. (LHCb), Phys. Lett. B722, 265 (2017), [arXiv:1701.05274]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 071801 (2017), [arXiv:1612.02244]; R. Aaij et al. (LHCb), JHEP 02, 98 (2018), [arXiv:1711.05490]; R. Aaij et al. (LHCb), Phys. Rev. D99, 052006 (2019), [arXiv:1901.07075].
[41] T. A. Aaltonen et al. (CDF), Phys. Rev. D89, 7, 072014 (2014), [arXiv:1403.8126].
[42] R. Aaij et al. (LHCb), JHEP 08, 039 (2018), [arXiv:1805.03941].
[43] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 108, 252002 (2012), [arXiv:1204.5955].
[44] R. Aaij et al. (LHCb), JHEP 1605, 161 (2016), [arXiv:1604.03896].
[45] R. Aaij et al. (LHCb), Phys. Rev. Lett. 114, 062004 (2015), [arXiv:1411.4849].
[46] R. Aaij et al. (LHCb), Phys. Rev. Lett. 121, 072002 (2018), [arXiv:1805.09418].
[47] V. M. Abazov et al. (D0), Phys. Rev. Lett. 101, 232002 (2008), [arXiv:0808.4142]; T. Aaltonen et al. (CDF), Phys. Rev. D80, 072003 (2009), [arXiv:0905.3123].
[48] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 18, 182001 (2013), [arXiv:1302.1072]; R. Aaij et al. (LHCb), Phys. Lett. B736, 154 (2014), [arXiv:1405.1543]; R. Aaij et al. (LHCb), Phys. Rev. D93, 9, 092007 (2016), [arXiv:1604.01412].
[49] V. M. Abazov et al. (D0), Phys. Rev. Lett. 117, 2, 022003 (2016), [arXiv:1602.07588]; V. M. Abazov et al. (D0), Phys. Rev. D97, 092004 (2018), [arXiv:1712.10176].
[50] R. Aaij et al. (LHCb), Phys. Rev. Lett. 117, 15, 152003 (2016), [Addendum: Phys. Rev. Lett.118,no.10,109904(2017)], [arXiv:1608.00435].
[51] A. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 202005 (2018), [arXiv:1712.06144].
[52] C. Tarantino, Eur. Phys. J. C33, S895 (2004), [hepph/0310241]; F. Gabbiani, A. I. Onishchenko and A. A. Petrov, Phys. Rev. D70, 094031 (2004), [hep-ph/0407004]; F. Gabbiani, A. I. Onishchenko and A. A. Petrov, Phys. Rev. D68, 114006 (2003), [hep-ph/0303235].
[53] A. Lenz, Int. J. Mod. Phys. A30, 10, 1543005 (2015), [arXiv:1405.3601].
[54] C.-H. Chang et al., Phys. Rev. D64, 014003 (2001), [hepph/0007162]; V. V. Kiselev, A. E. Kovalsky and A. K. Likhoded, Nucl. Phys. B585, 353 (2000), [hep-ph/0002127]; A. Yu. Anisimov et al., Phys. Lett. B452, 129 (1999), [hepph/9812514]; M. Beneke and G. Buchalla, Phys. Rev. D53, 4991 (1996), [hep-ph/9601249].
[55] R. Aaij et al. (LHCb), Eur. Phys. J. C74, 5, 2839 (2014), [arXiv:1401.6932].
[56] R. Aaij et al. (LHCb), Phys. Lett. B742, 29 (2015), [arXiv:1411.6899].
[57] The B_{c} is a special case, where a weak decay of the c quark is also possible, but the spectator model still applies.
[58] R. Aaij et al. (LHCb), Nature Phys. 11, 743 (2015), [arXiv:1504.01568].
[59] J. P. Lees et al. (BaBar), Phys. Rev. D85, 011101 (2012), [arXiv:1110.5600]; C. Oswald et al. (Belle), Phys. Rev. D87, 7, 072008 (2013), [Erratum: Phys. Rev.D90,no.11,119901(2014)], [arXiv:1212.6400]; C. Oswald et al. (Belle), Phys. Rev. D92, 7, 072013 (2015), [arXiv:1504.02004].
[60] T. A. Aaltonen et al. (CDF), Phys. Rev. D93, 5, 052001 (2016), [arXiv:1601.03819].
[61] B. Grinstein, Nucl. Phys. B339, 253 (1990); H. Georgi, Phys. Lett. B240, 447 (1990); A. F. Falk et al., Nucl. Phys. B343, 1 (1990); E. Eichten and B. R. Hill, Phys. Lett. B234, 511 (1990).
[62] "Heavy-Quark and Soft-Collinear Effective Theory" by C.W. Bauer and M. Neubert in this Review.
[63] M. Neubert, "Aspects of QCD Factorization," hep-ph/ 0110093 , Proceedings of HF9, Pasadena (2001) and references therein; Z. Ligeti, M. E. Luke and M. B. Wise, Phys. Lett. B507, 142 (2001), [hep-ph/0103020].
[64] M. Beneke et al., Phys. Rev. Lett. 83, 1914 (1999), [hepph/9905312].
[65] M. Beneke et al., Nucl. Phys. B591, 313 (2000), [hepph/0006124].
[66] M. Beneke et al., Nucl. Phys. B606, 245 (2001), [hepph/0104110].
[67] M. Beneke and M. Neubert, Nucl. Phys. B675, 333 (2003), [hep-ph/0308039].
[68] Y.-Y. Keum, H.-n. Li and A. I. Sanda, Phys. Lett. B504, 6 (2001), [hep-ph/0004004].
[69] Y. Y. Keum, H.-N. Li and A. I. Sanda, Phys. Rev. D63, 054008 (2001), [hep-ph/0004173].
[70] Y.-Y. Keum and H.-n. Li, Phys. Rev. D63, 074006 (2001), [hep-ph/0006001].
[71] C.-D. Lu, K. Ukai and M.-Z. Yang, Phys. Rev. D63, 074009 (2001), [hep-ph/0004213].
[72] C.-D. Lu and M.-Z. Yang, Eur. Phys. J. C23, 275 (2002), [hep-ph/0011238].
[73] C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D63, 014006 (2000), [hep-ph/0005275].
[74] C. W. Bauer et al., Phys. Rev. D63, 114020 (2001), [hepph/0011336].
[75] C. W. Bauer and I. W. Stewart, Phys. Lett. B516, 134 (2001), [hep-ph/0107001].
[76] R. Ammar et al. (CLEO), Phys. Rev. Lett. 71, 674 (1993).
[77] N. Taniguchi et al. (Belle), Phys. Rev. Lett. 101, 111801 (2008), [Erratum: Phys. Rev. Lett.101,129904(2008)], [arXiv:0804.4770].
[78] B. Aubert et al. (BaBar), Phys. Rev. D78, 112001 (2008), [arXiv:0808.1379].
[79] R. Aaij et al. (LHCb), JHEP 10, 034 (2015), [arXiv:1509.00414].
[80] P. Krokovny et al. (Belle), Phys. Rev. Lett. 89, 231804 (2002), [hep-ex/0207077]; B. Aubert et al. (BaBar), Phys. Rev. Lett. 98, 081801 (2007), [hep-ex/0604012].
[81] B. Kronenbitter et al. (Belle), Phys. Rev. D92, 5, 051102 (2015), [arXiv:1503.05613]; I. Adachi et al. (Belle), Phys. Rev. Lett. 110, 13, 131801 (2013), [arXiv:1208.4678].
[82] J. P. Lees et al. (BaBar), Phys. Rev. D88, 3, 031102 (2013), [arXiv:1207.0698]; B. Aubert et al. (BaBar), Phys. Rev. D81, 051101 (2010), [arXiv:0912.2453].
[83] See the "Leptonic decays of charged pseudoscalar mesons," by J. Rosner, S. Stone, and R. Van de Water, in this Review.
[84] J. P. Lees et al. (BaBar), Phys. Rev. D84, 112007 (2011), [Erratum: Phys. Rev.D87,no.3,039901(2013)], [arXiv:1107.5751]; S. Blyth et al. (Belle), Phys. Rev. D74, 092002 (2006), [hep-ex/0607029].
[85] R. Aaij et al. (LHCb), Phys. Rev. D 92, 3, 032002 (2015), [arXiv:1505.01710].
[86] B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 242001 (2003), [hep-ex/0304021].
[87] D. Besson et al. (CLEO), Phys. Rev. D68, 032002 (2003), [Erratum: Phys. Rev.D75,119908(2007)], [hep-ex/0305100].
[88] P. Krokovny et al. (Belle), Phys. Rev. Lett. 91, 262002 (2003), [hep-ex/0308019]; Y. Mikami et al. (Belle), Phys. Rev. Lett. 92, 012002 (2004), [hep-ex/0307052].
[89] B. Aubert et al. (BaBar), Phys. Rev. Lett. 93, 181801 (2004), [hep-ex/0408041].
[90] R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 162001 (2014), [arXiv:1407.7574].
[91] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 108, 201801 (2012), [arXiv:1204.0536].
[92] S. Esen et al. (Belle), Phys. Rev. D87, 3, 031101 (2013), [arXiv:1208.0323].
[93] R. Aaij et al. (LHCb), Phys. Rev. D93, 9, 092008 (2016), [arXiv:1602.07543].
[94] R. Aaij et al. (LHCb), Phys. Rev. Lett. 116, 16, 161802 (2016), [arXiv:1603.02408].
[95] R. Aaij et al. (LHCb), JHEP 11, 082 (2015), [arXiv:1509.00400].
[96] B. Aubert et al. (BaBar), Phys. Rev. D76, 031101 (2007), [arXiv:0704.1266].
[97] R. Aaij et al. (LHCb), Phys. Rev. D90, 1, 012003 (2014), [arXiv:1404.5673].
[98] R. Aaij et al. (LHCb), Phys. Rev. Lett. 111, 18, 181801 (2013), [arXiv:1308.4544].
[99] R. Aaij et al. (LHCb), Phys. Rev. D87, 11, 112012 (2013), [Addendum: Phys. Rev.D89,no.1,019901(2014)], [arXiv:1304.4530].
[100] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 1, 4 (2016), [arXiv:1507.07099].
[101] R. Aaij et al. (LHCb), Phys. Rev. D84, 092001 (2011), [Erratum: Phys. Rev.D85,039904(2012)], [arXiv:1109.6831]; T. Aaltonen et al. (CDF), Phys. Rev. D85, 032003 (2012), [arXiv:1112.3334].
[102] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003), [hep-ex/0309032].
[103] D. Acosta et al. (CDF), Phys. Rev. Lett. 93, 072001 (2004), [hep-ex/0312021].
[104] V. M. Abazov et al. (D0), Phys. Rev. Lett. 93, 162002 (2004), [hep-ex/0405004].
[105] B. Aubert et al. (BaBar), Phys. Rev. D71, 071103 (2005), [hep-ex/0406022].
[106] R. Aaij et al. (LHCb), Eur. Phys. J. C72, 1972 (2012), [arXiv:1112.5310].
[107] S. Chatrchyan et al. (CMS), JHEP 04, 154 (2013), [arXiv:1302.3968].
[108] M. Aaboud et al. (ATLAS), JHEP 01, 117 (2017), [arXiv:1610.09303].
[109] S. K. Choi et al. (Belle), Phys. Rev. Lett. 100, 142001 (2008), [arXiv:0708.1790]; R. Mizuk et al. (Belle), Phys. Rev. D80, 031104 (2009), [arXiv:0905.2869].
[110] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 22, 222002 (2014), [arXiv:1404.1903]; R. Aaij et al. (LHCb), Phys. Rev. D92, 11, 112009 (2015), [arXiv:1510.01951].
[111] K. Chilikin et al. (Belle), Phys. Rev. D90, 11, 112009 (2014), [arXiv:1408.6457].
[112] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), [arXiv:1507.03414].
[113] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 22, 222001 (2019), [arXiv:1904.03947].
[114] See the "Non- $q \bar{q}$ mesons," by C. Amsler and C. Hanhart, and "Pentaquarks," by M. Karliner and T. Skwarnicki, in this Review.
[115] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 107, 261802 (2011), [arXiv:1107.4999].
[116] R. Aaij et al. (LHCb), JHEP 10, 053 (2015), [arXiv:1508.00788].
[117] T. A. Aaltonen et al. (CDF), Phys. Rev. Lett. 113, 24, 242001 (2014), [arXiv:1403.5586].
[118] R. Aaij et al. (LHCb), JHEP 10, 037 (2012), [arXiv:1206.2794].
[119] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 103, 031801 (2009), [arXiv:0812.4271].
[120] R. Aaij et al. (LHCb), Phys. Rev. D 98, 3, 032004 (2018), [arXiv:1805.06759].
[121] R. Aaij et al. (LHCb), JHEP 12, 155 (2019), [arXiv:1907.10003].
[122] R. Fleischer, Phys. Lett. B459, 306 (1999), [hepph/9903456]; D. London and J. Matias, Phys. Rev. D70, 031502 (2004), [hep-ph/0404009].
[123] J. P. Lees et al. (BaBar), Phys. Rev. D87, 5, 052009 (2013), [arXiv:1206.3525].
[124] Y. T. Duh et al. (Belle), Phys. Rev. D87, 3, 031103 (2013), [arXiv:1210.1348].
[125] B. Aubert et al. (BaBar), Phys. Rev. D76, 091102 (2007), [arXiv:0707.2798].
[126] M. Gronau and J. L. Rosner, Phys. Rev. D71, 074019 (2005), [hep-ph/0503131]; M. Gronau, Phys. Lett. B627, 82 (2005), [hep-ph/0508047].
[127] B. Aubert et al. (BaBar), Phys. Rev. D78, 012004 (2008), [arXiv:0803.4451]; A. Garmash et al. (Belle), Phys. Rev. Lett. 96, 251803 (2006), [hep-ex/0512066].
[128] C. T. Hoi et al. (Belle), Phys. Rev. Lett. 108, 031801 (2012), [arXiv:1110.2000]; B. Aubert et al. (BaBar), Phys. Rev. D80, 112002 (2009), [arXiv:0907.1743].
[129] B. Aubert et al. (BaBar), Phys. Rev. Lett. 97, 201802 (2006), [hep-ex/0608005]; C. H. Wang et al. (Belle), Phys. Rev. D75, 092005 (2007), [hep-ex/0701057].
[130] R. Aaij et al. (LHCb), Phys. Rev. D90, 11, 112004 (2014), [arXiv:1408.5373].
[131] C.-L. Hsu et al. (Belle), Phys. Rev. D 96, 3, 031101 (2017), [arXiv:1705.02640].
[132] B. Aubert et al. (BaBar), Phys. Rev. Lett. 97, 171805 (2006), [hep-ex/0608036].
[133] K. Abe et al. (Belle), Phys. Rev. Lett. 98, 181804 (2007), [hep-ex/0608049].
[134] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 8, 081801 (2017), [arXiv:1610.08288].
[135] C. C. Peng et al. (Belle), Phys. Rev. D82, 072007 (2010), [arXiv:1006.5115].
[136] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 106, 181802 (2011), [arXiv:1103.5762].
[137] B. Pal et al. (Belle), Phys. Rev. Lett. 116, 16, 161801 (2016), [arXiv:1512.02145].
[138] See the "Determination of CKM angles from B hadrons," by T. Gershon, M. Kenzie, and K. Trabelsi, in this Review.
[139] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[140] T. Julius et al. (Belle), Phys. Rev. D96, 3, 032007 (2017), [arXiv:1705.02083].
[141] B. Aubert et al. (BaBar), Phys. Rev. D78, 071104 (2008), [arXiv:0807.4977].
[142] P. Vanhoefer et al. (Belle), Phys. Rev. D89, 072008 (2014), [Addendum: Phys. Rev.D89,119903(2014)], [arXiv:1212.4015].
[143] B. Aubert et al. (BaBar), Phys. Rev. D76, 052007 (2007), [arXiv:0705.2157]; A. Somov et al. (Belle), Phys. Rev. Lett. 96, 171801 (2006), [hep-ex/0601024].
[144] B. Aubert et al. (BaBar), Phys. Rev. Lett. 102, 141802 (2009), [arXiv:0901.3522]; J. Zhang et al. (Belle), Phys. Rev. Lett. 91, 221801 (2003), [hep-ex/0306007].
[145] R. Aaij et al. (LHCb), Phys. Lett. B747, 468 (2015), [arXiv:1503.07770].
[146] See the "Polarization in B Decays," by A. Gritsan in this Review.
[147] T. E. Coan et al. (CLEO), Phys. Rev. Lett. 84, 5283 (2000), [hep-ex/9912057].
[148] T. Horiguchi et al. (Belle), Phys. Rev. Lett. 119, 19, 191802 (2017), [arXiv:1707.00394].
[149] B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 211802 (2009), [arXiv:0906.2177].
[150] B. Aubert et al. (BaBar), Phys. Rev. D70, 091105 (2004), [hep-ex/0409035].
[151] H. Yang et al. (Belle), Phys. Rev. Lett. 94, 111802 (2005), [hep-ex/0412039].
[152] S. Nishida et al. (Belle), Phys. Lett. B610, 23 (2005), [hepex/0411065].
[153] B. Aubert et al. (BaBar), Phys. Rev. D74, 031102 (2006), [hep-ex/0603054].
[154] B. Aubert et al. (BaBar), Phys. Rev. Lett. 98, 211804 (2007), [Erratum: Phys. Rev. Lett.100,199905(2008)], [hepex/0507031].
[155] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D93, 5, 052013 (2016), [arXiv:1512.03579].
[156] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 16, 161801 (2014), [arXiv:1402.6852].
[157] J. Wicht et al. (Belle), Phys. Rev. Lett. 100, 121801 (2008), [arXiv:0712.2659]; D. Dutta et al. (Belle), Phys. Rev. D91, 1, 011101 (2015), [arXiv:1411.7771].
[158] R. Aaij et al. (LHCb), Nucl. Phys. B867, 1 (2013), [arXiv:1209.0313].
[159] A. Ali, E. Lunghi and A. Ya. Parkhomenko, Phys. Lett. B595, 323 (2004), [hep-ph/0405075]; P. Ball, G. W. Jones and R. Zwicky, Phys. Rev. D75, 054004 (2007), [hepph/0612081].
[160] J. L. Hewett, Phys. Rev. Lett. 70, 1045 (1993), [hepph/9211256].
[161] S. Chen et al. (CLEO), Phys. Rev. Lett. 87, 251807 (2001), [hep-ex/0108032].
[162] J. P. Lees et al. (BaBar), Phys. Rev. D86, 112008 (2012), [arXiv:1207.5772].
[163] A. Limosani et al. (Belle), Phys. Rev. Lett. 103, 241801 (2009), [arXiv:0907.1384]; T. Saito et al. (Belle), Phys. Rev. D91, 5, 052004 (2015), [arXiv:1411.7198].
[164] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D82, 051101 (2010), [arXiv:1005.4087].
[165] M. Misiak et al., Phys. Rev. Lett. 114, 22, 221801 (2015), [arXiv:1503.01789]; M. Czakon et al., JHEP 04, 168 (2015), [arXiv:1503.01791].
[166] L. Wolfenstein and Y. L. Wu, Phys. Rev. Lett. 73, 2809 (1994), [hep-ph/9410253]; G. M. Asatrian and A. Ioannisian, Phys. Rev. D54, 5642 (1996), [hep-ph/9603318]; M. Ciuchini, E. Gabrielli and G. F. Giudice, Phys. Lett. B388, 353 (1996), [Erratum: Phys. Lett.B393,489(1997)], [hep-ph/9604438]; S. Baek and P. Ko, Phys. Rev. Lett. 83, 488 (1999), [hep-ph/9812229]; A. L. Kagan and M. Neubert, Phys. Rev. D58, 094012 (1998), [hep-ph/9803368]; K. Kiers, A. Soni and G.-H. Wu, Phys. Rev. D62, 116004 (2000), [hep-ph/0006280].
[167] S. Watanuki et al. (Belle), Phys. Rev. D 99, 3, 032012 (2019), [arXiv:1807.04236]; J. P. Lees et al. (BaBar), Phys. Rev. D90, 9, 092001 (2014), [arXiv:1406.0534].
[168] B. Aubert et al. (BaBar), Phys. Rev. D72, 052004 (2005), [hep-ex/0508004].
[169] B. Aubert et al. (BaBar), Phys. Rev. D77, 051103 (2008), [arXiv:0711.4889].
[170] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 191801 (2012), [arXiv:1207.2690].
[171] M. Iwasaki et al. (Belle), Phys. Rev. D72, 092005 (2005), [hep-ex/0503044]; J. P. Lees et al. (BaBar), Phys. Rev. Lett. 112, 211802 (2014), [arXiv:1312.5364].
[172] Y. Sato et al. (Belle), Phys. Rev. D93, 3, 032008 (2016), [Addendum: Phys. Rev.D93,no.5,059901(2016)], [arXiv:1402.7134].
[173] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 107, 201802 (2011), [arXiv:1107.3753].
[174] R. Aaij et al. (LHCb), JHEP 07, 084 (2013), [arXiv:1305.2168]; R. Aaij et al. (LHCb), JHEP 09, 179 (2015), [arXiv:1506.08777].
[175] R. Aaij et al. (LHCb), Phys. Lett. B725, 25 (2013), [arXiv:1306.2577].
[176] R. Aaij et al. (LHCb), JHEP 06, 108 (2017), [arXiv:1703.00256].
[177] J. T. Wei et al. (Belle), Phys. Rev. Lett. 103, 171801 (2009), [arXiv:0904.0770].
[178] J. P. Lees et al. (BaBar), Phys. Rev. D86, 032012 (2012), [arXiv:1204.3933].
[179] R. Aaij et al. (LHCb), JHEP 06, 133 (2014), [arXiv:1403.8044].
[180] R. Aaij et al. (LHCb), JHEP 11, 047 (2016), [Erratum: JHEP04,142(2017)], [arXiv:1606.04731].
[181] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 108, 081807 (2012), [arXiv:1108.0695].
[182] R. Aaij et al. (LHCb), JHEP 05, 082 (2014), [arXiv:1403.8045].
[183] S. Chatrchyan et al. (CMS), Phys. Lett. B727, 77 (2013), [arXiv:1308.3409].
[184] V. Khachatryan et al. (CMS), Phys. Lett. B753, 424 (2016), [arXiv:1507.08126].
[185] R. Aaij et al. (LHCb), JHEP 02, 104 (2016), [arXiv:1512.04442].
[186] S. Wehle et al. (Belle), Phys. Rev. Lett. 118, 11, 111801 (2017), [arXiv:1612.05014].
[187] R. Aaij et al. (LHCb), JHEP 06, 115 (2015), [Erratum: JHEP09,145(2018)], [arXiv:1503.07138].
[188] S. Descotes-Genon et al., JHEP 01, 048 (2013), [arXiv:1207.2753].
[189] R. Aaij et al. (LHCb), JHEP 09, 177 (2014), [arXiv:1408.0978].
[190] J. Lyon and R. Zwicky, Phys. Rev. D88, 9, 094004 (2013), [arXiv:1305.4797].
[191] R. Aaij et al. (LHCb), Eur. Phys. J. C77, 3, 161 (2017), [arXiv:1612.06764].
[192] R. Aaij et al. (LHCb), JHEP 04, 064 (2015), [arXiv:1501.03038].
[193] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 19, 191801 (2019), [arXiv:1903.09252].
[194] R. Aaij et al. (LHCb), JHEP 08, 055 (2017), [arXiv:1705.05802].
[195] R. Aaij et al. (LHCb) (2019), [arXiv:1912.08139].
[196] R. Aaij et al. (LHCb), Phys. Lett. B743, 46 (2015), [arXiv:1412.6433].
[197] R. Aaij et al. (LHCb), JHEP 04, 029 (2017), [arXiv:1701.08705].
[198] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 107, 191801 (2011), [Addendum: Phys. Rev. Lett.107,no.23,239903(2011)], [arXiv:1107.2304].
[199] V. M. Abazov et al. (D0), Phys. Rev. D87, 7, 072006 (2013), [arXiv:1301.4507].
[200] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 2, 021801 (2013), [arXiv:1211.2674].
[201] M. Aaboud et al. (ATLAS), JHEP 04, 098 (2019), [arXiv:1812.03017].
[202] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 111, 101804 (2013), [arXiv:1307.5025].
[203] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 19, 191801 (2017), [arXiv:1703.05747].
[204] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 201801 (2009), [arXiv:0901.3803].
[205] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 25, 251802 (2017), [arXiv:1703.02508].
[206] C. Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014), [arXiv:1311.0903].
[207] K. De Bruyn et al., Phys. Rev. Lett. 109, 041801 (2012), [arXiv:1204.1737]; A. J. Buras et al., JHEP 07, 77 (2013), [arXiv:1303.3820].
[208] R. Aaij et al. (LHCb), Phys. Rev. Lett. 111, 141801 (2013), [arXiv:1307.4889].
[209] J. Aebischer et al., Eur. Phys. J. C 80, 3, 252 (2020), [arXiv:1903.10434]; F. Beaujean, C. Bobeth and D. van Dyk, Eur. Phys. J. C74, 2897 (2014), [Erratum: Eur. Phys. J.C74,3179(2014)], [arXiv:1310.2478]; M. Algueró et al., JHEP 07, 096 (2019), [arXiv:1902.04900]; A. Arbey et al., Phys. Rev. D 100, 1, 015045 (2019), [arXiv:1904.08399].
[210] T. Blake, G. Lanfranchi and D. M. Straub, Prog. Part. Nucl. Phys. 92, 50 (2017), [arXiv:1606.00916]; J. Albrecht, S. Reichert and D. van Dyk, Int. J. Mod. Phys. A 33, 18n19, 1830016 (2018), [arXiv:1806.05010].

73. Polarization in B Decays

Revised August 2019 by A. V. Gritsan (Johns Hopkins University).
We review the notation used in polarization measurements in particle production and decay, with a particular emphasis on the B decays and the $C P$-violating observables in polarization measurements. We look at several examples of vector-vector and vector-tensor B meson decays, while more details about the theory and experimental results in B decays can be found in a separate mini-review [1] in this Review.

Figure 73.1 illustrates angular observables in an example of the sequential process $a b \rightarrow X \rightarrow P_{1} P_{2} \rightarrow\left(p_{11} p_{12}\right)\left(p_{21} p_{22}\right)$ [2]. The angular distributions are of particular interest because they are sensitive to spin correlations and reveal properties of particles and their interactions, such as quantum numbers and couplings. In the case of a spin-zero particle X, such as B meson or a Higgs boson, there are no spin correlations in the production mechanism and the decay chain is to be analyzed. The angular distribution of decay products can be expressed as a function of three helicity angles which describe the alignment of the particles in the decay chain. The analyzer of the B-daughter polarization is normally chosen for two-body decays, as the direction of the daughters in the center-of-mass of the parent (e.g., $\rho \rightarrow 2 \pi$) [3], and for three-body decays as the normal to the decay plane (e.g., $\omega \rightarrow 3 \pi$) [4]. An equivalent set of transversity angles is sometimes used in polarization analyses [5]. The differential decay width depends on complex amplitudes $A_{\lambda_{1} \lambda_{2}}$, corresponding to the X-daughter helicity states λ_{i}.

Figure 73.1: Definition of the production and helicity angles in the sequential process $a b \rightarrow X \rightarrow P_{1} P_{2} \rightarrow\left(p_{11} p_{12}\right)\left(p_{21} p_{22}\right)$. The three helicity angles include θ_{1} and θ_{2}, defined in the rest frame of the two daughters P_{1} and P_{2}, and Φ, defined in the X frame as the angle between the two decay planes. The two production angles θ^{*} and Ψ are defined in the X frame, where Ψ is the angle between the production plane and the average of the two decay planes.

In the case of a spin-zero B-meson decay, its daughter helicities are constrained to $\lambda_{1}=\lambda_{2}=\lambda$. Therefore we simplify amplitude notation as A_{λ}. Moreover, most B-decay polarization analyses are limited to the case when the spin of one of the B-meson daughters is 1 . In that case, there are only three independent amplitudes corresponding to $\lambda=0$ or ± 1 [6], where the last two can be expressed in terms of parity-even and parity-odd amplitudes $A_{\|, \perp}=\left(A_{+1} \pm A_{-1}\right) / \sqrt{2}$. The overall decay amplitude involves three complex terms proportional to the above amplitudes and the Wigner d functions of helicity angles. The exact angular dependence would depend on the quantum numbers of the B-meson daughters and of their decay products, and can be found in the literature $[6,7]$. When both B-meson daughters are tensor mesons and the smaller of the two daughter spins is $J_{1}>1$, this formalism can be easily extended by introducing the parity-even and parity-odd amplitudes of higher order $A_{\| n, \perp n}=\left(A_{+n} \pm A_{-n}\right) / \sqrt{2}$, with $1<n \leq J_{1}$, while the general angular parameterization may be found in Ref. 7. However, we limit the following discussion to
$J_{1}=1$. The differential decay rate would involve six real quantities α_{i}, including interference terms,

$$
\begin{equation*}
\frac{d \Gamma}{\Gamma d \cos \theta_{1} d \cos \theta_{2} d \Phi}=\sum_{i} \alpha_{i} f_{i}\left(\cos \theta_{1}, \cos \theta_{2}, \Phi\right), \tag{73.1}
\end{equation*}
$$

where each $f_{i}\left(\cos \theta_{1}, \cos \theta_{2}, \Phi\right)$ has unique angular dependence specific to particle quantum numbers, and the α_{i} parameters are defined as:

$$
\begin{align*}
& \alpha_{1}=\frac{\left|A_{0}\right|^{2}}{\Sigma\left|A_{\lambda}\right|^{2}}=f_{L}, \tag{73.2}\\
& \alpha_{2}=\frac{\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}}{\Sigma\left|A_{\lambda}\right|^{2}}=\left(1-f_{L}\right), \tag{73.3}\\
& \alpha_{3}=\frac{\left|A_{\|}\right|^{2}-\left|A_{\perp}\right|^{2}}{\Sigma\left|A_{\lambda}\right|^{2}}=\left(1-f_{L}-2 f_{\perp}\right), \tag{73.4}\\
& \alpha_{4}=\frac{\Im m\left(A_{\perp} A_{\|}^{*}\right)}{\Sigma\left|A_{\lambda}\right|^{2}}=\sqrt{f_{\perp}\left(1-f_{L}-f_{\perp}\right)} \sin \left(\phi_{\perp}-\phi_{\|}\right), \tag{73.5}\\
& \alpha_{5}=\frac{\Re e\left(A_{\|} A_{0}^{*}\right)}{\Sigma\left|A_{\lambda}\right|^{2}}=\sqrt{f_{L}\left(1-f_{L}-f_{\perp}\right)} \cos \left(\phi_{\|}\right), \tag{73.6}\\
& \alpha_{6}=\frac{\Im m\left(A_{\perp} A_{0}^{*}\right)}{\Sigma\left|A_{\lambda}\right|^{2}}=\sqrt{f_{\perp} f_{L}} \sin \left(\phi_{\perp}\right), \tag{73.7}
\end{align*}
$$

where the amplitudes have been expressed with the help of polarization parameters $f_{L}, f_{\perp}, \phi_{\|}$, and ϕ_{\perp} defined in Table 73.1. Note that the terms proportional to $\Re e\left(A_{\perp} A_{\|}^{*}\right), \Im m\left(A_{\|} A_{0}^{*}\right)$, and $\Re e\left(A_{\perp} A_{0}^{*}\right)$ are absent in Eqs. (2-7). However, these terms may appear for some three-body decays of a B-meson daughter, see Ref. 7 .

Table 73.1: Rate, polarization, and $C P$-asymmetry parameters defined for the B-meson decays to mesons with non-zero spin. Numerical examples are shown for the average of the $B^{0} \rightarrow \varphi K^{*}(892)^{0}$ decay measurements obtained from BABAR [8], Belle [9], and LHCb [10]. The first six parameters are defined under the assumption of no $C P$ violation in decay, while they are averaged between the \bar{B} and B parameters in general. The last six parameters involve differences between the \bar{B} and B meson decay parameters. The phase convention δ_{0} is chosen with respect to a single A_{00} amplitude from a reference B decay mode, which is $B^{0} \rightarrow \varphi K_{0}^{*}(1430)^{0}$ for numerical results.

parameter	definition	average			
\mathcal{B}	$\Gamma / \Gamma_{\text {total }}$	$\left(10.1_{-0.5}^{+0.6}\right) \times 10^{-6}$			
f_{L}	$\left\|A_{0}\right\|^{2} / \Sigma\left\|A_{\lambda}\right\|^{2}$	0.497 ± 0.017			
f_{\perp}	$\left\|A_{\perp}\right\|^{2} / \Sigma\left\|A_{\lambda}\right\|^{2}$	0.225 ± 0.015			
$\phi_{\\|}-\pi$	$\arg \left(A_{\\|} / A_{0}\right)-\pi$	-0.712 ± 0.058			
$\phi_{\perp}-\pi$	$\arg \left(A_{\perp} / A_{0}\right)-\pi$	-0.615 ± 0.056			
$\delta_{0}-\pi$	$\arg \left(A_{00} / A_{0}\right)-\pi$	-0.26 ± 0.10			
$A_{C P}$	$(\bar{\Gamma}-\Gamma) /(\bar{\Gamma}+\Gamma)$	-0.003 ± 0.038			
$A_{C P}^{0}$	$\left(\overline{f_{L}}-f_{L}\right) /\left(\overline{f_{L}}+f_{L}\right)$	-0.007 ± 0.030			
$A_{C P}^{\perp}$	$\left(\overline{f_{\perp}}-f_{\perp}\right) /\left(\overline{f_{\perp}}+f_{\perp}\right)$	-0.014 ± 0.057			
$\Delta \phi_{\\|}$	$\left(\overline{\phi_{\\|}}-\phi_{\\|}\right) / 2$	$+0.051 \pm 0.053$			
$\Delta \phi_{\perp}$	$\left(\overline{\phi_{\perp}}-\phi_{\perp}-\pi\right) / 2$	$+0.075 \pm 0.050$			
$\Delta \delta_{0}$	$\left(\overline{\delta_{0}}-\delta_{0}\right) / 2$	$+0.13 \pm 0.08$			

Overall, six real parameters describe three complex amplitudes $A_{0}, A_{\|}$, and A_{\perp}. These could be chosen to be the four polarization parameters $f_{L}, f_{\perp}, \phi_{\|}$, and ϕ_{\perp}, one overall size normalization, such as decay rate Γ, or branching fraction \mathcal{B}, and one overall phase δ_{0}. The phase convention is arbitrary for an isolated B decay mode. However, for several B decays, the relative phase could produce meaningful and observable effects through interference with other B decays with the same final states, such as for $B \rightarrow V K_{J}^{*}$ with $J=0,1,2,3,4, \ldots$ The phase could be referenced to the single $B \rightarrow V K_{0}^{*}$ amplitude A_{00} in
such a case, as shown in Table 73.1. Here V stands for any spin-one vector meson.

Moreover, $C P$ violation can be tested in the angular distribution of the decay as the difference between the B and \bar{B}. Each of the six real parameters describing the three complex amplitudes would have a counterpart $C P$-asymmetry term, corresponding to three direct- $C P$ asymmetries in three amplitudes, and three $C P$-violating phase differences, equivalent to the phase measurements from the mixing-induced $C P$ asymmetries in the time evolution of B-decays [1]. In Table 73.1 and Ref. 11, these are chosen to be the direct- $C P$ asymmetries in the overall decay rate $\mathcal{A}_{C P}$, in the f_{L} fraction $\mathcal{A}_{C P}^{0}$, and in the f_{\perp} fraction $\mathcal{A}_{C P}^{\perp}$, and three weak phase differences:

$$
\begin{align*}
\Delta \phi_{\|} & =\frac{1}{2} \arg \left(\bar{A}_{\|} A_{0} / A_{\|} \bar{A}_{0}\right), \tag{73.8}\\
\Delta \phi_{\perp} & =\frac{1}{2} \arg \left(\bar{A}_{\perp} A_{0} / A_{\perp} \bar{A}_{0}\right)-\frac{\pi}{2} \tag{73.9}\\
\Delta \delta_{0} & =\frac{1}{2} \arg \left(\bar{A}_{00} A_{0} / A_{00} \bar{A}_{0}\right) . \tag{73.10}
\end{align*}
$$

The $\frac{\pi}{2}$ term in Eq. (73.9) reflects the fact that A_{\perp} and \bar{A}_{\perp} differ in phase by π if $C P$ is conserved. The two parameters $\Delta \phi_{\|}$and $\Delta \phi_{\perp}$ are equivalent to triple-product asymmetries constructed from the vectors describing the decay angular distribution [12]. The $C P$-violating phase difference in the reference decay mode [11] is, in the Wolfenstein CKM quark-mixing phase convention,

$$
\begin{equation*}
\Delta \phi_{00}=\frac{1}{2} \arg \left(A_{00} / \bar{A}_{00}\right) \tag{73.11}
\end{equation*}
$$

This can be measured only together with the mixing-induced phase difference for some of the neutral B-meson decays similar to other mixing-induced $C P$ asymmetry measurements [1].

It may not always be possible to have a phase-reference decay mode which would define δ_{0} and $\Delta \delta_{0}$ parameters. In that case, it may be possible to define the phase difference directly similarly to Eq. (73.11):

$$
\begin{equation*}
\Delta \phi_{0}=\frac{1}{2} \arg \left(A_{0} / \bar{A}_{0}\right) \tag{73.12}
\end{equation*}
$$

One can measure the angles of the CKM unitarity triangle, assuming Standard Model contributions to the $\Delta \phi_{0}$ and B-mixing phases. Examples include measurements of $\beta=\phi_{1}$ with $B \rightarrow J / \psi K^{*}$ and $\alpha=\phi_{2}$ with $B \rightarrow \rho \rho$.

Most of the B decays that arise from tree-level $b \rightarrow c$ transitions have the amplitude hierarchy $\left|A_{0}\right|>\left|A_{+}\right|>\left|A_{-}\right|$which is expected from analyses based on quark-helicity conservation [13]. The larger the mass of the vector-meson daughters, the weaker the inequality. The B meson decays to heavy vector particles with charm, such as $B \rightarrow J / \psi K^{*}, \psi(2 S) K^{*}, \chi_{c 1} K^{*}, D^{*} \rho, D^{*} K^{*}, D^{*} D^{*}$, and $D^{*} D_{s}^{*}$, show a substantial fraction of the amplitudes corresponding to transverse polarization of the vector mesons $\left(A_{ \pm 1}\right)$, in agreement with the factorization prediction. The detailed amplitude analysis of the $B \rightarrow J / \psi K^{*}$ decays has been performed by the BABAR [14], Belle [15], CDF [16], CLEO [17], D0 [18], and LHCb [19] collaborations. Most analyses are performed under the assumption of the absence of direct $C P$ violation. The parameter values are given in the particle listing of this Review. The difference between the strong phases $\phi_{\|}$and ϕ_{\perp} deviates significantly from zero. The measurements $[14,15]$ of $C P$-violating terms similar to those in $B \rightarrow \varphi K^{*}$ [11] shown in Table 73.1 are consistent with zero.

In addition, the mixing-induced $C P$-violating asymmetry is measured in the $B^{0} \rightarrow J / \psi K^{* 0}$ decay $[1,14,15]$ where angular analysis allows one to separate $C P$-eigenstate amplitudes. This allows one to resolve the sign ambiguity of the $\cos 2 \beta\left(\cos 2 \phi_{1}\right)$ term that appears in the time-dependent angular distribution due to interference of parity-even and parity-odd terms. This analysis relies on the knowledge of discrete ambiguities in the strong phases $\phi_{\|}$and ϕ_{\perp}, as discussed below. The BABAR experiment used a method based on the dependence on the $K \pi$ invariant mass of the interference between the S - and P-waves to resolve the discrete ambiguity in the determination of the strong phases ($\phi_{\|}, \phi_{\perp}$) in $B \rightarrow J / \psi K^{*}$ decays [14]. The result
is in agreement with the amplitude hierarchy expectation [13]. The CDF [20], D0 [21], and LHCb [22] experiments have studied the $B_{s}^{0} \rightarrow J / \psi\left(K^{+} K^{-}\right), J / \psi\left(\pi^{+} \pi^{-}\right), \psi\left(K^{+} \pi^{-}\right)$decays and provided the lifetime, polarization, and phase measurements.

The amplitude hierarchy $\left|A_{0}\right| \gg\left|A_{+}\right| \gg\left|A_{-}\right|$was expected in B decays to light vector particles in both penguin transitions [23,24] and tree-level transitions [13]. There is confirmation by the BABAR and Belle experiments of predominantly longitudinal polarization in the tree-level $b \rightarrow u$ transition, such as $B^{0} \rightarrow \rho^{+} \rho^{-}[25], B^{+} \rightarrow \rho^{0} \rho^{+}[26]$, and $B^{+} \rightarrow \omega \rho^{+}[27] ;$ this is consistent with the analysis of the quark helicity conservation [13]. Because the longitudinal amplitude dominates the decay, a detailed amplitude analysis is not possible with current B samples, and limits on the transverse amplitude fraction are obtained. The small branching fractions of $B^{0} \rightarrow \rho^{0} \rho^{0}, \omega \rho^{0}, \omega \omega \quad[29-31,27]$ indicate that $b \rightarrow d$ penguin pollution is small in the charmless, strangeless vector-vector B decays. There is a measurement of large longitudinal polarization in $B^{0} \rightarrow \rho^{0} \rho^{0}$ [29-31] decays. The fraction of transverse polarization is large in decays to heavier mesons such as $B^{0} \rightarrow a_{1}(1260)^{+} a_{1}(1260)^{-}[28]$.

The interest in the polarization and $C P$-asymmetry measurements in penguin transition, such as $b \rightarrow s$ decays $B \rightarrow \varphi K^{*}, \rho K^{*}, \omega K^{*}$, or $B_{s}^{0} \rightarrow \varphi \varphi, K^{*} K^{*}$, and $b \rightarrow d$ decay $B \rightarrow K^{*} \bar{K}^{*}$, is motivated by their potential sensitivity to physics beyond the Standard Model. The decay amplitudes for $B \rightarrow \varphi K^{*}$ have been measured by the BABAR, Belle, and LHCb experiments $[11,9,32,33,10]$. The fractions of longitudinal polarization are $f_{L}=0.50 \pm 0.05$ for the $B^{+} \rightarrow \varphi K^{*+}$ decay and $f_{L}=0.497 \pm 0.017$ for the $B^{0} \rightarrow \varphi K^{* 0}$ decay. These indicate significant departure from the naive expectation of predominant longitudinal polarization, suggesting other contributions to the decay amplitude, previously neglected, either within the Standard Model, such as penguin annihilation [34] or QCD rescattering [35], or from physics beyond the Standard Model [36]. The complete set of twelve amplitude parameters measured in the $B^{0} \rightarrow \varphi K^{* 0}$ decay is given in Table 73.1. Several other parameters could be constructed from the above twelve parameters, as suggested in Ref. 37.

The discrete ambiguity in the phase $\left(\phi_{\|}, \phi_{\perp}, \Delta \phi_{\|}, \Delta \phi_{\perp}\right)$ measurements has been resolved by BABAR in favor of $\left|A_{+}\right| \gg\left|A_{-}\right|$ through interference between the S - and P-waves of $K \pi$. The search for vector-tensor and vector-axialvector $B \rightarrow \varphi K_{J}^{(*)}$ decays with $J=1,2,3,4$ revealed a large fraction of longitudinal polarization in the decay $B \rightarrow \varphi K_{2}^{*}(1430)$ with $f_{L}=0.90_{-0.07}^{+0.06}[11,38]$, but large contribution of transverse amplitude in $B \xrightarrow{-0.07} K_{1}(1270)$ with $f_{L}=0.46_{-0.15}^{+0.13}[39]$.

Like $B \rightarrow \varphi K^{*}$, the decays $B \rightarrow \rho K^{*}$ and $B \rightarrow \omega K^{*}$ may be sensitive to New Physics. Measurements of the longitudinal polarization fraction in $B \rightarrow \rho K^{*}$ [40] and in both vector-vector and vector-tensor final states of $B \rightarrow \omega K_{J}^{*}$ [27] by BABAR and Belle reveal a large fraction of transverse polarization, indicating an anomaly similar to $B \rightarrow \varphi K^{*}$ except for a different pattern in vector-tensor final states. An angular analysis of the $B^{0} \rightarrow \rho^{0} K^{* 0}$ decay mode by LHCb [41] provides much higher precision and indicates remarkably small longitudinal polarization fraction and a significant direct CP asymmetry observed in angular distributions of $B \rightarrow V V$ decays for the first time. A large transverse polarization is also observed in the $B_{s}^{0} \rightarrow \varphi \varphi$ decay by CDF [42] and LHCb [43], $B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$ decays by LHCb [44], and $B_{s}^{0} \rightarrow \varphi K^{* 0}$ decays by LHCb [45]. At the same time, measurement of the polarization in the $b \rightarrow d$ penguin decays $B \rightarrow K^{*} \bar{K}^{*}$ indicates a large fraction of longitudinal polarization $[44,46]$. The LHCb experiment has also provided the very first polarization results on the tensor-tensor, as well as vector-tensor, decays of the B_{s}^{0} meson in the $(K \pi)(K \pi)$ final state [44]. The polarization pattern in penguin-dominated B-meson decays is not fully understood [34-36].

The three-body semileptonic B-meson decays, such as $B \rightarrow V \ell_{1} \ell_{2}$, share many features with the two-body $B \rightarrow V V$ decays. Their differential decay width can be parameterized with the two helicity angles defined in the V and $\left(\ell_{1} \ell_{2}\right)$ frames and with the azimuthal angle, as defined in Fig. 73.1. However, since the $\left(\ell_{1} \ell_{2}\right)$ pair does not come from an on-shell particle, the angular distribution is unique to each point in the dilepton mass $m_{\ell \ell}$ spectrum. The polarization
measurements as a function of $m_{\ell \ell}$ provide complementary information on physics beyond the Standard Model, as discussed for $B \rightarrow K^{*} \ell^{+} \ell^{-}$ and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays in Ref. 47. The data in these modes have been analyzed by the BABAR, Belle, CDF, CMS, and LHCb experiments [48-53].

The examples of the angular distributions and observables in $B \rightarrow K^{*} \ell^{+} \ell^{-}$are discussed in Ref. 47. Two angular observables have been measured in this decay in certain ranges of the dilepton mass $m_{\ell \ell}$. One parameter is the fraction of longitudinal polarization F_{L}, which is determined by the K^{*} angular distribution and is similar to f_{L} defined for exclusive two-body decays. The other parameter is the forward-backward asymmetry of the lepton pair $A_{F B}$, which is the asymmetry of the decay rate with positive and negative values of $\cos \theta_{1}$. A complete set of observables and angular terms has been adopted by the LHCb collaboration [52] following Ref. 47 with the F_{L}, $A_{F B}$, and $S_{3}-S_{9}$ coefficients in the angular distributions. Additional set of optimized observables $P_{i}^{(\prime)}$ is derived from those, for example $P_{2}=2 A_{F B} /\left(3-3 F_{L}\right)$ and $P_{5}^{\prime}=S_{5} / \sqrt{F_{L}\left(1-F_{L}\right)}$. These observables have the advantage that the leading form-factor uncertainties cancel. There have been hints of deviations from SM in the measurement of P_{5}^{\prime} and lepton flavor universality [48-53].

In summary, there has been considerable interest in the polarization measurements of B-meson decays because they reveal both weak- and strong-interaction dynamics [34-36] [54]. New measurements will further elucidate the pattern of spin alignment measurements in rare B decays, and further test the Standard Model and strong interaction dynamics, including the non-factorizable contributions to the B-decay amplitudes.

References:

1. M. Kreps, Y. Kwon, and P. Eerola, "Production and Decay of b-Flavored Hadrons," mini-review in this Review.
2. For an example and further references see Y.Y. Gao et al., Phys. Rev. D81, 075022 (2010).
3. M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
4. S. M. Berman and M. Jacob, Phys. Rev. 139, 1023 (1965).
5. I. Dunietz et al., Phys. Rev. D43, 2193 (1991).
6. G. Kramer and W.F. Palmer, Phys. Rev. D45, 193 (1992).
7. A. Datta et al., Phys. Rev. D77, 114025 (2008).
8. BABAR Collab., B. Aubert et al., Phys. Rev. D78, 092008 (2008).
9. Belle Collab., M. Prim et al., Phys. Rev. D88, 072004 (2013).
10. LHCb Collab., R. Aaij et al., JHEP 05, 069 (2014).
11. BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 93, 231804 (2004); Phys. Rev. Lett. 98, 051801 (2007); Phys. Rev. D78, 092008 (2008).
12. G. Valencia, Phys. Rev. D39, 3339 (1998);
A. Datta and D. London, Int. J. Mod. Phys. A19, 2505 (2004).
13. A. Ali et al., Z. Phys. C1, 269 (1979);
M. Suzuki, Phys. Rev. D64, 117503 (2001).
14. BABAR Collab., B. Aubert et al., Phys. Rev. D71, 032005 (2005); Phys. Rev. D76, 031102 (2007).
15. Belle Collab., R. Itoh et al., Phys. Rev. Lett. 95, 091601 (2005) Phys. Rev. D88, 072004 (2013).
16. CDF Collab., T. Affolder et al., Phys. Rev. Lett. 85, 4668 (2000); CDF Collab., D. Acosta et al., Phys. Rev. Lett. 94, 101803 (2005).
17. CLEO Collab., C. P. Jessop, Phys. Rev. Lett. 79, 4533 (1997).
18. D0 Collab., V. M. Abazov et al., Phys. Rev. Lett. 102, 032001 (2009).
19. LHCb Collab., R. Aaij et al., Phys. Rev. D88, 052002 (2013).
20. CDF Collab., T. Aaltonen et al., Phys. Rev. Lett. 100, 121803 (2008); Phys. Rev. D85, 072002 (2012).
21. D0 Collab., V. M. Abazov et al., Phys. Rev. Lett. 98, 121801 (2007); Phys. Rev. D85, 032006 (2012).
22. LHCb Collab., R. Aaij et al., Phys. Rev. Lett. 108, 101803 (2012); Phys. Rev. Lett. 114, 041801 (2015); Phys. Lett. B747, 484 (2015); JHEP 1511, 082 (2015); JHEP 1708, 037 (2017).
23. H.Y. Cheng and K.C. Yang, Phys. Lett. B511, 40 (2001); C.H. Chen, Y.Y. Keum, and H.n. Li, Phys. Rev. D66, 054013 (2002).
24. A.L.Kagan, Phys. Lett. B601, 151 (2004); Y. Grossman, Int. J. Mod. Phys. A19, 907 (2004).
25. BABAR Collab., B. Aubert et al., Phys. Rev. D76, 052007 (2007); Belle Collab., A. Somov et al., Phys. Rev. D93, 032010 (2016).
26. Belle Collab., J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003); BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 102, 141802 (2009).
27. BABAR Collab., B. Aubert et al., Phys. Rev. D74, 051102 (2006); Phys. Rev. D79, 052005 (2009).
28. BABAR Collab., B. Aubert et al., Phys. Rev. D80, 092007 (2009).
29. BABAR Collab., B. Aubert et al., Phys. Rev. D78, 071104 (2008).
30. Belle Collab., I. Adachi et al., Phys. Rev. D89, 072008 (2014).
31. LHCb Collab., R. Aaij et al., Phys. Lett. B747, 468 (2015).
32. Belle Collab., K.F. Chen et al., Phys. Rev. Lett. 94, 221804 (2005).
33. BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 99, 201802 (2007).
34. A.L. Kagan, Phys. Lett. B601, 151 (2004); H.n. Li and S. Mishima, Phys. Rev. D71, 054025 (2005); C.-H. Chen et al., Phys. Rev. D72, 054011 (2005); M. Beneke et al., Phys. Rev. Lett. 96, 141801 (2006); C.-H. Chen and C.-Q. Geng, Phys. Rev. D75, 054010 (2007); A. Datta et al., Phys. Rev. D76, 034015 (2007); M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys. B774, 64 (2007); H.-Y. Cheng and K.-C. Yang, Phys. Rev. D78, 094001 (2008).
35. C. W. Bauer et al., Phys. Rev. D70, 054015 (2004); P. Colangelo et al., Phys. Lett. B597, 291 (2004); M. Ladisa et al., Phys. Rev. D70, 114025 (2004); H. Y. Cheng et al., Phys. Rev. D71, 014030 (2005); H. Y. Cheng and K. C. Yang, Phys. Rev. D83, 034001 (2011).
36. Y. Grossman, Int. J. Mod. Phys. A19, 907 (2004); E. Alvarez et al., Phys. Rev. D70, 115014 (2004); P.K. Das and K.C. Yang, Phys. Rev. D71, 094002 (2005); C.H. Chen and C.Q. Geng, Phys. Rev. D71, 115004 (2005); Y.D. Yang et al., Phys. Rev. D72, 015009 (2005); K.C. Yang, Phys. Rev. 72, 034009 (2005); S. Baek,Phys. Rev. D72, 094008 (2005); C.S. Huang et al., Phys. Rev. D73, 034026 (2006); C.H. Chen and H. Hatanaka, Phys. Rev. D73, 075003 (2006); A. Faessler et al., Phys. Rev. D75, 074029 (2007).
37. D. London, N. Sinha, and R. Sinha, Phys. Rev. D69, 11401 (2004).
38. BABAR Collab., B. Aubert et al., Phys. Rev. D76, 051103 (2007).
39. BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 101, 161801 (2008).
40. Belle Collab., J. Zhang et al., Phys. Rev. Lett. 95, 141801 (2005); BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 97, 201801 (2006); Phys. Rev. D83, 051101 (2011); Phys. Rev. D85, 072005 (2012).
41. LHCb Collab., R. Aaij et al., JHEP 05, 026 (2019).
42. CDF Collab., T. Aaltonen et al., Phys. Rev. Lett. 107, 261802 (2011).
43. LHCb Collab., R. Aaij et al., Phys. Lett. B713, 369 (2012); Phys. Rev. D90, 052011 (2014); arXiv:1907.10003 [hep-ex].
44. LHCb Collab., R. Aaij et al., Phys. Lett. B709, 50 (2012); JHEP 1507, 166 (2015); JHEP 03, 140 (2018); JHEP 07, 032 (2019).
45. LHCb Collab., R. Aaij et al., JHEP 1311, 092 (2013).
46. BABAR Collab., B. Aubert et al., Phys. Rev. Lett. 100, 081801 (2008), Phys. Rev. D79, 051102 (2009).
47. G. Burdman, Phys. Rev. D52, 6400 (1995); F. Kruger and J. Matias, Phys. Rev. D71, 094009 (2005); E. Lunghi and J. Matias, JHEP 0704, 058 (2007); W. Altmannshofer et al., JHEP 0901, 019 (2009); J. Matias et al., JHEP 1204, 104 (2012); S. Descotes-Genon et al., JHEP 1301, 048 (2013).
48. BABAR Collab., B. Aubert et al., Phys. Rev. D79, 031102 (2009); J. P. Lees et al., Phys. Rev. D93, 052015 (2016).
49. Belle Collab., J.-T. Wei et al., Phys. Rev. Lett. 103, 171801 (2009); S. Wehle et al., Phys. Rev. Lett. 118, 111801 (2017).
50. CDF Collab., T. Aaltonen et al., Phys. Rev. Lett. 108, 081807 (2012).
51. CMS Collab., S. Chatrchyan et al., Phys. Lett. B727, 77 (2013); V. Khachatryan et al., Phys. Lett. B753, 424 (2016); A. M. Sirunyan et al., Phys. Lett. B781, 517 (2018).
52. LHCb Collab., R. Aaij et al., JHEP 1308, 131 (2013); JHEP 1504, 064 (2015); JHEP 1602, 104 (2016); JHEP 1611, 047 (2016); JHEP 1612, 065 (2016); JHEP 1708, 055 (2017).
53. LHCb Collab., R. Aaij et al., JHEP 1509, 179 (2015).
54. C.H. Chen and H.n. Li, Phys. Rev. D71, 114008 (2005).

74. $B^{0}-\bar{B}^{0}$ Mixing

Revised March 2020 by O. Schneider (EPFL).
There are two neutral $B^{0}-\bar{B}^{0}$ meson systems, $B_{d}^{0}-\bar{B}_{d}^{0}$ and $B_{s}^{0}-\bar{B}_{s}^{0}$ (generically denoted $B_{q}^{0}-\bar{B}_{q}^{0}, q=s, d$), which exhibit particle-antiparticle mixing [1]. This mixing phenomenon is described in Ref. [2]. In the following, we adopt the notation introduced in Ref. [2], and assume $C P T$ conservation throughout. In each system, the light (L) and heavy (H) mass eigenstates,

$$
\begin{equation*}
\left|B_{\mathrm{L}, \mathrm{H}}\right\rangle=p\left|B_{q}^{0}\right\rangle \pm q\left|\bar{B}_{q}^{0}\right\rangle \tag{74.1}
\end{equation*}
$$

have a mass difference $\Delta m_{q}=m_{\mathrm{H}}-m_{\mathrm{L}}>0$, a total decay width difference $\Delta \Gamma_{q}=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}$ and an average decay width $\Gamma_{q}=\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{H}}\right) / 2$. In the absence of $C P$ violation in the mixing, $|q / p|=1$, the differences are given by $\Delta m_{q}=2\left|M_{12}\right|$ and $\left|\Delta \Gamma_{q}\right|=$ $2\left|\Gamma_{12}\right|$, where M_{12} and Γ_{12} are the off-diagonal elements of the mass and decay matrices [2]. The evolution of a pure $\left|B_{q}^{0}\right\rangle$ or $\left|\bar{B}_{q}^{0}\right\rangle$ state at $t=0$ is given by

$$
\begin{align*}
\left|B_{q}^{0}(t)\right\rangle & =g_{+}(t)\left|B_{q}^{0}\right\rangle+\frac{q}{p} g_{-}(t)\left|\bar{B}_{q}^{0}\right\rangle \tag{74.2}\\
\left|\bar{B}_{q}^{0}(t)\right\rangle & =g_{+}(t)\left|\bar{B}_{q}^{0}\right\rangle+\frac{p}{q} g_{-}(t)\left|B_{q}^{0}\right\rangle \tag{74.3}
\end{align*}
$$

which means that the flavor states remain unchanged $(+)$ or oscillate into each other (-) with time-dependent probabilities proportional to

$$
\begin{equation*}
\left|g_{ \pm}(t)\right|^{2}=\frac{e^{-\Gamma_{q} t}}{2}\left[\cosh \left(\frac{\Delta \Gamma_{q}}{2} t\right) \pm \cos \left(\Delta m_{q} t\right)\right] \tag{74.4}
\end{equation*}
$$

In the absence of $C P$ violation, the time-integrated mixing probability $\int\left|g_{-}(t)\right|^{2} d t /\left(\int\left|g_{-}(t)\right|^{2} d t+\int\left|g_{+}(t)\right|^{2} d t\right)$ is given by

$$
\begin{equation*}
\chi_{q}=\frac{x_{q}^{2}+y_{q}^{2}}{2\left(x_{q}^{2}+1\right)}, \quad \text { where } \quad x_{q}=\frac{\Delta m_{q}}{\Gamma_{q}}, \quad y_{q}=\frac{\Delta \Gamma_{q}}{2 \Gamma_{q}} \tag{74.5}
\end{equation*}
$$

74.1 Standard Model predictions and phenomenology

In the Standard Model, the transitions $B_{q}^{0} \rightarrow \bar{B}_{q}^{0}$ and $\bar{B}_{q}^{0} \rightarrow B_{q}^{0}$ are due to the weak interaction. They are described, at the lowest order, by box diagrams involving two W bosons and two up-type quarks (see Fig. 74.1), as is the case for $K^{0}-\bar{K}^{0}$ mixing. However, the long range interactions arising from intermediate virtual states are negligible for the neutral B meson systems, because the large B mass is off the region of hadronic resonances. The calculation of the dispersive and absorptive parts of the box diagrams yields the following predictions for the off-diagonal element of the mass and decay matrices [3],

$$
\begin{align*}
M_{12}= & -\frac{G_{F}^{2} m_{W}^{2} \eta_{B} m_{B_{q}} B_{B_{q}} f_{B_{q}}^{2}}{12 \pi^{2}} S_{0}\left(m_{t}^{2} / m_{W}^{2}\right)\left(V_{t q}^{*} V_{t b}\right)^{2} \\
\Gamma_{12}= & \frac{G_{F}^{2} m_{b}^{2} \eta_{B}^{\prime} m_{B_{q}} B_{B_{q}} f_{B_{q}}^{2}}{8 \pi} \tag{74.6}\\
& \times\left[\left(V_{t q}^{*} V_{t b}\right)^{2}+V_{t q}^{*} V_{t b} V_{c q}^{*} V_{c b} \mathcal{O}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right. \\
& \left.+\left(V_{c q}^{*} V_{c b}\right)^{2} \mathcal{O}\left(\frac{m_{c}^{4}}{m_{b}^{4}}\right)\right] \tag{74.7}
\end{align*}
$$

where G_{F} is the Fermi constant, m_{W} the W boson mass, and m_{i} the mass of quark $i ; m_{B_{q}}, f_{B_{q}}$ and $B_{B_{q}}$ are the B_{q}^{0} mass, weak decay constant and bag parameter, respectively. The known function $S_{0}\left(x_{t}\right)$ can be approximated very well by $0.784 x_{t}^{0.76}$ [4], and $V_{i j}$ are the elements of the CKM matrix [5]. The QCD corrections η_{B} and η_{B}^{\prime} are of order unity. The only non-negligible contributions to M_{12} are from box diagrams involving two top quarks. The phases of M_{12} and Γ_{12} satisfy

$$
\begin{equation*}
\phi_{M}-\phi_{\Gamma}=\pi+\mathcal{O}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right) \tag{74.8}
\end{equation*}
$$

Figure 74.1: Dominant box diagrams for the $B_{q}^{0} \rightarrow{\overline{B_{q}}}^{0}$ transitions $(q=d$ or $s)$. Similar diagrams exist where one or both t quarks are replaced with c or u quarks.
implying that the mass eigenstates have mass and width differences of opposite signs. This means that, like in the $K^{0}-\bar{K}^{0}$ system, the heavy state is expected to have a smaller decay width than that of the light state: $\Gamma_{\mathrm{H}}<\Gamma_{\mathrm{L}}$. Hence, $\Delta \Gamma_{q}=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}$ is expected to be positive in the Standard Model.

Furthermore, the quantity

$$
\begin{equation*}
\left|\frac{\Gamma_{12}}{M_{12}}\right| \simeq \frac{3 \pi}{2} \frac{m_{b}^{2}}{m_{W}^{2}} \frac{1}{S_{0}\left(m_{t}^{2} / m_{W}^{2}\right)} \sim \mathcal{O}\left(\frac{m_{b}^{2}}{m_{t}^{2}}\right) \tag{74.9}
\end{equation*}
$$

is small, and a power expansion of $|q / p|^{2}$ yields

$$
\begin{equation*}
\left|\frac{q}{p}\right|^{2}=1+\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \left(\phi_{M}-\phi_{\Gamma}\right)+\mathcal{O}\left(\left|\frac{\Gamma_{12}}{M_{12}}\right|^{2}\right) \tag{74.10}
\end{equation*}
$$

Therefore, considering both Eqs. (74.8) and (74.9), the $C P$ violating parameter

$$
\begin{equation*}
1-\left|\frac{q}{p}\right|^{2} \simeq \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right) \tag{74.11}
\end{equation*}
$$

is expected to be very small: $\sim \mathcal{O}\left(10^{-3}\right)$ for the $B_{d}^{0}-\bar{B}_{d}^{0}$ system and $\lesssim \mathcal{O}\left(10^{-4}\right)$ for the $B_{s}^{0}-\bar{B}_{s}^{0}$ system [6].

In the approximation of negligible $C P$ violation in mixing, the ratio $\Delta \Gamma_{q} / \Delta m_{q}$ is equal to the small quantity $\left|\Gamma_{12} / M_{12}\right|$ of Eq. (74.9); it is hence independent of CKM matrix elements, i.e., the same for the $B_{d}^{0}-\bar{B}_{d}^{0}$ and $B_{s}^{0}-\bar{B}_{s}^{0}$ systems. Calculations [7] yield $\sim 5 \times 10^{-3}$ with a $\sim 20 \%$ uncertainty. Given the published experimental knowledge [8] on the mixing parameter x_{q}

$$
\begin{cases}x_{d}=0.769 \pm 0.004 & \left(B_{d}^{0}-\bar{B}_{d}^{0} \text { system }\right) \tag{74.12}\\ x_{s}=26.89 \pm 0.07 & \left(B_{s}^{0}-\bar{B}_{s}^{0} \text { system }\right)\end{cases}
$$

the Standard Model thus predicts that $\Delta \Gamma_{d} / \Gamma_{d}$ is very small (below 1%), but $\Delta \Gamma_{s} / \Gamma_{s}$ considerably larger ($\sim 10 \%$). These width differences are caused by the existence of final states to which both the B_{q}^{0} and \bar{B}_{q}^{0} mesons can decay. Such decays involve $b \rightarrow c \bar{c} q$ quark-level transitions, which are Cabibbo-suppressed if $q=d$ and Cabibbo-allowed if $q=s$.

A complete set of Standard Model predictions for all mixing parameters in both the $B_{d}^{0}-\bar{B}_{d}^{0}$ and $B_{s}^{0}-\bar{B}_{s}^{0}$ systems can be found in Ref. [9].

74.2 Experimental issues and methods for oscillation analyses

Time-integrated measurements of $B^{0}-\bar{B}^{0}$ mixing were published for the first time in 1987 by UA1 [10] and ARGUS [11], and since then by many other experiments. These measurements are typically based on counting same-sign and opposite-sign lepton pairs from the semileptonic decay of the produced $b \bar{b}$ pairs. Such analyses cannot easily separate the contributions from the different b-hadron species, therefore, the clean environment of $\Upsilon(4 S)$ machines (where only B_{d}^{0} and charged B_{u} mesons are produced) is in principle best suited to measure χ_{d}.

However, better sensitivity is obtained from time-dependent analyses aiming at the direct measurement of the oscillation frequencies Δm_{d} and Δm_{s}, from the proper time distributions of B_{d}^{0} or B_{s}^{0} candidates identified through their decay in (mostly) flavor-specific modes, and suitably tagged as mixed or unmixed. This is particularly true for the $B_{s}^{0}-\bar{B}_{s}^{0}$ system, where the large value of x_{s} implies maximal mixing, i.e., $\chi_{s} \simeq 1 / 2$. In such analyses, the B_{d}^{0} or B_{s}^{0} mesons are either fully reconstructed, partially reconstructed from a charm meson, selected from a lepton with the characteristics of a $b \rightarrow \ell^{-}$decay, or selected from a reconstructed displaced vertex. At high-energy colliders (LEP, SLC, Tevatron, LHC), the proper time $t=\frac{m_{B}}{p} L$ is measured from the distance L between the production vertex and the B decay vertex, and from an estimate of the B momentum p. At asymmetric B factories (KEKB, PEP-II), producing $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B_{d}^{0}{\overline{B_{d}}}^{0}$ events with a boost $\beta \gamma(=0.425,0.55)$, the proper time difference between the two B candidates is estimated as $\Delta t \simeq \frac{\Delta z}{\beta \gamma c}$, where Δz is the spatial separation between the two B decay vertices along the boost direction. In all cases, the good resolution needed on the vertex positions is obtained with silicon detectors.

The average statistical significance \mathcal{S} of a B_{q}^{0} oscillation signal can be approximated as [12]

$$
\begin{equation*}
\mathcal{S} \approx \sqrt{N / 2} f_{\mathrm{sig}}(1-2 \eta) e^{-\left(\Delta m_{q} \sigma_{t}\right)^{2} / 2} \tag{74.13}
\end{equation*}
$$

where N is the number of selected and tagged candidates, $f_{\text {sig }}$ is the fraction of signal in that sample, η is the total mistag probability, and σ_{t} is the resolution on proper time (or proper time difference). The quantity \mathcal{S} decreases very quickly as Δm_{q} increases; this dependence is controlled by σ_{t}, which is therefore a critical parameter for Δm_{s} analyses. At high-energy colliders, the proper time resolution $\sigma_{t} \sim \frac{m_{B}}{\langle p\rangle} \sigma_{L} \oplus t \frac{\sigma_{p}}{p}$ includes a constant contribution due to the decay length resolution σ_{L} (typically $0.04-0.3 \mathrm{ps}$), and a term due to the relative momentum resolution σ_{p} / p (typically $10-20 \%$ for partially reconstructed decays), which increases with proper time. At B factories, the boost of the B mesons is estimated from the known beam energies, and the term due to the spatial resolution dominates (typically $1-1.5 \mathrm{ps}$ because of the much smaller B boost).

In order to tag a B_{q}^{0} candidate as mixed or unmixed, it is necessary to determine its flavor both in the initial state and in the final state. The initial and final state mistag probabilities, η_{i} and η_{f}, degrade \mathcal{S} by a total factor $(1-2 \eta)=\left(1-2 \eta_{i}\right)\left(1-2 \eta_{f}\right)$. In lepton-based analyses, the final state is tagged by the charge of the lepton from $b \rightarrow \ell^{-}$decays; the largest contribution to η_{f} is then due to $\bar{b} \rightarrow \bar{c} \rightarrow \ell^{-}$decays. Alternatively, the charge of a reconstructed charm meson $\left(D^{*-}\right.$ from B_{d}^{0} or D_{s}^{-}from $\left.B_{s}^{0}\right)$, or that of a kaon hypothesized to come from a $b \rightarrow c \rightarrow s$ decay [13], can be used. For fully-inclusive analyses based on topological vertexing, final-state tagging techniques include jetcharge [14] and charge-dipole [15, 16] methods. At high-energy colliders, the methods to tag the initial state (i.e., the state at production), can be divided into two groups: the ones that tag the initial charge of the \bar{b} quark contained in the B_{q}^{0} candidate itself (same-side tag), and the ones that tag the initial charge of the other b quark produced in the event (opposite-side tag). On the same side, the sign of a charged pion, kaon or proton from the primary vertex is correlated with the production state of the B_{q}^{0} meson if that particle is a decay product of a $B^{* *}$ state or the first in the fragmentation chain $[17,18]$. Jet- and vertex-charge techniques work on both sides and on the opposite side, respec-
tively. Finally, the charge of a lepton from $b \rightarrow \ell^{-}$, of a kaon from $b \rightarrow c \rightarrow s$ or of a charm hadron from $b \rightarrow c$ [19] can be used as an opposite-side tag, keeping in mind that its performance is degraded due to integrated mixing. At SLC, the beam polarization produced a sizeable forward-backward asymmetry in the $Z \rightarrow b \bar{b}$ decays, and provided another very interesting and effective initial state tag based on the polar angle of the B_{q}^{0} candidate [15]. Initial state tags have also been combined to reach $\eta_{i} \sim 26 \%$ at LEP [18, 20] or 22% at SLD [15] with full efficiency. In the case $\eta_{f}=0$, this corresponds to an effective tagging efficiency $Q=\epsilon D^{2}=\epsilon(1-2 \eta)^{2}$, where ϵ is the tagging efficiency, in the range $23-31 \%$. The equivalent figure achieved by CDF during Tevatron Run I was $\sim 3.5 \%$ (see tagging summary on page 160 of Ref. [21]), reflecting the fact that tagging is more difficult at hadron colliders. The CDF and D \varnothing analyses of Tevatron Run II data reached $\epsilon D^{2}=(1.8 \pm 0.1) \%[22]$ and $(2.5 \pm 0.2) \%$ [23] for opposite-side tagging, while same-side kaon tagging (for B_{s}^{0} analyses) contributed an additional $3.7-4.8 \%$ at CDF [22], and pushed the combined performance to $(4.7 \pm 0.5) \%$ at $\mathrm{D} \varnothing[24]$. LHCb, operating in the forward region at the LHC where the environment is different in terms of track multiplicity and b-hadron production kinematics, has reported $\epsilon D^{2}=(2.10 \pm 0.25) \%$ [25] for oppositeside tagging, $(1.80 \pm 0.26) \%$ [26] for same-side kaon tagging, and $(2.11 \pm 0.11) \%$ [27] for same-side pion and proton tagging: the combined figure ranges typically between (3.73 $\pm 0.15) \%$ [28] and $(5.33 \pm 0.25) \%$ [29] depending on the mode in which the tagged B_{s}^{0} meson is reconstructed, and reaches up to (8.1 $\left.\pm 0.6\right) \%$ [30] for hadronic B_{d}^{0} modes.

At B factories, the flavor of a B_{d}^{0} meson at production cannot be determined, since the two neutral B mesons produced in a $\Upsilon(4 S)$ decay evolve in a coherent P-wave state where they keep opposite flavors at any time. However, as soon as one of them decays, the other follows a time-evolution given by Eqs. (74.2) or (74.3), where t is replaced with Δt (which will take negative values half of the time). Hence, the "initial state" tag of a B can be taken as the final-state tag of the other B. Effective tagging efficiencies of 30% are achieved by BaBar and Belle [31], using different techniques including $b \rightarrow \ell^{-}$and $b \rightarrow c \rightarrow s$ tags. It is worth noting that, in this case, mixing of the other B (i.e., the coherent mixing occurring before the first B decay) does not contribute to the mistag probability.

Before the experimental observation of a decay-width difference, oscillation analyses typically neglected $\Delta \Gamma_{q}$ in Eq. (74.4), and described the time dependence with the functions $\Gamma_{q} e^{-\Gamma_{q} t}\left(1 \pm \cos \left(\Delta m_{q} t\right)\right) / 2$ (high-energy colliders) or $\Gamma_{d} e^{-\Gamma_{d}|\Delta t|}\left(1 \pm \cos \left(\Delta m_{d} \Delta t\right)\right) / 4$ (asymmetric $\Upsilon(4 S)$ machines). As can be seen from Eq. (74.4), a non-zero value of $\Delta \Gamma_{q}$ would effectively reduce the oscillation amplitude with a small timedependent factor that would be very difficult to distinguish from time resolution effects. Measurements of Δm_{q} are usually extracted from the data using a maximum likelihood fit.

$74.3 \Delta m_{d}$ and $\Delta \Gamma_{d}$ measurements

Many $B_{d}^{0}-\bar{B}_{d}^{0}$ oscillations analyses have been published [32] by the ALEPH [33], DELPHI [16, 34], L3 [35], OPAL [36, 37], BaBar [38], Belle [39], CDF [17], DØ [23], and LHCb [40-43] collaborations. Although a variety of different techniques have been used, the individual Δm_{d} results obtained at LEP and Tevatron have remarkably similar precision. Their average is compatible with the recent and more precise measurements at the asymmetric B factories and the LHC. The systematic uncertainties are not negligible; they are often dominated by sample composition, mistag probability, or b-hadron lifetime contributions. Before being combined, the measurements are adjusted on the basis of a common set of input values, including the b-hadron lifetimes and fractions published in this Review. Some measurements are statistically correlated. Systematic correlations arise both from common physics sources (fragmentation fractions, lifetimes, branching ratios of b hadrons), and from purely experimental or algorithmic effects (efficiency, resolution, tagging, background description). Combining all measurements $[16,17,23,33-43]$ and accounting for all identified correlations yields $\Delta m_{d}=0.5065 \pm 0.0016$ (stat) ± 0.0011 (syst) ps ${ }^{-1}$ [8], a result dominated by the latest LHCb measurement with

Figure 74.2: Proper time distribution of $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$candidates tagged as mixed (red) or unmixed (blue) in the LHCb experiment, displaying $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations (from Ref. [54]).
$B^{0} \rightarrow D^{(*)-} \mu^{+} \nu_{\mu} X$ decays [43].
On the other hand, ARGUS and CLEO have published timeintegrated measurements [44-46], which average to $\chi_{d}=0.182 \pm$ 0.015. Following Ref. [46], the width difference $\Delta \Gamma_{d}$ could in principle be extracted from the measured value of Γ_{d} and the above averages for Δm_{d} and χ_{d} (see Eq. (74.5)), provided that $\Delta \Gamma_{d}$ has a negligible impact on the Δm_{d} measurements. However, direct time-dependent studies published by DELPHI [16], BaBar [47], Belle [48], LHCb [49], ATLAS [50] and CMS [51] provide stronger constraints, which can be combined to yield [8]

$$
\begin{equation*}
\Delta \Gamma_{d} / \Gamma_{d}=+0.001 \pm 0.010 \tag{74.14}
\end{equation*}
$$

Assuming $\Delta \Gamma_{d}=0$ and no $C P$ violation in mixing, and using the B_{d}^{0} lifetime average of $1.519 \pm 0.004 \mathrm{ps}[8]$, the Δm_{d} and χ_{d} results are combined to yield the world average

$$
\begin{equation*}
\Delta m_{d}=0.5065 \pm 0.0019 \mathrm{ps}^{-1} \tag{74.15}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\chi_{d}=0.1858 \pm 0.0011 \tag{74.16}
\end{equation*}
$$

This Δm_{d} value provides an estimate of $2\left|M_{12}\right|$, and can be used with Eq. (74.6) to extract $\left|V_{t d}\right|$ within the Standard Model [52]. The main experimental uncertainties on the result come from m_{t} and Δm_{d}, but are still completely negligible with respect to the uncertainty due to the hadronic matrix element $f_{B_{d}} \sqrt{B_{B_{d}}}=225 \pm 9 \mathrm{MeV}$ [53] obtained from three-flavor lattice QCD calculations.

$74.4 \Delta m_{s}$ and $\Delta \Gamma_{s}$ measurements

After many years of intense search at LEP and SLC, $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations were first observed in 2006 by CDF using $1 \mathrm{fb}^{-1}$ of Tevatron Run II data [22]. More recently LHCb observed $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations independently with $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \quad[40,54]$, $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu X \quad[42]$ and even $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$[28] decays, using between 1 and $4.9 \mathrm{fb}^{-1}$ of data collected at the LHC until 2016. Taking systematic correlations into account, the average of all published measurements of $\Delta m_{s}[22,28,40,42,54]$ is

$$
\begin{equation*}
\Delta m_{s}=17.749 \pm 0.019(\text { stat }) \pm 0.007(\text { syst }) \mathrm{ps}^{-1} \tag{74.17}
\end{equation*}
$$

dominated by LHCb (see Fig. 74.2) and still statistically limited.
The information on $\left|V_{t s}\right|$ obtained in the framework of the Standard Model is hampered by the hadronic uncertainty, as in the B_{d}^{0} case. However, several uncertainties cancel in the frequency ratio

$$
\begin{equation*}
\frac{\Delta m_{s}}{\Delta m_{d}}=\frac{m_{B_{s}}}{m_{B_{d}}} \xi^{2}\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \tag{74.18}
\end{equation*}
$$

where the $\mathrm{SU}(3)$ flavor-symmetry breaking factor $\xi=$ $\left(f_{B_{s}} \sqrt{B_{B_{s}}}\right) /\left(f_{B_{d}} \sqrt{B_{B_{d}}}\right)=1.206 \pm 0.017$ is obtained from a
combination of three-flavor lattice QCD calculations [53] dominated by the results of Ref. [55]. Using the measurements of Eqs. (74.15) and (74.17), one can extract

$$
\begin{equation*}
\left|\frac{V_{t d}}{V_{t s}}\right|=0.2054 \pm 0.0004(\exp) \pm 0.0029(\text { lattice }) \tag{74.19}
\end{equation*}
$$

in good agreement with (but much more precise than) the value obtained from the ratio of the $b \rightarrow d \gamma$ and $b \rightarrow s \gamma$ transition rates observed at the B factories [52].

The CKM matrix can be constrained using experimental results on observables such as $\Delta m_{d}, \Delta m_{s},\left|V_{u b} / V_{c b}\right|, \epsilon_{K}$, and $\sin (2 \beta)$ together with theoretical inputs and unitarity conditions [52,56,57]. The constraint from our knowledge on the ratio $\Delta m_{s} / \Delta m_{d}$ is more effective in limiting the position of the apex of the CKM unitarity triangle than the one obtained from the Δm_{d} measurements alone, due to the reduced hadronic uncertainty in Eq. (74.18). We also note that the measured value of Δm_{s} is consistent with the Standard Model prediction obtained from CKM fits where no experimental information on Δm_{s} is used, e.g., $17.25 \pm 0.85 \mathrm{ps}^{-1}[56]$ or $16.70_{-0.45}^{+0.73} \mathrm{ps}^{-1}$ [57].

Information on $\Delta \Gamma_{s}$ can be obtained from the study of the proper time distribution of untagged B_{s}^{0} samples [58]. In the case of an inclusive B_{s}^{0} selection [59], or a flavor-specific (semileptonic or hadronic) B_{s}^{0} decay selection [20, 60-62], both the short- and long-lived components are present, and the proper time distribution is a superposition of two exponentials with decay constants $\Gamma_{\mathrm{L}, \mathrm{H}}=\Gamma_{s} \pm \Delta \Gamma_{s} / 2$. In principle, this provides sensitivity to both Γ_{s} and $\left(\Delta \Gamma_{s} / \Gamma_{s}\right)^{2}$. Ignoring $\Delta \Gamma_{s}$ and fitting for a single exponential leads to an estimate of $1 / \Gamma_{s}$ (called effective lifetime) with a relative bias proportional to $\left(\Delta \Gamma_{s} / \Gamma_{s}\right)^{2}$. An alternative approach, sensitive to first order in $\Delta \Gamma_{s} / \Gamma_{s}$, is to determine the effective lifetime of untagged B_{s}^{0} decays to pure $C P$ eigenstates; measurements exist for $B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}[61], B_{s}^{0} \rightarrow K^{+} K^{-}[62,63]$, $B_{s}^{0} \rightarrow J / \psi \eta[64], B_{s}^{0} \rightarrow J / \psi f_{0}(980)[65], B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}[51,66]$, $B_{s}^{0} \rightarrow J / \psi K_{\mathrm{S}}^{0}[67]$, and $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$[68]. The extraction of $1 / \Gamma_{s}$ and $\Delta \Gamma_{s}$ from such measurements, discussed in detail in Ref. [69], requires additional information in the form of theoretical assumptions or external inputs on weak phases and hadronic parameters. In what follows, we only use the effective lifetimes of decays to $C P$-even $\left(D_{s}^{+} D_{s}^{-}, J / \psi \eta\right)$ and $C P$-odd $\left(J / \psi f_{0}(980), J / \psi \pi^{+} \pi^{-}\right)$ final states where $C P$ conservation can be assumed.

The best sensitivity to $1 / \Gamma_{s}$ and $\Delta \Gamma_{s}$ is achieved by the timedependent measurements of the $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$(including $\left.B_{s}^{0} \rightarrow J / \psi \phi\right)$ and $B_{s}^{0} \rightarrow \psi(2 S) \phi$ decay rates performed at CDF [70], DØ [71], ATLAS [72, 73], CMS [74] and LHCb [28, 75, 76], where the $C P$-even and $C P$-odd amplitudes are separated statistically through a full angular analysis. The LHCb collaboration analyzes the $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$decay considering that the $K^{+} K^{-}$system can be in a P -wave or S -wave state, and measures the dependence of the strong phase difference between the P-wave and S-wave amplitudes as a function of the $K^{+} K^{-}$invariant mass $[28,77]$; this allows the unambiguous determination of the sign of $\Delta \Gamma_{s}$, which is found to be positive. All these studies use both untagged and tagged B_{s}^{0} candidates and are optimized for the measurement of the $C P$-violating phase $\phi_{s}^{c \bar{s} s}$, defined as the weak phase difference between the $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing amplitude and the $b \rightarrow c \bar{c} s$ decay amplitude. As reported below in Eq. (74.28), the current experimental average of $\phi_{s}^{c \bar{c} s}$ is consistent with zero. Assuming no $C P$ violation (i.e., $\phi_{s}^{c \bar{c} s}=0$) a combination [8] of the published $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}, J / \psi \phi$ and $\psi(2 S) \phi$ analyses $[28,70-72,74-76]$ and of effective lifetime measurements with flavor-specific [20,60-62] and pure $C P[51,61,64-66]$ final states yields
$\Delta \Gamma_{s}=+0.085 \pm 0.004 \mathrm{ps}^{-1}$ and $1 / \Gamma_{s}=1.515 \pm 0.004 \mathrm{ps},(74.20)$
or, equivalently,
$1 / \Gamma_{\mathrm{L}}=1.423 \pm 0.005 \mathrm{ps} \quad$ and $\quad 1 / \Gamma_{\mathrm{H}}=1.620 \pm 0.007 \mathrm{ps},(74.21)$
in good agreement with the Standard Model prediction $\Delta \Gamma_{s}=$ $0.088 \pm 0.020 \mathrm{ps}^{-1}$ [9].
Estimates of $\Delta \Gamma_{s} / \Gamma_{s}$ obtained from measurements of the $B_{s}^{0} \rightarrow$ $D_{s}^{(*)+} D_{s}^{(*)-}$ branching fractions are not included in the average,

Table 74.1: $\bar{\chi}$ and b-hadron fractions (see text).

	in Z decays $[8]$	at Tevatron [8]	at LHC [89-91]
$\bar{\chi}$	0.1259 ± 0.0042	0.147 ± 0.011	
$f_{u}=f_{d}$	0.408 ± 0.007	0.344 ± 0.021	
f_{s}	0.100 ± 0.008	0.115 ± 0.013	
$f_{\text {baryon }}$	0.084 ± 0.011	0.198 ± 0.046	
f_{s} / f_{d}	0.246 ± 0.023	0.333 ± 0.040	0.247 ± 0.009

since they are based on the questionable [7] assumption that these decays account for all $C P$-even final states.

74.5 Average b-hadron mixing probability and b hadron production fractions at high energy

Mixing measurements can significantly improve our knowledge on the fractions f_{u}, f_{d}, f_{s}, and $f_{\text {baryon }}$, defined as the fractions of $B_{u}, B_{d}^{0}, B_{s}^{0}$, and b-baryons in an unbiased sample of weaklydecaying b hadrons produced in high-energy collisions. Indeed, time-integrated mixing analyses using lepton pairs from $b \bar{b}$ events at high energy measure the quantity

$$
\begin{equation*}
\bar{\chi}=f_{d}^{\prime} \chi_{d}+f_{s}^{\prime} \chi_{s} \tag{74.22}
\end{equation*}
$$

where $f_{q}^{\prime}(q=s, d)$ is the B_{q}^{0} fraction in a sample of semileptonic b-hadron decays. Assuming that all b hadrons have the same semileptonic decay width implies $f_{q}^{\prime}=f_{q} /\left(\Gamma_{q} \tau_{b}\right)$, where τ_{b} is the average b-hadron lifetime. Hence $\bar{\chi}$ measurements performed at LEP [78] and Tevatron [79, 80], together with χ_{d} given in Eq. (74.16) and the very good approximation $\chi_{s}=1 / 2$ (in fact $\chi_{s}=0.499312 \pm 0.000004$ from Eqs. (74.5), (74.17) and (74.20)), provide constraints on f_{d} and f_{s}.

The LEP experiments have measured $\mathcal{B}\left(\bar{b} \rightarrow B_{s}^{0}\right) \times \mathcal{B}\left(B_{s}^{0} \rightarrow\right.$ $\left.D_{s}^{-} \ell^{+} \nu_{\ell} X\right)$ [81], $\mathcal{B}\left(b \rightarrow \Lambda_{b}^{0}\right) \times \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell} X\right)$ [82], and $\mathcal{B}\left(b \rightarrow \Xi_{b}^{-}\right) \times \mathcal{B}\left(\Xi_{b}^{-} \rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell} X\right)$ [83] from partially reconstructed final states including a lepton, $f_{\text {baryon }}$ from protons identified in b events [84], and the production rate of charged b hadrons [85]. The b-hadron fraction ratios measured at CDF are based on double semileptonic $K^{*} \mu \mu$ and $\phi \mu \mu$ final states [86] and lepton-charm final states [87]; in addition CDF and DØ have both measured strange b-baryon production [88]. On the other hand, fraction ratios have been studied by LHCb using fully reconstructed hadronic B_{s}^{0} and B_{d}^{0} decays [89], as well as semileptonic decays of $\Lambda_{b}^{0}, B_{s}^{0}, B_{d}^{0}$ and B_{u} [90]. ATLAS has measured f_{s} / f_{d} using $B_{s}^{0} \rightarrow J / \psi \phi$ and $B^{0} \rightarrow J / \psi K^{* 0}$ decays [91]. Both CDF and LHCb observe that the ratio $f_{\Lambda_{b}^{0}} /\left(f_{u}+f_{d}\right)$ decreases with the transverse momentum of the lepton+charm system, indicating that the b-hadron fractions are not the same in different environments. A combination of the available information from LEP and Tevatron yields, under the constraints $f_{u}=f_{d}$, $f_{u}+f_{d}+f_{s}+f_{\text {baryon }}=1$ and Eq. (74.22), the averages of the first two columns of Table 74.1, while the third column shows the average of LHC measurements of $f_{s} / f_{u}=f_{s} / f_{d}$, which are all compatible. The B_{c}^{+}fraction, neglected in the above constraints, has been measured for the first time by LHCb to be (0.26 ± 0.06) \% [92].

74.6 $\mathbf{C P}$-violation studies

Evidence for $C P$ violation in $B_{q}^{0}-\bar{B}_{q}^{0}$ mixing has been searched for, both with flavor-specific and inclusive B_{q}^{0} decays, in samples where the initial flavor state is tagged, usually with a lepton from the other b-hadron in the event. In the case of semileptonic (or other flavor-specific) decays, where the final-state tag is also available, the following asymmetry [2]

$$
\begin{equation*}
\mathcal{A}_{\mathrm{SL}}^{q}=\frac{N\left(\bar{B}_{q}^{0}(t) \rightarrow \ell^{+} \nu_{\ell} X\right)-N\left(B_{q}^{0}(t) \rightarrow \ell^{-} \bar{\nu}_{\ell} X\right)}{N\left(\bar{B}_{q}^{0}(t) \rightarrow \ell^{+} \nu_{\ell} X\right)+N\left(B_{q}^{0}(t) \rightarrow \ell^{-} \bar{\nu}_{\ell} X\right)} \simeq 1-|q / p|_{q}^{2} \tag{74.23}
\end{equation*}
$$

has been measured either in time-integrated analyses at CLEO [46, 93], BaBar [94], CDF [95], DØ [96-98] and LHCb [99], or in time-dependent analyses at LEP [37, 100], BaBar [47, 101] and

Belle [102]. In the inclusive case, also investigated at LEP [100, 103], no final-state tag is used, and the asymmetry [104]

$$
\begin{align*}
& \frac{N\left(\bar{B}_{q}^{0}(t) \rightarrow \text { all }\right)-N\left(B_{q}^{0}(t) \rightarrow \text { all }\right)}{N\left(\bar{B}_{q}^{0}(t) \rightarrow \text { all }\right)+N\left(B_{q}^{0}(t) \rightarrow \text { all }\right)} \\
& \simeq \mathcal{A}_{\mathrm{SL}}^{q}\left[\sin ^{2}\left(\frac{\Delta m_{q} t}{2}\right)-\frac{x_{q}}{2} \sin \left(\Delta m_{q} t\right)\right] \tag{74.24}
\end{align*}
$$

must be measured as a function of the proper time to extract information on $C P$ violation. In addition LHCb has studied the time dependence of the charge asymmetry of $B^{0} \rightarrow D^{(*)-} \mu^{+} \nu_{\mu} X$ decays without tagging the initial state [105], which would be equal to

$$
\begin{equation*}
\frac{N\left(D^{(*)-} \mu^{+} \nu_{\mu} X\right)-N\left(D^{(*)+} \mu^{-} \bar{\nu}_{\mu} X\right)}{N\left(D^{(*)-} \mu^{+} \nu_{\mu} X\right)+N\left(D^{(*)+} \mu^{-} \bar{\nu}_{\mu} X\right)}=\mathcal{A}_{\mathrm{SL}}^{d} \frac{1-\cos \left(\Delta m_{d} t\right)}{2} \tag{74.25}
\end{equation*}
$$

in absence of detection and production asymmetries.
The $\mathrm{D} \emptyset$ collaboration measured a like-sign dimuon charge asymmetry in semileptonic b decays that deviates by 2.8σ from the tiny Standard Model prediction and concluded, from a more refined analysis in bins of muon impact parameters, that the overall discrepancy is at the level of 3.6σ [96]. In all other cases, asymmetries compatible with zero (and the Standard Model [9]) have been found, with a precision limited by the available statistics. Several of the analyses at high energy don't disentangle the B_{d}^{0} and B_{s}^{0} contributions, and either quote a mean asymmetry or a measurement of $\mathcal{A}_{\mathrm{SL}}^{d}$ assuming $\mathcal{A}_{\mathrm{SL}}^{s}=0$: we no longer include these in the average. An exception is the dimuon $\mathrm{D} \varnothing$ analysis [96], which separates the two contributions by exploiting their dependence on the muon impact parameter cut. The resulting measurements of $\mathcal{A}_{\mathrm{SL}}^{d}$ and $\mathcal{A}_{\mathrm{SL}}^{s}$ are then both compatible with the Standard Model. They are also correlated. We therefore perform a two-dimensional average of the measurements of Refs. [46, 47, 93, 94, 96-99, 101, 102, 105] and obtain [8]

$$
\begin{align*}
& \mathcal{A}_{\mathrm{SL}}^{d}=-0.0021 \pm 0.0017 \phi \boldsymbol{q} /\left.p\right|_{d}=1.0010 \pm 0.0008 \tag{74.26}\\
& \mathcal{A}_{\mathrm{SL}}^{s}=-0.0006 \pm 0.0028 \phi \boldsymbol{q} /\left.p\right|_{s}=1.0003 \pm 0.0014 \tag{74.27}
\end{align*}
$$

with a correlation coefficient of -0.054 between $\mathcal{A}_{\mathrm{SL}}^{d}$ and $\mathcal{A}_{\mathrm{SL}}^{s}$. These results show no evidence of $C P$ violation and don't constrain yet the Standard Model.
$C P$ violation induced by $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing in $b \rightarrow c \bar{c} s$ decays has been a field of very active study in the past decade. In addition to the previously mentioned $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$(including $\left.B_{s}^{0} \rightarrow J / \psi \phi\right)$ and $B_{s}^{0} \rightarrow \psi(2 S) \phi$ studies, the decay modes $B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$(including $B_{s}^{0} \rightarrow J / \psi f_{0}(980)$) [106] and $B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}[29]$ have also been analyzed by LHCb to measure $\phi_{s}^{c \bar{c} s}$, without the need for an angular analysis. The $J / \psi \pi^{+} \pi^{-}$ final state has been shown indeed to be (very close to) a pure $C P$-odd state [107]. A two-dimensional fit [8] of all published results $[28,29,70-72,74-76,106]$ in the $\left(\phi_{s}^{c \bar{c} s}, \Delta \Gamma_{s}\right)$ plane yields

$$
\begin{equation*}
\phi_{s}^{c \bar{c} s}=-0.051 \pm 0.023 \tag{74.28}
\end{equation*}
$$

Adding to this fit the new ATLAS results recently submitted for publication [73] leads to the preliminary average $\phi_{s}^{c \bar{c} s}=-0.057 \pm$ 0.021 , with the overall situation shown on Fig. 74.3. This experimental value is consistent with the Standard Model prediction for $\phi_{s}^{c \bar{c} s}$, which is equal to $-2 \beta_{s}=-2 \arg \left(-\left(V_{t s} V_{t b}^{*}\right) /\left(V_{c s} V_{c b}^{*}\right)\right)=$ $-0.0370_{-0.0008}^{+0.0007}[57]$ assuming negligible Penguin pollution.

74.7 Summary

$B^{0}-\bar{B}^{0}$ mixing has been and still is a field of intense study. The mass differences in the $B_{d}^{0}-\bar{B}_{d}^{0}$ and $B_{s}^{0}-\bar{B}_{s}^{0}$ systems are known to relative precisions of 0.38% and 0.11%, respectively. The non-zero decay width difference in the $B_{s}^{0}-\bar{B}_{s}^{0}$ system is well established, with a relative difference of $\Delta \Gamma_{s} / \Gamma_{s}=(12.9 \pm 0.6) \%$, meaning that the heavy state of the $B_{s}^{0}-\bar{B}_{s}^{0}$ system lives $\sim 14 \%$ longer than the light state. In contrast, the relative decay width difference in the $B_{d}^{0}-\bar{B}_{d}^{0}$ system, $\Delta \Gamma_{d} / \Gamma_{d}=(0.1 \pm 1.0) \%$, is still consistent with

Figure 74.3: $68 \% \mathrm{CL}$ contours in the $\left(\phi_{s}^{c \bar{s} s}, \Delta \Gamma_{s}\right)$ plane, showing all measurements from CDF [70], DØ [71], ATLAS [72, 73], CMS [74] and $\mathrm{LHCb}[28,29,75,76,106]$, with their preliminary average [8]. The very thin black rectangle represents the Standard Model predictions of $\phi_{s}^{c \bar{c} s}$ [57] and $\Delta \Gamma_{s}$ [9].
zero. $C P$ violation in $B_{d}^{0}-\bar{B}_{d}^{0}$ or $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing has not been observed yet, with precisions on the semileptonic asymmetries below 0.3%. $C P$ violation induced by $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing in $b \rightarrow c \bar{c} s$ transitions has not yet been observed either, with an uncertainty on the $\phi_{s}^{c \bar{c} s}$ phase of 23 mrad . Despite the recent improvements, all observations remain consistent with the Standard Model expectations.
However, the measurements where New Physics might show up are still statistically limited. More results are awaited from the LHC experiments and Belle II, with promising prospects for the investigation of the $C P$-violating phase $\arg \left(-M_{12} / \Gamma_{12}\right)$ and an improved determination of $\phi_{s}^{c \bar{c} s}$.

Mixing studies have clearly reached the stage of precision measurements, where much effort is needed, both on the experimental and theoretical sides, in particular to further reduce the hadronic uncertainties of lattice QCD calculations. In the long term, a stringent check of the consistency of the B_{d}^{0} and B_{s}^{0} mixing amplitudes (magnitudes and phases) with all other measured flavorphysics observables will be possible within the Standard Model, leading to very tight limits on (or otherwise a long-awaited surprize about) New Physics.

References

[1] T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Part. Sci. 16, 511 (1966); I. I. Bigi and A. I. Sanda, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 9, 1 (2009), second edition, first published in 2000; G. C. Branco, L. Lavoura and J. P. Silva, Int. Ser. Monogr. Phys. 103, 1 (1999).
[2] See the review on $C P$ violation in the quark sector by T. Gershon and Y. Nir in this publication.
[3] A. J. Buras, W. Slominski and H. Steger, Nucl. Phys. B245, 369 (1984).
[4] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981), erratum ibid. 65, 1772 (1981); for the power-like approximation, see A. J. Buras and R. Fleischer, page 91 in "Heavy Flavours II," eds. A. J. Buras and M. Lindner, Singapore World Scientific (1998).
[5] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[6] I. I. Bigi et al., in "CP violation," ed. C. Jarlskog, Singapore World Scientific (1989).
[7] A. Lenz and U. Nierste (2011), [arXiv:1102.4274]; A. Lenz and U. Nierste, JHEP 06, 072 (2007), [hep-ph/0612167].
[8] Y. Amhis et al. (HFLAV) (2019), [arXiv:1909.12524]; the combined results on b-hadron fractions, lifetimes and mixing parameters published in this Review have been obtained by the B oscillations working group of the Heavy Flavor

Averaging (HFLAV) group, using the methods and procedures described in Chapter 4 of the above paper, after updating the list of inputs; for more information, see https://hflav.web.cern.ch/.
[9] T. Jubb et al., Nucl. Phys. B915, 431 (2017), [arXiv:1603.07770]; M. Artuso, G. Borissov and A. Lenz, Rev. Mod. Phys. 88, 045002 (2016), [arXiv:1511.09466].
[10] C. Albajar et al. (UA1), Phys. Lett. B186, 247 (1987), erratum ibid. B197, 565 (1987).
[11] H. Albrecht et al. (ARGUS), Phys. Lett. B192, 245 (1987).
[12] H. G. Moser and A. Roussarie, Nucl. Instrum. Meth. A384, 491 (1997).
[13] SLD collab., SLAC-PUB-7228, SLAC-PUB-7229, and SLAC-PUB-7230, 28th Int. Conf. on High Energy Physics, Warsaw (1996); J. L. Wittlin, A measurement of the time dependence of $B_{d}^{0}-\bar{B}_{d}^{0}$ mixing with kaon tagging, Ph.D. thesis, Massachusetts U., Amherst (2001), URL http:// wwwlib.umi.com/dissertations/fullcit?p3027272.
[14] ALEPH collab., contrib. 596 to Int. Europhysics Conf. on High Energy Physics, Jerusalem (1997).
[15] K. Abe et al. (SLD), Phys. Rev. D67, 012006 (2003), [hepex/0209002].
[16] J. Abdallah et al. (DELPHI), Eur. Phys. J. C28, 155 (2003), [hep-ex/0303032].
[17] F. Abe et al. (CDF), Phys. Rev. Lett. 80, 2057 (1998), [hepex/9712004]; F. Abe et al. (CDF), Phys. Rev. D59, 032001 (1999), [hep-ex/9806026]; F. Abe et al. (CDF), Phys. Rev. D60, 051101 (1999); F. Abe et al. (CDF), Phys. Rev. D60, 072003 (1999), [hep-ex/9903011]; T. Affolder et al. (CDF), Phys. Rev. D60, 112004 (1999), [hep-ex/9907053].
[18] R. Barate et al. (ALEPH), Eur. Phys. J. C4, 367 (1998); R. Barate et al. (ALEPH), Eur. Phys. J. C7, 553 (1999), [hep-ex/9811018].
[19] R. Aaij et al. (LHCb), JINST 10, P10005 (2015), [arXiv:1507.07892].
[20] P. Abreu et al. (DELPHI), Eur. Phys. J. C16, 555 (2000), [hep-ex/0107077].
[21] K. Anikeev et al. (2002), [hep-ph/0201071].
[22] A. Abulencia et al. (CDF), Phys. Rev. Lett. 97, 242003 (2006), [hep-ex/0609040].
[23] V. M. Abazov et al. (DØ), Phys. Rev. D74, 112002 (2006), [hep-ex/0609034].
[24] V. M. Abazov et al. (DØ), Phys. Rev. Lett. 101, 241801 (2008), [arXiv:0802.2255].
[25] R. Aaij et al. (LHCb), Eur. Phys. J. C72, 2022 (2012), [arXiv:1202.4979].
[26] R. Aaij et al. (LHCb), JINST 11, P05010 (2016), [arXiv:1602.07252].
[27] R. Aaij et al. (LHCb), Eur. Phys. J. C77, 238 (2017), [arXiv:1610.06019].
[28] R. Aaij et al. (LHCb), Phys. Rev. Lett. 114, 041801 (2015), [arXiv:1411.3104]; R. Aaij et al. (LHCb), Eur. Phys. J. C79, 706 (2019), erratum to appear, [arXiv:1906.08356].
[29] R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 211801 (2014), [arXiv:1409.4619].
[30] R. Aaij et al. (LHCb), Phys. Rev. Lett. 117, 261801 (2016), [arXiv:1608.06620].
[31] B. Aubert et al. (BaBar), Phys. Rev. Lett. 94, 161803 (2005), [hep-ex/0408127]; K. F. Chen et al. (Belle), Phys. Rev. D72, 012004 (2005), [hep-ex/0504023].
[32] Throughout this document we omit references of results that have been replaced by new published measurements.
[33] D. Buskulic et al. (ALEPH), Z. Phys. C75, 397 (1997).
[34] P. Abreu et al. (DELPHI), Z. Phys. C76, 579 (1997).
[35] M. Acciarri et al. (L3), Eur. Phys. J. C5, 195 (1998).
[36] G. Alexander et al. (OPAL), Z. Phys. C72, 377 (1996); K. Ackerstaff et al. (OPAL), Z. Phys. C76, 417 (1997), [hepex/9707010]; G. Abbiendi et al. (OPAL), Phys. Lett. B493, 266 (2000), [hep-ex/0010013].
[37] K. Ackerstaff et al. (OPAL), Z. Phys. C76, 401 (1997), [hepex/9707009].
[38] B. Aubert et al. (BaBar), Phys. Rev. Lett. 88, 221802 (2002), [hep-ex/0112044]; B. Aubert et al. (BaBar), Phys. Rev. D66, 032003 (2002), [hep-ex/0201020]; B. Aubert et al. (BaBar), Phys. Rev. Lett. 88, 221803 (2002), [hepex/0112045]; B. Aubert et al. (BaBar), Phys. Rev. D67, 072002 (2003), [hep-ex/0212017]; B. Aubert et al. (BaBar), Phys. Rev. D73, 012004 (2006), [hep-ex/0507054].
[39] N. C. Hastings et al. (Belle), Phys. Rev. D67, 052004 (2003), [hep-ex/0212033]; Y. Zheng et al. (Belle), Phys. Rev. D67, 092004 (2003), [hep-ex/0211065]; K. Abe et al. (Belle), Phys. Rev. D71, 072003 (2005), erratum ibid. D71, 079903 (2005), [hep-ex/0408111].
[40] R. Aaij et al. (LHCb), Phys. Lett. B709, 177 (2012), [arXiv:1112.4311].
[41] R. Aaij et al. (LHCb), Phys. Lett. B719, 318 (2013), [arXiv:1210.6750].
[42] R. Aaij et al. (LHCb), Eur. Phys. J. C73, 2655 (2013), [arXiv:1308.1302].
[43] P. Huang et al., Eur. Phys. J. C76, 422 (2016), [arXiv:1505.03672].
[44] H. Albrecht et al. (ARGUS), Z. Phys. C55, 357 (1992); H. Albrecht et al. (ARGUS), Phys. Lett. B324, 249 (1994).
[45] J. E. Bartelt et al. (CLEO), Phys. Rev. Lett. 71, 1680 (1993).
[46] B. H. Behrens et al. (CLEO), Phys. Lett. B490, 36 (2000), [hep-ex/0005013].
[47] B. Aubert et al. (BaBar), Phys. Rev. Lett. 92, 181801 (2004), [hep-ex/0311037]; B. Aubert et al. (BaBar), Phys. Rev. D70, 012007 (2004), [hep-ex/0403002].
[48] T. Higuchi et al., Phys. Rev. D85, 071105 (2012), [arXiv:1203.0930].
[49] R. Aaij et al. (LHCb), JHEP 04, 114 (2014), [arXiv:1402.2554].
[50] M. Aaboud et al. (ATLAS), JHEP 06, 081 (2016), [arXiv:1605.07485].
[51] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 457 (2018), erratum ibid. C78, 561 (2018), [arXiv:1710.08949].
[52] See the review on the CKM quark-mixing matrix by A. Ceccucci, Z. Ligeti, and Y. Sakai in this publication.
[53] S. Aoki et al. (Flavour Lattice Averaging Group) (2019), [arXiv:1902.08191].
[54] R. Aaij et al. (LHCb), New J. Phys. 15, 053021 (2013), [arXiv:1304.4741].
[55] A. Bazavov et al. (Fermilab Lattice and MILC), Phys. Rev. D93, 113016 (2016), [arXiv:1602.03560].
[56] M. Bona et al. (UTfit), JHEP 10, 081 (2006), [hepph/0606167]; updated results at http://www.utfit.org/.
[57] J. Charles et al., Phys. Rev. D91, 073007 (2015), [arXiv:1501.05013]; updated results at http://ckmfitter.in2p3.fr/.
[58] K. Hartkorn and H. G. Moser, Eur. Phys. J. C8, 381 (1999).
[59] M. Acciarri et al. (L3), Phys. Lett. B438, 417 (1998).
[60] D. Buskulic et al. (ALEPH), Phys. Lett. B377, 205 (1996); K. Ackerstaff et al. (OPAL), Phys. Lett. B426, 161 (1998), [hep-ex/9802002]; F. Abe et al. (CDF), Phys. Rev. D59, 032004 (1999), [hep-ex/9808003]; V. M. Abazov et al. (DØ), Phys. Rev. Lett. 114, 062001 (2015), [arXiv:1410.1568]; T. Aaltonen et al. (CDF), Phys. Rev. Lett. 107, 272001 (2011), [arXiv:1103.1864]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 172001 (2014), [arXiv:1407.5873]; R. Aaij et al. (LHCb), Phys. Rev. Lett. 119, 101801 (2017), [arXiv:1705.03475].
[61] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 111802 (2014), [arXiv:1312.1217].
[62] R. Aaij et al. (LHCb), Phys. Lett. B736, 446 (2014), [arXiv:1406.7204].
[63] R. Aaij et al. (LHCb), Phys. Lett. B707, 349 (2012), [arXiv:1111.0521].
[64] R. Aaij et al. (LHCb), Phys. Lett. B762, 484 (2016), [arXiv:1607.06314].
[65] T. Aaltonen et al. (CDF), Phys. Rev. D84, 052012 (2011), [arXiv:1106.3682]; V. M. Abazov et al. (DØ), Phys. Rev. D94, 012001 (2016), [arXiv:1603.01302].
[66] R. Aaij et al. (LHCb), Phys. Rev. D87, 112010 (2013), [arXiv:1304.2600].
[67] R. Aaij et al. (LHCb), Nucl. Phys. B873, 275 (2013), [arXiv:1304.4500].
[68] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 191801 (2017), [arXiv:1703.05747].
[69] R. Fleischer and R. Knegjens, Eur. Phys. J. C71, 1789 (2011), [arXiv:1109.5115].
[70] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 109, 171802 (2012), [arXiv:1208.2967].
[71] V. M. Abazov et al. (DØ), Phys. Rev. D85, 032006 (2012), [arXiv:1109.3166].
[72] G. Aad et al. (ATLAS), Phys. Rev. D90, 052007 (2014), [arXiv:1407.1796]; G. Aad et al. (ATLAS), JHEP 08, 147 (2016), [arXiv:1601.03297].
[73] G. Aad et al. (ATLAS) (2020), [arXiv:2001.07115].
[74] V. Khachatryan et al. (CMS), Phys. Lett. B757, 97 (2016), [arXiv:1507.07527].
[75] R. Aaij et al. (LHCb), JHEP 08, 037 (2017), [arXiv:1704.08217].
[76] R. Aaij et al. (LHCb), Phys. Lett. B762, 253 (2016), [arXiv:1608.04855].
[77] R. Aaij et al. (LHCb), Phys. Rev. Lett. 108, 241801 (2012), [arXiv:1202.4717].
[78] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427, 257 (2006), [hepex/0509008]; we use the $\bar{\chi}$ average given in Eq. (5.39).
[79] D. Acosta et al. (CDF), Phys. Rev. D69, 012002 (2004), [hep-ex/0309030].
[80] V. M. Abazov et al. (DØ), Phys. Rev. D74, 092001 (2006), [hep-ex/0609014].
[81] P. Abreu et al. (DELPHI), Phys. Lett. B289, 199 (1992); P. D. Acton et al. (OPAL), Phys. Lett. B295, 357 (1992); D. Buskulic et al. (ALEPH), Phys. Lett. B361, 221 (1995).
[82] P. Abreu et al. (DELPHI), Z. Phys. C68, 375 (1995); R. Barate et al. (ALEPH), Eur. Phys. J. C2, 197 (1998).
[83] D. Buskulic et al. (ALEPH), Phys. Lett. B384, 449 (1996); J. Abdallah et al. (DELPHI), Eur. Phys. J. C44, 299 (2005), [hep-ex/0510023].
[84] R. Barate et al. (ALEPH), Eur. Phys. J. C5, 205 (1998).
[85] J. Abdallah et al. (DELPHI), Phys. Lett. B576, 29 (2003), [hep-ex/0311005].
[86] F. Abe et al. (CDF), Phys. Rev. D60, 092005 (1999).
[87] T. Aaltonen et al. (CDF), Phys. Rev. D77, 072003 (2008), [arXiv:0801.4375]; T. Affolder et al. (CDF), Phys. Rev. Lett. 84, 1663 (2000), [hep-ex/9909011]; the measurement of $f_{\text {baryon }} / f_{d}$ in the latter paper has been updated based on; T. Aaltonen et al. (CDF), Phys. Rev. D79, 032001 (2009), [arXiv:0810.3213].
[88] V. M. Abazov et al. (DØ), Phys. Rev. Lett. 99, 052001 (2007), [arXiv:0706.1690]; V. M. Abazov et al. (DØ), Phys. Rev. Lett. 101, 232002 (2008), [arXiv:0808.4142]; T. Aaltonen et al. (CDF), Phys. Rev. D80, 072003 (2009), [arXiv:0905.3123].
[89] R. Aaij et al. (LHCb), JHEP 04, 001 (2013), [arXiv:1301.5286]; the LHCb average of f_{s} / f_{d} has been updated in LHCb collab., LHCb-CONF-2013-011 (2013).
[90] R. Aaij et al. (LHCb), Phys. Rev. D85, 032008 (2012), [arXiv:1111.2357]; R. Aaij et al. (LHCb), Phys. Rev. D100, 031102 (2019), [arXiv:1902.06794].
[91] G. Aad et al. (ATLAS), Phys. Rev. Lett. 115, 262001 (2015), [arXiv:1507.08925].
[92] R. Aaij et al. (LHCb), Phys. Rev. D100, 112006 (2019), [arXiv:1910.13404].
[93] D. E. Jaffe et al. (CLEO), Phys. Rev. Lett. 86, 5000 (2001), [hep-ex/0101006].
[94] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 114, 081801 (2015), [arXiv:1411.1842].
[95] F. Abe et al. (CDF), Phys. Rev. D55, 2546 (1997).
[96] V. M. Abazov et al. (DØ), Phys. Rev. D89, 012002 (2014), [arXiv:1310.0447].
[97] V. M. Abazov et al. (DØ), Phys. Rev. D86, 072009 (2012), [arXiv:1208.5813].
[98] V. M. Abazov et al. (DØ), Phys. Rev. Lett. 110, 011801 (2013), [arXiv:1207.1769].
[99] R. Aaij et al. (LHCb), Phys. Rev. Lett. 117, 061803 (2016), erratum ibid. 118, 129903 (2017), [arXiv:1605.09768].
[100] R. Barate et al. (ALEPH), Eur. Phys. J. C20, 431 (2001).
[101] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 111, 101802 (2013), erratum ibid. 111, 159901 (2013), [arXiv:1305.1575].
[102] E. Nakano et al. (Belle), Phys. Rev. D73, 112002 (2006), [hep-ex/0505017].
[103] G. Abbiendi et al. (OPAL), Eur. Phys. J. C12, 609 (2000), [hep-ex/9901017].
[104] M. Beneke, G. Buchalla and I. Dunietz, Phys. Lett. B393, 132 (1997), [hep-ph/9609357]; I. Dunietz, Eur. Phys. J. C7, 197 (1999), [hep-ph/9806521].
[105] R. Aaij et al. (LHCb), Phys. Rev. Lett. 114, 041601 (2015), [arXiv:1409.8586].
[106] R. Aaij et al. (LHCb), Phys. Lett. B736, 186 (2014), [arXiv:1405.4140]; R. Aaij et al. (LHCb), Phys. Lett. B797, 134789 (2019), [arXiv:1903.05530].
[107] R. Aaij et al. (LHCb), Phys. Rev. D86, 052006 (2012), [arXiv:1204.5643].

75. Semileptonic b-Hadron Decays, Determination of $V_{c b}, V_{u b}$

Revised August 2019 by T. Mannel (Siegen U.) and P. Urquijo (School of Phys. U. of Melbourne).

75.1 Introduction

Precision determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ are central to testing the CKM sector of the Standard Model, and complement the measurements of CP asymmetries in B decays. The length of the side of the unitarity triangle opposite the well-measured angle β is proportional to the ratio $\left|V_{u b}\right| /\left|V_{c b}\right|$; its precise determination is a high priority of the heavy-flavor physics program.

The transitions $b \rightarrow c \ell \bar{\nu}_{\ell}$ and $b \rightarrow u \ell \bar{\nu}_{\ell}$ (where ℓ refers to an electron or muon) each provide two avenues for determining these CKM matrix elements, namely through inclusive (i.e. the sum over all possible hadronic states) and exclusive final states (decays involving a specific meson, $X=D, D^{*}, \pi, \rho$ etc.). While the purely leptonic final states in the decays $B_{c}^{-} \rightarrow \tau \bar{\nu}, B^{-} \rightarrow \tau \bar{\nu}$, and $B^{-} \rightarrow \mu \bar{\nu}$ are theoretically very simple, we do not use this information at present since none of the measurements has reached a competitive level of precision and thus the focus is on exclusive and inclusive semileptonic decays. This article and the values quoted here update the previous review [1].

The theory underlying the different determinations of $\left|V_{q b}\right|$ is mature, in particular for $\left|V_{c b}\right|$. Most of the theoretical approaches use the fact that the masses m_{b} and m_{c} of the b and the c quark are large compared to the scale Λ_{QCD} that determines low-energy hadronic physics. Thus the basis for precise calculations is a systematic expansion in powers of Λ / m_{b}, where $\Lambda \sim 500-700 \mathrm{MeV}$ is a hadronic scale of the order of Λ_{QCD}. Such an expansion can be formulated in the framework of an effective field theory which is described in a separate RPP mini-review [2].

Aside from this there has been significant progress over the last decade in lattice simulations of QCD which is a first-principles method for non-perturbative QCD calculations. Increased computer power as well as improved theoretical methods allow us to include also heavy quarks in this calculations, and thus the results from lattice QCD play an essential role in many of the determinations discussed here. We do not need to describe lattice methods here, they are discussed in a separate RPP mini-review [3].

The measurements discussed in this review are of branching fractions, ratios of branching fractions, and decay kinematic distributions. The determinations of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ also require a measurement of the total decay widths of the corresponding b hadrons, determined from lifetimes, which is the subject of a separate RPP mini-review [4]. The measurements of inclusive semileptonic decays relevant to this review come primarily from $e^{+} e^{-} B$ factories operating at the $\Upsilon(4 S)$ resonance, while the measurements of exclusive semileptonic decays come from both the $e^{+} e^{-} B$ factories and from the LHCb experiment at CERN.

Semileptonic B meson decay amplitudes to electrons and muons are well measuered and consistent with the SM, and thus are dominated by the Standard-Model W boson exchange, which is expected to be largely free from any impact of non-Standard Model physics. The decays $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$, however, may become sensitive to effects beyond the Standard Model due to the large masss of the τ lepton. For example, modifications in the Higgs sector such as a charged Higgs boson, may couple to the mass of the leptons, breaking lepton universality beyond the Standard Model. The currently observed anomalies in these decay could be an indication of new physics.

Many of the numerical results quoted in this review have been provided by the Heavy Flavor Averaging Group (HFLAV) [5].

75.2 Determination of $\left|V_{c b}\right|$

Summary: The determination of $\left|V_{c b}\right|$ from inclusive decays has a relative uncertainty of about 2%; the limitations arise mainly from our ignorance of higher-order perturbative and nonperturbative corrections. Exclusive $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ decays provide a determination of $\left|V_{c b}\right|$ with a relative precision of about 2%, with comparable contributions from theory and experiment; the value determined from $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$ decays is consistent and has an uncertainty of 3%. However, as discussed below, recent work has
raised questions about these determinations. We choose to quote a less constraining value from exclusive decays.

The values obtained from the inclusive and exclusive determinations discussed below are:

$$
\begin{array}{ll}
\left|V_{c b}\right|=(42.2 \pm 0.8) \times 10^{-3} & \text { (inclusive) } \\
\left|V_{c b}\right|=(39.5 \pm 0.9) \times 10^{-3} & \text { (exclusive) } \tag{75.2}
\end{array}
$$

An average of these determinations has $p\left(\chi^{2}\right)=2 \%$, so we scale the error by $\sqrt{\chi^{2} / 1}=2.4$ to find

$$
\begin{equation*}
\left.\left|V_{c b}\right|=(41.0 \pm 1.4) \times 10^{-3} \quad \text { (average }\right) \tag{75.3}
\end{equation*}
$$

Given the only marginal consistency this average should be treated with caution.

75.2.1 $\left|V_{c b}\right|$ from exclusive decays

Exclusive determinations of $\left|V_{c b}\right|$ make use of semileptonic B decays into the ground state charmed mesons D and D^{*}. Based on Lorentz-invariance these decays are collectively described in terms of six independent form factors, which depend on the variable $w \equiv v \cdot v^{\prime}$, where v and v^{\prime} are the four velocities of the initial and final-state hadrons. In the rest frame of the decay this variable corresponds to the Lorentz factor of the final state $D^{(*)}$ meson. Heavy Quark Symmetry (HQS) [6] [7] predicts that in the infinite mass limit the six form factors collapse into a single one, which is normalized at the "zero recoil point" $w=1$, the point of maximum momentum transfer to the leptons.

The determination of $\left|V_{c b}\right|$ requires a calculation of the form factors. One possibility is to use the normalization of the form factor at $w=1$, however, a precise determination requires to include corrections to the HQS prediction for the normalization as well as some information on the shape of the form factors near the point $w=1$. These calculations utilize Heavy Quark Effective Theory, which is discussed in a separate RPP mini-review [2]. Some of the form factors are normalized at $w=1$ due to HQS, and this normalization is protected against linear corrections [8], and thus the leading corrections to the normalization are of order $\Lambda_{\mathrm{QCD}}^{2} / m_{c}^{2}$. For the form factors that vanish in the infinite mass limit the corrections are in general linear in $\Lambda_{\mathrm{QCD}} / m_{c}$.

In addition to these corrections, there are perturbatively calculable corrections from hard gluons as well as QED radiative corrections, which will be discussed in the relevant sections.

75.2.2 $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

The decay rate for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ is given by

$$
\begin{equation*}
\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left(w^{2}-1\right)^{1 / 2} P(w)\left(\eta_{\mathrm{ew}} \mathcal{F}(w)\right)^{2} \tag{75.4}
\end{equation*}
$$

where $P(w)$ is a phase space factor,

$$
\begin{equation*}
P(w)=r^{3}(1-r)^{2}(w+1)^{2}\left(1+\frac{4 w}{w+1} \frac{1-2 r w+r^{2}}{(1-r)^{2}}\right) \tag{75.5}
\end{equation*}
$$

with $r=m_{D^{*}} / m_{B}$. The form factor $\mathcal{F}(w)$ can be expressed in terms of the vector and axial vector form factors

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(v^{\prime}, \epsilon\right)\right| \bar{c} \gamma^{\mu} b|B(v)\rangle}{\sqrt{m_{B}^{m} D^{*}}}=h_{V}(w) \varepsilon^{\mu \nu \rho \sigma} v_{B, \nu} v_{D^{*}, \rho} \epsilon_{\sigma}^{*} \\
\frac{\left\langle D^{*}\left(v^{\prime}, \epsilon\right)\right| \bar{c} \gamma^{\mu} \gamma^{5} b|B(v)\rangle}{\sqrt{m_{B} m^{*}}}=i h_{A_{1}}(w)(1+w) \epsilon^{* \mu} \\
-i\left[h_{A_{2}}(w) v_{B}^{\mu}+h_{A_{3}}(w) v_{D^{*}}^{\mu}\right] \epsilon^{*} \cdot v_{B}
\end{gathered}
$$

as

$$
\begin{aligned}
P(w)|\mathcal{F}(w)|^{2}=\left|h_{A_{1}}(w)\right|^{2}\{ & 2 \frac{r^{2}-2 r w+1}{(1-r)^{2}}\left[1+\frac{w-1}{w+1} R_{1}^{2}(w)\right] \\
& \left.+\left[1+\frac{w-1}{1-r}\left(1-R_{2}(w)\right)\right]^{2}\right\}
\end{aligned}
$$

where the ratios R_{1} and R_{2} are given by

$$
\begin{equation*}
R_{1}(w)=\frac{h_{V}(w)}{h_{A_{1}}(w)}, \quad R_{2}(w)=\frac{h_{A_{3}}(w)+r h_{A_{2}}(w)}{h_{A_{1}}(w)} \tag{75.6}
\end{equation*}
$$

Note that \mathcal{F} at $w=1$ is unity by HQS in the infinite-mass limit [9-12]. Usually the decay rate formulae for semileptonic B decays assume massless leptons. The effect is typically very small, but for the muon case can be non-negligible in fits to data at high hadronic recoil.

The factor $\eta_{\text {ew }}=1.0066 \pm 0.0050$ accounts for the leading electroweak corrections to the four-fermion operator mediating the semileptonic decay [13], and includes an estimated uncertainty for missing long-distance QED radiative corrections [14].

The determination of $V_{c b}$ using the normalization at $w=1$ involves an extrapolation to the zero-recoil point, for which a parametrization of the shape of $\mathcal{F}(w)$ is needed. Convenient parametrizations make use of analyticity and unitarity constraints on the the form factors and are expressed in terms of the variable

$$
\begin{equation*}
z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}} \tag{75.7}
\end{equation*}
$$

originating from a conformal transformation. In terms of this variable the form factors (generically denoted as F) may be written as [15-17]

$$
\begin{equation*}
F(z)=\frac{1}{P_{F}(z) \phi_{F}(z)} \sum_{n=0}^{\infty} a_{n} z^{n} \tag{75.8}
\end{equation*}
$$

where the sum is bounded, $\sum\left|a_{n}\right|^{2}<1$. Furthermore, the function $P_{F}(z)$ takes into account the resonances in the $(\bar{c} b)$ system below the $\bar{D} B$ threshold, and the weighting functions $\phi_{F}(z)$ are derived from the unitarity constraint on the corresponding form factor. The values of z relevant to the decay are $0 \leq z \leq 0.06$, hence only very few terms are needed in the series in z. Eq. (75.8) will be referred to as the "BGL" expansion.

A frequently used parametrization proposed in Ref. [18] is a simple one-parameter form

$$
\begin{equation*}
h_{A_{1}}(w)=h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}+\left(231 \rho^{2}-91\right) z^{3}\right] \tag{75.9}
\end{equation*}
$$

which has the slope ρ and of the form factor and the value $h_{A_{1}}(1)$ as the only parameters. Furthermore, the ratios $R_{1}(w)$ and $R_{1}(w)$ are expanded in $w-1$. However, this simple CLN parametrtization is inconsistent in subleading orders of the $1 / m_{c / b}$ expansion $[17,19-22]$, and thus the recent fits are based on the BGL expansion. Typical fits include up to three parameters a_{n} in (75.8) for the different form factors.

The theoretical analysis of $F(w)$ requires, aside from the perturbative calculation of QCD short-distance radiative correction [23], the treatment of non-perturbative aspects. The state-of-the-art input comes from lattice QCD calculations which include a realistic description of the sea quarks using $2+1$ or $2+1+1$ flavors and finite b and c masses.

Currently available are lattice results only for the value $\mathcal{F}(1)$ at the non-recoil point $[14,24]$ with a total uncertainty at the (1-2)\% level. The main contributions to this uncertainty in case of the Fermilab/MILC calculation are from the chiral extrapolation from the light quark masses used in the numerical lattice computation to realistic up and down quark masses, and from discretization errors. In the HPQCD calculation, the dominant source of uncertainty is the perturbative matching calculation for the heavy-light currents. These sources of uncertainty will be reduced with larger lattice sizes and smaller lattice spacings. The average of the two lattice predictions [25] is

$$
\begin{equation*}
\mathcal{F}(1)=0.904 \pm 0.012 \tag{75.10}
\end{equation*}
$$

Lattice calculations for values of $F(w)$ for $w \neq 1$ are underway, but not yet available.

Non-lattice estimates based on zero-recoil sum rules for the form factor tend to yield lower central values for $\mathcal{F}(1)$ [26-28]. Omitting the contributions from excited states, the sum rules indicate that $\mathcal{F}(1)<0.93$. Including an estimate for the contribution of the excited states yields $\mathcal{F}(1)=0.86 \pm 0.01 \pm 0.02[28,29]$ where the second uncertainty accounts for the excited states.

Many experiments [30-40] have measured the differential decay rate as a function of w, employing a variety of methods: using
either B^{+}or B^{0} decays, with or without B-tagging, and with or without explicit reconstruction of the transition pion from $D^{*} \rightarrow$ D decays. These measurements are input to a four-dimensional fit [5] for $\eta_{\text {ew }} \mathcal{F}(1)\left|V_{c b}\right|, \rho_{A_{1}}^{2}$ and the form-factor ratios $R_{1} \propto A_{2} / A_{1}$ and $R_{2} \propto V / A_{1}$. The fit has a p-value of 0.8%, so we scale the uncertainty by a factor $\sqrt{\chi^{2} / 23}$ to give $\eta_{\text {ew }} \mathcal{F}(1)\left|V_{c b}\right|=(35.27 \pm$ $0.52) \times 10^{-3}(\mathrm{CLN})$.

The leading sources of uncertainty on $\eta_{\text {ew }} \mathcal{F}(1)\left|V_{c b}\right|$ are due to detection efficiencies and $D^{(*)}$ decay branching fractions. Note that the $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ form factor in the fit is parameterized using the CLN form, which has the drawbacks discussed previously.

Using the value from Eq. 75.10 for $\mathcal{F}(1)$ and accounting for the electroweak correction gives

$$
\left|V_{c b}\right|=(38.8 \pm 0.6 \pm 0.6) \times 10^{-3}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}, \mathrm{LQCD}, \mathrm{CLN}\right)
$$

(75.11)

Not yet included in the average is the most recent measurement from Babar [41], which finds consistent results using the CLN form.

A safer approach is to use the more general BGL form-factor parameterization $[17,19]$. Two experiments have recently published analyses with BGL based parametrizations at a given order in the expansion [40,41]. The Belle analysis [40] is based on an untagged approach in the mode $\bar{B}^{0} \rightarrow D^{*+} \ell \bar{\nu}_{\ell}$ and measures 1- d projections in bins of the hadronic recoil w, and angular variables $\cos \theta_{\ell}, \cos \theta_{V}$, and χ. The Babar analysis [41] is based on a hadronic tagged sample, and performs a full 4-d unbinned analysis of neutral and charged B decay modes. Only the BGL form factors are fit in this anlaysis, not the normalisation, which based on the world average $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ branching fraction.

At present only Ref. [40] publishes the fully-differential decay rate data and associated covariance matrix. An earlier preliminary measurement by Belle [39] also provided fully-differential decay rate data, used in a number of phenomenology analyses $[17,19]$, but was not published.

The BGL fit results from Ref. [40], $\left|V_{c b}\right|=(38.4 \pm 1.0) \times 10^{-3}$, and Ref. [41], $\left|V_{c b}\right|=(38.4 \pm 0.9) \times 10^{-3}$, are consistent with result from the fit with the CLN parametrization, Eq. 75.11. Both studies report fit results at low order in the three BGL expansion terms, ranging from zero-order to second-order in the Belle analysis, and first order for all terms in the Babar analysis. Studies of the impact of higher order expansions based on the Belle published decay rate data have been reported in Refs. [20,21], where it is shown that the fit uncertainty on $\left|V_{c b}\right|$ increases by approximately 50% with respect to the results reported at lower order. This is due to larger number of degrees of freedom allowed in the higher order expansions, however beyond second order there is very little information gain with the current measurements. Form-factor ratios are found to be consistent with HQET predictions based on fits to the published measurements. Without a combination of the two results at this stage, we choose to quote the arithmetic average of the results from Ref. [40, 41], where the central values are the same. The nominal result for $\left|V_{c b}\right|$ is therefore

$$
\begin{equation*}
\left|V_{c b}\right|=(38.4 \pm 0.7 \pm 0.5 \pm 1.0) \times 10^{-3}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}, \mathrm{LQCD}, \mathrm{BGL}\right) \tag{75.12}
\end{equation*}
$$

where the first uncertainty is experimental, the second is from LQCD, and the third is an additional uncertainty added by the authors to compensate for higher order expansion terms in the fit. Lattice QCD results for form factors away from zero recoil will be essential to control higher order terms in the BGL fit.

75.2.3 $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$

The differential rate for $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$ is given by

$$
\begin{align*}
& \frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}\right)= \\
& \frac{G_{F}^{2}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left(m_{B}+m_{D}\right)^{2} m_{D}^{3}\left(w^{2}-1\right)^{3 / 2}\left(\eta_{\mathrm{ew}} \mathcal{G}(w)\right)^{2} \tag{75.13}
\end{align*}
$$

The form factor is defined in terms of

$$
\begin{equation*}
\frac{\left\langle D\left(v^{\prime}\right)\right| \bar{c} \gamma^{\mu} b|B(v)\rangle}{\sqrt{m_{B} m_{D}}}=h_{+}(w)\left(v_{B}+v_{D}\right)^{\mu}+h_{-}(w)\left(v_{B}-v_{D}\right)^{\mu} \tag{75.14}
\end{equation*}
$$

and reads

$$
\begin{equation*}
\mathcal{G}(w)=h_{+}(w)-\frac{m_{B}-m_{D}}{m_{B}+m_{D}} h_{-}(w), \tag{75.15}
\end{equation*}
$$

where h_{+}is normalized to unity due to HQS and h_{-}vanishes in the infinite-mass limit. Thus

$$
\begin{equation*}
\mathcal{G}(1)=1+\mathcal{O}\left(\left(\frac{m_{B}-m_{D}}{m_{B}+m_{D}}\right)^{2} \frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right) \tag{75.16}
\end{equation*}
$$

and the corrections to the HQET predictions are of order $1 / m$ in contrast to the case of F (1).

The normalization, $\mathcal{G}(1)$, is obtained from QCD lattice calculations with realistic sea quarks and finite b and c masses. The most recent value for $\mathcal{G}(1)$ is derived in Ref. [42] and is

$$
\begin{equation*}
\mathcal{G}(1)=1.054 \pm 0.004 \pm 0.008 \tag{75.17}
\end{equation*}
$$

Based on a parametrization of the shape of $\mathcal{G}(w)$ a value of $\left|V_{c b}\right|$ can be extracted. However, $w \sim 1$ is a region with poor experimental precision given the low decay rate in this kinematic corner.

In fact, lattice calculations for the form factor $\mathcal{G}(w)$ (including sea quarks and finite b and c masses) are now available for values $w \neq 1$, thus providing information over a range of z values (see Eq. (75.7)) [42,43]. This lattice input can be used in a simultaneous fit, along with the differential branching fraction, in a form-factor expansion in $z[15-17,44]$.

The most precise measurements of $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}[37,45,46]$ dominate the CLN average [5] value, $\eta_{\text {ew }} \mathcal{G}(1)\left|V_{c b}\right|=(42.00 \pm 1.00) \times$ 10^{-3}. Note that this average corresponds to measurements that are fit to the CLN form factor parameterization; the same concerns expressed above for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ apply here. Using the value from Eq. (75.17) for $\mathcal{G}(1)$ and accounting for the electroweak correction as above gives

$$
\begin{equation*}
\left|V_{c b}\right|=(39.6 \pm 0.9 \pm 0.3) \times 10^{-3} \quad\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}, \text { LQCD , CLN }\right), \tag{75.18}
\end{equation*}
$$

where the first uncertainty is from experiment, and the second is from lattice QCD, as well as the electroweak corrections.

Studies have also been conducted using the general BCL formfactor parametrization (z-expansion from Ref. Ref. [44]), combining binned measurements from Belle [46] and Babar [45] with lattice QCD determinations of the form factors as a function of the recoil parameter in the lowest third of the kinematically allowed region [25]. Only Ref. [46] published the full measurement covariance matrix, while Ref. [45] provides the statistical uncertainty covariance. Nevertheless, Ref. [46] is more precise and dominates the average [25], giving

$$
\begin{equation*}
\left|V_{c b}\right|=(40.1 \pm 1.0) \times 10^{-3} \quad\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}, \mathrm{LQCD}, \mathrm{BCL}\right) . \tag{75.19}
\end{equation*}
$$

This result is consistent with the value reported in Ref. [47].
The $\left|V_{c b}\right|$ averages from $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow D_{\ell} \bar{\nu}_{\ell}$ decays using the BGL and BCL forms, respectively, are reasonably consistent. The correlations between the lattice uncertainties for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$ are discussed in Ref. [25], and considered to be 100% for the statistical uncertainty component. We assume an experimental uncertainty correlation of order 20% and combine the results, giving

$$
\begin{equation*}
\left.\left|V_{c b}\right|=(39.5 \pm 0.9) \times 10^{-3} \quad \text { (exclusive }\right) \tag{75.20}
\end{equation*}
$$

75.2.4 $\left|V_{c b}\right|$ from inclusive decays

Measurements of the total semileptonic branching decay rate, along with moments of the lepton energy and hadronic invariant mass spectra in inclusive semileptonic $b \rightarrow c$ transitions, can be used for a precision determination of $\left|V_{c b}\right|$. The total semileptonic decay rate can be calculated quite reliably in terms of nonperturbative parameters that can be extracted from the information contained in the moments.

75.2.5 Inclusive semileptonic rate

The theoretical foundation for the calculation of the total semileptonic rate is the Operator Product Expansion (OPE) which yields the Heavy Quark Expansion (HQE) [48,49]. Details can be found in the RPP mini-review on Effective Theories [2].
The OPE result for the total rate can be written schematically (details can be found, e.g., in Ref. [50]) as

$$
\begin{align*}
& \Gamma=\left|V_{c b}\right|^{2} \frac{G_{F}^{2} m_{b}^{5}(\mu)}{192 \pi^{3}} \eta_{\mathrm{ew}} \times \\
& {\left[z_{0}^{(0)}(r)+\frac{\alpha_{s}(\mu)}{\pi} z_{0}^{(1)}(r)+\left(\frac{\alpha_{s}(\mu)}{\pi}\right)^{2} z_{0}^{(2)}(r)+\cdots\right.} \\
& \quad+\frac{\mu_{\pi}^{2}}{m_{b}^{2}}\left(z_{2}^{(0)}(r)+\frac{\alpha_{s}(\mu)}{\pi} z_{2}^{(1)}(r)+\cdots\right) \\
&+\frac{\mu_{G}^{2}}{m_{b}^{2}}\left(y_{2}^{(0)}(r)+\frac{\alpha_{s}(\mu)}{\pi} y_{2}^{(1)}(r)+\cdots\right) \\
&+\frac{\rho_{\mathrm{D}}^{3}}{m_{b}^{3}}\left(z_{3}^{(0)}(r)+\frac{\alpha_{s}(\mu)}{\pi} z_{3}^{(1)}(r)+\cdots\right) \\
&\left.+\frac{\rho_{\mathrm{LS}}^{3}}{m_{b}^{3}}\left(y_{3}^{(0)}(r)+\frac{\alpha_{s}(\mu)}{\pi} y_{3}^{(1)}(r)+\cdots\right)+\ldots\right] \tag{75.21}
\end{align*}
$$

where r is the ratio m_{c} / m_{b} and the y_{i} and z_{i} are perturbatively calculable Wilson coefficients functions that appear at different orders of the heavy mass expansion.

The parameters $\mu_{\pi}, \mu_{G}, \rho_{D}$ and $\rho_{L S}$ constitute the nonperturbative input into the heavy quark expansion; they correspond to certain matrix elements to be discussed below. In the same way the HQE can be set up for the moments of distributions of charged-lepton energy, hadronic invariant mass and hadronic energy, e.g.

$$
\begin{equation*}
\left\langle E_{e}^{n}\right\rangle_{E_{e}}>E_{\mathrm{cut}}=\int_{E_{\mathrm{cut}}}^{E_{\max }} \frac{d \Gamma}{d E_{e}} E_{e}^{n} d E_{e} / \int_{E_{\mathrm{cut}}}^{E_{\max }} \frac{d \Gamma}{d E_{e}} d E_{e} \tag{75.22}
\end{equation*}
$$

The coefficients of the HQE are known up to order $1 / m_{b}^{5}$ at tree level $[51-54]$. The leading term $z_{0}^{(i)}$ is the parton model, and is known completely to order α_{s} and α_{s}^{2} [55-57]. The terms of order $\alpha_{s}^{n+1} \beta_{0}^{n}$ (where β_{0} is the first coefficient of the QCD β function, $\left.\beta_{0}=\left(33-2 n_{f}\right) / 3\right)$ have been included by the usual BLM procedure [50,58,59]. Corrections of order $\alpha_{s} \mu_{\pi}^{2} / m_{b}^{2}$ have been computed in Ref. [60] and Ref. [61], while the $\alpha_{s} \mu_{G}^{2} / m_{b}^{2}$ terms have been calculated in Ref. [62] and Ref. [63].

Starting at order $1 / m_{b}^{3}$ contributions with an infrared sensitivity to the charm mass, m_{c}, appear $[51,53,64,65]$. At order $1 / m_{b}^{3}$ this "intrinsic charm" contribution manifests as a $\log \left(m_{c}\right)$ in the coefficient of the Darwin term ρ_{D}^{3}. At higher orders, terms such as $1 / m_{b}^{3} \times 1 / m_{c}^{2}$ and $\alpha_{s}\left(m_{c}\right) 1 / m_{b}^{3} \times 1 / m_{c}$ appear, which are comparable in size to the contributions of order $1 / m_{b}^{4}$.

The HQE parameters are given in terms of forward matrix elements of local operators; the parameters entering the expansion for orders up to $1 / m_{b}^{3}$ are $\left(D_{\perp}^{\mu}=\left(g_{\mu \nu}-v_{\mu} v_{\nu}\right) D^{\nu}\right.$, where $v=p_{B} / M_{B}$ is the four-velocity of the B meson)

$$
\begin{align*}
\bar{\Lambda} & =M_{B}-m_{b} \\
\mu_{\pi}^{2} & =-\langle B| \bar{b}\left(i D_{\perp}\right)^{2} b|B\rangle \\
\mu_{G}^{2} & =\langle B| \bar{b}\left(i D_{\perp}^{\mu}\right)\left(i D_{\perp}^{\nu}\right) \sigma_{\mu \nu} b|B\rangle \\
\rho_{\mathrm{D}}^{3} & =\langle B| \bar{b}\left(i D_{\perp \mu}\right)(i v D)\left(i D_{\perp}^{\nu}\right) b|B\rangle \\
\rho_{\mathrm{LS}}^{3} & =\langle B| \bar{b}\left(i D_{\perp}^{\mu}\right)(i v D)\left(i D_{\perp}^{\nu}\right) \sigma_{\mu \nu} b|B\rangle \tag{75.23}
\end{align*}
$$

These parameters still depend on the heavy quark mass. Sometimes the infinite mass limits of these parameters $\bar{\Lambda} \rightarrow \bar{\Lambda}_{\mathrm{HQET}}$, $\mu_{\pi}^{2} \rightarrow-\lambda_{1}, \mu_{G}^{2} \rightarrow 3 \lambda_{2}, \rho_{D}^{3} \rightarrow \rho_{1}$ and $\rho_{L S}^{3} \rightarrow 3 \rho_{2}$, are used instead. Beyond $1 / \mathrm{m}^{3}$ the number of independent HQE parameters starts to proliferate [66]. In general, there are 13 parameters (at tree level) up to order $1 / m^{4}$ and 31 (at tree level) up to order $1 / m^{5}$, not including $\bar{\Lambda}$. The HQE parameters of the orders $1 / m_{b}^{4}$
and $1 / m_{b}^{5}$ have been estimated in Ref. [54, 67], their impact on the $\left|V_{c b}\right|$ determination has been studied in Ref. [68]. However, it has been pointed out recently that one may reduce the number of independent parameters in the HQE by exploiting reparametrization invariance, which is a symmetry of the HQE stemming from Lorentz invariance of QCD [69]. For a subset of observables this allows us to reduce the number of parameters to three up to order $1 / m^{3}$ ($\rho_{L S}$ can be absorbed into μ_{G}^{2} by a re-definition) and to 8 up to order $1 / m^{4}$ [70].

The rates and the spectra depend strongly on the definition m_{b} (or equivalently of $\bar{\Lambda}$). This makes the discussion of renormalization issues mandatory, since the size of QCD corrections is strongly correlated with the definitions used for the quark masses. For example, it is well known (see eg. [71]) that using the pole mass definition for heavy quark masses leads to a perturbative series for the decay rates that does not converge very well.

This motivates the use of "short-distance" mass definitions, such as the kinetic scheme [26] or the $1 S$ scheme [72-74]. Both schemes are well suited for the HQE, since they allow the choice of the renormalization scale $\mu \leq m_{b}$. Furthermore, they both can be extracted from other observables to a sufficient precision, such that a precise determination of $\left|V_{c b}\right|$ becomes possible, despite of the strong quark-mass dependence of the total rate.
The $1 S$ scheme eliminates the b quark pole mass by relating it to the perturbative expression for the mass of the 1S state of the Υ system. The b quark mass in the $1 S$ scheme is is half of the perturbatively calculated mass of the 1 S state of the Υ system. The best determination of the b quark mass in the $1 S$ scheme is obtained from sum rules for $e^{+} e^{-} \rightarrow b \bar{b}$ [75].

A second alternative is the so-called "kinetic mass" $m_{b}^{\mathrm{kin}}(\mu)$, which is the mass entering the non-relativistic expression for the kinetic energy of a heavy quark, and which is defined using heavyquark sum rules [26].

75.2.6 Determination of HQE Parameters and $\left|V_{c b}\right|$

Several experiments have measured moments in $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays $[76-84]$ as a function of the minimum lepton momentum. The measurements of the moments of the electron energy spectrum $\left(0^{\text {th }}-3^{\text {rd }}\right)$ and of the squared hadronic mass spectrum $\left(0^{\text {th }}-\right.$ $2^{\text {nd }}$) have statistical uncertainties that are roughly equal to their systematic uncertainties. The $3^{\text {rd }}$ order hadronic mass spectrum moments have also been measured by some experiments, with relatively large statistical uncertainty. The sets of moments measured within each experiment have strong correlations; their use in a global fit requires fully specified statistical and systematic covariance matrices. Measurements of photon energy moments $\left(0^{\text {th }}-\right.$ $2^{\text {nd }}$) in $B \rightarrow X_{s} \gamma$ decays [85-89] as a function of the minimum accepted photon energy are also used in some fits; the dominant uncertainties on these measurements are statistical.

Global fits [84, 86, 90-95] to the full set of moments have been performed in the 1 S and kinetic schemes. The semileptonic moments alone determine a linear combination of m_{b} and m_{c} very accurately but leave the orthogonal combination poorly determined (See e.g. [96]); additional input is required to allow a precise determination of m_{b}. This additional information can come from the radiative $B \rightarrow X_{s} \gamma$ moments (with the caveat that the OPE for $b \rightarrow s \gamma$ breaks down beyond leading order in $\Lambda_{\mathrm{QCD}} / m_{b}$), which provide complementary information on m_{b} and μ_{π}^{2}, or from precise determinations of the charm quark mass [97,98]. The values obtained in the kinetic scheme fits [5, 94, 95] with these two constraints are consistent. Based on the charm quark mass constraint $m_{c}^{\overline{\mathrm{MS}}}(3 \mathrm{GeV})=0.986 \pm 0.013 \mathrm{GeV}$ [99], a fit in the kinetic scheme [5] obtains

$$
\begin{align*}
\left|V_{c b}\right| & =(42.19 \pm 0.78) \times 10^{-3} \tag{75.24}\\
m_{b}^{\text {kin }} & =4.554 \pm 0.018 \mathrm{GeV} \tag{75.25}\\
\mu_{\pi}^{2}(\text { kin }) & =0.464 \pm 0.076 \mathrm{GeV}^{2} \tag{75.26}
\end{align*}
$$

where the errors include experimental and theoretical uncertainties. Theoretical uncertainties from higher orders in $1 / m$ as well as in α_{s} are estimated and included in performing the fits. Similar values for the parameters are obtained with a variety of assumptions about the theoretical uncertainties and their correlations.

The χ^{2} /dof is well below unity in all fits, which could suggest that the theoretical uncertainties may be overestimated. However, while one could obtain a satisfactory fit with smaller uncertainties, this would result in unrealistically small uncertainties on the extracted HQE parameters, which are used as input to other calculations (e.g. the determination of $\left.\left|V_{u b}\right|\right)$. The mass in the $\overline{\mathrm{MS}}$ scheme corresponding to Eq. (75.25) is $m_{b}^{\overline{\mathrm{MS}}}=4.19 \pm 0.04 \mathrm{GeV}$, where the uncertainty includes a contribution from the translation between mass schemes; this can be compared with a value obtained using relativistic sum rules [99], $m_{b}^{\overline{\mathrm{MS}}}=4.163 \pm 0.016 \mathrm{GeV}$, which provides a non-trivial cross-check.

A fit to the measured moments in the 1 S scheme $[5,86,93]$ gives

$$
\begin{align*}
\left|V_{c b}\right| & =(41.98 \pm 0.45) \times 10^{-3} \tag{75.27}\\
m_{b}^{1 \mathrm{~S}} & =4.691 \pm 0.037 \mathrm{GeV} \tag{75.28}\\
\lambda_{1}(1 \mathrm{~S}) & =-0.362 \pm 0.067 \mathrm{GeV}^{2} \tag{75.29}
\end{align*}
$$

This fit uses moments measurements from semileptonic and radiative decays and constrains the chromomagnetic operator using the $B^{*}-B$ and $D^{*}-D$ mass differences, but does not include the constraint on m_{c} nor the full NNLO corrections.

The fits in the two renormalization schemes give consistent results for $\left|V_{c b}\right|$ and, after translation to a common renormalization scheme, for m_{b} and μ_{π}^{2}. We take the fit in the kinetic scheme [95], which includes higher-order corrections and results in a more conservative uncertainty, as the inclusive determination of $\left|V_{c b}\right|$:

$$
\begin{equation*}
\left.\left|V_{c b}\right|=(42.2 \pm 0.8) \times 10^{-3} \text { (inclusive }\right) \tag{75.30}
\end{equation*}
$$

The precision of the global fit results can be further improved by calculating higher-order perturbative corrections to the coefficients of the HQE parameters. The inclusion of still-higher-order moments, if they can be measured with the required precision, may improve the sensitivity of the fits to higher-order terms in the HQE.

75.3 Determination of $\left|V_{u b}\right|$

Summary: Currently the best determinations of $\left|V_{u b}\right|$ are from $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ decays, where combined fits to theory and experimental data as a function of q^{2} provide a precision of about 4%; the uncertainties from experiment and theory are comparable in size. Determinations based on inclusive semileptonic decays are based on different observables and use different strategies to suppress the $b \rightarrow c$ background. Most of the determinations are consistent and provide a precision of about 7%, with comparable contributions to the uncertainty from experiment and theory. The exception is the most recent Babar analysis, which observes significant model dependence.

The values obtained from inclusive and exclusive determinations are

$$
\begin{aligned}
\left|V_{u b}\right|=(4.25 \pm 0.12+0.14 \pm 0.23) \times 10^{-3} & (\text { inclusive }), \\
\left|V_{u b}\right|=(3.70 \pm 0.10 \pm 0.12) \times 10^{-3} & (\text { exclusive }),
\end{aligned}
$$

where the last uncertainty on the inclusive result was added by the authors of this review and is discussed below.

The exclusive and inclusive determinations are independent, and the dominant uncertainties are on multiplicative factors.
To combine these values, the inclusive and exclusive values are weighted by their relative errors and the uncertainties are treated as normally distributed. The resulting average has $p\left(\chi^{2}\right)=10 \%$, so we scale the error by $\sqrt{\chi^{2} / 1}=1.6$ to find

$$
\begin{equation*}
\left.\left|V_{u b}\right|=(3.82 \pm 0.24) \times 10^{-3} \quad \text { (average }\right) \tag{75.33}
\end{equation*}
$$

Given the somewhat poor consistency between the two determinations, this average should be treated with caution.

75.3.1 $\left|V_{u b}\right|$ from inclusive decays

The theoretical description of inclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays is based on the Heavy Quark Expansion and leads to a predicted total decay rate with uncertainties below 5% [73, 100]. However,
the total decay rate is hard to measure due to the large background from CKM-favored $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ transitions, and hence the theoretical methods differ from the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ case. For a calculation of the partial decay rate in regions of phase space where $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays are suppressed one cannot use the HQE as for $b \rightarrow c$, rather the one needs to introduce non-perturbative distribution functions, the "shape functions" (SF) [101, 102]. Their exact from is not known, but its moments can be related to the HQE parameters known e.g from the $b \rightarrow c$ case.

The shape functions become important when the light-cone momentum component $P_{+} \equiv E_{X}-\left|P_{X}\right|$ is not large compared to $\Lambda_{Q C D}$, as is the case near the endpoint of the $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ lepton spectrum. Partial rates for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ are predicted and measured in a variety of kinematic regions that differ in their sensitivity to shape-function effects.

At leading order in $1 / m_{b}$ only a single shape function (SF) appears, which is universal for all heavy-to-light transitions [101, 102] and can be extracted in $\bar{B} \rightarrow X_{s} \gamma$ decays. At subleading order in $1 / m_{b}$, several shape functions appear [103], along with "resolved photon contributions" specific for $\bar{B} \rightarrow X_{s} \gamma[104,105]$, and thus the prescriptions that relate directly the partial rates for $\bar{B} \rightarrow X_{s} \gamma$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays [106-114] are limited to leading order in $1 / m_{b}$.

Existing approaches use parametrizations of the leading SF that respect constraints on the normalization and on the first and second moments, which are given in terms of the HQE parameters $\bar{\Lambda}=M_{B}-m_{b}$ and μ_{π}^{2}, respectively. The relations between SF moments and the HQE parameters are known to second order in α_{s} [115]; as a result, measurements of HQE parameters from global fits to $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow X_{s} \gamma$ moments can be used to constrain the SF moments, as well as to provide accurate values of m_{b} and other parameters for use in determining $\left|V_{u b}\right|$. Flexible parametrizations of the SF using orthogonal basis functions [116] or artificial neural networks [117] would allow global fits to inclusive B meson decay data that incorporate the known shortdistance contributions and renormalization properties of the SF.

HFLAV performs fits on the basis of several approaches, with varying degrees of model dependence. We will consider here the approaches documented in Ref. [118] (BLNP), Ref. [119] (GGOU) and Ref. [120] (DGE).

The triple differential rate in the variables

$$
\begin{equation*}
P_{\ell}=M_{B}-2 E_{\ell}, \quad P_{-}=E_{X}+\left|\vec{P}_{X}\right|, \quad P_{+}=E_{X}-\left|\vec{P}_{X}\right| \tag{75.34}
\end{equation*}
$$

is

$$
\begin{align*}
& \quad \frac{d^{3} \Gamma}{d P_{+} d P_{-} d P_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{16 \pi^{2}}\left(M_{B}-P_{+}\right) \tag{75.35}\\
& \left\{\left(P_{-}-P_{\ell}\right)\left(M_{B}-P_{-}+P_{\ell}-P_{+}\right) \mathcal{F}_{1}\right. \\
& \left.\quad+\left(M_{B}-P_{-}\right)\left(P_{-}-P_{+}\right) \mathcal{F}_{2}+\left(P_{-}-P_{\ell}\right)\left(P_{\ell}-P_{+}\right) \mathcal{F}_{3}\right\}
\end{align*}
$$

The "structure functions", \mathcal{F}_{i}, can be calculated using factorization theorems that have been proven to subleading order in the $1 / m_{b}$ expansion [121].

The BLNP [118] calculation uses these factorization theorems to write the \mathcal{F}_{i} terms as functions of perturbatively calculable hard coefficients H and jet functions J, which are convolved with the (soft) light-cone distribution functions S, which is the shape functions of the B meson. The calculation of $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contributions $[122,123]$ is not yet complete and is not included in the $\left|V_{u b}\right|$ determination given below.

The leading order term in the $1 / m_{b}$ expansion of the \mathcal{F}_{i} terms contains a single non-perturbative function and is calculated to subleading order in α_{s}, while at subleading order in the $1 / m_{b}$ expansion there are several independent non-perturbative functions that have been calculated only at tree level in the α_{s} expansion.

A distinct approach (GGOU) [119] uses a hard, Wilsonian cutoff that matches the definition of the kinetic mass. The nonperturbative input is similar to what is used in BLNP, but the shape functions are defined differently. In particular, they are defined at finite m_{b} and depend on the light-cone component k_{+}of the b quark momentum and on the momentum transfer q^{2} to the
leptons. These functions include subleading effects to all orders; as a result they are non-universal, with one shape function corresponding to each structure function in Eq. (75.35). Their k_{+} moments can be computed in the OPE and related to observables and to the shape functions defined in Ref. [118].

Going to subleading order in α_{s} requires the definition of a renormalization scheme for the HQE parameters and for the SF. The relation between the moments of the SF and the forward matrix elements of local operators appearing the HQE is plagued by ultraviolet problems and requires additional renormalization. A scheme for improving this behavior was suggested in Ref. [118] and Ref. [124], which introduce a definition of the quark mass (the so-called shape-function scheme) based on the first moment of the measured $\bar{B} \rightarrow X_{s} \gamma$ photon energy spectrum. Likewise, the HQE parameters can be defined from measured moments of spectra, corresponding to moments of the SF.
There are various ideas to model the SF, but this requires additional assumptions. One approach (DGE) is the so-called "dressed gluon exponentiation" [120], where the perturbative result is continued into the infrared regime using the renormalon structure obtained in the large β_{0} limit, where β_{0} has been defined following Eq. (75.21). Other approaches make even stronger assumptions, such as in Ref. [125], which assumes an analytic behavior for the strong coupling in the infrared to perform an extrapolation of perturbation theory.

In order to reduce sensitivity to SF uncertainties, measurements that use a combination of cuts on the leptonic momentum transfer q^{2} and the hadronic invariant mass m_{X}, as suggested in Ref. [126, 127], have been made. In general, efforts to extend the experimental measurements of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ into charm-dominated regions (in order to reduce SF uncertainties) lead to an increased experimental sensitivity to the modeling of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays, resulting in measured partial rates with an undesirable level of model dependence. The measurements quoted below have used a variety of functional forms to parametrize the leading SF; a specific error budget for one determination is quoted in the next section. In no case is the parametrization uncertainty estimated to be more than a 2% on $\left|V_{u b}\right|$.

Weak Annihilation $[119,128,129]$ (WA) can in principle contribute significantly in the high- q^{2} region of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays. Estimates based on semileptonic D_{s} decays $[65,126,127,129]$ lead to a $\sim 2 \%$ uncertainty on the total $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ rate from the $\Upsilon(4 S)$. The q^{2} spectrum of the WA contribution is not well known, but from the OPE it is expected to contribute predominantly at high q^{2}. More recent theoretical investigations $[65,130,131]$ and a direct search [132] indicate that WA is a small effect, but may become a significant source of uncertainty for $\left|V_{u b}\right|$ measurements that accept only a small fraction of the full $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ phase space.

75.3.2 Measurements

We summarize the measurements used in the determination of $\left|V_{u b}\right|$ below. Given the improved precision and more rigorous theoretical interpretation of more recent measurements, determinations [133-136] done with LEP data are not considered in this review.

Inclusive electron momentum measurements [137-139] reconstruct a single charged electron to determine a partial decay rate for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ near the kinematic endpoint. This results in a selection efficiency of order 50% and only modest sensitivity to the modeling of detector response. The inclusive electron momentum spectrum from $B \bar{B}$ events, after subtraction of the $e^{+} e^{-} \rightarrow q \bar{q}$ continuum background, is fitted to a model $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ spectrum and several components $\left(D \ell \bar{\nu}_{\ell}, D^{*} \ell \bar{\nu}_{\ell}, \ldots\right)$ of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ background; the dominant uncertainties are related to this subtraction and modelling. The decay rate can be cleanly extracted for $E_{e}>2.3 \mathrm{GeV}$, but this is deep in the SF region, where theoretical uncertainties are large. More recent measurements have increased the accessed phase phase. The resulting $\left|V_{u b}\right|$ values for various E_{e} cuts are given in Table 75.1.

The most recent measurement [140] from BABAR is based on the inclusive electron spectrum and determines the partial branching fraction and $\left|V_{u b}\right|$ for $E_{e}>0.8 \mathrm{GeV}$. The analysis shows that the partial branching fraction measurements can have sig-
nal model dependence when the kinematic acceptance includes regions dominated by $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ background. The model dependence enters primarily through the partial branching fractions, and arises because the signal yield fit has sensitivity to $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays only in regions with good signal to noise.

An untagged "neutrino reconstruction" measurement [141] from BABAR uses a combination [142] of a high-energy electron with a measurement of the missing momentum vector. This allows $\mathrm{S} / \mathrm{B} \sim 0.7$ for $E_{e}>2.0 \mathrm{GeV}$ and a $\approx 5 \%$ selection efficiency, but at the cost of a smaller accepted phase space for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays and uncertainties associated with the determination of the missing momentum. The corresponding values for $\left|V_{u b}\right|$ are given in Table 75.1.
The large samples accumulated at the B factories allow studies in which one B meson is fully reconstructed and the recoiling B decays semileptonically [143-146]. The experiments can fully reconstruct a "tag" B candidate in about $0.5 \%(0.3 \%)$ of $B^{+} B^{-}$ $\left(B^{0} \bar{B}^{0}\right)$ events. An electron or muon with center-of-mass momentum above 1.0 GeV is required amongst the charged tracks not assigned to the tag B and the remaining particles are assigned to the X_{u} system. The full set of kinematic properties (E_{ℓ}, m_{X}, q^{2}, etc.) are available for studying the semileptonically decaying B, making possible selections that accept up to 90% of the full $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ rate; however, the sensitivity to $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays is still driven by the regions where $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays are suppressed. Despite requirements (e.g. on the square of the missing mass) aimed at rejecting events with additional missing particles, undetected or mis-measured particles from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decay (e.g., K_{L}^{0} and additional neutrinos) remain an important source of uncertainty.

BABAR [143] and Belle [144, 145] have measured partial rates with cuts on m_{X}, m_{X} and q^{2}, P_{+}and E_{ℓ} using the recoil method. In each case the experimental systematics have significant contributions from the modeling of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays and from the detector response to charged particles, photons and neutral hadrons. The corresponding $\left|V_{u b}\right|$ values are given in Table 75.1.

75.3.3 $\left|V_{u b}\right|$ from inclusive partial rates

The measured partial rates and theoretical calculations from BLNP, GGOU and DGE described previously are used to determine $\left|V_{u b}\right|$ from all measured partial $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ rates [5]; selected values are given in Table 75.1. The correlations amongst the multiple BABAR recoil-based measurements [143] are fully accounted for in the average. The statistical correlations amongst the other measurements used in the average are small (due to small overlaps among signal events and large differences in S / B ratios) and have been ignored. Correlated systematic and theoretical errors are taken into account, both within an experiment and between experiments. As an illustration of the relative sizes of the uncertainties entering $\left|V_{u b}\right|$ we give the error breakdown for the GGOU average: statistical- 1.6%; experimental- $1.6 \% ; \bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ modeling$0.9 \% ; \bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ modeling- 1.5%; HQE parameters $\left(m_{b}\right)-$ 1.9%; higher-order corrections- $1.5 \% ; q^{2}$ modeling- 1.3%; Weak Annihilation- ${ }_{-1.1}^{+0.0} \%$; SF parametrization- 0.1%.

The averages quoted here are based on the following m_{b} values: $m_{b}^{S F}=4.582 \pm 0.023 \pm 0.018 \mathrm{GeV}$ for BLNP, $m_{b}^{\text {kin }}=4.554 \pm$ 0.018 GeV for GGOU , and $m_{b}^{\overline{M S}}=4.188 \pm 0.043 \mathrm{GeV}$ for DGE. The $m_{b}^{\text {kin }}$ value is determined in a global fit to moments in the kinetic scheme; this value is translated into $m_{b}^{S F}$ and $m_{b}^{\overline{M S}}$ at fixed order in α_{s}. The second uncertainty quoted on m_{b} arises from the scheme translation.

Hadronization uncertainties also impact the $\left|V_{u b}\right|$ determination. The theoretical expressions are valid at the parton level and do not incorporate any resonant structure (e.g. $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$); this must be added to the simulated $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ event samples, since the detailed final state multiplicity and structure impacts the estimates of experimental acceptance and efficiency. The experiments have adopted procedures to input resonant structure while preserving the appropriate behavior in the kinematic variables $\left(q^{2}, E_{\ell}, m_{X}\right)$ averaged over the sample, but these prescriptions are ad hoc and ultimately require in situ calibration. The resulting uncertainties have been estimated to be $\sim 1-2 \%$ on $\left|V_{u b}\right|$.

All calculations yield compatible $\left|V_{u b}\right|$ values and similar error estimates. The arithmetic mean of the values and errors is $\left|V_{u b}\right|=\left(4.25 \pm 0.12_{\exp }{ }_{-0.14}^{+0.15}\right.$ theo $) \times 10^{-3}$, although there is a spread of approximately 10% in the evaluations with the three theoretical models. For reasons discussed below, we assign an additional uncertainty due to model dependence that is not reflected in the HFLAV averages. As highlighted in the BABAR analysis [140], model dependence entering measurement procedures can be sizeable, and is not consistently treated across analyses. Many of the analyses shown in Table 75.1 were based on partial branching fraction measurements determined in a single model (i.e. the one used by that analysis when simulating $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays), although in some cases simulated events were weighted to match the expected spectra in other models and the differences introduced as systematic uncertainties, e.g. Ref. [145]. The $\left|V_{u b}\right|$ value quoted by HFLAV for each model are, typically, derived from this unique partial branching fraction combined with another model-specific partial rate calculation. This translation from a single partial branching fraction into $\left|V_{u b}\right|$ values in different models suffers, in principle, from the difficulties made explicit in the recent BABAR measurement. The model dependence in the partial branching fraction is sensitive to how the model predictions compare in the restricted region with good signal-to-noise, not by how they compare when integrated over the full kinematic range used in the fit. This effect needs to be accounted for by the experiments; the published results are insufficient to determine it. To account for the range in results using the different theoretical models, we take half of the spread of the averages as an additional systematic uncertainty, denoted $\Delta \mathrm{BF}$. With this addition, the inclusive $\left|V_{u b}\right|$ average is
$\left|V_{u b}\right|=\left(4.25 \pm 0.12_{\exp }{ }_{-0.14}^{+0.15}\right.$ theo $\left.\pm 0.23_{\Delta \mathrm{BF}}\right) \times 10^{-3} \quad$ (inclusive) .

75.3.4 $\left|V_{u b}\right|$ from exclusive decays

Exclusive charmless semileptonic decays offer a complementary means of determining $\left|V_{u b}\right|$. For the experiments, the specification of the final state provides better background rejection, but the branching fraction to a specific final state is typically only a few percent of that for inclusive decays. For theory, the calculation of the form factors for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays is challenging, but brings in a different set of uncertainties from those encountered in inclusive decays. In this review we focus on $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$, as it is the most promising decay mode for both experiment and theory. Measurements of other exclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays can be found in Refs. [147-160].

75.3.5 $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ form factor calculations

The relevant form factors for the decay $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ are usually defined as

$$
\begin{align*}
& \left\langle\pi\left(p_{\pi}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle= \\
& f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu} \tag{75.37}
\end{align*}
$$

in terms of which the rate becomes (in the limit $m_{\ell} \rightarrow 0$)

$$
\begin{equation*}
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left|p_{\pi}\right|^{3}\left|f_{+}\left(q^{2}\right)\right|^{2} \tag{75.38}
\end{equation*}
$$

where p_{π} is the pion momentum in the B meson rest frame.
Currently available non-perturbative methods for the calculation of the form factors include lattice QCD (LQCD) and lightcone sum rules (LCSR). The two methods are complementary in phase space, since the lattice calculation is restricted to the kinematical range of high momentum transfer, q^{2}, to the leptons, while light-cone sum rules provide information near $q^{2}=0$. Interpolations between these two regions can be constrained by unitarity and analyticity.

Lattice simulations for $B \rightarrow \pi \ell \bar{\nu}$ and $B_{s} \rightarrow K \ell \bar{\nu}$ transitions, where quark loop effects are fully incorporated, have been performed by the Fermilab/MILC [161, 162], HPQCD [163, 164] and RBC/UKQCD [165] collaborations. The calculations differ in the

Table 75.1: $\left|V_{u b}\right|$ (in units of 10^{-5}) from inclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ measurements. The first uncertainty on $\left|V_{u b}\right|$ is experimental, while the second includes both theoretical and HQE parameter uncertainties. The values are generally listed in order of increasing kinematic acceptance, $f_{u}(0.19$ to 0.90$)$, except for the BABAR $E_{e}>0.8 \mathrm{GeV}$ measurement; those below the horizontal bar are based on recoil methods.

$\overline{\text { Ref. }}$	cut (GeV)	BLNP	GGOU	DGE
CLEO [137]	$E_{e}>2.1$	$422 \pm 49_{-34}^{+29}$	$423 \pm 49{ }_{-31}^{+22}$	$386 \pm 45{ }_{-27}^{+25}$
BABAR [141]	$E_{e}-q^{2}$	$471 \pm 32{ }_{-}^{+38}$	not available	$435 \pm 29{ }_{-30}^{+28}$
BABAR [139]	$E_{e}>2.0$	$452 \pm 26_{-30}^{+26}$	$452 \pm 26_{-}^{+17}$	$430 \pm 24{ }_{-25}^{+23}$
Belle [138]	$E_{e}>1.9$	$493 \pm 46_{-29}^{+26}$	$495 \pm 46_{-21}^{+16}$	$482 \pm 45_{-23}^{+23}$
BABAR [140]	$E_{e}>0.8$	$441 \pm 12 \begin{array}{r}+27 \\ -27\end{array}$	$396 \pm 10_{-17}^{+17}$	$385 \pm 11_{-8}^{+8}$
BABAR [143]	$\begin{gathered} q^{2}>8 \\ m_{X}<1.7 \end{gathered}$	$432 \pm 23{ }_{-28}^{+26}$ -25	$433 \pm 23 \begin{gathered}+24 \\ -27\end{gathered}$	$424 \pm 22 \begin{gathered}+18 \\ -21 \\ -28\end{gathered}$
BABAR [143]	$P_{+}<0.66$	$409 \pm 25_{-25}^{+25}$	$425 \pm 26_{-27}^{+26}$	$417 \pm 25_{-37}^{+28}$
BABAR [143]	$m_{X}<1.7$	$403 \pm 22{ }_{-22}^{+22}$	$410 \pm 23{ }_{-17}^{+16}$	$422 \pm 23{ }_{-27}^{+21}$
BABAR [143]	$E_{\ell}>1$	$433 \pm 24{ }_{-19}^{+}{ }_{21}$	$444 \pm 24{ }_{-10}^{+}$	$445 \pm 24{ }_{-13}^{+12}$
Belle [145]	$E_{\ell}>1$	$450 \pm 27{ }_{-22}^{+20}$	$462 \pm 28{ }_{-10}^{+}$	$462 \pm 28{ }_{-13}^{+13}$
HFLAV [5]	Combination	444_{-14-22}^{+13+21}	$432 \pm 12_{-13}^{+12}$	$399 \pm 10_{-10}^{+9}$

way the b quark is simulated. While HPQCD is using nonrelativistic QCD, Fermilab/MILC and RBC/UKQCD are using relativistic b quarks with the Fermilab and Columbia heavy-quark forumulations. The results agree within the quoted errors. The form factor f_{+}evaluated at $q^{2}=20 \mathrm{GeV}^{2}$ has an estimated uncertainty of 3.4%, where the leading contribution is due to the chiral-continuum extrapolation fit, which includes statistical and heavy-quark discretization errors. However, the lattice simulations are restricted to the region of large q^{2}, i.e. the region $q_{\text {max }}^{2}>q^{2} \gtrsim 15 \mathrm{GeV}^{2}$.

The extrapolation to small values of q^{2} is performed using guidance from analyticity and unitarity. Making use of the heavyquark limit, stringent constraints on the shape of the form factor can be derived [166], and the conformal mapping of the kinematical variables onto the complex unit disc yields a rapidly converging series in the variable

$$
\begin{equation*}
z=\frac{\sqrt{t_{+}-t_{-}}-\sqrt{t_{+}-q^{2}}}{\sqrt{t_{+}-t_{-}}+\sqrt{t_{+}-q^{2}}} \tag{75.39}
\end{equation*}
$$

where $t_{ \pm}=\left(M_{B} \pm m_{\pi}\right)^{2}$. The use of lattice data in combination with experimental measurements of the differential decay rate provides a stringent constraint on the shape of the form factor in addition to precise determination of $\left|V_{u b}\right|$ [167].

Another established non-perturbative approach to obtain the form factors is through Light-Cone QCD Sum Rules (LCSR), which, however, are not at the same footing as LQCD. LCSR provide an estimate for the product $f_{B} f_{+}\left(q^{2}\right)$, valid in the region $0<q^{2} \lesssim 12 \mathrm{GeV}$. The determination of $f_{+}\left(q^{2}\right)$ itself requires knowledge of the decay constant f_{B}, which is usually obtained by replacing f_{B} by its two-point QCD (SVZ) sum rule [168] in terms of perturbative and condensate contributions. The advantage of this procedure is the approximate cancellation of various theoretical uncertainties in the ratio $\left(f_{B} f_{+}\right) /\left(f_{B}\right)$.

The LCSR for $f_{B} f_{+}$is based on the light-cone OPE of the relevant vacuum-to-pion correlation function, calculated in full QCD at finite b-quark mass. The resulting expressions comprise a triple expansion: in the twist t of the operators near the light-cone, in α_{s}, and in the deviation of the pion distribution amplitudes from their asymptotic form, which is fixed from conformal symmetry. The state-of-the-art calculations include the leading twists two, three and four with full one-loop α_{s} corrections [169, 170] and partial two-loop corrections [171]. Higher-twist contributions have been investigated in Ref. [172], which turn out to be small. Nevertheless, estimates based on LCSR are always affected by an systematic uncertainty, which is hard to quantify.

A detailed statistical analysis including the various correlations has been performed in Ref. [173], also including unitarity bounds on the form factor. The results obtained are fully compatible with the lattice QCD calculations of the form factor. For a de-
termination of $V_{u b}$ one may use the partial rate expressed by the integral

$$
\begin{align*}
\Delta \zeta\left(0, q_{\max }^{2}\right) & =\frac{G_{F}^{2}}{24 \pi^{3}} \int_{0}^{q_{\max }^{2}} d q^{2} p_{\pi}^{3}\left|f_{+}\left(q^{2}\right)\right|^{2} \\
& =\frac{1}{\left|V_{u b}\right|^{2} \tau_{B_{0}}} \int_{0}^{q_{\max }^{2}} d q^{2} \frac{d \mathcal{B}(B \rightarrow \pi \ell \nu)}{d q^{2}} \tag{75.40}
\end{align*}
$$

for which the light-cone sum rule gives [173]

$$
\begin{equation*}
\Delta \zeta\left(0,12 \mathrm{GeV}^{2}\right)=5.25_{-0.54}^{+0.68} \mathrm{ps}^{-1} \tag{75.41}
\end{equation*}
$$

The uncertainty in this integral is about ten percent, which translates to a theoretical uncertainty of about five percent for the determination of $V_{u b}$ with this method.

75.3.6 $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ measurements

The $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ measurements fall into two broad classes: untagged, in which case the reconstruction of the missing momentum of the event serves as an estimator for the unseen neutrino, and tagged, in which the second B meson in the event is fully reconstructed in either a hadronic or semileptonic decay mode. The tagged measurements have better q^{2} resolution, high and uniform acceptance and S / B as high as 10 , but lower statistical power. The untagged measurements have somewhat higher background $(\mathrm{S} / \mathrm{B}<1)$ and make slightly more restrictive kinematic cuts, but still provide statistical power precision on the q^{2} dependence of the form factor.
CLEO has analyzed $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow \rho \ell \bar{\nu}_{\ell}$ using an untagged analysis [154-156]. Similar analyses have been done at BABAR [157-160] and Belle [174]. The leading systematic uncertainties in the untagged $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ analyses are associated with modeling the missing momentum reconstruction, with background from $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}_{\ell}$ decays and $e^{+} e^{-} \rightarrow q \bar{q}$ continuum events, and with varying the form factor used to model $\bar{B} \rightarrow \rho \ell \bar{\nu}_{\ell}$ decays.

Analyses [149,175] based on reconstructing a B in the $\bar{D}^{(*)} \ell^{+} \nu_{\ell}$ decay mode and looking for a $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ or $\bar{B} \rightarrow \rho \ell \bar{\nu}_{\ell}$ decay amongst the remaining particles in the event make use of the fact that the B and \bar{B} are back-to-back in the $\Upsilon(4 S)$ frame to construct a discriminant variable that provides a signal-to-noise ratio above unity for all q^{2} bins. A related technique was discussed in Ref. [176]. BABAR [175] and Belle [147] have also used their samples of B mesons reconstructed in hadronic decay modes to measure exclusive charmless semileptonic decays, resulting in very clean but smaller samples. The dominant systematic uncertainties in the tagged analyses arise from tag calibration.
$\left|V_{u b}\right|$ can be obtained from the average $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ branching fraction and the measured q^{2} spectrum. Fits to the q^{2} spectrum using a theoretically motivated parametrization (e.g. "BCL" from Ref. [44]) remove most of the model dependence from theoretical uncertainties in the shape of the spectrum. The most sensitive method for determining $\left|V_{u b}\right|$ from $\bar{B} \rightarrow \pi \ell \bar{\nu}_{\ell}$ decays employs a simultaneous fit $[5,161,166,167,177,178]$ to measured experimental partial rates and lattice points versus q^{2} (or z) to determine $\left|V_{u b}\right|$ and the first few coefficients of the expansion of the form factor in z. We quote the result from Ref. [5], which uses as experimental input an average of the measurements in Refs. [147, 157, 160, 174] and an average [179] of the LQCD input from Ref. [161] and Ref. [165]. The probability of the q^{2} measurement average is 6%. The average for the total $B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$ branching fraction is obtained by summing up the partial branching fractions:

$$
\begin{equation*}
\mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}\right)=\left(1.50 \pm 0.02_{\text {stat }} \pm 0.06_{\text {syst }}\right) \times 10^{-4} \tag{75.42}
\end{equation*}
$$

The corresponding value of $\left|V_{u b}\right|$ with this approach is found to be

$$
\begin{equation*}
\left|V_{u b}\right|=(3.70 \pm 0.10 \pm 0.12) \times 10^{-3} \quad(\text { exclusive }), \tag{75.43}
\end{equation*}
$$

where the first uncertainty is experimental and the second is from theory. Adding an additional constraint using input [171] from LCSR gives [5] $\left|V_{u b}\right|=(3.67 \pm 0.09 \pm 0.12) \times 10^{-3}$ (exclusive, LQCD + LCSR). Consistent results for $\left|V_{u b}\right|$ were found in a fit reported in Ref. [25].

75.4 Semileptonic b-baryon decays and determination of $\left|V_{u b}\right| /\left|V_{c b}\right|$

Summary: A significant sample of Λ_{b}^{0} baryons is available at the LHCb experiment, and methods have been developed to study their semileptonic decays. Both $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}$ decays have been measured at LHCb , and the ratio of branching fractions to these two decay modes is used to determine the ratio $\left|V_{u b} / V_{c b}\right|$. Averaging the LHCb determination with those obtained from inclusive and exclusive B meson decays, we find

$$
\begin{equation*}
\left|V_{u b}\right| /\left|V_{c b}\right|=0.092 \pm 0.008 \quad \text { (average) } \tag{75.44}
\end{equation*}
$$

where the average has $p\left(\chi^{2}\right)=0.9 \%$ and the uncertainty has been scaled by a factor $\sqrt{\chi^{2} / 2}=2.2$. In light of the poor consistency of the three determinations considered, the average should be treated with caution.

75.4.1 $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}$ and $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$

The $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}$and $\Lambda_{b}^{0} \rightarrow p$ semileptonic transitions are described in terms of six form factors each. The three form factors corresponding to the vector current can be defined as [180]

$$
\begin{align*}
& \left\langle F\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma_{\mu} b\left|\Lambda_{b}^{0}(p, s)\right\rangle=\bar{u}_{F}\left(p^{\prime}, s^{\prime}\right)\left\{f_{0}\left(q^{2}\right)\left(M_{\Lambda_{b}^{0}}-m_{F}\right) \frac{q_{\mu}}{q^{2}}\right. \\
& \quad+f_{+}\left(q^{2}\right) \frac{M_{\Lambda_{b}^{0}}+m_{F}}{s_{+}}\left(p_{\mu}+p_{\mu}^{\prime}-\frac{q_{\mu}}{q^{2}}\left(M_{\Lambda_{b}^{0}}^{2}-m_{F}^{2}\right)\right) \\
& \left.\quad+f_{\perp}\left(q^{2}\right)\left(\gamma_{\mu}-\frac{2 m_{F}}{s_{+}} p_{\mu}-\frac{2 M_{\Lambda_{b}^{0}}}{s_{+}} p_{\mu}^{\prime}\right)\right\} u_{\Lambda_{b}^{0}}(p, s) \tag{75.45}
\end{align*}
$$

where $F=p$ or Λ_{c}^{+}and where we define $s_{ \pm}=\left(M_{\Lambda_{b}^{0}} \pm m_{F}\right)^{2}-q^{2}$. At vanishing momentum transfer, $q^{2} \rightarrow 0$, the kinematic constraint $f_{0}(0)=f_{+}(0)$ holds. The form factors are defined in such a way that they correspond to time-like (scalar), longitudinal and transverse polarization with respect to the momentum-transfer q^{μ} for f_{0}, f_{+}and f_{\perp}, respectively. Furthermore we have chosen the normalization in such a way that for $f_{0}, f_{+}, f_{\perp} \rightarrow 1$ one recovers the expression for point-like baryons.

Likewise, the expression for the axial-vector current is

$$
\begin{align*}
& \left\langle F\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma_{\mu} \gamma_{5} b\left|\Lambda_{b}^{0}(p, s)\right\rangle= \\
& \quad-\bar{u}_{F}\left(p^{\prime}, s^{\prime}\right) \gamma_{5}\left\{g_{0}\left(q^{2}\right)\left(M_{\Lambda_{b}^{0}}+m_{F}\right) \frac{q_{\mu}}{q^{2}}\right. \\
& \quad+g_{+}\left(q^{2}\right) \frac{M_{\Lambda_{b}^{0}}-m_{F}}{s_{-}}\left(p_{\mu}+p_{\mu}^{\prime}-\frac{q_{\mu}}{q^{2}}\left(M_{\Lambda_{b}^{0}}^{2}-m_{F}^{2}\right)\right) \\
& \left.\quad+g_{\perp}\left(q^{2}\right)\left(\gamma_{\mu}+\frac{2 m_{F}}{s_{-}} p_{\mu}-\frac{2 M_{\Lambda_{b}^{0}}}{s_{-}} p_{\mu}^{\prime}\right)\right\} u_{\Lambda_{b}^{0}}(p, s), \tag{75.46}
\end{align*}
$$

with the kinematic constraint $g_{0}(0)=g_{+}(0)$ at $q^{2} \rightarrow 0$.
The form factors have been discussed in the heavy quark limit; assuming both b and c as heavy, all the form factors f_{i} and g_{i} for the case $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \nu$ turn out to be identical [180]

$$
\begin{equation*}
f_{0}=f_{+}=f_{\perp}=g_{0}=g_{+}=g_{\perp}=\xi_{B} \tag{75.47}
\end{equation*}
$$

and equal to the Isgur Wise function ξ_{B} for baryons. In the limit of a light baryon in the final state, the number of independent form factors is still reduced to two through the heavy quark symmetries of the Λ_{b}^{0}. It should be noted that the $\Lambda_{b}^{0} \rightarrow\left(p / \Lambda_{c}^{+}\right) \mu \nu$ decay rates peak at high q^{2}, which facilitates both lattice QCD calculations and experimental measurements.

The form factors for Λ_{b}^{0} decays have been studied with lattice QCD [181]. Based on these results the differential rates for both $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}$ as well as for $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$ can be predicted in the full phase space. In particular, for the experimentally interesting region they find the ratio of decay rates to be [181]

$$
\begin{equation*}
\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}\right)_{q^{2}>15 \mathrm{GeV}^{2}}}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}\right)_{q^{2}>7 \mathrm{GeV}^{2}}}=(1.471 \pm 0.095 \pm 0.109)\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \tag{75.48}
\end{equation*}
$$

where the first uncertainty is statistical and the second, systematic.

75.4.2 Measurements at LHCb

The LHCb experiment has measured the branching fractions of the semileptonic decays $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}$ and $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$, from which they determine $\left|V_{u b}\right| /\left|V_{c b}\right|$. This is the first such determination at a hadron collider, the first to use a baryon decay, and the first observation of $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$. Excellent vertex resolution allows the $p \mu$ and production vertices to be separated, which permits the calculation of the transverse momentum p_{\perp} of the $p \mu$ pair relative to the Λ_{b}^{0} flight direction. The corrected mass, $m_{\text {corr }}=$ $\sqrt{p_{\perp}^{2}+m_{p \mu}^{2}}+p_{\perp}$, peaks at the Λ_{b}^{0} mass for signal decays and provides good discrimination against background combinations. The topologically similar decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}$ is also measured, which eliminates the need to know the production cross-section or absolute efficiencies. Using vertex and Λ_{b}^{0} mass constraints, q^{2} can be determined up to a two-fold ambiguity. The LHCb analysis requires both solutions to be in the high q^{2} region to minimise contamination from the low q^{2} region. Their result [182], rescaled [5] to take into account the recent branching fraction measurement [183] $\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \%$, is

$$
\begin{equation*}
\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}\right)_{q^{2}>15 \mathrm{GeV}^{2}}}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu \bar{\nu}\right)_{q^{2}>7 \mathrm{GeV}^{2}}}=(0.92 \pm 0.04 \pm 0.07) \times 10^{-2} \tag{75.49}
\end{equation*}
$$

The largest systematic uncertainty is from the measured $\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)$; uncertainties due to trigger, tracking and the Λ_{c}^{+}selection efficiency are each about 3%.

A recent LHCb analysis [184] measures the normalized q^{2} spectrum and finds good agreement with the shape calculated with lattice QCD [181].

75.4.3 The ratio $\left|V_{u b}\right| /\left|V_{c b}\right|$

The ratio of matrix elements, $\left|V_{u b}\right| /\left|V_{c b}\right|$, is often required when testing the compatibility of a set of measurements with theoretical predictions. It can be determined from the ratio of branching
fractions measured by the LHCb experiment, quoted in the previous section. It can also be calculated based on the $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ values quoted earlier in this review.

As previously noted, the decay rate for $\Lambda_{b}^{0} \rightarrow p \mu \bar{\nu}$ peaks at high q^{2} where the calculation of the associated form factors using lattice QCD is under good control. Using the measured ratio from Eq. (75.49) along with the calculations of Ref. [181] results in [5]

$$
\begin{equation*}
\left|V_{u b}\right| /\left|V_{c b}\right|=0.079 \pm 0.004 \pm 0.004 \quad(\mathrm{LHCb}) \tag{75.50}
\end{equation*}
$$

where the first uncertainty is experimental and the second is from the LQCD calculation.

Given the similarities in the theoretical frameworks used for charmed and charmless decays, we choose to quote the ratio $\left|V_{u b}\right| /\left|V_{c b}\right|$ separately for inclusive and exclusive B decays, as discussed earlier:

$$
\begin{align*}
& \left|V_{u b}\right| /\left|V_{c b}\right|=0.101 \pm 0.007 \quad \text { (inclusive) } \tag{75.51}\\
& \left|V_{u b}\right| /\left|V_{c b}\right|=0.094 \pm 0.005 \quad \text { (exclusive). } \tag{75.52}
\end{align*}
$$

The respective determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ are taken to be uncorrelated in the ratio, although there could be some small cancellations of the uncertainties in both the experimental the theoretical input. We average the mesonic decay values, along with the baryonic result in Eq. (75.50), weighting by relative errors. The average has $p\left(\chi^{2}\right)=4 \%$, so we scale the uncertainty by a factor $\sqrt{\chi^{2} / 2}=1.8$ to find

$$
\begin{equation*}
\left|V_{u b}\right| /\left|V_{c b}\right|=0.091 \pm 0.006 \quad \text { (average) } \tag{75.53}
\end{equation*}
$$

75.5 Semitauonic decays

Summary: Semileptonic decays to third-generation leptons provide sensitivity to non-Standard Model amplitudes, such as from a charged Higgs boson [185-188] and from leptoquarks [189-195]. The ratios of branching fractions of semileptonic decays involving tau leptons to those involving $\ell=e / \mu, R\left(D^{(*)}\right) \equiv \mathcal{B}(\bar{B} \rightarrow$ $\left.D^{(*)} \tau \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)$, are predicted with good precision in the Standard Model $[42,43,47,196,197]$. For $R(D)$ and $R\left(D^{*}\right)$ we use the values obtained in [198]

$$
\begin{align*}
R(D)^{\mathrm{SM}} & =0.297 \pm 0.003 \\
R\left(D^{*}\right)^{\mathrm{SM}} & =0.252 \pm 0.003 \tag{75.54}
\end{align*}
$$

Measurements [199-207] of these ratios yield higher values; averaging B-tagged measurements of $R(D)$ and $R\left(D^{*}\right)$ at the $\Upsilon(4 S)$ and the LHCb measurements of $R\left(D^{*}\right)$ yields [208]

$$
\begin{align*}
R(D)^{\text {meas }} & =0.340 \pm 0.027 \pm 0.013 \\
R\left(D^{*}\right)^{\text {meas }} & =0.295 \pm 0.011 \pm 0.008 \tag{75.55}
\end{align*}
$$

with a linear correlation of -0.38 . These values exceed Standard Model predictions by 1.4σ and 2.5σ, respectively. A variety of new physics models have been proposed, see eg. [185-195] to explain this excess. Most models proposed to explain the semitauonic decay excesses tend to, but not always have very little impact on semileptonic decays involving muons or electrons, so they do not significantly modify the $\left|V_{u b}\right|$ or $\left|V_{c b}\right|$ determinations discussed previously in this review. Lepton flavour universality in the ratio of electron and muon modes has been confirmed in a direct ratio measurement, $\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} e \bar{\nu}_{e}\right) / \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} e \bar{\nu}_{\mu}\right)=1.01 \pm 0.03$, from Belle [40]. The uncertainty is dominated by lepton identification uncertainties that do not cancel in the ratio.
75.5.1 Sensitivity of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$ to additional amplitudes In addition to the helicity amplitudes present for decays to $e \bar{\nu}_{e}$ and $\mu \bar{\nu}_{\mu}$, decays proceeding through $\tau \bar{\nu}_{\tau}$ include a scalar amplitude H_{s}. The differential decay rate is given by [209]

$$
\begin{align*}
& \frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}\left|\mathbf{p}_{D^{(*)}}^{*}\right| q^{2}}{96 \pi^{3} m_{B}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \\
& {\left[\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}+\left|H_{0}\right|^{2}\right)\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)+\frac{3 m_{\tau}^{2}}{2 q^{2}}\left|H_{s}\right|^{2}\right]} \tag{75.56}
\end{align*}
$$

where $\left|\mathbf{p}_{D^{(*)}}^{*}\right|$ is the 3-momentum of the $D^{(*)}$ in the \bar{B} rest frame and the helicity amplitudes H depend on the four-momentum transfer q^{2}. All four helicity amplitudes contribute to $\bar{B} \rightarrow$ $D^{*} \tau \bar{\nu}_{\tau}$, while only H_{0} and H_{s} contribute to $\bar{B} \rightarrow D \tau \bar{\nu}_{\tau}$; as a result, new physics contributions can produce larger effects in the latter mode. Semi-leptonic B decays into a τ lepton provide a stringent test of the two-Higgs doublet model of type II (2HDMII), i.e. where the two Higgs doublets couple separately to upand down-type quarks. The distinct feature of the 2HDMII is that the contributions of the charged scalars scale as $m_{\tau}^{2} / m_{H_{+}}^{2}$, since the couplings to the charged Higgs particles are proportional to the mass of the lepton. As a consequence, one may expect visible effects in decays into a τ, but only small effects for decays into e and μ. The present data rule out the 2HDMII, see below.

75.5.2 Measurement of $R\left(D^{(*)}\right)$

$\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$ decays have been studied at the $\Upsilon(4 S)$ resonance and in $p p$ collisions. At the $\Upsilon(4 S)$, the majority of experimental measurements are based on signatures that consist of a D or D^{*} meson, an electron or muon (denoted here by ℓ) from the decay $\tau \rightarrow \ell \nu_{\tau} \bar{\nu}_{\ell}$, a fully-reconstructed decay of the second B meson in the event, and multiple missing neutrinos. One analysis reconstructs the τ in a hadronic mode. The analyses that use hadronic B tags separate signal decays from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ decays using the lepton momentum and the measured missing mass squared; decays with only a single missing neutrino peak sharply at zero in this variable, while the signal is spread out to positive values. When a semileptonic B tag is used, the discrimination between signal and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ decays comes from the calorimeter energy that is unassociated with any particle used in the reconstruction of the B meson candidates, the measured missing mass squared and the cosine of the angle between the $D^{*} \ell$ system and its parent B meson, which is calculated under the assumption that only one particle (a neutrino) is missing. In both these approaches, background from $\bar{B} \rightarrow D^{* *} \ell \bar{\nu}_{\ell}$ decays with one or more unreconstructed particles is challenging to separate from signal, as is background from $\bar{B} \rightarrow D^{(*)} H_{\bar{c}} X$ (where $H_{\bar{c}}$ is a hadron containing a \bar{c} quark) decays. The leading sources of systematic uncertainty are due to the limited size of simulation samples used in constructing the PDFs, the composition of the $D^{* *}$ states, efficiency corrections, and cross-feed (swapping soft particles between the signal and $\operatorname{tag} B)$.

The most recent measurement from Belle [205] uses semileptonic B tags and leptonic τ decays to simultaneously measure $R\left(D^{*}\right)$ and $R(D)$. The measurement provides the single most precise determination of these ratios, combining results from charged and neutral B decays, and is compatible with the standard model expectation within 1σ.

In addition to the ratio measurements, the Belle experiment has recently performed polarization measurements of the τ [204] and D^{*} [210] respectively. The τ polarization measurement uses hadronic B tags and τ^{-}decays to $\pi^{-} \nu_{\tau}$ or $\rho^{-} \nu_{\tau}$. The main discriminant variables are the measured missing mass squared and the unassociated calorimeter energy. This measurement provides the first determination of the τ polarization in the $\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{\tau}$ decay, $\mathcal{P}\left(D^{*}\right)=-0.38 \pm 0.51_{-0.16}^{+0.21}$, compatible with the standard model expectation [20], $-0.476_{-0.034}^{+0.037}$.

The main uncertainties on the $R\left(D^{*}\right)$ measurement come from the composition of the hadronic B background and from modeling of semileptonic B decays and mis-reconstructed D^{*} mesons. The D^{*} polarization measurement uses an inclusive tag approach based on Refs. [211, 212], and reconstructs the τ decays in $\ell \nu_{\tau} \bar{\nu}_{\ell}$ and $\pi^{+} \bar{\nu}_{\tau}$ channels. The main discriminant variables are $X_{\text {miss }}$, a quantity that approximates missing mass but does not depend on $\operatorname{tag} B$ reconstruction, the visible energy of the event, and the beam-energy constrained mass, M_{bc}, of the inclusively reconstructed tag side B. This measurement provides the first determination of the D^{*} longitudinal polarization fraction in the $\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{\tau}$ decay, $\mathcal{F}_{\mathcal{L}}\left(D^{*}\right)=-0.38 \pm 0.60{ }_{-0.04}^{+0.08}$, compatible with the standard model expectation [213] within 1.7σ.

The LHCb experiment has studied the decay $\bar{B} \rightarrow D^{*+} \tau \bar{\nu}_{\tau}$ with $D^{*+} \rightarrow D^{0} \pi^{+}, D^{0} \rightarrow K^{-} \pi^{+}$and $\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\mu}$ in $p p$ collisions. Their analysis [206] takes advantage of the measurable
flight lengths of b and c hadrons and τ leptons. A multivariate discriminant is used to select decays where no additional charged particles are consistent with coming from the signal decay vertices. The separation between the primary and B decay vertices is used to calculate the momentum of the B decay products transverse to the B flight direction. The longitudinal component of the B momentum can be estimated based on the visible decay products; this allows a determination of the B rest frame, with modest resolution, and enables the calculation of the same discrimination variables available at the $e^{+} e^{-} B$ factories. The (rest frame) muon energy, missing mass-squared and q^{2} are used in a $3-d$ fit. The most recent LHCb result [214] on $R\left(D^{*}\right)$ uses three-prong τ decays that take advantage of their excellent vertex resolution to isolate the τ decay from hadronic background. A 3-d fit is performed to determine the signal yield, based on the $\tau-\nu_{\tau}$ pair q^{2}, the τ lifetime, as well as a boosted decision tree classifier based on isolation, invariant mass and flight distance information. The leading sources of systematic uncertainty are due to the size of the simulation sample used in constructing the fit templates, uncertainties in modelling the background from hadronic $\bar{B} \rightarrow D^{(*)} H_{\bar{c}} X$ decays, as well as reconstruction and trigger effects. The result is normalized to $B^{0} \rightarrow D^{*-} \pi^{+} \pi^{-} \pi^{+}$ and found to be 1σ from the standard model expectation (using the expectation value quoted here). An analogous measurement of $B_{c} \rightarrow J / \psi \tau \bar{\nu}_{\tau}$ was performed by the LHCb measurement [215], in leptonic τ decays. The result, $R(J / \psi)=0.71 \pm 0.17 \pm 0.18$, while relatively high is compatible within 2σ of the standard model. Systematic uncertainties are dominated by form factors, as B_{c} decays are relatively unexplored.
Measurements from BABAR [199-201], Belle [202-205] and $\mathrm{LHCb}[206,214]$ result in values for $R(D)$ and $R\left(D^{*}\right)$ that exceed Standard Model predictions. Table 75.2 lists these values and their average. The simultaneous measurements of $R(D)$ and $R\left(D^{*}\right)$ have linear correlation coefficients of -0.27 (BABAR $[200,201]),-0.49$ (Belle hadronic tag [202]) and -0.51 (Belle semileptonic tag [205]); the $R(D)$ and $R\left(D^{*}\right)$ averages have a correlation of -0.38 . Two early untagged Belle measurements [211, 212] are subject to larger systematic uncertainties, with a breakdown of the respective contributions that is inconsistent with the more recent determinations, hence they cannot be reliably combined in the average. All three experiments assume the Standard Model kinematic distributions for $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$ in their determinations of the branching fraction ratios.

Table 75.2: Measurements of $R(D)$ and $R\left(D^{*}\right)$, their correlations, ρ, and the combined averages [208].

	$R(D) \times 10^{2}$	
BABAR [200, 201] $B^{0}, B^{+} 44.0 \pm 5.8 \pm 4.233 .2 \pm 2.4 \pm 1.8-0.27$		
Belle [202]	$B^{0}, B^{+} 37.5 \pm 6.4 \pm 2.6$	$29.3 \pm 3.8 \pm 1.5-0.49$
Belle [204, 216]	B^{0}, B^{+}	$27.0 \pm 3.5 \pm 2.8$
Belle [205]	$B^{0}, B^{+} 30.7 \pm 3.7 \pm 1.6$	$28.3 \pm 1.8 \pm 1.4-0.51$
LHCb [206]	B^{0}	$33.6 \pm 2.7 \pm 3.0$
LHCb [214]	B^{0}	$28.0 \pm 1.8 \pm 2.9$
Average	$B^{0}, B^{+} 34.0 \pm 2.7 \pm 1.3$	$29.5 \pm 1.1 \pm 0.8-0.38$

The measurement combination in the $R(D)-R\left(D^{*}\right)$ plane is shown in Fig. 75.1, compared with an arithetic average of predictions from Refs. [47, 217, 218]. The figure is taken from Ref. [5]. The tension between the SM prediction and the measurements is at the level of $1.4 \sigma(R(D))$ and $2.5 \sigma\left(R\left(D^{*}\right)\right)$; if one considers these deviations together the significance rises to 3.1σ. This motivates speculation on possible new physics contributions, although this discrepancy has reduced with respect to previous editions of the RPP due to the results reported in Refs. [205,214,216]. There is some tension in the combination coming from the BABAR measurement, the only measurement to claim a deviation from the SM of more than 3σ, although the p-value of the full combination is an acceptable 27%.

The current discussion of $R(D)$ and $R\left(D^{*}\right)$ may be embedded in the theoretical analysis of the other anomalies that have been

Figure 75.1: Measurements of $R(D)$ and $R\left(D^{*}\right)$ and their twodimensional average compared with the average predictions for $R(D)$ and $R\left(D^{*}\right)$. Contours correspond to $\Delta \chi^{2}=1$ i.e., $68 \% \mathrm{CL}$ for the bands and 39% CL for the ellipses. The prediction and the experimental average deviate from each other by 3.08σ. The dashed ellipse corresponds to a 3σ contour ($99.73 \% \mathrm{CL}$).
observed in semileptonic FCNC $(b \rightarrow s \ell)$ transitions. More sophisticated approaches fit the data to a general effective Hamiltonian. Matching this effective Hamiltonian to simplified models, the current situation of the anomalies seems to be compatible with scenarios with an additional Z^{\prime} or a leptoquark scenario, see eg. [189-195].

75.6 Conclusion

The study of semileptonic B meson decays continues to be an active area for both theory and experiment. The application of HQE calculations to inclusive decays is mature, and fits to moments of $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays provide precise values for $\left|V_{c b}\right|$ and, in conjunction with input on m_{c} or from $B \rightarrow X_{s} \gamma$ decays, provide precise and consistent values for m_{b}.

The determination of $\left|V_{u b}\right|$ from inclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ decays is based on multiple calculational approaches and independent measurements over a variety of kinematic regions, all of which provide consistent results. Further progress in this area is possible, but will require better theoretical control over higher-order terms, improved experimental knowledge of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ background and improvements to the modeling of the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ signal distributions.

In both $b \rightarrow u$ and $b \rightarrow c$ exclusive channels there has been significant recent progress in lattice-QCD calculations, resulting in improved precision on both $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$. These calculations now provide information on the form factors well away from the high q^{2} region, allowing better use of experimental data. For $\left|V_{c b}\right|$ recent measurements have provided binned data for fitting form factors with reduced model dependence.

The values from the inclusive and exclusive determinations of $\left|V_{c b}\right|\left|V_{u b}\right|$ are only marginally consistent. This is a long-standing puzzle, and the measurement of $\left|V_{u b}\right| /\left|V_{c b}\right|$ from LHCb based on Λ_{b}^{0} decays does not simplify the picture.

Both $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ are indispensable inputs into unitarity triangle fits. In particular, knowing $\left|V_{u b}\right|$ with good precision allows a test of CKM unitarity in a most direct way, by comparing the length of the $\left|V_{u b}\right|$ side of the unitarity triangle with the measurement of $\sin (2 \beta)$. This comparison of a "tree" process $(b \rightarrow u)$ with a "loop-induced" process ($B^{0}-\bar{B}^{0}$ mixing) provides sensitivity to possible contributions from new physics.

The observation of semileptonic decays into τ leptons has opened a new window to the physics of the third generation. The measurements indicate a tension between the data and the Standard Model prediction, which could be a hint for new physics, manifesting itself as a violation of lepton universality beyond the standard-model couplings to the Higgs. It should be noted that none of the most recent measurements alone claim evidence for a deviation from the Standard Model. Combining the data of the semitauonic decays with the anomalies observed in the FCNC
$b \rightarrow s \ell \ell$ transitions allows an interpretation in terms of additional Z^{\prime} or in terms of additional leptoquarks, but the current data does not allow us to draw a definite conclusion.

The authors would like to acknowledge helpful input from C. Bozzi, M. Rotondo, and C. Schwanda, P. Gambino, Z. Ligeti, F. Bernlochner, S. Stone, S. Meinel, G. Wormser, and D. Robinson.

References

[1] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[2] See"Heavy-Quark and Soft-Collinear Effective Theory" by C.W. Bauer and M. Neubert in this Review.
[3] See "Lattice Quantum Chromodynamics" by S. Hashimoto, J. Laiho, and S.R. Sharpe in this Review.
[4] See "Production and Decay of b-Flavored Hadrons" by P. Eerola, M. Kreps and Y. Kwon in this Review.
[5] Y. S. Amhis et al. (HFLAV) (2019), [arXiv:1909.12524].
[6] N. Isgur and M. B. Wise, Phys. Lett. B232, 113 (1989); N. Isgur and M. B. Wise, Phys. Lett. B237, 527 (1990).
[7] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 47, 511 (1988), [Yad. Fiz.47,801(1988)].
[8] M. E. Luke, Phys. Lett. B252, 447 (1990).
[9] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).
[10] H. Georgi, Phys. Lett. B240, 447 (1990).
[11] A. F. Falk et al., Nucl. Phys. B343, 1 (1990).
[12] E. Eichten and B. R. Hill, Phys. Lett. B234, 511 (1990).
[13] A. Sirlin, Nucl. Phys. B196, 83 (1982).
[14] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D89, 11, 114504 (2014), [arXiv:1403.0635].
[15] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. Lett. 74, 4603 (1995), [hep-ph/9412324].
[16] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. D56, 6895 (1997), [hep-ph/9705252].
[17] B. Grinstein and A. Kobach, Phys. Lett. B771, 359 (2017), [arXiv:1703.08170].
[18] I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B530, 153 (1998), [hep-ph/9712417].
[19] D. Bigi, P. Gambino and S. Schacht, Phys. Lett. B769, 441 (2017), [arXiv:1703.06124].
[20] P. Gambino, M. Jung and S. Schacht, Phys. Lett. B795, 386 (2019), [arXiv:1905.08209].
[21] F. U. Bernlochner, Z. Ligeti and D. J. Robinson, Phys. Rev. D100, 1, 013005 (2019), [arXiv:1902.09553].
[22] F. U. Bernlochner et al., Phys. Rev. D96, 9, 091503 (2017), [arXiv:1708.07134].
[23] A. Czarnecki and K. Melnikov, Nucl. Phys. B505, 65 (1997), [hep-ph/9703277].
[24] J. Harrison, C. Davies and M. Wingate (HPQCD), Phys. Rev. D97, 5, 054502 (2018), [arXiv:1711.11013].
[25] S. Aoki et al. (Flavour Lattice Averaging Group) (2019), [arXiv:1902.08191].
[26] I. I. Y. Bigi et al., Phys. Rev. D52, 196 (1995), [hepph/9405410].
[27] A. Kapustin et al., Phys. Lett. B375, 327 (1996), [hepph/9602262].
[28] P. Gambino, T. Mannel and N. Uraltsev, Phys. Rev. D81, 113002 (2010), [arXiv:1004.2859].
[29] P. Gambino, T. Mannel and N. Uraltsev, JHEP 10, 169 (2012), [arXiv:1206.2296].
[30] D. Buskulic et al. (ALEPH), Phys. Lett. B395, 373 (1997).
[31] G. Abbiendi et al. (OPAL), Phys. Lett. B482, 15 (2000), [hep-ex/0003013].
[32] P. Abreu et al. (DELPHI), Phys. Lett. B510, 55 (2001), [hep-ex/0104026].
[33] J. Abdallah et al. (DELPHI), Eur. Phys. J. C33, 213 (2004), [hep-ex/0401023].
[34] N. E. Adam et al. (CLEO), Phys. Rev. D67, 032001 (2003), [hep-ex/0210040].
[35] B. Aubert et al. (BaBar), Phys. Rev. D77, 032002 (2008), [arXiv:0705.4008].
[36] B. Aubert et al. (BaBar), Phys. Rev. Lett. 100, 231803 (2008), [arXiv:0712.3493].
[37] B. Aubert et al. (BaBar), Phys. Rev. D79, 012002 (2009), [arXiv:0809.0828].
[38] W. Dungel et al. (Belle), Phys. Rev. D82, 112007 (2010), [arXiv:1010.5620].
[39] A. Abdesselam et al. (Belle) (2017), [arXiv:1702.01521].
[40] A. Abdesselam et al. (Belle) (2018), [arXiv:1809.03290].
[41] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 123, 091801 (2019), [arXiv:1903.10002].
[42] J. A. Bailey et al. (MILC), Phys. Rev. D92, 3, 034506 (2015), [arXiv:1503.07237].
[43] H. Na et al. (HPQCD), Phys. Rev. D92, 5, 054510 (2015), [Erratum: Phys. Rev.D93,no.11,119906(2016)], [arXiv:1505.03925].
[44] C. Bourrely, I. Caprini and L. Lellouch, Phys. Rev. D79, 013008 (2009), [Erratum: Phys. Rev.D82,099902(2010)], [arXiv:0807.2722].
[45] B. Aubert et al. (BaBar), Phys. Rev. Lett. 104, 011802 (2010), [arXiv:0904.4063].
[46] R. Glattauer et al. (Belle), Phys. Rev. D93, 3, 032006 (2016), [arXiv:1510.03657].
[47] D. Bigi and P. Gambino, Phys. Rev. D94, 9, 094008 (2016), [arXiv:1606.08030].
[48] A. V. Manohar and M. B. Wise, Phys. Rev. D49, 1310 (1994), [hep-ph/9308246].
[49] I. I. Y. Bigi et al., Phys. Rev. Lett. 71, 496 (1993), [,201(1993)], [hep-ph/9304225]; I. I. Y. Bigi et al., Phys. Lett. B323, 408 (1994), [hep-ph/9311339].
[50] D. Benson et al., Nucl. Phys. B665, 367 (2003), [hepph/0302262].
[51] M. Gremm and A. Kapustin, Phys. Rev. D55, 6924 (1997), [hep-ph/9603448].
[52] B. M. Dassinger, T. Mannel and S. Turczyk, JHEP 03, 087 (2007), [hep-ph/0611168].
[53] I. I. Bigi, N. Uraltsev and R. Zwicky, Eur. Phys. J. C50, 539 (2007), [hep-ph/0511158].
[54] T. Mannel, S. Turczyk and N. Uraltsev, JHEP 11, 109 (2010), [arXiv:1009.4622].
[55] A. Pak and A. Czarnecki, Phys. Rev. D78, 114015 (2008), [arXiv:0808.3509].
[56] S. Biswas and K. Melnikov, JHEP 02, 089 (2010), [arXiv:0911.4142].
[57] P. Gambino, JHEP 09, 055 (2011), [arXiv:1107.3100].
[58] P. Gambino and N. Uraltsev, Eur. Phys. J. C34, 181 (2004), [hep-ph/0401063].
[59] V. Aquila et al., Nucl. Phys. B719, 77 (2005), [hepph/0503083].
[60] T. Becher, H. Boos and E. Lunghi, JHEP 12, 062 (2007), [arXiv:0708.0855].
[61] A. Alberti et al., Nucl. Phys. B870, 16 (2013), [arXiv:1212.5082].
[62] A. Alberti, P. Gambino and S. Nandi, JHEP 01, 147 (2014), [arXiv:1311.7381].
[63] T. Mannel, A. A. Pivovarov and D. Rosenthal, Phys. Rev. D92, 5, 054025 (2015), [arXiv:1506.08167].
[64] C. Breidenbach et al., Phys. Rev. D78, 014022 (2008), [arXiv:0805.0971].
[65] I. Bigi et al., JHEP 04, 073 (2010), [arXiv:0911.3322].
[66] A. Kobach and S. Pal, Phys. Lett. B772, 225 (2017), [arXiv:1704.00008].
[67] J. Heinonen and T. Mannel, Nucl. Phys. B889, 46 (2014), [arXiv:1407.4384].
[68] P. Gambino, K. J. Healey and S. Turczyk, Phys. Lett. B763, 60 (2016), [arXiv:1606.06174].
[69] T. Mannel and K. K. Vos, JHEP 06, 115 (2018), [arXiv:1802.09409].
[70] M. Fael, T. Mannel and K. Keri Vos, JHEP 02, 177 (2019), [arXiv:1812.07472].
[71] I. I. Y. Bigi et al., Phys. Rev. D50, 2234 (1994), [hepph/9402360].
[72] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett. 82, 277 (1999), [hep-ph/9809423].
[73] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. D59, 074017 (1999), [hep-ph/9811239].
[74] A. H. Hoang and T. Teubner, Phys. Rev. D60, 114027 (1999), [hep-ph/9904468].
[75] A. H. Hoang, Phys. Rev. D61, 034005 (2000), [hepph/9905550].
[76] S. E. Csorna et al. (CLEO), Phys. Rev. D70, 032002 (2004), [hep-ex/0403052].
[77] A. H. Mahmood et al. (CLEO), Phys. Rev. D70, 032003 (2004), [hep-ex/0403053].
[78] B. Aubert et al. (BaBar), Phys. Rev. D69, 111103 (2004), [hep-ex/0403031].
[79] B. Aubert et al. (BaBar), Phys. Rev. D69, 111104 (2004), [hep-ex/0403030].
[80] C. Schwanda et al. (Belle), Phys. Rev. D75, 032005 (2007), [hep-ex/0611044].
[81] P. Urquijo et al. (Belle), Phys. Rev. D75, 032001 (2007), [hep-ex/0610012].
[82] J. Abdallah et al. (DELPHI), Eur. Phys. J. C45, 35 (2006), [hep-ex/0510024].
[83] D. Acosta et al. (CDF), Phys. Rev. D71, 051103 (2005), [hep-ex/0502003].
[84] B. Aubert et al. (BaBar), Phys. Rev. D81, 032003 (2010), [arXiv:0908.0415].
[85] A. Limosani et al. (Belle), Phys. Rev. Lett. 103, 241801 (2009), [arXiv:0907.1384].
[86] C. Schwanda et al. (Belle), Phys. Rev. D78, 032016 (2008), [arXiv:0803.2158].
[87] B. Aubert et al. (BaBar), Phys. Rev. D72, 052004 (2005), [hep-ex/0508004].
[88] B. Aubert et al. (BaBar), Phys. Rev. Lett. 97, 171803 (2006), [hep-ex/0607071].
[89] S. Chen et al. (CLEO), Phys. Rev. Lett. 87, 251807 (2001), [hep-ex/0108032].
[90] M. Battaglia et al., eConf C0304052, WG102 (2003), [Phys. Lett.B556,41(2003)], [hep-ph/0210319].
[91] B. Aubert et al. (BaBar), Phys. Rev. Lett. 93, 011803 (2004), [hep-ex/0404017].
[92] O. Buchmüller and H. Flächer, hep-ph/0507253 updated in Ref. [219].
[93] C. W. Bauer et al., Phys. Rev. D70, 094017 (2004), updated in Ref. [219], [hep-ph/0408002].
[94] P. Gambino and C. Schwanda, Phys. Rev. D89, 1, 014022 (2014), [arXiv:1307.4551].
[95] A. Alberti et al., Phys. Rev. Lett. 114, 6, 061802 (2015), [arXiv:1411.6560].
[96] M. Antonelli et al., Phys. Rept. 494, 197 (2010), see section 5.4.2, [arXiv:0907.5386].
[97] B. Dehnadi et al., JHEP 09, 103 (2013), [arXiv:1102.2264].
[98] I. Allison et al. (HPQCD), Phys. Rev. D78, 054513 (2008), [arXiv:0805.2999].
[99] K. G. Chetyrkin et al., Phys. Rev. D80, 074010 (2009), [arXiv:0907.2110].
[100] N. Uraltsev, Int. J. Mod. Phys. A14, 4641 (1999), [hepph/9905520].
[101] M. Neubert, Phys. Rev. D49, 4623 (1994), [hepph/9312311]; M. Neubert, Phys. Rev. D49, 3392 (1994), [hep-ph/9311325].
[102] I. I. Y. Bigi et al., Int. J. Mod. Phys. A9, 2467 (1994), [hep-ph/9312359].
[103] C. W. Bauer, M. E. Luke and T. Mannel, Phys. Rev. D68, 094001 (2003), [hep-ph/0102089].
[104] M. Benzke et al., Phys. Rev. Lett. 106, 141801 (2011), [arXiv:1012.3167].
[105] A. Gunawardana and G. Paz (2019), [arXiv:1908.02812].
[106] M. Neubert, Phys. Lett. B513, 88 (2001), [hepph/0104280].
[107] M. Neubert, Phys. Lett. B543, 269 (2002), [hepph/0207002].
[108] A. K. Leibovich, I. Low and I. Z. Rothstein, Phys. Rev. D61, 053006 (2000), [hep-ph/9909404].
[109] A. K. Leibovich, I. Low and I. Z. Rothstein, Phys. Rev. D62, 014010 (2000), [hep-ph/0001028].
[110] A. K. Leibovich, I. Low and I. Z. Rothstein, Phys. Lett. B486, 86 (2000), [hep-ph/0005124].
[111] A. K. Leibovich, I. Low and I. Z. Rothstein, Phys. Lett. B513, 83 (2001), [hep-ph/0105066].
[112] A. H. Hoang, Z. Ligeti and M. Luke, Phys. Rev. D71, 093007 (2005), [hep-ph/0502134].
[113] B. O. Lange, M. Neubert and G. Paz, JHEP 10, 084 (2005), [hep-ph/0508178].
[114] B. O. Lange, JHEP 01, 104 (2006), [hep-ph/0511098].
[115] M. Neubert, Phys. Lett. B612, 13 (2005), [hepph/0412241].
[116] Z. Ligeti, I. W. Stewart and F. J. Tackmann, Phys. Rev. D78, 114014 (2008), [arXiv:0807.1926].
[117] P. Gambino, K. J. Healey and C. Mondino, Phys. Rev. D94, 1, 014031 (2016), [arXiv:1604.07598].
[118] B. O. Lange, M. Neubert and G. Paz, Phys. Rev. D72, 073006 (2005), [hep-ph/0504071].
[119] P. Gambino et al., JHEP 10, 058 (2007), [arXiv:0707.2493].
[120] J. R. Andersen and E. Gardi, JHEP 01, 097 (2006), [hepph/0509360].
[121] M. Beneke et al., JHEP 06, 071 (2005), [hep-ph/0411395].
[122] C. Greub, M. Neubert and B. D. Pecjak, Eur. Phys. J. C65, 501 (2010), [arXiv:0909.1609].
[123] M. Brucherseifer, F. Caola and K. Melnikov, Phys. Lett. B721, 107 (2013), [arXiv:1302.0444].
[124] T. Mannel and S. Recksiegel, Phys. Rev. D60, 114040 (1999), [hep-ph/9904475].
[125] U. Aglietti et al., Eur. Phys. J. C59, 831 (2009), [arXiv:0711.0860].
[126] C. W. Bauer, Z. Ligeti and M. E. Luke, Phys. Rev. D64, 113004 (2001), [hep-ph/0107074].
[127] C. W. Bauer, Z. Ligeti and M. E. Luke, Phys. Lett. B479, 395 (2000), [hep-ph/0002161].
[128] I. I. Y. Bigi and N. G. Uraltsev, Nucl. Phys. B423, 33 (1994), [hep-ph/9310285].
[129] M. B. Voloshin, Phys. Lett. B515, 74 (2001), [hepph/0106040].
[130] Z. Ligeti, M. Luke and A. V. Manohar, Phys. Rev. D82, 033003 (2010), [arXiv:1003.1351].
[131] P. Gambino and J. F. Kamenik, Nucl. Phys. B840, 424 (2010), [arXiv:1004.0114].
[132] J. L. Rosner et al. (CLEO), Phys. Rev. Lett. 96, 121801 (2006), [hep-ex/0601027].
[133] R. Barate et al. (ALEPH), Eur. Phys. J. C6, 555 (1999).
[134] M. Acciarri et al. (L3), Phys. Lett. B436, 174 (1998).
[135] G. Abbiendi et al. (OPAL), Eur. Phys. J. C21, 399 (2001), [hep-ex/0107016].
[136] P. Abreu et al. (DELPHI), Phys. Lett. B478, 14 (2000), [hep-ex/0105054].
[137] A. Bornheim et al. (CLEO), Phys. Rev. Lett. 88, 231803 (2002), [hep-ex/0202019].
[138] A. Limosani et al. (Belle), Phys. Lett. B621, 28 (2005), [hep-ex/0504046].
[139] B. Aubert et al. (BaBar), Phys. Rev. D73, 012006 (2006), [hep-ex/0509040].
[140] J. P. Lees et al. (BaBar), Phys. Rev. D95, 7, 072001 (2017), [arXiv:1611.05624].
[141] B. Aubert et al. (BaBar), Phys. Rev. Lett. 95, 111801 (2005), [Erratum: Phys. Rev. Lett.97,019903(2006)], [hepex/0506036].
[142] R. V. Kowalewski and S. Menke, Phys. Lett. B541, 29 (2002), [hep-ex/0205038].
[143] J. P. Lees et al. (BaBar), Phys. Rev. D86, 032004 (2012), [arXiv:1112.0702].
[144] I. Bizjak et al. (Belle), Phys. Rev. Lett. 95, 241801 (2005), [hep-ex/0505088].
[145] P. Urquijo et al. (Belle), Phys. Rev. Lett. 104, 021801 (2010), [arXiv:0907.0379].
[146] B. Aubert et al. (BaBar), Phys. Rev. Lett. 96, 221801 (2006), [hep-ex/0601046].
[147] A. Sibidanov et al. (Belle), Phys. Rev. D88, 3, 032005 (2013), [arXiv:1306.2781].
[148] B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 181801 (2003), [eConfC0304052,WG117(2003)], [hep-ex/0301001].
[149] T. Hokuue et al. (Belle), Phys. Lett. B648, 139 (2007), [hep-ex/0604024].
[150] B. Aubert et al. (BaBar), Phys. Rev. D79, 052011 (2009), [arXiv:0808.3524].
[151] J. P. Lees et al. (BaBar), Phys. Rev. D88, 7, 072006 (2013), [arXiv:1308.2589].
[152] J. P. Lees et al. (BaBar), Phys. Rev. D87, 3, 032004 (2013), [Erratum: Phys. Rev.D87,no.9,099904(2013)], [arXiv:1205.6245].
[153] C. Schwanda et al. (Belle), Phys. Rev. Lett. 93, 131803 (2004), [hep-ex/0402023].
[154] N. E. Adam et al. (CLEO), Phys. Rev. Lett. 99, 041802 (2007), [hep-ex/0703041].
[155] S. B. Athar et al. (CLEO), Phys. Rev. D68, 072003 (2003), superceded by Ref. [156], [hep-ex/0304019].
[156] R. Gray et al. (CLEO), Phys. Rev. D76, 012007 (2007), [Addendum: Phys. Rev.D76,no.3,039901(2007)], [hepex/0703042].
[157] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D83, 032007 (2011), supercedes Ref. [158], [arXiv:1005.3288].
[158] B. Aubert et al. (BaBar), Phys. Rev. D72, 051102 (2005), [hep-ex/0507003].
[159] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D83, 052011 (2011), updated in Ref. [160], [arXiv:1010.0987].
[160] J. P. Lees et al. (BaBar), Phys. Rev. D86, 092004 (2012), [arXiv:1208.1253].
[161] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D92, 1, 014024 (2015), [arXiv:1503.07839].
[162] A. Bazavov et al. (Fermilab Lattice, MILC), Phys. Rev. D100, 3, 034501 (2019), [arXiv:1901.02561].
[163] C. M. Bouchard et al., Phys. Rev. D90, 054506 (2014), [arXiv:1406.2279].
[164] B. Colquhoun et al., Phys. Rev. D93, 3, 034502 (2016), [arXiv:1510.07446].
[165] J. M. Flynn et al., Phys. Rev. D91, 7, 074510 (2015), [arXiv:1501.05373].
[166] T. Becher and R. J. Hill, Phys. Lett. B633, 61 (2006), [hepph/0509090].
[167] M. C. Arnesen et al., Phys. Rev. Lett. 95, 071802 (2005), [hep-ph/0504209].
[168] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147, 385 (1979); M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147, 448 (1979).
[169] P. Ball and R. Zwicky, Phys. Rev. D71, 014015 (2005), [hep-ph/0406232].
[170] G. Duplancic et al., JHEP 04, 014 (2008), [arXiv:0801.1796].
[171] A. Bharucha, JHEP 05, 092 (2012), [arXiv:1203.1359].
[172] A. V. Rusov, Eur. Phys. J. C77, 7, 442 (2017), [arXiv:1705.01929].
[173] I. Sentitemsu Imsong et al., JHEP 02, 126 (2015), [arXiv:1409.7816].
[174] H. Ha et al. (Belle), Phys. Rev. D83, 071101 (2011), [arXiv:1012.0090].
[175] B. Aubert et al. (BaBar), Phys. Rev. Lett. 101, 081801 (2008), [arXiv:0805.2408].
[176] W. S. Brower and H. P. Paar, Nucl. Instrum. Meth. A421, 411 (1999), [hep-ex/9710029].
[177] P. Ball, eConf C070512, 016 (2007), [arXiv:0705.2290].
[178] J. M. Flynn and J. Nieves, Phys. Lett. B649, 269 (2007), [hep-ph/0703284].
[179] S. Aoki et al., Eur. Phys. J. C77, 2, 112 (2017), [arXiv:1607.00299].
[180] T. Feldmann and M. W. Y. Yip, Phys. Rev. D85, 014035 (2012), [Erratum: Phys. Rev.D86,079901(2012)], [arXiv:1111.1844].
[181] W. Detmold, C. Lehner and S. Meinel, Phys. Rev. D92, 3, 034503 (2015), [arXiv:1503.01421].
[182] R. Aaij et al. (LHCb), Nature Phys. 11, 743 (2015), [arXiv:1504.01568].
[183] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 116, 5, 052001 (2016), [arXiv:1511.08380].
[184] R. Aaij et al. (LHCb), Phys. Rev. D96, 11, 112005 (2017), [arXiv:1709.01920].
[185] M. Tanaka, Z. Phys. C67, 321 (1995), [hep-ph/9411405].
[186] H. Itoh, S. Komine and Y. Okada, Prog. Theor. Phys. 114, 179 (2005), [hep-ph/0409228].
[187] U. Nierste, S. Trine and S. Westhoff, Phys. Rev. D78, 015006 (2008), [arXiv:0801.4938].
[188] M. Tanaka and R. Watanabe, Phys. Rev. D82, 034027 (2010), [arXiv:1005.4306].
[189] A. Datta, M. Duraisamy and D. Ghosh, Phys. Rev. D86, 034027 (2012), [arXiv:1206.3760].
[190] D. Bečirević, N. Košnik and A. Tayduganov, Phys. Lett. B716, 208 (2012), [arXiv:1206.4977].
[191] S. Fajfer et al., Phys. Rev. Lett. 109, 161801 (2012), [arXiv:1206.1872].
[192] A. Crivellin, C. Greub and A. Kokulu, Phys. Rev. D86, 054014 (2012), [arXiv:1206.2634].
[193] M. Bauer and M. Neubert, Phys. Rev. Lett. 116, 14, 141802 (2016), [arXiv:1511.01900].
[194] I. Doršner et al., Phys. Rept. 641, 1 (2016), [arXiv:1603.04993].
[195] A. Celis et al., Phys. Lett. B771, 168 (2017), [arXiv:1612.07757].
[196] J. F. Kamenik and F. Mescia, Phys. Rev. D78, 014003 (2008), [arXiv:0802.3790].
[197] S. Fajfer, J. F. Kamenik and I. Nisandzic, Phys. Rev. D85, 094025 (2012), [arXiv:1203.2654].
[198] M. Bordone, M. Jung and D. van Dyk (2019), [arXiv:1908.09398].
[199] B. Aubert et al. (BaBar), Phys. Rev. Lett. 100, 021801 (2008), [arXiv:0709.1698].
[200] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 101802 (2012), [arXiv:1205.5442].
[201] J. P. Lees et al. (BaBar), Phys. Rev. D88, 7, 072012 (2013), [arXiv:1303.0571].
[202] M. Huschle et al. (Belle), Phys. Rev. D92, 7, 072014 (2015), [arXiv:1507.03233].
[203] Y. Sato et al. (Belle), Phys. Rev. D94, 7, 072007 (2016), [arXiv:1607.07923].
[204] S. Hirose et al. (Belle), Phys. Rev. Lett. 118, 21, 211801 (2017), [arXiv:1612.00529].
[205] G. Caria et al. (Belle) (2019), [arXiv:1910.05864].
[206] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 11, 111803 (2015), [Erratum: Phys. Rev. Lett.115,no.15,159901(2015)], [arXiv:1506.08614].
[207] R. Aaij et al. (LHCb), Phys. Rev. Lett. 120, 17, 171802 (2018), [arXiv:1708.08856].
[208] http://www.slac.stanford.edu/xorg/hfag/semi/fpcp17/ RDRDs.html.
[209] J. G. Korner and G. A. Schuler, Z. Phys. C46, 93 (1990).
[210] A. Abdesselam et al. (Belle), in "10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17-21, 2018," (2019), [arXiv:1903.03102].
[211] A. Matyja et al. (Belle), Phys. Rev. Lett. 99, 191807 (2007), [arXiv:0706.4429].
[212] A. Bozek et al. (Belle), Phys. Rev. D82, 072005 (2010), [arXiv:1005.2302].
[213] M. Tanaka and R. Watanabe, Phys. Rev. D87, 3, 034028 (2013), [arXiv:1212.1878].
[214] R. Aaij et al. (LHCb), Phys. Rev. D97, 7, 072013 (2018), [arXiv:1711.02505].
[215] R. Aaij et al. (LHCb), Phys. Rev. Lett. 120, 12, 121801 (2018), [arXiv:1711.05623].
[216] S. Hirose et al. (Belle), Phys. Rev. D97, 1, 012004 (2018), [arXiv:1709.00129].
[217] F. U. Bernlochner et al., Phys. Rev. D95, 11, 115008 (2017), [erratum: Phys. Rev.D97,no.5,059902(2018)], [arXiv:1703.05330].
[218] S. Jaiswal, S. Nandi and S. K. Patra, JHEP 12, 060 (2017), [arXiv:1707.09977].
[219] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 12, 895 (2017), [arXiv:1612.07233].

76. Determination of CKM angles from B hadrons

Written August 2019 by T. Gershon (Warwick U.), M. Kenzie (Warwick U.) and K. Trabelsi (U. Paris-Saclay, IJCLab).

76.1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) description of quark mixing $[1,2]$ leads to a number of triangle relations between pairs of CKM matrix elements. One of these,

$$
\begin{equation*}
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \tag{76.1}
\end{equation*}
$$

is of particular interest since (i) all its terms are of comparable magnitude, and (ii) its properties can be measured through studies of oscillations and decays of B mesons. As the area of this unitary triangle is a measure of the amount of $C P$ violation in the Standard Model [3], it is of particular interest to determine the values of its angles and to test the consistency of the CKM paradigm with the experimental measurements. The angles are defined as

$$
\begin{align*}
& \alpha=\arg \left[-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right], \quad \beta=\arg \left[-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right], \tag{76.2}\\
& \gamma=\arg \left[-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right],
\end{align*}
$$

with an alternative notation $\left(\phi_{2}, \phi_{1}, \phi_{3}\right) \equiv(\alpha, \beta, \gamma)$ also widely used in the literature.

In this mini-review, the most precise methods to determine the CKM angles are described, with a particular focus on nontrivial aspects of the combination of results. More detailed discussions of these points can be found in Ref. [4]. A similar mini-review on the side of the unitarity triangle adjacent to the angle γ can be found in Ref. [5]. A detailed overview of the CKM quark-mixing matrix is given in Ref. [6] while $C P$ violation in the quark sector is discussed in Ref. [7].

76.2β

The relative weak (i.e. $C P$-violating) phase between the amplitude for any CKM-favoured B^{0} meson decay to a $C P$ eigenstate and that for the decay following $B^{0}-\bar{B}^{0}$ oscillation is twice the angle β. The decay-time-dependent $C P$ asymmetry can be expressed as

$$
\mathcal{A}_{f_{C P}}(t) \equiv \frac{d \Gamma / d t\left[\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]-d \Gamma / d t\left[B_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]}{d \Gamma / d t\left[\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]+d \Gamma / d t\left[B_{\mathrm{phys}}^{0}(t) \rightarrow f_{C P}\right]}
$$

$$
\begin{equation*}
=S_{f} \sin (\Delta m t)-C_{f} \cos (\Delta m t) \tag{76.3a}
\end{equation*}
$$

where the notation $B_{\mathrm{phys}}^{0}(t)\left(\bar{B}_{\mathrm{phys}}^{0}(t)\right)$ denotes a neutral B meson that decays at time t into the final state $f_{C P}$, and is known ("tagged") at time $t=0$ to have flavour content corresponding to $B^{0}\left(\bar{B}^{0}\right)$. In Eq. (76.3 b), Δm denotes the mass difference between the two physical eigenstates of the $B^{0}-\bar{B}^{0}$ system, while the corresponding decay-width difference is assumed to be negligible [8]; moreover $C P T$ symmetry and the absence of $C P$ violation in $B^{0}-$ \bar{B}^{0} mixing is assumed throughout this mini-review.

In the general case, one can write

$$
\begin{equation*}
S_{f} \equiv \frac{2 \mathcal{I} m\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \quad \text { and } \quad C_{f} \equiv \frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \tag{76.4}
\end{equation*}
$$

where the parameter $\lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}$ is defined in terms of p and q, which define the flavour content of the mass eigenstates of the $B^{0}-\bar{B}^{0}$ system [8], and the amplitudes $\bar{A}_{f}\left(A_{f}\right)$ for a \bar{B}^{0} $\left(B^{0}\right)$ decay to the final state $f_{C P}$. In the limit that the decay amplitude is dominated by a CKM-favoured transition, as is the case for $B^{0} \rightarrow J / \psi K_{\mathrm{S}}^{0}$ decays, one obtains simple relations: $S_{f}=-\eta_{C P} \sin (2 \beta)$ and $C_{f}=0$, where $\eta_{C P}$ is the $C P$ eigenvalue of the final state $[9,10]$. This method has been pursued intensively by experiments. The current world averages, combining results for
several charmonium-kaon final states but dominated by results on $B^{0} \rightarrow J / \psi K_{\mathrm{S}}^{0}(C P$ odd $)$ and $B^{0} \rightarrow J / \psi K_{\mathrm{L}}^{0}(C P$ even $)$, are [4]

$$
\begin{equation*}
-\eta_{C P} S_{f}=0.699 \pm 0.017, \quad C_{f}=-0.005 \pm 0.015 \tag{76.5}
\end{equation*}
$$

Despite the large number of signal events in the data, the dominant uncertainties are still statistical. One important source of potential systematic correlation between results from different experiments is that due to "tag-side interference" [11], which is common to measurements exploiting production through the $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ process, including the latest results from BaBar [12] and Belle [13]. It does not, however, affect the results from $\mathrm{LHCb}[14]$ that have comparable statistical sensitivity. Another common source of systematic uncertainty is due to knowledge of the value of Δm, but since this quantity has been measured precisely [8] the effect remains small.
The interpretation of the value of $-\eta_{C P} S_{f}$ from Eq. (76.5) as $\sin (2 \beta)$ assumes negligible contributions from subleading amplitudes with a different weak phase to that of the tree diagram (i.e. to that of the CKM matrix elements $V_{c b} V_{c s}^{*}$). This potential additional contribution is often referred to as "penguin pollution". All existing data, including the value of C_{f} in Eq. (76.5), as well as several explicit calculations [15-18], are consistent with penguin pollution in B^{0} meson decays to charmonium-kaon decays being negligible at the current level of precision. Therefore, the value of $-\eta_{C P} S_{f}$ is generally converted to $\sin (2 \beta)$ without any correction or additional uncertainty being assigned due to this assumption. This gives [4]

$$
\begin{equation*}
\beta=(22.2 \pm 0.7)^{\circ} \tag{76.6}
\end{equation*}
$$

where only the solution consistent with the Standard Model is reported (methods to resolve the trigonometric ambiguity in the result are discussed below). It is also possible to use data-driven methods, typically based on flavour symmetries plus some additional assumptions, to constrain the effects of penguin pollution [19-21]. In this case it is necessary to consider each charmonium-kaon final state separately, since the penguin pollution to each may differ. The most common approach [19], which relies on experimental information on $B^{0} \rightarrow J / \psi \pi^{0}$ decays, currently gives an additional uncertainty on $\sin (2 \beta)$ from $B^{0} \rightarrow J / \psi K_{\mathrm{S}}^{0}$ of around 0.01 .

It is possible to avoid the issue of penguin pollution in the measurement of β by using B^{0} meson decays to a charm- and lightmeson final state, such as $D_{C P} \pi^{0}$ (where $D_{C P}$ represents a D^{0} meson decaying into a $C P$ eigenstate), instead of the charmoniumkaon final states. These decays do have a CKM-suppressed contribution $\left(V_{u b} V_{c d}^{*}\right.$ instead of $\left.V_{c b} V_{u d}^{*}\right)$, which can in principle bias the determination of $\sin (2 \beta)$ from S_{f}, but this can be calculated and is known to be negligible at current precision. The requirement that the neutral D meson decays to a final state that is common to both D^{0} and \bar{D}^{0}, such as the $C P$-even eigenstate $K^{+} K^{-}$, reduces the sample size that is available for analysis. Consequently, the world average [4], $\sin (2 \beta)=0.71 \pm 0.09$, with these channels is not as precise as that from the charmonium-kaon states.

Converting experimental results on $\sin (2 \beta)$ into constraints on β leads to a trigonometric ambiguity in the range $\left[0^{\circ}, 180^{\circ}\right]$. This can be resolved with experimental measurements of $\cos (2 \beta)$, which can be obtained from decay-time-dependent analyses of B^{0} meson decays to multibody (non- $C P$-eigenstate) final states. Among the charmonium-kaon decays, study of $B^{0} \rightarrow$ $J / \psi K^{*}(892)^{0}$ with $K^{*}(892)^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{0}$ is the most promising approach, but due to the limited sample size that has been analysed to date the precision is not sufficient to resolve the ambiguity conclusively. The charm- and light-meson channels such as $B^{0} \rightarrow D \pi^{0}$ with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$have been shown to provide good statistical power for this purpose, with a joint analysis of BaBar and Belle data giving $\cos (2 \beta)=0.91 \pm 0.25[22,23]$, sufficient to rule out the alternative solution for β.

76.3α

In the limit that only tree amplitudes contribute to B^{0} meson decays to light mesons, such as $B^{0} \rightarrow \pi^{+} \pi^{-}$, then the observables of the decay-time-dependent $C P$ asymmetry of Eq. (76.3) would allow a straight-forward determination of $2 \alpha: S_{f}=+\eta_{C P} \sin (2 \alpha)$

Figure 76.1: Isospin triangles for $B \rightarrow \pi \pi$ decays, reproduced from Ref. [24]. Here, the relative phase between A^{+0} and \bar{A}^{-0} has been rotated away to simplify the picture. The total relative phase probed by $S_{\pi^{+} \pi^{-}}$is $\arg \left(\frac{q}{p} \frac{\bar{A}^{+-}}{A^{+-}}\right)=2 \alpha-2 \Delta \alpha$, including contributions from $B^{0}-\bar{B}^{0}$ mixing, the tree-level amplitudes and the correction $\Delta \alpha$, and exploiting the unitarity requirement $\alpha+$ $\beta+\gamma=180^{\circ}$.
and $C_{f}=0$. In general, however, the determination of α is complicated by the presence of contributions from $b \rightarrow d(u \bar{u})$ neutralcurrent penguin transitions, which have a similar level of CKMsuppression as the $b \rightarrow u(\bar{u} d)$ charged-current tree amplitudes but have a different weak phase. Consequently one obtains instead for $B^{0} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{equation*}
S_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}} \sin (2 \alpha-2 \Delta \alpha) \tag{76.7}
\end{equation*}
$$

where $\Delta \alpha$ is the a priori unknown penguin contribution.
This contribution from the penguin amplitude can be accounted for in an analysis relating the amplitudes for isospin partner decays, e.g. A^{+-}for $B^{0} \rightarrow \pi^{+} \pi^{-}, A^{+0}$ for $B^{+} \rightarrow \pi^{+} \pi^{0}, A^{00}$ for $B^{0} \rightarrow \pi^{0} \pi^{0}$ decays and $\left(\bar{A}^{+-}, \bar{A}^{-0}, \bar{A}^{00}\right)$ for their charge conjugates. The isospin analysis relies on the fact that there is no penguin contribution to A^{+0} and \bar{A}^{-0}, because $\pi^{ \pm} \pi^{0}$ is a pure isospin- 2 state, and the ($\Delta I=\frac{1}{2}$) QCD-penguin amplitudes only contribute to the isospin-0 final state. One therefore obtains the following isospin triangle relations [25]

$$
\begin{equation*}
A^{+0}=\frac{1}{\sqrt{2}} A^{+-}+A^{00} \quad \text { and } \quad \bar{A}^{-0}=\frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00} \tag{76.8}
\end{equation*}
$$

from which it is possible to determine $\Delta \alpha$, as shown in Fig. 76.1.
Since the determination of $\Delta \alpha$ and thus also α requires construction of amplitude-level relations, it is not appropriate to simply average results of α from different experiments. Instead, measurements of each of the observable quantities needed to determine α are input into a combination. For the $B \rightarrow \pi \pi$ system, the inputs are the branching fractions of $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{+} \rightarrow \pi^{+} \pi^{0}$ and $B^{0} \rightarrow \pi^{0} \pi^{0}$ decays, the lifetimes of the B^{+}and B^{0} mesons (which relate the branching fractions to amplitude-level quantities), and the $S_{\pi^{+} \pi^{-}}, C_{\pi^{+} \pi^{-}}$and $C_{\pi^{0} \pi^{0}}$ observables. Potential sources of correlation must be taken into account, but these are predominantly systematic in origin and thus have a small effect on the combination, since the measurements are statistically limited. An exception is that the LHCb measurements of $\left(S_{\pi^{+} \pi^{-}}, C_{\pi^{+} \pi^{-}}\right)$[26] have a significant statistical correlation due to the fact that the time variable of Eq. (76.3) is the difference between production and decay, and hence is in the range $[0, \infty]$. This correlation is largely absent for measurements from BaBar [27] and Belle [28], where the difference between the signal and tagging B meson decay times is measured, and hence $t \in[-\infty, \infty]$. The combination itself can be performed with different statistical approaches; the procedure described in detail in Ref. [29], based on a frequentist treatment, is used here. The knowledge of $C_{\pi^{0} \pi^{0}}[27,30]$ is currently the limiting factor in the precision on α from the $B \rightarrow \pi \pi$ system, and is likely to remain so for some time due to the difficulty to reconstruct this final state.

In general, the isospin triangle construction gives a four-fold ambiguity on $2 \Delta \alpha$ (each triangle can face either up or down), leading to an eight-fold ambiguity on α in the range $\left[0^{\circ}, 180^{\circ}\right]$.

This is reduced if either or both of the triangles are flat, or if the two triangles have sides of identical length. The ambiguities can also be reduced if measurement of the $S_{\pi^{0} \pi^{0}}$ (or equivalent) observable is available, since this can be combined with the corresponding $\Delta \alpha$ parameter from the right-hand corner of the triangle in Fig. 76.1 to provide an additional constraint. None of these possibilities are realised in the $B \rightarrow \pi \pi$ system; in particular a decay-time-dependent analysis of $B^{0} \rightarrow \pi^{0} \pi^{0}$ is extremely challenging experimentally due to the absence of any charged particle originating from the B decay position. Nonetheless, solutions consistent with $\alpha=0$ can be rejected on physical grounds [24].

The isospin analysis can also be performed with the $B \rightarrow \rho \rho$ system, which contains two vector particles in the final state and so does not have a fixed $C P$ eigenvalue. In principle the analysis can be performed separately for each $\rho \rho$ polarisation state, but in practise it is found that the longitudinal polarisation fraction, f_{L}, is close to unity, and hence the final state is approximately $C P$-even. Compared to $B^{0} \rightarrow \pi \pi$, the $\rho \rho$ modes benefit experimentally from a higher branching fraction and smaller penguin contributions, so that the isospin triangles are flatter, reducing the ambiguities. (The value of $\Delta \alpha$ in the $B \rightarrow \rho \rho$ system, obtained from the isospin analysis, has a single solution in $[0, \pi]$ at $(3 \pm 5)^{\circ}$, while for $B \rightarrow \pi \pi$ there are two solutions at 13° and 27° with $\Delta \alpha \in[7,33]^{\circ}$ at 68.3% confidence level (CL). The isospin analysis with either final state has an ambiguity under $\Delta \alpha \leftrightarrow-\Delta \alpha$.) For the BaBar [31] and Belle [32] experiments, the high branching fraction and smaller penguin contribution compensate for the increased difficulty to reconstruct the $\rho \rho$ final state relative to $\pi \pi$. Moreover, in constrast to $S_{\pi^{0} \pi^{0}}$, measurement of $S_{\rho^{0} \rho^{0}}$ is possible due to the four charged pion final state (following $\rho^{0} \rightarrow \pi^{+} \pi^{-}$ decay), as has been demonstrated by BaBar [33].

In the $B \rightarrow \rho \pi$ system there are more amplitudes to consider, so that the isospin relation corresponds to a pentagon rather than a triangle and Eq. (76.8) is modified to become

$$
\begin{align*}
& \sqrt{2}\left(A^{+0}+A^{0+}\right)=A^{+-}+A^{-+}+2 A^{00} \quad \text { and } \\
& \sqrt{2}\left(\bar{A}^{-0}+\bar{A}^{0-}\right)=\bar{A}^{+-}+\bar{A}^{-+}+2 \bar{A}^{00} \tag{76.9}
\end{align*}
$$

As in Eq. (76.8), the left-hand sides of these expressions correspond to a pure isospin-2 final state, and therefore the ratio of the right-hand sides gives a pure phase term that, accounting for the $B^{0}-\bar{B}^{0}$ mixing phase that also contributes to the measured quantities, is 2α. The relative amplitudes for B^{0} and \bar{B}^{0} decays to $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}$and $\rho^{0} \pi^{0}$ can all be determined from a decay-time-dependent analysis of the $\pi^{+} \pi^{-} \pi^{0}$ Dalitz plot, so that study of this channel alone allows determination of α [34]. This analysis in principle leads to a single solution for α in $\left[0^{\circ}, 180^{\circ}\right]$, but the precision of current measurements [35-37] is limited.

The isospin analysis used to determine α is believed to be valid to high precision, and theoretical uncertainties in the procedure are usually neglected. Nonetheless, it should be noted that the analysis assumes the absence of electroweak penguin amplitudes, which can contribute to $\Delta I=\frac{3}{2}$ transitions with a different weak phase from that of the tree amplitudes [38,39]. Moreover, isospinbreaking effects such as $\left(\pi^{0}, \eta, \eta^{\prime}\right)$ mixing would impact on the relations of Eq. (76.8). A further complication in the $B \rightarrow \rho \rho$ system is the effect of the non-zero ρ meson width [40]. Estimates of the size of these effects on the determined value of α are typically at the 1° level or less [29]. By contrast, methods to determine α using $\mathrm{SU}(3)$ or other flavour symmetries are generally considered to have larger theoretical uncertainties and are not included here.

The world average obtained for the angle α from isospin analysis of $B \rightarrow \pi \pi, \rho \pi$ and $\rho \rho$ decays is [4]

$$
\begin{equation*}
\alpha=\left(84.9_{-4.5}^{+5.1}\right)^{\circ} \tag{76.10}
\end{equation*}
$$

where the quoted uncertainty is at the $68.3 \% \mathrm{CL}$ and does not include effects due to isospin-breaking. This world average, together with results split by decay mode, is shown in Fig. 76.2. The combination has a total of 51 experimental inputs from which 24 parameters are determined, and an overall χ^{2} of 16.4 , which corresponds to a p-value of 94%. Thus, there is excellent overall consistency between the inputs, despite the tension apparent in

Figure 76.2: World average of α, as well as contributions from individual modes, in terms of $1-\mathrm{CL}$.

Fig. 76.2 between the results from $B^{0} \rightarrow(\rho \pi)^{0}$ and the others. The combination gives a single best-fit for α in $\left[0^{\circ}, 180^{\circ}\right.$], but an ambiguous solution exists at $\alpha \Leftrightarrow \alpha+180^{\circ}$. A secondary minimum close to zero is disfavoured [29].

76.4γ

The angle γ is the weak phase between Cabibbo-favoured $b \rightarrow c$ and suppressed $b \rightarrow u$ quark transitions and can be determined by exploiting interference between them. Explicitly, the ratio of suppressed to favoured amplitudes is parametrised by

$$
\begin{equation*}
r_{B} e^{i\left(\delta_{B} \pm \gamma\right)}=\frac{A_{\mathrm{sup}}}{A_{\mathrm{fav}}} \tag{76.11}
\end{equation*}
$$

where r_{B} is the ratio of amplitude magnitudes, δ_{B} the strong phase difference and the + or - sign depends on whether the transition involves a \bar{b} or b quark, respectively. Measurement of γ in this way has negligible theoretical uncertainty in the Standard Model [41], and therefore this approach provides a benchmark against which determinations from other methods, typically involving loop diagrams, can be compared.

Interference between these amplitudes is realised in $B^{+} \rightarrow$ $D K^{+}$decays, where D represents an admixture of D^{0} and \bar{D}^{0} mesons. The simplest case is that of D decays to $C P$-eigenstates (GLW method [42,43]), either $C P$-even such as $K^{+} K^{-}(C P+$) or $C P$-odd such as $K_{\mathrm{S}}^{0} \pi^{0}(C P-)$. The normalised decay rate and $C P$ asymmetry are given by

$$
\begin{align*}
R_{C P \pm} & =\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)} \\
& =1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}\right) \cos (\gamma), \tag{76.12a}\\
A_{C P \pm} & =\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)} \\
& =\frac{ \pm 2 r_{B} \sin \left(\delta_{B}\right) \sin (\gamma)}{1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}\right) \cos (\gamma)} . \tag{76.12b}
\end{align*}
$$

These relations assume the absence of direct $C P$ violation in the charm system; experimentally allowed deviations from this assumption are too small to cause a significant bias on $\gamma[7,44]$. It is convenient to determine the $R_{C P \pm}$ quantities through a double ratio, normalising to $B^{+} \rightarrow D \pi^{+}$decays involving the same final states, since this cancels potential sources of systematic uncertainty due to the branching fractions of the D decays that are used; small possible effects of $C P$ violation in $B^{+} \rightarrow D \pi^{+}$ decays are a source of systematic uncertainty in this procedure. The GLW method can be extended to include final states that are almost $C P$-eigenstates [45], as is the case in $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $D \rightarrow K^{+} K^{-} \pi^{0}$ decays, via inclusion of a factor encoding the fraction of $C P$-even (or $C P$-odd) content, $F_{ \pm}$, which dilutes the sensitivity to γ by reducing the size of the interference terms (the terms linear with r_{B}) in Eq. (76.12).

For other D decays, the ratio of amplitudes for the D^{0} and \bar{D}^{0} decays to the final state of interest has to be accounted for in the formalism. The ADS method $[46,47]$ uses D decays to final states such as $K^{\mp} \pi^{ \pm}$, which involve interference between Cabibbo-favoured (CF) and doubly-Cabibbo-suppressed (DCS) transitions. The observables in this case are

$$
\begin{align*}
A_{\mathrm{ADS}} & =\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)} \\
& =\frac{2 r_{B} r_{D} \sin \left(\delta_{B}+\delta_{D}\right) \sin (\gamma)}{r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos (\gamma)}, \tag{76.13a}\\
R_{\mathrm{ADS}} & =\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{+}\right)} \\
& =r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos (\gamma), \tag{76.13b}
\end{align*}
$$

where r_{D} and δ_{D} are the amplitude magnitude ratio and strong phase difference between the CF and DCS D decay. An alternative pair of observables, $\left(R_{-}, R_{+}\right)$, is also sometimes used, where $R_{-}\left(R_{+}\right)$is the ratio of decay rates between the suppressed and favoured transitions for $B^{-}\left(B^{+}\right)$decays. The R_{-}and R_{+}observables are statistically independent, while A_{ADS} and R_{ADS} are not (in particular, the uncertainty on A_{ADS} depends on the central value of R_{ADS}). However, the pair (R_{-}, R_{+}) has more correlated sources of systematic uncertainty compared to ($A_{\mathrm{ADS}}, R_{\mathrm{ADS}}$). The observables of Eq. (76.13) are therefore usually preferred once a significant signal is established. The ADS method can also be extended to include decays to multibody final states, such as $D \rightarrow K^{ \pm} \pi^{\mp} \pi^{0}$ and $D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$, by addition of a coherence factor [48] which appears in the interference terms of Eq. (76.13) and accounts for dilution of the sensitivity due to variation of the decay amplitude across the phase space of the final state. A similar method can be used for singly Cabibbo-suppressed D decays to non- $C P$ eigenstates such as $K^{*} K$ [49].
For D decays to multibody self-conjugate final states (BPGGSZ $\operatorname{method}[50,51]$), such as $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$, one can write the partial decay rate as a function of the position in the phase space in terms of the "Cartesian parameters" $x_{ \pm}+i y_{ \pm}=r_{B} e^{i\left(\delta_{B} \pm \gamma\right)}$:

$$
\begin{align*}
d \Gamma\left(B^{ \pm} \rightarrow\right. & {\left.\left[K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\right]_{D} K^{ \pm}\right)=A_{(\mp, \pm)}^{2}+r_{B}^{2} A_{(\pm, \mp)}^{2} } \tag{76.14}\\
& +2 A_{(\pm, \mp)} A_{(\mp, \pm)}\left[x_{ \pm} c_{D(\pm, \mp)}+y_{ \pm} s_{D(\pm, \mp)}\right]
\end{align*}
$$

where the notation $(+,-)$ is shorthand for the dependence on the Dalitz position - the squared invariant masses of $K_{\mathrm{S}}^{0} \pi^{+}$and $K_{\mathrm{S}}^{0} \pi^{-}$ combinations, respectively. The quantities $A_{(+,-)}$and $A_{(-,+)}$ represent the magnitudes of the D^{0} and \bar{D}^{0} decay amplitudes at the Dalitz point $(+,-)$ and are interchangable with their $C P$ conjugate amplitudes because $C P$ conservation is assumed in the D decay (i.e. $\left.A_{(-,+)}=\bar{A}_{(+,-)}\right)$. The quantities $c_{D(\pm, \mp)}$ and $s_{D(\pm, \mp)}$ are the cosine and sine of the strong phase difference, $\delta_{D(+,-)}=\arg \left(\bar{A}_{(+,-)}\right)-\arg \left(A_{(+,-)}\right)$, between the \bar{D}^{0} and D^{0} amplitudes. These quantities can be determined from an amplitude model, although this leads to a hard-to-quantify systematic uncertainty associated to the composition of the model. An alternative, "model-independent", approach involves dividing the phase space into appropriate bins. In this case, the analysis benefits from external input on the values of c_{D} and s_{D} integrated over each bin. Measurements of these external parameters have been performed for the $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decay by the CLEO-c collaboration $[52,53]$ and will be further improved upon by BES-III. The use of common input values for these parameters in modelindependent determinations of γ with the BPGGSZ method by different experiments is a source of correlation between experiments that is currently negligible but will become more significant as the available B meson data samples increase in size.

The discussion above refers to $B^{+} \rightarrow D K^{+}$decays, but analogous measurements can be made also for additional channels such as $B^{+} \rightarrow D^{*} K^{+}$(with $D^{*} \rightarrow D \pi^{0}, D \gamma$) and $B^{+} \rightarrow D K^{*+}$ (with $\left.K^{*+} \rightarrow K_{\mathrm{S}}^{0} \pi^{+}, K^{+} \pi^{0}\right)$. In the limit that these can be treated purely as two-body decays, the expressions for $B^{+} \rightarrow D K^{+}$are modified only by ensuring the r_{B} and δ_{B} parameters are specific to each B decay. Moreover, for $B^{+} \rightarrow D^{*} K^{+}$decays an
effective shift of the strong phase by π between $D^{*} \rightarrow D \pi^{0}$ and $D \gamma$ decays [54] has to be taken into account. In case the finite width of the decaying resonance is non-negligible, as is the case for the $K^{*}(892)$ state, the sensitivity is diluted by relevant coherence factors, κ_{B}. For the $B^{0} \rightarrow D K^{* 0}$ decay, full amplitude analysis of the $B^{0} \rightarrow D K^{+} \pi^{-}$Dalitz plot provides additional sensitivity compared to the quasi-two-body approach $[55,56]$.

It is also possible to measure γ using decay-time-dependent analysis of the B_{s}^{0} meson [57]. The weak phase arising in the interference between direct decay of $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$and decay via mixing is $\left(\gamma-2 \beta_{s}\right)$, where β_{s} is the angle associated with $B_{s}^{0} \rightarrow J / \psi \phi$ decays in a similar way to the relation between β and $B^{0} \rightarrow J / \psi K_{\mathrm{S}}^{0}$ decays described in Sec. 76.2. Sufficient information can be obtained from the tagged, decay-time-dependent rates of $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$decays that this weak phase can be determined, up to an ambiguity, together with the strong phase difference between, and the ratio of the magnitudes of, the suppressed and favoured amplitudes. Since β_{s} is known to good precision [8], measurements of the decay-time-dependent $C P$-asymmetry observables in $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$decays can be used to infer constraints on γ. Alternatively, if effects of penguin pollution in $B_{s}^{0} \rightarrow J / \psi \phi$ decays $[17,18]$ are a concern, as they will become in the future, results from the $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$mode can be combined with an independent precise measurement of γ to provide a penguin-free determination of β_{s}

The average for γ requires a non-trivial combination due the complicated relations between the observables and the physics parameters of interest, such as in Eqs. (76.12), (76.13) and (76.14). Moreover, hadronic parameters such as r_{B} and δ_{B} defined in Eq. (76.11) are common to all different D decay modes (but differ for each B decay mode). Thus, it is not correct to simply average results for γ obtained by different experiments or in different channels. Instead, measurements of rate asymmetries, rate ratios and the Cartesian parameters are taken as inputs to the combination, from which results are obtained not only for γ but also for the hadronic parameters. The precision to which γ can be measured with a particular B decay is approximately inversely proportional to the value of r_{B}. Thus, results from channels with smaller yields but larger values of r_{B}, such as $B^{0} \rightarrow D K^{* 0}$ and $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\left(r_{B} \approx 0.3-0.4\right)$, can have a significant impact on the world average and are included in the combination. By contrast the $B^{+} \rightarrow D \pi^{+}$mode, for which large samples are available but $r_{B} \approx 0.005$, has little impact and is also more sensitive to potential systematic biases; hence it is not included. The sensitivity of the world average at present is dominated by results from $B^{+} \rightarrow D K^{+}$, where $r_{B} \approx 0.1$, in particular results with the GLW [58], ADS [59] and BPGGSZ [60-62] methods.

Figure 76.3: World average of $\gamma \equiv \phi_{3}$, as well as contributions from individual modes, in terms of $1-\mathrm{CL}$.

The world average obtained for the angle γ, obtained by combining results from $B^{+} \rightarrow D K^{+}, D^{*} K^{+}, D K^{*+}, D K^{+} \pi^{+} \pi^{-}$, $B^{0} \rightarrow D K^{+} \pi^{-}$and $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$decays, is [4]

$$
\begin{equation*}
\gamma=\left(72.1_{-4.5}^{+4.1}\right)^{\circ} \tag{76.15}
\end{equation*}
$$

where the quoted uncertainty is at the $68.3 \% \mathrm{CL}$.

Figure 76.4: Constraints from the measurements of the angles of the CKM unitarity triangle in the $(\bar{\rho}, \bar{\eta})$ plane.

Effects related to charm and kaon mixing and $C P$ violation are generally negligible at the current level of precision, in particular for modes with $r_{B} \gtrsim 0.1$. An exception is that a dependence of the selection efficiency on the charm decay time can induce a dependence of the observables on charm mixing parameters [63]. Such effects can be important at hadron collider experiments such as LHCb , but can be corrected for. Interactions of neutral kaons with detector material can also cause a bias in determination of γ from modes with low values of r_{B} [64], such as the BPGGSZ method applied to $B^{+} \rightarrow D \pi^{+}$, but are negligible in modes with larger r_{B} values.

Effects from correlated uncertainties between amplitude models and strong phase differences in charm decays are negligible and are not explicitly accounted for in the combination, nor are effects related to charm and kaon mixing and $C P$ violation. This world average, together with results split by decay mode, is shown in Fig. 76.3. The combination has a total of 136 experimental inputs from which 29 parameters are determined, an an overall χ^{2} of 123.4 , which corresponds to a p-value of 13% indicating acceptable agreement between the inputs. The combination gives a single solution for γ in $\left[0^{\circ}, 180^{\circ}\right]$, but an ambiguous solution exists at $\gamma \Leftrightarrow \gamma+180^{\circ}$.

76.5 Summary

Experimental progress has resulted in all three angles of the CKM unitarity triangle being measured with good accuracy, with β known to subdegree precision and both α and γ known to about 5°. The constraints from these three measurements in the $(\bar{\rho}, \bar{\eta})$ plane are shown in Fig. 76.4; further discussion and comparison with constraints from independent measurements can be found in Ref. [6]. The determinations of all three angles remain statistically limited, but it will be a challenge for experiments to ensure that this remains the case as the precision improves. Consequently, the correct treatment of sources of correlation between the measurements that go into the world average combinations is becoming increasingly important.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[4] Y. Amhis et al. (HFLAV), Eur. Phys. J. C77, 895 (2017), [arXiv:1612.07233].
[5] See the review on "Semileptonic b-Hadron Decays, Determination of $V_{c b}, V_{u b}$ " in this Review.
[6] See the review on "Cabibbo-Kobayashi-Maskawa Mixing Matrix," in this Review.
[7] See the review on " $C P$ Violation in the Quark Sector," in this Review.
[8] See the review on " $B^{0}-\bar{B}^{0}$ Mixing" in this Review.
[9] A. Carter and A. Sanda, Phys. Rev. D23, 1567 (1981).
[10] I. Bigi and A. Sanda, Nucl. Phys. B193, 85 (1981).
[11] O. Long et al., Phys. Rev. D68, 034010 (2003), [hepex/0303030].
[12] B. Aubert et al. (BaBar), Phys. Rev. D79, 072009 (2009), [arXiv:0902.1708].
[13] I. Adachi et al., Phys. Rev. Lett. 108, 171802 (2012), [arXiv:1201.4643].
[14] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 031601 (2015), [arXiv:1503.07089].
[15] H.-n. Li and S. Mishima, JHEP 03, 009 (2007), [hepph/0610120].
[16] M. Jung, Phys. Rev. D86, 053008 (2012), [arXiv:1206.2050].
[17] K. De Bruyn and R. Fleischer, JHEP 1503, 145 (2015), [arXiv:1412.6834].
[18] P. Frings, U. Nierste and M. Wiebusch, Phys. Rev. Lett. 115, 6, 061802 (2015), [arXiv:1503.00859].
[19] M. Ciuchini, M. Pierini and L. Silvestrini, Phys. Rev. Lett. 95, 221804 (2005), [hep-ph/0507290].
[20] S. Faller et al., Phys. Rev. D79, 014030 (2009), [arXiv:0809.0842].
[21] Z. Ligeti and D. Robinson, Phys. Rev. Lett. 115, 251801 (2015), [arXiv:1507.06671].
[22] I. Adachi et al. (BaBar, Belle), Phys. Rev. Lett. 121, 261801 (2018), [arXiv:1804.06152].
[23] I. Adachi et al. (BaBar, Belle), Phys. Rev. D98, 112012 (2018), [arXiv:1804.06153].
[24] M. Antonelli et al., Phys. Rept. 494, 197 (2010), [arXiv:0907.5386].
[25] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[26] R. Aaij et al. (LHCb), Phys. Rev. D98, 032004 (2018), [arXiv:1805.06759].
[27] J. P. Lees et al. (BaBar), Phys. Rev. D87, 052009 (2013), [arXiv:1206.3525].
[28] I. Adachi et al. (Belle), Phys. Rev. D88, 092003 (2013), [arXiv:1302.0551].
[29] J. Charles et al., Eur. Phys. J. C77, 574 (2017), [arXiv:1705.02981].
[30] T. Julius et al. (Belle), Phys. Rev. D96, 032007 (2017), [arXiv:1705.02083].
[31] B. Aubert et al. (BaBar), Phys. Rev. D76, 052007 (2007), [arXiv:0705.2157].
[32] P. Vanhoefer et al. (Belle), Phys. Rev. D93, 032010 (2016), [Addendum ibid: D94 099903 (2016)], [arXiv:1510.01245].
[33] B. Aubert et al. (BaBar), Phys. Rev. D78, 071104 (2008), [arXiv:0807.4977].
[34] A. E. Snyder and H. R. Quinn, Phys. Rev. D48, 2139 (1993).
[35] J. P. Lees et al. (BaBar), Phys. Rev. D88, 012003 (2013), [arXiv:1304.3503].
[36] A. Kusaka et al. (Belle), Phys. Rev. Lett. 98, 221602 (2007), [hep-ex/0701015].
[37] A. Kusaka et al. (Belle), Phys. Rev. D77, 072001 (2008), [arXiv:0710.4974].
[38] M. Gronau and J. Zupan, Phys. Rev. D71, 074017 (2005), [hep-ph/0502139].
[39] S. Gardner, Phys. Rev. D72, 034015 (2005), [hepph/0505071].
[40] A. Falk et al., Phys. Rev. D69, 011502 (2004), [hepph/0310242].
[41] J. Brod and J. Zupan, JHEP 01, 051 (2014), [arXiv:1308.5663].
[42] M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
[43] M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
[44] See the review on " $D^{0}-\bar{D}^{0}$ Mixing" in this Review.
[45] M. Nayak et al., Phys. Lett. B740, 1 (2015), [arXiv:1410.3964].
[46] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997), [hep-ph/9612433].
[47] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D63, 036005 (2001), [hep-ph/0008090].
[48] D. Atwood and A. Soni, Phys. Rev. D68, 033003 (2003), [hep-ph/0304085].
[49] Y. Grossman, Z. Ligeti and A. Soffer, Phys. Rev. D67, 071301 (2003), [hep-ph/0210433].
[50] A. Giri et al., Phys. Rev. D68, 054018 (2003), [hepph/0303187].
[51] A. Bondar, Proceedings of BINP special analysis meeting on Dalitz analysis, $24-26$ Sep. 2002, unpublished.
[52] R. Briere et al. (CLEO), Phys. Rev. D80, 032002 (2009), [arXiv:0903.1681].
[53] J. Libby et al. (CLEO), Phys. Rev. D82, 112006 (2010), [arXiv:1010.2817].
[54] A. Bondar and T. Gershon, Phys. Rev. D70, 091503 (2004), [hep-ph/0409281].
[55] T. Gershon, Phys. Rev. D79, 051301 (2009), [arXiv:0810.2706].
[56] T. Gershon and M. Williams, Phys. Rev. D80, 092002 (2009), [arXiv:0909.1495].
[57] R. Aleksan, I. Dunietz and B. Kayser, Z. Phys. C54, 653 (1992).
[58] R. Aaij et al. (LHCb), Phys. Lett. B777, 16 (2018), [arXiv:1708.06370].
[59] R. Aaij et al. (LHCb), Phys. Lett. B760, 117 (2016), [arXiv:1603.08993].
[60] P. del Amo Sanchez et al. (BaBar), Phys. Rev. Lett. 105, 121801 (2010), [arXiv:1005.1096].
[61] A. Poluektov et al. (Belle), Phys. Rev. D81, 112002 (2010), [arXiv:1003.3360].
[62] R. Aaij et al. (LHCb), JHEP 08, 176 (2018), [Erratum ibid: 10, 107 (2018)], [arXiv:1806.01202].
[63] M. Rama, Phys. Rev. D89, 014021 (2014), [arXiv:1307.4384].
[64] M. Bjørn and S. Malde, JHEP 07, 106 (2019), [arXiv:1904.01129].

77. Spectroscopy of Mesons Containing Two Heavy Quarks

Revised March 2020 by S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), J. J. Hernández-Rey (IFIC, Valencia), R.E. Mitchell (Indiana U.), S. Navas (Dp.de Fisica. U. de Granada) and C. Patrignani (Bologna U.).

A golden age for heavy quarkonium physics dawned at the turn of this century, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The subsequent broad spectrum of breakthroughs, surprises, and continuing puzzles had not been anticipated. Since that time CLEO-c, BESIII and the B-factories, recently joined by ATLAS, CMS and LHCb, have continued to make groundbreaking observations. For an extensive presentation of the status of heavy quarkonium physics, the reader is referred to several reviews [1-6]. This note focuses on experimental developments in heavy quarkonium spectroscopy with very few theoretical comments. Possible theoretical interpretations of the states not predicted by the quark model are presented in the minireview on non $q \bar{q}$ states. Note that in this review we follow the new naming scheme for hadrons (see the review "Naming scheme for hadrons" in the current edition).

This minireview covers the newly discovered states, where "newly" refers to the period since 2002. In earlier versions of this write-up the particles were sorted according to an assumed conventional or unconventional nature with respect to the quark model. However, since this classification is not always unambiguous, we here follow Ref. [8] and sort the states into three groups, namely states below ($c f$. Table 77.1), near ($c f$. Table 77.2) and above ($c f$. Table 77.3) the lowest open-flavor thresholds.
Table 77.1 lists properties of newly observed heavy quarkonium states located below the lowest open-flavor thresholds. Those are expected to be (at least prominently) conventional quarkonia. The $h_{c}(1 P)$ is the ${ }^{1} P_{1}$ state of charmonium, singlet partner of the long-known $\chi_{c J}$ triplet ${ }^{3} P_{J}$. The $\eta_{c}(2 S)$ is the first excited state of the pseudoscalar ground state $\eta_{c}(1 S)$, lying just below the mass of its vector counterpart, $\psi(2 S)$.

Although $\eta_{c}(2 S)$ measurements began to converge towards a mass and a width some time ago, refinements are still in progress. In particular, Belle [9] has revisited its analysis of $B \rightarrow K \eta_{c}(2 S)$, $\eta_{c}(2 S) \rightarrow K \bar{K} \pi$ decays with more data and methods that account for interference between the above decay chain, an equivalent one with the $\eta_{c}(1 S)$ instead, and one with no intermediate resonance. The net effect of this interference is far from trivial; it shifts the apparent mass by $\sim+10 \mathrm{MeV}$ and inflates the apparent width by a factor of six. The updated $\eta_{c}(2 S)$ mass and width are in better accordance with other measurements than the previous treatment [10], which did not include interference. Complementing this measurement in B-decay, BaBar [11] updated their previous [12] $\eta_{c}(2 S)$ mass and width measurements in two-photon production, where interference effects, judging from studies of $\eta_{c}(1 S)$, appear to be small. In combination, precision on the $\eta_{c}(2 S)$ mass has improved dramatically. The currently most accurate individual mass measurement is from LHCb using $B^{+} \rightarrow K^{+} \bar{p} p$ [13].

Belle reported an observation of the $\psi_{2}(1 D)$ decaying to $\gamma \chi_{c 1}$ with $J^{P C}$ presumed to be $2^{--}[14]$. This state is listed in Table 77.1 as $\psi_{2}(3823)$. Its existence was confirmed with high significance by BESIII [15]. While the negative C-parity is indeed established by its observed decay channel, the assignment of $J=2$ was done by matching to the closest quark model state. This assignment therefore requires experimental confirmation.

The $1^{1} D_{2}$ state, or the $\eta_{c 2}(1 D)$, with a mass expected near 3820 MeV , has not been observed yet. Recently Belle performed its search in $B \rightarrow \eta_{c 2}(1 D) K(\pi)$ decays in the mass range 37953845 MeV and found no signal [16]. Thus, the $\eta_{c 2}(1 D)$ remains the only unobserved conventional charmonium state that does not have open-charm decays.

A new $c \bar{b}$ state was discovered by the ATLAS Collaboration [17]. Its properties are consistent with expectations for the first excited state of the $B_{c}^{ \pm}$meson, the $B_{c}^{ \pm}(2 S)$. The real picture appears to be more complicated. The ATLAS state was observed at $6842 \pm$ 6 MeV . Five years later, the CMS collaboration investigated the $B_{c}^{+} \pi^{+} \pi^{-}$invariant mass spectrum and observed two close signals consistent with the $B_{c}^{*+}(2 S)$ and $B_{c}^{+}(2 S)$ states [18]. The two
peaks are well resolved (a significance of 6.5 standard deviations), with a measured mass difference of $\Delta M=29.1 \pm 1.5$ (stat) \pm 0.7 (syst) MeV . The mass of the right peak, $B_{c}^{+}(2 S)$, is measured to be 6871.0 ± 1.2 (stat) ± 0.8 (syst) $\pm 0.8\left(B_{c}^{+}\right) \mathrm{MeV}$, where the last term is the uncertainty in the world-average B_{c}^{+}mass. Since the low-energy photon emitted in the $B_{c}^{*+} \rightarrow B_{c}^{+}+\gamma$ radiative decay is not reconstructed, the observed $B_{c}^{*+}(2 S)$ peak has a mass lower than the true value, which remains unknown. Therefore the $B_{c}^{*+}(2 S)$ does not yet appear in the listings. LHCb confirmed the CMS results and measured masses with higher precision [19]. Their signal corresponding to the $B_{c}^{*+}(2 S)$ is observed at $6841.2 \pm$ 0.6 (stat) $\pm 0.1($ syst $) \pm 0.8\left(B_{c}^{+}\right) \mathrm{MeV}$ with a significance of 6.3 standard deviations. Also here the low energy photon was not observed. The data also show a hint (2.2σ) for a second structure consistent with the $B_{c}^{+}(2 S)$ with a mass 31.0 ± 1.4 (stat) ± 0.0 (syst) higher.

Figure 77.1: From Belle [20], the mass recoiling against $\pi^{+} \pi^{-}$ pairs, $M_{\text {miss }}$, in $e^{+} e^{-}$collision data taken near the peak of the $\Upsilon(10860)$ (points with error bars). The smooth combinatorial and $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$background contributions have been subtracted. The fit to the various labeled signal contributions is overlaid (curve). Adapted from [20] with kind permission, copyright (2011) The American Physical Society.

Figure 77.2: From ATLAS [21] pp collision data (points with error bars) taken at $\sqrt{s}=7 \mathrm{TeV}$, the effective mass of $\chi_{b J}(1 P, 2 P, 3 P) \rightarrow \gamma \Upsilon(1 S, 2 S)$ candidates in which $\Upsilon(1 S, 2 S) \rightarrow$ $\mu^{+} \mu^{-}$and the photon is reconstructed as an $e^{+} e^{-}$conversion in the tracking system. Fits (smooth curves) show significant signals for each triplet (J-merged) on top of a smooth background. From [21] with kind permission, copyright (2012) The American Physical Society.

The ground state of bottomonium, $\eta_{b}(1 S)$, was confirmed with a second observation of more than 5σ significance at Belle. In addition, the same experiment collected strong evidence for the $\eta_{b}(2 S)$ [22], but it still needs experimental confirmation at the 5σ level.

Using dipion transitions from the $\Upsilon(10860)$ (Fig. 77.1), Belle simultaneously discovered the $h_{b}(1 P)$, the bottomonium counterpart of the $h_{c}(1 P)$, and the next excited state, the $h_{b}(2 P)$ [20].

Table 77.1: New states below the open-flavor thresholds in the $c \bar{c}$, $b \bar{c}$, and $b \bar{b}$ regions, ordered by mass. Masses m and widths Γ represent the PDG20 weighted averages with statistical and systematic uncertainties added in quadrature. In the Production column, the state is always denoted by X. Ellipses (...) indicate inclusively selected event topologies, i.e., additional particles not directly detected by experiment. A question mark (?) indicates an unmeasured value. The Discovery Year column gives the date of the first measurement cited. The Summary Table column indicates whether or not the state appears in the summary tables, usually requiring at least two independent experiments with significance of $>5 \sigma$. Refer to the particle listings for references and further information.

PDG Name	Former Name(s)	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$I^{G}\left(J^{P C}\right)$	Production	Decay	Discovery Year	Summary Table
$\overline{h_{c}(1 P)}$		3525.38 ± 0.11	0.7 ± 0.35	$0^{-}\left(1^{+-}\right)$	$\begin{gathered} \psi(2 S) \rightarrow \pi^{0} X \\ p \bar{p} \rightarrow X \\ e^{+} e^{-} \rightarrow \pi \pi X \end{gathered}$	$\gamma \eta_{c}(1 S)$ hadrons (see listings)	2004	YES
$\eta_{c}(2 S)$		3639.2 ± 1.2	$11.3{ }_{-2.9}^{+3.2}$	$0^{+}\left(0^{-+}\right)$	$\begin{gathered} B \rightarrow K X \\ e^{+} e^{-} \rightarrow e^{+} e^{-} X \\ e^{+} e^{-} \rightarrow J / \psi X \end{gathered}$	$\begin{gathered} K_{S}^{0} K^{-} \pi^{+} \\ \bar{p} p \\ \text { hadrons } \\ \text { (see listings) } \end{gathered}$	2002	YES
$\psi_{2}(3823)$	$X(3823)$	3822.2 ± 1.2	<16	$0^{-}\left(2^{--}\right)$	$\begin{gathered} B \rightarrow K X \\ e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} X \end{gathered}$	$\gamma \chi_{c 1}(1 P)$	2013	YES
B_{c}^{+}		6274.9 ± 0.8	?	$0\left(0^{-}\right)$	$\begin{aligned} & \bar{p} p \rightarrow X \ldots \\ & p p \rightarrow X \ldots \end{aligned}$	$\begin{gathered} \pi^{+} J / \psi \\ \text { (see listings) } \end{gathered}$	2007	YES
$B_{c}^{+}(2 S)$		6842 ± 6	?	$0\left(0^{-}\right)$	$p p \rightarrow X \ldots$	$B_{c}^{+} \pi^{+} \pi^{-}$	2014	NO
$\eta_{b}(1 S)$		9399.0 ± 1.3	10_{-4}^{+5}	$0^{+}\left(0^{-+}\right)$	$\begin{aligned} \Upsilon(2 S, 3 S) & \rightarrow \gamma X \\ h_{b}(1 P, 2 P) & \rightarrow \gamma X \end{aligned}$		2008	YES
$h_{b}(1 P)$		9899.3 ± 0.8	?	$0^{-}\left(1^{+-}\right)$	$\begin{aligned} \Upsilon(10860) & \rightarrow \pi^{+} \pi^{-} X \\ \Upsilon(3 S) & \rightarrow \pi^{0} X \end{aligned}$	$\gamma \eta_{b}(1 S)$	2011	YES
$\eta_{b}(2 S)$		$9999.0_{-4.0}^{+4.5}$	<24	$0^{+}\left(0^{-+}\right)$	$h_{b}(2 P) \rightarrow \gamma X$	hadrons	2012	NO
$\Upsilon_{2}(1 D)$		10163.7 ± 1.4	?	$0^{-}\left(2^{--}\right)$	$\begin{aligned} \Upsilon(3 S) & \rightarrow \gamma \gamma X \\ \Upsilon(10860) & \rightarrow \pi^{+} \pi^{-} X \end{aligned}$	$\begin{gathered} \gamma \gamma \Upsilon(1 S) \\ \pi^{+} \pi^{-} \Upsilon(1 S) \end{gathered}$	2004	YES
$h_{b}(2 P)$		10259.8 ± 1.2	?	$0^{-}\left(1^{+-}\right)$	$\Upsilon(10860) \rightarrow \pi^{+} \pi^{-} X$	$\gamma \eta_{b}(1 S, 2 S)$	2011	NO
$\chi^{\chi}{ }^{1}(3 P)$		10512.1 ± 2.3	?	$0^{+}\left(1^{++}\right)$	$p p \rightarrow X \ldots$	$\gamma \mu^{+} \mu^{-}$	2011	YES

Table 77.2: As in Table 77.1, but for new states near the first open-flavor thresholds in the $c \bar{c}$ and $b \bar{b}$ regions, ordered by mass. Updated from [7] with kind permission, copyright (2011), Springer, and [8] with kind permission from the authors.

Table 77.3: As in Table 77.1, but for new states above the first open-flavor thresholds in the $c \bar{c}$ and $b \bar{b}$ regions, ordered by mass.

$\begin{gathered} \hline \text { PDG } \\ \text { Name } \end{gathered}$	Former Name(s)	m (MeV)	$\Gamma(\mathrm{MeV})$	$I^{G}\left(J^{P C}\right)$	Production	Decay	Discovery Year	Summary Table
$\psi_{3}(3842)$		3842.7 ± 0.2	2.79 ± 0.6	$0^{+}\left(3^{--}\right)^{*}$	$p p \rightarrow X \ldots$	$D \overline{\bar{D}}$	2019	NO
$\chi_{c 0}(3860)$		3862_{-35}^{+48}	201_{-106}^{+177}	$0^{+}\left(0^{++}\right)$	$e^{+} e^{-} \rightarrow J / \psi X$	$D \bar{D}$	2017	NO
$X(3915)$	$\begin{gathered} \chi_{c 0}(3915), \\ Y(3940) \end{gathered}$	3918.4 ± 1.9	20 ± 5	$0^{+}\left(0 / 2^{++}\right)$	$\begin{gathered} B \rightarrow K X \\ e^{+} e^{-} \rightarrow e^{+} e^{-} X \end{gathered}$	$\omega J / \psi$	2004	YES
$\chi_{c 2}(3930)$	$\begin{gathered} \chi_{c 2}(2 P), \\ Z(3930) \end{gathered}$	3927.2 ± 2.6	24 ± 6	$0^{+}\left(2^{++}\right)$	$e^{+} e^{-} \rightarrow e^{+} e^{-} X$	$D \bar{D}$	2005	YES
$X(3940)$		$3942{ }_{-8}^{+9}$	37_{-17}^{+27}	?? ${ }^{\text {? }}$? ${ }^{\text {a }}$	$e^{+} e^{-} \rightarrow J / \psi X$	$D \bar{D}^{*}$	2007	NO
$X(4050)^{ \pm}$	$Z_{1}(4050)$	$4051-43$	82_{-28}^{+51}	$1^{-}\left(?^{?+}\right)$	$B \rightarrow K X$	$\pi^{+} \chi_{c 1}(1 P)$	2008	NO
$X(4055)^{ \pm}$	$Z_{c}(4055)$	4054 ± 3	45 ± 13	$1^{+}\left(?^{?-}\right)$	$e^{+} e^{-} \rightarrow \pi^{-} X$	$\pi^{+} \psi(2 S)$	2017	NO
$\chi_{c 1}(4140)$	$Y(4140)$	4146.8 ± 2.4	22_{-7}^{+8}	$0^{+}\left(1^{++}\right)$	$\begin{gathered} B^{+} \rightarrow K^{+} X \\ e^{+} e^{-} \rightarrow e^{+} e^{-} X \end{gathered}$	$\phi J / \psi$	2009	YES
$X(4160)$		4156_{-25}^{+29}	$139{ }_{-65}^{+113}$? ${ }^{(? ~ ? ~}{ }^{\text {? }}$)	$e^{+} e^{-} \rightarrow J / \psi X$	$D \bar{D}^{*}$	2007	NO
$Z_{c}(4200)$		$4196{ }_{-32}^{+35}$	370_{-149}^{+99}	$1^{+}\left(1^{+-}\right)$	$\bar{B}^{0} \rightarrow K^{-} X$	$J / \psi \pi^{+}$	2014	NO
$\psi(4230)$	$Y(4230)$	$4218{ }_{-4}^{+5}$	59_{-10}^{+12}	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\omega \chi_{c 0}(1 P)$	2015	YES
						$\pi^{+} \pi^{-} \psi(2 S)$		
						$\pi^{+} \pi^{-} h_{c}(1 P)$		
$R_{\text {c0 }}(4240)$	$Z_{c}(4240)$	4239_{-21}^{+48}	$220{ }_{-88}^{+118}$	$1^{+}\left(0^{--}\right)$	$\bar{B}^{0} \rightarrow K^{-} X$	$\pi^{+} \psi(2 S)$	2014	NO
$X(4250)^{ \pm}$	$Z_{2}(4250)$	$4248{ }_{-45}^{+185}$	177_{-72}^{+321}	$1^{-}\left(?^{?+}\right)$	$B \rightarrow K X$	$\pi^{+} \chi_{c 1}(1 P)$	2008	NO
$\psi(4260)$	$Y(4260)$	4230 ± 8	55 ± 19	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\begin{gathered} \pi \pi J / \psi \\ \gamma \chi_{c 0}(3872) \end{gathered}$	2005	NO
$\chi_{c 1}(4274)$	$Y(4274)$	$4274{ }_{-6}^{+8}$	49 ± 12	$0^{+}\left(1^{++}\right)$	$B^{+} \rightarrow K^{+} X$	$\phi J / \psi$	2011	NO
$X(4350)$		$4350.6_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	$0^{+}\left(?^{?+}\right)$	$e^{+} e^{-} \rightarrow e^{+} e^{-} X$	$\phi J / \psi$	2009	NO
$\psi(4360)$	$Y(4360)$	4368 ± 13	96 ± 7	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\pi^{+} \pi^{-} \psi(2 \mathrm{~S})$	2007	YES
$\psi(4390)$	$Y(4390)$	$4391.5_{-6.9}^{+6.4}$	$139.5{ }_{-20.6}^{+16.2}$	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\pi^{+} \pi^{-} h_{c}(1 P)$	2017	NO
$Z_{c}(4430)$		$4478{ }_{-18}^{+15}$	181 ± 31	$1^{+}\left(1^{+-}\right)$	$\bar{B}^{0} \rightarrow K^{-} X$	$\pi^{+} \psi(2 S)$	2007	YES
						$\pi^{+} J / \psi$		
$\chi_{c 0}(4500)$	$X(4500)$	$4506{ }_{-19}^{+16}$	92_{-29}^{+30}	$0^{+}\left(0^{++}\right)$	$B^{+} \rightarrow K^{+} X$	$\phi J / \psi$	2017	NO
$\psi(4660)$	$Y(4660),$	4643 ± 9	72 ± 11	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\begin{gathered} \pi^{+} \pi^{-} \psi(2 S) \\ \Lambda_{+}^{+} \Lambda_{-}^{-} \end{gathered}$	2007	YES
	$X(4630)$					$\begin{gathered} \Lambda_{c}^{+} \Lambda_{c}^{-} \\ D_{s}^{+} D_{s 1}(2536) \end{gathered}$		
$\chi_{c 0}(4700)$	$X(4700)$	$4704{ }_{-26}^{+17}$	120_{-45}^{+52}	$0^{+}\left(0^{++}\right)$	$B^{+} \rightarrow K^{+} X$	$\phi J / \psi$	2017	NO
$\Upsilon(10753)$		10752.7 ± 5.9	$35.5{ }_{-11.8}^{+18.0}$	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\pi \pi \Upsilon(1 S, 2 S, 3 S)$	2019	NO
$\Upsilon(10860)$	$\Upsilon(5 S)$	$10889.99_{-2.6}^{+3.2}$	51_{-7}^{+6}	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\begin{gathered} B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}(\pi) \\ \pi \pi \Upsilon(1 S, 2 S, 3 S) \end{gathered}$	1985	YES
$\Upsilon(11020)$	$\Upsilon(6 S)$	$10992.9_{-3.1}^{+10.0}$	49_{-15}^{+9}	$0^{-}\left(1^{--}\right)$	$e^{+} e^{-} \rightarrow X$	$\begin{gathered} \pi^{+} \pi^{-} h_{b}(1 P, 2 P) \\ \eta \Upsilon(1 S, 2 S) \end{gathered}$	1985	YES
						$\pi^{+} \pi^{-} \Upsilon(1 D)$		
						$B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}(\pi)$		
						$\pi \pi \Upsilon(1 S, 2 S, 3 S)$		
						$\pi^{+} \pi^{-} h_{b}(1 P, 2 P)$		

[^81]The same analysis also showed the $\Upsilon_{2}(1 D)$, the lowest-lying D wave triplet of the $b \bar{b}$ system. The search for the $h_{b}(1 P)$ was directly inspired by a CLEO result [23], which found a surprisingly copious production of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ as well as an indication that $\psi(4230) \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ occurs at a comparable rate with the signature mode, $\psi(4230) \rightarrow \pi^{+} \pi^{-} J / \psi$. The presence of $\Upsilon(n S)$ peaks in Fig. 77.1 at rates two orders of magnitude larger than expected, along with separate studies with exclusive decays $\Upsilon(n S) \rightarrow \mu^{+} \mu^{-}$, allow precise calibration of the $\pi^{+} \pi^{-}$ recoil mass spectrum and very accurate measurements of $h_{b}(1 P)$ and $h_{b}(2 P)$ masses. Both corresponding hyperfine splittings are consistent with zero within an uncertainty of about 1.5 MeV (lowered to $\pm 1.1 \mathrm{MeV}$ for $h_{b}(1 P)$ in Ref. [24]).

We no longer mention a hypothetical $Y_{b}(10888)$ state since a new analysis of the $\Upsilon(10860)$ energy range does not show evidence for an additional state with a mass different from the mass of the $\Upsilon(10860)$ [25]. After the mass of the $\eta_{b}(1 S)$ was shifted upwards by about 10 MeV based on the new Belle measurements [22] [26], all of the bottomonium states mentioned above fit into their respective spectroscopies roughly where expected. An independent experimental confirmation of the shifted masses came from the Belle observation of $\Upsilon(4 S) \rightarrow \eta h_{b}(1 P)$ [26].

The $\chi_{b J}(n P)$ states have been observed at the LHC by ATLAS [21] and confirmed by D 0 [27] for $n=1,2,3$, although in each case the three J states are not distinguished from one another. Events are sought which have both a photon and an $\Upsilon(1 S, 2 S) \rightarrow \mu^{+} \mu^{-}$ candidate which together form a mass in the χ_{b} region. All three J-merged peaks are observed with a significance in excess of 6σ for both unconverted and converted photons. The mass plot for converted photons, which provide better mass resolution, is shown in Fig. 77.2. This marks the first observation of the $\chi_{b J}(3 P)$ triplet, quite near the expected mass. A precise confirmation of this result came from LHCb [28].

A large number of states was discovered recently both near and above the lowest open-flavor thresholds. They are displayed in Table 77.2 and Table 77.3 , respectively. With the exception of the tensor state located at 3930 MeV , now called $\chi_{c 2}(3930)$, which has properties consistent with those expected for the $\chi_{c 2}(2 P)$, none of these states can easily be assigned a place in the quark model spectrum of charmonia or bottomonia. At the same time, these states have no universally accepted unconventional interpretation either. The $\chi_{c 1}(3872)$, also known as $X(3872)$, is widely studied and seen in many transitions - c.f. Table 77.2. Yet its interpretation demands additional experimental attention: after the quantum numbers were fixed at $\mathrm{LHCb}[29,30]$, the next experimental challenge will be a measurement of its lineshape.

LHCb observed in prompt proton-proton collisions a new narrow charmonium state, the $X(3842)$ resonance, in the decay modes $X(3842) \rightarrow D^{0} \bar{D}^{0}$ and $X(3842) \rightarrow D^{+} D^{-}[31]$. The mass and width of this state are measured to be (3842.71 $\pm 0.16 \pm 0.12)$ MeV and $(2.79 \pm 0.51 \pm 0.35) \mathrm{MeV}$, respectively. The observed mass and narrow width is consistent with the interpretation of the new state as the unobserved spin- $3 \psi_{3}\left(1^{3} D_{3}\right)$ charmonium state. Accordingly the state got the name $\psi_{3}(3842)$ in the listings with the remark that the quantum numbers were fixed from the quark model and need to be confirmed.

Another state (referred to here as the $X(3915)$), was discovered at 3915 MeV [32] and from a subsequent measurement its quantum numbers were determined to be $J^{P C}=0^{++}$[33]. This suggests it may be the $\chi_{c 0}(2 P)$ quark model state, but this interpretation is not generally accepted [34,35]. In addition, it was pointed out in Ref. [36] that if the assumption of helicity- 2 dominance is abandoned and instead one allows for a sizable helicity-0 component, a $J^{P C}=2^{++}$assignment is possible. This could imply that the state at 3930 MeV (referred to here as the $\chi_{c 2}(3930)$) is actually identical to the one at 3915 MeV -but to explain the large helicity0 component a sizable portion of non $q \bar{q}$ is necessary [36]. Because of this analysis, the name of the state was changed from $\chi_{c 0}(3915)$ back to $X(3915)$. An alternative candidate for the $\chi_{c 0}(2 P)$ (referred to here as the $\chi_{c 0}(3860)$) was reported in Ref. [37] with properties more consistent with expectation: its mass is close to the potential model expectations, it decays to $D \bar{D}$, and the preferred quantum numbers are $J^{P C}=0^{++}$(this hypothesis is
favored over the 2^{++}one with a 2.5σ significance).
The $\psi(4260)$, also known as $Y(4260)$, and the $\psi(4360)$, also known as $Y(4360)$, are vector states decaying to $\pi^{+} \pi^{-} J / \psi$ and $\pi^{+} \pi^{-} \psi(2 S)$, respectively, yet, unlike most conventional vector charmonia, they do not correspond to enhancements in the $e^{+} e^{-}$ hadronic cross section nor decay to $D \bar{D}$. Recently BESIII produced a high-accuracy data set for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ [38], demonstrating that the lineshape in this mass range is highly non-trivial. The latter observation was interpreted by the authors as the presence of two states. However, this lineshape is also consistent with other possible interpretations, such as one assuming a molecular structure for the $\psi(4260)$ [39]. The data of Ref. [38] also called for a significant downward shift of the mass of $\psi(4260)$ no longer justifying a distinction between $\psi(4260)$ and $\psi(4230)$. The latter was discovered earlier in various decay modes, amongst others $h_{c}(1 P) \pi \pi$ [40]. The original mass parameter for the $\psi(4260)$ was the result of a fit to the $\pi^{+} \pi^{-} J / \psi$ cross section using a symmetric Breit-Wigner line shape [41]. Therefore, starting from the 2020 Edition of the Review of Particle Physics, we list the measurement of Ref. [38] under the node $\psi(4230)$ and promoted the $\psi(4230)$ to the summary tables to replace the $\psi(4260)$. BESIII also observed the $\chi_{c 1}(3872)$, also known as $X(3872)$, in $e^{+} e^{-} \rightarrow \gamma \chi_{c 1}(3872)$ in the $\psi(4230)$ mass range [42], which could allow for additional insight into the structure of both the $\psi(4230)$ as well as the $\chi_{c 1}(3872)$ (c.f. the minireview on non $-q \bar{q}$ states). BESIII also performed a recent study of the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ and found evidence for a lower mass state, possibly the $\psi(4230)$, in addition to the more dominant $\psi(4360)$ [43].

Note that the data of Ref. [38] does not show any indication of the $Y(4008)$ reported by Belle - the data in this region can either be fit with a non-resonant background component or a much wider resonance at lower mass. Also see the analysis of the $Y(4008)$ region in Ref. [44], where a wide resonance is also extracted.

Another interesting question is whether a heavier $\pi^{+} \pi^{-} \psi(2 S)$ state, the $\psi(4660)$, discovered by Belle $[45,46]$ and confirmed by BaBar [47], is identical to the $\Lambda_{c}^{+} \Lambda_{c}^{-}$state observed by Belle with a nearby mass and width [48]. Most probably it is, with $\Lambda_{c}^{+} \Lambda_{c}^{-}$just being one more decay mode of the $\psi(4660)(c . f$. the minireview on non- $q \bar{q}$ states for more detail). Note that this is the interpretation adopted in the particle listings.

Belle reported the first observation of a vector charmoniumlike state decaying to $D_{s}^{+} D_{s 1}(2536)$ with a significance of 5.9σ [49]. Its measured mass and width are $\left(4625.9_{-6.0}^{+6.2} \pm 0.4\right) \mathrm{MeV}$ and $\left(49.8_{-11.5}^{+13.9} \pm 4.0\right) \mathrm{MeV}$, respectively, consistent with those of $\psi(4660)$. Therefore these new data appear now as additional decay mode of $\psi(4660)$ in the listings.

Based on a full amplitude analysis of $B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$ decays, Belle determined the spin-parity of the $Z_{c}(4430)$ to be $J^{P}=1^{+}[50]$. From their study of $B^{0} \rightarrow K^{+} \pi^{-} J / \psi$ decays, Belle also found evidence for the decay mode $Z_{c}(4430) \rightarrow \pi J / \psi$ [51], which has an order of magnitude lower branching fraction than the discovery mode $Z_{c}(4430) \rightarrow \pi \psi(2 S)$. In the same analysis, Belle also reported evidence for one more charged state, dubbed $Z_{c}(4200)$, decaying to $\pi J / \psi$. The existence of the $Z_{c}(4430)$ in $\pi \psi(2 S)$ as well as its quantum number assignments were confirmed at LHCb [52] with much higher statistics. Improved values for the mass and width of the $Z_{c}(4430)$ from LHCb are consistent with earlier measurements; the experiment even reports a resonant behavior of the $Z_{c}(4430)$ amplitude. The $Z_{c}(4430)$ was not confirmed (or excluded) by BaBar [53].

Belle also reported an observation of two charged states decaying to $\pi \chi_{c 1}$ in an analysis of $B^{0} \rightarrow K^{+} \pi^{-} \chi_{c 1}$ decays [54]. These were originally called the $Z_{1}(4050)^{ \pm}$and the $Z_{2}(4250)^{ \pm}$, but are referred to in Table 77.3 as $X(4050)^{ \pm}$and $X(4250)^{ \pm}$. These states were also not confirmed by BaBar [55]. Belle observes signals with 5.0σ significance for both the $Z_{1}(4050)^{ \pm}$and $Z_{2}(4250)^{ \pm}$, whereas BABAR reports 1.1σ and 2.0σ effects, respectively, setting upper limits on product branching fractions that are not inconsistent with Belle's measured rates. The situation remains unresolved.

In addition to the Z_{c} states discussed above, in 2013 a state named $Z_{c}(3900)$ was unearthed in the charmonium region at BESIII [56] and Belle [41]. The corresponding spectrum from BESIII

Figure 77.3: $J / \psi \pi$ invariant mass distributions from BES-III [56] $e^{+} e^{-}$collision data taken near the peak of the $Y(4260)$. Adapted from [56] with kind permission, copyright (2013) The American Physical Society.
is shown in Fig. 77.3. Ref. [57] confirmed this finding and also provided evidence for a neutral partner. A nearby signal was also seen in the $D \bar{D}^{*}$ channel [58] whose quantum numbers were fixed to 1^{+-}. BESIII reported its neutral partner in both $J / \psi \pi^{0}$ [59] and $D \bar{D}^{*}$ [60] decay modes. The masses extracted from these experiments in different decay modes have differences reaching up to 2σ. However, since the extraction of the mass and width parameters did not allow for an interference with the background and used Breit-Wigner line shapes, which is not justified near thresholds, there might be some additional systematic uncertainty in the mass values. Therefore in the RPP listings as well as Table 77.2, both structures appear under the name $Z_{c}(3900)$. BESIII also reported an observation of another charged state, the $X(4020)^{ \pm}$ (originally called $Z_{c}(4020)^{ \pm}$), in two decay modes $-h_{c} \pi^{ \pm}[61]$ and $\left(D^{*} \bar{D}^{*}\right)^{ \pm}[62]$. The neutral partners have also been observed by BESIII in the $h_{c} \pi^{0}$ [63] and $\left(D^{*} \bar{D}^{*}\right)^{0}$ [64] final states. The Z_{c} states show some remarkable similarities to the Z_{b} states (discussed below), e.g. they decay dominantly to $D^{(*)} \bar{D}^{*}$ channels. However, current analyses suggest that the mass of the $Z_{c}(3900)$ might be somewhat above the $D \bar{D}^{*}$ threshold. If confirmed, this feature would clearly challenge a possible $D \bar{D}^{*}$-molecular interpretation. Finally, 3.5σ evidence for one more charged charmoniumlike state at 4055 MeV decaying into $\psi(2 S) \pi^{ \pm}$was reported by Belle in their analysis of the process $e^{+} e^{-} \rightarrow \psi(2 S) \pi^{+} \pi^{-}$[46]. This state was confirmed by BESIII, although there appears to be complications in the Dalitz plot requiring further investigation [43].
The $Y(4140)$ observed in 2008 by CDF [65] [66] was confirmed at D0 and CMS [67] [68]. However, a second structure, the $Y(4274)$, could not be established unambiguously. Neither of the two states was seen in B decays at Belle [69], LHCb [70] and BaBar [71] or in $\gamma \gamma$ collisions at Belle [72]. The real breakthrough happened recently when LHCb performed a full amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$with $J / \psi \rightarrow \mu^{+} \mu^{-}, \phi \rightarrow K^{+} K^{-}$decays and showed that the data cannot be described in a model that contains only excited kaon states decaying into ϕK^{+}[73] [74]. They observe two 1^{++}states with masses close to those originally reported by CDF (the $\chi_{c 1}(4140)$ and $\chi_{c 1}(4274)$), but the width of the one at 4140 MeV is much larger. In addition, they find two significant 0^{++}structures at 4500 and 4700 MeV (the $\chi_{c 0}(4500)$ and $\left.\chi_{c 0}(4700)\right)$.

New results on the η_{b}, h_{b}, and Z_{b} mostly come from Belle [20, 22], [24-26], [75-81], all from analyses of $121.4 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$collision data collected near the peak of the $\Upsilon(10860)$ resonance as well as from an additional $25 \mathrm{fb}^{-1}$ of data collected during the scans of the c.m. energy range $10.63-11.05 \mathrm{GeV}$. The η_{b}, h_{b}, and Z_{b} appear in the decay chains: $\Upsilon(10860) \rightarrow \pi^{-} Z_{b}^{+}$, $Z_{b}^{+} \rightarrow \pi^{+}(b \bar{b})$, and, when the $b \bar{b}$ forms an $h_{b}(1 P)$, frequently decaying as $h_{b}(1 P) \rightarrow \gamma \eta_{b}$.

Belle soon noticed that, for events in the peaks of Fig. 77.1, there seemed to be two intermediate charged states. For exam-

Figure 77.4: From Belle [75] $e^{+} e^{-}$collision data taken near the peak of the $\Upsilon(10860)$ for events with a $\pi^{+} \pi^{-}$-missing mass consistent with an $\Upsilon(2 S) \rightarrow \mu^{+} \mu^{-}$, (a) the maximum of the two possible single $\pi^{ \pm}$-missing-mass-squared combinations vs. the $\pi^{+} \pi^{-}$-mass-squared; and (b) projection of the maximum of the two possible single $\pi^{ \pm}$-missing-mass combinations (points with error bars) overlaid with a fit (curve). Events to the left of the vertical line in (a) are excluded from amplitude analysis. The hatched histogram in (b) corresponds to the combinatorial background. The two horizontal stripes in (a) and two peaks in (b) correspond to the two Z_{b} states. Adapted from [75] with kind permission, copyright (2011) The American Physical Society.
ple, Fig. 77.4 shows a Dalitz plot for events restricted to the $\Upsilon(2 S)$ region of $\pi^{+} \pi^{-}$recoil mass, with $\Upsilon(2 S) \rightarrow \mu^{+} \mu^{-}$[75]. The two bands observed in the maximum of the two $M\left[\pi^{ \pm} \Upsilon(2 S)\right]^{2}$ values also appear for $\Upsilon(1 S), \Upsilon(3 S), h_{b}(1 P)$, and $h_{b}(2 P)$ samples. Belle fits all subsamples to resonant plus non-resonant amplitudes, allowing for interference (notably, between $\pi^{-} Z_{b}^{+}$and $\pi^{+} Z_{b}^{-}$), and finds consistent pairs of Z_{b} masses for all bottomonium transitions, and comparable strengths of the two states. A recent angular analysis assigned $J^{P}=1^{+}$for both Z_{b} states [76], which must also have negative G-parity. Transitions through Z_{b} to the $h_{b}(n P)$ saturate the observed $\pi^{+} \pi^{-} h_{b}(n P)$ cross sections. While the two masses of the Z_{b} states as extracted from Breit-Wigner fits for the various channels are just a few MeV above the $B^{*} \bar{B}$ and $B^{*} \overline{B^{*}}$ thresholds, respectively, more refined analyses find pole locations right below the corresponding thresholds either on the physical [82] or the unphysical sheet [83]. Regardless of their proximity to the corresponding thresholds, both states predominantly decay into these open-flavor channels [78] [84] with branching fractions that exceed 80% and 70%, respectively, at 90% CL. This feature provides strong evidence for their molecular nature.

Belle reported a new measurement of the $e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$ $(\mathrm{n}=1,2,3)$ cross sections at energies from 10.52 to $11.02 \mathrm{GeV}[85]$. They observed with a 5.2σ significance a new structure in the energy dependence of the cross sections. If described by a BreitWigner function, its mass and width are found to be $(10752.7 \pm$ $\left.5.9_{-1.1}^{+0.7}\right) \mathrm{MeV} /$ and $\left(35.5_{-11.3-3.3}^{+17.6+3.9}\right) \mathrm{MeV}$. The new structure could have a resonant origin and correspond to a signal for the not yet observed $\Upsilon(3 D)$ state provided $S-D$ mixing is enhanced, or an exotic state, e.g., a compact tetraquark or hadrobottomonium. It could also be a non-resonant effect due to some complicated rescattering.

References

[1] R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017), [arXiv:1610.04528].
[2] A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017), [arXiv:1706.00610].
[3] F.-K. Guo et al., Rev. Mod. Phys. 90, 1, 015004 (2018), [arXiv:1705.00141].
[4] S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, 1, 015003 (2018), [arXiv:1708.04012].
[5] Y.-R. Liu et al., Prog. Part. Nucl. Phys. 107, 237 (2019), [arXiv:1903.11976].
[6] N. Brambilla et al. (2019), [arXiv:1907.07583].
[7] N. Brambilla et al., Eur. Phys. J. C71, 1534 (2011), [arXiv:1010.5827].
[8] N. Brambilla et al., Eur. Phys. J. C74, 10, 2981 (2014), [arXiv:1404.3723].
[9] A. Vinokurova et al. (Belle), Phys. Lett. B706, 139 (2011), [arXiv:1105.0978].
[10] S. K. Choi et al. (Belle), Phys. Rev. Lett. 89, 102001 (2002), [Erratum: Phys. Rev. Lett.89,129901(2002)], [hepex/0206002].
[11] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D84, 012004 (2011), [arXiv:1103.3971].
[12] B. Aubert et al. (BaBar), Phys. Rev. Lett. 92, 142002 (2004), [hep-ex/0311038].
[13] R. Aaij et al. (LHCb), Phys. Lett. B769, 305 (2017), [arXiv:1607.06446].
[14] V. Bhardwaj et al. (Belle), Phys. Rev. Lett. 111, 3, 032001 (2013), [arXiv:1304.3975].
[15] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 1, 011803 (2015), [arXiv:1503.08203].
[16] K. Chilikin et al. (Belle) (2020), [arXiv:2003.08335].
[17] G. Aad et al. (ATLAS), Phys. Rev. Lett. 113, 21, 212004 (2014), [arXiv:1407.1032].
[18] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 13, 132001 (2019), [arXiv:1902.00571].
[19] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 23, 232001 (2019), [arXiv:1904.00081].
[20] I. Adachi et al. (Belle), Phys. Rev. Lett. 108, 032001 (2012), [arXiv:1103.3419].
[21] G. Aad et al. (ATLAS), Phys. Rev. Lett. 108, 152001 (2012), [arXiv:1112.5154].
[22] R. Mizuk et al. (Belle), Phys. Rev. Lett. 109, 232002 (2012), [arXiv:1205.6351].
[23] T. K. Pedlar et al. (CLEO), Phys. Rev. Lett. 107, 041803 (2011), [arXiv:1104.2025].
[24] I. Adachi (Belle), in "8th International Workshop On Heavy Quarkonium (QWG2011) Darmstadt, Germany, October 3-7, 2011," (2011), [arXiv:1110.3934].
[25] D. Santel et al. (Belle), Phys. Rev. D93, 1, 011101 (2016), [arXiv:1501.01137].
[26] U. Tamponi et al. (Belle), Phys. Rev. Lett. 115, 14, 142001 (2015), [arXiv:1506.08914].
[27] V. M. Abazov et al. (D0), Phys. Rev. D86, 031103 (2012), [arXiv:1203.6034].
[28] R. Aaij et al. (LHCb), JHEP 10, 088 (2014), [arXiv:1409.1408].
[29] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 222001 (2013), [arXiv:1302.6269].
[30] R. Aaij et al. (LHCb), Phys. Rev. D92, 1, 011102 (2015), [arXiv:1504.06339].
[31] R. Aaij et al. (LHCb), JHEP 07, 035 (2019), [arXiv:1903.12240].
[32] K. Abe et al. (Belle), Phys. Rev. Lett. 94, 182002 (2005), [hep-ex/0408126].
[33] J. P. Lees et al. (BaBar), Phys. Rev. D86, 072002 (2012), [arXiv:1207.2651].
[34] F.-K. Guo and U.-G. Meissner, Phys. Rev. D86, 091501 (2012), [arXiv:1208.1134].
[35] S. L. Olsen, Phys. Rev. D91, 5, 057501 (2015), [arXiv:1410.6534].
[36] Z.-Y. Zhou, Z. Xiao and H.-Q. Zhou, Phys. Rev. Lett. 115, 2, 022001 (2015), [arXiv:1501.00879].
[37] K. Chilikin et al. (Belle), Phys. Rev. D95, 112003 (2017), [arXiv:1704.01872].
[38] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 118, 9, 092001 (2017), [arXiv:1611.01317].
[39] M. Cleven et al., Phys. Rev. D90, 7, 074039 (2014), [arXiv:1310.2190].
[40] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 118, 9, 092002 (2017), [arXiv:1610.07044].
[41] Z. Q. Liu et al. (Belle), Phys. Rev. Lett. 110, 252002 (2013), [arXiv:1304.0121].
[42] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 9, 092001 (2014), [arXiv:1310.4101].
[43] M. Ablikim et al. (BESIII), Phys. Rev. D96, 3, 032004 (2017), [erratum: Phys. Rev.D99,no.1,019903(2019)], [arXiv:1703.08787].
[44] X. Y. Gao, C. P. Shen and C. Z. Yuan, Phys. Rev. D95, 9, 092007 (2017), [arXiv:1703.10351].
[45] X. L. Wang et al. (Belle), Phys. Rev. Lett. 99, 142002 (2007), [arXiv:0707.3699].
[46] X. L. Wang et al. (Belle), Phys. Rev. D91, 112007 (2015), [arXiv:1410.7641].
[47] J. P. Lees et al. (BaBar), Phys. Rev. D89, 11, 111103 (2014), [arXiv:1211.6271].
[48] G. Pakhlova et al. (Belle), Phys. Rev. Lett. 101, 172001 (2008), [arXiv:0807.4458].
[49] S. Jia et al. (Belle), Phys. Rev. D100, 11, 111103 (2019), [arXiv:1911.00671].
[50] K. Chilikin et al. (Belle), Phys. Rev. D88, 7, 074026 (2013), [arXiv:1306.4894].
[51] K. Chilikin et al. (Belle), Phys. Rev. D90, 11, 112009 (2014), [arXiv:1408.6457].
[52] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 22, 222002 (2014), [arXiv:1404.1903].
[53] B. Aubert et al. (BaBar), Phys. Rev. D79, 112001 (2009), [arXiv:0811.0564].
[54] R. Mizuk et al. (Belle), Phys. Rev. D78, 072004 (2008), [arXiv:0806.4098].
[55] J. P. Lees et al. (BaBar), Phys. Rev. D85, 052003 (2012), [arXiv:1111.5919].
[56] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 110, 252001 (2013), [arXiv:1303.5949].
[57] T. Xiao et al., Phys. Lett. B727, 366 (2013), [arXiv:1304.3036].
[58] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 2, 022001 (2014), [arXiv:1310.1163].
[59] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 11, 112003 (2015), [arXiv:1506.06018].
[60] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 22, 222002 (2015), [arXiv:1509.05620].
[61] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 111, 24, 242001 (2013), [arXiv:1309.1896].
[62] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 13, 132001 (2014), [arXiv:1308.2760].
[63] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 113, 21, 212002 (2014), [arXiv:1409.6577].
[64] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 18, 182002 (2015), [arXiv:1507.02404].
[65] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 242002 (2009), [arXiv:0903.2229].
[66] T. Aaltonen et al. (CDF), Mod. Phys. Lett. A32, 26, 1750139 (2017), [arXiv:1101.6058].
[67] V. M. Abazov et al. (D0), Phys. Rev. D89, 1, 012004 (2014), [arXiv:1309.6580].
[68] S. Chatrchyan et al. (CMS), Phys. Lett. B734, 261 (2014), [arXiv:1309.6920].
[69] J. Brodzicka, Conf. Proc. C0908171, 299 (2009), [,299(2009)].
[70] R. Aaij et al. (LHCb), Phys. Rev. D85, 091103 (2012), [arXiv:1202.5087].
[71] J. P. Lees et al. (BaBar), Phys. Rev. D91, 1, 012003 (2015), [arXiv:1407.7244].
[72] C. P. Shen et al. (Belle), Phys. Rev. Lett. 104, 112004 (2010), [arXiv:0912.2383].
[73] R. Aaij et al. (LHCb), Phys. Rev. D95, 1, 012002 (2017), [arXiv:1606.07898].
[74] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 2, 022003 (2017), [arXiv:1606.07895].
[75] A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001 (2012), [arXiv:1110.2251].
[76] A. Garmash et al. (Belle), Phys. Rev. D91, 7, 072003 (2015), [arXiv:1403.0992].
[77] P. Krokovny et al. (Belle), Phys. Rev. D88, 5, 052016 (2013), [arXiv:1308.2646].
[78] I. Adachi et al. (Belle) (2012), [arXiv:1209.6450].
[79] K. F. Chen et al. (Belle), Phys. Rev. Lett. 100, 112001 (2008), [arXiv:0710.2577].
[80] P. Krokovny (Belle Collab.), talk given at Les Rencontres de Physique de la Vallee d'Aoste, La Thuile, Aosta Valley, Italy, 2012.
[81] A. Abdesselam et al. (Belle), Phys. Rev. Lett. 117, 14, 142001 (2016), [arXiv:1508.06562].
[82] M. Cleven et al., Eur. Phys. J. A47, 120 (2011), [arXiv:1107.0254].
[83] F. K. Guo et al., Phys. Rev. D93, 7, 074031 (2016), [arXiv:1602.00940].
[84] A. Garmash et al. (Belle), Phys. Rev. Lett. 116, 21, 212001 (2016), [arXiv:1512.07419].
[85] R. Mizuk et al. (Belle), JHEP 10, 220 (2019), [arXiv:1905.05521].

78. Non- $q \bar{q}$ Mesons

Revised August 2019 by C. Amsler (Stefan Meyer Inst.) and C. Hanhart (Jülich).

The constituent quark model describes the observed meson spectrum as bound $q \bar{q}$ states grouped into $\mathrm{SU}(\mathrm{N})$ flavor multiplets (see the 'Quark Model' in this issue of the Review of Particle Physics). However, the self coupling of gluons in QCD suggests that additional mesons made of bound gluons (glueballs), or $q \bar{q}$ pairs with an excited gluon (hybrids), may exist. Furthermore, multiquark color singlet states such as $q q \overline{q q}$ (tetraquarks as compact diquark-antidiquark systems and 'molecular' bound states of two mesons) or $q q q \overline{q q q}$ (six-quark and 'baryonium' states of two baryons) have also been predicted.

In recent years experimental evidence for states beyond the quark model has accumulated in the heavy quark sector and elsewhere. We therefore split our review into three parts discussing separately light systems, heavy-light systems and heavy-heavy systems. For a more detailed discussion on exotic mesons we refer to [1] for the light meson sector and [2,3] for the heavy meson sector. Reviews with main focus on tetraquarks and molecular states are presented in [4] and [5], respectively. For an experimental status with focus on the heavy quark sector see [6].

78.1 Light systems

78.1.1 Glueball candidates

Among the signatures naively expected for glueballs are (i) isoscalar states that do not fit into $q \bar{q}$ nonets, (ii) enhanced production in gluon-rich channels such as central production and radiative $J / \psi(1 S)$ decay, (iii) decay branching fractions incompatible with $\mathrm{SU}(\mathrm{N})$ predictions for $q \bar{q}$ states, and (iv) reduced $\gamma \gamma$ couplings. However, mixing effects with isoscalar $q \bar{q}$ mesons [7-15] and decay form factors [16] can obscure these simple signatures.

Lattice calculations, QCD sum rules, flux tube, and constituent glue models agree that the lightest glueballs have quantum numbers $J^{P C}=0^{++}$and 2^{++}. Lattice calculations predict for the ground state $\left(0^{++}\right)$a mass around $1600-1700 \mathrm{MeV}[12,17-19]$ with an uncertainty of about 100 MeV , while the first excited state $\left(2^{++}\right)$has a mass of about 2300 MeV . Hence, the light glueballs lie in the same mass region as ordinary isoscalar $q \bar{q}$ states, in the mass range of the $1^{3} P_{0}\left(0^{++}\right), 2^{3} P_{2}\left(2^{++}\right), 3^{3} P_{2}\left(2^{++}\right)$, and $1^{3} F_{2}\left(2^{++}\right) q \bar{q}$ states. Heavier glueballs with quantum numbers $0^{-+}, 2^{-+}, 1^{+-}, \ldots$ are predicted above 2500 MeV (in holographic QCD the 0^{+-}being very broad [20] and the 1^{+-}at least as broad as its width [21]), and the lowest exotic ones (with non- $q \bar{q}$ quantum numbers such as 0^{+-}and 2^{+-}) are expected above 4000 MeV [19]. The lattice calculations were performed so far in the quenched approximation. Thus neither quark loops nor mixing with conventional mesons were included, although quenching effects seem to be small [22]. (For a recent comparison between quenched and unquenched lattice studies see [23].) The mixing of glueballs with nearby $q \bar{q}$ states of the same quantum numbers should lead to a supernumerary isoscalar state in the $\mathrm{SU}(3)$ classification of $q \bar{q}$ mesons. A lattice study in full QCD (performed at unphysical quark masses corresponding to a pion mass of 400 MeV) did not identify states with sizeable overlap with pure gluonic sources [24, 25].

In the following we focus on glueball candidates in the scalar sector. For the 2^{++}sector we refer to the section on non- $q \bar{q}$ mesons in the 2006 issue of the Review [26], and for the 0^{-+}glueball to the note on 'The Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region' in the Meson Listings of the Review.

Five isoscalar resonances are established: the very broad $f_{0}(500)$ (or σ), the $f_{0}(980)$, the broad $f_{0}(1370)$, and the comparatively narrow $f_{0}(1500)$ and $f_{0}(1710)$, see the note on 'Scalar Mesons below $2 \mathrm{GeV}^{\prime}$ in the Meson Listings, and also [27]. Their isospin $\frac{1}{2}$ and isovector partners are the $K_{0}^{*}(700)$ (or κ), the $K_{0}^{*}(1430)$, the $a_{0}(980)$ and the $a_{0}(1450)$. However, none of the proposed $q \bar{q}$ ordering schemes in scalar multiplets is entirely satisfactory. The $f_{0}(1370)$ and $f_{0}(1500)$ decay mostly into pions $(2 \pi$ and 4π) while the $f_{0}(1710)$ decays mainly into $K \bar{K}$ final states. Naively, this suggests an $n \bar{n}(=u \bar{u}+d \bar{d})$ structure for the $f_{0}(1370)$ and $f_{0}(1500)$, and $s \bar{s}$ for the $f_{0}(1710)$. The last state is not observed in $p \bar{p}$ annihilation [28], as expected from the OZI suppres-
sion for an $s \bar{s}$ state.
In $\gamma \gamma$ collisions leading to $K_{S} K_{S}$ [29] and $K^{+} K^{-}$[30] a spin-0 signal is observed at the $f_{0}(1710)$ mass (together with a dominant spin- 2 component), while the $f_{0}(1500)$ is not observed in $\gamma \gamma \rightarrow$ $K \bar{K}$ nor $\pi^{+} \pi^{-}$[31]. The $f_{0}(1500)$ is also not observed by Belle in $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$, although a shoulder is seen which could also be due to the $f_{0}(1370)$ [32]. The absence of a signal in the $\pi \pi$ channel in $\gamma \gamma$ collisions does not favor an $\bar{n} n$ interpretation for the $f_{0}(1500)$. The upper limit from $\pi^{+} \pi^{-}$excludes a large $n \bar{n}$ content, and hence points to a mainly $s \bar{s}$ content [33]. This is in contradiction with the small $K \bar{K}$ decay branching ratio of the $f_{0}(1500)$ [34-36]. This state could be mainly glue due its absence of $\gamma \gamma$ coupling, while the $f_{0}(1710)$ coupling to $\gamma \gamma$ would be compatible with an $s \bar{s}$ state. Indeed, Belle finds that in $\gamma \gamma \rightarrow K_{S} K_{S}$ collisions the 1500 MeV region is dominated by the $f_{2}^{\prime}(1525)$. The $f_{0}(1710)$ is also observed but its production \times decay rate is too large for a glueball [37]. However, the $\gamma \gamma$ couplings are sensitive to glue mixing with $q \bar{q}[38]$.

Since the $f_{0}(1370)$ does not couple strongly to $s \bar{s}$ [36], the $f_{0}(1370)$ or $f_{0}(1500)$ appear to be supernumerary. The narrow width of the $f_{0}(1500)$, and its enhanced production at low transverse momentum transfer in central collisions [39-41] also favor the $f_{0}(1500)$ to be non- $q \bar{q}$. In [7] the ground state scalar nonet is made of the $a_{0}(1450), f_{0}(1370), K_{0}^{*}(1430)$, and $f_{0}(1710)$. The isoscalars $f_{0}(1370)$ and $f_{0}(1710)$ contain a small fraction of glue, while the $f_{0}(1500)$ is mostly gluonic (see also [13]). The light scalars $f_{0}(500), f_{0}(980), a_{0}(980)$, and $K_{0}^{*}(700)$ are four-quark states or two-meson resonances, see [1] for a review and [42] which focuses on the $f_{0}(500)$. In the mixing scheme of Ref. [38], which uses central production data from WA102 and the hadronic J / ψ decay data from BES $[43,44]$, glue is shared between the $f_{0}(1370)$, $f_{0}(1500)$ and $f_{0}(1710)$. The $f_{0}(1370)$ is mainly $n \bar{n}$, the $f_{0}(1500)$ mainly glue and the $f_{0}(1710)$ dominantly $s \bar{s}$. This agrees with previous analyses [7, 13], but, as already pointed out, alternative schemes have been proposed [7-15], in particular with the $f_{0}(1710)$ as the glueball $[45,46]$ or the $f_{0}(1500)$ as a tetraquark [47].

For a scalar glueball the two-gluon coupling to $n \bar{n}$ appears to be suppressed by chiral symmetry [48] and therefore $K \bar{K}$ decay could be enhanced. However, $K \bar{K}$ is naturally enhanced also in the extended linear sigma model with a dilaton as glueball [45] and in the holographic model of [46]. It was argued that chiral symmetry constraints in a multichannel analysis imply that the $f_{0}(1710)$ is an unmixed scalar glueball [49], a view that is challenged in [50].

Different mixing options have been studied in [15]. In the preferred solution the ground state scalar nonet consists of the $f_{0}(980), a_{0}(980), K_{0}^{*}(1430), f_{0}(1500)$ and $f_{0}(1710)$. The $f_{0}(980)$ and $f_{0}(1500)$ mix similarly to the η and η^{\prime} in the pseudoscalar nonet, while the $f_{0}(1500)$ mixes with a glueball in the $500-$ 1000 MeV mass range, which is identified with the $f_{0}(500)(\sigma)$. A reanalysis of the CERN-Munich data shows no signal for the $f_{0}(1370)$ decaying into $\pi \pi$, in contrast to [51]. However, in this scheme the $K_{0}^{*}(700)(\kappa)$ and the $a_{0}(1450)$ are left out (see also our note on 'Scalar Mesons below 2 GeV ' in the Meson Listings). The $a_{0}(1450)$ has recently been confirmed by LHCb data in $D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}[52]$.

The $f_{0}(1370)$ is also not needed in the COMPASS $\pi^{-} p \rightarrow$ $\pi^{-} \pi^{-} \pi^{+} p$ data [53], which questions its mere existence. However, a recent analysis from CLEO-c on $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$decay requires a contribution from $f_{0}(500) f_{0}(1370) \rightarrow 4 \pi$ [54].

The Dalitz plots of $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$ have been studied by BaBar [55]. A broad 2π signal is observed around 1400 MeV which is attributed to the $f_{0}(1370)$, but could also be due to the $f_{0}(1500)$. LHCb has analyzed \bar{B}^{0} decay into $J / \psi \pi^{+} \pi^{-}$[56]. The fit to the $\pi \pi$ mass spectrum above $\sim 1.2 \mathrm{GeV}$ does not show any significant scalar component. However, the data analysis has been challenged [57]. For $\bar{B}_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$a strong scalar contribution from the $f_{0}(1370)$ is found [58]. Following the suggestion in Ref. [15], new data for the same reaction were analyzed by introducing instead the $f_{0}(500)$ and $f_{0}(1500)$ without any need for the $f_{0}(1370)$ [59]. This conclusion does not change when improved theoretical tools, as well as the data from [60] on $\bar{B}_{s}^{0} \rightarrow J / \psi K \bar{K}$,
are employed in the analysis [61].
In $B^{ \pm} \rightarrow K^{ \pm} K^{ \pm} K^{\mp}$ both BaBar [62] and Belle [63] observe a strong spin- 0 activity in $K \bar{K}$ around 1550 MeV . The decay $B \rightarrow$ $J / \psi X$ filters out the $d \bar{d}$ content of X while $B_{s}^{0} \rightarrow J / \psi X$ selects its $s \bar{s}$ component. These decays may therefore be ideal environments to determine the flavor contents of neutral mesons [64].

The contribution of $f_{0}(1500)$ production in (the supposedly gluon rich) radiative J / ψ decay is not well known. The $f_{0}(1500)$ is observed by BESII in $J / \psi \rightarrow \gamma \pi \pi$ [65] and by BESIII in $J / \psi \rightarrow \gamma \eta \eta$ [66] with a much smaller rate than for the $f_{0}(1710)$, which speaks against a glueball interpretation for the former. However, the $f_{0}(1500)$ mass found by BES is significantly lower than the expected value. The overlap with the $f_{0}(1370)$ and $f_{2}^{\prime}(1525)$, and the statistically limited data sample, prevent a proper K-matrix analysis to be performed. Hence more data are needed in radiative J / ψ decay and in $\gamma \gamma$ collisions to clarify the spectrum of scalar mesons.

78.1.2 Tetraquark candidates and molecular bound states

The existence of multiquark states was suggested a long time ago based on duality arguments [67], see also [68]. The $a_{0}(980)$ and $f_{0}(980)$ could be tetraquark states [69-71] or $K \bar{K}$ molecular states $[72-74]$ due to their large branching ratios into $K \bar{K}$, in spite of their masses being very close to threshold, leaving very little phase space. For $q \bar{q}$ states, the expected $\gamma \gamma$ widths [75, 76] are not significantly larger than for molecular states [75, 77], both predictions being consistent with data. Radiative decays of the $\phi(1020)$ into $a_{0}(980)$ and $f_{0}(980)$ were claimed to enable disentangling compact from molecular structures. Interpreting the data from DA $\phi \mathrm{NE}[78,79]$ and VEPP-2M $[80,81]$ along the lines of $[82,83]$ seems to favor these mesons to be tetraquark states. In Ref. [84] they are made of a four-quark core and a virtual $K \bar{K}$ cloud at the periphery. This is challenged in [85] which shows that ϕ radiative decay data are consistent with molecular structures of the light scalars. The $f_{0}(980)$ is strongly produced in D_{s}^{+}decay [86], which points to a large $s \bar{s}$ component, assuming Cabibbofavored $c \rightarrow s$ decay. However, the mainly $n \bar{n} f_{0}(1370)$ is also strongly produced in D_{s}^{+}decay, indicating that other graphs must contribute [87].

Ratios of decay rates of B and/or B_{s} mesons into $J / \psi f_{0}(980)$ or $J / \psi f_{0}(500)$ were proposed to extract the flavor mixing angle and to probe the tetraquark nature of those mesons within certain models [88, 89]. The phenomenological fits of LHCb , based on an isobar model, do neither allow for a contribution of the $f_{0}(980)$ in the $B \rightarrow J / \psi \pi \pi$ [56] nor for an $f_{0}(500)$ in $B_{s} \rightarrow J / \psi \pi \pi$ decays [59]. Hence the authors conclude that their data are incompatible at the eight standard deviation level with a model in which the $f_{0}(500)$ and $f_{0}(980)$ are tetraquarks. They also extract an upper limit for the mixing angle of 17° between the $f_{0}(980)$ and the $f_{0}(500)$ that would correspond to a substantial $\bar{s} s$ content in the $f_{0}(980)$ [59]. However, in a dispersive analysis [90] of the same data that allows for a model independent inclusion of the hadronic final state interactions, a substantial $f_{0}(980)$ contribution is also found in the B-decays, thus putting into question the conclusions in [59].
COMPASS reports a new 1^{++}isovector meson decaying into $f_{0}(980) \pi$, the $a_{1}(1420)$ [91, 92]. The resonance is observed in diffractive dissociation $\pi^{-} p \rightarrow \pi^{-}\left(\pi^{+} \pi^{-}\right) p$. Traditionally, the 1^{++}ground state nonet is believed to contain the $a_{1}(1260)$, $f_{1}(1285)$ and $f_{1}(1420)$ (see 'The Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region' in the Meson Listings). A molecular $K \bar{K} \pi$ structure has been proposed for the $f_{1}(1420)$ [93] in view of the proximity of the $K^{*} \bar{K}$ threshold. The new $a_{1}(1420)$ could also be a molecular state, the isovector partner of the $f_{1}(1420)$. However, according to [94], the $f_{1}(1420)$ may not exist, being a manifestation of the $f_{1}(1285)$ due to a triangle singularity. Ref. [95] also explains the $a_{1}(1420)$ as the signature of the $a_{1}(1260)$ distorted by a triangle singularity.

78.1.3 Baryonia

Bound states of a baryon and an antibaryon have been predicted in the past $[96,97]$, but have remained elusive. The $f_{2}(1565)$ which is only observed in $\bar{p} p$ annihilation $[98,99]$ is a good candidate for a $2^{++} \bar{p} p$ bound state. Enhancements close to the $\bar{p} p$ thresh-
old have been reported in $B^{+} \rightarrow K^{+} \bar{p} p, B^{0} \rightarrow K_{S}^{0} \bar{p} p[100,101]$, $\bar{B}^{0} \rightarrow D^{0} \bar{p} p$ [102], $e^{+} e^{-} \rightarrow \bar{p} p[103,104], \bar{p} p \rightarrow \pi^{+} \pi^{-}$and $\bar{p} p \rightarrow e^{+} e^{-}[105]$. The spectacular signal seen in $J / \psi \rightarrow \gamma \bar{p} p$ [106-108] could be due to a 0^{-+}baryonium [109]. Such a pole is not necessarily a compact $q q q \bar{q} \bar{q} \bar{q}$ state, but might be generated via non-perturbative nucleon-antinucleon final state interactions [110-113]. Also the structures visible in various data sets for $e^{+} e^{-} \rightarrow n \pi[114,115]$ near the $\bar{p} p$ threshold appear to be largely explained by the same nucleon-antinucleon final state interactions [116]. However, other explanations have also been proposed to explain e.g. the signals in $B \rightarrow \bar{p} p K$, such as the dynamics of the fragmentation mechanism [101].

The pronounced signal observed by Belle in $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \Lambda_{c}^{-}$ around $\sqrt{s}=4.63 \mathrm{GeV}$ [117] was argued to be a strong evidence in favor of an interpretation of $Y(4660)$ as charmed baryonium [118]. However, this picture was challenged in Refs. [119, 120].

78.1.4 Hybrid mesons

Hybrids may be viewed as $q \bar{q}$ mesons with a vibrating gluon flux tube. In contrast to glueballs, they can have isospin 0 or 1. The mass spectrum of hybrids with exotic (non- $q \bar{q}$) quantum numbers was predicted in [121], while [122] also deals with non-exotic quantum numbers. The ground-state hybrids with quantum numbers $\left(0^{-+}, 1^{-+}, 1^{--}\right.$, and $\left.2^{-+}\right)$are expected around 1.7 to 1.9 GeV . Lattice calculations predict that the hybrid with exotic quantum numbers 1^{-+}lies at a mass of $1.9 \pm 0.2 \mathrm{GeV}[123,124]$. Most hybrids are expected to be rather broad, but some can be as narrow as 100 MeV [125]. They prefer to decay into a pair of S - and P-wave mesons. The lattice study in [24,126], based on full QCD with pion masses around 400 MeV , finds that several of the highlying states observed in their spectrum show significant overlap with gluon rich source terms interpreted as hybrid states. For a recent experimental and theoretical review on hybrid mesons see [127].
A $J^{P C}=1^{-+}$exotic meson, the $\pi_{1}(1400)$, was reported in $\pi^{-} p \rightarrow \eta \pi^{-} p[128,129]$ and in $\pi^{-} p \rightarrow \eta \pi^{0} n$ [130]. It was observed as an interference between the angular momentum $L=1$ and $L=2 \eta \pi$ amplitudes, leading to a forward/backward asymmetry in the $\eta \pi$ angular distribution. This state had been reported earlier in $\pi^{-} p$ reactions [131], but ambiguous solutions in the partial wave analysis were pointed out $[132,133]$. A resonating 1^{-+}contribution to the $\eta \pi P$-wave is also required in the Dalitz plot analysis of $\bar{p} n$ annihilation into $\pi^{-} \pi^{0} \eta$ [134], and in $\bar{p} p$ annihilation into $\pi^{0} \pi^{0} \eta$ [135]. Mass and width are consistent with the results of [128].

Another 1^{-+}state, the $\pi_{1}(1600)$ decaying into $\rho \pi$, was reported by COMPASS with 190 GeV pions hitting a lead target [136]. It was observed earlier in $\pi^{-} p$ interactions in the decay modes $\eta^{\prime} \pi$ [137], $f_{1}(1285) \pi$ [138], and $\omega \pi \pi$ [139], $b_{1}(1235) \pi$, but not $\eta \pi$ [140]. A strong enhancement in the $1^{-+} \eta^{\prime} \pi$ wave, compared to $\eta \pi$, was reported at this mass in [141]. Ref. [142] suggested that a Deck-generated $\eta \pi$ background from final state rescattering in $\pi_{1}(1600)$ decay could mimic $\pi_{1}(1400)$. However, this mechanism is absent in $\bar{p} p$ annihilation. The $\eta \pi \pi$ data require $\pi_{1}(1400)$ and cannot accommodate a state at 1600 MeV [143]. A coupled channel analysis of the COMPASS data leads to a single pole at 1564 MeV [144].

The flux tube model and the lattice concur to predict a hybrid mass of about 1.9 GeV while the $\pi_{1}(1400)$ and $\pi_{1}(1600)$ are lighter. As isovectors, $\pi_{1}(1400)$ and $\pi_{1}(1600)$ cannot be glueballs. The coupling to $\eta \pi$ of the former points to a four-quark state [145], while the strong $\eta^{\prime} \pi$ coupling of the latter is favored for hybrid states $[146,147]$. The mass of $\pi_{1}(1600)$ is also not far below the lattice prediction.

Evidence for a $\pi_{1}(2015)$ has also been reported [138, 139]. Hybrid candidates with $J^{P C}=0^{-+}, 1^{--}$, and 2^{-+}have also been reported. The $\pi(1800)$ decays mostly to a pair of S - and P wave mesons [136, 148], in line with expectations for 0^{-+}hybrid mesons. This meson is also somewhat narrow if interpreted as the second radial excitation of the pion. The evidence for 1^{--} hybrids required in $e^{+} e^{-}$annihilation and in τ decays has been discussed in [149]. A candidate for the 2^{-+}hybrid, the $\eta_{2}(1870)$, was reported in $\gamma \gamma$ interactions [150], in $\bar{p} p$ annihilation [151], and in central production [152]. The near degeneracy of $\eta_{2}(1645)$ and
$\pi_{2}(1670)$ suggests ideal mixing in the $2^{-+} q \bar{q}$ nonet, and hence, the second isoscalar should be mainly $s \bar{s}$. However, η_{2} (1870) decays mainly to $a_{2}(1320) \pi$ and $f_{2}(1270) \pi$ [151], with a relative rate compatible with a hybrid state [122].

78.2 Heavy-light systems

Two very narrow states, $D_{s 0}^{*}(2317)^{ \pm}$and $D_{s 1}(2460)^{ \pm}$, were observed at B factories $[153,154]$. They lie far below the predicted masses for the two expected broad P-wave $c \bar{s}$ mesons. These states have hence been interpreted as four-quark states [155-158] or $D K\left(D K^{*}\right)$ molecules [159-163]. However, strong cusp effects, due to the nearby $D K\left(D K^{*}\right)$ thresholds, could shift their masses downwards and quench the observed widths, an effect similar to that claimed for the $a_{0}(980)$ and $f_{0}(980)$ mesons, which lie just below $K \bar{K}$ threshold. A hadronic width of typically 100 keV would be the unequivocal signature for a prominent molecular nature of $D_{s 0}^{*}(2317)^{ \pm}[161-163]$. More compact structures typically produce widths below $10 \mathrm{keV}[164,165]$. The currently measured upper bound for the width is 3.8 MeV .

It should be stressed that - akin to $q \bar{q}$ mesons - multiquark states also appear in multiplets. For example, recent studies [166-168] show that, if $D_{s 0}(2317)$ were of molecular nature, the lowest non-strange scalar D-state, the $D_{0}^{*}(2300)$, would also be molecular in nature, with a two-pole structure (the lower one at 2105 MeV and the upper one at 2451 MeV , on different physical sheets, however, see Ref. [166] for details) similar to the $\Lambda(1405)$, see 'Pole structure of the $\Lambda(1405)$ region' in the Review. In [167] this assignment is demonstrated to be consistent with recent data from LHCb on $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$[169]. Two poles in the nonstrange scalar sector are also generated in the tetraquark picture of Ref. [158], but in this work the real parts of the poles are located at 2308 MeV and 2666 MeV , which should be testable experimentally.

78.3 Heavy-heavy systems

Several unexpected states have been observed in both charmonium and bottomonium regions. With the discovery of the $X(3872)$ in $B^{ \pm} \rightarrow K^{ \pm} X\left(X \rightarrow J / \psi \pi^{+} \pi^{-}\right)$by Belle [170] in 2003, soon confirmed by BaBar [171], many searches for states beyond the standard quark model were initiated in the charm and in the bottom sectors. For an updated collection of the currently available experimental information on multiquark states we refer to 'Spectroscopy of mesons containing two heavy quarks' in the Review. Moreover, in the decay $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ the LHCb collaboration has recently reported the observation of two new baryons decaying into $J / \psi p$, which are candidates for heavy pentaquark states [172]. They are discussed in some depth in 'Pentaquarks' in the Review.

When restricting ourselves to confirmed states we are faced with several ones that do not seem to fit into the most simple quark models. This is clear for the six established charged states $\left(Z_{c}(3900)^{ \pm}, Z_{c}(4020)^{ \pm} 1, Z_{c}(4200)^{ \pm}\right.$and $Z_{c}(4430)^{ \pm}$in the charmonium sector, and $Z_{b}(10610)^{ \pm}$and $Z_{b}(10650)^{ \pm}$in the bottomonium sector). The neutral ones $\left(\chi_{c 1}(3872)\right.$ aka $X(3872), \psi(4260)$ aka $Y(4260), \psi(4360)$ aka $Y(4360), \psi(4660)$ aka $Y(4660))^{2}$ also challenge the quark models since their masses and decay properties are in conflict with expectations.

The quantum numbers of the $X(3872)$ have been determined by LHCb to be $J^{P C}=1^{++}$, first by assuming the angular momentum zero between the J / ψ and the dipion [173] and then by relaxing this constraint [174]. The $X(3872)$ can hardly be identified with the $2^{3} P_{1} \chi_{c 1}^{\prime}$ since the latter is predicted to lie about 100 MeV higher in mass [175]. Instead, the X (3940) reported by Belle in $e^{+} e^{-} \rightarrow J / \psi X$, decaying into $D^{*} \bar{D}$ but not into $D \bar{D}$ [176] , and also observed in $B \rightarrow K(X \rightarrow \omega J / \psi)$ [177] could be the $\chi_{c 1}^{\prime}$. The $2^{3} P_{2}$ tensor partner ($\chi_{c 2}^{\prime}$) was reported by Belle at 3931 MeV in $\gamma \gamma$ interactions [178].

[^82]The $X(3872)$ lies within 200 keV of the $D^{0} \bar{D}^{* 0}$ threshold and therefore the most natural explanation for this state is a $1^{++} D \bar{D}^{*}$ molecule [179], for which strong isospin breaking is predicted [179, 180], since the distance of the pole of the $X(3872)$ to the $D^{0} \bar{D}^{* 0}$ threshold is significantly smaller than to the $D^{+} D^{*-}$ threshold. Indeed, the comparable rates for $\omega J / \psi$ and $\rho^{0} J / \psi$ are consistent with an interpretation of $X(3872)$ as an isoscalar $D \bar{D}^{*}$ molecule when the different widths of the ρ and ω are taken into account [181]. A four-quark state $c q \bar{q} \bar{q}^{\prime}$ is also possible [157] but unlikely, since the charged partner of the $X(3872)$ has not been observed (e.g. not in $B^{-} \rightarrow \bar{K}^{0} X^{-}$nor in $B^{0} \rightarrow K^{+} X^{-}$, where $X^{-} \rightarrow$ $J / \psi \pi^{-} \pi^{0}$ [182]) - see [183] for a possible explanation of this non-observation within the tetraquark approach. The claim that $X(3872)$ must be a compact (tetraquark) state, since it is also produced at very high p_{T} in $\bar{p} p$ collisions [184], was challenged in [185], which stresses the importance of rescattering, see also [186, 187].

A broad structure, $Y(4260)$, decaying into $J / \psi \pi^{+} \pi^{-}$was reported by BaBar in initial state radiation $e^{+} e^{-} \rightarrow \gamma\left(e^{+} e^{-} \rightarrow\right.$ $Y(4260)$) [188]. A measurement with significantly improved statistics was recently reported by BESIII [189]. The BreitWigner fit of these data leads to a mass reduction of 40 MeV , but also requires a second state at 4320 MeV . However, the $D_{1} \bar{D}$ molecular model for the $Y(4260)$ [190] is capable to describe the same data with just one single pole [191].
There are no charmonium states expected in this mass region with quantum numbers 1^{--}from quark models using the Cornell type of interaction, although this might not be true for some screened versions thereof - for a recent discussion we refer to Ref. [192]. In addition, a charmonium at this mass should have a significant coupling to $\bar{D} D$, a decay channel that is not observed for the $Y(4260)$. This state could be a hybrid charmonium with a spin-1 $\bar{c} c[193,194]$ or a spin-0 $[195,196]$ core. However, provided that the observation of $Y(4260)$ decay into $h_{c}(1 P) \pi \pi$ by BESIII [197] is confirmed, the hybrid hypothesis would be under pressure, since the spin of the heavy quarks (coupled to zero in the $\left.h_{c}(1 P)\right)$ should be conserved in leading order in the expansion in $\left(\Lambda_{\mathrm{QCD}} / m_{c}\right)$. (The individual conservation of the heavy quark spin and the total angular momentum of the light quark cloud is a consequence of the heavy-quark spin symmetry, see 'Heavy-Quark and Soft-Collinear Effective Theory' in this issue of the Review.)

The same criticism applies to the hadrocharmonium interpretation of the $Y(4260)$, which describes this state as spin-1 quarkonium surrounded by a light quark cloud [198]. To circumvent the spin-symmetry argument Ref. [199] argues that $Y(4260)$ and $Y(4360)$ could be mixtures of two hadrocharmonia with spintriplet and spin-singlet heavy quark pairs. The same kind of mixing could also operate for a hybrid.

A dominant $D_{1} \bar{D}$ component in the $Y(4260)$ [200] explains naturally why $Z_{c}(3900)^{ \pm}$(interpreted by the authors as a $\bar{D} D^{*}$ bound state) is seen in $Y(4260) \rightarrow \pi^{\mp} Z_{c}(3900)^{ \pm}$. Furthermore, a copious production of $X(3872)$ in $Y(4260)$ radiative decays was predicted from the prominent $D_{1} \bar{D}$ component of the $Y(4260)$ [201], which was confirmed by BESIII [202]. The $Y(4360)$ as a $D_{1} \bar{D}^{*}$ bound state could be the spin partner of the $Y(4260)$ [203,204], but a detailed microscopic calculation is still lacking.

The tetraquark picture explains the observed Y states [205] and is also capable - when including a tailor-made spin-spin interaction [206] - to describe the $X(3872)$, both $Z_{c}(3900)^{ \pm, 0}$ and $Z_{c}(4020)^{ \pm}$and even the $Z(4430)^{ \pm}$confirmed by Belle [207] and LHCb [208]. The latter reference also determined the quantum numbers of this state to $J^{P}=1^{+}$. However, the model predicts many additional charged and neutral states which have not yet been discovered. A possible explanation can be found in [183].

Ref. [209] found a sizeable $\mathrm{SU}(3)$ flavor octet contribution when analysing the $\pi \pi$ final state from $Y(4260) \rightarrow J / \psi \pi^{+} \pi^{-}$, which is consistent with both a molecular and a tetraquark interpretation of $Y(4260)$, but at odds with a hybrid or a $\bar{c} c$ interpretation.

The charged states $Z_{c}(3900)^{ \pm}$, first observed by BESIII [210] and the $Z_{c}(4020)^{ \pm}[211]$ decay predominantly into $\bar{D} D^{*}$ and $\bar{D}^{*} D^{*}$, respectively, while $Z_{b}(10610)^{ \pm, 0}$ and $Z_{b}(10650)^{ \pm}[212$, 213] decay predominantly into $\bar{B} B^{*}$ and $\bar{B}^{*} B^{*}$ [214], respectively, although all of them were discovered in the decay mode heavy
quarkonium plus pion. This suggests that these states are close relatives and their interactions are connected via heavy quark flavor symmetry. A molecular interpretation for the bottomonium states was proposed shortly after the discovery of the $Z_{b}^{ \pm}$ states [215] and also shortly after that of the $Z_{c}(3900)^{ \pm}[200]$. However, some of their properties also appear to be consistent with tetraquark structures [216]. If the molecular picture were correct for the Z_{b} states, spin symmetry would lead to the existence of spin partner states [217-219], which are still to be found. In Ref. [220] it was shown that the actual pole locations of those partner states would be good probes of the role of the one-pion exchange in the molecular potential, which makes the experimental search for those states even more interesting.

The heaviest confirmed charged state in the charmonium sector is the $Z(4430)^{ \pm}$observed by Belle [207]. It is interpreted as hadrocharmonium [198], $\bar{D}_{1} D^{*}$ molecule [221] as well as tetraquark [206]. Alternatively, in $[222,223]$ the $Z(4430)^{ \pm}$is explained as a cross-channel effect enhanced by a triangle singularity from open charm states. These works were criticised in Ref. [224] where an alternative triangle consisting of a K^{*}, a π and the $Y(4260)$ is proposed to generate the $Z_{c}(4430)$. The Argand diagram shows an anticlockwise circle, in line with the experimental analysis [208], while the one of Ref. [223] shows a clockwise motion. By replacing the $Y(4260)$ by the $\psi(3770)$ and changing the K^{*} one can also interpret the $Z_{c}(4200)$ as a kinematic effect [224].

It should be stressed that the various scenarios, while describing the data, also make decisive predictions, e.g. yet unobserved quantum numbers [205,225]. The forthcoming data on heavy meson spectroscopy from various facilities should provide a much deeper understanding on how QCD forms matter out of quarks and gluons.

References

[1] C. Amsler and N. A. Tornqvist, Phys. Rept. 389, 61 (2004).
[2] N. Brambilla et al., Eur. Phys. J. C71, 1534 (2011), [arXiv:1010.5827].
[3] N. Brambilla et al. (2019), [arXiv:1907.07583].
[4] A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668, 1 (2017), [arXiv:1611.07920].
[5] F.-K. Guo et al., Rev. Mod. Phys. 90, 1, 015004 (2018), [arXiv:1705.00141].
[6] S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, 1, 015003 (2018), [arXiv:1708.04012].
[7] C. Amsler and F. E. Close, Phys. Rev. D53, 295 (1996), [hep-ph/9507326].
[8] N. A. Tornqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996), [hep-ph/9511210].
[9] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, Phys. Lett. B395, 123 (1997), [hep-ph/9611333].
[10] M. Boglione and M. R. Pennington, Phys. Rev. Lett. 79, 1998 (1997), [hep-ph/9703257].
[11] P. Minkowski and W. Ochs, Eur. Phys. J. C9, 283 (1999), [hep-ph/9811518].
[12] W.-J. Lee and D. Weingarten, Phys. Rev. D61, 014015 (2000), [hep-lat/9910008].
[13] F. E. Close and A. Kirk, Eur. Phys. J. C21, 531 (2001), [hep-ph/0103173].
[14] H.-Y. Cheng, C.-K. Chua and K.-F. Liu, Phys. Rev. D74, 094005 (2006), [hep-ph/0607206].
[15] W. Ochs, J. Phys. G40, 043001 (2013), [arXiv:1301.5183].
[16] T. Barnes et al., Phys. Rev. D55, 4157 (1997), [hepph/9609339].
[17] G. S. Bali et al. (UKQCD), Phys. Lett. B309, 378 (1993), [hep-lat/9304012].
[18] C. J. Morningstar and M. J. Peardon, Phys. Rev. D56, 4043 (1997), [hep-lat/9704011].
[19] Y. Chen et al., Phys. Rev. D73, 014516 (2006), [heplat/0510074].
[20] J. Leutgeb and A. Rebhan, Phys. Rev. D101, 1, 014006 (2020), [arXiv:1909.12352].
[21] F. Brünner, J. Leutgeb, A. Rebhan, Phys. Lett. B788, 431 (2019).
[22] C. M. Richards et al. (UKQCD), Phys. Rev. D82, 034501 (2010), [arXiv:1005.2473].
[23] E. Gregory et al., JHEP 10, 170 (2012), [arXiv:1208.1858].
[24] J. J. Dudek et al., Phys. Rev. D83, 111502 (2011), [arXiv:1102.4299].
[25] W. Sun et al., EPJ Web Conf. 175, 05016 (2018), [arXiv:1711.00711].
[26] W. M. Yao et al. (Particle Data Group), J. Phys. G33, 1 (2006).
[27] C. Amsler, Rev. Mod. Phys. 70, 1293 (1998), [hepex/9708025].
[28] C. Amsler et al. (Crystal Barrel), Eur. Phys. J. C23, 29 (2002).
[29] M. Acciarri et al. (L3), Phys. Lett. B501, 173 (2001), [hepex/0011037].
[30] K. Abe et al. (Belle), Eur. Phys. J. C32, 323 (2003), [hepex/0309077].
[31] R. Barate et al. (ALEPH), Phys. Lett. B472, 189 (2000), [hep-ex/9911022].
[32] S. Uehara et al. (Belle), Phys. Rev. D78, 052004 (2008), [arXiv:0805.3387].
[33] C. Amsler, Phys. Lett. B541, 22 (2002), [hep-ph/0206104].
[34] A. Abele et al. (Crystal Barrel), Phys. Lett. B385, 425 (1996).
[35] A. Abele et al., Phys. Rev. D57, 3860 (1998).
[36] D. Barberis et al. (WA102), Phys. Lett. B462, 462 (1999), [hep-ex/9907055].
[37] S. Uehara et al. (Belle), PTEP 2013, 12, 123C01 (2013), [arXiv:1307.7457].
[38] F. E. Close and Q. Zhao, Phys. Rev. D71, 094022 (2005), [hep-ph/0504043].
[39] F. E. Close and A. Kirk, Phys. Lett. B397, 333 (1997), [hep-ph/9701222].
[40] F. E. Close, Phys. Lett. B419, 387 (1998), [hepph/9710450].
[41] A. Kirk, Phys. Lett. B489, 29 (2000), [hep-ph/0008053].
[42] J. R. Pelaez, Phys. Rept. 658, 1 (2016), [arXiv:1510.00653].
[43] M. Ablikim et al. (BES), Phys. Lett. B603, 138 (2004), [hep-ex/0409007].
[44] M. Ablikim et al. (BES), Phys. Lett. B607, 243 (2005), [hep-ex/0411001].
[45] S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D90, 11, 114005 (2014), [arXiv:1408.4921].
[46] F. BrÃ(Enner and A. Rebhan, Phys. Rev. Lett. 115, 13, 131601 (2015), [arXiv:1504.05815].
[47] L. Zou it et al., Phys. Rev. D99,114024 (2019).
[48] M. Chanowitz, Phys. Rev. Lett. 95, 172001 (2005), [hepph/0506125].
[49] M. Albaladejo and J. A. Oller, Phys. Rev. Lett. 101, 252002 (2008), [arXiv:0801.4929].
[50] L. S. Geng and E. Oset, Phys. Rev. D79, 074009 (2009), [arXiv:0812.1199].
[51] D. V. Bugg, B. S. Zou and A. V. Sarantsev, Nucl. Phys. B471, 59 (1996).
[52] R. Aaij et al. (LHCb), Phys. Rev. D93, 5, 052018 (2016), [arXiv:1509.06628].
[53] C. Adolph et al. (COMPASS), Phys. Rev. D95, 3, 032004 (2017), [arXiv:1509.00992].
[54] P. d'Argent et al., JHEP 05, 143 (2017), [arXiv:1703.08505].
[55] B. Aubert et al. (BaBar), Phys. Rev. D79, 072006 (2009), [arXiv:0902.2051].
[56] R. Aaij et al. (LHCb), Phys. Rev. D90, 1, 012003 (2014), [arXiv:1404.5673].
[57] F. E. Close and A. Kirk, Phys. Rev. D91, 11, 114015 (2015), [arXiv:1503.06942].
[58] R. Aaij et al. (LHCb), Phys. Rev. D86, 052006 (2012), [arXiv:1204.5643].
[59] R. Aaij et al. (LHCb), Phys. Rev. D89, 9, 092006 (2014), [arXiv:1402.6248].
[60] R. Aaij et al. (LHCb), JHEP 08, 037 (2017), [arXiv:1704.08217].
[61] S. Ropertz, C. Hanhart and B. Kubis, Eur. Phys. J. C78, 12, 1000 (2018), [arXiv:1809.06867].
[62] B. Aubert et al. (BaBar), Phys. Rev. D74, 032003 (2006), [hep-ex/0605003].
[63] A. Garmash et al. (Belle), Phys. Rev. D71, 092003 (2005), [hep-ex/0412066].
[64] C.-D. Lu et al., Eur. Phys. J. A49, 58 (2013), [arXiv:1301.0225].
[65] M. Ablikim et al., Phys. Lett. B642, 441 (2006), [hepex/0603048].
[66] M. Ablikim et al. (BESIII), Phys. Rev. D87, 9, 092009 (2013), [Erratum: Phys. Rev.D87,no.11,119901(2013)], [arXiv:1301.0053].
[67] J. L. Rosner, Phys. Rev. Lett. 21, 950 (1968).
[68] G. C. Rossi and G. Veneziano, Nucl. Phys. B123, 507 (1977).
[69] R. L. Jaffe, Phys. Rev. D15, 281 (1977).
[70] M. G. Alford and R. L. Jaffe, Nucl. Phys. B578, 367 (2000), [hep-lat/0001023].
[71] G. 't Hooft et al., Phys. Lett. B662, 424 (2008), [arXiv:0801.2288].
[72] J. D. Weinstein and N. Isgur, Phys. Rev. D41, 2236 (1990).
[73] G. Janssen et al., Phys. Rev. D52, 2690 (1995), [arXiv:nuclth/9411021].
[74] M. P. Locher, V. E. Markushin and H. Q. Zheng, Eur. Phys. J. C4, 317 (1998), [hep-ph/9705230].
[75] J. A. Oller and E. Oset, AIP Conf. Proc. 432, 1, 413 (1998), [hep-ph/9710557].
[76] R. Delbourgo, D.-s. Liu and M. D. Scadron, Phys. Lett. B446, 332 (1999), [hep-ph/9811474].
[77] C. Hanhart et al., Phys. Rev. D75, 074015 (2007), [hepph/0701214].
[78] A. Aloisio et al. (KLOE), Phys. Lett. B536, 209 (2002), [hep-ex/0204012].
[79] A. Aloisio et al. (KLOE), Phys. Lett. B537, 21 (2002), [hepex/0204013].
[80] R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B462, 371 (1999), [hep-ex/9907005].
[81] M. N. Achasov et al., Phys. Lett. B479, 53 (2000), [hepex/0003031].
[82] F. E. Close, N. Isgur and S. Kumano, Nucl. Phys. B389, 513 (1993), [hep-ph/9301253].
[83] N. N. Achasov, V. V. Gubin and V. I. Shevchenko, Phys. Rev. D56, 203 (1997), [hep-ph/9605245].
[84] F. E. Close and N. A. Tornqvist, J. Phys. G28, R249 (2002), [hep-ph/0204205].
[85] Yu. S. Kalashnikova et al., Eur. Phys. J. A24, 437 (2005), [hep-ph/0412340].
[86] E. M. Aitala et al. (E791), Phys. Rev. Lett. 86, 765 (2001), [hep-ex/0007027].
[87] H.-Y. Cheng, Phys. Rev. D67, 054021 (2003), [hepph/0212361].
[88] R. Fleischer, R. Knegjens and G. Ricciardi, Eur. Phys. J. C71, 1832 (2011), [arXiv:1109.1112].
[89] S. Stone and L. Zhang, Phys. Rev. Lett. 111, 6, 062001 (2013), [arXiv:1305.6554].
[90] J. T. Daub, C. Hanhart and B. Kubis, JHEP 02, 009 (2016), [arXiv:1508.06841].
[91] C. Adolph et al. (COMPASS), Phys. Rev. Lett. 115, 8, 082001 (2015), [arXiv:1501.05732].
[92] M. Aghasyan et al. (COMPASS), Phys. Rev. D98, 092003 (2018).
[93] R. S. Longacre, Phys. Rev. D42, 874 (1990).
[94] V. R. Debastiani et al., Phys. Rev. D 95, 034015 (2017).
[95] M. Mikhasenko, B. Ketzer and A. Sarantsev, Phys. Rev. D91, 9, 094015 (2015), [arXiv:1501.07023].
[96] G. C. Rossi and G. Veneziano, Phys. Rep. 63, 153 (1980).
[97] L. Montanet, Phys. Rep. 63, 201 (1980).
[98] B. May et al. (ASTERIX), Z. Phys. C46, 203 (1990).
[99] A. Bertin et al. (OBELIX), Phys. Rev. D57, 55 (1998).
[100] K. Abe et al. (Belle), Phys. Rev. Lett. 88, 181803 (2002), [hep-ex/0202017].
[101] M. Z. Wang et al. (Belle), Phys. Lett. B617, 141 (2005), [hep-ex/0503047].
[102] K. Abe et al. (Belle), Phys. Rev. Lett. 89, 151802 (2002), [hep-ex/0205083].
[103] J. P. Lees et al. (BaBar), Phys. Rev. D87, 9, 092005 (2013), [arXiv:1302.0055].
[104] E. P. Solodov et al., EPJ Web Conf. 212, 07002 (2019).
[105] G. Bardin et al., Nucl. Phys. B411, 3 (1994).
[106] J. Z. Bai et al. (BES), Phys. Rev. Lett. 91, 022001 (2003), [hep-ex/0303006].
[107] J. P. Alexander et al. (CLEO), Phys. Rev. D82, 092002 (2010), [arXiv:1007.2886].
[108] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 108, 112003 (2012), [arXiv:1112.0942].
[109] G.-J. Ding and M.-L. Yan, Phys. Rev. C72, 015208 (2005), [hep-ph/0502127].
[110] B. Loiseau and S. Wycech, Phys. Rev. C72, 011001 (2005), [hep-ph/0501112].
[111] A. Sibirtsev et al., Phys. Rev. D71, 054010 (2005), [hepph/0411386].
[112] X.-W. Kang, J. Haidenbauer and U.-G. Meissner, JHEP 02, 113 (2014), [arXiv:1311.1658].
[113] X.-W. Kang, J. Haidenbauer and U.-G. Meissner, Phys. Rev. D91, 7, 074003 (2015), [arXiv:1502.00880].
[114] B. Aubert et al. (BaBar), Phys. Rev. D76, 092005 (2007), [Erratum: Phys. Rev.D77,119902(2008)], [arXiv:0708.2461].
[115] R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B723, 82 (2013), [arXiv:1302.0053].
[116] J. Haidenbauer, X. W. Kang and U. G. Meissner, Nucl. Phys. A929, 102 (2014), [arXiv:1405.1628].
[117] G. Pakhlova et al. (Belle), Phys. Rev. Lett. 101, 172001 (2008), [arXiv:0807.4458].
[118] G. Cotugno et al., Phys. Rev. Lett. 104, 132005 (2010), [arXiv:0911.2178].
[119] F.-K. Guo et al., Phys. Rev. D82, 094008 (2010), [arXiv:1005.2055].
[120] L.-Y. Dai, J. Haidenbauer and U. G. Meissner, Phys. Rev. D96, 11, 116001 (2017), [arXiv:1710.03142].
[121] N. Isgur, R. Kokoski and J. Paton, Phys. Rev. Lett. 54, 869 (1985), [AIP Conf. Proc.132,242(1985)].
[122] F. E. Close and P. R. Page, Nucl. Phys. B443, 233 (1995), [hep-ph/9411301].
[123] P. Lacock et al. (UKQCD), Phys. Lett. B401, 308 (1997), [hep-lat/9611011].
[124] C. W. Bernard et al. (MILC), Phys. Rev. D56, 7039 (1997), [hep-lat/9707008].
[125] P. R. Page, E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D59, 034016 (1999), [hep-ph/9808346].
[126] J. J. Dudek et al. (Hadron Spectrum), Phys. Rev. D88, 9, 094505 (2013), [arXiv:1309.2608].
[127] C. A. Meyer and E. S. Swanson, Prog. Part. Nucl. Phys. 82, 21 (2015), [arXiv:1502.07276].
[128] D. R. Thompson et al. (E852), Phys. Rev. Lett. 79, 1630 (1997), [hep-ex/9705011].
[129] S. U. Chung et al. (E852), Phys. Rev. D60, 092001 (1999), [hep-ex/9902003].
[130] G. S. Adams et al. (E862), Phys. Lett. B657, 27 (2007), [hep-ex/0612062].
[131] D. Alde et al. (IHEP-Brussels-Los Alamos-Annecy(LAPP)), Phys. Lett. B205, 397 (1988).
[132] Yu. D. Prokoshkin and S. A. Sadovsky, Phys. Atom. Nucl. 58, 606 (1995), [Yad. Fiz.58N4,662(1995)].
[133] Yu. D. Prokoshkin and S. A. Sadovsky, Phys. Atom. Nucl. 58, 853 (1995), [Yad. Fiz.58,921(1995)].
[134] A. Abele et al. (Crystal Barrel), Phys. Lett. B423, 175 (1998).
[135] A. Abele et al. (Crystal Barrel), Phys. Lett. B446, 349 (1999).
[136] M. Alekseev et al. (COMPASS), Phys. Rev. Lett. 104, 241803 (2010), [arXiv:0910.5842].
[137] E. I. Ivanov et al. (E852), Phys. Rev. Lett. 86, 3977 (2001), [hep-ex/0101058].
[138] J. Kuhn et al. (E852), Phys. Lett. B595, 109 (2004), [hepex/0401004].
[139] M. Lu et al. (E852), Phys. Rev. Lett. 94, 032002 (2005), [hep-ex/0405044].
[140] Yu.P. Gouz et al., Proc. XXVI Int. Conf. on HEP, Dallas (1992).
[141] G. M. Beladidze et al. (VES), Phys. Lett. B313, 276 (1993).
[142] A. Donnachie and P. R. Page, Phys. Rev. D58, 114012 (1998), [hep-ph/9808225].
[143] W. Dunnweber (Crystal Barrel), Nucl. Phys. A663, 592 (2000).
[144] A. Rodas it et al., Phys. Rev. Lett. 122, 042002 (2019).
[145] S. U. Chung, E. Klempt and J. G. Korner, Eur. Phys. J. A15, 539 (2002), [hep-ph/0211100].
[146] F. E. Close and H. J. Lipkin, Phys. Lett. B196, 245 (1987).
[147] F. Iddir and A. S. Safir, Phys. Lett. B507, 183 (2001), [hepph/0010121].
[148] D. V. Amelin et al. (VES), Phys. Lett. B356, 595 (1995).
[149] A. Donnachie and Yu. S. Kalashnikova, Phys. Rev. D60, 114011 (1999), [hep-ph/9901334].
[150] K. Karch et al. (Crystal Ball), Z. Phys. C54, 33 (1992).
[151] J. Adomeit et al. (Crystal Barrel), Z. Phys. C71, 227 (1996).
[152] D. Barberis et al. (WA102), Phys. Lett. B413, 217 (1997), [hep-ex/9707021].
[153] B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 242001 (2003), [hep-ex/0304021].
[154] D. Besson et al. (CLEO), Phys. Rev. D68, 032002 (2003), [Erratum: Phys. Rev.D75,119908(2007)], [hep-ex/0305100].
[155] H.-Y. Cheng and W.-S. Hou, Phys. Lett. B566, 193 (2003), [hep-ph/0305038].
[156] K. Terasaki, Phys. Rev. D68, 011501 (2003), [hepph/0305213].
[157] L. Maiani et al., Phys. Rev. D71, 014028 (2005), [hepph/0412098].
[158] V. Dmitrasinovic, Phys. Rev. Lett. 94, 162002 (2005).
[159] T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D68, 054006 (2003), [hep-ph/0305025].
[160] E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B582, 39 (2004), [hep-ph/0307133].
[161] A. Faessler et al., Phys. Rev. D76, 014005 (2007), [arXiv:0705.0254].
[162] M. F. M. Lutz and M. Soyeur, Nucl. Phys. A813, 14 (2008), [arXiv:0710.1545].
[163] L. Liu et al., Phys. Rev. D87, 1, 014508 (2013), [arXiv:1208.4535].
[164] S. Godfrey, Phys. Lett. B568, 254 (2003), [hepph/0305122].
[165] P. Colangelo and F. De Fazio, Phys. Lett. B570, 180 (2003), [hep-ph/0305140].
[166] M. Albaladejo et al., Phys. Lett. B767, 465 (2017), [arXiv:1610.06727].
[167] M.-L. Du et al., Phys. Rev. D98, 9, 094018 (2018), [arXiv:1712.07957].
[168] X.-Y. Guo, Y. Heo and M. F. M. Lutz, Phys. Rev. D98, 1, 014510 (2018), [arXiv:1801.10122].
[169] R. Aaij et al. (LHCb), Phys. Rev. D94, 7, 072001 (2016), [arXiv:1608.01289].
[170] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003), [hep-ex/0309032].
[171] B. Aubert et al. (BaBar), Phys. Rev. D71, 071103 (2005), [hep-ex/0406022].
[172] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), [arXiv:1507.03414].
[173] R. Aaij et al. (LHCb), Phys. Rev. Lett. 110, 222001 (2013), [arXiv:1302.6269].
[174] R. Aaij et al. (LHCb), Phys. Rev. D92, 1, 011102 (2015), [arXiv:1504.06339].
[175] T. Barnes and S. Godfrey, Phys. Rev. D69, 054008 (2004), [hep-ph/0311162].
[176] K. Abe et al. (Belle), Phys. Rev. Lett. 98, 082001 (2007), [hep-ex/0507019].
[177] K. Abe et al. (Belle), Phys. Rev. Lett. 94, 182002 (2005), [hep-ex/0408126].
[178] S. Uehara et al. (Belle), Phys. Rev. Lett. 96, 082003 (2006), [hep-ex/0512035].
[179] N. A. Tornqvist, Phys. Lett. B590, 209 (2004), [hepph/0402237].
[180] E. S. Swanson, Phys. Lett. B588, 189 (2004), [hepph/0311229].
[181] D. Gamermann and E. Oset, Phys. Rev. D80, 014003 (2009), [arXiv:0905.0402].
[182] B. Aubert et al. (BaBar), Phys. Rev. D71, 031501 (2005), [hep-ex/0412051].
[183] L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B778, 247 (2018), [arXiv:1712.05296].
[184] C. Bignamini et al., Phys. Rev. Lett. 103, 162001 (2009), [arXiv:0906.0882].
[185] P. Artoisenet and E. Braaten, Phys. Rev. D81, 114018 (2010), [arXiv:0911.2016].
[186] F.-K. Guo et al., JHEP 05, 138 (2014), [arXiv:1403.4032].
[187] M. Albaladejo et al., Chin. Phys. C41, 12, 121001 (2017), [arXiv:1709.09101].
[188] B. Aubert et al. (BaBar), Phys. Rev. Lett. 95, 142001 (2005), [hep-ex/0506081].
[189] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 118, 9, 092001 (2017), [arXiv:1611.01317].
[190] M. Cleven et al., Phys. Rev. D90, 7, 074039 (2014), [arXiv:1310.2190].
[191] C. Hanhart, Int. J. Mod. Phys. Conf. Ser. 46, 1860004 (2018), [arXiv:1712.01136].
[192] C. Hanhart and E. Klempt (2019), [arXiv:1906.11971].
[193] F. E. Close and P. R. Page, Phys. Lett. B628, 215 (2005), [hep-ph/0507199].
[194] M. Berwein et al., Phys. Rev. D92, 11, 114019 (2015), [arXiv:1510.04299].
[195] E. Kou and O. Pene, Phys. Lett. B631, 164 (2005), [hepph/0507119].
[196] Yu. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D77, 054025 (2008), [arXiv:0801.2036].
[197] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 111, 24, 242001 (2013), [arXiv:1309.1896].
[198] M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008), [arXiv:0711.4556].
[199] X. Li and M. B. Voloshin, Mod. Phys. Lett. A29, 12, 1450060 (2014), [arXiv:1309.1681].
[200] Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111, 13,132003 (2013), [arXiv:1303.6355].
[201] F.-K. Guo et al., Phys. Lett. B725, 127 (2013), [arXiv:1306.3096].
[202] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 9, 092001 (2014), [arXiv:1310.4101].
[203] Q. Wang et al., Phys. Rev. D89, 3, 034001 (2014), [arXiv:1309.4303].
[204] V. Baru et al., Phys. Rev. D91, 3, 034002 (2015), [arXiv:1501.02924].
[205] A. Ali et al., Eur. Phys. J. C78, 1, 29 (2018), [arXiv:1708.04650].
[206] L. Maiani et al., Phys. Rev. D89, 114010 (2014), [arXiv:1405.1551].
[207] K. Chilikin et al. (Belle), Phys. Rev. D88, 7, 074026 (2013), [arXiv:1306.4894].
[208] R. Aaij et al. (LHCb), Phys. Rev. Lett. 112, 22, 222002 (2014), [arXiv:1404.1903].
[209] Y.-H. Chen et al., Phys. Rev. D99, 7, 074016 (2019), [arXiv:1902.10957].
[210] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 110, 252001 (2013), [arXiv:1303.5949].
[211] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 2, 022001 (2014), [arXiv:1310.1163].
[212] P. Krokovny et al. (Belle), Phys. Rev. D88, 5, 052016 (2013), [arXiv:1308.2646].
[213] A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001 (2012), [arXiv:1110.2251].
[214] A. Garmash et al. (Belle), Phys. Rev. Lett. 116, 21, 212001 (2016), [arXiv:1512.07419].
[215] A. E. Bondar et al., Phys. Rev. D84, 054010 (2011), [arXiv:1105.4473].
[216] A. Ali et al., Phys. Rev. D91, 1, 017502 (2015), [arXiv:1412.2049].
[217] M. B. Voloshin, Phys. Rev. D84, 031502 (2011), [arXiv:1105.5829].
[218] T. Mehen and J. W. Powell, Phys. Rev. D84, 114013 (2011), [arXiv:1109.3479].
[219] V. Baru et al., JHEP 06, 158 (2017), [arXiv:1704.07332].
[220] V. Baru et al., Phys. Rev. D99, 9, 094013 (2019), [arXiv:1901.10319].
[221] T. Branz, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D82, 054025 (2010), [arXiv:1005.3168].
[222] P. Pakhlov, Phys. Lett. B702, 139 (2011), [arXiv:1105.2945].
[223] P. Pakhlov and T. Uglov, Phys. Lett. B748, 183 (2015), [arXiv:1408.5295].
[224] S. X. Nakamura and K. Tsushima, Phys. Rev. D100, 5, 051502 (2019), [arXiv:1901.07385].
[225] M. Cleven et al., Phys. Rev. D92, 1, 014005 (2015), [arXiv:1505.01771].

79. Baryon Decay Parameters

Written 1996 by E.D. Commins (University of California, Berkeley).

79.1. Baryon semileptonic decays

The typical spin- $1 / 2$ baryon semileptonic decay is described by a matrix element, the hadronic part of which may be written as:

$$
\begin{equation*}
\bar{B}_{f}\left[f_{1}\left(q^{2}\right) \gamma_{\lambda}+i f_{2}\left(q^{2}\right) \sigma_{\lambda \mu} q^{\mu}+g_{1}\left(q^{2}\right) \gamma_{\lambda} \gamma_{5}+g_{3}\left(q^{2}\right) \gamma_{5} q_{\lambda}\right] B_{i} \tag{79.1}
\end{equation*}
$$

Here B_{i} and \bar{B}_{f} are spinors describing the initial and final baryons, and $q=p_{i}-p_{f}$, while the terms in f_{1}, f_{2}, g_{1}, and g_{3} account for vector, induced tensor ("weak magnetism"), axial vector, and induced pseudoscalar contributions [1]. Second-class current contributions are ignored here. In the limit of zero momentum transfer, f_{1} reduces to the vector coupling constant g_{V}, and g_{1} reduces to the axial-vector coupling constant g_{A}. The latter coefficients are related by Cabibbo's theory [2], generalized to six quarks (and three mixing angles) by Kobayashi and Maskawa [3]. The g_{3} term is negligible for transitions in which an $e^{ \pm}$is emitted, and gives a very small correction, which can be estimated by PCAC [4], for $\mu^{ \pm}$modes. Recoil effects include weak magnetism, and are taken into account adequately by considering terms of first order in

$$
\begin{equation*}
\delta=\frac{m_{i}-m_{f}}{m_{i}+m_{f}}, \tag{79.2}
\end{equation*}
$$

where m_{i} and m_{f} are the masses of the initial and final baryons.
The experimental quantities of interest are the total decay rate, the lepton-neutrino angular correlation, the asymmetry coefficients in the decay of a polarized initial baryon, and the polarization of the decay baryon in its own rest frame for an unpolarized initial baryon. Formulae for these quantities are derived by standard means [5] and are analogous to formulae for nuclear beta decay [6]. We use the notation of Ref. 6 in the Listings for neutron beta decay. For comparison with experiments at higher q^{2}, it is necessary to modify the form factors at $q^{2}=0$ by a "dipole" q^{2} dependence, and for high-precision comparisons to apply appropriate radiative corrections [7].

The ratio g_{A} / g_{V} may be written as

$$
\begin{equation*}
g_{A} / g_{V}=\left|g_{A} / g_{V}\right| e^{i \phi_{A V}} \tag{79.3}
\end{equation*}
$$

The presence of a "triple correlation" term in the transition probability, proportional to $\operatorname{Im}\left(g_{A} / g_{V}\right)$ and of the form

$$
\begin{equation*}
\boldsymbol{\sigma}_{i} \cdot\left(\mathbf{p}_{\ell} \times \mathbf{p}_{\nu}\right) \tag{79.4}
\end{equation*}
$$

for initial baryon polarization or

$$
\begin{equation*}
\boldsymbol{\sigma}_{f} \cdot\left(\mathbf{p}_{\ell} \times \mathbf{p}_{\nu}\right) \tag{79.5}
\end{equation*}
$$

for final baryon polarization, would indicate failure of time-reversal invariance. The phase angle ϕ has been measured precisely only in neutron decay (and in ${ }^{19} \mathrm{Ne}$ nuclear beta decay), and the results are consistent with T invariance.

79.2. Hyperon nonleptonic decays

The amplitude for a spin- $1 / 2$ hyperon decaying into a spin- $1 / 2$ baryon and a spin- 0 meson may be written in the form

$$
\begin{equation*}
M=G_{F} m_{\pi}^{2} \cdot \bar{B}_{f}\left(A-B \gamma_{5}\right) B_{i} \tag{79.6}
\end{equation*}
$$

where A and B are constants [1]. The transition rate is proportional to

$$
\begin{align*}
R & =1+\gamma \widehat{\boldsymbol{\omega}}_{f} \cdot \widehat{\boldsymbol{\omega}}_{i}+(1-\gamma)\left(\widehat{\boldsymbol{\omega}}_{f} \cdot \widehat{\mathbf{n}}\right)\left(\widehat{\boldsymbol{\omega}}_{i} \cdot \widehat{\mathbf{n}}\right) \\
& +\alpha\left(\widehat{\boldsymbol{\omega}}_{f} \cdot \widehat{\mathbf{n}}+\widehat{\boldsymbol{\omega}}_{i} \cdot \widehat{\mathbf{n}}\right)+\beta \widehat{\mathbf{n}} \cdot\left(\widehat{\boldsymbol{\omega}}_{f} \times \widehat{\boldsymbol{\omega}}_{i}\right), \tag{79.7}
\end{align*}
$$

where $\widehat{\mathbf{n}}$ is a unit vector in the direction of the final baryon momentum, and $\widehat{\boldsymbol{\omega}}_{i}$ and $\widehat{\boldsymbol{\omega}}_{f}$ are unit vectors in the directions of the initial and final baryon spins. (The sign of the last term in the above equation
was incorrect in our 1988 and 1990 editions.) The parameters α, β, and γ are defined as

$$
\begin{align*}
\alpha & =2 \operatorname{Re}\left(s^{*} p\right) /\left(|s|^{2}+|p|^{2}\right) \\
\beta & =2 \operatorname{Im}\left(s^{*} p\right) /\left(|s|^{2}+|p|^{2}\right) \\
\gamma & =\left(|s|^{2}-|p|^{2}\right) /\left(|s|^{2}+|p|^{2}\right) \tag{79.8}
\end{align*}
$$

where $s=A$ and $p=\left|\mathbf{p}_{f}\right| B /\left(E_{f}+m_{f}\right)$; here E_{f} and \mathbf{p}_{f} are the energy and momentum of the final baryon. The parameters α, β, and γ satisfy

$$
\begin{equation*}
\alpha^{2}+\beta^{2}+\gamma^{2}=1 \tag{79.9}
\end{equation*}
$$

If the hyperon polarization is \mathbf{P}_{Y}, the polarization \mathbf{P}_{B} of the decay baryons is

$$
\begin{equation*}
\mathbf{P}_{B}=\frac{\left(\alpha+\mathbf{P}_{Y} \cdot \widehat{\mathbf{n}}\right) \widehat{\mathbf{n}}+\beta\left(\mathbf{P}_{Y} \times \widehat{\mathbf{n}}\right)+\gamma \widehat{\mathbf{n}} \times\left(\mathbf{P}_{Y} \times \widehat{\mathbf{n}}\right)}{1+\alpha \mathbf{P}_{Y} \cdot \widehat{\mathbf{n}}} \tag{79.10}
\end{equation*}
$$

Here \mathbf{P}_{B} is defined in the rest system of the baryon, obtained by a Lorentz transformation along $\widehat{\mathbf{n}}$ from the hyperon rest frame, in which $\widehat{\mathbf{n}}$ and \mathbf{P}_{Y} are defined.

An additional useful parameter ϕ is defined by

$$
\begin{equation*}
\beta=\left(1-\alpha^{2}\right)^{1 / 2} \sin \phi \tag{79.11}
\end{equation*}
$$

In the Listings, we compile α and ϕ for each decay, since these quantities are most closely related to experiment and are essentially uncorrelated. When necessary, we have changed the signs of reported values to agree with our sign conventions. In the Baryon Summary Table, we give α, ϕ, and Δ (defined below) with errors, and also give the value of γ without error.

Time-reversal invariance requires, in the absence of final-state interactions, that s and p be relatively real, and therefore that $\beta=0$. However, for the decays discussed here, the final-state interaction is strong. Thus

$$
\begin{equation*}
s=|s| e^{i \delta_{s}} \text { and } p=|p| e^{i \delta_{p}} \tag{79.12}
\end{equation*}
$$

where δ_{s} and δ_{p} are the pion-baryon s - and p-wave strong interaction phase shifts. We then have

$$
\begin{equation*}
\beta=\frac{-2|s||p|}{|s|^{2}+|p|^{2}} \sin \left(\delta_{s}-\delta_{p}\right) \tag{79.13}
\end{equation*}
$$

One also defines $\Delta=-\tan ^{-1}(\beta / \alpha)$. If T invariance holds, $\Delta=\delta_{s}-\delta_{p}$. For $\Lambda \rightarrow p \pi^{-}$decay, the value of Δ may be compared with the s - and p-wave phase shifts in low-energy $\pi^{-} p$ scattering, and the results are consistent with T invariance.

See also the note on "Radiative Hyperon Decays" in this Review.

References:

1. E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, England, 1983).
2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
3. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
4. M.L. Goldberger and S.B. Treiman, Phys. Rev. 111, 354 (1958).
5. P.H. Frampton and W.K. Tung, Phys. Rev. D3, 1114 (1971).
6. J.D. Jackson, S.B. Treiman, and H.W. Wyld, Jr., Phys. Rev. 106, 517 (1957), and Nucl. Phys. 4, 206 (1957).
7. Y. Yokoo, S. Suzuki, and M. Morita, Prog. Theor. Phys. 50, 1894 (1973).

80. N and Δ Resonances

Revised July 2019 by V. Burkert (Jefferson Lab), E. Klempt (University of Bonn), U. Thoma (University of Bonn), L. Tiator (University of Mainz), and R.L. Workman (George Washington University).

80.1. Introduction

The excited states of the nucleon have been studied in a large number of formation and production experiments. Until recently, the Breit-Wigner masses and widths, the pole positions, and the elasticities of the N and Δ resonances in the Baryon Summary Table came largely from partial-wave analyses of πN total, elastic, and charge-exchange scattering data. The most comprehensive analyses were carried out by the Karlsruhe-Helsinki (KH80) [1], Carnegie Mellon-Berkeley (CMB80) [2], and George Washington U (GWU) [3] groups. Partial-wave analyses have also been performed on much smaller πN reaction data sets to get $\eta N, K \Lambda$, and $K \Sigma$ branching fractions (see the Listings for references). Other branching fractions come from analyses of $\pi N \rightarrow \pi \pi N$ data.

In recent years, a large amount of data on photoproduction of many final states has been accumulated, and these data are beginning to tell us much about the properties of baryon resonances. A survey of data on photoproduction can be found in the proceedings of recent conferences [4] and workshops [5], and in recent reviews [6,7].

80.2. Naming scheme for baryon resonances

In the past, when nearly all resonance information came from elastic πN scattering, it was common to label resonances with the incoming partial wave $L_{2 I, 2 J}$, as in $\Delta(1232) P_{33}$ and $N(1680) F_{15}$. However, most recent information has come from γN experiments. Therefore, we have replaced $L_{2 I, 2 J}$ with the spin-parity J^{P} of the state, as in $\Delta(1232) 3 / 2^{+}$and $N(1680) 5 / 2^{+}$; this name gives intrinsic properties of the resonance that are independent of the specific particles and reactions used to study them. This applies equally to all baryons, including Ξ resonances and charm baryons that are not produced in formation experiments. We do not, however, attach the mass or spin-parity to the names of the ground-state ("stable") baryons $N, \Lambda, \Sigma, \Xi, \Omega, \Lambda_{c}, \cdots$.

80.3. Using the N and Δ listings

Tables 80.1 and 80.2 list all the N and Δ entries in the Baryon Listings and give our evaluation of the overall status and the status channel by channel. Only the established resonances (overall status 3 or 4 stars) are promoted to the Baryon Summary Table. We long ago omitted from the Listings information from old analyses, prior to KH80 and CMB80, which can be found in earlier editions. A rather complete survey of older results was given in our 1982 edition [8].

As a rule, we award an overall status ${ }^{* * * *}$ or ${ }^{* * *}$ only to those resonances which are derived from analyses of data sets that include precision differential cross sections and polarization observables, and are confirmed by independent analyses. All other signals are given ${ }^{* *}$ or * status. New results that are not accompanied by proper error evaluation are less valuable for evaluating star ratings. The following criteria are guidelines for future error analysis.

1. Uncertainties in resonance parameters: The publication should have a detailed discussion on how the uncertainties of parameters were estimated. This requires that the error estimates go beyond the simple fit error as e.g. given by MINUIT, and the robustness of the results should be demonstrated.
2. Fit quality: Concrete measures for the fit quality should be provided. The reduced global χ^{2} value of the fit, while useful, is insufficient. Other possibilities include quoting variations of local χ^{2} values in kinematic regions where evidence for new resonances, or significantly improved information on resonance parameters, is claimed.
3. Weight factors in observables: Analyses sometimes use weight factors for certain data sets to either increase or reduce their impact on the results. This has been particularly important when polarization observables are involved, which often are sensitive to
resonance amplitudes through interferences, but usually have much poorer statistics than differential cross section data. To evaluate sensitivities, the resulting resonance parameters should be checked against variations of the specific weight factors.

Claims of evidence for new baryon states must be based on a sufficiently complete set of partial waves in the fit. The robustness of signals must be demonstrated, e.g. by examining the effect of higher partial waves in the fit.

80.4. Properties of resonances

Resonances are defined by poles of the S-matrix, whether in scattering, production or decay matrix elements. These are poles in the complex plane in s, as discussed in the new review on Resonances. As is traditional, we quote here the pole positions in the complex energy $w=\sqrt{s}$ plane. Crucially, the position of the pole of the S-matrix is independent of the process, and the production and decay properties factorize. This is the rationale for listing the pole position first for each resonance. These key properties of the S-matrix pole are in contrast to other quantities related to resonance phenomena, such as Breit-Wigner parameters or any K-matrix pole. Breit-Wigner parameters depend on the formalism used, such as angular-momentum barrier factors, or cut-off parameters, and the assumed or modeled background. However, the accurate determination of pole parameters from the analysis of data on the real energy axis is not necessarily simple, or even straightforward. It requires the implementation of the correct analytic structure of the relevant (often coupled) channels.

In principle, there are two ways to extract pole parameters from experimental data: (i) analytic continuation of theoretical single- or multi-channel models into the complex energy plane or (ii) local expansions of the partial-wave T-matrix amplitudes in the complex energy plane in the vicinity of a pole.

At present, poles are usually extracted using the first method [9-14], but considerable effort has been put into the development of alternate approaches, such as the speed plot [15], time delay [16], N/D method [17], regularization procedure [18], or Padè approximation [19].

Methods of the second type are based on the idea to use first or higher-order derivatives in energy to reduce the importance of, or totally eliminate, the background contribution. One either has to model the background contribution and introduce model dependence, or one is faced with numerical derivatives of single-energy data. In both cases, one reaches almost unsurmountable difficulties.

An alternate way to extract pole parameters from partial waves has been proposed by introducing a Laurent+Pietarinen ($\mathrm{L}+\mathrm{P}$) expansion [20-22]

$$
\begin{equation*}
T(W)=\sum_{i=1}^{N} \frac{\text { Res }_{i}}{W-W_{i}}+\sum_{j=1}^{M} \sum_{n=0}^{n_{\max }} c_{n}^{j}\left(\frac{\alpha_{j}-\sqrt{x_{j}-W}}{\alpha_{j}+\sqrt{x_{j}-W}}\right)^{n} \tag{1}
\end{equation*}
$$

where $T(W)$ is a given partial wave amplitude, W_{i} and Res $_{i}$ are the N complex pole positions and residues. The background is parameterized with M Pietarinen functions, where α_{j} are positive range parameters and x_{j} are real or complex branch points; c_{n}^{j} are real expansion coefficients.

The main idea of this procedure is to find the simplest analytic function, with well-defined poles and cuts, regardless of whether they are generated by a theoretical model or some energy-independent procedure. Instead of searching for the function which reproduces the input amplitudes over the complete complex energy plane, on all Riemann sheets, a representation is searched only in a limited complex energy range, near the real axis, which is defined by the radius of

Table 80.1. The status of the N resonances and their decays. Sub-threshold decay modes are omitted. Only resonances with an overall status of $* * *$ or $* * * *$ are included in the main Baryon Summary Table

convergence of the Laurent decomposition, and which contains the input amplitudes. All details are found in Ref. [21]. Applications of the method can be found in $[20-27]$.

80.5. Photoproduction

A new approach to the nucleon excitation spectrum is provided by dedicated facilities at the Universities of Bonn, Grenoble, and Mainz, and at the national laboratories Jefferson Lab in the US and SPring-8 in Japan. High-precision cross sections and polarization observables for the photoproduction of pseudoscalar mesons provide a data set that is approaching a "complete experiment," one that fully constrains the four complex amplitudes describing the spin-structure of the reaction [28]. A large number of photoproduction reactions has been studied.

In pseudoscalar meson photoproduction, the four independent helicity amplitudes can be expressed in terms of the four CGLN [29] amplitudes allowed by Lorentz and gauge invariance. These amplitudes can be expanded in a series of electric and magnetic multipoles. Except for $J=1 / 2$, one electric and one magnetic multipole contributes to each J^{P} combination.

Table 80.2. The status of the Δ resonances and their decays. Sub-threshold decay modes are omitted. Only resonances with an overall status of $* * *$ or $* * * *$ are included in the main Baryon Summary Table.

			Stat	us as	seen	in	
Particle J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$		$N \rho$	$\Delta \eta$
$\Delta(1232) 3 / 2^{+}$	****	****	****				
$\Delta(1600) 3 / 2^{+}$	****	****	***	****			
$\Delta(1620) 1 / 2^{-}$	****	****	****	****			
$\Delta(1700) 3 / 2^{-}$	****	****	****	****		*	
$\Delta(1750) 1 / 2^{+}$	*	*	*		*		
$\Delta(1900) 1 / 2^{-}$	***	***	***	*	**	*	
$\Delta(1905) 5 / 2^{+}$	****	****	****	**	*	*	**
$\Delta(1910) 1 / 2^{+}$	****	***	****	**	**		*
$\Delta(1920) 3 / 2^{+}$	***	***	***	***	**		**
$\Delta(1930) 5 / 2^{-}$	***	*	***	*	*		
$\Delta(1940) 3 / 2^{-}$	**	*	**	*			*
$\Delta(1950) 7 / 2^{+}$	****	****	****	**	***		
$\Delta(2000) 5 / 2^{+}$	**	*	**	*		*	
$\Delta(2150) 1 / 2^{-}$	*		*				
$\Delta(2200) 7 / 2^{-}$	***	***	**	***	**		
$\Delta(2300) 9 / 2^{+}$	**		**				
$\Delta(2350) 5 / 2^{-}$	*		*				
$\Delta(2390) 7 / 2^{+}$			*				
$\Delta(2400) 9 / 2^{-}$		**	**				
$\Delta(2420) 11 / 2^{+}$	****	*	****				
$\Delta(2750) 13 / 2^{-}$			**				
$\Delta(2950) 15 / 2^{+}$			**				
**** Existence is certain.							
*** Existence is very likely.							
** Evidence of existence is fair							
Evidence of existence is poor.							

For a given state, these two amplitudes determine the resonance photo-decay helicity amplitudes $A_{1 / 2}$ and $A_{3 / 2}$. As described below, this resonance extraction has been carried out either assuming a Breit-Wigner resonance or at the pole.

If a Breit-Wigner parametrization is used, the $N \gamma$ partial width, Γ_{γ}, is given in terms of the helicity amplitudes $A_{1 / 2}$ and $A_{3 / 2}$ by

$$
\begin{equation*}
\Gamma_{\gamma}=\frac{k_{\mathrm{BW}}^{2}}{\pi} \frac{2 m_{N}}{(2 J+1) m_{\mathrm{BW}}}\left(\left|A_{1 / 2}\right|^{2}+\left|A_{3 / 2}\right|^{2}\right) \tag{2}
\end{equation*}
$$

Here m_{N} and m_{BW} are the nucleon and resonance masses, J is the resonance spin, and k_{BW} is the photon c.m. decay momentum. Most earlier analyses have provided these real quantities $A_{1 / 2}$ and $A_{3 / 2}$.

More recent studies have quoted related complex quantities, evaluated at the T-matrix pole. These complex helicity amplitudes, $\tilde{A}_{1 / 2}$ and $\tilde{A}_{3 / 2}$, can be cast onto the form

$$
\begin{equation*}
\tilde{A}_{h}=\sqrt{\frac{\pi(2 J+1) w_{\mathrm{pole}}}{m_{N} k_{\mathrm{pole}}^{2}}} \frac{\operatorname{Res}\left(T_{h}(\gamma N \rightarrow N b)\right)}{\sqrt{\operatorname{Res}(T(N b \rightarrow N b))}} \tag{3}
\end{equation*}
$$

where the residues (Res) are evaluated at the pole position, $w_{\text {pole }}$, and $k_{\text {pole }}^{2}=\left(w_{\text {pole }}^{2}-m_{N}^{2}\right)^{2} / 4 w_{\text {pole }}^{2}[30]$. For Breit-Wigner amplitudes, $w_{\text {pole }}=m_{\mathrm{BW}}$ and $\tilde{A}_{h}=A_{h}$. Similar relations for the photo and electro couplings at the pole position can be found in $[31,32]$.

The determination of eight real numbers from four complex amplitudes (with one overall phase undetermined) requires at least seven independent measurements. At least one further measurement is required to resolve discrete ambiguities that result from the fact that data are proportional to squared amplitudes. Photon beams and
nucleon targets can be polarized (with linear or circular polarization P_{\perp}, P_{\odot} and \vec{T}, respectively); the recoil polarization of the outgoing baryon \vec{R} can be measured. The experiments can be divided into three classes: (1) the beam and target are polarized (BT); (2) the beam is polarized and the recoil baryon polarization is measured (BR); (3) the target is polarized and the recoil polarization is measured (TR). Different sign conventions are used in the literature, as summarized in [33].

One of the best studied reactions is $\gamma p \rightarrow \Lambda K^{+}$. Published data include differential cross sections, the beam asymmetry Σ, the target asymmetry T, the recoil polarization P, and the BR doublepolarization variables $C_{x^{\prime}}, C_{z^{\prime}}, O_{x^{\prime}}$, and $O_{z^{\prime}}$. For the photoproduction of pions and etas, off proton and neutron targets, differential cross sections, single- and double-polarization asymmetries have been measured, mainly for pions.

80.6. Electroproduction

Electroproduction of mesons provides information on the internal structure of resonances. The helicity amplitudes are functions of the (squared) momentum transfer $Q^{2}=-\left(e-e^{\prime}\right)^{2}$, where e and e^{\prime} are the 4 -momenta of the incident and scattered electron, and a third amplitude, $S_{1 / 2}$, measures the resonance response to the longitudinal component of the virtual photon. Most data stem from the reactions $e^{-} p \rightarrow e^{-} n \pi^{+}$and $e^{-} p \rightarrow e^{-} p \pi^{0}$ but also the reactions $e^{-} p \rightarrow e^{-} p \eta$, $e^{-} p \rightarrow e^{-} p \pi^{+} \pi^{-}$, and $e^{-} p \rightarrow e^{-} \Lambda\left(\Sigma^{0}\right) K^{+}$have been studied. The data and their interpretation are reviewed in Refs. [34,35].

The transition to the $\Delta(1232) 3 / 2^{+}$is often quantified in terms of the magnetic dipole transition moment M_{1+} (or the magnetic transition form factor $G_{M, A s h}^{*}\left(Q^{2}\right)$) [36], and the electric and scalar quadrupole transition moments E_{1+} and S_{1+}. Figure 80.1 shows the strength of the $p \rightarrow \Delta^{+}$transition plotted versus the photon virtuality Q^{2}. At $Q^{2}=0, M_{1+}$ dominates the resonance transition strength. The two amplitudes E_{1+} and S_{1+} imply a quadrupole deformation of the transition to the lowest excited state. The magnitude of $R_{E M}=E_{1+} / M_{1+}$ remains nearly constant, while the magnitude of $R_{S M}=S_{1+} / M_{1+}$ increases rapidly up to 25% at the highest Q^{2} value.

Figure 80.1: Left: The magnetic transition form factor for the $\gamma^{*} p \rightarrow \Delta^{+}(1232)$ transition versus the photon virtuality Q^{2}. Right: The electric and scalar quadrupole ratios $R_{E M}$ and $R_{S M}$. The different symbols are results from different experiments at JLab (squares, diamonds, circle) and MAMI (triangle, cross). The boxes near the horizontal axis indicate model uncertainties of the squares. Curves to guide the eyes.

Figure 80.2 shows the transverse and scalar helicity amplitudes for the $N(1440) 1 / 2^{+}, N(1520) 3 / 2^{-}$, and $N(1535) 1 / 2^{-}$resonances from JLab [34]. Similar results have been achieved at Mainz [35]. For the states $N(1440) 1 / 2^{+}$and $N(1520) 3 / 2^{-}$, helicity amplitudes and $\pi \Delta$ and ρp decays were determined at JLab in an analysis of $\pi^{+} \pi^{-} p$ electroproduction [37]. The data show distinctly different Q^{2} dependencies that indicate different internal structures.

The $N(1520) 3 / 2^{-}$helicity amplitudes reveal the dominance of its three-quark nature: the $A_{3 / 2}$ amplitude is large at the photon point and decreases rapidly $\sim Q^{-5}$ with increasing $Q^{2} ; A_{1 / 2}$ is small at the

Figure 80.2: Transverse and scalar (longitudinal) helicity amplitudes for $\gamma p \rightarrow N(1440) 1 / 2^{+}$(top), $\gamma p \rightarrow N(1520) 3 / 2^{-}$ (center), and $\gamma p \rightarrow N(1535) 1 / 2^{-}$(bottom) as extracted from the JLab/CLAS data in $n \pi^{+}$production (full circles), MAMI/A1 data in $p \pi^{0}$ production (full down triangle), in $p \pi^{+} \pi^{-}$(open triangles), and combined single and double pion production (open squares). The solid triangle is the PDG 2014 value at $Q^{2}=0$. The open boxes are the model uncertainties of the full circles.
photon point, increases rapidly with Q^{2} and then falls off with $\sim Q^{-3}$. Quantitative agreement with the data is, however, achieved only when meson cloud effects are included.

At high Q^{2}, both amplitudes for $N(1440) 1 / 2^{+}$are qualitatively described by light front quark models [38]: at short distances the resonance behaves as expected from a radial excitation of the nucleon. On the other hand, $A_{1 / 2}$ changes sign at about $0.6 \mathrm{GeV}^{2}$. This remarkable behavior has not been observed before for any nucleon form factor or transition amplitude. Obviously, an important change in the structure occurs when the resonance is probed as a function of Q^{2}.

The Q^{2} dependence of $A_{1 / 2}$ of the $N(1535) 1 / 2^{-}$resonance exhibits the expected Q^{-3} dependence, except for small Q^{2} values where meson cloud effects set in.

Figure 80.3 shows the transverse and scalar amplitudes for three states in the 3rd nucleon resonance region, the $\Delta(1620) 1 / 2^{-}$, the $N(1675) 5 / 2^{-}$and $N(1680) 5 / 2^{+}$. The latter two states have nearly degenerate masses and are parity partners. In the quark model picture, the transverse amplitudes for $N(1675) 5 / 2^{-}$on the proton are suppressed due to the Moorhouse selection rule, allowing for a quantitative evaluation of the meson-baryon contributions. The data show significant meson-baryon strength in the $A_{1 / 2}$ amplitude even at quite high Q^{2}, while $A_{3 / 2}$ drops much faster with $Q^{2} . N(1680) 5 / 2^{+}$ shows qualitatively the features predicted in constituent quark models, a dominant $A_{3 / 2}$ at the real photon point that drops rapidly with increasing Q^{2}, while $A_{1 / 2}$ becomes the dominant contribution at high Q^{2}, indicating a switch of the helicity structure in the resonance transition at short distances.

Figure 80.3: Transverse and scalar helicity amplitudes for $\gamma p \rightarrow \Delta(1620) 1 / 2^{-}$(top), $\gamma p \rightarrow N(1675) 5 / 2^{-}$(center), and $\gamma p \rightarrow N(1680) 5 / 2^{+}$(bottom) as extracted from the JLab/CLAS data in $n \pi^{+}$production (full circles), $p \pi^{+} \pi^{-}$(open triangles), combined single and double pion production (open square). The solid triangle is the 2014 PDG value at $Q^{2}=0$. The open boxes are the model uncertainties of the full circles. The curves are to guide the eye.

80.7. Partial wave analyses

Several PWA groups are now actively involved in the analysis of the new data. The GWU group maintains a nearly complete database covering reactions from πN and $K N$ elastic scattering to $\gamma N \rightarrow N \pi$, $N \eta$, and $N \eta^{\prime}$. It is presently the only group determining πN elastic amplitudes from scattering data in sliced energy bins. Given the high-precision of photoproduction data already or soon to be collected, the spectrum of N and Δ resonances will in the near future be better known.

Fits to the data are performed by various groups with the aim to understand the reaction dynamics and to identify N and Δ resonances. For practical reasons, approximations have to be made. We mention several analyses here: (1) The Mainz unitary isobar model [39] focuses on the correct treatment of the low-energy domain. Resonances are added to the unitary amplitude as a sum of BreitWigner amplitudes. This model also obtains resonance transition form factors and helicity amplitudes from electroproduction [35]. (2) For $N \pi$ electroproduction, the Yerevan/JLab group uses both the unitary isobar model and the dispersion relation approach developed in [38]. A phenomenological model was developed to extract resonance couplings and partial decay widths from exclusive $\pi^{+} \pi^{-} p$ electroproduction [37]. (3) Multichannel analyses using K-matrix parameterizations derive background terms from a chiral Lagrangian - providing a microscopical description of the background - (Giessen [40,41]) or from phenomenology (KSU [42,43], Bonn-Gatchina [44]) . (4.) Several groups (EBAC-Jlab [45,46], ANLOsaka [47], Dubna-Mainz-Taipeh [48], Bonn-Jülich [49,50,51], Valencia [52]) use dynamical reaction models, driven by chiral Lagrangians, which take dispersive parts of intermediate states into account. Several other groups have made important contributions. The Giessen group pioneered multichannel analyses of large data sets on pion- and photo-induced reactions [40,41]. The Bonn-Gatchina group included recent high-statistics data and reported systematic searches for new baryon resonances in all relevant partial waves. A summary of their results can be found in [44].

References:

1. G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein Vol. I/9b2 (1983), ed. H. Schopper, Springer Verlag.
2. R.E. Cutkosky et al., Baryon 1980, IV International Conference on Baryon Resonances, Toronto, ed. N. Isgur, p. 19.
3. R.A. Arndt et al., Phys. Rev. C74, 045205 (2006).
4. "Hadron 2011: 14th International Conference on Hadron Spectroscopy", München, Germany, June, 13 - 17, 2011, published in eConf.
5. "NSTAR 2013: 9th International Workshop on the Physics of Excited Nucleons", 27-30 May 2013, Peñíscola, Spain.
6. E. Klempt and J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).
7. V. Credé and W. Roberts, Rept. on Prog. in Phys. 76, 076301 (2013).
8. M. Roos et al., Phys. Lett. B111, 1 (1982).
9. M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G. Meissner, Nucl. Phys. A829, 170 (2009), and references therein.
10. N. Suzuki, B. Juliá-Díaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, and T. Sato, Phys. Rev. Lett. 104, 042302 (2010); H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki, Phys. Rev. C80, 025207 (2009), and references therein.
11. R. E. Cutkosky, C. P. Forsyth, R. E. Hendrick, and R. L. Kelly, Phys. Rev. D20, 2839 (1979).
12. R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, R. L. Workman, and M. M. Pavan, Phys. Rev. C69, 035213 (2004)..
13. M. Batinić, I. Šlaus, A. Švarc, and B. M. K. Nefkens, Phys. Rev. C51, 2310 (1995); M. Batinić et al., Phys. Scr. 58, 15 (1998).
14. A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. Sarantsev, U. Thoma, Eur. Phys. J. A48, 15 (2012), and references therein.
15. G. Höhler, $\pi \mathrm{N}$ Newsletter 9, 1 (1993).
16. N. G. Kelkar, M. Nowakowski, Phys. Rev. A78, 012709 (2008), and references therein.
17. G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
18. S. Ceci, J. Stahov, A. Švarc, S. Watson, and B. Zauner, Phys. Rev. D77, 116007 (2008).
19. P. Masjuan, J. J. Sanz-Cillero, Eur. Phys. J. C73, 2594 (2013).
20. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, and R. L. Workman, Phys. Rev. C88, 035206 (2013).
21. A. Švarc, M. Hadžimehmedović, R. Omerović, H. Osmanović, and J. Stahov, Phys. Rev. C89, 045205 (2014).
22. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, and R. L. Workman, Phys. Lett. B 755, 452 (2016).
23. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, and R. L. Workman, Phys. Rev. C89, 065208 (2014).
24. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, and R. L. Workman, Phys. Rev. C91, 015207 (2015).
25. L. Tiator, M, Döring, R. L. Workman, M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov, and A. Švarc, Phys. Rev. C94, 065204 (2016).
26. A. V. Anisovich et al., Eur. Phys. J. A53, 242 (2017).
27. A. V. Anisovich et al., Phys. Rev. Lett. 119, 062004 (2017).
28. C. G. Fasano et al., Phys. Rev. C46, 2430 (1992).
29. G.F. Chew et al., Phys. Rev. 106, 1345 (1957).
30. R.L. Workman, L. Tiator, and A. Sarantsev, Phys. Rev. C87, 068201 (2013).
31. N. Suzuki, T. Sato, and T.-S.H. Lee, Phys. Rev. C82, 045206 (2010).
32. H. Kamano, Phys. Rev. C88, 045203 (2013).
33. A.M. Sandorfi et al., AIP Conf. Proc. 1432, 219 (2012).
34. I. G. Aznauryan and V. D. Burkert, Prog. in Part. Nucl. Phys. 67, 1 (2012).
35. L. Tiator et al., Eur. Phys. J. ST 198, 141 (2011); S. Štajner et al., Phys. Rev. Lett. 119, 022001 (2017).
36. W.W. Ash, Phys. Lett. B24, 165 (1967).
37. V.I. Mokeev et al. [CLAS Collab.], Phys. Rev. C86, 035203 (2012).
38. I.G. Aznauryan, Phys. Rev. C67, 015209 (2003).
39. D. Drechsel, S.S. Kamalov, and L. Tiator, Eur. Phys. J. A34, 69 (2007).
40. G. Penner and U. Mosel, Phys. Rev. C66, 055211 (2002).
41. G. Penner and U. Mosel, Phys. Rev. C66, 055212 (2002).
42. D.M. Manley and E.M. Saleski, Phys. Rev. D45, 4002 (1992).
43. M. Shrestha and D.M. Manley, Phys. Rev. C86, 055203 (2012).
44. A.V. Anisovich et al., Eur. Phys. J. A48, 15 (2012).
45. A. Matsuyama, T. Sato, and T.-S.H. Lee, Phys. Reports 439, 193 (2007).
46. T. Sato and T.-S.H. Lee, J. Phys. G36, 073001 (2009).
47. H. Kamano et al., Phys. Rev. C88, 035209 (2013).
48. G.Y. Chen et al., Phys. Rev. C76, 035206 (2007).
49. M. Döring et al., Phys. Lett. B681, 26 (2009).
50. M. Döring et al., Nucl. Phys. A829, 170 (2009).
51. D. Rönchen et al., Eur. Phys. J. A49, 44 (2013).
52. S. Sarkar, E. Oset, and M.J. Vicente Vacas, Nucl. Phys. A750, 294 (2005) [Erratum-ibid. A780, 78 (2006)].

81. Baryon Magnetic Moments

Written 1994 by C.G. Wohl (LBNL).
The figure below shows the measured magnetic moments of the stable baryons. It also shows the predictions of the simplest quark model, using the measured p, n, and Λ moments as input. In this model, the moments are [1]

$$
\begin{array}{rlrl}
\mu_{p} & =\left(4 \mu_{u}-\mu_{d}\right) / 3 & \mu_{n} & =\left(4 \mu_{d}-\mu_{u}\right) / 3 \\
\mu_{\Sigma^{+}} & =\left(4 \mu_{u}-\mu_{s}\right) / 3 & \mu_{\Sigma^{-}} & =\left(4 \mu_{d}-\mu_{s}\right) / 3 \\
\mu_{\Xi^{0}} & =\left(4 \mu_{s}-\mu_{u}\right) / 3 & \mu_{\Xi^{-}}=\left(4 \mu_{s}-\mu_{d}\right) / 3 \\
\mu_{\Lambda} & =\mu_{s} & \mu_{\Sigma^{0}} & =\left(2 \mu_{u}+2 \mu_{d}-\mu_{s}\right) / 3 \\
& \mu_{\Omega^{-}}=3 \mu_{s}
\end{array}
$$

and the $\Sigma^{0} \rightarrow \Lambda$ transition moment is

$$
\mu_{\Sigma^{0} \Lambda}=\left(\mu_{d}-\mu_{u}\right) / \sqrt{3}
$$

The quark moments that result from this model are $\mu_{u}=$ $+1.852 \mu_{N}, \mu_{d}=-0.972 \mu_{N}$, and $\mu_{s}=-0.613 \mu_{N}$. The corresponding effective quark masses, taking the quarks to be Dirac point particles, where $\mu=q \hbar / 2 m$, are 338,322 , and 510 MeV . As the figure shows, the model gives a good first approximation to the experimental moments. For efforts to make a better model, we refer to the literature [2].

References:

1. See, for example, D.H. Perkins, Introduction to High Energy Physics (Addison-Wesley, Reading, MA, 1987), or D. Griffiths, Introduction to Elementary Particles (Harper \& Row, New York, 1987).
2. See, for example, J. Franklin, Phys. Rev. D29, 2648 (1984); H.J. Lipkin, Nucl. Phys. B241, 477 (1984);
K. Suzuki, H. Kumagai, and Y. Tanaka, Europhys. Lett. 2, 109 (1986);
S.K. Gupta and S.B. Khadkikar, Phys. Rev. D36, 307 (1987); M.I. Krivoruchenko, Sov. J. Nucl. Phys. 45, 109 (1987);
L. Brekke and J.L. Rosner, Comm. Nucl. Part. Phys. 18, 83 (1988);
K.-T. Chao, Phys. Rev. D41, 920 (1990) and references cited therein; Also, see references cited in discussions of results in the experimental papers..

82. Λ and Σ Resonances

Written December 2019 by V. Burkert (Jefferson Lab), E. Klempt (Bonn U.), U. Thoma (Bonn U.), L. Tiator (KPH, JGU Mainz) and R.L. Workman (George Washington U.).

82.1 Introduction

For several decades, there has been very little new experimental data bearing on the properties of Λ and Σ resonances. An exception was the study at JLab of the reactions $\gamma p \rightarrow K^{+} \Sigma^{ \pm} \pi^{\mp}$ and $\gamma p \rightarrow K^{+} \Sigma^{0} \pi^{0}[1]$, which established
the spin and parity of the $\Lambda(1405)$ [2]. There was also from BNL new data on the very low energy region of $K^{-} p$ scattering [3-7]. Otherwise, the field is starved for data. Recent analyses (see below) have improved what we know about the properties of the known Λ and Σ resonances, but the established resonances are exactly the same ones that were in our 1984 edition [8]. The 1990 Review [9] gave a full report of the status then, and included Argand plots from the partial-wave analyses. The 2018 Review [10] has a short survey of the 1670 MeV region, which may in fact include three or four states - the well-established $J^{P}=\Sigma(1670) 3 / 2^{-}$, the probable $\Sigma(1660) 1 / 2^{+}$, and "bumps" at 1670 and 1690 MeV .
In the last few years, four groups have re-analyzed $K^{-} p$ reactions using fuller collections of the old data. These analyses make an update of the status of the Λ and Σ resonances appropriate. Although they have not established any new resonances, they have provided at least some evidence for new states and have given a better understanding of the old ones.

Table I is our evaluation of the status, both over-all and channel by channel, of each Λ and Σ resonance in the Particle Listings. In making these evaluations, we considered, in addition to the four analyses just discussed, the ratings that predated them. The ratings use a 1 - to 4 -star system. The main Summary Table includes only established states with an overall status of 3 or 4 stars; as has already been noted, they are the same thirteen Λ and eight Σ resonances (above $\Sigma(1385) 3 / 2^{+}$) that have long been in the Table. In addition, there are four 1 -star and four 2 -star Λ 's, and four 1 -star and six 2 -star Σ 's in the Particle Listings.

82.2 New analyses

The new analysis progress was pioneered by the Kent group which collected a large fraction of the available data and performed a comprehensive partial wave analysis $[11,12] . K^{-} p$ scattering into a pseudoscalar meson and an octet baryon is governed by two complex amplitudes; hence four quantities need to be measured to construct fully the amplitudes (up to an arbitrary phase per energy and angular bin). Discussions of complete experiments also generally assume perfect data (no experimental errors); realistic errors further complicate the task of amplitude extraction. Here, the available data are limited to the differential cross section and the target or hyperon recoil polarization P and partial-wave amplitudes are required. The authors of Ref. [11] overcame this difficulty by using start values for the partial wave amplitudes determined in [13] and/or from an energy-dependent fit and by freezing or releasing sets of amplitudes. The resulting amplitudes were fitted with a unitary multichannel parameterization [12].

The JPAC group presented a coupled-channel fit to the $\bar{K} N$ partial waves derived by the Kent group [14]. The JPAC approach was based on the K-matrix formalism. Special attention was paid to the analytical properties of the amplitudes determined by the square-root unitary branch points and the continuation to the complex angular momentum plane. The fit described the Kent partial waves reasonably well. However, when observables were calculated from their partial-wave amplitudes, significant discrepancies became apparent. The results were therefore not included in the RPP.

The ANL-Osaka group derived the energy-dependent amplitudes in fits to a large subset of the data collected in Ref. [11] and further data sets described in Ref. [15]. Their fits were based on a phenomenological SU(3) Lagrangian [15]. The two models agree on the leading contributions but differ significantly in cases with weaker candidates [16].

Table 82.1: The status of the Λ resonances. Only those with an overall status of $* * *$ or $* * * *$ are included in the main Baryon Summary Table.

Particle	J^{P}	Overall status	Status as seen in -		
			$N \bar{K}$	$\Sigma \pi$	Other channels
$\overline{\Lambda(1116)}$	$1 / 2^{+}$	****			$N \pi$ (weakly)
Λ (1380)	$1 / 2^{-}$	**	**	**	
$\Lambda(1405)$	$1 / 2^{-}$	****	****	****	
$\Lambda(1520)$	$3 / 2^{-}$	****	****	****	$\Lambda \pi \pi, \Lambda \gamma$
Λ (1600)	$1 / 2^{+}$	**	***	***	$\Lambda \pi \pi, \Sigma(1385) \pi$
$\Lambda(1670)$	$1 / 2^{-}$	****	****	****	へ η
$\Lambda(1690)$	$3 / 2^{-}$	****	****	***	$\Lambda \pi \pi, \Sigma(1385) \pi$
$\Lambda(1710)$	$1 / 2^{+}$	**	**	*	
Λ (1800)	$1 / 2^{-}$	****	***	**	$\Lambda \pi \pi, \Sigma(1385) \pi, N \bar{K}^{*}$
$\Lambda(1810)$	$1 / 2^{+}$	***	**	**	$N \bar{K}_{2}^{*}$
$\Lambda(1820)$	$5 / 2^{+}$	****	****	****	$\Sigma(1385) \pi$
$\Lambda(1830)$	$5 / 2^{-}$	****	****	****	$\Sigma(1385) \pi$
$\Lambda(1890)$	$3 / 2^{+}$	****	****	**	$\Sigma(1385) \pi, N \bar{K}^{*}$
Λ (2000)	$1 / 2^{-}$	*	*	*	
Λ (2050)	$3 / 2^{-}$	*	*	*	$\Sigma(1385) \pi$
Λ (2070)	$3 / 2^{+}$	**	*	*	$\Sigma(1385) \pi$
Λ (2080)	$5 / 2^{-}$	**	**	*	$\Sigma(1385) \pi$
$\Lambda(2085)$	$7 / 2^{+}$	*	*	*	$\Sigma(1385) \pi$
Λ (2100)	$7 / 2^{-}$	****	****	**	$\Sigma(1385) \pi$
(2110)	$5 / 2^{+}$	***	***	**	$\Lambda \omega, N \bar{K}^{*}$
$\Lambda(2325)$	$3 / 2^{-}$	*	*		$\Lambda \omega$
$\Lambda(2350)$	$9 / 2^{+}$	***	***	*	

Table 82.2: The status of the Σ resonances. Only those with an overall status of $* * *$ or $* * * *$ are included in the main Baryon Summary Table.

Particle	Overall status	Status as seen in -			Other channels
		$N \bar{K}$	$\Lambda \pi$	$\Sigma \pi$	
$\bar{\Sigma}$ (1193) $1 / 2^{+}$	****				$N \pi$ (weakly)
$\Sigma(1385) 3 / 2^{+}$	****		****	****	
$\Sigma(1620) 1 / 2^{-}$	**	**	*	**	
$\Sigma(1660) 1 / 2^{+}$	***	***	***	***	
$\Sigma(1670) 3 / 2^{-}$	****	****	****	****	
$\Sigma(1730) 3 / 2^{+}$	*	*	*	*	
$\Sigma(1750) 1 / 2^{-}$	***	***	**	***	$\Sigma \eta$
$\Sigma(1775) 5 / 2^{-}$	****	****	****	**	
$\Sigma(1880) 1 / 2^{+}$	**	**	*		
$\Sigma(1950) 1 / 2^{-}$	**	***	*	**	
$\Sigma(1915) 5 / 2^{+}$	****	***	**	**	$\Sigma(1385) \pi$
$\Sigma(1920) 3 / 2^{-}$	***	*	**	***	
$\Sigma(1940) 3 / 2^{+}$	**	**		*	
$\Sigma(2010) 3 / 2^{-}$	*	*	*		
$\Sigma(2030) 7 / 2^{+}$	****	****	****	**	$\Delta(1232) \bar{K}, N \bar{K}^{*}$
$\Sigma(2070) 5 / 2^{+}$	*	*		*	
$\Sigma(2080) 3 / 2^{+}$	**		**		
$\Sigma(2100) 7 / 2^{-}$	*	*	*	*	
$\Sigma(2110) 1 / 2^{-}$	**	***	***	**	$\Delta(1232) \bar{K}^{*}, \Lambda(1520) \pi$
$\Sigma(2160) 1 / 2^{-}$	*	*	*	*	
$\Sigma(2230) 3 / 2^{+}$	**	**	*	*	$\Delta(1232) \bar{K}^{*}, \Lambda(1520) \pi$
$\Sigma(2250)$	***	***	*	*	

The Bonn-Gatchina (BnGa) group added further (old) data to those analyzed in Ref. [11]. The data set was fitted in a modified K-matrix approach and the resulting amplitudes were compared with those from Refs. [11, 15]. New resonances were found; all resonances were tested for their statistical significance. Additional states with any set of quantum numbers were tested and were found to produce only small improvements in the fit [17]. In Ref. [18], properties of the full set of contributing hyperons were reported.

The star ratings of Λ and Σ resonances given in our earlier editions, and the new results from the Kent, ANL-Osaka and BnGa groups were used to update the star rating of the hyperon resonances. In [18], the overall star rating is directly estimated, for [12] we estimate the overall star rating from the branchingratio errors. In [16], two solutions are given but no uncertainties for branching ratios. We call a resonance seen when it is seen in both solutions with similar properties.

We decided to remove the twelve so-called bumps, one 2 -star resonance, $\Sigma(1580) 3 / 2^{-}$, and three 1 -star resonances $\Sigma(1770) 1 / 2^{+}$, $\Sigma(1840) 3 / 2^{+}$and $\Sigma(2000) 1 / 2^{-}$, which were not confirmed in any of the four modern analyses. Apart from $\Lambda(1380) 1 / 2^{-}$, four further new resonances were included in the Listings: $\Lambda(2070) 3 / 2^{+}$ and $\Lambda(2080) 5 / 2^{-}$with two stars, $\Sigma(2010) 3 / 2^{-}$and $\Sigma(2160) 1 / 2^{-}$ with one star.

82.3 Sign conventions for resonance couplings

In terms of the isospin-0 and isospin-1 elastic scattering amplitudes A_{0} and A_{1}, the amplitude for $K^{-} p \rightarrow \bar{K}^{0} n$ scattering is $\pm\left(A_{1}-A_{0}\right) / 2$, where the sign depends on conventions used in conjunction with the Clebsch-Gordan coefficients (such as, is the baryon or the meson the "first" particle). If this reaction is partial-wave analyzed and if the overall phase is chosen so that, say, the $\Sigma(1775) D_{15}$ amplitude at resonance points along the positive imaginary axis (points "up"), then any Σ at resonance will point "up" and any Λ at resonance will point "down" (along the negative imaginary axis). Thus the phase at resonance determines the isospin. The above ignores background amplitudes in the resonating partial waves.

Figure 82.1: The signs of the imaginary parts of resonating amplitudes in the $\bar{K} N \rightarrow \Lambda \pi$ and $\Sigma \pi$ channels. The signs of the $\Sigma(1385)$ and $\Lambda(1405)$, marked with a \bullet, are set by convention, and then the others are determined relative to them. The signs required by the $\mathrm{SU}(3)$ assignments of the resonances are shown with an arrow, and the experimentally determined signs are shown with an \times.

That is the basic idea. In a similar but somewhat more complicated way, the phases of the $\bar{K} N \rightarrow \Lambda \pi$ and $\bar{K} N \rightarrow \Sigma \pi$ amplitudes for a resonating wave help determine the $\mathrm{SU}(3)$ multiplet to which the resonance belongs. Again, a convention has to be adopted for some overall arbitrary phases: which way is "up"? Our convention is that of Levi-Setti [19] and is shown in Fig. 82.1, which also compares experimental results with theoretical predictions for the signs of several resonances. In the Listings, $a+$ or sign in front of a measurement of an inelastic resonance coupling indicates the sign (the absence of a sign means that the sign is not determined, not that it is positive). Also other decay modes can be used to assign a hyperon to a $\mathrm{SU}(3)$ multiplet $[20,21]$. Modern analyses determine properties of resonances at the pole position. In these analyses, the + or - sign is replaced by a phase. Background amplitudes can lead to significant phase shifts, and an additional phase shift due to rescattering is admitted in some analyses. Three Λ spin doublets can be identified as belonging to $\mathrm{SU}(3)$ singlets: the well-known $\left(\Lambda(1405) 1 / 2^{-}, \Lambda(1520) 3 / 2^{-}\right)$, the $\left(\Lambda(2080) 5 / 2^{-}, \Lambda(2100) 7 / 2^{-}\right)$, and $\left(\Lambda(2070) 3 / 2^{+}, \Lambda(2110) 5 / 2^{+}\right)$.

82.4 The $\Lambda(1405)$

In coupled-channels calculations based on the chiral $\mathrm{SU}(3)$ effective field theory, the strongly attractive forces between $N \bar{K}$
and $\Sigma \pi$ generate five poles, one $\mathrm{SU}(3)$ singlet pole, two Λ octet poles and two octet Σ poles (see Section 100). At least three of them are seen in the 1300 to 1500 MeV mass range. The appearance of two Λ poles in this mass range, a narrow $\mathrm{SU}(3)$ octet at $\sim 1420 \mathrm{MeV}$ and a wider $\mathrm{SU}(3)$ singlet at $\sim 1380 \mathrm{MeV}$, was unexpected. This approach has been pursued by a number of groups; for a summary of the results see our Review 100, "Pole Structure of the $\Lambda(1405)$ Region". In the Listings, we have introduced the $\Lambda(1380)$ as a new candidate resonance (with two stars), named in accordance with its approximate pole position. The second $\mathrm{SU}(3)$ octet Λ state is the well-known $\Lambda(1670)$. The masses of the two associated Σ states are uncertain so far, and no new entries are introduced in the Listings.

In traditional approaches only one resonance was seen, the narrow state at 1405 MeV . It was reported to be the $\mathrm{SU}(3)$ singlet state a long time ago in Ref. [22], in contrast to the findings based on coupled-channels calculations within chiral $\mathrm{SU}(3)$ effective field theories and in agreement with the quark-model expectations. A recent analysis using a modified K-matrix approach found only one resonance, with a pole at $(1422 \pm 3) \mathrm{MeV}$ [23]. Its $\mathrm{SU}(3)$ structure was found to be consistent with a singlet state. In the Listings, the $\Lambda(1405)$ has been retained with its traditional name. In quark models, this state is identified with the $\mathrm{SU}(3)$ singlet state, the two Λ octet states with $\Lambda(1670)$ and $\Lambda(1800)$, and the two Σ states with $\Sigma(1620)$ and $\Sigma(1750)$.

82.5 Errors on masses and widths

The errors quoted on resonance parameters from partial-wave analyses are often only statistical, and the parameters can change by more than these errors when a different parametrization of the waves is used. Furthermore, the different analyses use more or less the same data, so it is not really appropriate to treat the different determinations of the resonance parameters as independent or to average them together. In any case, the spread of the masses, widths, and branching fractions from the different analyses is certainly a better indication of the uncertainties than are the quoted errors. In the Listings, we usually give a range reflecting the spread of the values rather than a particular value with error.

82.6 Production experiments

Partial-wave analyses of course separate partial waves, whereas a peak in a cross section or an invariant mass distribution usually cannot be disentangled from background and analyzed for its quantum numbers; and more than one resonance may be contributing to the peak. The $\Sigma(1385)$ and $\Lambda(1405)$ lie below the $\bar{K} N$ threshold and nearly everything about $\Sigma(1385)$ is learned from production experiments. Our knowledge on $\Lambda(1405)$ benefits greatly from photoproduction of the three $\Sigma \pi$ charge states [1, 2] and from the precise measurement of the energy shift and width of the kaonic hydrogen atom [24].

Production and formation experiments agree quite well in the case of $\Lambda(1520)$ and results have been combined. Above this mass, no new results on peak hunting have been reported for about 40 years. For these early results, we refer the reader to our earlier editions. In photoproduction with energetic photons [25, 26] or at LHCb [27], hyperons are produced abundantly. So far, no attempt has been made to extract hyperon properties from these data. New data on hyperon spectroscopy can be expected from J-PARC [28], JLAB [29], and the forthcoming PANDA experiment [30].
References
[1] K. Moriya et al. (CLAS), Phys. Rev. C87, 3, 035206 (2013), [arXiv:1301.5000].
[2] K. Moriya et al. (CLAS), Phys. Rev. Lett. 112, 8, 082004 (2014), [arXiv:1402.2296].
[3] A. Starostin et al. (Crystal Ball), Phys. Rev. C64, 055205 (2001).
[4] S. Prakhov et al., Phys. Rev. C69, 042202 (2004).
[5] S. Prakhov et al. (Crystall Ball), Phys. Rev. C70, 034605 (2004).
[6] R. Manweiler et al., Phys. Rev. C77, 015205 (2008).
[7] S. Prakhov et al., Phys. Rev. C80, 025204 (2009), [arXiv:0812.1888].
[8] C. G. Wohl et al. (Particle Data Group), Rev. Mod. Phys. 56, S1 (1984).
[9] J. J. Hernandez et al. (Particle Data Group), Phys. Lett. B239, 1 (1990), [Erratum: Phys. Lett.B253,524(1991)].
[10] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[11] H. Zhang et al., Phys. Rev. C88, 3, 035204 (2013), [arXiv:1305.3598].
[12] H. Zhang et al., Phys. Rev. C88, 3, 035205 (2013), [arXiv:1305.4575].
[13] J. Tulpan, Kent State University , 3, 035205 (2008), [arXiv:1305.4575].
[14] C. Fernandez-Ramirez et al., Phys. Rev. D93, 3, 034029 (2016), [arXiv:1510.07065].
[15] H. Kamano et al., Phys. Rev. C90, 6, 065204 (2014), [arXiv:1407.6839].
[16] H. Kamano et al., Phys. Rev. C92, 2, 025205 (2015), [Erratum: Phys. Rev.C95,no.4,049903(2017)], [arXiv:1506.01768].
[17] M. Matveev et al., Eur. Phys. J. A55, 10, 179 (2019), [arXiv:1907.03645].
[18] A. V. Sarantsev et al., Eur. Phys. J. A55, 10, 180 (2019), [arXiv:1907.13387].
[19] R. Levi Setti, Conf. Proc. C690625, 339 (1969).
[20] V. Guzey and M. V. Polyakov, Annalen Phys. 13, 673 (2004).
[21] V. Guzey and M. V. Polyakov (2005), [hep-ph/0512355].
[22] R. D. Tripp et al., Phys. Rev. Lett. 21, 1721 (1968).
[23] A. V. Anisovich et al. (2019), [arXiv:1905.05456].
[24] M. Bazzi et al. (SIDDHARTA), Phys. Lett. B704, 113 (2011), [arXiv:1105.3090].
[25] K. Moriya et al. (CLAS), Phys. Rev. C88, 045201 (2013), [Addendum: Phys. Rev.C88,no.4,049902(2013)], [arXiv:1305.6776].
[26] B. Dey et al. (CLAS), Phys. Rev. C89, 5, 055208 (2014), [Addendum: Phys. Rev.C90,no.1,019901(2014)], [arXiv:1403.2110].
[27] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), [arXiv:1507.03414].
[28] K. Hicks and H. Sako (Crystall Ball), Proposal for J-PARC E45 C70, 034605 (2013).
[29] S. Adhikari et al. (Crystall Ball), Proposal for JLAB PAC47 C70, 034605 (2019).
[30] F. Iazzi (PANDA), AIP Conf. Proc. 1743, 1, 050006 (2016).

83. Pole Structure of the $\boldsymbol{\Lambda}$ (1405) Region

Written August 2019 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (Tokyo Metropolitan Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness $S=-1$ and isospin $I=0$. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and systematic approach for the low-energy regime of the strong interactions is chiral perturbation theory (ChPT), see e.g. Ref. 2. A perturbative calculation is, however, not applicable to this sector because of the existence of the $\Lambda(1405)$ just below the $\bar{K} N$ threshold. In this case, ChPT has to be combined with a non-perturbative resummation technique, just as in the case of the nuclear forces. By solving the Lippmann-Schwinger equation with the interaction kernel determined by ChPT and using a particular regularization, in Ref. 3 a successful description of the low-energy $K^{-} p$ scattering data as well as the mass distribution of the $\Lambda(1405)$ was achieved (for further developments, see Ref. 4 and references therein).

The study of the pole structure was initiated by Ref. 5, which finds two poles of the scattering amplitude in the complex energy plane between the $K N$ and $\pi \Sigma$ thresholds. The spectrum in experiments exhibits one effective resonance shape, while the existence of two poles results in the reaction-dependent lineshape [6]. The origin of this two-pole structure is attributed to the two attractive channels of the leading order interaction in the $\mathrm{SU}(3)$ basis (singlet and octet) [6] and in the isospin basis ($\bar{K} N$ and $\pi \Sigma$) [7]. It is remarkable that the sign and the strength of the leading order interaction is determined by a low-energy theorem of chiral symmetry, i.e. the so-called WeinbergTomozawa term. The two-pole nature of the $\Lambda(1405)$ is qualitatively different from the case of the $\mathrm{N}(1440)$ resonance. Two poles of the $\mathrm{N}(1440)$ appear on different Riemann sheets of the complex energy plane separated by the $\pi \Delta$ branch point. These poles reflect a single state, with a nearby pole and a more distant shadow pole. In contrast, the two poles in the $\Lambda(1405)$ region on the same Riemann sheet (where $\pi \Sigma$ channels are unphysical and all other channels physical, correspondingly to the one, connected to the real axis beween the $\pi \Sigma$ and $\bar{K} N$ thresholds) are generated from two attractive forces mentioned above [6,7].

Recently, various new experimental results on the $\Lambda(1405)$ have become available [4]. Among these, the most striking measurement is the precise determination of the energy shift and width of kaonic hydrogen by the SIDDHARTA collaboration $[8,9]$, which provides a quantitative and stringent constraint on the $K^{-} p$ amplitude at threshold through the improved Deser formula [10]. Systematic studies with error analyses based on the next-to-leading order ChPT interaction including the SIDDHARTA constraint have been performed by various groups [11-15]. . All these studies confirm that the new kaonic hydrogen data are compatible with the scattering data above threshold.

The results of the pole positions of $\Lambda(1405)$ in the various approaches are summarized in Table 83.1. We may regard the difference among the calculations as a systematic error, which stems from the various approximations of the Bethe-Salpeter equation, the fitting procedure, and also the inclusion of $\mathrm{SU}(3)$ breaking effects such as the choice of the various meson decay constants, and so on. A detailed comparison of the various approaches that enter the table is given in Ref. 16. A recent analysis including also the $J^{P}=1 / 2^{+}$ P -wave contribution (and also an explicit $\Sigma(1385) 3 / 2^{+}$state) gives results consistent with the findings reported above, with the pole positions at $(1364-i 43) \mathrm{MeV}$ and $(1430-i 15) \mathrm{MeV}$, respectively [17].

The main component for the $\Lambda(1405)$ is the pole 1 , whose position converges within a relatively small region near the $\bar{K} N$ threshold. On the other hand, the position of the pole 2 shows a sizeable scatter. Detailed studies of the $\pi \Sigma$ spectrum in various reaction processes, together with the precise experimental lineshape (see e.g. the recent precise photoproduction data from the LEPS collaboration [18] and from the CLAS collaboration [19,20], electroproduction data from the CLAS collaboration [21], and proton-proton collision data from COSY [22] and the HADES collaboration [23]), will shed light on the position of the second pole. The $\pi \Sigma$ spectra from the CLAS data are analyzed in Ref. 24 and Ref. 15. It was shown in Ref. 15 that
several solutions, which agree with the scattering data, are ruled out if confronted with the recent CLAS data. The remaining solutions are collected as solution $\# 2$ and solution $\# 4$ in Table 83.1. The HADES data are analyzed in Ref. 25 and Ref. 26. Although the result of the pole found in Ref. 25 is not compatible with other results, the authors of Ref. 26 invoke the anomalous triangle singularity mechanism to argue that the invariant mass distribution of the $\pi \Sigma$ system is found at lower masses than in other reactions. It is thus desirable to perform more comprehensive analyses of $\pi \Sigma$ spectra together with the systematic error analysis of the scattering data.

Table 83.1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from next-to-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint. The lower two results also include the CLAS photoproduction data.

approach	pole $1[\mathrm{MeV}]$	pole $2[\mathrm{MeV}]$
Refs. 11,12, NLO	$1424_{-23}^{+7}-i 26_{-14}^{+3}$	$1381_{-6}^{+18}-i 81_{-8}^{+19}$
Ref. 14, Fit II	$1421_{-2}^{+3}-i 19_{-5}^{+8}$	$1388_{-9}^{+9}-i 114_{-25}^{+24}$
Ref. 15, solution \#2	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$
Ref. 15, solution \#4	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

References:

1. R.H. Dalitz, S.F. Tuan Phys. Rev. Lett. 2, 425 (1959).
2. V. Bernard et al., Int. J. Mod. Phys. E4, 193 (1995).
3. N. Kaiser et al., Nucl. Phys. A594, 325 (1995).
4. T. Hyodo, D. Jido, Prog. in Part. Nucl. Phys. 67, 55 (2012).
5. J.A. Oller, U.-G. Meißner, Phys. Lett. B500, 263 (2001).
6. D. Jido et al., Nucl. Phys. A725, 181 (2003).
7. T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008).
8. M. Bazzi et al., Phys. Lett. B704, 113 (2011).
9. M. Bazzi et al., Nucl. Phys. A881, 88 (2012).
10. U.-G. Meißner et al., Eur. Phys. J. C35, 349 (2004).
11. Y. Ikeda et al., Phys. Lett. B706, 63 (2011).
12. Y. Ikeda et al., Nucl. Phys. A881, 98 (2012).
13. M. Mai, U.-G. Meißner, Nucl. Phys. A900, 51 (2013).
14. Z.-H. Guo, J. Oller, Phys. Rev. C87, 035202 (2013).
15. M. Mai, U.-G. Meißner, Eur. Phys. J. A51, 30 (2015).
16. A. Cieply et al., Nucl. Phys. A954, 17 (2016).
17. D. Sadasivan et al., Phys. Lett. B789, 329 (2019).
18. M. Niiyama et al., Phys. Rev. C78, 035202 (2008).
19. K. Moriya et al., Phys. Rev. C87, 035206 (2013).
20. K. Moriya et al., Phys. Rev. Lett. 112, 082004 (2014).
21. H.Y. Lu et al., Phys. Rev. C88, 045202 (2013).
22. I. Zychor et al., Phys. Lett. B660, 167 (2008).
23. G. Agakishiev et al., Phys. Rev. C87, 025201 (2013).
24. L. Roca, E. Oset, Phys. Rev. C87, 055201 (2013).
25. M. Hassanvand et al., Phys. Rev. C87, 055202 (2013).
26. M. Bayar et al., Phys. Rev. C97, 035203 (2018).

84. Charmed Baryons

Revised in part June 2020 by D.J. Robinson (LBNL).

84.1 Spectrum

Similar to the light baryons, the naming convention for charmed baryon base symbols is determined by their isospin, I, and charmstrangeness, $C+S$, quantum numbers: In particular, $\Lambda_{c}, \Sigma_{c}, \Xi_{c, c c}$ and $\Omega_{c, c c, c c c}$ with $I(C+S)=0(1), 1(1), 1 / 2(2)$ and $0(3)$, respectively. While this review considers only the charmed baryons, approximate heavy quark flavor symmetry implies the spectroscopy of the bottom baryons is expected to be similar, up to corrections
of order $\Lambda_{\mathrm{QCD}} / m_{c, b}$.
Figure 84.1 (a) shows the spectrum of the singly-charmed baryons: There are now 36 such established states. In the quark model picture (see the Quark Model review), states consistent with all singly-charmed ground-state (zero angular momentum, or S-wave, state) baryons have been discovered, along with many excited states. The $\Lambda_{c}(2860)$ and the five heaviest Ω_{c}^{0} 's are recent, intriguing discoveries. The spin-parity quantum numbers of the latter are currently unknown, but one may speculate they correspond to the five $s s c$ excited baryons in a P-wave state, although other interpretations are also possible and plausible.

Figure 84.1: (a) The spectrum of established singly-charmed baryons, with their J^{P} assignments (where known). In accordance with their isospin, the $\Sigma_{c}\left(\Xi_{c}\right)$ lines each correspond to three (two) charged or neutral states that are nearly degenerate, with the exception of the upper two Ξ_{c} lines for which only the charged state has been found. Unique flavor $S U(3)$ representations are shown by various filled and open symbols: The three $J^{P}=3 / 2^{+}\left(J^{P}=1 / 2^{+}\right)$lines marked with a filled square (open circle) fill a ground-state $\mathbf{6}$ of flavor $S U(3)$; the two $J^{P}=1 / 2^{+}\left(1 / 2^{-}\right.$and $\left.3 / 2^{-}\right)$lines marked by a filled circle (open triangles) fill a ground-state (excited-state) $\overline{\mathbf{3}}$. Fig 84.1(b) shows a similar spectrum for several known bottom baryons.

84.2 Flavor symmetry

Just as for the light mesons and baryons, approximate flavor $S U(3)$ symmetry of the light quarks - the u, d, and $s-$ is expected to relate matrix elements of charmed baryons belonging to the same multiplet, up to corrections of order $\left(m_{s}-m_{d}\right) / \Lambda_{\mathrm{QCD}} \sim$ 20%. (Similarly, isospin relations should hold to the percent level.) This includes Gell-Mann-Okubo mass relations - a set of linear combinations of masses that must vanish up to higher-order $S U(3)$-breaking corrections - as well as similar relations between matrix elements for charmed baryon multibody decays. These relations may be constructed order-by-order in the appropriate symmetry-breaking parameters.

For singly-charmed baryons with valence quarks $q_{1} q_{2} c$, the flavor $S U(3)$ tensor product of the two light quarks $\mathbf{3} \times \mathbf{3}=\mathbf{6}+\overline{\mathbf{3}}$. For ground-state baryons, the overall antisymmetry of baryon wavefunction requires the light diquark to either form a spin-0 color antitriplet, antisymmetric under the interchange of the two light quark flavors - i.e. the $\overline{\mathbf{3}}$ - or a spin-1 color antitriplet that is symmetric under this interchange - i.e. the $\mathbf{6}$. The spin-0 $\overline{\mathbf{3}}$ can only combine with the charm quark to form $J^{P}=1 / 2^{+}$states, while the spin-1 6 can combine to form states either $J^{P}=1 / 2^{+}$ or $J^{P}=3 / 2^{+}$. States consistent with the corresponding $\overline{\mathbf{3}}$ and
two $6 S U(3)$ representations are denoted in Figure 84.1 by filled circles, open circles and filled squares, respectively. In Fig. 84.2 we show the explicit contents of the $\overline{\mathbf{3}}$ and $\mathbf{6}$ ground-state representations. The singly-charmed baryons within each multiplet obey isospin and $S U(3)$ mass relations at the expected orders.

Excited singly-charmed baryon states may arise as higher orbital angular momentum states. For instance, for such a baryon in a P-wave state, the allowed spin-flavor representations for the light diquark are either a spin-1 $\overline{\mathbf{3}}$ or a spin-0 6. Combined with the charm quark, the $\overline{\mathbf{3}}$ can then generate $J^{P}=1 / 2^{-}, 3 / 2^{-}$or $5 / 2^{-}$states: States consistent with the $1 / 2^{-}$and $3 / 2^{-} \mathbf{3}$ representations are indicated in Figure 84.1 by open triangles. (One might speculate that the $J^{P}=5 / 2^{-} \overline{3}$ could be composed of the claimed $\Lambda_{c}(2765)$ - not shown in the figure - and the $\Xi_{c}(2930)$.) Note that excited states might also arise from hadronic 'molecule' or pentaquark type states, $\sim q q q \bar{q} c$, which may generate baryons in higher $S U(3)$ representations.

To extend this discussion to doubly or triply charmed baryons, or charmless baryons, it is convenient to embed the baryons into flavor $S U(4)$, in which u, d, s and c transform as a 4. Flavor $S U(4)$ is heavily broken, and is not a good approximate symmetry of QCD. However, under the decomposition $S U(4) \rightarrow S U(3) \times$

Figure 84.2: The $\operatorname{SU}(3) \overline{\mathbf{3}}$ (a) and $\mathbf{6}$ (b) ground-state $J^{P}=1 / 2^{+}$ representations. The $\mathbf{6}$ ground-state with $J^{P}=3 / 2^{+}$is identical in structure to the right-hand figure.
$U(1)_{\text {charm }}$, it does provide a useful bookkeeping scheme for the various flavor $S U(3)$ multiplets with different numbers of valence charm quarks.
For instance, for charmed baryons with three quarks, the tensor product $\mathbf{4} \times \mathbf{4} \times \mathbf{4}=\mathbf{2 0} 0_{S}+\mathbf{2 0}_{M}+\mathbf{2 0}{ }_{M}+\overline{\mathbf{4}} .{ }^{1}$ The spin-flavor representation of a ground-state baryon must be fully symmetric, so that ground-state baryons may belong to the $\mathbf{2 0}{ }_{S}$ and a single combination of the two $\mathbf{2 0}_{M}$'s, with spin and parity $J^{P}=3 / 2^{+}$ and $J^{P}=1 / 2^{+}$, respectively. The $\overline{4}$, however, is fully antisymmetric in flavor indices, and one cannot form the required fully antisymmetrized spin state from three quarks each with two possible spin configurations. This can be also understood directly in terms of the $S U(8)$ contracted spin-flavor group: The only fully symmetric irreducible representation contained in $8 \times 8 \times 8$ is the 120, which contains a $\left(\mathbf{2 0} 0_{S}, 4\right)$ and a $\left(\mathbf{2 0}_{M}, \mathbf{2}\right)$ with respect to $S U(4) \times S U(2)_{\text {spin }}$.
The decompositions $\mathbf{2 0}_{S} \rightarrow \mathbf{1 0}_{0}+\mathbf{6}_{1}+\overline{\mathbf{3}}_{2}+\mathbf{1}_{3}$ and $\mathbf{2 0}_{M} \rightarrow$ $8_{0}+6_{1}+\overline{\mathbf{3}}_{1}+\mathbf{3}_{2}$, where the subscript indicates charm number, indicates the expected flavor $S U(3)$ multiplets for each value of charm number in the ground-state baryons. Fig. 84.3(a) shows the $\mathbf{2 0}{ }_{S}$ representation, in which each charm number layer in the decomposition to $S U(3) \times U(1)_{\text {charm }}$ is shaded in yellow. The bot-
tom $c=0$ level is the $J^{P}=3 / 2^{+}$flavor $S U(3)$ baryon decuplet containing the $\Delta(1232)$. Fig. $84.3(\mathrm{~b})$ shows the $\mathbf{2 0}_{M}$ representation, whose bottom $c=0$ level is the $1 / 2^{+} S U(3)$ light baryon octet, containing the nucleons.

Figure 84.3: (a) The $J^{P}=3 / 2^{+}$flavor $S U(4)$ ground-state charmed baryons in the $\mathbf{2 0}_{S}$, with the flavor $S U(3)$ baryon decuplet on the lowest level. (b) The $J^{P}=1 / 2^{+}$ground-state charmed baryons in the $\mathbf{2 0}_{M}$-plet with the flavor $S U(3)$ baryon octet on the lowest level. In some conventions, the states with a " $\frac{3}{2}^{+}$" label are instead denoted with a * superscript to distinguish them from the $J^{P}=1 / 2^{+}$states.

Of the doubly charmed baryons, only the $\Xi_{c c}^{++}$has been discovered, though its spin-parity is unknown. For excited baryons in, e.g., a P-wave state, the same contracted spin-flavor analysis implies that there are excited baryon states in, e.g., a $\mathbf{2 0}_{M}$ with $J^{P}=1 / 2^{-}$or a $\overline{4}$ with $J^{P}=3 / 2^{-}$, which together fill the fully antisymmetric $\mathbf{5 6}$ of $S U(8)$. The $\overline{\mathbf{4}}$ decomposes into $\overline{\mathbf{3}}_{1}+\mathbf{1}_{0}$, consistent with the $3 / 2^{-}$singly-charmed $\overline{\mathbf{3}}$'s denoted by open triangles in Fig. 84.1(a). Just as for flavor $S U(3)$, excited state $\mathbf{2 0}_{S, M}$ and $\overline{4}$ representations may also arise with other spin-parity assignments, and higher representations may also be present.

References

[1] R. Slansky, Phys. Rept. 79, 1 (1981).

[^83]
85. Pentaquarks

Revised September 2019 by M. Karliner (Tel Aviv U.) and T. Skwarnicki (Syracuse U.).

Experimental searches for pentaquark hadrons comprised of light flavors have a long and vivid history. No undisputed candidates have been found in 50 years. The first wave of observations of pentaquark candidates containing a strange antiquark occurred in the early seventies, see e.g. a review in the 1976 edition of Particle Data Group listings for $Z_{0}(1780), Z_{0}(1865)$ and $Z_{1}(1900)[1]$. The last mention of these candidates can be found in the 1992 edition [2] with the perhaps prophetic comment "the results permit no definite conclusion - the same story for 20 years. [...] The skepticism about baryons not made of three quarks, and lack of any experimental activity in this area, make it likely that another 20 years will pass before the issue is decided." A decade later, a second wave of observations occurred, possibly motivated by specific theoretical predictions for their existence [3-5]. The evidence for pentaquarks was based on observations of peaks in the invariant mass distributions of their decay products. More data, or more sensitive experiments did not confirm these claims [6]. In the last mention of the best known candidate from that period, $\Theta(1540)^{+}$, the 2006 Particle Data Group listing [7] included a statement: "The conclusion that pentaquarks in general, and that Θ^{+}, in particular, do not exist, appears compelling." which well reflected the prevailing mood in the particle physics community until a study of $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)$decays by LHCb [8] (charge conjugate modes are implied). From an analysis of $3 \mathrm{fb}^{-1}$ Run 1 data at 7 and 8 TeV at the LHC, the LHCb collaboration reported a significant $J / \psi p$ structure in $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays [8]. The exotic character of this structure, with the minimal quark content of $u u d c \bar{c}$, was demonstrated in a nearly model-independent way in Ref. [9], where it was shown that the $J / \psi p$ mass $\left(m_{J / \psi} p\right)$ peak near 4450 MeV was too narrow to be accounted for by $\Lambda^{*} \rightarrow p K^{-}$ reflections (Λ^{*} denotes a generic Λ excitation), reinforcing the results from the earlier model-dependent six-dimensional amplitude analysis of invariant masses and decay angles describing the Λ_{b}^{0} decay in the same data [8]. Even though not apparent from the $m_{J / \psi_{p}}$ distribution, the amplitude analysis also required a second broad $J / \psi p$ state to obtain a good description of the data, which peaked at $4380 \pm 8 \pm 29 \mathrm{MeV}$ with a width of $205 \pm 18 \pm 86 \mathrm{MeV}$ and a fit fraction of $(8.4 \pm 0.7 \pm 4.2) \%$.

The LHCb $6 \mathrm{fb}^{-1}$ Run 2 LHC data at 13 TeV , together with the improvements in the data selection for both runs, resulted in a nine-fold increase in the number of reconstructed $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$ decays [10]. When fit with the same six-dimensional amplitude model, the enlarged data sample gives consistent results for the $P_{c}(4450)^{+}$and $P_{c}(4380)^{+}$parameters, corroborating the compatibility of the data samples. However, the two-state interpretation of the data is contradicted by the observation of new narrow $J / \psi p$ structures which are too faint to have been significant in the Run 1 data analysis. Second horizontal band is observed in the Dalitz plot (Fig. 85.1) near 4312 MeV in the $J / \psi p$ mass. The 4450 MeV structure also appears to consist of two narrower peaks at 4440 and 4457 MeV . Performing a rigorous six-dimensional amplitude analysis of these faint $J / \psi p$ structures is challenging and has not been accomplished yet. Fortunately, the newly observed peaks are so narrow that it is not necessary to construct an amplitude model to prove that these states are not artifacts of interfering Λ^{*} resonances, as was previously demonstrated in Ref. [9]. Their masses and widths have been characterized by the LHCb (see Table 85.1) from one-dimensional fits to $J / \psi p$ mass distributions, with different levels of suppression of the Λ^{*} contributions, which peak at the lower $p K^{-}$masses (Fig. 85.1). Such analysis is not sensitive to any broad $J / \psi p$ contributions like $P_{c}(4380)^{+}$. The histograms analyzed by the LHCb are available in tabular form at https://www.hepdata.net/record/89271.

The fit chosen by the LHCb for the central mass and width values is displayed in Fig. 85.2. The $P_{c}(4312)^{+}$state peaks right below the $\Sigma_{c}^{+} \bar{D}^{0}$ threshold and has statistical significance over 7.6σ. The $P_{c}(4457)^{+}$state peaks right below the $\Sigma_{c}^{+} \bar{D}^{* 0}$ threshold, while the $P_{c}(4440)^{+}$state peaks about 20 MeV below it. The significance of the two-peak versus one-peak hypothesis for the 4450 MeV structure is over 5.4σ, rendering the single peak in-

Figure 85.1: Dalitz plot distributions for $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays as observed by LHCb.
terpretation of this region obsolete. The six-dimensional amplitude analysis reported in Ref. [8], which provided evidence for the $P_{c}(4380)^{+}$state, is obsolete since it used the single $P_{c}(4450)^{+}$ state and it lacked the $P_{c}(4312)^{+}$state. Therefore, the previously reported evidence for the $P_{c}(4380)^{+}$state is weakened, but not contradicted, since the new one-dimensional analysis by LHCb is not sensitive to wide P_{c}^{+}states. Even if this state exists, any preferences for its quantum numbers [8], which were reported without statistical or systematic significances, are even more uncertain now. An in-depth discussion of the relevant issues is provided in Supplemental Material of Ref. [10]. The LHCb results from the six-dimensional amplitude analysis of the Cabibbo suppressed channel $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$[11], which contain a statistically marginal evidence for the sum of the P_{c}^{+}and the $Z_{c}(4200)^{-}$contributions, took extensive input from Ref. [8], and should be treated with caution until the both amplitude analyses are completed on the enlarged data sets.

Figure 85.2: Fit to the $J / \psi p$ mass distribution, in which events were weighted to suppress $\Lambda^{*} \rightarrow p K^{-}$backgrounds, of three BreitWigner functions and a sixth-order polynomial background. This fit was used to determine the central values of the masses and widths of the P_{c}^{+}states reported by LHCb. The mass thresholds for the $\Sigma_{c}^{+} \bar{D}^{0}$ and $\Sigma_{c}^{+} \bar{D}^{* 0}$ final states are superimposed.

While $\Sigma_{c} \bar{D}^{(*)}$ states had been predicted [12-15] before the first

Table 85.1: Summary of the narrow P_{c}^{+}properties, interpreted as Breit-Wigner resonances. The central values are based on the fit displayed in Fig. 85.2.

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}](95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-}^{+}+3.7(<27)$	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+}(<49)$	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+} \quad(<20)$	$0.53 \pm 0.16_{-0.13}^{+0.15}$

LHCb results [8], after these results became known, many theoretical groups interpreted the $P_{C}(4450)^{+}$and $P_{c}(4380)^{+}$states in terms of diquarks and triquarks as building blocks of a compact pentaquark [16-22], or even of states below the lowest threshold for spontaneous dissociation [23]. In the first implementation of this approach [16], the pentaquark mass splitting was generated mostly by the change of angular momentum between the subcomponents (L) from zero to one, which would also make the heavier state narrower and of opposite parity. Explicit modeling of multiquark systems [24] questions if centrifugal barrier factor provides enough width suppression via spatial separation of c and \bar{c} quarks at these masses, as the phase space for $J / \psi p$ decay is very large (more than 400 MeV). Also, the observed mass splitting was too small to be only due to the mechanism proposed in Ref. [16] and required fine-tuning of such models. A variation of this model, in which the heavy ($c u$) diquark couples with heavy \bar{c} to form colored triquark attracting the light diquark (ud), has been re-implemented for the narrow P_{c}^{+}states [25]. In this model, the $P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$states are accommodated via spinorbit interactions for the $L=1$ states, while the $P_{c}(4312)^{+}$is one of the $L=0$ states. However, the mass prediction for the latter is off by $(-72 \pm 29) \mathrm{MeV}[25]$. This work has recently been extended to $S U(3)_{F}$ [26]. The width dilemma becomes more severe in view of the narrow widths of the newly observed states (Table 85.1), especially for the $L=0 P_{c}(4312)^{+}$state, and requires a different origin of potential barrier between c and \bar{c} than angular momentum [25,27], which remains a subject of theoretical controversy.

More effective width suppression mechanism is offered by a loosely bound charmed baryon-anticharmed meson molecular model, in which c and \bar{c} can be separated by much larger distances, resulting in a smaller probability of them getting close enough to each other in order to make a J / ψ. Since molecular binding energy cannot be large, such molecules are in S-wave and their masses must be near the sum of the baryon and meson masses [15]. The mass coincidence of the $P_{c}(4312)^{+}$and of $P_{c}(4457)^{+}$states, with the two related thresholds, $\Sigma_{c}^{+} \bar{D}^{0}$ and $\Sigma_{c}^{+} \bar{D}^{* 0}$, provides very strong experimental evidence in favor of this interpretation. Given how close $P_{c}(4312)^{+}$is to the $\Sigma_{c}^{+} \bar{D}^{0}$ threshold, it might be a virtual rather than a bound state [28]. It is worth stressing that other baryon-meson combinations, $\Lambda_{c}^{(*)+} \bar{D}^{(*) 0}$ and $\chi_{c J} p$ are not expected to bind $[12,29]$. Since the spins of Σ_{c}^{+}and of $\bar{D}^{* 0}$ can be combined in two different ways, the third narrow $P_{c}(4440)^{+}$peak also finds natural explanation in this model, and cannot be a virtual state since it is sufficiently below the $\Sigma_{c}^{+} \bar{D}^{* 0}$ threshold. Additional states at, or below, the $\Sigma_{c}^{*+} \bar{D}$ and $\Sigma_{c}^{*+} \bar{D}^{*}$ thresholds, are expected [30-32]. Since Σ_{c}^{*+} width is likely around 15 MeV [33], more than the width of either $P_{c}(4312)^{+}$or $P_{c}(4457)^{+}$, it is important to keep in mind that a molecule's width cannot be smaller than the sum of its constituents' widths [34-36]. For a recent review on hadronic molecules, see [37].

It is useful to consider the $P_{c}(4312)^{+}, P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$narrow pentaquarks together with several analogous exotic states with hidden charm and bottom in the meson sector. This provides additional significant motivation for the molecular model. At least five exotic mesons are close to thresholds of two heavy-light mesons: $X(3872)$ [38-41], $Z_{b}(10610)$ and $Z_{b}(10650)$ in the bottomonium sector [42-46] and $Z_{c}(3900)$ [47-51] and $Z_{C}(4020 / 4025)$ [52-54] in the charmonium sector (see Table II in Ref. [55]; for reviews of experimental information see Ref. [56,57], as well as Spectroscopy of Mesons Containing Two Heavy Quarks and Non- $q \bar{q}$ Mesons in Ref. [33]). These states share several important features: a) their masses are near thresholds and their
spin and parity correspond to S-wave combination of the two mesons; b) they are very narrow, despite very large phase space for decay into quarkonium $+\operatorname{pion}(\mathrm{s})$; c) the branching fractions for "fall apart" mode into two mesons are much larger than branching fractions for decay into quarkonium and pion(s). So far, there is no experimental evidence for states at two pseudoscalar thresholds ($D \bar{D}$ and $B \bar{B}$), implying that pseudoscalar exchange is essential for binding in meson-meson systems.

The above provide a strong hint that these states are deuteronlike loosely bound states of two heavy mesons [58-66]. It is then natural to conjecture that similar bound states might exist of two heavy baryons $[67,68]$, or a meson and a baryon or a baryon and an antibaryon, leading to a rather accurate prediction of the $P_{c}(4457)^{+}$mass as $3 / 2^{-} \Sigma_{c} \bar{D}^{*}$ molecule (the mass threshold is 4462.4 MeV) [15, 55], following similar predictions obtained in a wider framework of doubly heavy baryon-meson hadronic molecules, which might include mixtures of various two-hadron states $[12-14,29]$. However, single pion exchange is not possible in $\Sigma_{c}^{+} \bar{D}^{0}$ system, thus the existence of $P_{c}(4312)^{+}$points to importance of vector or two-pion exchanges in baryon-meson molecules. Two-pion exchange in $D \bar{D}$ system is highly suppressed, because the intermediate state is $D^{*} \bar{D}^{*}$, which is 282 MeV heavier than $D \bar{D}$. On the other hand, there is little suppression in the $\Sigma_{c} \bar{D}$ system, because the dominant intermediate state is $\Lambda_{c} \bar{D}^{*}$ which is just 25 MeV lighter than $\Sigma_{c} \bar{D}$ [69]. In a generic hadronic molecule it is essential that the two hadrons are heavy, in order to minimize the repulsive kinetic energy $[67,68,70]$.

Following the initial LHCb discovery [8], several groups carried out a detailed analysis of the P_{c}^{+}states as hadronic molecules [71-80] followed by further analysis [32,81-105] after the updated LHCb results [10]. Very recently partial widths of all the allowed decay channels for the P_{c} states have been estimated within the molecular picture [106]. The most striking result is that $P_{c}(4312)$ decays are totally dominated by the $\bar{D}^{*} \Lambda_{c}$ channel. This channel is also expected to be very prominent in decays of $P_{c}(4440)$ and $P_{c}(4457)$.

The P_{c} states have also been-interpreted as so called hadrocharmonium [107], a bound state of relatively compact charmonium states with light hadronic matter. It was proposed that $P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$are spin-split $\psi(2 S) p$ bound states with $J^{P}=\frac{1}{2}^{-}$and $\frac{3}{2}^{-}$, while $P_{c}(4312)^{+}$is a $\chi_{c 0} p$ bound state with $J^{P}=\frac{1}{2}^{+}$[108]. While very interesting from theoretical point of view, it is not at all clear why the binding energies between charmonia and the nucleon should conspire to produce states so close to the $\Sigma_{c} \bar{D}$ and $\Sigma_{c} \bar{D}^{*}$ thresholds. Moreover, the predicted widths of $P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$are too big by a factor \sim $2-3$. One should also keep in mind that the molecular and hadrocharmonium pictures provide opposite predictions for the parity of $P_{c}(4312)^{+}$. In principle LHCb can check the spin and parity through partial wave analysis, but at present it is not known if systematic uncertainties can be sufficiently reduced to make such an analysis conclusive.

Shortly after the initial experimental discovery it was conjectured that the $P_{c}(4450)^{+}$could be due to coincidence with the $\chi_{c 1} p$ threshold, at which peaking can be induced via so called triangle singularity [109-112]. These explanations are no longer popular, since the $P_{c}(4440)^{+}$mass is not at any threshold and the $P_{c}(4312)^{+}$and $P_{c}(4457)^{+}$peak slightly below the $\Sigma_{c}^{+} \bar{D}^{0}$ and $\Sigma_{c}^{+} \bar{D}^{* 0}$ thresholds. The $P_{c}(4457)^{+}$mass is exactly at $\Lambda_{c}^{*+} \bar{D}^{0}$ thresholds, but the LHCb has demonstrated that the observed peaking is narrower in the data than expected from the trianglediagram when a realistic width of the excited D_{s}^{-}state exchanged
in the triangle is used (Supplemental Material in Ref. [10]).
More extensive pre-2019 reviews of some of the theoretical issues can be found in Refs. [113,114]. Two recent relevant reviews are Refs. $[115,116]$.

So far the P_{c}^{+}states have been observed by only one experiment in only one channel. It is essential to explore other possible experimental channels, such as $P_{c} \rightarrow \Lambda_{c} \bar{D}^{(*)}, \eta_{c} p$. These channels are however much more experimentally challenging than $P_{c} \rightarrow J / \psi p$. Proposals have also been made to search for heavy pentaquarks in photo-production [117-124]. Ref. [125] discusses photoproduction within the string-junction physical picture of the pentaquarks. Photoproduction is also related to recent work on $J / \psi\left(\eta_{c}\right) N$ scattering on the lattice [126] and on computation of $J / \psi\left(\eta_{c}\right) N$ and $\Upsilon\left(\eta_{b}\right) N$ cross sections [127]). In addition, pentaquark production has been discussed in the context of antiproton-deuterium collisions [128], of heavy ion collisions at LHC [129], in $p A$ collisions [130] and in pion-induced processes [131-133]. Recently, the GlueX Collaboration reported negative search results for the P_{c}^{+} states in photo-production at JLAB [134]. Within the large experimental errors and considerable theoretical model dependence these results do not contradict the molecular interpretations of the narrow P_{c}^{+}states. It was recently suggested to determine the pentaquark photo-couplings and branching ratios by measuring the polarization transfer between the incident photon and the outgoing proton in the exclusive photo-production of J / ψ near threshold [135].

References

[1] T. G. Trippe et al. (Particle Data Group), Rev. Mod. Phys. 48, S1 (1976), [Erratum: Rev. Mod. Phys.48,497(1976)].
[2] K. Hikasa et al. (Particle Data Group), Phys. Rev. D45, S1 (1992), [Erratum: Phys. Rev.D46,5210(1992)].
[3] M. Praszalowicz, Skyrmions and Anomalies, p.112, M. Jezabek Ed., World Scientific Publishing (1987), ISBN 9971503506.
[4] D. Diakonov, V. Petrov and M. V. Polyakov, Z. Phys. A359, 305 (1997), [hep-ph/9703373].
[5] H. Weigel, Eur. Phys. J. A2, 391 (1998), [hep-ph/9804260].
[6] K. H. Hicks, Eur.Phys.J. H37, 1 (2012).
[7] W. M. Yao et al. (Particle Data Group), J. Phys. G33, 1 (2006).
[8] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), [arXiv:1507.03414].
[9] R. Aaij et al. (LHCb), Phys. Rev. Lett. 117, 8, 082002 (2016), [arXiv:1604.05708].
[10] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 22, 222001 (2019), [arXiv:1904.03947].
[11] R. Aaij et al. (LHCb), Phys. Rev. Lett. 117, 8, 082003 (2016), [Addendum: Phys. Rev. Lett.118,119901(2017)], [arXiv:1606.06999].
[12] Z.-C. Yang et al., Chin. Phys. C36, 6 (2012), [arXiv:1105.2901].
[13] J.-J. Wu et al., Phys. Rev. Lett. 105, 232001 (2010), [arXiv:1007.0573].
[14] J.-J. Wu, T. S. H. Lee and B. S. Zou, Phys. Rev. C85, 044002 (2012), [arXiv:1202.1036].
[15] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 12, 122001 (2015), [arXiv:1506.06386].
[16] L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B749, 289 (2015), [arXiv:1507.04980].
[17] R. F. Lebed, Phys. Lett. B749, 454 (2015), [arXiv:1507.05867].
[18] V. V. Anisovich et al. (2015), [arXiv:1507.07652].
[19] G.-N. Li, X.-G. He and M. He, JHEP 12, 128 (2015), [arXiv:1507.08252].
[20] R. Ghosh, A. Bhattacharya and B. Chakrabarti (2015), [arXiv:1508.00356].
[21] Z.-G. Wang, Eur. Phys. J. C76, 2, 70 (2016), [arXiv:1508.01468].
[22] R. Zhu and C.-F. Qiao, Phys. Lett. B756, 259 (2016), [arXiv:1510.08693].
[23] J. M. Richard, A. Valcarce and J. Vijande, Phys. Lett. B774, 710 (2017), [arXiv:1710.08239].
[24] E. Hiyama et al., Phys. Rev. C98, 4, 045208 (2018), [arXiv:1803.11369].
[25] A. Ali and A. Y. Parkhomenko, Phys. Lett. B793, 365 (2019), [arXiv:1904.00446].
[26] A. Ali et al. (2019), [arXiv:1907.06507].
[27] L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B778, 247 (2018), [arXiv:1712.05296].
[28] C. Fernandez-Ramirez et al. (JPAC), Phys. Rev. Lett. 123, 9, 092001 (2019), [arXiv:1904.10021].
[29] W. L. Wang et al., Phys. Rev. C84, 015203 (2011), [arXiv:1101.0453].
[30] C. W. Xiao, J. Nieves and E. Oset, Phys. Rev. D88, 056012 (2013), [arXiv:1304.5368].
[31] C. W. Xiao, J. Nieves and E. Oset, Phys. Rev. D100, 1, 014021 (2019), [arXiv:1904.01296].
[32] M.-Z. Liu et al., Phys. Rev. Lett. 122, 24, 242001 (2019), [arXiv:1903.11560].
[33] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[34] C. Hanhart, Yu. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D81, 094028 (2010), [arXiv:1002.4097].
[35] A. A. Filin et al., Phys. Rev. Lett. 105, 019101 (2010), [arXiv:1004.4789].
[36] F.-K. Guo and U.-G. Meissner, Phys. Rev. D84, 014013 (2011), [arXiv:1102.3536].
[37] F.-K. Guo et al., Rev. Mod. Phys. 90, 1, 015004 (2018), [arXiv:1705.00141].
[38] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003), [hep-ex/0309032].
[39] D. Acosta et al. (CDF), Phys. Rev. Lett. 93, 072001 (2004), [hep-ex/0312021].
[40] B. Aubert et al. (BaBar), Phys. Rev. D71, 071103 (2005), [hep-ex/0406022].
[41] V. M. Abazov et al. (D0), Phys. Rev. Lett. 93, 162002 (2004), [hep-ex/0405004].
[42] M. Karliner and H. J. Lipkin (2008), [arXiv:0802.0649].
[43] K. F. Chen et al. (Belle), Phys. Rev. Lett. 100, 112001 (2008), [arXiv:0710.2577].
[44] A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001 (2012), [arXiv:1110.2251].
[45] P. Krokovny et al. (Belle), Phys. Rev. D88, 5, 052016 (2013), [arXiv:1308.2646].
[46] A. Garmash et al. (Belle), Phys. Rev. D91, 7, 072003 (2015), [arXiv:1403.0992].
[47] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 110, 252001 (2013), [arXiv:1303.5949].
[48] Z. Q. Liu et al. (Belle), Phys. Rev. Lett. 110, 252002 (2013), [arXiv:1304.0121].
[49] T. Xiao et al., Phys. Lett. B727, 366 (2013), [arXiv:1304.3036].
[50] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 2, 022001 (2014), [arXiv:1310.1163].
[51] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 11, 112003 (2015), [arXiv:1506.06018].
[52] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 111, 24, 242001 (2013), [arXiv:1309.1896].
[53] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 113, 21, 212002 (2014), [arXiv:1409.6577].
[54] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 112, 13, 132001 (2014), [arXiv:1308.2760].
[55] M. Karliner, Acta Phys. Polon. B47, 117 (2016).
[56] M. Karliner, J. L. Rosner and T. Skwarnicki, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), [arXiv:1711.10626].
[57] S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, 1, 015003 (2018), [arXiv:1708.04012].
[58] M. B. Voloshin and L. B. Okun, JETP Lett. 23, 333 (1976), [Pisma Zh. Eksp. Teor. Fiz.23,369(1976)].
[59] A. De Rujula, H. Georgi and S. Glashow, Phys. Rev. Lett. 38, 317 (1977).
[60] N. A. Tornqvist, Phys. Rev. Lett. 67, 556 (1991).
[61] N. A. Tornqvist, Z. Phys. C61, 525 (1994), [hepph/9310247].
[62] N. A. Tornqvist, Phys. Lett. B590, 209 (2004), [hepph/0402237].
[63] C. E. Thomas and F. E. Close, Phys. Rev. D78, 034007 (2008), [arXiv:0805.3653].
[64] M. Suzuki, Phys. Rev. D72, 114013 (2005), [hepph/0508258].
[65] S. Fleming et al., Phys. Rev. D76, 034006 (2007), [hepph/0703168].
[66] T. E. O. Ericson and G. Karl, Phys. Lett. B309, 426 (1993).
[67] M. Karliner, H. J. Lipkin and N. A. Tornqvist, in "Proceedings, 14th International Conference on Hadron spectroscopy (Hadron 2011)," (2011), [arXiv:1109.3472], URL http://inspirehep.net/record/927616/files/arXiv: 1109.3472.pdf.
[68] M. Karliner, H. J. Lipkin and N. A. Tornqvist, Nucl. Phys. Proc. Suppl. 225-227, 102 (2012).
[69] M. Karliner, "Open Questions in Heavy Exotics,"invited talk at Bled 2019 Mini-Workshop, Bled, Slovenia, July 15-19, 2019, http://www-f1.ijs.si/Bled2019/Karliner_Bled2019.pdf ;
M. Karliner and J. L. Rosner, in preparation.
[70] X.-Q. Li and X. Liu, Eur. Phys. J. C74, 12, 3198 (2014), [arXiv:1409.3332].
[71] R. Chen et al., Phys. Rev. Lett. 115, 13, 132002 (2015), [arXiv:1507.03704].
[72] H.-X. Chen et al., Phys. Rev. Lett. 115, 17, 172001 (2015), [arXiv:1507.03717].
[73] L. Roca, J. Nieves and E. Oset, Phys. Rev. D92, 9, 094003 (2015), [arXiv:1507.04249].
[74] J. He, Phys. Lett. B753, 547 (2016), [arXiv:1507.05200].
[75] H. Huang et al., Eur. Phys. J. C76, 11, 624 (2016), [arXiv:1510.04648].
[76] L. Roca and E. Oset, Eur. Phys. J. C76, 11, 591 (2016), [arXiv:1602.06791].
[77] Q.-F. Lü and Y.-B. Dong, Phys. Rev. D93, 7, 074020 (2016), [arXiv:1603.00559].
[78] Y. Shimizu, D. Suenaga and M. Harada, Phys. Rev. D93, 11, 114003 (2016), [arXiv:1603.02376].
[79] C.-W. Shen et al., Nucl. Phys. A954, 393 (2016), [arXiv:1603.04672].
[80] Y. Yamaguchi et al., Phys. Rev. D96, 11, 114031 (2017), [arXiv:1709.00819].
[81] J. F. Giron, R. F. Lebed and C. T. Peterson, JHEP 05, 061 (2019), [arXiv:1903.04551].
[82] R. Chen et al., Phys. Rev. D100, 1, 011502 (2019), [arXiv:1903.11013].
[83] F.-K. Guo et al., Phys. Rev. D99, 9, 091501 (2019), [arXiv:1903.11503].
[84] J. He, Eur. Phys. J. C79, 5, 393 (2019), [arXiv:1903.11872].
[85] H. Huang, J. He and J. Ping (2019), [arXiv:1904.00221].
[86] Y. Shimizu, Y. Yamaguchi and M. Harada (2019), [arXiv:1904.00587].
[87] Z.-H. Guo and J. A. Oller, Phys. Lett. B793, 144 (2019), [arXiv:1904.00851].
[88] C.-J. Xiao et al., Phys. Rev. D100, 1, 014022 (2019), [arXiv:1904.00872].
[89] Z.-G. Wang (2019), [arXiv:1905.02892].
[90] L. Meng et al., Phys. Rev. D100, 1, 014031 (2019), [arXiv:1905.04113].
[91] F. Giannuzzi, Phys. Rev. D99, 9, 094006 (2019), [arXiv:1903.04430].
[92] Q. Wu and D.-Y. Chen (2019), [arXiv:1906.02480].
[93] C.-W. Shen, J.-J. Wu and B.-S. Zou, Phys. Rev. D100, 5, 056006 (2019), [arXiv:1906.03896].
[94] F. Stancu (2019), [arXiv:1902.07101].
[95] C. W. Xiao, J. Nieves and E. Oset (2019), [arXiv:1906.09010].
[96] M. B. Voloshin, Phys. Rev. D100, 3, 034020 (2019), [arXiv:1907.01476].
[97] S. Sakai, H.-J. Jing and F.-K. Guo (2019), [arXiv:1907.03414].
[98] Z.-G. Wang and X. Wang (2019), [arXiv:1907.04582].
[99] Y. Yamaguchi et al. (2019), [arXiv:1907.04684].
[100] Y.-J. Xu et al. (2019), [arXiv:1907.05097].
[101] M. Pavon Valderrama (2019), [arXiv:1907.05294].
[102] F.-Z. Peng et al. (2019), [arXiv:1907.05322].
[103] M.-Z. Liu et al. (2019), [arXiv:1907.06093].
[104] Y.-W. Pan et al. (2019), [arXiv:1907.11220].
[105] T. J. Burns and E. S. Swanson (2019), [arXiv:1908.03528].
[106] Y.-H. Lin and B.-S. Zou, Phys. Rev. D100, 5, 056005 (2019), [arXiv:1908.05309].
[107] S. Dubynskiy and M. B. Voloshin, Phys. Lett. B666, 344 (2008), [arXiv:0803.2224].
[108] M. I. Eides, V. Y. Petrov and M. V. Polyakov (2019), [arXiv:1904.11616].
[109] F.-K. Guo et al., Phys. Rev. D92, 7, 071502 (2015), [arXiv:1507.04950].
[110] U.-G. Meissner and J. A. Oller, Phys. Lett. B751, 59 (2015), [arXiv:1507.07478].
[111] X.-H. Liu, Q. Wang and Q. Zhao, Phys. Lett. B757, 231 (2016), [arXiv:1507.05359].
[112] M. Mikhasenko (2015), [arXiv:1507.06552].
[113] T. J. Burns, Eur. Phys. J. A51, 11, 152 (2015), [arXiv:1509.02460].
[114] H.-X. Chen et al., Phys. Rept. 639, 1 (2016), [arXiv:1601.02092].
[115] Y.-R. Liu et al., Prog. Part. Nucl. Phys. 107, 237 (2019), [arXiv:1903.11976].
[116] N. Brambilla et al. (2019), [arXiv:1907.07583].
[117] Y. Huang et al., J. Phys. G41, 11, 115004 (2014), [arXiv:1305.4434].
[118] Q. Wang, X.-H. Liu and Q. Zhao, Phys. Rev. D92, 034022 (2015), [arXiv:1508.00339].
[119] V. Kubarovsky and M. B. Voloshin, Phys. Rev. D92, 3, 031502 (2015), [arXiv:1508.00888].
[120] M. Karliner and J. L. Rosner, Phys. Lett. B752, 329 (2016), [arXiv:1508.01496].
[121] A. N. Hiller Blin et al., Phys. Rev. D94, 3, 034002 (2016), [arXiv:1606.08912].
[122] X. Cao and J.-p. Dai, Phys. Rev. D100, 5, 054033 (2019), [arXiv:1904.06015].
[123] X.-Y. Wang, X.-R. Chen and J. He, Phys. Rev. D99, 11, 114007 (2019), [arXiv:1904.11706].
[124] J.-J. Wu, T. S. H. Lee and B.-S. Zou, Phys. Rev. C100, 3, 035206 (2019), [arXiv:1906.05375].
[125] G. C. Rossi and G. Veneziano (2019), [arXiv:1909.01753].
[126] U. Skerbis and S. Prelovsek, Phys. Rev. D99, 9, 094505 (2019), [arXiv:1811.02285].
[127] C. W. Xiao and U. G. Meissner, Phys. Rev. D92, 11, 114002 (2015), [arXiv:1508.00924].
[128] M. B. Voloshin, Phys. Rev. D99, 9, 093003 (2019), [arXiv:1903.04422].
[129] R.-Q. Wang et al., Phys. Rev. C94, 4, 044913 (2016), [arXiv:1601.02835].
[130] I. Schmidt and M. Siddikov, Phys. Rev. D93, 9, 094005 (2016), [arXiv:1601.05621].
[131] Q.-F. Lü et al., Phys. Rev. D93, 3, 034009 (2016), [arXiv:1510.06271].
[132] X.-H. Liu and M. Oka, Nucl. Phys. A954, 352 (2016), [arXiv:1602.07069].
[133] X.-Y. Wang et al., Phys. Lett. B797, 134862 (2019), [arXiv:1906.04044].
[134] A. Ali et al. (GlueX), Phys. Rev. Lett. 123, 7, 072001 (2019), [arXiv:1905.10811].
[135] D. Winney et al. (JPAC), Phys. Rev. D100, 3, 034019 (2019), [arXiv:1907.09393].

Hypothetical Particles and Concepts

86. Extra dimensions (rev.) 889
87. W^{\prime}-boson searches (rev.) 897
88. Z^{\prime}-boson searches (rev.) 900
89. Supersymmetry: theory (rev.) 905
90. Supersymmetry: experiment (rev.) 923
91. Axions and other similar particles (rev.) 939
92. Quark and lepton compositeness, searches for (rev.) . . . 953
93. Dynamical electroweak symmetry breaking: 958 implications of the $H(0)$ (rev.)
94. Grand unified theories (rev.) 971
95. Leptoquarks (rev.) 986
96. Magnetic monopoles (rev.) 989

86. Extra Dimensions

Revised August 2019 by Y. Gershtein (Rutgers U.) and A. Pomarol (U. Autònoma de Barcelona; IFAE).

86.1 Introduction

Proposals for a spacetime with more than three spatial dimensions date back to the 1920s, mainly through the work of Kaluza and Klein, in an attempt to unify the forces of nature [1]. Although their initial idea failed, the formalism that they and others developed is still useful nowadays. Around 1980, string theory proposed again to enlarge the number of space dimensions, this time as a requirement for describing a consistent theory of quantum gravity. The extra dimensions were supposed to be compactified at a scale close to the Planck scale, and thus not testable experimentally in the near future.

A different approach was given by Arkani-Hamed, Dimopoulos, and Dvali (ADD) in their seminal paper in 1998 [2], where they showed that the weakness of gravity could be explained by postulating two or more extra dimensions in which only gravity could propagate. The size of these extra dimensions should range between roughly a millimeter and $\sim 1 / \mathrm{TeV}$, leading to possible observable consequences in current and future experiments. A year later, Randall and Sundrum (RS) [3] found a new possibility using a warped geometry, postulating a five-dimensional Anti-de Sitter (AdS) spacetime with a compactification scale of order $1 / \mathrm{TeV}$. The origin of the smallness of the electroweak scale versus the Planck scale was explained by the gravitational redshift factor present in the warped AdS metric. As in the ADD model, originally only gravity was assumed to propagate in the extra dimensions, although it was soon clear that this was not necessary in warped extra-dimensions and also the SM gauge fields [4,5] and SM fermions $[6,7]$ could propagate in the five-dimensional spacetime.

The physics of warped extra-dimensional models has an alternative interpretation by means of the AdS/CFT correspondence [8-10]. Models with warped extra dimensions are related to four-dimensional strongly-interacting theories, allowing an understanding of the properties of five-dimensional fields as those of four-dimensional composite states [11]. This approach has opened new directions for tackling outstanding questions in particle physics, such as the flavor problem, grand unification, and the origin of electroweak symmetry breaking or supersymmetry breaking.

86.1.1 Experimental Constraints

Constraints on extra-dimensional models arise from astrophysical and cosmological considerations, tabletop experiments exploring gravity at sub-mm distances, and collider experiments. Collider limits on extra-dimensional models are dominated by LHC results, which can be found on the public WWW pages of ATLAS [12] and CMS [13]. This review includes the most recent limits, most of which are published results based on $36 \mathrm{fb}^{-1} \mathrm{LHC}$ data collected in 2015-16 at a center-of-mass energy of 13 TeV and legacy results from $20 \mathrm{fb}^{-1}$ of 8 TeV data collected in Run 1. In addition, there are a few published and preliminary results based on the full Run 2 datasets. For most of the models, Run 2 results surpass the sensitivity of Run 1 , even in the cases when the integrated luminosity is smaller.

86.1.2 Kaluza-Klein Theories

Field theories with compact extra dimensions can be written as theories in ordinary four dimensions (4D) by performing a Kaluza-Klein (KK) reduction. As an illustration, consider a simple example, namely a field theory of a complex scalar in flat five-dimensional (5D) spacetime. The action will be given by ${ }^{1}$

$$
\begin{equation*}
S_{5}=-\int d^{4} x d y M_{5}\left[\left|\partial_{\mu} \phi\right|^{2}+\left|\partial_{y} \phi\right|^{2}+\lambda_{5}|\phi|^{4}\right] \tag{86.1}
\end{equation*}
$$

where y refers to the extra (fifth) dimension. A universal scale M_{5} has been extracted in front of the action in order to keep the

[^84]5D field with the same mass-dimension as in 4D. This theory is perturbative for energies $E \lesssim \ell_{5} M_{5} / \lambda_{5}$ where $\ell_{5}=24 \pi^{3}$ [14].

Let us now consider that the fifth dimension is compact with the topology of a circle S^{1} of radius R, which corresponds to the identification of y with $y+2 \pi R$. In such a case, the 5D complex scalar field can be expanded in a Fourier series:

$$
\begin{equation*}
\phi(x, y)=\frac{1}{\sqrt{2 \pi R M_{5}}} \sum_{n=-\infty}^{\infty} e^{i n y / R} \phi^{(n)}(x) \tag{86.2}
\end{equation*}
$$

that, inserted in Eq. (86.1) and integrating over y, gives

$$
\begin{equation*}
S_{5}=S_{4}^{(0)}+S_{4}^{(n)} \tag{86.3}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{4}^{(0)}=-\int d^{4} x\left[\left|\partial_{\mu} \phi^{(0)}\right|^{2}+\lambda_{4}\left|\phi^{(0)}\right|^{4}\right] \tag{86.4}
\end{equation*}
$$

and,

$$
\begin{equation*}
S_{4}^{(n)}=-\int d^{4} x \sum_{n \neq 0}\left[\left|\partial_{\mu} \phi^{(n)}\right|^{2}+\left(\frac{n}{R}\right)^{2}\left|\phi^{(n)}\right|^{2}\right] \tag{86.5}
\end{equation*}
$$

+ quartic interactions.
The $n=0$ mode self-coupling is given by

$$
\begin{equation*}
\lambda_{4}=\frac{\lambda_{5}}{2 \pi R M_{5}} \tag{86.6}
\end{equation*}
$$

The above action corresponds to a 4 D theory with a massless scalar $\phi^{(0)}$, referred to as the zero mode, and an infinite tower of massive modes $\phi^{(n)}$ with $n>0$, known as KK modes. The KK reduction thus allows a treatment of 5D theories as 4D field theories with an infinite number of fields. At energies smaller than $1 / R$, the KK modes can be neglected, leaving the zero-mode action of Eq. (86.4). The strength of the interaction of the zeromode, given by Eq. (86.6), decreases as R increases. Thus, for a large extra dimension $R \gg 1 / M_{5}$, the massless scalar is very weakly coupled.

86.2 Large Extra Dimensions for Gravity

86.2.1 The ADD Scenario

The ADD scenario [2,15] (for a review see, for example, [16]) assumes a $D=4+\delta$ dimensional spacetime, with δ compactified spatial dimensions. The apparent weakness of gravity arises since it propagates in the higher-dimensional space. The SM is assumed to be localized in a 4 D subspace, a 3 -brane, as can be found in certain string theory constructions $[17,18]$. Gravity is described by the Einstein-Hilbert action in $D=4+\delta$ spacetime dimensions

$$
\begin{equation*}
S_{D}=-\frac{\bar{M}_{D}^{2+\delta}}{2} \int d^{4} x d^{\delta} y \sqrt{-g} \mathcal{R}+\int d^{4} x \sqrt{-g_{\mathrm{ind}}} \mathcal{L}_{\mathrm{SM}} \tag{86.7}
\end{equation*}
$$

where x labels the ordinary four coordinates, y the δ extra coordinates, g refers to the determinant of the D-dimensional metric whose Ricci scalar is defined by \mathcal{R}, and \bar{M}_{D} is called the reduced Planck scale of the D-dimensional theory. In the second term of Eq. (86.7), which gives the gravitational interactions of SM fields, the D-dimensional metric reduces to the induced metric on the 3 -brane where the SM fields propagate. The extra dimensions are assumed to be flat and compactified in a volume V_{δ}. As an example, consider a toroidal compactification of equal radii R and volume $V_{\delta}=(2 \pi R)^{\delta}$. After a KK reduction, one finds that the fields that couple to the SM are the spin-2 gravitational field $G_{\mu \nu}(x, y)$ and a tower of spin-1 KK graviscalars [19]. The graviscalars, however, only couple to SM fields through the trace of the energy-momentum tensor, resulting in weaker couplings to the SM fields. The Fourier expansion of the spin-2 field is given by

$$
\begin{equation*}
G_{\mu \nu}(x, y)=G_{\mu \nu}^{(0)}(x)+\frac{1}{\sqrt{V_{\delta}}} \sum_{\vec{n} \neq 0} e^{i \vec{n} \cdot \vec{y} / R} G_{\mu \nu}^{(\vec{n})}(x) \tag{86.8}
\end{equation*}
$$

where $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{\delta}\right)$ are the extra-dimensional coordinates and $\vec{n}=\left(n_{1}, n_{2}, \ldots, n_{\delta}\right)$. Eq. (86.8) contains a massless state, the 4 D graviton $G_{\mu \nu}^{(0)}$, and its KK tower $G_{\mu \nu}^{(\vec{n})}$ with masses $m_{\vec{n}}^{2}=$ $|\vec{n}|^{2} / R^{2}$. At energies below $1 / R$ the action is that of the zero mode

$$
\begin{equation*}
S_{4}^{(0)}=-\frac{\bar{M}_{D}^{2+\delta}}{2} \int d^{4} x V_{\delta} \sqrt{-g^{(0)}} \mathcal{R}^{(0)}+\int d^{4} x \sqrt{-g_{\mathrm{ind}}^{(0)}} \mathcal{L}_{\mathrm{SM}} \tag{86.9}
\end{equation*}
$$

where we can identify the 4 D reduced Planck mass, $M_{P} \equiv$ $1 / \sqrt{8 \pi G_{N}} \simeq 2.4 \times 10^{18} \mathrm{GeV}$, as a function of the D-dimensional parameters:

$$
\begin{equation*}
M_{P}^{2}=V^{\delta} \bar{M}_{D}^{2+\delta} \equiv R^{\delta} M_{D}^{2+\delta} \tag{86.10}
\end{equation*}
$$

Fixing M_{D} at around the electroweak scale $M_{D} \sim \mathrm{TeV}$ to avoid introducing a new mass scale in the model, Eq. (86.10) gives a prediction for R :

$$
\begin{equation*}
\delta=1,2, \ldots, 6 \rightarrow R \sim 10^{9} \mathrm{~km}, 0.5 \mathrm{~mm}, \ldots, 0.1 \mathrm{MeV}^{-1} \tag{86.11}
\end{equation*}
$$

The option $\delta=1$ is clearly ruled out, as it leads to modifications of Newton's law at solar system distances. However this is not the case for $\delta \geq 2$, and possible observable consequences can be sought in present and future experiments.

Consistency of the model requires a stabilization mechanism for the radii of the extra dimensions, to the values shown in Eq. (86.11). The fact that we need $R \gg 1 / M_{D}$ leads to a new hierarchy problem, the solution of which might require imposing supersymmetry in the extra-dimensional bulk (for the case of two extra dimensions see for example [20]).

86.2.2 Tests of the Gravitational Force Law at Sub-mm Dis-

 tancesThe KK modes of the graviton give rise to deviations from Newton's law of gravitation for distances $\lesssim R$. Such deviations are usually parametrized by a modified Newtonian potential of the form

$$
\begin{equation*}
V(r)=-G_{N} \frac{m_{1} m_{2}}{r}\left[1+\alpha e^{-r / \lambda}\right] \tag{86.12}
\end{equation*}
$$

For a 2-torus compactification, $\alpha=16 / 3$ and $\lambda=R$. Searches for deviations from Newton's law of gravitation have been performed in several experiments. Refs. [21-23] give the present constraints: $R<37 \mu \mathrm{~m}$ at $95 \% \mathrm{CL}$ for $\delta=2$, corresponding to $M_{D}>3.6 \mathrm{TeV}$.

86.2.3 Astrophysical and Cosmological Constraints

The light KK gravitons could be copiously produced in stars, carrying away energy. Ensuring that the graviton luminosity is low enough to preserve the agreement of stellar models with observations provides powerful bounds on the scale M_{D}. The most stringent bound arises from supernova SN1987A, giving $M_{D}>27(2.4) \mathrm{TeV}$ for $\delta=2$ (3) [24]. After a supernova explosion, most of the KK gravitons stay gravitationally trapped in the remnant neutron star. The requirement that neutron stars are not excessively heated by KK decays into photons leads to $M_{D}>1700(76) \mathrm{TeV}$ for $\delta=2$ (3) [25].

Cosmological constraints are also quite stringent [26]. To avoid overclosure of the universe by relic gravitons one needs $M_{D}>7$ TeV for $\delta=2$. Relic KK gravitons decaying into photons contribute to the cosmic diffuse gamma radiation, from which one can derive the bound $M_{D}>100 \mathrm{TeV}$ for $\delta=2$.
We must mention however that bounds coming from the decays of KK gravitons into photons can be reduced if we assume that KK gravitons decay mainly into other non-SM states. This could happen, for example, if there were other 3 -branes with hidden sectors residing on them [15].

86.2.4 Collider Signals

86.2.4.1 Graviton and Other Particle Production

Although each KK graviton has a purely gravitational coupling, suppressed by $1 / M_{P}$, inclusive processes in which one sums over the almost continuous spectrum of available gravitons have cross sections suppressed only by powers of M_{D}. Processes involving gravitons are therefore detectable in collider experiments if $M_{D} \sim \mathrm{TeV}$. A number of experimental searches for evidence of large extra dimensions have been performed at colliders, and interpreted in the context of the ADD model.

One signature arises from direct graviton emission. By making a derivative expansion of Einstein gravity, one can construct an effective theory, valid for energies much lower than M_{D}, and use it to make predictions for graviton-emission processes at colliders [19, 27, 28]. Gravitons produced in the final state would escape detection, giving rise to missing transverse energy $\left(E_{T}\right)$. The results quoted below are 95% CL lower limits on M_{D} for a range of values of δ between 2 and 6 , with more stringent limits corresponding to lower δ values.

At hadron colliders, experimentally sensitive channels include the jet $(j)+E_{T}$ and $\gamma+E_{T}$ final states. CMS (ATLAS) $j+E_{T}$ results with $36 \mathrm{fb}^{-1}$ of 13 TeV data provide limits of $M_{D}>$ $5.3-9.9 \mathrm{TeV}[29]\left(M_{D}>4.8-7.7 \mathrm{TeV}\right.$ [30]). For these analyses, both experiments are assuming leading order (LO) cross sections. Since the effective theory is only valid for energies much less than M_{D}, the results are quoted for the full space, and include the information that suppressing the graviton cross section by a factor M_{D}^{4} / \hat{s}^{2} for $\sqrt{\hat{\hat{s}}}>M_{D}$, where $\sqrt{\hat{s}}$ is the parton-level center-ofmass energy of the hard collision, weakens the limits on M_{D} by a negligible amount for $\delta=2(\sim 3 \%$ for $\delta=6)$. Less stringent limits are obtained by CMS [31] from analysis of $36 \mathrm{fb}^{-1}$ of 13 TeV data in the $\gamma+E_{T}$ final state. The analogous ATLAS search [32] has comparable sensitivity but does not quote ADD interpretation of the results.

In models in which the ADD scenario is embedded in a string theory at the TeV scale [18], we expect the string scale M_{s} to be smaller than M_{D}, and therefore expect production of string resonances at the LHC [33]. A Run 2 result from CMS analyzing the dijet invariant mass distribution for $36 \mathrm{fb}^{-1}$ of 13 TeV data excludes string resonances that decay predominantly to $q+g$ with masses below 7.7 TeV [34]. ATLAS dijet analysis [35] provides their results in the context of model-independent limits on the cross section times acceptance for generic resonances of a variety of possible widths.

86.2.4.2 Virtual graviton effects

One can also search for virtual graviton effects, the calculation of which however depends on the ultraviolet cut-off of the theory and is therefore very model dependent. In the literature, several different formulations exist $[19,28,36]$ for the dimension-eight operator for gravity exchange at tree level:

$$
\begin{equation*}
\mathcal{L}_{8}= \pm \frac{4}{M_{T T}^{4}}\left(T_{\mu \nu} T^{\mu \nu}-\frac{1}{\delta+2} T_{\mu}^{\mu} T_{\nu}^{\nu}\right) \tag{86.13}
\end{equation*}
$$

where $T_{\mu \nu}$ is the energy-momentum tensor and $M_{T T}$ is related to M_{D} by some model-dependent coefficient [37]. The relations with the parametrizations of Refs. [36] and [19] are, respectively, $M_{T T}=M_{S}$ and $M_{T T}=(2 / \pi)^{1 / 4} \Lambda_{T}$. The experimental results below are given as 95% CL lower limits on $M_{T T}$, including in some cases the possibility of both constructive or destructive interference, depending on the sign chosen in Eq. (9).

The most stringent limits arise from LHC analyses of the dijet angular distribution. Using $35.9 \mathrm{fb}^{-1}$ of 13 TeV data, CMS [38] obtains results that correspond to an approximate limit of $M_{T T}>$ 9.1 TeV .

The next most restrictive results come from the analyses of diphoton $\left(M_{T T}>6.1 \mathrm{TeV}\right.$ from ATLAS [39] and $M_{T T}>7.0 \mathrm{TeV}$ from CMS [40]) and dilepton mass spectra $\left(M_{T T}>6.1 \mathrm{TeV}\right.$ from CMS [41]). The complete Run $2\left(139 \mathrm{fb}^{-1}\right)$ analysis of ATLAS di-lepton data [42] does not quote the limits on ADD.

At the one-loop level, gravitons can also generate dimension-six operators with coefficients that are also model dependent. Experimental bounds on these operators can also give stringent constraints on M_{D} [37].

86.2.4.3 Black Hole Production

The physics at energies $\sqrt{s} \sim M_{D}$ is sensitive to the details of the unknown quantum theory of gravity. Nevertheless, in the transplanckian regime, $\sqrt{s} \gg M_{D}$, one can rely on a semiclassical description of gravity to obtain predictions. An interesting feature of transplanckian physics is the creation of black holes [43,44] (for a review see, for example, [45]). A black hole is expected to be formed in a collision in which the impact parameter is smaller
than the Schwarzschild radius [46]:

$$
\begin{equation*}
R_{S}=\frac{1}{M_{D}}\left[\frac{2^{\delta} \pi^{(\delta-3) / 2}}{\delta+2} \Gamma\left(\frac{\delta+3}{2}\right) \frac{M_{B H}}{M_{D}}\right]^{1 /(\delta+1)} \tag{86.14}
\end{equation*}
$$

where $M_{B H}$ is the mass of the black hole, which would roughly correspond to the total energy in the collision. The cross section for black hole production can be estimated to be of the same order as the geometric area $\sigma \sim \pi R_{S}^{2}$. For $M_{D} \sim \mathrm{TeV}$, this gives a production of $\sim 10^{7}$ black holes at the $\sqrt{s}=14 \mathrm{TeV}$ LHC with an integrated luminosity of $30 \mathrm{fb}^{-1}$ [43, 44]. A black hole would provide a striking experimental signature since it is expected to thermally radiate with a Hawking temperature $T_{H}=(\delta+1) /\left(4 \pi R_{S}\right)$, and therefore would evaporate democratically into all SM states. Nevertheless, given the present constraints on M_{D}, the LHC will not be able to reach energies much above M_{D}. This implies that predictions based on the semiclassical approximation could receive sizable modifications from model-dependent quantum-gravity effects.

The most stringent limits on microscopic black holes arise from LHC searches which observed no excesses above the SM background in high-multiplicity final states. The results are usually quoted as model-independent limits on the cross section for new physics in the final state and kinematic region analyzed. These results can then be used to provide constraints of models of lowscale gravity and weakly-coupled string theory. In addition, limits are sometimes quoted on particular implementations of models, which are used as benchmarks to illustrate the sensitivity.

A CMS analysis [47] of multi-object final states using $36 \mathrm{fb}^{-1}$ of 13 TeV data, excludes semiclassical black holes below masses of up to 10.1 TeV for $M_{D}=2 \mathrm{TeV}$ and $\delta=6$. Analogous Run 2 ATLAS analysis [48], using $3.0 \mathrm{fb}^{-1}$ of 13 TeV data, excludes black hole masses up to $9.0-9.7 \mathrm{TeV}$, depending on M_{D}, for $\delta=6$. Another ATLAS search [49] for an excess of events with multiple high transverse momentum objects, including charged leptons and jets, using $3.2 \mathrm{fb}^{-1}$ of 13 TeV data, excludes semiclassical black holes below masses of $\sim 8.7 \mathrm{TeV}$ for $M_{D}=2 \mathrm{TeV}$ and $\delta=6$.

A complementary approach is to look for jet extinction at high transverse momenta, as we expect hard short distance scattering processes to be highly suppressed at energies above M_{D} [50]. The CMS analysis [51] of inclusive jet p_{T} spectrum in $10.7 \mathrm{fb}^{-1}$ of 8 TeV data set a lower limit of 3.3 TeV on the extinction mass scale.

For black hole masses near M_{D}, the semi-classical approximation is not valid, and one could instead expect quantum black holes (QBH) that decay primarily into two-body final states [52]. LHC Run 2 results at 13 TeV provide lower limits on QBH masses of order $2.3-9.0 \mathrm{TeV}$, depending on the details of the model. Searches that consider interpretations in terms of QBH limits include the CMS multi-object analysis [53], ATLAS dijet analysis [35], and different flavor di-lepton analyses at CMS ($e \mu, 36 \mathrm{fb}^{-1}$ at 13 TeV [54]) and ATLAS ($e \mu, e \tau, \mu \tau, 36.1 \mathrm{fb}^{-1}$ at 13 TeV [55]).

In weakly-coupled string models the semiclassical description of gravity fails in the energy range between M_{s} and M_{s} / g_{s}^{2} where stringy effects are important. In this regime one expects, instead of black holes, the formation of string balls, made of highly excited long strings, that could be copiously produced at the LHC for $M_{s} \sim \mathrm{TeV}$ [56], and would evaporate thermally at the Hagedorn temperature giving rise to high-multiplicity events. The same analyses used to search for black holes can be interpreted in the context of string balls. For example, for the case of $\delta=6$ with $M_{s}=M_{D} / 1.26=3 \mathrm{TeV}$, the ATLAS multiple high transverse momentum object analysis [48] excludes string balls with masses below 6.5 to 9.0 TeV for values of $0.2<g_{s}<0.8$. The CMS multi-object analysis [47] studies string ball production in two scenarios, both assuming $\delta=6$. For the constant $g_{s}=0.2$ and $1<M_{s}<3.5 \mathrm{TeV}$ the string ball masses below 7.2 to 9.4 TeV are excluded, while at constant $M_{s}=3.6 \mathrm{TeV}$ and $0.2<g_{s}<0.4$ masses below 7.2 to 8.1 TeV are excluded.

86.3 TeV-Scale Extra Dimensions

86.3.1 Warped Extra Dimensions

The RS model [3] is the most attractive setup of warped extra dimensions at the TeV scale, since it provides an alternative solution to the hierarchy problem. The RS model is based on a 5 D theory with the extra dimension compactified in an orbifold, S^{1} / Z_{2}, a circle S^{1} with the extra identification of y with $-y$. This corresponds to the segment $y \in[0, \pi R]$, a manifold with boundaries at $y=0$ and $y=\pi R$. Let us now assume that this 5 D theory has a cosmological constant in the bulk Λ, and on the two boundaries Λ_{0} and $\Lambda_{\pi R}$:

$$
\begin{align*}
S_{5}= & -\int d^{4} x d y\left\{\sqrt{-g}\left[\frac{1}{2} M_{5}^{3} \mathcal{R}+\Lambda\right]+\sqrt{-g_{0}} \delta(y) \Lambda_{0}\right. \\
& \left.+\sqrt{-g_{\pi R}} \delta(y-\pi R) \Lambda_{\pi R}\right\} \tag{86.15}
\end{align*}
$$

where g_{0} and $g_{\pi R}$ are the values of the determinant of the induced metric on the two respective boundaries. Einstein's equations can be solved, giving in this case the metric

$$
\begin{equation*}
d s^{2}=a(y)^{2} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2}, \quad a(y)=e^{-k y} \tag{86.16}
\end{equation*}
$$

where $k=\sqrt{-\Lambda / 6 M_{5}^{3}}$. Consistency of the solution requires $\Lambda_{0}=-\Lambda_{\pi R}=-\Lambda / k$. The metric in Eq. (86.16) corresponds to a 5D AdS space. The factor $a(y)$ is called the "warp" factor and determines how 4D scales change as a function of the position in the extra dimension. In particular, this implies that energy scales for 4D fields localized at the boundary at $y=\pi R$ are redshifted by a factor $e^{-k \pi R}$ with respect to those localized at $y=0$. For this reason, the boundaries at $y=0$ and $y=\pi R$ are usually referred to as the ultraviolet (UV) and infrared (IR) boundaries, respectively.
As in the ADD case, we can perform a KK reduction and obtain the low-energy effective theory of the 4D massless graviton. In this case we obtain

$$
\begin{equation*}
M_{P}^{2}=\int_{0}^{\pi R} d y e^{-2 k y} M_{5}^{3}=\frac{M_{5}^{3}}{2 k}\left(1-e^{-2 k \pi R}\right) \tag{86.17}
\end{equation*}
$$

Taking $M_{5} \sim k \sim M_{P}$, we can generate an IR-boundary scale of order $k e^{-k \pi R} \sim \mathrm{TeV}$ for an extra dimension of radius $R \simeq 11 / k$. Mechanisms to stabilize R to this value have been proposed $[57,58]$ that, contrary to the ADD case, do not require introducing any new small or large parameter. Therefore a natural solution to the hierarchy problem can be achieved in this framework if the Higgs field, whose vacuum expectation value (VEV) is responsible for electroweak symmetry breaking, is localized at the IR-boundary where the effective mass scales are of order TeV. The radion field is generically heavy in models with a stabilized R. Nevertheless, it has been recently discussed that under some conditions a naturally light radion can arise [59-62]. In these cases the radion is identified with the dilaton, the Goldstone boson associated to the spontaneous breaking of scale invariance, and its mass can be naturally below $k e^{-k \pi R} \sim \mathrm{TeV}$. Collider bounds on the radion mass and couplings can be found in [63-65].

In the RS model [3], all the SM fields were assumed to be localized on the IR-boundary. Nevertheless, for the hierarchy problem, only the Higgs field has to be localized there. SM gauge bosons and fermions can propagate in the 5D bulk [4-7] (for a review see, for example, $[66,67])$. By performing a KK reduction from the 5 D action of a gauge boson, we find $[4,5]$

$$
\begin{equation*}
\frac{1}{g_{4}^{2}}=\int_{0}^{\pi R} d y \frac{1}{g_{5}^{2}}=\frac{\pi R}{g_{5}^{2}} \tag{86.18}
\end{equation*}
$$

where $g_{D}(D=4,5)$ is the gauge coupling in D-dimensions. Therefore the 4D gauge couplings can be of order one, as is the case of the SM, if one demands $g_{5}^{2} \sim \pi R$. Using $k R \sim 10$ and $g_{4} \sim 0.5$, one obtains the 5D gauge coupling

$$
\begin{equation*}
g_{5} \sim 4 / \sqrt{k} \tag{86.19}
\end{equation*}
$$

Boundary kinetic terms for the gauge bosons can modify this relation, allowing for larger values of $g_{5} \sqrt{k}$.
Fermions propagating in a warped extra dimension have 4D massless zero-modes with wavefunctions which vary as $f_{0} \sim$ $\exp \left[\left(1 / 2-c_{f}\right) k y\right]$, where $c_{f} k$ is their 5D mass [7,68]. Depending on the free parameter $c_{f} k$, fermions can be localized either towards the UV-boundary $\left(c_{f}>1 / 2\right)$ or IR-boundary $\left(c_{f}<1 / 2\right)$. Since the Higgs boson is localized on the IR-boundary, one can generate exponentially suppressed Yukawa couplings by having the fermion zero-modes localized towards the UV-boundary, generating naturally the light SM fermion spectrum [7]. A large overlap with the wavefunction of the Higgs is needed for the top quark, in order to generate its large mass, thus requiring it to be localized towards the IR-boundary. In conclusion, the large mass hierarchies present in the SM fermion spectrum can be easily obtained in warped models via suitable choices of the order-one parameters c_{f} [69]. In these scenarios, deviations in flavor physics from the SM predictions are expected to arise from flavor-changing KK gluon couplings [70], putting certain constraints on the parameters of the models and predicting new physics effects to be observed in B-physics processes (see, for example, [71,72]).

The masses of the KK states can also be calculated. One finds [7]

$$
\begin{equation*}
m_{n} \simeq\left(n+\frac{\alpha}{2}-\frac{1}{4}\right) \pi k e^{-\pi k R} \tag{86.20}
\end{equation*}
$$

where $n=1,2, \ldots$ and $\alpha=\left\{\left|c_{f}-1 / 2\right|, 0,1\right\}$ for KK fermions, KK gauge bosons and KK gravitons, respectively. Their masses are of order $k e^{-\pi k R} \sim \mathrm{TeV}$ (for this reason we refer to these scenarios as TeV -scale extra dimensions). The first KK state of the gauge bosons would be the lightest, while gravitons are expected to be the heaviest.

86.3.1.1 Models of Electroweak Symmetry Breaking

Theories in warped extra dimensions can be used to implement symmetry breaking at low energies by boundary conditions (for a review see, for example, [73]). For example, for a $U(1)$ gauge symmetry in the 5D bulk, this can be easily achieved by imposing a Dirichlet boundary condition on the IR-boundary for the gaugeboson field, $\left.A_{\mu}\right|_{y=\pi R}=0$. This makes the zero-mode gauge boson get a mass, given by $m_{A}=g_{4} \sqrt{2 k / g_{5}^{2}} e^{-\pi k R}$. A very different situation occurs if the Dirichlet boundary condition is imposed on the UV-boundary, $\left.A_{\mu}\right|_{y=0}=0$. In this case the zero-mode gauge boson disappears from the spectrum. Finally, if a Dirichlet boundary condition is imposed on the two boundaries, one obtains a massless 4 D scalar corresponding to the fifth component of the 5D gauge boson, A_{5}. Thus, different scenarios can be implemented by appropriately choosing the 5 D bulk gauge symmetry, \mathcal{G}_{5}, and the symmetries to which it reduces on the UV and IR-boundary, $\mathcal{H}_{U V}$ and $\mathcal{H}_{I R}$, respectively. In all cases the KK spectrum comes in representations of the group \mathcal{G}_{5}.

Among the most interesting scenarios are those called gaugeHiggs unified models, where the Higgs boson appears as the fifth component of a 5 D gauge boson, A_{5}. The Higgs mass is protected by the 5D gauge invariance and can only get a nonzero value from non-local one-loop effects [74]. To guarantee the relation $M_{W}^{2} \simeq M_{Z}^{2} \cos ^{2} \theta_{W}$, a custodial $S U(2)_{V}$ symmetry is needed in the bulk and IR-boundary [75]. The simplest realization [76, 77] has

$$
\begin{aligned}
\mathcal{G}_{5} & =S U(3)_{c} \times S O(5) \times U(1)_{X} \\
\mathcal{H}_{I R} & =S U(3)_{c} \times S O(4) \times U(1)_{X} \\
\mathcal{H}_{U V} & =G_{S M}
\end{aligned}
$$

The Higgs boson gets a potential at the one-loop level that triggers a VEV, breaking the electroweak symmetry. In these models there is a light Higgs boson whose mass can be around 125 GeV , as required by the discovered Higgs boson [78]. This state, as will be explained in Sec. 86.3.2, behaves as a composite pseudo-Goldstone boson with couplings that deviate from the SM Higgs [79]. The present experimental determination of the Higgs couplings at the LHC, that agrees with the SM predictions, put important constraints on these scenarios [78]. The lightest KK modes of the model are color fermions with charges $Q=-1 / 3,2 / 3$ and $5 / 3$ [80].
86.3.1.2 Constraints from Electroweak Precision Tests

Models in which the SM gauge bosons propagate in $1 / \mathrm{TeV}$-sized extra dimensions give generically large corrections to electroweak observables. When the SM fermions are confined on a boundary these corrections are universal and can be parametrized by four quantities: $\widehat{S}, \widehat{T}, W$ and Y, as defined in Ref. [81]. For warped models, where the 5D gauge coupling of Eq. (86.19) is large, the most relevant parameter is \widehat{T}, which gives the bound $m_{K K} \gtrsim$ 10 TeV [66]. When a custodial symmetry is imposed [75], the main constraint comes from the \widehat{S} parameter, requiring $m_{K K} \gtrsim 3$ TeV , independent of the value of g_{5}. Corrections to the $Z b_{L} \bar{b}_{L}$ coupling can also be important [66], especially in warped models for electroweak symmetry breaking as the ones described above.

86.3.1.3 Kaluza-Klein Searches

The main prediction of $1 / \mathrm{TeV}$-sized extra dimensions is the presence of a discretized KK spectrum, with masses around the TeV scale, associated with the SM fields that propagate in the extra dimension.

In the RS model [3], only gravity propagates in the 5D bulk. Experimental searches have been performed for the lightest KK graviton through its decay to a variety of SM particle-antiparticle pairs. The results are usually interpreted in the plane of the dimensionless coupling k / M_{P} versus m_{1}, where M_{P} is the reduced Planck mass defined previously and m_{1} is the mass of the lightest KK excitation of the graviton. Since the AdS curvature $\sim k$ cannot exceed the cut-off scale of the model, which is estimated to be $\ell_{5}^{1 / 3} M_{5}[37]$, one must demand $k \ll \sqrt{2 \ell_{5}} M_{P}$.

The most stringent limits currently arise from LHC searches for resonances in the dilepton and diphoton final states, using 13 TeV collisions. Best sensitivities are obtained in the $\gamma \gamma$ final state, which is quite powerful since it has a branching fraction twice that of any individual lepton flavor. The CMS analysis [40] of 36 fb^{-1} of 13 TeV data excludes KK gravitons below 2.3 to 4.6 TeV , depending on the value of the coupling k / M_{P}, which is varied between 0.01 and 0.2 , while ATLAS [39] provides a lower limit on the KK graviton mass of 4.1 TeV for the coupling parameter 0.1. The CMS [82] dilepton analyses, combining results from the $e e$ and $\mu \mu$ channels, exclude KK gravitons with masses below 4.25 TeV for coupling parameter 0.1. The ATLAS [42] analysis of $139 \mathrm{fb}^{-1}$ of Run 2 data does not include a RS KK graviton interpretation of the results. Less stringent limits on the KK graviton mass come from analyses of the dijet [34], $H H$ [83, 84], and $V V$ [85, 86] final states, where V can represent either a W or Z boson.

In warped extra-dimensional models in which the SM fields propagate in the 5D bulk, the couplings of the KK graviton to $e e / \mu \mu / \gamma \gamma$ are suppressed [87], and the above bounds do not apply. Furthermore, the KK graviton is the heaviest KK state (see Eq. (86.20)), and therefore experimental searches for KK gauge bosons and fermions are more appropriate discovery channels in these scenarios. For the scenarios discussed above in which only the Higgs boson and the top quark are localized close to the IRboundary, the KK gauge bosons mainly decay into top quarks, longitudinal W / Z bosons, and Higgs bosons. Couplings to light SM fermions are suppressed by a factor $g / \sqrt{g_{5}^{2} k} \sim 0.2$ [7] for the value of Eq. (86.19) that is considered from now on. Searches have been made for evidence of the lightest KK excitation of the gluon, through its decay to $t \bar{t}$ pairs. The searches take into account the natural KK gluon width, which is typically $\sim 15 \%$ of its mass. The decay of a heavy particle to $t \bar{t}$ would tend to produce highly boosted top (anti-)quarks in the final state. Products of the subsequent top decays would therefore tend to be close to each other in the detector. In the case of $t \rightarrow W b \rightarrow j j b$ decays, the three jets could overlap one another and not be individually reconstructed with the standard jet algorithms, while $t \rightarrow W b \rightarrow \ell \nu b$ decays could result in the lepton failing standard isolation requirements due to its proximity to the b-jet; in both cases, the efficiency for properly reconstructing the final state would fall as the mass of the original particle increases. To avoid the loss in sensitivity which would result, a number of techniques, known generally as "top quark tagging", have been developed to reconstruct and identify highly boosted top quarks, for example by using a single "wide" jet to contain all the decay products of a hadronic top decay. The
large backgrounds from QCD jets can then be reduced by requiring the "jet mass" be consistent with that of a top quark, and also by examining the substructure of the wide jet for indication that it resulted from the hadronic decay of a top quark. These techniques are key to extending to very high masses the range of accessible resonances decaying to $t \bar{t}$ pairs. The CMS analysis [88] of $36 \mathrm{fb}^{-1}$ of 13 TeV data combines di-lepton, lepton-plus-jet, and all-hadronic $t \bar{t}$ decays and excludes KK gluons with masses below 4.55 TeV . ATLAS uses all-hadronic [89] and lepton-plusjet [90] final states to exclude KK gluons up to 3.4 and 3.8 TeV respectively with $36 \mathrm{fb}^{-1}$ of 13 TeV data. The results are not directly comparable between the two LHC experiments, since they employ in their respective analyses different implementations of the theoretical model. For masses between 3 and 5 TeV , the crosssection limits are around 20 fb for CMS and 30 fb for ATLAS.

A gauge boson KK excitation could be also sought through its decay to longitudinal W / Z bosons. Recent analyses from $36 \mathrm{fb}^{-1}$ of 13 TeV data by ATLAS [91] and CMS [92] searching for heavy vector resonances decaying to a W or Z boson and a Higgs in the $q \bar{q} b \bar{b}$ final state have set a lower limit on the mass of these KK of ~ 2.5 TeV (warped models are equivalent to the Model B considered in the analyses with $\left.g_{V} \sim g_{5} \sqrt{k}\right)$. The decay to a pair of intermediate vector bosons has also been exploited to search for KK gravitons in models in which the SM fields propagate in the 5D bulk. The analyses typically reconstruct hadronic W / Z decays using variants of the boosted techniques mentioned previously. An ATLAS analysis [85] combines leptonic and hadronic final states from the KK graviton decay $G^{*} \rightarrow V V$, where V can represent either a W or Z boson, exclude KK gravitons with masses below 2.3 TeV , for a value of $k / M_{P}=1$. CMS $V V$ analysis [93] also provides cross section limits in the context of bulk gravitons; however, a maximum value of $k / M_{P}=0.5$ is presented, for which no mass exclusion is possible using the $36 \mathrm{fb}^{-1}$ of 13 TeV data.

The lightest KK states are, in certain models, the partners of the top quark. For example, in 5D composite Higgs models these are colored states with charges $Q=-1 / 3,2 / 3$ and $5 / 3$ (arising from $S U(2)_{L}$ doublets with $\left.Y=7 / 6,1 / 6\right)$, and masses expected to be below the TeV [80]. They can be either singly or pair-produced, and mainly decay into a combination of W / Z with top/bottom quarks [94-97]. An exhaustive review of these searches can be found in Ref. [98]. Of particular note, the $Q=5 / 3$ state decays mainly into $W^{+} t \rightarrow W^{+} W^{+} b$, giving a pair of same-sign leptons in the final state. An analysis by ATLAS [99] searching in the lepton-plus-jets final state for evidence of pair production of the $Q=5 / 3$ state provides a lower mass limit of 1.25 TeV . A CMS analysis [100] searching for pair production of the $Q=5 / 3$ state using both lepton-plus-jets and same sign lepton final states excludes masses below 1.3 TeV. Both LHC experiments have searched for pair production of vector-like quarks T and B of charges $Q=2 / 3$ and $-1 / 3$ respectively, assuming the allowable decays are $T \rightarrow W b / Z t / H t$ and $B \rightarrow W t / Z b / H b$. In each case, it is assumed the branching fractions of the three decay modes sum to unity, but the individual branching fractions, which are model-dependent, are allowed to vary within this constraint. Both ATLAS [101] and CMS [102-104] obtain lower limits on the mass of the T and B vector-like quarksup to 1.3 TeV .

Recent analyses from ATLAS [105] and CMS [106] also search for a single top partner production, the cross section for which is model-dependent [107] but does not carry the kinematic penalty for producing two heavy objects.

86.3.2 Connection with Strongly Coupled Models via the AdS/CFT Correspondence

The AdS/CFT correspondence [8] provides a connection between warped extra-dimensional models and strongly-coupled theories in ordinary 4D. Although the exact connection is only known for certain cases, the AdS/CFT techniques have been very useful to obtain, at the qualitative level, a 4D holographic description of the various phenomena in warped extra-dimensional models [11].

The connection goes as follows. The physics of the bulk AdS_{5} models can be interpreted as that of a 4D conformal field theory (CFT) which is strongly coupled. The extra-dimensional coordinate y plays the role of the renormalization scale μ of the CFT by means of the identification $\mu \equiv k e^{-k y}$. Therefore the

UV-boundary corresponds in the CFT to a UV cut-off scale at $\Lambda_{U V}=k \sim M_{P}$, breaking explicitly conformal invariance, while the IR-boundary can be interpreted as a spontaneous breaking of the conformal symmetry at energies $k e^{-k \pi R} \sim \mathrm{TeV}$. Fields localized on the UV-boundary are elementary fields external to the CFT, while fields localized on the IR-boundary and KK states corresponds to composite resonances of the CFT. Furthermore, local gauge symmetries in the 5 D models, \mathcal{G}_{5}, correspond to global symmetries of the CFT, while the UV-boundary symmetry can be interpreted as a gauging of the subgroup $\mathcal{H}_{U V}$ of \mathcal{G}_{5} in the CFT. Breaking gauge symmetries by IR-boundary conditions corresponds to the spontaneous breaking $\mathcal{G}_{5} \rightarrow \mathcal{H}_{I R}$ in the CFT at energies $\sim k e^{-k \pi R}$. Using this correspondence one can easily derive the 4 D massless spectrum of the compactified AdS_{5} models. One also has the identification $k^{3} / M_{5}^{3} \approx 16 \pi^{2} / N^{2}$ and $g_{5}^{2} k \approx 16 \pi^{2} / N^{r}(r=1$ or 2 for CFT fields in the fundamental or adjoint representation of the gauge group), where N plays the role of the number of colors of the CFT. Therefore the weak-coupling limit in AdS_{5} corresponds to a large- N expansion in the CFT.

Following the above AdS/CFT dictionary one can understand the RS solution to the hierarchy problem from a 4 D viewpoint. The equivalent 4 D model is a CFT with a TeV mass gap and a Higgs boson emerging as a composite state. In the particular case where the Higgs is the fifth-component of the gauge-boson, A_{5} [108], this corresponds to models, similar to those proposed in Ref. [109,110], where the Higgs is a composite pseudo-Goldstone boson arising from the spontaneous breaking $\mathcal{G}_{5} \rightarrow \mathcal{H}_{I R}$ in the CFT. The AdS/CFT dictionary tells us that KK states must behave as composite resonances. For example, if the SM gauge bosons propagate in the 5 D bulk, the lowest $\mathrm{KK} S U(2)_{L}$-gauge boson must have properties similar to those of the Techni-rho ρ_{T} [98] with a coupling to longitudinal W / Z bosons given by $g_{5} \sqrt{k} \approx$ $g_{\rho_{T}}$, while the coupling to elementary fermions is $g^{2} / \sqrt{g_{5}^{2} k} \approx$ $g^{2} F_{\rho_{T}} / M_{\rho_{T}}$.

Fermions in compactified AdS_{5} also have a simple 4D holographic interpretation. The 4 D massless mode described in Sec. 86.3.1 corresponds to an external fermion ψ_{i} linearly coupled to a fermionic CFT operator $\mathcal{O}_{i}: \mathcal{L}_{\text {int }}=\lambda_{i} \bar{\psi}_{i} \mathcal{O}_{i}+h . c .$. The dimension of the operator \mathcal{O}_{i} is related to the 5 D fermion mass according to $\operatorname{Dim}\left[\mathcal{O}_{i}\right]=\left|c_{f}+1 / 2\right|-1$. Therefore, by varying c_{f} one varies $\operatorname{Dim}\left[\mathcal{O}_{i}\right]$, making the coupling λ_{i} irrelevant $\left(c_{f}>1 / 2\right)$, marginal $\left(c_{f}=1 / 2\right)$ or relevant $\left(c_{f}<1 / 2\right)$. When irrelevant, the coupling is exponentially suppressed at low energies, and then the coupling of ψ_{i} to the CFT (and eventually to the composite Higgs) is very small. When relevant, the coupling grows in the IR and become as large as g_{5} (in units of k), meaning that the fermion is as strongly coupled as the CFT states [76]. In this latter case ψ_{i} behaves as a composite fermion.

86.3.3 Flat Extra Dimensions

Models with quantum gravity at the TeV scale, as in the ADD scenario, can have extra (flat) dimensions of $1 / \mathrm{TeV}$ size, as happens in string scenarios (see, for example, [111]). All SM fields may propagate in these extra dimensions, leading to the possibility of observing their corresponding KK states.
A simple example is to assume that the SM gauge bosons propagate in a flat five-dimensional orbifold S^{1} / Z_{2} of radius R, with the fermions localized on a 4D boundary. The KK gauge bosons behave as sequential SM gauge bosons with a coupling to fermions enhanced by a factor $\sqrt{2}$ [111]. The experimental limits on such sequential gauge bosons could therefore be recast as limits on KK gauge bosons. Such an interpretation of the ATLAS 7 TeV dilepton analysis [112] yielded the bound $1 / R>4.16 \mathrm{TeV}$, while a CMS 8 TeV search with a lepton and missing transverse energy in the final state [113] give $1 / R>3.4 \mathrm{TeV}$. Indirect bounds from LEP2 require however $1 / R \gtrsim 6 \mathrm{TeV}$ [81,114], a bound that can considerable improve in the future by high-energy measurements of the dilepton invariant mass spectrum from Drell-Yan processes at the LHC [115]. More recent LHC limits on leptonically decaying gauge bosons $[42,82,116,117]$ are not interpreted as bounds on $1 / R$ by the collaborations, but the published results allow for independent derivation of such bound.
An alternative scenario, known as Universal Extra Dimensions
(UED) [118] (for a review see, for example, [119]), assumes that all SM fields propagate universally in a flat orbifold S^{1} / Z_{2} with an extra Z_{2} parity, called KK-parity, that interchanges the two boundaries. In this case, the lowest KK state is stable and is a Dark Matter candidate. At colliders, the KK particles would have to be created in pairs, and would then cascade decay to the lightest KK particle, which would be stable and escape detection. The UED mass-spectrum depends not only on the extra-dimensional radius R, but also on the cut-off of the 5D theory Λ, since quantum corrections sensitive to ΛR induce mass-splittings between the KK states. Experimental signatures, such as jets or leptons and \mathbb{E}_{T}, would be similar to those of typical R-parity conserving SUSY searches. An interpretation of the recent LHC experimental SUSY searches for UED models has been presented in Refs. [120,121]. A lower bound $1 / R>1.4-1.5 \mathrm{TeV}$ was derived for $\Lambda R \sim 5-35$ [120].

Finally, realistic models of electroweak symmetry breaking can also be constructed with flat extra spatial dimensions, similarly to those in the warped case, requiring, however, the presence of sizeable boundary kinetic terms [122]. There is also the possibility of breaking supersymmetry by boundary conditions [123]. Models of this type could explain naturally the presence of a Higgs boson lighter than $M_{D} \sim \mathrm{TeV}$ (see, for example, [124-126]).

References

[1] For a comprehensive collection of the original papers see, "Modern Kaluza-Klein Theories", edited by T. Appelquist et al., Addison-Wesley (1987).
[2] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998), [hep-ph/9803315].
[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), [hep-ph/9905221].
[4] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Lett. B473, 43 (2000), [hep-ph/9911262].
[5] A. Pomarol, Phys. Lett. B486, 153 (2000), [hepph/9911294].
[6] S. Chang et al., Phys. Rev. D62, 084025 (2000), [hepph/9912498].
[7] T. Gherghetta and A. Pomarol, Nucl. Phys. B586, 141 (2000), [hep-ph/0003129].
[8] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), [Adv. Theor. Math. Phys.2,231(1998)], [hep-th/9711200].
[9] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), [hepth/9802150].
[10] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B428, 105 (1998), [hep-th/9802109].
[11] N. Arkani-Hamed, M. Porrati and L. Randall, JHEP 08, 017 (2001), [hep-th/0012148].
[12] ATLAS public results are available on WWW at https://twiki.cern.ch/twiki/bin/view/AtlasPublic.
[13] CMS public results are available on WWW at https://cms-results.web.cern.ch/cms-results/publicresults/publications.
[14] Z. Chacko, M. A. Luty and E. Ponton, JHEP 07, 036 (2000), [hep-ph/9909248].
[15] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D59, 086004 (1999), [hep-ph/9807344].
[16] R. Rattazzi, hep-ph/0607055 (2006); I. Antoniadis, Yellow report CERN-2002-002 (2002).
[17] J. D. Lykken, Phys. Rev. D54, R3693 (1996), [hepth/9603133].
[18] I. Antoniadis et al., Phys. Lett. B436, 257 (1998), [hepph/9804398].
[19] G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B544, 3 (1999), [hep-ph/9811291].
[20] N. Arkani-Hamed et al., Phys. Rev. D62, 105002 (2000), [hep-ph/9912453].
[21] E. G. Adelberger et al., Prog. Part. Nucl. Phys. 62, 102 (2009).
[22] J. Murata and S. Tanaka, Class. Quant. Grav. 32, 3, 033001 (2015), [arXiv:1408.3588].
[23] W.-H. Tan et al., Phys. Rev. Lett. 116, 13, 131101 (2016).
[24] C. Hanhart et al., Phys. Lett. B509, 1 (2001), [arXiv:astroph/0102063].
[25] S. Hannestad and G. G. Raffelt, Phys. Rev. D67, 125008 (2003), [Erratum: Phys. Rev.D69,029901(2004)], [hepph/0304029].
[26] L. J. Hall and D. Tucker-Smith, Phys. Rev. D60, 085008 (1999), [hep-ph/9904267].
[27] E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Lett. 82, 2236 (1999), [hep-ph/9811337].
[28] T. Han, J. D. Lykken and R.-J. Zhang, Phys. Rev. D59, 105006 (1999), [hep-ph/9811350].
[29] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 9, 092005 (2018), [arXiv:1712.02345].
[30] M. Aaboud et al. (ATLAS), JHEP 01, 126 (2018), [arXiv:1711.03301].
[31] A. M. Sirunyan et al. (CMS), JHEP 02, 074 (2019), [arXiv:1810.00196].
[32] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 6, 393 (2017), [arXiv:1704.03848].
[33] S. Cullen, M. Perelstein and M. E. Peskin, Phys. Rev. D62, 055012 (2000), [hep-ph/0001166].
[34] A. M. Sirunyan et al. (CMS), JHEP 08, 130 (2018), [arXiv:1806.00843].
[35] M. Aaboud et al. (ATLAS), Phys. Rev. D96, 5, 052004 (2017), [arXiv:1703.09127].
[36] J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999), [hepph/9811356].
[37] G. F. Giudice and A. Strumia, Nucl. Phys. B663, 377 (2003), [hep-ph/0301232].
[38] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 9, 789 (2018), [arXiv:1803.08030].
[39] M. Aaboud et al. (ATLAS), Phys. Lett. B775, 105 (2017), [arXiv:1707.04147].
[40] A. M. Sirunyan et al. (CMS), Phys. Rev. D98, 9, 092001 (2018), [arXiv:1809.00327].
[41] A. M. Sirunyan et al. (CMS), JHEP 04, 114 (2019), [arXiv:1812.10443].
[42] G. Aad et al. (ATLAS), Phys. Lett. B796, 68 (2019), [arXiv:1903.06248].
[43] S. B. Giddings and S. D. Thomas, Phys. Rev. D65, 056010 (2002), [hep-ph/0106219].
[44] S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001), [hep-ph/0106295].
[45] P. Kanti, Int. J. Mod. Phys. A19, 4899 (2004), [hepph/0402168].
[46] R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986).
[47] A. M. Sirunyan et al. (CMS), JHEP 11, 042 (2018), [arXiv:1805.06013].
[48] G. Aad et al. (ATLAS), JHEP 03, 026 (2016), [arXiv:1512.02586].
[49] M. Aaboud et al. (ATLAS), Phys. Lett. B760, 520 (2016), [arXiv:1606.02265].
[50] C. Kilic et al., Phys. Rev. D89, 1, 016003 (2014), [arXiv:1207.3525].
[51] V. Khachatryan et al. (CMS), Phys. Rev. D90, 3, 032005 (2014), [arXiv:1405.7653].
[52] P. Meade and L. Randall, JHEP 05, 003 (2008), [arXiv:0708.3017].
[53] A. M. Sirunyan et al. (CMS), Phys. Lett. B774, 279 (2017), [arXiv:1705.01403].
[54] A. M. Sirunyan et al. (CMS), JHEP 04, 073 (2018), [arXiv:1802.01122].
[55] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 9, 092008 (2018), [arXiv:1807.06573].
[56] S. Dimopoulos and R. Emparan, Phys. Lett. B526, 393 (2002), [hep-ph/0108060].
[57] W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999), [hep-ph/9907447].
[58] J. Garriga and A. Pomarol, Phys. Lett. B560, 91 (2003), [hep-th/0212227].
[59] See talk by R. Rattazzi at Planck 2010, CERN.
[60] B. Bellazzini et al., Eur. Phys. J. C74, 2790 (2014), [arXiv:1305.3919].
[61] F. Coradeschi et al., JHEP 11, 057 (2013), [arXiv:1306.4601].
[62] E. Megias and O. Pujolas, JHEP 08, 081 (2014), [arXiv:1401.4998].
[63] K. Blum et al., JHEP 03, 099 (2015), [arXiv:1410.1873].
[64] A. Efrati et al., Phys. Rev. D91, 5, 055034 (2015), [arXiv:1410.2225].
[65] F. Abu-Ajamieh, J. S. Lee and J. Terning, JHEP 10, 050 (2018), [arXiv:1711.02697].
[66] E. P. H. Davoudiasl, S. Gopalakrishna and J. Santiago, New J. Phys. 12, 075011 (2010), [arXiv:0908.1968].
[67] T. Gherghetta, in "Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 126 June 2009," 165-232 (2011), [arXiv:1008.2570].
[68] Y. Grossman and M. Neubert, Phys. Lett. B474, 361 (2000), [hep-ph/9912408].
[69] S. J. Huber and Q. Shafi, Phys. Lett. B498, 256 (2001), [hep-ph/0010195].
[70] A. Delgado, A. Pomarol and M. Quiros, JHEP 01, 030 (2000), [hep-ph/9911252].
[71] K. Agashe, G. Perez and A. Soni, Phys. Rev. D71, 016002 (2005), [hep-ph/0408134].
[72] M. Bauer et al., JHEP 09, 017 (2010), [arXiv:0912.1625].
[73] A. Pomarol, Int. J. Mod. Phys. A24, 61 (2009), [In Kane, Gordon (ed.) et al.: Perspectives on LHC physics ,259(2008)].
[74] Y. Hosotani, Phys. Lett. 126B, 309 (1983).
[75] K. Agashe et al., JHEP 08, 050 (2003), [hep-ph/0308036].
[76] K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B719, 165 (2005), [hep-ph/0412089].
[77] For a review see, for example, R. Contino, arXiv:1005.4269.
[78] See, for example, PDG review of Higgs boson in this Review.
[79] G. F. Giudice et al., JHEP 06, 045 (2007), [hepph/0703164].
[80] R. Contino, L. Da Rold and A. Pomarol, Phys. Rev. D75, 055014 (2007), [hep-ph/0612048].
[81] R. Barbieri et al., Nucl. Phys. B703, 127 (2004), [hepph/0405040].
[82] A. M. Sirunyan et al. (CMS), JHEP 06, 120 (2018), [arXiv:1803.06292].
[83] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 122, 12, 121803 (2019), [arXiv:1811.09689].
[84] M. Aaboud et al. (ATLAS), JHEP 01, 030 (2019), [arXiv:1804.06174].
[85] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 5, 052008 (2018), [arXiv:1808.02380].
[86] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1906.05977].
[87] K. Agashe et al., Phys. Rev. D76, 036006 (2007), [hepph/0701186].
[88] A. M. Sirunyan et al. (CMS), JHEP 04, 031 (2019), [arXiv:1810.05905].
[89] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 9, 092004 (2019), [arXiv:1902.10077].
[90] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 7, 565 (2018), [arXiv:1804.10823].
[91] M. Aaboud et al. (ATLAS), Phys. Lett. B774, 494 (2017), [arXiv:1707.06958].
[92] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 9, 636 (2017), [arXiv:1707.01303].
[93] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1906.00057].
[94] R. Contino and G. Servant, JHEP 06, 026 (2008), [arXiv:0801.1679].
[95] J. A. Aguilar-Saavedra, JHEP 11, 030 (2009), [arXiv:0907.3155].
[96] J. Mrazek and A. Wulzer, Phys. Rev. D81, 075006 (2010), [arXiv:0909.3977].
[97] G. Dissertori et al., JHEP 09, 019 (2010), [arXiv:1005.4414].
[98] See, for example, PDG review of Technicolor searches in this volume.
[99] M. Aaboud et al. (ATLAS), JHEP 10, 141 (2017), [arXiv:1707.03347].
[100] A. M. Sirunyan et al. (CMS), JHEP 03, 082 (2019), [arXiv:1810.03188].
[101] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 21, 211801 (2018), [arXiv:1808.02343].
[102] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 82 (2018), [arXiv:1710.01539].
[103] A. M. Sirunyan et al. (CMS), JHEP 08, 177 (2018), [arXiv:1805.04758].
[104] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 4, 364 (2019), [arXiv:1812.09768].
[105] M. Aaboud et al. (ATLAS), JHEP 05, 164 (2019), [arXiv:1812.07343].
[106] A. M. Sirunyan et al. (CMS), Phys. Lett. B781, 574 (2018), [arXiv:1708.01062].
[107] A. De Simone et al., JHEP 04, 004 (2013), [arXiv:1211.5663].
[108] R. Contino, Y. Nomura and A. Pomarol, Nucl. Phys. B671, 148 (2003), [hep-ph/0306259].
[109] H. Georgi, D. B. Kaplan and P. Galison, Phys. Lett. 143B, 152 (1984).
[110] D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984).
[111] I. Antoniadis and K. Benakli, Int. J. Mod. Phys. A15, 4237 (2000), [hep-ph/0007226].
[112] G. Aad et al. (ATLAS), JHEP 11, 138 (2012), [arXiv:1209.2535].
[113] V. Khachatryan et al. (CMS), Phys. Rev. D91, 9, 092005 (2015), [arXiv:1408.2745].
[114] K. Cheung and G. L. Landsberg, Phys. Rev. D65, 076003 (2002), [hep-ph/0110346].
[115] M. Farina et al., Phys. Lett. B772, 210 (2017), [arXiv:1609.08157].
[116] G. Aad et al. (ATLAS) (2019), [arXiv:1906.05609].
[117] A. M. Sirunyan et al. (CMS), JHEP 06, 128 (2018), [arXiv:1803.11133].
[118] T. Appelquist, H.-C. Cheng and B. A. Dobrescu, Phys. Rev. D64, 035002 (2001), [hep-ph/0012100].
[119] A. Datta, K. Kong and K. T. Matchev, New J. Phys. 12, 075017 (2010), [arXiv:1002.4624].
[120] N. Deutschmann, T. Flacke and J. S. Kim, Phys. Lett. B771, 515 (2017), [arXiv:1702.00410].
[121] J. Beuria et al., Comput. Phys. Commun. 226, 187 (2018), [arXiv:1702.00413].
[122] G. Panico, M. Safari and M. Serone, JHEP 02, 103 (2011), [arXiv:1012.2875].
[123] J. Scherk and J. H. Schwarz, Phys. Lett. 82B, 60 (1979).
[124] A. Pomarol and M. Quiros, Phys. Lett. B438, 255 (1998),
[hep-ph/9806263].
[125] I. Antoniadis et al., Nucl. Phys. B544, 503 (1999), [hepph/9810410].
[126] R. Barbieri, L. J. Hall and Y. Nomura, Phys. Rev. D63, 105007 (2001), [hep-ph/0011311].

87. \boldsymbol{W}^{\prime}-Boson Searches

Revised November, 2019 by B.A. Dobrescu (Fermilab) and S. Willocq (U. Massachusetts).

The W^{\prime} boson is a massive hypothetical particle of spin 1 and electric charge ± 1, which is a color singlet and is predicted in various extensions of the Standard Model (SM).

87.1 W^{\prime} couplings to quarks and leptons

The Lagrangian terms describing the couplings of a $W^{\prime+}$ boson to fermions are given by

$$
\begin{equation*}
\frac{W_{\mu}^{\prime+}}{\sqrt{2}}\left[\bar{u}_{i}\left(C_{q_{i j}}^{R} P_{R}+C_{q_{i j}}^{L} P_{L}\right) \gamma^{\mu} d_{j}+\bar{\nu}_{i}\left(C_{\ell_{i j}}^{R} P_{R}+C_{\ell_{i j}}^{L} P_{L}\right) \gamma^{\mu} e_{j}\right] \tag{87.1}
\end{equation*}
$$

Here, u, d, ν, and e are the SM fermions in the mass eigenstate basis, $i, j=1,2,3$ label the fermion generation, and $P_{R, L}=(1 \pm$ $\left.\gamma_{5}\right) / 2$. The coefficients $C_{q_{i j}}^{L}, C_{q_{i j}}^{R}, C_{\ell_{i j}}^{L}$, and $C_{\ell_{i j}}^{R}$ are complex dimensionless parameters. If $C_{\ell_{i j}}^{R} \neq 0$, then the i th generation includes a right-handed neutrino. Using this notation, the SM W couplings are $C_{q}^{L}=g V_{\mathrm{CKM}}, C_{\ell}^{L}=g \approx 0.63$ and $C_{q}^{R}=C_{\ell}^{R}=0$.

Unitarity considerations imply that the W^{\prime} boson is associated with a spontaneously-broken gauge symmetry. This is true even when it is a composite particle (e.g. $\rho^{ \pm}$-like bound states [1]) if its mass is much smaller than the compositeness scale, or a Kaluza-Klein mode in theories where the W boson propagates in extra dimensions [2]. The simplest extension of the electroweak gauge group that includes a W^{\prime} boson is $S U(2)_{1} \times S U(2)_{2} \times U(1)$, but larger groups are encountered in some theories. A generic property of these gauge theories is that they also include a Z^{\prime} boson [3]; the W^{\prime}-to- Z^{\prime} mass ratio is often a free parameter.

A tree-level mass mixing may be induced between the electrically-charged gauge bosons. Upon diagonalization of their mass matrix, the W-to- Z mass ratio and the couplings of the observed W boson are shifted from the SM values. Their measurements imply that the mixing angle, θ_{+}, between the gauge eigenstates must be smaller than about 10^{-2}. In certain theories the mixing is negligible (e.g., due to a new parity [4]), even when the W^{\prime} mass is near the electroweak scale. Note that $S U(2)$ gauge invariance suppresses the kinetic mixing between the W and W^{\prime} bosons (in contrast to the case of a Z^{\prime} boson [3]).

The W^{\prime} coupling to $W Z$ is fixed by Lorentz and gauge invariances, and to leading order in θ_{+}is given by [5]

$$
\begin{equation*}
\frac{g \theta_{+} i}{\cos \theta_{W}}\left[W_{\mu}^{\prime+}\left(W_{\nu}^{-} Z^{\nu \mu}+Z_{\nu} W^{-\mu \nu}\right)+Z^{\nu} W^{-\mu} W_{\nu \mu}^{\prime+}\right]+\text { H.c. } \tag{87.2}
\end{equation*}
$$

where $W^{\mu \nu} \equiv \partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}$, etc. The θ_{W} dependence shown here corrects the one given in Ref. [6], which has been referred to as the Extended Gauge Model by the experimental collaborations. The W^{\prime} coupling to $W h^{0}$, where h^{0} is the SM Higgs boson, is

$$
\begin{equation*}
-\xi_{h} g_{W^{\prime}} M_{W} W_{\mu}^{\prime+} W^{\mu-} h^{0}+\text { H.c. } \tag{87.3}
\end{equation*}
$$

where $g_{W^{\prime}}$ is the gauge coupling of the W^{\prime} boson, and the coefficient ξ_{h} satisfies $\xi_{h} \leq 1$ in simple Higgs sectors [5].

In models based on the "left-right symmetric" gauge group [7], $S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}$, the SM fermions that couple to the W boson transform as doublets under $S U(2)_{L}$ while the other fermions transform as doublets under $S U(2)_{R}$. Consequently, the W^{\prime} boson couples primarily to right-handed fermions; its coupling to left-handed fermions arises due to the θ_{+}mixing, so that C_{q}^{L} is proportional to the CKM matrix and its elements are much smaller than the diagonal elements of C_{q}^{R}. Generically, C_{q}^{R} does not need to be proportional to $V_{\text {CKM }}$.

There are many other models based on the $S U(2)_{1} \times S U(2)_{2} \times$ $U(1)$ gauge symmetry. In the "alternate left-right" model [8], all the couplings shown in Eq. (87.1) vanish, but there are some new fermions such that the W^{\prime} boson couples to pairs involving a SM fermion and a new fermion. In the "ununified SM" [9], the left-handed quarks are doublets under one $S U(2)$, and the left-handed leptons are doublets under a different $S U(2)$, leading to a mostly leptophobic W^{\prime} boson: $C_{\ell_{i j}}^{L} \ll C_{q_{i j}}^{L}$ and $C_{\ell_{i j}}^{R}=$ $C_{q_{i j}}^{R}=0$. Fermions of different generations may also transform

Figure 87.1: Upper limit on $\sigma\left(p p \rightarrow W^{\prime} X\right) B\left(W^{\prime} \rightarrow e \nu\right)$ from ATLAS [12]. The red line shows the theoretical prediction in the Sequential SM.
as doublets under different $S U(2)$ gauge groups [10]. In particular, the couplings to third generation quarks may be enhanced [11].

It is also possible that the W^{\prime} couplings to SM fermions are highly suppressed. For example, if the quarks and leptons are singlets under one $S U(2)$ [13], then the couplings are proportional to the tiny mixing angle θ_{+}. Similar suppressions may arise if some vectorlike fermions mix with the SM fermions [14].

Gauge groups that embed the electroweak symmetry, such as $S U(3)_{W} \times U(1)$ or $S U(4)_{W} \times U(1)$, also include one or more W^{\prime} bosons [15].

87.2 Collider searches

At LEP-II, W^{\prime} bosons could have been produced in pairs via their photon and Z couplings. The production cross section is large enough to rule out $M_{W^{\prime}}<\sqrt{s} / 2 \approx 105 \mathrm{GeV}$ for most patterns of decay modes.

At hadron colliders, W^{\prime} bosons can be detected through resonant pair production of fermions (f and f^{\prime}) or electroweak bosons with a net electric charge equal to ± 1. When W^{\prime} has a width much smaller than its mass $\left(M_{W^{\prime}} / \Gamma_{W^{\prime}} \lesssim 7 \%\right)$, the contribution of the s-channel W^{\prime} exchange to the total rate for $p p \rightarrow f \bar{f}^{\prime} X$, where X is any final state, may be approximated by the branching fraction $B\left(W^{\prime} \rightarrow f \bar{f}^{\prime}\right)$ times the production cross section

$$
\begin{equation*}
\sigma\left(p p \rightarrow W^{\prime} X\right) \simeq \frac{\pi}{6 s} \sum_{i, j}\left[\left(C_{q_{i j}}^{L}\right)^{2}+\left(C_{q_{i j}}^{R}\right)^{2}\right] w_{i j}\left(M_{W^{\prime}}^{2} / s, M_{W^{\prime}}\right) \tag{87.4}
\end{equation*}
$$

The functions $w_{i j}$ include the information about proton structure, and are given to leading order in α_{s} by

$$
\begin{equation*}
w_{i j}(z, \mu)=\int_{z}^{1} \frac{d x}{x}\left[u_{i}(x, \mu) \bar{d}_{j}\left(\frac{z}{x}, \mu\right)+\bar{u}_{i}(x, \mu) d_{j}\left(\frac{z}{x}, \mu\right)\right] \tag{87.5}
\end{equation*}
$$

where $u_{i}(x, \mu)$ and $d_{i}(x, \mu)$ are the parton distributions inside the proton at the factorization scale μ and parton momentum fraction x for the up- and down-type quarks of the i th generation, respectively. QCD corrections to W^{\prime} production are sizable (they also include quark-gluon initial states), but preserve the above factorization of couplings at next-to-leading order [16].

The most commonly studied W^{\prime} signal consists of a highmomentum electron or muon and large missing transverse momentum. The signal transverse mass distribution forms a Jacobian peak with its endpoint at $M_{W^{\prime}}$ (see Fig. 1 (top) of Ref. [12]). Given that the branching fractions for $W^{\prime} \rightarrow e \nu$ and $W^{\prime} \rightarrow \mu \nu$ could be very different, the results in these channels should be presented separately. Searches in these channels often implicitly assume that the left-handed couplings vanish (no interference between W and W^{\prime}), and that the right-handed neutrino is light compared to the W^{\prime} boson and escapes the detector. An example of parameter values that satisfy these assumptions is $C_{q}^{R}=g V_{\mathrm{CKM}}, C_{\ell}^{R}=g, C_{q}^{L}=C_{\ell}^{L}=0$, which define a model that

Figure 87.2: Upper limits on W^{\prime} production cross section times branching fraction into a W and a SM Higgs boson decaying into heavy-flavor quarks, from ATLAS [17] (left) and CMS [18] (right).
preserves lepton universality and predicts the same total cross section as the Sequential SM used in many W^{\prime} searches. However, if a W^{\prime} boson were discovered and the final state fermions have left-handed helicity, then the effects of $W-W^{\prime}$ interference could be observed [19], providing information about the W^{\prime} couplings. The effects of the W^{\prime} width on interference are discussed in [20].

In the $e \nu$ channel, the ATLAS and CMS collaborations set limits on the W^{\prime} production cross section times branching fraction (and thus indirectly on the W^{\prime} couplings). These limits are set for $M_{W^{\prime}}$ in the $0.15-7 \mathrm{TeV}$ range and are based on $36-139 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}[12,21]$, as shown in Fig. 87.1 for the most stringent limits. ATLAS sets the strongest mass limit $M_{W^{\prime}}>6.0 \mathrm{TeV}$ in the Sequential SM (all limits in this mini-review are at the 95% CL). The coupling limits are much weaker for $M_{W^{\prime}}<150 \mathrm{GeV}$, a range last explored with the Tevatron at $\sqrt{s}=1.8 \mathrm{TeV}$ [22].

In the $\mu \nu$ channel, ATLAS and CMS set rate limits for $M_{W^{\prime}}$ in the $0.15-7 \mathrm{TeV}$ range from the same analyses as mentioned above, with the strongest mass lower limit of 5.1 TeV in the Sequential SM set by ATLAS [12] using $139 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ data. When combined with the $e \nu$ channel assuming lepton universality, the upper limit on the $\sqrt{s}=13 \mathrm{TeV}$ cross section times branching fraction to $\ell \nu$ varies between 0.05 and 2.1 fb for $M_{W^{\prime}}$ values in the range between 1 and 6 TeV [12]. Only weak limits on $W^{\prime} \rightarrow \mu \nu$ exist for $M_{W^{\prime}}<150 \mathrm{GeV}$ [23]. Note that masses of the order of the electroweak scale are interesting from a theory point of view, while lepton universality does not necessarily apply to a W^{\prime} boson.

Dedicated searches for $W^{\prime} \rightarrow \tau \nu$ have been performed by CMS at 8 TeV [24] and both ATLAS and CMS with $36 \mathrm{fb}^{-1}$ at 13 $\mathrm{TeV}[25,26]$. Limits are set on $\sigma \cdot B$ for $M_{W^{\prime}}$ between 0.4 and 4 TeV for the former and between 0.4 and 5.6 TeV for the latter. A mass lower limit of 4.0 TeV is set in the Sequential SM and the upper limit on the cross section times branching fraction to $\tau \nu$ at 13 TeV varies between 1.7 and 12 fb for $M_{W^{\prime}}$ values in the range between 1 and 5 TeV [26].

The W^{\prime} decay into a charged lepton and a right-handed neutrino, ν_{R}, may also be followed by the ν_{R} decay through a virtual W^{\prime} boson into a charged lepton and two quark jets. The CMS [27] and ATLAS [28] searches in the eejj and $\mu \mu j j$ channels have set limits on the cross section times branching fraction as a function of the ν_{R} mass or of $M_{W^{\prime}}$. No requirement is placed on the charge of the lepton pair. A related W^{\prime} search in the $\tau \tau j j$ channel with hadronic τ decays was also performed by CMS [29].

The $t \bar{b}$ channel is particularly important because a W^{\prime} boson that couples only to right-handed fermions cannot decay to leptons when the right-handed neutrinos are heavier than $M_{W^{\prime}}$. Additional motivations are provided by a W^{\prime} boson with enhanced couplings to the third generation [11], and by a leptophobic W^{\prime} boson. The usual signature consists of a leptonically-decaying W boson and two b-jets. Recent studies have also incorporated
the fully hadronic decay channel for $M_{W^{\prime}} \gg m_{t}$ with the use of jet substructure techniques to tag highly boosted top-jets. For a detailed discussion of this channel, see Ref. [30].
Searches for dijet resonances may be used to set limits on $W^{\prime} \rightarrow q \bar{q}^{\prime}$. ATLAS [31] and CMS [32] provide similar coverage in the $\sim 1.5-8.0 \mathrm{TeV}$ mass range with 139 and $137 \mathrm{fb}^{-1}$ of data, respectively, collected at $\sqrt{s}=13 \mathrm{TeV}$. Interpretation in terms of W^{\prime} decays with $139 \mathrm{fb}^{-1}$ of 13 TeV data yields a W^{\prime} mass lower limit of 4.0 TeV in the Sequential SM [31]. For masses in the range $\sim 0.5-1.5 \mathrm{TeV}$, analyses based on jets reconstructed online provide the best sensitivity because they circumvent trigger bandwidth limitations [33,34]. For W^{\prime} masses below $\sim 0.5 \mathrm{TeV}$, the best limits are set in novel analyses exploiting boosted technologies and initial state radiation [35-38]. Cross-section limits for W^{\prime} masses below $\sim 1.5 \mathrm{TeV}$ can be derived from the dijet limits on Z^{\prime} bosons summarized in Ref. [3].

In some theories [4] the W^{\prime} couplings to SM fermions are suppressed by discrete symmetries. W^{\prime} production then occurs in pairs, through a photon or Z boson. The decay modes are modeldependent and often involve other new particles. The ensuing collider signals arise from cascade decays and typically include missing transverse momentum.

Searches for $W Z$ resonances at the LHC have focused on the process $p p \rightarrow W^{\prime} \rightarrow W Z$ with the production mainly from $u \bar{d} \rightarrow$ W^{\prime} assuming SM-like couplings to quarks. ATLAS and CMS have set the upper limits on the $W^{\prime} W Z$ coupling for $M_{W^{\prime}}$ in the $0.2-$ 5.0 TeV range with a combination of fully leptonic, semi-leptonic and fully hadronic channels with $\sim 36 \mathrm{fb}^{-1}$ at 13 TeV [39,40] (see also Ref. [30]). The strongest lower limits on the W^{\prime} mass are set by ATLAS [41] and CMS [42] at 13 TeV with $139 \mathrm{fb}^{-1}$ and $77 \mathrm{fb}^{-1}$, respectively, in the $W Z \rightarrow(j j)(j j)$ final state, where the parentheses represent a resonance. The lower limit on $M_{W^{\prime}}$ is 3.4 TeV in the context of the Heavy Vector Triplet (HVT) weaklycoupled scenario A [43]. A fermiophobic W^{\prime} boson that couples to $W Z$ may be produced at hadron colliders in association with a Z boson, or via $W Z$ fusion. This would give rise to $(W Z) Z$ and $(W Z) j j$ final states [44].
W^{\prime} bosons have also been searched for in final states with a W boson and a SM Higgs boson in the channels $W \rightarrow \ell \nu$ or $W \rightarrow q \bar{q}^{\prime}$ and $h^{0} \rightarrow b \bar{b}$ by ATLAS $[17,45]$ and CMS $[18,46]$ with $36 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$. Cross-section limits are set for W^{\prime} masses in the range between 0.5 and 5.0 TeV . The ATLAS and CMS 13 TeV analyses both set the most stringent lower limit on the mass: $M_{W^{\prime}}>2.7 \mathrm{TeV}$ for the HVT weakly-coupled scenario A, as shown in Fig. 87.2.

87.3 Low-energy constraints

The properties of W^{\prime} bosons are also constrained by measurements of processes at energies much below $M_{W^{\prime}}$. The bounds on
$W-W^{\prime}$ mixing [47] are mostly due to the change in W properties compared to the SM. Limits on deviations in the $Z W W$ couplings provide a leading constraint for fermiophobic W^{\prime} bosons [14].

Constraints arising from low-energy effects of W^{\prime} exchange are strongly model-dependent. If the W^{\prime} couplings to quarks are not suppressed, then box diagrams involving a W and a W^{\prime} boson contribute to neutral meson-mixing. In the case of W^{\prime} couplings to right-handed quarks as in the left-right symmetric model, the limit from $K_{L}-K_{S}$ mixing is severe: $M_{W^{\prime}}>2.9 \mathrm{TeV}$ for $C_{q}^{R}=$ $g V_{\text {CKM }}$ [48]. However, if no correlation between the W^{\prime} and W couplings is assumed, then the limit on $M_{W^{\prime}}$ may be significantly relaxed [49].
W^{\prime} exchange also contributes at tree level to various low-energy processes. In particular, it would impact the measurement of the Fermi constant G_{F} in muon decay, which in turn would change the predictions of many other electroweak processes. A recent test of parity violation in polarized muon decay [50] has set limits of about 600 GeV on $M_{W^{\prime}}$, assuming W^{\prime} couplings to right-handed leptons as in left-right symmetric models and a light ν_{R}. There are also W^{\prime} contributions to the neutron electric dipole moment, β decays, and other processes [47].

If right-handed neutrinos have Majorana masses, then there are tree-level contributions to neutrinoless double-beta decay, and a limit on $M_{W^{\prime}}$ versus the ν_{R} mass may be derived [51]. For ν_{R} masses below a few GeV , the W^{\prime} boson contributes to leptonic and semileptonic B meson decays, so that limits may be placed on various combinations of W^{\prime} parameters [49]. For ν_{R} masses below $\sim 30 \mathrm{MeV}$, the most stringent constraints on $M_{W^{\prime}}$ are due to the limits on ν_{R} emission from supernovae.

References

[1] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988).
[2] H.-C. Cheng et al., Phys. Rev. D64, 065007 (2001), [hepth/0104179].
[3] See the Section on " Z^{\prime}-boson searches" in this Review.
[4] H.-C. Cheng and I. Low, JHEP 09, 051 (2003), [hepph/0308199].
[5] B. A. Dobrescu and Z. Liu, JHEP 10, 118 (2015), [arXiv:1507.01923].
[6] G. Altarelli, B. Mele and M. Ruiz-Altaba, Z. Phys. C45, 109 (1989), [Erratum: Z. Phys. C47, 676 (1990)].
[7] R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1975).
[8] K. S. Babu, X.-G. He and E. Ma, Phys. Rev. D36, 878 (1987).
[9] H. Georgi, E. E. Jenkins and E. H. Simmons, Nucl. Phys. B331, 541 (1990).
[10] X.-y. Li and E. Ma, J. Phys. G19, 1265 (1993), [hepph/9208210].
[11] D. J. Muller and S. Nandi, Phys. Lett. B383, 345 (1996), [hep-ph/9602390].
[12] G. Aad et al. (ATLAS), Phys. Rev. D100, 052013 (2019), [arXiv:1906.05609].
[13] A. Donini et al., Nucl. Phys. B507, 51 (1997), [hepph/9705450].
[14] R. S. Chivukula et al., Phys. Rev. D74, 075011 (2006), [hepph/0607124].
[15] F. Pisano and V. Pleitez, Phys. Rev. D46, 410 (1992), [hepph/9206242].
[16] Z. Sullivan, Phys. Rev. D66, 075011 (2002), [hepph/0207290].
[17] M. Aaboud et al. (ATLAS), JHEP 03, 174 (2018), [Erratum: JHEP 11, 051 (2018)], [arXiv:1712.06518].
[18] A. M. Sirunyan et al. (CMS), JHEP 11, 172 (2018), [arXiv:1807.02826].
[19] T. G. Rizzo, JHEP 05, 037 (2007), [arXiv:0704.0235].
[20] E. Accomando et al., Phys. Rev. D85, 115017 (2012), [arXiv:1110.0713].
[21] A. M. Sirunyan et al. (CMS), JHEP 06, 128 (2018), [arXiv:1803.11133].
[22] F. Abe et al. (CDF), Phys. Rev. Lett. 74, 2900 (1995).
[23] F. Abe et al. (CDF), Phys. Rev. Lett. 67, 2609 (1991).
[24] V. Khachatryan et al. (CMS), Phys. Lett. B755, 196 (2016), [arXiv:1508.04308].
[25] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 120, 161802 (2018), [arXiv:1801.06992].
[26] A. M. Sirunyan et al. (CMS), Phys. Lett. B792, 107 (2019), [arXiv:1807.11421].
[27] A. M. Sirunyan et al. (CMS), JHEP 05, 148 (2018), [arXiv:1803.11116].
[28] M. Aaboud et al. (ATLAS), Submitted to: Phys. Lett. (2019), [arXiv:1904.12679].
[29] A. M. Sirunyan et al. (CMS), JHEP 03, 170 (2019), [arXiv:1811.00806].
[30] K.M. Black et al., "Dynamical electroweak symmetry breaking" in this Review.
[31] G. Aad et al. (ATLAS) (2019), [arXiv:1910.08447].
[32] CMS Collab., CMS PAS EXO-19-012, Jul. 2019.
[33] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 081801 (2018), [arXiv:1804.03496].
[34] A. M. Sirunyan et al. (CMS), JHEP 08, 130 (2018), [arXiv:1806.00843].
[35] M. Aaboud et al. (ATLAS), Phys. Lett. B788, 316 (2019), [arXiv:1801.08769].
[36] M. Aaboud et al. (ATLAS), Phys. Lett. B795, 56 (2019), [arXiv:1901.10917].
[37] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1909.04114].
[38] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1905.10331].
[39] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 052008 (2018), [arXiv:1808.02380].
[40] A. M. Sirunyan et al. (CMS), Phys. Lett. B798, 134952 (2019), [arXiv:1906.00057].
[41] G. Aad et al. (ATLAS), JHEP 09, 091 (2019), [arXiv:1906.08589].
[42] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1906.05977].
[43] D. Pappadopulo et al., JHEP 09, 060 (2014), [arXiv:1402.4431].
[44] H.-J. He et al., Phys. Rev. D78, 031701 (2008), [arXiv:0708.2588].
[45] M. Aaboud et al. (ATLAS), Phys. Lett. B774, 494 (2017), [arXiv:1707.06958].
[46] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 636 (2017), [arXiv:1707.01303].
[47] See the particle listings for W^{\prime} in this Review.
[48] Y. Zhang et al., Phys. Rev. D76, 091301 (2007), [arXiv:0704.1662].
[49] P. Langacker and S. U. Sankar, Phys. Rev. D40, 1569 (1989).
[50] J. F. Bueno et al. (TWIST), Phys. Rev. D84, 032005 (2011), [arXiv:1104.3632].
[51] See Fig. 5 of G. Prezeau, M. Ramsey-Musolf, and P. Vogel, Phys. Rev. D 68, 034016 (2003).

88. Z^{\prime}-Boson Searches

Revised October, 2019 by B.A. Dobrescu (Fermilab) and S. the form Willocq (U. Massachusetts).

The Z^{\prime} boson is a massive, electrically-neutral and color-singlet hypothetical particle of spin 1. This particle is predicted in many extensions of the Standard Model (SM) and has been the object of extensive phenomenological studies [1].

$88.1 Z^{\prime}$ boson couplings

The couplings of a Z^{\prime} boson to the first-generation fermions are given by

$$
\begin{align*}
& Z_{\mu}^{\prime}\left(g_{u}^{L} \bar{u}_{L} \gamma^{\mu} u_{L}+g_{d}^{L} \bar{d}_{L} \gamma^{\mu} d_{L}+g_{u}^{R} \bar{u}_{R} \gamma^{\mu} u_{R}+g_{d}^{R} \bar{d}_{R} \gamma^{\mu} d_{R}\right. \\
& \left.\quad+g_{\nu}^{L} \bar{\nu}_{L} \gamma^{\mu} \nu_{L}+g_{e}^{L} \bar{e}_{L} \gamma^{\mu} e_{L}+g_{e}^{R} \bar{e}_{R} \gamma^{\mu} e_{R}\right), \tag{88.1}
\end{align*}
$$

where u, d, ν, e are the quark and lepton fields in the mass eigenstate basis, and the coefficients $g_{u}^{L}, g_{d}^{L}, g_{u}^{R}, g_{d}^{R}, g_{\nu}^{L}, g_{e}^{L}, g_{e}^{R}$ are real dimensionless parameters. If the Z^{\prime} couplings to quarks and leptons are generation-independent, then these seven parameters describe the couplings of the Z^{\prime} boson to all SM fermions. More generally, however, the Z^{\prime} couplings to fermions are generationdependent, in which case Eq. (88.1) may be written with generation indices $i, j=1,2,3$ labeling the quark and lepton fields, and with the seven coefficients promoted to 3×3 Hermitian matrices (e.g., $g_{e}^{L}{ }_{i j} \bar{e}_{L}^{i} \gamma^{\mu} e_{L}^{j}$, where e_{L}^{2} is the left-handed muon, etc.).

The parameters describing the Z^{\prime} boson interactions with quarks and leptons are subject to some theoretical constraints. Quantum field theories that include a heavy spin-1 particle are well behaved at high energies only if that particle is a gauge boson associated with a spontaneously broken gauge symmetry. Quantum effects preserve the gauge symmetry only if the couplings of the gauge boson to fermions satisfy the anomaly equations [2]. Furthermore, the fermion charges under the new gauge symmetry are constrained by the requirement that the quarks and leptons get masses from gauge-invariant interactions with the Higgs fields.

The relation between the couplings displayed in Eq. (88.1) and the gauge charges $z_{f i}^{L}$ and $z_{f i}^{R}$ of the fermions $f=u, d, \nu, e$ involves the unitary 3×3 matrices V_{f}^{L} and V_{f}^{R} that transform the gauge eigenstate fermions f_{L}^{i} and f_{R}^{i}, respectively, into the mass eigenstates. The Z^{\prime} couplings also depend on the mixings of the new gauge boson in the gauge eigenstate basis $\left(\tilde{Z}_{\mu}^{\prime}\right)$. The main ones are a kinetic mixing $(-\chi / 2) B^{\mu \nu} \tilde{Z}_{\mu \nu}^{\prime}$ with the hypercharge gauge boson B^{μ} (χ is a dimensionless parameter), and a mass mixing $\delta M^{2} \tilde{Z}^{\mu} \tilde{Z}_{\mu}^{\prime}$ with the linear combination $\left(\tilde{Z}_{\mu}\right)$ of neutral bosons that couples as the SM Z boson [3]. Since both the kinetic and mass mixings shift the mass and couplings of the Z boson, electroweak measurements impose upper limits on χ and $\delta M^{2} /\left(M_{Z^{\prime}}^{2}-M_{Z}^{2}\right)$ of the order of 10^{-3} [4]. Keeping only linear terms in these two small quantities, the couplings of the masseigenstate Z^{\prime} boson are given by

$$
\begin{align*}
g_{f_{i j}}^{L} & =g_{z} V_{f i i^{\prime}}^{L} z_{f_{i^{\prime}}}^{L}\left(V_{f}^{L}\right)_{i^{\prime} j}^{\dagger} \\
& +\frac{e}{c_{W}}\left(\frac{s_{W} \chi M_{Z^{\prime}}^{2}+\delta M^{2}}{2 s_{W}\left(M_{Z^{\prime}}^{2}-M_{Z}^{2}\right)} \sigma_{f}^{3}-\epsilon Q_{f}\right) \tag{88.2}\\
& g_{f}^{i j} R \tag{88.3}\\
& =g_{z} V_{f i i^{\prime}}^{R} z_{f i^{\prime}}^{R}\left(V_{f}^{R}\right)_{i^{\prime} j}^{\dagger}-\frac{e}{c_{W}} \epsilon Q_{f}
\end{align*}
$$

where g_{z} is the new gauge coupling, Q_{f} is the electric charge of f, e is the electromagnetic gauge coupling, s_{W} and c_{W} are the sine and cosine of the weak mixing angle, $\sigma_{f}^{3}=+1$ for $f=u, \nu$ and $\sigma_{f}^{3}=-1$ for $f=d, e$, and

$$
\begin{equation*}
\epsilon=\frac{\chi\left(M_{Z^{\prime}}^{2}-c_{W^{2}}^{2} M_{Z}^{2}\right)+s_{W} \delta M^{2}}{M_{Z^{\prime}}^{2}-M_{Z}^{2}} \tag{88.4}
\end{equation*}
$$

The interaction of the Z^{\prime} boson with a pair of W bosons has

Figure 88.1: Upper limits on the cross section for Z^{\prime} production times the branching fraction for $Z^{\prime} \rightarrow e^{+} e^{-}$(left panel, set by ATLAS [7]) or $Z^{\prime} \rightarrow \mu^{+} \mu^{-}$(right panel, set by CMS [8]) as a function of $M_{Z^{\prime}}$. The lines labelled by Z_{ψ}^{\prime} and Z_{χ}^{\prime} are theoretical predictions for the $U(1)_{10+x \overline{5}}$ models in Table 88.1 with $x=-3$ and $x=+1$, respectivxoely, for g_{z} fixed by an E_{6} unification condition. The $Z_{\mathrm{SSM}}^{\prime}$ line corresponds to Z^{\prime} couplings equal to those of the Z boson.

Table 88.1: Examples of generationindependent $U(1)^{\prime}$ charges for quarks and leptons. The parameter x is an arbitrary rational number. Gauge anomaly cancellation requires certain new fermions [6].

fermion	$U(1)_{B-x L}$	$U(1)_{10+x 5}$	$U(1)_{d-x u}$	$U(1)_{q+x u}$
$\left(u_{L}, d_{L}\right)$	$1 / 3$	$1 / 3$	0	$1 / 3$
u_{R}	$1 / 3$	$-1 / 3$	$-x / 3$	$x / 3$
d_{R}	$1 / 3$	$-x / 3$	$1 / 3$	$(2-x) / 3$
$\left(\nu_{L}, e_{L}\right)$	$-x$	$x / 3$	$(-1+x) / 3$	-1
e_{R}	$-x$	$-1 / 3$	$x / 3$	$-(2+x) / 3$

is the CKM matrix). These are severely constrained by measurements of FCNC processes, which in this case are mediated at treelevel by Z^{\prime} boson exchange [12]. The constraints are relaxed if the first and second generation charges are the same, although they are increasingly tightened by the measurements of B meson properties [13]. If only the $S U(2)_{W}$-singlet quarks have generationdependent $U(1)^{\prime}$ charges, there is more freedom in adjusting the flavor off-diagonal couplings because the $V_{u, d}^{R}$ matrices are not observable in the SM.

The anomaly equations for $U(1)^{\prime}$ could be circumvented only if there is an axion with certain dimension- 5 couplings to the gauge bosons. However, such a scenario violates unitarity unless the quantum field theory description breaks down at a scale near $M_{Z^{\prime}}{ }^{[14]}$.
Z^{\prime} bosons may also arise from larger gauge groups. These may extend the electroweak group, as in $S U(2) \times S U(2) \times U(1)$, or may embed the electroweak group, as in $S U(3)_{W} \times U(1)$ [15]. If the larger group is spontaneously broken down to $S U(2)_{W} \times U(1)_{Y} \times$ $U(1)^{\prime}$ at a scale $v_{\star} \gg M_{Z^{\prime}} / g_{z}$, then the above discussion applies up to corrections of order $M_{Z^{\prime}}^{2} /\left(g_{z} v_{\star}\right)^{2}$. For $v_{\star} \sim M_{Z^{\prime}} / g_{z}$, additional gauge bosons have masses comparable to $M_{Z^{\prime}}$, including at least a W^{\prime} boson [15]. If the larger gauge group breaks together with the electroweak symmetry directly to the electromagnetic $U(1)_{\mathrm{em}}$, then the left-handed fermion charges are no longer correlated ($z_{u}^{L} \neq z_{d}^{L}, z_{\nu}^{L} \neq z_{e}^{L}$) and a $Z^{\prime} W^{+} W^{-}$coupling is induced.

If the electroweak gauge bosons propagate in extra dimensions, then their Kaluza-Klein (KK) excitations include a series of Z^{\prime} boson pairs. Each of these pairs can be associated with a different $S U(2) \times U(1)$ gauge group in four dimensions. The properties of the KK particles depend strongly on the extra-dimensional theory [16]. For example, in universal extra dimensions there is a parity
that forces all couplings of Eq. (88.1) to vanish in the case of the lightest KK bosons, while allowing couplings to pairs of fermions involving a SM and a heavy vectorlike fermion. There are also 4 dimensional gauge theories (e.g. little Higgs with T parity) with Z^{\prime} bosons exhibiting similar properties. By contrast, in a warped extra dimension, the couplings of Eq. (88.1) may be sizable even when SM fields propagate along the extra dimension.
Z^{\prime} bosons may also be composite particles. For example, in confining gauge theories [17], the ρ-like bound state is a spin-1 boson that may be interpreted as arising from a spontaneously broken gauge symmetry [18].

88.3 Non-resonant Z^{\prime} signatures at colliders

In the presence of the couplings shown in Eq. (88.1), the Z^{\prime} boson may be produced in the s-channel at colliders, and would decay to pairs of fermions. The decay width into a pair of electrons is given by

$$
\begin{equation*}
\Gamma\left(Z^{\prime} \rightarrow e^{+} e^{-}\right) \simeq\left[\left(g_{e}^{L}\right)^{2}+\left(g_{e}^{R}\right)^{2}\right] \frac{M_{Z^{\prime}}}{24 \pi}, \tag{88.6}
\end{equation*}
$$

where small corrections from electroweak loops are not included. The decay width into $q \bar{q}$ is similar, except for an additional color factor of 3, QCD radiative corrections, and fermion mass corrections. Thus, one may compute the Z^{\prime} branching fractions in terms of the couplings of Eq. (88.1). However, other decay channels, such as $W W$ or a pair of new particles, could have large widths and need to be added to the total decay width.
As mentioned above, there are theories in which the Z^{\prime} couplings are controlled by a discrete symmetry that forbids decays into a pair of SM particles. Typically, such theories involve several new particles, which may be produced only in pairs and undergo cascade decays through Z^{\prime} bosons, leading to signals involving missing (transverse) momentum. Given that the cascade decays depend on the properties of new particles other than the Z^{\prime} boson, this case is not discussed further here.
The Z^{\prime} contribution to the cross sections for $e^{+} e^{-} \rightarrow f \bar{f}$ proceeds through an s-channel Z^{\prime} exchange (when $f=e$, there are also t - and u-channel exchanges). For $M_{Z^{\prime}}<\sqrt{s}$, the Z^{\prime} appears as an $f \bar{f}$ resonance in the radiative return process where photon emission tunes the effective center-of-mass energy to $M_{Z^{\prime}}$. The agreement between the LEP-II measurements and the SM predictions implies that either the Z^{\prime} couplings are smaller than or of order 10^{-2}, or else $M_{Z^{\prime}}$ is above 209 GeV , the maximum energy of LEP-II. In the latter case, the Z^{\prime} exchange may be approximated

Figure 88.2: Upper limits on the Z^{\prime} coupling to quarks as a function of $M_{Z^{\prime}}$ based on various searches performed by the ATLAS, CMS, CDF, and UA2 experiments [19].
up to corrections of order $s / M_{Z^{\prime}}^{2}$ by the contact interactions

$$
\begin{equation*}
\frac{g_{z}^{2}}{M_{Z^{\prime}}^{2}-s}\left[\bar{e} \gamma_{\mu}\left(z_{e}^{L} P_{L}+z_{e}^{R} P_{R}\right) e\right]\left[\bar{f} \gamma^{\mu}\left(z_{f}^{L} P_{L}+z_{f}^{R} P_{R}\right) f\right] \tag{88.7}
\end{equation*}
$$

where $P_{L, R}$ are chirality projection operators, and the relation between Z^{\prime} couplings and charges (see Eq. (88.2) in the limit where the mass and kinetic mixings are neglected) is used, assuming generation-independent charges. The four LEP collaborations have set limits on the coefficients of such operators for all possible chiral structures and for various combinations of fermions [20]. Thus, one may derive bounds on $\left(M_{Z^{\prime}} / g_{z}\right)\left|z_{e}^{L} z_{f}^{L}\right|^{-1 / 2}$ and the analogous combinations of $L R, R L$ and $R R$ charges, which are typically on the order of a few TeV. LEP-II limits were derived [6] on the four sets of charges shown in Table 88.1.

Somewhat stronger bounds can be set on $M_{Z^{\prime}} / g_{z}$ for specific sets of Z^{\prime} couplings if the effects of several operators (88.7) are combined. Dedicated analyses by the LEP collaborations have set limits on Z^{\prime} bosons for particular values of the gauge coupling (see section 3.5 of Ref. [20]). For example, $M_{Z_{\mathrm{SSM}}}>1.76 \mathrm{TeV}$ for a "sequential" Z^{\prime} of same couplings as the $\mathrm{SM} Z$ boson, while $M_{Z_{\chi}}>0.785 \mathrm{TeV}$ for the Z^{\prime} associated with $U(1)_{\chi}$ assuming a unification condition for the gauge coupling.

88.4 Searches at hadron colliders

Z^{\prime} bosons with couplings to quarks (see Eq. (88.1)) may be produced at hadron colliders in the s-channel and would show up as resonances in the invariant mass distribution of the decay products. The cross section for producing a Z^{\prime} boson at the LHC, which then decays to some $f \bar{f}$ final state, takes the form [21]

$$
\begin{equation*}
\sigma\left(p p \rightarrow Z^{\prime} X \rightarrow f \bar{f} X\right) \simeq \frac{\pi}{6 s} \sum_{q} c_{q}^{f} w_{q}\left(s, M_{Z^{\prime}}^{2}\right) \tag{88.8}
\end{equation*}
$$

for flavor-diagonal couplings to quarks. Here, we have neglected the interference with the SM contribution to $f \bar{f}$ production, which is a good approximation for a narrow Z^{\prime} resonance (deviations from the narrow width approximation are discussed in Ref. [22]). The coefficients

$$
\begin{equation*}
c_{q}^{f}=\left[\left(g_{q}^{L}\right)^{2}+\left(g_{q}^{R}\right)^{2}\right] B\left(Z^{\prime} \rightarrow f \bar{f}\right) \tag{88.9}
\end{equation*}
$$

contain all the dependence on the Z^{\prime} couplings, while the functions w_{q} include all the information about parton distributions and QCD corrections $[6,10]$. This factorization holds exactly to

NLO and the deviations from it induced at NNLO are very small. Note that the w_{u} and w_{d} functions are substantially larger than the w_{q} functions for the other quarks. Eq. (88.8) also applies to the Tevatron, except for changing the $p p$ initial state to $p \bar{p}$, which implies that the $w_{q}\left(s, M_{Z^{\prime}}^{2}\right)$ functions are replaced by some other functions $\bar{w}_{q}\left((1.96 \mathrm{TeV})^{2}, M_{Z^{\prime}}^{2}\right)$.

It is common to present results of Z^{\prime} searches as limits on the cross section versus $M_{Z^{\prime}}$ (see for example Fig. 88.1).

An alternative is to plot exclusion curves for fixed $M_{Z^{\prime}}$ values in the $c_{u}^{f}-c_{d}^{f}$ planes, allowing a simple derivation of the mass limit within any Z^{\prime} model. CMS upper limits in the $c_{u}^{\ell}-c_{d}^{\ell}$ plane $(\ell=e$ or $\mu)$ for different $M_{Z^{\prime}}$ are shown in Ref. [23] (for Tevatron limits, see Refs. $[10,24])$.

The discovery of a dilepton resonance at the LHC would determine the Z^{\prime} mass and width. A measurement of the total cross section would define a band in the $c_{u}^{\ell}-c_{d}^{\ell}$ plane. Angular distributions can be used to measure several combinations of Z^{\prime} parameters (angular distributions were used in Ref. [25] to improve the Tevatron sensitivity). Even though the original quark direction in a $p p$ collider is unknown, the leptonic forward-backward asymmetry A_{FB}^{ℓ} can be extracted from the kinematics of the dilepton system, and is sensitive to parity-violating couplings. A fit to the Z^{\prime} rapidity distribution can distinguish between the couplings to up and down quarks. These measurements, combined with off-peak observables, have the potential to differentiate among various Z^{\prime} models [26]. In some cases, A_{FB}^{ℓ} may provide discovery sensitivity that is competitive with the mass distribution [27]. The spin of the Z^{\prime} boson may be determined from angular distributions [28].

Searches for Z^{\prime} decays into $e^{+} e^{-}$and $\mu^{+} \mu^{-}$by the ATLAS and CMS collaborations [7,8] have set 95% C.L. upper cross-section limits as low as 0.02 fb (see Fig. 88.1), with the mass lower limits in specific models as high as 4.9 TeV in a single channel. Cross section limits in the dimuon channel for low mass regions, below 200 GeV but not near the Z mass, have been set at the LHC by CMS [29] and LHCb [30] (and also in $e^{+} e^{-}$collisions by BaBar [31], assuming a dark photon, i.e., a Z^{\prime} boson whose couplings arise only from the kinetic mixing with the hypercharge gauge boson).

In the case of final states with tau-leptons, the mass lower limits obtained at 13 TeV are as high as $\sim 2.4 \mathrm{TeV}$ for the $\tau^{+} \tau^{-}[32]$ decay in the case of a sequential Z^{\prime}. Limits in the flavor-violating leptonic final states have also been reported by ATLAS [33] and CMS [34] at 13 TeV , for resonances in the $e^{ \pm} \mu^{\mp}, e^{ \pm} \tau^{\mp}$ and $\mu^{ \pm} \tau^{\mp}$ channels.

Final states with higher background, $t \bar{t}, b \bar{b}$ and $j j$, are also important as they probe various combinations of Z^{\prime} couplings to
quarks, see Ref. [35] for further discussion. Besides the improved sensitivity at masses of several TeV , the LHC searches in the dijet channel have been also extended to masses as low as 10 GeV , through the use of new techniques involving boosted topologies and initial state radiation [36]. Limits from such Z^{\prime} searches in hadronic final states are summarized in Fig. 88.2.
Z^{\prime} decays to $Z h^{0}$ with $Z \rightarrow \ell^{+} \ell^{-}, \nu \bar{\nu}$ or $q \bar{q}$ and $h^{0} \rightarrow b \bar{b}$ have been studied by ATLAS [37,38] and CMS [39, 40] using 13 TeV data. The most stringent constraint is set in the fully hadronic channel, with a mass lower limit of 2.65 TeV in the context of the Heavy Vector Triplet (HVT) model weakly-coupled scenario A [41].

Searches for a Z^{\prime} boson lighter than the SM Z and which couples to leptons have been performed in the 4 -lepton final state. CMS [42] focused on the Z decays into a muon pair followed by the radiation of a Z^{\prime} boson which decays itself into a muon pair. ATLAS [43] considered the $h^{0} \rightarrow Z Z^{\prime}$ and $h^{0} \rightarrow Z^{\prime} Z^{\prime}$ processes followed by the leptonic decays of both Z and Z^{\prime}.

The $p p \rightarrow Z^{\prime} X \rightarrow W^{+} W^{-} X$ process has also been searched for at the LHC. The channel where the Z^{\prime} boson is produced through its couplings to quarks, and the W bosons decay hadronically, has been explored using boosted techniques to analyze the 13 TeV data [44, 45] with a mass lower limit of 2.9 TeV in the HVT model A. The Z^{\prime} boson may also be produced through its couplings to W bosons [46], which has been explored by ATLAS with the use of forward jets consistent with a vector boson fusion event topology.

At the Tevatron, the CDF and D \varnothing collaborations have searched for Z^{\prime} bosons in the $e^{+} e^{-}[47], \mu^{+} \mu^{-}$[48], $e^{ \pm} \mu^{\mp}[49], \tau^{+} \tau^{-}$[50], $t \bar{t}$ [51], $j j$ [52] and $W^{+} W^{-}$[53] final states. These limits have been mostly superseded by the LHC results.

88.5 Low-energy constraints

Z^{\prime} boson properties are also constrained by a variety of lowenergy experiments [54]. Polarized electron-nucleon scattering and atomic parity violation are sensitive to electron-quark contact interactions, which get contributions from Z^{\prime} exchange that can be expressed in terms of the couplings introduced in Eq. (88.1) and M_{Z}^{\prime}. Further corrections to the electron-quark contact interactions are induced in the presence of $\tilde{Z}-\tilde{Z}^{\prime}$ mixing because of the shifts in the Z couplings to quarks and leptons [3]. Deep-inelastic neutrino-nucleon scattering is similarly affected by Z^{\prime} bosons. Other low-energy observables are discussed in [4]. Viable models with Z^{\prime} bosons much lighter than the Z boson have been constructed, despite many additional experimental constraints [55].

In some models, the lower limits on $M_{Z^{\prime}}$ set by low-energy data are above 1 TeV . For example, $M_{Z_{\chi}}>1.1 \mathrm{TeV}$ and $M_{Z_{\eta}}>$ 0.43 TeV assuming that the Higgs sectors consist of electroweak doublets and singlets only [4], while the gauge coupling is fixed by an $S O(10)$ unification condition for $U(1)_{\chi}$ and $U(1)_{\eta}$. For more general models, see $[1,6,56]$. The mass bounds from direct searches at the LHC $[7,8]$ exceed the electroweak constraints by a factor of three or more for the models mentioned here. This conclusion could change if the collider bounds are weakened by exotic decay channels [57].

Although the LHC data are most constraining for many Z^{\prime} models, one should be careful in assessing the relative reach of various experiments given the freedom in Z^{\prime} couplings. For example, a Z^{\prime} coupled to $B-y L_{\mu}+(y-3) L_{\tau}$ has implications for the muon $g-2$, neutrino oscillations or τ decays, and would be hard to see in processes involving first-generation fermions. Moreover, the combination of LHC searches and low-energy measurements could allow a precise determination of the Z^{\prime} parameters [58].

References

[1] A. Leike, Phys. Rept. 317, 143 (1999), [hep-ph/9805494].
[2] T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics (1984), ISBN 9780198519614.
[3] K. S. Babu, C. F. Kolda and J. March-Russell, Phys. Rev. D57, 6788 (1998), [hep-ph/9710441].
[4] J. Erler et al., JHEP 08, 017 (2009), [arXiv:0906.2435].
[5] B. A. Dobrescu and P. J. Fox, JHEP 05, 047 (2016), [arXiv:1511.02148].
[6] M. Carena et al., Phys. Rev. D70, 093009 (2004), [hepph/0408098].
[7] G. Aad et al. (ATLAS), Phys. Lett. B796, 68 (2019), [arXiv:1903.06248].
[8] CMS Collab., PAS EXO-19-019, Aug. 2019.
[9] F. Del Aguila, M. Cvetic and P. Langacker, Phys. Rev. D52, 37 (1995), [hep-ph/9501390].
[10] E. Accomando et al., Phys. Rev. D83, 075012 (2011), [arXiv:1010.6058].
[11] M.-C. Chen, A. de Gouvea and B. A. Dobrescu, Phys. Rev. D75, 055009 (2007), [hep-ph/0612017].
[12] P. Langacker and M. Plumacher, Phys. Rev. D62, 013006 (2000), [hep-ph/0001204].
[13] A. J. Buras, F. De Fazio and J. Girrbach, JHEP 02, 116 (2013), [arXiv:1211.1896].
[14] L. E. Ibanez and G. G. Ross, Phys. Lett. B332, 100 (1994), [hep-ph/9403338].
[15] See the Section on " W^{\prime} searches" in this Review.
[16] J. Parsons and A. Pomarol, "Extra dimensions" in this Review.
[17] K.M. Black et al., "Dynamical electroweak symmetry breaking" in this Review.
[18] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988).
[19] CMS Collab., https://twiki.cern.ch/twiki/bin/view/ CMSPublic/SummaryPlotsEXO13TeV.
[20] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, LEP Electroweak), Phys. Rept. 532, 119 (2013), [arXiv:1302.3415].
[21] G. Paz and J. Roy, Phys. Rev. D97, 075025 (2018), [arXiv:1711.02655].
[22] E. Accomando et al., JHEP 10, 153 (2013), [arXiv:1304.6700].
[23] V. Khachatryan et al. (CMS), JHEP 04, 025 (2015), [arXiv:1412.6302].
[24] A. Abulencia et al. (CDF), Phys. Rev. Lett. 95, 252001 (2005), [hep-ex/0507104].
[25] A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 211801 (2006), [hep-ex/0602045].
[26] F. Petriello and S. Quackenbush, Phys. Rev. D77, 115004 (2008), [arXiv:0801.4389].
[27] E. Accomando et al., JHEP 01, 127 (2016), [arXiv:1503.02672].
[28] P. Osland et al., Phys. Rev. D79, 115021 (2009), [arXiv:0904.4857].
[29] CMS Collab., PAS EXO-19-018, Aug. 2019.
[30] R. Aaij et al. (LHCb), Phys. Rev. Lett. 120, 061801 (2018), [arXiv:1710.02867].
[31] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 113, 201801 (2014), [arXiv:1406.2980].
[32] M. Aaboud et al. (ATLAS), JHEP 01, 055 (2018), [arXiv:1709.07242].
[33] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 092008 (2018), [arXiv:1807.06573].
[34] A. M. Sirunyan et al. (CMS), JHEP 04, 073 (2018), [arXiv:1802.01122].
[35] See the Section on "Dynamical Electroweak Symmetry Breaking" in this Review.
[36] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1905.10331].
[37] M. Aaboud et al. (ATLAS), Phys. Lett. B774, 494 (2017), [arXiv:1707.06958].
[38] M. Aaboud et al. (ATLAS), JHEP 03, 174 (2018), [Erratum: JHEP 11, 051 (2018)], [arXiv:1712.06518].
[39] A. M. Sirunyan et al. (CMS), JHEP 11, 172 (2018), [arXiv:1807.02826].
[40] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 636 (2017), [arXiv:1707.01303].
[41] D. Pappadopulo et al., JHEP 09, 060 (2014), [arXiv:1402.4431].
[42] A. M. Sirunyan et al. (CMS), Phys. Lett. B792, 345 (2019), [arXiv:1808.03684].
[43] M. Aaboud et al. (ATLAS), JHEP 06, 166 (2018), [arXiv:1802.03388].
[44] G. Aad et al. (ATLAS), JHEP 09, 091 (2019), [arXiv:1906.08589].
[45] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1906.05977].
[46] H.-J. He et al., Phys. Rev. D78, 031701 (2008), [arXiv:0708.2588].
[47] V. M. Abazov et al. (D0), Phys. Lett. B695, 88 (2011), [arXiv:1008.2023].
[48] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 106, 121801 (2011), [arXiv:1101.4578].
[49] A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 211802 (2006), [hep-ex/0603006].
[50] D. Acosta et al. (CDF), Phys. Rev. Lett. 95, 131801 (2005), [hep-ex/0506034].
[51] T. Aaltonen et al. (CDF), Phys. Rev. D84, 072004 (2011), [arXiv:1107.5063].
[52] T. Aaltonen et al. (CDF), Phys. Rev. D79, 112002 (2009), [arXiv:0812.4036].
[53] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 104, 241801 (2010), [arXiv:1004.4946].
[54] V. D. Barger et al., Phys. Rev. D57, 391 (1998), [hepph/9707412].
[55] R. Harnik, J. Kopp and P. A. N. Machado, JCAP 1207, 026 (2012), [arXiv:1202.6073].
[56] E. Rojas and J. Erler, JHEP 10, 063 (2015), [arXiv:1505.03208].
[57] J. Kang and P. Langacker, Phys. Rev. D71, 035014 (2005), [hep-ph/0412190].
[58] Y. Li, F. Petriello and S. Quackenbush, Phys. Rev. D80, 055018 (2009), [arXiv:0906.4132].

89. Supersymmetry, Part I (Theory)

Revised August 2019 by B.C. Allanach (DAMTP, Cambridge U.) and H.E. Haber (UC Santa Cruz).
89.1 Introduction 905
89.2 Structure of the MSSM 905
89.2.1 R-parity and the lightest supersymmetric particle 906
89.2.2 The goldstino and gravitino 906
89.2.3 Hidden sectors and the structure of SUSY breaking 907
89.2.4 SUSY and extra dimensions 907
89.2.5 Split-SUSY 907
89.3 908
89.3.1 The SUSY-conserving parameters 908
89.3.2 The SUSY-breaking parameters. 908
89.3.3 MSSM-124 908
89.4 908
89.4.1 The charginos and neutralinos 909
89.4.2 The squarks and sleptons 909
89.5
The supersymmetric Higgs sector 910
89.5.1 The tree-level Higgs sector 910
89.5.2 The radiatively-corrected Higgs sector 910
89.6 Restricting the MSSM parameter freedom 911
89.6.1 Gaugino mass relations 911
89.6.2 Constrained versions of the MSSM: mSUGRA, CMSSM, etc. 911
89.6.3 Gauge-mediated SUSY breaking 912
89.6.4 The phenomenological MSSM 913
89.6.5 Simplified models 913
89.7 913
89.7.1 Naturalness constraints and the little hier- archy 913
89.7.2 Constraints from virtual exchange of super- symmetric particles 914
89.8 Massive neutrinos in weak-scale SUSY 915
89.8.1 The supersymmetric seesaw 915
89.8.2 R-parity-violating SUSY 915
89.9 Extensions beyond the MSSM 916

89.1 Introduction

Supersymmetry (SUSY) is a generalization of the space-time symmetries of quantum field theory that transforms fermions into bosons and vice versa [1]. The existence of such a non-trivial extension of the Poincaré symmetry of ordinary quantum field theory was initially surprising, and its form is highly constrained by theoretical principles [2]. SUSY also provides a framework for the unification of particle physics and gravity [3-6] at the Planck energy scale, $M_{\mathrm{P}} \sim 10^{19} \mathrm{GeV}$, where the gravitational interactions become comparable in strength to the gauge interactions. Moreover, supersymmetry can stabilize the hierarchy between the energy scale that characterizes electroweak symmetry breaking, $M_{\text {EW }} \sim 100 \mathrm{GeV}$, and the Planck scale [7-10] against large radiative corrections. The stability of this large gauge hierarchy with respect to radiative quantum corrections is not possible to maintain in the Standard Model (SM) without an unnatural finetuning of the parameters of the fundamental theory at the Planck scale. In contrast, in a supersymmetric extension of the SM, it is possible to maintain the gauge hierarchy while providing a natural framework for elementary scalar fields.

If supersymmetry were an exact symmetry of nature, then particles and their superpartners, which differ in spin by half a unit, would be degenerate in mass. Since superpartners have not (yet) been observed, supersymmetry must be a broken symmetry. Nevertheless, the stability of the gauge hierarchy can still be maintained if the SUSY breaking is soft [11,12], and the corresponding SUSY-breaking mass parameters are no larger than a few TeV . Whether this is still plausible in light of recent SUSY searches at the LHC (see Sec. 90) will be discussed in Sec. 89.7.

In particular, soft-SUSY-breaking terms of the Lagrangian involve combinations of fields with total mass dimension of three or
less, with some restrictions on the dimension-three terms as elucidated in Ref. [11]. The impact of the soft terms becomes negligible at energy scales much larger than the size of the SUSY-breaking masses. Thus, a theory of weak-scale supersymmetry, where the effective scale of supersymmetry breaking is tied to the scale of electroweak symmetry breaking, provides a natural framework for the origin and the stability of the gauge hierarchy [7-10].

At present, there is no unambiguous experimental evidence for the breakdown of the SM at or below the TeV scale. The expectations for new TeV -scale physics beyond the SM are based primarily on three theoretical arguments. First, in a theory with an elementary scalar field of mass m and interaction strength λ (e.g., a quartic scalar self-coupling, the square of a gauge coupling or the square of a Yukawa coupling), the stability with respect to quantum corrections requires the existence of an energy cutoff roughly of order $\left(16 \pi^{2} / \lambda\right)^{1 / 2} m$, beyond which new physics must enter [13]. A significantly larger energy cutoff would require an unnatural fine-tuning of parameters that govern the effective lowenergy theory. Applying this argument to the SM leads to an expectation of new physics at the TeV scale [10].

Second, the unification of the three SM gauge couplings at a very high energy close to the Planck scale is possible if new physics beyond the SM (which modifies the running of the gauge couplings above the electroweak scale) is present. The minimal supersymmetric extension of the SM, where superpartner masses lie below a few TeV , provides an example of successful gauge coupling unification [14].

Third, the existence of dark matter that makes up approximately one quarter of the energy density of the universe, cannot be explained within the SM of particle physics [15]. Remarkably, a stable weakly-interacting massive particle (WIMP) whose mass and interaction rate are governed by new physics associated with the TeV -scale can be consistent with the observed density of dark matter (this is the so-called WIMP miracle, which is reviewed in Ref. [16]). The lightest supersymmetric particle, if stable, is a promising (although not the unique) candidate for the dark matter [17-21]. Further aspects of dark matter can be found in Sec. 27.

89.2 Structure of the MSSM

The minimal supersymmetric extension of the SM (MSSM) consists of the fields of the two-Higgs-doublet extension of the SM and the corresponding superpartners [22,23]. A particle and its superpartner together form a supermultiplet. The corresponding field content of the supermultiplets of the MSSM and their gauge quantum numbers are shown in Table 89.1. The electric charge $Q=T_{3}+\frac{1}{2} Y$ is determined in terms of the third component of the weak isospin $\left(T_{3}\right)$ and the $\mathrm{U}(1)$ weak hypercharge (Y).
The gauge supermultiplets consist of the gluons and their gluino fermionic superpartners and the $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge bosons and their gaugino fermionic superpartners. The matter supermultiplets consist of three generations of left-handed quarks and leptons and their scalar superpartners (squarks and sleptons, collectively referred to as sfermions), and the corresponding antiparticles. The Higgs supermultiplets consist of two complex Higgs doublets, their higgsino fermionic superpartners, and the corresponding antiparticles. The enlarged Higgs sector of the MSSM constitutes the minimal structure needed to guarantee the cancellation of gauge anomalies [25] generated by the higgsino superpartners that can appear as internal lines in triangle diagrams with three external electroweak gauge bosons. Moreover, without a second Higgs doublet, one cannot generate mass for both "up"-type and "down"type quarks (and charged leptons) in a way consistent with the underlying SUSY [26-28].

In the most elegant treatment of SUSY, spacetime is extended to superspace which consists of the spacetime coordinates and new anticommuting fermionic coordinates θ and $\theta^{\dagger}[29,30]$. Each supermultiplet is represented by a superfield that is a function of the superspace coordinates. The fields of a given supermultiplet (which are functions of the spacetime coordinates) are coefficients of the θ and θ^{\dagger} expansion of the corresponding superfield.
Vector superfields contain the gauge boson fields and their gaugino partners. Chiral superfields contain the spin-0 and spin-1/2

Table 89.1: The fields of the MSSM and their $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ quantum numbers are listed. For simplicity, only one generation of quarks and leptons is exhibited. For each lepton, quark, and Higgs supermultiplet (each denoted by a hatted upper-case letter), there is a corresponding antiparticle multiplet of charge-conjugated fermions and their associated scalar partners [24].

Field Content of the MSSM						
$\begin{gathered} \text { Super- } \\ \text { multiplets } \end{gathered}$	Superfield	Bosonic fields	Fermionic partners	$\mathrm{SU}(3)$	$\mathrm{SU}(2)$	U(1)
gluon/gluino gauge boson/ gaugino	$\begin{gathered} \hat{V}_{8} \\ \hat{V} \\ \hat{V}^{\prime} \end{gathered}$	$\begin{gathered} g \\ W^{ \pm}, W^{0} \\ B \\ \hline \end{gathered}$	$\begin{gathered} \widetilde{W}^{ \pm}, \widetilde{W}^{0} \\ \widetilde{B} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$
slepton/ lepton	$\begin{gathered} \hat{L} \\ \hat{E}^{c} \end{gathered}$	$\begin{gathered} \left(\widetilde{\nu}_{L}, \widetilde{e}_{L}^{-}\right) \\ \tilde{e}_{R}^{+} \\ \hline \end{gathered}$	$\begin{gathered} \hline\left(\nu, e^{-}\right)_{L} \\ e_{L}^{c} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} -1 \\ 2 \end{array}$
squark/ quark	$\begin{gathered} \hat{Q} \\ \hat{U}^{c} \\ \hat{D}^{c} \end{gathered}$	$\begin{gathered} \left(\widetilde{u}_{L}, \tilde{d}_{L}\right) \\ \widetilde{u}_{R}^{*} \\ \widetilde{d}_{R}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline(u, d)_{L} \\ u_{L}^{c} \\ d_{L}^{c} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 \\ & \overline{3} \\ & \overline{3} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 1 / 3 \\ -4 / 3 \\ 2 / 3 \\ \hline \end{array}$
Higgs/ higgsino	$\begin{aligned} & \hat{H}_{d} \\ & \hat{H}_{u} \end{aligned}$	$\left(H_{d}^{0}, H_{d}^{-}\right)$ $\left(H_{u}^{+}, H_{u}^{0}\right)$	$\begin{aligned} & \left(\widetilde{H}_{d}^{0}, \widetilde{H}_{d}^{-}\right) \\ & \left(\widetilde{H}_{u}^{+}, \widetilde{H}_{u}^{0}\right) \end{aligned}$	1 1	2 2	-1 1

fields of the matter or Higgs supermultiplets. A general supersymmetric Lagrangian is determined by three functions of the chiral superfields [4]: the superpotential, the Kähler potential, and the gauge kinetic function (which can be appropriately generalized to accommodate higher derivative terms [31]). Minimal forms for the Kähler potential and gauge kinetic function, which generate canonical kinetic energy terms for all the fields, are required for renormalizable globally supersymmetric theories. A renormalizable superpotential, which is at most cubic in the chiral superfields, yields supersymmetric Yukawa couplings and mass terms. A combination of gauge invariance and SUSY produces couplings of gaugino fields to matter (or Higgs) fields and their corresponding superpartners. The (renormalizable) MSSM Lagrangian is then constructed by including all possible supersymmetric interaction terms (of dimension four or less) that satisfy $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ gauge invariance and $B-L$ conservation (where $B=$ baryon number and $L=$ lepton number). Finally, the most general soft-supersymmetry-breaking terms consistent with these symmetries are added $[11,12,32]$.

Although the MSSM is the focus of much of this review, there is some motivation for considering non-minimal supersymmetric extensions of the SM. For example, extra structure is needed to generate non-zero neutrino masses as discussed in Sec. 89.8. In addition, in order to address some theoretical issues and tensions associated with the MSSM, it has been fruitful to introduce one additional singlet Higgs superfield. The resulting next-to-minimal supersymmetric extension of the Standard Model (NMSSM) [33] is considered further in Sec. 89.4-89.7 and 89.9. Finally, one is always free to add additional fields to the SM along with the corresponding superpartners. However, only certain choices for the new fields (e.g., the addition of complete $\mathrm{SU}(5)$ multiplets) will preserve the successful gauge coupling unification of the MSSM. Some examples will be briefly mentioned in Sec. 89.9.

89.2.1 R-parity and the lightest supersymmetric particle

The (renormalizable) SM Lagrangian possesses an accidental global $B-L$ symmetry due to the fact that B and L-violating operators composed of SM fields must have dimension $d=5$ or larger [34]. Consequently, B and L-violating effects are suppressed by $\left(M_{\mathrm{EW}} / M\right)^{d-4}$, where M is the characteristic mass scale of the physics that generates the corresponding higher dimensional operators. Indeed, values of M of order the grand unification scale or larger yield the observed (approximate) stability of the proton and suppression of neutrino masses. Unfortunately, these results are not guaranteed in a generic supersymmetric extension of the SM. For example, it is possible to construct gauge invariant supersymmetric dimension-four B and L-violating operators made up of fields of SM particles and their superpartners. Such operators, if present in the theory, could yield a proton decay rate many orders of magnitude larger than the current experimental bound. It is for this reason that $B-L$ conservation is imposed on the supersymmetric Lagrangian when defining the MSSM, which
is sufficient for eliminating all B and L-violating operators of dimension $d \leq 4$.

As a consequence of the $B-L$ symmetry, the MSSM possesses a multiplicative R-parity invariance, where $R=(-1)^{3(B-L)+2 S}$ for a particle of spin S [35]. This implies that all the particles of the SM have even R-parity, whereas the corresponding superpartners have odd R-parity. The conservation of R-parity in scattering and decay processes has a critical impact on supersymmetric phenomenology. For example, any initial state in a scattering experiment will involve ordinary (R-even) particles. Consequently, it follows that supersymmetric particles must be produced in pairs. In general, these particles are highly unstable and decay into lighter states. Moreover, R-parity invariance also implies that the lightest supersymmetric particle (LSP) is absolutely stable, and must eventually be produced at the end of a decay chain initiated by the decay of a heavy unstable supersymmetric particle.

In order to be consistent with cosmological constraints, a stable LSP is almost certainly electrically and color neutral [19]. Consequently, the LSP in an R-parity-conserving theory is weakly interacting with ordinary matter, i.e., it behaves like a stable heavy neutrino and will escape collider detectors without being directly observed. Thus, the canonical signature for conventional R-parity-conserving supersymmetric theories is missing (transverse) momentum, due to the escape of the LSP. Moreover, as noted in Sec. 89.1 and reviewed in Refs. [20] and [21], the stability of the LSP in R-parity-conserving SUSY makes it a promising candidate for dark matter.

The possibility of relaxing the R-parity invariance of the MSSM (which would generate new B and/or L-violating interactions) will be addressed in Sec. 89.8.2.

89.2.2 The goldstino and gravitino

In the MSSM, SUSY breaking is accomplished by including the most general renormalizable soft-SUSY-breaking terms consistent with the $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ gauge symmetry and R-parity invariance. These terms parameterize our ignorance of the fundamental mechanism of supersymmetry breaking. If supersymmetry breaking occurs spontaneously, then a massless Goldstone fermion called the goldstino $\left(\widetilde{G}_{1 / 2}\right)$ must exist. The goldstino would then be the LSP, and could play an important role in supersymmetric phenomenology [36].

However, the goldstino degrees of freedom are physical only in models of spontaneously-broken global SUSY. If SUSY is a local symmetry, then the theory must incorporate gravity; the resulting theory is called supergravity $[5,37]$. In models of spontaneouslybroken supergravity, the goldstino is "absorbed" by the gravitino (\widetilde{G}), the spin- $3 / 2$ superpartner of the graviton, via the superHiggs mechanism [38]. Consequently, the goldstino is removed from the physical spectrum and the gravitino acquires a mass (denoted by $m_{3 / 2}$). If $m_{3 / 2}$ is smaller than the mass of the lightest superpartner of the SM particles, then the gravitino is the LSP.

In processes with center-of-mass energy $E \gg m_{3 / 2}$, one can
employ the goldstino-gravitino equivalence theorem [39], which implies that the interactions of the helicity $\pm \frac{1}{2}$ gravitino (whose properties approximate those of the goldstino) dominate those of the helicity $\pm \frac{3}{2}$ gravitino. The interactions of gravitinos with other light fields can be described by a low-energy effective Lagrangian that is determined by fundamental principles [40].

89.2.3 Hidden sectors and the structure of SUSY breaking

It is very difficult (perhaps impossible) to construct a realistic model of spontaneously-broken weak-scale supersymmetry where the supersymmetry breaking arises solely as a consequence of the interactions of the particles of the MSSM. A more successful scheme posits a theory with at least two distinct sectors: a visible sector consisting of the particles of the MSSM [32] and a sector where SUSY breaking is generated. It is often (but not always) assumed that particles of the hidden sector are neutral with respect to the SM gauge group. The effects of the hidden sector supersymmetry breaking are then transmitted to the MSSM by some mechanism (often involving the mediation by particles that comprise an additional messenger sector). Two theoretical scenarios that exhibit this structure are gravity-mediated and gaugemediated SUSY breaking.

Supergravity models provide a natural mechanism for transmitting the SUSY breaking of the hidden sector to the particle spectrum of the MSSM. In models of gravity-mediated supersymmetry breaking, gravity is the messenger of supersymmetry breaking [41-45]. More precisely, supersymmetry breaking is mediated by effects of gravitational strength (suppressed by inverse powers of the Planck mass). The soft-SUSY-breaking parameters with dimensions of mass arise as model-dependent multiples of the gravitino mass $m_{3 / 2}$. In this scenario, $m_{3 / 2}$ is of order the electroweak-symmetry-breaking scale, while the gravitino couplings are roughly gravitational in strength [3,46]. However, such a gravitino typically plays no direct role in supersymmetric phenomenology at colliders (except perhaps indirectly in the case where the gravitino is the LSP [47]).

Under certain theoretical assumptions on the structure of the Kähler potential (the so-called sequestered form introduced in Ref. [48]), SUSY breaking is due entirely to the super-conformal (super-Weyl) anomaly, which is common to all supergravity models [48]. In particular, gaugino masses are radiatively generated at one-loop, and squark and slepton squared-mass matrices are flavor-diagonal. In sequestered scenarios, sfermion squaredmasses arise at two-loops, which implies that gluino and sfermion masses are of the same order of magnitude. This approach is called anomaly-mediated SUSY breaking (AMSB). Indeed, anomaly mediation is more generic than originally conceived, and provides a ubiquitous source of SUSY breaking [49]. However in the simplest formulation of AMSB as applied to the MSSM, the squaredmasses of the sleptons are negative (known as the tachyonic slepton problem). It may be possible to cure this otherwise fatal flaw in non-minimal extensions of the MSSM [50]. Alternatively, one can assert that anomaly mediation is not the sole source of SUSY breaking in the sfermion sector. In non-sequestered scenarios, sfermion squared-masses can arise at tree-level, in which case squark masses would be parametrically larger than the loopsuppressed gaugino masses [51].

In gauge-mediated supersymmetry breaking (GMSB), gauge forces transmit the supersymmetry breaking to the MSSM. A typical structure of such models involves a hidden sector where SUSY is broken, a messenger sector consisting of particles (messengers) with nontrivial $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ quantum numbers, and the visible sector consisting of the fields of the MSSM [52-55]. The direct coupling of the messengers to the hidden sector generates a supersymmetry-breaking spectrum in the messenger sector. Supersymmetry breaking is then transmitted to the MSSM via the virtual exchange of the messenger fields. In models of direct gauge mediation, there is no separate hidden sector. In particular, the sector in which the SUSY breaking originates includes fields that carry nontrivial SM quantum numbers, which allows for the direct transmission of SUSY breaking to the MSSM [56].

In models of gauge-mediated SUSY breaking, the gravitino is the LSP [17], as its mass can range from a few eV (in the case of low SUSY breaking scales) up to a few GeV (in the case of high

SUSY breaking scales). In particular, the gravitino is a potential dark matter candidate (for a review and guide to the literature, see Ref. [21]). Big bang nucleosynthesis (see Section 24) also provides some interesting constraints on the gravitino and the properties of the next-to-lightest supersymmetric particle that decays into the gravitino LSP [57]. The couplings of the helicity $\pm \frac{1}{2}$ components of \widetilde{G} to the particles of the MSSM (which approximate those of the goldstino as previously noted in Sec. 89.2.2) are significantly stronger than gravitational strength and amenable to experimental collider analyses.

The concept of a hidden sector is more general than SUSY. Hidden valley models [58] posit the existence of a hidden sector of new particles and interactions that are very weakly coupled to particles of the SM. The impact of a hidden valley on supersymmetric phenomenology at colliders can be significant if the LSP lies in the hidden sector [59].

89.2.4 SUSY and extra dimensions

Approaches to SUSY breaking have also been developed in the context of theories in which the number of spatial dimensions is greater than three. In particular, a number of SUSYbreaking mechanisms have been proposed that are inherently extra-dimensional [60]. The size of the extra dimensions can be significantly larger than M_{P}^{-1}; in some cases of order $(\mathrm{TeV})^{-1}$ or even larger (see, e.g., Sec. 86 or Ref. [61]).

For example, in one approach the fields of the MSSM live on some brane (a lower-dimensional manifold embedded in a higherdimensional spacetime), while the sector of the theory that breaks SUSY lives on a second spatially-separated brane. Two examples of this approach are AMSB [48] and gaugino-mediated SUSY breaking [62]. In both cases, SUSY breaking is transmitted through fields that live in the bulk (the higher-dimensional space between the two branes). This setup has some features in common with both gravity-mediated and gauge-mediated SUSY breaking (e.g., a hidden and visible sector and messengers).

Since a higher dimensional theory must be compactified to four spacetime dimensions, one can also generate a source of SUSY breaking by employing boundary conditions on the compactified space that distinguish between fermions and bosons. This is the so-called Scherk-Schwarz mechanism [63]. The phenomenology of such models can be strikingly different from that of the usual MSSM [64].

89.2.5 Split-SUSY

If SUSY is not connected with the origin of the electroweak scale, it may still be possible that some remnant of the superparticle spectrum survives down to the TeV -scale or below. This is the idea of split-SUSY $[65,66]$, in which scalar superpartners of the quarks and leptons are significantly heavier (perhaps by many orders of magnitude) than 1 TeV , whereas the fermionic superpartners of the gauge and Higgs bosons have masses on the order of 1 TeV or below. With the exception of a single light neutral scalar whose properties are practically indistinguishable from those of the SM Higgs boson, all other Higgs bosons are also assumed to be very heavy. Among the supersymmetric particles, only the fermionic superpartners may be kinematically accessible at the LHC.

In models of split SUSY, the top squark masses cannot be arbitrarily large, as these parameters enter in the radiative corrections to the mass of the observed Higgs boson [67,68]. In the MSSM, a Higgs boson mass of 125 GeV (see Sec. 11) implies an upper bound on the top squark mass scale in the range of 10 to $10^{8} \mathrm{TeV}$ [69-71], depending on the value of the ratio of the two neutral Higgs field vacuum expectation values, although this mass range can be somewhat extended by varying other relevant MSSM parameters. In some approaches, gaugino masses are one-loop suppressed relative to the sfermion masses, corresponding to the so-called mini-split SUSY spectrum [68,72]. The higgsino mass scale may or may not be likewise suppressed depending on the details of the model [73].
The SUSY breaking required to produce such a split-SUSY spectrum would destabilize the gauge hierarchy, and thus would not provide an explanation for the scale of electroweak symmetry breaking. Nevertheless, models of split-SUSY can account for the dark matter (which is assumed to be the LSP gaugino or higgsino)
and gauge coupling unification, thereby preserving two of the desirable features of weak-scale SUSY. Finally, as a consequence of the very large squark and slepton masses, neutral flavor changing and CP-violating effects, which can be problematic in models with TeV -scale SUSY-breaking masses, are sufficiently reduced to avoid conflict with experimental observations.

89.3 Parameters of the MSSM

The parameters of the MSSM are conveniently described by considering separately the supersymmetry-conserving and the supersymmetry-breaking sectors. A careful discussion of the conventions used here in defining the tree-level MSSM parameters can be found in Refs. [74,75]. For simplicity, consider first the case of one generation of quarks, leptons, and their scalar superpartners.

89.3.1 The SUSY-conserving parameters

The parameters of the supersymmetry-conserving sector consist of: (i) gauge couplings, g_{s}, g, and g^{\prime}, corresponding to the SM gauge group $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ respectively; (ii) a super-symmetry-conserving higgsino mass parameter μ; and (iii) Higgsfermion Yukawa couplings, λ_{u}, λ_{d}, and λ_{e}, of one generation of left- and right-handed quarks and leptons, and their superpartners to the Higgs bosons and higgsinos. Because there is no right-handed neutrino/sneutrino in the MSSM as defined here, a Yukawa coupling λ_{ν} is not included. The complex μ parameter and Yukawa couplings enter via the most general renormalizable R-parity-conserving superpotential,

$$
\begin{equation*}
W=\lambda_{d} \hat{H}_{d} \hat{Q} \hat{D}^{c}-\lambda_{u} \hat{H}_{u} \hat{Q} \hat{U}^{c}+\lambda_{e} \hat{H}_{d} \hat{L} \hat{E}^{c}+\mu \hat{H}_{u} \hat{H}_{d} \tag{89.1}
\end{equation*}
$$

where the superfields are defined in Table 1 and the gauge group indices are suppressed.

89.3.2 The SUSY-breaking parameters

The supersymmetry-breaking sector contains the following sets of parameters: (i) three complex gaugino Majorana mass parameters, M_{3}, M_{2}, and M_{1}, associated with the $\mathrm{SU}(3), \mathrm{SU}(2)$, and $\mathrm{U}(1)$ subgroups of the SM; (ii) five sfermion squared-mass parameters, $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}$, and $M_{\widetilde{E}}^{2}$, corresponding to the five electroweak gauge multiplets, i.e., superpartners of the left-handed fields $(u, d)_{L}, u_{L}^{c}, d_{L}^{c},\left(\nu, e^{-}\right)_{L}$, and e_{L}^{c}, where the superscript c indicates a charge-conjugated fermion field [24]; and (iii) three Higgs-squark-squark and Higgs-slepton-slepton trilinear interaction terms, with complex coefficients $T_{U} \equiv \lambda_{u} A_{U}, T_{D} \equiv \lambda_{d} A_{D}$, and $T_{E} \equiv \lambda_{e} A_{E}$ (which define the " A-parameters"). The notation T_{U}, T_{D} and T_{E} is employed in Ref. [75]. It is conventional to separate out the factors of the Yukawa couplings in defining the A-parameters (originally motivated by a simple class of gravitymediated SUSY-breaking models [3, 6]). If the A-parameters are parametrically of the same order (or smaller) relative to other SUSY-breaking mass parameters, then only the third generation A-parameters are phenomenologically relevant.

Finally, we have (iv) two real squared-mass parameters, m_{1}^{2} and m_{2}^{2} (also called $m_{H_{d}}^{2}$ and $m_{H_{u}}^{2}$, respectively, in the literature), and one complex squared-mass parameter, $m_{12}^{2} \equiv \mu B$ (the latter defines the " B-parameter"), which appear in the MSSM tree-level scalar Higgs potential [28],

$$
\begin{align*}
V=\left(m_{1}^{2}\right. & \left.+|\mu|^{2}\right) H_{d}^{\dagger} H_{d}+\left(m_{2}^{2}+|\mu|^{2}\right) H_{u}^{\dagger} H_{u}+\left(m_{12}^{2} H_{u} H_{d}+\text { h.c. }\right) \\
& +\frac{1}{8}\left(g^{2}+g^{\prime 2}\right)\left(H_{d}^{\dagger} H_{d}-H_{u}^{\dagger} H_{u}\right)^{2}+\frac{1}{2} g^{2}\left|H_{d}^{\dagger} H_{u}\right|^{2} \tag{89.2}
\end{align*}
$$

where the $\mathrm{SU}(2)$-invariant combination, $H_{u} H_{d} \equiv H_{u}^{+} H_{d}^{-}-$ $H_{u}^{0} H_{d}^{0}$. Note that the quartic Higgs couplings are related to the gauge couplings g and g^{\prime} as a consequence of SUSY. The breaking of the $\mathrm{SU}(2) \times \mathrm{U}(1)$ electroweak symmetry group to $\mathrm{U}(1)_{\mathrm{EM}}$ is only possible after incorporating the SUSY-breaking Higgs squaredmass parameters m_{1}^{2}, m_{2}^{2} (which can be negative) and m_{12}^{2}. After minimizing the Higgs scalar potential, these three squared-mass parameters can be re-expressed in terms of the two Higgs vacuum expectation values, $\left\langle H_{d}^{0}\right\rangle \equiv v_{d} / \sqrt{2}$ and $\left\langle H_{u}^{0}\right\rangle \equiv v_{u} / \sqrt{2}$, and the CP-odd Higgs mass m_{A} [cf. Eqs. (89.4) and (89.5) below]. One is always free to re-phase the Higgs doublet fields such that v_{d} and
v_{u} (also called v_{1} and v_{2}, respectively, in the literature) are both real and positive.

The quantity, $v_{d}^{2}+v_{u}^{2}=4 m_{W}^{2} / g^{2}=\left(2 G_{F}^{2}\right)^{-1 / 2} \simeq(246 \mathrm{GeV})^{2}$, is fixed by the Fermi constant, G_{F}, whereas the ratio

$$
\begin{equation*}
\tan \beta=v_{u} / v_{d} \tag{89.3}
\end{equation*}
$$

is a free parameter such that $0<\beta<\pi / 2$. By employing the tree-level conditions resulting from the minimization of the scalar potential, one can eliminate the diagonal and off-diagonal Higgs squared-masses in favor of $m_{Z}^{2}=\frac{1}{4}\left(g^{2}+g^{\prime 2}\right)\left(v_{d}^{2}+v_{u}^{2}\right)$, the CP-odd Higgs mass m_{A} and the parameter $\tan \beta$,

$$
\begin{align*}
& \sin 2 \beta=\frac{2 m_{12}^{2}}{m_{1}^{2}+m_{2}^{2}+2|\mu|^{2}}=\frac{2 m_{12}^{2}}{m_{A}^{2}} \tag{89.4}\\
& \frac{1}{2} m_{Z}^{2}=-|\mu|^{2}+\frac{m_{1}^{2}-m_{2}^{2} \tan ^{2} \beta}{\tan ^{2} \beta-1} \tag{89.5}
\end{align*}
$$

One must also guard against the existence of charge and/or color breaking global minima due to non-zero vacuum expectation values for the squark and charged slepton fields. This possibility can be avoided if the A-parameters are not unduly large [42, 76, 77]. Additional constraints must also be respected to avoid the possibility of directions in scalar field space in which the full tree-level scalar potential can become unbounded from below [77].

Note that SUSY-breaking mass terms for the fermionic superpartners of scalar fields and non-holomorphic trilinear scalar interactions (i.e., interactions that mix scalar fields and their complex conjugates) have not been included above in the soft-SUSYbreaking sector. These terms can potentially destabilize the gauge hierarchy [11] in models with a gauge-singlet superfield. The latter is not present in the MSSM; hence as noted in Ref. [12], these so-called non-standard soft-SUSY-breaking terms are benign. The phenomenological impact of non-holomorphic soft SUSY-breaking terms has been reconsidered in Refs. [78-80]. However, in the most common approaches to constructing a fundamental theory of SUSY-breaking, the coefficients of these terms (which have dimensions of mass) are significantly suppressed compared to the TeV-scale [81]. Consequently, we follow the usual approach and omit these terms from further consideration.

89.3.3 MSSM-124

The total number of independent physical parameters that define the MSSM (in its most general form) is quite large, primarily due to the soft-supersymmetry-breaking sector. In particular, in the case of three generations of quarks, leptons, and their superpartners, $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}$, and $M_{\widetilde{E}}^{2}$ are hermitian 3×3 matrices, and A_{U}, A_{D}, and A_{E} are complex 3×3 matrices. In addition, M_{1}, M_{2}, M_{3}, B, and μ are in general complex parameters. Finally, as in the SM, the Higgs-fermion Yukawa couplings, $\lambda_{f}(f=u, d$, and $e)$, are complex 3×3 matrices that are related to the quark and lepton mass matrices via: $M_{f}=\lambda_{f} v_{f} / \sqrt{2}$, where $v_{e} \equiv v_{d}$ [with v_{u} and v_{d} as defined above Eq. (89.3)].

However, not all these parameters are physical. Some of the MSSM parameters can be eliminated by expressing interaction eigenstates in terms of the mass eigenstates, with an appropriate redefinition of the MSSM fields to remove unphysical degrees of freedom. The analysis of Ref. [82] shows that the MSSM possesses 124 independent real degrees of freedom. Of these, 18 correspond to SM parameters (including the QCD vacuum angle θ_{QCD}), one corresponds to a Higgs sector parameter (the analogue of the SM Higgs mass), and 105 are genuinely new parameters of the model. The latter include: five real parameters and three $C P$-violating phases in the gaugino/higgsino sector, 21 squark and slepton (sfermion) masses, 36 real mixing angles to define the sfermion mass eigenstates, and $40 C P$-violating phases that can appear in sfermion interactions. The most general R-parityconserving minimal supersymmetric extension of the SM (without additional theoretical assumptions) will be denoted henceforth as MSSM-124 [83].

89.4 The supersymmetric-particle spectrum

The supersymmetric particles (sparticles) differ in spin by half a unit from their SM partners. The superpartners of the gauge and

Higgs bosons are fermions, whose names are obtained by appending "ino" to the end of the corresponding SM particle name. The gluino is the color-octet Majorana fermion partner of the gluon with mass $M \underset{g}{\sim}=\left|M_{3}\right|$. The superpartners of the electroweak gauge and Higgs bosons (the gauginos and higgsinos) can mix due to $\mathrm{SU}(2) \times \mathrm{U}(1)$ breaking effects. As a result, the physical states of definite mass are model-dependent linear combinations of the charged or neutral gauginos and higgsinos, called charginos and neutralinos, respectively (sometimes collectively called electroweakinos). The neutralinos are Majorana fermions, which can lead to some distinctive phenomenological signatures [84,85]. The superpartners of the quarks and leptons are spin-zero bosons: the squarks, charged sleptons, and sneutrinos, respectively. A complete set of Feynman rules for the sparticles of the MSSM can be found in Ref. [86]. The MSSM Feynman rules also are implicitly contained in a number of amplitude generation and Feynman diagram software packages (see e.g., Refs. [87-89]).

It should be noted that all mass formulae quoted below in this Section are tree-level results. Radiative loop corrections will modify these results and must be included in any precision study of supersymmetric phenomenology [90]. Beyond tree level, the definition of the supersymmetric parameters becomes conventiondependent. For example, one can define physical couplings or running couplings, which differ beyond the tree level. This provides a challenge to any effort that attempts to extract supersymmetric parameters from data. The SUSY Les Houches Accord (SLHA) $[75,91]$ has been adopted, which establishes a set of conventions for specifying generic file structures for supersymmetric model specifications and input parameters, supersymmetric mass and coupling spectra, and decay tables. These provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators.

89.4.1 The charginos and neutralinos

The mixing of the charged gauginos $\left(\widetilde{W}^{ \pm}\right)$and charged higgsinos $\left(\widetilde{H}_{u}^{+}\right.$and $\left.\widetilde{H}_{d}^{-}\right)$is described (at tree-level) by a 2×2 complex mass matrix [92, 93],

$$
M_{C} \equiv\left(\begin{array}{cc}
M_{2} & \frac{1}{\sqrt{2}} g v_{u} \tag{89.6}\\
\frac{1}{\sqrt{2}} g v_{d} & \mu
\end{array}\right)
$$

To determine the physical chargino states and their masses, one must perform a singular value decomposition $[94,95]$ of the complex matrix M_{C} :

$$
\begin{equation*}
U^{*} M_{C} V^{-1}=\operatorname{diag}\left(M_{\tilde{\chi}_{1}^{+}}, M_{\tilde{\chi}_{2}^{+}}\right) \tag{89.7}
\end{equation*}
$$

where U and V are unitary matrices, and the right-hand side of Eq. (89.7) is the diagonal matrix of (real non-negative) chargino masses. The physical chargino states are denoted by $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{2}^{ \pm}$. These are linear combinations of the charged gaugino and higgsino states determined by the matrix elements of U and V [92,93] The chargino masses correspond to the singular values [94] of M_{C}, i.e., the positive square roots of the eigenvalues of $M_{C}^{\dagger} M_{C}$:

$$
\begin{align*}
& M_{\tilde{\chi}_{1}^{+}, \tilde{\chi}_{2}^{+}}^{2}=\frac{1}{2}\left\{|\mu|^{2}+\left|M_{2}\right|^{2}+2 m_{W}^{2}\right. \\
& \left.\mp \sqrt{\left(|\mu|^{2}+\left|M_{2}\right|^{2}+2 m_{W}^{2}\right)^{2}-4\left|\mu M_{2}-m_{W}^{2} \sin 2 \beta\right|^{2}}\right\} \tag{89.8}
\end{align*}
$$

where the states are ordered such that $M_{\tilde{\chi}_{1}^{+}} \leq M_{\tilde{\chi}_{2}^{+}}$. The relative phase of μ and M_{2} is physical and potentially observable. The mixing of the neutral gauginos $\left(\widetilde{B}\right.$ and $\left.\widetilde{W}^{0}\right)$ and neutral higgsinos $\left(\widetilde{H}_{d}^{0}\right.$ and $\left.\widetilde{H}_{u}^{0}\right)$ is described (at tree-level) by a 4×4 complex symmetric mass matrix [92, 93],

$$
M_{N} \equiv\left(\begin{array}{cccc}
M_{1} & 0 & -\frac{1}{2} g^{\prime} v_{d} & \frac{1}{2} g^{\prime} v_{u} \tag{89.9}\\
0 & M_{2} & \frac{1}{2} g v_{d} & -\frac{1}{2} g v_{u} \\
-\frac{1}{2} g^{\prime} v_{d} & \frac{1}{2} g v_{d} & 0 & -\mu \\
\frac{1}{2} g^{\prime} v_{u} & -\frac{1}{2} g v_{u} & -\mu & 0
\end{array}\right)
$$

To determine the physical neutralino states and their masses, one must perform an Autonne-Takagi factorization [94,96] (also called Takagi diagonalization $[95,97]$) of the complex symmetric matrix M_{N} :

$$
\begin{equation*}
W^{T} M_{N} W=\operatorname{diag}\left(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{2}^{0}}, M_{\tilde{\chi}_{3}^{0}}, M_{\tilde{\chi}_{4}^{0}}\right) \tag{89.10}
\end{equation*}
$$

where W is a unitary matrix and the right-hand side of Eq. (89.10) is the diagonal matrix of (real non-negative) neutralino masses. The physical neutralino states are denoted by $\widetilde{\chi}_{i}^{0}(i=1, \ldots 4)$, where the states are ordered such that $M_{\tilde{\chi}_{1}^{0}} \leq M_{\tilde{\chi}_{2}^{0}} \leq M_{\tilde{\chi}_{3}^{0}} \leq$ $M_{\tilde{\chi}_{4}^{0}}$. The $\widetilde{\chi}_{i}^{0}$ are the linear combinations of the neutral gaugino and higgsino states determined by the matrix elements of W (which is denoted by N^{-1} in Ref. [92]). The neutralino masses correspond to the singular values of M_{N}, i.e., the positive square roots of the eigenvalues of $M_{N}^{\dagger} M_{N}$. Exact formulae for these masses can be found in Refs. [98] and [99]. A numerical algorithm for determining the mixing matrix W has been given in Ref. [100].

If a chargino or neutralino state approximates a particular gaugino or higgsino state, it is convenient to employ the corresponding nomenclature. Specifically, if $\left|M_{1}\right|$ and $\left|M_{2}\right|$ are small compared to m_{Z} and $|\mu|$, then the lightest neutralino $\widetilde{\chi}_{1}^{0}$ would be nearly a pure photino, $\widetilde{\gamma}$, the superpartner of the photon. If $\left|M_{1}\right|$ and m_{Z} are small compared to $\left|M_{2}\right|$ and $|\mu|$, then the lightest neutralino would be nearly a pure bino, \widetilde{B}, the superpartner of the weak hypercharge gauge boson. If $\left|M_{2}\right|$ and m_{Z} are small compared to $\left|M_{1}\right|$ and $|\mu|$, then the lightest chargino pair and neutralino would constitute a triplet of roughly mass-degenerate pure winos, $\widetilde{W}^{ \pm}$, and \widetilde{W}_{3}^{0}, the superpartners of the weak $\mathrm{SU}(2)$ gauge bosons. Finally, if $|\mu|$ and m_{Z} are small compared to $\left|M_{1}\right|$ and $\left|M_{2}\right|$, then the lightest chargino pair and neutralino would be nearly pure higgsino states, the superpartners of the Higgs bosons. Each of the above cases leads to a strikingly different phenomenology.

In the NMSSM, an additional Higgs singlet superfield is added to the MSSM. This superfield comprises two real Higgs scalar degrees of freedom and an associated neutral higgsino degree of freedom. Consequently, there are five neutralino mass eigenstates that are obtained by a Takagi-diagonalization of the 5×5 neutralino mass matrix. In many cases, the fifth neutralino state is dominated by its $\mathrm{SU}(2) \times \mathrm{U}(1)$ singlet component, and thus is very weakly coupled to the SM particles and their superpartners.

89.4.2 The squarks and sleptons

For a given Dirac fermion f, there are two superpartners, \widetilde{f}_{L} and \widetilde{f}_{R}, where the L and R subscripts simply identify the scalar partners that are related by SUSY to the left-handed and righthanded fermions, $f_{L, R} \equiv \frac{1}{2}\left(1 \mp \gamma_{5}\right) f$, respectively. (There is no $\widetilde{\nu}_{R}$ in the MSSM.) However, $\widetilde{f}_{L}-\widetilde{f}_{R}$ mixing is possible, in which case \widetilde{f}_{L} and \widetilde{f}_{R} are not mass eigenstates. For three generations of squarks, one must diagonalize 6×6 matrices corresponding to the basis $\left(\widetilde{q}_{i L}, \widetilde{q}_{i R}\right)$, where $i=1,2,3$ are the generation labels. For simplicity, only the one-generation case is illustrated in detail below. (The effects of second and third generation squark mixing can be significant and are treated in Ref. [101].)

Using the notation of the third family, the one-generation treelevel squark squared-mass matrix is given by [102],

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
M_{\widetilde{Q}}^{2}+m_{q}^{2}+L_{q} & m_{q} X_{q}^{*} \tag{89.11}\\
m_{q} X_{q} & M_{\widetilde{R}}^{2}+m_{q}^{2}+R_{q}
\end{array}\right)
$$

where

$$
\begin{equation*}
X_{q} \equiv A_{q}-\mu^{*}(\cot \beta)^{2 T_{3 q}} \tag{89.12}
\end{equation*}
$$

and $T_{3 q}=\frac{1}{2}\left[-\frac{1}{2}\right]$ for $q=t[b]$. The diagonal squared-masses are governed by soft-SUSY-breaking squared-masses $M_{\widetilde{Q}}^{2}$ and $M_{\widetilde{R}}^{2} \equiv$ $M_{\widetilde{U}}^{2}\left[M_{\widetilde{D}}^{2}\right]$ for $q=t[b]$, the corresponding quark masses $m_{t}\left[m_{b}\right]$ and the electroweak correction terms:

$$
\begin{align*}
L_{q} & \equiv\left(T_{3 q}-e_{q} \sin ^{2} \theta_{W}\right) m_{Z}^{2} \cos 2 \beta \\
R_{q} & \equiv e_{q} \sin ^{2} \theta_{W} m_{Z}^{2} \cos 2 \beta \tag{89.13}
\end{align*}
$$

where $e_{q}=\frac{2}{3}\left[-\frac{1}{3}\right]$ for $q=t[b]$. The off-diagonal squark squaredmasses are proportional to the corresponding quark masses and depend on $\tan \beta$, the soft-SUSY-breaking A-parameters and the higgsino mass parameter μ. Assuming that the A-parameters are parametrically of the same order (or smaller) relative to other SUSY-breaking mass parameters, it then follows that the first and second generation $\widetilde{q}_{L}-\widetilde{q}_{R}$ mixing is smaller than that of the third generation where mixing can be enhanced by factors of m_{t} and $m_{b} \tan \beta$.

In the case of third generation ${\underset{\sim}{q}}_{L}-\widetilde{q}_{R}$ mixing, the mass eigenstates (usually denoted by \widetilde{q}_{1} and \widetilde{q}_{2}, with $m_{\tilde{q}_{1}}<m_{\tilde{q}_{2}}$) are determined by diagonalizing the 2×2 matrix \mathcal{M}^{2} given by Eq. (89.11). The corresponding squared-masses and mixing angle are given by [102]:

$$
\begin{align*}
m_{\tilde{q}_{1,2}}^{2} & =\frac{1}{2}\left[\operatorname{Tr} \mathcal{M}^{2} \mp \sqrt{\left(\operatorname{Tr} \mathcal{M}^{2}\right)^{2}-4 \operatorname{det} \mathcal{M}^{2}}\right] \\
\sin 2 \theta_{\tilde{q}} & =\frac{2 m_{q}\left|X_{q}\right|}{m_{\tilde{q}_{2}}^{2}-m_{\tilde{q}_{1}}^{2}} \tag{89.14}
\end{align*}
$$

The one-generation results above also apply to the charged sleptons, with the obvious substitutions: $q \rightarrow \ell$ with $T_{3 \ell}=-\frac{1}{2}$ and $e_{\ell}=-1$, and the replacement of the SUSY-breaking parameters: $M_{\widetilde{Q}}^{2} \rightarrow M_{\widetilde{L}}^{2}, M_{\widetilde{D}}^{2} \rightarrow M_{\widetilde{E}}^{2}$, and $A_{q} \rightarrow A_{\tau}$. For the neutral sleptons, $\widetilde{\nu}_{R}$ does not exist in the MSSM, so $\widetilde{\nu}_{L}$ is a mass eigenstate.

In the case of three generations, the SUSY-breaking scalarsquared masses $\left[M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}\right.$, and $\left.M_{\widetilde{E}}^{2}\right]$ and the A parameters $\left[A_{U}, A_{D}\right.$, and A_{E}] are now 3×3 matrices as noted in Sec. 89.3.3. The diagonalization of the 6×6 squark mass matrices yields $\tilde{f}_{i L}-\widetilde{f}_{j R}$ mixing. In practice, since the $\widetilde{f}_{L}-\widetilde{f}_{R}$ mixing is appreciable only for the third generation, this additional complication can often be neglected (although see Ref. [101] for examples in which the mixing between the second and third generation squarks is relevant).

89.5 The supersymmetric Higgs sector

Consider first the MSSM Higgs sector [27, 28, 103]. Despite the large number of potential $C P$-violating phases among the MSSM124 parameters, the tree-level MSSM Higgs potential given by Eq. (89.2) is automatically $C P$-conserving. This follows from the fact that the only potentially complex parameter $\left(m_{12}^{2}\right)$ of the MSSM Higgs potential can be chosen real and positive by rephasing the Higgs fields, in which case $\tan \beta$ is a real positive parameter. Consequently, the physical neutral Higgs scalars are $C P$-eigenstates (at tree-level). The MSSM Higgs sector contains five physical spin-zero particles: a charged Higgs boson pair $\left(H^{ \pm}\right)$, two $C P$-even neutral Higgs bosons (denoted by h^{0} and H^{0} where $\left.m_{h}<m_{H}\right)$, and one $C P$-odd neutral Higgs boson $\left(A^{0}\right)$. The discovery of a SM-like Higgs boson at the LHC with a mass of 125 GeV (see Sec. 11) strongly suggests that this state should be identified with h^{0}, although the possibility that the 125 GeV state should be identified with H^{0} cannot yet be completely ruled out [104].
In the NMSSM [33], the scalar component of the singlet Higgs superfield adds two additional neutral states to the Higgs sector. In this model, the tree-level Higgs sector can exhibit explicit CP-violation. If $C P$ is conserved, then the two extra neutral scalar states are $C P$-even and $C P$-odd, respectively. These states can potentially mix with the neutral Higgs states of the MSSM. If scalar states exist that are dominantly singlet, then they are weakly coupled to SM gauge bosons and fermions through their small mixing with the MSSM Higgs scalars. Consequently, it is possible that one (or both) of the singlet-dominated states is considerably lighter than the Higgs boson that was observed at the LHC.

89.5.1 The tree-level Higgs sector

The tree-level properties of the Higgs sector are determined by the Higgs potential given by Eq. (89.2). The quartic interaction terms are manifestly supersymmetric (although these are modified by SUSY-breaking effects at the loop level). In general, the quartic couplings arise from two sources: (i) the supersymmetric generalization of the scalar potential (the so-called " F-terms"), and
(ii) interaction terms related by SUSY to the coupling of the scalar fields and the gauge fields, whose coefficients are proportional to the corresponding gauge couplings (the so-called " D-terms").

In the MSSM, F-term contributions to the quartic Higgs selfcouplings are absent. As a result, the strengths of the MSSM quartic Higgs interactions are fixed in terms of the gauge couplings, as noted below Eq. (89.2). Consequently, all the tree-level MSSM Higgs-sector parameters depend only on two quantities: $\tan \beta$ [defined in Eq. (89.3)] and one Higgs mass usually taken to be m_{A}. From these two quantities, one can predict the values of the remaining Higgs boson masses, an angle α that measures the mixture of the hypercharge ± 1 scalar fields, H_{u}^{0} and H_{d}^{0}, in the physical $C P$-even neutral scalars, and the Higgs boson selfcouplings. Moreover, the tree-level mass of the lighter $C P$-even Higgs boson is bounded, $m_{h} \leq m_{Z}|\cos 2 \beta| \leq m_{Z}[27,28]$. This bound can be substantially modified when radiative corrections are included, as discussed in Sec. 89.5.2.

In the NMSSM, the superpotential contains a trilinear term that couples the two $Y= \pm 1$ Higgs doublet superfields and the singlet Higgs superfield. The coefficient of this term is denoted by λ. Consequently, the tree-level bound for the mass of the lightest $C P$-even MSSM Higgs boson is modified [105],

$$
\begin{equation*}
m_{h}^{2} \leq m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2} \lambda^{2} v^{2} \sin ^{2} 2 \beta \tag{89.15}
\end{equation*}
$$

where $v \equiv\left(v_{u}^{2}+v_{d}^{2}\right)^{1 / 2}=246 \mathrm{GeV}$. If one demands that λ should stay finite after renormalization-group evolution up to the Planck scale, then λ is constrained to lie below about $0.7-0.8$ at the electroweak scale [33] (although larger values of λ have also been considered [106]).
The tree-level Higgs-quark and Higgs-lepton interactions of the MSSM are governed by the Yukawa couplings defined by the superpotential given in Eq. (89.1). In particular, the Higgs sector of the MSSM is a Type-II two-Higgs doublet model [107], in which one Higgs doublet $\left(H_{d}\right)$ couples exclusively to the right-handed down-type quark (or lepton) fields and the second Higgs doublet $\left(H_{u}\right)$ couples exclusively to the right-handed up-type quark fields. Consequently, the diagonalization of the fermion mass matrices simultaneously diagonalizes the matrix Yukawa couplings, resulting in flavor-diagonal tree-level couplings of the neutral Higgs bosons h^{0}, H^{0} and A^{0} to quark and lepton pairs.

89.5.2 The radiatively-corrected Higgs sector

When radiative corrections are incorporated, additional parameters of the supersymmetric model enter via virtual supersymmetric particles that appear in loops. The impact of these corrections can be significant [108]. The qualitative behavior of these radiative corrections can be most easily seen in the large top-squark mass limit, where in addition, both the splitting of the two diagonal entries and the off-diagonal entries of the top-squark squaredmass matrix [Eq. (89.11)] are small in comparison to the geometric mean of the two top-squark squared-masses, $M_{\mathrm{S}}^{2} \equiv M_{t_{1}} M_{t_{2}}$. In this case (assuming $\mathrm{m}_{A}>m_{Z}$), the predicted upper bound for m_{h} is approximately given by
$m_{h}^{2} \lesssim m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 g^{2} m_{t}^{4}}{8 \pi^{2} m_{W}^{2}}\left[\ln \left(\frac{M_{\mathrm{S}}^{2}}{m_{t}^{2}}\right)+\frac{X_{t}^{2}}{M_{\mathrm{S}}^{2}}\left(1-\frac{X_{t}^{2}}{12 M_{\mathrm{S}}^{2}}\right)\right]$,
(89.16)
where $X_{t} \equiv A_{t}-\mu \cot \beta$ [cf. Eq. (89.12)] is proportional to the off-diagonal entry of the top-squark squared-mass matrix (where for simplicity, A_{t} and μ are taken to be real). The Higgs mass upper limit specified by Eq. (89.16) is saturated when $\tan \beta$ is large (i.e., $\cos ^{2} 2 \beta \sim 1$) and $X_{t}=\sqrt{6} M_{S}$, which defines the so-called maximal mixing scenario.

A more complete treatment of the radiative corrections shows that Eq. (89.16) somewhat overestimates the true upper bound of m_{h}. These more refined computations, which incorporate renormalization group improvement, the two loop and the leading three-loop contributions, yield $m_{h} \lesssim 135 \mathrm{GeV}$ in the region of large $\tan \beta$ (with an accuracy of a few GeV) for $m_{t}=175 \mathrm{GeV}$ and $M_{S} \lesssim 2 \mathrm{TeV}$ [109].

In addition, one-loop radiative corrections can introduce $C P$ violating effects in the Higgs sector that depend on some of
the $C P$-violating phases among the MSSM-124 parameters [110]. This phenomenon is most easily understood in a scenario where $m_{A} \ll M_{S}$ (i.e., all five physical Higgs states are significantly lighter than the SUSY breaking scale). In this case, one can integrate out the heavy superpartners to obtain a low-energy effective theory with two Higgs doublets. The resulting effective two-Higgs doublet model will now contain all possible Higgs self-interaction terms (both CP-conserving and CP-violating) and Higgs-fermion interactions (beyond those of Type-II) that are consistent with electroweak gauge invariance [111].

In the NMSSM, the dominant radiative correction to Eq. (89.15) is the same as the one given in Eq. (89.16). However, in contrast to the MSSM, one does not need as large a boost from the radiative corrections to achieve a Higgs mass of 125 GeV in certain regimes of the NMSSM parameter space (e.g., $\tan \beta \sim 2$ and $\lambda \sim 0.7$ [112]).

89.6 Restricting the MSSM parameter freedom

In Sections 89.4 and 89.5, we surveyed the parameters that comprise the MSSM-124. However, without additional restrictions on the choice of parameters, a generic parameter set within the MSSM-124 framework is not phenomenologically viable. In particular, a generic point of the MSSM-124 parameter space exhibits: (i) no conservation of the separate lepton numbers L_{e}, L_{μ}, and L_{τ}; (ii) unsuppressed flavor-changing neutral currents (FCNCs); and (iii) new sources of $C P$ violation that are inconsistent with the experimental bounds.

For example, the MSSM contains many new sources of $C P$ violation [113]. Indeed, for TeV -scale sfermion and gaugino masses, some combinations of the complex phases of the gaugino-mass parameters, the A-parameters, and μ must be less than about $10^{-2}-10^{-3}$ to avoid generating electric dipole moments for the neutron, electron, and atoms [114-116] in conflict with observed data [117]. The rarity of FCNCs [118-120] places additional constraints on the off-diagonal matrix elements of the squark and slepton soft-SUSY-breaking squared-masses and A-parameters (see Sec. 89.3.3).

The MSSM-124 is also theoretically incomplete as it provides no explanation for the fundamental origin of the super-symmetry-breaking parameters. The successful unification of the SM gauge couplings at very high energies close to the Planck scale $[8,66,121-123]$ suggests that the high-energy structure of the theory may be considerably simpler than its low-energy realization. In a top-down approach, the dynamics that governs the more fundamental theory at high energies is used to derive the effective broken-supersymmetric theory at the TeV scale. A suitable choice for the high energy dynamics is one that yields a TeV-scale theory that satisfies all relevant phenomenological constraints.

In this Section, we examine a number of theoretical frameworks that potentially yield phenomenologically viable regions of the MSSM-124 parameter space. The resulting supersymmetric particle spectrum is then a function of a relatively small number of input parameters. This is accomplished by imposing a simple structure on the soft SUSY-breaking parameters at a common high-energy scale M_{X} (typically chosen to be the Planck scale, M_{P}, the grand unification scale, M_{GUT}, or the messenger scale, $\left.M_{\text {mess }}\right)$. These serve as initial conditions for the MSSM renormalization group equations (RGEs), which are given in the two-loop approximation in Ref. [124] (an automated program to compute RGEs for the MSSM and other models of new physics beyond the SM has been developed in Ref. [125]). Solving these equations numerically, one can then derive the low-energy MSSM parameters relevant for phenomenology. A number of software packages exist that numerically calculate the spectrum of supersymmetric particles, consistent with theoretical conditions on SUSY breaking at high energies and some experimental data at low energies [126].

Examples of this scenario are provided by models of gravitymediated, anomaly mediated and gauge-mediated SUSY breaking, to be discussed in more detail below. In some of these approaches, one of the diagonal Higgs squared-mass parameters is driven negative by renormalization group evolution [127]. In such models, electroweak symmetry breaking is generated radiatively, and the resulting electroweak symmetry-breaking scale is intimately tied to the scale of low-energy SUSY breaking.

89.6.1 Gaugino mass relations

One prediction of many supersymmetric grand unified models is the unification of the (tree-level) gaugino mass parameters at some high-energy scale, M_{X},

$$
\begin{equation*}
M_{1}\left(M_{X}\right)=M_{2}\left(M_{X}\right)=M_{3}\left(M_{X}\right)=m_{1 / 2} \tag{89.17}
\end{equation*}
$$

Due to renormalization group running, in the one-loop approximation the effective low-energy gaugino mass parameters (at the electroweak scale) are related,

$$
\begin{equation*}
M_{3}=\left(g_{s}^{2} / g^{2}\right) M_{2} \simeq 3.5 M_{2}, \quad M_{1}=\left(5 g^{\prime 2} / 3 g^{2}\right) M_{2} \simeq 0.5 M_{2} \tag{89.18}
\end{equation*}
$$

Eq. (89.18) can arise more generally in gauge-mediated SUSYbreaking models where the gaugino masses are generated at the messenger scale $M_{\text {mess }}$ (which typically lies significantly below the unification scale where the gauge couplings unify). In this case, the gaugino mass parameters are proportional to the corresponding squared gauge couplings at the messenger scale.

When Eq. (89.18) is satisfied, the chargino and neutralino masses and mixing angles depend only on three unknown parameters: the gluino mass, μ, and $\tan \beta$. It then follows that the lightest neutralino must be heavier than 46 GeV due to the non-observation of charginos at LEP [128]. If in addition $|\mu| \gg\left|M_{1}\right| \gtrsim m_{Z}$, then the lightest neutralino is nearly a pure bino, an assumption often made in supersymmetric particle searches at colliders. Although Eq. (89.18) is often assumed in many phenomenological studies, a truly model-independent approach would take the gaugino mass parameters, M_{i}, to be independent parameters to be determined by experiment. Indeed, an approximately massless neutralino cannot be ruled out at present by a model-independent analysis [129].

It is possible that the tree-level masses for the gauginos are zero. In this case, the gaugino mass parameters arise at one-loop and do not satisfy Eq. (89.18). For example, the gaugino masses in AMSB models arise entirely from a model-independent contribution derived from the super-conformal anomaly [48,130]. In this case, Eq. (89.18) is replaced (in the one-loop approximation) by:

$$
\begin{equation*}
M_{i} \simeq \frac{b_{i} g_{i}^{2}}{16 \pi^{2}} m_{3 / 2} \tag{89.19}
\end{equation*}
$$

where $m_{3 / 2}$ is the gravitino mass and the b_{i} are the coefficients of the MSSM gauge beta-functions corresponding to the corresponding $\mathrm{U}(1), \mathrm{SU}(2)$, and $\mathrm{SU}(3)$ gauge groups, $\left(b_{1}, b_{2}, b_{3}\right)=$ $\left(\frac{33}{5}, 1,-3\right)$. Eq. (89.19) yields $M_{1} \simeq 2.8 M_{2}$ and $M_{3} \simeq-8.3 M_{2}$, which implies that the lightest chargino pair and neutralino comprise a nearly mass-degenerate triplet of winos, $\widetilde{W}^{ \pm}, \widetilde{W}^{0}(\mathrm{cf}$. Table 1), over most of the MSSM parameter space. For example, if $|\mu| \gg m_{Z},\left|M_{2}\right|$, then Eq. (89.19) implies that $M_{\tilde{\chi}^{ \pm}} \simeq M_{\tilde{\chi}_{1}^{0}} \simeq M_{2}$ [131]. Alternatively, one can construct an AMSB model where $|\mu|, m_{Z} \ll M_{2}$, which yields an LSP that is an approximate higgsino state [132]. In both cases, the corresponding supersymmetric phenomenology differs significantly from the standard phenomenology based on Eq. (89.18) [133, 134].

Finally, it should be noted that the unification of gaugino masses (and scalar masses) can be accidental. In particular, the energy scale where unification takes place may not be directly related to any physical scale. One version of this phenomenon has been called mirage unification and can occur in certain theories of fundamental SUSY breaking [135].
89.6.2 Constrained versions of the MSSM: mSUGRA, CMSSM, etc.

In the minimal supergravity (mSUGRA) framework [3-6, 4143], a form of the Kähler potential is employed that yields minimal kinetic energy terms for the MSSM fields [45]. As a result, the soft supersymmetry-breaking parameters at the high-energy scale M_{X} take a particularly simple form in which the scalar squared-masses
and the A-parameters are flavor-diagonal and universal [43]:

$$
\begin{align*}
& M_{\widetilde{Q}}^{2}\left(M_{X}\right)=M_{\widetilde{U}}^{2}\left(M_{X}\right)=M_{\widetilde{D}}^{2}\left(M_{X}\right)=m_{0}^{2} \mathbf{1} \\
& M_{\widetilde{L}}^{2}\left(M_{X}\right)=M_{\widetilde{E}}^{2}\left(M_{X}\right)=m_{0}^{2} \mathbf{1} \tag{89.20}\\
& m_{1}^{2}\left(M_{X}\right)=m_{2}^{2}\left(M_{X}\right)=m_{0}^{2} \\
& A_{U}\left(M_{X}\right)=A_{D}\left(M_{X}\right)=A_{E}\left(M_{X}\right)=A_{0} \mathbf{1}
\end{align*}
$$

where $\mathbf{1}$ is a 3×3 identity matrix in generation space. As in the SM, this approach exhibits minimal flavor violation [136, 137], whose unique source is the nontrivial flavor structure of the Higgsfermion Yukawa couplings. The gaugino masses are also unified according to Eq. (89.17).
Renormalization group evolution is then used to derive the values of the supersymmetric parameters at the low-energy (electroweak) scale. For example, to compute squark masses, one should use the low-energy values for $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}$, and $M_{\widetilde{D}}^{2}$ in Eq. (89.11). Through the renormalization group running with boundary conditions specified in Eq. (89.18) and Eq. (89.20), one can show that the low-energy values of $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}$, and $M_{\widetilde{D}}^{2}$ depend primarily on m_{0}^{2} and $m_{1 / 2}^{2}$. A number of useful approximate analytic expressions for superpartner masses in terms of the mSUGRA parameters can be found in Ref. [138].
In the mSUGRA approach, four flavors of squarks (with two squark eigenstates per flavor) are nearly mass-degenerate. If $\tan \beta$ is not very large, \widetilde{b}_{R} is also approximately degenerate in mass with the first two generations of squarks. The \widetilde{b}_{L} mass and the diagonal \widetilde{t}_{L} and \widetilde{t}_{R} masses are typically reduced relative to the common squark mass of the first two generations. In addition, there are six flavors of nearly mass-degenerate sleptons (with two slepton eigenstates per flavor for the charged sleptons and one per flavor for the sneutrinos); the sleptons are expected to be somewhat lighter than the mass-degenerate squarks. As noted below Eq. (89.11), third-generation squark masses and tau-slepton masses are sensitive to the strength of the respective $\widetilde{f}_{L}-\widetilde{f}_{R}$ mixing. The LSP is typically the lightest neutralino, $\tilde{\chi}_{1}^{0}$, which is dominated by its bino component. Regions of the mSUGRA parameter space in which the LSP is electrically charged do exist but are not phenomenologically viable [19].

One can count the number of independent parameters in the mSUGRA framework. In addition to 18 SM parameters (excluding the Higgs mass), one must specify $m_{0}, m_{1 / 2}, A_{0}$, the Planckscale values for μ and B-parameters (denoted by μ_{0} and B_{0}), and the gravitino mass $m_{3 / 2}$. Without additional model assumptions, $m_{3 / 2}$ is independent of the parameters that govern the mass spectrum of the superpartners of the $\mathrm{SM}[43]$. In principle, A_{0}, B_{0}, μ_{0}, and $m_{3 / 2}$ can be complex, although in the mSUGRA approach, these parameters are taken (arbitrarily) to be real.

As previously noted, renormalization group evolution is used to compute the low-energy values of the mSUGRA parameters, which then fixes all the parameters of the low-energy MSSM. In particular, the two Higgs vacuum expectation values (or equivalently, m_{Z} and $\tan \beta$) can be expressed as a function of the Planckscale supergravity parameters. The most common procedure is to remove μ_{0} and B_{0} in favor of m_{Z} and $\tan \beta$ [the sign of μ_{0}, denoted $\operatorname{sgn}\left(\mu_{0}\right)$ below, is not fixed in this process]. In this case, the MSSM spectrum and its interaction strengths are determined by five parameters:

$$
\begin{equation*}
m_{0}, A_{0}, m_{1 / 2}, \tan \beta, \text { and } \operatorname{sgn}\left(\mu_{0}\right) \tag{89.21}
\end{equation*}
$$

and an independent gravitino mass $m_{3 / 2}$ (in addition to the 18 parameters of the SM). In Ref. [139], this framework was dubbed the constrained minimal supersymmetric extension of the SM (CMSSM).
In the early literature, additional conditions were obtained by assuming a simplified form for the hidden sector that provides the fundamental source of SUSY breaking. Two additional relations emerged among the mSUGRA parameters [41,45]: $B_{0}=A_{0}-m_{0}$ and $m_{3 / 2}=m_{0}$. These relations characterize a theory that was called minimal supergravity when first proposed. In the subsequent literature, it has been more common to omit these extra
conditions in defining the mSUGRA model (in which case the mSUGRA model and the CMSSM are synonymous). The authors of Ref. [140] advocate restoring the original nomenclature in which the mSUGRA model is defined with the extra conditions as originally proposed. Additional mSUGRA variations can also be considered where different relations among the CMSSM parameters are imposed.

One can also relax the universality of scalar masses by decoupling the squared-masses of the Higgs bosons and the squarks/sleptons. This leads to the non-universal Higgs mass models (NUHMs), thereby adding one or two new parameters to the CMSSM depending on whether the diagonal Higgs scalar squared-mass parameters $\left(m_{1}^{2}\right.$ and $\left.m_{2}^{2}\right)$ are set equal (NUHM1 [141]) or taken to be independent (NUHM2 [142]) at the high energy scale M_{X}^{2}. Clearly, this modification preserves the minimal flavor violation of the mSUGRA approach. Nevertheless, the mSUGRA approach and its NUHM generalizations are probably too simplistic. Theoretical considerations suggest that the universality of Planck-scale soft SUSY-breaking parameters is not generic [143]. In particular, effective operators at the Planck scale exist that do not respect flavor universality, and it is difficult to find a theoretical principle that would forbid them.
In the framework of supergravity, if anomaly mediation is the sole source of SUSY breaking, then the gaugino mass parameters, diagonal scalar squared-mass parameters, and the SUSY-breaking trilinear scalar interaction terms (proportional to $\lambda_{f} A_{F}$) are determined in terms of the beta functions of the gauge and Yukawa couplings and the anomalous dimensions of the squark and slepton fields $[48,130,134]$. As noted in Sec. 89.2.3, this approach yields tachyonic sleptons in the MSSM unless additional sources of SUSY breaking are present. In the minimal AMSB (mAMSB) scenario, a universal squared-mass parameter, m_{0}^{2}, is added to the AMSB expressions for the diagonal scalar squared-masses [134]. Thus, the mAMSB spectrum and its interaction strengths are determined by four parameters, $m_{0}^{2}, m_{3 / 2}, \tan \beta$ and $\operatorname{sgn}\left(\mu_{0}\right)$.
The mAMSB scenario appears to be ruled out based on the observed value of the Higgs boson mass, assuming an upper limit on M_{S} of a few TeV , since the mAMSB constraint on A_{F} implies that the maximal mixing scenario cannot be achieved [cf. Eq. (89.16)]. Indeed, under the stated assumptions, the mAMSB Higgs mass upper bound lies below the observed Higgs mass value [144]. Thus within the AMSB scenario, either an additional SUSY-breaking contribution to $\lambda_{f} A_{F}$ and/or new ingredients beyond the MSSM are required.

89.6.3 Gauge-mediated SUSY breaking

In contrast to models of gravity-mediated SUSY breaking, the flavor universality of the fundamental soft SUSY-breaking squark and slepton squared-mass parameters is guaranteed in gaugemediated SUSY breaking (GMSB) because the supersymmetry breaking is communicated to the sector of MSSM fields via gauge interactions $[53,55]$. In GMSB models, the mass scale of the messenger sector (or its equivalent) is sufficiently below the Planck scale such that the additional SUSY-breaking effects mediated by supergravity can be neglected.

In the minimal GMSB approach, there is one effective mass scale, Λ, that determines all low-energy scalar and gaugino mass parameters through loop effects, while the resulting A-parameters are suppressed. In order that the resulting superpartner masses be of order 1 TeV , one must have $\Lambda \sim \mathcal{O}(100 \mathrm{TeV})$. The origin of the μ and B-parameters is model-dependent, and lies somewhat outside the ansatz of gauge-mediated SUSY breaking [145].

The simplest GMSB models appear to be ruled out based on the observed value of the Higgs boson mass. Due to suppressed A parameters, it is difficult to boost the contributions of the radiative corrections in Eq. (89.16) to obtain a Higgs mass as large as 125 GeV . However, this conflict can be alleviated in more complicated GMSB models [146]. To analyze these generalized GMSB models, it has been especially fruitful to develop model-independent techniques that encompass all known GMSB models [147]. These techniques are well-suited for a comprehensive analysis [148] of the phenomenological profile of gauge-mediated SUSY breaking.

The gravitino is the LSP in GMSB models, as noted in Sec. 89.2.3. As a result, the next-to-lightest supersymmetric par-
ticle (NLSP) now plays a crucial role in the phenomenology of supersymmetric particle production and decays. Note that unlike the LSP, the NLSP can be charged. In GMSB models, the most likely candidates for the NLSP are $\tilde{\chi}_{1}^{0}$ and $\widetilde{\tau}_{R}^{ \pm}$. The NLSP will decay into its superpartner plus a gravitino (e.g., $\tilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}$, $\tilde{\chi}_{1}^{0} \rightarrow Z \widetilde{G}, \tilde{\chi}_{1}^{0} \rightarrow h^{0} \widetilde{G}$ or $\left.\widetilde{\tau}_{1}^{ \pm} \rightarrow \tau^{ \pm} \widetilde{G}\right)$, with lifetimes and branching ratios that depend on the model parameters. There are also GMSB scenarios in which there are several nearly degenerate coNLSP's, any one of which can be produced at the penultimate step of a supersymmetric decay chain [149]. For example, in the slepton co-NLSP case, all three right-handed sleptons are close enough in mass and thus can each play the role of the NLSP.

Different choices for the identity of the NLSP and its decay rate lead to a variety of distinctive supersymmetric phenomenologies [55,150]. For example, a long-lived $\tilde{\chi}_{1}^{0}$-NLSP that decays outside collider detectors leads to supersymmetric decay chains with missing energy in association with leptons and/or hadronic jets (this case is indistinguishable from the standard phenomenology of the $\tilde{\chi}_{1}^{0}$-LSP). On the other hand, if $\tilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}$ is the dominant decay mode, and the decay occurs inside the detector, then nearly all supersymmetric particle decay chains would contain a photon. In contrast, in the case of a $\widetilde{\tau}_{1}^{ \pm}$-NLSP, the $\widetilde{\tau}_{1}^{ \pm}$would either be long-lived or would decay inside the detector into a τ-lepton plus missing energy.
A number of attempts have been made to address the origins of the μ and B-parameters in GMSB models based on the field content of the MSSM (see, e.g., Refs. [145, 151]). An alternative approach is to consider GMSB models based on the NMSSM [152]. The vacuum expectation value of the additional singlet Higgs superfield can be used to generate effective μ and B-parameters [153]. Such models provide an alternative GMSB framework for achieving a Higgs mass of 125 GeV , while still being consistent with LHC bounds on supersymmetric particle masses [154].

89.6.4 The phenomenological MSSM

Of course, any of the theoretical assumptions described in the previous three subsections must be tested experimentally and could turn out to be wrong. To facilitate the exploration of MSSM phenomena in a more model-independent way while respecting the constraints noted at the beginning of this Section, the phenomenological MSSM (pMSSM) has been introduced [155].

The pMSSM is governed by 19 independent real supersymmetric parameters: the three gaugino mass parameters M_{1}, M_{2} and M_{3}, the Higgs sector parameters m_{A} and $\tan \beta$, the Higgsino mass parameter μ, five sfermion squared-mass parameters for the degenerate first and second generations $\left(M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}\right.$ and $M_{\widetilde{E}}^{2}$), the five corresponding sfermion squared-mass parameters for the third generation, and three third-generation A-parameters (A_{t}, A_{b} and A_{τ}). The first and second generation A-parameters are typically neglected in pMSSM studies, as their phenomenological consequences are negligible in most applications (one counterexample is the A_{μ} dependence of the anomalous magnetic moment of the muon, which can be as significant as other contributions due to superpartner mediated radiative corrections [156]). Since its initial proposal, the pMSSM approach has been extended to include CP-violating SUSY-breaking parameters in Ref. [157].

A comprehensive study of the 19-parameter pMSSM is computationally expensive. This is somewhat ameliorated in Ref. [158], where the number of pMSSM parameters is reduced to ten by assuming one common squark squared-mass parameter for the first two generations, a second common squark squared-mass parameter for the third generation, a common slepton squared-mass parameter and a common third generation A parameter. Applications of the pMSSM approach to supersymmetric particle searches, and a discussion of the implications for past and future LHC and dark matter studies can be found in Refs. [158-160].

89.6.5 Simplified models

As Sec. 90 demonstrates, experiments present their searches for supersymmetric particles primarily in terms of simplified models. Simplified models for supersymmetric searches [161] are defined mostly by the empirical objects and kinematic variables involved
in the search. Their interpretation by the experimental collaboration usually involves only a small number of supersymmetric particles (often two or three). Other supersymmetric particles are assumed to play no role (this may happen by virtue of them being too heavy to be produced). Experimental bounds from non-observation of a signal are usually presented in terms of the physical masses of the supersymmetric particles involved. Bounds may be presented on the relevant supersymmetric particle masses assuming a 100% branching ratio for a certain decay, or as an upper bound on signal production cross-section times branching ratio as a function of the relevant supersymmetric particle masses.

For example, consider a search for hadronic jets plus missing transverse momentum. One can match such a search to the simplified model of squark pair production followed by the subsequent decay of each squark into a quark (which appears as a jet) and a neutralino LSP that produces the missing transverse momentum, i.e. $\tilde{q} \tilde{q} \rightarrow\left(q \tilde{\chi}_{1}^{0}\right)\left(q \tilde{\chi}_{1}^{0}\right)$. Excluded regions resulting from the non-observation of a signal may be exhibited in the squark mass versus LSP mass plane.
Simplified models have the advantage that one makes fewer assumptions, compared to more complete supersymmetric models, where the larger number of free parameters makes it difficult to present excluded regions in any generality. It is hoped that simplified models may be a reasonable approximation over sizeable regions of parameter space of more complete models, within which the simplified model is embedded. On the other hand, as stressed in Sec. 90, simplified models have the disadvantage that the presentation of negative search limits tends to be overly strong when compared to the more complete models, particularly if 100% branching ratios are assumed. A contrast between supersymmetric particle search limits in the context of simplified models and the corresponding constraints obtained in the more complete pMSSM is provided in Ref. [162]. As long as one is able to dispel undue pessimism, simplified models remain an efficient vehicle for organizing and presenting the results of supersymmetric particle searches.

89.7 Experimental data confronts the MSSM

At present, there is no direct evidence for weak-scale SUSY from the data analyzed by the LHC experiments. Recent LHC data have been effectively employed in ruling out the existence of colored supersymmetric particles (primarily the gluino and the first generation of squarks) with masses below about 2 TeV (see Sec. 90). The precise mass limits are model dependent. For example, as Sec. 90 demonstrates, regions of the pMSSM parameter space can be identified in which lighter squarks and gluinos below 1 TeV cannot be definitely ruled out. Additional constraints arise from limits on the contributions of virtual supersymmetric particle exchange to a variety of SM processes [118-120].

In light of these negative results, one must confront the tension that exists between the theoretical expectations for the magnitude of the SUSY-breaking parameters and the non-observation of supersymmetric phenomena at colliders.

89.7.1 Naturalness constraints and the little hierarchy

In Sec. 89.1, weak-scale SUSY was motivated as a natural solution to the hierarchy problem, which could provide an understanding of the origin of the electroweak symmetry-breaking scale without a significant fine-tuning of the fundamental parameters that govern the MSSM. In this context, the weak scale soft supersymmetry-breaking masses must be generally of the order of 1 TeV or below [163]. This requirement is most easily seen in the determination of m_{Z} by the scalar potential minimum condition. In light of Eq. (89.5), to avoid the fine-tuning of MSSM parameters, the soft SUSY-breaking squared-masses m_{1}^{2} and m_{2}^{2} and the higgsino squared-mass $|\mu|^{2}$ should all be roughly of $\mathcal{O}\left(m_{Z}^{2}\right)$. Many authors have proposed quantitative measures of fine-tuning [163-167]. One of the simplest measures is the one advocated by Barbieri and Giudice [163] (which was also introduced previously in Ref. [164]),

$$
\begin{equation*}
\Delta_{i} \equiv\left|\frac{\partial \ln m_{Z}^{2}}{\partial \ln p_{i}}\right|, \quad \Delta \equiv \max \Delta_{i} \tag{89.22}
\end{equation*}
$$

where the p_{i} are the MSSM parameters at the high-energy scale M_{X}, which are set by the fundamental SUSY-breaking dynamics. The theory is more fine-tuned as Δ becomes larger. However, different measures of fine-tuning yield quantitatively different results; in particular, calculating minimal fine-tuning based on the high-scale parameters [as defined in Eq. (89.22)] yields a difference by a factor ~ 10 to fine-tuning based on TeV-scale parameters $[168,169]$.

One can apply the fine-tuning measure to any explicit model of SUSY breaking. For example, in the approaches discussed in Sec. 89.6, the p_{i} are parameters of the model at the energy scale M_{X} where the soft SUSY-breaking operators are generated by the dynamics of SUSY breaking. Renormalization group evolution then determines the values of the parameters appearing in Eq. (89.5) at the electroweak scale. In this way, Δ is sensitive to all the SUSY-breaking parameters of the model (see e.g. Ref. [170]). It should be noted that the computation of Δ is often based on Eq. (89.5), which is a tree-level condition. For example, an analysis in Ref. [80] shows that the fine tuning measure can be reduced by as much as a factor of two when loop corrections are included [171].

As anticipated, there is a tension between the present experimental lower limits on the masses of colored supersymmetric particles $[172,173]$ and the expectation that supersymmetry-breaking is associated with the electroweak symmetry-breaking scale. Moreover, this tension is exacerbated [174] by the observed value of the Higgs mass ($m_{h} \simeq 125 \mathrm{GeV}$), which is not far from the MSSM upper bound ($m_{h} \lesssim 135 \mathrm{GeV}$) [which depends on the top-squark mass and mixing as noted in Sec. 89.5.2]. If $M_{\text {SUSY }}$ characterizes the scale of supersymmetric particle masses, then one would crudely expect $\Delta \sim M_{\text {SUSY }}^{2} / m_{Z}^{2}$. For example, if $M_{\text {SUSY }} \sim 1 \mathrm{TeV}$ then one expects a $\Delta^{-1} \sim 1 \%$ fine-tuning of the MSSM parameters to achieve the observed value of m_{Z}. This separation of the electroweak symmetry-breaking and SUSY-breaking scales is an example of the little hierarchy problem [175, 176].

The fine-tuning parameter Δ can depend quite sensitively on the structure of the SUSY-breaking dynamics, such as the value of M_{X} and relations among SUSY-breaking parameters in the fundamental high energy theory [177]. For example, in so-called focus point SUSY models [166,178], all squark masses can be as heavy as 5 TeV without significant fine-tuning. This can be attributed to a focusing behavior of the renormalization group evolution when certain relations hold among the high-energy values of the scalar squared-mass SUSY-breaking parameters. Although the focus point region of the CMSSM still yields an uncomfortably high value of Δ due to the observed Higgs mass of 125 GeV , one can achieve moderate values of Δ in models with NUHM2 boundary conditions for the scalar masses [174].

Among the colored superpartners, the third generation squarks typically have the most significant impact on the naturalness constraints [179], while their masses are the least constrained by the LHC data. Hence, in the absence of any relation between third generation squarks and those of the first two generations, the naturalness constraints due to present LHC data can be considerably weaker than those obtained in the CMSSM. Indeed, models with first and second generation squark masses in the multi-TeV range do not necessarily require significant fine tuning. Such models have the added benefit that undesirable FCNCs mediated by squark exchange are naturally suppressed [180]. Other MSSM mass spectra that are compatible with moderate fine tuning have been considered in Refs. [177] and [181].

The lower bounds on squark and gluino masses may not be as large as suggested by the experimental analyses based on the CMSSM or simplified models. For example, mass bounds for the gluino and the first and second generation squarks based on the CMSSM can often be evaded in alternative or extended MSSM models, e.g., compressed SUSY [182] and stealth SUSY [183]. Moreover, the experimental upper limits for the third generation squark masses (which have a more direct impact on the fine-tuning measure) are weaker than the corresponding mass limits for other colored supersymmetric states.

Among the uncolored superpartners, the higgsinos are typically the most impacted by the naturalness constraints. Eq. (89.5) sug-
gests that the masses of the two neutral higgsinos and charged higgsino pair (which are governed by $|\mu|$) should not be significantly larger than m_{Z} to avoid an unnatural fine-tuning of the supersymmetric parameters, which would imply the existence of light higgsinos (whose masses are not well constrained, as they are difficult to detect directly at the LHC due to their soft decay products). Nevertheless, it may be possible to avoid the conclusion that $\mu \sim \mathcal{O}\left(m_{Z}\right)$ if additional correlations among the SUSY breaking mass parameters and μ are present. Such a scenario can be realized in models in which the boundary conditions for SUSY breaking are generated by approximately conformal strong dynamics. For example, in the so-called scalar-sequestering model of Ref. [184], values of $|\mu|>1 \mathrm{TeV}$ can be achieved while naturally maintaining the observed value of m_{Z}.

Finally, one can also consider extensions of the MSSM in which the degree of fine-tuning is relaxed. For example, it has already been noted in Sec. 89.5 that it is possible to accommodate the observed Higgs mass more easily in the NMSSM due to contributions to m_{h}^{2} proportional to the parameter λ^{2}. This means that we do not have to rely on a large contribution from the radiative corrections to boost the Higgs mass sufficiently above its treelevel bound. This allows for smaller top squark masses, which are more consistent with the demands of naturalness. The reduction of the fine-tuning in various NMSSM models was initially advocated in Ref. [185], and subsequently treated in more detail in Refs. [106, 186]. Naturalness can also be relaxed in extended supersymmetric models with vector-like quarks [187] and in gauge extensions of the MSSM [188].

The experimental absence of any new physics beyond the Standard Model at the LHC suggests that the principle of naturalness is presently under significant stress [189]. Nevertheless, one must be very cautious when drawing conclusions about the viability of weak-scale SUSY to explain the origin of electroweak symmetry breaking, since different measures of fine-tuning noted above can lead to different assessments $[168,169]$. Moreover, the maximal value of Δ that determines whether weak-scale SUSY is a finetuned model (should it be $\Delta \sim 10$? 100? 1000?) is ultimately subjective. Thus, it is premature to conclude that weak-scale SUSY is on the verge of exclusion. However, it might be possible to sharpen the upper bounds on superpartner masses based on naturalness arguments, which ultimately will either confirm or refute the weak scale SUSY hypothesis [190]. Of course, if evidence for supersymmetric phenomena in the multi- TeV regime were to be established at a future collider facility (with an energy reach beyond the LHC [191]), it would be viewed as a spectacularly successful explanation of the large gauge hierarchy between the (multi-) TeV scale and Planck scale. In this case, the remaining little hierarchy, characterized by the somewhat large value of the fine-tuning parameter Δ discussed above, would be regarded as a less pressing issue.

89.7.2 Constraints from virtual exchange of supersymmet-

 ric particlesThere are a number of low-energy measurements that are sensitive to the effects of new physics through indirect searches via supersymmetric loop effects. For example, the virtual exchange of supersymmetric particles can contribute to the muon anomalous magnetic moment, $a_{\mu} \equiv \frac{1}{2}(g-2)_{\mu}$, as reviewed in Ref. [192]. The SM prediction for a_{μ} exhibits a deviation in the range of $3-4 \sigma$ from the experimentally observed value [193]. This discrepancy is difficult to accommodate in the constrained SUSY models of Sec. 89.6.2 and 89.6.3 given the present sparticle mass bounds [173]. Nevertheless, there are regions of the more general pMSSM parameter space that are consistent with the observed value of a_{μ} [194]. An updated value of the fine structure constant has resulted in a new SM prediction [195] for the electron anomalous magnetic moment a_{e} which is 2.4σ above the measurement [196]. Indeed, it is possible within the pMSSM to find allowed parameter space regions where the observed values of a_{μ} and a_{e} are simultaneously accommodated [197].

The rare inclusive decay $b \rightarrow s \gamma$ also provides a sensitive probe to the virtual effects of new physics beyond the SM. The experimental measurements of $B \rightarrow X_{s}+\gamma$ [198] are in agreement with the theoretical SM predictions of Ref. [199]. Since supersymmet-
ric loop corrections can contribute an observable shift from the SM predictions, the absence of any significant deviation places useful constraints on the MSSM parameter space [200].

The rare decays $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B_{d} \rightarrow \mu^{+} \mu^{-}$are especially sensitive to supersymmetric loop effects, with some loop contributions scaling as $\tan ^{6} \beta$ when $\tan \beta \gg 1$ [201]. At present, a combination of the measurements of these rare decay modes [202] are in slight tension at the 2σ level [203] with the predicted SM rates [204]. Such a tension can be resolved by the aforementioned supersymmetric loop effects [201].

The decays $B^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}$ and $B \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ are noteworthy, since in models with extended Higgs sectors such as the MSSM, these processes possess tree-level charged Higgs exchange contributions that can compete with the dominant W-exchange. As Section 71 shows, experimental measurements of $B^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}$ are currently consistent with SM expectations [205]. The BaBar Collaboration measured values of the rates for $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$ and $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}[206]$ that showed a combined 3.4σ discrepancy from the SM predictions, which was also not compatible with the Type-II Higgs Yukawa couplings employed by the MSSM. Some subsequent measurements of the LHCb and Belle Collaborations [207] were consistent with the BaBar measurements, although more recent Belle measurements using a semi-leptonic tag are more consistent with SM expectations [208]. The combined difference between the measured and expected values of the $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$ and $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$ decay rates relative to the corresponding SM values has a significance of about three standard deviations [209]. There are a number of additional anomalies in B decay data that have recently attracted some attention, although at present the observed deviations from SM expectations are mostly at the level of about two to three standard deviations (see, e.g., Ref. [203]).

In summary, although there are a few hints of possible deviations from the SM in B decays, none of the discrepancies by themselves are significant enough to conclusively imply the existence of new physics beyond the SM. The absence of definitive evidence for deviations in various B-physics observables from their SM predictions places useful constraints on the MSSM parameter space $[120,172,210]$. In contrast, if one or more of the B anomalies referred to above were to be experimentally confirmed, it would require require significant modifications to the supersymmetric models treated in this review.

Finally, we note that the constraints from precision electroweak observables (see Sec. 10) and measurements of the $\epsilon^{\prime} / \epsilon$ anomaly [211], if it persists [212], in the Kaon system are easily accommodated in models of TeV-scale SUSY [213, 214]. Thus, robust regions of the MSSM parameter space, compatible with the results of direct and indirect searches for SUSY, remain viable.

89.8 Massive neutrinos in weak-scale SUSY

In the minimal SM and its supersymmetric extension, there are no right-handed neutrinos, and Majorana mass terms for the left-handed neutrinos are absent. However, given the overwhelming evidence for neutrino masses and mixing (see Sec. 14 and Ref. [215]), any viable model of fundamental particles must provide a mechanism for generating neutrino masses [216]. In extended supersymmetric models, various mechanisms exist for producing massive neutrinos [217]. Although one can devise models for generating massive Dirac neutrinos [218], the most common approaches for incorporating neutrino masses are based on L-violating supersymmetric extensions of the MSSM, which generate massive Majorana neutrinos. Two classes of L-violating supersymmetric models will now be considered.

89.8.1 The supersymmetric seesaw

Neutrino masses can be incorporated into the SM by introducing $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ singlet right-handed neutrinos $\left(\nu_{R}\right)$ whose mass parameters are very large, typically near the grand unification scale. In addition, one must also include a standard Yukawa couplings between the lepton doublets, the Higgs doublet, and ν_{R}. The Higgs vacuum expectation value then induces an off-diagonal $\nu_{L}-\nu_{R}$ mass on the order of the electroweak scale. Diagonalizing the neutrino mass matrix (in the three-generation model) yields three superheavy neutrino states, and three very
light neutrino states that are identified with the light neutrinos observed in nature. This is the seesaw mechanism [219].

It is straightforward to construct a supersymmetric generalization of the seesaw model of neutrino masses [220,221] by promoting the right-handed neutrino field to a superfield $\widehat{N}^{c}=\left(\widetilde{\nu}_{R} ; \nu_{R}\right)$. Integrating out the heavy right-handed neutrino supermultiplet yields a new term in the superpotential [cf. Eq. (89.1)] of the form

$$
\begin{equation*}
W_{\text {seesaw }}=\frac{f}{M_{R}}\left(\widehat{H}_{U} \widehat{L}\right)\left(\widehat{H}_{U} \widehat{L}\right) \tag{89.23}
\end{equation*}
$$

where M_{R} is the mass scale of the right-handed neutrino sector and f is a dimensionless constant. Note that lepton number is broken by two units, which implies that R-parity is conserved. The supersymmetric analogue of the Majorana neutrino mass term in the sneutrino sector leads to sneutrino-antisneutrino mixing phenomena [221, 222].

The SUSY Les Houches Accords [75, 91], mentioned at the end of the introduction to Sec. 89.4, have been extended to the supersymmetric seesaw (and other extensions of the MSSM) in Ref. [223].

89.8.2 R-parity-violating SUSY

It is possible to incorporate massive neutrinos in renormalizable supersymmetric models while retaining the minimal particle content of the MSSM by relaxing the assumption of R-parity invariance. The most general R-parity-violating (RPV) model involving the MSSM spectrum introduces many new parameters to both the SUSY-conserving and the SUSY-breaking sectors [75, 224]. Each new interaction term violates either B or L conservation. For example, starting from the MSSM superpotential given in Eq. (89.1) [suitably generalized to three generations of quarks, leptons and their superpartners], consider the effect of adding the following new terms:

$$
\begin{align*}
W_{\mathrm{RPV}}= & \left(\lambda_{L}\right)_{p m n} \widehat{L}_{p} \widehat{L}_{m} \widehat{E}_{n}^{c}+\left(\lambda_{L}^{\prime}\right)_{p m n} \widehat{L}_{p} \widehat{Q}_{m} \widehat{D}_{n}^{c} \\
& +\left(\lambda_{B}\right)_{p m n} \widehat{U}_{p}^{c} \widehat{D}_{m}^{c} \widehat{D}_{n}^{c}+\left(\mu_{L}\right)_{p} \widehat{H}_{u} \widehat{L}_{p} \tag{89.24}
\end{align*}
$$

where p, m, and n are generation indices, and gauge group indices are suppressed. Eq. (89.24) yields new scalar-fermion Yukawa couplings consisting of all possible combinations involving two SM fermions and one scalar superpartner.

Note that the term in Eq. (89.24) proportional to λ_{B} violates B, while the other three terms violate L. The L-violating term in Eq. (89.24) proportional to μ_{L} is the RPV generalization of the $\mu \widehat{H}_{u} \widehat{H}_{d}$ term of the MSSM superpotential, in which the $Y=-1$ Higgs/higgsino supermultiplet \widehat{H}_{d} is replaced by the slepton/lepton supermultiplet \widehat{L}_{p}.

Phenomenological constraints derived from data on various lowenergy B - and L-violating processes can be used to establish limits on each of the coefficients $\left(\lambda_{L}\right)_{p m n},\left(\lambda_{L}^{\prime}\right)_{p m n}$, and $\left(\lambda_{B}\right)_{p m n}$ taken one at a time [224, 225]. If more than one coefficient is simultaneously non-zero, then the limits are in general more complicated [226]. All possible RPV terms cannot be simultaneously present and unsuppressed; otherwise the proton decay rate would be many orders of magnitude larger than the present experimental bound. One way to avoid proton decay is to impose B or L invariance (either one alone would suffice). Otherwise, one must accept the requirement that certain RPV coefficients must be extremely suppressed.

One particularly interesting class of RPV models is one in which B is conserved, but L is violated. It is possible to enforce baryon number conservation (and the stability of the proton), while allowing for lepton-number-violating interactions by imposing a discrete \mathbf{Z}_{3} baryon triality symmetry on the low-energy theory [227], in place of the standard \mathbf{Z}_{2} R-parity. Since the distinction between the Higgs and matter supermultiplets is lost in RPV models where L is violated, the mixing of sleptons and Higgs bosons, the mixing of neutrinos and neutralinos, and the mixing of charged leptons and charginos are now possible, leading to more complicated mass matrices and mass eigenstates than in the MSSM. The treatment of neutrino masses and mixing in this framework can be found, e.g., in Ref. [228].

Alternatively, one can consider imposing a lepton parity such that all lepton superfields are odd [227, 229]. In this case, only the B-violating term in Eq. (89.24) survives, and L is conserved. Models of this type have been considered in Ref. [230]. Since L is conserved in these models, the mixing of the lepton and Higgs superfields is forbidden. Moreover, neutrino masses (and mixing) are not generated if lepton parity is an exact symmetry. However, one expects that lepton parity cannot be exact due to quantum gravity effects. Remarkably, the standard \mathbf{Z}_{2} R-parity and the $\mathbf{Z}_{\mathbf{3}}$ baryon triality are stable with respect to quantum gravity effects, as they can be identified as residual discrete symmetries that arise from spontaneously broken non-anomalous gauge symmetries [227].

The symmetries employed above to either remove or suppress R-parity violating operators were flavour independent. In contrast, there exist a number of motivated scenarios based on flavor symmetries that can also yield the suppression as required by the experimental data (e.g., see Ref. [231]).

The supersymmetric phenomenology of the RPV models exhibits features that are distinct from that of the MSSM [224]. The LSP is no longer stable, which implies that not all supersymmetric decay chains must yield missing-energy events at colliders. A comprehensive examination of the phenomenology of the MSSM extended by a single R-parity violating coupling at the unification scale and its implications for LHC searches has been given in Ref. [232]. As an example, the sparticle mass bounds obtained in searches for R-parity-conserving SUSY can be considerably relaxed in certain RPV models due to the absence of large missing transverse momentum signatures [233]. This can alleviate some of the tension with naturalness discussed in Sec. 89.7.1.

Nevertheless, the loss of the missing-energy signature is often compensated by other striking signals (which depend on which R-parity-violating parameters are dominant). For example, supersymmetric particles in RPV models can be singly produced (in contrast to R-parity-conserving models where supersymmetric particles must be produced in pairs). The phenomenology of pair-produced supersymmetric particles is also modified in RPV models due to new decay chains not present in R-parity-conserving SUSY models [224].
In RPV models with lepton number violation (these include weak-scale SUSY models with baryon triality mentioned above), both $\Delta L=1$ and $\Delta L=2$ phenomena are allowed, leading to neutrino masses and mixing [234], neutrinoless double-beta decay [235], sneutrino-antisneutrino mixing [236], and resonant s-channel production of sneutrinos in $e^{+} e^{-}$collisions [237] and charged sleptons in $p \bar{p}$ and $p p$ collisions [238].

89.9 Extensions beyond the MSSM

Extensions of the MSSM have been proposed to solve a variety of theoretical problems. One such problem involves the μ parameter of the MSSM. Although μ is a SUSY-preserving parameter, it must be of order the effective SUSY-breaking scale of the MSSM to yield a consistent supersymmetric phenomenology [239]. Any natural solution to the so-called μ-problem must incorporate a symmetry that enforces $\mu=0$ and a small symmetry-breaking parameter that generates a value of μ that is not parametrically larger than the effective SUSY-breaking scale [240]. A number of proposed mechanisms in the literature (e.g., see Refs. [239-241]) provide concrete examples of a natural solution to the μ-problem of the MSSM.

In extensions of the MSSM, new compelling solutions to the μ-problem are possible. For example, one can replace μ by the vacuum expectation value of a new $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ singlet scalar field. This is the NMSSM, which yields phenomena that were briefly discussed in Sections 89.4-89.7. The NMSSM superpotential consists only of trilinear terms whose coefficients are dimensionless. There are some advantages to extending the NMSSM further to the USSM [97] by adding a new broken U(1) gauge symmetry [242], under which the singlet field is charged.

Alternatively, one can consider a generalized version of the NMSSM (called the GNMSSM in Ref. [186]), where all possible renormalizable terms in the superpotential are allowed, which yields new supersymmetric mass terms (analogous to the μ term of the MSSM). A discussion of the parameters of the GNMSSM
can be found in Ref. [75]. Although the GNMSSM does not solve the μ-problem, it does exhibit regions of parameter space in which the degree of fine-tuning is relaxed, as discussed in Sec. 89.7.1.

The generation of the μ term may be connected with the solution to the strong CP problem [243]. Models of this type, which include new gauge singlet fields that are charged under the PecceiQuinn (PQ) symmetry [244], were first proposed in Ref. [239]. The breaking of the PQ symmetry is thus intimately tied to SUSY breaking, while naturally yielding a value of μ that is of order the electroweak symmetry breaking scale [245].

It is also possible to add higher dimensional Higgs multiplets, such as Higgs triplet superfields [246], provided a custodialsymmetric model (in which the ρ-parameter of precision electroweak physics is close to 1 , see Sec. 10) can be formulated. Such models can provide a rich phenomenology of new signals for future LHC studies.

All supersymmetric models discussed so far in this review possess self-conjugate fermions-the Majorana gluinos and neutralinos. However, it is possible to add additional chiral superfields in the adjoint representation. The spin- $1 / 2$ components of these new superfields can pair up with the gauginos to form Dirac gauginos $[247,248]$. Such states appear in models of so-called supersoft SUSY breaking [249], in some generalized GMSB models [250] and in R-symmetric SUSY [251,252]. Such approaches often lead to improved naturalness and/or significantly relaxed flavor constraints. The implications of models of Dirac gauginos on the observed Higgs boson mass and its properties are addressed in Ref. [253].

For completeness, we briefly note other MSSM extensions considered in the literature. These include an enlarged electroweak gauge group beyond $\mathrm{SU}(2) \times \mathrm{U}(1)$ [254]; and/or the addition of new (possibly exotic) matter supermultiplets such as vector-like fermions and their superpartners [187, 255].

References

[1] The Supersymmetric World-The Beginnings of the Theory, World Scientific, Singapore (2000), edited by G. Kane and M. Shifman, contains an early history of supersymmetry and a guide to the original literature.
[2] R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975); S. R. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
[3] H. P. Nilles, Phys. Rept. 110, 1 (1984).
[4] S. Weinberg, The Quantum Theory of Fields, Volume III: Supersymmetry (Cambridge University Press, Cambridge, UK, 2000).
[5] P. Nath, Supersymmetry, Supergravity, and Unification (Cambridge University Press, Cambridge, UK, 2017).
[6] S. P. Martin A Supersymmetry Primer, [hep-ph/9709356].
[7] E. Witten, Nucl. Phys. B188, 513 (1981).
[8] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).
[9] N. Sakai, Z. Phys. C11, 153 (1981).
[10] L. Susskind, Phys. Rept. 104, 181 (1984).
[11] L. Girardello and M. T. Grisaru, Nucl. Phys. B194, 65 (1982).
[12] L. J. Hall and L. Randall, Phys. Rev. Lett. 65, 2939 (1990); I. Jack and D. R. T. Jones, Phys. Lett. B457, 101 (1999), [hep-ph/9903365].
[13] V. F. Weisskopf, Phys. Rev. 56, 72 (1939).
[14] See e.g., N. Polonsky, Supersymmetry: Structure and phenomena. Extensions of the standard model, Lect. Notes Phys. M68, 1 (2001).
[15] G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005), [hep-ph/0404175].
[16] D. Hooper, "TASI 2008 Lectures on Dark Matter," in The Dawn of the LHC Era, Proceedings of the 2008 Theoretical and Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, 2-27 June 2008, edited by Tao Han (World Scientific, Singapore, 2009).
[17] H. Pagels and J. R. Primack, Phys. Rev. Lett. 48, 223 (1982).
[18] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).
[19] J. R. Ellis et al., Nucl. Phys. B238, 453 (1984).
[20] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Reports 267, 195 (1996).
[21] F. D. Steffen, Eur. Phys. J. C59, 557 (2009), [arXiv:0811.3347].
[22] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[23] M. Drees, R. Godbole, and P. Roy, Theory and Phenomenology of Sparticles (World Scientific, Singapore, 2005); H. Baer and X. Tata, Weak Scale Supersymmetry: from Superfields to Scattering Events (Cambridge University Press, Cambridge, UK, 2006); I.J.R. Aitchison, Supersymmetry in Particle Physics: an elementary introduction (Cambridge University Press, Cambridge, UK, 2007).
[24] Our notation for the charge-conjugated fields follows the notation of P. Langacker, The Standard Model and Beyond, 2nd edition (CRC Press, Boca Raton, FL, 2017).
[25] H. Georgi and S. L. Glashow, Phys. Rev. D6, 429 (1972).
[26] P. Fayet, Nucl. Phys. B90, 104 (1975).
[27] K. Inoue et al., Prog. Theor. Phys. 67, 1889 (1982).
[28] J. F. Gunion and H. E. Haber, Nucl. Phys. B272, 1 (1986), [Erratum: B402, 567 (1993)].
[29] A. Salam and J. A. Strathdee, Nucl. Phys. B76, 477 (1974).
[30] J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, NJ, 1992).
[31] I. L. Buchbinder, S. Kuzenko and Z. Yarevskaya, Nucl. Phys. B411, 665 (1994); I. Antoniadis, E. Dudas and D. M. Ghilencea, JHEP 03, 045 (2008), [arXiv:0708.0383].
[32] D. J. H. Chung et al., Phys. Rept. 407, 1 (2005), [hepph/0312378].
[33] J. R. Ellis et al., Phys. Rev. D39, 844 (1989); U. Ellwanger and C. Hugonie, Eur. Phys. J. C25, 297 (2002), [hepph/9909260]; U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496, 1 (2010), [arXiv:0910.1785]; M. Maniatis, Int. J. Mod. Phys. A25, 3505 (2010), [arXiv:0906.0777].
[34] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); S. Weinberg, Phys. Rev. D22, 1694 (1980); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979); H. A. Weldon and A. Zee, Nucl. Phys. B173, 269 (1980).
[35] P. Fayet, Phys. Lett. 69B, 489 (1977); G. R. Farrar and P. Fayet, Phys. Lett. 76B, 575 (1978).
[36] P. Fayet, Phys. Lett. 84B, 421 (1979); P. Fayet, Phys. Lett. 86B, 272 (1979).
[37] D.Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press, Cambridge, UK, 2012); M. Rausch de Traubenberg and M. Valenzuela, A Supergravity Primer (World Scientific, Singapore, 2020).
[38] S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977); E. Cremmer et al., Phys. Lett. 79B, 231 (1978).
[39] R. Casalbuoni et al., Phys. Lett. B215, 313 (1988); R. Casalbuoni et al., Phys. Rev. D39, 2281 (1989); A. L. Maroto and J. R. Pelaez, Phys. Rev. D62, 023518 (2000), [hep-ph/9912212].
[40] Z. Komargodski and N. Seiberg, JHEP 09, 066 (2009), [arXiv:0907.2441]; I. Antoniadis et al., Theor. Math. Phys. 170, 26 (2012), [Teor. Mat. Fiz. 170, 34 (2012)].
[41] A.H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1982); R. Barbieri, S. Ferrara and C. A. Savoy, Phys. Lett. 119B, 343 (1982); L. E. Ibanez, Nucl. Phys. B218, 514 (1983); H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 120B, 346 (1983); H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 124B, 337 (1983); E. Cremmer, P. Fayet and L. Girardello, Phys. Lett. 122B, 41 (1983); N. Ohta, Prog. Theor. Phys. 70, 542 (1983).
[42] L. Alvarez-Gaumé, J. Polchinski, and M.B. Wise, Nucl. Phys. B221, 495 (1983).
[43] L. J. Hall, J. D. Lykken and S. Weinberg, Phys. Rev. D27, 2359 (1983).
[44] S. K. Soni and H. A. Weldon, Phys. Lett. 126B, 215 (1983); Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Rev. D51, 1337 (1995), [hep-ph/9406245].
[45] See, e.g., A. Brignole, L.E. Ibáñez, and C. Munoz, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 244-268.
[46] A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. 145, 1 (1987).
[47] J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91, 011302 (2003), [hep-ph/0302215]; J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. D68, 063504 (2003), [hep-ph/0306024]; J. L. Feng, A. Rajaraman and F. Takayama, Int. J. Mod. Phys. D13, 2355 (2004), [hepth/0405248].
[48] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999), [hep-th/9810155].
[49] F. D'Eramo, J. Thaler and Z. Thomas, JHEP 06, 151 (2012), [arXiv:1202.1280]; F. D'Eramo, J. Thaler and Z. Thomas, JHEP 09, 125 (2013), [arXiv:1307.3251]; S. P. de Alwis, Phys. Rev. D77, 105020 (2008), [arXiv:0801.0578]; S. P. de Alwis, JHEP 01, 006 (2013), [arXiv:1206.6775]; K. Harigaya and M. Ibe, Phys. Rev. D90, 085028 (2014), [arXiv:1409.5029].
[50] I. Jack, D. R. T. Jones and R. Wild, Phys. Lett. B535, 193 (2002), [hep-ph/0202101]; B. Murakami and J. D. Wells, Phys. Rev. D68, 035006 (2003), [hep-ph/0302209]; R. Kitano, G. D. Kribs and H. Murayama, Phys. Rev. D70, 035001 (2004), [hep-ph/0402215]; R. Hodgson et al., Nucl. Phys. B728, 192 (2005), [hep-ph/0507193]; D. R. T. Jones and G. G. Ross, Phys. Lett. B642, 540 (2006), [hepph/0609210].
[51] S. Asai et al., Phys. Lett. B653, 81 (2007), [arXiv:0705.3086].
[52] M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981); S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1981); S. Dimopoulos and S. Raby, Nucl. Phys. B219, 479 (1983); M. Dine and W. Fischler, Phys. Lett. 110B, 227 (1982); C. R. Nappi and B. A. Ovrut, Phys. Lett. 113B, 175 (1982); L. Alvarez-Gaume, M. Claudson and M. B. Wise, Nucl. Phys. B207, 96 (1982).
[53] M. Dine and A. E. Nelson, Phys. Rev. D48, 1277 (1993), [hep-ph/9303230]; M. Dine, A. E. Nelson and Y. Shirman, Phys. Rev. D51, 1362 (1995), [hep-ph/9408384].
[54] M. Dine et al., Phys. Rev. D53, 2658 (1996), [hepph/9507378].
[55] G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999), [hep-ph/9801271].
[56] E. Poppitz and S. P. Trivedi, Phys. Rev. D55, 5508 (1997), [hep-ph/9609529]; H. Murayama, Phys. Rev. Lett. 79, 18 (1997), [hep-ph/9705271]; M. A. Luty and J. Terning, Phys. Rev. D57, 6799 (1998), [hep-ph/9709306]; K. Agashe, Phys. Lett. B435, 83 (1998), [hep-ph/9804450]; N. ArkaniHamed, J. March-Russell and H. Murayama, Nucl. Phys. B509, 3 (1998), [hep-ph/9701286]; C. Csaki, Y. Shirman and J. Terning, JHEP 05, 099 (2007), [hep-ph/0612241]; M. Ibe and R. Kitano, Phys. Rev. D77, 075003 (2008), [arXiv:0711.0416].
[57] M. Kawasaki et al., Phys. Rev. D78, 065011 (2008), [arXiv:0804.3745].
[58] M. J. Strassler and K. M. Zurek, Phys. Lett. B651, 374 (2007), [hep-ph/0604261]; T. Han et al., JHEP 07, 008 (2008), [arXiv:0712.2041].
[59] M. J. Strassler [hep-ph/0607160]; K. M. Zurek, Phys. Rev. D79, 115002 (2009), [arXiv:0811.4429].
[60] See e.g., M. Quiros, in Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s), Proceedings of the 2002 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2002), edited by H.E. Haber and A.E. Nelson (World Scientific, Singapore, 2004) pp. 549-601; C. Csaki, in ibid., pp. 605-698.
[61] V.A. Rubakov, Sov. Phys. Usp. 44, 871 (2001); J. L. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci. 52, 397 (2002), [hep-ph/0205106].
[62] Z. Chacko, M. A. Luty and E. Ponton, JHEP 07, 036 (2000), [hep-ph/9909248]; D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D62, 035010 (2000), [hepph/9911293]; Z. Chacko et al., JHEP 01, 003 (2000), [hepph/9911323].
[63] J. Scherk and J. H. Schwarz, Phys. Lett. 82B, 60 (1979); J. Scherk and J. H. Schwarz, Nucl. Phys. B153, 61 (1979).
[64] R. Barbieri, L. J. Hall and Y. Nomura, Phys. Rev. D66, 045025 (2002), [hep-ph/0106190]; R. Barbieri, L. J. Hall and Y. Nomura, Nucl. Phys. B624, 63 (2002), [hep-th/0107004]; I. Garcia Garcia, K. Howe and J. March-Russell, JHEP 12, 005 (2015), [arXiv:1510.07045].
[65] J. D. Wells, in "11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003) Tucson, Arizona, June 5-10, 2003," (2003), [hep-ph/0306127]; J. D. Wells, Phys. Rev. D71, 015013 (2005), [hep-ph/0411041].
[66] N. Arkani-Hamed and S. Dimopoulos, JHEP 06, 073 (2005), [hep-th/0405159]; G. F. Giudice and A. Romanino, Nucl. Phys. B699, 65 (2004), [Erratum: B706, 487 (2005)], [hepph/0406088].
[67] G. F. Giudice and A. Strumia, Nucl. Phys. B858, 63 (2012), [arXiv:1108.6077].
[68] A. Arvanitaki et al., JHEP 02, 126 (2013), [arXiv:1210.0555]; N. Arkani-Hamed et al. (2012), [arXiv:1212.6971].
[69] E. Bagnaschi et al., JHEP 09, 092 (2014), [arXiv:1407.4081].
[70] J. Pardo Vega and G. Villadoro, JHEP 07, 159 (2015), [arXiv:1504.05200].
[71] B. C. Allanach and A. Voigt, Eur. Phys. J. C78, 573 (2018), [arXiv:1804.09410].
[72] Y. Kahn, M. McCullough and J. Thaler, JHEP 11, 161 (2013), [arXiv:1308.3490].
[73] L. J. Hall and Y. Nomura, JHEP 01, 082 (2012), [arXiv:1111.4519]; M. Ibe and T. T. Yanagida, Phys. Lett. B709, 374 (2012), [arXiv:1112.2462].
[74] H. E. Haber and L. Stephenson Haskins (2018), Supersymmetric Theory and Models, in Anticipating the Next Discoveries in Particle Physics, Proceedings of the 2016 Theoretical Advanced Study Institute in Elementary Particle Physics, edited by Rouven Essig and Ian Low (World Scientific, Singapore, 2018) pp. 355-499, [arXiv:1712.05926].
[75] B. C. Allanach et al., Comput. Phys. Commun. 180, 8 (2009), [arXiv:0801.0045].
[76] J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B222, 11 (1983); J. P. Derendinger and C. A. Savoy, Nucl. Phys. B237, 307 (1984); J. F. Gunion, H. E. Haber and M. Sher, Nucl. Phys. B306, 1 (1988); D. Chowdhury et al., JHEP 02, 110 (2014), [Erratum: 03, 149 (2018)], [arXiv:1310.1932]; W. G. Hollik, JHEP 08, 126 (2016), [arXiv:1606.08356].
[77] J. A. Casas, A. Lleyda and C. Munoz, Nucl. Phys. B471, 3 (1996), [hep-ph/9507294].
[78] C. S. Ün et al., Phys. Rev. D91, 105033 (2015), [arXiv:1412.1440].
[79] G. G. Ross, K. Schmidt-Hoberg and F. Staub, Phys. Lett. B759, 110 (2016), [arXiv:1603.09347].
[80] G. G. Ross, K. Schmidt-Hoberg and F. Staub, JHEP 03, 021 (2017), [arXiv:1701.03480].
[81] S. P. Martin, Phys. Rev. D61, 035004 (2000), [hepph/9907550].
[82] S. Dimopoulos and D. W. Sutter, Nucl. Phys. B452, 496 (1995), [hep-ph/9504415]; D.W. Sutter, Stanford Ph. D. thesis, arXiv:hep-ph/9704390.
[83] H.E. Haber, Nucl. Phys. B (Proc. Suppl.) 62A-C, 469 (1998).
[84] R. M. Barnett, J. F. Gunion and H. E. Haber, Phys. Lett. B315, 349 (1993), [hep-ph/9306204]; H. Baer, X. Tata and J. Woodside, Phys. Rev. D41, 906 (1990).
[85] S. M. Bilenky, N. P. Nedelcheva and E. K. Khristova, Phys. Lett. 161B, 397 (1985); S. M. Bilenky, E. K. Khristova and N. P. Nedelcheva, Bulg. J. Phys. 13, 283 (1986).
[86] J. Rosiek, Phys. Rev. D41, 3464 (1990).
[87] J. Alwall et al., JHEP 09, 028 (2007), [arXiv:0706.2334].
[88] T. Hahn, Comput. Phys. Commun. 140, 418 (2001), [hepph/0012260].
[89] A. Pukhov et al., INP MSU report 98-41/542 (arXiv:hep-ph/9908288); E. Boos et al. [CompHEP Collab.], Nucl. Instrum. Methods A534, 50 (2004); CompHEP webpage, https://theory.sinp.msu.ru/dokuwiki/ doku.php/comphep/news.
[90] D. M. Pierce et al., Nucl. Phys. B491, 3 (1997), [hepph/9606211].
[91] P. Z. Skands et al., JHEP 07, 036 (2004), [hep-ph/0311123].
[92] For further details, see e.g., Appendix C of Ref. [22] and Appendix A of Ref. [28].
[93] J. L. Kneur and G. Moultaka, Phys. Rev. D59, 015005 (1999), [hep-ph/9807336].
[94] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd Edition (Cambridge University Press, Cambridge, UK, 2003).
[95] H. K. Dreiner, H. E. Haber and S. P. Martin, Phys. Rept. 494, 1 (2010), [arXiv:0812.1594].
[96] L. Autonne, Annals de l'Université de Lyon, Nouvelle Série I, Fasc. 38, 1 (1915); T. Takagi, Japan J. Math. 1, 83 (1925).
[97] S. Y. Choi et al., Nucl. Phys. B778, 85 (2007), [hepph/0612218].
[98] S. Y. Choi et al., Eur. Phys. J. C22, 563 (2001), [Addendum: Eur. Phys. J. C23, 769 (2002)], [hep-ph/0108117].
[99] M. M. El Kheishen, A. A. Aboshousha and A. A. Shafik, Phys. Rev. D45, 4345 (1992).
[100] T. Hahn (2006), [arXiv:physics/0607103].
[101] K.-i. Hikasa and M. Kobayashi, Phys. Rev. D36, 724 (1987); F. Gabbiani and A. Masiero, Nucl. Phys. B322, 235 (1989); P. Brax and C. A. Savoy, Nucl. Phys. B447, 227 (1995), [hep-ph/9503306].
[102] J. R. Ellis and S. Rudaz, Phys. Lett. 128B, 248 (1983); F. Browning, D. Chang and W.-Y. Keung, Phys. Rev. D64, 015010 (2001), [hep-ph/0012258]; A. Bartl et al., Phys. Lett. B573, 153 (2003), [hep-ph/0307317]; A. Bartl et al., Phys. Rev. D70, 035003 (2004), [hep-ph/0311338].
[103] J.F. Gunion et al., The Higgs Hunter's Guide (Westview Press, Boulder, CO, 2000); M. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003), [hep-ph/0208209]; A. Djouadi, Phys. Rept. 459, 1 (2008), [hep-ph/0503173].
[104] E. Bagnaschi et al., Eur. Phys. J. C79, 617 (2019), [arXiv:1808.07542].
[105] H. E. Haber and M. Sher, Phys. Rev. D35, 2206 (1987).
[106] L. J. Hall, D. Pinner and J. T. Ruderman, JHEP 04, 131 (2012), [arXiv:1112.2703].
[107] L. J. Hall and M. B. Wise, Nucl. Phys. B187, 397 (1981).
[108] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991); Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991); J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257, 83 (1991).
[109] P. Draper and H. Rzehak, Phys. Rept. 619, 1 (2016), [arXiv:1601.01890].
[110] A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B553, 3 (1999), [hep-ph/9902371]; D. A. Demir, Phys. Rev. D60, 055006 (1999), [hep-ph/9901389]; S. Y. Choi, M. Drees and J. S. Lee, Phys. Lett. B481, 57 (2000), [hep-ph/0002287]; M. Carena et al., Nucl. Phys. B586, 92 (2000), [hepph/0003180]; M. Carena et al., Phys. Lett. B495, 155 (2000), [hep-ph/0009212]; M. Carena et al., Nucl. Phys. B625, 345 (2002), [hep-ph/0111245]; M. Frank et al., JHEP 02, 047 (2007), [hep-ph/0611326]; S. Heinemeyer et al., Phys. Lett. B652, 300 (2007), [arXiv:0705.0746].
[111] H. E. Haber and J. D. Mason, Phys. Rev. D77, 115011 (2008), [arXiv:0711.2890].
[112] M. Carena et al., Phys. Rev. D93, 035013 (2016), [arXiv:1510.09137].
[113] S. Khalil, Int. J. Mod. Phys. A18, 1697 (2003), [hepph/0212050].
[114] W. Fischler, S. Paban and S. D. Thomas, Phys. Lett. B289, 373 (1992), [hep-ph/9205233].
[115] A. Masiero and L. Silvestrini, in Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 423-441.
[116] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005), [hep-ph/0504231].
[117] J. M. Pendlebury et al., Phys. Rev. D92, 092003 (2015), [arXiv:1509.04411]; V. Andreev et al. (ACME Collaboration), Nature 562, 7727, 355 (2018).
[118] F. Gabbiani et al., Nucl. Phys. B477, 321 (1996), [hepph/9604387].
[119] M. J. Ramsey-Musolf and S. Su, Phys. Rept. 456, 1 (2008), [hep-ph/0612057].
[120] M. Carena, A. Menon and C. E. M. Wagner, Phys. Rev. D79, 075025 (2009), [arXiv:0812.3594].
[121] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196, 475 (1982).
[122] W. J. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982).
[123] R.N. Mohapatra, Unification and Supersymmetry, Third Edition (Springer Science, New York, 2003).
[124] S. P. Martin and M. T. Vaughn, Phys. Rev. D50, 2282 (1994), [Erratum: Phys. Rev. D78, 039903 (2008)], [hepph/9311340]; R. M. Fonseca et al., Nucl. Phys. B854, 28 (2012), [arXiv:1107.2670]; F. Staub, Comput. Phys. Commun. 182, 808 (2011), [arXiv:1002.0840].
[125] F. Staub, Comput. Phys. Commun. 185, 1773 (2014), [arXiv:1309.7223]; F. Staub, Adv. High Energy Phys. 2015, 840780 (2015), [arXiv:1503.04200]; The SARAH homepage is https://sarah.hepforge.org/.
[126] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002), [hep-ph/0104145]; The SOFTSUSY homepage is http://softsusy.hepforge.org/; A. Djouadi, J.-L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007), [hep-ph/0211331]; The Suspect homepage is http://suspect.in2p3.fr/; F. E. Paige et al. (2003), [hep-ph/0312045]; Isajet may be obtained from http: //www.nhn.ou.edu/~isajet/; W. Porod, Comput. Phys. Commun. 153, 275 (2003), [hep-ph/0301101]; Spheno may be obtained from https://spheno.hepforge.org/; P. Athron et al., Comput. Phys. Commun. 190, 139 (2015), [arXiv:1406.2319]; The FlexibleSUSY homepage is https://flexiblesusy.hepforge.org/.
[127] L. E. Ibanez and G. G. Ross, Phys. Lett. 110B, 215 (1982).
[128] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C31, 421 (2003), [hep-ex/0311019].
[129] H. K. Dreiner et al., Eur. Phys. J. C62, 547 (2009), [arXiv:0901.3485].
[130] G. F. Giudice et al., JHEP 12, 027 (1998), [hepph/9810442]; A. Pomarol and R. Rattazzi, JHEP 05, 013 (1999), [hep-ph/9903448]; D.-W. Jung and J. Y. Lee, JHEP 03, 123 (2009), [arXiv:0902.0464].
[131] J. F. Gunion and H. E. Haber, Phys. Rev. D37, 2515 (1988); S. Y. Choi, M. Drees and B. Gaissmaier, Phys. Rev. D70, 014010 (2004), [hep-ph/0403054].
[132] H. Baer, V. Barger and D. Sengupta, Phys. Rev. D98, 015039 (2018), [arXiv:1801.09730].
[133] J. L. Feng et al., Phys. Rev. Lett. 83, 1731 (1999), [hepph/9904250]; J. F. Gunion and S. Mrenna, Phys. Rev. D62, 015002 (2000), [hep-ph/9906270].
[134] T. Gherghetta, G. F. Giudice and J. D. Wells, Nucl. Phys. B559, 27 (1999), [hep-ph/9904378].
[135] M. Endo, M. Yamaguchi and K. Yoshioka, Phys. Rev. D72, 015004 (2005), [hep-ph/0504036]; K. Choi, K. S. Jeong and K.-i. Okumura, JHEP 09, 039 (2005), [hep-ph/0504037]; O. Loaiza-Brito et al., AIP Conf. Proc. 805, 198 (2005), [hep-th/0509158].
[136] See e.g., G. D'Ambrosio et al., Nucl. Phys. B645, 155 (2002).
[137] C. Smith, Acta Phys. Polon. Supp. 3, 53 (2010), [arXiv:0909.4444].
[138] M. Drees and S.P. Martin, in Electroweak Symmetry Breaking and New Physics at the TeV Scale, edited by T. Barklow et al. (World Scientific, Singapore, 1996) pp. 146-215.
[139] G. L. Kane et al., Phys. Rev. D49, 6173 (1994), [hepph/9312272].
[140] J. R. Ellis et al., Phys. Lett. B573, 162 (2003), [hepph/0305212]; J. R. Ellis et al., Phys. Rev. D70, 055005 (2004), [hep-ph/0405110].
[141] H. Baer et al., Phys. Rev. D71, 095008 (2005), [hepph/0412059].
[142] V. Berezinsky et al., Astropart. Phys. 5, 1 (1996), [hepph/9508249]; J. R. Ellis et al., Nucl. Phys. B652, 259 (2003), [hep-ph/0210205].
[143] L. E. Ibanez and D. Lust, Nucl. Phys. B382, 305 (1992), [hep-th/9202046]; B. de Carlos, J. A. Casas and C. Munoz, Phys. Lett. B299, 234 (1993), [hep-ph/9211266]; V. S. Kaplunovsky and J. Louis, Phys. Lett. B306, 269 (1993), [hep-th/9303040]; A. Brignole, L. E. Ibanez and C. Munoz, Nucl. Phys. B422, 125 (1994), [Erratum: B436, 747 (1995)], [hep-ph/9308271].
[144] A. Arbey et al., Phys. Rev. D87, 115020 (2013), [arXiv:1304.0381].
[145] G. R. Dvali, G. F. Giudice and A. Pomarol, Nucl. Phys. B478, 31 (1996), [hep-ph/9603238].
[146] P. Draper et al., Phys. Rev. D85, 095007 (2012), [arXiv:1112.3068].
[147] P. Meade, N. Seiberg and D. Shih, Prog. Theor. Phys. Suppl. 177, 143 (2009), [arXiv:0801.3278]; M. Buican et al., JHEP 03, 016 (2009), [arXiv:0812.3668].
[148] A. Rajaraman et al., Phys. Lett. B678, 367 (2009), [arXiv:0903.0668]; L. M. Carpenter et al., Phys. Rev. D79, 035002 (2009), [arXiv:0805.2944].
[149] S. Ambrosanio, G. D. Kribs and S. P. Martin, Nucl. Phys. B516, 55 (1998), [hep-ph/9710217].
[150] For a review and guide to the literature, see J.F. Gunion and H.E. Haber, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 420-445.
[151] T. S. Roy and M. Schmaltz, Phys. Rev. D77, 095008 (2008), [arXiv:0708.3593].
[152] A. de Gouvea, A. Friedland and H. Murayama, Phys. Rev. D57, 5676 (1998), [hep-ph/9711264].
[153] T. Han, D. Marfatia and R.-J. Zhang, Phys. Rev. D61, 013007 (2000), [hep-ph/9906508]; Z. Chacko and E. Ponton, Phys. Rev. D66, 095004 (2002), [hep-ph/0112190]; A. Delgado, G. F. Giudice and P. Slavich, Phys. Lett. B653, 424 (2007), [arXiv:0706.3873]; T. Liu and C. E. M. Wagner, JHEP 06, 073 (2008), [arXiv:0803.2895].
[154] B. Allanach et al., Phys. Rev. D92, 015006 (2015), [arXiv:1502.05836].
[155] A. Djouadi, J.L. Kneur, and G. Moultaka, Comp. Phys. Comm. 176, 426 (2007); C. F. Berger et al., JHEP 02, 023 (2009), [arXiv:0812.0980].
[156] S. P. Martin and J. D. Wells, Phys. Rev. D64, 035003 (2001), [hep-ph/0103067].
[157] J. Berger et al., Phys. Rev. D93, 035017 (2016), [arXiv:1510.08840].
[158] K. J. de Vries et al., Eur. Phys. J. C75, 422 (2015), [arXiv:1504.03260].
[159] M. Cahill-Rowley et al., Phys. Rev. D90, 095017 (2014), [arXiv:1407.7021]; M. Cahill-Rowley et al., Phys. Rev. D91, 055011 (2015), [arXiv:1405.6716]; A. Barr and J. Liu, Eur. Phys. J. C77, 202 (2017), [arXiv:1608.05379].
[160] G. Bertone et al., JCAP 1604, 037 (2016), [arXiv:1507.07008].
[161] N. Arkani-Hamed et al. (2007), [hep-ph/0703088]; J. Alwall et al., Phys. Rev. D79, 015005 (2009), [arXiv:0809.3264]; J. Alwall, P. Schuster and N. Toro, Phys. Rev. D79, 075020 (2009), [arXiv:0810.3921]; D. S. M. Alves, E. Izaguirre and J. G. Wacker, Phys. Lett. B702, 64 (2011), [arXiv:1008.0407]; D. S. M. Alves, E. Izaguirre and J. G. Wacker, JHEP 10, 012 (2011), [arXiv:1102.5338]; D. Alves (LHC New Physics Working Group), J. Phys. G39, 105005 (2012), [arXiv:1105.2838].
[162] F. Ambrogi et al., Eur. Phys. J. C78, 215 (2018), [arXiv:1707.09036].
[163] R. Barbieri and G.F. Giudice, Nucl. Phys. B305, 63 (1988).
[164] J. R. Ellis et al., Mod. Phys. Lett. A1, 57 (1986).
[165] G. W. Anderson and D. J. Castano, Phys. Lett. B347, 300 (1995), [hep-ph/9409419]; G. W. Anderson and D. J. Castano, Phys. Rev. D52, 1693 (1995), [hep-ph/9412322]; G. W. Anderson and D. J. Castano, Phys. Rev. D53, 2403 (1996), [hep-ph/9509212]; P. Athron and D. J. Miller, Phys. Rev. D76, 075010 (2007), [arXiv:0705.2241]; M. E. Cabrera, J. A. Casas and R. Ruiz de Austri, JHEP 03, 075 (2009), [arXiv:0812.0536]; H. Baer et al., Phys. Rev. Lett. 109, 161802 (2012), [arXiv:1207.3343].
[166] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D61, 075005 (2000), [hep-ph/9909334].
[167] D. M. Ghilencea and G. G. Ross, Nucl. Phys. B868, 65 (2013), [arXiv:1208.0837].
[168] H. Baer, V. Barger and D. Mickelson, Phys. Rev. D88, 095013 (2013), [arXiv:1309.2984].
[169] M. van Beekveld, S. Caron and R. Ruiz de Austri, JHEP 01, 147 (2020), [arXiv:1906.10706].
[170] G. L. Kane and S. F. King, Phys. Lett. B451, 113 (1999), [hep-ph/9810374]; M. Bastero-Gil, G. L. Kane and S. F. King, Phys. Lett. B474, 103 (2000), [hepph/9910506]; J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 01, 008 (2004), [hep-ph/0310137]; H. Abe, T. Kobayashi and Y. Omura, Phys. Rev. D76, 015002 (2007), [hep-ph/0703044]; R. Essig and J.-F. Fortin, JHEP 04, 073 (2008), [arXiv:0709.0980].
[171] B. de Carlos and J. A. Casas, Phys. Lett. B309, 320 (1993), [hep-ph/9303291]; S. Cassel, D. M. Ghilencea and G. G. Ross, Nucl. Phys. B825, 203 (2010), [arXiv:0903.1115]; S. Cassel, D. M. Ghilencea and G. G. Ross, Nucl. Phys. B835, 110 (2010), [arXiv:1001.3884].
[172] O. Buchmueller et al., Eur. Phys. J. C74, 6, 2922 (2014), [arXiv:1312.5250].
[173] P. Bechtle et al., Eur. Phys. J. C76, 96 (2016), [arXiv:1508.05951].
[174] H. Baer et al., Phys. Rev. D89, 115019 (2014), [arXiv:1404.2277].
[175] R. Barbieri and A. Strumia, in "4th Rencontres du Vietnam: Physics at Extreme Energies (Particle Physics and Astrophysics) Hanoi, Vietnam, July 19-25, 2000," (2000), [hep-ph/0007265].
[176] L. Giusti, A. Romanino and A. Strumia, Nucl. Phys. B550, 3 (1999), [hep-ph/9811386]; H.-C. Cheng and I. Low, JHEP 09, 051 (2003), [hep-ph/0308199]; H.-C. Cheng and I. Low, JHEP 08, 061 (2004), [hep-ph/0405243]; R. Harnik et al., Phys. Rev. D70, 015002 (2004), [hep-ph/0311349].
[177] H. Baer et al., Phys. Rev. D87, 035017 (2013), [arXiv:1210.3019]; H. Baer et al., Phys. Rev. D87, 115028 (2013), [arXiv:1212.2655]; J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013), [arXiv:1302.6587].
[178] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. Lett. 84, 2322 (2000), [hep-ph/9908309]; J. L. Feng and F. Wilczek, Phys. Lett. B631, 170 (2005), [hepph/0507032]; D. Horton and G. G. Ross, Nucl. Phys. B830, 221 (2010), [arXiv:0908.0857].
[179] M. Drees, Phys. Rev. D33, 1468 (1986); S. Dimopoulos and G. F. Giudice, Phys. Lett. B357, 573 (1995), [hepph/9507282]; A. Pomarol and D. Tommasini, Nucl. Phys. B466, 3 (1996), [hep-ph/9507462].
[180] M. Dine, A. Kagan and S. Samuel, Phys. Lett. B243, 250 (1990); A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B388, 588 (1996), [hep-ph/9607394].
[181] C. Brust et al., JHEP 03, 103 (2012), [arXiv:1110.6670].
[182] S. P. Martin, Phys. Rev. D75, 115005 (2007), [hepph/0703097]; S. P. Martin, Phys. Rev. D78, 055019 (2008), [arXiv:0807.2820].
[183] J. Fan, M. Reece and J. T. Ruderman, JHEP 11, 012 (2011), [arXiv:1105.5135]; J. Fan, M. Reece and J. T. Ruderman, JHEP 07, 196 (2012), [arXiv:1201.4875].
[184] H. Murayama, Y. Nomura and D. Poland, Phys. Rev. D77, 015005 (2008), [arXiv:0709.0775]; G. Perez, T. S. Roy and M. Schmaltz, Phys. Rev. D79, 095016 (2009), [arXiv:0811.3206].
[185] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005), [hep-ph/0502105]; Phys. Rev. D75, 095019 (2007); R. Dermisek and J. F. Gunion, Phys. Rev. D76, 095006 (2007), [arXiv:0705.4387].
[186] G. G. Ross and K. Schmidt-Hoberg, Nucl. Phys. B862, 710 (2012), [arXiv:1108.1284]; G. G. Ross, K. Schmidt-Hoberg and F. Staub, JHEP 08, 074 (2012), [arXiv:1205.1509]; A. Kaminska, G. G. Ross and K. Schmidt-Hoberg, JHEP 11, 209 (2013), [arXiv:1308.4168].
[187] S. P. Martin and J. D. Wells, Phys. Rev. D86, 035017 (2012), [arXiv:1206.2956].
[188] B. Bellazzini et al., Phys. Rev. D79, 095003 (2009), [arXiv:0902.0015].
[189] M. Dine, Ann. Rev. Nucl. Part. Sci. 65, 43 (2015), [arXiv:1501.01035].
[190] H. Baer, V. Barger and M. Savoy, Phys. Rev. D93, 035016 (2016), [arXiv:1509.02929].
[191] M.L. Mangano, editor, Physics at the FCC-hh, a 100 TeV pp collider, CERN Yellow Report, CERN-2017-003-M (2017).
[192] D. Stockinger, J. Phys. G34, R45 (2007), [hep-ph/0609168]; P. Athron et al., Eur. Phys. J. C76, 62 (2016), [arXiv:1510.08071].
[193] F. Jegerlehner, Acta Phys. Polon. B49, 1157 (2018), [arXiv:1804.07409]; M. Davier et al., Eur. Phys. J. C80, 3, 241 (2020), [arXiv:1908.00921].
[194] M. Ibe, T. T. Yanagida and N. Yokozaki, JHEP 08, 067 (2013), [arXiv:1303.6995].
[195] R. H. Parker et al., Science 360, 191 (2018), [arXiv:1812.04130].
[196] D. Hanneke, S. Fogwell and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008), [arXiv:0801.1134].
[197] B. Dutta and Y. Mimura, Phys. Lett. B790, 563 (2019), [arXiv:1811.10209]; M. Endo and W. Yin, JHEP 08, 122 (2019), [arXiv:1906.08768]; M. Badziak and K. Sakurai, JHEP 10, 024 (2019), [arXiv:1908.03607].
[198] A. Limosani et al. (Belle Collaboration), Phys. Rev. Lett. 103, 241801 (2009), [arXiv:0907.1384]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. Lett. 109, 191801 (2012), [arXiv:1207.2690]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D86, 112008 (2012), [arXiv:1207.5772].
[199] M. Misiak et al., Phys. Rev. Lett. 114, 221801 (2015), [arXiv:1503.01789]; M. Czakon et al., JHEP 04, 168 (2015), [arXiv:1503.01791].
[200] H. Baer and M. Brhlik, Phys. Rev. D55, 3201 (1997), [hep-ph/9610224]; M. Ciuchini et al., Phys. Rev. D67, 075016 (2003), [Erratum: D68, 079901 (2003)], [hepph/0212397]; T. Hurth, Rev. Mod. Phys. 75, 1159 (2003), [hep-ph/0212304]; F. Mahmoudi, JHEP 12, 026 (2007), [arXiv:0710.3791]; K. A. Olive and L. Velasco-Sevilla, JHEP 05, 052 (2008), [arXiv:0801.0428].
[201] S. R. Choudhury and N. Gaur, Phys. Lett. B451, 86 (1999), [hep-ph/9810307]; K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84, 228 (2000), [hep-ph/9909476]; G. Isidori and A. Retico, JHEP 11, 001 (2001), [hep-ph/0110121]; G. Isidori and A. Retico, JHEP 09, 063 (2002), [hepph/0208159].
[202] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 111, 101804 (2013), [arXiv:1307.5025]; V. Khachatryan et al. (CMS and LHCb Collaborations), Nature 522, 68 (2015), [arXiv:1411.4413]; M. Aaboud et al. (ATLAS Collaboration), JHEP 04, 098 (2019), [arXiv:1812.03017]; R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 191801 (2017), [arXiv:1703.05747].
[203] J. Aebischer et al., Eur. Phys. J. C 80, 3, 252 (2020), [arXiv:1903.10434].
[204] C. Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014), [arXiv:1311.0903].
[205] M. Bona et al. (UTfit Collaboration), Phys. Lett. B687, 61 (2010), [arXiv:0908.3470].
[206] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. Lett. 109, 101802 (2012), [arXiv:1205.5442]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D88, 072012 (2013), [arXiv:1303.0571].
[207] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 111803 (2015), [Erratum: 115, 159901 (2015)], [arXiv:1506.08614]; R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120, 171802 (2018), [arXiv:1708.08856]; M. Huschle et al. (Belle Collaboration), Phys. Rev. D92, 072014 (2015), [arXiv:1507.03233]; Y. Sato et al. (Belle Collaboration), Phys. Rev. D94, 072007 (2016), [arXiv:1607.07923]; S. Hirose et al. (Belle Collaboration), Phys. Rev. Lett. 118, 211801 (2017), [arXiv:1612.00529]; S. Hirose et al. (Belle Collaboration), Phys. Rev. D97, 012004 (2018), [arXiv:1709.00129].
[208] G. Caria et al. (Belle Collaboration), Phys. Rev. Lett. 124, 16, 161803 (2020), [arXiv:1910.05864].
[209] S. Klaver (LHCb Collaboration), in "Proceedings of the 17th Conference on Flavor Physics and CP Violation (FPCP 2019) Victoria, BC, Canada, May 6-10, 2019," (2019), [arXiv:1907.01500].
[210] F. Mahmoudi, S. Neshatpour and J. Orloff, JHEP 08, 092 (2012), [arXiv:1205.1845]; A. Arbey et al., JHEP 11, 132 (2017), [arXiv:1707.00426].
[211] A. J. Buras, Acta Phys. Polon. B49, 1043 (2018), [arXiv:1805.11096].
[212] V. Cirigliano et al., JHEP 02, 032 (2020), [arXiv:1911.01359].
[213] J. R. Ellis et al., JHEP 08, 083 (2007), [arXiv:0706.0652]; S. Heinemeyer et al., JHEP 08, 087 (2008), [arXiv:0805.2359]; G.-C. Cho et al., JHEP 11, 068 (2011), [arXiv:1104.1769]; E. Bagnaschi et al., Eur. Phys. J. C78, 256 (2018), [arXiv:1710.11091].
[214] A. J. Buras et al., Nucl. Phys. B592, 55 (2001), [hepph/0007313].
[215] I. Esteban et al., JHEP 01, 106 (2019), [arXiv:1811.05487].
[216] K. Zuber, Phys. Rept. 305, 295 (1998), [hepph/9811267]; S. F. King, J. Phys. G42, 123001 (2015), [arXiv:1510.02091]; S. F. King, Prog. Part. Nucl. Phys. 94, 217 (2017), [arXiv:1701.04413].
[217] For a review of neutrino masses in supersymmetry, see e.g., B. Mukhopadhyaya, Proc. Indian National Science Academy A70, 239 (2004); M. Hirsch and J. W. F. Valle, New J. Phys. 6, 76 (2004), [hep-ph/0405015].
[218] F. Borzumati and Y. Nomura, Phys. Rev. D64, 053005 (2001), [hep-ph/0007018].
[219] P. Minkowski, Phys. Lett. 67B, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by D. Freedman and P. van Nieuwenhuizen (North Holland, Amsterdam, 1979) p. 315; T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23, 165 (1981).
[220] J. Hisano et al., Phys. Lett. B357, 579 (1995), [hepph/9501407]; J. Hisano et al., Phys. Rev. D53, 2442 (1996), [hep-ph/9510309]; J. A. Casas and A. Ibarra, Nucl. Phys. B618, 171 (2001), [hep-ph/0103065]; J. R. Ellis et al., Phys. Rev. D66, 115013 (2002), [hep-ph/0206110]; A. Masiero, S. K. Vempati and O. Vives, New J. Phys. 6, 202 (2004), [hep-ph/0407325]; E. Arganda et al., Phys. Rev. D71, 035011 (2005), [hep-ph/0407302]; F. R. Joaquim and A. Rossi, Phys. Rev. Lett. 97, 181801 (2006), [hepph/0604083]; J. R. Ellis and O. Lebedev, Phys. Lett. B653, 411 (2007), [arXiv:0707.3419].
[221] Y. Grossman and H. E. Haber, Phys. Rev. Lett. 78, 3438 (1997), [hep-ph/9702421]; A. Dedes, H. E. Haber and J. Rosiek, JHEP 11, 059 (2007), [arXiv:0707.3718].
[222] M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Lett. B398, 311 (1997), [hep-ph/9701253]; L. J. Hall, T. Moroi and H. Murayama, Phys. Lett. B424, 305 (1998), [hep-ph/9712515]; K. Choi, K. Hwang and W. Y. Song, Phys. Rev. Lett. 88, 141801 (2002), [hepph/0108028]; T. Honkavaara, K. Huitu and S. Roy, Phys. Rev. D73, 055011 (2006), [hep-ph/0512277].
[223] L. Basso et al., Comput. Phys. Commun. 184, 698 (2013), [arXiv:1206.4563].
[224] M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005), [hepph/0406029]; R. Barbier et al., Phys. Rept. 420, 1 (2005), [hep-ph/0406039].
[225] H. Dreiner, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 565-583.
[226] B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D60, 075014 (1999), [hep-ph/9906209].
[227] L. E. Ibanez and G. G. Ross, Nucl. Phys. B368, 3 (1992); L. E. Ibanez, Nucl. Phys. B398, 301 (1993), [hepph/9210211].
[228] A. Dedes, S. Rimmer and J. Rosiek, JHEP 08, 005 (2006), [hep-ph/0603225]; B. C. Allanach and C. H. Kom, JHEP 04, 081 (2008), [arXiv:0712.0852]; H. K. Dreiner et al., Phys. Rev. D84, 113005 (2011), [arXiv:1106.4338].
[229] H. K. Dreiner, C. Luhn and M. Thormeier, Phys. Rev. D73, 075007 (2006), [hep-ph/0512163].
[230] K. Tamvakis, Phys. Lett. B382, 251 (1996), [hepph/9604343]; G. Eyal and Y. Nir, JHEP 06, 024 (1999), [hep-ph/9904473]; A. Florez et al., Phys. Rev. D87, 095010 (2013), [arXiv:1303.0278].
[231] C. Csaki, Y. Grossman and B. Heidenreich, Phys. Rev. D85, 095009 (2012), [arXiv:1111.1239].
[232] D. Dercks et al., Eur. Phys. J. C77, 856 (2017), [arXiv:1706.09418].
[233] B. C. Allanach and B. Gripaios, JHEP 05, 062 (2012), [arXiv:1202.6616]; M. Asano, K. Rolbiecki and K. Sakurai, JHEP 01, 128 (2013), [arXiv:1209.5778]; N. Chamoun et al., JHEP 08, 142 (2014), [arXiv:1407.2248].
[234] J. C. Romao, Nucl. Phys. Proc. Suppl. 81, 231 (2000), [hepph/9907466]; Y. Grossman and S. Rakshit, Phys. Rev. D69, 093002 (2004), [hep-ph/0311310].
[235] R. N. Mohapatra, Phys. Rev. D34, 3457 (1986); K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 75, 2276 (1995), [hep-ph/9506354]; M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. Lett. 75, 17 (1995); M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. D53, 1329 (1996), [hep-ph/9502385].
[236] Y. Grossman and H. E. Haber, Phys. Rev. D59, 093008 (1999), [hep-ph/9810536].
[237] S. Dimopoulos and L. J. Hall, Phys. Lett. B207, 210 (1988); J. Kalinowski et al., Phys. Lett. B406, 314 (1997), [hepph/9703436]; J. Erler, J. L. Feng and N. Polonsky, Phys. Rev. Lett. 78, 3063 (1997), [hep-ph/9612397].
[238] H. K. Dreiner, P. Richardson and M. H. Seymour, Phys. Rev. D63, 055008 (2001), [hep-ph/0007228].
[239] J. E. Kim and H. P. Nilles, Phys. Lett. 138B, 150 (1984).
[240] J. E. Kim and H. P. Nilles, Mod. Phys. Lett. A9, 3575 (1994), [hep-ph/9406296].
[241] G. F. Giudice and A. Masiero, Phys. Lett. B206, 480 (1988); J. A. Casas and C. Munoz, Phys. Lett. B306, 288 (1993), [hep-ph/9302227]; K. J. Bae et al., Phys. Rev. D99, 115027 (2019), [arXiv:1902.10748].
[242] M. Cvetic et al., Phys. Rev. D56, 2861 (1997), [Erratum: D58, 119905 (1998)], [hep-ph/9703317].
[243] R. D. Peccei, Lect. Notes Phys. 741, 3 (2008), [hepph/0607268].
[244] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).
[245] H. Murayama, H. Suzuki and T. Yanagida, Phys. Lett. B291, 418 (1992); T. Gherghetta and G. L. Kane, Phys. Lett. B354, 300 (1995), [hep-ph/9504420]; K. J. Bae, H. Baer and H. Serce, Phys. Rev. D91, 1, 015003 (2015), [arXiv:1410.7500]; H. Baer, V. Barger and D. Sengupta, Phys. Lett. B790, 58 (2019), [arXiv:1810.03713].
[246] A. Delgado, G. Nardini and M. Quiros, Phys. Rev. D86, 115010 (2012), [arXiv:1207.6596].
[247] P. Fayet, Phys. Lett. 78B, 417 (1978).
[248] K. Benakli, Fortsch. Phys. 59, 1079 (2011), [arXiv:1106.1649].
[249] P. J. Fox, A. E. Nelson and N. Weiner, JHEP 08, 035 (2002), [hep-ph/0206096].
[250] K. Benakli and M. D. Goodsell, Nucl. Phys. B816, 185 (2009), [arXiv:0811.4409]; K. Benakli and M. D. Goodsell, Nucl. Phys. B840, 1 (2010), [arXiv:1003.4957].
[251] U. Sarkar and R. Adhikari, Phys. Rev. D55, 3836 (1997), [hep-ph/9608209]; R. Fok et al., Phys. Rev. D87, 055018 (2013), [arXiv:1208.2784].
[252] G. D. Kribs, E. Poppitz and N. Weiner, Phys. Rev. D78, 055010 (2008), [arXiv:0712.2039].
[253] K. Benakli, M. D. Goodsell and F. Staub, JHEP 06, 073 (2013), [arXiv:1211.0552].
[254] J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
[255] S. F. King, S. Moretti and R. Nevzorov, Phys. Lett. B634, 278 (2006), [hep-ph/0511256]; S. F. King, S. Moretti and R. Nevzorov, Phys. Rev. D73, 035009 (2006), [hepph/0510419].

90. Supersymmetry, Part II (Experiment)

Revised September 2019 by O. Buchmuller (Imperial Coll. London) and P. de Jong (NIKHEF).

90.1 Introduction

Supersymmetry (SUSY), a transformation relating fermions to bosons and vice versa $[1-9]$ is one of the most compelling possible extensions of the Standard Model of particle physics (SM).

On theoretical grounds SUSY is motivated as a generalization of space-time symmetries. A low-energy realization of SUSY, i.e., SUSY at the TeV scale, is, however, not a necessary consequence. Instead, low-energy SUSY is motivated by the possible cancellation of quadratic divergences in radiative corrections to the Higgs boson mass [10-15]. Furthermore, it is intriguing that a weakly interacting, (meta)stable supersymmetric particle might make up some or all of the dark matter in the universe [16-18]. In addition, SUSY predicts that gauge couplings, as measured experimentally at the electroweak scale, unify at an energy scale $\mathcal{O}\left(10^{16}\right) \mathrm{GeV}$ ("GUT scale") near the Planck scale [19-24].

In the minimal supersymmetric extension to the Standard Model, the so called MSSM [11,25,26], a supersymmetry transformation relates every chiral fermion and gauge boson in the SM to a supersymmetric partner with half a unit of spin difference, but otherwise with the same properties (such as mass) and quantum numbers. These are the "sfermions": squarks (\tilde{q}) and sleptons ($\tilde{\ell}$, $\tilde{\nu}$), and the "gauginos". The MSSM Higgs sector contains two doublets, for up-type quarks and for down-type quarks and charged leptons respectively. After electroweak symmetry breaking, five Higgs bosons arise, of which two are charged. The supersymmetric partners of the Higgs doublets are known as "higgsinos." The weak gauginos and higgsinos mix, giving rise to charged mass eigenstates called "charginos" ($\tilde{\chi}^{ \pm}$), and neutral mass eigenstates called "neutralinos" ($\tilde{\chi}^{0}$). The SUSY partners of the gluons are known as "gluinos" ($\tilde{g})$. The fact that such particles are not yet observed leads to the conclusion that, if supersymmetry is realized, it is a broken symmetry. A description of SUSY in the form of an effective Lagrangian with only "soft" SUSY breaking terms and SUSY masses at the TeV scale maintains the cancellation of quadratic divergences of soft SUSY breaking scalar mass squared parameters.

The phenomenology of SUSY is to a large extent determined by the SUSY breaking mechanism and the SUSY breaking scale. This determines the SUSY particle masses, the mass hierarchy, the field contents of physical particles, and their decay modes. In addition, phenomenology crucially depends on whether the multiplicative quantum number of R-parity [26], $R=(-1)^{3(B-L)+2 S}$, where B and L are baryon and lepton numbers and S is the spin, is conserved or violated. If R-parity is conserved, SUSY particles (sparticles), which have odd R-parity, are produced in pairs and the decays of each SUSY particle must involve an odd number of lighter SUSY particles. The lightest SUSY particle (LSP) is then stable and often assumed to be a weakly interacting massive particle (WIMP). If R-parity is violated, new terms $\lambda_{i j k}, \lambda_{i j k}^{\prime}$ and $\lambda_{i j k}^{\prime \prime}$ appear in the superpotential, where $i j k$ are generation indices; λ-type couplings appear between lepton superfields only, $\lambda^{\prime \prime}$-type are between quark superfields only, and λ^{\prime}-type couplings connect the two. R-parity violation implies lepton and/or baryon number violation. More details of the theoretical framework of SUSY are discussed elsewhere in this volume [27].

Today, low-energy data from flavor physics experiments, highprecision electroweak observables as well as astrophysical data impose strong constraints on the allowed SUSY parameter space. Recent examples of such data include measurements of the rare Bmeson decay $B_{s} \rightarrow \mu^{+} \mu^{-}[28,29]$, measurements of the anomalous magnetic moment of the muon [30], and accurate determinations of the cosmological dark matter relic density constraint $[31,32]$.

These indirect constraints are often more sensitive to higher SUSY mass scales than experiments searching for direct sparticle production at colliders, but the interpretation of these results is often strongly model dependent. In contrast, direct searches for sparticle production at collider experiments are less subject to interpretation ambiguities and therefore they play a crucial role in the search for SUSY.

The discovery of a Higgs boson with a mass around 125 GeV imposes constraints on SUSY models, which are discussed elsewhere [27, 33].
In this review we limit ourselves to direct searches, covering data analyses at LEP, HERA, the Tevatron and the LHC, with emphasis on the latter. For more details on LEP and Tevatron constraints, see earlier PDG reviews [34].

90.2 Experimental search program

The electron-positron collider LEP was operational at CERN between 1989 and 2000. In the initial phase, center-of-mass energies around the Z-peak were probed, but after 1995 the LEP experiments collected a significant amount of luminosity at higher center-of-mass energies, some $235 \mathrm{pb}^{-1}$ per experiment at $\sqrt{s} \geq 204 \mathrm{GeV}$, with a maximum \sqrt{s} of 209 GeV .
Searches for new physics at $e^{+} e^{-}$colliders benefit from the clean experimental environment and the fact that momentum balance can be measured not only in the plane transverse to the beam, but also in the direction along the beam (up to the beam pipe holes), defined as the longitudinal direction. Searches at LEP are dominated by the data samples taken at the highest center-of-mass energies.

Constraints on SUSY have been set by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at a center-ofmass energy of up to 1.96 TeV . CDF and D0 collected integrated luminosities between 10 and $11 \mathrm{fb}^{-1}$ each up to the end of collider operations in 2011.
The electron-proton collider HERA provided collisions to the H1 and ZEUS experiments between 1992 and 2007, at a center-of-mass energy up to 318 GeV . A total integrated luminosity of approximately $0.5 \mathrm{fb}^{-1}$ was collected by each experiment. Since at HERA baryons collide with leptons, SUSY searches at HERA typically look for R-parity violating production of single SUSY particles.
The Large Hadron Collider (LHC) at CERN started protonproton operation at a center-of-mass energy of 7 TeV in 2010. By the end of 2011 the experiments ATLAS and CMS had collected about $5 \mathrm{fb}^{-1}$ of integrated luminosity each, and the LHCb experiment had collected approximately $1 \mathrm{fb}^{-1}$. In 2012, the LHC operated at a center-of-mass energy of 8 TeV , and ATLAS and CMS collected approximately $20 \mathrm{fb}^{-1}$ each, whereas LHCb collected $2 \mathrm{fb}^{-1}$. In 2015, the LHC started Run 2, with a center-of-mass energy of 13 TeV . At the end of Run 2 in November 2018, ATLAS and CMS had both collected approximately $140 \mathrm{fb}^{-1}$, and LHCb had collected almost $6 \mathrm{fb}^{-1}$.
Proton-(anti)proton colliders produce interactions at higher center-of-mass energies than those available at LEP, and cross sections of QCD-mediated processes are larger, which is reflected in the higher sensitivity for SUSY particles carrying color charge: squarks and gluinos. Large background contributions from Standard Model processes, however, pose challenges to the trigger and analysis. Such backgrounds are dominated by multijet production processes, including, particularly at the LHC, those of top quark production, as well as jet production in association with vector bosons. The proton momentum is shared between its parton constituents, and in each collision only a fraction of the total center-of-mass energy is available in the hard parton-parton scattering. Since the parton momenta in the longitudinal direction are not known on an event-by-event basis, use of momentum conservation constraints in an analysis is restricted to the transverse plane, leading to the definition of transverse variables, such as the missing transverse momentum, and the transverse mass. Proton-proton collisions at the LHC differ from proton-antiproton collisions at the Tevatron in the sense that there are no valence anti-quarks in the proton, and that gluon-initiated processes play a more dominant role. The increased center-of-mass energy of the LHC compared to the Tevatron, as well as the increase at the LHC between Run 1 and Run 2, significantly extends the kinematic reach for SUSY searches. This is reflected foremost in the sensitivity for squarks and gluinos, but also for other SUSY particles.
The main production mechanisms of massive colored sparticles at hadron colliders are squark-squark, squark-gluino and gluino-
gluino production; when "squark" is used "antisquark" is also implied. Assuming R-parity conservation, the typical SUSY search signature at hadron colliders contains high- p_{T} jets, which are produced in the decay chains of heavy squarks and gluinos, and significant missing momentum originating from the two LSPs produced at the end of the decay chain, which escape experimental detection. Standard Model backgrounds with missing transverse momentum include leptonic W / Z-boson decays, heavy-flavor decays to neutrinos, and multijet events that may be affected by instrumental effects such as jet mismeasurement
Selection variables designed to separate the SUSY signal from the Standard Model backgrounds include $H_{\mathrm{T}}, E_{\mathrm{T}}^{\mathrm{miss}}$, and $m_{\text {eff }}$. The quantities H_{T} and $E_{\mathrm{T}}^{\text {miss }}$ refer to the measured transverse energy and the missing transverse momentum in the event, respectively. They are usually defined as the scalar sum of the transverse jet momenta or calorimeter clusters transverse energies measured in the event $\left(H_{\mathrm{T}}\right)$, or the magnitude $\left(E_{\mathrm{T}}^{\mathrm{miss}}\right)$ of the negative vector sum of transverse momenta of reconstructed objects like jets and leptons in the event $\left(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}\right)$. The quantity $m_{\text {eff }}$ is referred to as the effective mass of the event and is defined as $m_{\text {eff }}=H_{\mathrm{T}}+E_{\mathrm{T}}^{\text {miss }}$. The peak of the $m_{\text {eff }}$ distribution for SUSY signal events correlates with the SUSY mass scale, in particular with the mass difference between the primary produced SUSY particle and the LSP [35], whereas the Standard Model backgrounds dominate at low $m_{\text {eff }}$. Additional reduction of multijet backgrounds can be achieved by demanding isolated leptons or photons in the final states; in such events the lepton or photon transverse momentum may be added to H_{T} or $m_{\text {eff }}$ for further signal-background separation.

At the LHC, alternative approaches have been developed to increase the sensitivity to pair production of heavy sparticles with TeV -scale masses focusing on the kinematics of their decays, and to further suppress the background from multijet production. Prominent examples of these new approaches are searches using the α_{T} [36-40], razor [41], stransverse mass $\left(m_{\mathrm{T} 2}\right)$ [42], and contransverse mass (m_{CT}) [43] variables. Recently, the topological event reconstruction methods have expanded with the superrazor [44] and recursive jigsaw reconstruction [45] techniques. Furthermore, frequently the searches for massive SUSY particles attempt to identify their decay into top quarks or vector bosons, which are themselves unstable. If these are produced with a significant boost, jets from their decay will typically overlap, and such topologies are searched for with jet-substructure [46] techniques.

90.3 Interpretation of results

Since the mechanism by which SUSY is broken is unknown, a general approach to SUSY via the most general soft SUSY breaking Lagrangian adds a significant number of new free parameters. For the minimal supersymmetric standard model, MSSM, i.e., the model with the minimal particle content, these comprise 105 new real degrees of freedom. A phenomenological analysis of SUSY searches leaving all these parameters free is not feasible. For the practical interpretation of SUSY searches at colliders several approaches are taken to reduce the number of free parameters.

One approach is to assume a SUSY breaking mechanism and lower the number of free parameters through the assumption of additional constraints. Before the start of the LHC, interpretations of experimental results were predominately performed in constrained models of gravity mediated [50,51], gaugemediated [52-54], and anomaly mediated $[55,56]$ SUSY breaking. The most popular model was the constrained MSSM (CMSSM) $[50,57,58]$, which in the literature is also referred to as minimal supergravity, or MSUGRA.

These constrained SUSY models are theoretically well motivated and provide a rich spectrum of experimental signatures. However, with universality relations imposed on the soft SUSY breaking parameters, they do not cover all possible kinematic signatures and mass relations of SUSY. In such scenarios the squarks are often nearly degenerate in mass, in particular for the first and second generation. The exclusion of parameter space in the CMSSM and in CMSSM-inspired models is mainly driven by first and second generation squark production together with gluino production. As shown in Fig. 90.1 [47-49] these processes possess

Figure 90.1: Cross sections for pair production of different sparticles as a function of their mass at the LHC for a center-of-mass energy of 8 TeV (solid curves) and $13-14 \mathrm{TeV}$ (dotted curves), taken from Ref. [47]. Typically the production cross section of colored squarks and gluinos, calculated with NLL-FAST [48] at $\sqrt{s}=8$ and 13 TeV , is several orders of magnitude larger than the one for electroweak gauginos, calculated with Prospino [49] at $\sqrt{s}=8$ and 14 TeV for higgsino-like neutralinos. Except for the explicitly shown pair production of stops, production cross sections for squarks assumes mass degeneracy of left- and right-handed u, d, s, c and b squarks.
the largest production cross sections in proton-proton collisions, and thus the LHC searches typically provide the tightest mass limits on these colored sparticles. This, however, implies that the allowed parameter space of constrained SUSY models today has been restrained significantly by searches from ATLAS and CMS. Furthermore, confronting the remaining allowed parameter space with other collider and non-collider measurements, which are directly or indirectly sensitive to contributions from SUSY, the overall compatibility of these models with all data is significantly worse than in the pre-LHC era (see section II. 8 for further discussion), indicating that very constrained models like the CMSSM are no longer good benchmark scenarios to solely characterize the results of SUSY searches at the LHC.
For these reasons, an effort has been made to complement the traditional constrained models with more flexible approaches.

One approach to study a broader and more comprehensive subset of the MSSM is via the phenomenological-MSSM, or pMSSM [59-61]. It is derived from the MSSM, using experimental data to eliminate parameters that are free in principle but have already been highly constrained by measurements of e.g., flavor mixing and CP-violation. This effective approach reduces the number of free parameters in the MSSM to typically 19 or even less, making it a practical compromise between the full MSSM and highly constrained models such as the CMSSM.

Even less dependent on fundamental assumptions are interpretations in terms of so-called simplified models [62-65]. Such models assume a limited set of SUSY particle production and decay modes and leave open the possibility to vary masses and other parameters freely. Therefore, simplified models enable comprehensive studies of individual SUSY topologies, and are useful for optimization of the experimental searches over a wide parameter space without limitations on fundamental kinematic properties such as masses, production cross sections, and decay modes.
As a consequence, ATLAS and CMS have adopted simplified models as the primary framework to provide interpretations of their searches. In addition to using simplified models that describe prompt decays of SUSY particles, the experiments are now also focusing more on the use of simplified models that allow for decays of long-lived SUSY particles as they can arise in different SUSY scenarios (see Section 90.7 for further discussion). Today, almost every individual search provides interpretations of their results in one or even several simplified models that are characteristic of

Figure 90.2: Left: lower mass limits, at 95% C.L., on gluino pair production and decay in a simplified model with $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$. Right: 95% C.L. mass limits on gluinos and squarks assuming gluino and squark production, and $m_{\tilde{\chi}_{1}^{0}}=995 \mathrm{GeV}$. Results of the ATLAS collaboration.

SUSY topologies probed by the analysis.
However, while these models are very convenient for the interpretation of individual SUSY production and decay topologies, care must be taken when applying these limits to more complex SUSY spectra. Therefore, in practice, simplified model limits are often used as an approximation of the constraints that can be placed on sparticle masses in more complex SUSY spectra. Yet, depending on the assumed SUSY spectrum, the sparticle of interest, and the considered simplified model limit, this approximation can lead to a significant mistake, typically an overestimation, in the assumed constraint on the sparticle mass (see for example [66]). Only on a case-by-case basis can it be determined whether the limit of a given simplified model represents a good approximation of the true underlying constraint that can be applied on a sparticle mass in a complex SUSY spectrum. In the following, we will point out explicitly the assumptions that have entered the limits when quoting interpretations from simplified models.

This review covers results up to September 2019 and since none of the searches performed so far have shown significant excess above the SM background prediction, the interpretation of the presented results are exclusion limits on SUSY parameter space. Unless stated differently, all quoted exclusion limits are at 95% confidence level.

90.4 Exclusion limits on gluino and squark masses

Gluinos and squarks are the SUSY partners of gluons and quarks, and thus carry color charge. Limits on squark masses of the order 100 GeV have been set by the LEP experiments [67], in the decay to quark plus neutralino, and for a mass difference between squark and quark plus neutralino of typically at least a few GeV . However, due to the colored production of these particles at hadron colliders (see e.g. Fig. 90.1), hadron collider experiments are able to set much tighter mass limits.

Pair production of these massive colored sparticles at hadron colliders usually involve both the s-channel and t-channel partonparton interactions. Since there is a negligible amount of bottom and top quark content in the proton, top- and bottom squark production proceeds through s-channel diagrams only. In the past, experimental analyses of squark and/or gluino production typically assumed the first and second generation squarks to be approximately degenerate in mass. However, in order to have even less model dependent interpretations of the searches, the experiments have started to also provide simplified model limits on individual first or second generation squarks.

Assuming R-parity conservation and assuming gluinos to be heavier than squarks, squarks will predominantly decay to a quark and a neutralino or chargino, if kinematically allowed. The de-
cay may involve the lightest neutralino (typically the LSP) or chargino, but, depending on the masses and couplings of the gauginos, may involve heavier neutralinos or charginos. For pair production of first and second generation squarks, the simplest decay modes involve two jets and missing momentum, with potential extra jets stemming from initial state or final state radiation (ISR/FSR) or from decay modes with longer decay chains (cascades). Similarly, gluino pair production leads to four jets and missing momentum, and possibly additional jets from ISR/FSR or cascades. Associated production of a gluino and a (anti-)squark is also possible, in particular if squarks and gluinos have similar masses, typically leading to three or more jets in the final state. In cascades, isolated photons or leptons may appear from the decays of sparticles such as neutralinos or charginos. Final states are thus characterized by significant missing transverse momentum, and at least two, and possibly many more high p_{T} jets, which can be accompanied by one or more isolated objects like photons or leptons, including τ leptons, in the final state. Table 90.1 shows a schematic overview of characteristic final state signatures of gluino and squark production for different mass hierarchy hypotheses and assuming decays involving the lightest neutralino.

Table 90.1: Typical search signatures at hadron colliders for direct gluino and first- and secondgeneration squark production assuming different mass hierarchies.

Mass Hierarchy	Main Production	Dominant Decay	Typical Signature
$m_{\tilde{q}} \ll m_{\tilde{g}}$	$\tilde{q} \tilde{q}, \tilde{q} \tilde{\tilde{q}}$	$\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$	≥ 2 jets $+E_{\mathrm{T}}^{\text {miss }}+\mathrm{X}$
$m_{\tilde{q}} \approx m_{\tilde{g}}$	$\tilde{q} \tilde{g}, \tilde{q} \tilde{q}$	$\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$	≥ 3 jets $+E_{\mathrm{T}}^{\text {miss }}+\mathrm{X}$
$m_{\tilde{q}} \gg m_{\tilde{g}}$	$\tilde{g} \tilde{g}$	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$	

90.4.1 Exclusion limits on the gluino mass

Limits set by the Tevatron experiments on the gluino mass assume the framework of the CMSSM, with $\tan \beta=5$ (CDF) or $\tan \beta=3(\mathrm{D} 0)$, where $\tan \beta$ is the ratio of vacuum expectation values of the Higgs fields for up-type and down-type fermions. Furthermore, $A_{0}=0$ and $\mu<0$ is assumed, and the resulting lower mass limits are about 310 GeV for all squark masses, or 390 GeV for the case $m_{\tilde{q}}=m_{\tilde{g}}[68,69]$. These limits have been superseded by those provided by ATLAS and CMS, and the tightest constraints have been set with up to approximately $140 \mathrm{fb}^{-1}$ of data recorded at the LHC at a center-of-mass energy of 13 TeV .
Limits on the gluino mass have been established in the framework of simplified models. Assuming only gluino pair production, in particular three primary decay chains of the gluino have been

Figure 90.3: Lower mass limits, at 95% C.L., on gluino pair production for various decay chains in the framework of simplified models. Left: $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$. Right: $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$. Results of the CMS collaboration.
considered by the LHC experiments for interpretations of their search results. The first decay chain $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ assumes gluino mediated production of first and second generation squarks (onshell or off-shell) which leads to four light flavor quarks in the final state. Therefore, inclusive all-hadronic analyses searching for multijet plus $E_{\mathrm{T}}^{\mathrm{miss}}$ final states are utilized to put limits on this simplified model. These limits are derived as a function of the gluino and neutralino (LSP) mass. As shown in Fig. 90.2 (left), using the cross section from next-to-leading order QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy as reference [48], the ATLAS collaboration [70] excludes in this simplified model gluino masses below approximately 2.3 TeV , for a massless neutralino. In scenarios where neutralinos are not very light, the efficiency of the analyses is reduced by the fact that jets are less energetic, and there is less missing transverse momentum in the event. This leads to weaker limits when the mass difference $\Delta m=m_{\tilde{g}}-m_{\tilde{\chi}_{1}^{0}}$ is reduced. For example, for neutralino masses above about 1.2 TeV no limit on the gluino mass can be set for this decay chain. Therefore, limits on gluino masses are strongly affected by the assumption of the neutralino mass. Similar results for this simplified model have been obtained by CMS [71].

The second important decay chain of the gluino considered for interpretation in a simplified model is $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$. Here the decay is mediated via bottom squarks and thus leads to four jets from b quarks and $E_{\mathrm{T}}^{\text {miss }}$ in the final state. Also for this topology inclusive all-hadronic searches provide the highest sensitivity. However, with four b quarks in the final state, the use of secondary vertex reconstruction for the identification of jets originating from b quarks provides a powerful handle on the SM background. Therefore, in addition to a multijet plus $E_{\mathrm{T}}^{\mathrm{miss}}$ signature these searches also require several jets to be tagged as b-jets. As shown in Fig. 90.3 (left), for this simplified model CMS [71] excludes gluino masses below $\approx 2.3 \mathrm{TeV}$ for a massless neutralino, while for neutralino masses above $\approx 1.5 \mathrm{TeV}$ no limit on the gluino mass can be set. Comparable limits for this simplified model are provided by searches from ATLAS [72].

Gluino decays are not limited to first and second generation squarks or bottom squarks; if kinematically allowed, decays to top squarks via $\tilde{g} \rightarrow \tilde{t} t$ are also possible. This leads to a "four tops" final state $\operatorname{tttt} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ and defines the third important simplified model, $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$, characterizing gluino pair production. The topology of this decay is very rich in different experimental signatures: as many as four isolated leptons, four b-jets, several light flavor quark jets, and significant missing momentum from the neu-
trinos in the W decay and from the two neutralinos. As shown in Fig. 90.3 (right), the CMS search based on the $m_{\mathrm{T} 2}$ variable [73] rules out gluinos with masses below $\approx 2.25 \mathrm{TeV}$ for massless neutralinos in this model. For neutralino masses above $\approx 1.3 \mathrm{TeV}$, no limit can be placed on the gluino mass. The ATLAS multiple b-jets search [72] obtains similar limits.

The ATLAS collaboration also provides limits in a pMSSMinspired model with only gluinos and first and second generation squarks, and a bino-like $\tilde{\chi}_{1}^{0}$ [70]. As shown in Fig. 90.2 (right), assuming $m_{\tilde{\chi}_{1}^{0}}=995 \mathrm{GeV}$, gluinos with masses below $\approx 1.6 \mathrm{TeV}$ are excluded for any squark mass. For $m_{\tilde{q}} \approx m_{\tilde{g}}$, the mass exclusion is about 3.0 TeV . The dependence of these limits on $m_{\tilde{\chi}_{1}^{0}}$ is illustrated in Ref. [70]. For massless $\tilde{\chi}_{1}^{0}$, gluino masses below 2.2 TeV are excluded for all squark masses.

R-parity violating gluino decays are searched for in a number of final states. Searches in multilepton final states set lower mass limits of 1 to 1.4 TeV , depending on neutralino mass and lepton flavor, on decays mediated by λ and λ^{\prime} couplings [74-78], assuming prompt decays. Searches for displaced vertices are sensitive to non-prompt decays [79-82]. Multijet final states have been used to search for fully hadronic gluino decays involving $\lambda^{\prime \prime}$, by CDF [83], ATLAS [79, 84-86] and CMS [87-89]. Lower gluino mass limits range between 600 and 2000 GeV depending on neutralino mass and flavor content of the final state.

90.4.2 Exclusion limits on squark masses

Limits on first and second generation squark masses set by the Tevatron experiments assume the CMSSM, and amount to lower limits of about 380 GeV for all gluino masses, or 390 GeV for the case $m_{\tilde{q}}=m_{\tilde{g}}[68,69]$.

At the LHC, limits on squark masses have been set using up to approximately $140 \mathrm{fb}^{-1}$ of data at 13 TeV . Interpretations in simplified models typically characterize squark pair production with only one decay chain of $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$. Here it is assumed that the left and right-handed $\tilde{u}, \tilde{d}, \tilde{s}$ and \tilde{c} squarks are degenerate in mass. Furthermore, it is assumed that the mass of the gluino is very high and thus contributions of the corresponding t-channel diagrams to squark pair production are negligible. Therefore, the total production cross section for this simplified model is eight times the production cross section of an individual squark (e.g. \tilde{u}_{L}). Under these assumptions, ATLAS obtains a lower squark mass limit of $\approx 1.9 \mathrm{TeV}$ for light neutralinos [70], as shown in Fig. 90.4 (left). The effects of heavy neutralinos on squark limits are similar to those discussed in the gluino case (see Section 90.4.1), and only for neutralino masses below $\approx 800 \mathrm{GeV}$ can any squark masses

Figure 90.4: Left: 95% C.L. exclusion contours in the squark-neutralino mass plane defined in the framework of simplified models assuming a single decay chain of $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$, obtained by ATLAS. Right: the 95% C.L. exclusion contours in the stop-neutralino mass plane defined in the framework of a simplified model assuming a single decay chain of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ as obtained by CMS.
be excluded.
For the same analysis ATLAS also provides an interpretation of their search result in the aforementioned pMSSM-inspired model with only gluinos and first and second generation squarks, and a bino-like $\tilde{\chi}_{1}^{0}$ [70], as shown in Fig. 90.2 (right). In this model, squark production can take place with non-decoupled gluinos, enhancing the squark production cross section through gluino exchange diagrams.

If the assumption of mass degenerate first and second generation squarks is dropped and only the production of a single light squark is assumed, the limits weaken significantly. For example, the CMS limit on degenerate squarks of 1750 GeV for light neutralinos drops to $\approx 1300 \mathrm{GeV}$ for pair production of a single light squark, and for neutralinos heavier than $\approx 600 \mathrm{GeV}$ no squark mass limit can be placed [73]. It should be noted that this limit is not a result of a simple scaling of the above mentioned mass limits assuming eightfold mass degeneracy but it also takes into account that for an eight times lower production cross section the analyses must probe kinematic regions of phase space that are closer to the ones of SM background production. Since signal acceptance and the ratio of expected signal to SM background events of the analyses are typically worse in this region of phase space not only the $1 / 8$ reduction in production cross section but also a worse analysis sensitivity are responsible for the much weaker limit on single squark pair production.

For single light squarks ATLAS also reports results of a dedicated search for pair production of scalar partners of charm quarks [90]. Assuming that the scalar-charm state exclusively decays into a charm quark and a neutralino, scalar-charm masses up to 800 GeV are excluded for neutralino masses below 260 GeV .

Besides placing stringent limits on first and second generation squark masses, the LHC experiments also search for the production of third generation squarks. SUSY at the TeV-scale is often motivated by naturalness arguments, most notably as a solution to cancel quadratic divergences in radiative corrections to the Higgs boson mass. In this context, the most relevant terms for SUSY phenomenology arise from the interplay between the masses of the third generation squarks and the Yukawa coupling of the top quark to the Higgs boson. This motivates a potential constraint on the masses of the top squarks and the left-handed bottom squark. Due to the large top quark mass, significant mixing between \tilde{t}_{L} and \tilde{t}_{R} is expected, leading to a lighter mass state \tilde{t}_{1} and a heavier mass state \tilde{t}_{2}. In the MSSM, the lightest top squark $\left(\tilde{t}_{1}\right)$ can be the lightest squark.

Bottom squarks are expected to decay predominantly to $b \tilde{\chi}^{0}$ giving rise to the characteristic multi b-jet and $E_{\mathrm{T}}^{\mathrm{miss}}$ signature. Direct production of bottom squark pairs has been searched for at the Tevatron and at the LHC. Limits from the Tevatron are $m_{\tilde{b}}>247 \mathrm{GeV}$ for a massless neutralino [91] [92]. The LHC experiments have surpassed these limits, and the latest results are based on up to $140 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=13 \mathrm{TeV}$. CMS has set a lower limit of $m_{\tilde{b}}>\approx 1250 \mathrm{GeV}$ for massless neutralinos in this model [73]. For $m_{\tilde{\chi}_{1}^{0}} \approx 700 \mathrm{GeV}$ or higher no limit can be placed on direct bottom squark pair production in this simplified model. Limits from ATLAS are comparable [93]. Further bottom squark decay modes have also been searched for by ATLAS $[94,95]$ and CMS [71, 76, 96].

The top squark decay modes depend on the SUSY mass spectrum, and on the $\tilde{t}_{\mathrm{L}}-\tilde{t}_{\mathrm{R}}$ mixture of the top squark mass eigenstate. If kinematically allowed, the two-body decays $\tilde{t} \rightarrow t \tilde{\chi}^{0}$ (which requires $m_{\tilde{t}}-m_{\tilde{\chi}^{0}}>m_{t}$) and $\tilde{t} \rightarrow b \tilde{\chi}^{ \pm}$(which requires $m_{\tilde{t}}-m_{\tilde{\chi}^{ \pm}}>m_{b}$) are expected to dominate. If not, the top squark decay may proceed either via the two-body decay $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ or through $\tilde{t} \rightarrow b f \bar{f}^{\prime} \tilde{\chi}^{0}$ (where f and \bar{f}^{\prime} denote a fermion-antifermion pair with appropriate quantum numbers). For $m_{\tilde{t}}-m_{\tilde{\chi}^{0}}>m_{b}$ the latter decay chain represents a four-body decay with a W boson, charged Higgs H, slepton $\tilde{\ell}$, or light flavor squark \tilde{q}, exchange. If the exchanged W boson and/or sleptons are kinematically allowed to be on-shell $\left(\left(m_{\tilde{t}}-m_{\tilde{\chi}^{ \pm}}\right)>\left(m_{b}+m_{W}\right)\right.$ and/or $\left.\left(m_{\tilde{t}}-m_{\tilde{\ell}}\right)>m_{b}\right)$, the three-body decays $\tilde{t} \rightarrow W b \tilde{\chi}^{0}$ and/or $\tilde{t} \rightarrow b l \tilde{\ell}$ will become dominant. For further discussion on top squark decays see for example Ref. [97].

Limits from LEP on the \tilde{t}_{1} mass are $m_{\tilde{t}}>96 \mathrm{GeV}$ in the charm plus neutralino final state, and $>93 \mathrm{GeV}$ in the lepton, b-quark and sneutrino final state [67].

The Tevatron experiments have performed a number of searches for top squarks, often assuming direct pair production. In the $b \ell \tilde{\nu}$ decay channel, and assuming a 100% branching fraction, limits are set as $m_{\tilde{t}}>210 \mathrm{GeV}$ for $m_{\tilde{\nu}}<110 \mathrm{GeV}$ and $m_{\tilde{t}}-m_{\tilde{\nu}}>30 \mathrm{GeV}$, or $m_{\tilde{t}}>235 \mathrm{GeV}$ for $m_{\tilde{\nu}}<50 \mathrm{GeV}$ [98] [99]. In the $\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}$ decay mode, a top squark with a mass below 180 GeV is excluded for a neutralino lighter than 95 GeV [100] [101]. In both analyses, no limits on the top squark can be set for heavy sneutrinos or neutralinos. In the $\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}$decay channel, searches for a relatively light top squark have been performed in the dilepton final state [102] [103]. The CDF experiment sets limits in the $\tilde{t}-\tilde{\chi}_{1}^{0}$

Figure 90.5: LHC exclusion limits on chargino and neutralino masses in a number of simplified models. Left: limits on chargino and neutralino masses for pair production of charginos, pair production of heavier neutralinos, or pair production of chargino and neutralino, under the assumption of light sleptons mediating the decays. Right: limits on chargino and neutralino masses for pair production of chargino and neutralino, under the assumption of decoupled sleptons, and chargino/neutralino decay through W^{*}, Z^{*} or H.
mass plane for various branching fractions of the chargino decay to leptons and for two value of $m_{\tilde{\chi}_{1}^{ \pm}}$. For $m_{\tilde{\chi}_{1}^{ \pm}}=105.8 \mathrm{GeV}$ and $m_{\tilde{\chi}_{1}^{0}}=47.6 \mathrm{GeV}$, top squarks between 128 and 135 GeV are excluded for W-like leptonic branching fractions of the chargino.

The LHC experiments have improved these limits substantially. As shown in the right plot of Fig. 90.4, limits on the top squark mass assuming a simplified model with a single decay chain of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ now surpass 1 TeV . The most important searches for this top squark decay topology are dedicated searches requiring zero or one isolated lepton, modest $E_{\mathrm{T}}^{\mathrm{miss}}$, and four or more jets out of which at least one jet must be reconstructed as a b-jet $[71,73,104-$ 106]. For example, CMS excludes top squarks with masses below about 1200 GeV in this model for massless neutralinos, while for $m_{\tilde{\chi}_{1}^{0}}>600 \mathrm{GeV}$ no limits can be provided.

Assuming that the top squark decay exclusively proceeds via the chargino mediated decay chain $\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm(*)} \tilde{\chi}_{1}^{0}$ yields stop mass exclusion limits that vary strongly with the assumptions made on the $\tilde{t}-\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{1}^{0}$ mass hierarchy. For example, for $m_{\tilde{\chi}_{1}^{ \pm}}=\left(m_{\tilde{t}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2$, a stop mass below $\approx 1150 \mathrm{GeV}$ for a light $\tilde{\chi}_{1}^{0}$ is excluded, while no limit can be placed for $m_{\tilde{\chi}_{1}^{0}}>550 \mathrm{GeV}$ [104]. These limits, however, can weaken significantly when other assumptions about the mass hierarchy or the decay of the charginos are imposed [104, 106-108].

If the decays $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ and $\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm(*)} \tilde{\chi}_{1}^{0}$ are kinematically forbidden, the decay chains $\tilde{t} \rightarrow W b \tilde{\chi}^{0}$ and $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ can become important. The one-lepton ATLAS search provides for the kinematic region $m_{\tilde{t}}-m_{\tilde{\chi}^{ \pm}}>m_{b}+m_{W}$ lower limits on the top squark mass of $\approx 700 \mathrm{GeV}$ for a neutralino lighter than $\approx 570 \mathrm{GeV}$ [109]. Other analyses with zero, one or two leptons also target this kinematic region $[105,106,110-114]$.

For the kinematic region in which even the production of real W bosons is not allowed, ATLAS and CMS improve the Tevatron limit on $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ substantially. Based on a monojet analysis [115] ATLAS excludes top squark masses below $m_{\tilde{\chi}_{1}^{0}} \approx 450 \mathrm{GeV}$ along the kinematic boundary for the $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ decay. A dedicated analysis for $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ excludes stop masses below 500 GeV for $m_{\tilde{\chi}_{1}^{0}}$ below 420 GeV [90]. The CMS collaboration uses the hadronic searches $[111,113]$ to place constraints on this particular stop decay and excludes $m_{\tilde{t}} \approx 550 \mathrm{GeV}$ for $m_{\tilde{\chi}_{1}^{0}}$ below 450 GeV . The exclusion at $m_{\tilde{t}} \approx m_{\tilde{\chi}_{1}^{0}}$ is also about 550 GeV .

The other decay chain relevant in this phase region is $\tilde{t} \rightarrow$

Figure 90.6: LHC exclusion limits on slepton (selectron and smuon) masses, assuming equal masses of selectrons and smuons, degeneracy of $\tilde{\ell}_{\mathrm{L}}$ and $\tilde{\ell}_{\mathrm{R}}$, and a 100% branching fraction for $\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$.
$b f \bar{f}^{\prime} \tilde{\chi}^{0}$. Here the ATLAS one-lepton [106] and two-lepton [110] searches exclude up to $m_{\tilde{t}} \approx 440 \mathrm{GeV}$ for $m_{\tilde{\chi}_{1}^{0}}$ below 340 GeV , while the monojet analysis [115] excludes at the kinematic boundary top squarks below 400 GeV . As for the $\tilde{t} \rightarrow c \tilde{\chi}^{0}$ decay, CMS uses the zero-lepton searches $[111,113]$ to also place constraints on $\tilde{t} \rightarrow b f \bar{f}^{\prime} \tilde{\chi}^{0}$. Also in this case CMS excludes $m_{\tilde{t}} \approx 550 \mathrm{GeV}$ for $m_{\tilde{\chi}_{1}^{0}}$ below 450 GeV .

In general, the variety of top squark decay chains in the phase space region where $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ is kinematically forbidden represents a challenge for the experimental search program and more data and refined analyses will be required to further improve the sensitivity in this difficult but important region of SUSY parameter space.

R-parity violating production of single squarks via a λ^{\prime}-type coupling has been studied at HERA. In such models, a lower limit on the squark mass of the order of 275 GeV has been set for electromagnetic-strength-like couplings $\lambda^{\prime}=0.3$ [116]. At the LHC, both prompt [$75,78,117$] and non-prompt [80, 118] R-parity violating squark decays have been searched for, but no signal was found. Squark mass limits are very model-dependent.

R-parity violating production of single top squarks has been

Figure 90.7: Limits at 95\% C.L. on the gluino mass in R-hadron models (left), and on the chargino mass in a model where the wino-like chargino is almost degenerate with the LSP (right), as a function of gluino or chargino lifetime, as obtained by ATLAS.
searched for at LEP, HERA, and the Tevatron. For example, an analysis from the ZEUS collaboration [119] makes an interpretation of its search result assuming top squarks to be produced via a λ^{\prime} coupling and decay either to $b \tilde{\chi}_{1}^{ \pm}$or R-parity-violating to a lepton and a jet. Limits are set on λ_{131}^{\prime} as a function of the top squark mass in an MSSM framework with gaugino mass unification at the GUT scale.

The search for top squark pair production in the context of R-parity violating supersymmetry has now also become a focus point for searches at the LHC. CMS and ATLAS have performed searches for top squarks using a variety of multilepton final states $[75,120]$. The λ^{\prime}-mediated top squark decay $\tilde{t} \rightarrow b \ell$ has been studied by ATLAS for prompt decays [121], and by ATLAS and CMS for non-prompt decays [122-124], setting limits up to $1.4-$ 1.6 TeV in simplified models for this mode. CMS also searched for the λ^{\prime}-mediated decay $\tilde{t} \rightarrow b \ell q q$, setting lower stop mass limits of $890 \mathrm{GeV}(e)$ or $1000 \mathrm{GeV}(\mu)$ [125]. The fully hadronic Rparity violating top squark decays $\tilde{t} \rightarrow b s, \tilde{t} \rightarrow d s$, and $\tilde{t} \rightarrow$ $b d$, involving $\lambda^{\prime \prime}$, have been searched for by ATLAS [75, 79, 94, 126], and CMS [127,128], and lower top squark mass limits up to 610 GeV were set.

It should be noted that limits discussed in this section belong to different top and bottom squark decay channels, different sparticle mass hierarchies, and different simplified decay scenarios. Therefore, care must be taken when interpreting these limits in the context of more complete SUSY models.

90.4.3 Summary of exclusion limits on squarks and gluinos assuming R-Parity conservation

A summary of the most important squark and gluino mass limits for different interpretation approaches assuming R-parity conservation is shown in Table 90.2.

For gluino masses rather similar limits of about 2.3 TeV are obtained from different model assumptions, indicating that the LHC is indeed probing direct gluino production at the TeV scale and beyond. However, for neutralino masses above approximately 1 to 1.4 TeV , in the best case scenarios, ATLAS and CMS searches do not place any limits on the gluino mass.

Limits on direct squark production, on the other hand, depend strongly on the chosen model. Especially for direct production of top squarks there are still large regions in parameter space where masses below 1 TeV cannot be excluded. This is also true for first and second generation squarks when only one single squark is considered. Furthermore, for neutralino masses above $\approx 500 \mathrm{GeV}$ no limits on any direct squark production scenario are placed by the LHC.

90.5 Exclusion limits on the masses of charginos and neutralinos

Charginos and neutralinos result from mixing of the charged wino and higgsino states, and the neutral bino, wino and higgsino states, respectively. The mixing is determined by a limited number of parameters. For charginos these are the wino mass parameter M_{2}, the higgsino mass parameter μ, and $\tan \beta$, and for neutralinos these are the same parameters plus the bino mass parameter M_{1}. If any of the parameters M_{1}, M_{2} or μ happened to be substantially smaller than the others, the chargino/neutralino composition would be dominated by specific states, which are referred to as bino-like $\left(M_{1} \ll M_{2}, \mu\right)$, wino-like $\left(M_{2} \ll M_{1}, \mu\right)$, or higgsino-like ($\mu \ll M_{1}, M_{2}$). If gaugino mass unification at the GUT scale is assumed, a relation between M_{1} and M_{2} at the electroweak scale follows: $M_{1}=5 / 3 \tan ^{2} \theta_{W} M_{2} \approx 0.5 M_{2}$, with θ_{W} the weak mixing angle. Charginos and neutralinos carry no color charge.

90.5.1 Exclusion limits on chargino masses

If kinematically allowed, two body decay modes such as $\tilde{\chi}^{ \pm} \rightarrow$ $\tilde{f} \bar{f}^{\prime}$ (including $\ell \tilde{\nu}$ and $\tilde{\ell} \nu$) are dominant. If not, three body decays $\tilde{\chi}^{ \pm} \rightarrow f \bar{f}^{\prime} \tilde{\chi}^{0}$, mediated through virtual W bosons or sfermions, become dominant. If sfermions are heavy, the W mediation dominates, and $f \bar{f}^{\prime}$ are distributed with branching fractions similar to W decay products (barring phase space effects for small mass gaps between $\tilde{\chi}^{ \pm}$and $\tilde{\chi}^{0}$). If, on the other hand, sleptons are light enough to play a significant role in the decay, leptonic final states will be enhanced.

At LEP, charginos have been searched for in fully-hadronic, semi-leptonic and fully leptonic decay modes [129] [130]. A general lower limit on the lightest chargino mass of 103.5 GeV is derived, except in corners of phase space with low electron sneutrino mass, where destructive interference in chargino production, or two-body decay modes, play a role. The limit is also affected if the mass difference between $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{1}^{0}$ is small; dedicated searches for such scenarios set a lower limit of 92 GeV .

At the Tevatron, charginos have been searched for via associated production of $\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}$ [131] [132]. Decay modes involving multilepton final states provide the best discrimination against the large multijet background. Analyses have looked for at least three charged isolated leptons, for two leptons with missing transverse momentum, or for two leptons with the same charge. Depending on the $\left(\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{1}^{0}\right)$ and/or $\left(\tilde{\chi}_{2}^{0}-\tilde{\chi}_{1}^{0}\right)$ mass differences, leptons may be soft.

At the LHC, the search strategy is similar to that at the Teva-

Figure 90.8: Excluded regions, at 95% C.L., in the lifetimes of long-lived particles in several models, as obtained by CMS.

Table 90.2: Summary of squark mass and gluino mass limits using different interpretation approaches assuming R-parity conservation. Masses in this table are provided in GeV. Further details about the assumptions and analyses from which these limits are obtained are discussed in the corresponding sections of the text.

Model	Assumption	$m_{\tilde{q}}$	$m_{\tilde{g}}$
Simplified model $\tilde{g} \tilde{q}, \tilde{g} \tilde{\tilde{q}}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0, m_{\tilde{q}} \approx m_{\tilde{g}} \\ m_{\tilde{\chi}_{1}^{0}}=0, \text { all } m_{\tilde{q}} \\ m_{\tilde{\chi}_{1}^{0}}=0, \text { all } m_{\tilde{g}} \end{gathered}$	$\begin{gathered} \approx 3000 \\ - \\ \approx 2600 \end{gathered}$	$\begin{aligned} & \approx 3000 \\ & \approx 2200 \\ & \quad . \end{aligned}$
$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}^{>} \approx 1200 \end{gathered}$	-	$\begin{aligned} & \approx \approx 2300 \\ & \text { no limit } \end{aligned}$
$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}>\approx 1500 \end{gathered}$	-	$\begin{gathered} \approx 2300 \\ \text { no limit } \end{gathered}$
$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}^{>} \approx 1300 \end{gathered}$	-	$\begin{aligned} & \approx \approx 2250 \\ & \text { no limit } \end{aligned}$
Simplified models $\tilde{q} \tilde{q}$			
$\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}>\approx 800 \end{gathered}$	$\begin{aligned} & \approx 1900 \\ & \text { no limit } \end{aligned}$	
$\tilde{u}_{L} \rightarrow q \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}>\approx 600 \end{gathered}$	$\begin{gathered} \approx 1300 \\ \text { no limit } \end{gathered}$	-
$\tilde{b} \rightarrow b \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}>}>700 \end{gathered}$	≈ 1250 no limit	-
$\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}>}>600 \end{gathered}$	$\begin{gathered} \approx 1200 \\ \text { no limit } \end{gathered}$	-
$\begin{gathered} \tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm} \\ \left(m_{\tilde{\chi}_{1}^{ \pm}}=\left(m_{\tilde{t}}-m_{\tilde{\chi}_{1}^{0}}\right) / 2\right) \end{gathered}$	$\begin{gathered} m_{\tilde{\chi}_{1}^{0}}=0 \\ m_{\tilde{\chi}_{1}^{0}}^{>} \approx 550 \end{gathered}$	$\begin{gathered} \approx 1150 \\ \text { no limit } \end{gathered}$	-
$\begin{gathered} \tilde{t} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \left(m_{W}<m_{\tilde{t}}-m_{\tilde{\chi}^{0}}<m_{t}\right) \end{gathered}$	$m_{\tilde{\chi}_{1}^{0}}<\approx 570$	≈ 700	-
$\begin{gathered} \tilde{t} \rightarrow c \tilde{\chi}_{1}^{0} \\ \tilde{t} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0} \\ \left(m_{\tilde{t}}-m_{\tilde{\chi}^{0}}<m_{W}\right) \end{gathered}$	$\begin{aligned} m_{\tilde{\chi}_{1}^{0}} & <\approx 450 \\ m_{\tilde{t}} & \approx m_{\tilde{\chi}_{1}^{0}} \\ m_{\tilde{\chi}_{1}^{0}} & <\approx 450 \\ m_{\tilde{t}} & \approx m_{\tilde{\chi}_{1}^{0}} \end{aligned}$	$\begin{aligned} & \approx 550 \\ & \approx 550 \\ & \approx 550 \\ & \approx 550 \end{aligned}$	- - - -

tron. As shown in Fig. 90.1, the cross section of pair production of electroweak gauginos at the LHC, for masses of several hundreds of GeV , is at least two orders of magnitude smaller than for colored SUSY particles (e.g. top squark pair production). For this reason a large data sample is required to improve the sensitivity
of LEP and Tevatron searches for direct chargino/neutralino production. With the full LHC Run 1 and Run 2 data sets, ATLAS and CMS have surpassed the limits from LEP and Tevatron in regions of SUSY parameter space.
Chargino pair production is searched for in the dilepton plus missing momentum final state. In a simplified model interpretation of the results, assuming mediation of the chargino decay by light sleptons (\tilde{e} and $\tilde{\mu}$), ATLAS [133] and CMS [134] set limits on the chargino mass up to 1 TeV for massless LSPs, but no limits on the chargino mass can be set for $\tilde{\chi}_{1}^{0}$ heavier than 480 GeV . Limits are fairly robust against variation of the slepton mass, unless the mass gap between chargino and slepton becomes small. For decays mediated through $\tilde{\tau}$ or $\tilde{\nu}_{\tau}$, limits of 630 GeV are set by ATLAS [135] for LSPs not heavier than 200 GeV . The CMS experiment provides similar limits [136]. ATLAS also sets limits on charginos decaying via a W boson [133]: chargino masses below 420 GeV are excluded for massless LSPs, but no limits are set for LSPs heavier than 120 GeV .

The trilepton plus missing momentum final state is used to set limits on $\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}$ production, assuming wino-like $\tilde{\chi}^{ \pm}$and $\tilde{\chi}_{2}^{0}$, binolike $\tilde{\chi}_{1}^{0}$, and $m_{\tilde{\chi}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}$, leaving $m_{\tilde{\chi}^{ \pm}}$and $m_{\tilde{\chi}_{1}^{0}}$ free. Again, the branching fraction of leptonic final states is determined by the slepton masses. If the decay is predominantly mediated by a light $\tilde{\ell}_{\mathrm{L}}$, i.e. $\tilde{\ell}_{\mathrm{R}}$ is assumed to be heavy, the three charged-lepton flavors will be produced in equal amounts. It is assumed that $\tilde{\ell}_{\mathrm{L}}$ and sneutrino masses are equal, and diagrams with sneutrinos are included. In this scenario, ATLAS [137] and CMS [138] exclude chargino masses below 1140 GeV for massless LSPs; no limits are set for LSP masses above 700 GeV . If the decay is dominated by a light $\tilde{\ell}_{\mathrm{R}}$, the chargino cannot be a pure wino but needs to have a large higgsino component, preferring the decays to tau leptons. Limits are set in various scenarios. If, like for $\tilde{\ell}_{\mathrm{L}}$, a flavor-democratic scenario is assumed, CMS sets limits of 1060 GeV on the chargino mass for massless LSPs, but under the assumption that both $\tilde{\chi}^{ \pm}$and $\tilde{\chi}_{2}^{0}$ decay leads to tau leptons in the final state, the chargino mass limit deteriorates to 620 GeV for massless LSPs [138]. ATLAS assumes a simplified model in which staus are significantly lighter than the other sleptons in order to search for a similar multi-tau final state, and sets a lower limit on the chargino mass of 760 GeV in this model [135]. The CMS experiment provides similar limits [136].

If sleptons are heavy, the chargino is assumed to decay to a W boson plus LSP, and the $\tilde{\chi}_{2}^{0}$ into Z plus LSP or H plus LSP. In the $W Z$ channel, ATLAS $[137,139]$ and CMS [140] limits on the chargino mass reach 650 GeV for massless LSPs, but no limits are set for LSPs heavier than 300 GeV . In the $W H$ channel, for $m_{H}=$ 125 GeV and using various Higgs decay modes, ATLAS [141143] and CMS [140] set lower limits on the chargino mass up to 740 GeV for massless LSPs, but vanish for LSP masses above 240 GeV .

The results on electroweak gaugino searches interpreted in sim-
plified models are summarized in Fig. 90.5 for the two cases of light or decoupled sleptons. For both cases, ATLAS and CMS have comparable limits.

In both the wino region (a characteristic of anomaly-mediated SUSY breaking models) and the higgsino region of the MSSM, the mass splitting between $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{1}^{0}$ is small. The chargino decay products are very soft and may escape detection. These compressed spectra are hard to detect, and have triggered dedicated search strategies. ATLAS has performed a search for charginos and neutralinos in a compressed mass spectrum using initial state radiation [144]. For wino-like charginos, assuming degenerate $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{2}^{0}$, exclusion contours in the chargino-mass versus $\Delta m\left(\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{1}^{0}\right)$ plane are derived. As an example, such charginos are excluded below 200 GeV for $\Delta m\left(\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{1}^{0}\right)=10 \mathrm{GeV}$. CMS has searched for chargino-pair production through vector-bosonfusion [145], also targetting compressed mass spectra. Assuming degenerate $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{2}^{0}$, charginos with a mass below 112 GeV are excluded for $\Delta m\left(\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{1}^{0}\right)=1 \mathrm{GeV}$. CMS has published further searches for such compressed spectra with soft leptons [146] or a soft tau lepton [147].

90.5.2 Exclusion limits on neutralino masses

In a considerable part of the MSSM parameter space, and in particular when demanding that the LSP carries no electric or color charge, the lightest neutralino $\tilde{\chi}_{1}^{0}$ is the LSP. If R-parity is conserved, such a $\tilde{\chi}_{1}^{0}$ is stable. Since it is weakly interacting, it will typically escape detectors unseen. Limits on the invisible width of the Z boson apply to neutralinos with a mass below 45.5 GeV , but depend on the Z-neutralino coupling. Such a coupling could be small or even absent; in such a scenario there is no general lower limit on the mass of the lightest neutralino [148]. In models with gaugino mass unification and sfermion mass unification at the GUT scale, a lower limit on the neutralino mass is derived from limits from direct searches, notably for charginos and sleptons, and amounts to 47 GeV [149]. Assuming a constrained model like the CMSSM, this limit increases to 50 GeV at LEP; however the strong constraints now set by the LHC increase such CMSSMderived $\tilde{\chi}_{1}^{0}$ mass limits to well above 200 GeV [150-152].

In gauge-mediated SUSY breaking models (GMSB), the LSP is typically a gravitino, and the phenomenology is determined by the nature of the next-to-lightest supersymmetric particle (NLSP). A NLSP neutralino will decay to a gravitino and a SM particle whose nature is determined by the neutralino composition. Final states with two high p_{T} photons and missing momentum are searched for, and interpreted in gauge mediation models with bino-like neutralinos [153-158].

Assuming the production of at least two neutralinos per event, neutralinos with large non-bino components can also be searched for by their decay in final states with missing momentum plus any two bosons out of the collection γ, Z, H. A number of searches at the LHC have tried to cover the rich phenomenology of the various Z and H decay modes [74, 96, 138, 140, 142, 156, 159-165].

Heavier neutralinos, in particular $\tilde{\chi}_{2}^{0}$, have been searched for in their decays to the lightest neutralino plus a γ, a Z boson or a Higgs boson. Limits on electroweak production of $\tilde{\chi}_{2}^{0}$ plus $\tilde{\chi}_{1}^{ \pm}$from trilepton analyses have been discussed in the section on charginos; the assumption of equal mass of $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{ \pm}$make the limits on chargino masses apply to $\tilde{\chi}_{2}^{0}$ as well. Multilepton analyses have also been used to set limits on $\tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}$ production; assuming equal mass and decay through light sleptons, limits are set up to 680 GeV for massless LSPs [166]. Again, compressed spectra with small mass differences between the heavier neutralinos and the LSP form the most challenging region.

In $\tilde{\chi}_{2}^{0}$ decays to $\tilde{\chi}_{1}^{0}$ and a lepton pair, the lepton pair invariant mass distribution may show a structure that can be used to measure the $\tilde{\chi}_{2}^{0}-\tilde{\chi}_{1}^{0}$ mass difference in case of a signal [35]. This structure, however, can also be used in the search strategy itself, as demonstrated by ATLAS $[167,168]$ and CMS $[96,169]$.

In models with R-parity violation, the lightest neutralino can decay even if it is the lightest supersymmetric particle. If the decay involves a non-zero λ coupling, the final state will be a

Table 90.3: Summary of weak gaugino mass limits in simplified models, assuming R-parity conservation. Masses in the table are provided in GeV . Further details about assumptions and analyses from which these limits are obtained are discussed in the text.

Assumption	m_{χ}
$\tilde{\chi}_{1}^{ \pm}, \text {all } \Delta m\left(\tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{0}\right)$	>92
$\tilde{\chi}_{1}^{ \pm} \Delta m>5, m_{\tilde{\nu}}>300$	>103.5
$\tilde{\chi}_{1}^{ \pm}, m_{(\tilde{\ell}, \tilde{\nu})}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2$	
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	> 1000
$\tilde{\chi}_{1}^{ \pm}, m_{\tilde{\chi}_{1}^{0}}>480$	no LHC limit
$\tilde{\chi}_{1}^{ \pm}, m_{\tilde{\ell}}>m_{\tilde{\chi}^{ \pm}}$	
$\begin{gathered} m_{\tilde{\chi}_{1}^{0}} \approx 0 \\ \tilde{\chi}_{1}^{ \pm}, m_{\tilde{\chi}_{1}^{0}}>120 \end{gathered}$	>420
	no LHC limit
$m_{\tilde{\chi}_{1}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{\mathrm{L}}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2$	
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	>1140
$m_{\tilde{\chi}_{1}^{0}}>700$	no LHC limit
$m_{\tilde{\chi}_{1}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2$	flavor-democratic
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	> 1060
$m_{\tilde{\chi}_{1}^{0}}>600$	no LHC limit
$m_{\tilde{\chi}_{1}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\tau}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2$	$\tilde{\tau}$-dominated
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	>620
$m_{\tilde{\chi}_{1}^{0}}>260$	no LHC limit
$m_{\tilde{\chi}_{1}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}}>m_{\tilde{\chi}_{1}^{ \pm}}, \mathrm{BF}(W Z)=1$	
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	>650
$m_{\tilde{\chi}_{1}^{0}}>300$	no LHC limit
$m_{\tilde{\chi}_{1}^{ \pm}}=m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}}>m_{\tilde{\chi}_{1}^{ \pm}}, \mathrm{BF}(W H)=1$	
$m_{\tilde{\chi}_{1}^{0}} \approx 0$	>740
$m_{\tilde{\chi}_{1}^{0}}>240$	no LHC limit

multi-lepton one. Searches for events with four or more isolated charged leptons by ATLAS [74] and CMS [78] are interpreted in such models. With very small coupling values, the neutralino would be long-lived, leading to lepton pairs with a displaced vertex, which have also been searched for $[118,124,170]$.

Various searches, including searches for multi-lepton and lepton plus jets events, and searches for events with a displaced hadronic vertex, with or without a matched lepton, are interpreted in a model with R-parity violating neutralino decays involving a nonzero λ^{\prime} coupling [75, 80, 86, 171]. Neutralino decays involving nonzero $\lambda^{\prime \prime}$ lead to fully hadronic final states, and searches for multijet events and jet-pair resonances are used to set limits, typically on the production of colored particles like top squarks or gluinos, which are assumed to be the primary produced sparticles in these interpretations, as discussed earlier [79, 84, 86].

The limits on weak gauginos in simplified models are summarized in Table 90.3. Interpretations of the search results outside simplified models, such as in the phenomenological MSSM [172176], show that the simplified model limits must be interpreted with care. Electroweak gauginos in models that are compatible with the relic density of dark matter in the universe, for example, have particularly tuned mixing parameters and mass spectra, which are not always captured by the simplified models used.

90.6 Exclusion limits on slepton masses

In models with slepton and gaugino mass unification at the GUT scale, the right-handed slepton, $\tilde{\ell}_{R}$, is expected to be lighter than the left-handed slepton, $\tilde{\ell}_{\mathrm{L}}$. For tau sleptons there may be considerable mixing between the L and R states, leading to a significant mass difference between the lighter $\tilde{\tau}_{1}$ and the heavier $\tilde{\tau}_{2}$.

Figure 90.9: The plot on the left shows the survival probability of a pMSSM parameter space model in the gluino-neutralino mass plane after the application of the relevant CMS search results. The plot on the right shows a graphical representation of the ATLAS exclusion power in a pMSSM model. Each vertical bar is a one-dimensional projection of the fraction of models points excluded for each sparticle by ATLAS analyses. The experimental results are obtained from data taken at $\sqrt{s}=7$ and 8 TeV .

90.6.1 Exclusion limits on the masses of charged sleptons

The most model-independent searches for selectrons, smuons and staus originate from the LEP experiments [177]. Smuon production only takes place via s-channel γ^{*} / Z exchange. Search results are often quoted for $\tilde{\mu}_{\mathrm{R}}$, since it is typically lighter than $\tilde{\mu}_{\mathrm{L}}$ and has a weaker coupling to the Z boson; limits are therefore conservative. Decays are expected to be dominated by $\tilde{\mu}_{\mathrm{R}} \rightarrow \mu \tilde{\chi}_{1}^{0}$, leading to two non-back-to-back muons and missing momentum. Slepton mass limits are calculated in the MSSM under the assumption of gaugino mass unification at the GUT scale, and depend on the mass difference between the smuon and $\tilde{\chi}_{1}^{0}$. A $\tilde{\mu}_{R}$ with a mass below 94 GeV is excluded for $m_{\tilde{\mu}_{R}}-m_{\tilde{\chi}_{1}^{0}}>10 \mathrm{GeV}$. The selectron case is similar to the smuon case, except that an additional production mechanism is provided by t-channel neutralino exchange. The \tilde{e}_{R} lower mass limit is 100 GeV for $m_{\tilde{\chi}_{1}^{0}}<85 \mathrm{GeV}$. Due to the t-channel neutralino exchange, $\tilde{e}_{\mathrm{R}} \tilde{e}_{\mathrm{L}}$ pair production was possible at LEP, and a lower limit of 73 GeV was set on the selectron mass regardless of the neutralino mass by scanning over MSSM parameter space [178]. The potentially large mixing between $\tilde{\tau}_{\mathrm{L}}$ and $\tilde{\tau}_{\mathrm{R}}$ not only makes the $\tilde{\tau}_{1}$ light, but can also make its coupling to the Z boson small. LEP lower limits on the $\tilde{\tau}$ mass range between 87 and 93 GeV depending on the $\tilde{\chi}_{1}^{0}$ mass, for $m_{\tilde{\tau}}-m_{\tilde{\chi}_{1}^{0}}>7 \mathrm{GeV}[177]$.

At the LHC, pair production of sleptons is not only heavily suppressed with respect to pair production of colored SUSY particles but the cross section is also almost two orders of magnitude smaller than the one of pair production of charginos and neutralinos. With the full data sets of Run 1 and Run 2, however, ATLAS and CMS have surpassed the sensitivity of the LEP analyses under certain assumptions.

Table 90.4: Summary of slepton mass limits from LEP and LHC, assuming R-parity conservation and 100% branching fraction for $\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$. Masses in this table are provided in GeV .

Assumption	$m_{\tilde{\ell}}$
$\tilde{\mu}_{\mathrm{R}}, \Delta m\left(\tilde{\mu}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}\right)>10$	>94
$\tilde{e}_{\mathrm{R}}, \Delta m\left(\tilde{e}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}\right)>10$	>94
\tilde{e}_{R}, any Δm	>73
$\tilde{\tau}_{\mathrm{R}}, \Delta m\left(\tilde{\tau}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}\right)>7$	>87
$\tilde{\nu}_{e}, \Delta m\left(\tilde{e}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}\right)>10$	>94
$m_{\tilde{e}_{\mathrm{L}, \mathrm{R}}}=m_{\tilde{\mu}_{\mathrm{L}, \mathrm{R}}}, m_{\tilde{\chi}_{1}^{0}} \approx 0$	>700
$m_{\tilde{\chi}_{1}^{0}}>\approx 400$	no LHC limit
$m_{\tilde{\tau}_{\mathrm{L}}}=m_{\tilde{\tau}_{\mathrm{R}}}, m_{\tilde{\chi}_{1}^{0}} \approx 0$	>390
$m_{\tilde{\chi}_{1}^{0}}>\approx 130$	no LHC limit

ATLAS and CMS have searched for direct production of selectron pairs and smuon pairs at the LHC, with each slepton decaying to its corresponding SM partner lepton and the $\tilde{\chi}_{1}^{0} \mathrm{LSP}$. In simplified models, ATLAS [133] and CMS [179] set lower mass limits on sleptons of 700 GeV for degenerate $\tilde{\ell}_{\mathrm{L}}$ and $\tilde{\ell}_{\mathrm{R}}$, for a massless $\tilde{\chi}_{1}^{0}$ and assuming equal selectron and smuon masses, as shown in Fig. 90.6. The limits deteriorate with increasing $\tilde{\chi}_{1}^{0}$ mass due to decreasing missing momentum and lepton momentum. As a consequence, no limits are set for $\tilde{\chi}_{1}^{0}$ masses above 400 GeV . Limits are also derived without the assumption of slepton mass degeneracy $[133,179]$. A dedicated search for sleptons with small mass difference between $\tilde{\ell}$ and $\tilde{\chi}_{1}^{0}$ is performed by ATLAS [144] demanding the presence of ISR jets.

ATLAS and CMS have also searched for $\tilde{\tau}$-pair production. In simplified models, ATLAS excludes $\tilde{\tau}$ masses between 120 and 390 GeV assuming light $\tilde{\chi}_{1}^{0}$, combining the production of degenerate left- and right-handed $\tilde{\tau} \mathrm{s}$ [180]. The CMS analysis [181] covers lower masses and closes the mass gap with LEP. No limits are set for $\tilde{\chi}_{1}^{0}$ masses above 130 GeV .

In gauge-mediated SUSY breaking models, sleptons can be (co)NLSPs, i.e., the next-to-lightest SUSY particles and almost degenerate in mass, decaying to a lepton and a gravitino. This decay can either be prompt, or the slepton can have a non-zero lifetime. Combining several analyses, lower mass limits on $\tilde{\mu}_{R}$ of 96.3 GeV and on \tilde{e}_{R} of 66 GeV are set for all slepton lifetimes at LEP [182]. In a considerable part of parameter space in these models, the $\tilde{\tau}$ is the NLSP. The LEP experiments have set lower limits on the mass of such a $\tilde{\tau}$ between 87 and 97 GeV , depending on the $\tilde{\tau}$ lifetime. ATLAS and CMS have searched for final states with $\tau \mathrm{s}$, jets and missing transverse momentum, and has interpreted the results in GMSB models setting limits on the model parameters [183, 184]. CMS has interpreted a multilepton analysis in terms of limits on gauge mediation models with slepton NLSP [185]. CDF has put limits on gauge mediation models at high $\tan \beta$ and slepton NLSP using an analysis searching for like-charge light leptons and taus [186].

Limits also exist on sleptons in R-parity violating models, both from LEP and the Tevatron experiments. From LEP, lower limits on $\tilde{\mu}_{R}$ and \tilde{e}_{R} masses in such models are 97 GeV , and the limits on the stau mass are very close: 96 GeV [187]. CMS has searched for resonant smuon production in a modified CMSSM scenario [188], putting limits on λ_{211}^{\prime} as a function of $m_{0}, m_{1 / 2}$.

90.6.2 Exclusion limits on sneutrino masses

The invisible width of the Z boson puts a lower limit on the sneutrino mass of about 45 GeV . Tighter limits are derived from other searches, notably for gauginos and sleptons, under the assumption of gaugino and sfermion mass universality at the GUT scale, and amount to approximately 94 GeV in the MSSM [189].

It is possible that the lightest sneutrino is the LSP; however, a left-handed sneutrino LSP is ruled out as a cold dark matter candidate [190, 191].

Production of pairs of sneutrinos in R-parity violating models has been searched for at LEP [187]. Assuming fully leptonic decays via λ-type couplings, lower mass limits between 85 and 100 GeV are set. At the Tevatron $[192,193]$ and at the LHC [188, 194-196], searches have focused on scenarios with resonant production of a sneutrino, decaying to $e \mu, \mu \tau$ and $e \tau$ final states. No signal has been seen, and limits have been set on sneutrino masses as a function of the value of relevant RPV couplings. As an example, the LHC experiments exclude a resonant tau sneutrino with a mass below 2.3 TeV for $\lambda_{312}=\lambda_{321}>0.07$ and $\lambda_{311}^{\prime}>0.11$.

The limits on sleptons in simplified models are summarized in Table 90.4.

90.7 Exclusion limits on long-lived sparticles

Long-lived sparticles arise in many different SUSY models. In particular in co-annihilation scenarios, where the NLSP and LSP are nearly mass-degenerate, this is rather common in order to obtain the correct Dark Matter relic density. Prominent examples are scenarios featuring stau co-annihilation, or models of SUSY breaking, e.g. minimal anomaly-mediated SUSY breaking (AMSB), in which the appropriate Dark Matter density is obtained by co-annihilation of the LSP with an almost degenerate long-lived wino. However, in general, also other sparticles can be long-lived and it is desirable to establish a comprehensive search program for these special long-lived cases, which lead to distinct experimental search signatures, including displaced vertices or disappearing tracks, etc.

Past experiments have performed dedicated searches for longlived SUSY signatures, but given the absence of any experimental evidence for SUSY so far, more effort and focus has gone into such searches at the LHC recently. As for the interpretation of more standard searches for e.g. R-parity conserving SUSY, simplified models are also a convenient tool to benchmark long-lived scenarios (see e.g. [197, 198]).

If the decay of gluinos is suppressed, for example if squark masses are high, gluinos may live longer than typical hadronization times. It is expected that such gluinos will hadronize to long-living strongly interacting particles known as R-hadrons. In particular, if the suppression of the gluino decay is strong, as in the case that the squark masses are much higher than the TeV scale, these R-hadrons can be (semi-)stable in collider timescales. Searches for such R-hadrons exploit the typical signature of stable charged massive particles in the detector. R-hadrons decaying in the detector are searched for using $d E / d x$ measurements and searches for displaced vertices. As shown in the left plot of Fig. 90.7, the ATLAS experiment excludes semi-stable gluino Rhadrons with masses below $1.9-2.3 \mathrm{TeV}$ for all lifetimes in a simplified model where such gluinos always form R-hadrons, and decay into jets and a light neutralino, by combining a number of analyses [79, 199-201]. A combination of CMS searches for long-lived particles, as shown in Fig. 90.8, reaches similar limits [82, 202-204].

Alternatively, since such R-hadrons are strongly interacting, they may be stopped in the calorimeter or in other material, and decay later into energetic jets. These decays are searched for by identifying the jets [205-207] or muons [207] outside the time window associated with bunch-bunch collisions. As shown in Fig. 90.8, the CMS collaboration sets limits on such stopped R-hadrons over 13 orders of magnitude in gluino lifetime, up to masses of 1390 GeV [207].

Top squarks can also be long-lived and hadronize to a R-hadron, for example in the scenario where the top squark is the next-tolightest SUSY particle (NLSP), with a small mass difference to the LSP. Searches for massive stable charged particles are sensitive to such top squarks. Tevatron limits are approximately $m_{\tilde{t}}>$ $300 \mathrm{GeV}[208,209]$. ATLAS sets a limit of 1340 GeV on such top squarks [200], the CMS limits are comparable [204].

In addition to colored sparticles, also sparticles like charginos may be long-lived, especially in scenarios with compressed mass spectra. Charginos decaying in the detectors away from the pri-
mary vertex could lead to signatures such as kinked-tracks, or apparently disappearing tracks, since, for example, the pion in $\tilde{\chi}_{1}^{ \pm} \rightarrow \pi^{ \pm} \tilde{\chi}_{1}^{0}$ might be too soft to be reconstructed. At the LHC, searches have been performed for such disappearing tracks, and interpreted within anomaly-mediated SUSY breaking models [210-212]. The right plot of Fig. 90.7 shows constraints for different ATLAS searches on the chargino mass-vs-lifetime plane for an AMSB model $(\tan \beta=5, \mu>0)$ in which a wino-like $\tilde{\chi}^{ \pm}$ decays to a soft pion and an almost mass-degenerated wino-like $\tilde{\chi}_{1}^{0}[200,201,211,212]$. For a similar model, CMS excludes $c \tau$ values between 0.15 and 18 m for a chargino mass of 505 GeV [210], see Fig. 90.8. Charginos with a lifetime longer than the time needed to pass through the detector appear as charged stable massive particles. Limits have been derived by the LEP experiments [213], by D0 at the Tevatron [209], and by the LHC experiments [200, 214], and such charginos with mass below 1090 GeV are excluded.

In gauge mediation models, NLSP neutralino decays need not be prompt, and experiments have searched for late decays with photons in the final state. CDF have searched for delayed $\tilde{\chi}_{1}^{0} \rightarrow$ $\gamma \tilde{G}$ decays using the timing of photon signals in the calorimeter [215]. CMS has used the same technique at the LHC [216]. Results are given as exclusion contours in the neutralino mass versus lifetime plane, and for example in a GMSB model with a neutralino mass of $300 \mathrm{GeV}, c \tau$ values between 10 and 2000 cm are excluded [216]. D0 has looked at the direction of showers in the electromagnetic calorimeter with a similar goal [217], and ATLAS has searched for photon candidates that do not point back to the primary vertex, as well as for delayed photons [218].

Charged slepton decays may be kinematically suppressed, for example in the scenario of a NLSP slepton with a very small mass difference to the LSP. Such a slepton may appear to be a stable charged massive particle. Interpretation of searches at LEP for such signatures within GMSB models with stau NLSP or slepton co-NLSP exclude masses up to 99 GeV [213]. Searches of stable charged particles at the Tevatron $[208,209]$ and at the LHC $[200,204]$ are also interpreted in terms of limits on stable charged sleptons. The limits obtained at the LHC exclude stable staus with masses below 430 GeV when produced directly in pairs, and below 660 GeV when staus are produced both directly and indirectly in the decay of other particles in a GMSB model.

90.8 Global interpretations

Apart from the interpretation of direct searches for sparticle production at colliders in terms of limits on masses of individual SUSY particles, model-dependent interpretations of allowed SUSY parameter space are derived from global SUSY fits. Typically these fits combine the results from collider experiments with indirect constraints on SUSY as obtained from low-energy experiments, flavor physics, high-precision electroweak results, and astrophysical data.

In the pre-LHC era these fits were mainly dominated by indirect constraints. Even for very constrained models like the CMSSM, the allowed parameter space, in terms of squark and gluino masses, ranged from several hundreds of GeV to a few TeV . Furthermore, these global fits indicated that squarks and gluino masses in the range of 500 to 1000 GeV were the preferred region of parameter space, although values as high as few TeV were allowed with lower probabilities [219-226].

With ATLAS and CMS now probing mass scales around 1 TeV and beyond, the importance of the direct searches for global analyses of allowed SUSY parameter space has increased. For example, imposing the new experimental limits on constrained supergravity models pushes the most likely values of first generation squark and gluino masses significantly beyond 2 TeV , typically resulting in overall values of fit quality much worse than those in the preLHC era [150-152, 174, 227-234]. Also the measured value of m_{h} pushes the sparticle masses upwards. Although these constrained models are not yet ruled out, the extended experimental limits impose very tight constraints on the allowed parameter space.

For this reason, the emphasis of global SUSY fits has shifted towards less-constrained SUSY models. Especially interpretations in the pMSSM [172-176, 214, 227] but also in simplified models have been useful to generalize SUSY searches, for example to re-

Figure 90.10: Overview of the current landscape of SUSY searches at the LHC. The plot shows exclusion mass limits of ATLAS for different searches and interpretation assumptions. The corresponding results of the CMS experiment are similar.
design experimental analyses in order to increase their sensitivity for compressed spectra, where the mass of the LSP is much closer to squark and gluino masses than predicted, for example, by the CMSSM. As shown in Table 90.2, for neutralino masses above $0.5-1 \mathrm{TeV}$ the current set of ATLAS and CMS searches, interpreted in simplified models, cannot exclude the existence of squarks or gluinos with masses only marginally above the neutralino mass. However, as these exclusion limits are defined in the context of simplified models, they are only valid for the assumptions in which these models are defined.

As an alternative approach, both ATLAS [172] and CMS [173] have performed an analysis of the impact of their searches on the parameter space of the pMSSM. Fig. 90.9 shows graphically the LHC exclusion power in the pMSSM based on searches performed at $\sqrt{s}=7$ and 8 TeV . The plot on the left shows the survival probability in the gluino-neutralino mass plane, which is a measure of the parameter space that remains after inclusion of the relevant CMS search results. As can be seen, gluino masses below about 1.2 TeV are almost fully excluded. This result agrees well with the typical exclusion obtained at 8 TeV in simplified models for gluino production. However, as shown in the right plot of Fig. 90.9, when a similar analysis for other sparticles is performed it becomes apparent that exclusions on the pMSSM parameter can be significantly less stringent than simplified model limits might suggest. This is especially apparent for the electroweak sector, where even at rather low masses several of the pMSSM test points still survive the constraint of ATLAS searches at $\sqrt{s}=7$ and 8 TeV . This again indicates that care must be taken when interpreting results from the LHC searches and there are still several scenarios where sparticles below the 1 TeV scale are not excluded, even when considering the most recent results at $\sqrt{s}=13 \mathrm{TeV}$.

Furthermore, the discovery of a Higgs boson with a mass around 125 GeV has triggered many studies regarding the compatibility of SUSY parameter space with this new particle. Much of it is still work in progress and it will be interesting to see how the interplay between the results from direct SUSY searches and more precise measurements of the properties of the Higgs boson will unfold in the future.

90.9 Summary and Outlook

The absence of any observation of new phenomena at the first run of the LHC at $\sqrt{s}=7 / 8 \mathrm{TeV}$, and after the second run at $\sqrt{s}=13 \mathrm{TeV}$, place significant constraints on SUSY parameter space. Today, inclusive searches probe production of gluinos at about 2.3 TeV , first and second generation squarks in the range of about 1 to 1.9 TeV , third generation squarks at scales around 600 GeV to 1.2 TeV , electroweak gauginos at scales around $400-$ 1100 GeV , and sleptons around 700 GeV . However, depending on the assumptions made on the underlying SUSY spectrum these limits can also weaken considerably.

With the LHC having reached almost its maximum energy of about $\sqrt{s}=14 \mathrm{TeV}$, future sensitivity improvement will have to originate from more data, the improvement of experimental analysis techniques and the focus of special signatures like the one arising in long-lived sparticle decays. Therefore, it is expected that the current landscape of SUSY searches and corresponding exclusion limits at the LHC, as, for example, shown in Fig. 90.10 from the ATLAS experiment [235] (CMS results are similar [236]), will not change as rapidly anymore as it did in the past, when the LHC underwent several successive increases of collision energy.

The interpretation of results at the LHC has moved away from constrained models like the CMSSM towards a large set of simplified models, or the pMSSM. On the one hand this move is because the LHC limits have put constrained models like the CMSSM under severe pressure, while on the other hand simplified models leave more freedom to vary parameters and form a better representation of the underlying sensitivity of analyses. However, these interpretations in simplified models do not come without a price: the decomposition of a potentially complicated reality in a limited set of individual decay chains can be significantly incomplete. Therefore, quoted limits in simplified models are only valid under the explicit assumptions made in these models. The recent addition of more comprehensive interpretations in the pMSSM will complement those derived from simplified models and, thus, will enable an even more refined understanding of the probed SUSY parameter space.

In this context, the limit range of $1.5-2.3 \mathrm{TeV}$ on generic
colored SUSY particles only holds for light neutralinos, in the R-parity conserving MSSM. Limits on third generation squarks and electroweak gauginos also only hold for light neutralinos, and under specific assumptions for decay modes and slepton masses.

The next LHC runs at $\sqrt{s}=13$ or 14 TeV with significantly larger integrated luminosities (notably the High-Luminosity LHC), will provide a large data sample for future SUSY searches. As mentioned above, the improvement in sensitivity will largely have to come from a larger data set, and evolution of trigger and analysis techniques, since there will be no significant energy increase at the LHC anymore. Although the sensitivity for colored sparticles will increase somewhat as well, the expanded data set will be particularly beneficial for electroweak gaugino searches, and for the more difficult final states presented by compressed particle spectra, stealth SUSY, long-lived sparticles, or R-parity violating scenarios.

References

[1] H. Miyazawa, Prog. Theor. Phys. 36, 6, 1266 (1966).
[2] Yu. A. Golfand and E. P. Likhtman, JETP Lett. 13, 323 (1971), [Pisma Zh. Eksp. Teor. Fiz.13,452(1971)].
[3] J.-L. Gervais and B. Sakita, Nucl. Phys. B34, 632 (1971).
[4] D. V. Volkov and V. P. Akulov, Phys. Lett. 46B, 109 (1973).
[5] J. Wess and B. Zumino, Phys. Lett. 49B, 52 (1974).
[6] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
[7] A. Salam and J. A. Strathdee, Nucl. Phys. B76, 477 (1974).
[8] H. P. Nilles, Phys. Rept. 110, 1 (1984).
[9] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[10] E. Witten, Nucl. Phys. B188, 513 (1981).
[11] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).
[12] M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981).
[13] S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1981).
[14] N. Sakai, Z. Phys. C11, 153 (1981).
[15] R. K. Kaul and P. Majumdar, Nucl. Phys. B199, 36 (1982).
[16] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).
[17] J. R. Ellis et al., Nucl. Phys. B238, 453 (1984).
[18] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996), [hep-ph/9506380].
[19] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24, 1681 (1981).
[20] W. J. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982).
[21] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196, 475 (1982).
[22] L. E. Ibanez and G. G. Ross, Phys. Lett. 105B, 439 (1981).
[23] U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B260, 447 (1991).
[24] P. Langacker and N. Polonsky, Phys. Rev. D52, 3081 (1995), [hep-ph/9503214].
[25] P. Fayet, Phys. Lett. 64B, 159 (1976).
[26] G. R. Farrar and P. Fayet, Phys. Lett. 76B, 575 (1978).
[27] B.C. Allanach and H.E. Haber, Supersymmetry, Part I (Theory), in this Review.
[28] V. Khachatryan et al. (CMS, LHCb), Nature 522, 68 (2015), [arXiv:1411.4413].
[29] R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 19, 191801 (2017), [arXiv:1703.05747].
[30] A. Höcker and W.J. Marciano, Muon Anomalous Magnetic Moment, in this Review.
[31] G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208, 19 (2013), [arXiv:1212.5226].
[32] Planck Collab., Astron. \& Astrophys. 594, A13 (2016).
[33] M. Carena et al., Status of Higgs Boson Physics, in this Review.
[34] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010).
[35] I. Hinchliffe et al., Phys. Rev. D55, 5520 (1997), [hepph/9610544].
[36] L. Randall and D. Tucker-Smith, Phys. Rev. Lett. 101, 221803 (2008), [arXiv:0806.1049].
[37] V. Khachatryan et al. (CMS), Phys. Lett. B698, 196 (2011), [arXiv:1101.1628].
[38] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 107, 221804 (2011), [arXiv:1109.2352].
[39] S. Chatrchyan et al. (CMS), JHEP 01, 077 (2013), [arXiv:1210.8115].
[40] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 9, 2568 (2013), [arXiv:1303.2985].
[41] S. Chatrchyan et al. (CMS), Phys. Rev. D85, 012004 (2012), [arXiv:1107.1279].
[42] C. G. Lester and D. J. Summers, Phys. Lett. B463, 99 (1999), [hep-ph/9906349].
[43] D. R. Tovey, JHEP 04, 034 (2008), [arXiv:0802.2879].
[44] M. R. Buckley et al., Phys. Rev. D89, 5, 055020 (2014), [arXiv:1310.4827].
[45] P. Jackson, C. Rogan and M. Santoni, Phys. Rev. D95, 3, 035031 (2017), [arXiv:1607.08307].
[46] J. M. Butterworth et al., Phys. Rev. Lett. 100, 242001 (2008), [arXiv:0802.2470].
[47] E. Halkiadakis, G. Redlinger and D. Shih, Ann. Rev. Nucl. Part. Sci. 64, 319 (2014), [arXiv:1411.1427].
[48] W. Beenakker et al., Int. J. Mod. Phys. A26, 2637 (2011), [arXiv:1105.1110].
[49] W. Beenakker et al., Nucl. Phys. B492, 51 (1997), [hepph/9610490].
[50] A.H. Chamseddine, R. Arnowitt, and P Nath, Phys. Rev. Lett. 49, 970 (1982).
[51] E. Cremmer et al., Nucl. Phys. B212, 413 (1983).
[52] P. Fayet, Phys. Lett. 70B, 461 (1977).
[53] M. Dine, A. E. Nelson and Y. Shirman, Phys. Rev. D51, 1362 (1995), [hep-ph/9408384].
[54] P. Meade, N. Seiberg and D. Shih, Prog. Theor. Phys. Suppl. 177, 143 (2009), [arXiv:0801.3278].
[55] G. F. Giudice et al., JHEP 12, 027 (1998), [hepph/9810442].
[56] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999), [hep-th/9810155].
[57] R. L. Arnowitt and P. Nath, Phys. Rev. Lett. 69, 725 (1992).
[58] G. L. Kane et al., Phys. Rev. D49, 6173 (1994), [hepph/9312272].
[59] A. Djouadi, J.-L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007), [hep-ph/0211331].
[60] C. F. Berger et al., JHEP 02, 023 (2009), [arXiv:0812.0980].
[61] H. Baer et al., in "Workshop on Physics at Current Accelerators and the Supercollider Argonne, Illinois, June 2-5, 1993," 0703-720 (1993), [hep-ph/9305342], URL http://lss.fnal.gov/cgi-bin/find_paper.pl?other/ ssc/sscl-preprint-441.
[62] R. M. Barnett, H. E. Haber and G. L. Kane, Nucl. Phys. B267, 625 (1986).
[63] H. Baer, D. Karatas and X. Tata, Phys. Lett. B183, 220 (1987).
[64] J. Alwall, P. Schuster and N. Toro, Phys. Rev. D79, 075020 (2009), [arXiv:0810.3921].
[65] J. Alwall et al., Phys. Rev. D79, 015005 (2009), [arXiv:0809.3264].
[66] O. Buchmueller and J. Marrouche, Int. J. Mod. Phys. A29, 06, 1450032 (2014), [arXiv:1304.2185].
[67] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-02.1, http://lepsusy.web.cern.ch/lepsusy.
[68] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 121801 (2009), [arXiv:0811.2512].
[69] V. M. Abazov et al. (D0), Phys. Lett. B660, 449 (2008), [arXiv:0712.3805].
[70] ATLAS Collab., ATLAS-CONF-2019-040 (2019).
[71] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1908.04722].
[72] ATLAS Collab., ATLAS-CONF-2018-041 (2018).
[73] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1909.03460].
[74] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 3, 032009 (2018), [arXiv:1804.03602].
[75] M. Aaboud et al. (ATLAS), JHEP 09, 084 (2017), [arXiv:1706.03731].
[76] CMS Collab., CMS-PAS-SUS-19-008 (2019).
[77] V. Khachatryan et al. (CMS), Phys. Rev. D94, 11, 112009 (2016), [arXiv:1606.08076].
[78] CMS Collab., CMS-PAS-SUS-13-010 (2013).
[79] ATLAS Collab., ATLAS-CONF-2018-003 (2018).
[80] G. Aad et al. (ATLAS), Phys. Rev. D92, 7, 072004 (2015), [arXiv:1504.05162].
[81] A. M. Sirunyan et al. (CMS), Phys. Rev. D98, 9, 092011 (2018), [arXiv:1808.03078].
[82] A. M. Sirunyan et al. (CMS), Phys. Rev. D99, 3, 032011 (2019), [arXiv:1811.07991].
[83] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 107, 042001 (2011), [arXiv:1105.2815].
[84] M. Aaboud et al. (ATLAS), Phys. Lett. B785, 136 (2018), [arXiv:1804.03568].
[85] ATLAS Collab., ATLAS-CONF-2016-057 (2016).
[86] M. Aaboud et al. (ATLAS), JHEP 09, 088 (2017), [arXiv:1704.08493].
[87] A. M. Sirunyan et al. (CMS), Phys. Lett. B783, 114 (2018), [arXiv:1712.08920].
[88] S. Chatrchyan et al. (CMS), Phys. Lett. B730, 193 (2014), [arXiv:1311.1799].
[89] V. Khachatryan et al. (CMS), Phys. Lett. B770, 257 (2017), [arXiv:1608.01224].
[90] M. Aaboud et al. (ATLAS), JHEP 09, 050 (2018), [arXiv:1805.01649].
[91] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 105, 081802 (2010), [arXiv:1005.3600].
[92] V. M. Abazov et al. (D0), Phys. Lett. B693, 95 (2010), [arXiv:1005.2222].
[93] M. Aaboud et al. (ATLAS), JHEP 11, 195 (2017), [arXiv:1708.09266].
[94] G. Aad et al. (ATLAS) (2019), [arXiv:1909.08457].
[95] G. Aad et al. (ATLAS) (2019), [arXiv:1908.03122].
[96] A. M. Sirunyan et al. (CMS), JHEP 03, 076 (2018), [arXiv:1709.08908].
[97] C. Boehm, A. Djouadi and Y. Mambrini, Phys. Rev. D61, 095006 (2000), [hep-ph/9907428].
[98] T. Aaltonen et al. (CDF), Phys. Rev. D82, 092001 (2010), [arXiv:1009.0266].
[99] V. M. Abazov et al. (D0), Phys. Lett. B696, 321 (2011), [arXiv:1009.5950].
[100] T. Aaltonen et al. (CDF), JHEP 10, 158 (2012), [arXiv:1203.4171].
[101] V. M. Abazov et al. (D0), Phys. Lett. B665, 1 (2008), [arXiv:0803.2263].
[102] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 104, 251801 (2010), [arXiv:0912.1308].
[103] V. M. Abazov et al. (D0), Phys. Lett. B674, 4 (2009), [arXiv:0901.1063].
[104] CMS Collab., CMS-PAS-SUS-19-009 (2019).
[105] M. Aaboud et al. (ATLAS), JHEP 12, 085 (2017), [arXiv:1709.04183].
[106] M. Aaboud et al. (ATLAS), JHEP 06, 108 (2018), [arXiv:1711.11520].
[107] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 3, 032008 (2018), [arXiv:1803.10178].
[108] CMS Collab., CMS-PAS-SUS-19-003 (2019).
[109] ATLAS Collab., ATLAS-CONF-2019-017 (2019).
[110] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 12, 898 (2017), [arXiv:1708.03247].
[111] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 10, 710 (2017), [arXiv:1705.04650].
[112] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 3, 032003 (2017), [arXiv:1704.07781].
[113] A. M. Sirunyan et al. (CMS), JHEP 10, 005 (2017), [arXiv:1707.03316].
[114] A. M. Sirunyan et al. (CMS), JHEP 10, 019 (2017), [arXiv:1706.04402].
[115] M. Aaboud et al. (ATLAS), JHEP 01, 126 (2018), [arXiv:1711.03301].
[116] F. D. Aaron et al. (H1), Eur. Phys. J. C71, 1572 (2011), [arXiv:1011.6359].
[117] ATLAS Collab., ATLAS-CONF-2015-018 (2015).
[118] V. Khachatryan et al. (CMS), Phys. Rev. D91, 5, 052012 (2015), [arXiv:1411.6977].
[119] S. Chekanov et al. (ZEUS), Eur. Phys. J. C50, 269 (2007), [hep-ex/0611018].
[120] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 111, 22, 221801 (2013), [arXiv:1306.6643].
[121] M. Aaboud et al. (ATLAS), Phys. Rev. D97, 3, 032003 (2018), [arXiv:1710.05544].
[122] ATLAS Collab., ATLAS-CONF-2019-006 (2019).
[123] A. M. Sirunyan et al. (CMS), Phys. Rev. D99, 3, 032014 (2019), [arXiv:1808.05082].
[124] CMS Collab., CMS-PAS-EXO-16-022 (2016).
[125] V. Khachatryan et al. (CMS), Phys. Lett. B760, 178 (2016), [arXiv:1602.04334].
[126] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 3, 250 (2018), [arXiv:1710.07171].
[127] V. Khachatryan et al. (CMS), Phys. Rev. D95, 1, 012009 (2017), [arXiv:1610.05133].
[128] V. Khachatryan et al. (CMS), Phys. Lett. B747, 98 (2015), [arXiv:1412.7706].
[129] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/01-03.1, http://lepsusy.web.cern.ch/lepsusy.
[130] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-04.1, http://lepsusy.web.cern.ch/lepsusy.
[131] CDF Collab., CDF Note 10636 (2011).
[132] V. M. Abazov et al. (D0), Phys. Lett. B680, 34 (2009), [arXiv:0901.0646].
[133] G. Aad et al. (ATLAS) (2019), [arXiv:1908.08215].
[134] A. M. Sirunyan et al. (CMS), JHEP 11, 079 (2018), [arXiv:1807.07799].
[135] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 2, 154 (2018), [arXiv:1708.07875].
[136] A. M. Sirunyan et al. (CMS), JHEP 11, 151 (2018), [arXiv:1807.02048].
[137] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 12, 995 (2018), [arXiv:1803.02762].
[138] A. M. Sirunyan et al. (CMS), JHEP 03, 166 (2018), [arXiv:1709.05406].
[139] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 9, 092012 (2018), [arXiv:1806.02293].
[140] A. M. Sirunyan et al. (CMS), JHEP 03, 160 (2018), [arXiv:1801.03957].
[141] M. Aaboud et al. (ATLAS), Phys. Rev. D100, 1, 012006 (2019), [arXiv:1812.09432].
[142] ATLAS Collab., ATLAS-CONF-2019-019 (2019).
[143] G. Aad et al. (ATLAS) (2019), [arXiv:1909.09226].
[144] ATLAS Collab., ATLAS-CONF-2019-014 (2019).
[145] A. M. Sirunyan et al. (CMS), JHEP 08, 150 (2019), [arXiv:1905.13059].
[146] A. M. Sirunyan et al. (CMS), Phys. Lett. B782, 440 (2018), [arXiv:1801.01846].
[147] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1910.01185].
[148] H. K. Dreiner et al., Eur. Phys. J. C62, 547 (2009), [arXiv:0901.3485].
[149] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-07.1, http://lepsusy.web.cern.ch/lepsusy.
[150] O. Buchmueller et al., Eur. Phys. J. C74, 6, 2922 (2014), [arXiv:1312.5250].
[151] C. Strege et al., JCAP 1304, 013 (2013), [arXiv:1212.2636].
[152] A. Fowlie et al., Phys. Rev. D86, 075010 (2012), [arXiv:1206.0264].
[153] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-09.1, http://lepsusy.web.cern.ch/lepsusy.
[154] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 104, 011801 (2010), [arXiv:0910.3606].
[155] V. M. Abazov et al. (D0), Phys. Rev. Lett. 105, 221802 (2010), [arXiv:1008.2133].
[156] M. Aaboud et al. (ATLAS), Phys. Rev. D97, 9, 092006 (2018), [arXiv:1802.03158].
[157] A. M. Sirunyan et al. (CMS), JHEP 06, 143 (2019), [arXiv:1903.07070].
[158] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.00857].
[159] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 9, 092002 (2018), [arXiv:1806.04030].
[160] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 1, 012001 (2019), [arXiv:1808.03057].
[161] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 5, 444 (2019), [arXiv:1901.06726].
[162] A. M. Sirunyan et al. (CMS), JHEP 01, 154 (2019), [arXiv:1812.04066].
[163] A. M. Sirunyan et al. (CMS), Phys. Lett. B780, 118 (2018), [arXiv:1711.08008].
[164] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 3, 032007 (2018), [arXiv:1709.04896].
[165] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 166 (2018), [arXiv:1709.00384].
[166] G. Aad et al. (ATLAS), Phys. Rev. D93, 5, 052002 (2016), [arXiv:1509.07152].
[167] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 8, 625 (2018), [arXiv:1805.11381].
[168] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 3, 144 (2017), [arXiv:1611.05791].
[169] C. P. Herzog and M. Spillane, JHEP 04, 124 (2016), [arXiv:1506.06757].
[170] G. Aad et al. (ATLAS) (2019), [arXiv:1907.10037].
[171] V. Khachatryan et al. (CMS), Phys. Rev. D91, 1, 012007 (2015), [arXiv:1411.6530].
[172] G. Aad et al. (ATLAS), JHEP 10, 134 (2015), [arXiv:1508.06608].
[173] V. Khachatryan et al. (CMS), JHEP 10, 129 (2016), [arXiv:1606.03577].
[174] P. Athron et al. (GAMBIT), Eur. Phys. J. C77, 12, 879 (2017), [arXiv:1705.07917].
[175] K. J. de Vries et al., Eur. Phys. J. C75, 9, 422 (2015), [arXiv:1504.03260].
[176] C. Strege et al., JHEP 09, 081 (2014), [arXiv:1405.0622].
[177] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-01.1, http://lepsusy.web.cern.ch/lepsusy.
[178] A. Heister et al. (ALEPH), Phys. Lett. B544, 73 (2002), [hep-ex/0207056].
[179] A. M. Sirunyan et al. (CMS), Phys. Lett. B790, 140 (2019), [arXiv:1806.05264].
[180] ATLAS Collab., ATLAS-CONF-2019-018 (2019).
[181] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.13179].
[182] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-09.2, http://lepsusy.web.cern.ch/lepsusy.
[183] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 1, 012009 (2019), [arXiv:1808.06358].
[184] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 2493 (2013), [arXiv:1301.3792].
[185] S. Chatrchyan et al. (CMS), Phys. Rev. D90, 032006 (2014), [arXiv:1404.5801].
[186] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 110, 20, 201802 (2013), [arXiv:1302.4491].
[187] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-10.1, http://lepsusy.web.cern.ch/lepsusy.
[188] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 4, 305 (2019), [arXiv:1811.09760].
[189] DELPHI Collab., Eur. Phys. J. C31, 412 (2003).
[190] T. Falk, K. A. Olive and M. Srednicki, Phys. Lett. B339, 248 (1994), [hep-ph/9409270].
[191] C. Arina and N. Fornengo, JHEP 11, 029 (2007), [arXiv:0709.4477].
[192] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 105, 191801 (2010), [arXiv:1004.3042].
[193] V. M. Abazov et al. (D0), Phys. Rev. Lett. 105, 191802 (2010), [arXiv:1007.4835].
[194] G. Aad et al. (ATLAS), Phys. Rev. Lett. 115, 3, 031801 (2015), [arXiv:1503.04430].
[195] M. Aaboud et al. (ATLAS), Eur. Phys. J. C76, 10, 541 (2016), [arXiv:1607.08079].
[196] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 6, 317 (2016), [arXiv:1604.05239].
[197] O. Buchmueller et al., JHEP 09, 076 (2017), [arXiv:1704.06515].
[198] V. V. Khoze, A. D. Plascencia and K. Sakurai, JHEP 06, 041 (2017), [arXiv:1702.00750].
[199] M. Aaboud et al. (ATLAS), Phys. Rev. D97, 5, 052012 (2018), [arXiv:1710.04901].
[200] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 9, 092007 (2019), [arXiv:1902.01636].
[201] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 9, 407 (2015), [arXiv:1506.05332].
[202] A. M. Sirunyan et al. (CMS), Phys. Lett. B797, 134876 (2019), [arXiv:1906.06441].
[203] A. M. Sirunyan et al. (CMS), JHEP 05, 025 (2018), [arXiv:1802.02110].
[204] CMS Collab., CMS-PAS-EXO-16-036 (2016).
[205] V. M. Abazov et al. (D0), Phys. Rev. Lett. 99, 131801 (2007), [arXiv:0705.0306].
[206] G. Aad et al. (ATLAS), Phys. Rev. D88, 11, 112003 (2013), [arXiv:1310.6584].
[207] A. M. Sirunyan et al. (CMS), JHEP 05, 127 (2018), [arXiv:1801.00359].
[208] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 103, 021802 (2009), [arXiv:0902.1266].
[209] V. M. Abazov et al. (D0), Phys. Rev. D87, 5, 052011 (2013), [arXiv:1211.2466].
[210] A. M. Sirunyan et al. (CMS), JHEP 08, 016 (2018), [arXiv:1804.07321].
[211] M. Aaboud et al. (ATLAS), JHEP 06, 022 (2018), [arXiv:1712.02118].
[212] G. Aad et al. (ATLAS), Phys. Rev. D88, 11, 112006 (2013), [arXiv:1310.3675].
[213] LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-05.1, http://lepsusy.web.cern.ch/lepsusy.
[214] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 7, 325 (2015), [arXiv:1502.02522].
[215] T. Aaltonen et al. (CDF), Phys. Rev. D88, 3, 031103 (2013), [arXiv:1307.0474].
[216] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1909.06166].
[217] V. M. Abazov et al. (D0), Phys. Rev. Lett. 101, 111802 (2008), [arXiv:0806.2223].
[218] G. Aad et al. (ATLAS), Phys. Rev. D90, 11, 112005 (2014), [arXiv:1409.5542].
[219] O. Buchmueller et al., Eur. Phys. J. C71, 1722 (2011), [arXiv:1106.2529].
[220] E. A. Baltz and P. Gondolo, JHEP 10, 052 (2004), [hepph/0407039].
[221] B. C. Allanach and C. G. Lester, Phys. Rev. D73, 015013 (2006), [hep-ph/0507283].
[222] R. Ruiz de Austri, R. Trotta and L. Roszkowski, JHEP 05, 002 (2006), [hep-ph/0602028].
[223] R. Lafaye et al., Eur. Phys. J. C54, 617 (2008), [arXiv:0709.3985].
[224] M. Shaposhnikov, JHEP 08, 008 (2008), [arXiv:0804.4542].
[225] R. Trotta et al., JHEP 12, 024 (2008), [arXiv:0809.3792].
[226] P. Bechtle et al., Eur. Phys. J. C66, 215 (2010), [arXiv:0907.2589].
[227] E. Bagnaschi et al., Eur. Phys. J. C 78, 256, 1 (2018).
[228] J. Costa et al., Eur. Phys. J. C 78, 158, 1 (2018).
[229] E. Bagnaschi et al., Eur. Phys. J. C77, 4, 268 (2017), [arXiv:1612.05210].
[230] E. Bagnaschi et al., Eur. Phys. J. C77, 2, 104 (2017), [arXiv:1610.10084].
[231] L. A. Harland-Lang, V. A. Khoze and M. G. Ryskin, Eur. Phys. J. C76, 1, 9 (2016), [arXiv:1508.02718].
[232] E. A. Bagnaschi et al., Eur. Phys. J. C75, 500 (2015), [arXiv:1508.01173].
[233] O. Buchmueller et al., Eur. Phys. J. C74, 12, 3212 (2014), [arXiv:1408.4060].
[234] M. Citron et al., Phys. Rev. D87, 3, 036012 (2013), [arXiv:1212.2886].
[235] Supersymmetry Physics Results, ATLAS experiment, http://twiki.cern.ch/twiki/bin/view/ AtlasPublic/SupersymmetryPublicResults/.
[236] Supersymmetry Physics Results, CMS experiment, http://cms-results.web.cern.ch/cms-results/ public-results/publications/SUS/index.html.

91. Axions and Other Similar Particles

Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington).

91.1 Introduction

In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spontaneous breaking of a global $\mathrm{U}(1)$ symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions $\left(A^{0}\right)[1-4]$ and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry.

A common feature of these light bosons ϕ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is

$$
\begin{equation*}
\mathcal{L}=f^{-1} J^{\mu} \partial_{\mu} \phi, \tag{91.1}
\end{equation*}
$$

where J^{μ} is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators.

Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.

Originally it was assumed that the PQ scale f_{A} was related to the electroweak symmetry-breaking scale $v_{\text {EW }}=\left(\sqrt{2} G_{\mathrm{F}}\right)^{-1 / 2}=$ 247 GeV . However, the associated "standard" and "variant" axions were quickly excluded-we refer to the Listings for detailed limits. Here we focus on "invisible axions" with $f_{A} \gg v_{\mathrm{EW}}$ as the main possibility.

Axions have a characteristic two-photon vertex, inherited from their mixing with π^{0} and η. This coupling allows for the main search strategy based on axion-photon conversion in external magnetic fields [6], an effect that also can be of astrophysical interest. While for axions the product " $A \gamma \gamma$ interaction strength \times mass" is essentially fixed by the corresponding π^{0} properties, one may consider a more general class of axion-like particles (ALPs) where the two parameters (coupling and mass) are independent. A number of experiments explore this more general parameter space. ALPs populating the latter are predicted to arise generically, in addition to the axion, in low-energy effective field theories emerging from string theory $[7-14]$. The latter often contain also very light Abelian vector bosons under which the Standard-Model particles are not charged: so-called hidden-sector photons, dark photons or paraphotons. They share a number of phenomenological features with the axion and ALPs, notably the possibility of hidden photon to photon conversion. Their physics cases and the current constraints are compiled in Refs. [15-17].

91.2 Theory

91.2.1 Peccei-Quinn mechanism and axions

The QCD Lagrangian includes a CP-violating term $\mathcal{L}_{\Theta}=$ $-\bar{\Theta}\left(\alpha_{s} / 8 \pi\right) G^{\mu \nu a} \tilde{G}_{\mu \nu}^{a}$, where $-\pi \leq \bar{\Theta} \leq+\pi$ is the effective Θ parameter after diagonalizing quark masses, $G_{\mu \nu}^{a}$ is the color field strength tensor, and $\tilde{G}^{a, \mu \nu} \equiv \epsilon^{\mu \nu \lambda \rho} G_{\lambda \rho}^{a} / 2$, with $\varepsilon^{0123}=1$, its dual. Limits on the neutron electric dipole moment [18] imply $|\bar{\Theta}| \lesssim 10^{-10}$ even though $\bar{\Theta}=\mathcal{O}(1)$ is otherwise completely satisfactory. The spontaneously broken global Peccei-Quinn symmetry $\mathrm{U}(1)_{\mathrm{PQ}}$ was introduced to solve this "strong CP problem" [1, 2], the axion being the pseudo-NG boson of $\mathrm{U}(1)_{\mathrm{PQ}}[3,4]$. This symmetry is broken due to the axion's anomalous triangle coupling to gluons,

$$
\begin{equation*}
\mathcal{L}=\left(\frac{\phi_{A}}{f_{A}}-\bar{\Theta}\right) \frac{\alpha_{s}}{8 \pi} G^{\mu \nu a} \tilde{G}_{\mu \nu}^{a} \tag{91.2}
\end{equation*}
$$

where ϕ_{A} is the axion field and f_{A} the axion decay constant. Color anomaly factors have been absorbed in the normalization of f_{A} which is defined by this Lagrangian. Thus normalized, f_{A}
is the quantity that enters all low-energy phenomena [19]. Nonperturbative topological fluctuations of the gluon fields in QCD induce a potential for ϕ_{A} whose minimum is at $\phi_{A}=\bar{\Theta} f_{A}$, thereby canceling the $\bar{\Theta}$ term in the QCD Lagrangian and thus restoring CP symmetry.

The resulting axion mass, in units of the PQ scale f_{A}, is identical to the square root of the topological susceptibility in QCD, $m_{A} f_{A}=\sqrt{\chi}$. The latter can be evaluated further [20,21], exploiting the chiral limit (masses of up and down quarks much smaller than the scale of QCD), yielding $m_{A} f_{A}=\sqrt{\chi} \approx f_{\pi} m_{\pi}$, where $m_{\pi}=135 \mathrm{MeV}$ and $f_{\pi} \approx 92 \mathrm{MeV}$. In more detail one finds, to next-to-next-to-leading order in chiral perturbation theory [22],

$$
\begin{equation*}
m_{A}=5.691(51)\left(\frac{10^{9} \mathrm{GeV}}{f_{A}}\right) \mathrm{meV} \tag{91.3}
\end{equation*}
$$

A direct calculation of the topological susceptibility via QCD lattice simulations finds almost the same central value, albeit with an about five times larger error bar [23].

Axions with $f_{A} \gg v_{\text {EW }}$ evade all current experimental limits. One generic class of models invokes "hadronic axions" where new heavy quarks carry $\mathrm{U}(1)_{\mathrm{PQ}}$ charges, leaving ordinary quarks and leptons without tree-level axion couplings. The archetype is the KSVZ model [24], where in addition the heavy new quarks are electrically neutral. Another generic class requires at least two Higgs doublets and ordinary quarks and leptons carry PQ charges, the archetype being the DFSZ model [25]. All of these models contain at least one electroweak singlet scalar that acquires a vacuum expectation value and thereby breaks the PQ symmetry. The KSVZ and DFSZ models are frequently used as benchmark examples, but other models exist where both heavy quarks and Higgs doublets carry PQ charges. In supersymmetric models, the axion is part of a supermultiplet and thus inevitably accompanied by a spin- 0 saxion and a spin- 1 axino, which both also have couplings suppressed by f_{A} and are expected to have large masses due to supersymmetry breaking [26].

91.2.2 Model-dependent axion couplings

Although the generic axion interactions scale approximately with f_{π} / f_{A} from the corresponding π^{0} couplings, there are nonnegligible model-dependent factors and uncertainties. The axion's two-photon interaction plays a key role for many searches,

$$
\begin{equation*}
\mathcal{L}_{A \gamma \gamma}=-\frac{g_{A \gamma \gamma}}{4} F_{\mu \nu} \tilde{F}^{\mu \nu} \phi_{A}=g_{A \gamma \gamma} \mathbf{E} \cdot \mathbf{B} \phi_{A} \tag{91.4}
\end{equation*}
$$

where F is the electromagnetic field-strength tensor and $\tilde{F}^{\mu \nu} \equiv$ $\epsilon^{\mu \nu \lambda \rho} F_{\lambda \rho} / 2$, with $\varepsilon^{0123}=1$, its dual. The coupling constant is [27]
$g_{A \gamma \gamma}=\frac{\alpha}{2 \pi f_{A}}\left(\frac{E}{N}-1.92(4)\right)=\left(0.203(3) \frac{E}{N}-0.39(1)\right) \frac{m_{A}}{\mathrm{GeV}^{2}}$, (91.5)
where E and N are the electromagnetic and color anomalies of the axial current associated with the axion. In grand unified models, and notably for DFSZ [25], $E / N=8 / 3$, whereas for KSVZ [24] $E / N=0$ if the electric charge of the new heavy quark is taken to vanish. In general, a broad range of E / N values is possible $[28,29]$, as indicated by the diagonal yellow band in Fig. 91.1. However, this band still does not exhaust all the possibilities. In fact, there exist classes of QCD axion models whose photon couplings populate the entire still allowed region above the yellow band in Fig. 91.1, motivating axion search efforts over a wide range of masses and couplings [30,31].

The two-photon decay width is

$$
\begin{equation*}
\Gamma_{A \rightarrow \gamma \gamma}=\frac{g_{A \gamma \gamma}^{2} m_{A}^{3}}{64 \pi}=1.1 \times 10^{-24} \mathrm{~s}^{-1}\left(\frac{m_{A}}{\mathrm{eV}}\right)^{5} \tag{91.6}
\end{equation*}
$$

The second expression uses Eq. (91.5) with $E / N=0$. Axions decay faster than the age of the universe if $m_{A} \gtrsim 20 \mathrm{eV}$. The interaction with fermions f has derivative form and is invariant under a shift $\phi_{A} \rightarrow \phi_{A}+\phi_{0}$ as behooves a NG boson,

$$
\begin{equation*}
\mathcal{L}_{A f f}=\frac{C_{f}}{2 f_{A}} \bar{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{f} \partial_{\mu} \phi_{A} \tag{91.7}
\end{equation*}
$$

Figure 91.1: Exclusion plot for ALPs as described in the text.

Here, Ψ_{f} is the fermion field, m_{f} its mass, and C_{f} a modeldependent coefficient. The dimensionless combination $g_{A f f} \equiv$ $C_{f} m_{f} / f_{A}$ plays the role of a Yukawa coupling and $\alpha_{A f f} \equiv$ $g_{A f f}^{2} / 4 \pi$ of a "fine-structure constant." The often-used pseudoscalar form $\mathcal{L}_{\text {Aff }}=-\mathrm{i}\left(C_{f} m_{f} / f_{A}\right) \bar{\Psi}_{f} \gamma_{5} \Psi_{f} \phi_{A}$ need not be equivalent to the appropriate derivative structure, for example when two NG bosons are attached to one fermion line as in axion emission by nucleon bremsstrahlung [32].
In the DFSZ model [25], the tree-level coupling coefficient to electrons is [33]

$$
\begin{equation*}
C_{e}=\frac{\sin ^{2} \beta}{3} \tag{91.8}
\end{equation*}
$$

where $\tan \beta$ is the ratio of the vacuum expectation values of the two Higgs doublets giving masses to the up- and down-type quarks, respectively: $\tan \beta=v_{u} / v_{d}$.

For nucleons, $C_{p, n}$ have been determined as [27]

$$
\begin{align*}
C_{p}=-0.47(3) & +0.88(3) C_{u}-0.39(2) C_{d}-0.038(5) C_{s} \\
& -0.012(5) C_{c}-0.009(2) C_{b}-0.0035(4) C_{t} \\
C_{n}=-0.02(3) & +0.88(3) C_{d}-0.39(2) C_{u}-0.038(5) C_{s} \\
& -0.012(5) C_{c}-0.009(2) C_{b}-0.0035(4) C_{t} \tag{91.9}
\end{align*}
$$

in terms of the corresponding model-dependent quark couplings $C_{q}, q=u, d, s, c, b, t$.
For hadronic axions with $C_{q}=0, C_{n}$ is compatible with zero whereas C_{p} does not vanish. In the DFSZ model, on the other hand, $C_{u}=C_{c}=C_{t}=\frac{1}{3} \cos ^{2} \beta$ and $C_{d}=C_{s}=C_{b}=\frac{1}{3} \sin ^{2} \beta$, and C_{p} and C_{n}, as functions of β,

$$
\begin{align*}
& C_{p}=-0.435 \sin ^{2} \beta+(-0.182 \pm 0.025) \\
& C_{n}=0.414 \sin ^{2} \beta+(-0.160 \pm 0.025) \tag{91.10}
\end{align*}
$$

do not vanish simultaneously.
The axion-pion interaction is given by the Lagrangian [34]

$$
\begin{equation*}
\mathcal{L}_{A \pi}=\frac{C_{A \pi}}{f_{\pi} f_{A}}\left(\pi^{0} \pi^{+} \partial_{\mu} \pi^{-}+\pi^{0} \pi^{-} \partial_{\mu} \pi^{+}-2 \pi^{+} \pi^{-} \partial_{\mu} \pi^{0}\right) \partial_{\mu} \phi_{A} \tag{91.11}
\end{equation*}
$$

where $C_{A \pi}=(1-z) /[3(1+z)]$ in hadronic models, with $0.38<$ $z=m_{u} / m_{d}<0.58[35,36]$. The chiral symmetry-breaking Lagrangian provides an additional term $\mathcal{L}_{A \pi}^{\prime} \propto\left(m_{\pi}^{2} / f_{\pi} f_{A}\right)\left(\pi^{0} \pi^{0}+\right.$ $\left.2 \pi^{-} \pi^{+}\right) \pi^{0} \phi_{A}$. For hadronic axions it vanishes identically, in contrast to the DFSZ model (Roberto Peccei, private communication).

91.3 Laboratory Searches

91.3.1 Light shining through walls

Searching for "invisible axions" is extremely challenging due to its extraordinarily feeble coupling to normal matter and radiation. Currently, the most promising approaches rely on the axion-two-photon interaction, allowing for axion-photon conversion in external electric or magnetic fields [6]. For the Coulomb field of a charged particle, the conversion is best viewed as a scattering process, $\gamma+Z e \leftrightarrow Z e+A$, called Primakoff effect [37].

In the other extreme of a macroscopic field, usually a large-scale B-field, the momentum transfer is small, the interaction is coherent over a large distance, and the conversion is best viewed as an axion-photon oscillation phenomenon in analogy to neutrino flavor oscillations [38].

Photons propagating through a transverse magnetic field, with incident \mathbf{E}_{γ} and magnetic field \mathbf{B} parallel, may convert into axions. For $m_{A}^{2} L / 2 \omega \ll 2 \pi$, where L is the length of the B field region and ω the photon energy, the resultant axion beam is coherent with the incident photon beam and the conversion probability is $\Pi \sim(1 / 4)\left(g_{A \gamma \gamma} B L\right)^{2}$. A practical realization uses a laser beam propagating down the bore of a superconducting dipole magnet (like the bending magnets in high-energy accelerators). If another magnet is in line with the first, but shielded by an optical barrier, then photons may be regenerated from the pure axion beam [39, 40]. The overall probability is $P(\gamma \rightarrow A \rightarrow \gamma)=\Pi^{2}$.

The first such Light-Shining-through-Walls (LSW) experiment was performed by the BFRT collaboration. It utilized two magnets of length $L=4.4 \mathrm{~m}$ and $B=3.7 \mathrm{~T}$ and found $\left|g_{A \gamma \gamma}\right|<$ $6.7 \times 10^{-7} \mathrm{GeV}^{-1}$ at 95% CL for $m_{A}<1 \mathrm{meV}$ [41]. More recently, several such experiments were performed (see Listings) [42-48]. The current best limit, $\left|g_{A \gamma \gamma}\right|<3.5 \times 10^{-8} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$ for $m_{A} \lesssim 0.3 \mathrm{meV}$ (see Fig. 91.1), has been achieved by the OSQAR (Optical Search for QED Vacuum Birefringence, Axions, and Photon Regeneration) experiment, which exploited two 9 T LHC dipole magnets and an 18.5 W continuous wave laser emitting at the wavelength of 532 nm [48]. Some of these experiments have also reported limits for scalar bosons where the photon \mathbf{E}_{γ} must be chosen perpendicular to the magnetic field \mathbf{B}.

The concept of resonantly enhanced photon regeneration may open unexplored regions of coupling strength [49,50]. In this scheme, both the production and detection magnets are within Fabry-Perot optical cavities and actively locked in frequency. The $\gamma \rightarrow A \rightarrow \gamma$ rate is enhanced by a factor $\mathcal{F} \mathcal{F}^{\prime} / \pi^{2}$ relative to a single-pass experiment, where \mathcal{F} and \mathcal{F}^{\prime} are the finesses of the two cavities. The resonant enhancement could be of order $10^{(10-12)}$, improving the $g_{A \gamma \gamma}$ sensitivity by $10^{(2.5-3)}$. The experiment ALPS II (Any Light Particle Search II) is based on this concept and aims at an improvement of the current laboratory bound on $g_{A \gamma \gamma}$ by a factor $\sim 10^{3}$ in the year 2020 [51].

Resonantly enhanced photon regeneration has already been exploited in experiments searching for 'radiowaves shining through a shielding' [52-55]. For $m_{A} \lesssim 10^{-5} \mathrm{eV}$, the upper bound on $g_{A \gamma \gamma}$ established by the CROWS (CERN Resonant Weakly Interacting sub-eV Particle Search) experiment [56] is slightly less stringent than the one set by OSQAR.

91.3.2 Photon polarization

An alternative to regenerating the lost photons is to use the beam itself to detect conversion: the polarization of light propagating through a transverse B field suffers dichroism and birefringence [57]. Dichroism: The $E_{\|}$component, but not E_{\perp}, is depleted by axion production, causing a small rotation of linearly polarized light. For $m_{A}^{2} L / 2 \omega \ll 2 \pi$, the effect is independent of m_{A}. For heavier axions, it oscillates and diminishes as m_{A} increases, and it vanishes for $m_{A}>\omega$. Birefringence: This effect occurs because there is mixing of virtual axions in the $E_{\|}$state, but not for E_{\perp}. Hence, linearly polarized light will develop elliptical polarization. Higher-order QED also induces vacuum magnetic birefringence (VMB). A search for these effects was performed in the same dipole magnets of the BFRT experiment mentioned before [58]. The dichroic rotation gave a stronger limit than the ellipticity rotation: $\left|g_{A \gamma \gamma}\right|<3.6 \times 10^{-7} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$, for $m_{A}<5 \times 10^{-4} \mathrm{eV}$. The ellipticity limits are better at higher masses, as they fall off smoothly and do not terminate at m_{A}.

In 2006, the PVLAS collaboration reported a signature of magnetically induced vacuum dichroism that could be interpreted as the effect of a pseudoscalar with $m_{A}=1-1.5 \mathrm{meV}$ and $\left|g_{A \gamma \gamma}\right|=(1.6-5) \times 10^{-6} \mathrm{GeV}^{-1}$ [59]. Later, it turned out that these findings are due to instrumental artifacts [60]. This particle interpretation is also excluded by the above photon regeneration searches that were inspired by the original PVLAS result. The fourth generation setup of the PVLAS experiment has published results on searches for VMB (see Fig. 91.1) and dichroism [61].

The bounds from the non-observation of the latter on $g_{A \gamma \gamma}$ are slightly weaker than the ones from OSQAR.

91.3.3 Long-range forces

New bosons would mediate long-range forces, which are severely constrained by "fifth force" experiments [62]. Those looking for new mass-spin couplings provide significant constraints on pseudoscalar bosons [63]. Presently, the most restrictive limits are obtained from combining long-range force measurements with stellar cooling arguments [64]. For the moment, any of these limits are far from realistic values expected for axions. Still, these efforts provide constraints on more general low-mass bosons.

In Ref. [65], a method was proposed that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, this method appears to be sensitive to axions in the $\mu \mathrm{eV}-\mathrm{meV}$ mass range, independent of the cosmic axion abundance, if axions have a CP-violating interaction with nuclei as large as the current experimental bound on the electric dipole moment of the neutron allows. Experimental tests to demonstrate the requirements of ARIADNE (Axion Resonant InterAction DetectioN Experiment) are under way [66].

91.4 Axions from Astrophysical Sources

91.4.1 Stellar energy-loss limits

Low-mass weakly-interacting particles (neutrinos, gravitons, axions, baryonic or leptonic gauge bosons, etc.) are produced in hot astrophysical plasmas, and can thus transport energy out of stars. The coupling strength of these particles with normal matter and radiation is bounded by the constraint that stellar lifetimes or energy-loss rates are not in conflict with observation [67,68].

We begin this discussion with our Sun and concentrate on hadronic axions. They are produced predominantly by the Primakoff process $\gamma+Z e \rightarrow Z e+A$. Integrating over a standard solar model yields the axion luminosity [69]

$$
\begin{equation*}
L_{A}=g_{10}^{2} \times 1.85 \times 10^{-3} L_{\odot} \tag{91.12}
\end{equation*}
$$

where $g_{10}=\left|g_{A \gamma \gamma}\right| \times 10^{10} \mathrm{GeV}$. The maximum of the spectrum is at 3.0 keV , the average at 4.2 keV , and the number flux at Earth is $g_{10}^{2} \times 3.75 \times 10^{11} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. The solar photon luminosity is fixed, so energy losses due to the Primakoff process require enhanced nuclear energy production and thus enhanced neutrino fluxes. The all-flavor measurements by SNO (Solar Neutrino Observatory), together with a standard solar model, imply $L_{A} \lesssim 0.10 L_{\odot}$, corresponding to $g_{10} \lesssim 7$ [70], mildly superseding a similar limit from helioseismology [71]. In Ref. [72], this limit was improved to $g_{10}<4.1$ (at 3σ), exploiting a new statistical analysis that combined helioseismology (sound speed, surface helium and convective radius) and solar neutrino observations, including theoretical and observational errors, and accounting for tensions between input parameters of solar models, in particular the solar element abundances.

A more restrictive limit derives from globular-cluster (GC) stars that allow for detailed tests of stellar-evolution theory. The stars on the horizontal branch (HB) in the color-magnitude diagram have reached helium burning with a core-averaged energy release of about $80 \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$, compared to Primakoff axion losses of $g_{10}^{2} 30$ erg $\mathrm{g}^{-1} \mathrm{~s}^{-1}$. The accelerated consumption of helium reduces the HB lifetime by about $80 /\left(80+30 g_{10}^{2}\right)$. Number counts of HB stars in a large sample of 39 Galactic GCs compared with the number of red giants (that are not much affected by Primakoff losses) give a weak indication of non-standard losses which may be accounted by Primakoff-like axion emission, if the photon coupling is in the range $\left|g_{A \gamma \gamma}\right|=(2.9 \pm 1.8) \times 10^{-11} \mathrm{GeV}^{-1}[73,74]$. Still, the upper bound found in this analysis,

$$
\begin{equation*}
\left|g_{A \gamma \gamma}\right|<6.6 \times 10^{-11} \mathrm{GeV}^{-1}(95 \% \mathrm{CL}) \tag{91.13}
\end{equation*}
$$

represents the strongest limit on $g_{A \gamma \gamma}$ for a wide mass range, see Fig. 91.1. The conservative constraint, Eq. (91.13), on $g_{A \gamma \gamma}$ may be translated to $f_{A}>3.4 \times 10^{7} \mathrm{GeV}\left(m_{A}<0.2 \mathrm{eV}\right)$, using $E / N=0$ as in the KSVZ model, or to $f_{A}>1.3 \times 10^{7} \mathrm{GeV}$ $\left(m_{A}<0.5 \mathrm{eV}\right)$, for the DFSZ axion model, with $E / N=8 / 3$, see Fig. 91.1.

If axions couple directly to electrons, the dominant emission processes are atomic axio-recombination and axio-deexcitation, axio-bremsstrahlung in electron-ion or electron-electron collisions, and Compton scattering [75]. Stars in the red giant (RG) branch of the color-magnitude diagram of GCs are particularly sensitive to these processes. In fact, they would lead to an extension of the latter to larger brightness. Reference [76] provided high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RG branch with predictions based on state-of-the-art stellar evolution theory. It was found that, within the uncertainties, the observed and predicted tip of the RG branch brightness agree reasonably well, leading to the bound

$$
\begin{equation*}
\left|g_{\text {Aee }}\right|<4.3 \times 10^{-13} \quad(95 \% \mathrm{CL}) \tag{91.14}
\end{equation*}
$$

implying an upper bound on the axion mass in the DFSZ model,

$$
\begin{equation*}
m_{A} \sin ^{2} \beta<15 \mathrm{meV} \quad(95 \% \mathrm{CL}) \tag{91.15}
\end{equation*}
$$

see Fig. 91.2 (left panel). Intriguingly, the agreement would improve with a small amount of extra cooling that slightly postpones helium ignition, prefering an electron coupling around $\left|g_{A e e}\right| \sim 1.9 \times 10^{-13}$, corresponding to $m_{A} \sin ^{2} \beta \sim 7 \mathrm{meV}$.

Bremsstrahlung is also efficient in white dwarfs (WDs), where the Primakoff and Compton processes are suppressed by the large plasma frequency. A comparison of the predicted and observed luminosity function of WDs can be used to put limits on $\left|g_{\text {Aee }}\right|$ [78]. A recent analysis, based on detailed WD cooling treatment and new data on the WD luminosity function (WDLF) of the Galactic Disk, found that electron couplings above $\left|g_{A e e}\right| \gtrsim 3 \times 10^{-13}$, corresponding to a DFSZ axion mass $m_{A} \sin ^{2} \beta \gtrsim 10 \mathrm{meV}$, are disfavoured [79], see Fig. 91.2 (left panel). Lower couplings cannot be discarded from the current knowledge of the WDLF of the Galactic Disk. On the contrary, features in some WDLFs can be interpreted as suggestions for electron couplings in the range $7.2 \times 10^{-14} \lesssim\left|g_{\text {Aee }}\right| \lesssim 2.2 \times 10^{-13}$, corresponding to $2.5 \mathrm{meV} \lesssim m_{A} \sin ^{2} \beta \lesssim 7.5 \mathrm{meV}[79,80]$. This hypothesis will be further scrutinized by the Large Synoptic Survey Telescope (LSST) which is expected to increase the sample of WDs in the Galactic halo to hundreds of thousands [81]. This will allow for the determination of independent WDLFs from different Galactic populations, greatly reducing the uncertainties related to star formation histories. For pulsationally unstable WDs (ZZ Ceti stars), the period decrease \dot{P} / P is a measure of the cooling speed. The corresponding observations of the pulsating WDs G117-B15A and R548 imply additional cooling that can be interpreted also in terms of similar axion losses $[82,83]$.

Recently, it has been pointed out that the hints of excessive cooling of WDs, RGs and HB stars can be explained at one stroke by an ALP coupling to electrons and photons, with couplings $\left|g_{A e e}\right| \sim 1.5 \times 10^{-13}$ and $\left|g_{A \gamma \gamma}\right| \sim 1.4 \times 10^{-11} \mathrm{GeV}^{-1}$, respectively $[84,85]$. Intriguingly, good fits to the data can be obtained employing the DFSZ axion with a mass in the range $4 \mathrm{meV} \lesssim m_{A} \lesssim 250 \mathrm{meV}$ [84].

Similar constraints derive from the measured duration of the neutrino signal of the supernova SN 1987A. Numerical simulations for a variety of cases, including axions and Kaluza-Klein gravitons, reveal that the energy-loss rate of a nuclear medium at the density $3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ and temperature 30 MeV should not exceed about $1 \times 10^{19} \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$ [86]. The energy-loss rate from nucleon bremsstrahlung, $N+N \rightarrow N+N+A$, is $\left(C_{N} / 2 f_{A}\right)^{2}\left(T^{4} / \pi^{2} m_{N}\right) F$. Here F is a numerical factor that represents an integral over the dynamical spin-density structure function because axions couple to the nucleon spin. For realistic conditions, even after considerable effort, one is limited to a heuristic estimate leading to $F \approx 1$ [68]. The SN 1987A limits are of particular interest for hadronic axions where the bounds on $\left|g_{\text {Aee }}\right|$ are moot. Using a proton fraction of $0.3, g_{A n n}=0, F=1$, and $T=30 \mathrm{MeV}$, one finds $f_{A} \gtrsim 4 \times 10^{8} \mathrm{GeV}$ and $m_{A} \lesssim 16 \mathrm{meV}$ [68], see Fig. 91.2 (right panel). A more detailed numerical calculation [87] with state of the art SN models, again assuming $g_{A n n}=0$, found that a coupling larger than $\left|g_{A p p}\right| \gtrsim 6 \times 10^{-10}$, would shorten significantly the timescale of the neutrino emission. This result is, not surprisingly, rather close to the estimate in Ref. [68]. Improving the

Figure 91.2: Exclusion plots for ALPs as described in the text. For the DFSZ range we have taken into account the constraint $0.28 \lesssim \tan \beta \lesssim 140[77]$ arising from the requirement of perturbative unitarity of the Yukawa couplings of Standard Model fermions.
calculation of axion emission via nucleon-nucleon bremsstrahlung beyond the basic one-pion exchange approximation appears to losen the bound $[88,89]$. The latter analysis finds a reduction of the axion emissivity by an order of magnitude if one takes into account the non-vanishing mass of the exchanged pion, the contribution from two-pion exchange, effective in-medium nucleon masses and multiple nucleon scattering, leading to a looser bound (Maurizio Giannotti and Alessandro Mirizzi, private communication)

$$
\begin{equation*}
g_{A n n}^{2}+0.29 g_{A p p}^{2}+0.27 g_{A n n} g_{A p p}<3.25 \times 10^{-18} \tag{91.16}
\end{equation*}
$$

However, with the present understanding of SNe (current lack of self-consistent 3D SN simulations) and the sparse data from SN 1987A, the constraint on the axion-nucleon couplings from SN 1987A should be considered more as indicative than as a sharp bound [87].

If axions interact sufficiently strongly they are trapped. Only about three orders of magnitude in $g_{A N N}$ or m_{A} are excluded. For even larger couplings, the axion flux would have been negligible, yet it would have triggered additional events in the detectors, excluding a further range [90]. A possible gap between these two SN 1987A arguments was discussed as the "hadronic axion window" under the assumption that $g_{A \gamma \gamma}$ was anomalously small [91]. This range is now excluded by hot dark matter (HDM) bounds (see below).

There is another hint for excessive stellar energy losses from the neutron star (NS) in the supernova remnant Cassiopeia A (Cas A): its surface temperature measured over 10 years reveals an unusually fast cooling rate. This rapid cooling of the Cas A NS may be explained by NS minimal cooling with neutron superfluidity and proton superconductivity [92, 93]. The rapid cooling may also arise from a phase transition of the neutron condensate into a multicomponent state [94]. Recently, Ref. [95] analyzed Cas A NS cooling in the presence of axion emission and obtained

$$
\begin{equation*}
g_{A p p}^{2}+1.6 g_{A n n}^{2}<1 \times 10^{-18} \tag{91.17}
\end{equation*}
$$

which is comparable to the SN 1987A bound. Refs. [96] put a more conservative bound without an attempt to fit a transient behavior of Cas A,

$$
\begin{equation*}
g_{A p p}^{2}<(1-6) \times 10^{-17}\left(\text { or } f_{A}>(5-10) \times 10^{7} \mathrm{GeV}\right) \tag{91.18}
\end{equation*}
$$

from the temperatures of Cas A and other NSs. The Cas A NS cooling may also be interpreted as a hint for extra cooling caused
by the emission of axions from the breaking and re-formation of neutron triplet Cooper pairs [97], requiring a coupling to the neutron of

$$
\begin{equation*}
g_{A n n}^{2}=(1.4 \pm 0.5) \times 10^{-19} \tag{91.19}
\end{equation*}
$$

corresponding to an axion mass

$$
\begin{equation*}
m_{A}=(2.3 \pm 0.4) \mathrm{meV} / C_{n} \tag{91.20}
\end{equation*}
$$

On the other hand, Ref. [98] considered another hot young NS in the supernova remnant HESS J1731-347. Its high temperature implies that all the neutrino emission processes except neutronneutron bremsstrahlung must be strongly suppressed, which can be realized with a negligible neutron triplet gap and a large proton singlet gap. In this setup, the bremsstrahlung from neutrons is the dominant channel for axion emission, from which one obtains a limit

$$
\begin{equation*}
g_{A n n}^{2}<7.7 \times 10^{-20} \tag{91.21}
\end{equation*}
$$

see Fig. 91.3 (left panel).
Finally, let us note that if the interpretation of the various hints for additional cooling of stars reported in this section in terms of emission of axions with $m_{A} \sim \mathrm{meV}$ were correct, SNe would lose a large fraction of their energy as axions. This would lead to a diffuse SN axion background in the universe with an energy density comparable to the extra-galactic background light [99]. However, there is no apparent way of detecting it or the axion burst from the next nearby SN . On the other hand, neutrino detectors such as IceCube, Super-Kamiokande or a future mega-ton water Cherenkov detector will probe exactly the mass region of interest by measuring the neutrino pulse duration of the next galactic SN [87].

91.4.2 Searches for solar axions and ALPs

Instead of using stellar energy losses to derive axion limits, one can also search directly for these fluxes, notably from the Sun. The main focus has been on ALPs with a two-photon vertex. They are produced by the Primakoff process with a flux given by Eq. (91.12) and an average energy of 4.2 keV , and can be detected at Earth with the reverse process in a macroscopic B-field ("axion helioscope") [6]. In order to extend the sensitivity in mass towards larger values, one can endow the photon with an effective mass in a gas, $m_{\gamma}=\omega_{\text {plas }}$, thus matching the axion and photon dispersion relations [100].

An early implementation of these ideas used a conventional dipole magnet, with a conversion volume of variable-pressure gas with a xenon proportional chamber as x-ray detector [101]. The

Figure 91.3: Exclusion plots for ALPs as described in the text.
conversion magnet was fixed in orientation and collected data for about $1000 \mathrm{~s} /$ day. Axions were excluded for $\left|g_{A \gamma \gamma}\right|<3.6 \times$ $10^{-9} \mathrm{GeV}^{-1}$ for $m_{A}<0.03 \mathrm{eV}$, and $\left|g_{A \gamma \gamma}\right|<7.7 \times 10^{-9} \mathrm{GeV}^{-1}$ for $0.03<m_{A}<0.11 \mathrm{eV}$ at $95 \% \mathrm{CL}$.

Later, the Tokyo axion helioscope used a superconducting magnet on a tracking mount, viewing the Sun continuously. They reported $\left|g_{A \gamma \gamma}\right|<6 \times 10^{-10} \mathrm{GeV}^{-1}$ for $m_{A}<0.3 \mathrm{eV}$ [102]. This experiment was recommissioned and a similar limit for masses around 1 eV was reported [103].

The most recent helioscope CAST (CERN Axion Solar Telescope) uses a decommissioned LHC dipole magnet on a tracking mount. The hardware includes grazing-incidence x-ray optics with solid-state x-ray detectors, as well as novel x-ray Micromegas position-sensitive gaseous detectors. Exploiting a IAXO (see below) pathfinder system, CAST has established the limit

$$
\begin{equation*}
\left|g_{A \gamma \gamma}\right|<6.6 \times 10^{-11} \mathrm{GeV}^{-1} \quad(95 \% \mathrm{CL}) \tag{91.22}
\end{equation*}
$$

for $m_{A}<0.02 \mathrm{eV}$ [104]. To cover larger masses, the magnet bores are filled with a gas at varying pressure. The runs with ${ }^{4} \mathrm{He}$ cover masses up to about 0.4 eV [105], providing the ${ }^{4} \mathrm{He}$ limits shown in Fig. 91.1. To cover yet larger masses, ${ }^{3} \mathrm{He}$ was used to achieve a larger pressure at cryogenic temperatures. Limits up to 1.17 eV allowed CAST to "cross the axion line" for the KSVZ model [106], see Fig. 91.1.

Going to yet larger masses in a helioscope search is not well motivated because of the cosmic HDM bound of $m_{A} \lesssim 1 \mathrm{eV}$ (see below). Sensitivity to significantly smaller values of $g_{A \gamma \gamma}$ can be achieved with a next-generation axion helioscope with a much larger magnetic-field cross section. Realistic design options for this "International Axion Observatory" (IAXO) have been studied in some detail [107] and its physics potential has been reviewed recently [108]. Such a next-generation axion helioscope may also push the sensitivity in the product of couplings to photons and to electrons, $g_{A \gamma \gamma} g_{A e e}$, into a range beyond stellar energy-loss limits and test the hypothesis that WD, RG, and HB cooling is dominated by axion emission [84, 109]. As a first step towards IAXO, an intermediate experimental stage called BabyIAXO is currently under preparation at DESY (for a short introduction, see Ref. [108]).

Other Primakoff searches for solar axions and ALPs have been carried out using crystal detectors, exploiting the coherent conversion of axions into photons when the axion angle of incidence satisfies a Bragg condition with a crystal plane [110]. However, none of these limits is more restrictive than the one derived from the constraint on the solar axion luminosity ($L_{A} \lesssim 0.10 L_{\odot}$) discussed earlier.

Another idea is to look at the Sun with an x-ray satellite when the Earth is in between. Solar axions and ALPs would convert in the Earth magnetic field on the far side and could be detected [111]. The sensitivity to $g_{A \gamma \gamma}$ could be comparable to CAST, but only for much smaller m_{A}. Deep solar x-ray measurements with existing satellites, using the solar magnetosphere as conversion region, have reported preliminary limits on $g_{A \gamma \gamma}$ [112].

Direct detection experiments searching for dark matter (DM) consisting of weakly interacting massive particles, such as EDELWEISS-II, LUX, and XENON100, have also the capability to search for solar axions and ALPs [113,114]. Recently, the LUX experiment [114] has put a bound on the axion-electron coupling constant by exploiting the axio-electric effect in liquid xenon,

$$
\begin{equation*}
\left|g_{\text {Aee }}\right|<3.5 \times 10^{-12} \quad(90 \% \mathrm{CL}) \tag{91.23}
\end{equation*}
$$

excluding the DFSZ model with $m_{A} \sin ^{2} \beta>0.12 \mathrm{eV}$, cf. see Fig. 91.2 (left panel). However, as obvious from the same figure, this technique has not reached the sensitivity of energy-loss considerations in stars (RGs and WDs).

91.4.3 Conversion of astrophysical photon fluxes

Large-scale B fields exist in astrophysics that can induce axionphoton oscillations. In practical cases, B is much smaller than in the laboratory, whereas the conversion region L is much larger. Therefore, while the product $B L$ can be large, realistic sensitivities are usually restricted to very low-mass particles, far away from the "axion band" in a plot like Fig. 91.1.

One example is SN 1987A, which would have emitted a burst of ALPs due to the Primakoff production in its core. They would have partially converted into γ-rays in the galactic B-field. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN 1987A therefore provides a strong bound on their coupling to photons [115]. This bound has been revisited and the underlying physics has been brought to the current state-of-the-art, as far as modelling of the supernova and the Milky-Way magnetic field are concerned, resulting in the limit [116]

$$
\begin{equation*}
\left|g_{A \gamma \gamma}\right|<5.3 \times 10^{-12} \mathrm{GeV}^{-1}, \text { for } m_{A} \lesssim 4.4 \times 10^{-10} \mathrm{eV} \tag{91.24}
\end{equation*}
$$

see Fig. 91.1. Magnetically induced oscillations between photons and ALPs can modify the photon fluxes from distant sources in various ways, featuring (i) frequency-dependent dimming, (ii) modified polarization, and (iii) avoiding absorption by propagation in the form of axions.

For example, dimming of SNe Ia could influence the interpretation in terms of cosmic acceleration [117], although it has become
clear that photon-ALP conversion could only be a subdominant effect [118]. Searches for linearly polarised emission from magnetised white dwarfs [119] and changes of the linear polarisation from radio galaxies (see, e.g., Ref. [120]) provide limits close to $g_{A \gamma \gamma} \sim$ $10^{-11} \mathrm{GeV}^{-1}$, for masses $m_{A} \lesssim 10^{-7} \mathrm{eV}$ and $m_{A} \lesssim 10^{-15} \mathrm{eV}$, respectively, albeit with uncertainties related to the underlying assumptions. Even stronger limits, $g_{A \gamma \gamma} \lesssim 2 \times 10^{-13} \mathrm{GeV}^{-1}$, for $m_{A} \lesssim 10^{-14} \mathrm{eV}$, have been obtained by exploiting high-precision measurements of quasar polarisations [121].

Remarkably, it appears that the universe could be too transparent to $\mathrm{TeV} \gamma$-rays that should be absorbed by pair production on the extra-galactic background light [122-126]. The situation is not conclusive at present [127-129], but the possible role of photon-ALP oscillations in $\mathrm{TeV} \gamma$-ray astronomy is tantalizing [130]. Fortunately, the region in ALP parameter space, $g_{A \gamma \gamma} \sim 10^{-12}-10^{-10} \mathrm{GeV}^{-1}$ for $m_{A} \lesssim 10^{-7} \mathrm{eV}$ [131], required to explain the anomalous TeV transparency of the universe, could be conceivably probed by the next generation of laboratory experiments (ALPS II) and helioscopes (IAXO) mentioned above. This parameter region can also be probed by searching for an irregular behavior of the gamma ray spectrum of distant active galactic nuclei (AGN), expected to arise from photon-ALP mixing in a limited energy range. The H.E.S.S. collaboration has set a limit of $\left|g_{A \gamma \gamma}\right| \lesssim 2.1 \times 10^{-11} \mathrm{GeV}^{-1}$, for $1.5 \times 10^{-8} \mathrm{eV} \lesssim m_{A} \lesssim 6.0 \times 10^{-8} \mathrm{eV}$, from the non-observation of an irregular behavior of the spectrum of the AGN PKS 2155304 [132], see Fig. 91.1. The Fermi-LAT collaboration has put an even more stringent limit on the ALP-photon coupling [133] from observations of the gamma ray spectrum of NGC 1275, the central galaxy of the Perseus cluster, see Fig. 91.1. A similar analysis has been carried out in Ref. [134] using Fermi-LAT data of PKS 2155-304.

Evidence for spectral irregularities has been reported in Galactic sources, such as pulsars and supernova remnants, and has been interpreted as hints for ALPs $[135,136]$. However, the inferred ALP parameters are in tension with the CAST helioscope bounds. It should also be noted that the high signal-to-noise spectra of Galactic gamma-ray sources are dominated by uncertainties of the instrumental systematics rather than statistical errors. Furthermore, it has been shown that additional care has to be taken when deriving confidence intervals on ALP parameters based on Wilks' theorem [137], since it has been shown that it does not apply for testing the ALP hypothesis [133].

At smaller masses, $m_{A} \lesssim 10^{-12} \mathrm{eV}$, galaxy clusters become highly efficient at interconverting ALPs and photons at x-ray energies. Constraints on spectral irregularities in the spectra of luminous x-ray sources (Hydra A, M87, NGC 1275, NGC 3862, Seyfert galaxy 2E3140; taken by Chandra and XMM-Newton) located in or behind galaxy clusters then lead to stringent upper limits on the ALP-photon coupling [138-143]. In this type of studies, the uncertainty in the cluster magnetic field needs to be taken into account. This typically leads to a range of limits on the ALP-photon coupling that depend on the modelling assumptions. Reference [143] recently performed the most sensitive x-ray searches for ALPs to date by employing Chandra's High-Energy Transmission Gratings that allow for an unsurpassed spectral resolution. New observations of the AGN NGC 1275 then led to the bound

$$
\begin{equation*}
\left|g_{A \gamma \gamma}\right|<8 \times 10^{-13} \mathrm{GeV}^{-1} \quad(99.7 \% \mathrm{CL}) \tag{91.25}
\end{equation*}
$$

for light ALPs, see Fig. 91.1.

91.4.4 Superradiance of black holes

Light bosonic fields such as axions or ALPs can affect the dynamics and gravitational wave emission of rapidly rotating astrophysical black holes through the superradiance mechanism. When their Compton wavelength is of order of the black hole size, they form gravitational bound states around the black hole. Their occupation number grows exponentially by extracting energy and angular momentum from the black hole, forming a coherent axion or ALP bound state emitting gravitational waves. When accretion cannot replenish the spin of the black hole, superradiance dominates the black hole spin evolution; this is true for both su-
permassive and stellar mass black holes. The existence of destabilizing light bosonic fields thus leads to gaps in the mass vs. spin plot of rotating black holes. Stellar black hole spin measurements - exploiting well-studied binaries and two independent techniques - exclude a mass range $6 \times 10^{-13} \mathrm{eV}<m_{A}<2 \times 10^{-11} \mathrm{eV}$ at 2σ, which for the axion excludes $3 \times 10^{17} \mathrm{GeV}<f_{A}<1 \times 10^{19} \mathrm{GeV}$ $[11,144,145]$. These bounds apply when gravitational interactions dominate over the axion self-interaction, which is true for the QCD axion in this mass range. Long lasting, monochromatic gravitational wave signals, which can be distinguished from ordinary astrophysical sources by their clustering in a narrow frequency range, are expected to be produced by axions or ALPs annihilating to gravitons. Gravitational waves could also be sourced by axions/ALPs transitioning between gravitationally bound levels. Accordingly, the gravitational wave detector Advanced LIGO should be sensitive to the axion in the $m_{A} \lesssim 10^{-10} \mathrm{eV}$ region. LIGO measurements of black hole spins in binary merger events could also provide statistical evidence for the presence of an axion $[146,147]$. Similar signatures could arise for supermassive black holes for particle with masses $\lesssim 10^{-15} \mathrm{eV}$. Gravitational waves from such sources could be detected at lower-frequency observatories such as LISA.

91.5 Cosmic Axions

91.5.1 Cosmic axion populations

In the early universe, axions are produced by processes involving quarks and gluons [148]. After color confinement, the dominant thermalization process is $\pi+\pi \leftrightarrow \pi+A$ [34]. The resulting axion population would contribute an HDM component in analogy to massive neutrinos. Cosmological precision data provide restrictive constraints on a possible HDM fraction that translate into $m_{A} \lesssim 1 \mathrm{eV}$ [149], but in detail depend on the used data set and assumed cosmological model. In the future, data from a EUCLID-like survey combined with Planck CMB data can detect HDM axions with a mass $m_{A} \gtrsim 0.15 \mathrm{eV}$ at very high significance [150].

For $m_{A} \gtrsim 20 \mathrm{eV}$, axions decay fast on a cosmic time scale, removing the axion population while injecting photons. This excess radiation provides additional limits up to very large axion masses [151]. An anomalously small $g_{A \gamma \gamma}$ provides no loophole because suppressing decays leads to thermal axions overdominating the mass density of the universe.

The main cosmological interest in axions derives from their possible role as CDM. In addition to thermal processes, axions are abundantly produced by the vacuum re-alignment (VR) mechanism [152].

The axion DM abundance crucially depends on the cosmological history. Let us first consider the so called pre-inflationary $P Q$ symmetry breaking scenario, in which the PQ symmetry is broken before and during inflation and not restored afterwards. After the breakdown of the PQ symmetry, the axion field relaxes somewhere in the bottom of the "wine-bottle-bottom" potential. Near the QCD epoch, topological fluctuations of the gluon fields such as instantons explicitly break the PQ symmetry. This tilting of the "wine-bottle-bottom" drives the axion field toward the CPconserving minimum, thereby exciting coherent oscillations of the axion field that ultimately represent a condensate of CDM. The fractional cosmic mass density in this homogeneous field mode, created by the VR mechanism, is [23,153-155],

$$
\begin{align*}
\Omega_{A}^{\mathrm{VR}} h^{2} & \approx 0.12\left(\frac{f_{A}}{9 \times 10^{11} \mathrm{GeV}}\right)^{1.165} F \Theta_{\mathrm{i}}^{2} \\
& \approx 0.12\left(\frac{6 \mu \mathrm{eV}}{m_{A}}\right)^{1.165} F \Theta_{\mathrm{i}}^{2} \tag{91.26}
\end{align*}
$$

where h is the present-day Hubble expansion parameter in units of $100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, and $-\pi \leq \Theta_{\mathrm{i}} \leq \pi$ is the initial "misalignment angle" relative to the CP-conserving position attained in the causally connected region which evolved into today's observable universe. $F=F\left(\Theta_{\mathrm{i}}, f_{A}\right)$ is a factor accounting for anharmonicities in the axion potential. For $F \Theta_{i}^{2}=\mathcal{O}(1), m_{A}$ should be above $\sim 6 \mu \mathrm{eV}$ in order that the cosmic axion density does not exceed the observed CDM density, $\Omega_{\mathrm{CDM}} h^{2}=0.12$. However, much smaller
axion masses (much higher PQ scales) are still possible if the initial value Θ_{i} just happens to be small enough in today's observable universe ("anthropic axion window" [156]). In this cosmological scenario, however, quantum fluctuations of the axion field during inflation are expected to lead to isocurvature density fluctuations which get imprinted to the temperature fluctuations of the CMB [157, 158]. Their non-observation puts severe constraints on the Hubble expansion rate H_{I} during inflation [159-163], which read, in the simplest cosmological inflationary scenario,

$$
\begin{equation*}
H_{I} \lesssim 5.7 \times 10^{8} \mathrm{GeV}\left(\frac{5 \mathrm{neV}}{m_{a}}\right)^{0.4175} \tag{91.27}
\end{equation*}
$$

if axions represent all of DM.

In the post-inflationary $P Q$ symmetry breaking scenario, on the other hand, Θ_{i} will take on different values in different patches of the present universe. The average contribution is [23, 153-155]

$$
\begin{equation*}
\Omega_{A}^{\mathrm{VR}} h^{2} \approx 0.12\left(\frac{30 \mu \mathrm{eV}}{m_{A}}\right)^{1.165} \tag{91.28}
\end{equation*}
$$

The decay of cosmic strings and domain walls gives rise to a further population of CDM axions, whose abundance suffers from significant uncertainties [154, 155, 164-172] which arise from the difficulty in understanding the energy loss process of topological defects and the generated axion spectrum in a quantitative way. In fact, in the present state-of-the-art it is still possible that the CDM contribution from the decay of topological defects is subdominant or overwhelmingly large in comparison to the one from the VR mechanism. Correspondingly, the plausible range of axion masses providing all of CDM in scenarios with postinflationary PQ symmetry breaking is still rather large, namely

$$
\begin{equation*}
m_{A} \approx 25 \mu \mathrm{eV}-4.4 \mathrm{meV} \tag{91.29}
\end{equation*}
$$

for models with short-lived (requiring unit color anomaly $N=1$) domain walls, such as the KSVZ model. For models with longlived $(N>1)$ domain walls, such as an accidental DFSZ model [173], where the PQ symmetry is broken by higher dimensional Planck suppressed operators, the mass is predicted to be significantly higher [168, 173, 174],

$$
\begin{equation*}
m_{A} \approx(0.58-130) \mathrm{meV} \tag{91.30}
\end{equation*}
$$

However, the upper part of the predicted range is in conflict with stellar energy-loss limits on the axion, cf. Fig. 91.2 (right panel) and Fig. 91.3 (left panel).

In this post-inflationary PQ symmetry breakdown scenario, the spatial axion density variations are large at the QCD transition and they are not erased by free streaming. Gravitationally bound "axion miniclusters" form before and around matter-radiation equality [175-177]. A significant fraction of CDM axions can reside in these bound objects $[171,178]$. Remarkably, the minicluster fraction can be bounded by gravitational lensing [179-181].

In the above predictions of the fractional cosmic mass density in axions, the exponent, 1.165 , arises from the non-trivial temperature dependence of the topological susceptibility $\chi(T)=$ $m_{A}^{2}(T) f_{A}^{2}$ at temperatures slighty above the QCD quark-hadron phase transition. Lattice QCD calculations of this exponent [23, 182-186], but also Ref. [187], found it to be remarkably close to the prediction of the dilute instanton gas approximation [188] which was previously exploited. Therefore, the state-of-the-art prediction of the axion mass relevant for DM for a fixed initial misalignment angle Θ_{i} differs from the previous prediction by just a factor of order one.

The non-thermal production mechanisms attributed to axions are generic to light bosonic weakly interacting particles such as ALPs [189]. The relic abundance is set by the epoch when the axion mass becomes significant, $3 H(t) \approx m_{A}(t)$, and ALP field oscillations begin. For ALPs to contribute to the DM density this epoch must precede that of matter radiation equality. For a temperature independent ALP mass this leads to the bound:

$$
\begin{equation*}
m_{A} \gtrsim 7 \times 10^{-28} \mathrm{eV}\left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{1 / 2}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{3 / 2} \tag{91.31}
\end{equation*}
$$

ALPs lighter than this bound are allowed if their cosmic energy density is small, but they are quite distinct from other forms of DM [190]. Ignoring anharmonicities in the ALP potential, and taking the ALP mass to be temperature independent, the relic density in DM ALPs due to the VR mechanism is given by

$$
\begin{align*}
\Omega_{\mathrm{ALP}}^{\mathrm{VR}} h^{2}= & 0.12\left(\frac{m_{A}}{4.7 \times 10^{-19} \mathrm{eV}}\right)^{1 / 2}\left(\frac{f_{A}}{10^{16} \mathrm{GeV}}\right)^{2} \times \\
& \left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{3 / 4}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{-3 / 4} \Theta_{\mathrm{i}}^{2} \tag{91.32}
\end{align*}
$$

An ALP decay constant near the GUT scale gives the correct relic abundance for ultralight $A L P s$ (ULAs), which we now define. Extended discussions of ULAs can be found in Refs. [191, 192].

The standard CDM model treats DM as a distribution of cold, collisionless particles interacting only via gravity. Below the Compton wavelength, $\lambda_{c}=2 \pi / m_{A}$, the particle description of ALPs breaks down. For large occupation numbers we can model ALPs below the Compton wavelength as a coherent classical field. Taking as a reference length scale the Earth radius, $R_{\oplus}=6371 \mathrm{~km}$, we define ULAs to be those axions with $\lambda_{c}>R_{\oplus}$, leading to the defining bound

$$
\begin{equation*}
m_{\mathrm{ULA}}<2 \times 10^{-13} \mathrm{eV} \tag{91.33}
\end{equation*}
$$

ULAs encompass the entire Earth in a single coherent field. The coherence time of the ULA field on Earth can be estimated from the crossing time of the de Broglie wavelength at the virial velocity in the Milky Way, $\tau_{\text {coh. }} \sim 1 / m_{\text {ULA }} v_{\text {vir }}^{2}$.

We notice that by the definition, Eq. (91.33), an ultralight QCD axion must have a super-Planckian decay constant, $f_{A}>3 \times$ $10^{19} \mathrm{GeV}$ and would require fine tuning of θ_{i} to provide the relic abundance. Natural models for ULAs can be found in string and M-theory compactifications [7-14], in field theory with accidental symmetries [193], or new hidden strongly coupled sectors [194].
In addition to the gravitational potential energy, the ULA field also carries gradient energy. On scales where the gradient energy is non-negligible, ULAs acquire an effective pressure and do not behave as CDM. The gradient energy opposes gravitational collapse, leading to a Jeans scale below which perturbations are stable [195]. The Jeans scale suppresses linear cosmological structure formation relative to CDM [196]. The Jeans scale at matterradiation equality in the case that ULAs make up all of CDM is:

$$
\begin{align*}
k_{\mathrm{J}, \mathrm{eq}}= & 8.7 \mathrm{Mpc}^{-1}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{-1 / 4}\left(\frac{\Omega_{\mathrm{ALP}}^{\mathrm{VR}}}{0.12}\right)^{1 / 4} \times \tag{91.34}\\
& \left(\frac{m_{\mathrm{ULA}}}{10^{-22} \mathrm{eV}}\right)^{1 / 2} .
\end{align*}
$$

On non-linear scales the gradient energy leads to the existence of a class of pseudo-solitons known as oscillatons, or axion stars [197].

Cosmological and astrophysical observations are consistent with the CDM model, and departures from it are only allowed on the scales of the smallest observed DM structures with $M \sim 10^{6-8} M_{\odot}$. The CMB power spectrum and galaxy autocorrelation power spectrum limit the ULA mass to $m_{\text {ULA }}>$ $10^{-24} \mathrm{eV}$ from linear theory of structure formation [190, 198]. Analytic models [199] and N-body simulations [200] for non-linear structures show that halo formation is suppressed in ULA models relative to CDM. This leads to constraints on the ULA mass of $m_{\mathrm{ULA}}>10^{-22} \mathrm{eV}$ from observations of high- z galaxies [200, 201], and $m_{\text {ULA }}>10^{-21} \mathrm{eV}$ from the Lyman-alpha forest flux power spectrum [202]. Including the effects of anharmonicities on structure formation with ALPs can weaken these bounds if the misalignment angle $\Theta_{\mathrm{i}} \approx \pi$ [203]. Cosmological simulations that treat gradient energy in the ULA field beyond the N-body approximation have just recently become available [204, 205], and show, among other things, evidence for the formation of axion stars in the centres of ULA halos (various consequences of axion stars are considered in Refs. [206]). These central axion stars have been conjectured to play a role in the apparently cored density
profiles of dwarf spheroidal galaxies, and other central galactic regions [204, 207-209]. However, the relationship between the halo mass and the axion star mass [210] leads to problems with this scenario in some galaxies [211-213]. It should be emphasised that many of the conclusions about the role of ULA axion stars in galactic dynamics are based on use of simulation results that do not contain baryons (however, see Ref. [214]), and feedback [215] could be important.

Inside DM halos the axion gradient energy causes coherence on the de Broglie wavelength and fluctuations on the coherence time $[204,216]$. These fluctuations can be thought of as short-lived quasiparticles and lead to relaxation processes that can be described statistically [192, 217] (this relaxation processes also leads to the gravitational condensation of axion stars [218]). The typical relaxation time is:

$$
\begin{equation*}
t \sim 10^{10} \text { years }\left(\frac{m_{\mathrm{ULA}}}{10^{-22} \mathrm{eV}}\right)^{3}\left(\frac{v}{100 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}\left(\frac{r}{5 \mathrm{kpc}}\right)^{4} \tag{91.35}
\end{equation*}
$$

where v and r are the velocity and radius of the orbit in the host DM halo.

Relaxation processes such as these are not observed in galaxies, though there are some circumstances where they may be desirable [192]. An absence of observed relaxation can be used to set limits on the ULA mass. An absence of Milky Way disk thickening excludes $m_{\text {ULA }}>0.6 \times 10^{-22} \mathrm{eV}$ [219], while stellar streams give the stronger bound $m_{\mathrm{ULA}}>1.5 \times 10^{-22} \mathrm{eV}$ [220]. The survival of the old star cluster in Eridanus II [221] excludes the range of masses $10^{-21} \mathrm{eV} \lesssim m_{\text {ULA }} \lesssim 10^{-19} \mathrm{eV}$ [222]. As in the case of ULA axion stars, current constraints from heating do not fully account for the possible role of baryons.

Finally, one should note that the beyond-CDM physics of ULAs (Jeans scale, relaxation, axion star formation) of course also applies to the QCD axion on smaller length scales. This is of particular interest inside axion miniclusters [175, 176, 218, 223].

91.5.2 Telescope searches

The two-photon decay is extremely slow for axions with masses in the CDM regime, but could be detectable for eV masses. The signature would be a quasi-monochromatic emission line from galaxies and galaxy clusters. The expected optical line intensity for DFSZ axions is similar to the continuum night emission. An early search in three rich Abell clusters [224] and a recent search in two rich Abell clusters [225] exclude the "Telescope" range in Fig. 91.1. Of course, axions in this mass range would anyway provide an excessive hot DM contribution.

Very low-mass axions in halos produce a weak quasimonochromatic radio line. Virial velocities in undisrupted dwarf galaxies are very low, and the axion decay line would therefore be extremely narrow. A search with the Haystack radio telescope on three nearby dwarf galaxies provided a limit $\left|g_{A \gamma \gamma}\right|<$ $1.0 \times 10^{-9} \mathrm{GeV}^{-1}$ at $96 \% \mathrm{CL}$ for $298<m_{A}<363 \mu \mathrm{eV}$ [226]. However, this combination of m_{A} and $g_{A \gamma \gamma}$ does not exclude plausible axion models.

A monochromatic signal is also produced in the conversion of DM axions in the background of slowly varying galactic B fields [227]. The signal is, however, sensitive to magnetic field power on the scale of the axion mass [228]. Present and future radio telescopes appear to be able to probe ALP DM in the mass range $0.1-100 \mu \mathrm{eV}$ for couplings $g_{A \gamma \gamma} \gtrsim 10^{-13} \mathrm{GeV}^{-1}$ [228] unfortunately not reaching down to the benchmark QCD axion sensitivity.

Resonant conversion of QCD axion DM in neutron star magnetospheres may give a detectable signal from individual neutron stars for axion masses in the $\mu \mathrm{eV}$ range [229]. Furthermore, stimulated ALP decays in high radiation environments may be detectable, by next-generation radio telescopes such as the Square Kilometer Array, down to $g_{A \gamma \gamma} \gtrsim 10^{-11} \mathrm{GeV}^{-1}$, for masses between $\mu \mathrm{eV}$ and 0.1 meV [230].

Photon propagation on an ULA DM background can induce birefringence that can be compared with upper limits from the CMB [231] and may also be probed with other sources such as pulsars [232].

91.5.3 Microwave cavity experiments

In a big part of the plausible m_{A} range for CDM, galactic halo axions may be detected by their resonant conversion into a qua-si-monochromatic microwave signal in a high-Q electromagnetic cavity permeated by a strong static B field $[6,233,234]$. The cavity frequency is tunable, and the signal is maximized when the frequency is the total axion energy, rest mass plus kinetic energy, of $\nu=\left(m_{A} / 2 \pi\right)\left[1+\mathcal{O}\left(10^{-6}\right)\right]$, the width above the rest mass representing the virial distribution in the galaxy. The frequency spectrum may also contain finer structure from axions more recently fallen into the galactic potential and not yet completely virialized [235, 236].

Figure 91.4: Exclusion plot for ALPs as described in the text.
The feasibility of this technique was established in early experiments (RBF and UF) of relatively small sensitive volume, \mathcal{O} (1 liter), with HFET-based amplifiers, setting limits in the range $4.5<m_{A}<16.3 \mu \mathrm{eV}$ [237], but lacking by $2-3$ orders of magnitude the sensitivity required to detect realistic axions, see Fig. 91.4. Later, ADMX ($B \sim 8 \mathrm{~T}, V \sim 200$ liters) has achieved sensitivity to KSVZ axions, assuming they saturate the local DM density and are well virialized, over the mass range 1.9$3.3 \mu \mathrm{eV}$ [238]. Should halo axions have a significant component not yet virialized, ADMX is sensitive to DFSZ axions over the entire mass range [239]. The corresponding 90% CL exclusion regions shown in Fig. 91.4 are normalized to an assumed local CDM density of $7.5 \times 10^{-25} \mathrm{~g} \mathrm{~cm}^{-3}\left(450 \mathrm{MeV} \mathrm{cm}{ }^{-3}\right)$. More recently, the ADMX experiment commissioned an upgrade [240] that replaces the microwave HFET amplifiers by near quantum-limited low-noise dc SQUID microwave amplifiers [241]. It has reached an unprecedented axion DM sensitivity in the mass range between 2.66 and $3.31 \mu \mathrm{eV}$ [242,243], down to the DFSZ benchmark axion-photon coupling, see Fig. 91.4. This apparatus is also sensitive to other hypothetical light bosons, such as hidden photons or chameleons, over a limited parameter space [189,244,245]. ADMX has also done a testbed experiment to probe higher masses. This experiment lives inside of and operates in tandem with the main ADMX experiment, searches in three widely spaced frequency ranges (4202-4249 MHz, 5086-5799 MHz and $7173-7203 \mathrm{MHz}$), uses both the TM_{010} and TM_{020} cavity modes, and demonstrates the successful use of a piezoelectric actuator for cavity tuning [246]. Recently, the HAYSTAC experiment reported on first results from a new microwave cavity search for DM axions with masses above $20 \mu \mathrm{eV}$. They exclude axions with two-photon coupling $\left|g_{A \gamma \gamma}\right| \gtrsim 2 \times 10^{-14} \mathrm{GeV}^{-1}$ over the range $23.15 \mu \mathrm{eV}<m_{A}<$ $24.0 \mu \mathrm{eV}$ [247,248], a factor of 2.7 above the KSVZ benchmark, see Fig. 91.4. Exploiting a Josephson parametric amplifier, this experiment has demonstrated total noise approaching the standard quantum limit for the first time in an axion search. A Rydberg atom single-photon detector [249], like any photon counter, can in principle evade the standard quantum limit for coherent photon detection. The ORGAN experiment is designed to probe axions in the mass range $60 \mu \mathrm{eV}<m_{A}<210 \mu \mathrm{eV}$. In a pathfinding run, it has set the limit $\left|g_{A \gamma \gamma}\right|<2 \times 10^{-12} \mathrm{GeV}^{-1}$ at $110 \mu \mathrm{eV}$, in a span of 2.5 neV [250]. There are further microwave cavity axion DM experiments recently in operation (CULTASK [251]), under construction (RADES [252]) or proposed (KLASH [253]).

91.5.4 New concepts for axion DM direct detection

Other new concepts for searching for axion DM are also being investigated. An alternative to the microwave cavity technique is based on a novel detector architecture consisting of an open, Fabry-Perot resonator and a series of current-carrying wire planes [254]. The Orpheus detector has demonstrated this new technique, excluding DM ALPs with masses between 68.2 and $76.5 \mu \mathrm{eV}$ and axion-photon couplings greater than $4 \times$ $10^{-7} \mathrm{GeV}^{-1}$. This technique may be able to probe DM axions in the mass range from 40 to $700 \mu \mathrm{eV}$. Another detector concept exploits the fact that a magnetized mirror would radiate photons in the background of axion DM, which could be collected like in a dish antenna [255]. Searches for hidden photon DM exploiting this technique are already underway [256]. The proposed MADMAX experiment will place a stack of dielectric layers in a magnetic field in order to resonantly enhance the photon signal, aiming a sensitivity to probe the mass range $40 \mu \mathrm{eV} \lesssim m_{A} \lesssim 200 \mu \mathrm{eV}[257,258]$. Optical dielectric haloscopes with single photon signal detection have been proposed to search for axions in the $50 \mathrm{meV}-10 \mathrm{eV}$ mass range [259]. Absorption of axions on molecular transitions can be sensitive to the axion pseudoscalar coupling $g_{A N N}$ to nucleons or the pseudoscalar coupling $g_{A e e}$ to electrons in the 0.5 -20 eV range [260]. Another proposed axion DM search method sensitive in the $100 \mu \mathrm{eV}$ mass range is to cool a kilogram-sized sample to mK temperatures and count axion induced atomic transitions using laser techniques [261].

The oscillating galactic DM axion field induces oscillating nuclear electric dipole moments (EDMs) [262],

$$
\begin{equation*}
d_{N}(t)=g_{A N \gamma} \sqrt{2 \rho_{A D M}} \cos \left(m_{A} t\right) / m_{A} \tag{91.36}
\end{equation*}
$$

where $g_{A N \gamma}$ is the coupling of the axion to the nucleon EDM operator,

$$
\begin{equation*}
\mathcal{L}_{A} \supset-\frac{i}{2} g_{A N \gamma} A \bar{\Psi}_{N} \sigma_{\mu \nu} \gamma_{5} \Psi_{N} F^{\mu \nu} \tag{91.37}
\end{equation*}
$$

For the QCD axion, this coupling is predicted as [263]

$$
\begin{align*}
g_{A n \gamma}=-g_{A p \gamma} & =(3.7 \pm 1.5) \times 10^{-3}\left(\frac{1}{f_{A}}\right) \frac{1}{\mathrm{GeV}}= \\
& =(6.5 \pm 2.6) \times 10^{-13}\left(\frac{m_{A}}{\mathrm{meV}}\right) \frac{1}{\mathrm{GeV}^{2}} \tag{91.38}
\end{align*}
$$

and plotted as a yellow diagonal band in Fig. 91.3 (right panel). An analysis of the ratio of spin-precession frequencies of stored ultracold neutrons and ${ }^{199} \mathrm{Hg}$ atoms measured by neutron EDM experiments for an axion-induced oscillating neutron EDM revealed no signal consistent with axion DM, excluding a sizeable region of parameter space in the mass region $10^{-24} \mathrm{eV} \leq m_{A} \leq 10^{-17} \mathrm{eV}$ [264], which surpass the limits on anomalous energy loss of SN 1987A [262] by more than seven orders of magnitude, but are still a few orders of magnitude above the QCD axion expectations, see Fig. 91.3 (right panel). The oscillating EDMs cause also the precession of nuclear spins in a nucleon spin polarized sample in the presence of an electric field. The resulting transverse magnetization can be searched for by exploiting magnetic-resonance (MR) techniques, which are most sensitive in the range of low oscillation frequencies corresponding to sub-neV axion masses. The aim of the corresponding Cosmic Axion Spin Precession Experiment (CASPEr) [265] is to probe axion DM in the anthropic window, $f_{A} \gtrsim 10^{15} \mathrm{GeV}\left(m_{A} \lesssim \mathrm{neV}\right)$, motivated from Grand Unification [266-269]. Sub- $\mu \mathrm{eV}$ ALP masses can also be probed by using the storage ring EDM method proposed in Ref. [270] which exploits a combination of B and E-fields to produce a resonance between the $g-2$ spin precession frequency and the DM ALP field oscillation frequency. This method, however, does not reach the sensitivity to probe the QCD axion prediction for $g_{A N \gamma}$.

In the intermediate mass region, $\mathrm{neV} \lesssim m_{A} \lesssim 0.1 \mu \mathrm{eV}$, one may exploit a cooled LC circuit and precision magnetometry to search for the oscillating electric current induced by DM axions in a strong magnetic field [271]. A similar approach is followed by the proposed ABRACADABRA [272] and DM-Radio Pathfinder [273] experiments. Recently, ABRACADABRA-10 cm - a small-scale prototype for a future detector that could be sensitive to the QCD
axion - established upper limits on the axion-photon coupling in the mass range $3.1 \times 10^{-10} \mathrm{eV}-8.3 \times 10^{-9} \mathrm{eV}$ [274], which are, however, not competitive yet with other limits in this mass range, see Fig. 91.1.

An eventually non-zero axion electron coupling $g_{A e e}$ will lead to an electron spin precession about the axion DM wind [275]. The QUAX (QUaerere AXions) experiment aims at exploiting MR inside a magnetized material [276]. Because of the higher Larmor frequency of the electron, it is sensitive in the classic window.

91.6 Conclusions

There is a strengthening physics case for very weakly coupled light particles beyond the Standard Model. The elegant solution of the strong CP problem proposed by Peccei and Quinn yields a particularly strong motivation for the axion. In many theoretically appealing ultraviolet completions of the Standard Model axions and ALPs occur automatically. Moreover, they are natural CDM candidates. Perhaps the first hints of their existence have already been seen in the anomalous excessive cooling of stars and the anomalous transparency of the Universe for VHE gamma rays. Interestingly, a significant portion of previously unexplored, but phenomenologically very interesting and theoretically very well motivated axion and ALP parameter space can be tackled in the foreseeable future by a number of terrestrial experiments searching for axion/ALP DM, for solar axions/ALPs, and for light apparently shining through a wall.

References

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
[2] R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).
[3] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[4] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[5] Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys. Lett. B98, 265 (1981); G. B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).
[6] P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983) and Erratum ibid., 52, 695 (1984).
[7] E. Witten, Phys. Lett. 149B, 351 (1984).
[8] J. P. Conlon, JHEP 05, 078 (2006), [hep-th/0602233].
[9] P. Svrcek and E. Witten, JHEP 06, 051 (2006), [hepth/0605206].
[10] K.-S. Choi et al., Phys. Lett. B675, 381 (2009), [arXiv:0902.3070].
[11] A. Arvanitaki et al., Phys. Rev. D81, 123530 (2010), [arXiv:0905.4720].
[12] B. S. Acharya, K. Bobkov and P. Kumar, JHEP 11, 105 (2010), [arXiv:1004.5138].
[13] M. Cicoli, M. Goodsell and A. Ringwald, JHEP 10, 146 (2012), [arXiv:1206.0819].
[14] J. Halverson, C. Long and P. Nath, Phys. Rev. D96, 5, 056025 (2017), [arXiv:1703.07779].
[15] J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), [arXiv:1002.0329].
[16] A. Ringwald, Phys. Dark Univ. 1, 116 (2012), [arXiv:1210.5081].
[17] J. Jaeckel, Frascati Phys. Ser. 56, 172 (2012), [arXiv:1303.1821].
[18] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), [hepex/0602020].
[19] H. Georgi, D. B. Kaplan and L. Randall, Phys. Lett. 169B, 73 (1986).
[20] R. J. Crewther, Phys. Lett. 70B, 349 (1977).
[21] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253 (1980).
[22] M. Gorghetto and G. Villadoro, JHEP 03, 033 (2019), [arXiv:1812.01008].
[23] S. Borsanyi et al., Nature 539, 7627, 69 (2016), [arXiv:1606.07494].
[24] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979); M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B166, 493 (1980).
[25] M. Dine, W. Fischler and M. Srednicki, Phys. Lett. 104B, 199 (1981); A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980), [Yad. Fiz.31,497(1980)].
[26] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010), [arXiv:0807.3125].
[27] G. Grilli di Cortona et al., JHEP 01, 034 (2016), [arXiv:1511.02867].
[28] J. E. Kim, Phys. Rev. D58, 055006 (1998), [hepph/9802220].
[29] L. Di Luzio, F. Mescia and E. Nardi, Phys. Rev. Lett. 118, 3, 031801 (2017), [arXiv:1610.07593]; L. Di Luzio, F. Mescia and E. Nardi, Phys. Rev. D96, 7, 075003 (2017), [arXiv:1705.05370].
[30] M. Farina et al., JHEP 01, 095 (2017), [arXiv:1611.09855].
[31] P. Agrawal et al., JHEP 02, 006 (2018), [arXiv:1709.06085].
[32] G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988); M. Carena and R. D. Peccei, Phys. Rev. D40, 652 (1989); K. Choi, K. Kang and J. E. Kim, Phys. Rev. Lett. 62, 849 (1989).
[33] M. Srednicki, Nucl. Phys. B260, 689 (1985).
[34] S. Chang and K. Choi, Phys. Lett. B316, 51 (1993), [hepph/9306216].
[35] H. Leutwyler, Phys. Lett. B378, 313 (1996), [hepph/9602366].
[36] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 10, 100001 (2016).
[37] D. A. Dicus et al., Phys. Rev. D18, 1829 (1978).
[38] G. Raffelt and L. Stodolsky, Phys. Rev. D37, 1237 (1988).
[39] A. A. Anselm, Yad. Fiz. 42, 1480 (1985).
[40] K. van Bibber et al., Phys. Rev. Lett. 59, 759 (1987).
[41] G. Ruoso et al., Z. Phys. C56, 505 (1992); R. Cameron et al., Phys. Rev. D47, 3707 (1993).
[42] M. Fouche et al., Phys. Rev. D78, 032013 (2008), [arXiv:0808.2800].
[43] P. Pugnat et al. (OSQAR), Phys. Rev. D78, 092003 (2008), [arXiv:0712.3362].
[44] A. S. Chou et al. (GammeV (T-969)), Phys. Rev. Lett. 100, 080402 (2008), [arXiv:0710.3783].
[45] A. Afanasev et al., Phys. Rev. Lett. 101, 120401 (2008), [arXiv:0806.2631].
[46] K. Ehret et al. (ALPS), Phys. Lett. B689, 149 (2010), [arXiv:1004.1313].
[47] P. Pugnat et al. (OSQAR), Eur. Phys. J. C74, 8, 3027 (2014), [arXiv:1306.0443].
[48] R. Ballou et al. (OSQAR), Phys. Rev. D92, 9, 092002 (2015), [arXiv:1506.08082].
[49] F. Hoogeveen and T. Ziegenhagen, Nucl. Phys. B358, 3 (1991).
[50] P. Sikivie, D. B. Tanner and K. van Bibber, Phys. Rev. Lett. 98, 172002 (2007), [hep-ph/0701198]; G. Mueller et al., Phys. Rev. D80, 072004 (2009), [arXiv:0907.5387].
[51] R. Baehre et al. (ALPS Collab.), JINST 1308, T09001 (2013).
[52] F. Hoogeveen, Phys. Lett. B288, 195 (1992).
[53] J. Jaeckel and A. Ringwald, Phys. Lett. B659, 509 (2008), [arXiv:0707.2063].
[54] F. Caspers, J. Jaeckel and A. Ringwald, JINST 4, P11013 (2009), [arXiv:0908.0759].
[55] R. Povey, J. Hartnett and M. Tobar, Phys. Rev. D82, 052003 (2010), [arXiv:1003.0964].
[56] M. Betz et al., Phys. Rev. D88, 7, 075014 (2013), [arXiv:1310.8098].
[57] L. Maiani, R. Petronzio and E. Zavattini, Phys. Lett. B175, 359 (1986).
[58] Y. Semertzidis et al., Phys. Rev. Lett. 64, 2988 (1990).
[59] E. Zavattini et al. (PVLAS), Phys. Rev. Lett. 96, 110406 (2006), [Erratum: Phys. Rev. Lett.99,129901(2007)], [hepex/0507107].
[60] E. Zavattini et al. (PVLAS), Phys. Rev. D77, 032006 (2008), [arXiv:0706.3419].
[61] F. Della Valle et al., Eur. Phys. J. C76, 1, 24 (2016), [arXiv:1510.08052].
[62] E. Fischbach and C. Talmadge, Nature 356, 207 (1992).
[63] J. E. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984); A. N. Youdin et al., Phys. Rev. Lett. 77, 2170 (1996); W.-T. Ni et al., Phys. Rev. Lett. 82, 2439 (1999); D. F. Phillips et al., Phys. Rev. D63, 111101 (2001), [arXiv:physics/0008230]; B. R. Heckel et al., Phys. Rev. Lett. 97, 021603 (2006), [hep-ph/0606218]; S. A. Hoedl et al., Phys. Rev. Lett. 106, 041801 (2011).
[64] G. Raffelt, Phys. Rev. D86, 015001 (2012), [arXiv:1205.1776].
[65] A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 16, 161801 (2014), [arXiv:1403.1290].
[66] A. A. Geraci et al. (ARIADNE), Springer Proc. Phys. 211, 151 (2018), [arXiv:1710.05413].
[67] M. S. Turner, Phys. Rept. 197, 67 (1990).
[68] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008), [,51(2006)], [hep-ph/0611350].
[69] S. Andriamonje et al. (CAST), JCAP 0704, 010 (2007), [hep-ex/0702006].
[70] P. Gondolo and G. G. Raffelt, Phys. Rev. D79, 107301 (2009), [arXiv:0807.2926].
[71] H. Schlattl, A. Weiss and G. Raffelt, Astropart. Phys. 10, 353 (1999), [hep-ph/9807476].
[72] N. Vinyoles et al., JCAP 1510, 10, 015 (2015), [arXiv:1501.01639].
[73] A. Ayala et al., Phys. Rev. Lett. 113, 19, 191302 (2014), [arXiv:1406.6053].
[74] O. Straniero et al., in "Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015): Zaragoza, Spain, June 22-26, 2015," 77-81 (2015).
[75] J. Redondo, JCAP 1312, 008 (2013), [arXiv:1310.0823].
[76] N. Viaux et al., Phys. Rev. Lett. 111, 231301 (2013), [arXiv:1311.1669].
[77] C.-Y. Chen and S. Dawson, Phys. Rev. D87, 055016 (2013), [arXiv:1301.0309].
[78] G. G. Raffelt, Phys. Lett. 166B, 402 (1986); S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. Roy. Astron. Soc. 266, 289 (1994).
[79] M. M. Miller Bertolami et al., JCAP 1410, 10, 069 (2014), [arXiv:1406.7712].
[80] J. Isern et al., Astrophys. J. 682, L109 (2008), [arXiv:0806.2807]; J. Isern et al., J. Phys. Conf. Ser. 172, 012005 (2009), [arXiv:0812.3043].
[81] A. Drlica-Wagner et al. (LSST Dark Matter Group) (2019), [arXiv:1902.01055].
[82] J. Isern et al., Astron. \& Astrophys. 512, A86 (2010); A. H. Corsico et al., Mon. Not. Roy. Astron. Soc. 424, 2792 (2012), [arXiv:1205.6180]; A. H. Corsico et al., JCAP 1212, 010 (2012), [arXiv:1211.3389].
[83] A. H. Córsico et al. (2019), [arXiv:1907.00115].
[84] M. Giannotti et al., JCAP 1710, 10, 010 (2017), [arXiv:1708.02111].
[85] M. Giannotti et al., JCAP 1605, 05, 057 (2016), [arXiv:1512.08108].
[86] G.G. Raffelt, Stars as Laboratories for Fundamental Physics, (Univ. of Chicago Press, Chicago, 1996).
[87] T. Fischer et al., Phys. Rev. D94, 8, 085012 (2016), [arXiv:1605.08780].
[88] J. H. Chang, R. Essig and S. D. McDermott, JHEP 09, 051 (2018), [arXiv:1803.00993].
[89] P. Carenza et al. (2019), [arXiv:1906.11844].
[90] J. Engel, D. Seckel and A. C. Hayes, Phys. Rev. Lett. 65, 960 (1990).
[91] T. Moroi and H. Murayama, Phys. Lett. B440, 69 (1998), [hep-ph/9804291].
[92] D. Page et al., Phys. Rev. Lett. 106, 081101 (2011), [arXiv:1011.6142].
[93] P. S. Shternin et al., Mon. Not. Roy. Astron. Soc. 412, L108 (2011), [arXiv:1012.0045].
[94] L. B. Leinson, Phys. Lett. B741, 87 (2015), [arXiv:1411.6833].
[95] K. Hamaguchi et al., Phys. Rev. D98, 10, 103015 (2018), [arXiv:1806.07151].
[96] J. Keller and A. Sedrakian, Nucl. Phys. A897, 62 (2013), [arXiv:1205.6940]; A. Sedrakian, Phys. Rev. D93, 6, 065044 (2016), [arXiv:1512.07828].
[97] L. B. Leinson, JCAP 1408, 031 (2014), [arXiv:1405.6873].
[98] M. V. Beznogov et al., Phys. Rev. C98, 3, 035802 (2018), [arXiv:1806.07991].
[99] G. G. Raffelt, J. Redondo and N. Viaux Maira, Phys. Rev. D84, 103008 (2011), [arXiv:1110.6397].
[100] K. van Bibber et al., Phys. Rev. D39, 2089 (1989).
[101] D. M. Lazarus et al., Phys. Rev. Lett. 69, 2333 (1992).
[102] S. Moriyama et al., Phys. Lett. B434, 147 (1998), [hepex/9805026]; Y. Inoue et al., Phys. Lett. B536, 18 (2002), [arXiv:astro-ph/0204388].
[103] Y. Inoue et al., Phys. Lett. B668, 93 (2008), [arXiv:0806.2230].
[104] V. Anastassopoulos et al. (CAST), Nature Phys. 13, 584 (2017), [arXiv:1705.02290].
[105] E. Arik et al. (CAST), JCAP 0902, 008 (2009), [arXiv:0810.4482].
[106] S. Aune et al. (CAST), Phys. Rev. Lett. 107, 261302 (2011), [arXiv:1106.3919]; M. Arik et al. (CAST), Phys. Rev. Lett. 112, 9, 091302 (2014), [arXiv:1307.1985]; M. Arik et al. (CAST), Phys. Rev. D92, 2, 021101 (2015), [arXiv:1503.00610].
[107] E. Armengaud et al., JINST 9, T05002 (2014), [arXiv:1401.3233].
[108] E. Armengaud et al. (IAXO), JCAP 1906, 06, 047 (2019), [arXiv:1904.09155].
[109] K. Barth et al., JCAP 1305, 010 (2013), [arXiv:1302.6283].
[110] F. T. Avignone, III et al. (SOLAX), Phys. Rev. Lett. 81, 5068 (1998), [arXiv:astro-ph/9708008]; S. Cebrian et al., Astropart. Phys. 10, 397 (1999), [arXiv:astro-ph/9811359]; A. Morales et al. (COSME), Astropart. Phys. 16, 325 (2002), [hep-ex/0101037]; R. Bernabei et al., Phys. Lett. B515, 6 (2001); Z. Ahmed et al. (CDMS), Phys. Rev. Lett. 103, 141802 (2009), [arXiv:0902.4693].
[111] H. Davoudiasl and P. Huber, Phys. Rev. Lett. 97, 141302 (2006), [hep-ph/0509293].
[112] H. S. Hudson et al., ASP Conf. Ser. 455, 25 (2012), [arXiv:1201.4607].
[113] E. Armengaud et al., JCAP 1311, 067 (2013), [arXiv:1307.1488]; E. Aprile et al. (XENON100), Phys. Rev. D90, 6, 062009 (2014), [Erratum: Phys. Rev.D95,no.2,029904(2017)], [arXiv:1404.1455].
[114] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 26, 261301 (2017), [arXiv:1704.02297].
[115] J. W. Brockway, E. D. Carlson and G. G. Raffelt, Phys. Lett. B383, 439 (1996), [arXiv:astro-ph/9605197]; J. A. Grifols, E. Masso and R. Toldra, Phys. Rev. Lett. 77, 2372 (1996), [arXiv:astro-ph/9606028].
[116] A. Payez et al., JCAP 1502, 02, 006 (2015), [arXiv:1410.3747].
[117] C. Csaki, N. Kaloper and J. Terning, Phys. Rev. Lett. 88, 161302 (2002), [hep-ph/0111311].
[118] A. Mirizzi, G.G. Raffelt, and P.D. Serpico, Lect. Notes Phys. 741, 115 (2008).
[119] R. Gill and J. S. Heyl, Phys. Rev. D84, 085001 (2011), [arXiv:1105.2083].
[120] D. Horns et al., Phys. Rev. D85, 085021 (2012), [arXiv:1203.2184].
[121] A. Payez, J. R. Cudell and D. Hutsemekers, JCAP 1207, 041 (2012), [arXiv:1204.6187].
[122] A. Dominguez, M. A. Sanchez-Conde and F. Prada, JCAP 1111, 020 (2011), [arXiv:1106.1860].
[123] W. Essey and A. Kusenko, Astrophys. J. 751, L11 (2012), [arXiv:1111.0815].
[124] D. Horns and M. Meyer, JCAP 1202, 033 (2012), [arXiv:1201.4711].
[125] G. I. Rubtsov and S. V. Troitsky, JETP Lett. 100, 6, 355 (2014), [Pisma Zh. Eksp. Teor. Fiz.100,no.6,397(2014)], [arXiv:1406.0239].
[126] K. Kohri and H. Kodama, Phys. Rev. D96, 5, 051701 (2017), [arXiv:1704.05189].
[127] D. A. Sanchez, S. Fegan and B. Giebels, Astron. Astrophys. 554, A75 (2013), [arXiv:1303.5923].
[128] J. Biteau and D. A. Williams, Astrophys. J. 812, 1, 60 (2015), [arXiv:1502.04166].
[129] A. Domínguez and M. Ajello, Astrophys. J. 813, 2, L34 (2015), [arXiv:1510.07913].
[130] A. De Angelis, G. Galanti and M. Roncadelli, Phys. Rev. D84, 105030 (2011), [Erratum: Phys. Rev.D87,no.10,109903(2013)], [arXiv:1106.1132]; M. Simet, D. Hooper and P. D. Serpico, Phys. Rev. D77, 063001 (2008), [arXiv:0712.2825]; M. A. Sanchez-Conde et al., Phys. Rev. D79, 123511 (2009), [arXiv:0905.3270].
[131] M. Meyer, D. Horns and M. Raue, Phys. Rev. D87, 3, 035027 (2013), [arXiv:1302.1208].
[132] A. Abramowski et al. (H.E.S.S.), Phys. Rev. D88, 10, 102003 (2013), [arXiv:1311.3148].
[133] M. Ajello et al. (Fermi-LAT), Phys. Rev. Lett. 116, 16, 161101 (2016), [arXiv:1603.06978].
[134] C. Zhang et al., Phys. Rev. D97, 6, 063009 (2018), [arXiv:1802.08420].
[135] Z.-Q. Xia et al., Phys. Rev. D97, 6, 063003 (2018), [arXiv:1801.01646].
[136] J. Majumdar, F. Calore and D. Horns, JCAP 1804, 04, 048 (2018), [arXiv:1801.08813].
[137] S. S. Wilks, Annals Math. Statist. 9, 1, 60 (1938).
[138] D. Wouters and P. Brun, Astrophys. J. 772, 44 (2013), [arXiv:1304.0989].
[139] M. Berg et al., Astrophys. J. 847, 2, 101 (2017), [arXiv:1605.01043].
[140] M. C. D. Marsh et al., JCAP 1712, 12, 036 (2017), [arXiv:1703.07354].
[141] J. P. Conlon et al., JCAP 1707, 07, 005 (2017), [arXiv:1704.05256].
[142] L. Chen and J. P. Conlon, Mon. Not. Roy. Astron. Soc. 479, 2, 2243 (2018), [arXiv:1712.08313].
[143] C. S. Reynolds et al. (2019), [arXiv:1907.05475].
[144] A. Arvanitaki and S. Dubovsky, Phys. Rev. D83, 044026 (2011), [arXiv:1004.3558].
[145] A. Arvanitaki, M. Baryakhtar and X. Huang, Phys. Rev. D91, 8, 084011 (2015), [arXiv:1411.2263].
[146] A. Arvanitaki et al., Phys. Rev. D95, 4, 043001 (2017), [arXiv:1604.03958].
[147] K. K. Y. Ng et al. (2019), [arXiv:1908.02312].
[148] M. S. Turner, Phys. Rev. Lett. 59, 2489 (1987), [Erratum: Phys. Rev. Lett.60,1101(1988)]; E. Masso, F. Rota and G. Zsembinszki, Phys. Rev. D66, 023004 (2002), [hepph/0203221]; P. Graf and F. D. Steffen, Phys. Rev. D83, 075011 (2011), [arXiv:1008.4528].
[149] S. Hannestad et al., JCAP 1008, 001 (2010), [arXiv:1004.0695]; M. Archidiacono et al., JCAP 1310, 020 (2013), [arXiv:1307.0615]; E. Di Valentino et al., Phys. Lett. B752, 182 (2016), [arXiv:1507.08665].
[150] M. Archidiacono et al., JCAP 1505, 05, 050 (2015), [arXiv:1502.03325].
[151] E. Masso and R. Toldra, Phys. Rev. D55, 7967 (1997), [hepph/9702275]; D. Cadamuro and J. Redondo, JCAP 1202, 032 (2012), [arXiv:1110.2895].
[152] J. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. B120, 127 (1983); L. F. Abbott and P. Sikivie, Phys. Lett. B120, 133 (1983); M. Dine and W. Fischler, Phys. Lett. B120, 137 (1983).
[153] K. J. Bae, J.-H. Huh and J. E. Kim, JCAP 0809, 005 (2008), [arXiv:0806.0497].
[154] O. Wantz and E. P. S. Shellard, Phys. Rev. D82, 123508 (2010), [arXiv:0910.1066].
[155] G. Ballesteros et al., JCAP 1708, 08, 001 (2017), [arXiv:1610.01639].
[156] M. Tegmark et al., Phys. Rev. D73, 023505 (2006), [arXiv:astro-ph/0511774].
[157] A. D. Linde, Phys. Lett. 158B, 375 (1985).
[158] D. Seckel and M. S. Turner, Phys. Rev. D32, 3178 (1985).
[159] M. Beltran, J. Garcia-Bellido and J. Lesgourgues, Phys. Rev. D75, 103507 (2007), [hep-ph/0606107].
[160] M. P. Hertzberg, M. Tegmark and F. Wilczek, Phys. Rev. D78, 083507 (2008), [arXiv:0807.1726].
[161] J. Hamann et al., JCAP 0906, 022 (2009), [arXiv:0904.0647].
[162] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A22 (2014), [arXiv:1303.5082].
[163] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), [arXiv:1502.02114].
[164] S. Chang, C. Hagmann and P. Sikivie, Phys. Rev. D59, 023505 (1999), [hep-ph/9807374].
[165] C. Hagmann, S. Chang and P. Sikivie, Phys. Rev. D63, 125018 (2001), [hep-ph/0012361].
[166] T. Hiramatsu et al., Phys. Rev. D83, 123531 (2011), [arXiv:1012.5502].
[167] T. Hiramatsu et al., Phys. Rev. D85, 105020 (2012), [Erratum: Phys. Rev.D86,089902(2012)], [arXiv:1202.5851].
[168] M. Kawasaki, K. Saikawa and T. Sekiguchi, Phys. Rev. D91, 6, 065014 (2015), [arXiv:1412.0789].
[169] V. B. Klaer and G. D. Moore, JCAP 1711, 11, 049 (2017), [arXiv:1708.07521].
[170] M. Gorghetto, E. Hardy and G. Villadoro, JHEP 07, 151 (2018), [arXiv:1806.04677].
[171] M. Buschmann, J. W. Foster and B. R. Safdi (2019), [arXiv:1906.00967].
[172] M. Hindmarsh et al. (2019), [arXiv:1908.03522].
[173] A. Ringwald and K. Saikawa, Phys. Rev. D93, 8, 085031 (2016), [Addendum: Phys. Rev.D94,no.4,049908(2016)], [arXiv:1512.06436].
[174] T. Hiramatsu et al., JCAP 1301, 001 (2013), [arXiv:1207.3166].
[175] C. J. Hogan and M. J. Rees, Phys. Lett. B205, 228 (1988).
[176] E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993), [hep-ph/9303313].
[177] K. M. Zurek, C. J. Hogan and T. R. Quinn, Phys. Rev. D75, 043511 (2007), [arXiv:astro-ph/0607341].
[178] A. Vaquero, J. Redondo and J. Stadler (2018), [JCAP1904,no.04,012(2019)], [arXiv:1809.09241].
[179] E. W. Kolb and I. I. Tkachev, Astrophys. J. 460, L25 (1996), [arXiv:astro-ph/9510043].
[180] M. Fairbairn, D. J. E. Marsh and J. Quevillon, Phys. Rev. Lett. 119, 2, 021101 (2017), [arXiv:1701.04787].
[181] A. Katz et al., JCAP 1812, 005 (2018), [arXiv:1807.11495].
[182] E. Berkowitz, M. I. Buchoff and E. Rinaldi, Phys. Rev. D92, 3, 034507 (2015), [arXiv:1505.07455].
[183] S. Borsanyi et al., Phys. Lett. B752, 175 (2016), [arXiv:1508.06917].
[184] R. Kitano and N. Yamada, JHEP 10, 136 (2015), [arXiv:1506.00370].
[185] P. Petreczky, H.-P. Schadler and S. Sharma, Phys. Lett. B762, 498 (2016), [arXiv:1606.03145].
[186] Y. Taniguchi et al., Phys. Rev. D95, 5, 054502 (2017), [arXiv:1611.02411].
[187] M. Dine et al., Phys. Rev. D96, 9, 095001 (2017), [arXiv:1705.00676].
[188] R. D. Pisarski and L. G. Yaffe, Phys. Lett. 97B, 110 (1980). [189] P. Arias et al., JCAP 1206, 013 (2012), [arXiv:1201.5902].
[190] R. Hlozek et al., Phys. Rev. D91, 10, 103512 (2015), [arXiv:1410.2896].
[191] D. J. E. Marsh, Phys. Rept. 643, 1 (2016), [arXiv:1510.07633].
[192] L. Hui et al., Phys. Rev. D95, 4, 043541 (2017), [arXiv:1610.08297].
[193] A. G. Dias et al., JHEP 06, 037 (2014), [arXiv:1403.5760]; J. E. Kim and D. J. E. Marsh, Phys. Rev. D93, 2, 025027 (2016), [arXiv:1510.01701].
[194] H. Davoudiasl and C. W. Murphy, Phys. Rev. Lett. 118, 14, 141801 (2017), [arXiv:1701.01136].
[195] M. Khlopov, B. A. Malomed and I. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 215, 575 (1985).
[196] W. Hu, R. Barkana and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000), [arXiv:astro-ph/0003365]; L. Amendola and R. Barbieri, Phys. Lett. B642, 192 (2006), [hepph/0509257]; D. J. E. Marsh and P. G. Ferreira, Phys. Rev. D82, 103528 (2010), [arXiv:1009.3501].
[197] E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991).
[198] R. Hlozek, D. J. E. Marsh and D. Grin, Mon. Not. Roy. Astron. Soc. 476, 3, 3063 (2018), [arXiv:1708.05681].
[199] D. J. E. Marsh and J. Silk, Mon. Not. Roy. Astron. Soc. 437, 3, 2652 (2014), [arXiv:1307.1705].
[200] H.-Y. Schive et al., Astrophys. J. 818, 1, 89 (2016), [arXiv:1508.04621].
[201] B. Bozek et al., Mon. Not. Roy. Astron. Soc. 450, 1, 209 (2015), [arXiv:1409.3544]; P. S. Corasaniti et al., Phys. Rev. D95, 8, 083512 (2017), [arXiv:1611.05892].
[202] E. Armengaud et al., Mon. Not. Roy. Astron. Soc. 471, 4, 4606 (2017), [arXiv:1703.09126]; V. Iršič et al., Phys. Rev. Lett. 119, 3, 031302 (2017), [arXiv:1703.04683]; T. Kobayashi et al., Phys. Rev. D96, 12, 123514 (2017), [arXiv:1708.00015].
[203] H.-Y. Schive and T. Chiueh, Mon. Not. Roy. Astron. Soc. 473, 1, L36 (2018), [arXiv:1706.03723].
[204] H.-Y. Schive, T. Chiueh and T. Broadhurst, Nature Phys. 10, 496 (2014), [arXiv:1406.6586].
[205] B. Schwabe, J. C. Niemeyer and J. F. Engels, Phys. Rev. D94, 4, 043513 (2016), [arXiv:1606.05151]; J. Veltmaat and J. C. Niemeyer, Phys. Rev. D94, 12, 123523 (2016), [arXiv:1608.00802]; P. Mocz et al., Mon. Not. Roy. Astron. Soc. 471, 4, 4559 (2017), [arXiv:1705.05845].
[206] D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. Lett. 118, 011301 (2017); T. Helfer et al., JCAP 1703, 03, 055 (2017), [arXiv:1609.04724].
[207] D. J. E. Marsh and A.-R. Pop, Mon. Not. Roy. Astron. Soc. 451, 3, 2479 (2015), [arXiv:1502.03456]; S.-R. Chen, H.-Y. Schive and T. Chiueh, Mon. Not. Roy. Astron. Soc. 468, 2, 1338 (2017), [arXiv:1606.09030]; A. X. González-Morales et al., Mon. Not. Roy. Astron. Soc. 472, 2, 1346 (2017), [arXiv:1609.05856].
[208] I. De Martino et al. (2018), [arXiv:1807.08153].
[209] T. Broadhurst et al. (2019), [arXiv:1902.10488].
[210] H.-Y. Schive et al., Phys. Rev. Lett. 113, 26, 261302 (2014), [arXiv:1407.7762].
[211] V. H. Robles, J. S. Bullock and M. Boylan-Kolchin, Mon. Not. Roy. Astron. Soc. 483, 1, 289 (2019), [arXiv:1807.06018].
[212] V. Desjacques and A. Nusser (2019), [arXiv:1905.03450].
[213] M. Safarzadeh and D. N. Spergel (2019), [arXiv:1906.11848].
[214] J. H. H. Chan et al., Mon. Not. R. Astron. Soc 478, 2686 (2018), [arXiv:1712.01947].
[215] A. Pontzen and F. Governato, Nature 506, 171 (2014), [arXiv:1402.1764].
[216] J. Veltmaat, J. C. Niemeyer and B. Schwabe, Phys. Rev. D98, 4, 043509 (2018), [arXiv:1804.09647].
[217] B. Bar-Or, J.-B. Fouvry and S. Tremaine, Astrophys. J. 871, 1, 28 (2019), [arXiv:1809.07673].
[218] D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. Lett. 121, 15, 151301 (2018), [arXiv:1804.05857].
[219] B. V. Church, P. Mocz and J. P. Ostriker, Mon. Not. R. Astron. Soc 485, 2861 (2019), [arXiv:1809.04744].
[220] N. C. Amorisco and A. Loeb (2018), [arXiv:1808.00464].
[221] T. S. Li et al. (DES), Astrophys. J. 838, 1, 8 (2017), [arXiv:1611.05052].
[222] D. J. E. Marsh and J. C. Niemeyer, Phys. Rev. Lett. 123, 5, 051103 (2019), [arXiv:1810.08543].
[223] B. Eggemeier and J. C. Niemeyer (2019), [arXiv:1906.01348].
[224] M. A. Bershady, M. T. Ressell and M. S. Turner, Phys. Rev. Lett. 66, 1398 (1991); M. T. Ressell, Phys. Rev. D44, 3001 (1991).
[225] D. Grin et al., Phys. Rev. D75, 105018 (2007), [arXiv:astroph/0611502].
[226] B. D. Blout et al., Astrophys. J. 546, 825 (2001), [arXiv:astro-ph/0006310].
[227] K. Kelley and P. J. Quinn, Astrophys. J. 845, 1, L4 (2017), [arXiv:1708.01399].
[228] G. Sigl, Phys. Rev. D96, 10, 103014 (2017), [arXiv:1708.08908].
[229] A. Hook et al., Phys. Rev. Lett. 121, 24, 241102 (2018), [arXiv:1804.03145].
[230] A. Caputo et al., JCAP 1903, 03, 027 (2019), [arXiv:1811.08436].
[231] M. A. Fedderke, P. W. Graham and S. Rajendran, Phys. Rev. D100, 1, 015040 (2019), [arXiv:1903.02666].
[232] T. Liu, G. Smoot and Y. Zhao (2019), [arXiv:1901.10981].
[233] P. Sikivie, Phys. Rev. D32, 2988 (1985), [Erratum: Phys. Rev.D36,974(1987)].
[234] R. Bradley et al., Rev. Mod. Phys. 75, 777 (2003).
[235] P. Sikivie and J. R. Ipser, Phys. Lett. B291, 288 (1992).
[236] P. Sikivie, I. I. Tkachev and Y. Wang, Phys. Rev. Lett. 75, 2911 (1995), [arXiv:astro-ph/9504052].
[237] S. De Panfilis et al., Phys. Rev. Lett. 59, 839 (1987); W. Wuensch et al., Phys. Rev. D40, 3153 (1989); C. Hagmann et al., Phys. Rev. D42, 1297 (1990).
[238] S. J. Asztalos et al. (ADMX), Phys. Rev. D69, 011101 (2004), [arXiv:astro-ph/0310042].
[239] L. Duffy et al., Phys. Rev. Lett. 95, 091304 (2005), [arXiv:astro-ph/0505237]; J. Hoskins et al., Phys. Rev. D84, 121302 (2011), [arXiv:1109.4128].
[240] S. J. Asztalos et al. (ADMX), Phys. Rev. Lett. 104, 041301 (2010), [arXiv:0910.5914].
[241] S. J. Asztalos et al. (ADMX), Nucl. Instrum. Meth. A656, 39 (2011), [arXiv:1105.4203].
[242] N. Du et al. (ADMX), Phys. Rev. Lett. 120, 15, 151301 (2018), [arXiv:1804.05750].
[243] T. Braine et al. (ADMX) (2019), [arXiv:1910.08638].
[244] G. Rybka et al. (ADMX), Phys. Rev. Lett. 105, 051801 (2010), [arXiv:1004.5160].
[245] A. Wagner et al. (ADMX), Phys. Rev. Lett. 105, 171801 (2010), [arXiv:1007.3766].
[246] C. Boutan et al. (ADMX), Phys. Rev. Lett. 121, 26, 261302 (2018), [arXiv:1901.00920].
[247] B. M. Brubaker et al., Phys. Rev. Lett. 118, 6, 061302 (2017), [arXiv:1610.02580].
[248] L. Zhong et al. (HAYSTAC), Phys. Rev. D97, 9, 092001 (2018), [arXiv:1803.03690].
[249] I. Ogawa, S. Matsuki and K. Yamamoto, Phys. Rev. D53, R1740 (1996).
[250] B. T. McAllister et al., Phys. Dark Univ. 18, 67 (2017), [arXiv:1706.00209].
[251] W. Chung, PoS CORFU2015, 047 (2016).
[252] A. A. Melcon et al. (RADES), JCAP 1805, 05, 040 (2018), [arXiv:1803.01243].
[253] D. Alesini et al. (KLASH) (2017), [arXiv:1707.06010].
[254] G. Rybka et al., Phys. Rev. D91, 1, 011701 (2015), [arXiv:1403.3121].
[255] D. Horns et al., JCAP 1304, 016 (2013), [arXiv:1212.2970].
[256] J. Suzuki et al., JCAP 1509, 09, 042 (2015), [arXiv:1504.00118].
[257] A. Caldwell et al. (MADMAX Working Group), Phys. Rev. Lett. 118, 9, 091801 (2017), [arXiv:1611.05865].
[258] P. Brun et al. (MADMAX), Eur. Phys. J. C79, 3, 186 (2019), [arXiv:1901.07401].
[259] M. Baryakhtar, J. Huang and R. Lasenby, Phys. Rev. D98, 3, 035006 (2018), [arXiv:1803.11455].
[260] A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Phys. Rev. X8, 4, 041001 (2018), [arXiv:1709.05354].
[261] P. Sikivie, Phys. Rev. Lett. 113, 20, 201301 (2014), [arXiv:1409.2806].
[262] P. W. Graham and S. Rajendran, Phys. Rev. D88, 035023 (2013), [arXiv:1306.6088].
[263] M. Pospelov and A. Ritz, Nucl. Phys. B573, 177 (2000), [hep-ph/9908508].
[264] C. Abel et al., Phys. Rev. X7, 4, 041034 (2017), [arXiv:1708.06367].
[265] D. Budker et al., Phys. Rev. X4, 2, 021030 (2014), [arXiv:1306.6089].
[266] M. B. Wise, H. Georgi and S. L. Glashow, Phys. Rev. Lett. 47, 402 (1981).
[267] A. Ernst, A. Ringwald and C. Tamarit, JHEP 02, 103 (2018), [arXiv:1801.04906].
[268] L. Di Luzio, A. Ringwald and C. Tamarit, Phys. Rev. D98, 9, 095011 (2018), [arXiv:1807.09769].
[269] P. Fileviez Perez, C. Murgui and A. D. Plascencia (2019), [arXiv:1908.01772].
[270] S. P. Chang et al., Phys. Rev. D99, 8, 083002 (2019), [arXiv:1710.05271].
[271] P. Sikivie, N. Sullivan, and D. B. Tanner, Phys. Rev. Lett. 112, 131301 (2014).
[272] Y. Kahn, B. R. Safdi and J. Thaler, Phys. Rev. Lett. 117, 14, 141801 (2016), [arXiv:1602.01086].
[273] M. Silva-Feaver et al., IEEE Trans. Appl. Supercond. 27, 4, 1400204 (2017), [arXiv:1610.09344].
[274] J. L. Ouellet et al. (ABRACADABRA), Phys. Rev. Lett. 122, 12, 121802 (2019), [arXiv:1810.12257].
[275] L. Krauss et al., Phys. Rev. Lett. 55, 1797 (1985).
[276] R. Barbieri et al., Phys. Dark Univ. 15, 135 (2017).

92. Searches for Quark and Lepton Compositeness

Revised 2019 by K. Hikasa (Tohoku University), M. Tanabashi (Nagoya University), K. Terashi (ICEPP, University of Tokyo), and N. Varelas (University of Illinois at Chicago)

92.1. Limits on contact interactions

If quarks and leptons are made of constituents, then at the scale of constituent binding energies (compositeness scale) there should appear new interactions among them. At energies much below the compositeness scale (Λ), these interactions are suppressed by inverse powers of Λ. The dominant effect of the compositeness of fermion ψ should come from the lowest dimensional interactions with four fermions (contact terms), whose most general flavor-diagonal color-singlet chirally invariant form reads $[1,2]$

$$
\mathcal{L}=\mathcal{L}_{L L}+\mathcal{L}_{R R}+\mathcal{L}_{L R}+\mathcal{L}_{R L},
$$

with

$$
\begin{align*}
& \mathcal{L}_{L L}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum_{i, j} \eta_{L L}^{i j}\left(\bar{\psi}_{L}^{i} \gamma_{\mu} \psi_{L}^{i}\right)\left(\bar{\psi}_{L}^{j} \gamma^{\mu} \psi_{L}^{j}\right), \\
& \mathcal{L}_{R R}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum_{i, j} \eta_{R R}^{i j}\left(\bar{\psi}_{R}^{i} \gamma_{\mu} \psi_{R}^{i}\right)\left(\bar{\psi}_{R}^{j} \gamma^{\mu} \psi_{R}^{j}\right), \\
& \mathcal{L}_{L R}=\frac{g_{\text {contact }}^{2}}{2 \Lambda^{2}} \sum_{i, j} \eta_{L R}^{i j}\left(\bar{\psi}_{L}^{i} \gamma_{\mu} \psi_{L}^{i}\right)\left(\bar{\psi}_{R}^{j} \gamma^{\mu} \psi_{R}^{j}\right), \\
& \mathcal{L}_{R L}=\frac{g_{\text {contact }}^{2} \sum_{i, j} \eta_{R L}^{i j}\left(\bar{\psi}_{R}^{i} \gamma_{\mu} \psi_{R}^{i}\right)\left(\bar{\psi}_{L}^{j} \gamma^{\mu} \psi_{L}^{j}\right),}{}, l \tag{92.1}
\end{align*}
$$

where i, j are the indices of fermion species. Color and other indices are suppressed in Eq. (92.1). Chiral invariance provides a natural explanation why quark and lepton masses are much smaller than their inverse size Λ. Note $\eta_{\alpha \beta}^{i j}=\eta_{\beta \alpha}^{j i}$, therefore, in order to specify the contact interaction among the same fermion species $i=j$, it is enough to use $\eta_{L L}, \eta_{R R}$ and $\eta_{L R}$. We will suppress the indices of fermion species hereafter. We may determine the scale Λ unambiguously by using the above form of the effective interactions; the conventional method [1] is to fix its scale by setting $g_{\text {contact }}^{2} / 4 \pi=g_{\text {contact }}^{2}(\Lambda) / 4 \pi=1$ for the new strong interaction coupling and by setting the largest magnitude of the coefficients $\eta_{\alpha \beta}$ to be unity. In the following, we denote

$$
\begin{align*}
& \Lambda=\Lambda_{L L}^{ \pm} \text {for }\left(\eta_{L L}, \eta_{R R}, \eta_{L R}\right)=(\pm 1,0,0), \\
& \Lambda=\Lambda_{R R}^{ \pm} \text {for }\left(\eta_{L L}, \eta_{R R}, \eta_{L R}\right)=(0, \pm 1,0), \\
& \Lambda=\Lambda_{V V}^{ \pm} \text {for }\left(\eta_{L L}, \eta_{R R}, \eta_{L R}\right)=(\pm 1, \pm 1, \pm 1), \\
& \Lambda=\Lambda_{A A}^{ \pm} \text {for }\left(\eta_{L L}, \eta_{R R}, \eta_{L R}\right)=(\pm 1, \pm 1, \mp 1), \\
& \Lambda=\Lambda_{V-A}^{ \pm} \text {for }\left(\eta_{L L}, \eta_{R R}, \eta_{L R}\right)=(0,0, \pm 1) . \tag{92.2}
\end{align*}
$$

Such interactions can arise by interchanging constituents (when the fermions have common constituents), and/or by exchanging the binding quanta (whenever binding quanta couple to constituents of both particles).

Fermion scattering amplitude induced from the contact interaction in Eq. (92.1) interferes with the Standard Model (SM) amplitude destructively or constructively [2]. The sign of interference depends on the sign of $\eta_{\alpha \beta}(\alpha, \beta=L, R)$. For instance, in the parton level $q q \rightarrow q q$ scattering cross section in the $\Lambda_{L L}^{ \pm}$model, the contact interaction amplitude and the SM gluon exchange amplitude interfere destructively for $\eta_{L L}=+1$, while they interfere constructively for $\eta_{L L}=-1$. In models of quark compositeness, the quark scattering cross sections induced from the contact interactions receive sizable QCD radiative corrections. Ref. 3 provides the exact next-to-leading order (NLO) QCD corrections to the contact interaction induced quark scattering cross sections.

Over the last three decades experiments at the CERN Spp̄S [4,5], the Fermilab Tevatron $[6,7]$, and the CERN LHC [8-12] have searched for quark contact interactions, characterized by the four-fermion effective Lagrangian in Eq. (92.1), using jet final states. These searches have been performed primarily by studying the angular distribution of the two highest transverse momentum, p_{T}, jets (dijets), and the inclusive jet p_{T} spectrum. The variable $\chi=\exp \left(\left|\left(y_{1}-y_{2}\right)\right|\right)$ is used to measure the dijet angular distribution, where y_{1} and y_{2} are the rapidities of the two jets with the highest transverse momenta. For collinear massless parton scattering, χ is related to the polar scattering angle θ^{*} in the partonic center-of-mass frame by $\chi=\left(1+\left|\cos \theta^{*}\right|\right) /\left(1-\left|\cos \theta^{*}\right|\right)$. The choice of χ is motivated by the fact that the angular distribution for Rutherford scattering, which is proportional to $1 /\left(1-\cos \theta^{*}\right)^{2}$, is independent of χ. In perturbative QCD the χ distributions are relatively uniform and only mildly modified by higher-order QCD or electroweak corrections. Signatures of quark contact interactions exhibit more isotropic angular distribution than QCD and they can be identified as an excess at low values of χ. In the inclusive jet cross section measurement, quark contact interaction effects are searched for as deviations from the predictions of perturbative QCD in the tails of the high- p_{T} jet spectrum [11].

Figure 92.1: Normalized dijet angular distributions in several dijet mass $\left(\mathrm{m}_{\mathrm{jj}}\right)$ ranges. The data distributions are compared to PYTHIA8 predictions with NLO and electroweak corrections applied (solid line) and with the predictions including a contact interaction (CI) term in which only left-handed quarks participate of compositeness scale $\Lambda_{L L}^{+}=15 \mathrm{TeV}$ (dashed line) and $\Lambda_{L L}^{-}=22 \mathrm{TeV}$ (dotted line). The theoretical uncertainties and the total theoretical and experimental uncertainties in the predictions are displayed as shaded bands around the SM prediction. Figure adopted from Ref. 9.

Recent results from the LHC, using data collected at proton-proton center-of-mass energy of $\sqrt{s}=13 \mathrm{TeV}$, extend previous limits on quark contact interactions. Figure 92.1 shows the normalized dijet angular distributions for several dijet mass ranges measured in ATLAS [9] at $\sqrt{s}=13 \mathrm{TeV}$. The data distributions are compared with SM predictions, estimated using PYTHIA8 [13] with GEANT4-based [14] ATLAS detector simulation and corrected to NLO QCD calculation provided by NLO Jet++ [15] including electroweak corrections [16], and with predictions including a contact interaction term in which only
left-handed quarks participate at compositeness scale $\Lambda_{L L}^{+}=15 \mathrm{TeV}$ $\left(\Lambda_{L L}^{-}=22 \mathrm{TeV}\right)$ with destructive (constructive) interference. Over a wide range of χ and dijet mass the data are well described by the SM predictions. Using the dijet angular distributions measured at high dijet masses and $\sqrt{s}=13 \mathrm{TeV}$, the ATLAS [9] and CMS [12] Collaborations have set 95% confidence level (C.L.) lower limits on the contact interaction scale Λ, ranging from 9.2 to 29.5 TeV for different quark contact interaction models that correspond to various combinations of ($\eta_{L L}, \eta_{R R}, \eta_{L R}$), as summarized in Figure 92.2. The contact interaction scale limits extracted using the dijet angular distributions include the exact NLO QCD corrections to dijet production induced by contact interactions [3]. In proton-proton collisions, the $\Lambda_{L L}^{ \pm}$and $\Lambda_{R R}^{ \pm}$contact interaction models result in identical tree-level cross sections and NLO QCD corrections and yield the same exclusion limits. For $\Lambda_{V V}^{ \pm}$and $\Lambda_{A A}^{ \pm}$, the contact interaction predictions are identical at tree level, but exhibit different NLO QCD corrections and yield different exclusion limits.

Figure 92.2: Observed (solid lines) and expected (dashed lines) 95% C.L. lower limits on the contact interaction scale Λ for different contact interaction models from ATLAS [9] and CMS [12] using the dijet angular distributions. The contact interaction models used for the dijet angular distributions include the exact NLO QCD corrections to dijet production. The shaded band for the $\Lambda_{L L / R R}^{+}$model indicates the range of contact interaction scale that was not excluded in ATLAS [9] due to statistical fluctuation of observed data.

If leptons (l) and quarks (q) are composite with common constituents, the interaction of these constituents will manifest itself in the form of a llqq-type four-fermion contact interaction Lagrangian at energies below the compositeness scale Λ. The $l l q q$ terms in the contact interaction Lagrangian can be expressed as

$$
\begin{align*}
& \mathcal{L}_{L L}=\frac{g_{\text {contact }}^{2}}{\Lambda^{2}} \sum_{i, j} \eta_{L L}^{i j}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{i}\right)\left(\bar{l}_{L}^{j} \gamma^{\mu} l_{L}^{j}\right) \\
& \mathcal{L}_{R R}=\frac{g_{\text {contact }}^{2}}{\Lambda^{2}} \sum_{i, j} \eta_{R R}^{i j}\left(\bar{q}_{R}^{i} \gamma_{\mu} q_{R}^{i}\right)\left(\bar{l}_{R}^{j} \gamma^{\mu} l_{R}^{j}\right) \\
& \mathcal{L}_{L R}=\frac{g_{\text {contact }}^{2}}{\Lambda^{2}} \sum_{i, j} \eta_{L R}^{i j}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{i}\right)\left(\bar{l}_{R}^{j} \gamma^{\mu} l_{R}^{j}\right) \\
& \mathcal{L}_{R L}=\frac{g_{\text {contact }}^{2}}{\Lambda^{2}} \sum_{i, j} \eta_{R L}^{i j}\left(\bar{q}_{R}^{i} \gamma_{\mu} q_{R}^{i}\right)\left(\bar{l}_{L}^{j} \gamma^{\mu} l_{L}^{j}\right) \tag{92.3}
\end{align*}
$$

Searches on quark-lepton compositeness have been reported from experiments at LEP [17-20], HERA [21,22], the Tevatron [23,24], and recently from the ATLAS $[25,26]$ and CMS [27-29] experiments at
the LHC. The most stringent searches for $l l q q$ contact interactions are performed by the LHC experiments using high-mass oppositely-charged lepton pairs produced through the $q \bar{q} \rightarrow l^{+} l^{-}$Drell-Yan process. The contact interaction amplitude of the $u \bar{u} \rightarrow l^{+} l^{-}$process $(l=e$ or $\mu)$ interferes with the corresponding SM amplitude constructively (destructively) for $\eta_{\alpha \beta}^{u l}=-1\left(\eta_{\alpha \beta}^{u l}=+1\right)$. The ATLAS Collaboration has extracted limits on the llqq contact interaction at $\sqrt{s}=13 \mathrm{TeV}$ for the right-right $\left(\eta_{R R}= \pm 1, \eta_{L L}=\eta_{L R}=\eta_{R L}=0\right)$, left-left $\left(\eta_{L L}= \pm 1, \eta_{R R}=\eta_{L R}=\eta_{R L}=0\right)$, and left-right $\left(\eta_{L R}=\eta_{R L}= \pm 1\right.$, $\left.\eta_{R R}=\eta_{L L}=0\right)$ models. Combining the dielectron and dimuon channels, the 95% C.L. lower limits on the llqq contact interaction scale Λ are $35 \mathrm{TeV}(28 \mathrm{TeV})$ for the right-right model, $40 \mathrm{TeV}(25$ $\mathrm{TeV})$ for the left-left model, and $36 \mathrm{TeV}(28 \mathrm{TeV})$ for the left-right model, each with constructive (destructive) interference [26]. The CMS Collaboration, using a $36 \mathrm{fb}^{-1}$ dataset at 13 TeV , has set 95% C.L. exclusion limits on the llqq contact interaction scale that range from $\Lambda_{L L}>20 \mathrm{TeV}$ for the destructive interference to $\Lambda_{R R}>32 \mathrm{TeV}$ for the constructive interference, for the left-left and the right-right models, respectively [29].

Note that the contact interactions arising from the compositeness of quarks and leptons in Eq. (92.1) can also be regarded as a part of more general dimension six operators in the context of low energy standard model effective theory. For a complete list of these dimension six operators, see $[30,31]$.

Interactions of hypothetical dark matter candidate particles with SM particles through mediators can also be described as contact interactions at low energy. See "Searches for WIMPs and Other Particles" in this volume for limits on the interactions involving dark matter candidate particles.

92.2. Limits on excited fermions

Another typical consequence of compositeness is the appearance of excited leptons and quarks $\left(l^{*}\right.$ and $\left.q^{*}\right)$. Phenomenologically, an excited lepton is defined to be a heavy lepton which shares a leptonic quantum number with one of the existing leptons (an excited quark is defined similarly). For example, an excited electron e^{*} is characterized by a nonzero transition-magnetic coupling with electrons. Smallness of the lepton mass and the success of QED prediction for $g-2$ suggest chirality conservation, i.e., an excited lepton should not couple to both left- and right-handed components of the corresponding lepton [32-34].

Excited leptons may be classified by $S U(2) \times U(1)$ quantum numbers. Typical examples are:

1. Sequential type

$$
\binom{\nu^{*}}{l^{*}}_{L}, \quad\left[\nu_{R}^{*}\right], \quad l_{R}^{*}
$$

ν_{R}^{*} is necessary unless ν^{*} has a Majorana mass.
2. Mirror type

$$
\left[\nu_{L}^{*}\right], \quad l_{L}^{*}, \quad\binom{\nu^{*}}{l^{*}}_{R} .
$$

3. Homodoublet type

$$
\binom{\nu^{*}}{l^{*}}_{L}, \quad\binom{\nu^{*}}{l^{*}}_{R}
$$

Similar classification can be made for excited quarks.
Excited fermions can be pair produced via their minimal gauge couplings. The couplings of excited leptons with Z are given by

$$
\begin{aligned}
& \frac{e}{2 \sin \theta_{W} \cos \theta_{W}}\left(-1+2 \sin ^{2} \theta_{W}\right) \bar{l}^{*} \gamma^{\mu} l^{*} Z_{\mu} \\
& +\frac{e}{2 \sin \theta_{W} \cos \theta_{W}} \bar{\nu}^{*} \gamma^{\mu} \nu^{*} Z_{\mu}
\end{aligned}
$$

in the homodoublet model. The corresponding couplings of excited quarks can be easily obtained. Although form factor effects can be present for the gauge couplings at $q^{2} \neq 0$, they are usually neglected.

Excited fermions may also be produced via the contact interactions with ordinary quarks and leptons [35]

$$
\begin{align*}
\mathcal{L} & =\frac{g_{\text {contact }}^{2}}{\Lambda^{2}}\left[\eta_{L L}^{\prime}\left(\bar{\psi}_{L} \gamma_{\mu} \psi_{L}\right)\left(\bar{\psi}_{L}^{*} \gamma^{\mu} \psi_{L}^{*}\right)\right. \\
& \left.+\left(\eta_{L L}^{\prime \prime}\left(\bar{\psi}_{L} \gamma_{\mu} \psi_{L}\right)\left(\bar{\psi}_{L}^{*} \gamma^{\mu} \psi_{L}\right)+\text { h.c. }\right)+\cdots\right] \tag{92.4}
\end{align*}
$$

Again, the coefficient is conventionally taken $g_{\text {contact }}^{2}=4 \pi$. It is widely assumed $\eta_{L L}^{\prime}=\eta_{L L}^{\prime \prime}=1, \eta_{L R}^{\prime}=\eta_{L R}^{\prime \prime}=\eta_{R L}^{\prime}=\eta_{R L}^{\prime \prime}=\eta_{R R}^{\prime}=\eta_{R R}^{\prime \prime}=0$ in experimental analyses for simplicity.

In addition, transition-magnetic type couplings with a gauge boson are expected. These couplings can be generally parameterized as follows:

$$
\begin{align*}
\mathcal{L}= & \frac{\lambda_{\gamma}^{\left(\psi^{*}\right)} e}{2 m_{\psi^{*}}} \bar{\psi}^{*} \sigma^{\mu \nu}\left(\eta_{L} \frac{1-\gamma_{5}}{2}+\eta_{R} \frac{1+\gamma_{5}}{2}\right) \psi F_{\mu \nu} \\
& +\frac{\lambda_{Z}^{\left(\psi^{*}\right)} e}{2 m_{\psi^{*}}} \bar{\psi}^{*} \sigma^{\mu \nu}\left(\eta_{L} \frac{1-\gamma_{5}}{2}+\eta_{R} \frac{1+\gamma_{5}}{2}\right) \psi Z_{\mu \nu} \\
& +\frac{\lambda_{W}^{\left(l^{*}\right)}}{2 m_{l^{*}}} \bar{l}^{*} \sigma^{\mu \nu} \frac{1-\gamma_{5}}{2} \nu W_{\mu \nu} \\
& +\frac{\lambda_{W}^{\left(\nu^{*}\right)} g}{2 m_{\nu^{*}}} \bar{\nu}^{*} \sigma^{\mu \nu}\left(\eta_{L} \frac{1-\gamma_{5}}{2}+\eta_{R} \frac{1+\gamma_{5}}{2}\right) l W_{\mu \nu}^{\dagger} \\
& + \text { h.c. } \tag{92.5}
\end{align*}
$$

where $g=e / \sin \theta_{W}, \psi=\nu$ or $l, F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the photon field strength, $Z_{\mu \nu}=\partial_{\mu} Z_{\nu}-\partial_{\nu} Z_{\mu}$, etc.. The normalization of the coupling is chosen such that

$$
\max \left(\left|\eta_{L}\right|,\left|\eta_{R}\right|\right)=1
$$

Chirality conservation requires

$$
\begin{equation*}
\eta_{L} \eta_{R}=0 \tag{92.6}
\end{equation*}
$$

These couplings in Eq. (92.5) can arise from $S U(2) \times U(1)$ invariant higher-dimensional interactions. A well-studied model is the interaction of homodoublet type l^{*} with the Lagrangian (see [36,37])

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2 \Lambda} \bar{L}^{*} \sigma^{\mu \nu}\left(g f \frac{\tau^{a}}{2} W_{\mu \nu}^{a}+g^{\prime} f^{\prime} Y B_{\mu \nu}\right) \frac{1-\gamma_{5}}{2} L+\text { h.c. } \tag{92.7}
\end{equation*}
$$

where L denotes the lepton doublet $(\nu, l), \Lambda$ is the compositeness scale, g, g^{\prime} are $S U(2)$ and $U(1)_{Y}$ gauge couplings, and $W_{\mu \nu}^{a}$ and $B_{\mu \nu}$ are the field strengths for $S U(2)$ and $U(1)_{Y}$ gauge fields. These couplings satisfy the relation

$$
\begin{equation*}
\lambda_{W}=-\sqrt{2} \sin ^{2} \theta_{W}\left(\lambda_{Z} \cot \theta_{W}+\lambda_{\gamma}\right) \tag{92.8}
\end{equation*}
$$

with $\lambda_{W, Z, \gamma}$ being defined in Eq. (92.5) with $\lambda_{W, Z, \gamma}=\lambda_{W, Z, \gamma}^{\left(\ell^{*}\right)}$ or $\lambda_{W, Z, \gamma}=\lambda_{W, Z, \gamma}^{\left(\nu^{*}\right)}$. Here $\left(\eta_{L}, \eta_{R}\right)=(1,0)$ is assumed. It should be noted that the electromagnetic radiative decay of $l^{*}\left(\nu^{*}\right)$ is forbidden if $f=-f^{\prime}\left(f=f^{\prime}\right)$.

Additional coupling with gluons is possible for excited quarks:

$$
\begin{align*}
& \mathcal{L}=\frac{1}{2 \Lambda} \bar{Q}^{*} \\
& \sigma^{\mu \nu}\left(g_{s} f_{s} \frac{\lambda^{a}}{2} G_{\mu \nu}^{a}+g f \frac{\tau^{a}}{2} W_{\mu \nu}^{a}+g^{\prime} f^{\prime} Y B_{\mu \nu}\right) \tag{92.9}\\
& \times \frac{1-\gamma_{5}}{2} Q+\text { h.c. }
\end{align*}
$$

where Q denotes a quark doublet, g_{s} is the QCD gauge coupling, and $G_{\mu \nu}^{a}$ the gluon field strength.

Figure 92.3: Dijet mass distribution measured by CMS using wide jets reconstructed from two highest transverse momentum jets by adding nearby jets within $\Delta R=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}<1.1$. The data distribution is compared to a fit representing a smooth background spectrum (solid curve). The excited quark signal with mass of 4.0 TeV (labeled as $q g$) is shown together with other benchmark signals. Shown at the bottom panel is the difference between the data and the fitted parametrization divided by the statistical uncertainty of the data. Figure adopted from Ref. 62.

If leptons are made of color triplet and antitriplet constituents, we may expect their color-octet partners. Transitions between the octet leptons $\left(l_{8}\right)$ and the ordinary lepton (l) may take place via the dimension-five interactions

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2 \Lambda} \sum_{l}\left\{\bar{l}_{8}^{\alpha} g_{S} F_{\mu \nu}^{\alpha} \sigma^{\mu \nu}\left(\eta_{L} l_{L}+\eta_{R} l_{R}\right)+\text { h.c. }\right\} \tag{92.10}
\end{equation*}
$$

where the summation is over charged leptons and neutrinos. The leptonic chiral invariance implies $\eta_{L} \eta_{R}=0$ as before.

Searches for the excited quarks and leptons have been performed over the last decades in experiments at the LEP [38-41], HERA [42,43], Tevatron [44,45], and LHC [46-71]. Most stringent constraints, which are described below at 95% confidence level, come from the LHC experiments.

The signature of excited quarks q^{*} at hadron colliders is characterized by a narrow resonant peak in the reconstructed invariant mass distribution of the q^{*} decay products. The decays via the transition-magnetic type operator in Eq. (92.9) are considered for excited quarks in LHC searches, and the final states to search for are dijet $(q g)[46,47,59-62]$ or a jet in association with a photon $(q \gamma)[48,49,63,64]$ or a weak gauge boson $(q W, q Z)[65,66]$. All analyses consider only spin- $1 / 2$ excited states of first generation quarks $\left(u^{*}, d^{*}\right)$ with degenerate masses, expected to be predominantly produced in proton-proton collisions except for the excited b quark searches described below. Only the minimal gauge interactions and the transition-magnetic couplings with the form given in Eq. (92.9) are considered in the production process, and hence the contact interactions in Eq. (92.4) are not considered. The compositeness scale Λ is taken to be the same as the excited quark mass $m_{q^{*}}$. The transition-magnetic coupling coefficients f_{s}, f and f^{\prime} are assumed to be equal to 1 (denoted by f).

With proton-proton collision data recorded at $\sqrt{s}=13 \mathrm{TeV}$ at the LHC, the excited quark masses are excluded in dijet resonance searches up to 6.7 TeV in ATLAS using $140 \mathrm{fb}^{-1}$ [47] and 6.0 TeV in CMS using $77.8 \mathrm{fb}^{-1}$ [62]. Figure 92.3 shows the dijet mass distribution measured in CMS [62] by using the two highest p_{T} jets reconstructed with the anti- k_{T} algorithm [72] of a distance parameter of 0.4 , and by combining nearby jets within $\Delta R=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}<1.1$ around the leading two jets. The measured dijet mass spectrum is compared to a fit with smoothly falling background shape (solid curve) to look for a narrow resonance; an excited quark signal with mass of 4.0 TeV is shown in the figure (denoted by $q g$) as one of the benchmark signals considered in the analysis.

The photon + jet resonance searches, targeting excited quarks decaying into a quark and a photon $\left(q^{*} \rightarrow q+\gamma\right)$, have excluded q^{*} masses up to 5.3 TeV in ATLAS [49] and 5.5 TeV in CMS [64] using collision data at $\sqrt{s}=13 \mathrm{TeV}$. The W / Z boson + jet final states are examined to look for the $q^{*} \rightarrow q+W$ and $q+Z$ signal in CMS [66], exploiting jet substructure technique designed to provide sensitivity for highly-boosted hadronically decaying W and Z bosons. The lower mass limit of 5.0 (4.8) TeV is obtained from the $W+$ jet $(Z+$ jet $)$ search using dataset recorded at $\sqrt{s}=13 \mathrm{TeV}$.

The excited b quarks $\left(b^{*}\right)$ are also considered in the present searches at the LHC. Assuming the similar production processes to the first-generation excited quarks, the b^{*} has been searched for in final states containing at least one jet identified as originating from a b quark (b-tagging). The searches using two jets including at least one b-tagged jet have been performed at 8 and $13 \mathrm{TeV}[50,51$, 60], resulting in b^{*} lower mass limits of 2.6 TeV in ATLAS using $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ [50] and 1.6 TeV in CMS using $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}[60]$. The CMS Collaboration also performed a search for $b^{*} \rightarrow b+\gamma$ in events with a b-tagged jet in association with a photon using data at $\sqrt{s}=13 \mathrm{TeV}$ [64], and excluded b^{*} masses up to 1.8 TeV . Excited b quarks with charged-current decay into a W-boson and a top quark $\left(b^{*} \rightarrow t+W\right)$ were looked for in both ATLAS and CMS using the full 8 TeV data [52, 67]. ATLAS excluded b^{*} masses below 1.5 TeV for the b^{*} with left- and right-handed couplings [52] while CMS excluded the masses below 1.39 (1.43) TeV for the left(right)-handed couplings [67].

Figure 92.4: $\quad 95 \%$ C.L. lower mass limits for the excited quarks (left) and excited leptons (right) at ATLAS [47,49,55-57] and CMS $[62,64,66] \quad[69-71]$ experiments. Shown are the most stringent limits for each final state (denoted in parentheses) of the excited fermions from both experiments. Only first generation quarks (u, d) with transition-magnetic type interactions with $f_{s}=f=f^{\prime}=1$ are considered for the excited quarks. The excited lepton limits are given for the production via contact interactions with $\Lambda=m_{l^{*}}$.

Searches for excited leptons l^{*} are also performed at the LHC using proton-proton collision data recorded at $\sqrt{s}=7$ and 8 TeV [54-58, $68,69]$ as well as at 13 TeV [70]. Considering single l^{*} production in contact interactions (Eq. (92.4)) and electromagnetic radiative decay to a SM lepton and a photon $\left(l^{*} \rightarrow l+\gamma\right.$ where $\left.l=e, \mu\right)$, the excited electron and muon masses are excluded for $\Lambda=m_{l^{*}}$ up to 3.9 and 3.8 TeV , respectively, using $35.9 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ in CMS [70] and 2.2 TeV using $13 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ in ATLAS [55].

With the full $20.3 \mathrm{fb}^{-1}$ data at $\sqrt{s}=8 \mathrm{TeV}$, the inclusive search on multi-lepton signatures with 3 or more charged leptons
in ATLAS [56] further constrains the excited charged leptons and neutrinos. Considering both the transition-magnetic (Eq. (92.7)) and contact interaction (Eq. (92.4)) processes, the lower mass limits for the e^{*}, μ^{*}, τ^{*} and ν^{*} (for every excited neutrino flavor) are obtained to be $3.0,3.0,2.5$ and 1.6 TeV , respectively, for $\Lambda=m_{e^{*}}, m_{\mu^{*}}, m_{\tau^{*}}$ and $m_{\nu^{*}}$. The rate of pair-produced excited leptons is independent of Λ for the minimal gauge interaction processes, and it allows to improve search sensitivity with multi-lepton signatures at high Λ, especially for excited neutrinos because the predominant $\nu_{l}^{*} \rightarrow l+W$ decays result in a higher acceptance for ≥ 3 charged lepton final states.

Both ATLAS and CMS Collaborations performed searches for singly produced excited leptons. The single excited leptons, both produced and decayed in contact interaction processes (Eq. (92.4)), were searched for in CMS using $77.4 \mathrm{fb}^{-1}$ at 13 TeV [71] and in ATLAS using $20.3 \mathrm{fb}^{-1}$ at 8 TeV [57] using the final states with two leptons and two jets $\left(q \bar{q} \rightarrow l l^{*} \rightarrow l l q \bar{q}\right)$. The CMS search [71] considered both excited electrons and excited muons, using the invariant mass of the combination of the two leptons and two jets as a discriminating variable to separate signal from background. The ATLAS search [57] considered only excited muons. The single excited electrons, produced in contact interactions and decayed either in contact interaction or charged-current processes, were considered in ATLAS using $36.1 \mathrm{fb}^{-1}$ at 13 TeV [58] in the final states with two electrons and two jets $\left(q \bar{q} \rightarrow e e^{*} \rightarrow e e q \bar{q}\right)$ or an electron, missing transverse momentum and a hadronically decaying W-boson candidate $\left(q \bar{q} \rightarrow e e^{*} \rightarrow e \nu W\right)$. The excited electron (muon) mass was excluded up to 5.6 (5.7) TeV in CMS [71] at $\Lambda=m_{e^{*}}\left(\Lambda=m_{\mu^{*}}\right)$, which is the best limit to date on the excited electrons (muons).

The CMS Collaboration also performed an excited lepton search in the final states containing a Z boson [69], probing the excited leptons produced in contact interactions and decayed in neutral-current processes $\left(l^{*} \rightarrow l+Z\right)$ with $f=f^{\prime}=1$ or $f=-f^{\prime}=1$. The leptonic and hadronic decays of Z bosons have been considered in the search, and the most stringent limits are obtained from the hadronic Z decay to be $2.08(2.34) \mathrm{TeV}$ and $2.11(2.37) \mathrm{TeV}$ for the e^{*} and μ^{*}, respectively, with $f=f^{\prime}=1\left(f=-f^{\prime}=1\right)$ at $\Lambda=m_{l^{*}}$.

Figure 92.4 summarizes the most stringent 95% C.L. lower mass limits for excited quarks and leptons obtained from the LHC experiments.

References

1. E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev. Lett. 50, 811 (1983).
2. E.J. Eichten et al., Rev. Mod. Phys. 56, 579 (1984); Erratum ibid. 58, 1065 (1986).
3. J. Gao et al., Phys. Rev. Lett. 106, 142001 (2011).
4. G. Arnison et al. [UA1 Collab.], Phys. Lett. B177, 244 (1986).
5. J.A. Appel et al. [UA2 Collab.], Phys. Lett. B160, 349 (1985).
6. F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 62, 613 (1989);
F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 69, 2896 (1992); F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 77, 5336 (1996); F. Abe et al. [CDF Collab.], Erratum Phys. Rev. Lett. 78, 4307 (1997).
7. B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 80, 666 (1998); B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 82, 2457 (1999); B. Abbott et al. [DØ Collab.], Phys. Rev. D62, 031101 (2000); B. Abbott et al. [DØ Collab.], Phys. Rev. D64, 032003 (2001); B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 103, 191803 (2009).
8. G. Aad et al. [ATLAS Collab.], Phys. Lett. B694, 327 (2011); G. Aad et al. [ATLAS Collab.], New J. Phys. 13, 053044 (2011); G. Aad et al. [ATLAS Collab.], JHEP 01, 029 (2013); G. Aad et al. [ATLAS Collab.], Phys. Rev. Lett. 114, 221802 (2015);
G. Aad et al. [ATLAS Collab.], Phys. Lett. B754, 302 (2016).
9. G. Aad et al. [ATLAS Collab.], Phys. Rev. D96, 052004 (2017).
10. V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett. 105, 262001 (2010);
V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett. 106, 201804 (2011);
S. Chatrchyan et al. [CMS Collab.], JHEP 1205, 055 (2012);
V. Khachatryan et al. [CMS Collab.], Phys. Lett. B746, 79 (2015);
A.M. Sirunyan et al. [CMS Collab.], JHEP 07, 013 (2017).
11. S. Chatrchyan et al. [CMS Collab.], Phys. Rev. D87, 052017 (2013).
12. A.M. Sirunyan et al. [CMS Collab.], Eur. Phys. J. C78, 789 (2018).
13. T. Sjöstrand, S. Mrenna, and P. Skands, Comp. Phys. Comm. 178, 852 (2008).
14. S. Agostinelli et al. [GEANT4 Collab.], GEANT4: a simulation toolkit, Nucl. Instrum. Methods A506, 250 (2003).
15. Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002);
Z. Nagy, Phys. Rev. D68, 094002, (2003).
16. S. Dittmaier, A. Huss, and C. Speckner, JHEP 1211, 095 (2012).
17. S. Schael et al. [ALEPH Collab.], Eur. Phys. J. C49, 411 (2007).
18. J. Abdallah et al. [DELPHI Collab.], Eur. Phys. J. C45, 589 (2006).
19. M. Acciarri et al. [L3 Collab.], Phys. Lett. B489, 81 (2000).
20. K. Ackerstaff et al. [OPAL Collab.], Phys. Lett. B391, 221 (1997);
G. Abbiendi et al. [OPAL Collab.], Eur. Phys. J. C33, 173 (2004).
21. F.D. Aaron et al. [H1 Collab.], Phys. Lett. B705, 52 (2011).
22. S. Chekanov et al. [ZEUS Collab.], Phys. Lett. B591, 23 (2004).
23. F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 68, 1463 (1992); F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 79, 2198 (1997);
T. Affolder et al. [CDF Collab.], Phys. Rev. Lett. 87, 231803 (2001);
A. Abulencia et al. [CDF Collab.], Phys. Rev. Lett. 96, 211801 (2006).
24. B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 82, 4769 (1999).
25. G. Aad et al. [ATLAS Collab.], Phys. Rev. D84, 011101 (2011); G. Aad et al. [ATLAS Collab.], Phys. Lett. B712, 40 (2012);
G. Aad et al. [ATLAS Collab.], Phys. Rev. D87, 015010 (2013); G. Aad et al. [ATLAS Collab.], Eur. Phys. J. C74, 3134 (2014); M. Aaboud et al. [ATLAS Collab.], Phys. Lett. B761, 372 (2016).
26. M. Aaboud et al. [ATLAS Collab.], JHEP 10, 182 (2017).
27. S. Chatrchyan et al. [CMS Collab.], Phys. Rev. D87, 032001 (2013).
28. V. Khachatryan et al. [CMS Collab.], JHEP 04, 025 (2015).
29. A.M. Sirunyan et al. [CMS Collab.], JHEP 04, 114 (2019).
30. W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621 (1986).
31. B. Grzadkowski et al., JHEP 1010, 085 (2010).
32. F.M. Renard, Phys. Lett. B116, 264 (1982).
33. F. del Aguila, A. Mendez, and R. Pascual, Phys. Lett. B140, 431 (1984).
34. M. Suzuki, Phys. Lett. B143, 237 (1984).
35. U. Baur, M. Spira, and P.M. Zerwas, Phys. Rev. D42, 815 (1990).
36. K. Hagiwara, D. Zeppenfeld, and S. Komamiya, Z. Phys. C29, 115 (1985).
37. N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. B139, 459 (1984).
38. D. Decamp et al. [ALEPH Collab.], Phys. Reports 216, 253 (1992);
P. Barate et al. [ALEPH Collab.], Eur. Phys. J. C4, 571 (1998).
39. P. Abreu et al. [DELPHI Collab.], Nucl. Phys. B367, 511 (1991); J. Abdallah et al. [DELPHI Collab.], Eur. Phys. J. C37, 405 (2004).
40. O. Adriani et al. [L3 Collab.], Phys. Reports 236, 1 (1993); P. Achard et al. [L3 Collab.], Phys. Lett. B531, 28 (2002);
P. Achard et al. [L3 Collab.], Phys. Lett. B568, 23 (2003).
41. G. Abbiendi et al. [OPAL Collab.], Phys. Lett. B544, 57 (2002); G. Abbiendi et al. [OPAL Collab.], Phys. Lett. B602, 167 (2004).
42. C. Adloff et al. [H1 Collab.], Phys. Lett. B525, 9 (2002); F.D. Aaron et al. [H1 Collab.], Phys. Lett. B663, 382 (2008); F.D. Aaron et al. [H1 Collab.], Phys. Lett. B666, 131 (2008).
43. S. Chekanov et al. [ZEUS Collab.], Phys. Lett. B549, 32 (2002).
44. D. Acosta et al. [CDF Collab.], Phys. Rev. Lett. 94, 101802 (2005);
A. Abulencia et al. [CDF Collab.], Phys. Rev. Lett. 97, 191802 (2006);
T. Aaltonen et al. [CDF Collab.], Phys. Rev. D79, 112002 (2009).
45. V.M. Abazov et al. [DØ Collab.], Phys. Rev. D73, 111102 (2006);
V.M. Abazov et al. [DØ Collab.], Phys. Rev. D77, 091102 (2008);
V.M. Abazov et al. [DØ Collab.], Phys. Rev. Lett. 103, 191803 (2009).
46. G. Aad et al. [ATLAS Collab.], Phys. Lett. B708, 37 (2012); G. Aad et al. [ATLAS Collab.], JHEP 1301, 29 (2013);
G. Aad et al. [ATLAS Collab.], Phys. Rev. D91, 052007 (2015); G. Aad et al. [ATLAS Collab.], Phys. Lett. B754, 302 (2016); M. Aaboud et al. [ATLAS Collab.], Phys. Rev. D96, 052004 (2017).
47. ATLAS Collaboration, ATLAS-CONF-2019-007 (2019).
48. G. Aad et al. [ATLAS Collab.], Phys. Rev. Lett. 108, 211802 (2012);
G. Aad et al. [ATLAS Collab.], Phys. Lett. B728, 562 (2014);
G. Aad et al. [ATLAS Collab.], JHEP 1603, 41 (2016).
49. M. Aaboud et al. [ATLAS Collab.], Eur. Phys. J. C78, 102 (2018).
50. M. Aaboud et al. [ATLAS Collab.], Phys. Rev. D98, 032016 (2018).
51. M. Aaboud et al. [ATLAS Collab.], Phys. Lett. B759, 229 (2016).
52. G. Aad et al. [ATLAS Collab.], JHEP 1602, 110 (2016).
53. G. Aad et al. [ATLAS Collab.], Phys. Lett. B721, 171 (2013).
54. G. Aad et al. [ATLAS Collab.], Phys. Rev. D85, 072003 (2012).
55. G. Aad et al. [ATLAS Collab.], New J. Phys. 15, 093011 (2013).
56. G. Aad et al. [ATLAS Collab.] JHEP 1508, 138 (2015).
57. G. Aad et al. [ATLAS Collab.], New J. Phys. 18, 073021 (2016).
58. M. Aaboud et al. [ATLAS Collab.], Eur. Phys. J. C79, 803 (2019).
59. S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B704, 123 (2011);
S. Chatrchyan et al. [CMS Collab.], JHEP 1301, 13 (2013);
S. Chatrchyan et al. [CMS Collab.], Phys. Rev. D87, 114015 (2013).
60. V. Khachatryan et al. [CMS Collab.], Phys. Rev. D91, 052009 (2015).
61. V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett. 116, 071801 (2016);
V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett. 117, 031802 (2016);
A.M. Sirunyan et al. [CMS Collab.], Phys. Lett. B769, 520 (2017);
A.M. Sirunyan et al. [CMS Collab.], JHEP 1808, 130 (2018).
62. CMS Collaboration, CMS-PAS-EXO-17-026 (2018).
63. V. Khachatryan et al. [CMS Collab.], Phys. Lett. B738, 274 (2014).
64. A.M. Sirunyan et al. [CMS Collab.], Phys. Lett. B781, 390 (2018).
65. S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B722, 28 (2013);
S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B723, 280 (2013);
V. Khachatryan et al. [CMS Collab.], JHEP 1408, 173 (2014).
66. A.M. Sirunyan et al. [CMS Collab.], Phys. Rev. D97, 072006 (2018).
67. V. Khachatryan et al. [CMS Collab.], JHEP 1601, 166 (2016).
68. S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B704, 143 (2011);
S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B720, 309 (2013).
69. V. Khachatryan et al. [CMS Collab.], JHEP 1603, 125 (2016).
70. A.M. Sirunyan et al. [CMS Collab.], JHEP 1904, 015 (2019).
71. CMS Collaboration, CMS-PAS-EXO-18-013 (2019).
72. M. Cacciari, G.P. Salam, and G. Soyez, JHEP 0804, 063 (2008).
73. T. Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001).

93. Dynamical Electroweak Symmetry Breaking: Implications of the $\boldsymbol{H}^{\mathbf{0}}$

Revised August 2019 by K.M. Black (Wisconsin U.), R.Sekhar Chivukula (UC San Diego) and M. Narain (Brown U.).

93.1 Introduction and Phenomenology

In theories of dynamical electroweak symmetry breaking, the electroweak interactions are broken to electromagnetism by the vacuum expectation value of a composite operator, typically a fermion bilinear. In these theories, the longitudinal components of the massive weak bosons are identified with composite NambuGoldstone bosons arising from dynamical symmetry breaking in a strongly-coupled extension of the standard model. Viable theories of dynamical electroweak symmetry breaking must also explain (or at least accommodate) the presence of an additional composite scalar state to be identified with the H^{0} scalar boson $[1,2]$ - a state unlike any other observed previously.

Theories of dynamical electroweak symmetry breaking can be classified by the nature of the composite singlet state to be associated with the H^{0} and the corresponding dimensional scales f, the analog of the pion decay-constant in QCD, and Λ, the scale of the underlying strong dynamics. ${ }^{1}$ Of particular importance is the ratio v / f, where $v^{2}=1 /\left(\sqrt{2} G_{F}\right) \approx(246 \mathrm{GeV})^{2}$, since this ratio measures the expected size of the deviations of the couplings of a composite Higgs boson from those expected in the standard model. The basic possibilities, and the additional states that they predict, are described below.

93.1.1 Technicolor, $v / f \simeq 1, \Lambda \simeq 1 T e V$

Technicolor models [7-9] provided the first examples of theories of dynamical electroweak symmetry breaking. These theories incorporate a new asymptotically free gauge theory ("technicolor") and additional massless fermions ("technifermions" transforming under a vectorial representation of the gauge group). The global chiral symmetry of the fermions is spontaneously broken by the formation of a technifermion condensate, just as the approximate chiral symmetry in QCD is broken down to isospin by the formation of a quark condensate. The $S U(2)_{W} \times U(1)_{Y}$ interactions are embedded in the global technifermion chiral symmetries in such a way that the only unbroken gauge symmetry after chiral symmetry breaking is $U(1)_{e m} .^{2}$ The theories naturally provide the Nambu-Goldstone bosons "eaten" by the W and Z boson. There would also typically be additional heavy states (e.g. vector mesons, analogous to the ρ and ω mesons in QCD) with TeV masses $[13,14]$, and the $W W$ and $Z Z$ scattering amplitudes would be expected to be strong at energies of order 1 TeV .

There are various possibilities for the scalar H^{0} in technicolor models. First, the H^{0} could be identified as a singlet scalar resonance, analogous to the σ particle expected in pion-scattering in QCD $[15,16]$. Alternatively, the H^{0} could be identified as a dilaton, a (pseudo-)Goldstone boson of scale invariance in theories of "walking technicolor" $[17-21] .{ }^{3}$ Finally, the H^{0} could be identified as an additional isosinglet state if the chiral symmetry breaking pattern of the technicolor theory provides for such a state. ${ }^{4}$ In all of these cases, however, one expects large deviations in the couplings of this particle from those of the standard model Higgs boson. Since the couplings observed for the H^{0} approximate those of the Higgs boson to the 10% level, models of this kind are very highly constrained.

[^85]93.1.2 The Higgs doublet as a pseudo-Nambu-Goldstone Boson, $v / f<1, \Lambda>1$ TeV
In technicolor models, the symmetry-breaking properties of the underlying strong dynamics necessarily breaks the electroweak gauge symmetries. An alternative possibility is that the underlying strong dynamics itself does not break the electroweak interactions, and that the entire quartet of bosons in the Higgs doublet (including the state associated with the H^{0}) are composite (pseudo-) Nambu-Goldstone particles [23,24], In this case, the underlying dynamics can occur at energies exceeding 1 TeV and additional interactions with the top-quark mass generating sector (and possibly with additional weakly-coupled gauge bosons) cause the vacuum energy to be minimized when the composite Higgs doublet gains a vacuum expectation value [25,26]. In these theories, the couplings of the remaining singlet scalar state would naturally be equal to that of the standard model Higgs boson up to corrections of order $(v / f)^{2}$ and, therefore, constraints on the size of deviations of the H^{0} couplings from that of the standard model Higgs [27] give rise to lower bounds on the scales f and $\Lambda .{ }^{5}$

The electroweak gauge interactions, as well as the interactions responsible for the top-quark mass, explicitly break the chiral symmetries of the composite Higgs model and lead generically to sizable corrections to the mass-squared of the Higgs-doublet - the so-called "Little Hierarchy Problem" [28]. "Little Higgs" theories [29-32] are examples of composite Higgs models in which the (collective) symmetry-breaking structure is selected so as to suppress these contributions to the Higgs mass-squared.

Composite Higgs models typically require a larger global symmetry of the underlying theory, and hence additional relatively light (compared to Λ) scalar particles, extra electroweak vector bosons (e.g. an additional $S U(2) \times U(1)$ gauge group), and vectorlike partners of the top-quark of charge $+2 / 3$ and possibly also $+5 / 3$ [33]. In addition to these states, one would expect the underlying dynamics to yield additional scalar and vector resonances with masses of order Λ. If the theory respects a custodial symmetry [34], the couplings of these additional states to the electroweak and Higgs boson will be related - and, for example, one might expect a charged vector resonance to have similar branching ratios to $W Z$ and $W H$. Different composite Higgs models utilize different mechanisms for arranging for the hierarchy of scales $v<f$ and arranging for a scalar Higgs self-coupling small enough to produce an H^{0} of mass of order 125 GeV , for a review see [35] . If the additional states in these models carry color, they can provide additional contributions to Higgs production via gluon fusion [36]. The extent to which Higgs production at the LHC conforms with standard model predictions provides additional constraints (typically lower bounds on the masses of the additional colored states of order 0.7 TeV) on these models.

In addition, if the larger symmetry of the underlying composite Higgs theory does not commute with the standard model gauge group, then the additional states found in those models - especially those related to the top-quark, which tend to have the largest couplings to the electroweak sector - may be colorless. For example, in twin Higgs models [37], the top-partners carry no standard model charges. The phenomenology of the additional states in twin Higgs theories is rather different, since lacking color the production of these particles at the LHC will be suppressed and, their decays may occur only via the electroweak symmetry breaking sector, leading to their being long-lived.
93.1.3 Top-Condensate, Top-Color, Top-Seesaw and related theories, $v / f<1, \Lambda>1$ TeV

A final alternative is to consider a strongly interacting theory with a high (compared to a TeV) underlying dynamical scale that would naturally break the electroweak interactions, but whose

[^86]strength is adjusted ("fine-tuned") to produce electroweak symmetry breaking at 1 TeV . This alternative is possible if the electroweak (quantum) phase transition is continuous (second order) in the strength of the strong dynamics [38]. If the fine tuning can be achieved, the underlying strong interactions will produce a light composite Higgs bound state with couplings equal to that of the standard model Higgs boson up to corrections of order $(1 \mathrm{TeV} / \Lambda)^{2}$. As in theories in which electroweak symmetry breaking occurs through vacuum alignment, therefore, constraints on the size of deviations of the H^{0} couplings from that of the standard model Higgs give rise to lower bounds on the scale Λ. Formally, in the limit $\Lambda \rightarrow \infty$ (a limit which requires arbitrarily fine adjustment of the strength of the high-energy interactions), these theories are equivalent to a theory with a fundamental Higgs boson - and the fine adjustment of the coupling strength is a manifestation of the hierarchy problem of theories with a fundamental scalar particle.

In many of these theories the top-quark itself interacts strongly (at high energies), potentially through an extended color gauge sector [39, 39-43]. In these theories, top-quark condensation (or the condensation of an admixture of the top with additional vector-like quarks) is responsible for electroweak symmetry breaking, and the H^{0} is identified with a bound state involving the third generation of quarks. These theories typically include an extra set of massive color-octet vector bosons (top-gluons), and an extra $U(1)$ interaction (giving rise to a top-color Z^{\prime}) which couple preferentially to the third generation and whose masses define the scale Λ of the underlying physics.

93.1.4 Flavor

In addition to the electroweak symmetry breaking dynamics described above, which gives rise to the masses of the W and Z particles, additional interactions must be introduced to produce the masses of the standard model fermions. Two general avenues have been suggested for these new interactions. In "extended technicolor" (ETC) theories [44, 45], the gauge interactions in the underlying strongly interacting theory are extended to incorporate flavor. This extended gauge symmetry is broken down (possibly sequentially, at several different mass scales) to the residual strong interaction responsible for electroweak symmetry breaking. The massive gauge-bosons corresponding to the broken symmetries then mediate interactions between mass operators for the quarks/leptons and the corresponding bilinears of the strongly-interacting fermions, giving rise to the masses of the ordinary fermions after electroweak symmetry breaking.

In the case of "partial compositeness" [46], the additional flavor-dependent interactions arise from mixing between the ordinary quarks and leptons and massive composite fermions in the strongly-interacting underlying theory. Theories incorporating partial compositeness include additional vector-like partners of the ordinary quarks and leptons, typically with masses of order a TeV or less.

In both cases, the effects of flavor interactions on the electroweak properties of the ordinary quarks and leptons are likely to be most pronounced in the third generation of fermions. ${ }^{6}$ The additional particles present in these theories, especially the additional scalars, often couple more strongly to heavier fermions.

Moreover, since the flavor interactions must give rise to quark mixing, we expect that a generic theory of this kind could give rise to large flavor-changing neutral-currents [45]. In ETC theories, these constraints are typically somewhat relaxed if the theory incorporates approximate generational flavor symmetries [47], the theory has a slowly running coupling constant or "walks" [17-21], or if $\Lambda>1 \mathrm{TeV}$ [48]. In theories of partial compositeness, the masses of the ordinary fermions depend on the scaling-dimension of the operators corresponding to the composite fermions with which they mix. This leads to a new mechanism for generating the mass-hierarchy of the observed quarks and leptons that, potentially, ameliorates flavor-changing neutral current problems and can provide new contributions to the composite Higgs poten-

[^87]tial which allow for $v / f<1$ [49-53].
Alternatively, one can assume that the underlying flavor dynamics respect flavor symmetries ("minimal" [54,55] or "next-to-minimal" [56] flavor violation) that suppress flavor-changing neutral currents in the two light generations. Additional considerations apply when extending these arguments to potential explanation of neutrino masses (see, for example, [57,58]).
Since the underlying high-energy dynamics in these theories are strongly coupled, there are no reliable calculation techniques that can be applied to analyze their properties. Instead, most phenomenological studies depend on the construction of a "lowenergy" effective theory describing additional scalar, fermion, or vector boson degrees of freedom, which incorporates the relevant symmetries and, when available, dynamical principles. In some cases, motivated by the AdS/CFT correspondence [59], the strongly-interacting theories described above have been investigated by analyzing a dual compactified five-dimensional gauge theory. In these cases, the AdS/CFT "dictionary" is used to map the features of the underlying strongly coupled high-energy dynamics onto the low-energy weakly coupled dual theory [60].
More recently, progress has been made in investigating stronglycoupled models using lattice gauge theory [61]. These calculations offer the prospect of establishing which strongly coupled theories of electroweak symmetry breaking have a particle with properties consistent with those observed for the H^{0} - and for establishing concrete predictions for these theories at the LHC [62].

93.2 Experimental Searches

As discussed above, the extent to which the couplings of the H^{0} conform to the expectations for a standard model Higgs boson constrains the viability of each of these models. Measurements of the H^{0} couplings, and their interpretation in terms of effective field theory, are summarized in the H^{0} review in this volume. In what follows, we will focus on searches for the additional particles that might be expected to accompany the singlet scalar: extra scalars, fermions, and vector bosons. In some cases, detailed model-specific searches have been made for the particles described above (though generally not yet taking account of the demonstrated existence of the H^{0} boson).
In most cases, however, generic searches (e.g. for extra W^{\prime} or Z^{\prime} particles, extra scalars in the context of multi-Higgs models, or for fourth-generation quarks) are quoted that can be used - when appropriately translated - to derive bounds on a specific model of interest.
The mass scale of the new particles implied by the interpretations of the low mass of H^{0} discussed above, and existing studies from the Tevatron and lower-energy colliders, suggests that only the Large Hadron Collider has any real sensitivity. A number of analyses already carried out by ATLAS and CMS use relevant final states and might have been expected to observe a deviation from standard model expectations - in no case so far has any such deviation been reported. The detailed implications of these searches in various model frameworks are described below.
Except where otherwise noted, all limits in this section are quoted at a confidence level of 95%. The searches at $\sqrt{s}=8 \mathrm{TeV}$ (Run 1) are based on $20.3 \mathrm{fb}^{-1}$ of data recorded by ATLAS, and an integrated luminosity of $19.7 \mathrm{fb}^{-1}$ analyzed by CMS. The datasets collected at $\sqrt{s}=13 \mathrm{TeV}$ during Run 2 of the LHC since 2015 are based on analyses with varied integrated luminosities ranging from $\sim 2-140 \mathrm{fb}^{-1}$.

93.2.1 Searches for Z^{\prime} or W^{\prime} Bosons

Massive vector bosons or particles with similar decay channels would be expected to arise in Little Higgs theories, in theories of Technicolor, or models involving a dilaton, adjusted to produce a light Higgs boson, consistent with the observed H^{0}. These particles would be expected to decay to pairs of vector bosons, or to third generation quarks, or to leptons. The generic searches for W^{\prime} and Z^{\prime} vector bosons listed below can, therefore, be used to constrain models incorporating a composite Higgs-like boson.
A general review of searches for Z^{\prime} and W^{\prime} bosons is also included in this volume [63,64]. In the context of the dynamical electroweak symmetry breaking models, we emphasize their decays to third generation fermions by including a detailed overview,
while also briefly summarizing the other searches.

$Z^{\prime} \rightarrow \ell \ell:$

ATLAS [65] and CMS [66] have both searched for Z^{\prime} production with $Z^{\prime} \rightarrow e e$ or $\mu \mu$. No deviation from the standard model prediction was seen in the dielectron and dimuon invariant mass spectra, by either the ATLAS or the CMS analysis, and lower limits on possible Z^{\prime} boson masses were set. A $Z_{\text {SSM }}^{\prime}$ with couplings equal to the standard model Z^{\prime} (a "sequential standard model" Z^{\prime}) and a mass below 5.1 TeV was excluded by ATLAS, while CMS set a lower mass limit of 5.15 TeV . The experiments also place limits on the parameters of extra dimension models and in the case of ATLAS on the parameters of a minimal walking technicolor model [17-21], consistent with a 125 GeV Higgs boson [67]. For a general review of searches in these channels see the PDG review of Z prime in this volume [63].

In addition, both experiments have also searched for Z^{\prime} decaying to a ditau final state $[68,69]$. An excess in $\tau^{+} \tau^{-}$could have interesting implications for models in which lepton universality is not a requirement and enhanced couplings to the third generation are allowed. This analysis led to lower limits on the mass of a $Z_{\mathrm{SSM}}^{\prime}$ of 2.4 and 2.1 TeV from ATLAS and CMS respectively. $Z^{\prime} \rightarrow q \bar{q}:$

The ability to relatively cleanly select $t \bar{t}$ pairs at the LHC together with the existence of enhanced couplings to the third generation in many models makes it worthwhile to search for new particles decaying in this channel. Both ATLAS [70] and CMS [71] have carried out searches for new particles decaying into $t \bar{t}$.
Both the ATLAS and CMS collaborations searched for $t \bar{t}$ in the all hadronic mode [72] [73] in both the resolved and boosted regions. No evidence of resonance production were seen and limits were produced for various models including the Z ' boson in topcolor-assisted technicolor which excludes masses less than 3.1 to 3.6 TeV (ATLAS) depending on the details of the model and $3.3,5.25$, and 6.65 TeV for widths of 1,10 and 30 percent relative to the mass of the resonance .

ATLAS also presented results on the lepton plus jets final state, where the top quark pair decays as $t \bar{t} \rightarrow W b W b$ with one W boson decaying leptonically and the other hadronically; CMS used final states where both, one or neither W decays leptonically and then combined the results. The $t \bar{t}$ invariant mass spectrum was analyzed for any excess, and no evidence for any resonance was seen. ATLAS excluded a narrow $(\Gamma / m=1.2 \%)$ leptophobic topcolor Z^{\prime} boson with masses between 0.7 and 2.1 TeV and with $\Gamma / m=3 \%$ between 0.7 and 3.2 TeV . CMS set limits on leptophobic Z^{\prime} bosons for three different assumed widths $\Gamma / m=1.0 \%$, $\Gamma / m=10.0 \%$, and $\Gamma / m=30.0 \%$ of 3.9 TeV to 4.0 TeV and exclude RS KK gluons up to 3.3 TeV .

Both ATLAS [74] and CMS [75] have also searched for resonances decaying into $q \bar{q}, q g$ or $g g$ using the dijet invariant mass spectrum. Excited quarks are excluded up to masses of 6.7 TeV and model-independent upper limits on cross sections with a gaussian signal shape were set. CMS excluded string resonances with masses below 7.9 TeV , scalar diquarks below 7.5 TeV , axigluons and colorons below 6.6 TeV , excited quarks below 6.3 TeV , coloroctet scalars below 3.7 TeV , W' bosons below 3.6 TeV , Z' bosons with SM-like couplings below 2.9 TeV and between 3.1 TeV and 3.3 TeV, Randall-Sundrum Gravitons below 2.6 TeV .
$W^{\prime} \rightarrow \ell \nu:$
Both LHC experiments have also searched for massive charged vector bosons. In this section we include a summary of the results, with emphasis on final states with third generation fermions, while the details on other decays are discussed in the mini-review of W^{\prime} [64]. ATLAS searched for a heavy W^{\prime} decaying to $e \nu$ or $\mu \nu$ and find no excess over the standard model expectation. A sequential standard model (SSM) W^{\prime} boson (assuming zero branching ratio to $W Z$) with mass less than 7 TeV was excluded [76] using $139 \mathrm{fb}^{-1}$ dataset at $\sqrt{s}=13 \mathrm{TeV}$, as well as setting model independent cross-section limits as a function of mass. Based on a smaller dataset, the CMS experiment excluded a SSM W^{\prime} boson with mass up to 4.1 TeV [77] and presented the upper limits on the production of generic W^{\prime} bosons decaying into this final state using a model-independent approach.

CMS [78] has carried out a complementary search in the $\tau \nu$ final state. As noted above, such searches place limits on models with enhanced couplings to the third generation. No excess was observed and limits between 2.0 and 2.7 TeV were set on the mass of a W^{\prime} decaying preferentially to the third generation; a W^{\prime} with universal fermion couplings was also excluded for masses less than 2.7 TeV .

$W^{\prime} \rightarrow \mathrm{t} \overline{\mathrm{b}}:$

Heavy new gauge bosons can couple to left-handed fermions like the SM W boson or to right-handed fermions. W^{\prime} bosons that couple only to right-handed fermions $\left(W_{R}^{\prime}\right)$ may not have leptonic decay modes, depending on the mass of the right-handed neutrino. For these W^{\prime} bosons, the $\mathrm{tb}(\mathrm{t} \overline{\mathrm{b}}+\overline{\mathrm{t} b})$ decay mode is especially important because in many models the W^{\prime} boson is expected to have enhanced couplings to the third generation of quarks relative to those in the first and second generations. It is also the hadronic decay mode with the best signal-to-background. ATLAS and CMS have performed searches for W^{\prime} bosons via the $W^{\prime} \rightarrow$ tb decay channel in the lepton + jets and all-hadronic final state.

The CMS lepton+jets search [79-82], $W^{\prime} \rightarrow \mathrm{tb} \rightarrow \mathrm{Wbb} \rightarrow$ $\ell \nu \mathrm{bb}$, proceeded via selecting events with an isolated lepton (electron or muon), and at least two jets, one of which is identified to originate from a b-quark. The mass of the W^{\prime} boson $\left(M_{\mathrm{tb}}\right)$ was reconstructed using the four-momentum vectors of the final state objects (bb $\ell \nu)$. The distribution of M_{tb} is used as the search discriminant. A search [82] using $35.9 \mathrm{fb}^{-1}$ of data, collected at \sqrt{s} $=13 \mathrm{TeV}$, led to an exclusion of W_{R}^{\prime} bosons with masses below $3.4 \mathrm{TeV}(3.6 \mathrm{TeV})$ if $M_{W_{R}^{\prime}} \gg M_{\nu_{R}}\left(M_{W_{R}^{\prime}}<M_{\nu_{R}}\right)$, where $M_{\nu_{R}}$ is the mass of the right-handed neutrino.

The CMS search for $W^{\prime} \rightarrow$ tb decays using the all-hadronic final state focused on W^{\prime} masses above 1 TeV [81]. In this region, the top quark gets a large Lorentz boost and hence the three hadronic products from its decay merge into a single large-radius jet. Techniques which rely on substructure information of the jets [83] are employed to identify boosted all hadronic W boson and top quark jets and compute the mass of the jet. W^{\prime} candidate mass was computed from back-to-back boosted top-tagged jet and a low mass b-tagged jet. From this all-hadronic search, W^{\prime} bosons were excluded for masses up to 2.02 TeV .

ATLAS has searched for W_{R}^{\prime} bosons in the $t \bar{b}$ final state both for lepton+jets [84] and all-hadronic [85] decays of the top. No significant deviations from the standard model were seen in either analysis and limits were set on the $W^{\prime} \rightarrow t \bar{b}$ cross section times branching ratio and W^{\prime} bosons with purely right-handed couplings to fermions were excluded for masses below 3.15 TeV when the two channels are combined.

In addition, the above studies also provided upper limits on the W^{\prime} effective couplings to right- and left-handed fermions. In Fig. 93.1 (bottom) the upper limits on W^{\prime} couplings normalized to the SM W boson couplings derived by ATLAS [86] are shown. The top panel of Fig. 93.1 shows the upper limits for arbitrary combinations of left- and right-handed couplings of the W^{\prime} boson to fermions set using a model independent approach by CMS [82].

93.2.2 Searches for Resonances decaying to Vector Bosons and/or Higgs Bosons

Both the ATLAS and CMS experiments have used the data collected at $\sqrt{s}=13 \mathrm{TeV}$ to search for resonances decaying to pairs of bosons. Overall no significant excesses were seen in the full datasets that were analyzed and the results are interpreted in models with heavy vector triplets (HVT) [87], models with strong gravity and extra spatial dimensions, as well as setting model independent limits as a function of mass. For a full review of models including extra spatial dimensions including the interpretation of many of these results in that context please see the review of extra dimensions in this volume [60].

Utilizing data collected at $\sqrt{s}=13 \mathrm{TeV}$, ATLAS [88] and CMS [89], have both looked for a resonant state decaying into VV (with $\mathrm{V}=\mathrm{W}$ or Z), VH (with H representing the SM Higgs boson), and HH. Both collaborations have analyzed bosonic decay modes. ATLAS searches in the $q q q q, \nu \nu q q, l \nu q q, l l q q, l \nu l \nu, l l \nu \nu, l \nu l l$, $l l l l, q q b b \nu \nu b b, l \nu b b$, and $l l b b$ final states and combined the results

Figure 93.1: Left panel: Observed limits on the W^{\prime} boson mass as function of the left-handed (a_{L}) and right-handed (a_{R}) couplings. Black lines represent contours of equal W^{\prime} boson mass [82]. Right panel: Observed and expected regions, on the $\mathrm{g}^{\prime} / \mathrm{g}$ vs mass of the W^{\prime} boson plane, that are excluded at 95% CL, for right-handed W^{\prime} bosons [86].
(separately within each experiment) . While CMS analyzes the $q q q q, \nu \nu q q, l \nu q q, l l q q, l l \nu \nu, \nu \nu b b, l \nu b b, l l b b, b b b b, \tau \tau b b$, and $q q \tau \tau$ final states.

The combined limits are expressed both as limits on the crosssection as a function resonance mass as well as constraints on the coupling of the heavy boson triplet to quarks, leptons, and the Higgs boson.

$X \rightarrow W Z:$

ATLAS searches for new heavy resonances decaying into $W Z$ in the channels $W Z \rightarrow q q q q[90], l \nu q q$ [91], and $l \nu l l$ [92]. In the fully leptonic channel, the invariant mass of the W Z pair is obtained by considering all possible four lepton permutations in each event. The dominant background is Standard Model continuum WZ production, ZZ production where one lepton is not identified or falls outside the detector acceptance, and top quark plus vector boson production. No resonant production is seen in data and lower limits on the mass of a HVT decaying into WZ are set at 2260 (2460) GeV assuming a coupling constant of $g_{V}=1\left(g_{V}=3\right)$. In the $W Z \rightarrow l \nu q q$ mode, ATLAS searches in both the cases that the quarks are observed as individual jets (resolved) and where they merge into one jet in the detector (boosted) which probe the low and high p_{T} regime of the Z boson. No significant excess is seen in either channel and combined lower mass limits are placed at $2900(3000) \mathrm{GeV}$ for $g_{V}=1\left(g_{V}=3\right)$ in the HVT model. In the all hadronic decay mode, ATLAS searches for two high p_{T} hadronically decaying vector bosons looking for a resonant structure. No excess is seen and limits are placed excluding 1200-3000 (1200-3300) GeV for $g_{V}=1\left(g_{V}=3\right)$ in the HVT model.

The CMS collaboration searches for $V V \rightarrow q q q q$ [93] in the large R dijet search. The W and Z boson are identified through the mass of the large R jet and substructure variables. No excess is seen and limits are set for charged HVT bosons with masses lower than 3200 (3800) GeV for $g_{V}=1\left(g_{V}=3\right)$. Cross-section limits as function of mass are reported for the charged spin-1 resonance interpretation and are placed at 44.4 fb at 1.4 TeV to 0.7 pb at 4 TeV . In the $\nu \nu q q$ final state [94], the CMS collaboration searches for a charged spin 1 resonance decaying into a $V Z$ final state with a Z boson decaying into a pair of neutrinos and the other boson decaying into two collimated quarks reconstructed as a large R-jet. The transverse mass of the $V Z$ candidate is reconstructed and utilized to search for evidence of resonant $V Z$ production. No excess is seen and lower mass limits are placed on the charged resonance at $3100(3400) \mathrm{GeV}$ for $g_{V}=1\left(g_{V}=3\right)$.

In the $2 l 2 q$ final state, the CMS collaboration searches for a heavy resonance decaying into $Z V$ [95] looking for events with one large R-jet consistent with the hadronic decay of a vector boson and a Z boson reconstructed in the charged lepton decay channel (e or $\mu)$. Limits are set for a HVT W' with a lower mass of 2270 (2330) for $g_{V}=1\left(g_{V}=3\right)$.
$X \rightarrow W W:$
The ATLAS collaboration searches for a new heavy resonance decaying into $W W$ in the channels $W W \rightarrow q q q q$ [90], $l \nu q q$ [91], and $l \nu \nu[96]$. In the case where both W s decay leptonically, ATLAS utilizes the transverse of the two lepton and two neutrino final state and searches for an excess in this distribution between 200 GeV and 5 TeV . No excess is seen and the mass of a HVT is excluded below 1300 GeV . Further vector boson fusion is also considered and cross-section limits as a function of mass are placed ranging from 1.3 pb to 0.006 pb at 200 GeV to 3 TeV , respectively. In the $l \nu q q$ mode, ATLAS completed a companion analysis to the $W Z \rightarrow$ analysis discussed above and places lower mass limits of $2850(3150) \mathrm{GeV}$ for $g_{V}=1\left(g_{V}=3\right)$ in the HVT model. ATLAS also interprets the all hadronic mode analysis in the hypothesis that $W W \rightarrow q q q q$ and places limits on a HVT boson decaying into WW in the all hadronic mode between 1200 to 2200 (1200 to 2800) GeV for $g_{V}=1\left(g_{V}=3\right)$.

The CMS collaboration searches for $V V \rightarrow q q q q$ [93] in the large R dijet search. The W and Z boson are identified through the mass of the large R jet and substructure variables. No excess is seen and limits are set for charged HVT bosons with masses lower than $2700(2800) \mathrm{GeV}$ for $g_{V}=1\left(g_{V}=3\right)$. Cross-section limits as function of mass are reported for the uncharged spin-1 resonance interpretation and are placed at 41.6 fb at 1.4 TeV to 0.6 pb at 4 TeV .

$X \rightarrow V H$:

The ATLAS Collaboration searches for a new heavy resonance decaying into $W H$ and $Z H$ in the $q q b b$ ($W H$ and $Z H$) [97], $l \nu b b$ $(W H), \nu \nu b b(Z H), l l b b(Z H)[98]$. In the all hadronic mode, ATLAS searches for boosted $V H$ production looking for two large R jets where the larger invariant mast large R jet is interpreted as the Higgs boson decay products while the lesser the hadronically decaying vector boson requiring b tagging on the Higgs boson subjets. The invariant mass is reconstructed a and a search is done for resonant production of $Z H$. None is found and limits from

1100 to $2500(1300$ to 3800 GeV$)$ are placed for $g_{V}=1\left(g_{V}=3\right)$. ATLAS also searches for $Z H$ where the W or Z boson decays into $\nu \nu, l \nu$, and $l l$. The analysis searches for both resolved and merged (boosted) b jets from the decay of the Higgs boson as well as defining signal regions based on the number of reconstructed charged leptons $(0,1$, or 2$)$. In the dilepton channel the invariant mass is explicitly reconstructed of the entire diboson system, the single lepton channel reconstructs the diboson final state constraining the lepton and missing transverse momentum utilizing the known W boson mass, while the 0 charged lepton channel reconstructs the transverse mass of the diboson system. No excess is seen in any channel and limits on the production of a HVT are placed at 2800 GeV (2930) GeV for $g_{V}=1\left(g_{V}=3\right)$.

The CMS Collaboration searches for a heavy resonance decaying into $V H$ [99] searching for resonances decaying into a Higgs boson and either a hadronically decaying W or Z boson. The search identifies events with two large-R jets using substructure variables and requires one large- R jets is tagged with a pair of b-hadrons clustered in a single jet. The invariant mass of the $V H$ bosons is reconstructed and evidence for resonance production is sought. No excess is seen and limits are placed. With $g_{V}=1$ (3) a narrow W' resonance with $m_{W^{\prime}}<2470(3150) \mathrm{GeV}$ and $m_{Z^{\prime}}<1150(1190)$. Summary of Searches with Diboson Final States:

Both ATLAS [88] and CMS [89] provide plots summarizing the various searches results and limits combining. The results are shown in the context of HVT models and models of strong gravity with extra spatial dimensions. No excess is seen in any search and limits on the 4.3 (4.5) TeV (ATLAS) and (CMS). Inclusion of decays directly to fermions increase these limits to 5.3 (5.5) TeV and 5.0 (5.2) TeV from the ATLAS and CMS combinations, respectively. Both collaborations also place varying limits on the coupling strength as a function of HVT boson mass as well.

93.2.3 Vector-like third generation quarks

Vector-like quarks (VLQ) have non-chiral couplings to W bosons, i.e. their left- and right-handed components couple in the same way. They therefore have vectorial couplings to W bosons. Vector-like quarks arise in Little Higgs theories, top-coloron-models, and theories of a composite Higgs boson with partial compositeness. In the following, the notation T quark refers to a vector-like quark with charge $2 / 3$ and the notation B quark refers to a vector-like quark with charge $-1 / 3$, the same charges as the SM top and b quarks respectively. The exotic vector-like quarks $X_{5 / 3}$ and $Y_{-4 / 3}$ have charges $5 / 3$, and $-4 / 3$ respectively. Vector-like quarks couple with $S M$ quarks with Yukawa interactions and may exist as $\mathrm{SU}(2)$ singlets $(T$, and $B)$, doublets $\left[\left(X_{5 / 3}, T\right),(T, B),\left(B, Y_{-4 / 3}\right)\right]$, or triplets $\left[\left(X_{5 / 3}, T, B\right)\right.$, $\left.\left(T, B, Y_{-4 / 3}\right)\right]$. At the LHC, VLQs can be pair produced via the dominant gluon-gluon fusion. VLQs can also be produced singly by their electroweak effective couplings to a weak boson and a standard model quark. Single production rate is expected to dominate over the rate of pair production at large VLQ masses. T quarks can decay to $b W, t Z$, or $t H^{0}$. Weak isospin singlets are expected to decay to all three final states with (asymptotic) branching fractions of $50 \%, 25 \%, 25 \%$, respectively. Weak isospin doublets are expected to decay exclusively to $t Z$ and to $t H^{0}$ [100] with equal branching ratios. Analogously, B quarks can decay to $t W, b Z$, or $b H^{0}$. The $Y_{-4 / 3}$ and $X_{5 / 3}$ quarks decay exclusively to $b W$ and to $t W$. While these are taken as the benchmark scenarios, other representations are possible and hence the final results are interpreted for many allowed branching fraction combinations.

Given the multiple decay modes of the VLQs, the final state signatures of both pair produced and the singly produced VLQs are fairly rich with leptons, jets, b jets, and missing energy. Depending on the mass of the VLQ, the top quarks and $W / Z / H^{0}$ bosons may be Lorentz boosted and identified using jet substructure techniques. Thus the searches are performed using lepton+jets signatures, multi-lepton and all-hadronic decays. In addition, T or B quarks with their antiparticles can result in events with samesign leptons, for example if the decay $T \rightarrow t H \rightarrow b W W^{+} W^{-}$is present, followed by leptonic decays of two same-sign W bosons. In the following subsections, while we describe the searches for each of the decay modes of the VLQs, the same analysis can be
re-interpreted to obtain the sensitivity to a combination with varied branching fractions to the different decay modes.

In the following sections, the results obtained for $T(B)$ quarks assuming 100% branching ratio to $W b$ ($W t$) are also applicable to heavy vector-like $Y_{-4 / 3}\left(X_{5 / 3}\right)$ with charge $4 / 3(5 / 3)$.
93.2.3.1 Searches for \boldsymbol{T} quarks that decay to $\boldsymbol{W}, \boldsymbol{Z}$ and $\boldsymbol{H}^{\mathbf{0}}$ bosons
$T / Y \rightarrow b W:$
CMS has searched for pair production of heavy T quarks that decay exclusively to $b W$ [101-103]. The analysis selected events with exactly one charged lepton, assuming that the W boson from the second T quark decays hadronically. Under this hypothesis, a 2-constraint kinematic fit can be performed to reconstruct the mass of the T quark as a narrow mass peak with a mass resolution of around 7%. In Refs. [102] and [103], the two-dimensional distribution of reconstructed mass vs S_{T} was used to test for the signal, where S_{T} is the scalar sum of the missing p_{T} and the transverse momenta of the lepton and the leading four jets. This analysis, when combined with the search in the fully hadronic final state [104] excluded new quarks that decay 100% to $b W$ for masses below 0.89 TeV [103]. At times the hadronically-decaying W boson is produced with a large Lorentz boost, leading to the W decay products merged into a large-radius jet. Algorithms such as jet pruning [105] were used to remove contributions from soft, wide angle radiation, from large-radius jets, leading to better discrimination between QCD jets and those arising from decays of the heavy particles. If the mass of the boosted jet was compatible with the W boson mass, then the W boson candidate jet and its subjets were used in the kinematic reconstruction of the T quark. No excess over standard model backgrounds was observed. Upper limits on the production cross section as a function of the mass of T quarks were measured. By comparing them with the predicted cross section for vector like quark pair production, the strong pair production of T quarks was excluded for masses below 1.30 TeV (1.28 TeV expected) [101].

Another "cut-based" search for pair produced T quarks in the all-hadronic final state targeting the $W b$ decay mode [106], relies on mass reconstruction of two highest $p_{T} W b$ combinations using boosted W boson candidates with $p_{T}>200 \mathrm{GeV}$ and b-tagged jets. H_{T} is used as the signal discriminator, with selected events divided into nine categories based on the multiplicity of W and b jets in the event. From this search T quarks with pure $W b$ decays are excluded for masses below 1.04 TeV (1.07 TeV expected).

An analogous search has been carried out by ATLAS $[107,108]$ for the pair production of heavy T quarks. It used the lepton + jets final state with an isolated electron or muon and at least four jets, including a b jet and required reconstruction of the T quark mass. Given the mass range of the T quark being explored was from a 0.4 TeV to a couple of TeV , the W boson from the T quark may fall in two categories: those with a high boost leading to merged decay products, and others where the two jets from the W boson were resolved. In addition, the selection was optimized to require large angular separation between the high $p_{T} W$ bosons and the b jets.

The $T \rightarrow W b$ candidates were constructed from both the leptonically and hadronically decaying W bosons by pairing them with the two highest p_{T} b-tagged jets in the event. The pairing of b jets with W bosons which minimizes the difference between the masses of leptonically decaying $T\left(m_{l e p}(T)\right)$ and the hadronic T $\left(m_{\text {had }}(T)\right)$ was chosen. Finally, $m_{l e p}(T)$ was used as the discriminating variable in a signal region defined by high S_{T}^{\prime} (here S_{T}^{\prime} is defined as the scalar sum of the missing p_{T}, the p_{T} of the lepton and jets), and the opening angle between the lepton and the neutrino $(\Delta R(e, \nu))$. With the $36.1 \mathrm{fb}^{-1}$ data collected during Run 2 at $\sqrt{s}=13 \mathrm{TeV}$, assuming 100% branching ratio to the $W b$ decay, the observed lower limit on the T mass was 1.35 TeV , and in the $\mathrm{SU}(2)$ singlet scenario, the lower mass limit was obtained to be 1.17 TeV [107].

A targeted search for a T quark, produced singly in association with a light flavor quark and a b quark and decaying into $b W$, was carried out by CMS at $\sqrt{s}=13 \mathrm{teV}$ and a dataset corresponding to $2.3 \mathrm{fb}^{-1}$ [109]. The analysis used lepton + jets events, with at least

Figure 93.2: Left panel:Observed limits from W^{\prime} to diboson from CMS [89]. Right panel: Observed limits from W^{\prime} to diboson decays from ATLAS [88].
one b-tagged jet with large transverse momentum, and a jet in the forward η region. Selected events were required to have $S_{T}^{\prime \prime}>$ 500 GeV , where $S_{T}^{\prime \prime}$ is defined as the scalar sum of the transverse momenta of the lepton, the leading central jet, and the missing transverse momentum. The invariant mass of the T candidate was used as the discriminating variable and was reconstructed using the four-vectors of the leptonically decaying W boson and the leading central jet. No excess over the standard model prediction was observed. As the VLQ width is proportional to the square of the coupling, upper limits were set on the production cross section assuming a narrow width VLQ with coupling greater than 0.5 . For Y / T quarks with a coupling of 0.5 and a 100% branching fraction for the decay to $b W$ the excluded masses were in the range from 0.85 to 1.40 TeV [109]. A similar search [110, 111] performed by ATLAS singly produced T or $Y_{-4 / 3}$ quark decaying to $W b$ using a dataset corresponding to $36.1 \mathrm{fb}^{-1}$. The search was performed using lepton + jets events with a high p_{T} b-tagged jet, and at least one forward jet. The reconstructed mass of the $T / Y_{-4 / 3}$ quark, was used as the discriminating variable and showed no excess above the expectation from SM. Interference effects with the SM background are included in the study. This search led to 95% CL upper limits on the mixing angle $\left|\sin \left(\theta_{L}\right)\right|\left(C_{L}^{W b}\right)$ in the range of $0.18-0.35(0.25-0.49)$ for singlet T quark mass between $0.8-$ 1.2 TeV . This search also provided limits as a function of the $Y_{-4 / 3}$ quark mass, on the coupling of the $Y_{-4 / 3}$ quark to $b W$, and the mixing parameter $\left|\sin \theta_{R}\right|\left(C_{R}^{W b}\right)$ for a $\left(B, Y_{-4 / 3}\right)$ doublet model [110]. For VLQ masses between $0.08-1.8 \mathrm{TeV}$, the limits on $\left|\sin \left(\theta_{R}\right)\right|\left(C_{R}^{W b}\right)$ is in the range $0.17-0.55(0.24-0.77)$, where limits on $\left|\sin \theta_{R}\right|$ ar around $0.18-0.19$ and below the constraints from electroweak precision observables for $Y_{-4 / 3}$ quark mass between $0.9-1.25 \mathrm{TeV}$. For $Y_{-4 / 3}$ quark in the triplets $\left(T, B, Y_{-4 / 3}\right)$, limits on $\left|\sin \left(\theta_{L}\right)\right|\left(C_{L}^{W b}\right)$ are between $0.16-0.39(0.31-0.78)$ for masses between $0.8 \mathrm{GeV}-1.6 \mathrm{TeV}$ [110].
$\underline{T \rightarrow t H^{0}}:$
ATLAS has performed a search for $T \bar{T}$ production with $T \rightarrow$ $t H^{0}[108,112]$. Given the dominant decay mode $H^{0} \rightarrow b \bar{b}$, these events are characterized by a large number of jets, many of which are b jets. Thus the event selection required one isolated electron or muon and high jet multiplicity (including b-tagged jets). The sample is categorized by the jet multiplicity (5 and ≥ 6 jets in the 1-lepton channel; 6 and ≥ 7 jets in the 0 -lepton channel), b tag multiplicity (2,3 and ≥ 4) and mass-tagged jet multiplicity (0 , 1 and ≥ 2). The distribution of $m_{\text {eff }}$, defined as the scalar sum of the lepton and jet p_{T} and the missing E_{T}, for each category were used as the discriminant for the final signal and background separation. No excess of events were found. Weak isospin doublet T quarks were excluded below 1.16 TeV .

A search by ATLAS for pair produced VLQs with an allhadronic final state signature yields an exclusion of pure decays
$T \rightarrow t H^{0}$ upto a T quark mass of 1.01 TeV [113]. This analysis used a deep neural network technique to identify jets originating from boosted bosons and top-quarks and described further in subsection 93.2.3.2.

The CMS search for $T \bar{T}$ production, with $T \rightarrow t H^{0}$ decays has been performed in both lepton+jets, multilepton and all-hadronic final states. The lepton + jets analysis [114] emphasizes the presence of large number of b-tagged jets, and combined with other kinematic variables in a Boosted Decision Tree (BDT) for enhancing signal to background discrimination. The multilepton analysis [114] was optimized for the presence of b jets and the large hadronic activity. For $\mathcal{B}(T \rightarrow W b)=1$, the combined lepton+jets and multilepton analyses led to a lower limit on T quark masses of 0.71 TeV. A search for $T \rightarrow t H^{0}$ in all-hadronic decays [115], optimized for a high mass T quark, and based on identifying boosted top quark jets has been carried out by CMS. This search aimed to resolve subjets within the jets arising from boosted top quark decays, including b tagging of the subjets. A likelihood discriminator was defined based on the distributions of H_{T}, and the invariant mass of the two b jets in the events for signal and background. No excess above background expectations was observed. Assuming 100% branching ratio for $T \rightarrow t H^{0}$, this analysis led to a lower limit of 0.75 TeV on the mass of the T quark.

Searches for T quarks at $\sqrt{s}=13 \mathrm{TeV}$, based on a $2.6 \mathrm{fb}^{-1}$ dataset [116] have been performed by CMS using the lepton+jets final state. This search has been optimized for high mass T quarks by exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. The boosted W channel excluded T quarks decaying only to $b W$ with masses below 0.91 TeV , and the boosted tH channel excluded T quarks decaying only to $t H$ for masses below 0.89 TeV .

A CMS search for $T \rightarrow t H^{0}$ with $H^{0} \rightarrow \gamma \gamma$ decays has been performed [117] in pair production of T quarks. To identify the Higgs boson produced in the decay of the heavy T quark, and the subsequent $H^{0} \rightarrow \gamma \gamma$ decay, the analysis focused on identification of two photons in events with one or more high p_{T} lepton + jets or events with no leptons and large hadronic activity. A search for a resonance in the invariant mass distribution of the two photons in events with large hadronic activity defined by the H_{T} variable showed no excess above the prediction from standard model processes. The analysis resulted in exclusion of T quark masses below 0.54 TeV .

A search for electroweak single production of T quark decaying to $t H^{0}$ using boosted topologies in fully hadronic [118] and lepton + jets [119] in the final states has been performed by CMS. The electroweak couplings of the T quarks to the SM third generation quarks are highly model dependent and hence these couplings determine the rates of the single T quark production. In both analyses, T quark candidate invariant mass was reconstructed using the
boosted Higgs boson jets and the top quark. Higgs boson jets were identified using jet substructure techniques and subjet b tagging. For the lepton+jets analysis the top quark was reconstructed from the leptonically decaying W and the b jet, while in the allhadronic analysis the top quark jet was tagged using substructure analysis. There was no excess of events observed above background. Exclusion limits on the product of the production cross section and the branching fraction $\left(\sigma(p p \rightarrow T q t / b) \times \mathcal{B}\left(T \rightarrow t H^{0}\right)\right.$ were derived for the T quark masses in the range $0.70-1.8 \mathrm{TeV}$. From the lepton + jets analysis, for a mass of 1.0 TeV , values of $\left(\sigma(p p \rightarrow T q t / b) \times \mathcal{B}\left(T \rightarrow t H^{0}\right)\right.$ greater than 0.8 and 0.7 pb were excluded assuming left- and right-handed coupling of the T quark to standard model fermions, respectively [119]. For the all-hadronic analysis, upper limits between 0.31 and 0.93 pb were obtained on $\left(\sigma(p p \rightarrow T q t / b) \times \mathcal{B}\left(T \rightarrow t H^{0}\right)\right.$ for T quark masses in the range $1.0-1.8 \mathrm{TeV}$ [118].
$T \rightarrow t Z$:
Both ATLAS and CMS searched for T quarks that decay exclusively into $t Z$ in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$. No excesses were found in either search.

ATLAS performed a search [120] for optimized pair production of vector-like top quarks decaying into $t Z$ where the Z boson subsequently decays into neutrino pairs utilizing $36.1 \mathrm{fb}^{-1}$ of data. The search selected events with one lepton, multiple jets, and significant missing transverse momentum. No significant excesses were found and lower limits on the mass of a vector like top quark were placed, excluding masses below 0.87 TeV (weak-isopsin singlet), 1.05 TeV (weak-isospin doublet), and 1.16 TeV (pure $t Z$ mode).

Another search by ATLAS for pair produced T decaying to $t Z$ has been carried out by reconstructing the high transverse momentum Z boson from a pair of opposite-sign same-flavor lepton, using events with two or three charged leptons [121]. The final analysis is based on three final signatures. In the trilepton events, at least one b-tagged jet is required and S_{T} is used as the discriminating variable. In events with two leptons, at least 2 b jets are requested and those with zero or one high p_{T} top-tagged jet, use H_{T} as the discriminator. The second dilepton analysis with two top-tagged high p_{T} jets focuses on hadronically decaying heavy resonances and the invariant mass of the Z boson and the highest p_{T} b-tagged jet if found to be a good discriminating variable. No excess was observed over the background expectations. The combined analysis yields a lower limit on T quark mass of 1.03 TeV $(1.21 \mathrm{TeV})$ in the singlet (doublet) model or 100% branching ratio for $T \rightarrow t Z$ a lower limit on the T quark mass of 1.34 TeV is obtained.

ATLAS has subsequently carried out a search [122] for singly produced T quark decaying to $t Z$ where the Z boson decays into neutrino pairs. The search is carried out using $36.1 \mathrm{fb}^{-1}$ of data in events with two different final state signatures: one with jets, and significant missing $p_{T}(0 \mathrm{~L})$ and the other with single lepton, jets and missing $p_{T}(1 \mathrm{~L})$. Events are divided into signal and dedicated $W+$ jets and $t \bar{t}$ background control regions. The sensitivity to T quark signal is extracted using distributions of missing p_{T} for 1 L and the distributions of transverse mass T quark constructed from missing p_{T} and the high p_{T} large-radius top-tagged jet for 0 L analysis. The is no excess found over the expected background and lower limits on the production of T singlets is obtained as a function of the left- and right-handed couplings $c_{L, W}$ and $c_{R, W}$ to top quarks and W bosons, where c_{W} above 0.7 are excluded for T quark mass of 1.4 TeV . The limits on c_{W} are also recasted into expected and observed 95% CL upper limits for the mixing angle $\left(\theta_{L}\right)$ of a singlet T with the top quark.

CMS searched [123] for single production of T quarks decaying into $t Z$ with the Z boson decaying to pairs of charged leptons (electrons and muons) and the top quark decaying hadronically using $35.9 \mathrm{fb}^{-1}$ of data. Limits were placed on T quarks with masses between 0.7 and 1.7 TeV excluding the product of cross section and branching fraction above values of 0.27 to 0.04 pb . Additionally, limits on the product of cross section and branching fractions for a Z^{\prime} boson decaying into $t Z$ were set between 0.13 and 0.06 pb for Z^{\prime} boson masses in the range from 1.5 to 2.5 TeV .

Similar searches by ATLAS for singly produced T decaying to
$Z t$ have been performed in final state signatures with two or three charged leptons [121]. The analysis relies on tagging b jets and $\operatorname{high} p_{T}$ large-radius jets originating from top-quarks. Additional selections are devised to reduce the contributions from pair production of T quarks. For events with dilepton analysis, the discriminating variable is the mass of the T quark formed using the invariant mass of the Z boson candidate and the highest p_{T} toptagged jet, while for the trilepton analysis, the variable S_{T} is used to search for an excess of data over the expected SM background. No excess above the SM expectations is observed. The two final states (dilepton and trileptons) are combined to obtain the final results. For the coupling parameter κ_{T} between $0.1-1.6$, the 95% CL upper limits on the production cross section times branching fraction into $Z t$ is between $0.16-0.18(0.03-0.05) \mathrm{pb}$ at T quark mass of 0.7 (2) TeV .

Combination of $T \rightarrow b W / t Z / t H^{0}$:

Most of the analyses described above targeted an individual decay mode of the T quark, with 100% branching ratio to either $b W, t Z$ or $t H^{0}$ and were optimized accordingly. However, they have varied sensitivity to all three decay modes and the results can be interpreted as a function of branching ratios to each of the three decay modes, with the total adding up to unity $(\mathcal{B}(t H)+$ $\mathcal{B}(t Z)+\mathcal{B}(W b)=1)$.

Combinations of analyses have been performed by both ATLAS and CMS. The limits set by ATLAS searches in $W(\ell \nu) b=$ $X, H(b b) b+X, Z(\nu \bar{\nu}), Z(\ell \ell) t / b+X$, dileptons with same-sign charge, trileptons, all-hadronic final states have been combined and the results obtained for various sets of branching fractions for T quark decays to $b W, t H^{0}$ and $t Z$ are shown in Fig. 93.3 (left). In the combined analysis, ATLAS sets lower T quarks mass limit of 1.31 TeV for all possible values of the branching fractions to the three decay modes $[107,120,124]$. In Fig. 93.3, exclusion is shown in the plane of $\mathcal{B}(T \rightarrow H t)$ versus $\mathcal{B}(T \rightarrow W b)$, for different values of the T quark mass. The default branching ratio values for the weak-isospin singlet and doublet cases are also shown in Fig. 93.3 as yellow circle and star symbols respectively. Assuming a weak isospin (T, B) doublet and $\left|V_{T b}\right| \ll\left|V_{t B}\right|, T$ quark mass below 1.37 TeV is excluded.

CMS analysis for pair production of T, combined three channels with lepton final states: single lepton, two leptons with the same sign of the electric charge (SS), or at least three leptons (trilepton) [125]. For various combinations of branching fractions for T quark decays to $b W, t H^{0}$ and $t Z$, the combined results exclude T quarks with masses below $1.14-1.3 \mathrm{TeV}$ and are shown in Figure 93.3 (right). Single lepton events are classified into 16 signal categories and 6 background control regions based on multiplicity of b-tagged, high $p_{T} H^{0}$ and W-tagged jets. The discriminating variables are H_{T} for H^{0}-tagged and the minimum invariant mass constructed from the lepton and the b jet, $\min \left[M_{l b}\right]$, for zero H^{0}-tagged events. For the same-sign dilepton and trilepton analyses, the non-prompt backgrounds due to misidentified jets and leptons are derived from data control regions. In the trilepton analysis the S_{T} variable is used as the signal discriminator binned in four categories based on the lepton flavor combinations (eee, ee $, e \mu \mu, \mu \mu \mu)$. The single lepton analysis is most sensitive for $t H b W$ and $W b W b$ decay modes, within the the SS dilepton analysis $t H t H$ and $t H t Z$ have the best efficiency and for trileptons the $t Z t Z$ and $t H t Z$ decays modes have the highest efficiency. CMS excludes singlet (doublet) T quark masses below 1.2 (1.28) TeV. Masses below 800 GeV were excluded in previous searches. For T quark masses in the range $0.8-1.8 \mathrm{TeV}$, cross sections smaller than $30.4-9.4 \mathrm{fb}(21.2-6.1 \mathrm{fb})$ are excluded for the singlet (doublet) scenario.

Another inclusive search for pair produced T in all-hadronic final state [106] has been performed by CMS using the boosted event shape tagger (BEST) neural network technique to classify jets in six categories W, Z, H^{0}, t, b, and light. This search does not focus on a given VLQ mode, but on various combinations of the boson and quark jets in the final state. Anti- k_{T} jets with a distance parameter of 0.8 are used. The BEST NN algorithm simultaneously classifies jets according to heavy object type. For each of the six particle hypothesis, it boosts each jet constituent into corresponding frame along jet momentum direction, and cal-
culates event shape and angular variables in the boosted frame, with the expectation that when boosting to the correct rest frame, jet constituents will be isotropic and show the expected N-prong structure of the decaying object in its rest frame. A neural network is trained using the event shape and angular variables in the boosted frame to classify jets according to one of those six possibilities (W, Z, H, t, b, or light). The analysis bins the events into 126 categories depending on the number of $\mathrm{W}, \mathrm{Z}, \mathrm{H}, \mathrm{t}, \mathrm{b}$, or light jets in the final state with a maximum of four such objects. For each category $H_{T}^{\mathrm{AK} 8}$, the scalar sum of p_{T} of all AK8 jets, is used as the signal discriminator. A scan over a combination of various branching fractions is also performed. This search excludes T quark masses in the range $0.74-1.37 \mathrm{TeV}$ for the $t H$ decay mode in the NN analysis.

An inclusive search for VLQs has been carried out by CMS targeted at heavy T quarks decaying to any combination of $b W$, $t Z$, or $t H^{0}$ is described in [114]. Selected events have at least one isolated charged lepton. Events were categorized according to number and flavour of the leptons, the number of jets, and the presence of hadronic vector boson and top quark decays that are merged into a single jet. The use of jet substructure to identify hadronic decays significantly increases the acceptance for high T quark masses. No excess above standard model backgrounds was observed. Limits on the pair production cross section of the new quarks are set, combining all event categories, for all combinations of branching fractions into the three final states. For T quarks that exclusively decay to $b W / t Z / t H^{0}$, masses below $0.70 / 0.78 / 0.71 \mathrm{TeV}$ are excluded.
93.2.3.2 Searches for \boldsymbol{B} quarks that decay to $\boldsymbol{W}, \boldsymbol{Z}$ and $\boldsymbol{H}^{\mathbf{0}}$ bosons

ATLAS and CMS have performed searches for pair production of heavy B quarks which subsequently decay to $W t, b Z$ or $b H^{0}$. The searches have been carried out in final states with single leptons, dileptons (with same charge or opposite charge), multileptons, as well as in fully hadronic final states.

$B \rightarrow b H^{0} X:$

Using $36.1 \mathrm{fb}^{-1}$ of data, ATLAS has performed a search for pair produced VLQs with all-hadronic final state signature [113]. While this analysis provides exclusion limits for all third generation VLQs, it provides the strongest results for $B \rightarrow b H^{0}$ decay mode and excludes pure $B \rightarrow b H^{0}$ decays for B masses upto 1.01 TeV . The limits are also casted as a two-dimensional plane of branching ratio values of $B \rightarrow b H^{0}$ vs. $B \rightarrow W b$. This analysis required the presence of high p_{T} jets and multiple b tags. It used a multi-class DNN to classify jets arising from W, Z, H^{0} bosons and top-quarks. In addition, the matrix element method is used to compute the likelihood for the event to arise from a particular VLQ final state and used to construct the final discriminator. To increase the performance sensitivity, processes with the same number of top quarks, W / Z bosons, and H^{0} Higgs bosons are combined into a single hypothesis.

$B \rightarrow W t X:$

A search for $B \rightarrow t W$ in B pair produced events has been performed by the ATLAS experiment [107] using lepton+jets events with one hadronically decaying W and one leptonically decaying W utilizing $36.1 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=13 \mathrm{TeV}$. The search was optimized for T production decaying into $W b$. Since the analysis was optimized for $T \rightarrow W b$ rather than $W t$ decays the analysis does not reconstruct the full B mass. As discussed earlier, the hadronically and leptonically decaying heavy quarks were required to have similar reconstructed masses (within 300 GeV). The interpretation of the $T \rightarrow W b$ in the context of $B \rightarrow t W$ production led to the exclusion of heavy B like VLQs for masses less than 1.25 TeV and 1.08 TeV , assuming a 100% branching fraction to $t W$ or $\mathrm{SU}(2)$ singlet B scenario, respectively.

A similar search by CMS [126], using $19.8 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV}$ data, selected events with one lepton and four or more jets, with at least one b-tagged jet, significant missing p_{T}, and further categorizes them based on the number of jets tagged as arising from the decay of boosted W, Z or H^{0} bosons. The S_{T} distributions of the events in different categories showed no excess of events
above the expected background and yielded a lower limit on the B quark mass of 0.73 TeV for $B R(B \rightarrow W t)=1$.

CMS [116] also searched for pair production of both $T T$ and $B B$ with collisions from $2.5 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ data. The analysis searches for events with one high p_{T} lepton, multiple jets, and highly boosted W or Higgs bosons decaying hadronically. The analysis focuses on pair production and selects events with either a boosted W or Higgs candidate and then proceeds to search for anomalous production in excess of standard model production. Seeing no significant excesses CMS then proceeded to set limits in many different interpretations. The strongest was from the the $B \rightarrow W t$ interpretation leading to excluding heavy vector-like B quark less than 0.73 TeV .

The all-hadronic inclusive analysis [106] performed by CMS using the BEST NN technique to classify $W / Z / H^{0} / t / b /$ light jets also gives exclusion limits on B quark production for various combinations of branching fractions for decays to $t W, b Z, b H^{0}$. By considering categories based on various combinations of the boson and quark jets in the final state it excludes B quarks with masses up to 1230 GeV , for B decays to $t W$ with a 100% branching fraction.

Electroweak production of single heavy $B+b$ productions has been studied by CMS in the decay to $t W$ with lepton + jets final state [127]. Single lepton events with hadronic jets, including a forward jet, missing p_{T} are selected and divided into 10 different categories based on lepton flavor (e / μ), top-tagged, W-tagged, and $0 / 1 / 2 b$-tagged jets. B quark mass $m_{\text {reco }}$ is fully reconstructed from lepton, jets, and missing p_{T}, where the neutrino four-momentum is computed using the missing p_{T} and the W mass constraint (assuming massless ν). For events within toptagged category, the high p_{T} top-tagged hadronic jet and the leptonically decaying W boson is used to compute $m_{\text {reco }}$. The $m_{\text {reco }}$ distribution is used as the signal discriminator. In the absence of a excess over the expected SM background, the exclusion limits on the production cross section is for B quark masses between 0.72 TeV varies between 0.3 to 0.03 pb . In addition, B quarks with left-handed couplings and a relative width of 10,20 , and 30% are excluded for masses below $1.49,1.59$, and 1.66 TeV respectively.
$B \rightarrow b Z X:$
A search by CMS [128] for the pair-production of a heavy B quark and its antiparticle has been performed, where one the heavy B quark decays to $b Z$. Events with a Z boson decaying to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$and at least one b jet are selected. The signal from $B \rightarrow b Z$ decays are expected to appear as a local enhancement in the $b Z$ mass distribution. No such enhancement was found and B quarks that decay 100% into $b Z$ are excluded below 0.70 TeV . This analysis also set upper limits on the branching fraction for $B \rightarrow b Z$ decays of $30-100 \%$ in the B quark mass range $0.45-0.70 \mathrm{TeV}$. A complementary search has been carried out by ATLAS for new heavy quarks decaying into a Z boson and a bquark [129]. Selected dilepton events contain a high transverse momentum Z boson that decays leptonically, together with two b jets. If the dilepton events have an extra lepton in addition to those from the Z boson, then only one b-jet is required. No significant excess of events above the standard model expectation was observed, and mass limits were set depending on the assumed branching ratios, as shown in Fig. 93.4. In a weak-isospin singlet scenario, a B quark with mass lower than 0.65 TeV was excluded, while for a particular weak-isospin doublet scenario, a B quark with mass lower than 0.73 TeV was ruled out.

ATLAS has searched for the electroweak production of single B quarks, which is accompanied by a b jet and a light jet [129]. The dilepton selection for double B production was modified for the single B production study by requiring the presence of an additional energetic jet in the forward region. An upper limit of 200 fb was obtained for the process $\sigma(p p \rightarrow B \bar{b} q) \times B(B \rightarrow Z b)$ with a heavy B quark mass at 0.70 TeV . This search indicated that the electroweak mixing parameter $X_{B b}$ below 0.5 is neither expected or observed to be excluded for any values of B quark mass.

Combination of $B \rightarrow t W / b Z / b H^{0}$:
The ATLAS experiment has combined the various analyses tar-

Implications of the \boldsymbol{H}^{0}

Figure 93.3: Left panel: observed limits on the mass of the T quark in the plane of $\mathcal{B}\left(T \rightarrow t H^{0}\right)$ versus $\mathcal{B}(T \rightarrow b W)$ from a combination [124] of all ATLAS searches for $T T$ production. The markers indicate the default branching ratios for the $\mathrm{SU}(2)$ singlet and doublet scenarios. Right panel: the observed lower limits on the T quark mass (in GeV), from CMS searches after combining all lepton channels [125], for various branching fraction scenarios. $\mathcal{B}(T \rightarrow W b)+\mathcal{B}(T \rightarrow t Z)+\mathcal{B}\left(T \rightarrow t H^{0}\right)=1$ is assumed.
geted for specific decay modes to obtain the most sensitive limits on the pair production of B quarks $[107,108,124]$. Various searches $(W(\ell \nu) t+X, Z(\ell \ell) t / b+X$, same sign charge dilepton events, trilepton events, and all-hadronic) are combined to obtain lower limits on the mass of the B quark in the plane of $B R(B \rightarrow W t)$ vs $B R(B \rightarrow b H)$. The searches were optimized for 100% branching fractions and hence are most sensitive at large $B R(B \rightarrow W t)$, and also at large $B R\left(B \rightarrow b H^{0}\right)$. For all possible values of branching ratios in the three decay modes $t W, b Z$, or $b H^{0}$, the lower limits on the B quark mass was found to be 1.03 TeV and shown in Fig. 93.4 (left) as a function of both B mass and branching ratio.

CMS combined three channels with lepton final states: single lepton, two leptons with the same sign of the electric charge (SS), or at least three leptons (trilepton) [125]. For various combinations of branching fractions for B quark decays to $t W, b H^{0}$ and $b Z$, the combined results exclude b quarks with masses below $0.91-1.24 \mathrm{TeV}$ and are shown in Figure 93.4 (right) the details are provided earlier in subsection 93.2.3.1. The single lepton analysis is most sensitive for $t H b W$ and $W b W b$ decay modes, within the the SS dilepton analysis $t H t H$ and $t H t Z$ have the best efficiency and for trileptons the $t Z t Z$ and $t H t Z$ decays modes have the highest efficiency. CMS excludes singlet (doublet) B quark masses below 1.17 (0.94) TeV. Masses below 800 GeV were excluded in previous searches. For B quark masses in the range $0.8-1.8 \mathrm{TeV}$, cross sections smaller than $40.6-9.4 \mathrm{fb}$ (101--49.0 fb) are excluded for the singlet (doublet) scenario.

93.2.3.3 Searches for top-partner quark $\boldsymbol{X}_{\mathbf{5} / \mathbf{3}}$

Searches for a heavy top vector-like quark $X_{5 / 3}$, with exotic charge $\pm 5 / 3$, such as that proposed in Refs. [131, 132], have been performed by both ATLAS and CMS [107, 133].
The analyses assumed pair-production or single-production of $X_{5 / 3}$ with $X_{5 / 3}$ decaying with 100% branching fraction to to $t W$. Searches for $X_{5 / 3}$ have been performed using two final state signatures: same-sign leptons and lepton+jets.

The analysis based on searching for same-sign leptons, from the two W bosons from one of the $X_{5 / 3}$, has smaller backgrounds compared to the lepton + jets signature. Requiring same-sign leptons eliminates most of the standard model background processes, leaving those with smaller cross sections: $t \bar{t}, W, t \bar{t} Z, W W W$, and same-sign $W W$. In addition, backgrounds from instrumental effects due to charge misidentification were considered. Assuming pair production of $X_{5 / 3}$, the analyses by CMS using H_{T} as the discriminating variable restrict the $X_{5 / 3}$ mass to be higher than 1.16 (1.10) TeV for a right (left) handed chirality particle [133-135]. The limits obtained by ATLAS, by classifying the signal region by
number of b jets, H_{T}, and missing p_{T} in the event, corresponded to a lower mass limit on $X_{5 / 3}$ of $1.19 \mathrm{TeV}[136,137]$.

Searches for $X_{5 / 3}$ using leptons+jets final state signatures are based on either full or partial reconstruction of the T mass from the lepton, jets (including b jets) and missing p_{T}. The CMS search $[133,138]$ also utilized jet substructure techniques to identify boosted $X_{5 / 3}$ topologies. The discriminating variable used was the mass constructed from the lepton and b-tagged jet, $M_{(\ell, b)}$, which corresponds to the visible mass of leptonically decaying top quark. To optimize the search sensitivity, the events were further separated into categories based on lepton flavor (e, μ), the number of b-tagged jets, the number of W-tagged jets, and the number of t-tagged jets. In the absence of a signal, the CMS analysis excluded $X_{5 / 3}$ quark masses with right-handed (left-handed) couplings below 1.32 (1.30) TeV [138]. Combining the lepton+jets with the same-sign leptons analyses leads to a slight improvement and excludes $X_{5 / 3}$ quark masses with right-handed (left-handed) couplings below 1.33 (1.30) TeV .

The ATLAS lepton+jets search for $X_{5 / 3}$ utilized events with high $p_{T} \mathrm{~W}$ bosons and b jets. The search described earlier for T pair production, with $T \rightarrow W b$ decays, can be reinterpreted as a search for $X \rightarrow t W$. This analysis excluded $X_{5 / 3}$ with masses below 1.25 TeV [107].

The single $X_{5 / 3}$ production cross section depends on the coupling constant λ of the $t W X$ vertex. ATLAS has performed an analysis of same-sign dileptons which includes both the single and pair production. This analysis led to a lower limit on the mass of the $X_{5 / 3}$ of 0.75 TeV for both values of $\lambda=0.5$ and 1.0 [139].

Single heavy $X_{5 / 3}+t$ production has been studied by CMS in the decay to $t W$ with lepton + jets final state [127]. The description of the analysis is provided earlier in the discussion of $B \rightarrow W t X$ decays, where the reconstructed mass of $X_{5 / 3}, m_{r e c o}$ distribution is used as the signal discriminator. In the absence of a excess over the expected SM background, the exclusion limits on the production cross section is for $X_{5 / 3}$ quark masses between $0.7-2 \mathrm{TeV}$ varies between 0.3 to 0.03 pb , depending on the width of $X_{5 / 3}$ between $1-10 \%$. In addition, $X_{5 / 3}$ quarks with left-handed couplings and a relative width of 10,20 , and 30% are excluded for masses below $0.92,1.3$, and 1.45 TeV respectively.

93.2.4 Heavy resonances decaying to $V L Q$

CMS has performed search for VLQ production in the decay of massive resonances such as Z^{\prime} and W^{\prime} bosons.
$\underline{Z^{\prime} \rightarrow t T}$: Specifically searches are presented by CMS in Refs. [140] and [141] for massive spin-1 Z^{\prime} resonances decaying to a top quark and heavy VLQ top quark partner T. The results of this search for a heavy spin-1 resonance are interpreted in the

Figure 93.4: Observed limits on the mass of the B quark in the plane of $B R\left(B \rightarrow b H^{0}\right)$ versus $B R(B \rightarrow t W)$ from ATLAS searches [124] on the left panel, and CMS searches [125] on the right panel, for $B B$ production. $\mathcal{B}(\mathcal{B} \rightarrow \mathcal{H})+\mathcal{B}(\mathcal{B} \rightarrow\lfloor\mathcal{Z})+\mathcal{B}(\mathcal{B} \rightarrow \mathcal{W} \sqcup)=1$ is assumed. The yellow markers indicate the branching ratios for the $\mathrm{SU}(2)$ singlet and doublet scenarios.

Figure 93.5: Observed 95% C.L. limits on $\sigma \times B \times A$ for string resonances, excited quarks, axigluons, colorons, E6 diquarks, s8 resonances, W^{\prime} and Z^{\prime} bosons, and Randall-Sundrum Gravitons $g_{K K}$ from [130].
context of two different models. In the G^{\star} model which predicts ten VLQs $\left(T, B, \tilde{T}, \tilde{B}, T_{5 / 3}, T_{2 / 3}, T^{\prime}, B^{\prime}, B_{-1 / 3}, B_{-4 / 3}\right)$ with the mass relationship $M\left(T_{5 / 3}\right)=M\left(T_{2 / 3}\right)=M(T) \cos \left(\phi_{L}\right)$. For the benchmark scenario [142], $\cos \left(\phi_{L}\right)=0.84$ and the branching fractions $T \rightarrow t H^{0}, t Z, W b$ are $0.25,0.25$ and 0.5 respectively. The ρ^{0} model predicts a multiple of four new VLQs $T, B, X_{2 / 3}, X_{5 / 3}$, and in the benchmark scenario [143], the branching fractions $T \rightarrow t H^{0}, t Z, W b$ are $0.5,0.5$ and 0 respectively.

Two of the three different decays of the $Z^{\prime} \rightarrow t T$ with $T \rightarrow$
$t H^{0}, t Z, W b$ are characterized by the presence of two top quark decays and a boson $\left(H^{0} / Z\right)$. A search [141] by CMS, optimized for $T \rightarrow t H / Z t$ decays is carried out in the lepton+jets final state using a dataset corresponding to an integrated luminosity of $35.9 \mathrm{fb}^{-1}$. Jet substructure techniques are used to identify (or tag) the high p_{T} large-radius jets originating from H^{0}, Z bosons and merged top quarks. The mass of the Z^{\prime} boson is used as the signal discriminator and constructed using H^{0} or Z-tagged dijet, the hadronic and leptonic top quark four vectors. For the
leptonic top quark reconstruction $\left(t \rightarrow b \ell \nu_{\ell}\right)$, the neutrino four vector is obtained from the event missing p_{T} using the W boson mass constraint. While the high p_{T} hadronic top quark jets from decays of massive Z^{\prime} bosons are mostly merged and identified by top tagging techniques, those from T decays maybe resolved. The reconstructed Z^{\prime} candidate events are classified into six different categories requiring the presence of either H^{0}-tagged jet with 2 b-tagged subjets or one b-tagged subjet or a Z-tagged boson, each with either zero or one top-tagged jet. This search does not observe any significant deviation in data over the expectation from standard model backgrounds. Within the context of the G^{\star} model, for a T mass of 1.2 (1.5), this search excludes G^{\star} [142] resonances with masses between $1.5-2.3(2.0-2.4) \mathrm{TeV}$.

The search in the all-hadronic final state is based on a $2.6 \mathrm{fb}^{-1}$ dataset [140], and optimized for $T \rightarrow W b$ decays. Jet substructure techniques are deployed for tagging jets from high $p_{T} W$ boson and top quarks. Events are categorized into two groups based on the presence of b-tagged subjet in the top-tagged jet. Multijet background estimation is challenging and determined using sidebands defined by inverting the b tagging requirement. Upper limits on cross section for $Z^{\prime} \rightarrow t T$ are obtained in the range of $0.13-10 \mathrm{pb}$. With additional data, this search has the potential to exclude scenarios in composite Higgs and extra dimension models.
$\underline{W^{\prime} \rightarrow T b / B t:} W^{\prime}$ bosons are predicted to decay to VLQ third generation partners T, B quarks within composite Higgs and warped extra dimensional models [144]. In the benchmark scenarios of this framework, W^{\prime} decays to $T b$ or $B t$ are equally distributed and the subsequent VLQ decays $T \rightarrow t H$ and $B \rightarrow b H^{0}$ each are assumed to have a branching fraction of 0.5 . The search for $W^{\prime} \rightarrow T b / b H^{0} \rightarrow t b H^{0}$ is performed using a sample of $35.9 \mathrm{fb}^{-1}$ by CMS [145] in the final state with all-hadronic decays of both the Higgs boson $\left(H^{0} \rightarrow b \bar{b}\right)$ and the top quark. Both the H^{0} boson and the top quark are expected to be boosted in the decay of a heavy W^{\prime}, and hence jet substructure techniques, including subjet b-tagging and double b-tagging are deployed to identify the H^{0}-tagged and the top-tagged jets. The three particle mass $m_{t b H^{0}}$, is used as the signal discriminant to observe the W^{\prime} resonance. There is no excess observed in data above the expected SM background. This search excludes W^{\prime} production cross section above $0.01-0.43 \mathrm{pb}$ for masses between $1.5-4.0 \mathrm{TeV}$.

93.2.5 Colorons and Colored Scalars

These particles are associated with top-condensate and topseesaw models, which involve an enlarged color gauge group. The new particles decay to dijets, $t \bar{t}$, and $b \bar{b}$.

Direct searches for colorons, color-octect scalars and other heavy objects decaying to $q \bar{q}, q g, q q$, or $g g$ has been performed using LHC data from pp collisions at $\sqrt{s}=7,8$ and 13 TeV . Based on the analysis of dijet events from a data sample corresponding to a luminosity of $19.6 \mathrm{fb}^{-1}$, at $\sqrt{s}=8 \mathrm{TeV}$ the CMS experiment excluded pair production of colorons with mass between $1.20-3.60$ and $3.90-4.08 \mathrm{TeV}$ [146]. Analyses of inclusive 8 - and 10-jet final states with low missing transverse momentum by CMS [147], set limits in several benchmark models. Colorons (axigluons) with masses between 0.6 and 0.75 (up to 1.15) TeV were excluded, and gluinos in R-parity violating supersymmetric scenarios were ruled out from 0.6 up to 1.1 TeV .

A search for pair-produced colorons based on an integrated luminosity of $5.0 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ by CMS excluded colorons with masses between 0.25 TeV and 0.74 TeV , assuming colorons decay 100% into $q \bar{q}$ [148]. This analysis was based on events with at least four jets and two dijet combinations with similar dijet mass. Color-octet scalars (s8) with masses between $1.20-2.79 \mathrm{TeV}$ were excluded by CMS [146], and below 2.7 TeV by ATLAS [149].

These studies have now been extended to take advantage of the increased center-of-mass energy during Run 2 of the LHC. Using the $35.9 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=13 \mathrm{TeV}$, searches for narrow resonances have been performed by CMS. An analysis of the dijet invariant mass spectrum formed using wide jets [130, 150, 151], separated by $\Delta \eta_{j j} \leq 1.3$, led to limits on new particles decaying to parton pairs $(q q, q g, g g)$. Specific exclusions on the masses of colorons and color-octet scalars were obtained and are shown in Fig. 93.5. Exclusions have been obtained for axigluons and
colorons below 6.1 TeV, and color-octet scalars below 3.4 TeV.

93.3 Conclusions

As the above analyses have demonstrated, there is already substantial sensitivity to possible new particles predicted to accompany the H^{0} in dynamical frameworks of electroweak symmetry breaking. No significant hints of any deviations from the standard model have been observed, and limits typically at the scale of a few hundred GeV to a few TeV are set.

Given the need to better understand the H^{0} and to determine in detail how it behaves, such analyses continue to be a major theme of Run 2 the LHC, and we look forward to increased sensitivity as a result of the higher luminosity at the increased center of mass energy of collisions.

References

[1] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), [arXiv:1207.7214].
[2] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), [arXiv:1207.7235].
[3] S. Weinberg, Physica A96, 1-2, 327 (1979).
[4] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
[5] H. Georgi, Nucl. Phys. B266, 274 (1986).
[6] R. S. Chivukula, in "Flavor physics for the millennium. Proceedings, Theoretical Advanced Study Institute in elementary particle physics, TASI 2000, Boulder, USA, June 4-30, 2000," 731-772 (2000), [hep-ph/0011264].
[7] R. S. Chivukula, M. J. Dugan and M. Golden, Phys. Rev. D47, 2930 (1993), [hep-ph/9206222].
[8] S. Weinberg, Phys. Rev. D13, 974 (1976), [Addendum: Phys. Rev.D19,1277(1979)].
[9] L. Susskind, Phys. Rev. D20, 2619 (1979).
[10] K. Lane (2002), [hep-ph/0202255].
[11] C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003), [Erratum: Phys. Rept.390,553(2004)], [hep-ph/0203079].
[12] R. Shrock, in "The origin of mass and strong coupling gauge theories. Proceedings, 5th International Workshop, SCGT'06, Nagoya, Japan November 21-24, 2006," 227-241 (2007), [hep-ph/0703050].
[13] E. Eichten et al., Rev. Mod. Phys. 56, 579 (1984), [Addendum: Rev. Mod. Phys.58,1065(1986)].
[14] E. Eichten et al., Phys. Rev. D34, 1547 (1986).
[15] R. S. Chivukula and V. Koulovassilopoulos, Phys. Lett. B309, 371 (1993), [hep-ph/9304293].
[16] R. Foadi, M. T. Frandsen and F. Sannino, Phys. Rev. D87, 9, 095001 (2013), [arXiv:1211.1083].
[17] B. Holdom, Phys. Lett. 150B, 301 (1985).
[18] K. Yamawaki, M. Bando, and K.-i. Matumoto, Phys. Rev. Lett. 56, 1335 (1986).
[19] T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986).
[20] T. Appelquist and L. C. R. Wijewardhana, Phys. Rev. D35, 774 (1987).
[21] T. Appelquist and L. C. R. Wijewardhana, Phys. Rev. D36, 568 (1987).
[22] E. Eichten, K. Lane and A. Martin (2012), [arXiv:1210.5462].
[23] D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984).
[24] D. B. Kaplan, H. Georgi and S. Dimopoulos, Phys. Lett. 136B, 187 (1984).
[25] M. E. Peskin, Nucl. Phys. B175, 197 (1980).
[26] J. Preskill, Nucl. Phys. B177, 21 (1981).
[27] See "Status of Higgs Boson Physics" review in this volume.
[28] R. Barbieri and A. Strumia, in "4th Rencontres du Vietnam: Physics at Extreme Energies (Particle Physics and Astrophysics) Hanoi, Vietnam, July 19-25, 2000," (2000), [hep-ph/0007265].
[29] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B513, 232 (2001), [hep-ph/0105239].
[30] N. Arkani-Hamed et al., JHEP 08, 020 (2002), [hepph/0202089].
[31] N. Arkani-Hamed et al., JHEP 07, 034 (2002), [hepph/0206021].
[32] M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005), [hep-ph/0502182].
[33] K. Agashe et al., Phys. Lett. B641, 62 (2006), [hepph/0605341].
[34] P. Sikivie et al., Nucl. Phys. B173, 189 (1980).
[35] B. Bellazzini, C. Csáki and J. Serra, Eur. Phys. J. C74, 5, 2766 (2014), [arXiv:1401.2457].
[36] R. Essig et al., JHEP 09, 085 (2017), [arXiv:1707.03399].
[37] Z. Chacko, H.-S. Goh and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006), [hep-ph/0506256].
[38] R. S. Chivukula, A. G. Cohen and K. D. Lane, Nucl. Phys. B343, 554 (1990).
[39] V. A. Miransky, M. Tanabashi and K. Yamawaki, Mod. Phys. Lett. A4, 1043 (1989).
[40] W. A. Bardeen, C. T. Hill and M. Lindner, Phys. Rev. D41, 1647 (1990).
[41] C. T. Hill, Phys. Lett. B266, 419 (1991).
[42] B. A. Dobrescu and C. T. Hill, Phys. Rev. Lett. 81, 2634 (1998), [hep-ph/9712319].
[43] R. S. Chivukula et al., Phys. Rev. D59, 075003 (1999), [hep-ph/9809470].
[44] S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979), [2,930(1979)].
[45] E. Eichten and K. D. Lane, Phys. Lett. 90B, 125 (1980).
[46] D. B. Kaplan, Nucl. Phys. B365, 259 (1991).
[47] T. Appelquist, M. Piai and R. Shrock, Phys. Rev. D69, 015002 (2004), [hep-ph/0308061].
[48] R.S. Chivukula, B.A. Dobrescu, and E.H. Simmons, Phys. Lett. B401, 74 (1997).
[49] Y. Grossman and M. Neubert, Phys. Lett. B474, 361 (2000), [hep-ph/9912408].
[50] S. J. Huber and Q. Shafi, Phys. Lett. B498, 256 (2001), [hep-ph/0010195].
[51] T. Gherghetta and A. Pomarol, Nucl. Phys. B586, 141 (2000), [hep-ph/0003129].
[52] K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B719, 165 (2005), [hep-ph/0412089].
[53] G. F. Giudice et al., JHEP 06, 045 (2007), [hepph/0703164].
[54] R. S. Chivukula and H. Georgi, Phys. Lett. B188, 99 (1987).
[55] G. D'Ambrosio et al., Nucl. Phys. B645, 155 (2002), [hepph/0207036].
[56] K. Agashe et al. (2005), [hep-ph/0509117].
[57] T. Appelquist and R. Shrock, Phys. Lett. B548, 204 (2002), [hep-ph/0204141].
[58] K. Sakai, Nucl. Phys. B867, 429 (2013), [arXiv:1207.4057].
[59] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), [Adv. Theor. Math. Phys.2,231(1998)], [hep-th/9711200].
[60] For a review, see C. Csaki, J. Hubisz, and P. Meade, hep-ph/0510275 (2005), and "Extra Dimensions" review in this volume.
[61] C. Pica, PoS LATTICE2016, 015 (2016), [arXiv:1701.07782].
[62] T. Appelquist et al., Phys. Rev. D93, 11, 114514 (2016), [arXiv:1601.04027].
[63] PDG review of Zprime boson in this volume.
[64] PDG review of Wprime boson in this volume.
[65] M. Aaboud et al. (ATLAS), Phys. Lett. B, 68 (2019), [arXiv:1903.06248].
[66] CMS Collaboration, Technical Report CMS-PAS-EXO-19019, CERN, Geneva (2019), URL http://cds.cern.ch/ record/2684757.
[67] G. Aad et al. (ATLAS), Phys. Rev. D90, 5, 052005 (2014), [arXiv:1405.4123].
[68] M. Aaboud et al. (ATLAS), JHEP 01, 055 (2018), [arXiv:1709.07242].
[69] CMS Collaboration, JHEP 0217, 48 (2017).
[70] ATLAS Collaboration, ATLAS-CONF-2016-014 (2016).
[71] CMS Collaboration, JHEP 0717, 001 (2016).
[72] M. Aaboud et al. (ATLAS), Phys. Rev. D. 99, 092004 (2019), [arXiv:1902.10077].
[73] A. M. Sirunyan et al. (CMS), JHEP 04, 031 (2019), [arXiv:1810.05905].
[74] ATLAS Collaboration, ATLAS-CONF-2019-007 (2019).
[75] CMS Collaboration, CMS-PAS-EXO-19-012 (2019).
[76] M. Aaboud et al. (ATLAS), Accepted by Phys. Rev. [arXiv:1906.05609].
[77] V. Khachatryan et al. (CMS), Phys. Lett. B770, 278 (2017), [arXiv:1612.09274].
[78] V. Khachatryan et al. (CMS), Phys. Lett. B755, 196 (2016), [arXiv:1508.04308].
[79] S. Chatrchyan et al. (CMS), JHEP 05, 108 (2014), [arXiv:1402.2176].
[80] V. Khachatryan et al. (CMS), JHEP 02, 122 (2016), [arXiv:1509.06051].
[81] A. M. Sirunyan et al. (CMS), JHEP 08, 029 (2017), [arXiv:1706.04260].
[82] A. M. Sirunyan et al. (CMS), Phys. Lett. B777, 39 (2018), [arXiv:1708.08539].
[83] CMS Collaboration, Technical Report CMS-PAS-JME-15002, CERN, Geneva (2016), URL http://cds.cern.ch/ record/2126325.
[84] G. Aad et al. (ATLAS), Phys. Lett. B788, 347 (2019), [arXiv:1807.10473].
[85] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 4, 165 (2015), [arXiv:1408.0886].
[86] G. Aad et al. (ATLAS), Phys. Lett. B743, 235 (2015), [arXiv:1410.4103].
[87] D. Pappadopulo et al., JHEP 09, 060 (2014), [arXiv:1402.4431].
[88] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 5, 052008 (2018), [arXiv:1601.04027].
[89] A. M. Sirunyan et al. (CMS), Phys. Lett. B798, 134952 (2019), [arXiv:1906.00057].
[90] M. Aaboud et al. (ATLAS), Phys. Lett. B, 91 (2017), [arXiv:1708.04445].
[91] M. Aaboud et al. (ATLAS), JHEP 03, 042 (2018), [arXiv:1710.07235].
[92] M. Aaboud et al. (ATLAS), Phys. Lett. B, 68 (2018), [arXiv:1806.10532].
[93] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 072006, [arXiv:1708.05379].
[94] A. M. Sirunyan et al. (CMS), JHEP 07, 075, [arXiv:1802.09407].
[95] A. M. Sirunyan et al. (CMS), JHEP 09, 101, [arXiv:1803.10093].
[96] M. Aaboud et al. (ATLAS), Eur. Phys. J. C, 78 (2017), [arXiv:1710.01123].
[97] M. Aaboud et al. (ATLAS), Phys. Lett. B, 774 (2017), [arXiv:1707.06858].
[98] M. Aaboud et al. (ATLAS), JHEP B, 174 (2018), [arXiv:1712.06518].
[99] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C, 636, [arXiv:1707.01303.].
[100] F. del Aguila et al., Nucl. Phys. B334, 1 (1990).
[101] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 82 (2018), [arXiv:1710.01539].
[102] CMS Collaboration, Technical report (2014).
[103] V. Khachatryan et al. (CMS), Phys. Rev. D93, 1, 012003 (2016), [arXiv:1509.04177].
[104] CMS Collaboration, Technical report (2012).
[105] S. D. Ellis, C. K. Vermilion and J. R. Walsh, Phys. Rev. D80, 051501 (2009), [arXiv:0903.5081].
[106] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1906.11903].
[107] M. Aaboud et al. (ATLAS), JHEP 10, 141 (2017), [arXiv:1707.03347].
[108] G. Aad et al. (ATLAS), JHEP 08, 105 (2015), [arXiv:1505.04306].
[109] A. M. Sirunyan et al. (CMS), Phys. Lett. B772, 634 (2017), [arXiv:1701.08328].
[110] M. Aaboud et al. (ATLAS), JHEP 05, 164 (2019), [arXiv:1812.07343].
[111] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 8, 442 (2016), [arXiv:1602.05606].
[112] ATLAS collaboration (ATLAS), Technical report (2016).
[113] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 9, 092005 (2018), [arXiv:1808.01771].
[114] S. Chatrchyan et al. (CMS), Phys. Lett. B729, 149 (2014), [arXiv:1311.7667].
[115] V. Khachatryan et al. (CMS), JHEP 06, 080 (2015), [arXiv:1503.01952].
[116] A. M. Sirunyan et al. (CMS), JHEP 11, 085 (2017), [arXiv:1706.03408].
[117] CMS Collaboration, cds.cern.ch/record/1709129 (2014).
[118] A. M. Sirunyan et al. (CMS), JHEP 04, 136 (2017), [arXiv:1612.05336].
[119] V. Khachatryan et al. (CMS), Phys. Lett. B771, 80 (2017), [arXiv:1612.00999].
[120] M. Aaboud et al. (ATLAS), JHEP 08, 052 (2017), [arXiv:1705.10751].
[121] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 11, 112010 (2018), [arXiv:1806.10555].
[122] M. Aaboud et al. (ATLAS), JHEP 05, 041 (2019), [arXiv:1812.09743].
[123] A. M. Sirunyan et al. (CMS), Phys. Lett. B781, 574 (2018), [arXiv:1708.01062].
[124] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 21, 211801 (2018), [arXiv:1808.02343].
[125] A. M. Sirunyan et al. (CMS), JHEP 08, 177 (2018), [arXiv:1805.04758].
[126] CMS Collaboration, Technical report (2012).
[127] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 90 (2019), [arXiv:1809.08597].
[128] V. Khachatryan et al. (CMS), Phys. Rev. D93, 11, 112009 (2016), [arXiv:1507.07129].
[129] G. Aad et al. (ATLAS), JHEP 11, 104 (2014), [arXiv:1409.5500].
[130] A. M. Sirunyan et al. (CMS), JHEP 08, 130 (2018), [arXiv:1806.00843].
[131] R. Contino and G. Servant, JHEP 06, 026 (2008), [arXiv:0801.1679].
[132] J. Mrazek and A. Wulzer, Phys. Rev. D81, 075006 (2010), [arXiv:0909.3977].
[133] A. M. Sirunyan et al. (CMS), JHEP 08, 073 (2017), [arXiv:1705.10967].
[134] CMS Collaboration, Technical report (2017).
[135] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 17, 171801 (2014), [arXiv:1312.2391].
[136] M. Aaboud et al. (ATLAS), JHEP 12, 039 (2018), [arXiv:1807.11883].
[137] G. Aad et al. (ATLAS), Phys. Rev. D91, 11, 112011 (2015), [arXiv:1503.05425].
[138] A. M. Sirunyan et al. (CMS), JHEP 03, 082 (2019), [arXiv:1810.03188].
[139] G. Aad et al. (ATLAS), JHEP 10, 150 (2015), [arXiv:1504.04605].
[140] A. M. Sirunyan et al. (CMS), JHEP 09, 053 (2017), [arXiv:1703.06352].
[141] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 3, 208 (2019), [arXiv:1812.06489].
[142] C. Bini, R. Contino and N. Vignaroli, JHEP 01, 157 (2012), [arXiv:1110.6058].
[143] D. Greco and D. Liu, JHEP 12, 126 (2014), [arXiv:1410.2883].
[144] N. Vignaroli, Phys. Rev. D89, 9, 095027 (2014), [arXiv:1404.5558].
[145] A. M. Sirunyan et al. (CMS), JHEP 03, 127 (2019), [arXiv:1811.07010].
[146] V. Khachatryan et al. (CMS), Phys. Rev. D91, 5, 052009 (2015), [arXiv:1501.04198].
[147] V. Khachatryan et al. (CMS), Phys. Lett. B770, 257 (2017), [arXiv:1608.01224].
[148] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 110, 14, 141802 (2013), [arXiv:1302.0531].
[149] G. Aad et al. (ATLAS), Phys. Rev. D91, 5, 052007 (2015), [arXiv:1407.1376].
[150] A. M. Sirunyan et al. (CMS), Phys. Lett. B769, 520 (2017), [Erratum: Phys. Lett.B772,882(2017)], [arXiv:1611.03568].
[151] CMS Collaboration, Technical report (2015).

94. Grand Unified Theories

Revised August 2019 by A. Hebecker (Heidelberg U.) and J. Hisano (KMI, Nagoya U.).

94.1 The standard model

The Standard Model (SM) may be defined as the renormalizable field theory with gauge group $G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$, with 3 generations of fermions in the representation

$$
\begin{equation*}
(\mathbf{3}, \mathbf{2})_{1 / 3}+(\overline{\mathbf{3}}, \mathbf{1})_{-4 / 3}+(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3}+(\mathbf{1}, \mathbf{2})_{-1}+(\mathbf{1}, \mathbf{1})_{2}, \tag{94.1}
\end{equation*}
$$

and a scalar Higgs doublet H transforming as $(\mathbf{1}, \mathbf{2})_{1}$. Here and below we use boldface numbers to specify the dimension of representations of non-Abelian groups (in this case fundamental and antifundamental) and lower indices for $U(1)$ charges. The fields of Eq. (94.1) should also be familiar as $\left[Q, u^{c}, d^{c}, L, e^{c}\right]$, with $Q=(u, d)$ and $L=(\nu, e)$ being the quark and lepton $S U(2)$ doublets and u^{c}, d^{c}, e^{c} charge conjugate $S U(2)$-singlets. ${ }^{1}$ Especially after the discovery of the Higgs, this model is remarkably complete and consistent with almost all experimental data.

A notable exception are neutrino masses, which are known to be non-zero but are absent in the SM even after the Higgs acquires its vacuum expectation value (VEV). The minimalist attitude is to allow for the dimension-five operator $(H L)^{2}[1]$, which induces (Majorana) neutrino masses. In the seesaw mechanism [2-4] this operator is generated by integrating out heavy singlet fermions (right-handed (r.h.) neutrinos). Alternatively, neutrinos can have Dirac masses if light singlet neutrinos are added to the SM spectrum.

Conceptual problems of the SM include the absence of a Dark Matter candidate, of a mechanism for generating the baryon asymmetry of the universe, and of any reason for the observed smallness of the θ parameter of $\mathrm{QCD}\left(\theta_{Q C D}\right)$. In addition, the apparently rather complex group-theoretic data of Eq. (94.1) remains unexplained. Together with the abundance of seemingly arbitrary coupling constants, this disfavors the SM as a candidate fundamental theory, even before quantum gravity problems arise at energies near the Planck mass M_{P}.

To be precise, there are 19 SM parameters which have to be fitted to data: Three gauge couplings ${ }^{2} g_{3}, g_{2}$ and $g_{1}, 13$ parameters associated with the Yukawa couplings (9 charged fermion masses, three mixing angles and one CP phase in the CKM matrix.), the Higgs mass and quartic coupling, and $\theta_{Q C D}$. In addition, Majorana neutrinos introduce 3 more masses and 6 mixing angles and phases. As we will see, the paradigm of grand unification addresses mainly the group theoretic data of Eq. (94.1) and the values of the three gauge couplings. In many concrete realizations, it then impacts also the other mentioned issues of the SM, such as the family structure and fermion mass hierarchy.

More specifically, after precision measurements of the Weinberg angle θ_{W} in the LEP experiments, supersymmetric GUTs (SUSY GUTs) have become the leading candidates in the search for 'Physics beyond the SM'. Supersymmetry (SUSY) is a symmetry between bosons and fermions which requires the addition of superpartners to the SM spectrum. If SUSY is motivated as a solution to the gauge hierarchy problem (i.e. to the naturalness or fine-tuning problem of the electroweak scale) [5], superpartners have to be present near the weak scale. SUSY GUTs [6] then lead to the prediction of θ_{W}, in good agreement with subsequent observations [7]. However, the non-discovery of new particles at the LHC puts into question the presence of new physics at the TeV scale in general and in particular of low-scale supersymmetry. Still, SUSY may be present just outside the presently explored energy domain.

The measured Higgs mass (125 GeV) is in principle consistent with this picture, assuming superpartners in the region of roughly 10 TeV . Such heavy superpartners then induce radiative corrections raising the Higgs mass above the Z boson mass $m_{Z}[8,9]$. However, from the vantage point of the hierarchy problem, heavy

[^88]superpartners are problematic: They also contribute to SUSYbreaking Higgs mass parameters and thereby to the Higgs potential, tending to raise the Z mass. As a result, the incarnation of SUSY in terms of the minimal supersymmetric SM (MSSM) is becoming questionable. Turning the logic around, one may say that compared to expectations based on the MSSM with superpartner masses below about 1 TeV , the measured Higgs mass value of 125 GeV is somewhat too high [10]. Independently, the LHC has disfavored light colored superpartners (which does not imply that all superpartners are heavy). These facts represent new hints for future work on SUSY GUTs or on GUTs without TeV-scale supersymmetry.

94.2 Basic group theory and charge quantization

 94.2.1 $S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R}$Historically, the first attempt at unification was the Pati-Salam model with gauge group $G_{P S}=S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R}$ [11]. It unifies SM fermions in the sense that one generation (plus an extra SM singlet) now comes from the $(\mathbf{4}, \mathbf{2}, \mathbf{1})+(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})$ of $G_{P S}$. This is easy to verify from the breaking pattern $S U(4)_{C} \rightarrow$ $S U(3)_{C} \times U(1)_{B-L}$ together with the identification of SM hypercharge as a linear combination between $B-L$ (baryon minus lepton number) and the T_{3} generator of $S U(2)_{R}$. This model explains charge quantization, that is, why all electric charges are integer multiples of some smallest charge in the SM. Concretely, the $\mathbf{4}$ and $\overline{\mathbf{4}}$ of $S U(4)_{C}$ identify lepton number as the 4 th colour and the tracelessness of the diagonal generator implies that quark charges are expressed in terms of $1 / N_{c}$ fractions of lepton charges. However, $G_{P S}$ is not simple (containing three simple factors), and thus it does not predict gauge coupling unification.

94.2.2 $S U(5)$

Since $G_{S M}$ has rank four (two for $S U(3)_{C}$ and one for $S U(2)_{L}$ and $U(1)_{Y}$, respectively), the rank-four group $S U(5)$ is the minimal choice for unification in a simple group [12]. The three SM gauge coupling constants derive from a universal coupling α_{G} at the GUT scale M_{G}. Explicitly embedding $G_{S M}$ in $S U(5)$ is straightforward, with $S U(3)_{C}$ and $S U(2)_{L}$ corresponding e.g. to the upper-left 3×3 and lower-right 2×2 blocks, respectively, in traceless 5×5 matrices for $S U(5)$ generators of the fundamental representation. The $U(1)_{Y}$ corresponds to matrices generated by $\operatorname{diag}(-2 / 3,-2 / 3,-2 / 3,1,1)$ and hence commutes with $S U(3)_{C} \times S U(2)_{L} \subset S U(5)$. It is then easy to derive how one SM generation precisely comes from the $\mathbf{1 0}+\overline{\mathbf{5}}$ of $S U(5)$ (where $\mathbf{1 0}$ is the antisymmetric rank-2 tensor):
$\mathbf{1 0}:\left(\begin{array}{ccccc}0 & u_{b}^{c} & -u_{g}^{c} & u_{r} & d_{r} \\ -u_{b}^{c} & 0 & u_{r}^{c} & u_{g} & d_{g} \\ u_{g}^{c} & -u_{r}^{c} & 0 & u_{b} & d_{b} \\ -u_{r} & -u_{g} & -u_{b} & 0 & e^{c} \\ -d_{r} & -d_{g} & -d_{b} & -e^{c} & 0\end{array}\right) \quad$ and $\quad \overline{\mathbf{5}}:\left(\begin{array}{c}d_{r}^{c} \\ d_{g}^{c} \\ d_{b}^{c} \\ e \\ -\nu_{e}\end{array}\right)$.
In addition to charge quantisation this structure explains why the 1.h. quark and lepton states fall in $S U(2)_{L}$ doublets while the r.h. states are singlets.
Since $S U(5)$ has 24 generators, $S U(5)$ GUTs have 12 new gauge bosons known as X bosons (or X / Y bosons) in addition to the SM. X bosons form an $S U(3)_{C}$-triplet and $S U(2)_{L}$-doublet. Their interaction connects quarks and leptons such that baryon and lepton numbers are not conserved and nucleon decay is predicted. Furthermore, $U(1)_{Y}$ hypercharge is automatically quantized since it is embedded in $S U(5)$.
In order to break the electroweak symmetry at the weak scale and give mass to quarks and leptons, Higgs doublets are needed. In the minimal $S U(5)$ model, they can sit in either a $\mathbf{5}_{H}$ or $\overline{\mathbf{5}}_{H}$. The three additional states are referred to as color-triplet Higgs scalars. Their couplings also violate baryon and lepton numbers, inducing nucleon decay. In order not to violently disagree with the non-observation of nucleon decay, the triplet mass must be greater than $\sim 10^{11} \mathrm{GeV}$ [13]. Moreover, in SUSY GUTs [6], in order to cancel anomalies as well as give mass to both up and down quarks, both Higgs multiplets $\mathbf{5}_{H}$ and $\overline{\mathbf{5}}_{H}$ are required. As we shall discuss later, nucleon decay now constrains the Higgs triplets to have
mass significantly greater than M_{G} in the minimal SUSY $S U(5)$ GUT since integrating out the Higgs triplets generates dimensionfive baryon-number-violating operators [14]. The mass splitting between doublet and triplet in the $\mathbf{5}_{H}$ (and $\overline{\mathbf{5}}_{H}$) comes from their interaction with the $S U(5)$ breaking sector.

94.2.3 $S O(10)$

While $S U(5)$ allows for the minimal GUT models, unification is not complete: Two independent representations, $\mathbf{1 0}$ and $\overline{\mathbf{5}}$, are required for one SM generation. A further representation, an $\mathrm{SU}(5)$ singlet, has to be added to serve as r.h. neutrino in the seesaw mechanism. In this case, the r.h. neutrino masses are not necessarily related to the GUT scale. By contrast, a single 16-dimensional spinor representation of $S O(10)$ accommodates a full SM generation together with an extra singlet, potentially providing a r.h. neutrino [15]. This is most easily understood from the breaking pattern $S O(10) \rightarrow S U(5) \times U(1)_{X}$ and the associated branching rule ${ }^{3} \mathbf{1 6}=\mathbf{1 0}_{-1}+\overline{\mathbf{5}}_{3}+\mathbf{1}_{-4}$. Here the indices refer to charges under the $U(1)_{X}$ subgroup, which is orthogonal to $S U(5)$ and reflects the fact that $S O(10)$ has rank five. From the above, it is easy to see that $U(1)_{X}$ charges can be given as $2 Y-$ $5(B-L)$. Intriguingly, all representations of $S O(10)$ are anomaly free in four dimensions (4d). Thus, the absence of anomalies in an $S U(5)$-GUT or a SM generation can be viewed as deriving from this feature.
We now describe in more detail how one family of quarks and leptons appears in the 16. To understand this, recall that the Γ-matrices of the 10 d Clifford algebra give rise to five independent, anticommuting 'creation-annihilation' operators $\Gamma^{a \pm}=$ $\left(\Gamma^{2 a-1} \pm i \Gamma^{2 a}\right) / 2$ with $a=1, \ldots, 5$. These correspond to five fermionic harmonic oscillators or "spin" $1 / 2$ systems. The 32dimensional tensor product of those is reducible since the 10 d rotation generators $M_{m n}=-i\left[\Gamma^{m}, \Gamma^{n}\right] / 4(m, n=1, \ldots, 10)$ always flip an even number of "spins". This gives rise to the 16 as displayed in Table 94.1. Next, one also recalls that the natural embedding of $S U(5)$ in $S O(10)$ relies on 'pairing up' the 10 real dimensions to produce 5 complex dimensions, $\mathbb{R}^{10} \equiv \mathbb{C}^{5}$, similarly to the paring up of Γ^{m} s used above. This makes it clear how to associate one $\mid \pm>$ system to each complex dimension of $S U(5)$, which explains the labeling of the "spin" columns in Table 94.1: The first three and last two "spins" correspond to $S U(3)_{C}$ and $S U(2)_{L}$, respectively. In fact, an $S U(3)_{C}$ rotation just raises one color index and lowers another, changing colors $\{r, g, b\}$, or changes relative phases between the three spin states. Similarly, an $S U(2)_{L}$ rotation raises one weak index and lowers another, thereby flipping the weak isospin from up to down or vice versa, or changes the relative phase between the two spin states. In this representation $U(1)_{Y}$ hypercharge is simply given by $Y=-2 / 3\left(\sum\right.$ color spins $)+\left(\sum\right.$ weak spins $) . S U(5)$ rotations corresponding to X bosons then raise (or lower) a color index, while at the same time lowering (or raising) a weak index. It is easy to see that such rotations can mix the states $\left\{Q, u^{c}, e^{c}\right\}$ and $\left\{d^{c}, L\right\}$ among themselves and ν^{c} is a singlet. Since $S O(10)$ has 45 generators, additional 21 gauge bosons are introduced including the $U(1)_{X}$ above. The 20 new $S O(10)$ rotations not in $S U(5)$ are then given by either raising any two spins or lowering them. With these rotations, $\mathbf{1}$ and $\mathbf{5}$ are connected with 10. The last $S O(10)$ rotation changes phases of states with weight $2\left(\sum\right.$ color spins $)+2\left(\sum\right.$ weak spins $)$, which corresponds to $U(1)_{X}$.
$S O(10)$ has two inequivalent maximal subgroups and hence breaking patterns, $S O(10) \rightarrow S U(5) \times U(1)_{X}$ and $S O(10) \rightarrow$ $S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R}$. In the first case, one can carry on breaking to $G_{S M} \subset S U(5)$ precisely as in the minimal $S U(5)$ case above. Alternatively, one can identify $U(1)_{Y}$ as an appropriate linear combination of $U(1)_{X}$ and the $U(1)$ factor from $S U(5)$, leading to the so-called flipped $S U(5)$ [17] as an intermediate step in breaking $S O(10)$ to $G_{S M}$. In the second case, we have an intermediate Pati-Salam model thanks to the branching rule $\mathbf{1 6}=(\mathbf{4}, \mathbf{2}, \mathbf{1})+(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})$. Finally, $S O(10)$ can break directly to the SM at M_{G}. Gauge coupling unification remains intact in

[^89]Table 94.1: Quantum numbers of 16dimensional representation of $S O(10)$.

state	Y	Color	Weak	$S U(5)$	$S O(10)$
$\nu^{\text {c }}$	0	---	--	1	16
e^{c}	2	---	++	10	
u_{r}	1/3	+--	-+		
d_{r}	$1 / 3$	$+--$	+-		
u_{g}	$1 / 3$	$-+-$	-+		
d_{g}	$1 / 3$	$-+-$	+-		
u_{b}	1/3	$--+$	-+		
d_{b}	1/3	$--+$	+-		
u_{r}^{c}	$-4 / 3$	$-++$	--		
u_{g}^{c}	$-4 / 3$	+ - +	--		
u_{b}^{c}	$-4 / 3$	+ + -	-		
${ }_{\text {d }}^{\text {c }}$	$2 / 3$	$-++$	++		
d_{g}^{c}	$2 / 3$	+ - +	++		
d_{b}^{c}	$2 / 3$	+ + -	++	$\overline{5}$	
ν	-1	+ + +	-+		
e	-1	+ + +	+ -		

the case of this 'direct' breaking and for the breaking pattern $S O(10) \rightarrow S U(5) \rightarrow G_{S M}$ (with $S U(5)$ broken at M_{G}). In the case of intermediate-scale Pati-Salam or flipped $S U(5)$ models, gauge coupling predictions are modified. The Higgs multiplets in the minimal $S O(10)$ come from the fundamental representation, $\mathbf{1 0}_{H}=\mathbf{5}_{H}+\overline{\mathbf{5}}_{H}$. Note, only in $S O(10)$ does the representation type distinguish SM matter from Higgs fields.

94.2.4 Beyond $S O(10)$

Finally, larger symmetry groups can be considered. For example, the exceptional group E_{6} has maximal subgroup $S O(10) \times$ $U(1)$ [18]. Its fundamental representation branches as $\mathbf{2 7}=$ $16_{1}+\mathbf{1 0}_{-2}+\mathbf{1}_{4}$. Another maximal subgroup is $S U(3)_{C} \times$ $S U(3)_{L} \times S U(3)_{R} \subset \mathrm{E}_{6}$ with branching rule $\mathbf{2 7}=(\mathbf{3}, \mathbf{3}, \mathbf{1})+$ $(\overline{\mathbf{3}}, \mathbf{1}, \overline{\mathbf{3}})+(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{3})$. Independently of any underlying E_{6}, the group $[S U(3)]^{3}$ with additional permutation symmetry Z_{3} interchanging the three factors can be considered. This is known as "trinification" [19]. The $\mathrm{E}_{6} \rightarrow[S U(3)]^{3}$ breaking pattern has been used in phenomenological analyses of the heterotic string [20]. However, in larger symmetry groups, such as $\mathrm{E}_{6}, S U(6)$, etc., there are now many more states which have not been observed and must be removed from the effective low-energy theory.

Intriguingly, the logic by which $G_{S M}$ is a maximal subgroup of $S U(5)$, which together with $U(1)_{X}$ is a maximal subgroup of $S O(10)$, continues in a very elegant and systematic way up to the largest exceptional group. The resulting famous breaking chain $\mathrm{E}_{8} \rightarrow \mathrm{E}_{7} \rightarrow \mathrm{E}_{6} \rightarrow S O(10) \rightarrow S U(5) \rightarrow G_{S M}$ together with the special role played by E_{8} in group and in string theory is a tantalizing hint at deeper structures. However, since all representations of E_{8} and E_{7} are real and can not lead to $4 d$ chiral fermions, this is necessarily outside the 4 d GUT framework.

94.3 GUT breaking and doublet-triplet splitting

In the standard, 4 d field-theoretic approach to GUTs, the unified gauge group is broken spontaneously by an appropriate GUT Higgs sector. Scalar potentials (or superpotentials in SUSY GUTs) exist whose vacua spontaneously break $S U(5)$ or $S O(10)$. While these potentials are ad hoc (just like the Higgs potential in the SM), the most naive expectation is that all their dimensionful parameters are $O\left(M_{G}\right)$. In the simplest case of $S U(5)$, the $\mathbf{2 4}$ (adjoint) GUT Higgs develops a VEV along the $G_{S M}$-singlet direction as $\langle\Phi\rangle \propto \operatorname{diag}(-2 / 3,-2 / 3,-2 / 3,1,1)$. In order for $S O(10)$ to break to $S U(5)$, the $\mathbf{1 6}$ or $\mathbf{1 2 6}$, which have a $G_{S M}$-singlet with non-zero $U(1)_{X}$ charge, get a VEV.

The masses of doublet and triplet in the $\mathbf{5}_{H}$ (and $\overline{\mathbf{5}}_{H}$) generically split due to their coupling to the GUT Higgs. In addition, both the doublet and the triplet masses also get an equal contribution from an $S U(5)$-invariant GUT-scale mass term. Without any further structure, an extreme fine-tuning between two large effects is then necessary to keep the doublet mass at the electroweak scale. Supersymmetry plays an important role in for-
bidding large radiative correction to the doublet mass due to the non-renormalization theorem [5]. However, even in this case we have to fine tune parameters at tree level. This is the doublettriplet splitting problem which, in the SUSY context, is clearly related the μ-term problem of the MSSM (the smallness of the coefficient of $\mu H_{u} H_{d}$).

Several mechanisms for natural doublet-triplet splitting have been suggested under the assumption of supersymmetry, such as the sliding singlet [21], missing partner [22], missing VEV [23], and pseudo-Nambu-Goldstone boson mechanisms [24]. Particular examples of the missing partner mechanism for $S U(5)$ [25], the missing VEV mechanism for $S O(10)[26,27]$ and the pseudo-NambuGoldstone boson mechanism for $S U(6)$ [28] have been shown to be consistent with gauge coupling unification and nucleon decay. From the GUT-scale perspective, one is satisfied if the triplets are naturally heavy and the doublets are massless $(\mu \simeq 0)$. There are also several mechanisms for resolving the subsequent issue of why μ is of order the SUSY breaking scale [29]. ${ }^{4}$ For a review of the μ problem and some suggested solutions in SUSY GUTs and string theory, see [30-33] and references therein.

In general, GUT-breaking sectors successfully resolving the doublet-triplet splitting problem, dynamically stabilizing all GUT-scale VEVs and allowing for realistic neutrino masses and Yukawa couplings (including the GUT-symmetry violation in the latter) require a number of ingredients. However, for validity of the effective theory, introduction of higher or many representations is limited, otherwise a Landau pole may appear below the Planck scale. In addition, GUTs are only effective theories below the Planck scale in the 4 d field-theoretic approach. Since M_{G} is close to this scale, the effects of higher-dimension operators are not obviously negligible. In particular, operators including the GUT-breaking Higgs may affect low-energy predictions, such as quark and lepton masses.

Thus, especially in the context of GUT breaking and doublettriplet splitting, models beyond 4d field theory appear attractive. While this is mainly the subject of the next section, some advantages can already be noted: In models with extra dimensions, in particular string constructions, GUT breaking may occur due to boundary conditions in the compactified dimensions [34-37]. No complicated GUT breaking sector is then required. Moreover, boundary conditions can give mass only to the triplet, leaving the doublet massless. This is similar to the 'missing partner mechanism' since the effective mass term does not 'pair up' the triplets from $\mathbf{5}_{H}$ and $\overline{\mathbf{5}}_{H}$ but rather each of them with further fields which are automatically present in the higher-dimensional theory. This can eliminate dimension-five nucleon decay (cf. Sec. 94.6).

94.4 String-theoretic and higher-dimensional unified models

As noted earlier, the GUT scale is dangerously close to the scale of quantum gravity. It may hence be necessary to discuss unified models of particle physics in the latter, more ambitious context. Among the models of quantum gravity, superstring or M-theory stands out as the best-studied and technically most developed proposal, possessing in particular a high level of internal, mathematical consistency. For our purposes, it is sufficient to know that five 10 d and one 11d low-energy effective supergravity theories arise in this setting (cf. [38] and refs. therein).

Grand unification is realized most naturally in the context of the two 'heterotic' theories with gauge groups $\mathrm{E}_{8} \times \mathrm{E}_{8}$ and $S O(32)$, respectively $[36,39]$ (see [40] for some of the more recent results). Justified in part by the intriguing breaking path $\mathrm{E}_{8} \rightarrow \cdots \rightarrow G_{S M}$ mentioned above, the focus has historically largely been on $\mathrm{E}_{8} \times \mathrm{E}_{8}$. To describe particle physics, solutions of the 10 d theory with geometry $\mathbb{R}^{1,3} \times M_{6}$ are considered, where M_{6} is a Calabi-Yau (CY) 3-fold (with 6 real dimensions) [36]. The background solution involves expectation values of higherdimensional components of the $\mathrm{E}_{8} \times \mathrm{E}_{8}$ gauge fields. This includes

[^90]both Wilson lines [34] and non-vanishing field-strength and leads, in general, to a reduced gauge symmetry and to chirality in the resulting 4 d effective theory. The 4 d fermions arise from 10d gauginos.

Given an appropriate embedding ${ }^{5}$ of $G_{S M}$ in $\mathrm{E}_{8} \times \mathrm{E}_{8}$, gauge coupling unification is automatic at leading order. Corrections arise mainly through (string)-loop effects and are similar to the familiar field-theory thresholds of $4 \mathrm{~d} \mathrm{GUTs}{ }^{6}$ [41]. Thus, one may say that coupling unification is a generic prediction in spite of the complete absence ${ }^{7}$ of a 4d GUT at any energy scale. This absence is both an advantage and a weakness. On the up side, GUT breaking and doublet-triplet splitting [43] are more naturally realized and dimension-five nucleon decay is relatively easy to avoid. On the down side, there is no reason to expect full GUT representations in the matter sector and flavor model building is much less tied to the GUT structure than in 4 d .

Let us pause to explain the beautiful idea behind the advertised solution of the doublet-triplet splitting problem: One starts with a simply connected CY X and mods out the action of a discrete group G (say \mathbb{Z}_{2}). In the absence of fixed points, X / G is smooth and has a non-contractible 1-cycle. Furthermore, let G also act on the gauge bundle, according to an embedding $G \rightarrow \mathrm{E}_{8}$. Now the parallel transport around the 1-cycle is tied to a gauge rotation (one says a non-trivial Wilson-line is present). Moreover, this Wilson line can not be continuously turned off since, e.g. in the case of \mathbb{Z}_{2}, its square is the unit element of the group. The induced 'Wilson-line breaking', which comes on top of the breaking by non-zero field strengths, may remove certain sub-representations (e.g. the triplet of $S U(5) \rightarrow G_{S M}$) while keeping others exactly massless. A simpler and, due to fixed points, singular version of this will appear below in the context of orbifold GUTs.

One technical problem of heterotic constructions is the dependence on the numerous size and shape parameters of M_{6} (the so-called moduli), the stabilization of which is poorly understood (see [44] for recent developments). Another is the sheer mathematical complexity of the analysis, involving in particular the study of (non-Abelian) gauge-bundles on CY spaces [45] (see however [46]).

An interesting aspect of heterotic string constructions is represented by orbifold models [35]. Here the internal space is given by a six-torus, modded out by a discrete symmetry group (e.g. $\left.T^{6} / \mathbb{Z}_{n}\right)$. More recent progress is reported in [47, 48], including in particular the systematic exploration of the phenomenological advantages of so-called 'non-prime' (referring to n) orbifolds. The symmetry breaking to $G_{S M}$ as well as the survival of Higgs doublets without triplet partners is ensured by the appropriate embedding of the discrete orbifold group in $\mathrm{E}_{8} \times \mathrm{E}_{8}$. String theory on such spaces, which are locally flat but include singularities, is much more calculable than in the CY case. The orbifold geometries can be viewed as singular limits of CYs.

An even simpler approach to unified models, which includes many of the advantages of full-fledged string constructions, is provided by Orbifold GUTs [37]. These are (mostly) 5d or 6d SUSY field theories with unified gauge group (e.g. $S U(5)$ or $S O(10)$), broken in the process of compactifying to 4 d . To give a particularly simple example, consider $S U(5)$ on $\mathbb{R}^{1,3} \times S^{1} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}^{\prime}\right)$. Here the compact space is an interval of length $\pi R / 2$ and the embedding of \mathbb{Z}_{2}^{\prime} in the hypercharge direction of $S U(5)$ realizes the breaking to $G_{S M}$. Concretely, $5 \mathrm{~d} X$ bosons are given Dirichlet BCs at one endpoint of the interval and thus have no Kaluza-Klein (KK) zero mode. Their lightest modes have mass $\sim 1 / R$, making the KK-scale the effective GUT scale. As an implication, the boundary theory has no $S U(5)$ invariance. Nevertheless, since the $S U(5)$-symmetric 5 d bulk dominates 4 d gauge couplings, unification remains a prediction. Many other features but also problems

[^91]of 4 d GUTs can be circumvented, especially doublet-triplet splitting is easily realized.
With the advent of the string-theory 'flux landscape' [49], which is best understood in 10d type-IIB supergravity, the focus in string model building has shifted to this framework. While type II string theories have no gauge group in 10d, brane-stacks support gauge dynamics. A particularly appealing setting (see e.g. [50]) is provided by type IIB models with D7 branes (defining 8d submanifolds). However, in the $S O(10)$ context the $\mathbf{1 6}$ is not available and, for $S U(5)$, the top-Yukawa coupling vanishes at leading order [51]. As a crucial insight, this can be overcome on the non-perturbative branch of type IIB, also known as F-theory [52,53]. This setting allows for more general branes, thus avoiding constraints of the $\mathrm{D} p$-brane framework. GUT breaking can be realized using hypercharge flux (the VEV of the $\mathrm{U}(1)_{Y}$ field strength), an option not available in heterotic models. The whole framework combines the advantages of the heterotic or higher-dimensional unification approach with the more recent progress in understanding moduli stabilization. It thus represents at this moment the most active and promising branch of theory-driven GUT model building (see e.g. [54] and refs. therein).

As a result of the flux-breaking, a characteristic 'type IIB' or 'Ftheoretic' tree-level correction to gauge unification arises [55]. The fact that this correction can be rather significant numerically is occasionally held against the framework of F-theory GUTs. However, at a parametric level, this correction nevertheless behaves like a 4 d threshold, i.e., it provides $\mathcal{O}(1)$ additive contributions to the inverse 4 d gauge couplings $\alpha_{i}^{-1}\left(M_{G}\right)$.

A final important issue in string GUTs is the so-called string-scale/GUT-scale problem [56]. It arises since, in heterotic compactifications, the Planck scale and the high-scale value of the gauge coupling unambiguously fix the string-scale to about 10^{18} GeV . As the compactification radius R is raised above the string length, the GUT scale (identified with $1 / R$) goes down and the string coupling goes up. Within the domain of perturbative string theory, a gap of about a factor ~ 20 remains between the lowest GUT scale achievable in this way and the phenomenological goal of $2 \times 10^{16} \mathrm{GeV}$. The situation can be improved by venturing into the non-perturbative regime [56], by considering 'anisotropic' geometries with hierarchically different radii $R[56,57]$ or by including GUT scale threshold corrections $[58,59]$.

In F-theory GUTs, the situation is dramatically improved since the gauge theory lives only in four out of the six compact dimensions. This allows for models with a 'decoupling limit', where the GUT scale is parametrically below the Planck scale [53]. However, moduli stabilization may not be without problems in such constructions, in part due to a tension between the required large volume and the desirable low SUSY breaking scale.

94.5 Gauge coupling unification

The quantitative unification of the three SM gauge couplings at the energy scale M_{G} is one of the cornerstones of the GUT paradigm. It is obviously of direct phenomenological relevance. Gauge coupling unification is well understood in the framework of effective field theory (EFT) [60]. In the simplest case, the relevant EFT at energies $\mu \gg M_{G}$ has a unified gauge symmetry (say $S U(5)$ for definiteness) and a single running gauge coupling $\alpha_{G}(\mu)$. At energies $\mu \ll M_{G}$, states with mass $\sim M_{G}$ (such as X bosons, GUT Higgs, color-triplet Higgs) have to be integrated out. The EFT now has three independent couplings and SM (or SUSY SM) matter content. One-loop renormalization group equations readily allow for an extrapolation to the weak scale,

$$
\begin{equation*}
\alpha_{i}^{-1}\left(m_{Z}\right)=\alpha_{G}^{-1}\left(M_{G}\right)+\frac{b_{i}}{2 \pi} \log \left(\frac{M_{G}}{m_{Z}}\right)+\delta_{i} \tag{94.3}
\end{equation*}
$$

$(i=1,2,3)$. Here we defined δ_{i} to absorb all sub-leading effects, such as threshold corrections at or near the weak scale (e.g. from superpartners and the additional Higgs bosons in the case of the MSSM) and at the GUT scale, and also higher-order corrections. We will discuss them momentarily.
It is apparent from Eq. (94.3) that the three low-scale couplings can be very different. This is due to the large energy range $m_{Z} \ll \mu \ll M_{G}$ and the non-universal β-function coefficients
$\left(b_{i}^{\mathrm{SM}}=\{41 / 10,-19 / 6,-7\}\right.$ or $\left.b_{i}^{\mathrm{MSSM}}=\{33 / 5,1,-3\}\right)$. Incomplete GUT multiplets, such as gauge and Higgs bosons in the SM and also their superpartners and the additional Higgs bosons in the MSSM, contribute to the differences between the β functions. Inverting the argument, one expects that extrapolating the measured couplings to the high scale, we find quantitative unification at $\mu \sim M_{G}$. While this fails in the SM, it works intriguingly well in the MSSM (cf. Fig. 94.1).

The three equations contained in Eq. (94.3) can be used to determine the three 'unknowns' $\alpha_{3}\left(m_{Z}\right), \alpha_{G}\left(M_{G}\right)$ and M_{G}, assuming that all other parameters entering the equations are given. Focusing on the SUSY case and using the $\overline{\mathrm{MS}}$ coupling constants $\alpha_{\mathrm{EM}}^{-1}\left(m_{Z}\right)$ and $\sin ^{2} \theta_{W}\left(m_{Z}\right)$ from [62],

$$
\begin{align*}
\alpha_{\mathrm{EM}}^{-1}\left(m_{Z}\right) & =127.955 \pm 0.010 \tag{94.4}\\
\sin ^{2} \theta_{W}\left(m_{Z}\right) & =0.23122 \pm 0.00003 \tag{94.5}
\end{align*}
$$

as input, one determines $\alpha_{1,2}^{-1}\left(m_{Z}\right)$, which then gives

$$
\begin{equation*}
\alpha_{G}^{-1}\left(M_{G}\right) \simeq 24.3 \quad \text { and } \quad M_{G} \simeq 2 \times 10^{16} \mathrm{GeV} \tag{94.6}
\end{equation*}
$$

Here we have set $\delta_{i}=0$ for simplicity. Crucially, one in addition obtains a prediction for the low-energy observable α_{3},

$$
\begin{equation*}
\alpha_{3}^{-1}\left(m_{Z}\right)=-\frac{5}{7} \alpha_{1}^{-1}\left(m_{Z}\right)+\frac{12}{7} \alpha_{2}^{-1}\left(m_{Z}\right)+\Delta_{3} \tag{94.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{3}=\frac{5}{7} \delta_{1}-\frac{12}{7} \delta_{2}+\delta_{3} \tag{94.8}
\end{equation*}
$$

Here we followed the elegant formulation in Ref. [63] of the classical analyses of [7]. Of course, it is a matter of convention which of the three low-energy gauge coupling parameters one 'predicts' and indeed, early works on the subject discussed the prediction of $\sin ^{2} \theta_{W}$ in terms of α_{EM} and $\alpha_{3}[64,65]$.

Remarkably, the leading order result (i.e. Eq. (94.7) with $\delta_{i}=$ $0)$ is in excellent agreement with experiments [62]:

$$
\begin{equation*}
\alpha_{3}^{\mathrm{LO}}\left(m_{Z}\right)=0.117 \quad \text { vs. } \quad \alpha_{3}^{\mathrm{EXP}}\left(m_{Z}\right)=0.1181 \pm 0.0011 \tag{94.9}
\end{equation*}
$$

However, this near perfection is to some extent accidental. To see this, we now discuss the various contributions to the δ_{i} (and hence to Δ_{3}).

The two-loop running correction from the gauge sector $\Delta_{3}^{(2)}$ and the low-scale threshold correction $\Delta_{3}^{(l)}$ from superpartners can be summarized as [63]

$$
\begin{equation*}
\Delta_{3}^{(2)} \simeq-0.82 \quad \text { and } \quad \Delta_{3}^{(l)} \simeq \frac{19}{28 \pi} \log \left(\frac{m_{\mathrm{SUSY}}}{m_{Z}}\right) \tag{94.10}
\end{equation*}
$$

The relevant scale $m_{\text {SUSY }}$ can be estimated as [66]
$m_{\text {SUSY }} \quad \rightarrow \quad m_{H}^{3 / 19} m_{\widetilde{H}}^{12 / 19} m_{\widetilde{W}}^{4 / 19} \times\left(\frac{m_{\widetilde{W}}}{m_{\tilde{\sigma}}}\right)^{28 / 19}\left(\frac{m_{\tilde{l}}}{m_{\tilde{q}}}\right)^{3 / 19}$,
where m_{H} stands for the masses of non-SM Higgs states and superpartner masses are given in self-evident notation. Detailed analyses including the above effects are best done using appropriate software packages, such as SOFTSUSY [61] (or alternatively SuSpect [67] or SPheno [68]). See also [61] for references to the underlying theoretical two-loop analyses.

To get a very rough feeling for these effects, let us assume that all superpartners are degenerate at $m_{\text {SUSY }}=1 \mathrm{TeV}$, except for heavier gluinos: $m_{\widetilde{W}}^{\widetilde{\sim}} / m_{g} \simeq 1 / 3$. This gives $\Delta_{3}^{(l)} \simeq$ $-0.35+0.22 \ln \left(m_{\text {SUSY }} / m_{Z}\right) \simeq 0.18$. The resulting prediction of $\alpha_{3}\left(m_{Z}\right) \simeq 0.126$ significantly upsets the perfect one-loop agreement found earlier. Before discussing this issue further, it is useful to introduce yet another important type of correction, the high or GUT scale thresholds.

To discuss high scale thresholds, let us set all other corrections to zero for the moment and write down a version of Eq. (94.3)

Figure 94.1: Running couplings in SM and MSSM using two-loop RG evolution. The SUSY threshold at 2 TeV is clearly visible on the MSSM side. (We thank Ben Allanach for providing the plots created using SOFTSUSY [61].)
that captures the running near and above the GUT scale more correctly. The threshold correction at one-loop level can be evaluated accurately by the simple step-function approximation for the β functions in the $\overline{\mathrm{DR}}$ scheme 8 [72],

$$
\begin{align*}
& \alpha_{i}^{-1}\left(m_{Z}\right)= \\
& \alpha_{G}^{-1}(\mu)+\frac{1}{2 \pi}\left[b_{i} \ln \frac{\mu}{m_{Z}}+b_{i}^{C} \ln \frac{\mu}{M_{C}}+b_{i}^{X} \ln \frac{\mu}{M_{X}}+b_{i}^{\Phi} \ln \frac{\mu}{M_{\Phi}}\right] \tag{94.12}
\end{align*}
$$

Here we started the running at some scale $\mu \gg M_{G}$, including the contribution of the minimal set of states relevant for the transition from the high-scale $S U(5)$ model to the MSSM. These are the color-triplet Higgs multiplets with mass M_{C}, massive vector multiplets of X-bosons with mass M_{X} (including GUT Higgs degrees of freedom), and the remaining GUT-Higgs fields and superpartners with mass M_{Φ}. The coefficients $b_{i}^{C, X, \Phi}$ can be found in Ref. [73]. Crucially, the b_{i} in Eq. (94.12) conspire to make the running GUT-universal at high scales, such that the resulting prediction for α_{3} does not depend on the value of μ.

To relate this to our previous discussion, we can, for example, define $M_{G} \equiv M_{X}$ and then choose $\mu=M_{G}$ in Eq. (94.12). This gives the high-scale threshold corrections

$$
\begin{equation*}
\delta_{i}^{(h)}=\frac{1}{2 \pi}\left[b_{i}^{C} \ln \frac{M_{G}}{M_{C}}+b_{i}^{\Phi} \ln \frac{M_{G}}{M_{\Phi}}\right] \tag{94.13}
\end{equation*}
$$

and a corresponding correction $\Delta_{3}^{(h)}$. To get some intuition for the magnitude, one can furthermore assume $M_{\Phi}=M_{G}$, finding (with $b_{i}^{C}=\{2 / 5,0,1\}$)

$$
\begin{equation*}
\Delta_{3}^{(h)}=\frac{9}{14 \pi} \ln \left(\frac{M_{G}}{M_{C}}\right) \tag{94.14}
\end{equation*}
$$

To obtain the desired effect of $-\Delta_{3}^{(2)}-\Delta_{3}^{(l)} \simeq+0.64$, the triplet Higgs would have to be by about a factor 20 lighter than the GUT scale. While this is ruled out by nucleon decay in the minimal model [74] as will be discussed Sec. 94.6, it is also clear that threshold corrections of this order of magnitude can, in general, be realized with a certain amount of GUT-scale model building, e.g. in specific $S U(5)[25]$ or $S O(10)[26,27]$ constructions. Corrections

[^92]can also be much larger or of different sign if, as is required in many fully realistic 4d GUT models, many additional (and in particular higher) representations are introduced. Thus, there is considerable model building freedom. Nevertheless, a significant constraint from getting the right GUT threshold corrections while keeping the triplet Higgs heavy remains.

The above analysis implicitly assumes universal soft SUSY breaking masses at the GUT scale, which directly affect the spectrum of SUSY particles at the weak scale. In the simplest case we have a universal gaugino mass $M_{1 / 2}$, a universal mass for squarks and sleptons m_{16} and a universal Higgs mass m_{10}, as motivated by $S O(10)$. In some cases, threshold corrections to gauge coupling unification can be exchanged for threshold corrections to soft SUSY parameters (see [75] and refs. therein). For example, if gaugino masses were not unified at M_{G} and, in particular, gluinos were lighter than winos at the weak scale (cf. Eq. (94.11)), then it is possible that, due to weak scale threshold corrections, a much smaller or even slightly negative threshold correction at the GUT scale would be consistent with gauge coupling unification [76].
It is also noteworthy that perfect unification can be realized without significant GUT-scale corrections, simply by slightly raising the (universal) SUSY breaking scale. In this case the dark matter abundance produced by thermal processes in the early universe (if the lightest neutralino is the dark matter particle) is too high. However, even if the gaugino mass in the MSSM is about 1 TeV to explain the dark matter abundance, if the Higgsino and the non-SM Higgs boson masses are about $10-100 \mathrm{TeV}$, the effective SUSY scale can be raised [77]. This setup is realized in split SUSY [78] or the pure gravity mediation model [79] based on anomaly mediation [80]. Since the squarks and sleptons are much heavier than the gaugino masses in those setups, a gauge hierarchy problem is reintroduced. The facts that no superpartners have so far been seen at the LHC and that the observed Higgs mass favors heavier stop masses than about 1 TeV force one to accept a certain amount of fine-tuning anyway.

For non-SUSY GUTs or GUTs with a very high SUSY breaking scale to fit the data, new light states in incomplete GUT multiplets or multiple GUT breaking scales are required. For example, non-SUSY models $S O(10) \rightarrow S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R} \rightarrow \mathrm{SM}$, with the second breaking scale of order an intermediate scale, determined by light neutrino masses using the see-saw mechanism, can fit the low-energy data for gauge couplings [81] and at the same time survive nucleon decay bounds [82]. Alternatively, one can appeal to string-theoretic corrections discussed in Sec. 94.4 to compensate for a high SUSY breaking scale. This has, for ex-
ample, been concretely analyzed in the context of F-theory GUTs in [83]. Similarly, one may even wonder whether particularly large GUT threshold corrections could be sufficient to ensure non-SUSY precision unification. Notice here that the gauge coupling unification predicts just one parameter. When introducing new states, typically one can fit the data by choice of their masses. This is not the case in SUSY GUTs with low-scale SUSY breaking scale where the masses are constrained by fine tuning.

In 5 d or 6 d orbifold GUTs, certain "GUT scale" threshold corrections come from the Kaluza-Klein modes between the compactification scale, $M_{c} \sim 1 / R$, and the effective cutoff scale M_{*}. In string theory, this cutoff scale is the string scale. Gauge coupling unification at two loops then constrains the values of M_{c} and $M_{*} .{ }^{9}$ Often, one finds M_{c} to be lower than the 4 d GUT scale. Since the X-bosons, responsible for nucleon decay, get mass at the compactification scale, this has significant consequences for nucleon decay.

Finally, it has been shown that non-supersymmetric GUTs in warped 5 d orbifolds can be consistent with gauge coupling unification. This assumes (in 4d language) that the r.h. top quark and the Higgs doublets are composite-like objects with a compositeness scale in the TeV range [85].

94.6 Nucleon decay

Quarks and leptons are indistinguishable in any 4d GUT, and both the baryon (B) and lepton number (L) are not conserved. This leads to baryon-number-violating nucleon decay. In addition to baryon-number violation, lepton-number violation is also required for nucleon decay since, in the SM, leptons are the only free fermions which are lighter than nucleons. The lowestdimension operators relevant for nucleon decay are $(B+L)$ violating dimension-six four-fermion-terms in the SM, and all baryonviolating operators with dimension less than seven preserve $(B-L)$ $[1,86]$.

In $S U(5)$ GUTs, the dimension-six operators are induced by X boson exchange. These operators are suppressed by $\left(1 / M_{X}^{2}\right)$ (M_{X} is the X boson mass), and the nucleon lifetime is given by $\tau_{N} \propto M_{X}^{4} /\left(\alpha_{G}^{2} m_{p}^{5}\right)\left(m_{p}\right.$ is proton mass $)$. The dominant decay mode of the proton (and the baryon-violating decay mode of the neutron), via X boson exchange, is $p \rightarrow e^{+} \pi^{0}\left(n \rightarrow e^{+} \pi^{-}\right)$. In any simple gauge symmetry, with one universal GUT coupling α_{G} and scale M_{X}, the nucleon lifetime from gauge boson exchange is calculable. Hence, the GUT scale may be directly observed via the extremely rare decay of the nucleon. Experimental searches for nucleon decay began with the Kolar Gold Mine, Homestake, Soudan, NUSEX, Frejus, HPW, IMB, and Kamiokande detectors [64]. The present experimental bounds on the modes come from Super-Kamiokande. With 306 kton-years of data they find $\tau_{p} / \operatorname{Br}\left(p \rightarrow e^{+} \pi^{0}\right)>1.67 \times 10^{34}$ years at 90% CL [87]. In addition, Hyper-Kamiokande [88] is planned to reach to $\tau_{p} / \operatorname{Br}\left(p \rightarrow e^{+} \pi^{0}\right) \sim 10^{35}$ years. The hadronic matrix elements for baryon-number-violating operators are evaluated with lattice QCD simulations [89]. In SUSY $S U(5)$ GUTs, the lower bound on the X boson mass from null results in nucleon decay searches is approaching $10^{16} \mathrm{GeV}$ [90], which is close to the GUT scale suggested by gauge coupling unification. On the other hand, the prediction for nucleon decay in non-SUSY GUTs is hard to quantify. The reason is that gauge couplings do not unify with just the SM particle content. Once extra states or large thresholds are included to ensure precision unification, a certain range of unification scales is allowed.

In SUSY GUTs there are additional sources for baryon and/or lepton-number violation - dimension-four and five operators [14]. These arise since, in the SUSY SM, quarks and leptons have scalar partners (squarks and sleptons). Although our notation does not change, when discussing SUSY models our fields are chiral superfields and both fermionic and bosonic matter is implicitly represented by those. In this language, baryon- and/or lepton-number-violating dimension-four and five operators are given as so-called F terms of products of chiral superfields, which con-

[^93]tain two fermionic components and the rest scalars or products of scalars. Within the context of $S U(5)$ the dimension-four and five operators have the form
\[

$$
\begin{aligned}
(10 \overline{5} \overline{5}) & \supset\left(u^{c} d^{c} d^{c}\right)+\left(Q L d^{c}\right)+\left(e^{c} L L\right) \\
(101010 \overline{5}) & \supset(Q Q Q L)+\left(u^{c} u^{c} d^{c} e^{c}\right) \\
& +B \text { - and } L \text {-conserving terms }
\end{aligned}
$$
\]

respectively.
The dimension-four operators in $(\mathbf{1 0} \overline{\mathbf{5}} \overline{\mathbf{5}})$ violate either baryon number or lepton number. The nucleon lifetime is extremely short if both types of dimension-four operators are present in the SUSY SM since squark or slepton exchange induces the dangerous dimension-six SM operators. Even in the case that they violate baryon number or lepton number only but not both, they are constrained by various phenomena [91]. For example, the primordial baryon number in the universe is washed out unless the dimensionless coupling constants are less than 10^{-7}. Both types of operators can be eliminated by requiring R parity, which distinguishes Higgs from ordinary matter multiplets. R parity [92] or its cousin, matter parity $[6,93]$, act as $F \rightarrow-F, H \rightarrow H$ with $F=\{\mathbf{1 0}, \overline{\mathbf{5}}\}, H=\left\{\overline{\mathbf{5}}_{H}, \mathbf{5}_{H}\right\}$ in $S U(5) .{ }^{10}$ In $S U(5)$, the Higgs multiplet $\overline{\mathbf{5}}_{H}$ and the matter multiplets $\overline{\mathbf{5}}$ have identical gauge quantum numbers. In E_{6}, Higgs and matter multiplets could be unified within the fundamental 27 representation. Only in $S O(10)$ are Higgs and matter multiplets distinguished by their gauge quantum numbers. The Z_{4} center of $S O(10)$ distinguishes 10s from 16 s and can be associated with R parity [94].

The baryon-number violating dimension-five operators have a dimensionful coupling. They are generated by integrating out the color-triplet Higgs with GUT-scale mass in SUSY GUTs such that the coefficient is suppressed by $1 / M_{G}$. Note that both triplet Higgsinos (due to their fermionic nature) and Higgs scalars (due to their mass-enhanced trilinear coupling with matter) contribute to the operators. The dimension-five operators include squarks and/or sleptons. To allow for nucleon decay, these must be converted to light quarks or leptons by exchange of a gaugino or Higgsino in the SUSY SM. The nucleon lifetime is proportional to $M_{G}^{2} m_{\text {SUSY }}^{2} / m_{p}^{5}$, where $m_{\text {SUSY }}$ is the SUSY breaking scale. Thus, dimension-five operators may predict a shorter nucleon lifetime than dimension-six operators. Unless accidental cancellations are present, the dominant decay modes from dimension-five operators include a K meson, such as $p \rightarrow K^{+} \bar{\nu}\left(n \rightarrow K^{0} \bar{\nu}\right)$. This is due to a simple symmetry argument: The operators are given as $\left(Q_{i} Q_{j} Q_{k} L_{l}\right)$ and $\left(u_{i}^{c} u_{j}^{c} d_{k}^{c} e_{l}^{c}\right)$, where $i, j, k, l(=1,2,3)$ are family indices and color and weak indices are implicit. They must be invariant under $S U(3)_{C}$ and $S U(2)_{L}$ so that their color and weak doublet indices must be anti-symmetrized. Since these operators are given by bosonic superfields, they must be totally symmetric under interchange of all indices. Thus the first operator vanishes for $i=j=k$ and the second vanishes for $i=j$. Hence a second or third generation member exists in the dominant modes of nucleon decay unless these modes are accidentally suppressed [93].

The Super-Kamiokande bounds on the proton lifetime severely constrain the dimension-five operators. With 306 kton-years of data they find $\tau_{p} / \operatorname{Br}\left(p \rightarrow K^{+} \bar{\nu}\right)>6.61 \times 10^{33}$ years at $90 \% \mathrm{CL}$ [87]. In the minimal SUSY $S U(5), \tau_{p} / \operatorname{Br}\left(p \rightarrow K^{+} \bar{\nu}\right)$ is smaller than about 10^{31} years if the triplet Higgs mass is $10^{16} \mathrm{GeV}$ and $m_{\text {SUSY }}=1 \mathrm{TeV}$ [95]. The triplet Higgs mass bound from nucleon decay is then in conflict with gauge coupling unification so that this model is considered to be ruled out [74].

Since nucleon decay induced by the triplet Higgs is a severe problem in SUSY GUTs, various proposals for its suppression have been made. First, some accidental symmetry or accidental structure in non-minimal Higgs sectors in $S U(5)$ or $S O(10)$ theories may suppress the dimension-five operators [22,26,27,96].

[^94]Symmetries to suppress the dimension-five operators are typically broken by the VEVs responsible for the color-triplet Higgs masses. Consequently the dimension-five operators are generically generated via the triplet Higgs exchange in SUSY $S U(5)$ GUTs, as mentioned above. In other words, the nucleon decay is suppressed if the Higgs triplets in $\overline{\mathbf{5}}_{H}$ and $\mathbf{5}_{H}$ do not have a common mass term but, instead, their mass terms involve partners from other $S U(5)$ multiplets. Second, the SUSY breaking scale may be around $\mathcal{O}(10-100) \mathrm{TeV}$ in order to explain the observed Higgs boson mass at the LHC. In this case, nucleon decay is automatically suppressed [78, 97, 98]. Third, accidental cancellations among diagrams due to a fine-tuned structure of squark and slepton flavor mixing might suppress nucleon decay [99]. Last, we have also implicitly assumed a hierarchical structure for Yukawa matrices in the analysis. It is however possible to fine-tune a hierarchical structure for quarks and leptons which baffles the family structure so that the nucleon decay is suppressed [100]. The upper bound on the proton lifetime from some of these theories is approximately a factor of 10 above the experimental bounds. Future experiments with larger neutrino detectors, such as JUNO [101], Hyper-Kamiokande [88] and DUNE [102], are planned and will have higher sensitivities to nucleon decay.

Are there ways to avoid the stringent predictions for proton decay discussed above? Orbifold GUTs and string theories, see Sec. 94.4, contain grand unified symmetries realized in higher dimensions. In the process of compactification and GUT symmetry breaking, the triplet Higgs states may be removed (projected out of the massless sector of the theory). In such models, the nucleon decay due to dimension-five operators can be severely suppressed or eliminated completely. However, nucleon decay due to dimension-six operators may be enhanced, since the gauge-bosons mediating proton decay obtain mass at the compactification scale, M_{c}, which is typically less than the 4 d GUT scale (cf. Sec. 94.5). Alternatively, the same projections which eliminate the triplet Higgs may rearrange the quark and lepton states such that the massless states of one family come from different higher-dimensional GUT multiplets. This can suppress or completely eliminate even dimension-six proton decay. Thus, enhancement or suppression of dimension-six proton decay is modeldependent. In some complete 5 d orbifold GUT models [63, 103] the lifetime for the decay $\tau_{p} / \operatorname{Br}\left(p \rightarrow e^{+} \pi^{0}\right)$ can be near the bound of 1×10^{34} years with, however, large model-dependence and/or theoretical uncertainties. In other cases, the modes $p \rightarrow K^{+} \bar{\nu}$ and $p \rightarrow K^{0} \mu^{+}$may be dominant [63]. Thus, interestingly, the observation of nucleon decay may distinguish string or higherdimensional GUTs from 4d ones.

In orbifold GUTs or string theory, new discrete symmetries consistent with SUSY GUTs can forbid all dimension-three and four baryon- and lepton-number-violating operators. Even the μ term and dimension-five baryon- and lepton-number-violating operators can be forbidden to all orders in perturbation theory [33]. The μ term and dimension-five baryon- and lepton-number-violating operators may then be generated, albeit sufficiently suppressed, via non-perturbative effects. The simplest example of this is a Z_{4}^{R} symmetry which is the unique discrete R symmetry consistent with $S O(10)$ [33]. Even though it forbids the dimension-five proton decay operator to the desired level, it allows the required dimension-five neutrino mass term. In this case, proton decay is dominated by dimension-six operators, leading to decays such as $p \rightarrow e^{+} \pi^{0}$.

94.7 Yukawa coupling unification

In the SM, masses and mixings for quarks and leptons come from the Yukawa couplings with the Higgs doublet, but the values of these couplings remain a mystery. GUTs provide at least a partial understanding since each generation is embedded in unified multiplet(s). Specifically, since quarks and leptons are two sides of the same coin, the GUT symmetry relates the Yukawa couplings (and hence the masses) of quarks and leptons.

In $S U(5)$, there are two types of independent renormalizable Yukawa interactions given by $\lambda_{i j}\left(\begin{array}{llll}\mathbf{1 0}_{i} & \mathbf{1 0}_{j} & \mathbf{5}_{H}\end{array}\right)$ $+\lambda_{i j}^{\prime}\left(\mathbf{1 0}_{i} \quad \overline{\mathbf{5}}_{j} \quad \overline{\mathbf{5}}_{H}\right)$. These contain the SM interactions $\lambda_{i j}\left(Q_{i} u_{j}^{c} H_{u}\right)+\lambda_{i j}^{\prime}\left(Q_{i} d_{j}^{c} H_{d}+e_{i}^{c} L_{j} H_{d}\right)$. Here $i, j(=1,2,3)$
are, as before, family indices. Hence, at the GUT scale we have tree-level relations between Yukawa coupling constants for charged lepton and down quark masses, such as $\lambda_{b}=\lambda_{\tau}$ in which $\lambda_{b / \tau}$ are the bottom quark $/ \tau$ lepton Yukawa coupling constants [104, 105]. In $S O(10)$, there is only one type of independent renormalizable Yukawa interaction given by $\lambda_{i j}\left(\mathbf{1 6}_{i} \mathbf{1 6}_{j} \mathbf{1 0}_{H}\right)$, leading to relations among all Yukawa coupling constants and quark and lepton masses within one generation $[106,107]$ (such as $\lambda_{t}=\lambda_{b}=\lambda_{\tau}$, with λ_{t} the top quark Yukawa coupling constant).

In addition to gauge coupling unification, the ratio of bottom quark and τ lepton mass has been a central target in the study of GUTs since it was found that this ratio was almost consistent with observations after including the QCD correction [104]. Today the quark masses and the gauge coupling constants are known precisely such that, as discussed below, the ratio of bottom quark and τ lepton mass has become a target of precision analyses in the GUT context.

94.7.1 The third generation, $b-\tau$ or $t-b-\tau$ unification

Third generation Yukawa couplings are larger than those of the first two generations. Hence, the fermion mass relations predicted from renormalizable GUT interactions which we introduced above are expected to be more reliable. In order to compare them with data, we have to include the radiative correction to these relations from the RG evolution between GUT and fermion mass scale, from integrating out heavy particles at the GUT scale, and from weak scale thresholds.

Since testing Yukawa coupling unification is only possible in models with successful gauge coupling unification, we here focus on SUSY GUTs. In the MSSM, top and bottom quark and τ lepton masses are related to the Yukawa coupling constants at the scale m_{Z} as

$$
\begin{aligned}
& m_{t}\left(m_{Z}\right)=\lambda_{t}\left(m_{Z}\right) v_{u}\left(1+\delta m_{t} / m_{t}\right) \\
& m_{b / \tau}\left(m_{Z}\right)=\lambda_{b / \tau}\left(m_{Z}\right) v_{d}\left(1+\delta m_{b / \tau} / m_{b / \tau}\right)
\end{aligned}
$$

where $\left\langle H_{u}^{0}\right\rangle \equiv v_{u}=\sin \beta v / \sqrt{2},\left\langle H_{d}^{0}\right\rangle \equiv v_{d}=\cos \beta v / \sqrt{2}$, $v_{u} / v_{d} \equiv \tan \beta$ and $v \sim 246 \mathrm{GeV}$ is fixed by the Fermi constant, G_{μ}. Here, $\delta m_{f} / m_{f}(f=t, b, \tau)$ represents the threshold correction due to integrating out SUSY partners. For the bottom quark mass, it is found [108] that the dominant corrections come from the gluino-sbottom and from the Higgsino-stop loops,

$$
\begin{align*}
& \left(\frac{\delta m_{b}}{m_{b}}\right)_{g_{3}} \sim \frac{g_{3}^{2}}{6 \pi^{2}} \frac{m_{g}^{\sim}}{m_{\mathrm{SUSY}}^{2}} \tan \beta \quad \text { and } \tag{94.16}\\
& \left(\frac{\delta m_{b}}{m_{b}}\right)_{\lambda_{t}} \sim \frac{\lambda_{t}^{2}}{16 \pi^{2}} \frac{A_{t} \mu}{m_{\mathrm{SUSY}}^{2}} \tan \beta,
\end{align*}
$$

where $\underset{g}{\sim}, \mu$, and A_{t} stand for gluino and Higgsino masses and trilinear stop coupling, respectively. Note that Eq. (94.16) only illustrates the structure of the corrections - non-trivial functional dependences on several soft parameters $\sim m_{\text {SUSY }}$ have been suppressed. For the full one-loop correction to the bottom quark mass see, for example, Ref. [109].

Note also that the corrections do not go to zero as SUSY particles become much heavier than m_{Z}. They may change the bottom quark mass at the $\mathcal{O}(10) \%$ level for $\tan \beta=\mathcal{O}(10)$. The total effect is sensitive to the relative phase between gluino and Higgsino masses since $A_{t} \sim-m \underset{g}{\sim}$ due to the infrared fixed point nature of the RG equation for $\stackrel{g}{A_{t}}$ [110] in settings where SUSY breaking terms come from Planck scale dynamics, such as gravity mediation. The τ lepton mass also receives a similar correction, though only at the few $\%$ level. The top quark mass correction, not being proportional to $\tan \beta$, is at most 10% [111].

Including one loop threshold corrections at m_{Z} and additional RG running, one finds the top, bottom and τ pole masses. In SUSY GUTs, $b-\tau$ unification has two possible solutions with $\tan \beta \sim 1$ or $\mathcal{O}(10)$. The small $\tan \beta$ solution may be realized in the MSSM if superpartner masses are $\mathcal{O}(10) \mathrm{TeV}$, as suggested by the observed Higgs mass [97]. The large $\tan \beta$ limit such as $\tan \beta \sim 40-50$ overlaps the $S O(10)$ symmetry relation [111, 112]. When $\tan \beta$ is large, there are significant threshold corrections to
down quark masses as mentioned above, and Yukawa unification is only consistent with low-energy data in a restricted region of SUSY parameter space, with important consequences for SUSY searches [111, 113]. More recent analyses of Yukawa unification after LHC Run-I are found in Ref. [114].

Gauge coupling unification is also successful in the scenario of split supersymmetry [78], in which squarks and sleptons have mass at a scale $\tilde{m} \gg m_{Z}$, while gauginos and/or Higgsinos have masses of order the weak scale. Unification of $b-\tau$ Yukawa couplings requires $\tan \beta$ to be fine-tuned close to 1 [97]. If by contrast, $\tan \beta \gtrsim 1.5, b-\tau$ Yukawa unification only works for $\tilde{m} \lesssim 10^{4} \mathrm{GeV}$. This is because the effective theory between the gaugino mass scale and \tilde{m} includes only one Higgs doublet, as in the standard model. As a result, the large top quark Yukawa coupling tends to increase the ratio $\lambda_{b} / \lambda_{\tau}$ due to the vertex correction, which is absent in supersymmetric theories, as one runs down in energy below \tilde{m}. This is opposite to what happens in the MSSM where the large top quark Yukawa coupling lowers the ratio $\lambda_{b} / \lambda_{\tau}$ [105].

94.7.2 Beyond leading order: three-family models

Simple Yukawa unification is not possible for the first two generations. Indeed, the simplest implementation of $S U(5)$ implies $\lambda_{s}=\lambda_{\mu}, \lambda_{d}=\lambda_{e}$ and hence $\lambda_{s} / \lambda_{d}=\lambda_{\mu} / \lambda_{e}$. This is an RGinvariant relation which extrapolates to $m_{s} / m_{d}=m_{\mu} / m_{e}$ at the weak scale, in serious disagreement with data $\left(m_{s} / m_{d} \sim 20\right.$ and $m_{\mu} / m_{e} \sim 200$). An elegant solution to this problem was given by Georgi and Jarlskog [115] (for a recent analysis in the SUSY context see [116]).

More generally, we have to recall that in all of the previous discussion of Yukawa couplings, we assumed renormalizable interactions as well as the minimal matter and Higgs content. Since the GUT scale is close to the Planck scale, higher-dimension operators involving the GUT-breaking Higgs may modify the predictions, especially for lower generations. An example is provided by the operators $10 \overline{\mathbf{5}} \overline{\mathbf{5}}_{H} 24_{H}$ with $\mathbf{2 4}_{H}$ the GUT-breaking Higgs of $S U(5)$. We can fit parameters to the observed fermion masses with these operators, though some fine-tuning is introduced in doing so. The SM Higgs doublet may come in part from higher representations of the GUT group. For example, the 45 of $S U(5)$ includes an $S U(2)_{L}$ doublet with appropriate $U(1)_{Y}$ charge [115]. This 45 can, in turn, come from the 120 or 126 of $S O(10)$ after its breaking to $S U(5)$ [117, 118]. These fields may also have renormalizable couplings with quarks and leptons. The relations among the Yukawa coupling constants in the SM are modified if the SM Higgs doublet is a linear combination of several such doublets from different $S U(5)$ multiplets. Finally, the SM fermions may not be embedded in GUT multiplets in the minimal way. Indeed, if all quarks and leptons are embedded in 16s of $S O(10)$, the renormalizable interactions with $\mathbf{1 0}_{H}$ cannot explain the observed CKM mixing angles. This situation improves when extra matter multiplets, such as 10, are introduced: After $U(1)_{X}$, which distinguishes the $\overline{\mathbf{5}}$ s coming from the $\mathbf{1 6}$ and the $\mathbf{1 0}$ of $S O(10)$, is broken (e.g. by a VEV of $\mathbf{1 6}{ }_{H}$ or $\mathbf{1 2 6}_{H}$), the r.h. down quarks and l.h. leptons in the SM can be linear combinations of components in 16 s and 10 s . As a result, $\lambda \neq \lambda^{\prime}$ in $S U(5)$ [119].

To construct realistic three-family models, some or all of the above effects can be used. Even so, to achieve significant predictions for fermion masses and mixing angles grand unification alone is not sufficient. Other ingredients, for example additional global family symmetries are needed (in particular, non-Abelian symmetries can strongly reduce the number of free parameters). These family symmetries constrain the set of effective higherdimensional fermion mass operators discussed above. In addition, sequential breaking of the family symmetry can be correlated with the hierarchy of fermion masses [120]. One simple, widely known idea in this context is to ensure that each $\mathbf{1 0}_{i}$ enters Yukawa interactions together with a suppression factor ϵ^{3-i} (ϵ being a small parameter). This way one automatically generates a stronger hierarchy in up-type quark Yukawas as compared to down-type quark and lepton Yukawas and no hierarchy for neutrinos, which agrees with observations at the $\mathcal{O}(1)$-level. Three-family models exist which fit all the data, including neutrino masses and mixing [27, 121].
Finally, a particularly ambitious variant of unification is to re-
quire that the fermions of all three generations come from a single representation of a large gauge group. A somewhat weaker assumption is that the flavor group (e.g. $S U(3)$) unifies with the SM gauge group in a simple gauge group at some energy scale $M \geq M_{G}$. Early work on such 'flavor-unified GUTs', see e.g. $[119,122]$, has been reviewed in $[123,124]$. For a selection of more recent papers see [125]. In such settings, Yukawa couplings are generally determined by gauge couplings together with symmetry breaking VEVs. This is reminiscent of heterotic string GUTs, where all couplings come from the 10d gauge coupling. However, while the $\mathrm{E}_{8} \rightarrow S U(3) \times \mathrm{E}_{6}$ branching rule $\mathbf{2 4 8}=(\mathbf{8}, \mathbf{1})+(\mathbf{1}, \mathbf{7 8})+(\mathbf{3}, \mathbf{2 7})+(\overline{\mathbf{3}}, \overline{\mathbf{2 7}})$ looks very suggestive in this context, the way in which most modern heterotic models arrive at three generations is actually more complicated.

94.8 Neutrino masses

We see from atmospheric and solar neutrino oscillation observations, along with long baseline accelerator and reactor experiments, that neutrinos have finite masses. By adding three "sterile" neutrinos ν_{i}^{c} with Yukawa couplings $\lambda_{\nu, i j}\left(\nu_{i}^{c} L_{j} H_{u}\right)$ $(i, j=1,2,3)$, one easily obtains three massive Dirac neutrinos with mass $m_{\nu}=\lambda_{\nu} v_{u}$, analogously to quark and charged lepton masses. However, in order to obtain a τ neutrino with mass of order 0.1 eV , one requires the exceedingly small coupling ratio $\lambda_{\nu_{\tau}} / \lambda_{\tau} \lesssim 10^{-10}$. By contrast, in GUTs the seesaw mechanism naturally explains such tiny neutrino masses as follows [2-4]: The sterile neutrinos have no SM gauge quantum numbers so that there is no symmetry other than global lepton number which forbids the Majorana mass term $\frac{1}{2} M_{i j} \nu_{i}^{c} \nu_{j}^{c}$. Note also that sterile neutrinos can be identified with the r.h. neutrinos necessarily contained in complete families of $S O(10)$ or Pati-Salam models. Since the Majorana mass term violates $U(1)_{X}$ in $S O(10)$, one might expect $M_{i j} \sim M_{G}$. The heavy sterile neutrinos can be integrated out, defining an effective low-energy theory with only three light active Majorana neutrinos with the effective dimension-five operator

$$
\begin{equation*}
-\mathcal{L}_{e f f}=\frac{1}{2} c_{i j}\left(L_{i} H_{u}\right)\left(L_{j} H_{u}\right) \tag{94.17}
\end{equation*}
$$

where $c=\lambda_{\nu}^{T} M^{-1} \lambda_{\nu}$. This then leads to a 3×3 Majorana neutrino mass matrix $m=m_{\nu}^{T} M^{-1} m_{\nu}$.

The seesaw mechanism implemented by r.h. neutrinos is sometimes called the type-I seesaw model. There are variant models in which the dimension-five operator for neutrino masses is induced in different ways: In the type-II model, an $S U(2)_{L}$ triplet Higgs boson Σ is introduced to have couplings ΣL^{2} and also $\Sigma H_{u}^{2}[117,126]$. In the type-III model, an $S U(2)_{L}$ triplet of fermions $\tilde{\Sigma}$ with a Yukawa coupling $\tilde{\Sigma} L H_{u}$ is introduced [127]. In these models, the dimension-five operator is induced by integrating out the triplet Higgs boson or fermions. Such models can also be implemented in GUTs by introducing Higgs bosons in the $\mathbf{1 5}$ or fermions in the $\mathbf{2 4}$ in $S U(5)$ GUTs or the $\mathbf{1 2 6}$ in $S O(10)$ GUTs. Notice that the gauge non-singlet fields in the type-II and III models have masses at the intermediate scale. Thus, gauge coupling unification is not automatic if these variant mechanisms are implemented in SUSY GUTs.

Atmospheric neutrino oscillations discovered by SuperKamiokande [128] require neutrino masses with $\Delta m_{\nu}^{2} \sim 2.5 \times 10^{-3}$ eV^{2} with maximal mixing [62], in the simplest scenario of two neutrino dominance. With hierarchical neutrino masses this implies $m_{\nu_{\tau}}=\sqrt{\Delta m_{\nu}^{2}} \sim 0.05 \mathrm{eV}$. Next, we can try to relate the neutrino Yukawa coupling to the top quark Yukawa coupling, $\lambda_{\nu_{\tau}}=\lambda_{t}$ at the GUT scale, as in $S O(10)$ or $S U(4) \times S U(2)_{L} \times S U(2)_{R}$ models. This gives $M \sim 10^{14} \mathrm{GeV}$, which is remarkably close to the GUT scale.

Neutrinos pose a special problem for GUTs. The question is why the quark mixing angles in the CKM matrix are small while there are two large lepton mixing angles in the PMNS matrix. Global fits of neutrino masses and mixing angles can, for example, be found in Refs. [129] and [130]. For SUSY GUT models which fit quark and lepton masses, see Ref. [131] for reviews. Finally, for a compilation of the range of SUSY GUT predictions for neutrino mixing, see [132].

94.9 Selected topics

94.9.1 Global symmetries

As we discussed, global symmetries are frequently introduced to control higher-dimension operators in GUT models. This is particularly important in the context of nucleon decay but also plays a role in GUT-based flavor model building and cosmological applications, such as baryogenesis and inflation. However, we should note that appealing to global symmetries to suppress specific interactions may not be as straightforward as it naively seems. Indeed, there are two possibilities: On the one hand, the relevant symmetry might be gauged at a higher scale. Effects of the VEVs responsible for the spontaneous breaking are then in principle dangerous and need to be quantified. On the other hand, the symmetry might be truly only global. This must e.g. be the case for anomalous symmetries, which are then also violated by field-theoretic non-perturbative effects. The latter can in principle be exponentially small. It is, however, widely believed that global symmetries are always broken in quantum gravity (see e.g. [133]). One then needs to understand which power or functional form the Planck scale suppression of the relevant interaction has. For example, dimension-five baryon number violating operators suppressed by just one unit of the Planck or string scale are completely excluded.

In view of the above, it is also useful to recall that in string models 4 d global symmetries generally originate in higher-dimensional gauge symmetries [38, 134]. Here 'global' implies that the gauge boson has acquired a Stückelberg-mass. This is a necessity in the anomalous case (Green-Schwarz mechanism [135]) but can also happen to non-anomalous symmetries. One expects no symmetry violation beyond the well-understood non-perturbative effects. Discrete symmetries arise as subgroups of continuous gauge symmetries, such as $\mathbb{Z}_{N} \subset U(1)$. In particular, non-anomalous subgroups of Stückelberg-massive $U(1)$ s represent unbroken discrete gauge symmetries and as such are non-perturbatively exact (see e.g. [136]). Of course, such discrete gauge symmetries may also arise as remnants of continuous gauge symmetries after conventional 4 d spontaneous breaking.

94.9.2 Anomaly constraints vs. GUT paradigm

As emphasized at the very beginning, the fact that the SM fermions of one generation fill out the $\mathbf{1 0}+\overline{\mathbf{5}}$ of $S U(5)$ appears to provide overwhelming evidence for some form of GUT embedding. However, one should be aware that a counterargument can be made which is related to the issue of 'charge quantization by anomaly cancellation' (see $[137,138]$ for some early papers and [139] for a more detailed reference list): Imagine we only knew that the low-energy gauge group were $G_{S M}$ and the matter content included the $(\mathbf{3}, \mathbf{2})_{Y}$, i.e. a 'quark doublet' with $U(1)$-charge Y. One can then ask which possibilities exist of adding further matter to ensure the cancellation of all triangle anomalies. It turns out that this problem has only three different, minimal ${ }^{11}$ solutions [138]. One of those is precisely a single SM generation, with the apparent ' $S U(5)$-ness' emerging accidentally. Thus, if one randomly picks models from the set of consistent gauge theories, preconditioning on $G_{S M}$ and $(\mathbf{3}, \mathbf{2})_{Y}$, one may easily end up with ' $\mathbf{1 0}+\overline{\mathbf{5}}$ ' of an $S U(5)$ that is in no way dynamically present. This is precisely what happens in the context of non-GUT string model building [140].

94.9.3 Magnetic monopoles

In the broken phase of a GUT there are typically localized classical solutions carrying magnetic charge under an unbroken $U(1)$ symmetry [141]. These magnetic monopoles with mass of order M_{G} / α_{G} can be produced during a possible GUT phase transition in the early universe. The flux of magnetic monopoles is experimentally found to be less than $\sim 10^{-16} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ [142]. Many more are however predicted, hence the GUT monopole problem. In fact, one of the original motivations for inflation was to solve the monopole problem by exponential expansion after the GUT phase transition [143] and hence dilution of the

[^95]monopole density. Other possible solutions to the monopole problem include: sweeping them away by domain walls [144], $U(1)$ electromagnetic symmetry breaking at high temperature [145] or GUT symmetry non-restoration [146]. Parenthetically, it was also shown that GUT monopoles can catalyze nucleon decay [147]. A significantly stronger bound on the monopole flux can then be obtained by considering X-ray emission from radio pulsars due to monopole capture and the subsequent nucleon decay catalysis [148].

Note that the present upper bound on the inflationary vacuum energy density is very close to the GUT scale, $V_{i n f}^{1 / 4}=$ $\left(1.88 \times 10^{16} \mathrm{GeV}\right) \times(r / 0.10)^{1 / 4}$, with the scalar-to-tensor ratio constrained to $r<0.07$ [149]. This guarantees that reheating does not lead to temperatures above M_{G} and hence the monopole problem is solved by inflation (unless M_{G} is unexpectedly low).

94.9.4 Flavor violation

Yukawa interactions of GUT-scale particles with quarks and leptons may leave imprints on the flavor violation induced by SUSY breaking parameters [150]. To understand this, focus first on the MSSM with universal Planck-scale boundary conditions (as e.g. in gravity mediation). Working in a basis where up-quark and lepton Yukawas are diagonal, one finds that the large top-quark Yukawa coupling reduces the l.h. squark mass squareds in the third generation radiatively. It turns out that only the l.h. downtype squark mass matrix has sizable off-diagonal terms in the flavor basis after CKM-rotation. However, in GUTs the colortriplet Higgs has flavor violating interactions from the Yukawa coupling $\lambda_{i j}\left(\mathbf{1 0}_{i} \mathbf{1 0}_{j} \mathbf{5}_{H}\right)$, such that flavor-violating r.h. slepton mass terms are radiatively generated in addition [151]. In $S U(5)$ extension of the type-I seesaw model, where r.h. neutrinos are introduced as $S U(5)$ singlets with interactions $\lambda_{i j}^{\prime \prime}\left(\mathbf{1}_{i} \overline{\mathbf{5}}_{j} \mathbf{5}_{H}\right)$, the doublet and color-triplet Higgses acquire another type of Yukawa coupling, respectively. They then radiatively generate flavorviolating l.h. slepton [152] and r.h. down squark masses [153]. These flavor-violating SUSY breaking terms induce new contributions to FCNC processes in quark and lepton sectors, such as $\mu \rightarrow e \gamma$ and $K^{0}-\bar{K}^{0}$ and $B^{0}-\bar{B}^{0}$ mixing. Note that even if the SUSY breaking terms are generated at M_{G}, the r.h. neutrino Yukawa coupling may induce sizable flavor violation in l.h. slepton masses due to the running between M_{G} and the right-handedneutrino mass scale.

EDMs are also induced when both l.h. and r.h. squarks/sleptons have flavor-violating mass terms with relative phases, as discussed for $S O(10)$ in [154] or for $S U(5)$ with r.h. neutrinos in [155]. Thus, such low-energy observables constrain GUT-scale interactions.

94.9.5 From GUT baryogenesis to leptogenesis and B / L violating transitions

During inflation, any conserved quantum number is extremely diluted. Thus, one expects the observed baryon asymmetry of the universe to originate at reheating or in the subsequent cosmological evolution. In detail, the situation is slightly more involved: Both baryon number B and lepton number L are global symmetries of the SM. However, $(B+L)$ is anomalous and violated by thermal fluctuations in the early universe, via so-called sphaleron processes. Moreover, it is violated in GUT models, as is most apparent in proton decay. By contrast, $(B-L)$ is anomaly free and preserved by both the SM as well as $S U(5)$ or $S O(10)$ gauge interactions.

Now, the old idea of GUT baryogenesis [156,157] is to generate a $(B+L)$ and hence a baryon asymmetry by the out-of-equilibrium decay of the color-triplet Higgs. However such an asymmetry, generated at GUT temperatures, is washed out by sphalerons ${ }^{12}$. This can be overcome [159] using lepton-number violating interaction of neutrinos to create a $(B-L)$ from the $(B+L)$ asymmetry, before sphaleron processes become sufficiently fast at $T<10^{12}$ GeV . This $(B-L)$ asymmetry can then survive the subsequent sphaleron dominated phase. Note that this does not work in the minimal SUSY GUT setting, with the triplet Higgs above the

[^96]GUT scale. The reason is that a correspondingly high reheating temperature would be required which, as explained above, is ruled out by Planck data.

However, the most widely accepted simple way out of the dilemma is to directly generate a net $(B-L)$ asymmetry dynamically in the early universe, also using r.h. neutrinos. Indeed, we have seen that neutrino oscillations suggest a new scale of physics of order $10^{14} \mathrm{GeV}$. This scale is associated with heavy Majorana neutrinos in the seesaw mechanism. If in the early universe, the decay of the heavy neutrinos is out of equilibrium and violates both lepton number and CP, then a net lepton number may be generated. This lepton number will then be partially converted into baryon number via electroweak processes [160]. This mechanism is called leptogenesis.
If the three heavy Majorana neutrino masses are hierarchical, the net lepton number is produced by decay of the lightest one, and it is proportional to the CP asymmetry in the decay. The CP asymmetry is bounded from above, and the lightest neutrino mass is required to be larger than $10^{9} \mathrm{GeV}$ in order to explain the observed baryon asymmetry [161]. This implies that the reheating temperature after inflation should be larger than $10^{9} \mathrm{GeV}$ so that the heavy neutrinos are thermally produced ${ }^{13}$. In supersymmetric models, there is a tension between leptogenesis and Big Bang Nucleosynthesis (BBN) if gravitinos decay in the BBN era. The gravitino problem gives a constraint on the reheating temperature $\lesssim 10^{6-10} \mathrm{GeV}$ though the precise value depends on the SUSY breaking parameters [163]. Recent reviews of leptogenesis can be found in Ref. [164].
One of the important tests of leptogenesis are searches for neutrinoless double $-\beta(0 \nu \beta \beta)$ decays ${ }^{14}$. In a $0 \nu \beta \beta$ decay, only two electrons but no (anti-)neutrinos are emitted by the decaying nucleus. This is in contrast to ordinary double- β decay. Thus, $0 \nu \beta \beta$ decays are lepton-number-violating with $\Delta L=2$. At the nucleon level, this is described by dimension-nine effective operators for $n n \rightarrow$ ppee. These operators may in turn come from SM operators of with dimension less than nine, in combination with SM weak interactions. The lowest one is the dimension-five operator generating the Majorana neutrino mass terms (Eq. (94.17)). Thus, if the lepton-number violating effective interactions come from physics at energies much above the weak scale, the $0 \nu \beta \beta$ decay rates are proportional to the Majorana neutrino masses. The latest experimental results are reviewed in [62]. For recent studies of the $0 \nu \beta \beta$ decay including SM operators up to mass dimension nine, see [165] and refs. therein.

In addition to L-violation, one can consider $(B-L)$ and B violating phenomena. They are interesting in their own right and may also be relevant to baryogenesis. The relevant operators have higher mass dimension than the familiar dimension-six $(B+L)$ violating operators (cf. Sec. 94.6). They may be predicted in $\mathrm{SO}(10)$ GUTs with an intermediate scale, at which baryogenesis is realized, such as in [166]. First, one may have nucleon decays with $\Delta(B-L)=2$, such as $n \rightarrow e^{-} \pi^{+}$. This is induced by dimension-seven effective operators in the SM, which are suppressed by the SM Higgs VEV or derivatives. Second, there are neutron-antineutron $(n-\bar{n})$ oscillations, which are induced by $\Delta B=2$ dimension-nine effective operators in the SM. The upper bound on the mean time for $n-\bar{n}$ transitions is directly derived using free neutrons [167]. It is also constrained from the lower limit on the lifetime for neutrons bound in ${ }^{16} \mathrm{O}$, derived by Super-Kamiokande [168]. Their results are very similar. SuperKamiokande also searches for dinucleon decays with $\Delta B=2$, such as $p p \rightarrow \pi^{+} \pi^{+}$and $n n \rightarrow \pi^{ \pm} \pi^{\mp}$ [169].

94.10 Conclusion

Most conservatively, grand unification means that (some of) the SM gauge interactions of $U(1)_{Y}, S U(2)_{L}$ and $S U(3)_{C}$ become

[^97]part of a larger, unifying gauge symmetry at a high energy scale. In most models, especially in the simplest and most appealing variants of $S U(5)$ and $S O(10)$ unification, the statement is much stronger: One expects the three gauge couplings to unify (up to small threshold corrections) at a unique scale, M_{G}, and the proton to be unstable due to exchange of gauge bosons of the larger symmetry group. Supersymmetric grand unified theories provide, by far, the most predictive and economical framework allowing for perturbative unification. Many more details than could be discussed in the present article can be found in some of the classic reviews $[123,170]$ and the two books [171] (see also [172] for two recent overviews).

Thus, the three classical pillars of GUTs are gauge coupling unification at $M_{G} \sim 2 \times 10^{16} \mathrm{GeV}$, low-energy supersymmetry (with a large SUSY desert), and nucleon decay. The first of these may be viewed as predicting the value of the strong coupling - a prediction which has already been verified (see Fig. 94.1). Numerically, this prediction remains intact even if SUSY partner masses are somewhat above the weak scale. However, at the conceptual level a continuously increasing lower bound on the SUSY scale is nevertheless problematic for the GUT paradigm: Indeed, if the independent, gauge-hierarchy-based motivation for SUSY is completely abandoned, the SUSY scale and hence α_{3} become simply free parameters and the first two pillars crumble. Thus, it is important to keep pushing bounds on proton decay which, although again not completely universal in all GUT constructions, is arguably a more generic part of the GUT paradigm than low-energy SUSY.

Whether or not Yukawa couplings unify is more model dependent. However, irrespective of possible (partial) Yukawa unification, there certainly exists a very interesting and potentially fruitful interplay between flavor model building and grand unification. Especially in the neutrino sector this is strongly influenced by the developing experimental situation.

Another phenomenological signature of grand unification is the strength of the direct coupling of the QCD axion to photons, relative to its coupling to gluons. It is quantified by the predicted anomaly ratio $E / N=8 / 3$ (see $[173,174]$). This arises in fieldtheoretic axion models consistent with GUT symmetry (such as DFSZ [175]) and in string-theoretic GUTs [174,176]. In the latter, the axion does not come from the phase of a complex scalar but is a fundamental shift-symmetric real field, coupling through a higher-dimension operator directly to the product of the GUT field-strength and its dual.

It is probably fair to say that, due to limitations of the 4 d approach, including especially remaining ambiguities (free parameters or ad hoc assumptions) in models of flavor and GUT breaking, the string theoretic approach has become more important in GUT model building. In this framework, challenges include learning how to deal with the many vacua of the 'landscape' as well as, for each vacuum, developing the tools for reliably calculating detailed, phenomenological observables. Finally, due to limitations of space, the present article has barely touched on the interesting cosmological implications of GUTs. They may become more important in the future, especially in the case that a high inflationary energy scale is established observationally.

References

[1] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[2] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[3] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number of the Universe, eds. O. Sawada and A. Sugamoto, KEK report No. 79-18, Tsukuba, Japan, 1979; S. Glashow, Quarks and leptons, published in Proceedings of the Carg'ese Lectures, M. Levy (ed.), Plenum Press, New York, (1980); M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, ed. P. van Nieuwenhuizen et al., North-Holland, Amsterdam, (1979), p. 315 [arXiv:1306.4669].
[4] F. Wilczek, eConf C790823, 437 (1979); E. Witten, Phys. Lett. 91B, 81 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980), [,231(1979)].
[5] G. 't Hooft, NATO Sci. Ser. B 59, 135 (1980); M. J. G. Veltman, Acta Phys. Polon. B12, 437 (1981); L. Maiani, Gif-sur-Yvette Summer School on Particle Physics, 11th, Gif-sur-Yvette, France, 1979 (Inst. Nat. Phys. Nucl. Phys. Particules, Paris, 1979); E. Witten, Nucl. Phys. B188, 513 (1981).
[6] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24, 1681 (1981); S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981); L. E. Ibanez and G. G. Ross, Phys. Lett. 105B, 439 (1981); N. Sakai, Z. Phys. C11, 153 (1981); M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196, 475 (1982); W. J. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982).
[7] U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B260, 447 (1991); J. R. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. B260, 131 (1991); P. Langacker and M.-x. Luo, Phys. Rev. D44, 817 (1991); C. Giunti, C.W. Kim and U.W. Lee, Mod. Phys. Lett. A6, 1745 (1991); P. Langacker and N. Polonsky, Phys. Rev. D47, 4028 (1993), [hepph/9210235]; M. Carena, S. Pokorski and C. E. M. Wagner, Nucl. Phys. B406, 59 (1993), [hep-ph/9303202]; See also the review by S. Dimopoulos, S.A. Raby and F. Wilczek, Physics Today, p. 25 October (1991).
[8] Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991); J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257, 83 (1991); H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991).
[9] M. Carena et al., Phys. Lett. B355, 209 (1995), [hepph/9504316]; G. Degrassi et al., Eur. Phys. J. C28, 133 (2003), [hep-ph/0212020]; P. Kant et al., JHEP 08, 104 (2010), [arXiv:1005.5709].
[10] J. L. Feng et al., Phys. Rev. Lett. 111, 131802 (2013), [arXiv:1306.2318]; S. Heinemeyer (2014), [arXiv:1405.3781]; P. Draper and H. Rzehak, Phys. Rept. 619, 1 (2016), [arXiv:1601.01890].
[11] J. C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973); For more discussion on the standard charge assignments in this formalism, see A. Davidson, Phys. Rev. D20, 776 (1979) and R.N Mohapatra and R.E. Marshak, Phys. Lett. B91, 222 (1980); see also J. C. Pati, Int. J. Mod. Phys. A 32, 1741013 (2017), arXiv:1706.09531 for a recent account.
[12] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[13] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Phys. Lett. 80B, 360 (1979), [Erratum: Phys. Lett.82B,464(1979)]; E. Golowich, Phys. Rev. D24, 2899 (1981).
[14] S. Weinberg, Phys. Rev. D26, 287 (1982); N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982).
[15] H. Georgi, Particles and Fields, Proceedings of the APS Div. of Particles and Fields, ed. C. Carlson, p. 575 (1975); H. Fritzsch and P. Minkowski, Annals Phys. 93, 193 (1975).
[16] R. Slansky, Phys. Rept. 79, 1 (1981); H. Georgi, Front. Phys. 54, 1 (1982); R. Feger and T. W. Kephart, Comput. Phys. Commun. 192, 166 (2015), [arXiv:1206.6379]; N. Yamatsu, PTEP 2016, 4, 043B02 (2016), [arXiv:1512.05559].
[17] S. M. Barr, Phys. Lett. 112B, 219 (1982); J. P. Derendinger, J. E. Kim and D. V. Nanopoulos, Phys. Lett. 139B, 170 (1984); I. Antoniadis et al., Phys. Lett. B194, 231 (1987); I. Antoniadis et al., Phys. Lett. B231, 65 (1989).
[18] F. Gursey, P. Ramond and P. Sikivie, Phys. Lett. 60B, 177 (1976).
[19] A. de Rujula, H. Georgi and S. L. Glashow, 5th Workshop on Grand Unification, ed. K. Kang, H. Fried and P. Frampton, World Scientific, Singapore (1984), p. 88; See also earlier paper by Y. Achiman and B. Stech, p. 303, "New Phenomena in Lepton-Hadron Physics," ed. D.E.C. Fries and J. Wess, Plenum, NY (1979).
[20] B. R. Greene et al., Nucl. Phys. B278, 667 (1986); B. R. Greene et al., Nucl. Phys. B292, 606 (1987); B. R. Greene, C. A. Lutken and G. G. Ross, Nucl. Phys. B325, 101 (1989); J. E. Kim, Phys. Lett. B591, 119 (2004), [hep-ph/0403196].
[21] E. Witten, Phys. Lett. 105B, 267 (1981).
[22] A. Masiero et al., Phys. Lett. 115B, 380 (1982); B. Grinstein, Nucl. Phys. B206, 387 (1982).
[23] S. Dimopoulos and F. Wilczek, Proceedings Erice Summer School, ed. A. Zichichi (1981); M. Srednicki, Nucl. Phys. B202, 327 (1982).
[24] K. Inoue, A. Kakuto and H. Takano, Prog. Theor. Phys. 75, 664 (1986).
[25] Y. Yamada, Z. Phys. C60, 83 (1993); J. Hisano et al., Phys. Lett. B342, 138 (1995), [hep-ph/9406417]; G. Altarelli, F. Feruglio and I. Masina, JHEP 11, 040 (2000), [hepph/0007254].
[26] K. S. Babu and S. M. Barr, Phys. Rev. D48, 5354 (1993), [hep-ph/9306242]; K. S. Babu and S. M. Barr, Phys. Rev. D50, 3529 (1994), [hep-ph/9402291]; K. S. Babu, J. C. Pati and Z. Tavartkiladze, JHEP 06, 084 (2010), [arXiv:1003.2625].
[27] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 74, 2418 (1995), [hep-ph/9410326]; V. Lucas and S. Raby, Phys. Rev. D54, 2261 (1996), [hep-ph/9601303]; T. Blazek et al., Phys. Rev. D56, 6919 (1997), [hep-ph/9611217]; S. M. Barr and S. Raby, Phys. Rev. Lett. 79, 4748 (1997), [hepph/9705366]; K. S. Babu, J. C. Pati and F. Wilczek, Nucl. Phys. B566, 33 (2000), [hep-ph/9812538]; R. Dermisek, A. Mafi and S. Raby, Phys. Rev. D63, 035001 (2001), [hepph/0007213].
[28] R. Barbieri, G. R. Dvali and A. Strumia, Nucl. Phys. B391, 487 (1993); Z. Berezhiani, C. Csaki and L. Randall, Nucl. Phys. B444, 61 (1995), [hep-ph/9501336]; Q. Shafi and Z. Tavartkiladze, Phys. Lett. B522, 102 (2001), [hepph/0105140].
[29] G. F. Giudice and A. Masiero, Phys. Lett. B206, 480 (1988); J. E. Kim and H. P. Nilles, Mod. Phys. Lett. A9, 3575 (1994), [hep-ph/9406296].
[30] L. Randall and C. Csaki, in "Supersymmetry and unification of fundamental interactions. Proceedings, International Workshop, SUSY 95, Palaiseau, France, May 15-19, 1995," 99-109 (1995), [,235(1995)], [hep-ph/9508208].
[31] E. Witten, in "Supersymmetry and unification of fundamental interactions. Proceedings, 10th International Conference, SUSY'02, Hamburg, Germany, June 1723, 2002," 472-491 (2001), [hep-ph/0201018], URL http://www-library.desy.de/preparch/desy/proc/ proc02-02/Proceedings/susy02/special/hertz_pr.ps; M. Dine, Y. Nir and Y. Shadmi, Phys. Rev. D66, 115001 (2002), [hep-ph/0206268].
[32] A. Hebecker, J. March-Russell and R. Ziegler, JHEP 08, 064 (2009), [arXiv:0801.4101]; F. Brummer et al., JHEP 08, 011 (2009), [arXiv:0906.2957]; F. Brummer et al., JHEP 04, 006 (2010), [arXiv:1003.0084].
[33] H. M. Lee et al., Phys. Lett. B694, 491 (2011), [arXiv:1009.0905]; R. Kappl et al., Nucl. Phys. B847, 325 (2011), [arXiv:1012.4574]; H. M. Lee et al., Nucl. Phys. B850, 1 (2011), [arXiv:1102.3595].
[34] Y. Hosotani, Phys. Lett. 126B, 309 (1983).
[35] L. J. Dixon et al., Nucl. Phys. B261, 678 (1985), [,678(1985)]; L. J. Dixon et al., Nucl. Phys. B274, 285 (1986); L. E. Ibanez, H. P. Nilles and F. Quevedo, Phys. Lett. B187, 25 (1987); L. E. Ibanez et al., Phys. Lett. B191, 282 (1987).
[36] P. Candelas et al., Nucl. Phys. B258, 46 (1985).
[37] Y. Kawamura, Prog. Theor. Phys. 103, 613 (2000), [hepph/9902423]; Y. Kawamura, Prog. Theor. Phys. 105, 999 (2001), [hep-ph/0012125]; G. Altarelli and F. Feruglio, Phys. Lett. B511, 257 (2001), [hep-ph/0102301];
L. J. Hall and Y. Nomura, Phys. Rev. D64, 055003 (2001), [hep-ph/0103125]; A. Hebecker and J. MarchRussell, Nucl. Phys. B613, 3 (2001), [hep-ph/0106166]; T. Asaka, W. Buchmuller and L. Covi, Phys. Lett. B523, 199 (2001), [hep-ph/0108021]; L. J. Hall et al., Phys. Rev. D65, 035008 (2002), [hep-ph/0108071]; R. Dermisek and A. Mafi, Phys. Rev. D65, 055002 (2002), [hep-ph/0108139]; H. D. Kim and S. Raby, JHEP 01, 056 (2003), [hepph/0212348].
[38] L.E. Ibanez and A.M. Uranga, "String theory and particle physics: An introduction to string phenomenology," Cambridge University Press 2012; K.-S. Choi and J. E. Kim, Lect. Notes Phys. 696, 1 (2006); R. Blumenhagen et al., Phys. Rept. 445, 1 (2007), [hep-th/0610327].
[39] D. J. Gross et al., Phys. Rev. Lett. 54, 502 (1985).
[40] V. Braun et al., JHEP 05, 043 (2006), [hep-th/0512177]; V. Bouchard and R. Donagi, Phys. Lett. B633, 783 (2006), [hep-th/0512149]; L. B. Anderson et al., Phys. Rev. D84, 106005 (2011), [arXiv:1106.4804].
[41] L. J. Dixon, V. Kaplunovsky and J. Louis, Nucl. Phys. B355, 649 (1991).
[42] G. Aldazabal et al., Nucl. Phys. B452, 3 (1995), [hepth/9410206]; Z. Kakushadze et al., Int. J. Mod. Phys. A13, 2551 (1998), [hep-th/9710149].
[43] E. Witten, Nucl. Phys. B258, 75 (1985).
[44] S. Gukov et al., Phys. Rev. D69, 086008 (2004), [hepth/0310159]; G. Curio, A. Krause and D. Lust, Fortsch. Phys. 54, 225 (2006), [hep-th/0502168]; L. B. Anderson et al., Phys. Rev. D83, 106011 (2011), [arXiv:1102.0011].
[45] R. Friedman, J. Morgan and E. Witten, Commun. Math. Phys. 187, 679 (1997), [hep-th/9701162].
[46] R. Blumenhagen, G. Honecker and T. Weigand, JHEP 08, 009 (2005), [hep-th/0507041]; L. B. Anderson et al., JHEP 01, 047 (2014), [arXiv:1307.4787].
[47] T. Kobayashi, S. Raby and R.-J. Zhang, Phys. Lett. B593, 262 (2004), [hep-ph/0403065].
[48] S. Forste et al., Phys. Rev. D70, 106008 (2004), [hepth/0406208]; T. Kobayashi, S. Raby and R.-J. Zhang, Nucl. Phys. B704, 3 (2005), [hep-ph/0409098]; W. Buchmuller et al., Nucl. Phys. B712, 139 (2005), [hep-ph/0412318]; W. Buchmuller et al., Phys. Rev. Lett. 96, 121602 (2006), [hep-ph/0511035]; W. Buchmuller et al., Nucl. Phys. B785, 149 (2007), [hep-th/0606187]; O. Lebedev et al., Phys. Lett. B645, 88 (2007), [hep-th/0611095]; J. E. Kim, J.-H. Kim and B. Kyae, JHEP 06, 034 (2007), [hepph/0702278]; O. Lebedev et al., Phys. Rev. D77, 046013 (2008), [arXiv:0708.2691].
[49] S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D66, 106006 (2002), [hep-th/0105097]; S. Kachru et al., Phys. Rev. D68, 046005 (2003), [hep-th/0301240].
[50] R. Blumenhagen et al., Nucl. Phys. B815, 1 (2009), [arXiv:0811.2936].
[51] R. Blumenhagen et al., Nucl. Phys. B616, 3 (2001), [hepth/0107138].
[52] R. Donagi and M. Wijnholt, Adv. Theor. Math. Phys. 15, 5, 1237 (2011), [arXiv:0802.2969].
[53] C. Beasley, J. J. Heckman and C. Vafa, JHEP 01, 058 (2009), [arXiv:0802.3391]; C. Beasley, J. J. Heckman and C. Vafa, JHEP 01, 059 (2009), [arXiv:0806.0102].
[54] T. Weigand, Class. Quant. Grav. 27, 214004 (2010), [arXiv:1009.3497]; J. J. Heckman, Ann. Rev. Nucl. Part. Sci. 60, 237 (2010), [arXiv:1001.0577]; M. Cvetic, I. GarciaEtxebarria and J. Halverson, JHEP 01, 073 (2011), [arXiv:1003.5337]; A. Maharana and E. Palti, Int. J. Mod. Phys. A28, 1330005 (2013), [arXiv:1212.0555]; S. Krippendorf, S. Schafer-Nameki and J.-M. Wong, JHEP 11, 008 (2015), [arXiv:1507.05961].
[55] R. Donagi and M. Wijnholt, Adv. Theor. Math. Phys. 15, 6, 1523 (2011), [arXiv:0808.2223]; R. Blumenhagen, Phys. Rev. Lett. 102, 071601 (2009), [arXiv:0812.0248]; K.S. Choi and J. E. Kim, Phys. Rev. D83, 065016 (2011), [arXiv:1012.0847]; C. Mayrhofer, E. Palti and T. Weigand, JHEP 09, 082 (2013), [arXiv:1303.3589]; G. K. Leontaris and Q. Shafi, Phys. Rev. D96, 6, 066023 (2017), [arXiv:1706.08372].
[56] E. Witten, Nucl. Phys. B471, 135 (1996), [hep-th/9602070].
[57] A. Hebecker and M. Trapletti, Nucl. Phys. B713, 173 (2005), [hep-th/0411131].
[58] B. Dundee and S. Raby (2008), [arXiv:0808.0992].
[59] G. G. Ross (2004), [hep-ph/0411057].
[60] H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); S. Weinberg, Phys. Lett. 91B, 51 (1980); L. J. Hall, Nucl. Phys. B178, 75 (1981).
[61] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002), [hep-ph/0104145].
[62] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 3, 030001 (2018).
[63] M. L. Alciati et al., JHEP 03, 054 (2005), [hep-ph/0501086].
[64] See talks on proposed and running nucleon decay experiments, and theoretical talks by P. Langacker, p. 131, and W.J. Marciano and A. Sirlin, p. 151, in The Second Workshop on Grand Unification, eds. J.P. Leveille et al., Birkhäuser, Boston (1981).
[65] W.J. Marciano, p. 190, Eighth Workshop on Grand Unification, ed. K. Wali, World Scientific Publishing Co., Singapore (1987).
[66] M.S. Carena et al., in Ref. [7].
[67] A. Djouadi, J.-L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007), [hep-ph/0211331].
[68] W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458 (2012), [arXiv:1104.1573].
[69] W. Siegel, Phys. Lett. 94B, 37 (1980).
[70] I. Antoniadis, C. Kounnas, and R. Lacaze, Nucl. Phys. B221, 377 (1983).
[71] M. A. Shifman, Int. J. Mod. Phys. A11, 5761 (1996), [hep-ph/9606281]; N. Arkani-Hamed and H. Murayama, JHEP 06, 030 (2000), [hep-th/9707133]; I. Jack, D. R. T. Jones and A. Pickering, Phys. Lett. B435, 61 (1998), [hepph/9805482].
[72] M.B. Einhorn and D.R.T. Jones in Ref. [6]; I. Antoniadis, C. Kounnas and K. Tamvakis, Phys. Lett. 119B, 377 (1982).
[73] J. Hisano, H. Murayama and T. Yanagida, Phys. Rev. Lett. 69, 1014 (1992); J. Hisano, H. Murayama and T. Yanagida, Nucl. Phys. B402, 46 (1993), [hep-ph/9207279].
[74] H. Murayama and A. Pierce, Phys. Rev. D65, 055009 (2002), [hep-ph/0108104].
[75] G. Anderson et al., eConf C960625, SUP107 (1996) [hepph/9609457].
[76] L. Roszkowski and M. A. Shifman, Phys. Rev. D53, 404 (1996), [hep-ph/9503358]; S. Raby, M. Ratz and K. Schmidt-Hoberg, Phys. Lett. B687, 342 (2010), [arXiv:0911.4249].
[77] J. Hisano, T. Kuwahara and N. Nagata, Phys. Lett. B723, 324 (2013), [arXiv:1304.0343].
[78] N. Arkani-Hamed, A. Delgado and G. F. Giudice, Nucl. Phys. B741, 108 (2006), [hep-ph/0601041].
[79] M. Ibe, T. Moroi and T. T. Yanagida, Phys. Lett. B644, 355 (2007), [hep-ph/0610277].
[80] G. F. Giudice et al., JHEP 12, 027 (1998), [hepph/9810442]; L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999), [hep-th/9810155].
[81] R. N. Mohapatra and M. K. Parida, Phys. Rev. D47, 264 (1993), [hep-ph/9204234].
[82] D.-G. Lee et al., Phys. Rev. D51, 229 (1995), [hepph/9404238].
[83] L. E. Ibanez et al., JHEP 07, 195 (2012), [arXiv:1206.2655].
[84] K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Rev. Lett. 91, 061601 (2003), [hep-th/0210294].
[85] K. Agashe, R. Contino and R. Sundrum, Phys. Rev. Lett. 95, 171804 (2005), [hep-ph/0502222].
[86] F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).
[87] K. Abe et al. (Super-Kamiokande), Phys. Rev. D95, 1, 012004 (2017), [arXiv:1610.03597]; S. Mine (Super Kamiokande), J. Phys. Conf. Ser. 718, 6, 062044 (2016).
[88] K. Abe et al. (Hyper-Kamiokande) (2018), [arXiv:1805.04163].
[89] Y. Aoki et al., Phys. Rev. D96, 1, 014506 (2017), [arXiv:1705.01338].
[90] J. Hisano, T. Kuwahara and Y. Omura, Nucl. Phys. B898, 1 (2015), [Erratum: Nucl. Phys.B907,476(2016)], [arXiv:1503.08561].
[91] R. Barbier et al., Phys. Rept. 420, 1 (2005), [hepph/0406039]; F. Domingo et al., JHEP 02, 066 (2019), [arXiv:1810.08228].
[92] G. R. Farrar and P. Fayet, Phys. Lett. 76B, 575 (1978).
[93] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett. 112B, 133 (1982); J. R. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. B202, 43 (1982).
[94] C. S. Aulakh et al., Nucl. Phys. B597, 89 (2001), [hepph/0004031].
[95] T. Goto and T. Nihei, Phys. Rev. D59, 115009 (1999), [hepph/9808255].
[96] G. D. Coughlan et al., Phys. Lett. 160B, 249 (1985); J. L. Chkareuli and I. G. Gogoladze, Phys. Rev. D58, 055011 (1998), [hep-ph/9803335].
[97] G. F. Giudice and A. Romanino, Nucl. Phys. B699, 65 (2004), [Erratum: Nucl. Phys.B706,487(2005)], [hepph/0406088].
[98] J. Hisano et al., JHEP 07, 038 (2013), [arXiv:1304.3651].
[99] B. Bajc, P. Fileviez Perez and G. Senjanovic, Phys. Rev. D66, 075005 (2002), [hep-ph/0204311].
[100] K.-S. Choi, Phys. Lett. B668, 392 (2008), [arXiv:0807.2766].
[101] F. An et al. (JUNO), J. Phys. G43, 3, 030401 (2016), [arXiv:1507.05613].
[102] R. Acciarri et al. (DUNE) (2015), [arXiv:1512.06148].
[103] L. J. Hall and Y. Nomura, Phys. Rev. D66, 075004 (2002), [hep-ph/0205067]; H. D. Kim, S. Raby and L. Schradin, JHEP 05, 036 (2005), [hep-ph/0411328].
[104] M.S. Chanowitz, J.R. Ellis and M.K. Gaillard, Nucl. Phys. B128, 506 (1977); A. J. Buras et al., Nucl. Phys. B135, 66 (1978).
[105] K. Inoue et al., Prog. Theor. Phys. 67, 1889 (1982); L. E. Ibanez and C. Lopez, Nucl. Phys. B233, 511 (1984).
[106] H. Georgi and D. V. Nanopoulos, Nucl. Phys. B159, 16 (1979); J. A. Harvey, P. Ramond and D. B. Reiss, Phys. Lett. 92B, 309 (1980); J. A. Harvey, D. B. Reiss and P. Ramond, Nucl. Phys. B199, 223 (1982).
[107] T. Banks, Nucl. Phys. B303, 172 (1988); M. Olechowski and S. Pokorski, Phys. Lett. B214, 393 (1988); S. Pokorski, Nucl. Phys. Proc. Suppl. 13, 606 (1990); B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D44, 1613 (1991); Q. Shafi and B. Ananthanarayan, ICTP Summer School lectures (1991); S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. Lett. 68, 1984 (1992); S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. D45, 4192 (1992); G. W. Anderson et al., Phys. Rev. D47, R3702 (1993), [hep-ph/9209250]; B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Lett. B300, 245 (1993); G. Anderson et al.,

Phys. Rev. D49, 3660 (1994), [hep-ph/9308333]; B. Ananthanarayan, Q. Shafi and X. M. Wang, Phys. Rev. D50, 5980 (1994), [hep-ph/9311225].
[108] L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D50, 7048 (1994), [hep-ph/9306309]; M. Carena et al., Nucl. Phys. B426, 269 (1994), [hep-ph/9402253].
[109] A. Anandakrishnan, B. C. Bryant and S. Raby, JHEP 05, 088 (2015), [arXiv:1411.7035].
[110] M. Lanzagorta and G. G. Ross, Phys. Lett. B364, 163 (1995), [hep-ph/9507366].
[111] K. Tobe and J. D. Wells, Nucl. Phys. B663, 123 (2003), [hep-ph/0301015].
[112] G. Ross and M. Serna, Phys. Lett. B664, 97 (2008), [arXiv:0704.1248].
[113] T. Blazek, R. Dermisek and S. Raby, Phys. Rev. Lett. 88, 111804 (2002), [hep-ph/0107097]; T. Blazek, R. Dermisek and S. Raby, Phys. Rev. D65, 115004 (2002), [hepph/0201081]; D. Auto et al., JHEP 06, 023 (2003), [hepph/0302155]; R. Dermisek et al., JHEP 04, 037 (2003), [hep-ph/0304101]; R. Dermisek et al., JHEP 09, 029 (2005), [hep-ph/0507233].
[114] A. Anandakrishnan, S. Raby and A. Wingerter, Phys. Rev. D87, 5, 055005 (2013), [arXiv:1212.0542]; M. Adeel Ajaib et al., JHEP 07, 139 (2013), [arXiv:1303.6964]; Z. Poh and S. Raby, Phys. Rev. D92, 1, 015017 (2015), [arXiv:1505.00264]; M. Badziak, M. Olechowski and S. Pokorski, JHEP 10, 088 (2013), [arXiv:1307.7999].
[115] H. Georgi and C. Jarlskog, Phys. Lett. 86B, 297 (1979).
[116] S. Antusch and M. Spinrath, Phys. Rev. D79, 095004 (2009), [arXiv:0902.4644].
[117] G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B181, 287 (1981).
[118] T. E. Clark, T.-K. Kuo and N. Nakagawa, Phys. Lett. 115B, 26 (1982); K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70, 2845 (1993), [hep-ph/9209215].
[119] R. Barbieri and D. V. Nanopoulos, Phys. Lett. 91B, 369 (1980).
[120] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277 (1979).
[121] R. Barbieri et al., Nucl. Phys. B493, 3 (1997), [hepph/9610449]; T. Blazek, S. Raby and K. Tobe, Phys. Rev. D60, 113001 (1999), [hep-ph/9903340]; T. Blazek, S. Raby and K. Tobe, Phys. Rev. D62, 055001 (2000), [hep-ph/9912482]; Q. Shafi and Z. Tavartkiladze, Phys. Lett. B487, 145 (2000), [hep-ph/9910314]; C. H. Albright and S. M. Barr, Phys. Rev. Lett. 85, 244 (2000), [hepph/0002155]; Z. Berezhiani and A. Rossi, Nucl. Phys. B594, 113 (2001), [hep-ph/0003084]; C. H. Albright and S. M. Barr, Phys. Rev. D64, 073010 (2001), [hep-ph/0104294]; M.-C. Chen and K. T. Mahanthappa, Int. J. Mod. Phys. A18, 5819 (2003), [hep-ph/0305088]; R. Dermisek and S. Raby, Phys. Lett. B622, 327 (2005), [hep-ph/0507045].
[122] H. Georgi, Nucl. Phys. B156, 126 (1979); P. H. Frampton, Phys. Lett. 88B, 299 (1979); P. Frampton and S. Nandi, Phys. Rev. Lett. 43, 1460 (1979); J.E. Kim, Phys. Rev. Lett. 45, 1916 (1980), Phys. Rev. D23, 2706 (1981) and Phys. Rev. D26, 674 (1982); Y. Fujimoto, Phys. Rev. D26, 3183 (1982).
[123] P. Langacker, Phys. Rept. 72, 185 (1981).
[124] H. Georgi, Conf. Proc. C 820726, 705 (1982).
[125] S. M. Barr, Phys. Rev. D78, 055008 (2008), [arXiv:0805.4808]; Y. Goto, Y. Kawamura and T. Miura, Phys. Rev. D88, 5, 055016 (2013), [arXiv:1307.2631]; J. E. Kim, JHEP 06, 114 (2015), [arXiv:1503.03104]; C.H. Albright, R.P. Feger and T.W. Kephart, arXiv:1601.07523; M. Reig, J. W. F. Valle, C. A. Vaquera-Araujo and F. Wilczek, arXiv:1706.03116.
[126] M. Magg and C. Wetterich, Phys. Lett. 94B, 61 (1980); J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23, 165 (1981); G. B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).
[127] R. Foot et al., Z. Phys. C44, 441 (1989).
[128] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), [hep-ex/9807003].
[129] G. L. Fogli et al., Phys. Rev. D84, 053007 (2011), [arXiv:1106.6028].
[130] T. Schwetz, M. Tortola and J. W. F. Valle, New J. Phys. 13, 109401 (2011), [arXiv:1108.1376].
[131] G. Altarelli, Soryushiron Kenkyu Electron. 116, A29 (2008), [arXiv:0711.0161]; S. F. King and C. Luhn, Rept. Prog. Phys. 76, 056201 (2013), [arXiv:1301.1340].
[132] C. H. Albright and M.-C. Chen, Phys. Rev. D74, 113006 (2006), [hep-ph/0608137].
[133] R. Kallosh et al., Phys. Rev. D52, 912 (1995), [hepth/9502069].
[134] H. Ruegg and M. Ruiz-Altaba, Int. J. Mod. Phys. A19, 3265 (2004), [hep-th/0304245].
[135] M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117 (1984).
[136] L. E. Ibanez and G. G. Ross, Nucl. Phys. B368, 3 (1992); M. Berasaluce-Gonzalez et al., JHEP 12, 113 (2011), [arXiv:1106.4169].
[137] N.G. Deshpande, OITS-107; C. Q. Geng and R. E. Marshak, Phys. Rev. D39, 693 (1989); A. Font, L. E. Ibanez and F. Quevedo, Phys. Lett. B228, 79 (1989); K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 63, 938 (1989).
[138] R. Foot et al., Phys. Rev. D39, 3411 (1989).
[139] M. Nowakowski and A. Pilaftsis, Phys. Rev. D48, 259 (1993), [hep-ph/9304312].
[140] T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens, Phys. Lett. B609, 408 (2005), [hepth/0403196]; F. Gmeiner et al., JHEP 01, 004 (2006), [hepth/0510170]; B. Gato-Rivera and A. N. Schellekens, Nucl. Phys. B883, 529 (2014), [arXiv:1401.1782].
[141] G. 't Hooft, Nucl. Phys. B79, 276 (1974) A.M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [Sov. Phys. JETP Lett. 20, 194 (1974)]; For a pedagogical introduction, see S. Coleman, in Aspects of Symmetry, Selected Erice Lectures, Cambridge University Press, Cambridge, (1985), and P. Goddard and D. Olive, Rept. on Prog. in Phys. 41, 1357 (1978).
[142] M. Ambrosio et al. (MACRO), Eur. Phys. J. C25, 511 (2002), [hep-ex/0207020]; S. Balestra et al. (2011), [arXiv:1105.5587]; L. Patrizii and M. Spurio, Ann. Rev. Nucl. Part. Sci. 65, 279 (2015), [arXiv:1510.07125].
[143] For a review, see A.D. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic, Switzerland (1990).
[144] G. R. Dvali, H. Liu and T. Vachaspati, Phys. Rev. Lett. 80, 2281 (1998), [hep-ph/9710301].
[145] P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).
[146] G. R. Dvali, A. Melfo and G. Senjanovic, Phys. Rev. Lett. 75, 4559 (1995), [hep-ph/9507230].
[147] V. Rubakov, Nucl. Phys. B203, 311 (1982) and Institute of Nuclear Research Report No. P-0211, Moscow (1981), unpublished; C. G. Callan, Jr., Phys. Rev. D26, 2058 (1982); F. Wilczek, Phys. Rev. Lett. 48, 1146 (1982); S. Dawson and A. N. Schellekens, Phys. Rev. D27, 2119 (1983).
[148] K. Freese, M. S. Turner and D. N. Schramm, Phys. Rev. Lett. 51, 1625 (1983).
[149] P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. 116, 031302 (2016), [arXiv:1510.09217]; N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
[150] L. J. Hall, V. A. Kostelecky and S. Raby, Nucl. Phys. B267, 415 (1986).
[151] R. Barbieri and L. J. Hall, Phys. Lett. B338, 212 (1994), [hep-ph/9408406]; R. Barbieri, L. J. Hall and A. Strumia, Nucl. Phys. B445, 219 (1995), [hep-ph/9501334].
[152] F. Borzumati and A. Masiero, Phys. Rev. Lett. 57, 961 (1986); J. Hisano et al., Phys. Lett. B357, 579 (1995), [hepph/9501407]; J. Hisano et al., Phys. Rev. D53, 2442 (1996), [hep-ph/9510309]; J. Hisano and D. Nomura, Phys. Rev. D59, 116005 (1999), [hep-ph/9810479].
[153] T. Moroi, JHEP 03, 019 (2000), [hep-ph/0002208]; D. Chang, A. Masiero and H. Murayama, Phys. Rev. D67, 075013 (2003), [hep-ph/0205111].
[154] S. Dimopoulos and L. J. Hall, Phys. Lett. B344, 185 (1995), [hep-ph/9411273].
[155] J. Hisano et al., Phys. Lett. B604, 216 (2004), [hepph/0407169].
[156] A. Yu. Ignatiev et al., Phys. Lett. 76B, 436 (1978); M. Yoshimura, Phys. Rev. Lett. 41, 281 (1978), [Erratum: Phys. Rev. Lett.42,746(1979)].
[157] D. Toussaint et al., Phys. Rev. D19, 1036 (1979); S. Weinberg, Phys. Rev. Lett. 42, 850 (1979); M. Yoshimura, Phys. Lett. 88B, 294 (1979); S. M. Barr, G. Segre and H. A. Weldon, Phys. Rev. D20, 2494 (1979); D. V. Nanopoulos and S. Weinberg, Phys. Rev. D20, 2484 (1979); A. Yildiz and P. H. Cox, Phys. Rev. D21, 906 (1980).
[158] H. K. Dreiner and G. G. Ross, Nucl. Phys. B410, 188 (1993), [hep-ph/9207221].
[159] M. Fukugita and T. Yanagida, Phys. Rev. Lett. 89, 131602 (2002), [hep-ph/0203194].
[160] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[161] S. Davidson and A. Ibarra, Phys. Lett. B535, 25 (2002), [hep-ph/0202239]; K. Hamaguchi, H. Murayama and T. Yanagida, Phys. Rev. D65, 043512 (2002), [hepph/0109030].
[162] A. Pilaftsis and T. E. J. Underwood, Phys. Rev. D72, 113001 (2005), [hep-ph/0506107].
[163] M. Kawasaki et al., Phys. Rev. D78, 065011 (2008), [arXiv:0804.3745].
[164] W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005), [hep-ph/0502169]; C. S. Fong, E. Nardi and A. Riotto, Adv. High Energy Phys. 2012, 158303 (2012), [arXiv:1301.3062].
[165] V. Cirigliano et al., JHEP 12, 097 (2018), [arXiv:1806.02780].
[166] K. S. Babu and R. N. Mohapatra, Phys. Rev. D86, 035018 (2012), [arXiv:1203.5544]; K. S. Babu and R. N. Mohapatra, Phys. Lett. B715, 328 (2012), [arXiv:1206.5701]; K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 109, 091803 (2012), [arXiv:1207.5771].
[167] M. Baldo-Ceolin et al., Z. Phys. C63, 409 (1994).
[168] K. Abe et al. (Super-Kamiokande), Phys. Rev. D91, 072006 (2015), [arXiv:1109.4227].
[169] J. Gustafson et al. (Super-Kamiokande), Phys. Rev. D91, 7, 072009 (2015), [arXiv:1504.01041].
[170] K. R. Dienes, Phys. Rept. 287, 447 (1997), [hepth/9602045]; P. Nath and P. Fileviez Perez, Phys. Rept. 441, 191 (2007), [hep-ph/0601023].
[171] G.G. Ross, "Grand Unified Theories", Benjamin/Cummings, 1984.; S. Raby, Lect. Notes Phys. 939, 1 (2017).
[172] P. Nath, Int. J. Mod. Phys. A33, 20, 1830017 (2018), [arXiv:1807.05302]; D. Croon et al., Front.in Phys. 7, 76 (2019), [arXiv:1903.04977].
[173] A. Ringwald, L.J. Rosenberg and G. Rybka, Review of 'Axions and other Similar Particles' in Ref. [62].
[174] P. Svrcek and E. Witten, JHEP 06, 051 (2006), [hepth/0605206].
[175] M. Dine, W. Fischler and M. Srednicki, Phys. Lett. 104B,

199 (1981); A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980), [Yad. Fiz.31,497(1980)].
[176] J. P. Conlon, JHEP 05, 078 (2006), [hep-th/0602233].

95. Leptoquarks

Updated August 2019 by S. Rolli (US Department of Energy) and M. Tanabashi (Nagoya U.)

Leptoquarks are hypothetical particles carrying both baryon number (B) and lepton number (L). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary standard model (SM) fermions are dimensionless and invariant under the SM gauge group. Table 95.1 shows the list of all possible quantum numbers with this assumption [1]. The columns of $S U(3)_{C}, S U(2)_{W}$, and $U(1)_{Y}$ in Table 95.1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark).

Table 95.1: Possible leptoquarks and their quantum numbers.

Spin	$3 B+L$	$S U(3)_{c}$	$S U(2)_{W}$	$U(1)_{Y}$	Allowed coupling
0	-2	$\overline{3}$	1	$1 / 3$	$\bar{q}_{L}^{c} \ell_{L}$ or $\bar{u}_{R}^{c} e_{R}$
0	-2	$\overline{3}$	1	$4 / 3$	$\bar{d}_{R}^{c} e_{R}$
0	-2	$\overline{3}$	3	$1 / 3$	$\bar{q}_{L}^{c} \ell_{L}$
1	-2	$\overline{3}$	2	$5 / 6$	$\bar{q}_{L}^{c} \gamma^{\mu} e_{R}$ or $\bar{d}_{R}^{c} \gamma^{\mu} \ell_{L}$
1	-2	$\overline{3}$	2	$-1 / 6$	$\bar{u}_{R}^{c} \gamma^{\mu} \ell_{L}$
0	0	3	2	$7 / 6$	$\bar{q}_{L} e_{R}$ or $\bar{u}_{R} \ell_{L}$
0	0	3	2	$1 / 6$	$\bar{d}_{R} \ell_{L}$
1	0	3	1	$2 / 3$	$\bar{q}_{L} \gamma^{\mu} \ell_{L}$ or $\bar{d}_{R} \gamma^{\mu} e_{R}$
1	0	3	1	$5 / 3$	$\bar{u}_{R} \gamma^{\mu} e_{R}$
1	0	3	3	$2 / 3$	$\bar{q}_{L} \gamma^{\mu} \ell_{L}$

If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible $[2,3]$.

Leptoquark states are expected to exist in various extensions of the SM. The Pati-Salam model [4] is an example predicting the existence of a leptoquark state. Leptoquark states also exist in grand unification theories based on $S U(5)$ [5], $S O(10)$ [6], which includes Pati-Salam color $S U(4)$, and larger gauge groups. Scalar quarks in supersymmetric models with R-parity violation may also have leptoquark-type Yukawa couplings. The bounds on the leptoquark states can therefore be applied to constrain R-parity-violating supersymmetric models. Scalar leptoquarks are expected to exist at the TeV scale in extended technicolor models $[7,8]$ where leptoquark states appear as the bound states of techni-fermions. Compositeness of quarks and leptons also provides examples of models which may have light leptoquark states [9].

Bounds on leptoquark states are obtained both directly and indirectly. Direct limits are from their production cross sections at colliders, while indirect limits are calculated from bounds on leptoquark-induced four-fermion interactions, which are obtained from low-energy experiments, or from collider experiments below threshold. These four-fermion interactions often cause lepton-flavor non-universalities in heavy quark decays. Anomalies observed recently in the R_{K} and R_{D} ratios $[10,11]$ in the semi-leptonic B decays may be explained in models with TeV scale leptoquarks.

If a leptoquark couples to quarks (leptons) belonging to more than a single generation in the mass eigenbasis, it can induce four-fermion interactions causing flavor-changing neutral currents (lepton-family-number violations). The quantum number assignment of Table 1 allows several leptoquark states to couple to both leftand right-handed quarks simultaneously. Such leptoquark states are called non-chiral and may cause four-fermion interactions affecting the $(\pi \rightarrow e \nu) /(\pi \rightarrow \mu \nu)$ ratio [12]. Non-chiral scalar leptoquarks also contribute to the muon anomalous magnetic moment [13,14]. Since indirect limits provide more stringent constraints on these types of leptoquarks, it is often assumed that a leptoquark state couples only to a single generation of quarks and a single generation of leptons in a chiral interaction, for which indirect limits become much weaker.

Additionally, this assumption gives strong constraints on models of leptoquarks.

Refs. [$15,16,17]$ give extensive lists of the bounds on the leptoquarkinduced four-fermion interactions. For the isoscalar scalar and vector leptoquarks S_{0} and V_{0}, for example, which couple with the first-(second-) generation left-handed quark, and the first-generation left-handed lepton, the bounds $\lambda^{2}<0.07 \times\left(M_{\mathrm{LQ}} / 1 \mathrm{TeV}\right)^{2}$ for S_{0}, and $\lambda^{2}<0.4 \times\left(M_{\mathrm{LQ}} / 1 \mathrm{TeV}\right)^{2}$ for $V_{0}\left(\lambda^{2}<0.7 \times\left(M_{\mathrm{LQ}} / 1 \mathrm{TeV}\right)^{2}\right.$ for S_{0}, and $\lambda^{2}<0.5 \times\left(M_{\mathrm{LQ}} / 1 \mathrm{TeV}\right)^{2}$ for $\left.V_{0}\right)$ with λ being the leptoquark coupling strength, can be derived from the limits listed in Ref. [17]. The $e^{+} e^{-}$experiments are sensitive to the indirect effects coming from t - and u-channel exchanges of leptoquarks in the $e^{+} e^{-} \rightarrow q \bar{q}$ process. The HERA experiments give bounds on the leptoquark-induced four-fermion interaction. For detailed bounds obtained in this way, see the Boson Particle Listings for "Indirect Limits for Leptoquarks" and its references.

Collider experiments provide direct limits on the leptoquark states through limits on the pair- and single-production cross sections. The leading-order cross sections of the parton processes

$$
\begin{align*}
& q+\bar{q} \rightarrow \mathrm{LQ}+\overline{\mathrm{LQ}} \\
& g+g \rightarrow \mathrm{LQ}+\overline{\mathrm{LQ}} \\
& e+q \rightarrow \mathrm{LQ} \tag{95.1}
\end{align*}
$$

may be written as [21]

$$
\begin{align*}
& \hat{\sigma}_{\mathrm{LO}}[q \bar{q} \rightarrow \mathrm{LQ}+\overline{\mathrm{LQ}}]=\frac{2 \alpha_{s}^{2} \pi}{27 \hat{s}} \beta^{3}, \\
& \hat{\sigma}_{\mathrm{LO}}[g g \rightarrow \mathrm{LQ}+\overline{\mathrm{LQ}}]=\frac{\alpha_{s}^{2} \pi}{96 \hat{s}} \\
& \quad \times\left[\beta\left(41-31 \beta^{2}\right)+\left(18 \beta^{2}-\beta^{4}-17\right) \log \frac{1+\beta}{1-\beta}\right], \\
& \hat{\sigma}_{\mathrm{LO}}[e q \rightarrow \mathrm{LQ}]=\frac{\pi \lambda^{2}}{4} \delta\left(\hat{s}-M_{\mathrm{LQ}}^{2}\right) \tag{95.2}
\end{align*}
$$

for a scalar leptoquark. Here $\sqrt{\hat{s}}$ is the invariant energy of the parton subprocess, and $\beta \equiv \sqrt{1-4 M_{\mathrm{LQ}}^{2} / \hat{s}}$. The leptoquark Yukawa coupling is given by λ. Leptoquarks are also produced singly at hadron colliders through $g+q \rightarrow \mathrm{LQ}+\ell$ [22], which allows extending to higher masses the collider reach in the leptoquark search [23], depending on the leptoquark Yukawa coupling. See also Ref. [24] for a comprehensive review on the leptoquark phenomenology in precision experiments and particle colliders.

Leptoquark states which couple only to left- or right-handed quarks are called chiral leptoquarks. Leptoquark states which couple only to the first (second, third) generation are referred as the first- (second-, third-) generation leptoquarks.

The LHC, Tevatron and LEP experiments have been searching for pair production of the leptoquark states, which arises from the leptoquark gauge interaction. Due to the typical decay of the leptoquark into charged and neutral leptons and quarks, the searches are carried on in signatures including high P_{T} charged leptons, high E_{T} jets and large missing transverse energy. Additionally searches for pair produced LQs are often organized by the decay mode of the pair of LQs, via the decay parameter β, which represents the branching fraction into a charge lepton vs a neutrino: beta $=1$ for both LQs decaying into a charged letpon, beta $=0.5$ for one LQ decaying into a charged lepton and one into a neutrino. The gauge couplings of a scalar leptoquark are determined uniquely according to its quantum numbers in Table 95.1. Since all of the leptoquark states belong to color-triplet representation, the scalar leptoquark pair-production cross section at the Tevatron and LHC can be determined solely as a function of the leptoquark mass without making further assumptions. This is in contrast to the indirect or single-production limits, which give constraints in the leptoquark mass-coupling plane.

Older results from the Tevatron run can be found here: [26], [27], [28] and [29].

Since the previous version of this review, both ATLAS and CMS have updated their results concerning searches for first, second, and third generation LQs and leptoquark states which couple only with the i-th generation quarks and the j-th generation leptons $(i \neq j)$ without causing conflicts with severe indirect constraints. The datasets were almost all collected at center of mass energy of 13 TeV and corresponding to the latest integrated luminosity collected before the shutdown of the LHC occuring in 2019 and 2020.

It is worthy to note that organizing LQs by flavor quantum number first before organizing them by gauge quantum number is becoming more common and advantageous because it relates more closely to some of the experimental searches being performed. The traditional nomenclature for 1st, 2nd, and 3rd generation LQ encourages only looking for the diagonal elements in a flavor matrix of possibilities, which has been the traditional experimental search strategy.

Current results extend previous mass limits for scalar leptoquarks to $>1435 \mathrm{GeV}$ (first generation, CMS, $\beta=1, \sqrt{s}=13 \mathrm{TeV}$) and $>1270 \mathrm{GeV}$ (first generation, CMS, $\beta=0.5, \sqrt{s}=13 \mathrm{TeV}$) [30]; $>1400 \mathrm{GeV}$ (first generation, ATLAS, $\beta=1, \sqrt{s}=13 \mathrm{TeV}$) and $>1290 \mathrm{GeV}$ (first generation, ATLAS, $\beta=0.5, \sqrt{s}=13 \mathrm{TeV}$) [31]; $>1530 \mathrm{GeV}$ (second generation, CMS, $\beta=1, \sqrt{s}=13 \mathrm{TeV}$) and $>1285 \mathrm{GeV}$ (second generation, CMS, $\beta=0.5, \sqrt{s}=13 \mathrm{TeV}$) [32]; and $>1560 \mathrm{GeV}$ (second generation, ATLAS, $\beta=1, \sqrt{s}=13 \mathrm{TeV}$) and $>1230 \mathrm{GeV}$ (second generation, ATLAS, $\beta=0.5, \sqrt{s}=13 \mathrm{TeV}$) [31]. All limits are presented at 95\% C.L.

As for third generation leptoquarks, CMS results are the following: 1) assuming that all leptoquarks decay to a top quark and a τ lepton, the existence of pair produced, third-generation leptoquark up to a mass of $900 \mathrm{GeV}(\beta=1,13 \mathrm{TeV})$ is excluded at 95% confidence level [33]; 2) assuming that all leptoquarks decay to a bottom quark and a τ lepton, the existence of pair produced, third-generation leptoquark up to a mass of $1020 \mathrm{GeV}(\beta=1,13 \mathrm{TeV})$ is excluded at 95% confidence level [34]; 3)assuming that all leptoquarks decay to a bottom quark and a τ neutrino, the existence of pair produced, third-generation leptoquark up to a mass of $450 \mathrm{GeV}(\beta=0,7 \mathrm{TeV})$ is excluded at 95% confidence level [35]. In a recent paper [36], the ATLAS collaboration has limits on pair production of third generation scalar leptoquarks where all possible decays of the leptoquark into a quark (t, b) and a lepton (τ, ν) of the third generation are considered. The limits are presented as a function of the leptoquark mass and the branching ratio into charged leptons for leptoquark of up-type $\left(L Q_{3}^{u p} \rightarrow \tau \nu / b \tau\right)$ and down-type $\left(L Q_{3}^{d} \rightarrow b \nu / t \tau\right)$; many results are re-interpretation of previously published ATLAS searches. The collaboration finds that masses below 800 GeV are excluded for both $L Q_{3}^{u}$ and $L Q_{3}^{d}$ independently of the branching ratio, with masses below about 1 TeV being excluded for the limiting cases of branching ratios equal to zero or unity.

It is also possible to consider leptoquark states which couple only with the i-th generation quarks and the j-th generation leptons ($i \neq j$) without causing conflicts with severe indirect constraints. Such couplings have received renewed attention because they may provide an explanation to anomalies in rare $B-$ meson decays and the anomalous magnetic moment of the muon. See Ref. [37], [38] and [39] and references therein for collider search strategies and limits on the pair production cross sections of this class of leptoquark states. In this framework, a novel CMS result [40] presents a non-traditional search for pair production of LQs coupled to a top quark and a muon. As no deviation from the standard model prediction was observed, scalar LQs decaying exclusively into top $-\mu$ are excluded up to masses of 1420 GeV .

The magnetic-dipole-type and the electric-quadrupole-type interactions of a vector leptoquark are not determined even if we fix its gauge quantum numbers as listed in the Table 95.1 [41]. The production of vector leptoquarks depends in general on additional assumptions, where the leptoquark couplings and their pair production cross sections are enhanced relative to the scalar leptoquark contributions The most stringent limits on vector LQ production are now from CMS [42] where previous searches for squarks and gluinos have been reinterpreted to constrain models of leptoquark production. LQ masses below 1530 GeV are excluded assuming the Yang-Mills case with coupling $\kappa=1$, or 1115 GeV in the minimal coupling case
where $\kappa=0$, placing the most stringent constraint to date from pair production of vector LQs.

The leptoquark pair-production cross sections in $e^{+} e^{-}$collisions depend on the leptoquark $S U(2) \times U(1)$ quantum numbers and Yukawa coupling with electron [43].

Searches for first generation leptoquark singly produced were performed by the HERA experiments. Since the leptoquark singleproduction cross section depends on its Yukawa coupling, the leptoquark mass limits from HERA are usually displayed in the mass-coupling plane. For leptoquark Yukawa coupling $\lambda=0.1$, early ZEUS Collaboration bounds on the first-generation leptoquarks range from 248 to 290 GeV , depending on the leptoquark species [45]. The ZEUS Collaboration has recently released a new paper [46] where data corresponding to a luminosity of around $1 \mathrm{fb}^{1}$ have been used in the framework of eeqq contact interactions (CI) to set limits on possible high-energy contributions beyond the Standard Model to electron-quark scattering. The analysis of the ep data has been based on simultaneous fits of parton distribution functions including contributions of Contact Interaction (CI) couplings to ep scattering. Several general CI models and scenarios with heavy leptoquarks were considered. As unambiguous deviations from the SM cannot be established, limits for CI compositeness scales and LQ mass scales were set that are in the TeV range. The H 1 Collaboration has a comprehensive summary of searches for first generation leptoquarks using the full data sample collected in ep collisions at HERA (446 pb^{-1}). No evidence of production of leptoquarks was observed in final states with a large transverse momentum electron or large missing transverse momentum. For a coupling strength $\lambda=0.3$, first generation leptoquarks with masses up to 800 GeV are excluded at 95% C.L. [48].

At the LHC, the CMS collaboration performed searches for single production of first and second generation leptoquarks [49], which is complementary to the HERA searches in the high λ region (for coupling strength $\lambda=1.0$, first generation leptoquarks are excluded for masses up to 1.73 TeV and second generation leptoquark are excluded up to masses of 530 GeV). CMS also recently searched for third generation LQ decaying into τ and bottom in [50]. Assuming unit Yukawa coupling (λ), a third generation scalar leptoquark is excluded for masses below 740 GeV . Limits are also set on λ of the hypothesized leptoquark as a function of its mass. Above $\lambda=1.4$, the results provide the best upper limit on the mass of a third-generation scalar leptoquark decaying to a τ lepton and a bottom quark.

Searches for LQ will continue with more LHC data, particularly in light of the renewed interest in this type of particle to explain violation of letpon flavor universality and other anomalies, which point to explanations laying outside the Standard Model.

References:

1. W. Buchmüller, R. Rückl, and D. Wyler, Phys. Lett. B191, 442 (1987).
2. K.S. Babu, C.F. Kolda, and J. March-Russell, Phys. Lett. B408, 261 (1997).
3. J.L. Hewett and T.G. Rizzo, Phys. Rev. D58, 055005 (1998).
4. J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).
5. H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
6. H. Georgi, AIP Conf. Proc. 23, 575 (1975); H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).
7. For a review, see, E. Farhi and L. Susskind, Phys. Reports 74, 277 (1981)
8. K. Lane and M. Ramana, Phys. Rev. D44, 2678 (1991).
9. See, for example, B. Schremp and F. Schremp, Phys. Lett. 153B, 101 (1985).
10. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 113, 151601 (2014);
R. Aaij et al. [LHCb Collab.], JHEP 08, 055 (2017);
R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 122, 191801 (2019).
11. Y. Amhis et al., [HFLAV Collab.], Eur. Phys. J. C77, 895 (2017), updated results and plots available at hflav.web.cern.ch/.
12. O. Shanker, Nucl. Phys. B204, 375, (1982).
13. U. Mahanta, Eur. Phys. J. C21, 171 (2001) [Phys. Lett. B515, 111 (2001)].
14. K. Cheung, Phys. Rev. D64, 033001 (2001).
15. S. Davidson, D.C. Bailey, and B.A. Campbell, Z. Phys. C61, 613 (1994).
16. M. Leurer, Phys. Rev. D49, 333 (1994); Phys. Rev. D50, 536 (1994).
17. M. Carpentier and S. Davidson, Eur. Phys. J. C70, 1071 (2010).
18. A. Falkowski, M. González-Alonso and K. Mimouni, JHEP 08, 123 (2017).
19. S. Davidson and A. Saporta, Phys. Rev. D99, 015032 (2019).
20. M. Chala, J. Santiago and M. Spannowsky, JHEP 04, 014 (2019).
21. T. Plehn et al., Z. Phys. C74, 611 (1997);
M. Kramer et al., Phys. Rev. Lett. 79, 341 (1997); and references therein.
22. J.L. Hewett and S. Pakvasa, Phys. Rev. D37, 3165 (1988); O.J.P. Eboli and A.V. Olinto, Phys. Rev. D38, 3461 (1988); A. Dobado, M.J. Herrero, and C. Muñoz, Phys. Lett. 207B, 97 (1988);
V.D. Barger et al., Phys. Lett. B220, 464 (1989);
M. De Montigny and L. Marleau, Phys. Rev. D40, 2869 (1989) [Erratum-ibid. D56, 3156 (1997)].
23. A. Belyaev et al., JHEP 0509, 005 (2005).
24. I. Doršner et al., Phys. Reports 641, 1 (2016).
25. D. Acosta et al. [CDF Collab.], Phys. Rev. D72, 051107 (2005).
26. V.M. Abazov et al. [DØCollab.], Phys. Lett. B681, 224 (2009).
27. A. Abulencia et al. [CDF Collab.], Phys. Rev. D73, 051102 (2006).
28. V.M. Abazov et al. [DØCollab.], Phys. Lett. B671, 224 (2009).
29. V.Abazov et al. [DØCollab.], Phys. Lett. B693, 95 (2010).
30. [CMS Collab.], Phys. Rev. D99, 052002 (2019).
31. [ATLAS Collab.], Eur. Phys. J. C79, 733 (2019).
32. [CMS Collab.], Phys. Rev. D99, 032014 (2019).
33. [CMS Collab.], Eur. Phys. J. C78, 707 (2018).
34. [CMS Collab.], JHEP 03, 170 (2019).
35. [CMS Collab.], JHEP 1212, 055 (2012).
36. [ATLAS Collab.], JHEP 06, 144 (2019).
37. B. Diaz, M. Schmaltz, and Y. M. Zhong, JHEP 10, 097 (2017).
38. M. Schmaltz, and Y. M. Zhong, JHEP 01, 132 (2019).
39. D. Muller, EPJ Web Conf. 179, 01015 (2018)..
40. [CMS Collab.] Phys. Rev. Lett. 121, 241802 (2018).
41. J. Blümlein, E. Boos, and A. Kryukov, Z. Phys. C76, 137 (1997).
42. [CMS Collab.] Phys. Rev. D98, 032005 (2018).
43. J. Blümlein and R. Ruckl, Phys. Lett. B304, 337 (1993).
44. G. Abbiendi et al. [OPAL Collab.], Eur. Phys. J. C31, 281 (2003).
45. S. Chekanov et al. [ZEUS Collab.], Phys. Rev. D68, 052004 (2003).
46. H. Abramowicz et al. [ZEUS Collab.]. Phys. Rev. D99, 092006 (2019).
47. A. Aktas et al. [H1 Collab.], Phys. Lett. B629, 9 (2005).
48. F.D. Aaron et al. [H1 Collab.], Phys. Lett. B704, 388 (2011).
49. V. Khachatryan et al. [CMS Collab.], Phys. Rev. D93, 032005 (2016).
50. [CMS Collab.] JHEP 07, 115 (2018).

96. Magnetic Monopoles

Revised August 2019 by D. Milstead (Stockholm U.) and E.J. Weinberg (Columbia U.).

96.1 Theory of magnetic monopoles

The symmetry between electric and magnetic fields in the source-free Maxwell's equations naturally suggests that electric charges might have magnetic counterparts, known as magnetic monopoles. Although the greatest interest has been in the supermassive monopoles that are a firm prediction of all grand unified theories, one cannot exclude the possibility of lighter monopoles.

In either case, the magnetic charge is constrained by a quantization condition first found by Dirac [1]. Consider a monopole with magnetic charge Q_{M} and a Coulomb magnetic field

$$
\begin{equation*}
\mathbf{B}=\frac{Q_{M}}{4 \pi} \frac{\hat{\mathbf{r}}}{r^{2}} \tag{96.1}
\end{equation*}
$$

Any vector potential \mathbf{A} whose curl is equal to \mathbf{B} must be singular along some line running from the origin to spatial infinity. This Dirac string singularity could potentially be detected through the extra phase that the wavefunction of a particle with electric charge Q_{E} would acquire if it moved along a loop encircling the string. For the string to be unobservable, this phase must be a multiple of 2π. Requiring that this be the case for any pair of electric and magnetic charges gives the condition that all charges be integer multiples of minimum charges $Q_{E}^{\min }$ and $Q_{M}^{\min }$ obeying

$$
\begin{equation*}
Q_{E}^{\min } Q_{M}^{\min }=2 \pi \tag{96.2}
\end{equation*}
$$

(For monopoles which also carry an electric charge, called dyons [2], the quantization conditions on their electric charges can be modified. However, the constraints on magnetic charges, as well as those on all purely electric particles, will be unchanged.)

Another way to understand this result is to note that the conserved orbital angular momentum of a point electric charge moving in the field of a magnetic monopole has an additional component, with

$$
\begin{equation*}
\mathbf{L}=m \mathbf{r} \times \mathbf{v}-4 \pi Q_{E} Q_{M} \hat{\mathbf{r}} \tag{96.3}
\end{equation*}
$$

Requiring the radial component of \mathbf{L} to be quantized in halfinteger units yields Eq. 96.1.

If there are unbroken gauge symmetries in addition to the $\mathrm{U}(1)$ of electromagnetism, the above analysis must be modified [3] [4]. For example, a monopole could have both a $\mathrm{U}(1)$ magnetic charge and a color magnetic charge. The latter could combine with the color charge of a quark to give an additional contribution to the phase factor associated with a loop around the Dirac string, so that the $\mathrm{U}(1)$ charge could be the Dirac charge $Q_{M}^{D} \equiv 2 \pi / e$, the result that would be obtained by substituting the electron charge into Eq. (96.1). On the other hand, for monopoles without color-magnetic charge, one would simply insert the quark electric charges into Eq. 96.1 and conclude that Q_{M} must be a multiple of $6 \pi / e$.

The prediction of GUT monopoles arises from the work of 't Hooft [5] and Polyakov [6], who showed that certain spontaneously broken gauge theories have nonsingular classical solutions that lead to magnetic monopoles in the quantum theory. The simplest example occurs in a theory where the vacuum expectation value of a triplet Higgs field \mathbf{W} breaks an $\mathrm{SU}(2)$ gauge symmetry down to the $\mathrm{U}(1)$ of electromagnetism and gives a mass M_{V} to two of the gauge bosons. In order to have finite energy, \mathbf{C} must approach a vacuum value at infinity. However, there is a continuous family of possible vacua, since the scalar field potential determines only the magnitude v of $\langle\mathbf{C}\rangle$, but not its orientation in the internal $\mathrm{SU}(2)$ space. In the monopole solution, the direction of \mathbf{E} in internal space is correlated with the position in physical space; i.e., $\phi^{a} \sim v \hat{r}^{a}$. The stability of the solution follows from the fact that this twisting Higgs field cannot be smoothly deformed to a spatially uniform vacuum configuration. Reducing the energetic cost of the spatial variation of \mathbf{E} requires a nonzero gauge potential, which turns out to yield the magnetic field corresponding to a charge $Q_{M}=4 \pi / e$. Numerical solution of the classical field equations shows that the mass of this monopole is

$$
\begin{equation*}
M_{\mathrm{mon}} \sim \frac{4 \pi M_{V}}{e^{2}} \tag{96.4}
\end{equation*}
$$

The essential ingredient here was the fact that the Higgs fields at spatial infinity could be arranged in a topologically nontrivial configuration. A discussion of the general conditions under which this is possible is beyond the scope of this review, so we restrict ourselves to the two phenomenologically most important cases.

The first is the standard electroweak theory, with $\mathrm{SU}(2) \times \mathrm{U}(1)$ broken to $\mathrm{U}(1)$. There are no topologically nontrivial configurations of the Higgs field, and hence no topologically stable monopole solutions.

The second is when any simple Lie group is broken to a subgroup with a $\mathrm{U}(1)$ factor, a case that includes all grand unified theories. The monopole mass is determined by the mass scale of the symmetry breaking that allows nontrivial topology. For example, an $\mathrm{SU}(5)$ model with

$$
\begin{equation*}
\mathrm{SU}(5) \xrightarrow{M_{X}} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{M_{W}} \mathrm{SU}(3) \times \mathrm{U}(1) \tag{96.5}
\end{equation*}
$$

has a monopole [7] with $Q_{M}=2 \pi / e$ and mass

$$
\begin{equation*}
M_{\mathrm{mon}} \sim \frac{4 \pi M_{\mathrm{X}}}{g^{2}} \tag{96.6}
\end{equation*}
$$

where g is the $\mathrm{SU}(5)$ gauge coupling. For a unification scale of $10^{16} \mathrm{GeV}$, these monopoles would have a mass $M_{\text {mon }} \sim 10^{17}-$ $10^{18} \mathrm{GeV}$.

In theories with several stages of symmetry breaking, monopoles of different mass scales can arise. In an $\mathrm{SO}(10)$ theory with

$$
\begin{equation*}
\mathrm{SO}(10) \xrightarrow{M_{1}} \mathrm{SU}(4) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \xrightarrow{M_{2}} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \tag{96.7}
\end{equation*}
$$

there is monopole with $Q_{M}=2 \pi / e$ and mass $\sim 4 \pi M_{1} / g^{2}$ and a much lighter monopole with $Q_{M}=4 \pi / e$ and mass $\sim 4 \pi M_{2} / g^{2}$ [8].

The central core of a GUT monopole contains the fields of the superheavy gauge bosons that mediate baryon number violation, so one might expect that baryon number conservation could be violated in baryon-monopole scattering. The surprising feature, pointed out by Callan [9] and Rubakov [10], is that these processes are not suppressed by powers of the gauge boson mass. Instead, the cross-sections for catalysis processes such as $p+$ monopole $\rightarrow e^{+}+\pi^{0}+$ monopole are essentially geometric; i.e., $\sigma_{\Delta B} \beta \sim 10^{-27} \mathrm{~cm}^{2}$, where $\beta=v / c$. Note, however, that this catalysis is model-dependent and is not even a universal property of all GUT monopoles.

96.2 Production and Annihilation

GUT monopoles are far too massive to be produced in any foreseeable accelerator. However, they could have been produced in the early universe as topological defects arising via the Kibble mechanism [11] in a symmetry-breaking phase transition. Estimates of the initial monopole abundance, and of the degree to which it can be reduced by monopole-antimonopole annihilation, predict a present-day monopole abundance that exceeds by many orders of magnitude the astrophysical and experimental bounds described below [12]. Cosmological inflation and other proposed solutions to this primordial monopole problem generically lead to present-day abundances exponentially smaller than could be plausibly detected, although potentially observable abundances can be obtained in scenarios with carefully tuned parameters.

If monopoles light enough to be produced at colliders exist, one would expect that these could be produced by analogs of the electromagnetic processes that produce pairs of electrically charged particles. Because of the large size of the magnetic charge, this is a strong coupling problem for which perturbation theory cannot be trusted. Indeed, the problem of obtaining reliable quantitative estimates of the production cross-sections remains an open one, on which there is no clear consensus.

96.3 Astrophysical and Cosmological Bounds

If there were no galactic magnetic field, one would expect monopoles in the galaxy to have typical velocities of the order of $10^{-3} c$, comparable to the virial velocity in the galaxy (relevant if the monopoles cluster with the galaxy) and the peculiar velocity of the galaxy with respect to the CMB rest frame (relevant
if the monopoles are not bound to the galaxy). This situation is modified by the existence of a galactic magnetic field $B \sim 3 \mu \mathrm{G}$. A monopole with the Dirac charge and mass M would be accelerated by this field to a velocity

$$
v_{\mathrm{mag}} \sim \begin{cases}c, & M \lesssim 10^{11} \mathrm{GeV} \tag{96.8}\\ 10^{-3} c\left(\frac{10^{17} \mathrm{GeV}}{M}\right)^{1 / 2}, & M \gtrsim 10^{11} \mathrm{GeV}\end{cases}
$$

Accelerating these monopoles drains energy from the magnetic field. Parker [13] obtained an upper bound on the flux of monopoles in the galaxy by requiring that the rate of this energy loss be small compared to the time scale on which the galactic field can be regenerated. With reasonable choices for the astrophysical parameters (see Ref. [14] for details), this Parker bound is

$$
F< \begin{cases}10^{-15} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{sec}^{-1}, & M \lesssim 10^{17} \mathrm{GeV} \tag{96.9}\\ 10^{-15}\left(\frac{M}{10^{17} \mathrm{GeV}}\right) \mathrm{cm}^{-2} \mathrm{sr}^{-1} \mathrm{sec}^{-1}, & M \gtrsim 10^{17} \mathrm{GeV}\end{cases}
$$

Applying similar arguments to an earlier seed field that was the progenitor of the current galactic field leads to a tighter bound [15],

$$
\begin{equation*}
F<\left[\frac{M}{10^{17} \mathrm{GeV}}+\left(3 \times 10^{-6}\right)\right] 10^{-16} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{sec}^{-1} \tag{96.10}
\end{equation*}
$$

Considering magnetic fields in galactic clusters gives a bound [16] which, although less secure, is about three orders of magnitude lower than the Parker bound.

A flux bound can also be inferred from the total mass of monopoles in the universe. If the monopole mass density is a fraction Ω_{M} of the critical density, and the monopoles were uniformly distributed throughout the universe, there would be a monopole flux
$F_{\text {uniform }}=1.3 \times 10^{-16} \Omega_{M}\left(\frac{10^{17} \mathrm{GeV}}{M}\right)\left(\frac{v}{10^{-3} c}\right) \mathrm{cm}^{-2} \mathrm{sr}^{-1} \mathrm{sec}^{-1}$
If we assume that $\Omega_{M} \sim 0.1$, this gives a stronger constraint than the Parker bound for $M \sim 10^{15} \mathrm{GeV}$. However, monopoles with masses $\sim 10^{17} \mathrm{GeV}$ are not ejected by the galactic field and can be gravitationally bound to the galaxy. In this case their flux within the galaxy is increased by about five orders of magnitude for a given value of Ω_{M}, and the mass density bound only becomes stronger than the Parker bound for $M \sim 10^{18} \mathrm{GeV}$.

A much more stringent flux bound applies to GUT monopoles that catalyze baryon number violation. The essential idea is that compact astrophysical objects would capture monopoles at a rate proportional to the galactic flux. These monopoles would then catalyze proton decay, with the energy released in the decay leading to an observable increase in the luminosity of the object. A variety of bounds, based on neutron stars [17-21], white dwarfs [22], and Jovian planets [23] have been obtained. These depend in the obvious manner on the catalysis cross section, but also on the details of the astrophysical scenarios; e.g., on how much the accumulated density is reduced by monopole-antimonopole annihilation, and on whether monopoles accumulated in the progenitor star survive its collapse to a white dwarf or neutron star. The bounds obtained in this manner lie in the range

$$
\begin{equation*}
F\left(\frac{\sigma_{\Delta B} \beta}{10^{-27} \mathrm{~cm}^{2}}\right) \sim\left(10^{-18}-10^{-29}\right) \mathrm{cm}^{-2} \mathrm{sr}^{-1} \mathrm{sec}^{-1} \tag{96.12}
\end{equation*}
$$

It is important to remember that not all GUT monopoles catalyze baryon number nonconservation. In particular, the intermediate mass monopoles that arise in some GUTs at later stages of symmetry-breaking are examples of theoretically motivated monopoles that are exempt from the bound of the above equation.

96.4 Searches for Magnetic Monopoles

To date there have been no confirmed observations of exotic particles possessing magnetic charge. Precision measurements of the properties of known particles have led to tight limits on the values of magnetic charge they may possess. Using the induction method (see below), the electron's magnetic charge has been found to be $Q_{e}^{m}<10^{-24} Q_{M}^{D}$ [24] (where Q_{M}^{D} is the Dirac charge). Furthermore, measurements of the anomalous magnetic moment of the muon have been used to place a model dependent lower limit of 120 GeV on the monopole mass ${ }^{1}$ [25]. Nevertheless, guided mainly by Dirac's argument and the predicted existence of monopoles from spontaneous symmetry breaking mechanisms, searches have been routinely made for monopoles produced at accelerators, in cosmic rays, and bound in matter [26]. Although the resultant limits from such searches are usually made under the assumption of a particle possessing only magnetic charge, most of the searches are also sensitive to dyons.

96.5 Search Techniques

Search strategies are determined by the expected interactions of monopoles as they pass through matter. These would give rise to a number of striking characteristic signatures. Since a complete description of monopole search techniques falls outside of the scope of this minireview, only the most common methods are described below. More comprehensive descriptions of search techniques can be found in Refs. [27] [28].
The induction method exploits the long-ranged electromagnetic interaction of the monopole with the quantum state of a superconducting ring which would lead to a monopole which passes through such a ring inducing a permanent current. The induction technique typically uses Superconducting Quantum Interference Devices (SQUID) technology for detection and is employed for searches for monopoles in cosmic rays and matter. Another approach is to exploit the electromagnetic energy loss of monopoles. Monopoles with Dirac charge would typically lose energy at a rate which is several thousand times larger than that expected from particles possessing the elementary electric charge. Consequently, scintillators, gas chambers and nuclear track detectors (NTDs) have been used in cosmic ray and collider experiments. A further approach, which has been used at colliders, is to search for particles describing a non-helical path in a uniform magnetic field.

96.5.1 Searches for Monopoles Bound in Matter

Monopoles have been sought in a range of bulk materials which it is assumed would have absorbed incident cosmic ray monopoles over a long exposure time of order million years. Materials which have been studied include moon rock, meteorites, manganese modules, and sea water $[29,30]$. A stringent upper limit on the monopoles per nucleon ratio of $\sim 10^{-29}$ has been obtained [30].

96.5.2 Searches in Cosmic Rays

Direct searches for monopoles in cosmic rays refer to those experiments in which the passage of the monopole is measured by an active detector. Searches made assuming a catalysis processes in which GUT monopoles could induce nucleon decay are discussed in the next section. To interpret the results of the non-catalysis searches, the cross section for the catalysis process is typically either set to zero [31] or assigned a modest value (1mb) [32].
Although early cosmic ray searches using the induction technique [33] and NTDs [34] observed monopole candidates, none of these apparent observations have been confirmed. Recent experiments have typically employed large scale detectors. The MACRO experiment at the Gran Sasso underground laboratory comprised three different types of detector: liquid scintillator, limited stream tubes, and NTDs, which provided a total acceptance of $\sim 10000 \mathrm{~m}^{2}$ for an isotropic flux. As shown in Fig. 96.1, this experiment has so far provided the most extensive β-dependent flux limits for GUT monopoles with Dirac charge [32]. Also shown are limits from an experiment at the OHYA mine in Japan [31], which used a $2000 \mathrm{~m}^{2}$ array of NTDs.

In Fig. 96.1, upper flux limits are also shown as a function of mass for monopole speed $\beta>0.05$. In addition to MACRO

[^98]

Figure 96.1: Upper flux limits for (left) GUT monopoles as a function of β (right) Monopoles as a function of mass for $\beta>0.05$.
and OYHA flux limits, results from the SLIM [35] high-altitude experiment are shown. The SLIM experiment provided a good sensitivity to intermediate mass monopoles $\left(10^{5} \lesssim M \lesssim 10^{12}\right.$ GeV). In addition to the results shown in Fig. 96.1, limits as low as $\sim 1.5 \times 10^{-18} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ were obtained for monopoles with $\beta>0.51$ and $\beta>0.6$ by the IceCube [36] and Antares [37] experiments, respectively. Stringent constraints on the flux of ultra-relativistic monopoles have been obtained at the Pierre Auger Observatory [38] which was sensitive to monopoles with γ values ranging from 10^{9} to 10^{12}, leading to flux limits in the range $10^{-15}-2.5 \times 10^{-21} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The RICE [39] and ANITA-II experiments [40] at the South Pole have also sought ultra-relativistic monopoles with γ values of $10^{7} \lesssim \gamma \lesssim 10^{12}$ and $10^{9} \lesssim \gamma \lesssim 10^{13}$, respectively, and which produced flux limits as low as $2 . \tilde{5} \times 10^{-21} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{Sr}^{-1}$.

96.5.3 Searches via the Catalysis of Nucleon-Decay

Searches have been performed for evidence of the catalysed decay of a nucleon by a monopole, as predicted by the CallanRubakov mechanism. The searches are thus sensitive to the assumed value of the catalysis decay cross section. Searches have been made with the Soudan [41] and Macro [42] experiments, using tracking detectors. Searches at IMB [43], the underwater Lake Baikal experiment [44] and the The IceCube experiment [45] which exploit the Cerenkov effect have also been made. The resulting β-dependent flux limits from these experiments typically vary between $\sim 10^{-18}$ and $\sim 10^{-14} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{~s}^{-1}$. A recent search for low energy neutrinos (assumed to be produced from induced proton decay in the sun) was made at Super-Kamiokande [46]. A model- and β-dependent of limit of $6.3 \times 10^{-24}\left(\frac{\beta}{10^{-3}}\right)^{2} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{~s}^{-1}$ was obtained.

96.5.4 Searches at Colliders

Searches have been performed at hadron-hadron, electronpositron and lepton-hadron experiments. Collider searches can be broadly classed as being direct or indirect. In a direct search, evidence of the passage of a monopole through material, such as a charged particle track, is sought. In indirect searches, virtual monopole processes are assumed to influence the production rates of certain final states.

96.5.4.1 Direct Searches at Colliders

Collider experiments typically express their results in terms of upper limits on a production cross section and/or monopole mass. To calculate these limits, ansatzes are used to model the kinematics of monopole-antimonopole pair production processes since perturbative field theory cannot be used to calculate the rate and kinematic properties of produced monopoles. Limits therefore suffer from a degree of model-dependence, implying that a comparison between the results of different experiments can be problematic, in particular when this concerns excluded mass re-
gions. A conservative approach with as little model-dependence as possible is thus to present representative values of the upper cross-section limits as a function of one half the centre-of-mass energy of the collisions, as shown in Fig. 96.2 for recent results from high energy colliders.

Figure 96.2: Upper limits on the production cross sections of monopoles from various collider-based experiments.

Searches for monopoles produced at the highest available energies in hadron-hadron collisions were made in $p p$ collisions at the LHC by the ATLAS [47, 48] and MoEDAL $[49,50]$ experiments. The experiments looked for highly ionising particles leaving characteristic energy deposition profiles and stopped monopoles with the induction method, respectively. The charge-dependent mass limits extend up to around 4 TeV . The ATLAS work considers monopoles with $0.5 Q_{M}^{D}$ and $2 Q_{M}^{D}$ while MoEDAL quotes limits for monopoles with charges from Q_{M}^{D} to $5 Q_{M}^{D}$. MoEDAL considered monopole-pair production via photon fusion along with, as is commonly used in hadron-hadron collisions, Drell-Yan processes [51]. Tevatron searches have also been carried out by the CDF [52] and E882 [53] experiments. The CDF experiment used a dedicated time-of-flight system whereas the E882 experiment employed the induction technique to search for stopped monopoles in discarded detector material which had been part of the CDF and D0 detectors using periods of luminosity. Earlier searches at the Tevatron, such as [54], used NTDs and were based on comparatively modest amounts of integrated luminosity. Lower energy hadron-hadron experiments have employed a variety of search techniques including plastic track detectors [55] and searches for trapped monopoles [56].
The only LEP-2 search was made by OPAL [57] which quoted
cross section limits for the production of monopoles possessing masses up to around 103 GeV . At LEP-1, searches were made with NTDs deployed around an interaction region. This allowed a range of charges to be sought for masses up to $\sim 45 \mathrm{GeV}$. The L6MODAL experiment [58] gave limits for monopoles with charges in the range $0.9 Q_{M}^{D}$ and $3.6 Q_{M}^{D}$, whilst an earlier search by the MODAL experiment was sensitive to monopoles with charges as low as $0.1 Q_{M}^{D}$ [59]. The deployment of NTDs around the beam interaction point was also used at earlier $e^{+} e^{-}$colliders such as KEK [60] and PETRA [61]. Searches at $e^{+} e^{-}$facilities have also been made for particles following non-helical trajectories [62] [63].

There has so far been one search for monopole production in lepton-hadron scattering. Using the induction method, monopoles were sought which could have stopped in the aluminium beampipe which had been used by the H1 experiment at HERA [64]. Cross section limits were set for monopoles with charges in the range $Q_{M}^{D}-6 Q_{M}^{D}$ for masses up to around 140 GeV .

96.5.4.2 Indirect Searches at Colliders

It has been proposed that virtual monopoles can mediate processes which give rise to multi-photon final-states [65] [66]. Photon-based searches were made by the D0 [67] and L3 [68] experiments. The D0 work led to spin-dependent lower mass limits of between 610 and 1580 GeV , while L3 reported a lower mass limit of 510 GeV . However, it should be stressed that uncertainties on the theoretical calculations which were used to derive these limits are difficult to estimate.

References

[1] P. A. M. Dirac, Proc. Roy. Soc. Lond. A133, 821, 60 (1931).
[2] J. S. Schwinger, Science 165, 757 (1969).
[3] F. Englert and P. Windey, Phys. Rev. D14, 2728 (1976).
[4] P. Goddard, J. Nuyts and D. I. Olive, Nucl. Phys. B125, 1 (1977).
[5] G. 't Hooft, Nucl. Phys. B79, 276 (1974).
[6] A. M. Polyakov, JETP Lett. 20, 194 (1974).
[7] C. P. Dokos and T. N. Tomaras, Phys. Rev. D21, 2940 (1980).
[8] G. Lazarides and Q. Shafi, Phys. Lett. 94B, 149 (1980).
[9] C. G. Callan, Jr., Phys. Rev. D26, 2058 (1982).
[10] V. A. Rubakov, Nucl. Phys. B203, 311 (1982).
[11] T. W. B. Kibble, J. Phys. A9, 1387 (1976).
[12] J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).
[13] E. N. Parker, Astrophys. J. 160, 383 (1970).
[14] M. S. Turner, E. N. Parker and T. J. Bogdan, Phys. Rev. D26, 1296 (1982).
[15] F. C. Adams et al., Phys. Rev. Lett. 70, 2511 (1993).
[16] Y. Rephaeli and M. S. Turner, Phys. Lett. 121B, 115 (1983).
[17] E. W. Kolb, S. A. Colgate and J. A. Harvey, Phys. Rev. Lett. 49, 1373 (1982).
[18] S. Dimopoulos, J. Preskill and F. Wilczek, Phys. Lett. 119B, 320 (1982).
[19] K. Freese, M. S. Turner and D. N. Schramm, Phys. Rev. Lett. 51, 1625 (1983).
[20] E. W. Kolb and M. S. Turner, Astrophys. J. 286, 702 (1984).
[21] J. A. Harvey, Nucl. Phys. B236, 255 (1984).
[22] K. Freese and E. Krasteva, Phys. Rev. D59, 063007 (1999), [arXiv:astro-ph/9804148].
[23] J. Arafune, M. Fukugita and S. Yanagita, Phys. Rev. D32, 2586 (1985).
[24] L. L. Vant-Hull, Phys. Rev. 173, 1412 (1968).
[25] S. Graf, A. Schaefer and W. Greiner, Phys. Lett. B262, 463 (1991).
[26] Review of Particle Physics 2020 (this paper), listing on Searches for Magnetic Monopoles.
[27] L. Patrizii and M. Spurio, Ann. Rev. Nucl. Part. Sci. 65, 279 (2015), [arXiv:1510.07125].
[28] M. Fairbairn et al., Phys. Rept. 438, 1 (2007), [hepph/0611040].
[29] J. M. Kovalik and J. L. Kirschvink, Phys. Rev. A33, 1183 (1986).
[30] H. Jeon and M. J. Longo, Phys. Rev. Lett. 75, 1443 (1995), [Erratum: Phys. Rev. Lett.76,159(1996)], [hep-ex/9508003].
[31] S. Orito et al., Phys. Rev. Lett. 66, 1951 (1991).
[32] M. Ambrosio et al. (MACRO), Eur. Phys. J. C25, 511 (2002), [hep-ex/0207020].
[33] B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).
[34] P. B. Price et al., Phys. Rev. Lett. 35, 487 (1975).
[35] S. Balestra et al., Eur. Phys. J. C55, 57 (2008), [arXiv:0801.4913].
[36] M. G. Aartsen et al. (IceCube), Eur. Phys. J. C76, 3, 133 (2016), [arXiv:1511.01350].
[37] A. Albert et al. (ANTARES), JHEP 07, 054 (2017), [arXiv:1703.00424].
[38] A. Aab et al. (Pierre Auger), Phys. Rev. D94, 8, 082002 (2016), [arXiv:1609.04451].
[39] D. P. Hogan et al., Phys. Rev. D78, 075031 (2008), [arXiv:0806.2129].
[40] M. Detrixhe et al. (ANITA-II), Phys. Rev. D83, 023513 (2011), [arXiv:1008.1282].
[41] J.E. Bartelt et al., Phys. Rev. D36, 1990 (1987) [Erratumibid. D40, 1701 (1989)].
[42] M. Ambrosio et al. (MACRO), Eur. Phys. J. C26, 163 (2002), [hep-ex/0207024].
[43] R. Becker-Szendy et al., Phys. Rev. D49, 2169 (1994).
[44] V. A. Balkanov et al. (Baikal), Prog. Part. Nucl. Phys. 40, 391 (1998), [arXiv:astro-ph/9801044].
[45] M. G. Aartsen et al. (IceCube), Eur. Phys. J. C74, 7, 2938 (2014), [Erratum: Eur. Phys. J.C79,no.2,124(2019)], [arXiv:1402.3460].
[46] K. Ueno et al. (Super-Kamiokande), Astropart. Phys. 36, 131 (2012), [arXiv:1203.0940].
[47] G. Aad et al. (ATLAS), Phys. Rev. D93, 5, 052009 (2016), [arXiv:1509.08059].
[48] G. Aad et al. (ATLAS) (2019), [arXiv:1905.10130].
[49] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 118, 6, 061801 (2017), [arXiv:1611.06817].
[50] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 123, 2, 021802 (2019), [arXiv:1903.08491].
[51] S. Baines et al., Eur. Phys. J. C78, 11, 966 (2018), [Erratum: Eur. Phys. J.C79,no.2,166(2019)], [arXiv:1808.08942].
[52] A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 201801 (2006), [hep-ex/0509015].
[53] G. R. Kalbfleisch et al., Phys. Rev. D69, 052002 (2004), [hep-ex/0306045].
[54] P. B. Price, G.-X. Ren and K. Kinoshita, Phys. Rev. Lett. 59, 2523 (1987).
[55] B. Aubert et al., Phys. Lett. 120B, 465 (1983).
[56] R. A. Carrigan, F. A. Nezrick and B. P. Strauss, Phys. Rev. D8, 3717 (1973).
[57] G. Abbiendi et al. (OPAL), Phys. Lett. B663, 37 (2008), [arXiv:0707.0404].
[58] J. L. Pinfold et al., Phys. Lett. B316, 407 (1993).
[59] K. Kinoshita et al., Phys. Rev. D46, R881 (1992).
[60] K. Kinoshita et al., Phys. Lett. B228, 543 (1989).
[61] P. Musset, M. Price and E. Lohrmann, Phys. Lett. 128B, 333 (1983).
[62] T. Gentile et al. (CLEO), Phys. Rev. D35, 1081 (1987).
[63] W. Braunschweig et al. (TASSO), Z. Phys. C38, 543 (1988).
[64] A. Aktas et al. (H1), Eur. Phys. J. C41, 133 (2005), [hepex/0501039].
[65] A. De Rujula, Nucl. Phys. B435, 257 (1995), [hepth/9405191].
[66] I. F. Ginzburg and A. Schiller, Phys. Rev. D60, 075016 (1999), [hep-ph/9903314].
[67] B. Abbott et al. (D0), Phys. Rev. Lett. 81, 524 (1998), [hepex/9803023].
[68] M. Acciarri et al. (L3), Phys. Lett. B345, 609 (1995).

VOLUME II: TABLE OF CONTENTS

PARTICLE LISTINGS*

Illustrative key and abbreviations
 999

Gauge and Higgs bosons

(γ, gluon, graviton, W, Z, Higgs, Axions) 1013

Leptons

(e, μ, τ, Heavy-charged lepton searches, 1101
Neutrino properties, Number of neutrino types
Double- β decay, Neutrino mixing,
Heavy-neutral lepton searches)
Quarks
$\left(u, d, s, c, b, t, b^{\prime}, t^{\prime}\left(4^{t h}\right.\right.$ gen.), Free quarks) 1173
Mesons
Light unflavored $(\pi, \rho, a, b)(\eta, \omega, f, \phi, h) \quad 1209$
Other light unflavored 1332
Strange $\left(K, K^{*}\right) \quad 1337$
Charmed (D, D^{*}) 1391
Charmed, strange $\left(D_{s}, D_{s}^{*}, D_{s J}\right) 1448$
Bottom ($B, V_{c b} / V_{u b}, B^{*}, B_{J}^{*}$) 1465
Bottom, strange $\left(B_{s}, B_{s}^{*}, B_{s J}^{*}\right) \quad 1640$
Bottom, charmed $\left(B_{c}\right) \quad 1664$
$c \bar{c}\left(\eta_{c}, J / \psi(1 S), \chi_{c}, h_{c}, \psi\right) 1668$
$b \bar{b}\left(\eta_{b}, \Upsilon, \chi_{b}, h_{b}\right) \quad 1782$
Baryons
$N \quad 1825$
$\Delta \quad 1878$
$\Lambda 1902$
$\Sigma 1927$
$\Xi \quad 1959$
$\Omega \quad 1971$
Charmed $\left(\Lambda_{c}, \Sigma_{c}, \Xi_{c}, \Omega_{c}\right) \quad 1974$
Doubly charmed $\left(\Xi_{c c}\right) \quad 1996$
Bottom ($\Lambda_{b}, \Sigma_{b}, \Xi_{b}, \Omega_{b}, b$-baryon admixture) 1997
Exotic baryons (P_{c} pentaquarks) 2014
Searches not in Other Sections
Magnetic monopole searches 2017
Supersymmetric particle searches 2019
Technicolor 2062
Searches for quark and lepton compositeness 2063
Extra dimensions 2067
WIMP and dark matter searches 2073
Other particle searches 2085

INTRODUCTION TO THE PARTICLE LISTINGS

Illustrative key 999
Abbreviations 1000

Indicator of Procedure Used to Obtain Our Result
OUR AVERAGE From a weighted average of selected data.
OUR FIT
From a constrained or overdetermined multiparameter fit of selected data.
OUR EVALUATION Not from a direct measurement, but evaluated from measurements of other quantities.
OUR ESTIMATE Based on the observed range of the data. Not from a formal statistical procedure.
OUR LIMIT For special cases where the limit is evaluated by us from measured ratios or other data. Not from a direct measurement

Measurement Techniques

(i.e., Detectors and Methods of Analysis)

A1 A1 Collaboration at MAMI
A2MM A2 spectrometer at the Mainz Microtron, MAMI
ABRA ABRACADABRA QCD axion dark matter search
ACCM ACCMOR Collaboration
ADMX Axion Dark Matter Experiment
AEMS Argonne effective mass spectrometer
ALEP ALEPH - CERN LEP detector
ALPS Photon regeneration experiment
AMND AMANDA South Pole neutrino detector
AMY AMY detector at KEK-TRISTAN
ANAI Direct DM detection exp. with NaI at Canfranc Underground Lab, Spain
ANIT Antarctic Impulsive Transient Antenna balloon mission
ANTR ANTARES underwater neutrino telescope in the Western Mediterranean Sea
APEX FNAL APEX Collab.
ARG ARGUS detector at DORIS
ARGD Fit to semicircular amplitude path on Argand diagram
ASP Anomalous single-photon detector
ASPK Automatic spark chambers
ASTE ASTERIX detector at LEAR
ASTR Astronomy
ATLS ATLAS detector at CERN LHC
AUGE Pierre Auger Observatory
AURG Resonant-mass gravitational wave AURIGA detector
B787 BNL experiment 787 detector
B791 BNL experiment 791 detector
B845 BNL experiment 845 detector
B852 BNL E-852
B865 BNL E865 detector
B871 BNL experiment 871 detector
B949 BNL E949 detector at AGS
BABR BaBar Collab.
BAIK Lake Baikal neutrino telescope
BAKS Baksan underground scintillation telescope
BC Bubble chamber
BDMP Beam dump
BEAT CERN BEATRICE Collab.
BEBC Big European bubble chamber at CERN
BELL Belle Collab.
BES BES Beijing Spectrometer at Beijing Electron-Positron Collider
BES2 BES Beijing Spectrometer at Beijing Electron-Positron Collider
BES3 BES Beijing Spectrometer at Beijing Electron-Positron Collider
BIS2 BIS-2 spectrometer at Serpukhov
BKEI BENKEI spectrometer system at KEK Proton Synchroton
BOLO Bolometer, a cryogenic thermal detector
BONA Bonanza nonmagnetic detector at DORIS
BORX BOREXINO
BPWA Barrelet-zero partial-wave analysis
C100 COSINE-100 experiment in South Korea
CALO Calorimeter
CAST CAST experiment at CERN
CBAL Crystal Ball detector at SLAC-SPEAR or DORIS
CBAR Crystal Barrel detector at CERN-LEAR
CBOX Crystal Box at LAMPF
CBTP CBELSA/TAPS Collaboration
CC Cloud chamber
CCFR Columbia-Chicago-Fermilab-Rochester detector
CDEX China Dark Matter Experiment
CDF Collider detector at Fermilab
CDF2 CDF-II Collab.
CDHS CDHS neutrino detector at CERN
CDM2 CDMS II, Cryogenic Dark Matter Search at Soudan Underground Lab.

CDMS CDMS Collaboration
CELL CELLO detector at DESY
CGNT CoGeNT dark matter search experiment
CHER Cherenkov detector
CHM2 CHARM-II neutrino detector (glass) at CERN
CHOZ Nuclear Power Station near Chooz, France
CHRM CHARM neutrino detector (marble) at CERN
CHRS CHORUS Collaboration - CERNS SPS
CIB Cosmic Infrared Background
CIBS CERN-IHEP boson spectrometer
CLAS Jefferson CLAS Collab.
CLE2 CLEO II detector at CESR
CLE3 CLEO III detector at CESR
CLEC CLEO-c detector at CESR
CLEO Cornell magnetic detector at CESR
CMB Cosmic Microwave Background
CMD Cryogenic magnetic detector at VEPP-2M, Novosibirsk
CMD2 Cryogenic magnetic detector 2 at VEPP-2M, Novosibirsk
CMD3 Cryogenic magnetic detector 3 at VEPP-2000, Novosibirsk
CMS CMS detector at CERN LHC
CNTR Counters
COMB Combined analysis of data from independent experiments.
COMP COMPASS experiment at the CERN SPS
COSM Cosmology and astrophysics
COSY COSY-TOF Collaboration
COUP COUPP (the Chicagoland Observatory for Underground Particle Physics) Collab.
CPLR CPLEAR Collaboration
CRBT Crystal Ball and TAPS detector at MAMI
CRES CRESST cryogenic detector
CRYB Crystal Ball at BNL
CRYM Crystal Ball detector at Mainz Microtron MAMI
CSB2 Columbia U. - Stony Brook BGO calorimeter inserted in NaI array
CSME COSME Collaboration
CUOR CUORICINO experiment at Gran Sasso Laboratory.
CUSB Columbia U. - Stony Brook segmented NaI detector at CESR
D0 D0 detector at Fermilab Tevatron Collider
DAMA DAMA, dark matter detector at Gran Sasso National Lab.
DASP DESY double-arm spectrometer
DAYA Daya Bay Collaboration
DBC Deuterium bubble chamber
DCHZ Double Chooz Collaboration
DEAP DEAP-3600 DM search with argon at SNOLAB
DISP Graviton mass measurement based on dispersion measure
DLCO DELCO detector at SLAC-SPEAR or SLAC-PEP
DLPH DELPHI detector at LEP
DM1 Magnetic detector no. 1 at Orsay DCI collider
DM2 Magnetic detector no. 2 at Orsay DCI collider
DMIC DAMIC Dark Matter in CCD experiment at Fermilab
DMTP Dark Matter Time Projection Chamber (DMTPC) directional detection experiment
DONU DONUT Collab.
DPWA Energy-dependent partial-wave analysis
DRFT Directional dark matter detector at Boulby Underground Science Facility
DS50 DarkSide-50 Liquid Argon TPC at Gran Sasso National Laboratory
E137 SLAC E137 beam-dump experiment
E621 Fermilab E621 detector
E653 Fermilab E653 detector
E665 Fermilab E665 detector
E687 Fermilab E687 detector
E691 Fermilab E691 detector
E705 Fermilab E705 Spectrometer-Calorimeter
E731 Fermilab E731 Spectrometer-Calorimeter
E756 Fermilab E756 detector
E760 Fermilab E760 detector
E761 Fermilab E761 detector
E771 Fermilab E771 detector
E773 Fermilab E773 Spectrometer-Calorimeter
E789 Fermilab E789 detector
E791 Fermilab E791 detector
E799 Fermilab E799 Spectrometer-Calorimeter
E835 Fermilab E835 detector
EDE2 EDELWEISS II dark matter search Collaboration
EDE3 EDELWEISS III dark matter search Collaboration
EDEL EDELWEISS dark matter search Collaboration
EHS Four-pi detector at CERN

ELEC	Electronic combination	KOLR	Kolar Gold Field underground detector
EMC	European muon collaboration detector at CERN	KOTO	KOTO experiment with K_{L}^{0} beam at J-PARC
EMUL	Emulsions	KTEV	KTeV Collaboration
ESR	Electron spin resonance spectroscopy	L3	L3 detector at LEP
FAST	Fiber Active Scintillator Target detector at PSI	LASR	Laser
FBC	Freon bubble chamber	LASS	Large-angle superconducting solenoid spectrometer at SLAC
FENI	FENICE (at the ADONE collider of Frascati)	LATT	Lattice calculations
FIT	Fit to previously existing data	LEBC	Little European bubble chamber at CERN
FLAT	Large Area Telescope onboard the Fermi Gamma-Ray Space	LEGS	BNL LEGS Collab.
	Telescope (Fermi-LAT)	LENA	Nonmagnetic lead-glass NaI detector at DORIS
FMPS	Fermilab Multiparticle Spectrometer	LEP	From combination of all 4 LEP experiments: ALEPH, DELPHI,
FOCS	FNAL E831 FOCUS Collab.		L3, OPAL
FRAB	ADONE $B \bar{B}$ group detector	LEPS	Low-Energy Pion Spectrometer at the Paul Scherrer Institute
FRAG	ADONE $\gamma \gamma$ group detector	LGW	Lead Glass Wall collaboration at SPEAR/SLAC
FRAM	ADONE MEA group detector	LHC	Combined analysis of LHC experiments
FREJ	FREJUS Collaboration - modular flash chamber detector (calorimeter)	$\begin{aligned} & \text { LHCB } \\ & \mathrm{L}+\mathrm{P} \end{aligned}$	LHCb detector at CERN LHC Multichannel $\mathrm{L}+\mathrm{P}$ model fit
GA24	Hodoscope Cherenkov γ calorimeter (IHEP GAMS-2000) (CERN GAMS-4000)	$\begin{aligned} & \text { LSD } \\ & \text { LSND } \end{aligned}$	Mont Blanc liquid scintillator detector Liquid Scintillator Neutrino Detector
GALX	GALLEX solar neutrino detector in the Gran Sasso Underground Lab.	$\begin{aligned} & \text { LSW } \\ & \text { LUX } \end{aligned}$	Light Shining through a Wall Large Underground Xenon experiment at SURF
GAM2	IHEP hodoscope Cherenkov γ calorimeter GAMS-2000	MAC	MAC detector at PEP/SLAC
GAM4	CERN hodoscope Cherenkov γ calorimeter GAMS-4000	MAJD	Majorana Demonstrator experiment at SURF
GAMS	IHEP hodoscope Cherenkov γ calorimeter GAMS-4	MBNE	Fermilab MiniBooNE neutrino experiment
GNO	Gallium Neutrino Observatory in the Gran Sasso Underground	MBR	Molecular beam resonance technique
	Lab.	MCRO	MACRO detector in Gran Sasso
GOLI	CERN Goliath spectrometer	MD1	Magnetic detector at VEPP-4, Novosibirsk
GRAL	GRAAL Collaboration	MDRP	Millikan drop measurement
H1	H1 detector at DESY/HERA	MEG	Muon to electron conversion detector at PSI
HAWC	High Altitude Water Cherenkov Observatory experiment at	MGFL	MAGIC and Fermi-LAT Collaborations
	Sierra Negra, Mexico	MGIC	MAGIC Telescopes gamma-ray observatory
HBC	Hydrogen bubble chamber	MICA	Underground mica deposits
HDBC	Hydrogen and deuterium bubble chambers	MICR	MICROSCOPE satellite test of weak equivalence principle
HDES	HADES Collaboration at GSI in Darmstadt	MINS	Fermilab MINOS experiment
HDMO	Heidelberg-Moscow Experiment	MIRA	MIRABELLE Liquid-hydrogen bubble chamber
HDMS	Heidelberg Dark Matter Search Experiment	MLEV	Magnetic levitation
HEBC	Helium bubble chamber	MLS	Modified Laurent Series
HEPT	Helium proportional tubes	MMS	Missing mass spectrometer
HERA	H1 and ZEUS Collaborations at DESY/HERA	MOED	MoEDAL magnetic monopoles search experiment at LHC
HERB	HERA-B detector at DESY/HERA	MPS	Multiparticle spectrometer at BNL
HERM	HERMES detector at DESY/HERA	MPS2	Multiparticle spectrometer upgrade at BNL
HESS	High Energy Stereoscopic System gamma-ray instrument	MPSF	Multiparticle spectrometer at Fermilab
HFS	Hyperfine structure	MPWA	Model-dependent partial-wave analysis
HLBC	Heavy-liquid bubble chamber	MRK1	SLAC Mark-I detector
HOME	Homestake underground scintillation detector	MRK2	SLAC Mark-II detector
HPGE	High-purity Germanium detector	MRK3	SLAC Mark-III detector
HPS	Heavy Photon Search experiment at JLAB	MRKJ	Mark-J detector at DESY
HPW	Harvard-Pennsylvania-Wisconsin detector	MRS	Magnetic resonance spectrometer
HRS	SLAC high-resolution spectrometer	MUG2	Muon (g-2)
HYBR	Hybrid: bubble chamber + electronics	MWPC	Multi-Wire Proportional Chamber
HYCP	HyperCP Collab. (FNAL E-871)	NA14	CERN NA14
HYST	HAYSTAC axion search experiment	NA31	CERN NA31 Spectrometer-Calorimeter
IACT	Imaging Air Cherenkov Telescope	NA32 NA48	CERN NA48 Collaboration
ICAR	ICARUS experiment at Gran Sasso Laboratory.	NA49	CERN NA49 Collaboration
ICCB	IceCube neutrino detector at South Pole	NA60	CERN NA60 Collaboration
IGEX	IGEX Collab.	NA62	CERN NA62 Experiment
IMB	Irvine-Michigan-Brookhaven underground Cherenkov detector	NA64	CERN SPS NA64 Experiment
IMB3	Irvine-Michigan-Brookhaven underground Cherenkov detector	NAGE	NEWAGE, New generation WIMP-search experiment with ad-
INDU	Magnetic induction	NAGL	vanced gaseous tracking
IPWA	Energy-independent partial-wave analysis	NAIA	NAIAD (NaI Advanced Detector) dark matter search experi-
ISTR	IHEP ISTRA+ spectrometer-calorimeter		ment
JADE	JADE detector at DESY	ND	NaI detector at VEPP-2M, Novosibirsk
JPAC	Joint Physics Analysis Center (JPAC) Collaboration	NEOS	NEOS Collaboration
K246	KEK E246 detector with polarimeter	NEWS	NEWS-G direct dark matter search at LSM
K2K	KEK to Super-Kamiokande	NICE	Serpukhov nonmagnetic precision spectrometer
K391	KEK E391a detector	NMR	Nuclear magnetic resonance
K470	KEK-E470 Stopping K detector	NOMD	NOMAD Collaboration, CERN SPS
KAM2	KAMIOKANDE-II underground Cherenkov detector	NOVA	NOvA experiment with Fermilab's NuMI neutrino beam
KAMI	KAMIOKANDE underground Cherenkov detector	NTEV	NuTeV Collab. at Fermilab
KAR2	KARMEN2 calorimeter at the ISIS neutron spallation source at	nTRV	neutron Time-Reversal Violation
	Rutherford	NUSX	Mont Blanc NUSEX underground detector
KARM	KARMEN calorimeter at the ISIS neutron spallation source at	OBLX	OBELIX detector at LEAR
	Rutherford	OKA	OKA collaboration at U70 accelerator in Protvino, Russia
KEDR	detector operating at VEPP-4M collider (Novosibirsk)	OLYA	Detector at VEPP-2M and VEPP-4, Novosibirsk
KIMS	Korea Invisible Mass Search experiment at YangYang, Korea	OMEG	CERN OMEGA spectrometer
KLND	KamLand Collab. (Japan)	OPAL	OPAL detector at LEP
KLOE	KLOE detector at DAFNE (the Frascati e+e- collider Italy)	OPER	OPERA experiment with emulsion tracking at Gran Sasso

OSPK Optical spark chamber
PIBE The PIBETA detector at the Paul Scherrer Institute (PSI), Switzerland.
PICA PICASSO dark matter search experiment
PICO PICO bubble chamber experiment in SNOLAB underground laboratory
PIE3 π E3 beam-line of Paul Scherrer Institute
PLAS Plastic detector
PLUT DESY PLUTO detector
PMLA PAMELA space spectrometer on Resurs-DK1 satellite
PNDX PandaX dual-phase liquid xenon dark matter experiment at Jin-Ping
PPTA Parkes Pulsar Timing Array
PRMX The PRIMEX detector in Hall B at TJNAF
PWA Partial-wave analysis
QUAX QUAX axion search experiment
RDK2 NIST rare radioactive decay experiment
REDE Resonance depolarization
RENO RENO Collaboration
RICE Radio Ice Cherenkov Experiment
RVUE Review of previous data
SAGE US - Russian Gallium Experiment
SCDM SuperCDMS experiment at Soudan Underground Lab.
SELX FNAL SELEX Collab.
SENS Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI)
SFM CERN split-field magnet
SHF SLAC Hybrid Facility Photon Collaboration
SHUK SHUKET: search for $U(1)$ dark matter with an electromagnetic telescope
SIGM Serpukhov CERN-IHEP magnetic spectrometer (SIGMA)
SILI Silicon detector
SIMP SIMPLE, dark matter detector at Laboratori Nazionali del Sud
SKAM Super-Kamiokande Collab.
SLAX Solar Axion Experiment in Canfranc Underground Laboratory
SLD SLC Large Detector for $e^{+} e^{-}$colliding beams at SLAC
SMPL SIMPLE, Superheated Instrument for Massive ParticLe Experiments
SND Novosibirisk Spherical neutral detector at VEPP-2M
SNDR SINDRUM spectrometer at PSI
SNO SNO Collaboration (Sudbury Neutrino Observatory)
SNO+ SNO+ Collaboration (Sudbury Neutrino Observatory)
SOU2 Soudan 2 underground detector
SOUD Soudan underground detector
SPEC Spectrometer
SPED From maximum of speed plot or resonant amplitude
SPHR Bonn SAPHIR Collab.
SPNX SPHINX spectrometer at IHEP accelerator
SPRK Spark chamber
SQID SQUID device
STRC Streamer chamber
SVD2 SVD-2 experiment at IHEP, Protvino
T2K T2K Collaboration
TASS DESY TASSO detector
TEVA Combined analysis of CDF and DØ experiments
TEXO TEXONO Collab., ultra low energy Ge detector at Kuo-Sheng Laboratory
THEO Theoretical or heavily model-dependent result
TNF TNF-IHEP facility at 70 GeV IHEP accelerator
TOF Time-of-flight
TOPZ TOPAZ detector at KEK-TRISTAN
TPC TPC detector at PEP/SLAC
TPS Tagged photon spectrometer at Fermilab
TRAP Penning trap
TWST TWIST spectrometer at TRIUMF
UA1 UA1 detector at CERN
UA2 UA2 detector at CERN
UA5 UA5 detector at CERN
UCNA UCNA collaboration using polarizeed ultracold neutrons at LANSCE
UKDM UK Dark Matter Collab.
VES Vertex Spectrometer Facility at 70 GeV IHEP accelerator
VLBI Very Long Baseline Interferometer
VNS VENUS detector at KEK-TRISTAN
VRTS Very Energetic Radiation Imaging Telescope Array System (VERITAS)
WA75 CERN WA75 experiment
WA82 CERN WA82 experiment

WA89 CERN WA89 experiment
WARP Liquid argon detector for CDM searches at Gran Sasso
WASA WASA detector at CELSIUS, Uppsala and at COSY, Juelich
WDMX WISP Dark Matter eXperiment (WISPDMX) for direct hidden photon search
WIRE Wire chamber
X100 XENON100 dark matter search experiment at Gran Sasso National Laboratory
XE10 XENON10 experiment at Gran Sasso National Laboratory
XE1T XENON1T dark matter search experiment at Gran Sasso National Laboratory
XEBC Xenon bubble chamber
XMAS XMASS, liquid xenon scintillation detector at Kamioka Observatory
YUKA Graviton mass measurement based on Yukawa potential
ZEP2 ZEPLIN-II dark matter detector
ZEP3 ZEPLIN-III dark matter detector at Palmer Underground Lab.
ZEPL ZEPLIN-I galactic dark matter detector
ZEUS ZEUS detector at DESY/HERA

Conferences

Conferences are generally referred to by the location at which they were held (e.g., HAMBURG, TORONTO, CORNELL, BRIGHTON, etc.).

Journals

AA Astronomy and Astrophysics
ADVP Advances in Physics
AFIS Anales de Fisica
AJP American Journal of Physics
AL Astronomy Letters
ANP Annals of Physics
ANPL Annals of Physics (Leipzig)
ANYAS Annals of the New York Academy of Sciences
AP Atomic Physics
APAH Acta Physica Academiae Scientiarum Hungaricae
APJ Astrophysical Journal
APJS Astrophysical Journal Suppl.
APP Acta Physica Polonica
APS Acta Physica Slovaca
ARNPS Annual Review of Nuclear and Particle Science
ARNS Annual Review of Nuclear Science
ASP Astroparticle Physics
AST American Statistician
BAPS Bulletin of the American Physical Society
BASUP Bulletin of the Academy of Science, USSR (Physics)
CJNP Chinese Journal of Nuclear Physics
CJP Canadian Journal of Physics
CNPP Comments on Nuclear and Particle Physics
CP Chinese Physics
CPC Chinese Physics C
CTP Communications in Theoretical Physics
CZJP Czechoslovak Journal of Physics
DANS Doklady Akademii nauk SSSR
DP Doklady Physics (Magazine)
EPJ The European Physical Journal
EPL Europhysics Letters
FECAY Fizika Elementarnykh Chastits i Atomnogo Yadra
HADJ Hadronic Journal
IJMP International Journal of Modern Physics
JAP Journal of Applied Physics
JCAP Journal of Cosmology and Astroparticle Physics
JETP English Translation of Soviet Physics ZETF
JETPL English Translation of Soviet Physics ZETF Letters
JHEP Journal of High Energy Physics
JINR Joint Inst. for Nuclear Research
JINRRCJINR Rapid Communications
JP Journal of Physics
JPA Journal of Physics, A
JPB Journal of Physics, B
JPCRD Journal of Physical and Chemical Reference Data
JPCS Journal of Physics: Conference Series
JPG Journal of Physics, G
JPSJ Journal of the Physical Society of Japan
LNC Lettere Nuovo Cimento
MNRAS Monthly Notices of the Royal Astronomical Society
MPL Modern Physics Letters

NAST	New Astronomy	AMES	Ames Lab.	Ames, IA, USA
NAT	Nature	AMHT	Amherst College	Amherst, MA, USA
NATC	Nature Communications (NCAOBW)	AMST	Univ. van Amsterdam	GL Amsterdam, The Nether-
NATP	Nature Physics			lands
NC	Nuovo Cimento	ANIK	NIKHEF	Amsterdam, The Netherlands
NIM	Nuclear Instruments and Methods	ANKA	Middle East Technical	Ankara, Turkey
NJP	New Journal of Physics		Univ.; Dept. of Physics; Ex-	
NP	Nuclear Physics		perimental HEP Lab	
NPBPS	Nuclear Physics B Proceedings Supplement	ANL	Argonne National Lab.; High	Argonne, IL, USA
NPPP	Nuclear and Particle Physics Proceedings		Energy Physics Division,	
PAN	Physics of Atomic Nuclei (formerly SJNP)		Bldg. 362; Physics Division, Bldg. 203	
PD	Physics Doklady (Magazine)	ANSM	St. Anselm Coll.	Manchester, NH, USA
PDAT	Physik Daten	AQUI	Univ. di LAquila	Aquila, Italy
PL	Physics Letters	ARCBO	Arecibo Observatory	Arecibo, PR, USA
PN	Particles and Nuclei	ARIZ	Univ. of Arizona	Tucson, AZ, USA
PPCF	Plasma Physics and Controlled Fusion	ARZS	Arizona State Univ.	Tempe, AZ, USA
PPN	Physics of Particles and Nuclei (formerly SJPN) Physics of Particles and Nuclei Letters	ASCI	Russian Academy of Sciences	Moscow, Russian Federation
PPNP	Physics of Particles and Nuclei Letters	AST	Academia Sinica	Nankang, Taipei, Taiwan
PPSL	Proc. of the Physical Society of London	ATEN	NCSR "Demokritos"	Aghia Paraskevi, Greece
PR	Physical Review	ATHU	Univ. of Athens	Athens, Greece
PRAM	Pramana	AUCK	Univ. of Auckland	Auckland, New Zealand
PRL	Physical Review Letters	BAKU	Natl. Azerbaijan Academy of Sciences, Inst. of Physics	Baku, Azerbaijan
PRPL	Physics Reports (Physics Letters C)	BANG	Indian Inst. of Science	Bangalore, India
PRSE	Proc. of the Royal Society of Edinburgh	BANGB	Bangabasi College	Calcutta, India
PRSL	Proc. of the Royal Society of London, Section A	BARC	Univ. Autónoma de	Bellaterra (Barcelona), Spain
PS	Physica Scripta		Barcelona; Dept. de Fisica	Bellata (Bacelona), Spain
PTEP	Progress of Theoretical and Experimental Physics	BARCE	Univ. Autónoma de	Bellaterra (Barcelona), Spain
PTP	Progress of Theoretical Physics		Barcelona; Inst. de Física	
PTPS	Progress of Theoretical Physics Supplement		de Altas Energías	
PTRSL	Phil. Trans. Royal Society of London	BARI	Univ. e del Politecnico di	Bari, Italy
RA	Radiochimica Acta		Bari	
RMP	Reviews of Modern Physics	BART	Univ. of Delaware; Bartol	Newark, DE, USA
RNC	La Rivista del Nuovo Cimento		Research Inst.	
RPP	Reports on Progress in Physics	BASL	Inst. für Physik der Univ.	Basel, Switzerland
RRP	Revue Roumaine de Physique	BAYR	Basel	
SCI	Science	BAYR	Centre d'Etudes Nucleaires de	Gradign, France
SJNP	Soviet Journal of Nuclear Physics	BCEN	Centre d'Etudes Nucleaires de Bordeaux-Gradignan	Gradignan, France
SJPN	Soviet Journal of Particles and Nuclei Soviet Physics Doklady (Magazine)	BCIP	Natl. Inst. for Physics \& Nu-	Bucharest-Magurele, Romania
SPU	Soviet Physics - Uspekhi			
UFN	Usp. Fiz. Nauk - Russian version of SPU	BEIJ	Beijing Univ.	Beijing, China
YAF	Yadernaya Fizika	BEIJT	Inst. of Theoretical	Beijing, China
ZETF	Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki		Physics	
ZETFP	Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pis'ma v Redakts	BELG	Inter-University Inst. for High Energies (ULB-VUB)	Brussel, Belgium
ZNAT	Zeitschrift fur Naturforschung	BELL	AT \& T Bell Labs	Murray Hill, NJ, USA
ZPHY	Zeitschrift fur Physik	BERG	Univ. of Bergen	Bergen, Norway
Institu	ations	BERL	DESY, Deutsches	Zeuthen, Germany
AACH	Phys. Inst. der Techn. Aachen, Germany	BERN	Univ. of Berne	Berne, Switzerland
	Hochschule Aachen (Historical, use for general Inst. der Techn. Hochschule)	BGNA	Univ. di Bologna, \& INFN, Sezione di Bologna; Via Irnerio, 46, I-40126 Bologna; Viale	Bologna, Italy
AACH1	I Phys. Inst. B, RWTH Aachen, Germany		C. Berti Pichat, n. 6/2	
	Aachen	BHAB	Bhabha Atomic Research	Trombay, Bombay, India
AACH3	III Phys. Inst. A, RWTH Aachen, Germany		Center	
	Aachen Univ.	BHEP	Inst. of High Energy	Beijing, China
AACHT	Inst. für Theoretische Aachen, Germany		Physics	
	Teilchenphysik \& Kosmolo-	BIEL	Univ. Bielefeld	Bielefeld, Germany
	gie, RWTH Aachen	BING	SUNY at Binghamton	Binghamton, NY, USA
AARH	Univ. of Aarhus Aarhus C, Denmark	BIRK	Birkbeck College, Univ. of	London, United Kingdom
ABO	Åbo Akademi Univ. Turku, Finland		London	
ADEL	Adelphi Univ. Garden City, NY, USA	BIRM	Univ. of Birmingham	Edgbaston, Birmingham,
ADLD	The Univ. of Adelaide Adelaide, SA, Australia			United Kingdom
AERE	Atomic Energy Research Es- Didcot, United Kingdom	BLSU	Bloomsburg Univ.	Bloomsburg, PA, USA
	tab.	BNL	Brookhaven National Lab.	Upton, NY, USA
AFRR	Armed Forces Radiobiology Bethesda, MD, USA	BOCH	Ruhr Univ. Bochum	Bochum, Germany
	Res. Inst.	BOHR	Niels Bohr Inst.	Copenhagen Ø, Denmark
AHMED	Physical Research Lab. Ahmedabad, Gujarat, India	BOIS	Boise State Univ.	Boise, ID, USA
AICH	Aichi Univ. of Education Aichi, Japan	BOMB	Univ. of Bombay	Bombay, India
AKIT	Akita Univ. Akita, Japan	BONN	Univ. of Bonn	Bonn, Germany
ALAH	Univ. of Alabama (Huntsville) \quad Huntsville, AL, USA	BORD	Centre d'Etudes Nucléaires de Bordeaux Gradignan	Gradignan, France
ALAT	Univ. of Alabama (Tuscaloosa)		(CENBG)	
ALBA	SUNY at Albany Albany, NY, USA	BOSE	S.N. Bose National Centre for Basis Sciences	Calcutta, India
ALBE	Univ. of Alberta Edmonton, AB, Canada			

BOSK	"Rudjer Bošković" Inst.	Zagreb, Croatia	COLO	Univ. of Colorado	Boulder, CO, USA
BOST	Boston Univ.	Boston, MA, USA	COLU	Columbia Univ.	New York, NY, USA
BRAN	Brandeis Univ.	Waltham, MA, USA	CONC	Concordia University	Montreal, PQ, Canada
BRCO	Univ. of British Columbia	Vancouver, BC, Canada	CORN	Cornell Univ.	Ithaca, NY, USA
BRIS	Univ. of Bristol	Bristol, United Kingdom	COSU	Colorado State Univ.	Fort Collins, CO, USA
BROW	Brown Univ.	Providence, RI, USA	CPPM	Centre National de la	Marseille, France
BRUN	Brunel Univ.	Uxbridge, Middlesex, United Kingdom		Recherche Scientifique, Luminy	
BRUX	Univ. Libre de Bruxelles; Physique des Particules	Bruxelles, Belgium	CRAC	Henryk Niewodnicza'nski Inst. of Nuclear Physics	Kraków, Poland
	Elémentaires		CRNL	Chalk River Labs.	Chalk River, ON, Canada
BRUXT	Univ. Libre de Bruxelles; Physique Théorique	Bruxelles, Belgium	CSOK	Oklahoma Central State Univ.	Edmond, OK, USA
BUCH	Univ. of Bucharest	Bucharest-Magurele, Romania	CST	Univ. of Science and Tech-	Hefei, Anhui 230026, China
BUDA	Wigner Research Centre for Physics	Budapest, Hungary	CSULB	nology of China California State Univ.	Long Beach, CA, USA
BUFF	SUNY at Buffalo	Buffalo, NY, USA	CSUS	California State Univ.	Sacramento, CA, USA
BURE	Inst. des Hautes Etudes Scientifiques	Bures-sur-Yvette, France	CUNY CURCP	City College of New York Univ. Pierre et Marie	New York, NY, USA Paris, France
CAEN	Lab. de Physique Corpusculaire, ENSICAEN	Caen, France	CURIN	Curie (Paris VI), LCP Univ. Pierre et Marie	Paris, France
CAGL	Univ. degli Studi di Cagliari	Monserrato (CA), Italy		Curie (Paris VI), LPNHE	
CAIR	Cairo University	Orman, Giza, Cairo, Egypt	CURIT	Univ. Pierre et Marie	Paris, France
CAIW	Carnegie Inst. of Washington	Washington, DC, USA	DALH	Curie (Paris VI), LPTHE Dalhousie Univ.	Halifax, NS, Canada
CALB	Univ. della Calabria	Cosenza, Italy	DALI	Dalian Univ. of Tech.	Dalian, China
CALC	Univ. of Calcutta	Calcutta, India	DARE	Daresbury Lab	Cheshire, United Kingdom
CAMB	DAMTP	Cambridge, United Kingdom	DARM	Tech. Hochschule Darmstadt	Darmstadt, Germany
CAMP	Univ. Estadual de Campinas (UNICAMP)	Campinas, SP, Brazil	DELA	Univ. of Delaware; Dept. of Physics \& Astronomy	Newark, DE, USA
CANB	Australian National Univ.	Canberra, ACT, Australia	DELH	Univ. of Delhi	Delhi, India
CANTB	Inst. de Física de Cantabria (CSIC-Univ. Cantabria)	Santander, Spain	DESY	DESY, Deutsches Elektronen-Synchrotron	Hamburg, Germany
CAPE	University of Cape Town	Rondebosch, Cape Town, South Africa	DFAB DOE	Escuela de Ingenieros Department of Energy	Bilbao, Spain Washington, DC, USA
CARA	Univ. Central de Venezuela	Caracas, Venezuela	DORT	Technische Univ. Dortmund	Dortmund, Germany
CARL	Carleton Univ.	Ottawa, ON, Canada	DUKE	Duke Univ.	Durham, NC, USA
CARLC	Carleton College	Northfield, MN, USA	DURH	Univ. of Durham	Durham, United Kingdom
CASE	Case Western Reserve Univ.	Cleveland, OH, USA	DUUC	University College Dublin	Dublin, Ireland
CAST	China Center of Advanced Science and Technology	Beijing, China	EDIN	Univ. of Edinburgh	Edinburgh, United Kingdom
CATA	Univ. di Catania	Catania, Italy	EF	Univ. of Chicago, The Enrico Fermi Inst.	Chicago, IL, USA
CATH	Catholic Univ. of America	Washington, DC, USA	ELMT	Elmhurst College	Elmhurst, IL, USA
CAVE	Cavendish Lab.	Cambridge, United Kingdom	ENSP	l'Ecole Normale	Paris, France
CBNM	CBNM	Geel, Belgium		Supérieure	
CBPF	Centro Brasileiro de Pesquisas Físicas - BIB/CDI/CBPF	Rio de Janeiro, RJ, Brazil	EOTV	Eötvös University École Polytechniq	Budapest, Hungary
CCAC	Allegheny College	Meadville, PA, USA	ERLA	Univ. Erlangen-Nurnberg	Erlangen, Germany
CDEF	Univ. Paris VII, Denis Diderot	Paris, France	ETH	Univ. Zürich	Zürich, Switzerland
CEA	Cambridge Electron Accelerator (Historical in Review)	Cambridge, MA, USA	FERR FIRZ	Univ. di Ferrara Univ. degli Studi di Firenze	Ferrara, Italy Sesto Fiorentino, Italy
CEADE	Center for Apl. Studies for Nuclear Physics	Havana, Cuba	FISK FLOR	Fisk Univ. Univ. of Florida	Nashville, TN, USA Gainesville, FL, USA
CEBAF	Jefferson Lab-Thomas Jefferson National Accelerator Facility	Newport News, VA, USA	$\begin{aligned} & \text { FNAL } \\ & \text { FOM } \end{aligned}$	Fermilab FOM, Stichting voor Fundamenteel Onderzoek der Ma-	Batavia, IL, USA JP Utrecht, The Netherlands
CENG	Centre d'Etudes Nucleaires	Grenoble, France	FR		
CERN	CERN, European Organization for Nuclear Research	Genève, Switzerland	FRAN	vanced Studies (FIAS)	Frankfurt am Main, Germany
CFPA	Univ. of California, (Berkeley)	Berkeley, CA, USA	FRAS	Lab. Nazionali di Frascati dell'INFN	Frascati (Roma), Italy
CHIC	Univ. of Chicago	Chicago, IL, USA	FREIB	Albert-Ludwigs Univ. Freie Univ. Berlin	Freiburg, Germany Berlin, Germany
CIAE	State Nuclear Power Research Inst.	Beijing, China	FREIB	Freie Univ. Berlin Univ. de Fribourg	Berlin, Germany Fribourg, Switzerland
CINC	Univ. of Cincinnati	Cincinnati, OH, USA	FSU	Florida State Univ.; High	Tallahassee, FL, USA
CINV	CINVESTAV-IPN Centro de Investigacion y de Estudios Avanzados del IPN	México, DF, Mexico	FSUSC	Energy Physics Florida State Univ.; SCS (School of Computational	Tallahassee, FL, USA
CIT	California Inst. of Tech.	Pasadena, CA, USA		Science)	
CLER	Univ. de Clermont-Ferrand	Aubière, France	FUKI	Fukui Univ.	Fukui, Japan
CLEV	Cleveland State Univ.	Cleveland, OH, USA	FUKU	Fukushima Univ.	Fukushima, Japan
CMNS	Comenius Univ. (FMFI UK)	Bratislava, Slovakia	GENO	Univ. di Genova	Genova, Italy
CMU	Carnegie Mellon Univ.	Pittsburgh, PA, USA	GEOR	E. Andronikashvili Inst. of	Tbilisi, Republic of Georgia
CNEA	Comisión Nacional de Energía Atómica	Buenos Aires, Argentina	GESC	Physics General Electric Co.	Schenectady, NY, USA
CNRC	Centre for Research in Particle Physics	Ottawa, ON, Canada	GEVA GIES	Univ. de Genève Univ. Giessen	Genève, Switzerland Giessen, Germany
COIM	Univ. de Coimbra	Coimbra, Portugal	GIFU	Gifu Univ.	Gifu, Japan

GLAS	Univ. of Glasgow	Glasgow, United Kingdom
GMAS	George Mason Univ.	Fairfax, VA, USA
GOET	Univ. Göttingen	Göttingen, Germany
GOML	Gomel State Univ.	Gomel, Belarus
GRAN	Univ. de Granada	Granada, Spain
GRAZ	Univ. Graz	Graz, Austria
GRON	Univ. of Groningen	Groningen, The Netherlands
GSCO	Geological Survey of Canada	Ottawa, ON, Canada
GSI	GSI Helmholtzzentrum für Schwerionenforschung GmbH	Darmstadt, Germany
GUAN	Univ. de Guanajuato	León, Gto., Mexico
GUEL	Univ. of Guelph	Guelph, ON, Canada
GWU	George Washington Univ.	Washington, DC, USA
HAHN	Hahn-Meitner Inst. Berlin GmbH	Berlin, Germany
HAIF	Technion - Israel Inst. of Tech.	Technion, Haifa, Israel
HAMB	Univ. Hamburg	Hamburg, Germany
HANN	Univ. Hannover	Hannover, Germany
HARC	Houston Advanced Research Ctr.	The Woodlands, TX, USA
HARV	Harvard Univ.	Cambridge, MA, USA
HARV	Harvard Univ. (LPPC)	Cambridge, MA, USA
HAWA	Univ. of Hawai'i	Honolulu, HI, USA
HEBR	Hebrew Univ.	Jerusalem, Israel
HEID	Univ. Heidelberg; (unspecified division) (Historical in Review)	Heidelberg, Germany
HEIDH	Ruprecht-Karls Univ. Heidelberg	Heidelberg, Germany
HEIDP	Univ. Heidelberg; Physics Inst.	Heidelberg, Germany
HEIDT	Ruprecht-Karls-Univ. Heidelberg	Heidelberg, Germany
HELS	Univ. of Helsinki	University of Helsinki, Finland
HINR	Inst. of Nuclear Research (ATOMKI)	Debrecen, Hungary
HIRO	Hiroshima Univ.	Higashi-Hiroshima, Japan
HOUS	Univ. of Houston	Houston, TX, USA
HPC	Hewlett-Packard Corp.	Cupertino, CA, USA
HSCA	Harvard-Smithsonian Center for Astrophysics	Cambridge, MA, USA
HYDER	Indian Inst. of Technology	Hyderabad, India
IAS	Inst. for Advanced Study	Princeton, NJ, USA
IASD	Dublin Inst. for Advanced Studies	Dublin, Ireland
IBAR	Ibaraki Univ.	Ibaraki, Japan
IBM	IBM Corp.	Palo Alto, CA, USA
IBMY	IBM	Yorktown Heights, NY, USA
IBS	Inst. for Boson Studies	Pasadena, CA, USA
ICEPP	The Univ. of Tokyo	Tokyo, Japan
ICRR	Univ. of Tokyo	Chiba, Japan
ICTP	Abdus Salam International Centre for Theoretical Physics	Trieste, Italy
IFIC	IFIC (Instituto de Física Corpuscular)	Paterna (Valencia), Spain
IFRJ	Univ. Federal do Rio de Janeiro	Rio de Janeiro, RJ, Brazil
IIT	Illinois Inst. of Tech.	Chicago, IL, USA
IITI	Indian Inst. of Tech. \ef IIT Indore	Simrol, Indore, India
ILL	Univ. of Illinois at UrbanaChampaign	Urbana, IL, USA
ILLC	Univ. of Illinois at Chicago	Chicago, IL, USA
ILLG	Inst. Laue-Langevin	Grenoble, France
IND	Indiana Univ.	Bloomington, IN, USA
INEL	E G and G Idaho, Inc.	Idaho Falls, ID, USA
INFN	Ist. Nazionale di Fisica Nuclear (Generic INFN, unknown location)	Various places, Italy
INNS	Univ. of Innsbruck	Innsbruck, Austria
INPK	Henryk Niewodniczański Inst. of Nuclear Physics	Kraków, Poland
INRM	INR, Inst. for Nucl. Research	Moscow, Russian Federation
INUS	KEK, High Energy Accelerator Research Organization	Tokyo, Japan
IOAN	Univ. of Ioannina	Ioannina, Greece

IOFF	A.F. Ioffe Phys. Tech. Inst.	St. Petersburg, Russian Federation
IOWA	Univ. of Iowa	Iowa City, IA, USA
IPN	IPN, Inst. de Phys. Nucl.	Orsay, France
IPNP	Univ. Pierre et Marie Curie (Paris VI)	Paris, France
IRAD	Inst. du Radium (Historical)	Paris, France
ISNG	Lab. de Physique Subatomique et de Cosmologie (LPSC)	Grenoble, France
ISU	Iowa State Univ.	Ames, IA, USA
ISUT	Isfahan University of Technology	Isfahan, Iran
ITEP	ITEP, Inst. of Theor. and Exp. Physics	Moscow, Russian Federation
ITHA	Ithaca College	Ithaca, NY, USA
IUPU	Indiana Univ., Purdue Univ. Indianapolis	Indianapolis, IN, USA
JADA	Jadavpur Univ.	Calcutta, India
JAGL	Jagiellonian Univ.	Kraków, Poland
JHU	Johns Hopkins Univ.	Baltimore, MD, USA
JINR	JINR, Joint Inst. for Nucl. Research	Dubna, Russian Federation
JULI	Forschungszentrum Jülich	Jülich, Germany
JYV	Univ. of Jyväskylä	Jyväskylä, Finland
KAGO	Univ. of Kagoshima	Kagoshima-shi, Japan
KAIST	Korea Advanced Inst. of Science and Technology	Yusung ku, Daejon, Republic of Korea
KANP	Indian Inst. of Tech.	Kanpur, UT, India
KANS	Univ. of Kansas	Lawrence, KS, USA
KARL	Univ. Karlsruhe (Historical in Review)	Karlsruhe, Germany
KARLE	Karlsruhe Inst. of Technology (KIT); Inst. for Experimental Nuclear Physics	Karlsruhe, Germany
KARLK	Karlsruhe Inst. of Technology (KIT)	Eggenstein-Leopoldshafen, Germany
KARLT	Karlsruhe Inst. of Technology (KIT); Inst. for Theoretical Physics	Karlsruhe, Germany
KAZA	Kazakh Inst. of High Energy Physics	Alma Ata, Kazakhstan
KEK	KEK, High Energy Accelerator Research Organization	Ibaraki-ken, Japan
KENT	Univ. of Kent	Canterbury, United Kingdom
KEYN	Open Univ.	Milton Keynes, United Kingdom
KFTI	Kharkov Inst. of Physics and Tech. (NSC KIPT)	Kharkov, Ukraine
KIAE	Kurchatov Inst.	Moscow, Russian Federation
KIAM	Keldysh Inst. of Applied Math., Acad. Sci., Russia	Moscow, Russian Federation
KIDR	Vinča Inst. of Nuclear Sciences	Belgrade, Serbia
KIEV	Institute for Nuclear Research	Kyiv, Ukraine
KINK	Kinki Univ.	Osaka, Japan
KNTY	Univ. of Kentucky	Lexington, KY, USA
KOBE	Kobe Univ.	Kobe, Japan
KOMAB	BUniv. of Tokyo, Komaba	Tokyo, Japan
KONAN	Konan Univ.	Kobe, Japan
KOSI	Inst. of Experimental Physics SAS	Košice, Slovakia
KYOT	Kyoto Univ.; Dept. of Physics, Graduate School of Science	Kyoto, Japan
KYOTU	Kyoto Univ.; Yukawa Inst. for Theor. Physics	Kyoto, Japan
KYUN	Kyungpook National Univ.	Daegu, Republic of Korea
KYUSH	Kyushu Univ.; Elementary ParticleTheory Group; Exp. Particle Physics Group; Research Center for Advanced Particle Physics	Fukuoka, Japan
LALO	LAL, Laboratoire de l'Accélérateur Linéaire	Orsay, France
LANC	Lancaster Univ.	Lancaster, United Kingdom
LANL	Los Alamos National Lab. (LANL)	Los Alamos, NM, USA
LAPL	Univ. Nacional de La Plata	La Plata, Argentina

Abbreviations Used in the Particle Listings

LAPP	LAPP, Lab. d'Annecy-leVieux de Phys. des Particules	Annecy-le-Vieux, France	$\begin{aligned} & \text { MICH } \\ & \text { MILA } \end{aligned}$	Univ. of Michigan Univ. di Milano	Ann Arbor, MI, USA Milano, Italy
LASL	U.C. Los Alamos Scientific	Los Alamos, NM, USA	MILAI	INFN, Sez. di Milano	Milano, Italy
	Lab. (Old name for LANL)		MINN	Univ. of Minnesota	Minneapolis, MN, USA
LATV	Latvian State Univ.	Riga, Latvia	MIPT	Moscow Institute of Physics	Moscow, Russian Federation
LAUS	EPFL Lausanne	Lausanne, Switzerland		and Technology	
LAVL	Univ. Laval	Quebec, QC, Canada	MISS	Univ. of Mississippi	University, MS, USA
LBL	Lawrence Berkeley National Lab.	Berkeley, CA, USA	MISSR	Univ. of Missouri	Rolla, MO, USA
LCGT	Univ. di Torino	Turin, Italy		of Technology	
LEBD	Lebedev Physical Inst.	Moscow, Russian Federation	MIU	Maharishi International	Fairfield, IA, USA
LECE	Univ. di Lecce	Lecce, Italy		Univ.	
LEED	Univ. of Leeds	Leeds, United Kingdom	MIYA	Miyazaki Univ.	Miyazaki-shi, Japan
LEGN	Lab. Naz. di Legnaro	Legnaro, Italy	MONP	Univ. de Montpellier II	Montpellier, France
LEHI	Lehigh Univ.	Bethlehem, PA, USA	MONS	Univ. of Mons	Mons, Belgium
LEHM	Lehman College of CUNY	Bronx, NY, USA	MONT	Univ. de Montréal; Pavillon	Montréal, PQ, Canada
LEID	Univ. Leiden	Leiden, The Netherlands		René-J.-A.-Lévesque	
LEMO	Le Moyne Coll.	Syracuse, NY, USA	MONTC	Univ. de Montréal; Centre	Montréal, PQ, Canada
LENSU	Saint-Petersburg State Univ.	St. Petersburg, Russian Federation	MOSU	de recherches mathématiques	Moscow, Russian Federation
LEUV	Katholieke Univ. Leuven	Leuven, Belgium		Physics, Lomonosov Moscow	
LIEG	Univ. de Liège	Liège, Belgium		State Univ.; Experimental	
LINZ	Univ. Linz	Linz, Austria		HEP Division; Theoretical	
LISB	Inst. Nacional de Investigacion Cientifica	Lisboa CODEX, Portugal	MPCM	Max Planck Inst. fur Chemie	Mainz, Germany
LISBT	Centro de Física Teórica de Partículas (CFTP)	Lisboa, Portugal	MPEI	Moscow Physical Engineering Inst.	Moscow, Russian Federation
LIVP	Univ. of Liverpool	Liverpool, United Kingdom	MPIG	Max-Planck-Institute für Astrophysik	Garching, Germany
LLL	Lawrence Livermore Lab. (Old name for LLNL)	Livermore, CA, USA	MPIH	Max-Planck-Inst. für Kernphysik	Heidelberg, Germany
LLNL	Lawrence Livermore National Lab.	Livermore, CA, USA	MPIM	Max-Planck-Inst. für Physik	München, Germany
LNUDA		Dalian, China			
LOCK	Lockheed Palo Alto Res. Lab	Palo Alto, CA, USA	$\begin{aligned} & \text { MSST } \\ & \text { MSU } \end{aligned}$	Mississippi State University Michigan State Univ.	Mississippi State, MS, USA East Lansing, MI, USA
LOIC	Imperial College of Science	London, United Kingdom	MTHO	Mount Holyoke College	South Hadley, MA, USA
	Tech. \& Medicine		MULH	Centre Univ. du Haut-Rhin	Mulhouse, France
LOKC	Univ. of London, King's College	London, United Kingdom	MUNI	Ludwig-Maximilians-Univ. München	Garching, Germany
LOQM	Queen Mary, Univ. of London	London, United Kingdom	MUNT MURA	Tech. Univ. München Midwestern Univ. Research	Garching, Germany Stroughton, WI, USA
LOUC	University College London	London, United Kingdom		Assoc. (Historical in Review)	
LOUV	Univ. Catholique de Louvain	Louvain-la-Neuve, Belgium	MURC	Univ. of Murcia	Murcia, Spain
LOWC	Westfield College (Historical, see LOQM (Queen Mary and Westfield joined))	London, United Kingdom	NAAS	North Americal Aviation Science Center (Historical in Review)	Thousand Oaks, CA, USA
LRL	U.C. Lawrence Radiation Lab. (Old name for LBL)	Berkeley, CA, USA	NAGO	Nagoya Univ. Nanjing Univ	Nagoya, Japan Nanjing China
LSU	Louisiana State Univ.	Baton Rouge, LA, USA	NAPL	Univ. di Napoli "Federico II"	Napoli, Italy
LUND	Fysiska Institutionen	Lund, Sweden	NASA	NASA	Greenbelt, MD, USA
LUND	Lund Univ.	Lund, Sweden	NBS	U.S National Bureau of	Gaithersburg, MD, USA
LYON	Institute de Physique Nucléaire de Lyon (IPN)	Villeurbanne, France		Standards (Old name for NIST)	
MADE	UAM/CSIC, Inst. de Física Teórica	Madrid, Cantoblanco, Spain	NBSB	National Inst. Standards Tech.	Boulder, CO, USA
MADR	C.I.E.M.A.T	Madrid, Spain	NCAR	National Center for Atmo-	Boulder, CO, USA
MADRA	A niv. of Madras	Madras, India		spheric Research	
MADU	Univ. Autónoma de Madrid	Cantoblanco, Madrid, Spain	NCSU	North Carolina State Univ.	Raleigh, NC, USA
MANI	Univ. of Manitoba	Winnipeg, MB, Canada	NDAM	Univ. of Notre Dame	Notre Dame, IN, USA
MANZ	Johannes-Gutenberg-	Mainz, Germany	NEAS	Northeastern Univ.	Boston, MA, USA
	Univ.; Inst. für Kernphysik,		NEBR	Univ. of Nebraska	Lincoln, NE, USA
	J.-J.-Becher-Weg 45; Inst. für		NEUC	Univ. de Neuchâtel	Neuchâtel, Switzerland
	Physik, Staudingerweg 7		NICEA	Univ. de Nice	Nice, France
MARB	Univ. Marburg	Marburg, Germany	NICEO	Observatoire de Nice	Nice, France
MARS	Centre de Physique des Particules de Marseille	Marseille, France	NIHO	Nihon Univ.	Tokyo, Japan
MASA	Univ. of Massachusetts	Amherst, MA, USA	NIIG	Niigata Univ.	Niigata, Japan
	Amherst		NIJM	Radboud Univ. Nijmegen	AJ Nijmegen, The Nether-
MASB	Univ. of Massachusetts	Boston, MA, USA			lands
	Boston		NIRS	Nat. Inst. Radiological Sci-	Chiba, Japan
MASD	Univ. of Massachusetts Dartmouth	North Dartmouth, MA, USA	NIST	National Institute of Stan-	Gaithersburg, MD, USA
MCGI	McGill Univ.	Montreal, QC, Canada		dards \& Technology	
MCHS	Univ. of Manchester	Manchester, United Kingdom	NIU	Northern Illinois Univ.	De Kalb, IL, USA
MCMS	McMaster Univ.	Hamilton, ON, Canada	NMSU	New Mexico State Univ.;	Las Cruces, NM, USA
MEHTA	Harish-Chandra Research Inst.	Allahabad, India		Dept. of Physics, MSC 3D; Part. \& Nucl. Phys. Group,	
MEIS	Meisei Univ.	Tokyo, Japan		Box 30001/Dept.	
MELB	Univ. of Melbourne	Victoria, Australia	NORD	Nordita	Stockholm, Sweden
MEUD	Observatoire de Meudon	Meudon, France	NOTT	Univ. of Nottingham	Nottingham, United Kingdom

NOVM Inst. of Mathematics
NOVO BINP, Budker Inst. of Nuclear Physics
NPOL Polytechnic of North London
NRL Naval Research Lab
NSF National Science Foundation
NTHU National Tsing Hua Univ.
NTUA National Tech. Univ. of Athens
NWES Northwestern Univ.
NYU New York Univ.
OBER Oberlin College
OCH Ochanomizu Univ.
OHIO Ohio Univ
OKAY Okayama Univ.
OKLA Univ. of Oklahoma
OKSU Oklahoma State Univ.
OREG Univ. of Oregon; Inst. of Theoretical Science; U.O. Center for High Energy Physics
ORNL Oak Ridge National Laboratory
ORSAY Univ. de Paris Sud 11
ORST Oregon State Univ.
OSAK Osaka Univ.
OSKC Osaka City Univ.
OSLO Univ. of Oslo
OSU Ohio State Univ.
OTTA Univ. of Ottawa
OXF University of Oxford
OXFTP Univ. of Oxford
PADO Univ. degli Studi di Padova
PARIN LPNHE, $\mathrm{IN}^{2} \mathrm{P}^{3} /$ CNRS
PARIS Univ. de Paris (Historical)
PARIT Univ. Paris VII, LPTHE
PARM INFN, Gruppo Collegato di Parma
PAST Institut Pasteur
PATR Univ. of Patras
PAVI Univ. di Pavia
PAVII INFN, Sez. di Pavia
PENN Univ. of Pennsylvania
PGIA INFN, Sezione di Perugia
PISA Univ. di Pisa
PISAI INFN, Sez. di Pisa
PITT Univ. of Pittsburgh
PLAT SUNY at Plattsburgh
PLRM Univ. di Palermo
PNL Battelle Memorial Inst.
PNPI Petersburg Nuclear Physics Inst. of Russian Academy of Sciences
PPA Princeton-Penn. Proton Accelerator (Historical in Review)
PRAG Inst. of Physics, ASCR
PRIN Princeton Univ.
PSI Paul Scherrer Inst.
PSLL Physical Science Lab
PSU Penn State Univ.
PUCB Pontifícia Univ. Católica do Rio de Janeiro
PUEB Univ. Autonoma de Puebla
PURD Purdue Univ.
QUKI Queen's Univ.
RAL STFC Rutherford Appleton Lab.
REGE Univ. Regensburg
REHO Weizmann Inst. of Science
REZ Nuclear Physics Inst. AVČR
RGSUL Univ. Federal do Rio Grande do Sul (UFRGS)
RHBL Royal Holloway, Univ. of London

Novosibirsk, Russian Federation
Novosibirsk, Russian Federation
London, United Kingdom
Washington, DC, USA
Arlington, VA, USA
Hsinchu, Taiwan
Athens, Greece
Evanston, IL, USA
New York, NY, USA
Oberlin, OH, USA
Tokyo, Japan
Athens, OH, USA
Okayama, Japan
Norman, OK, USA
Stillwater, OK, USA
Eugene, OR, USA

Oak Ridge, TN, USA
Orsay CEDEX, France
Corvallis, OR, USA
Osaka, Japan
Osaka, Japan
Oslo, Norway
Columbus, OH, USA
Ottawa, ON, Canada
Oxford, United Kingdom
Oxford, United Kingdom
Padova, Italy
Paris, France
Paris, France
Paris, France
Parma, Italy
Paris, France
Patras, Greece
Pavia, Italy
Pavia, Italy
Philadelphia, PA, USA
Perugia, Italy
Pisa, Italy
Pisa, Italy
Pittsburgh, PA, USA
Plattsburgh, NY, USA
Palermo, Italy
Richland, WA, USA
Gatchina, Russian Federation

Princeton, NJ, USA

Prague, Czech Republic
Princeton, NJ, USA
Villigen PSI, Switzerland
Las Cruces, NM, USA
University Park, PA, USA
Rio de Janeiro, RJ, Brazil
Puebla, Pue, Mexico
West Lafayette, IN, USA
Kingston, ON, Canada
Chilton, Didcot, Oxfordshire,
United Kingdom
Regensburg, Germany
Rehovot, Israel
Řež, Czech Republic
Porto Alegre, RS, Brazil

RHEL Rutherford High Energy Lab (Old name for RAL)
RICE Rice Univ.
RIKEN Riken Nishina Center for Accelerator-Based Science
RIKK Rikkyo Univ.
RIS Rowland Inst. for Science
RISC Rockwell International
RISL Universities Research Reactor
RISO Riso National Laboratory
RITS Royal Inst. of Technology (KTH)
RL Rutherford High Energy Lab (Old name for RAL)
RMCS Royal Military Coll. of Science
ROCH Univ. of Rochester
ROCK Rockefeller Univ.
ROMA Univ. di Roma (Historical)
ROMA2 Univ. di Roma, "Tor Vergata"
ROMA3 INFN, Sez. di Roma Tre
ROMAI INFN, Sez. di Roma
ROSE Rose-Hulman Inst. of Technology
RPI Rensselaer Polytechnic Inst.
RUTG Rutgers, the State Univ. of New Jersey
S0GA Sogang University
SACL CEA Saclay, IRFU
SACL5 CEA Saclay - IPhT
SACLD CEA Saclay (Essonne)
SAGA Saga Univ.
SAHA Saha Inst. of Nuclear Physics
SANG Kyoto Sangyo Univ.
SANI Ist. Superiore di Sanità
SASK Univ. of Saskatchewan
SASSO Lab. Naz. Gran Sasso dell'INFN
SAVO Univ. de Savoie
SBER California State Univ.
SCHAF W.J. Schafer Assoc.
SCIT Science Univ. of Tokyo
SCOT Scottish Univ. Research and Reactor Ctr.
SCUC Univ. of South Carolina
SEAT Seattle Pacific Coll.
SEIB Austrian Research Center, Seibersdorf LTD.
SEOU Korea Univ.; Dept. of Physics; HEP Group
SEOUL Seoul National Univ.; Center for Theoretical Physics; Dept. of Physics \& Astronomy, Coll. of Natural Sciences
SERP IHEP, Inst. for High Energy Physics
SETO Seton Hall Univ.
SFLA Univ. of South Florida
SFRA Simon Fraser University
SFSU California State Univ
SHAMS Ain Shams University
SHDN Shandong Univ.
SHEF Univ. of Sheffield
SHMP Univ. of Southampton
SHRZ Shiraz Univ.
SIEG Univ. Siegen
SILES Univ. of Silesia
SIN Swiss Inst. of Nuclear Research (Old name for VILL)
SING National Univ. of Singapore
SISSA Scuola Internazionale Superiore di Studi Avanzati
SLAC SLAC National Accelerator Laboratory
SLOV Inst. of Physics, Slovak Acad.
of Sciences

Chilton, Didcot, Oxon., United Kingdom
Houston, TX, USA
Saitama, Japan
Tokyo, Japan
Cambridge, MA, USA
Thousand Oaks, CA, USA
Risley, Warrington, United
Kingdom
Roskilde, Denmark
Stockholm, Sweden
Chilton, Didcot, Oxon., United
Kingdom
Swindon, Wilts., United Kingdom
Rochester, NY, USA
New York, NY, USA
Roma, Italy
Roma, Italy
Roma, Italy
Roma, Italy
Terre Haute, IN, USA

Troy, NY, USA
Piscataway, NJ, USA
Seoul, Republic of Korea
Gif-sur-Yvette, France
Gif-sur-Yvette, France
Gif-sur-Yvette, France
Saga-shi, Japan
Bidhan Nagar, Calcutta, India
Kyoto-shi, Japan
Roma, Italy
Saskatoon, SK, Canada
Assergi (AQ), Italy
Chambery, France
San Bernardino, CA, USA
Livermore, DA, USA
Tokyo, Japan
Glasgow, United Kingdom
Columbia, SC, USA
Seattle, WA, USA
Seibersdorf, Austria
Seoul, Republic of Korea
Seoul, Republic of Korea

Protvino, Russian Federation
South Orange, NJ, USA
Tampa, FL, USA
Burnaby, BC, Canada
San Francisco, CA, USA
Abbassia, Cairo, Egypt
Jinan, Shandong, China
Sheffield, United Kingdom
Southampton, United Kingdom
Shiraz, Iran
Siegen, Germany
Katowice, Poland
Villigen, Switzerland
Kent Ridge, Singapore

Menlo Park, CA, USA

Bratislava 45, Slovakia

Trieste, Italy

\qquad

Mana, M, CA

a
Kent Ridge, Singapore
Trieste, Italy

正

Columbia, SC

Egham, Surrey, United King-
Egham, Surrey, United King-
dom
\square

SMU	Southern Methodist Univ.	Dallas, TX, USA	TUZL	Tuzla Univ.	Tuzla, Argentina
SNSP	Scuola Normale Superiore	Pisa, Italy	UBA	Univ. de Buenos Aires	Buenos Aires, Argentina
SOFI	Inst. for Nuclear Research and Nuclear Energy	Sofia, Bulgaria	UCB	Univ. of California (Berkeley)	Berkeley, CA, USA
SOFU	Univ. of Sofia "St. Kliment	Sofia, Bulgaria	UCD	Univ. of California (Davis)	Davis, CA, USA
	Ohridski"		UCI	Univ. of California (Irvine)	Irvine, CA, USA
SORB	Sorbonne Université	Paris, France	UCLA	Univ. of California (Los	Los Angeles, CA, USA
SPAUL	Univ. de São Paulo	São Paulo, SP, Brazil		Angeles)	
SPIFT	Inst. de Física Teórica (IFT)	São Paulo, SP, Brazil	UCND	Union Carbide Corp.	Oak Ridge, TN, USA
SSL	Univ. of California (Berkeley)	Berkeley, CA, USA	UCR	Univ. of California (Riverside)	Riverside, CA, USA
STAN	Stanford Univ.	Stanford, CA, USA	UCSB	Univ. of California (Santa	Santa Barbara, CA, USA
STEV	Stevens Inst. of Tech.	Hoboken, NJ, USA		Barbara); Physics Dept.,	Santa Barbara, CA, USA
STFN	Jožef Stefan Institute	Ljubljana, Slovenia		High Energy Physics Experi-	
STLO	St. Louis Univ.	St. Louis, MO, USA		ment	
STOH	Stockholm Univ.	Stockholm, Sweden	UCSBT	Univ. of California (Santa	Santa Barbara, CA, USA
STON	SUNY at Stony Brook	Stony Brook, NY, USA		Barbara); Kavli Inst. for	
STRB	Inst. Pluridisciplinaire Hubert Curien (CNRS)	Strasbourg, France	UCSC	Theoretical Physics Univ. of California (Santa Cruz)	Santa Cruz, CA, USA
STUT	Univ. Stuttgart	Stuttgart, Germany	UCSD		La Jolla, CA, USA
STUT	Max-Planck-Inst.	Stuttgart, Germany	UCSD	Diego)	
SUGI	Sugiyama Jogakuen Univ.	Aichi, Japan	UGAZ	Univ. of Gaziantep	Gaziantep, Turkey
SUNG	Sungkyunkwan Univ.	Suwon, Republic of Korea	UMD	Univ. of Maryland	College Park, MD, USA
SURR	Univ. of Surrey	Guildford, Surrey, United Kingdom	UNAM	Univ. Nac. Autónoma de México (UNAM)	México, DF, Mexico
SUSS	Univ. of Sussex	Brighton, United Kingdom	UNAM	Univ. Nacional Autónoma de	México, DF, Mexico
SVR	Savannah River Labs.	Aiken, SC, USA		México (UNAM)	
SYDN	Univ. of Sydney	Sydney, NSW, Australia	UNC	Univ. of North Carolina	Greensboro, NC, USA
SYRA	Syracuse Univ.	Syracuse, NY, USA	UNCCH	Univ. of North Carolina at	Chapel Hill, NC, USA
TAJK	Acad. Sci., Tadzhik SSR	Dushanbe, Tadzhikstan		Chapel Hill	
TAMU	Texas A\&M Univ.	College Station, TX, USA	UNCS	Union College	Schenectady, NY, USA
TATA	Tata Inst. of Fundamental	Bombay, India	UNESP	UNESP	Botucatu, Brazil
TBIL	Tbilisi State University	Tbilisi, Republic of Georg	UNH	Univ. of New Hampshire	Durham, NH, USA
TELA	Tel-Aviv Univ.	Tel Aviv, Israel	UNM	Univ. of New Mexico	Albuquerque, NM, USA
TELE	Teledyne Brown Engineering	Huntsville, AL, USA	UOEH	Univ. of Occupational and Environmental Health	Kitakyushu, Japan
TEMP	Temple Univ.	Philadelphia, PA, USA	UPNJ	Upsala College Uppsala Univ.	East Orange, NJ, USA
TENN	Univ. of Tennessee	Knoxville, TN, USA	UPR	Univ. of Puerto Rico	San Juan, PR, USA
TEXA	Univ. of Texas at Austin	Austin, TX, USA	URI	Univ. of Rhode Island	Kingston, RI, USA
TGAK	Tokyo Gakugei Univ.	Tokyo, Japan	USC	Univ. of Southern Califor-	Los Angeles, CA, USA
TGU	Tohoku Gakuin Univ.	Miyagi, Japan	USC	nia	Los Angeles, CA, USA
THES	Aristotle Univ. of Thessaloniki (AUTh)	Thessaloniki, Greece	USF UTAH	Univ. of San Francisco Univ. of Utah	San Francisco, CA, USA Salt Lake City, UT, USA
TINT	Tokyo Inst. of Technology	Tokyo, Japan	UTRE	Univ. of Utrecht	Utrecht, The Netherlands
TISA	Sagamihara Inst. of Space \& Astronautical Sci.	Kanagawa, Japan	UTRO	Norwegian Univ. of Science \& Technology	Trondheim, Norway
TMSK	Tomsk Polytechnic Univ.	Tomsk, Russian Federation	UVA	Univ. of Virginia	Charlottesville, VA, USA
TMTC	Tokyo Metropolitan Coll. Tech.	Tokyo, Japan	UZINR	Acad. Sci., Ukrainian SSR	Uzhgorod, Ukraine
TMU	Tokyo Metropolitan Univ.	Tokyo, Japan	VALE	Univ. de Valencia	Burjassot, Valencia, Spain
TNTO	Univ. of Toronto	Toronto, ON, Canada	VALP	Valparaiso Univ.	Valparaiso, IN, USA
TOHO	Toho Univ.	Chiba, Japan	VAND	Vanderbilt Univ.	Nashville, TN, USA
TOHOK	Tohoku Univ.	Sendai, Japan	VASS	Vassar College	Poughkeepsie, NY, USA
TOKA	Tokai Univ.	Shimizu, Japan	VICT	Univ. of Victoria	Victoria, BC, Canada
TOKAH	Tokai Univ.	Hiratsuka, Japan	VIEN	Inst. für Hochenergiephysik (HEPHY)	Vienna, Austria
TOKM	Univ. of Tokyo; Meson Science Laboratory	Tokyo, Japan	VILL	ETH Zürich	Zürich, Switzerland
TOKU	Univ. of Tokushima	Tokushima-shi, Japan	VPI	Virginia Tech.	Blacksburg, VA, USA
TOKY	Univ. of Tokyo; High-Energy Physics Theory Group	Tokyo, Japan	VRIJ	Vrije Univ.	HV Amsterdam, The Netherlands
TOKYC	Univ. of Tokyo; Dept. of Chemistry	Tokyo, Japan	WABRN WARS	Eidgenossisches Amt für Messwesen Univ of Warsaw	Waber, Switzerland Warsaw, Poland
TORI	Univ. degli Studi di Torino	Torino, Italy	WASCR	Waseda Univ.; Cosmic Ray	Tokyo, Japa
TPTI	Uzbek Academy of Sciences	Tashkent, Republic of Uzbekistan		Division	Seattle, WA, USA
TRIN	Trinity College Dublin	Dublin, Ireland	WASH	Univ. of Washington; Elem. Particle Experiment (EPE);	Seattle, WA, USA
TRIU	TRIUMF	Vancouver, BC, Canada		Particle Astrophysics (PA)	
TRST	Univ. di Trieste	Trieste, Italy	WASU	Waseda Univ.; Dept. of	Tokyo, Japan
TRSTI	INFN, Sez. di Trieste	Trieste, Italy		Physics, High Energy Physics	
TRSTT	Univ. degli Studi di Trieste	Trieste, Italy		Group	
TSUK	Univ. of Tsukuba	Ibaraki-ken, Japan	WAYN	Wayne State Univ.	Detroit, MI, USA
TTAM	Tamagawa Univ.	Tokyo, Japan	WESL	Wesleyan Univ.	Middletown, CT, USA
TUAT	Tokyo Univ. of Agriculture	Tokyo, Japan	WIEN	Univ. Wien	Vienna, Austria
	Tech.		WILL	Coll. of William and Mary	Williamsburg, VA, USA
TUBIN	Univ. Tübingen	Tübingen, Germany	WINR	National Centre for Nuclear	Warsaw, Poland
TUFTS	Tufts Univ.	Medford, MA, USA		Research	
TUW	Technische Univ. Wien	Vienna, Austria	WISC	Univ. of Wisconsin	Madison, WI, USA

Abbreviations Used in the Particle Listings

WITW	Univ. of the Witwatersrand	Wits, South Africa	YERE	Yerevan Physics Inst.	Yerevan, Armenia
WMIU	Western Michigan Univ.	Kalamazoo, MI, USA	YOKO	Yokohama National Univ.	Yokohama-shi, Japan
WONT	The Univ. of Western On-	London, ON, Canada	YORKC	York Univ.	Toronto, Canada
	tario		ZAGR	Zagreb Univ.	Zagreb, Croatia
WOOD	Woodstock College (No longer in existence)	Woodstock, MD, USA	ZARA	Univ. de Zaragoza	Zaragoza, Spain TV Amsterdam, The Nether-
WUPP	Bergische Univ. Wuppertal	Wuppertal, Germany			lands
WURZ	Univ. Würzburg	Würzburg, Germany	ZHON	Zhongshan (Sun Yat-Sen)	Guangzhou, China
WUSL	Washington Univ.	St. Louis, MO, USA		Univ.	
WYOM	Univ. of Wyoming	Laramie, WY, USA	ZHZH	Zhengzhou Univ.	Zhengzhou, Henan, China
YALE	Yale Univ.	New Haven, CT, USA	ZURI	Univ. Zürich	Zürich, Switzerland
YARO	Yaroslavl State Univ.	Yaroslavl, Russian Federation			
YCC	Yokohama Coll. of Commerce	Yokohama, Japan			

GAUGE AND HIGGS BOSONS

Notes in the Listings

Extraction of triple gauge couplings (TGC's) (rev.) 1017
Anomalous $Z Z \gamma, Z \gamma \gamma$, and $Z Z V$ couplings 1042
Anomalous W / Z quartic couplings (rev.) 1043

Related Reviews in Volume 1
53. Mass and width of the W boson (rev.) 715
54. Z boson (rev.) 717

GAUGE AND HIGGS BOSONS

γ (photon)
 $I\left(J^{P C}\right)=0,1\left(1^{--}\right)$

γ MASS

Results prior to 2008 are critiqued in GOLDHABER 10. All experimental results published prior to 2005 are summarized in detail by TU 05 .

The following conversions are useful: $1 \mathrm{eV}=1.783 \times 10^{-33} \mathrm{~g}=1.957 \times$ $10^{-6} m_{e} ; \lambda_{C}=\left(1.973 \times 10^{-7} \mathrm{~m}\right) \times\left(1 \mathrm{eV} / m_{\gamma}\right)$.

VALUE (eV)

\qquad CL\%
$<1 \times 10^{-18}$
1 RYUTOV
COMMENT

$<2.2 \times 10^{-14}$		2 BONETTI	17	Fast Radio Bursts, FRB 121102
$<1.8 \times 10^{-14}$		3 BONETTI	16	Fast Radio Bursts, FRB 150418
$<1.9 \times 10^{-15}$		${ }^{4}$ RETINO	16	Ampere's Law in solar wind
$<2.3 \times 10^{-9}$	95	${ }^{5}$ EGOROV	14	Lensed quasar position
		${ }^{6}$ ACCIOLY	10	Anomalous magn. mom.
$<1 \times 10^{-26}$		${ }_{7}$ ADELBERGER	07A	Proca galactic field
no limit feasible		${ }^{7}$ ADELBERGER	07A	γ as Higgs particle
$<1 \times 10^{-19}$		8 TU	06	Torque on rotating magnetized toroid
$<1.4 \times 10^{-7}$		ACCIOLY	04	Dispersion of GHz radio waves by sun
$<2 \times 10^{-16}$		${ }^{9}$ FULLEKRUG	04	sun Speed of $5-50 \mathrm{~Hz}$ radiation in atmosphere
$<7 \times 10^{-19}$		10 LUO	03	Torque on rotating magnetized toroid
$<1 \times 10^{-17}$		11 LAKES	98	Torque on toroid balance
$<6 \times 10^{-17}$		12 RYUTOV	97	MHD of solar wind
$<8 \times 10^{-16}$	90	13 FISCHBACH	94	Earth magnetic field
$<5 \times 10^{-13}$		14 CHERNIKOV	92	Ampere's Law null test
$<1.5 \times 10^{-9}$	90	15 RYAN	85	Coulomb's Law null test
$<3 \times 10^{-27}$		16 CHIBISOV	76	Galactic magnetic field
$<6 \times 10^{-16}$	99.7	17 DAVIS	75	Jupiter's magnetic field
$<7.3 \times 10^{-16}$		HOLLWEG	74	Alfven waves
$<6 \times 10^{-17}$		18 FRANKEN	71	Low freq. res. circuit
$<2.4 \times 10^{-13}$		19 KROLL	71A	Dispersion in atmosphere
$<1 \times 10^{-14}$		20 WILLIAMS	71	Tests Coulomb's Law
$<2.3 \times 10^{-15}$		GOLDHABER	68	Satellite data

${ }^{1}$ RYUTOV 07 extends the method of RYUTOV 97 to the radius of Pluto's orbit.
${ }^{2}$ BONETTI 17 uses frequency-dependent time delays of repeating FRB with welldetermined redshift, assuming the DM is caused by expected dispersion in IGM. There are several uncertainties, leading to mass limit $2.2 \times 10^{-14} \mathrm{eV}$.
${ }^{3}$ BONETTI 16 uses frequency-dependent time delays of FRB, assuming the DM is caused by expected dispersion in IGM. There are several uncertainties, leading to mass limit $1.8 \times 10^{-14} \mathrm{eV}$, if indeed the FRB is at the initially reported redshift.
${ }^{4}$ RETINO 16 looks for deviations from Ampere's law in the solar wind, using Cluster four spacecraft data. Authors quote a range of limits from $1.9 \times 10^{-15} \mathrm{eV}$ to $7.9 \times 10^{-14} \mathrm{eV}$ depending on the assumptions of the vector potential from the interplanetary magnetic field
${ }^{5}$ EGOROV 14 studies chromatic dispersion of lensed quasar positions ("gravitational rainbows") that could be produced by any of several mechanisms, among them via photon mass. Limit not competitive but obtained on cosmological distance scales.
${ }^{6}$ ACCIOLY 10 limits come from possible alterations of anomalous magnetic moment of electron and gravitational deflection of electromagnetic radiation. Reported limits are not "claimed" by the authors and in any case are not competitive.
7 When trying to measure m one must distinguish between measurements performed on large and small scales. If the photon acquires mass by the Higgs mechanism, the largescale behavior of the photon might be effectively Maxwellian. If, on the other hand, one postulates the Proca regime for all scales, the very existence of the galactic field implies $m<10^{-26} \mathrm{eV}$, as correctly calculated by YAMAGUCHI 59 and CHIBISOV 76.
${ }^{8}$ TU 06 continues the work of LUO 03, with extended LAKES 98 method, reporting the improved limit $\mu^{2} A=(0.7 \pm 1.7) \times 10^{-13} \mathrm{~T} / \mathrm{m}$ if $A=0.2 \mu \mathrm{G}$ out to 4×10^{22} m . Reported result $\mu=(0.9 \pm 1.5) \times 10^{-52} \mathrm{~g}$ reduces to the frequentist mass limit $1.2 \times 10^{-19} \mathrm{eV}$ (FELDMAN 98).
${ }^{9}$ FULLEKRUG 04 adopted KROLL 71a method with newer and better Schumann resonance data. Result questionable because assumed frequency shift with photon mass is assumed to be linear. It is quadratic according to theorem by GOLDHABER 71B, KROLL 71, and PARK 71.
1^{10} LUO 03 extends LAKES 98 technique to set a limit on $\mu^{2} A$, where μ^{-1} is the Compton wavelength λ_{C} of the massive photon and A is the ambient vector potential. The important departure is that the apparatus rotates, removing sensitivity to the direction of A. They take $A=10^{12} \mathrm{Tm}$, due to "cluster level fields." But see comment of GOLDHABER 03 and reply by LUO 03B.
${ }^{11}$ LAKES 98 reports limits on torque on a toroid Cavendish balance, obtaining a limit on $\mu^{2} A<2 \times 10^{-9} \mathrm{Tm} / \mathrm{m}^{2}$ via the Maxwell-Proca equations, where μ^{-1} is the characteristic length associated with the photon mass and A is the ambient vector potential in the Lorentz gauge. Assuming $A \approx 1 \times 10^{12} \mathrm{Tm}$ due to cluster fields he obtains $\mu^{-1}>2 \times 10^{10} \mathrm{~m}$, corresponding to $\mu<1 \times 10^{-17} \mathrm{eV}$. A more conservative limit, using $A \approx(1 \mu \mathrm{G}) \times(600 \mathrm{pc})$ based on the galactic field, is $\mu^{-1}>1 \times 10^{9} \mathrm{~m}$ or $\mu<2 \times 10^{-16} \mathrm{eV}$.
12 RYUTOV 97 uses a magnetohydrodynamics argument concerning survival of the Sun's field to the radius of the Earth's orbit. "To reconcile observations to theory, one has to
reduce [the photon mass] by approximately an order of magnitude compared with" per DAVIS 75. "Secure limit, best by this method" (per GOLDHABER 10).
13 FISCHBACH 94 analysis is based on terrestrial magnetic fields; approach analogous to DAVIS 75. Similar result based on a much smaller planet probably follows from more precise B field mapping. "Secure limit, best by this method" (per GOLDHABER 10).
${ }^{14}$ CHERNIKOV 92, motivated by possibility that photon exhibits mass only below some unknown critical temperature, searches for departure from Ampere's Law at 1.24 K . See also RYAN 85.
15 RYAN 85 , motivated by possibility that photon exhibits mass only below some unknown critical temperature, sets mass limit at $<(1.5 \pm 1.4) \times 10^{-42} \mathrm{~g}$ based on Coulomb's Law departure limit at 1.36 K . We report the result as frequentist $90 \% \mathrm{CL}$ (FELDMAN 98).
${ }^{16}$ CHIBISOV 76 depends in critical way on assumptions such as applicability of virial theorem. Some of the arguments given only in unpublished references.
17 DAVIS 75 analysis of Pioneer-10 data on Jupiter's magnetic field. "Secure limit, best by this method" (per GOLDHABER 10)
18 FRANKEN 71 method is of dubious validity (KROLL 71A, JACKSON 99, GOLDHABER 10, and references therein).
19 KROLL 71a used low frequency Schumann resonances in cavity between the conducting earth and resistive ionosphere, overcoming objections to resonant-cavity methods (JACKSON 99, GOLDHABER 10, and references therein). "Secure limit, best by this method" (per GOLDHABER 10).
20 WILLIAMS 71 is landmark test of Coulomb's law. "Secure limit, best by this method" (per GOLDHABER 10).

γ CHARGE

OKUN 06 has argued that schemes in which all photons are charged are inconsistent. He says that if a neutral photon is also admitted to avoid this problem, then other problems emerge, such as those connected with the emission and absorption of charged photons by charged particles. He concludes that in the absence of a self-consistent phenomenological basis, interpretation of experimental data is at best difficult.

VALUE (e)	CHARGE	DOCUMENT ID		TECN	COMMENT
$<1 \times 10^{-46}$	mixed	${ }^{1}$ ALTSCHUL	07B	VLBI	Aharonov-Bohm effect
$<1 \times 10^{-35}$	single	${ }^{2}$ CAPRINI	05	CMB	Isotropy constraint
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1 \times 10^{-32}$	single	${ }^{1}$ ALTSCHUL	07B	VLBI	Aharonov-Bohm effect
$<3 \times 10^{-33}$	mixed	${ }^{3}$ KOBYCHEV	05	VLBI	Smear as function of B-E ${ }_{\gamma}$
$<4 \times 10^{-31}$	single	${ }^{3} \mathrm{KOBYCHEV}$	05	VLBI	Deflection as function of $\mathrm{B} \cdot \mathrm{E}_{\gamma}$
$<8.5 \times 10^{-17}$		${ }^{4}$ SEMERTZIDIS 03			Laser light deflection in B-field
$<3 \times 10^{-28}$	single	5 SIVARAM	95	CMB	For $\Omega_{M}=0.3, \mathrm{~h}^{2}=0.5$
$<5 \times 10^{-30}$		${ }^{6}$ RAFFELT	94	TOF	Pulsar $f_{1}-f_{2}$
$<2 \times 10^{-28}$		7 COCCONI	92		VLBA radio telescope resolution
$<2 \times 10^{-32}$		COCCONI	88	TOF	Pulsar $f_{1}-f_{2}$ TOF

${ }^{1}$ ALTSCHUL 07B looks for Aharonov-Bohm phase shift in addition to geometric phase shift in radio interference fringes (VSOP mission)
${ }^{2}$ CAPRINI 05 uses isotropy of the cosmic microwave background to place stringent limits on possible charge asymmetry of the Universe. Charge limits are set on the photon, neutrino, and dark matter particles. Valid if charge asymmetries produced by different particles are not anticorrelated.
3 KOBYCHEV 05 considers a variety of observable effects of photon charge for extragalactic compact radio sources. Best limits if source observed through a foreground cluster of galaxies.
4 SEMERTZIDIS 03 reports the first laboratory limit on the photon charge in the last 30 years. Straightforward improvements in the apparatus could attain a sensitivity of 30 years.
$10^{-20} \mathrm{e}$.
${ }_{5} 10^{-20}$ e.
${ }^{5}$ SIVARAM 95 requires that CMB photon charge density not overwhelm gravity. Result scales as $\Omega_{M} \mathrm{~h}^{2}$.
${ }^{6}$ RAFFELT 94 notes that COCCONI 88 neglects the fact that the time delay due to dispersion by free electrons in the interstellar medium has the same photon energy dependence as that due to bending of a charged photon in the magnetic field. His limit is based on as that due to bending of a charged photon in the magnetic field. His limit is based on
the assumption that the entire observed dispersion is due to photon charge. It is a factor the assumption that the entire observed dispersion
of 200 less stringent than the COCCONI 88 limit.
7 See COCCONI 92 for less stringent limits in other frequency ranges. Also see RAFFELT 94 note.
γ REFERENCES

Gauge \& Higgs Boson Particle Listings

γ, g, graviton, W

SIVARAM	95	AJP 63473	C. Sivaram	(BANG)
FISCHBACH	94	PRL 73514	E. Fischbach et al.	(PURD, JHU+)
RAFFELT	94	PR D50 7729	G. Raffelt	(MPIM)
CHERNIKOV	92	PRL 683383	M.A. Chernikov et al.	(ETH)
Also		PRL 692999 (erratum)	M.A. Chernikov et al.	(ETH)
COCCONI	92	AJP 60750	G. Cocconi	(CERN)
COCCONI	88	PL B206 705	G. Cocconi	(CERN)
RYAN	85	PR D32 802	J.J. Ryan, F. Accetta, R.H. Austin	(PRIN)
CHIBISOV	76	SPU $19{ }^{624}$ Translated from UFN 119	G.V. Chibisov	(LEBD)
DAVIS	75	PRL 351402	L. Davis, A.S. Goldhaber, M.M. Nieto	(CIT, STON+)
HOLLWEG	74	PRL 32961	J.V. Hollweg	(NCAR)
FRANKEN	71	PRL 26115	P.A. Franken, G.W. Ampulski	(MICH)
GOLDHABER	71B	RMP 43277	A.S. Goldhaber, M.M. Nieto (STON,	BOHR, UCSB)
KROLL	71	PRL 261395	N.M. Kroll	(SLAC)
KROLL	71A	PRL 27340	N.M. Kroll	(SLAC)
PARK	71	PRL 261393	D. Park, E.R. Williams	(WILC)
WILLIAMS	71	PRL 26721	E.R. Williams, J.E. Faller, H.A. Hill	(WESL)
GOLDHABER	68	PRL 21567	A.S. Goldhaber, M.M. Nieto	(STON)
YAMAGUCHI	59	PTPS 1137	Y. Yamaguchi	

g or gluon

$$
l\left(J^{P}\right)=0\left(1^{-}\right)
$$

SU(3) color octet
Mass $m=0$. Theoretical value. A mass as large as a few MeV may not be precluded, see YNDURAIN 95.

- . We do not use the following data for averages, fits, limits, etc. • • ABREU 92E DIPH Spin 1 not 0 ALEXANDER 91H OPAL Spin 1, not 0 BEHREND 82D CELL Spin 1, not 0 BERGER 80D PLUT Spin 1, not 0 BRANDELIK 80C TASS Spin 1 , not 0

gluon REFERENCES

YNDURAIN	95	PL B345 524	F.J. Yndurain	(MADU)
ARRU	92E	PL B274 498	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91H	ZPHY C52 543	G. Alexander et al.	(OPAL Collab.)
BEHREND	82D	PL B110 329	H.J. Behrend et al.	(CELLO Collab.)
BRER	80D	PL B97 459	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	80C	PL B97 453	R. Brandelik et al.	(TASSO Collab.)

graviton

$J=2$

graviton MASS

Van Dam and Veltman (VANDAM 70), Iwasaki (IWASAKI 70), and Zakharov (ZAKHAROV 70) almost simultanously showed that ".... there is a discrete difference between the theory with zero-mass and a theory with finite mass, no matter how small as compared to all external momenta." The resolution of this "vDVZ discontinuity" has to do with whether the linear approximation is valid. De Rham etal. (DE-RHAM 11) have shown that nonlinear effects not captured in their linear treatment can give rise to a screening mechanism, allowing for massive gravity theories. See also GOLDHABER 10 and DE-RHAM 17 and references therein. Experimental limits have been set based on a Yukawa potential or signal dispersion. h_{0} is the Hubble constant in units of $100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

The following conversions are useful: $1 \mathrm{eV}=1.783 \times 10^{-33} \mathrm{~g}=1.957 \times$ $10^{-6} m_{e} ; \lambda_{C}=\left(1.973 \times 10^{-7} \mathrm{~m}\right) \times\left(1 \mathrm{eV} / m_{g}\right)$.
$\frac{\operatorname{VALUE}(\mathrm{eV})}{<6 \times \mathbf{1 0}^{\mathbf{- 3}}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CHOUDHURY } 04} \frac{\text { COMMENT }}{\text { YUKA }}$ Weak gravitational lensing

- - We do not use the following data for ave

$<6.8 \times 10^{-23}$	BERNUS	19	YUKA	Planetary ephemeris INPOP17b
$<1.4 \times 10^{-29}$	2 DESAI	18	YUKA	Gal cluster Abell 1689
$<5 \times 10^{-30}$	${ }^{3}$ GUPTA	18	YUKA	SPT-SZ
$<3 \times 10^{-30}$	${ }^{3}$ GUPTA	18	YUKA	Planck all-sky SZ
$<1.3 \times 10^{-29}$	${ }^{3}$ GUPTA	18	YUKA	redMaPPer SDSS-DR8
$<6 \times 10^{-30}$	${ }^{4}$ RANA	18	YUKA	Weak lensing in massive clusters
$<8 \times 10^{-30}$	${ }^{5}$ RANA	18	YUKA	SZ effect in massive clusters
$<7 \times 10^{-23}$	${ }^{6}$ ABBOTT	17	DISP	Combined dispersion limit from three BH mergers
$<1.2 \times 10^{-22}$	${ }^{6}$ ABBOTT	16	DISP	Combined dispersion limit from two BH mergers
$<2.9 \times 10^{-21}$	7 ZAKHAROV	16	YUKA	S2 star orbit
$<5 \times 10^{-23}$	${ }^{8}$ BRITO	13		Spinning black holes bounds
$<4 \times 10^{-25}$	${ }^{9}$ BASKARAN	08		Graviton phase velocity fluctuations
$<6 \times 10^{-32}$	10 GRUZINOV	05	YUKA	Solar System observations
$<9.0 \times 10^{-34}$	11 GERSHTEIN	04		From $\Omega_{\text {tot }}$ value assuming RTG
$>6 \times 10^{-34}$	12 DVALI	03		Horizon scales
$<8 \times 10^{-20}$	13,14 FINN	02	DISP	Binary pulsar orbital period decrease
	14,15 DAMOUR	91		Binary pulsar PSR 1913+16
$<7 \times 10^{-23}$	TALMADGE	88	YUKA	Solar system planetary astrometric data
$<2 \times 10^{-29} h_{0}^{-1}$	GOLDHABER	74		Rich clusters
$<7 \times 10^{-28}$	HARE	73		Galaxy
$<8 \times 10^{4}$	HARE	73		2γ decay

${ }^{1}$ CHOUDHURY 04 concludes from a study of weak-lensing data that masses heavier than about the inverse of 100 Mpc seem to be ruled out if the gravitation field has the Yukawa form.
${ }^{2}$ DESAI 18 limit based on dynamical mass models of galaxy cluster Abell 1689.
${ }^{3}$ GUPTA 18 obtains graviton mass limits using stacked clusters from 3 disparate surveys.
${ }^{4}$ RANA 18 limit, 68% CL, obtained using weak lensing mass profiles out to the radius at which the cluster density falls to 200 times the critical density of the Universe. Limit is based on the fractional change between Newtonian and Yukawa accelerations for the 50 most massive galaxy clusters in the Local Cluster Substructure Survey. Limits for other CL's and other density cuts are also given
${ }^{5}$ RANA 18 limit, 68% CL, obtained using mass measurements via the SZ effect out to the radius at which the cluster density falls to 500 times the critical density of the Universe for 182 optically confirmed galaxy clusters in an Altacama Cosmology Telescope survey. Limits for other CL's and other density cuts are also given.
${ }^{6}$ ABBOTT 16 and ABBOTT 17 assumed a dispersion relation for gravitational waves modified relative to GR
7 ZAKHAROV 16 constrains range of Yukawa gravity interaction from S2 star orbit about black hole at Galactic center. The limit is $<2.9 \times 10^{-21} \mathrm{eV}$ for $\delta=100$.
${ }^{8}$ BRITO 13 explore massive graviton (spin-2) fluctuations around rotating black holes.
${ }^{9}$ BASKARAN 08 consider fluctuations in pulsar timing due to photon interactions ("surfing") with background gravitational waves.
${ }^{10}$ GRUZINOV 05 uses the DGP model (DVALI 00) showing that non-perturbative effects restore continuity with Einstein's equations as the gravition mass approaches 0 , then bases his limit on Solar System observations.
11 GERSHTEIN 04 use non-Einstein field relativistic theory of gravity (RTG), with a massive graviton, to obtain the $95 \% \mathrm{CL}$ mass limit implied by the value of $\Omega_{\text {tot }}=1.02 \pm 0.02$ current at the time of publication.
12 DVALI 03 suggest scale of horizon distance via DGP model (DVALI 00). For a horizon distance of $3 \times 10^{26} \mathrm{~m}$ (about age of Universe/ c; GOLDHABER 10) this graviton mass limit is implied.
13 FINN 02 analyze the orbital decay rates of PSR B1913+16 and PSR B1534+12 with a possible graviton mass as a parameter. The combined frequentist mass limit is at $90 \% \mathrm{CL}$.
14 As of 2014, limits on dP/dt are now about 0.1% (see T. Damour, "Experimental tests of gravitational theory," in this Review).
${ }^{15}$ DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. "The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity c (which is the immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature." TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories
graviton REFERENCES

BERNUS	19	PRL 123161103	L. Bernus et al.		
DESAI	18	PL B778 325	S. Desai		(HYDER)
GUPTA	18	ANP 39985	S. Gupta, S. Desai		
RANA	18	PL B781 220	A. Rana et al.		(DELHI)
ABBOTT	17	PRL 118221101	B.P. Abbot et al.	(LIGO and Virgo	Collabs.)
DE-RHAM	17	RMP 89025004	C. de Rham et al.		
ABBOTT	16	PRL 116061102	B.P. Abbott et al.	(LIGO and Virgo	Collabs.)
ZAKHAROV	16	JCAP 1605045	A.F. Zakharov et al.		
BRITO	13	PR D88 023514	R. Brito, V. Cardoso, P. Pani	(LISB, MISS,	HSCA+)
DE-RHAM	11	PRL 106231101	C. de Rham, G. Gabadadze, A.	A.J. Tolley	
GOLDHABER	10	RMP 82939	A.S. Goldhaber, M.M. Nieto	(STON	, LANL)
BASKARAN	08	PR D78 044018	D. Baskaran et al.		
GRUZINOV	05	NAST 10311	A. Gruzinov		(NYU)
CHOUDHURY	04	ASP 21559	S.R. Choudhury et al.	(DELPH	, MELB)
GERSHTEIN	04	PAN 671596	S.S. Gershtein et al.		(SERP)
DVALI	03	Translated from YAF 67 PR D68 024012	1618. G.R. Dvali, A. Grizinov, M. Zal	Zaldarriaga	(NYU)
FINN	02	PR D65 044022	L.S. Finn, P.J. Sutton		
DVALI	00	PL B485 208	G.R. Dvali, G. Gabadadze, M.	Porrati	(NYU)
TAYLOR	93	NAT 355132	J.N. Taylor et al.	(PRIN, ARCBO,	BURE+) J
DAMOUR	91	APJ 366501	T. Damour, J.H. Taylor	(BURE, MEUD	, PRIN)
TALMADGE	88	PRL 611159	C. Talmadge et al.		(JPL)
GOLDHABER	74	PR D9 1119	A.S. Gold haber, M.M. Nieto	(LANL	, STON)
HARE	73	CJP 51431	M.G. Hare		(SASK)
IWASAKI	70	PR D2 2255	Y. Iwasaki		
VANDAM	70	NP B22 397	H. van Dam, M. Veltman		(UTRE)
ZAKHAROV	70	JETPL 12312	V.I. Zakharov et al.		

W

$J=1$

See the related review(s):
Mass and Width of the W Boson

W MASS

The W-mass listed here corresponds to the mass parameter in a BreitWigner distribution with mass-dependent width. To obtain the world av erage, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average W mass based on published results is $80.376 \pm 0.033 \mathrm{GeV}$ [SCHAEL 13A]. The combined Tevatron data yields an average W mass of $80.387 \pm 0.016 \mathrm{GeV}$ [AALTONEN 13N]. A combination of the LEP average with this Tevatron average and the ATLAS value [AABOUD 18J], assuming a common systematic error of 7 MeV between the latter two [Jens Erler, 52nd Rencontres de Moriond

EW, March 2017], the world average W mass of $80.379 \pm 0.012 \mathrm{GeV}$ is obtained. OUR FIT quotes this value for the W mass.
$\frac{\operatorname{VALUE}(\mathrm{GeV})}{\mathbf{8 0 . 3 7 9} \mathbf{0 . 0 1 2} \text { OUR FIT }} \frac{\operatorname{EVTS}}{}$
$80.370 \pm 0.007 \pm 0.01713 .7 \mathrm{M}$
$80.375 \pm 0.023 \quad 2177 \mathrm{k}$
$80.387 \pm 0.019 \quad 1095 \mathrm{k}$
$80.336 \pm 0.055 \pm 0.03910 .3 \mathrm{k}$
$80.415 \pm 0.042 \pm 0.03111830$
$80.270 \pm 0.046 \pm 0.0319909$
$80.440 \pm 0.043 \pm 0.0278692$
$80.483 \pm 0.084 \quad 49247$
$80.433 \pm 0.079 \quad 53841$

- - We do not use the follow
80.520 ± 0.115
$80.367 \pm 0.026 \quad 1677 \mathrm{k}$
$80.401 \pm 0.043 \quad 500 \mathrm{k}$
$80.413 \pm 0.034 \pm 0.034115 \mathrm{k}$
$82.87 \pm 1.82 \underset{-0.16}{+0.30} \quad 1500$
$80.3 \pm 2.1 \pm 1.2 \pm 1.0 \quad 645$
$81.4_{-2.6}^{+2.7} \pm 2.0_{-3.0}^{+3.3} \quad 1086$
$80.84 \pm 0.22 \pm 0.83 \quad 2065$
$80.79 \pm$
DOCUMENT ID
TECN COMMENT
$80.0 \pm 3.3 \pm 2.4 \quad 22$
$82.7 \pm 1.0 \pm 2.7 \quad 149$
$81.8 \pm 5.0 \pm 2.6 \quad 46$
89

81.
82.

$\begin{aligned}+10 . & 4\end{aligned}$
${ }^{11}$ ABAZOV 12F select $1677 \mathrm{k} W \rightarrow e \nu$ decays in $4.3 \mathrm{fb}^{-1}$ of Run-II data. The mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations.
12 ABAZOV 09AB study the transverse mass, transverse electron momentum, and transverse missing energy in a sample of 0.5 million $W \rightarrow e \nu$ decays selected in Run-II data. The quoted result combines all three methods, accounting for correlations.
13 AALTONEN 07F obtain high purity $W \rightarrow e \nu_{e}$ and $W \rightarrow \mu \nu_{\mu}$ candidate samples totaling 63,964 and 51,128 events respectively. The W mass value quoted above is derived by simultaneously fitting the transverse mass and the lepton, and neutrino p_{T} distributions.
14 AKTAS 06 fit the Q^{2} dependence ($300<Q^{2}<30,000 \mathrm{GeV}^{2}$) of the charged-current differential cross section with a propagator mass. The first error is experimental and the second corresponds to uncertainties due to input parameters and model assumptions.
${ }^{15}$ CHEKANOV 02C fit the Q^{2} dependence ($200<Q^{2}<60000 \mathrm{GeV}^{2}$) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
${ }^{16}$ BREITWEG 00D fit the Q^{2} dependence ($200<\mathrm{Q}^{2}<22500 \mathrm{GeV}^{2}$) of the chargedcurrent differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
17 ALITTI 92B result has two contributions to the systematic error (± 0.83); one (± 0.81) cancels in m_{W} / m_{Z} and one (± 0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_{Z} value, because we perform our own combined fit.
8 There are two contributions to the systematic error (± 0.84): one (± 0.81) which cancels in m_{W} / m_{Z} and one (± 0.21) which is non-cancelling. These were added in quadrature. ${ }^{19}$ ABE 89| systematic error dominated by the uncertainty in the absolute energy scale.
${ }^{20}$ ALBAJAR 89 result is from a total sample of $299 \mathrm{~W} \rightarrow e \nu$ events.
${ }^{21}$ ALBAJAR 89 result is from a total sample of $67 \mathrm{~W} \rightarrow \mu \nu$ events.
22 ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.88147 ± 0.00013		1 PDG			
- - We do not use the following data for averages, fits, limits, etc. - -					
$0.8821 \pm 0.0011 \pm 0.0008$	28323	2 ABBOTT	98N	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
$0.88114 \pm 0.00154 \pm 0.00252$	5982	${ }^{3}$ ABBOTT	98P	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
$0.8813 \pm 0.0036 \pm 0.0019$	156	4 ALITTI	92B	UA2	$E_{\mathrm{Cm}}^{p \bar{p}}=630 \mathrm{GeV}$

${ }^{1}$ This value was obtained using the world average values of m_{Z} and m_{W} as listed in these listings.
${ }^{2}$ ABBOTT 98N obtain this from a study of $28323 W \rightarrow e_{\nu} e^{\text {and } 3294 Z} \rightarrow e^{+} e^{-}$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale.
${ }^{3}$ ABBOTT 98P obtain this from a study of $5982 \mathrm{~W} \rightarrow e \nu_{e}$ events. The systematic error includes an uncertainty of ± 0.00175 due to the electron energy scale.
${ }^{4}$ Scale error cancels in this ratio.

$\boldsymbol{m}_{\boldsymbol{Z}}=\boldsymbol{m}_{\boldsymbol{W}}$

VALUE (GeV) DOCUMENT ID TECN COMMENT
$\begin{array}{ll}\mathbf{1 0 . 8 0 9} \pm \mathbf{0 . 0 1 2} & 19 \\ \bullet \bullet \text { PDG We do not use the following data for averages, fits, limits, etc. • • - }\end{array}$
$10.4 \pm 1.4 \pm 0.8 \quad$ ALBAJAR 89 UA1 $E_{\mathrm{Cm}}^{p \bar{p}}=546,630 \mathrm{GeV}$ $11.3 \pm 1.3 \pm 0.9 \quad$ ANSARI 87 UA2 $E_{\mathrm{Cm}}^{p \bar{p}}=546,630 \mathrm{GeV}$
${ }^{1}$ This value was obtained using the world average values of m_{Z} and m_{W} as listed in these listings.

$m_{w^{+}}-m_{w-}$

Test of $C P T$ invariance
VALUE (GeV)

-0.029 ± 0.028 OUR AVERAGE

$-0.029 \pm 0.013 \pm 0.02513 .7 \mathrm{M} \quad{ }^{1}$ AABOUD 18 J ATLS $E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
$-0.19 \pm 0.58 \quad 1722 \quad \mathrm{ABE} \quad 90 \mathrm{G} \quad \mathrm{CDF} \quad E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$ ${ }^{1}$ AABOUD 18J select $4.61 \mathrm{M} \mathrm{W}^{+} \rightarrow \mu^{+} \nu_{\mu}, 3.40 \mathrm{M} \mathrm{W}^{+} \rightarrow e^{+} \nu_{e}, 3.23 \mathrm{M} \mathrm{W}^{-} \rightarrow$ $\mu^{-} \bar{\nu}_{\mu}$ and $2.49 \mathrm{M} W^{-} \rightarrow e^{-} \bar{\nu}_{e}$ events in $4.6 \mathrm{fb}^{-1} p p$ data at 7 TeV . The W mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations. The systematic error includes 0.007 GeV experimental and 0.024 GeV modelling uncertainties.

w WIDTH

The W width listed here corresponds to the width parameter in a BreitWigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average W width based on published results is $2.195 \pm 0.083 \mathrm{GeV}$ [SCHAEL 13A]. The combined Tevatron data yields an average W width of $2.046 \pm 0.049 \mathrm{GeV}$ [FERMILAB-TM-2460-E].
OUR FIT uses these average LEP and Tevatron width values and combines them assuming no correlations.

VALUE (GeV)
2.085 ± 0.042 OUR FIT
2.028 ± 0.072
5272
$2.404 \pm 0.140 \pm 0.101 \quad 10.3 \mathrm{k}$
$1.996 \pm 0.096 \pm 0.102 \quad 10729$

DOCUMENT ID TECN

COMMENT
1 ABAZOV 09AK D0 $\quad E_{\mathrm{CM}}^{p \bar{p}}=1.96 \mathrm{GeV}$
${ }^{2}$ AALTONEN 08B CDF $\quad E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
${ }^{3}$ ABDALLAH 08A DLPH $\quad E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$
${ }^{4}$ ABBIENDI 06 OPAL $E_{\mathrm{Cm}}^{e \mathrm{e}}=170-209 \mathrm{GeV}$
\qquad
$W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range $189-209 \mathrm{GeV}$. The result quoted here is obtained combining this mass value with the results obtained from a direct W mass reconstruction at 172 and 183 GeV and with those from the dependence of the $W W$ production cross-section on m_{W} at 161 and 172 GeV (ACCIARRI 99).
${ }^{7}$ SCHAEL 06 use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range $183-209 \mathrm{GeV}$. The result quoted here is obtained combining this mass value with those obtained from the dependence of the W pair production cross-section on m_{W} at 161 and 172 GeV (BARATE 97 and BARATE 97s respectively). The systematic error includes $\pm 0.009 \mathrm{GeV}$ due to possible effects of final state interactions in the $q \bar{q} q \bar{q}$ channel and $\pm 0.009 \mathrm{GeV}$ due to the uncertainty on the LEP beam energy.
${ }^{8}$ ABAZOV 02D improve the measurement of the W-boson mass including $W \rightarrow e \nu_{e}$ events in which the electron is close to a boundary of a central electromagnetic calorimeter module. Properly combining the results obtained by fitting $m_{T}(W), p_{T}(e)$, and $p_{T}(\nu)$, this sample provides a mass value of $80.574 \pm 0.405 \mathrm{GeV}$. The value reported here is a combination of this measurement with all previous $D \varnothing W$-boson mass measurements.
AFFOLDER 01E fit the transverse mass spectrum of $30115 \mathrm{~W} \rightarrow e \nu_{e}$ events ($M_{W}=$ $80.473 \pm 0.065 \pm 0.092 \mathrm{GeV}$) and of $14740 \mathrm{~W} \rightarrow \mu \nu_{\mu}$ events ($M_{W}=80.465 \pm 0.100 \pm$ 0.103 GeV) obtained in the run IB (1994-95). Combining the electron and muon results, accounting for correlated uncertainties, yields $M_{W}=80.470 \pm 0.089 \mathrm{GeV}$. They combine this value with their measurement of ABE 95P reported in run IA (1992-93) to obtain the quoted value.
${ }^{10}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams. AABOUD 18J select 4.61M $\mathrm{W}^{+} \rightarrow \mu^{+} \nu_{\mu}$, 3.40M $\mathrm{W}^{+} \rightarrow e^{+} \nu_{e}, 3.23 \mathrm{M} \mathrm{W}^{-} \rightarrow$ μ_{μ} e ν_{e} events in 4.6 ρp data 7 TeV. The W mass .014

ABAZOV 14 N is a combination of ABAZOV 09AB and ABAZOV 12F, also giving more details on the analysis.
${ }^{3}$ AALTONEN 12 E select $470 \mathrm{k} W \rightarrow e \nu$ decays and $625 \mathrm{k} W \rightarrow \mu \nu$ decays in $2.2 \mathrm{fb}^{-1}$ of Run-II data. The mass is determined using the transverse mass, transverse lepton momentum and transverse missing energy distributions, accounting for correlations. This result supersedes AALTONEN 07F. AALTONEN 14D gives more details on the procedures followed by the authors.
${ }^{4}$ ABDALLAH 08A use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events for energies 172 GeV and above. The W mass was also extracted from the dependence of the $W W$ cross section close to the production threshold and combined appropriately to obtain the final result. The systematic error includes $\pm 0.025 \mathrm{GeV}$ due to final state interactions and $\pm 0.009 \mathrm{GeV}$ due to LEP energy uncertainty.
${ }^{5}$ ABBIENDI 06 use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events. The result quoted here is obtained combining this mass value with the results using $W^{+} W^{-} \rightarrow \ell \nu_{\ell} \ell^{\prime} \nu_{\ell^{\prime}}$ events in the energy range 183-207 GeV (ABBIENDI 03C) and the dependence of the $W W$ production cross-section on m_{W} at threshold. The systematic error includes $\pm 0.009 \mathrm{GeV}$ due to the uncertainty on the at threshold. The systematic error includes $\pm 0.009 \mathrm{GeV}$ due to the uncertainty on the
LEP beam energy.

Gauge \＆Higgs Boson Particle Listings

2.18 ± 0.11	± 0.09	9795	${ }^{5}$ ACHARD	06	L3	$E_{C m}^{e e}=172-209 \mathrm{GeV}$
$2.14 \pm 0.09 \pm 0.06$	8717	${ }^{6}$ SCHAEL	06	ALEP	$E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$	
2.23	${ }_{-0.14}^{0.15} \pm 0.10$	294	${ }^{7}$ ABAZOV	02 DE	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
$2.05 \pm 0.10 \pm 0.08$	662	${ }^{8}$ AFFOLDER	00 M	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$	

－－We do not use the following data for averages，fits，limits，etc．\bullet
2.152 ± 0.066

$2.064 \pm 0.060 \pm 0.059$				10 ABE	95w	CDF	Extracted value
2.10	$\begin{aligned} & +0.14 \\ & { }_{0}^{2} \end{aligned}$	± 0.09	3559	11 ALITTI	92	UA2	Extracted value
2.18	+0.26 +0.24	± 0.04		12 ALBAJAR	91	UA1	Extracted value

${ }^{1}$ ABAZOV 09AK obtain this result fitting the high－end tail $(100-200 \mathrm{GeV})$ of the transverse mass spectrum in $W \rightarrow e \nu$ decays
${ }^{2}$ AALTONEN 08B obtain this result fitting the high－end tail $(90-200 \mathrm{GeV})$ of the trans－ verse mass spectrum in semileptonic $W \rightarrow e \nu_{e}$ and $W \rightarrow \mu \nu_{\mu}$ decays．
${ }^{3}$ ABDALLAH 08A use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events．The systematic error includes $\pm 0.065 \mathrm{GeV}$ due to final state interactions．
${ }^{4}$ ABBIENDI 06 use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events．The systematic error includes $\pm 0.003 \mathrm{GeV}$ due to the uncertainty on the LEP beam energy．
${ }^{5}$ ACHARD 06 use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events in the C．M．energy range $189-209 \mathrm{GeV}$ ．The result quoted here is obtained combining this value of the width with the result obtained from a direct W mass reconstruction at 172 and 183 GeV （ACCIARRI 99）．
${ }^{6}$ SCHAEL 06 use direct reconstruction of the kinematics of $W^{+} W^{-} \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^{+} W^{-} \rightarrow q \bar{q} q \bar{q}$ events．The systematic error includes $\pm 0.05 \mathrm{GeV}$ due to possi－ ble effects of final state interactions in the $q \bar{q} q \bar{q}$ channel and $\pm 0.01 \mathrm{GeV}$ due to the uncertainty on the LEP beam energy．
7 ABAZOV 02E obtain this result fitting the high－end tail $(90-200 \mathrm{GeV})$ of the transverse－ mass spectrum in semileptonic $W \rightarrow e \nu_{e}$ decays．
${ }^{8}$ AFFOLDER 00 M fit the high transverse mass $(100-200 \mathrm{GeV}) W \rightarrow e \nu_{e}$ and $W \rightarrow$ $\mu \nu_{\mu}$ events to obtain $\Gamma(W)=2.04 \pm 0.11$（stat）± 0.09（syst） GeV ．This is combined with the earlier CDF measurement（ABE 95C）to obtain the quoted result．
${ }^{9}$ ABBOTT 00в measure $R=10.43 \pm 0.27$ for the $W \rightarrow e \nu_{e}$ decay channel．They use the SM theoretical predictions for $\sigma(W) / \sigma(Z)$ and $\Gamma\left(W \rightarrow e \nu_{e}\right)$ and the world average for $\mathrm{B}(Z \rightarrow e e)$ ．The value quoted here is obtained combining this result $(2.169 \pm 0.070$ GeV ）with that of ABBOTT 99 H
${ }^{10}$ ABE 95 w measured $R=10.90 \pm 0.32 \pm 0.29$ ．They use $m_{W}=80.23 \pm 0.18 \mathrm{GeV}$ ， $\sigma(W) / \sigma(Z)=3.35 \pm 0.03, \Gamma(W \rightarrow e \nu)=225.9 \pm 0.9 \mathrm{MeV}, \Gamma\left(Z \rightarrow e^{+} e^{-}\right)=$ $83.98 \pm 0.18 \mathrm{MeV}$ ，and $\Gamma(Z)=2.4969 \pm 0.0038 \mathrm{GeV}$ ．
11 ALITTI 92 measured $R=10.4_{-0.6}^{+0.7} \pm 0.3$ ．The values of $\sigma(Z)$ and $\sigma(W)$ come from $O\left(\alpha_{S}^{2}\right)$ calculations using $m_{W}=80.14 \pm 0.27 \mathrm{GeV}$ ，and $m_{Z}=91.175 \pm 0.021 \mathrm{GeV}$ along with the corresponding value of $\sin ^{2} \theta_{W}=0.2274$ ．They use $\sigma(W) / \sigma(Z)=$ $3.26 \pm 0.07 \pm 0.05$ and $\Gamma(Z)=2.487 \pm 0.010 \mathrm{GeV}$ ．
12 ALBAJAR 91 measured $R=9.5_{-1.0}^{+1.1}$（stat．＋syst．）．$\sigma(W) / \sigma(Z)$ is calculated in QCD at the parton level using $m_{W}=80.18 \pm 0.28 \mathrm{GeV}$ and $m_{Z}=91.172 \pm 0.031 \mathrm{GeV}$ along with $\sin ^{2} \theta_{W}=0.2322 \pm 0.0014$ ．They use $\sigma(W) / \sigma(Z)=3.23 \pm 0.05$ and $\Gamma(Z)$ $=2.498 \pm 0.020 \mathrm{GeV}$ ．This measurement is obtained combining both the electron and muon channels．

W^{+}DECAY MODES

W^{-}modes are charge conjugates of the modes below．

	Mode		Fraction（ $\Gamma_{i} / \overline{\text { r }}$ ）		Confidence level
Γ_{1}	$\ell^{+} \nu$	［a］	(10.86 ± 0.09)	\％	
Γ_{2}	$e^{+} \nu$		（10．71 ± 0.16	\％	
$\Gamma 3$	$\mu^{+} \nu$		（10．63土 0.15	\％	
Γ_{4}	$\tau^{+} \nu$		(11.38 ± 0.21)	）$\%$	
Γ_{5}	hadrons		（67．41 ± 0.27		
Γ_{6}	$\pi^{+} \gamma$		＜ 7	$\times 10^{-6}$	－6 95\％
Γ_{7}	$D_{s}^{+} \gamma$		＜ 1.3	$\times 10^{-3}$	－3 95\％
Γ_{8}	$c X$		$(33.3 \pm 2.6$		
Γ_{9}	$c \bar{S}$		$\left(\begin{array}{ll} \\ (31 & +13 \\ -11\end{array}\right)$	）\％	
Γ_{10}	invisible	［b］	$(1.4 \pm 2.9$		
Γ_{11}	$\pi^{+} \pi^{+} \pi^{-}$		<1.01	$\times 10^{-6}$	－6 95\％

［a］ℓ indicates each type of lepton（ e, μ ，and τ ），not sum over them．
$[b]$ This represents the width for the decay of the W boson into a charged particle with momentum below detectability， $\mathrm{p}<200 \mathrm{MeV}$ ．

W PARTIAL WIDTHS

Γ（invisible）
Γ_{10}
This represents the width for the decay of the W boson into a charged particle with momentum below detectability， $\mathrm{p}<200 \mathrm{MeV}$ ．
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{3 0} \mathbf{+ 5 2} \mathbf{+ 3 3}} \quad \frac{\text { DOCUMENT ID }}{1 \text { BARATE }} \quad$ 991 $\frac{\text { TECN }}{\text { ALEP }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=161+172+183 \mathrm{GeV}}$
－－We do not use the following data for averages，fits，limits，etc．－．－
${ }^{2}$ BARATE $\quad 99$ ALEP $E_{\mathrm{Cm}}^{e}=161+172+183 \mathrm{GeV}$
${ }^{1}$ BARATE 99 measure this quantity using the dependence of the total cross section $\sigma_{W} W$ upon a change in the total width．The fit is performed to the $W W$ measured cross sections at 161,172 ，and 183 GeV ．This partial width is $<139 \mathrm{MeV}$ at $95 \% \mathrm{CL}$ ．
${ }^{2}$ BARATE 99L use W－pair production to search for effectively invisible W decays，tagging with the decay of the other W boson to Standard Model particles．The partial width for effectively invisible decay is $<27 \mathrm{MeV}$ at 95% CL．

w BRANCHING RATIOS

Overall fits are performed to determine the branching ratios of the W boson．Averages on $W \rightarrow e \nu, W \rightarrow \mu \nu$ ，and $W \rightarrow \tau \nu$ ，and their correlations are obtained by combining results from the four LEP experi－ ments properly taking into account the common systematic uncertainties and their correlations［SCHAEL 13A］．A first fit determines the three indi－ vidual leptonic braching ratios $\mathrm{B}(W \rightarrow e \nu), \mathrm{B}(W \rightarrow \mu \nu)$ ，and $\mathrm{B}(W \rightarrow$ $\tau \nu)$ ．This fit has a $\chi^{2}=6.3$ for 9 degrees of freedom．The correlation co－ efficients between the branching fractions are $0.14(e-\mu),-0.20(e-\tau)$ ， $-0.12(\mu-\tau)$ ．A second fit assumes lepton universality and determines the leptonic branching ratio $\mathrm{B}(W \rightarrow \ell \nu)$ and the hadronic branching ratio is derived as $\mathrm{B}(W \rightarrow$ hadrons $)=1-3 \mathrm{~B}(W \rightarrow \ell \nu)$ ．This fit has a χ^{2} $=15.4$ for 11 degrees of freedom．
$\Gamma\left(\ell^{+} \nu\right) / \Gamma_{\text {total }}$
ℓ indicates average over e, μ ，and τ modes，not sum over modes．

VALUE（units 10^{-2} ）	EVTS	DOCUMENT ID		TECN	COMMENT
10．86 ± 0.09 OUR FIT					
$10.86 \pm 0.12 \pm 0.08$	16438	ABBIENDI	07A	OPAL	$E_{\mathrm{Cm}}^{e}{ }_{\text {en }}^{e}=161-209 \mathrm{GeV}$
$10.85 \pm 0.14 \pm 0.08$	13600	ABDALLAH	04G	DLPH	$E_{C m}^{e e}=161-209 \mathrm{GeV}$
$10.83 \pm 0.14 \pm 0.10$	11246	ACHARD	04」	L3	$E_{\mathrm{Cm}}^{e}=161-209 \mathrm{GeV}$
$10.96 \pm 0.12 \pm 0.05$	16116	SCHAEL	04A	ALEP	$E_{\mathrm{Cm}}^{e}=183-209 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－					
11.02 ± 0.52	11858	${ }^{1}$ ABBOTT	99 H	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
10.4 ± 0.8	3642	${ }^{2} \mathrm{ABE}$	921	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$

${ }^{1}$ ABBOTT 99н measure $R \equiv\left[\sigma_{W} \mathrm{~B}\left(W \rightarrow \ell \nu_{\ell}\right)\right] /\left[\sigma_{Z} \mathrm{~B}(Z \rightarrow \ell \ell)\right]=10.90 \pm 0.52$ combining electron and muon channels．They use $M_{W}=80.39 \pm 0.06 \mathrm{GeV}$ and the SM theoretical predictions for $\sigma(W) / \sigma(Z)$ and $\mathrm{B}(Z \rightarrow \ell \ell)$ ．
${ }^{2} 1216 \pm 38_{-31}^{+27} W \rightarrow \mu \nu$ events from ABE 92। and $2426 \mathrm{~W} \rightarrow e \nu$ events of ABE 91C． ABE 92 I give the inverse quantity as 9.6 ± 0.7 and we have inverted．

$\Gamma\left(e^{+} \nu\right) / \Gamma_{\text {total }}$						
VALUE（units 10^{-2} ）	EVTS	DOCUMENT ID		TECN	COMMENT	
$\mathbf{1 0 . 7 1} \pm \mathbf{0 . 1 6}$ OUR FIT						
$10.71 \pm 0.25 \pm 0.11$	2374	ABBIENDI	07A	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=161-209$	GeV
$10.55 \pm 0.31 \pm 0.14$	1804	ABDALLAH	04G	DLPH	$E_{\mathrm{Cm}}^{e e}=161-209$	GeV
$10.78 \pm 0.29 \pm 0.13$	1576	ACHARD	04」	L3	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=161-209$	GeV
$10.78 \pm 0.27 \pm 0.10$	2142	SCHAEL	04A	ALEP	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=183-209$	GeV

－－We do not use the following data for averages，fits，limits，etc．－－－
$10.61 \pm 0.28 \quad{ }^{1}$ ABAZOV 04D TEVA $E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
${ }^{1}$ ABAZOV 04D take into account all correlations to properly combine the CDF（ABE 95w） and $\mathrm{D} \varnothing$（ABBOTT 00B）measurements of the ratio R in the electron channel．The ratio R is defined as $\left[\sigma_{W} \cdot \mathrm{~B}\left(W \rightarrow e \nu_{e}\right)\right] /\left[\sigma_{Z} \cdot \mathrm{~B}(Z \rightarrow e e)\right]$ ．The combination gives $\mathrm{R}^{\text {Tevatron }}=10.59 \pm 0.23 . \sigma_{\mathrm{W}} / \sigma_{Z}$ is calculated at next－to－next－to－leading order (3.360 ± 0.051) ．The branching fraction $\mathrm{B}(Z \rightarrow e e)$ is taken from this Review as (3.360 ± 0.051).
$(3.363 \pm 0.004) \%$.
$\Gamma\left(\mu^{+} \nu\right) / \Gamma_{\text {total }}$
Γ_{3} / Γ
VALUE（units 10^{-2} ） 10.63 ± 0.15 OUR FIT
$10.78 \pm 0.24 \pm 0.10 \quad 2397$
$10.65 \pm 0.26 \pm 0.08 \quad 1998$
$10.03 \pm 0.29 \pm 0.12 \quad 1423$
$10.87 \pm 0.25 \pm 0.08 \quad 2216$

$\Gamma\left(\mu^{+} \nu\right) / \Gamma\left(e^{+} \nu\right)$
0.996 ± 0.008 OUR AVERAGE
DOCUMENT ID TECN COMMENT
1.003 ± 0.010
${ }^{1}$ AABOUD
0.980 ± 0.018
2 AAIJ
$0.993 \pm 0.019 \quad$ SCHAEL 13 A LEP $E_{\mathrm{Cm}}^{e \mathrm{e}}=130-209 \mathrm{GeV}$
0.89 ± 0.10
${ }^{3}$ ABACHI
95D D0
$\begin{array}{ll}95 \mathrm{D} \\ \text { 92ı } & \text { CDF }\end{array}$
1.02 ± 0.08
$1216 \quad 4 \mathrm{ABE}$
$1.00 \pm 0.14 \pm 0.08 \quad 67 \quad$ ALBAJAR 89 UA1 $\quad E_{\mathrm{Cm}}^{p \bar{p}}=546,630 \mathrm{GeV}$
$1.00 \pm 0.14 \pm 0.08 \quad 67 \quad$ ALBAJAR 89 UA1 $\quad E_{\mathrm{Cm}}^{p \bar{p}}=546,630 \mathrm{GeV}$
$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．－－•
$1.24 \underset{-0.4}{+0.6} \quad 14 \quad$ ARNISON 84D UA1 Repl．by ALBAJAR 89
${ }^{1}$ AABOUD $17 Q$ make a precise determination of $W \rightarrow e \nu$ and $W \rightarrow \mu \nu$ production in the follwoing fiducial phase space：lepton pseudo－rapidity range $|\eta|<2.5$ ，lepton and neutrino transverse momenta larger than 25 GeV each，and W transverse mass larger than 25 GeV ．They determine the ratio of the W branching fractions $\mathrm{B}(W \rightarrow$ $e \nu) / \mathrm{B}(W \rightarrow \mu \nu)=0.9967 \pm 0.0004 \pm 0.0101=0.997 \pm 0.010$ ．
${ }^{2}$ AAIJ 16AJ make precise measurements of forward $W \rightarrow e \nu$ and $W \rightarrow \mu \nu$ production in proton-proton collisions at 8 TeV and determine the ratio of the W branching fractions $\mathrm{B}(W \rightarrow e \nu) / \mathrm{B}(W \rightarrow \mu \nu)=1.020 \pm 0.002 \pm 0.019$.
${ }^{3} \mathrm{ABACHI} 95 \mathrm{D}$ obtain this result from the measured $\sigma_{W} \mathrm{~B}(W \rightarrow \mu \nu)=2.09 \pm 0.23 \pm$ 0.11 nb and $\sigma_{W} \mathrm{~B}(W \rightarrow e \nu)=2.36 \pm 0.07 \pm 0.13 \mathrm{nb}$ in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.
${ }^{4}$ ABE 92। obtain $\sigma_{W} \mathrm{~B}(W \rightarrow \mu \nu)=2.21 \pm 0.07 \pm 0.21$ and combine with ABE 91C σ_{W} $\mathrm{B}((W \rightarrow e \nu))$ to give a ratio of the couplings from which we derive this measurement.
$\Gamma\left(\tau^{+} \nu\right) / \Gamma_{\text {total }}$
Γ_{4} / Γ
VALUE (units 10^{-2}) $\mathbf{1 1 . 3 8} \pm \mathbf{0 . 2 1}$ OUR FIT
$11.14 \pm 0.31 \pm 0.17$
$11.46 \pm 0.39 \pm 0.19$
$11.25+0.32+0.20 \quad 2070$ SCHAEL 04A ALEP $E_{C m}^{e e}-183-209 \mathrm{GeV}$
$\Gamma\left(\tau^{+} \nu\right) / \Gamma\left(e^{+} \nu\right)$
1.043 ± 0.024 OUR AVERAGE
1.063 ± 0.027
0.961 ± 0.061
0.94 ± 0.14
$1.04+0.08 \pm 0.08 \quad 179$
$1.02 \pm 0.20 \pm 0.12 \quad 32$ ALBAJAR 89 UA1 $E_{\mathrm{Cm}}^{p \bar{p}}=546,630 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

$0.995 \pm 0.112 \pm 0.083$	198	ALITTI	91C UA2	Repl. by ALITTI 92F	
$1.02 \pm 0.20 \pm 0.10$	32	ALBAJAR	87	UA1	Repl. by ALBAJAR 89

${ }^{1}$ ABBOTT 00D measure $\sigma_{W} \times \mathrm{B}\left(W \rightarrow \tau \nu_{\tau}\right)=2.22 \pm 0.09 \pm 0.10 \pm 0.10 \mathrm{nb}$. Using the ABBOTT 00B result $\sigma W \times \mathrm{B}\left(W \rightarrow e \nu_{e}\right)=2.31 \pm 0.01 \pm 0.05 \pm 0.10 \mathrm{nb}$, they quote the ratio of the couplings from which we derive this measurement.
${ }^{2}$ ABE 92E use two procedures for selecting $W \rightarrow \tau \nu_{\tau}$ events. The missing E_{T} trigger leads to $132 \pm 14 \pm 8$ events and the τ trigger to $47 \pm 9 \pm 4$ events. Proper statistical and systematic correlations are taken into account to arrive at $\sigma \mathrm{B}(W \rightarrow \tau \nu)=2.05 \pm 0.27$ nb. Combined with ABE 91 C result on $\sigma \mathrm{B}(W \rightarrow e \nu)$, ABE 92 E quote a ratio of the couplings from which we derive this measurement.
${ }^{3}$ This measurement is derived by us from the ratio of the couplings of ALITTI 92F.
$\Gamma\left(\tau^{+} \nu\right) / \Gamma\left(\mu^{+} \nu\right)$
$\frac{\text { VALUE }}{\mathbf{1 . 0 7 0} \pm \mathbf{0 . 0 2 6}} \quad \frac{\text { DOCUMENT ID }}{\text { SCHAEL } 13 \mathrm{~A}} \frac{\text { TECN }}{\text { LEP }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=130-209 \mathrm{GeV}}$
Γ (hadrons) $/ \Gamma_{\text {total }}$
SCHAEL $\quad 13 \mathrm{~A}$ LEP $\quad E_{\mathrm{Cm}}^{e e}=130-209 \mathrm{GeV}$

OUR FIT value is obtained by a fit to the lepton branching ratio data assuming lepton universality.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{6 7 . 4 1} \pm \mathbf{0 . 2 7}$ OUR FIT					
$67.41 \pm 0.37 \pm 0.23$	16438	ABBIENDI	07A	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=161-209 \mathrm{GeV}$
$67.45 \pm 0.41 \pm 0.24$	13600	ABDALLAH	04G	DLPH	$E_{\mathrm{Cm}}^{e \mathrm{el}}=161-209 \mathrm{GeV}$
$67.50 \pm 0.42 \pm 0.30$	11246	ACHARD	04」	L3	$E_{\mathrm{Cm}}^{e e}=161-209 \mathrm{GeV}$
$67.13 \pm 0.37 \pm 0.15$	16116	SCHAEL	04A	ALEP	$E_{\mathrm{Cm}}^{e \mathrm{e}}=183-209 \mathrm{GeV}$
$\Gamma\left(\pi^{+} \gamma\right) / \Gamma\left(e^{+} \nu\right)$					Γ_{6} / Γ_{2}
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<6.4 \times 10^{-5}$	95	AALTONEN	12w	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{Tev}$
$<7 \times 10^{-4}$	95	ABE	98H	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$
$<4.9 \times 10^{-3}$	95	${ }^{1}$ ALITTI	92D	UA2	$E_{\mathrm{Cm}}^{p \bar{p}}=630 \mathrm{GeV}$
$<58 \times 10^{-3}$	95	2 ALBAJAR	90	UA1	$E_{\mathrm{Cm}}^{p \bar{P}}=546,630 \mathrm{GeV}$

${ }^{1}$ ALITTI 92D limit is 3.8×10^{-3} at 90% CL.
${ }^{2}$ ALBAJAR 90 obtain <0.048 at 90% CL.

$\Gamma\left(D_{s}^{+} \gamma\right) / \Gamma\left(e^{+} \nu\right)$						Γ_{7} / Γ_{2}
VALUE	CL\%	DOCU		TECN	COMMENT	
$<1.2 \times 10^{-2}$	95	ABE	98P	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$	

$\Gamma(c \mathrm{X}) / \Gamma$ (hadrons)
VALUE
EVTS
DOCUMENT ID
TECN COMMENT

0.49 ± 0.04 OUR AVERAGE

$0.481+0.042+0.032$

1 ABBIENDI 00 v tag W mation, and leptons produced in charm decays. From this result, and using the additional measurements of $\Gamma(W)$ and $\mathrm{B}\left(W \rightarrow\right.$ hadrons), $\left|V_{C S}\right|$ is determined to be $0.969 \pm 0.045 \pm 0.036$.
${ }^{2}$ BARATE 99 m tag C jets using a neural network algorithm. From this measurement $\left|V_{C s}\right|$ is determined to be $1.00 \pm 0.11 \pm 0.07$.

$\left\langle\boldsymbol{N}_{\boldsymbol{K}^{ \pm}}\right\rangle$
$\frac{\text { VALUE }}{\mathbf{2 . 2 0} \mathbf{2 0 . 1 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABREU,P }} \quad 00 \mathrm{~F} \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=189 \mathrm{GeV}}$
${ }^{1}$ ABREU,P 00F measure $\left\langle N_{K^{ \pm}}\right\rangle=4.38 \pm 0.42 \pm 0.12$ and $2.23 \pm 0.32 \pm 0.17$ in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.
$\left\langle N_{p}\right\rangle$
VALUE $\quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$
${ }^{1}$ ABREU,P 00F measure $\left\langle N_{p}\right\rangle=1.82 \pm 0.29 \pm 0.16$ and $0.94 \pm 0.23 \pm 0.06$ in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.
$\left\langle\boldsymbol{N}_{\text {charged }}\right.$,
VALUE 0.08 OUR AVERAGE
DOCUMENT ID \qquad TECN COMMENT
$19.38 \pm 0.05 \pm 0.08$
19.44 ± 0.17
$19.3 \pm 0.3 \pm 0.3$
19.23 ± 0.74
${ }^{1}$ ABBIENDI 06A OPAL $E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$
2 ABREU,P 00F DLPH $\quad E_{\mathrm{Cm}}^{e e}=183+189 \mathrm{GeV}$
4 ABREU

3 ABBIENDI 99 N OPAL $E_{\mathrm{Cm}}^{\mathrm{ee}}=183 \mathrm{GeV}$
$\begin{array}{ll}99 \mathrm{~N} & \text { OPAL } \\ 98 \mathrm{C} & E_{\mathrm{Cm}}^{e e}=183 \mathrm{GeV}\end{array}$
98C DLPH $E_{\mathrm{Cm}}^{e e}=172 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 06A measure $\left\langle N_{\text {charged }}\right\rangle=38.74 \pm 0.12 \pm 0.26$ when both W bosons decay hadronically and $\left\langle N_{\text {charged }}\right\rangle=19.39 \pm 0.11 \pm 0.09$ when one W boson decays semileptonically. The value quoted here is obtained under the assumption that there is no color reconnection between W bosons; the value is a weighted average taking into account correlations in the systematic uncertainties.
${ }^{2}$ ABREU,P 00F measure $\left\langle N_{\text {charged }}\right\rangle=39.12 \pm 0.33 \pm 0.36$ and $38.11 \pm 0.57 \pm 0.44$ in the fully hadronic final states at 189 and 183 GeV respectively, and $\left\langle N_{\text {charged }}\right\rangle=$ $19.49 \pm 0.31 \pm 0.27$ and $19.78 \pm 0.49 \pm 0.43$ in the semileptonic final states. The value quoted is a weighted average without assuming any correlations.
${ }^{3}$ ABBIENDI 99 N use the final states $W^{+} W^{-} \rightarrow q \bar{q} \ell \bar{\nu}_{\ell}$ to derive this value.
${ }^{4}$ ABREU 98c combine results from both the fully hadronic as well semileptonic $W W$ final states after demonstrating that the W decay charged multiplicity is independent of the topology within errors.

TRIPLE GAUGE COUPLINGS (TGC'S)

Revised April 2017 by M.W. Grünewald (U. College Dublin) and A. Gurtu (Formerly Tata Inst.).

Fourteen independent couplings, seven each for $Z W W$ and $\gamma W W$, completely describe the $V W W$ vertices within the most general framework of the electroweak Standard Model (SM) consistent with Lorentz invariance and $\mathrm{U}(1)$ gauge invariance. Of each of the seven TGCs, three conserve C and P individually, three violate $C P$, and one violates C and P individually while conserving $C P$. Assumption of C and P conservation and electromagnetic gauge invariance reduces the number of independent $V W W$ couplings to five: one common set $[1,2]$

Gauge \& Higgs Boson Particle Listings

W

is $\left(\kappa_{\gamma}, \kappa_{Z}, \lambda_{\gamma}, \lambda_{Z}, g_{1}^{Z}\right)$, where $\kappa_{\gamma}=\kappa_{Z}=g_{1}^{Z}=1$ and $\lambda_{\gamma}=$ $\lambda_{Z}=0$ in the Standard Model at tree level. The parameters κ_{Z} and λ_{Z} are related to the other three due to constraints of gauge invariance as follows: $\kappa_{Z}=g_{1}^{Z}-\left(\kappa_{\gamma}-1\right) \tan ^{2} \theta_{W}$ and $\lambda_{Z}=\lambda_{\gamma}$, where θ_{W} is the weak mixing angle. The W magnetic dipole moment, μ_{W}, and the W electric quadrupole moment, q_{W}, are expressed as $\mu_{W}=e\left(1+\kappa_{\gamma}+\lambda_{\gamma}\right) / 2 M_{W}$ and $q_{W}=-e\left(\kappa_{\gamma}-\lambda_{\gamma}\right) / M_{W}^{2}$.

Precision measurements of suitable observables at LEP1 has already led to an exploration of much of the TGC parameter space. At LEP2, the $V W W$ coupling arises in W-pair production via s-channel exchange, or in single W production via the radiation of a virtual photon off the incident e^{+}or e^{-}. At the Tevatron and the LHC, hard-photon bremsstrahlung off a produced W or Z signals the presence of a triple-gauge vertex. In order to extract the value of one TGC, the others are generally kept fixed to their SM values. While most analyses use the above gauge constraints in the extraction of TGCs, one analysis of W-pair events also determines the real and imaginary parts of all 14 couplings using unconstrained single-parameter fits [3]. The results are consistent. Some experiments have determined limits on the couplings under various non-LEP scenarios and assuming different values of the form factor Λ, where the coupling parameters are scaled by $1 /\left(1+s / \Lambda^{2}\right)^{2}$. For practical reasons it is not possible to quote all such determinations in the listings. For that the individual papers may be consulted. Recently, EFT-inspired sets of couplings [4,5], such as $c_{W W W} / \Lambda^{2}, c_{W} / \Lambda^{2}, c_{B} / \Lambda^{2}$ which are linearly related to the couplings discussed above, are also determined by the LHC experiments.

References

1. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).
2. G. Gounaris et al., CERN 96-01 p. 525.
3. S. Schael et al. (ALEPH Collab.), Phys. Lett. B614, 7 (2005).
4. K. Hagiwara et al., Phys. Rev. D48, 2182 (1993).
5. C. Degrande et al., Annals Phys. 335 (2013) 21-32.

g_{1}^{7}

OUR FIT below is taken from [SCHAEL 13A].
VALUE EVTS DOCUMENTID TECN COMMENT
$0.984{ }_{-0.020}^{+0.018}$ OUR FIT

$0.975_{-0.030}^{+0.033}$	7872	${ }^{1}$ ABDALLAH	10	DLPH	$E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$
$1.001 \pm 0.027 \pm 0.013$	9310	${ }^{2}$ SCHAEL	05 A	ALEP	$E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$
$0.987_{-0.033}^{+0.034}$	9800	${ }^{3}$ ABBIENDI	04 D	OPAL	$E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$
$0.966_{-0.032}^{+0.034} \pm 0.015$	8325	${ }^{4}$ ACHARD	04 D		$E_{\mathrm{Cm}}^{e e}=161-209 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
${ }^{5}$ SIRUNYAN $\quad 19 \mathrm{CL}$ CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
6 SIRUNYAN $\quad 18 \mathrm{BZ}$ CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
7 AABOUD $\quad 17 \mathrm{~S}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7+8 \mathrm{TeV}$
8 AABOUD $\quad 17 \mathrm{U}$ ATLS $E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{9}$ KHACHATRY...170 CMS $E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
10 SIRUNYAN $17 \times \mathrm{CMS} \quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
11 AAD 16AR ATLS $\quad E_{C m}^{p p}=8 \mathrm{TeV}$
$12 \mathrm{AAD} \quad 16 \mathrm{P}$ ATLS $E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
$13 \mathrm{AAD} \quad 14 \mathrm{Y}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
$14 \mathrm{AAD} \quad 13 \mathrm{AL}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
transverse momentum distribution of the leading charged lepton，leads to a 95% C．L． range of $0.961<g_{1}^{Z}<1.052$ ．Supersedes AAD 12AC．
${ }^{15}$ CHATRCHYAN 13BF determine the $W^{+} W^{-}$production cross section using unlike sign di－lepton（ e or μ ）events with high p_{T}^{\prime} ．The leptons have $p_{T}>20 \mathrm{GeV} / \mathrm{c}$ and are isolated． 1134 candidate events are observed with an expected SM background of $247 \pm$ 34．The p_{T} distribution of the leading lepton is fitted to obtain 95% C．L．limits of 0.905 $\leq g_{1}^{Z} \leq 1.095$.
${ }^{16}$ AAD 12 CD study $W Z$ production in $p p$ collisions and select $317 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 68.0 ± 10.0 events．The resulting 95% C．L．range is： $0.943<g_{1}^{Z}<1.093$ ．Supersedes AAD 12 V ．
${ }^{17}$ AALTONEN 12AC study $W Z$ production in $p \bar{p}$ collisions and select $63 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 7.9 ± 1.0 events．Based on in three $\ell \nu$ decay modes with an expected background of 7.9 ± 1.0 events．Based on
the cross section and shape of the Z transverse momentum spectrum，the following 95% C．L．range is reported： $0.92<g_{1}^{Z}<1.20$ for a form factor of $\Lambda=2 \mathrm{TeV}$ ．
${ }^{18}$ ABAZOV 12AG combine new results with already published results on $W \gamma, W W$ and $W Z$ production in order to determine the couplings with increased precision，superseding ABAZOV 08R，ABAZOV 11AC，ABAZOV 09AJ，ABAZOV 09AD．The 68% C．L．result for ABAZOV 08R，ABAZOV 11 AC, ABAZOV 09A」，ABAZOV
a formfactor cutoff of $\Lambda=2 \mathrm{TeV}$ is $g_{1}^{Z}=1.022_{-0.030}^{+0.032}$ ．
${ }^{19}$ ABAZOV 11 study the $p \bar{p} \rightarrow 3 \ell \nu$ process arising in $W Z$ production．They observe $34 W Z$ candidates with an estimated background of 6 events．An analysis of the p_{T} spectrum of the Z boson leads to a 95% C．L．limit of $0.944<g_{1}^{Z}<1.154$ ，for a form factor $\Lambda=2 \mathrm{TeV}$ ．
${ }^{20}$ AALTONEN 10 K study $p \bar{p} \rightarrow W^{+} W^{-}$with $W \rightarrow e / \mu \nu$ ．The p_{T} of the leading （second）lepton is required to be $>20(10) \mathrm{GeV}$ ．The final number of events selected is 654 of which 320 ± 47 are estimated to be background．The 95% C．L．interval is 0.76 $<g_{1}^{Z}<1.34$ for $\Lambda=1.5 \mathrm{TeV}$ and $0.78<g_{1}^{Z}<1.30$ for $\Lambda=2 \mathrm{TeV}$ ．
${ }^{21}$ ABAZOV 09AD study the $p \bar{p} \rightarrow \ell \nu 2$ jet process arising in $W W$ and $W Z$ production． They select $12,473(14,392)$ events in the electron（muon）channel with an expected di－boson signal of 436 （527）events．The results on the anomalous couplings are derived from an analysis of the p_{T} spectrum of the 2－jet system and quoted at 68% C．L．and for a form factor of 2 TeV ．This measurement is not used for obtaining the mean as it is for a specific form factor．The 95% confidence interval is $0.88<g_{1}^{Z}<1.20$ ．
${ }^{22}$ ABAZOV 09A」 study the $p \bar{p} \rightarrow 2 \ell 2 \nu$ process arising in $W W$ production．They select 100 events with an expected $W W$ signal of 65 events．An analysis of the p_{T} spectrum of the two charged leptons leads to 95% C．L．limits of $0.86<g_{1}^{Z}<1.3$ ，for a form factor $\Lambda=2 \mathrm{TeV}$ ．
23 ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$ ，where $\ell=e$ or μ ．Values of all other couplings are fixed to their standard model values．
${ }^{24}$ ABAZOV $07 Z$ set limits on anomalous TGCs using the measured cross section and $p_{T}(Z)$ distribution in $W Z$ production with both the W and the Z decaying leptonically into electrons and muons．Setting the other couplings to their standard model values，the 95% C．L．limit for a form factor scale $\Lambda=2 \mathrm{TeV}$ is $0.86<g_{1}^{Z}<1.35$ ．
${ }^{25}$ ABAZOV 05S study $\bar{p} p \rightarrow W Z$ production with a subsequent trilepton decay to $\ell \nu \ell^{\prime} \bar{\ell}^{\prime}$ （ ℓ and $\ell^{\prime}=e$ or μ ）．Three events（estimated background 0.71 ± 0.08 events）with $W Z$ decay characteristics are observed from which they derive limits on the anomalous $W W Z$ couplings．The 95% CL limit for a form factor scale $\Lambda=1.5 \mathrm{TeV}$ is $0.51<g_{1}^{Z}<$ 1．66，fixing λ_{Z} and κ_{Z} to their Standard Model values．
${ }^{26}$ ABREU 01। combine results from $e^{+} e^{-}$interactions at 189 GeV leading to $W^{+} W^{-}$ and $W e \nu_{e}$ final states with results from ABREU 99L at 183 GeV ．The 95% confidence interval is $0.84<g_{1}^{Z}<1.13$ ．
${ }^{27}$ ABBOTT 991 perform a simultaneous fit to the $W \gamma, W W \rightarrow$ dilepton，$W W / W Z \rightarrow$ $e \nu j j, W W / W Z \rightarrow \mu \nu j j$ ，and $W Z \rightarrow$ trilepton data samples．For $\Lambda=2.0 \mathrm{TeV}$ ，the 95% CL limits are $0.63<g_{1}^{Z}<1.57$ ，fixing λ_{Z} and κ_{Z} to their Standard Model values， and assuming Standard Model values for the $W W \gamma$ couplings．

κ_{γ}

OUR FIT below is taken from［SCHAEL 13A］．
VALUE EVTS
0.982 ± 0.042 OUR FIT
DOCUMENT ID
TECN
COMMENT
$1.024_{-0.081}^{+0.077} \quad 7872 \quad 1$ ABDALLAH $10 \quad$ DLPH $\quad E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$ $0.971 \pm 0.055 \pm 0.030 \quad 10689 \quad{ }^{2}$ SCHAEL 05 A ALEP $\quad E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$ $0.88 \underset{-0.08}{+0.09} 9800$ $1.013_{-0.064}^{+0.067} \pm 0.026 \quad 10575$ ${ }^{3}$ ABBIENDI 04D OPAL $E_{C \mathrm{C}}^{e e}=183-209 \mathrm{GeV}$ ${ }^{4}$ ACHARD 04D L3 $\quad E_{\mathrm{Cm}}^{e \mathrm{e}}=161-209 \mathrm{GeV}$
－－We do not use the following g data for averages，fits，limits，etc．－－－

${ }^{5}$ AABOUD	17 U	ATLS	$E_{\mathrm{cm}}^{p p}=8 \mathrm{TeV}$
${ }^{6}$ SIRUNYAN	17X	CMS	$E_{\mathrm{cm}}^{p p}=8 \mathrm{TeV}$
7 CHATRCHYAN	14 AB	CMS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
${ }^{8} \mathrm{AAD}$	13AN	ATLS	$E_{\mathrm{cm}}^{p p}=7 \mathrm{TeV}$
${ }^{9}$ CHATRCHYAN	13bF	CMS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
10 ABAZOV	12AG	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
11 ABAZOV	11AC	D0	$E_{\mathrm{cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
12 CHATRCHYAN		CMS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
13 AALTONEN	10K	CDF	$E_{\mathrm{cm}}^{p \bar{P}}=1.96 \mathrm{TeV}$
14 AARON	09B	H1	$E_{\mathrm{Cm}}^{e p}=0.3 \mathrm{TeV}$
15 ABAZOV	09AD	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
16 ABAZOV	09A」	D0	$E_{\mathrm{cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
17 ABAZOV	08R	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$

$0.68 \underset{-0.15}{+0.17}$
+0.17
-0.15
1880
$1.25{ }_{-0.20}^{+0.21} \pm 0.06$
141
2298
0.92 ± 0.34
331

18 ABDALLAH 08C DLPH Superseded by ABDAL－
19 AALTONEN
20 ABAZOV

$$
21 \text { ABAZOV }
$$

22 ABREU
23 BREITWEG
$=1.96 \mathrm{TeV}$

24 ABBOTT
00 ZEUS
99। D0
${ }^{1}$ ABDALLAH 10 use data on the final states $e^{+} e^{-} \rightarrow j j \ell \nu, j j j j, j j X, \ell X$ ，at center－ of－mass energies between $189-209 \mathrm{GeV}$ at LEP2，where $j=$ jet，$\ell=$ lepton，and X represents missing momentum．The fit is carried out keeping all other parameters fixed at their SM values．
2 SCHAEL 05A study single－photon，single－W ，and $W W$－pair production from 183 to 209 GeV ．Each parameter is determined from a single－parameter fit in which the other parameters assume their Standard Model values．
3 ABBIENDI 04D combine results from $W^{+} W^{-}$in all decay channels．Only CP－conserving couplings are considered and each parameter is determined from a single－parameter fit in which the other parameters assume their Standard Model values．The 95\％confidence interval is $0.73<\kappa_{\gamma}<1.07$ ．
${ }^{4}$ ACHARD 04D study $W W$－pair production，single－W production and single－photon pro－ duction with missing energy from 189 to 209 GeV ．The result quoted here is obtained including data from 161 to 183 GeV ，ACCIARRI 99Q．Each parameter is determined from a single－parameter fit in which the other parameters assume their Standard Model from a
values．
5 values．
AABOUD 17 U analyze production of $W W$ or $W Z$ boson pairs with one W boson decaying to electron or muon plus neutrino，and the other W or Z boson decaying hadronically．The hadronic decay system is reconstructed as either a resolved two－jet system or as a single large jet．Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limit at $95 \% \mathrm{CL}$ for the form factor cut－off scale $\Lambda_{F F} \rightarrow \infty: 0.939<\kappa_{\gamma}<1.064$ ．
${ }^{6}$ SIRUNYAN $17 \times$ study $p p \rightarrow W W / W Z \rightarrow \ell \nu q \bar{q}$ production at 8 TeV where ℓ is an electron or muon with $p_{T}>30$ or 25 GeV respectively．Suitable cuts are put on the p_{T} of the dijet system and the missing E_{T} of the event yielding a total of 285 and 204
$W V$ events observed in the electron and muon channels．The following 95% C．L．limit $W V$ events observed in the electron
is obtained： $0.956<\kappa_{\gamma}<1.063$ ．
${ }^{7}$ CHATRCHYAN 14 AB measure $W \gamma$ production cross section for $p_{T}^{\gamma}>15 \mathrm{GeV}$ and $\mathrm{R}(\ell \gamma)$ >0.7 ，which is the separation between the γ and the final state charged lepton（ e or $\mu)$ in the azimuthal angle－pseudorapidity $(\phi-\eta)$ plane．After background subtraction the number of $e \nu \gamma$ and $\mu \nu \gamma$ events is determined to be 3200 ± 325 and 4970 ± 543 respectively，compatible with expectations from the SM．This leads to a $95 \% \mathrm{CL}$ limit of $0.62<\kappa_{\gamma}<1.29$ ，assuming other parameters have SM values．
${ }^{8}$ AAD 13AN study $W \gamma$ production in $p p$ collisions．In events with no additional jet， 4449 （6578）W decays to electron（muon）are selected，with an expected background of $1662 \pm 262(2538 \pm 362)$ events．Analysing the photon p_{T} spectrum above 100 GeV $1662 \pm 262(2538 \pm 362)$ events．Analysing the photon p_{T} spectrum
yields a 95% C．L．limit of $0.59<\kappa_{\gamma}<1.46$ ．Supersedes AAD 12BX．
${ }^{9}$ CHATRCHYAN 13BF determine the $W^{+} W^{-}$production cross section using unlike sign di－lepton（ e or μ ）events with high p_{T} ．The leptons have $p_{T}>20 \mathrm{GeV} / \mathrm{c}$ and are isolated． 1134 candidate events are observed with an expected SM background of $247 \pm$ 34．The p_{T} distribution of the leading lepton is fitted to obtain 95% C．L．limits of 0.79 $\leq k_{\gamma} \leq 1.22$ ．
${ }^{10}$ ABAZOV 12AG combine new results with already published results on $W \gamma, W W$ and $W Z$ production in order to determine the couplings with increased precision，superseding ABAZOV 08R，ABAZOV 11AC，ABAZOV 09AJ，ABAZOV 09AD．The 68\％C．L．result for a formfactor cutoff of $\Lambda=2 \mathrm{TeV}$ is $\kappa_{\gamma}=1.048_{-0.105}^{+0.106}$ ．
${ }^{11}$ ABAZOV 11AC study $W \gamma$ production in $p \bar{p}$ collisions at 1.96 TeV ，with the W decay products containing an electron or a muon．They select 196 （363）events in the electron （muon）mode，with a SM expectation of 190 （372）events．A likelihood fit to the photon E_{T} spectrum above 15 GeV yields at 95% C．L．the result： $0.6<\kappa_{\gamma}<1.4$ for a formfactor $\wedge=2 \mathrm{TeV}$ ．
12 CHATRCHYAN 11 M study $W \gamma$ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ using $36 \mathrm{pb}^{-1}$ $p p$ data with the W decaying to electron and muon．The total cross section is measured for photon transverse energy $E_{T}^{\gamma}>10 \mathrm{GeV}$ and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell, \gamma)>0.7$ ．The number of candidate（background）events is $452(228 \pm 21)$ for the electron channel and 520 (277 ± 25) for the muon channel．Setting other couplings to their standard model value， they derive a 95% CL limit of $-0.11<\kappa_{\gamma}<2.04$ ．
${ }^{13}$ AALTONEN 10K study $p \bar{p} \rightarrow W^{+} W^{-}$with $W \rightarrow e / \mu \nu$ ．The p_{T} of the leading （second）lepton is required to be $>20(10) \mathrm{GeV}$ ．The final number of events selected is 654 of which 320 ± 47 are estimated to be background．The 95% C．L．interval is 0.37 $<\kappa_{\gamma}<1.72$ for $\Lambda=1.5 \mathrm{TeV}$ and $0.43<\kappa_{\gamma}<1.65$ for $\Lambda=2 \mathrm{TeV}$ ．
14 AARON 09B study single－W production in ep collisions at 0.3 TeV C．M．energy．They select $53 \mathrm{~W} \rightarrow e / \mu$ events with a standard model expectation of 54.1 ± 7.4 events． Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a
95% C．L．limit of $-3.7<\kappa_{\gamma}<-1.5$ or $0.3<\kappa_{\gamma}<1.5$ ，where the ambiguity is due to the quadratic dependence of the cross section to the coupling parameter．
${ }^{15}$ ABAZOV 09AD study the $p \bar{p} \rightarrow \ell \nu 2$ jet process arising in $W W$ and $W Z$ production． They select $12,473(14,392)$ events in the electron（muon）channel with an expected di－boson signal of 436 （527）events．The results on the anomalous couplings are derived from an analysis of the p_{T} spectrum of the 2 －jet system and quoted at 68% C．L．and for a form factor of 2 TeV ．This measurement is not used for obtaining the mean as it is for a specific form factor．The 95% confidence interval is $0.56<\kappa_{\gamma}<1.55$ ．
${ }^{16}$ ABAZOV 09A」 study the $p \bar{p} \rightarrow 2 \ell 2 \nu$ process arising in $W W$ production．They select 100 events with an expected $W W$ signal of 65 events．An analysis of the p_{T} spectrum of the two charged leptons leads to 95% C．L．limits of $0.46<\kappa_{\gamma}<1.83$ ，for a form factor $\Lambda=2 \mathrm{TeV}$ ．
17 ABAZOV 08R use $0.7 \mathrm{fb}^{-1} p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$ to select $263 W \gamma+X$ events， of which 187 constitute signal，with the W decaying into an electron or a muon，which is required to be well separated from a photon with $E_{T}>9 \mathrm{GeV}$ ．A likelihood fit to the photon E_{T} spectrum yields a 95% CL limit $0.49<\kappa_{\gamma}<1.51$ with other couplings fixed to their Standard Model values．
${ }^{18}$ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$, where $\ell=e$ or μ. Values of all other couplings are fixed to their standard model values.
19 AALTONEN 07L set limits on anomalous TGCs using the $p_{T}(W)$ distribution in $W W$ and $W Z$ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are 0.54 Setting other couplings to their standard model
$<\kappa_{\gamma}<1.39$ for a form factor scale $\Lambda=1.5 \mathrm{TeV}$.
${ }^{20}$ ABAZOV 06 H study $\bar{p} p \rightarrow W W$ production with a subsequent decay $W W \rightarrow$ $e^{+} \nu_{e} e^{-} \bar{\nu}_{e}, W W \rightarrow e^{ \pm} \nu_{e} \mu^{\mp} \nu_{\mu}$ or $W W \rightarrow \mu^{+} \nu_{\mu} \mu^{-} \bar{\nu}_{\mu}$. The 95\% C.L. limit for a form factor scale $\Lambda=1 \mathrm{TeV}$ is $-0.05<\kappa_{\gamma}<2.29$, fixing $\lambda_{\gamma}=0$. With the assumption that the $W W \gamma$ and $W W Z$ couplings are equal the 95% C.L. one-dimensional limit (Λ $=2 \mathrm{TeV})$ is $0.68<\kappa<1.45$.
${ }^{21}$ ABAZOV 05J perform a likelihood fit to the photon E_{T} spectrum of $W \gamma+\mathbf{X}$ events, where the W decays to an electron or muon which is required to be well separated from the photon. For $\Lambda=2.0 \mathrm{TeV}$ the $95 \% \mathrm{CL}$ limits are $0.12<\kappa_{\gamma}<1.96$. In the fit λ_{γ} is kept fixed to its Standard Model value.
${ }^{22}$ ABREU 01I combine results from $e^{+} e^{-}$interactions at 189 GeV leading to $W^{+} W^{-}$, $W e \nu_{e}$, and $\nu \bar{\nu} \gamma$ final states with results from ABREU 99L at 183 GeV . The 95% confidence interval is $0.87<\kappa_{\gamma}<1.68$.
${ }^{23}$ BREITWEG 00 search for W production in events with large hadronic p_{T}. For $p_{T}>20$ GeV , the upper limit on the cross section gives the $95 \% \mathrm{CL}$ limit $-3.7<\kappa_{\gamma}<2.5$ (for $\lambda_{\gamma}=0$).
${ }^{24}$ ABBOTT 99ı perform a simultaneous fit to the $W \gamma, W W \rightarrow$ dilepton, $W W / W Z \rightarrow$ $e \nu j j, W W / W Z \rightarrow \mu \nu j j$, and $W Z \rightarrow$ trilepton data samples. For $\Lambda=2.0 \mathrm{TeV}$, the 95% CL limits are $0.75<\kappa_{\gamma}<1.39$.
λ_{γ}
OUR FIT below is taken from [SCHAEL 13A].

VALUE	EVTS	DOCUMENTID		TECN	COMMENT
$\mathbf{- 0 . 0 2 2} \pm 0.019$ OUR FIT					
0.002 ± 0.035	7872	${ }^{1}$ ABDALLAH	10	DLPH	$E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$
$-0.012 \pm 0.027 \pm 0.011$	10689	2 SCHAEL	05A	ALEP	$E_{\mathrm{Cm}}^{e \ell}=183-209 \mathrm{GeV}$
$-0.060{ }_{-0.033}^{+0.034}$	9800	3 ABBIENDI	04D	OPAL	$E_{C m}^{e e}=183-209 \mathrm{GeV}$
$-0.021{ }_{-0.034}^{+0.035} \pm 0.017$	10575	${ }^{4}$ ACHARD	04D	L3	$E_{\mathrm{Cm}}^{e e}=161-209 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - . -					
		${ }^{5}$ CHATRCHYAN 14AB CMS			$E_{\text {Cm }}^{p p}=7 \mathrm{TeV}$
		${ }^{6} \mathrm{AAD}$	13an ATLS		$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
		7 ABAZOV	12AG D0		$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
		8 ABAZOV	11AC D0		$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
		${ }^{9}$ CHATRCHYAN 11M		CMS	$E_{\text {cm }}^{p p}=7 \mathrm{TeV}$
0.00 ± 0.06	53	10 AARON	09B	H1	$E_{\mathrm{Cm}}^{e p}=0.3 \mathrm{TeV}$
		$11 \text { ABAZOV }$	09ad D0		$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
		12 ABAZOV	09A」 D0		$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
		13 ABAZOV	08R	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
$0.16{ }_{-0.13}^{+0.12}$	1880	14 ABDALLAH	08C	DLPH	Superseded by ABDAL- $\frac{1}{D} A H 10$
	1617	15 AALTONEN	07L	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{GeV}$
	17	16 ABAZOV	06H	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
	141	17 ABAZOV	05J	D0	$E_{\mathrm{cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
$0.05 \pm 0.09 \pm 0.01$	2298	18 ABREU	011	DLPH	$\begin{gathered} E_{\mathrm{cm}}^{e e}=183+189 \mathrm{GeV} \\ e^{+} p \rightarrow e^{+} W^{ \pm} \mathrm{X} \\ \underline{\sqrt{s}} \approx 300 \mathrm{GeV} \end{gathered}$
		19 BREITWEG	00	ZEUS	
$0.00 \begin{gathered}+0.10 \\ -0.09\end{gathered}$	331	20 ABBOTT	991	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.8 \mathrm{TeV}$

${ }^{1}$ ABDALLAH 10 use data on the final states $e^{+} e^{-} \rightarrow j j \ell \nu, j j j j, j j X, \ell X$, at center-of-mass energies between $189-209 \mathrm{GeV}$ at LEP2, where $j=$ jet, $\ell=$ lepton, and X represents missing momentum. The fit is carried out keeping all other parameters fixed at their SM values.
2 SCHAEL 05A study single-photon, single- W, and $W W$-pair production from 183 to 209 GeV . Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
${ }^{3}$ ABBIENDI 04D combine results from $W^{+} W^{-}$in all decay channels. Only $C P$-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $-0.13<\lambda_{\gamma}<0.01$.
${ }^{4}$ ACHARD 04D study $W W$-pair production, single- W production and single-photon production with missing energy from 189 to 209 GeV . The result quoted here is obtained including data from 161 to 183 GeV , ACCIARRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
${ }^{5}$ CHATRCHYAN 14AB measure $W \gamma$ production cross section for $p_{T}^{\gamma}>15 \mathrm{GeV}$ and $\mathrm{R}(\ell \gamma)$ >0.7, which is the separation between the γ and the final state charged lepton (e or μ) in the azimuthal angle-pseudorapidity ($\phi-\eta$) plane. After background subtraction the number of $e \nu \gamma$ and $\mu \nu \gamma$ events is determined to be 3200 ± 325 and 4970 ± 543 respectively, compatible with expectations from the SM. This leads to a 95% CL limit of $-0.050<\lambda_{\gamma}<0.037$, assuming all other parameters have SM values.
${ }^{6}$ AAD 13an study $W \gamma$ production in $p p$ collisions. In events with no additional jet, 4449 (6578) W decays to electron (muon) are selected, with an expected background of $1662 \pm 262(2538 \pm 362)$ events. Analysing the photon p_{T} spectrum above 100 GeV yields a 95% C.L. limit of $-0.065<\lambda_{\gamma}<0.061$. Supersedes AAD 12BX.
${ }^{7}$ ABAZOV 12AG combine new results with already published results on $W \gamma, W W$ and $W Z$ production in order to determine the couplings with increased precision, superseding ABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result for a formfactor cutoff of $\Lambda=2 \mathrm{TeV}$ is $\lambda_{\gamma}=0.007_{-0.022}^{+0.021}$.
${ }^{8}$ ABAZOV 11AC study $W \gamma$ production in $p \bar{p}$ collisions at 1.96 TeV , with the W decay products containing an electron or a muon. They select 196 (363) events in the electron (muon) mode, with a SM expectation of 190 (372) events. A likelihood fit to the photon E_{T} spectrum above 15 GeV yields at 95% C.L. the result: $-0.08<\lambda_{\gamma}<0.07$ for a formfactor $\Lambda=2 \mathrm{TeV}$.
${ }^{9}$ CHATRCHYAN 11 M study $W \gamma$ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ using $36 \mathrm{pb}^{-1}$ $p p$ data with the W decaying to electron and muon. The total cross section is measured for photon transverse energy $E_{T}^{\gamma}>10 \mathrm{GeV}$ and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell, \gamma)>0.7$. The number of candidate (background) events is $452(228 \pm 21)$ for the electron channel and 520 (277 ± 25) for the muon channel. Setting other couplings to their standard model value, they derive a 95% CL limit of $-0.18<\lambda_{\gamma}<0.17$.
10 AARON 09B study single- W production in ep collisions at $0.3 \mathrm{TeV} \mathrm{C.M}. \mathrm{energy}$. select $53 W \rightarrow e / \mu$ events with a standard model expectation of 54.1 ± 7.4 events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95% C.L. limit of $-2.5<\lambda_{\gamma}<2.5$.
11 ABAZOV 09AD study the $p \bar{p} \rightarrow \ell \nu 2$ jet process arising in $W W$ and $W Z$ production. They select $12,473(14,392)$ events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived di-boson signal of $436(527)$ events. The results on the anomalous couplings are derived
from an analysis of the p_{T} spectrum of the 2 -jet system and quoted at 68% C.L. and from an analysis of the p_{T}. spectrum of the 2-jet system and quoted at 68% C.L. and
for a form factor of 2 TeV . This measurement is not used for obtaining the mean as it is for a form factor of 2 TeV . This measurement is not used for obtaining the mean
for a specific form factor. The 95% confidence interval is $-0.10<\lambda_{\gamma}<0.11$.
${ }^{12}$ ABAZOV 09AJ study the $p \bar{p} \rightarrow 2 \ell 2 \nu$ process arising in $W W$ production. They select 100 events with an expected $W W$ signal of 65 events. An analysis of the p_{T} spectrum of the two charged leptons leads to 95% C.L. limits of $-0.14<\lambda_{\gamma}<0.18$, for a form factor $\Lambda=2 \mathrm{TeV}$.
13 ABAZOV 08R use $0.7 \mathrm{fb}^{-1} p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$ to select $263 W \gamma+X$ events, ABAZOV 08 R use $0.7 \mathrm{fb}^{-1} p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$ to select $263 \mathrm{~W} \gamma+X$ events,
of which 187 constitute signal, with the W decaying into an electron or a muon, which of which 187 constitute signal, with the W decaying into an electron or a muon, which
is required to be well separated from a photon with $E_{T}>9 \mathrm{GeV}$. A likelihood fit to the photon E_{T} spectrum yields a 95% CL limit $-0.12<\lambda_{\gamma}<0.13$ with other couplings fixed to their Standard Model values.
14 ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$, where $\ell=e$ or μ. Values of all other couplings are fixed to their standard model values.
${ }^{15}$ AALTONEN 07L set limits on anomalous TGCs using the $p_{T}(W)$ distribution in $W W$ and $W Z$ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are $-0.18<\lambda_{\gamma}<0.17$ for a form factor scale $\Lambda=1.5 \mathrm{TeV}$.
${ }^{16}$ ABAZOV 06 H study $\bar{p} p \rightarrow W W$ production with a subsequent decay $W W \rightarrow$ $e^{+} \nu_{e} e^{-} \bar{\nu}_{e}, W W \rightarrow e^{ \pm} \nu_{e} \mu^{\mp} \nu_{\mu}$ or $W W \rightarrow \mu^{+} \nu_{\mu} \mu^{-} \bar{\nu}_{\mu}$. The 95\% C.L. limit for a form factor scale $\Lambda=1 \mathrm{TeV}$ is $-0.97<\lambda_{\gamma}<1.04$, fixing $\kappa_{\gamma}=1$. With the assumption that the $W W \gamma$ and $W W Z$ couplings are equal the 95% C.L. one-dimensional limit (Λ $=2 \mathrm{TeV}$) is $-0.29<\lambda<0.30$.
17 ABAZOV 05」 perform a likelihood fit to the photon E_{T} spectrum of $W \gamma+\mathbf{X}$ events, where the W decays to an electron or muon which is required to be well separated from the photon. For $\Lambda=2.0 \mathrm{TeV}$ the $95 \% \mathrm{CL}$ limits are $-0.20<\lambda_{\gamma}<0.20$. In the fit κ_{γ} is kept fixed to its Standard Model value.
18 ABREU 01 l combine results from $e^{+} e^{-}$interactions at 189 GeV leading to $W^{+} W^{-}$, $W e \nu_{e}$, and $\nu \bar{\nu} \gamma$ final states with results from ABREU 99L at 183 GeV . The 95% confidence interval is $-0.11<\lambda_{\gamma}<0.23$.
${ }^{19}$ BREITWEG 00 search for W production in events with large hadronic p_{T}. For $p_{T}>20$ GeV , the upper limit on the cross section gives the $95 \% \mathrm{CL}$ limit $-3.2<\lambda_{\gamma}<3.2$ for κ_{γ} fixed to its Standard Model value.
${ }^{20}$ ABBOTT 991 perform a simultaneous fit to the $W \gamma, W W \rightarrow$ dilepton, $W W / W Z \rightarrow$ $e \nu j j, W W / W Z \rightarrow \mu \nu j j$, and $W Z \rightarrow$ trilepton data samples. For $\Lambda=2.0 \mathrm{TeV}$, the 95% CL limits are $-0.18<\lambda_{\gamma}<0.19$.
$\kappa_{\underline{Z}}$
This coupling is $C P$-conserving (C - and P - separately conserving).
VALUE EVTS DOCUMENTID TECN COMMENT
$\mathbf{0 . 9 2 4} \underset{-0.056}{\mathbf{0} .059} \pm \mathbf{0 . 0 2 4} 7171 \quad 1$ ACHARD $\quad 04 \mathrm{D}$ L3 $\quad E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

2 SIRUNYAN 19 CL CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{3}$ AABOUD $\quad 17 \mathrm{~s}$ ATLS $E_{\mathrm{Cm}}^{p p}=7+8 \mathrm{TeV}$
${ }^{4}$ KHACHATRY... 170 CMS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{5} \mathrm{AAD} \quad 16 \mathrm{AR}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{6} \mathrm{AAD} \quad 16 \mathrm{P}$ ATLS $E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{7} \mathrm{AAD} \quad 13 \mathrm{AL}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
${ }^{8} \mathrm{AAD} \quad 12 \mathrm{CD}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
${ }^{9}$ AALTONEN $12 \mathrm{AC} C D F \quad E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
34
10 ABAZO
11 ABAZOV
11 D0
${ }_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
${ }_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
12 ABAZOV
05 s D0
$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
${ }^{1}$ ACHARD 04D study $W W$-pair production, single- W production and single-photon production with missing energy from 189 to 209 GeV . The result quoted here is obtained using the $W W$-pair production sample. Each parameter is determined from a singleparameter fit in which the other parameters assume their Standard Model values.
${ }^{2}$ SIRUNYAN 19CL study $W W$ and $W Z$ production in lepton + jet events, with one W boson decaying leptonically (electron or muon), and another W or Z boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel $2,456(2,235)$ events are selected in the $W W(W Z)$ category, while in the muon channel 3,996 (3572) events are selected in the $W W(W Z)$ category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limit is obtained: $0.9921<\kappa_{Z}<$ 1.0082 .
${ }^{3}$ AABOUD 175 analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse
momentum larger than $600 \mathrm{GeV}, 30$ events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty: 0.85<\kappa_{Z}<1.16$.
${ }^{4}$ KHACHATRYAN 170 analyse $W Z$ production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV , with one of the lepton pairs having an invariant mass within 20 GeV of the Z boson mass. The Z transverse momentum spectrum is analyzed to set a 95% C.L. limit of: mass. The Z transve
$0.79<\kappa_{Z}<1.25$.
${ }^{5}$ AAD 16AR study W W production in pp collisions and select 6636 WW candidates in decay modes with electrons or muons with an expected background of 1546 ± 157 events. Assuming the LEP formulation and setting the form-factor Λ to infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95\% C.L. range of $0.975<\kappa_{Z}<1.020$.
${ }^{6}$ AAD 16P study $W Z$ production in $p p$ collisions and select $2091 W Z$ candidates in 4 decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the $W Z$ transverse momentum distribution, the resulting 95% C.L. limit is: $0.81<\kappa_{Z}<1.30$.
${ }^{7}$ AAD 13AL study $W W$ production in $p p$ collisions and select $1325 W W$ candidates in decay modes with electrons or muons with an expected background of 369 ± 61 events. Assuming the LEP formulation and setting the form-factor $\Lambda=$ infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95\% C.L. range of $0.957<\kappa_{Z}<1.043$. Supersedes AAD 12AC.
${ }^{8}$ AAD 12CD study $W Z$ production in $p p$ collisions and select $317 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 68.0 ± 10.0 events. The resulting 95% C.L. range is: $0.63<\kappa_{Z}<1.57$. Supersedes AAD 12 V .
${ }^{9}$ AALTONEN 12AC study $W Z$ production in $p \bar{p}$ collisions and select $63 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 7.9 ± 1.0 events. Based on the cross section and shape of the Z transverse momentum spectrum, the following 95\% C.L. range is reported: $0.61<\kappa_{Z}<1.90$ for a form factor of $\Lambda=2 \mathrm{TeV}$.
${ }^{10}$ ABAZOV 11 study the $p \bar{p} \rightarrow 3 \ell \nu$ process arising in $W Z$ production. They observe $34 W Z$ candidates with an estimated background of 6 events. An analysis of the p_{T} spectrum of the Z boson leads to a 95% C.L. limit of $0.600<\kappa_{Z}<1.675$, for a form factor $\Lambda=2 \mathrm{TeV}$.
${ }^{11}$ ABAZOV 06 H study $\bar{p} p \rightarrow W W$ production with a subsequent decay $W W \rightarrow$ $e^{+} \nu_{e} e^{-} \bar{\nu}_{e}, W W \rightarrow e^{ \pm} \nu_{e} \mu^{\mp} \nu_{\mu}$ or $W W \rightarrow \mu^{+} \nu_{\mu} \mu^{-} \bar{\nu}_{\mu}$. The 95\% C.L. limit for a form factor scale $\Lambda=2 \mathrm{TeV}$ is $0.55<\kappa_{Z}<1.55$, fixing $\lambda_{Z}=0$. With the assumption that the $W W \gamma$ and $W W Z$ couplings are equal the 95% C.L. one-dimensional limit (Λ $=2 \mathrm{TeV}$) is $0.68<\kappa<1.45$.
${ }^{12}$ ABAZOV 05s study $\bar{p} p \rightarrow W Z$ production with a subsequent trilepton decay to $\ell \nu \ell^{\prime} \bar{\ell}^{\prime}$ (ℓ and $\ell^{\prime}=e$ or μ). Three events (estimated background 0.71 ± 0.08 events) with $W Z$ decay characteristics are observed from which they derive limits on the anomalous $W W Z$ couplings. The 95% CL limit for a form factor scale $\Lambda=1 \mathrm{TeV}$ is $-1.0<\kappa_{Z}<3.4$, fixing λ_{Z} and g_{1}^{Z} to their Standard Model values.
λ_{z}
This coupling is $C P$-conserving (C - and P - separately conserving).
$-\mathbf{0 . 0 8 8} \mathbf{+ 0 . 0 6 0} \mathbf{+ 0 . 0 2 3} \quad 7171 \quad 1^{\mathbf{0 . 0 5 7}} \mathbf{~ A C H A R D} \quad$ 04D L3 $\quad \frac{}{E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

2 SIRUNYAN	19CL	CMS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
3 SIRUNYAN	18Bz		$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{4}$ AABOUD	17s	ATLS	$E_{\mathrm{Cm}}^{p p}=7+8 \mathrm{TeV}$
${ }^{5}$ AABOUD	17 U	ATLS	$E_{\mathrm{cm}}^{p p}=8 \mathrm{TeV}$
6 KHACHATRY.	170	CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
7 SIRUNYAN	17X	CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{8}$ AAD	16AR	ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
9 AAD	16P	ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
10 AAD	14Y	ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
11 AAD	13AL	ATLS	$E_{\mathrm{cm}}^{p p}=7 \mathrm{TeV}$
12 CHATRCHYAN	3bF	CMS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
13 AAD	12CD	ATLS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
14 AALTONEN	12AC	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
15 ABAZOV	11	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
16 AALTONEN	10K	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
17 ABAZOV	07 z	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
18 ABAZOV	06H	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
19 ABAZOV	05S	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$

${ }^{4}$ AABOUD 17s analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than $600 \mathrm{GeV}, 30$ events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty$: $-0.053<\lambda_{Z}<0.042$.
${ }^{5}$ AABOUD 17 U analyze production of $W W$ or $W Z$ boson pairs with one W boson decaying to electron or muon plus neutrino, and the other W or Z boson decaying hecaying to electron or muon plus neutrino, and the other W or Z boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet
system or as a single large jet. Analysing the transverse momentum distribution of the system or as a single large jet. Analysing the transverse momentum distribution of the
hadronic system above 100 GeV yields the following limit at $95 \% \mathrm{CL}$ for the form factor hadronic system above 100 GeV yields the following lim
cut-off scale $\Lambda_{F F} \rightarrow \infty:-0.013<\lambda_{Z}<0.013$.
${ }^{6}$ KHACHATRYAN 170 analyse $W Z$ production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV , with one of the lepton pairs having an invariant mass within 20 GeV of the Z boson mass. The Z transverse momentum spectrum is analyzed to set a 95% C.L. limit of: $-0.018<\lambda_{Z}<0.016$.
7 SIRUNYAN $17 \times$ study $p p \rightarrow W W / W Z \rightarrow \ell \nu q \bar{q}$ production at 8 TeV where ℓ is an electron or muon with $p_{T}>30$ or 25 GeV respectively. Suitable cuts are put on the p_{T} of the dijet system and the missing E_{T} of the event yielding a total of 285 and 204 $W V$ events observed in the electron and muon channels. The following 95% C.L. limit is obtained: $-0.011<\lambda_{Z}<0.011$.
${ }^{8}$ AAD 16AR study WW production in $p p$ collisions and select 6636 W W candidates in decay modes with electrons or muons with an expected background of 1546 ± 157 events. Assuming the LEP formulation and setting the form-factor Λ to infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95% C.L. range of $-0.019<\lambda_{z}<0.019$.
${ }^{9}$ AAD 16P study $W Z$ production in $p p$ collisions and select $2091 W Z$ candidates in 4 decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the $W Z$ transverse momentum distribution, the resulting 95% C.L. limit is: $-0.016<\lambda_{Z}<0.016$.
${ }^{10}$ AAD 14 Y determine the electroweak Z-dijet cross section in $8 \mathrm{TeV} p p$ collisions. $Z \rightarrow$ $e e$ and $Z \rightarrow \mu \mu$ decays are selected with the di-lepton $p_{T}>20 \mathrm{GeV}$ and mass in the $81-101 \mathrm{GeV}$ range. Minimum two jets are required with $p_{T}>55$ and 45 GeV and no $81-101 \mathrm{GeV}$ range. Minimum two jets are required with $p_{T}>55$ and 45 GeV and no
additional jets with $p_{T}>25 \mathrm{GeV}$ in the rapidity interval between them. The normalized p_{T} balance between the Z and the two jets is required to be <0.15. This leads to a p_{T} balance between the Z and the two jets is required to be <0.15. This leads to a
selection of 900 events with dijet mass $>1 \mathrm{TeV}$. The number of signal and background selection of 900 events with dijet mass $>1 \mathrm{TeV}$. The number of signal and background
events expected is 261 and 592 respectively. A Poisson likelihood method is used on an events expected is 261 and 592 respectively. A Poisson likelihood method is used on an
event by event basis to obtain the 95% CL limit $-0.15<\lambda_{Z}<0.13$ for a form factor event by event
value $\Lambda=\infty$.
11 AAD 13AL study $W W$ production in pp collisions and select $1325 W W$ candidates in decay modes with electrons or muons with an expected background of 369 ± 61 events. Assuming the LEP formulation and setting the form-factor $\Lambda=$ infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95% C.L. range of $-0.062<\lambda_{Z}<0.059$. Supersedes AAD 12AC.
${ }^{12}$ CHATRCHYAN 13BF determine the $W^{+} W^{-}$production cross section using unlike sign di-lepton (e or μ) events with high p_{T}^{\prime}. The leptons have $p_{T}>20 \mathrm{GeV} / \mathrm{c}$ and are di-lepton $(e$ or $\mu)$ events with high $\not p_{T}$. The leptons have $p_{T}>20 \mathrm{GeV} / \mathrm{c}$ and are
isolated. 1134 candidate events are observed with an expected $S M$ background of $247 \pm$ isolated. 1134 candidate events are observed with an expected SM background of $247 \pm$
34 . The p_{T} distribution of the leading lepton is fitted to obtain 95% C.L. limits of 34. The p_{T} distribution of
$-0.048 \leq \lambda_{Z} \leq 0.048$.

13 AAD 12CD study $W Z$ production in $p p$ collisions and select $317 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 68.0 ± 10.0 events. The resulting 95% C.L. range is: $-0.046<\lambda_{Z}<0.047$. Supersedes AAD 12V.
${ }^{14}$ AALTONEN 12AC study $W Z$ production in $p \bar{p}$ collisions and select $63 W Z$ candidates in three $\ell \nu$ decay modes with an expected background of 7.9 ± 1.0 events. Based on the cross section and shape of the Z transverse momentum spectrum, the following 95% C.L. range is reported: $-0.08<\lambda_{Z}<0.10$ for a form factor of $\Lambda=2 \mathrm{TeV}$.
${ }^{15}$ ABAZOV 11 study the $p \bar{p} \rightarrow 3 \ell \nu$ process arising in $W Z$ production. They observe $34 W Z$ candidates with an estimated background of 6 events. An analysis of the p_{T} spectrum of the Z boson leads to a 95% C.L. limit of $-0.077<\lambda_{Z}<0.093$, for a form factor $\Lambda=2 \mathrm{TeV}$.
${ }^{16}$ AALTONEN 10 K study $p \bar{p} \rightarrow W^{+} W^{-}$with $W \rightarrow e / \mu \nu$. The p_{T} of the leading (second) lepton is required to be $>20(10) \mathrm{GeV}$. The final number of events selected is 654 of which 320 ± 47 are estimated to be background. The 95\% C.L. interval is $-0.16<\lambda_{Z}<0.16$ for $\Lambda=1.5 \mathrm{TeV}$ and $-0.14<\lambda_{Z}<0.15$ for $\Lambda=2 \mathrm{TeV}$.
17 ABAZOV $07 Z$ set limits on anomalous TGCs using the measured cross section and $p_{T}(Z)$ distribution in $W Z$ production with both the W and the Z decaying leptonically into electrons and muons. Setting the other couplings to their standard model values, the 95% C.L. limit for a form factor scale $\Lambda=2 \mathrm{TeV}$ is $-0.17<\lambda_{Z}<0.21$.
18 ABAZOV 06 H study $\bar{p} p \rightarrow W W$ production with a subsequent decay $W W \rightarrow$ $e^{+} \nu_{e} e^{-} \bar{\nu}_{e}, W W \rightarrow e^{ \pm} \nu_{e} \mu^{\mp} \nu_{\mu}$ or $W W \rightarrow \mu^{+} \nu_{\mu} \mu^{-} \bar{\nu}_{\mu}$. The 95\% C.L. limit for a form factor scale $\Lambda=2 \mathrm{TeV}$ is $-0.39<\lambda_{Z}<0.39$, fixing $\kappa_{Z}=1$. With the assumption that the $W W \gamma$ and $W W Z$ couplings are equal the 95% C.L. one-dimensional limit $(\Lambda=2 \mathrm{TeV})$ is $-0.29<\lambda<0.30$.
19 ABAZOV 05S study $\bar{p} p \rightarrow W Z$ production with a subsequent trilepton decay to $\ell \nu \ell^{\prime} \bar{\ell}^{\prime}$ (ℓ and $\ell^{\prime}=e$ or μ). Three events (estimated background 0.71 ± 0.08 events) with $W Z$ decay characteristics are observed from which they derive limits on the anomalous $W W Z$ couplings. The 95% CL limit for a form factor scale $\Lambda=1.5 \mathrm{TeV}$ is $-0.48<\lambda_{Z}<$ 0.48, fixing g_{1}^{Z} and κ_{Z} to their Standard Model values.

${ }_{5}^{2}$

This coupling is $C P$-conserving but C - and P-violating.

VALUE	EVTS	DOCUMENTID TECN		COMMENT
$\mathbf{- 0 . 0 7} \pm \mathbf{0 . 0 9}$ OUR AVERAGE Error includes scale factor				
$-0.04_{-0.12}^{+0.13}$	9800	1 ABBIENDI	04D OPAL	$E_{\mathrm{Cm}}^{e e}=183-209 \mathrm{GeV}$
$0.00 \pm 0.13 \pm 0.05$	7171	2 ACHARD	04D L3	$E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$
$-0.44{ }_{-0.22}^{+0.23} \pm 0.12$	1154	3 ACCIARRI	99Q L3	$E_{\mathrm{Cm}}^{e \mathrm{e}}=161+172+183 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.31 \pm 0.23 \quad{ }^{4}$ EBOLI 00 THEO LEP1, SLC+ Tevatron
${ }^{1}$ ACHARD 04D study $W W$-pair production, single- W production and single-photon production with missing energy from 189 to 209 GeV . The result quoted here is obtained using the $W W$-pair production sample. Each parameter is determined from a singleparameter fit in which the other parameters assume their Standard Model values.
${ }^{2}$ SIRUNYAN 19CL study $W W$ and $W Z$ production in lepton + jet events, with one W boson decaying leptonically (electron or muon), and another W or Z boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel $2,456(2,235)$ events are selected in the $W W(W Z)$ category, while in the muon channel 3,996 (3572) events are selected in the $W W(W Z)$ category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limit is obtained: $-0.0065<\lambda_{Z}$ <0.0066.
${ }^{3}$ SIRUNYAN 18BZ study $p p \rightarrow Z$ jet jet events at 13 TeV where $Z \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}$. Isolated electrons and muons are selected with p_{T} of the leading/sub-leading lepton $>$ $30 / 20 \mathrm{GeV}$ and $|\eta|<2.4$, with the di-lepton invariant mass within 15 GeV of the Z mass. The two highest p_{T} jets are selected with p_{T} of the leading/sub-leading jet $>50 / 30 \mathrm{GeV}$ respectively and dijet invariant mass $>200 \mathrm{GeV}$. Templates in the transverse momentum of the Z are utilized to set limits on the triple gauge couplings in the EFT and the LEP parametrizations. The following 95\% C.L. limit is obtained $-0.010<\lambda_{Z}<0.010$.

Gauge \& Higgs Boson Particle Listings

${ }^{1}$ ABBIENDI 04D combine results from $W^{+} W^{-}$in all decay channels. Only CP-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $-0.28<g_{5}^{Z}<+0.21$.
${ }^{2}$ ACHARD 04D study $W W$-pair production, single- W production and single-photon production with missing energy from 189 to 209 GeV . The result quoted here is obtained using the $W W$-pair production sample. Each parameter is determined from a single${ }_{3}$ parameter fit in which the other parameters assume their Standard Model values.
3^{3} ACCIARRI 99Q study W-pair, single- W, and single photon events.
${ }^{4}$ EBOLI 00 extract this indirect value of the coupling studying the non-universal one-loop contributions to the experimental value of the $Z \rightarrow b \bar{b}$ width ($\Lambda=1 \mathrm{TeV}$ is assumed).
g_{4}^{7}

This coupling is $C P$-violating (C-violating and P-conserving).

VALUE EVTS DOCUMENT ID TECN SOMIENT

-0.30 ± 0.17 OUR AVERAGE

$-0.39+0.19$
1880
$-0.02+0.32$
1065
${ }^{1}$ ABDALLAH 08C DLPH $E_{\mathrm{Cm}}^{e e}=189-209 \mathrm{GeV}$
${ }^{1}$ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$, where $\ell=e$ or μ. Values of all other couplings are fixed to their standard model values.
${ }^{2}$ ABBIENDI 01H study W-pair events, with one leptonically and one hadronically decaying W. The coupling is extracted using information from the W production angle together with decay angles from the leptonically decaying W.
$\tilde{\kappa}_{\boldsymbol{Z}}$
This coupling is $C P$-violating (C-conserving and P-violating). VALUE EVTS DOCUMENT ID TECN COMMENT

$-0.12{ }_{-0.04}^{+0.06}$ OUR AVERAGE

$-0.09-0.05$	1880	DALL		DLPH	$E_{\text {cm }}^{e e}=189-209$
$20{ }_{-0.07}^{+0.10}$	1065				$E_{\text {cm }}^{e e}=189 \mathrm{GeV}$
We do not use the following data for averages, fits, limits, etc. - - - $\begin{array}{llll}{ }^{3} \text { AABOUD } & 175 & \text { ATLS } & E_{C m}^{p p}=7+8 \mathrm{TeV} \\ { }^{4} \text { bLINOV } & 11 & \text { LEP } & E_{C m}^{e e}=183-207 \mathrm{GeV}\end{array}$					

${ }^{1}$ ABDALLAH 08 determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$, where $\ell=e$ or μ. Values of all other couplings are fixed to their standard model values.
${ }^{2}$ ABBIENDI 01H study W-pair events, with one leptonically and one hadronically decaying W. The coupling is extracted using information from the W production angle together with decay angles from the leptonically decaying W.
${ }^{3}$ AABOUD 17s analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus
neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse
momentum larger than 600 GeV , 30 events are observed in the data with 39 ± 4 events momentum larger than 600 GeV , 30 events are observed in the data with 39 ± 4 events
expected in the Standard Model, yielding the following limit at $95 \% \mathrm{CL}$ for the form expected in the Standard Model, yielding the following
factor cut-off scale $\Lambda_{F F} \rightarrow \infty$: $-0.56<\widetilde{\kappa}_{Z}<0.56$.
factor cut-off scale $\Lambda_{F F} \rightarrow \infty:-0.56<\widetilde{\kappa} Z<0.56$.
${ }^{4}$ BLINOV 11 use the LEP-average $e^{+} e^{-} \rightarrow W^{+} W^{-}$cross section data for $\sqrt{s}=$ $183-207 \mathrm{GeV}$ to determine an upper limit on the TGC $\tilde{\kappa}_{7}$. The average values of the cross sections as well as their correlation matrix, and standard model expectations of the cross sections are taken from the LEPEWWG note hep-ex/0612034. At 95\% confidence level $\left|\widetilde{\kappa}_{Z}\right|<0.13$.
$\tilde{\lambda}_{z}$
This coupling is $C P$-violating (C-conserving and P-violating).

$-0.08 \pm 0.07 \quad 1880$
${ }_{-0.18}{ }_{-0.16}^{+0.24} \quad 1065 \quad{ }^{2}$ ABBIENDI 01H OPAL $E_{c m}^{e e}=189 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - . -

$$
\begin{array}{llll}
{ }^{3} \text { AABOUD } & 17 \mathrm{~S} & \text { ATLS } & E_{\mathrm{Cm}}^{p p}=7+8 \mathrm{TeV} \\
{ }^{4} \text { BLINOV } & 11 & \text { LEP } & E_{\mathrm{Cm}}^{e e}=183-207 \mathrm{GeV}
\end{array}
$$

${ }^{1}$ ABDALLAH 08 determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow(q q)(\ell \nu)$, where $\ell=e$ or μ. Values of all other couplings are fixed to their standard model values.
${ }^{2}$ ABBIENDI 01H study W-pair events, with one leptonically and one hadronically decaying W. The coupling is extracted using information from the W production angle together with decay angles from the leptonically decaying W.
${ }^{3}$ AABOUD 17s analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than $600 \mathrm{GeV}, 30$ events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limit at $95 \% \mathrm{CL}$ for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty:-0.047<\tilde{\lambda}_{Z}<0.046$.
${ }^{4}$ BLINOV 11 use the LEP-average $e^{+} e^{-} \rightarrow W^{+} W^{-}$cross section data for $\sqrt{s}=$ $183-207 \mathrm{GeV}$ to determine an upper limit on the TGC $\tilde{\lambda}_{Z}$. The average values of the cross sections as well as their correlation matrix, and standard model expectations of the cross sections are taken from the LEPEWWG note hep-ex/0612034. At 95\% confidence level $\left|\hat{\lambda}_{Z}\right|<0.31$.

W ANOMALOUS MAGNETIC MOMENT

The full magnetic moment is given by $\mu_{W}=e(1+\kappa+\lambda) / 2 m_{W}$. In the Standard Model, at tree level, $\kappa=1$ and $\lambda=0$. Some papers have defined $\Delta \kappa=1-\kappa$ and assume that $\lambda=0$. Note that the electric quadrupole moment is given by $-e(\kappa-\lambda) / m_{W}^{2}$. A description of the parameterization
of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter Λ appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.
VALUE $\left(e / 2 m_{W}\right)$ EVTS DOCUMENT ID TECN COMMENT
2.22 ${ }_{-0.19}^{\mathbf{+ 0 . 2 0}} 2298{ }^{1}$ ABREU 01। DLPH $E_{C m}^{e e}=183+189 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - . -

2 ABE	95 G	CDF
3 ALITTI	92 C	UA2
4 SAMUEL	92	THEO
5 SAMUEL	91	THEO
6 GRIFOLS	88	THEO
7 GROTCH	87	THEO
8 VANDERBIJ	87	THEO
9 GRAU	85	THEO
10 SUZUKI	85	THEO
11 HERZOG	84	THEO

${ }^{1}$ ABREU 011 combine results from $e^{+} e^{-}$interactions at 189 GeV leading to $W^{+} W^{-}$, $W e \nu_{e}$, and $\nu \bar{\nu} \gamma$ final states with results from ABREU 99L at 183 GeV to determine $\Delta g_{1}^{Z}, \Delta \kappa_{\gamma}$, and $\lambda_{\gamma} . \Delta \kappa_{\gamma}$ and λ_{γ} are simultaneously floated in the fit to determine μ_{W}.
${ }^{2}$ ABE 956 report $-1.3<\kappa<3.2$ for $\lambda=0$ and $-0.7<\lambda<0.7$ for $\kappa=1$ in $p \bar{p} \rightarrow e \nu_{e} \gamma \mathrm{X}$ and $\mu \nu_{\mu} \gamma \mathrm{X}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{3}$ ALITTI 92C measure $\kappa=1_{-2.2}^{+2.6}$ and $\lambda=0_{-1.8}^{+1.7}$ in $p \bar{p} \rightarrow e \nu \gamma+\mathrm{X}$ at $\sqrt{s}=630 \mathrm{GeV}$. At 95% CL they report $-3.5<\kappa<5.9$ and $-3.6<\lambda<3.5$.
${ }^{4}$ SAMUEL 92 use preliminary CDF and UA2 data and find $-2.4<\kappa<3.7$ at 96% CL and $-3.1<\kappa<4.2$ at 95% CL respectively. They use data for $W \gamma$ production and radiative W decay.
${ }^{5}$ SAMUEL 91 use preliminary CDF data for $p \bar{p} \rightarrow W \gamma X$ to obtain $-11.3 \leq \Delta \kappa \leq$ 10.9. Note that their $\kappa=1-\Delta \kappa$.
${ }^{6}$ GRIFOLS 88 uses deviation from ρ parameter to set limit $\Delta \kappa \lesssim 65\left(M_{W}^{2} / \Lambda^{2}\right)$.
${ }^{7}$ GROTCH 87 finds the limit $-37<\Delta \kappa<73.5(90 \% \mathrm{CL})$ from the experimental limits on $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$ assuming three neutrino generations and $-19.5<\Delta \kappa<56$ for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition.
8 VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta \kappa|<33$ $\left(m_{W} / \Lambda\right)$. In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta \kappa$.
${ }^{9}$ GRAU 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments $1.05>\Delta \kappa \ln \left(\Lambda / m_{W}\right)+\lambda / 2>-2.77$. In the Standard Model $\lambda=0$.
10 SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta \kappa| \lesssim 190$ $\left(m_{W} / \Lambda\right)^{2}$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta \kappa| \lesssim 2.2 / \ln \left(\Lambda / m_{W}\right)$. Finally SUZUKI 85 uses deviations from the ρ parameter and obtains a very qualitative, order-of-magnitude limit $|\Delta \kappa| \lesssim 150\left(m_{W} / \Lambda\right)^{4}$ if $|\Delta \kappa| \ll$ 1.
${ }^{11}$ HERZOG 84 consider the contribution of W-boson to muon magnetic moment including anomalous coupling of $W W \gamma$. Obtain a limit $-1<\Delta \kappa<3$ for $\Lambda \gtrsim 1 \mathrm{TeV}$
$c_{W W W} / \Lambda^{2}, c_{W} / \Lambda^{2}, c_{B} / \Lambda^{2}$
These couplings are used in EFT-based approaches to anomalous couplings. They are linearly related to the couplings discussed above.
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
${ }^{1}$ AABOUD 19BA ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{Te}$
2 SIRUNYAN 19ADCMS $E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{3}$ SIRUNYAN $\quad 19 \mathrm{CL}$ CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{4}$ AABOUD 18 Q ATLS $E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{5}$ SIRUNYAN $\quad 18 \mathrm{BZ}$ CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{6}$ AABOUD $\quad 17 \mathrm{~S}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7+8 \mathrm{TeV}$
${ }^{7}$ AABOUD $\quad 17 \cup$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
8 KHACHATRY... 170 CMS $E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{9}$ SIRUNYAN $\quad 17 \times$ CMS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
10 AAD 16AR ATLS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
$11 \mathrm{AAD} \quad 16 \mathrm{P}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
12 KHACHATRY... 16 BI CMS $\quad E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{1}$ AABOUD 19BA study $W W$ production in decay modes with an electron and a muon. The charged leptons are each required to have a transverse momentum larger than 27 GeV and rapidity less than 2.5. The electron-muon system is required to have a mass larger than 55 GeV and a transverse momentum larger than 30 GeV . The missing transverse energy must be larger than 20 GeV . Events containing a jet with transverse momentum exceeding 35 GeV and rapidity smaller than 4.5 are rejected. A total of 12,659 events are selected in the data, with an expected background of 4240 ± 477 events. Analysing the transverse momentum spectrum of the leading charged lepton, the following 95% C.L. limits are derived in units of $\mathrm{TeV}^{-2}:-3.4<c_{W W W} / \Lambda^{2}<3.3,-7.4<c_{W} / \Lambda^{2}<$ $4.1,-21<c_{B} / \Lambda^{2}<18,-1.6<c_{\bar{W} W} W / \Lambda^{2}<1.6,-76<c_{\bar{W}} / \Lambda^{2}<76$.
${ }^{2}$ SIRUNYAN 19AD study inclusive $W Z$ production, with W and Z decaying to electrons or muons. The leading (subleading) charged lepton candidate from the Z boson decay is required to have a transverse momentum larger than $25 \mathrm{GeV}(10 \mathrm{GeV})$. The charged lepton candidate from the W boson decay is required to have a transverse momentum larger than 25 GeV . The invariant mass of the two leptons from Z decay is required to be within 15 GeV of the Z mass, while the invariant mass of the tri-lepton system is required to exceed 100 GeV . A total of 3,831 tri-lepton events are observed, with a fitted SM W Z signal of 3166 ± 62 events and a fitted background of 666 ± 45 events. The approximated $W Z$ invariant mass distribution is analyzed to set 95% C.L. limits as follows: $-4.1<c_{W} / \Lambda^{2}<1.1,-2.0<c_{W W W} / \Lambda^{2}<2.1,-100<c_{B} / \Lambda^{2}<$ 160 , in units of TeV^{-2}.
${ }^{3}$ SIRUNYAN 19CL study $W W$ and $W Z$ production in lepton + jet events, with one W boson decaying leptonically (electron or muon), and another W or Z boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel $2,456(2,235)$ events are selected in the $W W(W Z)$ category, while in the muon channel 3,996 (3572) events are selected in the $W W(W Z)$ category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limits are obtained in units of TeV^{-2} : $-1.58<c_{W W W} / \Lambda^{2}<1.59,-2.00<c_{W} / \Lambda^{2}<2.65,-8.78<c_{B} / \Lambda^{2}<$ 8.54
${ }^{4}$ AABOUD 18 Q study $p p \rightarrow Z Z$ events at $\sqrt{s}=13 \mathrm{TeV}$ with $Z \rightarrow e^{+} e^{-}$or $Z \rightarrow$ $\mu^{+} \mu^{-}$. The number of events observed in the $4 e, 2 e 2 \mu$, and 4μ channels is 249,465 , and 303 respectively. Analysing the p_{T} spectrum of the leading Z boson, the following the following 95% C.L. limits are derived in units of $\mathrm{TeV}^{-4}:-5.9<c_{\widetilde{B}} W^{/} / \Lambda^{4}<5.9$, $-3.0<c_{W W} / \Lambda^{4}<3.0,-3.3<c_{B W} / \Lambda^{4}<3.3,-2.7<c_{B B} / \Lambda^{4}<2.8$. ${ }^{5}$ SIRUNYAN 18BZ study $p p \rightarrow Z$ jet jet events at 13 TeV where $Z \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}$ Isolated electrons and muons are selected with p_{T} of the leading/sub-leading lepton $>$ $30 / 20 \mathrm{GeV}$ and $|\eta|<2.4$, with the di-lepton invariant mass within 15 GeV of the Z mass. The two highest p_{T} jets are selected with p_{T} of the leading/sub-leading jet $>$ $50 / 30 \mathrm{GeV}$ respectively and dijet invariant mass $>200 \mathrm{GeV}$. Templates in the transverse momentum of the Z are utilized to set limits on the triple gauge couplings in the EFT and the LEP parametrizations. The following 95\% C.L. limits are obtained in units of $\mathrm{TeV}^{-2}:-2.6<c_{W W W} / \Lambda^{2}<2.6$ and $-8.4<c_{W} / \Lambda^{2}<10.1$.
${ }^{6}$ AABOUD 175 analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than $600 \mathrm{GeV}, 30$ events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limits at 95\% CL for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty$: $-33<c_{W} / \Lambda^{2}<30,-170<c_{B} / \Lambda^{2}<160$, $-13<c_{W W W} / \Lambda^{2}<9,-580<c_{\widetilde{W}} / \Lambda^{2}<580,-11<c_{\widetilde{W} W W} / \Lambda^{2}<11$, in units of TeV^{-2}
7 AABOUD 17 U analyze production of $W W$ or $W Z$ boson pairs with one W boson decaying to electron or muon plus neutrino, and the other W or Z boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet system or as a single large jet. Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limits at $95 \% \mathrm{CL}$ for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty:-3.1<c_{W W W} / \Lambda^{2}<3.1,-19<c_{B} / \Lambda^{2}<20$, $-5.1<c_{W} / \Lambda^{2}<5.8$, in units of TeV^{-2}.
${ }^{8}$ KHACHATRYAN 170 analyse $W Z$ production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV , with one of the lepton pairs having an invariant mass within 20 GeV of the Z boson mass. The Z transverse momentum spectrum is analyzed to set 95% C.L. limits of: $-260<c_{B} / \Lambda^{2}<210,-4.2<c_{W} / \Lambda^{2}<8.0,-4.6<c_{W W W} / \Lambda^{2}<4.2$, in units of TeV^{-2}.
${ }^{9}$ SIRUNYAN $17 \times$ study $p p \rightarrow W W / W Z \rightarrow \ell \nu q \bar{q}$ production at 8 TeV where ℓ is an electron or muon with $p_{T}>30$ or 25 GeV respectively. Suitable cuts are put on the p_{T} of the dijet system and the missing E_{T} of the event yielding a total of 285 and 204 $W V$ events observed in the electron and muon channels. The following 95% C.L. limits in units of TeV^{-2} are obtained: $-2.7<c_{W W W} / \Lambda^{2}<2.7,-14<c_{B} / \Lambda^{2}<17$, $-2.0<c_{W} / \Lambda^{2}<5.7$.
${ }^{10}$ AAD 16AR study $W W$ production in $p p$ collisions and select $6636 W W$ candidates in decay modes with electrons or muons with an expected background of 1546 ± 157 events. Assuming an EFT formulation, a fit to the transverse momentum distribution of the leading charged lepton, leads to 95% C.L. ranges of: $-4.61<c_{W W} W / \Lambda^{2}<4.60$, $-5.87<c_{W} / \Lambda^{2}<10.54$ and $-20.9<c_{B} / \Lambda^{2}<26.3$, in units of TeV^{-2}.
${ }^{11}$ AAD 16P study $W Z$ production in $p p$ collisions and select $2091 W Z$ candidates in 4 decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the $W Z$ transverse momentum distribution, the resulting 95\% C.L. limits are: $-3.9<c_{W W W} / \Lambda^{2}<4.0,-4.3<c_{W} / \Lambda^{2}<6.8$, and $-320<c_{B} / \Lambda^{2}<210$, in units of TeV^{-2}
12 KHACHATRYAN 16 BI determine the $W^{+} W^{-}$production cross section using unlike sign di-lepton (e or μ) events with high p_{T}. The leptons have $p_{T}>20 \mathrm{GeV} / \mathrm{c}$ and are isolated. Events are required to have no jets above p_{T} of $30 \mathrm{GeV} / \mathrm{c}$. 4847 (2233) events are selected with different (same) flavor leptons, with an expected total background of $1179 \pm 123(643 \pm 73)$ events. Analysing the di-lepton invariant mass spectrum, the following values are obtained: $c_{W W W} / \Lambda^{2}=0.1 \pm 3.2, c_{W} / \Lambda^{2}=$ $-3.6_{-4.5}^{+5.0}$ and $c_{B} / \Lambda^{2}=-3.2_{-14.5}^{+15.0}$, in units of TeV^{-2}. The limits at 95% C.L. are: $-5.7<c_{W W} / \Lambda^{2}<5.9,-11.4<c_{W} / \Lambda^{2}<5.4$ and $-29.2<c_{B} / \Lambda^{2}<23.9$, in units of TeV^{-2}.

ANOMALOUS W/Z QUARTIC COUPLINGS

Revised November 2015 by M.W. Grünewald (U. College Dublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, $W W Z Z, W W Z \gamma, W W \gamma \gamma$, and $Z Z \gamma \gamma$, were studied at LEP and Tevatron at energies at which the Standard Model predicts negligible contributions to multiboson production. Thus, to parametrize limits on these couplings, an
effective theory approach is adopted which supplements the Standard Model Lagrangian with higher dimensional operators which include quartic couplings. The LEP collaborations chose the lowers dimensional representation of operators (dimension 6) which presumes the $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge symmetry is broken by means other than the conventional Higgs scalar doublet [1-3]. In this representation possible quartic couplings, a_{0}, a_{c}, a_{n}, are expressed in terms of the following dimension-6 operators [1,2];

$$
\begin{aligned}
& L_{6}^{0}=-\frac{e^{2}}{16 \Lambda^{2}} a_{0} F^{\mu \nu} F_{\mu \nu} \overrightarrow{W^{\alpha}} \cdot \vec{W}_{\alpha} \\
& L_{6}^{c}=-\frac{e^{2}}{16 \Lambda^{2}} a_{c} F^{\mu \alpha} F_{\mu \beta} \overrightarrow{W^{\beta}} \cdot \vec{W}_{\alpha} \\
& L_{6}^{n}=-i \frac{e^{2}}{16 \Lambda^{2}} a_{n} \epsilon_{i j k} W_{\mu \alpha}^{(i)} W_{\nu}^{(j)} W^{(k) \alpha} F^{\mu \nu} \\
& \widetilde{L}_{6}^{0}=-\frac{e^{2}}{16 \Lambda^{2}} \widetilde{a}_{0} F^{\mu \nu} \widetilde{F}_{\mu \nu} \vec{W}^{\alpha} \cdot \vec{W}_{\alpha} \\
& \widetilde{L}_{6}^{n}=-i \frac{e^{2}}{16 \Lambda^{2}} \widetilde{a}_{n} \epsilon_{i j k} W_{\mu \alpha}^{(i)} W_{\nu}^{(j)} W^{(k) \alpha} \widetilde{F}^{\mu \nu}
\end{aligned}
$$

where F, W are photon and W fields, L_{6}^{0} and L_{6}^{c} conserve C, P separately (\widetilde{L}_{6}^{0} conserves only C) and generate anomalous $W^{+} W^{-} \gamma \gamma$ and $Z Z \gamma \gamma$ couplings, L_{6}^{n} violates $C P\left(\widetilde{L}_{6}^{n}\right.$ violates both C and P) and generates an anomalous $W^{+} W^{-} Z \gamma$ coupling, and Λ is an energy scale for new physics. For the $Z Z \gamma \gamma$ coupling the $C P$-violating term represented by L_{6}^{n} does not contribute. These couplings are assumed to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of the quartic couplings [3] treats the anomalous parts of the $W W \gamma \gamma$ and $Z Z \gamma \gamma$ couplings separately, leading to two sets parametrized as a_{0}^{V} / Λ^{2} and a_{c}^{V} / Λ^{2}, where $V=W$ or Z.

With the discovery of a Higgs at the LHC in 2012, it is then useful to go to the next higher dimensional representation (dimension 8 operators) in which the gauge symmetry is broken by the conventional Higgs scalar doublet [3,4]. There are 14 operators which can contribute to the anomalous quartic coupling signal. Some of the operators have analogues in the dimension 6 scheme. The CMS collaboration, [5], have used this parametrization, in which the connections between the two schemes are also summarized:

$$
\begin{aligned}
\mathcal{L}_{A Q G C}= & -\frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu \nu} F^{\mu \nu} W^{+a} W_{a}^{-} \\
& -\frac{e^{2}}{16} \frac{a_{c}^{W}}{\Lambda^{2}} F_{\mu \nu} F^{\mu a}\left(W^{+\nu} W_{a}^{-}+W^{-\nu} W_{a}^{+}\right) \\
& -e^{2} g^{2} \frac{\kappa_{0}^{W}}{\Lambda^{2}} F_{\mu \nu} Z^{\mu \nu} W^{+a} W_{a}^{-} \\
& -\frac{e^{2} g^{2}}{2} \frac{\kappa_{c}^{W}}{\Lambda^{2}} F_{\mu \nu} Z^{\mu a}\left(W^{+\nu} W_{a}^{-}+W^{-\nu} W_{a}^{+}\right) \\
& +\frac{f_{T, 0}}{\Lambda^{4}} \operatorname{Tr}\left[\widehat{W}_{\mu \nu} \widehat{W}^{\mu \nu}\right] \times \operatorname{Tr}\left[\widehat{W}_{\alpha \beta} \widehat{W}^{\alpha \beta}\right]
\end{aligned}
$$

The energy scale of possible new physics is Λ, and $g=$ $e / \sin \left(\theta_{W}\right)$, e being the unit electric charge and θ_{W} the Weinberg angle. The field tensors are described in $[3,4]$.

The two dimension 6 operators a_{0}^{W} / Λ^{2} and a_{c}^{W} / Λ^{2} are associated with the $W W \gamma \gamma$ vertex. Among dimension 8 operators, $\kappa_{0}^{W} / \Lambda^{2}$ and $\kappa_{c}^{W} / \Lambda^{2}$ are associated with the $W W Z \gamma$ vertex, whereas the parameter $f_{T, 0} / \Lambda^{4}$ contributes to both vertices. There is a relationship between these two dimension 6 parameters and the dimension 8 parameters $f_{M, i} / \Lambda^{4}$ as follows [3]:

Gauge \& Higgs Boson Particle Listings

$$
\begin{aligned}
& \frac{a_{0}^{W}}{\Lambda^{2}}=-\frac{4 M_{W}^{2}}{g^{2}} \frac{f_{M, 0}}{\Lambda^{4}}-\frac{8 M_{W}^{2}}{g^{\prime 2}} \frac{f_{M, 2}}{\Lambda^{4}} \\
& \frac{a_{c}^{W}}{\Lambda^{2}}=-\frac{4 M_{W}^{2}}{g^{2}} \frac{f_{M, 1}}{\Lambda^{4}}-\frac{8 M_{W}^{2}}{g^{\prime 2}} \frac{f_{M, 3}}{\Lambda^{4}}
\end{aligned}
$$

where $g^{\prime}=e / \cos \left(\theta_{W}\right)$ and M_{W} is the invariant mass of the W boson. This relation provides a translation between limits on dimension 6 operators $a_{0, c}^{W}$ and $f_{M, j} / \Lambda^{4}$. It is further required [4] that $f_{M, 0}=2 f_{M, 2}$ and $f_{M, 1}=2 f_{M, 3}$ which suppresses contributions to the $W W Z \gamma$ vertex. The complete set of Lagrangian contributions as presented in [4] corresponds to 19 anomalous couplings in total $-f_{S, i}, \quad i=1,2, f_{M, i}, \quad i=0, \ldots, 8$ and $f_{T, i}, i=0, \ldots, 9$ - each scaled by $1 / \Lambda^{4}$.

The ATLAS collaboration [6], on the other hand, follows a K-matrix driven approach of Ref. 7 in which the anomalous couplings can be expressed in terms of two parameters α_{4} and α_{5}, which account for all BSM effects.

It is the early stages in the determination of quartic couplings by the LHC experiments. It is hoped that the two collaborations, ATLAS and CMS, will agree to use at least one common set of parameters to express these limits to enable the reader to make a comparison and allow for a possible LHC combination.

References

1. G. Belanger and F. Boudjema, Phys. Lett. B288, 201 (1992).
2. J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103 (2000);
J.W. Stirling and A. Werthenbach, Phys. Lett. B466, 369 (1999);
A. Denner et al., Eur. Phys. J. C20, 201 (2001);
G. Montagna et al., Phys. Lett. B515, 197 (2001).
3. G. Belanger et al., Eur. Phys. J. C13, 283 (2000).
4. O.J.P. Éboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys. Rev. D69, 095005 (2004);
O.J.P. Éboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi, Phys. Rev. D77, 073005 (2006).
5. S. Chatrchyan et al., Phys. Rev. D90, 032008 (2014);
S. Chatrchyan et al., Phys. Rev. Lett. 114, 051801 (2015).
6. G. Aad et al., Phys. Rev. Lett. 113, 141803 (2014).
7. A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010 (2008).
$a_{0} / \Lambda^{2}, a_{c} / \Lambda^{2}, a_{n} / \Lambda^{2}, \kappa_{0}^{W} / \Lambda^{2}, \kappa_{c}^{W} / \Lambda^{2}, f_{T, 0} / \Lambda^{4}, f_{M, i} / \Lambda^{4}, \alpha_{4}, \alpha_{5}$,
$\mathrm{F}_{S, i} / \Lambda^{4}, \mathrm{~F}_{M, i} / \Lambda^{4}, \mathrm{~F}_{T, i} / \Lambda^{4}$
Anomalous W quartic couplings are measured by the experiments at LEP, the Tevatron, and the LHC. Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below). As discussed in the review on the "Anomalous W / Z quartic couplings (QGCS)," the measurements are typically done using different operator expansions which then do not allow the results to be compared and averaged. At least one common framework should be agreed upon for the use in the future publications by the experiments.

Some publications from LHC experiments derive limits for various assumed values of the form-factor cutoff $\Lambda_{F F}$. The values quoted below are for $\Lambda_{F F} \rightarrow \infty$.
VALUE
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

1 SIRUNYAN 19BMCMS $E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
2 SIRUNYAN 19 BP CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{3}$ SIRUNYAN $\quad 19 \mathrm{CQ}$ CMS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$

${ }^{4}$ SIRUNYAN 1	18CC CMS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{5}$ AABOUD	17AA ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{6}$ AABOUD	17AG ATLS	$E_{\mathrm{cm}}^{p p}=8 \mathrm{TeV}$
7 AABOUD 17	17D ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{8}$ AABOUD 17	17」 ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
9 AABOUD 17	17M ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
10 KHACHATRY.	.17AA CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
11 KHACHATRY.	7M CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
12 SIRUNYAN 17	17AD CMS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
13 SIRUNYAN 17	17AR CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
14 AABOUD 1	16E ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
15 AAD	16Q ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
16 KHACHATRY... 1	.16AX CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
17 AAD 1	15N ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
18 KHACHATRY	D CMS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
19 AAD 1	14AMATLS	
20 CHATRCHYAN 1	14Q CMS	
21 ABAZOV 1	13D D0	
22 CHATRCHYAN 1	13AA CMS	
23 ABBIENDI 0	04B OPAL	
24 ABBIENDI 0	04L OPAL	
25 HEISTER 0	04A ALEP	
26 ABDALLAH 0	03। DLPH	
27 ACHARD 02F	02F L3	

${ }^{1}$ SIRUNYAN 19BM search for the final state $W^{+} W^{-} W^{ \pm}$using W decays to electrons or muons. Two event samples are considered, events with three leptons, or events with two oppositely charged leptons accompanied by two jets. In a kinematic region selected to enhance the effect of anomalous couplings, no events are selected in the data, and 95% C.L. upper limits are obtained as follows: $-1.2<\mathrm{f}_{T, 0} / \Lambda^{4}<1.2,-3.3<$ $\mathrm{f}_{T, 1} / \Lambda^{4}<3.3,-2.7<\mathrm{f}_{T, 2} / \Lambda^{4}<2.6$, in units of TeV^{-4} and without application 2 of a form factor.
${ }^{2}$ SIRUNYAN 19BP study $W Z$ plus 2 jets production, using W and Z decay channels with electrons or muons. In the data, 75 events are selected, with a fitted SM signal of 15.1 ± 1.6 events and a fitted background of 62.4 ± 2.8 events. The transverse mass distribution of the $W Z$ system is analyzed to set the following limits at 95\% C.L., in units of $\mathrm{TeV}^{-4}:-9.15<\mathrm{f}_{M, 0} / \Lambda^{4}<9.15,-9.15<\mathrm{f}_{M, 1} / \Lambda^{4}<9.45,-26.5<$ $\mathrm{f}_{S, 0} / \Lambda^{4}<27.5,-41.2<\mathrm{f}_{S, 1} / \Lambda^{4}<42.8,-0.75<\mathrm{f}_{T, 0} / \Lambda^{4}<0.81,-0.49<$ $\mathrm{f}_{T, 1} / \Lambda^{4}<0.55,-1.49<\mathrm{f}_{T, 2} / \Lambda^{4}<1.85$.
${ }^{3}$ SIRUNYAN 19CQ search for anomalous electroweak production of vector boson pairs in association with two jets. Events are selected by requiring two jets with a large invariant mass and rapidity separation, one or two leptons (electrons or muons), and a W or Z boson decaying hadronically. In the $W V(Z V)$ channel, 347 (47) events are selected in the data, with a total expected background of 352 ± 19 (50.3 ± 5.8) events. Analysing the mass distribution of the $W V$ or $Z V$ system, the following 95\% C.L. limits are obtained: $-2.7<\mathrm{f}_{S, 0} / \Lambda^{4}<2.7,-3.4<\mathrm{f}_{S, 1} / \Lambda^{4}<3.4,-0.69<\mathrm{f}_{M, 0} / \Lambda^{4}<$ $0.70,-2.0<\mathrm{f}_{M, 1} / \Lambda^{4}<2.1,-1.3<\mathrm{f}_{M, 6} / \Lambda^{4}<1.3,-3.4<\mathrm{f}_{M, 7} / \Lambda^{4}<3.4$, $-0.12<\mathrm{f}_{T, 0} / \Lambda^{4}<0.11,-0.12<\mathrm{f}_{T, 1} / \Lambda^{4}<0.13,-0.28<\mathrm{f}_{T, 2} / \Lambda^{4}<0.28$, in units of TeV^{-4}.
${ }^{4}$ SIRUNYAN $18 C c$ study $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ leading to a pair of same-sign W pairs decaying leptonically (e or μ) associated with a pair of jets. Isolated leptons with $p_{T}>25$ (20) GeV for the leading (trailing) lepton, with $|\eta|<2.5$ (2.4) for e (μ) and jets with $p_{T}>30 \mathrm{GeV},|\eta|<5.0,\left|\Delta \eta_{j j}\right|>2.5$ and $m_{j j}>500 \mathrm{GeV}$ is required. Further cuts are applied to minimize $Z \rightarrow e e$ events, non-prompt leptons and hadronically decaying taus. The number of selected events is 201, with an expected SM signal of 66.9 ± 2.4 and background of 138 ± 13 events. Analysing the dilepton invariant mass spectrum the following 95% C.L. limits are derived: $-7.7<{ }_{f}^{S, 0} 1 \Lambda^{4}<7.7$, $-21.6<\mathrm{f}_{S, 1} / \Lambda^{4}<21.8,-6.0<\mathrm{f}_{M, 0} / \Lambda^{4}<5.9,-8.7<\mathrm{f}_{M, 1} / \Lambda^{4}<9.1$, $-11.9<\mathrm{f}_{M, 6} / \Lambda^{4}<11.8,-13.3<\mathrm{f}_{M, 7} / \Lambda^{4}<12.9,-0.62<\mathrm{f}_{T, 0} / \Lambda^{4}<0.65$, $-0.28<\mathrm{f}_{T, 1} / \Lambda^{4}<0.31,-0.89<\mathrm{f}_{T, 2} / \Lambda^{4}<1.02$.
${ }^{5}$ AABOUD 17AA analyze $W^{ \pm} W^{ \pm}$production in association with two jets and W decay modes with electrons or muons. In the kinematic region of VBS the effect of anomalous QGCs is enhanced by requiring the transverse mass of the $W W$ system to be larger than 400 GeV . In the data, 8 events are selected with a total background expected from SM processes of 3.8 ± 0.6 events. Assuming the other QGC coupling to have the SM value of zero, the observed event yield is used to determine 95\% CL limits on the QGCs: $-0.14<\alpha_{4}<0.15$ and $-0.22<\alpha_{5}<0.22$. Supersedes AAD 14AM.
${ }^{6}$ AABOUD 17AG determine the $W W \gamma$ and $W Z \gamma$ cross sections in $8 \mathrm{TeV} p p$ interactions by studying the final states $e \nu \mu \nu \gamma$ and $e \nu j j \gamma$ or $\mu \nu j j \gamma$. Upper limits on the production cross sections are derived in a fiducial region optimized for BSM physics. These are used cross sections are derived in a fiducial region optimized for BSM physics. These are used
to derive the following 95% C.L. upper limits for quartic couplings assuming the form to derive the following 95% C.L. upper limits for quartic couplings assuming the form
scale factor, $\Lambda_{F F}=\infty$ (all in units of $10^{3} \mathrm{TeV}^{-4}$): $-0.3<\mathrm{f}_{M, 0} / \Lambda^{4}<0.3$, $-0.5<\mathrm{f}_{M, 1} / \Lambda^{4}<0.5,-1.8<\mathrm{f}_{M, 2} / \Lambda^{4}<1.8,-1.1<\mathrm{f}_{M, 4} / \Lambda^{4}<1.1$, $-1.7<\mathrm{f}_{M, 5} / \Lambda^{4}<1.7,-0.6<\mathrm{f}_{M, 6} / \Lambda^{4}<0.6,-1.1<\mathrm{f}_{M, 7} / \Lambda^{4}<1.1,-0.1<$ $\mathrm{f}_{T, 0} / \Lambda^{4}<0.1,-0.2<\mathrm{f}_{T, 1} / \Lambda^{4}<0.2,-0.4<\mathrm{f}_{T, 4} / \Lambda^{4}<0.4,-1.5<\mathrm{f}_{T, 5} / \Lambda^{4}<$ $1.6,-1.9<\mathrm{f}_{T, 6} / \Lambda^{4}<1.9,-4.3<\mathrm{f}_{T, 7} / \Lambda^{4}<4.3$.
${ }^{7}$ AABOUD 17D analyze electroweak diboson ($W V, V=W, Z$) production in association with a high-mass dijet system. In the data, 32 events are selected with an expected total background of 32 ± 12 events. Analysing the transverse mass distribution of the $W V$ system, the following limits are set at 95% C.L.: $-0.024<\alpha_{4}<0.030$ and $-0.028<\alpha_{5}<0.033$.
${ }^{8}$ AABOUD 17 J analyze the $Z \gamma$ production in association with a high-mass dijet system, with the Z boson decaying into a pair of electrons, muons, or neutrinos. In the charged lepton (neutrino) channel, events are selected with a dijet mass larger than 500 (600) GeV and a transverse photon energy larger than 250 (150) GeV , with 2 (4) events selected in the data and $0.30 \pm 0.08(1.6 \pm 0.5)$ expected background events. The observed event yield is used to determine 95% CL limits as follows: $-4.1 \times 10^{3}<$
 $\mathrm{f}_{T, 0} / \Lambda^{4}<1.6 \times 10^{1},-1.6 \times 10^{2}<\mathrm{f}_{M, 0} / \Lambda^{4}<1.8 \times 10^{2},-3.5 \times 10^{2}$ $\mathrm{f}_{M, 1} / \Lambda^{4}<3.4 \times 10^{2},-8.9 \times 10^{2}<\mathrm{f}_{M, 2} / \Lambda^{4}<8.9 \times 10^{2},-1.7 \times 10^{3}$ $\mathrm{f}_{M, 3} / \Lambda^{4}<1.7 \times 10^{3}$, in units of TeV^{-4} and without application of a form factor.
${ }^{9}$ AABOUD 17M analyze tri-boson $W^{ \pm} W^{ \pm} W^{\mp}$ production in decay channels with three charged leptons or two like-sign charged leptons with two jets, where the lepton can be an electron or muon. In the data, 24 tri-lepton events and 21 di-lepton plus jets events are selected, compared to a total event yield expected in the SM of 30.8 ± 3.0 and 21.9 ± 2.0, respectively. Analysing the tri-lepton transverse mass or the transverse momentum sum of the two leptons, two jets and the missing transverse energy, the following limits at 95% CL are derived for the form factor cut-off scale $\Lambda_{F F} \rightarrow \infty:-0.13<\mathrm{f}_{S, 0} / \Lambda^{4}<0.18$, $-0.21<\mathrm{f}_{S, 1} / \Lambda^{4}<0.27$, in units of $10^{4} \mathrm{TeV}^{-4}$, which are converted into the following limits: $-0.49<\alpha_{4}<0.75$ and $-0.48<\alpha_{5}<0.62$.
10 KHACHATRYAN 17AA analyse electroweak production of $Z \gamma$ in association with two hadronic jets, with the Z boson decaying to electron or muon pairs. Events with photon transverse momentum larger than 60 GeV and di-jet invariant mass larger than 400 GeV are selected. The $Z \gamma$ inavariant mass spectrum is analysed to set 95% C.L. limits as follows: $-71<\mathrm{f}_{M, 0} / \Lambda^{4}<75,-190<\mathrm{f}_{M, 1} / \Lambda^{4}<182,-32<\mathrm{f}_{M, 2} / \Lambda^{4}<31$, $-58<\mathrm{f}_{M, 3} / \Lambda^{4}<59,-3.8<\mathrm{f}_{T, 0} / \Lambda^{4}<3.4,-4.4<\mathrm{f}_{T, 1} / \Lambda^{4}<4.4,-9.9<$ $\mathrm{f}_{T, 2} / \Lambda^{4}<9.0,-1.8<\mathrm{f}_{T, 8} / \Lambda^{4}<1.8,-4.0<\mathrm{f}_{T, 9} / \Lambda^{4}<4.0$, in units of TeV^{-4} and without application of a form factor.
11 KHACHATRYAN 17M analyse electroweak production of $W \gamma$ in association with two hadronic jets, with the W boson decaying to electrons or muons. Events with photon transverse momentum larger than 200 GeV and di-jet invariant mass larger than 200 GeV are selected. The W transverse momentum spectrum is analysed to set 95% C.L. limits as follows: $-77<\mathrm{f}_{M, 0} / \Lambda^{4}<74,-125<\mathrm{f}_{M, 1} / \Lambda^{4}<129,-26<\mathrm{f}_{M, 2} / \Lambda^{4}<26$, $-43<\mathrm{f}_{M, 3} / \Lambda^{4}<44,-40<\mathrm{f}_{M, 4} / \Lambda^{4}<40,-65<\mathrm{f}_{M, 5} / \Lambda^{4}<65,-129<$ $\mathrm{f}_{M, 6} / \Lambda^{4}<129,-164<\mathrm{f}_{M, 7} / \Lambda^{4}<162,-5.4<\mathrm{f}_{T, 0} / \Lambda^{4}<5.6,-3.7<$ $\mathrm{f}_{T, 1} / \Lambda^{4}<4.0,-11<\mathrm{f}_{T, 2} / \Lambda^{4}<12,-3.8<\mathrm{f}_{T, 5} / \Lambda^{4}<3.8,-2.8<$ $\mathrm{f}_{T, 6} / \Lambda^{4}<3.0,-7.3<\mathrm{f}_{T, 7} / \Lambda^{4}<7.7$, in units of TeV^{-4} and without application of a form factor.
12 SIRUNYAN 17AD study $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ to determine the cross section of $Z Z j j$ with the Z decaying to ee or $\mu \mu$. The $Z Z$ mass distribution is used to set upper limits on the anomalous quartic couplings. The 95% upper limits for the relevant quartic couplings in units of TeV^{-4} are: $-0.46<\mathrm{f}_{T, 0} / \Lambda^{4}<0.44,-0.61<\mathrm{f}_{T, 1} / \Lambda^{4}<$ $0.61,-1.2<\mathrm{f}_{T, 2} / \Lambda^{4}<1.2,-0.84<\mathrm{f}_{T, 8} / \Lambda^{4}<0.84,-1.8<\mathrm{f}_{T, 9} / \Lambda^{4}<1.8$.
13 SIRUNYAN 17AR study $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ to determine the cross section of $p p \rightarrow W \gamma \gamma$ and $p p \rightarrow Z \gamma \gamma$ where $W \rightarrow \ell \nu$ and $Z \rightarrow \ell^{+} \ell^{-}, \ell$ being an electron or a muon. The number of W events in the e and μ channels is 63 and 108 respectively, and the number of Z events in the e and μ channels is 117 and 141 . To increase sensitivity, the transverse momentum of the leading photon is required to be larger than 70 GeV . The 95% C.L. upper limits in units of TeV^{-4} are $-701<\mathrm{f}_{M, 2} / \Lambda^{4}<683,-1170<$ $\mathrm{f}_{M, 3} / \Lambda^{4}<1220,-33.5<\mathrm{f}_{T, 0} / \Lambda^{4}<34.0,-44.3<\mathrm{f}_{T, 1} / \Lambda^{4}<44.8,-93.8<$ $\mathrm{f}_{T, 2} / \Lambda^{4}<93.2$.
14 AABOUD 16E study $W W$ production in two-photon mediated $p p$ collisions at 8 TeV where the W boson decays into an electron or muon, probing the $\gamma \gamma W W$ vertex for anomalous quartic gauge couplings. The lepton p_{T} is required to be larger than 30 GeV . Limits on anomalous couplings are determined from events with p_{T} larger than 120 GeV where the aQGC effect is enhanced and the SM background reduced; in the data corresponding to an integrated luminosity of $20.2 \mathrm{fb}^{-1}, 1$ event is selected with an expected SM background of 0.37 ± 0.13 events. The 95% C.L. limits without a formfactor cutoff ($\Lambda_{\text {cutoff }} \rightarrow \infty$) are as follows: $-1.7<a_{0}^{W} / \Lambda^{2}<1.7$ and $-6.4<$ $a_{C}^{W} / \Lambda^{2}<6.3$ in units of $10^{-6} \mathrm{GeV}^{-2}$. In terms of another set of variables: $-6.6<$ $\mathrm{f}_{M, 0} / \Lambda^{4}<6.6$ and $-24<\mathrm{f}_{M, 1} / \Lambda^{4}<25$ in units of $10^{-11} \mathrm{GeV}^{-4}$.
15 AAD 16Q study $Z \gamma \gamma$ production in $p p$ collisions. In events with no additional jets, 29 (22) Z decays to electron (muon) pairs are selected, with an expected background of $3.3 \pm 1.1(6.5 \pm 2.0)$ events, as well as $19 Z$ decays to netrino pairs with an expected background of 8.3 ± 4.4 events. Analysing the photon transverse momentum distribution for $m_{\gamma \gamma}$ above $200 \mathrm{GeV}(300 \mathrm{GeV})$ for lepton (neutrino) events, yields the 95% C.L. limits: $-1.6 \times 10^{4}<\mathrm{f}_{M, 2} / \Lambda^{4}<1.6 \times 10^{4},-2.9 \times 10^{4}<\mathrm{f}_{M, 3} / \Lambda^{4}<2.7 \times 10^{4}$, $-0.86 \times 10^{2}<\mathrm{f}_{T, 0} / \Lambda^{4}<1.03 \times 10^{2},-0.69 \times 10^{3}<\mathrm{f}_{T, 5} / \Lambda^{4}<0.68 \times 10^{3}$, $-0.74 \times 10^{4}<\mathrm{f}_{T, 9} / \Lambda^{4}<0.74 \times 10^{4}$ in units of TeV^{-4} and without application of a form factor Λ_{FF}.
16 KHACHATRYAN 16AX searches for anomalous $W W \gamma \gamma$ quartic gauge couplings in the two-photon-mediated process $p p \rightarrow p p W W$, assuming the $W W \gamma$ triple gauge boson couplings to be at their Standard Model values. 13 events containing an $e^{ \pm} \mu^{\mp}$ pair with $p_{T}(e, \mu)>30 \mathrm{GeV}$ are selected in a total luminosity of $19.7 \mathrm{fb}^{-1}$, with an expected $\gamma \gamma \rightarrow W W$ signal of 5.3 ± 0.1 events and an expected background of 3.9 ± 0.5 events. When combining with the data collected at 7 TeV (CHATRCHYAN 13AA), and not assuming a form factor, the following 1-parameter limits at 95% C.L. are obtained from the $p_{T}(e, \mu)$ spectrum: $\left|a_{0}^{W} / \Lambda^{2}\right|<1.1 \times 10^{-6} \mathrm{GeV}^{-2}\left(a_{C}^{W}=0\right)$, and $\left|a_{C}^{W} / \Lambda^{2}\right|<$ $4.1 \times 10^{-6} \mathrm{GeV}^{-2}\left(a_{0}^{W}=0\right)$. In terms of another set of variables: $\left|\mathrm{f}_{M, 0} / \Lambda^{4}\right|<$ $4.2 \times 10^{-12} \mathrm{GeV}^{-4},\left|\mathrm{f}_{M, 1} / \Lambda^{4}\right|<16 \times 10^{-12} \mathrm{GeV}^{-4},\left|\mathrm{f}_{M, 2} / \Lambda^{4}\right|<2.1 \times 10^{-12}$ $\mathrm{GeV}^{-4},\left|\mathrm{f}_{M, 3} / \Lambda^{4}\right|<7.8 \times 10^{-12} \mathrm{GeV}^{-4}$.
${ }^{17}$ AAD 15 N study $W \gamma \gamma$ events in $8 \mathrm{TeV} p p$ interactions, where the W decays into an electron or a muon. The events are characterized by an isolated lepton, a missing transverse energy due to the decay neutrino, and two isolated photons, with the p_{T} of the lepton and the photons being $>20 \mathrm{GeV}$. The number of candidate events observed in the
electron channel for $N($ jet $) \geq 0$ and $N($ jet $)=0$ is 47 and 15 , the corresponding numbers for the muon channel being 110 and 53. The backgrounds expected are 30.2 ± 7.4, $8.7 \pm 3.0,52.1 \pm 12.2$, and 24.4 ± 8.3 respectively. The 95% C.L. limits on the values of the parameters $f_{T, 0} / \Lambda^{4}, f_{M, 2} / \Lambda^{4}$ and $f_{M, 3} / \Lambda^{4}$ are $-0.9-0.9 \times 10^{2},-0.8-0.8 \times 10^{4}$, and $-1.5-1.4 \times 10^{4}$ respectively, without application of a form factor Λ_{FF}.
18 KHACHATRYAN 15D study vector-boson-scattering tagged by two jets, requiring two same-sign charged leptons arising from $W^{ \pm} W^{ \pm}$production and decay. The two jets must have a transverse momentum larger than 30 GeV , while the leptons, electrons or muons, must have a transverse momentum $>20 \mathrm{GeV}$. The dijet mass is required to be $>$ 500 GeV , the dilepton mass $>50 \mathrm{GeV}$, with additional requirement of differing from the Z mass by $>15 \mathrm{GeV}$. In the two categories $W^{+} W^{+}$and $W^{-} W^{-}, 10$ and 2 data events are observed in a data sample corresponding to an integrated luminosity of $19.4 \mathrm{fb}^{-1}$, with an expected background of 3.1 ± 0.6 and 2.6 ± 0.5 events. Analysing the distribution of the dilepton invariant mass, the following limits at 95\% C.L. are obtained, in units of $\mathrm{TeV}^{-4}:-38<\mathrm{F}_{S, 0} / \Lambda^{4}<40,-118<\mathrm{F}_{S, 1} / \Lambda^{4}<120,-33<\mathrm{F}_{M, 0} / \Lambda^{4}<32$, $-44<\mathrm{F}_{M, 1} / \Lambda^{4}<47,-65<\mathrm{F}_{M, 6} / \Lambda^{4}<63,-70<\mathrm{F}_{M, 7} / \Lambda^{4}<66,-4.2<$ $\mathrm{F}_{T, 0} / \Lambda^{4}<4.6,-1.9<\mathrm{F}_{T, 1} / \Lambda^{4}<2.2,-5.2<\mathrm{F}_{T, 2} / \Lambda^{4}<6.4$.
19 AAD 14AM analyze electroweak production of $W W$ jet jet same-charge diboson plus two jets production, with the W bosons decaying to electron or muon, to study the quartic $W W W W$ coupling. In a kinematic region enhancing the electroweak production over the strong production, 34 events are observed in the data while 29.8 ± 2.4 events are expected with a backgound of 15.9 ± 1.9 events. Assuming the other QGC coupling to have the SM value of zero, the observed event yield is used to determine 95\% CL limits on the quartic gauge couplings: $-0.14<\alpha_{4}<0.16$ and $-0.23<\alpha_{5}<0.24$.
${ }^{20}$ CHATRCHYAN $14 Q$ study $W V \gamma$ production in $8 \mathrm{TeV} p p$ collisions, in the single lepton final state, with $W \rightarrow \ell \nu, Z \rightarrow$ dijet or $W \rightarrow \ell \nu, W \rightarrow$ dijet, the dijet mass resolution precluding differentiation between the W and $Z . p_{T}$ and pseudo-rapidity cuts are put on the lepton, the photon and the two jets to minimize backgrounds. The dijet mass is required to be between $70-100 \mathrm{GeV}$ and $\left|\Delta \eta_{j j}\right|<1.4$. The selected number of muon (electron) events are 183 (139), with SM expectation being 194.2 ± 11.5 (147.9 ± 10.7) including signal and background. The photon E_{T} distribution is used to set limits on the anomalous quartic couplings. The following $95 \% \mathrm{CL}$ limits are deduced (all in units of TeV^{-2} or $\left.\mathrm{TeV}^{-4}\right):-21<a_{0}^{W} / \Lambda^{2}<20,-34<a_{C}^{W} / \Lambda^{2}<32,-12<\kappa_{0}^{W} / \Lambda^{2}<$ 10 and $-18<\kappa_{C}^{W} / \Lambda^{2}<17$; and $-25<f_{T, 0} / \Lambda^{4}<24 \mathrm{TeV}^{-4}$.
${ }^{21}$ ABAZOV 13D searches for anomalous $W W \gamma \gamma$ quartic gauge couplings in the two-photon-mediated process $p p \rightarrow p p W W$, assuming the $W W \gamma$ triple gauge boson couplings to be at their Standard Model values. 946 events containing an $e^{+} e^{-}$pair with missing energy are selected in a total luminosity of $9.7 \mathrm{fb}^{-1}$, with an expectation of 983 ± 108 events from Standard-Model processes. The following 1-parameter limits at $95 \% \mathrm{CL}$ are otained: $\left|a_{0}^{W} / \Lambda^{2}\right|<4.3 \times 10^{-4} \mathrm{GeV}^{-2}\left(a_{C}^{W}=0\right),\left|a_{C}^{W} / \Lambda^{2}\right|<$ $1.5 \times 10^{-3} \mathrm{GeV}^{-2}\left(a_{0}^{W}=0\right)$.
${ }^{22}$ CHATRCHYAN 13AA searches for anomalous $W W \gamma \gamma$ quartic gauge couplings in the two-photon-mediated process $p p \rightarrow p p W W$, assuming the $W W \gamma$ triple gauge boson couplings to be at their Standard Model values. 2 events containing an $e^{ \pm} \mu^{\mp}$ pair with $p_{T}(e, \mu)>30 \mathrm{GeV}$ are selected in a total luminosity of $5.05 \mathrm{fb}^{-1}$, with an expected pp W W signal of 2.2 ± 0.4 events and an expected background of 0.84 ± 0.15 events. The following 1-parameter limits at $95 \% \mathrm{CL}$ are otained from the $p_{T}(e, \mu)$ spectrum: $\left|a_{0}^{W} / \Lambda^{2}\right|<4.0 \times 10^{-6} \mathrm{GeV}^{-2}\left(a_{C}^{W}=0\right),\left|a_{C}^{W} / \Lambda^{2}\right|<1.5 \times 10^{-5} \mathrm{GeV}^{-2}\left(a_{0}^{W}\right.$ $=0$).
${ }^{23}$ ABBIENDI 04B select $187 e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma$ events in the C.M. energy range $180-209 \mathrm{GeV}$, where $E_{\gamma}>2.5 \mathrm{GeV}$, the photon has a polar angle $\left|\cos \theta_{\gamma}\right|<0.975$ and is well isolated from the nearest jet and charged lepton, and the effective masses of both fermion-antifermion systems agree with the W mass within $3 \Gamma_{W}$. The measured differential cross section as a function of the photon energy and photon polar angle is used to extract the 95% CL limits: $-0.020 \mathrm{GeV}^{-2}<a_{0} / \Lambda^{2}<0.020 \mathrm{GeV}^{-2}$, $-0.053 \mathrm{GeV}^{-2}<a_{c} / \Lambda^{2}<0.037 \mathrm{GeV}^{-2}$ and $-0.16 \mathrm{GeV}^{-2}<a_{n} / \Lambda^{2}<0.15 \mathrm{GeV}^{-2}$.
${ }^{24}$ ABBIENDI 04L select $20 e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma \gamma$ acoplanar events in the energy range 180-209 GeV and $176 e^{+} e^{-} \rightarrow q \bar{q} \gamma \gamma$ events in the energy range $130-209 \mathrm{GeV}$. These samples are used to constrain possible anomalous $W^{+} W^{-} \gamma \gamma$ and $Z Z \gamma \gamma$ quartic couplings. Further combining with the $W^{+} W^{-} \gamma$ sample of ABBIENDI 04B the following oneparameter 95% CL limits are obtained: $-0.007<a_{0}^{Z} / \Lambda^{2}<0.023 \mathrm{GeV}^{-2},-0.029<$ $a_{C}^{Z} / \Lambda^{2}<0.029 \mathrm{GeV}^{-2},-0.020<a_{0}^{W} / \Lambda^{2}<0.020 \mathrm{GeV}^{-2},-0.052<a_{C}^{W} / \Lambda^{2}<$ $0.037 \mathrm{GeV}^{-2}$.
${ }^{25}$ In the CM energy range 183 to 209 GeV HEISTER 04A select $30 e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma \gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photonphoton acoplanarity is required to be $>5^{\circ}, E_{\gamma} / \sqrt{s}>0.025$ (the more energetic photon having energy $>0.2 \sqrt{s}), \mathrm{p}_{T_{\gamma}} / \mathrm{E}_{\text {beam }}>0.05$ and $\left|\cos \theta_{\gamma}\right|<0.94$. A likelihood fit to the photon energy and recoil missing mass yields the following one-parameter 95% CL limits: $-0.012<a_{0}^{Z} / \Lambda^{2}<0.019 \mathrm{GeV}^{-2},-0.041<a_{C}^{Z} / \Lambda^{2}<0.044 \mathrm{GeV}^{-2}$, $-0.060<a_{0}^{W} / \Lambda^{2}<0.055 \mathrm{GeV}^{-2},-0.099<a_{C}^{W} / \Lambda^{2}<0.093 \mathrm{GeV}^{-2}$.
${ }^{26}$ ABDALLAH 03। select $122 e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma$ events in the C.M. energy range $189-209 \mathrm{GeV}$, where $E_{\gamma}>5 \mathrm{GeV}$, the photon has a polar angle $\left|\cos \theta_{\gamma}\right|<0.95$ and is well isolated from the nearest charged fermion. A fit to the photon energy spectra yields $a_{C} / \Lambda^{2}=0.000_{-0.040}^{+0.019} \mathrm{GeV}^{-2}, a_{0} / \Lambda^{2}=-0.004_{-0.010}^{+0.018} \mathrm{GeV}^{-2}, \widetilde{a}_{0} / \Lambda^{2}=$ $-0.007_{-0.008}^{+0.019} \mathrm{GeV}^{-2}, a_{n} / \Lambda^{2}=-0.09{ }_{-0.05}^{+0.16} \mathrm{GeV}^{-2}$, and $\widetilde{a}_{n} / \Lambda^{2}=+0.05_{-0.15}^{+0.07}$ GeV^{-2}, keeping the other parameters fixed to their Standard Model values (0). The $95 \% \mathrm{CL}$ limits are: $-0.063 \mathrm{GeV}^{-2}<a_{C} / \Lambda^{2}<+0.032 \mathrm{GeV}^{-2},-0.020$ $\mathrm{GeV}^{-2}<\mathrm{a}_{0} / \Lambda^{2}<+0.020 \mathrm{GeV}^{-2},-0.020 \mathrm{GeV}^{-2}<\widetilde{a}_{0} / \Lambda^{2}<+0.020 \mathrm{GeV}^{-2}$, $-0.18 \mathrm{GeV}^{-2}<\mathrm{a}_{n} / \Lambda^{2}<+0.14 \mathrm{GeV}^{-2},-0.16 \mathrm{GeV}^{-2}<\widetilde{a}_{n} / \Lambda^{2}<+0.17 \mathrm{GeV}^{-2}$.
27 ACHARD 02F select $86 e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma$ events at $192-207 \mathrm{GeV}$, where $E_{\gamma}>5$ GeV and the photon is well isolated. They also select 43 acoplanar $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma \gamma$ events in this energy range, where the photon energies are $>5 \mathrm{GeV}$ and $>1 \mathrm{GeV}$ and the photon polar angles are between 14° and 166°. All these 43 events are in the recoil mass region corresponding to the $Z(75-110 \mathrm{GeV})$. Using the shape and normalization of the photon spectra in the $W^{+} W^{-} \gamma$ events, and combining with the 42 event sample from

Gauge \& Higgs Boson Particle Listings
189 GeV data (ACCIARRI 00T), they obtain: $a_{0} / \Lambda^{2}=0.000 \pm 0.010 \mathrm{GeV}^{-2}, a_{C} / \Lambda^{2}=$
$-0.013 \pm 0.023 \mathrm{GeV}^{-2}$, and $a_{n} / \Lambda^{2}=-0.002 \pm 0.076 \mathrm{GeV}^{-2}$. Further combining the
analyses of $W^{+} W^{-} \gamma$ events with the low recoil mass region of $\nu \bar{\nu} \gamma \gamma$ events (including
samples collected at $183+189 \mathrm{GeV}$), they obtain the following one-parameter 95\% CL
limits: $-0.015 \mathrm{GeV}^{-2}<a_{0} / \Lambda^{2}<0.015 \mathrm{GeV}^{-2},-0.048 \mathrm{GeV}^{-2}<a_{C} / \Lambda^{2}<0.026$
GeV^{-2}, and $-0.14 \mathrm{GeV}^{-2}<a_{n} / \Lambda^{2}<0.13 \mathrm{GeV}^{-2}$.

W REFERENCES				
AABOUD	19BA	EPJ C79 884	M. Aaboud et al.	(ATLAS Collab.)
PDG	19	RPP 2019 at pdg.lbl.gov	M. Tanabashi et al.	(PDG Collab.)
SIRUNYAN	19AD	JHEP 1904122	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BG	PRL 122151802	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BM	PR D100 012004	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19 BP	PL B795 281	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CL	JHEP 1912062	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CQ	PL B798 134985	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18J	EPJ C78 110	M. Aaboud et al.	(ATLAS Collab.)
Also		EPJ C78 898 (errat.)	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18Q	PR D97 032005	M. Aaboud et al.	(ATLAS Collab.)
ANDREEV	18A	EPJ C78 777	V. Andreev et al.	(H1 Collab.)
SIRUNYAN	18BZ	EPJ C78 589	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18CC	PRL 120081801	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	17AA	PR D96 012007	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17AG	EPJ C77 646	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 D	PR D95 032001	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 J	JHEP 1707107	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17M	EPJ C77 141	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17Q	EPJ C77 367	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	175	EPJ C77 474	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 U	EPJ C77 563	M. Aaboud et al.	(ATLAS Collab.)
KHACHATRY...	17AA	PL B770 380	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	17 M	JHEP 1706106	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	170	EPJ C77 236	V. Khachatryan et al.	(CMS Collab.)
SIRUNYAN	17 AD	PL B774 682	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17AR	JHEP 1710072	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17X	PL B772 21	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	16E	PR D94 032011	M. Aaboud et al.	(ATLAS Collab.)
AAD	16AR	JHEP 1609029	G. Aad et al.	(ATLAS Collab.)
AAD	16P	PR D93 092004	G. Aad et al.	(ATLAS Collab.)
AAD	16Q	PR D93 112002	G. Aad et al.	(ATLAS Collab.)
AAIJ	16AJ	JHEP 1610030	R. Aaij et al.	(LHCb Collab.)
KHACHATRY...	16AX	JHEP 1608119	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY.	16BI	EPJ C76 401	V. Khachatryan et al.	(CMS Collab.)
AAD	15N	PRL 115031802	G. Aad et al.	(ATLAS Collab.)
KHACHATRY..	15D	PRL 114051801	V. Khachatryan et al.	(CMS Collab.)
AAD	14AM	PRL 113141803	G. Aad et al.	(ATLAS Collab.)
AAD	14 Y	JHEP 1404031	G. Aad et al.	(ATLAS Collab.)
AALTONEN	14D	PR D89 072003	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	14 N	PR D89 012005	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	14 AB	PR D89 092005	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	14Q	PR D90 032008	S. Chatrchyan et al.	(CMS Collab.)
AAD	13AL	PR D87 112001	G. Aad et al.	(ATLAS Collab.)
Also		PR D88 079906 (errat.)	G. Aad et al.	(ATLAS Collab.)
AAD	13AN	PR D87 112003	G. Aad et al.	(ATLAS Collab.)
Also		PR D91 119901 (errat.)	G. Aad et al.	(ATLAS Collab.)
AALTONEN	13 N	PR D88 052018	T. Aaltonen et al.	(CDF and DO Collabs.)
Abazov	13D	PR D88 012005	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	13AA	JHEP 1307116	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13BF	EPJ C73 2610	S. Chatrchyan et al.	(CMS Collab.)
SCHAEL	13A	PRPL 532119	S. Schael et al.	
AAD	12AC	PL B712 289	G. Aad et al.	(ATLAS Collab.)
AAD	12BX	PL B717 49	G. Aad et al.	(ATLAS Collab.)
AAD	12 CD	EPJ C72 2173	G. Aad et al.	(ATLAS Collab.)
AAD	12 V	PL B709 341	G. Aad et al.	(ATLAS Collab.)
AALTONEN	${ }^{12 A C}$	PR D86 031104	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12 E	PRL 108151803	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12 W	PR D85 032001	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	12AG	PL B718 451	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	12 F	PRL 108151804	V.M. Abazov et al.	(Do Collab.)
Abazov	11	PL B695 67	V.M. Abazov et al.	(Do Collab.)
ABAZOV	11AC	PRL 107241803	V.M. Abazov et al.	(Do Collab.)
BLINOV	11	PL B699 287	A.E. Blinov, A.S. Rudenko	(NOVO)
CHATRCHYAN	11M	PL B701 535	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	10 K	PRL 104201801	T. Aaltonen et al.	(CDF Collab.)
Also		PRL 105019905 (errat.)	T. Aaltonen et al.	(CDF Collab.)
ABDALLAH	10	EPJ C66 35	J. Abdallah et al.	(DELPHI Collab.)
AARON	09B	EPJ C64 251	F.D. Aaron et al.	(H1 Collab.)
ABAZOV	09 AB	PRL 103141801	V.M. Abazov et al.	(D0 Collab.)
AbAZOV	09AD	PR D80 053012	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09AJ	PRL 103191801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09AK	PRL 103231802	V.M. Abazov et al.	(D0 Collab.)
AALTONEN	${ }^{08 B}$	PRL 100071801	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	08 R	PRL 100241805	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	08A	EPJ C55 1	J. Abdallah et al.	(DELPHI Collab.)
ABDALLAH	08C	EPJ C54 345	J. Abdallah et al.	(DELPHI Collab.)
AALTONEN	07 F	PRL 99151801	T. Aaltonen et al.	(CDF Collab.)
Also		PR D77 112001	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	07L	PR D76 111103	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	072	PR D76 111104	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	07A	EPJ C52 767	G. Abbiendi et al.	(OPAL Collab.)
ABAZOV	06 H	PR D74 057101	V.M. Abazov et al.	(Do Collab.)
$\stackrel{\text { Also }}{ }$		PR D74 059904(errat.)	V.M. Abazov et al.	(DO Collab.)
ABBIENDI	${ }^{06}$	EPJ C45 307	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	06A	EPJ C45 291	G. Abbiendi et al.	(OPAL Collab.)
ACHARD	06	EPJ C45 569	P. Achard et al.	(L3 Collab.)
AKTAS	06	PL B632 35	A. Aktas et al.	(H1 Collab.)
SCHAEL	06	EPJ C47 309	S. Schael et al.	(ALEPH Collab.)
ABAZOV	05 J	PR D71 091108	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05 S	PRL 95141802	V.M. Abazov et al.	(D0 Collab.)
SCHAEL	05A	PL B614 7	S. Schael et al.	(ALEPH Collab.)
ABAZOV	04D	PR D70 092008	V.M. Abazov et al.	(DO Collab.)
ABBIENDI	04B	PL B580 17	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04D	EPJ C33 463	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04L	PR D70 032005	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	04G	EPJ C34 127	J. Abdallah et al.	(DELPHI Collab.)
ACHARD	04D	PL B586 151	P. Achard et al.	(L3 Collab.)
ACHARD	04J	PL B600 22	P. Achard et al.	(L3 Collab.)
HEISTER	04A	PL B602 31	A. Heister et al.	(ALEPH Collab.)
SCHAEL	04A	EPJ C38 147	S. Schael et al.	(ALEPH Collab.)
ABBIENDI	03 C	EPJ C26 321	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	031	EPJ C31 139	J. Abdallah et al.	(DELPHI Collab.)
AbAZOV	02D	PR D66 012001	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	02 E 02 F	PR D66 032008 PL B527 29	V.M. Abazov et al. P. Achard et al.	(D0 Collab.)
CHEKANOV	02 C	PL B539 197	S. Chekanov et al.	(ZEUS Collab.)
ABBIENDI	01H	EPJ C19 229	G. Abbiendi et al.	(OPAL Collab.)

${ }^{1}$ ABBIENDI 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty.
${ }^{2}$ The error includes 1.6 MeV due to LEP energy uncertainty.
${ }^{3}$ The error includes 1.8 MeV due to LEP energy uncertainty.
${ }^{4}$ BARATE 00c error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.
${ }^{5}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.
${ }^{6}$ ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at $130-209 \mathrm{GeV}$. The authors have corrected the measurement for the 34 MeV shift with respect to the Breit-Wigner fits.
${ }^{7}$ ACHARD 04C select $e^{+} e^{-} \rightarrow Z \gamma$ events with hard initial-state radiation. Z decays to $q \bar{q}$ and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.
${ }^{8}$ ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00c) as constraints. The $130-189 \mathrm{GeV}$ data constrains the γ / Z interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of $\pm 2.3 \mathrm{MeV}$ due to the uncertainty on the γZ interference.
${ }^{9}$ MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization.
${ }^{10}$ Enters fit through W / Z mass ratio given in the W Particle Listings. The ALITTI 92b systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_{W} / m_{Z} and one (± 0.12) is noncancelling. These were added in quadrature.
11 First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.
${ }^{12}$ ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement.
${ }^{13}$ ALBAJAR 89 result is from a total sample of $33 Z \rightarrow e^{+} e^{-}$events.

Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

${ }^{1}$ ABBIENDI 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.
${ }^{2}$ The error includes 1.2 MeV due to LEP energy uncertainty.
${ }^{3}$ The error includes 1.3 MeV due to LEP energy uncertainty.
${ }^{4}$ BARATE 00 C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.
5^{5} ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at $130-209 \mathrm{GeV}$. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit-Wigner fits.
${ }^{6}$ ACCIARRI 00 Q interpret the s-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The $130-189 \mathrm{GeV}$ data constrains the γ / Z interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.
${ }^{7}$ ABREU 96R obtain this value from a study of the interference between initial and final state radiation in the process $e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}$.
${ }^{8}$ ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction
$9 \begin{aligned} & \text { error. } \\ & \text { ALBAJAR } 89 \text { result is from a total sample of } 33 Z \rightarrow e^{+} e^{-} \text {events. }\end{aligned}$
${ }^{10}$ Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z)<(1.09 \pm 0.07) \times \Gamma(W), C L=90 \%$ or $\Gamma(Z)=\left(0.82_{-0.14}^{+0.19} \pm 0.06\right) \times \Gamma(W)$. Assuming Standard-Model value $\Gamma(W)=2.65 \mathrm{GeV}$ then gives $\Gamma(Z)<2.89 \pm 0.19$ or $=2.17{ }_{-0.37}^{+0.50} \pm 0.16$.

Z DECAY MODES

	Mode	Fraction ($\Gamma_{\boldsymbol{i}} / \overline{\text { r }}$)			Scale factor/ Confidence level	
Γ_{1}	$e^{+} e^{-}$	[a]	(3.3632	± 0.0042) \%	
Γ_{2}	$\mu^{+} \mu^{-}$	[a]	(3.3662	± 0.0066	\%	
$\Gamma 3$	$\tau^{+} \tau^{-}$	[a]	(3.3696	± 0.0083		
Γ_{4}	$\ell^{+} \ell^{-}$	[a,b]	(3.3658	± 0.0023		
Γ_{5}	$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$					
Γ_{6}	$\ell^{+} \ell^{-} \ell^{+} \ell^{-}$	[c]	(4.63	± 0.21) $\times 10^{-6}$	
Γ_{7}	invisible	[a]	(20.000	± 0.055		
Γ_{8}	hadrons	[a]	(69.911	± 0.056		
Γ_{9}	$(u \bar{u}+c \bar{c}) / 2$		(11.6	± 0.6) \%	
Γ_{10}	$(d \bar{d}+s \bar{s}+b \bar{b}) / 3$		(15.6	± 0.4) \%	
Γ_{11}	$c \bar{C}$		(12.03	± 0.21) \%	
Γ_{12}	$b \bar{b}$		(15.12	± 0.05) $\%$	
Γ_{13}	$b \bar{b} b \bar{b}$		(3.6	± 1.3) $\times 10^{-4}$	
Γ_{14}	$g g g$		<1.1		\%	CL=95\%
Γ_{15}	$\pi^{0} \gamma$		<2.01		$\times 10^{-5}$	CL=95\%
Γ_{16}	$\eta \gamma$		<5.1		$\times 10^{-5}$	CL=95\%
Γ_{17}	$\rho^{0} \gamma$		<2.5		$\times 10^{-5}$	CL=95\%
Γ_{18}	$\omega \gamma$		<6.5		$\times 10^{-4}$	CL=95\%
Γ_{19}	$\eta^{\prime}(958) \gamma$		<4.2		$\times 10^{-5}$	CL=95\%
Γ_{20}	$\phi \gamma$		<9		$\times 10^{-7}$	CL=95\%
Γ_{21}	$\gamma \gamma$		< 1.46		$\times 10^{-5}$	CL=95\%
Γ_{22}	$\pi^{0} \pi^{0}$		<1.52		$\times 10^{-5}$	CL=95\%
$\Gamma 23$	$\gamma \gamma \gamma$		<2.2		$\times 10^{-6}$	CL=95\%
Γ_{24}	$\pi^{ \pm} W^{\mp}$		<7		$\times 10^{-5}$	CL=95\%
Γ_{25}	$\rho^{ \pm} W^{\mp}$		<8.3		$\times 10^{-5}$	CL=95\%
Γ_{26}	$J / \psi(1 S) X$		(3.51	+0.23 -0.25) $\times 10^{-3}$	$\mathrm{S}=1.1$
$\Gamma 27$	$J / \psi(1 S) \gamma$		<1.4		$\times 10^{-6}$	CL=95\%
Γ_{28}	$\psi(2 S) X$		(1.60	± 0.29) $\times 10^{-3}$	
Γ_{29}	$\psi(2 S) \gamma$		<4.5		$\times 10^{-6}$	CL=95\%
$\Gamma 30$	$J / \psi(1 S) \ell^{+} \ell^{-}$					
Γ_{31}	$J / \psi(1 S) J / \psi(1 S)$		<2.2		$\times 10^{-6}$	CL=95\%
Γ_{32}	$\chi_{c 1}(1 P) X$		(2.9	± 0.7) $\times 10^{-3}$	
Γ_{33}	$\chi_{c 2}(1 P) X$		<3.2		$\times 10^{-3}$	CL=90\%
$\Gamma 34$	$\begin{aligned} & \Upsilon(1 S) X+\Upsilon(2 S) X \\ & \quad+\Upsilon(3 S) X \end{aligned}$		(1.0	± 0.5) $\times 10^{-4}$	
$\Gamma 35$	$\gamma(1 S) \mathrm{X}$		<3.4		$\times 10^{-6}$	CL=95\%
$\Gamma 36$	$\gamma(1 S) \gamma$		<2.8		$\times 10^{-6}$	CL=95\%
Γ_{37}	$\gamma(2 S) \mathrm{X}$		<6.5		$\times 10^{-6}$	CL=95\%
Γ_{38}	$\gamma(2 S) \gamma$		<1.7		$\times 10^{-6}$	CL=95\%
Γ_{39}	$\gamma(3 S) \mathrm{X}$		<5.4		$\times 10^{-6}$	CL=95\%
Γ_{40}	$\gamma(3 S) \gamma$		<4.8		$\times 10^{-6}$	CL=95\%
Γ_{41}	$\Upsilon(1,2,3 S) \gamma(1,2,3 S)$		<1.5		$\times 10^{-6}$	CL=95\%
Γ_{42}	$\left(D^{0} / \bar{D}^{0}\right) \times$		(20.7	± 2.0) \%	
Γ_{43}	$D^{ \pm} \mathrm{X}$		(12.2	± 1.7) \%	
Γ_{44}	$D^{*}(2010)^{ \pm} X$	[d]	(11.4	± 1.3) \%	
Γ_{45}	$D_{S 1}(2536)^{ \pm} X$		(3.6	± 0.8) $\times 10^{-3}$	
Γ_{46}	$D_{s J}(2573)^{ \pm} X$		(5.8	± 2.2) $\times 10^{-3}$	
Γ_{47}	$D^{* \prime}(2629) \pm$ (searched fo			

[e] ($6.08 \pm 0.13) \%$
[e] ($1.59 \pm 0.13) \%$
searched for
(1.54 ± 0.33) \%
seen
seen
[e] ($1.38 \pm 0.22) \%$
$\begin{array}{lll}{[f]<3.2} & \times 10^{-3} & C L=95 \% \\ {[f]<5.2} & \times 10^{-4} & C L=95 \% \\ {[f]<5.6} & \times 10^{-4} & C L=95 \% \\ {[f]<7.3} & \times 10^{-4} & C L=95 \%\end{array}$
$[g]<6.8 \times 10^{-6} \quad C L=95 \%$

Gauge \＆Higgs Boson Particle Listings

Γ_{62}	$q \bar{q} \gamma \gamma$		$[g]<5.5$	$\times 10^{-6}$	CL＝95\％
Γ_{63}	$\nu \bar{\nu} \gamma \gamma$		$[g]<3.1$	$\times 10^{-6}$	CL＝95\％
Γ_{64}	$e^{ \pm} \mu^{\mp}$	LF	$[d]<7.5$	$\times 10^{-7}$	CL＝95\％
Γ_{65}	$e^{ \pm} \tau^{\mp}$	LF	$[d]<9.8$	$\times 10^{-6}$	CL＝95\％
Γ_{66}	$\mu^{ \pm} \tau^{\mp}$	L^{\prime}	$[d]<1.2$	$\times 10^{-5}$	CL＝95\％
Γ_{67}	pe	L，B	＜ 1.8	$\times 10^{-6}$	CL＝95\％
Γ_{68}	$p \mu$	L，B	＜ 1.8	$\times 10^{-6}$	CL＝95\％

［a］This parameter is not directly used in the overall fit but is derived using the fit results；see the note＂The Z boson＂and ref．LEP－SLC 06 （Physics Reports（Physics Letters C） 427257 （2006））．
［b］ℓ indicates each type of lepton（ e, μ ，and τ ），not sum over them．
［c］Here ℓ indicates e or μ ．
［d］The value is for the sum of the charge states or particle／antiparticle states indicated．
［e］This value is updated using the product of（i）the $Z \rightarrow b \bar{b}$ fraction from this listing and（ii）the b－hadron fraction in an unbiased sample of weakly decaying b－hadrons produced in Z－ decays provided by the Heavy Flavor Averaging Group（HFLAV， http：／／www．slac．stanford．edu／xorg／hflav／osc／PDG2009／\＃FRACZ）．
［ f ］See the Particle Listings below for the γ energy range used in this mea－ surement．
［g］For $m_{\gamma \gamma}=(60 \pm 5) \mathrm{GeV}$ ．

Z PARTIAL WIDTHS

$\Gamma\left(e^{+} e^{-}\right)$
For the LEP experiments，this parameter is not directly used in the overall fit but is derived using the fit results；see the note＂The Z boson＂and ref．LEP－SLC 06 ．

VALUE（MeV）	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{8 3 . 9 1} \pm 0.12$ OUR FIT					
83.66 ± 0.20	137．0K	ABBIENDI	01A	OPAL	$E_{\mathrm{Cm}}^{\mathrm{e}}{ }^{e}=88-94 \mathrm{GeV}$
83.54 ± 0.27	117．8k	ABREU	00F	DLPH	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
84.16 ± 0.22	124．4k	ACCIARRI	00C	L3	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
83.88 ± 0.19		BARATE	00C	ALEP	$E_{\mathrm{Cm}}^{\mathrm{Ce}}=88-94 \mathrm{GeV}$
$82.89 \pm 1.20 \pm 0.89$		${ }^{1} \mathrm{ABE}$	95J	SLD	$E_{\mathrm{Cm}}^{e e}=91.31 \mathrm{GeV}$

${ }^{1}$ ABE 95」 obtain this measurement from Bhabha events in a restricted fiducial region to
improve systematics．They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width．
$\Gamma\left(\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$
$\Gamma_{\mathbf{2}}$
This parameter is not directly used in the overall fit but is derived using the fit results； see the note＂The Z boson＂and ref．LEP－SLC 06.

VALUE（MeV）	EVTS	DOCUMENTID		TECN	COMMENT
83.99 ± 0.18 OUR FIT					
84.03 ± 0.30	182．8K	ABBIENDI	01A	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
84.48 ± 0.40	157．6k	ABREU	00F	DLPH	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
83.95 ± 0.44	113．4k	ACCIARRI	00C	L3	$E_{C \mathrm{Cm}}^{e} \mathrm{e}=88-94 \mathrm{GeV}$
84.02 ± 0.28		BARATE	00c	ALEP	$E_{C m}^{e e}=88-94 \mathrm{GeV}$

$\Gamma\left(\tau^{+} \tau^{-}\right)$

「3
This parameter is not directly used in the overall fit but is derived using the fit results； see the note＂The Z boson＂and ref．LEP－SLC 06 ．

$V A L U E$（MeV）	EVTS	DOCUMENT ID		TECN	COMMENT
84.08 ± 0.22 OUR FIT					
83.94 ± 0.41	151．5K	ABBIENDI	01A	OPAL	$E_{C m}^{e e}{ }_{\text {en }}^{e}=88-94 \mathrm{GeV}$
83.71 ± 0.58	104．0k	ABREU	00F	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
84.23 ± 0.58	103．0k	ACCIARRI	00C	L3	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
84.38 ± 0.31		BARATE	00c	ALEP	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=88-94 \mathrm{GeV}$

$\Gamma\left(\ell^{+} \ell^{-}\right)$
Γ_{4}
ℓ indicates each type of lepton（ e, μ ，and τ ），not sum over them．
In our fit $\Gamma\left(\ell^{+} \ell^{-}\right)$is defined as the partial Z width for the decay into a pair of massless charged leptons．This parameter is not directly used in the 5 －parameter fit assuming lepton universality but is derived using the fit results．See the note＂The Z boson＂ and ref．LEP－SLC 06.
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{8 3 . 9 8 4} \pm \mathbf{0 . 0 8 6} \text { OUR FIT }}$
83.82 ± 0.15
$83.85 \pm 0.17 \quad 379.4 \mathrm{k}$
$84.14 \pm 0.17 \quad 340.8 \mathrm{k}$
$84.02 \pm 0.15 \quad 500 \mathrm{k}$

DOCUMENTID TECN COMMENT
ABBIENDI 01A OPAL $E_{C m}^{e e}=88-94 \mathrm{GeV}$ ABREU 00 F DLPH $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$ ACCIARRI $00 C$ L3 $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$ BARATE 00 C ALEP $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

Γ（invisible） We use only direct measurements of the invisible partial width using the single pho－ ton channel to obtain the average value quoted below．OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton universality．					
VALUE（MeV）	EVTS	DOCUMENTID		TECN	COMmENT
499．0土 1.5 OUR FIT					
503 ± 16 OUR AVERAGE Error includes scale factor of 1．2．					
$498 \pm 12 \pm 12$	$\pm 12 \quad 1791$	ACCIARRI		L3	$E_{\mathrm{cm}}^{e \mathrm{ee}}=88-94 \mathrm{GeV}$
$539 \pm 26 \pm 17$	$\pm 17 \quad 410$	AKERS		OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$450 \pm 34 \pm 34$	$\pm 34 \quad 258$	BUSKULIC		ALEP	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
$540 \pm 80 \pm 40$	$\pm 40 \quad 52$	ADEVA	92	L3	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－					
498.1 ± 2.6		${ }^{1}$ ABBIENDI	01A	OPAL	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
498.1 ± 3.2		${ }^{1}$ Abreu		DLPH	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
499.1 ± 2.9		${ }^{1}$ ACCIARRI		L3	$E_{\text {cm }}^{e e}=88-94 \mathrm{GeV}$
499.1 ± 2.5		${ }^{1}$ barate		ALEP	$E_{\text {cm }}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ This is an indirect determination of Γ（invisible）from a fit to the visible Z decay modes．					
Γ（hadrons）					
This parameter is not directly used in the 5 －parameter fit assuming lepton universality， but is derived using the fit results．See the note＂The Z boson＂and ref．LEP－SLC 06 ．					
$\operatorname{VALUE}(\mathrm{MeV}) \quad$ EVTS		DOCUMENT ID		TECN	COMMENT
1744.4 ± 2.0 OUR FIT					
1745.4 ± 3.5	4.10 M	AbBIENDI		OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
1738.1 ± 4.0	3.70 M	ABREU		DLPH	$E_{\mathrm{cm}}^{e e e}=88-94 \mathrm{GeV}$
1751.1 ± 3.8	3.54 M	ACCIARRI		L3	$E_{\mathrm{cm}}^{e \mathrm{ee}}=88-94 \mathrm{GeV}$
1744.0 ± 3.4	4．07M	BARATE		ALEP	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$

Z BRANCHING RATIOS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group（see the note＂The Z boson＂and ref．LEP－SLC 06）．

$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma\left(e^{+} e^{-}\right)$	Γ_{2} / Γ_{1}			
VALUE	DOCUMENTID TECN	COMME		
$\mathbf{1 . 0 0 0 1} \pm 0.0024$ OUR AVERAGE				
0.9974 ± 0.0050	17Q ATLS	$E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$		
1.0009 ± 0.0028	06	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$		
${ }^{1}$ AABOUD 17Q make a precise determination of $Z \rightarrow e e$ and $Z \rightarrow \mu \mu$ production in the lepton pseudo－rapidity range $\|\eta\|<2.5$ and determine the ratio of the Z branching fractions $\mathrm{B}(Z \rightarrow e e) / \mathrm{B}(Z \rightarrow \mu \mu)=1.0026 \pm 0.0013 \pm 0.0048=1.0026 \pm 0.0050$ ． ${ }^{2}$ This parameter is not directly used in the overall fit but is derived using the fit results； see the note＂The Z boson＂and ref．LEP－SLC 06.				
$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)$ VALUE	DOCUMENT ID	TECN		Γ_{3} / Γ_{1}
			COMMENT	
1.0020 ± 0.0032 OUR AVERAGE				
1.02 ± 0.06	${ }^{1}$ AAIJ 18AR	LHCB	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{Te}$	
1.0019 ± 0.0032	${ }^{2}$ LEP－SLC 06		$E_{\mathrm{cm}}^{\mathrm{ee}}=88$	

${ }^{1}$ AAIJ 18AR obtain the result from the ratio of the measured $p p \rightarrow Z+X$ cross sections in the corresponding Z decay channels．
2 This parameter is not directly used in the overall fit but is derived using the fit results； see the note＂The Z boson＂and ref．LEP－SLC 06 ．

$\Gamma\left(\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}\right) / \Gamma\left(\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$
VALUE
DOCUMENT ID＿TECN COMMENT

$\frac{V A L U E}{1.0010 \pm 0.0026 \text { OUR AVERAGE }}$

1.01 ± 0.05	1	AAIJ	18 AR LHCB
1.0010 ± 0.0026	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$		
	${ }^{p}$ LEP－SLC	06	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

${ }^{1}$ AAIJ 18AR obtain the result from the ratio of the measured $p p \rightarrow Z+X$ cross sections in the corresponding Z decay channels．
2 This parameter is not directly used in the overall fit but is derived using the fit results； see the note＂The Z boson＂and ref．LEP－SLC 06.
$\Gamma\left(\ell^{+} \ell^{-} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
Here ℓ indicates either e or μ ．The branching fractions in this node are given within the phase－space defined by the requirements that（i）the 4－lepton invariant mass is between 80 GeV and 100 GeV ，and（ii）any opposite－sign same－flavor lepton pair has a di－lepton invariant mass larger than 4 GeV ．
VALUE（units 10^{-6} ）EVTS DOCUMENT ID TECN COMMENT
4．63 ± 0.21 OUR AVERAGE

$4.70 \pm 0.32 \pm 0.25$		${ }^{1}$ AABOUD	19N ATLS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
$4.83_{-0.22}^{+0.23+0.35}$	509	2 SIRUNYAN	18BT CMS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
$4.9{ }_{-0.7}^{+0.8}+0.4$	39	3 KHACHATRY	16CC CMS	$E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
$4.31 \pm 0.34 \pm 0.17$	172	AAD	14N ATLS	$E_{\mathrm{Cm}}^{p p}=7,8 \mathrm{TeV}$
$4.6{ }_{-0.9}^{+1.0} \pm 0.2$	28	4 CHATRCHY	12BN CMS	$E_{\mathrm{cm}}^{p p}=7 \mathrm{TeV}$

${ }^{1}$ AABOUD 19 N reports $(4.70 \pm 0.32 \pm 0.21 \pm 0.14) \times 10^{-6}$, where the uncertainties are statistical, systematic, and luminosity. We have combined the latter two in quadrature.
${ }^{2}$ SIRUNYAN 18BT report the $Z \rightarrow 4 \ell$ branching fraction $=\left(4.83{ }_{-0.22}^{+0.23}{ }_{-0.29}^{0.32} \pm 0.08 \pm\right.$ $0.12) \times 10^{-6}$, where the uncertainties are statistical, systematic, due to theory, and luminosity. The last three have been added in quadrature to obtain the total systematic lumino
error.
3 KHHAC
AN $16 C C$ reports $(4.9-0.7-0.2-0.1-0.1) \times 10^{-6}$ value, where the uncertainties are statistical, systematic, theory, and due to luminosity. We have combined uncertainties in quadrature.
${ }^{4}$ CHATRCHYAN 12 BN reports $\left(4.2_{-0.8}^{+0.9} \pm 0.2\right) \times 10^{-6}$ value. Their result (both central value and uncertainties) is scaled up by 10% to account for the different phase-space definition used here (see RAINBOLT 19).

$\Gamma($ hadrons $) / \Gamma\left(e^{+} e^{-}\right)$
 Γ_{8} / Γ_{1}
 $\frac{\text { VALUE }}{\mathbf{2 0 . 8 0 4} \pm 0.050 \text { OUR FIT }}$
 $20.902 \pm 0.084137 .0$
 $20.88 \pm 0.12 \quad 117.8 k$
 $20.816 \pm 0.089 \quad 124.4 \mathrm{k}$
 20.677 ± 0.075

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{1}$ ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in t-channel prediction, and 0.014 due to LEP energy uncertainty.
${ }^{2}$ BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in t-channel prediction.
${ }^{3}$ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).
$\frac{\text { VALUE }}{20.785}$

20.785 ± 0.033 OUR FIT

20.811 ± 0.058	182.8 K	1 ABBIENDI	01 A	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
20.65 ± 0.08	157.6 k	ABREU	00 F	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
20.861 ± 0.097	113.4 k	ACCIARRI	00 C	L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
20.799 ± 0.056		2 BARATE	00 C	ALEP	$E_{C m}^{e e}=88-94 \mathrm{GeV}$

$20.799 \pm 0.056 \quad 2$ BARATE 00C ALEP $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - .
$18.9 \begin{gathered}+7.1 \\ -5.3\end{gathered} 13 \quad{ }^{3}$ ABRAMS 89D MRK2 $E_{\mathrm{Cm}}^{e e}=89-93 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to event selection systematics.
${ }^{2}$ BARATE 00 C error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.
${ }^{3}$ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.
$\Gamma($ hadrons $) / \Gamma\left(\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}\right)$
Γ_{8} / Γ_{3} OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

VALUE
$20.764 \pm \mathbf{0 . 0 4 5}$ OUR FIT
EVTS DOCUMENTID
ABBIENDI
ABREU 00 F DLPH $E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
$20.832 \pm 0.091 \quad 151.5 \mathrm{~K}$
20.84 ± 0.13
$20.792 \pm 0.133 \quad 103.0 \mathrm{k}$
20.707 ± 0.062 2 BARATE 00 C ALEP $\quad E_{C m}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

15.2 | +4.8 |
| :---: |
| -3.9 | $21 \quad 3$ ABRAMS 89D MRK2 $E_{\mathrm{Cm}}^{e e}=89-93 \mathrm{GeV}$

${ }^{1}$ ABBIENDI 01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.
${ }^{2}$ BARATE 00c error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.
${ }^{3}$ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.
$\Gamma($ hadrons $) / \Gamma\left(\ell^{+} \ell^{-}\right)$
Γ_{8} / Γ_{4}
ℓ indicates each type of lepton (e, μ, and τ), not sum over them
Our fit result is obtained requiring lepton universality.
$\frac{V A L U E}{20.767}+\mathbf{0 . 0 2 5}$ OUR FIT DOCUMENT ID TECN COMMENT
$20.823+0.044$

${ }^{1}$ ABBIENDI	01 A	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
ABREU	00 F	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
ACCIARRI	00 C	L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{2}$ BARATE	00 C	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

20.810 ± 0.060	340.8 k	ACCIARRI	00 C	L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
20.725 ± 0.039	500 k	${ }^{2}$ BARATE	00 C	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

18.9 | +3.6 |
| ---: |
| -3.2 | 46 ABRAMS 89B MRK2 $E_{\mathrm{Cm}}^{e e}=89-93 \mathrm{GeV}$

${ }^{1}$ ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to event selection systematics.
${ }^{2}$ BARATE 00 c error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel prediction.

$\Gamma((u \bar{u}+c \bar{c}) / 2) / \Gamma$ (hadrons)

Γ_{9} / Γ_{8}
This quantity is the branching ratio of $Z \rightarrow$ "up-type" quarks to $Z \rightarrow$ hadrons. Except ACKERSTAFF 97T the values of $Z \rightarrow$ "up-type" and $Z \rightarrow$ "down-type" branchings are extracted from measurements of Γ (hadrons), and $\Gamma(Z \rightarrow \gamma+$ jets) where γ is a highenergy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_{Z}, Γ (hadrons) and α_{S} in their extraction procedures, our average has to be taken with caution.

0.166 ± 0.009 OUR AVERAGE

$0.172_{-0.010}^{+0.011}$
$0.160 \pm 0.019 \pm 0.019$
$0.137+0.038$
0.137 ± 0.033
${ }^{1}$ ABBIENDI 04E select photons with energy $>7 \mathrm{GeV}$ and use Γ (hadrons) $=1744.4 \pm 2.0$ MeV and $\alpha_{S}=0.1172 \pm 0.002$ to obtain $\Gamma_{u}=300_{-18}^{+19} \mathrm{MeV}$.
${ }^{2}$ ACKERSTAFF 97T measure $\Gamma_{u} \bar{u} /\left(\Gamma_{d} \bar{d}+\Gamma_{u} \bar{u}+\Gamma_{S} \bar{s}\right)=0.258 \pm 0.031 \pm 0.032$. To obtain this branching ratio authors use $R_{C}+R_{b}=0.380 \pm 0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{d \bar{d}, s \bar{s}} /\left(\Gamma_{d} \bar{d}+\Gamma_{u \bar{u}}+\Gamma_{s \bar{s}}\right)$ given in the next data block.
3^{3} ABREU 95x use $M_{Z}=91.187 \pm 0.009 \mathrm{GeV}, \Gamma$ (hadrons) $=1725 \pm 12 \mathrm{MeV}$ and $\alpha_{S}=$ 0.123 ± 0.005. To obtain this branching ratio we divide their value of $C_{2 / 3}=0.91{ }_{-0}^{+0.25}$ by their value of $\left(3 C_{1 / 3}+2 C_{2 / 3}\right)=6.66 \pm 0.05$.
${ }^{4}$ ADRIANI 93 use $M_{Z}=91.181 \pm 0.022 \mathrm{GeV}, \Gamma$ (hadrons) $=1742 \pm 19 \mathrm{MeV}$ and $\alpha_{S}=$ 0.125 ± 0.009. To obtain this branching ratio we divide their value of $C_{2 / 3}=0.92 \pm 0.22$ by their value of $\left(3 C_{1 / 3}+2 C_{2 / 3}\right)=6.720 \pm 0.076$.
$\Gamma((d \bar{d}+s \bar{s}+b \bar{b}) / 3) / \Gamma($ hadrons $)$
Γ_{10} / Γ_{8}
This quantity is the branching ratio of $Z \rightarrow$ "down-type" quarks to $Z \rightarrow$ hadrons. Except ACKERSTAFF 97T the values of $Z \rightarrow$ "up-type" and $Z \rightarrow$ "down-type" branchings are extracted from measurements of Γ (hadrons), and $\Gamma(Z \rightarrow \gamma+$ jets $)$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_{Z}, Γ (hadrons) and α_{S} in their extraction procedures, our average has to be taken with caution.
$\frac{V A L U E}{0.223 \pm 0.006}$ OUR AVERAGE
0.223 ± 0.006 OUR AVERAGE
0.218 ± 0.007
$0.230 \pm 0.010 \pm 0.010$
$0.243+0.036$
0.243 ± 0.022
${ }^{1}$ ABBIENDI 04E select photons with energy $>7 \mathrm{GeV}$ and use Γ (hadrons) $=1744.4 \pm 2.0$ MeV and $\alpha_{S}=0.1172 \pm 0.002$ to obtain $\Gamma_{d}=381 \pm 12 \mathrm{MeV}$.
${ }^{2}$ ACKERSTAFF 97T measure $\Gamma_{d} \bar{d}, s \bar{s} /\left(\Gamma_{d} \bar{d}+\Gamma_{u} \bar{u}+\Gamma_{s} \bar{s}\right)=0.371 \pm 0.016 \pm 0.016$. To obtain this branching ratio authors use $R_{c}+R_{b}=0.380 \pm 0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u \bar{u}} /\left(\Gamma_{d} \bar{d}+\Gamma_{u \bar{u}}+\Gamma_{S}\right)$ presented in the previous data block
${ }^{3}$ ABREU 95 X use $M_{Z}=91.187 \pm 0.009 \mathrm{GeV}, \Gamma$ (hadrons) $=1725 \pm 12 \mathrm{MeV}$ and $\alpha_{S}=$ 0.123 ± 0.005. To obtain this branching ratio we divide their value of $C_{1 / 3}=1.62+0.24$ by their value of $\left(3 C_{1 / 3}+2 C_{2 / 3}\right)=6.66 \pm 0.05$.
${ }^{4}$ ADRIANI 93 use $M_{Z}=91.181 \pm 0.022 \mathrm{GeV}, \Gamma$ (hadrons) $=1742 \pm 19 \mathrm{MeV}$ and $\alpha_{S}=$ 0.125 ± 0.009. To obtain this branching ratio we divide their value of $C_{1 / 3}=1.63 \pm 0.15$ by their value of $\left(3 C_{1 / 3}+2 C_{2 / 3}\right)=6.720 \pm 0.076$.
$R_{c}=\Gamma(c \bar{c}) / \Gamma($ hadrons $)$
Γ_{11} / Γ_{8} OUR FIT is obtained by a simultaneous fit to several c - and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06 .
The Standard Model predicts $R_{C}=0.1723$ for $m_{t}=174.3 \mathrm{GeV}$ and $M_{H}=150 \mathrm{GeV}$.
$\frac{\text { VALUE }}{\mathbf{0 . 1 7 2 1} \mathbf{\pm 0 . 0 0 3 0} \text { OUR FIT DOCUMENTID TECN COMMENT }}$
$\overline{0.1721 \pm 0.0030 ~ O U R ~ F I T}$
${ }^{1} \mathrm{ABE} \quad 05 \mathrm{~F}$ SLD $E_{\mathrm{Cm}}^{e e}=91.28 \mathrm{GeV}$
$0.1744 \pm 0.0031 \pm 0.0021$
$0.1665 \pm 0.0051 \pm 0.0081$
0.1698 ± 0.0069
$0.180 \pm 0.011 \pm 0.013$
2 ABREU 00 DLPH $E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
3 BARATE 00B ALEP $\quad E_{\mathrm{Cm}}^{\mathrm{ee}}=88-94 \mathrm{GeV}$
${ }^{4}$ ACKERSTAFF 98E OPAL $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$0.167 \pm 0.011 \pm 0.012 \quad{ }^{5}$ ALEXANDER 96 R OPAL $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. • -
$0.1623 \pm 0.0085 \pm 0.0209 \quad{ }^{6}$ ABREU 95D DLPH $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ABE 05F use hadronic Z decays collected during 1996-98 to obtain an enriched sample of $c \bar{c}$ events using a double tag method. The single c-tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere). A multitag approach is used, defining 4 regions of the output value of the neural network and R_{c} is extracted from a simultaneous fit to the count rates of the 4 different tags. The quoted systematic error includes an uncertainty of ± 0.0006 due to the uncertainty on R_{b}.
${ }^{2}$ ABREU 00 obtain this result properly combining the measurement from the D^{*+} production rate $\left(R_{C}=0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043\right.$ (BR)) with that from the overall charm counting $\left(R_{C}=0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074\right.$ (BR)) in $c \bar{c}$ events. The systematic error includes an uncertainty of ± 0.0054 due to the uncertainty on the charmed hadron branching fractions.
${ }^{3}$ BARATE 00B use exclusive decay modes to independently determine the quantities $R_{C} \times \mathrm{f}(c \rightarrow \mathrm{X}), \mathrm{X}=D^{0}, D^{+}, D_{S}^{+}$, and Λ_{C}. Estimating $R_{C} \times \mathrm{f}\left(c \rightarrow \bar{\Xi}_{C} / \Omega_{C}\right)=0.0034$, they simply sum over all the charm decays to obtain $R_{C}=0.1738 \pm 0.0047 \pm 0.0088 \pm$

Gauge \& Higgs Boson Particle Listings

$0.0075(\mathrm{BR})$. This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_{C}=0.1681 \pm 0.0054 \pm 0.0062$) to obtain the quoted value.
${ }^{4}$ ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet $D^{* \pm}$ mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{* \pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{* \pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.
${ }^{5}$ ALEXANDER 96 R obtain this value via direct charm counting, summing the partial contributions from D^{0}, D^{+}, D_{S}^{+}, and Λ_{C}^{+}, and assuming that strange-charmed baryons account for the 15% of the Λ_{C}^{+}production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.
${ }^{6}$ ABREU 95D perform a maximum likelihood fit to the combined p and p_{T} distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.

$R_{b}=\Gamma(b \bar{b}) / \Gamma($ hadrons $)$

Γ_{12} / Γ_{8}
OUR FIT is obtained by a simultaneous fit to several c - and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_{b}=0.21581$ for $m_{t}=174.3 \mathrm{GeV}$ and $M_{H}=150 \mathrm{GeV}$.

VAL21629 ± 0.00066 OUR FIT

DOCUMENT ID
TECN COMMENT
$0.21594 \pm 0.00094 \pm 0.00075 \quad 1 \mathrm{ABE} \quad 05 \mathrm{~F} \quad$ SLD $\quad E_{\mathrm{Ce}}^{e e}=91.28 \mathrm{GeV}$
$0.2174 \pm 0.0015 \pm 0.0028 \quad{ }^{2}$ ACCIARRI $00 \quad$ L3 $\quad E_{\mathrm{cm}}^{e e}=89-93 \mathrm{GeV}$
$0.2178 \pm 0.0011 \pm 0.0013 \quad{ }^{3}$ ABBIENDI 99B OPAL $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
$0.21634 \pm 0.00067 \pm 0.00060 \quad{ }^{4}$ ABREU $99 B \quad$ DLPH $E_{C m}^{e e}=88-94 \mathrm{GeV}$
$0.2159 \pm 0.0009 \pm 0.0011 \quad{ }^{5}$ BARATE $\quad 97 F$ ALEP $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.2145 \pm 0.0089 \pm 0.0067 \quad{ }^{6}$ ABREU 95D DLPH $E_{C m}^{e e}=88-94 \mathrm{GeV}$
$0.219 \pm 0.006 \pm 0.005 \quad{ }^{7}$ BUSKULIC $\quad 94 \mathrm{G}$ ALEP $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$ $0.251 \pm 0.049 \pm 0.030 \quad 8$ JACOBSEN 91 MRK2 $E_{\mathrm{Cm}}^{e \ell e}=91 \mathrm{GeV}$
${ }^{1}$ ABE 05F use hadronic Z decays collected during 1996-98 to obtain an enriched sample of $b \bar{b}$ events using a double tag method. The single b-tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere; the key tag is obtained requiring the secondary vertex corrected mass to be above the D-meson mass). ABE 05F obtain $R_{b}=0.21604 \pm 0.00098 \pm 0.00074$ where the systematic error includes an uncertainty of ± 0.00012 due to the uncertainty on where the systematic error includes an uncertainty of ± 0.00012 due to the uncertainty on
R_{c}. The value reported here is obtained properly combining with ABE 98 D . The quoted R_{c}. The value reported here is obtained properly combining with ABE 98 D . The quot
systematic error includes an uncertainty of ± 0.00012 due to the uncertainty on R_{c}.
${ }^{2}$ ACCIARRI 00 obtain this result using a double-tagging technique, with a high p_{T} lepton tag and an impact parameter tag in opposite hemispheres.
${ }^{3}$ ABBIENDI 99B tag $Z \rightarrow b \bar{b}$ decays using leptons and/or separated decay vertices. The b-tagging efficiency is measured directly from the data using a double-tagging technique.
${ }^{4}$ ABREU 99B obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For R_{C} different from its Standard Model value of $0.172, R_{b}$ varies as $-0.024 \times\left(R_{C}-0.172\right)$.
${ }^{5}$ BARATE 97F combine the lifetime-mass hemisphere tag (BARATE 97E) with event shape information and lepton tag to identify $Z \rightarrow b \bar{b}$ candidates. They further use c - and $u d s$-selection tags to identify the background. For R_{C} different from its Standard Model value of $0.172, R_{b}$ varies as $-0.019 \times\left(R_{C}-0.172\right)$.
${ }^{6}$ ABREU 95D perform a maximum likelihood fit to the combined p and p_{T} distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0023 due to models and branching ratios.
${ }^{7}$ BUSKULIC 94 G perform a simultaneous fit to the p and p_{T} spectra of both single and dilepton events.
8 JACOBSEN 91 tagged $b \bar{b}$ events by requiring coincidence of ≥ 3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties (± 0.014).
$\Gamma(b \bar{b} b \bar{b}) / \Gamma$ (hadrons)
Γ_{13} / Γ_{8}
VALUE (units 10^{-4})
5.2 ± 1.9 OUR AVERAGE
$3.6 \pm 1.7 \pm 2.7$
$6.0 \pm 1.9 \pm 1.4$
${ }^{1}$ ABBIENDI 01 G use a sample of four-jet events from hadronic Z decays. To enhance the $b \bar{b} b \bar{b}$ signal, at least three of the four jets are required to have a significantly detached secondary vertex.
${ }^{2}$ ABREU 990 force hadronic Z decays into 3 jets to use all the available phase space and require a b tag for every jet. This decay mode includes primary and secondary $4 b$ production, e.g, from gluon splitting to $b \bar{b}$.
$\Gamma(\boldsymbol{g g g}) / \Gamma$ (hadrons)
Γ_{14} / Γ_{8}
$\frac{\text { VALUE }}{\left\langle\mathbf{1 . 6} \times \mathbf{1 0}^{\mathbf{- 2}}\right.} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABREU }} \quad 96 \mathrm{~S} \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e}=88-94 \mathrm{GeV}}$
${ }^{1}$ This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96s obtain an upper limit of 1.5×10^{-2}.

$\begin{aligned} & \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }} \\ & V A L U E \end{aligned}$	CL\%	DOCUMENT ID		TECN	COMMENT $\quad \Gamma_{15} / \Gamma^{\text {a }}$	
<2.01 $\times 10^{-5}$	95	AALTONEN	14E	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96$	
$<5.2 \times 10^{-5}$	95	${ }^{1}$ ACCIARRI	95 G	L3	$E_{\mathrm{cm}}^{e \mathrm{em}}=88-94$	
$<5.5 \times 10^{-5}$	95	ABREU	94 B	DLPH	$E_{\mathrm{cm}}^{e e}=88-94$	
$<2.1 \times 10^{-4}$	95	DECAMP	92	ALEP	$E_{\text {cm }}^{e e}=88-94$	
$<1.4 \times 10^{-4}$	95	AKRAWY	91F	OPAL	$E_{\text {cm }}^{e e}=88-94$	

${ }^{1}$ This limit is for both decay modes $Z \rightarrow \pi^{0} \gamma / \gamma \gamma$ which are indistinguishable in ACCIARRI 95G.

		CL\%	DOCUMENT ID		TECN	COMMENT $\quad \Gamma_{16} / \boldsymbol{\Gamma}$	
$<7.6 \times 10^{-5}$		95	ACCIARRI	95 G	L3	$E_{\mathrm{cm}}^{e e}=88-94$	
$<8.0 \times 10^{-5}$		95	ABREU	94B	DLPH	$E_{\text {cm }}^{e \mathrm{e}}=88-94$	eV
< 5.1×10^{-5}		95	DECAMP	92	ALEP	$E_{\mathrm{cm}}^{e e}=88-94$	eV
$<2.0 \times 10^{-4}$		95	AKRAWY	91F	OPAL	$E_{\mathrm{cm}}^{e \mathrm{e}}=88-94$	
$\Gamma\left(\rho^{0} \gamma\right) / \Gamma_{\text {total }}$							Γ_{17} / Γ
VALUE	CL\%	EVTS	DOCUMENT		TECN	COMMENT	
<2.5 $\times 10^{-5}$	95	12.5k	${ }^{1}$ AABOUD	18au	ATLS	$E_{\mathrm{cm}}^{p p}=13 \mathrm{TeV}$	

${ }^{1}$ AABOUD 18AU search for the $Z \rightarrow \rho \gamma$ decay mode where the ρ is identified through its decay $\rho \rightarrow \pi^{+} \pi^{-}$. In the data corresponding to $32.3 \mathrm{fb}^{-1}, 12,583$ events are selected for $635<\mathrm{m}\left(\pi^{+} \pi^{-}\right)<915 \mathrm{MeV}$.

$\Gamma(\omega \gamma) / \Gamma_{\text {total }}$				$\Gamma 18 / \Gamma$	
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<6.5 \times 10^{-4}$	95	ABREU	94B	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$\Gamma\left(\eta^{\prime}(958) \gamma\right) / \Gamma_{\text {total }}$					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<4.2 \times 10^{-5}$	95	DECAMP	92	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

$\Gamma(\phi \gamma) / \Gamma_{\text {total }}$
VALUE CL\% EVTS DOCUMENT ID_ TECN COMMENT Г $<9 \times 10^{\mathbf{- 7}} \quad 95 \quad 3.3 \mathrm{k} \quad{ }^{1}$ AABOUD 18 AU ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$<8.3 \times 10^{-6} \quad 95 \quad 1.0 \mathrm{k} \quad 2$ AABOUD $\quad 16 \mathrm{~K}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$
${ }^{1}$ AABOUD 18AU search for the $Z \rightarrow \phi \gamma$ decay mode where the ϕ is identified through its decay $\phi \rightarrow K^{+} K^{-}$. In the data corresponding to $32.3 \mathrm{fb}^{-1}, 3,364$ events are selected for $1012<\mathrm{m}\left(K^{+} K^{-}\right)<1028 \mathrm{MeV}$.
${ }^{2}$ AABOUD 16 K search for the $Z \rightarrow \phi \gamma$ decay mode where the ϕ is identified through its decay into $K^{+} K^{-}$. In the data corresponding to a total luminosity of $2.7 \mathrm{fb}^{-1}, 1065$ events are selected and their $K^{+} K^{-} \gamma$ invariant mass spectrum is analyzed.

$\Gamma(\boldsymbol{\gamma}) / \Gamma_{\text {total }}$					
This decay	lat	Landau-Yang	orem.		
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<1.46 \times 10^{-5}$	95	AALTONEN	14E	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
$<5.2 \times 10^{-5}$	95	${ }^{1}$ ACCIARRI	95G	L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<5.5 \times 10^{-5}$	95	ABREU	94B	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<1.4 \times 10^{-4}$	95	AKRAWY	91F	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

${ }^{1}$ This limit is for both decay modes $Z \rightarrow \pi^{0} \gamma / \gamma \gamma$ which are indistinguishable in ACCIARRI 95G.

$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$	CL\%	DOCUMENT ID		TECN	COMMENT	Γ_{22} / Γ
$<1.52 \times 10^{-5}$	95	AALTONEN	14E	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$	
$\Gamma(\gamma \gamma \gamma) / \Gamma_{\text {total }}$						Γ_{23} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<2.2 \times 10^{-6}$	95	AAD	16L	ATLS	$E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$	

- - We do not use the following data for averages, fits, limits, etc. - -

$<1.0 \times 10^{-5}$	95	${ }^{1}$ ACCIARRI	95C	L3	$E_{\mathrm{Cm}}^{e e}=88-94$	
$<1.7 \times 10^{-5}$	95	1 ABREU	94B	DLPH	$E_{C m}^{e e}=88-94$	
$<6.6 \times 10^{-5}$	95	AKRAWY	91F	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=88-94$	
${ }^{1}$ Limit derived in the context of composite Z model.						
$\Gamma\left(\pi^{ \pm} W^{\mp}\right) / \Gamma_{\text {total }}$ l $\Gamma_{\mathbf{2 4}} / \Gamma$						
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<7 \times 10^{-5}$	95	DECAMP	92	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94$	GeV

$\Gamma\left(\rho^{ \pm} W^{\mp}\right) / \Gamma_{\text {total }}$						Γ_{25} / Γ
The val	sum	charge sta				
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<8.3 \times 10^{-5}$	95	DECAMP	92	ALEP		

| $\Gamma(J / \psi(1 S) X$ |
| :--- | :--- | :--- | :--- |
| VALUE（unis $\left.10^{-3}\right)$ |$\Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 6}} / \Gamma^{\text {EVTS }}$

$\frac{\left.\text { VALUE（units } 10^{-3}\right)}{\mathbf{3 . 5 1} \mathbf{- 0}_{-0.25}^{+0.23} \text { OUR AVERAGE }} \quad \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 1.1 \text { ．}}$

	553	CIAR	9 F L3	$\mathrm{cm}_{\text {Cm }}^{\mathrm{ee}}=88-94 \mathrm{GeV}$
3.9 ± 0.2		${ }^{2}$ ALEXANDER		$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
$3.73 \pm 0.39 \pm 0.36$	153			
${ }^{1}$ ACCIARRI 99F combine $\mu^{+} \mu^{-}$and $e^{+} e^{-} J / \psi(1 S)$ decay channels．The branching ratio for prompt $J / \psi(1 S)$ production is measured to be $\left(2.1 \pm 0.6 \pm 0.4_{-0.2}^{+0.4}\right.$（theor．））$\times 10^{-4}$ ．				
${ }^{2}$ ALEXANDER 96B identify $J / \psi(1 S)$ from the decays into lepton pairs．$(4.8 \pm 2.4) \%$ of this branching ratio is due to prompt $J / \psi(1 S)$ production（ALEXANDER 96N）． ${ }^{3}$ Combining $\mu^{+} \mu^{-}$and $e^{+} e^{-}$channels and taking into account the common systematic errors．$\left(7.7_{-5.4}^{+6.3}\right) \%$ of this branching ratio is due to prompt $J / \psi(1 S)$ production．				
$\Gamma(J / \psi(1 S) \gamma) / \Gamma_{\text {total }}$ value CL\％				
		DOCUMENT ID		COMMENT
		SIRUNYAN	19AJ CMS	
－－We do not use the following data for averages，fits，limits，etc．－－				
．		AABOUD	8BL ATLS	
2.6	95	AD	51 ATLS	${ }_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}$
${ }^{1}$ SIRUNYAN 19AJ study $Z \rightarrow J / \psi \gamma$ with $J / \psi \rightarrow \mu^{+} \mu^{-}$．Candidate events are selected by requiring a pair of oppositely charged muons and a well isolated photon．The leading （subleading）muon is require to have a transverse momentum larger than 20 GeV （4 GeV ），while the photon must have a transverse energy larger than 33 GeV ．Requiring the invariant mass of the $\mu \mu(\mu \mu \gamma)$ system in the range 3.0 to $3.2(81$ to 101）GeV，selects 183 data events which is consistent with the expected background．The 95% C．L．limit on the Z branching fraction is obtained assuming the J / ψ to be unpolarized．				
${ }^{2}$ AABOUD 18BL study $Z \rightarrow J / \psi \gamma$ in $13 \mathrm{TeV} p p$ interactions．Two triggers were used： isolated photon of $p_{T}>35(25) \mathrm{GeV}$ and a muon with $p_{T}>18(24) \mathrm{GeV}$ ．The J / ψ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the J / ψ in the plane transverse to the beam direction is $>\pi / 2$ ．The number of observed／expected background events is $92 / 89 \pm 6$ in the dimuon mass range 2．9－3．3 GeV leading to the quoted 95% C．L．limit．				
${ }^{3}$ AAD 15 use events with the highest p_{T} muon in the pair required to have $p_{T}>20$ GeV ，the dimuon mass required to be within 0.2 GeV of the $J / \psi(1 S)$ mass and it＇s transverse momentum required to be $>36 \mathrm{GeV}$ ．The photon is also required to have it＇s $p_{T}>36 \mathrm{GeV}$ ．				

$\Gamma(\psi(2 S) X) / \Gamma_{\text {total }}$
Γ_{28} / Γ
$\frac{V A L U E \text {（units } 10^{-3} \text { ）}}{1.60 \pm 0.29 \text { OUR AVERAGE }}$
$1.6 \pm 0.5 \pm 0.3$ $1.60 \pm 0.73 \pm 0.33 \quad 5.4 \quad 3 \mathrm{ABREU} \quad 94 \mathrm{P} \quad \mathrm{DLPH} \quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ACCIARRI 97J measure this branching ratio via the decay channel $\psi(2 S) \rightarrow \ell^{+} \ell^{-}(\ell$ $=\mu, e)$ ．
${ }^{2}$ ALEXANDER 96 B measure this branching ratio via the decay channel $\psi(2 S) \rightarrow$ $J / \psi \pi^{+} \pi^{-}$，with $J / \psi \rightarrow \ell^{+} \ell^{-}$
${ }^{3}$ ABREU 94P measure this branching ratio via decay channel $\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$，with $J / \psi \rightarrow \mu^{+} \mu^{-}$

$\Gamma(\psi(2 S) \gamma) / \Gamma_{\text {total }}$					Γ_{29} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	
$<4.5 \times 10^{-6}$	95	1 AABOUD	ATLS	$E_{\mathrm{cm}}^{p p}=13$	

${ }^{1}$ AABOUD 18BL study $Z \rightarrow \psi(2 S) \gamma$ in $13 \mathrm{TeV} p p$ interactions．Two triggers were used： isolated photon of $p_{T}>35(25) \mathrm{GeV}$ and a muon with $p_{T}>18(24) \mathrm{GeV}$ ．The $\psi(2 S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the $\psi(2 S)$ in the plane transverse to the beam direction is $>\pi / 2$ ．The photon and the $\psi(2 S)$ in the plane transverse to the beam direction is $>\pi / 2$ ．The number of observed／expected background events is
$\Gamma\left(J / \psi(1 S) \ell^{+} \ell^{-}\right) / \Gamma\left(\mu^{+} \mu^{-} \mu^{+} \mu^{-}\right)$
Γ_{30} / Γ_{5}
$\frac{\text { VALUE }}{\mathbf{0 . 6 7} \pm \mathbf{0 . 1 8} \pm \mathbf{0 . 0 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { SIRUNYAN } 18 \mathrm{DZ}} \frac{\text { TECN }}{\text { CMS }} \frac{\text { COMMENT }}{p p \text { at } 13 \mathrm{TeV}}$
${ }^{1}$ SIRUNYAN 18DZ observe the decay $Z \rightarrow \boldsymbol{\psi} \ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ ， where ψ includes J / ψ as well as $\psi(2 S) \rightarrow J / \psi X$ ，and $\ell^{+} \ell^{-}$represents an electron or muon pair while the J / ψ is detected via its $\mu^{+} \mu^{-}$decay channel．To reduce systematic errors they determine the ratio of the branching fraction of this decay to that of $Z \rightarrow$ $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$within phase－space cuts imposed on lepton transverse momentum and pseudo rapidity，dilepton invariant mass，and J / ψ transverse momentum．The number of selected $\Psi_{\mu^{+}} \mu^{-}\left(\Psi e^{+} e^{-}\right)$candidate events is 29 （18）．Analyzing the $\mu^{+} \mu^{-}$and $\mu^{+} \mu^{-} \ell^{+} \ell^{-}$invariant mass distributions，a yield of $13.0 \pm 3.9(11.2 \pm 3.4)$ events for the $\psi \mu^{+} \mu^{-}\left(\Psi e^{+} e^{-}\right)$mode is obtained．The ratio of the branching fractions is determined as $0.67 \pm 0.18 \pm 0.05$ within the selected phase－space cuts．Assuming extrapolation to full phase space cancels in the ratio，and using their measured value of $\mathrm{B}\left(Z \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}\right)=(1.20 \pm 0.08) \times 10^{-6}$, they estimate $\mathrm{B}\left(Z \rightarrow J / \psi \ell^{+} \ell^{-}\right)$
$=8 \times 10^{-7}$.
$\boldsymbol{\Gamma}(\boldsymbol{J} / \boldsymbol{\psi} \mathbf{(1 S)} \boldsymbol{J} / \boldsymbol{\psi}(\mathbf{1 S})) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2 . 2} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{95} \frac{E V T S}{189}$
${ }^{1}$ SIRUNYAN 19 BR search for Z decays to a pair of J / ψ mesons in the channel $J / \psi \rightarrow$ $\mu^{+} \mu^{-}$．The invariant masses of the higher／lower－$p_{T} J / \psi$ candidates have to be within $0.1 / 0.15 \mathrm{GeV}$ of the nominal J / ψ mass．A total of 189 events are selected in the $40-140$ GeV 4－muon invariant mass range．An un－binned extended maximum likelihood fit leads to the 95% C．L．upper limit，obtained assuming the J / ψ mesons to be unpolarised．
$\Gamma\left(\chi_{c 1}(1 P) X\right) / \Gamma_{\text {total }}$
「32／「
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{2.9 \pm 0.7 \text { OUR AVERAGE EVTS }}$ DOCUMENT ID TECN COMMENT $\frac{\text { EVTS }}{2.9 \pm \mathbf{0 . 7} \text { OUR AVERAGE }}$

$2.7 \pm 0.6 \pm 0.5$	33	${ }^{1}$ ACCIARRI	$97 J$ L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$5.0 \pm 2.1+1.5$	6.4	2 ABREU	94 P	DLPH

 with $J / \psi \rightarrow \ell^{+} \ell^{-}(\ell=\mu, e)$ ．The $M\left(\ell^{+} \ell^{-} \gamma\right)-M\left(\ell^{+} \ell^{-}\right)$mass difference spectrum
is fitted with two gaussian shapes for $\chi_{C 1}$ and $\chi_{C 2}$ ．
${ }^{2}$ This branching ratio is measured via the decay channel $\chi_{C 1} \rightarrow J / \psi+\gamma$ ，with $J / \psi \rightarrow$ $\mu^{+} \mu^{-}$．
$\Gamma\left(\chi_{c 2}(1 P) X\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{3 . 2} \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ACCIARRI } 97 \mathrm{~J}} \frac{\text { COMMENT }}{\text { L3 }} \frac{\text { I33 }}{}$ ${ }^{1}$ ACCIARRI 97」 derive this limit via the decay channel $\chi_{C 2} \rightarrow J / \psi+\gamma$ ，with $J / \psi \rightarrow$ $\ell^{+} \ell^{-}(\ell=\mu, e)$ ．The $M\left(\ell^{+} \ell^{-} \gamma\right)-M\left(\ell^{+} \ell^{-}\right)$mass difference spectrum is fitted with two gaussian shapes for $\chi_{C 1}$ and $\chi_{C 2}$ ．
$\Gamma(r(1 S) \mathrm{X}+r(2 S) \mathrm{X}+\boldsymbol{r}(3 S) \mathrm{X}) / \mathrm{I}_{\text {total }} \quad \mathrm{\Gamma}_{34} / \Gamma=\left(\Gamma_{35}+\Gamma_{37}+\Gamma_{39}\right) / \Gamma$ $\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{1 . 0} \pm \mathbf{0 . 4} \mathbf{0 . 2 2}} \frac{\text { EVTS }}{6.4} \quad \frac{\text { DOCUMENT ID }}{1} \frac{T E C N}{\text { CILEXANDER } 965} \frac{\text { COMMENT }}{E e e}$
${ }^{1}$ ALEXANDER 96F identify the r（which refers to any of the three lowest bound states） through its decay into $e^{+} e^{-}$and $\mu^{+} \mu^{-}$．The systematic error includes an uncertainty of ± 0.2 due to the production mechanism．

$\Gamma(\boldsymbol{T}(1 S) X) / \Gamma_{\text {total }}$					Γ_{35} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ AAD 15 I use events with the highest p_{T} muon in the pair required to have $p_{T}>20 \mathrm{GeV}$ ， the dimuon mass required to be in the range $8-12 \mathrm{GeV}$ and it＇s transverse momentum required to be $>36 \mathrm{GeV}$ ．The photon is also required to have it＇s $p_{T}>36 \mathrm{GeV}$ ．
${ }^{2}$ ACCIARRI 99F search for $\gamma(1 S)$ through its decay into $\ell^{+} \ell^{-}(\ell=e$ or $\mu)$ ．

$\Gamma(\gamma(1 S) \gamma) / \Gamma_{\text {total }}$					$\Gamma 36 / \Gamma$
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	

$<\mathbf{2 . 8 \times 1 0 ^ { \mathbf { - 6 } }} \quad 95 \quad 1 \mathrm{AABOUD} \quad 18 \mathrm{BL}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV} \quad$｜
${ }^{1}$ AABOUD 18BL study $Z \rightarrow \gamma(1 S) \gamma$ in $13 \mathrm{TeV} p p$ interactions．Two triggers were used： isolated photon of $p_{T}>35(25) \mathrm{GeV}$ and a muon with $p_{T}>18(24) \mathrm{GeV}$ ．The $\Upsilon(1 S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the $\gamma(1 S)$ in the plane transverse to the beam direction is $>\pi / 2$ ．The number of observed／expected background events is $115 / 126 \pm 8$ in the dimuon mass range $9.0-10.0 \mathrm{GeV}$ leading to the quoted 95% C．L．limit．
$\Gamma(r(2 S) \times) / \Gamma_{\text {total }} \quad \Gamma_{37} / \Gamma$
VALUE $\frac{C L \%}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$
－－We do not use the following data for averages，fits，limits，etc．－－
$<13.9 \times 10^{-5} \quad 95 \quad 2$ ACCIARRI $97 \mathrm{R} \mathrm{L3} \quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ AAD 151 use events with the highest p_{T} muon in the pair required to have $p_{T}>20 \mathrm{GeV}$ ， the dimuon mass required to be in the range $8-12 \mathrm{GeV}$ and it＇s transverse momentum required to be $>36 \mathrm{GeV}$ ．The photon is also required to have it＇s $p_{T}>36 \mathrm{GeV}$ ．
${ }^{2}$ ACCIARRI 97R search for $\gamma(2 S)$ through its decay into $\ell^{+} \ell^{-}(\ell=e$ or $\mu)$ ．

$\Gamma(\boldsymbol{r}(2 S) \gamma) / \Gamma_{\text {total }}$					Γ_{38} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	

$<1.7 \times 10^{-6} \quad 95 \quad 1$ AABOUD $\quad 18 \mathrm{BL}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV} \quad$｜
${ }^{1}$ AABOUD 18BL study $Z \rightarrow \gamma(2 S) \gamma$ in $13 \mathrm{TeV} p p$ interactions．Two triggers were used： isolated photon of $p_{T}>35(25) \mathrm{GeV}$ and a muon with $p_{T}>18(24) \mathrm{GeV}$ ．The $r(2 S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the $\gamma(2 S)$ in the plane transverse to the beam direction is $>\pi / 2$ ．The number of observed／expected background events is $106 / 121 \pm 8$ in the dimuon mass range $9.5-10.5 \mathrm{GeV}$ leading to the quoted 95% C．L．limit．
$\Gamma(r(3 S) X) / /_{\text {total }}$
Гз9／Г
$\frac{V A L U E}{<\mathbf{5 . 4} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{AAD}} \frac{\text { TECN }}{\text { ATLS }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{p p}=8 \mathrm{TeV}}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$<9.4 \times 10^{-5}$
95
2 ACCIARRI
97R L3
$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
${ }^{1}$ AAD 15 I use events with the highest p_{T} muon in the pair required to have $p_{T}>20 \mathrm{GeV}$ ， the dimuon mass required to be in the range $8-12 \mathrm{GeV}$ and it＇s transverse momentum required to be $>36 \mathrm{GeV}$ ．The photon is also required to have it＇s $p_{T}>36 \mathrm{GeV}$ ．
${ }^{2}$ ACCIARRI 97R search for $r(3 S)$ through its decay into $\ell^{+} \ell^{-}(\ell=e$ or $\mu)$ ．

Gauge \& Higgs Boson Particle Listings

Z

${ }^{1}$ SIRUNYAN 19BR search for Z decays to a pair of γ mesons in the channel $\gamma \rightarrow \mu^{+} \mu^{-}$. The invariant mass of the r candidates has to be in the range of 8.5 to 11 GeV . A total of 106 events are selected in the $20-140 \mathrm{GeV} 4$-muon invariant mass range. An un-binned extended maximum likelihood fit leads to the 95% C.L. upper limit, obtained assuming the r mesons to be unpolarised.
$\Gamma\left(\left(D^{0} / \bar{D}^{0}\right) \mathrm{X}\right) / \Gamma$ (hadrons)
Γ_{42} / Γ_{8}
$\frac{\text { VALUE }}{\mathbf{0 . 2 9 6} \pm \mathbf{0 . 0 1 9} \mathbf{0 . 0 2 1}} \frac{\text { EVTS }}{369} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABREU }} \frac{931}{\text { DECN }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}}$
${ }^{1}$ The (D^{0} / \bar{D}^{0}) states in ABREU 931 are detected by the $K \pi$ decay mode. This is a corrected result (see the erratum of ABREU 931).

${ }^{1}$ The $D^{ \pm}$states in ABREU 931 are detected by the $K \pi \pi$ decay mode. This is a corrected result (see the erratum of ABREU 931).

${ }^{1} D^{*}(2010)^{ \pm}$in ABREU 931 are reconstructed from $D^{0} \pi^{ \pm}$, with $D^{0} \rightarrow K^{-} \pi^{+}$. The new CLEO II measurement of $\mathrm{B}\left(D^{* \pm} \rightarrow D^{0} \pi^{ \pm}\right)=(68.1 \pm 1.6) \%$ is used. This is a corrected result (see the erratum of ABREU 93ı).
${ }^{2}$ DECAMP 911 report $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right) \mathrm{B}\left(D^{0} \rightarrow \kappa^{-} \pi^{+}\right) \Gamma\left(D^{*}(2010)^{ \pm} \mathrm{X}\right)$ $/ \Gamma$ (hadrons $)=(5.11 \pm 0.34) \times 10^{-3}$. They obtained the above number assuming $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.62 \pm 0.34 \pm 0.44) \%$ and $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(55 \pm 4) \%$. We have rescaled their original result of 0.26 ± 0.05 taking into account the new CLEO II branching ratio $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(68.1 \pm 1.6) \%$.
$\Gamma\left(D_{\text {s1 }}(\mathbf{2 5 3 6})^{ \pm} \mathrm{X}\right) / \Gamma($ hadrons $)$
Γ_{45} / Γ_{8} $D_{S 1}(2536)^{ \pm}$is an expected orbitally-excited state of the D_{S} meson.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 5 2} \mathbf{\pm 0 . 0 9} \pm \mathbf{0 . 0 6}} \frac{\text { EVTS }}{92} \quad \frac{\text { DOCUMENT ID }}{1 \text { HEISTER }} \frac{\text { 02B }}{} \frac{\text { TECN }}{\text { ALEP }} \frac{\text { COMMENT }}{E_{C \mathrm{~m}}^{e e}=88-94 \mathrm{GeV}}$
${ }^{1}$ HEISTER 02B reconstruct this meson in the decay modes $D_{S 1}(2536)^{ \pm} \rightarrow D^{* \pm} K^{0}$ and $D_{S 1}(2536)^{ \pm} \rightarrow D^{* 0} K^{ \pm}$. The quoted branching ratio assumes that the decay width of the $D_{S 1}(2536)$ is saturated by the two measured decay modes.
$\Gamma\left(D_{s J}(2573)^{ \pm} \mathrm{X}\right) / \Gamma$ (hadrons)
Γ_{46} / Γ_{8} $D_{s J}(2573)^{ \pm}$is an expected orbitally-excited state of the D_{S} meson.
VALUE (\%) DOCUMENTID TECN COMMENT
$\mathbf{0 . 8 3} \pm \mathbf{0 . 2 9} \mathbf{+ 0 . 0 7} \mathbf{0 . 0 7 3} \quad 64 \quad{ }^{\mathbf{0}}$ HEISTER 02B ALEP $\quad E_{\mathrm{CM}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ HEISTER 02B reconstruct this meson in the decay mode $D_{S 2}^{*}(2573)^{ \pm} \rightarrow D^{0} K^{ \pm}$. The quoted branching ratio assumes that the detected decay mode represents 45% of the full decay width.

$\Gamma\left(B^{*} X\right) /\left[\Gamma(B X)+\Gamma\left(B^{*} X\right)\right]$
$\Gamma_{49} /\left(\Gamma_{48}+\Gamma_{49}\right)$
As the experiments assume different values of the b-baryon contribution, our average should be taken with caution.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.75 ± 0.04 OUR AVERAGE					
$0.760 \pm 0.036 \pm 0.083$		1 ACKERSTAFF	97M	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$0.771 \pm 0.026 \pm 0.070$		${ }^{2}$ BUSKULIC	96D	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$0.72 \pm 0.03 \pm 0.06$		${ }^{3}$ ABREU	95R	DLPH	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$0.76 \pm 0.08 \pm 0.06$	1378	${ }^{4}$ ACCIARRI	95B	L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

${ }^{1}$ ACKERSTAFF 97M use an inclusive B reconstruction method and assume a ($13.2 \pm$ 4.1) $\% b$-baryon contribution. The value refers to a b-flavored meson mixture of B_{u}, B_{d}, and B_{S}.
${ }^{2}$ BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a $12.2 \pm$ $4.3) \% b$-baryon contribution. The value refers to a b-flavored mixture of B_{u}, B_{d}, and ${ }^{4.3} B_{S}$.
${ }^{3}$ ABREU 95 R use an inclusive B-reconstruction method and assume a (10 ± 4) $\% b$-baryon contribution. The value refers to a b-flavored meson mixture of B_{u}, B_{d}, and B_{S}
${ }^{4}$ ACCIARRI 95B assume a $9.4 \% b$-baryon contribution. The value refers to a b-flavored mixture of B_{u}, B_{d}, and B_{s}.

$\Gamma\left(B^{+} X\right) / \Gamma$ (hadrons)

Γ_{50} / Γ_{8}
"OUR EVALUATION" is obtained using our current values for $f\left(\bar{b} \rightarrow B^{+}\right)$and R_{b} $=\Gamma(b \bar{b}) / \Gamma$ (hadrons). We calculate $\Gamma\left(B^{+} \mathrm{X}\right) / \Gamma$ (hadrons) $=\mathrm{R}_{b} \times \mathrm{f}\left(\bar{b} \rightarrow B^{+}\right)$. The decay fraction $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right)$was provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/).

0.0869 ± 0.0019 OUR EVALUATION
 0.0887 ± 0.0030
 ${ }^{1}$ ABDALLAH 03 K DLPH $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$

${ }^{1}$ ABDALLAH 03k measure the production fraction of B^{+}mesons in hadronic Z decays $f\left(B^{+}\right)=(40.99 \pm 0.82 \pm 1.11) \%$. The value quoted here is obtained multiplying this production fraction by our value of $\mathrm{R}_{b}=\Gamma(\bar{b} b) / \Gamma$ (hadrons).
$\Gamma\left(B_{s}^{0} \mathrm{X}\right) / \Gamma$ (hadrons)
Γ_{51} / Γ_{8}
"OUR EVALUATION" is obtained using our current values for $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)$ and $\mathrm{R}_{b}=$ $\Gamma(b \bar{b}) / \Gamma$ (hadrons). We calculate $\Gamma\left(B_{S}^{0}\right) / \Gamma$ (hadrons) $=\mathrm{R}_{b} \times \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)$. The decay fraction $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)$ was provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/).
$\frac{V A L U E}{0.0227 \pm 0.0019}$ OUR EVALUATION

$\mathbf{0 . 0 2 2 7} \pm \mathbf{0 . 0 0 1 9}$ OUR EVALUATION			
seen	$1_{\text {ABREU }}$	92 M	
DLPH	$E_{C m}^{e e}=88-94 \mathrm{GeV}$		

seen ${ }^{2}$ ACTON 92N OPAL $E_{C m}^{e e}=88-94 \mathrm{GeV}$
seen $\quad{ }^{3}$ BUSKULIC 92E ALEP $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ABREU 92M reported value is $\Gamma\left(B_{S}^{0} \mathrm{X}\right) * \mathrm{~B}\left(B_{S}^{0} \rightarrow D_{S} \mu \nu_{\mu} \mathrm{X}\right) * \mathrm{~B}\left(D_{S} \rightarrow \phi \pi\right) / \Gamma$ (hadrons) $=(18 \pm 8) \times 10^{-5}$.
${ }^{2}$ ACTON 92 N find evidence for B_{S}^{0} production using $D_{S}-\ell$ correlations, with $D_{S}^{+} \rightarrow \phi \pi^{+}$ and K^{*} (892) K^{+}. Assuming R_{b} from the Standard Model and averaging over the e and μ channels, authors measure the product branching fraction to be $f\left(\bar{b} \rightarrow B_{S}^{0}\right) \times \mathrm{B}\left(B_{S}^{0} \rightarrow\right.$ $\left.D_{S}^{-} \ell^{+} \nu_{\ell} \mathrm{X}\right) \times \mathrm{B}\left(D_{s}^{-} \rightarrow \phi \pi^{-}\right)=(3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$.
${ }^{3}$ BUSKULIC 92E find evidence for B_{s}^{0} production using $D_{S}-\ell$ correlations, with $D_{S}^{+} \rightarrow$ $\phi \pi^{+}$and $K^{*}(892) K^{+}$. Using $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(2.7 \pm 0.7) \%$ and summing up the e and μ channels, the weighted average product branching fraction is measured to be $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right) \times \mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell} \mathrm{X}\right)=0.040 \pm 0.011_{-0.012}^{+0.010}$.

$\Gamma\left(B_{c}^{+} X\right) / \Gamma$ (hadrons)

Γ_{52} / Γ_{8}
searched for
$\begin{array}{lll} & { }^{2} \text { ABREU } & 97 \mathrm{E} \\ \text { search } & E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV} \\ \text { searched for } & 3^{3} \text { BARATE } & 97 \mathrm{H}\end{array}$
${ }^{1}$ ACKERSTAFF 980 searched for the decay modes $B_{C} \rightarrow J / \psi \pi^{+}, J / \psi a_{1}^{+}$, and $J / \psi \ell^{+} \nu_{\ell}$, with $J / \psi \rightarrow \ell^{+} \ell^{-}, \ell=e, \mu$. The number of candidates (background) for the three decay modes is $2(0.63 \pm 0.2), 0(1.10 \pm 0.22)$, and $1(0.82 \pm 0.19)$ respectively. Interpreting the $2 B_{C} \rightarrow \mathrm{~J} / \psi \pi^{+}$candidates as signal, they report $\Gamma\left(B_{C}^{+} \mathrm{X}\right) \times \mathrm{B}\left(B_{C} \rightarrow\right.$ $\left.J / \psi \pi^{+}\right) / \Gamma($ hadrons $)=\left(3.8_{-2.4}^{+5.0} \pm 0.5\right) \times 10^{-5}$. Interpreted as background, the $90 \% \mathrm{CL}$ bounds are $\Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow J / \psi \pi^{+}\right) / \Gamma($ hadrons $)<1.06 \times 10^{-4}, \Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow\right.$ $\left.J / \psi a_{1}^{+}\right) / \Gamma$ (hadrons) $<5.29 \times 10^{-4}, \Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow J / \psi \ell^{+} \nu_{\ell}\right) / \Gamma$ (hadrons) $<$ 6.96×10^{-5}.
${ }^{2}$ ABREU 97E searched for the decay modes $B_{C} \rightarrow J / \psi \pi^{+}, J / \psi \ell^{+} \nu_{\ell}$, and $J / \psi(3 \pi)^{+}$, with $J / \psi \rightarrow \ell^{+} \ell^{-}, \ell=e, \mu$. The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following $90 \% \mathrm{CL}$ limits: $\Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow J / \psi \pi^{+}\right) / \Gamma$ (hadrons $)<(1.05-0.84) \times 10^{-4}, \Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow\right.$ $\left.J / \psi \ell \nu_{\ell}\right) / \Gamma($ hadrons $)<(5.8-5.0) \times 10^{-5}, \Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow J / \psi(3 \pi)^{+}\right) / \Gamma$ (hadrons) $<1.75 \times 10^{-4}$, where the ranges are due to the predicted B_{C} lifetime (0.4-1.4) ps.
${ }^{3}$ BARATE 97 H searched for the decay modes $B_{C} \rightarrow J / \psi \pi^{+}$and $J / \psi \ell^{+} \nu_{\ell}$ with $J / \psi \rightarrow \ell^{+} \ell^{-}, \ell=e, \mu$. The number of candidates (background) for the two decay modes is $0(0.44)$ and $2(0.81)$ respectively. They report the following $90 \% \mathrm{CL}$ limits: $\Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow J / \psi \pi^{+}\right) / \Gamma$ (hadrons) $<3.6 \times 10^{-5}$ and $\Gamma\left(B_{C}^{+} \mathrm{X}\right) * \mathrm{~B}\left(B_{C} \rightarrow\right.$ $\left.J / \psi \ell^{+} \nu_{\ell}\right) / \Gamma($ hadrons $)<5.2 \times 10^{-5}$.
$\Gamma\left(\Lambda_{c}^{+} \mathbf{x}\right) / \Gamma$ (hadrons)

0.022 ± 0.005 OUR AVERAGE

$0.024 \pm 0.005 \pm 0.006$
$0.021 \pm 0.003 \pm 0.005$
Γ_{53} / Γ_{8}
DOCUMENT ID TECN COMMENT
${ }^{1}$ ALEXANDER 96 R OPAL $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{2}$ BUSKULIC 96 Y ALEP $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ALEXANDER 96R measure $\mathrm{R}_{b} \times \mathrm{f}\left(b \rightarrow \Lambda_{c}^{+} \mathrm{X}\right) \times \mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(0.122 \pm$ $0.023 \pm 0.010) \%$ in hadronic Z decays；the value quoted here is obtained using our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$ ．The first error is the total experiment＇s error and the second error is the systematic error due to the branching fraction uncertainty．
${ }^{2}$ BUSKULIC $96 Y$ obtain the production fraction of Λ_{c}^{+}baryons in hadronic Z decays $\mathrm{f}\left(b \rightarrow \Lambda_{c}^{+} X\right)=0.110 \pm 0.014 \pm 0.006$ using $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(4.4 \pm 0.6) \%$ ；we have rescaled using our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$ obtaining $\mathrm{f}(b \rightarrow$ $\left.\Lambda_{C}^{+} X\right)=0.097 \pm 0.013 \pm 0.025$ where the first error is their total experiment＇s error and the second error is the systematic error due to the branching fraction uncertainty． The value quoted here is obtained multiplying this production fraction by our value of $\mathrm{R}_{b}=\Gamma(b \bar{b}) / \Gamma$（hadrons）．

－－We do not use the following data for averages，fits，limits，etc．－－－
seen $\quad 1$ ABDALLAH 05C DLPH $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ABDALLAH $05 c$ searched for the charmed strange baryon \bar{E}_{c}^{0} in the decay channel $\bar{E}_{c}^{0} \rightarrow \bar{E}^{-} \pi^{+}\left(\bar{\Xi}^{-} \rightarrow \Lambda \pi^{-}\right)$．The production rate is measured to be $\bar{\Xi}_{c}^{0} \times \mathrm{B}\left(\bar{\Xi}_{c}^{0} \rightarrow\right.$ $\left.\Xi^{-} \pi^{+}\right)=(4.7 \pm 1.4 \pm 1.1) \times 10^{-4}$ per hadronic Z decay ．
$\Gamma\left(\Xi_{b} X\right) / \Gamma($ hadrons $)$
Γ_{55} / Γ_{8}
Here $\bar{\Xi}_{b}$ is used as a notation for the strange b－baryon states $\bar{\Xi}_{b}^{-}$and $\bar{\Xi}_{b}^{0}$ ．
VALUE DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
seen $\quad{ }^{1}$ ABDALLAH 05 C DLPH $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
seen ${ }^{2}$ BUSKULIC $96 T$ ALEP $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
seen ${ }^{3}$ ABREU 95 V DLPH $E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ABDALLAH 05 C searched for the beauty strange baryon $\bar{\Xi}_{b}$ in the inclusive semileptonic decay channel $\Xi_{b} \rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell} X$ ．Evidence for the Ξ_{b} production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign．From the excess of＂right－sign＂pairs $\equiv^{\mp} \ell^{\mp}$ compared to＂wrong－sign＂pairs $\Xi^{\mp} \ell^{ \pm}$the production rate is measured to be $\mathrm{B}\left(b \rightarrow \Xi_{b}\right) \times \mathrm{B}\left(\Xi_{b} \rightarrow \Xi^{-} \ell^{-} x\right)=(3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species，averaged over electrons and muons．
${ }^{2}$ BUSKULIC $96 T$ investigate $\bar{\Xi}$－lepton correlations and find a significant excess of＂right－ sign＂pairs $\Xi^{\mp} \ell^{\mp}$ compared to＂wrong－sign＂pairs $\Xi^{\mp} \ell^{ \pm}$．This excess is interpreted as evidence for Ξ_{b} semileptonic decay．The measured product branching ratio is $\mathrm{B}(b \rightarrow$
$\left.\bar{\Xi}_{b}\right) \times \mathrm{B}\left(\overline{=}_{b} \rightarrow x_{c} X \ell^{-} \bar{\nu}_{\ell}\right) \times \mathrm{B}\left(X_{c} \rightarrow \Xi^{-} x^{\prime}\right)=(5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ per lepton species，averaged over electrons and muons，with X_{C} a charmed baryon．
${ }^{3}$ ABREU 95 V observe an excess of＂right－sign＂pairs $\equiv \mp \ell^{\mp} \mp$ compared to＂wrong－sign＂ pairs $\Xi^{\mp} \ell^{ \pm}$in jets：this excess is interpreted as evidence for the beauty strange baryon $\bar{\Xi}_{b}$ production，with $\bar{\Xi}_{b} \rightarrow \bar{\Xi}^{-} \ell^{-} \bar{\nu}_{\ell} X$ ．They find that the probability for this signal to come from non b－baryon decays is less than 5×10^{-4} and that Λ_{b} decays can account for less than 10% of these events．The $\bar{\Xi}_{b}$ production rate is then measured to be $\mathrm{B}(b \rightarrow$ $\left.\Xi_{b}\right) \times \mathrm{B}\left(\Xi_{b} \rightarrow \Xi^{-} \ell^{-} X\right)=(5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$ per lepton species，averaged over electrons and muons．
$\Gamma(b$－baryon $X) / \Gamma($ hadrons $)$
Γ_{56} / Γ_{8} ＂OUR EVALUATION＂is obtained using our current values for $\mathrm{f}(b \rightarrow b$－baryon）and $\mathrm{R}_{b}=\Gamma(b \bar{b}) / \Gamma($ hadrons $)$ ．We calculate $\Gamma(b$－baryon X$) / \Gamma$（hadrons $)=\mathrm{R}_{b} \times \mathrm{f}(b \rightarrow$ b－baryon）．The decay fraction $\mathrm{f}(b \rightarrow b$－baryon）was provided by the Heavy Flavor Averaging Group（https：／／hflav．web．cern．ch／）．
$\frac{V A L U E}{0.0197} \pm 0.0032$ OUR EVALUATION
$\mathbf{0 . 0 2 2 1} \pm \mathbf{0 . 0 0 1 5} \pm \mathbf{0 . 0 0 5 8} \quad 1$ BARATE $\quad 98 V$ ALEP $E_{C m}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ BARATE 98 V use the overall number of identified protons in b－hadron decays to measure $\mathrm{f}(b \rightarrow b$－baryon $)=0.102 \pm 0.007 \pm 0.027$ ．They assume $\operatorname{BR}(b$－baryon $\rightarrow p X)=$ $(58 \pm 6) \%$ and $\operatorname{BR}\left(B_{S}^{0} \rightarrow p X\right)=(8.0 \pm 4.0) \%$ ．The value quoted here is obtained multiplying this production fraction by our value of $\mathrm{R}_{b}=\Gamma(b \bar{b}) / \Gamma$（hadrons）．
Γ（anomalous $\gamma+$ hadrons $) / \Gamma_{\text {total }}$
Γ_{57} / Γ Limits on additional sources of prompt photons beyond expectations for final－state bremsstrahlung．
$\frac{\text { VALUE }}{<\mathbf{3} .2 \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{1}$ AKRAWY $90 \mathrm{~J} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{C \mathrm{~m}}^{e \ell}=88-94 \mathrm{GeV}}$
${ }^{1}$ AKRAWY 90 J report $\Gamma(\gamma \mathrm{X})<8.2 \mathrm{MeV}$ at $95 \% \mathrm{CL}$ ．They assume a three－body $\gamma q \bar{q}$ distribution and use $\mathrm{E}(\gamma)>10 \mathrm{GeV}$ ．
$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<5.2 \times 10^{-4}} \frac{C L \%}{95}$$\frac{\text { DOCUMENT ID }}{\text { ACTON }} \quad$ 91B $\frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{\text {Cm }}^{e e}=91.2 \mathrm{GeV}} \quad \Gamma_{58} / \Gamma$
${ }^{1}$ ACTON 91B looked for isolated photons with $E>2 \%$ of beam energy（ $>0.9 \mathrm{GeV}$ ）．
$\Gamma\left(\mu^{+} \mu^{-} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{<56 \times 10^{-4}}$ CL\％DOCUMENT ID TECN COMMENT Γ_{59} / Γ
$<5.6 \times \mathbf{1 0}^{\mathbf{- 4}} \quad 95 \quad 1$ ACTON 91 B OPAL $E_{\mathrm{cm}}^{e e}=91.2 \mathrm{GeV}$
${ }^{1}$ ACTON 91B looked for isolated photons with $E>2 \%$ of beam energy（ $>0.9 \mathrm{GeV}$ ）．

$\Gamma\left(\tau^{+} \tau^{-} \gamma\right) / \Gamma_{\text {total }}$

951^{1} ACTON 91B OPAL $E_{\mathrm{cm}}^{e}=91.2 \mathrm{GeV}$
${ }^{1}$ ACTON 91B looked for isolated photons with $E>2 \%$ of beam energy（ $>0.9 \mathrm{GeV}$ ）．

$\Gamma\left(e^{ \pm} \mu_{\text {Test of lepton family number conservation．The value is for the sum of the charge }}^{\mp}\right) / \Gamma_{\text {total }}$ Test of lepton fam
states indicated．

VALUE	CL\％	DOCUMENT ID	TECN	COMMENT
$<7.5 \times 10^{-7}$	95	AAD	14AU ATLS	$E_{\text {cm }}^{p p}=8 \mathrm{TeV}$
$<2.5 \times 10^{-6}$	95	ABREU	97C DLPH	$E_{\mathrm{Cm}}^{\mathrm{Ce}}=88-94 \mathrm{GeV}$
$<1.7 \times 10^{-6}$	95	AKERS	95w OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<0.6 \times 10^{-5}$	95	ADRIANI	93। L3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<2.6 \times 10^{-5}$	95	DECAMP	92 ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

$\Gamma\left(e^{ \pm} \mu^{\mp}\right) / \Gamma\left(e^{+} e^{-}\right) \quad \Gamma_{\mathbf{6 4}} / \Gamma_{\mathbf{1}}$ states indicated．
$\frac{V A L U E}{<0.07} \frac{C L \%}{\text { DOCUMENTID }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { D }}{E^{p}}$
$\Gamma\left(e^{ \pm} \boldsymbol{\tau}^{\mp}\right) / \Gamma_{\text {total }} \Gamma_{65} / \Gamma$
Test of lepton family number conservation．The value is for the sum of the charge states indicated．
VALUE C DOCUMENTID TECN COMMENT

$<5.8 \times 10^{-5}$	95	AABOUD	18 CN ATLS $\quad E_{\mathrm{Cm}}^{p p}=13 \mathrm{TeV}$	
$<2.2 \times 10^{-5}$	95	ABREU	97 C DLPH $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$	
$<9.8 \times 10^{-6}$	95	AKERS	95 w OPAL $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$	
$<1.3 \times 10^{-5}$	95	ADRIANI	93 L 3	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<1.2 \times 10^{-4}$	95	DECAMP	$92 \quad$ ALEP $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$	

$\Gamma\left(\mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
Test of lepton family number conservation．The value is for the sum of the charge states indicated．

VALUE	CL\％	DOCUMENT ID	TECN	COMMENT
$<1.3 \times 10^{-5}$	95	AABOUD	18CN ATLS	$E_{\mathrm{Cm}}^{p p}=8,13 \mathrm{TeV}$
$<1.2 \times 10^{-5}$	95	ABREU	97C DLPH	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=88-94 \mathrm{GeV}$
$<1.7 \times 10^{-5}$	95	AKERS	95w OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$<1.9 \times 10^{-5}$	95	ADRIANI	931 L3	$E_{\mathrm{Cm}}^{\mathrm{Ce}}=88-94 \mathrm{GeV}$
$<1.0 \times 10^{-4}$	95	DECAMP	92 ALEP	$E_{\mathrm{Cm}}^{\mathrm{ee}}=88-94 \mathrm{GeV}$

$\Gamma(p e) / \Gamma_{\text {total }}$
「67／Г Test of b

${ }^{1}$ ABBIENDI 99I give the $95 \% \mathrm{CL}$ limit on the partial width $\Gamma\left(Z^{0} \rightarrow p e\right)<4.6 \mathrm{KeV}$ and we have transformed it into a branching ratio．
$\Gamma(\rho \mu) / \Gamma_{\text {Tetotal }}$
「 $58 / \Gamma$
Test of baryon number and lepton number conservations．Charge conjugate states are implied．
$\frac{V A L U E}{<1.8 \times \mathbf{1 0}^{-6}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENTID }}{\text { ABBIENDI } 99 \text { I }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}}$
${ }^{1}$ ABBIENDI 99I give the $95 \% \mathrm{CL}$ limit on the partial width $\Gamma\left(Z^{0} \rightarrow p \mu\right)<4.4 \mathrm{KeV}$ and we have transformed it into a branching ratio．

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAY

Summed over particle and antiparticle，when appropriate．
$\left\langle\boldsymbol{N}_{\gamma}\right\rangle$
$\frac{\text { VALUE }}{\mathbf{2 0 . 9 7} \pm \mathbf{0 . 0 2} \pm \mathbf{1 . 1 5}} \quad \frac{\text { DOCUMENT ID }}{\text { ACKERSTAFF 98A }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{\text {Cm }}^{e e}=91.2 \mathrm{GeV}}$
$\left\langle\boldsymbol{N}_{\boldsymbol{\pi}^{ \pm}}\right\rangle$
$\frac{V A L U E}{17.03} \pm 0.16$ OUR AVERAGE
17.007 ± 0.209
$17.26 \pm 0.10 \pm 0.88$
17.04 ± 0.31
17.05 ± 0.43

ACKERSTAFF 98A OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

DOCUMENT ID TECN COMMENT
ABE $\quad 04 \mathrm{C}$ SLD $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
ABREU 98L DLPH $E_{C m}^{e e}=91.2 \mathrm{GeV}$
BARATE 98 v ALEP $E_{\mathrm{cm}}^{e e}=91.2 \mathrm{GeV}$
AKERS 94P OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

Gauge \＆Higgs Boson Particle Listings

Z

$\left\langle N_{\pi}{ }^{0}\right\rangle$
$\frac{V A L U E}{9.76 \pm 0.26 ~ O U R ~ A V E R A G E ~}$
$9.55 \pm 0.06 \pm 0.75$
$9.63 \pm 0.13 \pm 0.63$
$9.90 \pm 0.02 \pm 0.33$
$9.2 \pm 0.2 \pm 1.0$

DOCUMENT ID		TECN		COMMENT
ACKERSTAFF	98 A	OPAL		$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
BARATE	$97 」$	ALEP		$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
ACCIARRI	96	L3	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$	
ADAM	96	DLPH	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$	

$\left\langle N_{\eta}\right\rangle$

$\left\langle N_{\rho^{ \pm}}\right\rangle$
$\frac{\text { VALUE }}{2.57 \pm \mathbf{0 . 1 5 ~ O U R ~ A V E R A G E ~}}$ DOCUMENT ID TECN COMMENT
$2.59 \pm 0.03 \pm 0.16 \quad{ }^{1}$ BEDDALL $09 \quad$ ALEPH archive，$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$2.40 \pm 0.06 \pm 0.43 \quad$ ACKERSTAFF 98A OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
${ }^{1}$ BEDDALL 09 analyse 3.2 million hadronic Z decays as archived by ALEPH collaboration and report a value of $2.59 \pm 0.03 \pm 0.15 \pm 0.04$ ．The first error is statistical，the second systematic，and the third arises from extrapolation to full phase space．We combine the systematic errors in quadrature
$\left\langle N_{\rho 0}\right\rangle$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{1 . 2 4} \pm \mathbf{0 . 1 0}$ OUR AVERAGE Error includes scale factor of 1．1．
$1.19 \pm 0.10 \quad$ ABREU 99」 DLPH $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$1.45 \pm 0.06 \pm 0.20 \quad$ BUSKULIC 96 H ALEP $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$\left\langle N_{\omega}\right\rangle$
$\frac{\text { VALUE }}{1.02 \pm 0.06 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT \qquad
$1.00 \pm 0.03 \pm 0.06$
HEISTER 02C ALEP $E_{C m}^{e e}=91.2 \mathrm{GeV}$
$1.04 \pm 0.04 \pm 0.14$ ACKERSTAFF 98A OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$1.17 \pm 0.09 \pm 0.15$ ACCIARRI 97D L3 $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

$\left\langle N_{\eta^{\prime}}\right\rangle$

$\frac{\text { VALUE }}{0.17} \pm 0.05$ OUR AVERAGE
DOCUMENT ID TECN COMMENT

$$
\overline{c t o r} \frac{T E C N}{\text { of 2.4. }}
$$

\qquad
$0.14 \pm 0.01 \pm 0.02 \quad$ ACKERSTAFF 98A OPAL $E_{C m}^{e e e}=91.2 \mathrm{GeV}$
$0.25 \pm 0.04 \quad 1$ ACCIARRI 97D L3 $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－
$0.068 \pm 0.018 \pm 0.016 \quad{ }^{2}$ BUSKULIC 92D ALEP $E_{C m}^{e e e}=91.2 \mathrm{GeV}$
${ }^{1}$ ACCIARRI 97D obtain this value averaging over the two decay channels $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$ and $\eta^{\prime} \rightarrow \rho^{0} \gamma$ ．
${ }^{2}$ BUSKULIC 92D obtain this value for $x>0.1$ ．
$\left\langle\boldsymbol{N}_{\boldsymbol{f}_{0}(980)}\right\rangle$
0.147 ± 0.011 OUR AVERAGE
0.164 ± 0.021
$0.141 \pm 0.007 \pm 0.011$

DOCUMENT ID TECN COMMENT
ABREU 99」 DLPH $E_{C m}^{e e}=91.2 \mathrm{GeV}$ ACKERSTAFF 98Q OPAL $E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$\left\langle N_{a_{0}(980)^{ \pm}}\right\rangle$
$\frac{V A L U E}{} 0.27 \pm 0.04 \pm 0.10$

DOCUMENT ID TECN COMMENT
ACKERSTAFF 98A OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

$\left\langle N_{f_{2}(1270)}\right\rangle$

${ }^{1}$ ABDALLAH 03 H assume a $K \bar{K} \pi$ branching ratio of $(9.0 \pm 0.4) \%$ ．
$\left\langle N_{f_{1}(1420)}\right\rangle$
$\frac{\text { VALUE }}{\mathbf{0 . 0 5 6} \pm \mathbf{0 . 0 1 2}} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABDALLAH } \quad 03 \mathrm{H}} \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}}$
${ }^{1}$ ABDALLAH 03 H assume a $K \bar{K} \pi$ branching ratio of 100% ．

$\left\langle N_{f_{2}^{\prime}(1525)}\right\rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.012 ± 0.006	ABREU	99」	DLPH	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$\left\langle\boldsymbol{N}_{\boldsymbol{K}}{ }^{ \pm}\right.$，				
VALUE	DOCUMENT ID		TECN	COMMENT
2.24 ± 0.04 OUR AVERAGE				
2.203 ± 0.071	ABE	04C	SLD	$E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$2.21 \pm 0.05 \pm 0.05$	ABREU	98L	DLPH	$E_{\mathrm{Cm}}^{e} \mathrm{e}=91.2 \mathrm{GeV}$
2.26 ± 0.12	BARATE	98 V	ALEP	$E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
2.42 ± 0.13	AKERS	94P	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$\left\langle\boldsymbol{N}_{\boldsymbol{K}}{ }^{0}\right\rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
2.039 ± 0.025 OUR AVERAGE	Error includes scale factor		of 1．3．	See the ideogram
$2.093 \pm 0.004 \pm 0.029$	BARATE	000	ALEP	$E_{\mathrm{Cm}}^{e} \mathrm{e}=91.2 \mathrm{GeV}$
2.01 ± 0.08	ABE	99E	SLD	$E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$2.024 \pm 0.006 \pm 0.042$	ACCIARRI	97L	L3	$E_{\mathrm{Cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$1.962 \pm 0.022 \pm 0.056$	ABREU	95L	DLPH	$E_{\mathrm{Cm}}^{e} \mathrm{e}=91.2 \mathrm{GeV}$
$1.99 \pm 0.01 \pm 0.04$	AKERS	95 u	OPAL	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

$\left\langle N_{\boldsymbol{K}^{*}(892)^{ \pm}}\right\rangle$
0.72 ± 0.05 OUR AVERAGE
$0.712 \pm 0.031 \pm 0.059$ $0.72 \pm 0.02 \pm 0.08$

$\left\langle N_{K}{ }^{*}(992)^{0}\right\rangle$
 O.739 $\mathbf{\pm} \mathbf{0 . 0 2 2}$ OUR AVERAGE
 0.707 ± 0.041
 $0.74 \pm 0.02 \pm 0.02$
 $0.77 \pm 0.02 \pm 0.07$
 $0.83 \pm 0.01 \pm 0.09$
 $0.97 \pm 0.18 \pm 0.31$

$\left\langle N_{\kappa_{2}^{\prime}(1430)}\right\rangle$

VALUE
$\mathbf{0 . 0 7 3} \mathbf{\pm 0 . 0 2 3}$$\quad \frac{\text { DOCUMENT ID }}{\text { ABREU }} \frac{\text { TECN }}{\text { DIPH }} \frac{\text { COMMENT }}{E^{e e}-912 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.19 \pm 0.04 \pm 0.06 \quad 1$ AKERS $\quad 95 x$ OPAL $E_{C m}^{e e}=91.2 \mathrm{GeV}$
1^{1} AKERS $95 x$ obtain this value for $x<0.3$.

$\left\langle N_{D \pm}\right\rangle$

$\left\langle\boldsymbol{N}_{\boldsymbol{D}^{@}}\right\rangle$
$\frac{V A L U E}{\mathbf{0 . 4 6 2} \pm \mathbf{0 . 0 2 6} \text { OUR AVERAGE }}$
$0.465 \pm 0.017 \pm 0.027$
$0.518 \pm 0.052 \pm 0.035$
$0.403 \pm 0.038 \pm 0.044$
${ }^{1}$ See ABREU 95 (erratum).

DOCUMENT ID		TECN		COMMENT
ALEXANDER	$96 R$	OPAL	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$	
BUSKULIC	$94 」$	ALEP	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$	
$1_{\text {ABREU }}$	$93 ı$	DLPH	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$	

$\left\langle\boldsymbol{N}_{\boldsymbol{D}_{\boldsymbol{s} 1}(\mathbf{2 5 3 6})^{+}}\right\rangle$

VALUE (units 10^{-3}) DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.9_{-0.6}^{+0.7} \pm 0.2 \quad{ }^{1}$ ACKERSTAFF 97w OPAL $\quad E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
1^{1} ACKERSTAFF 97 W obtain this value for $x>0.6$ and with the assumption that its decay width is saturated by the $D^{*} K$ final states.
$\left\langle\boldsymbol{N}_{\boldsymbol{B}^{*}}\right\rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.28 \pm 0.01 \pm 0.03$	${ }^{1}$ ABREU	95R	DLPH	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

${ }^{1}$ ABREU 95R quote this value for a flavor-averaged excited state.
$\left\langle\boldsymbol{N}_{J / \psi(1 S)}\right\rangle$
$\frac{V A L U E}{\mathbf{0 . 0 0 5 6} \pm \mathbf{0 . 0 0 0 3} \pm \mathbf{0 . 0 0 0 4}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ALEXANDER } 96 \mathrm{~B}} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}}$
$0.0056 \pm \mathbf{0 . 0 0 0 3} \pm \mathbf{0 . 0 0 0 4} 1$ ALEXANDER 96B OPAL $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
${ }^{1}$ ALEXANDER 96B identify $J / \psi(1 S)$ from the decays into lepton pairs.
$\left\langle\boldsymbol{N}_{\boldsymbol{\psi}(\mathbf{2 S})}\right\rangle$
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 2 3} \pm \mathbf{0 . 0 0 0 4} \pm \mathbf{0 . 0 0 0 3}} \quad \frac{\text { DOCUMENT ID }}{\text { ALEXANDER 96B }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}}$
$\left\langle\boldsymbol{N}_{\boldsymbol{p}}\right\rangle$
$\frac{V A L U E}{\mathbf{1 . 0 4 6} \pm 0.026 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
1.054 ± 0.035
$1.08 \pm 0.04 \pm 0.03$
1.00 ± 0.07
BARATE 98V ALEP $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
$\left\langle\boldsymbol{N}_{\boldsymbol{\Delta}(\mathbf{1 2 3 2})^{++}}\right\rangle$

ValUe	DOCUMENT ID TECN	COMMENT
0.087 ± 0.033 OUR AVERAGE	Error includes scale factor of 2.4.	
$0.079 \pm 0.009 \pm 0.011$	ABREU 95w DLP	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

$\left\langle\boldsymbol{N}_{\boldsymbol{\Lambda}}\right\rangle$
$\frac{V A L U E}{\mathbf{0 . 3 8 8} \pm \mathbf{0 . 0 0 9} \text { OUR AVERAGE }} \quad \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor }} \frac{\text { TECN }}{\text { of } 1.7} \frac{\text { COMMENT }}{\text { See the ideogram below. }}$
$0.404 \pm 0.002 \pm 0.007 \quad$ BARATE 000 ALEP $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
0.395 ± 0.022
$0.364 \pm 0.004 \pm 0.017$
$0.374 \pm 0.002 \pm 0.010$
ABE 99E SLD $E_{C m}^{e e}=91.2 \mathrm{GeV}$
ACCIARRI 97 L L3 $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
ALEXANDER 97D OPAL $E_{\mathrm{Cm}}^{e}=91.2 \mathrm{GeV}$
ABREU 93L DLPH $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$

Gauge \& Higgs Boson Particle Listings

Z

Z VECTOR COUPLINGS

These quantities are the effective vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axialvector couplings is obtained from a measurement of the Z asymmetry parameters, A_{e}, A_{μ}, and A_{τ}. By convention the sign of g_{A}^{e} is fixed to be negative (and opposite to that of $g^{\nu} e$ obtained using ν_{e} scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_{e}, A_{μ}, and A_{τ} measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p \bar{p}$ and $e p$ data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.
$g{ }^{6}$

${ }^{1}$ ACOSTA 05 M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to $e^{+} e^{-}$, assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.
${ }^{2}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{3}$ ACCIARRI $00 C$ use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.
${ }^{4}$ ABE 95」 obtain this result combining polarized Bhabha results with the $A_{L R}$ measurement of ABE 94C. The Bhabha results alone give $-0.0507 \pm 0.0096 \pm 0.0020$.
g_{v}^{μ}
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 3 6 7} \pm \mathbf{0 . 0 0 2 3} \text { OUR }} \frac{\text { EVTS }}{\text { FIT }}$ DOCUMENT ID \quad TECN COMMENT

$-0.0388{ }_{-0.0064}^{+0.0060}$	182.8K	ABBIENDI	010 OPA	$=88-94 \mathrm{Ge}$
-0.0386 ± 0.0073	113.4k	2 ACCIARRI	0C L3	88-94
-0.0362 ± 0.0061		BARATE	00C ALE	88-94 G
- - We do not use the following data for averages, fits, limits, etc. - -				
-0.0413 ± 0.0060	66143	ABBIEND	1 K OP	9-93 GeV
${ }^{1}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.				
${ }^{2}$ ACCIARRI 00c use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.				
${ }^{3}$ ABBIENDI 01 K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.				

g^{τ}
$\frac{\text { VALUE }}{-0.0366 \pm 0.0010 ~ O U R ~} \frac{\text { EVTS }}{\text { FIT }}$
$-0.0365 \pm 0.0023 \quad 151.5 \mathrm{~K}$
$-0.0384 \pm 0.0026 \quad 103.0 k$
-0.0361 ± 0.0068
DOCUMENT ID TECN COMMENT
${ }^{1}$ ABBIENDI 010 OPAL $E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$ 2 ACCIARRI 00 C L3 $\quad E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$ BARATE $\quad 00 \mathrm{C}$ ALEP $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{2}$ ACCIARRI 00 C use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.
g_{v}^{6}
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 3 7 8 3} \pm 0.00041 \text { OUR FIT }}$
$-0.0358 \pm 0.0014 \quad 471.3 \mathrm{~K}$
$-0.0397 \pm 0.0020 \quad 379.4 \mathrm{k}$
$0.0397+0.0017$
-0.0383 ± 0.0018

1 ABBIENDI 010 and forward-backward lepton asymmetries.
${ }^{2}$ Using forward-backward lepton asymmetries.
${ }^{3}$ ACCIARRI 00C use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.
g_{v}^{u}
$\frac{V A L U E}{\mathbf{0 . 2 6 6} \pm \mathbf{0 . 0 3 4} \text { OUR AVERAGE }}$
0.270 ± 0.037
$0.201 \pm 0.112 \quad 156 \mathrm{k}$
$0.24{ }_{-0.11}^{+0.28}$
$0.399{ }_{-0.188}^{+0.152} \pm 0.066 \quad 5026$

DOCUMENT ID TECN COMMENT

1 ANDREEV	18 A H1	$e^{ \pm} p$
${ }^{2}$ ABAZOV	11 D D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.97 \mathrm{TeV}$
${ }^{3}$ LEP-SLC	06	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{4}$ ACOSTA	05 M CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - .
$0.14{ }_{-0.09}^{+0.09} \quad{ }^{5}$ ABRAMOWICZ16A ZEUS

${ }^{1}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams
${ }^{2}$ ABAZOV 11D study $p \bar{p} \rightarrow Z / \gamma^{*} e^{+} e^{-}$events using $5 \mathrm{fb}^{-1}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The candidate events are selected by requiring two isolated electromagnetic showers with $E_{T}>25 \mathrm{GeV}$, at least one electron in the central region and the di-electron mass in the range $50-1000 \mathrm{GeV}$. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u - and d - quarks and the value of $\sin ^{2} \theta_{\text {eff }}^{\ell}=0.2309 \pm 0.0008$ (stat) ± 0.0006 (syst).
${ }^{3}$ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s - and d-quark couplings are assumed to be identical.
${ }^{4}$ ACOSTA 05 M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard
Model. Higher order radiative corrections have not been taken into account
${ }^{5}$ ABRAMOWICZ 16A determine the Z^{0} couplings to u - and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
${ }^{6}$ ABT 16 determine the Z^{0} couplings to u - and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H 1 polarised data.
${ }^{7}$ AKTAS 06 fit the neutral current $\left(1.5 \leq \mathrm{Q}^{2} \leq 30,000 \mathrm{GeV}^{2}\right)$ and charged current $\left(1.5 \leq \mathrm{Q}^{2} \leq 15,000 \mathrm{GeV}^{2}\right)$ differential cross sections. In the determination of the u quark couplings the electron and d-quark couplings are fixed to their standard model values.
g_{V}^{d}
VALUE DOCUMENT ID EVTS TECN COMMENT

$-0.38 \underset{-0.05}{+0.04}$ OUR AVERAGE

- - We do not use the following data for averages, fits, limits, etc. - -

$\begin{array}{r}-0.41 \\ \hline-0.25\end{array}$		${ }^{5}$ ABRAMOWICZ16A ZEUS			
$-0.503+0.171$		${ }^{6}$ ABT	16		
-0.33 ± 0.33	1500	7 AKTAS	06	H1	$\begin{aligned} e^{ \pm} p & \rightarrow \bar{\nu}_{e}\left(\nu_{e}\right) X \\ \sqrt{s} & \approx 300 \mathrm{GeV} \end{aligned}$

${ }^{1}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with Iongitudinally polarized lepton beams.
${ }^{2}$ ABAZOV 11D study $p \bar{p} \rightarrow Z / \gamma^{*} e^{+} e^{-}$events using $5 \mathrm{fb}^{-1}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The candidate events are selected by requiring two isolated electromagnetic showers with $E_{T}>25 \mathrm{GeV}$, at least one electron in the central region and the di-electron mass in the range $50-1000 \mathrm{GeV}$. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u - and d - quarks and the value of $\sin ^{2} \theta_{\text {eff }}^{\ell}=0.2309 \pm 0.0008$ (stat) ± 0.0006 (syst).
${ }^{3}$ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
${ }^{4}$ ACOSTA 05 M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Z to the light quarks, assuming the electron couplings are as predicted by the
Model. Higher order radiative corrections have not been taken into account.
${ }^{5}$ ABRAMOWICZ 16A determine the Z^{0} couplings to u - and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
${ }^{6}$ ABT 16 determine the Z^{0} couplings to u - and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
${ }^{7}$ AKTAS 06 fit the neutral current ($1.5 \leq \mathrm{Q}^{2} \leq 30,000 \mathrm{GeV}^{2}$) and charged current $\left(1.5 \leq \mathrm{Q}^{2} \leq 15,000 \mathrm{GeV}^{2}\right)$ differential cross sections. In the determination of the d quark couplings the electron and u-quark couplings are fixed to their standard model values.

Z AXIAL-VECTOR COUPLINGS

These quantities are the effective axial-vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axialvector couplings is obtained from a measurement of the Z asymmetry parameters, A_{e}, A_{μ}, and A_{τ}. By convention the sign of g_{A}^{e} is fixed to be negative (and opposite to that of $g^{\nu} e$ obtained using ν_{e} scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_{e}, A_{μ}, and A_{τ} measurements. See

Gauge \& Higgs Boson Particle Listings
Z
the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p \bar{p}$ and $e p$ data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.
g_{A}^{e}
$\frac{\text { VALUE }}{\mathbf{- 0 . 5 0 1 1 1} \mathbf{\pm} \mathbf{0 . 0 0 0 3 5 ~ O U R ~ F I T}} \xrightarrow{\text { EVT }}$
$-0.528 \pm 0.123 \pm 0.0595026$
$-0.50062 \pm 0.00062 \quad 137.0 \mathrm{~K}$
$-0.5015 \pm 0.0007 \quad 124.4 \mathrm{k}$
$-0.50166+0.00057$
-0.4977 ± 0.0045

DOCUMENT ID TECN COMMENT

${ }^{1}$ ACOSTA	05m	CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
${ }^{2}$ ABBIENDI	010	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
${ }^{3}$ ACCIARRI	00C	L3	$E_{\mathrm{Cm}}^{e \ell e}=88-94 \mathrm{GeV}$
BARATE	00C	ALEP	$E_{\mathrm{Cm}}^{\mathrm{Ce}} \mathrm{C}=88-94 \mathrm{GeV}$
${ }^{4} \mathrm{ABE}$	95」	SLD	$E_{C m}^{e e}=91.31 \mathrm{GeV}$

${ }^{1}$ ACOSTA 05M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to $e^{+} e^{-}$, assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account
2 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{3}$ ACCIARRI 00c use their measurement of the τ polarization in addition to forward backward lepton asymmetries.
${ }^{4}$ ABE 95J obtain this result combining polarized Bhabha results with the $A_{L R}$ measurement of ABE 94C. The Bhabha results alone give $-0.4968 \pm 0.0039 \pm 0.0027$.
g_{A}^{μ}
VALUE
-0.50120 ± 0.00054 OUR FIT
$-0.50117 \pm 0.00099 \quad 182.8 \mathrm{~K}$
$-0.5009 \pm 0.0014 \quad 113.4 k$
-0.50046 ± 0.00093
1 ABBIENDI
${ }^{2}$ ACC
$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
BARATE 00 C ALEP $\quad E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - .
$-0.520 \pm 0.015 \quad 66143 \quad{ }^{3}$ ABBIENDI 01 K OPAL $E_{\mathrm{Cm}}^{e e}=89-93 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{2}$ ACCIARRI $00 C$ use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.
${ }^{3}$ ABBIENDI 01 K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of nitial-final state interference.

${ }_{8}^{\pi}{ }_{A}^{\pi}$

$\frac{V A L U E}{-0.50204 \pm 0.00064 \text { OUR FIT }}$
-0.50165 ± 0.00124
$-0.50165 \pm 0.00124 \quad 151.5 \mathrm{~K}$
$-0.5023 \pm 0.0017 \quad$ 103.0k
0.5021
103.0k

00C ALEP $E_{\mathrm{Cm}}^{\mathrm{ee}}=88-94 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{2}$ ACCIARRI $00 C$ use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.
g_{A}^{ℓ}
$\frac{V A L U E}{-0.50123} \pm \mathbf{0 . 0 0 0 2 6}$ OUR FIT
$-0.50089 \pm 0.00045 \quad 471.3 \mathrm{~K}$
$-0.5007 \pm 0.0005 \quad 379.4 k$
$-0.50153+0.00053-340.8 k$
$-0.50150+0.00046$ 500k
${ }^{1}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.
${ }^{2}$ ACCIARRI 00 C use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.

g_{A}^{u}

VALUE
$0.519{ }_{-0.033}^{+0.028}$ OUR AVERAGE

0.548 ± 0.036		1 ANDREEV	18A	H1	$e^{ \pm} p$
0.501 ± 0.110	156k	2 ABAZOV	11D	D0	$E_{\mathrm{Cm}}^{p \bar{p}}=1.97 \mathrm{TeV}$
${ }_{0.47}{ }_{-0.35}^{+0.05}$		3 LEP-SLC	06		$E_{\mathrm{Cm}}^{e \mathrm{ee}}=88-94 \mathrm{GeV}$
$0.441+0.207 \pm 0.067$	5026	${ }^{4}$ ACOSTA	05m	CDF	$E_{\mathrm{Cm}}^{p \bar{P}}=1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$0.50{ }_{-0.05}^{+0.12}$		${ }^{5}$ ABRAMOWICZ16A ZEUS			
$0.532_{-0.063}^{+0.107}$		${ }^{6}$ ABT	16		
0.57 ± 0.08	1500	7 AKTAS	06	H1	$\begin{aligned} e^{ \pm} p & \rightarrow \bar{\nu}_{e}\left(\nu_{e}\right) X \\ \sqrt{s} & \approx 300 \mathrm{GeV} \end{aligned}$

${ }^{1}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with Iongitudinally polarized lepton beams.
${ }^{2}$ ABAZOV 11D study $p \bar{p} \rightarrow Z / \gamma^{*} e^{+} e^{-}$events using $5 \mathrm{fb}^{-1}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The candidate events are selected by requiring two isolated electromagnetic showers with $E_{T}>25 \mathrm{GeV}$, at least one electron in the central region and the di-electron mass in the range $50-1000 \mathrm{GeV}$. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u - and d - quarks and the value of $\sin ^{2} \theta_{e f f}^{\ell}=0.2309 \pm 0.0008$ (stat) ± 0.0006 (syst).
${ }^{3}$ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
${ }^{4}$ ACOSTA 05M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
${ }^{5}$ ABRAMOWICZ 16A determine the Z^{0} couplings to u - and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
${ }^{6}$ ABT 16 determine the Z^{0} couplings to u - and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
${ }^{7}$ AKTAS 06 fit the neutral current ($1.5 \leq \mathrm{Q}^{2} \leq 30,000 \mathrm{GeV}^{2}$) and charged current $\left(1.5 \leq \mathrm{Q}^{2} \leq 15,000 \mathrm{GeV}^{2}\right)$ differential cross sections. In the determination of the u quark couplings the electron and d-quark couplings are fixed to their standard model values.
\boldsymbol{g}_{A}^{d}
VALUE EVTS DOCUMENT ID TECN COMMENT
$-0.527{ }_{-0.028}^{+0.040}$ OUR AVERAGE

-0.619 ± 0.108		1	1 ANDREEV	18 A
-0.497 ± 0.165	156 k 1	$e^{ \pm} p$		
2ABAZOV	11 D	D 0	$E_{\mathrm{cm}}^{p \bar{p}}=1.97 \mathrm{TeV}$	

-0.497 ± 0.165	156 k	${ }^{2}$ ABAZOV	$11 \mathrm{D} \mathrm{D0}$	$E_{\mathrm{Cm}}^{p p}=1.97 \mathrm{TeV}$
$-0.52{ }_{-0.03}^{+0.05}$		${ }^{3}$ LEP-SLC	06	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$-0.016+0.346$				
0.091	5026	${ }^{4}$ ACOSTA	05 M CDF	$E_{\mathrm{Cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$-0.56{ }_{-0.15}^{+0.41}$		${ }^{5}$ ABRAMOWICZ16A ZEUS			
$-0.409+0.373$		${ }^{6}$ ABT	16		
-0.80 ± 0.24	1500	${ }^{7}$ AKTAS	06	H1	$\begin{aligned} e^{ \pm} p & \rightarrow \bar{\nu}_{e}\left(\nu_{e}\right) X \\ \sqrt{s} & \approx 300 \mathrm{GeV} \end{aligned}$

${ }^{1}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic $e^{+} p$ and $e^{-} p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.
${ }^{2}$ ABAZOV 11D study $p \bar{p} \rightarrow Z / \gamma^{*} e^{+} e^{-}$events using $5 \mathrm{fb}^{-1}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The candidate events are selected by requiring two isolated electromagnetic showers with $E_{T}>25 \mathrm{GeV}$, at least one electron in the central region and the di-electron mass in the range $50-1000 \mathrm{GeV}$. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u - and d - quarks and the value of $\sin ^{2} \theta_{\text {eff }}^{\ell}=0.2309 \pm 0.0008$ (stat) ± 0.0006 (syst).
${ }^{3}$ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
${ }^{4}$ ACOSTA 05 M determine the forward-backward asymmetry of $e^{+} e^{-}$pairs produced via $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}$in $15 \mathrm{M}\left(e^{+} e^{-}\right)$effective mass bins ranging from 40 GeV to 600 GeV . These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
${ }^{5}$ ABRAMOWICZ 16A determine the Z^{0} couplings to u - and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
${ }^{6}$ ABT 16 determine the Z^{0} couplings to u - and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
7^{7} AKTAS 06 fit the neutral current $\left(1.5 \leq Q^{2} \leq 30,000 \mathrm{GeV}^{2}\right)$ and charged current $\left(1.5 \leq \mathrm{Q}^{2} \leq 15,000 \mathrm{GeV}^{2}\right)$ differential cross sections. In the determination of the d quark couplings the electron and u-quark couplings are fixed to their standard model values.

Z COUPLINGS TO NEUTRAL LEPTONS

Averaging over neutrino species, the invisible Z decay width determines the effective neutrino coupling $g^{\nu} \ell$. For $g^{\nu} e$ and $g^{\nu} \mu, \nu_{e} e$ and $\nu_{\mu} e$ scattering results are combined with g_{A}^{e} and g_{V}^{e} measurements at the Z mass to obtain g^{ν} and $g^{\nu} \mu$ following NOVIKOV 93c.
$\mathbf{0 . 5 0 0 7 6} \pm \mathbf{0 . 0 0 0 7 6} \quad 1$ LEP-SLC $06 \quad \frac{E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}}{E^{e}}$
${ }^{1}$ From invisible Z-decay width.
$g^{\nu_{e}}$
$\frac{\text { VALUE }}{\mathbf{0 . 5 2 8} \pm \mathbf{0 . 0 8 5}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{94}{\text { VILAIN }} \frac{\text { TECN }}{\text { CHM2 }} \frac{\text { COMMENT }}{\text { From } \nu_{\mu} e \text { and } \nu_{e} e \text { scattering }}$
${ }^{1}$ VILAIN 94 derive this value from their value of $g^{\nu} \mu$ and their ratio $g^{\nu} e / g^{\nu} \mu=$ $1.05_{-0.18}^{+0.15}$.

DOCUMENT ID TECN COMMENT
$1 \frac{1}{\text { VILAIN }} \frac{94}{\text { CHM2 }}$ From ν_{μ} e scattering
${ }^{1}$ VILAIN 94 derive this value from their measurement of the couplings $g_{A}^{e \nu_{\mu}}=-0.503 \pm$ 0.017 and $g_{V}^{e \nu_{\mu}}=-0.035 \pm 0.017$ obtained from ν_{μ} e scattering. We have re-evaluated this value using the current PDG values for g_{A}^{e} and g_{V}^{e}.

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are defined as

$$
A_{f}=\frac{2 g_{V}^{f} g_{A}^{f}}{\left(g_{V}^{f}\right)^{2}+\left(g_{A}^{f}\right)^{2}}
$$

where g_{V}^{f} and g_{A}^{f} are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the note "The Z boson" and ref. LEP-SLC 06.
$\boldsymbol{A}_{\boldsymbol{e}}$
Using polarized beams, this quantity can also be measured as $\left(\sigma_{L}-\sigma_{R}\right) /\left(\sigma_{L}+\sigma_{R}\right)$, where σ_{L} and σ_{R} are the $e^{+} e^{-}$production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.
VALUE $\frac{\text { EVTS }}{0.1515} 0$ DOCUMENTID TECN COMMENT $\mathbf{0 . 1 5 1 5} \pm \mathbf{0 . 0 0 1 9}$ OUR AVERAGE
$0.1454 \pm 0.0108 \pm 0.0036$
0.1516 ± 0.0021
$0.1504 \pm 0.0068 \pm 0.0008$
$0.1382 \pm 0.0116 \pm 0.0005$
$0.1678 \pm 0.0127 \pm 0.0030$
$0.162 \pm 0.041 \pm 0.014$
$0.202 \pm 0.038 \pm 0.008$
${ }^{1}$ ABBIENDI 010 fit for A_{e} and A_{τ} from measurements of the τ polarization at varying τ production angles. The correlation between A_{e} and A_{τ} is less than 0.03 .
${ }^{2}$ ABE 01B use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544 ± 0.0060. This is combined with leftright production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.
${ }^{3}$ HEISTER 01 obtain this result fitting the τ polarization as a function of the polar production angle of the τ.
${ }^{4}$ ABREU OOE obtain this result fitting the τ polarization as a function of the polar τ production angle. This measurement is a combination of different analyses (exclusive τ decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).
${ }^{5}$ Derived from the measurement of forward-backward τ polarization asymmetry.
${ }^{6}$ ABE 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_{Q}^{\mathrm{obS}}=0.225 \pm 0.056 \pm 0.019$, in hadronic Z decays. If they combine this value of A_{Q}^{obS} with their earlier measurement of $A_{L R}^{\mathrm{obS}}$ they determine A_{e} to be $0.1574 \pm 0.0197 \pm 0.0067$ independent of the beam polarization.
${ }^{7}$ ABE 95」 obtain this result from polarized Bhabha scattering.

$\boldsymbol{A}_{\boldsymbol{\mu}}$

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $\mu^{+} \mu^{-}$production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_{e}.
$\frac{\text { VALUE }}{\mathbf{0 . 1 4 2} \pm \mathbf{0 . 0 1 5}} \frac{E V T S}{16844} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{ABE}} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.153 \pm 0.012 \quad 1.7 \mathrm{M} \quad{ }^{2} \mathrm{AAD} \quad 15 \mathrm{BT}$ ATLS $\quad E_{\mathrm{Cm}}^{p p}=7 \mathrm{TeV}$
${ }^{1}$ ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\mu^{+} \mu^{-}$decays of the Z boson obtained with a polarized electron beam.
${ }^{2}$ AAD 15BT study $p p \rightarrow Z \rightarrow \ell^{+} \ell^{-}$events where ℓ is an electron or a muon in the dilepton mass region $70-1000 \mathrm{GeV}$. The background in the Z peak region is estimated to be $<1 \%$ for the muon channel. The muon asymmetry parameter is derived from the measured forward-backward asymmetry assuming the value of the quark asymmetry parameter from the SM. For this reason it is not used in the average.

$\boldsymbol{A}_{\boldsymbol{\tau}}$

The LEP Collaborations derive this quantity from the measurement of the τ polarization in $Z \rightarrow \tau^{+} \tau^{-}$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z \rightarrow \tau^{+} \tau^{-}$produced using a polarized e^{-}beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_{e}.
$\frac{V A L U E}{0.143} \mathbf{\pm 0 . 0 0 4}$ OUR AVERAGE
$0.1456 \pm 0.0076 \pm 0.0057144810$
$0.136 \pm 0.015 \quad 16083$
$0.1451 \pm 0.0052 \pm 0.0029$
$0.1359 \pm 0.0079 \pm 0.0055 \quad 105000$
$0.1476 \pm 0.0088 \pm 0.0062 \quad 137092$

DOCUMENT ID TECN COMMENT

$$
\begin{array}{llll}
{ }^{1} \text { ABBIENDI } & 010 & \text { OPAL } & E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV} \\
2 \text { ABE } & 01 \mathrm{~B} & \text { SLD } & E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV} \\
{ }^{3} \text { HEISTER } & 01 & \text { ALEP } & E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV} \\
{ }^{4} \text { ABREU } & 00 \mathrm{E} & \text { DLPH } & E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV} \\
\quad \text { ACCIARRI } & 98 \mathrm{H} & \text { L3 } & E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}
\end{array}
$$

${ }^{1}$ ABBIENDI 010 fit for A_{e} and A_{τ} from measurements of the τ polarization at varying τ production angles. The correlation between A_{e} and A_{τ} is less than 0.03 .
${ }^{2}$ ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\tau^{+} \tau^{-}$decays of the Z boson obtained with a polarized electron beam
${ }^{3}$ HEISTER 01 obtain this result fitting the τ polarization as a function of the polar ${ }_{4}$ production angle of the τ.
${ }^{4}$ ABREU 00 E obtain this result fitting the τ polarization as a function of the polar τ production angle. This measurement is a combination of different analyses (exclusive τ decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).
A_{s}
The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of e^{-}polarization (positive and negative) and to the $K^{+} K^{-}$and $K^{ \pm} K_{S}^{0}$ strange particle tagging modes in the hadronic final states.
VALUE EVTS DOCUMENTID TECN COMMENT
$\mathbf{0 . 8 9 5} \pm \mathbf{0 . 0 6 6} \pm \mathbf{0 . 0 6 2} 2870 \quad 1 \mathrm{ABE} \quad 00 \mathrm{D}$ SLD $E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
${ }^{1}$ ABE 00D $\operatorname{tag} Z \rightarrow s \bar{s}$ events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum $K^{ \pm}$or K_{S}^{0}.

$\boldsymbol{A}_{\boldsymbol{C}}$

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $c \bar{C}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the $Z-e-e$ coupling parameter A_{e}. OUR FIT is obtained by a simultaneous fit to several c - and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06 .

$\mathbf{0 . 6 7 0} \pm \mathbf{0 . 0 2 7}$ OUR FIT
$0.6712 \pm 0.0224 \pm 0.0157$
${ }^{1} \mathrm{ABE}$
05 SLD $E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.583 \pm 0.055 \pm 0.055 \quad 2 \mathrm{ABE} \quad 02 \mathrm{G} \quad \mathrm{SLD} \quad E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV}$
$0.688 \pm 0.041 \quad{ }^{3} \mathrm{ABE} \quad 01 \mathrm{C}$ SLD $E_{\mathrm{Cm}}^{\mathrm{ee}}=91.25 \mathrm{GeV}$
${ }^{1}$ ABE 05 use hadronic Z decays collected during 1996-98 to obtain an enriched sample of $c \bar{C}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The $c \bar{c}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The
charge of the underlying c-quark is obtained with an algorithm that takes into account charge of the underlying c-quark is obtained with an algorithm that takes into account
the net charge of the vertex as well as the charge of tracks emanating from the vertex and the net charge of the vertex as well as the charge of tracks emanating from the vertex and
identified as kaons. This yields (9970 events) $A_{C}=0.6747 \pm 0.0290 \pm 0.0233$. Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.
${ }^{2}$ ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_{b} and A_{C}.
${ }^{3}$ ABE 01C tag $Z \rightarrow c \bar{c}$ events using two techniques: exclusive reconstruction of D^{*+}, D^{+} and D^{0} mesons and the soft pion tag for $D^{*+} \rightarrow D^{0} \pi^{+}$. The large background from D mesons produced in $b \bar{b}$ events is separated efficiently from the signal using precision vertex information. When combining the A_{C} values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

\boldsymbol{A}_{b}

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $b \bar{B}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the $Z-e-e$ coupling parameter A_{e}. OUR FIT is obtained by a simultaneous fit to several c - and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06 .
VALUE DOCUMENTID EVTS TECN COMMENT
0.923 ± 0.020 OUR FIT
$0.9170 \pm 0.0147 \pm 0.0145 \quad 1 \mathrm{ABE} \quad 05 \quad \mathrm{SLD} \quad E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.907 \pm 0.020 \pm 0.024 \quad 48028 \quad{ }^{2} \mathrm{ABE} \quad 03 \mathrm{~F} \quad \mathrm{SLD} \quad E_{\mathrm{Cm}}^{e e}=91.24 \mathrm{GeV}$
$0.919 \pm 0.030 \pm 0.024 \quad 3 \mathrm{ABE} \quad 02 \mathrm{G}$ SLD $E_{\mathrm{Cm}}^{e e e}=91.24 \mathrm{GeV}$
$0.855 \pm 0.088 \pm 0.102 \quad 7473 \quad{ }^{4} \mathrm{ABE} \quad 99 \mathrm{~L} \quad$ SLD $\quad E_{\mathrm{Cm}}^{e e}=91.27 \mathrm{GeV}$
${ }^{1}$ ABE 05 use hadronic Z decays collected during 1996-98 to obtain an enriched sample of $b \bar{b}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b-quark is obtained with an algorithm that takes into account charge of the underlying b-quark is obtained with an algorithm that takes into account
the net charge of the vertex as well as the charge of tracks emanating from the vertex the net charge of the vertex as well as the charge of tracks emanating from the vertex
and identified as kaons. This yields (25917 events) $A_{b}=0.9173 \pm 0.0184 \pm 0.0173$. and identified as kaons. This yields $\left(25917\right.$ events) $A_{b}=0.9173 \pm 0.0184 \pm 0.0173$.
Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G Taking into account all correlations with earlier results repo
and ABE 99L, they obtain the quoted overall SLD result.
2 ABE 03F obtain an enriched sample of $b \bar{b}$ events tagging on the invariant mass of a 3 -dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996-1998 data sample they measure $A_{b}=0.906 \pm 0.022 \pm 0.023$. The value quoted here is obtained combining the above with the result of ABE 98I (1993-1995 data sample).
${ }^{3}$ ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons.
A maximum likelihood fit is performed to extract simultaneously A_{b} and A_{C}.
${ }^{4}$ ABE 99L obtain an enriched sample of $b \bar{b}$ events tagging with an inclusive vertex mass cut. For distinguishing b and \bar{b} quarks they use the charge of identified $K^{ \pm}$.

TRANSVERSE SPIN CORRELATIONS IN $Z \Rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$

The correlations between the transverse spin components of $\tau^{+} \tau^{-}$produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$
C_{T T}=\frac{\left|g_{A}^{\tau}\right|^{2}-\left|g_{V}^{\tau}\right|^{2}}{\left|g_{A}^{\tau}\right|^{2}+\left|g_{V}^{\tau}\right|^{2}}
$$

Gauge \& Higgs Boson Particle Listings

$C_{T N}=-2 \frac{\left\|g_{A}^{\tau}\right\|\left\|g_{V}^{\tau}\right\|}{\left\|g_{A}^{\tau}\right\|^{2}+\left\|g_{V}^{\tau}\right\|^{2}} \sin \left(\Phi_{g_{V}^{\tau}}-\Phi_{g_{A}^{\tau}}\right)$					
$C_{T T}$ refers to the transverse-transverse (within the collision plane) spin correlation and $C_{T N}$ refers to the transverse-normal (to the collision plane) spin correlation.					
The Iongitudinal τ polarization $P_{\tau}\left(=-A_{\tau}\right)$ is given by:					
$P_{\tau}=-2 \frac{\left\|g_{A}^{\tau}\right\|\left\|g_{V}^{\tau}\right\|}{\left\|g_{A}^{\tau}\right\|^{2}+\left\|g_{V}^{\tau}\right\|^{2}} \cos \left(\Phi_{g_{V}^{\tau}}-\Phi_{g_{A}^{\tau}}\right)$					
Here Φ is the phase and the phase difference $\Phi_{g_{V}^{\tau}}-\Phi_{g_{A}^{\tau}}$ can be obtained using both the measurements of $C_{T N}$ and P_{τ}.					
$C_{T T}$					
$\frac{\text { VALUE }}{\mathbf{1 . 0 1} \pm \mathbf{0 . 1 2 ~ O U R ~ A V E R A ~}}$ EVTS $\frac{\text { DOCUMENT ID }}{\text { I }}$ TECN COMMENT					
$0.87 \pm 0.20_{-0.12}^{+0.10}$	9.1 k	ABREU	97G	DLPH	$E_{\text {Cm }}^{e e}=91.2 \mathrm{GeV}$
$1.06 \pm 0.13 \pm 0.05$	120k	BARATE	97D	ALEP	$E_{\mathrm{cm}}^{e \mathrm{e}}=91.2 \mathrm{GeV}$
$C_{\text {TN }}$					
VALUE	EVTS	DOCUMENT	-	TECN	COMMENT
$\mathbf{0 . 0 8 \pm 0 . 1 3} \pm \mathbf{0 . 0 4}$	120k	1 BARATE	97D	ALEP	$E_{\mathrm{Cm}}^{e e}=91.2 \mathrm{GeV}$
${ }^{1}$ BARATE 97D combine their value of $C_{T N}$ with the world average $P_{\tau}=-0.140 \pm 0.007$ to obtain $\tan \left(\Phi_{g_{V}^{\tau}}-\Phi_{g_{A}^{\tau}}\right)=-0.57 \pm 0.97$.					

FORWARD-BACKWARD $e^{+} e^{-} \rightarrow f \bar{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in $e^{+} e^{-}$interactions. Details of heavy flavor (c - or b-quark) tagging at LEP are described in the note on "The Z boson" and ref. LEP-SLC 06. The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters $M_{Z}=91.187 \mathrm{GeV}, M_{\text {top }}=174.3 \mathrm{GeV}, M_{\text {Higgs }}=150$ $\mathrm{GeV}, \alpha_{S}=0.119, \alpha^{(5)}\left(M_{Z}\right)=1 / 128.877$ and the Fermi constant $G_{F}=$ $1.16637 \times 10^{-5} \mathrm{GeV}^{-2}$ (see the note on "The Z boson" for references). For non-LEP data the Standard Model predictions are as given by the authors of the respective publications.

\section*{$\longrightarrow A_{F B}^{(0, e)}$ CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow e^{+} e^{-}$
 OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3 / 4) A_{e}^{2}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.
 | ASYMMETRY (\%) | STD.
 MODEL | $\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$ | DOCUMENT ID | | TECN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.45 ± 0.25 OUR FIT | | | | | |
| 0.89 ± 0.44 | 1.57 | 91.2 | 1 ABBIENDI | 01A | OPAL |
| 1.71 ± 0.49 | 1.57 | 91.2 | ABREU | 00F | DLPH |
| 1.06 ± 0.58 | 1.57 | 91.2 | ACCIARRI | 00C | L3 |
| 1.88 ± 0.34 | 1.57 | 91.2 | 2 BARATE | 00c | ALEP |

${ }^{1}$ ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in t-channel prediction.
${ }^{2}$ BARATE 00c error includes approximately 0.31 due to statistics, 0.06 due to experimental systematics, and 0.13 due to the theoretical uncertainty in t-channel prediction.

$A_{F B}^{(0, \mu)}$ CHARGE ASYMMETRY IN $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mu^{+} \mu^{-}$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3 / 4) A_{e} A_{\mu}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (\%)	$\begin{aligned} & \text { STD. } \\ & \text { MODEL } \\ & \hline \end{aligned}$	$\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
1.69 0.13 OUR FIT					
1.59 ± 0.23	1.57	91.2	1 ABBIENDI	01A	OPAL
1.65 ± 0.25	1.57	91.2	ABREU	00F	DLPH
1.88 ± 0.33	1.57	91.2	ACCIARRI	00C	L3
1.71 ± 0.24	1.57	91.2	${ }^{2}$ BARATE	00c	ALEP
- - We do not use the following data for averages, fits, limits, etc. - -					
9 ± 30	-1.3	20	${ }^{3}$ ABREU	95m	DLPH
7 ± 26	-8.3	40	${ }^{3}$ ABREU	95M	DLPH
-11 ± 33	-24.1	57	${ }^{3}$ ABREU	95M	DLPH
-62 ± 17	-44.6	69	${ }^{3}$ ABREU	95m	DLPH
-56 ± 10	-63.5	79	${ }^{3}$ ABREU	95M	DLPH
-13 ± 5	-34.4	87.5	${ }^{3}$ ABREU	95M	DLPH
$-29.0 \pm 4.0 \pm 0.5$	-32.1	56.9	${ }^{4} \mathrm{ABE}$	901	VNS
$-9.9 \pm 1.5 \pm 0.5$	-9.2	35	HEGNER	90	JADE
0.05 ± 0.22	0.026	91.14	${ }^{5}$ ABRAMS	89D	MRK2
-43.4 ± 17.0	-24.9	52.0	${ }^{6}$ BACALA	89	AMY
-11.0 ± 16.5	-29.4	55.0	${ }^{6}$ BACALA	89	AMY

-30.0 ± 12.4	-31.2	56.0	${ }^{6}$ BACALA	89	AMY
-46.2 ± 14.9	-33.0	57.0	${ }^{6}$ BACALA	89	AMY
-29 ± 13	-25.9	53.3	ADACHI	88C	TOPZ
$+5.3 \pm 5.0 \pm 0.5$	-1.2	14.0	ADEVA	88	MRKJ
$-10.4 \pm 1.3 \pm 0.5$	-8.6	34.8	ADEVA	88	MRKJ
$-12.3 \pm 5.3 \pm 0.5$	-10.7	38.3	ADEVA	88	MRKJ
$-15.6 \pm 3.0 \pm 0.5$	-14.9	43.8	ADEVA	88	MRKJ
-1.0 ± 6.0	-1.2	13.9	BRAUNSCH...	88D	TASS
$-9.1 \pm 2.3 \pm 0.5$	-8.6	34.5	BRAUNSCH...	88D	TASS
$-10.6 \pm 2.2 \pm 0.5$	-8.9	35.0	BRAUNSCH...	88D	TASS
$-17.6 \pm 4.4 \pm 0.5$	-15.2	43.6	BRAUNSCH...	88D	TASS
$-4.8 \pm 6.5 \pm 1.0$	-11.5	39	BEHREND	87C	CELL
$-18.8 \pm 4.5 \pm 1.0$	-15.5	44	BEHREND	87C	CELL
$+2.7 \pm 4.9$	-1.2	13.9	BARTEL	86C	JADE
$-11.1 \pm 1.8 \pm 1.0$	-8.6	34.4	BARTEL	86C	JADE
$-17.3 \pm 4.8 \pm 1.0$	-13.7	41.5	BARTEL	86C	JADE
$-22.8 \pm 5.1 \pm 1.0$	-16.6	44.8	BARTEL	86C	JADE
$-6.3 \pm 0.8 \pm 0.2$	-6.3	29	ASH	85	MAC
$-4.9 \pm 1.5 \pm 0.5$	-5.9	29	DERRICK	85	HRS
-7.1 ± 1.7	-5.7	29	LEVI	83	MRK2
-16.1 ± 3.2	-9.2	34.2	BRANDELIK	82C	TASS

${ }^{1}$ ABBIENDI 01A error is almost entirely on account of statistics.
2 BARATE 00c error is almost entirely on account of statistics.
${ }^{3}$ ABREU 95 m perform this measurement using radiative muon-pair events associated with high-energy isolated photons.
${ }^{4}$ ABE 901 measurements in the range $50 \leq \sqrt{s} \leq 60.8 \mathrm{GeV}$.
${ }^{5}$ ABRAMS 89D asymmetry includes both $9 \mu^{+} \mu^{-}$and $15 \tau^{+} \tau^{-}$events.
${ }^{6}$ BACALA 89 systematic error is about 5%.

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3 / 4) A_{e} A_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.					
ASYMMETRY (\%)	$\begin{aligned} & \text { STD. } \\ & \text { MODEL } \\ & \hline \end{aligned}$	$\begin{aligned} & \sqrt{s} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
1.88土 0.17 OUR FIT					
1.45 ± 0.30	1.57	91.2	${ }^{1}$ ABBIENDI	01A	OPAL
2.41 ± 0.37	1.57	91.2	ABREU	00F	DLPH
2.60 ± 0.47	1.57	91.2	ACCIARRI	00c	L3
1.70 ± 0.28	1.57	91.2	2 BARATE	00c	ALEP
- - We do not use the following data for averages, fits, limits, etc. - -					
$-32.8 \pm 6.4 \pm 1.5$	-32.1	56.9	${ }^{3}$ ABE	901	VNS
$-8.1 \pm 2.0 \pm 0.6$	-9.2	35	HEGNER	90	JADE
-18.4 ± 19.2	-24.9	52.0	${ }^{4}$ BACALA	89	AMY
-17.7 ± 26.1	-29.4	55.0	${ }^{4}$ BACALA	89	AMY
-45.9 ± 16.6	-31.2	56.0	${ }^{4}$ BACALA	89	AMY
-49.5 ± 18.0	-33.0	57.0	${ }^{4}$ BACALA	89	AMY
-20 ± 14	-25.9	53.3	ADACHI	88C	TOPZ
$-10.6 \pm 3.1 \pm 1.5$	-8.5	34.7	ADEVA	88	MRKJ
$-8.5 \pm 6.6 \pm 1.5$	-15.4	43.8	ADEVA	88	MRKJ
$-6.0 \pm 2.5 \pm 1.0$	8.8	34.6	BARTEL	85F	JADE
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F	JADE
$-5.5 \pm 1.2 \pm 0.5$	-0.063	29.0	FERNANDEZ	85	MAC
-4.2 ± 2.0	0.057	29	LEVI	83	MRK2
-10.3 ± 5.2	-9.2	34.2	BEHREND	82	CELL
-0.4 ± 6.6	-9.1	34.2	BRANDELIK	82C	TASS

${ }^{1}$ ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.
${ }^{2}$ BARATE 00c error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.
${ }^{3} \mathrm{ABE} 901$ measurements in the range $50 \leq \sqrt{s} \leq 60.8 \mathrm{GeV}$.
${ }^{4}$ BACALA 89 systematic error is about 5%.

- A A $A_{F B}^{(0 . \ell)}$ Charge ASYMMETRY IN $e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}-$

For the Z peak, we report the pole asymmetry defined by $(3 / 4) A_{\ell}^{2}$ as determined by the five-parameter fit to cross-section and lepton forwardbackward asymmetry data assuming lepton universality. For details see the note "The Z boson" and ref. LEP-SLC 06 .

ASYMMETRY (\%)	$\begin{aligned} & \text { STD. } \\ & \text { MODEL } \end{aligned}$	$\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
$\overline{1.71 \pm 0.10 ~ O U R ~ F I T ~}$					
1.45 ± 0.17	1.57	91.2	${ }^{1}$ ABBIENDI	01A	OPAL
1.87 ± 0.19	1.57	91.2	ABREU	00F	DLPH
1.92 ± 0.24	1.57	91.2	ACCIARRI	00C	L3
1.73 ± 0.16	1.57	91.2	2 BARATE	00c	ALEP

${ }^{1}$ ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in t-channel prediction. ${ }^{2}$ BARATE 00 c error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in t-channel prediction.

$A_{F B}^{(0, u)}$ CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow u \bar{u}$

${ }^{1}$ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

$\longrightarrow A_{F B}^{(0, s)}$ CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow s \bar{s} \longrightarrow$

The s-quark asymmetry is derived from measurements of the forwardbackward asymmetry of fast hadrons containing an squark.

ASYMMETRY (\%)	$\begin{aligned} & \text { STD. } \\ & \text { MODEL } \end{aligned}$	$\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \end{aligned}$	DOCUMENT ID		TECN
9.8 ± 1.1 OUR AVERAGE					
$10.08 \pm 1.13 \pm 0.40$	10.1	91.2	${ }^{1}$ ABREU	00B	DLPH
$6.8 \pm 3.5 \pm 1.1$	10.1	91.2	2 ACKERSTAFF	97T	OPAL

${ }^{1}$ ABREU 00B tag the presence of an s quark requiring a high-momentum-identified charged kaon. The s-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected d - and u-quark asymmetries from the Standard Model and using the measured values for the c - and b-quark asymmetries
${ }^{2}$ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using $\operatorname{SU}(2)$ isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

$A_{F B}^{(0, c)}$ CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow c \bar{c}$

OUR FIT, which is obtained by a simultaneous fit to several c - and b quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the \boldsymbol{Z} pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

ASYMMETRY (\%)	STD. MODEL	$\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
7.07 ± 0.35 OUR FIT					
$6.31 \pm 0.93 \pm 0.65$	6.35	91.26	${ }^{1}$ ABDALLAH	04F	DLPH
$5.68 \pm 0.54 \pm 0.39$	6.3	91.25	${ }^{2}$ ABBIENDI	03P	OPAL
$6.45 \pm 0.57 \pm 0.37$	6.10	91.21	${ }^{3}$ HEISTER	02H	ALEP
$6.59 \pm 0.94 \pm 0.35$	6.2	91.235	4 ABREU	99 Y	DLPH
$6.3 \pm 0.9 \pm 0.3$	6.1	91.22	${ }^{5}$ BARATE	980	ALEP
$6.3 \pm 1.2 \pm 0.6$	6.1	91.22	${ }^{6}$ ALEXANDER	97C	OPAL
$8.3 \pm 3.8 \pm 2.7$	6.2	91.24	7 ADRIANI	92D	L3
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.1 \pm 3.5 \pm 0.5$	-3.5	89.43	${ }^{1}$ ABDALLAH	04F	DLPH
$11.0 \pm 2.8 \pm 0.7$	12.3	92.99	1 ABDALLAH	04F	DLPH
$-6.8 \pm 2.5 \pm 0.9$	-3.0	89.51	2 ABBIENDI	03P	OPAL
$14.6 \pm 2.0 \pm 0.8$	12.2	92.95	${ }^{2}$ ABBIENDI	03P	OPAL
$-12.4 \pm 15.9 \pm 2.0$	-9.6	88.38	${ }^{3}$ HEISTER	02H	ALEP
$-2.3 \pm 2.6 \pm 0.2$	-3.8	89.38	${ }^{3}$ HEISTER	02H	ALEP
$-0.3 \pm 8.3 \pm 0.6$	0.9	90.21	${ }^{3}$ HEISTER	02H	ALEP
$10.6 \pm 7.7 \pm 0.7$	9.6	92.05	${ }^{3}$ HEISTER	02H	ALEP
$11.9 \pm 2.1 \pm 0.6$	12.2	92.94	${ }^{3}$ HEISTER	02H	ALEP
$12.1 \pm 11.0 \pm 1.0$	14.2	93.90	${ }^{3}$ HEISTER	02H	ALEP
- $4.96 \pm 3.68 \pm 0.53$	-3.5	89.434	4 ABREU	99Y	DLPH
$11.80 \pm 3.18 \pm 0.62$	12.3	92.990	4 ABREU	99 Y	DLPH
$-1.0 \pm 4.3 \pm 1.0$	-3.9	89.37	${ }^{5}$ BARATE	980	ALEP
$11.0 \pm 3.3 \pm 0.8$	12.3	92.96	${ }^{5}$ BARATE	980	ALEP
$3.9 \pm 5.1 \pm 0.9$	-3.4	89.45	${ }^{6}$ ALEXANDER	97C	OPAL
$15.8 \pm 4.1 \pm 1.1$	12.4	93.00	${ }^{6}$ ALEXANDER	97C	OPAL
$-12.9 \pm 7.8 \pm 5.5$	-13.6	35	BEHREND	90D	CELL
$7.7 \pm 13.4 \pm 5.0$	-22.1	43	BEHREND	90D	CELL
$-12.8 \pm 4.4 \pm 4.1$	-13.6	35	ELSEN	90	JADE
$-10.9 \pm 12.9 \pm 4.6$	-23.2	44	ELSEN	90	JADE
-14.9 ± 6.7	-13.3	35	OULD-SAADA	89	JADE

${ }^{1}$ ABDALLAH 04F tag b - and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c \bar{C}$ and $b \bar{b}$ events are obtained using lifetime information.
${ }^{2}$ ABBIENDI 03p tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average $B^{0}-\bar{B}^{0}$ mixing.
${ }^{3}$ HEISTER 02 H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.
${ }^{4}$ ABREU 99Y tag $Z \rightarrow b \bar{b}$ and $Z \rightarrow c \bar{C}$ events by an exclusive reconstruction of several D meson decay modes $\left(D^{*+}, D^{0}\right.$, and D^{+}with their charge-conjugate states).
${ }^{5}$ BARATE 980 tag $Z \rightarrow c \bar{C}$ events requiring the presence of high-momentum reconstructed D^{*+}, D^{+}, or D^{0} mesons.
${ }^{6}$ ALEXANDER 97c identify the b and c events using a D / D^{*} tag
${ }^{7}$ ADRIANI 92D use both electron and muon semileptonic decays.

$A_{F B}^{(0, b)}$ CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow b \bar{b}$

OUR FIT, which is obtained by a simultaneous fit to several c - and b quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06 , refers to the \boldsymbol{Z} pole asymmetry. The experimental values,
on the other hand, correspond to the measurements carried out at the
respective energies.

ASYMMETRY (\%)	$\begin{aligned} & \text { STD. } \\ & \text { MODEL } \end{aligned}$	$\begin{aligned} & \sqrt{s} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
9.92 \pm 0.16 OUR FIT					
$9.58 \pm 0.32 \pm 0.14$	9.68	91.231	${ }^{1}$ ABDALLAH	05	DLPH
$10.04 \pm 0.56 \pm 0.25$	9.69	91.26	2 ABDALLAH	04F	DLPH
$9.72 \pm 0.42 \pm 0.15$	9.67	91.25	${ }^{3}$ ABBIENDI	03P	OPAL
$9.77 \pm 0.36 \pm 0.18$	9.69	91.26	${ }^{4}$ ABBIENDI	02\|	OPAL
$9.52 \pm 0.41 \pm 0.17$	9.59	91.21	${ }^{5}$ HEISTER	02H	ALEP
$10.00 \pm 0.27 \pm 0.11$	9.63	91.232	${ }^{6}$ HEISTER	01D	ALEP
$7.62 \pm 1.94 \pm 0.85$	9.64	91.235	${ }^{7}$ ABREU	99 Y	DLPH
$9.60 \pm 0.66 \pm 0.33$	9.69	91.26	${ }^{8}$ ACCIARRI	99D	L3
$9.31 \pm 1.01 \pm 0.55$	9.65	91.24	${ }^{9}$ ACCIARRI	984	L3
$9.4 \pm 2.7 \pm 2.2$	9.61	91.22	10 ALEXANDER	97C	OPAL
- - We do not use the following data for averages, fits, limits, etc. - -					
$6.37 \pm 1.43 \pm 0.17$	5.8	89.449	${ }^{1}$ ABDALLAH	05	DLPH
$10.41 \pm 1.15 \pm 0.24$	12.1	92.990	1 ABDALLAH	05	DLPH
$6.7 \pm 2.2 \pm 0.2$	5.7	89.43	${ }^{2}$ ABDALLAH	04F	DLPH
$11.2 \pm 1.8 \pm 0.2$	12.1	92.99	${ }^{2}$ ABDALLAH	04F	DLPH
$4.7 \pm 1.8 \pm 0.1$	5.9	89.51	${ }^{3}$ ABBIENDI	03P	OPAL
$10.3 \pm 1.5 \pm 0.2$	12.0	92.95	${ }^{3}$ ABBIENDI	03P	OPAL
$5.82 \pm 1.53 \pm 0.12$	5.9	89.50	${ }^{4}$ ABBIENDI	021	OPAL
$12.21 \pm 1.23 \pm 0.25$	12.0	92.91	${ }^{4}$ ABBIENDI	021	OPAL
$-13.1 \pm 13.5 \pm 1.0$	3.2	88.38	${ }^{5}$ HEISTER	02H	ALEP
$5.5 \pm 1.9 \pm 0.1$	5.6	89.38	${ }^{5}$ HEISTER	02H	ALEP
$-0.4 \pm 6.7 \pm 0.8$	7.5	90.21	${ }^{5}$ HEISTER	02H	ALEP
$11.1 \pm 6.4 \pm 0.5$	11.0	92.05	${ }^{5}$ HEISTER	02H	ALEP
$10.4 \pm 1.5 \pm 0.3$	12.0	92.94	${ }^{5}$ HEISTER	02H	ALEP
$13.8 \pm 9.3 \pm 1.1$	12.9	93.90	${ }^{5}$ HEISTER	02H	ALEP
$4.36 \pm 1.19 \pm 0.11$	5.8	89.472	${ }^{6}$ HEISTER	01D	ALEP
$11.72 \pm 0.97 \pm 0.11$	12.0	92.950	${ }^{6}$ HEISTER	01D	ALEP
$5.67 \pm 7.56 \pm 1.17$	5.7	89.434	7 ABREU	99Y	DLPH
$8.82 \pm 6.33 \pm 1.22$	12.1	92.990	7 ABREU	99Y	DLPH
$6.11 \pm 2.93 \pm 0.43$	5.9	89.50	${ }^{8}$ ACCIARRI	99D	L3
$13.71 \pm 2.40 \pm 0.44$	12.2	93.10	${ }^{8}$ ACCIARRI	99 D	L3
$4.95 \pm 5.23 \pm 0.40$	5.8	89.45	${ }^{9}$ ACCIARRI	98 u	L3
$11.37 \pm 3.99 \pm 0.65$	12.1	92.99	${ }^{9}$ ACCIARRI	98 u	L3
$-8.6 \pm 10.8 \pm 2.9$	5.8	89.45	10 ALEXANDER	97C	OPAL
$-2.1 \pm 9.0 \pm 2.6$	12.1	93.00	10 ALEXANDER	97C	OPAL
-71 ± 34 +7	-58	58.3	SHIMONAKA	91	TOPZ
$-22.2 \pm 7.7 \pm 3.5$	-26.0	35	BEHREND	90D	CELL
$-49.1 \pm 16.0 \pm 5.0$	-39.7	43	BEHREND	90D	CELL
-28 ± 11	-23	35	BRAUNSCH...	90	TASS
$-16.6 \pm 7.7 \pm 4.8$	-24.3	35	ELSEN	90	JADE
$-33.6 \pm 22.2 \pm 5.2$	-39.9	44	ELSEN	90	JADE
$3.4 \pm 7.0 \pm 3.5$	-16.0	29.0	BAND	89	MAC
$-72 \pm 28 \pm 13$	-56	55.2	SAGAWA	89	AMY

${ }^{1}$ ABDALLAH 05 obtain an enriched samples of $b \bar{b}$ events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.
${ }^{2}$ ABDALLAH 04F tag b - and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c \bar{c}$ and $b \bar{b}$ events are obtained using lifetime information.
${ }^{3}$ ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average $B^{0}-\bar{B}^{0}$ mixing.
${ }^{4}$ ABBIENDI 02I tag $Z^{0} \rightarrow b \bar{b}$ decays using a combination of secondary vertex and lepton tags. The sign of the b-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.
${ }^{5}$ HEISTER 02 H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.
${ }^{6}$ HEISTER 01D tag $Z \rightarrow b \bar{b}$ events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The b-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of $A_{F B}^{C}$ and R_{b} is given as $+0.103\left(A_{F B}^{C}-0.0651\right)-0.440\left(R_{b}-0.21585\right)$.
${ }^{7}$ ABREU 99 Y tag $Z \rightarrow b \bar{b}$ and $Z \rightarrow c \bar{C}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+}, D^{0}, and D^{+}with their charge-conjugate states).
${ }^{8}$ ACCIARRI 99D tag $Z \rightarrow b \bar{b}$ events using high p and p_{T} leptons. The analysis determines simultaneously a mixing parameter $\chi_{b}=0.1192 \pm 0.0068 \pm 0.0051$ which is used to correct the observed asymmetry.
${ }^{9}$ ACCIARRI $98 u \operatorname{tag} Z \rightarrow b \bar{b}$ events using lifetime and measure the jet charge using the hemisphere charge.
10 ALEXANDER 97C identify the b and c events using a D / D^{*} tag.

CHARGE ASYMMETRY IN $e^{+} e^{-} \rightarrow q \bar{q}$
Summed over five lighter flavors.
Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $B^{0}-\bar{B}^{0}$ mixing and on other electroweak parameters.

Gauge \& Higgs Boson Particle Listings

ASYMMETRY (\%)	STD. MODEL	$\begin{aligned} & \sqrt{5} \\ & (\mathrm{GeV}) \\ & \hline \end{aligned}$	DOCUMENT ID		TECN
- - We do not use the following data for averages, fits, limits, etc. - -					
$-0.76 \pm 0.12 \pm 0.15$		91.2	${ }^{1}$ ABREU	921	DLPH
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	${ }^{2}$ ACTON	92L	OPAL
$9.1 \pm 1.4 \pm 1.6$	9.0	57.9	ADACHI	91	TOPZ
$-0.84 \pm 0.15 \pm 0.04$		91	DECAMP	91B	ALEP
$8.3 \pm 2.9 \pm 1.9$	8.7	56.6	STUART	90	AMY
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6	ABE	89L	VNS
6.0 ± 1.3	5.0	34.8	GREENSHAW	89	JADE
8.2 ± 2.9	8.5	43.6	GREENSHAW	89	JADE

${ }^{1}$ ABREU 92ı has 0.14 systematic error due to uncertainty of quark fragmentation.
${ }^{2}$ ACTON 92L use the weight function method on 259 k selected $Z \rightarrow$ hadrons events. The systematic error includes a contribution of 0.2 due to $B^{0}-\bar{B}^{0}$ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of $\sin ^{2} \theta_{\underset{W}{\mathrm{eff}}}$ to be $0.2321 \pm 0.0017 \pm 0.0028$.

CHARGE ASYMMETRY IN $p \bar{p} \rightarrow Z \rightarrow e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. • • •
$5.2 \pm 5.9 \pm 0.4 \quad 91 \quad$ ABE 91E CDF
ANOMALOUS $Z Z \gamma, Z \gamma \gamma$, AND $Z Z V$ COUPLINGS
Revised September 2013 by M.W. Grünewald (U. College Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

In on-shell $Z \gamma$ production, deviations from the Standard Model for the $Z \gamma \gamma^{*}$ and $Z \gamma Z^{*}$ couplings may be described in terms of eight parameters, $h_{i}^{V}(i=1,4 ; V=\gamma, Z)$ [1]. The parameters h_{i}^{γ} describe the $Z \gamma \gamma^{*}$ couplings and the parameters h_{i}^{Z} the $Z \gamma Z^{*}$ couplings. In this formalism h_{1}^{V} and h_{2}^{V} lead to $C P$-violating and h_{3}^{V} and h_{4}^{V} to $C P$-conserving effects. All these anomalous contributions to the cross section increase rapidly with center-of-mass energy. In order to ensure unitarity, these parameters are usually described by a form-factor representation, $h_{i}^{V}(s)=h_{i 0}^{V} /\left(1+s / \Lambda^{2}\right)^{n}$, where Λ is the energy scale for the manifestation of a new phenomenon and n is a sufficiently large power. By convention one uses $n=3$ for $h_{1,3}^{V}$ and $n=4$ for $h_{2,4}^{V}$. Usually limits on h_{i}^{V} 's are put assuming some value of Λ, sometimes ∞.

In on-shell $Z Z$ production, deviations from the Standard Model for the $Z Z \gamma^{*}$ and $Z Z Z^{*}$ couplings may be described by means of four anomalous couplings $f_{i}^{V}(i=4,5 ; V=\gamma, Z)$ [2]. As above, the parameters f_{i}^{γ} describe the $Z Z \gamma^{*}$ couplings and the parameters f_{i}^{Z} the $Z Z Z^{*}$ couplings. The anomalous couplings f_{5}^{V} lead to violation of C and P symmetries while f_{4}^{V} introduces $C P$ violation. Also here, formfactors depending on a scale Λ are used.

All these couplings h_{i}^{V} and f_{i}^{V} are zero at tree level in the Standard Model; they are measured in $e^{+} e^{-}, p \bar{p}$ and $p p$ collisions at LEP, Tevatron and LHC.

References

1. U. Baur and E.L. Berger, Phys. Rev. D47, 4889 (1993).
2. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).
h_{j}^{V}
Combining the LEP-2 results taking into account the correlations, the following 95\% CL limits are derived [SCHAEL 13A]:

$$
\begin{array}{ll}
-0.12<h_{1}^{Z}<+0.11, & -0.07<h_{2}^{Z}<+0.07 \\
-0.19<h_{3}^{Z}<+0.06, & -0.04<h_{4}^{Z}<+0.13 \\
-0.05<h_{1}^{\gamma}<+0.05, & -0.04<h_{2}^{\gamma}<+0.02 \\
-0.05<h_{3}^{\gamma}<+0.00, & +0.01<h_{4}^{\gamma}<+0.05
\end{array}
$$

${ }^{1}$ AAD 16Q study $Z \gamma$ production in $p p$ collisions. In events with no additional jets, 10268 (12738) Z decays to electron (muon) pairs are selected, with an expected background of $1291 \pm 340(1537 \pm 408)$ events, as well as $1039 Z$ decays to neutrino pairs with an expected background of 450 ± 96 events. Analyzing the photon transverse momentum distribution above $250 \mathrm{GeV}(400 \mathrm{GeV})$ for lepton (neutrino) events, yields the 95% C.L. limits: $-7.8 \times 10^{-4}<h_{3}^{Z}<8.6 \times 10^{-4},-3.0 \times 10^{-6}<h_{4}^{Z}<2.9 \times 10^{-6}$, $-9.5 \times 10^{-4}<h_{3}^{\gamma}<9.9 \times 10^{-4},-3.2 \times 10^{-6}<h_{4}^{\gamma}<3.2 \times 10^{-6}$.
2 KHACHATRYAN 16AE determine the $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ cross section by selecting events with a photon of $E_{T}>145 \mathrm{GeV}$ and $E_{T}>140 \mathrm{GeV} .630$ candidate events are observed with an expected SM background of 269 ± 26. The E_{T} spectrum of the photon is used to set 95% C.L. limits as follows: $-1.5 \times 10^{-3}<h_{3}^{Z}<1.6 \times 10^{-3},-3.9 \times 10^{-6}<$ $h_{4}^{Z}<4.5 \times 10^{-6},-1.1 \times 10^{-3}<h_{3}^{\gamma}<0.9 \times 10^{-3},-3.8 \times 10^{-6}<h_{4}^{\gamma}<4.3 \times 10^{-6}$.
${ }^{3}$ KHACHATRYAN 15AC study $Z \gamma$ events in $8 \mathrm{TeV} p p$ interactions, where the Z decays into 2 same-flavor, opposite sign leptons (e or μ) and a photon with $p_{T}>15 \mathrm{GeV}$. The p_{T} of a lepton is required to be $>20 \mathrm{GeV} / \mathrm{c}$, their effective mass $>50 \mathrm{GeV}$, and the photon should have a separation $\Delta \mathrm{R}>0.7$ with each lepton. The observed p_{T} distribution of the photons is used to extract the 95% C.L. limits: $-3.8 \times 10^{-3}<$ $h_{3}^{Z}<3.7 \times 10^{-3},-3.1 \times 10^{-5}<h_{4}^{Z}<3.0 \times 10^{-5},-4.6 \times 10^{-3}<h_{3}^{\gamma}<$ $4.6 \times 10^{-3},-3.6 \times 10^{-5}<h_{4}^{\gamma}<3.5 \times 10^{-5}$
${ }^{4}$ CHATRCHYAN 14AB measure $Z \gamma$ production cross section for $\mathrm{p}_{T}^{\gamma}>15 \mathrm{GeV}$ and $\mathrm{R}(\ell \gamma)$ >0.7, which is the separation between the γ and the final state charged Iepton (e or $\mu)$ in the azimuthal angle-pseudorapidity $(\phi-\eta)$ plane. The di-lepton mass is required to be $>50 \mathrm{GeV}$. After background subtraction the number of $e e \gamma$ and $\mu \mu \gamma$ events is determined to be 3160 ± 120 and 5030 ± 233 respectively, compatible with expectations from the SM. This leads to a 95% CL limits of $-1 \times 10^{-2}<h_{3}^{\gamma}<1 \times 10^{-2}$, $-9 \times 10^{-5}<h_{4}^{\gamma}<9 \times 10^{-5},-9 \times 10^{-3}<h_{3}^{Z}<9 \times 10^{-3},-8 \times 10^{-5}<$ $h_{4}^{Z}<8 \times 10^{-5}$, assuming h_{1}^{V} and h_{2}^{V} have SM values, $V=\gamma$ or Z.
${ }^{5}$ AAD 13aN study $Z \gamma$ production in pp collisions. In events with no additional jet, 1417 (2031) Z decays to electron (muon) pairs are selected, with an expected background of $156 \pm 54(244 \pm 64)$ events, as well as $662 Z$ decays to neutrino pairs with an expected background of 302 ± 42 events. Analysing the photon p_{T} spectrum above 100 GeV yields the 95% C.L. limts: $-0.013<h_{3}^{Z}<0.014,-8.7 \times 10^{-5}<h_{4}^{Z}<8.7 \times 10^{-5}$, $-0.015<h_{3}^{\gamma}<0.016,-9.4 \times 10^{-5}<h_{4}^{\gamma}<9.2 \times 10^{-5}$. Supersedes AAD 12BX.
${ }^{6}$ CHATRCHYAN 13BI determine the $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ cross section by selecting events with a photon of $E_{T}>145 \mathrm{GeV}$ and a $E_{T}>130 \mathrm{GeV} .73$ candidate events are observed with an expected SM background of 30.2 ± 6.5. The E_{T} Spectrum of the photon is used to set 95% C.L. limits as follows: $\left|h_{3}^{Z}\right|<2.7 \times 10^{-3},\left|h_{4}^{Z}\right|<1.3 \times 10^{-5},\left|h_{3}^{\gamma}\right|<2.9 \times 10^{-3}$, $\left|h_{4}^{\gamma}\right|<1.5 \times 10^{-5}$.
${ }^{7}$ ABAZOV 12 S study $Z \gamma$ production in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ using $6.2 \mathrm{fb}^{-1}$ of data where the Z decays to electron (muon) pairs and the photon has at least 10 GeV of transverse momentum. In data, 304 (308) di-electron (di-muon) events are observed with an expected background of $255 \pm 16(285 \pm 24)$ events. Based on the photon p_{T} spectrum, and including also earlier data and the $Z \rightarrow \nu \bar{\nu}$ decay mode (from ABAZOV 09L), the following 95\% C.L. limits are reported: $\left|h_{03}^{Z}\right|<0.026,\left|h_{04}^{Z}\right|<$ 0.0013, $\left|h_{03}^{\gamma}\right|<0.027,\left|h_{04}^{\gamma}\right|<0.0014$ for a form factor scale of $\Lambda=1.5 \mathrm{TeV}$.
${ }^{8}$ AALTONEN 11 s study $Z \gamma$ events in $p \bar{p}$ interactions at $\sqrt{s}=1.96 \mathrm{TeV}$ with integrated luminosity $5.1 \mathrm{fb}^{-1}$ for $Z \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}$and $4.9 \mathrm{fb}^{-1}$ for $Z \rightarrow \nu \bar{\nu}$. For the charged lepton case, the two leptons must be of the same flavor with the transverse momentum/energy of one $>20 \mathrm{GeV}$ and the other $>10 \mathrm{GeV}$. The isolated photon must have $E_{T}>50 \mathrm{GeV}$. They observe 91 events with 87.2 ± 7.8 events expected from standard model processes. For the $\nu \bar{\nu}$ case they require solitary photons with $E_{T}>25$ GeV and missing $E_{T}>25 \mathrm{GeV}$ and observe 85 events with standard model expectation of 85.9 ± 5.6 events. Taking the form factor $\Lambda=1.5 \mathrm{TeV}$ they derive 95% C.L. limits as $\left|h_{3}^{\gamma}, Z\right|<0.022$ and $\left|h_{4}^{\gamma, Z}\right|<0.0009$.
${ }^{9}$ CHATRCHYAN 11 M study $Z \gamma$ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ using 36 $\mathrm{pb}^{-1} p p$ data, where the Z decays to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$. The total cross sections are measured for photon transverse energy $E_{T}^{\gamma}>10 \mathrm{GeV}$ and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell, \gamma)>0.7$ with
the dilepton invariant mass requirement of $M_{\ell \ell}>50 \mathrm{GeV}$. The number of $e^{+} e^{-} \gamma$ and $\mu^{+} \mu^{-} \gamma$ candidates is 81 and 90 with estimated backgrounds of 20.5 ± 2.5 and 27.3 ± 3.2 events respectively. The $95 \% \mathrm{CL}$ limits for $Z Z \gamma$ couplings are $-0.05<h_{3}^{Z}<0.06$ and $-0.0005<h_{4}^{Z}<0.0005$, and for $Z \gamma \gamma$ couplings are $-0.07<h_{3}^{\gamma}<0.07$ and $-0.0005<h_{4}^{\gamma}<0.0006$.
${ }^{10}$ ABAZOV 09L study $Z \gamma, Z \rightarrow \nu \bar{\nu}$ production in $p \bar{p}$ collisions at 1.96 TeV C.M. energy. They select 51 events with a photon of transverse energy E_{T} larger than 90 GeV , with an expected background of 17 events. Based on the photon E_{T} spectrum and including also Z decays to charged leptons (from ABAZOV 07M), the following 95% CL limits are reported: $\left|h_{30}^{\gamma}\right|<0.033,\left|h_{40}^{\gamma}\right|<0.0017,\left|h_{30}^{Z}\right|<0.033,\left|h_{40}^{Z}\right|<0.0017$.
${ }^{11}$ ABAZOV 07M use $968 p \bar{p} \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-} \gamma X$ candidates, at 1.96 TeV center of mass energy, to tag $p \bar{p} \rightarrow Z \gamma$ events by requiring $E_{T}(\gamma)>7 \mathrm{GeV}$, lepton-gamma separation $\Delta \mathbf{R}_{\ell \gamma}>0.7$, and di-lepton invariant mass $>30 \mathrm{GeV}$. The cross section is in agreement with the SM prediction. Using these $Z \gamma$ events they obtain 95% C.L. limits on each h_{i}^{V}, keeping all others fixed at their SM values. They report: $-0.083<h_{30}^{Z}<$ $0.082,-0.0053<h_{40}^{Z}<0.0054,-0.085<h_{30}^{\gamma}<0.084,-0.0053<h_{40}^{\gamma}<0.0054$, for the form factor scale $\Lambda=1.2 \mathrm{TeV}$.
${ }^{12}$ Using data collected at $\sqrt{s}=183-208$, ABDALLAH 07C select $1,877 e^{+} e^{-} \rightarrow Z_{\gamma}$ events with $Z \rightarrow q \bar{q}$ or $\nu \bar{\nu}, 171 e^{+} e^{-} \rightarrow Z Z$ events with $Z \rightarrow q \bar{q}$ or lepton pair (except an explicit τ pair), and $74 e^{+} e^{-} \rightarrow Z \gamma^{*}$ events with a $q \bar{q} \mu^{+} \mu^{-}$or $q \bar{q} e^{+} e^{-}$ signature, to derive $95 \% \mathrm{CL}$ limits on h_{i}^{V}. Each limit is derived with other parameters set to zero. They report: $-0.23<h_{1}^{Z}<0.23,-0.30<h_{3}^{Z}<0.16,-0.14<h_{1}^{\gamma}<$ $0.14,-0.049<h_{3}^{\gamma}<0.044$.
${ }^{13}$ ACHARD 04H select $3515 e^{+} e^{-} \rightarrow Z \gamma$ events with $Z \rightarrow q \bar{q}$ or $\nu \bar{\nu}$ at $\sqrt{s}=189-209$ GeV to derive $95 \% \mathrm{CL}$ limits on h_{i}^{V}. For deriving each limit the other parameters are fixed at zero. They report: $-0.153<h_{1}^{Z}<0.141,-0.087<h_{2}^{Z}<0.079,-0.220<$ $h_{3}^{Z}<0.112,-0.068<h_{4}^{Z}<0.148,-0.057<h_{1}^{\gamma}<0.057,-0.050<h_{2}^{\gamma}<0.023$, $-0.059<h_{3}^{\gamma}<0.004,-0.004<h_{4}^{\gamma}<0.042$.
${ }^{14}$ ABBIENDI,G 00C study $e^{+} e^{-} \rightarrow \quad Z \gamma$ events (with $Z \rightarrow q \bar{q}$ and $Z \rightarrow \nu \bar{\nu}$) at 189 GeV to obtain the central values (and $95 \% \mathrm{CL}$ limits) of these couplings: $h_{1}^{Z}=0.000 \pm 0.100(-0.190,0.190), h_{2}^{Z}=0.000 \pm 0.068(-0.128,0.128), h_{3}^{Z}=$ $-0.074_{-0.103}^{+0.102}(-0.269,0.119), h_{4}^{Z}=0.046 \pm 0.068(-0.084,0.175), h_{1}^{\gamma}=0.000 \pm$ $0.061(-0.115,0.115), h_{2}^{\gamma}=0.000 \pm 0.041(-0.077,0.077), h_{3}^{\gamma}=-0.0800_{-0.041}^{+0.039}$ $(-0.164,-0.006), h_{4}^{\gamma}=0.064_{-0.030}^{+0.033}(+0.007,+0.134)$. The results are derived assuming that only one coupling at a time is different from zero.
${ }^{15}$ ABBOTT 98M study $p \bar{p} \rightarrow Z \gamma+\mathbf{X}$, with $Z \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \bar{\nu} \nu$ at 1.8 TeV , to obtain 95% CL limits at $\Lambda=750 \mathrm{GeV}:\left|h_{30}^{Z}\right|<0.36,\left|h_{40}^{Z}\right|<0.05$ (keeping $h_{i}^{\gamma}=0$), and $\left|h_{30}^{\gamma}\right|<0.37,\left|h_{40}^{\gamma}\right|<0.05$ (keeping $h_{i}^{Z}=0$). Limits on the $C P$-violating couplings are $\left|h_{10}^{Z}\right|<0.36,\left|h_{20}^{Z}\right|<0.05$ (keeping $h_{i}^{\gamma}=0$), and $\left|h_{10}^{\gamma}\right|<0.37,\left|h_{20}^{\gamma}\right|<0.05$ (keeping $h_{i}^{Z}=0$).
${ }^{16}$ ABREU 98K determine a 95\% CL upper limit on $\sigma\left(e^{+} e^{-} \rightarrow \gamma+\right.$ invisible particles) $<$ 2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on $\left|h_{30}^{\gamma}\right|<0.8$ and $\left|h_{30}^{Z}\right|<1.3$, derived at a scale $\Lambda=1 \mathrm{TeV}$ and with $n=3$ in the form factor representation.
f_{i}^{V}
Combining the LEP-2 results taking into account the correlations, the following 95\% CL limits are derived [SCHAEL 13A]:

$$
\begin{array}{ll}
-0.28<f_{4}^{Z}<+0.32, & -0.34<f_{5}^{Z}<+0.35, \\
-0.17<f_{4}^{\gamma}<+0.19, & -0.35<f_{5}^{\gamma}<+0.32 .
\end{array}
$$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).
Value DOCumentid TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{1}$ AABOUD	19AY ATLS	$E_{C m}^{p p}=13 \mathrm{TeV}$
${ }^{2}$ AABOUD	18 Q ATLS	$E_{\mathrm{cm}}^{p P}=13 \mathrm{TeV}$
${ }^{3}$ SIRUNYAN	18Bt CMS	$E_{\mathrm{cm}}^{p p}=13 \mathrm{TeV}$
4 KHACHATRY... 1	.15B CMS	$E_{\mathrm{cm}}^{p p}=8 \mathrm{TeV}$
5 KHACHATRY... 1	.15bC CMS	$E_{\text {cm }}^{p p}=7,8 \mathrm{TeV}$
${ }^{6}$ AAD	132 ATLS	$E_{\mathrm{cm}}^{p p}=7 \mathrm{TeV}$
7 CHATRCHYAN 1	13 B CMS	$E_{c m}^{p p}=7 \mathrm{TeV}$
${ }^{8}$ SCHAEL	09 ALEP	$E_{\mathrm{cm}}^{e \mathrm{e}}$ ($=192-209 \mathrm{GeV}$
${ }^{9}$ ABAZOV	08K D0	$E_{\mathrm{cm}}^{p \bar{p}}=1.96 \mathrm{TeV}$
${ }^{10}$ AbDALLAH	07c DLPH	$E_{C m}^{e e}=183-208 \mathrm{GeV}$
${ }_{11}$ AbBIENDI	04C OPAL	
12 ACHARD	03D L3	

${ }^{1}$ AABOUD 19AY study $Z Z$ production in the $\ell \ell \nu \nu$ decay channel. Events with a pair of isolated high-transverse momentum charged leptons (electron pairs or muon pairs), and with large missing energy, are selected. In the data, 371 (416) di-electron (dimuon) events are found, with a total expected background of $128 \pm 8(143 \pm 8)$ events. Analysing the transverse momentum distribution of the charged dilepton system above 150 GeV , the following 95\% C.L. limits are derived in units of $10^{-3}:-1.2<f_{4}^{\gamma}<$ $1.2,-1.0<f_{4}^{Z}<1.0,-1.2<f_{5}^{\gamma}<1.2,-1.0<f_{5}^{Z}<1.0$.
${ }^{2}$ AABOUD 18Q study $p p \rightarrow Z Z$ events at $\sqrt{s}=13 \mathrm{TeV}$ with $Z \rightarrow e^{+} e^{-}$or $Z \rightarrow$ $\mu^{+} \mu^{-}$. The number of events observed in the $4 e, 2 e 2 \mu$, and 4μ channels is 249,465 , and 303 respectively. Analysing the p_{T} spectrum of the leading Z boson, the following the following 95\% C.L. limits are derived in units of $10^{-4}:-1.8<f_{4}^{\gamma}<1.8$, $-1.5<f_{4}^{Z}<1.5,-1.8<f_{5}^{\gamma}<1.8,-1.5<f_{5}^{Z}<1.5$.
${ }^{3}$ SIRUNYAN 18 BT study ppZZ events at $\sqrt{s}=13 \mathrm{TeV}$ with $Z \rightarrow e^{+} e^{-}$or $Z \rightarrow$ $\mu^{+} \mu^{-}$. The number of events observed in the $4 e, 2 e 2 \mu$, and 4μ channels is 220,543 and 335 respectively. Analysing the 4 -lepton invariant mass spectrum, the following 95% C.L. limits are derived in units of $10^{-3}:-1.2<f_{4}^{\gamma}<1.3,-1.2<f_{4}^{Z}<1.0$, $-1.2<f_{5}^{\gamma}<1.3,-1.0<f_{5}^{Z}<1.3$.
${ }^{4}$ KHACHATRYAN $15 B$ study $Z Z$ production in $8 \mathrm{TeV} p p$ collisions. In the decay modes $Z Z \rightarrow 4 e, 4 \mu, 2 e 2 \mu, 54,75,148$ events are observed, with an expected background of $2.2 \pm 0.9,1.2 \pm 0.6$, and 2.4 ± 1.0 events, respectively. Analysing the 4 -lepton invariant mass spectrum in the range from 110 GeV to 1200 GeV , the following 95% C.L. limits are obtained: $\left|f_{4}^{Z}\right|<0.004,\left|f_{5}^{Z}\right|<0.004,\left|f_{4}^{\gamma}\right|<0.005,\left|f_{5}^{\gamma}\right|<0.005$.
${ }^{5}$ KHACHATRYAN 15 BC use the cross section measurement of the final state $p p \rightarrow Z Z \rightarrow$ $2 \ell 2 \nu$, (ℓ being an electron or a muon) at 7 and 8 TeV to put limits on these triple gauge couplings. Effective mass of the charged lepton pair is required to be in the range $83.5-98.5 \mathrm{GeV}$ and the dilepton $p_{T}>45 \mathrm{GeV}$. The reduced missing E_{T} is required to be $>65 \mathrm{GeV}$, which takes into account the fake missing E_{T} due to detector effects. The numbers of $e^{+} e^{-}$and $\mu^{+} \mu^{-}$events selected are 35 and 40 at 7 TeV and 176 and 271 at 8 TeV respectively. The production cross sections so obtained are in agreement with SM predictions. The following 95% C.L. limits are set: $-0.0028<f_{4}^{Z}<0.0032$, $-0.0037<f_{4}^{\gamma}<0.0033,-0.0029<f_{5}^{Z}<0.0031,-0.0033<f_{5}^{\gamma}<0.0037$. Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) which include 7 TeV and 8 TeV data on the final states $p p \rightarrow Z Z \rightarrow 2 \ell 2 \ell^{\prime}$ where ℓ and ℓ^{\prime} are an electron or a muon, the best limits are $-0.0022<f_{4}^{Z}<0.0026,-0.0029<f_{4}^{\gamma}<$ $0.0026,-0.0023<f_{5}^{Z}<0.0023,-0.0026<f_{5}^{\gamma}<0.0027$.
${ }^{6}$ AAD $13 Z$ study $Z Z$ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. In the $Z Z \rightarrow$ $\ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$ final state they observe a total of 66 events with an expected background of 0.9 ± 1.3. In the $Z Z \rightarrow \ell^{+} \ell^{-} \nu \nu$ final state they observe a total of 87 events with an expected background of 46.9 ± 5.2. The limits on anomalous TGCs are determined using the observed and expected numbers of these $Z Z$ events binned in p_{T}^{Z}. The 95% C.L. are as follows: for form factor scale $\Lambda=\infty,-0.015<f_{4}^{\gamma}<0.015,-0.013<f_{4}^{Z}<$ $0.013,-0.016<f_{5}^{\gamma}<0.015,-0.013<f_{5}^{Z}<0.013$; for form factor scale $\Lambda=$ $3 \mathrm{TeV},-0.022<f_{4}^{\gamma}<0.023,-0.019<f_{4}^{Z}<0.019,-0.023<f_{5}^{\gamma}<0.023$, $-0.020<f_{5}^{Z}<0.019$.
${ }^{7}$ CHATRCHYAN 13 B study $Z Z$ production in $p p$ collisions and select $54 Z Z$ candidates in the Z decay channel with electrons or muons with an expected background of 1.4 ± 0.5 events. The resulting 95% C.L. ranges are: $-0.013<f_{4}^{\gamma}<0.015,-0.011<f_{4}^{Z}<$ $0.012,-0.014<f_{5}^{\gamma}<0.014,-0.012<f_{5}^{Z}<0.012$.
${ }^{8}$ Using data collected in the center of mass energy range $192-209 \mathrm{GeV}$, SCHAEL 09 select $318 e^{+} e^{-} \rightarrow Z Z$ events with 319.4 expected from the standard model. Using this data they derive the following $95 \% \mathrm{CL}$ limits: $-0.321<f_{4}^{\gamma}<0.318,-0.534<f_{4}^{Z}<$ $0.534,-0.724<f_{5}^{\gamma}<0.733,-1.194<f_{5}^{Z}<1.190$.
${ }^{9}$ ABAZOV 08 K search for $Z Z$ and $Z \gamma^{*}$ events with $1 \mathrm{fb}^{-1} p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$ in $(e e)(e e),(\mu \mu)(\mu \mu),(e e)(\mu \mu)$ final states requiring the lepton pair masses to be >30 GeV . They observe 1 event, which is consistent with an expected signal of 1.71 ± 0.15 events and a background of 0.13 ± 0.03 events. From this they derive the following limits, for a form factor (Λ) value of $1.2 \mathrm{TeV}:-0.28<f_{40}^{Z}<0.28,-0.31<f_{50}^{Z}<$ $0.29,-0.26<f_{40}^{\gamma}<0.26,-0.30<f_{50}^{\gamma}<0.28$.
${ }^{10}$ Using data collected at $\sqrt{s}=183-208 \mathrm{GeV}$, ABDALLAH 07C select $171 e^{+} e^{-} \rightarrow Z Z$ events with $Z \rightarrow q \bar{q}$ or lepton pair (except an explicit τ pair), and $74 e^{+} e^{-} \rightarrow Z \gamma^{*}$ events with a $q \bar{q} \mu^{+} \mu^{-}$or $q \bar{q} e^{+} e^{-}$signature, to derive $95 \% \mathrm{CL}$ limits on f_{i}^{V}. Each limit is derived with other parameters set to zero. They report: $-0.40<f_{4}^{Z}<0.42$, $-0.38<f_{5}^{Z}<0.62,-0.23<f_{4}^{\gamma}<0.25,-0.52<f_{5}^{\gamma}<0.48$.
${ }^{11}$ ABBIENDI 04C study $Z Z$ production in $e^{+} e^{-}$collisions in the C.M. energy range $190-209 \mathrm{GeV}$. They select 340 events with an expected background of 180 events. Including the ABBIENDI OON data at 183 and 189 GeV (118 events with an expected background of 65 events) they report the following 95% CL limits: $-0.45<f_{4}^{Z}<0.58$, $-0.94<f_{5}^{Z}<0.25,-0.32<f_{4}^{\gamma}<0.33$, and $-0.71<f_{5}^{\gamma}<0.59$.
${ }^{12}$ ACHARD 03D study Z-boson pair production in $e^{+} e^{-}$collisions in the C.M. energy range $200-209 \mathrm{GeV}$. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 990 data (183 and 189 GeV respectively, 286 Including the ACCIARRI
events with an expected background of 241 events) and the $192-202 \mathrm{GeV}$ ACCIARRI 011 events with an expected background of 241 events) and the $192-202 \mathrm{GeV}$ ACCIARRI CL limits: $-0.48 \leq f_{4}^{Z} \leq 0.46,-0.36 \leq f_{5}^{Z} \leq 1.03,-0.28 \leq f_{4}^{\gamma} \leq 0.28$, and $-0.40 \leq$ $f_{5}^{\gamma} \leq 0.47$.

ANOMALOUS W /Z QUARTIC COUPLINGS

Revised November 2015 by M.W. Grünewald (U. College Dublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, $W W Z Z, W W Z \gamma, W W \gamma \gamma$, and $Z Z \gamma \gamma$, were studied at LEP and Tevatron at energies at which the Standard Model predicts negligible contributions to multiboson production. Thus, to parametrize limits on these couplings, an

Gauge \& Higgs Boson Particle Listings

Z

effective theory approach is adopted which supplements the Standard Model Lagrangian with higher dimensional operators which include quartic couplings. The LEP collaborations chose the lowers dimensional representation of operators (dimension 6) which presumes the $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge symmetry is broken by means other than the conventional Higgs scalar doublet [1-3]. . In this representation possible quartic couplings, a_{0}, a_{c}, a_{n}, are expressed in terms of the following dimension- 6 operators [1,2];

$$
\begin{aligned}
& L_{6}^{0}=-\frac{e^{2}}{16 \Lambda^{2}} a_{0} F^{\mu \nu} F_{\mu \nu} \overrightarrow{W^{\alpha}} \cdot \vec{W}_{\alpha} \\
& L_{6}^{c}=-\frac{e^{2}}{16 \Lambda^{2}} a_{c} F^{\mu \alpha} F_{\mu \beta} \vec{W}^{\beta} \cdot \vec{W}_{\alpha} \\
& L_{6}^{n}=-i \frac{e^{2}}{11 \Lambda^{2}} a_{n} \epsilon_{i j k} W_{\mu \alpha}^{(i)} W_{\nu}^{(j)} W^{(k) \alpha} F^{\mu \nu} \\
& \widetilde{L}_{6}^{0}=-\frac{e^{2}}{16 \Lambda^{2}} \widetilde{a}_{0} F^{\mu \nu} \widetilde{F}_{\mu \nu} \overrightarrow{W^{\alpha}} \cdot \vec{W}_{\alpha} \\
& \widetilde{L}_{6}^{n}=-i \frac{e^{2}}{16 \Lambda^{2}} \widetilde{a}_{n} \epsilon_{i j k} W_{\mu \alpha}^{(i)} W_{\nu}^{(j)} W^{(k) \alpha} \widetilde{F}^{\mu \nu}
\end{aligned}
$$

where F, W are photon and W fields, L_{6}^{0} and L_{6}^{c} conserve C, P separately (\widetilde{L}_{6}^{0} conserves only C) and generate anomalous $W^{+} W^{-} \gamma \gamma$ and $Z Z \gamma \gamma$ couplings, L_{6}^{n} violates $C P\left(\widetilde{L}_{6}^{n}\right.$ violates both C and P) and generates an anomalous $W^{+} W^{-} Z \gamma$ coupling, and Λ is an energy scale for new physics. For the $Z Z \gamma \gamma$ coupling the $C P$-violating term represented by L_{6}^{n} does not contribute. These couplings are assumed to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of the quartic couplings [3] treats the anomalous parts of the $W W \gamma \gamma$ and $Z Z \gamma \gamma$ couplings separately, leading to two sets parametrized as a_{0}^{V} / Λ^{2} and a_{c}^{V} / Λ^{2}, where $V=W$ or Z.

With the discovery of a Higgs at the LHC in 2012, it is then useful to go to the next higher dimensional representation (dimension 8 operators) in which the gauge symmetry is broken by the conventional Higgs scalar doublet [3,4]. There are 14 operators which can contribute to the anomalous quartic coupling signal. Some of the operators have analogues in the dimension 6 scheme. The CMS collaboration, [5], have used this parametrization, in which the connections between the two schemes are also summarized:

$$
\begin{aligned}
\mathcal{L}_{A Q G C}= & -\frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu \nu} F^{\mu \nu} W^{+a} W_{a}^{-} \\
& -\frac{e^{2}}{16} \frac{a_{c}^{W}}{\Lambda^{2}} F_{\mu \nu} F^{\mu a}\left(W^{+\nu} W_{a}^{-}+W^{-\nu} W_{a}^{+}\right) \\
& -e^{2} g^{2} \frac{\kappa_{0}^{W}}{\Lambda^{2}} F_{\mu \nu} Z^{\mu \nu} W^{+a} W_{a}^{-} \\
& -\frac{e^{2} g^{2}}{2} \frac{\kappa_{c}^{W}}{\Lambda^{2}} F_{\mu \nu} Z^{\mu a}\left(W^{+\nu} W_{a}^{-}+W^{-\nu} W_{a}^{+}\right) \\
& +\frac{f_{T, 0}}{\Lambda^{4}} \operatorname{Tr}\left[\widehat{W}_{\mu \nu} \widehat{W}^{\mu \nu}\right] \times \operatorname{Tr}\left[\widehat{W}_{\alpha \beta} \widehat{W}^{\alpha \beta}\right]
\end{aligned}
$$

The energy scale of possible new physics is Λ, and $g=$ $e / \sin \left(\theta_{W}\right), e$ being the unit electric charge and θ_{W} the Weinberg angle. The field tensors are described in [3,4].

The two dimension 6 operators a_{0}^{W} / Λ^{2} and a_{c}^{W} / Λ^{2} are associated with the $W W \gamma \gamma$ vertex. Among dimension 8 operators, $\kappa_{0}^{W} / \Lambda^{2}$ and $\kappa_{c}^{W} / \Lambda^{2}$ are associated with the $W W Z \gamma$ vertex, whereas the parameter $f_{T, 0} / \Lambda^{4}$ contributes to both vertices. There is a relationship between these two dimension 6 parameters and the dimension 8 parameters $f_{M, i} / \Lambda^{4}$ as follows [3]:

$$
\begin{aligned}
& \frac{a_{0}^{W}}{\Lambda^{2}}=-\frac{4 M_{W}^{2}}{g^{2}} \frac{f_{M, 0}}{\Lambda^{4}}-\frac{8 M_{W}^{2}}{g^{\prime 2}} \frac{f_{M, 2}}{\Lambda^{4}} \\
& \frac{a_{c}^{W}}{\Lambda^{2}}=-\frac{4 M_{W}^{2}}{g^{2}} \frac{f_{M, 1}}{\Lambda^{4}}-\frac{8 M_{W}^{2}}{g^{\prime 2}} \frac{f_{M, 3}}{\Lambda^{4}}
\end{aligned}
$$

where $g^{\prime}=e / \cos \left(\theta_{W}\right)$ and M_{W} is the invariant mass of the W boson. This relation provides a translation between limits on dimension 6 operators $a_{0, c}^{W}$ and $f_{M, j} / \Lambda^{4}$. It is further required [4] that $f_{M, 0}=2 f_{M, 2}$ and $f_{M, 1}=2 f_{M, 3}$ which suppresses contributions to the $W W Z \gamma$ vertex. The complete set of Lagrangian contributions as presented in [4] corresponds to 19 anomalous couplings in total $-f_{S, i}, \quad i=1,2, f_{M, i}, \quad i=0, \ldots, 8$ and $f_{T, i}, i=0, \ldots, 9-$ each scaled by $1 / \Lambda^{4}$.

The ATLAS collaboration [6], on the other hand, follows a K-matrix driven approach of Ref. 7 in which the anomalous couplings can be expressed in terms of two parameters α_{4} and α_{5}, which account for all BSM effects.

It is the early stages in the determination of quartic couplings by the LHC experiments. It is hoped that the two collaborations, ATLAS and CMS, will agree to use at least one common set of parameters to express these limits to enable the reader to make a comparison and allow for a possible LHC combination.

References

1. G. Belanger and F. Boudjema, Phys. Lett. B288, 201 (1992).
2. J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103 (2000);
J.W. Stirling and A. Werthenbach, Phys. Lett. B466, 369 (1999);
A. Denner et al., Eur. Phys. J. C20, 201 (2001);
G. Montagna et al., Phys. Lett. B515, 197 (2001).
3. G. Belanger et al., Eur. Phys. J. C13, 283 (2000).
4. O.J.P. Éboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys. Rev. D69, 095005 (2004);
O.J.P. Éboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi, Phys. Rev. D77, 073005 (2006).
5. S. Chatrchyan et al., Phys. Rev. D90, 032008 (2014);
S. Chatrchyan et al., Phys. Rev. Lett. 114, 051801 (2015).
6. G. Aad et al., Phys. Rev. Lett. 113, 141803 (2014).
7. A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010 (2008).

$a_{0} / \Lambda^{2}, a_{c} / \Lambda^{2}$

Combining published and unpublished preliminary LEP results the following 95\% CL intervals for the QGCs associated with the $Z Z \gamma \gamma$ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$
\begin{aligned}
& -0.008<a_{0}^{Z} / \Lambda^{2}<+0.021 \\
& -0.029<a_{C}^{Z} / \Lambda^{2}<+0.039
\end{aligned}
$$

Anomalous Z quartic couplings have also been measured by the Tevatron and LHC experiments. As discussed in the review on "Anomalous W / Z quartic couplings," the coupling parameters in the Anomalous QGC Lagrangian may relate to processes involving only the W or only to the Z or to both. Thus, results on all other AQGCs are reported together in the W listings.

- - We do not use the following data for averages, fits, limits, etc. - -
$\begin{array}{lll}1 \text { ABBIENDI } & 04 \mathrm{~L} & \text { OPAL } \\ 2 \text { HEISTER } & 04 \mathrm{~A} & \text { ALEP }\end{array}$
$\begin{array}{lll}2 \text { HEISTER } & \text { 04A ALE } \\ { }^{3} \text { ACHARD } & 02 \mathrm{G} & \text { L3 }\end{array}$

Z REFERENCES				
AABOUD	19 AY	JHEP 1910127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19N	JHEP 1904048	M. Aaboud et al.	(ATLAS Collab.)
RAINBOLT	19	PR D99 013004	J.L. Rainbolt, M. Schmitt	(NWES)
SIRUNYAN	19AJ	EPJ C79 94	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BR	PL B797 134811	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18 AU	JHEP 1807127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BL	PL B786 134	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CN	PR D98 092010	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18Q	PR D97 032005	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	18AR	JHEP 1809159	R. Aaij et al.	(LHCb Collab.)
ANDREEV	18A	EPJ C78 777	V. Andreev et al.	(H1 Collab.)
SIRUNYAN	18 BT	EPJ C78 165	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DZ	PRL 121141801	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	17Q	EPJ C77 367	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	16K	PRL 117111802	M. Aaboud et al.	(ATLAS Collab.)
AAD	16L	EPJ C76 210	G. Aad et al.	(ATLAS Collab.)
AAD	16Q	PR D93 112002	G. Aad et al.	(ATLAS Collab.)
ABRAMOWICZ	16A	PR D93 092002	H. Abramowicz et al.	(ZEUS Collab.)
ABT	16	PR D94 052007	I. Abt et al. (MPIM, OXF,	, HAMB, DESY)
KHACHATRY...	16AE	PL B760 448	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	16CC	PL B763 280	V. Khachatryan et al.	(CMS Collab.)
AAD	15BT	JHEP 1509049	G. Aad et al.	(ATLAS Collab.)
AAD	151	PRL 114121801	G. Aad et al.	(ATLAS Collab.)
KHACHATRY...	15AC	JHEP 1504164	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...		PL B740 250	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	15BC	EPJ C75 511	V. Khachatryan et al.	(CMS Collab.)
AAD	14 AU	PR D90 072010	G. Aad et al.	(ATLAS Collab.)
AAD	14N	PRL 112231806	G. Aad et al.	(ATLAS Collab.)
AALTONEN	14 E	PRL 112111803	T. Aaltonen et al.	(CDF Collab.)
CHATRCHYAN	14AB	PR D89 092005	S. Chatrchyan et al.	(CMS Collab.)
AAD	13AN	PR D87 112003	G. Aad et al.	(ATLAS Collab.)
Also		PR D91 119901 (errat.)	G. Aad et al.	(ATLAS Collab.)
AAD	$13 Z$	JHEP 1303128	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN	13 B	JHEP 1301063	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13BI	JHEP 1310164	S. Chatrchyan et al.	(CMS Collab.)
SCHAEL	13A	PRPL 532119	S. Schael et al.	
AAD	12BX	PL B717 49	G. Aad et al.	(ATLAS Collab.)
ABAZOV	12 S	PR D85 052001	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	12 BN	JHEP 1212034	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11 S	PRL 107051802	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	11 D	PR D84 012007	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	11 M	PL B701 535	S. Chatrchyan et al.	(CMS Collab.)
ABAZOV	09L	PRL 102201802	V.M. Abazov et al.	(Do Collab.)
BEDDALL	09	PL B670 300	A. Beddall, A. Beddall, A. Bingul	(UGAZ)
SCHAEL	09	JHEP 0904124	S. Schael et al.	(ALEPH Collab.)
ABAZOV	08K	PRL 100131801	V.M. Abazov et al.	(Do Collab.)
ABAZOV	07M	PL B653 378	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	07C	EPJ C51 525	J. Abdallah et al. (D)	(DELPHI Collab.)
ABDALLAH	06E	PL B639 179	J. Abdallah et al. (D)	(DELPHI Collab.)
AKTAS	06	PL B632 35	A. Aktas et al.	(H1 Collab.)
LEP-SLC	06	PRPL 427257	ALEPH, DELPHI, L3, OPAL, SLD and w	working groups
SCHAEL	06A	PL B639 192	S. Schael et al.	(ALEPH Collab.)
ABDALLAH	05	EPJ C40 1	J. Abdallah et al. (Dat	(DELPHI Collab.)
ABDALLAH	05C	EPJ C44 299	J. Abdallah et al. (D)	(DELPHI Collab.)
ABE	05	PRL 94091801	K. Abe et al.	(SLD Collab.)
	05F	PR D71 112004	K. Abe et al.	(SLD Collab.)
ACOSTA	05M	PR D71 052002	D. Acosta et al.	(CDF Collab.)
ABBIENDI	04B	PL B580 17	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04C	EPJ C32 303	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04E	PL B586 167	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04G	EPJ C33 173	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	04L	PR D70 032005	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	04F	EPJ C34 109	J. Abdallah et al. (D)	(DELPHI Collab.)
ABE	04C	PR D69 072003	K. Abe et al.	(SLD Collab.)
ACHARD	04C	PL B585 42	P. Achard et al.	(L3 Collab.)
ACHARD	04H	PL B597 119	P. Achard et al.	(L3 Collab.)
HEISTER	04A	PL B602 31	A. Heister et al.	(ALEPH Collab.)
ABBIENDI	03P	PL B577 18	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	03H	PL B569 129	J. Abdallah et al. (Dat	(DELPHI Collab.)
ABDALLAH	03K	PL B576 29	J. Abdallah et al. (D)	(DELPHI Collab.)
ABE	03F	PRL 90141804	K. Abe et al.	(SLD Collab.)
ACHARD	03 D	PL B572 133	P. Achard et al.	(L3 Collab.)
ACHARD	03G	PL B577 109	P. Achard et al.	(L3 Collab.)
ABBIENDI	021	PL B546 29	G. Abbiendi et al.	(OPAL Collab.)
ABE	02G	PRL 88151801	K. Abe et al.	(SLD Collab.)
ACHARD	02G	PL B540 43	P. Achard et al.	(L3 Collab.)
HEISTER	02 B	PL B526 34	A. Heister et al.	(ALEPH Collab.)
HEISTER	02C	PL B528 19	A. Heister et al.	(ALEPH Collab.)

Gauge \& Higgs Boson Particle Listings
Z, H^{0}

ACTON	93	PL B305 407	P.D. Acton et al.	(OPAL Collab.)
ACTON	93D	ZPHY C58 219	P.D. Acton et al.	(OPAL Collab.)
ACTON	93E	PL B311 391	P.D. Acton et al.	(OPAL Collab.)
ADRIANI	93	PL B301 136	O. Adriani et al.	(L3 Collab.)
ADRIANI	931	PL B316 427	O. Adriani et al.	(L3 Collab.)
BUSKULIC	93L	PL B313 520	D. Buskulic et al.	(ALEPH Collab.)
NOVIKOV	93C	PL B298 453	V.A. Novikov, L.B. Okun, M.I. Vysotsky	(ITEP)
ABREU	921	PL B277 371	P. Abreu et al.	(DELPHI Collab.)
ABREU	92M	PL B289 199	P. Abreu et al.	(DELPHI Collab.)
ACTON	92B	ZPHY C53 539	D.P. Acton et al.	(OPAL Collab.)
ACTON	92L	PL B294 436	P.D. Acton et al.	(OPAL Collab.)
ACTON	92 N	PL B295 357	P.D. Acton et al.	(OPAL Collab.)
ADEVA	92	PL B275 209	B. Adeva et al.	(L3 Collab.)
ADRIANI	92D	PL B292 454	O. Adriani et al.	(L3 Collab.)
ALITTI	92B	PL B276 354	J. Alitti et al.	(UA2 Collab.)
BUSKULIC	92D	PL B292 210	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	92 E	PL B294 145	D. Buskulic et al.	(ALEPH Collab.)
DECAMP	92	PRPL 216253	D. Decamp et al.	(ALEPH Collab.)
ABE	91 E	PRL 671502	F. Abe et al.	(CDF Collab.)
ABREU	91H	ZPHY C50 185	P. Abreu et al.	(DELPHI Collab.)
ACTON	91B	PL B273 338	D.P. Acton et al.	(OPAL Collab.)
ADACHI	91	PL B255 613	I. Adachi et al.	(TOPAZ Collab.)
ADEVA	911	PL B259 199	B. Adeva et al.	(L3 Collab.)
AKRAWY	91 F	PL B257 531	M.Z. Akrawy et al.	(OPAL Collab.)
DECAMP	91B	PL B259 377	D. Decamp et al.	(ALEPH Collab.)
DECAMP	91J	PL B266 218	D. Decamp et al.	(ALEPH Collab.)
JACOBSEN	91	PRL 673347	R.G. Jacobsen et al.	(Mark II Collab.)
SHIMONAKA	91	PL B268 457	A. Shimonaka et al.	(TOPAZ Collab.)
ABE	901	ZPHY C48 13	K. Abe et al.	(VENUS Collab.)
ABRAMS	90	PRL 641334	G.S. Abrams et al.	(Mark II Collab.)
AKRAWY	90」	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)
BEHREND	90D	ZPHY C47 333	H.J. Behrend et al.	(CELLO Collab.)
BRAUNSCH...	90	ZPHY C48 433	W. Braunschweig et al.	(TASSO Collab.)
ELSEN	90	ZPHY C46 349	E. Elsen et al.	(JADE Collab.)
HEGNER	90	ZPHY C46 547	S. Hegner et al.	(JADE Collab.)
STUART	90	PRL 64983	D. Stuart et al.	(AMY Collab.)
ABE	89	PRL 62613	F. Abe et al.	(CDF Collab.)
ABE	89 C	PRL 63720	F. Abe et al.	(CDF Collab.)
ABE	89 L	PL B232 425	K. Abe et al.	(VENUS Collab.)
ABRAMS	89B	PRL 632173	G.S. Abrams et al.	(Mark II Collab.)
ABRAMS	89D	PRL 632780	G.S. Abrams et al.	(Mark II Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar et al.	(UA1 Collab.)
BACALA	89	PL B218 112	A. Bacala et al.	(AMY Collab.)
BAND	89	PL B218 369	H.R. Band et al.	(MAC Collab.)
GREENSHAW	89	ZPHY C42 1	T. Greenshaw et al.	(JADE Collab.)
OULD-SAADA	89	ZPHY C44 567	F. Ould-Saada et al.	(JADE Collab.)
SAGAWA	89	PRL 632341	H. Sagawa et al.	(AMY Collab.)
ADACHI	88 C	PL B208 319	I. Adachi et al.	(TOPAZ Collab.)
ADEVA	88	PR D38 2665	B. Adeva et al.	(Mark-J Collab.)
BRAUNSCH...	88D	ZPHY C40 163	W. Braunschweig et al.	(TASSO Collab.)
ANSARI	87	PL B186 440	R. Ansari et al.	(UA2 Collab.)
BEHREND	87 C	PL B191 209	H.J. Behrend et al.	(CELLO Collab.)
BARTEL	86C	ZPHY C30 371	W. Bartel et al.	(JADE Collab.)
Also		ZPHY C26 507	W. Bartel et al.	(JADE Collab.)
Also		PL 108B 140	W. Bartel et al.	(JADE Collab.)
ASH	85	PRL 551831	W.W. Ash et al.	(MAC Collab.)
BARTEL	85F	PL 161B 188	W. Bartel et al.	(JADE Collab.)
DERRICK	85	PR D31 2352	M. Derrick et al.	(HRS Collab.)
FERNANDEZ	85	PRL 541624	E. Fernandez et al.	(MAC Collab.)
LEVI	83	PRL 511941	M.E. Levi et al.	(Mark II Collab.)
BEHREND	82	PL 114B 282	H.J. Behrend et al.	(CELLO Collab.)
BRANDELIK	82 C	PL 110B 173	R. Brandelik et al.	(TASSO Collab.)

In the following H^{0} refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of H^{0} and its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below.

Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections "Searches for Neutral Higgs Bosons" and "Searches for Charged Higgs Bosons ($H^{ \pm}$and $H^{ \pm \pm}$)", respectively.
H^{0} MASS
$\frac{V A L U E(G e V)}{125.10 \pm 0.14}$ OUR AVERAGE
DOCUMENT ID TECN COMMENT
124.86 ± 0.27
$125.26 \pm 0.20 \pm 0.08$
$125.09 \pm 0.21 \pm 0.11$
${ }^{1}$ AABOUD 18 bмATLS $p p, 13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$, 2 SIRUNYAN $\quad 17 \mathrm{AV}$ CMS $\begin{gathered}\gamma \gamma, Z Z^{*} \vec{n}^{4 \ell} \\ p p, 13 \mathrm{TeV}, Z^{*}\end{gathered}$ 15b LHC pp,7, 8 TeV

124.79 ± 0.37	${ }^{4}$ AABOUD	18bm ATLS	$\begin{gathered} p p, 13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}, \\ 77^{*} \rightarrow 4 \ell \end{gathered}$
124.93 ± 0.40	${ }^{5}$ AABOUD	18bm ATLS	$p p, 13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$,
124.97 ± 0.24	1,6 AABOUD	18вм ATLS	$\begin{gathered} \gamma \gamma \\ p p, 7,8,13 \mathrm{TeV}, \gamma \gamma, \end{gathered}$
$125.07 \pm 0.25 \pm 0.14$	${ }^{3} \mathrm{AAD}$	15B LHC	$p p, 7,8 \mathrm{TeV}, \gamma \gamma$
$125.15 \pm 0.37 \pm 0.15$	${ }^{3} \mathrm{AAD}$	15B LHC	$p p, 7,8 \mathrm{TeV}, z^{*} \rightarrow 4 \ell$
$126.02 \pm 0.43 \pm 0.27$	AAD	15B ATLS	$p p, 7,8 \mathrm{TeV}, \gamma \gamma$
$124.51 \pm 0.52 \pm 0.04$	AAD	15B ATLS	$p p, 7,8 \mathrm{TeV}, z Z^{*} \rightarrow 4 \ell$
$125.59 \pm 0.42 \pm 0.17$	AAD	15B CMS	$p p, 7,8 \mathrm{TeV}, z z^{*} \rightarrow 4 \ell$
$125.02_{-0.27}^{+0.26}+0.14{ }_{-0.15}^{+0.14}$	7 KHACHAT	15amCMS	$p p, 7,8 \mathrm{TeV}$
$125.36 \pm 0.37 \pm 0.18$	${ }^{1,8}$ AAD	14w ATLS	$p p, 7,8 \mathrm{TeV}$
$125.98 \pm 0.42 \pm 0.28$	${ }^{8}$ AAD	14w ATLS	$p p, 7,8 \mathrm{TeV}$, γ

$124.51+0.52+0.06 \quad 8$ AAD 14 w ATIS PD. $78 \mathrm{TeV}, 7 Z^{*}$

122 ± 7
$124.70 \pm 0.31 \pm 0.15$
10 CHATRCHYAN 14 K CMS
$125.5 \pm 0.2{ }_{-0.6}^{+0.5}$
$126.8 \pm 0.2 \pm 0.7$
$1,12 \mathrm{AAD} \quad 13 \mathrm{AK}$ ATLS $\quad p, 7,8 \mathrm{TeV}$
12 AAD 13AK ATLS $p p, 7,8 \mathrm{TeV}, \gamma \gamma$
12 AAD \quad 13AK ATLS $p p, 7,8 \mathrm{TeV}, Z Z^{*} \rightarrow 4 \ell$
1,13 CHATRCHYAN 13 J CMS $p p, 7,8 \mathrm{TeV}$
13 CHATRCHYAN 13 J CMS $p p, 7,8 \mathrm{TeV}, z Z^{*} \rightarrow 4 \ell$ 1,14 AAD 12 Al ATLS $p p, 7,8 \mathrm{TeV}$
$125.8 \pm 0.4 \pm 0.4$
, 8 TeV
$126.0 \pm 0.4 \pm 0.4$
1,15 CHATRCHYAN 12 N CMS
$p p, 7,8 \mathrm{TeV}$
$125.3 \pm 0.4 \pm 0.5 \quad 1,15$ CHATRCHYAN 12 N CM
${ }^{1}$ Combined value from $\gamma \gamma$ and $Z Z^{*} \rightarrow 4 \ell$ final states.
${ }^{2}$ SIRUNYAN 17 AV use $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with $H^{0} \rightarrow z Z^{*} \rightarrow$ 4ℓ where $\ell=e, \mu$.
${ }^{3}$ ATLAS and CMS data are fitted simultaneously.
${ }^{4}$ AABOUD 18BM use $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with $H^{0} \rightarrow Z Z^{*} \rightarrow$ 4ℓ where $\ell=e, \mu$.
${ }^{5}$ AABOUD 18BM use $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with $H^{0} \rightarrow \gamma \gamma$.
${ }^{6}$ AABOUD 18BM combine 13 TeV results with 7 and 8 TeV results. Other combined results are summarized in their Fig. 4.
${ }^{7}$ KHACHATRYAN 15AM use up to $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$.
${ }^{8}$ AAD 14W use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at 8 TeV .
${ }^{9}$ CHATRCHYAN 14AA use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$.
${ }^{10}$ CHATRCHYAN 14 K use $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$.
11 KHACHATRYAN 14 P use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$.
${ }^{12} \mathrm{AAD}$ 13AK use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Superseded by AAD 14 W .
${ }^{13}$ CHATRCHYAN 13 J use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $12.2 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$.
${ }^{14} \mathrm{AAD} 12 \mathrm{Al}$ obtain results based on 4.6-4.8 fb ${ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $5.8-5.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. An excess of events over background with a local significance of 5.9σ is observed at $m_{H^{0}}=126 \mathrm{GeV}$. See also AAD 12DA.
${ }^{15}$ CHATRCHYAN 12 N obtain results based on $4.9-5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ TeV and $5.1-5.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. An excess of events over background with a local significance of 5.0σ is observed at about $m_{H^{0}}=125 \mathrm{GeV}$. See also CHATRCHYAN 12BY and CHATRCHYAN 13 Y .

H^{0} SPIN AND CP PROPERTIES

The observation of the signal in the $\gamma \gamma$ final state rules out the possibility that the discovered particle has spin 1, as a consequence of the Landau-Yang theorem. This argument relies on the assumptions that the decaying particle is an on-shell resonance and that the decay products are indeed two photons rather than two pairs of boosted photons, which each could in principle be misidentified as a single photon.
Concerning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some care has to be taken in modelling the latter in order to ensure that the discriminating power is actually based on the spin properties rather than on unphysical behavior that may affect the model of the spin 2 state.
Under the assumption that the observed signal consists of a single state rather than an overlap of more than one resonance, it is sufficient to discriminate between distinct hypotheses in the spin analyses. On the other hand, the determination of the $C P$ properties is in general much more difficult since in principle the observed state could consist of any admixture of $C P$-even and $C P$-odd components. As a first step, the compatibility of the data with distinct hypotheses of pure $C P$-even and pure $C P$ odd states with different spin assignments has been investigated. In order to treat the case of a possible mixing of different $C P$ states, certain cross section ratios are considered. Those cross section ratios need to be distinguished from the amount of mixing between a $C P$-even and a $C P$-odd state, as the cross section ratios depend in addition also on the coupling strengths of the $C P$-even and $C P$-odd components to the involved particles. A small relative coupling implies a small sensitivity of the corresponding cross section ratio to effects of $C P$ mixing.
VALUE
DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

1 SIRUNYAN	19BL CMS	$p p, 7,8,13 \mathrm{TeV}, Z Z^{*} / Z Z \rightarrow 4 \ell$
2 SIRUNYAN	19bz CMS	$p p \rightarrow H^{0}+2$ ets (VBF, ggF, VH),
${ }^{3}$ AABOUD	18A」 ATLS	$\begin{aligned} & { }^{H^{0}} \rightarrow{ }^{\tau} \tau \tau, 13 \mathrm{TeV} \\ & H^{*} Z \end{aligned}$
${ }^{4}$ SIRUNYAN	17AMCMS	$p p \rightarrow H^{0}+\geq 2 j, H^{0} \rightarrow 4 \ell(\ell=e, \mu)$
${ }^{5}$ AAD	16 ATLS	$H^{0} \rightarrow \gamma \gamma$
${ }^{6}$ AAD	16BL ATLS	$p p \rightarrow H^{0} j j X(\mathrm{VBF}), H^{0} \rightarrow \tau \tau, 8 \mathrm{TeV}$
7 KHACHATR	16AB CMS	$p p \rightarrow W H^{0}, Z H^{0}, H^{0} \rightarrow b \bar{b}, 8 \mathrm{TeV}$
${ }^{8}$ AAD	15AX ATLS	$H^{0} \rightarrow W W^{*}$
${ }^{9}$ AAD	15CI ATLS	$H^{0} \rightarrow Z Z^{*}, W W^{*}, \gamma \gamma$
10 AALTONEN	15 TEVA	$p \bar{p} \rightarrow W H^{0}, Z H^{0}, H^{0} \rightarrow b \bar{b}$
11 AALTONEN	15B CDF	$p \bar{p} \rightarrow W H^{0}, Z H^{0}, H^{0} \rightarrow b \bar{b}$
12 KHACHATRY	.15Y CMS	$H^{0} \rightarrow 4 \ell, W W^{*}, \gamma \gamma$
13 ABAZOV	14F D0	$p \bar{p} \rightarrow W H^{0}, Z H^{0}, H^{0} \rightarrow b \bar{b}$
14 CHATRCHYA	14AA CMS	$H^{0} \rightarrow Z Z^{*}$
15 CHATRCHYA	N14G CMS	$H^{0} \rightarrow W W^{*}$
16 KHACHATRY	..14P CMS	$H^{0} \rightarrow \gamma \gamma$
17 AAD	13AJ ATLS	$H^{0} \rightarrow \gamma \gamma, Z Z^{*} \rightarrow 4 \ell, W W^{*} \rightarrow \ell \nu \ell \nu$
18 CHATRCHYA	,13J CMS	$H^{0} \rightarrow Z Z^{*} \rightarrow 4 \ell$

${ }^{1}$ SIRUNYAN 19BL measure the anomalous $H V V$ couplings from on-shell and off-shell production in the 4ℓ final state. Data of $80.2 \mathrm{fb}^{-1}$ at $13 \mathrm{TeV}, 19.7 \mathrm{fb}^{-1}$ at 8 TeV , and $5.1 \mathrm{fb}^{-1}$ at 7 TeV are used. See their Tables VI and VII for anomalous $H V V$ couplings of $C P$-violating and $C P$-conserving parameters with on- and off-shells.
${ }^{2}$ SIRUNYAN $198 z$ constrain anomalous $H V V$ couplings of the Higgs boson with data of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ using Higgs boson candidates with two jets produced in VBF, ggF, and $V H$ that decay to $\tau \tau$. See their Table 2 and Fig. 10, which show $68 \% \mathrm{CL}$ and $95 \% \mathrm{CL}$ intervals. Combining those with the $H^{0} \rightarrow 4 \ell$ (SIRUNYAN 19BL, on-shell scenario), results shown in their Tables 3, 4, and Fig. 11 are obtained. A $C P$-violating parameter is set to be $f_{a 3} \cos \left(\phi_{a 3}\right)=(0.00 \pm 0.27) \times 10^{-3}$ and $C P$-conserving parameters are $f_{a 2} \cos \left(\phi_{a 2}\right)=\left(0.08_{-0.21}^{+1.04}\right) \times 10^{-3}, f_{\Lambda 1} \cos \left(\phi_{\Lambda 1}\right)=\left(0.00_{-0.09}^{+0.53}\right) \times 10^{-3}$, and $f_{\Lambda 1}^{Z \gamma} \cos \left(\phi_{\Lambda 1}^{Z \gamma}\right)=\left(0.0_{-1.3}^{+1.1}\right) \times 10^{-3}$.
${ }^{3}$ AABOUD 18AJ study the tensor structure of the Higgs boson couplings using an effective Lagrangian using $36.1 \mathrm{fb}^{-1}$ of $p p$ collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. Constraints are set on the non-Standard-Model $C P$-even and $C P$-odd couplings to Z bosons and on the $C P$-odd coupling to gluons. See their Figs. 9 and 10, and Tables 10 and 11.
${ }^{4}$ SIRUNYAN 17AM Constrain anomalous couplings of the Higgs boson with $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}, 19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$, and $38.6 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=$ 13 TeV . See their Table 3 and Fig. 3, which show $68 \% \mathrm{CL}$ and $95 \% \mathrm{CL}$ intervals. A CP violation parameter $f_{a 3}$ is set to be $f_{a 3} \cos \left(\phi_{a 3}\right)=[-0.38,0.46]$ at $95 \% \mathrm{CL}\left(\phi_{a 3}=0\right.$ or π).
${ }^{5}$ AAD 16 study $H^{0} \rightarrow \gamma \gamma$ with an effective Lagrangian including $C P$ even and odd terms in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The data is consistent with the expectations for the Higgs boson of the Standard Model. Limits on anomalous couplings are also given.
${ }^{6}$ AAD 16BL study VBF $H^{0} \rightarrow \tau \tau$ with an effective Lagrangian including a $C P$ odd term in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The measurement is consistent with the expectation of the Standard Model. The $C P$-mixing parameter \tilde{d} (a dimensionless coupling $\left.\tilde{d}=-\left(m_{W}^{2} / \Lambda^{2}\right) f_{W} W\right)$ is constrained to the interval of $(-0.11,0.05)$ at 68% CL under the assumption of $\tilde{d}=\tilde{d}_{B}$.
7 KHACHATRYAN 16AB search for anomalous pseudoscalar couplings of the Higgs boson to W and Z with $18.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Table 5 and Figs 5 and 6 for limits on possible anomalous pseudoscalar coupling parameters.
${ }^{8}$ AAD 15AX compare the $J C P=0^{+}$Standard Model assignment with other $J C P$ hypotheses in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$, using the process $\mathrm{H}^{0} \rightarrow$ $W W^{*} \rightarrow e \nu \mu \nu .2^{+}$hypotheses are excluded at $84.5-99.4 \% \mathrm{CL}, 0^{-}$at $96.5 \% \mathrm{CL}, 0^{+}$ (field strength coupling) at $70.8 \% \mathrm{CL}$. See their Fig. 19 for limits on possible $C P$ mixture parameters.
${ }^{9}$ AAD 15CI compare the $J C P=0^{+}$Standard Model assignment with other $J C P$ hypotheses in $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$, using the processes $H^{0} \rightarrow z Z^{*} \rightarrow 4 \ell . H^{0} \rightarrow \gamma \gamma$ and combine with AAD 15AX data. 0^{+}(field strength coupling), 0^{-}and several 2^{+}hypotheses are excluded at more than 99.9% CL. See their Tables $7-9$ for limits on possible CP mixture parameters.
${ }^{10}$ AALTONEN 15 combine AALTONEN 15B and ABAZOV 14F data. An upper limit of 0.36 of the Standard Model production rate at $95 \% \mathrm{CL}$ is obtained both for a 0^{-}and a 2^{+}state. Assuming the SM event rate, the $J^{C P}=0^{-}\left(2^{+}\right)$hypothesis is excluded at the $5.0 \sigma(4.9 \sigma)$ level.
${ }^{11}$ AALTONEN 15 B compare the $J C P=0^{+}$Standard Model assignment with other $J C P$ hypotheses in $9.45 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$, using the processes $Z H^{0} \rightarrow$ $\ell \ell b \bar{b}, w H^{0} \rightarrow \ell \nu b \bar{b}$, and $Z H^{0} \rightarrow \nu \nu b \bar{b}$. Bounds on the production rates of 0^{-} and 2^{+}(graviton-like) states are set, see their tables II and III.
12 KHACHATRYAN $15 Y$ compare the $J C P=0^{+}$Standard Model assignment with other ${ }_{J} C P$ hypotheses in up to $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$, using the processes $H^{0} \rightarrow 4 \ell, H^{0} \rightarrow W W^{*}$, and $H^{0} \rightarrow \gamma \gamma .0^{-}$ is excluded at $99.98 \% \mathrm{CL}$, and several 2^{+}hypotheses are excluded at more than 99% CL. Spin 1 models are excluded at more than $99.999 \% \mathrm{CL}$ in $Z Z^{*}$ and $W W^{*}$ modes. Limits on anomalous couplings and several cross section fractions, treating the case of $C P$-mixed states, are also given.
${ }^{13}$ ABAZOV 14F compare the $J C P=0^{+}$Standard Model assignment with $J C P=0^{-}$and 2^{+}(graviton-like coupling) hypotheses in up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96$ TeV . They use kinematic correlations between the decay products of the vector boson and the Higgs boson in the final states $Z H \rightarrow \ell \ell b \bar{b}, W H \rightarrow \ell \nu b \bar{b}$, and $Z H \rightarrow$ $\nu \nu b \bar{b}$. The $0^{-}\left(2^{+}\right)$hypothesis is excluded at $97.6 \% \mathrm{CL}(99.0 \% \mathrm{CL})$. In order to treat the case of a possible mixture of a 0^{+}state with another $J C P$ state, the cross section fractions $f_{X}=\sigma_{X} /\left(\sigma_{0+}+\sigma_{X}\right)$ are considered, where $X=0^{-}, 2^{+}$. Values for $f_{0^{-}}$ $\left(f_{2+}\right)$ above $0.80(0.67)$ are excluded at $95 \% \mathrm{CL}$ under the assumption that the total cross section is that of the SM Higgs boson.
${ }^{14}$ CHATRCHYAN 14AA compare the $J^{C P}=0^{+}$Standard Model assignment with various $J^{C P}$ hypotheses in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at E_{cm} $=8 \mathrm{TeV} . J C P=0^{-}$and $1^{ \pm}$hypotheses are excluded at $99 \% \mathrm{CL}$, and several $J=2$ hypotheses are excluded at $95 \% \mathrm{CL}$. In order to treat the case of a possible mixture of a 0^{+}state with another $J^{C P}$ state, the cross section fraction $f_{a 3}=\left|a_{3}\right|^{2} \sigma_{3} /\left(\left|a_{1}\right|^{2} \sigma_{1}\right.$ $\left.+\left|a_{2}\right|^{2} \sigma_{2}+\left|a_{3}\right|^{2} \sigma_{3}\right)$ is considered, where the case $a_{3}=1, a_{1}=a_{2}=0$ corresponds to a pure $C P$-odd state. Assuming $a_{2}=0$, a value for $f_{a 3}$ above 0.51 is excluded at 1595 CL.
${ }^{15}$ CHATRCHYAN 14 G compare the $J C P=0^{+}$Standard Model assignment with $J C P=$ 0^{-}and 2^{+}(graviton-like coupling) hypotheses in $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=$ 7 TeV and $19.4 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Varying the fraction of the production of the 2^{+}state via $g g$ and $q \bar{q}, 2^{+}$hypotheses are disfavored at CL between 83.7 and 99.8%. The 0^{-}hypothesis is disfavored against 0^{+}at the $65.3 \% \mathrm{CL}$.
16 KHACHATRYAN 14 P compare the $J C P=0^{+}$Standard Model assignment with a 2^{+} (graviton-like coupling) hypothesis in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Varying the fraction of the production of the 2^{+}state via $g g$ and $q \bar{q}, 2^{+}$hypotheses are disfavored at CL between 71 and 94%.
${ }^{17}$ AAD 13AJ compare the spin $0, C P$-even hypothesis with specific alternative hypotheses of spin $0, C P$-odd, spin 1, $C P$-even and $C P$-odd, and spin 2, $C P$-even models using the

Higgs boson decays $H \rightarrow \gamma \gamma, H \rightarrow Z Z^{*} \rightarrow 4 \ell$ and $H \rightarrow W W^{*} \rightarrow \ell \nu \ell \nu$ and combinations thereof. The data are compatible with the spin $0, C P$-even hypothesis, while all other tested hypotheses are excluded at confidence levels above 97.8%.
${ }^{18}$ CHATRCHYAN 13J study angular distributions of the lepton pairs in the $Z Z^{*}$ channel where both Z bosons decay to e or μ pairs. Under the assumption that the observed particle has spin 0 , the data are found to be consistent with the pure $C P$-even hypothesis, while the pure $C P$-odd hypothesis is disfavored.

H^{0} DECAY WIDTH

The total decay width for a light Higgs boson with a mass in the observed range is not expected to be directly observable at the LHC. For the case of the Standard Model the prediction for the total width is about 4 MeV , which is three orders of magnitude smaller than the experimental mass resolution. There is no indication from the results observed so far that the natural width is broadened by new physics effects to such an extent that it could be directly observable. Furthermore, as all LHC Higgs channels rely on the identification of Higgs decay products, the total Higgs width cannot be measured indirectly without additional assumptions. The different dependence of on-peak and off-peak contributions on the total width in Higgs decays to $Z Z^{*}$ and interference effects between signal and background in Higgs decays to $\gamma \gamma$ can provide additional information in this context. Constraints on the total width from the combination of on-peak and off-peak contributions in Higgs decays to $z z^{*}$ rely on the assumption of equal on- and off-shell effective couplings. Without an experimental determination of the total width or further theoretical assumptions, only ratios of couplings can be determined at the LHC rather than absolute values of couplings.

VALUE (GeV)$0.0032_{-0.0022}^{+0.0028}$	CL\%	DOCUMENTID TECN		COMMENT
		${ }^{1}$ SIRUNYAN	19bl CMS	$\begin{gathered} p p, 7,8,13 \mathrm{TeV}, \\ z Z^{*} / Z Z \rightarrow 4 \ell \end{gathered}$
<0.0144	95	${ }^{2}$ AABOUD	18 BP ATLS	$p p, 13 \mathrm{TeV}, Z Z \rightarrow 4 \ell, 2 \ell 2 \nu$
<1.10	95	${ }^{3}$ SIRUNYAN	17av CMS	$p p, 13 \mathrm{TeV}, Z^{*} \rightarrow 4 \ell$
<0.013	95	4 KHACHATRY	.16BA CMS	$p p, 7,8 \mathrm{TeV}, Z Z^{(*)}, W W^{(*)}$
<1.7	95	5 KHACHATRY	.15amCMS	$p p, 7,8 \mathrm{TeV}$
$>3.5 \times 10^{-12}$	95	6 KHACHATRY	.15ba CMS	$p p, 7,8 \mathrm{TeV}$, flight distance
<5.0	95	${ }_{7}^{7}$ AAD	14w ATLS	$p p, 7,8 \mathrm{TeV}, \gamma \gamma$
<2.6	95	${ }^{7}$ AAD	14w ATLS	$p p, 7,8 \mathrm{TeV}, \mathrm{Z} Z^{*} \rightarrow 4 \ell$
- - We do not use the following data for averages, fits, limits, etc. - -				
<0.026	95	8 KHACHATRY	. 16 BA CMS	$p p, 7,8 \mathrm{TeV}, W W^{(*)}$
<0.0227	95	${ }^{9}$ AAD	15be ATLS	$p p, 8 \mathrm{TeV}, z Z^{(*)}, w w^{(*)}$
<0.046	95	10 KHACHATRY	.15ba CMS	$p p, 7,8 \mathrm{TeV}, \mathrm{zz}^{(*)} \rightarrow 4 \ell$
<3.4	95	11 CHATRCHYA	14AA CMS	$p p, 7,8 \mathrm{TeV}, Z^{*} \rightarrow 4 \ell$
<0.022	95	12 KHACHATRY	.14D CMS	$p p, 7,8 \mathrm{TeV}, z Z^{(*)}$
<2.4	95	13 KHACHATRY	.14P CMS	$p p, 7,8 \mathrm{TeV}, \gamma \gamma$

$1^{\text {SIRUNYAN }}$ 19BL measure the width and anomalous $H V V$ couplings from on-shell and off-shell production in the 4ℓ final state. Data of $80.2 \mathrm{fb}^{-1}$ at $13 \mathrm{TeV}, 19.7 \mathrm{fb}^{-1}$ at 8 TeV , and $5.1 \mathrm{fb}^{-1}$ at 7 TeV are used. The total width for the SM-like couplings is measured to be also $[0.08,9.16] \mathrm{MeV}$ with $95 \% \mathrm{CL}$, assuming SM-like couplings for onand off-shells (see their Table VIII). Constraints on the total width for anomalous HVV interaction cases are found in their Table IX. See their Table X for the Higgs boson signal strength in the off-shell region.
${ }^{2}$ AABOUD 18BP use $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. An observed upper limit on the off-shell Higgs signal strength of 3.8 is obtained at 95% CL using off-shell Higgs boson production in the $Z Z \rightarrow 4 \ell$ and $Z Z \rightarrow 2 \ell 2 \nu$ decay channels $(\ell=e, \mu)$. Combining with the in the $Z Z \rightarrow 4$
on-shell signal strength measurements, the quoted upper limit on the Higgs boson total on-shell signal strength measurements, the quoted upper limit on the Higgs boson total
width is obtained, assuming the ratios of the relevant Higgs-boson couplings to the SM width is obtained, assuming the ratios of the relevant Higgs-boson couplings to the SM
predictions are constant with energy from on-shell production to the high-mass range.
3 SIRUNYAN 17 AV obtain an upper limit on the width from the $m_{4 \ell}$ distribution in $Z Z^{*} \rightarrow$
$4 \ell(\ell=e, \mu)$ decays. Data of $35.9 \mathrm{fb}^{-1} p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$ is used. The expected limit is 1.60 GeV .
${ }^{4}$ KHACHATRYAN 16BA combine the $W W^{(*)}$ result with $Z Z^{(*)}$ results of KHACHA5 TRYAN 15BA and KHACHATRYAN 14D.
${ }^{5}$ KHACHATRYAN 15AM combine $\gamma \gamma$ and $Z Z^{*} \rightarrow 4 \ell$ results. The expected limit is 2.3 ${ }_{6} \mathrm{GeV}$.
6 KHACHATRYAN 15BA derive a lower limit on the total width from an upper limit on the decay flight distance $\tau<1.9 \times 10^{-13} \mathrm{~s} .5 .1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ 7 TeV and $19.7 \mathrm{fb}^{-1}$ at 8 TeV are used.
${ }^{7}$ AAD 14 W use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at 8 TeV . The expected limit is 6.2 GeV .
${ }^{8}$ KHACHATRYAN 16BA derive constraints on the total width from comparing $W W^{(*)}$ production via on-shell and off-shell H^{0} using $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ 9 and $19.4 \mathrm{fb}^{-1}$ at 8 TeV .
${ }^{9}$ AAD 15BE derive constraints on the total width from comparing $Z Z^{(*)}$ and $W W^{(*)}$ production via on-shell and off-shell H^{0} using $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{c m}=8$ TeV . The K factor for the background processes is assumed to be equal to that for the signal.
10 KHACHATRYAN 15BA derive constraints on the total width from comparing $Z Z^{(*)}$ production via on-shell and off-shell H^{0} with an unconstrained anomalous coupling. 4ℓ final states in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8$ TeV are used.
${ }^{11}$ CHATRCHYAN 14AA use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The expected limit is 2.8 GeV .
12 KHACHATRYAN 14D derive constraints on the total width from comparing $Z Z^{(*)}$ production via on-shell and off-shell $H^{0} .4 \ell$ and $\ell \ell \nu \nu$ final states in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ are used.
13 KHACHATRYAN 14 P use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The expected limit is 3.1 GeV .

Gauge \& Higgs Boson Particle Listings
H^{0}

${ }^{1}$ SIRUNYAN ${ }^{18 B H}$ search for $H^{0} \rightarrow \mu \tau$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The limit constrains the $Y_{\mu \tau}$ Yukawa coupling to $\sqrt{\left|Y_{\mu \tau}\right|^{2}+\left|Y_{\tau \mu}\right|^{2}}<1.43 \times 10^{-3}$ at $95 \% \mathrm{CL}$ (see their Fig. 10).
${ }^{2}$ AAD 20A search for $H^{0} \rightarrow \mu \tau$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{c m}=13 \mathrm{TeV}$. The limit constrains the $Y_{\mu \tau}$ Yukawa coupling to $\sqrt{\left|Y_{\mu \tau}\right|^{2}+\left|Y_{\tau \mu}\right|^{2}}<1.5 \times 10^{-3}$ at $95 \% \mathrm{CL}$ (see their Fig. 5).
${ }^{3}$ AAIJ 18AM search for $H^{0} \rightarrow \mu \tau$ in $2.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The limit constrains the $Y_{\mu \tau}$ Yukawa coupling to $\sqrt{\left|Y_{\mu \tau}\right|^{2}+\left|Y_{\tau \mu}\right|^{2}}<1.7 \times 10^{-2}$ at 95% CL assuming SM production cross sections.
${ }^{4}$ AAD 17 search for $H^{0} \rightarrow \mu \tau$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$.
${ }^{5}$ KHACHATRYAN $15 Q$ search for $H^{0} \rightarrow \mu \tau$ with τ decaying electronically or hadronically in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The fit gives $\mathrm{B}\left(H^{0} \rightarrow \mu \tau\right)=$ $\left(0.84_{-0.39}^{+0.39}\right) \%$ with a significance of 2.4σ.
$\Gamma\left(\right.$ invisible) $/ \Gamma_{\text {total }}$

${ }^{1}$ AABOUD 19al combine results of 7 , 8 (AAD $15 C x$), and 13 TeV for H^{0} decaying to invisible final states.
2 SIRUNYAN 19BO combine $13 \mathrm{TeV} 35.9 \mathrm{fb}^{-1}$ results with $7,8,13 \mathrm{TeV}$ (KHACHATRYAN 17F) for H^{0} decaying to invisible final states. The quoted limit on the branching ratio is given for $m_{H^{0}}=125.09 \mathrm{GeV}$ and assumes the Standard Model production rates. The branching ratio is obtained to be 0.05 ± 0.03 (stat) ± 0.07 (syst).
${ }^{3}$ AABOUD 19al search for $p p \rightarrow q q H^{0} X$ (VBF) with H^{0} decaying to invisible final states using $36.1 \mathrm{fb}^{-1}$ of data. The quoted limit on the branching ratio is given for $m_{H^{0}}=$
125 GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
${ }^{4}$ AABOUD 19aL combine results of H^{0} decaying to invisible final states with VBF(AABOUD 19aı), ZH , and WH productions (AABOUD 18, AABOUD 18CA), which use $36.1 \mathrm{fb}^{-1}$ of data at 13 TeV . The quoted limit is given for $m_{H^{0}}=125 \mathrm{GeV}$ and assumes the Standard Model rates for gluon fusion, VBF, $Z H$, and $W H$ productions.
5^{5} SIRUNYAN 19AT perform a combined fit with visible decay using $35.9 \mathrm{fb}^{-1}$ of data at 13 TeV .
${ }^{6}$ SIRUNYAN 19 bo search for $p p \rightarrow q q H^{0} \times$ (VBF) with H^{0} decaying to invisible final states using $35.9 \mathrm{fb}^{-1}$ of data. The quoted limit on the branching ratio is given for $m_{H^{0}}=125.09 \mathrm{GeV}$ and assumes the Standard Model production rates.
${ }^{7}$ SIRUNYAN 19BO combine the VBF channel with results of other 13 TeV analyses: SIRUNYAN 18BV and SIRUNYAN 18S. The quoted limit on the branching ratio is given for $m_{H^{0}}=125.09 \mathrm{GeV}$ and assumes the Standard Model production rates.
${ }^{8}$ AABOUD 18 search for $p p \rightarrow H^{0} Z X, Z \rightarrow e e, \mu \mu$ with H^{0} decaying to invisible final states in $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=125 \mathrm{GeV}$ and assumes the Standard Model rate for $H^{0} Z$ production.
${ }^{9}$ AABOUD 18CA search for H^{0} decaying to invisible final states using $W H$, and $Z H$ productions, where W and Z hadronically decay. The data of $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13$ TeV is used. The quoted limit assumes SM production cross sections with combining the contributions from $W \mathrm{H}, Z \mathrm{H}, \mathrm{ggF}$ and VBF production modes.
10 SIRUNYAN 18BV search for H^{0} decaying to invisible final states associated with a Z, $Z \rightarrow \ell \ell$ using $35.9 \mathrm{fb}^{-1}$ at 13 TeV . The limit is obtained for $m_{H^{0}}=125 \mathrm{GeV}$ and assuming the SM ZH^{0} production cross section.
${ }^{11}$ SIRUNYAN 18 s search for H^{0} decaying to invisible final states associated with an energetic jet or a $V, V \rightarrow q \bar{q}$ using $35.9 \mathrm{fb}^{-1}$ at 13 TeV .
${ }^{12}$ AABOUD 17BD search for H^{0} decaying to invisible final states with ≥ 1 jet and VBF events using $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. A cross-section ratio $R^{\text {miss }}$ is used in the measurement. The quoted limit is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{13}$ KHACHATRYAN 17F search for H^{0} decaying to invisible final states with gluon fusion, VBF, $Z H$, and $W H$ productions using $2.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$, $19.7 \mathrm{fb}^{-1}$ at 8 TeV , and $5.1 \mathrm{fb}^{-1}$ at 7 TeV . The quoted limit is given for $m_{H^{0}}=$

125 GeV and assumes the Standard Model rates for gluon fusion, VBF, $Z H$, and $W H$ productions.
${ }^{14}$ AAD 16AF search for $p p \rightarrow q q H^{0} X(\mathrm{VBF})$ with H^{0} decaying to invisible final states in $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=$ 125 GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
${ }^{15}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{cm}}=7$ and 8 TeV . The branching fraction of decays into BSM particles that are invisible or into undetected decay modes is measured for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{16}$ AAD 15BD search for $p p \rightarrow H^{0} W X$ and $p p \rightarrow H^{0} Z X$ with W or Z decaying hadronically and H^{0} decaying to invisible final states using data at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted limit is given for $m_{H^{0}}=125 \mathrm{GeV}$, assumes the Standard Model rates for the production processes and is based on a combination of the contributions from $H^{0} \mathrm{~W}$, $H^{0} Z$ and the gluon-fusion process.
${ }^{17}$ AAD $15 C X$ search for H^{0} decaying to invisible final states with VBF, $Z H$, and $W H$ productions using $20.3 \mathrm{fb}^{-1}$ at 8 TeV , and $4.7 \mathrm{fb}^{-1}$ at 7 TeV . The quoted limit is given for $m_{H^{0}}=125.36 \mathrm{GeV}$ and assumes the Standard Model rates for gluon fusion, VBF, $Z \mathrm{H}$, and WH productions. The upper limit is improved to 0.23 by adding the measured visible decay rates.
${ }^{18}$ AAD 140 search for $p p \rightarrow H^{0} Z X, Z \rightarrow \ell \ell$, with H^{0} decaying to invisible final states in $4.5 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=125.5 \mathrm{GeV}$ and assumes the Standard Model rate for $\mathrm{H}^{0} \mathrm{Z}$ production.
${ }^{19}$ CHATRCHYAN 14B search for $p p \rightarrow H^{0} Z X, Z \rightarrow \ell \ell$ and $Z \rightarrow b \bar{b}$, and also $p p \rightarrow$ $q q H^{0} X$ with H^{0} decaying to invisible final states using data at $E_{\mathrm{cm}}=7$ and 8 TeV . The quoted limit on the branching ratio is obtained from a combination of the limits from $H^{0} Z$ and $q q H^{0}$. It is given for $m_{H^{0}}=125 \mathrm{GeV}$ and assumes the Standard Model rates for the two production processes.
${ }^{20}$ CHATRCHYAN 14 B search for $p p \rightarrow H^{0} Z X$ with H^{0} decaying to invisible final states and $Z \rightarrow \ell \ell$ in $4.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$, and also with $Z \rightarrow b \bar{b}$ in $18.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=125 \mathrm{GeV}$ and assumes the Standard Model rate for $H^{0} Z$ production.
${ }^{21}$ CHATRCHYAN 14 B search for $p p \rightarrow q q H^{0} \times$ (vector boson fusion) with H^{0} decaying to invisible final states in $19.5 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=125 \mathrm{GeV}$ and assumes the Standard Model rate for $q q H^{0}$ production.
$\Gamma(\gamma$ invisible $) / \Gamma_{\text {total }}$
Γ_{23} / Γ

${ }^{1}$ SIRUNYAN 19CG search for $p p \rightarrow H^{0} Z, Z \rightarrow e e, \mu \mu$ with H^{0} decaying to invisible final states plus a γ in $137 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted limit on the branching ratio is given for $m_{H^{0}}=125 \mathrm{GeV}$ assuming the Standard Model rate for $\mathrm{H}^{0} \mathrm{Z}$ production and is obtained in the context of a theoretical model, where the undetected (invisible) is massless.

H^{0} SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The H^{0} signal strength in a particular final state $x x$ is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma \cdot \mathrm{B}\left(H^{0} \rightarrow x x\right) /\left(\sigma \cdot \mathrm{B}\left(H^{0} \rightarrow x x\right)\right)_{\mathrm{SM}}$, for the specified mass value of H^{0}. For the SM predictions, see DITTMAIER 11, DITTMAIER 12, and HEINEMEYER 13A. Results for fiducial and differential cross sections are also listed below.

Combined Final States

 1.13 ± 0.06 OUR AVERAGE$1.20 \pm 0.10 \pm 0.06 \pm 0.04_{-0.07}^{+0.08}$
${ }^{4}$ AAD
${ }^{4} \mathrm{AAD}$
${ }^{1}$ AAD 20 ATLS $p p, 13 \mathrm{TeV}$
${ }^{2}$ SIRUNYAN
16AN LHC pp, 7, 8 TeV
${ }^{5}$ AALTONEN $\quad 13 \mathrm{~m}$ TEVA $p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
13 M TEVA $p \bar{p} \rightarrow$
fits, limits, etc. \bullet
ta for averages, fits, limits, etc. • • •
${ }^{6}$ SIRUNYAN 19ba CMS pp,13 TeV, diiferential cross sections
$1.20 \pm 0.10 \pm 0.06 \pm 0.04_{-0.0}^{+0.0}$ $0.97 \pm 0.09 \pm 0.05{ }_{-0.03}^{+0.04}{ }_{-0.06}^{0.07}$ $1.18 \pm 0.10 \pm 0.07_{-0.07}^{+0.08}$
${ }^{7}$ AAD
16AN ATLS
$p p, 7,8 \mathrm{TeV}$
$0.75+0.28+0.13+0.08$
$0.75+0.28+0.13+0.08$
$1.28 \pm 0.11+0.08+0.10$
7 AAD
16AN CMS
$p p, 7,8 \mathrm{TeV}$
$1.00 \pm 0.09+0.07+0.08$
7 AA
8
16 K ATLS $p p, 7 \mathrm{TeV}$
$1.00 \pm 0.09 \pm 0.07_{-0.07}^{+0.08}$
$1.33_{-0.10}^{+0.14} \pm 0.15$
$1.54{ }_{-0.73}^{+0.77}$
$1.40_{-0.88}^{+0.92}$
1.4 ± 0.3
1.2 ± 0.4
1.5 ± 0.4
0.87 ± 0.23

Gauge \& Higgs Boson Particle Listings

${ }^{1}$ AAD 20 combine results of up to $79.8 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$, assuming $m_{H^{0}}$ $=125.09 \mathrm{GeV}: \gamma \gamma, Z Z^{*}, W W^{*}, \tau \tau, b \bar{b}, \mu \mu$, invisible, and off-shell analyses (see their Table I). The signal strengths for individual production processes are 1.04 ± 0.09 for gluon fusion, $1.21_{-0.22}^{+0.24}$ for vector boson fusion, $1.30_{-0.38}^{+0.40}$ for $W H^{0}$ production, $1.05_{-0.29}^{+0.31}$ for $Z H^{0}$ production, and $1.21_{-0.24}^{+0.26}$ for $t \bar{t} H^{0}+t H^{0}$ production (see their Fig. 2 and Table IV). Several results with the simplified template cross section and κ-frameworks are presented: see their Figs. 9-11, Figs 20, 21 and Table VIII for stage-1 simplified template cross sections, their Figs. 12-17 and Tables X-XII for the κ-framework.
${ }^{2}$ SIRUNYAN 19AT combine results of $35.9 \mathrm{fb}{ }^{-1}$ of data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$, assuming m $=125.09 \mathrm{GeV}$. The signal strengths for individual production processes are $1.22_{-0.12}^{+0.14}$ for gluon fusion, $0.733_{-0.27}^{+0.30}$ for vector boson fusion, $2.18_{-0.55}^{+0.58}$ for WH^{0} production, $0.87_{-0.42}^{+0.44}$ for $Z H^{0}$ production, and $1.18_{-0.27}^{+0.30}$ for $t \bar{t} H^{0}$ production. Several results with the simplified template cross section and κ-frameworks are presented: see their Fig. 8 and Table 5 for stage-0 simplified template cross sections, their Figs. 9-18 and Tables $7-11$ for the κ-framework.
${ }^{3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{cm}}=7$ and 8 TeV . The signal strengths for individual production processes are $1.03_{-0.14}^{+0.16}$ for gluon fusion, $1.18_{-0.23}^{+0.25}$ for vector boson fusion, $0.89_{-0.38}^{+0.40}$ for WH^{0} production, $0.79_{-0.36}^{+0.38}$ for ZH^{0} production, and $2.3_{-0.6}^{+0.7}$ for $t \bar{t} H^{0}$ production.
${ }^{4}$ AAD 16AN: The uncertainties represent statistics, experimental systematics, theory systematics on the background, and theory systematics on the signal. The quoted signal strengths are given for $m_{H^{0}}=125.09 \mathrm{GeV}$. In the fit, relative branching ratios and relative production cross sections are fixed to those in the Standard Model
${ }^{5}$ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to $10.0 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively, of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{6}$ SIRUNYAN 19BA measure differential cross sections for the Higgs boson transverse momentum, the number of jets, the rapidity of the Higgs boson and the transverse momentum of the leading jet using $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with $H^{0} \rightarrow \gamma \gamma, H^{0} \rightarrow$ $z Z^{*}$, and $H^{0} \rightarrow b \bar{b}$. The total cross section for Higgs boson production is measured to be $61.1 \pm 6.0 \pm 3.7 \mathrm{pb}$ using $H^{0} \rightarrow \gamma \gamma$ and $H^{0} \rightarrow Z Z^{*}$ channels. Several coupling measurements in the κ-framework are performed.
${ }^{7}$ AAD 16 K use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}-1$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The third uncertainty in the measurement is theory systematics. The signal strengths for individual production modes are $1.23 \pm 0.14_{-0.08}^{+0.09}{ }_{-0.12}^{+0.16}$ for gluon fusion, $1.23_{-0.27}^{+0.28}+0.13{ }_{-0.12}^{+0.11}$ for vector boson fusion, $0.80_{-0.30}^{+0.31} \pm 0.17_{-0.05}^{+0.10}$ for $W / Z H^{0}$ production, and $1.81+0.52+0.58+0.31$ for $t \bar{t} H^{0}$ production. The quoted signal strengths are given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{8}$ AAD 15P measure total and differential cross sections of the process $p p \rightarrow H^{0} X$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ with $20.3 \mathrm{fb}^{-1} . \gamma \gamma$ and 4ℓ final states are used. $\sigma\left(p p \rightarrow H^{0} X\right)=$ $33.0 \pm 5.3 \pm 1.6 \mathrm{pb}$ is given. See their Figs. 2 and 3 for data on differential cross sections.
${ }^{9}$ KHACHATRYAN 15 AM use up to $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and up to $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The third uncertainty in the measurement is theory systematics. Fits to each production mode give the value of $0.85{ }_{-0.16}^{+0.19}$ for gluon fusion, $1.16{ }_{-0.34}^{+0.37}$ for vector boson fusion, $0.922_{-0.36}^{+0.38}$ for $W H^{0}, \mathrm{ZH}^{0}$ production, and $2.90_{-0.94}^{+1.08}$ for $t \bar{t} H^{0}$ production.
${ }^{10}$ AAD 13AK use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.7 \mathrm{fb}{ }^{-1}$ at $E_{\mathrm{cm}}=$ 8 TeV . The combined signal strength is based on the $\gamma \gamma, Z Z^{*} \rightarrow 4 \ell$, and $W W^{*} \rightarrow$ $\ell \nu \ell \nu$ channels. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. Reported statistical error value modified following private communication with the experiment.
${ }^{11}$ AALTONEN 13 L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{12}$ ABAZOV 13L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=$ 1.96 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{13}$ AAD 12AI obtain results based on $4.6-4.8 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $5.8-5.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. An excess of events over background with a local significance of 5.9σ is observed at $m_{H^{0}}=126 \mathrm{GeV}$. The quoted signal strengths are given for $m_{H^{0}}=126 \mathrm{GeV}$. See also AAD 12DA.
${ }^{14}$ CHATRCHYAN 12 N obtain results based on $4.9-5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ TeV and 5.1-5.3 fb ${ }^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. An excess of events over background with a local significance of 5.0σ is observed at about $m_{H^{0}}=125 \mathrm{GeV}$. The combined signal strength is based on the $\gamma \gamma, Z Z^{*}, W W^{*}, \tau^{+} \tau^{-}$, and $b \bar{b}$ channels. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. See also CHATRCHYAN 13 Y

W W* Final State

1.19 ± 0.12 OUR AVERAGE

$1.28{ }_{-0.16}^{+0.17}$	${ }^{1}$ SIRUNYAN	19at CMS	pp, 13 TeV
$1.09{ }_{-0.16}^{+0.18}$	2,3 AAD	16an LHC	$p p, 7,8 \mathrm{TeV}$
$0.94{ }_{-0.83}^{+0.85}$	${ }^{4}$ AALTONEN	13M TEVA	$p \bar{P} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -			
	${ }^{5}$ AABOUD	19 F ATLS	$p p, 13 \mathrm{TeV}$, cross sections
$2.5{ }_{-0.8}^{+0.9}$	${ }^{6}$ AAD	19A ATLS	$\begin{aligned} & p p \rightarrow H^{0} W / H^{0} Z, \\ & H^{0} \rightarrow W W^{*}, 13 \mathrm{TeV} \end{aligned}$

$1.28{ }_{-0.17}^{+0.18}$	7 SIRUNYAN	19ax CMS	$p p, 13 \mathrm{TeV}$
$1.22{ }_{-0.21}^{+0.23}$	${ }^{3} \mathrm{AAD}$	16an ATLS	$p p, 7,8 \mathrm{TeV}$
$0.90_{-0.21}^{+0.23}$	${ }^{3}$ AAD	16an CMS	$p p, 7,8 \mathrm{TeV}$
	${ }^{8}$ AAD	16ao ATLS	$p p, 8 \mathrm{TeV}$, cross sections
$1.18 \pm 0.16_{-0.14}^{+0.17}$	${ }^{9}$ AAD	16K ATLS	$p p, 7,8 \mathrm{TeV}$
$1.09_{-0.15}^{+0.16}+0.174$	${ }^{10}$ AAD	15AA ATLS	$p p, 7,8 \mathrm{TeV}$
$3.0{ }_{-1.1}^{+1.3}{ }_{-0.7}^{+1.0}$	${ }^{11}$ AAD	15AQ ATLS	$\underset{\mathrm{TeV}}{\vec{~}} \mathrm{H}^{0} W / Z X, 7,8$
$1.16_{-0.15}^{+0.16}+0.18$	${ }^{12}$ AAD	15AQ ATLS	$p p, 7,8 \mathrm{TeV}$
$0.72 \pm 0.12 \pm 0.10{ }_{-0.10}^{+0.12}$	13 CHATRCHYAN 14 G CMS		$p p, 7,8 \mathrm{TeV}$
$0.99{ }_{-0.28}^{+0.31}$	${ }^{14}$ AAD	13AK ATLS	$p p, 7$ and 8 TeV
$0.00_{-0.00}^{+1.78}$	15 AALTONEN	13L CDF	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
$1.90{ }_{-1.52}^{+1.63}$	${ }^{16}$ ABAZOV	13L D0	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
1.3 ± 0.5	${ }^{17}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
0.5 ± 0.6	${ }_{17}$ AAD	12AI ATLS	$p p \rightarrow H^{0} \mathrm{X}, 7 \mathrm{TeV}$
1.9 ± 0.7	17 AAD	12AI ATLS	$p p \rightarrow H^{0} X, 8 \mathrm{TeV}$
$0.60{ }_{-0.37}^{+0.42}$	18 CHATRCHYAN	12 N CMS	$p p \rightarrow H^{0} \mathrm{X}, 7,8 \mathrm{TeV}$

1 SIRUNYAN 19AT perform a combine fit to $359 \mathrm{fb}-1$ of data at $E_{\text {C }}=13 \mathrm{TeV}$,
${ }^{2}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{Cm}}=7$ and 8 TeV . The signal strengths for individual production processes are 0.84 ± 0.17 for gluon fusion, 1.2 ± 0.4 for vector boson fusion, $1.6_{-1.0}^{+1.2}$ for $W H^{0}$ production, $5.9_{-2.2}^{+2.6}$ for $Z H^{0}$ production, and $5.0_{-1.7}^{+1.8}$ for $t \bar{t} H^{0}$ production.
${ }^{3}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{4}$ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to $10.0 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively, of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{5}$ AABOUD 19F measure cross-sections times the $H^{0} \rightarrow W W^{*}$ branching fraction in the $H^{0} \rightarrow W W^{*} \rightarrow e \nu \mu \nu$ channel using $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13$ $\mathrm{TeV}: \sigma_{g g F} \times \mathrm{B}\left(H^{0} \rightarrow W W^{*}\right)=11.4_{-1.1}^{+1.2+1.7} \mathrm{pb}$ and $\sigma_{V B F} \times \mathrm{B}\left(H^{0} \rightarrow W W^{*}\right)=$ $0.50_{-0.22}^{+0.24} \pm 0.17 \mathrm{pb}$.
${ }^{6}$ AAD 19A use $36.1 \mathrm{fb}^{-1}$ data at 13 TeV . The cross section times branching fraction values
 pb for $Z H^{0}, H^{0} \rightarrow W W^{*}$.
7 SIRUNYAN 19AX measure the signal strengths, cross sections and so on using gluon fusion, VBF and $V H^{0}$ production processes with $35.9 \mathrm{fb}^{-1}$ of data. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$. Signal strengths for each production process is found in their Fig. 9. Measured cross sections and ratios to the SM predictions in the stage-0 simplified template cross section framework are shown in their Fig. 10. $\kappa^{\kappa_{F}}=$ $1.52_{-0.41}^{+0.48}$ and $\kappa V=1.10 \pm 0.08$ are obtained (see their Fig. 11 (right)).
${ }^{8}$ AAD 16AO measure fiducial total and differential cross sections of gluon fusion process at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$ with $20.3 \mathrm{fb}^{-1}$ using $H^{0} \rightarrow W W^{*} \rightarrow e \nu \mu \nu$. The measured fiducial total cross section is $36.0 \pm 9.7 \mathrm{fb}$ in their fiducial region (Table 7). See their Fig. 6 for fiducial differential cross sections. The results are given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{9}$ AAD 16 K use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{10}$ AAD 15AA use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at E_{cm} $=8 \mathrm{TeV}$. The signal strength for the gluon fusion and vector boson fusion mode is $1.02 \pm 0.19_{-0.18}^{+0.22}$ and $1.27_{-0.40}^{+0.44+0.30}$, respectively. The quoted signal strengths are given for $m_{H^{0}}^{-0.18}=125.36 \mathrm{GeV}$.
11 AAD 15 AQ use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8$ TeV . The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
12 AAD 15AQ combine their result on $W / Z H^{0}$ production with the results of AAD 15AA (gluon fusion and vector boson fusion, slightly updated). The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{13}$ CHATRCHYAN 14 G use $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.4 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^{0}}=125.6 \mathrm{GeV}$.
${ }^{14} \mathrm{AAD} 13 \mathrm{AK}$ use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.7 \mathrm{fb}^{-1}$ at E_{Cm} $=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. Superseded by AAD 15AA.
${ }^{15}$ AALTONEN 13 L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
1^{16} ABAZOV 13L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.96 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{17} \mathrm{AAD} 12 \mathrm{Al}$ obtain results based on $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and 5.8 fb^{-1} at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted signal strengths are given for $m_{H^{0}}=126 \mathrm{GeV}$. See also AAD 12DA.
18 CHATRCHYAN 12 N obtain results based on $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5$ GeV . See also CHATRCHYAN $13 Y$

Z Z* Final State VALUE	CL\%	DOCUMENT ID TECN		COMMENT
$1.20{ }_{-0.12}^{+0.12}$ OUR AVERAGE				
$1.06{ }_{-0.17}^{+0.19}$		${ }^{1}$ SIRUNYAN	19at CMS	$p p, 13 \mathrm{TeV}$
$1.28{ }_{-0.19}^{+0.21}$		${ }^{2}$ AABOUD	18AJ ATLS	$p p, 13 \mathrm{TeV}$
$1.29{ }_{-0.23}^{+0.26}$		${ }^{3,4}$ AAD	16an LHC	$p p, 7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
<6.5	95	${ }^{5}$ AABOUD	19N ATLS	$p p, 13 \mathrm{TeV}$, off-shell
<3.8	95	${ }^{6}$ AABOUD	18BP ATLS	$p p, 13 \mathrm{TeV}$, off-shell
$1.05_{-0.14}^{+0.15+0.11}$		7 SIRUNYAN	17 AV CMS	$p p, 13 \mathrm{TeV}$
$1.52{ }_{-0.34}^{+0.40}$		${ }^{4}$ AAD	16an ATLS	$p p, 7,8 \mathrm{TeV}$
$1.04{ }_{-0.26}^{+0.32}$		${ }^{4} \mathrm{AAD}$	16an CMS	$p p, 7,8 \mathrm{TeV}$
$1.46_{-0.31-0.13}^{+0.35+0.19}$		${ }^{8} \mathrm{AAD}$	16K ATLS	$p p, 7,8 \mathrm{TeV}$
$\begin{aligned} & 1.44+0.34+0.21 \\ & -0.31-0.11 \end{aligned}$		${ }^{9}$ KHACHATRY...16AR CMS		$p p, 7,8$ TeV cross sections
		${ }^{10}$ AAD	15F ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
		${ }^{11}$ AAD	14ar ATLS	$p p, 8 \mathrm{TeV}$, differential cross section
$0.93_{-0.23}^{+0.26}{ }_{-0.09}^{+0.13}$		12 CHATRCHYAN 14aA CMS		$p p, 7,8 \mathrm{TeV}$
$1.43{ }_{-0.35}^{+0.40}$		${ }^{13}$ AAD	13AK ATLS	$p p, 7$ and 8 TeV
$0.80{ }_{-0.28}^{+0.35}$		14 CHATRCHYAN 13J CMS		$p p \rightarrow H^{0} \mathrm{X}, 7,8 \mathrm{TeV}$
1.2 ± 0.6		${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
1.4 ± 1.1		${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 7 \mathrm{TeV}$
1.1 ± 0.8		${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 8 \mathrm{TeV}$
$0.733_{-0.33}^{+0.45}$		16 CHATRCHYA	12 N CMS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$

${ }^{1}$ SIRUNYAN 19AT perform a combine fit to $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 18AJ perform analyses using $H^{0} \rightarrow Z Z^{*} \rightarrow 4 \ell(\ell=e, \mu)$ with data of 36.1 fb^{-1} at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. Results are given for $m_{H^{0}}=125.09 \mathrm{GeV}$. The inclusive cross section times branching ratio for $H^{0} \rightarrow z z^{*}$ decay $\left(\left|\eta\left(H^{0}\right)\right|<2.5\right)$ is measured to be $1.73_{-0.24}^{+0.26} \mathrm{pb}$ (with $1.34_{-0.09}^{+0.09} \mathrm{pb}$ expected in the SM).
${ }^{3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{cm}}=7$ and 8 TeV . The signal strengths for individual production processes are $1.13_{-0.31}^{+0.34}$ for gluon fusion and $0.1+0.6$ for vector boson fusion.
${ }^{4}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{5}$ AABOUD 19 N measure the spectrum of the four-lepton invariant mass $\mathrm{m}_{4 \ell}(\ell=e$ or μ) using $36.1 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength upper limit is obtained from $180 \mathrm{GeV}<\mathrm{m}_{4 \ell}<1200 \mathrm{GeV}$.
${ }^{6}$ AABOUD 18BP measure an off-shell Higgs boson production using $Z Z \rightarrow 4 \ell$ and $Z Z \rightarrow$ $2 \ell 2 \nu(\ell=e, \mu)$ decay channels with $36.1 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength upper limit is obtained from a combination of these two channels, where $220 \mathrm{GeV}<\mathrm{m}_{4 \ell}<2000 \mathrm{GeV}$ for $Z Z \rightarrow 4 \ell$ and $250 \mathrm{GeV}<\mathrm{m}_{T}^{Z Z}<2000 \mathrm{GeV}$ for $Z Z \rightarrow 2 \ell 2 \nu\left(\mathrm{~m}_{T}^{Z Z}\right.$ is defined in their Section 5). See their Table 2 for each measurement.
${ }^{7}$ SIRUNYAN 17 AV use $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength, obtained from the analysis of $H^{0} \rightarrow Z Z^{*} \rightarrow 4 \ell(\ell=e, \mu)$ decays, is given for $m_{H^{0}}=125.09 \mathrm{GeV}$. The signal strengths for different production modes are given in their Table 3. The fiducial and differential cross sections are shown in their Fig. 10.
${ }^{8}$ AAD 16 K use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{9}$ KHACHATRYAN 16AR use data of $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at 8 TeV . The fiducial cross sections for the production of 4 leptons via $H^{0} \rightarrow 4 \ell$ decays are measured to be $0.56{ }_{-0.44}^{+0.67}+0.21 \mathrm{fb}$ at 7 TeV and $1.11_{-0.35}^{+0.41}{ }_{-0.10}^{+0.14} \mathrm{fb}$ at 8 TeV in their fiducial region (Table 2). The differential cross sections at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ are also shown in Figs. 4 and 5. The results are given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{10} \mathrm{AAD} 15 \mathrm{~F}$ use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8$ TeV . The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$. The signal strength for the gluon fusion production mode is $1.666_{-0.41}^{+0.45}+0.25$, while the signal strength for the vector boson fusion production mode is $0.26_{-0.91}^{+1.60+0.36}$.
${ }^{11}$ AAD 14AR measure the cross section for $p p \rightarrow H^{0} x, H^{0} \rightarrow Z Z^{*}$ using $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. They give $\sigma \cdot B=2.11_{-0.47}^{+0.53} \pm 0.08 \mathrm{fb}$ in their fiducial region, where $1.30 \pm 0.13 \mathrm{fb}$ is expected in the Standard Model for $m_{H^{0}}=125.4 \mathrm{GeV}$. Various differential cross sections are also given, which are in agreement with the Standard Model expectations.
${ }^{12}$ CHATRCHYAN 14AA use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}^{2}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.6 \mathrm{GeV}$. The signal strength for the gluon fusion and $t \bar{t} H$ production mode is $0.80_{-0.36}^{+0.46}$, while the signal strength for the vector boson fusion and $W H^{0}, Z H^{0}$ production mode is $1.7_{-2.1}^{+2.2}$
${ }^{13} \mathrm{AAD} 13 \mathrm{AK}$ use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.7 \mathrm{fb}-1$ at $E_{\mathrm{cm}}=8$ TeV . The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$.
${ }^{14}$ CHATRCHYAN $13 \jmath$ obtain results based on $Z Z \rightarrow 4 \ell$ final states in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $12.2 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.8 \mathrm{GeV}$. Superseded by CHATRCHYAN 14AA.
${ }^{15}$ AAD 12Al obtain results based on $4.7-4.8 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $5.8 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted signal strengths are given for $m_{H^{0}}=126 \mathrm{GeV}$. See also AAD 12DA.
${ }^{16}$ CHATRCHYAN 12 N obtain results based on $4.9-5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7$ TeV and $5.1-5.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. An excess of events over background with a local significance of 5.0σ is observed at about $m_{H^{0}}=125 \mathrm{GeV}$. The quoted signal strengths are given for $m_{H^{0}}=125.5 \mathrm{GeV}$. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

$\gamma \gamma$ Final State

$\frac{\text { VALUE }}{1.11_{-0.09}^{+0.10} \text { OUR AVERAGE }}$

$1.20{ }_{-0.14}^{+0.18}$	${ }^{1}$ SIRUNYAN	19At CMS	$p p, 13 \mathrm{TeV}$
$0^{0.99}{ }_{-0.14}^{+0.15}$	${ }^{2}$ AABOUD	18bO ATLS	$p p, 13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$
$1.14{ }_{-0.18}^{+0.19}$	${ }^{3,4}$ AAD	16an LHC	$p p, 7,8 \mathrm{TeV}$
$5.97{ }_{-3.12}^{+3.39}$	${ }^{5}$ AALTONEN	13m TEVA	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -			
	${ }^{6}$ SIRUNYAN	19L CMS	$p p, 13 \mathrm{TeV}$, diff. x -section
$1.18{ }_{-0.14}^{+0.17}$	7 SIRUNYAN	18DS CMS	$\begin{aligned} & p p, H^{0} \rightarrow \underset{\text { floated } m_{H^{0}}^{\gamma}}{\gamma \gamma, 13 \mathrm{TeV},} \end{aligned}$
$1.14{ }_{-0.25}^{+0.27}$	${ }^{4}$ AAD	16an ATLS	$p p, 7,8 \mathrm{TeV}$
$1.11_{-0.23}^{+0.25}$	${ }^{4}$ AAD	16an CMS	$p p, 7,8 \mathrm{TeV}$
	${ }^{8} \mathrm{KHACHATRY}$. 166 CMS	$p p, 8 \mathrm{TeV}$, diff. x-section
$1.17 \pm 0.23_{-0.08}^{+0.10+0.12}$	${ }^{9}$ AAD	14BC ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
	${ }^{10} \mathrm{AAD}$	14BJ ATLS	$p p, 8 \mathrm{TeV}$, diff. x -section
$1.14 \pm 0.21_{-0.05-0.09}^{+0.09}+0.13$	11 KHACHATRY...14P CMS		$p p, 7,8 \mathrm{TeV}$
$1.55{ }_{-0.28}^{+0.33}$	${ }^{12} \mathrm{AAD}$	13AK ATLS	$p p, 7$ and 8 TeV
$7.81{ }_{-4.42}^{+4.61}$	13 AALTONEN	13L CDF	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
$4.20{ }_{-4.20}^{+4.60}$	${ }^{14}$ ABAZOV	13L D0	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
1.8 ± 0.5	${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
2.2 ± 0.7	${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} \mathrm{X}, 7 \mathrm{TeV}$
1.5 ± 0.6	${ }^{15}$ AAD	12AI ATLS	$p p \rightarrow H^{0} X, 8 \mathrm{TeV}$
$1.54{ }_{-0.42}^{+0.46}$	16 CHATRCHYAN	12 N CMS	$p p \rightarrow H^{0} \mathrm{X}, 7,8 \mathrm{TeV}$

${ }^{1}$ SIRUNYAN 19AT perform a combine fit to $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 18bO use $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The signal strengths for the individual production modes are: $0.81_{-0.18}^{+0.19}$ for gluon fusion, $2.0_{-0.5}^{+0.6}$ for vector boson fusion, $0.7_{-0.8}^{+0.9}$ for $V H^{0}$ production $(V=W, Z)$, and 0.5 ± 0.6 for $t \bar{t} H^{0}$ and $t H^{0}$ production. Other measurements of cross sections and couplings are summarized in their Section 10. The quoted values are given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{Cm}}=7$ and 8 TeV . The signal strengths for individual production processes are $1.10_{-0.22}^{+0.23}$ for gluon fusion, 1.3 ± 0.5 for vector boson fusion, $0.5_{-1.2}^{+1.3}$ for $W \mathrm{H}^{0}$ production, $0.5_{-2.5}^{+3.0}$ for ZH^{0} production, and $2.2_{-1.3}^{+1.6}$ for $t \bar{t} H^{0}$ production.
${ }^{4}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{5}$ AALTONEN 13 M combine all Tevatron data from the CDF and D0 Collaborations with up to $10.0 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively, of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{6}$ SIRUNYAN 19L measure fiducial and differential cross sections of the process $p p \rightarrow$ $H^{0} \rightarrow \gamma \gamma$ at $E_{c m}=13 \mathrm{TeV}$ with $35.9 \mathrm{fb}^{-1}$. See their Figs. 4-11.
${ }^{7}$ SIRUNYAN 18DS use $35.9 \mathrm{fb}^{-1}$ of $p p \rightarrow H^{0}$ collisions with $H^{0} \rightarrow \gamma \gamma$ at $E_{\mathrm{Cm}}=$ 13 TeV . The Higgs mass is floated in the measurement of a signal strength. The result is $1.18_{-0.11}^{+0.12}$ (stat.) ${ }_{-0.07}^{+0.09}$ (syst.) ${ }_{-0.06}^{+0.07}$ (theory), which is largely insensitive to the Higgs mass around 125 GeV .
8 KHACHATRYAN 16 G measure fiducial and differential cross sections of the process $p p \rightarrow$ $H^{0} X, H^{0} \rightarrow \gamma \gamma$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$ with $19.7 \mathrm{fb}^{-1}$. See their Figs. 4-6 and Table 1 for data.
${ }^{9}$ AAD 14 BC use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at E_{Cm} $=8 \mathrm{TeV}$. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^{0}}=125.4 \mathrm{GeV}$. The signal strengths for the individual production modes are: 1.32 ± 0.38 for gluon fusion, 0.8 ± 0.7 for vector boson fusion, 1.0 ± 1.6 for $W H^{0}$ production, $0.1_{-0.1}^{+3.7}$ for $Z H^{0}$ production, and $1.6_{-1.8}^{+2.7}$ for $t \bar{t} H^{0}$ production.
${ }^{10}$ AAD 14BJ measure fiducial and differential cross sections of the process $p p \rightarrow H^{0} X$, $H^{0} \rightarrow \gamma \gamma$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ with $20.3 \mathrm{fb}^{-1}$. See their Table 3 and Figs. $3-12$ for data.
11 KHACHATRYAN 14 P use $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^{0}}=124.7 \mathrm{GeV}$. The signal strength for the gluon fusion and $t \bar{t} H$ production mode is $1.13_{-0.31}^{+0.37}$, while the signal strength for the vector boson fusion and $W H^{0}, Z H^{0}$ production mode is $1.16_{-0.58}^{+0.63}$.
${ }^{12}$ AAD 13AK use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8$ TeV . The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$.
${ }^{13}$ AALTONEN 13L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.

Gauge \& Higgs Boson Particle Listings
H^{0}
${ }^{14}$ ABAZOV 13L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=$ 1.96 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{15}$ AAD 12AI obtain results based on $4.8 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and 5.9 fb^{-1} at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strengths are given for $m_{H^{0}}=126 \mathrm{GeV}$. See
16 CHATRCHYAN 12 N obtain results based on $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $5.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. See also CHATRCHYAN 13Y
$c \bar{c}$ Final State
$\frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AABOUD } 18 \mathrm{M}} \frac{\text { TECN }}{\text { ATLS }} \frac{C O M M E N T}{p p, 13 \mathrm{TeV}}$
$<\mathbf{1 1 0} \mathrm{AABOUD} 18 \mathrm{M}$ use $36.1 \mathrm{fb}^{-1}$ at of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The upper limit on

\quad| $\sigma\left(p p \rightarrow Z H^{0}\right) \cdot \mathrm{B}\left(H^{0} \rightarrow c \bar{C}\right)$ is 2.7 pb at $95 \% \mathrm{CL}$. The quoted values are given for |
| :--- |
| $m_{H^{0}}=125 \mathrm{GeV}$. |

$b \bar{b}$ Final State

VALUE			COMMENT
1.04 ± 0.13 OUR A	RAGE		
1.12 ± 0.29	${ }^{1}$ SIRUNYAN	19at CMS	$p p, 13 \mathrm{TeV}$
$1.16{ }_{-0.25}^{+0.27}$	${ }^{2}$ AABOUD	18bn ATLS	$\begin{gathered} p p \rightarrow H^{0} W / H^{0} Z, H^{0} \rightarrow \\ b \bar{b}, 13 \mathrm{TeV}, 79.8 \mathrm{fb}^{-1} \end{gathered}$
1.06 ± 0.26	${ }^{3}$ SIRUNYAN	18db CMS	$\begin{gathered} p p \xrightarrow{\rightarrow} H^{0} W / H^{0} Z, H^{0} \rightarrow \\ b \bar{b}, 13 \mathrm{TeV}, 77.2 \mathrm{fb}^{-1} \end{gathered}$
$0.70{ }_{-0.27}^{+0.29}$	${ }^{4,5}$ AAD	16AN LHC	$p p, 7,8 \mathrm{TeV}$
$1.59{ }_{-0.72}^{+0.69}$	${ }^{6}$ AALTONEN	13M TEVA	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -			
	${ }^{7}$ AABOUD	19 U ATLS	$\underset{\mathrm{TeV}, \text { cross sections }}{\rightarrow} \mathrm{VH}^{0} \mathrm{H}^{0} \rightarrow \overline{\mathrm{~b}}, 13$
$0.98{ }_{-0.21}^{+0.22}$	${ }^{8}$ AABOUD	18BN ATLS	$\begin{aligned} & p p \rightarrow H^{0} W / H^{0} Z, H^{0} \rightarrow \\ & \quad b \bar{b}, 7,8,13 \mathrm{TeV} \\ & p p \rightarrow H^{0} x, \mathrm{ggF}, \mathrm{VBF}, \\ & \quad v H^{0}, t \bar{t} H^{0} 7,8,13 \mathrm{TeV} \end{aligned}$
1.01 ± 0.20	${ }^{9}$ AABOUD	18BN ATLS	
$2.5{ }_{-1.3}^{+1.4}$	10,11 AABOUD	18BQ ATLS	$\begin{gathered} p p \rightarrow H^{0} X, \text { VBF, ggF, } \\ V H^{0}, t \bar{t} H^{0}, 13 \mathrm{TeV} \end{gathered}$
$3.0{ }_{-1.6}^{+1.7}$	10,12 AABOUD	18BQ ATLS	$\begin{aligned} & p p \rightarrow H^{0} X, \mathrm{VBF}, 13 \mathrm{TeV} \\ & p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV} \end{aligned}$
	${ }^{13}$ AALTONEN	18C CDF	
$1.19{ }_{-0.38}^{+0.40}$	14 SIRUNYAN	18aE CMS	$\underset{b p}{\rightarrow} \underset{b \bar{b}, 13 \mathrm{TeV}}{H^{0} \mathrm{Te} / H^{0} Z, H^{0}} \rightarrow$
$1.06{ }_{-0.29}^{+0.31}$	15 SIRUNYAN	18AE CMS	$\begin{gathered} p p \rightarrow \underset{b \bar{b}, 7,8,13 \mathrm{TeV}}{H^{0} \mathrm{~W} / \mathrm{H}^{0} Z, H^{0}} \rightarrow \end{gathered}$
1.01 ± 0.22	16 SIRUNYAN	18dB CMS	$\underset{b p}{\rightarrow \bar{b}^{2}, 7,8,13 \mathrm{TeV}} \mathrm{H}^{0} W / H^{0} Z, H^{0} \rightarrow$
1.04 ± 0.20	17 SIRUNYAN	18db CMS	$\begin{aligned} & p p \rightarrow H^{0} x, \mathrm{ggF}, \mathrm{VBF}, \\ & V H^{0}, t \bar{t} H^{0} 7,8,13 \mathrm{TeV} \end{aligned}$
$2.3{ }_{-1.6}^{+1.8}$	18 SIRUNYAN	18E CMS	$p p \underset{\mathrm{TeV}}{\rightarrow} H^{0} X \text {, boosted, } 13$
$1.20{ }_{-0.23}^{+0.24+0.38}$	${ }^{19}$ AABOUD	17ba ATLS	$\begin{array}{r} p p \rightarrow H^{0} W / Z X, H^{0} \rightarrow \\ b \bar{b}, 13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1} \end{array}$
$0.90 \pm 0.18{ }_{-0.19}^{+0.21}$	${ }^{20}$ AABOUD	17ba ATLS	$\underset{b p \rightarrow}{\rightarrow} H^{0} W / Z X, H^{0} \rightarrow$
$-0.8 \pm 1.3{ }_{-1.9}^{+1.8}$	${ }^{21}$ AABOUD	16x ATLS	$p p \rightarrow H^{0} X, \mathrm{VBF}, 8 \mathrm{TeV}$
0.62 ± 0.37	${ }^{5}$ AAD	16an ATLS	$p p, 7,8 \mathrm{TeV}$
$0.81{ }_{-0.43}^{+0.45}$	${ }^{5}$ AAD	16an CMS	$p p, 7,8 \mathrm{TeV}$
$0.63{ }_{-0.30}^{+0.31+0.23}$	${ }^{22}$ AAD	16K ATLS	$\begin{aligned} & p p, 7,8 \mathrm{TeV} \\ & p p \rightarrow H^{0} W / Z X, 7,8 \mathrm{TeV} \end{aligned}$
$0.52 \pm 0.32 \pm 0.24$	${ }^{23}$ AAD	15 G ATLS	
$2.8{ }_{-1.4}^{+1.6}$	24 KHACHATRY... $15 z$ CMS		$p p \rightarrow H^{0} X, V B F, 8 \mathrm{TeV}$
$1.03{ }_{-0.42}^{+0.44}$	25 KHACHATRY... $15 z$ CMS		$p p, 8 \mathrm{TeV}$, combined
1.0 ± 0.5	${ }^{26}$ CHATRCHYAN 14AI CMS		$\begin{aligned} & p p \rightarrow H^{0} W / Z X, 7,8 \mathrm{TeV} \\ & p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV} \end{aligned}$
$1.72_{-0.87}^{+0.92}$	${ }^{27}$ AALTONEN	13L CDF	
$1.23{ }_{-1.17}^{+1.24}$	${ }^{28}$ ABAZOV	13L D0	$p \bar{P} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
0.5 ± 2.2	${ }^{29}$ AAD 30 AALTONEN	12AI ATLS 12T TEVA	$\begin{aligned} & p p \rightarrow H^{0} W / Z X, 7 \mathrm{TeV} \\ & p \bar{p} \rightarrow H^{0} W / Z X, 1.96 \mathrm{TeV} \end{aligned}$
$0.48{ }_{-0.70}^{+0.81}$	31 CHATRCHYAN 12 N CMS		$p p \rightarrow H^{0} W / Z X, 7,8 \mathrm{TeV}$

${ }^{1}$ SIRUNYAN 19AT perform a combine fit to $35.9 \mathrm{fb}{ }^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 18BN search for $V H^{0}, H^{0} \rightarrow b \bar{b}(V=W, Z)$ using $79.8 \mathrm{fb}^{-1}$ of $p p$ collision data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength corresponds to a significance of 4.9 standard deviations and is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{3}$ SIRUNYAN 18DB search for $V \mathrm{H}^{0}, H^{0} \rightarrow b \bar{b}(V=W, Z)$ using $77.2 \mathrm{fb}^{-1}$ of $p p$ collision data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength corresponds to a significance of 4.4 standard deviations and is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{4}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{cm}}=7$ and 8 TeV . The signal strengths for individual production processes are 1.0 ± 0.5 for $W \mathrm{H}^{0}$ production, 0.4 ± 0.4 for $Z H^{0}$ production, and 1.1 ± 1.0 for $t \bar{t} H^{0}$ production.
${ }^{5}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{6}$ AALTONEN 13 M combine all Tevatron data from the CDF and DO Collaborations with up to $10.0 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively, of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{7}$ AABOUD 19U measure cross sections of $p p \rightarrow V H^{0}, H^{0} \rightarrow b \bar{b}$ production as a function of the gauge boson transverse momentum using data of $79.8 \mathrm{fb}^{-1}$. The kinematic fiducial volumes used is based on the simplified template cross section framework (reduced stage1). See their Table 3 and Fig. 3.
${ }^{8}$ AABOUD 18BN combine results of $79.8 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with results of $V H^{0}$ at $E_{\mathrm{cm}}=7$ and 8 TeV .
${ }^{9}$ AABOUD 18BN combine results of $V H^{0}$ at $E_{c m}=7,8$ and 13 TeV with results of VBF (+gluon fusion) and $t \bar{t} H^{0}$ at $E_{\mathrm{Cm}}=7,8$, and 13 TeV to perform a search for the $H^{0} \rightarrow b \bar{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.4 standard deviations.
${ }^{10}$ AABOUD 18BQ search for $H^{0} \rightarrow b \bar{b}$ produced through vector-boson fusion (VBF) and VBF $+\gamma$ with $30.6 \mathrm{fb}^{-1} p p$ collision data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{11}$ The signal strength is measured including all production modes (VBF, ggF, $V H^{0}, t \bar{t} H^{0}$).
${ }^{12}$ The signal strength is measured for VBF-only and others ($\mathrm{ggF}, V \mathrm{H}^{0}, t \bar{t} \mathrm{H}^{0}$) are constrained to Standard Model expectations with uncertainties described in their Section VIII B.
13 AALTONEN 18 C use $5.4 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The upper limit at $95 \% \mathrm{CL}$ on $p \bar{p} \rightarrow H^{0} \rightarrow b \bar{b}$ is 33 times the SM predicion, which corresponds to a cross section of 40.6 pb .
14 SIRUNYAN 18AE use $35.9 \mathrm{fb}^{-1}$ of $p p$ collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength corresponds to 3.3 standard deviations and is given for $m_{H^{0}}=125.09$ GeV .
${ }^{15}$ SIRUNYAN 18AE combine the result of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with the results obtained from data of up to $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $18.9 \mathrm{fb}^{-1}$ at E_{cm} $=8 \mathrm{TeV}$ (CHATRCHYAN 14AI and KHACHATRYAN 15z). The quoted signal strength corresponds to 3.8 standard deviations and is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{16}$ SIRUNYAN 18DB combine the result of $77.2 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$ with the results obtained from data of up to $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $18.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8$ TeV . The quoted signal strength corresponds to a significance of 4.8 standard deviations and is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
17 SIRUNYAN 18DB combine results of $77.2 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$ with results of gluon fusion (ggF), VBF and $t \bar{t} H^{0}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}, 8 \mathrm{TeV}$ and 13 TeV to perform a search for the $H^{0} \rightarrow b \bar{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.6 standard deviations and is given for $m_{H^{0}}=$ 125.09 GeV .
${ }^{18}$ SIRUNYAN 18 E use $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. They measure $\sigma \cdot B$ for gluon fusion production of $H^{0} \rightarrow b \bar{b}$ with $p_{T}>450 \mathrm{GeV},|\eta|<2.5$ to be $74 \pm 48_{-10}^{+17} \mathrm{fb}$.
${ }^{19}$ AABOUD 17BA use $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. They give $\sigma(\mathrm{W} \mathrm{H}) \cdot B\left(H^{0} \rightarrow b \bar{b}\right)=1.08_{-0.47}^{+0.54} \mathrm{pb}$ and $\sigma(\mathrm{Z}$ $\mathrm{H}) \cdot B\left(H^{0} \rightarrow b \bar{b}\right)=0.57_{-0.23}^{+0.26} \mathrm{pb}$.
${ }^{20}$ AABOUD 17BA combine 7,8 and 13 TeV analyses. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{21}$ AABOUD $16 \times$ search for vector-boson fusion production of H^{0} decaying to $b \bar{b}$ in 20.2 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=$ 125 GeV .
${ }^{22}$ AAD 16 K use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$
${ }^{23}$ AAD 15 G use $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8$ TeV . The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{24} \mathrm{KHACHATRYAN} 15 Z$ search for vector-boson fusion production of H^{0} decaying to $b \bar{b}$ in up to $19.8 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{5} \mathrm{KHACHATRYAN} 15 Z$ combined vector boson fusion, $W H^{0}, Z H^{0}$ production, and $t \bar{t} H^{0}$ production results. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{26}$ CHATRCHYAN 14 Al use up to $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and up to $18.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. See also CHATRCHYAN 14AJ
27 AALTONEN 13L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{28}$ ABAZOV 13L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=$ 1.96 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{29}$ AAD 12AI obtain results based on $4.6-4.8 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The quoted signal strengths are given in their Fig. 10 for $m_{H^{0}}=126 \mathrm{GeV}$. See also Fig. 13 of AAD 12DA.
30 AALTONEN 12 T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12 S , ABAZOV 120, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region $m_{H^{0}}=120-135 \mathrm{GeV}$, with a local significance of up to 3.3σ. The local significance at $m_{H^{0}}=125 \mathrm{GeV}$ is 2.8σ, which corresponds to $\left(\sigma\left(H^{0} W\right)+\sigma\left(H^{0} Z\right)\right) \cdot \mathrm{B}\left(H^{0} \rightarrow b \bar{b}\right)=\left(0.23_{-0.08}^{+0.09}\right) \mathrm{pb}$, compared to the Standard Model expectation at $m_{H^{0}}=125 \mathrm{GeV}$ of $0.12 \pm 0.01 \mathrm{pb}$. Superseded by
AALTONEN 13M.
${ }^{1}$ CHATRCHYAN 12 N obtain results based on $5.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. See also CHATRCHYAN 13 Y .

$\mu^{+} \mu^{-}$Final State				
value	CL\%	DOCUMENT ID	TECN	COMMENT
0.6 ± 0.8 OUR AVERAGE				
$1.0 \pm 1.0 \pm 0.1$		1 SIRUNYAN	19E CMS	pp, 7, 8, 13 TeV
-0.1 ± 1.4		${ }^{2}$ AABOUD	17Y ATLS	$p p, 7,8,13 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.68{ }_{-1.24}^{+1.25}$		${ }^{3}$ SIRUNYAN	19at CMS	$p p, 13 \mathrm{TeV}$
$0.7 \pm 1.0{ }_{-0.1}^{+0.2}$		1 SIRUNYAN	19E CMS	$p p, 13 \mathrm{TeV}, 35.9 \mathrm{fb}{ }^{-1}$
-0.1 ± 1.5		${ }^{2}$ AABOUD	17 Y ATLS	$p p, 13 \mathrm{TeV}$
0.1 ± 2.5		${ }^{4}$ AAD	16an LHC	$p p, 7,8 \mathrm{TeV}$
-0.6 ± 3.6		${ }^{4}$ AAD	16an ATLS	$p p, 7,8 \mathrm{TeV}$
$0.9{ }_{-3.5}^{+3.6}$		${ }^{4}$ AAD	16an CMS	$p p, 7,8 \mathrm{TeV}$
< 7.4	95	5 KHACHATR	...15H CMS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
<7.0	95	${ }^{6}$ AAD	14AS ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$

${ }^{1}$ SIRUNYAN 19 E search for $H^{0} \rightarrow \mu^{+} \mu^{-}$using $35.9 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13$ TeV and combine with results of $7 \mathrm{TeV}\left(5.0 \mathrm{fb}^{-1}\right)$ and $8 \mathrm{TeV}\left(19.7 \mathrm{fb}^{-1}\right)$. The upper limit at 95% CL on the signal strength is 2.9 , which corresponds to the SM Higgs boson branching fraction to a muon pair of 6.4×10^{-4}.
${ }^{2}$ AABOUD 17 Y use $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}, 20.3 \mathrm{fb}^{-1}$ at 8 TeV and $4.5 \mathrm{fb}^{-1}$ at 7 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{3}$ SIRUNYAN 19AT perform a combine fit to $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$.
${ }^{4}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{5} \mathrm{KHACHATRYAN} 15 \mathrm{H}$ use $5.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at 8 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{6}$ AAD 14AS search for $H^{0} \rightarrow \mu^{+} \mu^{-}$in $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$.

$\tau^{+} \tau^{-}$Final State

$\frac{\text { VALUE }}{1.15+0.16 \text { OUR AVERAGE }}$
$1.09+0.18+0.26+0.16$
$-0.17-0.22-0.11$
$1.24+0.27$
DOCUMENT ID TECN COMMENT
$1.11{ }_{-0.22}^{+0.24}$

${ }^{1}$ AABOUD	19 AQ ATLS	$p p, 13 \mathrm{TeV}, H \rightarrow \tau \tau$
${ }^{2}$ SIRUNYAN	19 AF CMS	$p p, 13 \mathrm{TeV}$
3,4 AAD	16 AN LHC	$p p, 7,8 \mathrm{TeV}$
${ }^{5}$ AALTONEN	13 M TEVA	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$2.5{ }_{-1.4}^{+1.4}$	6 SIRUNYAN	19AF	CMS	$\begin{array}{r} p p \rightarrow H^{0} W / H^{0} Z \\ H^{0} \rightarrow \tau \tau, 13 \mathrm{TeV} \end{array}$
$1.02_{-0.24}^{+0.26}$	7 SIRUNYAN	19at	CMS	$p p, 13 \mathrm{TeV}$
${ }_{1.09}^{+0.27}$	${ }^{8}$ SIRUNYAN	18Y	CMS	$p p, 13 \mathrm{TeV}$
0.98 ± 0.18	${ }^{9}$ SIRUNYAN	18Y	CMS	$p p, 7,8,13 \mathrm{TeV}$
2.3 ± 1.6	10 AAD	16AC	ATLS	$p p \rightarrow H^{0} W / Z X, 8 \mathrm{TeV}$
${ }_{1.41}+0.40$	${ }^{4} \mathrm{AAD}$	16AN	ATLS	$p p, 7,8 \mathrm{TeV}$
$0^{0.88}{ }_{-0.28}^{+0.30}$	${ }^{4}$ AAD	16AN	CMS	pp, 7, 8 TeV
$1.44_{-0.29-0.23}^{+0.30+0.29}$	11 AAD	16K	ATLS	$p p, 7,8 \mathrm{TeV}$
$1.43_{-0.26-0.25}^{+0.27}+0.32 \pm 0.09$	12 AAD	15AH	ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
0.78 ± 0.27	13 CHATRCHYA	14K	CMS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
$0^{0.00}+8.44$	14 AALTONEN	13L	CDF	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
$3.96{ }_{-3.38}^{+4.11}$	15 ABAZOV		D0	$p \bar{p} \rightarrow H^{0} X, 1.96 \mathrm{TeV}$
$0.4{ }_{-2.0}^{+1.6}$	16 AAD	12AI	ATLS	$p p \rightarrow H^{0} X, 7 \mathrm{TeV}$
${ }_{0.09}^{+0.76}$	17 CHATRCHYAN	12N	CMS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$

${ }^{1}$ AABOUD 19AQ use $36.1 \mathrm{fb}^{-1}$ of data. The first, second and third quoted errors are statistical, experimental systematic and theory systematic uncertainties, respectively. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$ and corresponds to 4.4 standard deviations. Combining with 7 TeV and 8 TeV results (AAD 15AH), the observed significance is 6.4 standard deviations. The cross sections in the $H^{0} \rightarrow \tau \tau$ decay channel ($m_{H^{0}}=125 \mathrm{GeV}$) are measured to $3.77_{-0.59}^{+0.60}$ (stat) ${ }_{-0.74}^{+0.87}$ (syst) pb for the inclusive, $0.28 \pm 0.09_{-0.09}^{+0.11} \mathrm{pb}$ for VBF, and $3.1 \pm 1.0_{-1.3}^{+1.6} \mathrm{pb}$ for gluon-fusion production. See their Table XI for the cross sections in the framework of simplified template cross
${ }^{2}$ SIRUNYAN 19AF use $35.9 \mathrm{fb}^{-1}$ of data. $H^{0} \mathrm{~W} / Z$ channels are added with a few updates on gluon fusion and vector boson fusion with respect to SIRUNYAN 18Y. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$ and corresponds to 5.5 standard deviations.
The signal strengths for the individual production modes are: $1.12_{-0.50}^{+0.53}$ for gluon fusion, $1.13_{-0.42}^{+0.45}$ for vector boson fusion, $3.39_{-1.54}^{+1.68}$ for $W H^{0}$ and $1.23_{-1.35}^{+1.62}$ for $Z H^{0}$. See their Fig. 7 for other couplings ($\kappa_{V,} \kappa_{f}$).
${ }^{3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{Cm}}=7$ and 8 TeV . The signal strengths for individual production processes are 1.0 ± 0.6 for gluon fusion, 1.3 ± 0.4 for vector boson fusion, -1.4 ± 1.4 for $W H^{0}$ production, $2^{2} 2_{-1.8}^{+2.2}$ for $Z H^{0}$ production, and $-1.9_{-3.3}^{+3.7}$ for $t \bar{t} H^{0}$ production.
${ }^{4}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{5}$ AALTONEN 13 M combine all Tevatron data from the CDF and DO Collaborations with up to $10.0 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively, of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{6}$ SIRUNYAN 19AF use $35.9 \mathrm{fb}^{-1}$ of data. The quoted signal strength is given for $m_{H^{0}}$ $=125 \mathrm{GeV}$ and corresponds to 2.3 standard deviations.
7 SIRUNYAN 19AT perform a combine fit to $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. This combination is based on SIRUNYAN 18 Y .
8 SIRUNYAN 18 Y use $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$ and corresponds to 4.9 standard deviations.
${ }^{9}$ SIRUNYAN 18 Y combine the result of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$ with the results obtained from data of $4.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$ (KHACHATRYAN 15AM). The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$ and corresponds to 5.9 standard deviations.
${ }^{10}$ AAD 16AC measure the signal strength with $p p \rightarrow H^{0} W / Z X$ processes using 20.3 fb^{-1} of $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{11}$ AAD 16 K use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
12 AAD 15 AH use $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at E_{Cm} $=8 \mathrm{TeV}$. The third uncertainty in the measurement is theory systematics. The signal strength for the gluon fusion mode is $2.0 \pm 0.8_{-0.8}^{+1.2} \pm 0.3$ and that for vector boson fusion and $W / Z H^{0}$ production modes is $1.24{ }_{-0.45-0.29}^{+0.49}+0.31 \pm 0.0$. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
${ }^{13}$ CHATRCHYAN 14 K use $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. See also CHATRCHYAN 14AJ.
14 AALTONEN 13 L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{15}$ ABAZOV 13 L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=$ 1.96 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{16} \mathrm{AAD} 12 \mathrm{Al}$ obtain results based on $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The quoted signal strengths are given in their Fig. 10 for $m_{H^{0}}=126 \mathrm{GeV}$. See also Fig. 13 of AAD 12DA
17 CHATRCHYAN 12 N obtain results based on $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $5.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5 \mathrm{GeV}$. See also CHATRCHYAN $13 Y$.

$Z \boldsymbol{\gamma}$ Final State

Value	CL\%	DOCUMENT ID	TECN	COMMENT
< 6.6	95	AABOUD		

<7.4	95	2 SIRUNYAN	18DQ CMS	$\begin{gathered} p p \rightarrow H^{0} X, 13 \mathrm{TeV}, \\ H^{0} \rightarrow Z_{\gamma} \end{gathered}$
<11	95	${ }^{3}$ AAD	14」 ATLS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
<9.5	95	${ }^{4}$ CHATRCHY	13bk CMS	$p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$

$<9.5 \quad 95 \quad 4$ CHATRCHYAN 13BK CMS $\quad p p \rightarrow H^{0} X, 7,8 \mathrm{TeV}$
${ }^{1}$ AABOUD 17AW search for $H^{0} \rightarrow Z \gamma, Z \rightarrow e e, \mu \mu$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$. The upper limit on the branching ratio of $H^{0} \rightarrow Z \gamma$ is 1.0% at 95% CL assuming the SM Higgs boson production.
${ }^{2}$ SIRUNYAN 18DQ search for $H^{0} \rightarrow Z \gamma, Z \rightarrow e e, \mu \mu$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength (see their Figs. 6 and 7) is given for $m_{H^{0}}$ $=125 \mathrm{GeV}$.
${ }^{3}$ AAD 14 J search for $H^{0} \rightarrow Z \gamma \rightarrow \ell \ell \gamma$ in $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.5$ GeV.
${ }^{4} \mathrm{CHATRCHYAN}$ 13BK search for $H^{0} \rightarrow Z \gamma \rightarrow \ell \ell \gamma$ in $5.0 \mathrm{fb}^{-1}$ of $p p$ collisions at E_{Cm} $=7 \mathrm{TeV}$ and $19.6 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. A limit on cross section times branching ratio which corresponds to (4-25) times the expected Standard Model cross section is given in the range $m_{H^{0}}=120-160 \mathrm{GeV}$ at $95 \% \mathrm{CL}$. The quoted limit is given for $m_{H^{0}}=125$ GeV , where 10 is expected for no signal.

$\gamma^{*} \gamma$ Final State

VALUE CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

<4.0	95	1 SIRUNYAN	18 DQCMS	$p p \rightarrow H^{0} x, 13 \mathrm{TeV}$,
<6.7	95	2 KHACHATRY...16B CMS	$p p, 8 \overrightarrow{\mathrm{TeV}, e e \gamma, \mu \mu \gamma}$	

${ }^{1}$ SIRUNYAN 18DQ search for $H^{0} \rightarrow \gamma^{*} \gamma, \gamma^{*} \rightarrow \mu \mu$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at
$E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The mass of γ^{*} is smaller than 50 GeV except in J / ψ and γ mass regions. The quoted signal strength (see their Figs. 6 and 7) is given for $m_{H^{0}}=125$ GeV .
2 KHACHATRYAN 16B search for $H^{0} \rightarrow \gamma^{*} \gamma \rightarrow e^{+} e^{-} \gamma$ and $\mu^{+} \mu^{-} \gamma$ (with m($e^{+} e^{-}$) $<3.5 \mathrm{GeV}$ and $\left.\mathrm{m}\left(\mu^{+} \mu^{-}\right)<20 \mathrm{GeV}\right)$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 6 for limits on individual channels.

Higgs Yukawa couplings

top Yukawa coupling

VALUE	CL\%	DOCUMENT	TECN	COMMENT
<1.7	95	1 SIRUNYAN	20C CMS	$p p, 13 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
<1.67	95	2 SIRUNYAN	19BY CMS	$p p, 13 \mathrm{TeV}$
<2.1	95	3 SIRUNYAN	18BU CMS	$p p, 13 \mathrm{TeV}$

Gauge \& Higgs Boson Particle Listings

H^{0}

Abstract

${ }^{1}$ SIRUNYAN 20 C search for the production of four top quarks with same-sign and multilepton final states with $137 \mathrm{fb}^{-1} p p$ collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The results constraint the ratio of the top quark Yukawa coupling y_{t} to its the Standard Model by comparing to the central value of a theoretical prediction (see their Refs. [1-2]), yielding $\left|y_{t} / y_{t}^{S M}\right|<1.7$ at 95% CL. See their Fig. 5. ${ }^{2}$ SIRUNYAN 19BY measure the top quark Yukawa coupling from $t \bar{t}$ kinematic distributions, the invariant mass of the top quark pair and the rapidity difference between t and \bar{t}, in the $\ell+$ jets final state with $35.8 \mathrm{fb}^{-1} p p$ collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The results constraint the ratio of the top quark Yukawa coupling to its the Standard Model to be $1.07_{-0.43}^{+0.34}$ with an upper limit of 1.67 at 95% CL (see their Table III). ${ }^{3}$ SIRUNYAN 18BU search for the production of four top quarks with same-sign and multilepton final states with $35.9 \mathrm{fb}^{-1} p p$ collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The results constraint the ratio of the top quark Yukawa coupling y_{t} to its the Standard Model by comparing to the central value of a theoretical prediction (see their Ref. [16]), yielding $\left|y_{t} / y_{t}^{S M}\right|<2.1$ at 95% CL.

OTHER H^{0} PRODUCTION PROPERTIES

$t \bar{t} H^{0}$ Production

VALUE	DOCUMENT ID	TECN	COMMENT
1.28 ± 0.20 OUR AVERAGE			
1.2 ± 0.3	${ }^{1}$ AABOUD	18AC ATLS	$\begin{gathered} p p, 13 \mathrm{TeV}, H^{0} \rightarrow \\ b \bar{b} \tau \tau, \gamma \gamma, \\ W W^{*}, z z^{*} \end{gathered}$
$1.26{ }_{-0.26}^{+0.31}$	2 SIRUNYAN	18L CMS	$\begin{gathered} p p, 7,8,13 \mathrm{TeV}, \\ H^{0} \rightarrow b \bar{b}, \tau \tau, \\ \gamma \gamma, W W^{*}, z Z^{*} \end{gathered}$
$1.9{ }_{-0.7}^{+0.8}$	${ }^{3}$ AAD	16AN ATLS	$p p, 7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.72 \pm 0.24 \pm 0.38$	${ }^{4}$ SIRUNYAN	19 R CMS	$\underset{b \bar{b}}{p p, 13 \mathrm{TeV}, H^{0} \rightarrow}$
$1.6{ }_{-0.4}^{+0.5}$	${ }^{5}$ AABOUD	18AC ATLS	$\begin{aligned} & p p, 13 \mathrm{TeV}, H^{0} \rightarrow \\ & \tau \tau, W W^{*}, Z Z^{*} \end{aligned}$
	${ }^{6}$ AABOUD	18вк ATLS	$p p, 13 \mathrm{TeV}, H^{0} \rightarrow$ $b \bar{b} \tau \tau, \gamma \gamma$, $w w^{*}, z z^{*}$
$0.84{ }_{-0.61}^{+0.64}$	7 AABOUD	18 T ATLS	$\underset{b p, 13 \mathrm{beV}, \mathrm{H}^{0}}{ } \rightarrow$
0.9 ± 1.5	${ }^{8}$ SIRUNYAN	18bD CMS	$\underset{b \bar{b}}{p p, 13} \mathrm{TeV}, H^{0} \rightarrow$
$1.23{ }_{-0.43}^{+0.45}$	${ }^{9}$ SIRUNYAN	18BQ CMS	$\begin{aligned} & p p, 13 \mathrm{TeV}, H^{0} \rightarrow \\ & \tau \tau, W W^{*}, Z Z^{*} \end{aligned}$
1.7 ± 0.8	${ }^{10}$ AAD	16AL ATLS	$\begin{gathered} p p, 7,8 \mathrm{TeV}, H^{0} \rightarrow \\ b \bar{b}, \tau \tau, \gamma \gamma, \\ W W^{*}, \text { and } z Z^{*} \end{gathered}$
$2.3{ }_{-0.6}^{+0.7}$	${ }^{3,11}$ AAD	16an LHC	$p p, 7,8 \mathrm{TeV}$
$2.9{ }_{-0.9}^{+1.0}$	${ }^{3}$ AAD	16an CMS	$p p, 7,8 \mathrm{TeV}$
$1.81+0.52+0.58+0.31$	12 AAD	16K ATLS	$p p, 7,8 \mathrm{TeV}$
$1.4{ }_{-1.4}^{+2.1}{ }_{-0.3}^{+0.6}$	${ }^{13}$ AAD	15 ATLS	$p p, 7,8 \mathrm{TeV}$
1.5 ± 1.1	${ }^{14}$ AAD	15BC ATLS	$p p, 8 \mathrm{TeV}$
$2.1{ }_{-1.2}^{+1.4}$	${ }^{15}$ AAD	15T ATLS	$p p, 8 \mathrm{TeV}$
$1.2{ }_{-1.5}^{+1.6}$	16 KHACHATRY	...15An CMS	$p p, 8 \mathrm{TeV}$
$2.8{ }_{-0.9}^{+1.0}$	17 KHACHATRY	...14H CMS	$p p, 7,8 \mathrm{TeV}$
$9.49{ }_{-6.28}^{+6.60}$	${ }^{18}$ AALTONEN	13L CDF	$p \bar{p}, 1.96 \mathrm{TeV}$
<5.8 95	19 CHATRCHYAN	13x CMS	$\underset{b \bar{b}}{p p, 7,8} \mathrm{TeV}, H^{0} \rightarrow$

${ }^{1}$ AABOUD 18 AC combine results of $t \bar{t} H^{0}, H^{0} \rightarrow \tau \tau, W W^{*}(\rightarrow \ell \nu \ell \nu, \ell \nu q \bar{q}), z Z^{*}(\rightarrow$ $\ell \ell \nu \nu, \ell \ell q \bar{q}$) with results of $t \bar{\tau} H^{0}, H^{0} \rightarrow b \bar{b}$ (AABOUD 18T), $\gamma \gamma$ (AABOUD 18Bo), $z Z^{*}(\rightarrow 4 \ell)(A A B O U D ~ 18 A J) ~ i n ~ 36.1 ~ f b^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. See their Table 14 .
${ }^{2}$ SIRUNYAN 18L use up to 5.1, 19.7 and $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{C m}=7,8$, and 13 TeV , respectively. The quoted signal strength corresponds to a significance of 5.2 standard deviations and is given for $m_{H^{0}}=125.09 \mathrm{GeV} . H^{0}$ decay channels of $W W^{*}$, $z z^{*}, \gamma \gamma, \tau \tau$, and $b \bar{b}$ are used. See their Table 1 and Fig. 2 for results on individual channels.
$3_{A A D}^{\text {Channels. } 16 A N: ~ I n ~ t h e ~ f i t, ~ r e l a t i v e ~ b r a n c h i n g ~ r a t i o s ~ a r e ~ f i x e d ~ t o ~ t h o s e ~ i n ~ t h e ~ S t a n d a r d ~ M o d e l . ~}$ The quoted signal strength is given for $m_{H^{0}}=125.09 \mathrm{GeV}$.
${ }^{4}$ SIRUNYAN 19 s search for $t \bar{t} H^{0}$ production with H^{0} decaying to $b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of data at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{5}$ AABOUD 18 AC search for $t \bar{t} H^{0}$ production with H^{0} decaying to $\tau \tau, w W^{*}(\rightarrow \ell \nu \ell \nu$, $\ell \nu q \bar{q}), Z Z^{*}(\rightarrow \ell \ell \nu \nu, \ell \ell q \bar{q})$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{c m}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. See their Table 13 and Fig. 13 .
${ }^{6}$ AABOUD 18BK use $79.8 \mathrm{fb}{ }^{-1}$ data for $t \bar{t} H^{0}$ production with $H^{0} \rightarrow \gamma \gamma$ and $Z Z^{*} \rightarrow$ $4 \ell(\ell=e, \mu)$ and $36.1 \mathrm{fb}^{-1}$ for other decay channels at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. A significance of 5.8 standard deviations is observed for $m_{H^{0}}=125.09 \mathrm{GeV}$ and its signal strength without the uncertainty of the $t \bar{t} H^{0}$ cross section is $1.32_{-0.26}^{+0.28}$. Combining with results of 7 and 8 TeV (AAD 16K), the significance is 6.3 standard deviations. Assuming Standard Model branching fractions, the total $t \bar{t} H^{0}$ production cross section at 13 TeV is measured to be $670 \pm 90-100{ }_{-10}^{+10}$ fb.
${ }^{7}$ AABOUD 18 T search for $t \bar{t} H^{0}$ production with H^{0} decaying to $b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{8}$ SIRUNYAN 18BD search for $t \bar{t} H^{0}, H^{0} \rightarrow b \bar{b}$ in the all-jet final state with $35.9 \mathrm{ff}^{-1}$ pp collision data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125$
${ }^{9}$ GIRUUNYAN 18 BQ search for $t \bar{\tau} H^{0}$ in final states with electrons, muons and hadronically decaying τ leptons ($\left.H^{0} \rightarrow W W^{*}, Z Z^{*}, \tau \tau\right)$ with $35.9 \mathrm{fb}^{-1}$ of $p p$ collision data at $E_{c m}=13 \mathrm{TeV}$. The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{10}$ AAD 16AL search for $t \bar{t} H^{0}$ production with H^{0} decaying to $\gamma \gamma$ in $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $b \bar{b}, \tau \tau, \gamma \gamma, W W^{*}$, and $Z Z^{*}$ in $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=$ 8 TeV . The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$. This paper combines the results of previous papers, and the new result of this paper only is: $\mu=1.6 \pm 2.6$.
11 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\mathrm{Cm}}=7$ and 8 TeV .
${ }^{12} \mathrm{AAD} 16 \mathrm{~K}$ use up to $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The third uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^{0}}=125.36 \mathrm{GeV}$.
13 AAD 15 search for $t \bar{t} H^{0}$ production with H^{0} decaying to $\gamma \gamma$ in $4.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted result on the signal strength is equivalent to an upper limit of 6.7 at $95 \% \mathrm{CL}$ and is given for $m_{H^{0}}=125.4 \mathrm{GeV}$.
${ }^{14} \mathrm{AAD} 15 \mathrm{BC}$ search for $t \bar{t} H^{0}$ production with H^{0} decaying to $b \bar{b}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The corresponding upper limit is 3.4 at $95 \% \mathrm{CL}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{15}$ AAD 15T search for $t \bar{t} H^{0}$ production with H^{0} resulting in multilepton final states (mainly from $W W^{*}, \tau \tau, Z Z^{*}$) in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. The quoted result on the signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$ and corresponds to an upper limit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.
16 KHACHATRYAN 15 AN search for $t \bar{t} H^{0}$ production with H^{0} decaying to $b \bar{b}$ in $19.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The quoted result on the signal strength is equivalent to an upper limit of 4.2 at $95 \% \mathrm{CL}$ and is given for $m_{H^{0}}=125 \mathrm{GeV}$.
17 KHACHATRYAN 14 H search for $t \bar{t} H^{0}$ production with H^{0} decaying to $b \bar{b}, \tau \tau, \gamma \gamma$, $W W^{*}$, and $Z Z^{*}$, in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at E_{Cm} $=8 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125.6 \mathrm{GeV}$.
18 AALTONEN 13 L combine all CDF results with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$. The quoted signal strength is given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{19}$ CHATRCHYAN $13 \times$ search for $t \bar{t} H^{0}$ production followed by $H^{0} \rightarrow b \bar{b}$, one top decaying to $\ell \nu$ and the other to either $\ell \nu$ or $q \bar{q}$ in $5.0 \mathrm{fb}^{-1}$ and $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ and 8 TeV . A limit on cross section times branching ratio which corresponds to (4.0-8.6) times the expected Standard Model cross section is given for $m_{H^{0}}=110-140$ GeV at $95 \% \mathrm{CL}$. The quoted limit is given for $m_{H^{0}}=125 \mathrm{GeV}$, where 5.2 is expected for no signal.

$H^{0} H^{0}$ Production

The 95% CL limits are for the cross section (CS) and Higgs self coupling $\left(\kappa_{\lambda}\right)$ scaling factors both relative to the SM predictions.
CS CLO KOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

< 6.9	- 5.0 to 12.0	95	${ }^{1} \mathrm{AAD}$	20C	ATLS	$13 \mathrm{TeV}, b \bar{b} \gamma \gamma$, $b \bar{b} \tau \tau, b \bar{b} b \bar{b}$, $b \bar{b} W W^{*}$, $W W^{*} \gamma \gamma$,
< 40		95	${ }^{2}$ AAD	20E	ATLS	$\begin{gathered} W W^{*} W W^{*} \\ 13 \mathrm{TeV}, H^{0} H^{0} \\ b \bar{b} \ell \nu \ell \underline{\nu}- \end{gathered}$
<12.9		95	${ }^{3}$ AABOUD	19A	ATLS	$13 \mathrm{TeV}, b \bar{b} b \bar{b}$
<300		95	${ }^{4}$ AABOUD	190	ATLS	$13 \mathrm{TeV}, b \bar{b} W W^{*}$
<160		95	${ }^{5}$ AABOUD	19T	ATLS	$13 \mathrm{TeV}, W W^{*} W W^{*}$
<24	-11 to 17	95	${ }^{6}$ SIRUNYAN	19	CMS	$13 \mathrm{TeV}, \gamma \gamma b \bar{b}$
<75		95	7 SIRUNYAN	19AB	CMS	$13 \mathrm{TeV}, b \bar{b} b \bar{b}$
<22.2	-11.8 to 18.8	95	${ }^{8}$ SIRUNYAN	19be	CMS	$\begin{aligned} & 13 \mathrm{TeV}, b \bar{b} \gamma \gamma \\ & b \bar{b} \tau \tau, b \bar{b} b \bar{b}, \\ & b \bar{b} W W^{*} \\ & b \bar{b} z Z_{-}^{*} \end{aligned}$
<179		95	${ }^{9}$ SIRUNYAN	19H	CMS	$13 \mathrm{TeV}, b \bar{b} b \bar{b}$
<230		95	10 AABOUD	18BU	ATLS	$13 \mathrm{TeV}, \gamma \gamma W W^{*}$
<12.7		95	11 AABOUD	18CQ	ATLS	$13 \mathrm{TeV}, b \bar{b} \tau \tau$
<22	-8.2 to 13.2	95	12 AABOUD	18CW	ATLS	$13 \mathrm{TeV}, \gamma \gamma b \bar{b}$
<30		95	13 SIRUNYAN	18A	CMS	$13 \mathrm{TeV}, b \bar{b} \tau \tau$
<79		95	14 SIRUNYAN	18F	CMS	$13 \mathrm{TeV}, b \bar{b} \ell \nu \ell \nu$
<43		95	15 SIRUNYAN	17CN	CMS	$8 \mathrm{TeV}, b \bar{b} \tau \tau, \gamma \gamma b \bar{b},$
<108		95	16 AABOUD	161	ATLS	$13 \mathrm{TeV}, b \bar{b} b \bar{b}$
<74		95	17 KHACHATR	.16BQ	CMS	$8 \mathrm{TeV}, \gamma \gamma b \bar{b}$
<70		95	18 AAD	15CE	ATLS	$8 \mathrm{TeV}, \underline{b} \bar{b} b \bar{b}, b \bar{b} \tau \tau$, $\gamma \gamma b \bar{b}, \gamma \gamma W W$

${ }^{1}$ AAD 20 C combine results of up to $36.1 \mathrm{fb}^{-1}$ data at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ for $p p \rightarrow$ $H^{0} H^{0} \rightarrow b \bar{b} \gamma \gamma, b \bar{b} \tau \tau, b \bar{b} b \bar{b}, b \bar{b} W W^{*}, W W^{*} \gamma \gamma, W W^{*} W W^{*}$ (AABOUD 18 cW , AABOUD 18CQ, AABOUD 19A, AABOUD 190, AABOUD 18BU, and AABOUD 19T).
${ }^{2}$ AAD 20E search non-resonant for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \ell \nu \ell \nu$, where one of the Higgs bosons decays to $b \bar{b}$ and the other decays to either $W W^{*}, z Z^{*}$, or $\tau \tau$, with data of $139 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0}$ production cross section at $95 \% \mathrm{CL}$ is measured to be 1.2 pb , which corresponds to about 40 times the SM prediction.
${ }^{3}$ AABOUD 19A search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ with data of 36.1 fb^{-1} at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ production cross section at 95% is measured to be 147 fb , which corresponds to about 12.9 times the SM prediction.
${ }^{4}$ AABOUD 190 search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} W W^{*}$ with data of $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0}$ production cross section at $95 \% \mathrm{CL}$ is calculated to be 10 pb from the observed upper limit on the $p p \rightarrow$ $H^{0} H^{0} \rightarrow b \bar{b} W W^{*}$ production cross section of 2.5 pb assuming the SM branching fractions. The former corresponds to about 300 times the SM prediction.
${ }^{5}$ AABOUD 19T search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow W W^{*} W W^{*}$ with data of $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0}$ production cross section at 95% is measured to be 5.3 pb , which corresponds to about 160 times the SM prediction.
${ }^{6}$ SIRUNYAN 19 search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ with data of 35.9 fb^{-1} at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ production cross section at $95 \% \mathrm{CL}$ is measured to be 2.0 fb , which corresponds to about 24 times the SM prediction. The effective Higgs boson self-coupling $\kappa_{\lambda}\left(=\lambda_{H H H} / \lambda_{H H H}^{S M}\right)$ is constrainted to be $-11<\kappa_{\lambda}<17$ at 95% CL assuming all other Higgs boson couplings are at their SM value.
${ }^{7}$ SIRUNYAN 19AB search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$, where 4 heavy flavor jets from two Higgs bosons are resolved, with data of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13$ TeV . The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ production cross section at 95% is measured to be 847 fb , which corresponds to about 75 times the SM prediction.
${ }^{8}$ SIRUNYAN 19BE combine results of $13 \mathrm{TeV} 35.9 \mathrm{fb}^{-1}$ data: SIRUNYAN 19 , SIRUNYAN 18A, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.
${ }^{9}$ SIRUNYAN 19 H search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$, where one of $b \bar{b}$ pairs is highly boosted and the other one is resolved, with data of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=$ 13 TeV . The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ production cross section at 95% is measured to be 1980 fb , which corresponds to about 179 times the SM prediction.
${ }^{10}$ AABOUD 18BU search for $H^{0} H^{0}$ production using $\gamma \gamma W W^{*}$ with the final state of $\gamma \gamma \ell \nu j j$ using data of $36.1 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow$ $H^{0} H^{0}$ production cross section at $95 \% \mathrm{CL}$ is measured to be 7.7 pb , which corresponds to about 230 times the SM prediction. The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow$ $\gamma \gamma W W^{*}$ at 95% CL is measured to be 7.5 fb (see thier Table 6).
11 AABOUD 18CQ search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ with data of 36.1 fb^{-1} at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ production cross section at 95% is measured to be 30.9 fb , which corresponds to about 12.7 times the SM prediction.
${ }^{12}$ AABOUD 18 CW search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ with data of 36.1 fb^{-1} at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0}$ production cross section at 95% is measured to be 0.73 pb , which corresponds to about 22 times the SM prediction. The effective Higgs boson self-coupling κ_{λ} is constrained to be $-8.2<\kappa_{\lambda}<13.2$ at 95% CL assuming all other Higgs boson couplings are at their SM value.
13 SIRUNYAN 18A search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ with data of 35.9 fb^{-1} at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $g g \rightarrow H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ production cross section is measured to be 75.4 fb , which corresponds to about 30 times the SM cross section is measured to be 75.4 fb , which corresponds to about 30 times the SM
prediction. Limits on Higgs-boson trilinear coupling $\lambda_{H H H}$ and top Yukawa coupling prediction. Limits on Higgs-boson
y_{t} are also given (see their Fig. 6).
14 SIRUNYAN 18F search non-resonant for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \ell \nu \ell \nu$, where $\ell \nu \ell \nu$ is either $W W \rightarrow \ell \nu \ell \nu$ or $Z Z \rightarrow \ell \ell \nu \nu(\ell$ is e, μ or a leptonically decaying τ), with data of $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $H^{0} H^{0} \rightarrow b \bar{b} \ell \nu \ell \nu$ production cross section at $95 \% \mathrm{CL}$ is measured to be 72 fb , which corresponds to about production cross section at 95
15 SIRUNYAN $17 C N$ search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ with data of 18.3 fb^{-1} at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. Results are then combined with the published results of the $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ and $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$, which use data of up to $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=$ 8 TeV . The upper limit on the $g g \rightarrow H^{0} H^{0}$ production cross section is measured to be 0.59 pb from $b \bar{b} \tau \tau$, which corresponds to about 59 times the SM prediction (gluon fusion). The combined upper limit is 0.43 pb , which is about 43 times the SM prediction. The quoted values are given for $m_{H^{0}}=125 \mathrm{GeV}$.
${ }^{16}$ AABOUD 161 search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ with data of 3.2 fb^{-1} at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. The upper limit on the $p p \rightarrow H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ production cross section is measured to be 1.22 pb . This result corresponds to about 108 times the SM prediction (gluon fusion), which is $11.3_{-1.0}^{+0.9} \mathrm{fb}$ (NNLO+NNLL) including top quark mass effects. The quoted values are given for $m_{H^{0}}=125 \mathrm{GeV}$
17 KHACHATRYAN 16BQ search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ with data of $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The upper limit on the $g g \rightarrow H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ production is measured to be 1.85 fb , which corresponds to about 74 times the SM prediction and is translated into 0.71 pb for $g g \rightarrow H^{0} H^{0}$ production cross section. Limits on Higgs-boson trilinear coupling λ are also given.
${ }^{18}$ AAD 15CE search for $H^{0} H^{0}$ production using $H^{0} H^{0} \rightarrow b \bar{b} \tau \tau$ and $H^{0} H^{0} \rightarrow \gamma \gamma W W$ with data of $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. These results are then combined with the published results of the $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ and $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$, which use data of up to $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. The upper limits on the $g g \rightarrow H^{0} H^{0}$ production cross section are measured to be $1.6 \mathrm{pb}, 11.4 \mathrm{pb}, 2.2 \mathrm{pb}$ and 0.62 pb from $b \bar{b} \tau \tau, \gamma \gamma W W$, $\gamma \gamma b \bar{b}$ and $b \bar{b} b \bar{b}$, respectively. The combined upper limit is 0.69 pb , which corresponds to about 70 times the SM prediction. The quoted results are given for $m_{H^{0}}=125.4$ GeV . See their Table 4

$\boldsymbol{t} \boldsymbol{H}^{0}$ associated production cross section

[^99]${ }^{2} \mathrm{KHACHATRYAN} 16 A U$ search for the $t H^{0}$ associated production in $19.7 \mathrm{fb}^{-1}$ at E_{Cm} $=8 \mathrm{TeV}$. The $95 \% \mathrm{CL}$ upper limits on the $t H^{0}$ associated production cross section is measured to be 600-1000 fb depending on the assumed $\gamma \gamma$ branching ratios of the Higgs boson. The $\gamma \gamma$ branching ratio is varied to be by a factor of 0.5-3.0 of the Standard Model Higgs boson ($m_{H^{0}}=125 \mathrm{GeV}$). The results of the signal strengths for a negative Higgs-boson trilinear coupling are given. The results are given for $m_{H^{0}}=125 \mathrm{GeV}$.
H^{0} Production Cross Section in $p p$ Collisions at $\sqrt{s}=13 \mathrm{TeV}$ Assumes $m_{H^{0}}=125 \mathrm{GeV}$

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
59 ± 5 OUR AVERAGE			
$61.1 \pm 6.0 \pm 3.7$	${ }^{1}$ SIRUNYAN	19ba CMS	$\begin{aligned} & p p, 13 \mathrm{TeV}, \gamma \gamma, Z Z^{*} \rightarrow \\ & \quad 4 \ell(\ell=e, \mu) \end{aligned}$
$57.0_{-}^{+} 5.0+4.0$	2 AABOUD	18CG ATLS	$\begin{aligned} & p p, 13 \mathrm{TeV}, \gamma \gamma, Z Z^{*} \rightarrow \\ & \quad 4 \ell(\ell=e, \mu) \end{aligned}$
- - We do not use the following data for averages, fits, limits, etc. - -			
47.9 ± 8.1	2 AABOUD	18CG ATLS	$p p, 13 \mathrm{TeV}, \gamma \gamma$
68 $\begin{array}{r}+11 \\ -10\end{array}$	${ }^{2}$ AABOUD	18CG ATLS	$\begin{aligned} & p p, 13 \mathrm{TeV}, Z Z^{*} \rightarrow 4 \ell(\ell \\ & \quad=e, \mu) \end{aligned}$
$69 \underset{-}{+10} \pm 5$	${ }^{3}$ AABOUD	17CO ATLS	$p p, 13 \mathrm{TeV}, Z Z^{*} \rightarrow 4 \ell$

${ }^{1}$ SIRUNYAN 19 ba use $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 18 CG use $36.1 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$.
${ }^{3}$ AABOUD 17CO use $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ with $H^{0} \rightarrow Z Z^{*} \rightarrow$ 4ℓ where $\ell=e, \mu$ for $m_{H^{0}}=125 \mathrm{GeV}$. Differential cross sections for the Higgs boson transverse momentum, Higgs boson rapidity, and other related quantities are measured as shown in their Figs. 8 and 9.

H^{0} REFERENCES

AAD	20	PR D101 012002	G. Aad et al.	(ATLAS Collab.)
AAD	20A	PL B800 135069	G. Aad et al.	(ATLAS Collab.)
AAD	20C	PL B800 135103	G. Aad et al.	(ATLAS Collab.)
AAD	20 E	PL B801 135145	G. Aad et al.	(ATLAS Collab.)
AAD	20 F	PL B801 135148	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	20C	EPJ C80 75	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	19A	JHEP 1901030	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AI	PL B793 499	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AL	PRL 122231801	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AQ	PR D99 072001	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19 F	PL B789 508	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19N	JHEP 1904048	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	190	JHEP 1904092	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19 T	JHEP 1905124	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19 U	JHEP 1905141	M. Aaboud et al.	(ATLAS Collab.)
AAD	19A	PL B798 134949	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AB	JHEP 1904112	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AF	JHEP 1906093	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AJ	EPJ C79 94	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AT	EPJ C79 421	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AX	PL B791 96	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BA	PL B792 369	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BE	PRL 122121803	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BK	PR D99 092005	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BL	PR D99 112003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BO	PL B793 520	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BR	PL B797 134811	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BY	PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BZ	PR D100 112002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CG	JHEP 1910139	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19E	PRL 122021801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19 H	JHEP 1901040	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19L	JHEP 1901183	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19 R	JHEP 1903026	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18	PL B776 318	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AC	PR D97 072003	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AJ	JHEP 1803095	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AU	JHEP 1807127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 BK	PL B784 173	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BL	PL B786 134	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BM	PL B784 345	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BN	PL B786 59	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18B0	PR D98 052005	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BP	PL B786 223	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BQ	PR D98 052003	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BU	EPJ C78 1007	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CA	JHEP 1810180	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CG	PL B786 114	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CQ	PRL 121191801	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CW	JHEP 1811040	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18M	PRL 120211802	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 T	PR D97 072016	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	18AM	EPJ C78 1008	R. Aaij et al.	(LHCb Collab.)
AALTONEN	18 C	PR D98 072002	T. Aaltonen et al.	(CDF Collab.)
SIRUNYAN	18A	PL B778 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18AE	PL B780 501	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BD	JHEP 1806101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BH	JHEP 1806001	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BQ	JHEP 1808066	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BU	EPJ C78 140	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BV	EPJ C78 291	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DB	PRL 121121801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DQ	JHEP 1811152	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DS	JHEP 1811185	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 E	PRL 120071802	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 F	JHEP 1801054	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 L	PRL 120231801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 S	PR D97 092005	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 Y	PL B779 283	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	17 AW	JHEP 1710112	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17BA	JHEP 1712024	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17BD	EPJ C77 765	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 CO	JHEP 1710132	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 Y	PRL 119051802	M. Aaboud et al.	(ATLAS Collab.)
AAD	17	EPJ C77 70	G. Aad et al.	(ATLAS Collab.)
KHACHATRY...	. 17F	JHEP 1702135	V. Khachatryan et al.	(CMS Collab.)
SIRUNYAN	17AM	PL B775 1	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17AV	JHEP 1711047	A.M. Sirunyan et al.	(CMS Collab.)

Gauge \& Higgs Boson Particle Listings
H^{0}, Neutral Higgs Bosons, Searches for

SIRUNYAN	17CN	PR D96 072004	A.M. Sirunyan et al.

Neutral Higgs Bosons, Searches for

CONTENTS:

Mass Limits for Neutral Higgs Bosons in Supersymmetric Models - Mass Limits for heavy neutral Higgs bosons (H_{2}^{0}, A^{0}) in the MSSM

- Mass Limits for H_{1}^{0} (Higgs Boson) in Supersymmetric Models

Mass Limits for Neutral Higgs Bosons in Extended Higgs Models

- Mass Limits in General two-Higgs-doublet Models
- Mass Limits for H^{0} with Vanishing Yukawa Couplings
- Mass Limits for H^{0} Decaying to Invisible Final States
- Mass Limits for Light A^{0}
- Other Mass Limits

Searches for a Higgs Boson with Standard Model Couplings

- Direct Mass Limits for H^{0}
- Indirect Mass Limits for H^{0} from Electroweak Analysis

MASS LIMITS FOR NEUTRAL HIGGS BOSONS

 IN SUPERSYMMETRIC MODELSThe minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars $\left[H_{1}^{0}\right.$ and H_{2}^{0}, where we define $m_{H_{1}^{0}}<m_{H_{2}^{0}}$], a pseudoscalar $\left(A^{0}\right)$, and a charged Higgs pair $\left(H^{ \pm}\right) . H_{1}^{0}$ and H_{2}^{0} are also called h and H in the literature. There are two free parameters in the Higgs sector which can be chosen to be $m_{A^{0}}$ and $\tan \beta=v_{2} / v_{1}$, the ratio of vacuum expectation values of the two Higgs doublets. Tree-level Higgs masses are constrained by the model to be $m_{H_{1}^{0}} \leq m_{Z}, m_{H_{2}^{0}} \geq m_{Z}, m_{A^{0}} \geq m_{H_{1}^{0}}$, and $m_{H^{ \pm}} \geq m_{W}$. However, as described in the review on "Status of Higgs Boson Physics" in this Volume these relations are violated by radiative corrections

The observed signal at about 125 GeV , see section " H^{0} ", can be interpreted as one of the neutral Higgs bosons of supersymmetric models. Unless otherwise noted, we identify the lighter scalar H_{1}^{0} with the Higgs discovered at 125 GeV at the LHC (AAD 12AI, CHATRCHYAN 12N)
Unless otherwise noted, the experiments in $e^{+} e^{-}$collisions search for the processes $e^{+} e^{-} \rightarrow H_{1}^{0} z^{0}$ in the channels used for the Standard Model Higgs searches and $e^{+} e^{-} \rightarrow H_{1}^{0} A^{0}$ in the final states $b \bar{b} b \bar{b}$ and $b \bar{b} \tau^{+} \tau^{-}$. Unless otherwise stated, the following results assume no invisible H_{1}^{0} or A^{0} decays. Unless otherwise noted, the results are given in the $\mathrm{m}_{h}^{\max }$ scenario, CARENA 13.
In $p \bar{p}$ and $p p$ collisions the experiments search for a variety of processes, as explicitly specified for each entry. Limits on the A^{0} mass arise from these direct searches, as well as from the relations valid in the minimal supersymmetric model between $m_{A^{0}}$ and $m_{H^{0}}$. As discussed in the re-
view on "Status of Higgs Boson Physics" in this Volume, these relations depend, via potentially large radiative corrections, on the mass of the t quark and on the supersymmetric parameters, in particular those of the stop sector. These indirect limits are weaker for larger t and t masses. To include the radiative corrections to the Higgs masses, unless otherwise stated, the listed papers use theoretical predictions incorporating two-loop corrections, and the results are given for the $\mathrm{m}_{h}^{\text {mod }+}$ benchmark scenario, see CARENA 13.

Mass Limits for heavy neutral Higgs bosons (H_{2}^{0}, A^{0}) in the MSSM

The limits rely on $p p \rightarrow H_{2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$and assume that H_{2}^{0} and A^{0} are (sufficiently) mass degenerate. The limits depend on $\tan \beta$.

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>377	95	${ }^{1}$ AABOUD	18G ATLS	$\tan \beta=10 \mathrm{GeV}$
>863	95	${ }^{1}$ AABOUD	18G ATLS	$\tan \beta=20 \mathrm{GeV}$
>1157	95	${ }^{1}$ AABOUD	18G ATLS	$\tan \beta=30 \mathrm{GeV}$
>1328	95	${ }^{1}$ AABOUD	18G ATLS	$\tan \beta=40 \mathrm{GeV}$
>1483	95	${ }^{1}$ AABOUD	18G ATLS	$\tan \beta=50 \mathrm{GeV}$
>1613	95	${ }^{1}$ AABOUD	18 G ATLS	$\tan \beta=60 \mathrm{GeV}$
>389	95	2 SIRUNYAN	18CX CMS	$\tan \beta=10 \mathrm{GeV}$
>832	95	2 SIRUNYAN	18CX CMS	$\tan \beta=20 \mathrm{GeV}$
>1148	95	${ }^{2}$ SIRUNYAN	18cx CMS	$\tan \beta=30 \mathrm{GeV}$
>1341	95	2 SIRUNYAN	18Cx CMS	$\tan \beta=40 \mathrm{GeV}$
>1496	95	2 SIRUNYAN	18cx CMS	$\tan \beta=50 \mathrm{GeV}$
>1613	95	2 SIRUNYAN	18CX CMS	$\tan \beta=60 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
		${ }^{3}$ AAD	20 ATLS	H^{0} properties
		${ }^{4}$ AAD	20C ATLS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
		${ }^{5}$ SIRUNYAN	19CR CMS	$H_{2}^{0} / A^{0} \rightarrow \mu^{+} \mu^{-}$
		${ }^{6}$ SIRUNYAN	18A CMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
		7 SIRUNYAN	18BP CMS	$p p \rightarrow H_{2}^{0} / A^{0}+b+X$,

${ }^{8}$ AABOUD \quad 16AA ATLS $\quad \begin{aligned} & A^{0} \xrightarrow{H_{2}^{0}} / A^{0} \rightarrow b \bar{b} \\ & \tau^{+}\end{aligned}$
9 KHACHATRY...16A CMS $H_{1,2}^{0} / A^{0} \rightarrow \mu^{+} \mu^{-}$
10 KHACHATRY...16P CMS $H_{2}^{0} \rightarrow H^{0} H^{0}, A^{0} \rightarrow Z H^{0}$
11 KHACHATRY...15AY CMS $\quad p p \rightarrow H_{1,2}^{0} / A^{0}+b+X$,
$H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$
$12 \mathrm{AAD} \quad$ 14AWATLS $\quad p p \rightarrow H_{1,2}^{0} / A^{0}+X$, $H_{1,2}^{0} / A^{0} \rightarrow \tau \tau$
13 KHACHATRY...14M CMS $p p \rightarrow H_{1,2}^{0} / A^{0}+X$, $H_{1,2}^{0} / A^{0} \rightarrow \tau \tau$
$14 \mathrm{AAD} \quad 130$ ATLS $p p \rightarrow H_{1,2}^{0} / A^{0}+X$,

$$
H_{1,2}^{0} / A^{1, A^{0}} \rightarrow \tau^{+} \tau^{-},
$$

$\mu^{+} \mu^{-}$
15 AAIJ
13T LHCB $\begin{gathered}\mu^{+} \mu^{-} \\ p p \rightarrow H_{1,2}^{0} / A^{0}+X,\end{gathered}$
$H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$
${ }^{16}$ Chatrchyan 13 BAG CMS $\quad p p \rightarrow H_{1,2}^{0} / A^{0}+b+X$, $H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$
17 AALTONEN 12AQ TEVA $p \bar{p} \rightarrow H_{1,2}^{0} / A^{0}+b+X$,

${ }^{1}$ AABOUD 18 G search for production of $H_{2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$by gluon fusion and b associated prodution in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 10 for excluded regions in the $m_{A^{0}}$ 勾 β plane in several MSSM scenarios.
${ }^{2}$ SIRUNYAN $18 C \times$ search for production of $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$by gluon fusion and b-associated prodution in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 9 for excluded regions in the $m_{A^{0}} \tan (\beta)$ plane in several MSSM scenarios.
${ }^{3}$ AAD 20 combine measurements on H^{0} production and decay using data taken in years 2015-2017 (up to $79.8 \mathrm{fb}^{-1}$) of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 19 for excluded region in the hMSSM parameter space.
${ }^{4}$ AAD 20C combine searches for a scalar resonance decaying to $H^{0} H^{0}$ in 36.1 fb -1 of pp collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$ from AABOUD 19A, AABOUD 190, AABOUD 18CQ, AABOUD 19T, AABOUD 18Cw, and AABOUD 18BU. See their Fig. 7(b) for the excluded region in the hMSSM parameter space.
${ }^{5}$ SIRUNYAN 19CR search for production of H_{2}^{0} / A^{0} in gluon fusion and in association with a $b \bar{b}$ pair, decaying to $\mu^{+} \mu^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 5 for the excluded region in the MSSM parameter space in the $m_{h}^{\bmod +}$ and hMSSM scenarios.
${ }^{6}$ SIRUNYAN 18A search for production of a scalar resonance decaying to $H^{0} H^{0} \rightarrow$ $b \bar{b} \tau^{+} \tau^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 5 (lower) for excluded regions in the $m_{A^{0}}-\tan \beta$ plane in the hMSSM scenario.
${ }^{7}$ SIRUNYAN 18BP search for production of $H_{2}^{0} / A^{0} \rightarrow b \bar{b}$ by b-associated prodution in $35.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 6 for the limits on cross section times branching ratio for ${ }^{m} H_{2}^{0}, m_{A^{0}}=0.3-1.3 \mathrm{TeV}$, and Fig. 7 for excluded regions in the $m_{A^{0}} \tan (\beta)$ plane in several MSSM scenarios.
${ }^{8}$ AABOUD 16AA search for production of a Higgs boson in gluon fusion and in association with a $b \bar{b}$ pair followed by the decay $A^{0} \rightarrow \tau^{+} \tau^{-}$in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at E_{cm} $=13 \mathrm{TeV}$. See their Fig. 5(a, b) for limits on cross section times branching ratio for $m_{A^{0}}=200-1200 \mathrm{GeV}$, and Fig. $5(\mathrm{c}, \mathrm{d})$ for the excluded region in the MSSM parameter space in the $m_{h}^{\text {mod }+}$ and hMSSM scenarios.
${ }^{9}$ KHACHATRYAN 16A search for production of a Higgs boson in gluon fusion and in association with a $b \bar{b}$ pair followed by the decay $H_{1,2}^{0} / A^{0} \rightarrow \mu^{+} \mu^{-}$in $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 7 for the excluded region in the MSSM parameter space in the $m_{h}^{\text {mod }+}$ benchmark scenario and Fig. 9 for limits on cross section times branching ratio.
1^{10} KHACHATRYAN 16P search for gluon fusion production of an H_{2}^{0} decaying to $H^{0} H^{0} \rightarrow$ $b \bar{b} \tau^{+} \tau^{-}$and an A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 12 for excluded region in the $\tan \beta-\cos (\beta-\alpha)$ plane for $m_{H_{2}^{0}}=m_{A^{0}}=300 \mathrm{GeV}$.
${ }^{11}$ KHACHATRYAN $15 A Y$ search for production of a Higgs boson in association with a b quark in the decay $H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and combine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on cross section times branching ratio for $m_{A^{0}}=100-900 \mathrm{GeV}$ and Figs. 7-9 for the excluded region in the MSSM parameter space in various benchmark scenarios.
${ }^{12}$ AAD 14AW search for production of a Higgs boson followed by the decay $H_{1,2}^{0} / A^{0} \rightarrow$ $\tau^{+} \tau^{-}$in 19.5-20.3 fb^{-1} of $p p$ collisions at $E_{c m}=8 \mathrm{TeV}$. See their Fig. 11 for the limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For $m_{A^{0}}=140 \mathrm{GeV}$, the region $\tan \beta>5.4$ is excluded at $95 \% \mathrm{CL}$ in the $m_{h}^{\max }$ scenario.
${ }^{13}$ KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a b quark followed by the decay $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$in $4.9 \mathrm{fb}^{-1}$ of pp collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A^{0}}=140$ GeV , the region $\tan \beta>3.8$ is excluded at $95 \% \mathrm{CL}$ in the $m_{h}^{\max }$ scenario.
${ }^{14}$ AAD 130 search for production of a Higgs boson in the decay $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$and $\mu^{+} \mu^{-}$with 4.7-4.8 fb ${ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross
section times branching ratio. For $m_{A^{0}}=110-170 \mathrm{GeV}, \tan \beta \gtrsim 10$ is excluded, and for $\tan \beta=50, m_{A^{0}}$ below 470 GeV is excluded at $95 \% \mathrm{CL}$ in the $m_{h}^{\max }$ scenario.
${ }^{15}$ AAIJ 13 T search for production of a Higgs boson in the forward region in the decay $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$in $1.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM parameter space.
${ }^{16}$ CHATRCHYAN 13 AG search for production of a Higgs boson in association with a b quark in the decay $H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$ in 2.7-4.8 fb ${ }^{-1}$ of $p p$ collisions at $E_{c m}=7 \mathrm{TeV}$. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the limits on cross section times branching ratio. For $m_{A^{0}}=90-350 \mathrm{GeV}$, upper bounds on $\tan \beta$ of $18-42$ at $95 \% \mathrm{CL}$ are obtained in the $m_{h}^{\max }$ scenario with $\mu=+200 \mathrm{GeV}$.
${ }^{17}$ AALTONEN 12AQ combine AALTONEN 12 x and ABAZOV 11к. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded ${ }_{8}$ region in the MSSM parameter space.
${ }^{18}$ AALTONEN 12 x search for associated production of a Higgs boson and a b quark in the decay $H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$, with $2.6 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space.
${ }^{19}$ ABAZOV ${ }^{12 G}$ search for production of a Higgs boson in the decay $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$ with $7.3 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$ and combine with ABAZOV 11 W and ABAZOV 11 K . See their Figs. 4, 5 , and 6 for the excluded region in the MSSM parameter space. For $m_{A^{0}}=90-180 \mathrm{GeV}, \tan \beta \gtrsim 30$ is excluded at $95 \% \mathrm{CL}$. in the $m_{h}^{\max }$ scenario.
${ }^{20}$ CHATRCHYAN 12 K search for production of a Higgs boson in the decay $H_{1,2}^{0} / A^{0} \rightarrow$ $\tau^{+} \tau^{-}$with $4.6 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For $m_{A^{0}}=160 \mathrm{GeV}$, the region $\tan \beta>7.1$ is excluded at $95 \% \mathrm{CL}$ in the $m_{h}^{\max }$ scenario. Superseded by
KHACHATRYAN 14M. KHACHATRYAN 14M.
${ }^{21}$ ABAZOV 11 K search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$, in $5.2 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu=-200 \mathrm{GeV}$.
${ }^{22}$ ABAZOV 11 w search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^{0} / A^{0} \rightarrow \tau \tau$, in $7.3 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space.
${ }^{23}$ AALTONEN 09AR search for Higgs bosons decaying to $\tau^{+} \tau^{-}$in two doublet models in $1.8 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Fig. 2 for the limit on $\sigma \cdot \mathbf{B}\left(H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}\right)$for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
${ }^{24}$ ABDALLAH 08B give limits in eight $C P$-conserving benchmark scenarios and some $C P$ violating scenarios. See paper for excluded regions for each scenario. Supersedes ABDALLAH 04.
${ }^{25}$ SCHAEL 06 B make a combined analysis of the LEP data. The quoted limit is for the $m_{h}^{\max }$ scenario with $m_{t}=174.3 \mathrm{GeV}$. In the $C P$-violating CPX scenario no lower bound on $m_{H_{1}^{0}}$ can be set at $95 \% \mathrm{CL}$. See paper for excluded regions in various scenarios. See Figs. 2-6 and Tabs. 14-21 for limits on $\sigma\left(Z H^{0}\right) \cdot \mathrm{B}\left(H^{0} \rightarrow b \bar{b}, \tau^{+} \tau^{-}\right)$and $\sigma\left(H_{1}^{0} H_{2}^{0}\right)$. $\mathrm{B}\left(\mathrm{H}_{1}^{0}, H_{2}^{0} \rightarrow b \bar{b}, \tau^{+} \tau^{-}\right)$.
${ }^{26}$ ACOSTA 05Q search for $H_{1,2}^{0} / A^{0}$ production in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.8 \mathrm{TeV}$ with $H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$. At $m_{A^{0}}=100 \mathrm{GeV}$, the obtained cross section upper limit is above theoretical expectation.
${ }^{27}$ Search for $e^{+} e^{-} \rightarrow H_{1}^{0} A^{0}$ in the final states $b \bar{b} b \bar{b}$ and $b \bar{b} \tau^{+} \tau^{-}$, and $e^{+} e^{-} \rightarrow$ $H_{1}^{0} Z$. Universal scalar mass of 1 TeV , $\mathrm{SU}(2)$ gaugino mass of 200 GeV , and $\mu=-200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for $m_{t}=175 \mathrm{GeV}$, and for the $m_{h}^{\max }$ scenario.
${ }^{28}$ ABBIENDI 04M exclude $0.7<\tan \beta<1.9$, assuming $m_{t}=174.3 \mathrm{GeV}$. Limits for other MSSM benchmark scenarios, as well as for $C P$ violating cases, are also given.
${ }^{29}$ ABBIENDI 03G search for $e^{+} e^{-} \rightarrow H_{1}^{0} Z$ followed by $H_{1}^{0} \rightarrow A^{0} A^{0}, A^{0} \rightarrow c \bar{c}, g g$, or $\tau^{+} \tau^{-}$. In the no-mixing scenario, the region $m_{H_{1}^{0}}=45-85 \mathrm{GeV}$ and $m_{A^{0}}=2-9.5$ ${ }_{30} \mathrm{GeV}$ is excluded at $95 \% \mathrm{CL}$.
${ }^{30}$ ACHARD 02H also search for the final state $H_{1}^{0} Z \rightarrow 2 A^{0} q \bar{q}, A^{0} \rightarrow q \bar{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.
${ }^{31}$ AKEROYD 02 examine the possibility of a light A^{0} with $\tan \beta<1$. Electroweak mea32 Surements are found to be inconsistent with such a scenario.
${ }^{32}$ HEISTER 02 excludes the range $0.7<\tan \beta<2.3$. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01C.

Mass Limits for \boldsymbol{H}_{1}^{0} (Higgs Boson) in Supersymmetric Models

$\frac{\operatorname{VALUE}(\mathrm{GeV})}{>89.7} \frac{C L \%}{} \quad \frac{\text { DOCUMENT ID }}{\text { ABDALLAH }} \quad 08 \mathrm{~B} \quad \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{E_{\text {Cm }} \leq 209 \mathrm{GeV}}$

>89.7		${ }^{1}$ ABDALLAH	08B	DLPH		$\leq 209 \mathrm{GeV}$
>92.8	95	${ }^{2}$ SCHAEL	06B	LEP		

$\begin{array}{llllll}>92.8 & 95 & 2 & \text { SCHAEL } & 06 \mathrm{~B} & \text { LEP } \\ >84.5 & 95 & 3,4 \text { ABBIENDI } & E_{\mathrm{cm}} \leq 209 \mathrm{GeV} \\ >80.0 & \text { OPAL } & E_{\mathrm{cm}} \leq 209 \mathrm{GeV}\end{array}$
$\begin{array}{lllll}>84.5 & 95 & \text { 3,5 ACHARD } & 04 \mathrm{M} & \text { OPAL } \\ >86.0 & 95 & E_{\mathrm{cm}} \leq 209 \mathrm{GeV} \\ >89 & 95 & 3,6 \text { HEISTER } & 02 & E_{\mathrm{cm}} \leq 209 \mathrm{GeV}, \tan \beta>0.4\end{array}$
$>89.8 \quad 95 \quad 3,6$ HEISTER 02 ALEP $E_{\mathrm{cm}} \leq 209 \mathrm{GeV}, \tan \beta>0.5$

- - We do not use the following data for averages, fits, limits, etc. - -

$$
7 \text { AALTONEN } \quad \text { 12AQ TEVA } p \bar{p} \rightarrow H_{1,2}^{0} / A^{0}+b+x \text {, }
$$

$$
H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}
$$

${ }^{1}$ ABDALLAH 08B give limits in eight $C P$-conserving benchmark scenarios and some $C P$ violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-
DALLAH 04.
2 SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the $m_{h}^{\max }$ scenario with $m_{t}=174.3 \mathrm{GeV}$. In the $C P$-violating CPX scenario no lower bound

Gauge \& Higgs Boson Particle Listings

Neutral Higgs Bosons, Searches for

on $m_{\boldsymbol{H}_{1}^{0}}$ can be set at $95 \% \mathrm{CL}$. See paper for excluded regions in various scenarios. See Figs. 2-6 and Tabs. 14-21 for limits on $\sigma\left(\mathrm{ZH}^{0}\right) \cdot \mathrm{B}\left(H^{0} \rightarrow b \bar{b}, \tau^{+} \tau^{-}\right)$and $\sigma\left(H_{1}^{0} H_{2}^{0}\right)$. $\mathrm{B}\left(\mathrm{H}_{1}^{0}, H_{2}^{0} \rightarrow b \bar{b}, \tau^{+} \tau^{-}\right)$.
${ }^{3}$ Search for $e^{+} e^{-} \rightarrow H_{1}^{0} A^{0}$ in the final states $b \bar{b} b \bar{b}$ and $b \bar{b} \tau^{+} \tau^{-}$, and $e^{+} e^{-} \rightarrow$ $H_{1}^{0} Z$. Universal scalar mass of 1 TeV , $\mathrm{SU}(2)$ gaugino mass of 200 GeV , and $\mu=-200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for $m_{t}=175 \mathrm{GeV}$, and for the $m_{h}^{\max }$ scenario.
${ }^{4}$ ABBIENDI 04 M exclude $0.7<\tan \beta<1.9$, assuming $m_{t}=174.3 \mathrm{GeV}$. Limits for other MSSM benchmark scenarios, as well as for $C P$ violating cases, are also given.
${ }^{5}$ ACHARD 02 H also search for the final state $H_{1}^{0} Z \rightarrow 2 A^{0} q \bar{q}, A^{0} \rightarrow q \bar{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.
${ }^{6}$ HEISTER 02 excludes the range $0.7<\tan \beta<2.3$. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01C.
${ }^{7}$ AALTONEN 12 AQ combine AALTONEN 12 X and ABAZOV 11 k . See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN EXTENDED HIGGS MODELS

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the review on "Status of Higgs Boson Physics"). Concerning the mass limits for H^{0} and A^{0} listed below, see the footnotes or the comment lines for details on the nature of the models to which the limits apply.

The observed signal at about 125 GeV , see section " H^{0} ", can be interpreted as one of the neutral Higgs bosons of an extended Higgs sector.

Mass Limits in General two-Higgs-doublet Models

${ }^{1}$ AAD 20 combine measurements on H^{0} production and decay using data taken in years 2015-2017 (up to $79.8 \mathrm{fb}^{-1}$) of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 18 for excluded regions in various 2HDMs
${ }^{2}$ SIRUNYAN 19AE search for a pseudoscalar resonance produced in association with a $b \bar{b}$ pair, decaying to $\tau^{+} \tau^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 4 for cross section limits for $m_{A^{0}}=25-70 \mathrm{GeV}$ and comparison with some representative 2HDMs.
${ }^{3}$ SIRUNYAN 19AV search for a scalar resonance produced by gluon fusion or b associated production, decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}(\ell=e, \mu)$ or $\nu \bar{\nu} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Figs. 6 and 7 for excluded regions in the parameter space of various 2 HDMs .
${ }^{4}$ AABOUD 18AH search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H_{2}^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13$ TeV . See their Fig. 6 for excluded regions in the parameter space of various 2HDMs.
${ }^{5}$ AABOUD 18AI search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H^{0}$ in the final states $\nu \bar{\nu} b \bar{b}$ and $\ell^{+} \ell^{-} b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Figs. 7 and 8 for excluded regions in the parameter space in various 2HDMs
${ }^{6}$ AABOUD 18BF search for production of a heavy H_{2}^{0} state decaying to $Z Z$ in the final states $\ell^{+} \ell^{-} \ell^{+} \ell^{-}$and $\ell^{+} \ell^{-} \nu \bar{\nu}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Figs. 8 and 9 for excluded parameter regions in 2HDM Type I and II.
${ }^{7}$ AABOUD 18CE search for the process $p p \rightarrow H_{2}^{0} / A^{0} t \bar{t}$ followed by the decay $H_{2}^{0} / A^{0} \rightarrow$ $t \bar{t}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 12 for limits on cross section times branching ratio, and for lower limits on $\tan \beta$ for $m_{H_{2}^{0}}, m_{A^{0}}=0.4-1.0$ TeV in the 2HDM type II.
${ }^{8}$ HALLER 18 perform global fits in the framework of two-Higgs-doublet models (type I, II, lepton specific, flipped). See their Fig. 8 for allowed parameter regions from fits to LHC H^{0} measurements, Fig. 9 bottom and charm decays, Fig. 10 muon anomalous magnetic moment, Fig. 11 electroweak precision data, and Fig. 12 by combination of all data.
${ }^{9}$ SIRUNYAN 18BP search for production of $H_{2}^{0} / A^{0} \rightarrow b \bar{b}$ by b-associated prodution in $35.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 6 for the limits on cross section times branching ratio for $m_{H_{2}^{0}}, m_{A^{0}}=0.3-1.3 \mathrm{TeV}$, and Figs. 8 and 9 for excluded regions in the parameter space of type-II and flipped 2HDMs.
10 SIRUNYAN 18ED search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H^{0}$ in the final states $\nu \bar{\nu} b \bar{b}$ or $\ell^{+} \ell^{-} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 9 for excluded regions in the parameter space in Type I and II 2HDMs.
${ }^{11}$ AABOUD 17AN search for production of a heavy H_{2}^{0} and/or A^{0} decaying to $t \bar{t}$ in 20.3 fb^{-1} of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 3 and Table III for excluded parameter regions in Type II Two-Higgs-Doublet-Models.
12 SIRUNYAN 17AX search for $A^{0} b \bar{b}$ production followed by the decay $A^{0} \rightarrow \mu^{+} \mu^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Limits are set in the range $m_{A^{0}}=25-60$ GeV . See their Fig. 5 for upper limits on $\sigma\left(A^{0} b \bar{b}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$.
${ }^{13}$ AAD 16AX search for production of a heavy H^{0} state decaying to $Z Z$ in the final states $\ell^{+} \ell^{-} \ell^{+} \ell^{-}, \ell^{+} \ell^{-} \nu \bar{\nu}, \ell^{+} \ell^{-} q \bar{q}$, and $\nu \bar{\nu} q \bar{q}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8$ TeV . See their Figs. 13 and 14 for excluded parameter regions in Type I and II models.
${ }^{14}$ KHACHATRYAN 16P search for gluon fusion production of an H_{2}^{0} decaying to $H^{0} H^{0} \rightarrow$ $b \bar{b} \tau^{+} \tau^{-}$and an A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{C m}=8 \mathrm{TeV}$. See their Fig. 11 for limits on $\tan \beta$ for $m_{A^{0}}=230-350 \mathrm{GeV}$.
${ }^{15} \mathrm{KHACHATRYAN} 16 \mathrm{~W}$ search for $A^{0} b \bar{B}$ production followed by the decay $A^{0} \rightarrow \tau^{+} \tau^{-}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 3 for upper limits on $\sigma\left(A^{0} b \bar{b}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \tau^{+} \tau^{-}\right)$.
${ }^{16}$ KHACHATRYAN $16 Z$ search for $H_{2}^{0} \rightarrow Z A^{0}$ followed by $A^{0} \rightarrow b \bar{b}$ or $\tau^{+} \tau^{-}$, and $A^{0} \rightarrow Z H_{2}^{0}$ followed by $H_{2}^{0} \rightarrow b \bar{b}$ or $\tau^{+} \tau^{-}$, in $19.8 \mathrm{fb}^{-1}$ of $p p$ collisions at E_{Cm} $=8 \mathrm{TeV}$. See their Fig. 4 for cross section limits and Fig. 5 for excluded region in the parameter space.
${ }^{17}$ AAD 15BK search for production of a heavy H_{2}^{0} decaying to $H^{0} H^{0}$ in the final state $b \bar{b} b \bar{b}$ in $19.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Figs. $15-18$ for excluded regions in the parameter space.
${ }^{18}$ AAD 15 S search for production of A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}, \nu \bar{\nu} b \bar{b}$ and $\ell^{+} \ell^{-} \tau^{+} \tau^{-}$in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 4 and 5 for excluded regions in the parameter space.
${ }^{19}$ KHACHATRYAN 15BB search for $H_{2}^{0}, A^{0} \rightarrow \gamma \gamma$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 10 for excluded regions in the two-Higgs-doublet model parameter space.
${ }^{20}$ KHACHATRYAN 15 N search for production of A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 5 for excluded regions in the $\tan \beta-\cos (\beta-\alpha)$ plane for $m_{A^{0}}=300 \mathrm{GeV}$.
${ }^{21}$ AAD 14 M search for the decay cascade $H_{2}^{0} \rightarrow H^{ \pm} W^{\mp} \rightarrow H^{0} W^{ \pm} W \mp, H^{0}$ decaying to $b \bar{b}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Table IV for limits in a two-Higgs-doublet model for $m_{H_{2}^{0}}=325-1025 \mathrm{GeV}$ and $m_{H^{+}}=225-825 \mathrm{GeV}$.
22 KHACHATRYAN $14 Q$ search for $H_{2}^{0} \rightarrow H^{0} H^{0}$ and $A^{0} \rightarrow Z H^{0}$ in $19.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Figs. 4 and 5 for limits on cross section times branching ratio for $m_{H_{2}, A^{0}}=260-360 \mathrm{GeV}$ and their Figs. 7-9 for limits in two-Higgsdoublet models.
${ }^{23}$ AALTONEN 09AR search for Higgs bosons decaying to $\tau^{+} \tau^{-}$in two doublet models in $1.8 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Fig. 2 for the limit on $\sigma \cdot \mathrm{B}\left(H_{1,2}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}\right)$for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space
${ }^{24}$ ABBIENDI 05A search for $e^{+} e^{-} \rightarrow H_{1}^{0} A^{0}$ in general Type-II two-doublet models, with decays $H_{1}^{0}, A^{0} \rightarrow q \bar{q}, g g, \tau^{+} \tau^{-}$, and $H_{1}^{0} \rightarrow A^{0} A^{0}$.
${ }^{25}$ ABDALLAH 05D search for $e^{+} e^{-} \rightarrow H^{0} Z$ and $H^{0} A^{0}$ with H^{0}, A^{0} decaying to two jets of any flavor including $g g$. The limit is for SM $H^{0} Z$ production cross section with $\mathrm{B}\left(H^{0} \rightarrow j j\right)=1$.
${ }^{26}$ ABDALLAH 040 search for $Z \rightarrow b \bar{b} H^{0}, b \bar{b} A^{0}, \tau^{+} \tau^{-} H^{0}$ and $\tau^{+} \tau^{-} A^{0}$ in the final states $4 b, b \bar{b} \tau^{+} \tau^{-}$, and 4τ. See paper for limits on Yukawa couplings.
27 ABDALLAH 040 search for $e^{+} e^{-} \rightarrow H^{0} Z$ and $H^{0} A^{0}$, with H^{0}, A^{0} decaying to $b \bar{b}$, $\tau^{+} \tau^{-}$, or $H^{0} \rightarrow A^{0} A^{0}$ at $E_{\mathrm{cm}}=189-208 \mathrm{GeV}$. See paper for limits on couplings.
${ }^{28}$ ABBIENDI 02D search for $Z \rightarrow b \bar{b} H_{1}^{0}$ and $b \bar{b} A^{0}$ with $H_{1}^{0} / A^{0} \rightarrow \tau^{+} \tau^{-}$, in the range $4<m_{H}<12 \mathrm{GeV}$. See their Fig. 8 for limits on the Yukawa coupling.
${ }^{29}$ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\mathrm{cm}} \leq 189 \mathrm{GeV}$. In addition to usual final states, the decays $H_{1}^{0}, A^{0} \rightarrow q \bar{q}, g g$ are searched for. See their Figs. 15,16 for excluded regions.
${ }^{30}$ ABBIENDI 99E search for $e^{+} e^{-} \rightarrow H^{0} A^{0}$ and $H^{0} Z$ at $E_{\mathrm{cm}}=183 \mathrm{GeV}$. The limit is with $m_{H}=m_{A}$ in general two Higgs-doublet models. See their Fig. 18 for the exclusion limit in the $m_{H}{ }^{-} m_{A}$ plane. Updates the results of ACKERSTAFF 98 s .
${ }^{31}$ See Fig. 4 of ABREU 95H for the excluded region in the $m_{H^{0}}-m_{A^{0}}$ plane for general two-doublet models. For $\tan \beta>1$, the region $m_{H^{0}}+m_{A^{0}} \lesssim 87 \mathrm{GeV}, m_{H^{0}}<47 \mathrm{GeV}$ is excluded at $95 \% \mathrm{CL}$.
${ }^{32}$ PICH 92 analyse H^{0} with $m_{H^{0}}<2 m_{\mu}$ in general two-doublet models. Excluded regions in the space of mass-mixing angles from LEP, beam dump, and $\pi^{ \pm}, \eta$ rare decays are shown in Figs. 3,4. The considered mass region is not totally excluded.

Mass Limits for H^{0} with Vanishing Yukawa Couplings

These limits assume that H^{0} couples to gauge bosons with the same strength as the Standard Model Higgs boson, but has no coupling to quarks and leptons (this is often referred to as "fermiophobic").
VALUE (GeV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lllll} & 95 & 1 \\ & 2 \text { AALTONEN } & 13 k & \left.\text { CDF } \quad H^{0} \rightarrow W W^{*}\right)\end{array}$
none 100-113 $95 \quad \begin{array}{lll}2 & \text { AALTONEN } & 13 \mathrm{~L} \text { CDF } \\ H^{0} \rightarrow \gamma \gamma, W W^{*}, z z^{*}\end{array}$
none 100-116 $95 \quad{ }^{3}$ AALTONEN 13 m TEVA $H^{0} \rightarrow \gamma \gamma, W W^{*}, Z Z^{*}$
25 $\quad 4 \mathrm{ABAZOV} \quad 13 \mathrm{G}$ D0 $H^{0} \rightarrow W W^{(*)}$
none 100-113
${ }^{5}$ ABAZOV
${ }^{6}$ ABAZOV
13I D0 $\quad H^{0} \rightarrow W W^{(*)}$
${ }^{7}$ ABAZOV $\quad 13 」$ D0 $\quad H^{0} \rightarrow W W^{(*)}, z Z^{(*)}$
$\begin{array}{lll}8 \\ 9 & \text { ABAZOV 13L D0 } & H^{0} \rightarrow \gamma \gamma, W W^{*}, Z Z^{*}\end{array}$
${ }^{9}$ CHATRCHYAN 13AL CMS $\quad H^{0} \rightarrow \gamma \gamma$
10 AAD $\quad 12 \mathrm{~N}$ ATLS $\quad H^{0} \rightarrow \gamma \gamma$
none 110-147
none 110-118,
119.5-121 119.5-121
no
none 70-106
none 70-100
>105.8
>104.1
>107
>105.5
>105.4
none 60-82
>94.9
>100.7
>96.2
>78.5
${ }^{15}$ SCHAEL 07 search for Higgs bosons in association with a fermion pair and decaying to $W W^{*}$. The limit is from this search and HEISTER 02L for a H^{0} with SM production cross section.
${ }^{16}$ Search for associated production of a $\gamma \gamma$ resonance with a Z boson, followed by $Z \rightarrow$ $q \bar{q}, \ell^{+} \ell^{-}$, or $\nu \bar{\nu}$, at $E_{\mathrm{cm}} \leq 209 \mathrm{GeV}$. The limit is for a H^{0} with SM production cross section.
17 Updates ABREU 01F.
${ }^{18}$ ACHARD 03C search for $e^{+} e^{-} \rightarrow Z H^{0}$ followed by $H^{0} \rightarrow W W^{*}$ or $Z Z^{*}$ at $E_{\mathrm{Cm}}=$ $200-209 \mathrm{GeV}$ and combine with the ACHARD 02C result. The limit is for a H^{0} with SM production cross section. For $\mathrm{B}\left(H^{0} \rightarrow W W^{*}\right)+\mathrm{B}\left(H^{0} \rightarrow Z Z^{*}\right)=1, \mathrm{~m}_{H^{0}}>108.1$ GeV is obtained. See fig. 6 for the limits under different BR assumptions.
${ }^{19}$ For $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)=1, m_{H^{0}}>117 \mathrm{GeV}$ is obtained.
${ }^{20}$ ACHARD 02C search for associated production of a $\gamma \gamma$ resonance with a Z boson, followed by $Z \rightarrow q \bar{q}, \ell^{+} \ell^{-}$, or $\nu \bar{\nu}$, at $E_{\mathrm{Cm}} \leq 209 \mathrm{GeV}$. The limit is for a H^{0} with SM production cross section. For $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)=1, m_{H^{0}}>114 \mathrm{GeV}$ is obtained.
${ }^{21}$ AFFOLDER 01 H search for associated production of a $\gamma \gamma$ resonance and a W or Z (tagged by two jets, an isolated lepton, or missing E_{T}). The limit assumes Standard Model values for the production cross section and for the couplings of the H^{0} to W and Z bosons. See their Fig. 11 for limits with $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)<1$.
${ }^{22}$ ACCIARRI 00s search for associated production of a $\gamma \gamma$ resonance with a $q \bar{q}, \nu \bar{\nu}$, or $\ell^{+} \ell^{-}$pair in $e^{+} e^{-}$collisions at $E_{\mathrm{Cm}}=189 \mathrm{GeV}$. The limit is for a H^{0} with SM production cross section. For $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)=1, m_{H^{0}}>98 \mathrm{GeV}$ is obtained. See their Fig. 5 for limits on $\mathrm{B}(H \rightarrow \gamma \gamma) \cdot \sigma\left(e^{+} e^{-} \rightarrow H f \bar{f}\right) / \sigma\left(e^{+} e^{-} \rightarrow H f \bar{f}\right)(S M)$.
${ }^{23}$ BARATE 00L search for associated production of a $\gamma \gamma$ resonance with a $q \bar{q}, \nu \bar{\nu}$, or $\ell^{+} \ell^{-}$pair in $e^{+} e^{-}$collisions at $E_{\mathrm{cm}}=88-202 \mathrm{GeV}$. The limit is for a H^{0} with SM production cross section. For $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)=1, m_{H^{0}}>109 \mathrm{GeV}$ is obtained. See their Fig. 3 for limits on $\mathrm{B}(H \rightarrow \gamma \gamma) \cdot \sigma\left(e^{+} e^{-} \rightarrow \boldsymbol{H f} \bar{f}\right) / \sigma\left(e^{+} e^{-} \rightarrow \boldsymbol{H f} \bar{f}\right)$ (SM).
${ }^{24}$ ABBIENDI 990 search for associated production of a $\gamma \gamma$ resonance with a $q \bar{q}, \nu \bar{\nu}$, or $\ell^{+} \ell^{-}$pair in $e^{+} e^{-}$collisions at 189 GeV . The limit is for a H^{0} with SM production cross section. See their Fig. 4 for limits on $\sigma\left(e^{+} e^{-} \rightarrow H^{0} z^{0}\right) \times \mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right) \times \mathrm{B}\left(X^{0} \rightarrow\right.$ $f \bar{f}$) for various masses. Updates the results of ACKERSTAFF 98Y.
${ }^{25}$ ABBOTT 99B search for associated production of a $\gamma \gamma$ resonance and a dijet pair. The limit assumes Standard Model values for the production cross section and for the couplings of the H^{0} to W and Z bosons. Limits in the range of $\sigma\left(H^{0}+Z / W\right) \cdot \mathrm{B}\left(H^{0} \rightarrow\right.$ $\gamma \gamma)=0.80-0.34 \mathrm{pb}$ are obtained in the mass range $m_{H^{0}}=65-150 \mathrm{GeV}$.
${ }^{26}$ ABREU 99P search for $e^{+} e^{-} \rightarrow H^{0} \gamma$ with $H^{0} \rightarrow b \bar{b}$ or $\gamma \gamma$, and $e^{+} e^{-} \rightarrow H^{0} q \bar{q}$ with $H^{0} \rightarrow \gamma \gamma$. See their Fig. 4 for limits on $\sigma \times$ B. Explicit limits within an effective interaction framework are also given.

Mass Limits for $\boldsymbol{H}^{\mathbf{0}}$ Decaying to Invisible Final States

These limits are for a neutral scalar H^{0} which predominantly decays to invisible final states. Standard Model values are assumed for the couplings of H^{0} to ordinary particles unless otherwise stated.
VALUE (GeV) CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

${ }^{1}$ AABOUD 19Al search for $H_{1,2}^{0}$ production by vector boson fusion and decay to invisible final states in $36.1 \mathrm{fb}-1$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 6(b) for limits on cross section times branching ratios for $m_{H_{1,2}^{0}}^{0}=0.1-3 \mathrm{TeV}$.
${ }^{2}$ AAD 15BD search for $p p \rightarrow H^{0} W X$ and $p p \rightarrow H^{0} Z X$ with W or Z decaying hadronically and H^{0} decaying to invisible final states in $20.3 \mathrm{fb}{ }^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 6 for a limit on the cross section times branching ratio for $m_{H^{0}}=115-300$
${ }^{3} \mathrm{GeV}$. 15 BH search for events with a jet and missing E_{T} in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Limits on $\sigma\left(H^{\prime 0}\right) \mathrm{B}\left(H^{\prime 0} \rightarrow\right.$ invisible $)<(44-10) \mathrm{pb}(95 \% \mathrm{CL})$ is given for $m_{H^{\prime 0}}=115-300 \mathrm{GeV}$.
${ }^{4}$ AAD 14BA search for H^{0} production in the decay mode $H^{0} \rightarrow x^{0} x^{0}$, where X^{0} is a long-lived particle which decays to collimated pairs of $e^{+} e^{-}, \mu^{+} \mu^{-}$, or $\pi^{+} \pi^{-}$plus invisible particles, in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 15 and 16 for limits on cross section times branching ratio.
${ }^{5}$ AAD 140 search for $p p \rightarrow H^{0} Z X, Z \rightarrow \ell \ell$, with H^{0} decaying to invisible final states in $4.5 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 3 for a limit on the cross section times branching ratio for $m_{H^{0}}=110-400 \mathrm{GeV}$.
${ }^{6}$ CHATRCHYAN 14 B search for $p p \rightarrow H^{0} Z X, Z \rightarrow \ell \ell$ and $Z \rightarrow b \bar{b}$, and also $p p \rightarrow$ $q q H^{0} X$ with H^{0} decaying to invisible final states using data at $E_{\mathrm{Cm}}=7$ and 8 TeV . See their Figs. 10, 11 for limits on the cross section times branching ratio for $m_{\boldsymbol{H}^{0}}=$ $100-400 \mathrm{GeV}$.
${ }^{1}$ AALTONEN 13 K search for $H^{0} \rightarrow W W^{(*)}$ in $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.96 TeV. A limit on cross section times branching ratio which corresponds to ($1.3-6.6$) times the expected cross section is given in the range $m_{H^{0}}=110-200 \mathrm{GeV}$ at $95 \% \mathrm{CL}$.
${ }^{2}$ AALTONEN 13L combine all CDF searches with $9.45-10.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $3=1.96 \mathrm{TeV}$.
${ }^{3}$ AALTONEN 13 m combine all Tevatron data from the CDF and D0 Collaborations of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$.
${ }^{4}$ ABAZOV 13G search for $H^{0} \rightarrow W W^{(*)}$ in $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96$ TeV . A limit on cross section times branching ratio which corresponds to (2-9) times the expected cross section is given for $m_{H^{0}}=100-200 \mathrm{GeV}$ at $95 \% \mathrm{CL}$.
${ }^{5}$ ABAZOV 13 H search for $H^{0} \rightarrow \gamma \gamma$ in $9.6 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$.
${ }^{6}$ ABAZOV 13ı search for H^{0} production in the final state with one lepton and two or more jets plus missing E_{T} in $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The search is sensitive to $W H^{0}, Z H^{0}$ and vector-boson fusion Higgs production with $H^{0} \rightarrow$ $W W^{(*)}$. A limit on cross section times branching ratio which corresponds to (8-30) times the expected cross section is given in the range $m_{H^{0}}=100-200 \mathrm{GeV}$ at $95 \% \mathrm{CL}$.
${ }^{7}$ ABAZOV 13」 search for H^{0} production in the final states $e e \mu, e \mu \mu, \mu \tau \tau$, and $e^{ \pm} \mu^{ \pm}$ in $8.6-9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The search is sensitive to $W \mathrm{H}^{0}$, $Z H^{0}$ production with $H^{0} \rightarrow W W^{(*)}, Z Z^{(*)}$, decaying to leptonic final states. A limit on cross section times branching ratio which corresponds to (2.4-13.0) times the expected cross section is given in the range $m_{H^{0}}=100-200 \mathrm{GeV}$ at $95 \% \mathrm{CL}$.
${ }^{8}$ ABAZOV 13L combine all D0 results with up to $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=$ 1.96 TeV .

CHATRCHYAN 13AL search for $H^{0} \rightarrow \gamma \gamma$ in $5.1 \mathrm{fb}^{-1}$ and $5.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ and 8 TeV .
${ }^{10}$ AAD 12 N search for $H^{0} \rightarrow \gamma \gamma$ with $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ in the mass range $m_{H^{0}}=110-150 \mathrm{GeV}$.
${ }^{11}$ AALTONEN 12AN search for $H^{0} \rightarrow \gamma \gamma$ with $10 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96$ TeV in the mass range $m_{H^{0}}=100-150 \mathrm{GeV}$.
12 CHATRCHYAN 12AO use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHA TRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.
${ }^{13}$ AALTONEN 09AB search for $H^{0} \rightarrow \gamma \gamma$ in $3.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96$ TeV in the mass range $m_{H^{0}}=70-150 \mathrm{GeV}$. Associated $H^{0} \mathrm{~W}, H^{0} Z$ production and $W W, Z Z$ fusion are considered.
${ }^{14}$ ABAZOV 08 u search for $H^{0} \rightarrow \gamma \gamma$ in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$ in the mass range $m_{H^{0}}=70-150 \mathrm{GeV}$. Associated $H^{0} W, H^{0} Z$ production and $W W, Z Z$ fusion are considered. See their Tab. 1 for the limit on $\sigma \cdot \mathbf{B}\left(H^{0} \rightarrow \gamma \gamma\right)$, and see their Fig. 3 for the excluded region in the $m_{H^{0}}-\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)$ plane.

Gauge \& Higgs Boson Particle Listings

Neutral Higgs Bosons, Searches for

Abstract

${ }^{7}$ AAD 13AG search for H^{0} production in the decay mode $H^{0} \rightarrow X^{0} X^{0}$, where X^{0} is a long-lived particle which decays to $\mu^{+} \mu^{-} x^{\prime 0}$, in $1.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ TeV. See their Fig. 7 for limits on cross section times branching ratio. ${ }^{8}$ AAD 13AT search for H^{0} production in the decay $H^{0} \rightarrow x^{0} X^{0}$, where X^{0} eventually decays to clusters of collimated $e^{+} e^{-}$pairs, in $2.04 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7$ TeV . See their Fig. 3 for limits on cross section times branching ratio. ${ }^{9}$ CHATRCHYAN 13BJ search for H^{0} production in the decay chain $H^{0} \rightarrow X^{0} X^{0}, x^{0} \rightarrow$ $\mu^{+} \mu^{-} x^{\prime 0}$ in $5.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio. ${ }^{10}$ AAD 12AQ search for H^{0} production in the decay mode $H^{0} \rightarrow x^{0} x^{0}$, where x^{0} is a long-lived particle which decays mainly to $b \bar{b}$ in the muon detector, in $1.94 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{C m}=7 \mathrm{TeV}$. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{0}}=120,140 \mathrm{GeV}, m_{X^{0}}=20,40 \mathrm{GeV}$ in the $c \tau$ range of $0.5-35 \mathrm{~m}$. ${ }^{11}$ AALTONEN 12AB search for H^{0} production in the decay $H^{0} \rightarrow x^{0} x^{0}$, where x^{0} eventually decays to clusters of collimated $\ell^{+} \ell^{-}$pairs, in $5.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{c m}=1.96 \mathrm{TeV}$. Cross section limits are provided for a benchmark MSSM model incorporating the parameters given in Table VI. ${ }^{12}$ AALTONEN 12 u search for H^{0} production in the decay mode $H^{0} \rightarrow X^{0} X^{0}$, where X^{0} is a long-lived particle with $c \tau \approx 1 \mathrm{~cm}$ which decays mainly to $b \bar{b}$, in $3.2 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Figs. 9 and 10 for limits on cross section times collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their branching ratio for $m_{H^{0}}=(130-170) \mathrm{GeV}, m_{X^{0}}=20,40 \mathrm{GeV}$. ${ }^{13}$ ABBIENDI 10 search for $e^{+} e^{-} \rightarrow H^{0} Z$ with H^{0} decaying invisibly. The limit assumes SM production cross section and $\mathrm{B}\left(H^{0} \rightarrow\right.$ invisible $)=1$. ${ }^{14}$ ABBIENDI 07 search for $e^{+} e^{-} \rightarrow H^{0} Z$ with $Z \rightarrow q \bar{q}$ and H^{0} decaying to invisible final states. The H^{0} width is varied between 1 GeV and 3 TeV . A limit $\sigma \cdot \mathrm{B}\left(H^{0} \rightarrow\right.$ invisible) $<(0.07-0.57) \mathrm{pb}(95 \% \mathrm{CL})$ is obtained at $E_{\mathrm{cm}}=206 \mathrm{GeV}$ for $m_{H^{0}}=60-114 \mathrm{GeV}$. ${ }^{15}$ Search for $e^{+} e^{-} \rightarrow H^{0} Z$ with H^{0} decaying invisibly. The limit assumes SM production cross section and $\mathrm{B}\left(H^{0} \rightarrow\right.$ invisible $)=1$. ${ }^{16}$ ACCIARRI 00M search for $e^{+} e^{-} \rightarrow Z H^{0}$ with H^{0} decaying invisibly at $E_{\mathrm{Cm}}=183-189 \mathrm{GeV}$. The limit assumes SM production cross section and $\mathrm{B}\left(\mathrm{H}^{0} \rightarrow\right.$ invisible) $=1$. See their Fig. 6 for limits for smaller branching ratios.

Mass Limits for Light $\boldsymbol{A}^{\mathbf{0}}$

These limits are for a pseudoscalar A^{0} in the mass range below $\mathcal{O}(10) \mathrm{GeV}$.
VALUE (GeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -

${ }^{1}$ AABOUD	18AP	ATLS	$H^{0} \rightarrow A^{0} A^{0}$
2 KHACHATRY..	..17Az	CMS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{3}$ ABLIKIM	16E	BES3	$J / \psi \rightarrow A^{0} \gamma$
${ }^{4}$ KHACHATRY..	...16F	CMS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{5}$ LEES	15 H	BABR	$r(1 S) \rightarrow A^{0} \gamma$
${ }^{6}$ LEES	13 C	BABR	$\gamma(1 S) \rightarrow A^{0} \gamma$
${ }^{7}$ LEES	13L	BABR	$\gamma(1 S) \rightarrow A^{0} \gamma$
${ }^{8}$ LEES	13 R	BABR	$\gamma(1 S) \rightarrow A^{0} \gamma$
${ }^{9}$ ABLIKIM	12	BES3	$J / \psi \rightarrow A^{0} \gamma$
10 CHATRCHYAN	12V	CMS	$A^{0} \rightarrow \mu^{+} \mu^{-}$
11 Aaltonen	11P	CDF	$t \rightarrow b H^{+}, H^{+} \rightarrow W^{+} A^{0}$
${ }^{12,13}$ ABOUZAID	11A	KTEV	$K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$
14 DEL-AMO-SA..	..11נ	BABR	$r(1 S) \rightarrow A^{0} \gamma$
${ }^{15}$ LEES	11H	BABR	$\gamma(2 S, 3 S) \rightarrow A^{0} \gamma$
16 ANDREAS	10	RVUE	
${ }^{13,17}$ HYUN	10	BELL	$B^{0} \rightarrow K^{* 0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$
13,18 HYUN	10	BELL	$B^{0} \rightarrow \rho^{0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$
19 AUBERT	09P	BABR	$r(3 S) \rightarrow A^{0} \gamma$
20 AUBERT	097	BABR	$\gamma(2 S) \rightarrow A^{0} \gamma$
${ }^{21}$ AUBERT	$09 z$	BABR	$r(3 S) \rightarrow A^{0} \gamma$
13,22 TUNG	09	K391	$K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}, A^{0} \rightarrow \gamma \gamma$
${ }^{23}$ LOVE	08	CLEO	$r(1 S) \rightarrow A^{0} \gamma$
${ }^{24}$ BESSON	07	CLEO	$r(1 S) \rightarrow \eta_{b} \gamma$
${ }^{25}$ PARK		HYCP	$\Sigma^{+} \rightarrow p A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$
${ }^{26}$ BALEST	95	CLE2	$r(1 S) \rightarrow A^{0} \gamma$
27 ANTREASYAN	V 90c	Cbal	$\gamma(1 S) \rightarrow A^{0} \gamma$

${ }^{1}$ AABOUD 18AP search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$in $36.1 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. $10(\mathrm{~b})$ for limits on $\mathrm{B}\left(H^{0} \rightarrow A^{0} A^{0}\right)$ in the range $m_{A^{0}}=1-2.5,4.5-8 \mathrm{GeV}$, assuming a type-II two-doublet plus singlet model with $\tan (\beta)=5$.
${ }^{2}$ KHACHATRYAN 17AZ search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}, \mu^{+} \mu^{-} b \bar{b}$, and $\mu^{+} \mu^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 4,5 , and 6 for cross section limits in the range $m_{A^{0}}=5-62.5 \mathrm{GeV}$. See also their Figs. 7, 8, and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
${ }^{3}$ ABLIKIM 16E search for the process $J / \psi \rightarrow A^{0} \gamma$ with A^{0} decaying to $\mu^{+} \mu^{-}$and give limits on $\mathrm{B}\left(J / \psi \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $2.8 \times 10^{-8}-5.0 \times 10^{-6}(90 \%$ CL) for $0.212 \leq m_{A^{0}} \leq 3.0 \mathrm{GeV}$. See their Fig. 5 .
${ }^{4}$ KHACHATRYAN 16F search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 8 for cross section limits for $m_{A^{0}}=$ $5^{4-8} \mathrm{GeV}$.
$5{ }^{5}$ LEES 15 H search for the process $\gamma(2 S) \rightarrow \gamma(1 S) \pi^{+} \pi^{-} \rightarrow A^{0} \gamma \pi^{+} \pi^{-}$with A^{0} decaying to $c \bar{c}$ and give limits on $\mathrm{B}\left(\Upsilon(1 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow c \bar{c}\right)$ in the range $7.4 \times 10^{-5}-2.4 \times 10^{-3}(90 \% \mathrm{CL})$ for $4.00 \leq m_{A^{0}} \leq 8.95$ and $9.10 \leq m_{A^{0}} \leq 9.25$ GeV . See their Fig. 6.
${ }^{6}$ LEES 13C search for the process $r(2 S, 3 S) \rightarrow r(1 S) \pi^{+} \pi^{-} \rightarrow A^{0} \gamma \pi^{+} \pi^{-}$with A^{0} decaying to $\mu^{+} \mu^{-}$and give limits on $\mathrm{B}\left(\gamma(1 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $(0.3-9.7) \times 10^{-6}(90 \% \mathrm{CL})$ for $0.212 \leq m_{A^{0}} \leq 9.20 \mathrm{GeV}$. See their Fig. 5(e) for limits on the $b-A^{0}$ Yukawa coupling derived by combining this result with AUBERT 097.
${ }^{7}$ LEES 13L search for the process $\gamma(2 S) \rightarrow \gamma(1 S) \pi^{+} \pi^{-} \rightarrow A^{0} \gamma \pi^{+} \pi^{-}$with A^{0} decaying to $g g$ or $s \bar{s}$ and give limits on $\mathrm{B}\left(\gamma(1 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow g g\right)$ between 1×10^{-6} and $2 \times 10^{-2}(90 \% \mathrm{CL})$ for $0.5 \leq m_{A^{0}} \leq 9.0 \mathrm{GeV}$, and $\mathrm{B}(r(1 S) \rightarrow$ $\left.A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow s \bar{s}\right)$ between 4×10^{-6} and $1 \times 10^{-3}(90 \% \mathrm{CL})$ for $1.5 \leq m_{A^{0}} \leq 9.0$ GeV . See their Fig. 4.
${ }^{8}$ LEES 13R search for the process $\gamma(2 S) \rightarrow \gamma(1 S) \pi^{+} \pi^{-} \rightarrow A^{0} \gamma \pi^{+} \pi^{-}$with A^{0} decaying to $\tau^{+} \tau^{-}$and give limits on $\mathrm{B}\left(\gamma(1 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \tau^{+} \tau^{-}\right)$in the range $0.9-13 \times 10^{-5}(90 \% \mathrm{CL})$ for $3.6 \leq m_{A^{0}} \leq 9.2 \mathrm{GeV}$. See their Fig. 4 for limits on the $b-A^{0}$ Yukawa coupling derived by combining this result with AUBERT 09P.
${ }^{9}$ ABLIKIM 12 searches for the process $\psi(3686) \rightarrow \pi \pi J / \psi, J / \psi \rightarrow A^{0} \gamma$ with A^{0} decaying to $\mu^{+} \mu^{-}$. It gives mass dependent limits on $\mathbf{B}\left(J / \psi \rightarrow A^{0} \gamma\right) \cdot \mathbf{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $4 \times 10^{-7}-2.1 \times 10^{-5}\left(90 \%\right.$ C.L.) for $0.212 \leq m_{A^{0}} \leq 3.0 \mathrm{GeV}$. See their Fig. 10 2.
${ }^{0}$ CHATRCHYAN 12 v search for A^{0} production in the decay $A^{0} \rightarrow \mu^{+} \mu^{-}$with $1.3 \mathrm{fb}^{-1}$ of pp collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. A limit on $\sigma\left(A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range (1.5-7.5) pb is given for $m_{A^{0}}=(5.5-8.7)$ and (11.5-14) GeV at $95 \% \mathrm{CL}$.
${ }^{11}$ AALTONEN 11P search in $2.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$ for the decay chain $t \rightarrow b H^{+}, H^{+} \rightarrow W^{+} A^{0}, A^{0} \rightarrow \tau^{+} \tau^{-}$with $m_{A^{0}}$ between 4 and 9 GeV . See their Fig. 4 for limits on $\mathrm{B}\left(t \rightarrow b H^{+}\right)$for $90<m_{H^{+}}<160 \mathrm{GeV}$.
${ }^{12}$ ABOUZAID 11A search for the decay chain $K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$and give a $\operatorname{limit} \mathrm{B}\left(K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)<1.0 \times 10^{-10}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}=$ 214.3 MeV .

13 The search was motivated by PARK 05.
${ }^{14}$ DEL-AMO-SANCHEZ 11 J search for the process $r(2 S) \rightarrow r(1 S) \pi^{+} \pi^{-} \rightarrow$ $A^{0} \gamma \pi^{+} \pi^{-}$with A^{0} decaying to invisible final states. They give limits on $\mathrm{B}(\gamma(1 S) \rightarrow$ $\left.A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow\right.$ invisible $)$ in the range $(1.9-4.5) \times 10^{-6}(90 \% \mathrm{CL})$ for $0 \leq m_{A^{0}} \leq$ 8.0 GeV , and $(2.7-37) \times 10^{-6}$ for $8.0 \leq m_{A^{0}} \leq 9.2 \mathrm{GeV}$.
${ }^{15}$ LEES 11 H search for the process $\gamma(2 \mathrm{~S}, 3 \mathrm{~S}) \rightarrow A^{0} \gamma$ with A^{0} decaying hadronically and give limits on $\mathrm{B}\left(r(2 S, 3 \mathrm{~S}) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow\right.$ hadrons $)$ in the range $1 \times 10^{-6}{ }_{-8 \times 10^{-5}}$ $(90 \% \mathrm{CL})$ for $0.3<m_{A^{0}}<7 \mathrm{GeV}$. The decay rates for $\gamma(2 S)$ and $\Upsilon(3 S)$ are assumed to be equal up to the phase space factor. See their Fig. 5.
${ }^{16}$ ANDREAS 10 analyze constraints from rare decays and other processes on a light A^{0} with $m_{A^{0}}<2 m_{\mu}$ and give limits on its coupling to fermions at the level of 10^{-4} times the Standard Model value.
${ }^{17}$ HYUNN 10 search for the decay chain $B^{0} \rightarrow K^{* 0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$and give a limit on $\mathrm{B}\left(B^{0} \rightarrow K^{* 0} A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $(2.26-5.53) \times 10^{-8}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}=212-300 \mathrm{MeV}$. The limit for $m_{A^{0}}=214.3 \mathrm{MeV}$ is 2.26×10^{-8}.
${ }^{18}$ HYUN 10 search for the decay chain $B^{0} \rightarrow \rho^{0} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$and give a limit on $\mathrm{B}\left(B^{0} \rightarrow \rho^{0} A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range (1.73-4.51) $\times 10^{-8}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}=212-300 \mathrm{MeV}$. The limit for $m_{A^{0}}=214.3 \mathrm{MeV}$ is 1.73×10^{-8}.
${ }^{19}$ AUBERT 09P search for the process $\gamma(3 S) \rightarrow A^{0} \gamma$ with $A^{0} \rightarrow \tau^{+} \tau^{-}$for 4.03 $<m_{A^{0}}<9.52$ and $9.61<m_{A^{0}}<10.10 \mathrm{GeV}$, and give limits on $\mathrm{B}(\Upsilon(3 S) \rightarrow$ $\left.A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \tau^{+} \tau^{-}\right)$in the range $(1.5-16) \times 10^{-5}(90 \% \mathrm{CL})$.
${ }^{20}$ AUBERT $09 z$ search for the process $\gamma(2 S) \rightarrow A^{0} \gamma$ with $A^{0} \rightarrow \mu^{+} \mu^{-}$for $0.212<$ $m_{A^{0}}<9.3 \mathrm{GeV}$ and give limits on $\mathrm{B}\left(r(2 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $(0.3-8) \times 10^{-6}(90 \% \mathrm{CL})$.
${ }^{21}$ AUBERT $09 z$ search for the process $\gamma(3 S) \rightarrow A^{0} \gamma$ with $A^{0} \rightarrow \mu^{+} \mu^{-}$for $0.212<$ $m_{A^{0}}<9.3 \mathrm{GeV}$ and give limits on $\mathrm{B}\left(r(3 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$in the range $(0.3-5) \times 10^{-6}(90 \% \mathrm{CL})$.
22 TUNG 09 search for the decay chain $K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}, A^{0} \rightarrow \gamma \gamma$ and give a limit on $\mathrm{B}\left(K_{L} \rightarrow \pi^{0} \pi^{0} A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \gamma \gamma\right)$ in the range $(2.4-10.7) \times 10^{-7}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}$ $=194.3-219.3 \mathrm{MeV}$. The limit for $m_{A^{0}}=214.3 \mathrm{MeV}$ is 2.4×10^{-7}.
${ }^{23}$ LOVE 08 search for the process $\gamma(1 S) \rightarrow A^{0} \gamma$ with $A^{0} \rightarrow \mu^{+} \mu^{-}\left(\right.$for $m_{A^{0}}<2 m_{\tau}$) and $A^{0} \rightarrow \tau^{+} \tau^{-}$. Limits on $\mathrm{B}\left(\gamma(1 S) \rightarrow A^{0} \gamma\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \ell^{+} \ell^{-}\right)$in the range $10^{-6}-10^{-4}(90 \% \mathrm{CL})$ are given.
${ }^{24}$ BESSON 07 give a limit $\mathrm{B}\left(\Upsilon(1 S) \rightarrow \eta_{b} \gamma\right) \cdot \mathrm{B}\left(\eta_{b} \rightarrow \tau^{+} \tau^{-}\right)<0.27 \%(95 \% \mathrm{CL})$, which constrains a possible A^{0} exchange contribution to the η_{b} decay.
${ }^{25}$ PARK 05 found three candidate events for $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$in the HyperCP experiment. Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signal of a new boson. It can be interpreted as a neutral particle with $m_{A^{0}}=214.3 \pm 0.5 \mathrm{MeV}$ and the branching fraction $\mathrm{B}\left(\Sigma^{+} \rightarrow p A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.1_{-1.9}^{+2.4} \pm 1.5\right) \times 10^{-8}$.
${ }^{26}$ BALEST 95 give limits $\mathrm{B}\left(\gamma(1 S) \rightarrow A^{0} \gamma\right) ; 1.5 \times 10^{-5}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}<5 \mathrm{GeV}$. The limit becomes $<10^{-4}$ for $m_{A^{0}}<7.7 \mathrm{GeV}$.
${ }^{27}$ ANTREASYAN 90 C give limits $\mathrm{B}\left(r(1 S) \rightarrow A^{0} \gamma\right) ; 5.6 \times 10^{-5}$ at $90 \% \mathrm{CL}$ for $m_{A^{0}}<$ $7.2 \mathrm{GeV} . A^{0}$ is assumed not to decay in the detector.

Other Mass Limits

We use a symbol H_{1}^{0} if mass $<125 \mathrm{GeV}$ or H_{2}^{0} if mass $>125 \mathrm{GeV}$. The notation H^{0} is reserved for the 125 GeV particle.
VALUE (GeV) CL\% DOCUMENT ID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }^{1}$ AAD	20C	ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
2 SIRUNYAN	20	CMS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{3}$ AABOUD	19A	ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{4}$ AABOUD	19ag	ATLS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{5}$ AABOUD	190	ATLS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
${ }^{6}$ AABOUD	19 T	ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{7}$ AABOUD	19V	ATLS	two doublet + pseudoscalar
${ }^{8}$ AABOUD	19Y	ATLS	$\mathrm{H}_{2} \xrightarrow{\text { model }} \mu^{+} \mu^{-}$

${ }^{9}$ AALTONEN	19 CDF	$H_{1,2}^{0} \rightarrow b \bar{b}$
10 SIRUNYAN	19 CMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
11 SIRUNYAN	19ae CMS	$A^{0} \rightarrow \tau^{+} \tau^{-}$
12 SIRUNYAN	19an CMS	$A_{2}^{0} \rightarrow H^{0} A_{1}^{0}$
13 SIRUNYAN	19av CMS	$\mathrm{A}^{0} \rightarrow \mathrm{ZH}^{0}$
14 SIRUNYAN	19b CMS	$H_{1,2}^{0} / A^{0} \rightarrow b \bar{b}$
15 SIRUNYAN	19bв CMS	$\mathrm{H}_{1}^{0} \rightarrow \gamma \gamma$
16 SIRUNYAN	19bd CMS	$H^{0} \rightarrow A^{0} A^{0}$
17 SIRUNYAN	19be CMS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
18 SIRUNYAN	19BQ CMS	$H_{1,2}^{0} \rightarrow A^{0} A^{0}$
19 SIRUNYAN	19CR CMS	$\mathrm{H}_{2}^{0} / A^{0} \rightarrow \mu^{+} \mu^{-}$
20 SIRUNYAN	19H CMS	$H^{0} \rightarrow H^{0} H^{0}$
${ }^{21}$ AABOUD	18AA ATLS	$H_{2}^{0} \rightarrow Z_{\gamma}$
${ }^{22}$ AABOUD	18AG ATLS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{23}$ AABOUD	18Ан ATLS	$A^{0} \rightarrow \mathrm{ZH}^{0}$
${ }^{24}$ AABOUD	18AI ATLS	$A^{0} \rightarrow Z H^{0}$
${ }^{25}$ AABOUD	18BF ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{ZZ}$
${ }^{26}$ AABOUD	18Bu ATLS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
${ }^{27}$ AABOUD	18BX ATLS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{28}$ AABOUD	18CQ ATLS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
${ }^{29}$ AABOUD	18 F ATLS	$\mathrm{H}_{2}^{0} \rightarrow W^{+} W^{-}, \mathrm{zZ}$
${ }^{30}$ AAIJ	18am LHCB	$H_{1,2}^{0} \rightarrow \mu \tau$
${ }^{31}$ AAIJ	18AQ LHCB	$A^{0} \rightarrow \mu^{+} \mu^{-}$
${ }^{32}$ AAIJ	18AQ LHCB	$\underset{\mu^{+} \mu^{-}}{H^{0}} A^{0} A^{0}, A^{0} \rightarrow$
33 SIRUNYAN	18af CMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{34}$ SIRUNYAN	18Ba CMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{ZZ}$
35 SIRUNYAN	18CwCMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{36}$ SIRUNYAN	18DK CMS	$H_{2}^{0} \rightarrow Z_{\gamma}$
${ }^{37}$ SIRUNYAN	18Dt CMS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{38}$ SIRUNYAN	18DU CMS	$\mathrm{H}_{2}^{0} \rightarrow \gamma \gamma$
${ }^{39}$ SIRUNYAN	18Ed CMS	$A^{0} \rightarrow Z H^{0}$
${ }^{40}$ SIRUNYAN	18ee CMS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{41}$ SIRUNYAN	18 F CMS	$p p, 13 \mathrm{TeV}, \mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
42 AABOUD	17 ATLS	$H_{2}^{0} \rightarrow Z_{\gamma}$
${ }^{43}$ AABOUD	17 AW ATLS	$H_{2}^{0} \rightarrow Z \gamma$
44 KHACHATRY	.17AZ CMS	$H^{0} \rightarrow A^{0} A^{0}$
45 KHACHATRY	.17D CMS	pp, 8, $13 \mathrm{TeV}, \mathrm{H}_{2}^{0} \rightarrow \boldsymbol{Z} \gamma$
46 KHACHATRY	.17R CMS	$\mathrm{H}_{2}^{0} \rightarrow \gamma \gamma$
47 SIRUNYAN	17CN CMS	$p p, 8 \mathrm{TeV}, \mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{48}$ SIRUNYAN	17 Y CMS	$p p, 8,13 \mathrm{TeV}, H_{2}^{0} \rightarrow Z_{\gamma}$
${ }^{49}$ AABOUD	16ab ATLS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{50}$ AABOUD	16aE ATLS	$H_{2}^{0} \rightarrow W^{+} W^{-}, z z$
${ }^{51}$ AABOUD	16H ATLS	$H_{2}^{0} \rightarrow \gamma \gamma$
${ }^{52}$ AABOUD	161 ATLS	$H_{2}^{0} \rightarrow H^{0} H^{0}$
${ }^{53}$ AAD	16ax ATLS	$H^{0} \rightarrow \mathrm{ZZ}$
${ }^{54}$ AAD	16C ATLS	$H^{0} \rightarrow W^{+} W^{-}$
${ }^{55}$ AAD	16L ATLS	$H^{0} \rightarrow A^{0} A^{0}$
${ }^{56}$ AAD	16L ATLS	$H_{2}^{0} \rightarrow A^{0} A^{0}$
57 afltonen	16C CDF	$\begin{aligned} & H_{1}^{0} H^{ \pm} \rightarrow H_{1}^{0} H_{1}^{0} W^{*}, \\ & H_{1}^{0} \rightarrow \gamma \gamma \end{aligned}$
58 KHACHATRY...16BG CMS		$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
59 KHACHATRY...16BQ CMS		$p p, 8 \mathrm{TeV}, \mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
60 KHACHATRY...16F CMS		$\mathrm{H}^{0} \rightarrow \mathrm{H}_{1}^{0} \mathrm{H}_{1}^{0}$
61 KHACHATRY... 16 M CMS		$\mathrm{H}_{2}^{0} \rightarrow \gamma \gamma$
62 KHACHATRY...16P CMS		$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
63 KHACHATRY...16P CMS		$A^{\text {® }} \rightarrow \mathrm{ZH}^{0}$
${ }^{64}$ AAD	15BK ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
65 AAD 15bz ATLS		$H^{0} \rightarrow A^{0} A^{0}$
$666_{\text {AAD }}$ 15Bz ATLS		$H_{2}^{0} \rightarrow A^{0} A^{0}$
67 AAD 15CE ATLS		$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{68}$ AAD	15H ATLS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{69}$ AAD	15 S ATLS	$A^{0} \rightarrow Z H^{0}$
70 KHACHATRY... 15 AW CMS		$H_{2}^{0} \rightarrow W^{+} W^{-}, z Z$
71 KHACHATRY...15BB CMS		$H^{0} \rightarrow \gamma \gamma$
72 KHACHATRY	.15N CMS	$A^{0} \rightarrow Z H^{0}$
73 KHACHATRY	. 150 CMS	$A^{0} \rightarrow Z H^{0}$
74 KHACHATRY	.15R CMS	$\mathrm{H}_{2}^{0} \rightarrow \mathrm{H}^{0} \mathrm{H}^{0}$
${ }^{75}$ AAD	14AP ATLS	$H^{0} \rightarrow \gamma \gamma$
${ }^{76}$ AAD	14 M ATLS	$\begin{aligned} & H_{2}^{0} \rightarrow H^{ \pm} W^{\mp} \rightarrow \\ & H^{0} W^{ \pm} W^{\mp}, H^{0} \rightarrow b \bar{b} \end{aligned}$
77 CHATRCHYA	14 G CMS	$H^{0} \rightarrow W W^{(*)}$
78 KHACHATRY	.14P CMS	$H^{0} \rightarrow \gamma \gamma$
79 AALTONEN	13P CDF	$\mathrm{H}^{00} \xrightarrow{H^{0}} \mathrm{~W}^{+} W^{+}{ }^{\text {- }} \rightarrow$
80 CHATRCHYA	13bJ CMS	$H^{0} \rightarrow A^{0} A^{0}$

Gauge \& Higgs Boson Particle Listings

Neutral Higgs Bosons, Searches for

${ }^{18}$ SIRUNYAN 19BQ search for production of $H_{1,2}^{0}$ decaying to $A^{0} A^{0} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_{1,2}^{0}}=90-150 \mathrm{GeV}, m_{A^{0}}=0.25-3.55 \mathrm{GeV}$.
${ }^{19}$ SIRUNYAN $19 C R$ search for production of H_{2}^{0} / A^{0} in gluon fusion and in association with a $b \bar{b}$ pair, decaying to $\mu^{+} \mu^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 6 for limits on cross section times branching ratio.
${ }^{20}$ SIRUNYAN 19 H search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$, where one $b \bar{b}$ pair is resolved and the other not. Limits on cross section times branching ratios for $m_{H_{2}^{0}}=0.75-1.6 \mathrm{TeV}$ are obtained and combined with data from SIRUNYAN 18AF. See their Fig. 5 (right).
${ }^{21}$ AABOUD 18AA search for production of a scalar resonance decaying to $Z \gamma$, with Z decaying hadronically, in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 8(a) for limits on cross section times branching ratio for $m_{H_{2}^{0}}=1.0-6.8 \mathrm{TeV}$.
${ }^{22}$ AABOUD 18 AG search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \gamma \gamma g g$ in $36.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 2 and Table 6 for cross section limits in the range $m_{A^{0}}=20-60 \mathrm{GeV}$.
${ }^{23}$ AABOUD 18 AH search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H_{2}^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=$ 13 TeV . See their Fig. 5 for cross section limits for $m_{A^{0}}=230-800 \mathrm{GeV}$ and $m_{H_{2}^{0}}=$ $130-700 \mathrm{GeV}$.
${ }^{24}$ AABOUD 18AI search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H^{0}$ in the final states $\nu \bar{\nu} b \bar{b}$ and $\ell^{+} \ell^{-} b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 6 for cross section limits for $m_{A^{0}}=0.2-2$ TeV. See also AABOUD 18 CC .
${ }^{25}$ AABOUD 18BF search for production of a heavy H_{2}^{0} state decaying to $Z Z$ in the final states $\ell^{+} \ell^{-} \ell^{+} \ell^{-}$and $\ell^{+} \ell^{-} \nu \bar{\nu}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 6 for upper limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.2-1.2$ TeV assuming ggF or VBF with the NWA. See their Fig. 7 for upper limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.4-1.0 \mathrm{TeV}$ assuming ggF, and with several assumptions on its width.
${ }^{26}$ AABOUD 18Bu search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow \gamma \gamma W W^{*}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times branching ratios for $m_{H^{0}}=260-500 \mathrm{GeV}$.
${ }^{27}$ AABOUD 18 BX search for associated production of $W \mathrm{H}^{0}$ or $Z \mathrm{H}^{0}$ followed by the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow b \bar{b} b \bar{b}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 9 for limits on cross section times branching ratios for $m_{A^{0}}=20-60 \mathrm{GeV}$. See also their Fig. 10 for the dependence of the limit on A^{0} lifetime.
${ }^{28}$ AABOUD 18CQ search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} \tau^{+} \tau^{-}$ in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 2 (above) for limits on cross section times branching ratios for $m_{H_{2}^{0}}=260-1000 \mathrm{GeV}$.
${ }^{29}$ AABOUD 18 F search for production of a narrow scalar resonance decaying to $W^{+} W^{-}$ and $Z Z$, followed by hadronic decays of W and Z, in $36.7 \mathrm{fb}^{-1}$ of $p p$ collisions at E_{cm} $=13 \mathrm{TeV}$. See their Fig. 5(c) for limits on cross section times branching ratio for $m_{H_{0}^{0}}$ $=1.2-3.0 \mathrm{TeV}$.
${ }^{30}$ AAIJ 18AM search for gluon-fusion production of $H_{1,2}^{0}$ decaying to $\mu \tau$ in $2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_{1,2}^{0}}=45-195 \mathrm{GeV}$.
${ }^{31}$ AAIJ 18AQ search for gluon-fusion production of a scalar particle A^{0} decaying to $\mu^{+} \mu^{-}$ in $1.99 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and $0.98 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times branching ratio for $m_{A^{0}}=5.5-15 \mathrm{GeV}$ (using the $E_{\mathrm{cm}}=8 \mathrm{TeV}$ data set).
${ }^{32}$ AAIJ 18AQ search for the decay $H^{0} \rightarrow A^{0} A^{0}$, with one of the A^{0} decaying to $\mu^{+} \mu^{-}$, in $1.99 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and $0.98 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 5 (right) for limits on the product of branching ratios for $m_{A^{0}}=5.5-15 \mathrm{GeV}$ (using the $E_{\mathrm{cm}}=8 \mathrm{TeV}$ data set).
${ }^{33}$ SIRUNYAN 18AF search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$, where both $b \bar{b}$ pairs are not resolved. See their Fig. 9 for limits on cross section times branching ratios for $m_{H_{2}^{0}}=0.75-3 \mathrm{TeV}$.
${ }^{34}$ SIRUNYAN 18BA search for production of a heavy H_{2}^{0} state decaying to $Z Z$ in the final states $\ell^{+} \ell^{-} \ell^{+} \ell^{-}, \ell^{+} \ell^{-} q \bar{q}$, and $\ell^{+} \ell^{-} \nu \bar{\nu}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=$ 13 TeV . See their Figs. 10 and 11 for upper limits on cross section times branching ratio for $m_{H^{0}}=0.13-3 \mathrm{TeV}$ with several assumptions on its width and on the fraction of Vector-Boson-Fusion of the total production cross section.
${ }^{35}$ SIRUNYAN 18 CW search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$, where both $b \bar{b}$ pairs are resolved. See their Fig. 9 for limits on cross section times branching ratios for $m_{H_{2}^{0}}=260-1200 \mathrm{GeV}$.
${ }^{36}$ SIRUNYAN 18DK search for production of a scalar resonance decaying to $Z \gamma$, with Z decaying to $\ell^{+} \ell^{-}$or hadronically, in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.35-4 \mathrm{TeV}$ for different assumptions on the width of the resonance
${ }^{37}$ SIRUNYAN 18DT search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \tau^{+} \tau^{-} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on the product of branching ratios in the range $m_{A^{0}}=15-60 \mathrm{GeV}$. See also their Fig. 8 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
${ }^{38}$ SIRUNYAN 18DU search for production of a narrow scalar resonance decaying to $\gamma \gamma$ in $35.9 \mathrm{fb}^{-1}$ (taken in 2016) of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 3 (right) for limits on cross section times branching ratio for $m_{H^{0}}=0.5-5 \mathrm{TeV}$ for several values of its width-to-mass ratio.
${ }^{39}$ SIRUNYAN 18ED search for production of an A^{0} in gluon-gluon fusion and in association with a $b \bar{b}$, decaying to $Z H^{0}$ in the final states $\nu \bar{\nu} b \bar{b}$ or $\ell^{+} \ell^{-} b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 8 for cross section limits for $m_{A^{0}}=0.8-2$ TeV.
${ }^{40}$ SIRUNYAN 18 EE search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 4 for limits on the product of branching ratios in the range $m A^{0}=15-62.5 \mathrm{GeV}$, normalized to the SM production cross section. See also their Fig. 5 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
${ }^{41}$ SIRUNYAN 18F search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow W W b \bar{b}$ or $Z Z b \bar{b}$ in the final state $\ell \ell \nu \nu b \bar{b}$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratios for $m_{H_{2}^{0}}=250-900 \mathrm{GeV}$.
${ }^{42}$ AABOUD 17 search for production of a scalar resonance decaying to Z_{γ} in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 4 for the limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.25-3.0 \mathrm{TeV}$.
${ }^{43}$ AABOUD 17 AW search for production of a scalar resonance decaying to $Z \gamma$ in $36.1 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.25-2.4 \mathrm{TeV}$.
${ }^{44}$ KHACHATRYAN 17AZ search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}, \mu^{+} \mu^{-} b \bar{b}$, and $\mu^{+} \mu^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 4, 5, and 6 for cross section limits in the range $m_{A^{0}}=5-62.5 \mathrm{GeV}$. See also their Figs. 7, 8, and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
${ }^{45}$ KHACHATRYAN 17D search for production of a scalar resonance decaying to $Z \gamma$ in 19.7 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and $2.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Figs. 3 and 4 for the limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.2-2.0 \mathrm{TeV}$.
${ }^{46} \mathrm{KHACHATRYAN}$ 17R search for production of a narrow scalar resonance decaying to $\gamma \gamma$ in $12.9 \mathrm{fb}^{-1}$ (taken in 2016) of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_{2}^{0}}^{0}=0.5-4.5 \mathrm{TeV}$ for several values of its width-to-mass ratio. Limits from combination with KHACHATRYAN 16 M are shown in their Figs. 4 and 6.
47 SIRUNYAN $17 C N$ search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} \tau^{+} \tau^{-}$ in $18.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 5 (above) and Table II for limits on the cross section times branching ratios for $m_{H^{0}}=0.3-1 \mathrm{TeV}$, and Fig. 6 (above) and Table III for the corresponding limits by combining with data from KHACHATRYAN 16BQ and KHACHATRYAN 15R.
${ }^{48}$ SIRUNYAN $17 Y$ search for production of a scalar resonance decaying to $Z \gamma$ in $19.7 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and $2.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Figs. 3, 4 and Table 3 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.7-3.0 \mathrm{TeV}$, and Fig. 5 for the corresponding limits for $m_{H_{2}^{0}}=0.2-3.0 \mathrm{TeV}$ from combination with KHACHATRYAN 17D data.
${ }^{49}$ AABOUD 16AB search for associated production of $W H^{0}$ with the decay $H^{0} \rightarrow$ $A^{0} A^{0} \rightarrow b \bar{b} b \bar{b}$ in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 8 for limits on cross section times branching ratios for $m_{A^{0}}=20-60 \mathrm{GeV}$.
${ }^{50}$ AABOUD 16AE search for production of a narrow scalar resonance decaying to $W^{+} W^{-}$ and $Z Z$ in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.5-3 \mathrm{TeV}$.
${ }^{51}$ AABOUD 16 H search for production of a scalar resonance decaying to $\gamma \gamma$ in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 12 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.2-2 \mathrm{TeV}$ with different assumptions on the width.
${ }^{52}$ AABOUD 161 search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in 3.2 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 10 (c) for limits on cross section times branching ratios for $m_{H_{2}^{0}}=0.5-3 \mathrm{TeV}$.
${ }^{53}$ AAD 16AX search for production of a heavy H^{0} state decaying to $Z Z$ in the final states $\ell^{+} \ell^{-} \ell^{+} \ell^{-}, \ell^{+} \ell^{-} \nu \bar{\nu}, \ell^{+} \ell^{-} q \bar{q}$, and $\nu \bar{\nu} q \bar{q}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8$ TeV . See their Fig. 12 for upper limits on $\sigma\left(H^{0}\right) \mathrm{B}\left(H^{0} \rightarrow Z Z\right)$ for $m_{H^{0}}$ ranging from 140 GeV to 1000 GeV .
${ }^{54}$ AAD 16 C search for production of a heavy H^{0} state decaying to $W^{+} W^{-}$in the final states $\ell \nu \ell \nu$ and $\ell \nu q q$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 12, 13, and 16 for upper limits on $\sigma\left(H^{0}\right) \mathrm{B}\left(H^{0} \rightarrow W^{+} W^{-}\right)$for $m_{H^{0}}$ ranging from 300 GeV to 1000 or 1500 GeV with various assumptions on the total width of \boldsymbol{H}^{0}.
${ }^{55}$ AAD 16L search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \gamma \gamma \gamma \gamma$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 4 (upper right) for limits on cross section times branching ratios (normalized to the SM H^{0} cross section) for $m_{A^{0}}=10-60 \mathrm{GeV}$.
${ }^{56}$ AAD 16L search for the decay $H_{2}^{0} \rightarrow A^{0} A^{0} \rightarrow \gamma \gamma \gamma \gamma$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 4 (lower right) for limits on cross section times branching ratios for $m_{H_{2}^{0}}=600 \mathrm{GeV}$ and $m_{A^{0}}=10-245 \mathrm{GeV}$, and Table 5 for limits for $m_{H_{2}^{0}}=$ 300 and 900 GeV .
57 AALTONEN 16C search for electroweak associated production of $H_{1}^{0} H^{ \pm}$followed by the decays $H^{ \pm} \rightarrow H_{1}^{0} W^{*}, H_{1}^{0} \rightarrow \gamma \gamma$ for $m_{H_{1}^{0}}=10-105 \mathrm{GeV}$ and $m_{H^{ \pm}}=30-300 \mathrm{GeV}$. See their Fig. 3 for excluded parameter region in a two-doublet model in which H_{1}^{0} has no direct decay to fermions.
${ }^{58} \mathrm{KHACHATRYAN}$ 16BG search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 6 for limits on the cross section times branching ratios for $m_{H_{2}^{0}}=1.15-3 \mathrm{TeV}$
${ }^{59}$ KHACHATRYAN 16BQ search for a resonance decaying to $H^{0} H^{0} \rightarrow \gamma \gamma b \bar{b}$ in 19.7 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 9 for limits on the cross section times branching ratios for $m_{H_{2}^{0}}=0.26-1.1 \mathrm{TeV}$.
${ }^{60}$ KHACHATRYAN 16F search for the decay $H^{0} \rightarrow H_{1}^{0} H_{1}^{0} \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}$in 19.7 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 8 for cross section limits for $m_{H_{1}^{0}}$ $=4-8 \mathrm{GeV}$.
${ }^{61}$ KHACHATRYAN 16 M search for production of a narrow resonance decaying to $\gamma \gamma$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and $3.3 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 3 (top) for limits on cross section times branching ratio for $m_{H_{2}^{0}}=0.5-4 \mathrm{TeV}$.
${ }^{62}$ KHACHATRYAN 16P search for gluon fusion production of an H_{2}^{0} decaying to $H^{0} H^{0} \rightarrow$ $b \bar{b} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}-1$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 8 (lower right) for cross section limits for $m_{H_{2}^{0}}=260-350 \mathrm{GeV}$.
${ }^{63}$ KHACHATRYAN 16P search for gluon fusion production of an A^{0} decaying to $\mathrm{ZH}^{0} \rightarrow$ $\ell^{+} \ell^{-} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 10 for cross section limits for $m_{H_{2}^{0}}=220-350 \mathrm{GeV}$.
${ }^{64}$ AAD 15BK search for production of a heavy H_{2}^{0} decaying to $H^{0} H^{0}$ in the final state $b \bar{b} b \bar{b}$ in $19.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 14(c) for $\sigma\left(H_{2}^{0}\right)$ $\mathrm{B}\left(H_{2}^{0} \rightarrow H^{0} H^{0}\right)$ for $m_{H_{2}^{0}}=500-1500 \mathrm{GeV}$ with $\Gamma_{H_{2}^{0}}=1 \mathrm{GeV}$.
${ }^{65}$ AAD 15 BZ search for the decay $H^{0} \rightarrow A^{0} A^{0} \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}\left(m_{H^{0}}=125 \mathrm{GeV}\right)$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 6 for limits on cross section times branching ratio for $m_{A^{0}}=3.7-50 \mathrm{GeV}$.
${ }^{66}$ AAD 15 BZ search for a state H_{2}^{0} via the decay $H_{2}^{0} \rightarrow A^{0} A^{0} \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}$in 20.3 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 6 for limits on cross section times branching ratio for $m_{H_{2}^{0}}=100-500 \mathrm{GeV}$ and $m_{A^{0}}=5 \mathrm{GeV}$.
${ }^{67}$ AAD 15CE search for production of a heavy H_{2}^{0} decaying to $H^{0} H^{0}$ in the final states $b \bar{b} \tau^{+} \tau^{-}$and $\gamma \gamma W W^{*}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$ and combine with data from AAD 15H and AAD 15Bk. A limit $\sigma\left(H_{2}^{0}\right) \mathrm{B}\left(H_{2}^{0} \rightarrow H^{0} H^{0}\right)<2.1-0.011$ $\mathrm{pb}(95 \% \mathrm{CL})$ is given for $m_{H_{2}^{0}}=260-1000 \mathrm{GeV}$. See their Fig. 6.
${ }^{68}$ AAD 15 search for production of a heavy H_{2}^{0} decaying to $H^{0} H^{0}$ in the finalstate $\gamma \gamma b \bar{b}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV} . \mathrm{A}$ limit of $\sigma\left(H_{2}^{0}\right) \mathrm{B}\left(H_{2}^{0} \rightarrow \mathrm{H}^{0} H^{0}\right)$ $<3.5-0.7 \mathrm{pb}$ is given for $m_{H_{2}^{0}}=260-500 \mathrm{GeV}$ at $95 \% \mathrm{CL}$. See their Fig. 3.
${ }^{69}$ AAD 15 S search for production of A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}, \nu \bar{\nu} b \bar{b}$ and $\ell^{+} \ell^{-} \tau^{+} \tau^{-}$in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 3 for cross section limits for $m_{A^{0}}=200-1000 \mathrm{GeV}$.
70 KHACHATRYAN 15AW search for production of a heavy state H_{2}^{0} of an electroweak singlet extension of the Standard Model via the decays of H_{2}^{0} to $W^{+} W^{-}$and $Z Z$ in up to $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and up to $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$ in the range $m_{H_{2}^{0}}=145-1000 \mathrm{GeV}$. See their Figs. 8 and 9 for limits in the parameter space of the model.
${ }^{71}$ KHACHATRYAN 15 BB search for production of a resonance H^{0} decaying to $\gamma \gamma$ in 19.7 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^{0}}=150-850 \mathrm{GeV}$.
72 KHACHATRYAN 15 N search for production of A^{0} decaying to $Z H^{0} \rightarrow \ell^{+} \ell^{-} b \bar{b}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 3 for limits on cross section times branching ratios for $m_{A^{0}}=225-600 \mathrm{GeV}$.
${ }^{73}$ KHACHATRYAN 150 search for production of a high-mass narrow resonance A^{0} decaying to $Z H^{0} \rightarrow q \bar{q} \tau^{+} \tau^{-}$in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 6 for limits on cross section times branching ratios for $m_{A^{0}}=800-2500 \mathrm{GeV}$.
${ }^{74} \mathrm{KHACHATRYAN}$ 15R search for a narrow scalar resonance decaying to $H^{0} H^{0} \rightarrow b \bar{b} b \bar{b}$ in $17.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 5 (top) for limits on cross section times branching ratios for $m_{H_{2}^{0}}=0.27-1.1 \mathrm{TeV}$.
${ }^{75}$ AAD 14AP search for a second H^{0} state decaying to $\gamma \gamma$ in addition to the state at about 125 GeV in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{0}}=65-600 \mathrm{GeV}$.
${ }^{76}$ AAD 14M search for the decay cascade $H_{2}^{0} \rightarrow H^{ \pm} W^{\mp} \rightarrow H^{0} W^{ \pm} W^{\mp}, H^{0}$ decaying to $b \bar{b}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Table III for limits on cross section times branching ratio for $m_{H_{2}^{0}}=325-1025 \mathrm{GeV}$ and $m_{H^{+}}=225-925 \mathrm{GeV}$.
${ }^{77}$ CHATRCHYAN 14 G search for a second H^{0} state decaying to $W W^{(*)}$ in addition to the observed signal at about 125 GeV using $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.4 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 21 (right) for cross section limits in the mass range $110-600 \mathrm{GeV}$.
${ }^{78}$ KHACHATRYAN 14 P search for a second H^{0} state decaying to $\gamma \gamma$ in addition to the observed signal at about 125 GeV using $5.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Figs. 27 and 28 for cross section limits in the mass range $110-150 \mathrm{GeV}$.
${ }^{79}$ AALTONEN 13P search for production of a heavy Higgs boson $H^{\prime 0}$ that decays into a charged Higgs boson $H^{ \pm}$and a lighter Higgs boson H^{0} via the decay chain $H^{0} \rightarrow$ $H^{ \pm} W \mp, H^{ \pm} \rightarrow W^{ \pm} H^{0}, H^{0} \rightarrow b \bar{b}$ in the final state $\ell \nu$ plus 4 jets in $8.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times of $p \bar{p}$ colitions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See ther
branching ratio in the $m_{H^{ \pm}}-m_{H^{\prime}} 0$ plane for $m_{H^{0}}=126 \mathrm{GeV}$.
${ }^{80}$ CHATRCHYAN 13BJ search for H^{0} production in the decay chain $H^{0} \rightarrow A^{0} A^{0}, A^{0} \rightarrow$ $\mu^{+} \mu^{-}$in $5.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio.
${ }^{81}$ AALTONEN 11P search in $2.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$ for the decay chain $t \rightarrow b \mathrm{H}^{+}, \mathrm{H}^{+} \rightarrow W^{+} A^{0}, A^{0} \rightarrow \tau^{+} \tau^{-}$with $m_{A^{0}}$ between 4 and 9 GeV . See their Fig. 4 for limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$for $90<m_{H^{+}}<160 \mathrm{GeV}$.
${ }^{82}$ ABBIENDI 10 search for $e^{+} e^{-} \rightarrow Z H^{0}$ with the decay chain $H^{0} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow$ $\tilde{\chi}_{1}^{0}+\left(\gamma\right.$ or $\left.Z^{*}\right)$, when $\tilde{\chi}_{1}^{0}$ and $\tilde{\chi}_{2}^{0}$ are nearly degenerate. For a mass difference of 2 (4) GeV , a lower limit on $m_{H^{0}}$ of 108.4 (107.0) $\mathrm{GeV}(95 \% \mathrm{CL})$ is obtained for SM $Z H^{0}$ cross section and $\mathrm{B}\left(H^{0} \rightarrow \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}\right)=1$.
${ }^{83}$ SCHAEL 10 search for the process $e^{+} e^{-} \rightarrow H^{0} Z$ followed by the decay chain $H^{0} \rightarrow$ $A^{0} A^{0} \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}$with $Z \rightarrow \ell^{+} \ell^{-}, \nu \bar{\nu}$ at $E_{\mathrm{cm}}=183-209 \mathrm{GeV}$. For a $H^{0} Z Z$
coupling equal to the SM value, $\mathrm{B}\left(H^{0} \rightarrow A^{0} A^{0}\right)=\mathrm{B}\left(A^{0} \rightarrow \tau^{+} \tau^{-}\right)=1$, and $m_{A^{0}}$ $=4-10 \mathrm{GeV}, m_{H^{0}}$ up to 107 GeV is excluded at $95 \% \mathrm{CL}$.
${ }^{84}$ ABAZOV 09v search for H^{0} production followed by the decay chain $H^{0} \rightarrow A^{0} A^{0} \rightarrow$ $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$or $\mu^{+} \mu^{-} \tau^{+} \tau^{-}$in $4.2 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. See their Fig. 3 for limits on $\sigma\left(H^{0}\right) \cdot \mathrm{B}\left(H^{0} \rightarrow A^{0} A^{0}\right)$ for $m_{A^{0}}=3.6-19 \mathrm{GeV}$.
${ }^{85}$ ABBIENDI 05A search for $e^{+} e^{-} \rightarrow H_{1}^{0} A^{0}$ in general Type-Il two-doublet models, with decays $H_{1}^{0}, A^{0} \rightarrow q \bar{q}, g g, \tau^{+} \tau^{-}$, and $H_{1}^{0} \rightarrow A^{0} A^{0}$.
${ }^{86}$ ABBIENDI 04K search for $e^{+} e^{-} \rightarrow H^{0} Z$ with H^{0} decaying to two jets of any flavor including $g g$. The limit is for SM production cross section with $\mathrm{B}\left(H^{0} \rightarrow j j\right)=1$.
87 ABDALLAH 04 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to W or Z bosons, assuming SM decays of the Higgs. Results in Fig. 26.
${ }^{88}$ ACHARD 04B search for $e^{+} e^{-} \rightarrow H^{0} Z$ with H^{0} decaying to $b \bar{b}, c \bar{c}$, or $g g$. The limit is for SM production cross section with $\mathrm{B}\left(\mathrm{H}^{0} \rightarrow j j\right)=1$.
${ }^{89}$ ACHARD 04F search for H^{0} with anomalous coupling to gauge boson pairs in the processes $e^{+} e^{-} \rightarrow H^{0} \gamma, e^{+} e^{-} H^{0}, H^{0} Z$ with decays $H^{0} \rightarrow f \bar{f}, \gamma \gamma, Z \gamma$, and $W^{*} W$ at $E_{\mathrm{cm}}=189-209 \mathrm{GeV}$. See paper for limits.
${ }^{90}$ ABBIENDI 03F search for $H^{0} \rightarrow$ anything in $e^{+} e^{-} \rightarrow H^{0} Z$, using the recoil mass spectrum of $Z \rightarrow e^{+} e^{-}$or $\mu^{+} \mu^{-}$. In addition, it searched for $Z \rightarrow \nu \bar{\nu}$ and $H^{0} \rightarrow$ $e^{+} e^{-}$or photons. Scenarios with large width or continuum H^{0} mass distribution are considered. See their Figs. 11-14 for the results.
${ }^{91}$ ABBIENDI 03G search for $e^{+} e^{-} \rightarrow H_{1}^{0} Z$ followed by $H_{1}^{0} \rightarrow A^{0} A^{0}, A^{0} \rightarrow c \bar{c}, g g$, or $\tau^{+} \tau^{-}$in the region $m_{H_{1}^{0}}=45-86 \mathrm{GeV}$ and $m_{A^{0}}=2-11 \mathrm{GeV}$. See their Fig. 7 for 22 the limits.
92 Search for associated production of a $\gamma \gamma$ resonance with a Z boson, followed by $Z \rightarrow$ $q \bar{q}, \ell^{+} \ell^{-}$, or $\nu \bar{\nu}$, at $E_{\mathrm{cm}} \leq 209 \mathrm{GeV}$. The limit is for a H^{0} with SM production cross section and $\mathrm{B}\left(H^{0} \rightarrow f \bar{f}\right)=0$ for all fermions f.
${ }^{93}$ For $\mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right)=1, m_{H^{0}}>113.1 \mathrm{GeV}$ is obtained.
${ }^{94}$ HEISTER 02M search for $e^{+} e^{-} \rightarrow H^{0} Z$, assuming that H^{0} decays to $q \bar{q}$, $g g$, or $\tau^{+} \tau^{-}$only. The limit assumes SM production cross section.
${ }^{95}$ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\mathrm{cm}} \leq 189 \mathrm{GeV}$. In addition to usual final states, the decays $H_{1}^{0}, A^{0} \rightarrow q \bar{q}, g g$ are searched for. See their Figs. 15,16 for excluded regions.
${ }^{96}$ ACCIARRI 00R search for $e^{+} e^{-} \rightarrow H^{0} \gamma$ with $H^{0} \rightarrow b \bar{b}, Z \gamma$, or $\gamma \gamma$. See their Fig. 3 for limits on $\sigma \cdot$ B. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.
${ }^{97}$ ACCIARRI 00R search for the two-photon type processes $e^{+} e^{-} \rightarrow e^{+} e^{-} H^{0}$ with $H^{0} \rightarrow b \bar{b}$ or $\gamma \gamma$. See their Fig. 4 for limits on $\Gamma\left(H^{0} \rightarrow \gamma \gamma\right) \cdot \mathrm{B}\left(H^{0} \rightarrow \gamma \gamma\right.$ or $\left.b \bar{b}\right)$ for $m_{H^{0}}=70-170 \mathrm{GeV}$.
${ }^{98}$ GONZALEZ-GARCIA 98B use D \varnothing limit for $\gamma \gamma$ events with missing E_{T} in $p \bar{p}$ collisions (ABBOTT 98) to constrain possible $Z H$ or $W H$ production followed by unconventional $H \rightarrow \gamma \gamma$ decay which is induced by higher-dimensional operators. See their Figs. 1 and 2 $H \rightarrow \gamma \gamma$ decay which is induced by hig
for limits on the anomalous couplings.
${ }^{99}$ KRAWCZYK 97 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type II Yukawa couplings) assuming no $H_{1}^{0} Z Z$ coupling and obtain $m_{H_{1}^{0}} \gtrsim$
5 GeV or $m_{A^{0}} \gtrsim 5 \mathrm{GeV}$ for $\tan \beta>50$. Other Higgs bosons are assumed to be much heavier.
$\left.100 \begin{array}{c}\text { heavier. } \\ \text { ALEXANDER 96H give } \\ \mathrm{B} \\ \hline\end{array} Z \rightarrow H^{0} \gamma\right) \times \mathrm{B}\left(H^{0} \rightarrow q \bar{q}\right)<1-4 \times 10^{-5}(95 \% \mathrm{CL})$ and $\mathrm{B}\left(Z \rightarrow H^{0} \gamma\right) \times \mathrm{B}\left(H^{0} \rightarrow b \bar{b}\right)<0.7-2 \times 10^{-5}(95 \% \mathrm{CL})$ in the range $20<m_{H^{0}}<80$ GeV .

SEARCHES FOR A HIGGS BOSON

WITH STANDARD MODEL COUPLINGS
These listings are based on experimental searches for a scalar boson whose couplings to W, Z and fermions are precisely those of the Higgs boson predicted by the three-generation Standard Model with the minimal Higgs sector.

For a review and a bibliography, see the review on "Status of Higgs Boson Physics."

Indirect Mass Limits for $\boldsymbol{H}^{\mathbf{0}}$ from Electroweak Analysis

The mass limits shown below apply to a Higgs boson H^{0} with Standard Model couplings whose mass is a priori unknown.

For limits obtained before the direct measurement of the top quark mass, see the 1996 (Physical Review D54 1 (1996)) Edition of this Review. Other studies based on data available prior to 1996 can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

VALUE (GeV)	DOCUMENT ID	TECN
$90+21$	HALIER	RVUE

- - We do not use the following data for averages, fits, limits, etc. - - -

91_{-23}^{+30}	${ }^{2}$ BAAK	12	RVUE
94_{-22}^{+25}	${ }^{3}$ BAAK	12 A	RVUE
91_{-24}^{+31}	${ }^{4}$ ERLER	10 A	RVUE
129_{-49}^{+74}	${ }^{5}$ LEP-SLC	06	RVUE

and Γ_{W} measurements available in 2018. The direct mass measurement at the LHC is not used in the fit. ${ }^{2}$ BAAK 12 make Standard Model fits to Z and neutral current parameters, m_{t}, m_{W}, and Γ_{W} measurements available in 2010 (using also preliminary data). The quoted result is obtained from a fit that does not include the limit from the direct Higgs searches. The result including direct search data from LEP2, the Tevatron and the LHC is 120_{-}^{+12} GeV . ${ }^{3}$ BAAK 12A make Standard Model fits to Z and neutral current parameters, m_{t}, m_{W}, and Γ_{W} measurements available in 2012 (using also preliminary data). The quoted result is obtained from a fit that does not include the measured mass value of the signal observed at the LHC and also no limits from direct Higgs searches. ${ }^{4}$ ERLER 10A makes Standard Model fits to Z and neutral current parameters, m_{t}, m_{W} measurements available in 2009 (using also preliminary data). The quoted result is obtained from a fit that does not include the limits from the direct Higgs searches. With direct search data from LEP2 and Tevatron added to the fit, the $90 \% \mathrm{CL}(99 \% \mathrm{CL})$ interval is $115-148(114-197) \mathrm{GeV}$. ${ }^{5}$ LEP-SLC 06 make Standard Model fits to Z parameters from LEP /SLC and m_{t}, m_{W}, and Γ_{W} measurements available in 2005 with $\Delta \alpha_{\text {had }}^{(5)}\left(m_{Z}\right)=0.02758 \pm 0.00035$. The 95% CL limit is 285 GeV .

SEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCES

AAD	20	PR D101 012002
AAD	20 C	PL B800 135103
SIRUNYAN	20	PL B800 135087
AABOUD	19A	JHEP 1901030
AABOUD	19AG	PL B790 1
AABOUD	19AI	PL B793 499
AABOUD	190	JHEP 1904092
AABOUD	19T	JHEP 1905124
AABOUD	19 V	JHEP 1905142
AABOUD	19 Y	JHEP 1907117
AALTONEN	19	PR D99 052001
SIRUNYAN	19	PL B788 7
SIRUNYAN	19AE	JHEP 1905210
SIRUNYAN	19AN	EPJ C79 280
SIRUNYAN	19AV	EPJ C79 564
SIRUNYAN	19B	PR D99 012005
SIRUNYAN	19BB	PL B793 320
SIRUNYAN	19BD	PL B795 398
SIRUNYAN	19BE	PRL 122121803
SIRUNYAN	19BQ	PL B796 131
SIRUNYAN	19CR	PL B798 134992
SIRUNYAN	19 H	JHEP 1901040
AABOUD	18AA	PR D98 032015
AABOUD	18AG	PL B782 750
AABOUD	18AH	PL B783 392
AABOUD	18AI	JHEP 1803174
Also		JHEP 1811051 (errat.)
AABOUD	18AP	JHEP 1806166
AABOUD	18BF	EPJ C78 293
AABOUD	18BU	EPJ C78 1007
AABOUD	18BX	JHEP 1810031
AABOUD	18CC	JHEP 1811051 (errat.)
AABOUD	18CE	JHEP 1812039
AABOUD	18CQ	PRL 121191801
AABOUD	18CW	JHEP 1811040
AABOUD	18F	PL B777 91
AABOUD	18G	JHEP 1801055
AAIJ	18AM	EPJ C78 1008
AAIJ	18AQ	JHEP 1809147
HALLER	18	EPJ C78 675
SIRUNYAN	18A	PL B778 101
SIRUNYAN	18AF	PL B781 244
SIRUNYAN	18BA	JHEP 1806127
Also		JHEP 1903128 (errat.)
SIRUNYAN	18BP	JHEP 1808113
SIRUNYAN	18CW	JHEP 1808152
SIRUNYAN	18CX	JHEP 1809007
SIRUNYAN	18DK	JHEP 1809148
SIRUNYAN	18DT	PL B785 462
SIRUNYAN	18DU	PR D98 092001
SIRUNYAN	18ED	JHEP 1811172
SIRUNYAN	18EE	JHEP 1811018
SIRUNYAN	18F	JHEP 1801054
AABOUD	17	PL B764 11
AABOUD	17AN	PRL 119191803
AABOUD	17 AW	JHEP 1710112
KHACHATRY.	17AZ	JHEP 1710076
KHACHATRY.	17D	JHEP 1701076
KHACHATRY.	17R	PL B767 147
SIRUNYAN	17AX	JHEP 1711010
SIRUNYAN	17CN	PR D96 072004
SIRUNYAN	17Y	PL B772 363
AABOUD	16AA	EPJ C76 585
AABOUD	16AB	EPJ C76 605
AABOUD	16AE	JHEP 1609173
AABOUD	16 H	JHEP 1609001
AABOUD	161	PR D94 052002
AAD	16AX	EPJ C76 45
AAD	16C	JHEP 1601032
AAD	16L	EPJ C76 210
AALTONEN	16C	PR D93 112010
ABLIKIM	16E	PR D93 052005
KHACHATRY.		PL B752 221
KHACHATRY.		EPJ C76 371
KHACHATRY.	16BQ	PR D94 052012
KHACHATRY.	16 F	JHEP 1601079
KHACHATRY.	16M	PRL 117051802
KHACHATRY.		PL B755 217
KHACHATRY.		PL B758 296
KHACHATRY.	16 Z	PL B759 369
AAD	15BD	EPJ C75 337
AAD	15BH	EPJ C75 299
Also		EPJ C75 408 (errat.)
AAD	15BK	EPJ C75 412
AAD	15BZ	PR D92 052002
AAD	15CE	PR D92 092004
AAD	15H	PRL 114081802
AAD	15S	PL B744 163
KHACHATRY.	15AW	JHEP 1510144
KHACHATRY.	15AY	JHEP 1511071
KHACHATRY.	15BB	PL B750 494
KHACHATRY.	15N	PL B748 221

[^100]G. Aad et al.
G. Aad et al.

Aad et al.
M. Aaboud et al. M. Aaboud et al. (ATLAS Collab.) M. Aaboud et al. (ATLAS Collab.) M. Aaboud et al. (ATLAS Collab.)
M. Aaboud et al. (ATLAS Collab.) $\begin{array}{ll}\text { M. Aaboud et al. } & \text { (ATLAS Collab.) } \\ \text { (ATLAS Collab.) }\end{array}$ M. Aaboud et al. (ATLAS Collab.) $\begin{array}{ll}\text { T. Aaltonen et al. } & \text { (CDF Collab.) } \\ \text { A.M. Sirunyan et al. } & \text { (CMS Collab.) }\end{array}$ A.M. Sirunyan et al. (CMS Collab.) $\begin{array}{ll}\text { A.M. Sirunyan et al. } & \text { (CMS Collab.) } \\ \text { A.M Sirunyan et al. } & \text { (CMS Collab.) }\end{array}$ $\begin{array}{ll}\text { A.M. Sirunyan et al. } & \text { (CMS Collab.) } \\ \text { A.M. Sirunyan et al. } & \text { (CMS Collab.) } \\ \text { A.M. Sirunyan et al. } & \text { (MS Collab.) }\end{array}$ $\begin{array}{ll}\text { A.M. Sirunyan et al. } & \text { (CMS Collab.) } \\ \text { A.M. Sirunyan et al. } & \text { (CMS Collab.) }\end{array}$ $\begin{array}{ll}\text { A.M. Sirunyan et al. } & \text { (CMS Collab.) } \\ \text { A.M. Sirunyan et al. } & \text { (CMS Collab.) }\end{array}$ A.M. Sirunyan et al.
A.M. Sirunyan et al. $\begin{array}{ll}\text { A.M. Sirunyyan et al. } & \text { (CMS Collab.) } \\ \text { (CMS Collab.) }\end{array}$ $\begin{array}{ll}\text { M. Aaboud et al. } & \text { (ATLAS Collab.) } \\ \text { M. Aaboud et al. } & \text { (ATLAS Collab.) }\end{array}$ M. Aaboud et al. (ATLAS Collab.) M. Aaboud et al. M. Aaboud et al.
M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al M. Aaboud et al. R. Aaij et al.
R. Aaii et al.
J. Haller et al.
A.M. Sirunyan et al
A.M. Sirunyan et al.
A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et
A.M. Sirunyan et A.M. Sirunyan et al.
A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.
A.M. Sirunyan et al A.M. Sirunyan et M. Aaboud et al M. Aaboud et al (ATLAS Collab.)
(CMS Collab.) . Khachatryan et al. . Khachatryan et al. A.M. Sirunyan et al
A.M. Sirunyan et al
M. Aaboud et al.
M. Aaboud et al
M. Aaboud et al.
M. Aaboud et al
M. Aaboud et al.
G. Aad et al.
G. Aad et al.
M. Aaltonen et al.
M. Ablikim et al.
V. Khachatryan et al.
V. Khachatryan et al. V. Khachatryan et al. v. Khachatryan et al. V. Khachatryan et al. . Khachatryan et al. G. Aad et al. . Aad et al. . Aad et al al.

G. Aad et al.

Khachatryan et al.
Khachatryan et al.
Khachatryan et al.
. Khachatryan et al

KHACHATRY...	. 150	PL B748 255
KHACHATRY..	.15R	PL B749 560
LEES	15 H	PR D91 071102
AAD	14AP	PRL 113171801
AAD	14AW	JHEP 1411056
AAD	14BA	JHEP 1411
AAD	14 M	PR D89 032002
AAD	140	PRL 112201802
CHATRCHYAN	14 B	EPJ C74 2980
CHATRCHYAN	14 G	JHEP 1401096
kHACHATRY.	. 14 M	JHEP 1410160
KHACHATRY..	. 14 P	EPJ C74 3076
KHACHATRY.	. 14 Q	PR D90 112013
AAD	13AG	PL B721 32
AAD	13AT	NJP 15043009
AAD	130	JHEP 1302095
AAIJ	${ }^{13 T}$	JHEP 1305132
AALTONEN	13 K	PR D88 052012
afltonen	13 L	PR D88 052013
AALTONEN	13M	PR D88 052014
AALTONEN	13P	PRL 110121801
abazov	136	PR D88 052006
ABAZOV	13 H	PR D88 052007
ABAZOV	131	PR D88 05200
ABAZOV	${ }^{13} \mathrm{~J}$	PR D88 052009
ABAZOV	13 L	PR D88 05201
carena	13	EPJ C73 2552
CHATRCHYAN	13AG	PL B722 207
CHATRCHYAN	13AL	PL B725 36
CHATRCHYAN	13BJ	PL B726 564
LEES	13 C	PR D87 031102
LEES	${ }^{13 L}$	PR D88 031701
Lees	13 R	PR D88 071102
AAD	12 Al	PL B716 1
AAD	12AQ	PRL 10825180
AAD	12 N	EPJ C72 2157
afltonen	12 AB	PR D85 092001
AALTONEN	12 AN	PL B717 173
AALTONEN	12AQ	PR D86 091101
AALTONEN	12 T	PR D85 012007
afltonen	12X	PR D85 032005
ABAZOV	12 G	PL B710 569
ABLIKIM	12	PR D85 092012
BAAK	12	EPJ C72 2003
BAAK	12A	EPJ C72 2205
CHATRCHYAN	12 AO	JHEP 1209111
CHATRCHYAN	12 C	JHEP 1203081
CHATRCHYAN	12D	JHEP 1204036
CHATRCHYAN	12 E	PL B710 91
CHATRCHYAN	12 G	PL B710 403
CHATRCHYAN	${ }^{12 \mathrm{H}}$	PRL 108111804
CHATRCHYAN	121	JHEP 1203040
CHATRCHYAN	12 K	PL B713 68
CHATRCHYAN	12 N	PL B716 30
CHATRCHYAN	12 V	PRL 109121801
AALTONEN	11P	PRL 107031801
ABAZOV	11K	PL B698 97
abazov	11W	PRL 107121801
ABOUZAID	11A	PRL 107201803
DEL-AMO-SA..	.11J	PRL 107021804
LEES	11 H	PRL 107221803
ABBIENDI	10	PL B682 381
Andreas	10	JHEP 1008003
ERLER	10 A	PR D81 051301
HYUN	10	PRL 105091801
SCHAEL	10	JHEP 1005049
Aaltonen	09AB	PRL 103061803
Aaltonen	09AR	PRL 103201801
ABAZOV	09 V	PRL 103061801
AUBERT	09 P	PRL 103181801
Aubert	092	PRL 103081803
TUNG	09	PRL 102051802
Abazov	$08 \cup$	PRL 101051801
ABDALLAH	08B	EPJ C54 1
Also		EPJ C56 165 (errat.)
LOVE	08	PRL 101151802
Abbiendi	07	EPJ C49 457
BESSON	07	PRL 98052002
SCHAEL	07	EPJ C49 439
LEP-SLC	06	PRPL 427257
SCHAEL	06B	EPJ C47 547
ABBIENDI	05A	EPJ C40 317
ABDALLAH	05D	EPJ C44 147
ACHARD	05	PL B609 35
ACOSTA	05Q	PR D72 072004
PARK	05	PRL 94021801
ABBIENDI	04 K	PL B597 11
ABbiendi	04M	EPJ C37 49
ABDALLAH	04	EPJ C32 145
ABDALLAH	04B	EPJ C32 475
ABDALLAH	04L	EPJ C35 313
ABDALLAH	040	EPJ C38 1
ACHARD	04B	PL B583 14
ACHARD	04F	PL B589 89
ABBIENDI	03F	EPJ C27 311
AbBIENDI	03 G	EPJ C27 483
ACHARD	03 C	PL B568 191
ABBIENDI	02 D	EPJ C23 397
Abbiendi	02 F	PL B544 44
ACHARD	02 C	PL B534 28
ACHARD	02 H	PL B545 30
AKEROYD	02	PR D66 037702
HEISTER	02	PL B526 191
HEISTER	02 L	PL B544 16
HEISTER	02M	PL B544 25
ABBIENDI	01 E	EPJ C18 425
ABREU	01 F	PL B507 89
AFFOLDER	01 H	PR D64 092002
BARATE	01 C	PL B499 53
ACCIARRI	00M	PL B485 85
ACCIARRI	OOR	PL B489 102
ACCIARRI	005	PL B489 115
barate	00 L	PL B487 241
ABBIENDI	99 E	EPJ C7 407
AbBIENDI	990	PL B464 311
ABBOTT	99B	PRL 822244
ABREU	99P	PL B458 431
ABBOTT	98	PRL 80442
ACKERSTAFF	985	EPJ C5 19
$\begin{aligned} & \text { ACKERSTAFF } \\ & \text { GONZALEZ... } \end{aligned}$	$\begin{aligned} & 98 \mathrm{Y} \\ & 98 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { PL B437 } 218 \\ & \text { PR D57 } 7045 \end{aligned}$

Charged Higgs Bosons ($H^{ \pm}$and $H^{ \pm \pm}$),
Searches for

CONTENTS:

$H^{ \pm}$(charged Higgs) mass limits for $\mathrm{m}_{\mathrm{H}^{+}}<\mathrm{m}$ (top)
$\mathrm{H}^{ \pm}$(charged Higgs) mass limits for $\mathrm{m}_{\mathrm{H}^{+}}>\mathrm{m}$ (top)
$H^{ \pm \pm}$(doubly-charged Higgs boson) mass limits

- Limits for $H^{ \pm \pm}$with $T_{3}= \pm 1$
- Limits for $H^{ \pm \pm}$with $T_{3}=0$

${ }^{1}$ AAD 15AF search for $t \bar{t}$ production followed by $t \rightarrow b H^{+}, H^{+} \rightarrow \tau^{+} \nu$ in $19.5 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b H^{+}\right) \mathrm{B}\left(\mathrm{H}^{+} \rightarrow \tau \nu\right)$ between 2.3×10^{-3} and $1.3 \times 10^{-2}(95 \% \mathrm{CL})$ are given for $\mathrm{m}_{\mathrm{H}^{+}}=80-160 \mathrm{GeV}$. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^{+}}<140 \mathrm{GeV}$ is excluded for $\tan \beta>1$ in the considered scenarios.
${ }^{2}$ KHACHATRYAN 15AX search for $t \bar{t}$ production followed by $t \rightarrow \mathrm{bH}^{+}, \mathrm{H}^{+} \rightarrow \tau^{+} \nu$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right) \mathrm{B}\left(\mathrm{H}^{+} \rightarrow\right.$ $\tau \nu$) between 1.2×10^{-2} and $1.5 \times 10^{-3}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=80-160 \mathrm{GeV}$. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^{+}}<155 \mathrm{GeV}$ is excluded for $\tan \beta>1$ in the considered scenarios.
${ }^{3}$ LEP 13 give a limit that refers to the Type II scenario. The limit for $\mathrm{B}\left(H^{+} \rightarrow \tau \nu\right)=$ 1 is $94 \mathrm{GeV}(95 \% \mathrm{CL})$, and for $\mathrm{B}\left(\mathrm{H}^{+} \rightarrow C s\right)=1$ the region below 80.5 as well as the region $83-88 \mathrm{GeV}$ is excluded ($95 \% \mathrm{CL}$). LEP 13 also search for the decay mode $\mathrm{H}^{+} \rightarrow$ $A^{0} W^{*}$ with $A^{0} \rightarrow b \bar{b}$, which is not negligible in Type I models. The limit in Type I models is $72.5 \mathrm{GeV}(95 \% \mathrm{CL})$ if $m_{A^{0}}>12 \mathrm{GeV}$.
${ }^{4}$ ABBIENDI 12 also search for the decay mode $H^{+} \rightarrow A^{0} W^{*}$ with $A^{0} \rightarrow b \bar{b}$.
${ }^{5}$ SIRUNYAN 19AH search for H^{+}in the decay of a pair-produced t quark, or in associated $t b \mathrm{H}^{+}$or nonresonant $b \bar{b} \mathrm{H}^{+} \mathrm{W}^{-}$production, followed by $\mathrm{H}^{+} \rightarrow \tau^{+} \nu$, in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. Upper limits on cross section times branching ratio between 6 pb and $5 \mathrm{fb}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=80-3000 \mathrm{GeV}$ (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $m_{h}^{\bmod -}$ scenario of the MSSM.
${ }^{6}$ SIRUNYAN 19BP search for vector boson fusion production of H^{+}decaying to $\mathrm{H}^{+} \rightarrow$ $W^{+} Z \rightarrow \ell^{+} \nu \ell^{+} \ell^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratio for $m_{\mathrm{H}^{+}}=0.3-2.0 \mathrm{TeV}$, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
${ }^{7}$ SIRUNYAN 19 CC search for $t \rightarrow b H^{+}$from pair produced top quarks, with the decay chain $H^{+} \rightarrow W^{+} A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$in $35.9 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 2 for limits on the product of branching ratios for $m_{A^{0}}=15-75 \mathrm{GeV}$.
${ }^{8}$ SIRUNYAN 19CQ search for vector boson fusion production of H^{+}decaying to $\mathrm{H}^{+} \rightarrow$ $W^{+} Z \rightarrow \ell^{+} \nu q \bar{q}$ or $q \bar{q} \ell^{+} \ell^{-}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{+}}=0.6-2.0 \mathrm{TeV}$, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
${ }^{9}$ AABOUD 18BW search for $\bar{t} b H^{+}$associated production or the decay $t \rightarrow b H^{+}$, followed by $\mathrm{H}^{+} \rightarrow \tau^{+} \nu$, in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 8(a) for upper limits on cross section times branching ratio for $m_{H^{+}}=90-2000 \mathrm{GeV}$, and Fig. 8(b) for limits on $\mathrm{B}\left(t \rightarrow b H^{+}\right) \mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)$ for $m_{H^{+}}=90-160 \mathrm{GeV}$. See also their Fig. 9 for the excluded region in the hMSSM parameter space.
${ }^{10}$ AABOUD 18CD search for $\bar{t} b H^{+}$associated production followed by $H^{+} \rightarrow t \bar{b}$ in 36.1 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 8 for upper limits on cross section times branching ratio for $m_{H^{+}}=0.2-2 \mathrm{TeV}$. See also their Fig. 9 for the excluded region in the parameter space of the $m_{h}^{\text {mod- }}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded $m_{H^{+}}$range are shown without their respective uncertainty band.
${ }^{11}$ AABOUD 18 CH search for vector boson fusion production of $H^{ \pm}$decaying to $H^{ \pm} \rightarrow$ $W^{ \pm} Z \rightarrow \ell^{ \pm} \nu \ell^{+} \ell^{-}$in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^{ \pm}}=0.2-0.9 \mathrm{TeV}$, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
${ }^{12}$ HALLER 18 give 95% CL lower limits on $m_{H^{+}}$of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for $\mathrm{B}(b \rightarrow s \gamma)$.

Gauge \& Higgs Boson Particle Listings

Charged Higgs Bosons ($H^{ \pm}$and $H^{ \pm \pm}$), Searches for

${ }^{13}$ SIRUNYAN 18DO search for $t \bar{t}$ production followed by $t \rightarrow b H^{+}, H^{+} \rightarrow c \bar{b}$ in 19.7 fb^{-1} of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 3 for upper limits on $\mathrm{B}(t \rightarrow$ $\left.b H^{+}\right)$for $m_{H^{+}}=90-150 \mathrm{GeV}$ assuming that $\mathrm{B}\left(H^{+} \rightarrow c \bar{b}\right)=1$ and $\mathrm{B}\left(t \rightarrow b H^{+}\right)$ $+\mathrm{B}\left(t \rightarrow b W^{+}\right)=1$.
${ }^{14}$ MISIAK 17 give 95% CL lower limits on $m_{H^{+}}$between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for $\mathrm{B}(b \rightarrow s(d) \gamma)$.
${ }^{15}$ SIRUNYAN 17AE search for vector boson fusion production of $H^{ \pm}$decaying to $H^{ \pm} \rightarrow$ $W^{ \pm} Z \rightarrow \ell^{ \pm} \nu \ell^{+} \ell^{-}$in $15.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{ \pm}}=0.2-2.0 \mathrm{TeV}$, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
${ }^{16}$ AABOUD 16A search for $t(b) \mathrm{H}^{ \pm}$associated production followed by $\mathrm{H}^{+} \rightarrow \tau^{+} \nu$ in $3.2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. Upper limits on $\sigma\left(t(b) \mathrm{H}^{ \pm}\right) \mathrm{B}\left(\mathrm{H}^{+} \rightarrow\right.$ $\tau \nu$) between 1.9 pb and $15 \mathrm{fb}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=200-2000 \mathrm{GeV}$, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
${ }^{17}$ AAD 16AJ search for $t(b) H^{ \pm}$associated production followed by $H^{ \pm} \rightarrow t b$ in 20.3 fb^{-1} of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. See their Fig. 6 for upper limits on $\sigma\left(t(b) H^{ \pm}\right)$ $\mathrm{B}\left(\mathrm{H}^{+} \rightarrow t b\right)$ for $m_{H^{+}}=200-600 \mathrm{GeV}$.
${ }^{18}$ AAD 16AJ search for $H^{ \pm}$production from quark-antiquark annihilation, followed by $H^{ \pm} \rightarrow t b$, in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 10 for upper limits on $\sigma\left(H^{ \pm}\right) \mathrm{B}\left(H^{+} \rightarrow t b\right)$ for $m_{H^{+}}=400-3000 \mathrm{GeV}$.
${ }^{19}$ AAD 15AF search for $t H^{ \pm}$associated production followed by $H^{ \pm} \rightarrow \tau^{ \pm} \nu$ in $19.5 \mathrm{fb}{ }^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Upper limits on $\sigma\left(t \mathrm{H}^{ \pm}\right) \mathrm{B}\left(\mathrm{H}^{+} \rightarrow \tau \nu\right)$ between 760 and $4.5 \mathrm{fb}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=180-1000 \mathrm{GeV}$. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
${ }^{20}$ AAD 15M search for vector boson fusion production of $H^{ \pm}$decaying to $H^{ \pm} \rightarrow W^{ \pm} Z \rightarrow$ $q \bar{q} \ell^{+} \ell^{-}$in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 2 for limits on cross section times branching ratio for $m_{\boldsymbol{H}^{ \pm}}=200-1000 \mathrm{GeV}$, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
${ }^{21}$ KHACHATRYAN 15AX search for $t H^{ \pm}$associated production followed by $H^{ \pm} \rightarrow t b$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. Upper limits on $\sigma\left(t \mathrm{H}^{ \pm}\right) \mathrm{B}\left(H^{+} \rightarrow t \bar{b}\right)$ between 2.0 and $0.13 \mathrm{pb}(95 \% \mathrm{CL})$ are given for $m_{\mathrm{H}^{+}}=180-600 \mathrm{GeV}$. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
${ }^{22} \mathrm{KHACHATRYAN}$ 15AX search for $t H^{ \pm}$associated production followed by $H^{ \pm} \rightarrow \tau^{ \pm} \nu$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. Upper limits on $\sigma\left(t \mathrm{H}^{ \pm}\right) \mathrm{B}\left(\mathrm{H}^{+} \overrightarrow{\mathrm{r}}^{2} \tau \nu\right)$ between 380 and $25 \mathrm{fb}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=180-600 \mathrm{GeV}$. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
${ }^{23}$ KHACHATRYAN 15 BF search for $t \bar{t}$ production followed by $t \rightarrow b \mathrm{H}^{+}, \mathrm{H}^{+} \rightarrow c \bar{s}$ in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=8 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right) \mathrm{B}\left(\mathrm{H}^{+} \rightarrow\right.$ $c \bar{s})$ between 1.2×10^{-2} and $6.5 \times 10^{-2}(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=90-160 \mathrm{GeV}$.
${ }^{24}$ AAD 14M search for the decay cascade $H_{2}^{0} \rightarrow H^{ \pm} W^{\mp} \rightarrow H^{0} W^{ \pm} W^{\mp}, H^{0}$ decaying to $b \bar{b}$ in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Table III for limits on cross section times branching ratio for $m_{H_{2}^{0}}=325-1025 \mathrm{GeV}$ and $m_{H^{+}}=225-925 \mathrm{GeV}$.
${ }^{25}$ AALTONEN 14A measure $\mathrm{B}(t \rightarrow b \tau \nu)=0.096 \pm 0.028$ using $9 \mathrm{fb}{ }^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. For $m_{\mathrm{H}^{+}}=80-140 \mathrm{GeV}$, this measured value is translated to a limit $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)<0.059$ at $95 \% \mathrm{CL}$ assuming $\mathrm{B}\left(\mathrm{H}^{+} \rightarrow \tau^{+} \nu\right)=1$.
${ }^{26}$ AAD 13AC search for $t \bar{t}$ production followed by $t \rightarrow b H^{+}, \mathrm{H}^{+} \rightarrow c \bar{s}$ (flavor unidentified) in $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$ between 0.05 and $0.01(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=90-150 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow c \bar{s}\right)=1$.
${ }^{27} \mathrm{AAD} 13 \mathrm{~V}$ search for $t \bar{t}$ production followed by $t \rightarrow b \mathrm{H}^{+}, \mathrm{H}^{+} \rightarrow \tau^{+} \nu$ through violation of lepton universality with $4.6 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.032 and $0.044(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=90-140 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)=1$. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for $m_{H^{+}}=90-160 \mathrm{GeV}$. See their Fig. 7 for the excluded region in the $m_{h}^{\max }$ scenario of the MSSM.
${ }^{28}$ AAD 12 BH search for $t \bar{t}$ production followed by $t \rightarrow b \mathrm{H}^{+}, \mathrm{H}^{+} \rightarrow \tau^{+} \nu$ with $4.6 \mathrm{fb}-1$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.01 and 0.05 $(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=90-160 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)=1$. See their Fig. 8 for the excluded region in the $m_{h}^{\max }$ scenario of the MSSM.
${ }^{29}$ CHATRCHYAN 12AA search for $t \bar{t}$ production followed by $t \rightarrow b H^{+}, \mathrm{H}^{+} \rightarrow \tau^{+} \nu$ with $2 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.019 and $0.041(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=80-160 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)=1$.
${ }^{30}$ AALTONEN 11P search in $2.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$ for the decay chain $t \rightarrow \mathrm{bH}^{+}, \mathrm{H}^{+} \rightarrow W^{+} A^{0}, A^{0} \rightarrow \tau^{+} \tau^{-}$with $m_{A^{0}}$ between 4 and 9 GeV . See their Fig. 4 for limits on $\mathrm{B}\left(t \rightarrow b H^{+}\right)$for $90<m_{H^{+}}<160 \mathrm{GeV}$.
${ }^{31}$ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \rightarrow s \gamma, B, B_{S}$ mixings, and $Z \rightarrow b \bar{b}$. The limit holds irrespective of $\tan \beta$.
${ }^{32}$ AALTONEN 09AJ search for $t \rightarrow b H^{+}, H^{+} \rightarrow c \bar{s}$ in $t \bar{t}$ events in 2.2 fb ${ }^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.08 and 0.32 $(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=60-150 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow c \bar{s}\right)=1$.
${ }^{33}$ ABAZOV 09AC search for $t \rightarrow \mathrm{bH}^{+}, \mathrm{H}^{+} \rightarrow \tau^{+} \nu$ in $t \bar{t}$ events in $0.9 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. Upper limits on $\mathrm{B}\left(t \rightarrow b H^{+}\right)$between 0.19 and 0.25 $(95 \% \mathrm{CL})$ are given for $m_{H^{+}}=80-155 \mathrm{GeV}$ and $\mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)=1$. See their Fig. 4 for an excluded region in a MSSM scenario.
${ }^{34}$ ABAZOV 09aG measure $t \bar{t}$ cross sections in final states with $\ell+$ jets $(\ell=e, \mu), \ell \ell$, and $\tau \ell$ in $1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$, which constrains possible $t \rightarrow$ $b H^{+}$branching fractions. Upper limits ($95 \% \mathrm{CL}$) on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.15 and 0.40 (0.48 and 0.57) are given for $\mathrm{B}\left(\mathrm{H}^{+} \rightarrow \tau^{+} \nu\right)=1\left(\mathrm{~B}\left(H^{+} \rightarrow c \bar{s}\right)=1\right)$ for $m_{H^{+}}$ $=80-155 \mathrm{GeV}$.
${ }^{35}{ }^{-}$ABAZOV 09A1 search for $t \rightarrow b H^{+}$in $t \bar{t}$ events in $1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.96 TeV . Final states with $\ell+$ jets $(\ell=e, \mu), \ell \ell$, and $\tau \ell$ are examined. Upper limits on
$\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)(95 \% \mathrm{CL})$ between 0.15 and 0.19 (0.19 and 0.22) are given for $\mathrm{B}\left(\mathrm{H}^{+} \rightarrow\right.$ $\left.\tau^{+} \nu\right)=1\left(\mathrm{~B}\left(H^{+} \rightarrow c \bar{s}\right)=1\right)$ for $m_{H^{+}}=80-155 \mathrm{GeV}$. For $\mathrm{B}\left(H^{+} \rightarrow \tau^{+} \nu\right)=1$ also a simultaneous extraction of $\mathrm{B}\left(t \rightarrow b H^{+}\right)$and the $t \bar{t}$ cross section is performed, yielding a limit on $\mathrm{B}\left(t \rightarrow b \mathrm{H}^{+}\right)$between 0.12 and 0.26 for $m_{H^{+}}=80-155 \mathrm{GeV}$. See their Figs. 5-8 for excluded regions in several MSSM scenarios.
${ }^{36}$ ABAZOV 09P search for H^{+}production by $q \bar{q}^{\prime}$ annihilation followed by $\mathrm{H}^{+} \rightarrow t \bar{b}$ decay in $0.9 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. Cross section limits in several two-doublet models are given for $m_{H^{+}}=180-300 \mathrm{GeV}$. A region with $20 \lesssim \tan \beta \lesssim$ 70 is excluded $(95 \% \mathrm{CL})$ for $180 \mathrm{GeV} \lesssim m_{H^{+}} \lesssim 184 \mathrm{GeV}$ in type-I models.
${ }^{37}$ ABULENCIA 06E search for associated $H^{0} \mathrm{~W}$ production in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96$ TeV . A fit is made for $t \bar{t}$ production processes in dilepton, lepton + jets, and lepton $+\tau$ final states, with the decays $t \rightarrow W^{+} b$ and $t \rightarrow H^{+} b$ followed by $H^{+} \rightarrow \tau^{+} \nu, c \bar{s}$, $t^{*} \bar{b}$, or $W^{+} H^{0}$. Within the MSSM the search is sensitive to the region $\tan \beta<1$ or >30 in the mass range $m_{H^{+}}=80-160 \mathrm{GeV}$. See Fig. 2 for the excluded region in a certain MSSM scenario.
${ }^{38}$ ABDALLAH 041 search for $e^{+} e^{-} \rightarrow H^{+} H^{-}$with $H^{ \pm}$decaying to $\tau \nu, c s$, or $W^{*} A^{0}$ in Type-I two-Higgs-doublet models.
${ }^{39}$ ABBIENDI 03 give a limit $m_{H^{+}}>1.28 \tan \beta \mathrm{GeV}(95 \% \mathrm{CL})$ in Type II two-doublet models.
${ }^{40}$ ABAZOV 02B search for a charged Higgs boson in top decays with $\boldsymbol{H}^{+} \rightarrow \tau^{+} \nu$ at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. For $m_{H^{+}}=75 \mathrm{GeV}$, the region $\tan \beta>32.0$ is excluded at $95 \% \mathrm{CL}$. The excluded mass region extends to over 140 GeV for $\tan \beta$ values above 100 .
${ }^{41}$ BORZUMATI 02 point out that the decay modes such as $b \bar{b} W, A^{0} W$, and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron.
42 ABBIENDI 01 Q give a limit $\tan \beta / m_{H^{+}}<0.53 \mathrm{GeV}^{-1}(95 \% \mathrm{CL})$ in Type II two-doublet models.
${ }^{43}$ BARATE 01E give a limit $\tan \beta / m_{H^{+}}<0.40 \mathrm{GeV}^{-1}(90 \% \mathrm{CL})$ in Type II two-doublet models. An independent measurement of $B \rightarrow \tau \nu_{\tau} \times$ gives $\tan \beta / m_{H^{+}}<0.49 \mathrm{GeV}^{-1}$ ($90 \% \mathrm{CL}$).
${ }^{44}$ GAMBINO 01 use the world average data in the summer of $2001 \mathrm{~B}(b \rightarrow s \gamma)=(3.23 \pm$ $0.42) \times 10^{-4}$. The limit applies for Type-II two-doublet models.
${ }^{45}$ AFFOLDER 001 search for a charged Higgs boson in top decays with $\mathrm{H}^{+} \rightarrow \tau^{+} \nu$ in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.8 \mathrm{TeV}$. The excluded mass region extends to over 120 GeV for $\tan \beta$ values above 100 and $\mathrm{B}(\tau \nu)=1$. If $\mathrm{B}\left(t \rightarrow b H^{+}\right) \gtrsim 0.6, m_{H^{+}}$up to 160 GeV is excluded. Updates ABE 97L.
${ }^{46}$ ABBOTT 99 E search for a charged Higgs boson in top decays in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.8$ TeV , by comparing the observed $t \bar{t}$ cross section (extracted from the data assuming the dominant decay $t \rightarrow b W^{+}$) with theoretical expectation. The search is sensitive to regions of the domains $\tan \beta \lesssim 1,50<m_{H^{+}}(\mathrm{GeV}) \lesssim 120$ and $\tan \beta \gtrsim 40,50<m_{H^{+}}$ $(\mathrm{GeV}) \lesssim 160$. See Fig. 3 for the details of the excluded region.
${ }^{47}$ ACKERSTAFF 99D measure the Michel parameters ρ, ξ, η, and $\xi \delta$ in leptonic τ decays from $Z \rightarrow \tau \tau$. Assuming $e-\mu$ universality, the limit $m_{H^{+}}>0.97 \tan \beta \mathrm{GeV}(95 \% \mathrm{CL})$ is obtained for two-doublet models in which only one doublet couples to leptons.
${ }^{48}$ ACCIARRI 97F give a limit $m_{H^{+}}>2.6 \tan \beta \mathrm{GeV}(90 \% \mathrm{CL})$ from their limit on the exclusive $B \rightarrow \tau \nu_{\tau}$ branching ratio.
${ }^{49}$ AMMAR 97B measure the Michel parameter ρ from $\tau \rightarrow e \nu \nu$ decays and assumes e / μ universality to extract the Michel η parameter from $\tau \rightarrow \mu \nu \nu$ decays. The measurement is translated to a lower limit on $m_{H^{+}}$in a two-doublet model $m_{H^{+}}>0.97 \tan \beta \mathrm{GeV}$ ($90 \% \mathrm{CL}$).
50 COARASA 97 reanalyzed the constraint on the ($m_{H^{ \pm}}, \tan \beta$) plane derived from the inclusive $B \rightarrow \tau \nu_{\tau}$ X branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
${ }^{51}$ GUCHAIT 97 studies the constraints on $m_{H^{+}}$set by Tevatron data on $\ell \tau$ final states in $t \bar{t} \rightarrow(W b)(H b), W \rightarrow \ell \nu, H \rightarrow \tau \nu_{\tau}$. See Fig. 2 for the excluded region.
52 MANGANO 97 reconsiders the limit in ACCIARRI 97 F including the effect of the potentially large $B_{C} \rightarrow \tau \nu_{\tau}$ background to $B_{u} \rightarrow \tau \nu_{\tau}$ decays. Stronger limits are obtained.
${ }^{53}$ STAHL 97 fit τ lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^{+}}>1.5 \tan \beta \mathrm{GeV}(90 \% \mathrm{CL})$ for a two-doublet model. See also STAHL 94.
${ }^{54}$ ALAM 95 measure the inclusive $b \rightarrow s \gamma$ branching ratio at $\gamma(4 S)$ and give $\mathrm{B}(b \rightarrow$ $s \gamma)<4.2 \times 10^{-4}(95 \% \mathrm{CL})$, which translates to the limit $m_{H^{+}}>\left[244+63 /(\tan \beta)^{1.3}\right]$ GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this ${ }_{5}$ bound.
${ }^{55}$ BUSKULIC 95 give a limit $m_{H^{+}}>1.9 \tan \beta \mathrm{GeV}(90 \% \mathrm{CL})$ for Type-II models from $b \rightarrow \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

$\boldsymbol{H}^{ \pm}$(charged Higgs) mass limits for $\boldsymbol{m}_{\boldsymbol{H}^{+}}>\mathbf{m}$ (top)

Limits obtained at the LHC are given in the $\mathrm{m}_{h}^{\text {mod- }}$ benchmark scenario, see CARENA 13 , and depend on the $\tan \beta$ values.

VALUE (GeV)	CL\%	DOCUMENT	TECN	COMMENT
>181	95	${ }^{1}$ AABOUD	18BwATLS	$\tan \beta=10$
>249	95	${ }^{1}$ AABOUD	18BWATLS	$\tan \beta=20$
>390	95	${ }^{1}$ AABOUD	18BWATLS	$\tan \beta=30$
>894	95	${ }^{1}$ AABOUD	18BWATLS	$\tan \beta=40$
>1017	95	${ }^{1}$ AABOUD	18BWATLS	$\tan \beta=50$
>1103	95	${ }^{1}$ AABOUD	18BWATLS	$\tan \beta=60$

${ }^{1}$ AABOUD 18BW search for $\bar{t} b H^{+}$associated production in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at
$E_{\mathrm{cm}}=13 \mathrm{TeV}$. See also their Fig. 9 for the excluded region in the hMSSM parameter $\underset{\text { space. }}{E_{\mathrm{cm}}}=$

$-H^{ \pm \pm}$(doubly-charged Higgs boson) mass limits

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_{3} is thus restricted to two possibilities depending on lepton chiralities: $T_{3}\left(H^{ \pm \pm}\right)= \pm 1$, with the coupling $g_{\ell \ell}$ to $\ell_{L}^{-} \ell_{L}^{\prime-}$ and $\ell_{R}^{+} \ell_{R}^{\prime+}$ ("left-handed") and $T_{3}\left(H^{ \pm \pm}\right)=0$, with the coupling to $\ell_{R}^{-} \ell_{R}^{\prime-}$ and $\ell_{L}^{+} \ell_{L}^{\prime+}$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $\mathrm{SU}(2){ }_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)$, the type-II seesaw model, and the ZeeBabu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

Limits for $H^{ \pm \pm}$with $\boldsymbol{T}_{\mathbf{3}}= \pm \mathbf{1}$

VALUE (GeV)	CL\%	DOCUMENT ID		TECN	COMMENT
>220	95	${ }^{1}$ AABOUD	19K	ATLS	$w^{ \pm} w^{ \pm}$
>768	95	${ }^{2}$ AABOUD	18BC	ATLS	$e e$
>846	95	${ }^{2}$ AABOUD	18BC	ATLS	$\mu \mu$
>468	95	${ }^{3} \mathrm{AAD}$	15AG	ATLS	$e \mu$
>400	95	${ }^{4}$ AAD	15 AP	ATLS	$e \tau$
>400	95	${ }^{4}$ AAD	15AP	ATLS	$\mu \tau$
>169	95	${ }^{5}$ CHATRCHYA	12AU	CMS	$\tau \tau$
>300	95	${ }^{5}$ CHATRCHYA	12AU	CMS	$\mu \tau$
>293	95	${ }^{5}$ CHATRCHYA	12AU	CMS	$e \tau$
>395	95	${ }^{5}$ CHATRCHYA	12aU	CMS	$\mu \mu$
>391	95	5 CHATRCHYA	12aU	CMS	$e \mu$
>382	95	${ }^{5}$ CHATRCHYA	12AU	CMS	$e e$
>98.1	95	${ }^{6}$ ABDALLAH	03	DLPH	$\tau \tau$
>99.0	95	7 ABBIENDI	02C	OPAL	$\tau \tau$
- - We do not use the following d					
		${ }^{8}$ SIRUNYAN		CMS	$w^{ \pm} w^{ \pm}$
		${ }^{9}$ SIRUNYAN	18CC	CMS	$W^{ \pm} w^{ \pm}$
>551	95	${ }^{3} \mathrm{AAD}$	15 AG	ATLS	ee
>516	95	${ }^{3} \mathrm{AAD}$	15AG	ATLS	$\mu \mu$
		10 KANEMURA	15	RVUE	$W^{(*)} \pm W^{(*)} \pm$
		11 KHACHATRY		CMS	$W^{ \pm} w^{ \pm}$
		12 KANEMURA	14	RVUE	$W^{(*) \pm} w^{(*)} \pm$
>330	95	13 AAD	13 Y	ATLS	$\mu \mu$
>237	95	13 AAD	13 Y	ATLS	$\mu \tau$
>355	95	14 AAD	12AY	ATLS	$\mu \mu$
>398	95	15 AAD	12CQ	ATLS	$\mu \mu$
>375	95	15 AAD	12CQ	ATLS	$e \mu$
>409	95	15 AAD	12CQ	ATLS	$e e$
>128	95	16 ABAZOV	12A	D0	$\tau \tau$
>144	95	16 ABAZOV	12A	D0	$\mu \tau$
>245	95	17 AALTONEN	11AF	CDF	$\mu \mu$
>210	95	17 AALTONEN	11AF	CDF	$e \mu$
>225	95	17 AALTONEN	11AF	CDF	$e e$
>114	95	18 AALTONEN	08AA	CDF	$e \tau$
>112	95	18 AALTONEN	08AA	CDF	$\mu \tau$
>168	95	19 ABAZOV	08V	D0	$\mu \mu$
		20 AKTAS	06A	H1	single $H^{ \pm \pm}$
>133	95	21 ACOSTA	05L	CDF	stable
>118.4	95	22 ABAZOV	04E	D0	$\mu \mu$
		23 ABBIENDI	03Q	OPAL	$\begin{gathered} E_{\mathrm{Cm}} \leq 209 \mathrm{GeV} \text {, single } \\ H^{ \pm \pm} \end{gathered}$
		24 GORDEEV	97	SPEC	muonium conversion
		25 ASAKA	95	THEO	
>45.6	95	26 ACTON	92M	OPAL	
>30.4	95	27 ACTON	92M	OPAL	
none 6.5-36.6	95	28 SWARTZ	90	MRK2	

${ }^{1}$ AABOUD 19 k search for pair production of $H^{++} H^{--}$followed by the decay $H^{ \pm \pm} \rightarrow$ $W^{ \pm} W^{ \pm}$in $36.1 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV , leading to $\mathrm{B}\left(H^{ \pm \pm} \rightarrow\right.$ $\left.W^{ \pm} W^{ \pm}\right)=1$. See their Fig. 5 for limits on the cross section for $m_{H^{++}}$between 200 and 700 GeV .
2 See their Figs. 11(b) and 13 for limits with smaller branching ratios
${ }^{3}$ AAD 15AG search for $H^{++} H^{--}$production in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8$ TeV . The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
${ }^{4}$ AAD 15AP search for $H^{++} H^{--}$production in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8$ TeV . The limit assumes 100% branching ratio to the specified final state.
${ }^{5}$ CHATRCHYAN 12 AU search for $H^{++} \boldsymbol{H}^{--}$production with $4.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $\mathrm{H}^{++} \mathrm{H}^{-}$production or assuming different scenarios.
${ }^{6}$ ABDALLAH 03 search for $\mathrm{H}^{++} \mathrm{H}^{--}$pair production either followed by $\mathrm{H}^{++} \rightarrow$ $\tau^{+} \tau^{+}$, or decaying outside the detector.
${ }^{7}$ ABBIENDI 02C searches for pair production of $H^{++} H^{--}$, with $H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}\left(\ell, \ell^{\prime}\right.$ $=e, \mu, \tau)$. The limit holds for $\ell=\ell^{\prime}=\tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H \ell \ell) \gtrsim 10^{-7}$.
${ }^{8}$ SIRUNYAN 19CQ search for $H^{ \pm \pm}$production by vector boson fusion followed by the decay $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow q q \ell \nu$ in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=13 \mathrm{TeV}$. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{ \pm \pm}}$between 0.6 and 2 TeV .
${ }^{9}$ SIRUNYAN 18 CC search for $H^{ \pm \pm}$production by vector boson fusion followed by the decay $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$in $35.9 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{ \pm \pm}}$between 200 and 1000 GeV .
10 KANEMURA 15 examine the case where H^{++}decays preferentially to $W^{(*)} W^{(*)}$ and estimate that a lower mass limit of $\sim 84 \mathrm{GeV}$ can be derived from the same-sign dilepton data of AAD 15AG if H^{++}decays with 100% branching ratio to $W^{(*)} W^{(*)}$.
11 KHACHATRYAN 15D search for $H^{ \pm \pm}$production by vector boson fusion followed by the decay $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$in $19.4 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=8 \mathrm{TeV}$. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{++}}$between 160 and 800 GeV .
12 KANEMURA 14 examine the case where H^{++}decays preferentially to $W^{(*)} W^{(*)}$ and estimate that a lower mass limit of $\sim 60 \mathrm{GeV}$ can be derived from the same-sign dilepton data of AAD 12CY
13 AAD 13 y search for $H^{++} H^{--}$production in a generic search of events with three charged leptons in $4.6 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{Cm}}=7 \mathrm{TeV}$. The limit assumes 100% branching ratio to the specified final state.
${ }^{14}$ AAD 12AY search for $H^{++} H^{--}$production with $1.6 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=$ 7 TeV . The limit assumes 100% branching ratio to the specified final state.
${ }^{15}$ AAD 12CQ search for $H^{++} H^{--}$production with $4.7 \mathrm{fb}^{-1}$ of $p p$ collisions at $E_{\mathrm{cm}}=$ 7 TeV . The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios
16 ABAZOV 12A search for $H^{+}+H^{--}$production in $7.0 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.96 TeV .

17 AALTONEN 11AF search for $H^{++} H^{--}$production in $6.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at E_{Cm} $=1.96 \mathrm{TeV}$.
8 AALTONEN 08AA search for $H^{++} \boldsymbol{H}^{--}$production in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The limit assumes 100% branching ratio to the specified final state.
19 ABAZOV 08 V search for $H^{++} H^{--}$production in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The limit is for $\mathrm{B}(H \rightarrow \mu \mu)=1$. The limit is updated in ABAZOV 12A.
${ }^{20}$ AKTAS 06A search for single $H^{ \pm \pm}$production in ep collisions at HERA. Assuming that H^{++}only couples to $e^{+} \mu^{+}$with $g_{e \mu}=0.3$ (electromagnetic strength), a limit $m_{H^{++}}>141 \mathrm{GeV}(95 \% \mathrm{CL})$ is derived. For the case where H^{++}couples to $e \tau$ only the limit is 112 GeV .
${ }^{21}$ ACOSTA 05L search for $\mathrm{H}^{++} \mathrm{H}^{--}$pair production in $p \bar{p}$ collisions. The limit is valid for $g_{\ell \ell^{\prime}}<10^{-8}$ so that the Higgs decays outside the detector.
22 ABAZOV 04E search for $H^{++} H^{--}$pair production in $H^{ \pm \pm} \rightarrow \mu^{ \pm} \mu^{ \pm}$. The limit is valid for $g_{\mu \mu} \gtrsim 10^{-7}$.
23 ABBIENDI 03Q searches for single $H^{ \pm \pm}$via direct production in $e^{+} e^{-} \rightarrow e^{\mp} e^{\mp} H^{ \pm \pm}$, and via t-channel exchange in $e^{+} e^{-} \rightarrow e^{+} e^{-}$. In the direct case, and assuming $\mathrm{B}\left(H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}\right)=1$, a 95% CL limit on $h_{e e}<0.071$ is set for $m_{H^{ \pm \pm}}<160 \mathrm{GeV}$ (see Fig. 6). In the second case, indirect limits on $h_{e e}$ are set for $m_{H^{ \pm \pm}}<2 \mathrm{TeV}$ (see Fig. 8).
${ }^{24}$ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M} \bar{M}^{/} G_{F}<0.14$ ($90 \% \mathrm{CL}$), where $G_{M} \bar{M}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}}>210 \mathrm{GeV}$ if the Yukawa couplings of H^{++} to $e e$ and $\mu \mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
${ }^{25}$ ASAKA 95 point out that H^{++}decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
${ }^{26}$ ACTON 92M limit assumes $H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}$or $H^{ \pm \pm}$does not decay in the detector. Thus the region $g_{\ell \ell} \approx 10^{-7}$ is not excluded.
27 ACTON 92 M from $\Delta \Gamma_{Z}<40 \mathrm{MeV}$.
${ }^{28}$ SWARTZ 90 assume $H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}$(any flavor). The limits are valid for the Higgslepton coupling $\mathrm{g}(\mathrm{H} \ell \ell) \gtrsim 7.4 \times 10^{-7} /\left[m_{H} / \mathrm{GeV}\right]^{1 / 2}$. The limits improve somewhat for $e e$ and $\mu \mu$ decay modes.
Limits for $\boldsymbol{H}^{ \pm \pm}$with $\boldsymbol{T}_{\mathbf{3}}=\mathbf{0}$

VALUE (GeV)	CL\%	DOCUMENT ID TECN		COMMENT
>58	95	${ }^{1}$ AABOUD	18BC ATLS	$e e$
>723	95	${ }^{1}$ AABOUD	18BC ATLS	$\mu \mu$
>402	95	${ }^{2}$ AAD	15AG ATLS	$e \mu$
>290	95	${ }^{3} \mathrm{AAD}$	15AP ATLS	$e \tau$
>290	95	3 AAD	15AP ATLS	$\mu \tau$
> 97.3	95	${ }^{4}$ ABDALLAH	03 DLPH	$\tau \tau$
> 97.3	95	${ }^{5}$ ACHARD	03F L3	$\tau \tau$
>98.5	95	${ }^{6}$ ABBIENDI	02C OPAL	$\tau \tau$
- - We do not use the following data for averages, fits, limits, etc. - -				
>374	95	${ }^{2}$ AAD	15AG ATLS	$e e$
>438	95	${ }^{2}$ AAD	15AG ATLS	$\mu \mu$
>251	95	${ }^{7}$ AAD	12AY ATLS	$\mu \mu$
>306	95	${ }^{8}$ AAD	12CQ ATLS	$\mu \mu$
>310	95	${ }^{8}$ AAD	12CQ ATLS	$e \mu$
>322	95	${ }^{8}$ AAD	12CQ ATLS	$e e$
>113	95	${ }^{9}$ ABAZOV	12A D0	$\mu \tau$
>205	95	10 AALTONEN	11AF CDF	$\mu \mu$
>190	95	10 AALTONEN	11aF CDF	$e \mu$
>205	95	10 AALTONEN	11aF CDF	$e e$
>145	95	11 ABAZOV	08V D0	$\mu \mu$
		12 AKTAS	06A H1	single $H^{ \pm \pm}$
>109	95	13 ACOSTA	05L CDF	stable
> 98.2	95	14 ABAZOV	04E D0	$\mu \mu$
		15 ABBIENDI	03Q OPAL	$\begin{gathered} E_{\mathrm{cm}} \leq 209 \mathrm{GeV} \text {, single } \\ H^{ \pm \pm} \end{gathered}$
		16 GORDEEV	97 SPEC	muonium conversion
>45.6	95	17 ACTON	92M OPAL	
>25.5	95	18 ACTON	92M OPAL	
none 7.3-34.3	95	19 SWARTZ	90 MRK2	

Gauge \& Higgs Boson Particle Listings

Charged Higgs Bosons ($H^{ \pm}$and $H^{ \pm \pm}$), Searches for, New Heavy Bosons

${ }^{5}$ ABBIENDI 03Q searches for single $H^{ \pm \pm}$via direct production in $e^{+} e^{-} \rightarrow e^{\mp} e^{\mp} H^{ \pm \pm}$, and via t-channel exchange in $e^{+} e^{-} \rightarrow e^{+} e^{-}$. In the direct case, and assuming $\mathrm{B}\left(H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}\right)=1$, a 95% CL limit on $h_{e e}<0.071$ is set for $m_{H^{ \pm \pm}}<160 \mathrm{GeV}$ (see Fig. 6). In the second case, indirect limits on $h_{e e}$ are set for $m_{H^{ \pm \pm}}<2 \mathrm{TeV}$ (see Fig. 8).
${ }^{16}$ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M} \bar{M} / G_{F}<0.14$ ($90 \% \mathrm{CL}$), where $G_{M} \bar{M}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}}>210 \mathrm{GeV}$ if the Yukawa couplings of H^{++} to $e e$ and $\mu \mu$ are as large as the weak gauge coupling. For similar limits on muonium antimuonium conversion, see the muon Particle Listings.
${ }^{17}$ ACTON 92M limit assumes $H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}$or $H^{ \pm \pm}$does not decay in the detector. Thus the region $g_{\ell \ell} \approx 10^{-7}$ is not excluded.
18 ACTON 92 M from $\Delta \Gamma_{Z}<40 \mathrm{MeV}$.
${ }^{19}$ SWARTZ 90 assume $H^{ \pm \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}$(any flavor). The limits are valid for the Higgslepton coupling $\mathrm{g}(\mathrm{H} \ell \ell) \gtrsim 7.4 \times 10^{-7} /\left[m_{H} / \mathrm{GeV}\right]^{1 / 2}$. The limits improve somewhat for $e e$ and $\mu \mu$ decay modes

$H^{ \pm}$and $\boldsymbol{H}^{ \pm \pm}$REFERENCES

New Heavy Bosons
 (W^{\prime}, Z^{\prime}, leptoquarks, etc.),
 Searches for

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons. The latest unpublished results are described in " W^{\prime} Searches" and " Z ' Searches" reviews. For recent searches on scalar bosons which could be identified as Higgs bosons, see the listings in the Higgs boson section.

CONTENTS

Mass Limits for W^{\prime} (Heavy Charged Vector Boson Other Than W) in Hadron Collider Experiments
W_{R} (Right-Handed W Boson) Mass Limits
Limit on $W_{L}-W_{R}$ Mixing Angle ζ
Mass Limits for Z^{\prime} (Heavy Neutral Vector Boson Other Than Z)

- Limits for $Z_{S M}$
- Limits for $Z_{L R}$
- Limits for Z_{χ}
- Limits for Z_{η}
- Limits for other Z^{\prime}
- Searches for Z^{\prime} with Lepton-Flavor-Violating decays

Indirect Constraints on Kaluza-Klein Gauge Bosons
Mass Limits for Leptoquarks from Pair Production
Mass Limits for Leptoquarks from Single Production
ndirect Limits for Leptoquarks
Mass Limits for Diquarks
Mass Limits for g_{A} (axigluon) and Other Color-Octet Gauge Bosons
Mass Limits for Color-Octet Scalar Bosons
X^{0} (Heavy Boson) Searches in Z Decays
Mass Limits for a Heavy Neutral Boson Coupling to $e^{+} e^{-}$
Search for X^{0} Resonance in $e^{+} e^{-}$Collisions
Search for x^{0} Resonance in ep Collisions
Search for X^{0} Resonance in Two-Photon Process
Search for X^{0} Resonance in $e^{+} e^{-} \rightarrow X^{0} \gamma$
Search for X^{0} Resonance in $Z \rightarrow f \bar{f} X^{0}$
Search for X^{0} Resonance in $W X^{0}$ final state
Search for X^{0} Resonance in Quarkonium Decays
See the related review(s):
W^{\prime}-Boson Searches
MASS LIMITS for \boldsymbol{W}^{\prime} (Heavy Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W^{\prime} to quarks and leptons are taken to be identical with those of W. The following limits are obtained from $p \bar{p}$ or $p p \rightarrow W^{\prime} \times$ with W^{\prime} decaying to the mode indicated in the comments. New decay channels (e.g., $W^{\prime} \rightarrow W Z$) are assumed to

Gauge \& Higgs Boson Particle Listings

New Heavy Bosons

${ }^{19}$ SIRUNYAN 18BK search for resonances decaying to $W Z$ in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit quoted above is for heavy-vector-triplet w^{\prime} with $g_{V}=3$. The limit becomes $\mathrm{M}_{W^{\prime}}>3100 \mathrm{GeV}$ for $g_{V}=1$.
${ }^{20}$ SIRUNYAN 18 Bo limit is for W^{\prime} with SM-like coupling using $p p$ collisions at $\sqrt{s}=13$ ${ }^{21}$ TeV.
${ }^{21}$ SIRUNYAN 18 CV search for right-handed W_{R} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. W_{R} is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to $\ell j j$. The quoted limit is for $M_{N}=M_{W_{R}} / 2$. See their Fig. 6 for excluded regions in the $M_{W_{R}}-M_{N}$ plane.
${ }^{22}$ SIRUNYAN 18DJ search for resonances decaying to $W Z$ in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit quoted above is for heavy-vector-triplet W^{\prime} with $g_{V}=3$. The limit becomes $M_{W^{\prime}}>2270 \mathrm{GeV}$ for $g_{V}=1$.
${ }^{23}$ SIRUNYAN 18ED search for resonances decaying to $H W$ in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit above is for heavy-vector-triplet W^{\prime} with $g_{V}=3$. If we assume $M_{W^{\prime}}$ $=M_{Z^{\prime}}$, the limit increases $M_{W^{\prime}}>2900 \mathrm{GeV}$ and $M_{W^{\prime}}>2800 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively.
${ }^{24}$ SIRUNYAN 18P give this limit for a heavy-vector-triplet W^{\prime} with $g_{V}=3$. If they assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases to $M_{W^{\prime}}>3800 \mathrm{GeV}$.
${ }^{25}$ AABOUD 17AK search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit above is for a W^{\prime} boson having axial-vector SM couplings and decaying to quarks with 75% branching fraction.
${ }^{26}$ AABOUD 17AO search for resonances decaying to $H W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a W^{\prime} in the heavy-vector-triplet model with $g_{V}=3$. See their Fig. 4 for limits on $\sigma \cdot B$.
${ }^{27}$ AABOUD 17B search for resonances decaying to $H W(H \rightarrow b \bar{b}, c \bar{c} ; W \rightarrow \ell \nu)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet W^{\prime} with g_{V} $=3$. The limit becomes $M_{W^{\prime}}>1750 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{W^{\prime}}=M_{Z^{\prime}}$, the limit increases $M_{W^{\prime}}>2310 \mathrm{GeV}$ and $M_{W^{\prime}}>1730 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 3 for limits on $\sigma \cdot B$.
28 KHACHATRYAN 17J search for right-handed W_{R} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. W_{R} is assumed to decay into τ and hypothetical heavy neutrino N_{τ}, with N_{τ} decaying into τj. The quoted limit is for $M_{N_{\tau}}=M_{W_{R}} / 2$. The limit becomes $M_{W_{R}}>2350 \mathrm{GeV}$ $(1630 \mathrm{GeV})$ for $M_{W_{R}} / M_{N_{\tau}}=0.8(0.2)$. See their Fig. 4 for excluded regions in the $M_{W_{R}}-M_{N_{\tau}}$ plane.
${ }^{29}$ KHACHATRYAN 17 W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ 13 TeV .
30 KHACHATRYAN $17 z$ limit is for W^{\prime} with SM-like coupling using $p p$ collisions at \sqrt{s} $=13 \mathrm{TeV}$. The bosonic decays of W^{\prime} and the interference with SM W process are neglected.
${ }^{31}$ SIRUNYAN 17A search for resonances decaying to $W Z$ with $W Z \rightarrow \ell \nu q \bar{q}, q \bar{q} q \bar{q}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet W^{\prime} with g_{V} $=3$. The limit becomes $M_{W^{\prime}}>2000 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{W^{\prime}}>2400 \mathrm{GeV}$ and $M_{W^{\prime}}>2300 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=$ 1, respectively. See their Fig. 6 for limits on $\sigma \cdot B$.
${ }^{32}$ SIRUNYAN 17AK search for resonances decaying to $W Z$ or $H W$ in $p p$ collisions at \sqrt{s} $=8$ and 13 TeV . The quoted limit is for heavy-vector-triplet W^{\prime} with $g_{V}=3$. The limit becomes $M_{W^{\prime}}>2300 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{W^{\prime}}=M_{Z^{\prime}}$, the limit increases $M_{W^{\prime}}>2400 \mathrm{GeV}$ for both $g_{V}=3$ and $g_{V}=1$. See their Fig. 1 and 2 for limits on $\sigma \cdot B$.
${ }^{33}$ SIRUNYAN 17H search for right-handed W^{\prime} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV} . W^{\prime}$ is assumed to decay into τ and a heavy neutrino N, with N decaying to $\tau q \bar{q}$. The limit above assumes $\mathrm{M}_{N}=\mathrm{M}_{W^{\prime} / 2}$.
${ }^{34}$ SIRUNYAN 171 limit is for a right-handed W^{\prime} using $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit becomes $M_{W^{\prime}}>2400 \mathrm{GeV}$ for $M_{\nu_{R}} \ll M_{W^{\prime}}$.
35 SIRUNYAN 17R search for resonances decaying to $H W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet W^{\prime} with $g_{V}=3$. Mass regions $M_{W^{\prime}}<$ 2370 GeV and $2870<M_{W^{\prime}}<2970 \mathrm{GeV}$ are excluded for $g_{V}=1$. If we assume $M_{Z^{\prime}}$ $=M_{W^{\prime}}$, the excluded mass regions are $1000<M_{W^{\prime}}<2500 \mathrm{GeV}$ and $2760<M_{W^{\prime}}<$ 3300 GeV for $g_{V}=3 ; 1000<M_{W^{\prime}}<2430 \mathrm{GeV}$ and $2810<M_{W^{\prime}}<3130 \mathrm{GeV}$ for $g_{V}=1$. See their Fig. 5 for limits on $\sigma \cdot B$.
${ }^{36}$ AABOUD 16AE search for resonances decaying to $V V(V=W$ or $Z)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. Results from $\nu \nu q q, \nu \ell q q$, $\ell \ell q$ and $q q q q$ final states are combined. The quoted limit is for a heavy-vector-triplet W^{\prime} with $g_{V}=3$ and $M_{W^{\prime}}=M_{Z^{\prime}}$.
${ }^{37}$ AABOUD 16V limit is for W^{\prime} with SM-like coupling using $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The bosonic decays of W^{\prime} and the interference with SM W process are neglected.
${ }^{38}$ AAD 16R search for $W^{\prime} \rightarrow W Z$ in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV} . \ell \nu \ell^{\prime} \ell^{\prime}, \ell \ell q \bar{q}, \ell \nu q \bar{q}$, and all hadronic channels are combined. The quoted limit assumes $g_{W^{\prime}} W Z^{\prime} g_{W} W Z$ $=\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{39}$ AAD 16S search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a W^{\prime} having SM-like couplings to quarks.
${ }^{40}$ KHACHATRYAN 16AO limit is for a SM-like right-handed W^{\prime} using $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$. The quoted limit combines $t \rightarrow q q b$ and $t \rightarrow \ell \nu b$ events.
${ }^{41}$ KHACHATRYAN 16AP search for a resonance decaying to $H W$ in $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$. Both H and W are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet w^{\prime} with $g_{V}=3$.
${ }^{42}$ KHACHATRYAN 16 BD search for resonance decaying to $H W$ in $p p$ collisions at $\sqrt{s}=$ 8 TeV . The quoted limit is for heavy-vector-triplet (HVT) W^{\prime} with $g_{V}=3$. The HVT model $m_{W^{\prime}}=m_{Z^{\prime}}>1.8 \mathrm{TeV}$ is also obtained by combining $W^{\prime} / Z^{\prime} \rightarrow W H / Z H \rightarrow$ $\ell \nu b b, q q \tau \tau, q q b b$, and $q q q q q q$ channels.
43 KHACHATRYAN 16 K search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$
 $=8 \mathrm{TeV}$ with the data scouting technique, increasing the sensitivity to the low mass resonances.
45 KHACHATRYAN 160 limit is for w^{\prime} having universal couplings. Interferences with the SM amplitudes are assumed to be absent.
${ }^{46}$ AAD 15 AU search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow q \bar{q}^{\prime}, Z \rightarrow$ $\ell^{+} \ell^{-}$using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z$ $=\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{47}$ AAD 15AV limit is for a SM like right-handed W^{\prime} using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. $W^{\prime} \rightarrow \ell \nu$ decay is assumed to be forbidden.
${ }^{48}$ AAD 15AZ search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow \ell \nu, Z \rightarrow q \bar{q}$ using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z=$ $\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{49}$ AAD 15CP search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow q \bar{q}, Z \rightarrow q \bar{q}$ using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z^{/} g_{W W Z}=$ $\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{50}$ AAD 15 R limit is for a SM like right-handed W^{\prime} using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. $W^{\prime} \rightarrow \ell \nu$ decay is assumed to be forbidden.
${ }^{51}$ AAD 15 V search for new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
52 KHACHATRYAN 15 C search for W^{\prime} decaying via $W Z$ to fully leptonic final states using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z^{/} g_{W} W Z=M_{W}$ $M_{Z} / M_{W^{\prime}}^{2}$.
${ }^{53}$ KHACHATRYAN 15 T limit is for W^{\prime} with SM-like coupling which interferes the SM W boson constructively using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. For W^{\prime} without interference, the limit becomes $>3280 \mathrm{GeV}$.
${ }^{54}$ KHACHATRYAN 140 search for right-handed W_{R} in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV} . W_{R}$ is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into $\ell j j$. The quoted limit is for $M_{\nu_{e R}}=M_{\nu_{\mu R}}=M_{W_{R}} / 2$. See their Fig. 3 and Fig. 5 for excluded regions in the $M_{W_{R}}-M_{\nu}$ plane.
${ }^{55}$ AABOUD 19BB search for right handed W_{R} in pp collisions at $\sqrt{s}=13 \mathrm{TeV} . W_{R}$ is assumed to decay into ℓ and a boosted hypothetical heavy neutrino N, with N decaying to ℓ and a large radius jet $j=q \bar{q}$. See their Fig. 7 for excluded regions in $M_{W_{R}}-M_{N}$
plane.
56 SIRUNYAN 19 V search for a new resonance decaying to a top quark and a heavy vectorlike bottom partner B decaying to $H b$ (or a bottom quark and a heavy vector-like top partner T decaying to $H t$) in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 8 for limits 57 on $\sigma \cdot B$.
${ }^{57}$ AABOUD 18AA search for a narrow charged vector boson decaying to $W \gamma$. See their Fig. 9 for the exclusion limit in $\mathrm{M}_{W^{\prime}}-\sigma \mathrm{B}$ plane.
${ }^{58}$ AABOUD 18AD search for resonances decaying to $H X\left(H \rightarrow b \bar{b}, X \rightarrow q \bar{q}^{\prime}\right)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Figs. 3-5 for limits on $\sigma \cdot \mathrm{B}$.
${ }^{59}$ AABOUD 18CJ search for heavy-vector-triplet W^{\prime} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for model with $g_{V}=3$ assuming $M_{W^{\prime}}=M_{Z^{\prime}}$. The limit becomes $M_{W^{\prime}}>5500 \mathrm{GeV}$ for model with $g_{V}=1$.
60 KHACHATRYAN 170 search for resonances decaying to $H W(H \rightarrow b \bar{b} ; W \rightarrow \ell \nu)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit on the heavy-vector-triplet model is $M_{Z^{\prime}}=$ $M_{W^{\prime}}>2 \mathrm{TeV}$ for $g_{V}=3$, in which constraints from the $Z^{\prime} \rightarrow H Z(H \rightarrow b \bar{b} ; Z \rightarrow$ $\left.\ell^{+} \ell^{-}, \nu \bar{\nu}\right)$ are combined. See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot B$.
${ }^{61}$ AAD 15BB search for W^{\prime} decaying into $W H$ with $W \rightarrow \ell \nu, H \rightarrow b \bar{b}$. See their Fig. 4 for the exclusion limits in the heavy vector triplet benchmark model parameter space.
${ }^{62}$ AALTONEN 15 C limit is for a SM-like right-handed W^{\prime} assuming $W^{\prime} \rightarrow \ell \nu$ decays are forbidden, using $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. See their Fig. 3 for limit on $g_{W^{\prime}} / g_{W}$.
${ }^{63}$ KHACHATRYAN 15 V search new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=$ $64{ }^{8} \mathrm{TeV}$.
${ }^{64}$ AAD 14AT search for a narrow charged vector boson decaying to $W \gamma$. See their Fig. 3a for the exclusion limit in $m_{W^{\prime}}-\sigma B$ plane.
${ }^{65}$ AAD 14S search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow \ell \nu, Z \rightarrow \ell \ell$ using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z=$ $\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{66}$ KHACHATRYAN 14 search for W^{\prime} decaying into $W Z$ final state with $W \rightarrow q \bar{q}, Z \rightarrow$ $q \bar{q}$ using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z=$ $\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{67}$ KHACHATRYAN 14A search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow \ell \nu$, $Z \rightarrow q \bar{q}$, or $W \rightarrow q \bar{q}, Z \rightarrow \ell \ell . p p$ collisions data at $\sqrt{s}=8 \mathrm{TeV}$ are used for $Z \rightarrow \underset{\text { a }}{ } \rightarrow$, or $W \rightarrow \underset{q}{q}, Z \rightarrow \ell \ell$. $p p$ collisions data at $\sqrt{s}=8 \mathrm{TeV}$ are used for
the search. See their Fig. 13 for the exclusion limit on the number of events in the the search. See their
mass-width plane.
${ }^{68}$ AAD 13AO search for W^{\prime} decaying into the $W Z$ final state with $W \rightarrow \ell \nu, Z \rightarrow$ $2 j$ using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z=$ $\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{69}$ CHATRCHYAN 13AJ search for resonances decaying to $W Z$ pair, using the hadronic decay modes of W and Z, in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. See their Fig. 7 for the limit on the cross section.
70 CHATRCHYAN 13AQ limit is for W^{\prime} with SM-like coupling which interferes with the SM W boson using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{71}$ CHATRCHYAN $13 E$ limit is for W^{\prime} with SM-like coupling which intereferes with the SM W boson using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. For W^{\prime} with right-handed coupling, the bound becomes $>1850 \mathrm{GeV}(>1910 \mathrm{GeV})$ if W^{\prime} decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings are present, the limit becomes $>1640 \mathrm{GeV}$.
${ }^{72}$ CHATRCHYAN 130 search for W^{\prime} decaying to the $W Z$ final state, with W decaying into jets, in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime}} W Z / g_{W} W Z$ $=\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{73}$ The AAD 12 AV quoted limit is for a SM-like right-handed W^{\prime} using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV} . W^{\prime} \rightarrow \ell \nu$ decay is assumed to be forbidden.
${ }^{74}$ AAD 12 BB use $p p$ collisions data at $\sqrt{s}=7 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime} W Z} / g_{W W Z}=\left(M_{W} / M_{W^{\prime}}\right)^{2}$.
${ }^{75}$ AAD 12 CK search for $p p \rightarrow t W^{\prime}, W^{\prime} \rightarrow \bar{t} q$ events in $p p$ collisions. See their Fig. 5 for the limit on $\sigma \cdot$ B.
${ }^{76}$ AAD 12 CR use $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{77}$ AAD 12 M search for right-handed W_{R} in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV} . W_{R}$ is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into $\ell j j$. See their Fig. 4 for the limit in the $m_{N}-m_{W^{\prime}}$ plane.
${ }^{78}$ AALTONEN 12 N search for $p \bar{p} \rightarrow t W^{\prime}, W^{\prime} \rightarrow \bar{t} d$ events in $p \bar{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot \mathrm{B}$.
${ }^{79}$ CHATRCHYAN 12AR search for $p p \rightarrow t W^{\prime}, W^{\prime} \rightarrow \bar{t} d$ events in $p p$ collisions. See their Fig. 2 for the limit on $\sigma \cdot$ B.
${ }^{80}$ CHATRCHYAN 12BG search for right-handed W_{R} in $p p$ collisions $\sqrt{s}=7 \mathrm{TeV} . W_{R}$ is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into $\ell j j$. See their Fig. 3 for the limit in the $m_{N}-m_{W^{\prime}}$ plane.
${ }^{81}$ ABAZOV 11 H use data from $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The quoted limit is obtained assuming $W^{\prime} W Z$ coupling strength is the same as the ordinary $W W Z$ coupling strength in the Standard Model.
${ }^{82}$ ABAZOV 11L limit is for W^{\prime} with SM-like coupling which interferes with the SM W boson, using $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. For W^{\prime} with right-handed coupling, the bound becomes $>885 \mathrm{GeV}$ ($>890 \mathrm{GeV}$) if W^{\prime} decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings present, the limit becomes >916 GeV
${ }^{83}$ AALTONEN 10 N use $p \bar{p}$ collision data at $\sqrt{s}=1.96 \mathrm{TeV}$. The quoted limit assumes $g_{W^{\prime} W Z} / g_{W W Z}=\left(M_{W} / M_{W^{\prime}}\right)^{2}$. See their Fig. 4 for limits in mass-coupling plane.
${ }^{84}$ AALTONEN O9AC search for new particle decaying to dijets using $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{85}$ The ACOSTA 03B quoted limit is for $M_{W^{\prime}} \gg M_{\nu_{R}}$, using $p \bar{p}$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$. For $M_{W^{\prime}}<M_{\nu_{R}}, M_{W^{\prime}}$ between 225 and 566 GeV is excluded.
${ }^{86}$ The quoted limit is obtained assuming $W^{\prime} W Z$ coupling strength is the same as the ordinary $W W Z$ coupling strength in the Standard Model, using $p \bar{p}$ collisions at $\sqrt{s}=1.8$ TeV . See their Fig. 2 for the limits on the production cross sections as a function of the W^{\prime} width.
87 AFFOLDER 01I combine a new bound on $W^{\prime} \rightarrow e \nu$ of 754 GeV , using $p \bar{p}$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$, with the bound of ABE 00 on $W^{\prime} \rightarrow \mu \nu$ to obtain quoted bound.
${ }^{88} \mathrm{ABE} 97 \mathrm{G}$ search for new particle decaying to dijets using $p \bar{p}$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{89}$ For bounds on W_{R} with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.
${ }^{90} \mathrm{ABACHI} 95 \mathrm{E}$ assume that the decay $W^{\prime} \rightarrow W Z$ is suppressed and that the neutrino from W^{\prime} decay is stable and has a mass significantly less $m_{W^{\prime}}$.
${ }^{91}$ RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed K factor.

W_{R} (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89b, and COLANGELO 91. $g_{R}=g_{L}$ assumed. [Limits in the section MASS LIMITS for W^{\prime} below are also valid for W_{R} if $m_{\nu_{R}} \ll m_{W_{R}}$.] Some limits assume manifest left-right symmetry, i.e., the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the $W_{L^{-}} W_{R}$ mixing angle ζ are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL\%	DOCUMENT		TECN	COMMENT
>592	90	1 BUENO	11	TWST	μ decay
>715	90	2 CZAKON	99	RVUE	Electroweak

- - We do not use the following data for averages, fits, limits, etc. . .

>235	90	${ }^{3}$ PRIEELS	14	PIE3	μ decay
>245	90	4 WAUTERS	10	CNTR	${ }^{60}$ Co β decay
>2500		${ }^{5}$ ZHANG	08	THEO	${ }^{m} K_{L}^{0-m} K_{S}^{0}$
>180	90	${ }^{6}$ MELCONIAN	07	CNTR	${ }^{37} \mathrm{~K} \beta^{+}$decay
> 290.7	90	7 SCHUMANN	07	CNTR	Polarized neutron decay
[>3300]	95	${ }^{8}$ CYBURT	05	COSM	Nucleosynthesis; light ν_{R}
>310	90	9 THOMAS	01	CNTR	β^{+}decay
>137	95	10 ACKERSTAFF	99D	OPAL	τ decay
>1400	68	11 BARENBOIM	98	RVUE	Electroweak, $Z-Z^{\prime}$ mixing
>549	68	12 BARENBOIM	97	RVUE	μ decay
>220	95	13 STAHL	97	RVUE	τ decay
>220	90	14 ALLET	96	CNTR	β^{+}decay
>281	90	15 KUZNETSOV	95	CNTR	Polarized neutron decay
>282	90	16 KUZNETSOV	94B	CNTR	Polarized neutron decay
>439	90	17 BHATTACH...	93	RVUE	$Z-Z^{\prime}$ mixing
>250	90	18 SEVERIJNS	93	CNTR	β^{+}decay
		19 IMAZATO	92	CNTR	K^{+}decay
>475	90	20 POLAK	92B	RVUE	μ decay
>240	90	21 AQUINO	91	RVUE	Neutron decay
>496	90	21 AQUINO	91	RVUE	Neutron and muon decay
>700		22 COLANGELO	91	THEO	${ }^{m} K_{L}^{0}-m_{K_{S}^{0}}$
> 477	90	23 POLAK	91	RVUE	μ decay
[none 540-23000]		24 BARBIERI	89B	ASTR	SN 1987A; light ν_{R}
>300	90	25 LANGACKER	89B	RVUE	General
>160	90	26 BALKE	88	CNTR	$\mu \rightarrow e \nu \bar{\nu}$
>406	90	27 JODIDIO	86	ELEC	Any ζ
>482	90	27 JODIDIO	86	ELEC	$\zeta=0$
>800		MOHAPATRA	86	RVUE	$\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)$
>400	95	28 STOKER	85	ELEC	Any ζ
>475	95	28 STOKER	85	ELEC	$\zeta<0.041$
		29 BERGSMA	83	CHRM	$\nu_{\mu} e \rightarrow \mu \nu_{e}$
>380	90	${ }^{30}$ CARR	83	ELEC	μ^{+}decay
>1600		31 BEALL	82	THEO	${ }^{m} K_{L}^{0}{ }^{-}{ }^{(} K_{S}^{0}$

${ }^{1}$ The quoted limit is for manifest left-right symmetric model.
${ }^{2}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors.
${ }^{3}$ PRIEELS 14 limit is from $\mu^{+} \rightarrow e^{+} \nu \bar{\nu}$ decay parameter $\xi^{\prime \prime}$, which is determined by the positron polarization measurement.
${ }^{4}$ WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized ${ }^{60}$ Co β decays. The listed limit assumes no mixing.
${ }^{5}$ ZHANG 08 limit uses a lattice QCD calculation of the relevant hadronic matrix elements, ZHANG 08 limit uses a lattice QCD calculation of the relevant hadr
while BEALL 82 limit used the vacuum saturation approximation.
${ }^{6}$ MELCONIAN 07 measure the neutrino angular asymmetry in β^{+}-decays of polarized
${ }^{37} \mathrm{~K}$, stored in a magneto-optical trap. Result is consistent with SM prediction and does not constrain the $W_{L}-W_{R}$ mixing angle appreciably.
7 SCHUMANN 07 limit is from measurements of the asymmetry $\left\langle\vec{p}_{\nu} \cdot \sigma_{n}\right\rangle$ in the β decay of polarized neutrons. Zero mixing is assumed.
${ }^{8}$ CYBURT 05 limit follows by requiring that three light ν_{R} 's decouple when $T_{d e c}>140$ MeV . For different $T_{d e c}$, the bound becomes $M_{W_{R}}>3.3 \mathrm{TeV}\left(T_{\text {dec }} / 140 \mathrm{MeV}\right)^{3 / 4}$.
${ }^{9}$ THOMAS 01 limit is from measurement of β^{+}polarization in decay of polarized ${ }^{12} \mathrm{~N}$. The listed limit assumes no mixing.
10 ACKERSTAFF 99D limit is from τ decay parameters. Limit increase to 145 GeV for zero mixing.
11 BARENBOIM 98 assumes minimal left-right model with Higgs of $\operatorname{SU}(2)_{R}$ in $\operatorname{SU}(2)_{L}$ doublet. For Higgs in $\mathrm{SU}(2)_{L}$ triplet, $m_{W_{R}}>1100 \mathrm{GeV}$. Bound calculated from effect of corresponding $Z_{L R}$ on electroweak data through $Z-Z_{L R}$ mixing.
12 The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from $K_{L}-K_{S}$ mass difference.
13 STAHL 97 limit is from fit to τ-decay parameters.
${ }^{14}$ ALLET 96 measured polarization-asymmetry correlation in ${ }^{12} \mathbf{N} \beta^{+}$decay. The listed limit assumes zero $L-R$ mixing.
15 KUZNETSOV 95 limit is from measurements of the asymmetry $\left\langle\vec{p}_{\nu} \cdot \sigma_{n}\right\rangle$ in the β decay of polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94 B .
16 KUZNETSOV 94B limit is from measurements of the asymmetry $\left\langle\vec{p}_{\nu} \cdot \sigma_{n}\right\rangle$ in the β decay of polarized neutrons. Zero mixing assumed.
17 BHATTACHARYYA 93 uses $Z-Z^{\prime}$ mixing limit from LEP ' 90 data, assuming a specific Higgs sector of $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)$ gauge model. The limit is for $m_{t}=200 \mathrm{GeV}$ and slightly improves for smaller m_{t}.
18 SEVERIJNS 93 measured polarization-asymmetry correlation in ${ }^{107} \ln \beta^{+}$decay. The listed limit assumes zero $L-R$ mixing. Value quoted here is from SEVERIJNS 94 erratum.
19 IMAZATO 92 measure positron asymmetry in $K^{+} \rightarrow \mu^{+} \nu_{\mu}$ decay and obtain $\xi P_{\mu}>0.990(90 \% \mathrm{CL})$. If W_{R} couples to $u \bar{s}$ with full weak strength $\left(V_{u s}^{R}=1\right)$, the result corresponds to $m_{W_{R}}>653 \mathrm{GeV}$. See their Fig. 4 for $m_{W_{R}}$ limits for general $\left|V_{u s}^{R}\right|^{2}=1-\left|V_{u d}^{R}\right|^{2}$.
20 POLAK 92B limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming $\zeta=0$. Supersedes POLAK 91.
${ }^{21}$ AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the two limits also includes muon decay results.
22 COLANGELO 91 limit uses hadronic matrix elements evaluated by QCD sum rule and is less restrictive than BEALL 82 limit which uses vacuum saturation approximation. Manifest left-right symmetry assumed.
23 POLAK 91 limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming $\zeta=0$. Superseded by POLAK 92B.
${ }^{24}$ BARBIERI 89B limit holds for $m_{\nu_{R}} \leq 10 \mathrm{MeV}$.
${ }^{25}$ LANGACKER 89B limit is for any ν_{R} mass (either Dirac or Majorana) and for a general class of right-handed quark mixing matrices.
${ }^{26}$ BALKE 88 limit is for $m_{\nu_{e R}}=0$ and $m_{\nu_{\mu R}} \leq 50 \mathrm{MeV}$. Limits come from precise measurements of the muon decay asymmetry as a function of the positron energy.
27 JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point e^{+} spectrum in the decay of the highly polarized μ^{+}.
28 STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay e^{+} spectrum asymmetry above $46 \mathrm{MeV} / \mathrm{c}$ using a muon-spin-rotation technique. Assumed a light right-handed neutrino. Quoted limits are from combining with CARR 83.
${ }^{29}$ BERGSMA 83 set limit $m_{W_{2}} / m_{W_{1}}>1.9$ at CL $=90 \%$.
${ }^{30}$ CARR 83 is TRIUMF experiment with a highly polarized μ^{+}beam. Looked for deviation from $V-A$ at the high momentum end of the decay e^{+}energy spectrum. Limit from previous world-average muon polarization parameter is $m_{W_{R}}>240 \mathrm{GeV}$. Assumes a light right-handed neutrino.
31 BEALL 82 limit is obtained assuming that W_{R} contribution to $K_{L}^{0}-K_{S}^{0}$ mass difference is smaller than the standard one, neglecting the top quark contributions. Manifest left-right symmetry assumed.

Limit on $\boldsymbol{W}_{\boldsymbol{L}}-\boldsymbol{W}_{\boldsymbol{R}}$ Mixing Angle $\boldsymbol{\zeta}$

Lighter mass eigenstate $W_{1}=W_{L} \cos \zeta-W_{R} \sin \zeta$. Light ν_{R} assumed unless noted. Values in brackets are from cosmological and astrophysical considerations.
VALUE $\frac{C L \%}{\text { DOCUMENTID }} \frac{\text { TECN }}{\text { COMMENT }}$

- • We do not use the following data for averages, fits, limits, etc. • • •
-0.020 to $0.017 \quad 90 \quad$ BUENO 11 TWST $\mu \rightarrow e \nu \bar{\nu}$
$\begin{array}{llcl}<0.022 & 90 & \text { MACDONALD 08 TWST } \mu \rightarrow e \nu \bar{\nu} \\ <0.12 & 95 & 1 \text { ACKERSTAFF 99D OPAL } \tau \text { decay }\end{array}$
90
90
$\begin{array}{llll}<0.013 & 90 & 2 \text { CZAKON } 99 & 99\end{array}$
<0.0333
0.0333
-0.0006 to 0.0028
${ }^{3}$ BARENBOIM 97 RVUE μ decay
-0.0006 to 0.0028
[none 0.00001-0.02]
< 0.040
-0.056 to 0.040
${ }^{1}$ ACKERSTAFF 99D limit is from τ decay parameters.
${ }^{2}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors.
${ }^{3}$ The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from $K_{L}-K_{S}$ mass difference.
${ }^{4}$ MISHRA 92 limit is from the absence of extra large-x, large- $y \bar{\nu}_{\mu} N \rightarrow \bar{\nu}_{\mu} \mathrm{X}$ events at Tevatron, assuming left-handed ν and right-handed $\bar{\nu}$ in the neutrino beam. The result gives $\zeta^{2}\left(1-2 m_{W_{1}}^{2} / m_{W_{2}}^{2}\right)<0.0015$. The limit is independent of ν_{R} mass.
${ }^{5}$ AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right asymmetry is assumed.
${ }^{6}$ BARBIERI 89B limit holds for $m_{\nu_{R}} \leq 10 \mathrm{MeV}$.
${ }^{7}$ First JODIDIO 86 result assumes $m_{W_{R}}=\infty$, second is for unconstrained $m_{W_{R}}$.
See the related review(s):
Z^{\prime}-Boson Searches

MASS LIMITS for Z^{\prime} (Heavy Neutral Vector Boson Other Than Z)

Limits for $Z_{S M}^{\prime}$

$Z_{S M}^{\prime}$ is assumed to have couplings with quarks and leptons which are identical to those of Z, and decays only to known fermions. The most recent preliminary results can be found in the " Z '-boson searches" review above.

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
none 250-5100	95	1 AAD 19L	ATLS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
none 600-2000	95	${ }^{2}$ AABOUD 18AB	ATLS	$p p ; z_{S M}^{\prime} \rightarrow b \bar{b}$
>2420	95	${ }^{3}$ AABOUD 18G	ATLS	$p p ; Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
none 200-4500	95	4 SIRUNYAN 18BB C	CMS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
none 600-2700	95	5 SIRUNYAN 18BO C	CMS	$p p ; Z_{S M}^{\prime} \rightarrow q \bar{q}$
>4500	95	${ }^{6}$ AABOUD 17AT A	ATLS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>2100	95	7 KHACHATRY...17H C	CMS	$p p ; Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
>3370	95	${ }^{8}$ KHACHATRY...17T	CMS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
$\begin{gathered} \text { none 600-2100 } \\ 2300-2600 \end{gathered}$	95	${ }^{9}$ KHACHATRY...17w	CMS	$p p ; Z_{S M}^{\prime} \rightarrow q \bar{q}$
>3360	95	10 AABOUD 16 U	ATLS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>2900	95	11 KHACHATRY...15AE	CMS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
none 1200-1700	95	12 KHACHATRY... 15 V	CMS	$p p ; Z_{S M}^{\prime} \rightarrow q \bar{q}$
>2900	95	13 AAD	ATLS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$

- - We do not use the following data for averages, fits, limits, etc. - 14 BOBOVNIKOV 18 RVUE $p p, Z_{S M}^{\prime} \rightarrow W^{+} w^{-}$

>1900	95	15 AABOUD	16AA ATLS	$p p ; z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
>2020	95	16 AAD	15am ATLS	$p p ; Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
>1400	95	17 AAD	13s ATLS	$p p ; Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
>1470	95	18 CHATRCHYAN	13A CMS	$p p ; Z_{S M}^{\prime} \rightarrow q \bar{q}$
>2590	95	19 CHATRCHYAN	13aF CMS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>2220	95	20 AAD	12CC ATLS	$p p ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>1400	95	21 CHATRCHYAN	120 CMS	$p p ; Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
>1071	95	22 AALTONEN	111 CDF	$p \bar{p} ; Z_{S M}^{\prime} \rightarrow \mu^{+} \mu^{-}$
>1023	95	23 ABAZOV	11A D0	$p \bar{p}, Z_{S M}^{\prime} \rightarrow e^{+} e^{-}$
none 247-544	95	24 AALTONEN	10N CDF	$z^{\prime} \rightarrow W W$
none 320-740	95	25 AALTONEN	09AC CDF	$z^{\prime} \rightarrow q \bar{q}$
>963	95	23 AALTONEN	09T CDF	$p \bar{p}, Z_{S M}^{\prime} \rightarrow e^{+} e^{-}$
>1403	95	${ }^{26}$ ERLER	09 RVUE	Electroweak
>1305	95	27 ABDALLAH	06C DLPH	$e^{+} e^{-}$
> 399	95	28 ACOSTA	05R CDF	$\bar{p} p: Z_{S M}^{\prime} \rightarrow \tau^{+} \tau^{-}$
none 400-640	95	ABAZOV	04C D0	$p \bar{p}: Z_{S M}^{\prime} \rightarrow q \bar{q}$
>1018	95	${ }^{29}$ ABBIENDI	04G OPAL	$e^{+} e^{-}$
> 670	95	30 ABAZOV	01B D0	$p \bar{p}, Z_{S M}^{\prime} \rightarrow e^{+} e^{-}$
>1500	95	31 CHEUNG	01B RVUE	Electroweak
>710	95	32 ABREU	00 S DLPH	$e^{+} e^{-}$
>898	95	33 BARATE	001 ALEP	$e^{+} e^{-}$
>809	95	${ }^{34}$ ERLER	99 RVUE	Electroweak
>690	95	${ }^{35}$ ABE	975 CDF	$p \bar{p} ; Z_{S M}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>398	95	36 VILAIN	94B CHM 2	$\nu_{\mu} e \rightarrow \nu_{\mu} e$ and $\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$
>237	90	${ }^{37}$ ALITTI	93 UA2	$p \bar{p} ; z_{S M}^{\prime} \rightarrow q \bar{q}$
none 260-600	95	${ }^{38}$ RIZZO	93 RVUE	$p \bar{p} ; z_{S M}^{\prime} \rightarrow q \bar{q}$
> 426	90	39 ABE	90F VNS	$e^{+} e^{-}$

${ }^{1}$ AAD 19L search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 18AB search for resonances decaying to $b \bar{b}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{3}$ AABOUD 18G search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=13$
${ }^{4}$ SIRUNYAN 18BB search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$
TeV. See their Fig. 5 for limits on the Z^{\prime} coupling strengths with light quarks.
${ }^{5}$ SIRUNYAN 18BO search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=13$ 6 TeV .
${ }^{6}$ AABOUD 17AT search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$ TeV.
7 KHACHATRYAN 17 H search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at \sqrt{s} $=13 \mathrm{TeV}$.
${ }^{8}$ KHACHATRYAN 17T search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8,13 \mathrm{TeV}$.
${ }^{9}$ KHACHATRYAN 17 w search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV .
${ }^{10}$ AABOUD 16U search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
11 KHACHATRYAN 15AE search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
${ }^{12}$ KHACHATRYAN 15 V search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 8 TeV .
${ }^{13} \mathrm{AAD} 14 \mathrm{~V}$ search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8$ TeV .
${ }^{14}$ BOBOVNIKOV 18 use the ATLAS limits on $\sigma\left(p p \rightarrow z^{\prime}\right) \cdot \mathrm{B}\left(Z^{\prime} \rightarrow W^{+} W^{-}\right)$to constrain the $Z-Z^{\prime}$ mixing parameter ξ. See their Fig. 11 for limits in $M_{Z^{\prime}}-\xi$ plane.
${ }^{15}$ AABOUD 16AA search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=13$ TeV.
${ }^{16}$ AAD 15 AM search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
${ }^{17}$ AAD 135 search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{18}$ CHATRCHYAN 13A use $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{19}$ CHATRCHYAN 13AF search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ and 8 TeV .
${ }^{20}$ AAD 12 CC search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7$
${ }^{21}$ TeV. CHATRCHYAN 120 search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=$ 7 TeV.
22 AALTONEN 11 search for resonances decaying to $\mu^{+} \mu^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV .
${ }^{23}$ TeV. resonances decaying to $e^{+} e^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{24}$ The quoted limit assumes $g_{W} W Z^{\prime} / g_{W} W Z=\left(M_{W} / M_{Z^{\prime}}\right)^{2}$. See their Fig. 4 for limits in mass-coupling plane.
${ }^{25}$ AALTONEN 09AC search for new particle decaying to dijets.
${ }^{26}$ ERLER 09 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0026<\theta<0.0006$.
${ }^{27}$ ABDALLAH 06 C use data $\sqrt{s}=130-207 \mathrm{GeV}$.
${ }^{28}$ ACOSTA 05R search for resonances decaying to tau lepton pairs in $\bar{p} p$ collisions at \sqrt{s} $=1.96 \mathrm{TeV}$.
${ }^{29}{ }^{\text {A ABBIENDI }}{ }^{1}$.4G give 95% CL limit on $Z-Z^{\prime}$ mixing $-0.00422<\theta<0.00091 . \sqrt{s}=91$ to 207 GeV .
${ }^{30}$ ABAZOV 01B search for resonances in $p \bar{p} \rightarrow e^{+} e^{-}$at $\sqrt{s}=1.8 \mathrm{TeV}$. They find σ $\mathrm{B}\left(Z^{\prime} \rightarrow e e\right)<0.06 \mathrm{pb}$ for $M_{Z^{\prime}}>500 \mathrm{GeV}$.
${ }^{31}$ CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
${ }^{32}$ ABREU 00 uses LEP data at $\sqrt{s}=90$ to 189 GeV .
${ }^{33}$ BARATE 001 search for deviations in cross section and asymmetries in $e^{+} e^{-} \rightarrow$ fermions at $\sqrt{s}=90$ to 183 GeV . Assume $\theta=0$. Bounds in the mass-mixing plane are shown in their Figure 18.
${ }^{34}$ ERLER 99 give 90% CL limit on the $Z-Z^{\prime}$ mixing $-0.0041<\theta<0.0003$. $\rho_{0}=1$ is
${ }^{35}$ asse ABed.
${ }^{36}$ VILAIN 94B assume $m_{t}=150 \mathrm{GeV}$.
${ }^{37}$ ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes $\mathrm{B}\left(Z^{\prime} \rightarrow\right.$ $q \bar{q})=0.7$. See their Fig. 5 for limits in the $m_{Z^{\prime}}-\mathrm{B}(q \bar{q})$ plane.
${ }^{38}$ RIZZO 93 analyses CDF limit on possible two-jet resonances.
${ }^{39}$ ABE $90 F$ use data for $R, R_{\ell \ell}$, and $A_{\ell \ell}$. They fix $m_{W}=80.49 \pm 0.43 \pm 0.24 \mathrm{GeV}$ and $m_{Z}=91.13 \pm 0.03 \mathrm{GeV}$.

Limits for $\boldsymbol{Z}_{\boldsymbol{L R}}$

$Z_{L R}$ is the extra neutral boson in left-right symmetric models. $g_{L}=g_{R}$ is assumed unless noted. Values in parentheses assume stronger constraint on the Higgs sector, usually motivated by specific left-right symmetric models (see the Note on the W^{\prime}). Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino. Direct search bounds assume decays to Standard Model fermions only, unless noted.

VALUE (GeV)	CL\%	DOCUMENT ID		TECN	$\frac{\text { COMMENT }}{\text { Electroweak }}$
>1162	95	${ }^{1}$ DEL-AGUILA	10	RVUE	
>630	95	2 ABE	97S	CDF	$p \bar{p} ; Z_{L R}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
- - We do not use the following data for averages, fits, limits, etc. - .					
		${ }^{3}$ BOBOVNIKOV 18		RVUE	$p p, z_{L R}^{\prime} \rightarrow W^{+} W^{-}$
>998	95	${ }^{4}$ ERLER	09	RVUE	Electroweak
>600	95	$\begin{gathered} \text { SCHAEL } \\ 5 \text { ABDALLAH } \end{gathered}$	07A	ALEP	$e^{+} e^{-}$
>455	95		06C	DLPH	$e^{+} e^{-}$
>518	95	${ }_{7}^{6}$ ABBIENDI	04G	OPAL	$e^{+} e^{-}$
>860	95	${ }^{7}$ CHEUNG	01B	RVUE	Electroweak
>380	95	${ }^{8}$ ABREU	00 s	DLPH	$e^{+} e^{-}$
>436	95	${ }^{9}$ BARATE	001	ALEP	Repl. by SCHAEL 07A
>550	95	10 CHAY 00		RVUE	Electroweak
		11 ERLER 00		RVUE	Cs
		12 CASALBUONI	00 99	RVUE	Cs
(>1205)	90	13 CZAKON	99	RVUE	Electroweak
>564	95	14 ERLER	99	RVUE	Electroweak
(>1673)	95	15 ERLER	99	RVUE	Electroweak
(>1700)	68	16 BARENBOIM 17 CONRAD	98	RVUE	Electroweak
>244	95		94 B	RVUE	$\nu_{\mu} N$ scattering
>253	95	18 VILAIN		CHM2	$\nu_{\mu} e \rightarrow \nu_{\mu} e$ and $\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$
none 200-600	95	19 RIZZO	93	RVUE	$p \bar{p} ; z_{L R} \rightarrow q \bar{q}$
[>2000]		WALKER	91	COSM	Nucleosynthesis; light ν_{R}
none 200-500			90	ASTR	SN 1987A; light ν_{R}
none 350-2400		21 BARBIERI	89B	ASTR	SN 1987A; light ν_{R}

${ }^{1}$ DEL-AGUILA 10 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0012<\theta<0.0004$.
${ }^{2}$ ABE 97s find $\sigma\left(Z^{\prime}\right) \times \mathrm{B}\left(e^{+} e^{-}, \mu^{+} \mu^{-}\right)<40$ fb for $m_{Z^{\prime}}>600 \mathrm{GeV}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{3}$ BOBOVNIKOV 18 use the ATLAS limits on $\sigma\left(p p \rightarrow Z^{\prime}\right) \cdot \mathrm{B}\left(Z^{\prime} \rightarrow W^{+} W^{-}\right)$to constrain the $Z-Z^{\prime}$ mixing parameter ξ. See their Fig. 10 for limits in $M_{Z^{\prime}}-\xi$ plane.
${ }^{4}$ ERLER 09 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0013<\theta<0.0006$.
${ }^{5}$ ABDALLAH 06 C give 95% CL limit $|\theta|<0.0028$. See their Fig. 14 for limit contours in the mass-mixing plane.
${ }^{6}$ ABBIENDI 04 G give 95% CL limit on $Z-Z^{\prime}$ mixing $-0.00098<\theta<0.00190$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s}=91$ to 207 GeV .
${ }^{7}$ CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
${ }^{8}$ ABREU 00s give 95\% CL limit on Z - Z^{\prime} mixing $|\theta|<0.0018$. See their Fig. 6 for the limit contour in the mass-mixing plane. $\sqrt{s}=90$ to 189 GeV .
${ }^{9}$ BARATE 00I search for deviations in cross section and asymmetries in $e^{+} e^{-} \rightarrow$ fermions at $\sqrt{s}=90$ to 183 GeV . Assume $\theta=0$. Bounds in the mass-mixing plane are shown in their Figure 18.
${ }^{10}$ CHAY 00 also find $-0.0003<\theta<0.0019$. For g_{R} free, $m_{Z^{\prime}}>430 \mathrm{GeV}$.
11 ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_{W}(\mathrm{Cs})$ is due to the exchange of Z^{\prime}. The data are better described in a certain class of the Z^{\prime} models including $Z_{L R}$ and Z_{χ}.
${ }^{12}$ CASALBUONI 99 discuss the discrepancy between the observed and predicted values of $Q_{W}(\mathrm{Cs})$. It is shown that the data are better described in a class of models including the $Z_{L R}$ model.
${ }^{13}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds $|\theta|<0.0042$.
14 ERLER 99 give 90% CL limit on the $Z-Z^{\prime}$ mixing $-0.0009<\theta<0.0017$.
15 ERLER 99 assumes 2 Higgs doublets, transforming as 10 of $\mathrm{SO}(10)$, embedded in E_{6}.
${ }^{16}$ BARENBOIM 98 also gives 68% CL limits on the $Z-Z^{\prime}$ mixing $-0.0005<\theta<0.0033$. Assumes Higgs sector of minimal left-right model.
17 CONRAD 98 limit is from measurements at CCFR, assuming no $Z-Z^{\prime}$ mixing.
${ }^{18}$ VILAIN 94B assume $m_{t}=150 \mathrm{GeV}$ and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
${ }^{19}$ RIZZO 93 analyses CDF limit on possible two-jet resonances.
${ }^{20}$ GRIFOLS 90 limit holds for $m_{\nu_{R}} \lesssim 1 \mathrm{MeV}$. A specific Higgs sector is assumed. See also GRIFOLS 90D, RIZZO 91.
${ }^{21}$ BARBIERI 89B limit holds for $m_{\nu_{R}} \leq 10 \mathrm{MeV}$. Bounds depend on assumed supernova core temperature.

Limits for Z_{χ}

Z_{χ} is the extra neutral boson in $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)_{\chi} \cdot g_{\chi}=e / \cos \theta_{W}$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

- - We do not use the following data for averages, fits, limits, etc. • - -
${ }^{3}$ BOBOVNIKOV 18 RVUE $p p, Z_{\chi}^{\prime} \rightarrow W^{+} W^{-}$

		3 BOBOVNIKOV 18		RVUE	$p p, Z_{\chi}^{\prime} \rightarrow W^{+} W^{-}$
>3050	95	${ }^{4}$ AABOUD	16 U	ATLS	$p p ; Z_{\chi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>2620	95	${ }^{5} \mathrm{AAD}$	14 V	ATLS	$p p, z_{\chi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>1970	95	${ }^{6}$ AAD	12CC	ATLS	$p p, Z_{\chi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
> 930	95	7 AALTONEN	11I	CDF	$p \bar{p} ; Z_{\chi}^{\prime} \rightarrow \mu^{+} \mu^{-}$
>903	95	${ }^{8}$ ABAZOV	11A	D0	$p \bar{p}, Z_{\chi}^{\prime} \rightarrow e^{+} e^{-}$
>1022	95	${ }^{9}$ DEL-AGUILA	10	RVUE	Electroweak
>862	95	8 AALTONEN	09T	CDF	$p \bar{p}, z_{\chi}^{\prime} \rightarrow e^{+} e^{-}$
> 892	95	10 AALTONEN	09V	CDF	Repl. by AALTONEN 111
>1141	95	11 ERLER	09	RVUE	Electroweak
>822	95	8 AALTONEN	07H	CDF	Repl. by AALTONEN 09T
>680	95	SCHAEL	07A	ALEP	$e^{+} e^{-}$
>545	95	12 ABDALLAH	06C	DLPH	$e^{+} e^{-}$
>740		${ }^{8}$ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
>690	95	13 ABULENCIA	05A	CDF	$p \bar{p} ; z_{\chi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>781	95	14 ABBIENDI	04G	OPAL	$e^{+} e^{-}$
>2100		15 BARGER	03B	COSM	Nucleosynthesis; light ν_{R}
>680	95	16 CHEUNG	01B	RVUE	Electroweak
>440	95	17 ABREU	00 S	DLPH	$e^{+} e^{-}$
>533	95	18 BARATE	001	ALEP	Repl. by SCHAEL 07A
>554	95	19 CHO	00	RVUE	Electroweak
		20 ERLER	00	RVUE	Cs
		21 ROSNER	00	RVUE	Cs
>545	95	22 ERLER	99	RVUE	Electroweak
(>1368)	95	23 ERLER	99	RVUE	Electroweak
>215	95	${ }^{24}$ CONRAD	98	RVUE	$\nu_{\mu} N$ scattering
>595	95	25 ABE	97 S	CDF	$p \bar{p} ; Z_{\chi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>190	95	26 ARIMA	97	VNS	Bhabha scattering
>262	95	27 VILAIN	94B	CHM2	$\nu_{\mu} e \rightarrow \nu_{\mu} e ; \bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$
[>1470]		28 FARAGGI	91	COSM	Nucleosynthesis; light ν_{R}
> 231	90	${ }^{29} \mathrm{ABE}$	90F	VNS	$e^{+} e^{-}$
[$>$ 1140]		30 GONZALEZ...	90D	COSM	Nucleosynthesis; light ν_{R}
[$>$ 2100]		31 GRIFOLS	90	ASTR	SN 1987A; light ν_{R}

${ }^{1}$ AAD 19L search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{2}$ AABOUD 17AT search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$ TeV.
${ }^{3}$ BOBOVNIKOV 18 use the ATLAS limits on $\sigma\left(p p \rightarrow Z^{\prime}\right) \cdot \mathrm{B}\left(Z^{\prime} \rightarrow W^{+} W^{-}\right)$to constrain the $Z-Z^{\prime}$ mixing parameter ξ. See their Fig. 9 for limits in $M_{Z^{\prime}}-\xi$ plane.
${ }^{4}$ AABOUD 16 U search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{5}$ AAD 14 V search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8$ TeV.
${ }^{6}$ AAD 12CC search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7$
 TeV.
8 ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to $e^{+} e^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{9}$ DEL-AGUILA 10 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0011<\theta<0.0007$.
10 AALTONEN 09 V search for resonances decaying to $\mu^{+} \mu^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=$ 1.96 TeV .
${ }^{11}$ ERLER 09 give $95 \% C L$ limit on the $Z-Z^{\prime}$ mixing $-0.0016<\theta<0.0006$.
12 ABDALLAH 06 C give 95% CL limit $|\theta|<0.0031$. See their Fig. 14 for limit contours in the mass-mixing plane.
13 ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{14}$ ABBIENDI 04G give 95% CL limit on $Z-Z^{\prime}$ mixing $-0.00099<\theta<0.00194$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s}=91$ to 207 GeV .
${ }^{15}$ BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta N_{\nu}<1$. The quark-hadron transition temperature $T_{C}=150 \mathrm{MeV}$ is assumed. The limit with $T_{C}=400 \mathrm{MeV}$ is $>4300 \mathrm{GeV}$.
${ }^{16}$ CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
17 ABREU 00s give 95\% CL limit on $Z-Z^{\prime}$ mixing $|\theta|<0.0017$. See their Fig. 6 for the limit contour in the mass-mixing plane. $\sqrt{s}=90$ to 189 GeV .
18 BARATE 00I search for deviations in cross section and asymmetries in $e^{+} e^{-} \rightarrow$ fermions at $\sqrt{s}=90$ to 183 GeV . Assume $\theta=0$. Bounds in the mass-mixing plane are shown in their Figure 18.
${ }^{19}$ CHO 00 use various electroweak data to constrain Z^{\prime} models assuming $m_{H}=100 \mathrm{GeV}$. See Fig. 3 for limits in the mass-mixing plane.
${ }^{20}$ ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_{W}(C s)$ is due to the exchange of Z^{\prime}. The data are better described in a certain class of the Z^{\prime} models including $Z_{L R}$ and Z_{χ}.
${ }^{21}$ ROSNER 00 discusses the possibility that a discrepancy between the observed and predicted values of $Q_{W}(\mathrm{Cs})$ is due to the exchange of Z^{\prime}. The data are better described in a certain class of the Z^{\prime} models including Z_{χ}.
${ }^{22}$ ERLER 99 give 90% CL limit on the $Z-Z^{\prime}$ mixing $-0.0020<\theta<0.0015$.
${ }^{23}$ ERLER 99 assumes 2 Higgs doublets, transforming as 10 of $\operatorname{SO}(10)$, embedded in E_{6}.
${ }^{24}$ CONRAD 98 limit is from measurements at CCFR, assuming no $Z-Z^{\prime}$ mixing.
${ }^{25} \mathrm{ABE} 97 \mathrm{~s}$ find $\sigma\left(Z^{\prime}\right) \times \mathrm{B}\left(e^{+} e^{-}, \mu^{+} \mu^{-}\right)<40 \mathrm{fb}$ for $m_{Z^{\prime}}>600 \mathrm{GeV}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{26} Z-Z^{\prime}$ mixing is assumed to be zero. $\sqrt{s}=57.77 \mathrm{GeV}$.
27 VILAIN 94B assume $m_{t}=150 \mathrm{GeV}$ and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
${ }^{28}$ FARAGGI 91 limit assumes the nucleosynthesis bound on the effective number of neutrinos $\Delta N_{\nu}<0.5$ and is valid for $m_{\nu_{R}}<1 \mathrm{MeV}$.
${ }^{29}$ ABE 90 F use data for $R, R_{\ell \ell}$, and $A_{\ell \ell}$. ABE 90 F fix $m_{W}=80.49 \pm 0.43 \pm 0.24 \mathrm{GeV}$ and $m_{Z}=91.13 \pm 0.03 \mathrm{GeV}$.
${ }^{30}$ Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu}<1$) and that ν_{R} is light $(\lesssim 1 \mathrm{MeV})$.
${ }^{31}$ GRIFOLS 90 limit holds for $m_{\nu_{R}} \lesssim 1 \mathrm{MeV}$. See also GRIFOLS 90D, RIZZO 91.

Limits for $\boldsymbol{Z}_{\boldsymbol{\psi}}$

Z_{ψ} is the extra neutral boson in $\mathrm{E}_{6} \rightarrow \mathrm{SO}(10) \times \mathrm{U}(1)_{\psi} \cdot g_{\psi}=e / \cos \theta \boldsymbol{W}$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.
$\frac{V A L U E(\mathrm{GeV})}{\mathbf{3 9 0 0}(\mathrm{CL}-\mathbf{9 5} \%} \frac{\text { CL\% }}{\text { OUR LIMIT }}$ TECUMENTID COMMENT

>3900 (CL $=\mathbf{9 5 \%}$) OUR LIMIT

| none 250-4500 | 95 | 1 AAD | 19L ATLS | $p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| none 200-3900 | 95 | ${ }^{2}$ SIRUNYAN | 18BB CMS | $p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$ |
| >3800 | 95 | 3 AABOUD | 17AT ATLS | $p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$ |
| >2820 | 95 | 4 KHACHATRY...17T CMS | $p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$ | |
| >1100 | 95 | 5 CHATRCHYAN 120 CMS | $p p, Z_{\psi}^{\prime} \rightarrow \tau^{+} \tau^{-}$ | |

- - We do not use the following data for averages, fits, limits, etc. - • -
${ }^{6}$ BOBOVNIKOV 18 RVUE $p p, Z_{\psi}^{\prime} \rightarrow W^{+} W^{-}$
$>2740 \quad 95 \quad 7$ AABOUD 16 U ATLS $p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
$>2570 \quad 95 \quad{ }^{8}$ KHACHATRY...15AE CMS $\quad p p ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
$p, Z_{\psi} \rightarrow e^{+}, \mu-\mu$
${ }^{9} \mathrm{AAD} \quad 14 \mathrm{~V}$ ATLS $p p, Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
10 CHATRCHYAN 13AF CMS $p p, Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
11 AAD \quad 12cC ATLS $p p, Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
12 CHATRCHYAN 12M CMS Repl. by CHA-
13 AALTONEN 111 CDF $\quad p \bar{p} ; Z_{\psi}^{\prime} \rightarrow \mu^{+} \mu^{-}$
14 ABAZOV 11A D0 $p \bar{p}, Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}$
15 DEL-AGUILA 10 RVUE Electroweak
14 AALTONEN 09T CDF $p \bar{p}, z_{\psi}^{\prime} \rightarrow e^{+} e^{-}$
$\begin{array}{llll}16 \text { AALTONEN } & 09 \mathrm{~V} & \text { CDF } & \text { Repl. by AALTONEN 11। } \\ 17 \text { ERLER } & 09 & \text { RVUE } & \text { Electroweak }\end{array}$

Gauge \& Higgs Boson Particle Listings

New Heavy Bosons

>822	95	14 AALTONEN	07H	CDF	Repl. by AALTONEN 09T
>410	95	SCHAEL	07A	ALEP	$e^{+} e^{-}$
>475	95	18 ABDALLAH	06C	DLPH	$e^{+} e^{-}$
>725		14 ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
>675	95	19 ABULENCIA	05A	CDF	Repl. by AALTONEN 111 and AALTONEN 09T
>366	95	20 ABBIENDI	04G	OPAL	$e^{+} e^{-}$
>600		21 BARGER	03b	COSM	Nucleosynthesis; light ν_{R}
>350	95	22 ABREU	00s	DLPH	$e^{+} e^{-}$
> 294	95	23 BARATE	001	ALEP	Repl. by SCHAEL 07A
>137	95	${ }^{24} \mathrm{CHO}$	00	RVUE	Electroweak
>146	95	25 ERLER	99	RVUE	Electroweak
>54	95	26 CONRAD	98	RVUE	$\nu_{\mu} N$ scattering
>590	95	27 ABE	97S	CDF	$p \bar{p} ; Z_{\psi}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>135	95	28 VILAIN	94B	CHM2	$\nu_{\mu} e \rightarrow \nu_{\mu} e ; \bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$
>105	90	${ }^{29}$ ABE	90F	VNS	$e^{+} e^{-}$
[>160]		30 GONZALEZ...	90D	COSM	Nucleosynthesis; light ν_{R}
[>2000]		31 GRIFOLS	90D	ASTR	SN 1987A; light ν_{R}

${ }^{1}$ AAD 19L search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{2}$ SIRUNYAN 18BB search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$ TeV.
${ }^{3}$ AABOUD 17AT search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$ 4 TeV .
KHACHATRYAN 17T search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8,13 \mathrm{TeV}$.
${ }^{5}$ CHATRCHYAN 120 search for resonances decaying to $\tau^{+} \tau^{-}$in $p p$ collisions at $\sqrt{s}=$ 7 TeV .
${ }^{6}$ BOBOVNIKOV 18 use the ATLAS limits on $\sigma\left(p p \rightarrow Z^{\prime}\right) \cdot \mathrm{B}\left(Z^{\prime} \rightarrow W^{+} W^{-}\right)$to constrain the $Z-Z^{\prime}$ mixing parameter ξ. See their Fig. 10 for limits in $M_{Z^{\prime}}-\xi$ plane.
${ }^{7}$ AABOUD 16 U search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{8}$ KHACHATRYAN 15AE search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
${ }^{9}$ AAD 14 V search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=8$ TeV.
${ }^{10}$ CHATRCHYAN 13AF search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ and 8 TeV .
${ }^{11}$ AAD 12CC search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7$ TeV.
${ }^{12}$ CHATRCHYAN 12M search for resonances decaying to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
13 AALTONEN 11 search for resonances decaying to $\mu^{+} \mu^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV.
14 ABAZOV 11A, AALTONEN 09t, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to $e^{+} e^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
1^{15} DEL-AGUILA 10 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0019<\theta<0.0007$.
${ }^{16}$ AALTONEN 09 V search for resonances decaying to $\mu^{+} \mu^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=$ 1.96 TeV .

17 ERLER 09 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0018<\theta<0.0009$.
18 ABDALLAH 06 C give 95% CL limit $|\theta|<0.0027$. See their Fig. 14 for limit contours in the mass-mixing plane.
${ }^{19}$ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$
20 ABBIENDI 04G give 95% CL limit on $Z-Z^{\prime}$ mixing $-0.00129<\theta<0.00258$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s}=91$ to 207 GeV .
${ }^{21}$ BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta N_{\nu}<1$. The quark-hadron transition temperature $T_{C}=150 \mathrm{MeV}$ is assumed. The limit with $T_{C}=400 \mathrm{MeV}$ is $>1100 \mathrm{GeV}$.
${ }^{22}$ ABREU 00 S give 95% CL limit on $Z-Z^{\prime}$ mixing $|\theta|<0.0018$. See their Fig. 6 for the limit contour in the mass-mixing plane. $\sqrt{s}=90$ to 189 GeV .
${ }^{23}$ BARATE 00I search for deviations in cross section and asymmetries in $e^{+} e^{-} \rightarrow$ fermions at $\sqrt{s}=90$ to 183 GeV . Assume $\theta=0$. Bounds in the mass-mixing plane are shown in their Figure 18.
${ }^{24} \mathrm{CHO} 00$ use various electroweak data to constrain Z^{\prime} models assuming $m_{H}=100 \mathrm{GeV}$. See Fig. 3 for limits in the mass-mixing plane.
${ }^{25}$ ERLER 99 give 90% CL limit on the $Z-Z^{\prime}$ mixing $-0.0013<\theta<0.0024$.
${ }^{26}$ CONRAD 98 limit is from measurements at CCFR, assuming no $Z-Z^{\prime}$ mixing.
${ }^{27} \mathrm{ABE} 975$ find $\sigma\left(Z^{\prime}\right) \times \mathrm{B}\left(e^{+} e^{-}, \mu^{+} \mu^{-}\right)<40 \mathrm{fb}$ for $m_{Z^{\prime}}>600 \mathrm{GeV}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{28}$ VILAIN 94B assume $m_{t}=150 \mathrm{GeV}$ and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
${ }^{29} \mathrm{ABE} 90 \mathrm{~F}$ use data for $R, R_{\ell \ell}$, and $A_{\ell \ell}$. ABE 90 F fix $m_{W}=80.49 \pm 0.43 \pm 0.24 \mathrm{GeV}$ and $m_{Z}=91.13 \pm 0.03 \mathrm{GeV}$.
${ }^{30}$ Assumes the nucleosynthesis bound on the effective number of light neutrinos $\left(\delta N_{\nu}<1\right)$ and that ν_{R} is light ($\lesssim 1 \mathrm{MeV}$).
${ }^{31}$ GRIFOLS 90D limit holds for $m_{\nu_{R}} \lesssim 1 \mathrm{MeV}$. See also RIZZO 91.

Limits for Z_{η}

Z_{η} is the extra neutral boson in E_{6} models, corresponding to $Q_{\eta}=\sqrt{3 / 8} Q_{\chi}-$ $\sqrt{5 / 8} Q_{\psi} \cdot g_{\eta}=e / \cos \theta_{W}$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.
$\frac{\operatorname{VALUE}(\mathrm{GeV})}{>3900} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENTID }}{\text { AABOUD }} \frac{\text { 17AT }}{\text { TECN }} \frac{\text { COMMSENT }}{p p ; z_{\eta}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}}$

- - We do not use the following data for averages, fits, limits, etc. - • ${ }^{2}$ BOBOVNIKOV 18 RVUE $p p, Z_{\eta}^{\prime} \rightarrow W^{+} W^{-}$
$>2810 \quad 95 \quad 3$ AABOUD 16 ATLS $p p ; Z_{\eta}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
${ }^{4} \mathrm{AAD} \quad$ 12CC ATLS $p p, z_{\eta}^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
>938
${ }^{5}$ AALTONEN 111 CDF $p \bar{p} ; z_{\eta}^{\prime} \rightarrow \mu^{+} \mu^{-}$
${ }^{6}$ ABAZOV 11A D0 $p \bar{p}, z_{\eta}^{\prime} \rightarrow e^{+} e^{-}$
7 DEL-AGUILA 10 RVUE Electroweak
${ }^{6}$ AALTONEN 09T CDF $p \bar{p}, Z_{\eta}^{\prime} \rightarrow e^{+} e^{-}$
${ }^{8}$ AALTONEN 09v CDF Repl. by AALTONEN 11।
9 ERLER 09 RVUE Electroweak
${ }^{6}$ AALTONEN 07H CDF Repl. by AALTONEN 09T
SCHAEL 07A ALEP $e^{+} e^{-}$
10 ABDALLAH 06C DLPH $e^{+} e^{-}$
${ }^{6}$ ABULENCIA 06L CDF Repl. by AALTONEN 07H
11 ABULENCIA 05A CDF Repl. by AALTONEN 11।
$+e^{-}$and AALTONEN 09T
>515
>1600
>310
>310
$>\quad 329$
>619
>365
>87
>620
>100
>125
$[>820]$
[$>$ 3300]
[$>$ 1040]
1040 LOPEZ $\quad 90 \quad$ COSM Nucleosynthesis; light ν_{R}
${ }^{1}$ AABOUD 17AT search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13$ TeV.
${ }^{2}$ BOBOVNIKOV 18 use the ATLAS limits on $\sigma\left(p p \rightarrow Z^{\prime}\right) \cdot \mathrm{B}\left(Z^{\prime} \rightarrow W^{+} W^{-}\right)$to constrain the $Z-Z^{\prime}$ mixing parameter ξ. See their Fig. 9 for limits in $M_{Z^{\prime}}-\xi$ plane.
${ }^{3}$ AABOUD 16 U search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{4}$ AAD 12CC search for resonances decaying to $e^{+} e^{-}, \mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7$
${ }^{5} \mathrm{TeV}$.
TeV.
${ }^{6}$ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to $e^{+} e^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{7}$ DEL-AGUILA 10 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0023<\theta<0.0027$.
${ }^{8}$ AALTONEN 09V search for resonances decaying to $\mu^{+} \mu^{-}$in $p \bar{p}$ collisions at $\sqrt{s}=$ 1.96 TeV.
${ }^{9}$ ERLER 09 give 95% CL limit on the $Z-Z^{\prime}$ mixing $-0.0047<\theta<0.0021$.
10 ABDALLAH 06C give 95% CL limit $|\theta|<0.0092$. See their Fig. 14 for limit contours in the mass-mixing plane.
11 ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
12 ABBIENDI 04G give 95% CL limit on $Z-Z^{\prime}$ mixing $-0.00447<\theta<0.00331$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s}=91$ to 207 GeV .
13 BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta N_{\nu}<1$. The quark-hadron transition temperature $T_{C}=150 \mathrm{MeV}$ is assumed. The limit with $T_{C}=400 \mathrm{MeV}$ is $>3300 \mathrm{GeV}$.
14 ABREU 00s give 95% CL limit on $Z-Z^{\prime}$ mixing $|\theta|<0.0024$. See their Fig. 6 for the limit contour in the mass-mixing plane. $\sqrt{s}=90$ to 189 GeV .
${ }^{15}$ BARATE 00I search for deviations in cross section and asymmetries in $e^{+} e^{-} \rightarrow$ fermions at $\sqrt{s}=90$ to 183 GeV . Assume $\theta=0$. Bounds in the mass-mixing plane are shown in at $\sqrt{s}=90$ to 183
their Figure 18.
${ }^{16}$ CHO 00 use various electroweak data to constrain Z^{\prime} models assuming $m_{H}=100 \mathrm{GeV}$. See Fig. 3 for limits in the mass-mixing plane.
17 ERLER 99 give 90% CL limit on the $Z-Z^{\prime}$ mixing $-0.0062<\theta<0.0011$.
${ }^{18}$ CONRAD 98 limit is from measurements at CCFR, assuming no $Z-Z^{\prime}$ mixing.
19 ABE 97 s find $\sigma\left(Z^{\prime}\right) \times \mathrm{B}\left(e^{+} e^{-}, \mu^{+} \mu^{-}\right)<40 \mathrm{fb}$ for $m_{Z^{\prime}}>600 \mathrm{GeV}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{20}$ VILAIN 94B assume $m_{t}=150 \mathrm{GeV}$ and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
${ }^{21} \mathrm{ABE} 90 \mathrm{~F}$ use data for $R, R_{\ell \ell}$, and $A_{\ell \ell}$. ABE 90F fix $m_{W}=80.49 \pm 0.43 \pm 0.24 \mathrm{GeV}$ and $m_{Z}=91.13 \pm 0.03 \mathrm{GeV}$
22 These authors claim that the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu}<1$) constrains Z^{\prime} masses if ν_{R} is light ($\lesssim 1 \mathrm{MeV}$).
${ }^{23}$ GRIFOLS 90 limit holds for $m_{\nu_{R}} \lesssim 1 \mathrm{MeV}$. See also GRIFOLS 90D, RIZZO 91.

Limits for other Z^{\prime}

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
none 580-3100	95	1 AABOUD	19AS ATLS	$z^{\prime} \rightarrow t \bar{t}$
none 1300-3100	95	${ }^{2}$ AAD	19D ATLS	$z^{\prime} \rightarrow W W$
>3800	95	${ }^{3}$ SIRUNYAN	19aA CMS	$z^{\prime} \rightarrow t \bar{t}$
>3700	95	4 SIRUNYAN	19CP CMS	$Z^{\prime} \rightarrow W W, H Z, \ell^{+} \ell^{-}$
>1800	95	5 SIRUNYAN	191 CMS	$Z^{\prime} \rightarrow H Z$
none 600-2100	95	${ }^{6}$ AABOUD	18AB ATLS	$z^{\prime} \rightarrow b \bar{b}$
none 500-2830	95	${ }^{7}$ AABOUD	18AI ATLS	$Z^{\prime} \rightarrow H Z$
none 300-3000	95	${ }^{8}$ AABOUD	18AK ATLS	$z^{\prime} \rightarrow W W$
>1300	95	${ }^{9}$ AABOUD	18B ATLS	$z^{\prime} \rightarrow W W$
none 400-3000	95	10 AABOUD	18BI ATLS	$z^{\prime} \rightarrow t \bar{t}$
none 1200-2800	95	11 AABOUD	18F ATLS	$z^{\prime} \rightarrow W W$
>2300	95	12 SIRUNYAN	18ED CMS	$Z^{\prime} \rightarrow H Z$

none 1200-2700	95	13 SIRUNYAN	18P CMS	$z^{\prime} \rightarrow W W$
>2900	95	14 AABOUD	17AK ATLS	$z^{\prime} \rightarrow q \bar{q}$
none 1100-2600	95	15 AABOUD	17AO ATLS	$Z^{\prime} \rightarrow H Z$
>2300	95	16 SIRUNYAN	17AK CMS	$Z^{\prime} \rightarrow W W, H Z$
>2500	95	17 SIRUNYAN	17Q CMS	$z^{\prime} \rightarrow t \bar{t}$
>1190	95	18 SIRUNYAN	17R CMS	$Z^{\prime} \rightarrow H Z$
none 1210-2260	95	18 SIRUNYAN	17R CMS	$Z^{\prime} \rightarrow H Z$
- - We do not use the following data for averages, fits, limits, etc. - -				
>4500		19 AABOUD	19a」 ATLS	$z^{\prime} \rightarrow q \bar{q}$
		${ }^{20}$ AABOUD	19D ATLS	$z^{\prime} \rightarrow q \bar{q}$
		21 AABOUD	19V ATLS	DM simplified Z^{\prime}
		22 AAD	19L ATLS	$z^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
		23 LONG	19 RVUE	Electroweak
		24 PANDEY	19 RVUE	neutrino NSI
		25 SIRUNYAN	19aL CMS	$\begin{gathered} Z^{\prime} \rightarrow t T, T \rightarrow H t \\ Z t, W b \end{gathered}$
		26 SIRUNYAN	19an CMS	DM simplified Z^{\prime}
		27 SIRUNYAN	19св CMS	$z^{\prime} \rightarrow q \bar{q}$
		28 SIRUNYAN	19CD CMS	$z^{\prime} \rightarrow q \bar{q}$
		29 SIRUNYAN	19D CMS	$Z^{\prime} \rightarrow \mathrm{H} \gamma$
		30 AABOUD	18AA ATLS	$z^{\prime} \rightarrow \mathrm{H} \gamma$
		31 AABOUD	18CJ ATLS	$z^{\prime} \rightarrow W W, H z, \ell^{+} \ell^{-}$
		32 AABOUD	18N ATLS	$z^{\prime} \rightarrow q \bar{q}$
		33 AAIJ	18AQ LHCB	$z^{\prime} \rightarrow \mu^{+} \mu^{-}$
		34 SIRUNYAN	18DR CMS	$z^{\prime} \rightarrow \mu^{+} \mu^{-}$
		35 SIRUNYAN	18 G CMS	$z^{\prime} \rightarrow q \bar{q}$
	95	36 SIRUNYAN	181 CMS	$z^{\prime} \rightarrow b \bar{b}$
>1580		37 AABOUD	17B ATLS	$Z^{\prime} \rightarrow H Z$
>1700		38 KHACHATR	..17AX CMS	$Z^{\prime} \rightarrow$ ¢८८ौ
	95	39 KHACHATR	..17U CMS	$Z^{\prime} \rightarrow H Z$
		40 SIRUNYAN	17A CMS	$z^{\prime} \rightarrow W W$
		${ }^{41}$ SIRUNYAN	17AP CMS	$z^{\prime} \rightarrow H A$
		42 SIRUNYAN	17t CMS	$z^{\prime} \rightarrow q \bar{q}$
none 1100-1500	95	43 SIRUNYAN	17 V CMS	$Z^{\prime} \rightarrow T t$
		44 AABOUD	16 ATLS	$z^{\prime} \rightarrow b \bar{b}$
		45 AAD	16L ATLS	$Z^{\prime} \rightarrow a \gamma, a \rightarrow \gamma \gamma$
none 1500-2600	95	46 AAD	16 S ATLS	$z^{\prime} \rightarrow q \bar{q}$
none 1000-1100, none	95	47 KHACHATR	..16AP CMS	$Z^{\prime} \rightarrow H Z$
$\begin{array}{r} 1000 \\ >2400 \end{array}$	95	48 KHACHATR	..16E CMS	$z^{\prime} \rightarrow t \bar{t}$
		49 AAD	15ao ATLS	$Z^{\prime} \rightarrow t \bar{t}$
		${ }^{50}$ AAD	15at ATLS	monotop
		51 AAD	15CD ATLS	$\begin{gathered} H \rightarrow Z Z^{\prime}, Z^{\prime} Z^{\prime} \\ Z^{\prime} \rightarrow \ell^{+} \ell^{-} \end{gathered}$
		52 KHACHATR	..15F CMS	monotop
		53 KHACHATR	.. 150 CMS	$Z^{\prime} \rightarrow H Z$
		54 AAD	14AT ATLS	$Z^{\prime} \rightarrow Z^{\prime}$
		55 KHACHATR	..14A CMS	$z^{\prime} \rightarrow V V$
		56 MARTINEZ	14 RVUE	Electroweak
none 500-1740	95	57 AAD	13AQ ATLS	$z^{\prime} \rightarrow t \bar{t}$
>1320 or 1000-1280	95	${ }^{58}$ AAD	13G ATLS	$z^{\prime} \rightarrow t \bar{t}$
> 915	95	58 AALTONEN	13A CDF	$z^{\prime} \rightarrow t \bar{t}$
>1300	95	59 CHATRCHY	N 13AP CMS	$z^{\prime} \rightarrow t \bar{t}$
>2100	95	58 CHATRCHY	N 13bmCMS	$z^{\prime} \rightarrow t \bar{t}$
		60 AAD	12BV ATLS	$z^{\prime} \rightarrow t \bar{t}$
		${ }^{61}$ AAD	12K ATLS	$Z^{\prime} \rightarrow t \bar{t}$
		62 AALTONEN	12AR CDF	Chromophilic
		63 AALTONEN	12 N CDF	$z^{\prime} \rightarrow \bar{t} u$
>835	95	64 ABAZOV	12R D0	$z^{\prime} \rightarrow t \bar{t}$
		65 CHATRCHYA	N12AI CMS	$z^{\prime} \rightarrow t \bar{u}$
		66 CHATRCHY	12AQ CMS	$z^{\prime} \rightarrow t \bar{t}$
>1490	95	58 CHATRCHY	N 12BL CMS	$z^{\prime} \rightarrow t \bar{t}$
		67 AALTONEN	11AD CDF	$z^{\prime} \rightarrow t \bar{t}$
		68 AALTONEN	11aE CDF	$z^{\prime} \rightarrow t \bar{t}$
		69 CHATRCHY	110 CMS	$p p \rightarrow t t$
		70 AALTONEN	08D CDF	$z^{\prime} \rightarrow t \bar{t}$
		${ }^{70}$ AALTONEN	08Y CDF	$Z^{\prime} \rightarrow t \bar{t}$
		${ }^{70}$ ABAZOV	08AA D0	$z^{\prime} \rightarrow t \bar{t}$
		${ }^{71}$ ABAZOV	04A D0	Repl. by ABAZOV 08AA
		72 BARGER	03b COSM	Nucleosynthesis; light ν_{R}
		${ }^{73} \mathrm{CHO}$	00 RVUE	E_{6}-motivated
		${ }^{74} \mathrm{CHO}$	98 RVUE	E_{6}-motivated
		${ }^{75} \mathrm{ABE}$	97 G CDF	$z^{\prime} \rightarrow \bar{q} q$

${ }^{1}$ AABOUD 19AS search for a resonance decaying to $t \bar{t}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for a top-color Z^{\prime} with $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}=0.01$. Limits are also set on Z^{\prime} masses in simplified Dark Matter models.
${ }^{2}$ AAD 19D search for resonances decaying to $W W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>$ 2900 GeV for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>3800$ GeV and $M_{Z^{\prime}}>3500 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 9 for limits on $\sigma \cdot B$
${ }^{3}$ SIRUNYAN 19AA search for a resonance decaying to $t \bar{t}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for a leptophobic top-color Z^{\prime} with $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}=0.01$. of bosons or leptons in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit becomes $M_{Z^{\prime}}>$ 4500 GeV for $g_{V}=3$ and $M_{Z^{\prime}}>5000 \mathrm{GeV}$ for $g_{V}=1$. See their Figs. 2 and 3 for limits on $\sigma \cdot B$.
${ }^{5}$ SIRUNYAN 191 search for resonances decaying to $Z W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>$ 2800 GeV if we assume $M_{Z^{\prime}}=M_{W^{\prime}}$.
${ }^{6}$ AABOUD 18AB search for resonances decaying to $b \bar{b}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a leptophobic Z^{\prime} with SM-like couplings to quarks. See their Fig. 6 for limits on $\sigma \cdot \mathrm{B}$.
${ }^{7}$ AABOUD 18AI search for resonances decaying to $H Z$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>$ 2650 GeV for $g_{V}=1$. If we assume $M_{W^{\prime}}=M_{Z^{\prime}}$, the limit increases $M_{Z^{\prime}}>2930$ GeV and $M_{Z^{\prime}}>2800 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 5 for limits on $\sigma \cdot B$.
${ }^{8}$ AABOUD 18AK search for resonances decaying to $W W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>2750 \mathrm{GeV}$ for $g_{V}=1$.
${ }^{9}$ AABOUD 18B search for resonances decaying to $W W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g V=1$. See their Fig. 11 for limits on $\sigma \cdot B$.
${ }^{10}$ AABOUD 18BI search for a resonance decaying to $t \bar{t}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for a top-color assisted TC Z^{\prime} with $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}=0.01$. The limits for wider resonances are available. See their Fig. 14 for limits on $\sigma \cdot B$.
11 AABOUD 18 F search for resonances decaying to $W W$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>$ 2200 GeV for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>3500$ GeV and $M_{Z^{\prime}}>3100 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 5 for limits on $\sigma \cdot B$.
12 SIRUNYAN 18ED search for resonances decaying to $H Z$ in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit above is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. If we assume $M_{Z^{\prime}}=$ $M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>2900 \mathrm{GeV}$ and $M_{Z^{\prime}}>2800 \mathrm{GeV}$ for $g_{V}=3$ and g_{V} $=1$, respectively.
${ }^{13}$ SIRUNYAN 18P give this limit for a heavy-vector-triplet Z^{\prime} with $g_{V}=3$. If they assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases to $M_{Z^{\prime}}>3800 \mathrm{GeV}$.
${ }^{14}$ AABOUD 17AK search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit quoted above is for a leptophobic Z^{\prime} boson having axial-vector coupling strength with quarks $g_{q}=0.2$. The limit is 2100 GeV if $g_{q}=0.1$.
${ }^{15}$ AABOUD 17AO search for resonances decaying to $H Z$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a Z^{\prime} in the heavy-vector-triplet model with $g_{V}=3$. See their Fig. 4 for limits on $\sigma \cdot B$.
16 SIRUNYAN 17AK search for resonances decaying to $W W$ or $H Z$ in $p p$ collisions at \sqrt{s} $=8$ and 13 TeV . The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>2200 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>2400 \mathrm{GeV}$ for both $g_{V}=3$ and $g_{V}=1$. See their Fig. 1 and 2 for limits on的B.
17 SIRUNYAN 17Q search for a resonance decaying to $t \bar{t}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a resonance with relative width $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}=0.01$. Limits for wider resonances are available. See their Fig. 6 for limits on $\sigma \cdot B$.
18 SIRUNYAN 17R search for resonances decaying to $H Z$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. Mass regions $M_{Z^{\prime}}<1150$ GeV and $1250 \mathrm{GeV}<M_{Z^{\prime}}<1670 \mathrm{GeV}$ are excluded for $g_{V}=1$. If we assume $M_{Z^{\prime}}$ $=M_{W^{\prime}}$, the excluded mass regions are $1000<M_{Z^{\prime}}<2500 \mathrm{GeV}$ and $2760<M_{Z^{\prime}}<$ 3300 GeV for $g_{V}=3 ; 1000<M_{Z^{\prime}}<2430 \mathrm{GeV}$ and $2810<M_{Z^{\prime}}<3130 \mathrm{GeV}$ for $g_{V}=1$. See their Fig. 5 for limits on $\sigma \cdot B$.
19 AABOUD 19AJ search in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ for a new resonance decaying to $q \bar{q}$ and produced in association with a high p_{T} photon. For a leptophobic axial-vector Z^{\prime} in the mass region $250 \mathrm{GeV}<M_{Z^{\prime}}<950 \mathrm{GeV}$, the Z^{\prime} coupling with quarks g_{q} is constrained below 0.18. See their Fig. 2 for limits in $M_{Z^{\prime}}-g_{q}$ plane.
${ }^{20}$ AABOUD 19D search in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ for a new resonance decaying to $q \bar{q}$ and produced in association with a high- p_{T} photon or jet. For a leptophobic axial-vector Z^{\prime} in the mass region $100 \mathrm{GeV}<M_{Z^{\prime}}<220 \mathrm{GeV}$, the Z^{\prime} coupling with quarks g_{q} is constrained below 0.23 . See their Fig. 6 for limits in $M_{Z^{\prime}}-g_{q}$ plane.
${ }^{21}$ AABOUD 19V search for Dark Matter simplified Z^{\prime} decaying invisibly or decaying to fermion pair in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{22}$ AAD 19L search for resonances decaying to $\ell^{+} \ell^{-}$in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 4 for limits in the heavy vector triplet model couplings.
${ }^{23}$ LONG 19 uses the weak charge data of Cesium and proton to constrain mass of Z^{\prime} in the 3-3-1 models.
${ }^{24}$ PANDEY 19 obtain limits on Z^{\prime} induced neutrino non-standard interaction (NSI) parameter ϵ from LHC and IceCube data. See their Fig. 2 for limits in $M_{Z^{\prime}}-\epsilon$ plane, where ϵ $=g_{q} g_{\nu} \mathrm{v}^{2} /\left(2 M_{Z^{\prime}}^{2}\right)$.
25 SIRUNYAN 19AL search for a new resonance decaying to a top quark and a heavy vector-like top partner in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 8 for limits on Z^{\prime} production cross section.
26 SIRUNYAN 19AN search for a Dark Matter (DM) simplified model Z^{\prime} decaying to H DM DM in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 7 for limits on the signal strength modifiers.
27 SIRUNYAN 19CB search in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ for a new resonance decaying to $q \bar{q}$. For a leptophobic Z^{\prime} in the mass region $50-300 \mathrm{GeV}$, the Z^{\prime} coupling with quarks g_{q}^{\prime} is constrained below 0.2. See their Figs. 4 and 5 for limits on g_{q}^{\prime} in the mass range $50<M_{Z^{\prime}}<450 \mathrm{GeV}$.
28 SIRUNYAN 19CD search in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ for a leptophobic Z^{\prime} produced in association of high p_{T} ISR photon and decaying to $q \bar{q}$. See their Fig. 2 for limits on the Z^{\prime} coupling strength g_{q}^{\prime} to $q \bar{q}$ in the mass range between 10 and 125 GeV .

Gauge \& Higgs Boson Particle Listings

New Heavy Bosons

${ }^{29}$ SIRUNYAN 19D search for a narrow neutral vector resonance decaying to $H \gamma$. See their Fig. 3 for exclusion limit in $M_{Z^{\prime}}-\sigma \cdot B$ plane. Upper limits on the production of $H \gamma$ resonances are set as a function of the resonance mass in the range of $720-3250 \mathrm{GeV}$.
${ }^{30}$ AABOUD 18AA search for a narrow neutral vector boson decaying to $\mathrm{H} \gamma$. See their Fig. 10 for the exclusion limit in $\mathrm{M}_{Z^{\prime}}-\sigma$ B plane.
${ }^{31}$ AABOUD 18CJ search for heavy-vector-triplet Z^{\prime} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for model with $g_{V}=3$ assuming $M_{Z^{\prime}}=M_{W^{\prime}}$. The limit becomes $M_{Z^{\prime}}>5500 \mathrm{GeV}$ for model with $g_{V}=1$.
${ }^{32}$ AABOUD 18 N search for a narrow resonance decaying to $q \bar{q}$ in $p p$ collisions at $\sqrt{s}=$ 13 TeV using trigger level analysis to improve the low mass region sensitivity. See their Fig. 5 for limits in the mass-coupling plane in the Z^{\prime} mass range $450-1800 \mathrm{GeV}$.
${ }^{33}$ AAIJ 18AQ search for spin- 0 and spin- 1 resonances decaying to $\mu^{+} \mu^{-}$in $p p$ collisions at $\sqrt{s}=7$ and 8 TeV in the mass region near 10 GeV . See their Figs. 4 and 5 for limits
${ }^{34} \begin{aligned} & \text { on } \sigma \cdot B \text {. } \\ & \text { SIRUNYAN } \\ & \text { 18DR searches for } \\ & \mu^{+}\end{aligned} \mu^{-}$resonances produced in association with b-jets in the $p p$ collision data with $\sqrt{s}=8 \mathrm{TeV}$ and 13 TeV . An excess of events near $m_{\mu \mu}=$ 28 GeV is observed in the 8 TeV data. See their Fig. 3 for the measured fiducial signal cross sections at $\sqrt{s}=8 \mathrm{TeV}$ and the $95 \% \mathrm{CL}$ upper limits at $\sqrt{s}=13 \mathrm{TeV}$.
${ }^{35}$ SIRUNYAN 18 G search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV in the mass range $50-300 \mathrm{GeV}$. See their Fig. 7 for limits in the mass-coupling plane.
${ }^{36}$ SIRUNYAN 181 search for a narrow resonance decaying to $b \bar{b}$ in $p p$ collisions at $\sqrt{s}=$ 8 TeV using dedicated b-tagged dijet triggers to improve the sensitivity in the low mass region. See their Fig. 3 for limits on $\sigma \cdot B$ in the Z^{\prime} mass range $325-1200 \mathrm{GeV}$.
${ }^{37}$ AABOUD 17B search for resonances decaying to $H Z\left(H \rightarrow b \bar{b}, c \bar{c} ; Z \rightarrow \ell^{+} \ell^{-}, \nu \bar{\nu}\right)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$. The limit becomes $M_{Z^{\prime}}>1490 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>2310 \mathrm{GeV}$ and $M_{Z^{\prime}}>1730 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 3 for limits on $\sigma \cdot B$.
38 KHACHATRYAN 17AX search for lepto-phobic resonances decaying to four leptons in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
${ }^{39}$ KHACHATRYAN 170 search for resonances decaying to $\mathrm{HZ}\left(H \rightarrow b \bar{b} ; Z \rightarrow \ell^{+} \ell^{-}\right.$, $\nu \bar{\nu})$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit on the heavy-vector-triplet model is $M_{Z^{\prime}}$ $=M_{W^{\prime}}>2 \mathrm{TeV}$ for $g_{V}=3$, in which constraints from the $W^{\prime} \rightarrow H W(H \rightarrow b \bar{b}$; $W \rightarrow \ell \nu)$ are combined. See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot B$.
${ }^{40}$ SIRUNYAN 17A search for resonances decaying to $W W$ with $W W \rightarrow \ell \nu q \bar{q}, q \bar{q} q \bar{q}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The quoted limit is for heavy-vector-triplet Z^{\prime} with g_{V} $=3$. The limit becomes $M_{Z^{\prime}}>1600 \mathrm{GeV}$ for $g_{V}=1$. If we assume $M_{Z^{\prime}}=M_{W^{\prime}}$, the limit increases $M_{Z^{\prime}}>2400 \mathrm{GeV}$ and $M_{Z^{\prime}}>2300 \mathrm{GeV}$ for $g_{V}=3$ and $g_{V}=1$, respectively. See their Fig. 6 for limits on $\sigma \cdot Z^{\prime}$.
41 SIRUNYAN 17AP search for resonances decaying into a SM-like Higgs scalar H and a light pseudo scalar A. A is assumed to decay invisibly. See their Fig. 9 for limits on $\sigma \cdot B$.
42 SIRUNYAN 17 T search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV in the mass range $100-300 \mathrm{GeV}$. See their Fig. 3 for limits in the mass-coupling plane.
43 SIRUNYAN 17V search for a new resonance decaying to a top quark and a heavy vectorlike top partner T in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their table 5 for limits on the Z^{\prime} production cross section for various values of $M_{Z^{\prime}}$ and M_{T} in the range of $M_{Z^{\prime}}=$ $1500-2500 \mathrm{GeV}$ and $M_{T}=700-1500 \mathrm{GeV}$.
${ }^{44}$ AABOUD 16 search for a narrow resonance decaying into $b \bar{b}$ in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit quoted above is for a leptophobic z^{\prime} with SM -like couplings to quarks. See their Fig. 6 for limits on $\sigma \cdot B$.
${ }^{45}$ AAD 16L search for $Z^{\prime} \rightarrow a \gamma, a \rightarrow \gamma \gamma$ in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. See their Table 6 for limits on $\sigma \cdot B$
${ }^{46}$ AAD 16 S search for a new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit quoted above is for a leptophobic z^{\prime} having coupling strength with quark g_{q} $=0.3$ and is taken from their Figure 3.
${ }^{47}$ KHACHATRYAN 16AP search for a resonance decaying to HZ in $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$. Both H and Z are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet Z^{\prime} with $g_{V}=3$.
${ }^{48}$ KHACHATRYAN 16 E search for a leptophobic top-color Z^{\prime} decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The quoted limit assumes that $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012$. Also $m_{Z^{\prime}}<2.9 \mathrm{TeV}$ is excluded for wider topcolor Z^{\prime} with $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.1$.
${ }^{49} \mathrm{AAD}$ 15AO search for narrow resonance decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=8$ TeV. See Fig. 11 for limit on σB.
${ }^{50}$ AAD 15AT search for monotop production plus large missing E_{T} events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ and give constraints on a Z^{\prime} model having $Z^{\prime} u \bar{t}$ coupling. Z^{\prime} is assumed to decay invisibly. See their Fig. 6 for limits on $\sigma \cdot B$.
${ }^{51}$ AAD 15CD search for decays of Higgs bosons to 4ℓ states via Z^{\prime} bosons, $H \rightarrow Z Z^{\prime} \rightarrow$ 4ℓ or $H \rightarrow Z^{\prime} Z^{\prime} \rightarrow 4 \ell$. See Fig. 5 for the limit on the signal strength of the $H \rightarrow$ $z Z^{\prime} \rightarrow 4 \ell$ process and Fig. 16 for the limit on $H \rightarrow Z^{\prime} Z^{\prime} \rightarrow 4 \ell$.
${ }^{52}$ KHACHATRYAN 15 F search for monotop production plus large missing E_{T} events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ and give constraints on a Z^{\prime} model having $Z^{\prime} u \bar{t}$ coupling. z^{\prime} is assumed to decay invisibly. See Fig. 3 for limits on σB.
${ }^{53}$ KHACHATRYAN 150 search for narrow Z^{\prime} resonance decaying to $Z H$ in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. See their Fig. 6 for limit on σB.
${ }^{54}$ AAD 14AT search for a narrow neutral vector boson decaying to $Z \gamma$. See their Fig. 3b for the exclusion limit in $m_{Z^{\prime}}-\sigma B$ plane.
55 KHACHATRYAN 14 A search for new resonance in the $W W(\ell \nu q \bar{q})$ and the $Z Z(\ell \ell q \bar{q})$ channels using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. See their Fig. 13 for the exclusion limit on the number of events in the mass-width plane.
${ }^{56}$ MARTINEZ 14 use various electroweak data to constrain the z^{\prime} boson in the 3-3-1 57 models.
57 mAD 13 AQ search for a leptophobic top-color Z^{\prime} decaying to $t \bar{t}$. The quoted limit assumes that $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012$.
${ }^{58}$ CHATRCHYAN 13 BM search for top-color Z^{\prime} decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=8$ TeV . The quoted limit is for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012$.
${ }^{59}$ CHATRCHYAN 13AP search for top-color leptophobic Z^{\prime} decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. The quoted limit is for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012$.
${ }^{60}$ AAD 12BV search for narrow resonance decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. See their Fig. 7 for limit on $\sigma \cdot \mathrm{B}$.
${ }^{61}$ AAD 12 K search for narrow resonance decaying to $t \bar{t}$ using $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. See their Fig. 5 for limit on $\sigma \cdot \mathrm{B}$.
6^{62} AALTONEN 12 AR search for chromophilic Z^{\prime} in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. See their Fig. 5 for limit on $\sigma \cdot \mathrm{B}$.
${ }^{63}$ AALTONEN 12 N search for $p \bar{p} \rightarrow t z^{\prime}, z^{\prime} \rightarrow \bar{t} u$ events in $p \bar{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot$ B.
64 ABAZOV 12 R search for top-color Z^{\prime} boson decaying exclusively to $t \bar{t}$. The quoted limit is for $\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012$.
${ }^{65}$ CHATRCHYAN 12AI search for $p p \rightarrow t t$ events and give constraints on a Z^{\prime} model having $Z^{\prime} \bar{U} t$ coupling. See their Fig. 4 for the limit in mass-coupling plane.
${ }^{66}$ Search for resonance decaying to $t \bar{t}$. See their Fig. 6 for limit on $\sigma \cdot \mathrm{B}$.
${ }^{67}$ Search for narrow resonance decaying to $t \bar{t}$. See their Fig. 4 for limit on $\sigma \cdot \mathrm{B}$
${ }^{68}$ Search for narrow resonance decaying to $t \bar{t}$. See their Fig. 3 for limit on $\sigma \cdot$ B.
${ }^{69}$ CHATRCHYAN 110 search for same-sign top production in $p p$ collisions induced by a hypothetical FCNC z^{\prime} at $\sqrt{s}=7 \mathrm{TeV}$. See their Fig. 3 for limit in mass-coupling plane.
${ }^{70}$ Search for narrow resonance decaying to $t \bar{t}$. See their Fig. 3 for limit on $\sigma \cdot$ B.
${ }^{71}$ Search for narrow resonance decaying to $t \bar{t}$. See their Fig. 2 for limit on $\sigma \cdot \mathrm{B}$.
${ }^{72}$ BARGER 03B use the nucleosynthesis bound on the effective number of light neutrino δN_{ν}. See their Figs. 4-5 for limits in general E_{6} motivated models.
${ }^{73} \mathrm{CHO} 00$ use various electroweak data to constrain Z^{\prime} models assuming $m_{H}=100 \mathrm{GeV}$. See Fig. 2 for limits in general E_{6}-motivated models.
${ }^{74} \mathrm{CHO} 98$ study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no $Z-Z^{\prime}$ mixing.
${ }^{5}$ Search for Z^{\prime} decaying to dijets at $\sqrt{s}=1.8 \mathrm{TeV}$. For Z^{\prime} with electromagnetic strength coupling, no bound is obtained.

Searches for Z^{\prime} with Lepton-Flavor-Violating decays

The following limits are obtained from $p \bar{p}$ or $p p \rightarrow Z^{\prime} X$ with Z^{\prime} decaying to the mode indicated in the comments.
VALUE IOCUNENTID COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - •

${ }^{1}$ AABOUD	18См ATLS	$z^{\prime} \rightarrow e \mu, e \tau, \mu \tau$
${ }^{2}$ SIRUNYAN	18at CMS	$Z^{\prime} \rightarrow e \mu$
${ }^{3}$ AABOUD	16P ATLS	$z^{\prime} \rightarrow e \mu, e \tau, \mu \tau$
${ }^{4}$ KHACHATRY	.16BE CMS	$z^{\prime} \rightarrow e \mu$
${ }^{5}$ AAD	150 ATLS	$z^{\prime} \rightarrow e \mu, e \tau, \mu \tau$
${ }^{6}$ AAD	11H ATLS	$Z^{\prime} \rightarrow e \mu$
${ }^{7}$ AAD	112 ATLS	$Z^{\prime} \rightarrow e \mu$
${ }^{8}$ ABULENCIA	06m CDF	$z^{\prime} \rightarrow e \mu$

${ }^{1}$ AABOUD 18 CM search for a new particle with lepton-flavor violating decay in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Figs. 4,5 , and 6 for limits on $\sigma \cdot B$.
${ }^{2}$ SIRUNYAN 18AT search for a narrow resonance Z^{\prime} decaying into $e \mu$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 5 for limit on $\sigma \cdot B$ in the range of $600 \mathrm{GeV}<M_{Z^{\prime}}<5000$ GeV .
${ }^{3}$ AABOUD 16P search for new particle with lepton flavor violating decay in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Figs.2, 3, and 4 for limits on $\sigma \cdot B$.
${ }^{4}$ KHACHATRYAN 16 BE search for new particle Z^{\prime} with lepton flavor violating decay in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ in the range of $200 \mathrm{GeV}<\mathrm{M}_{\mathrm{Z}^{\prime}}<2000 \mathrm{GeV}$. See their Fig. 4 for limits on $\sigma \cdot B$ and their Table 5 for bounds on various masses.
${ }^{5}$ AAD 150 search for new particle Z^{\prime} with lepton flavor violating decay in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ in the range of $500 \mathrm{GeV}<\mathrm{M}_{\mathrm{Z}^{\prime}}<3000 \mathrm{GeV}$. See their Fig. 2 for limits
${ }^{6}{ }_{\text {AAD }}^{\text {on }} \sigma B$. 11 H search for new particle Z^{\prime} with lepton flavor violating decay in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ in the range of $700 \mathrm{GeV}<\mathrm{M}_{Z^{\prime}}<1000 \mathrm{GeV}$. See their Fig. 3 for limits on $\sigma \cdot B$.
$7{ }^{\text {on } \sigma}$.
${ }^{7}$ AAD $11 z$ search for new particle Z^{\prime} with lepton flavor violating decay in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ in the range $700 \mathrm{GeV}<\mathrm{M}_{Z^{\prime}}<2000 \mathrm{GeV}$. See their Fig. 3 for limits on ${ }_{8} \sigma \cdot B$.
${ }^{8}$ ABULENCIA 06M search for new particle z^{\prime} with lepton flavor violating decay in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ in the range of $100 \mathrm{GeV}<\mathrm{M}_{Z^{\prime}}<800 \mathrm{GeV}$. See their Fig. 4 for limits in the mass-coupling plane.

Indirect Constraints on Kaluza-Klein Gauge Bosons

Bounds on a Kaluza-Klein excitation of the Z boson or photon in $d=1$ extra dimension. These bounds can also be interpreted as a lower bound on $1 / R$, the size of the extra dimension. Unless otherwise stated, bounds assume all fermions live on a single brane and all gauge fields occupy the $4+d$-dimensional bulk. See also the section on "Extra Dimensions" in the "Searches" Listings in this Review.
VALUE (TeV) CL\% DOCUMENTID TECN COMMENT

>4.7		1 MUECK	02	RVUE	Electroweak
>3.3	95	${ }^{2}$ CORNET	00	RVUE	$e \nu q q^{\prime}$
>5000		3 DELGADO	00	RVUE	ϵ_{K}
>2.6	95	${ }^{4}$ DELGADO	00	RVUE	Electroweak
>3.3	95	${ }^{5}$ RIZZO	00	RVUE	Electroweak
$>\quad 2.9$	95	${ }^{6}$ MARCIANO	99	RVUE	Electroweak
>2.5	95	7 MASIP	99	RVUE	Electroweak
>1.6	90	8 NATH	99	RVUE	Electroweak
>3.4	95	${ }^{9}$ STRUMIA	99	RVUE	Electroweak

${ }^{1}$ MUECK 02 limit is 2σ and is from global electroweak fit ignoring correlations among observables. Higgs is assumed to be confined on the brane and its mass is fixed. For scenarios of bulk Higgs, of brane- $\mathrm{SU}(2)_{L}$, bulk- $\mathrm{U}(1)_{Y}$, and of bulk- $\mathrm{SU}(2)_{L}$, brane- $\mathrm{U}(1)_{Y}$, the corresponding limits are $>4.6 \mathrm{TeV},>4.3 \mathrm{TeV}$ and $>3.0 \mathrm{TeV}$, respectively.
${ }^{2}$ Bound is derived from limits on $e \nu q q^{\prime}$ contact interaction, using data from HERA and the Tevatron.
${ }^{3}$ Bound holds only if first two generations of quarks lives on separate branes. If quark
mixing is not complex, then bound lowers to 400 TeV from Δm_{K}.
${ }^{4}$ See Figs. 1 and 2 of DELGADO 00 for several model variations. Special boundary con-
ditions can be found which permit KK states down to 950 GeV and that agree with the
measurement of $Q_{W}(\mathrm{Cs})$. Quoted bound assumes all Higgs bosons confined to brane;
placing one Higgs doublet in the bulk lowers bound to 2.3 TeV .
5 Bound is derived from global electroweak analysis assuming the Higgs field is trapped on
the matter brane. If the Higgs propagates in the bulk, the bound increases to 3.8 TeV .
${ }^{6}$ Bound is derived from global electroweak analysis but considering only presence of the
KK W bosons.
$7^{7} \mathrm{Global}$ electroweak analysis used to obtain bound independent of position of Higgs on
brane or in bulk.
${ }^{8}$ Bounds from effect of KK states on G_{F}, α, M_{W}, and M_{Z}. Hard cutoff at string scale
determined using gauge coupling unification. Limits for $d=2,3,4$ rise to $3.5,5.7$, and 7.8
TeV.
${ }^{9}$ Bound obtained for Higgs confined to the matter brane with $m_{H}=500 \mathrm{GeV}$. For Higgs
in the bulk, the bound increases to 3.5 TeV .

See the related review(s):

 Leptoquarks
MASS LIMITS for Leptoquarks from Pair Production

These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV)	CL\%
>1185	95
>1140	95
>1140	95
>1925	95
>1825	95
>1980	95
>1400	95
>1560	95
>1000	95
>1030	95
>970	95
>920	95
>1530	95
>1435	95
>1020	95
none 300-900	95
>1420	95
>1190	95
>1100	95
>980	95
>1020	95
>1810	95
>1790	95
>1780	95
>740	95
>850	95
>1050	95
>1000	95
>625	95
none 200-640	95
>1010	95
>1080	95
>685	95
>740	95

CL\%
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95

${ }^{1}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$ $=u, d, s, c)$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(\nu b)=1$.
${ }^{2}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu(q$ $=u, d, s, c)$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(\nu t)=1$.
${ }^{3}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu(q$ $=u, d, s, c)$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(\nu q)=1$.
${ }^{4}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu(q$ $=u, d, s, c)$. The limit quoted above assumes vector leptoquark with $\mathrm{B}(\nu b)=1$ and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{L Q}>1560 \mathrm{GeV}$.
${ }^{5}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu(q$ $=u, d, s, c)$. The limit quoted above assumes vector leptoquark with $\mathrm{B}(\nu t)=1$ and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{L Q}>1475 \mathrm{GeV}$.
${ }^{6}$ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t \nu$, $b \nu$, and $q \nu(q$ $=u, d, s, c)$. The limit quoted above assumes vector leptoquark with $\mathrm{B}(\nu q)=1$ and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{L Q}>1560 \mathrm{GeV}$.
${ }^{7}$ AABOUD 19AX search for leptoquarks using eejj events in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit above assumes $\mathrm{B}(e q)=1$
${ }^{8}$ AABOUD 19AX search for leptoquarks using $\mu \mu j j$ events in $p p$ collisions at $\sqrt{s}=13$ TeV . The limit above assumes $\mathrm{B}(\mu q)=1$.
${ }^{9}$ AABOUD 19x search for scalar leptoquarks decaying to $t \nu$ in $p p$ collisions at $\sqrt{s}=13$ ${ }^{10} \mathrm{TeV}$.
${ }^{10}$ AABOUD 19x search for scalar leptoquarks decaying to $b \tau$ in $p p$ collisions at $\sqrt{s}=13$ ${ }^{11} \mathrm{TeV}$.
${ }^{11}$ AABOUD $19 \times$ search for scalar leptoquarks decaying to $b \nu$ in $p p$ collisions at $\sqrt{s}=13$ TeV.
${ }^{12}$ AABOUD $19 \times$ search for scalar leptoquarks decaying to $t \tau$ in $p p$ collisions at $\sqrt{s}=13$ TeV.
13 SIRUNYAN 19BI search for a pair of Scalar leptoquarks decaying to $\mu \mu j j$ and to $\mu \nu j j$ final states in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. Limits are shown as a function of β where β is the branching fraction to a muon and a quark. For $\beta=1.0$ (0.5) LQ masses up to $1530(1285) \mathrm{GeV}$ are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass.
${ }^{4}$ SIRUNYAN 19BJ search for a pair of scalar leptoquarks decaying to $e e j j$ and $e \nu j j$ final states in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. Limits are shown as a function of the branching fraction β to an electron and a quark. For $\beta=1.0(0.5) \mathrm{LQ}$ masses up to 1435 (1270)
GeV are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass
${ }^{5}$ SIRUNYAN 19 Y search for a pair of third generation scalar leptoquarks, each decaying to τ and a jet. Assuming $\mathrm{B}(\tau b)=1$, leptoquark masses below 1.02 TeV are excluded.
${ }^{16}$ SIRUNYAN 18 CZ search for scalar leptoquarks decaying to τt in $p p$ collisions at $\sqrt{s}=$ 13 TeV . The limit above assumes $\mathrm{B}(\tau t)=1$.
17 SIRUNYAN 18 EC set limits for scalar and vector leptoquarks decaying to $\mu t, \tau t$, and νb. The limit quoted above assumes scalar leptoquark with $\mathbf{B}(\mu t)=1$.
18 SIRUNYAN 18EC set limits for scalar and vector leptoquarks decaying to $\mu t, \tau t$, and νb. The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to $\mu t, \tau t$, and νb.
19 SIRUNYAN 180 set limits for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(b \nu)=1$. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1810 GeV .
20 SIRUNYAN $18 u$ set limits for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(q \nu)=1$. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1790 GeV
21 SIRUNYAN 180 set limits for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$. The limit quoted above assumes scalar leptoquark with $\mathrm{B}(\nu t)=1$. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1780 GeV .
22 SIRUNYAN 18 set limits for scalar and vector leptoquarks decaying to $t \nu$, $b \nu$, and $q \nu$. $\kappa=1$ and LQ $\rightarrow b \nu$ are assumed.
23 SIRUNYAN 18 U set limits for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$. $\kappa=1$ and LQ $\rightarrow q \nu$ with $q=u, d, s, c$ are assumed.
24 SIRUNYAN 18 set limits for scalar and vector leptoquarks decaying to $t \nu, b \nu$, and $q \nu$. $\kappa=1$ and LQ $\rightarrow t \nu$ are assumed.
${ }^{25} \mathrm{KHACHATRYAN}$ 17」 search for scalar leptoquarks decaying to τb using $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\tau b)=1$.
26 SIRUNYAN 17H search for scalar leptoquarks using $\tau \tau b b$ events in $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\tau b)=1$

Gauge \& Higgs Boson Particle Listings

New Heavy Bosons

${ }^{27}$ AAD 16 G search for scalar leptoquarks using eejj events in collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $B(e q)=1$.
${ }^{28}$ AAD 16G search for scalar leptoquarks using $\mu \mu j j$ events in collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $B(\mu q)=1$.
${ }^{29}$ AAD 16 G search for scalar leptoquarks decaying to $b \nu$. The limit above assumes $B(b \nu)$ ${ }_{30}=1$.
${ }^{3}$ AAD 16 G search for scalar leptoquarks decaying to $t \nu$. The limit above assumes $B(t \nu)$ $1 \begin{aligned} & =1 . \\ & \text { KHAC }\end{aligned}$
31 KHACHATRYAN 16AF search for scalar leptoquarks using $e e j j$ and $e \nu j j$ events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$, the limit becomes 850 GeV .
32 KHACHATRYAN 16AF search for scalar leptoquarks using $\mu \mu j j$ and $\mu \nu j j$ events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes 760 GeV .
33 KHACHATRYAN 15AJ search for scalar leptoquarks using $\tau \tau t t$ events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $B(\tau t)=1$.
34 KHACHATRYAN 14 T search for scalar leptoquarks decaying to τb using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\tau b)=1$. See their Fig. 5 for the exclusion limit as function of $\mathrm{B}(\tau b)$.
35 SIRUNYAN 19BC search for scalar leptoquark (LQ) pair production in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$. One LQ is assumed to decay to μq, while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $M_{\mathrm{LQ}}-M_{\mathrm{DM}}$ plane.
${ }^{36}$ AAD 13AE search for scalar leptoquarks using $\tau \tau b b$ events in $p p$ collisions at $E_{\mathrm{Cm}}=$ 7 TeV . The limit above assumes $\mathrm{B}(\tau b)=1$.
37 CHATRCHYAN 13 M search for scalar and vector leptoquarks decaying to τb in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above is for scalar leptoquarks with $\mathrm{B}(\tau b)=1$.
${ }^{38}$ AAD 12 H search for scalar leptoquarks using eejj and $e \nu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$, the limit becomes
${ }^{39}$ AAD 120 search for scalar leptoquarks using $\mu \mu j j$ and $\mu \nu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes
40594 GeV .
CHATRCHYAN 12AG search for scalar leptoquarks using eeejj and e e jj events in pp collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$, the limit becomes 640 GeV .
${ }^{1}$ CHATRCHYAN 12AG search for scalar leptoquarks using $\mu \mu j j$ and $\mu \nu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes 650 GeV .
${ }^{42}$ CHATRCHYAN 12BO search for scalar leptoquarks decaying to νb in $p p$ collisions at \sqrt{s} $=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\nu b)=1$.
${ }^{43}$ AAD 11D search for scalar leptoquarks using eejj and e $e \nu j$ events in pp collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$, the limit becomes $\mathrm{Cm}=7$
319 GeV .
44 AAD 11D search for scalar leptoquarks using $\mu \mu j j$ and $\mu \nu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes $45 \mathrm{Br2} \mathrm{GeV}$.
$=1.96 \mathrm{TeV}$. The limit above leptoquarks using $e \nu j j$ events in $p \bar{p}$ collisions at E_{cm} $=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=0.5$
${ }^{46}$ CHATRCHYAN 11 N search for scalar leptoquarks using $e \nu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=0.5$.
47 KHACHATRYAN 11D search for scalar leptoquarks using e ejj events in pp collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$.
48 KHACHATRYAN 11E search for scalar leptoquarks using $\mu \mu j j$ events in $p p$ collisions at $E_{\mathrm{cm}}=7 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$.
${ }^{49}$ ABAZOV 10 L search for pair productions of scalar leptoquark state decaying to νb in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\nu b)=1$.
${ }^{50}$ ABAZOV 09 search for scalar leptoquarks using $\mu \mu j j$ and $\mu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes 270 GeV .
1 ABAZOV 09AF search for scalar leptoquarks using eejj and e $e j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$ the bound becomes 284 GeV .
52 AALTONEN 08P search for vector leptoquarks using $\tau^{+} \tau^{-} b \bar{b}$ events in $p \bar{p}$ collisions at $E_{\text {cm }}=1.96 \mathrm{TeV}$. Assuming Yang-Mills (minimal) couplings, the mass limit is >317 $\mathrm{GeV}(251 \mathrm{GeV})$ at $95 \% \mathrm{CL}$ for $\mathrm{B}(\tau b)=1$.
${ }^{53}$ Search for pair production of scalar leptoquark state decaying to τb in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\tau b)=1$.
54 Search for scalar leptoquarks using $\nu \nu j j$ events in $\bar{p} p$ collisions at $E_{\mathrm{Cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\nu q)=1$.
55 ABAZOV 07J search for pair productions of scalar leptoquark state decaying to νb in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\nu b)=1$.
${ }^{56}$ ABAZOV 06A search for scalar leptoquarks using $\mu \mu j j$ events in $p \bar{p}$ collisions at E_{Cm} $=1.8 \mathrm{TeV}$ and 1.96 TeV . The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$, the limit becomes 204 GeV .
57 ABAZOV 06L search for scalar leptoquarks using $\nu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.8 TeV and at 1.96 TeV . The limit above assumes $\mathrm{B}(\nu q)=1$.
${ }^{58}$ ABULENCIA O6T search for scalar leptoquarks using $\mu \mu j j, \mu \nu j j$, and $\nu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The quoted limit assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=$ 0.5 or 0.1 , the bound becomes 208 GeV or 143 GeV , respectively. See their Fig. 4 for the exclusion limit as a function of $\mathrm{B}(\mu q)$.
${ }^{59}$ ABAZOV 05 H search for scalar leptoquarks using eejj and $e \nu j j$ events in $\bar{p} p$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$ and 1.96 TeV . The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=$ 0.5 the bound becomes 234 GeV .

60 ACOSTA 05P search for scalar leptoquarks using eejj, e $j j$ events in $\bar{p} p$ collisions at $E_{\mathrm{cm}}=1.96 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$ and 0.1 , the bound becomes 205 GeV and 145 GeV , respectively
61 ABBIENDI 03R search for scalar/vector leptoquarks in $e^{+} e^{-}$collisions at $\sqrt{s}=189-209$ GeV . The quoted limits are for charge $-4 / 3$ isospin 0 scalar-leptoquark with $\mathrm{B}(\ell q)=1$. See their table 12 for other cases.
${ }^{62}$ ABAZOV 02 search for scalar leptoquarks using $\nu \nu j j$ events in $\bar{p} p$ collisions at $E_{\mathrm{Cm}}=1.8$ TeV . The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV .
${ }^{63}$ ABAZOV 01D search for scalar leptoquarks using $e \nu j j$, eejj, and $\nu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$ and 0 , the bound becomes 204 and 79 GeV , respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 98E.
${ }^{64}$ ABBIENDI 00M search for scalar/vector leptoquarks in $e^{+} e^{-}$collisions at $\sqrt{s}=183 \mathrm{GeV}$. The quoted limits are for charge $-4 / 3$ isospin 0 scalar-leptoquarks with $\mathrm{B}(\ell q)=1$. See their Table 8 and Figs. 6-9 for other cases.
65 ABBOTT 00C search for scalar leptoquarks using $\mu \mu j j, \mu \nu j j$, and $\nu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=0.5$ and 0 , the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also
${ }^{6}$ given. $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The quoted limit assumes $\mathrm{B}(\nu c)=1$. Bounds for vector leptoquarks are also given.
67 AFFOLDER 00K search for scalar leptoquark using $\nu \nu b b$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The quoted limit assumes $\mathrm{B}(\nu b)=1$. Bounds for vector leptoquarks are also given.
68 ABBOTT 99」 search for leptoquarks using $\mu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.8 \mathrm{TeV}$. The quoted limit is for a scalar leptoquark with $\mathrm{B}(\mu q)=\mathrm{B}(\nu q)=0.5$. Limits on vector leptoquarks range from 240 to 290 GeV .
69 ABBOTT 98E search for scalar leptoquarks using $e \nu j j$, eejj, and $\nu \nu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$. For $\mathrm{B}(e q)=0.5$ and 0 , the bound becomes 204 and 79 GeV , respectively.
70 ABBOTT 98」 search for charge $-1 / 3$ third generation scalar and vector leptoquarks in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8 \mathrm{TeV}$. The quoted limit is for scalar leptoquark with $\mathrm{B}(\nu b)=1$.
${ }^{71} \mathrm{ABE} 98 \mathrm{~s}$ search for scalar leptoquarks using $\mu \mu j j$ events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=$ 1.8 TeV. The limit is for $\mathrm{B}(\mu q)=1$. For $\mathrm{B}(\mu q)=\mathrm{B}(\nu q)=0.5$, the limit is $>160 \mathrm{GeV}$.

72 GROSS-PILCHER 98 is the combined limit of the CDF and D \varnothing Collaborations as determined by a joint CDF/D \varnothing working group and reported in this FNAL Technical Memo. Original data published in ABE 97X and ABBOTT 98E.
${ }^{73} \mathrm{ABE} 97 \mathrm{~F}$ search for third generation scalar and vector leptoquarks in $p \bar{p}$ collisions at $E_{\mathrm{Cm}}=1.8 \mathrm{TeV}$. The quoted limit is for scalar leptoquark with $\mathrm{B}(\tau b)=1$.
${ }^{74} \mathrm{ABE} 97 \mathrm{x}$ search for scalar leptoquarks using eejj events in $p \bar{p}$ collisions at $E_{\mathrm{cm}}=1.8$ TeV . The limit is for $\mathrm{B}(e q)=1$.
${ }^{75}$ Limit is for charge $-1 / 3$ isospin-0 leptoquark with $\mathrm{B}(\ell q)=2 / 3$.
${ }^{76}$ First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
77 Limits are for charge $-1 / 3$, isospin- 0 scalar leptoquarks decaying to $\ell^{-} q$ or νq with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
78 KIM 90 assume pair production of charge $2 / 3$ scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of $d e^{+}$and $u \bar{\nu}\left(s \mu^{+}\right.$and $\left.c \bar{\nu}\right)$. See paper for limits for specific branching ratios.
${ }^{79}$ BARTEL 87B limit is valid when a pair of charge $2 / 3$ spinless leptoquarks X is produced with point coupling, and when they decay under the constraint $\mathrm{B}\left(\mathrm{X} \rightarrow c \bar{\nu}_{\mu}\right)+\mathrm{B}(\mathrm{X} \rightarrow$ $\left.s \mu^{+}\right)=1$.
${ }^{80}$ BEHREND 86B assumed that a charge $2 / 3$ spinless leptoquark, χ, decays either into $s \mu^{+}$or $c \bar{\nu}: \mathrm{B}\left(\chi \rightarrow s \mu^{+}\right)+\mathrm{B}(\chi \rightarrow c \bar{\nu})=1$.

MASS LIMITS for Leptoquarks from Single Production
These limits depend on the q - ℓ-leptoquark coupling $g_{L Q}$. It is often assumed that $g_{L Q}^{2} / 4 \pi=1 / 137$. Limits shown are for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark.

VALUE (GeV)	$\underline{C L} \%$	DOCUMENTID		TECN	COMMENT
none 150-740	95	1 SIRUNYAN	18BJ	CMS	Third generation
>1755	95	2 KHACHATRY	16AG	CMS	First generation
>660	95	${ }^{3}$ KHACHATRY	.16AG	CMS	Second generation
>304	95	${ }^{4}$ ABRAMOWI	Z12A	ZEUS	First generation
>73	95	${ }^{5}$ ABREU	93J	DLPH	Second generation
- - We do not use the following data for averages, fits, limits, etc. - . -					
>300	95	${ }^{6}$ DEY	16	ICCB	$\nu q \rightarrow \mathrm{LQ} \rightarrow \nu q$
		${ }^{7}$ AARON	11A	H1	Lepton-flavor violation
		${ }^{8}$ AARON	11B	H1	First generation
		${ }^{9}$ ABAZOV	07E	D0	Second generation
> 295	95	10 AKTAS	05B	H1	First generation
		11 CHEKANOV	05A	ZEUS	Lepton-flavor violation
>298	95	12 CHEKANOV	03B	ZEUS	First generation
> 197	95	13 ABBIENDI	02B	OPAL	First generation
		14 CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
>290	95	15 ADLOFF	01C	H1	First generation
> 204	95	16 BREITWEG	01	ZEUS	First generation
		17 BREITWEG	00E	ZEUS	First generation
>161	95	18 ABREU	99G	DLPH	First generation
> 200	95	19 ADLOFF	99	H1	First generation
		20 DERRICK	97	ZEUS	Lepton-flavor violation
>168	95	21 DERRICK	93	ZEUS	First generation

${ }^{1}$ SIRUNYAN 18BJ search for single production of charge $2 / 3$ scalar leptoquarks decaying to τb in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\tau b)=1$ and the leptoquark coupling strength $\lambda=1$.
${ }^{2}$ KHACHATRYAN 16AG search for single production of charge $\pm 1 / 3$ scalar leptoquarks using $e e j$ events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(e q)=1$ and the leptoquark coupling strength $\lambda=1$.
3 KHACHATRYAN 16AG search for single production of charge $\pm 1 / 3$ scalar leptoquarks using $\mu \mu j$ events in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The limit above assumes $\mathrm{B}(\mu q)=1$ using $\mu \mu j$ events in $p p$ collisions at $\sqrt{s}=8$
and the leptoquark coupling strength $\lambda=1$.
${ }^{4}$ ABRAMOWICZ 12A limit is for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark coupled ${ }_{5}$ with e_{R}. See their Figs. 12-17 and Table 4 for states with different quantum numbers.
${ }^{5}$ Limit from single production in Z decay. The limit is for a leptoquark coupling of electromagnetic strength and assumes $\mathrm{B}(\ell q)=2 / 3$. The limit is 77 GeV if first and second leptoquarks are degenerate.
${ }^{6}$ DEY 16 use the 2010-2012 IceCube PeV energy data set to constrain the leptoquark production cross section through the $\nu q \rightarrow \mathrm{LQ} \rightarrow \nu q$ process. See their Figure 4 for production cross section through the $\nu q \rightarrow \mathrm{LQ}$
the exclusion limit in the mass-coupling plane.
7 AARON 11A search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 2-3 and Tables 1-4 for detailed limits.
${ }^{8}$ The quoted limit is for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark coupled with e_{R}. See their Figs. 3-5 for limits on states with different quantum numbers.
${ }^{9}$ ABAZOV 07E search for leptoquark single production through $q g$ fusion process in $p \bar{p}$ collisions. See their Fig. 4 for exclusion plot in mass-coupling plane.
${ }^{10}$ AKTAS 05B limit is for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark coupled with e_{R}. See their Fig. 3 for limits on states with different quantum numbers.
11 CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 6-10 and Tables 1-8 for detailed limits.
12 CHEKANOV 03B limit is for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark coupled with e_{R}. See their Figs. 11-12 and Table 5 for limits on states with different quantum with e_{R}.
numbers.
13 For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 4 and Fig. 5.
14 CHEKANOV 02 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 6-7 and Tables 5-6 for detailed limits.
15 For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 3.
16 See their Fig. 14 for limits in the mass-coupling plane.
17 BREITWEG 00E search for $F=0$ leptoquarks in $e^{+} p$ collisions. For limits in masscoupling plane, see their Fig. 11.
18 ABREU 99G limit obtained from process $e \gamma \rightarrow L Q+q$. For limits on vector and scalar states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 4 and Table 2.
19 For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 13 and Fig. 14. ADLOFF 99 also search for leptoquarks with leptonflavor violating couplings. ADLOFF 99 supersedes AID 96B.
20 DERRICK 97 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 5-8 and Table 1 for detailed limits.
21 DERRICK 93 search for single leptoquark production in ep collisions with the decay eq and νq. The limit is for leptoquark coupling of electromagnetic strength and assumes $\mathrm{B}(e q)=\mathrm{B}(\nu q)=1 / 2$. The limit for $\mathrm{B}(e q)=1$ is 176 GeV . For limits on states with different quantum numbers, see their Table 3.

Indirect Limits for Leptoquarks

VALUE (TeV)	CL\%	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -					
> 3.1	95	${ }^{1}$ ABRAMOWIC		ZEUS	First generation
		${ }^{2}$ MANDAL	19	RVUE	τ, μ, e, K
		${ }^{3}$ ZHANG	18A	RVUE	D decays
		${ }^{4}$ BARRANCO	16	RVUE	D decays
		${ }^{5}$ KUMAR	16	RVUE	neutral K mixing, rare K decays
		${ }^{6}$ BESSAA	15	RVUE	$q \bar{q} \rightarrow e^{+} e^{-}$
> 14	95	7 SAHOO	15A	RVUE	$B_{s, d} \rightarrow \mu^{+} \mu^{-}$
		8 SAKAKI	13	RVUE	$B \rightarrow D^{(*)} \tau \bar{\nu}, B \rightarrow X_{S} \nu \bar{\nu}$
		${ }^{9}$ KOSNIK	12	RVUE	$b \rightarrow s \ell^{+} \ell^{-}$
2.5	95	${ }^{10}$ AARON	11C	H1	First generation
		11 DORSNER	11	RVUE	scalar, weak singlet, charge 4/3
		12 AKTAS	07A	H1	Lepton-flavor violation
0.49	95	13 SCHAEL	07A	ALEP	$e^{+} e^{-} \rightarrow q \bar{q}$
		14 SMIRNOV	07	RVUE	$K \rightarrow e \mu, B \rightarrow e \tau$
		15 CHEKANOV	05A	ZEUS	Lepton-flavor violation
>1.7	96	16 ADLOFF	03	H1	First generation
46	90	17 CHANG	03	BELL	Pati-Salam type
		18 CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
>1.7	95	19 CHEUNG	01B	RVUE	First generation
>0.39	95	${ }^{20}$ ACCIARRI	00P	L3	$e^{+} e^{-} \rightarrow q q$
>1.5	95	21 ADLOFF	00	H1	First generation
>0.2	95	22 BARATE	001	ALEP	Repl. by SCHAEL 07A
		23 BARGER	00	RVUE	Cs
		24 GABRIELLI	00	RVUE	Lepton flavor violation
0.74	95	25 ZARNECKI	00	RVUE	S_{1} leptoquark
		${ }^{26}$ ABBIENDI	99	OPAL	
> 19.3	95	${ }^{27}$ ABE	98 V	CDF	$B_{S} \rightarrow e^{ \pm} \mu^{\mp}$, Pati-Salam type
		28 ACCIARRI	98」	L3	$e^{+} e^{-} \rightarrow q \bar{q}$
		29 ACKERSTAFF	98 V	OPAL	${\underset{\sim}{R}}^{+} e^{-} \rightarrow q \bar{q}, e^{+} e^{-} \rightarrow b \bar{b}$
0.76	95	30 DEANDREA	97	RVUE	\widetilde{R}_{2} leptoquark
		31 DERRICK	97	ZEUS	Lepton-flavor violation
		32 GROSSMAN	97	RVUE	$B \rightarrow \tau^{+} \tau^{-}(X)$
		33 JADACH	97	RVUE	$e^{+} e^{-} \rightarrow q \bar{q}$
>1200		34 KUZNETSOV	95B	RVUE	Pati-Salam type
		35 MIZUKOSHI	95	RVUE	Third generation scalar leptoquark
0.3	95	36 BHATTACH...	94	RVUE	Spin-0 leptoquark coupled to $\bar{e}_{R} t_{L}$
		37 DAVIDSON	94	RVUE	
>18		38 KUZNETSOV	94	RVUE	Pati-Salam type
>0.43	95	39 LEURER	94	RVUE	First generation spin-1 leptoquark
>0.44	95	39 LEURER	94B	RVUE	First generation spin-0 leptoquark
		40 MAHANTA	94	RVUE	P and T violation
>1		41 SHANKER	82	RVUE	Nonchiral spin-0 leptoquark
>125		41 SHANKER	82	RVUE	Nonchiral spin-1 leptoquark

${ }^{1}$ ABRAMOWICZ 19 obtain a limit on $\lambda / M_{L Q}>1.16 \mathrm{TeV}^{-1}$ for weak isotriplet spin-0 leptoquark S_{1}^{L}. We obtain the limit quoted above by converting the limit on $\lambda / M_{L Q}$ for S_{1}^{L} assuming $\lambda=\sqrt{4 \pi}$. See their Table 5 for the limits of leptoquarks with different quantum numbers. These limits are derived from bounds of eq contact interactions.
2 MANDAL 19 give bounds on leptoquarks from τ-decays, leptonic dipole moments, lepton-flavor-violating processes, and K decays.
${ }^{3}$ ZHANG 18A give bounds on leptoquark induced four-fermion interactions from $D \rightarrow$ $K \ell \nu$. The authors inform us that the shape parameter of the vector form factor in both the abstract and the conclusions of ZHANG 18A should be $r_{+1}=2.16 \pm 0.07$ rather than ± 0.007. The numbers listed in their Table 7 are correct.
${ }^{4}$ BARRANCO 16 give bounds on leptoquark induced four-fermion interactions from $D \rightarrow$ $K \ell \nu$ and $D_{S} \rightarrow \ell \nu$.
${ }^{5}$ KUMAR 16 gives bound on $\operatorname{SU}(2)$ singlet scalar leptoquark with chrge $-1 / 3$ from $K^{0}-$ \bar{K}^{0} mixing, $K \rightarrow \pi \nu \bar{\nu}, K_{L}^{0} \rightarrow \mu^{+} \mu^{-}$, and $K_{L}^{0} \rightarrow \mu^{ \pm} e^{\mp}$ decays.
${ }^{6}$ BESSAA 15 obtain limit on leptoquark induced four-fermion interactions from the ATLAS and CMS limit on the $\bar{q} q \bar{e} e$ contact interactions.
7 SAHOO 15A obtain limit on leptoquark induced four-fermion interactions from $B_{s, d} \rightarrow$ $\mu^{+} \mu^{-}$for $\lambda \simeq O(1)$.
${ }^{8}$ SAKAKI 13 explain the $B \rightarrow D^{(*)} \tau \bar{\nu}$ anomaly using Wilson coefficients of leptoquarkinduced four-fermion operators.
${ }^{9}$ induced four-fermion operators. $s \ell^{+} \ell^{-}$decays.
10 AARON 11C limit is for weak isotriplet spin-0 leptoquark at strong coupling $\lambda=\sqrt{4 \pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds of $e q$ contact intereractions.
${ }^{11}$ DORSNER 11 give bounds on scalar, weak singlet, charge $4 / 3$ leptoquark from K, B, τ decays, meson mixings, $L F V, g-2$ and $Z \rightarrow b \bar{b}$.
12 AKTAS 07A search for lepton-flavor violation in ep collision. See their Tables 4-7 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
13 SCHAEL 07A limit is for the weak-isoscalar spin-0 left-handed leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 35.
14 SMIRNOV 07 obtains mass limits for the vector and scalar chiral leptoquark states from $K \rightarrow e \mu, B \rightarrow e \tau$ decays.
${ }^{15}$ CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6-10 and Tables 1-8 for detailed limits.
16 ADLOFF 03 limit is for the weak isotriplet spin-0 leptoquark at strong coupling $\lambda=\sqrt{4 \pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds on $e^{ \pm} q$ contact interactions.
17 The bound is derived from $\mathrm{B}\left(B^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)<1.7 \times 10^{-7}$
18 CHEKANOV 02 search for lepton-flavor violation in ep collisions. See their Tables 1-4 for limits on lepton-flavor violating and four-fermion interactions induced by various leptoquarks.
${ }^{19}$ CHEUNG 01B quoted limit is for a scalar, weak isoscalar, charge $-1 / 3$ leptoquark with a coupling of electromagnetic strength. The limit is derived from bounds on contact
interactions in a global electroweak analysis. For the limits of leptoquarks with different interactions in a global electroweak analysis. For the limits of leptoquarks with different quantum numbers, see Table 5.
20 ACCIARRI 00p limit is for the weak isoscalar spin-0 leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, electromagnetic 4.
21 ADLOFF 00 limit is for the weak isotriplet spin-0 leptoquark at strong coupling, $\lambda=\sqrt{4 \pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 2 . $\lambda=\sqrt{4 \pi}$. For the limits of leptoquarks with different quantum numbers, see their
ADLOFF 00 limits are from the Q^{2} spectrum measurement of $e^{+} p \rightarrow e^{+} \mathrm{X}$.
${ }^{22}$ BARATE 00I search for deviations in cross section and jet-charge asymmetry in $e^{+} e^{-} \rightarrow$ $\bar{q} q$ due to t-channel exchange of a leptoquark at $\sqrt{s}=130$ to 183 GeV . Limits for other scalar and vector leptoquarks are also given in their Table 22.
23 BARGER 00 explain the deviation of atomic parity violation in cesium atoms from prediction is explained by scalar leptoquark exchange.
24 GABRIELLI 00 calculate various process with lepton flavor violation in leptoquark models.
25 ZARNECKI 00 limit is derived from data of HERA, LEP, and Tevatron and from various low-energy data including atomic parity violation. Leptoquark coupling with electromagnetic strength is assumed.
${ }^{26}$ ABBIENDI 99 limits are from $e^{+} e^{-} \rightarrow q \bar{q}$ cross section at 130-136, 161-172, 183 GeV . See their Fig. 8 and Fig. 9 for limits in mass-coupling plane.
${ }^{27} \mathrm{ABE} 98 \mathrm{~V}$ quoted limit is from $\mathrm{B}\left(B_{S} \rightarrow e^{ \pm} \mu^{\mp}\right)<8.2 \times 10^{-6}$. ABE 98 V also obtain a similar limit on $M_{L Q}>20.4 \mathrm{TeV}$ from $\mathrm{B}\left(B_{d} \rightarrow e^{ \pm} \mu^{\mp}\right)<4.5 \times 10^{-6}$. Both bounds assume the non-canonical association of the b quark with electrons or muons under SU(4).
28 ACCIARRI 98J limit is from $e^{+} e^{-} \rightarrow q \bar{q}$ cross section at $\sqrt{s}=130-172 \mathrm{GeV}$ which can be affected by the t - and u-channel exchanges of leptoquarks. See their Fig. 4 and Fig. 5 for limits in the mass-coupling plane.
${ }^{29}$ ACKERSTAFF 98v limits are from $e^{+} e^{-} \rightarrow q \bar{q}$ and $e^{+} e^{-} \rightarrow b \bar{b}$ cross sections at \sqrt{s} $=130-172 \mathrm{GeV}$, which can be affected by the t - and u-channel exchanges of leptoquarks. See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-coupling plane.
${ }^{30}$ DEANDREA 97 limit is for \widetilde{R}_{2} leptoquark obtained from atomic parity violation (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table 2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 97 combines APV limit and limits from Tevatron and HERA. See Fig. 1-4 for combined limits of leptoquark in mass-coupling plane.
31 DERRICK 97 search for lepton-flavor violation in ep collision. See their Tables 2-5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
32 GROSSMAN 97 estimate the upper bounds on the branching fraction $B \rightarrow \tau^{+} \tau^{-}(X)$ from the absence of the B decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
33 JADACH 97 limit is from $e^{+} e^{-} \rightarrow q \bar{q}$ cross section at $\sqrt{s}=172.3 \mathrm{GeV}$ which can be affected by the t - and u-channel exchanges of leptoquarks. See their Fig. 1 for limits on vector leptoquarks in mass-coupling plane.
34 KUZNETSOV 95B use π, K, B, τ decays and μe conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from $K_{L} \rightarrow \mu e$ decay assuming zero mixing.
35 MIZUKOSHI 95 calculate the one-loop radiative correction to the Z-physics parameters in various scalar leptoquark models. See their Fig. 4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
${ }^{36}$ BHATTACHARYYA 94 limit is from one-loop radiative correction to the leptonic decay width of the $Z . \quad m_{H}=250 \mathrm{GeV}, \alpha_{S}\left(m_{Z}\right)=0.12, m_{t}=180 \mathrm{GeV}$, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to $\bar{e}_{L} t_{R}, \bar{\mu} t$, and $\bar{\tau} t$, see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.
37 DAVIDSON 94 gives an extensive list of the bounds on leptoquark-induced four-fermion interactions from π, K, D, B, μ, τ decays and meson mixings, etc. See Table 15 of DAVIDSON 94 for detail.

Gauge \& Higgs Boson Particle Listings

New Heavy Bosons

38 KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark from
the cosmological limit on $\pi^{0} \rightarrow \bar{\nu} \nu$.
39 LEURER 94, LE URER 94 B limits are obtained from atomic parity violation and apply to
any chiral leptoquark which couples to the first generation with electromagnetic strength.
For a nonchiral leptoquark, universality in $\pi_{\ell 2}$ decay provides a much more stringent
bound.
40 MAHANTA 94 gives bounds of P - and T-violating scalar-leptoquark couplings from
atomic and molecular experiments.
41 From $(\pi \rightarrow e \nu) /(\pi \rightarrow \mu \nu)$ ratio. SHANKER 82 assumes the leptoquark induced
four-fermion coupling $4 g^{2} / M^{2}\left(\bar{\nu}_{e L} u_{R}\right)\left(\bar{d}_{L} e_{R}\right)$ with $g=0.004$ for spin- 0 leptoquark
and $g^{2} / M^{2}\left(\bar{\nu}_{e L} \gamma_{\mu} u_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} e_{R}\right)$ with $g \simeq 0.6$ for spin- 1 leptoquark.

MASS LIMITS for Diquarks

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>6000 (CL $=\mathbf{9 5 \%}$) OUR LIMIT				
none 600-7200	95	1 SIRUNYAN 18 BO	CMS	E_{6} diquark
none 600-6900	95	2 KHACHATRY.. 17 w	CMS	E_{6} diquark
none 1500-6000	95	3 KHACHATRY...16k	CMS	E_{6} diquark
none 500-1600	95	${ }^{4}$ KHACHATRY...16L	CMS	E_{6} diquark
none 1200-4700	95	5 KHACHATRY...15v	CMS	E_{6} diquark
- - We do not use the following data for averages, fits, limits, etc. - -				
>3750	95	${ }^{6}$ CHATRCHYAN 13A	CMS	E_{6} diquark
none 1000-4280	95	7 CHATRCHYAN 13AS	CMS	Superseded by KHACHATRYAN 15V
>3520	95	${ }^{8}$ CHATRCHYAN $11 Y$	CMS	Superseded by CHA- TRCHYAN 13A
$\begin{gathered} \text { none 970-1080, } \\ 1450-1600 \end{gathered}$	95	${ }^{9}$ KHACHATRY... 10	CMS	Superseded by CHATRCHYAN 13A
none 290-630	95	10 AALTONEN 09AC	CDF	E_{6} diquark
none 290-420	95	11 ABE 97G	CDF	E_{6} diquark
none 15-31.7	95	12 ABREU 940	DLPH	SUSY E_{6} diquark

${ }^{1}$ SIRUNYAN 18Bo search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=13$
2 KHACHATRYAN 17 w search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV .
3^{3} KHACHATRYAN 16 K search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV .
4 KHACHATRYAN 16L search for resonances decaying to dijets in $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$ with the data scouting technique, increasing the sensitivity to the low mass resonances.
5 KHACHATRYAN 15 V search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$
${ }^{6}{ }^{8}$ TeV. $7=7 \mathrm{TeV}$.
${ }^{7}$ CHATRCHYAN 13AS search for new resonance decaying to dijets in $p p$ collisions at \sqrt{s}
${ }^{8} \overline{\text { CHATRCHYAN }} 11 Y$ search for new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$
${ }^{9}$ KHACHATRYAN 10 search for new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
10 AALTONEN 09AC search for new narrow resonance decaying to dijets
${ }^{11}$ ABE 97 G search for new particle decaying to dijets.
${ }^{12}$ ABREU 940 limit is from $e^{+} e^{-} \rightarrow \bar{C} \bar{s} c s$. Range extends up to 43 GeV if diquarks are degenerate in mass.

MASS LIMITS for $\boldsymbol{g}_{\boldsymbol{A}}$ (axigluon) and Other Color-Octet Gauge Bosons
Axigluons are massive color-octet gauge bosons in chiral color models and have axialvector coupling to quarks with the same coupling strength as gluons.

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>6100 (CL $=95 \%$) OUR LIMIT				
none 600-6100	95	1 SIRUNYAN 18BO	CMS	$p p \rightarrow g_{A} X, g_{A} \rightarrow 2 j$
none 600-5500	95	2 KHACHATRY..17w	CMS	$p p \rightarrow g_{A} X, g_{A} \rightarrow 2 j$
none 1500-5100	95	3 KHACHATRY..16K	CMS	$p p \rightarrow g_{A} X, g_{A} \rightarrow 2 j$
none 500-1600	95	${ }^{4}$ KHACHATRY...16L	CMS	$p p \rightarrow g_{A} X, g_{A} \rightarrow 2 j$
none 1300-3600	95	5 KHACHATRY...15v	CMS	$p p \rightarrow g_{A} X, g_{A} \rightarrow 2 j$

- - We do not use the following data for averages, fits, limits, etc. - .
>2800
95
>3360 none 1000-3270

95
none 250-740
>775
>2470
none 1470-1520
none 260-1250
>910
>365
${ }^{7} \mathrm{AAD} \quad 16 \mathrm{~W}$ ATLS $p p \rightarrow g_{A} X, g_{A} \rightarrow$
${ }^{6}$ KHACHATRY... 17 Y CMS $p p \rightarrow g_{A} g_{A} \rightarrow 8 j$

8 KHACHATRY..16E CMS $p p \underset{t \bar{t}}{\rightarrow} g_{K K} X, g_{K K} \rightarrow$
${ }^{9}$ KHACHATRY..15AV CMS $\quad p p \rightarrow \Theta^{0} \Theta^{0} \rightarrow b \bar{b} Z g$ 10 AALTONEN 13 R CDF $\quad \begin{gathered}p \bar{p} \rightarrow g_{A} X, g_{A} \\ \sigma \rightarrow \sigma j\end{gathered} \rightarrow \sigma \sigma$,
11 CHATRCHYAN 13A CMS $\quad p p \rightarrow g_{A} \mathrm{X}, g_{A} \rightarrow 2 j$
12 CHATRCHYAN 13AS CMS Superseded by KHACHA
13 CHATRCHYAN $13 A U$ CMS
14 ABAZOV 12 R DO $p p \rightarrow 2 g_{A} X, g_{A} \rightarrow 2 j$
15 CHATRCHYAN 11 Y CMS
Superseded by CHA-
$\stackrel{\text { TRCHYAN 13A }}{\rightarrow} g_{A} X, g_{A} \rightarrow t \bar{t}$
$p \bar{p} \rightarrow g_{A} X, g_{A} \rightarrow$
Superseded by CHA
$p \bar{p} \rightarrow g_{A} \times, g_{A} \rightarrow 2 j$
$p \bar{p} \rightarrow t \bar{t} X$
$\Gamma(Z \rightarrow$ hadron the cosmological limit on $\pi^{0} \xrightarrow{\bar{\nu}} \nu$.

LEURER 94 , parity violation and URk which couples to the first generation with electromagnetic a nonchiral leptoquark, universality in $\pi /$ decay provides a much mor MAHANTA 94 gives bounds of mic and molecular experiments.

From $(\pi \rightarrow e \nu) /(\pi \rightarrow \mu \nu)$ ratio. SHANKER 82 assumes the leptoquark induced and $g^{2} / M^{2}\left(\bar{\nu}_{e L} \gamma_{\mu} u_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} e_{R}\right)$ with $g \simeq 0.6$ for spin-1 leptoquark

VALUE (GeV) CL\%
none 600-7200 95 SIRUNYAN 18BOCMS E6 diquark
none 200-980 none 200-87 none 240-640
>50
none $120-210$
> 29
none 150-310
>20
>20
$>$
$>$
$>$
$>\quad 25$
${ }^{1}$ SIRUN

TeV.
1 SIRUNYAN 18Bo search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=13$
${ }^{2}$ KHACHATRYAN 17 W search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 13 TeV .
${ }^{3}$ KHACHATRYAN 16 K search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 43 TeV .
${ }^{4}$ KHACHATRYAN 16L search for resonances decaying to dijets in $p p$ collisions at \sqrt{s} $=8 \mathrm{TeV}$ with the data scouting technique, increasing the sensitivity to the low mass ${ }_{5}$ resonances.
${ }^{5}$ KHACHATRYAN 15 V search for resonances decaying to dijets in $p p$ collisions at $\sqrt{s}=$ 8 TeV .
${ }^{6} \mathrm{KHACHATRYAN} 17 Y$ search for pair production of color-octet gauge boson g_{A} each decaying to $4 j$ in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$.
${ }^{7}$ AAD 16w search for a new resonance decaying to a pair of b and B_{H} in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The vector-like quark B_{H} is assumed to decay to $b H$. See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot B$.
${ }^{8}$ KHACHATRYAN 16E search for KK gluon decaying to $t \bar{t}$ in $p p$ collisions at $\sqrt{s}=8$ TeV.
${ }^{9}$ KHACHATRYAN 15 AV search for pair productions of neutral color-octet weak-triplet scalar particles $\left(\Theta^{0}\right)$, decaying to $b \bar{b}, Z g$ or γg, in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The Θ^{0} particle is often predicted in coloron (G^{\prime}, color-octet gauge boson) models and appear in the $p p$ collisions through $G^{\prime} \rightarrow \Theta^{0} \Theta^{0}$ decays. Assuming $\mathrm{B}\left(\Theta^{0} \rightarrow b \bar{b}\right)=$ 0.5 , they give limits $m_{\Theta^{0}}>623 \mathrm{GeV}(426 \mathrm{GeV})$ for $m_{G^{\prime}}=2.3 m_{\Theta^{0}}\left(m_{G^{\prime}}=5 m_{\Theta^{0}}\right)$.

10 AALTONEN 13 R search for new resonance decaying to $\sigma \sigma$, with hypothetical strongly interacting σ particle subsequently decaying to 2 jets, in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, using data corresponding to an integrated luminosity of $6.6 \mathrm{fb}^{-1}$. For $50 \mathrm{GeV}<m_{\sigma}<$ $m_{g_{A}} / 2$, axigluons in mass range $150-400 \mathrm{GeV}$ are excluded.
${ }^{11}$ CHATRCHYAN 13A search for new resonance decaying to dijets in $p p$ collisions at \sqrt{s} $=7 \mathrm{TeV}$.
${ }^{2}$ CHATRCHYAN 13AS search for new resonance decaying to dijets in $p p$ collisions at \sqrt{s} $3=8 \mathrm{TeV}$.
${ }^{3}$ CHATRCHYAN 13AU search for the pair produced color-octet vector bosons decaying to $q \bar{q}$ pairs in $p p$ collisions. The quoted limit is for $\mathrm{B}\left(g_{A} \rightarrow q \bar{q}\right)=1$.
14 ABAZOV 12R search for massive color octet vector particle decaying to $t \bar{t}$. The quoted limit assumes g_{A} couplings with light quarks are suppressed by 0.2.
${ }^{15}$ CHATRCHYAN $11 Y$ search for new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{16}$ AALTONEN 10 L search for massive color octet non-chiral vector particle decaying into $t \bar{t}$ pair with mass in the range $400 \mathrm{GeV}<\mathrm{M}<800 \mathrm{GeV}$. See their Fig. 6 for limit in the mass-coupling plane.
17 KHACHATRYAN 10 search for new resonance decaying to dijets in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$.
18 AALTONEN 09AC search for new narrow resonance decaying to dijets.
${ }^{19}$ CHOUDHURY 07 limit is from the $t \bar{t}$ production cross section measured at CDF
${ }^{20}$ DONCHESKI 98 compare α_{S} derived from low-energy data and that from $\Gamma(Z \rightarrow$ hadrons) $/ \Gamma(Z \rightarrow$ leptons $)$.
${ }^{21}$ ABE 97 G search for new particle decaying to dijets.
${ }^{22}$ ABE 95N assume axigluons decaying to quarks in the Standard Model only.
23 ABE 93G assume $\Gamma\left(g_{A}\right)=N \alpha_{S} m_{g_{A}} / 6$ with $N=10$.
${ }^{24}$ CUYPERS 91 compare α_{S} measured in r decay and that from R at PEP/PETRA energies.
${ }^{25} \mathrm{ABE} 90 \mathrm{H}$ assumes $\Gamma\left(g_{A}\right)=N \alpha_{S} m_{g_{A}} / 6$ with $N=5\left(\Gamma\left(g_{A}\right)=0.09 m_{g_{A}}\right)$. For $N=10$, the excluded region is reduced to $120-150 \mathrm{GeV}$.
${ }^{26}$ ROBINETT 89 result demands partial-wave unitarity of $J=0 t \bar{t} \rightarrow t \bar{t}$ scattering amplitude and derives a limit $m_{g_{A}}>0.5 m_{t}$. Assumes $m_{t}>56 \mathrm{GeV}$.
27 ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma\left(g_{A}\right)<0.4 m_{g_{A}}$ assumed. See also BAGGER 88.
${ }^{28}$ CUYPERS 88 requires $\Gamma\left(\gamma \rightarrow g g_{A}\right)<\Gamma(r \rightarrow g g g)$. A similar result is obtained by DONCHESKI 88.
${ }^{29}$ DONCHESKI 88B requires $\Gamma(r \rightarrow g q \bar{q}) / \Gamma(r \rightarrow g g g)<0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of <0.5 leads to $m_{g_{A}}>21 \mathrm{GeV}$.

MASS LIMITS for Color-Octet Scalar Bosons

VALUE (GeV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

none 600-3400	95	1 SIRUNYAN	18 BOCMS	$p p \rightarrow S_{8} X, S_{8} \rightarrow g g$
		KHACHATRY...15AV CMS	$p p \rightarrow \Theta^{0} \Theta^{0} \rightarrow b \bar{b} Z g$	
none 150-287	95	3 AAD	13 K ATLS $p p \rightarrow S_{8} S_{8} X, S_{8} \rightarrow 2$ jets	

${ }^{1}$ SIRUNYAN 18BO search for color octet scalar boson produced through gluon fusion process in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The limit above assumes $S_{8 g g}$ coupling $k_{s}^{2}=$ 1/2.
${ }^{2}$ KHACHATRYAN 15AV search for pair productions of neutral color-octet weak-triplet scalar particles $\left(\Theta^{0}\right)$, decaying to $b \bar{b}, Z g$ or γg, in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. The Θ^{0} particle is often predicted in coloron (G^{\prime}, color-octet gauge boson) models and appear in the $p p$ collisions through $G^{\prime} \rightarrow \Theta^{0} \Theta^{0}$ decays. Assuming $\mathrm{B}\left(\Theta^{0} \rightarrow b \bar{b}\right)=$ 0.5 , they give limits $m_{\Theta^{0}}>623 \mathrm{GeV}(426 \mathrm{GeV})$ for $m_{G^{\prime}}=2.3 m_{\Theta^{0}}\left(m_{G^{\prime}}=5 m_{\Theta^{0}}\right)$.
${ }^{3}$ AAD 13 K search for pair production of color-octet scalar particles in $p p$ collisions at \sqrt{s} $=7 \mathrm{TeV}$. Cross section limits are interpreted as mass limits on scalar partners of a Dirac gluino.

\boldsymbol{X}^{0} (Heavy Boson) Searches in \boldsymbol{Z} Decays

Searches for radiative transition of Z to a lighter spin-0 state X^{0} decaying to hadrons, a lepton pair, a photon pair, or invisible particles as shown in the comments. The limits are for the product of branching ratios.
value

CL\%

DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - .

${ }^{1}$ RAINBOLT	19	RVUE	$\chi^{0} \rightarrow \ell^{+} \ell^{-}$
2 SIRUNYAN	19AZ	CMS	$\chi^{0} \rightarrow \mu^{+} \mu^{-}$
${ }^{3}$ BARATE	984	ALEP	$X^{0} \rightarrow \ell \bar{\ell}, q \bar{q}, g g, \gamma \gamma, \nu \bar{\nu}$
${ }^{4}$ ACCIARRI	97Q	L3	$X^{0} \rightarrow$ invisible particle(s)
${ }^{5}$ ACTON	93E	OPAL	$x^{0} \rightarrow \gamma \gamma$
${ }^{6}$ ABREU	92D	DLPH	$x^{0} \rightarrow$ hadrons
${ }^{7}$ ADRIANI	92F	L3	$X^{0} \rightarrow$ hadrons
${ }^{8}$ ACTON	91	OPAL	$x^{0} \rightarrow$ anything
${ }^{9}$ ACTON	91B	OPAL	$x^{0} \rightarrow e^{+} e^{-}$
${ }^{9}$ ACTON	91B	OPAL	$X^{0} \rightarrow \mu^{+} \mu^{-}$
${ }^{9}$ ACTON	91B	OPAL	$X^{0} \rightarrow \tau^{+} \tau^{-}$
10 ADEVA	91D	L3	$\chi^{0} \rightarrow e^{+} e^{-}$
10 ADEVA	91D	L3	$\chi^{0} \rightarrow \mu^{+} \mu^{-}$
11 ADEVA	91D	L3	$X^{0} \rightarrow$ hadrons
12 AKRAWY	90」	OPAL	$x^{0} \rightarrow$ hadrons

${ }^{1}$ RAINBOLT 19 limits are from $\mathrm{B}\left(Z \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}\right)$. See their Figs. 5 and 6 for limits in mass-coupling plane.
${ }^{2}$ SIRUNYAN 19AZ search for $p p \rightarrow Z \rightarrow X^{0} \mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$events in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. See their Fig. 5 for limits on $\sigma\left(p p \rightarrow X^{0} \mu^{+} \mu^{-}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow\right.$ $\mu^{+} \mu^{-}$).
${ }^{3}$ BARATE $98 u$ obtain limits on $\mathrm{B}\left(Z \rightarrow \gamma X^{0}\right) \mathrm{B}\left(X^{0} \rightarrow \ell \bar{\ell}, q \bar{q}, g g, \gamma \gamma, \nu \bar{\nu}\right)$. See their Fig. 17.
${ }^{4}$ See Fig. 4 of ACCIARRI 97Q for the upper limit on $\mathrm{B}\left(Z \rightarrow \gamma X^{0} ; E_{\gamma}>E_{\min }\right)$ as a function of $E_{\text {min }}$.
${ }^{5}$ ACTON 93E give $\sigma\left(e^{+} e^{-} \rightarrow X^{0} \gamma\right) \cdot \mathrm{B}\left(X^{0} \rightarrow \gamma \gamma\right)<0.4 \mathrm{pb}(95 \% \mathrm{CL})$ for $m_{X_{0}}=60 \pm$ 2.5 GeV . If the process occurs via s-channel γ exchange, the limit translates to $\Gamma\left(X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow \gamma \gamma\right)^{2}<20 \mathrm{MeV}$ for $m_{X^{0}}=60 \pm 1 \mathrm{GeV}$.
${ }^{6} \mathrm{ABREU}$ 92D give $\sigma_{Z} \cdot \mathrm{~B}\left(Z \rightarrow \gamma X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow\right.$ hadrons $)<(3-10) \mathrm{pb}$ for $m_{X^{0}}=$ ${ }^{10-78 ~ G e V}$. A very similar limit is obtained for spin-1 X^{0}.
${ }^{7}$ ADRIANI 92F search for isolated γ in hadronic Z decays. The limit $\sigma_{Z} \cdot \mathrm{~B}\left(Z \rightarrow \gamma X^{0}\right)$ $\mathrm{B}\left(X^{0} \rightarrow\right.$ hadrons $)<(2-10) \mathrm{pb}(95 \% \mathrm{CL})$ is given for $m_{X^{0}}=25-85 \mathrm{GeV}$.
${ }^{8}$ ACTON 91 searches for $Z \rightarrow Z^{*} X^{0}, Z^{*} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$, or $\nu \bar{\nu}$. Excludes any new scalar X^{0} with $m_{X^{0}}<9.5 \mathrm{GeV} / C$ if it has the same coupling to $Z Z^{*}$ as the MSM Higgs boson.
${ }^{9}$ ACTON 91B limits are for $m_{X^{0}}=60-85 \mathrm{GeV}$.
${ }^{10}$ ADEVA 91D limits are for $m_{X^{0}}=30-89 \mathrm{GeV}$.
11 ADEVA 91D limits are for $m_{X^{0}}=30-86 \mathrm{GeV}$.
${ }^{12}$ AKRAWY 90」 give $\Gamma\left(Z \rightarrow \gamma X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow\right.$ hadrons $)<1.9 \mathrm{MeV}(95 \% \mathrm{CL})$ for $m_{X^{0}}$ $=32-80 \mathrm{GeV}$. We divide by $\Gamma(Z)=2.5 \mathrm{GeV}$ to get product of branching ratios. For nonresonant transitions, the limit is $\mathrm{B}(Z \rightarrow \gamma q \bar{q})<8.2 \mathrm{MeV}$ assuming three-body phase space distribution.

MASS LIMITS for a Heavy Neutral Boson Coupling to $e^{+} e^{-}$
$\frac{\operatorname{VALUE}(\mathrm{GeV})}{\text { - - We do not use the following data for averages, fits, limits, etc. • • • }} \frac{\text { DLOCUMENT ID }}{\text { COMMENT }}$

- • • We do not use the following data for averages, fits, limits, etc. • • •
none 55-61
1 ODAKA 89 VNS $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)$.

none 55-61		1 ODAKA	89	VNS	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)$
					$\mathrm{B}\left(X^{0} \rightarrow\right.$ had. $) \geq 0.2 \mathrm{MeV}$
>45	95	2 DERRICK	86	HRS	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=6 \mathrm{MeV}$
>46.6	95	${ }^{3}$ ADEVA	85	MRKJ	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=10 \mathrm{keV}$
>48	95	${ }^{3}$ ADEVA	85	MRKJ	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=4 \mathrm{MeV}$
		${ }^{4}$ BERGER	85B	PLUT	
none 39.8-45.5		${ }^{5}$ ADEVA	84	MRKJ	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=10 \mathrm{keV}$
>47.8	95	${ }^{5}$ ADEVA	84	MRKJ	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=4 \mathrm{MeV}$
none 39.8-45.2		${ }^{5}$ BEHREND	84C	CELL	
>47	95	${ }^{5}$ BEHREND	84C	CELL	$\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=4 \mathrm{MeV}$

${ }^{1}$ ODAKA 89 looked for a narrow or wide scalar resonance in $e^{+} e^{-} \rightarrow$ hadrons at E_{cm} $=55.0-60.8 \mathrm{GeV}$.
${ }^{2}=55.0-60.8 \mathrm{GeV}$. 29 GeV and set limits on the possible scalar boson $e^{+} e^{-}$coupling. See their figure 4 for excluded region in the $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)-m_{X^{0}}$ plane. Electronic chiral invariance requires a parity doublet of X^{0}, in which case the limit applies for $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=$ 3 MeV .
${ }^{3}$ ADEVA 85 first limit is from $2 \gamma, \mu^{+} \mu^{-}$, hadrons assuming X^{0} is a scalar. Second limit is from $e^{+} e^{-}$channel. $E_{\mathrm{Cm}}=40-47 \mathrm{GeV}$. Supersedes ADEVA 84.
${ }^{4}$ BERGER 85B looked for effect of spin-0 boson exchange in $e^{+} e^{-} \rightarrow e^{+} e^{-}$and $\mu^{+} \mu^{-}$ at $E_{\mathrm{cm}}=34.7 \mathrm{GeV}$. See Fig. 5 for excluded region in the $m_{X^{0}}-\Gamma\left(X^{0}\right)$ plane.
${ }^{5}$ ADEVA 84 and BEHREND 84 C have $E_{\mathrm{Cm}}=39.8-45.5 \mathrm{GeV}$. MARK-J searched X^{0} in $e^{+} e^{-} \rightarrow$ hadrons, $2 \gamma, \mu^{+} \mu^{-}, e^{+} e^{-}$and CELLO in the same channels plus τ pair. No narrow or broad X^{0} is found in the energy range. They also searched for the effect of X^{0} with $m_{X}>E_{c m}$. The second limits are from Bhabha data and for spin-0 singlet.

The same limits apply for $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right)=2 \mathrm{MeV}$ if X^{0} is a spin- 0 doublet. The second limit of BEHREND 84C was read off from their figure 2. The original papers also list limits in other channels.

Search for X^{0} Resonance in $e^{+} e^{-}$Collisions

The limit is for $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow f\right)$, where f is the specified final state. Spin 0 is assumed for X^{0}.
VALUE (keV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$<10^{3} 95 \quad 1 \mathrm{ABE} \quad 93 \mathrm{C}$ VNS $\quad \Gamma(e e)$
$<(0.4-10) \quad 95 \quad 2 \mathrm{ABE} \quad 93 \mathrm{C}$ VNS $f=\gamma \gamma$
$\begin{array}{lll}<(0.3-5) & 95 & 3,4 \mathrm{ABE}\end{array} \quad$ 93D TOPZ $f=\gamma \gamma$
$<(2-12) \quad 95 \quad 3,4 \mathrm{ABE} \quad 93 \mathrm{D}$ TOPZ $f=$ hadrons
$<(4-200) \quad 95 \quad 4,5 \mathrm{ABE} \quad$ 93D TOPZ $f=e e$
$<(0.1-6) \quad 95 \quad 4,5 \mathrm{ABE} \quad$ 93D TOPZ $f=\mu \mu$
$<(0.5-8) \quad 90 \quad 6$ STERNER 93 AMY $f=\gamma \gamma$
${ }^{1}$ Limit is for $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right) m_{X^{0}}=56-63.5 \mathrm{GeV}$ for $\Gamma\left(X^{0}\right)=0.5 \mathrm{GeV}$.
${ }^{2}$ Limit is for $m_{X^{0}}=56-61.5 \mathrm{GeV}$ and is valid for $\Gamma\left(X^{0}\right) \ll 100 \mathrm{MeV}$. See their Fig. 5 for limits for $\Gamma=1,2 \mathrm{GeV}$.
${ }^{3}$ limits for $\Gamma=1,2 \mathrm{GeV}$.
${ }^{4}$ Limit is valid for $\Gamma\left(X^{0}\right) \ll 100 \mathrm{MeV}$. See paper for limits for $\Gamma=1 \mathrm{GeV}$ and those for ${ }_{5} J=2$ resonances.
$5=2$ resonances.
${ }^{5}$ Limit is for $m_{X^{0}}=56.6-60 \mathrm{GeV}$.
${ }^{6}$ STERNER 93 limit is for $m_{X^{0}}=57-59.6 \mathrm{GeV}$ and is valid for $\Gamma\left(X^{0}\right)<100 \mathrm{MeV}$. See their Fig. 2 for limits for $\Gamma=1,3 \mathrm{GeV}$.

Search for X^{0} Resonance in ep Collisions
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
${ }^{1}$ CHEKANOV 02B ZEUS $X \rightarrow j j$
${ }^{1}$ CHEKANOV 02B search for photoproduction of X decaying into dijets in $e p$ collisions. See their Fig. 5 for the limit on the photoproduction cross section.

Search for X^{0} Resonance in $e^{+} e^{-} \rightarrow X^{0} \gamma$
Value (GeV)
DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. - - -

$$
\begin{array}{llll}
1 \text { ABBIENDI } & 03 D & \text { OPAL } & x^{0} \rightarrow \gamma \gamma \\
2 \text { ABREU } & 00 z & \text { DLPH } & x^{0} \text { decaying invisibly } \\
{ }^{3} \text { ADAM } & 96 C & \text { DLPH } & x^{0} \text { decaying invisibly }
\end{array}
$$

${ }^{1}$ ABBIENDI 03D measure the $e^{+} e^{-} \rightarrow \gamma \gamma \gamma$ cross section at $\sqrt{s}=181-209 \mathrm{GeV}$. The upper bound on the production cross section, $\sigma\left(e^{+} e^{-} \rightarrow X^{0} \gamma\right)$ times the branching ratio for $X^{0} \rightarrow \gamma \gamma$, is less than 0.03 pb at $95 \% \mathrm{CL}$ for X^{0} masses between 20 and 180 GeV . See their Fig. 9b for the limits in the mass-cross section plane.
2 ABREU 00 Z is from the single photon cross section at $\sqrt{s}=183,189 \mathrm{GeV}$. The production cross section upper limit is less than 0.3 pb for X^{0} mass between 40 and 160 GeV . See their Fig. 4 for the limit in mass-cross section plane.
3 ADAM 96C is from the single photon production cross at $\sqrt{s}=130,136 \mathrm{GeV}$. The upper bound is less than 3 pb for X^{0} masses between 60 and 130 GeV . See their Fig. 5 for the exact bound on the cross section $\sigma\left(e^{+} e^{-} \rightarrow \gamma X^{0}\right)$.

Search for X^{0} Resonance in $Z \Rightarrow \boldsymbol{f} \bar{f} X^{\mathbf{0}}$
The limit is for $\mathrm{B}\left(Z \rightarrow f \bar{f} X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow F\right)$ where f is a fermion and F is the specified final state. Spin 0 is assumed for X^{0}.
VALUE CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

$<3.7 \times 10^{-6}$	95	${ }^{1}$ ABREU	96T	DLPH	$f=e, \mu, \tau ; F=\gamma \gamma$
		${ }^{2}$ ABREU	96 T	DLPH	$f=\nu ; F=\gamma \gamma$
		${ }^{3}$ ABREU	96 T	DLPH	$f=q ; F=\gamma \gamma$
$<6.8 \times 10^{-6}$	95	${ }^{2}$ ACTON	93E	OPAL	$f=e, \mu, \tau ; F=\gamma \gamma$
$<5.5 \times 10^{-6}$	95	${ }^{2}$ ACTON	93E	OPAL	$f=q ; F=\gamma \gamma$
$<3.1 \times 10^{-6}$	95	${ }^{2}$ ACTON	93E	OPAL	$f=\nu ; F=\gamma \gamma$
$<6.5 \times 10^{-6}$	95	${ }^{2}$ ACTON	93E	OPAL	$f=e, \mu ; F=\ell \bar{\ell}, q \bar{q}, \nu \bar{\nu}$
$<7.1 \times 10^{-6}$	95	${ }^{2}$ BUSKULIC	93F	ALEP	$f=e, \mu ; F=\ell \bar{\ell}, q \bar{q}, \nu \bar{\nu}$
		${ }^{4}$ ADRIANI	92F	L3	$f=q ; F=\gamma \gamma$

${ }^{1}$ ABREU 96T obtain limit as a function of $m_{X^{0}}$. See their Fig. 6.
${ }^{2}$ Limit is for $m_{X^{0}}$ around 60 GeV .
${ }^{3}$ ABREU 96T obtain limit as a function of $m_{X^{0}}$. See their Fig. 15.
${ }^{4}$ ADRIANI 92F give $\sigma_{Z} \cdot \mathrm{~B}\left(Z \rightarrow q \bar{q} X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow \gamma \gamma\right)<(0.75-1.5) \mathrm{pb}(95 \% \mathrm{CL})$ for $m_{X^{0}}=10-70 \mathrm{GeV}$. The limit is 1 pb at 60 GeV .

Search for X^{0} Resonance in $W X^{0}$ final state
VALUE (MeV) DOCUMENT ID
data $\begin{array}{lll}1 & \text { AALTONEN } & \text { 13AA CDF } \\ 2 & x^{0} \rightarrow j j \\ \text { CHATRCHYAN 12BR CMS } & x^{0} \rightarrow j j \\ \text { ABAZOV } & \text { 11I DO DO } & x^{0} \rightarrow j j\end{array}$

Gauge \& Higgs Boson Particle Listings
New Heavy Bosons

Gauge \& Higgs Boson Particle Listings
New Heavy Bosons, Axions (A^{0}) and Other Very Light Bosons

BARTEL	87B	ZPHY C36 15	W. Bartel et al.	(JADE Collab.)
BEHREND	86B	PL B178 452	H.J. Behrend et al.	(CELLO Collab.)
DERRICK	86	PL 166B 463	M. Derrick et al.	(HRS Collab.)
Also		PR D34 3286	M. Derrick et al.	(HRS Collab.)
JODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES, TRIU)
Also		PR D37 237 (erratum)	A. Jodidio et al.	(LBL, NWES, TRIU)
MOHAPATRA	86	PR D34 909	R.N. Mohapatra	(UMD)
ADEVA	85	PL 152B 439	B. Adeva et al.	(Mark-J Collab.)
BERGER	85B	ZPHY C27 341	C. Berger et al.	(PLUTO Collab.)
STOKER	85	PRL 541887	D.P. Stoker et al.	(LBL, NWES, TRIU)
ADEVA	84	PRL 53134	B. Adeva et al.	(Mark-J Collab.)
BEHREND	84 C	PL 140B 130	H.J. Behrend et al.	(CELLO Collab.)
BERGSMA	83	PL 122B 465	F. Bergsma et al.	(CHARM Collab.)
CARR	83	PRL 51627	J. Carr et al.	(LBL, NWES, TRIU)
BEALL	82	PRL 48848	G. Beall, M. Bander, A. Soni	(UCI, UCLA)
SHANKER	82	NP B204 375	O. Shanker	(TRIU)

Axions (A^{0}) and Other Very Light Bosons, Searches for

See the related review(s):
Axions and Other Similar Particles

A^{0} (Axion) MASS LIMITS from Astrophysics and Cosmology

These bounds depend on model-dependent assumptions (i.e. - on a combination of axion parameters).
VALUE (MeV) DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - •

>0.2	BARROSO	82	ASTR	Standard Axion
>0.25	1 RAFFELT	82	ASTR	Standard Axion
>0.2	2 DICUS	$78 C$	ASTR	Standard Axion
	MIKAELIAN	78	ASTR	Stellar emission
>0.3	2 SATO	78	ASTR	Standard Axion
>0.2	VYSOTSKII	78	ASTR	Standard Axion
1 Lower bound from $5.5 \mathrm{MeV} \gamma$-ray line from the sun.				

A^{0} (Axion) and Other Light Boson (X^{0}) Searches in Hadron Decays Limits are for branching ratios.

Value	CL\%	DOCUMENT ID		TECN COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
$<2 \times 10^{-10}$	95	${ }^{1}$ AAIJ	17AQ	LHCB	$B^{+} \rightarrow K^{+} \chi^{0}\left(X^{0} \rightarrow \mu^{+} \mu^{-}\right)$
$<3.7 \times 10^{-8}$	90	${ }^{2}$ AHN	17	кото	$K_{L}^{0} \rightarrow \pi^{0} X^{0}, m_{X^{0}}=135 \mathrm{MeV}$
$<6 \times 10^{-11}$	90	${ }^{3}$ BATLEY	17	NA48	$K^{ \pm} \rightarrow \pi^{ \pm} \chi^{0}\left(X^{0} \rightarrow \mu^{+} \mu^{-}\right)$
		${ }^{4}$ WON		BELL	$\eta \rightarrow \gamma X^{0}\left(X^{0} \rightarrow \pi^{+} \pi^{-}\right)$
$<1 \times 10^{-9}$	95	${ }_{5}^{5}$ AIIJ	15az	LHCB	$B^{0} \rightarrow K^{* 0} X^{0}\left(X^{0} \rightarrow \mu^{+} \mu^{-}\right)$
$<1.5 \times 10^{-6}$	90	${ }^{6}$ ADLARSON	13	WASA	$\begin{gathered} \pi^{0} \rightarrow_{X^{0}}^{\gamma X^{0}}\left(X^{0} \rightarrow e^{+} e^{-}\right), \\ m^{0} \mathrm{MeV} \end{gathered}$
$<2 \times 10^{-8}$	90	${ }^{7}$ BABUSCI	13B	kloe	$\phi \rightarrow \eta X^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right)$
		${ }^{8}$ ARCHILLI	12	kloe	$\phi \rightarrow \eta X^{0}, x^{0} \rightarrow e^{+} e^{-}$
$<2 \times 10^{-15}$	90	${ }^{9}$ GNINENKO	12A	BDMP	$\pi^{0} \rightarrow \gamma X^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right)$
$<3 \times 10^{-14}$	90	10 GNINENKO	12B	BDMP	$\eta\left(\eta^{\prime}\right) \rightarrow \gamma X^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right)$
$<7 \times 10^{-10}$	90	${ }_{11}$ ADLER	04	B787	$K^{+} \rightarrow \pi^{+} \chi^{0}$
$<7.3 \times 10^{-11}$	90	12 ANISIMOVSK...		B949	$K^{+} \rightarrow \pi^{+} x^{0}$
$<4.5 \times 10^{-11}$	90	13 ADLER	02 C	B787	$K^{+} \rightarrow \pi^{+} \chi^{0}$
$<4 \times 10^{-5}$	90	14 ADLER	01	B787	$K^{+} \rightarrow \pi^{+} \pi^{0} A^{0}$
$<4.9 \times 10^{-5}$	90	AMMAR	01B	CLEO	$B^{ \pm} \rightarrow \pi^{ \pm}\left(K^{ \pm}\right) X^{0}$
$<5.3 \times 10^{-5}$	90	AMMAR	01B	CLEO	$B^{0} \rightarrow K_{S}^{0} X^{0}$
$<3.3 \times 10^{-5}$	90	15 Altegoer	98	NOMD	$\pi^{0} \rightarrow \gamma X^{0}, m_{X^{0}}<120 \mathrm{MeV}$
$<5.0 \times 10^{-8}$	90	16 KITCHING	97	B787	$\left.K^{+} \rightarrow \pi^{+} X^{0}{ }^{(} X^{0} \rightarrow \gamma \gamma\right)$
$<5.2 \times 10^{-10}$	90	17 ADLER	96	B787	$K^{+} \rightarrow \pi^{+} x^{0}$
$<2.8 \times 10^{-4}$	90	${ }^{18}$ AMSLER	96 B	CBAR	$\pi^{0} \rightarrow \gamma X^{0}, m_{X^{0}}<65 \mathrm{MeV}$
$<3 \times 10^{-4}$	90	${ }^{18}$ AMSLER	96 B	CBAR	$\eta \rightarrow \gamma X^{0}, m_{X^{0}}=50-200 \mathrm{MeV}$
$<4 \times 10^{-5}$	90	${ }^{18}$ AMSLER	96 B	CBAR	$\eta^{\prime} \rightarrow \gamma X^{0}, m_{X^{0}}=50-925 \mathrm{MeV}$
$<6 \times 10^{-5}$	90	${ }^{18}$ AMSLER	94 B	CBAR	$\pi^{0} \rightarrow \gamma X^{0}, m_{X^{0}}=65-125 \mathrm{MeV}$
$<6 \times 10^{-5}$	90	18 AMSLER	94 B	CBAR	$\eta \rightarrow \gamma X^{0}, m_{X^{0}}=200-525 \mathrm{MeV}$
$<7 \times 10^{-3}$	90	19 MEIJERDREES	94	CNTR	$\pi^{0} \rightarrow \gamma X^{0}, m_{X^{0}}=25 \mathrm{MeV}$
$<2 \times 10^{-3}$	90	19 MEIJERDREES	94	CNTR	$\pi^{0} \rightarrow \gamma X^{0}, m_{X^{0}}=100 \mathrm{MeV}$
$<2 \times 10^{-7}$	90	${ }^{20}$ ATIYA	93 B	B787	Sup. by ADLER 04
<3 $\times 10^{-13}$		${ }^{21}$ NG	93	COSM	$\pi^{0} \rightarrow \gamma X^{0}$
$<1.1 \times 10^{-8}$	90	${ }^{22}$ Alliegro	92	SPEC	$K^{+} \rightarrow \pi^{+} \chi^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right)$
$<5 \times 10^{-4}$	90	${ }^{23}$ ATIYA	92	B787	$\pi^{0} \rightarrow \gamma X^{0}$
$<1 \times 10^{-12}$	95	${ }^{24}$ BARABASH	92	BDMP	$\begin{gathered} \pi^{ \pm} \rightarrow e^{ \pm} \nu X^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right. \\ \quad \gamma \gamma), m_{X^{0}}=8 \mathrm{MeV} \end{gathered}$
$<1 \times 10^{-12}$	95	${ }^{25}$ BARABASH	92	BDMP	$\begin{aligned} & K^{ \pm} \\ &\gamma \gamma), \pi^{x^{ \pm}} X^{0}\left(X^{0} \rightarrow e^{+}=10 \mathrm{MeV}\right. \\ & x^{0}= e^{-}, \end{aligned}$
$<1 \times 10^{-11}$	95	${ }^{26}$ BARABASH	92	BDMP	$\begin{gathered} K_{L}^{0} \rightarrow \pi^{0} X^{0}\left(X^{0} \rightarrow e^{+} e^{-}\right. \\ \gamma \gamma), m_{X^{0}}=10 \mathrm{MeV} \end{gathered}$
$<1 \times 10^{-14}$	95	27 BARABASH	92	BDMP	$\begin{gathered} \eta^{\prime} \rightarrow X^{0}\left(X^{0} \rightarrow e^{+} e^{-}, \gamma \gamma\right), \\ m_{X^{0}}=10 \mathrm{MeV} \end{gathered}$

$<4 \times 10^{-6} \quad 90$
$<1 \times 10^{-7} \quad 90$
$<1 \times 10^{-7} 90$
$<1.3 \times 10^{-8} \quad 90$
$\begin{array}{lll}<1 & \times 10^{-9} & 90 \\ <2 & \times 10^{-5} & 90\end{array}$
$<(1.5-4) \times 10^{-6} 90$

28 MEIJERDREES		SPEC	$\begin{aligned} & \pi^{0} \rightarrow_{X^{0}}^{\gamma}=100 \mathrm{MeV}\left(X^{0} \rightarrow e^{+} e^{-}\right), \end{aligned}$
${ }^{29}$ ATIYA	90B	B787	Sup. by KITCHING 97
30 KORENCHE...	87	SPEC	$\pi^{+} \rightarrow e^{+} \nu A^{0}\left(A^{0} \rightarrow e^{+} e^{-}\right)$
${ }^{31}$ EICHLER	86	SPEC	Stopped $\pi^{+} \rightarrow e^{+} \nu A^{0}$
32 YAMAZAKI	84	SPEC	For $160<m<260 \mathrm{MeV}$
32 YAMAZAKI	84	SPEC	K decay, $m \chi^{0} \ll 100 \mathrm{MeV}$
${ }^{33}$ ASANO	82	CNTR	Stopped $K^{+} \rightarrow \pi^{+} \chi^{0}$
34 ASANO	81B	CNTR	Stopped $K^{+} \rightarrow \pi^{+} \chi^{0}$
${ }^{35}$ ZHITNITSKII	79		Heavy axion

${ }^{1}$ The limit is for $\tau_{X^{0}}=10 \mathrm{ps}$. See their Fig. 4 for limits in the range of $m_{X^{0}}=250-4700$ MeV and $\tau_{X^{0}}=0.1-1000 \mathrm{ps}$.
${ }^{2}$ The limit as a function of $m_{X 0}$ from 0 to 250 MeV is provided in their Fig. 5.
${ }^{3}$ The limit is for $m_{X^{0}}=216 \mathrm{MeV}$ and $\tau_{X^{0}} \leq 10$ ps. See their Fig. 4(c) for limits in the range of $m_{X^{0}}=211-354 \mathrm{MeV}$ and longer lifetimes.
${ }^{4}$ WON 16 look for a vector boson coupled to baryon number. Derived limits on α^{\prime} $<10^{-3}-10^{-2}$ for $m_{X^{0}}=290-520 \mathrm{MeV}$ at $95 \% \mathrm{CL}$. See their Fig. 4 for massdependent limits.
${ }^{5}$ The limit is for $\tau_{X^{0}}=10 \mathrm{ps}$ and $m_{X^{0}}=214-4350 \mathrm{MeV}$. See their Fig. 4 for massand lifetime-dependent limits.
${ }^{6}$ Limits between 2.0×10^{-5} and 1.5×10^{-6} are obtained for $m_{X 0}=20-100 \mathrm{MeV}$ (see their Fig. 8). Angular momentum conservation requires that x^{0} has spin ≥ 1.
${ }^{7}$ The limit is for $\mathrm{B}\left(\phi \rightarrow \eta X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow e^{+} e^{-}\right)$and applies to $m_{X^{0}}=410 \mathrm{MeV}$. It is derived by analyzing $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ and $\pi^{-} \pi^{+} \pi^{0}$. Limits between 1×10^{-6} and 2×10^{-8} are obtained for $m_{X^{0}} \leq 450 \mathrm{MeV}$ (see their Fig. 6).
${ }^{8}$ ARCHILLI 12 analyzed $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays. Derived limits on $\alpha^{\prime} / \alpha<2 \times 10^{-5}$ for $m_{X^{0}}=50-420 \mathrm{MeV}$ at $90 \% \mathrm{CL}$. See their Fig. 8 for mass-dependent limits.
${ }^{9}$ This limit is for $\mathrm{B}\left(\pi^{0} \rightarrow \gamma X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow e^{+} e^{-}\right)$and applies for $m_{X^{0}}=90 \mathrm{MeV}$ and $\tau_{X^{0}} \simeq 1 \times 10^{-8} \mathrm{sec}$. Limits between 10^{-8} and 2×10^{-15} are obtained for $m_{X^{0}}=$ ${ }^{3-120 ~ M e V}$ and $\tau^{X^{0}}=1 \times 10^{-11}-1 \mathrm{sec}$. See their Fig. 3 for limits at different masses and lifetimes.
10 This limit is for $\mathrm{B}\left(\eta \rightarrow \gamma X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow e^{+} e^{-}\right)$and applies for $m_{X 0}=100 \mathrm{MeV}$ and ${ }^{\tau} X^{0} \simeq 6 \times 10^{-9}$ sec. Limits between 10^{-5} and 3×10^{-14} are obtained for $m_{X^{0}} \lesssim$ 550 MeV and $\tau_{X^{0}}=10^{-10}-10 \mathrm{sec}$. See their Fig. 5 for limits at different mass and lifetime and for η^{\prime} decays.
${ }^{11}$ This limit applies for a mass near 180 MeV . For other masses in the range $m_{x^{0}}=$ $150-250 \mathrm{MeV}$ the limit is less restrictive, but still improves ADLER 02C and ATIYA 93 B. ${ }^{12}$ ANISIMOVSKY 04 bound is for $m_{X}{ }^{0}=0$.
${ }^{13}$ ADLER 02 C bound is for $m_{X 0}<60 \mathrm{MeV}$. See Fig. 2 for limits at higher masses.
${ }^{14}$ The quoted limit is for $m_{X^{0}}=0-80 \mathrm{MeV}$. See their Fig. 5 for the limit at higher mass. The branching fraction limit assumes pure phase space decay distributions.
${ }^{15}$ ALTEGOER 98 looked for x^{0} from π^{0} decay which penetrate the shielding and convert to π^{0} in the external Coulomb field of a nucleus.
${ }^{16} \mathrm{KITCHING} 97$ limit is for $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} X^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow \gamma \gamma\right)$ and applies for $m_{X^{0}} \simeq 50$ $\mathrm{MeV}, \tau_{X^{0}}<10^{-10} \mathrm{~s}$. Limits are provided for $0<m_{X^{0}}<100 \mathrm{MeV}, \tau_{X^{0}}<10^{-8} \mathrm{~s}$.
${ }^{17}$ ADLER 96 looked for a peak in missing-mass distribution. This work is an update of ATIYA 93. The limit is for massless stable X^{0} particles and extends to $m_{X^{0}}=80 \mathrm{MeV}$ at the same level. See paper for dependence on finite lifetime.
${ }^{18}$ AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.
${ }^{19}$ The MEIJERDREES 94 limit is based on inclusive photon spectrum and is independent of X^{0} decay modes. It applies to $\tau\left(X^{0}\right)>10^{-23} \mathrm{sec}$.
${ }^{20}$ ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stable X^{0} of $m_{X 0}=150-250 \mathrm{MeV}$, and the limit becomes stronger $\left(10^{-8}\right)$ for $m_{X 0}=180-240$ MeV .
${ }^{21} \mathrm{NG} 93$ studied the production of X^{0} via $\gamma \gamma \rightarrow \pi^{0} \rightarrow \gamma X^{0}$ in the early universe at $T \simeq 1$ MeV . The bound on extra neutrinos from nucleosynthesis $\Delta N_{\nu}<0.3$ (WALKER 91) is employed. It applies to $m_{X^{0}} \ll 1 \mathrm{MeV}$ in order to be relativistic down to nucleosynthesis temperature. See paper for heavier X^{0}.
${ }^{22}$ ALLIEGRO 92 limit applies for $m_{X^{0}}=150-340 \mathrm{MeV}$ and is the branching ratio times the decay probability. Limit is $<1.5 \times 10^{-8}$ at $99 \% \mathrm{CL}$.
${ }^{23}$ ATIYA 92 looked for a peak in missing mass distribution. The limit applies to $m_{X 0}=0-130 \mathrm{MeV}$ in the narrow resonance limit. See paper for the dependence on lifetime. Covariance requires X^{0} to be a vector particle.
${ }^{24}$ BARABASH 92 is a beam dump experiment that searched for a light Higgs. Limits between 1×10^{-12} and 1×10^{-7} are obtained for $3<m_{X^{0}}<40 \mathrm{MeV}$.
${ }^{25}$ Limits between 1×10^{-12} and 1 are obtained for $4<m_{X 0}<69 \mathrm{MeV}$.
${ }^{26}$ Limits between 1×10^{-11} and 5×10^{-3} are obtained for $4<m_{X^{0}}<63 \mathrm{MeV}$.
${ }^{27}$ Limits between 1×10^{-14} and 1 are obtained for $3<m_{X^{0}}<82 \mathrm{MeV}$.
${ }^{28}$ MEIJERDREES 92 limit applies for $\tau X^{0}=10^{-23}-10^{-11} \mathrm{sec}$. Limits between 2×10^{-4} and 4×10^{-6} are obtained for $m_{X^{0}}=25-120 \mathrm{MeV}$. Angular momentum conservation requires that X^{0} has spin ≥ 1.
${ }^{29}$ ATIYA 90B limit is for $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} x^{0}\right) \cdot \mathrm{B}\left(X^{0} \rightarrow \gamma \gamma\right)$ and applies for $m_{X^{0}}=50 \mathrm{MeV}$, ${ }^{\tau} X^{0}<10^{-10}$ s. Limits are also provided for $0<m_{X^{0}}<100 \mathrm{MeV}, \tau X^{0}<10^{-8} \mathrm{~s}$.
${ }^{30}$ KORENCHENKO 87 limit assumes $m_{A^{0}}=1.7 \mathrm{MeV}, \tau_{A^{0}} \lesssim 10^{-12} \mathrm{~s}$, and $\mathrm{B}\left(A^{0} \rightarrow\right.$ $\left.e^{+} e^{-}\right)=1$.
${ }^{31}$ EICHLER 86 looked for $\pi^{+} \rightarrow e^{+}{ }_{\nu} A^{0}$ followed by $A^{0} \rightarrow e^{+} e^{-}$. Limits on the branching fraction depend on the mass and and lifetime of A^{0}. The quoted limits are valid when $\tau\left(A^{0}\right) \geq 3 . \times 10^{-10} \mathrm{~S}$ if the decays are kinematically allowed.
${ }^{32}$ YAMAZAKI 84 looked for a discrete line in $K^{+} \rightarrow \pi^{+} \mathrm{X}$. Sensitive to wide mass range ($5-300 \mathrm{MeV}$), independent of whether X decays promptly or not.
${ }^{33}$ ASANO 82 at KEK set limits for $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} X^{0}\right)$ for $m_{X^{0}}<100 \mathrm{MeV}$ as BR $<4 . \times 10^{-8}$ for $\tau\left(X^{0} \rightarrow n \gamma^{\prime} \mathrm{s}\right)>1 . \times 10^{-9} \mathrm{~s}, \mathrm{BR}<1.4 \times 10^{-6}$ for $\tau<1 . \times 10^{-9} \mathrm{~s}$.
34 ASANO 81B is KEK experiment. Set $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} X^{0}\right)<3.8 \times 10^{-8}$ at $\mathrm{CL}=90 \%$.
${ }^{35}$ ZHITNITSKII 79 argue that a heavy axion predicted by YANG 78 ($3<m<40 \mathrm{MeV}$) contradicts experimental muon anomalous magnetic moments.

A^{0} (Axion) Searches in Quarkonium Decays

Decay or transition of quarkonium. Limits are for branching ratio.
VALUE CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • -

$<2.8 \times 10^{-8}$	90	${ }^{1}$ ABLIKIM	16E	BES3	$J / \psi \rightarrow A^{0} \gamma\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$
$<4 \times 10^{-7}$	90	${ }^{2}$ ABLIKIM	12	BES3	$J / \psi \rightarrow A^{0} \gamma\left(A^{0} \rightarrow \mu^{+} \mu^{-}\right)$
$<4.0 \times 10^{-5}$	90	${ }^{3}$ ANTREASYA	90C	CBAL	$\gamma(1 S) \rightarrow A^{0} \gamma$
$<5 \times 10^{-5}$	90	${ }^{4}$ DRUZHININ	87	ND	$\phi \rightarrow A^{0} \gamma\left(A^{0} \rightarrow e^{+} e^{-}\right)$
$<2 \times 10^{-3}$	90	${ }^{5}$ DRUZHININ	87	ND	$\phi \rightarrow A^{0} \gamma\left(A^{0} \rightarrow \gamma \gamma\right)$
$<7 \times 10^{-6}$	90	${ }^{6}$ DRUZHININ	87	ND	$\phi \rightarrow A^{0} \gamma\left(A^{0} \rightarrow\right.$ missing $)$
$<1.4 \times 10^{-5}$	90	7 EDWARDS	82	CBAL	$J / \psi \rightarrow A^{0} \gamma$

${ }^{1}$ ABLIKIM 16E limits between $2.8-495.3 \times 10^{-8}$ were obtained for $0.212 \mathrm{GeV}<m_{A^{0}}<$
3.0 GeV . See their Fig. 5 for mass-dependent limits.
${ }^{2}$ ABLIKIM 12 derived limits between $4 \times 10^{-7}-2.1 \times 10^{-5}$ for $0.212 \mathrm{GeV}<m_{A^{0}}<3.0$ GeV . See their Fig. 2(c) for mass-dependent limits.
${ }^{3}$ ANTREASYAN 90C assume that A^{0} does not decay in the detector.
${ }^{4}$ The first DRUZHININ 87 limit is valid when $\tau_{A^{0}} / m A^{0}<3 \times 10^{-13} \mathrm{~s} / \mathrm{MeV}$ and $m_{A^{0}}<20 \mathrm{MeV}$.
${ }^{5}$ The second DRUZHININ 87 limit is valid when $\tau_{A^{0}} / m_{A^{0}}<5 \times 10^{-13} \mathrm{~s} / \mathrm{MeV}$ and ${ }^{m} A^{0}<20 \mathrm{MeV}$.
${ }^{6}$ The third DRUZHININ 87 limit is valid when $\tau_{A^{0}} / m A^{0}>7 \times 10^{-12} \mathrm{~s} / \mathrm{MeV}$ and $m_{A^{0}}<200 \mathrm{MeV}$.
${ }^{7}$ EDWARDS 82 looked for $J / \psi \rightarrow \gamma A^{0}$ decays by looking for events with a single γ [of energy $\sim 1 / 2$ the $J / \psi(1 S)$ mass], plus nothing else in the detector. The limit is inconsistent with the axion interpretation of the FAISSNER 81B result.

A^{0} (Axion) Searches in Positronium Decays

Decay or transition of positronium. Limits are for branching ratio.

VALUE CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$<4.4 \times 10^{-5} \quad 90 \quad 1$ BADERT... $02 \quad$ CNTR \quad-Ps $\rightarrow \gamma X_{1} X_{2}, m_{X_{1}}+m_{X_{2}} \leq$
$<2 \times 10^{-4} \quad 90 \quad$ MAENO $95 \quad$ CNTR $\quad 9-\mathrm{Ps} \rightarrow A^{0} \gamma m_{A^{0}}=850-1013 \mathrm{keV}$
$<3.0 \times 10^{-4} \quad 90 \quad{ }^{2}$ ASAI $94 \quad$ CNTR $o-\mathrm{Ps} \rightarrow A^{0} \gamma m_{A^{0}}=30-500 \mathrm{keV}$

$<1.1 \times 10^{-6} \quad 90 \quad 4 \mathrm{ASAI} \quad 91 \quad$ CNTR \quad o-Ps $\rightarrow A^{0} \gamma, m_{A^{0}}<800 \mathrm{keV}$
$<3.8 \times 10^{-4} 90 \quad$ GNINENKO $90 \quad$ CNTR \quad-Ps $\rightarrow A^{0} \gamma, m_{A^{0}}<30 \mathrm{keV}$
$<(1-5) \times 10^{-4} 95 \quad{ }^{5}$ TSUCHIAKI $90 \quad$ CNTR $o-P s \rightarrow A^{0} \gamma, m_{A^{0}}=300-900 \mathrm{keV}$
$<6.4 \times 10^{-5} 90 \quad{ }^{6}$ ORITO 89 CNTR o-Ps $\rightarrow A^{0} \gamma, m A^{0}<30 \mathrm{keV}$
$\begin{array}{llll}{ }^{7} \text { AMALDI } & 85 & \text { CNTR } & \text { Ortho-positronium } \\ { }^{8} \text { CARBONI } & 83 & \text { CNTR } & \text { Ortho-positronium }\end{array}$
${ }^{1}$ BADERTSCHER 02 looked for a three-body decay of ortho-positronium into a photon and two penetrating (neutral or milli-charged) particles.
2 The ASAI 94 limit is based on inclusive photon spectrum and is independent of A^{0} decay
3 modes. ${ }^{\text {The AKOPYAN }} 91$ limit applies for a short-lived A^{0} with $\tau_{A^{0}}<10^{-13} m_{A^{0}}[\mathrm{keV}] \mathrm{s}$.
${ }^{4}$ ASAI 91 limit translates to $g_{A^{0}}^{2} e^{+} e^{-} / 4 \pi<1.1 \times 10^{-11}(90 \% \mathrm{CL})$ for $m_{A^{0}}<800$
5 keV . The TSUCHIAKI 90 limit is based on inclusive photon spectrum and is independent of A^{0} decay modes.
${ }^{6}$ ORITO 89 limit translates to $g_{A^{0} e e}^{2} / 4 \pi<6.2 \times 10^{-10}$. Somewhat more sensitive limits are obtained for larger $m_{A^{0}}: B<7.6 \times 10^{-6}$ at 100 keV .
${ }^{7}$ AMALDI 85 set limits $\mathrm{B}\left(A^{0} \gamma\right) / \mathrm{B}(\gamma \gamma \gamma)<(1-5) \times 10^{-6}$ for $m_{A^{0}}=900-100 \mathrm{keV}$ which are about $1 / 10$ of the CARBONI 83 limits.
${ }^{8}$ CARBONI 83 looked for orthopositronium $\rightarrow A^{0} \gamma$. Set limit for A^{0} electron coupling squared, $g\left(e e A^{0}\right)^{2} /(4 \pi)<6 . \times 10^{-10}-7 . \times 10^{-9}$ for $m_{A^{0}}$ from $150-900 \mathrm{keV}(\mathrm{CL}=$ $99.7 \%)$. This is about $1 / 10$ of the bound from $g-2$ experiments.

A^{0} (Axion) Search in Photoproduction

[^101]
A^{0} (Axion) Production in Hadron Collisions
 Limits are for $\sigma\left(A^{0}\right) / \sigma\left(\pi^{0}\right)$.

VALUE
ALUE $\frac{C L \%}{\text { EVTS }}$
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

1 SIRUNYAN 19BQ CMS $\quad x^{0} \rightarrow \mu^{+} \mu$
2 JAIN 07 CNTR $A^{0} \rightarrow e^{+} e^{-}$
${ }^{3}$ AHMAD 97 SPEC e^{+}production
${ }^{4}$ LEINBERGER 97 SPEC $A^{0} \rightarrow e^{+} e^{-}$
5 GANZ 96 SPEC $A^{0} \rightarrow e^{+} e^{-}$
${ }^{6}$ KAMEL $\quad 96$ EMUL ${ }^{32}$ S emulsion, $A^{0} \rightarrow$
${ }^{7}$ BLUEMLEIN 92 BDMP $A^{0}{ }^{e+} N_{Z} \rightarrow \ell^{+} \ell^{-} N_{Z}$
${ }^{8}$ MEIJERDREES 92 SPEC $\pi^{-} p^{2} \rightarrow n A^{0}, A^{0} \xrightarrow{\rightarrow}$
${ }^{9}$ BLUEMLEIN 91 BDMP $A^{0} e^{+} \rightarrow e^{+} e^{-}, 2$
10 FAISSNER 89 OSPK Beam dump,
11 DEBOER 88 RVUE $A^{0} \xrightarrow{A^{0}} \rightarrow e^{+} e^{+} e^{-}$
12 EL-NADI 88 EMUL $A^{0} \rightarrow e^{+} e^{-}$
13 FAISSNER 88 OSPK Beam dump, $A^{0} \rightarrow 2$
14 BADIER
$<2 . \times 10^{-11} \quad 90 \quad 0$
$<1 . \times 10^{-13} 90$
BDMP $A^{0} \rightarrow e^{+} e^{-}$
5 BERGSMA 85 CHRM CERN beam dump
16 EAISSNA 85 CHRM CERN beam dump
16 FAISSNER $\quad 83$ OSPK Beam dump, $A^{0} \rightarrow 2 \gamma$
17 FAISSNER $\quad 83$ B RVUE LAMPF beam dump
18 FRANK
19 HOFFMAN
CNTR $\pi p \rightarrow n A^{0}$
$\left(A^{0} \rightarrow e^{+} e^{-}\right)$
$\begin{array}{llll}20 \text { FETSCHER } & 82 & \text { RVUE } & \text { See FAISSNER 81B } \\ 21 \text { FAISSNER } & 81 & \text { OSPK } & \text { CERN PS } \nu \text { wideband }\end{array}$
$\begin{array}{lllll}12 & 21 \text { FAISSNER } & 81 & \text { OSPK } & \text { CERN PS } \nu \text { wideband } \\ 15 & 22 \text { FAISSNER } & 81 \mathrm{~B} & \text { OSPK } & \text { Beam dump, } A^{0} \rightarrow 2 \gamma\end{array}$
15 FAISSNER
23 KIM
24 FAISSNE
OSPK $26 \mathrm{GeV} p N \rightarrow A^{0} \mathrm{X}$
OSPK Beam dump,
$A^{0} \rightarrow e^{+} e^{-}$
$<1 . \times 10^{-8} \quad 90$
25 JACQUES
HLBC 28 GeV protons
25 JACQUES 80 HLBC Beam dump
26 SOUKAS 80 CALO $28 \mathrm{GeV} p$ beam dump
27 BECHIS
28 COTEUS 79 OSPK Beam dump
29 DISHAW 79 CALO $400 \mathrm{GeV} p p$
ALIBRAN 78 HYBR Beam dump
ASRATYAN 78B CALO Beam dump
${ }^{30}$ BELLOTTI 78 HLBC Beam dump
${ }^{30}$ BELLOTTI 78 HLBC $m_{A^{0}}=1.5 \mathrm{MeV}$
${ }^{30}$ BELLOTTI 78 HLBC $m_{A^{0}}=1 \mathrm{MeV}$
31 BOSETTI 78B HYBR Beam dump
32 DONNELLY 78
HANSL 78D WIRE Beam dump
33 MICELMAC... 78
34 VYSOTSKII 78
${ }^{1}$ SIRUNYAN 19BQ look for the pair production of a new light boson decaying into a pair of muons, and set limits on the product of the production cross section times branching fraction to dimuons squared times acceptance over a range of $m_{X^{0}}=0.25-8.5 \mathrm{GeV}$. See the right panel of their Fig. 1 for mass-dependent limits.
2 JAIN 07 claims evidence for $A^{0} \rightarrow e^{+} e^{-}$produced in ${ }^{207} \mathrm{~Pb}$ collision on nuclear emulsion $(\mathrm{Ag} / \mathrm{Br})$ for $m\left(A^{0}\right)=7 \pm 1$ or $19 \pm 1 \mathrm{MeV}$ and $\tau\left(A^{0}\right) \leq 10^{-13} \mathrm{~s}$.
${ }^{3}$ AHMAD 97 reports a result of APEX Collaboration which studied positron production in
${ }^{238} \mathrm{U}+{ }^{232} \mathrm{Ta}$ and ${ }^{238} \mathrm{U}+{ }^{181} \mathrm{Ta}$ collisions, without requiring a coincident electron. No narrow lines were found for $250<E_{e^{+}}<750 \mathrm{keV}$.
${ }^{4}$ LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energy $e^{+} e^{-}$-line at $\sim 635 \mathrm{keV}$ in ${ }^{238} \mathrm{U}+{ }^{181} \mathrm{Ta}$ collision. Limits on the production probability for a narrow sum-energy $e^{+} e^{-}$line are set. See their Table 2.
${ }^{5}$ GANZ 96 (EPos II Collaboration) has placed upper bounds on the production cross section of $e^{+} e^{-}$pairs from ${ }^{238} \mathrm{U}+{ }^{181} \mathrm{Ta}$ and ${ }^{238} \mathrm{U}+{ }^{232} \mathrm{Th}$ collisions at GSI. See Table 2 for limits both for back-to-back and isotropic configurations of $e^{+} e^{-}$pairs. These limits rule out the existence of peaks in the $e^{+} e^{-}$sum-energy distribution, reported by an earlier version of this experiment.
${ }^{6}$ KAMEL 96 looked for $e^{+} e^{-}$pairs from the collision of ${ }^{32} \mathrm{~S}(200 \mathrm{GeV} /$ nucleon $)$ and emulsion. No evidence of mass peaks is found in the region of sensitivity $m_{e e}>2 \mathrm{MeV}$.
${ }^{7}$ BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a secondary target to induce Bethe-Heitler production of $e^{+} e^{-}$or $\mu^{+} \mu^{-}$from the produce A^{0}. see Fig. 5 for the excluded region in $m A^{0^{-x}}$ plane. For the standard axion, $0.3<x<25$
is excluded at 95% CL. If combined with BLUEMLEIN $91,0.008<x<32$ is excluded.
8 MEIJERDREES 92 give $\Gamma\left(\pi^{-} p \rightarrow n A^{0}\right) \cdot \mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right) / \Gamma\left(\pi^{-} p \rightarrow\right.$ all $)<10^{-5}$ $(90 \% \mathrm{CL})$ for $m_{A^{0}}=100 \mathrm{MeV}, \tau_{A^{0}}=10^{-11_{-10}-23} \mathrm{sec}$. Limits ranging from $2.5 \times$ 10^{-3} to 10^{-7} are given for $m_{A^{0}}=25-136 \mathrm{MeV}$.
${ }^{9}$ BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No candidate event for $A^{0} \rightarrow e^{+} e^{-}, 2 \gamma$ are found. Fig. 6 gives the excluded region in $m A^{0^{-x}}$ plane $(x=$ $\tan \beta=v_{2} / v_{1}$). Standard axion is excluded for $0.2<m_{A^{0}}<3.2 \mathrm{MeV}$ for most $x>1,0.2-11 \mathrm{MeV}$ for most $x<1$.
${ }^{10}$ FAISSNER 89 searched for $A^{0} \rightarrow e^{+} e^{-}$in a proton beam dump experiment at SIN. No excess of events was observed over the background. A standard axion with mass $2 m_{e} e^{-20}$ MeV is excluded. Lower limit on $f_{A^{0}}$ of $\simeq 10^{4} \mathrm{GeV}$ is given for $m_{A^{0}}=2 m_{e^{-20}} \mathrm{MeV}$.
${ }^{11}$ DEBOER 88 reanalyze EL-NADI 88 data and claim evidence for three distinct states with mass $\sim 1.1, \sim 2.1$, and $\sim 9 \mathrm{MeV}$, lifetimes $10^{-16}-10^{-15} \mathrm{~s}$ decaying to $e^{+} e^{-}$

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

and note the similarity of the data with those of a cosmic-ray experiment by Bristol group

 (B.M. Anand, Proc. of the Royal Society of London, Section A A22 183 (1953)). For a criticism see PERKINS 89, who suggests that the events are compatible with π^{0} Dalitz decay. DEBOER 89B is a reply which contests the criticism${ }^{12}$ EL-NADI 88 claim the existence of a neutral particle decaying into $e^{+} e^{-}$with mass $1.60 \pm 0.59 \mathrm{MeV}$, lifetime $(0.15 \pm 0.01) \times 10^{-14} \mathrm{~s}$, which is produced in heavy ion interactions with emulsion nuclei at $\sim 4 \mathrm{GeV} / c /$ nucleon.
13 FAISSNER 88 is a proton beam dump experiment at SIN. They found no candidate event for $A^{0} \rightarrow \gamma \gamma$. A standard axion decaying to 2γ is excluded except for a region $x \simeq 1$. Lower limit on $f_{A^{0}}$ of $10^{2}-10^{3} \mathrm{GeV}$ is given for $m_{A^{0}}=0.1-1 \mathrm{MeV}$.
${ }^{14}$ BADIER 86 did not find long-lived A^{0} in $300 \mathrm{GeV} \pi^{-}$Beam Dump Experiment that decays into $e^{+} e^{-}$in the mass range $m_{A^{0}}=(20-200) \mathrm{MeV}$, which excludes the A^{0} decay constant $f\left(A^{0}\right)$ in the interval $(60-600) \mathrm{GeV}$. See their figure 6 for excluded region on $f\left(A^{0}\right)-m_{A^{0}}$ plane.
${ }^{15}$ BERGSMA 85 look for $A^{0} \rightarrow 2 \gamma, e^{+} e^{-}, \mu^{+} \mu^{-}$. First limit above is for $m_{A^{0}}=1$ MeV ; second is for 200 MeV . See their figure 4 for excluded region on $f_{A^{0}}-m_{A^{0}}$ plane, where $f_{A^{0}}$ is A^{0} decay constant. For Peccei-Quinn PECCEI $77 A^{0}, m_{A^{0}}<180 \mathrm{keV}$ and $\tau>0.037 \mathrm{~s} .(\mathrm{CL}=90 \%)$. For the axion of FAISSNER 81b at 250 keV , BERGSMA 85 expect 15 events but observe zero.
${ }^{16}$ FAISSNER 83 observed $191-\gamma$ and $122-\gamma$ events where a background of 4.8 and 2.3 respectively is expected. A small-angle peak is observed even if iron wall is set in front of the decay region
17 FAISSNER 83B extrapolate SIN γ signal to LAMPF ν experimental condition. Resulting 370γ 's are not at variance with LAMPF upper limit of 450γ 's. Derived from LAMPF limit that $\left[d \sigma\left(A^{0}\right) / d \omega\right.$ at $\left.90^{\circ}\right] m_{A^{0}} / \tau A^{0}<14 \times 10^{-35} \mathrm{~cm}^{2} \mathrm{sr}^{-1} \mathrm{MeV} \mathrm{ms}^{-1}$. See comment on FRANK 83b.
18 FRANK 83B stress the importance of LAMPF data bins with negative net signal. By statistical analysis say that LAMPF and SIN-A0 are at variance when extrapolation by phase-space model is done. They find LAMPF upper limit is 248 not 450γ 's. See phase-space model is done.
19 HOFFMAN 83 set $\mathrm{CL}=90 \%$ limit $d \sigma / d t \mathrm{~B}\left(e^{+} e^{-}\right)<3.5 \times 10^{-32} \mathrm{~cm}^{2} / \mathrm{GeV}^{2}$ for 140 $<m_{A^{0}}<160 \mathrm{MeV}$. Limit assumes $\tau\left(A^{0}\right)<10^{-9} \mathrm{~s}$.
${ }^{20}$ FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no evidence for axion since $2-\gamma$ peak rate remarkably decreases if iron wall is set in front of the decay region.
21 FAISSNER 81 see excess μ e events. Suggest axion interactions.
${ }^{22}$ FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 ± 5.0 events of 2γ decay of long-lived neutral penetrating particle with $m_{2 \gamma} \lesssim 1 \mathrm{MeV}$. Axion interpretation with η - A^{0} mixing gives $m_{A^{0}}=250 \pm 25 \mathrm{keV}, \tau_{(2 \gamma)}=(7.3 \pm 3.7) \times 10^{-3} \mathrm{~s}$ from above rate. See critical remarks below in comments of FETSCHER 82, FAISSNER 83, FAISSNER 83b, FRANK 83b, and BERGSMA 85. Also see in the next subsection ALEKSEEV 82B, CAVAIGNAC 83, and ANANEV 85.
${ }^{23}$ KIM 81 analyzed 8 candidates for $A^{0} \rightarrow 2 \gamma$ obtained by Aachen-Padova experiment at CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime is $(0.86 \sim 5.6) \times 10^{-3}$ s depending on models. Faissner (private communication), says axion production underestimated and mass overestimated. Correct value around 200 keV.
24 FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for $A^{0} \rightarrow$ $e^{+} e^{-}$decay. Assuming $A^{0} / \pi^{0}=5.5 \times 10^{-7}$, obtained decay rate limit 20/(A^{0} mass) $\mathrm{MeV} / \mathrm{s}(\mathrm{CL}=90 \%)$, which is about 10^{-7} below theory and interpreted as upper limit to $m_{A^{0}}<2 m_{e^{-}}$.
25 JACQUES 80 is a BNL beam dump experiment. First limit above comes from nonobservation of excess neutral-current-type events [σ (production) σ (interaction) $<7 . \times 10^{-68}$ $\left.\mathrm{cm}^{4}, \mathrm{CL}=90 \%\right]$. Second limit is from nonobservation of axion decays into 2γ 's or $e^{+} e^{-}$, and for axion mass a few MeV .
26 SOUKAS 80 at BNL observed no excess of neutral-current-type events in beam dump.
27 BECHIS 79 looked for the axion production in low energy electron Bremsstrahlung and the subsequent decay into either 2γ or $e^{+} e^{-}$. No signal found. $\mathrm{CL}=90 \%$ limits for model parameter(s) are given.
${ }^{28}$ COTEUS 79 is a beam dump experiment at BNL.
${ }^{29}$ DISHAW 79 is a calorimetric experiment and looks for low energy tail of energy distributions due to energy lost to weakly interacting particles.
${ }^{30}$ BELLOTTI 78 first value comes from search for $A^{0} \rightarrow e^{+} e^{-}$. Second value comes from search for $A^{0} \rightarrow 2 \gamma$, assuming mass $<2 m_{e^{-}}$. For any mass satisfying this, limit is above value $\times\left(\right.$ mass $\left.^{-4}\right)$. Third value uses data of PL 60B 401 and quotes $\sigma($ production $) \sigma$ (interaction $)<10^{-67} \mathrm{~cm}^{4}$.
31 BOSETTI 78B quotes σ (production) σ (interaction) $<2 . \times 10^{-67} \mathrm{~cm}^{4}$.
32 DONNELLY 78 examines data from reactor neutrino experiments of REINES 76 and GURR 74 as well as SLAC beam dump experiment. Evidence is negative.
${ }^{33}$ MICELMACHER 78 finds no evidence of axion existence in reactor experiments of REINES 76 and GURR 74. (See reference under DONNELLY 78 below).
34 VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sun and 200 keV from red supergiants.

A^{0} (Axion) Searches in Reactor Experiments

VALUE \quad DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. - • -

1^{1} CHANG	07		Primakoff or Compton
2 ALTMANN	95	CNTR	Reactor; $A^{0} \rightarrow e^{+} e^{-}$
3 KETOV	86	SPEC	Reactor, $A^{0} \rightarrow \gamma \gamma$
${ }^{4}$ KOCH	86	SPEC	Reactor; $A^{0} \rightarrow \gamma \gamma$
5 DATAR	82	CNTR	Light water reactor
${ }^{6}$ VUILLEUMIER 81	CNTR	Reactor, $A^{0} \rightarrow 2 \gamma$	

${ }^{1}$ CHANG 07 looked for monochromatic photons from Primakoff or Compton conversion of axions from the Kuo-Sheng reactor due to axion coupling to photon or electron, respectively. The search places model-independent limits on the products $G_{A \gamma \gamma} G_{A N N}$ and $G_{A e e} G_{A N N}$ for $m\left(A^{0}\right)$ less than the MeV range.
${ }^{2}$ ALTMANN 95 looked for A^{0} decaying into $e^{+} e^{-}$from the Bugey 5 nuclear reactor. They obtain an upper limit on the A^{0} production rate of $\omega\left(A^{0}\right) / \omega(\gamma) \times \mathrm{B}\left(A^{0} \rightarrow\right.$ $\left.e^{+} e^{-}\right)<10^{-16}$ for $m_{A^{0}}=1.5 \mathrm{MeV}$ at $90 \% \mathrm{CL}$. The limit is weaker for heavier A^{0}. In the case of a standard axion, this limit excludes a mass in the range $2 m_{e}<m_{A^{0}}<4.8$ MeV at 90% CL. See Fig. 5 of their paper for exclusion limits of axion-like resonances Z^{0} in the ($\left.m_{X^{0}}, f_{X^{0}}\right)$ plane.
${ }^{3}$ KETOV 86 searched for A^{0} at the Rovno nuclear power plant. They found an upper limit on the A^{0} production probability of $0.8\left[100 \mathrm{keV} / m_{A^{0}}\right]^{6} \times 10^{-6}$ per fission. In the standard axion model, this corresponds to $m_{A^{0}}>150 \mathrm{keV}$. Not valid for $m_{A^{0}} \gtrsim$ 1 MeV .
${ }^{4} \mathrm{KOCH} 86$ searched for $A^{0} \rightarrow \gamma \gamma$ at nuclear power reactor Biblis A. They found an upper limit on the A^{0} production rate of $\omega\left(A^{0}\right) / \omega(\gamma(M 1))<1.5 \times 10^{-10}$ (CL=95\%). Standard axion with $m_{A^{0}}=250 \mathrm{keV}$ gives 10^{-5} for the ratio. Not valid for $m_{A^{0}}>1022$
${ }^{5} \begin{aligned} & \mathrm{keV} \text { DATAR } 82 \text { looked for } A^{0} \rightarrow 2 \gamma \text { in neutron capture }\left(n p \rightarrow d A^{0}\right) \text { at Tarapur } 500 \mathrm{MW}\end{aligned}$ reactor. Sensitive to sum of $I=0$ and $I=1$ amplitudes. With ZEHNDER $81[(I=0)$ $-(I=1)]$ result, assert nonexistence of standard A^{0}.
${ }^{6}$ VUILLEUMIER 81 is at Grenoble reactor. Set limit $m_{A^{0}}<280 \mathrm{keV}$.

A^{0} (Axion) and Other Light Boson ($\boldsymbol{X}^{\mathbf{0}}$) Searches in Nuclear Transitions Limits are for branching ratio.					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -					
< 8.5×10^{-6}	90	1 DERBIN	02	CNTR	${ }^{125 m}$ Te decay
		2 DEBOER	97C	RVUE	M1 transitions
$<5.5 \times 10^{-10}$	95	3 TSUNODA	95	CNTR	${ }^{252} \mathrm{Cf}$ fission, $A^{0} \rightarrow e e$
$<1.2 \times 10^{-6}$	95	${ }^{4}$ MINOWA	93	CNTR	${ }^{139} \mathrm{La}^{*} \rightarrow{ }^{139} \mathrm{La} A^{0}$
$<2 \times 10^{-4}$	90	5 HICKS	92	CNTR	${ }^{35}$ S decay, $A^{0} \rightarrow \gamma \gamma$
$<1.5 \times 10^{-9}$	95	${ }^{6}$ ASANUMA	90	CNTR	${ }^{241} \mathrm{Am}$ decay
$<(0.4-10) \times 10^{-3}$	95	7 DEBOER	90	CNTR	${ }^{8} \mathrm{Be}^{*} \rightarrow{ }^{8} \mathrm{Be} A^{0}$,
$<(0.2-1) \times 10^{-3}$	90	8 BINI	89	CNTR	${ }^{16}{ }^{A^{0}} \rightarrow{ }^{*}{ }^{+16}{ }^{+} e^{-}{ }^{-} X^{0}$,
					${ }^{X^{0}} \rightarrow e^{+} e^{-}$
		${ }^{9}$ AVIGNONE	88	CNTR	$\begin{aligned} & \mathrm{Cu}^{*} \rightarrow \mathrm{Cu} A^{0}\left(A^{0} \rightarrow 2 \gamma\right. \\ & \left.A^{0} e \rightarrow \gamma e, A^{0} Z \rightarrow \gamma Z\right) \end{aligned}$
$<1.5 \times 10^{-4}$	90	10 DATAR	88	CNTR	${ }^{12} \mathrm{C}^{*} \rightarrow{ }^{12} \mathrm{CA} A^{0}$
$<5 \times 10^{-3}$	90	11 DEBOER	88C	CNTR	$\begin{gathered}{ }^{A^{0}} \rightarrow e^{+} e^{-} \\ \mathrm{O}^{*}\end{gathered} 1^{16} \mathrm{O} X^{0}$,
$<3.4 \times 10^{-5}$	95	12 DOEHNER	88	SPEC	$\chi^{0} \rightarrow e^{+} e^{-}$ $\mathrm{H}^{*}, A^{0}$$e^{+} e^{-}$
$<4 \times 10^{-4}$	95	13 SAVAGE	88	CNTR	Nuclear decay (isovector)
$<3 \times 10^{-3}$	95	13 SAVAGE	88	CNTR	Nuclear decay (isoscalar)
$<10.6 \times 10^{-2}$	90	14 HALLIN	86	SPEC	${ }^{6} \mathrm{Li}$ isovector decay
<10.8	90	14 HALLIN	86	SPEC	${ }^{10} \mathrm{~B}$ isoscalar decays
< 2.2	90	14 HALLIN	86	SPEC	${ }^{14} \mathrm{~N}$ isoscalar decays
$<4 \times 10^{-4}$	90	15 SAVAGE 16 ANANEV 17 CAVAIGNAC	86B	CNTR ${ }^{14} \mathrm{~N}^{*}$	
			85	CNTR	Li* ${ }^{*}$ deut ${ }^{*} A^{0} \rightarrow 2 \gamma$
			83	CNTR	$\begin{aligned} & { }^{97} \mathrm{Nb}^{*} \text {, deut* transition } \\ & A^{0} \rightarrow 2 \gamma \end{aligned}$
		18 ALEKSEEV	82B	CNTR Li*, deut* transition$A^{0} \rightarrow 2 \gamma$	
		19 LEHMANN	82	CNTR Cu* ${ }^{*} \rightarrow \mathrm{Cu} A^{0}\left(A^{0} \rightarrow 2 \gamma\right)$	
		20 ZEHNDER	82	CNTR	$\mathrm{Li}^{*}, \mathrm{Nb}^{*}$ decay, n-capt.$\mathrm{Ba}^{*} \rightarrow \mathrm{Ba} A^{0}\left(A^{0} \rightarrow 2 \gamma\right)$
		21 ZEHNDER	8179	CNTR	
		22 CALAPRICE			Carbon

${ }^{1}$ DERBIN 02 looked for the axion emission in an M1 transition in ${ }^{125 m}$ Te decay. They looked for a possible presence of a shifted energy spectrum in gamma rays due to the undetected axion.
2 DEBOER 97C reanalyzed the existent data on Nuclear M1 transitions and find that a 9 MeV boson decaying into $e^{+} e^{-}$would explain the excess of events with large opening angles. See also DEBOER 01 for follow-up experiments.
${ }^{3}$ TSUNODA 95 looked for axion emission when ${ }^{252}$ Cf undergoes a spontaneous fission, with the axion decaying into $e^{+} e^{-}$. The bound is for $m_{A^{0}}=40 \mathrm{MeV}$. It improves to 2.5×10^{-5} for $m_{A^{0}}=200 \mathrm{MeV}$.
${ }^{4}$ MINOWA 93 studied chain process, ${ }^{139} \mathrm{Ce} \rightarrow{ }^{139} \mathrm{La}^{*}$ by electron capture and M1 transition of ${ }^{139} \mathrm{La}^{*}$ to the ground state. It does not assume decay modes of A^{0}. The bound applies for $m_{A^{0}}<166 \mathrm{keV}$.
${ }^{5}$ HICKS 92 bound is applicable for $\tau_{X^{0}}<4 \times 10^{-11} \mathrm{sec}$.
${ }^{6}$ The ASANUMA 90 limit is for the branching fraction of X^{0} emission per ${ }^{241} \mathrm{Am} \alpha$ decay and valid for ${ }^{\tau} X^{0}<3 \times 10^{-11} \mathrm{~s}$.
7 The DEBOER 90 limit is for the branching ratio ${ }^{8} \mathrm{Be}^{*}\left(18.15 \mathrm{MeV}, 1^{+}\right) \rightarrow{ }^{8} \mathrm{Be}^{0}$, $A^{0} \rightarrow e^{+} e^{-}$for the mass range $m_{A^{0}}=4-15 \mathrm{MeV}$.
${ }^{8}$ The BINI 89 limit is for the branching fraction of ${ }^{16} \mathrm{O}^{*}\left(6.05 \mathrm{MeV}, 0^{+}\right) \rightarrow{ }^{16} \mathrm{O} X^{0}$, $X^{0} \rightarrow e^{+} e^{-}$for $m_{X}=1.5-3.1 \mathrm{MeV} . \tau X^{0} \lesssim 10^{-11} \mathrm{~s}$ is assumed. The spin-parity of X is restricted to 0^{+}or 1^{-}
$9{ }^{9}$ AVIGNONE 88 looked for the 1115 keV transition $\mathrm{C}^{*} \rightarrow \mathrm{Cu} A^{0}$, either from $A^{0} \rightarrow$ 2γ in-flight decay or from the secondary A^{0} interactions by Compton and by Primakoff processes. Limits for axion parameters are obtained for $m_{A^{0}}<1.1 \mathrm{MeV}$.
${ }^{10}$ DATAR 88 rule out light pseudoscalar particle emission through its decay $A^{0} \rightarrow e^{+} e^{-}$ in the mass range $1.02-2.5 \mathrm{MeV}$ and lifetime range $10^{-13}-10^{-8} \mathrm{~s}$. The above limit is for $\tau=5 \times 10^{-13} \mathrm{~s}$ and $m=1.7 \mathrm{MeV}$; see the paper for the τ - m dependence of the limit.
${ }^{11}$ The limit. is for the branching fraction of ${ }^{16} \mathrm{O}^{*}\left(6.05 \mathrm{MeV}, 0^{+}\right) \rightarrow{ }^{16} \mathrm{O} X^{0}, x^{0} \rightarrow$ $e^{+} e^{-}$against internal pair conversion for $m_{X^{0}}=1.7 \mathrm{MeV}$ and $\tau_{X^{0}}<10^{-11} \mathrm{~s}$. Similar limits are obtained for $m_{X^{0}}=1.3-3.2 \mathrm{MeV}$. The spin parity of X^{0} must be either 0^{+}or 1^{-}. The limit at 1.7 MeV is translated into a limit for the X^{0}-nucleon coupling constant: $g_{X^{0} N N}^{2} / 4 \pi<2.3 \times 10^{-9}$.
${ }^{12}$ The DOEHNER 88 limit is for $m_{A^{0}}=1.7 \mathrm{MeV}, \tau\left(A^{0}\right)<10^{-10} \mathrm{~s}$. Limits less than 10^{-4} are obtained for $m_{A^{0}}=1.2-2.2 \mathrm{MeV}$.
${ }^{13}$ SAVAGE 88 looked for A^{0} that decays into $e^{+} e^{-}$in the decay of the $9.17 \mathrm{MeV} J^{P}=$ 2^{+}state in ${ }^{14} \mathrm{~N}, 17.64 \mathrm{MeV}$ state $J^{P}=1^{+}$in ${ }^{8} \mathrm{Be}$, and the 18.15 MeV state $J^{P}=$ 1^{+}in ${ }^{8} \mathrm{Be}$. This experiment constrains the isovector coupling of A^{0} to hadrons, if $m_{A^{0}}$ $=(1.1 \rightarrow 2.2) \mathrm{MeV}$ and the isoscalar coupling of A^{0} to hadrons, if $m_{A^{0}}=(1.1 \rightarrow$ 2.6) MeV . Both limits are valid only if $\tau\left(A^{0}\right) \lesssim 1 \times 10^{-11} \mathrm{~s}$.
${ }^{14}$ Limits are for $\Gamma\left(A^{0}(1.8 \mathrm{MeV})\right) / \Gamma(\pi \mathrm{M} 1)$; i.e., for 1.8 MeV axion emission normalized to the rate for internal emission of $e^{+} e^{-}$pairs. Valid for $\tau A^{0}<2 \times 10^{-11} \mathrm{~s}$. ${ }^{6} \mathrm{Li}$ isovector decay data strongly disfavor PECCEI 86 model I, whereas the ${ }^{10} \mathrm{~B}$ and ${ }^{14} \mathrm{~N}$ isoscalar decay data strongly reject PECCEI 86 model II and III.
${ }^{15}$ SAVAGE 86B looked for A^{0} that decays into $e^{+} e^{-}$in the decay of the $9.17 \mathrm{MeV} J^{P}=$ 2^{+}state in ${ }^{14} \mathrm{~N}$. Limit on the branching fraction is valid if $\tau_{A^{0}} \lesssim 1 . \times 10^{-11} \mathrm{~S}$ for $m_{A^{0}}$ $=(1.1-1.7) \mathrm{MeV}$. This experiment constrains the iso-vector coupling of A^{0} to hadrons.
${ }^{16}$ ANANEV 85 with IBR-2 pulsed reactor exclude standard A^{0} at $\mathrm{CL}=95 \%$ masses below 470 keV (Li* decay) and below $2 m_{e}$ for deuteron* decay.
${ }^{17}$ CAVAIGNAC 83 at Bugey reactor exclude axion at any $m_{97} \mathrm{Nb}^{*}$ decay and axion with ${ }^{m} A^{0}$ between 275 and 288 keV (deuteron* decay).
${ }^{18}$ ALEKSEEV 82 with IBR-2 pulsed reactor exclude standard A^{0} at $C L=95 \%$ mass-ranges $m_{A^{0}}<400 \mathrm{keV}$ (Li* decay) and $330 \mathrm{keV}<m_{A^{0}}<2.2 \mathrm{MeV}$. (deuteron* decay).
${ }^{19}$ LEHMANN 82 obtained $A^{0} \rightarrow 2 \gamma$ rate $<6.2 \times 10^{-5} / \mathrm{s}(C L=95 \%)$ excluding $m_{A^{0}}$ between 100 and 1000 keV .
${ }^{20}$ ZEHNDER 82 used Gosgen 2.8 GW light-water reactor to check A^{0} production. No 2γ peak in $\mathrm{Li}^{*}, \mathrm{Nb}^{*}$ decay (both single p transition) nor in n capture (combined with previous Ba* negative result) rules out standard A^{0}. Set limit $m_{A^{0}}<60 \mathrm{keV}$ for any A^{0}.
${ }^{21} A_{\text {ZEHNDER }}^{A} 81$ looked for $\mathrm{Ba}^{*} \rightarrow A^{0}$ Ba transition with $A^{0} \rightarrow 2 \gamma$. Obtained 2γ coincidence rate $<2.2 \times 10^{-5} / \mathrm{s}(C L=95 \%)$ excluding $m_{A^{0}}>160 \mathrm{keV}$ (or 200 keV depending on Higgs mixing). However, see BARROSO 81.
${ }^{22}$ CALAPRICE 79 saw no axion emission from excited states of carbon. Sensitive to axion mass between 1 and 15 MeV .

A^{0} (Axion) Limits from Its Electron Coupling Limits are for $\tau\left(A^{0} \rightarrow e^{+} e^{-}\right)$.					
- - We do not use the following data for averages, fits, limits, etc. - -					
none $4 \times 10^{-16}-4.5 \times 10^{-12}$		${ }^{1}$ BROSS	91	BDMP	$e N \underset{\left(A^{0}\right.}{ } \quad e A^{0} N(e e)$
		${ }^{2}$ Guo	90	BDMP	$\begin{array}{r} \left.e N \xrightarrow{\left(A^{0}\right.} \xrightarrow{e} e e\right) \end{array}$
		${ }^{3}$ BJORKEN	88	CALO	$A \underset{2 \gamma}{\rightarrow} e^{+} e^{-} \text {or }$
		${ }^{4}$ BLINOV	88	MD1	$e e \xrightarrow\left[\left(A^{0}\right]{\xrightarrow{e} e e A^{0}}\right.$
none $1 \times 10^{-14}-1 \times 10^{-10}$	90	5^{5} RIORDAN	87	BDMP	$\left.\underset{\left(A^{0}\right.}{\rightarrow} e A^{0} N+e\right)$
none $1 \times 10^{-14}-1 \times 10^{-11}$	90	${ }^{6}$ BROWN	86	BDMP	$\begin{array}{r} e N\left(\overrightarrow{A^{0}} \quad e A^{0} N\right. \\ \rightarrow e e) \end{array}$
none $6 \times 10^{-14}-9 \times 10^{-11}$	95	${ }^{7}$ DAVIER	86	BDMP	$\left.\underset{\left(A^{0}\right.}{\rightarrow} e A^{0} N+e\right)$
none $3 \times 10^{-13}-1 \times 10^{-7}$	90	${ }^{8}$ KONAKA	86	BDMP	$\left.\underset{\left(A^{0}\right.}{\rightarrow} e A^{0} N+e\right)$

${ }^{1}$ The listed BROSS 91 limit is for $m_{A^{0}}=1.14 \mathrm{MeV} . \mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)=1$ assumed. Excluded domain in the $\tau_{A^{0}}{ }^{-m} A_{A^{0}}$ plane extends up to $m_{A^{0}} \approx 7 \mathrm{MeV}$ (see Fig. 5). Combining with electron $g-2$ constraint, axions coupling only to $e^{+} e^{-}$ruled out for $m_{A^{0}}<4.8 \mathrm{MeV}(90 \% \mathrm{CL})$.
${ }^{2}$ GUO 90 use the same apparatus as BROWN 86 and improve the previous limit in the shorter lifetime region. Combined with $g-2$ constraint, axions coupling only to $e^{+} e^{-}$ are ruled out for $m_{A^{0}}<2.7 \mathrm{MeV}(90 \% \mathrm{CL})$.
${ }^{3}$ BJORKEN 88 reports limits on axion parameters $\left(f_{A}, m_{A}, \tau_{A}\right)$ for $m_{A^{0}}<200 \mathrm{MeV}$ from electron beam-dump experiment with production via Primakoff photoproduction, bremsstrahlung from electrons, and resonant annihilation of positrons on atomic electrons.
${ }^{4}$ trons. BLINOV 88 assume zero spin, $m=1.8 \mathrm{MeV}$ and lifetime $<5 \times 10^{-12} \mathrm{~s}$ and find $\Gamma\left(A^{0} \rightarrow \gamma \gamma\right) \mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)<2 \mathrm{eV}(\mathrm{CL}=90 \%)$.
${ }^{5}$ Assumes $A^{0} \gamma \gamma$ coupling is small and hence Primakoff production is small. Their figure 2 shows limits on axions for $m_{A^{0}}<15 \mathrm{MeV}$.
${ }^{6}$ Uses electrons in hadronic showers from an incident 800 GeV proton beam. Limits for $m_{A^{0}}<15 \mathrm{MeV}$ are shown in their figure 3.
${ }^{7} m_{A^{0}}=1.8 \mathrm{MeV}$ assumed. The excluded domain in the $\tau_{A^{0}}{ }^{-m} A^{0}$ plane extends up to $m_{A^{0}} \approx 14 \mathrm{MeV}$, see their figure 4 .
${ }^{8}$ The limits are obtained from their figure 3 . Also given is the limit on the $A^{0} \gamma \gamma-A^{0} e^{+} e^{-}$coupling plane by assuming Primakoff production.

Search for $\boldsymbol{A}^{\mathbf{0}}$ (Axion) Resonance in Bhabha Scattering The limit is for $\Gamma\left(A^{0}\right)\left[\mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)\right]^{2}$.					
VALUE $\left(10^{-3} \mathrm{eV}\right)$	CL\%	DOCUMENTID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -					
<1.3	97	1 HALLIN	92	CNTR	$m_{A^{0}}=1.75-1.88 \mathrm{MeV}$
none 0.0016-0.47	90	2 HENDERSON	92C	CNTR	$m_{A^{0}}=1.5-1.86 \mathrm{MeV}$
< 2.0	90	${ }^{3} \mathrm{WU}$	92	CNTR	$m_{A^{0}}=1.56-1.86 \mathrm{MeV}$
<0.013	95	TSERTOS	91	CNTR	$m_{A^{0}}=1.832 \mathrm{MeV}$
none 0.19-3.3	95	4 WIDMANN	91	CNTR	$m_{A^{0}}=1.78-1.92 \mathrm{MeV}$
<5	97	BAUER	90	CNTR	$m_{A^{0}}=1.832 \mathrm{MeV}$
none 0.09-1.5	95	5 JUDGE	90	CNTR	$m_{A^{0}}=1.832 \mathrm{MeV}$
< 1.9	97	${ }^{6}$ TSERTOS	89	CNTR	$m_{A^{0}}=1.82 \mathrm{MeV}$
$<(10-40)$	97	6 TSERTOS	89	CNTR	$m_{A^{0}}=1.51-1.65 \mathrm{MeV}$
$<$ (1-2.5)	97	6 TSERTOS	89	CNTR	$m_{A^{0}}=1.80-1.86 \mathrm{MeV}$
<31	95	LORENZ	88	CNTR	$m_{A^{0}}=1.646 \mathrm{MeV}$
< 94	95	LORENZ	88	CNTR	$m_{A^{0}}=1.726 \mathrm{MeV}$
<23	95	LORENZ	88	CNTR	$m_{A^{0}}=1.782 \mathrm{MeV}$
<19	95	LORENZ	88	CNTR	$m_{A^{0}}=1.837 \mathrm{MeV}$
<3.8	97	7 TSERTOS	88	CNTR	$m_{A^{0}}=1.832 \mathrm{MeV}$
		8 VANKLINKEN	88	CNTR	
		${ }^{9}$ MAIER	87	CNTR	
<2500	90	MILLS	87	CNTR	$m_{A^{0}}=1.8 \mathrm{MeV}$
		10 VONWIMMER.		CNTR	

${ }^{1}$ HALLIN 92 quote limits on lifetime, $8 \times 10^{-14}-5 \times 10^{-13}$ sec depending on mass, assuming $\mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)=100 \%$. They say that TSERTOS 91 overstated their sensitivity by a factor of 3 .
${ }^{2}$ HENDERSON 92C exclude axion with lifetime $\tau_{A^{0}}=1.4 \times 10^{-12}-4.0 \times 10^{-10} \mathrm{~s}$, assuming $\mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)=100 \%$. HENDERSON 92C also exclude a vector boson with $\tau=1.4 \times 10^{-12}-6.0 \times 10^{-10} \mathrm{~s}$.
${ }^{3} \mathrm{WU} 92$ quote limits on lifetime $>3.3 \times 10^{-13} \mathrm{~s}$ assuming $\mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)=100 \%$. They say that TSERTOS 89 overestimate the limit by a factor of $\pi / 2$. WU 92 also quote a bound for vector boson, $\tau>8.2 \times 10^{-13} \mathrm{~s}$.
${ }^{4}$ WIDMANN 91 bound applies exclusively to the case $\mathrm{B}\left(A^{0} \rightarrow e^{+} e^{-}\right)=1$, since the detection efficiency varies substantially as $\Gamma\left(A^{0}\right)_{\text {total }}$ changes. See their Fig. 6.
5 JUDGE 90 excludes an elastic pseudoscalar $e^{+} e^{-}$resonance for $4.5 \times 10^{-13} \mathrm{~s}<\tau\left(A^{0}\right)$ $<7.5 \times 10^{-12} \mathrm{~s}(95 \% \mathrm{CL})$ at $m_{A^{0}}=1.832 \mathrm{MeV}$. Comparable limits can be set for $m_{A^{0}}=1.776-1.856 \mathrm{MeV}$.
${ }_{7}^{6}$ See also TSERTOS 88B in references.
7 The upper limit listed in TSERTOS 88 is too large by a factor of 4 . See TSERTOS 88B, footnote 3.
8 VANKLINKEN 88 looked for relatively long-lived resonance ($\tau=10^{-10}-10^{-12} \mathrm{~s}$). The sensitivity is not sufficient to exclude such a narrow resonance.
${ }^{9}$ MAIER 87 obtained limits $R \Gamma \lesssim 60 \mathrm{eV}(100 \mathrm{eV})$ at $m_{A^{0}} \simeq 1.64 \mathrm{MeV}(1.83 \mathrm{MeV})$ for energy resolution $\Delta E_{\mathrm{cm}} \simeq 3 \mathrm{keV}$, where R is the resonance cross section normalized to that of Bhabha scattering, and $\Gamma=\Gamma_{e e}^{2} / \Gamma_{\text {total }}$. For a discussion implying that $\Delta E_{\mathrm{cm}} \simeq 10 \mathrm{keV}$, see TSERTOS 89.
10 VONWIMMERSPERG 87 measured Bhabha scattering for $E_{c m}=1.37-1.86 \mathrm{MeV}$ and found a possible peak at 1.73 with $\int \sigma d E_{\mathrm{cm}}=14.5 \pm 6.8 \mathrm{keV} \cdot \mathrm{b}$. For a comment and a reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.

Search for A^{0} (Axion) Resonance in $e^{+} e^{-} \Rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}$

The limit is for $\Gamma\left(A^{0} \rightarrow e^{+} e^{-}\right) \cdot \Gamma\left(A^{0} \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$
VALUE $\left(10^{-3} \mathrm{eV}\right)$ CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

| <0.18 | 95 | VO | 94 | CNTR $m_{A^{0}}=1.1 \mathrm{MeV}$ |
| :--- | :--- | :---: | :--- | :--- | :--- |
| <1.5 | 95 | VO | 94 | CNTR $m_{A^{0}}=1.4 \mathrm{MeV}$ |
| <12 | 95 | VO | 94 | CNTR $m_{A^{0}}=1.7 \mathrm{MeV}$ |
| <6.6 | 95 | 1 TRZASKA | 91 | CNTR $m_{A^{0}}=1.8 \mathrm{MeV}$ |
| <4.4 | 95 | WIDMANN | 91 | CNTR $m_{A^{0}}=1.78-1.92 \mathrm{MeV}$ |
| | | 2 FOX | 89 | CNTR |
| <0.11 | 95 | 3 MINOWA | 89 | CNTR $m_{A^{0}}=1.062 \mathrm{MeV}$ |
| <33 | 97 | CONNELL | 88 | CNTR $m_{A^{0}}=1.580 \mathrm{MeV}$ |
| <42 | 97 | CONNELL | 88 | CNTR $m_{A^{0}}=1.642 \mathrm{MeV}$ |
| <73 | 97 | CONNELL | 88 | CNTR $m_{A^{0}}=1.782 \mathrm{MeV}$ |
| <79 | 97 | CONNELL | 88 | CNTR $m_{A^{0}}=1.832 \mathrm{MeV}$ |

${ }^{1}$ TRZASKA 91 also give limits in the range $(6.6-30) \times 10^{-3} \mathrm{eV}(95 \% \mathrm{CL})$ for $m_{A^{0}}=$, $1.6-2.0 \mathrm{MeV}$.
${ }^{2}$ FOX 89 measured positron annihilation with an electron in the source material into two photons and found no signal at $1.062 \mathrm{MeV}\left(<9 \times 10^{-5}\right.$ of two-photon annihilation at rest).
${ }^{3}$ Similar limits are obtained for $m_{A^{0}}=1.045-1.085 \mathrm{MeV}$.

Search for X^{0} (Light Boson) Resonance in $e^{+} e^{-} \rightarrow \gamma \gamma \gamma$

The limit is for $\Gamma\left(X^{0} \rightarrow e^{+} e^{-}\right) \cdot \Gamma\left(X^{0} \rightarrow \gamma \gamma \gamma\right) / \Gamma_{\text {total }}$. C invariance forbids spin- 0 X^{0} coupling to both $e^{+} e^{-}$and $\gamma \gamma \gamma$.
VALUE $\left(10^{-3} \mathrm{eV}\right)$ \qquad CL\%
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

<0.2	95	1 Vo	94	CNTR $m_{X_{0}}=1.1-1.9 \mathrm{MeV}$
< 1.0	95	${ }^{2} \mathrm{VO}$	94	CNTR $m_{X^{0}}=1.1 \mathrm{MeV}$
< 2.5	95	${ }^{2} \mathrm{VO}$	94	CNTR $m_{X^{0}}=1.4 \mathrm{MeV}$
<120	95	${ }^{2} \mathrm{VO}$	94	CNTR $m_{X^{0}}=1.7 \mathrm{MeV}$
< 3.8	95	3 SKALSEY	92	CNTR $m_{X^{0}}=1.5 \mathrm{MeV}$

${ }^{1}$ VO 94 looked for $X^{0} \rightarrow \gamma \gamma \gamma$ decaying at rest. The precise limits depend on $m_{X^{0}}$. See Fig. 2(b) in paper.
${ }^{2}$ VO 94 looked for $X^{0} \rightarrow \gamma \gamma \gamma$ decaying in flight.
${ }^{3}$ SKALSEY 92 also give limits 4.3 for $m_{X^{0}}=1.54$ and 7.5 for 1.64 MeV . The spin of X^{0} is assumed to be one

Light Boson (X^{0}) Search in Nonresonant $e^{+} e^{-}$Annihilation at Rest

Limits are for the ratio of $n \gamma+X^{0}$ production relative to $\gamma \gamma$
VALUE (units 10^{-6}) CL\% DOCUMENTID COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

<4.2	90	1 MITSUI	96	CNTR γX^{0}
<4	68	2 SKALSEY	95	CNTR γX^{0}
<40	68	3 SKALSEY	95	RVUE γX^{0}
<0.18	90	4 ADACHI	94	CNTR $\gamma \gamma X^{0}, X^{0} \rightarrow \gamma \gamma$
<0.26	90	5 ADACHI	94	CNTR $\gamma \gamma X^{0}, X^{0} \rightarrow \gamma \gamma$
<0.33	90	6 ADACHI	94	CNTR $\gamma X^{0}, X^{0} \rightarrow \gamma \gamma \gamma$

${ }^{1}$ MITSUI 96 looked for a monochromatic γ. The bound applies for a vector X^{0} with $C=-1$ and $m_{X^{0}}<200 \mathrm{keV}$. They derive an upper bound on $e e X^{0}$ coupling and hence on the branching ratio $\mathrm{B}\left(o-\mathrm{Ps} \rightarrow \gamma \gamma X^{0}\right)<6.2 \times 10^{-6}$. The bounds weaken for heavier x^{0}.
${ }^{2}$ SKALSEY 95 looked for a monochromatic γ without an accompanying γ in $e^{+} e^{-}$ annihilation. The bound applies for scalar and vector X^{0} with $C=-1$ and $m_{X^{0}}=$ $100-1000 \mathrm{keV}$.
${ }^{3}$ SKALSEY 95 reinterpreted the bound on γA^{0} decay of O-Ps by ASAI 91 where 3% of delayed annihilations are not from ${ }^{3} S_{1}$ states. The bound applies for scalar and vector X^{0} with $C=-1$ and $m_{X^{0}}=0-800 \mathrm{keV}$.
${ }^{4}$ ADACHI 94 looked for a peak in the $\gamma \gamma$ invariant mass distribution in $\gamma \gamma \gamma \gamma$ production from $e^{+} e^{-}$annihilation. The bound applies for $m_{X^{0}}=70-800 \mathrm{keV}$.
${ }^{5}$ ADACHI 94 looked for a peak in the missing-mass mass distribution in $\gamma \gamma$ channel, using $\gamma \gamma \gamma \gamma$ production from $e^{+} e^{-}$annihilation. The bound applies for $m_{X^{0}}<800 \mathrm{keV}$.
${ }^{6}$ ADACHI 94 looked for a peak in the missing mass distribution in $\gamma \gamma \gamma$ channel, using $\gamma \gamma \gamma \gamma$ production from $e^{+} e^{-}$annihilation. The bound applies for $m_{X^{0}}=200-900$ keV.

Searches for Goldstone Bosons (X^{0})
(Including Horizontal Bosons and Majorons.) Limits are for branching ratios
VALUE CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •

<9	90	${ }^{1}$ BAYES	15	TWST	$\mu^{+} \rightarrow e^{+} X^{0}$, Familon
		${ }^{2}$ LATTANZI	13	COSM	Majoron dark matter decay
		${ }^{3}$ LESSA	07	RVUE	Meson, ℓ decays to Majoron
		${ }^{4}$ DIAZ	98	THEO	$\begin{aligned} & H^{0} \rightarrow x^{0} x^{0}, A^{0} \rightarrow \\ & x^{0} x^{0} x^{0}, \text { Majoron } \end{aligned}$
		5^{5} BOBRAKOV	91		Electron quasi-magnetic interaction
$<3.3 \times 10^{-2}$	95	${ }^{6}$ ALBRECHT	90E	ARG	$\tau \rightarrow \mu X^{0}$. Familon
$<1.8 \times 10^{-2}$	95	${ }^{6}$ ALBRECHT	90E	ARG	$\tau \rightarrow e X^{0}$. Familon
$<6.4 \times 10^{-9}$	90	${ }^{7}$ ATIYA	90	B787	$K^{+} \rightarrow \pi^{+} X^{0}$. Familon
$<1.4 \times 10^{-5}$	90	${ }^{8}$ BALKE	88	CNTR	$\mu^{+} \rightarrow e^{+} X^{0}$. Familon
$<1.1 \times 10^{-9}$	90	${ }^{9}$ BOLTON	88	CBOX	$\mu^{+} \rightarrow e^{+} \gamma X^{0}$. Familon
		10 CHANDA	88	ASTR	Sun, Majoron
		11 CHOI	88	ASTR	Majoron, SN 1987A
$<5 \times 10^{-6}$	90	12 PICCIOTTO	88	CNTR	$\pi \rightarrow e \nu X^{0}$, Majoron
$<1.3 \times 10^{-9}$	90	13 GOLDMAN	87	CNTR	$\mu \rightarrow e \gamma X^{0}$. Familon
$<3 \times 10^{-4}$	90	14 BRYMAN	86B	RVUE	$\mu \rightarrow e X^{0}$. Familon
$<1 \times 10^{-10}$	90	15 EICHLER	86	SPEC	$\mu^{+} \rightarrow e^{+} X^{0}$. Familon
$<2.6 \times 10^{-6}$	90	16 JODIDIO	86	SPEC	$\mu^{+} \rightarrow e^{+} X^{0}$. Familon
		17 BALTRUSAIT		MRK3	$\tau \rightarrow \ell X^{0}$. Familon
		18 DICUS	83	COSM	ν (hvy) $\rightarrow \nu$ (light) X^{0}

${ }^{1}$ BAYES 15 limits are the average over $m_{X^{0}}=13-80 \mathrm{MeV}$ for the isotropic decay distribution of positrons. See their Fig. 4 and Table II for the mass-dependent limits as well as the dependence on the decay anisotropy. In particular, they find a limit $<58 \times 10^{-6}$ at 90% CL for massless familons and for the same asymmetry as normal muon decay, a case not covered by JODIDIO 86
${ }^{2}$ LATTANZI 13 use WMAP 9 year data as well as X-ray and γ-ray observations to derive limits on decaying majoron dark matter. A limit on the decay width $\Gamma\left(X^{0} \rightarrow \nu \bar{\nu}\right)$ $<6.4 \times 10^{-19} \mathrm{~s}^{-1}$ at $95 \% \mathrm{CL}$ is found if majorons make up all of the dark matter.
${ }^{3}$ LESSA 07 consider decays of the form Meson $\rightarrow \ell \nu$ Majoron and $\ell \rightarrow \ell^{\prime} \nu \bar{\nu}$ Majoron and use existing data to derive limits on the neutrino-Majoron Yukawa couplings $g_{\alpha \beta}$ $(\alpha, \beta=e, \mu, \tau)$. Their best limits are $\left|g_{e \alpha}\right|^{2}<5.5 \times 10^{-6},\left|g_{\mu \alpha}\right|^{2}<4.5 \times 10^{-5}$, $\left|g_{\tau \alpha}\right|^{2}<5.5 \times 10^{-2}$ at $\mathrm{CL}=90 \%$.
${ }^{4}$ DIAZ 98 studied models of spontaneously broken lepton number with both singlet and triplet Higgses. They obtain limits on the parameter space from invisible decay $Z \rightarrow$ $H^{0} A^{0} \rightarrow X^{0} X^{0} X^{0} X^{0} X^{0}$ and $e^{+} e^{-} \rightarrow Z H^{0}$ with $H^{0} \rightarrow X^{0} X^{0}$.
${ }^{5}$ BOBRAKOV 91 searched for anomalous magnetic interactions between polarized electrons expected from the exchange of a massless pseudoscalar boson (arion). A limit
$x_{e}^{2}<2 \times 10^{-4}(95 \% \mathrm{CL})$ is found for the effective anomalous magneton parametrized as $x_{e}\left(G_{F} / 8 \pi \sqrt{2}\right)^{1 / 2}$.
${ }^{6}$ ALBRECHT 90E limits are for $\mathrm{B}\left(\tau \rightarrow \ell X^{0}\right) / \mathrm{B}(\tau \rightarrow \ell \nu \bar{\nu})$. Valid for $m_{X 0}<100$ MeV . The limits rise to 7.1% (for μ), 5.0% (for e) for $m_{X 0}=500 \mathrm{MeV}$.
${ }^{7}$ ATIYA 90 limit is for $m_{X^{0}}=0$. The limit $B<1 \times 10^{-8}$ holds for $m_{X^{0}}<95 \mathrm{MeV}$. For the reduction of the limit due to finite lifetime of X^{0}, see their Fig. 3.
${ }^{8}$ BALKE 88 limits are for $\mathrm{B}\left(\mu^{+} \rightarrow e^{+} X^{0}\right)$. Valid for $m_{X^{0}}<80 \mathrm{MeV}$ and $\tau_{X^{0}}>10^{-8}$
${ }^{9}$ BOLTON 88 limit corresponds to $F>3.1 \times 10^{9} \mathrm{GeV}$, which does not depend on the chirality property of the coupling.
${ }^{10}$ CHANDA 88 find $v_{T}<10 \mathrm{MeV}$ for the weak-triplet Higgs vacuum expectation value in Gelmini-Roncadelli model, and $v_{S}>5.8 \times 10^{6} \mathrm{GeV}$ in the singlet Majoron model.
${ }^{11} \mathrm{CHOI} 88$ used the observed neutrino flux from the supernova SN 1987A to exclude the neutrino Majoron Yukawa coupling h in the range $2 \times 10^{-5}<h<3 \times 10^{-4}$ for the interaction $L_{\text {int }}=\frac{1}{2} i h \bar{\psi}_{\nu}^{C} \gamma_{5} \psi_{\nu} \phi \mathbf{X}$. For several families of neutrinos, the limit applies for $\left(\Sigma h_{i}^{4}\right)^{1 / 4}$.
${ }^{12}$ PICCIOTTO 88 limit applies when $m_{X^{0}}<55 \mathrm{MeV}$ and $\tau_{X^{0}}>2 \mathrm{~ns}$, and it decreases to 4×10^{-7} at $m_{X^{0}}=125 \mathrm{MeV}$, beyond which no limit is obtained.
13 GOLDMAN 87 limit corresponds to $F>2.9 \times 10^{9} \mathrm{GeV}$ for the family symmetry breaking scale from the Lagrangian $L_{\text {int }}=(1 / F) \bar{\psi}_{\mu} \gamma^{\mu}\left(a+b \gamma_{5}\right) \psi_{e} \partial_{\mu} \phi_{X^{0}}$ with $a^{2}+b^{2}=1$. This is not as sensitive as the limit $F>9.9 \times 10^{9} \mathrm{GeV}$ derived from the search for $\mu^{+} \rightarrow$ $e^{+} x^{0}$ by JODIDIO 86 , but does not depend on the chirality property of the coupling.
${ }^{14}$ Limits are for $\Gamma\left(\mu \rightarrow e X^{0}\right) / \Gamma(\mu \rightarrow e \nu \bar{\nu})$. Valid when $m_{X^{0}}=0-93.4,98.1-103.5$ ${ }_{5} \mathrm{MeV}$.
${ }^{15}$ EICHLER 86 looked for $\mu^{+} \rightarrow e^{+} X^{0}$ followed by $X^{0} \rightarrow e^{+} e^{-}$. Limits on the branching fraction depend on the mass and and lifetime of X^{0}. The quoted limits are valid when $\tau_{X^{0}} \lesssim 3 . \times 10^{-10} \mathrm{~s}$ if the decays are kinematically allowed.
16 JODIDIO 86 corresponds to $F>9.9 \times 10^{9} \mathrm{GeV}$ for the family symmetry breaking scale with the parity-conserving effective Lagrangian $L_{\text {int }}=(1 / F) \bar{\psi}_{\mu} \gamma^{\mu} \psi_{e} \partial^{\mu} \phi_{X^{0}}$
17 BALTRUSAITIS 85 search for light Goldstone boson $\left(X^{0}\right)$ of broken $\mathrm{U}(1) . \mathrm{CL}=95 \%$ limits are $\mathrm{B}\left(\tau \rightarrow \mu^{+} X^{0}\right) / \mathrm{B}\left(\tau \rightarrow \mu^{+} \nu \nu\right)<0.125$ and $\mathrm{B}\left(\tau \rightarrow e^{+} X^{0}\right) / \mathrm{B}\left(\tau \rightarrow e^{+} \nu \nu\right)$ <0.04. Inferred limit for the symmetry breaking scale is $m>3000 \mathrm{TeV}$.
18 The primordial heavy neutrino must decay into ν and familon, f_{A}, early so that the red-shifted decay products are below critical density, see their table. In addition, $K \rightarrow$ πf_{A} and $\mu \rightarrow e f_{A}$ are unseen. Combining these excludes $m_{\text {heavy } \nu}$ between 5×10^{-5} and $5 \times 10^{-4} \mathrm{MeV}$ (μ decay) and $m_{\text {heavy } \nu}$ between 5×10^{-5} and 0.1 MeV (K-decay).

Majoron Searches in Neutrinoless Double $\boldsymbol{\beta}$ Decay
Limits are for the half-life of neutrinoless $\beta \beta$ decay with a Majoron emission.
No experiment currently claims any such evidence. Only the best or comparable limits for each isotope are reported.

$t_{1 / 2}\left(10^{21} \mathrm{yr}\right)$	CL\% ISOTOPE	TRANSITION	METHOD	DOCUMENT ID	
>7200	$90 \quad{ }^{128}$ Te		CNTR	1 BERNATOW... 92	
- - We do not use the following data for averages, fits, limits, etc. - -					
>4.4	$90 \quad{ }^{100} \mathrm{Mo}$	$0 \nu 1 \chi$	NEMO-3	2 ARNOLD	19
>37	$90 \quad{ }^{82} \mathrm{Se}$	$0 \nu 1 \chi$	NEMO-3	${ }^{3}$ ARNOLD	18
>420	$90{ }^{76} \mathrm{Ge}$	$0 \nu 1 \chi$	GERDA	${ }^{4}$ AGOSTINI	15A
>400	$90 \quad 100 \mathrm{Mo}$	$0 \nu 1 \chi$	NEMO-3	${ }^{5}$ ARNOLD	15
>1200	$90 \quad{ }^{136} \mathrm{Xe}$	$0 \nu 1 \chi$	EXO-200	${ }^{6}$ ALBERT	14A
>2600	$90 \quad{ }^{136} \mathrm{Xe}$	$0 \nu 1 \chi$	KamLAND-Zen	7 GANDO	12
>16	$90 \quad{ }^{130} \mathrm{Te}$	$0 \nu 1 \chi$	NEMO-3	${ }^{8}$ ARNOLD	11
$>\quad 1.9$	$90{ }^{96} \mathrm{Zr}$	$2 \nu 1 \chi$	NEMO-3	${ }^{9}$ ARGYRIADES	10
>1.52	$90 \quad 150 \mathrm{Nd}$	$0 \nu 1 \chi$	NEMO-3	10 ARGYRIADES	09
>27	$90 \quad 100 \mathrm{Mo}$	$0 \nu 1 \chi$	NEMO-3	11 ARNOLD	06
>15	$90 \quad 82 \mathrm{Se}$	$0 \nu 1 \chi$	NEMO-3	12 ARNOLD	06
>14	$90 \quad{ }^{100} \mathrm{Mo}$	$0 \nu 1 \chi$	NEMO-3	13 ARNOLD	04
>12	$90 \quad{ }^{82} \mathrm{Se}$	$0 \nu 1 \chi$	NEMO-3	14 ARNOLD	04
>2.2	$90 \quad 130 \mathrm{Te}$	$0 \nu 1 \chi$	Cryog. det.	15 ARNABOLDI	03
>0.9	$90 \quad 130 \mathrm{Te}$	$0 \nu 2 \chi$	Cryog. det.	16 ARNABOLDI	03
>8	$90 \quad 116 \mathrm{Cd}$	$0 \nu 1 \chi$	CdWO_{4} scint.	17 DANEVICH	03
>0.8	$90 \quad 116 \mathrm{Cd}$	$0 \nu 2 \chi$	CdWO_{4} scint.	18 DANEVICH	03
>500	$90 \quad 136 \mathrm{Xe}$	$0 \nu 1 \chi$	Liquid Xe Scint.	19 BERNABEI	02D
>5.8	$90 \quad 100 \mathrm{Mo}$	$0 \nu 1 \chi$	ELEGANT V	20 FUSHIMI	02
>0.32	$90 \quad 100 \mathrm{Mo}$	$0 \nu 1 \chi$	Liq. Ar ioniz.	21 ASHITKOV	01
>0.0035	$90 \quad 160 \mathrm{Gd}$	$0 \nu 1 \chi$	${ }^{160} \mathrm{Gd}_{2} \mathrm{SiO}_{5}$: Ce	22 DANEVICH	01
>0.013	$90 \quad 160$ Gd	$0 \nu 2 \chi$	${ }^{160} \mathrm{Gd}_{2} \mathrm{SiO}_{5}$: Ce	23 DANEVICH	01
>2.3	$90{ }^{82} \mathrm{Se}$	$0 \nu 1 \chi$	NEMO 2	24 ARNOLD	00
$>\quad 0.31$	$90{ }^{96} \mathrm{Zr}$	$0 \nu 1 \chi$	NEMO 2	25 ARNOLD	00
>0.63	$90{ }^{82} \mathrm{Se}$	$0 \nu 2 \chi$	NEMO 2	26 ARNOLD	00
>0.063	$90 \quad{ }^{96} \mathrm{Zr}$	$0 \nu 2 \chi$	NEMO 2	26 ARNOLD	00
>0.16	$90 \quad{ }^{100} \mathrm{Mo}$	$0 \nu 2 \chi$	NEMO 2	26 ARNOLD	00
>2.4	$90{ }^{82} \mathrm{Se}$	$0 \nu 1 \chi$	NEMO 2	27 ARNOLD	98
$>\quad 7.2$	$90{ }^{136}$ Xe	$0 \nu 2 \chi$	TPC	28 LUESCHER	98
$>\quad 7.91$	$90{ }^{76} \mathrm{Ge}$		SPEC	29 GUENTHER	96
>17	$90{ }^{76} \mathrm{Ge}$		CNTR	BECK	93

${ }^{1}$ BERNATOWICZ 92 studied double- β decays of ${ }^{128} \mathrm{Te}$ and ${ }^{130} \mathrm{Te}$, and found the ratio $\tau\left({ }^{130} \mathrm{Te}\right) / \tau\left({ }^{128} \mathrm{Te}\right)=(3.52 \pm 0.11) \times 10^{-4}$ in agreement with relatively stable theoretical predictions. The bound is based on the requirement that Majoron-emitting decay cannot be larger than the observed double-beta rate of ${ }^{128} \mathrm{Te}$ of $(7.7 \pm 0.4) \times 10^{24}$ year. We calculated 90% CL limit as $(7.7-1.28 \times 0.4=7.2) \times 10^{24}$.
${ }^{2}$ ARNOLD 19 uses the NEMO-3 tracking calorimeter to determine limits for the Majoron emitting double beta decay, with spectral index $n=3$. The limit corresponds to the range of the $g_{e e}$ coupling of $0.013-0.035$; dependimg on the nuclear matrix elements used.
$3_{\text {ARNOLD }} 18$ use the NEMO-3 tracking detector. The limit corresponds to $\left\langle g_{e e}\right\rangle<$ $3.2-8.0 \times 10^{-5}$; the range corresponds to different nuclear matrix element calculations. ${ }^{4}$ AGOSTINI 15A analyze a 20.3 kg yr of data set of the GERDA calorimeter to determine $g_{\nu \chi}<3.4-8.7 \times 10^{-5}$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
${ }^{5}$ ARNOLD 15 use the NEMO-3 tracking calorimeter with 3.43 kg yr exposure to determine the limit on Majoron emission. The limit corresponds to $g_{\nu \chi}<1.6-3.0 \times 10^{-4}$. The spread reflects different nuclear matrix elements. Supersedes ARNOLD 06.
${ }^{6}$ ALBERT 14A utilize 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a limit on the $g_{\nu \chi}<0.8-1.7 \times 10^{-5}$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
${ }^{7}$ GANDO 12 use the KamLAND-Zen detector to obtain the limit on the $0 \nu \chi$ decay with Majoron emission. It implies that the coupling constant $g_{\nu \chi}<0.8-1.6 \times 10^{-5} \mathrm{de}$ pending on the nuclear matrix elements used.
8 ARNOLD 11 use the NEMO- 3 detector to obtain the reported limit on Majoron emission. It implies that the coupling constant $g_{\nu \chi}<0.6-1.6 \times 10^{-4}$ depending on the nuclear matrix element used. Supercedes ARNABOLDI 03.
${ }^{9}$ ARGYRIADES 10 use the NEMO-3 tracking detector and ${ }^{96} \mathrm{Zr}$ to derive the reported limit. No limit for the Majoron electron coupling is given.
${ }^{10}$ ARGYRIADES 09 use ${ }^{150}$ Nd data taken with the NEMO-3 tracking detector. The reported limit corresponds to $\left\langle g_{\nu \chi}\right\rangle<1.7-3.0 \times 10^{-4}$ using a range of nuclear matrix elements that include the effect of nuclear deformation.
${ }^{11}$ ARNOLD 06 use ${ }^{100}$ Mo data taken with the NEMO- 3 tracking detector. The reported limit corresponds to $\left\langle g_{\nu \chi}\right\rangle<(0.4-1.8) \times 10^{-4}$ using a range of matrix element calculations. Superseded by ARNOLD 15.
12 NEMO-3 tracking calorimeter is used in ARNOLD 06 . Reported half-life limit for ${ }^{82} \mathrm{Se}$ corresponds to $\left\langle g_{\nu \chi}\right\rangle<(0.66-1.9) \times 10^{-4}$ using a range of matrix element calculations. Supersedes ARNOLD 04.
13 ARNOLD 04 use the NEMO-3 tracking detector. The limit corresponds to $\left\langle g_{\nu \chi}\right\rangle<$ (0.5-0.9) 10^{-4} using the matrix elements of SIMKOVIC 99, STOICA 01 and CIVITARESE 03. Superseded by ARNOLD 06.
14 ARNOLD 04 use the NEMO-3 tracking detector. The limit corresponds to $\left\langle g_{\nu \chi}\right\rangle<$ (0.7-1.6) 10^{-4} using the matrix elements of SIMKOVIC 99, STOICA 01 and CIVITARESE 03.
15 Supersedes ALESSANDRELLO 00. Array of TeO_{2} crystals in high resolution cryogenic calorimeter. Some enriched in ${ }^{130}$ Te. Derive $\left\langle g_{\nu \chi}\right\rangle<17-33 \times 10^{-5}$ depending on matrix element.
16 Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search.
17 Limit for the $0 \nu \chi$ decay with Majoron emission of ${ }^{116} \mathrm{Cd}$ using enriched CdWO_{4} scintillators. $\left\langle g_{\nu \chi}\right\rangle<4.6-8.1 \times 10^{-5}$ depending on the matrix element. Supersedes 8 DANEVICH 00.
18 Limit for the $0 \nu 2 \chi$ decay of ${ }^{116} \mathrm{Cd}$. Supersedes DANEVICH 00.
${ }^{19}$ BERNABEI 02D obtain limit for $0 \nu \chi$ decay with Majoron emission of ${ }^{136}$ Xe using liquid Xe scintillation detector. They derive $\left\langle g_{\nu \chi}\right\rangle<2.0-3.0 \times 10^{-5}$ with several nuclear
20 matrix elements. of tracking calorimeter ELEGANT V. Considering various matrix element calculations, a range of limits for the Majoron-neutrino coupling is given: $\left\langle g_{\nu \chi}\right\rangle<(6.3-360) \times 10^{-5}$.
${ }^{21}$ ASHITKOV 01 result for $0 \nu \chi$ of ${ }^{100} \mathrm{Mo}$ is less stringent than ARNOLD 00.
22 DANEVICH 01 obtain limit for the $0 \nu \chi$ decay with Majoron emission of ${ }^{160} \mathrm{Gd}$ using $\mathrm{Gd}_{2} \mathrm{SiO}_{5}$: Ce crystal scintillators.
23 DANEVICH 01 obtain limit for the $0 \nu 2 \chi$ decay with 2 Majoron emission of ${ }^{160} \mathrm{Gd}$.
24 ARNOLD 00 reports limit for the $0 \nu \chi$ decay with Majoron emission derived from tracking calorimeter NEMO 2. Using ${ }^{82}$ Se source: $\left\langle g_{\nu \chi}\right\rangle<1.6 \times 10^{-4}$. Matrix element from ${ }_{2}$ GUENTHER 96.
${ }^{25}$ Using ${ }^{96} \mathrm{Zr}$ source: $\left\langle g_{\nu \chi}\right\rangle<2.6 \times 10^{-4}$. Matrix element from ARNOLD 99.
${ }^{26}$ ARNOLD 00 reports limit for the $0 \nu 2 \chi$ decay with two Majoron emission derived from tracking calorimeter NEMO 2.
27 ARNOLD 98 determine the limit for $0 \nu_{\chi}$ decay with Majoron emission of ${ }^{82}$ Se using the NEMO-2 tracking detector. They derive $\left\langle g_{\nu_{\chi}}\right\rangle<2.3-4.3 \times 10^{-4}$ with several nuclear matrix elements.
${ }^{28}$ matrix elements. TPC. This result is more stringent than BARABASH 89. Using the matrix elements of ENGEL 88, they obtain a limit on $\left\langle g_{\nu \chi}\right\rangle$ of 2.0×10^{-4}.
${ }^{29}$ See Table 1 in GUENTHER 96 for limits on the Majoron coupling in different models.

Invisible $\boldsymbol{A}^{\mathbf{0}}$ (Axion) MASS LIMITS from Astrophysics and Cosmology

 $v_{1}=v_{2}$ is usually assumed ($v_{i}=$ vacuum expectation values). For a review of these limits, see RAFFELT 91 and TURNER 90. In the comment lines below, D and K refer to DFSZ and KSVZ axion types, discussed in the above minireview.| VALUE (eV) | CL\% | DOCUMENT ID | TECN | COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| - - We do not use the following data for averages, fits, limits, etc. - - | | | | |
| none 1.1-4 $\times 10^{-13}$ | 95 | 1 PALOMBA 19 | ASTR | BH superradiance |
| < 0.06 | | $2{ }^{2}$ CHANG 18 | ASTR | K, SN 1987A |
| < 0.67 | 95 | ${ }^{3}$ ARCHIDIACO...13A | COSM | K, hot dark matter |
| none 0.7-3 $\times 10^{5}$ | | ${ }^{4}$ CADAMURO 11 | COSM | D abundance |
| <105 | 90 | ${ }^{5}$ DERBIN 11A | CNTR | D, solar axion |
| | | ${ }^{6}$ ANDRIAMON.. 10 | CAST | K, solar axions |
| <0.72 | 95 | ${ }_{7}^{7}$ HANNESTAD 10 | Cosm | K, hot dark matter |
| | | ${ }^{8}$ ANDRIAMON.. 09 | CAST | K, solar axions |
| <191 | 90 | ${ }^{9}$ DERBIN 09A | CNTR | K, solar axions |
| <334 | 95 | 10 KEKEZ 09 | HPGE | K, solar axions |
| < 1.02 | 95 | 11 HANNESTAD 08 | COSM | K , hot dark matter |

<	1.2		95	12 HANNESTAD	07	COSM	K, hot dark matter	
<	0.42		95	13 MELCHIORRI	07A	COSM	K, hot dark matter	
<	1.05		95	14 HANNESTAD	05A	COSM	K, hot dark matter	
	3	to 20		15 MOROI	98	COSM	K, hot dark matter	
<	0.007			16 BORISOV	97	ASTR	D, neutron star	
<	4			17 KACHELRIESS	97	ASTR	D, neutron star cooling	
$<(0.5-6) \times 10^{-3}$				18 KEIL	97	ASTR	SN 1987A	
<	0.018			19 RAFFELT	95	ASTR	D, red giant	
$<$	0.010			20 ALTHERR	94	ASTR	D, red giants, white dwarfs	
				21 CHANG	93	ASTR	K, SN 1987A	
$<$	0.01			WANG	92	ASTR	D, white dwarf	
$<$	0.03			WANG	92C	ASTR	$\mathrm{D}, \mathrm{C}-\mathrm{O}$ burning	
none 3-8				22 BERSHADY	91	ASTR	$\mathrm{D}, \mathrm{~K},$ intergalactic light	
				23 KIM	91C	COSM	D, K, mass density of the universe, supersymmetry	
				24 RAFFELT	91B	ASTR	D,K, SN 1987A	
	1	$\times 10^{-3}$		25 RESSELL	91	ASTR	K, intergalactic light	
none $10^{-3}-3$				BURROWS	90	ASTR	D,K, SN 1987A	
				26 ENGEL	90	ASTR	D,K, SN 1987A	
$<$	0.02			27 RAFFELT	90D	ASTR	D, red giant	
	1	$\times 10^{-3}$		28 BURROWS	89	ASTR	D,K, SN 1987A	
	.4-10)	$\times 10^{-3}$		${ }^{29}$ ERICSON	89	ASTR	D,K, SN 1987A	
	3.6	$\times 10^{-4}$		30 MAYLE	89	ASTR	D,K, SN 1987A	
				CHANDA	88	ASTR	D, Sun	
	1	$\times 10^{-3}$		RAFFELT	88	ASTR	D,K, SN 1987A	
				31 RAFFELT	88B	ASTR	red giant	
$<$	0.07			FRIEMAN	87	ASTR	D, red giant	
	$\begin{aligned} & <0.7 \\ & <2-5 \end{aligned}$				32 RAFFELT	87	ASTR	K, red giant
					TURNER	87	COSM	K, thermal production
$<$	0.01			33 DEARBORN	86	ASTR	D, red giant	
$<$	0.06			RAFFELT	86	ASTR	D, red giant	
$<$	0.7			34 RAFFELT	86	ASTR	K, red giant	
$<$	0.03			RAFFELT	86B	ASTR	D, white dwarf	
$<$	1			35 KAPLAN	85	ASTR	K, red giant	
< 0.003-0.02				IWAMOTO	84	ASTR	D, K, neutron star	
>	1	$\times 10^{-5}$		ABBOTT	83	COSM	D, K, mass density of the universe	
>	1	$\times 10^{-5}$		DINE	83	Cosm	D,K, mass density of the universe	
$<$	0.04			ELLIS	83B	ASTR	D, red giant	
>	1	$\times 10^{-5}$		PRESKILL	83	COSM	D,K, mass density of the universe	
$<$	0.1			BARROSO	82	ASTR	D, red giant	
$<$	1			36 FUKUGITA	82	ASTR	D, stellar cooling	
	0.07			FUKUGITA	82B	ASTR	D, red giant	

${ }^{1}$ PALOMBA 19 used the LIGO O2 dataset to derive limits on nearly monochromatic gravitational waves emitted by boson clouds formed around a stellar-mass black hole. They exclude boson masses in a range of 1.1×10^{-13} and $4 \times 10^{-13} \mathrm{eV}$ for high initial black hole spin, and 1.2×10^{-13} and $1.8 \times 10^{-13} \mathrm{eV}$ for moderate spin. See their Figs. 2 and 3 for limits based on various values of black hole initial spin, boson cloud age, and distance.
$2{ }^{2}$ distance. 18 update axion bremsstrahlung emission rates in nucleon-nucleon collisions, shifting the excluded mass range to higher values. They rule out the hadronic axion with shifting the excluded mass range to higher values. They rule out the hadronic axion with
mass up to a few hundred eV, closing the hadronic axion window. See their Fig. 11 for mass up to a few hundred eV , closing the hadronic axion window. See their Fig. 11 for
results based on several different choices of the temperature and density profile of the results based on se
proto-neutron star.
3 ARCHIDIACONO 13A is analogous to HANNESTAD 05A. The limit is based on the CMB temperature power spectrum of the Planck data, the CMB polarization from the WMAP $9-\mathrm{yr}$ data, the matter power spectrum from SDSS-DR7, and the local Hubble parameter measurement by the Carnegie Hubble program.
${ }^{4}$ CADAMURO 11 use the deuterium abundance to show that the $m_{A^{0}}$ range $0.7 \mathrm{eV}-$ 300 keV is excluded for axions, complementing HANNESTAD 10.
${ }^{5}$ DERBIN 11A look for solar axions produced by Compton and bremsstrahlung processes, in the resonant excitation of ${ }^{169} \mathrm{Tm}$, constraining the axion-electron \times axion nucleon couplings.
${ }^{6}$ ANDRIAMONJE 10 search for solar axions produced from ${ }^{7} \mathrm{Li}(478 \mathrm{keV})$ and $\mathrm{D}(p, \gamma){ }^{3} \mathrm{He}$ (5.5 MeV) nuclear transitions. They show limits on the axion-photon coupling for two reference values of the axion-nucleon coupling for $m_{A}<100 \mathrm{eV}$.
7 This is an update of HANNESTAD 08 including 7 years of WMAP data.
8 ANDRIAMONJE 09 look for solar axions produced from the thermally excited 14.4 keV level of ${ }^{57} \mathrm{Fe}$. They show limits on the axion-nucleon \times axion-photon coupling assuming $m_{A}<0.03 \mathrm{eV}$.
${ }^{9}$ DERBIN 09A look for Primakoff-produced solar axions in the resonant excitation of ${ }^{169} \mathrm{Tm}$, constraining the axion-photon \times axion-nucleon couplings.
10 KEKEZ 09 look at axio-electric effect of solar axions in HPGe detectors. The one-loop axion-electron coupling for hadronic axions is used.
11 This is an update of HANNESTAD 07 including 5 years of WMAP data
12 This is an update of HANNESTAD 05A with new cosmological data, notably WMAP (3 years) and baryon acoustic oscillations (BAO). Lyman- α data are left out, in contrast to HANNESTAD 05A and MELCHIORRI 07A, because it is argued that systematic errors are large. It uses Bayesian statistics and marginalizes over a possible neutrino hot dark matter component.
13 MELCHIORRI 07A is analogous to HANNESTAD 05A, with updated cosmological data, notably WMAP (3 years). Uses Bayesian statistics and marginalizes over a possible neutrino hot dark matter component. Leaving out Lyman- α data, a conservative limit is 1.4 eV .

14 HANNESTAD 05A puts an upper limit on the mass of hadronic axion because in this mass range it would have been thermalized and contribute to the hot dark matter component of the universe. The limit is based on the CMB anisotropy from WMAP, SDSS large

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

scale structure, Lyman α, and the prior Hubble parameter from HST Key Project. A χ^{2} statistic is used. Neutrinos are assumed not to contribute to hot dark matter.
15 MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) can be a viable hot dark matter of Universe, as long as the model-dependent $g_{A \gamma}$ is accidentally small enough as originally emphasized by KAPLAN 85; see Fig. 1.
${ }^{16}$ BORISOV 97 bound is on the axion-electron coupling $g_{a e}<1 \times 10^{-13}$ from the photoproduction of axions off of magnetic fields in the outer layers of neutron stars.
17 KACHELRIESS 97 bound is on the axion-electron coupling $g_{a e}<1 \times 10^{-10}$ from the production of axions in strongly magnetized neutron stars. The authors also quote a stronger limit, $g_{a e}<9 \times 10^{-13}$ which is strongly dependent on the strength of the magnetic field in white dwarfs.
18 KEIL 97 uses new measurements of the axial-vector coupling strength of nucleons, as well as a reanalysis of many-body effects and pion-emission processes in the core of the neutron star, to update limits on the invisible-axion mass,
${ }^{19}$ RAFFELT 95 reexamined the constraints on axion emission from red giants due to the axion-electron coupling. They improve on DEARBORN 86 by taking into proper account degeneracy effects in the bremsstrahlung rate. The limit comes from requiring the red giant core mass at helium ignition not to exceed its standard value by more than 5% (0.025 solar masses).
${ }^{20}$ ALTHERR 94 bound is on the axion-electron coupling $g_{a e}<1.5 \times 10^{-13}$, from energy loss via axion emission.
${ }^{21}$ CHANG 93 updates ENGEL 90 bound with the Kaplan-Manohar ambiguity in $z=m_{u} / m_{d}$ (see the Note on the Quark Masses in the Quark Particle Listings). It leaves the window $f_{A}=3 \times 10^{5}-3 \times 10^{6} \mathrm{GeV}$ open. The constraint from Big-Bang Nucleosynthesis is satisfied in this window as well.
${ }^{22}$ BERSHADY 91 searched for a line at wave length from $3100-8300 \AA$ expected from 2γ decays of relic thermal axions in intergalactic light of three rich clusters of galaxies.
${ }^{23}$ KIM 91C argues that the bound from the mass density of the universe will change drastically for the supersymmetric models due to the entropy production of saxion (scalar component in the axionic chiral multiplet) decay. Note that it is an upperbound rather than a lowerbound
24 RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to corrections to nucleon bremsstrahlung processes.
${ }^{25}$ RESSELL 91 uses absence of any intracluster line emission to set limit.
${ }^{26}$ ENGEL 90 rule out $10^{-10} \lesssim g_{A N} \lesssim 10^{-3}$, which for a hadronic axion with EMC motivated axion-nucleon couplings corresponds to $2.5 \times 10^{-3} \mathrm{eV} \lesssim m_{A^{0}} \lesssim 2.5 \times$ $10^{4} \mathrm{eV}$. The constraint is loose in the middle of the range, i.e. for $g_{A N} \sim 10^{-6}$
${ }^{27}$ RAFFELT 90D is a re-analysis of DEARBORN 86.
${ }^{28}$ The region $m_{A^{0}} \gtrsim 2 \mathrm{eV}$ is also allowed.
${ }^{29}$ ERICSON 89 considered various nuclear corrections to axion emission in a supernova core, and found a reduction of the previous limit (MAYLE 88) by a large factor.
30 MAYLE 89 limit based on naive quark model couplings of axion to nucleons. Limit based on couplings motivated by EMC measurements is 2-4 times weaker. The limit from axion-electron coupling is weak: see HATSUDA 88B.
31 RAFFELT 88B derives a limit for the energy generation rate by exotic processes in heliumburning stars $\epsilon<100 \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$, which gives a firmer basis for the axion limits based on red giant cooling.
${ }^{32}$ RAFFELT 87 also gives a limit $g_{A \gamma}<1 \times 10^{-10} \mathrm{GeV}^{-1}$.
33 DEARBORN 86 also gives a limit $g_{A \gamma}<1.4 \times 10^{-11} \mathrm{GeV}^{-1}$
${ }^{34}$ RAFFELT 86 gives a limit $g_{A \gamma}<1.1 \times 10^{-10} \mathrm{GeV}^{-1}$ from red giants and $<2.4 \times 10^{-9}$ GeV^{-1} from the sun.
${ }^{35}$ KAPLAN 85 says $m_{A^{0}}<23 \mathrm{eV}$ is allowed for a special choice of model parameters.
${ }^{36}$ FUKUGITA 82 gives a limit $g_{A \gamma}<2.3 \times 10^{-10} \mathrm{GeV}^{-1}$.

Search for Relic Invisible Axions

Limits are for $\left[G_{A \gamma \gamma} / m_{A^{0}}\right]^{2} \rho_{A}$ where $G_{A} \gamma \gamma$ denotes the axion two-photon coupling, $L_{\text {int }}=-\frac{G_{A \gamma \gamma}}{4} \phi_{A} F_{\mu \nu} \tilde{F}^{\mu \nu}=G_{A \gamma \gamma} \phi_{A} \mathbf{E} \cdot \mathbf{B}$, and ρ_{A} is the axion energy density near the earth. VALUE CLOCUMENTID TECN COMMENT

<2.6	$\times 10^{-39}$	95	${ }^{1}$ ALESINI	19	QUAX $m_{A^{0}}=37.5 \mu \mathrm{~V}$
<6	$\times 10^{-5}$		${ }^{2}$ FUJITA	19	ASTR $m_{A^{0}}<10^{-21} \mathrm{eV}$
<2	$\times 10^{-27}$	95	${ }^{3}$ OUELLET	19A	ABRA $m_{A^{0}}=0.31-8.3 \mathrm{neV}$
<7.3	$\times 10^{-40}$	90	${ }^{4}$ boutan	18	ADMX $m_{A^{0}}=17.38-17.57 \mu \mathrm{VV}$
<1.8	$\times 10^{-39}$	90	${ }^{4}$ boutan	18	ADMX $m_{A^{0}}=21.03-23.98 \mu \mathrm{VV}$
<3.4	$\times 10^{-39}$	90	${ }^{4}$ boutan	18	ADMX $m_{A^{0}}=29.67-29.79 \mu \mathrm{VV}$
<1.4	$\times 10^{-44}$	90	${ }^{5}$ DU	18	ADMX $m_{A^{0}}=2.66-2.81 \mu \mathrm{~V}$
<2.87	$\times 10^{-42}$	90	${ }^{6}$ ZHONG	18	HYST $m_{A^{0}}=23.15-24 \mu \mathrm{eV}$
			${ }^{7}$ BRANCA	17	AURG $m_{S^{0}}=3.5-3.9 \mathrm{peV}$
<3	$\times 10^{-42}$	90	${ }^{8}$ BRUBAKER	17	HYST $m_{A^{0}}=23.55-24.0 \mu \mathrm{eV}$
<1.0	$\times 10^{-29}$	95	${ }^{9} \mathrm{CHOI}$	17	$m_{A^{0}}=24.7-29.1 \mu \mathrm{eV}$
<8.6	$\times 10^{-42}$	90	${ }^{10}$ HOSKINS	16	$\begin{gathered} \text { ADMX } m_{A^{0}}^{0.55-36-69 ~}=3 \mathrm{eV} \end{gathered}$
			${ }^{11} \mathrm{BECK}$	13	$m_{A^{0}}=0.11 \mathrm{meV}$
<3.5	$\times 10^{-43}$		${ }^{12}$ HOSKINS	11	ADMX $m_{A^{0}}=3.3-3.69 \times 10^{-6} \mathrm{eV}$
<2.9	$\times 10^{-43}$	90	${ }^{13}$ ASZTALOS	10	ADMX $m_{A^{0}}=3.34-3.53 \times 10^{-6} \mathrm{eV}$
<1.9	$\times 10^{-43}$	97.7	${ }^{14}$ DUFFY	06	ADMX $m_{A^{0}}=1.98-2.17 \times 10^{-6} \mathrm{eV}$
<5.5	$\times 10^{-43}$	90	${ }^{15}$ ASZTALOS	04	ADMX $m_{A^{0}}=1.9-3.3 \times 10^{-6} \mathrm{eV}$
			16 KIM	98	THEO
<2	$\times 10^{-41}$		${ }^{17}$ HAGMANN	90	CNTR $m_{A^{0}}=(5.4-5.9) 10^{-6} \mathrm{eV}$
<6.3	$\times 10^{-42}$	95	18 WUENSCH	89	CNTR m $A^{0}=(4.5-10.2) 10^{-6} \mathrm{eV}$
<5.4	$\times 10^{-41}$	95	18 WUENSCH	89	CNTR $m_{A^{0}}=(11.3-16.3) 10^{-6} \mathrm{eV}$

${ }^{1}$ ALESINI 19 used a superconducting resonant cavity made of NbTi to increase the quality factor. The limit applies to a mass range of 0.2 neV around $m_{A^{0}}=37.5 \mu \mathrm{eV}$.
${ }^{2}$ FUJITA 19 look for photon birefringence under the oscillating axion background using the polarimetric imaging observation of a protoplanetary disk, AB Aur. See their Fig. 2 for a more conservative limit taking account of possible systematic effects.
${ }^{3}$ OUELLET 19A look for the axion-induced oscillating magnetic field generated by a toroidal magnetic field. The quoted limit applies at $m_{A^{0}}=8 \mathrm{neV}$. See their Fig. 3 for the mass-dependent limits.
${ }^{4}$ BOUTAN 18 use a small high frequency cavity installed above the main ADMX cavity to look for heavier axion dark matter. See their Fig. 4 for mass-dependent limits.
${ }^{5}$ DU 18 is analogous to DUFFY 06. They upgraded a dilution refrigerator to reduce the system noise. The quoted limit is around $m_{A^{0}}=2.69 \mu \mathrm{eV}$ for the boosted Maxwellian axion line shape. See Fig. 4 for their mass-dependent limits.
${ }^{6}$ ZHONG 18 is analogous to BRUBAKER 17. The quoted limit applies at $m_{A^{0}}=23.76$ $\mu \mathrm{eV}$. See Fig. 4 for their mass-dependent limits.
${ }^{7}$ BRANCA 17 look for modulations of the fine-structure constant and the electron mass due to moduli dark matter by using the cryogenic resonant-mass AURIGA detector. The limit on the assumed dilatonic coupling implies $G_{S \gamma \gamma}<1.5 \times 10^{-24} \mathrm{GeV}^{-1}$ for the scalar to two-photon coupling. See Fig. 5 for the mass-dependent limits.
${ }^{8}$ BRUBAKER 17 used a microwave cavity detector at the Yale Wright Laboratory to search for dark matter axions. See Fig. 3 for the mass-dependent limits.
${ }^{9} \mathrm{CHOI} 17$ used a microwave cavity detector with toroidal geometry. See Fig. 4 for their mass-dependent limits.
${ }^{10}$ HOSKINS 16 is analogous to DUFFY 06. See Fig. 12 for mass-dependent limits in terms of the local dark matter density.
${ }^{11}$ BECK 13 argues that dark-matter axions passing through Earth may generate a small observable signal in resonant $\mathrm{S} / \mathrm{N} / \mathrm{S}$ Josephson junctions. A measurement by HOFFMANN 04 [Physical Review B70 180503 (2004)] is interpreted in terms of subdominant dark matter axions with $m_{A^{0}}=0.11 \mathrm{meV}$.
${ }^{12}$ HOSKINS 11 is analogous to DUFFY 06. See Fig. 4 for the mass-dependent limit in terms of the local density.
${ }^{13}$ ASZTALOS 10 used the upgraded detector of ASZTALOS 04 to search for halo axions. See their Fig. 5 for the $m_{A^{0}}$ dependence of the limit.
${ }^{14}$ DUFFY 06 used the upgraded detector of ASZTALOS 04, while assuming a smaller velocity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10 of their paper on the axion mass dependence of the limit.
${ }^{15}$ ASZTALOS 04 looked for a conversion of halo axions to microwave photons in magnetic field. At $90 \% \mathrm{CL}$, the KSVZ axion cannot have a local halo density more than $0.45 \mathrm{GeV} / \mathrm{cm}^{3}$ in the quoted mass range. See Fig. 7 of their paper on the axion mass dependence of the limit.
${ }^{16}$ KIM 98 calculated the axion-to-photon couplings for various axion models and compared them to the HAGMANN 90 bounds. This analysis demonstrates a strong model dependence of $G_{A \gamma \gamma}$ and hence the bound from relic axion search.
${ }^{17}$ HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.
${ }^{18}$ WUENSCH 89 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagnetic field via the Primakoff effect, following the proposal of SIKIVIE 83. The theoretical prediction with $\left[G_{A \gamma \gamma} / m_{A^{0}}\right]^{2}=$ $2 \times 10^{-14} \mathrm{MeV}^{-4}$ (the three generation DFSZ model) and $\rho_{A}=300 \mathrm{MeV} / \mathrm{cm}^{3}$ that makes up galactic halos gives $\left(G_{A \gamma \gamma} / m_{A}\right)^{2} \rho_{A}=4 \times 10^{-44}$. Note that our definition of $G_{A \gamma \gamma}$ is $(1 / 4 \pi)$ smaller than that of WUENSCH 89.

Invisible $\boldsymbol{A}^{\mathbf{0}}$ (Axion) Limits from Photon Coupling

Limits are for the modulus of the axion-two-photon coupling $G_{A \gamma \gamma}$ defined by $L=-G_{A \gamma \gamma}{ }^{\phi} A \mathbf{E} \cdot \mathbf{B}$. For scalars S^{0} the limit is on the coupling constant in $L=G_{S \gamma \gamma}{ }_{S}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)$. The relation between $G_{A \gamma \gamma}$ and $m_{A^{0}}$ is not used unless stated otherwise, i.e., many of these bounds apply to low-mass axion-like particles (ALPs), not to QCD axions.
VALUE $\left(\mathrm{GeV}^{-1}\right)$ CL\%

DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

<1	$\times 10^{-3}$	95	${ }^{1}$ ALONI	PRMX $m_{A^{0}}=0.16 \mathrm{GeV}$
<1.4	$\times 10^{-14}$	95	${ }^{2}$ CAPUTO	ASTR $m_{A^{0}}=5 \times 10^{-24} \mathrm{eV}$
<9.6	$\times 10^{-14}$	95	3 FEDDERKE	CMB $\quad m_{A^{0}}=10^{-22} \mathrm{eV}$
<7	$\times 10^{-13}$	95	4 IVANOV	ASTR $m_{A^{0}}=5 \times 10^{-23} \mathrm{eV}$
<4	$\times 10^{-11}$	95	${ }^{5}$ LIANG	ASTR $m_{A^{0}}=1.2 \times 10^{-7} \mathrm{eV}$
			${ }^{6}$ FORTIN	ASTR Axion-like particles
<5.0	$\times 10^{-3}$	90	7 YAMAJI	LSW $m_{A^{0}}=46-1020 \mathrm{eV}$
<1	$\times 10^{-11}$	99.9	${ }^{8}$ ZHANG	ASTR $m_{A^{0}}=0.6-4 \mathrm{neV}$
			${ }^{9}$ ADE	CMB Axion-like particles
<6.6	$\times 10^{-11}$	95	10 ANASTASSO... 17	CAST $m_{A^{0}}<0.02 \mathrm{eV}$
			$\begin{aligned} & 11 \text { DOLAN } \\ & 12 \text { INADA } \end{aligned}$	RVUE Axion-like particles
<2.51	$\times 10^{-4}$	95		LSW $m_{A^{0}}<0.1 \mathrm{eV}$
>1.5	$\times 10^{-11}$	95	13 KOHRI	ASTR $m_{A^{0}}=0.7-50 \mathrm{neV}$
<2.6	$\times 10^{-12}$	95	14 MARSH	ASTR $m_{A^{0}} \leq 10^{-13} \mathrm{eV}$
<6	$\times 10^{-13}$		15 TIWARI	COSM $m_{A^{0}} \leq 10^{-15} \mathrm{eV}$
<5	$\times 10^{-12}$	95	16 AJELLO	ASTR $m_{A^{0}}=0.5-5 \mathrm{neV}$
<1.2	$\times 10^{-7}$	95	17 DELLA-VALLE 16	LASR $m_{A^{0}}=1.3 \mathrm{meV}$
<7.2	$\times 10^{-8}$	95	18 DELLA-VALLE 16	LASR $m_{A^{0}}<0.5 \mathrm{meV}$
<8	$\times 10^{-4}$		19 JAECKEL	ALPS $\quad m_{A^{0}}=0.1-100 \mathrm{GeV}$
<6	$\times 10^{-21}$		20 LEEFER	$m_{S^{0}}<10^{-18} \mathrm{eV}$
			21 ANASTASSO... 1	CAST Chameleons
$<1.47 \times 10^{-10}$		95	22 ARIK	CAST $m_{A^{0}}=0.39-0.42 \mathrm{eV}$
<3.5	$\times 10^{-8}$	95	23 BALLOU	LSW $m_{A^{0}}<2 \times 10^{-4} \mathrm{eV}$
			24 BRAX	ASTR $m_{S^{0}}<4 \times 10^{-12} \mathrm{eV}$

${ }^{1}$ ALONI 19 used the data collected by the PRIMEX experiment to derive a limit based on a data-driven method. See their Fig. 2 for mass-dependent limits.
${ }^{2}$ CAPUTO 19 look for an oscillating variation of the polarization angle of the pulsar J0437-4715, where they assume the local axion energy density $\rho_{\boldsymbol{A}}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$. See their Fig. 2 for mass-dependent limits for $5 \times 10^{-24} \mathrm{eV} \leq m_{A^{0}} \leq 2 \times 10^{-19} \mathrm{eV}$.
${ }^{3}$ FEDDERKE 19 look for a uniform reduction of the CMB polarization at large scales, which is induced by the oscillating axion background during CMB decoupling. The quoted which is induced by the oscillating axion background during CMB decoupling. The quoted
limit is based on the assumption that axions make up all of the dark matter. See their limit is based on the assumption that axions make up all of the
Fig. 3 for mass-dependent limits for $m_{A^{0}}=10^{-22}-10^{-19} \mathrm{eV}$.
${ }^{4}$ IVANOV 19 look for the axion-induced periodic changes in the polarization angle of parsec-scale jets in active galactic nuclei observed by the MOJAVE program, where they use the axion energy density $\rho_{A}=20 \mathrm{GeV} / \mathrm{cm}^{3}$. See their Fig. 6 for mass-dependent limits for $5 \times 10^{-23} \mathrm{eV} \leq m A^{0} \leq 1.2 \times 10^{-21} \mathrm{eV}$.
${ }^{5}$ LIANG 19 look for spectral irregularities in the spectrum of 10 bright H.E.S.S. sources in the Galactic plane, assuming photon-ALP mixing in the Galactic magnetic fields. See their Fig. 2 for mass-dependent limits with different Galactic magnetic field models.
${ }^{6}$ FORTIN 18 studied the conversion of axion-like particles produced in the core of a magnetar to hard X-rays in the magnetosphere. See their Fig. 5 for mass-dependent limits with different values of the magnetar core temperature.
7 YAMAJI 18 search for axions with an x-ray LSW at Spring-8, using the Laue-case conversion in a silicon crystal. They also obtain $G_{A \gamma \gamma}<4.2 \times 10^{-3} \mathrm{GeV}^{-1}$ for $m_{A^{0}}<$ 10 eV . See their Fig. 5 for mass-dependent limits.
${ }^{8}$ ZHANG 18 look for spectral irregularities in the spectrum of PKS 2155-304 measured by Fermi LAT, assuming photon-ALP mixing in the intercluster and Galactic magnetic fields. See their Figs. 2 and 3 for mass-dependent limits with different values of the intercluster magnetic field parameters.
${ }^{9}$ ADE 17 look for cosmic birefringence from axion-like particles using CMB polarization data taken by the BICEP2 and Keck Array experiments. They set a limit $G_{A} \gamma \gamma H_{I}$ $<7.2 \times 10^{-2}$ at $95 \% \mathrm{CL}$ for $m_{A^{0}}<10^{-28} \mathrm{eV}$, where H_{I} is the Hubble parameter during inflation.
${ }^{10}$ ANASTASSOPOULOS 17 looked for solar axions by the CAST axion helioscope in the vacuum phase, and supersedes ANDRIAMONJE 07.
${ }^{11}$ DOLAN 17 update existing limits on $G_{A \gamma \gamma}$ for axion-like particles. See their Fig. 2 for mass-dependent limits.
${ }^{12}$ INADA 17 search for axions with an x-ray LSW at Spring-8. See their Fig. 4 for massdependent limits.
${ }^{13}$ KOHRI 17 attributed to axion-photon oscillations the excess of cosmic infrared background observed by the CIBER experiment. See their Fig. 5 for the region preferred by their scenario.
${ }^{14}$ MARSH 17 is similar to WOUTERS 13, using Chandra observations of M87. See their Fig. 6 for mass-dependent limits.
15 TIWARI 17 use observed limits of the cosmic distance-duality relation to constrain the photon-ALP mixing based on 3D simulations of the magnetic field configuration. The quoted value is for the averaged magnetic field of 1 nG with a coherent length of 1 Mpc . See their Fig. 5 for mass-dependent limits
${ }^{16}$ AJELLO 16 look for irregularities in the energy spectrum of the NGC1275 measured by Fermi LAT, assuming photon-ALP mixing in the intra-cluster and Galactic magnetic by Fermi LAT, assuming photon-ALP mixing in the
felds. See their Fig. 2 for mass-dependent limits.
17 DELLA-VALLE 16 look for the birefringence induced by axion-like particles. See their Fig. 14 for mass-dependent limits.
${ }^{18}$ DELLA-VALLE 16 look for the dichroism induced by axion-like particles. See their Fig. 14 for mass-dependent limits.
19 JAECKEL 16 use the LEP data of $Z \rightarrow 2 \gamma$ and $Z \rightarrow 3 \gamma$ to constrain the ALP production via $e^{+} e^{-} \rightarrow Z \rightarrow A^{0} \gamma\left(A^{0} \rightarrow \gamma \gamma\right)$, assuming the ALP coupling with two hypercharge bosons. See their Fig. 4 for mass-dependent limits.
${ }^{20}$ LEEFER 16 derived limits by using radio-frequency spectroscopy of dysprosium and atomic clock measurements. See their Fig. 1 for mass-dependent limits as well as limits on Yukawa-type couplings of the scalar to the electron and nucleons.
21 ANASTASSOPOULOS 15 search for solar chameleons with CAST and derived limits on the chameleon coupling to photons and matter. See their Fig. 12 for the exclusion region.
${ }^{22}$ ARIK 15 is analogous to ARIK 09, and search for solar axions for $m_{A^{0}}$ around 0.2 and 0.4 eV . See their Figs. 1 and 3 for the mass-dependent limits.
${ }^{23}$ Based on OSQAR photon regeneration experiment. See their Fig. 6 for mass-dependent limits on scalar and pseudoscalar bosons.
${ }^{24}$ BRAX 15 derived limits on conformal and disformal couplings of a scalar to photons by searching for a chaotic absorption pattern in the X-ray and UV bands of the Hydra A galaxy cluster and a BL lac object, respectively. See their Fig. 8.
${ }^{25}$ HASEBE 15 look for an axion via a four-wave mixing process at quasi-parallel colliding laser beams. They also derived limits on a scalar coupling to photons $G_{S \gamma \gamma}<2.62 \times$ $10^{-4} \mathrm{GeV}^{-1}$ at $m_{S^{0}}=0.15 \mathrm{eV}$. See their Figs. 11 and 12 for mass-dependent limits.
${ }^{26}$ MILLEA 15 is similar to CADAMURO 12, including the Planck data and the latest inferences of primordial deuterium abundance. See their Fig. 3 for mass-dependent limits.
27 VANTILBURG 15 look for harmonic variations in the dyprosium transition frequency data, induced by coherent oscillations of the fine-structure constant due to dilaton-like dark matter, and set the limits, $G_{S \gamma \gamma}<6 \times 10^{-27} \mathrm{GeV}^{-1}$ at $m_{S^{0}}=6 \times 10^{-23} \mathrm{eV}$. See their Fig. 4 for mass-dependent limits between $1 \times 10^{-24}<m_{S^{0}}<1 \times 10^{-15} \mathrm{eV}$.
28 VINYOLES 15 performed a global fit analysis based on helioseismology and solar neutrino observations. See their Fig. 9.
29 ARIK 14 is similar to ARIK 11. See their Fig. 2 for mass-dependent limits.
30 AYALA 14 derived the limit from the helium-burning lifetime of horizontal-branch stars based on number counts in globular clusters.
31 DELLA-VALLE 14 use the new PVLAS apparatus to set a limit on vacuum magnetic birefringence induced by axion-like particles. See their Fig. 6 for the mass-dependent
32 EJimits. 14 set limits on a product of primordial magnetic field and the axion mass using CMB distortion induced by resonant axion production from CMB photons. See their Fig. 1 for limits applying specifically to the DFSZ and KSVZ axion models.
33 PUGNAT 14 is analogous to EHRET 10. See their Fig. 5 for mass-dependent limits on scalar and pseudoscalar bosons.
${ }^{34}$ REESMAN 14 derive limits by requiring effects of axion-photon interconversion on gamma-ray spectra from distant blazars to be no larger than errors in the best-fit optical depth based on a certain extragalactic background light model. See their Fig. 5 for mass-dependent limits.
${ }^{35}$ ABRAMOWSKI 13A look for irregularities in the energy spectrum of the BL Lac object PKS 2155-304 measured by H.E.S.S. The limits depend on assumed magnetic field around the source. See their Fig. 7 for mass-dependent limits.
36 ARMENGAUD 13 is analogous to AVIGNONE 98. See Fig. 6 for the limit.
37 BETZ 13 performed a microwave-based light shining through the wall experiment. See their Fig. 13 for mass-dependent limits.
38 FRIEDLAND 13 derived the limit by considering blue-loop suppression of the evolution of red giants with 7-12 solar masses.
39 MEYER 13 attributed to axion-photon oscillations the observed excess of very high-energy γ-rays with respect to predictions based on extragalactic background light models. See their Fig. 4 for mass-dependent lower limits for various magnetic field configurations.
40 WOUTERS 13 look for irregularities in the X-ray spectrum of the Hydra cluster observed by Chandra. See their Fig. 4 for mass-dependent limits.
${ }^{41}$ CADAMURO 12 derived cosmological limits on $G_{A \gamma \gamma}$ for axion-like particles. See their Fig. 1 for mass-dependent limits
42 PAYEZ 12 derive limits from polarization measurements of quasar light (see their Fig. 3). The limits depend on assumed magnetic field strength in galaxy clusters. The limits depend on assumed magnetic field and electron density in the local galaxy supercluster.
43 ARIK 11 search for solar axions using ${ }^{3} \mathrm{He}$ buffer gas in CAST, continuing from the ${ }^{4} \mathrm{He}$ version of ARIK 09. See Fig. 2 for the exact mass-dependent limits.
${ }^{44}$ ALPS is a photon regeneration experiment. See their Fig. 4 for mass-dependent limits on scalar and pseudoscalar bosons.
45 AHMED 09A is analogous to AVIGNONE 98.
${ }^{46}$ ARIK 09 is the ${ }^{4} \mathrm{He}$ filling version of the CAST axion helioscope in analogy to INOUE 02 and INOUE 08. See their Fig. 7 for mass-dependent limits.
${ }^{47} \mathrm{CHOU} 09$ use the GammeV apparatus in the afterglow mode to search for chameleons, (pseudo)scalar bosons with a mass depending on the environment. For pseudoscalars they exclude at 3σ the range $2.6 \times 10^{-7} \mathrm{GeV}^{-1}<G_{A \gamma \gamma}<4.2 \times 10^{-6} \mathrm{GeV}^{-1}$ for vacuum $m_{A^{0}}$ roughly below 6 meV for density scaling index exceeding 0.8 .

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

${ }^{48}$ GONDOLO 09 use the all-flavor measured solar neutrino flux to constrain solar interior temperature and thus energy losses.
${ }^{49}$ LIPSS photon regeneration experiment, assuming scalar particle S^{0}. See Fig. 4 for massdependent limits.
${ }^{50} \mathrm{CHOU} 08$ perform a variable-baseline photon regeneration experiment. See their Fig. 3 for mass-dependent limits. Excludes the PVLAS result of ZAVATTINI 06.
${ }^{51}$ FOUCHE 08 is an update of ROBILLIARD 07. See their Fig. 12 for mass-dependent limits.
${ }^{52}$ INOUE 08 is an extension of INOUE 02 to larger axion masses, using the Tokyo axion helioscope. See their Fig. 4 for mass-dependent limits.
53 ZAVATTINI 08 is an upgrade of ZAVATTINI 06, see their Fig. 8 for mass-dependent limits. They now exclude the parameter range where ZAVATTINI 06 had seen a positive signature.
54 ANDRIAMONJE 07 looked for Primakoff conversion of solar axions in 9T superconducting magnet into X -rays. Supersedes ZIOUTAS 05
55 ROBILLIARD 07 perform a photon regeneration experiment with a pulsed laser and pulsed magnetic field. See their Fig. 4 for mass-dependent limits. Excludes the PVLAS result of ZAVATTINI 06 with a CL exceeding 99.9%.
${ }^{56}$ ZAVATTINI 06 propagate a laser beam in a magnetic field and observe dichroism and birefringence effects that could be attributed to an axion-like particle. This result is now excluded by ROBILLIARD 07, ZAVATTINI 08, and CHOU 08
57 INOUE 02 looked for Primakoff conversion of solar axions in 4T superconducting magnet into X ray.
58 MORALES 02B looked for the coherent conversion of solar axions to photons via the Primakoff effect in Germanium detector.
${ }^{59}$ BERNABEI 01B looked for Primakoff coherent conversion of solar axions into photons via Bragg scattering in Nal crystal in DAMA dark matter detector.
${ }^{60}$ ASTIER 00B looked for production of axions from the interaction of high-energy photons with the horn magnetic field and their subsequent re-conversion to photons via the interaction with the NOMAD dipole magnetic field.
61 MASSO 00 studied limits on axion-proton coupling using the induced axion-photon coupling through the proton loop and CAMERON 93 bound on the axion-photon coupling using optical rotation. They obtained the bound $g_{p}^{2} / 4 \pi<1.7 \times 10^{-9}$ for the coupling $g_{p} \bar{p} \gamma_{5}{ }^{p \phi} A$.
62 AVIGNONE 98 result is based on the coherent conversion of solar axions to photons via the Primakoff effect in a single crystal germanium detector.
${ }^{63}$ Based on the conversion of solar axions to X-rays in a strong laboratory magnetic field.
${ }^{64}$ Experiment based on proposal by MAIANI 86.
${ }^{65}$ Experiment based on proposal by VANBIBBER 87.
${ }^{66}$ LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.
${ }^{67}$ RUOSO 92 experiment is based on the proposal by VANBIBBER 87.
68 SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit is obtained by taking the noise amplitude as the upper limit. Limits extend to $m_{A^{0}}=$ 4×10^{-3} where $G_{A \gamma \gamma}<1 \times 10^{-4} \mathrm{GeV}^{-1}$.

Limit on Invisible A^{0} (Axion) Electron Coupling

The limit is for $g_{A e e} \phi_{A} \bar{e}\left(i \gamma_{5}\right) e$, or equivalently, the dipole-dipole potential $-\frac{g_{A e e}^{2}}{16 \pi m^{2}{ }_{e}}\left(\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)-3\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{n}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{n}\right)\right) / r^{3}$ where $\boldsymbol{n}=\boldsymbol{r} / r$ and the sign of the potential was corrected based on DAIDO 17.

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.7 \times 10^{-11}$	90	${ }^{1}$ ADHIKARI	19B	C100	Solar axions
$<2.3 \times 10^{-14}$	90	2 APRILE	19D	XE1T	$m_{A^{0}}=0.186-1 \mathrm{keV}$
		${ }^{3}$ DESSERT	19	ASTR	Magnetic white dwarf
$<2.6 \times 10^{-10}$	95	4 TERRANO	19		Torsion pendulum
$<1.5 \times 10^{-13}$	90	${ }^{5}$ ABE	18F	XMAS	$m_{A^{0}}=40-120 \mathrm{keV}$
$<1.1 \times 10^{-11}$	90	${ }^{6}$ ARMENGAUD	18	EDE3	Solar axions
$<4 \times 10^{-13}$	90	7 ARMENGAUD	18	EDE3	$\begin{aligned} & m_{A^{0}}=0.8-500 \mathrm{keV} \\ & m_{A^{0}}=58 \mu \mathrm{eV} \\ & m_{A^{0}}<10 \mathrm{keV} \end{aligned}$
$\times 10^{-10}$	95	${ }^{8}$ CRESCINI	18	QUAX	
		${ }^{9}$ FICEK	18	THEO	
$<4.5 \times 10^{-13}$	90	10 ABGRALL	17	HPGE	$m_{A^{0}}=11.8 \mathrm{keV}$
$<3.5 \times 10^{-12}$	90	11 AKERIB	17B	LUX	Solar axions
$<4.2 \times 10^{-13}$	90	12 AKERIB	17B	LUX	$m_{A^{0}}=1-16 \mathrm{keV}$
$<2.3 \times 10^{-13}$	90	13 APRILE	17B	X100	$m_{A^{0}}=6 \mathrm{keV}$
$<4 \times 10^{-4}$	90	14 FICEK	17	THEO	$m_{A^{0}}<1 \mathrm{keV}$
$<4.35 \times 10^{-12}$	90	${ }^{15} \mathrm{FU}$	17A	PNDX	Solar axions
$<4.3 \times 10^{-14}$	90	16 FU	17A	PNDX	$m_{A^{0}}=2 \mathrm{keV}$
$<5 \times 10^{-13}$	90	17 LIU	17A	CDEX	$m_{A^{0}}=13 \mathrm{keV}$
$<2.5 \times 10^{-11}$	90	18 LIU	17A	CDEX	Solar axions
<0.15	95	19 LUO	17		$m_{A^{0}}=300 \mathrm{eV}$
$<3.3 \times 10^{-13}$	68	${ }^{20}$ BATTICH	16	ASTR	White dwarf cooling
$<7 \times 10^{-13}$		21 CORSICO	16	ASTR	White dwarf cooling
$<1.39 \times 10^{-11}$	90	22 YOON	16	KIMS	Solar axions
$<7.4 \times 10^{-9}$	95	23 TERRANO	15		$m_{A^{0}}<30 \mu \mathrm{eV}$
$<8 \times 10^{-13}$	90	24 ABE	14 F	XMAS	$m_{A^{0}}=60 \mathrm{keV}$
$<7.7 \times 10^{-12}$	90	${ }^{25}$ APRILE	14B	X100	Solar axions
		26 APRILE	14B	X100	$m_{A^{0}}=5-7 \mathrm{keV}$
$<0.96-8.2 \times 10^{-8}$	90	27 DERBIN	14	CNTR	$m_{A^{0}}=0.1-1 \mathrm{MeV}$
$<2.8 \times 10^{-13}$	99	28 MILLER-BER...		ASTR	White dwarf cooling
$<5.4 \times 10^{-11}$	90	29 ABE	13D	XMAS	Solar axions
$<1.07 \times 10^{-12}$	90	30 ARMENGAUD	13	EDEL	$m_{A^{0}}=12.5 \mathrm{keV}$
$<2.59 \times 10^{-11}$	90	31 ARMENGAUD	13	EDEL	Solar axions

		32 BARTH	13	CAST	Solar axions
$<1.4-9.7 \times 10^{-7}$	90	33 DERBIN	13	CNTR	$m_{A^{0}}=0.1-1 \mathrm{MeV}$
$<1.5 \times 10^{-8}$	68	34 HECKEL	13		$m_{A^{0}} \leq 0.1 \mu \mathrm{eV}$
$<4.3 \times 10^{-13}$	95	35 VIAUX	13A	ASTR	Low-mass red giants
$<7 \times 10^{-13}$	95	36 CORSICO	12	ASTR	White dwarf cooling
$<2.2 \times 10^{-10}$	90	37 DERBIN	12	CNTR	Solar axions
$<0.02-1 \times 10^{-10}$	90	38 AALSETH	11	CNTR	$m_{A^{0}}=0.3-8 \mathrm{keV}$
$<1.4 \times 10^{-12}$	90	39 AHMED	09A	CDMS	$m_{A^{0}}=2.5 \mathrm{keV}$
$<4 \times 10^{-9}$		40 DAVOUDIASL	09	ASTR	Earth cooling
$<2.7 \times 10^{-8}$	66	41 NI	94		Induced magnetism
		41 CHUI	93		Induced magnetism
$<3.6 \times 10^{-7}$	66	42 PAN	92		Torsion pendulum
$<2.9 \times 10^{-8}$	95	41 BOBRAKOV	91		Induced magnetism
$<1.9 \times 10^{-6}$	66	43 WINELAND	91	NMR	
$<7 \times 10^{-7}$	66	42 RITTER	90		Torsion pendulum
$<6.6 \times 10^{-8}$	95	41 VOROBYOV	88		Induced magnetism

1 ADHIKARI 19B is analogous to LIU 17A.
${ }^{2}$ APRILE 19D is analogous to APRILE 17B, but they use only ionization signals. The quoted limit applies to $m_{A^{0}}=0.7 \mathrm{keV}$. See their Fig. 5(e) for mass-dependent limits.
${ }^{3}$ DESSERT 19 used the Suzaku observations of a magnetic white dwarf (RE J0317-853) to look for X-ray signatures converted from axions in the surrounding magnetic fields. They obtained the limit, $g_{A e e} \cdot G_{A \gamma \gamma}<1.6 \times 10^{-24} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$ for $m_{A^{0}} \lesssim$ $10^{-5} \mathrm{eV}$. See their Fig. 2 for mass-dependent limits.
4 TERRANO 19 look for the axion-induced oscillating magnetic field acting on the electron spin, using data taken with a rotating torsion pendulum containing polarized electrons. The quoted limit applies to $m_{A^{0}}=10^{-23}-10^{-18} \mathrm{eV}$ and assumes a local axion dark matter density, $\rho_{A}=0.45 \mathrm{GeV} / \mathrm{cm}^{3}$. See their Fig. 5 for mass-dependent limits.
${ }^{5}$ ABE 18 F is an update of ABE 14 F . The quoted limit applies to $m_{A^{0}}=60 \mathrm{keV}$. See their Fig. 5 for mass-dependent limits.
${ }^{6}$ ARMENGAUD 18 is analogous to LIU 17A.
${ }^{7}$ ARMENGAUD 18 is analogous to AHMED 09A. See the left panel of Fig. 5 for massdependent limits.
${ }^{8}$ CRESCINI 18 look for collective excitations of the electron spins caused by dark matter axions. The quoted limit assumes the local dark matter density, $\rho_{A}=0.45 \mathrm{GeV} / \mathrm{c}^{3}$.
${ }^{9}$ FICEK 18 use the measurements of the hyperfine structure of antiprotonic helium to constrain a dipole-dipole potential between electron and antiproton. See their Fig. 3 for limits on various spin- and velocity-dependent potentials.
10 ABGRALL 17 is analogous to AHMED 09A using the MAJORANA DEMONSTRATOR. See their Fig. 2 for limits between $6 \mathrm{keV}<m_{A^{0}}<97 \mathrm{keV}$.
${ }^{11}$ AKERIB 17 B is analogous to LIU 17A.
${ }^{12}$ AKERIB 17B is analogous to AHMED 09A. See their Fig. 7 for mass-dependent limits.
13 APRILE 17B is analogous to AHMED 09A. They found a bug in their code and needed to correct the limits in Fig. 7 of APRILE 14B. See their Fig. 1 for the corrected limits between $1 \mathrm{keV}<m_{A^{0}}<40 \mathrm{keV}$.
14 FICEK 17 look for spin-dependent interactions between electrons by comparing precision spectroscopic measurements in ${ }^{4} \mathrm{He}$ with theoretical calculations. See their Fig. 1 for limits up to $m_{A^{0}}=10 \mathrm{keV}$.
${ }^{15}$ FU 17A is analogous to LIU 17A. See their Fig. 3 for mass-dependent limits.
${ }^{16}$ FU 17A is analogous to AHMED 09A. See their Fig. 4 for mass-dependent limits.
17 LIU 17A is analogous to AHMED 09A. See their Fig. 9 for limits between $0.25 \mathrm{keV}<$ $m_{A^{0}}<20 \mathrm{keV}$.
${ }^{18}$ LIU 17A look for solar axions produced from Compton, bremsstrahlung, atomicrecombination and deexcitation channels, and set a limit for $m_{A^{0}}<1 \mathrm{keV}$.
${ }^{19}$ LUO 17 use a recent measurement of the dipole-dipole interaction between two iron atoms at the nanometer scale and set a limit for $m_{A^{0}}<1 \mathrm{keV}$. See their Fig. 3 for mass-dependent limits.
${ }^{20}$ BATTICH 16 is analogous to CORSICO 16 and used the pulsating DB white dwarf PG $1351+489$.
${ }^{21}$ CORSICO 16 studied the cooling rate of the pulsating DA white dwarf L19-2 based on an asteroseismic model.
22 YOON 16 look for solar axions with the axio-electric effect in $\mathrm{CsI}(\mathrm{TI})$ crystals and set a limit for $m_{A^{0}}<1 \mathrm{keV}$.
23 TERRANO 15 used a torsion pendulum and rotating attractor with 20-pole electron-spin distributions. See their Fig. 4 for a mass-dependent limit up to $m_{A^{0}}=500 \mu \mathrm{eV}$.
${ }^{24}$ ABE 14 F set limits on the axioelectric effect in the XMASS detector assuming the pseudoscalar constitutes all the local dark matter. See their Fig. 3 for limits between ${ }^{m} A^{0}$ $=40-120 \mathrm{keV}$.
25 APRILE 14B look for solar axions using the XENON100 detector.
${ }^{26}$ APRILE 14B is analogous to AHMED 09A. Their Fig. 7 was later found to be incorrect due to a bug in their code. See Fig. 1 in APRILE 17B for the corrected limits.
27 DERBIN 14 is an update of DERBIN 13 with a BGO scintillating bolometer. See their Fig. 3 for mass-dependent limits.
28 MILLER-BERTOLAMI 14 studied the impact of axion emission on white dwarf cooling in a self-consistent way.
${ }^{29}$ ABE 13D is analogous to DERBIN 12, using the XMASS detector.
${ }^{30}$ ARMENGAUD 13 is similar to AALSETH 11. See their Fig. 10 for limits between 3 keV $<m_{A^{0}}<100 \mathrm{keV}$.
31 ARMENGAUD 13 is similar to DERBIN 12, and take account of axio-recombination and axio-deexcitation effects. See their Fig. 12 for mass-dependent limits.
${ }^{32}$ BARTH 13 search for solar axions produced by axion-electron coupling, and obtained the limit, $g_{A e e} \cdot G_{A \gamma \gamma}<8.1 \times 10^{-23} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$.
${ }^{33}$ DERBIN 13 looked for 5.5 MeV solar axions produced in $p d \rightarrow{ }^{3} \mathrm{He} A^{0}$ in a BGO detector through the axioelectric effect. See their Fig. 4 for mass-dependent limits.
${ }^{34}$ HECKEL 13 studied the influence of 2 or 4 stationary sources each containing 6.0×10^{24} polarized electrons, on a rotating torsion pendulum containing 9.8×10^{24} polarized electrons. See their Fig. 4 for mass-dependent limits.
${ }^{35}$ VIAUX 13A constrain axion emission using the observed brightness of the tip of the red-giant branch in the globular cluster M5.
${ }^{36}$ CORSICO 12 attributed the excessive cooling rate of the pulsating white dwarf R548 to emission of axions with $g_{\text {Aee }} \simeq 4.8 \times 10^{-13}$
37 DERBIN 12 look for solar axions with the axio-electric effect in a $\mathrm{Si}(\mathrm{Li})$ detector. The solar production is based on Compton and bremsstrahlung processes.
38 AALSETH 11 is analogous to AHMED 09A. See their Fig. 4 for mass-dependent limits.
${ }^{39}$ AHMED 09A assume keV-mass pseudoscalars are the local dark matter and constrain the axio-electric effect in the CDMS detector. See their Fig. 5 for mass-dependent limits.
40 DAVOUDIASL 09 use geophysical constraints on Earth cooling by axion emission.
41 These experiments measured induced magnetization of a bulk material by the spindependent potential generated from other bulk material with aligned electron spins, where the magnetic field is shielded with superconductor. The sign of the limit set by CHUI 93 is opposite to that of the axion-mediated dipole-dipole potential.
42 These experiments used a torsion pendulum to measure the potential between two bulk matter objects where the spins are polarized but without a net magnetic field in either of them. The limits reflect the corrected sign of the dipole-dipole potential.
43 WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine splitting using nuclear magnetic resonance.

Invisible A^{0} (Axion) Limits from Nucleon Coupling

Limits are for the axion mass in eV

${ }^{10}$ ABEL 17 look for a time-oscillating neutron EDM and an axion-wind spin-precession effect respectively induced by axion dark matter couplings to gluons and nucleons. See their Fig. 4 for limits in the range of $m_{A^{0}}=10^{-24_{-10}}{ }^{-17} \mathrm{eV}$.
11 ABGRALL 17 limit assumes the hadronic axion model used in ALESSANDRIA 13. See their Fig. 4 for the limit on product of axion couplings to electrons and nucleons.
${ }^{12}$ FU 17A look for the $14.4 \mathrm{keV}{ }^{57} \mathrm{Fe}$ solar axions. The limit assumes the DFSZ axion model. See their Fig. 3 for mass-dependent limits on the axion-electron coupling. Notice that in this figure the DFSZ and KSVZ lines should be interchanged.
13 KLIMCHITSKAYA 17A use the differential measurement of the Casimir force between a Ni-coated sphere and Au and Ni sectors of the structured disc to constrain the axion coupling to nucleons for $2.61 \mathrm{meV}<m_{A^{0}}<0.9 \mathrm{eV}$. See their Figs. 1 and 2 for mass dependent limits.
${ }^{14}$ LIU 17 is analogous to ALESSANDRIA 13. The limit assumes the hadronic axion model. See their Fig. 6(b) for the limit on product of axion couplings to electrons and nucleons.
${ }^{15}$ BERENJI 16 used the Fermi LAT observations of neutron stars to look for photons from axion decay. They assume the effective Peccei-Quinn charge of the neutron $\mathrm{C}_{n}=0.1$ and a neutron-star core temperature of 20 MeV .
${ }^{16}$ GAVRILYUK 15 look for solar axions emitted by the M1 transition of ${ }^{83} \mathrm{Kr}(9.4 \mathrm{keV})$. The mass bound assumes $m_{u} / m_{d}=0.56$ and $S=0.5$.
17 KLIMCHITSKAYA 15 use the measurement of differential forces between a test mass and rotating source masses of Au and Si to constrain the force due to two-axion exchange for $1.7 \times 10^{-3}<m_{A^{0}}<0.9 \mathrm{eV}$. See their Figs. 1 and 2 for mass dependent limits.
18 BEZERRA 14 use the measurement of the thermal Casimir-Polder force between a BoseEinstein condensate of ${ }^{87} \mathrm{Rb}$ atoms and a SiO_{2} plate to constrain the force mediated by exchange of two pseudoscalars for $0.1 \mathrm{meV}<m_{A^{0}}<0.3 \mathrm{eV}$. See their Fig. 2 for the mass-dependent limit on pseudoscalar coupling to nucleons.
19 BEZERRA 14A is analogous to BEZERRA 14. They use the measurement of the Casimir pressure between two Au-coated plates to constrain pseudoscalar coupling to nucleons for $1 \times 10^{-3} \mathrm{eV}<m_{A^{0}}<15 \mathrm{eV}$. See their Figs. 1 and 2 for the mass-dependent limit.
${ }^{20}$ BEZERRA 14 B is analogous to BEZERRA 14. BEZERRA 14 B use the measurement of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate to constrain pseudoscalar coupling to nucleons for $1 \mathrm{eV}<m_{A^{0}}<$ 20 eV . See their Figs. 1-3 for mass-dependent limits.
21 BEZERRA 14C is analogous to BEZERRA 14. They use the measurement of the gradient of the Casimir force between Au - and Ni -coated surfaces of a sphere and a plate to constrain pseudoscalar coupling to nucleons for $3 \times 10^{-5} \mathrm{eV}<m_{A_{0}}<1 \mathrm{eV}$. See their Figs. 1, 3, and 4 for the mass-dependent limits.
${ }^{22}$ BLUM 14 studied effects of an oscillating strong $C P$ phase induced by axion dark matter on the primordial ${ }^{4} \mathrm{He}$ abundance. See their Fig. 1 for mass-dependent limits.
${ }^{23}$ LEINSON 14 attributes the excessive cooling rate of the neutron star in Cassiopeia A to axion emission from the superfluid core, and found $C_{n}^{2} m_{A^{0}}^{2} \simeq 5.7 \times 10^{-6} \mathrm{eV}^{2}$, where C_{n} is the effective Peccei-Quinn charge of the neutron.
${ }^{24}$ ALESSANDRIA 13 used the CUORE experiment to look for 14.4 keV solar axions produced from the M1 transition of thermally excited ${ }^{57} \mathrm{Fe}$ nuclei in the solar core, using the axio-electric effect. The limit assumes the hadronic axion model. See their Fig. 4 for the limit on product of axion couplings to electrons and nucleons
25 ARMENGAUD 13 is analogous to ALESSANDRIA 13. The limit assumes the hadronic axion model. See their Fig. 8 for the limit on product of axion couplings to electrons and nucleons.
${ }^{26}$ BELLI 12 looked for solar axions emitted by the M1 transition of ${ }^{7} \mathrm{Li}^{*}$ (478 keV) after the electron capture of ${ }^{7} \mathrm{Be}$, using the resonant excitation ${ }^{7} \mathrm{Li}$ in the LiF crystal. The mass bound assumes $m_{u} / m_{d}=0.55, m_{u} / m_{s}=0.029$, and the flavor-singlet axial vector bound assumes m_{u} / m_{d}
matrix element $S=0.4$.
${ }^{27}$ BELLINI 12B looked for 5.5 MeV solar axions produced in the $p d \rightarrow{ }^{3} \mathrm{He} A^{0}$. The limit assumes the hadronic axion model. See their Figs. 6 and 7 for mass-dependent limits on productsof axion couplings to photons, electrons, and nucleons.
28 DERBIN 11 looked for solar axions emitted by the M1 transition of thermally excited ${ }^{57}$ Fe nuclei in the Sun, using their possible resonant capture on ${ }^{57} \mathrm{Fe}$ in the laboratory. The mass bound assumes $m_{u} / m_{d}=0.56$ and the flavor-singlet axial vector matrix element $S=3 F-D \simeq 0.5$.
${ }^{29}$ BELLINI 08 consider solar axions emitted in the M1 transition of ${ }^{7} \mathrm{Li}^{*}$ (478 keV) and look for a peak at 478 keV in the energy spectra of the Counting Test Facility (CTF), a Borexino prototype. For $m_{A^{0}}<450 \mathrm{keV}$ they find mass-dependent limits on products of axion couplings to photons, electrons, and nucleons.
${ }^{30}$ ADELBERGER 07 use precision tests of Newton's law to constrain a force contribution from the exchange of two pseudoscalars. See their Fig. 5 for limits on the pseudoscalar coupling to nucleons, relevant for $m_{A^{0}}$ below about 1 meV .

Axion Limits from T-violating Medium-Range Forces

The limit is for the coupling $g=g_{\mathrm{p}} g_{\mathrm{S}}$ in a T-violating potential between nucleons or nucleon and electron of the form $V=\frac{g \hbar^{2}}{8 \pi m_{p}}(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\gamma}})\left(\frac{1}{r^{2}}+\frac{1}{\lambda r}\right) e^{-r / \lambda}$, where g_{p} and g_{S} are dimensionless scalar and pseudoscalar coupling constants and $\lambda=\hbar /\left(m_{A} c\right)$ is the range of the force.

DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

1 DZUBA	18	THEO	atomic EDM
2 STADNIK	18	THEO	atomic and molecular EDMs
3 CRESCINI	17	SQID	paramagnetic GSO crystal
4 AFACH	15		ultracold neutrons
5 STADNIK	15	THEO	nucleon spin contributions for
6 TERRANO	15		torsion pendulum
7 BULATOWICZ	13	NMR	polarized ${ }^{129}$ Xe and ${ }^{131} \mathrm{Xe}$
8 CHU	13		polarized ${ }^{3} \mathrm{He}$
9 TULLNEY	13	SQID	polarized ${ }^{3} \mathrm{He}$ and ${ }^{129} \mathrm{Xe}$
10 RAFFELT	12		stellar energy loss
11 HOEDL	11		torsion pendulum
12 PETUKHOV	10		polarized ${ }^{3} \mathrm{He}$

12 PETUKHOV 10

THEO atomic EDM
THEO atomic and molecular EDMs ultracold neutron
nucleon spin contributions for nuclei torsion pendulum polarized ${ }^{3} \mathrm{He}$ and ${ }^{129} \mathrm{Xe}$ torsion pendulum polarized ${ }^{3} \mathrm{He}$

EINSON 19 is analogous to BEZNOGOV 18, but estimating the axion luminosity based on the Tolman's analytic solution to the Einstein equations of spherical fluids in hydrostatic equilibrium. The dimensionless axion-neutron coupling is constrained as $g_{A n n}<$ 1.0×10^{-10}.
${ }^{2}$ LLOYD 19 is analogous to BERENJI 16. They highlight that the limit obtained with this technique strongly depends on the assumed NS core temperature.
${ }^{3}$ SMORRA 19 look for spin-precession effects from ultra-light axion dark matter in the \bar{p} spin-flip resonance data. Assuming $\rho_{A}=0.4 \mathrm{GeV} / \mathrm{cm}^{3}$, they constrain the dimensionless axion-antiproton coupling as $g_{A \bar{p} \bar{p}}<2-9$ at 95% CL for $m_{A^{0}}=2 \times 10^{-23}-4 \times 10^{-17}$ eV . See the right panel of their Fig. 3.
${ }^{4}$ WU 19 look for axion-induced time-oscillating features of the NMR spectrum of acetonitrile- $2^{-13} \mathrm{C}$. Assuming $\mathrm{C}_{p}=\mathrm{C}_{n}$ and $\rho_{A}=0.4 \mathrm{GeV} / \mathrm{cm}^{3}$, they constrain the dimensionless axion-nucleon coupling as $g_{A N N}<6 \times 10^{-5}$ for $m_{A^{0}}=$ $10^{-21}-1.3 \times 10^{-17} \mathrm{eV}$. Note that the limits for $m_{A^{0}}<10^{-21} \mathrm{eV}$ in their Fig. 3(a) should be weaker than those for heavier masses. See ADELBERGER 19 and WU 19C on this issue.
${ }^{5}$ AKHMATOV 18 is an update of GAVRILYUK 15.
${ }^{6}$ ARMENGAUD 18 is analogous to ALESSANDRIA 13. The quoted limit assumes the DFSZ axion model. See their Fig. 4 for the limit on product of axion couplings to 7 electrons and nucleons.
7^{7} BEZNOGOV 18 constrain the axion-neutron coupling by assuming that thermal evolution of the hot neutron star HESS J1731-347 is dominated by the lowest possible neutrino emission. The quoted limit assumes the KSVZ axion with the effective Peccei-Quinn charge of the neutron $\mathrm{C}_{n}=-0.02$. The dimensionless axion-neutron couling is constrained as $g_{A n n}<2.8 \times 10^{-10}$.
${ }^{8}$ GAVRILYUK 18 look for the resonant excitation of ${ }^{83} \mathrm{Kr}$ (9.4 keV) by solar axions produced via the Primakoff effect. The mass bound assumes $m_{u} / m_{d}=0.56$ and $S=$ $9{ }^{0.5}$
HAMAGUCHI 18 studied the axion emission from the neutron star in Cassiopeia A based on the minimal cooling scenario which explains the observed rapid cooling rate. The quoted limit corresponds to $f_{A}>5 \times 10^{8} \mathrm{GeV}$ obtained for the KSVZ axion with C_{p} $=-0.47$ and $C_{n}=-0.02$.

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

13 SEREBROV	10		ultracold neutrons
14 IGNATOVICH	09	RVUE	ultracold neutrons
15 SEREBROV	09	RVUE	ultracold neutrons
16 BAESSLER	07		ultracold neutrons
17 HECKEL	06		torsion pendulum
18 NI	99		paramagnetic $\mathrm{Tb} \mathrm{F}_{3}$
19 POSPELOV	98	THEO	neutron EDM
${ }^{20}$ YOUDIN	96		
${ }^{21}$ RITTER	93		torsion pendulum
22 VENEMA	92		nuclear spin-precession frequencies
${ }^{23}$ WINELAND	91	NMR	

${ }^{1}$ DZUBA 18 used atomic EDM measurements to derive limits on the product of the pseudoscalar coupling to nucleon and the scalar coupling to electron, which improved on the laboratory bounds for $m_{A^{0}}>0.01 \mathrm{eV}$. See their Fig. 1 for mass-dependent limits.
${ }^{2}$ STADNIK 18 used atomic and molecular EDM experiments to derive limits on the product of the pseudoscalar couplings to electron and the scalar coupling to nucleon and electron. See their Fig. 2 for mass-dependent limits, which improved on the laboratory bounds for $m_{A^{0}}>0.01 \mathrm{eV}$.
${ }^{3}$ CRESCINI 17 use the QUAX $-g_{p} g_{S}$ experiment to look for variation of a paramagnetic GSO crystal magnetization when rotating lead disks are positioned near the crystal, and find $g=g_{p}^{e} g_{s}^{N}<4.3 \times 10^{-30}$ for $\lambda=0.1-0.2 \mathrm{~m}$ at 95% CL. See their Fig. 6 for limits as a function of λ.
${ }^{4}$ AFACH 15 look for a change of spin precession frequency of ultracold neutrons when a magnetic field with opposite directions is applied, and find $g<2.2 \times 10^{-27}(\mathrm{~m} / \lambda)^{2}$ at $95 \% \mathrm{CL}$ for $1 \mu \mathrm{~m}<\lambda<5 \mathrm{~mm}$. See their Fig. 3 for their limits.
${ }^{5}$ STADNIK 15 studied proton and neutron spin contributions for nuclei and derive the limits $g<10^{-28}-10^{-23}$ for $\lambda>3 \times 10^{-4} \mathrm{~m}$ using the data of TULLNEY 13. See their Figs. 1 and 2 for λ-dependent limits.
${ }^{6}$ TERRANO 15 used a torsion pendulum and rotating attractor, and derived a restrictive limit on the product of the pseudoscalar coupling to electron and the scalar coupling to nucleons, $g<9 \times 10^{-29-5 \times 10^{-26}}$ for $m_{A^{0}}<1.5-400 \mu \mathrm{eV}$. See their Fig. 5 for mass-dependent limits.
7^{7} BULATOWICZ 13 looked for NMR frequency shifts in polarized ${ }^{129} \mathrm{Xe}$ and ${ }^{131} \mathrm{Xe}$ when a zirconia rod is positioned near the NMR cell, and find $g<1 \times 10^{-19}-1 \times 10^{-24}$ for $\lambda=0.01-1 \mathrm{~cm}$. See their Fig. 4 for their limits.
${ }^{8} \mathrm{CHU} 13$ look for a shift of the spin precession frequency of polarized ${ }^{3} \mathrm{He}$ in the presence of an unpolarized mass, in analogy to YOUDIN 96. See Fig. 3 for limits on g in the approximate $m_{A^{0}}$ range $0.02-2 \mathrm{meV}$.
${ }^{9}$ TULLNEY 13 look for a shift of the precession frequency difference between the colocated ${ }^{3} \mathrm{He}$ and ${ }^{129} \mathrm{Xe}$ in the presence an unpolarized mass, and derive limits $\mathrm{g}<3 \times 10^{-29}-2 \times$ 10^{-22} for $\lambda>3 \times 10^{-4} \mathrm{~m}$. See their Fig. 3 for λ-dependent limits.
1^{10} RAFFELT 12 show that the pseudoscalar couplings to electron and nucleon and the scalar coupling to nucleon are individually constrained by stellar energy-loss arguments and searches for anomalous monopole-monopole forces, together providing restrictive constraints on g. See their Figs. 2 and 3 for results.
11 HOEDL 11 use a novel torsion pendulum to study the force by the polarized electrons of an external magnet. In their Fig. 3 they show restrictive limits on g in the approximate $m_{A^{0}}$ range $0.03-10 \mathrm{meV}$.
12 PETUKHOV 10 use spin relaxation of polarized ${ }^{3} \mathrm{He}$ and find $g<3 \times 10^{-23}(\mathrm{~cm} / \lambda)^{2}$ at $95 \% \mathrm{CL}$ for the force range $\lambda=10^{-4}-1 \mathrm{~cm}$.
13 SEREBROV 10 use spin precession of ultracold neutrons close to bulk matter and find $g<2 \times 10^{-21}(\mathrm{~cm} / \lambda)^{2}$ at $95 \% \mathrm{CL}$ for the force range $\lambda=10^{-4}-1 \mathrm{~cm}$
14 IGNATOVICH 09 use data on depolarization of ultracold neutrons in material traps. They show λ-dependent limits in their Fig. 1.
15 SEREBROV 09 uses data on depolarization of ultracold neutrons stored in material traps and finds $g<2.96 \times 10^{-21}(\mathrm{~cm} / \lambda)^{2}$ for the force range $\lambda=10^{-3}-1 \mathrm{~cm}$ and $g<3.9 \times 10^{-22}(\mathrm{~cm} / \lambda)^{2}$ for $\lambda=10^{-4}-10^{-3} \mathrm{~cm}$, each time at $95 \% \mathrm{CL}$, significantly improving on BAESSLER 07
16 BAESSLER 07 use the observation of quantum states of ultracold neutrons in the Earth's gravitational field to constrain g for an interaction range $1 \mu \mathrm{~m}-\mathrm{a}$ few mm . See their Fig. 3 for results
17 HECKEL 06 studied the influence of unpolarized bulk matter, including the laboratory's surroundings or the Sun, on a torsion pendulum containing about 9×10^{22} polarized electrons. See their Fig. 4 for limits on g as a function of interaction range.
${ }^{18} \mathrm{NI} 99$ searched for a T-violating medium-range force acting on paramagnetic $\mathrm{Tb} \mathrm{F}_{3}$ salt. See their Fig. 1 for the result.
19 POSPELOV 98 studied the possible contribution of T-violating Medium-Range Force to the neutron electric dipole moment, which is possible when axion interactions violate the neutron electric dipole moment, which is possible when axion interactions violate
$C P$. The size of the force among nucleons must be smaller than gravity by a factor of $C P$. The size of the force among nucleons
$2 \times 10^{-10}\left(1 \mathrm{~cm} / \lambda_{A}\right)$, where $\lambda_{A}=\hbar / m_{A} c$.
${ }^{20}$ YOUDIN 96 compared the precession frequencies of atomic ${ }^{199} \mathrm{Hg}$ and Cs when a large mass is positioned near the cells, relative to an applied magnetic field. See Fig. 3 for their limits.
21 RITTER 93 studied the influence of bulk mass with polarized electrons on an unpolarized torsion pendulum, providing limits in the interaction range from 1 to 100 cm
${ }^{22}$ VENEMA 92 looked for an effect of Earth's gravity on nuclear spin-precession frequencies of ${ }^{199} \mathrm{Hg}$ and ${ }^{201} \mathrm{Hg}$ atoms.
23 WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine resonances in stored ${ }^{9} \mathrm{Be}^{+}$ions using nuclear magnetic resonance.

Hidden Photons: Kinetic Mixing Parameter Limits

Limits are on the kinetic mixing parameter χ which is defined by the Lagrangian
$L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime} \mu \nu-\frac{\chi}{2} F_{\mu \nu} F^{\prime} \mu \nu+\frac{m^{2}}{2} A_{\mu}^{\prime} A^{\prime} \mu$,
where A_{μ} and A_{μ}^{\prime} are the photon and hidden-photon fields with field strengths $F_{\mu \nu}$ and $F_{\mu \nu}^{\prime}$, respectively, and $m_{\gamma^{\prime}}$ is the hidden-photon mass.
VALUE CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - •

<1	$\times 10^{-3}$	90	64 ABRAHAMY...			$m_{\gamma^{\prime}}=175-250 \mathrm{MeV}$
<9	$\times 10^{-8}$	95	65 bluemlein	11	BDMP	$m_{\gamma^{\prime}}=70 \mathrm{MeV}$
<1	$\times 10^{-7}$		${ }^{66}$ BJORKEN	09	BDMP	$m_{\gamma^{\prime}}=2-400 \mathrm{MeV}$
<5	$\times 10^{-9}$		6^{67} BJORKEN	09	ASTR	$m_{\gamma^{\prime}}=2-50 \mathrm{MeV}$

${ }^{1}$ AAIJ 20 C look for hidden photons produced from the $p p$ collision in the decay channel $\gamma^{\prime} \rightarrow \mu^{+} \mu^{-}$. For prompt decaying hidden photons, limits at the level of $10^{-4}-10^{-3}$ are obtained for $m_{\gamma^{\prime}}=0.214-30 \mathrm{GeV}$. See their Fig. 2 for mass-dependent limits.
${ }^{2}$ AAIJ 20 C look for hidden photons produced from the $p p$ collision in the decay channel $\gamma^{\prime} \rightarrow \mu^{+} \mu^{-}$. For hidden photons with lifetimes of order ps, limits at the level of 10^{-5} are obtained for $m_{\gamma^{\prime}}=218-315 \mathrm{MeV}$. See their Fig. 4 for mass-dependent limits.
${ }^{3}$ AABOUD 19G look for $h \rightarrow \gamma^{\prime} \gamma^{\prime}\left(\gamma^{\prime} \rightarrow \mu^{+} \mu^{-}\right)$and exclude a kinetic mixing around $10^{-9}-10^{-8}$ for $\mathrm{B}\left(h \rightarrow \gamma^{\prime} \gamma^{\prime}\right)=0.01$ and 0.1. See their Fig. 9 for mass-dependent limits.
${ }^{4}$ ABLIKIM 19A look for $J / \psi \rightarrow \gamma^{\prime} \eta\left(\gamma^{\prime} \rightarrow e^{+} e^{-}\right)$. Limits between 6×10^{-3} and 5×10^{-2} are obtained (see their Fig. 8).
${ }^{5}$ ABLIKIM 19 H look for $J / \psi \rightarrow \gamma^{\prime} \eta^{\prime}\left(\gamma^{\prime} \rightarrow e^{+} e^{-}\right)$. Limits between 3.4×10^{-3} and 2.6×10^{-2} are obtained. See their Fig. 5 for mass-dependent limits.
${ }^{6}$ AGUILAR-AREVALO 19A look for the absorption signal of hidden photon dark matter by using a CCD. The quoted limit applies to $m_{\gamma^{\prime}}=17 \mathrm{eV}$. The local density $\rho_{\gamma^{\prime}}=0.3$ $\mathrm{GeV} / \mathrm{cm}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
${ }^{7}$ APRILE 19D is analogous to ABE 14F. The quoted limit applies to $m_{\gamma^{\prime}}=0.7 \mathrm{keV}$. See their Fig. 5(f) for mass-dependent limits.
${ }^{8}$ BANERJEE 19 is an update of BANERJEE 18A. The quoted limit is at $m_{\gamma^{\prime}}=1 \mathrm{MeV}$. See their Fig. 3 for mass-dependent limits.
${ }^{9}$ BHOONAH 19 examine heating of Galactic Center gas clouds by hidden photon dark matter. The quoted limit applies to $m_{\gamma^{\prime}} \simeq 10^{-12} \mathrm{eV}$. See their Fig. 2 for massdependent limits.
${ }^{10}$ BRUN 19 is analogous to SUZUKI 15. The limit is derived under an assumption that hidden photons constitute the local dark matter density $\rho_{\gamma^{\prime}}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$.
${ }^{11}$ CORTINA-GIL 19 look for an invisible hidden photon in the reaction $K^{+} \rightarrow \pi^{+} \pi^{0}$ $\left(\pi^{0} \rightarrow \gamma \gamma^{\prime}\right)$. The quoted limit applies to $m_{\gamma^{\prime}}=62.5-65 \mathrm{MeV}$. See their Figs. 6 and 7 for mass-dependent limits.
${ }^{12}$ DANILOV 19 examined the hidden photon production in nuclear reactors, correctly taking account of the effective photon mass in the reactor and detector. The limit gets weaker for $m_{\gamma^{\prime}}$ less than the effective photon mass in proportion to $1 / m_{\gamma^{\prime}}^{2}$. See their Fig. 1 for mass-dependent limits.
${ }^{13}$ HOCHBERG 19 look for the absorption signal of hidden photon dark matter by using superconducting-nanowire single-photon detectors. The quoted limit applies to $m_{\gamma^{\prime}} \simeq$ 1 eV . The local density $\rho_{\gamma^{\prime}}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$ is assumed. See their Fig. 4 for massdependent limits.
14 KOPYLOV 19 look for hidden-photon dark matter using a counter with an aluminum cathode and derive limits assuming it constitute all the local dark matter. The quoted limit applies to $m_{\gamma^{\prime}}=12 \mathrm{eV}$. See their Fig. 7 for mass-dependent limits.
15 KOVETZ 19 examine heating of the early Universe plasma by hidden photon dark matter, and derive the limits by requiring that the cosmic mean 21 cm brightness temperature relative to the CMB temperature satisfy $\mathrm{T}_{21}>-100 \mathrm{mK}$. The quoted limit applies to $m_{\gamma^{\prime}} \simeq 2 \times 10^{-14} \mathrm{eV}$. See their Fig. 3 for mass-dependent limits.
${ }^{16}$ NGUYEN 19 look for hidden photon dark matter with a resonant cavity, and set limits $\sim 10^{-12}$ for $m_{\gamma^{\prime}}=0.2-2.07 \mu \mathrm{eV}$. The quoted limit applies to $m_{\gamma^{\prime}}=1.3 \mu \mathrm{eV}$. The local density $\rho_{\gamma^{\prime}}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$ is assumed. See their Fig. 19 for mass-dependent limits.
${ }^{17} \mathrm{ABE} 18 \mathrm{~F}$ is an update of ABE 14F. The quoted limit applies to $m_{\gamma^{\prime}} \simeq 40 \mathrm{keV}$. See their Fig. 5 for mass-dependent limits.
${ }^{18}$ ADRIAN 18 look for a hidden photon resonance in the reaction $e^{-} Z \rightarrow e^{-} \boldsymbol{Z} \gamma^{\prime}\left(\gamma^{\prime} \rightarrow\right.$ $e^{+} e^{-}$). The quoted limit applies to $m_{\gamma^{\prime}}=40 \mathrm{MeV}$. See their Fig. 4 for mass-dependent limits.
${ }^{19}$ ANASTASI 18B look for a hidden photon resonance in the reaction $e^{+} e^{-} \rightarrow \gamma^{\prime} \gamma\left(\gamma^{\prime} \rightarrow\right.$ $\mu^{+} \mu^{-}$). The quoted limit is obtained by combining the result of ANASTASI 16 and it applies to $m_{\gamma^{\prime}} \simeq 519-987 \mathrm{MeV}$. See their Fig. 9 for mass-dependent limits.
${ }^{20}$ ARMENGAUD 18 is analogous to ABE 14F. The quoted limits applies to $m_{\gamma^{\prime}}=1.6$ keV . See the right panel of Fig. 5 for mass-dependent limits.
${ }^{21}$ BANERJEE 18 look for hidden photons produced in the reaction $e^{-} \boldsymbol{Z} \rightarrow e^{-} \boldsymbol{Z} \gamma^{\prime}\left(\gamma^{\prime} \rightarrow\right.$ $e^{+} e^{-}$), and exclude $9.2 \times 10^{-5} \lesssim \chi \lesssim 1 \times 10^{-2}$ for $m_{\gamma^{\prime}}=1-23 \mathrm{MeV}$. They also set a limit on the electron coupling to a 16.7 MeV gauge boson suggested by the ATOMKI (KRASZNAHORKAY 16) experiment. See their Fig. 3 for mass-dependent limits.
${ }^{22}$ BANERJEE 18A look for invisible decays of hidden photons produced in the reaction $e^{-} \boldsymbol{Z} \rightarrow e^{-} \boldsymbol{Z} \gamma^{\prime}$. The quoted limit is at $m_{\gamma^{\prime}}=1 \mathrm{MeV}$. See their Fig. 15 for massdependent limits.
${ }^{23}$ KNIRCK 18 is analogous to SUZUKI 15. See their Fig. 5 for mass-dependent limits.
${ }^{24}$ ABGRALL 17 is analogous to ABE 14 using the MAJORANA DEMONSTRATOR. See their Fig. 3 for limits between $6 \mathrm{keV}<m_{\gamma^{\prime}}<97 \mathrm{keV}$.
${ }^{25}$ ABLIKIM 17AA look for $e^{+} e^{-} \rightarrow \gamma \gamma^{\prime}\left(\gamma^{\prime} \rightarrow e^{+} e^{-}\right.$or $\left.\mu^{+} \mu^{-}\right)$. Limits between 10^{-3} and 10^{-4} are obtained (see their Fig. 3).
${ }^{26}$ ANGLOHER 17 is analogous to ABE 14F. The quoted limit is at $m_{\gamma^{\prime}}=0.7 \mathrm{keV}$. See their Fig. 8 for mass-dependent limits.
${ }^{27}$ BANERJEE 17 look for invisible decays of hidden photons produced in the reaction $e^{-} \boldsymbol{Z} \rightarrow e^{-} \boldsymbol{Z} \gamma^{\prime}$. The quoted limit applies to $m_{\gamma^{\prime}}=2 \mathrm{MeV}$. See their Fig. 3 for mass-dependent limits.
${ }^{28}$ CHANG 17 examine the hidden photon emission from SN1987A, including the effects of finite temperature and density on χ and obtain limits $\chi\left(m_{\gamma^{\prime}} / \mathrm{MeV}\right) \lesssim 3 \times 10^{-9}$ for $m_{\gamma^{\prime}}<15 \mathrm{MeV}$ and $\chi \lesssim 10^{-9}$ for $m_{\gamma^{\prime}}=15-120 \mathrm{MeV}$.
${ }^{29}$ DUBININA 17 look for $\mu^{+} \rightarrow e^{+} \bar{\nu}_{\mu} \nu_{e} \gamma^{\prime}\left(\gamma^{\prime} \rightarrow e^{+} e^{-}\right)$in a nuclear photoemulsion. The quoted limit applies to $m_{\gamma^{\prime}}=1.1 \mathrm{MeV}$. Limits between 4.5×10^{-3} and 10^{-2} are obtained (see their Fig. 3).
${ }^{30}$ LEES 17E look for invisible decays of hidden photons produced in the reaction $e^{+} e^{-} \rightarrow$ $\gamma \gamma^{\prime}$. See their Fig. 5 for limits in the mass range $m_{\gamma^{\prime}} \leq 8 \mathrm{GeV}$.
${ }^{31}$ AAD 16AG look for hidden photons promptly decaying into collimated electrons and/or muons, assuming that they are produced in the cascade decays of squarks or the Higgs boson. See their Fig. 10 and Fig. 13 for their limits on the cross section times branching 3 fractions.
32 ANASTASI 16 look for the decay $\gamma^{\prime} \rightarrow \pi^{+} \pi^{-}$in the reaction $e^{+} e^{-} \rightarrow \gamma \gamma^{\prime}$. Limits between 4.3×10^{-3} and 4.4×10^{-4} are obtained for $527<m_{\gamma^{\prime}}<987 \mathrm{MeV}$ (see their Fig. 9).
${ }^{33}$ KHACHATRYAN 16 look for $\gamma^{\prime} \rightarrow \mu^{+} \mu^{-}$in a dark SUSY scenario where the SM-like Higgs boson decays into a pair of the visible lightest neutralinos with mass 10 GeV , both of which decay into γ^{\prime} and a hidden neutralino with mass 1 GeV . See the right panel in their Fig. 2.
${ }^{34}$ AAD 15CD look for $H \rightarrow Z \gamma^{\prime} \rightarrow 4 \ell$ with the ATLAS detector at LHC and find $\chi<4-17 \times 10^{-2}$ for $m_{\gamma^{\prime}}=15-55 \mathrm{GeV}$. See their Fig. 6.
${ }^{35}$ ADARE 15 look for a hidden photon in $\pi^{0}, \eta^{0} \rightarrow \gamma e^{+} e^{-}$at the PHENIX experiment. See their Fig. 4 for mass-dependent limits.
${ }^{36}$ AN 15A derived limits from the absence of ionization signals in the XENON10 and XENON100 experiments, assuming hidden photons constitute all the local dark matter. Their best limit is $\chi<1.3 \times 10^{-15}$ at $m_{\gamma^{\prime}}=18 \mathrm{eV}$. See their Fig. 1 for mass-dependent 37 limits.
37 ANASTASI 15 look for a production of a hidden photon and a hidden Higgs boson with the KLOE detector at DAФNE, where the hidden photon decays into a pair of muons and the hidden Higgs boson lighter than $m_{\gamma^{\prime}}$ escape detection. See their Figs. 6 and 7 for mass-dependent limits on a product of the hidden fine structure constant and the kinetic mixing.
${ }^{38}$ ANASTASI 15A look for the decay $\gamma^{\prime} \rightarrow e^{+} e^{-}$in the reaction $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$. Limits between 1.7×10^{-3} and 1×10^{-2} are obtained for $m_{\gamma^{\prime}}=5-320 \mathrm{MeV}$ (see their Fig. 7).
${ }^{39}$ BATLEY 15A look for $\pi^{0} \rightarrow \gamma \gamma^{\prime}\left(\gamma^{\prime} \rightarrow e^{+} e^{-}\right)$at the NA48/2 experiment. Limits between 4.2×10^{-4} and 8.8×10^{-3} are obtained for $m_{\gamma^{\prime}}=9-120 \mathrm{MeV}$ (see their Fig. 4).

40 JAEGLE 15 look for the decay $\gamma^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$, or $\pi^{+} \pi^{-}$in the dark Higgstrahlung channel, $e^{+} e^{-} \rightarrow \gamma^{\prime} H^{\prime}\left(H^{\prime} \rightarrow \gamma^{\prime} \gamma^{\prime}\right)$ at the BELLE experiment. They set limits on a product of the branching fraction and the Born cross section as well as a product of the hidden fine structure constant and the kinetic mixing. See their Figs. 3 and 4.
${ }^{41}$ KAZANAS 15 set limits by studying the decay of hidden photons $\gamma^{\prime} \rightarrow e^{+} e^{-}$inside and near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.
42 SUZUKI 15 looked for hidden-photon dark matter with a dish antenna and derived limits assuming they constitute all the local dark matter. Their limits are $\chi<6 \times 10^{-12}$ for $m_{\gamma^{\prime}}=1.9-4.3 \mathrm{eV}$. See their Fig. 7 for mass-dependent limits.
${ }^{43}$ VINYOLES 15 performed a global fit analysis based on helioseismology and solar neutrino observations, and set the limits $\chi m_{\gamma^{\prime}}<1.8 \times 10^{-12} \mathrm{eV}$ for $m_{\gamma^{\prime}}=3 \times 10^{-5}-8 \mathrm{eV}$. See their Fig. 11.
${ }^{44}$ ABE 14 F look for the photoelectric-like interaction in the XMASS detector assuming the hidden photon constitutes all the local dark matter. Limits between 2×10^{-13} and 1×10^{-12} are obtained, where the relation $\chi^{2}=\alpha^{\prime} / \alpha$ is used to translate the original bound on the ratio of the hidden and EM fine-structure constants. See their Fig. 3 for mass-dependent limits.
${ }^{45}$ AGAKISHIEV 14 look for hidden photons $\gamma^{\prime} \rightarrow e^{+} e^{-}$at the HADES experiment, and set limits on χ for $m_{\gamma^{\prime}}=0.02-0.6 \mathrm{GeV}$. See their Fig. 5 for mass-dependent limits.
${ }^{46}$ BABUSCI 14 look for the decay $\gamma^{\prime} \rightarrow \mu^{+} \mu^{-}$in the reaction $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$. Limits between 4×10^{-3} and 9.0×10^{-4} are obtained for $520 \mathrm{MeV}<m_{\gamma^{\prime}}<980 \mathrm{MeV}$ (see their Fig. 7).
${ }^{47}$ BATELL 14 derived limits from the electron beam dump experiment at SLAC (E-137) by searching for events with recoil electrons by sub- GeV dark matter produced from the decay of the hidden photon. Limits at the level of $10^{-4}-10^{-1}$ are obtained for $m_{\gamma^{\prime}}=$ $10^{-3}-1 \mathrm{GeV}$, depending on the dark matter mass and the hidden gauge coupling (see their Fig. 2).
${ }^{48}$ BLUEMLEIN 14 analyzed the beam dump data taken at the $\mathrm{U}-70$ accelerator to look for γ^{\prime}-bremsstrahlung and the subsequent decay into muon pairs and hadrons. See their Fig. 4 for mass-dependent excluded region.
${ }^{49}$ FRADETTE 14 studied effects of decay of relic hidden photons on BBN and CMB to set constraints on very small values of the kinetic mixing. See their Figs. 4 and 7 for mass-dependent excluded regions.
${ }^{50}$ LEES 14」 look for hidden photons in the reaction $e^{+} e^{-} \rightarrow \gamma \gamma^{\prime}\left(\gamma^{\prime} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}\right)$. Limits at the level of $10^{-4}-10^{-3}$ are obtained for $0.02 \mathrm{GeV}<m_{\gamma^{\prime}}<10.2 \mathrm{GeV}$. See their Fig. 4 for mass-dependent limits.
${ }^{51}$ MERKEL 14 look for $\gamma^{\prime} \rightarrow e^{+} e^{-}$at the A1 experiment at the Mainz Microtron (MAMI). See their Fig. 3 for mass-dependent limits.
52 AN 13B examined the stellar production of hidden photons, correcting an important error of the production rate of the longitudinal mode which now dominates. See their Fig. 2 for mass-dependent limits based on solar energy loss.
${ }^{53}$ AN 13 C use the solar flux of hidden photons to set a limit on the atomic ionization rate in the XENON10 experiment. They find $\chi m_{\gamma^{\prime}}<3 \times 10^{-12} \mathrm{eV}$ for $m_{\gamma^{\prime}}<1 \mathrm{eV}$. See their Fig. 2 for mass-dependent limits.
${ }^{54}$ DIAMOND 13 analyzed the beam dump data taken at the SLAC millicharge experiment to constrain a hidden photon invisibly decaying into lighter long-lived particles, which undergo elastic scattering off nuclei in the detector. Limits between $8 \times 10^{-4}-2 \times 10^{-2}$

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

Gauge \& Higgs Boson Particle Listings

Axions $\left(A^{0}\right)$ and Other Very Light Bosons

MAIER	87	ZPHY A326 527	K. Maier et al. (STUT, GSI)	DATAR	82	PL 114B63	V.M. Datar et al.	(BHAB)
MILLS	87	PR D36 707	A.P. Mills, J. Levy (BELL)	EDWARDS	82	PRL 48903	C. Edwards et al.	(Crystal Ball Collab.)
RAFFELT	87	PR D36 2211	G.G. Raffelt, D.S.P. Dearborn (LLL, UCB)	FETSCHER	82	JP G8 L147	W. Fetscher	(ETH)
RIORDAN	87	PRL 59755	E.M. Riordan et al. (ROCH, CIT+)	FUKUGITA	82	PRL 481522	M. Fukugita, S. Watamura, M. Y	Yoshimura (KEK)
TURNER	87	PRL 592489	M.S. Turner (FNAL, EFI)	FUKUGITA	82B	PR D26 1840	M. Fukugita, S. Watamura, M. Yoder	Yoshimura (KEK)
VANBIBBER	87	PRL 59759	K. van Bibber et al. (LLL, CIT, MIT+)	LEHMANN	82	PL 115B 270	P. Lehmann et al.	(SACL)
VONWIMMER...		PRL 59266	U. von Wimmersperg et al. (WITW)	RAFFELT	82	PL 119B 323	G. Raffelt, L. Stodolsky	(MPIM)
BADIER	86	ZPHY C31 21	J. Badier et al. (NA3 Collab.)	ZEHNDER	82	PL 110B 419	A. Zehnder, K. Gabathuler, J.L. V	Vuilleumier (ETH+)
BROWN	86	PRL 572101	C.N. Brown et al. (FNAL, WASH, KYOT+)	ASANO	81B	PL 107B 159	Y. Asano et al. (KEK,	, TOKY, INUS, OSAK)
BRYMAN	86B	PRL 572787	D.A. Bryman, E.T.H. Clifford (TRIU)	BARROSO	81	PL 106B 91	A. Barroso, N.C. Mukhopadhyay	(SIN)
DAVIER	86	PL B180 295	M. Davier, J. Jeanjean, H. Nguyen Ngoc (LALO)	FAISSNER	81	ZPHY C10 95	H. Faissner et al.	(AACH 3)
DEARBORN	86	PRL 5626	D.S.P. Dearborn, D.N. Schramm, G. Steigman (LLL+)	FAISSNER	81B	PL 103B 234	H. Faissner et al.	(AACH 3)
EICHLER	86	PL B175 101	R.A. Eichler et al. (SINDRUM Collab.)	KIM	81	PL 105B 55	B.R. Kim, C. Stamm	(AACH3)
HALLIN	86	PRL 572105	A.L. Hallin et al. (PRIN)	VUILLEUMIER	81	PL 101B 341	J.L. Vuilleumier et al.	(CIT, MUNI)
JODIDIO	86	PR D34 1967	A. Jodidio et al. (LBL, NWES, TRIU)	ZEHNDER	81	PL 104B 494	A. Zehnder	(ETH)
Also		PR D37 237 (erratum)	A. Jodidio et al. (LBL, NWES, TRIU)	FAISSNER	80	PL 96B 201	H. Faissner et al.	(AACH3)
KETOV	86	JETPL 44146	S.N. Ketov et al. (KIAE)	JACQUES	80	PR D21 1206	P.F. Jacques et al.	(RUTG, STEV, COLU)
		Translated from ZETFP NC 96 A 182	44 114. Koch, O.W.B. Schult (JULI)	SOUKAS	80	PRL 44564	A. Soukas et al. (BNL,	HARV, ORNL, PENN)
KOCH	86	NC 96A 182	H.R. Koch, O.W.B. Schult (JULI)	BECHIS	79	PRL 421511	D.J. Bechis et al.	(UMD, COLU, AFRR)
KONAKA	86	PRL 57659	A. Konaka et al. (KYOT, KEK)	CALAPRICE	79	PR D20 2708	F.P. Calaprice et al.	(PRIN)
MAIANI	86	PL B175 359	L. Maiani, R. Petronzio, E. Zavattini (CERN)	COTEUS	79	PRL 421438	P. Coteus et al.	(COLU, ILL, BNL)
PECCEI RAFFELT	86	PL B172 435	R.D. Peccei, T.T. Wu, T. Yanagida (DESY)	DISHAW	79	PL 85B 142	J.P. Dishaw et al.	(SLAC, CIT)
RAFFELT	86	PR D33 897	G.G. Raffelt (MPIM)	ZHITNITSKII	79	SJNP 29517	A.R. Zhitnitsky, Y.I. Skovpen	(NOVO)
RAFFELT	86B	PL 166B 402	G.G. Raffelt (MPIM)			Translated from YAF 29	1001.	
SAVAGE	86B	PRL 57178	M.J. Savage et al. (CIT)	ALIBRAN	78	PL 74B 134	P. Alibran et al.	(Gargamelle Collab.)
AMALDI	85	PL 153B 444	U. Amaldi et al. (CERN)	ASRATYAN	78B	PL 79B 497	A.E. Asratyan et al.	(ITEP, SERP)
ANANEV	85	SJNP 41585	V.D. Ananev et al. (JINR)	BELLOTTI	78	PL 76B 223	E. Bellotti, E. Fiorini, L. Zanotti	(MILA)
		Translated from YAF 41	912. Baltrusaitis et al (Mark III Collab.)	BOSETTI	78 B	PL 74B 143	P.C. Bosetti et al.	(BEBC Collab.)
BALTRUSAIT... BERGSMA	85 85	PRL 551842 PL 157 B 458	R.M. Baltrusaitis et al. (Mark III Collab.) F. Bergsma et al.	DICUS	78 C	PR D18 1829	D.A. Dicus et al.	(TEXA, VPI, STAN)
BERGSMA KAPLAN	85 85	$\begin{array}{lll}\text { PL } & \text { 157B } & 458 \\ \text { NP } & \text { B260 } & 215\end{array}$	F. Bergsma et al. (CHARM Collab.)	DONNELLY	78	PR D18 1607	T.W. Donnelly et al.	(STAN)
KAPLAN	85 84	$\begin{array}{llll}\text { NP } \\ \text { PRL } & \text { B260 } & 215 \\ 53198\end{array}$	D.B. Kaplan N. Iwamoto (HARV)	Also Also		PRL PRL Pr 3 1179	F. Reines, H.S. Gurr, H.W. Sobel	(UCI)
YAMAZAKI	84	PRL 521089	T. Yamazaki et al. (INUS, KEK)	HANSL	78D	PL 74B 139	H.S. Gurr, F. Reines, H.W. Sobel T. Hansl et al.	(CDHS Collab.)
ABBOTT	83	PL 120B 133	L.F. Abbott, P. Sikivie (BRAN, FLOR)	MICELMAC...	78	LNC 21441	G.V. Mitselmakher, B. Pontecorvo	(JINR)
CARBONI	83	PL 123B 349	G. Carboni, W. Dahme (CERN, MUNI)	MIKAELIAN	78	PR D18 3605	K.O. Mikaelian	(FNAL, NWES)
CAVAIGNAC	83	PL 121B 193	J.F. Cavaignac et al. (ISNG, LAPP)	SATO	78	PTP 601942	K. Sato	(KYOT)
DICUS	83	PR D28 1778	D.A. Dicus, V.L. Teplitz (TEXA, UMD)	VYSOTSKII	78	JETPL 27502	M.I. Vysotsky et al.	(ASCI)
DINE	83	PL 120B 137	M. Dine, W. Fischler (IAS, PENN)			Translated from ZETFP	27533.	
ELLIS	${ }_{83} 83$	NP B223 252	J. Ellis, K.A. Olive (CERN)	YANG	78	PRL 41523	T.C. Yang ${ }^{\text {R }}$,	(MASA)
FAISSNER	83	PR D28 1198	H. Faissner et al. (AACH)	PECCEI	77	PR D16 1791	R.D. Peccei, H.R. Quinn	(STAN, SLAC)
FAISSNER	83 B	PR D28 1787	H. Faissner et al. (AACH3)	Also		PRL 381440	R.D. Peccei, H.R. Quinn	(STAN, SLAC)
FRANK	83B	PR D28 1790	J.S. Frank et al. (LANL, YALE, LBL+)	REINES	76	PRL 37315	F. Reines, H.S. Gurr, H.W. Sobel	(UCI)
HOFFMAN	83	PR D28 660	C.M. Hoffman et al. (LANL, ARZS)	GURR	74	PRL 33179	H.S. Gurr, F. Reines, H.W. Sobel	(UCI)
PRESKILL	83	PL 120B 127	J. Preskill, M.B. Wise, F. Wilczek (HARV, UCSBT)	ANAND	53	PRSL A22 183	B.M. Anand	
SIKIVIE	83	PRL 511415	P. Sikivie (FLOR)					
$\stackrel{\text { Also }}{\text { a }}$		PRL 52695 (erratum)	P. Sikivie (FLOR)			OTHER	RELATED PAPERS	
ALEKSEEV	82	JETP 55591 Translated from ZETF 82	E.A. Alekseeva et al. (KIAE)				RELATED PAPERS	
ALEKSEEV	82B	$\begin{aligned} & \text { JETPL } 36 \text { 116 } \\ & \text { Translated from ZETFP } \end{aligned}$	G.D. Alekseev et al. (MOSU, JINR) 3694.	SREDNICKI BARDEEN	$\begin{aligned} & 85 \\ & 78 \end{aligned}$	$\begin{aligned} & \text { NP B260 } 689 \\ & \text { PL } 74 \mathrm{~B} \quad 229 \end{aligned}$	M. Srednicki W.A. Bardeen, S.-H.H. Tye	(UCSB) (FNAL)
ASANO	82	PL 113B 195	Y. Asano et al. (KEK, TOKY, INUS, OSAK)					
BARROSO	82	PL 116B 247	A. Barroso, G.C. Branco (LISB)					

LEPTONS

e . 1101
μ. 1102
τ. 1106
Heavy Charged Lepton Searches 1134
Neutrino Properties . 1135
Number of Neutrino Types 1143
Double- β Decay . 1145
Neutrino Mixing . 1149
Heavy Neutral Leptons, Searches for 1168

Notes in the Listings

Neutrino properties . 1135
Sum of neutrino masses (rev.) 1138
Number of light neutrino types from collider experiments 1143
Neutrinoless double- β decay (rev.) 1145
Three-neutrino mixing parameters (rev.) 1155

Related Reviews in Volume 1

55. Muon anomalous magnetic moment (rev.) 722
56. Muon decay parameters (rev.) 725
57. τ branching fractions (rev.) 728
58. τ-lepton decay parameters 731

LEPTONS

e
 $J=\frac{1}{2}$

e MASS (atomic mass units u)

The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and in the following datablock in MeV .

	DOCUMENT ID		TECN	COMMENT
$548.579909070 \pm 0.000000016$	MO	16	RV	4 CODATA
- - We do not use the following data for averages, fits, limits, etc. • - -				
$548.57990946 \pm 0.00000022$	MOHR	12	RVUE	2010 CODATA value
$548.57990943 \pm 0.00000023$	MOHR	08	RVUE	2006 CODATA value
$548.57990945 \pm 0.00000024$	MOHR	05	RVUE	2002 CODATA value
$548.5799092 \pm 0.0000004$	${ }^{1}$ BEIER	02	CNTR	Penning trap
$548.5799110 \pm 0.0000012$	MOHR	99	RVUE	1998 CODATA valu
$548.5799111 \pm 0.0000012$	2 FARNHAM	95	CNTR	Penning trap
548.579903 ± 0.000013	COHEN	87	RVUE	1986 CODATA v
${ }^{1}$ BEIER 02 compares Larmor frequency of the electron bound in a ${ }^{12} C^{5+}$ ion with the cyclotron frequency of a single trapped ${ }^{12} C^{5+}$ ion.				
${ }^{2}$ FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped ${ }^{12} C^{6+}$ ion.				

e MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494061 (21). Earlier values use the then-current conversion factor. The conversion error dominates the uncertainty of the masses given below.

	DOCUMENT ID		TECN	COMMENT
$0.5109989461 \pm 0.0000000031$	MOHR	16	RVUE	2014 CODATA value
- - We do not use the following data for averages, fits, limits, etc. - -				
$510998928 \pm 0.000000011$	MOHR	12	RVUE	2010 CODATA val
$0.510998910 \pm 0.000000013$	MOHR	0	RVUE	2006 CODATA valu
$0.510998918 \pm 0.000000044$	$\begin{aligned} & \text { MOHR } \\ & \text { 1,2 BEIER } \end{aligned}$	05	RVUE	2002 CODATA val
$0.510998901 \pm 0.000000020$		02	CNTR	Penning trap
$0.510998902 \pm 0.000000021$	MOHR	99	RVUE	1998 CODAT
$0.510998903 \pm 0.000000020$	1,3 FARNHAM	95	CNTR	Penning trap
$0.510998895 \pm 0.000000024$	${ }^{1}$ COHEN	87	RVUE	1986 CODATA value
0.5110034 ± 0.0000014	COHEN	73	RVUE	1973 CODATA valu
${ }^{1}$ Converted to MeV using the 1998 CODATA value of the conversion constant, $931.494013 \pm 0.000037 \mathrm{MeV} / \mathrm{u}$.				
${ }^{2}$ BEIER 02 compares Larmor frequency of the electron bound in a ${ }^{12} C^{5+}$ ion with the cyclotron frequency of a single trapped ${ }^{12} C^{5+}$ ion.				
${ }^{3}$ FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped ${ }^{12} C^{6+}$ ion.				

$$
\left(m_{e^{+}}-m_{e^{-}}\right) / m_{\text {average }}
$$

A test of CPT invariance.
$\frac{\text { VALUE }}{18 \times 10^{-9}} \frac{C L \%}{90} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. - .
$<4 \times 10^{-23} \quad 90 \quad 2$ DOLGOV $14 \quad$ From photon mass limit
$<4 \times 10^{-8} \quad 90 \quad$ CHU 84 CNTR Positronium spectroscopy
${ }^{1}$ FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one.
${ }^{2}$ DOLGOV 14 result is obtained under the assumption that any mass difference between electron and positron would lead to a non-zero photon mass. The PDG 12 limit of $1 \times 10^{-18} \mathrm{eV}$ on the photon mass is in turn used to derive the value quoted here.

$$
\left|a_{e^{+}}+q_{e^{-}}\right| / e
$$

A test of $C P T$ invariance. See also similar tests involving the proton.
$\frac{\text { VALUE }}{<\mathbf{< 1 0} \mathbf{1 0}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUGHES } 92} \frac{\text { RVUE }}{\text { COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<2 \times 10^{-18} \quad 2$ SCHAEFER 95 THEO Vacuum polarization $<1 \times 10^{-18} \quad 3$ MUELLER 92 THEO Vacuum polarization
${ }^{1}$ HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ra2 tios.
SCHAEFER 95 removes model dependency of MUELLER 92
3 MUELLER 92 argues that an inequality of the charge magnitudes would, through higherorder vacuum polarization, contribute to the net charge of atoms.

e MAGNETIC MOMENT ANOMALY

$\mu_{e} / \mu_{B}=1=(g=2) / 2$
VALUE (units 10^{-6})
$1159.65218091+0.00000026$ DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$1159.65218076 \pm 0.00000027$ MOHR 12 RVUE 2010 CODATA value $1159.65218073 \pm 0.00000028$ HANNEKE 08 MRS Single electron $1159.65218111 \pm 0.00000074 \quad 1$ MOHR $\quad 08$ RVUE 2006 CODATA value $1159.65218085 \pm 0.00000076{ }^{2}$ ODOM 06 MRS - Single electron $1159.6521859 \pm 0.0000038 \quad 05$ RVUE 2002 CODATA value $1159.6521869 \pm 0.0000041$ MOHR 99 RVUE 1998 CODATA value $1159.652193 \pm 0.000010 \quad$ COHEN 87 RVUE 1986 CODATA value $1159.6521884 \pm 0.0000043$ VANDYCK 87 MRS - Single electron $1159.6521879 \pm 0.0000043 \quad$ VANDYCK 87 MRS + Single positron
${ }^{1}$ MOHR 08 average is dominated by ODOM 06.
${ }^{2}$ Superseded by HANNEKE 08 per private communication with Gerald Gabrielse.

$\left(g_{e^{+}}-g_{e^{-}}\right) / g_{\text {average }}$

A test of CPT invariance.
$\frac{\text { VALUE (units } 10^{-12} \text {) }}{0.51} \quad$ CL\% \quad DOCUMENT ID \quad TECN

- 0.5士 2.1 1 VANDYCK 87 MRS Penning trap

- - We do not use the following data for averages, fits, limits, etc. - - -
$<12 \quad 95 \quad 2$ VASSERMAN 87 CNTR Assumes $m_{e^{+}}=m_{e^{-}}$ 22 ± 64 SCHWINBERG 81 MRS Penning trap
${ }^{1}$ VANDYCK 87 measured $\left(g_{-} / g_{+}\right)-1$ and we converted it.
${ }^{2}$ VASSERMAN 87 measured $\left(g_{+}-g_{-}\right) /(g-2)$. We multiplied by $(g-2) / g=1.2 \times$ 10^{-3}.

e ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

VALUE ($10^{-28} \mathrm{ecm}$)	CL\%	DOCUMENT ID		TECN	COMMENT
$<\quad 0.11$	90	${ }^{1}$ ANDREEV	18	CNTR	ThO molecules
- We do not use the follo	ing	for averages, fits,		, etc.	- -
< 1.3	90	${ }^{2}$ CAIRNCROSS	17	ESR	$\begin{aligned} & { }^{180} \mathrm{Hf}^{19} \mathrm{~F} \\ & \text { molecules } \end{aligned}$
- $5570 \pm 7980 \pm 120$		KIM	15	CNTR	$\begin{gathered} \mathrm{Gd}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12} \text { molecule } \end{gathered}$
$<\quad 0.87$	90	${ }^{3}$ BARON	14	CNTR	ThO molecules
< 6050	90	${ }^{4}$ ECKEL	12	CNTR	$\mathrm{Eu}_{0.5}^{\mathrm{Ba}_{0.5} \mathrm{BiO}_{3}}$
$<\quad 10.5$	90	${ }^{5}$ HUDSON	11	NMR	YbF molecules
6.9 ± 7.4		REGAN	02	MRS	${ }^{205}$ TI beams
$18 \pm 12 \pm 10$		${ }^{6}$ COMMINS	94	MRS	${ }^{205}$ TI beams
- 27 ± 83		${ }^{6}$ ABDULLAH	90	MRS	${ }^{205}$ TI beams
- 1400 ± 2400		CHO	89	NMR	TIF molecules
- $150 \pm 550 \pm 150$		MURTHY	89		Cs , no B field
- 5000 ± 11000		LAMOREAUX	87	NMR	${ }^{199} \mathrm{Hg}$
19000 ± 34000	90	SANDARS	75	MRS	Thallium
7000 ± 22000	90	PLAYER	70	MRS	Xenon
< 30000	90	WEISSKOPF	68	MRS	Cesium

${ }^{1}$ ANDREEV 18 gives a measurement corresponding to this limit as $(4.3 \pm 3.1 \pm 2.6) \times$ $2{ }^{10^{-30}} \mathrm{ecm}$.
${ }^{2}$ CAIRNCROSS 17 gives a measurement corresponding to this limit as $(0.09 \pm 0.77 \pm$
$0.17) \times 10^{-28} \mathrm{ecm}$.
${ }^{3}$ BARON 14 gives a measurement corresponding to this limit as $(-0.21 \pm 0.37 \pm 0.25) \times$ $10^{-28} \mathrm{ecm}$.
${ }^{4}$ ECKEL 12 gives a measurement corresponding to this limit as $(-1.07 \pm 3.06 \pm 1.74) \times$ $10^{-25} e \mathrm{~cm}$.
${ }^{5}$ HUDSON 11 gives a measurement corresponding to this limit as $(-2.4 \pm 5.7 \pm 1.5) \times$ $10^{-28} \mathrm{ecm}$.
6 ABDULLAH 90, COMMINS 94, and REGAN 02 use the relativistic enhancement of a valence electron's electric dipole moment in a high-Z atom.

e^{-}MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the "Note on Testing Charge Conservation and the Pauli Exclusion Principle" following this section in our 1992 edition (Physical Review D45 S1 (1992), p. VI.10).
Most of these experiments are one of three kinds: Attempts to observe (a) the 255.5 keV gamma ray produced in $e^{-} \rightarrow \nu_{e} \gamma$, (b) the (K) shell x ray produced when an electron decays without additional energy deposit, e.g., $e^{-} \rightarrow \nu_{e} \bar{\nu}_{e} \nu_{e}$ ("disappearance" experiments), and (c) nuclear deexcitation gamma rays after the electron disappears from an atomic shell and the nucleus is left in an excited state. The last can include both weak boson and photon mediating processes. We use the best $e^{-} \rightarrow \nu_{e} \gamma$ limit for the Summary Tables.
Note that we use the mean life rather than the half life, which is often reported.
$e \rightarrow \nu_{e} \gamma$ and astrophysical limits
VALUE (yr)
6.6×10^{2}
CL\%
DOCUMENT ID TECN COMMENT GOSTINI 15B BORX $e^{-} \rightarrow \nu \gamma$
e, μ

${ }^{1}$ The authors of A . Derbin et al, arXiv:0704.2047v1 argue that this limit is overestimated by at least a factor of 5 .
${ }^{2}$ ORITO 85 assumes that electromagnetic forces extend out to large enough distances and that the age of our galaxy is 10^{10} years.

Disappearance and nuclear-de-excitation experiments

VALUE (yr)	CL\%	DOCUMENT ID		TECN	COMMENT
$>6.4 \times 10^{\mathbf{2 4}}$	68	${ }^{1}$ BELLI	99B	DAMA De-excitation of ${ }^{129} \mathrm{Xe}$	
- We d	兂	wing data		fits	its, etc.
$>4.2 \times 10^{24}$	68	BELLI	99	DAMA	lodine L-shell disappearance
$>2.4 \times 10^{23}$	90	${ }^{2}$ BELLI	99D	DAMA	De-excitation of ${ }^{127}$ (in NaI)
$>4.3 \times 10^{23}$	68	AHARONOV	95B	CNTR	Ge K-shell disappearance
$>2.7 \times 10^{23}$	68	REUSSER	91	CNTR	Ge K-shell disappearance
$>2 \times 10^{22}$	68	BELLOTTI	83B	CNTR	Ge K-shell disappearance

${ }^{1}$ BELLI 99b limit on charge nonconserving e^{-}capture involving excitation of the 236.1 keV nuclear state of ${ }^{129} \mathrm{Xe}$; the 90% CL limit is $3.7 \times 10^{24} \mathrm{yr}$. Less stringent limits for other states are also given.
${ }^{2}$ BELLI 99D limit on charge nonconserving e^{-}capture involving excitation of the 57.6 keV nuclear state of ${ }^{127}$ I. Less stringent limits for the other states and for the state of ${ }^{23} \mathrm{Na}$ are also given.

LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTION

Forbidden by lepton family number conservation.
This section was added for the 2008 edition of this Review and is not complete. For a list of further measurements see references in the papers listed below.
$\sigma\left(e^{+} e^{-} \rightarrow e^{ \pm} \tau^{\mp}\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$
VALUE CL\% DOCUMENT ID TECN COMMENT
$<8.9 \times \mathbf{1 0}^{\mathbf{- 6}} \quad 95 \quad$ AUBERT 07 P BABR $e^{+} e^{-}$at $E_{\mathrm{Cm}}=10.58 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<1.8 \times 10^{-3} 95$ GOMEZ-CAD... 91 MRK2 $e^{+} e^{-}$at $E_{\mathrm{Cm}}=29 \mathrm{GeV}$
$\sigma\left(e^{+} e^{-} \Rightarrow \mu^{ \pm} \tau^{\mp}\right) / \sigma\left(e^{+} e^{-} \Rightarrow \mu^{+} \mu^{-}\right)$
VALUE CL\% DOCUMENT ID TECN COMMENT
$<4.0 \times 1 \mathbf{1 0}^{\mathbf{- 6}} 95 \quad$ AUBERT 97 P BABR $e^{+} e^{-}$at $E_{\mathrm{cm}}=10.58 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - • -
$<6.1 \times 10^{-3} 95$ GOMEZ-CAD... 91 MRK2 $e^{+} e^{-}$at $E_{\mathrm{Cm}}=29 \mathrm{GeV}$
e REFERENCES

ANDREEV	18	NAT 562355	V. Andreev et al. (ACME Collab.)
ABGRALL	17	PRL 118161801	N. Abgrall et al. (MAJORANA Collab.)
CAIRNCROSS	17	PRL 119153001	W.B. Cairncross et al. (NIST,COLO)
MOHR	16	RMP 88035009	P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)
AGOSTINI	15B	PRL 115231802	M. Agostini et al. (Borexino Collab.)
KIM	15	PR D91 102004	Y.J. Kim et al. (IND, YALE, LANL)
BARON	14	SCIENCE 343269	J. Baron et al. (ACME Collab.)
DOLGOV	14	PL B732 244	A.D. Dolgov, V.A. Novikov
ECKEL	12	PRL 109193003	S. Eckel, A.O. Sushkov, S.K. Lamoreaux (YALE)
MOHR	12	RMP 841527	P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
PDG	12	PR D86 010001	J. Beringer et al. (PDG Collab.)
HUDSON	11	NAT 473493	J.J. Hadson et al. (LOIC)
HANNEKE	08	PRL 100120801	D. Hanneke, S. Fogwell, G. Gabrielse (HARV)
MOHR	08	RMP 80633	P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
AUBERT	07P	PR D75 031103	B. Aubert et al. (BABAR Collab.)
KLAPDOR-K...	07	PL B644 109	H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, I.V. Titkova
ODOM	06	PRL 97030801	B. Odom et al. (HARV)
MOHR	05	RMP 771	P.J. Mohr, B.N. Taylor (NIST)
BACK	02	PL B525 29	H.O. Back et al. (Borexino/SASSO Collab.)
BEIER	02	PRL 88011603	T. Beier et al.
REGAN	02	PRL 88071805	B.C. Regan et al.
BELLI	00B	PR D61 117301	P. Belli et al. (DAMA Collab.)
BELLI	99	PL B460 236	P. Belli et al. (DAMA Collab.)
BELLI	99B	PL B465 315	P. Belli et al. (DAMA Collab.)
BELLI	99D	PR C60 065501	P. Belli et al. (DAMA Collab.)
MOHR	99	JPCRD 281713	P.J. Mohr, B.N. Taylor (NIST)
Also		RMP 72351	P.J. Mohr, B.N. Taylor (NIST)
AHARONOV	95B	PR D52 3785	Y. Aharonov et al. (SCUC, PNL, ZARA+)
Also		PL B353 168	Y. Aharonov et al. (SCUC, PNL, ZARA+)
FARNHAM	95	PRL 753598	D.L. Farnham, R.S. van Dyck, P.B. Schwinberg (WASH)
SCHAEFER	95	PR A51 838	A. Schaefer, J. Reinhardt (FRAN)
COMMINS	94	PR A50 2960	E.D. Commins et al.
BALYSH	93	PL B298 278	A. Balysh et al. (KIAE, MPIH, SASSO)
FEE	93	PR A48 192	M.S. Fee et al.
HUGHES	92	PRL 69578	R.J. Hughes, B.I. Deutch (LANL, AARH)
MUELLER	92	PRL 693432	B. Muller, M.H. Thoma (DUKE)
PDG	92	PR D45 S1	K. Hikasa et al. (KEK, LBL, BOST+)
GOMEZ-CAD...	91	PRL 661007	J.J. Gomez-Cadenas et al. (SLAC MARK-2 Collab.)
REUSSER	91	PL B255 143	D. Reusser et al. (NEUC, CIT, PSI)
ABDULLAH	90	PRL 652347	K. Abdullah et al. (LBL, UCB)
CHO	89	PRL 632559	D. Cho, K. Sangster, E.A. Hinds (YALE)
MURTHY	89	PRL 63965	S.A. Murthy et al. (AMHT)
COHEN	87	RMP 591121	E.R. Cohen, B.N. Taylor (RISC, NBS)

LAMOREAUX	87	PRL 592275	S.K. Lamoreaux et al.	(WASH)
VANDYCK	87	PRL 5926	R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt	(WASH)
VASSERMAN	87	PL B198 302	I.B. Vasserman et al.	(NOVO)
Also		PL B187 172	I.B. Vasserman et al.	(NOVO)
AVIGNONE	86	PR D34 97	F.T. Avignone et al. (PNL	L, SCUC)
ORITO	85	PRL 542457	S. Orito, M. Yoshimura (TOKY	KY, KEK)
CHU	84	PRL 521689	S. Chu, A.P. Mills, J.L. Hall (BELL, NBS	S, COLO)
BELLOTT	83B	PL 124B 435	E. Bellotti et al.	(MILA)
SCHWINBERG	81	PRL 471679	P.B. Schwinberg, R.S. van Dyck, H.G. Dehmelt	(WASH)
SANDARS	75	PR A11 473	P.G.H. Sandars, D.M. Sternheimer (OX	XF, BNL)
COHEN	73	JPCRD 2664	E.R. Cohen, B.N. Taylor (RISC	SC, NBS)
PLAYER	70	JP B3 1620	M.A. Player, P.G.H. Sandars	(OXF)
WEISSKOPF	68	PRL 211645	M.C. Weisskopf et al.	(BRAN)

μ

$$
J=\frac{1}{2}
$$

μ MASS (atomic mass units u)

The muon's mass is obtained from the muon-electron mass ratio as determined from the measurement of Zeeman transition frequencies in muonium ($\mu^{+} e^{-}$atom). Since the electron's mass is most accurately known in u, the muon's mass is also most accurately known in u. The conversion factor to MeV has approximately the same relative uncertainty as the mass of the muon in u. In this datablock we give the result in u, and in the following datablock in MeV .
$\frac{\operatorname{VALUE}(\mathrm{u})}{\mathbf{0 . 1 1 3 4 2 8 9 2 5 7} \pm \mathbf{0 . 0 0 0 0 0 0 0 0 2 5}} \quad \begin{array}{ll}\text { DOCUMENT ID } \\ \text { MOHR } & 16 \\ \text { RVUE } & \\ \text { COMMENT } \\ 2014 \text { CODATA value }\end{array}$
$0.1134289257 \pm 0.0000000025$
\bullet MOHR $\quad 16$ RVUE 2014 COD

$0.1134289267 \pm 0.0000000029$	MOHR	12	RVUE	2010 CODATA value
$0.1134289256 \pm 0.0000000029$	MOHR	08	RVUE	2006 CODATA value
$0.1134289264 \pm 0.0000000030$	MOHR	05	RVUE	2002 CODATA value
$0.1134289168 \pm 0.0000000034$	1 MOHR	99	RVUE	1998 CODATA value
$0.113428913 \pm 0.000000017$	2 COHEN	87	RVUE	1986 CODATA value

${ }^{1}$ MOHR 99 make use of other 1998 CODATA entries below
${ }^{2}$ COHEN 87 make use of other 1986 CODATA entries below

μ MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494061 (21). Earlier values use the then-current conversion factor. The conversion error contributes significantly to the uncertainty of the masses given below.

LUE (MeV)			TECN CHG COMMENT	
$\mathbf{1 0 5 . 6 5 8 3 7 4 5} \pm 0.0000024$	MOHR	16	RVU	2014 CODATA value
- - We do not use the following data for averages, fits, limits, etc. - • -				
$105.6583715 \pm 0.0000035$	MOHR	12	RVUE	2010 CODATA value
$105.6583668 \pm 0.0000038$	MOHR	08	RVUE	2006 CODATA value
$105.6583692 \pm 0.0000094$	MOHR	05	RVUE	2002 CODATA value
$105.6583568 \pm 0.0000052$	MOHR	99	RVUE	1998 CODATA value
105.658353 ± 0.000016	${ }^{1}$ COHEN	87	RVUE	1986 CODATA value
105.658386 ± 0.000044	${ }^{2}$ MARIAM	82	CNTR	
105.65836 ± 0.00026	${ }^{3}$ CROWE	72	CNTR	
105.65865 ± 0.00044	${ }^{4}$ CRANE	71	CNT	
${ }^{1}$ Converted to MeV using the 1998 CODATA value of the conversion constant, $931.494013 \pm 0.000037 \mathrm{MeV} / \mathrm{u}$.				
${ }^{2}$ MARIAM 82 give $m_{\mu} / m_{e}=206.768259(62)$.				
${ }^{3}$ CROWE 72 give $m_{\mu} / m_{e}=206.7682(5)$.				
${ }^{4}$ CRANE 71 give $m_{\mu} / m_{e}=206.76878(85)$.				

μ MEAN LIFE τ

Measurements with an error $>0.001 \times 10^{-6} \mathrm{~s}$ have been omitted.
$\operatorname{VALUE}\left(10^{-6} \mathrm{~s}\right)$
DOCUMENT ID TECN CHG COMMENT

$2.1969811 \pm \mathbf{0 . 0 0 0 0 0 2 2}$ OUR AVERAGE

$2.1969803 \pm 0.0000021 \pm 0.0000007^{1}$ TISHCHENKO 13 CNTR + Surface μ^{+}at PSI $2.197083 \pm 0.000032 \pm 0.000015$ BARCZYK 08 CNTR + Muons from π^{+} decay at rest $2.197013 \pm 0.000021 \pm 0.000011$ CHITWOOD 07 CNTR + Surface μ^{+}at PSI $2.197078 \pm 0.000073 \quad$ BARDIN 84 CNTR +

2.197078	± 0.000073	BARDIN	84
2.197025	± 0.000155	BARDIN	84
CNTR -			

$2.19695 \pm 0.00006 \quad$ GIOVANETTI $84 \quad$ CNTR +
$2.19711 \pm 0.00008 \quad$ BALANDIN 74 CNTR +
2.1973 ± 0.0003

- \quad DUCLOS $\quad 73 \quad$ We do not use the following data for averages, fits, limits, etc. • • -
2.1969803 ± 0.0000022 WEBBER 11 CNTR + Surface μ^{+}at PSI
${ }^{1}$ TISHCHENKO 13 uses $1.6 \times 10^{12} \mu^{+}$events and supersedes WEBBER 11.

$\tau_{\mu^{+}} / \tau_{\mu^{-}}$MEAN LIFE RATIO

A test of $C P T$ invariance.

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$				
1.0008	± 0.0010	BAILEY	79	CNTR
Storage ring 1.000 ± 0.001 MEYER 63	CNTR	Mean life μ^{+} / μ^{-}		

($\left.\tau_{\mu^{+}}-\tau_{\mu^{-}}\right) / \tau_{\text {average }}$

A test of CPT invariance. Calculated from the mean-life ratio, above.
$\frac{\text { VALUE }}{(\mathbf{2} \pm \mathbf{8}) \times \mathbf{1 0}^{\mathbf{- 5}} \text { OUR EVALUATION }}$

μ / p MAGNETIC MOMENT RATIO

This ratio is used to obtain a precise value of the muon mass and to reduce experimental muon Larmor frequency measurements to the muon magnetic moment anomaly. Measurements with an error > 0.00001 have been omitted. By convention, the minus sign on this ratio is omitted. CODATA values were fitted using their selection of data, plus other data from multiparameter fits.

VALUE	DOCUMENT ID		TECN CHG		COMMENT
$3.183345142 \pm 0.000000071$	MOHR	16	RVUE		2014 CODATA value
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.183345107 \pm 0.000000084$	MOHR	12	RVUE		2010 CODATA value
$3.183345137 \pm 0.000000085$	MOHR	08	RVUE		2006 CODATA value
$3.183345118 \pm 0.000000089$	MOHR	05	RVUE		2002 CODATA value
$3.18334513 \pm 0.00000039$	LIU	99	CNTR	$+$	HFS in muonium
$3.18334539 \pm 0.00000010$	MOHR	99	RVUE		1998 CODATA value
$3.18334547 \pm 0.00000047$	COHEN	87	RVUE		1986 CODATA value
3.1833441 ± 0.0000017	KLEMPT	82	CNTR	$+$	Precession strob
3.1833461 ± 0.0000011	MARIAM	82	CNTR	$+$	HFS splitting
3.1833448 ± 0.0000029	CAMANI	78	CNTR	$+$	See KLEMPT 82
3.1833403 ± 0.0000044	CASPERSON	77	CNTR	$+$	HFS splitting
3.1833402 ± 0.0000072	COHEN	73	RVUE		1973 CODATA value
3.1833467 ± 0.0000082	CROWE	72	CNTR	$+$	Precession phase

See the related review(s):
Muon Anomalous Magnetic Moment

μ MAGNETIC MOMENT ANOMALY

The parity-violating decay of muons in a storage ring is observed. The difference frequency ω_{a} between the muon spin precision and the orbital angular frequency $\left(e / m_{\mu} c\right)\langle B\rangle$ is measured, as is the free proton NMR frequency ω_{p}, thus determining the ratio $R=\omega_{a} / \omega_{p}$. Given the magnetic moment ratio $\lambda=\mu_{\mu} / \mu_{p}$ (from hyperfine structure in muonium), $(g-2) / 2$ $=R /(\lambda-R)$.
$\mu_{\mu} /\left(e \hbar / 2 m_{\mu}\right)-1=\left(g_{\mu}-2\right) / 2$

VALUE (units 10^{-10})			DOCUMENT ID		TECN	CHG	COMMENT
11659208.9土		4 ± 3.3	${ }^{1}$ BENNETT	06	MUG2		Average μ^{+}and μ^{-}
- - We do not use the following data for averages, fits, limits, etc. - . -							
11659208	± 6		BENNETT	04	MUG2		Average μ^{+}and μ^{-}
11659214	± 8		BENNETT	04	MUG2	-	Storage ring
11659203	± 6		BENNETT	04	MUG2	+	Storage ring
11659204	± 7		BENNETT	02	MUG2	$+$	Storage ring
11659202	± 14		BROWN	01	MUG2	$+$	Storage ring
11659191	± 59		BROWN	00	MUG2	$+$	
11659100	± 110		${ }^{2}$ BAILEY	79	CNTR	$+$	Storage ring
11659360	± 120		${ }^{2}$ BAILEY	79	CNTR	-	Storage ring
11659230	± 85		${ }^{2}$ BAILEY	79	CNTR	\pm	Storage ring
11620000	± 5000		CHARPAK	62	CNTR	$+$	

1 BENNETT 06 reports $\left(g_{\mu}-2\right) / 2=(11659208.0 \pm 5.4 \pm 3.3) \times 10^{-10}$. We rescaled this value using μ / p magnetic moment ratio of 3.183345137 (85) from MOHR 08.
${ }^{2}$ BAILEY 79 values recalculated by HUGHES 99 using the COHEN $87 \mu / p$ magnetic moment. The improved MOHR 99 value does not change the result.

$$
\left(g_{\mu^{+}}-g_{\mu^{-}}\right) / g_{\text {average }}
$$

A test of CPT invariance.

μ ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.
$\frac{\operatorname{VALUE}\left(10^{-19} \mathrm{ecm}\right)}{<1.8} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BENNETT }} \quad 09 \quad \frac{\text { TECN }}{\text { MUG2 }} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{\text { Storage ring }}$

- - We do not use the following data for averages, fits, limits, etc.	• •				
-0.1 ± 1.0	2	BENNETT	09	MUG2	+
-0.1 ± 0.7	BENNETT	Storage ring			
-3.7 ± 3.4	4	BAILEY	78	MUG2	-
CNTR	Storage ring	Storage ring			
8.6 ± 4.5	BAILEY	78	CNTR	+	Storage ring
0.8 ± 4.3	BAILEY	78	CNTR	-	Storage ring

${ }^{1}$ This is the combination of the two BENNETT 09 measurements quoted here separately for μ^{+}and μ^{-}. The result is also presented as a measurement of $(0.0 \pm 0.9) \times 10^{-19} e$ cm .
2 Cm .
${ }^{3}$ Also reported as the limit of $\left|\mathrm{d}\left(\mu^{-}\right)\right|<1.5 \times 10^{-19} \mathrm{ecm}$ at $95 \% \mathrm{CL}$.
${ }^{4}$ This is the combination of the two BAILEY 78 results quoted here separately for μ^{+}and μ^{-}. BAILEY 78 uses the convention $\mathrm{d}=1 / 2 \cdot\left(\mathrm{~d}_{\mu^{+}}-\mathrm{d}_{\mu^{-}}\right)$and reports 3.7 ± 3.4. We convert their result to use the same convention as BENNETT 09.

μ^{-}DECAY MODES

μ^{+}modes are charge conjugates of the modes below.

	Mode		Fraction ($\Gamma_{i} / \overline{\text { r }}$)		Confidence level
Γ_{1}	$e^{-} \bar{\nu}_{e} \nu_{\mu}$		$\approx 100 \%$		
$\Gamma 2$	$e^{-} \bar{\nu}_{e} \nu_{\mu} \gamma$		[a] (6.0	$\times 10^{-8}$	
$\Gamma 3$	$e^{-} \bar{\nu}_{e} \nu_{\mu} e^{+} e^{-}$		[b] (3.4	$\times 10^{-5}$	
Lepton Family number ($L F$) violating modes					
Γ_{4}	$e^{-} \nu_{e} \bar{\nu}_{\mu}$	$L F$	$[c]<1.2$	\%	90\%
$\Gamma 5$	$e^{-\gamma}$	$L F$	<4.2	$\times 10^{-13}$	90\%
Γ_{6}	$e^{-} e^{+} e^{-}$	$L F$	< 1.0	$\times 10^{-12}$	90\%
Γ_{7}	$e^{-2 \gamma}$	$L F$	<7.2	$\times 10^{-11}$	90\%

[a] This only includes events with energy of $e>45 \mathrm{MeV}$ and energy of $\gamma>40 \mathrm{MeV}$. Since the $e^{-} \bar{\nu}_{e} \nu_{\mu}$ and $e^{-} \bar{\nu}_{e} \nu_{\mu} \gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
[b] See the Particle Listings below for the energy limits used in this measurement.
[c] A test of additive vs. multiplicative lepton family number conservation.
μ^{-}BRANCHING RATIOS

${ }^{1}$ BALDINI 16 measurement refers to $\mu^{+} \rightarrow e^{+} \nu \bar{\nu} \gamma$ decay and requires energy of $e^{+}>$ 45 MeV and energy $\gamma>40 \mathrm{MeV}$.

- - We do not use the following data for averages, fits, limits, etc. - -
$2.2 \pm 1.5 \quad 7 \quad{ }^{2}$ CRITTENDEN $61 \mathrm{HLBC}+\mathrm{E}\left(e^{+} e^{-}\right)>10 \mathrm{MeV}$
$\begin{array}{lllll}2 & 1 & { }^{3} \text { GUREVICH } & 60 & \mathrm{EMUL}+ \\ 3 & 4\end{array}$
${ }^{1}$ BERTL 85 has transverse momentum cut $p_{T}>17 \mathrm{MeV} / c$. Systematic error was increased by us.
${ }^{2}$ CRITTENDEN 61 count only those decays where total energy of either $\left(e^{+}, e^{-}\right)$combination is $>10 \mathrm{MeV}$.
${ }^{3}$ GUREVICH 60 interpret their event as either virtual or real photon conversion. e^{+}and e^{-}energies not measured.
${ }^{4}$ In the three LEE 59 events, the sum of energies $\mathrm{E}\left(e^{+}\right)+\mathbf{E}\left(e^{-}\right)+\mathbf{E}\left(e^{+}\right)$was 51 MeV , 55 MeV , and 33 MeV .
$\Gamma\left(e^{-} \nu_{e} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$ Forbidden by the additive conservation law for lepton family number. A multiplicative law predicts this branching ratio to be $1 / 2$. For a review see NEMETHY 81.
$\frac{\text { VALUE }}{<\mathbf{0 . 0 1 2}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { FREEDMAN } 93} \frac{\text { TECN }}{\text { CNTR }}+\frac{\text { CHG }}{+} \frac{\text { COMMENT }}{\nu \text { oscillation search }}$

Lepton Particle Listings

- • We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
<0.018
<0
${ }^{1}$ FREEDMAN 93 limit on $\bar{\nu}_{e}$ observation is here interpreted as a limit on lepton family number violation.
2 BERGSMA 83 giv $\left.{ }_{\mu}{ }^{-} \quad \mu \quad \nu_{e}\right)$, which is essentially equivalent to $\Gamma\left(e^{-} \nu_{e} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$ for small values like that quoted.

$\Gamma\left(e^{-} \gamma\right) / \Gamma_{\text {total }}$						
VALUE (units 10^{-11})	CL\%	DOCUMENT		TECN	CHG	COMMENT
< 0.042	90	BALDINI	16	SPEC	+	MEG at PSI
- - We do not use the following data for averages, fits, limits, etc. - -						
<0.057	90	ADAM	13B	SPEC	+	MEG at PSI
<0.24	90	ADAM	11	SPEC	$+$	MEG at PSI
<2.8	90	ADAM	10	SPEC	$+$	MEG at PSI
<1.2	90	AHMED	02	SPEC	+	MEGA
<1.2	90	BROOKS	99	SPEC	$+$	LAMPF
<4.9	90	BOLTON	88	CBOX	$+$	LAMPF
<100	90	AZUELOS	83	CNTR	+	TRIUMF
< 17	90	KINNISON	82	SPEC	$+$	LAMPF
<100	90	SCHAAF	80	ELEC	$+$	SIN

$\Gamma\left(e^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$ Forbidden by lepton family number conservation.

VALUE (units 10^{-12})	CL\%	DOCUMENTID		TECN	CHG	COMMENT
<1.0	90	1 BELLGARD	88	SPEC	+	SINDRUM
- - We do not use the following data for averages, fits, limits, etc. - -						
<36	90	BARANOV	91	SPEC	+	ARES
<35	90	BOLTON	88	CBOX	+	LAMPF
<2.4	90	${ }^{1}$ BERTL	85	SPEC	+	SINDRUM
<160	90	1 BERTL	84	SPEC	+	SINDRUM
<130	90	1 BOLTON	84	CNTR		LAMPF

${ }^{1}$ These experiments assume a constant matrix element.

$\Gamma\left(e^{-2 \gamma}\right) / \Gamma_{\text {total }}$						Γ_{7} / Γ
VALUE (units 10^{-11})	CL\%	DOCUMENT ID		TECN CHG	COMMENT	
<7.2	90	BOLTON	88	CBOX +	LAMPF	
- - We do not use the following data for averages, fits, limits, etc. - -						
< 840	90	${ }^{1}$ AZUELOS	83	CNTR +	TRIUMF	
<5000	90	2 BOWMAN	78	CNTR	DEPOMM	7 data
${ }^{1}$ AZUELOS 83 uses the phase space distribution of BOWMAN 78. ${ }^{2}$ BOWMAN 78 assumes an interaction Lagrangian local on the scale of the inverse μ mass.						

LIMIT ON $\mu^{-} \rightarrow e^{-}$CONVERSION

Forbidden by lepton family number conservation.

$\sigma\left(\mu^{-32} \mathrm{~S} \rightarrow \mathrm{e}^{-32} \mathrm{~S}\right) / \sigma\left(\mu^{-32} \mathrm{~S} \rightarrow \nu_{\mu}{ }^{32} \mathrm{P}^{*}\right)$					
Value	CL\%	DOCUMENT ID		TECN	COMMENT
$<7 \times 10^{-11}$	90	BADERT...	80	STRC	SIN
- - We do not use the following data for averages, fits, limits, etc. - -					
$<4 \times 10^{-10}$	90	BADERT...	77	STRC	SIN
$\sigma\left(\mu^{-} \mathrm{Cu} \rightarrow e^{-} \mathrm{Cu}\right) / \sigma\left(\mu^{-} \mathrm{Cu} \rightarrow\right.$ capture $)$					
VALUE	CL\%	DOCUMENT ID		TECN	
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.6 \times 10^{-8}$	90	BRYMAN	72	SPEC	
$\sigma\left(\mu^{=} \mathrm{Ti} \Rightarrow e^{-} \mathrm{Ti}\right) / \sigma\left(\mu^{-} \mathrm{Ti} \Rightarrow\right.$ capture $)$					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<4.3 \times 10^{-12}$	90	${ }^{1}$ DOHMEN	93	SPEC	SINDRUM II
- - We do not use the following data for averages, fits, limits, etc. - -					
$<4.6 \times 10^{-12}$	90	AHMAD	88	TPC	TRIUMF
$<1.6 \times 10^{-11}$	90	BRYMAN	85	TPC	TRIUMF

${ }^{1}$ DOHMEN 93 assumes $\mu^{-} \rightarrow e^{-}$conversion leaves the nucleus in its ground state, a process enhanced by coherence and expected to dominate.
$\sigma\left(\mu^{-} \mathrm{Pb} \rightarrow e^{-} \mathrm{Pb}\right) / \sigma\left(\mu^{-} \mathrm{Pb} \rightarrow\right.$ capture $)$

VALUE			
$<\mathbf{4 . 6 \times 1 0} \mathbf{1 0}$	$\frac{\text { CL\% }}{\mathbf{1 1}}$		
DOCUMENT ID			
HONECKER 96	TECN		COMMENT
SPEC			
SINDRUM II			

- - We do not use the following data for averages, fits, limits, etc. - -

[^102]| $\sigma\left(\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}\right) / \sigma\left(\mu^{-} \mathrm{Au} \rightarrow\right.$ capture $)$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | CL\% | DOCUME | | TECN | $\underline{C H G}$ | COMMENT |
| $<7 \times 10^{-13}$ | 90 | BERTL | 06 | SPEC | - | SINDRUM II |
| LIMIT ON $\mu^{-} \rightarrow e^{+}$CONVERSION | | | | | | |

Forbidden by total lepton number conservation.

LIMIT ON MUONIUM \rightarrow ANTIMUONIUM CONVERSION

Forbidden by lepton family number conservation.
$R_{g}=G_{C} / G_{F}$
The effective Lagrangian for the $\mu^{+} e^{-} \rightarrow \mu^{-} e^{+}$conversion is assumed to be

$$
\mathcal{L}=2^{-1 / 2} G_{C}\left[\bar{\psi}_{\mu} \gamma_{\lambda}\left(1-\gamma_{5}\right) \psi_{e}\right]\left[\bar{\psi}_{\mu} \gamma_{\lambda}\left(1-\gamma_{5}\right) \psi_{e}\right]+\text { h.c. }
$$

The experimental result is then an upper limit on G_{C} / G_{F}, where G_{F} is the Fermi coupling constant.

VALUE	CL\%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
< 0.0030	90	1	${ }^{1}$ WILLMANN	99	SPEC		μ^{+}at $26 \mathrm{GeV} / \mathrm{c}$
- - We do not use the following data for averages, fits, limits, etc. - •							
< 0.14	90	1	2 GORDEEV ${ }^{3}$ ABELA	97	SPEC	$+$	JINR phasotron μ^{+}at 24 MeV
<0.018	90	0		96	SPEC	+	
< 6.9	90		NI	93	CBOX		LAMPF
< 0.16	90		MATTHIAS	91	SPEC		LAMPF
< 0.29	90		HUBER	90B	CNTR		TRIUMF
<20	95		BEER	86	CNTR		TRIUMF
<42	95		MARSHALL	82	CNTR		

${ }^{1}$ WILLMANN 99 quote both probability $P_{M \bar{M}}<8.3 \times 10^{-11}$ at $90 \% \mathrm{CL}$ in a 0.1 T field and $R_{g}=G_{C} / G_{F}$
${ }^{2}$ GORDEEV 97 quote limits on both $f=G_{M} M / G F$ and the probability $W_{M M}<4.7 \times$ $10^{-7}(90 \% \mathrm{CL})$.
${ }^{3}$ ABELA 96 quote both probability $P_{M \bar{M}}<8 \times 10^{-9}$ at $90 \% \mathrm{CL}$ and $R_{g}=G_{C} / G_{F}$.
See the related review(s): Muon Decay Parameters

μ DECAY PARAMETERS

ρ PARAMETER

$(V-A)$ theory predicts $\rho=0.75$
VALUE EVTS
0.74979 ± 0.00026 OUR AVERAGE
$0.74977 \pm 0.00012 \pm 0.00023$
0.7518 ± 0.0026

DOCUMENTID TECN CHG COMMENT
${ }^{1}$ BAYES $\quad 11$ TWST + Surface μ^{+} DERENZO 69 RVUE

- - We do not use the following data for averages, fits, limits, etc. - -

$0.75014 \pm 0.00017 \pm 0.00045$		2 MACDONALD	08 TWST +	Surface μ^{+}
$0.75080 \pm 0.00032 \pm 0.00100$	6G	${ }^{3}$ MUSSER	05 TWST +	Surface μ^{+}
$0.72 \pm 0.06 \pm 0.08$		AMORUSO	04 ICAR	Liquid Ar TPC
0.762 ± 0.008	170k	${ }^{4}$ FRYBERGER	68 ASPK +	25-53 MeV e^{+}
0.760 ± 0.009	280k	${ }^{4}$ SHERWOOD	67 ASPK +	$25-53 \mathrm{MeV} e^{+}$
0.7503 ± 0.0026	800k	4 PEOPLES	66 ASPK +	20-53 MeV e^{+}

${ }^{1}$ The quoted systematic error includes a contribution of 0.00013 (added in quadrature)
from uncertainties on radiative corrections and on the Michel parameter η.
${ }^{2}$ The quoted systematic error includes a contribution of 0.00011 (added in quadrature) from the dependence on the Michel parameter η.
${ }^{3}$ The quoted systematic error includes a contribution of 0.00023 (added in quadrature)
from the dependence on the Michel parameter η.
${ }^{4} \eta$ constrained $=0$. These values incorporated into a two parameter fit to ρ and η by DERENZO 69.

η PARAMETER

$(V-A)$ theory predicts $\eta=0$.

VALUE	EVTS	DOCUMENT ID	TECN	CHG COMMENT
0.057 ± 0.034 OUR AVERAGE				
$0.071 \pm 0.037 \pm 0.005$	30M	DANNEBERG	05 CNTR	$+{ }^{7-53 ~ M e V ~} e^{+}$
$0.011 \pm 0.081 \pm 0.026$	5.3 M	${ }^{1}$ BURKARD	85BCNTR	$+9-53 \mathrm{MeV} e^{+}$
-0.12 ± 0.21	6346	DERENZO	69 HBC	$+\quad 1.6-6.8 \mathrm{MeV} e^{+}$
- - We do not use the following data for averages, fits, limits, etc. - - .				
$-0.0021 \pm 0.0070 \pm 0.0010$	30 M	2 DANNEBERG	05 CNTR	$+7-53 \mathrm{MeV} e^{+}$
$-0.012 \pm 0.015 \pm 0.003$	5.3 M	${ }^{2}$ BURKARD	85BCNTR	$+9-53 \mathrm{MeV} e^{+}$
-0.007 ± 0.013	5.3M	${ }^{3}$ BURKARD	85BFIT	$+9-53 \mathrm{MeV} e^{+}$
-0.7 ± 0.5	170k	${ }^{4}$ FRYBERGER	68 ASPK	$+25-53 \mathrm{MeV} e^{+}$
-0.7 ± 0.6	280k	4 SHERWOOD	67 ASPK	$+25-53 \mathrm{MeV} e^{+}$
0.05 ± 0.5	800k	${ }^{4}$ PEOPLES	66 ASPK	$+20-53 \mathrm{MeV} e^{+}$
-2.0 ± 0.9	9213	${ }^{5}$ PLANO	60 HBC	+ Whole spectrum

1 Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now
only include their actual measurement
${ }_{3}^{2} \alpha=\alpha^{\prime}=0$ assumed.
${ }^{3}$ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.
4ρ constrained $=0.75$.
${ }^{5}$ Two parameter fit to ρ and η; PLANO 60 discounts value for η.

δ PARAMETER

$(V-A)$ theory predicts $\delta=0.75$.
$\frac{\text { VALUE }}{\mathbf{0 . 7 5 0 4 7} \pm \mathbf{~} \mathbf{0 . 0 0 0 3 4} \text { OUR AVE }} \frac{E V T S}{R A G E}$
$0.75049 \pm 0.00021 \pm 0.00027$ $0.7486 \pm 0.0026 \pm 0.0028$

DOCUMENTID TECN CHG COMMENT 1 BAYES $\quad 11$ TWST + Surface μ^{+} 2 BALKE $\quad 88$ SPEC + Surface μ^{+}

- - We do not use the following data for averages, fits, limits, etc. • • $0.75067 \pm 0.00030 \pm 0.00067$ $0.74964 \pm 0.00066 \pm 0.00112$ 6G MACDONALD 08 TWST + Surface μ^{+} GAPONENKO 05 TWST + Surface μ^{+} 3 VOSSLER 69

0.752	± 0.009	490 k	FRYBERGER 68 ASPK $+25-53 \mathrm{MeV} e^{+}$	
0.782	± 0.031		KRUGER	61
0.78	± 0.05	8354	PLANO	60 HBC

1 The quoted systematic error includes a contribution of 0.00006 (added in quadrature) from uncertainties on radiative corrections and on the Michel parameter η.
${ }^{2}$ BALKE 88 uses $\rho=0.752 \pm 0.003$.
${ }^{3}$ VOSSLER 69 has measured the asymmetry below 10 MeV . See comments about radiative corrections in VOSSLER 69.
$\mid(\xi$ PARAMETER $) \times(\mu$ LONGITUDINAL POLARIZATION)
$(V-A)$ theory predicts $\xi=1$, longitudinal polarization $=1$.

VALUE		DOCUMENT ID		TECN CHG	COMMENT
$1.0009 \underset{=}{+0.0016} \mathbf{0 . 0 0 7}$ OUR AVERAGE					
1.00084	$4 \pm 0.00029{ }_{-0.00063}^{+0.00165}$	BUENO	11	TWST	Surface μ^{+}beam
1.0027	$\pm 0.0079 \pm 0.0030$	BELTRAMI	87	CNTR	SIN, π decay in flight
- - We do not use the following data for averages, fits, limits, etc. - -					
1.0003	$\pm 0.0006 \pm 0.0038$	JAMIESON	06	TWST +	Surface μ^{+}beam
1.0013	$\pm 0.0030 \pm 0.0053$	1 IMAZATO	92	SPEC +	$K^{+} \rightarrow \mu^{+} \nu_{\mu}$
0.975	± 0.015	AKHMANOV	68	EMUL	140 kG
0.975	± 0.030	GUREVICH	64	EMUL	See AKHMANOV 68
0.903	± 0.027	2 ALI-ZADE	61	EMUL +	27 kG
0.93	± 0.06	PLANO	60	HBC +	8.8 kG
0.97	± 0.05	BARDON	59	CNTR	Bromoform target

${ }^{1}$ The corresponding 90% confidence limit from IMAZATO 92 is $\left|\xi P_{\mu}\right|>0.990$. This measurement is of K^{+}decay, not π^{+}decay, so we do not include it in an average, nor do we yet set up a separate data block for K results
${ }^{2}$ Depolarization by medium not known sufficiently well.

$\xi \times(\mu$ LONGITUDINAL POLARIZATION $) \times \delta / \rho$

VALUE	CL\%	DOCUMEN		TECN	CHG	COMMENT
$\begin{array}{r} 1.00179+0.00156 \\ -0.00071 \end{array}$		1 BAYES	11	TWST	$+$	Surface μ^{+}beam
- - We do not use the following data for averages, fits, limits, etc. - -						
>0.99682	90	2 JODIDIO	86	SPEC	$+$	TRIUMF μ-spin rotation 11 kG
>0.9966	90	3 STOKER	85	SPEC	$+$	
>0.9959	90	CARR	83	SPEC	$+$	

${ }^{1}$ BAYES 11 obtains the limit $>0.99909(90 \% \mathrm{CL})$ with the constraint that $\xi \times(\mu$ LONGITUDINAL POLARIZATION) $\times \delta / \rho \leq 1.0$.
2 JODIDIO 86 includes data from CARR 83 and STOKER 85. The value here is from the erratum.
${ }^{3}$ STOKER 85 find $\left(\xi \mathrm{P}_{\mu} \delta / \rho\right)>0.9955$ and >0.9966, where the first limit is from new μ spin-rotation data and the second is from combination with CARR 83 data. In $V-A$ theory, $(\delta / \rho)=1.0$.

$\boldsymbol{\xi}^{\prime}=$ LONGITUDINAL POLARIZATION OF e^{+}

$(V-A)$ theory predicts the longitudinal polarization $= \pm 1$ for $e^{ \pm}$, respectively. We have flipped the sign for e^{-}so our programs can average.

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.00 ± 0.04 OUR AVERAGE						
0.998 ± 0.045	1M	BURKARD	85	CNTR	$+$	Bhabha + annihil
0.89 ± 0.28	29k	SCHWARTZ	67	OSPK	-	Moller scattering
0.94 ± 0.38		BLOOM	64	CNTR	+	Brems. transmiss.
1.04 ± 0.18		DUCLOS	64	CNTR	$+$	Bhabha scattering
1.05 ± 0.30		BUHLER	63	CNTR	+	Annihilation

$\xi^{\prime \prime}$ PARAMETER

Value	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.98 ± 0.04 OUR AVERAGE						
$0.981 \pm 0.045 \pm 0.003$	3.87M	PRIEELS	14	CNTR	$+$	Bhabha +
0.65 ± 0.36	326k	1 BURKARD	85	CNTR	$+$	Bhabha +

${ }^{1}$ BURKARD 85 measure $\left(\xi^{\prime \prime}-\xi \xi^{\prime}\right) / \xi$ and ξ^{\prime} and set $\xi=1$.
TRANSVERSE e^{+}POLARIZATION IN PLANE OF μ SPIN, e^{+}MOMENTUM

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
7 ± 8 OUR AVERAGE						
$6.3 \pm 7.7 \pm 3.4$	30M	DANNEBERG	05	CNTR	$+$	7-53 MeV e^{+}
$16 \pm 21 \pm 10$	5.3 M	BURKARD	85B	CNTR	$+$	Annihil 9-53 MeV

TRANSVERSE e^{+}POLARIZATION NORMAL TO PLANE OF μ SPIN, e^{+} MOMENTUM

Zero if T invariance holds

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
=2 $\mathbf{\pm} 8$ OUR AVERAGE						
$-3.7 \pm 7.7 \pm 3.4$	30M	DANNEBERG	05	CNTR	$+$	7-53 MeV e^{+}
$7 \pm 22 \pm 7$	5.3 M	BURKARD	85B	CNTR	+	Annihil 9-53 MeV

α / A
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{0 . 4} \mathbf{4} \mathbf{4 . 3}} \frac{\text { EVTS }}{1} \quad \frac{\text { DOCUMENT ID }}{\text { BURKARD } 85 \mathrm{~B}} \frac{\text { TECN }}{\text { FIT }} \frac{\text { CHG }}{\text { COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$15 \pm 50 \pm 14 \quad$ 5.3M \quad BURKARD $\quad 85 \mathrm{~B}$ CNTR $+\quad 9-53 \mathrm{MeV} e^{+}$
${ }^{1}$ Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.
α^{\prime} / A
Zero if T invariance holds
VALUE (units 10^{-3}) EVTS DOCUMENTID TECN CHG COMMENT
-10 ± 20 OUR AVERAGE
$-3.4 \pm 21.3 \pm 4.9 \quad 30 \mathrm{M} \quad$ DANNEBERG $05 \mathrm{CNTR}+\quad 7-53 \mathrm{MeV} e^{+}$
$-47 \pm 50 \pm 14 \quad 5.3 \mathrm{M} \quad{ }^{1}$ BURKARD $\quad 85 \mathrm{~B}$ CNTR $+\quad 9-53 \mathrm{MeV} e^{+}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.2 \pm 4.3 \quad 2$ BURKARD 85B FIT
1 Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^{+}polarizations $\mathrm{P}_{T_{1}}$ and $\mathrm{P}_{T_{2}}$ versus e^{+}energy.
${ }^{2}$ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.
β / \boldsymbol{A}
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{3.9 \pm 6.2} \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { BURKARD } 85 \mathrm{~B}} \frac{\text { TECN }}{\text { FIT }}$ CHG COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -
$2 \pm 17 \pm 6 \quad 5.3 \mathrm{M} \quad$ BURKARD 85 B CNTR $+\quad 9-53 \mathrm{MeV} \mathrm{e}{ }^{+}$
${ }^{1}$ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.
β^{\prime} / A

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	$\underline{C H G}$	COMMENT
2 ± 7 OUR AVERAGE						
$-0.5 \pm 7.8 \pm 1.8$	30M	DANNEBERG	05	CNTR	+	${ }^{7}-53 \mathrm{MeV} e^{+}$
$17 \pm 17 \pm 6$	5.3M	${ }^{1}$ BURKARD	85B	CNTR	+	${ }^{9-53 ~ M e V ~} e^{+}$
- - We do not use the following data for averages, fits, limits, etc. - -						
$-1.3 \pm 3.5 \pm 0.6$	30M	2 DANNEBERG	05	CNTR	+	${ }^{7}-53 \mathrm{MeV} e^{+}$
1.5 ± 6.3		3 BURKARD	85B	FIT		

${ }^{1}$ Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^{+}polarizations $\mathrm{P}_{T_{1}}$ and $\mathrm{P}_{T_{2}}$ versus e^{+}energy.
${ }_{3}^{2} \alpha=\alpha^{\prime}=0$ assumed.
${ }^{3}$ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85b.

Lepton Particle Listings

$1776.68 \pm 0.12 \pm 0.41$	682k	${ }^{2}$ AUBERT	09A	babr	$423 \mathrm{fb}{ }^{-1}, E_{\text {cm }}^{e e}=10.6 \mathrm{GeV}$
$1776.81-0.23 \pm 0.15$	81	ANASHIN	07	KEDR	$\begin{aligned} & 6.7 \mathrm{pb}^{-1}, \mathrm{E}_{\mathrm{Cm}}^{e \mathrm{e}}= \\ & 3.54-38 \mathrm{GeV} \end{aligned}$
$1776.61 \pm 0.13 \pm 0.35$		${ }^{2}$ belous	07	BELL	$414 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$1775.1 \pm 1.6 \pm 1.0$	13.3k	${ }^{3}$ ABBIENDI	00A	OPAL	1990-1995 LEP runs
$1778.2 \pm 0.8 \pm 1.2$		ANASTASSOV	97	CLEO	$E_{\mathrm{cm}}^{e \ell}=10.6 \mathrm{GeV}$
$1776.96_{-0.21}^{+0.18+0.25}$	65	${ }^{4}$ BAI	96	BES	$E_{\mathrm{Cm}}^{e}=3.54-3.57 \mathrm{GeV}$
$1776.3 \pm 2.4 \pm 1.4$	11k	${ }^{5}$ ALBRECHT	92M	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
$1783 \begin{array}{ll}\text { - }\end{array}$	692	${ }^{6}$ BACINO	78B	DLCO	$E_{\text {cm }}^{e e}=3.1-7.4 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. • - •
$\begin{aligned} & 1777.8 \pm 0.7 \pm 1.7\end{aligned} \quad 35 \mathrm{k} \quad 7$ BALEST $\quad 93 \quad$ CLEO
Repl. by ANASTASSOV 97 $1776.9 \underset{-0.5}{+0.4} \pm 0.2 \quad 14 \quad{ }^{8} \mathrm{BAI} \quad 92$ BES Repl. by BAI 96
${ }^{1}$ ABLIKIM 14D fit $\sigma\left(e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}\right)$at different energies near threshold.
${ }^{2}$ AUBERT 09AK and BELOUS 07 fit τ pseudomass spectrum in $\tau \rightarrow \pi \pi^{+} \pi^{-} \nu_{\tau}$ decays. Result assumes $m_{\nu_{\tau}}=0$.
${ }^{3}$ ABBIENDI 00A fit τ pseudomass spectrum in $\tau \rightarrow \pi^{ \pm} \leq 2 \pi^{0} \nu_{\tau}$ and
$\tau \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} \leq 1 \pi^{0} \nu_{\tau}$ decays. Result assumes $m_{\nu_{\tau}}=0$.
${ }^{4}$ BAI 96 fit $\sigma\left(e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}\right)$at different energies near threshold.
${ }^{5}$ ALBRECHT 92 M fit τ pseudomass spectrum in $\tau^{-} \rightarrow 2 \pi^{-} \pi^{+} \nu_{\tau}$ decays. Result assumes $m_{\nu_{\tau}}=0$.
${ }^{6}$ BACINO 78B value comes from $e^{ \pm} X \mp$ threshold. Published mass 1782 MeV increased by 1 MeV using the high precision $\psi(2 S)$ mass measurement of ZHOLENTZ 80 to eliminate the absolute SPEAR energy calibration uncertainty.
${ }^{7}$ BALEST 93 fit spectra of minimum kinematically allowed τ mass in events of the type $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-} \rightarrow\left(\pi^{+} n \pi^{0} \nu_{\tau}\right)\left(\pi^{-} m \pi^{0} \nu_{\tau}\right) n \leq 2, m \leq 2,1 \leq n+m \leq 3$. If $m_{\nu_{\tau}} \neq 0$, result increases by ($m_{\nu_{\tau}}^{2} / 1100 \mathrm{MeV}$).
${ }^{8}$ BAI 92 fit $\sigma\left(e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}\right)$near threshold using $e \mu$ events.

$$
\left(m_{\tau^{+}}=m_{\tau^{-}}\right) / m_{\text {average }}
$$

A test of CPT invariance.

VALUE	CL\%	DOCUMENT ID	TECN	OMMENT	
$<\mathbf{2 . 8 \times 1 0}{ }^{\mathbf{- 4}}$	90	BELOUS	07 BE	14 fb	10.6
- - We do not use the following data for averages, fits, limits, etc. - -					
$<5.5 \times 10^{-}$	90	${ }^{1}$ AUBERT	09Ak BABR $423 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$		
$<3.0 \times 10^{-3}$	90	ABBIENDI	00A OPAL 1990-1995 LEP runs		
${ }^{1}$ AUBERT 09ak quote both the listed upper limit and $\left(m_{\tau^{+}}-m_{\tau^{-}}\right) / m_{\text {average }}=$ $(-3.4 \pm 1.3 \pm 0.3) \times 10^{-4}$.					

τ MEAN LIFE

$\operatorname{lm}\left(d_{\tau}\right)$				
$\underline{V A L U E}\left(10^{-16} \mathrm{ecm}\right) \quad c t a \%$		document id tecn comment		
-0.25 to 0.008				$E_{\text {cm }}^{e e}=10.6 \mathrm{GeV}$
- . We do not use the following data for averages, fits, limits, etc. - . -				
1.8	95	${ }^{2}$ albrecht	00 ARG	$E_{\text {cm }}^{e e}=10.4 \mathrm{Gev}$
${ }^{1}$ INAMI 03 use $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events. ${ }^{2}$ ALBRECHT 00 use $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events. Limit is on the absolute value of $\operatorname{Im}\left(d_{\tau}\right)$				

τ WEAK DIPOLE MOMENT (d_{τ}^{ω})

A nonzero value is forbidden by $C P$ invariance.
The q^{2} dependence is expected to be small providing no thresholds are nearby.
$\operatorname{Re}\left(d_{\tau}^{w}\right)$

Value ($10^{-17} \mathrm{ecm}$)	CL\%	DOCUMENT ID		TECN	COMMENT
<0.50	95	1 HEISTER	03F	ALEP	1990-1995 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - -					
<3.0	90	${ }^{1}$ ACCIARRI	98C	L3	1991-1995 LEP runs
<0.56	95	ACKERSTAFF	97L	OPAL	1991-1995 LEP runs
<0.78	95	${ }^{2}$ AKERS	95F	OPAL	Repl. by ACKERSTAFF 97L
<1.5	95	${ }^{2}$ BUSKULIC	95C	ALEP	Repl. by HEISTER 03F
<7.0	95	${ }^{2}$ ACTON	92F	OPAL	$Z \rightarrow \tau^{+} \tau^{-}$at LEP
<3.7	95	${ }^{2}$ BUSKULIC	92」	ALEP	Repl. by BUSKULIC 95C

${ }^{1}$ Limit is on the absolute value of the real part of the weak dipole moment.
${ }^{2}$ Limit is on the absolute value of the real part of the weak dipole moment, and applies for $q^{2}=m_{Z}^{2}$.
$\operatorname{lm}\left(d_{\tau}^{\boldsymbol{w}}\right)$
$\frac{\operatorname{VALUE}\left(10^{-17} \mathrm{ecm}\right)}{<\mathbf{1 . 1}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { HEISTER }} \frac{\text { 03F }}{\text { TECN }} \frac{\text { COMMENT }}{\text { ALEP }} \frac{1990-1995 \text { LEP runs }}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<1.5	95	ACKERSTAFF	97L	OPAL
<4.5	95	2 AKERS	1991-1995 LEP runs	
		95F	OPAL	Repl. by ACKERSTAFF 97L

${ }^{1}$ HEISTER 03F limit is on the absolute value of the imaginary part of the weak dipole ${ }_{2}$ moment.
${ }^{2}$ Limit is on the absolute value of the imaginary part of the weak dipole moment, and applies for $q^{2}=m_{Z}^{2}$

τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (α_{τ}^{W})

Electroweak radiative corrections are expected to contribute at the 10^{-6} level. See BERNABEU 95.
The q^{2} dependence is expected to be small providing no thresholds are nearby.
$\operatorname{Re}\left(\alpha_{\tau}^{w}\right)$
$\frac{V A L U E}{<\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 3}}}-\frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { HEISTER 03F }} \frac{\text { TECN }}{\text { ALEP }} \frac{\text { COMMENT }}{1990-1995 \text { LEP runs }}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$\begin{array}{rrrrr} \\ >-0.0024 & \text { and }<0.0025 & 95 & { }^{2} \text { GONZALEZ-S.. } 00 & \text { RVUE } \\ e^{+} & e^{-} \rightarrow \tau^{+} \tau^{-} \\ \text {and }\end{array}$
$<4.5 \times 10^{-3} 90 \quad{ }^{1}$ ACCIARRI 98C L3 $1991-1995$ LEP runs
${ }^{1}$ Limit is on the absolute value of the real part of the weak anomalous magnetic dipole moment.
${ }^{2}$ GONZALEZ-SPRINBERG 00 use data on tau lepton production at LEP1, SLC, and LEP2, and data from colliders and LEP2 to determine limits. Assume imaginary component is zero.
$\operatorname{Im}\left(\alpha_{\tau}^{W}\right)$

- - We do not use the following data for averages, fits, limits, etc. - -
$<9.9 \times 10^{-3} \quad 90 \quad 1$ ACCIARRI 98C L3 $1991-1995$ LEP runs
${ }^{1}$ Limit is on the absolute value of the imaginary part of the weak anomalous magnetic dipole moment.
τ^{-}DECAY MODES
τ^{+}modes are charge conjugates of the modes below. " $h^{ \pm "}$ stands for $\pi^{ \pm}$or $K^{ \pm}$. " ℓ " stands for e or μ. "Neutrals" stands for γ^{\prime} 's and/or π^{0} 's.

Modes with five charged particles

$\Gamma_{116} 3 h^{-} 2 h^{+} \geq 0$ neutrals ν_{τ}
$(9.9 \pm 0.4) \times 10^{-4}$
(ex. $K_{S}^{0} \rightarrow \pi^{-} \pi^{+}$) ("5-prong")
Γ_{117}
$\Gamma_{118} 3 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega\right)$
$3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ (ex. K^{0}, ω, $f_{1}(1285)$)
$K^{-} 2 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$K^{+} 3 \pi^{-} \pi^{+} \nu_{\tau}$
$K^{+} K^{-} 2 \pi^{-} \pi^{+} \nu_{\tau}$
$(8.29 \pm 0.31) \times 10^{-4}$
$(8.27 \pm 0.31) \times 10^{-4}$
[a] $(7.75 \pm 0.30) \times 10^{-4}$
[a] $\left.\begin{array}{ccc}6 & \pm 12\end{array}\right) \times 10^{-7}$
$<5.0 \quad \times 10^{-6} \quad \mathrm{CL}=90 \%$

$\left((\pi \pi)_{S-\text { wave }} \pi\right)^{-} \nu_{\tau} \rightarrow$ $(3 \pi)^{-} \nu_{\tau}$
$\Gamma_{176} h^{-} \omega \geq 0$ neutrals ν_{τ}
$\Gamma_{177} h^{-} \omega \nu_{\tau}$
$\Gamma_{178} \pi^{-} \omega \nu_{\tau}$
$K^{-} \omega \nu_{\tau}$
$h^{-} \omega \pi^{0} \nu_{\tau}$
$h^{-} \omega 2 \pi^{0} \nu_{\tau}$
$\pi^{-} \omega 2 \pi^{0} \nu_{\tau}$
$h^{-} 2 \omega \nu_{\tau}$
$\Gamma_{184} 2 h^{-} h^{+} \omega \nu_{\tau}$
$\Gamma_{185} 2 \pi^{-} \pi^{+} \omega \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$
$(2.40 \pm 0.08) \%$
$(1.99 \pm 0.06) \%$
[a] (1.95 ± 0.06) \%
[a] $\left(\begin{array}{lll}4.1 & \pm .9\end{array}\right) \times 10^{-4}$
[a] $(4.1 \pm 0.4) \times 10^{-3}$
$\left(\begin{array}{l}1.4 \pm 0.5\end{array}\right) \times 10^{-4}$
[a] $(7.2 \pm 1.6) \times 10^{-5}$
$<5.4 \times 10^{-7}$ CL=90\%
$(1.20 \pm 0.22) \times 10^{-4}$
[a] $(8.4 \pm 0.6) \times 10^{-5}$

Lepton Particle Listings

τ

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^{-} \rightarrow e^{+} \pi^{-} \pi^{-}$). Following usage, $L F$ means lepton family

$\Gamma_{186} e^{-\gamma}$	LF	$<$	3.3	$\times 10^{-8}$	CL=90\%
$\Gamma_{187} \mu^{-\gamma}$	LF	<	4.4	$\times 10^{-8}$	CL=90\%
$\Gamma_{188} e^{-} \pi^{0}$	LF	$<$	8.0	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{189} \mu^{-} \pi^{0}$	LF	<	1.1	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
$\Gamma_{190} e^{-} K_{S}^{0}$	LF	$<$	2.6	$\times 10^{-8}$	CL=90\%
$\Gamma_{191} \mu^{-} K_{S}^{0}$	LF	$<$	2.3	$\times 10^{-8}$	CL=90\%
$\Gamma_{192} e^{-} \eta$	LF	<	9.2	$\times 10^{-8}$	CL=90\%
$\Gamma_{193} \mu^{-} \eta$	LF	$<$	6.5	$\times 10^{-8}$	CL=90\%
$\Gamma_{194} e^{-} \rho^{0}$	LF	<	1.8	$\times 10^{-8}$	CL=90\%
$\Gamma_{195} \mu^{-} \rho^{0}$	LF	<	1.2	$\times 10^{-8}$	CL=90\%
$\Gamma_{196} e^{-} \omega$	LF	$<$	4.8	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{197} \mu^{-} \omega$	LF	$<$	4.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{198} e^{-} K^{*}(892)^{0}$	LF	<	3.2	$\times 10^{-8}$	CL=90\%
$\Gamma_{199} \mu^{-} \underline{K}^{*}(892)^{0}$	LF	$<$	5.9	$\times 10^{-8}$	$C L=90 \%$
$\Gamma_{200} e^{-\bar{K}^{*}(892)^{0}}$	LF	<	3.4	$\times 10^{-8}$	CL=90\%
$\Gamma_{201} \mu^{-} \bar{K}^{*}(892)^{0}$	LF	$<$	7.0	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{202} e^{-} \eta^{\prime}$ (958)	LF	<	1.6	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
$\Gamma_{203} \mu^{-} \eta^{\prime}(958)$	LF	<	1.3	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
$\Gamma_{204} e^{-} f_{0}(980) \rightarrow e^{-} \pi^{+} \pi^{-}$	LF	$<$	3.2	$\times 10^{-8}$	CL=90\%
$\Gamma_{205} \mu^{-} f_{0}(980) \rightarrow \mu^{-} \pi^{+} \pi^{-}$	LF	$<$	3.4	$\times 10^{-8}$	CL=90\%
$\Gamma_{206} e^{-\phi}$	LF	$<$	3.1	$\times 10^{-8}$	CL=90\%
$\Gamma_{207} \mu^{-} \phi$	LF	$<$	8.4	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{208} e^{-} e^{+} e^{-}$	LF	<	2.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{209} e^{-} \mu^{+} \mu^{-}$	LF	<	2.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{210} e^{+} \mu^{-} \mu^{-}$	LF	<	1.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{211} \mu^{-} e^{+} e^{-}$	LF	$<$	1.8	$\times 10^{-8}$	CL=90\%
$\Gamma_{212} \mu^{+} e^{-} e^{-}$	LF	$<$	1.5	$\times 10^{-8}$	CL=90\%
$\Gamma_{213} \mu^{-} \mu^{+} \mu^{-}$	LF	$<$	2.1	$\times 10^{-8}$	CL=90\%
$\Gamma_{214} e^{-} \pi^{+} \pi^{-}$	LF	<	2.3	$\times 10^{-8}$	CL=90\%
$\Gamma_{215} e^{+} \pi^{-} \pi^{-}$	L	<	2.0	$\times 10^{-8}$	CL=90\%
$\Gamma_{216} \mu^{-} \pi^{+} \pi^{-}$	LF	<	2.1	$\times 10^{-8}$	CL=90\%
$\Gamma_{217} \mu^{+} \pi^{-} \pi^{-}$	L	$<$	3.9	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{218} e^{-} \pi^{+} K^{-}$	$L F$	$<$	3.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{219} e^{-} \pi^{-} K^{+}$	LF	$<$	3.1	$\times 10^{-8}$	CL=90\%
$\Gamma_{220} e^{+} \pi^{-} K^{-}$	L	$<$	3.2	$\times 10^{-8}$	CL=90\%
$\Gamma_{221} e^{-} K_{S}^{0} K_{S}^{0}$	LF	$<$	7.1	$\times 10^{-8}$	CL=90\%
$\Gamma_{222} e^{-} K^{+} K^{-}$	$L F$	$<$	3.4	$\times 10^{-8}$	CL=90\%
$\Gamma_{223} e^{+} K^{-} K^{-}$	L	$<$	3.3	$\times 10^{-8}$	CL=90\%
$\Gamma_{224} \mu^{-} \pi^{+} K^{-}$	LF	$<$	8.6	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{225} \mu^{-} \pi^{-} K^{+}$	$L F$	$<$	4.5	$\times 10^{-8}$	CL=90\%
$\Gamma_{226} \mu^{+} \pi^{-} K^{-}$	L	$<$	4.8	$\times 10^{-8}$	CL=90\%
$\Gamma_{227} \mu^{-} K_{S}^{0} K_{S}^{0}$	LF	$<$	8.0	$\times 10^{-8}$	CL=90\%
$\Gamma_{228} \mu^{-} K^{+} K^{-}$	$L F$	$<$	4.4	$\times 10^{-8}$	CL=90\%
$\Gamma_{229} \mu^{+} K^{-} K^{-}$	L	$<$	4.7	$\times 10^{-8}$	CL=90\%
$\Gamma_{230} e^{-} \pi^{0} \pi^{0}$	LF	$<$	6.5	$\times 10^{-6}$	CL=90\%
$\Gamma_{231} \mu^{-} \pi^{0} \pi^{0}$	$L F$	$<$	1.4	$\times 10^{-5}$	CL=90\%
$\Gamma_{232} e^{-} \eta \eta$	$L F$	$<$	3.5	$\times 10^{-5}$	CL=90\%
$\Gamma_{233} \mu^{-} \eta \eta$	$L F$	$<$	6.0	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma_{234} e^{-} \pi^{0} \eta$	$L F$	$<$	2.4	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma_{235} \mu^{-} \pi^{0} \eta$	$L F$	$<$	2.2	$\times 10^{-5}$	CL=90\%
$\Gamma_{236} p \mu^{-} \mu^{-}$	L, B	<	4.4	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
$\Gamma_{237} \bar{p} \mu^{+} \mu^{-}$	L, B	$<$	3.3	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
$\Gamma_{238} \bar{p} \gamma$	L, B	$<$	3.5	$\times 10^{-6}$	CL=90\%
$\Gamma_{239} \bar{p} \pi^{0}$	L, B	$<$	1.5	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma_{240} \bar{p} 2 \pi^{0}$	L, B	$<$	3.3	$\times 10^{-5}$	CL=90\%
$\Gamma_{241} \bar{p} \eta$	L, B	$<$	8.9	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma_{242} \bar{p} \pi^{0} \eta$	L, B	$<$	2.7	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma_{243} \wedge \pi^{-}$	L, B	$<$	7.2	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
$\Gamma_{244} \bar{\Lambda} \pi^{-}$	L, B	$<$	1.4	$\times 10^{-7}$	CL=90\%
$\Gamma_{245} e^{-}$light boson	$L F$	$<$	2.7	$\times 10^{-3}$	CL=95\%
$\Gamma_{246} \mu^{-}$light boson	$L F$		5	$\times 10^{-3}$	CL=95\%

[a] Basis mode for the τ.
[b] See the Particle Listings below for the energy limits used in this measurement.

An overall fit to 87 branching ratios uses 170 measurements and one constraint to determine 46 parameters. The overall fit has a $\chi^{2}=135$ for 125 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$.

Lepton Particle Listings
τ
ments of $\mathrm{B}(\tau \rightarrow$ 3－prong）and $\mathrm{B}(\tau \rightarrow 5$－prong）are -0.98 and -0.08 respectively．
2 The correlation coefficients between this measurement and the ACHARD 01D measure－ ments of $\mathrm{B}(\tau \rightarrow$＂3－prong＂$)$ and $\mathrm{B}(\tau \rightarrow$＂ 5 －prong＂$)$ are -0.978 and -0.082 respec－ tively．
$\Gamma\left(\right.$ particle ${ }^{-} \geq 0$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{2} / \Gamma$
$\Gamma_{2} / \Gamma=\left(\Gamma_{3}+\Gamma_{5}+\Gamma_{9}+\Gamma_{10}+\Gamma_{14}+\Gamma_{16}+\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+0.6534 \Gamma_{36}+\right.$ $0.6534 \Gamma_{38}+0.6534 \Gamma_{41}+0.6534 \Gamma_{43}+0.6534 \Gamma_{45}+0.0942 \Gamma_{48}+0.3069 \Gamma_{49}+\Gamma_{50}+$ $0.0942 \Gamma_{52}+0.3069 \Gamma_{56}+\Gamma_{57}+0.7212 \Gamma_{150}+0.7212 \Gamma_{152}+0.7212 \Gamma_{154}+0.4712 \Gamma_{156}+$ $\left.0.1049 \Gamma_{170}+0.0840 \Gamma_{178}+0.0840 \Gamma_{179}+0.0840 \Gamma_{180}\right) / \Gamma$
VALUE（\％）DOCUMENT ID COMTS TECN COMMENT
84.58 ± 0.06 OUR FIT
85.1 ± 0.4 OUR AVERAGE
－－We use the following data for averages but not for fits．－－．

85.6	± 0.6	± 0.3	3300	${ }^{1}$ ADEVA	91 F L3
$84.9 \pm 0.4 \pm 0.3$		BEHREND	$E_{\mathrm{Cm}}^{e e}=88.3-94.3 \mathrm{GeV}$		
84.7	± 0.8	8．CELL	$E_{\mathrm{Cm}}^{e e}=14-47 \mathrm{GeV}$		
		2 AIHARA	87 B	TPC	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

－－We do not use the following data for averages，fits，limits，etc．－－－

$86.4 \pm 0.3 \pm 0.3$		ABACHI	89B	HRS	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$87.1 \pm 1.0 \pm 0.7$		${ }^{3}$ BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{e \mathrm{e}}=29 \mathrm{GeV}$
$87.2 \pm 0.5 \pm 0.8$		SCHMIDKE	86	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$84.7 \pm 1.1{ }_{-1.3}^{+1.6}$	169	${ }^{4}$ ALTHOFF	85	TASS	$E_{\mathrm{Cm}}^{e e}=34.5 \mathrm{GeV}$
$86.1 \pm 0.5 \pm 0.9$		BARTEL	85F	JADE	$E_{\mathrm{cm}}^{e \mathrm{e}}=34.6 \mathrm{GeV}$
$87.8 \pm 1.3 \pm 3.9$		${ }^{5}$ BERGER	85	PLUT	$E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$
$86.7 \pm 0.3 \pm 0.6$		FERNANDEZ	85	MAC	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=29 \mathrm{GeV}$

${ }^{1}$ Not independent of ADEVA 91F $\Gamma\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ value．
${ }^{2}$ Not independent of AIHARA $87 \mathrm{~B} \Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}, \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ ，and $\Gamma\left(h^{-} \geq 0\right.$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ values．
${ }^{3}$ Not independent of SCHMIDKE 86 value（also not independent of BURCHAT 87 value for $\Gamma\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ ．
${ }^{4}$ Not independent of ALTHOFF $85 \Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}, \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}, \Gamma\left(h^{-} \geq 0\right.$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ ，and $\Gamma\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\left.\geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ values．
${ }^{5}$ Not independent of（1－prong $+0 \pi^{0}$ ）and（1－prong $+\geq 1 \pi^{0}$ ）values．
$\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}$
「3／「
o minimize the effect of experiments with large systematic errors，we exclude exper－ iments which together would contribute 5% of the weight in the average．

VALUE（\％）	EVTS	DOCUMENT ID		TECN	COMMENT
17.39 ± 0.04 OUR FIT					
17.33 ± 0.05 OUR AVERAGE					
$17.319 \pm 0.070 \pm 0.032$	54k	1 SCHAEL	05C	ALEP	1991－1995 LEP runs
$17.34 \pm 0.09 \pm 0.06$	31．4k	ABBIENDI	03	OPAL	1990－1995 LEP runs
$17.342 \pm 0.110 \pm 0.067$	21．5k	2 ACCIARRI	01F	L3	1991－1995 LEP runs
$17.325 \pm 0.095 \pm 0.077$	27．7k	ABREU	99x	DLPH	1991－1995 LEP runs
－－We use the following data for averages but not for fits．－－					
$17.37 \pm 0.08 \pm 0.18$		${ }^{3}$ ANASTASSOV 97 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$			

－－We do not use the following data for averages，fits，limits，etc．－－－

17.31	± 0.11	± 0.05	20．7k	BUSKULIC	96C	ALEP	Repl．by SCHAEL 05C
17.02	± 0.19	± 0.24	6586	ABREU	95 T	DLPH	Repl．by ABREU 99x
17.36	± 0.27		7941	AKERS	951	OPAL	Repl．by ABBIENDI 03
17.6	± 0.4	± 0.4	2148	ADRIANI	93m	L3	Repl．by ACCIARRI 01F
17.4	± 0.3	± 0.5		${ }^{4}$ ALBRECHT	93G	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
17.35	± 0.41	± 0.37		DECAMP	92C	ALEP	1989－1990 LEP runs
17.7	± 0.8	± 0.4	568	BEHREND	90	CELL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=35 \mathrm{GeV}$
17.4	± 1.0		2197	ADEVA	88	MRKJ	$E_{\mathrm{Cm}}^{e \mathrm{e}}$＝$=14-16 \mathrm{GeV}$
17.7	± 1.2	± 0.7		AIHARA	87B	TPC	$E_{\mathrm{Cm}}^{e \mathrm{el}}=29 \mathrm{GeV}$
18.3	± 0.9	± 0.8		BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{e \mathrm{e}}=29 \mathrm{GeV}$
18.6	± 0.8	± 0.7	558	${ }^{5}$ BARTEL	86D	JADE	$E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$
12.9	± 1.7	$\begin{array}{r} +0.7 \\ -0.5 \end{array}$		ALTHOFF	85	TASS	$E_{\mathrm{Cm}}^{e}=34.5 \mathrm{GeV}$
18.0	± 0.9	± 0.5	473	${ }^{5}$ ASH	85B	MAC	$E_{\mathrm{Cm}}^{e \mathrm{el}}=29 \mathrm{GeV}$
18.0	± 1.0	± 0.6		${ }^{6}$ BALTRUSAIT．．	． 85	MRK3	$E_{\mathrm{cm}}^{\mathrm{el}}=3.77 \mathrm{GeV}$
19.4	± 1.6	± 1.7	153	BERGER	85	PLUT	$E_{\mathrm{Cm}}^{e \mathrm{e}}=34.6 \mathrm{GeV}$
17.6	± 2.6	± 2.1	47	BEHREND	83C	CELL	$E_{\mathrm{Cm}}^{\mathrm{ee}}=34 \mathrm{GeV}$
17.8	± 2.0	± 1.8		BERGER	81B	PLUT	$E_{C m}^{e e}=9-32 \mathrm{GeV}$

[^103]$\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\mathrm{VALLE}(\%)}{0.367 \pm 0.008 \text { OUR AVERAGE }}$
0.367 ± 0.008 OUR AVERAGE
$0.363 \pm 0.002 \pm 0.015 \quad 22 \mathrm{~K}$
${ }^{1}$ SHIMIZU 18 A BELL $711 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$0.369 \pm 0.003 \pm 0.01016 \mathrm{k} \quad{ }^{2}$ LEES $\quad 15 \mathrm{G}$ BABR $431 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$0.361 \pm 0.016 \pm 0.035 \quad{ }^{3}$ BERGFELD $00 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.30 \pm 0.04 \pm 0.05 \quad 116 \quad{ }^{4}$ ALEXANDER 96 S OPAL $1991-1994$ LEP runs
$0.23 \pm 0.10 \quad 10 \quad 5 \mathrm{WU} \quad 90 \quad$ MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
${ }^{1}$ SHIMIZU 18A impose requirements on detected γ＇s corresponding to a τ－rest－frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$ ．
${ }^{2}$ LEES 15 G impose requirements on detected γ＇s corresponding to a τ－rest－frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$ ．
${ }^{3}$ BERGFELD 00 impose requirements on detected γ＇s corresponding to a τ－rest－frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$ ．For $E_{\gamma}^{*}>20 \mathrm{MeV}$ ，they quote $(3.04 \pm 0.14 \pm 0.30) \times 10^{-3}$ ．
${ }^{4}$ ALEXANDER 965 impose requirements on detected γ＇s corresponding to a τ－rest－frame energy cutoff $E_{\gamma}>20 \mathrm{MeV}$ ．
${ }^{5} \mathrm{WU} 90$ reports $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma\right) / \Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right)=0.013 \pm 0.006$ ，which is converted to $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma\right) / \Gamma_{\text {total }}$ using $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma\right) / \Gamma_{\text {total }}=17.35 \%$ ．Requirements on detected γ＇s correspond to a τ rest frame energy cutoff $E_{\gamma}>37 \mathrm{MeV}$ ．
$\Gamma\left(e^{-} \boldsymbol{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$
［5／「 To minimize the effect of experiments with large systematic errors，we exclude exper－ iments which together would contribute 5% of the weight in the average．

${ }^{1}$ Correlation matrix for SCHAEL 05C branching fractions，in percent：
（1）$\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$
（2）$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}$
（3）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
（4）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
（5）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
（6）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} 3 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
（7）$\Gamma\left(\tau^{-} \rightarrow h^{-} 4 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}, \eta\right)\right) / \Gamma_{\text {total }}$
（8）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}, \omega\right)\right) / \Gamma_{\text {total }}$
（9）$\Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
（10）$\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
（11）$\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} 3 \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
（12）$\Gamma\left(\tau^{-} \rightarrow 3 h^{-} 2 h^{+} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
（13）$\Gamma\left(\tau^{-} \rightarrow 3 h^{-} 2 h^{+} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$

(9)	-13	-12	-25	-30	4	-2	16	-15				
(10)	0	-2	-23	-14	4	10	13	-6	-17			
(11)	1	0	-5	1	4	6	0	-9	-2	-11		
(12)	0	1	9	4	-8	-4	-6	9	-5	-4	-2	
(13)	1	-4	-3	-5	3	2	-4	-3	-1	4	1	-24

2 The correlation coefficient between this measurement and the ACCIARRI 01F measurement of $\mathrm{B}\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right)$ is 0.08 .
${ }^{3}$ The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of $\mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right), \mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right), \mathrm{B}\left(h^{-} \nu_{\tau}\right)$, and $\mathrm{B}\left(h^{-} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right)$ are $0.50,-0.42,0.48$, and -0.39 respectively.
${ }^{4}$ Not independent of ALBRECHT 92D $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ and ALBRECHT 93G $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) \times \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}^{2}$ values.
${ }^{5}$ Modified using $\mathrm{B}\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \mathrm{B}$ ("1 prong") and $\mathrm{B}\left({ }^{\prime} 1\right.$ prong"),$=0.855$.
${ }^{6}$ Error correlated with BALTRUSAITIS $85 \Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}$.
${ }^{7}$ BACINO 78B value comes from fit to events with $e^{ \pm}$and one other nonelectron charged prong.

$\Gamma\left(\mu^{-} \boldsymbol{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(e^{-} \boldsymbol{\nu}_{e} \nu_{\tau}\right)$			Γ_{3} / Γ_{5}	
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN COMMENT	
97.62 ± 0.28 OUR FIT				
97.9 ± 0.4 OUR AVERAGE				
$97.96 \pm 0.16 \pm 0.36$	731k	1 AUBERT 10F	BAB	$467 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$97.77 \pm 0.63 \pm 0.87$		2 ANASTASSOV 97	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$99.7 \pm 3.5 \pm 4.0$		ALBRECHT 92D	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
${ }^{1}$ Correlation matrix for AUBERT 10F branching fractions:				

(1) $\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$
(2) $\Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$
(3) $\Gamma\left(\tau^{-} \rightarrow K^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$

	(1)	(2)
(2)	0.25	
(3)	0.12	0.33

${ }^{2}$ The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of $\mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right), \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right), \mathrm{B}\left(h^{-} \nu_{\tau}\right)$, and $\mathrm{B}\left(h^{-} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right)$ are 0.58 , $-0.42,0.07$, and 0.45 respectively.
$\Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\%)}{1.83 \pm 0.05 \text { OUR AVERAGE }}$
$1.79 \pm 0.02 \pm 0.10 \quad 12 \mathrm{~K} \quad 1$ SHIMIZU $\quad 18 \mathrm{~A} \quad$ BELL $711 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $1.847 \pm 0.015 \pm 0.052 \quad 18 \mathrm{k} \quad{ }^{2}$ LEES $\quad 15 \mathrm{G}$ BABR $431 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $1.75 \pm 0.06 \pm 0.17 \quad{ }^{3}$ BERGFELD $00 \quad$ CLEO $\quad E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ SHIMIZU 18A impose requirements on detected γ 's corresponding to a τ-rest-frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$.
${ }^{2}$ LEES 15 G impose requirements on detected γ 's corresponding to a τ-rest-frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$.
${ }^{3}$ BERGFELD 00 impose requirements on detected γ 's corresponding to a τ-rest-frame energy cutoff $E_{\gamma}^{*}>10 \mathrm{MeV}$.

$\begin{aligned} & \Gamma\left(h^{-} \geq 0 K_{\boldsymbol{L}}^{0} \nu_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \\ & \quad \Gamma_{7} / \Gamma=\left(\Gamma_{9}+\Gamma_{10}+\frac{1}{2} \Gamma_{36}+\frac{1}{2} \Gamma_{38}+\Gamma_{50}\right) / \Gamma \end{aligned}$				Γ_{7} / Γ	
VALUE (\%)	EVTS	DOCUMENT ID		TECN	COMMENT
12.03 ± 0.05 OUR FIT					
12.2 ± 0.4 OUR AVERAGE					
$12.47 \pm 0.26 \pm 0.43$	2967	${ }^{1}$ ACCIARRI	95	L3	1992 LEP run
$12.4 \pm 0.7 \pm 0.7$	283	${ }^{2}$ ABREU	92N	DLPH	1990 LEP run
$12.1 \pm 0.7 \pm 0.5$	309	ALEXANDER	91D	OPAL	1990 LEP run
- - We use the following data for averages but not for fits. - -					
$11.3 \pm 0.5 \pm 0.8$	798	3 FORD	87	MAC	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$12.44 \pm 0.11 \pm 0.11$	15k	${ }^{4}$ BUSKULIC	96	ALEP	Repl. by SCHAEL 05C
$11.7 \pm 0.6 \pm 0.8$		${ }^{5}$ ALBRECHT	92D	ARG	$E_{C \mathrm{~m}}^{e}=9.4-10.6 \mathrm{GeV}$
$12.98 \pm 0.44 \pm 0.33$		${ }^{6}$ DECAMP	92 C	ALEP	Repl. by SCHAEL 05c
$12.3 \pm 0.9 \pm 0.5$	1338	BEHREND	90	CELL	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=35 \mathrm{GeV}$
$11.1 \pm 1.1 \pm 1.4$		${ }^{7}$ BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{e \mathrm{el}}=29 \mathrm{GeV}$
$12.3 \pm 0.6 \pm 1.1$	328	8 BARTEL	86D	JADE	$E_{\mathrm{cm}}^{e e}=34.6 \mathrm{GeV}$
$13.0 \pm 2.0 \pm 4.0$		BERGER	85	PLUT	$E_{\mathrm{Cm}}^{e \mathrm{e}}=34.6 \mathrm{GeV}$
$11.2 \pm 1.7 \pm 1.2$	34	${ }^{9}$ BEHREND	83C	CELL	$E_{\mathrm{Cm}}^{e e}=34 \mathrm{GeV}$

${ }^{1}$ ACCIARRI 95 with 0.65% added to remove their correction for $\pi^{-} K_{L}^{0}$ backgrounds.
${ }^{2}$ ABREU 92 N with 0.5% added to remove their correction for $K^{*}(892)^{-}$backgrounds.
${ }^{3}$ FORD 87 result for $\mathrm{B}\left(\pi^{-} \nu_{\tau}\right)$ with 0.67% added to remove their K^{-}correction and adjusted for 1992 B("1 prong").
${ }^{4}$ BUSKULIC 96 quote $11.78 \pm 0.11 \pm 0.13$ We add 0.66 to undo their correction for unseen K_{L}^{0} and modify the systematic error accordingly.
${ }^{5}$ Not independent of ALBRECHT 92D $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$, $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) \times$ $\Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$, and $\Gamma\left(h^{-} \geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ values.
${ }^{6}$ DECAMP 92C quote $\mathrm{B}\left(h^{-} \geq 0 K_{L}^{0} \geq 0\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \nu_{\tau}\right)=13.32 \pm 0.44 \pm 0.33$. We subtract 0.35 to correct for their inclusion of the K_{S}^{0} decays.
${ }^{7}$ BURCHAT 87 with 1.1% added to remove their correction for K^{-}and $K^{*}(892)^{-}$back8 grounds.
${ }^{8}$ BARTEL 86D result for $\mathrm{B}\left(\pi^{-} \nu_{\tau}\right)$ with 0.59% added to remove their K^{-}correction and adjusted for 1992 B("1 prong").
${ }^{9}$ BEHREND 83C quote $\mathrm{B}\left(\pi^{-} \nu_{\tau}\right)=9.9 \pm 1.7 \pm 1.3$ after subtracting 1.3 ± 0.5 to correct for $\mathrm{B}\left(K^{-} \nu_{\tau}\right)$.

$\Gamma\left(h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$				$\Gamma_{8} / \Gamma=$
VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT

11.51 ± 0.05 OUR FIT
$11.63 \mathbf{0 . 1 2}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
$11.571 \pm 0.120 \pm 0.114 \quad 19 \mathrm{k} \quad 1$ ABDALLAH 06A DLPH 1992-1995 LEP runs $11.98 \pm 0.13 \pm 0.16 \quad$ ACKERSTAFF 98M OPAL 1991-1995 LEP runs
$11.52 \pm 0.05 \pm 0.12 \quad 2$ ANASTASSOV 97 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Correlation matrix for ABDALLAH 06A branching fractions, in percent:
(1) $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
(2) $\Gamma\left(\tau^{-} \rightarrow h^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
(3) $\Gamma\left(\tau^{-} \rightarrow h^{-} \geq 1 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(4) $\Gamma\left(\tau^{-} \rightarrow h^{-} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(5) $\Gamma\left(\tau^{-} \rightarrow h^{-} \geq 3 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(6) $\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(7) $\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(8) $\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \geq 1 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(9) $\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \geq 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(10) $\Gamma\left(\tau^{-} \rightarrow 3 h^{-} 2 h^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
(11) $\Gamma\left(\tau^{-} \rightarrow 3 h^{-} 2 h^{+} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(2)	-34									
(3)	-47	56								
(4)	6	-66	15							
(5)	-6	38	11	-86						
(6)	-7	-8	15	0	-2					
(7)	-2	-1	-5	-3	3	-53				
(8)	-4	-4	-13	-4	-2	-56	75			
(9)	-1	-1	-4	3	-6	26	-78	-16		
(10)	-1	-1	1	0	0	-2	-3	-1	3	
(11)	0	0	0	0	0	1	0	-5	5	-57

2 The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of $\mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right), \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right), \mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right)$, and $\mathrm{B}\left(h^{-} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right)$ are $0.50,0.48,0.07$, and 0.63 respectively.

Lepton Particle Listings
τ

$\Gamma\left(\pi^{-} \nu_{\chi}\right) / \Gamma_{\text {total }}$ VALUE (\%)		DOCUMENT ID		COMMENT	Г9/「
$10.828 \pm 0.070 \pm 0.078$					
- - We do not use the following data for averages, fits, limits, etc. - .					
$11.06 \pm 0.11 \pm 0$		${ }^{2}$ buskulic	96 ALEP	Repl. by	L 05c
$11.7 \pm 0.4 \pm 1.8$	1138	BLO	82D MRK2	$\mathrm{E}_{\mathrm{cm}}^{\mathrm{eg}}=$	
${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements. 2^{2} Not independent of BUSKULIC $96 \mathrm{~B}\left(h^{-} \nu_{\tau}\right)$ and $\mathrm{B}\left(K^{-} \nu_{\tau}\right)$ values.					
$\Gamma\left(\pi^{-} \nu_{\tau}\right) / \Gamma\left(e^{-} \nu_{e} \nu_{\tau}\right) \quad \Gamma_{9} / \Gamma_{5}$					
VALUE (units 10^{-2})	EVTS	dCument id	CN	Mment	
$\underline{60.71 \pm 00.32 \text { OUR FIT }}$ -					
$59.45 \pm 0.14 \pm 0$	369k	${ }^{1}$ AUBERT	10F BABR	$\mathrm{fb}^{-1} \mathrm{E}$	0.6 GeV
${ }^{1}$ See footnote to AUBERT 10F $\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ for correlations with other measurements.					
$\Gamma\left(K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ $\operatorname{VALUE}(\%)^{\top}$		DOCUMENT	TEC	COMMENT	Γ_{10} / Γ
0.696 ± 0.010 OUR FIT 0.685 ± 0.023 OUR AVERAGE					
$0.658 \pm 0.027 \pm 0.029$		${ }^{1}$ abbiendi	01J OPAL	1990-1995	runs
$0.696 \pm 0.025 \pm 0.014$	2032	barate	99K ALEP	1991-1995	ru
0.85 ± 0.18	27	abreu	94K DLPH	LEP 1992	
$0.66 \pm 0.07 \pm 0.09$	99	BATTLE	94 CLEO	$E_{\mathrm{cm}}^{e \mathrm{e}}$ \% 10	
- We do not use the following data for averages, fits, limits, etc. - . -					
$0.72 \pm 0.04 \pm 0.04$	728	BUSKULIC	96 ALEP	Repl. by B	TE 99
0.59 ± 0.18	16	mills	84 DLCO	$\mathrm{E}_{\mathrm{cm}}^{\mathrm{ee}}=29$	
1.3 ± 0.5	15	bLocker	82B MRK2	$E_{\text {cm }}^{e e}=3.9$	
${ }^{1}$ The correlation coefficient between this measurement and the ABBIENDI 01」 $\mathrm{B}\left(\tau^{-} \rightarrow\right.$ $K^{-} \geq 0 \pi^{0} \geq 0 K^{0} \geq 0 \gamma \nu_{\tau}$) is 0.60 .					

$\Gamma\left(K^{-} \nu_{\tau}\right) / \Gamma\left(e^{-} \nu_{e} \nu_{\tau}\right)$
Γ_{10} / Γ_{5}
$\operatorname{VALUE}\left(\right.$ units $\left.10^{-2}\right) \quad E V T S$
DOCUMENT ID TECN COMMENT
3.91 ± 0.05 OUR FIT
$3.882 \pm 0.032 \pm 0.057 \quad 25 \mathrm{k} \quad{ }^{1}$ AUBERT $\quad 10 \mathrm{~F}$ BABR $467 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{\mathrm{e}}=10.6 \mathrm{GeV}$
${ }^{1}$ See footnote to AUBERT 10F $\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} e_{\tau}\right)$ for correlations with other measurements.
$\Gamma\left(K^{-} \nu_{\tau}\right) / \Gamma\left(\pi^{-} \nu_{\tau}\right)$
Γ_{10} / Γ_{9}
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{64 \text { DOCUMENT ID TECN COMMENT }}$
6.44 ± 0.09 OUR FIT

- - We use the following data for averages but not for fits. - - -
$\mathbf{6 . 5 3 1} \pm \mathbf{0 . 0 5 6} \pm \mathbf{0 . 0 9 3} \quad 1$ AUBERT 10 F BABR $467 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ ${ }^{1}$ Not independent of AUBERT 10F $\Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.\kappa^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$.
$\Gamma\left(h^{-} \geq 1\right.$ neutrals $\left.\nu_{\tau}\right) / \Gamma_{\text {total }}$ $\Gamma_{11} / \Gamma=\left(\Gamma_{14}+\Gamma_{16}+\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+0.15344 \Gamma_{36}+0.15344 \Gamma_{38}+\right.$ $0.15344 \Gamma_{41}+0.15344 \Gamma_{43}+0.0942 \Gamma_{48}+0.0942 \Gamma_{52}+0.7212 \Gamma_{150}+0.7212 \Gamma_{152}+$ $\left.0.7212 \Gamma_{154}+0.1107 \Gamma_{156}+0.0840 \Gamma_{178}+0.0840 \Gamma_{179}+0.0840 \Gamma_{180}\right) / \Gamma$
VALUE (\%) DOCUMENTID TECN COMMENT
37.01 ± 0.09 OUR FIT
- - We do not use the following data for averages, fits, limits, etc. - - -

$36.14 \pm 0.33 \pm 0.58$	1	AKERS	94 E	OPAL
$38.4 \pm 1.2 \pm 1.0$	2 BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$42.7 \pm 2.0 \pm 2.9$	BERGER	85	PLUT	$E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$

${ }^{1}$ Not independent of ACKERSTAFF 98M $\mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ and $\mathrm{B}\left(h^{-} \geq 2 \pi^{0} \nu_{\tau}\right)$ values.
${ }^{2}$ BURCHAT 87 quote for $\mathrm{B}\left(\pi^{ \pm} \geq 1\right.$ neutral $\left.\nu_{\tau}\right)=0.378 \pm 0.012 \pm 0.010$. We add 0.006 to account for contribution from $\left(K^{*-} \nu_{\tau}\right)$ which they fixed at $\mathrm{BR}=0.013$.
$\Gamma\left(h^{-} \underset{\sim 120}{\geq 1} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\nu} \boldsymbol{\tau}\left(\right.\right.$ ex. $\left.\left.K^{\mathbf{0}}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 2}} / \Gamma$ $\left.0.3268 \Gamma_{154}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{3 6 . 5 1} \mathbf{\pm 0 . 0 9} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT

- - We use the following data for averages but not for fits. - - -
$\mathbf{3 6 . 6 4 1} \pm \mathbf{0 . 1 5 5} \pm \mathbf{0 . 1 2 7} \quad 45 \mathrm{k} \quad{ }^{1}$ ABDALLAH 06 A DLPH 1992-1995 LEP runs
${ }^{1}$ See footnote to ABDALLAH 06A $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
$\Gamma\left(h^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \begin{aligned} \text { EVTS } \\ \Gamma_{13} / \Gamma=\left(\Gamma_{14}+\Gamma_{16}\right) / \Gamma\end{aligned}$
$\frac{\text { VALUE }(\%)}{25.93} \pm 0.09$ OUR FIT ${ }^{\text {EVTS }}$
25.73 ± 0.16 OUR AVERAGE
$25.67 \pm 0.01 \pm 0.39 \quad 5.4 \mathrm{M}$
$25.740 \pm 0.201 \pm 0.138 \quad 35 k$
$25.89 \pm 0.17 \pm 0.29$
$25.05 \pm 0.35 \pm 0.50 \quad 6613$
$25.87 \pm 0.12 \pm 0.42 \quad 51 \mathrm{k} \quad{ }^{2}$ ARTUSO $\quad 94 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

${ }^{1}$ BEHREND 84 assume a flat nonresonant mass distribution down to the $\rho(770)$ mass, using events with mass above 1300 to set the level.
$\Gamma\left(K^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{16} / Γ
VALUE (\%) EVTS DOCUMENT ID TECN COMMENT
0.433 ± 0.015 OUR FIT
0.426 ± 0.016 OUR AVERAGE
$0.416 \pm 0.003 \pm 0.018 \quad 78 \mathrm{k} \quad$ AUBERT $\quad 07 \mathrm{AP}$ BABR $230 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$0.471 \pm 0.059 \pm 0.023 \quad 360 \quad$ ABBIENDI 04 J OPAL 1991-1995 LEP runs
$0.444 \pm 0.026 \pm 0.024 \quad 923$ BARATE 99 k ALEP 1991-1995 LEP runs
$0.51 \pm 0.10 \pm 0.07 \quad 37 \quad$ BATTLE 94 CLEO $E_{C m}^{e e} \approx 10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - •
$0.52 \pm 0.04 \pm 0.05 \quad 395$ BUSKULIC 96 ALEP Repl. by BARATE 99k
$\Gamma\left(h^{-} \geq 2 \pi^{0} \nu_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \quad \Gamma_{17} / \Gamma=\left(\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+0.15344 \Gamma_{36}+0.15344 \Gamma_{38}+0.15344 \Gamma_{41}+\quad{ }^{015}\right.$
$\Gamma_{17} / \Gamma=\left(\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+0.15344 \Gamma_{36}+0.15344 \Gamma_{38}+0.15344 \Gamma_{41}+\right.$ $\left.0.15344 \Gamma_{43}+0.09419 \Gamma_{48}+0.0942 \Gamma_{52}+0.3268 \Gamma_{150}+0.3268 \Gamma_{152}+0.3268 \Gamma_{154}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{1 0 . 8 1} \pm \mathbf{0 . 0 9} \text { OUR FIT }} \stackrel{\text { EVTS }}{ }$
$\mathbf{9 . 9 1} \pm \mathbf{0 . 3 1} \pm \mathbf{0 . 2 7} \quad$ ACKERSTAFF 98M OPAL 1991-1995 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - -

$9.89 \pm 0.34 \pm 0.55$		${ }^{1}$ AKERS	94 E	OPAL	Repl. by ACKER- STAFF 98m
$14.0 \pm 1.2 \pm 0.6$	938	2 BEHREND	90	CELL	$E_{\mathrm{Cm}}^{e \mathrm{ec}}=35 \mathrm{GeV}$
$12.0 \pm 1.4 \pm 2.5$		${ }^{3}$ BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$13.9 \pm 2.0 \pm 1.9$		${ }^{4}$ AIHARA	86E	TPC	$E_{\mathrm{Cm}}^{e \mathrm{e}}=29 \mathrm{GeV}$

${ }^{1}$ AKERS 94E not independent of AKERS 94E $\mathrm{B}\left(h^{-} \geq 1 \pi^{0} \nu_{\tau}\right)$ and $\mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ mea-
2 No independent of BEHREND $90 \Gamma\left(h^{-} 2 \pi^{0} \nu_{\tau}\left(\exp . K^{0}\right)\right)$ and $\Gamma\left(h^{-} \geq 3 \pi^{0} \nu_{\tau}\right)$.
${ }^{3}$ Error correlated with BURCHAT $87 \Gamma\left(\rho^{-} \nu_{e}\right) / \Gamma($ total $)$ value.
${ }^{4}$ AIHARA $86 \mathrm{E}(\mathrm{TPC})$ quote $\mathrm{B}\left(2 \pi^{0} \pi^{-} \nu_{\tau}\right)+1.6 \mathrm{~B}\left(3 \pi^{0} \pi^{-} \nu_{\tau}\right)+1.1 \mathrm{~B}\left(\pi^{0} \eta \pi^{-} \nu_{\tau}\right)$.
 by 0.990 ± 0.010 to remove these corrections to $\mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ ．
$\Gamma\left(\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0}} / \Gamma$ $\operatorname{VALUE}(\%)$ EVTS

DOCUMENT ID
－TECN COMMENT
－
9.26 ± 0.10 OUR FIT
$\mathbf{9 . 2 3 9} \pm \mathbf{0 . 0 8 6} \pm \mathbf{0 . 0 9 0} \quad 31 \mathrm{k} \quad 1$ SCHAEL 05 C ALEP 1991－1995 LEP runs －－We do not use the following data for averages，fits，limits，etc．－－
$9.21 \pm 0.13 \pm 0.11 \quad{ }^{2}$ BUSKULIC 96 ALEP Repl．by SCHAEL 05C
${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations
2 with other measurements．
${ }^{2}$ Not independent of BUSKULIC $96 \mathrm{~B}\left(h^{-} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right)$ and $\mathrm{B}\left(K^{-} 2 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right)$ values．
$\Gamma\left(\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right.$, scalar $) / \Gamma\left(\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) \quad \Gamma_{\mathbf{2 1}} / \Gamma_{\mathbf{2 0}}$ $\frac{V \operatorname{VALUE}}{<\mathbf{0 . 0 9 4}} \quad \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BROWDER } \quad 00} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{4.7 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}}$
${ }^{1}$ Model－independent limit from structure function analysis on contribution to $\mathrm{B}\left(\tau^{-} \rightarrow\right.$ $\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex．$\left.K^{0}\right)$ ）from scalars．

${ }^{1}$ Model－independent limit from structure function analysis on contribution to $\mathrm{B}\left(\tau^{-} \rightarrow\right.$ $\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex．$\left.\left.K^{0}\right)\right)$ from vectors．

$\Gamma\left(K^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }}$				Γ_{23} / Γ		
VALUE（units 10－4）	EVTS	DOCUMENT ID		TECN	COMMENT	
6．5土 2.2 OUR FIT						
5．8土 $\mathbf{2 . 4}$ OUR AVERAGE						
$5.6 \pm 2.0 \pm 1.5$	131	BARATE	99k	ALEP	1991－1995	runs
$9 \pm 10 \pm 3$	3	${ }^{1}$ BATTLE	94	CLEO	$E_{\mathrm{cm}}^{e e} \approx 10$	
－－We do not use the following data for averages，fits，limits，etc．－－						
$8 \pm 2 \pm 2$	59	BUSKULIC	96	ALEP	Repl．by B	TE 99k
${ }^{1}$ BATTLE 94 quote $(14 \pm 10 \pm 3) \times 10^{-4}$ or $<30 \times 10^{-4}$ at $90 \% \mathrm{CL}$ ．We subtract $(5 \pm 2) \times 10^{-4}$ to account for $\tau^{-} \rightarrow K^{-}\left(K^{0} \rightarrow \pi^{0} \pi^{0}\right) \nu_{\tau}$ background．						

VALUE（units 10^{-4} ）EVTS

6．5士 2．2 OUR FIT

2．4 OUR AVERAGE
－ 131
－－We do not use the following data for averages，fits，limits，etc．－．－
$8 \pm 2 \pm 2 \quad 59$ BUSKULIC 96 ALEP Repl．by BARATE 99k $(5 \pm 2) \times 10^{-4}$ to account for $\tau^{-} \rightarrow K^{-}\left(K^{0} \rightarrow \pi^{0} \pi^{0}\right) \nu_{\tau}$ background．

VALUE（\％）EVTS DOCUMENTID TECN COMMENT
1.34 ± 0.07 OUR FIT
－－We do not use the following data for averages，fits，limits，etc．－－－
$1.53 \pm 0.40 \pm 0.46 \quad 186 \quad$ DECAMP \quad 92C ALEP Repl．by SCHAEL 05C
$3.2 \pm 1.0 \pm 1.0 \quad$ BEHREND 90 CELL $E_{\mathrm{Cm}}^{e e}=35 \mathrm{GeV}$
$\Gamma\left(h^{-} \geq 3 \pi^{0} \nu_{\boldsymbol{\tau}}\right.$（ex．$\left.K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 5}} / \Gamma$ $\Gamma_{25} / \Gamma=\left(\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+0.3268 \Gamma_{150}+0.3268 \Gamma_{152}+0.3268 \Gamma_{154}\right) / \Gamma$
VALUE（\％）EVTS DOCUMENTID TECN COMMENT
$\begin{array}{llllll}1.25 \pm \mathbf{0 . 0 7} \text { OUR FIT } & & & & & \\ 1.403 \pm 0.214 \pm 0.224 & 1.1 \mathrm{k} & 1 \text { ABDALLAH } & \text { 06A DLPH } & \text { 1992－1995 LEP runs }\end{array}$
${ }^{1}$ See footnote to ABDALLAH 06A $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements．
$\Gamma\left(h^{-} 3 \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{26} / \Gamma$ $\Gamma_{26} / \Gamma=\left(\Gamma_{27}+\Gamma_{28}+0.15344 \Gamma_{41}+0.15344 \Gamma_{43}+0.3268 \Gamma_{152}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{1.18 \pm 0.07 \text { OUR FIT }}$ EVTS TECUMENTID COMMENT
$\mathbf{1 . 1 8} \pm \mathbf{0 . 0 7}$ OUR FIT
$\mathbf{1 . 2 1} \mathbf{0} \mathbf{0 . 1 7}$ OUR AVERAGE Error includes scale factor of 1．2．
$1.70 \pm 0.24 \pm 0.38 \quad 293$ ACCIARRI 95 L3 1992 LEP run
－－We use the following data for averages but not for fits．－－－
$1.15 \pm 0.08 \pm 0.13 \quad{ }^{1}$ PROCARIO 93 CLEO $E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－•
$1.24 \pm 0.09 \pm 0.11 \quad 2.3 \mathrm{k} \quad 2$ BUSKULIC 96 ALEP Repl．by SCHAEL 05C
$0.0{ }_{-0.1}^{+1.4}{ }_{-0.1}^{+1.1} \quad 3 \mathrm{GAN} \quad 87$ MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
${ }^{1}$ PROCARIO 93 entry is obtained from $\mathrm{B}\left(h^{-} 3 \pi^{0} \nu_{\tau}\right) / \mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ using ARTUSO 94 result for $\mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ ．
${ }^{2}$ BUSKULIC 96 quote $\mathrm{B}\left(h^{-} 3 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right)=1.17 \pm 0.09 \pm 0.11$ ．We add 0.07 to remove their correction for K^{0} backgrounds．
${ }^{3}$ Highly correlated with GAN $87 \Gamma\left(\eta \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ value．Authors quote $\mathrm{B}\left(\pi^{ \pm} 3 \pi^{0} \nu_{\tau}\right)+0.67 \mathrm{~B}\left(\pi^{ \pm} \eta \pi^{0} \nu_{\tau}\right)=0.047 \pm 0.010 \pm 0.011$.
$\Gamma\left(h^{-} \begin{array}{l}\left.3 \pi^{0} \nu_{\tau}\right) / \Gamma\left(h^{-} \pi^{0} \nu_{\tau}\right) \\ \Gamma_{26} / \Gamma_{13}=\left(\Gamma_{27}+\Gamma_{28}+0.15344 \Gamma_{41}+0.15344 \Gamma_{43}+0.3268 \Gamma_{152}\right) /\left(\Gamma_{14}+\Gamma_{16}\right) \\ \Gamma_{26} / \Gamma_{13}\end{array}\right.$
VALUE（units 10^{-2} ）DOCUMENT ID TECN COMMENT
4.54 ± 0.28 OUR FIT
$4.4 \pm 0.3 \pm 0.5$

${ }^{1}$ PROCARIO 93 CLEO $E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$

${ }^{1}$ PROCARIO 93 quote $0.041 \pm 0.003 \pm 0.005$ after correction for 2 kaon backgrounds assuming $\mathrm{B}\left(K^{*-} \nu_{\tau}\right)=1.42 \pm 0.18 \%$ and $\mathrm{B}\left(h^{-} K^{0} \pi^{0} \nu_{\tau}\right)=0.48 \pm 0.48 \%$ ．We add 0.003 ± 0.003 and multiply the sum by 0.990 ± 0.010 to remove these corrections
$\Gamma\left(\pi^{-} 3 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
Γ_{27} / Γ
$\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 0 4} \pm \mathbf{0 . 0 7} \text { OUR FIT }}$
DOCUMENT ID TECN COMMENT
$\mathbf{0 . 9 7 7} \pm \mathbf{0 . 0 6 9} \pm \mathbf{0 . 0 5 8} \quad 6.1 \mathrm{k} \quad 1 \mathrm{SCHAEL} \quad 05 \mathrm{C}$ ALEP 1991－1995 LEP runs
${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements．
$\Gamma\left(K^{-} 3 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}, \eta\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{28} / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{4.8 \pm 21 \text { EVTS FIT }}$ DOCUMENT ID TECN COMMENT

4．8土 2．1 OUR FIT
DOCUMENT ID TECN COMMENT
3．7 $\pm 2.1 \pm 1.1 \quad 22 \quad$ BARATE 99 k ALEP 1991－1995 LEP runs
－－We do not use the following data for averages，fits，limits，etc．－－－
$5 \pm 13 \quad{ }^{1}$ BUSKULIC 94 E ALEP Repl．by BARATE 99k ${ }^{1}$ BUSKULIC 94E quote $\mathrm{B}\left(K^{-} \geq 0 \pi^{0} \geq 0 K^{0} \nu_{\tau}\right)-\left[\mathrm{B}\left(K^{-} \nu_{\tau}\right)+\mathrm{B}\left(K^{-} \pi^{0} \nu_{\tau}\right)+\right.$ $\left.\mathrm{B}\left(K^{-} K^{0} \nu_{\tau}\right)+\mathrm{B}\left(K^{-} \pi^{0} \pi^{0} \nu_{\tau}\right)+\mathrm{B}\left(K^{-} \pi^{0} K^{0} \nu_{\tau}\right)\right]=(5 \pm 13) \times 10^{-4}$ accounting for common systematic errors in BUSKULIC 94E and BUSKULIC 94F measurements of these modes．We assume $\mathrm{B}\left(K^{-} \geq 2 K^{0} \nu_{\tau}\right)$ and $\mathrm{B}\left(K^{-} \geq 4 \pi^{0} \nu_{\tau}\right)$ are negligible．
$\Gamma\left(h^{-} 4 \pi^{0} \nu_{\tau}\left(\right.\right.$ ex．$\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
Γ_{29} / Γ $\Gamma_{29} / \Gamma=\left(\Gamma_{30}+0.3268 \Gamma_{150}+0.3268 \Gamma_{154}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{0.16 \pm 0.04 ~ O U R ~ F I T ~ E V T S ~ D O C U M E N T I D ~ T E C N ~ C O M M E N T ~}$

| $\mathbf{0 . 1 6 \pm \mathbf { 0 . 0 4 } \text { OUR FIT }}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0 . 1 6 \pm \mathbf { 0 . 0 5 } \pm \mathbf { 0 . 0 5 }}$ | 1 PROCARIO $\quad 93 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$ | | |

－－We do not use the following data for averages，fits，limits，etc．－－－
$0.16 \pm 0.04 \pm 0.09232{ }^{2}$ BUSKULIC 96 ALEP Repl．by SCHAEL 05C ${ }^{1}$ PROCARIO 93 quotes $\mathrm{B}\left(h^{-} 4 \pi^{0} \nu_{\tau}\right) / \mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)=0.006 \pm 0.002 \pm 0.002$ ．We multiply by the ARTUSO 94 result for $\mathrm{B}\left(h^{-} \pi^{0} \nu_{\tau}\right)$ to obtain $\mathrm{B}\left(h^{-} 4 \pi^{0} \nu_{\tau}\right)$ ．PROCARIO 93 assume $\mathrm{B}\left(h^{-} \geq 5 \pi^{0} \nu_{\tau}\right)$ is small and do not correct for it．
${ }^{2}$ BUSKULIC 96 quote result for $\tau^{-} \rightarrow h^{-} \geq 4 \pi^{0} \nu_{\tau}$ ．We assume $\mathrm{B}\left(h^{-} \geq 5 \pi^{0} \nu_{\tau}\right)$ is negligible．

${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements．

VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
0.382 ± 0.013 OUR FIT				
$\mathbf{0 . 3 8 3} \pm 0.014$ OUR AVERAGE				
$0.386 \pm 0.004 \pm 0.014$	27k	$1{ }^{\text {RYU }}$	14 BELL	$669 \mathrm{fb}{ }^{-1} E_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$0.347 \pm 0.053 \pm 0.037$	299	${ }^{2}$ barate	99K ALEP	1991-1995 LEP runs
$0.294 \pm 0.073 \pm 0.037$	142	${ }^{3}$ barate	98E ALEP	1991-1995 LEP runs
$0.41 \pm 0.12 \pm 0.03$		${ }^{4}$ ACCIARRI	95F L3	1991-1993 LEP
- - We use the following data for averages but not for fits. - -				
$0.417 \pm 0.058 \pm 0.044$		${ }^{5}$ COAN	96 CLE	$E_{\mathrm{cm}}^{e e} \approx 10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.32 \pm 0.11 \pm 0.05 \quad 23 \quad{ }^{6}$ BUSKULIC 96 ALEP Repl. by BARATE 99k				
${ }^{1}$ RYU 14 reconstruct K^{0} 's using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays.				
${ }^{2}$ BARATE $99 K$ measure K^{0}, by detecting K_{L}^{0} 's in their hadron calorimeter.				
${ }^{3}$ BARATE 98E reconstruct K^{0} 's using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays.				
${ }^{4} \mathrm{ACCIARRI} 95 \mathrm{~F}$ do not identify π^{-} / K^{-}and assume $\mathrm{B}\left(K^{-} K^{0} \pi^{0} \nu_{\tau}\right)=(0.05 \pm 0.05) \%$.				
${ }^{5}$ Not independent of COAN $96 \mathrm{~B}\left(h^{-} K^{0} \pi^{0} \nu_{\tau}\right)$ and $\mathrm{B}\left(K^{-} K^{0} \pi^{0} \nu_{\tau}\right)$ measurements.				
${ }^{6}$ BUSKULIC 96 measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter.				

0.22 ± 0.05 OUR AVERAGE

$0.250 \pm 0.057 \pm 0.044$
${ }^{1}$ BARATE $99 k$ ALEP 1991-1995 LEP runs
${ }^{1}$ BARATE 99 K measure K^{0} 's by detecting K_{L}^{0} 's in hadron calorimeter. They determine the $\bar{K}^{0} \rho^{-}$fraction in $\tau^{-} \rightarrow \pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$ decays to be ($0.72 \pm 0.12 \pm 0.10$) and multiply their $\mathrm{B}\left(\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}\right)$ measurement by this fraction to obtain the quoted result.
${ }^{2}$ BARATE 98E reconstruct $K^{0}{ }^{\prime}$ s using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays. They determine the $\bar{K}^{0} \rho^{-}$ fraction in $\tau^{-} \rightarrow \pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$ decays to be ($0.64 \pm 0.09 \pm 0.10$) and multiply their $\mathrm{B}\left(\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}\right)$ measurement by this fraction to obtain the quoted result.
$\Gamma\left(K^{-} K^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{43} / Γ
VALUE (units 10^{-4}) EVTS
15.0 ± 0.7 OUR FIT
$14.9 \pm \mathbf{0 . 7}$ OUR AVERAGE
$14.96 \pm 0.20 \pm 0.74 \quad 8.3 \mathrm{k}$
1 RYU 14 BELL $669 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$15.2 \pm 7.6 \pm 2.1 \quad 15 \quad{ }^{3}$ BARATE \quad 98E ALEP $1991-1995$ LEP runs
$14.5 \pm 3.6 \pm 2.0 \quad 32 \quad$ COAN $\quad 96 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - •
$10 \pm 5 \quad \pm 3 \quad 5 \quad{ }^{4}$ BUSKULIC 96 ALEP Repl. by BARATE 99 K ${ }^{1} \mathrm{RYU} 14$ reconstruct K^{0} 's using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays.
${ }^{2}$ BARATE $99 K$ measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter
${ }^{3}$ BARATE 98E reconstruct K^{0} 's using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays.
${ }^{4}$ BUSKULIC 96 measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter.

$\Gamma\left(K^{-} K^{0} \pi^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{46} / Γ

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.18 \times 10^{-3} \quad 95 \quad 2$ BARATE 99 K ALEP 1991-1995 LEP runs $<0.39 \times 10^{-3} \quad 95 \quad{ }^{3}$ BARATE 98 E ALEP $1991-1995$ LEP runs
${ }^{1}$ BARATE 99R combine the BARATE 98E and BARATE 99 K bounds to obtain this value.
${ }^{2}$ BARATE 99 K measure K^{0} 's by detecting K_{L}^{0} 's in hadron calorimeter.
${ }^{3}$ BARATE 98E reconstruct K^{0} 's by using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays.
$\Gamma\left(\pi^{-} K^{0} \bar{K}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\Gamma_{47} / \Gamma=\left(\Gamma_{48}+\Gamma_{49}+\Gamma_{50}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{0.155 \pm 0.024 \text { OUR FIT }}$ EVTS
DOCUMENT ID \qquad TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - . -
$0.31 \pm 0.12 \pm 0.04 \quad 2$ ACCIARRI 95F L3 1991-1993 LEP runs
${ }^{1}$ BARATE 98E obtain this value by adding twice their $\mathrm{B}\left(\pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\right)$ value to their $\mathrm{B}\left(\pi^{-} K_{S}^{0} K_{L}^{0} \nu_{\tau}\right)$ value.
${ }^{2}$ ACCIARRI 95F assume $\mathrm{B}\left(\pi^{-} K_{S}^{0} K_{S}^{0} \nu\right)=\mathrm{B}\left(\pi^{-} K_{S}^{0} K_{L}^{0} \nu\right)=1 / 2 \mathrm{~B}\left(\pi^{-} K_{S}^{0} K_{L}^{0} \nu\right)$.
$\Gamma\left(\boldsymbol{\pi}^{-} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ Bose-Einstein correlations might make the mixing fraction different than 1/4. $\boldsymbol{\Gamma}_{\mathbf{4 8}} /$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
2.35 ± 0.06 OUR FIT

$2.32 \pm \mathbf{0 . 0 6}$ OUR AVERAGE					
$2.33 \pm 0.03 \pm 0.09$	6.7 k	RYU	14	BELL	$669 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$2.31 \pm 0.04 \pm 0.08$	5.0 k	1 LEES	12 Y	BABR	$468 \mathrm{fb}-1 \quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$2.6 \pm 1.0 \pm 0.5$	6	BARATE	98 E	ALEP	$1991-1995 \mathrm{LEP}$ runs
$2.3 \pm 0.5 \pm 0.3$	42	COAN	96	CLEO	$E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$

${ }^{1}$ The correlation coefficient between this measurement and the LEES $12 \mathrm{Y} \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ one is 0.0828 .
$\Gamma\left(\pi^{-} K_{S}^{0} K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
3.6 ± 1.2 OUR FIT

- - We use the following data for averages but not for fits. - -
$3.1 \pm 2.3 \quad 1$ BARATE 99R ALEP 1991-1995 LEP runs ${ }^{1}$ BARATE 99 R combine BARATE $98 \mathrm{E} \quad \Gamma\left(\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\pi^{-} K_{S}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurements to obtain this value.
$\Gamma\left(\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{52} / Γ
$\frac{V A L U E \text { (units } 10^{-5} \text {) }}{1.82 \pm \mathbf{0 . 2 1} \text { OUR FIT }} \frac{C L \%}{}$

1.82 ± 0.21 OUR FIT

$2.00 \pm 0.22 \pm 0.20 \quad 303 \quad$ RYU 14 BELL $669 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$ $1.60 \pm 0.20 \pm 0.22 \quad 409 \quad 1$ LEES $12 Y$ BABR $468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<20 \quad$ BARATE 98E ALEP 1991-1995 LEP runs
${ }^{1}$ The correlation coefficient between this measurement and the LEES $12 \mathrm{Y} \Gamma\left(\tau^{-} \rightarrow\right.$
$\left.\pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\right) / \Gamma_{0}$ one is 0.0828 . $\left.\pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ one is 0.0828 .

$\Gamma\left(f_{1}(1420) \pi^{-} \nu_{\tau} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$				Γ_{55} / Γ
VALUE (units 10^{-6})	DOCU	TECN	COMMENT	
$2.4 \pm 0.5 \pm 0.6$	RYU	BELL	$669 \mathrm{fb}^{-1}$	

$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{-} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{K}_{\boldsymbol{L}}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }}$		
VALUE (units $\left.10^{-4}\right)$	EVTS	$\boldsymbol{\Gamma}_{\mathbf{5 6}} / \boldsymbol{\Gamma}$
DOCUMENT ID		

VALUE (units 10^{-4}) EVTS
3.2 ± 1.2 OUR FIT
$\Gamma\left(\pi^{-} K_{L}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
BARATE 98E ALEP 1991-1995 LEP runs
$\Gamma_{57} / \Gamma=\Gamma_{52} / \Gamma$
VALUE (units 10^{-5})
1.82 ± 0.21 OUR FIT
$\Gamma\left(K^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\right) / \Gamma_{\text {tota }}$
$\frac{V A L U E}{<\mathbf{6 . 3} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{90}$
$\begin{array}{lll}\text { DOCUMENT ID } \\ \text { LEES } & 12 \mathrm{Y} & \\ \text { TECN } \\ \text { BABR } & \Gamma_{\mathbf{5 8}} / \boldsymbol{\Gamma} \\ 468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}\end{array}$
$\Gamma\left(K^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<4.0 \times 10^{-7}} \frac{C L \%}{90}$

- - We use the following data for averages but not for fits. - - -
$\mathbf{0 . 1 5 3} \pm \mathbf{0 . 0 3 0} \pm \mathbf{0 . 0 1 6} \quad 74 \quad 1$ BARATE \quad 98E ALEP $1991-1995$ LEP runs
τ

$13.5 \pm 0.3 \pm 0.3$		ABACHI	89B	HRS	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$12.8 \pm 1.0 \pm 0.7$		${ }^{1}$ BURCHAT	87	MRK2	$E_{\mathrm{Cm}}^{\mathrm{ee}}=29 \mathrm{GeV}$
$12.1 \pm 0.5 \pm 1.2$		RUCKSTUHL	86	DLCO	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$12.8 \pm 0.5 \pm 0.8$	1420	SCHMIDKE	86	MRK2	$E_{\mathrm{Cm}}^{\mathrm{ee}}=29 \mathrm{GeV}$
$15.3 \pm 1.1 \begin{aligned} & +1.3 \\ & -1.6\end{aligned}$	367	ALTHOFF	85	TASS	$E_{\mathrm{Cm}}^{e e}=34.5 \mathrm{GeV}$
$13.6 \pm 0.5 \pm 0.8$		BARTEL	85F	JADE	$E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$
$12.2 \pm 1.3 \pm 3.9$		${ }^{2}$ BERGER	85	PLUT	$E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$
$13.3 \pm 0.3 \pm 0.6$		FERNANDEZ	85	MAC	$E_{\mathrm{Cm}}^{e \mathrm{et}}=29 \mathrm{GeV}$
24 ± 6	35	BRANDELIK	80	TASS	$E_{\mathrm{Cm}}^{e \mathrm{e}}=30 \mathrm{GeV}$
32 ± 5	692	${ }^{3}$ BACINO	78B	DLCO	$E_{\mathrm{Cm}}^{e e}=3.1-7.4 \mathrm{GeV}$
35 ± 11		${ }^{3}$ BRANDELIK	78	DASP	Assumes $V-A$ decay
18 ± 6.5	33	3 JAROS	78	LGW	$E_{\mathrm{Cm}}^{e \mathrm{e}}>6 \mathrm{GeV}$

${ }^{1}$ BURCHAT 87 value is not independent of SCHMIDKE 86 value

${ }^{2}$ Not independent of BERGER $85 \Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma_{\text {total }}, \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}, \Gamma\left(h^{-} \geq 1\right.$
neutrals $\left.\nu_{\tau}\right) / \Gamma_{\text {total }}$, and $\Gamma\left(h^{-} \geq 0 K_{L}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$, and therefore not used in the fit.
${ }^{3}$ Low energy experiments are not in average or fit because the systematic errors in background subtraction are judged to be large.
$\Gamma\left(\boldsymbol{h}^{-} \boldsymbol{h}^{-} \boldsymbol{h}^{+} \geq \mathbf{0}\right.$ neutrals $\nu_{\boldsymbol{\tau}}$ (ex. $\left.\boldsymbol{K}_{\boldsymbol{S}}^{0} \rightarrow \pi^{+} \pi^{-}\right)\left({ }^{\text {" }} 3\right.$-prong" $)$) $/ \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6 3}} / \Gamma$ $\Gamma_{63} / \Gamma^{2}=\left(\Gamma_{70}+\Gamma_{78}+\Gamma_{85}+\Gamma_{86}+\Gamma_{97}+\Gamma_{103}+\Gamma_{106}+\Gamma_{107}+0.2789 \Gamma_{150}+\right.$ $\left.0.2789 \Gamma_{152}+0.2789 \Gamma_{154}+0.492 \Gamma_{170}+0.9078 \Gamma_{178}+0.9078 \Gamma_{179}+0.9078 \Gamma_{180}\right) / \Gamma$

- - We use the following data for averages but not for fits. - - -

14.652 ± 0.067		SCHAEL		05C ALEP	1991-1995 LEP runs
$14.569 \pm 0.093 \pm 0.048$	23 k	2 ABREU	01M DLPH	$1992-1995$ LEP runs	
$14.22 \pm 0.10 \pm 0.37$		${ }^{3}$ BALEST	95C CLEO	$E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$	

- - We do not use the following data for averages, fits, limits, etc. - - -

15.26 ± 0.26	± 0.22	ACTON	92 H	OPAL	Repl. by AKERS 95Y
13.3	± 0.3	± 0.8	4 ALBRECHT	92 D	ARG
$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$					
14.35	${ }_{-0.45}^{+0.40} \pm 0.24$	DECAMP	92 C	ALEP	$1989-1990$ LEP runs

$\Gamma\left(h^{-} h^{-} h^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\nu_{\tau}\left(\right.$ ex. $\left.K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$

$\Gamma_{66} / \Gamma=\left(\Gamma_{70}+\Gamma_{97}+\Gamma_{106}+0.492 \Gamma_{170}\right) / \Gamma$		Γ_{66} / Γ
VALUE (\%)	DOCUMENT ID	
9.43 ± 0.05 OUR FIT		
$\Gamma\left(\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$	$\Gamma_{67} / \Gamma=\left(0.34598 \Gamma_{36}+\Gamma_{70}+0.0153 \Gamma_{178}\right) / \Gamma$	
VALUE (\%)	DOCUMENT ID	

$\operatorname{VALUE}(\%) \quad{ }_{\text {total }}$
9.31 ± 0.05 OUR FIT

$\Gamma\left(\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}, \omega\right)\right) / \Gamma_{\text {total }}$
Γ_{70} / Γ
$\frac{\operatorname{VALUE}(\%)}{8.99+0.05}$ OUR FIT
DOCUMENT ID
TECN COMMENT
$\mathbf{9 . 0 4 1} \pm \mathbf{0 . 0 6 0} \pm \mathbf{0 . 0 7 6} \quad 29 \mathrm{k} \quad 1 \mathrm{SCHAEL} \quad 05 \mathrm{C}$ ALEP 1991-1995 LEP runs
${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
$\Gamma\left(\boldsymbol{h}^{-} \boldsymbol{h}^{-} \boldsymbol{h}^{+} \geq 1\right.$ neutrals $\left.\boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \quad \Gamma_{71} / \Gamma_{71}$ $\Gamma_{71} / \Gamma=\left(0.34598 \Gamma_{41}+0.34598 \Gamma_{43}+0.4247 \Gamma_{48}+0.4247 \Gamma_{52}+\Gamma_{78}+\Gamma_{85}+\Gamma_{86}+\right.$ $\Gamma_{103}+\Gamma_{107}+0.2789 \Gamma_{150}+0.2789 \Gamma_{152}+0.2789 \Gamma_{154}+0.2926 \Gamma_{156}+0.893 \Gamma_{178}+$ $\left.0.893 \Gamma_{179}+0.9078 \Gamma_{180}\right) / \Gamma$

VALUE (\%)
5.29 ± 0.05 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - -
$5.6 \pm 0.7 \pm 0.3 \quad 352 \quad{ }^{1}$ BEHREND $90 \quad$ CELL $\quad E_{\mathrm{Cm}}^{e e e}=35 \mathrm{GeV}$
$4.2 \pm 0.5 \pm 0.9203 \quad 2$ ALBRECHT 87 L ARG $E_{\mathrm{Cm}}^{e e e}=10 \mathrm{GeV}$
$6.1 \pm 0.8 \pm 0.9 \quad{ }^{3}$ BURCHAT 87 MRK2 $E_{\mathrm{Cm}}^{e}=29 \mathrm{GeV}$
$7.6 \pm 0.4 \pm 0.9 \quad 4,5$ RUCKSTUHL $86 \quad$ DLCO $E_{C m}^{e e}=29 \mathrm{GeV}$
$4.7 \pm 0.5 \pm 0.8 \quad 530 \quad 6$ SCHMIDKE 86 MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$5.6 \pm 0.4 \pm 0.7 \quad 5$ FERNANDEZ 85 MAC $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$6.2 \pm 2.3 \pm 1.7 \quad$ BEHREND 84 CELL $E_{C m}^{e e e}=14,22 \mathrm{GeV}$
${ }^{1}$ BEHREND 90 value is not independent of BEHREND $90 \mathrm{~B}\left(3 h \nu_{\tau} \geq 1\right.$ neutrals $)+$ B(5-prong).
${ }^{2}$ ALBRECHT 87L measure the product of branching ratios $\mathrm{B}\left(3 \pi^{ \pm} \pi^{0} \nu_{\tau}\right) \mathrm{B}\left((e \bar{\nu}\right.$ or $\mu \bar{\nu}$ or π or K or $\left.\rho) \nu_{\tau}\right)=0.029$ and use the PDG 86 values for the second branching ratio which sum to 0.69 ± 0.03 to get the quoted value.
${ }^{3}$ BURCHAT 87 value is not independent of SCHMIDKE 86 value.
${ }^{4}$ Contributions from kaons and from $>1 \pi^{0}$ are subtracted. Not independent of (3-prong $+0 \pi^{0}$) and (3-prong $+\geq 0 \pi^{0}$) values.
${ }^{5}$ Value obtained using paper's $R=\mathrm{B}\left(h^{-} h^{-} h^{+} \nu_{\tau}\right) / \mathrm{B}(3$-prong) and current B (3-prong) $=0.143$.
${ }^{6}$ Not independent of SCHMIDKE $86 h^{-} h^{-} h^{+} \nu_{\tau}$ and $h^{-} h^{-} h^{+}\left(\geq 0 \pi^{0}\right) \nu_{\tau}$ values.

$$
\Gamma\left(h^{=} h^{-} h^{+} \geq 1 \pi^{0} \nu_{\tau}\left(\text { ex. } K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{72} / \Gamma=\left(\Gamma_{78}+\Gamma_{85}+\Gamma_{86}+\Gamma_{103}+\Gamma_{107}+0.2292 \Gamma_{150}+0.2292 \Gamma_{152}+0.2292 \Gamma_{154}+\right.
$$ $\left.0.893 \Gamma_{178}+0.893 \Gamma_{179}+0.9078 \Gamma_{180}\right) / \Gamma$

VALUE (\%) DOCUMENTID EVTS TECN COMMENT
5.09 ± 0.05 OUR FIT
5.10 ± 0.12 OUR AVERAGE

- - We use the following data for averages but not for fits. • - -
$5.106 \pm 0.083 \pm 0.103 \quad 10.1 \mathrm{k} \quad 1$ ABDALLAH \quad 06A DLPH $1992-1995$ LEP runs $5.09 \pm 0.10 \pm 0.23 \quad 2$ AKERS $\quad 95$ Y OPAL 1991-1994 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - - -
$4.95 \pm 0.29 \pm 0.65 \quad 570 \quad$ DECAMP 92C ALEP Repl. by SCHAEL 05C
${ }^{1}$ See footnote to ABDALLAH 06A $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations 2 with other measurements.
2 Not independent of AKERS 95Y $\mathrm{B}\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\nu_{\tau}\left(\right.$ ex. $\left.K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$) and $\mathrm{B}\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right) / \mathrm{B}\left(h^{-} h^{-} h^{+} \geq 0\right.$ neutrals $\nu_{\tau}\left(\right.$ ex. $k_{S}^{0} \rightarrow$ $\left.\pi^{+} \pi^{-}\right)$) values.
$\Gamma\left(\boldsymbol{h}^{-} \boldsymbol{h}^{-} \boldsymbol{h}^{+} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{7 3}} / \Gamma$ $\Gamma_{73} / \Gamma=\left(0.34598 \Gamma_{41}+0.34598 \Gamma_{43}+\Gamma_{78}+\Gamma_{103}+\Gamma_{107}+0.2292 \Gamma_{152}+0.893 \Gamma_{178}+\right.$ $\left.0.893 \Gamma_{179}+0.0153 \Gamma_{180}\right) / \Gamma$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{4 . 7 6} \mathbf{0 . 0 5} \text { OUR FIT }} \stackrel{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
$4.45 \pm 0.09 \pm 0.07 \quad 6.1 \mathrm{k} \quad{ }^{1}$ BUSKULIC 96 ALEP Repl. by SCHAEL 05C
${ }^{1}$ BUSKULIC 96 quote $\mathrm{B}\left(h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)=4.30 \pm 0.09 \pm 0.09$. We add 0.15 to remove their K^{0} correction and reduce the systematic error accordingly.

VALUE (\%) DOCUMENTID TECN COMMENT
4.49 ± 0.05 OUR FIT
4.55 $\pm \mathbf{0 . 1 3}$ OUR AVERAGE Error includes scale factor of 1.6.
$\begin{array}{lllll}4.598 \pm 0.057 \pm 0.06416 \mathrm{k} & 1 \mathrm{SCHAEL} & 05 \mathrm{C} & \text { ALEP } & 1991-1995 \mathrm{LEP} \text { runs } \\ 4.19 \pm 0.10 \pm 0.21 & { }^{2} \text { EDWARDS } & 00 \mathrm{~A} & \text { CLEO } & 4.7 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}\end{array}$
${ }^{1}$ SCHAEL 05 C quote $(4.590 \pm 0.057 \pm 0.064) \%$. We add 0.008% to remove their correction
for $\tau^{-} \rightarrow \pi^{-} \pi^{0} \omega \nu_{\tau} \rightarrow \pi^{-} \pi^{0} \pi^{+} \pi^{-} \nu_{\tau}$ decays. See footnote to SCHAEL 05C
$\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
2 EDWARDS 00A quote $(4.19 \pm 0.10) \times 10^{-2}$ with a 5% systematic error.

$\Gamma\left(\pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}, \omega\right)\right) / \Gamma_{\text {total }}$	Γ_{78} / Γ		
VALUE (\%) DOCUMENT ID			
2.74 ± 0.07 OUR FIT			
$\Gamma\left(h^{-} \rho \pi^{0} \nu_{\tau}\right) / \Gamma\left(h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\right)$	TECN COMMENT		$\Gamma_{79} / \Gamma_{73}$
VALUE EVTS DOCUMENT ID			
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.30 \pm 0.04 \pm 0.02393$ ALBRECHT 91D	ARG	$E_{\mathrm{cm}}^{e e}=9.4$	6 GeV
$\Gamma\left(h^{-} \rho^{+} h^{-} \nu_{\tau}\right) / \Gamma\left(h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\right)$			$\Gamma_{80} / \Gamma_{73}$
VALUE DOCUMENT ID	TECN	COMMENT	

- - We do not use the following data for averages, fits, limits, etc. - • -

$0.10 \pm 0.03 \pm 0.04$	142	ALBRECHT	91D	ARG	$E_{\mathrm{Cm}}^{e}{ }_{\text {en }}^{e}=9$. 6 GeV
$\Gamma\left(h^{-} \rho^{-} h^{+} \nu_{\tau}\right) / \Gamma\left(h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\right)$						$\Gamma_{81} /$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.26 \pm 0.05 \pm 0.01 \quad 370 \quad$ ALBRECHT 91D ARG $E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$

0.505 ± 0.031 OUR FIT

Lepton Particle Listings
τ

$\begin{aligned} & \Gamma\left(h^{-} \boldsymbol{h}^{-} \boldsymbol{h}^{+} 2 \pi^{0} \nu_{\boldsymbol{\tau}}\left(\text { ex. } K^{0}\right)\right) / \Gamma_{\text {total }} \\ & \Gamma_{84} / \Gamma=\left(\Gamma_{85}+0.2292 \Gamma_{150}+0.2292 \Gamma_{154}+0.893 \Gamma_{180}\right) / \Gamma \end{aligned}$					Γ_{84} / Γ
VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT	
0.495 ± 0.031 OUR FIT					
$0.435 \pm 0.030 \pm 0.035$	$\begin{aligned} & 2.6 \mathrm{k} \\ & \text { e follow } \end{aligned}$	${ }^{1}$ SCHAEL 05C data for averages, fits,	ALEP limits,	1991-1995 LEP tc. •••	
$0.50 \pm 0.07 \pm 0.07$	1.8 k	BUSKULIC	ALEP	Repl. by S	05c
${ }^{1}$ SCHAEL 05 C quote $(0.392 \pm 0.030 \pm 0.035) \%$. We add 0.043% to remove their correction for $\tau^{-} \rightarrow \pi^{-} \eta \pi^{0} \nu_{\tau} \rightarrow \pi^{-} \pi^{+} \pi^{-} 2 \pi^{0} \nu_{\tau}$ and $\tau^{-} \rightarrow K^{*}(892)^{-} \eta \nu_{\tau} \rightarrow$ $K^{-} \pi^{+} \pi^{-} 2 \pi^{0} \nu_{\tau}$ decays. See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.					
3.26 ± 0.20 OUR FIT	EVTS	DOCUMENTID	TECN	COMMENT	
$3.4 \pm 0.2 \pm 0.3$	668	BORTOLETTO93	CLEO	$E_{\mathrm{cm}}^{e}{ }_{\text {en }} \approx 10.6$	
$\Gamma\left(h^{-} h^{-} h^{+} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}, \omega, \eta\right)\right) / \Gamma_{\text {total }}$					Γ_{85} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{10 \pm 4 \text { OUR FIT }}$		DOCUMENT ID			
$\Gamma\left(h^{-} h^{-} h^{+} 3 \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$		$\Gamma_{86} / \Gamma=\left(0.4247 \Gamma_{52}+\Gamma_{87}+0.1131 \Gamma_{156}\right) / \Gamma$			
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 1 3} \mathbf{0 . 3 0} \text { OUR FIT }} \frac{C L \%}{\text { EVTS }}$					
$2.2 \pm 0.3 \pm 0.4$	139	ANASTASSOV 01	CLEO	$E_{\mathrm{cm}}^{e e}=10.6$	
- - We do not use the following data for averages, fits, limits, etc. - -					
$\begin{array}{ll} <4.9 \\ 2.85 \pm 0.56 \pm 0.51 \end{array}$		SCHAEL $\quad 05 \mathrm{C}$	ALEP	1991-1995 L	runs
	57	ANDERSON 97	CLEO	Repl. by AN	
$11 \pm 4 \pm 5$	440	${ }^{1}$ BUSKULIC 96		Repl. by SCh	Ael 05c
${ }^{1}$ BUSKULIC 96 state their measurement is for $\mathrm{B}\left(h^{-} h^{-} h^{+} \geq 3 \pi^{0} \nu_{\tau}\right)$. We assume that $\mathrm{B}\left(h^{-} h^{-} h^{+} \geq 4 \pi^{0} \nu_{\tau}\right)$ is very small.					

$\Gamma\left(2 \pi^{-} \pi^{+} 3 \pi^{0} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
$\Gamma_{87} / \Gamma=\left(\Gamma_{89}+0.2292 \Gamma_{151}+0.3268 \Gamma_{160}+0.893 \Gamma_{182}\right) / \Gamma$
Γ_{87} / Γ

$$
\Gamma_{87} / \Gamma=\left(\Gamma_{89}+0.2292 \Gamma_{151}+0.3268 \Gamma_{160}+0.893 \Gamma_{182}\right) / \Gamma
$$

VALUE (units 10^{-4}) DOCUMENTID TECN COMMENT
1.95 ± 0.30 OUR FIT

- - We use the following data for averages but not for fits. - . -

${ }^{1}$ LEES $12 \times$ meaurement corresponds to the lower limit of $<5.8 \times 10^{-5}$ at $90 \% \mathrm{CL}$.
$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{h}^{+} \boldsymbol{h}^{-} \geq 0\right.$ neutrals $\left.\nu_{\tau}\right) / \Gamma_{\text {total }}$
$\Gamma_{90} / \Gamma=\left(0.34598 \Gamma_{38}+0.34598 \Gamma_{43}+\Gamma_{97}+\Gamma_{103}+\Gamma_{106}+\Gamma_{107}+0.2789 \Gamma_{152}+\right.$ $\left.0.492 \Gamma_{170}+0.9078 \Gamma_{179}\right) / \Gamma$
VALUE (\%)
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 6 2 9} \pm \mathbf{0 . 0 1 4} \text { OUR FIT }}$
$<\mathbf{0 . 6}$
CL\%
90
DOCUMENT ID \qquad TECN COMMENT
$\Gamma\left(K^{-} h^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
AIHARA 84 C TPC $\quad E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$\frac{V \text { VALUE }(\%)}{0.437 \pm 0.007 \text { OUR FIT }}$
$\Gamma\left(K^{-} h^{+} \pi^{-} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma\left(\pi^{-} \pi^{+} \pi^{-} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$
$\Gamma_{91} / \Gamma_{68}$
$\Gamma_{91} / \Gamma_{68}=\left(\Gamma_{97}+\Gamma_{106}+0.0153 \Gamma_{179}\right) /\left(\Gamma_{70}+0.0153 \Gamma_{178}\right)$

VALUE (\%)	EVTS	DOCUMENT ID		TECN	COMMENT
4.85 ± 0.08 OUR FIT					
$5.44 \pm 0.21 \pm 0.53$	7.9k	RICHICHI	99	CLEO	$E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(K^{-} h^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$
Γ_{92} / Γ

$$
\Gamma_{92} / \Gamma=\left(\Gamma_{103}+\Gamma_{107}+0.2292 \Gamma_{152}+0.893 \Gamma_{179}\right) / \Gamma
$$

VALUE (units 10^{-4})
8.6土1.2 OUR FIT

$\operatorname{VaLUE}(\%)$	EVTS	DOCUMENT		TECN	COMMENT
1.91 ± 0.26 OUR FIT					
$2.61 \pm 0.45 \pm 0.42$	719	RICHICHI	99	CLEO	$E_{\mathrm{Cm}}^{e \mathrm{ed}}=10.6 \mathrm{GeV}$
$\Gamma\left(K^{-} \pi^{+} \pi^{-} \geq 0\right.$ neutrals $\left.\nu_{\tau}\right) / \Gamma_{\text {total }}$					

- - We do not use the following data for averages, fits, limits, etc. - -
$0.22{ }_{-0.13}^{+0.16} \pm 0.05 \quad 9 \quad{ }^{2}$ MILLS $\quad 85 \quad$ DLCO $E(E m=29 \mathrm{GeV}$
${ }^{1}$ We multiply 0.58% by 0.20 , the relative systematic error quoted by BAUER 94 , to obtain the systematic error.
${ }^{2}$ Error correlated with MILLS $85(K K \pi \nu)$ value. We multiply 0.22% by 0.23 , the relative systematic error quoted by MILLS 85 , to obtain the systematic error.

$\frac{\operatorname{VALUE}(\%)}{0.373+0.013}$ DOCUMENTID TECN COMMENT
0.373 ± 0.013 OUR FIT
0.30 ± 0.05 OUR AVERAGE
- - We use the following data for averages but not for fits. - . -

$\Gamma\left(K^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{96} / \Gamma=\left(\Gamma_{97}+0.0153 \Gamma_{179}\right) / \Gamma$ $\frac{\operatorname{VALUE}(\%)}{0.293 \pm 0.007 \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT
$\mathbf{0 . 2 9 0} \pm \mathbf{0 . 0 1 8}$ OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.
$0.330 \pm 0.001_{-0.017}^{+0.016} \quad 794 \mathrm{k} \quad 1$ LEE $\quad 10 \quad$ BELL $\quad 666 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$0.273 \pm 0.002 \pm 0.009 \quad 70 \mathrm{k} \quad{ }^{2}$ AUBERT 08 BABR $342 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$0.415 \pm 0.053 \pm 0.040 \quad 269$ ABBIENDI 04」 OPAL 1991-1995 LEP runs
$0.384 \pm 0.014 \pm 0.038 \quad 3.5 \mathrm{k} \quad{ }^{3}$ BRIERE $\quad 03 \quad$ CLE3 $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$0.214 \pm 0.037 \pm 0.029 \quad$ BARATE 98 ALEP 1991-1995 LEP runs
- - We use the following data for averages but not for fits. - . -
$0.346 \pm 0.023 \pm 0.056 \quad 158 \quad{ }^{4}$ RICHICHI $99 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - . -
$0.360 \pm 0.082 \pm 0.048 \quad$ ABBIENDI 00D OPAL 1990-1995 LEP runs
${ }^{1}$ See footnote to LEE $10 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements. Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ value.
${ }^{2}$ See footnote to AUBERT $08 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for 3 correlations with other measurements.
347% correlated with BRIERE $03 \tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$ and 34% correlated with $\tau^{-} \rightarrow$ $K^{-} K^{+} \pi^{-} \nu_{\tau}$ because of a common 5% normalization error.
${ }^{4}$ Not independent of RICHICHI 99
$\Gamma\left(\tau^{-} \rightarrow K^{-} h^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right), \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ and BALEST 95c $\Gamma\left(\tau^{-} \rightarrow\right.$ $h^{-} h^{-} h^{+} \nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ values.

$\Gamma\left(K^{-} \pi^{+} \pi^{-} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma\left(\pi^{-} \pi^{+} \pi^{-} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$
$\Gamma_{96} / \Gamma_{68}=\left(\Gamma_{97}+0.0153 \Gamma_{179}\right) /\left(\Gamma_{70}+0.0153 \Gamma_{178}\right)$
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT
3.25 ± 0.07 OUR FIT
- - We use the following data for averages but not for fits. - - .
$3.92 \pm \mathbf{0 . 0 2}=\mathbf{= 0 . 1 5} \quad 794 \mathrm{k} \quad 1 \mathrm{LEE} \quad 10 \quad$ BELL $\quad 666 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(K^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}, \omega\right)\right) / \Gamma_{\text {total }}$
Г $97 / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{2.93 \pm 0.07 \text { OUR FIT }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.39 \pm 0.14 \quad 2$ BARATE 99R ALEP 1991-1995 LEP runs
${ }^{1}$ ASNER 00B assume $\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ (ex. K^{0}) decays proceed only through $K \rho$ and $K^{*} \pi$ intermediate states. They assume the resonance structure of $\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ (ex. K^{0}) decays is dominated by $K_{1}(1270)^{-}$and $K_{1}(1400)^{-}$resonances, and assume $\mathrm{B}\left(K_{1}(1270) \rightarrow K^{*}(892) \pi\right)=(16 \pm 5) \%, \mathrm{~B}\left(K_{1}(1270) \rightarrow K \rho\right)=(42 \pm 6) \%$, and $\mathrm{B}\left(K_{1}(1400) \rightarrow K \rho\right)=0$.
${ }^{2}$ BARATE 99R assume $\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ (ex. K^{0}) decays proceed only through $K \rho$ and $K^{*} \pi$ intermediate states. The quoted error is statistical only.
$\begin{aligned} & \Gamma\left(K^{-} \pi^{+} \pi^{-} \pi^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \\ & \Gamma_{99} / \Gamma=\left(0.34598 \Gamma_{43}+\Gamma_{103}+0.2292 \Gamma_{152}+0.893 \Gamma_{179}\right) / \Gamma\end{aligned}$
$\operatorname{VALUE~(units~} 10^{-4}$)
DOCUMENT ID
13.1 ± 1.2 OUR FIT
$\Gamma\left(K^{-} \pi^{+} \pi^{-} \pi^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{\mathbf{0}}\right)\right) / \Gamma_{\text {tot }}$
$\Gamma_{100} / \Gamma=\left(\Gamma_{103}+0.2292 \Gamma_{152}+0\right.$.
$\Gamma_{100 / \Gamma}$ $\Gamma_{100} / \Gamma=\left(\Gamma_{103}+0.2292 \Gamma_{152}+0.893 \Gamma_{179}\right) / \Gamma$ TECN COMMENT
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{7.9 \pm 1.2 \text { OUR FIT }} \frac{C L \%}{}$
7.3 ± 1.2 OUR AVERAGE
$7.4 \pm 0.8 \pm 1.1 \quad 1$ ARMS 05 CLE3 $7.6 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $6.1 \pm 3.9 \pm 1.8 \quad$ BARATE 98 ALEP 1991-1995 LEP runs
- - We use the following data for averages but not for fits. - - -
$7.5 \pm 2.6 \pm 1.8 \quad 2 \mathrm{RICHICHI} \quad 99 \quad \mathrm{CLEO} \quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<17 \quad 95$ ABBIENDI 00D OPAL 1990-1995 LEP runs
${ }^{1}$ Not independent of ARMS $05 \Gamma\left(\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}, \omega\right)\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\tau^{-} \rightarrow K^{-} \omega \nu_{\tau}\right) / \Gamma_{\text {total }}$ values.
2 Not independent of RICHICHI 99
$\Gamma\left(\tau^{-} \rightarrow K^{-} h^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} \cdot K^{0}\right)\right) / \Gamma\left(\tau^{-} \quad \rightarrow \quad \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right), \quad \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ and BALEST 95C $\Gamma\left(\tau^{-} \rightarrow\right.$ $h^{-} h^{-} h^{+} \nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(K^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}, \eta\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{101} / \Gamma=\left(\Gamma_{103}+0.893 \Gamma_{179}\right) / \Gamma$
VALUE (units 10^{-4}) DOCUMENT ID
7.6 ± 1.2 OUR FIT

$\Gamma\left(K^{-} K^{+} \pi^{-} \geq 0\right.$ neut. $\left.\nu_{\tau}\right) / \Gamma_{\text {total }}$				$\Gamma_{105} / \Gamma=\left(\Gamma_{106}+\Gamma_{107}\right) / \Gamma$	
				TECN	COMMENT
0.1496 ± 0.0033 OUR FIT					
0.203 ± 0.031	OUR AVERAGE				
0.159 ± 0.053	± 0.020	ABBIENDI	00D	OPAL	1990-1995 LEP runs
$\begin{array}{ll}0.15 & +0.09 \\ -0.07\end{array}$	$\pm 0.03 \quad 4$	${ }^{1}$ BAUER	94	TPC	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

- - We use the following data for averages but not for fits. - - -
$0.238 \pm 0.042 \quad{ }^{2}$ BARATE 98 ALEP 1991-1995 LEP runs
1 We multiply 0.15% by 0.20 , the relative systematic error quoted by BAUER 94 , to obtain the systematic error.
${ }^{2}$ Not independent of BARATE $98 \Gamma\left(\tau^{-} \rightarrow K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} K^{+} \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ $\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\text { EVTS }}$ 1.435 ± 0
$\mathbf{1 . 4 3} \mathbf{\pm 0 . 0 7}$ OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.
$1.55 \pm 0.01{ }_{-0.05}^{+0.06} \quad 108 \mathrm{k} \quad 1$ LEE $10 \quad$ BELL $666 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$1.346 \pm 0.010 \pm 0.036 \quad 18 \mathrm{k} \quad 2$ AUBERT 08 BABR $342 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$1.55 \pm 0.06 \pm 0.09 \quad 932 \quad{ }^{3}$ BRIERE 03 CLE3 $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $1.63 \pm 0.21 \pm 0.17 \quad$ BARATE 98 ALEP 1991-1995 LEP runs
- - We use the following data for averages but not for fits. - - -
$0.87 \pm 0.56 \pm 0.40 \quad$ ABBIENDI 00D OPAL 1990-1995 LEP runs $1.45 \pm 0.13 \pm 0.28 \quad 2.3 \mathrm{k} \quad 4 \mathrm{RICHICHI} \quad 99 \quad \mathrm{CLEO} \quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ - - We do not use the following data for averages, fits, limits, etc. • • -
$2.2 \begin{array}{r}+1.7 \\ -1.1\end{array} \pm 0.5 \quad 9 \quad 5$ MILLS $\quad 85 \quad$ DLCO $\quad E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
${ }^{1}$ See footnote to LEE $10 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements. Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ value.
${ }^{2}$ See footnote to AUBERT $08 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for ${ }_{3}$ correlations with other measurements
371% correlated with BRIERE $03 \tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$ and 34% correlated with $\tau \rightarrow$ $K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ because of a common 5% normalization error.
${ }^{4}$ Not independent of RICHICHI $99 \quad \Gamma\left(\tau^{-} \quad \rightarrow \quad K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right)$ and BALEST 95C $\Gamma\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }}$ val-
5 Error
Error correlated with MILLS $85\left(K \pi \pi \pi^{0} \nu\right)$ value. We multiply 0.22% by 0.23 , the relative systematic error quoted by MILLS 85, to obtain the systematic error.

WEIGHTED AVERAGE
 1.43 ± 0.07 (Error scaled by 2.4)

$\Gamma\left(K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) \quad \Gamma_{106} / \Gamma_{68}$ $\Gamma_{106} / \Gamma_{68}=\Gamma_{106} /\left(\Gamma_{70}+0.0153 \Gamma_{178}\right)$
$\frac{\text { VALUE (\%) }}{\mathbf{1 . 5 9 2} \pm \mathbf{0 . 0 3 0} \text { OUR FIT }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT

1.592 ± 0.030 OUR FIT

1.83 ± 0.05 OUR AVERAGE
$1.60 \pm 0.15 \pm 0.30 \quad 2.3 \mathrm{k} \quad$ RICHICHI 99 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

- - We use the following data for averages but not for fits. - -
$1.84 \pm 0.01 \pm 0.05108 \mathrm{k} \quad{ }^{1}$ LEE 10 BELL $666 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{K}^{+} \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\Gamma_{107 / \Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{0 . 6 1 \pm 0 . 1 8 ~ O U R ~ F I T}} \frac{C L \%}{}$ EVTS
0.60 ± 0.18 OUR AVERAGE
$0.55 \pm 0.14 \pm 0.12 \quad 48 \quad$ ARMS $\quad 05 \quad$ CLE3 $7.6 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$7.5 \pm 2.9 \pm 1.5 \quad$ BARATE 98 ALEP 1991-1995 LEP runs
- - We use the following data for averages but not for fits. - - -
$3.3 \pm 1.8 \pm 0.7 \quad 158 \quad{ }^{1} \mathrm{RICHICHI} \quad 99 \quad \mathrm{CLEO} \quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - • •
<27 ABBIENDI 00D OPAL 1990-1995 LEP runs
${ }^{1}$ Not independent of RICHICHI 99 $\Gamma\left(\tau^{-} \rightarrow K^{-} K^{+} \pi^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ and BALEST 95C $\Gamma\left(\tau^{-} \rightarrow\right.$ $h^{-} h^{-} h^{+} \nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(K^{-} K^{+} \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma\left(\pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) \quad \Gamma_{107} / \Gamma_{\boldsymbol{\pi}}$ $\Gamma_{107} / \Gamma_{77}=\Gamma_{107} /\left(\Gamma_{78}+0.893 \Gamma_{178}+0.0153 \Gamma_{180}\right)$ VALUE (\%) EVTS DOCUMENTID TECN COMMENT

0.14 ± 0.04 OUR FIT

$\mathbf{0 . 7 9} \pm \mathbf{0 . 4 4} \pm \mathbf{0 . 1 6} \quad 158 \quad{ }^{1} \mathrm{RICHICHI} \quad 99 \quad \mathrm{CLEO} \quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ RICHICHI 99 also quote a 95% CL upper limit of 0.0157 for this measurement.
$\Gamma\left(K^{-} \kappa^{+} K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{108} / \Gamma=0.492 \Gamma_{170} / \Gamma$

VALUE (units 10^{-5}) CL\% EVTS DOCUMENT ID TECN COMMENT
$2.2 \pm \mathbf{0 . 8}$ OUR FIT Error includes scale factor of 5.4 .
2.1 ± 0.8 OUR AVERAGE Error includes scale factor of 5.4.

$3.29 \pm 0.17_{-0.20}^{+0.19}$	3.2 k	1 LEE	10	BELL	$666 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$1.58 \pm 0.13 \pm 0.12$	275	2 AUBERT	08	BABR	$342 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - . -

<3.7	90	BRIERE	03	CLE3	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
<19	90	BARATE	98	ALEP	$1991-1995 \mathrm{LEP}$ runs

${ }^{1}$ See footnote to LEE $10 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements. Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow\right.$ $\left.K^{-} K^{+} K^{-} \nu_{\tau}\right) / \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ value.
${ }^{2}$ See footnote to AUBERT $08 \Gamma\left(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
$\Gamma\left(K^{=} K^{+} K^{-} \nu_{\tau}\right) / \Gamma\left(\pi^{=} \pi^{+} \pi^{-} \nu_{\boldsymbol{\tau}}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) \quad \Gamma_{108} / \Gamma_{68}$ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$3.90 \pm 0.02_{-0.23}^{+0.22} \quad 3.2 \mathrm{k} \quad 1 \mathrm{LEE} \quad 10 \quad \mathrm{BELL} \quad 666 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ ${ }^{1}$ Not independent of LEE $10 \Gamma\left(\tau^{-} \rightarrow K^{-} K^{+} K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }}$ values.
$\Gamma\left(K^{-} K^{+} K^{-} \nu_{\tau}(\right.$ ex. $\left.\phi)\right) / \Gamma_{\text {total }}$
$\Gamma_{109 / \Gamma}$

$\Gamma\left(K^{-} K^{+} K^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$						Γ_{110} / Γ
VALUE	CL\%	DOCUM		TECN	COMMENT	
$<4.8 \times 10^{-6}$	90	ARMS	05	CLE3	$7.6 \mathrm{fb}^{-1}$,	10.6 GeV

- - We do not use the following data for averages, fits, limits, etc. • •

$0.16 \pm 0.08 \pm 0.04 \quad 4 \quad$ BURCHAT $85 \quad$ MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$1.0 \pm 0.4 \quad 10$ BEHREND 82 CELL Repl. by BEHREND 89B
1 The correlation coefficients between this measurement and the ACHARD 01D measurements of $\mathrm{B}(\tau \rightarrow$ " 1 -prong" $)$ and $\mathrm{B}(\tau \rightarrow$ " 3 -prong") are -0.082 and -0.19 respectively.
2 The correlation coefficients between this measurement and the ABREU 01 m measurements of $\mathrm{B}(\tau \rightarrow 1$-prong) and $\mathrm{B}(\tau \rightarrow 3$-prong) are -0.08 and -0.08 respectively.
${ }^{3}$ Not independent of ACKERSTAFF 99E $\mathrm{B}\left(\tau^{-} \rightarrow 3 h^{-} 2 h^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right)$ and $\mathrm{B}\left(\tau^{-} \rightarrow\right.$ $3 h^{-} 2 h^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.\left.K^{0}\right)\right)$ measurements.
$\Gamma\left(3 h^{-} 2 h^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{117} / \Gamma=\left(\Gamma_{118}+\Gamma_{120}+0.0153 \Gamma_{195}\right) / \Gamma$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
8.29 ± 0.31 OUR FIT
8.32 ± 0.35 OUR AVERAGE
$9.7 \pm 1.5 \pm 0.5 \quad 96 \quad 1$ ABDALLAH $\quad 06 \mathrm{~A}$ DLPH $1992-1995$ LEP runs
$7.2 \pm 0.9 \pm 1.2 \quad 165 \quad 2$ SCHAEL $\quad 05 \mathrm{C}$ ALEP 1991 -1995 LEP runs
$9.1 \pm 1.4 \pm 0.6 \quad 97$ ACKERSTAFF 99E OPAL 1991-1995 LEP runs
$7.7 \pm 0.5 \pm 0.9295$ GIBAUT 94B CLEO $E_{\mathrm{Cm}}^{e \ell e}=10.6 \mathrm{GeV}$
$6.4 \pm 2.3 \pm 1.0 \quad 12 \quad$ ALBRECHT 88 B ARG $E_{\mathrm{cm}}^{e \mathrm{e}}=10 \mathrm{GeV}$
$5.1 \pm 2.0 \quad 7 \quad$ BYLSMA 87 HRS $E_{C m}^{e e}=29 \mathrm{GeV}$
- - We use the following data for averages but not for fits. - -
$8.56 \pm 0.05 \pm 0.42 \quad 34 \mathrm{k} \quad$ AUBERT,B 05 W BABR $232 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$8.0 \pm 1.1 \pm 1.3 \quad 58 \quad$ BUSKULIC 96 ALEP Repl. by SCHAEL 05C
$6.7 \pm 3.0 \quad 5 \quad 3$ BELTRAMI 85 HRS Repl. by BYLSMA 87
${ }^{1}$ See footnote to ABDALLAH 06A $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
2 See footnote to SCHAEL 05c $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements.
3 The error quoted is statistical only.
$\Gamma\left(3 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.. K^{0}, \omega\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{118} / \Gamma=\left(\Gamma_{119}+\Gamma_{173}\right) / \Gamma$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
8.27 ± 0.31 OUR FIT
- - We use the following data for averages but not for fits. - -
$8.33 \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 4 3} \quad 1$ LEES $12 \times$ BABR $468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of LEES $12 \times \Gamma\left(\tau^{-} \rightarrow f_{1}(1285) \pi^{-} \nu_{\tau} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right) / \Gamma$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.3 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(e x . K^{0}, \omega, f_{1}(1285)\right)\right) / \Gamma$ values.

${ }^{1}$ LEES $12 x$ meaurement corresponds to the lower limit of $<2.4 \times 10^{-6}$ at $90 \% \mathrm{CL}$.

$\Gamma\left(K^{+} K^{-} 2 \pi^{-} \pi^{+} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{122} / \Gamma$
$\begin{array}{llllll}\text { VALUE } \\ <4.5 \times \mathbf{1 0}^{\mathbf{- 7}} & \frac{C L \%}{90} & \frac{\text { DOCUMENT ID }}{} & & & \frac{\text { TECN }}{\text { LESS }}\end{array}$
$\Gamma\left(3 h^{-} 2 h^{+} \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{123} / \Gamma=\left(\Gamma_{124}+\Gamma_{127}\right) / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) EVTS DOCUMENT ID _ TECN COMMENT }}{1.6510 .11 ~}$
1.65 ± 0.11 OUR FIT
1.74 ± 0.27 OUR AVERAGE
$\begin{array}{llllll}1.6 \pm 1.2 \pm 0.6 & 13 & 1 & \text { ABDALLAH } & 06 A & \text { DLPH } \\ \text { 1992-1995 LEP runs }\end{array}$
$\begin{array}{llllll}2.1 & \pm 0.7 & \pm 0.9 & 95 & 2 \text { SCHAEL } & 05 C \\ \text { ALEP } & 1991-1995 \text { LEP runs }\end{array}$
$1.7 \pm 0.2 \pm 0.2 \quad 231 \quad$ ANASTASSOV 01 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$2.7 \pm 1.8 \pm 0.9 \quad 23$ ACKERSTAFF 99E OPAL 1991-1995 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - -
$1.8 \pm 0.7 \pm 1.2 \quad 18 \quad$ BUSKULIC 96 ALEP Repl. by SCHAEL 05C
$1.9 \pm 0.4 \pm 0.4 \quad 31 \quad$ GIBAUT $\quad 94 \mathrm{~B}$ CLEO Repl. by ANASTASSOV 01
$5.1 \pm 2.2 \quad 6 \quad$ BYLSMA 87 HRS $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$6.7 \pm 3.0 \quad 5 \quad{ }^{3}$ BELTRAMI 85 HRS Repl. by BYLSMA 87
${ }^{1}$ See footnote to ABDALLAH 06A $\Gamma\left(\tau^{-} \rightarrow h^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations
2 with other measurements. correction for $\tau^{-} \rightarrow \eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \rightarrow 3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}$ and $\tau^{-} \rightarrow K^{*}(892)^{-} \eta \nu_{\tau} \rightarrow$ $3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}$ decays. See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ mea3 surement for correlations with other measurements.
3 The error quoted is statistical only.

See key on page 999

$\begin{array}{rr} \Gamma\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\text { ex. } K^{0}\right)\right) / \Gamma_{\text {total }} & \Gamma_{124} / \Gamma \\ \Gamma_{124} / \Gamma=\left(\Gamma_{126}+0.2292 \Gamma_{160}+0.893 \Gamma_{185}\right) / \Gamma & \end{array}$				
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
1.63 ± 0.11 OUR FIT				
- - We use the following data for averages but not for fits. - -				
$\mathbf{1 . 6 5} \pm \mathbf{0 . 0 5} \pm \mathbf{0 . 0 9} 1{ }^{1}$ LEES $12 \times \mathrm{BABR} 468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e e}=10.6 \mathrm{GeV}$				
${ }^{1}$ Not independent of LEES $12 x$ measurements of $\Gamma\left(\tau^{-} \rightarrow 2 \pi^{-} \pi^{+} \omega \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma$, $\Gamma\left(\tau^{-} \rightarrow \eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma$, and $\Gamma\left(\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}, \eta, \omega\right.\right.$, $\left.\left.f_{1}(1285)\right)\right) / \Gamma$.				
VALUE (units 10^{-4}) DOCUMENT ID CECN COMMENT				
$\mathbf{1 . 1 1} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 9} \quad 1$ LEES $12 \times \mathrm{BABR} 468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$				
${ }^{1}$ Not independent of LEES $12 \mathrm{X} \Gamma\left(\tau^{-} \rightarrow 2 \pi^{-} \pi^{+} \omega \nu_{\tau}\left(\mathrm{ex} . \mathrm{K}^{0}\right)\right) / \Gamma$ and $\Gamma\left(\tau^{-} \rightarrow\right.$ $\left.3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}, \eta, \omega, f_{1}(1285)\right)\right) / \Gamma$ values.				

$\Gamma\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}, \eta, \omega, f_{1}(1285)\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{126} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{0 . 3 8} \pm \mathbf{0 . 0 9} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT
$\mathbf{0 . 3 6} \pm \mathbf{0 . 0 3} \pm \mathbf{0 . 0 9} \quad 7.3 \mathrm{k} \quad$ LEES $12 \times \mathrm{BABR} 468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(K^{-} 2 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\right.\right.$ ex. $\left.\left.K^{0}\right)\right) / \Gamma_{\text {total }}$				$\Gamma_{127} /{ }^{1}$
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
1.1 ± 0.6 OUR FIT				
$1.1 \pm 0.4 \pm 0.4$	LEES	BABR	$468 \mathrm{fb}^{-1}$	

${ }^{1}$ LEES $12 \times$ meaurement corresponds to the lower limit of $<1.9 \times 10^{-6}$ at $90 \% \mathrm{CL}$.

$\Gamma\left((5 \pi)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{130} / \Gamma$ $\Gamma_{130} / \Gamma=\left(\Gamma_{30}+\frac{1}{2} \Gamma_{45}+\Gamma_{48}+\frac{1}{2} \Gamma_{61}+\Gamma_{85}+\Gamma_{117}+0.5559 \Gamma_{150}+0.893 \Gamma_{180}\right) / \Gamma$ VALUE (\%) DOCUMENTID TECN COMMENT
0.78 ± 0.05 OUR FIT

- - We use the following data for averages but not for fits. - - -
$\mathbf{0 . 6 1} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 0 8} \quad 1$ GIBAUT $\quad 94 \mathrm{~B}$ CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of GIBAUT 94B B $\left(3 h^{-} 2 h^{+} \nu_{\tau}\right)$, PROCARIO $93 \mathrm{~B}\left(h^{-} 4 \pi^{0} \nu_{\tau}\right)$, and BORTOLETTO $93 \mathrm{~B}\left(2 h^{-} h^{+} 2 \pi^{0} \nu_{\tau}\right) / \mathrm{B}$ ("3prong") measurements. Result is corrected
for η contributions.
$\Gamma\left(4 h^{-3} h^{+} \geq 0\right.$ neutrals ν_{τ} ("7-prong") $) / \Gamma_{\text {total }}$
$\Gamma_{131 / \Gamma}$
$\frac{V A L U E}{<\mathbf{3 . 0} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT,B }} \frac{05 \mathrm{~F}}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{232 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$
- - We do not use the following data for averages, fits, limits, etc. - -

$\Gamma\left(4 h^{-} 3 h^{+} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{90}$
$\frac{\text { DOCUMENT ID }}{\text { AUBERT, }} \quad 05 \mathrm{~F} \quad \frac{\text { TECN }}{\text { BABR }} \frac{\Gamma_{133} / \Gamma}{232 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$
$\Gamma\left(X^{-}(S=-1) \nu_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }}$
$\Gamma_{134} / \Gamma=\left(\Gamma_{10}+\Gamma_{16}+\Gamma_{23}+\Gamma_{28}+\Gamma_{36}+\Gamma_{41}+\Gamma_{45}+\Gamma_{61}+\Gamma_{97}+\Gamma_{103}+\Gamma_{120}+\Gamma_{127}+\right.$
$\left.\Gamma_{152}+\Gamma_{154}+\Gamma_{156}+0.8312 \Gamma_{170}+\Gamma_{179}\right) / \Gamma$
VALUE (\%) DOCUMENT ID TECN COMMENT

2.92 ± 0.04 OUR FIT

- - We use the following data for averages but not for fits. - - -
$\mathbf{2 . 8 7} \pm \mathbf{0 . 1 2} \quad 1$ BARATE 99R ALEP 1991-1995 LEP runs
${ }^{1}$ BARATE 99R perform a combined analysis of all ALEPH LEP 1 data on τ branching fraction measurements for decay modes having total strangeness equal to -1 .
 $\overline{1.42 \pm \mathbf{0 . 1 8} \text { OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. }}$

$1.19 \pm 0.15_{-0.18}^{+0.13}$	104	ALBRECHT	95 H	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
$1.94 \pm 0.27 \pm 0.15$	74	1 AKERS	94 G	OPAL	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$1.43 \pm 0.11 \pm 0.13$	475	2 GOLDBERG	90	CLEO	$E_{\mathrm{Cm}}^{e e}=9.4-10.9 \mathrm{GeV}$

${ }^{1}$ AKERS 94 G reject events in which a K_{S}^{0} accompanies the $K^{*}(892)^{-}$. We do not correct
for them.
${ }^{2}$ GOLDBERG 90 estimates that 10% of observed $K^{*}(892)$ are accompanied by a π^{0}.

$\Gamma\left(K^{*}(892)^{-} \nu_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }}$		Γ_{136} / Γ			
Value (\%)	EVTS	DOCUMENT ID		TECN	COMMENT
1.20 ± 0.07 OUR AVERAGE		Error includes scale factor of 1.8. See the ideogram below.			
$1.131 \pm 0.006 \pm 0.051$	49k	${ }^{1}$ EPIFANOV	07	BELL	$351 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e}=10.6 \mathrm{GeV}$
1.326 ± 0.063		BARATE	99R	ALEP	1991-1995 LEP runs
1.11 ± 0.12		${ }^{2}$ COAN	96	CLEO	$E_{\mathrm{Cm}}^{e} \mathrm{e}$ \% 10.6 GeV
$1.42 \pm 0.22 \pm 0.09$		${ }^{3}$ ACCIARRI	95F	L3	1991-1993 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.39 \pm 0.09 \pm 0.10$		${ }^{4}$ BUSKULIC	96	ALEP	Repl. by BARATE 99R
$1.45 \pm 0.13 \pm 0.11$	273	${ }^{5}$ BUSKULIC	94F	ALEP	Repl. by BUSKULIC 96
$1.23 \pm 0.21{ }_{-0.21}^{+0.11}$	54	${ }^{6}$ ALBRECHT	88L	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$1.9 \pm 0.3 \pm 0.4$	44	7 TSCHIRHART	88	HRS	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$1.5 \pm 0.4 \pm 0.4$	15	${ }^{8}$ AIHARA	87C	TPC	$E_{\mathrm{Cm}}^{e \mathrm{e}}=29 \mathrm{GeV}$
$1.3 \pm 0.3 \pm 0.3$	31	YELTON	86	MRK2	$E_{\mathrm{cm}}^{e e}=29 \mathrm{GeV}$
1.7 ± 0.7	11	DORFAN	81	MRK2	$E_{\mathrm{Cm}}^{\mathrm{ee}}=4.2-6.7 \mathrm{GeV}$

${ }^{1}$ EPIFANOV 07 quote $\mathrm{B}\left(\tau^{-} \rightarrow K^{*}(892)^{-} \nu_{\tau}\right) \mathrm{B}\left(K^{*}(892)^{-} \rightarrow K_{S}^{0} \pi^{-}\right)=(3.77 \pm$ 0.02 (stat) ± 0.12 (syst) ± 0.12 (mod)) $\times 10^{-3}$. We add the systematic and model uncertainties in quadrature and divide by $\mathrm{B}\left(K^{*}(892)^{-} \rightarrow K_{S}^{0} \pi^{-}\right)=0.3333$.
${ }^{2}$ Not independent of COAN $96 \mathrm{~B}\left(\pi^{-} \bar{K}^{0} \nu_{\tau}\right)$ and BATTLE $94 \mathrm{~B}\left(K^{-} \pi^{0} \nu_{\tau}\right)$ measurements. $K \pi$ final states are consistent with and assumed to originate from $K^{*}(892)^{-}$ production.
${ }^{3}$ This result is obtained from their $\mathrm{B}\left(\pi^{-} \bar{K}^{0} \nu_{\tau}\right)$ assuming all those decays originate in $K^{*}(892)^{-}$decays.

Lepton Particle Listings
τ

$\frac{V A L U E(\%)}{0.10 \pm 0.04 ~ O U R ~ A V E R A G E}$
$0.097 \pm 0.044 \pm 0.036$
${ }^{1}$ BARATE 99 k ALEP 1991-1995 LEP runs $0.106 \pm 0.037 \pm 0.032 \quad 2$ BARATE 98E ALEP 1991-1995 LEP runs
${ }^{1}$ BARATE $99 k$ measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter. They determine the $\bar{K}^{0} \rho^{-}$fraction in $\tau^{-} \rightarrow \pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$ decays to be ($0.72 \pm 0.12 \pm 0.10$) and multiply their $\mathrm{B}\left(\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}\right)$ measurement by one minus this fraction to obtain the quoted result.
${ }^{2}$ BARATE 98E reconstruct K^{0} 's using $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays. They determine the $\bar{K}^{0} \rho^{-}$ fraction in $\tau^{-} \rightarrow \pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$ decays to be ($0.64 \pm 0.09 \pm 0.10$) and multiply their $\mathrm{B}\left(\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}\right)$ measurement by one minus this fraction to obtain the quoted result.
$\Gamma\left(K_{1}(1270)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\%)}{0.47 \pm 0.11 \text { OUR AVERAGE }}$
0.48 ± 0.11
$0.41+0.41 \pm 0.10$
${ }^{1}$ We multiply 0.41% by 0.25 , the relative systematic error quoted by BAUER 94 , to obtain the systematic error.
$\Gamma\left(K_{1}(1400)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
VALUE (\%) EVTS DOCUMENT ID TECN COMMENT $\mathbf{0 . 1 7} \pm \mathbf{0 . 2 6}$ OUR AVERAGE Error includes scale factor of 1.7.
0.05 ± 0.17 BARATE 99R ALEP 1991-1995 LEP runs
$0.76{ }_{-0.33}^{+0.40} \pm 0.20 \quad 11 \quad{ }^{1}$ BAUER $\quad 94 \quad$ TPC $\quad E_{c m}^{e e}=29 \mathrm{GeV}$
${ }^{1}$ We multiply 0.76% by 0.25 , the relative systematic error quoted by BAUER 94 , to obtain the systematic error.
$\left[\Gamma\left(K_{1}(1270)^{-} \nu_{\tau}\right)+\Gamma\left(K_{1}(1400)^{-} \nu_{\tau}\right)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{143}+\Gamma_{144}\right) / \Gamma$ VALUE $(\%)$ EVTS DOCUMENTID TECN COMMENT $\mathbf{1 . 1 7}{ }_{-0.37}^{+0.41} \pm \mathbf{0 . 2 9} \quad 16 \quad{ }^{1}$ BAUER $\quad 94 \quad$ TPC $\quad E_{\mathrm{cm}}^{e e}=29 \mathrm{GeV}$
${ }^{1}$ We multiply 1.17% by 0.25 , the relative systematic error quoted by BAUER 94 , to obtain the systematic error. Not independent of BAUER $94 \mathrm{~B}\left(K_{1}(1270)^{-} \nu_{\tau}\right)$ and BAUER 94 $\mathrm{B}\left(K_{1}(1400)^{-} \nu_{\tau}\right)$ measurements.

$\Gamma\left(K_{1}(1270)^{-} \nu_{\tau}\right) /\left[\Gamma\left(K_{1}(1270)^{-} \nu_{\tau}\right)+\Gamma\left(K_{1}(1400)^{-} \nu_{\tau}\right)\right] \Gamma_{143} /\left(\Gamma_{143}+\Gamma_{144}\right)$			
VALUE	DOCUMENT	TECN	COMMENT
0.69 $\mathbf{0 . 1 5}$ OUR AVERAGE			
0.71 ± 0.16	${ }^{1}$ ABBIENDI	00D OPA	1990-1995 LEP ru
$0.66 \pm 0.19 \pm 0.13$	${ }^{2}$ ASNER	00b CLEO	$=10.6 \mathrm{GeV}$
${ }^{1}$ ABBIENDI 00D assume the resonance structure of $\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ decays is dominated by the $K_{1}(1270)^{-}$and $K_{1}(1400)^{-}$resonances.			
${ }^{2}$ ASNER 00B assume the resonance structure of $\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.$ ex. K^{0}) decays is dominated by $K_{1}(1270)^{-}$and $K_{1}(1400)^{-}$resonances.			

$\Gamma\left(K^{*}(1410)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$ $\underline{V A L U E\left(\text { units } 10^{-3}\right)}$
$1.5{ }_{-1.0}^{1.4}$
$\Gamma\left(K_{0}^{*}(1430)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$

| DOCUMENT ID | |
| :--- | :--- | :--- |
| | |
| TECN | |
| COMMENT | |
| $145 / \Gamma$ | |

BARATE 99R ALEP 1991-1995 LEP runs
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{<0.5} \frac{C L \%}{95}$

DOCUMENT ID	
BARATE	99R
TECN	
ALEP	$\boldsymbol{\Gamma}_{\mathbf{1 4 6}} / \boldsymbol{\Gamma}$
COMMENT	
1991-1995 LEP runs	

$\Gamma\left(K_{2}^{*}(1430)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\%)}{<0.3} \frac{C L \%}{95} \stackrel{E V T S}{ }$
$\Gamma_{147 / \Gamma}$
TSCHIRHART 88 HRS $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

| <0.33 | 95 | | 1 | ACCIARRI | 95F | L3 | 1991-1993 LEP runs |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| <0.9 | 95 | 0 | DORFAN | 81 | MRK2 | $E_{\mathrm{Cm}}^{e e}=4.2-6.7 \mathrm{GeV}$ | | ${ }^{1}$ ACCIARRI 95F quote $\mathrm{B}\left(\tau^{-} \rightarrow K^{*}(1430)^{-} \rightarrow \pi^{-} \bar{K}^{0} \nu_{\tau}\right)<0.11 \%$. We divide by $\mathrm{B}\left(K^{*}(1430)^{-} \rightarrow \pi^{-} \bar{K}^{0}\right)=0.33$ to obtain the limit shown.

$\Gamma\left(a_{0}(980)^{-} \geq 0\right.$ neutrals $\left.\nu_{\tau}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(a_{0}(980) \rightarrow K^{0} K^{-}\right) \quad \Gamma_{148} / \Gamma \times \mathrm{B}$ VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT

$<\mathbf{2} .8$	90
GOLDBERG	90
CLEO	
$E_{\mathrm{Cm}}^{e e}=9.4-10.9 \mathrm{GeV}$	

$\Gamma\left(\boldsymbol{\eta} \pi^{-} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<\boldsymbol{0 . 9 9}} \frac{C L \%}{95}$

- - We do not use the following data for averages, fits, limits, etc. 10.6 GeV

<6.2		95		BUSKULIC	97C	ALEP	1991-1994 LEP runs
< 1.4		95	0	BARTELT	96	CLEO	$E_{\mathrm{Cm}}^{e} \mathrm{Cm}^{e} \approx 10.6 \mathrm{GeV}$
< 3.4		95		ARTUSO	92	CLEO	$E_{\mathrm{Cm}}^{e \ell} \approx 10.6 \mathrm{GeV}$
<90		95		ALBRECHT	88M	ARG	$E_{\mathrm{cm}}^{e \ell}$ el $\approx 10 \mathrm{GeV}$
<140		90		BEHREND	88	CELL	$E_{\mathrm{Cm}}^{e} \mathrm{e}=14-46.8 \mathrm{GeV}$
<180		95		BARINGER	87	CLEO	$E_{\mathrm{cm}}^{e e}=10.5 \mathrm{GeV}$
<250		90	0	COFFMAN	87	MRK3	$E_{\mathrm{cm}}^{e e}=3.77 \mathrm{GeV}$
510	$\pm 100 \pm 120$		65	DERRICK	87	HRS	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
<100		95		GAN	87B	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

$\Gamma\left(\eta \pi^{-} \pi^{0} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{150} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{139 \pm 0.07 \text { OUR FIT }} \frac{C L}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
1.39 ± 0.07 OUR FIT
$1.38 \pm \mathbf{0 . 0 9}$ OUR AVERAGE Error includes scale factor of 1.2 .

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{\left.V A L U E \text { (units } 10^{-4}\right)}$ CLO
$\frac{V A L U E \text { (units } 10^{-4} \text {) }}{\mathbf{2 . 0} \pm \mathbf{0 . 4} \text { OUR FIT }} \frac{C L \%}{}$
1.81 ± 0.31 OUR AVERAGE
$2.01 \pm 0.34 \pm 0.22 \quad 381$ LEES 12 x BABR $468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=$

- - We use the following data for averages but not for fits. - . $\quad 10.6 \mathrm{GeV}$
$1.5 \pm 0.5 \quad 30 \quad{ }^{1}$ ANASTASSOV $01 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$1.4 \pm 0.6 \pm 0.3 \quad 15 \quad{ }^{2}$ BERGFELD 97 CLEO Repl. by ANAS-

<4.3	95	ARTUSO	92	CLEO	$E_{\mathrm{Cm}}^{e \mathrm{ee}} \approx 10.6 \mathrm{GeV}$
<120	95	ALBRECHT	88 M	ARG	$E_{\mathrm{Cm}}^{e e} \approx 10 \mathrm{GeV}$

${ }^{1}$ Weighted average of BERGFELD 97 and ANASTASSOV 01 value of $(1.5 \pm 0.6 \pm 0.3) \times$
10^{-4} obtained using η 's reconstructed from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays.
${ }^{2}$ BERGFELD 97 reconstruct η 's using $\eta \rightarrow \gamma \gamma$ decays.

$\Gamma\left(\eta K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$				$\Gamma_{152} /{ }^{\text {/ }}$	
VALUE (units 10-4) $\frac{\text { CL\% }}{\text { \% }}$ EVTS	document id	tecn Comment			
1.55 ± 0.08 OUR FIT					
1.54 ± 0.08 OUR AVERAGE					
$1.42 \pm 0.11 \pm 0.07 \quad 690$	DEL-AMO-SA..11	BABR	470 fb ${ }^{-1}$. 6 GeV	
$1.58 \pm 0.05 \pm 0.09 \quad 1.6 \mathrm{k}$	inami 09	Bell	$490 \mathrm{fb}^{-1}$	10.6 GeV	
$2.9{ }_{-1.2}^{+1.3} \pm 0.7$	buskulic	ALEP	1991-1994		
$2.6 \pm 0.5 \pm 0.5$	BARTELT 96	CLEO	$E_{\text {cm }}^{e e}$		
- We do not use the following data for averages, fits, limits, etc. - . -					
< 4.7	ARTUSO 92	CLEO	$E_{\mathrm{cm}}^{e g e} \approx 10$		
$\Gamma\left(\eta K^{*}(892)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$		Γ_{153} / Γ			
0.12 ± 0.09	${ }^{1}$ INAMI 09	BELL $490 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e}=10.6$			
$2.90 \pm 0.80 \pm 0.42$	BISHAI	CLEO $\mathrm{Ecm}_{\mathrm{cm}}^{\mathrm{ej}=10.6 \mathrm{GeV}}$			
${ }^{1}$ Not independent of INAMI $09 \mathrm{~B}\left(\tau^{-} \rightarrow \eta \mathrm{K}^{-} \pi^{0} \nu_{\tau}\right)$ and $\mathrm{B}\left(\tau^{-} \rightarrow \eta \bar{K}^{0} \pi^{-} \nu_{\tau}\right)$ values.					
$\Gamma\left(\eta K^{-} \boldsymbol{\pi}^{0} \nu_{\tau}\right) / \Gamma_{\text {total }}$		Γ_{154} / Γ			
VALUE (units 10-4) EVTS		TECN COMMENT			
0.48 ± 0.12 OUR FIT 0.48 ± 0.12 OUR AVERAGE					
$0.46 \pm 0.11 \pm 0.04$	NAmI 09	BELL	$490 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$		
$1.77 \pm 0.56 \pm 0.71$	BISHAI	CLEO	$E_{\mathrm{cm}}^{e \mathrm{e}}=$		
$\Gamma\left(\eta K^{-} \pi^{0}\left(\text { non }-K^{*}(892)\right) \nu_{\tau}\right) / \Gamma_{\text {total }}$				55/Г	
		TECN COMMENT			
$\frac{V A L U E}{<3.5 \times 10^{-5}} \frac{C 1 \%}{90}$	INAMI 09	bell	$490 \mathrm{fb}^{-1}$	10.6 Gev	
$\Gamma\left(\eta \bar{K}^{0} \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$		Γ_{156} / Γ			
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{0.94 \pm 0.15 \text { OUR FIT }}$ EVTS DOCUMENT ID					
0.93 ± 0.15 OUR AVERAGE					
$0.88 \pm 0.14 \pm 0.06 \quad 161$	$1_{\text {INAMI }}{ }^{\text {min }}$	BELL $490 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6$			
$2.20 \pm 0.70 \pm 0.22 \quad 15$	${ }^{2}$ BISHAI 99	CLEO $\mathrm{E}_{\text {emm }}^{\text {Eev }}=10.6 \mathrm{GeV}$			
${ }^{1}$ We multiply the INAMI 09 measurement $\mathrm{B}\left(\tau^{-} \rightarrow \eta K_{S}^{0} \pi^{-} \nu_{\tau}\right)=(0.44 \pm 0.07 \pm$ $0.03) \times 10^{-4}$ by 2 to obtain the listed value. ${ }^{2}$ We multiply the BISHAI 99 measurement $\mathrm{B}\left(\tau^{-} \rightarrow \eta K_{S}^{0} \pi^{-} \nu_{\tau}\right)=(1.10 \pm 0.35 \pm$ $0.11) \times 10^{-4}$ by 2 to obtain the listed value.					

$\Gamma\left(\eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{160} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{20 \text { EVTS }}$ DOCUMENT ID TECN COMMENT
2.20 ± 0.13 OUR FIT

2.23 ± 0.12 OUR AVERAGE

$2.10 \pm 0.09 \pm 0.13$	2.9 k	1 LEES	$12 x$	BABR $\eta \rightarrow \gamma \gamma$
$2.37 \pm 0.12 \pm 0.18$	1.4 k	1 LEES	12 x	BABR $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$2.54 \pm 0.27 \pm 0.25 \quad 315 \quad 1$ LEES 12 X BABR $\eta \rightarrow 3 \pi^{0}$

- - We use the following data for averages but not for fits. - - -
$2.3 \pm 0.5 \quad 170 \quad{ }^{2}$ ANASTASSOV 01 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -
$1.60 \pm 0.05 \pm 0.11 \quad 1.8 \mathrm{k} \quad$ AUBERT 08AE BABR Repl. by LEES 12x
$3.4 \begin{array}{r}+0.5 \\ +0.6 \\ +0.6\end{array} \quad 89 \quad 3$ BERGFELD 97 CLEO Repl. by ANASTASSOV 01
${ }^{1}$ LEES $12 x$ uses $468 \mathrm{fb}^{-1}$ of data taken at $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$. It gives the average of the three measurements listed here as $(2.25 \pm 0.07 \pm 0.12) \times 10^{-4}$
${ }^{2}$ Weighted average of BERGFELD 97 and ANASTASSOV 01 measurements using η 's reconstructed from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow 3 \pi^{0}$ decays.
${ }^{3}$ BERGFELD 97 reconstruct η 's using $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow 3 \pi^{0}$ decays.

- - We do not use the following data for averages, fits, limits, etc. - - -
$<8.0 \times 10^{-5} \quad 90 \quad$ BERGFELD 97 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(\eta^{\prime}(958) K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$				Γ_{168} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	

$\frac{V A L U E}{<\mathbf{2} .4 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{12 \mathrm{x}}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{}{} \frac{\text { COMMENT }}{468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$
$\Gamma\left(\phi \pi^{-} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{169 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{3 . 4 2} \pm \mathbf{0 . 5 5} \pm \mathbf{0 . 2 5}} \frac{C L \%}{344} \quad \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { AUBERT } 08} \frac{\text { COMMENT }}{342 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<20	90	1	AVERY	97	CLEO
<35	90	ALBRECHT	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$		
1	AVERY	97	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$	

$\Gamma\left(\phi K^{-} \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\Gamma_{170 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{4.4 \pm \mathbf{1 . 6} \text { OUR FIT }} \frac{\text { EL } \% \text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
4.4 ± 1.6 OUR FIT

- - We use the following data for averages but not for fits. - . .

$\boldsymbol{\Gamma}\left(\boldsymbol{f}_{\mathbf{1}}(\mathbf{1 2 8 5}) \boldsymbol{\pi}^{-} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{1 7 1}} / \boldsymbol{\Gamma}$

$3.60 \pm 0.18 \pm 0.23 \quad 2.5 \mathrm{k} \quad 2$ LEES $\quad 12 \times \mathrm{BABR} 468 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -

$3.19 \pm 0.18 \pm 1.00$	1.3 k	${ }^{3}$ AUBERT	08AE BABR	Repl. by LEES 12 x
$3.9 \pm 0.7 \pm 0.5$	1.4 k	${ }^{4}$ AUBERT,B	05 w BABR	Repl. by LEES 12 X
$5.8 \pm 1.4 \pm 1.8$	54	${ }^{5}$ BERGFELD	97	CLEO
$\mathrm{Cm}=10.6 \mathrm{GeV}$				

${ }^{1}$ LEES $12 \times$ obtain this value by dividing their $\mathrm{B}\left(\tau^{-} \rightarrow f_{1}(1285) \pi^{-} \nu_{\tau} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right)$ measurement by the PDG 12 value of $\mathrm{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=0.111_{-0.006}^{+0.007}$.
 $\frac{\text { VALUE }}{\mathbf{0 . 6 9} \pm \mathbf{0 . 0 1} \pm \mathbf{0 . 0 5}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT 08AE }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{384 \mathrm{fb}^{-1}, E_{C m}^{e}=10.6 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
0.55 ± 0.14 BERGFELD 97 CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of AUBERT 08AE $\mathrm{B}\left(\tau^{-} \rightarrow f_{1}(1285) \pi^{-} \nu_{\tau} \rightarrow \eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\right)$ and $\mathrm{B}\left(\tau^{-} \rightarrow \eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}\left(\right.\right.$ ex. $\left.K^{0}\right)$) values.
 $\Gamma\left(\pi(1300)^{-} \nu_{\tau} \rightarrow(\rho \pi)^{-} \nu_{\tau} \rightarrow(3 \pi)^{-} \nu_{\tau}\right) / \Gamma_{\text {total }} \quad \Gamma_{174} / \Gamma$ $\frac{\text { VALUE }}{<\mathbf{1 . 0} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ASNER }} 00 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

$\frac{\text { VALUE }}{<\mathbf{1 . 9} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ASNER }} 00 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

2
2

$\begin{gathered} \Gamma\left(h^{-} \omega \geq 0 \text { neutrals } \nu_{\tau}\right) / \Gamma_{\text {total }} \\ \Gamma_{176} / \Gamma=\left(\Gamma_{178}+\Gamma_{179}+\Gamma_{180}\right) / \Gamma \end{gathered}$				TECN	$\Gamma_{176 /}$
VALUE (\%)	EVTS	DOCUMENT ID			COMMENT
2.40 ± 0.08 OUR FIT					
- - We use the following data for averages but not for fits. - -					
$1.65 \pm 0.3 \pm 0.2$	1513	ALBRECHT		ARG	$E_{\mathrm{cm}}^{e e} \approx 10 \mathrm{GeV}$
$\Gamma\left(h^{-} \omega \nu_{\tau}\right) / \Gamma_{\text {total }}$					$/ \Gamma=\left(\Gamma_{178}+\Gamma_{179}\right) /$
$\operatorname{VALUE}(\%)$	EVTS	DOCUMENT ID		TECN	COMMENT
1.99 ± 0.06 OUR FIT					
1.92 ± 0.07 OUR AVERAGE					
$1.91 \pm 0.07 \pm 0.06$	5803	BUSKULIC	97c	ALEP	1991-1994 LEP runs
$1.60 \pm 0.27 \pm 0.41$	139	BARINGER	87	CLEO	$E_{\mathrm{Cm}}^{e e}=10.5 \mathrm{GeV}$
- - We use the following data for averages but not for fits. - .					
$1.95 \pm 0.07 \pm 0.11$	2223	${ }^{1}$ BALEST		CLEO	$E_{\mathrm{Cm}}^{e \mathrm{e}} \approx 10.6 \mathrm{GeV}$
${ }^{1}$ Not independent of BALEST 95c B $\left(\tau^{-} \rightarrow h^{-} \omega \nu_{\tau}\right) / \mathrm{B}\left(\tau^{-} \rightarrow h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\right)$ value					

$\left[\Gamma\left(\pi^{-} \omega \nu_{\tau}\right)+\Gamma\left(K^{-} \omega \nu_{\tau}\right)\right] / \Gamma\left(h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}\left(e x . K^{0}\right)\right) \quad\left(\Gamma_{178}+\Gamma_{179}\right) / \Gamma_{74}$ $\left(\Gamma_{178}+\Gamma_{179}\right) / \Gamma_{74}=\left(\Gamma_{178}+\Gamma_{179}\right) /\left(\Gamma_{78}+\Gamma_{103}+\Gamma_{107}+0.2292 \Gamma_{152}+0.893 \Gamma_{178}+\right.$ $0.893 \Gamma_{179}+0.0153 \Gamma_{180}$)

VALUE (units 10^{-2}) EVTS
43.5 ± 1.4 OUR FIT

45.3 ± 1.9 OUR AVERAGE

$43.1 \pm 3.3 \quad 2350 \quad{ }^{1}$ BUSKULIC 96 ALEP LEP 1991-1993 data $46.4 \pm 1.6 \pm 1.7 \quad 2223 \quad 2$ BALEST 95C CLEO $E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$37 \pm 5 \pm 2458 \quad{ }^{3}$ ALBRECHT 91D ARG $E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
${ }^{1}$ BUSKULIC 96 quote the fraction of $\tau \rightarrow h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}$ (ex. K^{0}) decays which originate in a $h^{-} \omega$ final state $=0.383 \pm 0.029$. We divide this by the $\omega(782) \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$ branching fraction (0.888).
${ }^{2}$ BALEST 95c quote the fraction of $\tau^{-} \rightarrow h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}$ (ex. K^{0}) decays which originate in a $h^{-} \omega$ final state equals $0.412 \pm 0.014 \pm 0.015$. We divide this by the $\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}$ branching fraction (0.888).
${ }^{3}$ ALBRECHT 91D quote the fraction of $\tau^{-} \rightarrow h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau}$ decays which originate in a $\pi^{-} \omega$ final state equals $0.33 \pm 0.04 \pm 0.02$. We divide this by the $\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}$ branching fraction (0.888).
$\Gamma\left(\pi^{-} \omega \nu_{\tau}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E(\%)}{1.95 \pm 0.06 \text { OUR FIT }}$
Γ_{178} / Γ

$\Gamma\left(\mu^{-} \pi^{0}\right) / \Gamma_{\text {total }}$

Value	CL\%	DOCUMENT ID		TECN	COMMENT
$<1.1 \times 10^{-7}$	90	AUBERT	071	BABR	$339 \mathrm{fb}{ }^{-1}, E_{\mathrm{Cm}}^{e \ell}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.2 \times 10^{-7}$	90	MIYAZAKI	07	BELL	$401 \mathrm{fb}^{-1}, E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.1 \times 10^{-7}$	90	ENARI	05	BELL	$154 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e \ell}=10.6 \mathrm{GeV}$
$<4.0 \times 10^{-6}$	90	BONVICINI	97	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
< 4.4×10^{-5}	90	ALBRECHT	92k	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<82 \times 10^{-5}$	90	HAYES	82	MRK2	$E_{\text {cm }}^{e}{ }^{e}=3.8-6.8 \mathrm{GeV}$

$\Gamma\left(e^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}$ Test of lepton				
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT
$<2.6 \times 10^{-8}$	90	MIYAZAKI	10A BELL	$671 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$<3.3 \times 10^{-8}$	90	AUBERT	09D BABR	$469 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<5.6 \times 10^{-8}$	90	MIYAZAKI	06A BELL	$281 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{\mathrm{ee}}=10.6 \mathrm{GeV}$
$<9.1 \times 10^{-7}$	90	CHEN	02C CLEO	$E_{\mathrm{Cm}}^{e \mathrm{ee}}=10.6 \mathrm{GeV}$
$<1.3 \times 10^{-3}$	90	HAYES	82 MRK2	$E_{\mathrm{Cm}}^{e e}=3.8-6.8 \mathrm{GeV}$

$\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{-} \boldsymbol{K}_{\mathbf{S}}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
Test of lepton

n fami

$\frac{V A L U E}{<\mathbf{2} .3 \times 10^{-8}} \frac{C L \%}{\text { DOCUMENTID }}$ TECN COMMENT
$\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$<4.0 \times 10^{-8} \quad 90$
AUBERT \quad 09D BABR $469 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.9 \times 10^{-8} \quad 90 \quad$ MIYAZAKI 06A BELL $281 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e 己}=10.6 \mathrm{GeV}$

$<9.5 \times 10^{-7}$	90	CHEN	02 C	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.0 \times 10^{-3}$	90	HAYES	82	MRK2	$E_{\mathrm{Cm}}^{e e}=3.8-6.8 \mathrm{GeV}$

$\Gamma\left(e^{-} \eta\right) / \Gamma_{\text {total }}$					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<9.2 \times 10^{-8}$	90	MIYAZAKI	07	BEL	$401 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.6 \times 10^{-7}$	90	AUBERT	071	BABR	$339 \mathrm{fb}{ }^{-1}, E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.4 \times 10^{-7}$	90	ENARI	05	BELL	$154 \mathrm{fb}^{-1}, E_{C m}^{e e}=10.6 \mathrm{GeV}$
$<8.2 \times 10^{-6}$	90	BONVICINI	97	CLEO	$E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.3 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<24 \times 10^{-5}$	90	KEH	88	CBAL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10 \mathrm{GeV}$

$\Gamma\left(\mu^{-} \eta\right) / \Gamma_{\text {total }}$

Γ_{193} / Γ Test of lepton family number conservation.

$<6.5 \times 10^{-8} \quad 90 \quad$ MIYAZAKI 07 BELL $401 \mathrm{fb}^{-1}, E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

$<1.5 \times 10^{-7}$	90	AUBERT	071	BABR	$339 \mathrm{fb}-1, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.5 \times 10^{-7}$	90	ENARI	05	BELL	$154 \mathrm{fb}-1, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.4 \times 10^{-7}$	90	ENARI	04	BELL	$84.3 \mathrm{fb}-1, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<9.6 \times 10^{-6}$	90	BONVICINI	97	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.3 \times 10^{-5}$	90	ALBRECHT	92 K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$

$\Gamma\left(e^{-} \rho^{0}\right) / \Gamma_{\text {total }}$					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<1.8 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<4.6 \times 10^{-8}$	90	AUBERT	09w	BABR	$451 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.3 \times 10^{-8}$	90	NISHIO	08	BELL	$543 \mathrm{fb}{ }^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.5 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.0 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.2 \times 10^{-6}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$<1.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{cm}}^{e e}=10 \mathrm{GeV}$
$<37 \times 10^{-5}$	90	HAYES	82	MRK2	$E_{\mathrm{Cm}}^{e \mathrm{e}}=3.8-6.8 \mathrm{GeV}$
${ }^{1}$ BARTELT 94 assume phase space decays.					

| $\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{-} \boldsymbol{\rho}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test of lepton family number conservation. | |
| VALUE | |

${ }^{1}$ BARTELT 94 assume phase space decays.

$\Gamma\left(\mu^{-} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$					
$\frac{V A L U E}{<5.9 \times 10^{-8}}$	CL\%	DOCUMENT ID		TECN	COMMENT
	90	NISHIO	08	BELL	$543 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<7.2 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.7 \times 10^{-7}$	90	AUBERT	09w	BABR	$451 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.9 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{ee}}=10.6 \mathrm{GeV}$
$<7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<9.4 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<4.5 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{e} \mathrm{e}=10 \mathrm{GeV}$
${ }^{1}$ BARTELT 94 assume phase space decays.					

$\Gamma\left(e^{-} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$				Γ_{200} / Γ	
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<3.4 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<4.6 \times 10^{-8}$	90	AUBERT	09w	BABR	$451 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.7 \times 10^{-8}$	90	NISHIO	08	BELL	$543 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.0 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \ell}=10.6 \mathrm{GeV}$
$<7.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.1 \times 10^{-5}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl. by BLISS 98
${ }^{1}$ BARTELT 94 assume phase space decays.					

$\Gamma\left(\mu^{=} \overline{\boldsymbol{K}}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$						Γ_{201} / Γ
Test of I	fami	ber conserva				
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<7.0 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \mathrm{fb}^{-1}$	

- - We do not use the following data for averages, fits, limits, etc. - - -

$<7.3 \times 10^{-8}$	90	AUBERT	$09 w$	BABR	$451 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.0 \times 10^{-7}$	90	NISHIO	08	BELL	$543 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.0 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<8.7 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
1 BARTELT 94	assume phase space decays.				

$\Gamma\left(e^{-} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$					Γ_{202} / Γ
VALUE	cl\％	DOCUMENT ID	TECN	сомment	
＜ 1.6×10^{-7}	90	mIYAZAKI	07 beLL	$401 \mathrm{fb}^{-1}$ ，	10.6 GeV
－．－We do not use the following data for averages，fits，limits，etc．					
$<2.4 \times 10^{-7}$	90	AUBERT	071 BABR	$339 \mathrm{fb}{ }^{-1}$ ，	10.6 GeV
$<10 . \times 10^{-7}$	90	Enari	05 bell	$154 \mathrm{fb}^{-1}$ ，	10.6 GeV

$\begin{aligned} & \Gamma\left(e^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }} \\ & \text { Test of lepton family number conservation. } \end{aligned}$				$\Gamma_{208 / \Gamma}$
	CL\％	DOCuMENT ID	TEC	COMMEN
$<2.7 \times 10^{-8}$	90	HA	bel	$782 \mathrm{fb}{ }^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
wing data for				
$<2.9 \times 10^{-8}$	90	Lees	10A babr	$468 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$<3.6 \times 10^{-8}$	90	ZAK	08 beLL	$535 \mathrm{fb}{ }^{-1} E_{\text {cm }}^{e e}=10.6 \mathrm{GeV}$
$<4.3 \times 10^{-8}$	90	aubert	07Bk babr	$376 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e+e}=10.6 \mathrm{GeV}$
$<2.0 \times 10^{-7}$	90	UBE	04J BABR	$91.5 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.5 \times 10^{-7}$	90	Yusa	04 BELL	$87.1 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.9 \times 10^{-6}$	90	blis	98 CLEO	$E_{\text {cm }}^{e j e}=10.6 \mathrm{GeV}$
$<0.33 \times 10^{-5}$	90	${ }^{1}$ bartelt	94 CLEO	Repl．by BLISS 98
$<1.3 \times 10^{-5}$	90	albrecht	92k ARG	$\mathrm{E}_{\mathrm{cm}}^{e e}=10 \mathrm{GeV}$
$<2.7 \times 10^{-5}$	90	bowcock	Cleo	$\mathrm{E}_{\mathrm{Cm}}^{e}=10.4-10.9$
$<40 \times 10^{-5}$	90	hayes	82 MRK2	$\mathrm{E}_{\mathrm{Cm}}^{e \mathrm{ec}}=3.8-6.8 \mathrm{GeV}$
${ }^{1}$ BARTELT 94 assume phase space decays．				
$\Gamma\left(e^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {tetal }} \text { of lepton family number conservation. }$				$\Gamma_{209 / \Gamma}$
	cl\％	DOCUMENT ID	TECN	Сомment
$<2.7 \times 10^{-8}$	90	hayasaka	10 beLL	$782 \mathrm{fb}{ }^{-1} E_{\text {em }}^{e e m}=10.6 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－．－				
$<3.2 \times 10^{-8}$	90	Lees	10A BABR	$468 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.1 \times 10^{-8}$	90	yazakı	08 BELL	$535 \mathrm{fb}{ }^{-1} \mathrm{E}_{\mathrm{cm}}^{e \ell}=10.6 \mathrm{GeV}$
$<3.7 \times 10^{-8}$	90	aubert	07вк BABR	$376 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.3 \times 10^{-7}$	90	aubert	04」 BABR	$91.5 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.0 \times 10^{-7}$	90	YUSA	Bell	$87.1 \mathrm{fb}^{-1} \mathrm{E}_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.8 \times 10^{-6}$	90	bliss	98 CLEO	$\mathrm{E}_{\mathrm{cm}}^{\text {eem }}=10.6 \mathrm{GeV}$
$<0.36 \times 10^{-5}$	90	${ }^{1}$ bartelt	94 CLEO	Repl．by BLISS 98
$<1.9 \times 10^{-5}$	90	albrecht	92k ARG	$\mathrm{E}_{\mathrm{cm}}^{e+e}=10 \mathrm{GeV}$
$<2.7 \times 10^{-5}$	90	воwcock	90 CLEO	$E_{c m}^{e e}=10.4-10.9$
$<33 \times 10^{-5}$	90	HAYES	82 MR	$E_{\mathrm{cm}}^{e e}=3.8-6.8 \mathrm{GeV}$

[^104]| $\Gamma\left(e^{+} \mu^{-} \mu^{-}\right) / \Gamma_{\text {total }}$ | | | | Γ_{210} / Γ |
| :---: | :---: | :---: | :---: | :---: |
| VALUE | CL\％ | DOCUMENTID | TECN | COMMENT |
| $<1.7 \times 10^{-8}$ | 90 | HAYASAKA | 10 BELL | $782 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ |
| －－We do not use the following data for averages，fits，limits，etc．－－ | | | | |
| $<2.6 \times 10^{-8}$ | 90 | LEES | 10A BABR | $468 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$ |
| $<2.3 \times 10^{-8}$ | 90 | MIYAZAKI | 08 BELL | $535 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$ |
| $<5.6 \times 10^{-8}$ | 90 | AUBERT | 07bk BABR | $376 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$ |
| $<1.3 \times 10^{-7}$ | 90 | AUBERT | 04」 BABR | $91.5 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ |
| $<2.0 \times 10^{-7}$ | 90 | YUSA | 04 BELL | $87.1 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ |
| $<1.5 \times 10^{-6}$ | 90 | BLISS | 98 CLEO | $E_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$ |
| $<0.35 \times 10^{-5}$ | 90 | ${ }^{1}$ BARTELT | 94 CLEO | Repl．by BLISS 98 |
| $<1.8 \times 10^{-5}$ | 90 | ALBRECHT | 92k ARG | $E_{\mathrm{Cm}}^{e \mathrm{e}}=10 \mathrm{GeV}$ |
| $<1.6 \times 10^{-5}$ | 90 | BOWCOCK | 90 CLEO | $E_{\mathrm{Cm}}^{e e}=10.4-10.9$ |

${ }^{1}$ BARTELT 94 assume phase space decays．
$\Gamma\left(\mu^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{211 / \Gamma}$

VALUE	CL\％	DOCUMENTID		TECN	COMMENT
$<1.8 \times 10^{-8}$	90	HAYASAKA	10	BELL	$782 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－					
$<2.2 \times 10^{-8}$	90	LEES	10A	BABR	$468 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$<2.7 \times 10^{-8}$	90	MIYAZAKI	08	BELL	$535 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<8.0 \times 10^{-8}$	90	AUBERT	07BK	BABR	$376 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{\mathrm{ee}}=10.6 \mathrm{GeV}$
$<2.7 \times 10^{-7}$	90	AUBERT	04」	BABR	$91.5 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e}=10.6 \mathrm{GeV}$
$<1.9 \times 10^{-7}$	90	YUSA	04	BELL	$87.1 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.7 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<0.34 \times 10^{-5}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl．by BLISS 98
$<1.4 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<2.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\text {cm }}^{e e}=10.4-10.9$
$<44 \times 10^{-5}$	90	HAYES	82	MRK2	$E_{\mathrm{Cm}}^{e e}=3.8-6.8 \mathrm{GeV}$
${ }^{1}$ BARTELT 94 assume phase space decays．					

$\Gamma\left(\boldsymbol{\mu}^{+} e_{\text {Test of lepton family number conservation．}} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 1 2}} / \boldsymbol{\Gamma}$ Test of lepton family number conservation．
$\frac{\text { VALUE }}{10^{-8}} \frac{\text { CL\％}}{\text { DOCUMENTID }}$ TECN COMMENT －－We do not use the following data for averages，fits，limits，etc．－－

<1.8	$\times 10^{-8}$	90	LEES	10A	BABR	$468 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
<2.0	$\times 10^{-8}$	90	MIYAZAKI	08	BELL	$535 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{el}}=10.6 \mathrm{GeV}$
<5.8	$\times 10^{-8}$	90	AUBERT	07Bk	BABR	$376 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{ee}}=10.6 \mathrm{GeV}$
<1.1	$\times 10^{-7}$	90	AUBERT	04」	BABR	$91.5 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
<2.0	$\times 10^{-7}$	90	YUSA	04	BELL	$87.1 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
<1.5	$\times 10^{-6}$	90	BLISS	98	CLEO	$E_{\text {cm }}^{e e}=10.6 \mathrm{GeV}$
<0.34	$\times 10^{-5}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl．by BLISS 98
<1.4	$\times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{cm}}^{\mathrm{ee}}=10 \mathrm{GeV}$
<1.6	$\times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{C m}^{e e}=10.4-10.9$

${ }^{1}$ BARTELT 94 assume phase space decays．
$\Gamma\left(\mu^{=} \boldsymbol{\mu}^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 1 3}} / \Gamma$

$\Gamma\left(e^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{214} / Γ
VALUE	CL\％	DOCUMENT		TECN	COMMENT	
$<2.3 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1}$	． 6 GeV

$<4.4 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<7.3 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.2 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.2 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.4 \times 10^{-6}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$<2.7 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10 \mathrm{GeV}$
$<6.0 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10.4-10.9$
${ }^{1}$ BARTELT 94 assume phase space decays.					
$\Gamma\left(e^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$ Test of lepton number conservation.					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<\mathbf{2 . 0} \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - •					
$<8.8 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<2.0 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.7 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.9 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.4 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<1.8 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{\mathrm{ee}}=10 \mathrm{GeV}$
$<1.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
${ }^{1}$ BARTELT 94 assume phase space decays.					

$\Gamma\left(\boldsymbol{\mu}^{-} \boldsymbol{\pi}^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{216} / Γ

VALUE	CL\%	DOCUMENTID		TECN	COMMENT
$<2.1 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - . -					
$<3.3 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<4.8 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.9 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$<8.2 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.4 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<3.6 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{cm}}^{e e}=10 \mathrm{GeV}$
$<3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
${ }^{1}$ BARTELT 94 assume phase space decays.					

$\Gamma\left(\mu^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{217} / Γ
Test of lepton number conservation
$\frac{V A L U E}{<\mathbf{3 . 9} \times \mathbf{1 0}^{\mathbf{- 8}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { MIYAZAKI } 13} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - •

$<3.7 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<3.4 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7 \times 10^{-8}$	90	AUBERT,BE	05 D	BABR	$221 \mathrm{fb}-1, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.9 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<6.3 \times 10^{-5}$	90	ALBRECHT	92 K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
1 BARTELT 94 assume phase space decays.					

$\Gamma\left(e^{-} \pi^{+} K^{-}\right) / \Gamma_{\text {Test of leplal }}$
$\frac{V A L U E}{<\mathbf{3 . 7} \times \mathbf{1 0}^{-\mathbf{8}}} \quad \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { MIYAZAKI } 13} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - • -

$<5.8 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<7.2 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.2 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.7 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<2.9 \times 10^{-5}$	90	ALBRECHT	92 K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<5.8 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
1 BARTELT 94 assume phase space decays.					

$\Gamma\left(e^{-} \pi^{-} K^{+}\right) / \Gamma_{\text {tostal of lepton family number conservation. }}$

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<3.1 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$<5.2 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<1.6 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$<1.7 \times 10^{-}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e}=10.6 \mathrm{GeV}$
$<3.8 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.6 \times 10^{-6}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$<5.8 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$

${ }^{1}$ BARTELT 94 assume phase space decays.

$\Gamma\left(e^{+} \pi^{-} K^{-}\right) / \Gamma_{\text {total }}$ Test of lepton number conservation.				Γ_{220} / Γ	
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<3.2 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<6.7 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<1.9 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.8 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{\mathrm{ee}}=10.6 \mathrm{GeV}$
$<2.1 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.5 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<2.0 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10 \mathrm{GeV}$
$<4.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$

${ }^{1}$ BARTELT 94 assume phase space decays.

					Γ_{221} / Γ
VALUE	CL\%	DOCUMENTID	TECN	COMMENT	
$<7.1 \times 10^{-8}$	90	MIYAZAKI	BELL	$671 \mathrm{fb}^{-1}$	

$<2.2 \times 10^{-6} \quad 90 \quad$ CHEN 02 C CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$\Gamma\left(e^{-} \boldsymbol{K}^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 2 2}} / \Gamma$
$\frac{V A L U E}{<3.4 \times 10^{-8}} \frac{90}{90} \quad \frac{\text { DOCUMENT ID }}{\text { MIYAZAKI }} 13 \quad \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$

$\bullet \bullet \bullet$	We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$				
$<5.4 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<3.0 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.4 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<6.0 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(e^{+} K^{-} K^{-}\right) / \Gamma_{\text {total }}$ Test of lepton number conservation.				Γ_{223} / Γ	
VALUE	CL\%	DOCUMENT ID		TECN COMMENT	
$<3.3 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<6.0 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<3.1 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.5 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{\mathrm{ee}}=10.6 \mathrm{GeV}$
$<3.8 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(\mu^{-} \pi^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{224} / \Gamma$ Test of lepton family number conservation
VALUE C CL\% DOCUMENT ID TECN COMMENT
$<\mathbf{8 . 6 \times 1 0 ^ { \mathbf { - 8 } }} 90 \quad$ MIYAZAKI 13 BELL $854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - • -

$<1.6 \times 10^{-7}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<2.7 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<2.6 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	$221 \mathrm{fb}-1, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<8.7 \times 10^{-6}$	90	1 BARTELT	94	CLEO	Repl. by BLISS 98
$<11 \times 10^{-5}$	90	ALBRECHT	92 K	ARG	$E_{\mathrm{Cm}}^{e e}=10 \mathrm{GeV}$
$<7.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
	1 BARTELT 94 assume phase space decays.				

$\Gamma\left(\mu^{-} \pi^{-} K^{+}\right) / \Gamma_{\text {total }}$
Test of lepton family number conservation
Γ_{225} / Γ

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<4.5 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.0 \times 10^{-7}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<7.3 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<3.2 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<7.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<1.5 \times 10^{-5}$	90	${ }^{1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$<7.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\mathrm{Cm}}^{e e}=10.4-10.9$
${ }^{1}$ BARTELT 94 assume phase space decays.					
$\Gamma\left(\boldsymbol{\mu}^{+} \boldsymbol{\pi}^{-} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$		Γ_{226} / Γ			

$\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \boldsymbol{\pi}^{-} \boldsymbol{K}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
Test of lepton number conservation.
VOLUE
${ }^{1}$ BARTELT 94 assume phase space decays.

Lepton Particle Listings
τ

$\Gamma\left(\mu^{+} K^{-} K^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{229} /{ }^{\text {/ }}$	
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<4.7 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<9.6 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$<4.4 \times 10^{-7}$	90	YUSA	06	BELL	$158 \mathrm{fb}^{-1} E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$<4.8 \times 10^{-7}$	90	AUBERT,BE	05D	BABR	$221 \mathrm{fb}^{-1}, E_{\mathrm{cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
$<6.0 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

$\Gamma\left(\bar{p} \pi^{0} \eta\right) / \Gamma_{\text {total }}$
Test of lepton number and baryon number conservation.
10.6 GeV
$\Gamma\left(\Lambda \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {test of lepton number and baryon number conservation. }} \quad \Gamma_{\mathbf{2 4 3}} / \Gamma$
Test of lepton number and baryon number conservation.
$\frac{V A L U E}{<0.72 \times 10^{\mathbf{- 7}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { MIYAZAKI }} 06 \frac{\text { TECN }}{\text { BELI }} \frac{\text { COMMENT }}{154 \mathrm{fb}^{-1} E^{e e}-10.6 \mathrm{GeV}}$
$\Gamma\left(\bar{\Lambda} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 4 4}} / \Gamma$

Test of lepton number and baryon number conservation.
$\frac{V A L U E}{<\mathbf{1 . 4} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { MIYAZAKI } 06} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{154 \mathrm{fb}^{-1}, E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}}$
$\Gamma\left(e^{-}\right.$light boson $) / \Gamma\left(e^{-} \boldsymbol{\nu}_{e} \nu_{\tau}\right)$

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
<0.015	95	1 ALBRECHT	95G	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{Ge}$

- - We do not use the following data for averages, fits, limits, etc. - - •

<0.018	95	2	2 ALBRECHT 90 E	ARG
<0.040	95	3 BAITRUSAIT	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$	

${ }^{1}$ ALBRECHT 95 G limit holds for bosons with mass $<0.4 \mathrm{GeV}$. The limit rises to 0.036 for a mass of 1.0 GeV , then falls to 0.006 at the upper mass limit of 1.6 GeV .
${ }^{2}$ ALBRECHT 90E limit applies for spinless boson with mass $<100 \mathrm{MeV}$, and rises to
0.050 for mass $=500 \mathrm{MeV}$.

3 BALTRUSAITIS 85 limit applies for spinless boson with mass $<100 \mathrm{MeV}$.

$\Gamma\left(\mu^{-}\right.$light boson $) / \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$				$\Gamma_{246} / \Gamma_{5}$	
Test of lepton family number conservation.					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
<0.026	95	${ }^{1}$ ALBRECHT	95G	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
<0.033	95	2 ALBRECHT	90E	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
<0.125	95	${ }^{3}$ BALTRUSAIT	. 85	MRK3	$E_{\mathrm{cm}}^{e e}=3.77 \mathrm{GeV}$

${ }^{1}$ ALBRECHT 95 G limit holds for bosons with mass $<1.3 \mathrm{GeV}$. The limit rises to 0.034
for a mass of 1.4 GeV , then falls to 0.003 at the upper mass limit of 1.6 GeV .
${ }^{2}$ ALBRECHT 90E limit applies for spinless boson with mass $<100 \mathrm{MeV}$, and rises to 0.071 for mass $=500 \mathrm{MeV}$.
${ }^{3}$ BALTRUSAITIS 85 limit applies for spinless boson with mass $<100 \mathrm{MeV}$.
τ-DECAY PARAMETERS
See the related review(s):
τ-Lepton Decay Parameters

$\rho(e$ or $\mu)$ PARAMETER

$(V-A)$ theory predicts $\rho=0.75$.
$\begin{array}{ll}\text { VALUE } & =0.75 . \\ \text { DOCUMENTID theory predicts } \rho=\text { EVTS } & \\ \text { DECN COMMENT }\end{array}$
0.749 ± 0.008 OUR AVERAGE
$0.742 \pm 0.014 \pm 0.006$ 81k HEISTER 01E ALEP 1991-1995 LEP runs $0.775 \pm 0.023 \pm 0.020$ 36k ABREU 00L DLPH 1992-1995 runs $0.781 \pm 0.028 \pm 0.018 \quad 46 \mathrm{k} \quad$ ACKERSTAFF 99D OPAL 1990-1995 LEP runs
$0.762 \pm 0.035 \quad 54 \mathrm{k} \quad$ ACCIARRI 98 R L3 \quad 1991-1995 LEP runs
$0.731 \pm 0.031 \quad{ }^{1}$ ALBRECHT $98 \quad$ ARG $E_{\mathrm{Cm}}^{e e}=9.5-10.6 \mathrm{GeV}$
$0.72 \pm 0.09 \pm 0.03 \quad 2$ ABE 970 SLD 1993-1995 SLC runs
$0.747 \pm 0.010 \pm 0.006 \quad 55 \mathrm{k} \quad$ ALEXANDER 97 F CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
$0.79 \pm 0.10 \pm 0.10 \quad 3732 \quad$ FORD $\quad 87 \mathrm{~B}$ MAC $E_{C m}^{e e}=29 \mathrm{GeV}$
$0.71 \pm 0.09 \pm 0.03 \quad 1426 \quad$ BEHRENDS 85 CLEO $e^{+} e^{-}$near $\Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.735 \pm 0.013 \pm 0.008 \quad 31 \mathrm{k} \quad$ AMMAR 97B CLEO Repl. by ALEXAN-
$0.794 \pm 0.039 \pm 0.031 \quad 18 \mathrm{k} \quad$ ACCIARRI 96 H L3 $\quad \begin{gathered}\text { Repl. by ACCIARRI 98R }\end{gathered}$
$0.732 \pm 0.034 \pm 0.020 \quad 8.2 \mathrm{k} \quad 3$ ALBRECHT $95 \quad$ ARG $\quad E_{\mathrm{Cm}}^{e e}=9.5-10.6 \mathrm{GeV}$
$0.738 \pm 0.038 \quad 4$ ALBRECHT 95C ARG Repl. by ALBRECHT 98
$0.751 \pm 0.039 \pm 0.022$ BUSKULIC 95D ALEP Repl. by HEISTER 01E
$0.742 \pm 0.035 \pm 0.0208000 \quad$ ALBRECHT 90E ARG $E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
${ }^{1}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, ALBRECHT 95c, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.
${ }^{2}$ ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a ρ value of $0.69 \pm$ 0.13 ± 0.05.
${ }^{3}$ Value is from a simultaneous fit for the ρ and η decay parameters to the lepton energy spectrum. Not independent of ALBRECHT 90E $\rho(e$ or $\mu)$ value which assumes $\eta=0$. Result is strongly correlated with ALBRECHT 95C.
${ }^{4}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E.
$\rho(e)$ PARAMETER
($V-A$) theory predicts $\rho=0.75$.

	EVTS	NT ID		TECN	EN
0.747 ± 0.010 OUR FIT					
$\mathbf{0 . 7 4 4} \pm \mathbf{0 . 0 1 0}$ OUR AVERAGE					
$0.747 \pm 0.019 \pm 0.014$	44k	HEISTER	1 E	ALEP	991-1995 LEP runs
$0.744 \pm 0.036 \pm 0.037$	17k	ABREU	00L	D	92-1995 run
$0.779 \pm 0.047 \pm 0.029$	25k	ACKERSTAFF	99D	OPA	1990-1995 LEP
$0.68 \pm 0.04 \pm 0.07$		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{cm}}^{e \ell}=9.5-10.6 \mathrm{GeV}$
$0.71 \pm 0.14 \pm 0.05$		be	970	SLD	1993-1995 SLC ru
$0.747 \pm 0.012 \pm 0.004$	34k	ALEXANDER	97F	CLE	10.6 GeV
$0.735 \pm 0.036 \pm 0.020$	4.7 k	${ }^{2}$ ALBRECHT	95	ARG	$E_{\mathrm{cm}}^{e e}=9.5-10.6 \mathrm{GeV}$
$0.79 \pm 0.08 \pm 0.06$	3230	${ }^{3}$ ALBRECHT	93 G	ARG	$E_{\mathrm{cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
$0.64 \pm 0.06 \pm 0.07$	2753	JANSSEN	89	CBAL	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
$0.62 \pm 0.17 \pm 0.14$	1823	FORD	87B	MAC	$E_{\mathrm{cm}}^{e} \mathrm{e}=29 \mathrm{GeV}$
0.60 ± 0.13	699	BEHRENDS		CLEO	$e^{+} e^{-}$near $r(4 S)$
$0.72 \pm 0.10 \pm 0.11$	594	BACINO		DLC	$E_{\mathrm{cm}}^{e e}=3.5-7.4 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. -					
$732 \pm 0.014 \pm 0.009$	19k	AMMAR		CLEO	Repl. by ALEXANDER 97F
$0.793 \pm 0.050 \pm 0.025$		BuSkulic	95	ALEP	Repl. by HEISTER 01E
$0.747 \pm 0.045 \pm 0.028$	5106	ALBRECHT	90E	ARG	Repl. by ALBRECHT 95
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.					
${ }^{2}$ ALBRECHT 95 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$ $\left(h^{+} h^{-} h^{+}\left(\pi^{0}\right) \bar{\nu}_{\tau}\right)$ and their charged conjugates.					
${ }^{3}$ ALBRECHT $93 G$ use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right)\left(e^{+} \nu_{e} \bar{\nu}_{\tau}\right)$ and their charged conjugates.					

$\rho(\mu)$ PARAMETER

$$
\text { (} V-A \text {) theory predicts } \rho=0.75 \text {. }
$$

value	EVTS	DOCUMENTID		TECN	COMMENT
0.763 ± 0.020 OUR FIT					
0.770 ± 0.022 OUR AVERAGE					
$0.776 \pm 0.045 \pm 0.019$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.999 \pm 0.098 \pm 0.045$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.777 \pm 0.044 \pm 0.016$	27k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
$0.69 \pm 0.06 \pm 0.06$		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{Cm}}^{e}{ }^{e}=9.5-10.6 \mathrm{GeV}$
$0.54 \pm 0.28 \pm 0.14$		ABE	970	SLD	1993-1995 SLC runs
$0.750 \pm 0.017 \pm 0.045$	22k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{\mathrm{e}}{ }^{e}=10.6 \mathrm{GeV}$
$0.76 \pm 0.07 \pm 0.08$	3230	ALBRECHT	93G	ARG	$E_{\mathrm{Cm}}^{e \ell e}=9.4-10.6 \mathrm{GeV}$
$0.734 \pm 0.055 \pm 0.027$	3041	ALBRECHT	90E	ARG	$E_{\mathrm{Cm}}^{e \mathrm{e}}=9.4-10.6 \mathrm{GeV}$
$0.89 \pm 0.14 \pm 0.08$	1909	FORD	87B	MAC	$E_{\mathrm{Cm}}^{e \mathrm{e}}=29 \mathrm{GeV}$
0.81 ± 0.13	727	BEHRENDS	85	CLEO	$e^{+} e^{-}$near $\gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$0.747 \pm 0.048 \pm 0.044$	13k	AMMAR	97B	CLEO	Repl. by ALEXANDER 97F
$0.693 \pm 0.057 \pm 0.028$		BUSKULIC	95D	ALEP	Repl. by HEISTER 01E
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.					

$\boldsymbol{\xi}(\boldsymbol{e}$ or $\boldsymbol{\mu})$ PARAMETER

$(V-A)$ theory predicts $\xi=1$.				TECN	COMMENT
VALUE	EVTS	DOCUMENT ID			
0.985 ± 0.030 OUR FIT					
$\mathbf{0 . 9 8 1} \pm \mathbf{0 . 0 3 1}$ OUR AVERAGE					
$0.986 \pm 0.068 \pm 0.031$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.929 \pm 0.070 \pm 0.030$	36k	ABREU	00L	DLPH	1992-1995 runs
$0.98 \pm 0.22 \pm 0.10$	46k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
0.70 ± 0.16	54k	ACCIARRI	98R	L3	1991-1995 LEP runs
1.03 ± 0.11		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{Cm}}^{e e}=9.5-10.6 \mathrm{GeV}$
$1.05 \pm 0.35 \pm 0.04$		${ }^{2}$ ABE	970	SLD	1993-1995 SLC runs
$1.007 \pm 0.040 \pm 0.015$	55k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$0.94 \pm 0.21 \pm 0.07$	18k	ACCIARRI	96H	L3	Repl. by ACCIARRI 98R
0.97 ± 0.14		${ }^{3}$ ALBRECHT	95C	ARG	Repl. by ALBRECHT 98
$1.18 \pm 0.15 \pm 0.16$		BUSKULIC	95D	ALEP	Repl. by HEISTER 01E
$0.90 \pm 0.15 \pm 0.10$	3230	${ }^{4}$ ALBRECHT	93G	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
${ }^{1}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, AL BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.					
${ }^{2}$ ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a ξ value of $1.02 \pm$ 0.36 ± 0.05.					
${ }^{3}$ Combined fit to BRECHT 93G, and $\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(h^{+}\right.$	ALBRS $\left.h^{+} \bar{\nu}_{\tau}\right)$	decay paramete HT 94E. ALBREC nd their charged	meas	uremen C uses ates.	in ALBRECHT 95C, AL-
${ }^{4}$ ALBRECHT 93G measurement determines $\|\xi\|$ for the case $\xi(e)=\xi(\mu)$, but the authors point out that other LEP experiments determine the sign to be positive					

$\xi(e)$ PARAMETER
$(V-A)$ theory predicts $\xi=1$.
$\frac{\text { VALUE }}{0.994 \pm 0.040 \text { OUR FIT }}$ EVTS
1.00 ± 0.04 OUR AVERAGE
$1.011 \pm 0.094 \pm 0.038 \quad 44 \mathrm{k} \quad$ HEISTER 01 E ALEP 1991-1995 LEP runs $1.01 \pm 0.12 \pm 0.05 \quad 17 \mathrm{k} \quad$ ABREU 00L DLPH 1992-1995 runs $1.13 \pm 0.39 \pm 0.14 \quad$ 25k ACKERSTAFF 99D OPAL 1990-1995 LEP runs $1.11 \pm 0.20 \pm 0.08 \quad{ }^{1}$ ALBRECHT 98 ARG $E_{\mathrm{Cm}}^{e}=9.5-10.6 \mathrm{GeV}$ $1.16 \pm 0.52 \pm 0.06 \quad$ ABE $\quad 970$ SLD $1993-1995$ SLC runs $0.979 \pm 0.048 \pm 0.016 \quad 34 \mathrm{k} \quad$ ALEXANDER 97 F CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - •
$1.03 \pm 0.23 \pm 0.09 \quad$ BUSKULIC 95D ALEP Repl. by HEISTER 01E
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.
$\xi(\mu)$ PARAMETER
$(V-A)$ theory predicts $\xi=1$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.030 ± 0.059 OUR FIT					
1.06 ± 0.06 OUR AVERAGE					
$1.030 \pm 0.120 \pm 0.050$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$1.16 \pm 0.19 \pm 0.06$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.79 \pm 0.41 \pm 0.09$	27k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
$1.26 \pm 0.27 \pm 0.14$		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{cm}}^{e \mathrm{el}}=9.5-10.6 \mathrm{GeV}$
$0.75 \pm 0.50 \pm 0.14$		ABE	970	SLD	1993-1995 SLC runs
$1.054 \pm 0.069 \pm 0.047$	22k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$

22 k ALEXANDER 97F CLEO $E_{\mathrm{Cm}}^{e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.23 \pm 0.22 \pm 0.10 \quad$ BUSKULIC 95D ALEP Repl. by HEISTER 01E
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.

$\eta(e$ or $\mu)$ PARAMETER

($V-A$) theory predicts $\eta=0$.
$\frac{\text { VALUE }}{0.013+0.020 \text { OUR FIT }}$ EVTS DOCUMENTID COMMENT 0.013 ± 0.020 OUR FIT $\mathbf{0 . 0 1 5} \pm \mathbf{0 . 0 2 1}$ OUR AVERAGE
$0.012 \pm 0.026 \pm 0.004 \quad 81 \mathrm{k}$ $-0.005 \pm 0.036 \pm 0.037$ $0.027 \pm 0.055 \pm 0.005 \quad 46 \mathrm{k}$ $0.27 \pm 0.14 \quad 54 \mathrm{k}$ $-0.13 \pm 0.47 \pm 0.15$
$-0.015 \pm 0.061 \pm 0.062 \quad 31 \mathrm{k}$
$0.03 \pm 0.18 \pm 0.12 \quad 8.2 k$

HEISTER	$01 E$	ALEP	$1991-1995$ LEP runs
ABREU	00 L	DLPH	$1992-1995$ runs
ACKERSTAFF	$99 D$	OPAL	$1990-1995$ LEP runs
ACCIARRI	$98 R$	L3	$1991-1995$ LEP runs
ABE	970	SLD	$1993-1995 \mathrm{SLC}$ runs
AMMAR	97 B	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
ALBRECHT	95	ARG	$E_{\mathrm{Cm}}^{e e}=9.5-10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.25 \pm 0.17 \pm 0.11 \quad 18 \mathrm{k} \quad$ ACCIARRI 96 H L3 \quad Repl. by ACCIARRI 98R $-0.04 \pm 0.15 \pm 0.11 \quad$ BUSKULIC 95D ALEP Repl. by HEISTER 01E

($\delta \xi$)(e or μ) PARAMETER
($V-A$) theory predicts $(\delta \xi)=0.75$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.746 ± 0.021 OUR FIT					
0.744 ± 0.022 OUR AVERAGE					
$0.776 \pm 0.045 \pm 0.024$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.779 \pm 0.070 \pm 0.028$	36k	ABREU	00L	DLPH	1992-1995 runs
$0.65 \pm 0.14 \pm 0.07$	46k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
0.70 ± 0.11	54k	ACCIARRI	98R	L3	1991-1995 LEP runs
0.63 ± 0.09		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{Cm}}^{e e}=9.5-10.6 \mathrm{GeV}$
$0.88 \pm 0.27 \pm 0.04$		${ }^{2}$ ABE	970	SLD	1993-1995 SLC runs
$0.745 \pm 0.026 \pm 0.009$	55k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e} \mathrm{e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$0.81 \pm 0.14 \pm 0.06$	18k	ACCIARRI	96H	L3	Repl. by ACCIARRI 98R
0.65 ± 0.12		${ }^{3}$ ALBRECHT	95C	ARG	Repl. by ALBRECHT 98
$0.88 \pm 0.11 \pm 0.07$		BUSKULIC	95D	ALEP	Repl. by HEISTER 01E

τ
${ }^{1}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, ALBRECHT 95c, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.
${ }^{2}$ ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a ($\delta \xi$) value of
${ }^{3} \begin{aligned} & 0.87 \pm 0.27 \pm 0.04 \text {. } \\ & \text { Combined fit to }\end{aligned}$ BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type $\tau^{-} \tau^{+} \rightarrow$ $\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(h^{+} h^{-} h^{+} \bar{\nu}_{\tau}\right)$ and their charged conjugates.
($\delta \xi$)(e) PARAMETER

$(V-A)$ theory predicts $(\delta \xi)=0.75$.				TECN	COMMENT
VALUE	EVTS	DOCUMENT ID			
0.734 ± 0.028 OUR FIT					
0.731 ± 0.029 OUR AVERAGE					
$0.778 \pm 0.066 \pm 0.024$	44k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.85 \pm 0.12 \pm 0.04$	17k	ABREU	00L	DLPH	1992-1995 runs
$0.72 \pm 0.31 \pm 0.14$	25k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
$0.56 \pm 0.14 \pm 0.06$		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{cm}}^{e}=9.5-10.6 \mathrm{GeV}$
$0.85 \pm 0.43 \pm 0.08$		ABE	970	SLD	1993-1995 SLC runs
$0.720 \pm 0.032 \pm 0.010$	34k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.11 \pm 0.17 \pm 0.07$		BUSKULIC		ALEP	Repl. by HEISTER 01E
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.					
$(\delta \xi)(\mu)$ PARAMETER					
$(V-A)$ theory predicts $(\delta \xi)=0.75$.					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.778 ± 0.037 OUR FIT					
0.79 ± 0.04 OUR AVERAGE					
$0.786 \pm 0.066 \pm 0.028$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.86 \pm 0.13 \pm 0.04$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.63 \pm 0.23 \pm 0.05$	27k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
$0.73 \pm 0.18 \pm 0.10$		${ }^{1}$ ALBRECHT	98	ARG	$E_{\mathrm{Cm}}^{e} \mathrm{e}=9.5-10.6 \mathrm{GeV}$
$0.82 \pm 0.32 \pm 0.07$		ABE	970	SLD	1993-1995 SLC runs
$0.786 \pm 0.041 \pm 0.032$	22k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - •					
$0.71 \pm 0.14 \pm 0.06$		BUSKULIC		ALEP	Repl. by HEISTER 01E
${ }^{1}$ ALBRECHT 98 use tau pair events of the type $\tau^{-} \tau^{+} \rightarrow\left(\ell^{-} \bar{\nu}_{\ell^{\nu}} \nu\right)\left(\pi^{+} \pi^{0} \bar{\nu}_{\tau}\right)$, and their charged conjugates.					

$\boldsymbol{\xi}(\boldsymbol{\pi})$ PARAMETER

$(V-A)$ theory predicts $\xi(\pi)=1$
VALUE EVTS DOCUMENTID TECN COMMENT
0.993 ± 0.022 OUR FIT
0.994 ± 0.023 OUR AVERAGE
$0.994 \pm 0.020 \pm 0.014 \quad 27 \mathrm{k}$
$0.81 \pm 0.17 \pm 0.02$
HEISTER 01E ALEP 1991-1995 LEP runs
ABE 970 SLD 1993-1995 SLC runs COAN 97 CLEO $E_{C m}^{e e}=10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.987 \pm 0.057 \pm 0.027 \quad$ BUSKULIC 95D ALEP Repl. by HEISTER 01E $0.95 \pm 0.11 \pm 0.05 \quad 1$ BUSKULIC 94D ALEP $1990+1991$ LEP run
${ }^{1}$ Superseded by BUSKULIC 95D.

$\xi(\rho)$ PARAMETER

$(V-A)$ theory predicts $\xi(\rho)=1$.				TECN	COMMENT
VALUE	EVTS	DOCUMENT ID			
0.994 ± 0.008 OUR FIT					
0.994 ± 0.009 OUR AVERAGE					
$0.987 \pm 0.012 \pm 0.011$	59k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.99 \pm 0.12 \pm 0.04$		ABE	970	SLD	1993-1995 SLC runs
$0.995 \pm 0.010 \pm 0.003$	66k	ALEXANDER	97F	CLEO	$E_{\mathrm{Cm}}^{e}{ }^{e}=10.6 \mathrm{GeV}$
$1.022 \pm 0.028 \pm 0.030$	1.7 k	1 ALBRECHT	94E	ARG	$E_{\mathrm{Cm}}^{e} \mathrm{e}=9.4-10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.045 \pm 0.058 \pm 0.032$		BUSKULIC	95D	ALEP	Repl. by HEISTER 01E
$1.03 \pm 0.11 \pm 0.05$		${ }^{2}$ BUSKULIC	94D	ALEP	1990+1991 LEP run
${ }^{1}$ ALBRECHT 94E measure the square of this quantity and use the sign determined by ALBRECHT 901 to obtain the quoted result.					

$\boldsymbol{\xi}\left(a_{1}\right)$ PARAMETER

$(V-A)$ theory predicts $\xi\left(a_{1}\right)=1$.

- - We do not use the following data for averages, fits, limits, etc. - -
$1.08 \underset{-0.41}{+0.46} \underset{-0.25}{+0.14} \quad 2.6 \mathrm{k} \quad{ }^{3}$ AKERS $\quad 95 \mathrm{P}$ OPAL Repl. by ACKER$0.937 \pm 0.116 \pm 0.064 \quad$ BUSKULIC 95D ALEP Repl. by HEISTER 01E
$1^{\text {HEISTER } 01 E}$ quote $1.000 \pm 0.016 \pm 0.013 \pm 0.020$ where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty.
2 ACKERSTAFF 97R obtain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY C48, 445 (1990)) ture functions. Fitting with the model of Kuhn and Santamaria (ZPHY C48, 445 (1990))
gives $0.87 \pm 0.16 \pm 0.04$, and with the model of of Isgur et al. (PR D39,1357 (1989)) they obtain $1.20 \pm 0.21 \pm 0.14$.
${ }^{3}$ AKERS 95P obtain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY C48, 445 (1990)) gives $0.87 \pm 0.27_{-0.06}^{+0.05}$, and with the model of of Isgur et al. (PR D39,1357 (1989)) they obtain $1.10 \pm 0.31_{-0.14}^{+0.13}$

$\xi($ all hadronic modes) PARAMETER

 $(V-A)$ theory predicts $\xi=1$.
$\frac{V A L U E}{0.995} \pm \mathbf{0 . 0 0 7}$ OUR FIT ${ }^{\text {EVTS }}$

0.997 ± 0.007 OUR AVERAGE
$0.992 \pm 0.007 \pm 0.008 \quad 102 \mathrm{k}$ $0.997+0.027 \pm 0.011$ $1.02 \pm 0.13 \pm 0.03 \quad 17.2 \mathrm{k} \quad{ }^{3}$ ASNER $\quad 00 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $1.032 \pm 0.031 \quad 37 \mathrm{k} \quad 4$ ACCIARRI 98R L3 1991-1995 LEP runs $0.93 \pm 0.10 \pm 0.04 \quad$ ABE 970 SLD 1993-1995 SLC runs $1.29 \pm 0.26 \pm 0.11 \quad 7.4 \mathrm{k} \quad 5$ ACKERSTAFF 97R OPAL 1992-1994 LEP runs $0.995 \pm 0.010 \pm 0.003 \quad 66 \mathrm{k} \quad{ }^{6}$ ALEXANDER 97 F CLEO $E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ $1.03 \pm 0.06 \pm 0.04 \quad 2.0 \mathrm{k} \quad{ }^{7}$ COAN $97 \quad$ CLEO $\quad E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$ 1.017 ± 0.039
8 ALBRECHT 95 C ARG $E_{\mathrm{CM}}^{\mathrm{ee}}=9.5-10.6 \mathrm{GeV}$ $1.25 \pm 0.23{ }_{-0.08}^{+0.15} \quad 7.5 \mathrm{k} \quad{ }^{9}$ ALBRECHT $\quad 93 \mathrm{C}$ ARG $\quad E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - •

$0.970 \pm 0.053 \pm 0.011$	14k	10 ACCIARRI	96H	L3	Repl. by ACCIARRI 98R
$1.08{ }_{-0.41}^{+0.46}{ }_{-0.25}^{+0.14}$	2.6k	11 AKERS	95P	OPAL	Repl. by ACKERSTAFF 97R
$1.006 \pm 0.032 \pm 0.019$		12 BUSKULIC	95D	ALEP	Repl. by HEISTER 01E
$1.022 \pm 0.028 \pm 0.030$	1.7k	13 ALBRECHT	94E	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
$0.99 \pm 0.07 \pm 0.04$		14 BUSKULIC	94D	ALEP	1990+1991 LEP run
$1.14 \pm 0.34{ }_{-0.17}^{+0.34}$	3.9k	${ }^{9}$ ALBRECHT	901	ARG	Repl. by ALBRECHT 93C

${ }^{1}$ HEISTER 01E quote $0.992 \pm 0.007 \pm 0.006 \pm 0.005$ where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty. They use $\tau \rightarrow \pi \nu_{\tau}, \tau \rightarrow K \nu_{\tau}, \tau \rightarrow \rho \nu_{\tau}$, and $\tau \rightarrow$ ${ }^{2} \nu_{\tau}$ decays.
${ }^{2}$ ABREU 00L use $\tau^{-} \rightarrow h^{-} \geq 0 \pi^{0} \nu_{\tau}$ decays.
${ }^{3}$ ASNER 00 use $\tau^{-} \rightarrow \pi^{-} 2 \pi^{\overline{0}} \nu_{\tau}$ decays.
${ }^{4}$ ACCIARRI 98R use $\tau \rightarrow \pi \nu_{\tau}, \tau \rightarrow K \nu_{\tau}$, and $\tau \rightarrow \rho \nu_{\tau}$ decays.
${ }^{5}$ ACKERSTAFF 97R use $\tau \rightarrow a_{1} \nu_{\tau}$ decays.
${ }^{6}$ ALEXANDER 97F use $\tau \rightarrow \rho \nu_{\tau}$ decays.
${ }^{7}$ COAN 97 use $h^{+} h^{-}$energy correlations.
${ }^{8}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E.
${ }^{9}$ Uses $\tau \rightarrow a_{1} \nu_{\tau}$ decays. Replaced by ALBRECHT 95C.
${ }^{10}$ ACCIARRI 96H use $\tau \rightarrow \pi \nu_{\tau}, \tau \rightarrow K \nu_{\tau}$, and $\tau \rightarrow \rho \nu_{\tau}$ decays.
11 AKERS 95P use $\tau \rightarrow a_{1} \nu_{\tau}$ decays.
12 BUSKULIC 95D use $\tau \rightarrow \pi \nu_{\tau}, \tau \rightarrow \rho \nu_{\tau}$, and $\tau \rightarrow a_{1} \nu_{\tau}$ decays.
13 ALBRECHT 94E measure the square of this quantity and use the sign determined by ALBRECHT 901 to obtain the quoted result. Uses $\tau \rightarrow a_{1} \nu_{\tau}$ decays. Replaced by ALBRECHT 95C
${ }^{14}$ BUSKULIC 94D use $\tau \rightarrow \pi \nu_{\tau}$ and $\tau \rightarrow \rho \nu_{\tau}$ decays. Superseded by BUSKULIC 95D.

$\overline{\boldsymbol{\eta}}(\mu)$ PARAMETER

 $(V-A)$ theory predicts $\bar{\eta}(\mu)=0$.$(V-A)$ theory predicts $\bar{\eta}(\mu)=0$.
$\frac{V A L U E}{-\mathbf{1 . 3} \pm \mathbf{1 . 5} \pm \mathbf{0 . 8}} \frac{\text { EVTS }}{71 \mathrm{~K}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { SHIMIZU 18A }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{\tau^{-} \rightarrow \nu_{\tau} \mu^{-} \bar{\nu}_{\mu} \gamma}$
${ }^{1}$ The measurement procedure fits a distribution affected by $\bar{\eta}(\mu), \xi \kappa(\mu)$ and η " (μ), floating $\eta(\mu)$ and $\xi \kappa(\mu)$ and fixing $\eta^{\prime \prime}(\mu)=0$. The contribution of $\eta^{\prime \prime}(\mu)$ is suppressed by m_{μ} / m_{τ}.

$\xi_{\boldsymbol{K}}(e)$ PARAMETER

 $(V-A)$ theory predicts $\xi_{\kappa}(e)=0$.$\frac{\text { VALUE }}{\mathbf{- 0 . 4} \pm \mathbf{0 . 8} \pm \mathbf{0 . 9}} \frac{\text { EVTS }}{78 \mathrm{~K}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { SHIMIZU }} \frac{18 \mathrm{~A}}{\text { COMMENT }} \frac{\text { BELL }}{\tau^{-} \rightarrow \nu_{\tau} e^{-} \bar{\nu}_{e} \gamma}$
${ }^{1}$ The measurement procedure fits a distribution affected by $\bar{\eta}(e), \xi \kappa(e)$ and η " (e), floating $\xi \kappa(e)$ and fixing $\bar{\eta}(e)=0$ and $\eta "(e)=0$. The contribution of $\eta "(e)$ is suppressed by m_{e} / m_{τ}.

$\xi_{\kappa}(\mu)$ PARAMETER

 $(V-A)$ theory predicts $\xi_{\kappa}(\mu)=0$.$\frac{\text { VALUE }}{\mathbf{0 . 8} \pm \mathbf{0 . 5} \pm \mathbf{0 . 3}} \frac{\text { EVTS }}{71 \mathrm{~K}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { SHIMIZU 18A }} \frac{\text { TECN }}{\operatorname{BELL}} \frac{\text { COMMENT }}{\tau^{-} \rightarrow \nu_{\tau} \mu^{-} \bar{\nu}_{\mu} \gamma}$
${ }^{1}$ The measurement procedure fits a distribution affected by $\bar{\eta}(\mu), \xi \kappa(\mu)$ and η " (μ), floating $\bar{\eta}(\mu)$ and $\xi \kappa(\mu)$ and fixing $\eta \prime \prime(\mu)=0$. The contribution of $\eta "(\mu)$ is suppressed by m_{μ} / m_{τ}.

τ REFERENCES					AMMAR ANASTASSOV	97 B	PRL 784686 PR D55 2559	R. Ammar et al. A. Anastassov et al	(CLEO Collab.) (CLEO Collab.)	
JIN	19	PR D100 071101	Y. Jin et al.	(BELLE COllab.)	Also		PR D58 119903 (erratum)	A. Anastassov et al.	(CLEO Collab.)	
LeES	18 B	PR D98 032010	J.P. Lees et al.	(BABAR Collab.)	ANDERSON	97	PRL 793814	S. Anderson et al.	(CLEO Collab.)	
SHIMIZU	18A	PTEP $2018023 \mathrm{C01}$	N. Shimizu et al.	(BELLE Collab.)	AVERY	97	PR D55 1119	P. Avery et al.	(CLEO Collab.)	
AAD	16BA	EPJ C76 232	G.Aad et al.	(ATLAS Collab.)	BARATE	971	ZPHY C74 387	R. Barate et al.	(ALEPH Collab.)	
AAIJ	15 AI	JHEP 1502121	R. Aaij et al.	(LHCb Collab.)	barate	97 R	PL B414 362	R. Barate et al.	(ALEPH Collab.)	
LEES	$15 G$	PR D91 051103	J.P. Lees et al.	(Babar)	BERGFELD	97	PRL 792406	T. Bergeld et al.	(CLEO Collab.)	
ABLIKIM	14D	PR D90 012001	M. Ablikim et al.	(BESIIII Collab.)	BONVICINI	97	PRL 791221	G. Bonvicini et al.	(CLEO Collab.)	
belous	14	PRL 112031801	K. Belous et al.	(BELLE Collab.)	BUSKULIC	97 C	ZPHY C74 263	D. Buskulic et al.	(ALEPH Collab.)	
RYU	14	PR D89 072009	S. Ryu et al.	(BELLE Collab.)	COAN	97	PR D55 7291	T.E. Coan et al.	(CLEO Collab.)	
AAIJ	13AH	PL B724 36	R. Aaij et al.	(LLHCb Colab.)	EDWARDS	97	PR D55 3919	K.W. Edwards et al.	(CLEO Collab.)	
miYAZAKI	13	PL B719 346	Y. Miyazaki et al.	(BELLE Collab.)	EDWARDS	97 B	PR D56 5297	K.W. Edwards et al.	(CLEO Collab.)	
LEES	12 M	PR D85 031102	J.P. Lees et al.	(BABAR Collab.)	ESCRIBANO	97	PL B395 369	R. Escribano, E. Mas	(BARC, PARIT)	
Also		PR D85 099904 (errat.)	J.P. Lees et al.	(babar Collab.)	ABREU	96 B	PL B365 448	P. Abreu et al.	(DELPHI Collab.)	
LEES	12 X	PR D86 092010	J.P. Lees et al.	(BABAR Collab.)	ACCIARRI	96 H	PL B377 313	M. Acciarri et al.	(L3 Collab.)	
LEES	${ }_{12 \mathrm{Y}}$	PR D86 092013	J.P. Lees et al.	(BABAR Collab.)	ACCIARRI	96 K	PL B389 187	M. Acciarri et al.	(L3 Collab.)	
PDG	12	PR D86 010001	J. Beringer et al.	(PDG Collab.)	ALAM	96	PRL 762637	M.S. Alam et al.	(CLEOC Collab.)	
DEL-AMO-SA.	11 E	PR D83 032002	P. del Amo Sanchez et al.	(BABAR Collab.)	ALBRECHT	96 E	PRPL 276223	H. Albrecht et al.	(ARGUS Collab.)	
MIYAZAKI	11	PL B699 251	Y. Miyazaki et al.	(BELLE Collab.)	ALEXANDER	96 D	PL B369 163	G. Alexander et al.	(OPAL Collab.)	
AUBERT	10B	PRL 104021802	B. Aubert et al.	(BABAR Collab.)	ALEXANDER	96 E	PL B374 341	G. Alexander et al.	(OPAL Collab.)	
AUBERT	10 F	PRL 105051602	B. Aubert et al.	(BABAR Collab.)	ALEXANDER	965	PL B388 437	G. Alexander et al.	(OPAL Collab.)	
HAYASAKA	10	PL B687 139	K. Hayasaka et al.	(BELLE Collab.)	BAI	96	PR D53 20	J.Z. Bai et al.	(BES Collab.)	
LEE	10	PR D81 113007	M.J. Lee et al.	(BELLE Collab.)	BALEST	96	PL B388 402	R. Balest et al.	(CLEO Collab.)	
LEES	10A	PR D81 111101	J.P. Lees et al.	(BABAR Collab.)	BARTELT	96	PRL 764119	J.E. Bartelt et al.	(CLEO Collab.)	
MIYAZAKI	10	PL B682 355	Y. Miyazaki et al.	(BELLE Collab.)	BUSKULIC	96	ZPHY C70 579	D. Buskulic et al.	(ALEPH Collab.)	
miYAZAKI	10A	PL B692 4	Y. Miyazaki et al.	(BELLE Collab.)	BUSKULIC	96 C	ZPHY C70 561	D. Buskulic et al.	(ALEPH Collab.)	
AUBERT	09AK	PR D80 092005	B. Aubert et al.	(BABAR Collab.)	COAN	96	PR D53 6037	T.E. Coan et al.	(CLEO Collab.)	
AUBERT	${ }_{0}^{09 \mathrm{D}}$	PR D79 012004	B. Aubert et al.	(BABAR Collab.)	${ }_{\text {ABREU }}$	${ }_{95 T} 95$	PR D5357 715	K. Abe et al.	(DELPHI Collab.)	
${ }_{\text {a }}^{\text {GROZIN }}$	${ }_{09}^{09}$	PRL 103021801 PAN 721203			${ }_{\text {ABREU }}$	95 U	PL B359 411	P. Abreu et al.	(DELPHI Collab.)	
inami	09	PL B672 209	K. Inami et al.	(Belle Collab.)	ACCIARRI	95	PL B345 93	M. Acciarri et al.	(L3 Collab.)	
miYazaki	09	PL B672 317	Y. Miyazaki et al.	(BELLE Collab.)	ACCIARRI	95 F	PL B352 487	M. Acciarri et al.	(L3 Collab.)	
AUBERT	08	PRL 100011801	B. Aubert et al.	(BABAR Collab.)	AKERS	95 F	ZPHY 66631	R. Akers et al.	(OPAL Collab.)	
AUBERT	08 AE	PR D77 112002	B. Aubert et al.	(BABAR Collab.)	AKERS	951	ZPPY C66 543	R. Akers et al.	(OPAL Collab.)	
AUBERT	08K	PRL 100071802	B. Aubert et al.	(BABAR Collab.)	AKERS	${ }_{95 \mathrm{P}}$	ZPHY C67 45	R. Akers et al.	(OPAL Collab.)	
FUJIKAWA	08	PR D78 072006	M. Fuikawa et al.	(BELLE Collab.)	AKERS	${ }_{95}^{95}$	ZPHY C68 555	R. Akers et al.	(OPAL Collab.)	
HAYASAKA	08	PL B666 16	K. Hayasaka et al.	(BELLE Collab.)	${ }_{\text {ALBRECHT }}$	${ }_{955}^{95}$	PL B341441	H. Albrecht et al.	(ARGUS Coliab.)	
MIYAZAKI	08	PL B660 154	Y. Miyazaki et al.	(BELLE Collab.)	${ }^{\text {ALLBRECHT }}$ ALBRECHT	${ }_{956}^{95 C}$	PL B349 576	H. Albrecht et al.	(ARGUS Collab.)	
NISHIO ANASHIN	08 07	JETPL 85347 V.V. Anashin et al. (KEDR Collab.) Translated from ZETFP 85429.			${ }^{\text {ALBRECCHT }}$	${ }_{95}^{95}$	ZPHY C68 215	H. Albrecht et al.	(ARGUS Collab.)	
					BALEST	95 C	PRL 753809	R. Balest et al.	(CLEO Collab.)	
Aubert	07AP	PR D76 051104	B. Aubert et al.	(BABAR Collab.)	BERNABEU	95	NP B436 474	J. Bernabeu et al.		
AUBERT	07BK	PRL 99251803	B. Aubert et al.	(BABAR Collab.)	BUSKULIC	95 C	PL B346 371	D. Buskulic et al.	(ALEPH Collab.)	
AUBERT	${ }_{07} 07$	PRL 98061803	B. Aubert et al.	(BABAR Collab.)	BUSKULIC	95D	PL B346 379 (erratm)	D. Buskulic et al.	(ALEPH Collab.)	
BELOUS	07	PRL 99011801	K. Belous et al.	(BELLE Collab.)	Also		PL B363 265 (erratum)	D. Buskulic et al.	(ALEPH Collab.)	
EIDELMAN	07	MPL A22 159	S. Eidelman, M. Passera	(NOVO, PADO)	ABREU	94 K	PL B334 435	P. Abreu et al.	(DELPHI Collab.)	
EPIFANOV	07	PL B654 65	D. Epifanov et al.	(BELLE Collab.)	AKERS	94 E	PL B328207	R. Akers et al.	(OPAL Collab.)	
MIYAZAKI	${ }^{07}$	PL B648 341	Y. Miyazaki et al.	(BELLE Collab.)	AKERS	94 G	PL B339 278	R. Akers et al.	(OPAL Collab.)	
ABDALLAH	06A	EPJ C46 1	J. Abdallah et al.	(DELPHI Collab.)	ALBRECHT	94 E	PL B337 383	H. Albrecht et al.	(ARGUS Collab.)	
AUBERT	06 C	PRL 96041801	B. Aubert et al.	(BABAR Collab.)	ARTUSO	94	PRL 723762	M. Artuso et al.	(CLEO Collab.)	
AUBERT,B	06	PR D73 112003	B. Aubert et al.	(BABAR Collab.)	BARTELT	94	PRL 731890	J.E. Bartelt et al.	(CLEO Collab.)	
INAMI	06	PL B643 5	K. Inami et al.	(BELLE Collab.)	battle	94	PRL 731079	M. Battle et al.	(CLEO Collab.)	
MIYAZAKI	${ }^{06}$	PL B632 51	Y. Miyazaki et al.	(BELLE Collab.)	${ }^{\text {BAUER }}$ BUSKuIC	94	PR D50 13	D.A. Bauer et al.	(TPC/2gamma Collab.)	
MIYAZAKI	06A	PL B639 159	Y. Miyazaki et al.	(BELLE Collab.)	BUSKULIC	94 D	PL B321 PL B332 209	D. Buskulic et al.	(ALEPH Collab.)	
PDG YUSA	06 06	JP G33 ${ }^{\text {PL }}$ B640 138	W.-M. Yao et al. Y. Yusa et al.	(PDGG Collab.)	BUSKULC BUSKULC	${ }_{94}^{94 \mathrm{E}}$	PL B332 209 PL B332 219	D. Buskulic et al. D. Buskulic et al.	(ALEPH Collab.) (ALEPH Collab.)	
ARMS	05	PRL 94241802	K. Arms et al.	(CLEO Collab.)	gibaut	94B	PRL 73934	D. Gibaut et al.	(CLEO Collab.)	
AUBERT,B	05A	PRL 95041802	B. Aubert et al.	(BABAR Collab.)	ADRIANI	93M	PRPL 2361	O. Adriani et al.	(L3 Collab.)	
AUBERT,B	05 F	PR D72 012003	B. Aubert et al.	(BABAR Collab.)	ALBRECHT	93 C	ZPHY C58 61	H. Albrecht et al.	(ARGUS Collab.)	
AUBERT,B	05W	PR D72 072001	B. Aubert et al.	(BABAR Collab.)	ALBRECHT	${ }^{93 G}$	PL B316 608	H. Albrecht et al.	(ARGUS Collab.)	
AUBERT,BE	05D	PRL 95191801	B. Aubert et al.	(BABAR Collab.)	BALEST	93	PR D47 3671	R. Balest et al.	(CLEO Collab.)	
ENARI	05	PL B622 218	Y. Enari et al.	(BELLE Collab.)	BEAN	93	PRL 70138	A. Bean et al.	(CLEO Collab.)	
HAYASAKA	05	PL B61320	K. Hayasaka et al.	(BELLE Collab.)	BORTOLETTO	93	PRL 71791	D. Bortoletto et al.	(CLEO Collab.)	
SCHAEL	05C	PRPL 421191	S. Schael et al.	(ALEPH Collab.)	ESCRIBANO	93	PL B301419	R. Escribano, E. Masso	(BARC)	
ABBIENDI	04J	EPJ C35 437	G. Abbiendi et al.	(OPAL Collab.)	PROCARIO	93	PRL 701207	M. Procario et al.	(CLEO Collab.)	
ABdallah	04K	EPJ C35 159	J. Abdallah et al.	(DELPHI Collab.)	ABREU	92 N	ZPHY C55 555	P. Abreu et al.	(DELPHI Collab.)	
ABDALLAH	04 T	EPJ C36 283	J. Abdallah et al.	(DELPHI Collab.)	ACTON	92 F	PL B281 405	D.P. Acton et al.	(OPAL Collab.)	
ABE	04B	PRL 92171802	K. Abe et al.	(BELLE Collab.)	ACTON	92 H	PL B288 373	P.D. Acton et al.	(OPAL Collab.)	
ACHARD	04G	PL B585 53	P. Achard et al.	(L3 Collab.)	AKERIB	92	PRL 693610	D.S. Akerib et al.	(CLEO Collab.)	
AUBERT	${ }^{04 J}$	PRL 92121801	B. Aubert et al.	(BABAR Collab.)	Also		PRL 713395 (erratum)	D.S. Akerib et al.	(CLEO Collab.)	
ENARI	04	PRL 93081803	Y. Enari et al.	(BELLE Collab.)	ALBRECHT	92 D	ZPHY C53 367	H. Albrecht et al.	(ARGUS Collab.)	
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)	ALBRECHT	92 K	ZPHY C55 179	H. Albrecht et al.	(ARGUS Collab.)	
YUSA	04	PL B589 103	Y. Yusa et al.	(BELLE Collab.)	ALBRECHT	92 M	PL B292221	H. Albrecht et al.	(ARGUS Collab.)	
AbBIENDI	03	PL B551 35	G. Abbiendi et al.	(OPAL Collab.)	ALBRECHT	${ }_{92} \mathrm{Q}^{2}$	ZPHY C 56339	${ }^{\text {H. }}$. Albrecht et al.	(ARGUS Collab.)	
BRIERE	${ }_{0} 03 \mathrm{~F}$	PRL 90181802	R. A. Briere et al.	(CLEO Collab.)	ammar	92	PR D45 3976	R. Ammar et al.	(CLEO Collab.)	
HEISTER INAMI	${ }_{03}^{03 F}$	EPJ C30 291	A. Heister et al. K. Inami et al.	(ALEPH Collab.)	${ }_{\text {BAI }}^{\text {ARTUSO }}$	${ }_{92}^{92}$	PRL 693278 PRL 693021	M. Artuso et al.	(CLEO Collab.)	
CHEN	02 C	PR D66 071101	s. Chen et al.	(CLEO Collab.)	${ }_{\text {BATtLE }}$	92	PL B291488	M. Battle et al.	(CLEO Collab.)	
REGAN	02	PRL 88071805	B.C. Regan et al.		BUSKULIC	92 J	PL B297 459	D. Buskulic et al.	(ALEPH Collab.)	
ABBIENDI	01 J	EPJ C19 653	G. Abbiendi etal.	(OPAL Collab.)	DECAMP	92 C	ZPHY C54 211	D. Decamp et al.	(ALEPH Collab.)	
ABREU	01 M	EPJ C20 617	P. Abreu et al.	(DELPHI Collab.)	ADEVA	91 F	PL B265 451	B. Adeva et al.	(L3 Collab.)	
ACCIARRI	$01 F$	PL B507 47	M. Acciarri et al.	(L3 Collab.)	ALBRECHT	91 D	PL B260 259	H. Albrecht et al.	(ARGUS Collab.)	
ACHARD	01D	PL B519 189	P. Achard et al.	(L3 Collab.)	ALEXANDER	91 D	PL B266 201	G. Alexander et al.	(OPAL Collab.)	
ANASTASSOV	${ }_{01}^{01}$	PRL 864467	A. Anastassov et al.	(CLEO Collab.)	ANTREASYAN	91	PL B259 216	D. Antreasyan et al.	(Crystal Ball Collab.)	
HEISTER	${ }_{0}^{01 E}$	EPJ C22 217	A. Heister et al.	(ALEPH Collab.)	GRIFOLS	91	PL B255 611	J.A. Grifols, A. Mendez	(BARC)	
ABBIENDI	00A	PL B492 23	G. Abbiendi et al.	(OPAL Collab.)	ABACHI		PR D41 1414	S. Abachi et al.		
ABBIENDI ABBIENDI	${ }^{00 C}$	EPJ C13 EPJ C13 197	G. Abbiendi et ald G. Abbiendi et $a /$	(OPAL Collab.)	ALBRECHT ALBRECHT	${ }_{901}^{90 E}$	PL B246 278 PL B250 164	H. Albrecht et al. H. Albrecht et al.	(ARGUS Collab.) (ARGUS Collab.)	
AbREU	00 L	EPJ C16 229	P. Abreul et al.	(DELPHI Collab.)	BEHREND	90	ZPHY C46 537	H.J. Behrend et al.	(CELLO Collab.)	
ACCIARRI	${ }^{\text {OOB }}$	PL B479 67	M. Acciarri et al.	${ }_{\text {(L3 Collab.) }}$	Bowcock	90	PR D41 805	T.J.V. Bowcock et al.	(CLEO Collab.)	
AHMED	00	PR D61 071101	S. Ahmed et al.	(CLEO Collab.)	DELAGUILA	90	PL B252 116	F. del Aguila, M. Sher	(BARC, WILL)	
ALBRECHT	00	PL B485 37	H. Albrecht et al.	(ARGUS Collab.)	GOLDBERG	90	PL B251 223 M	M. Goldberg et al.	(CLEO Collab.)	
ASNER	${ }_{00}^{00}$	PR D61 012002	D.M. Asner et al.	(CLEO Collab.)	wU	90	PR D41 2339	D.Y. Wu et al.	(Mark II Collab.)	
ASNER	${ }^{00 B}$	PR D62 072006	D.M. Asner et al.	(CLEO Collab.)	AbACHI	${ }^{89 \mathrm{~B}}$	PR D40 902	S. Abachi et al.	(HRS Collab.)	
BERGFELD	00	PRL 84830	T. Bergeld et al.	(CLEO Collab.)	BEHREND	${ }_{89} 8$	PL B222 163	H.J. Behrend et al.	(CELLO Collab.)	
BROWDER EDWARDS	${ }_{00}^{00}$	PR PR D61 010720003	T.E. Browder et al. K.W. Edwards et al.	(CLEO Collab.)	JANSSEN KLEINWORT	89 89	PL B228 273 ZPHY C42	H. Janssen et al.	(Crystal Ball Collab.) (JADE Collab.)	
Gonzalez-S...		NP B582 3	G.A. Gonzalez-Sprinberg et al.		ADEVA	88	PR D38 2665	B. Adeva et al.	(Mark-J Collab.)	
ABBIENDI	99 H	PL B447 134	G. Abbiendi et al.	(OPAL Collab.)	ALBRECHT	88B	PL B202 149	H. Albrecht et al.	(ARGUS Collab.)	
ABREU	99 X	EPJ C10 201	P. Abreu et al.	(DELPHI Collab.)	ALBRECHT	${ }^{88 \mathrm{~L}}$	ZPHY ${ }^{\text {C41 }} 1$	H. Albrecht et al.	(ARGUS Collab.)	
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff et al.	(OPAL Collab.)	ALBRECHT	88 M	ZPHY C41 405	H. Albrecht et al.	(ARGUS Collab.)	
ACKERSTAFF	99E	EPJ C8 183	K. Ackerstaff et al.	(OPAL Collab.)	AMIDEI	88	PR D37 1750	D. Amidei et al.	(Mark ॥ Collab.)	
BARATE	99 K	EPP C10 1	R. Barate et al.	(ALEPH Collab.)	BEHREND	88	PL B200 226	H.J. Behrend et al.	(CELLO Collab.)	
barate	99R	EPJ C11 599	R. Barate et al.	(ALEPH Collab.)	braunsch...	88 C	ZPHY C39 331	W. Braunschweig et al.	(TASSO Collab.)	
BISHAI	99	PRL 82281	M. Bishai et al.	(CLEO Collab.)	${ }_{\text {KEH }}$	88	PL B212 123	S. Keh et al.	(Crystal Ball Collab.)	
GODANG	99	PR D59 091303	R. Godang et al.	(CLEO Collab.)	TSCHIRHART	${ }_{88}^{88}$	PL B205 407	R. Tschirhart et al.	(HRS Collab.)	
RICHICHI	99	PR D60 112002	S.J. Richichi et al.	(CLEO Collab.)	${ }^{\text {ABACHI }}$	87 B	PL B197 291	S. Abachi et al.	(HRS Collab.)	
ACCIARRI	98 C	PL B426 207	M. Acciarri et al.	(L3 Collab.)	ABACHI	87 C	PRL 592519	S. Abachi et al.	(HRS Collab.)	
ACCIARRI	98E	PL B434 169	M. Acciarrie et al.	(L3 Collab.)	ADLER	${ }_{8}^{87 \mathrm{~B}}$	PRL 591527		(Mark III Collab.)	
ACCIARRI ACKERSTAFF	${ }^{98 \mathrm{R}}$	PL B438 405 EPJ C4 193	M. Acciarri et al.	((L3 Collab.)	AIHARA AIHARA	${ }_{87 \mathrm{C}}^{87}$	PR D35 1553 PRL 59751	H. Aihara et al. H. Aihara et $a l$ l	(TPC Collab.) (TPC Collab.)	
ACKERSTAFF	98N	PL B431 188	K. Ackerstaff et al.	(OPAL Collab.)	Albrecht	87L	PL B185 223	H. Albrecht et al.	(ARGUS Collab.)	
AlBrecht	98	PL B431 179	H. Albrecht et al.	(ARGUS Collab.)	ALBRECHT	${ }_{87} 87$	PL B199580	H. Albrecht et al.	(ARGUS Collab.)	
barate	98	EPJ C1 65	R. Barate et al.	(ALEPH Collab.)	BAND	87	PL B198 297	H.R. Band et al.	(MAC Collab.)	
BARATE BLISS	${ }_{98}^{98}$	EPJ C4 29	R. Barate et al. D. W. Bliss et al.	(ALEPH Collab.)	${ }_{\text {BAND }}^{\text {BARINGER }}$	$87 \mathrm{~B}$	PRL 59415	${ }_{\text {H.R. }}$ P. Band et al.	(MAC Collab.)	
${ }^{\text {BLISS }}$	98	PR D 575903 PRL 784691	D.W. Bliss et al. K. Abe et al.	(CLEO Collab.)	BARINGER BEBEK	${ }_{87 C}^{87}$	PRL 591993	P. Baringer et al. C. Bebek et al.	(CLEO Collab.)	
ACKERSTAFF	97J	PL B404 213	K. Ackerstaff et al.	(OPAL Collab.)	BURCHAT	87	PR D35 27	P.R. Burchat et al.	(Mark \|	Collab.)
ACKERSTAFF	971	ZPHY C74 403	K. Ackerstaff et al.	(OPAL Collab.)	BYLSMA	87	PR D35 2269	B.G. Bylsma et al.	(HRS Collab.)	
ACKERSTAFF	97R	ZPHY C75 593	K. Ackerstaff et al.	(OPAL Collab.)	COFFMAN	87	PR D36 2185	D.M. Coffman et al.	(Mark III Collab.)	
ALEXANDER	97 F	PR D56 5320	J.P. Alexander et al.	(CLEO Collab.)	DERRICK	87	PL B189 260	M. Derrick et al.	(HRS Collab.)	

τ, Heavy Charged Lepton Searches

FORD	87	PR D35 408	W.T. Ford et al.	(MAC Collab.)
FORD	87B	PR D36 1971	W.T. Ford et al.	(MAC Collab.)
GAN	87	PRL 59411	K.K. Gan et al.	(Mark II Collab.)
GAN	87B	PL B197 561	K.K. Gan et al.	(Mark II Collab.)
AIHARA	86E	PRL 571836	H. Aihara et al.	(TPC Collab.)
BARTEL	86D	PL B182 216	W. Bartel et al.	(JADE Collab.)
PDG	86	PL 170B 1	M. Aguilar-Benitez et al.	(CERN, CIT+)
RUCKSTUHL	86	PRL 562132	W. Ruckstuhl et al.	(DELCO Collab.)
SCHMIDKE	86	PRL 57527	W.B. Schmidke et al.	(Mark II Collab.)
YELTON	86	PRL 56812	J.M. Yelton et al.	(Mark II Collab.)
ALTHOFF	85	ZPHY C26 521	M. Althoff et al.	(TASSO Collab.)
ASH	85B	PRL 552118	W.W. Ash et al.	(MAC Collab.)
BALTRUSAIT...	85	PRL 551842	R.M. Baltrusaitis et al.	(Mark III Collab.)
BARTEL	85F	PL 161B 188	W. Bartel et al.	(JADE Collab.)
BEHRENDS	85	PR D32 2468	S. Behrends et al.	(CLEO Collab.)
BELTRAMI	85	PRL 541775	I. Beltrami et al.	(HRS Collab.)
BERGER	85	ZPHY C28 1	C. Berger et al.	(PLUTO Collab.)
BURCHAT	85	PRL 542489	P.R. Burchat et al.	(Mark II Collab.)
FERNANDEZ	85	PRL 541624	E. Fernandez et al.	(MAC Collab.)
MILLS	85	PRL 54624	G.B. Mills et al.	(DELCO Collab.)
AIHARA	84C	PR D30 2436	H. Aihara et al.	(TPC Collab.)
BEHREND	84	ZPHY C23 103	H.J. Behrend et al.	(CELLO Collab.)
MILLS	84	PRL 521944	G.B. Mills et al.	(DELCO Collab.)
BEHREND	83C	PL 127 B 270	H.J. Behrend et al.	(CELLO Collab.)
SILVERMAN	83	PR D27 1196	D.J. Silverman, G.L. Shaw	(UCI)
BEHREND	82	PL 114B 282	H.J. Behrend et al.	(CELLO Collab.)
BLOCKER	82B	PRL 481586	C.A. Blocker et al.	(Mark II Collab.)
BLOCKER	82D	PL 109B 119	C.A. Blocker et al.	(Mark II Collab.) J
FELDMAN	82	PRL 4866	G.J. Feldman et al.	(Mark II Collab.)
HAYES	82	PR D25 2869	K.G. Hayes et al.	(Mark II Collab.)
BERGER	81B	PL 99B 489	C. Berger et al.	(PLUTO Collab.)
DORFAN	81	PRL 46215	J.M. Dorfan et al.	(Mark II Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik et al.	(TASSO Collab.)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents et al.	(NOVO)
Also		SJNP 34814 Translated from YAF 34	A.A. Zholents et al. 1471.	(NOVO)
BACINO	79B	PRL 42749	W.J. Bacino et al.	(DELCO Collab.)
KIRKBY	79	SLAC-PUB-2419	J. Kirkby	(SLAC) J
Batavia Lepton Photon Conference.				
BACINO	78B	PRL 4113	W.J. Bacino et al.	(DELCO Collab.) 」
Also		Tokyo Conf. 249	J. Kirz	(STON)
Also		PL 96B 214	A.A. Zholents et al.	(NOVO)
BRANDELIK	78	PL 73B 109	R. Brandelik et al.	(DASP Collab.) 」
FELDMAN	78	Tokyo Conf. 777	G.J. Feldman	(SLAC) J
JAROS	78	PRL 401120	J. Jaros et al.	(LGW Collab.)
PERL	75	PRL 351489	M.L. Perl et al.	(LBL, SLAC)
	OTHER RELATED PAPERS			
DAVIER	06	RMP 781043	M. Davier, A. Hocker, Z. Zhang	(LALO, PARIN+)
RAHAL-CAL	98	IJMP A13 695	G. Rahal-Callot	(ETH)
GENTILE	96	PRPL 274287	S. Gentile, M. Pohl	(ROMAI, ETH)
WEINSTEIN	93	ARNPS 43457	A.J. Weinstein, R. Stroynowski	(CIT, SMU)
PERL	92	RPP 55653	M.L. Perl	(SLAC)
PICH	90	MPL A5 1995	A. Pich	(VALE)
BARISH	88	PRPL 1571	B.C. Barish, R. Stroynowski	(CIT)
GAN	88	IJMP A3 531	K.K. Gan, M.L. Perl	(SLAC)
HAYES	88	PR D38 3351	K.G. Hayes, M.L. Perl	(SLAC)
PERL	80	ARNPS 30299	M.L. Perl	(SLAC)

Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton ($L^{ \pm}$) MASS LIMITS

These experiments assumed that a fourth generation $L^{ \pm}$decayed to a fourth generation ν_{L} (or L^{0}) where ν_{L} was stable, or that $L^{ \pm}$decays to a light ν_{ℓ} via mixing.
See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, i.e. $\ell^{*} \rightarrow \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL\%	DOCUMENT ID		TECN	COMMENT
>100.8	95	ACHARD	01B	L3	Decay to νW
>101.9	95	ACHARD	01B	L3	$m_{L}-m_{L^{0}}>15 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
>81.5	95	ACKERSTAFF	98C	OPAL	$\begin{aligned} & \text { Assumed } m_{L^{ \pm}}-m_{L^{0}}>8.4 \\ & \mathrm{GeV} \end{aligned}$
>80.2	95	ACKERSTAFF	98C	OPAL	$m_{L^{0}}>m_{L^{ \pm}}$and $L^{ \pm} \rightarrow \nu W$
<48 or >61	95	${ }^{1}$ ACCIARRI	96G	L3	
>63.9	95	ALEXANDER	96P	OPAL	Decay to massless ν 's
>63.5	95	BUSKULIC	96 S	ALEP	$m_{L}-m_{L^{0}}>7 \mathrm{GeV}$
>65	95	BUSKULIC	96 S	ALEP	Decay to massless ν 's
none 10-225		${ }^{2}$ AHMED	94	CNTR	H1 Collab. at HERA
none 12.6-29.6	95	KIM	91B	AMY	Massless ν assumed
> 44.3	95	AKRAWY	90G	OPAL	
none 0.5-10	95	${ }^{3}$ RILES	90	MRK2	For $\left(m_{L^{0}} m_{L^{0}}\right)>0.25-0.4 \mathrm{GeV}$
> 8		4 STOKER	89	MRK2	For $\left(m_{L^{+}}-m_{L^{0}}\right)=0.4 \mathrm{GeV}$
>12		4 STOKER	89	MRK2	For $m_{L^{0}}=0.9 \mathrm{GeV}$
none 18.4-27.6	95	${ }^{5}$ ABE	88	VNS	
>25.5	95	${ }^{6}$ ADACHI	88B	TOPZ	
none 1.5-22.0	95	BEHREND	88C	CELL	
>41	90	7 ALBAJAR	87B	UA1	
>22.5	95	8 ADEVA	85	MRKJ	
> 18.0	95	${ }^{9}$ BARTEL	83	JADE	
none 4-14.5	95	10 BERGER	81B	PLUT	
>15.5	95	11 BRANDELIK	81	TASS	
>13.		12 AZIMOV	80		
>16.	95	13 BARBER	80B	CNTR	
>0.490		${ }^{14}$ ROTHE	69	RVUE	

${ }^{1}$ ACCIARRI 96 G assumes LEP result that the associated neutral heavy lepton mass >40 GeV.
2 The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^{-} \rightarrow e \gamma, L^{-} \rightarrow \nu W^{-}, L^{-} \rightarrow e Z$; and $L^{0} \rightarrow \nu \gamma$,
$L^{0} \rightarrow e^{-} W^{+}, L^{-} \rightarrow \nu Z$, where the W decays to $\ell \nu_{\ell}$, or to jets, and Z decays to $\ell^{+} \ell^{-}$or jets.
${ }^{3}$ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^{-}}-m_{L^{0}}$ was allowed to be quite small, where L^{0} denotes the neutrino into which the sequential charged lepton decays. With a slightly reduced $m_{L^{ \pm}}$range, 4 the mass difference extends to about 4 GeV .
${ }^{4}$ STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^{+}) mass for the generalized case in which the corresponding neutral heavy lepton $\left(L^{0}\right)$ in the $\mathrm{SU}(2)$ doublet is not of negligible mass.
${ }^{5}$ ABE 88 search for L^{+}and $L^{-} \rightarrow$ hadrons looking for acoplanar jets. The bound is valid for $m_{\nu}<10 \mathrm{GeV}$.
${ }^{6}$ ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. $\mathrm{E}_{\mathrm{cm}}{ }^{e e}=52 \mathrm{GeV}$.
${ }^{7}$ Assumes associated neutrino is approximately massless.
${ }^{8}$ ADEVA 85 analyze one-isolated-muon data and sensitive to $\tau<10$ nanosec. Assume B (lepton) $=0.30 . E_{\mathrm{Cm}}=40-47 \mathrm{GeV}$.
${ }^{9}$ BARTEL 83 limit is from PETRA $e^{+} e^{-}$experiment with average $E_{\mathrm{Cm}}=34.2 \mathrm{GeV}$.
${ }^{10}$ BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^{+} e^{-} \rightarrow L^{+} L^{-}$
11 BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^{+} e^{-} \rightarrow L^{+} L^{-}$.
${ }^{12}$ AZIMOV 80 estimated probabilities for $M+N$ type events in $e^{+} e^{-} \rightarrow L^{+} L^{-}$deducing semi-hadronic decay multiplicities of L from $e^{+} e^{-}$annihilation data at $E_{\mathrm{cm}}=(2 / 3) m_{L}$. Obtained above limit comparing these with $e^{+} e^{-}$data (BRANDELIK 80).
${ }^{13}$ BARBER 80B looked for $e^{+} e^{-} \rightarrow L^{+} L^{-}, L \rightarrow \nu_{L}^{+} \mathrm{X}$ with MARK-J at DESY-PETRA.
${ }^{14}$ ROTHE 69 examines previous data on μ pair production and π and K decays.
Stable Charged Heavy Lepton ($\mathbf{L}^{ \pm}$) MASS LIMITS

VALUE (GeV)	CL\%	DOCUMENT ID		TECN
>102.6	95	ACHARD	01B	L3
- - We do not use the following data for averages, fits, limits, etc. - -				
> 28.2	95	15 ADACHI	90C	TOPZ
none 18.5-42.8	95	AKRAWY	900	OPAL
> 26.5	95	DECAMP	90F	ALEP
none $m_{\mu}-36.3$	95	SODERST		MRK2

${ }^{15}$ ADACHI 90c put lower limits on the mass of stable charged particles with electric charge Q satisfying $2 / 3<Q / e<4 / 3$ and with spin 0 or $1 / 2$. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV) CL\% DOCUMENTID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

>574	95	CHATRCHYAN 13ab CMS				Leptons singlet model pair produced in $e^{+} e^{-}$
>102.0	95	ABBIENDI	03L	OPAL		
>0.1		16 ANSORGE	73B	HBC		Long-lived
none 0.55-4.5		17 BUSHNIN	73	CNTR		Long-lived
none 0.2-0.92		18 BARNA	68	CNTR		Long-lived
none 0.97-1.03		18 BARNA	68	CNTR		Long-lived

1^{16} ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.
17 BUSHNIN 73 is SERPUKHOV $70 \mathrm{GeV} p$ experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.
18 BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

VALUE (GeV) CL\% DOCUMENT ID TECN CHG

- - We do not use the following data for averages, fits, limits, etc. - none $1-9 \mathrm{GeV} \quad 90 \quad 19$ CLARK $81 \quad$ SPEC ++
${ }^{19}$ CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_{P} which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."

Doubly-Charged Lepton Production Cross Section (μN Scattering)

VALUE $\left(\mathrm{cm}^{2}\right)$ EVTS DOCUMENT ID TECN CHG

- - We do not use the following data for averages, fits, limits, etc. - -
$<6 . \times 10^{-38} \quad 0 \quad{ }^{20}$ CLARK 81 SPEC ++
${ }^{20}$ CLARK 81 is FNAL experiment with 209 GeV muon. Looked for μ^{+}nucleon $\rightarrow \bar{\mu}_{P}^{0} \mathrm{X}$, $\bar{\mu}_{P}^{0} \rightarrow \mu^{+} \mu^{-} \bar{\nu}_{\mu}$ and $\mu^{+} n \rightarrow \mu_{P}^{++} \mathrm{X}, \mu_{P}^{++} \rightarrow 2 \mu^{+} \nu_{\mu}$. Above limits are for $\sigma \times \mathrm{BR}$ taken from their mass-dependence plot figure 2.

REFERENCES FOR Heavy Charged Lepton Searches

CHATRCHYAN	13AB	JHEP 1307122	S. Chatrchyan et al.	(CMS Collab.)
ABBIENDI	03L	PL B572 8	G. Abbiendi et al.	(OPAL Collab.)
ACHARD	01B	PL B517 75	P. Achard et al.	(L3 Collab.)
ACKERSTAFF	98 C	EPJ C1 45	K. Ackerstaff et al.	(OPAL Collab.)
ACCIARRI	96G	PL B377 304	M. Acciarri et al.	(L3 Collab.)
ALEXANDER	96P	PL B385 433	G. Alexander et al.	(OPAL Collab.)
BUSKULIC	96 S	PL B384 439	D. Buskulic et al.	(ALEPH Collab.)
AHMED	94	PL B340 205	T. Ahmed et al.	(H1 Collab.)

KIM	91B	IJMP A6 2583	G.N. Kim et al.	(AMY Collab.)
ADACHI	90 C	PL B244 352	I. Adachi et al.	(TOPAZ Collab.)
AKRAWY	90G	PL B240 250	M.Z. Akrawy et al.	(OPAL Collab.)
AKRAWY	900	PL B252 290	M.Z. Akrawy et al.	(OPAL Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
RILES	90	PR D42 1	K. Riles et al.	(Mark II Collab.)
SODERSTROM	90	PRL 642980	E. Soderstrom et al.	(Mark II Collab.)
STOKER	89	PR D39 1811	D.P. Stoker et al.	(Mark II Collab.)
ABE	88	PRL 61915	K. Abe et al.	(VENUS Collab.)
ADACHI	88B	PR D37 1339	I. Adachi et al.	(TOPAZ Collab.)
BEHREND	88 C	ZPHY C41 7	H.J. Behrend et al.	(CELLO Collab.)
ALBAJAR	87B	PL B185 241	C. Albajar et al.	(UA1 Collab.)
ADEVA	85	PL 152B 439	B. Adeva et al.	(Mark-J Collab.)
Also		PRPL 109131	B. Adeva et al.	(Mark-J Collab.)
BARTEL	83	PL 123B 353	W. Bartel et al.	(JADE Collab.)
BERGER	81B	PL 99B 489	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	81	PL 99B 163	R. Brandelik et al.	(TASSO Collab.)
CLARK	81	PRL 46299	A.R. Clark et al.	(UCB, LBL, FNAL+)
Also		PR D25 2762	W.H. Smith et al.	(LBL, FNAL, PRIN)
AZIMOV	80	JETPL 32664	Y.I. Azimov, V.A. Khoze 32677.	(PNPI)
	80B	PRL 451904	D.P. Barber et al.	(Mark-J Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik et al.	(TASSO Collab.)
ANSORGE	73B	PR D7 26	R.E. Ansorge et al.	(CAVE)
BUSHNIN	73	NP B58 476	Y.B. Bushnin et al.	(SERP)
Also		PL 42B 136	S.V. Golovkin et al.	(SERP)
ROTHE	69	NP B10 241	K.W. Rothe, A.M. Wolsky	(PENN)
BARNA	68	PR 1731391	A. Barna et al.	(SLAC, STAN)
OTHER RELATED PAPERS				
PERL Physics in	81 Collis	SLAC-PUB-2752 n Conference.	M.L. Perl	(SLAC)

Neutrino Properties

NEUTRINO PROPERTIES

Revised August 2019 by P. Vogel (Caltech) and A. Piepke (University of Alabama).

The Neutrino Properties Listings concern measurements of various properties of neutrinos. Nearly all of the measurements, so far only limits, actually concern superpositions of the mass eigenstates ν_{i}, which are in turn related to the weak eigenstates ν_{ℓ}, via the neutrino mixing matrix

$$
\left|\nu_{\ell}\right\rangle=\sum_{i} U_{\ell i}\left|\nu_{i}\right\rangle
$$

In the analogous case of quark mixing via the CKM matrix, the smallness of the off-diagonal terms (small mixing angles) permits a "dominant eigenstate" approximation. However, the results of neutrino oscillation searches show that the mixing matrix contains two large mixing angles and a third angle that is not exceedingly small. We cannot therefore associate any particular state $\left|\nu_{i}\right\rangle$ with any particular lepton label e, μ or τ. Nevertheless, note that in the standard labeling the $\left|\nu_{1}\right\rangle$ has the largest $\left|\nu_{e}\right\rangle$ component $(\sim 2 / 3),\left|\nu_{2}\right\rangle$ contains $\sim 1 / 3$ of the $\left|\nu_{e}\right\rangle$ component and $\left|\nu_{3}\right\rangle$ contains only a small $\sim 2.5 \%\left|\nu_{e}\right\rangle$ component.

Neutrinos are produced in weak decays with a definite lepton flavor, and are typically detected by the charged current weak interaction again associated with a specific lepton flavor. Hence, the listings for the neutrino mass that follow are separated into the three associated charged lepton categories. Other properties (mean lifetime, magnetic moment, charge and charge radius) are no longer separated this way. If needed, the associated lepton flavor is reported in the footnotes.

Measured quantities (mass-squared, magnetic moments, mean lifetimes, etc.) all depend upon the mixing parameters $\left|U_{\ell i}\right|^{2}$, but to some extent also on experimental conditions (e.g., on energy resolution). Many of these observables, in particular
mass-squared, cannot distinguish between Dirac and Majorana neutrinos and are unaffected by $C P$ phases.

Direct neutrino mass measurements are usually based on the analysis of the kinematics of charged particles (leptons, pions) emitted together with neutrinos (flavor states) in various weak decays. The most sensitive neutrino mass measurement to date, involving electron type antineutrinos, is based on fitting the shape of the beta spectrum. The quantity $m_{\nu_{e}}^{2(e f f)}=$ $\sum_{i}\left|U_{e i}\right|^{2} m_{\nu_{i}}^{2}$ is determined or constrained, where the sum is over all mass eigenvalues $m_{\nu_{i}}$ that are too close together to be resolved experimentally. (The quantity $m_{\nu_{e}}^{e f f} \equiv \sqrt{m_{\nu_{e}}^{2(e f f)}}$ is often denoted $\left\langle m_{\beta}\right\rangle$ in the literature.) If the energy resolution is better than $\Delta m_{i j}^{2} \equiv m_{\nu_{i}}^{2}-m_{\nu_{j}}^{2}$, the corresponding heavier $m_{\nu_{i}}$ and mixing parameter could be determined by fitting the resulting spectral anomaly (step or kink).

The dependence of $m_{\nu_{e}}$ on the mass of the lightest neutrino is shown in Fig. 14.11 of the Neutrino Masses, Mixing, and Oscillations review. In the case of inverted ordering there is a minimum possible value of $m_{\nu_{e}}^{\text {eff }}$, approximately $\left.\sqrt{(} \Delta m_{32}^{2}\right) \sim$ 50 meV . If $m_{\nu_{e}}^{e f f}$ is found to be larger than this value, it is impossible, based on this information only, to decide which ordering is realized in nature. On the other hand, if the $m_{\nu_{e}}^{e f f}$ is less than $\sim 50 \mathrm{meV}$, only the normal mass ordering is possible.

A limit on $m_{\nu_{e}}^{2(e f f)}$ implies an upper limit on the minimum value $m_{\min }^{2}$ of $m_{\nu_{i}}^{2}$, independent of the mixing parameters $U_{e i}$: $m_{\min }^{2} \leq m_{\nu_{e}}^{2(e f f)}$. However, if and when the value of $m_{\nu_{e}}^{2(e f f)}$ is determined then its combination with the results derived from neutrino oscillations that give us the values of the neutrino mass-squared differences $\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}$, including eventually also their signs, and the mixing parameters $\left|U_{e i}\right|^{2}$, the individual neutrino mass squares $m_{\nu_{j}}^{2}=m_{\nu_{e}}^{2(e f f)}-\sum_{i}\left|U_{e i}\right|^{2} \Delta m_{i j}^{2}$ can be determined.

So far solar, reactor, atmospheric and accelerator neutrino oscillation experiments can be consistently described using three active neutrino flavors, i.e. two mass splittings and three mixing angles. However, several experiments with radioactive sources, reactors, and accelerators imply the possible existence of one or more non-interacting, i.e. sterile, neutrino species that might be observable since they couple, albeit weakly, to the flavor neutrinos $\left|\nu_{l}\right\rangle$. In that case, the neutrino mixing matrix would be $n \times n$ unitary matrix with $n>3$.

Combined three neutrino analyses determine the squared mass differences and all three mixing angles to within reasonable accuracy. For given $\left|\Delta m_{i j}^{2}\right|$ a limit on $m_{\nu_{e}}^{2(e f f)}$ from beta decay defines an upper limit on the maximum value $m_{\max }$ of $m_{\nu_{i}}$: $m_{\max }^{2} \leq m_{\nu_{e}}^{2(e f f)}+\sum_{i<j}\left|\Delta m_{i j}^{2}\right|$. The analysis of the low energy beta decay of tritium, combined with the oscillation results, thus limits all active neutrino masses. Traditionally, experimental neutrino mass limits obtained from pion decay $\pi^{+} \rightarrow \mu^{+}+\nu_{\mu}$ or the shape of the spectrum of decay products of the τ lepton did not distinguish between flavor and mass eigenstates. These results are reported as limits of the μ and τ based neutrino

Lepton Particle Listings

Neutrino Properties

mass. After the determination of the $\left|\Delta m_{i j}^{2}\right|$'s and the mixing angles $\theta_{i j}$, the corresponding neutrino mass limits are no longer competitive with those derived from low energy beta decays.

The spread of arrival times of the neutrinos from SN1987A, coupled with the measured neutrino energies, provided a time-of-flight limit on a quantity similar to $\left\langle m_{\beta}\right\rangle \equiv \sqrt{m_{\nu_{e}}^{2(e f f)}}$. This statement, clothed in various degrees of sophistication, has been the basis for a very large number of papers. The resulting limits, however, are no longer comparable with the limits from tritium beta decay.

Constraint, or eventually a value, of the sum of the neutrino masses $m_{\text {tot }}$ can be determined from the analysis of the cosmic microwave background anisotropy, combined with the galaxy redshift surveys and other data. These limits are reported in a separate table (Sum of Neutrino Masses, $m_{t o t}$). Obviously, $m_{\text {tot }}$ represents an upper limit for all m_{i} values. Note that many reported $m_{\text {tot }}$ limits are considerably more stringent than the listed $m_{\nu_{e}}^{e f f}$ limits. Discussion concerning the model dependence of the $m_{\text {tot }}$ limit is continuing.

$\bar{\nu}$ MASS (electron based)

Those limits given below are for the square root of $m_{\nu_{e}}^{2(e f f)} \equiv \sum_{i}\left|\mathrm{U}_{e i}\right|^{2}$ $m_{\nu_{i}}^{2}$. Limits that come from the kinematics of ${ }^{3} \mathrm{H} \beta^{-} \bar{\nu}$ decay are the square roots of the limits for $m_{\nu_{e}}^{2(e f f)}$. Obtained from the measurements reported in the Listings for " $\bar{\nu}$ Mass Squared," below.

VALUE (eV)	CL\%	DOCUMENT ID		TECN	COMMENT
<1.1	90	1 AKER	19	SPEC	${ }^{3} \mathrm{H} \beta$ decay
\bullet - We do not use the following data for averages, fits, limits, etc. - -					
<2.05	95	${ }^{2}$ ASEEV	11	SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 5.8	95	3 PAGLIAROLI	10	ASTR	SN1987A
< 2.3	95	${ }^{4}$ KRAUS	05	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<21.7	90	${ }^{5}$ ARNABOLDI	03A	BOLO	${ }^{187} \operatorname{Re} \beta$ decay
<5.7	95	${ }^{6}$ LOREDO	02	ASTR	SN1987A
< 2.5	95	7 LOBASHEV	99	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<2.8	95	8 WEINHEIMER	99	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<4.35	95	${ }^{9}$ BELESEV	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<12.4	95	10 CHING	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<92	95	11 HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
15		HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<19.6	95	KERNAN	95	ASTR	SN 1987A
<7.0	95	12 STOEFFL	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<7.2	95	13 WEINHEIMER	93	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<11.7	95	14 HOLZSCHUH	92B	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<13.1	95	15 KAWAKAMI	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<9.3	95	16 ROBERTSON	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<14	95	AVIGNONE	90	ASTR	SN 1987A
<16		SPERGEL	88	ASTR	SN 1987A
17 to 40		17 BORIS	87	SPEC	${ }^{3} \mathrm{H} \beta$ decay

- - We do not use the following data for averages, fits, limits, etc. - -
${ }^{1}$ AKER 19 report a neutrino mass limit, derived from the first month of data collected by the KATRIN tritium endpoint experiment. The analysis of the electron kinematics shows no evidence for neutrino mass.
${ }^{2}$ ASEEV 11 report the analysis of the entire beta endpoint data, taken with the Troitsk integrating electrostatic spectrometer between 1997 and 2002 (some of the earlier runs were rejected), using a windowless gaseous tritium source. The fitted value of m_{ν}, based on the method of Feldman and Cousins, is obtained from the upper limit of the fit for m_{ν}^{2}. Previous analysis problems were resolved by careful monitoring of the tritium gas column density. Supersedes LOBASHEV 99 and BELESEV 95.
${ }^{3}$ PAGLIAROLI 10 is critical of the likelihood method used by LOREDO 02.
4 KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Various sources of systematic uncertainties have been identified and quantified. The background has been reduced compared to the initial running period. A spectral anomaly at the endpoint, reported in LOBASHEV 99, was not observed.
${ }^{5}$ ARNABOLDI 03A etal. report kinematical neutrino mass limit using β-decay of ${ }^{187} \mathrm{Re}$. Bolometric AgReO_{4} micro-calorimeters are used. Mass bound is substantially weaker than those derived from tritium β-decays but has different systematic uncertainties.
${ }^{6}$ LOREDO 02 updates LOREDO 89.
${ }^{7}$ LOBASHEV 99 report a new measurement which continues the work reported in BELESEV 95. This limit depends on phenomenological fit parameters used to derive their best fit to m_{ν}^{2}, making unambiguous interpretation difficult. See the footnote under " $\bar{\nu}$ Mass Squared."
${ }^{8}$ WEINHEIMER 99 presents two analyses which exclude the spectral anomaly and result in an acceptable m_{ν}^{2}. We report the most conservative limit, but the other is nearly the same. See the footnote under " $\bar{\nu}$ Mass Squared."
${ }^{9}$ BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. A fit to a normal Kurie plot above 18300-18350 eV (to avoid a low-energy anomaly) plus a monochromatic line 7-15 eV below the endpoint yields $m_{\nu}^{2}=-4.1 \pm 10.9 \mathrm{eV}^{2}$, leading to this Bayesian limit.
${ }^{10}$ CHING 95 quotes results previously given by SUN 93 ; no experimental details are given. A possible explanation for consistently negative values of m_{ν}^{2} is given.
11 HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. Bayesian limit calculated from the weighted mean $m_{\nu}^{2}=221 \pm 4244 \mathrm{eV}^{2}$ from the two runs listed below.
${ }^{12}$ STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m_{ν}^{2} errors given below but with m_{ν}^{2} set equal to 0 . The anomalous endpoint accumulation leads to a value of m_{ν}^{2} which is negative by more than 5 standard deviations.
13 WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.
${ }^{14}$ HOLZSCHUH 92B (Zurich) result is obtained from the measurement $m_{\nu}^{2}=-24 \pm 48 \pm 61$ (1σ errors), in eV^{2}, using the PDG prescription for conversion to a limit in m_{ν}.
${ }^{15}$ KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid. This result is the Bayesian limit obtained from the m^{2} limit with the errors combined in quadrature. This was also done in ROBERTSON 91, although the authors report a different procedure.
${ }^{16}$ ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV . However, the probability of a positive m^{2} is only 3% if statistical and systematic error are combined in quadrature.
17 See also comment in BORIS 87B and erratum in BORIS 88.

$\bar{\nu}$ MASS SQUARED (electron based)

Given troubling systematics which result in improbably negative estimators of $m_{\nu_{e}}^{2(e f f)} \equiv \sum_{i}\left|\mathrm{U}_{e i}\right|^{2} m_{\nu_{i}}^{2}$, in many experiments, we use only KRAUS 05, LOBASHEV 99, and AKER 19 for our average.

VALUE $\left(\mathrm{eV}^{2}\right)$ DOCUMENTID TECN COMMENT

	$0.9 \pm$	0.8 1.0 OUR				
	$1.0 \pm$	$\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$	${ }^{1}$ AKER	19	SPEC	${ }^{3} \mathrm{H} \beta$ decay
	$0.67 \pm$	2.53	${ }^{2}$ ASEEV	11	SPEC	${ }^{3} \mathrm{H} \beta$ decay
	$0.6 \pm$	2.2 ± 2.1	3 KRAUS	05	SPEC	${ }^{3} \mathrm{H} \beta$ decay

- - We do not use the following data for averages, fits, limits, etc. - • -

1.9	$\pm \quad 3.4$	± 2.2	${ }^{4}$ LOBASHEV	99	SPEC	${ }^{3} \mathrm{H} \beta$ decay
3.7	$\pm \quad 5.3$	± 2.1	${ }^{5}$ WEINHEIMER	99	SPEC	${ }^{3} \mathrm{H} \beta$ decay
- 22	± 4.8		${ }^{6}$ BELESEV	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
129	± 6010		7 HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
313	± 5994		7 HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
-130	± 20	± 15	8 STOEFFL	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
- 31	± 75	± 48	${ }^{9}$ SUN	93	SPEC	${ }^{3} \mathrm{H} \beta$ decay
- 39	± 34	± 15	10 WEINHEIMER	93	SPEC	${ }^{3} \mathrm{H} \beta$ decay
- 24	± 48	± 61	11 HOLZSCHUH	92B	SPEC	${ }^{3} \mathrm{H} \beta$ decay
- 65	± 85	± 65	12 KAWAKAMI	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay
-147	± 68	± 41	13 ROBERTSON	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay

${ }^{1}$ AKER 19 use the first month of data collected by the KATRIN experiment to determine m_{ν}^{2}. The result is consistent with a neutrino mass of zero and is used to place a limit on m_{ν}.
${ }^{2}$ ASEEV 11 report the analysis of the entire beta endpoint data, taken with the Troitsk integrating electrostatic spectrometer between 1997 and 2002, using a windowless gaseous tritium source. The analysis does not use the two additional fit parameters (see LOBASHEV 99) for a step-like structure near the endpoint. Using only the runs where the tritium gas column density was carefully monitored the need for such parameters was eliminated. Supersedes LOBASHEV 99 and BELESEV 95.
${ }^{3}$ KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Problems with significantly negative squared neutrino masses, observed in some earlier experiments, have been resolved in this work.
${ }^{4}$ LOBASHEV 99 report a new measurement which continues the work reported in BELESEV 95. The data were corrected for electron trapping effects in the source, eliminating the dependence of the fitted neutrino mass on the fit interval. The analysis assuming a pure beta spectrum yields significantly negative fitted $m_{\nu}^{2} \approx-(20-10) \mathrm{eV}^{2}$. This problem is attributed to a discrete spectral anomaly of about 6×10^{-11} intensity with a time-dependent energy of $5-15 \mathrm{eV}$ below the endpoint. The data analysis accounts for this anomaly by introducing two extra phenomenological fit parameters resulting in a best fit of $m_{\nu}^{2}=-1.9 \pm 3.4 \pm 2.2 \mathrm{eV}^{2}$ which is used to derive a neutrino mass limit. However, the introduction of phenomenological fit parameters which are correlated with the derived m_{ν}^{2} limit makes unambiguous interpretation of this result difficult.
${ }^{5}$ WEINHEIMER 99 is a continuation of the work reported in WEINHEIMER 93 . Using a lower temperature of the frozen tritium source eliminated the dewetting of the T_{2} film, which introduced a dependence of the fitted neutrino mass on the fit interval in the earlier work. An indication for a spectral anomaly reported in LOBASHEV 99 has been seen, but its time dependence does not agree with LOBASHEV 99. Two analyses, which exclude the spectral anomaly either by choice of the analysis interval or by using a particular data set which does not exhibit the anomaly, result in acceptable m^{2} fits and are used to derive the neutrino mass limit published by the authors. We list the most conservative of the two.
${ }^{6}$ BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. This value comes from a fit to a normal Kurie plot above $18300-18350 \mathrm{eV}$ (to avoid a low-energy anomaly), including the effects of an apparent peak $7-15 \mathrm{eV}$ below the endpoint.
7 HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. They quote measurements from two data sets.
${ }^{8}$ STOEFFL 95 (LLNL) uses a gaseous source of molecular tritium. An anomalous pileup of events at the endpoint leads to the negative value for m_{ν}^{2}. The authors acknowledge that "the negative value for the best fit of m_{ν}^{2} has no physical meaning" and discuss possible explanations for this effect.
${ }^{9}$ SUN 93 uses a tritiated hydrocarbon source. See also CHING 95
${ }^{10}$ WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate
11 HOLZSCHUH 92B (Zurich) source is a monolayer of tritiated hydrocarbon
12 KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid.
13 ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV . However, the probability of a positive m_{ν}^{2} is only 3% if statistical and systematic error are combined in quadrature.

ν MASS (electron based)

These are measurement of m_{ν} (in contrast to $m_{\bar{\nu}}$, given above). The masses can be different for a Dirac neutrino in the absence of CPT invariance. The possible distinction between ν and $\bar{\nu}$ properties is usually ignored elsewhere in these Listings.

VALUE (eV)	CL\%	DOCUMENT ID		TECN	COMMENT
<460	68	YASUMI	94	CNTR	${ }^{163} \mathrm{Ho} \mathrm{decay}$
<225	95	SPRINGER	87	CNTR	${ }^{163} \mathrm{Ho} \mathrm{decay}$

ν MASS (muon based)

Limits given below are for the square root of $m_{\nu_{\mu}}^{2(\text { eff })} \equiv \sum_{i}\left|\mathrm{U}_{\mu i}\right|^{2} m_{\nu_{i}}^{2}$.
In some of the COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.
OUR EVALUATION is based on OUR AVERAGE for the $\pi^{ \pm}$mass and the ASSAMAGAN 96 value for the muon momentum for the π^{+}decay at rest. The limit is calculated using the unified classical analysis of FELDMAN 98 for a Gaussian distribution near a physical boundary. WARNING: since $m_{\nu_{\mu}}^{2(\text { eff })}$ is calculated from the differences of large numbers, it and the corresponding limits are extraordinarily sensitive to small changes in the pion mass, the decay muon momentum, and their errors. For example, the limits obtained using JECKELMANN 94, LENZ 98, and the weighted averages are $0.15,0.29$, and 0.19 MeV , respectively.
VALUE (MeV) CL\% DOCUMENTID TECN COMMENT <0.19 (CL = 90\%) OUR EVALUATION
$<0.17 \quad 90 \quad 1$ ASSAMAGAN 96 SPEC $m_{\nu}^{2}=-0.016 \pm 0.023$

- - We do not use the following data for averages, fits, limits, etc. - - -

<0.15		${ }^{2}$ DOLGOV	95	cosm	Nucleosynthesis
<0.48		${ }^{3}$ ENQVIST	93	Cosm	Nucleosynthesis
<0.3		${ }^{4}$ FULLER	91	COSM	Nucleosynthesis
<0.42		${ }^{4}$ LAM	91	COSM	Nucleosynthesis
<0.50	90	5 ANDERHUB	82	SPEC	$m_{\nu}^{2}=-0.14 \pm 0.20$
<0.65	90	CLARK	74	ASPK	$K_{\mu 3}$ decay

${ }^{1}$ ASSAMAGAN 96 measurement of p_{μ} from $\pi^{+} \rightarrow \mu^{+} \nu$ at rest combined with JECKELMANN 94 Solution B pion mass yields $m_{\nu}^{2}=-0.016 \pm 0.023$ with corresponding Bayesian limit listed above. If Solution A is used, $m_{\nu}^{2}=-0.143 \pm 0.024 \mathrm{MeV}^{2}$. Replaces ASSAMAGAN 94.
${ }^{2}$ DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below $T_{\text {QCD }}$ for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits.
${ }^{3}$ ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, $\sim 1 \mathrm{~s}$.
${ }^{4}$ Assumes neutrino lifetime $>1 \mathrm{~s}$. For Dirac neutrinos only. See also ENQVIST 93.
${ }^{5}$ ANDERHUB 82 kinematics is insensitive to the pion mass.

ν MASS (tau based)

The limits given below are the square roots of limits for $m_{\nu_{\tau}}^{2(\text { eff })} \equiv$ $\sum_{i}\left|\mathrm{U}_{\tau i}\right|^{2} m_{\nu_{i}}^{2}$.

In some of the ASTR and COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

VALUE (MeV)	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT
< 18.2	95		${ }^{1}$ BARATE	98F	ALEP	1991-1995 LEP runs
- - We do not use the following data for averages, fits, limits, etc. - -						
<28	95		2 ATHANAS	00	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
<27.6	95		3 ACKERSTAFF	98т	OPAL	1990-1995 LEP runs
<30	95	473	${ }^{4}$ AMMMAR	98	CLEO	$E_{\mathrm{Cm}}^{e e}=10.6 \mathrm{GeV}$
<60	95		${ }^{5}$ ANASTASSOV	97	CLEO	$E_{\mathrm{Cm}}^{e \mathrm{e}}=10.6 \mathrm{GeV}$
<0.37 or >22			${ }^{6}$ FIELDS	97	COSM	Nucleosynthesis
< 68	95		7 SWAIN	97	THEO	$m_{\tau}, \tau_{\tau}, \tau$ partial widths
< 29.9	95		${ }^{8}$ ALEXANDER	96M	OPAL	1990-1994 LEP runs
<149			${ }^{9}$ BOTTINO	96	THEO	π, μ, τ leptonic decays
<1 or >25			10 HANNESTAD	96C	COSM	Nucleosynthesis
<71	95		11 SOBIE	96	THEO	$\begin{gathered} m_{\tau}, \tau_{\tau}, \mathrm{B}\left(\tau^{-} \rightarrow\right. \\ \left.e^{-} \bar{\nu}_{e} \nu_{\tau}\right) \end{gathered}$
<24	95	25	12 BUSKULIC	95H	ALEP	1991-1993 LEP runs
<0.19			13 DOLGOV	95	COSM	Nucleosynthesis
<3			14 SIGL	95	ASTR	SN 1987A
<0.4 or >30			15 DODELSON	94	COSM	Nucleosynthesis
<0.1 or >50			16 KAWASAKI	94	COSM	Nucleosynthesis
155-225			17 PERES	94	THEO	π, K, μ, τ weak decays
< 32.6	95	113	18 CINABRO	93	CLEO	$E_{\mathrm{Cm}}^{e e} \approx 10.6 \mathrm{GeV}$
<0.3 or >35			19 DOLGOV	93	COSM	Nucleosynthesis
<0.74			20 ENQVIST	93	COSM	Nucleosynthesis
< 31	95	19	21 ALBRECHT	92M	ARG	$E_{\mathrm{Cm}}^{e e}=9.4-10.6 \mathrm{GeV}$
<0.3			22 FULLER	91	COSM	Nucleosynthesis
<0.5 or >25			23 KOLB	91	COSM	Nucleosynthesis
<0.42			22 LAM	91	cosm	Nucleosynthesis

${ }^{1}$ BARATE 98F result based on kinematics of $2939 \tau^{-} \rightarrow 2 \pi^{-} \pi^{+} \nu_{\tau}$ and $52 \tau^{-} \rightarrow$ $3 \pi^{-} 2 \pi^{+}\left(\pi^{0}\right) \nu_{\tau}$ decays. If possible 2.5% excited a_{1} decay is included in 3-prong sample analysis, limit increases to 19.2 MeV .
2 ATHANAS 00 bound comes from analysis of $\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}$ decays.
${ }^{3}$ ACKERSTAFF 98T use $\tau \rightarrow 5 \pi^{ \pm} \nu_{\tau}$ decays to obtain a limit of 43.2 MeV ($95 \% \mathrm{CL}$). They combine this with ALEXANDER 96 M value using $\tau \rightarrow 3 h^{ \pm} \nu_{\tau}$ decays to obtain quoted limit.
${ }^{4}$ AMMAR 98 limit comes from analysis of $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ and $\tau^{-} \rightarrow 2 \pi^{-} \pi^{+} 2 \pi^{0} \nu_{\tau}$ decay modes.
${ }^{5}$ ANASTASSOV 97 derive limit by comparing their m_{τ} measurement (which depends on $m_{\nu_{\tau}}$) to BAI $96 m_{\tau}$ threshold measurement.
${ }^{6}$ FIELDS 97 limit for a Dirac neutrino. For a Majorana neutrino the mass region <0.93 or $>31 \mathrm{MeV}$ is excluded. These bounds assume $N_{\nu}<4$ from nucleosynthesis; a wider excluded region occurs with a smaller N_{ν} upper limit.
${ }^{7}$ SWAIN 97 derive their limit from the Standard Model relationships between the tau mass, lifetime, branching fractions for $\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}, \tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}, \tau^{-} \rightarrow \pi^{-} \nu_{\tau}$, and $\tau^{-} \rightarrow K^{-} \nu_{\tau}$, and the muon mass and lifetime by assuming lepton universality and using world average values. Limit is reduced to 48 MeV when the CLEO τ mass measurement (BALEST 93) is included; see CLEO's more recent $m_{\nu_{\tau}}$ limit (ANASTASSOV 97). Consideration of mixing with a fourth generation heavy neutrino yields $\sin ^{2} \theta_{L}<0.016$ (95\%CL).
${ }^{8}$ ALEXANDER 96 M bound comes from analyses of $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ and $\tau^{-} \rightarrow$ $h^{-} h^{-} h^{+} \nu_{\tau}$ decays.
${ }^{9}$ BOTTINO 96 assumes three generations of neutrinos with mixing, finds consistency with massless neutrinos with no mixing based on 1995 data for masses, lifetimes, and leptonic partial widths.
${ }^{10}$ HANNESTAD 96C limit is on the mass of a Majorana neutrino. This bound assumes $N_{\nu}<4$ from nucleosynthesis. A wider excluded region occurs with a smaller N_{ν} upper limit. This paper is the corrected version of HANNESTAD 96; see the erratum: HANNESTAD 96B.
11 SOBIE 96 derive their limit from the Standard Model relationship between the tau mass, lifetime, and leptonic branching fraction, and the muon mass and lifetime, by assuming lepton universality and using world average values.
${ }^{12}$ BUSKULIC 95 H bound comes from a two-dimensional fit of the visible energy and invariant mass distribution of $\tau \rightarrow 5 \pi\left(\pi^{0}\right) \nu_{\tau}$ decays. Replaced by BARATE 98F.
13 DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below $T_{\text {QCD }}$ for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits. DOLGOV 96 argues that a possible window near 20 MeV is excluded.
${ }^{14}$ SIGL 95 exclude massive Dirac or Majorana neutrinos with lifetimes between 10^{-3} and 10^{8} seconds if the decay products are predominantly γ or $e^{+} e^{-}$.
${ }^{15}$ DODELSON 94 calculate constraints on ν_{τ} mass and lifetime from nucleosynthesis for 4 generic decay modes. Limits depend strongly on decay mode. Quoted limit is valid for

Neutrino Properties

all decay modes of Majorana neutrinos with lifetime greater than about 300 s. For Dirac neutrinos limits change to <0.3 or >33.
16 KAWASAKI 94 excluded region is for Majorana neutrino with lifetime $>1000 \mathrm{~s}$. Other limits are given as a function of ν_{τ} lifetime for decays of the type $\nu_{\tau} \rightarrow \nu_{\mu} \phi$ where ϕ is a Nambu-Goldstone boson.
17 PERES 94 used PDG 92 values for parameters to obtain a value consistent with mixing. Reexamination by BOTTINO 96 which included radiative corrections and 1995 PDG parameters resulted in two allowed regions, $m_{3}<70 \mathrm{MeV}$ and $140 \mathrm{MeV} m_{3}<149$ MeV .
${ }^{18}$ CINABRO 93 bound comes from analysis of $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ and $\tau^{-} \rightarrow$ $2 \pi^{-} \pi^{+} 2 \pi^{0} \nu_{\tau}$ decay modes.
19 DOLGOV 93 assumes neutrino lifetime $>100 \mathrm{~s}$. For Majorana neutrinos, the low mass limit is 0.5 MeV . KAWANO 92 points out that these bounds can be overcome for a Dirac neutrino if it possesses a magnetic moment. See also DOLGOV 96.
${ }^{20}$ ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, $\sim 1 \mathrm{~s}$.
${ }^{21}$ ALBRECHT 92 M reports measurement of a slightly lower τ mass, which has the effect of reducing the ν_{τ} mass reported in ALBRECHT 88B. Bound is from analysis of $\tau^{-} \rightarrow$ $3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ mode.
${ }^{22}$ Assumes neutrino lifetime $>1 \mathrm{~s}$. For Dirac neutrinos. See also ENQVIST 93.
23 KOLB 91 exclusion region is for Dirac neutrino with lifetime $>1 \mathrm{~s}$; other limits are given.
Revised September 2019 by K.A. Olive (University of Minnesota).

Neutrinos decouple from thermal equilibrium in the early universe at temperatures $\mathcal{O}(1) \mathrm{MeV}$. The limits on low mass ($m_{\nu} \lesssim 1 \mathrm{MeV}$) neutrinos apply to $m_{\text {tot }}$ given by

$$
m_{\mathrm{tot}}=\sum_{\nu} m_{\nu}
$$

Stable neutrinos in this mass range decouple from the thermal bath while still relativistic and make a contribution to the total energy density of the Universe which is given by

$$
\rho_{\nu}=m_{\mathrm{tot}} n_{\nu} \simeq m_{\mathrm{tot}}(3 / 11)(3.045 / 3)^{3 / 4} n_{\gamma},
$$

where the factor $3 / 11$ is the ratio of (light) neutrinos to photons and the factor $(3.045 / 3)^{3 / 4}$ corrects for the fact that the effective number of neutrinos in the standard model is 3.045 when taking into account $e^{+} e^{-}$annihilation during neutrino decoupling. Writing $\Omega_{\nu}=\rho_{\nu} / \rho_{c}$, where ρ_{c} is the critical energy density of the Universe, and using $n_{\gamma}=410.7 \mathrm{~cm}^{-3}$, we have

$$
\Omega_{\nu} h^{2} \simeq m_{\mathrm{tot}} /(93 \mathrm{eV})
$$

While an upper limit to the matter density of $\Omega_{m} h^{2}<0.12$ would constrain $m_{\text {tot }}<11 \mathrm{eV}$, much stronger constraints are obtained from a combination of observations of the CMB, the amplitude of density fluctuations on smaller scales from the clustering of galaxies and the Lyman- α forest, baryon acoustic oscillations, and new Hubble parameter data. These combine to give an upper limit of around 0.15 eV , and may, in the near future, be able to provide a lower bound on the sum of the neutrino masses. The current lower bound of $m_{\text {tot }}>0.06 \mathrm{eV}$ implies a lower limit of $\Omega_{\nu} h^{2}>6 \times 10^{-4}$. See our review on "Neutrinos in Cosmology" for more details.

SUM OF THE NEUTRINO MASSES, $m_{\text {tot }}$

This is a sum of the neutrino masses, $m_{\text {tot }}$, as defined in the above note, of effectively stable neutrinos, i.e. those with mean lifetimes on cosmological scales. When necessary, we have generalized the results reported so they apply to $m_{\text {tot }}$. For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85. For more information see a note on "Neutrinos in Cosmology" in this Review.
VALUE (eV)
CL\%
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$<$	0.26		95	1 LOUREIRO	19	COSM	BOSS and CMB
<	0.18		95	2 UPADHYE	19	COSM	
$<$	0.152		95	${ }^{3}$ CHOUDHURY	18	COSM	
	0.064	$\begin{array}{r} +0.061 \\ -0.005 \end{array}$	95	4 SIMPSON	17	COSM	
$<$	0.151		95	5 VAGNOZZI	17	COSM	BOSS and XQ-100
$<$	0.14		95	6 YECHE	17	COSM	
$<$	0.0926		90	7 DIVALENTINO		Cosm	
$<$	0.18		95	${ }^{8}$ HUANG	16	COSM	Normal mass hierarchy
$<$	0.14		95	${ }^{9}$ ROSSI	15	COSM	
$<$	0.23		95	10 ADE	14	COSM	Planck
	0.320	± 0.081		11 BATTYE	14	COSM	
	0.35	± 0.10		12 BEUTLER	14	COSM	BOSS
	0.22	$\begin{array}{r} +0.09 \\ -0.10 \end{array}$		13 COSTANZI	14	COSM	
$<$	0.22		95	14 GIUSARMA	14	COSM	
	0.32	± 0.11		15 HOU	14	COSM	
$<$	0.26		95	16 LEISTEDT	14	COSM	
$<$	0.18		95	17 RIEMER-SOR..		Cosm	
$<$	0.24		68	18 MORESCO	12	Cosm	
$<$	0.29		95	19 XIA	12	COSM	
$<$	0.81		95	20 SAITO	11	COSM	SDSS
$<$	0.44		95	21 HANNESTAD	10	COSM	
$<$	0.6		95	22 SEKIGUCHI	10	Cosm	
$<$	0.28		95	23 THOMAS	10	COSM	
$<$	1.1			24 ICHIKI	09	COSM	
<	1.3		95	25 KOMATSU	09	Cosm	WMAP
$<$	1.2			26 TERENO	09	COSM	
$<$	0.33			27 VIKHLININ	09	COSM	
$<$	0.28			28 BERNARDIS	08	COSM	
	0.17-2.3			${ }^{29}$ FOGLI	07	Cosm	
$<$	0.42		95	30 KRISTIANSEN	07	COSM	
	0.63-2.2			31 ZUNCKEL	07	COSM	
<	0.24		95	32 CIRELLI	06	COSM	
$<$	0.62		95	33 HANNESTAD	06	Cosm	
$<$	1.2			34 SANCHEZ	06	COSM	
$<$	0.17		95	32 SELJAK	06	COSM	
$<$	2.0		95	35 ICHIKAWA	05	COSM	
$<$	0.75			36 BARGER	04	Cosm	
$<$	1.0			${ }^{37}$ CROTTY	04	Cosm	
$<$	0.7			38 SPERGEL	03	COSM	WMAP
$<$	0.9			39 LEWIS	02	COSM	
$<$	4.2			40 WANG	02	Cosm	CMB
$<$	2.7			41 FUKUGITA	00	COSM	
	5.5			42 CROFT	99	ASTR	Ly α power spec
	180			SZALAY	74	COSM	
	132			COWSIK	72	Cosm	
	280			MARX	72	COSM	
	400			GERSHTEIN	66	COSM	

$1_{\text {LOUREIRO }} 19$ combines data from large scale structure, cosmic microwave background, type la supernovae and big bang nucleosynthesis using physically motivated neutrino mass models.
2 UPADHYE 19 uses the shape of the BOSS redshift-space galaxy power spectrum in combination with the CMB, and supernovae data. Limit weakens to $<0.54 \mathrm{eV}$ if the dark energy equation of state is allowed to vary.
${ }^{3}$ CHOUDHURY 18 combines 2015 Planck CMB temperature data, information from the optical depth to reionization from Planck 2016 intermediate results together with baryon acoustic oscillation data from BOSS, MGS, and 6dFGS as well as supernovae Type la data from the Pantheon Sample. The limit is strengthened to 0.118 eV when high-I CMB polarization data is also included
${ }^{4}$ SIMPSON 17 uses a combination of laboratory and cosmological measurements to determine the light neutrino masses and argue that there is strong evidence for the normal mass ordering.
${ }^{5}$ Combines temperature anisotropies of the CMB from Planck with data on baryon acoustic oscillations and the optical depth to reionization. Limit is strengthened to 0.118 when high multipole polarization data is included. Updates GIUSARMA 16
${ }^{6}$ Constrains the total mass of neutrinos using the Lyman-alpha forest power spectrum with BOSS (mid-resolution), XQ-100 (high-resolution) and CMB. Without the CMB data, the limit relaxes to 0.8 eV . Supersedes PALANQUE-DELABROUILLE 15A.
${ }^{7}$ Constrains the total mass of neutrinos from Planck CMB data combined with baryon acoustic oscillation and Planck cluster data.
${ }^{8}$ Constrains the total mass of neutrinos from BAO data from SDSS-III/BOSS combined with CMB data from Planck. Limit quoted for normal mass hierarchy. The limit for the inverted mass hierarchy is 0.20 eV and for the degenerate mass hierarchy it is 0.15 eV .
${ }^{9}$ ROSSI 15 sets limits on the sum of neutrino masses using BOSS Lyman alpha forest data combined with Planck CMB data and baryon acoustic oscillations.
${ }^{10}$ Constrains the total mass of neutrinos from Planck CMB data along with WMAP polarization, high L , and BAO data.
${ }^{11}$ Finite neutrino mass fit to resolve discrepancy between CMB and lensing measurements.
${ }^{12}$ Fit to the total mass of neutrinos from BOSS data along with WMAP CMB data and data from other BAO constraints and weak lensing.
${ }^{13}$ Fit to the total mass of neutrinos from Planck CMB data along with BAO.
${ }^{14}$ Constrains the total mass of neutrinos from Planck CMB data combined with baryon acoustic oscillation data from BOSS and HST data on the Hubble parameter.
${ }^{15}$ Fit based on the SPT-SZ survey combined with CMB, BAO, and H_{0} data.
${ }^{16}$ Constraints the total mass of neutrinos (marginalizing over the effective number of neutrino species) from CMB, CMB lensing, BAO, and galaxy clustering data.
${ }^{17}$ Constrains the total mass of neutrinos from Planck CMB data combined with baryon acoustic oscillation data from BOSS, 6dFGS, SDSS, WiggleZ data on the galaxy power spectrum, and HST data on the Hubble parameter. The limit is increased to 0.25 eV if a lower bound to the sum of neutrino masses of 0.04 eV is assumed.
${ }^{18}$ Constrains the total mass of neutrinos from observational Hubble parameter data with seven-year WMAP data and the most recent estimate of H_{0}.
${ }^{19}$ Constrains the total mass of neutrinos from the CFHTLS combined with seven-year WMAP data and a prior on the Hubble parameter. Limit is relaxed to 0.41 eV when small scales affected by non-linearities are removed.
${ }^{20}$ Constrains the total mass of neutrinos from the Sloan Digital Sky Survey and the five-year WMAP data.
${ }^{21}$ Constrains the total mass of neutrinos from the 7 -year WMAP data including SDSS and HST data. Limit relaxes to 1.19 eV when CMB data is used alone. Supersedes HANNESTAD 06.
${ }^{22}$ Constrains the total mass of neutrinos from a combination of CMB data, a recent measurement of H_{0} (SHOES), and baryon acoustic oscillation data from SDSS.
${ }^{23}$ Constrains the total mass of neutrinos from SDSS MegaZ LRG DR7 galaxy clustering data combined with CMB, HST, supernovae and baryon acoustic oscillation data. Limit relaxes to 0.47 eV when the equation of state parameter, $w \neq 1$.
${ }^{24}$ Constrains the total mass of neutrinos from weak lensing measurements when combined with CMB. Limit improves to 0.54 eV when supernovae and baryon acoustic oscillation observations are included. Assumes ICDM model.
${ }^{25}$ Constrains the total mass of neutrinos from five-year WMAP data. Limit improves to 0.67 eV when supernovae and baryon acoustic oscillation observations are included. Limits quoted assume the ^CDM model. Supersedes SPERGEL 07.
${ }^{26}$ Constrains the total mass of neutrinos from weak lensing measurements when combined with CMB. Limit improves to $0.03<\sum m_{\nu}<0.54 \mathrm{eV}$ when supernovae and baryon acoustic oscillation observations are included. The slight preference for massive neutrinos at the two-sigma level disappears when systematic errors are taken into account. Assumes ^CDM model.
${ }^{27}$ Constrains the total mass of neutrinos from recent Chandra X-ray observations of galaxy clusters when combined with CMB, supernovae, and baryon acoustic oscillation measurements. Assumes flat universe and constant dark-energy equation of state, w.
${ }^{28}$ Constraints the total mass of neutrinos from recent CMB and SOSS LRG power spectrum data along with bias mass relations from SDSS, DEEP2, and Lyman-Break Galaxies. It assumes ^CDM model. Limit degrades to 0.59 eV in a more general wCDM model.
${ }^{29}$ Constrains the total mass of neutrinos from neutrino oscillation experiments and cosmological data. The most conservative limit uses only WMAP three-year data, while the most stringent limit includes CMB, large-scale structure, supernova, and Lyman-alpha data.
${ }^{30}$ Constrains the total mass of neutrinos from recent CMB, large scale structure, SN1a, and baryon acoustic oscillation data. The limit relaxes to 1.75 when WMAP data alone is used with no prior. Paper shows results with several combinations of data sets. Supersedes KRISTIANSEN 06.
${ }^{31}$ Constrains the total mass of neutrinos from the CMB and the large scale structure data. The most conservative limit is obtained when generic initial conditions are allowed.
${ }^{32}$ Constrains the total mass of neutrinos from recent CMB, large scale structure, Lymanalpha forest, and SN1a data.
${ }^{33}$ Constrains the total mass of neutrinos from recent CMB and large scale structure data. See also GOOBAR 06. Superseded by HANNESTAD 10.
${ }^{34}$ Constrains the total mass of neutrinos from the CMB and the final 2dF Galaxy Redshift Survey.
${ }^{35}$ Constrains the total mass of neutrinos from the CMB experiments alone, assuming $\Lambda C D M$ Universe. FUKUGITA 06 show that this result is unchanged by the 3 -year WMAP data.
${ }^{36}$ Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27 other CMB experiments and measurements by the HST Key project.
${ }^{37}$ Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR. The limit is strengthened to 0.6 eV when measurements by the HST Key project and supernovae data are included.
${ }^{38}$ Constrains the fractional contribution of neutrinos to the total matter density in the Universe from WMAP data combined with other CMB measurements, the 2dfGRS data, and Lyman α data. The limit does not noticeably change if the Lyman α data are not used.
${ }^{39}$ LEWIS 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type la, and BBN.
${ }^{40}$ WANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB and other cosmological data sets such as galaxy clustering and the Lyman α forest.
${ }^{41}$ FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is based on the clustering scale σ_{8} and the COBE normalization and leads to a conservative limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum of the light neutrino masses.
${ }^{42}$ CROFT 99 result based on the power spectrum of the Ly α forest. If $\Omega_{\text {matter }}<0.5$, the limit is improved to $m_{\nu}<2.4$ ($\Omega_{\text {matter }} / 0.17-1$) eV.

Limits on MASSES of Light Stable Right-Handed ν

(with necessarily suppressed interaction strengths)
VALUE (eV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

$<100-200$	1		
$<200-2000$	1	OLIVE	82
CIVE	82	COSM Dirac ν	
${ }^{1}$ Depending on interaction strength G_{R} where G_{R}	$<G_{F}$.		

Limits on MASSES of Heavy Stable Right-Handed ν (with necessarily suppressed interaction strengths)
VALUE (GeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

>10	1	OLIVE	82	$\operatorname{COSM} G_{R} / G_{F}<0.1$
>100	1 OLIVE	82	$\operatorname{COSM} G_{R} / G_{F}<0.01$	

${ }^{1}$ These results apply to heavy Majorana neutrinos and are summarized by the equation: $m_{\nu}>1.2 \mathrm{GeV}\left(G_{F} / G_{R}\right)$. The bound saturates, and if G_{R} is too small no mass range is allowed.

ν CHARGE					
$e=$ electron charge is the unit of values listed below.					
$\operatorname{VALUE}(e)$	CL\%	DOCUMENT ID		TECN	COMMENT
$<4 \times 10^{-35}$	95	1 CAPRINI	05	COSM	charge neutral universe
- - We do not use the following data for averages, fits, limits, etc. - -					
$<3 \times 10^{-8}$	95	2 DELLA-VALLE		LASR	magnetic dichroism
$<2.1 \times 10^{-12}$	90	3 CHEN	14A	TEXO	nuclear reactor
$<1.5 \times 10^{-12}$	90	${ }^{4}$ STUDENIKIN	14		nuclear reactor
$<3.7 \times 10^{-12}$	90	5 GNINENKO	07	RVUE	nuclear reactor
$<2 \times 10^{-14}$		6 RAFFELT	99	ASTR	red giant luminosity
$<6 \times 10^{-14}$		${ }^{7}$ RAFFELT	99	ASTR	solar cooling
$<4 \times 10^{-4}$		${ }^{8}$ BABU	94	RVUE	BEBC beam dump
$<3 \times 10^{-4}$		${ }^{9}$ DAVIDSON	91	RVUE	SLAC e^{-}beam dump
$<2 \times 10^{-15}$		10 BARBIELLINI	87	ASTR	SN 1987A
$<1 \times 10^{-13}$		11 BERNSTEIN	63	ASTR	solar energy losses

${ }^{1}$ CAPRINI 05 limit derived from the lack of a charge asymmetry in the universe. Limit assumes that charge asymmetries between particles are not anti-correlated.
2 DELLA-VALLE 16 obtain a limit on the charge of neutrinos valid for masses of less than 10 meV . For heavier neutrinos the limit increases as a power of mass, reaching $10^{-6} e$ for $m=100 \mathrm{meV}$.
${ }^{3}$ CHEN 14A use the Multi-Configuration RRPA method to analyze reactor $\bar{\nu}_{e}$ scattering on Ge atoms with 300 eV recoil energy threshold to obtain this limit.
${ }^{4}$ STUDENIKIN 14 uses the limit on μ_{ν} from BEDA 13 and the 2.8 keV threshold of the electron recoil energy to obtain this limit.
${ }^{5}$ GNINENKO 07 use limit on $\bar{\nu}_{e}$ magnetic moment from LI 03B to derive this result. The limit is considerably weaker than the limits on the charge of ν_{e} and $\bar{\nu}_{e}$ from various astrophysics considerations.
6 This RAFFELT 99 limit applies to all neutrino flavors which are light enough ($<5 \mathrm{keV}$) to be emitted from globular-cluster red giants.
7 This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss channel of the Sun, and applies to all neutrino flavors which are light enough ($<1 \mathrm{keV}$) to be emitted from the sun.
${ }^{8}$ BABU 94 use COOPER-SARKAR 92 limit on ν magnetic moment to derive quoted result. It applies to ν_{τ}.
${ }^{9}$ DAVIDSON 91 use data from early SLAC electron beam dump experiment to derive charge limit as a function of neutrino mass. It applies to ν_{τ}.
${ }^{10}$ Exact BARBIELLINI 87 limit depends on assumptions about the intergalactic or galactic magnetic fields and about the direct distance and time through the field. It applies to ν_{e}. ${ }^{11}$ The limit applies to all flavors.

$\nu($ MEAN LIFE $) /$ MASS

Measures $\left[\sum\left|U_{\ell j}\right|^{2} \Gamma_{j} m_{j}\right]^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. Some of the limits constrain the radiative decay and are based on the limit of the corresponding photon flux. Other apply to the decay of a heavier neutrino into the lighter one and a Majoron or other invisible particle. Many of these limits apply to any ν within the indicated mass range.

Limits on the radiative decay are either directly based on the limits of the corresponding photon flux, or are derived from the limits on the neutrino magnetic moments. In the later case the transition rate for $\nu_{i} \rightarrow \nu_{j}+\gamma$ is constrained by $\Gamma_{i j}=\frac{1}{\tau_{i j}}=\frac{\left(m_{i}^{2}-m_{j}^{2}\right)^{3}}{m_{i}^{3}} \mu_{i j}^{2}$ where $\mu_{i j}$ is the neutrino transition moment in the mass eigenstates basis. Typically, the limits on lifetime based on the magnetic moments are many orders of magnitude more restrictive than limits based on the nonobservation of photons.

VALUE (s/eV)			cL\%	DOCUMENT ID		TECN	COMMENT
	15.4		90	${ }^{1}$ KRAKAUER	91	CNTR	$\nu_{\mu}, \bar{\nu}_{\mu}$ at LAMPF
	7	$\times 10^{9}$		${ }^{2}$ RAFFELT	85	ASTR	
	300		90	${ }^{3}$ REINES	74	CNTR	$\bar{\nu}_{e}$
We do not use the following data for averages, fits, limits, etc. - -							
	8.08	$\times 10^{-5}$	90	${ }^{4}$ AHARMIM	19	SNO	ν_{2} invisible nonradiative
>	1.92	$\times 10^{-3}$	90	5 AHARMIM	19	FIT	ν_{2} invisible nonradiative decay
$6-26 \times 10^{9}$			95	6 ESCUDERO	19	COSM	$\begin{aligned} & \text { Invisible decay } m_{\nu} \geq \\ & 0.05 \mathrm{eV} \end{aligned}$
$>10^{5}-10^{10}$			95	${ }^{7}$ CECCHINI	11	ASTR	$\nu_{2} \rightarrow \nu_{1}$ radiative decay
			90	${ }^{8}$ MIRIZZI	07	CMB	radiative decay
			90	${ }^{9}$ MIRIZZI	07	CIB	radiative decay
				10 WONG	07	CNTR	Reactor $\bar{\nu}_{e}$
>	0.11		90	${ }_{12} \mathrm{XIN}$	05	CNTR	Reactor ν_{e}
				12 XIN	05	CNTR	Reactor ν_{e}
>	0.004		90	13 AHARMIM	04	SNO	quasidegen. ν masses
	4.4	$\times 10^{-5}$	90	13 AHARMIM	04	SNO	hierarchical ν masses
≥ 100			95	14 CECCHINI	04	ASTR	Radiative decay for ν mass $>0.01 \mathrm{eV}$
	0.067		90	${ }^{15}$ EGUCHI	04	KLND	quasidegen. ν masses
	1.1	$\times 10^{-3}$	90	${ }^{15}$ EGUCHI	04	KLND	hierarchical ν masses
	8.7	$\times 10^{-5}$	99	16 BANDYOPA...	03	FIT	nonradiative decay
≥ 4200			90	17 DERBIN	02B	CNTR	Solar pp and $\mathrm{Be} \nu$
	2.8	$\times 10^{-5}$	99	18 JOSHIPURA	02B	FIT	nonradiative decay
				19 DOLGOV	99	COSM	
				${ }^{20}$ BILLER	98	ASTR	$m_{\nu}=0.05-1 \mathrm{eV}$
$\begin{aligned} & >2.8 \times 10^{15} \\ & \text { none } 10^{-12}-5 \times 10^{4} \end{aligned}$				21,22 BLUDMAN	92	ASTR	$m_{\nu}<50 \mathrm{eV}$
				${ }^{23}$ DODELSON	92	ASTR	$m_{\nu}=1-300 \mathrm{keV}$
$<10^{-12}$ or $>5 \times 10^{4}$				23 DODELSON	92	ASTR	$m_{\nu}=1-300 \mathrm{keV}$
				24 GRANEK	91	COSM	Decaying L^{0}
6.4			90	25 KRAKAUER	91	CNTR	ν_{e} at LAMPF
>	1.1	$\times 10^{15}$		${ }^{26}$ WALKER	90	ASTR	$m_{\nu}=0.03-\sim 2 \mathrm{MeV}$
>	6.3	$\times 10^{15}$		22,27 CHUPP	89	ASTR	$m_{\nu}<20 \mathrm{eV}$
	1.7	$\times 10^{15}$		22 KOLB	89	ASTR	$m_{\nu}<20 \mathrm{eV}$
				28 RAFFELT	89	RVUE	$\bar{\nu}$ (Dirac, Majorana)
				29 RAFFELT	89B	ASTR	
	8.3	$\times 10^{14}$		30 VONFEILIT...	88	ASTR	
>	22		68	31 OBERAUER	87		$\bar{\nu}_{R}$ (Dirac)
>	38		68	31 OBERAUER	87		$\bar{\nu}$ (Majorana)
>	59		68	${ }^{31}$ OBERAUER	87		$\bar{\nu}_{L}$ (Dirac)
>	30		68	KETOV	86	CNTR	$\bar{\nu}$ (Dirac)
>	20		68	KETOV	86	CNTR	$\bar{\nu}$ (Majorana)
				32 BINETRUY	84	Cosm	$m_{\nu} \sim 1 \mathrm{MeV}$
>	0.11	$\times 10^{21}$	90	${ }^{33}$ FRANK	81	CNTR	$\nu \bar{\nu}$ LAMPF
>	$2 \times$			34 STECKER	80	ASTR	$m_{\nu}=10-100 \mathrm{eV}$
>	1.0	$\times 10^{-2}$	90	${ }^{33}$ BLIETSCHAU	78	HLBC	ν_{μ}, CERN GGM
>	1.7	$\times 10^{-2}$	90	${ }^{33}$ BLIETSCHAU	78	HLBC	$\bar{\nu}_{\mu}$, CERN GGM
$<$	3	$\times 10^{-11}$		${ }^{35}$ FALK	78	ASTR	$m_{\nu}<10 \mathrm{MeV}$
	2.2	$\times 10^{-3}$	90	33 BARNES	77	DBC	ν, ANL 12-ft
				${ }^{36}$ COWSIK	77	ASTR	
	3.	$\times 10^{-3}$	90	${ }^{33}$ BELLOTTI	76	HLBC	ν, CERN GGM
	1.3	$\times 10^{-2}$	90	${ }^{33}$ BELLOTTI	76	HLBC	$\bar{\nu}$, CERN GGM

${ }^{1}$ KRAKAUER 91 quotes the limit $\tau / m_{\nu_{1}}>\left(0.75 a^{2}+21.65 a+26.3\right) \mathrm{s} / \mathrm{eV}$, where a is a parameter describing the asymmetry in the neutrino decay defined as $d N_{\gamma} / d \cos \theta$ $=(1 / 2)(1+a \cos \theta)$ The parameter $a=0$ for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for $a=-1$).
${ }^{2}$ RAFFELT 85 limit on the radiative decay is from solar x - and γ-ray fluxes. Limit depends on ν flux from $p p$, now established from GALLEX and SAGE to be >0.5 of expectation.
${ }^{3}$ REINES 74 looked for ν of nonzero mass decaying radiatively to a neutral of lesser mass $+\gamma$. Used liquid scintillator detector near fission reactor. Finds lab lifetime $6 \times 10^{7} \mathrm{~s}$ or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV . To obtain the limit $6 \times 10^{7} \mathrm{~s}$ REINES 74 assumed that the full $\bar{\nu}_{e}$ reactor flux could be responsible for yielding decays with photon energies in the interval 0.1 MeV 0.5 MeV . This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (VOGEL 84). If so, OBERAUER 87 may be comparable or better.
${ }^{4}$ AHARMIM 19 quotes the limit $\tau / m_{\nu_{2}}$ for invisible nonradiative decay of ν_{2}. They obtained this result by analyzing the entire SNO dataset, allowing for the decay of ν_{2} which would cause an energy-dependent distortion of the survival probability of electrontype solar neutrinos.
${ }^{5}$ AHARMIM 19 quotes the limit $\tau / m_{\nu_{2}}$ for invisible nonradiative decay of ν_{2}. They obtained this result by combining the $\tau / m_{\nu_{2}}$ measurements from SNO and other solar neutrino experiments (Super-Kamiokande, KamLAND, and Borexino ${ }^{8} \mathrm{~B}$ results; Borexino and KamLAND ${ }^{7}$ Be results; the combined gallium interaction rate from GNO, GALLEX, and SAGE; and the chlorine interaction rate from Homestake). The quoted limit at 99% CL is $>1.04 \times 10^{-3}$
${ }^{6}$ ESCUDERO 19 sets limits on invisible neutrino decays using Planck 2018 data of τ $>1.3-0.3 \times 10^{9} \mathrm{~s}$ at 95% C.L. Values in the range $\tau=2-16 \times 10^{9} \mathrm{~s}$ are preferred at 95% C.L. when Planck polarization data is included. Limits scale as $\left(m_{\nu} / 0.05 \mathrm{eV}\right)^{3}$.
${ }^{7}$ CECCHINI 11 search for radiative decays of solar neutrinos into visible photons during the 2006 total solar eclipse. The range of (mean life)/mass values corresponds to a range of ν_{1} masses between 10^{-4} and 0.1 eV .
${ }^{8}$ MIRIZZI 07 determine a limit on the neutrino radiative decay from analysis of the maximum allowed distortion of the CMB spectrum as measured by the COBE/FIRAS. For the decay $\nu_{2} \rightarrow \nu_{1}$ the lifetime limit is $\lesssim 4 \times 10^{20}$ s for $m_{\text {min }} \lesssim 0.14 \mathrm{eV}$. For transition with the $\left|\Delta m_{31}\right|$ mass difference the lifetime limit is $\sim 2 \times 10^{19} \mathrm{~s}$ for $m_{\text {min }} \lesssim 0.14$ eV and $\sim 5 \times 10^{20} \mathrm{~s}$ for $m_{\text {min }} \gtrsim 0.14 \mathrm{eV}$.
${ }^{9}$ MIRIZZI 07 determine a limit on the neutrino radiative decay from analysis of the cosmic infrared background (CIB) using the Spitzer Observatory data. For transition with the $\left|\Delta m_{31}\right|$ mass difference they obtain the lifetime limit $\sim 10^{20}$ s for $m_{\min } \lesssim 0.14 \mathrm{eV}$.
${ }^{10}$ WONG 07 use their limit on the neutrino magnetic moment together with the assumed experimental value of $\Delta m_{13}^{2} \sim 2 \times 10^{-3} \mathrm{eV}^{2}$ to obtain $\tau_{13} / m_{1}^{3}>3.2 \times 10^{27} \mathrm{~s} / \mathrm{eV}^{3}$ for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for τ_{23} and τ_{21}.
${ }^{11}$ XIN 05 search for the γ from radiative decay of ν_{e} produced by the electron capture on ${ }^{51} \mathrm{Cr}$. No events were seen and the limit on τ / m_{ν} was derived. This is a weaker limit on the decay of ν_{e} than KRAKAUER 91 .
${ }^{12}$ XIN 05 use their limit on the neutrino magnetic moment of ν_{e} together with the assumed experimental value of $\Delta m_{1,3}^{2} \sim 2 \times 10^{-3} \mathrm{eV}^{2}$ to obtain $\tau_{13} / m_{1}^{3}>1 \times 10^{23} \mathrm{~s} / \mathrm{eV}^{3}$ for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for τ_{23} and τ_{21}. Again, this limit is specific for ν_{e}.
${ }^{13}$ AHARMIM 04 obtained these results from the solar $\bar{\nu}_{e}$ flux limit set by the SNO measurement assuming ν_{2} decay through nonradiative process $\nu_{2} \rightarrow \bar{\nu}_{1} X$, where X is a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate and hierarchical neutrino masses.
${ }^{14}$ CECCHINI 04 obtained this bound through the observations performed on the occasion of the 21 June 2001 total solar eclipse, looking for visible photons from radiative decays of solar neutrinos. Limit is a $\tau / m_{\nu_{2}}$ in $\nu_{2} \rightarrow \nu_{1} \gamma$. Limit ranges from ~ 100 to $10^{7} \mathrm{~s} / \mathrm{eV}$ for $0.01<m_{\nu_{1}}<0.1 \mathrm{eV}$.
${ }^{15}$ EGUCHI 04 obtained these results from the solar $\bar{\nu}_{e}$ flux limit set by the KamLAND measurement assuming ν_{2} decay through nonradiative process $\nu_{2} \rightarrow \nabla_{1} X$, where X is measurement assuming ν_{2} decay through nonradiative process $\nu_{2} \rightarrow_{1} X$, where X is
a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate a Majoron or other invisible partict.
and hierarchical neutrino masses.
${ }^{16}$ The ratio of the lifetime over the mass derived by BANDYOPADHYAY 03 is for ν_{2}. They obtained this result using the following solar-neutrino data: total rates measured in Cl and Ga experiments, the Super-Kamiokande's zenith-angle spectra, and SNO's day and night spectra. They assumed that ν_{1} is the lowest mass, stable or nearly stable neutrino state and ν_{2} decays through nonradiative Majoron emission process, $\nu_{2} \rightarrow \bar{\nu}_{1}+J$, or through nonradiative process with all the final state particles being sterile. The best fit is obtained in the region of the LMA solution.
${ }^{17}$ DERBIN 02B (also BACK 03B) obtained this bound for the radiative decay from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). The laboratory gamma spectrum is given as $d N_{\gamma} / d \cos \theta=(1 / 2)(1+$ $\alpha \cos \theta$) with $\alpha=0$ for a Majorana neutrino, and α varying to -1 to 1 for a Dirac neutrino. The listed bound is for the case of $\alpha=0$. The most conservative bound $1.5 \times 10^{3} \mathrm{seV}^{-1}$ is obtained for the case of $\alpha=-1$.
${ }^{18}$ The ratio of the lifetime over the mass derived by JOSHIPURA 02B is for ν_{2}. They obtained this result from the total rates measured in all solar neutrino experiments. They assumed that ν_{1} is the lowest mass, stable or nearly stable neutrino state and ν_{2} decays through nonradiative process like Majoron emission decay, $\nu_{2} \rightarrow \nu_{1}^{\prime}+J$ where ν_{1}^{\prime} state is sterile. The exact limit depends on the specific solution of the solar neutrino problem. The quoted limit is for the LMA solution.
${ }^{19}$ DOLGOV 99 places limits in the (Majorana) τ-associated ν mass-lifetime plane based on nucleosynthesis. Results would be considerably modified if neutrino oscillations exist.
${ }^{20}$ BILLER 98 use the observed $\mathrm{TeV} \gamma$-ray spectra to set limits on the mean life of any radiatively decaying neutrino between 0.05 and 1 eV . Curve shows $\tau_{\nu} / \mathrm{B}_{\gamma}>0.15 \times 10^{21} \mathrm{~s}$ at $0.05 \mathrm{eV},>1.2 \times 10^{21} \mathrm{~s}$ at $0.17 \mathrm{eV},>3 \times 10^{21} \mathrm{~s}$ at 1 eV , where B_{γ} is the branching ratio to photons.
${ }^{21}$ BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological limits are also obtained.
${ }^{22}$ Limit on the radiative decay based on nonobservation of γ 's in coincidence with ν 's from SN 1987A.
${ }^{23}$ DODELSON 92 range is for wrong-helicity keV mass Dirac ν 's from the core of neutron star in SN 1987A decaying to ν 's that would have interacted in KAM2 or IMB detectors.
${ }^{24}$ GRANEK 91 considers heavy neutrino decays to $\gamma \nu_{L}$ and $3 \nu_{L}$, where $m_{\nu_{L}}<100 \mathrm{keV}$. Lifetime is calculated as a function of heavy neutrino mass, branching ratio into $\gamma \nu_{L}$, and $m_{\nu_{L}}$.
${ }^{25}$ KRAKAUER 91 quotes the limit for $\nu_{e}, \tau / m_{\nu}>\left(0.3 a^{2}+9.8 a+15.9\right) \mathrm{s} / \mathrm{eV}$, where a is a parameter describing the asymmetry in the radiative neutrino decay defined as $d N_{\gamma} / d \cos \theta=(1 / 2)(1+a \cos \theta) a=0$ for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for $a=-1$).
${ }^{26}$ WALKER 90 uses SN 1987A γ flux limits after 289 days.
${ }^{27}$ CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about $1 / 4$), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino.
${ }^{28}$ RAFFELT 89 uses KYULDJIEV 84 to obtain $\tau m^{3}>3 \times 10^{18} \mathrm{~s} \mathrm{eV}{ }^{3}$ (based on $\bar{\nu}_{e} e^{-}$ cross sections). The bound for the radiative decay is not valid if electric and magnetic transition moments are equal for Dirac neutrinos.
${ }^{29}$ RAFFELT 89 B analyze stellar evolution and exclude the region $3 \times 10^{12}<\tau m^{3}$
$<3 \times 10^{21} \mathrm{seV}^{3}$.
${ }^{30}$ Model-dependent theoretical analysis of SN 1987 A neutrinos. Quoted limit is for
$\left[\sum_{j}\left|U_{\ell j}\right|^{2} \Gamma_{j} m_{j}\right]^{-1}$, where $\ell=\mu, \tau$. Limit is $3.3 \times 10^{14} \mathrm{~s} / \mathrm{eV}$ for $\ell=e$.
${ }^{31}$ OBERAUER 87 looks for photons and $e^{+} e^{-}$pairs from radiative decays of reactor
neutrinos.
${ }^{32}$ BINETRUY 84 finds $\tau<10^{8} \mathrm{~s}$ for neutrinos in a radiation-dominated universe.
${ }^{33}$ These experiments look for $\nu_{k} \rightarrow \nu_{j} \gamma$ or $\bar{\nu}_{k} \rightarrow \bar{\nu}_{j} \gamma$.
${ }^{34} \mathrm{STECKER} 80$ limit based on UV background; result given is $\tau>4 \times 10^{22} \mathrm{~s}$ at $m_{\nu}=20 \mathrm{eV}$.
${ }^{35}$ FALK 78 finds lifetime constraints based on supernova energetics.
${ }^{36}$ COWSIK 77 considers variety of scenarios. For neutrinos produced in the big bang,
present limits on optical photon flux require $\tau>10^{23} \mathrm{~s}$ for $m_{\nu} \sim 1 \mathrm{eV}$. See also
COWSIK 79 and GOLDMAN 79.

ν MAGNETIC MOMENT

The coupling of neutrinos to an electromagnetic field is a characterized by a 3×3 matrix λ of the magnetic (μ) and electric (d) dipole moments ($\lambda=\mu-i d$). For Majorana neutrinos the matrix λ is antisymmetric and only transition moments are allowed, while for Dirac neutrinos λ is a general 3×3 matrix. In the standard electroweak theory extended to include neutrino masses (see FUJIKAWA 80) $\mu_{\nu}=3 e G_{F} m_{\nu} /\left(8 \pi^{2} \sqrt{2}\right)=$ $3.2 \times 10^{-19}\left(m_{\nu} / \mathrm{eV}\right) \mu_{B}$, i.e. it is unobservably small given the known small neutrino masses. In more general models there is no longer a proportionality between neutrino mass and its magnetic moment, even though only massive neutrinos have nonvanishing magnetic moments without fine tuning.

Laboratory bounds on λ are obtained via elastic ν-e scattering, where the scattered neutrino is not observed. The combinations of matrix elements of λ that are constrained by various experiments depend on the initial neutrino flavor and on its propagation between source and detector (e.g., solar ν_{e} and reactor $\bar{\nu}_{e}$ do not constrain the same combinations). The listings below therefore identify the initial neutrino flavor.

Other limits, e.g. from various stellar cooling processes, apply to all neutrino flavors. Analogous flavor independent, but weaker, limits are obtained from the analysis of $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$ collider experiments.

$<$	10.8	90	36 KRAKAUER	90	CNTR	LAMPF $\nu e \rightarrow \nu e$
$<$	7.4	90	36 KRAKAUER	90	CNTR	LAMPF $\left(\nu_{\mu}, \bar{\nu}_{\mu}\right) e$ elast.
$<$	0.02		37 RAFFELT	90	ASTR	Red giant luminosity
$<$	0.1		38 RAFFELT	89B	ASTR	Cooling helium stars
			39 FUKUGITA	88	COSM	Primordial magn. fields
<40000		90	40 GROTCH	88	RVUE	$e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$
\leq	. 3		38 RAFFELT	88B	ASTR	He burning stars
$<$	0.11		38 FUKUGITA	87	ASTR	Cooling helium stars
$<$	0.0006		41 NUSSINOV	87	ASTR	Cosmic EM backgrounds
$<0.1-0.2$			MORGAN	81	COSM	${ }^{4} \mathrm{He}$ abundance
$<$	0.85		BEG	78	ASTR	Stellar plasmons
$<$	0.6		42 SUTHERLAND	76	ASTR	Red giants + degenerate dwarfs
$<$	81		43 KIM	74	RVUE	$\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$
$<$	1		BERNSTEIN	63	ASTR	Solar cooling
$<$	14		COWAN	57	CNTR	Reactor $\bar{\nu}$

${ }^{1}$ AGOSTINI 17A obtained this limit using the shape of the recoil electron energy spectrum from the Borexino Phase-II 1291.5 live days of solar neutrino data and the constraints on the sum of the solar neutrino fluxes from the radiochemical gallium experiments SAGE, Gallex, and GNO. Without radiochemical constraints, the 90% C.L. limit of $<$ $4.0 \times 10^{-11} \mu_{B}$ is obtained.
${ }^{2}$ BEDA 13 report $\bar{\nu}_{e} e^{-}$scattering results, using the Kalinin Nuclear Power Plant and a shielded Ge detector. The recoil electron spectrum is analyzed between 2.5 and 55 keV . Supersedes BEDA 07. Supersedes BEDA 10. This is the most stringent limit on the magnetic moment of reactor $\bar{\nu}_{e}$.
${ }^{3}$ AUERBACH 01 limit is based on the $\operatorname{LSND} \nu_{e}$ and ν_{μ} electron scattering measurements. The limit is slightly more stringent than KRAKAUER 90.
${ }^{4}$ SCHWIENHORST 01 quote an experimental sensitivity of 4.9×10^{-7}.
${ }^{5}$ ARCEO-DIAZ 15 constrains the neutrino magnetic moment from observation of the tip of the red giant branch in the globular cluster ω-Centauri.
${ }^{6}$ CORSICO 14 constrains the neutrino magnetic moment from observations of white drarf pulsations.
7 MILLER-BERTOLAMI 14B constrains the neutrino magnetic moment from observations of the white dwarf luminosity function of the Galactic disk.
${ }^{8}$ VIAUX 13A constrains the neutrino magnetic moment from observations of the globular cluster M5.
${ }^{9}$ BEDA 10 report $\bar{\nu}_{e} e^{-}$scattering results, using the Kalinin Nuclear Power Plant and a shielded Ge detector. The recoil electron spectrum is analyzed between 2.9 and 45 keV . Supersedes BEDA 07. Superseded by BEDA 13.
${ }^{10}$ DENIZ 10 observe reactor $\bar{\nu}_{e} e$ scattering with recoil kinetic energies $3-8 \mathrm{MeV}$ using $\mathrm{CsI}(\mathrm{TI})$ detectors. The observed rate and spectral shape are consistent with the Standard Model prediction, leading to the reported constraint on $\bar{\nu}_{e}$ magnetic moment.
11 KUZNETSOV 09 obtain a limit on the flavor averaged magnetic moment of Dirac neutrinos from the time averaged neutrino signal of SN1987A. Improves and supersedes the analysis of BARBIERI 88 and AYALA 99.
12 ARPESELLA 08A obtained this limit using the shape of the recoil electron energy spectrum from the Borexino 192 live days of solar neutrino data.
13 BEDA 07 performed search for electromagnetic $\bar{\nu}^{e^{-e} \text { scattering at Kalininskaya nuclear }}$ reactor. A Ge detector with active and passive shield was used and the electron recoil spectrum between 3.0 and 61.3 keV analyzed. Superseded by BEDA 10.
${ }^{14}$ WONG 07 performed search for non-standard $\bar{\nu} e^{-e}$ scattering at the Kuo-Sheng nuclear reactor. Ge detector equipped with active anti-Compton shield is used. Most stringent laboratory limit on magnetic moment of reactor $\bar{\nu}_{e}$. Supersedes LI 03B.
${ }^{15}$ DARAKTCHIEVA 05 present the final analysis of the search for non-standard $\bar{\nu}^{-}$-e scattering component at Bugey nuclear reactor. Full kinematical event reconstruction of both the kinetic energy above 700 keV and scattering angle of the recoil electron, by use of TPC. Most stringent laboratory limit on magnetic moment. Supersedes DARAKTCHIEVA 03.
${ }^{16}$ XIN 05 evaluated the ν_{e} flux at the Kuo-Sheng nuclear reactor and searched for nonstandard $\nu_{e^{-}} e$ scattering. Ge detector equipped with active anti-Compton shield was used. This laboratory limit on magnetic moment is considerably less stringent than the limits for reactor $\bar{\nu}_{e}$, but is specific to ν_{e}.
${ }^{17}$ GRIFOLS 04 obtained this bound using the SNO data of the solar ${ }^{8}$ B neutrino flux measured with deuteron breakup. This bound applies to $\mu_{\mathrm{eff}}=\left(\mu_{21}^{2}+\mu_{22}^{2}+\mu_{23}^{2}\right)^{1 / 2}$.
${ }^{18}$ LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 days of solar neutrino data. Neutrinos are assumed to have only diagonal magnetic moments, $\mu_{\nu 1}=\mu_{\nu 2}$. This limit corresponds to the oscillation only diagonal magnetic moments, $\mu_{\nu 1}=\mu_{\nu}$
parameters in the vacuum oscillation region.
${ }^{19}$ LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 live-day solar neutrino data, by limiting the oscillation parameter region in the LMA region allowed by solar neutrino experiments plus KamLAND. $\mu_{\nu 1}=\mu_{\nu 2}$ is assumed. In the LMA region, the same limit would be obtained even if neutrinos have off-diagonal magnetic moments.
${ }^{20}$ BACK 03B obtained this bound from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). Standard Solar Model flux was assumed. This μ_{ν}, can be different from the reactor μ_{ν} in certain oscillation scenarios (see BEACOM 99).
21 DARAKTCHIEVA 03 searched for non-standard $\bar{\nu} e^{-e}$ scattering component at Bugey nuclear reactor. Full kinematical event reconstruction by use of TPC. Superseded by DARAKTCHIEVA 05.
${ }^{22}$ LI 03B used Ge detector in active shield near nuclear reactor to test for nonstandard $\bar{\nu}_{e} e^{-e}$ scattering.
23 GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global

Abstract

solar neutrino data + reactor data. Using only solar neutrino data, a $90 \% \mathrm{CL}$ bound of $6.3 \times 10^{-10} \mu_{B}$ is obtained. ${ }^{24}$ TANIMOTO 00 combined $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$ data from VENUS, TOPAZ, and AMY. ${ }^{25}$ AYALA 99 improves the limit of BARBIERI 88. ${ }^{26}$ BEACOM 99 obtain the limit using the shape, but not the absolute magnitude which is affected by oscillations, of the solar neutrino spectrum obtained by Superkamiokande (825 days). This μ_{ν} can be different from the reactor μ_{ν} in certain oscillation scenarios. ${ }^{27}$ RAFFELT 99 is an update of RAFFELT 90 . This limit applies to all neutrino flavors which are light enough ($<5 \mathrm{keV}$) to be emitted from globular-cluster red giants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos. ${ }^{28}$ RAFFELT 99 is essentially an update of BERNSTEIN 63, but is derived from the helioseismological limit on a new energy-loss channel of the Sun. This limit applies to all neutrino flavors which are light enough ($<1 \mathrm{keV}$) to be emitted from the Sun. This limit pertains equally to electric dipole and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos. ${ }^{29}$ ACCIARRI 97Q result applies to both direct and transition magnetic moments and for $q^{2}=0$. ${ }^{30}$ ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom. ${ }^{31}$ Applies to absolute value of magnetic moment. ${ }^{32}$ DERBIN 93 determine the cross section for $0.6-2.0 \mathrm{MeV}$ electron energy as $(1.28 \pm$ $0.63) \times \sigma_{\text {weak }}$. However, the (reactor on - reactor off)/(reactor off) is only $\sim 1 / 100$. ${ }^{33}$ COOPER-SARKAR 92 assume $f_{D_{S}} / f_{\pi}=2$ and D_{S}, \bar{D}_{S} production cross section $=$ $2.6 \mu \mathrm{~b}$ to calculate ν flux. ${ }^{34}$ VIDYAKIN 92 limit is from a $e \bar{\nu}_{e}$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was $1 / 10$. The limit uses $\sin ^{2} \theta_{W}=0.23$ as input. ${ }^{35}$ DORENBOSCH 91 corrects an incorrect statement in DORENBOSCH 89 that the ν magnetic moment is $<1 \times 10^{-9}$ at the $95 \% \mathrm{CL}$. DORENBOSCH 89 measures both $\nu_{\mu} e$ and $\bar{\nu} e$ elastic scattering and assume $\mu(\nu)=\mu(\bar{\nu})$. ${ }^{36}$ KRAKAUER 90 experiment fully reported in ALLEN 93. ${ }^{37}$ RAFFELT 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives $<1.4 \times 10^{-12}$. Limit at 95% CL obtained from δM_{C}. ${ }^{38}$ Significant dependence on details of stellar models. ${ }^{39}$ FUKUGITA 88 find magnetic dipole moments of any two neutrino species are bounded by $\mu<10^{-16}\left[10^{-9} G / B_{0}\right]$ where B_{0} is the present-day intergalactic field strength. ${ }^{40}$ GROTCH 88 combined data from MAC, ASP, CELLO, and Mark J. ${ }^{41}$ For $m_{\nu}=8-200 \mathrm{eV}$. NUSSINOV 87 examines transition magnetic moments for $\nu_{\mu} \rightarrow$ ν_{e} and obtain $<3 \times 10^{-15}$ for $m_{\nu}>16 \mathrm{eV}$ and $<6 \times 10^{-14}$ for $m_{\nu}>4 \mathrm{eV}$. ${ }^{42}$ We obtain above limit from SUTHERLAND 76 using their limit $f<1 / 3$. ${ }^{43}$ KIM 74 is a theoretical analysis of $\bar{\nu}_{\mu}$ reaction data.

NEUTRINO CHARGE RADIUS SQUARED

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77C), there have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FUJIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.
$\frac{\operatorname{VALUE}\left(10^{-32} \mathrm{~cm}^{2}\right)}{\mathbf{- 2 . 1} \text { to } 3.3} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{{ }^{2} \text { DENIZ }} \frac{10}{\text { TECN }} \frac{\text { COMMENT }}{\text { ReXO }} \frac{\text { Reactor } \bar{\nu}_{e} e}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -

-4 to 5.5	90	${ }^{2}$ CADEDDU	18		ν_{μ} coherent scat. on CsI
-0.53 to 0.68	90	${ }^{3} \mathrm{HIRSCH}$	03		$\nu_{\mu} e$ scat.
-8.2 to 9.9	90	${ }^{4}$ HIRSCH	03		anomalous $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$
-2.97 to 4.14	90	${ }^{5}$ AUERBACH	01	LSND	$\nu_{e} e \rightarrow \nu_{e}{ }^{e}$
-0.6 to 0.6	90	VILAIN	95B	CHM2	$\nu_{\mu} e$ elastic scat.
0.9 ± 2.7		ALLEN	93	CNTR	LAMPF $\nu e \rightarrow \nu e$
<2.3	95	MOURAO	92	ASTR	HOME/KAM2 ν rates
<7.3	90	${ }^{6}$ VIDYAKIN	92	CNTR	Reactor $\bar{\nu} e \rightarrow \bar{\nu} e$
1.1 ± 2.3		ALLEN	91	CNTR	Repl. by ALLEN 93
-1.1 ± 1.0		7 AHRENS	90	CNTR	$\nu_{\mu} e$ elastic scat.
-0.3 ± 1.5		${ }^{7}$ DORENBOS...	89	CHRM	$\nu_{\mu} e$ elastic scat.
		8 GRIFOLS	89B	ASTR	SN 1987A

${ }^{1}$ DENIZ 10 observe reactor $\bar{\nu}_{e} e$ scattering with recoil kinetic energies $3-8 \mathrm{MeV}$ using $\mathrm{CsI}(\mathrm{TI})$ detectors. The observed rate and spectral shape are consistent with the Standard Model prediction, leading to the reported constraint on $\bar{\nu}_{e}$ charge radius.
${ }^{2}$ CADEDDU 18 use the data of the COHERENT experiment, AKIMOV 18. The limit is $\left\langle\mathrm{r}_{\nu}^{2}\right\rangle$ for ν_{μ} obtained from the time-dependent data. Weaker limits were obtained for charge radii of ν_{e} and for transition charge radii. The published value was divided by 2 to conform to the convention of this table.
${ }^{3}$ Based on analysis of CCFR 98 results. Limit is on $\left\langle\mathrm{r}_{V}^{2}\right\rangle+\left\langle\mathrm{r}_{A}^{2}\right\rangle$. The CHARM II and E734 at BNL results are reanalyzed, and weaker bounds on the charge radius squared than previously published are obtained. The NuTeV result is discussed; when tentatively interpreted as ν_{μ} charge radius it implies $\left\langle\mathrm{r}_{V}^{2}\right\rangle+\left\langle\mathrm{r}_{A}^{2}\right\rangle=(4.20 \pm 1.64) \times 10^{-33} \mathrm{~cm}^{2}$.
${ }^{4}$ Results of LEP-2 are interpreted as limits on the axial-vector charge radius squared of a Majorana ν_{τ}. Slightly weaker limits for both vector and axial-vector charge radius squared are obtained for the Dirac case, and somewhat weaker limits are obtained from the analysis of lower energy data (LEP-1.5 and TRISTAN).
${ }^{5}$ AUERBACH 01 measure $\nu_{e} e$ elastic scattering with LSND detector. The cross section agrees with the Standard Model expectation, including the charge and neutral current interference. The 90% CL applies to the range shown.
${ }^{6}$ VIDYAKIN 92 limit is from a $e \bar{\nu}$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was $1 / 10$. The limit uses $\sin ^{2} \theta_{W}=0.23$ as input.
${ }^{7}$ Result is obtained from reanalysis given in ALLEN 91, followed by our reduction to obtain 1σ errors.
${ }^{8}$ GRIFOLS 89B sets a limit of $\left\langle r^{2}\right\rangle<0.2 \times 10^{-32} \mathrm{~cm}^{2}$ for right-handed neutrinos.

REFERENCES FOR Neutrino Properties

gRImus	02	NP B648 376	W. Grimus et al.	
JOSHIPURA	02	PR D66 113008	A.S. Joshipura, E. Masso, S. Mohanty	
LEWIS	02	PR D66 103511	dewis, S. Bridle	
LOREDO	02	PR D65 063002	T.J. Loredo, D.Q. Lam	
WANG	02	PR D65 123001	X. Wang, M. Tegmark, M. Zaldarriag	
aUERBACH	01	PR D63 112001	L.B. Auerbach et al. (LSND Collab.)	
SCHWIENHO	01	PL B513 23	R. Schwienhorst et al. (DONUT Collab.)	
ATHANAS	00	PR D61 052002	M. Athanas et al. (CLEO Collab.)	
BERNABEU	00	PR D62 113012	J. Bernabeu et al.	
FUKUGITA	00	PRL 841082		
TANIMOTO	00	PL B478 1	N . Tanimoto et al.	
AYALA	99	PR D59 111901	A. Ayala, J.C. D'Olivo, M. Torres	
BEACOM	99	PRL 835222		
CROFT	99	PRL 831092	R.R.A.C. Croft, W. Wu, Hu, DaveA.D. Dolgov et al.	
DOLGOV	99	NP B548 385		
LOBASHEV	99	PL B460 227	V.M. Lobashev et al.	
RAFFELT	99	PRPL 320319	G.G. Raffelt	
WEINHEIMER	99	PL B460 219	Ch. Weinheimer et al.K. Ackerstaff et al.(OPAL Collab.)	
ACKERSTAFF	98 T	EPJ C5 229		
ammar	98	PL B431 209	R. Ammar et al. (CLEO Collab.)	
barate	98 F	EPJ C2 395	R. Barate et al. (ALEPH Collab.)	
BILLER	98	PRL 802992	S.D. Biller et al. (WHIPPLE Collab.)	
feldman	98	PR D57 3873	G.J. Feldman, R.D. Cousins	
LENZ	98	PL B416 50		
ABREU	97J	ZPHY $\mathrm{C74} 577$	P. Abreu et al.	
ACCIARRI	97Q	PL B412 201	M. Acciarri et al.A. Anastassov et al.	
ANASTASSOV	97	PR D55 2559		
Also		PR D58 119903 (erratum)	A. Anastassov et al al A. Anastassov et al. (CLEO Collab.)	
ELMFORS	97			
ESCRIBANO	97	PL B395 369		
FIELDS	97	ASP 6169		
SWAIN	97	PR D55 1	B.D. Fields, K. Kainulainen, K.A. Olive (NDAM+) J. Swain, L. Taylor (NEAS)	
ALEXANDER	96M	ZPHY $\mathrm{C72} 231$	G. Alexander et al. (OPAL Collab.)	
ASSAMAGAN	96	PR D53 6065	K.A. Assamagan et al. (PSI, ZURI, VILL+)	
BAI	96	PR D53 20	J.Z. Bai et al.A. Bottino et al. (BES Colla	
bottino	96	PR D53 6361		
DOLGOV	96	PL B383 193	A.D. Dolgov, S. Pastor, J.W.F. Valle (IFIC, VALE)	
HANNESTAD	96	PRL 762848	S. Hannestad, J. Madsen (AARH)	
HANNESTAD	96B	PRL 775148 (erratum)		
HANNESTAD	96 C	PR D54 7894	S. Hannestad, J. Madsen (AARH) R.J. Sobie, R.K. Keeler, I. Lawson (VICT)	
SOBIE	96	ZPHY $\mathrm{C70} 383$		
belesev	95	PL B350 263	A.I. Belesev et al. (INRM, KIAE)	
BUSKULIC	95 H	PL B349 585	D. Buskulic et al. (ALEPH Collab.)	
CHING	95	IJMP A10 2841	C.R. Ching et al. (CST, BEIJT, CIAE)	
Dolgov	95	PR D51 4129	A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) K.H. Hiddemann, H. Daniel, O. Schwentker (MUNT)	
HIDDEMANN		JP 621639		
KERNAN	95	NP B437 243	K.H. Hiddemann, H. Daniel, O. Schwentker (MUNT) P.J. Kernan, L.M. Krauss (CASE)	
SIGL	95	PR D51 1499	G. Sigl, M.S. Turner (FNAL, EFI)	
STOEFFL	95	PRL 753237	W. Stoefl, D.J. Decman (LLNL)	
VILAIN	95B	PL B345 115	$\begin{array}{ll}\text { P. Vilain et al. } \\ \text { K.A. Assamagan et al. } & \text { (CHARM II Collab.) } \\ \text { (PSI, ZURI, VILL+) }\end{array}$	
ASSAMAGAN	94	PL B335 231		
babu	94	PL B321 140		
DODELSON	94	PR D49 5068	S. Dodelson, G. Gyuk, M.S. Turner (FNAL, CHIC+)	
GOULD		PL B333 545	B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+)	
JECKELMANN		PL B335 326		
KAWASAKI	94	NP B419 105	M. Kawasaki et al. ${ }^{\text {a }}$ (OSU)	
PERES		PR D50 513	O.L.G. Peres, V. Pleitez, R. Zukanovich FunchalS. Yek, TSUK, KYOT+)	
YASUMI	94	PL B334 229		
ALLEN	93	PR D47 11	R.C. Allen et al. (UCI, LANL, ANL+)	
BALEST	93	PR D47 3671	R. Balest et al. (CLEO Collab.)	
CINABRO	93	PRL 703700	D. Cinabro et al. (CLEO Collab.)	
DERBIN	93	JETPL 57768	A.V. Derbin et al. (PNPI)	
		Translated from ZETFP 57755.		
DOLGOV	93	PRL 71476	A.D. Dolgov, I.Z. Rothstein (MICH)	
ENQVIST	93	PL B301 376	K. Enquist, H. Uibo (NORD)	
SUN	93	CJNP 15261	H.C. Sun et al. (CIAE, CST, BEIJT)	
WEINHEIMER	93	PL B300 210	C. Weinheimer et al. (MANZ)	
ALBRECHT	92M	PL B292 221	H. Albrecht et al. (ARGUS Collab.)	
bludman	92	PR D45 4720	S.A. Bludman ${ }^{\text {A.M. Cooper-Sarkar et al. }}$ (BEBC WA66 Collab.)	
COOPER-	92	PL B280 153		
DODELSON	92	PRL 682572	S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+)	
Holzsinut	92 B	PL B287 381	E. Holzschuh, M. Fritschi, W. Kundig (CIT, UCSD, (LULI)	
KAWANO	92	PL B275 487		
mourao	92	PL B285 364	A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+)	
PDG	92	PR D45 S1	K. Hikasa et al. (KEK, LBL, BOST+)G.S. Vidyakin et al.	
VIDYAKIN	92	JETPL 55206		
		Translated from ZETFP 55 212. ${ }^{\text {PR D43 }}$ (en et al (UCI, LANL UMD)		
ALLEN	91			
davidson	91	PR D43 2314	S. Davidson, B.A. Campbell, D. Bailey (ALBE+)	
DESHPANDE	91	PR D43 943	N.G. Deshpande, K.V.L. Sarma (OREG, TATA)	
DORENBOS...	91	ZPHY C51 142 (erratum)	J. Dorenbosch et al. (CHARM Collab.)	
FULLER	91	PR D43 3136	G.M. Fuller, R.A. Malaney (UCSD)	
GRANEK	91	IJMP A6 2387	H. Granek, B.H.J. McKellar (MELB)	
KAWAKAMI	91	PL B256 105	H. Kawakami et al. (INUS, TOHOK, TINT+)	
KOLB	91	PRL 67533	E.W. Kolb et al. (FNAL, CHIC)	
kRakauer	91	PR D44 6	D.A. Krakauer et al. (LAMPF E225 Collab.)	
LAM	91	PR D44 3345	W.P. Lam, K.W. Ng (AST)	
ROBERTSON	91	PRL 67957	R.G.H. Robertson et al. (LASL, LLL)	
AHRENS	90	PR D41 3297	L.A. Ahrens et al. (BNL, BROW, HiRO+)	
AVIGNONE	90	PR D41 682	F.T. Avignone, J.l. Collar (SCUC)	
krakauer	90	PL B252 177	D.A. Krakauer et al. (LAMPF E225 Collab.)	
RAFFELT	90	PRL 642856	G.G. Raffelt (MPIM)	
WALKER	90	PR D41 689	T.P. Walker ${ }^{\text {d }}$ (HARV)	
CHUPP	89	PRL 62505	E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM)	
DORENBOS...	89	ZPHY C41 567	J. Dorenbosch et al. (CHARM Collab.)	
GRIFOLS	${ }^{89} \mathrm{~B}$	PR D40 3819	J.A. Grifols, E. Masso (BARC)	
KOLB	89	PRL 62509	E.W. Kolb, M.S. Turner (CHIC, FNAL)	
LOREDO	89	ANYAS 571601	T.J. Loredo, D.Q. Lamb (CHIC)	
RAFFELT	89	PR D39 2066	G.G. Raffelt (PRIN, UCB)	
RAFFELT	${ }^{89 B}$	APJ 33661	G. Raffelt, D. Dearborn, J. Silk (UCB, LLL)	
ALBRECHT	88B	PL B202 149	H. Albrecht et al. (ARGUS Collab.)	
BARBIERI	88	PRL 6127	R. Barbieri, R.N. Mohapatra (PISA, UMD)	
BORIS	88	PRL 61245 (erratum)	S.D. Boris et al. (ITEP, ASCI)	
FUKUGITA	88	PRL 60879	M. Fukugita et al. (KYOTU, MPIM, UCB)	
GROTCH	${ }_{88}^{88}$	ZPHY C39 553	H. Grotch, R.W. Robinett G.G. Raffelt, D.S.P. Dearborn (UCB, LLL)	
SPERGEL	88	PL B200 366	D.N. Spergel, , J.N. Bahcall (${ }^{\text {a }}$ (IAS)	
Vonfelit.	88	PL B200 580	F. von Feilitzsch, L. Oberauer (MUNT)	
BARBIELLINI	87	NAT 32921	G. Barbiellini, G. Cocconi (CERN)	
BORIS	87	PRL 582019	S.D. Boris et al. (ITEP, ASCI)	
Also		PRL 61245 (erratum)	S.D. Boris et al. (ITEP, ASCI)	
BORIS	87B	JETPL 45333	S.D. Boris et al. (ITEP)	
FUKUGITA	87	Translated from ZETFP 45267.		
NUSSINOV	87	PR D36 2278	S. Nussinov, Y. Rephaeli (TELA)	
oberauer	87	PL B198 113	L.F. Oberauer, F. von Feilitzsch, R.L. Mossbauer	
SPRINGER	87	PR A35 679	P.T. Springer et al. (LLNL)	
KETOV	86	JETPL 44146	S.N. Ketov et al. (KIAE)	
		Translated from ZETFP 44114.		

Number of Neutrino Types

The neutrinos referred to in this section are those of the Standard $\mathrm{SU}(2) \times \mathrm{U}(1)$ Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m<m_{Z} / 2$. The limits are on the number of neutrino mass eigenstates, including ν_{1}, ν_{2}, and ν_{3}.

THE NUMBER OF LIGHT NEUTRINO TYPES

 FROM COLLIDER EXPERIMENTSRevised June 2020 by C.-J. Lin (LBNL). Written by D. Karlen (University of Victoria and TRIUMF).

The most precise measurements of the number of light neutrino types, N_{ν}, come from studies of Z production in $e^{+} e^{-}$ collisions. The invisible partial width, Γ_{inv}, is determined by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $\left(\Gamma_{\nu} / \Gamma_{\ell}\right)_{\mathrm{SM}}=$ 1.991 ± 0.001, is used instead of $\left(\Gamma_{\nu}\right)_{\mathrm{SM}}$ to determine the number of light neutrino types:

$$
\begin{equation*}
N_{\nu}=\frac{\Gamma_{\mathrm{inv}}}{\Gamma_{\ell}}\left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\mathrm{SM}} \tag{1}
\end{equation*}
$$

The combined result from the four LEP experiments is $N_{\nu}=$ 2.984 ± 0.008 [1]. Recent analyses applied corrections to the LEP result [1] by including the effect of correlated luminosity systematics and also using an improved Bhabha cross section calculation $[2,3]$ to obtain $N_{\nu}=2.9963 \pm 0.0074$.

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC, the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several center-of-mass energies near the Z resonance. Since this method is

Lepton Particle Listings

Number of Neutrino Types

much more dependent on the Standard Model, the approach described above is favored.

Before SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy $e^{+} e^{-}$colliders by measuring the cross section of the process $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [4], leading to a 95% CL limit of $N_{\nu}<4.8$. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [5]. These experiments have observed several thousand such events, and the combined result is $N_{\nu}=3.00 \pm 0.08$. The same process has also been measured by the LEP experiments at much higher center-of-mass energies, between 130 and 208 GeV , in searches for new physics [6]. Combined with the lower energy data, the result is $N_{\nu}=2.92 \pm 0.05$.

Experiments at $p \bar{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{ \pm} \rightarrow \ell^{ \pm} \nu$ to $Z \rightarrow \ell^{+} \ell^{-}$events [7]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections. Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

1. ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, and LEP Electroweak Working Group, and SLD Electroweak Group, and SLD Heavy Flavour Group, Phys. Reports 427, 257 (2006).
2. P. Janot and S. Jadach, Phys. Lett. B803, 135319 (2020).
3. G. Voutsinas et al., Phys. Lett. B800, 135068 (2020).
4. VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989); ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989); CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988); MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986); MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).
5. L3: M. Acciarri et al., Phys. Lett. B431, 199 (1998); DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997); OPAL: R. Akers et al., Z. Phys. C65, 47 (1995); ALEPH: D. Buskulic et al., Phys. Lett. B313, 520 (1993).
6. DELPHI: J. Abdallah et al., Eur. Phys. J. C38, 395 (2005); L3: P. Achard et al., Phys. Lett. B587, 16 (2004); ALEPH: A. Heister et al., Eur. Phys. J. C28, 1 (2003); OPAL: G. Abbiendi et al., Eur. Phys. J. C18, 253 (2000).
7. UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987); UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from $e^{+} e^{-}$Colliders

Number of Light ν Types
$\frac{\text { VALUE }}{\mathbf{2 . 9 9 6 3} \pm \mathbf{0 . 0 0 7 4}} \quad 1 \frac{\text { DOCUMENT ID }}{1}$ JANOT TECN 20

- - We do not use the following data for averages, fits, limits, etc. - -

2.9918 ± 0.0081	2 VOUTSINAS	20	
2.9840 ± 0.0082	3 LEP-SLC	06	RVUE
3.00 ± 0.05	4 LEP	92	RVUE

${ }^{1}$ JANOT 20 applies a correction to LEP-SLC 06 using an updated Bhabha cross section calculation. This result also includes a correction to account for correlated luminosity
bias as presented in VOUTSINAS 20.
${ }^{2}$ VOUTSINAS 20 applies a correction to LEP-SLC 06 to account for correlated luminosity bias.
${ }^{3}$ Combined fit from ALEPH, DELPHI, L3 and OPAL Experiments.
${ }^{4}$ Simultaneous fits to all measured cross section data from all four LEP experiments.

Number of Light ν Types from Direct Measurement of Invisible \boldsymbol{Z} Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$. All are obtained from LEP runs in the $E_{\mathrm{Cm}}^{e} e$ range 88-209 GeV.
includes scale factor of
$\mathbf{2 . 9 2} \mathbf{\pm 0 . 0 5}$ OUR AVERAGE Error includes scale factor of 1.2.
$2.84 \pm 0.10 \pm 0.14 \quad$ ABDALLAH 05 B DLPH $\sqrt{s}=180-209 \mathrm{GeV}$ $2.98 \pm 0.05 \pm 0.04 \quad$ ACHARD 04E L3 1990-2000 LEP runs $2.86 \pm 0.09 \quad$ HEISTER 03C ALEP $\sqrt{s}=189-209 \mathrm{GeV}$ $2.69 \pm 0.13 \pm 0.11 \quad$ ABBIENDI,G 00D OPAL 1998 LEP run
$2.89 \pm 0.32 \pm 0.19 \quad$ ABREU 97」 DLPH 1993-1994 LEP runs
$3.23 \pm 0.16 \pm 0.10 \quad$ AKERS $\quad 95 \mathrm{C}$ OPAL 1990-1992 LEP runs
$2.68 \pm 0.20 \pm 0.20 \quad$ BUSKULIC 93L ALEP 1990-1991 LEP runs

- - We do not use the following data for averages, fits, limits, etc. - -

$2.84 \pm 0.15 \pm 0.14$	ABREU	00 z	DLPH	$1997-1998$ LEP runs
3.01 ± 0.08	ACCIARRI	99 R	L3	$1991-1998$ LEP runs
$3.1 \pm 0.6 \pm 0.1$	ADAM	96 C	DLPH $\sqrt{s}=130,136 \mathrm{GeV}$	

Limits from Astrophysics and Cosmology

Effective Number of Light ν Types

"Light" means here with a mass < about 1 MeV . The quoted values correspond to $\mathrm{N}_{\text {eff }}$, where $\mathrm{N}_{\text {eff }}=3.045$ in the Standard Model with $\mathrm{N}_{\nu}=3$. See also reviews on "Big-Bang Nucleosynthesis" and "Neutrinos in Cosmology."

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -					
2.3-3.2	95	1 VERDE	17	Cosm	
2.88 ± 0.20	95	${ }^{2}$ ROSSI	15	COSM	
3.3 ± 0.5	95	${ }^{3}$ ADE	14	COSM	Planck
$3.78_{-0.30}^{+0.31}$		${ }^{4}$ costanzi	14	COSM	
3.29 ± 0.31		${ }^{5} \mathrm{HOU}$	14	COSM	
<3.80	95	${ }^{6}$ LEISTEDT	14	COSM	
<4.10	95	7 MORESCO	12	COSM	
<5.79	95	${ }^{8}$ XIA	12	COSM	
<4.08	95	MANGANO	11	Cosm	BBN
0.9-8.2		$9{ }^{9}$ ICHIKAWA	07	COSM	
3-7	95	10 CIRELLI	06	COSM	
2.7-4.6	95	11 HANNESTAD	06	COSM	
3.6-7.4	95	10 SELJAK	06	COSM	
< 4.4		12 CYBURT	05	COSM	
<3.3		13 BARGER	03C	COSM	
1.4-6.8		14 CROTTY	03	COSM	
1.9-6.6		14 PIERPAOLI	03	COSM	
2-4		LISI	99	CoSM	BBN
< 4.3		OLIVE	99	COSM	BBN
< 4.9		COPI	97		Cosmology
< 3.6		HATA	97B		High D/H quasar abs.
<4.0		OLIVE	97		BBN; high ${ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$
< 4.7		CARDALL	96B	COSM	High D/H quasar abs.
<3.9		FIELDS	96	COSM	BBN; high ${ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$
< 4.5		KERNAN	96	COSM	High D/H quasar abs.
<3.6		OLIVE	95		BBN; ≥ 3 massless ν
<3.3		WALKER	91		Cosmology
< 3.4		OLIVE	90		Cosmology
< 4		YANG	84		Cosmology
<4		YANG	79		Cosmology
<7		STEIGMAN	77		Cosmology
		PEEBLES	71		Cosmology
<16		15 SHVARTSMAN	169		Cosmology
		HOYLE	64		Cosmology

${ }^{1}$ Uses Planck Data combined with an independent standard measure of distance to the sound horizon to set a limit on the total number of neutrinos. Only CMB and early-time information are used.
${ }^{2}$ ROSSI 15 sets limits on the number of neutrino types using BOSS Lyman alpha forest data combined with Planck CMB data and baryon acoustic oscillations.
${ }^{3}$ Fit to the number of neutrino degrees of freedom from Planck CMB data along with WMAP polarization, high L, and BAO data.
${ }^{4}$ Fit to the number of neutrinos degrees of freedom from Planck CMB data along with BAO, shear and cluster data.
${ }^{5}$ Fit based on the SPT-SZ survey combined with CMB, BAO, and H_{0} data.
${ }^{6}$ Constrains the number of neutrino degrees of freedom (marginalizing over the total mass) from CMB, CMB lensing, BAO, and galaxy clustering data.
7 Limit on the number of light neutrino types from observational Hubble parameter data with seven-year WMAP data, SPT, and the most recent estimate of H_{0}. Best fit is 3.45 ± 0.65.

```
    8 Limit on the number of light neutrino types from the CFHTLS combined with seven-year WMAP data and a prior on the Hubble parameter. Best fit is \(4.17_{-1.26}^{+1.62}\). Limit is relaxed to \(3.98_{-1.20}^{+2.02}\) when small scales affected by non-linearities are removed.
\({ }^{9}\) Constrains the number of neutrino types from recent CMB and large scale structure data. No priors on other cosmological parameters are used.
\({ }^{10}\) Constrains the number of neutrino types from recent CMB, large scale structure, Lymanalpha forest, and SN1a data. The slight preference for \(N_{\nu}>3\) comes mostly from the Lyman-alpha forest data.
\({ }^{11}\) Constrains the number of neutrino types from recent CMB and large scale structure data. See also HAMANN 07.
\({ }^{12}\) Limit on the number of neutrino types based on \({ }^{4} \mathrm{He}\) and \(\mathrm{D} / \mathrm{H}\) abundance assuming a baryon density fixed to the WMAP data. Limit relaxes to 4.6 if \(\mathrm{D} / \mathrm{H}\) is not used or to 5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.
13 Limit on the number of neutrino types based on combination of WMAP data and bigbang nucleosynthesis. The limit from WMAP data alone is 8.3 . See also KNELLER 01. \(N_{\nu} \geq 3\) is assumed to compute the limit.
\(1495 \%\) confidence level range on the number of neutrino flavors from WMAP data combined with other CMB measurements, the 2dfGRS data, and HST data.
15 SHVARTSMAN 69 limit inferred from his equations.
```


Number Coupling with Less Than Full Weak Strength

```
VALUE \(\frac{\text { DOCUMENT ID }}{\text { • We do not use the following data for averages, fits, limits, etc. • • • }}\)
\begin{tabular}{llll}
\(<20\) & 1 & OLIVE & 81 C \\
\(<20\) & 1 & COSM \\
& 1 STEIGMAN & 79 & COSM
\end{tabular}
\({ }^{1}\) Limit varies with strength of coupling. See also WALKER 91.
```

REFERENCES FOR Limits on Number of Neutrino Types

JANOT	20	PL B803 135319	P. Janot, S. Jadach	(CERN, CRAC)
VOUTSINAS	20	PL B800 135068	G. Voutsinas et al.	(CERN, BOHR)
VERDE	17	JCAP 1704023	L. Verde et al.	
ROSSI	15	PR D92 063505	G. Rossi et al.	
ADE	14	AA 571 A16	P.A.R. Ade et al.	(Planck Collab.)
COSTANZI	14	JCAP 1410081	M. Costanzi et al.	(TRST, TRSTI)
HOU	14	APJ 78274	Z. Hou et al.	
LEISTEDT	14	PRL 113041301	B. Leistedt, H.V. Peiris, L. Verde	
MORESCO	12	JCAP 1207053	M. Moresco et al.	
XIA	12	JCAP 1206010	J.Q. Xia et al.	
MANGANO	11	PL B701 296	G. Mangano, P. Serpico	
HAMANN	07	JCAP 0708021	J. Hamann et al.	
ICHIKAWA	07	JCAP 0705007	K. Ichikawa, M. Kawasaki, F. Takahash	
CIRELLI	06	JCAP 0612013	M. Cirelli et al.	
HANNESTAD	06	JCAP 0611016	S. Hannestad, G. Raffelt	
LEP-SLC	06	PRPL 427257	ALEPH, DELPHI, L3, OPAL, SLD and	working groups
SELJAK	06	JCAP 0610014	U. Seljak, A. Slosar, P. McDonald	
ABDALLAH	05B	EPJ C38 395	J. Abdallah et al.	(DELPHI Collab.)
CYBURT	05	ASP 23313	R.H. Cyburt et al.	
ACHARD	04E	PL B587 16	P. Achard et al.	(L3 Collab.)
BARGER	03C	PL B566 8	V. Barger et al.	
CROTTY	03	PR D67 123005	P. Crotty, J. Lesgourgues, S. Pastor	
CYBURT	03	PL B567 227	R.H. Cyburt, B.D. Fields, K.A. Olive	
HEISTER	03C	EPJ C28 1	A. Heister et al.	(ALEPH Collab.)
PIERPAOLI	03	MNRAS 342 L63	E. Pierpaoli	
CYBURT	01	ASP 1787	R.H. Cyburt, B.D. Fields, K.A. Olive	
KNELLER	01	PR D64 123506	J.P. Kneller et al.	
ABBIENDI,G	00D	EPJ C18 253	G. Abbiendi et al.	(OPAL Collab.)
ABREU	00 Z	EPJ C17 53	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	99R	PL B470 268	M. Acciarri et al.	(L3 Collab.)
LISI	99	PR D59 123520	E. Lisi, S. Sarkar, F.L. Villante	
OLIVE	99	ASP 11403	K.A. Olive, D. Thomas	
ABREU	97J	ZPHY C74 577	P. Abreu et al.	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S. Turner	(CHIC)
HATA	97B	PR D55 540	N. Hata et al.	(OSU, PENN)
OLIVE	97	ASP 727	K.A. Olive, D. Thomas	(MINN, FLOR)
ADAM	96 C	PL B380 471	W. Adam et al.	(DELPHI Collab.)
CARDALL	96B	APJ 472435	C.Y. Cardall, G.M. Fuller	(UCSD)
FIELDS	96	New Ast 177	B.D. Fields et al. (NDAM,	, CERN, MINN+)
KERNAN	96	PR D54 3681	P.S. Kernan, S. Sarkar	(CASE, OXFTP)
AKERS	95C	ZPHY C65 47	R. Akers et al.	(OPAL Collab.)
OLIVE	95	PL B354 357	K.A. Olive, G. Steigman	(MINN, OSU)
BUSKULIC	93L	PL B313 520	D. Buskulic et al.	(ALEPH Collab.)
LEP	92	PL B276 247	LEP Collabs. (LEP, ALEPH, DE	ELPHI, L3, OPAL)
WALKER	91	APJ 37651	T.P. Walker et al. (HSC	CA, OSU, CHIC+)
OLIVE	90	PL B236 454	K.A. Olive et al. (MIN	N, CHIC, OSU+)
YANG	84	APJ 281493	J. Yang et al.	(CHIC, BART)
OLIVE	81 C	NP B180 497	K.A. Olive, D.N. Schramm, G. Steigma	n (EFI+)
STEIGMAN	79	PRL 43239	G. Steigman, K.A. Olive, D.N. Schramm	m (BART+)
YANG	79	APJ 227697	J. Yang et al. ${ }^{\text {a }}$ (C)	(CHIC, YaLE, UVA)
Steigman	77	PL 66B 202	G. Steigman, D.N. Schramm, J.E. Gunn	n (YALE, CHIC+)
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
Princeton SHVARTSMAN		Press (1971) JETPL 9184	V.F. Shvartsman	(MOSU)
HOYLE	64	Translated from ZETFP NAT 2031108	9315. F. Hoyle, R.J. Tayler	(CAMB)

Double- β Decay

OMITTED FROM SUMMARY TABLE NEUTRINOLESS DOUBLE- β DECAY

Revised August 2019 by A. Piepke (University of Alabama) and P. Vogel (Caltech) .

Observation of neutrinoless double-beta $(0 \nu \beta \beta)$ decay would signal violation of total lepton number conservation. The process can be mediated by an exchange of a light Majorana neutrino, or by an exchange of other particles. However, the existence of $0 \nu \beta \beta$-decay requires a nonvanishing Majorana neutrino mass, no matter what the actual mechanism is. As long as only a limit on the lifetime is available, limits on the effective Majorana neutrino mass, on the lepton-number violating righthanded current or other possible mechanisms mediating $0 \nu \beta \beta$ decay can be obtained, independently of the actual mechanism, by assuming that one of these "new physics" possibilities dominates. These limits are listed in the Double- β Decay Listings of the experimental measurements.

In the following we assume that the exchange of light Majorana neutrinos ($m_{\nu_{i}} \leq 10 \mathrm{MeV}$) contributes dominantly to the decay rate. Besides a dependence on the phase space $\left(G^{0 \nu}\right)$ and the nuclear matrix element ($M^{0 \nu}$), the observable $0 \nu \beta \beta$-decay rate is proportional then to the square of the effective Majorana mass $m_{e e},\left(T_{1 / 2}^{0 \nu}\right)^{-1}=G^{0 \nu} \cdot\left|M^{0 \nu}\right|^{2} \cdot m_{e e}^{2}$, with $m_{e e}^{2}=\left|\sum_{i} U_{e i}^{2} m_{\nu_{i}}\right|^{2}$. The sum contains, in general, complex CP-phases in $U_{e i}^{2}$, i.e., cancellations may occur. For three neutrino flavors there are two physical phases for Majorana neutrinos $\left(\eta_{1}, \eta_{2}\right)$ and one for Dirac neutrinos $\left(\delta_{C P}\right)$. The relevant Majorana phases affect only processes to which leptonnumber changing amplitudes contribute. Given the general 3×3 mixing matrix for Majorana neutrinos, one can construct other analogous lepton number violating quantities, $m_{\ell \ell^{\prime}}=$ $\sum_{i} U_{\ell i} U_{\ell^{\prime} i} m_{\nu_{i}}\left(\ell\right.$ or $\left.\ell^{\prime} \neq e\right)$. However, these are currently much less constrained than $m_{e e}$.

Nuclear structure calculations are needed to deduce $m_{e e}$ from the decay rate. While $G^{0 \nu}$ can be calculated accurately, the computation of $M^{0 \nu}$ is subject to uncertainty. Comparing different nuclear model evaluations indicates a factor ~ 2 3 spread in the calculated nuclear matrix elements. Nuclear structure calculation consistently overestimate Gamow-Teller (axial current) matrix elements. This inability of the nuclear models to reproduce Gamow-Teller decay rates is often parametrized in form of a modified coupling constant g_{A}. Many nuclear theorists interpret this shortcoming as evidence that important physics is missing in the modeling of weak nuclear transitions. It is not clear how these observed uncertainties impact $0 \nu \beta \beta$-matrix elements. Nevertheless, this constitutes an additional element of uncertainty. Recent work, [1] shows how the discrepancy between experimental and theoretical axial current matrix elements might be resolved. However, application of this approach to the $0 \nu \beta \beta$ decay remains to be accomplished. The particle physics quantities to be determined are thus nuclear model-dependent, so the half-life measurements are listed first. Where possible, we reference the nuclear matrix elements used in the subsequent analysis. Since rates for the conventional $2 \nu \beta \beta$ decay serve to constrain the nuclear theory models, results for this process are also given.

Double- β Decay

Abstract

Oscillation experiments utilizing atmospheric, accelerator, solar, and reactor produced neutrinos and anti-neutrinos show that at least some neutrinos are massive. However, so far the inverted mass ordering (i.e., whether $\Delta m_{31}^{2}<0$) is disfavored only by $2-3 \sigma$ compared to the normal mass ordering (when $\Delta m_{31}^{2}>0$), while the absolute neutrino mass values or the properties of neutrinos under CPT-conjugation (Dirac or Majorana) remain undetermined. All confirmed oscillation experiments can be consistently described using three interacting neutrino species with two mass splittings and three mixing angles. (For values of the mixing angles and mass square differences see the corresponding tables.)

Based on the 3-neutrino analysis:
$m_{e e}^{2}=\mid \cos ^{2} \theta_{13} \cos ^{2} \theta_{12} m_{1}+e^{2 i\left(\eta_{2}-\eta_{1}\right)} \cos ^{2} \theta_{13} \sin ^{2} \theta_{12} m_{2}+$ $\left.e^{-2 i\left(\eta_{1}+\delta_{C P}\right)} \sin ^{2} \theta_{13} m_{3}\right|^{2}$, valid for both mass orderings. Given the present knowledge of the neutrino oscillation parameters one can derive a relation between the effective Majorana mass and the mass of the lightest neutrino, as illustrated in Figure 14.11 in the Neutrino Masses, Mixing and Oscillations review. The three mass orderings allowed by the oscillation data: normal $\left(m_{1}<m_{2} \ll m_{3}\right)$, inverted ($m_{3} \ll m_{1}<m_{2}$), and degenerate $\left(m_{1} \approx m_{2} \approx m_{3}\right)$, result in different projections. The width of the colored bands reflects the uncertainty introduced by the unknown Majorana and Dirac phases as well as the experimental errors of the oscillation parameters. The latter causes only minor broadening of the bands. Because of the overlap of the different mass scenarios, a measurement of $m_{e e}$ would not reveal which mass ordering is applicable, provided the value of $m_{e e}$ is in the overlapping range.

Analogous plots depict the relation of $m_{e e}$ with the summed neutrino mass $m_{t o t}=m_{1}+m_{2}+m_{3}$, constrained by observational cosmology, and $m_{e e}$ as a function of the average mass $m_{\nu_{e}}^{e f f}=\left[\Sigma\left|U_{e i}\right|^{2} m_{\nu_{i}}^{2}\right]^{1 / 2}$ determined through the analysis of the electron energy distribution in low energy beta decays. (See Fig. 1 of [2].) The oscillation data thus allow to test whether observed values of $m_{e e}$ and $m_{t o t}$ or $m_{\nu_{e}}^{e f f}$ are consistent within the 3 neutrino framework. The rather large intrinsic width of the $\beta \beta$-decay constraints essentially does not allow to positively identify the mass ordering, and thus the sign of Δm_{31}^{2}, even in combination with these other observables. Naturally, if a value of $0<m_{e e} \leq 0.01 \mathrm{eV}$ is ever established, then the normal mass ordering becomes the only possible scenario.

It should be noted that systematic uncertainties of the nuclear matrix elements and possible quenching of the axial current matrix elements are sometimes not folded into the mass limits reported by $\beta \beta$-decay experiments. Taking this additional uncertainty into account would further widen the projections. The plots are based on a 3 -neutrino analysis. If it turns out that additional, i.e. sterile light neutrinos exist, the allowed regions would be modified substantially.

If neutrinoless double-beta decay is observed, it will be possible to fix a range of absolute values of the masses $m_{\nu_{i}}$. Unlike the direct neutrino mass measurements, however, a limit
on $m_{e e}$ does not allow one to constrain the individual mass values $m_{\nu_{i}}$ even when the mass differences $\Delta m_{i j}^{2}$ are known.

Neutrino oscillation data imply the existence of a lower limit $\sim 0.014 \mathrm{eV}$ for the Majorana neutrino mass for the inverted mass ordering pattern, while $m_{e e}$ could, by fine tuning, vanish in the case of the normal mass ordering. Several new doublebeta searches have been proposed to probe the interesting $m_{e e}$ mass range, with the prospect of full coverage of the inverted mass ordering region within the next decade.

The $0 \nu \beta \beta$ decay mechanism discussed so far is not the only way in which the decay can occur. Numerous other possible scenarios have been proposed, however, all of them requiring new physics. It will be a challenging task to decide which mechanism was responsible once $0 \nu \beta \beta$ decay is observed. LHC experiments may reveal corresponding signatures for new physics of lepton number violation. If lepton-number violating right-handed weak current interactions exist, its strength can be characterized by the phenomenological coupling constants η and λ (η describes the coupling between the right-handed lepton current and left-handed quark current while λ describes the coupling when both currents are right-handed). The $0 \nu \beta \beta$ decay rate then depends on $\langle\eta\rangle=\eta \sum_{i} U_{e i} V_{e i}$ and $\langle\lambda\rangle=\lambda \sum_{i} U_{e i} V_{e i}$ that vanish for massless or unmixed neutrinos ($V_{\ell j}$ is a matrix analogous to $U_{\ell j}$ but describing the mixing with the hypothetical right-handed neutrinos). The observation of the single electron spectra could, in principle, allow to distinguish this mechanism of $0 \nu \beta \beta$ from the light Majorana neutrino exchange driven mode. The limits on $\langle\eta\rangle$ and $\langle\lambda\rangle$ are listed in a separate table. The reader is cautioned that a number of earlier experiments did not distinguish between η and λ. In addition, see the section on Majoron searches for additional limits set by these experiments.

References

1. P. Gysbers et al., Nature Phys. 15, 5 (2019); [arXiv:1903.00047].
2. M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Ann. Rev. Nucl. Part. Sci. 49, 219 (2019); [arXiv:1902.04097].

Half-life 0ν double- β decay

In most cases the transitions $(Z, A) \rightarrow(Z+2, \mathrm{~A})+2 e^{-}$to the 0^{+}ground state of the final nucleus are listed. We also list transitions that decrease the nuclear charge ($2 e^{+}, e^{+}$CC and double EC) and transitions to an excited state of the final nucleus $\left(0_{i}^{+}, 2^{+}\right.$, and $\left.2_{i}^{+}\right)$. In the following Listings only the best or comparable limits for the half-lives of each transition are reported and only those with about $T_{1 / 2}>10^{23}$ years that are relevant for particle physics.
$\underline{t_{1 / 2}\left(10^{23} \mathrm{yr}\right)}$ CL\% ISOTOPE TRANSITION METHOD DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. - -

> 900	90	${ }^{76} \mathrm{Ge}$		GERDA	${ }^{1}$ AGOSTINI	19
>14	90	${ }^{130} \mathrm{Te}$	$\mathrm{g} . \mathrm{s} \rightarrow \mathrm{O}_{1}^{+}$	CUORE-0	2 ALDUINO	19
>0.95	90	${ }^{100} \mathrm{Mo}$		AMoRE	${ }^{3}$ ALENKOV	19
>270	90	${ }^{76} \mathrm{Ge}$		MAJORANA	${ }^{4}$ ALVIS	19
>350	90	${ }^{136} \mathrm{Xe}$		EXO-200	${ }^{5}$ ANTON	19
> 35	90	${ }^{82} \mathrm{Se}$		CUPID-0	${ }^{6}$ AZZOLINI	19

>2.4	90	${ }^{136}$ Xe		PANDAX-II		NI	19
>190	90	${ }^{76} \mathrm{Ge}$		MAJORANA		AALSETH	18
>800	90	${ }^{76} \mathrm{Ge}$		GERDA		AGOSTINI	18
>180	90	${ }^{136}$ Xe		EXO-200		ALBERT	18
> 150	90	${ }^{130} \mathrm{Te}$		CUORE		ALDUINO	18
>2.5	90	${ }^{82} \mathrm{Se}$		NEMO-3		ARNOLD	18
>24	90	${ }^{82} \mathrm{Se}$		CUPID-0		AZZOLINI	18
>0.81	90	${ }^{82} \mathrm{Se}$	g.s $\rightarrow 0_{1}^{+}$	CUPID-0		AZZOLINI	18A
>2.2	90	${ }^{116} \mathrm{Cd}$		AURORA		BARABASH	18
>530	90	${ }^{76} \mathrm{Ge}$		GERDA		AGOSTINI	17
>1.1	90	${ }^{134} \mathrm{Xe}$		EXO-200		ALBERT	17C
>1	90	${ }^{116} \mathrm{Cd}$		NEMO-3		ARNOLD	17
>40	90	${ }^{130} \mathrm{Te}$		CUORE(CINO)		ALDUINO	16
>260	90	${ }^{136} \mathrm{Xe}$	g.s. $\rightarrow 2_{1}^{+}$	KamLAND-Zen	20	ASAKURA	16
>260	90	${ }^{136} \mathrm{Xe}$	g.s. $\rightarrow 2_{2}^{+}$	KamLAND-Zen	21	ASAKURA	16
>240	90	${ }^{136} \mathrm{Xe}$	g.s. $\rightarrow 0_{1}^{+}$	KamLAND-Zen		ASAKURA	16
>1070	90	${ }^{136} \mathrm{Xe}$		KamLAND-Zen		GANDO	16
> 11	90	${ }^{100} \mathrm{Mo}$		NEMO-3	24	ARNOLD	15
>110	90	${ }^{136} \mathrm{Xe}$		EXO-200	25	ALBERT	14B
$>\quad 9.4$	90	${ }^{130} \mathrm{Te}$	$0^{+} \rightarrow 0_{1}^{+}$	CUORICINO		ANDREOTTI	12
>3.6	90	${ }^{82} \mathrm{Se}$		NEMO-3	27	BARABASH	11A
>30	90	${ }^{130}$ Te		CUORICINO	28	ARNABOLDI	08
>0.58	90	${ }^{48} \mathrm{Ca}$		CaF_{2} scint.	29	UMEHARA	08
>0.89	90	${ }^{100} \mathrm{Mo}$	$0^{+} \rightarrow 0_{1}^{+}$	NEMO-3		ARNOLD	07
>1.6	90	${ }^{100} \mathrm{Mo}$	$0^{+} \rightarrow 2^{+}$	NEMO-3		ARNOLD	07
>1	90	${ }^{82} \mathrm{Se}$		NEMO-3	32	ARNOLD	05A
>1.1	90	${ }^{128} \mathrm{Te}$		Cryog. det.	33	ARNABOLDI	03
>1.7	90	${ }^{116} \mathrm{Cd}$		${ }^{116} \mathrm{CdWO}_{4}$ scin		DANEVICH	03
>157	90	${ }^{76} \mathrm{Ge}$		Enriched HPGe	35	AALSETH	02B
>190	90	${ }^{76} \mathrm{Ge}$		Enriched HPGe		KLAPDOR-K	

${ }^{1}$ AGOSTINI 19 use $82.4 \mathrm{~kg} \cdot \mathrm{yr}$ of data, collected by the GERDA experiment, to search for the $0 \nu \beta \beta$ decay of ${ }^{76} \mathrm{Ge}$. High resolution Ge-calorimeters, made from isotopically enriched Ge , are used. A median sensitivity of $1.1 \times 10^{26} \mathrm{yr}$ is reported. Supersedes AGOSTINI 18 .
${ }^{2}$ ALDUINO 19 use the combined data of the CUORICINO and CUORE-0 experiments to place a lower limit on the half life of the $0 \nu \beta \beta$ decay of ${ }^{130}$ Te to the first excited 0^{+} state of ${ }^{130} \mathrm{Xe}$. Supersedes ANDREOTTI 12.
${ }^{3}$ ALENKOV 19 report the $0 \nu \beta \beta$ decay half-life limit based on the $52.1 \mathrm{~kg} \cdot \mathrm{~d}$ exposure of ${ }^{100} \mathrm{Mo}$, of a a cryogenic dual heat and light detector in the Yangyang underground laboratory. The median sensitivity is 1.1×10^{23} years.
${ }^{4}$ ALVIS 19 use the MAJORANA Demonstrator with enriched in ${ }^{76} \mathrm{Ge}$ detectors to set this limit on $0 \nu \beta \beta$ half-life of ${ }^{76} \mathrm{Ge}$. The exposure is 26.0 kg yr . The sensitivity is 4.8×10^{25} 5 yr .
5^{5} ANTON 19 uses he complete dataset of the EXO-200 detector to search for the $0 \nu \beta \beta$ decay. The exposure is 234.1 kg yr . The median sensitivity is $5.0 \times 10^{25} \mathrm{yr}$. Supersedes ALBERT 18 and ALBERT 14B
${ }^{6}$ AZZOLINI 19 use the CPID-0 scintillating cryogenic bolometer to set this limit on 0ν $\beta \beta$ half-life of ${ }^{82} \mathrm{Se}$. The exposure is 5.29 kg yr. The sensitivity is $5 \times 10^{24} \mathrm{yr}$.
7 NI 19 use the PandaX-II dual phase TPC at CJPL to search for the $0 \nu \beta \beta$ decay of ${ }^{136} \mathrm{Xe}$. The half-life limit $2.4 \times 10^{23} \mathrm{yr}$ is obtained from 22.2 kg yr exposure with a sensitivity of $1.9 \times 10^{23} \mathrm{yr}$.
${ }^{8}$ AALSETH 18 uses the MAJORANA Demonstrator to search for the $0 \nu \beta \beta$ decay. The exposure is 9.95 kg -year. The median sensitivity is $2.1 \times 10^{25} \mathrm{yr}$.
${ }^{9}$ AGOSTINI 18 uses the GERDA detector to search for the $0 \nu \beta \beta$ decay. The exposure is 46.7 kg •year. The median sensitivity is $5.8 \times 10^{25} \mathrm{yr}$. Supersedes AGOSTINI 17 .
${ }^{10}$ ALBERT 18 uses the EXO-200 detector to search for the $0 \nu \beta \beta$ decay. The exposure is 177.6 kg •year. The median sensitivity is 3.7×10^{25} years.
${ }^{11}$ ALDUINO 18 uses the CUORE detector to search for the $0 \nu \beta \beta$ decay of ${ }^{130} \mathrm{Te}$. The exposure is 86.3 kg •year of natural TeO_{2} corresponding to 24.0 kg •year for ${ }^{130} \mathrm{Te}$. The median sensitivity is $0.7 \times 10^{25} \mathrm{yr}$. The limit is obtained combining the new data from CUORE with those of CUORE0 ($9.8 \mathrm{~kg} \cdot$ year of ${ }^{130} \mathrm{Te}$) and Cuoricino ($19.8 \mathrm{~kg} \cdot$ year of ${ }^{130}$ Te).
12 ARNOLD 18 use the NEMO-3 tracking detector to place a limit on the $0 \nu \beta \beta$ decay of ${ }^{82} \mathrm{Se}$. This is a slightly weaker limit than in BARABASH 11A, using the same detector. Supersedes ARNOLD 05A
13 AZZOLINI 18 uses CUPID-0 detector, a novel scintillating cryogenic calorimeter, operated in the LNGS. This results replaces BARABASH 11A (NEMO-3) as the most stringent limit on the $0 \nu \beta \beta$-decay of ${ }^{82} \mathrm{Se}$.
14 AZZOLINI 18A data collected by CUPID-0 based on scintillating bolometers is used to derive a new most stringent limit on the $0 \nu \beta \beta$-decay of ${ }^{82}$ Se to the 0_{1}^{+}state of ${ }^{82} \mathrm{Kr}$.
${ }^{15}$ BARABASH 18 use 1.162 kg of ${ }^{116} \mathrm{CdWO}_{4}$ scintillating crystals to obtain this limit. Supersedes DANEVICH 03 with analogous source and is more sensitive than ARNOLD 17.
${ }^{16}$ AGOSTINI 17 result corresponds to data collected with GERDA phase 1 and first release of phase 2 for a total of 343 mol-yr exposure. Supersedes AGOSTINI 13A. The median sensitivity is $4.010^{25} \mathrm{yr}$.
17 ALBERT 17C uses the EXO-200 detector that contains $19.098 \pm 0.014 \%$ admixture of ${ }^{134} \mathrm{Xe}$ to search for the 0ν and $2 \nu \beta \beta$ decay modes. The exposure is $29.6 \mathrm{~kg} \cdot \mathrm{year}$. The median sensitivity is 1.9×10^{21} years.
18 ARNOLD 17 use the NEMO-3 tracking calorimeter, containing 410 g of enriched ${ }^{116} \mathrm{Cd}$ exposed for 5.26 yr , to determine the half-life limit. Supersedes BARABASH 11A.
${ }^{19}$ ALDUINO 16 report result obtained with 9.8 kg y of data collected with the CUORE-0 bolometer, combined with data from the CUORICINO. Supersedes ALFONSO 15.
${ }^{20}$ ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter (${ }^{136} \mathrm{Xe} 89.5 \mathrm{~kg} \mathrm{yr}$) to place a limit on the $0 \nu \beta \beta$-decay into the first excited state of the daughter nuclide.
21 ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter (${ }^{136}$ Xe 89.5 kg yr) to place a limit on the $0 \nu \beta \beta$-decay into the second excited state of the daughter nuclide.
${ }^{22}$ ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter (${ }^{136}$ Xe 89.5 kg yr) to place a limit on the $0 \nu \beta \beta$-decay into the third excited state of the daughter nuclide.
${ }^{23}$ GANDO 16 use the the KamLAND detector to search for the 0ν decay of ${ }^{136}$ Xe. With a significant background reduction, the combination of results of the first (270.7 days) and significant background reduction, the combination of results of the first (270.7 days) and
the second phase (263.8 days) of the experiment leads to about six fold improvement the second phase (263.8 days) of the experiment leads to about six fold
${ }^{24}$ ARNOLD 15 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the limit of $0 \nu \beta \beta$-half life of ${ }^{100} \mathrm{Mo}$. Supersedes ARNOLD 2005A and BARABASH 11A.
${ }^{25}$ ALBERT 14B use 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a lower limit on the $0 \nu \beta \beta$-half life of ${ }^{136} \mathrm{Xe}$. Supersedes AUGER 12.
${ }^{26}$ ANDREOTTI 12 use high resolution TeO_{2} bolometric calorimeter to search for the $0 \nu \beta \beta$ decay of ${ }^{130}$ Te leading to the excited 0_{+}^{1} state at 1793.5 keV .
${ }^{27}$ BARABASH 11A use the NEMO-3 detector to measure $2 \nu \beta \beta$ rates and place limits on $0 \nu \beta \beta$ half lives for various nuclides. Supersedes ARNOLD 05A, ARNOLD 04, ARNOLD 98, and ELLIOTT 92.
28 Supersedes ARNABOLDI 04. Bolometric TeO_{2} detector array CUORICINO is used for high resolution search for $0 \nu \beta \beta$ decay. The half-life limit is derived from 3.09 kg yr ${ }^{130}$ Te exposure.
${ }^{29}$ UMEHARA 08 use CaF_{2} scintillation calorimeter to search for double beta decay of ${ }^{48}$ Ca. Limit is significantly more stringent than quoted sensitivity: 18×10^{21} years.
${ }^{30}$ Limit on 0ν-decay to the first excited 0_{1}^{+}-state of daughter nucleus using NEMO-3 tracking calorimeter. Supersedes DASSIE 95.
31 Limit on 0ν-decay to the first excited 2^{+}-state of daughter nucleus using NEMO-3 tracking calorimeter.
32 NEMO-3 tracking calorimeter is used in ARNOLD 05A to place limit on $0 \nu \beta \beta$ half-life of ${ }^{82} \mathrm{Se}$. Detector contains 0.93 kg of enriched ${ }^{82} \mathrm{Se}$. Supersedes ARNOLD 04.
${ }^{33}$ Supersedes ALESSANDRELLO 00. Array of TeO_{2} crystals in high resolution cryogenic calorimeter. Some enriched in ${ }^{128} \mathrm{Te}$. Ground state to ground state decay.
${ }^{34}$ Limit on $0 \nu \beta \beta$ decay of ${ }^{116} \mathrm{Cd}$ using enriched CdWO_{4} scintillators. Supersedes DANEVICH 00.
${ }^{35}$ AALSETH 02B limit is based on $117 \mathrm{~mol} \cdot \mathrm{yr}$ of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part of the data set. Reported limit is slightly less restrictive than that in KLAPDORKLEINGROTHAUS 01 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 01B for the same nuclide. The analysis has been criticized in KLAPDOR-KLEINGROTHAUS 04B. The criticism was addressed and disputed in AALSETH 04.
${ }^{36}$ KLAPDOR-KLEINGROTHAUS 01 is a continuation of the work published in BAUDIS 99. Isotopically enriched Ge detectors are used in calorimetric measurement. The most stringent bound is derived from the data set in which pulse-shape analysis has been used to reduce background. Exposure time is 35.5 kg y. Supersedes BAUDIS 99 as most stringent result.

Half-life measurements of the two-neutrino double- $\boldsymbol{\beta}$ decay

The measured half-life values for the transitions $(Z, A) \rightarrow(Z+2, A)+2 e^{-}+2 \bar{\nu}_{e}$ to the 0^{+}ground state of the final nucleus are listed. We also list the transitions to an excited state of the final nucleus (0_{i}^{+}, etc.). We report only the measuremetnts with the smallest (or comparable) uncertainty for each transition.
$\underline{t_{1 / 2}\left(10^{21} \mathrm{yr}\right)}$ ISOTOPE TRANSITION METHOD DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. - • -

18	± 5	± 1	${ }^{124} \mathrm{Xe}$	2ν DEC	XENON1T	${ }^{1}$ APRILE	19E
0.00680	± 0.00001	+0.00038 -0.00040	${ }_{0} 100 \mathrm{Mo}$		NEMO-3	2 ARNOLD	19
0.0939	± 0.0017	± 0.0058	${ }^{82} \mathrm{Se}$		NEMO-3	${ }^{3}$ ARNOLD	18
0.0263	+0.0011 -0.0012		${ }^{116} \mathrm{Cd}$		AURORA	${ }^{4}$ BARABASH	18
> 0.87			${ }^{134}$ Xe		EXO-200	${ }^{5}$ ALBERT	17 C
0.82	± 0.02	± 0.06	${ }^{130} \mathrm{Te}$		CUORE-0	${ }^{6}$ ALDUINO	17
0.00690	± 0.00015	± 0.0003	7^{100} Mo		CUPID	7 ARMENGAUD	17
0.0274	± 0.0004	± 0.0018	${ }^{116} \mathrm{Cd}$		NEMO-3	${ }^{8}$ ARNOLD	17
0.064	+0.007 -0.006	+0.012 -0.009	${ }^{48} \mathrm{Ca}$		NEMO-3	${ }^{9}$ ARNOLD	16
0.00934	± 0.00022	+0.00062 -0.00060	2150 Nd		NEMO-3	10 ARNOLD	16A
1.926	± 0.094		${ }^{76} \mathrm{Ge}$		GERDA	11 AGOSTINI	15A
0.00693	± 0.00004		100 Mo		NEMO-3	12 ARNOLD	15
2.165	± 0.016	± 0.059	${ }^{136} \mathrm{Xe}$		EXO-200	13 ALBERT	14
9.2	+5.5 +2.6	± 1.3	${ }^{78} \mathrm{Kr}$		BAKSAN	14 GAVRILYAK	13
2.38	± 0.02	± 0.14	${ }^{136}$ Xe		KamLAND-Zen	15 GANDO	12A
0.7	± 0.09	± 0.11	${ }^{130} \mathrm{Te}$		NEMO-3	16 ARNOLD	11
0.0235	± 0.0014	± 0.0016	${ }^{96} \mathrm{Zr}$		NEMO-3	17 ARGYRIADES	10
0.69	+0.10 -0.08	± 0.07	${ }^{100}$ Mo	$\mathrm{O}^{+} \rightarrow \mathrm{O}_{1}^{+}$	Ge coinc.	18 BELLI	10
0.57	$\begin{aligned} & +0.13 \\ & -0.09 \end{aligned}$	± 0.08	${ }^{100}$ Mo	$\mathrm{O}^{+} \rightarrow \mathrm{O}_{1}^{+}$	NEMO-3	19 ARNOLD	07

Lepton Particle Listings

Double- β Decay

0.096	± 0.003	± 0.010	${ }^{82} \mathrm{Se}$	NEMO-3	${ }^{20}$ ARNOLD	05 A
0.029	${ }_{-0.003}^{+0.004}$		${ }^{116} \mathrm{Cd}$	${ }^{116} \mathrm{CdWO}_{4}$	Scin!2. ${ }^{1}$ DANEVICH	03

${ }^{1}$ APRILE 19E report first measurement of two-neutrino double electron capture in ${ }^{124}$ Xe using the XENON1T detector with a 0.73 t -yr exposure. An excess of 126 ± 29 events is observed at $64.3 \pm 0.6 \mathrm{keV}$ decay energy, corresponding to $\sqrt{\Delta \chi^{2}}=4.4$ with respect to the background-only hypothesis.
${ }^{2}$ ARNOLD 19 use the NEMO- 3 tracking calorimeter with 34.3 kg y exposure to determine the $2 \nu \beta \beta$ half-life of ${ }^{100} \mathrm{Mo}$. Supersedes ARNOLD 15.
${ }^{3}$ ARNOLD 18 use the NEMO-3 tracking detector to determine the $2 \nu \beta \beta$ half-life of ${ }^{82}$ Se. 0.93 kg of ${ }^{82} \mathrm{Se}$ was observed for 5.25 y . The half-life value was obtained based on the single-state-dominance (SSD) hypothesis, preferred in this case by about 2σ. Supersedes ARNOLD 05A.
${ }^{4}$ BARABASH 18 use 1.162 kg of ${ }^{116} \mathrm{CdWO}_{4}$ scintillating crystals to obtain this value. Supersedes DANEVICH 03 with analogous source and agrees with ARNOLD 17 with the Supersedes DANEV
NEMO-3 detector.
${ }^{5}$ ALBERT 17C uses the EXO-200 detector that contains $19.098 \pm 0.014 \%$ admixture of ${ }^{134}$ Xe to search for the $2 \nu \beta \beta$ decay mode. The exposure is $29.6 \mathrm{~kg} \cdot \mathrm{ye}$. The median sensitivity is 1.2×10^{21} years.
${ }^{6}$ ALDUINO 17 use the CUORE- 0 detector containing 10.8 kg of ${ }^{130} \mathrm{Te}$ in 52 crystals of TeO_{2}. The exposure was 9.3 kg yr of ${ }^{130} \mathrm{Te}$. This is a more accurate rate determination than in ARNOLD 11 and BARABASH 11A.
${ }^{7}$ ARMENGAUD 17 use $185.9 \pm 0.1 \mathrm{~g}$ crystal of $\mathrm{Li}_{2}{ }^{100} \mathrm{MoO}_{4}$ to determine the ${ }^{100} \mathrm{Mo}$ $2 \nu \beta \beta$ half-life. The exposure was of 1303 ± 26 hours only, using novel technique.
${ }^{8}$ ARNOLD 17 use the NEMO-3 tracking calorimeter, containing 410 grams of enriched ${ }^{116} \mathrm{Cd}$ exposed for 5.26 years, to determine the half-life value.
${ }^{9}$ ARNOLD 16 use the NEMO- 3 detector and a source of 6.99 g of ${ }^{48} \mathrm{Ca}$. The half-life is based on 36.7 g year exposure. It is consistent, although somewhat longer, than the previous determinations of the half-life. Supersedes BARABASH 11A.
${ }^{10}$ ARNOLD 16A use the NEMO-3 tracking calorimeter, containing 36.6 g of ${ }^{150} \mathrm{Nd}$ exposed for 1918.5 days, to determine the half-life. Supersedes ARGYRIADES 09.
11 AGOSTINI 15A use 17.9 kg yr exposure of the GERDA calorimeter to derive an improved measurement of the $2 \nu \beta \beta$ decay half life of ${ }^{76} \mathrm{Ge}$.
${ }^{12}$ ARNOLD 15 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the $2 \nu \beta \beta$-half life of ${ }^{100} \mathrm{Mo}$. Supersedes ARNOLD 05A and ARNOLD 04.
13 ALBERT 14 use the EXO-200 tracking detector for a re-measurement of the $2 \nu \beta \beta$-half life of ${ }^{136}$ Xe. A nuclear matrix element of $0.0218 \pm 0.0003 \mathrm{MeV}^{-1}$ is derived from this data. Supersedes ACKERMAN 11.
14 GAVRILYAK 13 use a proportional counter filled with Kr gas to search for the $2 \nu 2 \mathrm{~K}$ decay of ${ }^{78} \mathrm{Kr}$. Data with the enriched and depleted Kr were used to determine signal and background. A 2.5σ excess of events obtained with the enriched sample is interpreted as an indication for the presence of this decay.
${ }^{15}$ GANDO 12A use a modification of the existing KamLAND detector. The $\beta \beta$ decay source/detector is 13 tons of enriched ${ }^{136}$ Xe-loaded scintillator contained in an inner balloon. The $2 \nu \beta \beta$ decay rate is derived from the fit to the spectrum between 0.5 and 4.8 MeV . This result is in agreement with ACKERMAN 11.
${ }^{16}$ ARNOLD 11 use enriched ${ }^{130}$ Te in the NEMO-3 detector to measure the $2 \nu \beta \beta$ decay rate. This result is in agreement with, but more accurate than ARNABOLDI 03.
17 ARGYRIADES 10 use $9.4 \pm 0.2 \mathrm{~g}$ of ${ }^{96} \mathrm{Zr}$ in NEMO-3 detector and identify its $2 \nu \beta \beta$ decay. The result is in agreement and supersedes ARNOLD 99.
${ }^{18}$ BELLI 10 use enriched ${ }^{100}$ Mo with 4 HP Ge detectors to record the 590.8 and 539.5 keV γ rays from the decay of the 0_{1}^{+}state in ${ }^{100} \mathrm{Ru}$ both in singles and coincidences. This result confirms the measurement of KIDD 09 and ARNOLD 07 and supersedes them.
${ }^{19}$ First exclusive measurement of 2ν-decay to the first excited 0_{1}^{+}-state of daughter nucleus. ARNOLD 07 use the NEMO- 3 tracking calorimeter to detect all particles emitted in decay. Result agrees with the inclusive $(0 \nu+2 \nu)$ measurement of DEBRAECKELEER 01.
${ }^{20}$ ARNOLD 05A use the NEMO-3 tracking detector to determine the $2 \nu \beta \beta$ half-life of ${ }^{82}$ Se with high statistics and low background (389 days of data taking). Supersedes ARNOLD 04.
${ }^{21}$ Calorimetric measurement of $2 \nu \beta \beta$ ground state decay of ${ }^{116} \mathrm{Cd}$ using enriched CdWO_{4} scintillators. Agrees with EJIRI 95 and ARNOLD 96. Supersedes DANEVICH 00.
$\left\langle m_{e e}\right\rangle$, The Effective Weighted Sum of Majorana Neutrino Masses
Contributing to Neutrinoless Double- β Decay Contributing to Neutrinoless Double- β Decay
$\left\langle m_{\mathrm{ee}}\right\rangle=\left|\Sigma U_{e i}^{2} m_{\nu_{i}}\right|, i=1,2,3$. It is assumed that ν_{i} are Majorana particles and that the transition is dominated by the known (light) neutrinos. Note that $U_{e i}^{2}$ and not $\left|U_{e i}\right|^{2}$ occur in the sum, and that consequently cancellations are possible. The experiments obtain the limits on $\left\langle m_{\nu}\right\rangle$ from the measured ones on $T_{1 / 2}$ using a range of nuclear matrix elements (NME), which is reflected in the spread of $\left\langle m_{\nu}\right\rangle$. Different experiments may choose different NME. All assume $g_{A}=1.27$. In the following Listings, only the best or comparable limits for each isotope are reported. When not mentioned explicitly the transition is between ground states, but transitions between excited states are also reported.

VALUE (eV) ISOTOPE METHOD DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. • -

$<0.07-0.16$	76			
Ge	GERDA	${ }^{1}$ AGOSTINI	19	
$<1.2-2.1$	100 Mo	AMoRE	${ }^{2}$ ALENKOV	19
$<0.200-0.433$	76 Ge	MAJORANA	${ }^{3}$ ALVIS	19
$<0.093-0.286$	136			
Ke	EXO-200	${ }^{4}$ ANTON	19	

$<0.311-0.638$	${ }^{82} \mathrm{Se}$	CUPID-0	${ }^{5}$ AZZOLINI	19
< 1.3-3.5	${ }^{136}$ Xe	PANDAX-II	${ }^{6} \mathrm{NI}$	19
< 0.24-0.52	${ }^{76} \mathrm{Ge}$	MAJORANA Dem	7 AALSETH	18
$<0.12-0.26$	${ }^{76} \mathrm{Ge}$	GERDA	${ }^{8}$ AGOSTINI	18
$<0.15-0.40$	${ }^{136}$ Xe	EXO-200	${ }^{9}$ ALBERT	18
$<0.11-0.52$	${ }^{130} \mathrm{Te}$	CUORE	10 ALDUINO	18
< 1.2-3.0	${ }^{82} \mathrm{Se}$	NEMO-3	11 ARNOLD	18
$<0.376-0.770$	${ }^{82} \mathrm{Se}$	CUPID-0	12 AZZOLINI	18
< 1.0-1.7	${ }^{116} \mathrm{Cd}$	AURORA	13 BARABASH	18
$<0.15-0.33$	${ }^{76} \mathrm{Ge}$	GERDA	14 AGOSTINI	17
< 1.4-2.5	${ }^{116} \mathrm{Cd}$	NEMO-3	15 ARNOLD	17
$<0.27-0.76$	${ }^{130} \mathrm{Te}$	CUORE(CINO)	16 ALDUINO	16
< 1.6-5.3	${ }^{150} \mathrm{Nd}$	NEMO-3	17 ARNOLD	16A
$<0.061-0.165$	${ }^{136}$ Xe	KamLAND-Zen	18 GANDO	16
< 0.33-0.62	100 Mo	NEMO-3	19 ARNOLD	15
$<0.19-0.45$	${ }^{136}$ Xe	EXO-200	20 ALBERT	14B
$<0.89-2.43$	${ }^{82} \mathrm{Se}$	NEMO-3	21 BARABASH	11A
< 7.2-19.5	${ }^{96} \mathrm{Zr}$	NEMO-3	22 ARGYRIADES	10
< 3.5-22	${ }^{48} \mathrm{Ca}$	CaF_{2} scint.	23 UMEHARA	08
$<0.2-1.1$	${ }^{130} \mathrm{Te}$	Cryog. det.	24 ARNABOLDI	05
$<0.37-1.9$	${ }^{130} \mathrm{Te}$	Cryog. det.	25 ARNABOLDI	04
< 1.5-1.7	${ }^{116} \mathrm{Cd}$	${ }^{116} \mathrm{CdWO}_{4}$ scint.	26 DANEVICH	03
<0.350	${ }^{76} \mathrm{Ge}$	Enriched HPGe	27 KLAPDOR-K..	
<8.3	${ }^{48} \mathrm{Ca}$	CaF_{2} scint.	YOU	91

${ }^{1}$ AGOSTINI 19 use $82.4 \mathrm{~kg} \cdot \mathrm{yr}$ of data collected by the isotopically enriched ${ }^{76} \mathrm{Ge}$ detectors of the GERDA experiment to derive an upper limit for $\left\langle m_{\beta \beta}\right\rangle$. The range reflects the variability of the theoretically calculated nuclear matrix elements. Supersedes AGOS2 TINI 18.
${ }^{2}$ ALENKOV 19 report the range of the effective masses $\left\langle m_{\beta \beta}\right\rangle$ corresponding to the 0ν $\beta \beta$ decay half-life limit. It is based on the $52.1 \mathrm{~kg} \cdot \mathrm{~d}$ exposure of ${ }^{100} \mathrm{Mo}$, in the Yangyang underground laboratory. The median sensitivity is 1.1×10^{23} years. The range of $\left\langle m_{\beta \beta}\right\rangle$ reflects the uncertainty of nuclear matrix elements.
${ }^{3}$ ALVIS 19 use the MAJORANA Demonstrator with enriched in ${ }^{76} \mathrm{Ge}$ detectors to set this limit. The exposure is 26.0 kg yr . The sensitivity is $4.8 \times 10^{25} \mathrm{yr}$.
${ }^{4}$ ANTON 19 uses the complete dataset of the EXO-200 experiment to obtain these limits. The spread reflect the uncertainty in the nuclear matrix elements. Supersedes ALBERT 18 and ALBERT 14B.
${ }^{5}$ ALBERT 18 and ALBERT 14B. exposure is 5.29 kg yr . The sensitivity is $5 \times 10^{24} \mathrm{yr}$.
${ }^{6}$ NI 19 use the PandaX-II dual phase TPC at CJPL to search for the $0 \nu \beta \beta$ decay of ${ }^{136} \mathrm{Xe}$ with 22.2 kg yr exposure. The range in the $m_{\beta \beta}$ limit of $1.3-3.5 \mathrm{eV}$ reflects the range of the calculated nuclear matrix elements. The sensitivity is $1.9 \times 10^{23} \mathrm{yr}$.
${ }^{7}$ AALSETH 18 uses the MAJORANA Demonstrator detector to establish this limit.
${ }^{8}$ AGOSTINI 18 uses the GERDA detector to establish this limit.
${ }^{9}$ ALBERT 18 uses the EXO-200 experiment to obtain this limit.
10 ALDUINO 18 use the combined data of CUORE, CUOREO, and Cuoricino to obtain this limit.
11 ARNOLD 18 use the NEMO-3 tracking detector to constrain the $0 \nu \beta \beta$ decay of ${ }^{82}$ Se. The limit on $\left\langle m_{\beta \beta}\right\rangle$ is obtained assuming light neutrino exchange; the range reflects different calculations of the nuclear matrix elements. This is a somewhat weaker limit than in BARABASH 11A using the same detector
12 AZZOLINI 18 uses data collected by the CUPID-0 scintillating cryogenic calorimeter, operated in the LNGS, to derive a range of limits on $\left\langle m_{\nu}\right\rangle$. The reported range reflects the spread of the nuclear matrix element calculations considered in this work. Use $g_{A}=$ 1.269 .
${ }^{13}$ BARABASH 18 use 1.162 kg of ${ }^{116} \mathrm{CdWO}_{4}$ scintillating crystals to obtain these limits. The spread reflects the estimated uncertainty in the nuclear matrix element. Supersedes DANEVICH 03.
14 AGOSTINI 17 is based on 343 mol yr of data from GERDA phase 1 and phase 2 first part and the corresponding limit on $\mathrm{T}_{1 / 2}$ using the different nuclear matrix elements mentioned by the authors. Supersedes AGOSTINI 13A.
${ }^{15}$ ARNOLD 17 utilize NEMO-3 data, taken with enriched ${ }^{116}$ Cd to limit the effective Majorana neutrino mass. The reported range results from the use of different nuclear matrix elements. Supersedes BARABASH 11A.
16 ALDUINO 16 place a limit on the effective Majorana neutrino mass using the combined data of the CUORE-0 and CUORICINO experiments. The range reflects the authors' evaluation of the variability of the nuclear matrix elements. Supersededs ALFONSO 15.
17 ARNOLD 16A limit is derived from data taken with the NEMO-3 detector and ${ }^{150} \mathrm{Nd}$. A range of nuclear matrix elements that include the effect of nuclear deformation have been used. Supersedes ARGYRIADES 09.
18 GANDO 16 result is based on the 2016 KamLAND-Zen half-life limit. The stated range reflects different nuclear matrix elements, an unquenched $g_{A}=1.27$ is used. Supersedes GANDO 13A.
19 ARNOLD 15 use the NEMO- 3 tracking calorimeter with 34.3 kg yr exposure to determine the neutrino mass limit based on the $0 \nu \beta \beta$-half life of ${ }^{100} \mathrm{Mo}$. The spread range reflects different nuclear matrix elements. Supersedes ARNOLD 14 and BARABASH 11A.
20 ALBERT 14B is based on 100 kg yr of exposure of the EXO-200 tracking calorimeter. The mass range reflects the nuclear matrix element calculations. Supersedes AUGER 12.
${ }^{21}$ BARABASH 11A limit is based on NEMO-3 data for ${ }^{82}$ Se. The reported range reflects different nuclear matrix elements. Supersedes ARNOLD 05A and ARNOLD 04.
${ }^{22}$ ARGYRIADES 10 use ${ }^{96} \mathrm{Zr}$ and the NEMO-3 tracking detector to obtain the reported mass limit. The range reflects the fluctuation of the nuclear matrix elements considered.
${ }^{23}$ Limit was obtained using CaF_{2} scintillation calorimeter to search for double beta decay
of ${ }^{48}$ Ca. Reported range of limits reflects spread of QRPA and SM matrix element
calculations used. Supersedes OGAWA 04 .
24 Supersedes ARNABOLDI 04. Reported range of limits due to use of different nuclear
matrix element calculations.
25 Supersedes ARNABOLDI 03. Reported range of limits due to use of different nuclear
matrix element calculations.
26 Limit for $\left\langle m_{\nu}\right\rangle$ is based on the nuclear matrix elements of STAUDT 90 and ARNOLD 96 .
Supersedes DANEVICH 00.
27 KLAPDOR-KLEINGROTHAUS 01 uses the calculation by STAUDT 90. Using several
other models in the literature could worsen the limit up to 1.2 eV . This is the most
stringent experimental bound on m_{ν}. It supersedes BAUDIS 99B.

Limits on Lepton-Number Violating ($V+A$) Current Admixture

For reasons given in the discussion at the beginning of this section, we list only results from 1989 and later. $\langle\lambda\rangle=\lambda \sum U_{e j} V_{e j}$ and $\langle\eta\rangle=\eta \sum U_{e j} V_{e j}$, where the sum is over the number of neutrino generations. This sum vanishes for massless or unmixed neutrinos. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

$\underline{\langle\lambda\rangle}\left(10^{-6}\right)$	CL\%	$\langle\eta\rangle\left(10^{-8}\right)$	CL\%	ISOTOPE	METHOD	DOCUMENT ID	
- - We do not use the following data for averages, fits, limits, etc. • • •							
< 2.2-2.6	90	< 1.7-2.1	90	${ }^{82} \mathrm{Se}$	NEMO-3	${ }^{1}$ ARNOLD	18
< 1.8-22	90	< 1.6-21	90	${ }^{116} \mathrm{Cd}$	AURORA	2 BARABASH	18
< 0.9-1.3	90	< $0.5-0.8$	90	${ }^{100}$ Mo	NEMO-3	${ }^{3}$ ARNOLD	14
<120	90	$0.305_{-0.025}^{+0.026} 68$		${ }^{100} \mathrm{Mo}$	$0^{+} \rightarrow 2^{+}$	${ }^{4}$ ARNOLD	07
$0.692_{-0.056}^{+0.058}$	68			${ }^{76} \mathrm{Ge}$	Enriched HPGe	5 KLAPDOR-K... 06A	
< 2.5	90			${ }^{100} \mathrm{M}$	0ν, NEMO-3	${ }^{6}$ ARNOLD	05A
<3.8	90			${ }^{82} \mathrm{Se}$	0ν, NEMO-3	${ }^{7}$ ARNOLD	05A
< 1.5-2.0	90			${ }^{100}$ Mo	0ν, NEMO-3	${ }^{8}$ ARNOLD	04
< 3.2-3.8	90			${ }^{82} \mathrm{Se}$	0 ν, NEMO-3	${ }^{9}$ ARNOLD	04
<1.6-2.4	90	< 0.9-5.3	90	${ }^{130} \mathrm{Te}$	Cryog. det.	10 ARNABOLDI	03
<2.2	90	<2.5	90	${ }^{116} \mathrm{Cd}$	${ }^{116} \mathrm{CdWO}_{4}$ scint.	11 DANEVICH	03
< 3.2-4.7	90	<2.4-2.7	90	${ }^{100} \mathrm{Mo}$	ELEGANT V	12 EJIRI	01
<1.1	90	<0.64	90	${ }^{76} \mathrm{Ge}$	Enriched HPGe	13 GUENTHER	97
<4.4	90	<2.3	90	${ }^{136}$ Xe	TPC	14 VUILLEUMIER	
		<5.3		${ }^{128} \mathrm{Te}$	Geochem	15 BERNATOW...	

${ }^{1}$ ARNOLD 18 use the NEMO03 tracking detector, with 0.93 kg of ${ }^{82}$ Se mass and 5.25 y exposure to obtain the limits for the hypothetical right-handed currents. Supersedes ARNOLD 05A.
${ }^{2}$ BARABASH 18 use 1.162 kg of ${ }^{116} \mathrm{CdWO}_{4}$ scintillating crystals to obtain this limits for the hypothetical right-handed currents in the $0 \nu \beta \beta$ decay of ${ }^{116} \mathrm{Cd}$.
${ }^{3}$ ARNOLD 14 is based on 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter. The reported range limit on $\langle\lambda\rangle$ and $\langle\eta\rangle$ reflects the nuclear matrix element uncertainty in ${ }^{100} \mathrm{Mo}$.
${ }^{4}$ ARNOLD 07 use NEMO-3 half life limit for 0ν-decay of ${ }^{100}$ Mo to the first excited 2^{+} state of daughter nucleus to limit the right-right handed admixture of weak currents $\langle\lambda\rangle$. This limit is not competitive when compared to the decay to the ground state.
${ }^{5}$ Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modified pulse shape analysis leads the authors to claim 6σ statistical evidence for observation of 0ν-decay. Authors use matrix element of MUTO 89 to determine $\langle\lambda\rangle$ and $\langle\eta\rangle$. Uncertainty of nuclear matrix element is not reflected in stated errors.
${ }^{6}$ ARNOLD 05A derive limit for $\langle\lambda\rangle$ based on ${ }^{100}$ Mo data collected with NEMO-3 detector. No limit for $\langle\eta\rangle$ is given. Supersedes ARNOLD 04.
${ }^{7}$ ARNOLD 05A derive limit for $\langle\lambda\rangle$ based on ${ }^{82}$ Se data collected with NEMO-3 detector. No limit for $\langle\eta\rangle$ is given. Supersedes ARNOLD 04.
${ }^{8}$ ARNOLD 04 use the matrix elements of SUHONEN 94 to obtain a limit for $\langle\lambda\rangle$, no limit for $\langle\eta\rangle$ is given. This limit is more stringent than the limit in EJIRI 01 for the same nucleus.
${ }^{9}$ ARNOLD 04 use the matrix elements of TOMODA 91 and SUHONEN 91 to obtain a limit for $\langle\lambda\rangle$, no limit for $\langle\eta\rangle$ is given.
10 Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations.
11 Limits for $\langle\lambda\rangle$ and $\langle\eta\rangle$ are based on nuclear matrix elements of STAUDT 90. Supersedes DANEVICH 00.
${ }^{12}$ The range of the reported $\langle\lambda\rangle$ and $\langle\eta\rangle$ values reflects the spread of the nuclear matrix elements. On axis value assuming $\left\langle m_{\nu}\right\rangle=0$ and $\langle\lambda\rangle=\langle\eta\rangle=0$, respectively.
${ }^{13}$ GUENTHER 97 limits use the matrix elements of STAUDT 90. Supersedes BALYSH 95 and BALYSH 92.
14 VUILLEUMIER 93 uses the matrix elements of MUTO 89. Based on a half-life limit $2.6 \times 10^{23} y$ at 90% CL.
${ }^{15}$ BERNATOWICZ 92 takes the measured geochemical decay width as a limit on the 0ν width, and uses the SUHONEN 91 coefficients to obtain the least restrictive limit on η. width, and uses the SUHONEN 91 coefficients to obtain the least
Further details of the experiment are given in BERNATOWICZ 93.

Double- β Decay REFERENCES

```
SCI 365 1445
EPJ C79 795
EPJ C79 791 
PR C100 025501
19E NAT 568 532
```

M. Agostini et al
C. Alduino et al.
V. Alenkov et al.
V. Alenkov et al
S.I. Alvis et al.
S.I. Alvis et al.
G. Anton et al.
E. Aprile et al.
(GERDA Collab.) (CUORE Collab.)
(AMoRE Collab.) (AMORE Collab.)
(MAJORANA Collab.)
(EXO-200 Collab.)
(XENON1T Collab.)

ARNOLD	19	EPJ C79 440	R. Arnold et al.	(NEMO-3 Collab.)	
AZZOLINI	19	PRL 123032501	O. Azzolini et al.	(CUPID-0 Collab.)	
NI	19	CP C43 113001	K. Ni et al.	(PandaX-II Collab.)	
AALSETH	18	PRL 120132502	C.E. Aalseth et al.	(MAJORANA Collab.)	
AGOSTINI	18	PRL 120132503	M. Agostini et al.	(GERDA Collab.)	
ALBERT	18	PRL 120072701	J.B. Albert et al.	(EXO-200 Collab.)	
ALDUINO	18	PRL 120132501	C. Alduino et al.	(CUORE Collab.)	
ARNOLD	18	EPJ C78 821	R. Arnold et al.	(NEMO-3 Collab.)	
AZZOLINI	18	PRL 120232502	O. Azzolini et al.	(CUPID-0 Collab.)	
AZZOLINI	18A	EPJ C78 888	O. Azzolini et al.	(CUPID-0 Collab.)	
BARABASH	18	PR D98 092007	A.S. Barabash et al.	(AURORA Collab.)	
AGOSTINI	17	NAT 54447	M. Agostini et al.	(GERDA Collab.)	
ALBERT	17 C	PR D96 092001	J.B. Albert et al.	(EXO-200 Collab.)	
ALDUINO	17	EPJ C77 13	C. Alduino et al.	(CUORE Collab.)	
ARMENGAUD	17	EPJ C77 785	E. Armengaud et al.	(CUPID Collab.)	
ARNOLD	17	PR D95 012007	R. Arnold et al.	(NEMO-3 Collab.)	
ALDUINO	16	PR C93 045503	C. Alduino et al.	(CUORE Collab.)	
ARNOLD	16	PR D93 112008	R. Arnold et al.	(NEMO-3 Collab.)	
ARNOLD	16A	PR D94 072003	R. Arnold et al.	(NEMO-3 Collab.)	
ASAKURA	16	NP A946 171	K. Asakura et al.	(KamLAND-Zen Collab.)	
GANDO	16	PRL 117082503	A. Gando et al.	(KamLAND-Zen Collab.)	
AGOSTINI	15A	EPJ C75 416	M. Agostini et al.	(GERDA Collab.)	
ALFONSO	15	PRL 115102502	K. Alfonso et al.	(CUORE Collab.)	
ARNOLD	15	PR D92 072011	R. Arnold et al.	(NEMO-3 Collab.)	
ALBERT	14	PR C89 015502	J. Albert et al.	(EXO-200 Collab.)	
ALBERT	14B	NAT 510229	J.B. Albert et al.	(EXO-200 Collab.)	
ARNOLD	14	PR D89 111101	R. Arnold et al.	(NEMO-3 Collab.)	
AGOSTINI	13A	PRL 111122503	M. Agostini et al.	(GERDA Collab.)	
GANDO	13A	PRL 110062502	A. Gando et al.	(KamLAND-Zen Collab.)	
GAVRILYAK	13	PR C87 035501	Yu.M. Gavrilyuk et al.		
ANDREOTTI	12	PR C85 045503	E. Andreotti et al.	(CUORICINO Collab.)	
AUGER	12	PRL 109032505	M. Auger et al.	(EXO-200 Collab.)	
GANDO	12A	PR C85 045504	A. Gando et al.	(KamLAND-Zen Collab.)	
ACKERMAN	11	PRL 107212501	N. Ackerman et al.	(EXO Collab.)	
ARNOLD	11	PRL 107062504	R. Arnold et al.	(NEMO-3 Collab.)	
BARABASH	11A	Translated from Yaf 74 330.			
ARGYRIADES	10	NP A847 168	J. Argyriades et al.	(NEMO-3 Collab.)	
BELLI	10	NP A846 143	P. Belli et al.	(DAMA-INR Collab.)	
ARGYRIADES	09	PR C80 032501	J. Argyriades et al.	(NEMO-3 Collab.)	
KIDD	09	NP A821 251	M. Kidd et al.		
ARNABOLDI	08	PR C78 035502	C. Arnaboldi et al.	(CUORICINO Collab.)	
UMEHARA	08	PR C78 058501	S. Umehara et al.		
ARNOLD	07	NP A781 209	R. Arnold et al.	(NEMO-3 Collab.)	
KLAPDOR-K...	06A	MPL A21 1547	H.V. Klapdor-Kleingrothaus, I.v.	I.V. Krivosheina	
ARNABOLDI	05	PRL 95142501	C. Arnaboldi et al.	(CUORICINO Collab.)	
ARNOLD	05A	PRL 95182302	R. Arnold et al.	(NEMO-3 Collab.)	
AALSETH	04	PR D70 078302	C.E. Aalseth et al.		
ARNABOLDI	04	PL B584 260	C. Arnaboldi et al.		
ARNOLD	04	JETPL 80377	R. Arnold et al.	(NEMO-3 Collab.)	
KLAPDOR-K...	04A	Translated from ZETFP 80429.			
KLAPDOR-K...	04B	PR D70 078301	H.V. Klapdor-Kleingrothaus et al. H. K Klapdor-Kleingrothaus A. Dietz IV. Krivosheina		
OGAWA	04	NP A730 215	H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. KrivosheinaI. Ogawa et al.		
ARNABOLDI	03	PL B557 167	C. Arnaboldi et al.		
DANEVICH	03	PR C68 035501	F.A. Danevich et al.		
AALSETH	02B	PR D65 092007	C.E. Aalseth et al. (IGEX Collab.)		
DEBRAECKEL...		PRL 863510	L. De Braeckeleer et al.		
EJIRI	01	PR C63 065501	H. Ejiri et al.		
KLAPDOR-K...	01	EPJ A12 147	H.V. Klapdor-Kleingrothaus et al.		
KLAPDOR-K...	01B	MPL A16 2409	H.V. Klapdor-Kleingrothaus et al.		
ALESSAND...	00	PL B486 13	A. Alessandrello et al.		
DANEVICH	00	PR C62 045501	F.A. Danevich et al.		
ARNOLD	99	NP A658 299	R. Arnold et al. L. Baudis et al.	(NEMO Collab.)	
BAUDIS	99	PR D59 022001		(Heidelberg-Moscow Collab.)(Heidelberg-Moscow Collab.)	
BAUDIS	99B	PRL 8341	L. Baudis et al. L. Baudis et al.		
ARNOLD	98	NP A636 209	L. Baudis et al. R. Arnold et al.	(NEMO-2 Collab.)	
GUENTHER	97	PR D55 54	M. Gunther et al.	(Heidelberg-Moscow Collab.)	
ARNOLD	96	ZPHY C72 239	R. Arnold et al.A. Balysh et al.	(BCEN, CAEN, JINR+)	
BALYSH	95	PL B356 450		(Heidelberg-Moscow Collab.)	
DASSIE	95	PR D51 2090	A. Balysh et al. D. Dassie et al.	(NEMO Collab.)	
EJIRI	95	JPSJ 64339	H. Ejiri et al. (OSAK, KIEV)		
SUHONEN	94	PR C49 3055	J. Suhonen, O. Civitarese		
BERNATOW...	93	PR C47 806	T. Bernatowicz et al. (WUSL, TATA)		
VUILLEUMIER	93	PR D48 1009	J.C. Vuilleumier et al. (NEUC, CIT, VILL)		
BALYSH	92	PL B283 32	A. Balysh et al. (MPIH, KIAE, SASSO)		
BERNATOW...	92	PRL 692341	T. Bernatowicz et al. (WUSL, TATA)		
ELLIOTT	92	PR C46 1535			
SUHONEN	91	NP A535 509	S.R. Elliott et al.		
TOMODA	91	RPP 5453	J. Suhonen, S.B. Khadkikar, A. Faessler (JYV+) T. Tomoda		
YOU	91	PL B265 53	K. You et al. (BHEP, CAST+)		
STAUDT	90	EPL 1331	A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus		
MUTO	89	ZPHY A334 187	K. Muto, E. Bender, H.V. Klapdor (TINT, MPIH)		

Neutrino Mixing

With the possible exceptions of "short-baseline anomalies," such as LSND, all neutrino data can be described within the framework of a 3×3 mixing matrix between the mass eigenstates ν_{1}, ν_{2}, and ν_{3}, leading to the flavor eigenstates ν_{e}, ν_{μ}, and ν_{τ}, as described in the review "Neutrino masses, mixing and oscillations."

The Listings are divided in the following sections:
(A) Neutrino fluxes and event ratios: shows measurements which correspond to various oscillation tests for Accelerator, Reactor, Atmospheric, and Solar neutrino experiments. Typically, ratios involve a measurement in a realm sensitive to oscillations compared to one for which no oscillation effect is expected.

Lepton Particle Listings

Neutrino Mixing

(B) Neutrino mixing parameters: shows measurements of $\sin ^{2}\left(\theta_{12}\right), \sin ^{2}\left(\theta_{23}\right), \sin ^{2}\left(\theta_{13}\right), \Delta m_{21}^{2}, \Delta m_{32}^{2}$, and $\delta_{C P}$ as extracted from the measured data in the quoted publications in the frame of the three-neutrino mixing scheme. The quoted averages are not the result of a global fit, as in the review "Neutrino masses, mixing, and oscillations," and, as a consequence, might slightly differ from them. In some cases, measurements depend on the mass order (normal when $\Delta m_{32}^{2}>0$ or inverted when $\Delta m_{32}^{2}<0$) or octant of θ_{23} (lower when $\theta_{23}<45^{\circ}$ or upper when $\theta_{23}>45^{\circ}$).

(C) Other neutrino mixing results:

The LSND anomaly [AGUILAR 01], reported a signal which is consistent with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm_{21}^{2}. This does not appear to be consistent with the interpretation of other neutrino data. It has been interpreted as evidence for a 4th "sterile" neutrino. The following listings include results which might be relevant towards understanding this observation. They include searches for $\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, sterile neutrino oscillations, and others.

(A) Neutrino fluxes and event ratios

Events (observed/expected) from accelerator ν_{μ} experiments.

Some neutrino oscillation experiments compare the flux in two or more detectors. This is usually quoted as the ratio of the event rate in the far detector to the expected rate based on an extrapolation from the near detector in the absence of oscillations.
Value
DOCUMENT ID \qquad TECN

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lllll}1.01 \pm 0.10 & 1 & \text { ABE } & 14 \mathrm{~B} & \text { T2K } \\ & \nu_{e} \text { rate in T2K near detect. } \\ 0.71 \pm 0.08 & 2 \mathrm{AHN} & \text { 06A } & \text { K2K } & \text { K2K to Super-K }\end{array}$
$0.64 \pm 0.05 \quad 3$ MICHAEL 06 MINS All charged current events
$0.711_{-0.09}^{+0.08} \quad{ }^{4}$ ALIU $05 \quad$ K2K KEK to Super-K
$0.70_{-0.11}^{+0.10} \quad{ }^{5}$ AHN 03 K2K KEK to Super-K
${ }^{1}$ The rate of ν_{e} from μ decay was measured to be 0.68 ± 0.30 compared to the predicted flux. From K decay 1.10 ± 0.14 compared to the predicted flux.
${ }^{2}$ Based on the observation of 112 events when $158.1_{-8.6}^{+9.2}$ were expected without oscillations. Including not only the number of events but also the shape of the energy distribution, the evidence for oscillation is at the level of about 4.3σ. Supersedes ALIU 05.
${ }^{3}$ This ratio is based on the observation of 215 events compared to an expectation of 336 ± 14 without oscillations. See also ADAMSON 08 .
${ }^{4}$ This ratio is based on the observation of 107 events at the far detector 250 km away from KEK, and an expectation of 151_{-10}^{+12}.
${ }^{5}$ This ratio is based on the observation of 56 events with an expectation of $80.1_{-5.4}^{+6.2}$.

Events (observed/expected) from reactor $\bar{\nu}_{\boldsymbol{e}}$ experiments.

The quoted values are the ratios of the measured reactor $\bar{\nu}_{e}$ event rate at the quoted distances, and the rate expected without oscillations. The expected rate is based on the experimental data for the most significant reactor fuels $\left({ }^{235} \mathrm{U},{ }^{239} \mathrm{Pu},{ }^{241} \mathrm{Pu}\right)$ and on calculations for ${ }^{238} \mathrm{U}$.

A recent re-evaluation of the spectral conversion of electron to $\bar{\nu}_{e}$ in MUELLER 11 results in an upward shift of the reactor $\bar{\nu}_{e}$ spectrum by 3% and, thus, might require revisions to the ratios listed in this table.
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

0.952 ± 0.027	${ }^{1}$ ADEY	19	DAYA	Dayabay, Ling Ao/Ao II reactors
	${ }^{2} \mathrm{AN}$	6	DAYA	DayaBay, Ling $\mathrm{A}_{0} / \mathrm{Ao}_{0}$ II reactors
$1.08 \pm 0.21 \pm 0.16$	${ }^{3}$ DENIZ	10	TEXO	Kuo-Sheng reactor, 28 m
$0.658 \pm 0.044 \pm 0.047$	${ }^{4}$ ARAKI	05	KLND	Japanese react. $\sim 180 \mathrm{~km}$
$0.611 \pm 0.085 \pm 0.041$	${ }^{5} \mathrm{EGUCHI}$	03	KLND	Japanese react. $\sim 180 \mathrm{~km}$
$1.01 \pm 0.024 \pm 0.053$	${ }_{7}^{6}$ BOEHM	01		Palo Verde react. $0.75-0.89 \mathrm{~km}$
$1.01 \pm 0.028 \pm 0.027$	7 APOLLONIO	99	CHOZ	Chooz reactors 1 km
$0.987 \pm 0.006 \pm 0.037$	8 GREENWOOD			Savannah River, 18.2 m
$0.988 \pm 0.004 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m

$0.994 \pm 0.010 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m
$0.915 \pm 0.132 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m
$0.987 \pm 0.014 \pm 0.027$	${ }^{9}$ DECLAIS	94	CNTR	Bugey reactor, 15 m
$0.985 \pm 0.018 \pm 0.034$	KUVSHIN	91	CNTR	Rovno reactor
$1.05 \pm 0.02 \pm 0.05$	VUILLEU			Gösgen reactor
$0.955 \pm 0.035 \pm 0.110$	10 KWON	81		$\bar{\nu}_{e} p \rightarrow e^{+} n$
0.89 ± 0.15	10 BOEHM	80		$\bar{\nu}_{e} p \rightarrow e^{+} n$

${ }^{1}$ ADEY 19 present a re-analysis of 1230 days of Daya Bay near detector data with reduced Systematic uncertainties on the neutron detection efficiency. Note that ADEY 19 report the measured to predicted antineutrino ratio using the reactor model of MUELLER 11 (Huber-Mueller model). The ratio using the older ILL-Vogel model is $1.001 \pm 0.015 \pm$ 0.027.
${ }^{2}$ AN 16 use 217 days of data (338 k events) to determine the neutrino flux ratio relative to the prediction of Mueller-Huber and ILL-Vogel models (see AN 16 for details). The reported flux ratios were corrected for θ_{13} oscillation effect. The flux measurement is consistent with results from previous short-baseline reactor experiments. The measured inverse beta decay yield is $(1.55 \pm 0.04) \times 10^{-18} \mathrm{~cm}^{2} /(\mathrm{GW}$ day $)$ or $\sigma_{f}=(5.92 \pm$ $0.14) \times 10^{-43} \mathrm{~cm}^{2} /$ fission. About 4σ excess of events was observed in the $4-6 \mathrm{MeV}$ prompt energy region.
${ }^{3}$ DENIZ 10 observe reactor $\bar{\nu}_{e} e$ scattering with recoil kinetic energies $3-8 \mathrm{MeV}$ using $\mathrm{CsI}(\mathrm{TI})$ detectors. The observed rate is consistent with the Standard Model prediction, leading to a constraint on $\sin ^{2} \theta_{W}=0.251 \pm 0.031$ (stat) ± 0.024 (sys).
${ }^{4}$ Updated result of KamLAND, including the data used in EGUCHI 03. Note that the survival probabilities for different periods are not directly comparable because the effective baseline varies with power output of the reactor sources involved, and there were large variations in the reactor power production in Japan in 2003.
${ }^{5}$ EGUCHI 03 observe reactor neutrino disappearance at $\sim 180 \mathrm{~km}$ baseline to various Japanese nuclear power reactors.
${ }^{6}$ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.
${ }^{7}$ APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\bar{\nu}_{e} p \rightarrow e^{+} n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description.
${ }^{8}$ GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River.
${ }^{9}$ DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard $V-A$ theory. Replaced by ACHKAR 95.
10 KWON 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80.

- Atmospheric neutrinos

Neutrinos and antineutrinos produced in the atmosphere induce μ-like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ / e. It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical $\mu / e, R(\mu / e)$, or that of experimental to theoretical $\mu /$ total, $R(\mu /$ total $)$ with total $=\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions. In addition, the measured "up-down asymmetry" for $\mu\left(\mathrm{N}_{u p}(\mu) / \mathrm{N}_{\text {down }}(\mu)\right)$ or $e\left(\mathrm{~N}_{u p}(e) / \mathrm{N}_{\text {down }}(e)\right)$ is reported. The expected "up-down asymmetry" is nearly unity if there is no neutrino oscillation.

$\mathrm{R}(\mu / e)=$ (Measured Ratio $\mu / e) /($ Expected Ratio μ / e)

VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.658 \pm 0.016 \pm 0.035 \quad 1$ ASHIE 05 SKAM sub-GeV
$0.702+0.030 \pm 0.101 \quad 2$ ASHIE 05 SKAM multi-GeV
$0.69 \pm 0.10 \pm 0.06 \quad 3$ SANCHEZ 03 SOU2 Calorimeter raw data
$1.00 \pm 0.15 \pm 0.08$
4 FUKUDA 96B KAMI Water Cherenkov
$1.00 \pm 0.15 \pm 0.08 \quad{ }^{5}$ DAUM 95 FREJ Calorimeter
$0.60{ }_{-0.05}^{+0.06} \pm 0.05 \quad{ }^{6}$ FUKUDA 94 KAMI sub-GeV
$0.57 \underset{-0.07}{+0.08} \pm 0.07 \quad 7$ FUKUDA 94 KAMI multi-Gev
${ }^{8}$ BECKER-SZ... 92B IMB Water Cherenkov
${ }^{1}$ ASHIE 05 results are based on an exposure of 92 kton yr during the complete SuperKamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with $0.1 \mathrm{GeV} / \mathrm{c}<p_{e}$ and μ-like events $0.2 \mathrm{GeV} / \mathrm{c}<p_{\mu}$, both having a visible energy $<1.33 \mathrm{GeV}$. These criteria match the definition used by FUKUDA 94.
${ }^{2}$ ASHIE 05 results are based on an exposure of 92 kton yr during the complete SuperKamiokande I running period. The analyzed data sample consists of fully-contained single-ring events with visible energy $>1.33 \mathrm{GeV}$ and partially-contained events. All partially-contained events are classified as μ-like.
${ }^{3}$ SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained e-flavor and μ-flavor events having lepton momentum $>0.3 \mathrm{GeV} / \mathrm{c}$.
${ }^{4}$ FUKUDA 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.
${ }^{5}$ DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95
also report $R(\mu / e)=0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events
${ }^{6}$ FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with $0.1<$ $p_{e}<1.33 \mathrm{GeV} / c$ and fully-contained μ-like events with $0.2<p_{\mu}<1.5 \mathrm{GeV} / c$.
${ }^{7}$ FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy $>1.33 \mathrm{GeV}$ and partially contained μ-like events.
${ }^{8}$ BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm$ 0.01 ± 0.05. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu / e)$ very close to the Kamiokande value.

$\mathrm{R}\left(\nu_{\mu}\right)=$ (Measured Flux of $\left.\nu_{\mu}\right) /$ (Expected Flux of ν_{μ})

- - We do not use the following data for averages, fits, limits, etc. - •

0.84 ± 0.12	1 ADAMSON	06	MINS	MINOS atmospheric
$0.72 \pm 0.026 \pm 0.13$	2 AMBROSIO	01	MCRO upward through-going	
$0.57 \pm 0.05 \pm 0.15$	3 AMBROSIO	00	MCRO upgoing partially contained	
$0.71 \pm 0.05 \pm 0.19$	4	AMBROSIO	00	MCRO downgoing partially contained
			+ upgoing stopping	
$0.74 \pm 0.036 \pm 0.046$	5 AMBROSIO	98	MCROStreamer tubes	
	6 CASPER	91	IMB	Water Cherenkov
	7 AGLIETTA	89	NUSX	
0.95 ± 0.22	8 BOLIEV	81		Baksan
0.62 ± 0.17	CROUCH	78	Case Western/UCI	

1 ADAMSON 06 uses a measurement of 107 total neutrinos compared to an expected rate of 127 ± 13 without oscillations.
${ }^{2}$ AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu}>1$ GeV . The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.
${ }^{3}$ AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV . The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
${ }^{4}$ AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV . The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate $(20 \%$ in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
${ }^{5}$ AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV . In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13. With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin ^{2} 2 \theta=1.0$ and $\Delta\left(m^{2}\right) \sim$ a few times $10^{-3} \mathrm{eV}^{2}$. However, the fit to the observed zenith distribution gives a maximum probability for χ^{2} of only 5% for the best oscillation hypothesis.
${ }^{6}$ CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is $0.41 \pm 0.03 \pm 0.02$, as compared with expected 0.51 ± 0.05 (syst).
${ }^{7}$ AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho=$ (measured number of ν_{e} 's)/(measured number of ν_{μ} 's). They report $\rho($ measured $)=\rho($ expected $)=0.96_{-0.28}^{+0.32}$.
${ }^{8}$ From this data BOLIEV 81 obtain the limit $\Delta\left(m^{2}\right) \leq 6 \times 10^{-3} \mathrm{eV}^{2}$ for maximal mixing, $\nu_{\mu} \nrightarrow \nu_{\mu}$ type oscillation.

$\mathrm{R}(\mu /$ total) $=($ Measured Ratio $\mu /$ total) $/($ Expected Ratio $\mu /$ total) $)$

VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$1.1_{-0.12}^{+0.07} \pm 0.11$
${ }^{1}$ CLARK
97 IMB multi-GeV
${ }^{1}$ CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy $>0.95 \mathrm{GeV}$.

$N_{\text {up }}(\mu) / N_{\text {down }}(\mu)$

VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

0.71 ± 0.06	1	ADAMSON	$12 B$
0.551			
-0.033			
0.035			

[^105]All partially-contained events are classified as μ-like. Upward-going events are those with $-1<\cos (z e n i t h$ angle) <-0.2 and downward-going events are those with $0.2<$ $\cos (z e n i t h ~ a n g l e)<1$. The μ-like up-down ratio for the multi- GeV data deviates from 1 (the expectation for no atmospheric ν_{μ} oscillations) by more than 12 standard deviations.

$N_{\text {up }}(e) / N_{\text {down }}(e)$

VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.961+0.086 \pm 0.016$
${ }^{1}$ ASHIE
05 SKAM multi-GeV
${ }^{1}$ ASHIE 05 results are based on an exposure of 92 kton yr during the complete SuperKamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy $>1.33 \mathrm{GeV}$. Upward-going events are those with $-1<\cos (z e n i t h ~ a n g l e)<-0.2$ and downward-going events are those with 0.2 $<\cos$ (zenith angle) <1. The e-like up-down ratio for the multi- GeV data is consistent with 1 (the expectation for no atmospheric ν_{e} oscillations).

R (up/down; μ) $=$ (Measured up/down; μ) / (Expected up/down; μ)

$\frac{V A L U E}{\text { DOCUMENT ID }}$ TECN $\frac{\text { COMMENT }}{}$

- - We do not use the following data for averages, fits, limits, etc. - • -

| $0.62 \pm 0.05 \pm 0.02$ | 1 | ADAMSON | $12 B$ | MINS |
| :--- | :--- | :--- | :--- | :--- | contained-vertex muons

1^{1} ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of $37.9 \mathrm{kton} \cdot \mathrm{yr}$). This result is obtained with a sample of high resolution contained-vertex muons. The expected ratio is calculated with no neutrino oscillation.
${ }^{2}$ ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr. The expected ratio is calculated with no neutrino oscillation.
$\mathrm{N}\left(\mu^{+}\right) / \mathrm{N}\left(\mu^{-}\right)$
VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

$0.46_{-0.04}^{+0.05}$	1,2 ADAMSON	12 B	MINS	contained-vertex muons
$0.63_{-0.08}^{+0.09}$	1,3 ADAMSON	12 B	MINS	ν-induced rock-muons

${ }^{1}$ ADAMSON 12 B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton $\cdot \mathrm{yr}$). The muon charge ratio $\mathrm{N}\left(\mu^{+}\right) / \mathrm{N}\left(\mu^{-}\right)$represents the $\bar{\nu}_{\mu} / \nu_{\mu}$ ratio.
2 This result is obtained with a charge-separated sample of high resolution contained-vertex muons. The quoted error is statistical only.
3 This result is obtained with a charge-separated sample of high resolution neutrino-induced rock-muons. The quoted error is statistical only.
$\mathrm{R}\left(\mu^{+} / \mu^{-}\right)=\left(\right.$Measured $\left.\mathrm{N}\left(\mu^{+}\right) / \mathrm{N}\left(\mu^{-}\right)\right) /\left(\operatorname{Expected} \mathrm{N}\left(\mu^{+}\right) / \mathrm{N}\left(\mu^{-}\right)\right)$
$\frac{\text { VALUE }}{\text { • • We do not use the following data for averages, fits, limits, etc. • • • }}$
$0.93 \pm 0.09 \pm 0.09 \quad 1,2$ ADAMSON 12 B MINS contained-vertex muons
$1.29{ }_{-0.17}^{+0.19} \pm 0.16 \quad 1,3$ ADAMSON $\quad 12 \mathrm{~B}$ MINS ν-induced rock-muons
$1.03 \pm 0.08 \pm 0.08$
1,4 ADAMSON 12B MINS contained
$1.39{ }_{-0.46-0.14}^{+0.35}+5$ ADAMSON 07 MINS Upward and horizontal μ with
$0.96_{-0.27}^{+0.38} \pm 0.15 \quad{ }^{6}$ ADAMSON 06 MINS atmospheric ν with far detector
${ }^{1}$ ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of $37.9 \mathrm{kton} \cdot \mathrm{yr}$). The muon charge ratio $\mathrm{N}\left(\mu^{+}\right) / \mathrm{N}\left(\mu^{-}\right)$represents the $\bar{\nu}_{\mu} / \nu_{\mu}$ ratio. As far as the same oscillation parameters are used for $\nu \mathrm{s}$ and $\bar{\nu}$, the expected $\bar{\nu}_{\mu} / \nu_{\mu}$ ratio is almost entirely independent of any input oscillations.
2 This result is obtained with a charge-separated sample of high resolution contained-vertex muons.
${ }^{3}$ This result is obtained with a charge-separated sample of high resolution neutrino-induced rock-muons.
4 The charge-separated samples of high resolution contained-vertex muons and neutrinoinduced rock-muons are combined to obtain this result which is consistent with unity.
${ }^{5}$ ADAMSON 07 result is obtained with the MINOS far detector in 854.24 live days, based on neutrino-induced upward-going and horizontal muons. This result is consistent with $C P T$ conservation.
${ }^{6}$ ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr, based on contained events. The expected ratio is calculated by assuming the same oscillation parameters for neutrinos and antineutrinos.

— Solar neutrinos

Solar neutrinos are produced by thermonuclear fusion reactions in the Sun. Radiochemical experiments measure particular combinations of fluxes from various neutrino-producing reactions, whereas water-Cherenkov experiments mainly measure a flux of neutrinos from decay of ${ }^{8} \mathrm{~B}$. Solar neutrino fluxes are composed of all active neutrino species, ν_{e}, ν_{μ}, and ν_{τ}. In addition, some other mechanisms may cause antineutrino components in solar neutrino fluxes. Each measurement method is sensitive to

a particular component or a combination of components of solar neutrino fluxes.

$\nu_{\boldsymbol{e}}$ Capture Rates from Radiochemical Experiments

1 SNU (Solar Neutrino Unit) $=10^{-36}$ captures per atom per second.
VALUE (SNU) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • -
$73.4 \underset{-6.0}{+6.1}+3.7 \quad 1$ KAETHER $10 \quad$ GALX reanalysis
$67.6 \pm 4.0 \pm 3.2 \quad 2$ KAETHER $10 \quad$ GNO +GALX reanalysis combined
$65.4 \underset{-3.0}{+3.1}+2.6 \quad 3$ ABDURASHI... 09 SAGE ${ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}$
$62.9 \underset{-5.3}{+5.5} \pm 2.5 \quad 4$ ALTMANN $05 \quad$ GNO $\quad{ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}$
$69.3 \pm 4.1 \pm 3.6 \quad 5$ ALTMANN 05 GNO GNO + GALX combined
$77.5 \pm 6.2 \underset{-4.7}{+4.3} \quad{ }^{6}$ HAMPEL $99 \quad$ GALX ${ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}$
$2.56 \pm 0.16 \pm 0.16 \quad{ }^{7}$ CLEVELAND $98 \quad$ HOME ${ }^{37} \mathrm{CI} \rightarrow{ }^{37} \mathrm{Ar}$
${ }^{1}$ KAETHER 10 reports the reanalysis results of a complete GALLEX data (GALLEX I+II+III+IV, reported in HAMPEL 99) based on the event selection with a new pulse shape analysis, which provides a better background reduction than the rise time analysis adopted in HAMPEL 99.
${ }^{2}$ Combined result of GALLEX I+II+III+IV reanalysis and GNO I+II+III (ALTMANN 05).
${ }^{3}$ ABDURASHITOV 09 reports a combined analysis of 168 extractions of the SAGE solar neutrino experiment during the period January 1990 through December 2007, and updates the ABDURASHITOV 02 result. The data are consistent with the assumption that the solar neutrino production rate is constant in time. Note that a $\sim 15 \%$ systematic uncertainty in the overall normalization may be added to the ABDURASHITOV 09 result, because calibration experiments for gallium solar neutrino measurements using intense ${ }^{51} \mathrm{Cr}$ (twice by GALLEX and once by SAGE) and ${ }^{37} \mathrm{Ar}$ (by SAGE) result in an average ratio of 0.87 ± 0.05 of the observed to calculated rates
${ }^{4}$ ALTMANN 05 reports the complete result from the GNO solar neutrino experiment (GNO I+II+III), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 9 April 2003.
${ }^{5}$ Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III.
${ }^{6}$ HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEXIV result (12 runs) is $118.4 \pm$ 17.8 ± 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of $300{ }^{71} \mathrm{Ge}$ events were observed. Note that a $\sim 15 \%$ systematic uncertainty in the overall normalization may be added to the HAMPEL 99 result, because calibration experiments for gallium solar neutrino measurements using intense ${ }^{51} \mathrm{Cr}$ (twice by GALLEX and once by SAGE) and ${ }^{37} \mathrm{Ar}$ (by SAGE) result in an average ratio of 0.87 ± 0.05 of the observed to calculated rates.
${ }^{7}$ CLEVELAND 98 is a detailed report of the ${ }^{37} \mathrm{Cl}$ experiment at the Homestake Mine. The average solar neutrino-induced ${ }^{37}$ Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

$\phi_{E S}\left({ }^{8} \mathrm{~B}\right)$

${ }^{8} \mathrm{~B}$ solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the crosssection difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.16 \sigma\left(\nu_{e} e\right)$. If the ${ }^{8} \mathrm{~B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_{e}.
VALUE $\left(10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$\left.\begin{array}{lllll}2.53 \\ -0.28 & +0.13 & 1 \\ -0.10\end{array}\right)$

2.39 ± 0.34	+0.16	${ }_{-}^{15}$ AHMAD	01	SNO
average flux				
2.80 ± 0.19	± 0.33	${ }^{16}$ FUKUDA	96	KAMI average flux
2.70 ± 0.27	${ }^{16}$ FUKUDA	96	KAMI	day flux
2.87 ± 0.27	16 FUKUDA	96	KAMI	night flux

${ }^{1}$ ANDERSON 19 reports this result from the $\nu_{e} e$ elastic scattering rate using a 69.2 kton day (or 114.7 days) of exposure from May through December, 2017 during the SNO+ detector's water commissioning phase. The events over the reconstructed electron kinetic energy range of 5-15 MeV were analyzed.
${ }^{2}$ AGOSTINI 18B obtained this result from the $\nu_{e} e$ elastic scattering rate over the period between January 2008 and December 2016.
${ }^{3}$ ABE 16C reports the combined results of the four phases of the Super-Kamiokande average flux measurements. Here the revised Super-Kamiokande-III result is used.
${ }^{4}$ ABE 16C reports the Super-Kamiokande-IV results for 1664 live days from September 2008 to February 2014. The analysis threshold is total electron energy of 4.0 MeV .
${ }^{5}$ ABE 16C revised the Super-Kamiokande-III average flux value reported in ABE 11. Super-Kamiokande-III results are for 548 live days from August 4, 2006 to August 18, 2008. The analysis threshold is 5.0 MeV , but the event sample in the $5.0-6.5 \mathrm{MeV}$ total electron energy range has a total live time of 298 days.
${ }^{6}$ ABE 11 recalculated the Super-Kamiokande-II results using ${ }^{8} B$ spectrum of WINTER 06A.
${ }^{7}$ ABE 11 recalculated the Super-Kamiokande-I results using ${ }^{8}$ B spectrum of WINTER 06A.
${ }^{8}$ ABE 11B use a 123 kton day exposure of the KamLAND liquid scintillation detector to measure the ${ }^{8} \mathrm{~B}$ solar neutrino flux. They utilize $\nu-e$ elastic scattering above a reconstructed-energy threshold of 5.5 MeV , corresponding to 5 MeV electron recoil energy. 299 electron recoil candidate events are reported, of which 157 ± 23.6 are assigned to background.
${ }^{9}$ BELLINI 10A reports the Borexino result with 3 MeV energy threshold for scattered electrons. The data correspond to 345.3 live days with a target mass of 100 t , between July 15, 2007 and August 23, 2009.
10 AHARMIM 08 reports the results from SNO Phase III measurement using an array of ${ }^{3} \mathrm{He}$ proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ${ }^{8} \mathrm{~B}$ shape.
${ }^{11}$ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the average flux is 7 MeV .
12 HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
13 AHARMIM 05A measurements were made with dissolved $\mathrm{NaCl}(0.195 \%$ by weight $)$ in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ${ }^{8} \mathrm{~B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted ${ }^{8} \mathrm{~B}$ energy spectrum was added for comparison with AHMAD 02 results.
${ }^{14}$ AHMAD 02 reports the ${ }^{8}$ B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 5 MeV . The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.
${ }^{15}$ AHMAD 01 reports the ${ }^{8}$ B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 6.75 MeV . The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.
${ }^{16}$ FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $\mathrm{E}_{e}>9.3 \mathrm{MeV}$ (first 449 days), $>7.5 \mathrm{MeV}$ (middle 794 days), and $>7.0 \mathrm{MeV}$ (last 836 days). These results update the HIRATA 90 result for the average ${ }^{8}$ B solar-neutrino flux and HIRATA 91 result for the day-night variation in the ${ }^{8}$ B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

$\phi_{C C}\left({ }^{8} \mathrm{~B}\right)$

${ }^{8} \mathrm{~B}$ solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to ν_{e}.

VALUE $\left(10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •

$1.67_{-0.04-0.08}^{+0.05+0.07}$	1 AHARMIM	08	SNO	Phase III
$1.68 \pm 0.06_{-0.09}^{+0.08}$	2 AHARMIM	05A	SNO	Salty $\mathrm{D}_{2} \mathrm{O} ;{ }^{8} \mathrm{~B}$ shape not const
$1.72 \pm 0.05 \pm 0.11$	2 AHARMIM	05A	SNO	Salty $\mathrm{D}_{2} \mathrm{O} ;{ }^{8} \mathrm{~B}$ shape constrained
$1.76{ }_{-0.05}^{+0.06} \pm 0.09$	${ }^{3}$ AHMAD	02	SNO	average flux
$1.75 \pm 0.07_{-0.11}^{+0.12} \pm 0.05$	${ }^{4}$ AHMAD	01	SNO	average flux

${ }^{1}$ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ${ }^{3} \mathrm{He}$ proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ${ }^{8} B$ shape.
${ }^{2}$ AHARMIM 05A measurements were made with dissolved $\mathrm{NaCl}(0.195 \%$ by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ${ }^{8} \mathrm{~B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted ${ }^{8} \mathrm{~B}$ energy spectrum was added for comparison with AHMAD 02 results.
${ }^{3}$ AHMAD 02 reports the SNO result of the ${ }^{8}$ B solar-neutrino flux measured with chargedcurrent reaction on deuterium, $\nu_{e} d \rightarrow p p e^{-}$, above the kinetic energy threshold of 5 MeV . The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. The complete description of the SNO Phase I data set is given in AHARMIM 07
${ }^{4}$ AHMAD 01 reports the first SNO result of the ${ }^{8}$ B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_{e}{ }^{d} \rightarrow p p e^{-}$, above the kinetic energy threshold of 6.75 MeV . The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

$\phi_{N C}\left({ }^{8} \mathrm{~B}\right)$

${ }^{8}$ B solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_{e}, ν_{μ}, and ν_{τ}.
VALUE $\left(10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

$5.25 \pm 0.16{ }_{-0.13}^{+0.11}$	${ }^{1}$ AHARMIM	13	SNO	All three phases combined
$\begin{gathered} 5.1400_{-0.158}^{+0.160}+0.132 \\ -0.117 \end{gathered}$	2 AHARMIM	10	SNO	Phase I+II, low threshold
$5.54 \underset{-0.31}{+0.33} \underset{-0.34}{+0.36}$	${ }^{3}$ AHARMIM	08	SNO	Phase III, prop. counter + PMT
$4.94 \pm 0.21{ }_{-0.34}^{+0.38}$	${ }^{4}$ AHARMIM	05A	SNO	Salty $\mathrm{D}_{2} \mathrm{O} ;{ }^{8} \mathrm{~B}$ shape not const.
$4.81 \pm 0.19{ }_{-0.27}^{+0.28}$	${ }^{4}$ AHARMIM	05A	SNO	Salty $\mathrm{D}_{2} \mathrm{O} ;{ }^{8} \mathrm{~B}$ shape constrained
$5.09 \underset{-0.43}{+0.44} \underset{-0.43}{+0.46}$	${ }^{5}$ AHMAD	02	SNO	average flux; ${ }^{8} \mathrm{~B}$ shape const.
$6.42 \pm 1.57{ }_{-}^{+0.55}$	${ }^{5}$ AHMAD	02	SNO	average flux; ${ }^{8} \mathrm{~B}$ shape not const.

${ }^{1}$ AHARMIM 13 obtained this result from a combined analysis of the data from all three phases, SNO-I, II, and III. The measurement of the ${ }^{8}$ B flux mostly comes from the NC signal, however, CC contribution is included in the fit.
${ }^{2}$ AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV . This result is obtained with a "binned-histogram unconstrained fit" where binned probability distribution functions of the neutrino signal observables were used without any model constraints on the shape of the neutrino spectrum.
${ }^{3}$ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ${ }^{3}$ He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ${ }^{8} \mathrm{~B}$ shape.
${ }^{4}$ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ${ }^{8} \mathrm{~B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted ${ }^{8} \mathrm{~B}$ energy spectrum was added for comparison with AHMAD 02 results.
${ }^{5}$ AHMAD 02 reports the first SNO result of the ${ }^{8}$ B solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_{\ell} d \rightarrow n p \nu_{\ell}$, above the neutral-current reaction threshold of 2.2 MeV . The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001. The complete description of the SNO Phase I data set is given in AHARMIM 07.
$\phi_{\nu_{\mu}+\nu_{\tau}}\left({ }^{8} \mathrm{~B}\right)$
Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ${ }^{8} \mathrm{~B}$ solar-neutrino flux.

VALUE $\left(10^{6} \mathrm{~cm}^{-2}{ }^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •

$3.26 \pm 0.25_{-0.35}^{+0.40}$	${ }^{1}$ AHARMIM	05A	SNO	From $\phi_{N C}, \phi_{C C}$, and $\phi_{E S}$; ${ }^{8} B$ shape not const.
$3.09 \pm 0.22+0.30$	${ }^{1}$ AHARMIM	05A	SNO	From $\phi_{N C}, \phi_{C C}$, and $\phi_{E S}$; ${ }^{8} \mathrm{~B}$ shape constrained
$3.41 \pm 0.45{ }_{-0.45}^{+0.48}$	${ }^{2}$ AHMAD	02	SNO	From $\phi_{N C}, \phi_{C C}$, and $\phi_{E S}$
3.69 ± 1.13	${ }^{3}$ AHMAD	01		Derived from SNO+SuperKam,

${ }^{1}$ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ${ }^{8} \mathrm{~B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted ${ }^{8} \mathrm{~B}$ energy spectrum was added for comparison with AHMAD 02 results.
${ }^{2}$ AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ${ }^{8} \mathrm{~B}$ solar-neutrino flux, by combining the charged-current result, the νe elasticscattering result and the neutral-current result. The complete description of the SNO Phase I data set is given in AHARMIM 07.
${ }^{3}$ AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ${ }^{8}$ B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Total Flux of Active pp Solar Neutrinos

Total flux of active neutrinos ($\nu_{e}, \nu_{\mu}, \nu_{\tau}$).

$$
\underline{\operatorname{VALUE}\left(10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \quad \text { DOCUMENT ID }} \text { TECN COMMENT }
$$

- - We do not use the following data for averages, fits, limits, etc. - •
$6.1 \pm 0.5_{-0.5}^{+0.3} \quad 1$ AGOSTINI 18 B BORX Use ν_{e} e scattering rate
${ }^{1}$ AGOSTINI 18B obtained this result from the measured $\nu_{e} e$ elastic scattering rate over the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17. Assuming a high-metalicity standard solar model, the electron neutrino survival probability for the $p p$ solar neutrino is calculated to be 0.57 ± 0.09.

Total Flux of Active ${ }^{7} \mathrm{Be}$ Solar Neutrinos
 Total flux of active neutrinos $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$.

$\operatorname{VALUE}\left(10^{9} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.99 \pm 0.11_{-0.08}^{+0.06} \quad 1$ AGOSTINI 18 B BORX Use $\nu_{e} e$ scattering rate
${ }^{1}$ AGOSTINI 18B obtained this result from the measured $\nu_{e} e$ elastic scattering rate over the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17. Assuming a high-metalicity standard solar model, the electron neutrino survival probability for the ${ }^{7} \mathrm{Be}$ solar neutrino is calculated to be 0.53 ± 0.05.

Total Flux of Active pep Solar Neutrinos

Total flux of active neutrinos $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$.
VALUE $\left(10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.27 \pm 0.19_{-0.12}^{+0.08} \quad 1$ AGOSTINI $\quad 18 \mathrm{~B}$ BORX Use $\nu_{e} e$ scattering rate
${ }^{1}$ AGOSTINI 18B obtained this result from the measured $\nu_{e} e$ elastic scattering rate over the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17 and a high-metalicity standard solar model. The electron neutrino survival probability for the pep solar neutrino is calculated to be $0.43 \pm$ 0.11 .

Total Flux of Active ${ }^{8}$ B Solar Neutrinos

Total flux of active neutrinos $\left(\nu_{e}, \nu_{\mu}\right.$, and $\left.\nu_{\tau}\right)$.

VALUE $\left(10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - •
$5.95{ }_{-0.71}^{+0.75}+0.28 \quad 1$ ANDERSON $19 \quad$ SNO + Water phase; $\nu_{e} e$ scattering rate
$5.68 \underset{-0.41}{+0.39} \underset{-0.03}{+0.03} \quad 2$ AGOSTINI 18 B BORX From $\nu_{e} e$ scattering rate
$5.25 \pm 0.16 \underset{-0.13}{+0.11} \quad 3$ AHARMIM 13 SNO All three phases combined
$5.046{ }_{-0.152-0.123}^{+0.159}+0.107 \quad 4$ AHARMIM $10 \quad$ SNO From $\phi_{N C}$ in Phase I + II, Iow
$5.54 \underset{-0.31}{+0.33} \underset{-0.34}{+0.36} \quad 5$ AHARMIM 08 SNO $\phi_{N C}$ in Phase III
$4.94 \pm 0.21 \underset{-0.34}{+0.38} \quad{ }^{6}$ AHARMIM $\quad 05 \mathrm{~A}$ SNO From $\phi_{N C} ;{ }^{8} \mathrm{~B}$ shape not const.
$4.81 \pm 0.19{ }_{-0.27}^{+0.28} \quad{ }^{6}$ AHARMIM $\quad 05 \mathrm{~A}$ SNO From $\phi_{N C} ;{ }^{8} \mathrm{~B}$ shape constrained
$5.09 \underset{-0.43}{+0.44} \underset{-0.43}{+0.46} \quad 7$ AHMAD 02 SNO Direct measurement from $\phi_{N C}$
$5.44 \pm 0.99 \quad 8$ AHMAD $01 \quad$ Derived from SNO+SuperKam, water Cherenkov
${ }^{1}$ ANDERSON 19 reports this result from the measured $\nu_{e} e$ elastic scattering rate using a 69.2 kton day (or 114.7 days) of exposure from May through December, 2017 during the SNO+ detector's water commissioning phase, assuming the neutrino mixing parameters given in PDG 16 and a standard solar model given in BAHCALL 05.
${ }^{2}$ AGOSTINI 18B obtained this result from the measured $\nu_{e} e$ elastic scattering rate over the period between January 2008 and December 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17. Assuming a high-metalicity standard solar model, the electron neutrino survival probability for the ${ }^{8} \mathrm{~B}$ solar neutrino is calculated to be 0.37 ± 0.08.
${ }^{3}$ AHARMIM 13 obtained this result from a combined analysis of the data from all three phases, SNO-I, II, and III. The measurement of the ${ }^{8}$ B flux mostly comes from the NC signal, however, CC contribution is included in the fit.
${ }^{4}$ AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV . This result is obtained with the assumption of unitarity, which relates the NC, CC, and ES rates. The data were fit with the free parameters directly describing the total ${ }^{8} \mathrm{~B}$ neutrino flux and the energy-dependent ν_{e} survival probability.
${ }^{5}$ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ${ }^{3} \mathrm{He}$ proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17

Lepton Particle Listings

Neutrino Mixing

live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ${ }^{8}$ B shape.
${ }^{6}$ AHARMIM 05A measurements were made with dissolved $\mathrm{NaCl}(0.195 \%$ by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ${ }^{8} \mathrm{~B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted ${ }^{8} \mathrm{~B}$ energy spectrum was added for comparison with AHMAD 02 results.
${ }^{7}$ AHMAD 02 determined the total flux of active ${ }^{8} \mathrm{~B}$ solar neutrinos by directly measuring the neutral-current reaction, $\nu_{\ell} d \rightarrow n p \nu_{\ell}$, which is equally sensitive to ν_{e}, ν_{μ}, and ν_{τ}. The complete description of the SNO Phase I data set is given in AHARMIM 07.
${ }^{8}$ AHMAD 01 deduced the total flux of active ${ }^{8}$ B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Total Flux of Active CNO Solar Neutrinos

Total flux of active neutrinos $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$.

VALUE $\left(10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \quad$ CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$<7.9 \quad 95 \quad 1$ AGOSTINI 18B BORX Use $\nu_{e} e$ scattering rate
${ }^{1}$ AGOSTINI 18B obtained this result from an upper limit of the $\nu_{e} e$ elastic scattering rate for the CNO neutrinos over the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17.

Total Flux of Active hep Solar Neutrinos

Total flux of active neutrinos ($\nu_{e}, \nu_{\mu}, \nu_{\tau}$).
VALUE $\left(10^{5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \quad$ CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$<2.290 \quad 1$ AGOSTINI 18 B BORX Use $\nu_{e} e$ scattering rate ${ }^{1}$ AGOSTINI 18B obtained this result from an upper limit of the $\nu_{e} e$ elastic scattering rate for the hep neutrino using the dataset corresponding to an exposure of $0.8 \mathrm{kt} \cdot \mathrm{yr}$ and assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17.

Day-Night Asymmetry (${ }^{8} \mathrm{~B}$)
$A=\left(\phi_{\text {night }}-\phi_{\text {day }}\right) / \phi_{\text {average }}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 3 3} \mathbf{\pm 0 . 0 1 0} \mathbf{\pm 0 . 0 0 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{ABE}} \frac{16 \mathrm{C}}{} \frac{\text { TECN }}{\text { SKAM }} \frac{\text { COMMENT }}{\text { SK combined; Based on } \phi_{E S}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.036 \pm 0.016 \pm 0.006 \quad 2 \mathrm{ABE} \quad 16 \mathrm{C}$ SKAM SK-IV; Based on ϕ^{2}
$0.032 \pm 0.011 \pm 0.005 \quad 3$ RENSHAW 14 SKAM Based on $\phi_{E S}$
$0.063 \pm 0.042 \pm 0.037{ }^{4}$ CRAVENS 08 SKAM Based on $\phi_{E S}$
$0.021 \pm 0.020_{-0.013}^{+0.012} \quad{ }^{5}$ HOSAKA 06 SKAM Based on $\phi_{E S}$
$0.017 \pm 0.016_{-0.013}^{+0.012} \quad{ }^{6}$ HOSAKA 06 SKAM Fitted in the LMA region
$-0.056 \pm 0.074 \pm 0.053 \quad 7$ AHARMIM \quad 05A SNO From salty SNO $\phi_{C C}$

$0.14 \pm 0.063_{-0.014}^{+0.015} \quad{ }^{8}$ AHMAD \quad 02B SNO \quad Derived from SNO $\phi_{C C}$
$0.07 \pm 0.049_{-0.012}^{+0.013} \quad{ }^{9}$ AHMAD $\quad 02 \mathrm{~B}$ SNO Const. of no $\phi_{N C}$ asymmetry
${ }^{1}$ ABE 16 C reports the combined day-night flux asymmetry results of the four phases of the Super-Kamiokande measurements. Amplitude fit method is used. See footnote to RENSHAW 14.
${ }^{2}$ ABE 16C reports the Super-Kamiokande-IV results for 1664 live days from September 2008 to February 2014. The analysis threshold for day-night flux asymmetry is recoil electron energy of 4.49 MeV (total electron energy of 5.0 MeV). Amplitude fit method is used. See footnote to RENSHAW 14.
${ }^{3}$ RENSHAW 14 obtains this result by using the "amplitude fit" introduced in SMY 04. The data from the Super-Kamiokande(SK)-I, -II, -III, and 1306 live days of the SK-IV measurements are used. The analysis threshold is recoil-electron kinetic energy of 4.5 MeV for SK-III, and SK-IV except for 250 live days in SK-III (6.0 MeV). The analysis threshold for SK-I and SK-II is the same as in the previous reports. (Note that in the previous SK solar-neutrino results, the analysis threshold is quoted as recoil-electron total energy.) This day-night asymmetry result is consistent with neutrino oscillations for $4 \times 10^{-5} \mathrm{eV}^{2}<\Delta \mathrm{m}_{21}^{2}<7 \times 10^{-5} \mathrm{eV}^{2}$ and large mixing values of θ_{12} at the 68\% CL.
${ }^{4}$ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the day and night fluxes is 7.5 MeV except for the first 159 live days (8.0 MeV).
${ }^{5}$ HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
${ }^{6}$ This result with reduced statistical uncertainty is obtained by assuming two-neutrino oscillations within the LMA (large mixing angle) region and by fitting the time variation of the solar neutrino flux measured via ν_{e} elastic scattering to the variations expected from neutrino oscillations. For details, see SMY 04. There is an additional small systematic error of ± 0.0004 coming from uncertainty of oscillation parameters.
${ }^{7}$ AHARMIM 05A measurements were made with dissolved $\mathrm{NaCl}(0.195 \%$ by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, with 176.5 days of the live time recorded during the day and 214.9 days during the night. This result is obtained with the spectral distribution of the CC events not constrained to the ${ }^{8} \mathrm{~B}$ shape.
${ }^{8}$ AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07.
${ }^{9}$ AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and νe elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07.

$\phi_{E S}\left({ }^{7} \mathrm{Be}\right)$

${ }^{7}$ Be solar-neutrino flux measured via ν_{e} elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the crosssection difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.2 \sigma\left(\nu_{e} e\right)$. If the ${ }^{7} \mathrm{Be}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of ν_{e}.
VALUE $\left(10^{9} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -

3.26 ± 0.52	1	GANDO	15
3.10 ± 0.15	2 KELLIND average flux		
	$11 A$	BORX average flux	

${ }^{1}$ GANDO 15 uses 165.4 kton day exposure of the KamLAND liquid scintillator detector to measure the $862 \mathrm{keV}{ }^{7} \mathrm{Be}$ solar neutrino flux via $\nu-e$ elastic scattering
${ }^{2}$ BELLINI 11A reports the ${ }^{7}$ Be solar neutrino flux measured via $\nu-e$ elastic scattering. The data correspond to 740.7 live days between May 16, 2007 and May 8, 2010, and also Correspond to 153.6 ton year fiducial exposure. BELLINI 11A measured the 862 keV ${ }^{7}$ Be solar neutrino flux, which is an 89.6% branch of the ${ }^{7} \mathrm{Be}$ solar neutrino flux, to be $(2.78 \pm 0.13) \times 10^{9} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. Supercedes ARPESELLA 08A.

$\phi_{E S}$ (pep)

pep solar-neutrino flux measured via ν_{e} elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the cross section difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.2 \sigma\left(\nu_{e} e\right)$. If the pep solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of ν_{e}.
VALUE $\left(10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.0 \pm 0.2 \quad 1$ BELLINI 12A BORX average flux
${ }^{1}$ BELLINI 12A reports 1.44 MeV pe p solar-neutrino flux measured via ν_{e} elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,4009 ton day fiducial exposure. The listed flux value is calculated from the observed rate of pep solar neutrino interactions in Borexino ($3.1 \pm 0.6 \pm 0.3$ counts/(day-100 ton)) and the corresponding rate expected for no neutrino flavor oscillations (4.47 ± 0.05 counts/(day•100 ton)), using the SSM prediction for the pep solar neutrino flux of $(1.441 \pm 0.012) \times 10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

$\phi_{E S}$ (CNO)

CNO solar-neutrino flux measured via ν_{e} elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the cross section difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.2 \sigma\left(\nu_{e} e\right)$. If the CNO solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of ν_{e}.
VALUE $\left(10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lllll}<7.7 & 90 & 1 & \text { BELLINI } & \text { 12A } \\ \text { BORX }\end{array}$
${ }^{1}$ BELLINI 12A reports an upper limit of the CNO solar neutrino flux measured via ν_{e} elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,409 ton day fiducial exposure.

$\phi_{E S}(p p)$

$p p$ solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the cross section difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.3 \sigma\left(\nu_{e} e\right)$. If the $p p$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.3 times of ν_{e}. VALUE $\left(10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
4.4 ± 0.5
${ }^{1}$ BELLINI
14A BORX average flux
${ }^{1}$ BELLINI 14A reports $p p$ solar-neutrino flux measured via νe elastic scattering. The data were collected between January 2012 and May 2013, corresponding to 408 days of data. The $p p$ neutrino interaction rate in Borexino is measured to be $144 \pm 13 \pm 10$ counts/(day-100 ton) by fitting the measured energy spectrum of events in the 165-590 keV recoil electron kinetic energy window with the expected signal + background spectrum. The listed flux value $\phi_{E S}(p p)$ is calculated from the observed rate and the number of $(3.307 \pm 0.003) \times 10^{31}$ electrons for 100 tons of the Borexino scintillator, and the $\nu_{e} e$ integrated cross section over the $p p$ neutrino spectrum, $\sigma\left(\nu_{e} e\right)=11.38 \times 10^{-46} \mathrm{~cm}^{2}$.
$\boldsymbol{\phi}_{\boldsymbol{C C} \boldsymbol{C}}(p p)$

\quad| $p p$ solar-neutrino flux measured with charged-current reaction which is sensitive exclu- |
| :--- |
| sively to ν_{e}. |

$\underline{\text { VALUE }\left(10^{10} \mathrm{~cm}^{-2}{ }_{\mathrm{s}}-1\right)}$ DOCUMENT ID \quad TECN COMMENT
VALUE (10 $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$) DOCUMENTID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$3.38 \pm 0.47 \quad 1$ ABDURASHI... 09 FIT Fit existing solar- ν data
${ }^{1}$ ABDURASHITOV 09 reports the $p p$ solar-neutrino flux derived from the Ga solar neu-
trino capture rate by subtracting contributions from ${ }^{8} \mathrm{~B},{ }^{7} \mathrm{Be}, p$ ep and CNO solar neu-
trino fluxes determined by other solar neutrino experiments as well as neutrino oscillation
parameters determined from available world neutrino oscillation data.
$\phi_{E S}$ (hep)
hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive
to all active neutrino flavors, but with reduced sensitivity to ν_{μ}, ν_{τ} due to the cross-
section difference, $\sigma\left(\nu_{\mu, \tau} e\right) \sim 0.16 \sigma\left(\nu_{e} e\right)$. If the hep solar-neutrino flux involves
nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of
ν_{e}.
$\left.\underline{\operatorname{VALUE}\left(10^{3} \mathrm{~cm}^{-2}-1\right.}\right) \quad$ CL\% OOCUMENT ID \quad TECN
- - We do not use the following data for averages, fits, limits, etc. - - •
$<73 \quad 90 \quad 1$ HOSAKA 06 SKAM
${ }^{1}$ HOSAKA 06 result is obtained from the recoil electron energy window of $18-21 \mathrm{MeV}$, and updates FUKUDA 01 result.

$\left.\phi_{\overline{v e}_{e}}{ }^{(8)}{ }^{\mathrm{B}}\right)$

Searches are made for electron antineutrino flux from the Sun. Flux limits listed here are derived relative to the BS05(OP) Standard Solar Model ${ }^{8}$ B solar neutrino flux $\left(5.69 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$, with an assumption that solar $\bar{\nu}^{\mathrm{s}}$ follow an unoscillated ${ }^{8} \mathrm{~B}$ neutrino spectrum
VALUE (\%) CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

<0.013	90	BELLINI	11	BORX	$\mathrm{E}_{\bar{\nu}_{e}}>1.8 \mathrm{MeV}$
<1.9	90	1	BALATA	06	CNTR
$0.8<\mathrm{E}_{\bar{\nu}_{e}}<20.0 \mathrm{MeV}$					
<0.72	90	AHARMIM	04	SNO	$4.0<\mathrm{E}_{\bar{\nu}_{e}}<14.8 \mathrm{MeV}$
<0.022	90	EGUCHI	04	KLND	$8.3<\mathrm{E}_{\bar{\nu}_{e}}<14.8 \mathrm{MeV}$
<0.7	90	GANDO	03	SKAM	$8.0<\mathrm{E}_{\bar{\nu}_{e}}<20.0 \mathrm{MeV}$
<1.7	90	AGLIETTA	96	LSD	$7<\mathrm{E}_{\bar{\nu}_{e}}<17 \mathrm{MeV}$

${ }^{1}$ BALATA 06 obtained this result from the search for $\bar{\nu}_{e}$ interactions with Counting Test Facility (the prototype of the Borexino detector).

(B) Three-neutrino mixing parameters

THREE-NEUTRINO MIXING PARAMETERS

Updated July 2019 by M. Goodman (ANL).
Introduction and Notation: With the exception of possible short-baseline anomalies (such as LSND), current accelerator, reactor, solar and atmospheric neutrino data can be described within the framework of a 3×3 mixing matrix between the flavor states ν_{e}, ν_{μ} and ν_{τ} and mass eigenstates ν_{1}, ν_{2} and ν_{3}. (See equation 14.34 of the review "Neutrino Mass, Mixing and Oscillations" by M.C. Gonzalez-Garcia and M. Yokoyama.) Whether or not this is the ultimately correct framework, it is currently widely used to parametrize neutrino mixing data and to plan new experiments.

The mass differences are called $\Delta m_{21}^{2} \equiv m_{2}^{2}-m_{1}^{2}$ and $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$. Until recently, we assumed

$$
\begin{equation*}
\Delta m_{32}^{2} \sim \Delta m_{31}^{2} . \tag{1}
\end{equation*}
$$

But the experimental error is comparable to the difference $\Delta m_{31}^{2}-\Delta m_{32}^{2}=\Delta m_{21}^{2}$, so we quote them separately when appropriate. The measurements made by ν_{μ} disappearance at accelerators and by ν_{e} disappearance at reactors are slightly different mixtures of Δm_{32}^{2} and Δm_{31}^{2}. The angles are labeled θ_{12}, θ_{23} and θ_{13}. The CP violating phase is called $\delta_{C P}$.

The familiar two neutrino form for oscillations is

$$
\begin{equation*}
P\left(\nu_{a} \rightarrow \nu_{b} ; a \neq b\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\Delta m^{2} L / 4 E\right) . \tag{2}
\end{equation*}
$$

Despite the fact that the mixing angles have been measured to be much larger than in the quark sector, the two neutrino form is often a very good approximation and is used in many situations.

The angles appear in the equations below in many forms. They often appear as $\sin ^{2}(2 \theta)$. The listings currently now use $\sin ^{2}(\theta)$ because this distinguishes the octant, i.e. whether θ_{23} is larger or smaller than 45°.

Accelerator neutrino experiments: Ignoring $\Delta m_{21}^{2}, C P$ violation, and matter effects, the equations for the probability of appearance in an accelerator oscillation experiment are:

$$
\begin{align*}
& P\left(\nu_{\mu} \rightarrow \nu_{\tau}\right)=\sin ^{2}\left(2 \theta_{23}\right) \cos ^{4}\left(\theta_{13}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) \tag{3}\\
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) \tag{4}\\
& P\left(\nu_{e} \rightarrow \nu_{\mu}\right)=\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) \tag{5}\\
& P\left(\nu_{e} \rightarrow \nu_{\tau}\right)=\sin ^{2}\left(2 \theta_{13}\right) \cos ^{2}\left(\theta_{23}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) . \tag{6}
\end{align*}
$$

Current and future long-baseline accelerator experiments are studying non-zero θ_{13} through $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$. Including the CP terms and low mass scale, the equation for neutrino oscillation in vacuum is:

$$
\begin{align*}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & =P 1+P 2+P 3+P 4 \\
P 1 & =\sin ^{2}\left(\theta_{23}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) \\
P 2 & =\cos ^{2}\left(\theta_{23}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{21}^{2} L / 4 E\right) \\
P 3 & =-/+J \sin \left(\delta_{C P}\right) \sin \left(\Delta m_{32}^{2} L / 4 E\right) \\
P 4 & =J \cos \left(\delta_{C P}\right) \cos \left(\Delta m_{32}^{2} L / 4 E\right) \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
J= & \cos \left(\theta_{13}\right) \sin \left(2 \theta_{12}\right) \sin \left(2 \theta_{13}\right) \sin \left(2 \theta_{23}\right) \times \\
& \sin \left(\Delta m_{32}^{2} L / 4 E\right) \sin \left(\Delta m_{21}^{2} L / 4 E\right) \tag{8}
\end{align*}
$$

and the sign in P3 is negative for neutrinos and positive for antineutrinos respectively. For most new long-baseline accelerator experiments, P2 can safely be neglected. Also, depending on the distance and the mass order, matter effects need to be included.

Reactor neutrino experiments: Nuclear reactors are prolific sources of $\bar{\nu}_{e}$ with an energy near 4 MeV . The oscillation probability can be expressed

$$
\begin{align*}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1 & -\cos ^{4}\left(\theta_{13}\right) \sin ^{2}\left(2 \theta_{12}\right) \sin ^{2}\left(\Delta m_{21}^{2} L / 4 E\right) \\
& -\cos ^{2}\left(\theta_{12}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{31}^{2} L / 4 E\right) \\
& -\sin ^{2}\left(\theta_{12}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) \tag{9}
\end{align*}
$$

not using the approximation in Eq. (1). For short distances ($\mathrm{L}<5 \mathrm{~km}$) we can ignore the second term on the right and can reimpose approximation Eq. (1). This takes the familiar two neutrino form with θ_{13} and Δm_{32}^{2} :

$$
\begin{equation*}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right) . \tag{10}
\end{equation*}
$$

Lepton Particle Listings

Neutrino Mixing

Solar and Atmospheric neutrino experiments: Solar neutrino experiments are sensitive to ν_{e} disappearance and have allowed the measurement of θ_{12} and Δm_{21}^{2}. They are also sensitive to θ_{13}. We identify $\Delta m_{\odot}^{2}=\Delta m_{21}^{2}$ and $\theta_{\odot}=\theta_{12}$.

Atmospheric neutrino experiments are primarily sensitive to ν_{μ} disappearance through $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations, and have allowed the measurement of θ_{23} and Δm_{32}^{2}. We identify $\Delta m_{A}^{2}=$ Δm_{32}^{2} and $\theta_{A}=\theta_{23}$. Despite the large ν_{e} component of the atmospheric neutrino flux, it is difficult to measure Δm_{21}^{2} effects. This is because of a cancellation between $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{e} \rightarrow \nu_{\mu}$ together with the fact that the ratio of ν_{μ} and ν_{e} atmospheric fluxes, which arise from sequential π and μ decay, is near 2 .

Oscillation Parameter Listings: In Section (B) we encode the three mixing angles $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{C P}$, and two mass squared differences Δm_{21}^{2} and Δm_{32}^{2}. Our knowledge of θ_{12} and Δm_{21}^{2} comes from the KamLAND reactor neutrino experiment together with solar neutrino experiments. Our knowledge of θ_{23} and Δm_{32}^{2} comes from atmospheric, reactor and long-baseline accelerator neutrino experiments. For the earlier experiments, we identified the large mass splitting as Δm_{32}^{2}. Now that $\sigma\left(\Delta m_{32}^{2}\right) \approx \Delta m_{21}^{2}$, some experiments report separate values for the two mass orders. Results on θ_{13} come from reactor antineutrino disappearance experiments. There are also results from long-baseline accelerator experiments looking for ν_{e} appearance. The interpretation of both kinds of results depends on Δm_{32}^{2}, and the accelerator results also depend on the mass order, θ_{23} and the CP violating phase $\delta_{C P}$.

Accelerator and atmospheric experiments have some sensitivity to the CP violation phase $\delta_{C P}$ through Eq. (7). Note that P3 depends on the sign of Δm_{32}^{2} so the sensitivity depends on the mass order. For non-maximal θ_{23} mixing, it also depends on the octant of θ_{23}, i.e. whether $\theta_{23}>\pi / 4$ or $\theta_{23}<\pi / 4$.

$\sin ^{2}\left(\theta_{12}\right)$

$0.320{ }_{-0.016}^{+0.020}$	DE-SALAS	18	FIT	Global Fit
0.310 ± 0.014	${ }^{2}$ ABE	16C	FIT	SKAM + SNO; 3ν
$0.334_{-0.022}^{+0.027}$	${ }^{3} \mathrm{ABE}$	16C	FIT	SK-I+II+III+IV; 3ν
$0.327{ }_{-0.031}^{+0.026}$	${ }^{4}$ ABE	16C	FIT	SK-IV; 3ν
0.323 ± 0.016	${ }^{5}$ FORERO	14	FIT	3ν
$0.304_{-0.012}^{+0.013}$	6 GONZALEZ...	14	FIT	Either mass ordering; global fit
$0.299{ }_{-0.014}^{+0.014}$	7,8 AHARMIM	13	FIT	global solar: 2ν
$0.307{ }_{-0.013}^{+0.016}$	8,9 AHARMIM	13	FIT	global solar: 3ν
$0.304{ }_{-0.018}^{+0.022}$	8,10 AHARMIM	13	FIT	KamLAND + global solar: 3ν
$0.304{ }_{-0.013}^{+0.014}$	11 gando	13	FIT	KamLAND + global solar + SBL + accelerator: 3ν
$0.304{ }_{-0.013}^{+0.014}$	12 GANDO	13	FIT	KamLAND + global solar: 3ν
$0.325_{-0.039}^{+0.039}$	13 GANDO	13	FIT	KamLAND: 3ν
$0.30{ }_{-0.01}^{+0.02}$	${ }^{14}$ ABE	11	FIT	KamLAND + global solar: 2ν
$0.30{ }_{-0.01}^{+0.02}$	${ }^{15}$ ABE	11	FIT	global solar: 2ν

${ }^{16}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.
${ }^{17}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal SNo, Borexino (ARPESELLA O8A),
${ }^{18}$ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal $74324(2011)$) with the exception that the ${ }^{8}$ B flux was left free. CPT invariance is assumed.
${ }^{19}$ BELLINI 11A obtained this result by a two-neutrino oscilation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 74324 (2011)) with the exception that the ${ }^{8}$ B flux was left free.
${ }^{20}$ GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.
${ }^{21}$ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Superseded by GANDO 13.
${ }^{22}$ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALTMANN 05), Borexino (ARPESELLA 08A), SK-I' zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
${ }^{23}$ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed.
${ }^{24}$ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
${ }^{25}$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data and KamLAND data (ABE 08 A). CPT invariance is assumed.
${ }^{26}$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data.
${ }^{27}$ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^{2} and $\tan ^{2} \theta_{12}$, using KamLAND data only. Superseded by GANDO 11 .
${ }^{28}$ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^{2}-map, and solar flux data. CPT invariance is assumed. Superseded by GANDO 11.
${ }^{29}$ The result given by AHARMIM 08 is $\theta=\left(34.4_{-1.2}^{+1.3}\right)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed.
${ }^{30}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using SK ν_{e} data, CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). CPT invariance is assumed.
${ }^{31}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed.
${ }^{32}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the SuperKamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.
${ }^{33}$ The result given by AHARMIM 05 A is $\theta=(33.9 \pm 1.6)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using SNO pure deuteron and salt phase data, SK ν_{e} data, Cl and Ga CC data, and KamLAND data (ARAKI 05). CPT invariance is assumed. AHARMIM 05 A also quotes $\theta=\left(33.9_{-2.2}^{+2.4}\right)^{\circ}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin ^{2} 2 \theta=0.86{ }_{-0.06}^{+0.05}$.
${ }^{34}$ AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\tan ^{2} \theta=0.45_{-0.08}^{+0.09}$ as the error enveloping the $68 \% \mathrm{CL}$ two-dimensional region. This translates into $\sin ^{2} 2 \theta=0.86{ }_{-0.07}^{+0.05}$.
${ }^{35}$ ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is translated from the number provided by the KamLAND collaboration, $\tan ^{2} \theta=0.400_{-0.05}^{+0.07}$. The corresponding number quoted in ARAKI 05 is $\tan ^{2} \theta=0.40{ }_{-0.07}^{+0.10}\left(\sin ^{2} 2 \theta=0.82 \pm\right.$ 0.07), which envelops the $68 \% \mathrm{CL}$ two-dimensional region.
${ }^{36}$ The result given by AHMED 04A is $\theta=\left(32.5_{-1.6}^{+1.7}\right)^{\circ}$. This result is obtained by a twoneutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). CPT invariance is assumed. AHMED 04A also quotes $\theta=\left(32.5_{-2.3}^{+2.4}\right)^{\circ}$ as the error enveloping the $68 \% \mathrm{CL}$ two-dimensional region. This translates into $\sin ^{2} 2 \theta=0.82 \pm 0.06$.
${ }^{37}$ AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta\left(m^{2}\right)=6.5 \times 10^{-5} \mathrm{eV}^{2}, \tan ^{2} \theta=0.40\left(\sin ^{2} 2 \theta=0.82\right)$.
${ }^{38}$ The result given by SMY 04 is $\tan ^{2} \theta=0.44 \pm 0.08$. This result is obtained by a twoneutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). CPT invariance is assumed.
${ }^{39}$ SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.
${ }^{40}$ SMY 04 obtained this result by a two-neutrino oscillation analysis using the SuperKamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04.
${ }^{41}$ AHMAD 02 B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta\left(m^{2}\right)=5.0 \times 10^{-5} \mathrm{eV}^{2}$ and $\tan \theta=0.34\left(\sin ^{2} 2 \theta=0.76\right)$.
${ }^{42}$ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta\left(\mathrm{m}^{2}\right)$ $=6.9 \times 10^{-5} \mathrm{eV}^{2}$ and $\tan ^{2} \theta=0.38\left(\sin ^{2} 2 \theta=0.80\right)$.

Δm_{21}^{2}

$\frac{\operatorname{VALUE}\left(10^{-5} \mathrm{eV}^{2}\right)}{\mathbf{7 . 5 3} \pm \mathbf{0 . 1 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { GANDO }} 13 \frac{\text { TECN }}{\text { FIT }} \frac{\text { COMMENT }}{$| KamLAND + global solar + SBL |
| :---: |
| + accelerator: 3ν |}

- - We do not use the following data for averages, fits, limits, etc. - - -

$7.55{ }_{-0.16}^{+0.20}$	DE-SALAS	18	FIT	Global Fit
$7.49_{-0.18}^{+0.19}$	${ }^{2}$ ABE	16C	FIT	KamLAND+global solar; 3ν
$4.8{ }_{-0.6}^{+1.3}$	${ }^{3} \mathrm{ABE}$	16C	FIT	SKAM + SNO; 3ν
$4.8{ }_{-0.8}^{+1.5}$	${ }^{4}$ ABE	16C	FIT	SK-I+II+III+IV; 3ν
$3.2{ }_{-0.2}^{+2.8}$	${ }^{5}$ ABE	16C	FIT	SK-IV; 3ν
$7.6{ }_{-0.18}^{+0.19}$	${ }^{6}$ FORERO	14	FIT	3ν
$7.50{ }_{-0.17}^{+0.19}$	7 GONZALEZ...	14	FIT	Either mass ordering; global fit
$5.13{ }_{-0.96}^{+1.29}$	${ }^{8,9}$ AHARMIM	13	FIT	global solar: 2ν
$5.13{ }_{-0.98}^{+1.49}$	9,10 AHARMIM	13	FIT	global solar: 3ν
$7.46{ }_{-0.19}^{+0.20}$	9,11 AHARMIM	13	FIT	KamLAND + global solar: 3ν
$7.53{ }_{-0.18}^{+0.19}$	12 GANDO	13	FIT	KamLAND + global solar: 3ν
$7.54{ }_{-0.18}^{+0.19}$	13 GANDO	13	FIT	KamLAND: 3ν
7.6 ± 0.2	${ }^{14}$ ABE	11	FIT	KamLAND + global solar: 2ν
$6.2{ }_{-1.9}^{+1.1}$	${ }^{15}$ ABE	11	FIT	global solar: 2ν
7.7 ± 0.3	${ }^{16}$ ABE	11	FIT	KamLAND + global solar: 3ν
$6.0{ }_{-2.5}^{+2.2}$	${ }^{17}$ ABE	11	FIT	global solar: 3ν
$7.50{ }_{-0.24}^{+0.16}$	${ }^{18}$ BELLINI	11A	FIT	KamLAND + global solar: 2ν
$5.2{ }_{-0.9}^{+1.5}$	${ }^{19}$ BELLINI	11A	FIT	global solar: 2ν
$7.50{ }_{-0.20}^{+0.19}$	20 GANDO	11	FIT	KamLAND + solar: 3ν
7.49 ± 0.20	${ }^{21}$ GANDO	11	FIT	KamLAND: 3ν
$7.59{ }_{-0.21}^{+0.20}$	22,23 AHARMIM	10	FIT	KamLAND + global solar: 2ν
$5.89{ }_{-2.16}^{2.13}$	22,24 AHARMIM	10	FIT	global solar: 2ν
7.59 ± 0.21	22,25 AHARMIM	10	FIT	KamLAND + global solar: 3ν
$6.311_{-2.58}^{+2.49}$	22,26 AHARMIM	10	FIT	global solar: 3ν
$7.58{ }_{-0.13}^{+0.14} \pm 0.15$	${ }^{27}$ ABE	08A	FIT	KamLAND
7.59 ± 0.21	${ }^{28}$ ABE	08A	FIT	KamLAND + global solar
$7.59{ }_{-0.21}^{+0.19}$	${ }^{29}$ AHARMIM	08	FIT	KamLAND + global solar
8.0 ± 0.3	${ }^{30}$ HOSAKA	06	FIT	KamLAND + global solar
8.0 ± 0.3	${ }^{31}$ Hosaka	06	FIT	SKAM+SNO+KamLAND
$6.3{ }_{-1.5}^{+3.7}$	${ }^{32}$ HOSAKA	06	FIT	SKAM+SNO
5-12	${ }^{33}$ HOSAKA	06	FIT	SKAM day/night in the LMA region
$8.0{ }_{-0.3}^{+0.4}$	${ }^{34}$ AHARMIM	05A	FIT	KamLAND + global solar LMA
3.3-14.4	${ }^{35}$ AHARMIM	05A	FIT	global solar
$7.9{\underset{-0.3}{+0.4}}^{+0}$	${ }^{36}$ ARAKI	05	FIT	KamLAND + global solar
$7.1{ }_{-0.3}^{+1.0}$	${ }^{37}$ AHMED	04A	FIT	KamLAND + global solar
3.2-13.7	${ }^{38}$ AHMED	04A	FIT	global solar
$7.1{ }_{-0.5}^{+0.6}$	${ }^{39}$ SMY	04	FIT	KamLAND + global solar
$6.0{ }_{-1.6}^{+1.7}$	${ }^{40}$ SMY	04	FIT	global solar
$6.0{ }_{-1.6}^{+2.5}$	${ }^{41}$ SMY	04	FIT	SKAM + SNO
2.8-12.0	42 AHMAD	02B	FIT	global solar
3.2-19.1	${ }^{43}$ FUKUDA	02	FIT	global solar

${ }^{1}$ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND,
global solar neutrino, short-baseline (SBL) reactor, and accelerator data, assuming CPT invariance. Supersedes GANDO 11.
${ }^{2}$ ABE $16 C$ obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using all solar data and KamLAND data. CPT invariance is assumed.

Lepton Particle Listings

Neutrino Mixing

${ }^{3}$ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using SuperKamiokande ($\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}$) and SNO data.
${ }^{4}$ ABE 16 C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0014$ coming from reactor neutrino experiments, by combining the four phases of the Super-Kamiokande solar data.
${ }^{5}$ ABE 16 C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using the Super-Kamiokande-IV data.
${ }^{6}$ FORERO 14 performs a global fit to $\Delta \mathrm{m}_{21}^{2}$ using solar, reactor, long-baseline accelerator, and atmospheric neutrino data
${ }^{7}$ GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $\left(7.50_{-0.17}^{+0.19}\right) \times 10^{-5} \mathrm{eV}^{2}$ for normal and $\left(7.50_{-0.17}^{+0.18}\right) \times 10^{-5} \mathrm{eV}^{2}$ for inverted mass ordering.
${ }^{8}$ AHARMIM 13 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
${ }^{9}$ AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active ${ }^{8} \mathrm{~B}$ neutrino flux and energy-dependent ν_{e} survival probability parameters, measurements of Cl (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and ${ }^{7} \mathrm{Be}$ (BELLINI 11A) rates, and ${ }^{8}$ B solar-neutrino recoil electron measurements of SKI (HOSAKA 06) zenith, SK-II (CRAVENS 08), and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra.
${ }^{10}$ AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.45 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data.
${ }^{11}$ AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.45 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino and KamLAND data (GANDO 11). CPT invariance is assumed.
12 GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND and global solar neutrino data, assuming CPT invariance. Supersedes GANDO 11.
13 GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND data. Supersedes GANDO 11.
${ }^{14}$ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed.
${ }^{15}$ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data.
${ }^{16}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.
${ }^{17}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.
${ }^{18}$ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 74324 (2011)) with the exception that the ${ }^{8}$ B flux was left free. CPT invariance is assumed.
${ }^{19}$ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 74324 (2011)) with the exception that the ${ }^{8}$ B flux was left free.
${ }^{20}$ GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.
${ }^{21}$ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Supersedes ABE 08A.
${ }^{22}$ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALTMANN 05), Borexino (ARPESELLA 08A), SK-1 zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
${ }^{23}$ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed.
${ }^{24}$ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data
${ }^{25}$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed.
${ }^{26}$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data.
${ }^{27}$ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^{2} and $\tan ^{2} \theta_{12}$, using KamLAND data only. Superseded by GANDO 11 .
${ }^{28}$ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^{2}-map, and solar flux data. CPT invariance is assumed. Superseded by GANDO 11.
${ }^{29}$ AHARMIM 08 obtained this result by a two-neutrino oscillation analysis using all solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed.
${ }^{30}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). CPT invariance is assumed.
${ }^{31}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed.
32 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the SuperKamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.
${ }^{33}$ HOSAKA 06 obtained this result from the consistency between the observed and expected day-night flux asymmetry amplitude. The listed $68 \% \mathrm{CL}$ range is derived from the 1σ boundary of the amplitude fit to the data. Oscillation parameters are constrained to be in the LMA region. The mixing angle is fixed at $\tan ^{2} \theta=0.44$ because the fit depends only very weekly on it.
${ }^{34}$ AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). CPT invariance is assumed. AHARMIM 05A also quotes $\Delta\left(m^{2}\right)=\left(8.0_{-0.4}^{+0.6}\right) \times 10^{-5} \mathrm{eV}^{2}$ as the error enveloping the $68 \% \mathrm{CL}$ twodimensional region.
${ }^{35}$ AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\Delta\left(m^{2}\right)=\left(6.5_{-2.3}^{+4.4}\right) \times 10^{-5} \mathrm{eV}^{2}$ as the error enveloping the $68 \% \mathrm{CL}$ twodimensional region.
${ }^{36}$ ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is provided by the KamLAND collaboration. The error quoted in ARAKI $05, \Delta\left(m^{2}\right)=\left(7.9_{-0.5}^{+0.6}\right) \times$ 10^{-5}, envelops the $68 \% \mathrm{CL}$ two-dimensional region.
${ }^{37}$ AHMED 04A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). CPT invariance is assumed. AHMED 04A also quotes $\Delta\left(\mathrm{m}^{2}\right)=\left(7.1_{-0.6}^{+1.2}\right) \times 10^{-5} \mathrm{eV}^{2}$ as the error enveloping the $68 \% \mathrm{CL}$ twodimensional region.
${ }^{38}$ AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta\left(m^{2}\right)=6.5 \times 10^{-5} \mathrm{eV}^{2}, \tan ^{2} \theta=0.40\left(\sin ^{2} 2 \theta=0.82\right)$.
${ }^{39}$ SMY 04 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). CPT invariance is assumed.
${ }^{40}$ SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04 .
${ }^{41}$ SMY 04 obtained this result by a two-neutrino oscillation analysis using the SuperKamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04.
${ }^{42}$ AHMAD 02 B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta\left(m^{2}\right)=5.0 \times 10^{-5} \mathrm{eV}^{2}$ and $\tan \theta=0.34\left(\sin ^{2} 2 \theta=0.76\right)$.
${ }^{43}$ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta\left(\mathrm{m}^{2}\right)$ $=6.9 \times 10^{-5} \mathrm{eV}^{2}$ and $\tan ^{2} \theta=0.38\left(\sin ^{2} 2 \theta=0.80\right)$.

$\sin ^{2}\left(\theta_{23}\right)$

The reported limits below correspond to the projection onto the $\sin ^{2}\left(\theta_{23}\right)$ axis of the $90 \% \mathrm{CL}$ contours in the $\sin ^{2}\left(\theta_{23}\right)-\Delta m_{32}^{2}$ plane presented by the authors. Unless otherwise specified, the limits are $90 \% \mathrm{CL}$ and the reported uncertainties are $68 \% \mathrm{CL}$.

Value	DOCUMENTID		TECN COMMENT	
0.547 ± 0.021	UR FIT Assuming inverted mass ordering			
0.545 ± 0.021	UR FIT Assuming normal mass ordering			
$0.56{ }_{-0.03}^{+0.04}$	${ }^{1}$ ACERO	19	NOVA	Normal mass order; octant II for θ_{23}
$0.56{ }_{-0.03}^{+0.04}$	1,2 ACERO	19	NOVA	Inverted mass order; octant II for θ_{23}
$0.51{ }_{-0.09}^{+0.07}$	${ }^{3}$ AARTSEN	18A	ICCB	Normal mass ordering
$0.588{ }_{-0.064}^{+0.031}$	${ }^{4} \mathrm{ABE}$	18B	SKAM	Normal mass ordering, θ_{13} constrained
$0.575_{-0.073}^{+0.036}$	${ }^{4} \mathrm{ABE}$	18B	SKAM	Inverted mass ordering, θ_{13} constrained
$0.526_{-0.036}^{+0.032}$	${ }^{5}$ ABE	18 G	T2K	Normal mass ordering, θ_{13} constrained
$0.530_{-0.034}^{+0.030}$	${ }^{5}$ ABE	18G	T2K	Inverted mass ordering, θ_{13} constrained
$0.41{ }_{-0.06}^{+0.23}$	${ }^{6}$ ADAMSON	14	MINS	Normal mass ordering
$0.41{ }_{-0.07}^{+0.26}$	${ }^{6}$ ADAMSON	14	MINS	Inverted mass ordering

- - We do not use the following data for averages, fits, limits, etc. - -
0.455

7 AARTSEN
20 ICCB For both mass orderings
$0.58 \underset{-0.13}{+0.04} \quad{ }^{8}$ AARTSEN $\quad 19 C$ ICCB
$0.48 \underset{-0.03}{+0.04} \quad 1,2$ ACERO
19 NOVA Normal mass order; octant I for θ_{23}
$0.47 \underset{-0.03}{+0.04} \quad 1,2$ ACERO $\quad 19$ NOVA Inverted mass order; octant I for θ_{23}

$\begin{array}{llllll}0.24 & \text { to } 0.76 & 53 & \text { HATAKEYAMA98 } & \text { KAMI } & \text { Kamiokande } \\ 0.20 & \text { to } 0.80 & 54 \text { FUKUDA } & 94 & \text { KAMI } & \text { Kamiokande }\end{array}$
${ }^{1}$ ACERO 19 is based on a sample size of 12.33×10^{20} protons on target. The fit combines ${ }^{1}$ ACERO 19 is based on a sample size of 12.33×10^{20} protons on target. The fit combines
both antineutrino and neutrino data to extract the oscillation parameters. The results favor the normal mass ordering by 1.9σ and θ_{23} values in octant II by 1.6σ. Supersedes ACERO 18
${ }^{2}$ Errors are from normal mass ordering and θ_{13} octant II fits.
${ }^{3}$ AARTSEN 18A uses three years (April 2012 - May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV , measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 18A also reports the best fit result for the inverted mass ordering as $\Delta \mathrm{m}_{32}^{2}=-2.32 \times 10^{-3} \mathrm{eV}^{2}$ and $\sin ^{2}\left(\theta_{23}\right)=0.51$. Uncertainties for the inverted mass ordering fits were not provided. Supersedes AARTSEN 15A.
${ }^{4}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, $\Delta m_{32}^{2}, \sin ^{2}\left(\theta_{23}\right)$, and δ, while the solar parameters and $\sin ^{2}\left(\theta_{13}\right)$ are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ $\mathrm{eV}^{2}, \sin ^{2}\left(\theta_{12}\right)=0.304 \pm 0.014$, and $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0012$.
${ }^{5}$ ABE 18 G data prefers normal mass ordering is with a posterior probability of 87%. Supersedes ABE 17F.
${ }^{6}$ ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines the ν_{μ} disappearance and ν_{e} appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions. The best fit is for first θ_{23} octant and inverted mass ordering.
${ }^{7}$ AARTSEN 20 uses the data taken between May 2012 and April 2014 with the low-energy subdetector DeepCore of the IceCube neutrino telescope. The reconstructed energy range is between 4 (5) and 90 (80) GeV for the main (confirmatory) analysis. Though the observed best-fit is in the lower octant for both mass orderings, a substantial range of $\sin ^{2}\left(\theta_{23}\right)>0.5$ is still compatible with the observed data for both mass orderings.
${ }^{8}$ AARTSEN 19C uses three years (April 2012 - May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV , measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 19C adopts looser event selection criteria to prioritize the efficiency of selecting neutrino events, different from tighter event selection criteria which closely follow the criteria used by AARTSEN 18A to measure the ν_{μ} disappearance.
${ }^{9}$ ALBERT 19 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2016 (2830 days of total live time). Supersedes ADRIAN-MARTINEZ 12
${ }^{10}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, $\Delta m_{32}^{2}, \sin ^{2} \theta_{23}$, $\sin ^{2} \theta_{13}$, and δ, while the solar parameters are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ eV^{2} and $\sin ^{2} \theta_{12}=0.304 \pm 0.014$.
${ }^{11}$ ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by ACERO 19.
12 Errors are from the projections of the 68% contour on 2D plot of Δm^{2} versus $\sin ^{2}\left(\theta_{23}\right)$. ABE 17F supersedes ABE 17A. Superseded by ABE 18G.
${ }^{13}$ Superseded by ACERO 18.
14 ABE 16D reports oscillation results using $\bar{\nu}_{\mu}$ disappearance in an off-axis beam
15 ADAMSON 16A obtains $\sin ^{2}\left(\theta_{23}\right)$ in the 68% C.L. range $[0.38,0.65]([0.37,0.64])$, with two statistically degenerate best-fit values of 0.44 and 0.59 (0.44 and 0.59) for normal (inverted) mass ordering. Superseded by ADAMSON 17A.
${ }^{16}$ AARTSEN 15A obtains this result by a three-neutrino oscillation analysis using 10-100 GeV muon neutrino sample from a total of 953 days of measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Superseded by AARTSEN 18A.
17 ABE 14 results are based on ν_{μ} disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. Superseded by ABE 17A.
18 FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, longbaseline accelerator, and atmospheric neutrino data.
19 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as 68% CL intervals of $0.433-0.496$ or $0.530-0.594$ for normal and $0.514-0.612$ for inverted mass ordering.
20 AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20-100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.
${ }^{21}$ The best fit value is $\sin ^{2}\left(\theta_{23}\right)=0.514 \pm 0.082$. Superseded by ABE 14 .
22 ADAMSON 13B obtained this result from ν_{μ} and $\bar{\nu}_{\mu}$ disappearance using $\nu_{\mu}(10.71 \times$ $10^{20} \mathrm{POT}$) and $\bar{\nu}_{\mu}\left(3.36 \times 10^{20} \mathrm{POT}\right)$ beams, and atmospheric (37.88kton-years) data from MINOS The fit assumed two-flavor neutrino hypothesis and identical ν_{μ} and $\bar{\nu}_{\mu}$ oscillation parameters. Superseded by ADAMSON 14.
${ }^{23}$ ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\sin ^{2}\left(2 \theta_{23}\right)=0.98$.
${ }^{24}$ ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos. The best fit value is $\sin ^{2}\left(2 \theta_{23}\right)=0.95_{-0.11}^{+0.10} \pm 0.01$.
${ }^{25}$ ADAMSON 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton-yr atmospheric neutrino data with the MINOS far detector.
${ }^{26}$ The best fit point is $\Delta \mathrm{m}^{2}=0.0019 \mathrm{eV}^{2}$ and $\sin ^{2} 2 \theta=0.99$. The 90% single-parameter confidence interval at the best fit point is $\sin ^{2} 2 \theta>0.86$.
27 The data are separated into pure samples of $\nu \mathrm{s}$ and $\bar{\nu} \mathrm{s}$, and separate oscillation parameters for $\nu \mathrm{s}$ and $\bar{\nu} \mathrm{s}$ are fit to the data. The best fit point is $\left(\Delta \mathrm{m}^{2}, \sin ^{2} 2 \theta\right)=\left(0.0022 \mathrm{eV}^{2}\right.$, $0.99)$ and $\left(\Delta \bar{m}^{2}, \sin ^{2} 2 \bar{\theta}\right)=\left(0.0016 \mathrm{eV}^{2}, 1.00\right)$. The quoted result is taken from the

Lepton Particle Listings

Neutrino Mixing

90% C.L. contour in the $\left(\Delta \mathrm{m}^{2}, \sin ^{2} 2 \theta\right)$ plane obtained by minimizing the four parameter \log-likelihood function with respect to the other oscillation parameters.
${ }^{28}$ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time). Superseded by ALBERT 19.
${ }^{29}$ ABE 11C obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data. ABE 11C also reported results under a two-neutrino disappearance model with separate mixing parameters between ν and $\bar{\nu}$, and obtained $\sin ^{2} 2 \theta>0.93$ for ν and $\sin ^{2} 2 \theta>0.83$ for $\bar{\nu}$ at 90% C.L.
${ }^{30}$ ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L.
${ }^{31}$ WENDELL 10 obtained this result $\left(\sin ^{2} \theta_{23}=0.407-0.583\right.$) by a three-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data, assuming $\theta_{13}=0$ but including the solar oscillation parameters $\Delta \mathrm{m}_{21}^{2}$ and $\sin ^{2} \theta_{12}$ in the fit.
${ }^{32}$ WENDELL 10 obtained this result $\left(\sin ^{2} \theta_{23}=0.43-0.61\right)$ by a three-neutrino oscillation analysis with one mass scale dominance $\left(\Delta \mathrm{m}_{21}^{2}=0\right)$ using the Super-Kamiokande$\mathrm{I}+\mathrm{II}+\mathrm{III}$ atmospheric neutrino data, and updates the HOSAKA 06A result.
${ }^{33}$ WENDELL 10 obtained this result $\left(\sin ^{2} \theta_{23}=0.44-0.63\right)$ by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta \mathrm{m}_{21}^{2}=0$) using the Super-Kamiokande$\mathrm{I}+\mathrm{II}+\mathrm{III}$ atmospheric neutrino data, and updates the HOSAKA 06A result.
${ }^{34}$ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector.
${ }^{35}$ Supercedes ALIU 05.
${ }^{36}$ MICHAEL 06 best fit is for maximal mixing. See also ADAMSON 08.
${ }^{37}$ The best fit is for maximal mixing.
${ }^{38}$ ALLISON 05 result is based upon atmospheric neutrino interactions including upwardstopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^{2}=0.0017 \mathrm{eV}^{2}$ and $\sin ^{2}(2 \theta)=0.97$.
${ }^{39}$ ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period.
${ }^{40}$ AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}, \mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$, and the numbers of InDown + UpStop and InUp events. Here, $\mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$ are the number of events with reconstructed neutrino energies $<30 \mathrm{GeV}$ and $>130 \mathrm{GeV}$, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing.
${ }^{41}$ ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.
${ }^{42}$ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^{2}. We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing.
${ }^{43}$ AMBROSIO 03 obtained this result on the basis of the ratio $\mathrm{R}=\mathrm{N}_{\text {low }} / \mathrm{N}_{\text {high }}$, where $\mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$ are the number of upward through-going muon events with reconstructed neutrino energy $<30 \mathrm{GeV}$ and $>130 \mathrm{GeV}$, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits.
${ }^{44}$ AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is to maximal mixing.
${ }^{45}$ SANCHEZ 03 is based on an exposure of 5.9 kton yr . The result is obtained using a likelihood analysis of the neutrino L / E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is $\sin ^{2}(2 \theta)=0.97$.
${ }^{46}$ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}$. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The tota live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. The best fit is for maximal mixing
${ }^{47}$ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}$. See the previous footnote.
${ }^{48}$ FUKUDA 99 C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu}>1.6 \mathrm{GeV}$, the observed flux is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The best fit is $\sin ^{2}(2 \theta)=0.95$.
${ }^{49}$ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm$ $0.04 \pm 0.02) \times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm$ 0.16 (theoretical error)) $\times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The best fit is to maximal mixing.
${ }^{50}$ FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is to maximal mixing.
${ }^{51}$ FUKUDA 98 C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for maximal mixing.
${ }^{52}$ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu}>1.6 \mathrm{GeV}$, the observed flux of upward through-going muons is $\left(1.94 \pm 0.10_{-0.06}^{+0.07}\right) \times$
$10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. This is compared to the expected flux of $(2.46 \pm 0.54$ (theoretical error)) $\times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The best fit is for maximal mixing.
${ }^{53}$ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is $\sin ^{2}(2 \theta)=$ 0.95.
${ }^{54}$ FUKUDA 94 obtained the result by a combined analysis of sub- and multi- GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing.

$\Delta \mathrm{m}_{32}^{2}$

The sign of Δm_{32}^{2} is not known at this time. If given, values are shown separately for the normal and inverted mass ordering. Unless otherwise specified, the ranges below correspond to the projection onto the $\Delta \mathrm{m}_{32}^{2}$ axis of the $90 \% \mathrm{CL}$ contours in the $\sin ^{2}\left(2 \theta_{23}\right)-\Delta m_{32}^{2}$ plane presented by the authors. If uncertainties are reported with the value, they correspond to one standard deviation uncertainty.
VALUE $\left(10^{-3} \mathrm{eV}^{2}\right)$ DOCUMENT ID TECN COMMENT

$-2.546+0.040 \text { OUR FIT }$	Assuming inverted ordering			
2.453 ± 0.034 OUR FIT	Assuming normal ordering			
$2.48{ }_{-0.06}^{+0.11}$	${ }^{1}$ ACERO	19	NOVA	Normal mass ordering, octant II for θ_{23}
$-2.54{ }_{-0.11}^{+0.06}$	${ }^{1}$ ACERO	19	NOVA	Inverted mass ordering, octant II for θ_{23}
$2.31{ }_{-0.13}^{+0.11}$	$2{ }^{2}$ ARTSEN	18A	ICCB	Normal mass ordering
$2.50{ }_{-0.20}^{+0.13}$	${ }^{3} \mathrm{ABE}$	18B	SKAM	Normal mass ordering, θ_{13} constrained
$-2.58{ }_{-0.37}^{+0.08}$	${ }^{3} \mathrm{ABE}$	18B	SKAM	Inverted mass ordering, θ_{13} constrained
$2.463{ }_{-0.070}^{+0.071}$	${ }^{4} \mathrm{ABE}$	18 G	T2K	Normal mass ordering, θ_{13} constrained
-2.507 ± 0.070	${ }^{4,5}$ ABE	18 G	T2K	Inverted mass ordering, θ_{13} constrained
$2.471{ }_{-0.070}^{+0.068}$	${ }^{6}$ ADEY	18A	DAYA	Normal mass ordering
$-2.575{ }_{-0.070}^{+0.068}$	${ }^{6}$ ADEY	18A	DAYA	Inverted mass ordering
2.63 ± 0.14	${ }^{7}$ BAK	18	RENO	Normal mass ordering
-2.73 ± 0.14	${ }^{7}$ BAK	18	RENO	Inverted mass ordering
2.37 ± 0.09	8 ADAMSON	14	MINS	Accel., atmospheric, normal mass ordering
$-2.41{ }_{-0.12}^{+0.09}$	${ }^{8}$ ADAMSON	14	MINS	Accel., atmsopheric, inverted mass ordering

- - We do not use the following data for averages, fits, limits, etc. - - -

$2.55{ }^{+0.12}$	9 AARTSEN	19C	ICCB	
< 4.1 at $90 \% \mathrm{CL}$	AGAFONOVA	19	OPER	
2.02 -0.4	10 ALBERT	19	ANTR	Atmospheric ν, deep sea telescope
$2.50 \begin{array}{r}+0.13 \\ -0.31\end{array}$	11 ABE	18B	SKAM	3ν osc: normal mass ordering, θ_{13} free
$-2.28{ }^{+} \begin{array}{r}+0.33 \\ -0.13\end{array}$	11 ABE	18B	SKAM	3ν osc: inverted mass ordering, θ_{13} free
$2.44{ }_{-0.07}^{+0.08}$	12 ACERO	18	NOVA	Normal mass order, octant II for θ_{23}
$2.45{ }^{+}+0.07$	12,13 ACERO	18	NOVA	Normal mass order; octant I for θ_{23}
$\begin{array}{cr} & +0.7 \\ & -0.6 \end{array}$	14 AGAFONOVA	18	OPER	OPERA ν_{τ} appearance
2.42 ± 0.03	DE-SALAS	18	FIT	Normal mass ordering, global fit
$-2.50 \begin{aligned} & +0.03 \\ & -0.04\end{aligned}$	DE-SALAS	18	FIT	Inverted mass order, global fit
$2.57{ }_{-0.23}^{+0.21} \begin{gathered} +0.12 \\ -0.13 \end{gathered}$	15 SEO	18	RENO	Normal mass ordering
$-2.67 \underset{-0.21}{+0.23}{ }_{-0.12}^{+0.13}$	15 SEO	18	RENO	Inverted mass ordering
$2.53 \begin{array}{r}+0.15 \\ -0.13\end{array}$	ABE	17C	T2K	Normal mass ordering with neutrinos
$2.55{ }_{-0.27}^{+0.33}$	ABE	17C	T2K	Normal mass ordering with antineutrinos
$2.55{ }_{-0.08}^{+0.08}$	ABE	17C	T2K	Normal mass ordering with neutrinos and antineutrinos
$-2.63{ }_{-0.08}^{+0.08}$	ABE	17C	T2K	Inverted mass ordering with neutrinos and antineutrinos
2.54 ± 0.08	16 ABE	17F	T2K	Normal mass ordering; $\nu+\bar{\nu}$
-2.51 ± 0.08	16 ABE	17F	T2K	Inverted mass ordering; $\nu+\bar{\nu}$
2.67 ± 0.11	17 ADAMSON	17A	NOVA	3ν osc; normal mass ordering
-2.72 ± 0.11	17 ADAMSON	17A	NOVA	3ν osc; inverted mass ordering
$2.45 \pm 0.06 \pm 0.06$	18 AN	17A	DAYA	Normal mass ordering
$-2.56 \pm 0.06 \pm 0.06$	18 AN	17A	DAYA	Inverted mass ordering

${ }^{1}$ ACERO 19 is based on a sample size of 12.33×10^{20} protons on target. The fit combines both antineutrino and neutrino data to extract the oscillation parameters. The results favor the normal mass ordering by 1.9σ and θ_{23} values in octant II by 1.6σ. Supersedes ACERO 18.
${ }^{2}$ AARTSEN 18A uses three years (April 2012 - May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV , measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 18A also reports the best fit values for the inverted mass ordering as $\Delta \mathrm{m}_{32}^{2}=-2.32 \times 10^{-3} \mathrm{eV}^{2}$ and $\sin ^{2}\left(\theta_{23}\right)=0.51$. Uncertainties for the inverted mass ordering fits were not provided. Supersedes AARTSEN 15A.
${ }^{3}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, $\Delta m_{32}^{2}, \sin ^{2}\left(\theta_{23}\right)$, and δ, while the solar parameters and $\sin ^{2}\left(\theta_{13}\right)$ are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ $\mathrm{eV}^{2}, \sin ^{2}\left(\theta_{12}\right)=0.304 \pm 0.014$, and $\sin ^{2}\left(\theta_{13}\right)=0.0219 \pm 0.0012$.
${ }^{4}$ ABE 18 G data prefers normal ordering with a posterior probability of 87%. Supersedes ${ }_{5}$ ABE 17F.
${ }^{5}$ ABE 18 G reports $\Delta \mathrm{m}_{13}^{2}=(2.432 \pm 0.070) \times 10^{-3} \mathrm{eV}^{2}$ for inverted mass ordering. We convert to $\Delta \mathrm{m}_{32}^{2}$ using PDG 18 value of $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{eV}^{2}$.
${ }^{6}$ ADEY 18A reports results from analysis of 1958 days of data taking with the DayaBay experiment, with $3.9 \times 10^{6} \bar{\nu}_{e}$ candidates. The fit to the data gives $\Delta \mathrm{m}_{e e}^{2}=$ $\left(2.522_{-0.070}^{+0.068}\right) \times 10^{-3} \mathrm{eV}^{2}$. Solar oscillation parameters are fixed in the analysis using the global averages, $\sin ^{2}\left(\theta_{12}\right)=0.307_{-0.012}^{+0.013}, \Delta \mathrm{~m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{ev}^{2}$, from PDG 18. Supersedes AN 17A.
${ }^{7}$ BAK 18 reports results of the RENO experiment using about 2200 live-days of data taken with detectors placed at 410.6 and 1445.7 m from reactors of the Hanbit Nuclear Power Plant. We convert the results to $\Delta \mathrm{m}_{32}^{2}$ using the PDG 18 values of $\sin ^{2} \theta_{12}=$ $0.307_{-0.012}^{+0.013}$ and $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{eV}^{2}$. Supersedes SEO 18.
${ }^{8}$ ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines The analysis combines the ν_{μ} disappearance and ν_{e} appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions.
${ }^{9}$ AARTSEN 19C uses three years (April 2012 - May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV , measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 19C adopts looser event selection criteria to prioritize the efficiency of selecting neutrino events, different from tighter event selection criteria which closely follow the criteria used by AARTSEN 18A to measure the ν_{μ} disappearance.
10 ALBERT 19 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2016 (2830 days of total live time). Supersedes ADRIAN-MARTINEZ 12.
11 ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, $\Delta \mathrm{m}_{32}^{2}, \sin ^{2} \theta_{23}$, $\sin ^{2} \theta_{13}$, and δ, while the solar parameters are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ eV^{2} and $\sin ^{2} \theta_{12}=0.304 \pm 0.014$.
12 ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by ACERO 19.
13 The error for octant I is taken from the result for octant II
14 AGAFONOVA 18 assumes maximal θ_{23} mixing.
${ }^{15}$ SEO 18 reports result of the RENO experiment from a rate and shape analysis of 500 days of data. A simultaneous fit to θ_{13} and $\Delta \mathrm{m}_{e e}^{2}$ yields $\Delta \mathrm{m}_{e e}^{2}=\left(2.62_{-0.23}^{+0.21+0.12}\right) \times 10^{-3}$ eV^{2}. We convert the results to $\Delta \mathrm{m}_{32}^{2}$ using the PDG 18 values of $\sin ^{2} \theta_{12}$ and $\Delta \mathrm{m}_{21}^{2}$. SEO 18 is a detailed description of the results published in CHOI 16 , which it supersedes. Superseded by BAK 18
${ }^{16}$ ABE 17F confidence intervals are obtained using a frequentist analysis including θ_{13} constraint from reactor experiments. Bayesian intervals based on Markov Chain Monte Carlo method are also provided by the authors. Superseded by ABE 18 G .
17 Superseded by ACERO 18.
18 AN 17A report results from combined rate and spectral shape analysis of 1230 days of data taken with the Daya Bay reactor experiment. The data set contains more than 2.5×10^{6} inverse beta-decay events with neutron capture on Gd . The fit to the data gives $\Delta_{e e}^{2}=(2.50 \pm 0.06 \pm 0.06) \times 10^{-3} \mathrm{eV}$. Superseded by ADEY 18A.
${ }^{19} \mathrm{ABE}$ 16D reports oscillation results using $\bar{\nu}_{\mu}$ disappearance in an off-axis beam.
${ }^{20}$ Superseded by ADAMSON 17A.
${ }^{21} \mathrm{CHOI} 16$ reports result of the RENO experiment from a rate and shape analysis of 500 days of data. A simultaneous fit to θ_{13} and $\Delta \mathrm{m}_{e e}^{2}$ yields $\Delta \mathrm{m}_{e e}^{2}=\left(2.62_{-0.23}^{+0.21+0.12}\right) \times$ $10^{-3} \mathrm{eV}$. We convert the results to $\Delta \mathrm{m}_{32}^{2}$ using PDG 18 values of $\sin ^{2}\left(\theta_{12}\right)$ and $\Delta \mathrm{m}_{21}^{2}$.
22 AARTSEN 15 A obtains this result by a three-neutrino oscillation analysis using 10-100 GeV muon neutrino sample from a total of 953 days of measurements with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Superseded by AARTSEN 18A.
23 AGAFONOVA 15A result is based on $5 \nu_{\mu} \rightarrow \nu_{\tau}$ appearance candidates with an expected background of 0.25 ± 0.05 events. The best fit is for $\Delta \mathrm{m}_{32}^{2}=3.3 \times 10^{-3} \mathrm{eV}^{2}$
${ }^{24}$ AN 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine prompt energy spectra. The results correspond to the exposure of $6.9 \times 10^{5} \mathrm{GW}_{t h^{-t o n} \text {-days. They derive } \Delta \mathrm{m}_{e e}^{2}=(2.42 \pm 0.11) \times 10^{-3}, ~}^{\text {- }}$ eV^{2}. Assuming the normal (inverted) ordering, the fitted $\Delta \mathrm{m}_{32}^{2}=(2.37 \pm 0.11) \times 10^{-3}$ $\left((2.47 \pm 0.11) \times 10^{-3}\right) \mathrm{eV}^{2}$. Superseded by AN 17A.
${ }^{25}$ ABE 14 results are based on ν_{μ} disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. In ABE 14 the inverted mass ordering result is reported as $\Delta \mathrm{m}_{13}^{2}=(2.48 \pm 0.10) \times 10^{-3} \mathrm{eV}^{2}$ which we converted to $\Delta \mathrm{m}_{32}^{2}$ by adding PDG 14 value of $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{eV}^{2}$. Superseded by ABE 17c.
${ }^{26}$ AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine prompt energy spectra and derive $\Delta \mathrm{m}_{e e}^{2}=\left(2.59_{-0.20}^{+0.19}\right) \times 10^{-3} \mathrm{eV}^{2}$. Assuming the normal (inverted) ordering, the fitted $\Delta \mathrm{m}_{32}^{2}=\left(2.54_{-0.20}^{+0.19}\right) \times 10^{-3}\left(\left(2.64_{-0.20}^{+0.19}\right) \times 10^{-3}\right) \mathrm{eV}^{2}$. Superseded by AN 15.
27 FORERO 14 performs a global fit to $\Delta \mathrm{m}_{31}^{2}$ using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.
28 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as ($2.460 \pm$ $0.046) \times 10^{-3} \mathrm{eV}^{2}$ for normal and $\left(2.445_{-0.045}^{+0.047}\right) \times 10^{-3} \mathrm{eV}^{2}$ for inverted mass ordering.
${ }^{29}$ The value for normal mass ordering is actually a measurement of Δm_{31}^{2} which differs from Δm_{32}^{2} by a much smaller value of Δm_{12}^{2}.
30 AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20-100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.

Lepton Particle Listings

Neutrino Mixing

${ }^{31}$ Based on the observation of $58 \nu_{\mu}$ events with 205 ± 17 (syst) expected in the absence of neutrino oscillations. Superseded by ABE 14.
${ }^{32}$ ADAMSON 13 B obtained this result from ν_{μ} and $\bar{\nu}_{\mu}$ disappearance using $\nu_{\mu}(10.71 \times$ 10^{20} POT) and $\bar{\nu}_{\mu}\left(3.36 \times 10^{20}\right.$ POT) beams, and atmospheric (37.88 kton-years) data from MINOS. The fit assumed two-flavor neutrino hypothesis and identical ν_{μ} and ν_{μ} oscillation parameters.
${ }^{33}$ ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\Delta \mathrm{m}_{32}^{2}=2.65 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{34}$ ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos.
${ }^{35}$ ADAMSON 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton -yr atmospheric neutrino data with the MINOS far detector.
${ }^{36}$ The 90% single-parameter confidence interval at the best fit point is $\Delta \mathrm{m}^{2}=0.0019 \pm$ $0.0004 \mathrm{eV}^{2}$.
${ }^{37}$ The data are separated into pure samples of $\nu \mathrm{s}$ and $\overline{\nu s}$, and separate oscillation parameters for $\nu \mathrm{s}$ and $\bar{\nu} \mathrm{s}$ are fit to the data. The best fit point is $\left(\Delta \mathrm{m}^{2}, \sin ^{2} 2 \theta\right)=\left(0.0022 \mathrm{eV}^{2}\right.$, 0.99) and $\left(\Delta \bar{m}^{2}, \sin ^{2} 2 \bar{\theta}\right)=\left(0.0016 \mathrm{eV}^{2}, 1.00\right)$. The quoted result is taken from the 90% C.L. contour in the $\left(\Delta \mathrm{m}^{2}, \sin ^{2} 2 \theta\right)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.
${ }^{38}$ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 with the ANTARES deep sea neutrino telescope using the
(863 days of total live time). Superseded by ALBERT 19
${ }^{39}$ ABE 11 C obtained this result by a two-neutrino oscillation analysis with separate mixing parameters between neutrinos and antineutrinos, using the Super-Kamiokande-I+II+III atmospheric neutrino data. The corresponding $90 \% \mathrm{CL}$ neutrino oscillation parameter range obtained from this analysis is $\Delta m^{2}=1.7-3.0 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{40}$ ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L.
${ }^{41}$ ADAMSON 11C obtains this result based on a study of antineutrinos in a neutrino beam and assumes maximal mixing in the two-flavor approximation.
${ }^{42}$ WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance $\left(\Delta \mathrm{m}_{21}^{2}=0\right)$ using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.
${ }^{43}$ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector.
${ }^{44}$ The best fit in the physical region is for $\Delta m^{2}=2.8 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{45}$ Supercedes ALIU 05.
${ }^{46}$ MICHAEL 06 best fit is $2.74 \times 10^{-3} \mathrm{eV}^{2}$. See also ADAMSON 08.
${ }^{47}$ ALLISON 05 result is based on an atmospheric neutrino observation with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^{2}=0.0017$ eV^{2} and $\sin ^{2} 2 \theta=0.97$.
${ }^{48}$ ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. The best fit is for $\Delta m^{2}=2.1 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{49}$ AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}, \mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$, and the numbers of InDown + UpStop and InUp events. Here, $\mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$ are the number of events with reconstructed neutrino energies $<30 \mathrm{GeV}$ and $>130 \mathrm{GeV}$, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for $\Delta m^{2}=2.3 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{50}$ ASHIE 04 obtained this result from the L (flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. The best fit is for $\Delta m^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{51}$ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^{2}. We only include the one that overlaps atmospheric neutrino analyses. The best fit is for $\Delta m^{2}=2.8 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{52}$ AMBROSIO 03 obtained this result on the basis of the ratio $\mathrm{R}=\mathrm{N}_{\text {low }} / \mathrm{N}_{\text {high }}$, where $\mathrm{N}_{\text {low }}$ and $\mathrm{N}_{\text {high }}$ are the number of upward through-going muon events with reconstructed neutrino energy $<30 \mathrm{GeV}$ and $>130 \mathrm{GeV}$, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the full detector run started in 1994. The method of
the limits. The best fit is for $\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{53}$ AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{54}$ SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L / E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is for $\Delta m^{2}=5.2 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{55}$ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}$. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
${ }^{56}$ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}>1 \mathrm{GeV}$. See the previous footnote.
${ }^{57}$ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu}>1.6 \mathrm{GeV}$, the observed flux is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The best fit is for $\Delta m^{2}=5.9 \times 10^{-3} \mathrm{eV}^{2}$.
5^{58} FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is ($0.39 \pm$ $0.04 \pm 0.02) \times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm$ 0.16 (theoretical error)) $\times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{Sr}^{-1}$. The best fit is for $\Delta \mathrm{m}^{2}=3.9 \times 10^{-3}$ eV^{2}.
${ }^{59}$ FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is for $\Delta m^{2}=3.1 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{60}$ FUKUDA 98c obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for $\Delta m^{2}=2.2 \times 10^{-3} \mathrm{eV}^{2}$.
${ }^{61}$ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu}>1.6 \mathrm{GeV}$, the observed flux of upward through-going muons is $\left(1.94 \pm 0.10_{-0.06}^{+0.07}\right) \times$ $10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. This is compared to the expected flux of (2.46 ± 0.54 (theoretical error)) $\times 10^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. The best fit is for $\Delta m^{2}=2.2 \times 10^{-3} \mathrm{eV}^{2}$.
62 HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is for $\Delta m^{2}=$ $13 \times 10^{-3} \mathrm{eV}^{2}$.
63 FUKUDA 94 obtained the result by a combined analysis of sub- and multi- GeV atmospheric neutrino events in Kamiokande. The best fit is for $\Delta m^{2}=16 \times 10^{-3} \mathrm{eV}^{2}$.

$\sin ^{2}\left(\theta_{13}\right)$

At present time direct measurements of $\sin ^{2}\left(\theta_{13}\right)$ are derived from the reactor $\bar{\nu}_{e}$ disappearance at distances corresponding to the Δm_{32}^{2} value, i.e. $\mathrm{L} \sim 1 \mathrm{~km}$. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $\nu_{\mu} \rightarrow \nu_{e}$ experiments.

If an experiment reports $\sin ^{2}\left(2 \theta_{13}\right)$ we convert the value to $\sin ^{2}\left(\theta_{13}\right)$.

VALUE (units 10^{-2})	CL\%	DOCUMENTID		TECN	COMMENT
2.18 ± 0.07 OUR AVERAGE					
2.188 ± 0.076		${ }^{1}$ ADEY	18A	DAYA	DayaBay, LingAo/Ao II reactors
2.29 ± 0.18		${ }^{2}$ BAK	18	RENO	Yonggwang reactors
2.25 ± 0.87		${ }^{3} \mathrm{ABE}$	16B	DCHZ	Chooz reactors
1.81 ± 0.29		${ }^{4} \mathrm{AN}$	16A	DAYA	DayaBay, Ling Ao/Ao II reactors

- - We do not use the following data for averages, fits, limits, etc. - •

<3.9	68	AGAFONOVA	19	OPER	
1.8 +1.3		${ }^{5}$ ABE	18B	SKAM	3ν osc: normal mass ordering, θ_{13} free
0.8		${ }^{5}$ ABE	18B	SKAM	3ν osc: inverted mass ordering, θ_{13} free
<12	90	${ }^{6}$ AGAFONOVA	18A	OPER	OPERA: ν_{e} appearance
$2.160-0.083$		DE-SALAS	18	FIT	Normal mass ordering, global fit
$2.220 \pm \begin{aligned} & 0.074 \\ & 0.076\end{aligned}$		DE-SALAS	18	FIT	Inverted mass ordering, global fit
$2.09 \pm 0.23 \pm 0.16$		7 SEO	18	RENO	Yonggwang reactors
2.7 ± 0.7		${ }^{8}$ ABE	17F	T2K	Normal mass ordering, T2K only
$2.149 \pm 0.071 \pm 0.050$		${ }^{9} \mathrm{AN}$	17A	DAYA	DayaBay, LingAo/Ao II reactors
$2.09 \pm 0.23 \pm 0.16$		${ }^{10} \mathrm{CHOI}$	16	RENO	Yonggwang reactors
2.15 ± 0.13		${ }^{11} \mathrm{AN}$	15	DAYA	DayaBay, Ling Ao/Ao II reactors
$2.6-1.2$ -1.1		12 ABE	14A	DCHZ	Chooz reactors
3.0 +1.3 -1.0		13 ABE	14C	T2K	Inverted mass ordering
3.6 -1.0		13 ABE	14C	T2K	Normal mass ordering
2.3 ± 0.9		${ }^{14}$ ABE	14H	DCHZ	Chooz reactors
2.3 ± 0.2		${ }^{15} \mathrm{AN}$	14	DAYA	DayaBay, Ling Ao/Ao II reactors
2.12 ± 0.47		${ }^{16}$ AN	14B	DAYA	DayaBay, Ling Ao/Ao II reactors
2.34 ± 0.20		17 FORERO	14	FIT	Normal mass ordering
2.40 ± 0.19		17 FORERO	14	FIT	Inverted mass ordering
2.18 ± 0.10		18 GONZALEZ...	14	FIT	Normal mass ordering; global fit
$2.19{ }_{-}^{+} 0.11$		18 GONZALEZ...	14	FIT	Inverted mass ordering; global fit
$2.5 \pm 0.9 \pm 0.9$		19 ABE	13C	DCHZ	Chooz reactors
$2.3-1.3$ -1.0		${ }^{20}$ ABE	13E	T2K	Normal mass ordering
$\begin{array}{r}2.8 \\ \hline\end{array}$		${ }^{20}$ ABE	13E	T2K	Inverted mass ordering
1.6		21 ADAMSON	13A	MINS	Normal mass ordering
$\begin{array}{r}3.0 \\ \hline\end{array}$		21 ADAMSON	13A	MINS	Inverted mass ordering
<13	90	AGAFONOVA	13	OPER	OPERA: 3ν
<3.6	95	22 AHARMIM	13	FIT	global solar: 3ν

2.3	± 0.3	± 0.1		23 AN	13	DAYA	DayaBay, LIng Ao/Ao
2.2	± 1.1	± 0.8		24 ABE	12	DCHZ	Chooz reactors
2.8	± 0.8	± 0.7		${ }^{25}$ ABE	12B	DCHZ	Chooz reactors
2.9	± 0.3	± 0.5		${ }^{26}$ AHN	12	RENO	Yonggwang reactors
2.4	± 0.4	± 0.1		27 AN	12	DAYA	DayaBay, Ling Ao/Ao II reactors
2.5	$\begin{aligned} & +1.8 \\ & -1.6 \end{aligned}$			28 ABE	11	FIT	$\begin{aligned} & \text { KamLAND + global } \\ & \text { solar } \end{aligned}$
< 6.1			95	${ }^{29}$ ABE	11	FIT	Global solar
1.3	to 5.6		68	${ }^{30}$ ABE	11A	T2K	Normal mass ordering
1.5	to 5.6		68	31 ABE	11A	T2K	Inverted mass ordering
0.3	to 2.3		68	32 ADAMSON	11D	MINS	Normal mass ordering
0.8	to 3.9		68	33 ADAMSON	11D	MINS	Inverted mass ordering
8	± 3			34 FOGLI	11	FIT	Global neutrino data
7.8	± 6.2			35 GANDO	11	FIT	$\begin{aligned} & \text { KamLAND }+ \text { solar: } \\ & 3 \nu \end{aligned}$
12.4	± 13.3			36 GANDO	11	FIT	KamLAND: 3ν
3	$\begin{array}{r} +9 \\ -7 \end{array}$		90	37 ADAMSON	10A	MINS	Normal mass ordering
6	$\begin{array}{r} +14 \\ -\quad 6 \end{array}$		90	38 ADAMSON	10A	MINS	Inverted mass ordering
8	$\begin{array}{r} +8 \\ -7 \end{array}$			39,40 AHARMIM	10	FIT	KamLAND + global solar: 3ν
<30			95	39,41 AHARMIM	10	FIT	global solar: 3ν
<15			90	42 WENDELL	10	SKAM	3ν osc.; normal m ordering
<33			90	42 WENDELL	10	SKAM	3ν osc.; inverted m ordering
11	$\begin{array}{r} +11 \\ -\quad 8 \end{array}$			43 ADAMSON	09	MINS	Normal mass ordering
18	$\begin{aligned} & +15 \\ & -11 \end{aligned}$			44 ADAMSON	09	MINS	Inverted mass ordering
6	± 4			${ }^{45}$ FOGLI	08	FIT	Global neutrino data
8	± 7			46 FOGLI	08	FIT	$\begin{aligned} & \text { Solar }+ \text { KamLAND } \\ & \text { data } \end{aligned}$
5	± 5			47 FOGLI	08	FIT	$\begin{aligned} & \text { Atmospheric }+\mathrm{LBL}+ \\ & \text { CHOOZ } \end{aligned}$
<36			90	48 YAMAMOTO	06	K2K	Accelerator experiment
<48			90	${ }^{49}$ AHN	04	K2K	Accelerator experiment
<36			90	50 BOEHM	01		Palo Verde react.
<45			90	51 BOEHM	00		Palo Verde react.
<15			90	52 APOLLONIO	99	CHOZ	Reactor Experiment

${ }^{1}$ ADEY 18A reports results from analysis of 1958 days of data taking with the DayaBay experiment, with $3.9 \times 10^{6} \bar{\nu}_{e}$ candidates. The fit to the data gives $\Delta \mathrm{m}_{e e}^{2}=$ $\left(2.522_{-0.070}^{+0.068}\right) \times 10^{-3} \mathrm{eV}^{2}$. Solar oscillation parameters are fixed in the analysis using the global averages, $\sin ^{2}\left(\theta_{12}\right)=0.307_{-0.012}^{+0.013}, \Delta \mathrm{~m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{eV}^{2}$, from PDG 18. Supersedes AN 17A.
${ }^{2}$ BAK 18 reports results of the RENO experiment using about 2200 live-days of data taken with detectors placed at 410.6 and 1445.7 m from reactors of the Hanbit Nuclear Power Plant. Supersedes SEO 18.
${ }^{3}$ ABE 16B uses 455.57 live days of data from a detector 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin ^{2}\left(2 \theta_{13}\right)$. This analysis uses 7.15 reactor-off days for constraining backgrounds. A rate and shape analysis is performed on combined neutron captures on H and Gd . Supersedes ABE 14 H and ABE 13C.
${ }^{4}$ AN 16A uses data from the eight antineutrino detectors (404 days) and six antineutrino detectors (217 days) runs to determine the mixing parameter $\sin ^{2}\left(2 \theta_{13}\right)$ using the neutron capture on H only. Supersedes AN 14B.
${ }^{5}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, $\Delta \mathrm{m}_{32}^{2}, \sin ^{2} \theta_{23}$, $\sin ^{2} \theta_{13}$, and δ, while the solar parameters are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ eV^{2} and $\sin ^{2} \theta_{12}=0.304 \pm 0.014$.
${ }^{6}$ AGAFONOVA 18 A reports $\sin ^{2}\left(2 \theta_{13}\right)<0.43$ at 90% C.L. The result on the sterile neutrino search in the context of $3+1$ model is also reported. A 90% C.L. upper limit on $\sin ^{2}\left(2 \theta \mu_{\mu}\right)=0.021$ for $\Delta \mathrm{m}_{41}^{2} \geq 0.1 \mathrm{eV}^{2}$ is set.
7 SEO 18 reports results of the RENO experiment using about 500 days of data, performing a rate and shape analysis. Compared to AHN 12, a significant reduction of the systematic uncertainties is reported. A 3% excess of events near 5 MeV of the prompt energy is observed. SEO 18 is a detailed description of the results published in CHOI 16, which it observed. SEO 18 is a detailed descrips
supersedes. Superseded by BAK 18.
${ }^{8}$ Using T2K data only. For inverted mass ordering, all values of θ_{13} are ruled out at 68%
${ }^{9}$ CL. 17 a reports results from combined rate and spectral shape analysis of 1230 days of data taken with the Daya Bay reactor experiment. The data set contains more than 2.5×10^{6} inverse beta-decay events with neutron capture on Gd. A simultaneous fit to θ_{13} and $\Delta \mathrm{m}_{e e}^{2}$ is performed. Superseded by ADEY 18A.
${ }^{10} \mathrm{CHOI} 16$ reports results of the RENO experiment using about 500 days of data, performing a rate and shape analysis. Compared to AHN 12, a significant reduction of the systematic uncertainties is reported. A 3% excess of events near 5 MeV of the prompt energy is observed. Supersedes AHN 12.
${ }^{11}$ AN 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine the mixing angle θ_{13} using the $\bar{\nu}_{e}$ observed remaining four at the far hall to determine the mixing angle θ_{13} using the $\bar{\nu}_{e} e$ observed
interaction rates with neutron capture on Gd and energy spectra. The result corresponds interaction rates with neutron capture on Gd and energy spectra. The re
to the exposure of $6.9 \times 10^{5} \mathrm{GW}_{t h}$-ton-days. Superseded by AN 17A.
12 ABE 14A uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin ^{2}\left(2 \theta_{13}\right)$. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A "rate-modulation" analysis is performed. Supercedes ABE 12B.
${ }^{13} \mathrm{ABE} 14 \mathrm{C}$ result is for ν_{e} appearance and assumes $\Delta m_{32}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2}\left(\theta_{23}\right)$ $=0.5$, and $\delta=0$.
14 ABE 14 H uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin ^{2}\left(2 \theta_{13}\right)$. The Bugey 4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A rate and shape analysis is performed. Superceded by ABE 16B.
${ }^{15}$ AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\bar{\nu}_{\text {distance of } 1579 \mathrm{~m} \text { from all six reactor cores) to determine the mixing angle } \theta_{13} \text { using the }}$ $\bar{\nu}_{e}$ o observed interaction rates with
AN 13 and superseded by AN 15.
${ }^{16}$ AN 14B uses six identical anti-neutrino detectors with flux-weighted baselines of ~ 500 m and $\sim 1.6 \mathrm{~km}$ to six power reactors. This rate analysis uses a 217-day data set and neutron capture on protons (not Gd) only. $\Delta m_{31}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$ is assumed. Superseded by AN 16A.
17 FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, longbaseline accelerator, and atmospheric neutrino data.
18 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $\left(2.18_{-0.11}^{+0.10}\right) \times 10^{-2} \mathrm{eV}^{2}$ for normal and $\left(2.19_{-0.10}^{+0.12}\right) \times 10^{-2} \mathrm{eV}^{2}$ for inverted mass ordering.
19 ABE 13 C uses delayed neutron capture on hydrogen instead of on Gd used previously. The physical volume is thus three times larger. The fit is based on the rate and shape analysis as in ABE 12B. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. Superseded by ABE 16B.
${ }^{20}$ ABE 13 E assumes maximal θ_{23} mixing and $C P$ phase $\delta=0$.
21 ADAMSON 13A results obtained from ν_{e} appearance, assuming $\delta=0$, and $\sin ^{2}\left(2 \theta_{23}\right)$ $=0.957$.
22 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.45 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data. AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active ${ }^{8} \mathrm{~B}$ neutrino flux and energy-dependent ν_{e} survival probability parameters, measurements of Cl (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and ${ }^{7} \mathrm{Be}\left(\right.$ BELLINI 11A) rates, and ${ }^{8} \mathrm{~B}$ solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra. AHARMIM 13 also reported a result combining global solar and KamLAND data, which is $\sin ^{2}\left(2 \theta_{13}\right)=\left(9.1_{-3.1}^{+2.9}\right) \times 10^{-2}$.
${ }^{23}$ AN 13 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 498 and 555 m) and the remaining three at the far hall (at the flux averaged distance of 1628 m from all six reactor cores) to determine the $\bar{\nu}_{e}$ interaction rate ratios. Superseded by AN 14.
${ }^{24}$ ABE 12 determines the $\bar{\nu}_{e}$ interaction rate in a single detector, located 1050 m from the cores of two reactors. A rate and shape analysis is performed. The rate normalization is fixed by the results of the Bugey4 reactor experiment, thus avoiding any dependence on possible very short baseline oscillations. The value of $\Delta m_{31}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$ is used in the analysis. Superseded by ABE 12B.
${ }^{25} \mathrm{ABE}$ 12B determines the neutrino mixing angle θ_{13} using a single detector, located 1050 m from the cores of two reactors. This result is based on a spectral shape and rate analysis. The Bugey 4 data (DECLAIS 94) is used to constrain the neutrino flux. Superseded by ABE 14A.
${ }^{26}$ AHN 12 uses two identical detectors, placed at flux weighted distances of 408.56 m and 1433.99 m from six reactor cores, to determine the mixing angle θ_{13}. This rate-only analysis excludes the no-oscillation hypothesis at 4.9 standard deviations. The value of $\Delta m_{31}^{2}=\left(2.32_{-0.08}^{+0.12}\right) \times 10^{-3} \mathrm{eV}^{2}$ was assumed in the analysis. Superseded by CHOI 16.
${ }^{27}$ AN 12 uses six identical detectors with three placed near the reactor cores (flux-weighted baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged
distance of 1648 m from all six reactor cores) to determine the mixing angle θ_{13} using distance of 1648 m from all six reactor cores) to determine the mixing angle θ_{13} using
the $\bar{\nu}_{e}$ observed interaction rate ratios. This rate-only analysis excludes the no-oscillation hypothesis at 5.2 standard deviations. The value of $\Delta m_{31}^{2}=\left(2.32_{-0.08}^{+0.12}\right) \times 10^{-3} \mathrm{eV}^{2}$ was assumed in the analysis. Superseded by AN 13.
${ }^{28}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. This result implies an upper bound of $\sin ^{2} \theta_{13}<0.059(95 \% \mathrm{CL})$ or $\sin ^{2} 2 \theta_{13}<$ 0.22 ($95 \% \mathrm{CL}$). The normal neutrino mass ordering and CPT invariance are assumed.
${ }^{29}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^{2} fixed to $2.4 \times 10^{-3} \mathrm{eV}^{2}$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.
${ }^{30}$ The quoted limit is for $\Delta m_{32}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2, \delta=0$, and the normal mass ordering. For other values of δ, the 68% region spans from 0.03 to 0.25 , and the 90% region from 0.02 to 0.32 .
${ }^{31}$ The quoted limit is for $\Delta m_{32}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2, \delta=0$, and the inverted mass ordering. For other values of δ, the 68% region spans from 0.04 to 0.30 , and the 90% region from 0.02 to 0.39 .
32 The quoted limit is for $\Delta m_{32}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2, \delta=0$, and the normal mass ordering. For other values of δ, the 68% region spans from 0.02 to 0.12 , and the 90% region from 0 to 0.16 .
33 The quoted limit is for $\Delta m_{32}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2, \delta=0$, and the inverted mass ordering. For other values of δ, the 68% region spans from 0.02 to 0.16 , and the 90% region from 0 to 0.21 .
${ }^{34}$ FOGLI 11 obtained this result from an analysis using the atmospheric, accelerator long baseline, CHOOZ, solar, and KamLAND data. Recently, MUELLER 11 suggested an

Lepton Particle Listings

Neutrino Mixing

average increase of about 3.5% in normalization of the reactor $\bar{\nu}_{e}$ fluxess, and using these fluxes, the fitted result becomes 0.10 ± 0.03.
${ }^{35}$ GANDO 11 report $\sin ^{2} \theta_{13}=0.020 \pm 0.016$. This result was obtained with three-neutrino fit using the KamLAND + solar data.
${ }^{36}$ GANDO 11 report $\sin ^{2} \theta_{13}=0.032 \pm 0.037$. This result was obtained with three-neutrino fit using the KamLAND data only.
${ }^{37}$ This result corresponds to the limit of <0.12 at $90 \% \mathrm{CL}$ for $\Delta m_{32}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}$, $\theta_{23}=\pi / 2$, and $\delta=0$. For other values of δ, the $90 \% \mathrm{CL}$ region spans from 0 to 0.16 .
${ }^{38}$ This result corresponds to the limit of <0.20 at $90 \% C L$ for $\Delta m_{32}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}$, $\theta_{23}=\pi / 2$, and $\delta=0$. For other values of δ, the $90 \% \mathrm{CL}$ region spans from 0 to 0.21 .
${ }^{39}$ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALTMANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
40 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. This result implies an upper bound of $\sin ^{2} \theta_{13}<$ $0.057(95 \% \mathrm{CL})$ or $\sin ^{2} 2 \theta_{13}<0.22$ ($95 \% \mathrm{CL}$).
41 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^{2} fixed to $2.3 \times 10^{-3} \mathrm{eV}^{2}$, using global solar neutrino data.
${ }^{42}$ WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance $\left(\Delta \mathrm{m}_{21}^{2}=0\right)$ using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.
${ }^{43}$ The quoted limit is for $\Delta m_{32}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2$, and $\delta=0$. For other values of δ, the $68 \% \mathrm{CL}$ region spans from 0.02 to 0.26 .
${ }^{44}$ The quoted limit is for $\Delta m_{32}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 2$, and $\delta=0$. For other values of δ, the $68 \% \mathrm{CL}$ region spans from 0.04 to 0.34 .
${ }^{45}$ FOGLI 08 obtained this result from a global analysis of all neutrino oscillation data, that is, solar + KamLAND + atmospheric + accelerator long baseline +CHOOZ .
${ }^{46}$ FOGLI 08 obtained this result from an analysis using the solar and KamLAND neutrino oscillation data.
${ }^{47}$ FOGLI 08 obtained this result from an analysis using the atmospheric, accelerator long baseline, and CHOOZ neutrino oscillation data.
${ }^{48}$ YAMAMOTO 06 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assumes $2 \sin ^{2}\left(2 \theta_{\mu e}\right)=$ $\sin ^{2}\left(2 \theta_{13}\right)$. The quoted limit is for $\Delta m_{32}^{2}=1.9 \times 10^{-3} \mathrm{eV}^{2}$. That value of Δm_{32}^{2} is the one- σ low value for AHN 06A. For the AHN 06A best fit value of $2.8 \times 10^{-3} \mathrm{eV}^{2}$, the $\sin ^{2}\left(2 \theta_{13}\right)$ limit is <0.26. Supersedes AHN 04.
${ }^{49}$ AHN 04 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assuming $2 \sin ^{2}\left(2 \theta_{\mu_{e}}\right)=\sin ^{2}\left(2 \theta_{13}\right)$, a limit on $\sin ^{2}\left(2 \theta_{\mu_{e}}\right)$ is converted to a limit on $\sin ^{2}\left(2 \theta_{13}\right)$. The quoted limit is for Δm_{32}^{2} $=1.9 \times 10^{-3} \mathrm{eV}^{2}$. That value of Δm_{32}^{2} is the one- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \mathrm{eV}^{2}$, the $\sin ^{2}\left(2 \theta_{13}\right)$ limit is <0.30.
${ }^{50}$ The quoted limit is for $\Delta m_{32}^{2}=1.9 \times 10^{-3} \mathrm{eV}^{2}$. That value of Δm_{32}^{2} is the $1-\sigma$ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \mathrm{eV}^{2}$, the $\sin ^{2} 2 \theta_{13}$ limit is <0.19. In this range, the θ_{13} limit is larger for lower values of Δm_{32}^{2}, and smaller for higher values of Δm_{32}^{2}
${ }^{51}$ The quoted limit is for $\Delta m_{32}^{2}=1.9 \times 10^{-3} \mathrm{eV}^{2}$. That value of Δm_{32}^{2} is the $1-\sigma$ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \mathrm{eV}^{2}$, the $\sin ^{2} 2 \theta_{13}$ limit is <0.23.
${ }^{52}$ The quoted limit is for $\Delta m_{32}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}$. That value of Δm_{32}^{2} is the central value for ADAMSON 08. For the ADAMSON $081-\sigma$ low value of $2.30 \times 10^{-3} \mathrm{eV}^{2}$, the $\sin ^{2} 2 \theta_{13}$ limit is <0.16. See also APOLLONIO 03 for a detailed description of the experiment.

$C P$ violating phase

$\delta, C P$ violating phase

Measurements of δ come from atmospheric and accelarator experiments looking at ν_{e} appearance. We encode values between 0 and 2π, though it is equivalent to use $-\pi$ to π.
VALUE ($\pi \mathrm{rad}$) CL\% DOCUMENTID TECN COMMENT

1.36 ± 0.17 OUR AVERAGE

1 ACERO	19	NOVA	Normall mass ordering, octant II for θ_{23}	
$1.33_{-0.4}^{+1.3}$	$1_{-0.51}^{+0.45}$	2 ABE	18 B	SKAM
1.40 ± 0.20	3 ABE	18 G	T2K \quadNormal mass ordering, θ_{13} con- strained strained mass ordering, θ_{13} con-	

- - We do not use the following data for averages, fits, limits, etc. - . .

$1.33_{-0.53}^{+0.46}$	${ }^{4} \mathrm{ABE}$
$1.22_{-0.67}^{+0.76}$	${ }^{4} \mathrm{ABE}$
$1.33_{-0.53}^{+0.48}$	${ }^{2} \mathrm{ABE}$

18B SKAM 3ν osc: normal mass ordering, θ_{13} free
18B SKAM 3ν osc: inverted mass ordering, θ_{13} free
$1.33_{-0.53}^{+0.48} \quad 2 \mathrm{ABE}$
18B SKAM 3ν osc: inverted mass ordering, θ_{13} constrained

$1.54{ }_{-0.12}^{+0.14}$	95	${ }^{3} \mathrm{ABE}$	18G	T2K	Inverted mass ordering, θ_{13} constrained
$1.211_{-0.30}^{+0.91}$		5 ACERO	18	NOVA	Normal mass ordering, octant II for θ_{23}
$1.46{ }_{-0.42}^{+0.56}$		${ }^{5}$ ACERO	18	NOVA	Normal mass order; octant I for θ_{23}
$1.32{ }_{-0.15}^{+0.21}$		DE-SALAS	18	FIT	Normal mass ordering, global fit
$1.56{ }_{-0.15}^{+0.13}$		DE-SALAS	18	FIT	Inverted mass ordering, global fit
$1.45{ }_{-0.26}^{+0.27}$		${ }^{6}$ ABE	17F	T2K	Normal mass ordering
$1.54{ }_{-0.23}^{+0.22}$		${ }^{6}$ ABE	17F	T2K	Inverted mass ordering
$1.50{ }_{-0.57}^{+0.53}$		7 ADAMSON	17B	NOVA	Inverted mass ordering; θ_{23} in octant II
$0.74{ }_{-0.93}^{+0.57}$		7 ADAMSON	17B	NOVA	Normal mass ordering; θ_{23} in octant II
$1.48{ }_{-0.58}^{+0.69}$		7 ADAMSON	17B	NOVA	Normal mass ordering; θ_{23} in octant I
$\begin{aligned} & 0.0 \text { to } 0.1,0.5 \\ & \text { to } 2.0 \end{aligned}$	90	7,8 ADAMSON	16	NOVA	Inverted mass ordering
0.0 to 2.0	90	8 ADAMSON	16	NOVA	Normal mass ordering
$\begin{aligned} & 0 \text { to } 0.15,0.83 \\ & \text { to } 2 \end{aligned}$	90	ABE	15D	T2K	Normal mass ordering
1.09 to 1.92	90	ABE	15D	T2K	Inverted mass ordering
0.05 to 1.2	90	9 ADAMSON	14	MINS	Normal mass ordering
$1.34{ }_{-0.38}^{+0.64}$		FORERO	14	FIT	Normal mass ordering
$1.48{ }_{-0.32}^{+0.34}$		FORERO	14	FIT	Inverted mass ordering
$1.70{ }_{-0.39}^{+0.22}$		10 GONZALEZ...	14	FIT	Normal mass ordering; global fit
1.41 ${ }_{-0.34}^{+0.35}$		10 GONZALEZ...	14	FIT	Inverted mass ordering; global fit
$\begin{aligned} & 0 \text { to } 1.5 \text { or } 1.9 \\ & \text { to } 2 \end{aligned}$	90	11 ADAMSON	13A	MINS	Normal mass ordering

${ }^{1}$ ACERO 19 is based on a sample size of 1.33×10^{20} protons on target with combined antineutrino and neutrino data. Supersedes ACERO 18.
${ }^{2}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, $\Delta \mathrm{m}_{32}^{2}, \sin ^{2} \theta_{23}$, and
δ, while the solar parameters and $\sin ^{2} \theta_{23}$ are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$
$\mathrm{eV}^{2}, \sin ^{2} \theta_{12}=0.304 \pm 0.014$, and $\sin ^{2} \theta_{13}=0.0219 \pm 0.0012$.
${ }^{3}$ ABE 18 G confidence intervals are marginalized over both mass orderings. Normal order preferred with a posterior probability of 87%. The 1 -sigma result for normal mass ordering used in the average was provided by the experiment via private communications. Supersedes ABE 17F.
${ }^{4}$ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, $\Delta \mathrm{m}_{32}^{2}, \sin ^{2} \theta_{23}$, $\sin ^{2} \theta_{13}$, and δ, while the solar parameters are fixed to $\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}$ eV^{2} and $\sin ^{2} \theta_{12}=0.304 \pm 0.014$.
${ }^{5}$ ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by ACERO 19.
${ }^{6}$ ABE 17F confidence intervals are obtained using a frequentist analysis including θ_{13} constraint from reactor experiments. Bayesian intervals based on Markov Chain Monte Carlo method are also provided by the authors. Superseded by ABE 18G.
${ }^{7}$ Errors are projections of 68% C.L. curve of $\delta_{C P}$ vs. $\sin ^{2} \theta_{23}$.
${ }^{8}$ ADAMSON 16 result is based on a data sample with 2.74×10^{20} protons on target. The likelihood-based analysis observed $6 \nu_{e}$ events with an expected background of 0.99 ± 0.11 events.
${ }^{9}$ ADAMSON 14 result is based on three-flavor formalism and $\theta_{23}>\pi / 4$. Likelihood as a function of δ is also shown for the other three combinations of hierarchy and θ_{23} octants; all values of δ are allowed at 90% C.L.
10 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $68 \% \mathrm{CL}$ intervals of 1.24-1.94 for normal and 1.15-1.77 for inverted mass ordering.
${ }^{11}$ ADAMSON 13 A result is based on ν_{e} appearance in MINOS and the calculated $\sin ^{2}\left(2 \theta_{23}\right)=0.957, \theta_{23}>\pi / 4$, and normal mass hierarchy. Likelihood as a function of δ is also shown for the other three combinations of hierarchy and θ_{23} octants; all values of δ are allowed at 90% C.L.

(C) Other neutrino mixing results

The LSND collaboration reported in AGUILAR 01 a signal which is consistent with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm_{21}^{2}. This does not appear to be consistent with most of the other neutrino data. The following listings include results from $\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance and $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}$, and $\bar{\nu}_{e}$ disappearance experiments, and searches for CPT violation.
$\Delta\left(m^{2}\right)$ for $\sin ^{2}(2 \theta)=1 \quad\left(\nu_{\mu} \rightarrow \nu_{e}\right)$
$\frac{\operatorname{VALUE}\left(e \mathrm{~V}^{2}\right)}{\text { - }- \text { We do not use the following data for averages, fits, limits, etc. • - - }} \frac{\text { DLECN }}{\text { COMMENT }}$

0.03	to 0.05	90	${ }^{1}$ AGUILAR-AR...18C	MBNE	MiniBooNE $\nu, \bar{\nu}$ combined
0.015	to 0.050	90	${ }^{2}$ AGUILAR-AR...13A	MBNE	MiniBooNE
<0.34		90	3 MAHN 12	MBNE	MiniBooNE/SciBooNE
<0.034		90	AGUILAR-AR... 07	MBNE	MiniBooNE
<0.0008		90	AHN 04	K2K	Water Cherenkov
<0.4		90	ASTIER 03	NOMD	CERN SPS
<2.4		90	AVVAKUMOV 02	NTEV	NUTEV FNAL
			${ }^{4}$ AGUILAR 01	LSND	$\nu \mu \rightarrow \nu_{e}$ osc.prob.
0.03	to 0.3	95	5 ATHANASSO... 98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<2.3		90	${ }^{6}$ LOVERRE 96		CHARM/CDHS
<0.9		90	VILAIN 94C	CHM2	CERN SPS
<0.09		90	ANGELINI 86	HLBC	BEBC CERN PS

${ }^{1}$ AGUILAR-AREVALO 18 C result is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 460.5 ± 99.0 events;
The best fit value is $\Delta \mathrm{m}^{2}=0.041 \mathrm{eV}^{2}$.
${ }^{2}$ AGUILAR-AREVALO 13A result is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 162.0 ± 47.8 events; marginally compatible with twoneutrino oscillations. The best fit value is $\Delta \mathrm{m}^{2}=3.14$ eV^{2}.
${ }^{3}$ MAHN 12 is a combined spectral fit of MiniBooNE and SciBooNE neutrino data with the range of $\Delta \mathrm{m}^{2}$ up to $25 \mathrm{eV}^{2}$. The best limit is 0.04 at $7 \mathrm{eV}^{2}$.
${ }^{4}$ AGUILAR 01 is the final analysis of the LSND full data set. Search is made for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+}decay in flight by observing beam-on electron events from $\nu_{e} \mathrm{C} \rightarrow e^{-} X$. Present analysis results in $8.1 \pm 12.2 \pm 1.7$ excess events in the $60<E_{e}<200 \mathrm{MeV}$ energy range, corresponding to oscillation probability of $0.10 \pm 0.16 \pm 0.04 \%$. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98.
${ }^{5}$ ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with $\nu_{e} \mathrm{C} \rightarrow$ $e^{-} \mathrm{X}$; the expected background is 21.9 ± 2.1. Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability ($0.26 \pm 0.10 \pm 0.05$) \% . Although the significance is only 2.3σ, this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations from μ^{+}decay at rest. See also ATHANASSOPOULOS 98B.
${ }^{6}$ LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\sin ^{2}(2 \theta)$ for "Large" $\Delta\left(m^{2}\right) \quad\left(\nu_{\mu} \rightarrow \nu_{e}\right)$

VALUE (units 10^{-3}) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

<5	90	${ }^{1}$ AGUILAR-AR...18C	MBNE	MiniBooNE; $\nu+\bar{\nu}$
<7.2	90	AGAFONOVA 13	OPER	$\Delta\left(m^{2}\right)>0.1 \mathrm{eV}^{2}$
0.8 to 3	90	${ }^{2}$ AGUILAR-AR...13A	MBNE	MiniBooNE
<11	90	${ }^{3}$ ANTONELLO 13	ICAR	$\nu_{\mu} \rightarrow \nu_{e}$
< 6.8	90	4 ANTONELLO 13A	ICAR	$\nu_{\mu} \rightarrow \nu_{e}$
<100	90	$5 \mathrm{MAHN} \quad 12$	MBNE	MiniBooNE/SciBooNE
< 1.8	90	${ }^{6}$ AGUILAR-AR... 07	MBNE	MiniBooNE
<110	90	7 AHN 04	K2K	Water Cherenkov
< 1.4	90	ASTIER 03	NOMD	CERN SPS
< 1.6	90	AVVAKUMOV 02	NTEV	NUTEV FNAL
		${ }^{8}$ AGUILAR 01	LSND	$\nu_{\mu} \rightarrow \nu_{e}$ OSC.prob.
0.5 to 30	95	${ }^{9}$ ATHANASSO... 98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
< 3.0	90	10 LOVERRE 96		CHARM/CDHS
<9.4	90	VILAIN 94C	CHM2	CERN SPS
< 5.6	90	11 VILAIN 94C	CHM2	CERN SPS

${ }^{1}$ AGUILAR-AREVALO 18 C result is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 460.5 ± 99.0 events; The best fit value is $\sin ^{2}(2 \theta)=0.92$. The quoted limit for the two-neutrino mixing angle θ is valid above $\Delta \mathrm{m}^{2}=0.59 \mathrm{eV}^{2}$.
${ }^{2}$ AGUILAR-AREVALO 13A result is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 162.0 ± 47.8 events; marginally compatible with two neutrino oscillations. The best fit value is $\sin ^{2}(2 \theta)=$ 0.002 .
${ }^{3}$ ANTONELLO 13 use the ICARUS T600 detector at LNGS and $\sim 20 \mathrm{GeV}$ beam of ν_{μ} from CERN 730 km away to search for an excess of ν_{e} events. Two events are found with 3.7 ± 0.6 expected from conventional sources. This result excludes some parts of the parameter space expected by LSND. Superseded by ANTONELLO 13A.
${ }^{4}$ Based on four events with a background of 6.4 ± 0.9 from conventional sources with an average energy of 20 GeV and 730 km from the source of ν_{μ}.
${ }^{5}$ MAHN 12 is a combined fit of MiniBooNE and SciBooNE neutrino data.
${ }^{6}$ The limit is $\sin ^{2} 2 \theta<0.9 \times 10^{-3}$ at $\Delta m^{2}=2 \mathrm{eV}^{2}$. That value of Δm^{2} corresponds to the smallest mixing angle consistent with the reported signal from LSND in AGUILAR 01.
${ }^{7}$ The limit becomes $\sin ^{2} 2 \theta<0.15$ at $\Delta m^{2}=2.8 \times 10^{-3} \mathrm{eV}^{2}$, the bets-fit value of the ν_{μ} disappearance analysis in K2K.
${ }^{8}$ AGUILAR 01 is the final analysis of the LSND full data set of the search for the $\nu_{\mu} \rightarrow$ ν_{e} oscillations. See footnote in preceding table for further details.
${ }^{9}$ ATHANASSOPOULOS 98 report $(0.26 \pm 0.10 \pm 0.05) \%$ for the oscillation probability; the value of $\sin ^{2} 2 \theta$ for large Δm^{2} is deduced from this probability. See footnote in
preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin ^{2} 2 \theta$ and Δm^{2}. See also ATHANASSOPOULOS 98B.
${ }^{10}$ LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.
${ }^{11}$ VILAIN 94 C limit derived by combining the ν_{μ} and $\bar{\nu}_{\mu}$ data assuming $C P$ conservation.
$\Delta\left(m^{2}\right)$ for $\sin ^{2}(2 \theta)=1 \quad\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$
VALUE $\left(\mathrm{V}^{2}\right)$ CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
0.023 to $0.060 \quad 90 \quad{ }^{1}$ AGUILAR-AR...13A MBNE MiniBooNE
$<0.16 \quad 90 \quad 2$ CHENG 12 MBNE MiniBooNE/SciBooNE
0.03-0.09
0.03-0.07
<0.06
<0.055
<2.6
0.03-0.05
0.05-0.08
0.048-0.090
<0.07
<0.9
<0.14
$\begin{array}{lll}2 \text { CHENG } & 12 & \text { MBNE MiniBooNE/Sci } \\ 3 \text { AGUILAR-AR... } 10 & \text { MBNE } \mathrm{E}_{\nu}>475 \mathrm{MeV}\end{array}$
4 AGUILAR-AR... 10 MBNE $E_{\nu}>200 \mathrm{MeV}$
AGUILAR-AR...09B MBNE MiniBooNE
${ }^{5}$ ARMBRUSTER02 KAR2 Liquid Sci. calor.
AVVAKUMOV 02 NTEV NUTEV FNAL
${ }_{7}^{6}$ AGUILAR 01 LSND LAMPF
7 ATHANASSO... 96 LSND LAMPF
8 ATHANASSO... 95
${ }^{9}$ HILL 95
VILAIN 94C CHM2 CERN SPS
10 FREEDMAN 93 CNTR LAMPF
${ }^{1}$ Based on $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance of 78.4 ± 28.5 events. The best fit values are $\Delta \mathrm{m}^{2}=$ $0.043 \mathrm{eV}^{2}$ and $\sin ^{2} 2 \theta=0.88$.
${ }^{2}$ CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data.
${ }^{3}$ This value is for a two neutrino oscillation analysis for excess antineutrino events with $\mathrm{E}_{\nu}>475 \mathrm{MeV}$. The best fit is at 0.07 . The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B.
4 This value is for a two neutrino oscillation analysis for excess antineutrino events with $\mathrm{E}_{\nu}>200 \mathrm{MeV}$ with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. The best fit value is 0.007 for $\Delta\left(m^{2}\right)=4.4 \mathrm{eV}^{2}$.
${ }^{5}$ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\bar{\nu}_{e}$, detected by the inverse β-decay reaction on protons and ${ }^{12}$ C. 15 candidate events are observed, and 15.8 ± 0.5 background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment.
${ }^{6}$ AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\bar{\nu}_{e} 30 \mathrm{~m}$ from LAMPF beam stop. Neutrinos originate mainly for π^{+}decay at rest. $\bar{\nu}_{e}$ are detected through $\bar{\nu}_{e} p \rightarrow e^{+} n\left(20<E_{e^{+}}<60 \mathrm{MeV}\right)$ in delayed coincidence with $n p \rightarrow d \gamma$. Authors observe $87.9 \pm 22.4 \pm 6.0$ total excess events. The observation is attributed to $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations with the oscillation probability of $0.264 \pm 0.067 \pm 0.045 \%$, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta\left(\mathrm{m}^{2}\right)$ from $0.2-2.0 \mathrm{eV}^{2}$. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.
${ }^{7}$ ATHANASSOPOULOS 96 is a search for $\bar{\nu}_{e} 30 \mathrm{~m}$ from LAMPF beam stop. Neutrinos originate mainly from π^{+}decay at rest. $\bar{\nu}_{e}$ could come from either $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ or $\nu_{e} \rightarrow \bar{\nu}_{e}$; our entry assumes the first interpretation. They are detected through $\bar{\nu}_{e} p \rightarrow$ $e^{+} n\left(20 \mathrm{MeV}<E_{e^{+}}<60 \mathrm{MeV}\right)$ in delayed coincidence with $n p \rightarrow d \gamma$. Authors observe $51 \pm 20 \pm 8$ total excess events over an estimated background 12.5 ± 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
${ }^{8}$ ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $(0.34-0.18 \pm 0.07) \%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.
${ }^{9}$ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and obtains only upper limits.
${ }^{10}$ FREEDMAN 93 is a search at LAMPF for $\bar{\nu}_{e}$ generated from any of the three neutrino types $\nu_{\mu}, \bar{\nu}_{\mu}$, and ν_{e} which come from the beam stop. The $\bar{\nu}_{e}$'s would be detected by the reaction $\bar{\nu}_{e} p \rightarrow e^{+} n$. FREEDMAN 93 replaces DURKIN 88.

$\sin ^{2}(2 \theta)$ for "Large" $\Delta\left(m^{2}\right) \quad\left(\boldsymbol{\nu}_{\mu} \Rightarrow \boldsymbol{\nu}_{e}\right)$

VALUE (units 10^{-3}) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -

<640	90	${ }^{1}$ ANTONELLO 13A	ICAR	$\bar{\nu}_{e}$ appearance
<150	90	${ }^{2}$ CHENG 12	MBNE	MiniBooNE/SciBooNE
0.4-9.0	99	3 AGUILAR-AR... 10	MBNE	$\mathrm{E}_{\nu}>475 \mathrm{MeV}$
0.4-9.0	99	${ }^{4}$ AGUILAR-AR... 10	MBNE	$\mathrm{E}_{\nu}>200 \mathrm{MeV}$
< 3.3	90	${ }^{5}$ AGUILAR-AR...09b	MBNE	MiniBooNE
< 1.7	90	${ }^{6}$ ARMBRUSTER02	KAR2	Liquid Sci. calor.
< 1.1	90	AVVAKUMOV 02	NTEV	NUTEV FNAL
$5.3 \pm 1.3 \pm 9.0$		${ }^{7}$ AGUILAR 01	LSND	LAMPF
$6.2 \pm 2.4 \pm 1.0$		8 ATHANASSO... 96	LSND	LAMPF
3-12	80	${ }^{9}$ ATHANASSO... 95		
< 6	90	10 HILL 95		

Lepton Particle Listings

Neutrino Mixing

Abstract

${ }^{1}$ ANTONELLO 13A obtained the limit by assuming $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillation from the $\sim 2 \%$ of $\bar{\nu}_{\mu}$ evnets contamination in the CNGS beam. ${ }^{2}$ CHENG 12 is a combined fit of MiniBooNE and SCiBooNE antineutrino data. ${ }^{3}$ This value is for a two neutrino oscillation analysis for excess antineutrino events with $\mathrm{E}_{\nu}>475 \mathrm{MeV}$. At $90 \% \mathrm{CL}$ there is no solution at high $\Delta\left(m^{2}\right)$. The best fit is at maximal mixing. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B. ${ }^{4}$ This value is for a two neutrino oscillation analysis for excess antineutrino events with $\mathrm{E}_{\nu}>200 \mathrm{MeV}$ with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. At $90 \% \mathrm{CL}$ there is no solution at high $\Delta\left(m^{2}\right)$. The best fit value is 0.007 for $\Delta\left(m^{2}\right)=4.4 \mathrm{eV}^{2}$. ${ }^{5}$ This result is inconclusive with respect to small amplitude mixing suggested by LSND. ${ }^{6}$ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the preceding table for further details, and the paper for the exclusion plot. ${ }^{7}$ AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045 \%$; the value of $\sin ^{2} 2 \theta$ for large $\Delta\left(m^{2}\right)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. ${ }^{8}$ ATHANASSOPOULOS 96 reports ($0.31 \pm 0.12 \pm 0.05$)\% for the oscillation probability; the value of $\sin ^{2} 2 \theta$ for large $\Delta\left(m^{2}\right)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. ${ }^{9}$ ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $\left(0.34{ }_{-0.18}^{+0.20} \pm 0.07\right) \%$. For a different interpretation, see HILL 95 . Replaced by ATHANASSOPOULOS 96 . ${ }^{10}$ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and obtains only upper limits.

$\Delta\left(m^{2}\right)$ for $\sin ^{2}(2 \theta)=1 \quad\left(\nu_{\mu}\left(\nu_{\mu}\right) \Rightarrow \nu_{e}\left(\nu_{e}\right)\right)$
 $\frac{\operatorname{VALUE}\left(\mathrm{eV}^{2}\right)}{<\mathbf{0 . 0 7 5}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BORODOV... } 92} \frac{\text { TECN }}{\text { CNTR }} \frac{\text { COMMENT }}{\text { BNL E776 }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<1.6 \quad 90 \quad 1$ ROMOSAN 97 CCFR FNAL
${ }^{1}$ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.
$\sin ^{2}(2 \theta)$ for "Large" $\Delta\left(m^{2}\right) \quad\left(\nu_{\mu}\left(\nabla_{\mu}\right) \Rightarrow \nu_{e}\left(\nabla_{e}\right)\right)$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{1 . 8}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ROMOSAN } 97} \frac{\text { TECN }}{\text { CCFR }} \frac{\text { COMMENT }}{\text { FNAL }}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<3.8 \quad 90 \quad{ }^{2}$ MCFARLAND 95 CCFR FNAL
<3 90 BORODOV... 92 CNTR BNL E776
${ }^{1}$ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.
${ }^{2}$ MCFARLAND 95 state that "This result is the most stringent to date for $250<$ $\Delta\left(m^{2}\right)<450 \mathrm{eV}^{2}$ and also excludes at $90 \% \mathrm{CL}$ much of the high $\Delta\left(m^{2}\right)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOULOS 96 .
$\Delta\left(m^{2}\right)$ for $\sin ^{2}(2 \theta)=1\left(\bar{\nu}_{e} \nrightarrow \bar{\nu}_{e}\right)$
VALUE $\left(\mathrm{eV}^{2}\right)$ CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.01 \quad 90 \quad{ }^{1}$ ACHKAR 95 CNTR Bugey reactor
${ }^{1}$ ACHKAR 95 bound is for $L=15,40$, and 95 m .
$\sin ^{2}(2 \theta)$ for "Large" $\Delta\left(m^{2}\right)\left(\bar{\nu}_{e} \nrightarrow \bar{\nu}_{e}\right)$
VALUE CLL DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.02 \quad 90 \quad 1$ ACHKAR $\quad 95$ CNTR For $\Delta\left(m^{2}\right)=0.6 \mathrm{eV}^{2}$
${ }^{1}$ ACHKAR 95 bound is from data for $L=15,40$, and 95 m distance from the Bugey reactor.

——Sterile neutrino limits

$\Delta\left(m^{2}\right)$ for $\sin ^{2}(2 \theta)=1\left(\nu_{\mu} \rightarrow \nu_{s}\right)$
ν_{S} means ν_{τ} or any sterile (noninteracting) ν.
VALUE $\left(10^{-5} \mathrm{eV}^{2}\right)$ CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
<3000 (or <550) $90 \quad 1$ OYAMA 89 KAMI Water Cherenkov <4.2 or >54. $90 \quad 88 \mathrm{IMB}$ Flux has $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}$, and $\bar{\nu}_{e}$
${ }^{1}$ OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta\left(m^{2}\right)=(100-1000) \times 10^{-5} \mathrm{eV}^{2}$ is not ruled out by any data for large mixing.

Search for ν_{μ} or $\nu_{e} \rightarrow \nu_{s}$
VALUE CLL DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

<0.1		99	1 SEREBROV	19		Neutrino-4
<0.01		90	2 ALEKSEEV	18		DANSS
<0.06		90	${ }^{3}$ ALMAZAN	18		STEREO
<0.1		95	${ }^{4}$ ASHENFELT.			PROSPECT
<0.1		95	${ }^{5}$ SEREBROV	18A		Neutrino-4
<0.4		90	${ }^{6}$ AARTSEN	17B	ICCB	IceCube-DeepCore
<8	$\times 10^{-3}$	95	${ }^{7}$ ABDURASHI.			T β decay
<1	$\times 10^{-2}$	90	8 KO	17	NEOS	
<2	$\times 10^{-2}$	90	${ }^{9}$ AARTSEN	16	ICCB	IceCube
<4.5	$\times 10^{-4}$	95	10 ADAMSON	16B		MINOS, DayaBay
<8.6	$\times 10^{-2}$	95	11 ADAMSON	16C	MINS	
<1.1	$\times 10^{-2}$	95	12 AN	16B	DAYA	
			13 AMBROSIO	01	MCRO	matter effects
			14 FUKUDA	00	SKAM	neutral currents + matter effects

${ }^{1}$ SEREBROV 19 searches for $\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$ oscillations with baseline $6-12 \mathrm{~m}$ with SM-3 research reactor that uses highly enriched ${ }^{235} \mathrm{U}$ fuel. The spectrum is well described by the $1 / L^{2}$ dependence. However, the shape differs from the theoretical expectations, with the best fit corresponding to $\Delta \mathrm{m}_{41}^{2}=7.34 \pm 0.1 \mathrm{eV}^{2}$ and $\sin ^{2}\left(2 \theta_{14}\right)=0.39 \pm 0.12$ at 3σ significance.
${ }^{2}$ ALEKSEEV 18 searches for $\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$ oscillations using the DANSS detector at 10.7, 11.2, and 12.7 m from the $3.1 \mathrm{GW}_{t h}$ power reactor. The DANSS detector is highly segmented and moveable; the positions are changed usually 3 times a week. The analysis is based on the ratio of the events at top and bottom position; the middle position is used for checks of consistency. The best fit point is at $\Delta \mathrm{m}_{41}^{2}=1.4 \mathrm{eV}^{2}$ and $\sin ^{2}\left(2 \theta_{14}\right)=0.05$ with $\Delta \chi^{2}=13.1$ (statistical errors only) compared to the fit with 3 active neutrinos only. The quoted limit of 0.01 for $\sin ^{2}\left(2 \theta_{14}\right)$ corresponds to $\Delta \mathrm{m}_{41}^{2} \sim 1.0 \mathrm{eV}^{2}$.
${ }^{3}$ ALMAZAN 18 searches for the $\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$ oscillations with baseline from 9.4 to 11.1 m from the ILL research reactor with highly enriched ${ }^{235} \mathrm{U}$ fuel. The STEREO detector consists of six separated cells with Gd loaded scintillator, with 15 m water equivalent overburden. The detected rate is $396.3 \pm 4.7 \bar{\nu}_{e} /$ day with signal to background ratio of about 0.9. The reported results corresponds to 66 days of reactor-on. The analysis uses the relative rates normalized to the cell number 1 . No indication of the oscillation to the sterile neutrinos is found, the stated limit on $\sin ^{2}\left(2 \theta_{14}\right)$ correspond to $\Delta \mathrm{m}_{41}^{2} \sim$
$3.5 \mathrm{eV}^{2}$ where the exclusion is maximal.
${ }^{4}$ ASHENFELTER 18 searches for the $\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$ oscillations at baseline from 6.7 to 9.2 m from the 85 MW research reactor with pure ${ }^{235} \mathrm{U}$ core. The segmented 4 ton ${ }^{6} \mathrm{Li}$-doped liquid scintillator is operated with about 1 m water equivalent overburden and recorded 25461 ± 283 IBD events. No indication of oscillations into sterile neutrinos was observed. The stated limit for $\sin ^{2}\left(2 \theta_{14}\right)$ is for $\Delta \mathrm{m}_{41}^{2} \sim 2 \mathrm{eV}^{2}$ where the sensitivity is maximal.
${ }^{5}$ SEREBROV 18A searches for the $\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$ oscillation with baseline 6-12 m from the core of the SM-3 research reactor that uses highly enriched ${ }^{235} \mathrm{U}$. They find that oscillations with $\Delta \mathrm{m}_{41}^{2} \sim 0.7-0.8 \mathrm{eV}^{2}$ and $\sin ^{2}\left(2 \theta_{14}\right) \sim 0.10-0.15$ give better fit to the L and E dependence than the no oscillation scenario. The significance of this is about 2σ
${ }^{6}$ AARTSEN 17B uses three years of upward-going atmospheric neutrino data in the energy range of $10-60 \mathrm{GeV}$ to constrain their disappearance into light sterile neutrinos. The reported limit $\sin ^{2} \theta_{24}<0.11$ at 90% C.L. is for $\Delta m_{41}^{2}=1.0 \mathrm{eV}^{2}$. We convert the result to $\sin ^{2} 2 \theta_{24}$ for the listing. AARTSEN 17B also reports $\cos ^{2} \theta_{24} \cdot \sin ^{2} \theta_{34}<0.15$ at 90% C.L. for $\Delta \mathrm{m}_{41}^{2}=1.0 \mathrm{eV}^{2}$.
${ }^{7}$ ABDURASHITOV 17 use the Troitsk nu-mass experiment to search for sterile neutrinos with mass $0.1-2 \mathrm{keV}$. We convert the reported limit from $U_{e 4}^{2}<0.002$ to $\sin ^{2} 2 \theta_{14}<0.008$ assume $U_{e 4} \sim \sin \theta_{14}$. The stated limit corresponds to the smallest $U_{e 4}^{2}$. The exclusion curve begins at $U_{e 4}^{2}$ of 0.02 for $m_{4}=0.1 \mathrm{keV}$.
${ }^{8} \mathrm{KO} 17$ reports on short baseline reactor oscillation search ($\bar{\nu}_{e} \rightarrow \bar{\nu}_{S}$), motivated be the so-called "reactor antineutrino anomaly". The experiment is conducted at 23.7 m from the core of unit 5 of the Hanbit Nuclear Power Complex in Korea. the reported limited on $\sin ^{2}\left(2 \theta_{41}\right)$ for sterile neutrinos was determined using the reactor antineutrino spectrum determined by the Daya Bay experiment for $\Delta \mathrm{m}_{14}^{2}$ around $0.55 \mathrm{eV}^{2}$ where the sensitivity is maximal. A fraction of the parameter space derived from the "reactor antineutrino anomaly" is excluded by this work. Compared to reactor models an event excess is observed at about 5 MeV , in agreement with other experiments.
${ }^{9}$ AARTSEN 16 use one year of upward-going atmospheric muon neutrino data in the energy range of 320 GeV to 20 TeV to constrain their disappearance into light sterile neutrinos. Sterile neutrinos are expected to produce distinctive zenith distribution for these energies for $0.01 \leq \Delta \mathrm{m}^{2} \leq 10 \mathrm{eV}^{2}$. The stated limit is for $\sin ^{2} 2 \theta_{24}$ at $\Delta \mathrm{m}^{2}$ around $0.3 \mathrm{eV}^{2}$.
10 ADAMSON 16B combine the results of AN 16B, ADAMSON 16C, and Bugey-3 reactor experiments to constrain ν_{μ} to ν_{e} mixing through oscillations into light sterile neutrinos. The stated limit for $\sin ^{2} 2 \theta$ e is at $\left|\Delta \mathrm{m}_{41}^{2}\right|=1.2 \mathrm{eV}^{2}$.
11 ADAMSON 16C use the NuMI beam and exposure of 10.56×10^{20} protons on target to search for the oscillation of ν_{μ} dominated beam into light sterile neutrinos with detectors at 1.04 and 735 km . The reported limit $\sin ^{2}\left(\theta_{24}\right)<0.022$ at 95% C.L. is for $\left|\Delta m_{41}^{2}\right|$ $=0.5 \mathrm{eV}^{2}$. We convert the result to $\sin ^{2}\left(2 \theta_{24}\right)$ for the listing.
${ }^{12}$ AN 16 B utilize 621 days of data to place limits on the $\bar{\nu}_{e}$ disappearance into a light sterile neutrino. The stated limit corresponds to the smallest $\sin ^{2}\left(2 \theta_{14}\right)$ at $\left|\Delta m_{41}^{2}\right| \sim$ $3 \times 10^{-2} \mathrm{eV}^{2}$ (obtained from Figure 3 in AN 16 B). The exclusion curve begins at $\left|\Delta \mathrm{m}_{41}^{2}\right| \sim 1.5 \times 10^{-4} \mathrm{eV}^{2}$ and extends to $\sim 0.25 \mathrm{eV}^{2}$. The analysis assumes $\sin ^{2}\left(2 \theta_{12}\right)$

Lepton Particle Listings

Neutrino Mixing, Heavy Neutral Leptons, Searches for

FUKUDA	98C	PRL 811562	Y. Fukuda et al.	(Super-Kamiokande Collab.)
HATAKEYAMA	98	PRL 812016	S. Hatakeyama et al.	(Kamiokande Collab.)
CLARK	97	PRL 79345	R. Clark et al.	(IMB Collab.)
ROMOSAN	97	PRL 782912	A. Romosan et al.	(CCFR Collab.)
AGLIETTA	96	JETPL 63791	M. Aglietta et al.	(LSD Collab.)
Translated from ZETFP 63753.				
ATHANASSO...	96	PR C54 2685	C. Athanassopoulos et al.	a. (LSND Collab.)
ATHANASSO..	96B	PRL 773082	C. Athanassopoulos et al.	a. (LSND Collab.)
FUKUDA	96	PRL 771683	Y. Fukuda et al.	(Kamiokande Collab.)
FUKUDA	96B	PL B388 397	Y. Fukuda et al.	(Kamiokande Collab.)
GREENWOOD	96	PR D53 6054	Z.D. Greenwood et al.	(UCI, SVR, SCUC)
HAMPEL	96	PL B388 384	W. Hampel et al.	(GALLEX Collab.)
LOVERRE	96	PL B370 156	P.F. Loverre	
ACHKAR	95	NP B434 503	B. Achkar et al. (S	(SING, SACLD, CPPM, CDEF+)
AHLEN	95	PL B357 481	S.P. Ahlen et al.	(MACRO Collab.)
ATHANASSO...	95	PRL 752650	C. Athanassopoulos et al.	a. (LSND Collab.)
DAUM	95	ZPHY C66 417	K. Daum et al.	(FREJUS Collab.)
HILL	95	PRL 752654	J.E. Hill	(PENN)
MCFARLAND	95	PRL 753993	K.S. McFarland et al.	(CCFR Collab.)
DECLAIS	94	PL B338 383	Y. Declais et al.	
FUKUDA	94	PL B335 237	Y. Fukuda et al.	(Kamiokande Collab.)
VILAIN	94 C	ZPHY C64 539	P. Vilain et al.	(CHARM II Collab.)
FREEDMAN	93	PR D47 811	S.J. Freedman et al.	(LAMPF E645 Collab.)
BECKER-SZ...	92B	PR D46 3720	R.A. Becker-Szendy et al.	al (IMB Collab.)
BEIER	92	PL B283 446	E.W. Beier et al.	(KAM2 Collab.)
Also		PTRSL A346 63	E.W. Beier, E.D. Frank	(PENN)
BORODOV...	92	PRL 68274	L. Borodovsky et al.	(COLU, JHU, ILL)
HIRATA	92	PL B280 146	K.S. Hirata et al.	(Kamiokande II Collab.)
CASPER	91	PRL 662561	D. Casper et al.	(IMB Collab.)
HIRATA	91	PRL 669	K.S. Hirata et al.	(Kamiokande II Collab.)
KUVSHINN...	91	JETPL 54253	A.A. Kuvshinnikov et al.	(KIAE)
BERGER	90B	PL B245 305	C. Berger et al.	(FREJUS Collab.)
HIRATA	90	PRL 651297	K.S. Hirata et al.	(Kamiokande II Collab.)
AGLIETTA	89	EPL 8611	M. Aglietta et al.	(FREJUS Collab.)
DAVIS	89	ARNPS 39467	R. Davis, A.K. Mann, L.	Wolfenstein (BNL, PENN+)
OYAMA	89	PR D39 1481	Y. Oyama et al.	(Kamiokande II Collab.)
BIONTA	88	PR D38 768	R.M. Bionta et al.	(IMB Collab.)
DURKIN	88	PRL 611811	L.S. Durkin et al.	(OSU, ANL, CIT+)
ABRAMOWICZ	86	PRL 57298	H. Abramowicz et al.	(CDHS Collab.)
ALLABY	86	PL B177 446	J.V. Allaby et al.	(CHARM Collab.)
ANGELINI	86	PL B179 307	C. Angelini et al.	(PISA, ATHU, PADO+)
VUILLEUMIER	82	PL 114B 298	J.L. Vuilleumier et al.	(CIT, SIN, MUNI)
BOLIEV	81	SJNP 34787	M.M. Boliev et al.	(INRM)
Translated from YAF 341418.				
KWON	81	PR D24 1097	H. Kwon et al.	(CIT, ISNG, MUNI)
BOEHM	80	PL 97B 310	F. Boehm et al.	(ILLG, CIT, ISNG, MUNI)
CROUCH	78	PR D18 2239	M.F. Crouch et al.	(CASE, UCI, WITW)

Heavy Neutral Leptons, Searches for
OMITTED FROM SUMMARY TABLE
We define searches for Heavy Neutral Leptons (HNLs) as searches for Dirac or Majorana fermions with sterile neutrino quantum numbers, that are heavy enough to not disrupt the simplest Big Bang Nucleosynthesis bounds and/or unstable on cosmological timescales: Typically HNLs have mass $\sim \mathrm{MeV}$ or higher.

Searches for these particles generically set bounds on the mixing between the HNL and the active neutrinos, as parametrized by the extended 3×4 PMNS matrix elements $U_{\ell x}$ (see the "Neutrino mass, mixing and oscillations" review) where $\ell=e, \mu$ or τ, and we denote the HNL as ν_{x}. While many measurements may be interpreted to place bounds on various combinations of these matrix elements, we quote below limits only for those cases in which one matrix element is assumed to be much larger than the other two, i.e. $\left|U_{\ell x}\right| \gg$ $\left|U_{\ell^{\prime} x}\right|$ for $\ell^{\prime} \neq \ell$.

Experimental searches make use of various different strategies, including e.g. resonance searches in missing mass decay distributions or specific final states, searches for lepton number violating decays, and trilepton signatures. The resulting bounds on $U_{\ell x}$ are typically dependent on the HNL mass. The quoted limits below are either the best limit near an experimental kinematic threshold, or a characteristic value in the mass range of the experimental sensitivity.

Limits on heavy neutral lepton mixing parameters

Limits on $\left|U_{e x}\right|^{2}$
Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

$<2 \times 10^{-9}$		10,11 BERNARDI	88	CNTR	Near $m_{K}-m_{e}$ kin. thres.
$<1 \times 10^{-7}$	90	${ }^{12}$ DORENBOS... 86	CHRM	Near $m_{D^{-}} m_{e}$ kin. thres.	
$<1 \times 10^{-7}$	90	${ }^{13}$ COOPER-... 85	BEBC	Near $m_{D^{-}} m_{e}$ kin. thres.	

- - We do not use the following data for averages, fits, limits, etc. - . -

${ }^{14}$ PARK 16 BELL $m_{\nu_{x}} \sim 0.2-1.4 \mathrm{GeV}$

${ }^{1}$ Limit from prompt lepton number violating trilepton search.
${ }^{2} K^{+} \rightarrow e^{+} \nu_{x}$, with ν_{x} decay through $U_{e x}$. ABE 19B also considers bounds on $\left|U_{\ell x} U_{\ell^{\prime} x}\right|$ for combinations of lepton flavors in the ν_{x} decay final state.
${ }^{3}$ Searches for a Majorana Heavy Neutral Lepton producing a $\pi^{-} e^{+}$resonance in the same sign dilepton decay $D \rightarrow K \pi^{-} e^{+} e^{+}$.
${ }^{4}$ Search for $\pi^{+} \rightarrow e^{+} \nu_{x}$.
${ }^{5}$ Search for $K^{+} \rightarrow e^{+} \nu_{x}$.
${ }^{6}$ Search for prompt ν_{x} decay signatures.
${ }^{7}$ Search for displaced ν_{x} decay signatures.
${ }^{8}$ Searches for K or $\pi \rightarrow e^{+} \nu_{X}, \nu_{X} \rightarrow e^{+} e^{-} \nu_{e}$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. BARANOV 93 also considers limits for $\left|U_{e x} U_{\mu x}\right|$
from K or $\pi \rightarrow \mu^{+} \nu_{X}, \nu_{X} \rightarrow e^{+} e^{-} \nu_{e}$.
${ }^{9} \pi^{+} \rightarrow e^{+} \nu_{x}$, with ν_{x} decay through $U_{e x}$.
${ }^{10}$ BERNARDI 88 also considers bounds on $\left|U_{e x} U_{\mu x}\right|$.
${ }^{11} K^{+} \rightarrow e^{+} \nu_{x}$, with ν_{x} decay through $U_{e x}$.
${ }^{12} D^{+} \rightarrow e^{+} \nu_{x}$, with $\nu_{x} \rightarrow e^{-} \ell^{+} \nu_{\ell}$.
${ }^{13} D^{+} \rightarrow e^{+} \nu_{X}$, with $\nu_{X} \rightarrow e^{-} \ell^{+} \nu_{\ell}$ or $\nu_{X} \rightarrow e^{-} \pi^{+}$.
${ }^{14}$ PARK 16 quotes an approximate limit $\mathrm{B}\left(B^{+} \rightarrow e^{+} \nu_{\chi}\right)<3 \times 10^{-6}$ in the mass range $m_{\nu_{X}} \sim 0.2-1.4 \mathrm{GeV}$.

Limits on $\left|U_{\mu x}\right|^{2}$

Quoted limits are either the best limit near the kinematic threshold of the experiment,
or a characteristic value in the mass range of the experimental sensitivity

VALUE	CL\%	DOCUMENT ID	TECN	COMMENT
$<2 \times 10^{-5}$	95	1 AAD 19F	ATLS	$m_{\nu_{X}} \sim 10-50 \mathrm{GeV}$
$<2 \times 10^{-6}$	95	2 AAD 19F	ATLS	$m_{\nu_{x}} \sim 10 \mathrm{GeV}$
$<1 \times 10^{-9}$	90	${ }^{3} \mathrm{ABE} \quad 19 \mathrm{~B}$	T2K	Near $m_{K}-m_{\mu}$ kin. thres.
$<5 \times 10^{-6}$	90	4,5 AGUILAR-AR...19B	PIEN	$m_{\nu_{\chi}} \sim 16-30 \mathrm{MeV}$
$<1 \times 10^{-5}$	90	${ }^{5}$ AGUILAR-AR...19B	PIEN	Near $m_{\pi}-m_{\mu}$ kin. thres.
$<3 \times 10^{-7}$	90	${ }^{6}$ CORTINA-GIL 18	NA62	$m_{\nu_{x}} \sim 250-350 \mathrm{MeV}$
$<3 \times 10^{-6}$	90	${ }^{6}$ LAZZERONI 17A	NA62	Near $m_{K}-m_{\mu}$ kin. thres.
$<1 \times 10^{-8}$	90	${ }^{6}$ ARTAMONOV 15A	B949	$m_{\nu_{x}} \sim 200-300 \mathrm{MeV}$
$<2.0 \times 10^{-8}$	95	7 DAUM 00	KARM	$m_{\nu_{X}}=33.905 \mathrm{MeV}$
$<8 \times 10^{-8}$	90	8 VAITAITIS 99	CCFR	Near $m_{K}-m_{\mu}$ kin. thres.
$<6 \times 10^{-8}$	90	$9{ }^{9}$ VAITAITIS 99	CCFR	Near $m_{D_{s}}-m_{\mu}$ kin. thres.
$<3 \times 10^{-5}$	95	10 ABREU 971	DLPH	$m_{\nu_{X}} \sim 6-50 \mathrm{GeV}$
$<2 \times 10^{-5}$	95	11 ABREU 971	DLPH	Near $m_{\nu_{X}} \sim 3.5 \mathrm{GeV}$
$<3 \times 10^{-5}$	90	12 VILAIN 95C	CHM2	Near $m_{K}-m_{\mu}$ kin. thres.
$<3 \times 10^{-8}$		13,14 BERNARDI 88	CNTR	Near $m_{\mu}+m_{\pi}$ kin. thres.
$<2 \times 10^{-9}$		14,15 BERNARDI 88	CNTR	Near $m_{K}-m_{\mu}$ kin. thres.
$<1 \times 10^{-7}$	90	16 DORENBOS... 86	CHRM	Near $m_{D^{-}} m_{\mu}$ kin. thres.
$<1 \times 10^{-7}$	90	17 COOPER-... 85	BEBC	Near $m_{D^{-}} m_{\mu}$ kin. thres.

- - We do not use the following data for averages, fits, limits, etc. - • -

${ }^{17} D^{+} \rightarrow \mu^{+} \nu_{x}$, with $\nu_{x} \rightarrow \mu^{-} \ell^{+} \nu_{\ell}$ or $\nu_{x} \rightarrow \mu^{-} \pi^{+}$.
18 PARK 16 quotes an approximate limit $\mathrm{B}\left(B^{+} \rightarrow \mu^{+} \nu_{x}\right)<3 \times 10^{-6}$ in the mass range
$m_{\nu_{x}} \sim 0.2-1.4 \mathrm{GeV}$.

Limits on $\left|U_{\tau x}\right|^{2}$

Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

VALUE	CL\%	DOCUMENT		TECN	COMMENT
$<2 \times 10^{-4}$	90	${ }^{1}$ ORLOFF	02	CHRM	Near $m_{D^{-}} m_{\tau}$ kin. thres.
$<1 \times 10^{-4}$	90	${ }^{2}$ ORLOFF	02	CHRM	$m_{\nu_{X}} \sim 200-250 \mathrm{MeV}$
$<3 \times 10^{-5}$	95	${ }^{3}$ ABREU	971	DLPH	$m_{\nu_{X}} \sim 6-50 \mathrm{GeV}$
$<2 \times 10^{-5}$	95	${ }^{4}$ AbREU	971	DLPH	Near $m_{\nu_{\chi}} \sim 3.5 \mathrm{GeV}$
${ }^{1} D_{S} \rightarrow \tau^{+} \nu_{x}$, with ν_{x} decay via $U_{\tau x}$. ${ }^{2} D_{S} \rightarrow \nu_{\tau} \tau^{+}, \tau^{+} \rightarrow \nu_{X} X$, with ν_{x} decay via $U_{\tau X}$ ${ }^{3}$ Search for prompt ν_{X} decay signatures.					
${ }^{4}$ Search f masses	laced to rap	decay signatu oosening of t		atical su bound	uppression of $\nu_{X} \rightarrow \tau X$ at ompared to that for $\left\|U_{e x}\right\|$

REFERENCES FOR Heavy Neutral Leptons, Searches for

AAD	19F	JHEP 1910265	G. Aad et al.	(ATLAS Collab.)
ABE	19B	PR D100 052006	K. Abe et al.	(T2K Collab.)
ABLIKIM	19AL	PR D99 112002	M. Ablikim et al.	(BESIII Collab.)
AGUILAR-AR...	19B	PL B798 134980	A. Aguilar-Arevalo et al.	(PIENU Collab.)
AGUILAR-AR...	18A	PR D97 072012	A. Aguilar-Arevalo et al.	(PIENU Collab.)
CORTINA-GIL	18	PL B778 137	E. Cortina Gil et al.	(NA62 Collab.)
LAZZERONI	17A	PL B772 712	C. Lazzeroni et al.	(NA62 Collab.)
PARK	16	PR D94 012003	C.-S. Park et al.	(BELLE Collab.)
ARTAMONOV	15A	PR D91 052001	A.V. Artamanov et al.	(E949 Collab.)
ORLOFF	02	PL B550 8	J. Orloff et al.	(CHARM Collab.)
DAUM	00	PRL 851815	M. Daum et al.	(KARMEN Collab.)
VAITAITIS	99	PRL 834943	A. Vaitaitis et al.	(CCFR Collab.)
ABREU	971	ZPHY C74 57	P. Abreu et al.	(DELPHI Collab.)
Also		ZPHY C75 580 (errat.)	P. Abreu et al.	(DELPHI Collab.)
VILAIN	95 C	PL B351 387	P. Vilain et al.	(CHARM II Collab.)
Also		PL B343 453	P. Vilain et al.	(CHARM II Collab.)
BARANOV	93	PL B302 336	S.A. Baranov et al.	(JINR, SERP, BUDA)
BERNARDI	88	PL B203 332	G. Bernardi et al.	(PARIN, CERN, INFN+)
DORENBOS...	86	PL 166B 473	J. Dorenbosch et al.	(CHARM Collab.)
COOPER-...	85	PL 160B 207	A.M. Cooper-Sarkar et al.	(CERN, LOIC+)

Lepton Particle Listings

QUARKS

u. 1173
d. 1173
s. 1173
c . 1177
b. 1179
t. 1180
b^{\prime} (Fourth Generation) Quark 1197
t^{\prime} (Fourth Generation) Quark 1199
Free Quark Searches 1201

Related Reviews in Volume 1

59. Quark masses (rev.)
733
60. Top quark (rev.)
741

QUARKS

See the related review(s):

Quark Masses

u

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

Mass $m=2.16_{-0.26}^{+0.49} \mathrm{MeV} \quad$ Charge $=\frac{2}{3} e \quad I_{z}=+\frac{1}{2}$
$m_{u} / m_{d}=0.47_{-0.07}^{+0.06}$

d

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

Mass $m=4.67_{-0.17}^{+0.48} \mathrm{MeV} \quad$ Charge $=-\frac{1}{3} e \quad I_{z}=-\frac{1}{2}$
$m_{s} / m_{d}=17-22$
$\bar{m}=\left(m_{u}+m_{d}\right) / 2=3.45_{-0.15}^{+0.55} \mathrm{MeV}$

S

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

Mass $m=93_{-}^{+11} \mathrm{MeV} \quad$ Charge $=-\frac{1}{3} e \quad$ Strangeness $=-1$ $\left(m_{s}-\left(m_{u}+m_{d}\right) / 2\right) /\left(m_{d}-m_{u}\right)=27.3_{-1.3}^{+0.7}$

Light Quarks (u, d, s)

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\mathrm{MS}}$. The ratios m_{u} / m_{d} and m_{s} / m_{d} are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from $\mathrm{SU}(3)$ splittings in hadron masses.

We have normalized the MS masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.
$\overline{\text { MS }}$ MASS (MeV)

\qquad

DOCUMENT ID TECN
$2.16{ }_{-0.26}^{+0.49}$ OUR EVALUATION See the ideogram below.
2.6 ± 0.4
2.130 ± 0.041
$236 \pm 0.06 \pm 0.06$
$\begin{array}{lll}{ }^{2} \text { BAZAVOV } & 18 & \text { LATT } \\ & 16 & \text { LATT }\end{array}$
${ }^{4}$ CARRASCO 14 LATT
${ }^{5}$ AOKI 12 LATT
$\begin{array}{llllll}2.57 \pm 0.26 & \pm 0.07 & 6 & \\ 2.24 \pm 0.10 & \pm 0.34 & { }^{2} & \text { BLUM } & 10 & \text { LATT }\end{array}$
$2.01 \pm 0.14 \quad 7$ MCNEILE 10 LATT

- - We do not use the following data for averages, fits, limits, etc. - -

$2.15 \pm 0.03 \pm 0.10$	8	DURR	11	LATT
1.9	± 0.2	9	BAZAVOV	10
LATT				
2.01 ± 0.14	70 DAVIES	10	LATT	
2.9	± 0.2	10 DOMINGUEZ	09	THEO
2.9	± 0.8	12 DEANDREA	08	THEO
3.02 ± 0.33	12 BLUM	07	LATT	
2.7	± 0.4	13 JAMIN	06	THEO
1.9	± 0.2	14 MASON	06	LATT
2.8	± 0.2	15 NARISON	06	THEO
1.7	± 0.3	16 AUBIN	$04 A$	LATT

${ }^{1}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{2}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors
${ }^{3}$ FODOR 16 is a lattice simulation with $N_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{S} \neq m_{C}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{5}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
${ }^{6}$ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
7^{7} DAVIES 10 and MCNEILE 10 determine $\bar{m}_{C}(\mu) / \bar{m}_{S}(\mu)=11.85 \pm 0.16$ using a lattice computation with $N_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses.

Mass m_{U} is obtained from this using the value of m_{C} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s} / \bar{m} and m_{u} / m_{d}.
${ }^{8}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_{u}, m_{d} values are obtained using the lattice determination of the average mass $m_{\text {ud }}$ and of the ratio m_{s} / m_{ud} and the value of $Q=\left(m_{s}^{2}-m_{\mathrm{ud}}^{2}\right) /\left(m_{d}^{2}-m_{u}^{2}\right)$ as determined from $\eta \rightarrow 3 \pi$ decays.
${ }^{9}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
10 DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.
${ }^{11}$ DEANDREA 08 determine $m_{\mu}-m_{d}$ from $\eta \rightarrow 3 \pi^{0}$, and combine with the PDG 06 lattice average value of $m_{u}+m_{d}=7.6 \pm 1.6$ to determine m_{u} and m_{d}.
${ }^{12}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
13 JAMIN 06 determine $m_{u}(2 \mathrm{GeV})$ by combining the value of m_{s} obtained from the spectral function for the scalar $K \pi$ form factor with other determinations of the quark mass ratios.
14 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_{u} and m_{d} were determined from their $\left(m_{u}+m_{d}\right) / 2$ measurement and AUBIN 04A m_{u} / m_{d} value.
15 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{s} combined with other determinations of the quark mass ratios.
${ }^{16}$ AUBIN 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.

See the comment for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 . The values of "Our Evaluation" were determined in part via Figures 1 and 2.
$\overline{\mathrm{MS}}$ MASS (MeV) \qquad DOCUMENT ID TECN
$4.67 \underset{\mathbf{- 0}}{\mathbf{+}} \mathbf{0 . 1 7}$ OUR EVALUATION See the ideogram below.

5.3 ± 0.4	1 DOMINGUEZ	19	THEO
4.675 ± 0.056	2 BAZAVOV	18	LATT
$4.67 \pm 0.06 \pm 0.06$	3 FODOR	16	LATT
5.03 ± 0.26	4 CARRASCO	14	LATT
$3.68 \pm 0.29 \pm 0.10$	5 AOKI	12	LATT
$4.65 \pm 0.15 \pm 0.32$	6 BLUM	10	LATT
4.77 ± 0.15	7 MCNEILE	10	LATT

- - We do not use the following data for averages, fits, limits, etc. - - -

4.79 ± 0.07	± 0.12	8		
DURR	11	LATT		
4.6	± 0.3	9		
BAZAVOV	10	LATT		
4.79 ± 0.16	7 DAVIES	10	LATT	
5.3	± 0.4	10 DOMINGUEZ	09	THEO
4.7	± 0.8	11 DEANDREA	08	THEO
5.49 ± 0.39	12 BLUM	07	LATT	
4.8	± 0.5	13 JAMIN	06	THEO
4.4	± 0.3	14 MASON	06	LATT
5.1	± 0.4	15 NARISON	06	THEO
3.9	± 0.5	16 AUBIN	$04 A$	LATT

Quark Particle Listings

Light Quarks (u, d, s)

${ }^{1}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{2}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{3}$ FODOR 16 is a lattice simulation with $N_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$
dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{C}$. The u and d quark masses are dynamical quarks, with $m_{U}=m_{d} \underset{S}{\neq m_{S}} \neq m_{C}$. The u and d quark masses are
obtained separately by using the K meson mass splittings and lattice results for the obtained separately by using
electromagnetic contributions.
${ }^{5}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
${ }^{6}$ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
${ }^{7}$ DAVIES 10 and MCNEILE 10 determine $\bar{m}_{C}(\mu) / \bar{m}_{S}(\mu)=11.85 \pm 0.16$ using a lattice computation with $N_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{d} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s} / \bar{m} and m_{u} / m_{d}.
${ }^{8}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_{u}, m_{d} values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_{s} / m_{ud} and the value of $Q=\left(m_{s}^{2}-m_{\mathrm{ud}}^{2}\right) /\left(m_{d}^{2}-m_{u}^{2}\right)$ as determined from $\eta \rightarrow 3 \pi$ decays.
${ }^{9}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
10 DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.
11 DEANDREA 08 determine $m_{u}-m_{d}$ from $\eta \rightarrow 3 \pi^{0}$, and combine with the PDG 06 lattice average value of $m_{u}+m_{d}=7.6 \pm 1.6$ to determine m_{u} and m_{d}.
${ }^{12}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
13 JAMIN 06 determine $m_{d}(2 \mathrm{GeV})$ by combining the value of m_{S} obtained from the spectral function for the scalar $K \pi$ form factor with other determinations of the quark mass ratios.
14 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_{u} and m_{d} were determined from their $\left(m_{u}+m_{d}\right) / 2$ measurement and AUBIN 04A m_{u} / m_{d} value.
15 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{S} combined with other determinations of the quark mass ratios.
16 AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.

$$
\bar{m}=\left(m_{u}+m_{d}\right) / 2
$$

See the comments for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 . The values of "Our Evaluation" were determined in part via Figures 1 and 2.
$\overline{\mathrm{MS}} \operatorname{MASS}(\mathrm{MeV})$
DOCUMENTID TECN
$3.45 \mathbf{+ 0 . 5 5}$ = OUR EVALUATION See the ideogram below.
$3.9 \pm 0.3 \quad 1$ DOMINGUEZ 19 THEO
$4.7+0.8$ YUAN $\quad 27$ THEO
$4.7-0.7$
3.70 ± 0.17
3.45 ± 0.12
$3.469 \pm 0.047 \pm 0.048$
3.6 ± 0.2
3.39 ± 0.06
${ }^{2}$ YUAN 17 THEO
${ }^{3}$ CARRASCO 14 LATT
4 ARTHUR 13 LATT
${ }^{5}$ DURR 11 LATT
$\begin{array}{lll}{ }^{6} \text { BLOSSIER } & 10 & \text { LATT } \\ 7 \text { MCNEILE } & 10 & \text { LATT }\end{array}$

${ }^{1}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{2}$ YUAN 17 determine \bar{m} using QCD sum rules in the isospin $I=0$ scalar channel. At the end of the "Numerical Results" section of YUAN 17 the authors discuss the significance of their larger value of the light quark mass compared to previous determinations.
${ }^{3}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{4}$ ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions. Masses at $\mu=3 \mathrm{GeV}$ have been converted to $\mu=2 \mathrm{GeV}$ using conversion factors given in their paper.
${ }^{5}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
${ }^{6}$ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_{f}=2$ dynamical twisted-mass Wilson fermions.
${ }^{7}$ DAVIES 10 and MCNEILE 10 determine $\bar{m}_{C}(\mu) / \bar{m}_{S}(\mu)=11.85 \pm 0.16$ using a lattice computation with $N_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass \bar{m} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratio, m_{S} / \bar{m}.
${ }^{8}$ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_{f}=2+1$ dynamical flavors of domain wall fermions.
${ }^{9}$ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.
${ }^{10}$ ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
${ }^{11}$ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
12 DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the scalar twopoint correlator.
13 ISHIKAWA 08 use a lattice computation of the light meson spectrum with $2+1$ dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
${ }^{14}$ NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
${ }^{15}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
${ }^{16}$ GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\frac{N_{f}}{m}(2 \mathrm{GeV})=4.08 \pm 0.25 \pm 0.19 \pm 0.23 \mathrm{MeV}$, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
17 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization.
${ }^{18}$ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
${ }^{19}$ NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{s} combined with other determinations of the quark mass ratios,
${ }^{20}$ AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
${ }^{21}$ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
${ }^{22}$ The errors given in AOKI 03B were ${ }_{-0.069}^{+0.046}$. We changed them to ± 0.3 for calculating the overall best values. AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
${ }^{23}$ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization.
${ }^{24}$ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.

m_{u} / m_{d} MASS RATIO

 TECN COMMENT
$\mathbf{0 . 4 7} \mathbf{+ 0 . 0 6}$ OUR EVALUATION See the ideogram below.

$0.485 \pm 0.011 \pm 0.016$	1	FODOR	16
LATT			
$0.4482_{-0.0206}^{+0.0173}$	2 BASAK	15	LATT
0.470 ± 0.056	3 CARRASCO	14	LATT
0.698 ± 0.051	4 AOKI	12	LATT
$0.42 \pm 0.01 \pm 0.04$	5 BAZAVOV	10	LATT
$0.4818 \pm 0.0096 \pm 0.0860$	6	BLUM	10

- - We do not use the following data for averages, fits, limits, etc. - - -

0.550 ± 0.031	7	BLUM	07	LATT
0.43	± 0.08	8 AUBIN	04 A	LATT
0.410	± 0.036	9	NELSON	03
LATT				
0.553	± 0.043	10 LEUTWYLER	96	THEO Compilation

${ }^{1}$ FODOR 16 is a lattice simulation with $N_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{2}$ BASAK 15 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{3}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{C}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{4}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
${ }^{5}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{6}$ BLUM 10 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{7}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
${ }^{8}$ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
${ }^{9}$ NELSON 03 computes coefficients in the order p^{4} chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_{u} / m_{d} is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^{4}.
10 LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3 \pi$ and $\psi^{\prime} \rightarrow J / \psi(\pi, \eta)$ decay rates, and the electromagnetic mass differences of the π and K.

s-QUARK MASS

See the comment for the u quark above.
We have normalized the $\overline{M S}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 .

$\overline{\text { MS MASS (} \mathrm{MeV} \text {) }}$	DOCUMENT ID		TECN
$93 \quad \begin{array}{r}+11 \\ 5\end{array}$ OUR EVALUATION	See the ideogram below.		
92.47 ± 0.69	${ }^{1}$ BAZAVOV	18	LATT
93.85 ± 0.75	${ }^{2}$ LYTLE	18	LATT
87.6 ± 6.0	3 ANANTHANA.		THEO
99.6 ± 4.3	${ }^{4}$ CARRASCO	14	LATT
94.4 ± 2.3	${ }^{5}$ ARTHUR	13	LATT
94 ± 9	${ }^{6}$ BODENSTEIN	13	THEO
$102 \pm 3 \pm 1$	7 FRITZSCH	12	LATT
$95.5 \pm 1.1 \pm 1.5$	8 DURR	11	LATT

- - We do not use the following data for averages, fits, limits, etc. - -

93.6 ± 0.8	${ }^{9}$ CHAKRABOR.. 15		LATT
96.2 ± 2.7	10 AOKI	11A	LATT
95 ± 6	11 BLOSSIER	10	LATT
$97.6 \pm 2.9 \pm 5.5$	12 BLUM	10	LATT
92.4 ± 1.5	13 DAVIES	10	LATT
92.2 ± 1.3	13 MCNEILE	10	LATT
107.3 ± 11.7	14 ALLTON	08	LATT
$105 \pm 3 \pm 9$	15 BLOSSIER	08	LATT
102 ± 8	16 DOMINGUEZ	08A	THEO
$90.1 \pm \begin{array}{r}+17.2 \\ \hline-1\end{array}$	17 ISHIKAWA	08	LATT
105.6 ± 1.2	18 NAKAMURA	08	LATT
119.5 ± 9.3	19 BLUM	07	LATT
$105 \pm 6 \pm 7$	20 CHETYRKIN	06	THEO
$111 \pm 6 \pm 10$	21 GOCKELER	06	LATT
$119 \pm 5 \pm 8$	22 GOCKELER	06A	LATT
92 ± 9	23 JAMIN	06	THEO
87 ± 6	24 MASON	06	LATT
104 ± 15	25 NARISON	06	THEO
$\geq 71 \pm 4, \leq 151 \pm 14$	26 NARISON	06	THEO
$96 \quad \begin{array}{rr} 5 & +16 \\ -3 & -18 \end{array}$	27 BAIKOV	05	THEO
81 ± 22	28 GAMIZ	05	THEO
125 ± 28	29 GORBUNOV	05	THEO
93 ± 32	30 NARISON	05	THEO
76 ± 8	31 AUBIN	04	LATT
$116 \pm 6 \pm 0.65$	32 AOKI	03	LATT
$84.5 \begin{aligned} & +12 \\ & -1.7 \end{aligned}$	33 AOKI	03B	LATT
$106 \pm 2 \pm 8$	34 BECIREVIC	03	LATT
$92 \pm 9 \pm 16$	${ }^{35} \mathrm{CHIU}$	03	LATT
117 ± 17	36 GAMIZ	03	THEO
$103+17$	37 GAMIZ	03	THEO

$103 \pm 17 \quad 37$ GAMIZ 03 THEO
${ }^{1}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{2}$ LYTLE 18 combined with CHAKRABORTY 2015 determine $\bar{m}_{s}(3 \mathrm{GeV})=84.78 \pm 0.65$ MeV from a lattice simulation with $n_{f}=2+1+1$ flavors. They also determine the quoted value $\bar{m}_{S}(2 \mathrm{GeV})$ for $n_{f}=4$ dynamical flavors.
${ }^{3}$ ANANTHANARAYAN 16 determine $\bar{m}_{S}(2 \mathrm{GeV})=106.70 \pm 9.36 \mathrm{MeV}$ and 74.47 ± 7.77 MeV from fits to ALEPH and OPAL τ decay data, respectively. We have used the weighted average of the two.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{S} \neq m_{C}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{5}$ ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions. Masses at $\mu=3 \mathrm{GeV}$ have been converted to $\mu=2 \mathrm{GeV}$ using conversion factors given in their paper.
${ }^{6}$ BODENSTEIN 13 determines m_{S} from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.
${ }^{7}$ FRITZSCH 12 determine m_{s} using a lattice computation with $N_{f}=2$ dynamical flavors.
${ }^{8}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed
${ }^{9}$ CHAKRABORTY 15 is a lattice QCD computation that determines m_{C} and m_{C} / m_{S} using pseudoscalar mesons masses tuned on gluon field configurations with $2+1+1 \mathrm{dy}$ namical flavors of HISQ quarks with u / d masses down to the physical value.
10 AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_{f}=2+1$ dynamical flavors of domain wall fermions.
${ }^{11}$ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_{f}=2$ dynamical twisted-mass Wilson fermions.
${ }^{12}$ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
${ }^{13}$ DAVIES 10 and MCNEILE 10 determine $\bar{m}_{c}(\mu) / \bar{m}_{s}(\mu)=11.85 \pm 0.16$ using a lattice computation with $N_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{S} is obtained from this using the value of m_{C} from ALLISON 08 or MCNEILE 10.
${ }^{14}$ ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
${ }^{15}$ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
${ }^{16}$ DOMINGUEZ 08A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order α_{S}^{4}.
17 ISHIKAWA 08 use a lattice computation of the light meson spectrum with $2+1$ dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
18 NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.

Quark Particle Listings

Light Quarks (u, d, s)

${ }^{19}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
${ }^{20}$ CHETYRKIN 06 use QCD sum rules in the pseudoscalar channel to order α_{S}^{4}.
${ }^{21}$ GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\bar{m}_{S}(2 \mathrm{GeV})=111 \pm 6 \pm 4 \pm 6 \mathrm{MeV}$, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
22 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization.
${ }^{23}$ JAMIN 06 determine $\bar{m}_{S}(2 \mathrm{GeV})$ from the spectral function for the scalar $K \pi$ form factor.
${ }^{24}$ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
${ }^{25}$ NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{S}^{3}.
${ }^{26}$ NARISON 06 obtains the quoted range from positivity of the spectral functions.
${ }^{27}$ BAIKOV 05 determines $\bar{m}_{S}\left(M_{\tau}\right)=100{ }_{-3}^{+5+19}$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{s}^{3}, with an estimate of the α_{s}^{4} terms. We have converted the result to $\mu=2 \mathrm{GeV}$.
${ }^{28} \mathrm{GAMIZ} 05$ determines $\bar{m}_{s}(2 \mathrm{GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{S}^{2}, with an estimate of the α_{S}^{3} terms.
${ }^{29}$ GORBUNOV 05 use hadronic tau decays to N3LO, including power corrections.
${ }^{30}$ NARISON 05 determines $\bar{m}_{s}(2 \mathrm{GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{S}^{3}.
${ }^{31}$ AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
${ }^{32}$ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines $\mathrm{m}_{s}=113.8 \pm 2.3_{-2.9}^{+5.8}$ using K mass as input and $\mathrm{m}_{s}=142.3 \pm 5.8_{-}^{+22}$ using ϕ mass as input. We have performed a weighted average of these values.
${ }^{33}$ AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
34 BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization. They also quote $\bar{m} / \mathrm{m}_{s}=24.3 \pm 0.2 \pm 0.6$.
${ }^{35}$ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
${ }^{36}$ GAMIZ 03 determines m_{S} from $\operatorname{SU}(3)$ breaking in the τ hadronic width. The value of $V_{u s}$ is chosen to satisfy CKM unitarity.
${ }^{37} \mathrm{GAMIZ} 03$ determines m_{S} from $\mathrm{SU}(3)$ breaking in the τ hadronic width. The value of $v_{U S}$ is taken from the PDG.

s-QUARK MASS (MeV)

OTHER LIGHT QUARK MASS RATIOS				
m_{s} / m_{d} MASS RATIO				
VALUE	DOCUMENT ID		TECN	COMMENT
17-22 OUR EVALUATION 20.0	${ }^{1}$ GAO	97	THEO	
18.9 ± 0.8	2 LEUTWYLER	96	THEO	Compilation
21	${ }^{3}$ Donoghue	92	THEO	
18	${ }^{4}$ GERARD	90	THEO	
18 to 23	${ }^{5}$ LEUTWYLER	90 B	THEO	

${ }^{1}$ GAO 97 uses electromagnetic mass splittings of light mesons.
${ }^{2}$ LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3 \pi$ and $\psi^{\prime} \rightarrow J / \psi(\pi, \eta)$ decay rates, and the electromagnetic mass differences of the π and K.
${ }^{3}$ DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \rightarrow 3 \pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2 S) \rightarrow$ $J / \psi(1 S) \pi) /(\psi(2 S) \rightarrow J / \psi(1 S) \eta)$.
${ }^{4}$ GERARD 90 uses large N and $\eta-\eta^{\prime}$ mixing.
${ }^{5}$ LEUTWYLER 90 determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_{7}.
$\boldsymbol{m}_{\boldsymbol{s}} / \bar{m}$ MASS RATIO

$$
\bar{m} \equiv\left(m_{u}+m_{d}\right) / 2
$$

VALUE
VALUE
DOCUMENT ID TECN
$27.3 \pm \mathbf{+ 0 . 7}$ OUR EVALUATION See the ideogram below.
$27.35 \pm 0.05_{-0.07}^{+0.10}$
26.66 ± 0.32

${ }^{1}$ BAZAVOV	14 A	LATT
${ }^{2}$ CARRASCO	14	LATT
3 ARTHUR	13	LATT
${ }^{4}$ DURR	11	LATT

27.36 ± 0.54
$27.53 \pm 0.20 \pm 0.08$
$\begin{array}{lll}{ }^{3} \text { ARTHUR } & 13 & \text { LATT } \\ { }^{4} \text { DURR } & 11 & \text { LATT }\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - •
$26.8 \pm 1.4 \quad 5 \mathrm{AOKI} \quad 11 \mathrm{~A}$ LATT
27.3 ± 0.9
28.8 ± 1.65
$27.3 \pm 0.3 \pm 1.2$
23.5 ± 1.5
${ }^{5}$ AOKI
${ }^{6}$ BLOSSIER
${ }^{7}$ ALLTON
${ }^{8}$ BLOSSIER
9 OLLER
$27.4 \pm 0.4 \quad 10$ AUBIN $\quad 07 \mathrm{~A}$ THEO
${ }^{1}$ BAZAVOV 14 A is a lattice computation using 4 dynamical flavors of HISQ fermions.
${ }^{2}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{3}$ ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions.
${ }^{4}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
${ }^{5}$ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_{f}=2+1$ dynamical flavors of domain wall fermions.
${ }^{6}$ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_{f}=2$ dynamical twisted-mass Wilson fermions.
7 ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
${ }^{8}$ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay con-
stants with 2 dynamical flavors and non-perturbative renormalization.
${ }^{9}$ OLLER 07A use unitarized chiral perturbation theory to order p^{4}.
10 Three flavor dynamical lattice calculation of pseudoscalar meson masses.

Q MASS RATIO
$Q \equiv \sqrt{\left(m^{2}{ }_{s}-\bar{m}^{2}\right) /\left(m^{2}{ }_{d}-m^{2}{ }_{u}\right)} ; \quad \bar{m} \equiv\left(m_{u}+m_{d}\right) / 2$
VALUE DOCUMENTID TECN
- - We do not use the following data for averages, fits, limits, etc. - -
$22.1 \pm 0.7 \quad 1$ COLANGELO 18 THEO
22.0 ± 0.7
21.6 ± 1.1
$23.4 \pm 0.4 \pm 0.5$
21.4 ± 0.4
2 COLANGELO 17 THEO
21.4 ± 0.4
${ }^{3}$ GUO 17 THEO
${ }^{4}$ FODOR 16 LATT
${ }^{5}$ GUO $\quad 15 \mathrm{~F}$ THEO
$\begin{array}{ll}22.8 \pm 0.4 & 6 \text { MARTEMYA... } 05 \\ 22.7 \pm 0.8 & 7 \text { THEO }\end{array}$
${ }^{1}$ COLANGELO 18 obtain Q from a dispersive analysis of $\eta \rightarrow 3 \pi$ decay.
${ }^{2}$ COLANGELO 17 obtain Q from a dispersive analysis of KLOE collaboration data on $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays and chiral perturbation theory input.
${ }^{3}$ GUO 17 determine Q from a dispersive model fit to KLOE and WASA-at-COSY data on $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay and matching to chiral perturbation theory.
${ }^{4}$ FODOR 16 is a lattice simulation with $N_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{5}$ GUO 15F determine Q from a Khuri-Treiman analysis of $\eta \rightarrow 3 \pi$ decays.
${ }^{6}$ MARTEMYANOV 05 determine Q from $\eta \rightarrow 3 \pi$ decay.
$7^{\text {ANISOVICH }} 96$ find Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS (u, d, s) REFERENCES			
dominguez	19	JHEP 1902057	C.A. Dominguez, A. Mes, K. Schilcher (CAPE, MAINZ)
BAZAVOV	18	PR D98 054517	A. Bazavov et al. (Fermilab Lattice, MILC, TUMQCD)
COLANGELO	18	EPJ C78 947	G. Colangelo et al.
LYTLE	18	PR D98 014513	A.T. Lytle et al. (HPQCD Collab.)
COLANGELO	17	PRL 118022001	G. Colangelo et al. (BERN, IND, JLAB)
GUO	17	PL B771 497	P. Guo et al.
YUAN	17	PR D96 014034	J.-M. Yuan et al.
ANANTHANA...		PR D94 116014	B. Ananthanarayan, D. Das (BANG, AHMED)
FODOR	16	PRL 117082001	Z. Fodor et al. (BMW Collab.)
BASAK	15	JPCS 640012052	S. Basak et al. (MILC Collab.)
CHAKRABOR...		PR D91 054508	B. Chakraborty et al. (HPQCD Collab.)
GUO	15 F	PR D92 054016	P. Guo et al.
BAZAVOV	14A	PR D90 074509	A. Bazavov et al. (Fermi-LAT and MILC Collabs.)
CARRASCO	14	NP B887 19	N. Carrasco et al. (European Twisted Mass Collab.)
ARTHUR	13	PR D87 094514	R. Arthur et al. (RBC and UKQCD Collabs.)
BODENSTEIN	13	JHEP 1307138	S. Bodenstein, C.A. Dominguez, K. Schilcher (MANZ+)
AOKI	12	PR D86 034507	S. Aoki et al. (PACS-CS Collab.)
FRITZSCH	12	NP B865 397	P. Fritzsch et al. (ALPHA Collab.)
AOKI	11A	PR D83 074508	Y. Aoki et al. (RBC-UKQCD Collab.)
DURR	11	PL B701 265	S. Durr et al. (BMW Collab.)
BAZAVOV	10	RMP 821349	A. Bazavov et al. (MILC Collab.)
BLOSSIER	10	PR D82 114513	B. Blossier et al. (ETM Collab.)
BLUM	10	PR D82 094508	T. Blum et al.
DAVIES	10	PRL 104132003	C.T.H. Davies et al. (HPQCD Collab.)
MCNEILE	10	PR D82 034512	C. McNeile et al. (HPQCD Collab.)
DOMINGUEZ	09	PR D79 014009	C.A. Dominguez et al.
ALLISON	08	PR D78 054513	I. Allison et al. (HPQCD Collab.)
ALLTON	08	PR D78 114509	C. Allton et al. (RBC and UKQCD Collabs.)
BLOSSIER	08	JHEP 0804020	B. Blossier et al. (ETM Collab.)
DEANDREA	08	PR D78 034032	A. Deandrea, A. Nehme, P. Talavera
DOMINGUEZ	08A	JHEP 0805020	C.A. Dominguez et al.
DOMINGUEZ...	08B	PL B660 49	A. Dominguez-Clarimon, E. de Rafael, J. Taron
ISHIKAWA	08	PR D78 011502	T. Ishikawa et al. (CP-PACS and JLQCD Collabs.)
NAKAMURA	08	PR D78 034502	Y. Nakamura et al. (CP-PACS Collab.)
BLUM	07	PR D76 114508	T. Blum et al. (RBC Collab.)
OLLER	07A	EPJ A34 371	J.A. Oller, L. Roca
CHETYRKIN	06	EPJ C46 721	K.G. Chetyrkin, A. Khodjamirian
GOCKELER	06	PR D73 054508	M. Gockeler et al. (QCDSF and UKQCD Collabs)
GOCKELER	06A	PL B639 307	M. Gockeler et al. (QCDSF and UKQCD Collabs)
JAMIN	06	PR D74 074009	M. Jamin, J.A. Oller, A. Pich
MASON	06	PR D73 114501	Q. Mason et al. (HPQCD Collab.)
NARISON	06	PR D74 034013	S. Narison
PDG	06	JP G33 1	W.-M. Yao et al. (PDG Collab.)
BAIKOV	05	PRL 95012003	P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn
GAMIZ	05	PRL 94011803	E. Gamiz et al.
GORBUNOV	05	PR D71 013002	D.S. Gorbunov, A.A. Pivovarov
MARTEMYA...	05	PR D71 017501	B.V. Martemyanov, V.S. Sopov
NARISON	05	PL B626 101	S. Narison
AUBIN	04	PR D70 031504	C. Aubin et al. (HPQCD, MILC, UKQCD Collabs.)
AUBIN	04A	PR D70 114501	C. Aubin et al. (MILC Collab.)
AOKI	03	PR D67 034503	S. Aoki et al. (CP-PACS Collab.)
AOKI	03B	PR D68 054502	S. Aoki et al. (CP-PACS Collab.)
BECIREVIC	03	PL B558 69	D. Becirevic, V. Lubicz, C. Tarantino
CHIU	03	NP B673 217	T.-W. Chiu, T.-H. Hsieh
GAMIZ	03	JHEP 0301060	E. Gamiz et al.
NELSON	03	PRL 90021601	D. Nelson, G.T. Fleming, G.W. Kilcup
GAO	97	PR D56 4115	D.-N. Gao, B.A. Li, M.-L. Yan
ANISOVICH	96	PL B375 335	A.V. Anisovich, H. Leutwyler
LEUTWYLER	96	PL B378 313	H. Leutwyler
DONOGHUE	92	PRL 693444	J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)
GERARD	90	MPL A5 391	J.M. Gerard (MPIM)
LEUTWYLER	90B	NP B337 108	H. Leutwyler (BERN)
C		$I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)$	
		Charge $=\frac{2}{3} e \quad$ Charm $=+1$	

c-QUARK MASS

The c-quark mass corresponds to the "running" mass $m_{C}\left(\mu=m_{C}\right)$ in the $\overline{\mathrm{MS}}$ scheme. We have converted masses in other schemes to the $\overline{\mathrm{MS}}$ scheme using two-loop QCD perturbation theory with $\alpha_{S}\left(\mu=m_{C}\right)=$ 0.38 ± 0.03. The value $1.27 \pm 0.02 \mathrm{GeV}$ for the $\overline{\mathrm{MS}}$ mass corresponds to $1.67 \pm 0.07 \mathrm{GeV}$ for the pole mass (see the "Note on Quark Masses").

$\overline{\text { MS MASS (} \mathrm{GeV} \text {) }}$		DOCUMENT ID		TECN
1.27 ± 0.02	OUR EVALUATION	N See the ideog	m	low.
1.266 ± 0.006		1 NARISON	20	THEO
$1.290 \underset{-0.053}{+0.077}$		2 ABRAMOWIC	Z18	HERA
1.273 ± 0.010		${ }^{3}$ BAZAVOV	18	LATT
1.2737 ± 0.0077		${ }^{4}$ LYTLE	18	LATT
1.223 ± 0.033		${ }^{5}$ PESET	18	THEO
1.279 ± 0.008		${ }^{6}$ CHETYRKIN	17	THEO
1.272 ± 0.008		7 ERLER	17	THEO
1.246 ± 0.023		${ }^{8}$ KIYO	16	THEO
1.288 ± 0.020		${ }^{9}$ DEHNADI	15	THEO
1.348 ± 0.046		10 CARRASCO	14	LATT
1.24 ± 0.03	$\begin{array}{r} +0.03 \\ -0.07 \end{array}$	11 ALEKHIN	13	THEO
1.159 ± 0.075		12 SAMOYLOV	13	NOMD
1.278 ± 0.009		13 BODENSTEIN	11	THEO
$\begin{array}{rr} +0.07 \\ 1.28 & -0.06 \end{array}$		14 LASCHKA	11	THEO
1.196 ± 0.059	± 0.050	15 AUBERT	10A	BABR
1.25 ± 0.04		16 SIGNER	09	THEO

- - We do not use the following data for averages, fits, limits, etc. - - -

1.263 ± 0.014	17 NARISON	18A	THEO
1.264 ± 0.006	18 NARISON	18B	THEO
$1.335 \pm 0.043{ }_{-0.011}^{+0.040}$	19 BERTONE	16	THEO

$1.2715 \pm 0.0095 \quad 20$ CHAKRABOR.. 15 LATT

| 1.26 | ± 0.05 | ± 0.04 | | 21 | ABRAMOWICZ13C |
| :--- | :--- | :--- | :--- | :--- | :--- | COMB

${ }^{1}$ NARISON 20 determines the quark mass using QCD Laplace sum rules from the B_{C} mass, combined with previous determinations of the QCD condensates and c and b masses.
${ }^{2}$ ABRAMOWICZ 18 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)=1.290+0.046+0.062+0.003$ from the production of c quarks in ep collisions at HERA using combined H1 and ZEUS data. The experimental/fitting errors, and those from modeling and parameterization have been combined in quadrature.
${ }^{3}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{4}$ LYTLE 18 combined with CHAKRABORTY 15 determine $\bar{m}_{C}(3 \mathrm{GeV})=0.9874(48) \mathrm{GeV}$ from a lattice simulation with $n_{f}=2+1+1$ flavors. They also determine the quoted value $\bar{m}_{C}\left(\bar{m}_{C}\right)$ for $n_{f}=4$ dynamical flavors.
${ }^{5}$ PESET 18 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)$ and $\bar{m}_{b}\left(\bar{m}_{b}\right)$ using an N3LO calculation of the η_{C}, η_{b} and B_{C} masses.
${ }^{6}$ CHETYRKIN 17 determine $\bar{m}_{C}(\mu=3 \mathrm{GeV})=0.993 \pm 0.008 \mathrm{GeV}$ and $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from a four-loop sum-rule computation of the cross-section for $e^{+} e^{-} \rightarrow$ hadrons in the charm threshold region.
${ }^{7}$ ERLER 17 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)=1.272 \pm 0.008 \mathrm{GeV}$ from a three-loop QCD sum-rule computation of the vector current correlator. This result is for fixed $\alpha_{S}\left(\mathrm{M}_{Z}\right)=0.1182$. Including an α_{S} uncertainty of ± 0.0016, the charm mass error increases from 8 to 9 ${ }^{\mathrm{MeV}}$.
${ }^{8}$ KIYO 16 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from the $J / \psi(1 S)$ mass at order α_{S}^{3} (N3LO).
${ }^{9}$ DEHNADI 15 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)$ using sum rules for $e^{+} e^{-} \rightarrow$ hadrons at order α_{S}^{3} (N3LO), and fitting to both experimental data and lattice results.
${ }^{10}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{C}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
11 ALEKHIN 13 determines m_{C} from charm production in deep inelastic scattering at HERA using approximate NNLO QCD.
12 SAMOYLOV 13 determines m_{C} from a study of charm dimuon production in neutrinoiron scattering using the NLO QCD result for the charm quark production cross section.
${ }^{13}$ BODENSTEIN 11 determine $\bar{m}_{c}(3 \mathrm{GeV})=0.987 \pm 0.009 \mathrm{GeV}$ and $\bar{m}_{c}\left(\bar{m}_{c}\right)=1.278 \pm$ 0.009 GeV using QCD sum rules for the charm quark vector current correlator.
${ }^{14}$ LASCHKA 11 determine the c mass from the charmonium spectrum. The theoretical computation uses the heavy $Q \bar{Q}$ potential to order $1 / m_{Q}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
15 AUBERT 10A determine the b - and c-quark masses from a fit to the inclusive decay spectra in semileptonic B decays in the kinetic scheme (and convert it to the $\overline{\mathrm{MS}}$ scheme).
16 SIGNER 09 determines the c-quark mass using non-relativistic sum rules to analyze the $e^{+} e^{-} \rightarrow c \bar{c}$ cross-section near threshold. Also determine the PS mass $m_{P S}\left(\mu_{F}=0.7\right.$ $\mathrm{GeV})=1.50 \pm 0.04 \mathrm{GeV}$.
17 NARISON 18A determines simultaneously $\bar{m}_{C}\left(\bar{m}_{C}\right)$ and the 4-dimension gluon condensate using QCD exponential sum rules and their ratios evaluated at the optimal scale $\mu=2.85 \mathrm{GeV}$ at N2LO-N3LO of perturbative QCD and including condensates up to dimension 6-8 in the (axial-)vector and (pseudo-)scalar charmonium channels.
18 NARISON 18B determines $\bar{m}_{c}\left(\bar{m}_{c}\right)$ using QCD vector moment sum rules and their ratios at N2LO-N3LO of perturbative QCD and including condensates up to dimension 8.
${ }^{19}$ BERTONE 16 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from HERA deep inelastic scattering data using the FONLL scheme. Also determine $\bar{m}_{C}\left(\bar{m}_{C}\right)=1.318 \pm 0.054_{-0.022}^{+0.490}$ using the fixed flavor number scheme.
${ }^{20}$ CHAKRABORTY 15 is a lattice QCD computation using $2+1+1$ dynamical flavors. Moments of pseudoscalar current-current correlators are matched to α_{s}^{3}-accurate QCD perturbation theory with the η_{C} meson mass tuned to experiment.
${ }^{21}$ ABRAMOWICZ $13 C$ determines m_{c} from charm production in deep inelastic ep scattering, using the QCD prediction at NLO order. The uncertainties from model and parameterization assumptions, and the value of α_{S}, of $\pm 0.03, \pm 0.02$, and ± 0.02 respectively, have been combined in quadrature.
${ }^{22}$ DEHNADI 13 determines m_{c} using QCD sum rules for the charmonium spectrum and charm continuum to order α_{S}^{3} (N3LO). The statistical and systematic experimental errors of ± 0.006 and ± 0.009 have been combined in quadrature. The theoretical uncertainties ± 0.019 from truncation of the perturbation series, ± 0.010 from α_{S}, and ± 0.002 from the gluon condensate have been combined in quadrature
23 NARISON 13 determines m_{C} using QCD spectral sum rules to order α_{s}^{2} (NNLO) and including condensates up to dimension 6.
${ }^{24}$ ALEKHIN 12 determines m_{c} from heavy quark production in deep inelastic scattering at HERA using approximate NNLO QCD.
${ }^{25}$ NARISON 12A determines m_{C} using sum rules for the vector current correlator to order α_{S}^{3}, including the effect of gluon condensates up to dimension eight.

Quark Particle Listings

C
${ }^{26}$ ALEKHIN 11 determines m_{c} from heavy quark production in deep inelastic scattering using fixed target and HERA data, and approximate NNLO QCD.
27 BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_{f}=2$ dynamical twisted-mass Wilson fermions.
28 BODENSTEIN 10 determines $\bar{m}_{C}(3 \mathrm{GeV})=1.008 \pm 0.026 \mathrm{GeV}$ using finite energy sum rules for the vector current correlator. The authors have converted this to $\bar{m}_{C}\left(\bar{m}_{C}\right)$ using $\alpha_{S}\left(M_{Z}\right)=0.1189 \pm 0.0020$.
${ }^{29}$ MCNEILE 10 determines m_{C} by comparing the order α_{S}^{3} perturbative results for the pseudo-scalar current to lattice simulations with $N_{f}=2+1$ sea-quarks by the HPQCD collaboration.
30 NARISON 10 determines m_{C} from ratios of moments of vector current correlators computed to order α_{S}^{3} and including the dimension-six gluon condensate.
${ }^{31}$ CHETYRKIN 09 determine m_{c} and m_{b} from the $e^{+} e^{-} \rightarrow Q \bar{Q}$ cross-section and sum rules, using an order α_{S}^{3} computation of the heavy quark vacuum polarization. They also determine $m_{C}(3 \mathrm{GeV})=0.986 \pm 0.013 \mathrm{GeV}$.
${ }^{32}$ ALLISON 08 determine m_{C} by comparing four-loop perturbative results for the pseudoscalar current correlator to lattice simulations by the HPQCD collaboration. The result has been updated in MCNEILE 10.
33 KUHN 07 determine $\bar{m}_{C}(\mu=3 \mathrm{GeV})=0.986 \pm 0.013 \mathrm{GeV}$ and $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from a four-loop sum-rule computation of the cross-section for $e^{+} e^{-} \rightarrow$ hadrons in the charm threshold region.
${ }^{34}$ BOUGHEZAL 06 result comes from the first moment of the hadronic production crosssection to order α_{S}^{3}.
${ }^{35}$ BUCHMUELLER 06 determine m_{b} and m_{C} by a global fit to inclusive B decay spectra.
${ }^{36}$ HOANG 06 determines $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from a global fit to inclusive B decay data. The B decay distributions were computed to order $\alpha_{S}^{2} \beta_{0}$, and the conversion between different m_{C} mass schemes to order α_{S}^{3}.
37 AUBERT $04 \times$ obtain m_{C} from a fit to the hadron mass and lepton energy distributions in semileptonic B decay. The paper quotes values in the kinetic scheme. The $\overline{\mathrm{MS}}$ value has been provided by the BABAR collaboration.
${ }^{38}$ HOANG 04 determines $\bar{m}_{C}\left(\bar{m}_{C}\right)$ from moments at order α_{S}^{2} of the charm production cross-section in $e^{+} e^{-}$annihilation.
39 DEDIVITIIS 03 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
40 EIDEMULLER 03 determines m_{b} and m_{c} using QCD sum rules.
41 ERLER 03 determines m_{b} and m_{c} using QCD sum rules. Includes recent BES data.
42 ZYABLYUK 03 determines m_{c} by using QCD sum rules in the pseudoscalar channel and comparing with the η_{c} mass.

$\boldsymbol{m}_{\boldsymbol{c}} / \boldsymbol{m}_{\boldsymbol{s}}$ MASS RATIO
$\frac{\text { VALUE }}{\mathbf{1 1 . 7 2} \mathbf{\pm 0 . 2 5} \text { OUR EVALUATION }} \frac{\text { DOCUMENT ID }}{\text { See the ideogram below. }}$

11.783 ± 0.025	1 BAZAVOV	18	LATT
11.652 ± 0.065	2 CHAKRABOR..15	LATT	
11.62 ± 0.16	3 CARRASCO	14	LATT
$11.27 \pm 0.30 \pm 0.26$	4 DURR	12	LATT
11.85 ± 0.16	5 DAVIES	10	LATT

- - We do not use the following data for averages, fits, limits, etc. - -

| 11.747 ± 0.019 | -0.059 | ${ }_{-}^{6}$ BAZAVOV | 14 A |
| :--- | :--- | :--- | :--- | LATT

${ }^{1}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{2}$ CHAKRABORTY 15 is a lattice QCD computation on gluon field configurations with $2+1+1$ dynamical flavors of HISQ quarks with u / d masses down to the physical value. m_{C} and m_{s} are tuned from pseudoscalar meson masses.
${ }^{3}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{S} \neq m_{C}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{4}$ DURR 12 determine m_{C} / m_{S} using a lattice computation with $N_{f}=2$ dynamical fermions. The result is combined with other determinations of m_{C} to obtain $m_{S}(2$ $\mathrm{GeV})=97.0 \pm 2.6 \pm 2.5 \mathrm{MeV}$.
${ }^{5}$ DAVIES 10 determine m_{c} / m_{S} from meson masses calculated on gluon fields including u, d, and s sea quarks with lattice spacing down to 0.045 fm . The Highly Improved Staggered quark formalism is used for the valence quarks.
${ }^{6}$ BAZAVOV 14A is a lattice computation using 4 dynamical flavors of HISQ fermions.
${ }^{7}$ BLOSSIER 10 determine m_{c} / m_{s} from a computation of the hadron spectrum using N_{f} $=2$ dynamical twisted-mass Wilson fermions.

$\boldsymbol{m}_{\boldsymbol{b}} / \boldsymbol{m}_{\boldsymbol{c}}$ MASS RATIO
VALUE
4.577 ± 0.008 OUR AVERAGE
4.578 ± 0.008
DOCUMENT ID
TECN
1 BAZAVOV below.
$\begin{array}{ll}4.528 \pm 0.054 & \text { BAZAVOV } 18 \text { LATT }\end{array}$
${ }^{1}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors for the u, d, s, c quarks and five active flavors for the b quark.
${ }^{2}$ CHAKRABORTY 15 is a lattice computation using 4 dynamical quark flavors.

$\boldsymbol{m}_{\boldsymbol{b}}-\boldsymbol{m}_{\boldsymbol{c}}$ QUARK MASS DIFFERENCE

${ }^{1}$ AUBERT 10A determine the b - and c-quark masses from a fit to the inclusive decay spectra in semileptonic B decays in the kinetic scheme.
${ }^{2}$ ABDALLAH 06B determine $m_{b}-m_{c}$ from moments of the hadron invariant mass and lepton energy spectra in semileptonic inclusive B decays.
${ }^{3}$ Determine $m_{b}-m_{c}$ from a global fit to inclusive B decay spectra.
c-QUARK REFERENCES

NARISON	20	PL B802 135221
ABRAMOWICZ	18	EPJ C78 473
BAZAVOV	18	PR D98 054517
LYtLE	18	PR D98 014513
NARISON	18A	IJMP A33 1850045
NARISON	18B	PL B784 261

S. Narison
(M1 and ZEUS Collabs).)
(Fermilab Lattice, MILC, TUMQCD)
(HPQCD Collab.)
(MONP)
(MONP)

b-QUARK MASS

b-quark mass corresponds to the "running mass" $\bar{m}_{b}\left(\mu=\bar{m}_{b}\right)$ in the $\overline{\mathrm{MS}}$ scheme. We have converted masses in other schemes to the $\overline{\mathrm{MS}}$ mass using two-loop QCD perturbation theory with $\alpha_{S}\left(\mu=\bar{m}_{b}\right)=0.223 \pm 0.008$. The value $4.18{ }_{-0.03}^{+0.04} \mathrm{GeV}$ for the $\overline{\mathrm{MS}}$ mass corresponds to $4.78 \pm 0.06 \mathrm{GeV}$ for the pole mass, using the two-loop conversion formula. A discussion of masses in different schemes can be found in the "Note on Quark Masses."

$\overline{\text { MS }}$ MASS (GeV)	DOCUMENT ID	TECN
$4.18{ }_{-0.02}^{+0.03}$ OUR EVALUATION	of MS Mass. See the	ideogram below.
4.197 ± 0.008	1 NARISON 20	THEO
$4.049{ }_{-0.118}^{+0.138}$	${ }^{2}$ ABRAMOWICZ18	HERA
4.195 ± 0.014	3 BAZAVOV 18	LATT
4.186 ± 0.037	4 PESET 18	THEO
4.197 ± 0.022	${ }^{5}$ KIYO 16	THEO
4.183 ± 0.037	${ }^{6}$ ALBERTI 15	THEO
$4.203{ }_{-0.034}^{+0.016}$	7 BENEKE 15	THEO
4.196 ± 0.023	${ }^{8}$ COLQUHOUN 15	LATT
4.176 ± 0.023	${ }^{9}$ DEHNADI 15	THEO
4.21 ± 0.11	10 BERNARDONI 14	LATT
$4.169 \pm 0.002 \pm 0.008$	11 PENIN 14	THEO
4.166 ± 0.043	12 LEE 130	LATT
4.247 ± 0.034	13 LUCHA 13	THEO
4.171 ± 0.009	14 BODENSTEIN 12	THEO
4.29 ± 0.14	15 DIMOPOUL... 12	LATT
$4.18{ }^{+0.05}$	16 LASCHKA 11	THEO
$4.186 \pm 0.044 \pm 0.015$	17 AUBERT 10A	BABR
4.163 ± 0.016	18 CHETYRKIN 09	THEO
4.243 ± 0.049	19 SCHWANDA 08	BELL
- - We do not use the following data for averages, fits, limits, etc. - -		
4.184 ± 0.011	20 NARISON 18A	THEO
4.188 ± 0.008	21 NARISON 18B	THEO
4.07 ± 0.17	22 ABRAMOWICZ14A	ZEUS
4.201 ± 0.043	23 AYALA 14A	THEO
4.236 ± 0.069	24 NARISON 13	THEO
4.213 ± 0.059	25 NARISON 13A	THEO
$4.235 \pm 0.003 \pm 0.055$	26 HOANG 12	THEO
4.212 ± 0.032	27 NARISON 12	THEO
4.177 ± 0.011	28 NARISON 12	THEO
4.171 ± 0.014	${ }^{29}$ NARISON 12A	THEO
4.164 ± 0.023	30 MCNEILE 10	LATT
4.173 ± 0.010	31 NARISON 10	THEO
5.26 ± 1.2	32 ABDALLAH 08D	DLPH
$4.42 \pm 0.06 \pm 0.08$	33 GUAZZINI 08	LATT
$4.347 \pm 0.048 \pm 0.08$	34 DELLA-MOR... 07	LATT
4.164 ± 0.025	35 KUHN 07	THEO
4.19 ± 0.40	36 ABDALLAH 06D	DLPH

4.205 ± 0.058	37 BOUGHEZAL	06	THEO
4.20 ± 0.04	38 BUCHMUEL...	06	THEO
4.19 ± 0.06	39 PINEDA	06	THEO
4.4 ± 0.3	40 GRAY	05	LATT
4.22 ± 0.06	41 AUBERT	04x	THEO
4.17 ± 0.03	42 BAUER	04	THEO
4.22 ± 0.11	43 HOANG	04	THEO
4.25 ± 0.11	44 MCNEILE	04	LATT
4.22 ± 0.09	${ }^{45}$ BAUER	03	THEO
4.19 ± 0.05	46 BORDES	03	THEO
4.20 ± 0.09	47 CORCELLA	03	THEO
4.33 ± 0.10	48 DEDIVITIIS	03	LATT
4.24 ± 0.10	49 EIDEMULLER	03	THEO
4.207 ± 0.03	50 ERLER	03	THEO
$4.33 \pm 0.06 \pm 0.10$	51 MAHMOOD	03	CLEO
4.190 ± 0.032	52 BRAMBILLA	02	THEO
4.346 ± 0.070	53 PENIN	02	THEO

${ }^{1}$ NARISON 20 determines the quark mass using QCD Laplace sum rules from the B_{C} mass,
combined with previous determinations of the QCD condensates and c and b masses.
${ }^{2}$ ABRAMOWICZ 18 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.0499_{-0.109}^{+0.104}+0.090+0.001-0.031$ from the production of b quarks in ep collisions at HERA using combined H1 and ZEUS data. The experimental/fitting errors, and those from modeling and parameterization have been combined in quadrature
${ }^{3}$ BAZAVOV 18 determine the b mass using a lattice computation with staggered fermions and five active quark flavors.
${ }^{4}$ PESET 18 determine $\bar{m}_{C}\left(\bar{m}_{C}\right)$ and $\bar{m}_{b}\left(\bar{m}_{b}\right)$ using an N3LO calculation of the η_{C}, η_{b} and B_{C} masses.
${ }^{5}$ KIYO 16 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from the $\gamma(1 S)$ mass at order α_{S}^{3} (N3LO).
${ }^{6}$ ALBERTI 15 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from fits to inclusive $B \rightarrow X_{c} e \bar{\nu}$ decay. They also find $m_{b}^{\text {kin }}(1 \mathrm{GeV})=4.553 \pm 0.020 \mathrm{GeV}$.
7 BENEKE 15 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ using sum rules for $e^{+} e^{-} \rightarrow$ hadrons at order N3LO including finite m_{c} effects. They find $m_{b}^{\mathrm{PS}}(2 \mathrm{GeV})=4.532_{-0.039}^{+0.013} \mathrm{GeV}$, and $\bar{m}_{b}\left(\bar{m}_{b}\right)$ $=4.193_{-0.035}^{+0.022} \mathrm{GeV}$. The value quoted is obtained using the four-loop conversion given in BENEKE 16.
${ }^{8}$ COLQUHOUN 15 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from moments of the vector current correlator computed with a lattice simulation using the NRQCD action.
${ }^{9}$ DEHNADI 15 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ using sum rules for $e^{+} e^{-} \rightarrow$ hadrons at order α_{s}^{3} (N3LO), and fitting to both experimental data and lattice results.
${ }^{10}$ BERNARDONI 14 determine m_{b} from $N_{f}=2$ lattice calculations using heavy quark effective theory non-perturbatively renormalized and matched to QCD at $1 / m$ order.
11 PENIN 14 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.169 \pm 0.008 \pm 0.002 \pm 0.002$ using an estimate of the order $\alpha_{s}^{3} b$-quark vacuum polarization function in the threshold region, including finite m_{c} effects. The errors of ± 0.008 from theoretical uncertainties, and ± 0.002 from α_{s} have been combined in quadrature.
${ }^{12}$ LEE 130 determines m_{b} using lattice calculations of the r and B_{s} binding energies in NRQCD, including three light dynamical quark flavors. The quark mass shift in NRQCD is determined to order α_{S}^{2}, with partial α_{s}^{3} contributions.
13 LUCHA 13 determines m_{b} from QCD sum rules for heavy-light currents using the lattice value for f_{B} of $191.5 \pm 7.3 \mathrm{GeV}$.
${ }^{14}$ BODENSTEIN 12 determine m_{b} using sum rules for the vector current correlator and the $e^{+} e^{-} \rightarrow Q \bar{Q}$ total cross-section.
${ }^{15}$ DIMOPOULOS 12 determine quark masses from a lattice computation using $N_{f}=2$ dynamical flavors of twisted mass fermions.
${ }^{16}$ LASCHKA 11 determine the b mass from the charmonium spectrum. The theoretical computation uses the heavy $Q \bar{Q}$ potential to order $1 / m_{Q}$ obtained by matching the short-distance perturbative result onto lattice $Q C D$ result at larger scales.
17 AUBERT 10A determine the b - and c-quark masses from a fit to the inclusive decay spectra in semileptonic B decays in the kinetic scheme (and convert it to the $\overline{\mathrm{MS}}$ scheme).
${ }^{18}$ CHETYRKIN 09 determine m_{C} and m_{b} from the $e^{+} e^{-} \rightarrow Q \bar{Q}$ cross-section and sum rules, using an order α_{S}^{3} (N3LO) computation of the heavy quark vacuum polarization.
${ }^{19}$ SCHWANDA 08 measure moments of the inclusive photon spectrum in $B \rightarrow X_{S} \gamma$ decay to determine $m_{b}^{1 S}$. We have converted this to $\overline{\mathrm{MS}}$ scheme.
20 NARISON 18A determines $\bar{m}_{b}\left(\bar{m}_{b}\right)$ as a function of α_{S} using QCD exponential sum rules and their ratios evaluated at the optimal scale $\mu=9.5 \mathrm{GeV}$ at N2LO-N3LO of perturbative QCD and including condensates up to dimension 6-8 in the (axial-)vector and (pseudo-)scalar bottomonium channels.
${ }^{21}$ NARISON 18B determines $\bar{m}_{b}\left(\bar{m}_{b}\right)$ using QCD vector moment sum rules and their ratios at N2LO-N3LO of perturbative QCD and including condensates up to dimension 8.
22 ABRAMOWICZ 14A determine $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.07 \pm 0.14_{-0.07}^{+0.01}+0.05+0.08-0.05$ from the production of b quarks in ep collisions at HERA. The errors due to fitting, modeling, PDF parameterization, and theoretical QCD uncertainties due to the values of α_{S}, m_{C}, and the renormalization scale μ have been combined in quadrature
${ }^{23}$ AYALA 14A determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from the $r(1 S)$ mass computed to N3LO order in perturbation theory using a renormalon subtracted scheme.
${ }^{24}$ NARISON 13 determines m_{b} using QCD spectral sum rules to order α_{S}^{2} (NNLO) and including condensates up to dimension 6.
${ }^{25}$ NARISON 13A determines m_{b} using HQET sum rules to order α_{s}^{2} (NNLO) and the B meson mass and decay constant.
${ }^{26}$ HOANG 12 determine m_{b} using non-relativistic sum rules for the r system at order α_{s}^{2} (NNLO) with renormalization group improvement.
27 NARISON 12 determines m_{b} using exponential sum rules for the vector current correlator to order α_{s}^{3}, including the effect of gluon condensates up to dimension eight.
${ }^{28}$ Determines m_{b} to order α_{s}^{3} (N3LO), including the effect of gluon condensates up to dimension eight combining the methods of NARISON 12 and NARISON 12A.
${ }^{29}$ NARISON 12A determines m_{b} using sum rules for the vector current correlator to order α_{S}^{3}, including the effect of gluon condensates up to dimension eight.

Quark Particle Listings

b, t
${ }^{30}$ MCNEILE 10 determines m_{b} by comparing order α_{S}^{3} (N3LO) perturbative results for the pseudo-scalar current to lattice simulations with $N_{f}^{S}=2+1$ sea-quarks by the HPQCD collaboration.
${ }^{31}$ NARISON 10 determines m_{b} from ratios of moments of vector current correlators computed to order α_{s}^{3} and including the dimension-six gluon condensate. These values are taken from the erratum to that reference.
32 ABDALLAH 08D determine $\bar{m}_{b}\left(M_{Z}\right)=3.76 \pm 1.0 \mathrm{GeV}$ from a leading order study of four-jet rates at LEP.
${ }^{33}$ GUAZZINI 08 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from a quenched lattice simulation of heavy meson masses. The ± 0.08 is an estimate of the quenching error.
${ }^{34}$ DELLA-MORTE 07 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from a computation of the spin-averaged B meson mass using quenched lattice HQET at order $1 / \mathrm{m}$. The ± 0.08 is an estimate of the quenching error.
35 KUHN 07 determine $\bar{m}_{b}(\mu=10 \mathrm{GeV})=3.609 \pm 0.025 \mathrm{GeV}$ and $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from a fourloop sum-rule computation of the cross-section for $e^{+} e^{-} \rightarrow$ hadrons in the bottom threshold region.
${ }^{36}$ ABDALLAH 06D determine $m_{b}\left(M_{Z}\right)=2.85 \pm 0.32 \mathrm{GeV}$ from Z-decay three-jet events containing a b-quark.
37 BOUGHEZAL $06 \overline{\mathrm{MS}}$ scheme result comes from the first moment of the hadronic production cross-section to order α_{S}^{3}.
${ }^{38}$ BUCHMUELLER 06 determine m_{b} and m_{C} by a global fit to inclusive B decay spectra.
${ }^{39}$ PINEDA $06 \overline{\mathrm{MS}}$ scheme result comes from a partial NNLL evaluation (complete at order α_{S}^{2} (NNLO)) of sum rules of the bottom production cross-section in $e^{+} e^{-}$annihilation.
40 GRAY 05 determines $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from a lattice computation of the r spectrum. The simulations have $2+1$ dynamical light flavors. The b quark is implemented using NRQCD.
${ }^{41}$ AUBERT $04 \times$ obtain m_{b} from a fit to the hadron mass and lepton energy distributions in semileptonic B decay. The paper quotes values in the kinetic scheme. The $\overline{\mathrm{MS}}$ value has been provided by the BABAR collaboration.
${ }^{42}$ BAUER 04 determine m_{b}, m_{c} and $m_{b}-m_{c}$ by a global fit to inclusive B decay spectra.
${ }^{43}$ HOANG 04 determines $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from moments at order α_{s}^{2} of the bottom production cross-section in $e^{+} e^{-}$annihilation.
44 MCNEILE 04 use lattice QCD with dynamical light quarks and a static heavy quark to compute the masses of heavy-light mesons.
45 BAUER 03 determine the b quark mass by a global fit to B decay observables. The experimental data includes lepton energy and hadron invariant mass moments in semileptonic $B \rightarrow X_{C}{ }^{\ell \nu_{\ell}}$ decay, and the inclusive photon spectrum in $B \rightarrow X_{S} \gamma$ decay. The theoretical expressions used are of order $1 / \mathrm{m}^{3}$, and $\alpha_{s}^{2} \beta_{0}$.
${ }^{46}$ BORDES 03 determines m_{b} using QCD finite energy sum rules to order α_{s}^{2}.
${ }^{47}$ CORCELLA 03 determines \bar{m}_{b} using sum rules computed to order α_{s}^{2}. Includes charm quark mass effects.
48 DEDIVITIIS 03 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
${ }^{49}$ EIDEMULLER 03 determines \bar{m}_{b} and \bar{m}_{C} using QCD sum rules.
${ }^{50}$ ERLER 03 determines \bar{m}_{b} and \bar{m}_{c} using QCD sum rules. Includes recent BES data.
${ }^{51}$ MAHMOOD 03 determines $m_{b}^{1 S}$ by a fit to the lepton energy moments in $B \rightarrow X_{C} \ell \nu_{\ell}$ decay. The theoretical expressions used are of order $1 / \mathrm{m}^{3}$ and $\alpha_{s}^{2} \beta_{0}$. We have converted their result to the $\overline{\mathrm{MS}}$ scheme.
52 BRAMBILLA 02 determine $\bar{m}_{b}\left(\bar{m}_{b}\right)$ from a computation of the $r(1 S)$ mass to order α_{S}^{4}, including finite m_{c} corrections.
${ }^{53}$ PENIN 02 determines \bar{m}_{b} from the spectrum of the r system.

m_{b} / m_{s} MASS RATIO

${ }^{1}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors for the u, d, s, c quarks and five active flavors for the b quark.

t-QUARK MASS

We first list the direct measurements of the top quark mass which employ the event kinematics and then list the measurements which extract a top quark mass from the measured $t \bar{t}$ cross-section using theory calculations. A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."

For earlier search limits see PDG 96, Physical Review D54 1 (1996). We no longer include a compilation of indirect top mass determinations from Standard Model Electroweak fits in the Listings (our last compilation can be found in the Listings of the 2007 partial update). For a discussion of current results see the reviews "The Top Quark" and "Electroweak Model and Constraints on New Physics."

t-Quark Mass (Direct Measurements)

The following measurements extract a t-quark mass from the kinematics of $t \bar{t}$ events. They are sensitive to the top quark mass used in the MC generator that is usually interpreted as the pole mass, but the theoretical uncertainty in this interpretation is hard to quantify. See the review "The Top Quark" and references therein for more information.

OUR AVERAGE of $172.76 \pm 0.30 \mathrm{GeV}$ is an average of top mass measurements from LHC and Tevatron Runs. The latest Tevatron average, $174.30 \pm 0.35 \pm 0.54 \mathrm{GeV}$, was provided by the Tevatron Electroweak Working Group (TEVEWWG).
$\frac{\text { VALUE }(\mathrm{GeV})}{\mathbf{1 7 2 . 7 6} \pm \mathbf{0 . 3 0} \text { OUR AVERAGE Error includes scale factor of } 1.2} \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { COMMENT }}{\text { In }}$
$\mathbf{1 7 2 . 7 6} \pm \mathbf{0 . 3 0}$ OUR AVERAGE Error includes scale factor of 1.2.

$172.69 \pm$	0.25 ± 0.41	${ }^{1}$ AABOUD	19AC ATLS	7, 8 TeV ATLAS combination
$172.26 \pm$	0.07 ± 0.61	${ }^{2}$ SIRUNYAN	19AP CMS	lepton + jets, all-jets channels
$172.33 \pm$	0.14-0.66	${ }^{3}$ SIRUNYAN	19AR CMS	dilepton channel ($e \mu, 2 e, 2 \mu)$
$172.95 \pm$	$0.77-0.97$ -0.93	4 SIRUNYAN	17L CMS	t-channel single top production
$172.44 \pm$	0.13 ± 0.47	5 KHACHATRY.	16AK CMS	7, 8 TeV CMS combination
$174.30 \pm$	0.35 ± 0.54	6 TEVEWWG	16 TEVA	Tevatron combination

- - We do not use
$172.08 \pm 0.39 \pm 0.82$ $172.34 \pm 0.20 \pm 0.70$ $172.25 \pm 0.08 \pm 0.62$ $173.72 \pm 0.55 \pm 1.01$ $174.95 \pm 0.40 \pm 0.64$ 170.8 ± 9.0

$172.22 \pm 0.18 \pm 0.89$ $172.99 \pm 0.41 \pm 0.74$ $172.84 \pm 0.34 \pm 0.61$ $173.32 \pm 1.36 \pm 0.85$ $173.93 \pm 1.61 \pm 0.88$ $172.35 \pm 0.16 \pm 0.48$ $172.32 \pm 0.25 \pm 0.59$ $172.82 \pm 0.19 \pm 1.22$ $173.68 \pm 0.20_{-}^{+}$| 1.58 |
| :--- | $173.5 \pm 3.0 \pm 0.9$

$175.1 \pm 1.4 \pm 1.2$ $172.99 \pm 0.48 \pm 0.78$ $171.5 \pm 1.9 \pm 2.5$ $175.07 \pm 1.19 \pm 1.55$ $174.98 \pm 0.58 \pm 0.49$ $173.49 \pm 0.69 \pm 1.21$ $173.93 \pm 1.64 \pm 0.87$ $173.9 \pm 0.9 \pm 1.7$ $174.5 \pm 0.6 \pm 2.3$ $172.85 \pm 0.71 \pm 0.85$ $172.7 \pm 9.3 \pm 3.7$ $173.18 \pm 0.56 \pm 0.75$ $172.5 \pm 1.4 \pm 1.5$ $173.7 \pm 2.8 \pm 1.5$ $173.9 \pm 1.9 \pm 1.6$ $172.5 \pm 0.4 \pm 1.5$ $173.49 \pm 0.43 \pm 0.98$ $172.4 \pm 1.4 \pm 1.3$ $172.3 \pm 2.4 \pm 1.0$ $172.1 \pm 1.1 \pm 0.9$ $176.9 \pm 8.0 \pm 2.7$
$174.94 \pm 0.83 \pm 1.24$ $174.0 \pm 1.8 \pm 2.4$ $175.5 \pm 4.6 \pm 4.6$ $173.0 \pm 0.9 \pm 0.9$ $169.3 \pm 2.7 \pm 3.2$ $170.7 \pm 6.3 \pm 2.6$ $174.8 \pm 2.4 \pm 1.2$ $180.5 \pm 12.0 \pm 3.6$ $172.7 \pm 1.8 \pm 1.2$ $171.1 \pm 3.7 \pm 2.1$ $171.9 \pm 1.7 \pm 1.1$ $171.2 \pm 2.7 \pm 2.9$ $165.5 \pm 3.4 \pm 3.1$ $174.7 \pm 4.4 \pm 2.0$ $170.7 \pm 4.2 \pm 3.5$ $171.5 \pm 1.8 \pm 1.1$ $177.1 \pm 4.9 \pm 4.7$ $172.3 \underset{-9.6}{+10.8} \pm 10.8$ $174.0 \pm 2.2 \pm 4.8$ $170.8 \pm 2.2 \pm 1.4$ $173.7 \pm 4.4 \pm 2.1$ $176.2 \pm 9.2 \pm 3.9$ $179.5 \pm 7.4 \pm 5.6$ $164.5 \pm 3.9 \pm 3.9$ $180.7{ }_{-13.4}^{+15.5} \pm 8.6$ $170.3 \pm 4.1 \pm 1.2$ $173.2 \pm 2.6 \pm 3.2$ $173.5 \pm 3.7 \pm 1.3$ $165.2 \pm 6.1 \pm 3.4$ $170.1 \pm 6.0 \pm 4.1$ $178.5 \pm 13.7 \pm 7.7$ $180.1 \pm 3.6 \pm 3.9$ $176.1 \pm 5.1 \pm 5.3$ 176.1 ± 6.6
$172.1 \pm 5.2 \pm 4.9$
176.0 ± 6.5
$167.4 \pm 10.3 \pm 4.8$

168.4	$\pm 12.3 \pm 3.6$	79 ABBOTT	98D	D0	dilepton
173.3	$\pm 5.6 \pm 5.5$	79,86 ABBOTT	98F	D0	lepton + jets
175.9	$\pm 4.8 \pm 5.3$	85,87 ABE	98E	CDF	lepton + jets
161	$\pm 17 \quad \pm 10$	85 ABE	98 F	CDF	dilepton
172.1	$\pm 5.2 \pm 4.9$	88 BHAT	98B	RVUE	dilepton and lepton+jets
173.8	± 5.0	89 BHAT	98B	RVUE	dilepton, lepton+jets, all-jets
173.3	$\pm 5.6 \pm 6.2$	79 ABACHI	97E	D0	lepton + jets
186	$\pm 10 \pm 5.7$	85,90 ABE	97R	CDF	6 or more jets
199	$\begin{array}{ll} +19 & \pm 22 \\ -21 \end{array}$	ABACHI	95	D0	lepton + jets
176	$\pm 8 \pm 10$	ABE	95F	CDF	lepton $+b$-jet
174	$\pm 10 \quad+13$	ABE	94E	CDF	lepton $+b$-jet

${ }^{1}$ AABOUD 19AC is an ATLAS combination of 7 and 8 TeV top-quark mass determination in the dilepton, lepton + jets, and all jets channels.
${ }^{2}$ SIRUNYAN 19AP based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A combined measurement using the lepton+jets and all-jets channels through a single likelihood function. See SIRUNYAN 18DE and SIRUNYAN 19AP below.
${ }^{3}$ SIRUNYAN 19AR based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Obtained from a simultaneous fit of the cross section and the top quark mass in the POWHEG simulation. The cross section is used also to extract the $\overline{\mathrm{MS}}$ mass and the strong coupling constant for different PDF sets.
${ }^{4}$ SIRUNYAN 17 L based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV} . m_{t}$ is reconstructed from a fit to the invariant mass distribution of $\mu \nu b$, where $p_{T}^{m i s s}$ and W mass constraint are used to reconstruct ν momentum. The number of events for various contributions, except for the t-channel single top one, are fixed to the values extracted from simulation.
${ }^{5}$ KHACHATRYAN 16AK based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Combination of the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{6}$ TEVEWWG 16 is the latest Tevatron average (July 2016) provided by the Tevatron Electroweak Working Group. It takes correlated uncertainties into account and has a χ^{2} of 10.8 for 11 degrees of freedom.
${ }^{7}$ AABOUD 19AC based on $20.2 \mathrm{fb}^{-1}$ in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. Uses optimized event selection to suppress less-well-reconstructed events and template fits to determine m_{t} together with a global jet energy scale factor and a relative b-to-light-jet energy scale
8 factor. plied to each event assuming the signal event topology. m_{t} is determined simultaneously with a jet energy scale factor (JSF). The second error represents stat.+JSF. Modeling uncertainties are larger than in the measurements at $\sqrt{s}=7$ and 8 TeV because of the use of new alternative color reconnection models.
${ }^{9}$ SIRUNYAN 18DE based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV} . m_{t}$ is determined simultaneously with an overall jet energy scale factor constrained by the mass of the hadronically decayed W. Compared to the Run 1 analysis a more advanced treatment of modeling uncertainties are employed, in particular concerning color-reconnection models.
10 AABOUD 17AH based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Uses template fits to the ratio of the masses of three-jets (from t candidate) and dijets (from W candidate), to suppress jet energy scale uncertainty. Large QCD background is modelled using a data-driven method.
11 ABAZOV 17B is a combination of measurements of the top quark mass by D0 in the lepton + jets and dilepton channels, using all data collected in Run I (1992-1996) at \sqrt{s} $=1.8 \mathrm{TeV}$ and Run II (2001-2011) at $\sqrt{s}=1.96 \mathrm{TeV}$ of the Tevatron, corresponding to integrated luminosities of $0.1 \mathrm{fb}^{-1}$ and $9.7 \mathrm{fb}^{-1}$, respectively.
12 SIRUNYAN 17 N based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The fully hadronic decay of a highly-boosted t is reconstructed in the $\ell+$ jets channel and unfolded at the particle level. The sensitivity of the peak position of the $m_{j e t}$ distribution is used to test quality of the modelling by the simulation.
13 SIRUNYAN 170 based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Analysis is based on the kinematical observables $M(b \ell), M_{T 2}$ and $M(b \ell \nu)$. A fit is performed to determine m_{t} and an overall jet energy scale factor simultaneously.
${ }^{14}$ AABOUD 16 T based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The analysis is refined using the p_{T} and invariant mass distributions of $\ell+b$-jet system. A combination with measurements from $\sqrt{s}=7 \mathrm{TeV}$ data in the dilepton and lepton + jets channels gives $172.84 \pm 0.34 \pm 0.61 \mathrm{GeV}$.
${ }^{15}$ AABOUD 16 T is an ATLAS combination of 8 TeV top-quark mass in the dilepton channel with previous measurements from $\sqrt{s}=7 \mathrm{TeV}$ data in the dilepton and lepton + jets channels.
${ }^{16}$ ABAZOV 16 based on $9.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Employs improved fit to minimize statistical errors and improved jet energy calibration, using lepton + jets mode, which reduces error of jet energy scale. Based on previous determination in ABAZOV 12AB with increased integrated luminosity and improved fit and calibrations.
17 ABAZOV 16D based on $9.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, using the matrix element technique. Based on previous determination in ABAZOV 11R with increased integrated luminosity. There is a strong correlation with the determination in ABAZOV 16. (See ABAZOV 17b.)
18 KHACHATRYAN 16AK based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Combination of the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s}=7 \mathrm{TeV}$ gives $172.44 \pm 0.13 \pm 0.47 \mathrm{GeV}$.
19 The top mass and jet energy scale factor are determined by a fit.
${ }^{20}$ Uses the analytical matrix weighting technique method.
21 KHACHATRYAN 16AL based on $19.7 \mathrm{fb}^{-1}$ in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$. Determined from the invariant mass distribution of leptons and reconstructed secondary vertices from b decays using only charged particles. The uncertainty is dominated by modeling of b fragmentation and top p_{T} distribution.
22 KHACHATRYAN 16 CB based on 666 candidate reconstructed events corresponding to $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The measurement exploits correlation of m_{t} with $\mathrm{M}(J / \psi \ell)$ in the same top quark decay, using a high-purity event sample. A study on modeling of b-quark fragmentation is given in Sec.3.3.
${ }^{23}$ AAD 15AW based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Uses template fits to the ratio of the masses of three-jets (from t candidate) and dijets (from W candidate). Large background from multijet production is modeled with data-driven methods.
${ }^{24}$ AAD 15 BF based on $4.6 \mathrm{fb}^{-1}$ in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. Using a three-dimensional template likelihood technique the lepton plus jets ($\geq 1 b$-tagged) channel gives $172.33 \pm$ $0.75 \pm 1.02 \mathrm{GeV}$, while exploiting a one dimensional template method using $m_{\ell b}$ the
dilepton channel (1 or $2 b$-tags) gives $173.79 \pm 0.54 \pm 1.30 \mathrm{GeV}$. The results are combed dilepton channel (1 or $2 b$-tags) gives $173.79 \pm 0.54 \pm 1.30 \mathrm{GeV}$. The results are combined.

Quark Particle Listings

t

${ }^{25}$ AALTONEN 15D based on $9.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. Uses a template technique to fit a distribution of a variable defined by a linear combination of variables sensitive and insensitive to jet energy scale to optimize reduction of systematic errors. b-tagged and non- b-tagged events are separately analyzed and combined.
${ }^{26}$ Based on $9.3 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. Multivariate algorithm is used to discriminate signal from backgrounds, and templates are used to measure m_{t}.
27 Based on $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. A matrix element method is used to calculate the probability of an event to be signal or background, and the overall jet energy scale is constrained in situ by m_{W}. See ABAZOV 15 G for further details.
${ }^{28}$ Based on $3.54 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The mass is reconstructed for each event employing a kinematic fit of the jets to a ttbar hypothesis. The combination with the pervious CMS measurements in the dilepton and the lepton+jets channels gives $173.54 \pm 0.33 \pm 0.96 \mathrm{GeV}$.
${ }^{29}$ Based on $8.7 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Events with an identified charged lepton or small E_{T} are rejected from the event sample, so that the measurement is statistically independent from those in the $\ell+$ jets and all hadronic channels while being sensitive to those events with a τ lepton in the final state
${ }^{30}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13 s studied events with di-lepton $+\#_{T}+\geq 2 b$-jets, and looked for kinematical endpoints of $\mathrm{MT} 2, \mathrm{MT}^{2}$, and subsystem variables.
${ }^{31} \mathrm{AAD}$ 12I based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Uses 2d-template analysis (MT) with m_{t} and jet energy scale factor (JSF) from m_{W} mass fit.
32 Based on $8.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . The JES is calibrated by using the dijet mass from the W boson decay.
33 Use the ME method based on $2.2 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV .
${ }^{34}$ Combination based on up to $5.8 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV .
${ }^{35}$ Based on $5.8 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV the quoted value is $m_{t}=$ 172.5 ± 1.4 (stat) $\pm 1.0(\mathrm{JES}) \pm 1.1$ (syst) GeV . The measurement is performed with a liklihood fit technique which simultaneously determines m_{t} and JES (Jet Energy Scale).
${ }^{36}$ Based on $4.3 \mathrm{fb}^{-1}$ of data in p -pbar collisions at 1.96 TeV . The measurement reduces the JES uncertainty by using the single lepton channel study of ABAZOV 11P.
37 Combination with the result in $1 \mathrm{fb}^{-1}$ of preceding data reported in ABAZOV 09AH as 38 well as the MWT result of ABAZOV 11R with a statistical correlation of 60%.
38 well as the Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Uses an analytical matrix weighting technique (AMWT) and full kinematic analysis (KIN).
${ }^{39}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The first error is statistical and JES combined, and the second is systematic. Ideogram method is used to obtain 2D liklihood for the kinematical fit with two parameters mtop and JES.
${ }^{40}$ Based on $3.2 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistics and JES combined, and the latter is from the other systematic uncertainties. The result is obtained using an unbinned maximum likelihood method where the top quark mass and the JES are measured simultaneously, with $\Delta_{J E S}=0.3 \pm 0.3$ (stat).
${ }^{41}$ Based on $5.7 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Events with an identified charged lepton or small E_{T} are rejected from the event sample, so that the measurement is statistically independent from those in the $\ell+$ jets and all hadronic channels while being sensitive to those events with a τ lepton in the final state. Supersedes AALTONEN 07B.
42 AALTONEN 11 E based on $5.6 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Employs a multidimensional template likelihood technique where the lepton plus jets (one or two b-tags) channel gives $172.2 \pm 1.2 \pm 0.9 \mathrm{GeV}$ while the dilepton channel yields $170.3 \pm 2.0 \pm 3.1$ GeV . The results are combined. OUR EVALUATION includes the measurement in the dilepton channel only.
43 Uses a likelihood fit of the lepton p_{T} distribution based on $2.7 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
44 Based on $3.6 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. ABAZOV 11P reports $174.94 \pm$ $0.83 \pm 0.78 \pm 0.96 \mathrm{GeV}$, where the first uncertainty is from statistics, the second from JES, and the last from other systematic uncertainties. We combine the JES and systematic uncertainties. A matrix-element method is used where the JES uncertainty is constrained by the W mass. ABAZOV 11P describes a measurement based on $2.6 \mathrm{fb}^{-1}$ that is combined with ABAZOV 08Ah, which employs an independent $1 \mathrm{fb}^{-1}$ of data.
45 Based on a matrix-element method which employs $5.4 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=$ 1.96 TeV . Superseded by ABAZOV 12AB.
${ }^{46}$ Based on $36 \mathrm{pb}^{-1}$ of $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. A Kinematic Method using b-tagging and an analytical Matrix Weighting Technique give consistent results and are combined. Superseded by CHATRCHYAN 12BA.
${ }^{47}$ Based on $5.6 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The likelihood calculated using a matrix element method gives $m_{t}=173.0 \pm 0.7$ (stat) ± 0.6 (JES) ± 0.9 (syst) GeV , for a total uncertainty of 1.2 GeV .
${ }^{48}$ Based on $3.4 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The result is obtained by combining the MT2 variable method and the NWA (Neutrino Weighting Algorithm). The MT2 method alone gives $m_{t}=168.0_{-4.0}^{+4.8}$ (stat) ± 2.9 (syst) GeV with smaller systematic error due to small JES uncertainty.
${ }^{49}$ Based on $1.9 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The result is from the measurement using the transverse decay length of b-hadrons and that using the transverse momentum of the W decay muons, which are both insensitive to the JES (jet energy scale) uncertainty. OUR EVALUATION uses only the measurement exploiting the decay length significance which yields $166.9_{-8.5}^{+9.5}$ (stat) ± 2.9 (syst) GeV . The measurement that uses the lepton transverse momentum is excluded from the average because of a statistical correlation with other samples.
${ }^{50}$ Based on $2.9 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistics and JES uncertainty, and the latter is from the other systematics. Neural-network-based kinematical selection of 6 highest E_{T} jets with a vtx b-tag is used to distinguish signal from background. Superseded by AALTONEN 12 G .
${ }^{51}$ Based on $2 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The top mass is obtained from the measurement of the invariant mass of the lepton (e or μ) from W decays and the soft μ in b-jet. The result is insensitive to jet energy scaling.
${ }^{52}$ Based on $1.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics. Matrix element method with effective propagators.
${ }^{53}$ Based on $943 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistical and jet-energy-scale uncertainties, and the latter is from other systematics. AALTONEN 09K selected 6 jet events with one or more vertex b-tags and used the tree-level matrix element to construct template models of signal and background.
${ }^{54}$ Based on $1.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistical and jet-energy-scale (JES) uncertainties, and the second is from other systematics. Events
with lepton + jets and those with dilepton + jets were simultaneously fit to constrain m_{t} and JES. Lepton + jets data only give $m_{t}=171.8 \pm 2.2 \mathrm{GeV}$, and dilepton data only give $m_{t}=171.2_{-5.1}^{+5.3} \mathrm{GeV}$.
${ }^{55}$ Based on $2 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Matrix Element method. Optimal selection criteria for candidate events with two high p_{T} leptons, high E_{T}, and two or more jets with and without b-tag are obtained by neural network with neuroevolution technique to minimize the statistical error of m_{t}.
${ }^{56}$ Based on $2.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Mass m_{t} is estimated from the likelihood for the eight-fold kinematical solutions in the plane of the azimuthal angles of the two neutrino momenta.
57 neutrino momenta. those with one lepton plus one isolated track and a b-tag were used to constrain m_{t}. The those with one lepton plus one isolated track and a b-tag were used to constrain $m t$. The
result is a combination of the $\nu \mathrm{WT}(\nu$ Weighting Technique) result of $176.2 \pm 4.8 \pm 2.1$ result is a combination of the $\nu \mathrm{WT}(\nu$ Weighting Technique) result of $176.2 \pm 4.8 \pm 2.1$
GeV and the MWT (Matrix-element Weighting Technique) result of $173.2 \pm 4.9 \pm 2.0$ GeV and the MWT (Matrix-element Weighting Technique) result of $173.2 \pm 4.9 \pm 2.0$
GeV . ${ }_{58} \mathrm{GeV}$.
Reports measurement of $170.7_{-3.9}^{+4.9} \pm 2.6 \pm 2.4 \mathrm{GeV}$ based on $1.2 \mathrm{fb}^{-1}$ of data at \sqrt{s}
$=1.96 \mathrm{TeV}$. The last error is due to the theoretical uncertainty on $\sigma_{t \bar{t}}$. Without the cross-section constraint a top mass of $169.7_{-4.9}^{+5.2} \pm 3.1 \mathrm{GeV}$ is obtained.
${ }^{59}$ Template method.
${ }^{60}$ Result is based on $1 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics.
${ }^{61}$ Based on $310 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
62 Ideogram method.
63 Ideogram method.
${ }^{63}$ Based on $311 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Events with 4 or more jets with $E_{T}>$ 15 GeV , significant missing E_{T}, and secondary vertex b-tag are used in the fit. About 44% of the signal acceptance is from $\tau \nu+4$ jets. Events with identified e or μ are vetoed to provide a statistically independent measurement.
${ }^{64}$ Based on $1.02 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Superseded by AALTONEN 12 G .
${ }^{65}$ Based on $955 \mathrm{pb}^{-1}$ of data $\sqrt{s}=1.96 \mathrm{TeV} . m_{t}$ and JES (Jet Energy Scale) are fitted simultaneously, and the first error contains the JES contribution of 1.5 GeV .
66 Matrix element method.
67 Matrix element method. Based on 425 pb of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is a combination of statistics
and JES (Jet Energy Scale) uncertainty, which has been measured simultaneously to give and JES (Jet Energy Scale)
JES $=0.989 \pm 0.029$ (stat).
${ }^{68}$ Based on $370 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Combined result of MWT (Matrixelement Weighting Technique) and $\nu \mathrm{W} T$ (ν Weighting Technique) analyses is $178.1 \pm$ $6.7 \pm 4.8 \mathrm{GeV}$.
${ }^{69}$ Based on $1.0 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. ABULENCIA 07D improves the matrix element description by including the effects of initial-state radiation.
${ }^{70}$ Based on $695 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The transverse decay length of the b hadron is used to determine m_{t}, and the result is free from the JES (jet energy scale) uncertainty.
${ }^{71}$ Based on $\sim 400 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error includes statistical and systematic jet energy scale uncertainties, the second error is from the other systematics. The result is obtained with the b-tagging information. The result without b-tagging is $169.2+5.0+1.5 \mathrm{GeV}$. Superseded by ABAZOV 08AH.
${ }_{72}$ Based on $318 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
73 Dynamical likelihood method.
${ }^{74}$ Based on $340 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{75}$ Based on $360 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{76}$ Based on $110.2 \pm 5.8 \mathrm{pb}^{-1}$ at $\sqrt{s}=1.8 \mathrm{TeV}$.
77 Based on the all hadronic decays of $t \bar{t}$ pairs. Single b-quark tagging via the decay chain $b \rightarrow c \rightarrow \mu$ was used to select signal enriched multijet events. The result was obtained by the maximum likelihood method after bias correction.
${ }^{78}$ Obtained by re-analysis of the lepton + jets candidate events that led to ABBOTT 98F. It is based upon the maximum likelihood method which makes use of the leading order matrix elements.
${ }^{79}$ Based on $125 \pm 7 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$.
80 Based on $\sim 106 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$.
${ }^{81}$ Obtained by combining the measurements in the lepton + jets [AFFOLDER 01], all-jets [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies.
82 Obtained by combining the D0 result $m_{t}(\mathrm{GeV})=168.4 \pm 12.3 \pm 3.6$ from 6 di-lepton events (see also ABBOTT 98D) and $m_{t}(\mathrm{GeV})=173.3 \pm 5.6 \pm 5.5$ from lepton+jet events (ABBOTT 98F)
83 Obtained by combining the CDF results of $m_{t}(\mathrm{GeV})=167.4 \pm 10.3 \pm 4.8$ from 8 dilepton events, $m_{t}(\mathrm{GeV})=175.9 \pm 4.8 \pm 5.3$ from lepton + jet events (ABE 98 E), and m_{t} $(\mathrm{GeV})=186.0 \pm 10.0 \pm 5.7$ from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.
84 See AFFOLDER 01 for details of systematic error re-evaluation.
${ }^{85}$ Based on $109 \pm 7 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$.
86 Based on $109 \pm 7 \mathrm{p}$
See ABAZOV 04G.
86 See ABAZOV 04G.
87 The updated system
87 The updated systematic error is listed. See AFFOLDER 01, appendix C
88 Obtained by combining the $\mathrm{D} \varnothing$ results of $m_{t}(\mathrm{GeV})=168.4 \pm 12.3 \pm 3.6$ from 6 dilepton events and $m_{t}(\mathrm{GeV})=173.3 \pm 5.6 \pm 5.5$ from 77 lepton + jet events.
89 Obtained by combining the $\mathrm{D} \varnothing$ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.
${ }^{90}$ Based on the first observation of all hadronic decays of $t \bar{t}$ pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

t-Quark Mass from Cross-Section Measurements

The top quark $\overline{\mathrm{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t \bar{t})$ by using theory calculations. We quote below the $\overline{M S}$ mass. See the review "The Top Quark" and references therein for more information.
VALUE (GeV) DOCUMENTID TECN COMMENT

$162 . \mathbf{I}_{-1.5}^{\mathbf{2} .1}$ OUR AVERAGE

$162.9 \pm 0.5 \pm 1.0_{-1.2}^{+2.1}$	${ }^{1} \mathrm{AAD}$	19G	ATLS	$\ell+E_{T}+\geq 5 j(2 b-j)$
$160.0{ }_{-4.3}^{+4.8}$	2 ABAZOV	11s	D0	$\sigma(t \bar{t})+$ theory
- - We do not use the following data for averages, fits, limits, etc. - • -				
	3 ABAZOV	09AG		cross sects, theory + exp
	${ }^{4}$ ABAZOV	09R	D0	cross sects, theory $+\exp$

${ }^{1}$ AAD 19G based on $20.2 \mathrm{fb}^{-1}$ of data in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. Normalized $t \bar{t}$ +1 -jet differential cross section as a function of $t \bar{t} j$ invariant mass is measured in the $\ell+$ jets mode. The unfolded parton-level distribution is compared with the NLO QCD prediction. The three errors are from statitics, systematics, and theory.
${ }^{2}$ Based on $5.3 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. ABAZOV 11 s uses the measured $t \bar{t}$ production cross section of $8.13_{-0.90}^{+1.02} \mathrm{pb}$ [ABAZOV 11E] in the lepton plus jets channel to obtain the top quark $\overline{\mathrm{MS}}$ mass by using an approximate NNLO computation (MOCH 08, LANGENFELD 09). The corresponding top quark pole mass is $167.5_{-4.9}^{+5.4}$ GeV . A different theory calculation (AHRENS 10, AHRENS 10A) is also used and yields $\mathrm{m}_{t}^{\overline{\mathrm{MS}}}=154.5_{-4.3}^{+5.0} \mathrm{GeV}$.
${ }^{3}$ Based on $1 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Uses the $\ell+$ jets, $\ell \ell$, and $\ell \tau+$ jets channels. ABAZOV 09AG extract the pole mass of the top quark using two different calculations that yield $169 .{\underset{-}{-2}}_{+5.9} \mathrm{GeV}\left(\mathrm{MOCH} 08\right.$, LANGENFELD 09) and $168.2_{-5.4}^{+5.9}$ GeV (KIDONAKIS 08).
${ }^{4}$ Based on $1 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Uses the $\ell \ell$ and $\ell \tau+$ jets channels. ABAZOV 09 R extract the pole mass of the top quark using two different calculations that yield $173.3_{-8.6}^{+9.8} \mathrm{GeV}\left(\mathrm{MOCH} 08\right.$, LANGENFELD 09) and $171.5_{-8.8}^{+9.9} \mathrm{GeV}$ (CACCIARI 08).

t-Quark Pole Mass from Cross-Section Measurements

$\frac{V A L U E(G e V)}{\mathbf{1 7 2 . 4} \pm \mathbf{0 . 7} \text { OUR AVERAGE }}$

$171.1 \pm 0.4 \pm 0.9_{-0.3}^{+0.7}$ DOCUMENT ID TECN COMMENT
$173.2 \pm 0.9 \pm 0.8 \pm 1.2$
1 AAD

9G ATLS $\quad \ell+E_{T^{+}} \geq 5 j(2 b-j)$
170.6 ± 2.7
$172.8 \pm 1.1_{-3.1}^{+3.3}$
$173.8_{-1.8}^{+1.7}$
$173.7_{-2.1}^{+2.3}$
$172.9+2.5$
-2.6
7 AAD 14AY ATLS $p p$ at $\sqrt{s}=7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$176.7_{-2.8}^{+3.0} \quad{ }^{8}$ CHATRCHYAN 14 CMS $\quad p p$ at $\sqrt{s}=7 \mathrm{TeV}$
${ }^{1}$ AAD 19G based on $20.2 \mathrm{fb}^{-1}$ of data in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$. Normalized $t \bar{t}$ +1 -jet differential cross section as a function of $t \bar{t} j$ invariant mass is measured in the $\ell+$ jets mode. The unfolded parton-level distribution is compared with the NLO QCD prediction. The three errors are from statitics, systematics, and theory.
${ }^{2}$ AABOUD 17 BC based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The pole mass is extracted from a fit of NLO predictions to eight single lepton and dilepton differential distributions, while simultaneously constraining uncertainties due to PDFs and QCD scales. The three reported uncertainties come from statistics, experimental systematics, and theoretical sources.
${ }^{3}$ SIRUNYAN 17 W based on $2.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Events are categorized according to the jet multiplicity and the number of b-tagged jets. The pole mass is obtained from the inclusive cross section measurement and the NNLO prediction.
${ }^{4}$ ABAZOV 16F based on $9.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The result is obtained from the inclusive cross section measurement and the NNLO+NNLL prediction.
5 KHACHATRYAN 16AW based on $5.0 \mathrm{fb}^{-1}$ of $p p$ collisions at 7 TeV and $19.7 \mathrm{fb}^{-1}$ at 8 TeV . The 7 TeV data include those used in CHATRCHYAN 14. The result is obtained from the inclusive cross sections.
6 AAD 15BW based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Uses normalized differential cross section for $t \bar{t}+1$ jet as a function of the inverse of the invariant mass of the $t \bar{t}$ +1 jet system. The measured cross section is corrected to the parton level. Then a fit to the data using NLO + parton shower prediction is performed
${ }^{7}$ AAD 14AY used $\sigma(t \bar{t})$ for $e \mu$ events. The result is a combination of the measurements $m_{t}=171.4 \pm 2.6 \mathrm{GeV}$ based on $4.6 \mathrm{fb}^{-1}$ of data at 7 TeV and $m_{t}=174.1 \pm 2.6 \mathrm{GeV}$ based on $20.3 \mathrm{fb}^{-1}$ of data at 8 TeV .
${ }^{8}$ CHATRCHYAN 14 used $\sigma(t \bar{t})$ from $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ measured in CHATRCHYAN 12AX to obtain m_{t} (pole) for $\alpha_{S}\left(m_{Z}\right)=0.1184 \pm 0.0007$. The errors have been corrected in KHACHATRYAN 14 K .

$m_{t}-m_{\bar{t}}$

Test of CPT conservation. OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

VALUE (GeV)

-0.16 ± 0.19 OUR AVERAGE

$-0.15 \pm 0.19 \pm 0.09$	${ }^{1}$ CHATRCHYAN 17	CMS	$\ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{bj})$
$0.67 \pm 0.61 \pm 0.41$	${ }^{2}$ AAD 14	ATLS	$\ell+E_{T}+\geq 4 \mathrm{j}(\geq 2 b$-tags $)$
$-1.95 \pm 1.11 \pm 0.59$	${ }^{3}$ AALTONEN 13E	CDF	$\ell+E_{T}+\geq 4 \mathrm{j}(0,1,2 \mathrm{~b}$-tags)
$-0.44 \pm 0.46 \pm 0.27$	${ }^{4}$ CHATRCHYAN 12 Y	CMS	$\ell+E_{T}+\geq 4 j$
$0.8 \pm 1.8 \pm 0.5$	5 ABAZOV	D0	$\ell+E_{T}+4$ jets

$0.8 \pm 1.8 \pm 0.5 \quad{ }^{5}$ ABAZOV $\quad 11 \mathrm{~T}$ Do $\quad \ell+E_{T}+4$ jets $(\geq 1 b$-tag $)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-3.3 \pm 1.4 \pm 1.0 \quad{ }^{6}$ AALTONEN 11 K CDF Repl. by AALTONEN 13E $3.8 \pm 3.4 \pm 1.2 \quad 7$ ABAZOV \quad 09AA D0 $\quad \ell+E_{T}+4$ jets $(\geq 1 b$-tag $)$
${ }^{1}$ CHATRCHYAN 17 based on $19.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$ and an average top mass of 172.84 ± 0.10 (stat) GeV is obtained.
${ }^{2}$ Based on $4.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$ and an average top mass of $172.5 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{3}$ Based on $8.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ and an average top mass of 172.5 $\mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{4}$ Based on $4.96 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Based on the fitted m_{t} for ℓ^{+}and ℓ^{-} events using the Ideogram method.
${ }^{5}$ Based on a matrix-element method which employs $3.6 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=$ 1.96 TeV.
${ }^{6}$ Based on a template likelihood technique which employs $5.6 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at \sqrt{s} $=1.96 \mathrm{TeV}$.
${ }^{7}$ Based on $1 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.

t-quark DECAY WIDTH

VALUE(GeV) CL\% DOCUMENT ID TECN COMMENT
$\mathbf{1 . 4 2}_{-0.15}^{\mathbf{+ 0}} \mathbf{0}$ OUR AVERAGE Error includes scale factor of 1.4.

$1.76 \pm 0.33_{-0.68}^{+0.79}$	${ }^{2}$ AABOUD	18 AZ ATLS	$\ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 b)$	
$1.36 \pm 0.02+0.14$	2 KHACHATRY..14E CMS	$\ell \ell+E_{T}+2-4 \mathrm{jets}(0-2 b-\mathrm{tag})$		
$2.00_{-0.43}^{+0.47}$	${ }^{3}$ ABAZOV	12 T	D0	$\Gamma(t \rightarrow b W) / \mathrm{B}(t \rightarrow b W)$

- - We do not use the following data for averages, fits, limits, etc. - • •
$<6.38 \quad 95 \quad{ }^{4}$ AALTONEN $132 \mathrm{CDF} \underset{\text { direct }}{\ell+\#_{T}^{+}} \geq 4 \mathrm{j}(\geq 0 \mathrm{~b})$,

$1.99{ }_{-0.55}^{+0.69} \quad 5 \mathrm{ABAZOV} \quad 11 \mathrm{~B}$ D0 \quad| Repl. by ABAZOV 12T |
| :--- |

$>1.21 \quad 95 \quad 5 \mathrm{ABAZOV} \quad 11 \mathrm{~B}$ D0 $\quad \Gamma(t \rightarrow W b)$
$<7.6 \quad 95 \quad{ }^{6}$ AALTONEN 10 AC CDF $\quad \ell+$ jets, direct
$<13.1 \quad 95 \quad 7$ AALTONEN 09 M CDF $\quad m_{t}(\mathrm{rec})$ distribution
${ }^{1}$ Based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV} . \Gamma_{t}$ is measured using a template fit to the reconstructed invariant mass of the b-jet of the semileptonically decaying top quark and the corresponding lepton, and the angular distance between j_{b} and j_{l} in hadronic top decay. Signal templates are generated by reweighting events at parton-level to BreitWigner distribution with different Γ_{t} hypotheses for $m_{t}=172.5 \mathrm{GeV}$. The result is consistent with the NNLO SM prediction of 1.322 GeV .
${ }^{2}$ Based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The result is obtained by combining the measurement of $R=\Gamma(t \rightarrow W b) / \Gamma(t \rightarrow W q(q=b, s, d))$ and a previous CMS measurement of the t-channel single top production cross section of CHATRCHYAN 12BQ, by using the theoretical calculation of $\Gamma(t \rightarrow W b)$ for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{3}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $1.96 \mathrm{TeV} . \Gamma(t \rightarrow b W)=1.87_{-0.40}^{+0.44}$ GeV is obtained from the observed t-channel single top quark production cross section, whereas $\mathrm{B}(t \rightarrow b W)=0.90 \pm 0.04$ is used assuming $\sum_{q} \mathrm{~B}(t \rightarrow q W)=1$. The result is valid for $m_{t}=172.5 \mathrm{GeV}$. See the paper for the values for $m_{t}=170$ or 175 GeV .
${ }^{4}$ Based on $8.7 \mathrm{fb}^{-1}$ of data. The two sided $68 \% \mathrm{CL}$ interval is $1.10 \mathrm{GeV}<\Gamma_{t}<4.05$ GeV for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{5}$ Based on $2.3 \mathrm{fb}^{-1}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. ABAZOV 11 B extracted Γ_{t} from the partial width $\Gamma(t \rightarrow W b)=1.92_{-0.51}^{+0.58} \mathrm{GeV}$ measured using the t channel single top production cross section, and the branching fraction brt $\rightarrow W b=$ $0.962_{-0.066}^{+0.068}$ (stat $)_{-0.052}^{+0.064}$ (syst). The $\Gamma(t \rightarrow W b)$ measurement gives the $95 \% \mathrm{CL}$ lowerbound of $\Gamma(t \rightarrow W b)$ and hence that of Γ_{t}.
${ }^{6}$ Results are based on $4.3 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. The top quark mass and the hadronically decaying W boson mass are reconstructed for each candidate events and compared with templates of different top quark width. The two sided 68% CL interval is $0.3 \mathrm{GeV}<\Gamma_{t}<4.4 \mathrm{GeV}$ for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{7}$ Based on $955 \mathrm{pb}^{-1}$ of $p \bar{p}$ collision data at $\sqrt{s}=1.96 \mathrm{TeV}$. AALTONEN 09 m selected $t \bar{t}$ candidate events for the $\ell+E_{T}+$ jets channel with one or two b-tags, and examine the decay width dependence of the reconstructed m_{t} distribution. The result is for m_{t}
$=175 \mathrm{GeV}$, whereas the upper limit is lower for smaller m_{t}. $=175 \mathrm{GeV}$, whereas the upper limit is lower for smaller m_{t}

t DECAY MODES

	Mode			Fraction $\left(\Gamma_{i} / \Gamma\right)$		Confidence level
Γ_{1}	$W q(q=b, s, d)$					
Γ_{2}	W b					
Γ_{3}	$e \nu_{e} b$		$(11.10 \pm 0.30) \%$			
Γ_{4}	$\mu \nu_{\mu} b$		$(11.40 \pm 0.20) \%$			
Γ_{5}	$\tau \nu_{\tau} b$		$(11.1 \pm 0.9) \%$			
Γ_{6}	$q \bar{q} b$		$(66.5 \pm 1.4) \%$			
Γ_{7}	$\gamma q(q=u, c)$		$[a]<1.8$		$\times 10^{-4}$	
Γ_{8}	$H^{+} b, H^{+} \rightarrow \tau \nu_{\tau}$					
	$\Delta T=1$ weak neutral current (T1) modes					
$\Gamma 9$	$Z q(q=u, c)$	T1	[b]	<5	$\times 10^{-4}$	4 95\%
Γ_{10}	Hu	T1		< 1.2	$\times 10^{-3}$	3 95\%
Γ_{11}	Hc	T1		< 1.1	$\times 10^{-3}$	3 95\%
Γ_{12}	$\ell+\bar{q} \bar{q}^{\prime}\left(q=d, s, b ; q^{\prime}=u, c\right)$	T1		< 1.6	$\times 10^{-3}$	3 95\%

[a] This limit is for $\Gamma(t \rightarrow \gamma q) / \Gamma(t \rightarrow W b)$.
$[b]$ This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.

t BRANCHING RATIOS

$\Gamma(W b) / \Gamma(W q(q=b, s, d))$
Γ_{2} / Γ_{1} OUR AVERAGE assumes that the systematic uncertainties are uncorrelated. VALUE $\frac{\text { VALUE }}{\mathbf{0 . 9 5 7} \pm \mathbf{0 . 0 3 4} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of }} \frac{\text { COMMENT }}{1.5 \text {. See the ideogram below. }}$ $0.87 \pm 0.07 \quad{ }^{1}$ AALTONEN 14 G CDF $\quad \ell \ell+E_{T}+\geq 2 \mathrm{j}(0,1,2 b$-tag $)$ $1.014 \pm 0.003 \pm 0.032 \quad 2$ KHACHATRY...14E CMS $\quad \ell \ell+E_{T}+2,3,4 \mathrm{j}(0-2 b$-tag $)$ 0.90 ± 0.04

$$
\begin{array}{lll}
\text { KHACHATRY...14E } & \text { CM } \\
\text { AALTONEN } & 13 \mathrm{G} & \text { CDF } \\
\text { RATOV } & 11 \times
\end{array}
$$ $0.94 \pm 0.09 \quad{ }^{3}$ AALTONEN 13 G CDF $\quad \ell+E_{T}+\geq 3$ jets $(\geq 1 b$-tag $)$

$$
+ \text { ABAZOV } 11 \times \text { D0 }
$$

$$
\ell+E_{T}+\geq \text { 3jets }(\geq 1 b \text {-tag })
$$

Quark Particle Listings

t

- - We do not use the following data for averages, fits, limits, etc. - .

0.97	${ }_{-0.08}^{+0.09}$		${ }^{5}$ ABAZOV		D0	$\ell+\mathrm{n}$ jets with $0,1,2 b$-tag
1.03	$\begin{aligned} & +0.19 \\ & { }_{-0.17} \end{aligned}$		${ }^{6}$ AbAZOV	06K	D0	
1.12	$\begin{aligned} & +0.21 \\ & { }_{-0.19}^{+0} \end{aligned}$	$\begin{aligned} & +0.17 \\ & { }_{-0.13}^{0.17} \end{aligned}$	${ }^{7}$ Acosta	05A	CDF	Repl. by AALTONEN 13 G
0.94	${ }_{-0.21}^{+0.26}$	${ }_{-0.12}^{+0.17}$	${ }^{8}$ AFFOLDER	01C	CDF	

${ }^{1}$ Based on $8.7 \mathrm{fb}^{-1}$ of data. This measurement gives $\left|V_{t b}\right|=0.93 \pm 0.04$ and $\left|V_{t b}\right|>$ $0.85(95 \% \mathrm{CL})$ in the SM .
${ }^{2}$ Based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The result is obtained by counting the number of b jets per $t \bar{t}$ signal events in the dilepton channel. The $t \bar{t}$ production cross section is measured to be $\sigma(t \bar{t})=238 \pm 1 \pm 15 \mathrm{pb}$, in good agreement with the SM prediction and the latest CMS measurement of CHATRCHYAN 14 F . The measurement gives $R>0.995(95 \% \mathrm{CL})$, or $\left|V_{t b}\right|>0.975(95 \% \mathrm{CL})$ in the SM, requiring $R \leq 1$.
${ }^{3}$ Based on $8.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Measure the fraction of $t \rightarrow$ $W b$ decays simultaneously with the $t \bar{t}$ cross section. The correlation coefficient between those two measurements is -0.434 . Assume unitarity of the 3×3 CKM matrix and set $\left|V_{t b}\right|>0.89$ at $95 \% \mathrm{CL}$
${ }^{4}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. The result is a combination of 0.95 ± 0.07 from $\ell+$ jets channel and 0.86 ± 0.05 from $\ell \ell$ channel. $\left|\mathrm{V}^{t b}\right|=0.95 \pm 0.02$ follows from the result by assuming unitarity of the 3×3 CKM matrix.
${ }^{5}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data. The $95 \% \mathrm{CL}$ lower bound $\mathrm{R}>0.79$ gives $\left|V_{t b}\right|>$ 0.89 (95\% CL).
${ }^{6}$ ABAZOV 06 K result is from the analysis of $t \bar{t} \rightarrow \ell \nu+\geq 3$ jets with $230 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. It gives $\mathrm{R}>0.61$ and $\left|V_{t b}\right|>0.78$ at $95 \% \mathrm{CL}$. Superseded by ABAZOV 08M
${ }^{7}$ ACOSTA 05 A result is from the analysis of lepton + jets and di-lepton + jets final states of $t \bar{t}$ candidate events with $\sim 162 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. The first error is statistical and the second systematic. It gives $\mathrm{R}>0.61$, or $\left|V_{t b}\right|>0.78$ at $95 \% \mathrm{CL}$.
${ }^{8}$ AFFOLDER 01c measures the top-quark decay width ratio $R=\Gamma(W b) / \Gamma(W q)$, where q is a d, s, or b quark, by using the number of events with multiple b tags. The first error is statistical and the second systematic. A numerical integration of the likelihood function gives $R>0.61(0.56)$ at $90 \%(95 \%) \mathrm{CL}$. By assuming three generation unitarity, $\left|V_{t b}\right|=0.97_{-0.12}^{+0.16}$ or $\left|V_{t b}\right|>0.78(0.75)$ at $90 \%(95 \%) \mathrm{CL}$ is obtained. The result is based on $109 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$.

$\Gamma\left(e \nu_{e} b\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 1 1} \mathbf{0 . 0 0 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAD }} \frac{15 c C}{} \frac{\text { TECN }}{\text { ATLS }} \frac{\text { COMMENT }}{\ell+\text { jets, } \ell \ell+\text { jets, } \ell \tau_{h}+\text { jets }}$
${ }^{1}$ AAD 15 cc based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The original value is given by $13.3 \pm 0.4 \pm 0.5 \%$, which includes electrons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_{h}+$ jets channel. We have converted the original value to eliminate contributions of electrons from τ 's, by using the AAD 15CC measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into e and μ channels.
$\Gamma\left(\mu \nu_{\mu} b\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{\mathbf{0 . 1 1 4} \pm \mathbf{0 . 0 0 2}} \quad 1 \frac{\text { DOCUMENT ID }}{15 \mathrm{AAD}} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { CTS }}{\ell+\text { jets, } \ell \ell+\text { jets, } \ell \tau_{h}+\text { jets }}$
${ }^{1}$ AAD 15 CC based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The original value is given by $13.4 \pm 0.3 \pm 0.5 \%$, which includes muons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_{h}+$ jets channel. We have converted the original value to eliminate contributions of muons from τ 's, by using the AAD 15cc measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into e and τ channels.
$\Gamma\left(\tau \nu_{\tau} b\right) / \Gamma_{\text {total }}$ 0.111 ± 0.009 OUR AVERAGE
DOCUMENT ID

- • We do not use the following data for averages, fits, limits, etc. • •

$$
\begin{array}{llll}
{ }^{3} \mathrm{ABULENCIA} & 06 \mathrm{R} & \mathrm{CDF} & \ell \tau+\text { jets } \\
{ }^{4} \mathrm{ABE} & 97 \mathrm{~V} & \mathrm{CDF} & \ell \tau+\text { jets }
\end{array}
$$

${ }^{1}$ AAD 15 Cc based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The original value is given by $7.0 \pm 0.3 \pm 0.5 \%$, which includes only the hadronic decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_{h}+$ jets channel. We have converted the original value to include leptonic decays of τ 's, by using the AAD 15 CC measurements of the branching ratios to e and μ channels, as well as the PDG values of τ branching ratios into e and μ channels.
${ }^{2}$ Based on $9 \mathrm{fb}^{-1}$ of data. The measurement is in the channel $t \bar{t} \rightarrow(b \ell \nu)(b \tau \nu)$, where τ decays into hadrons $\left(\tau_{h}\right)$, and $\ell(e$ or $\mu)$ include ℓ from τ decays $\left(\tau_{\ell}\right)$. The result is consistent with lepton universality.
${ }^{3}$ ABULENCIA 06R looked for $t \bar{t} \rightarrow\left(\ell \nu_{\ell}\right)\left(\tau \nu_{\tau}\right) b \bar{b}$ events in $194 \mathrm{pb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV} .2$ events are found where 1.00 ± 0.17 signal and 1.29 ± 0.25 background events are expected, giving a $95 \% \mathrm{CL}$ upper bound for the partial width ratio $\Gamma(t \rightarrow$ $\tau \nu q) / \Gamma_{S M}(t \rightarrow \tau \nu q)<5.2$.
${ }^{4} \mathrm{ABE} 97 \mathrm{~V}$ searched for $t \bar{t} \rightarrow\left(\ell \nu_{\ell}\right)\left(\tau \nu_{\tau}\right) b \bar{b}$ events in $109 \mathrm{pb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as b candidates.
$\Gamma(q \bar{q} b) / \Gamma_{\text {total }}$
$\frac{V A L U E}{\mathbf{0 . 6 6 5}+\mathbf{0 . 0 0 4} \pm \mathbf{0 . 0 1 3}} \quad$ DOCUMENT ID TECN COMMENT
$\mathbf{0 . 6 6 5} \pm \mathbf{0 . 0 0 4} \pm \mathbf{0 . 0 1 3} \quad 1{ }^{1}$ AAD 15 cc ATLS $\ell+$ jets, $\ell \ell+\mathrm{jets}, \ell \tau_{h}+\mathrm{jets}$
${ }^{1}$ AAD 15 CC based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Branching ratio of top quark into b and jets. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_{h}+$ jets channel.

${ }^{1}$ AAD 20B based on $81 \mathrm{fb}^{-1}$ of data in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. FCNC through single top production in association with a photon is searched for in the mode $\ell \gamma+\mathbb{E}_{T}$ $+1 j$ (b-tag). Anomalous FCNC left-handed and right-handed couplings are searched for, which result in different kinematical properties of top decay such as the lepton distribution. Limits are set on the $t q \gamma$ couplings in an effective field theory.
${ }^{2} \mathrm{KHACHATRYAN} 16 \mathrm{AS}$ based on $19.8 \mathrm{fb}^{-1}$ of data in p p collisions at $\sqrt{s}=8 \mathrm{TeV}$. FCNC through single top production in association with a photon is searched for in the mode $\mu+\gamma+E_{T}+\geq 1 \mathrm{j}(0,1 b)$. Bounds on the anomalous FCNC couplings are given by $\kappa_{t u \gamma}<0.025$ and $\kappa_{t c \gamma}<0.091$.
${ }^{3}$ CHEKANOV 03 looked for single top production via FCNC in the reaction $e^{ \pm} p \rightarrow e^{ \pm}$ (t or \bar{t}) X in $130.1 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=300-318 \mathrm{GeV}$. No evidence for top production and its decay into $b W$ was found. The result is obtained for $m_{t}=175 \mathrm{GeV}$ when $\mathrm{B}(\gamma c)=\mathrm{B}(Z q)=0$, where q is a u or c quark. Bounds on the effective $t-u-\gamma$ and $t-u-Z$ couplings are found in their Fig. 4. The conversion to the constraint listed is from private communication, E. Gallo, January 2004.
${ }^{4}$ AARON 09A looked for single top production via FCNC in $e^{ \pm} p$ collisions at HERA with $474 \mathrm{pb}^{-1}$. The upper bound of the cross section gives the bound on the FCNC coupling $\kappa_{t u \gamma} / \Lambda<1.03 \mathrm{TeV}^{-1}$, which corresponds to the result for $m_{t}=175 \mathrm{GeV}$.
${ }^{5}$ ABDALLAH 04C looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow$ $\bar{t} c$ or $\bar{t} u$ in $541 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=189-208 \mathrm{GeV}$. No deviation from the SM is found, which leads to the bound on $\mathrm{B}(t \rightarrow \gamma q)$, where q is a u or a c quark, for $m_{t}=$ 175 GeV when $\mathrm{B}(t \rightarrow Z q)=0$ is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective $t-q-\gamma$ and $t-q-Z$ couplings are given in their Fig. 7 and Table 4, for $m_{t}=170-180 \mathrm{GeV}$, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.
${ }^{6}$ AKTAS 04 looked for single top production via FCNC in $e^{ \pm}$collisions at HERA with $118.3 \mathrm{pb}^{-1}$, and found 5 events in the e or μ channels. By assuming that they are due to statistical fluctuation, the upper bound on the $t u \gamma$ coupling $\kappa_{t u \gamma}<0.27$ ($95 \% \mathrm{CL}$) is obtained. The conversion to the partial width limit, when $\mathrm{B}(\gamma c)=\mathrm{B}(Z u)=\mathrm{B}(Z c)$ $=0$, is from private communication, E. Perez, May 2005.
7 ACHARD 02」 looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow \bar{t} C$ or $\bar{t} u$ in $634 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=189-209 \mathrm{GeV}$. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction $\mathrm{B}(\gamma q)$, where q is a u or c quark. The bound assumes $\mathrm{B}(Z q)=0$ and is for $m_{t}=175 \mathrm{GeV}$; bounds for $m_{t}=170$ GeV and 180 GeV and $\mathrm{B}(Z q) \neq 0$ are given in Fig. 5 and Table 7.
${ }^{8} \mathrm{ABE} 98 \mathrm{G}$ looked for $t \bar{t}$ events where one t decays into $q \gamma$ while the other decays into $b W$. The quoted bound is for $\Gamma(\gamma q) / \Gamma(W b)$.
$\boldsymbol{\Gamma}\left(\boldsymbol{H}^{+} \boldsymbol{b}, \boldsymbol{H}^{+} \rightarrow \boldsymbol{\tau} \boldsymbol{\nu}_{\boldsymbol{\tau}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE $(\%)$
${ }^{1}$ Based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The final states $t \bar{t} \rightarrow \ell^{+} \ell^{-} \ell^{ \pm \pm}{ }_{\nu}$ + jets $\left(\ell, \ell^{\prime}=e, \mu\right)$ are investigated and no significant excess over the SM background contributions is observed.
${ }^{2}$ SIRUNYAN 17 E based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The final states $t \bar{t} \rightarrow$ $\ell^{+} \ell^{-} \ell^{\prime \pm} \nu+$ jets $\left(\ell, \ell^{\prime}=e, \mu\right)$ are investigated and the cross section $\sigma(p p \rightarrow t Z q \rightarrow$ $\left.\ell \nu b \ell^{+} \ell^{-} q\right)=10_{-7}^{+8} \mathrm{fb}$ is measured, giving no sign of FCNC decays of the top quark.
${ }^{3}$ AAD 16D based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The FCNC decay is searched for in $t \bar{t}$ events in the final state $(b W)(q Z)$ when both W and Z decay leptonically, giving 3 charged leptons.
${ }_{5}^{4}$ CHATRCHYAN 14S combined search limit from this and CHATRCHYAN 13F data.
${ }^{5}$ Based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The flavor changing decay is searched for in $t \bar{t}$ events in the final state $(b W)(q Z)$ when both W and Z decay leptoically, giving 3 charged leptons.
${ }^{6}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. Search for FCNC decays of the top quark in $t \bar{t} \rightarrow \ell^{+} \ell^{-} \ell^{\prime \pm} \nu+$ jets $\left(\ell, \ell^{\prime}=e, \mu\right)$ final states found no excess of signal events. ${ }^{7}$ Based on $2.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{8}$ Based on $4.1 \mathrm{fb}^{-1}$ of data. ABAZOV 11 m searched for FCNC decays of the top quark in $t \bar{t} \rightarrow \ell^{+} \ell^{-} \ell^{\prime \pm} \nu+$ jets $\left(\ell, \ell^{\prime}=e, \mu\right)$ final states, and absence of the signal gives the bound.
${ }^{9}$ Based on $p \bar{p}$ data of $1.52 \mathrm{fb}^{-1}$. AALTONEN 09AL compared $t \bar{t} \rightarrow W b W b \rightarrow \ell \nu b j j b$ and $t \bar{t} \rightarrow Z c W b \rightarrow \ell \ell c j j b$ decay chains, and absence of the latter signal gives the bound. The result is for 100% longitudinally polarized Z boson and the theoretical $t \bar{t}$ production cross section The results for different Z polarizations and those without the cross section assumption are given in their Table XII.
10 Result is based on $1.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV} . t \bar{t} \rightarrow W b Z q$ or $Z q Z q$ processes have been looked for in $Z+\geq 4$ jet events with and without b-tag. No signal leads to the bound $\mathrm{B}(t \rightarrow Z q)<0.037(0.041)$ for $m_{t}=175$ (170) GeV .
${ }^{11}$ ABDALLAH 04C looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow$ $\bar{t} c$ or $\bar{t} u$ in $541 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=189-208 \mathrm{GeV}$. No deviation from the SM is found, which leads to the bound on $\mathrm{B}(t \rightarrow Z q)$, where q is a u or a c quark, for $m_{t}=$ 175 GeV when $\mathrm{B}(t \rightarrow \gamma q)=0$ is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective $t-q-\gamma$ and $t-q$ - Z couplings are given in their Fig. 7 and Table 4, for $m_{t}=170-180 \mathrm{GeV}$, where and $t-q-Z$ couplings are given in their most conservative bounds are found by choosing the chiral couplings to maximize the most conservative bounds are found by choosing the chiral couplings to
negative interference between the virtual γ and Z exchange amplitudes.
12 ACHARD 02」 looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow \bar{t} C$ or $\bar{t} u$ in $634 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=189-209 \mathrm{GeV}$. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction $\mathrm{B}(Z q)$, where q is a u or c quark. The bound assumes $\mathrm{B}(\gamma q)=0$ and is for $m_{t}=175 \mathrm{GeV}$; bounds for $m_{t}=170 \mathrm{GeV}$ and 180 GeV and $\mathrm{B}(\gamma q) \neq 0$ are given in Fig. 5 and Table 7. Table 6 gives constraints on $t-c-e-e$ four-fermi contact interactions.
13 HEISTER 02Q looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow \bar{t} C$ or $\bar{t} u$ in $214 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=204-209 \mathrm{GeV}$. No deviation from the SM is found, which leads to a bound on the branching fraction $\mathrm{B}(Z q)$, where q is a u or c quark. The bound assumes $\mathrm{B}(\gamma q)=0$ and is for $m_{t}=174 \mathrm{GeV}$. Bounds on the effective t - $(c$ or $u)$ γ and t - (c or u)- Z couplings are given in their Fig. 2.
14 ABBIENDI 01T looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow \bar{t} c$ or $\bar{t} u$ in $600 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=189-209 \mathrm{GeV}$. No deviation from the SM is found, which leads to bounds on the branching fractions $\mathbf{B}(Z q)$ and $\mathbf{B}(\gamma q)$, where q is a u or c quark. The result is obtained for $m_{t}=174 \mathrm{GeV}$. The upper bound becomes 9.7% (20.6%) for $m_{t}=169(179) \mathrm{GeV}$. Bounds on the effective $t-(c$ or $u)-\gamma$ and $t-(c$ or (20.6%) for $m_{t}=169(179) \mathrm{GeV}$. Bound
$u)-Z$ couplings are given in their Fig. 4.
15 BARATE 00s looked for single top production via FCNC in the reaction $e^{+} e^{-} \rightarrow \bar{t} c$ or $\bar{t} u$ in $411 \mathrm{pb}^{-1}$ of data at c.m. energies between 189 and 202 GeV . No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes $\mathrm{B}(\gamma q)=0$. Bounds on the effective $t-(c$ or $u)-\gamma$ and $t-(c$ or $u)-Z$ couplings are given in their Fig. 4.
${ }^{16}$ ABE 98G looked for $t \bar{t}$ events where one t decays into three jets and the other decays into $q Z$ with $Z \rightarrow \ell \ell$. The quoted bound is for $\Gamma(Z q) / \Gamma(W b)$.

$\Gamma(H u) / \Gamma_{\text {total }}$					Γ_{10} / Γ	
VALUE (units 10^{-3})	CL\%	DOCUMENT ID		TECN	COMMENT	
<1.2	95	${ }^{1}$ AABOUD	19S	ATLS	combination of t $(H \rightarrow W W$, $\gamma \gamma, b \bar{b})$	
\bullet - We do not use the following data for averages, fits, limits, etc. • -						
<5.2	95	${ }^{2}$ AABOUD	19S	ATLS	$t \rightarrow \mathrm{Hu}(H \rightarrow$	
<1.7	95	${ }^{3}$ AABOUD	19 S	ATLS	$t \rightarrow \mathrm{Hu}(\mathrm{H} \rightarrow$	
<1.9	95	${ }^{4}$ AABOUD	18x	ATLS	$t \rightarrow \underset{\tau \tau)}{ } H u(H \rightarrow$	$w W, \quad z z,$
<4.7	95	5 SIRUNYAN	18BC	CMS	$t \rightarrow \mathrm{Hu}(\mathrm{H} \rightarrow$	bb)
<2.4	95	${ }^{6}$ AABOUD	17AV	ATLS	$t \rightarrow \mathrm{Hu}(\mathrm{H} \rightarrow$	
<5.5	95	7 KHACHATR	.171	CMS	$\begin{array}{r} t \rightarrow H u(H \rightarrow \\ \tau \tau, \quad \gamma \gamma, \quad b \bar{b}) \end{array}$	$w w, z z,$
<6.1	95	${ }^{8} \mathrm{AAD}$	15 CO	ATLS	$t \rightarrow H u(H \rightarrow$	bb)
<7.9	95	${ }^{9}$ AAD	14AA	ATLS	$t \rightarrow H q(q=u, c ;$; $H \rightarrow \gamma \gamma)$

${ }^{1}$ AABOUD 19 S based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. The searches using $H \rightarrow b b$ and $H \rightarrow \tau_{h} \tau_{h}$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $\left|Y_{t u H}\right|<0.066(95 \% \mathrm{CL})$ is obtained.
${ }^{2}$ AABOUD 19 s based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Uses events with one isolated lepton and multiple jets (several of them b-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds.
${ }^{3}$ AABOUD 19s based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Uses events with one or two hadronically decaying τ and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds.
${ }^{4}$ AABOUD 18 x based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. $\ell \ell($ same sign) $+\geq 4 \mathrm{j}$ mode and $\ell \ell \ell+\geq 2 \mathrm{j}$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds.
${ }^{5}$ SIRUNYAN 18BC based on $35.9 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Two channels $p p \rightarrow$ $t H$ and $p p \rightarrow t \bar{t}$ in final states with one isolated lepton and $>=3$ jets with $>=2 \mathrm{~b}$ jets are considered assuming a single $t H u$ FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background.
${ }^{6}$ AABOUD 17AV based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Search for $t \bar{t}$ events, where the other top quark decays hadronically or semi-leptonically.
7 KHACHATRYAN 17 I based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using the topologies $t \bar{t} \rightarrow H q+W b$, where $q=u, c$.
${ }^{8}$ AAD 15CO based on $20.3 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ of $p p$ data. Searches for $t \bar{t}$ events, where the other top quark decays semi-leptonically. Exploits high multiplicity of b-jets and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, $\mathrm{B}(t \rightarrow H C)<0.46 \%$ and $\mathrm{B}(t \rightarrow H u)<0.45 \%$ are obtained.
${ }^{9}$ AAD 14AA based on $4.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ of $p p$ data. The upper-bound is for the sum of $\operatorname{Br}(t \rightarrow H c)$ and $\operatorname{Br}(t \rightarrow H u)$. Search for $t \bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper
bound constrains the $H-t-c$ Yukawa couplings $\sqrt{\left|Y_{t c_{L}}^{H}\right|^{2}+\left|Y_{t c_{R}}^{H}\right|^{2}}<0.17(95 \% \mathrm{CL})$.
$\Gamma(H) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-3}\right)}{<\mathbf{1 . 1}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AABOUD }} 19 \mathrm{~S} \quad \frac{\text { TECN }}{\text { ATLS }} \frac{\text { COMMENT }}{\begin{array}{c}\text { COmbination of } t \rightarrow H C \\ (H \rightarrow W W, ~ \\ (H Z, \tau \tau,\end{array}}$ $\gamma \gamma, b \bar{b})$

- - We do not use the following data for averages, fits, limits, etc. - -

< 4.2	95	2 AABOUD 19S	ATLS	$t \rightarrow H C(H \rightarrow b b)$
< 1.9	95	3 AABOUD 19S	ATLS	$t \rightarrow H C(H \rightarrow \tau \tau)$
< 1.6	95	${ }^{4}$ AABOUD 18x	ATLS	$t \rightarrow \underset{\tau \tau}{\rightarrow} H c(H \rightarrow W W, Z Z$
<4.7	95	5 SIRUNYAN 18BC	CMS	$t \rightarrow H C(H \rightarrow b b)$
<2.2	95	${ }^{6}$ AABOUD 17AV	ATLS	$t \rightarrow H C(H \rightarrow \gamma \gamma)$
< 4	95	7 KHACHATRY...17	CMS	$\begin{gathered} t \rightarrow \underset{\tau \tau, \gamma \gamma, b \bar{b})}{ } W W, \quad Z Z, \end{gathered}$
<5.6	95	${ }^{8} \mathrm{AAD} \quad 15 \mathrm{CO}$	ATLS	$t \rightarrow H C(H \rightarrow b b)$
<7.9	95	${ }^{9}$ AAD 14AA	ATLS	$t \rightarrow H q(q=u, c ; H \rightarrow \gamma \gamma)$
<13	95	10 CHATRCHYAN 14R	CMS	$t \rightarrow H C(H \rightarrow \geq 2 \ell)$
< 5.6	95	11 KHACHATRY...14Q	CMS	$t \rightarrow \underset{\text { tons })}{H c}(H \rightarrow \bar{\gamma} \gamma \text { or lep- }$

${ }^{1}$ AABOUD 19 s based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. The searches using $H \rightarrow b b$ and $H \rightarrow \tau_{h} \tau_{h}$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $\left|Y_{t c H}\right|<0.064$ (95\% CL) is obtained.
${ }^{2}$ AABOUD 19 s based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Uses events with one isolated lepton and multiple jets (several of them b-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds.
${ }^{3}$ AABOUD 19s based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Uses events with one or two hadronically decaying τ and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds.
${ }^{4}$ AABOUD 18 x based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. $\ell \ell($ same sign) $+\geq 4 \mathrm{j}$ mode and $\ell \ell \ell+\geq 2 \mathrm{j}$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds.
${ }^{5}$ SIRUNYAN 18BC based on $35.9 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Two channels $p p \rightarrow$ $t H$ and $p p \rightarrow t \bar{t}$ in final states with one isolated lepton and $>=3$ jets with $>=2 \mathrm{~b}$ jets are considered assuming a single $t \mathrm{HC}$ FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background.
${ }^{6}$ AABOUD 17AV based on $36.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=13 \mathrm{TeV}$ of $p p$ data. Search for $t \bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound on the $H-t-c$ Yukawa couplings is $0.090(95 \% \mathrm{CL})$.
7 KHACHATRYAN 17। based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using the topologies $t \bar{t} \rightarrow H q+W b$, where $q=u, c$.
${ }^{8} \mathrm{AAD} 15 \mathrm{CO}$ based on $20.3 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ of $p p$ data. Searches for $t \bar{t}$ events, where the other top quark decays semi-leptonically. Exploits high multiplicity of b-jets

Quark Particle Listings

and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, $\mathrm{B}(t \rightarrow H c)<0.46 \%$ and $\mathrm{B}(t \rightarrow H u)<0.45 \%$ are obtained.
${ }^{9}$ AAD 14AA based on $4.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ and $20.3 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ of $p p$ data. The upper-bound is for the sum of $\operatorname{Br}(t \rightarrow H c)$ and $\operatorname{Br}(t \rightarrow H u)$. Search for $t \bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound constrains the $H-t-c$ Yukawa couplings $\sqrt{\left|Y_{t c_{L}}^{H}\right|^{2}+\left|Y_{t c_{R}}^{H}\right|^{2}}<0.17$ ($95 \% \mathrm{CL}$).
${ }^{10}$ Based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Search for final states with 3 or more isolated high E_{T} charged leptons ($\ell=e, \mu$) bounds the $t \rightarrow H c$ decay in $t \bar{t}$ events when H decays contain a pair of leptons. The upper bound constrains the $H-t-c$ Yukawa couplings $\sqrt{\left|Y_{t c_{L}}^{H}\right|^{2}+\left|Y_{t c_{R}}^{H}\right|^{2}}<0.21(95 \% \mathrm{CL})$.
11 KHACHATRYAN 14Q based on $19.5 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$ of $p p$ data. Search for final states with ≥ 3 isolated charged leptons or with a photon pair accompanied by ≥ 1 lepton(s).

$\Gamma\left(\ell^{+} \overline{q q}^{\prime}\left(q=d, s, b ; q^{\prime}=u, c\right)\right) / \Gamma_{\text {total }}$				
Value	CL\%	DOCUMENT ID	TECN	COMMENT
$<1.6 \times 10^{-3}$	95	${ }^{1}$ CHATRCHYAN		
- - We do not use the following data for averages, fits, limits, etc. - -				
1.7×10^{-3}	95	1 CHATRCHY		+ dij

${ }^{1}$ Based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Baryon number violating decays of the top quark are searched for in $t \bar{t}$ production events where one of the pair decays into hadronic three jets.

t-quark EW Couplings

W helicity fractions in top decays. F_{0} is the fraction of longitudinal and F_{+}the fraction of right-handed W bosons. F_{V+A} is the fraction of $V+A$ current in top decays. The effective Lagrangian (cited by ABAZOV 08AI) has terms f_{1}^{L} and f_{1}^{R} for $V-A$ and $V+A$ couplings, f_{2}^{L} and f_{2}^{R} for tensor couplings with b_{R} and b_{L} respectively.
F_{0}

$\frac{V A L U E}{0.687 \pm 0.018}$ OUR AVERAGE

0.70 ± 0.05
$0.681 \pm 0.012 \pm 0.023$
$0.726 \pm 0.066 \pm 0.067$
$0.682 \pm 0.030 \pm 0.033$
0.67 ± 0.07
$0.722 \pm 0.062 \pm 0.052$
$0.669 \pm 0.078 \pm 0.065$
$0.91 \pm 0.37 \pm 0.13$

- - We do not us
$0.70 \pm 0.07 \pm 0.04$ $0.62 \pm 0.10 \pm 0.05$ $0.425 \pm 0.166 \pm 0.102$
$0.85{ }_{-0.22}^{+0.15} \pm 0.06$
$0.74{ }_{-0.34}^{+0.22}$
0.56 ± 0.31
${ }^{1}$ AABOUD 17 BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark in the t-channel single-top production is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here. The paper reported f_{1}, and we converted it to F_{0}.
${ }^{2}$ KHACHATRYAN 16BU based on $19.8 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$ using $t \bar{t}$ events with $\ell+E_{T}+\geq 4$ jets $(\geq 2 b)$. The errors of F_{0} and F_{-}are correlated with a correlation coefficient $\rho\left(F_{0}, F_{-}\right)=-0.87$. The result is consistent with the NNLO SM prediction of 0.687 ± 0.005 for $m_{t}=172.8 \pm 1.3 \mathrm{GeV}$.
${ }^{3}$ Based on $8.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ using $t \bar{t}$ events with $\ell+$ $E_{T}+\geq 4$ jets $(\geq 1 b)$, and under the constraint $F_{0}+F_{+}+F_{-}=1$. The statstical errors of F_{0} and F_{+}are correlated with correlation coefficient $\rho\left(\overline{\mathrm{F}_{0}}, \mathrm{~F}_{+}\right)=-0.69$.
${ }^{4}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13BH studied $t t$ events with large ∇_{T} and $\ell+\geq 4$ jets using a constrained kinematic fit.
${ }^{5}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BG studied $t t$ events with large E_{T} and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$. The uncertainties are not independent, $\rho\left(F_{0}, F_{-}\right)$ $6=-0.96$.
${ }^{6}$ Based on 2.7 and $5.1 \mathrm{fb}^{-1}$ of CDF data in $\ell+$ jets and dilepton channels, and $5.4 \mathrm{fb}^{-1}$ of D0 data in $\ell+$ jets and dilepton channels. $F_{0}=0.682 \pm 0.035 \pm 0.046$ if $F_{+}=$ $0.0017(1)$, while $F_{+}=-0.015 \pm 0.018 \pm 0.030$ if $F_{0}=0.688(4)$, where the assumed fixed values are the SM prediction for $m_{t}=173.3 \pm 1.1 \mathrm{GeV}$ and $m_{W}=80.399 \pm 0.023$ 7 GeV .
Results are based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV , including those of ABAZOV 08B. Under the SM constraint of $f_{0}=0.698$ (for $m_{t}=173.3 \mathrm{GeV}, m_{W}=$ 80.399 GeV), $f_{+}=0.010 \pm 0.022 \pm 0.030$ is obtained.
${ }^{8}$ AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow$ $W b$ events. The ratio F_{0} is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. $\mathrm{B}\left(t \rightarrow W_{+} b\right)$ is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_{0}.
${ }^{9}$ Results are based on $2.7 \mathrm{fb}^{-1}$ of data in $p \bar{\rho}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV} . F_{0}$ result is obtained by assuming $F_{+}=0$, while F_{+}result is obtained for $F_{0}=0.70$, the SM value. Model independent fits for the two fractions give $F_{0}=0.88 \pm 0.11 \pm 0.06$ and $F_{+}=$ $-0.15 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59 . The results are for $m_{t}=$ 175 GeV .
${ }^{10}$ Results are based on $1.9 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. F_{0} result is obtained assuming $F_{+}=0$, while F_{+}result is obtained for $F_{0}=0.70$, the SM values.

Model independent fits for the two fractions give $F_{0}=0.66 \pm 0.16 \pm 0.05$ and $F_{+}=$ $-0.03 \pm 0.06 \pm 0.03$.
${ }^{11}$ Based on $1 \mathrm{fb}^{-1}$ at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{12}$ Based on $318 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{13}$ Based on $200 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV} . t \rightarrow W b \rightarrow \ell \nu b(\ell=e$ or $\mu)$. The errors are stat + syst.
${ }^{14}$ ABAZOV 05 G studied the angular distribution of leptonic decays of W bosons in $t \bar{t}$ candidate events with lepton + jets final states, and obtained the fraction of longitudinally polarized W under the constraint of no right-handed current, $F_{+}=0$. Based on 125 pb^{-1} of data at $\sqrt{s}=1.8 \mathrm{TeV}$.
F_{-}
$\frac{V A L U E}{0.320 \pm 0.013}$ OUR AVERAGE $\frac{C L \%}{\text { GGE }}$
$>0.264 \pm 0.044 \quad 95$
$0.323 \pm 0.008 \pm 0.014$
$0.310 \pm 0.022 \pm 0.022$
0.32 ± 0.04

DOCUMENT ID TECN COMMENT
${ }^{1}$ AABOUD 17 BB ATLS $F_{-}=f_{1}\left(1-f_{1}^{+}\right)$
${ }^{2}$ KHACHATRY...16BU CMS $\quad F_{-}=\mathrm{B}\left(t \rightarrow W_{-} b\right)$
${ }^{3}$ CHATRCHYAN 13 Bн CMS $\quad F_{-}=\mathrm{B}\left(t \rightarrow W_{-} b\right)$
${ }^{4} \mathrm{AAD} \quad 12 \mathrm{BG}$ ATLS $\quad F_{-}=\mathrm{B}\left(t \rightarrow W_{-} b\right)$
${ }^{1}$ AABOUD 17BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark in the t-channel single-top production is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_{1}=0.30 \pm 0.05$ and $f_{1}^{+}<0.120$ which we converted to $F_{-}=f_{1}\left(1-f_{1}^{+}\right)$. See this paper for constraints on other couplings not included here.
${ }^{2}$ KHACHATRYAN 16 BU based on $19.8 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$ using $t \bar{t}$ events with $\ell+E_{T}+\geq 4$ jets $(\geq 2 b)$. The errors of F_{0} and F_{-}are correlated with a correlation coefficient $\rho\left(F_{0}, F_{-}\right)=-0.87$. The result is consistent with the NNLO SM prediction of 0.311 ± 0.005 for $m_{t}=172.8 \pm 1.3 \mathrm{GeV}$.
${ }^{3}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13BH studied $t t$ events with large E_{T} and $\ell+\geq 4$ jets using a constrained kinematic fit.
${ }^{4}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12 BG studied $t t$ events with large E_{T} and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$. The uncertainties are not independent, $\rho\left(F_{0}, F_{-}\right)$ $=-0.96$.
F_{+}
$\frac{\text { VALUE }}{0.002 \pm 0.011 \text { OUR AVERAGE }}$

0.036 ± 0.006	95	${ }^{1}$ AABOUD	17BB ATLS	${ }_{+}$
$-0.004 \pm 0.005 \pm 0.014$		2 KHACHATRY..	.16BU CMS	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$-0.045 \pm 0.044 \pm 0.058$		${ }^{3}$ AALTONEN	13D CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$0.008 \pm 0.012 \pm 0.014$		${ }^{4}$ CHATRCHYAN	13 вн CMS	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
0.01 ± 0.05		${ }^{5}$ AAD	12bg ATLS	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$0.023 \pm 0.041 \pm 0.034$		${ }^{6}$ ABAZOV	11 C D0	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
0.11 ± 0.15		${ }^{7}$ AFFOLDER	00B CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$-0.033 \pm 0.034 \pm 0.031$		${ }^{8}$ AALTONEN	12 z TEVA	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$-0.01 \pm 0.02 \pm 0.05$		${ }^{9}$ AALTONEN	10Q CDF	Repl. by AALTO NEN 13D
$-0.04 \pm 0.04 \pm 0.03$		${ }^{10}$ abltonen	09Q CDF	Repl. by AALTO NEN 10 Q
$0.119 \pm 0.090 \pm 0.053$		${ }^{11}$ ABAZOV	08B D0	Repl. by ABAzov 11c
$0.056 \pm 0.080 \pm 0.057$		12 AbAZOV	07D Do	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$0.05{ }_{-0.05}^{+0.11} \pm 0.03$		${ }^{13}$ ABULENCIA	071 CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
< 0.26	95	${ }^{13}$ ABULENCIA	071 CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
< 0.27	95	${ }^{14}$ ABULENCIA	06 U CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
$0.00 \pm 0.13 \pm 0.07$		15 AbAZOV	05L D0	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
<0.25	95	${ }^{15}$ AbAZOV	05L D0	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$
<0.24	95	16 ACOSTA	05D CDF	$F_{+}=\mathrm{B}\left(t \rightarrow W_{+} b\right)$

${ }^{1}$ AABOUD 17BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark in the t-channel single-top production is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_{1}=0.30 \pm 0.05$ and $f_{1}^{+}<0.120$ which we converted to $F_{+}=f_{1} f_{1}^{+}$. See this paper for constraints on other couplings not included here.
2 KHACHATRYAN 16BU based on $19.8 \mathrm{fb}-1$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$ using $t \bar{t}$ events with $\ell+E_{T}+\geq 4$ jets ($\geq 2 b$). The result is consistent with the NNLO SM prediction of 0.0017 ± 0.0001 for $m_{t}=172.8 \pm 1.3 \mathrm{GeV}$.
${ }^{3}$ Based on $8.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ using $t \bar{t}$ events with $\ell+$ $E_{T}+\geq 4$ jets $(\geq 1 \mathrm{~b})$, and under the constraint $\mathrm{F}_{0}+\mathrm{F}_{+}+\mathrm{F}_{-}=1$. The statstical errors of F_{0} and F_{+}are correlated with correlation coefficient $\rho\left(\mathrm{F}_{0}, \mathrm{~F}_{+}\right)=-0.69$.
${ }^{4}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13 BH studied $t t$ events with large E_{T} and $\ell+\geq 4$ jets using a constrained kinematic fit.
${ }^{5}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BG studied $t t$ events with large ${ }^{E_{T}}$ and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$.
${ }^{6}$ Results are based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{D}$ collisions at 1.96 TeV , including those of ABAZOV 08B. Under the SM constraint of $f_{0}=0.698$ (for $m_{t}=173.3 \mathrm{GeV}, m_{W}=$ 80.399 GeV), $f_{+}=0.010 \pm 0.022 \pm 0.030$ is obtained.
${ }^{7}$ AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow$ $W b$ events. The ratio F_{0} is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. $\mathrm{B}\left(t \rightarrow W_{+} b\right)$ is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_{0}.
${ }^{8}$ Based on 2.7 and $5.1 \mathrm{fb}^{-1}$ of CDF data in $\ell+$ jets and dilepton channels, and $5.4 \mathrm{fb}^{-1}$ of D0 data in $\ell+$ jets and dilepton channels. $F_{0}=0.682 \pm 0.035 \pm 0.046$ if $F_{+}=$ $0.0017(1)$, while $F_{+}=-0.015 \pm 0.018 \pm 0.030$ if $F_{0}=0.688(4)$, where the assumed
fixed values are the SM prediction for $m_{t}=173.3 \pm 1.1 \mathrm{GeV}$ and $m_{W}=80.399 \pm 0.023$
${ }^{9} \mathrm{GeV}$. obtained by assuming $F_{+}=0$, while F_{+}result is obtained for $F_{0}=0.70$, the SM value. Model independent fits for the two fractions give $F_{0}=0.88 \pm 0.11 \pm 0.06$ and $F_{+}=$ $-0.15 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59 . The results are for $m_{t}=$ 175 GeV .
${ }^{10}$ Results are based on $1.9 \mathrm{fb}{ }^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. F_{0} result is obtained assuming $F_{+}=0$, while F_{+}result is obtained for $F_{0}=0.70$, the SM values. Model independent fits for the two fractions give $F_{0}=0.66 \pm 0.16 \pm 0.05$ and $F_{+}=$ $-0.03 \pm 0.06 \pm 0.03$.
${ }^{11}$ Based on $1 \mathrm{fb}^{-1}$ at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{12}$ Based on $370 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$, using the $\ell+$ jets and dilepton decay channels. The result assumes $F_{0}=0.70$, and it gives $F_{+}<0.23$ at $95 \% \mathrm{CL}$.
${ }^{13}$ Based on $318 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{14}$ Based on $200 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV} . t \rightarrow W b \rightarrow \ell \nu b(\ell=e$ or $\mu)$. The errors are stat + syst.
${ }^{15}$ ABAZOV 05L studied the angular distribution of leptonic decays of W bosons in $t \bar{t}$ events, where one of the W 's from t or \bar{t} decays into e or μ and the other decays hadronically. The fraction of the " + " helicity W boson is obtained by assuming F_{0} $=0.7$, which is the generic prediction for any linear combination of V and A currents. Based on $230 \pm 15 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{16}$ ACOSTA 05D measures the $m_{\ell}^{2}+b$ distribution in $t \bar{t}$ production events where one or both W's decay leptonically to $\ell=e$ or μ, and finds a bound on the $\mathrm{V}+\mathrm{A}$ coupling of the $t b W$ vertex. By assuming the $S M$ value of the longitudinal W fraction $F_{0}=\mathrm{B}(t \rightarrow$ $\left.W_{0} b\right)=0.70$, the bound on F_{+}is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A}<0.61(95 \% \mathrm{CL})$ and $F_{+}<0.18$ (95 $\% \mathrm{CL}$), respectively. Based on $109 \pm 7 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$ (run I).
F_{V+A}
$\frac{\text { VALUE }}{<\mathbf{~} 0.29} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { ABULENCIA } 07 \mathrm{G}} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{F_{V+A}=\mathrm{B}\left(t \rightarrow W b_{R}\right)}$

- - We do not use the following data for averages, fits, limits, etc. • •
$-0.06 \pm 0.22 \pm 0.12 \quad 1$ ABULENCIA $07 \mathrm{G} \quad$ CDF $\quad F_{V+A}=\mathrm{B}\left(t \rightarrow W b_{R}\right)$
$<0.80 \quad 95{ }^{2}$ ACOSTA 05D CDF $\quad F_{V+A}=\mathrm{B}\left(t \rightarrow W b_{R}\right)$
${ }^{1}$ Based on $700 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$.
${ }^{2}$ ACOSTA 05D measures the $m_{\ell}^{2}+b$ distribution in $t \bar{t}$ production events where one or both W 's decay leptonically to $\ell=e$ or μ, and finds a bound on the $\mathrm{V}+\mathrm{A}$ coupling of the $t b W$ vertex. By assuming the SM value of the longitudinal W fraction $F_{0}=\mathrm{B}(t \rightarrow$ $\left.W_{0} b\right)=0.70$, the bound on F_{+}is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A}<0.61(95 \% \mathrm{CL})$ and $F_{+}<0.18$ (95 $\% \mathrm{CL}$), respectively. Based on $109 \pm 7 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \mathrm{TeV}$ (run I).
$\underset{\mathbf{f}_{\mathbf{1}}^{\boldsymbol{R}}}{\boldsymbol{R}}$
VALUE • We do not use the following data for averages, fits, limits, etc. — •

$\left\|f_{1}^{R / f} f_{2}^{L}\right\|<0.37$	95	${ }^{1}$ AABOUD	17bb ATLS	t-channel single top
$\left\|\mathrm{f}_{1}^{R}\right\|<0.16$	95	${ }^{2}$ KHACHATR	7 CMS	t-channel single-t prod
$-0.20<\operatorname{Re}\left(\mathrm{V}_{t b} \mathrm{f}_{1}^{R}\right)<0.23$	95	${ }^{3} \mathrm{AAD}$	12BG ATLS	Constr. on W t b vtx
$\left(v_{t b} \mathrm{f}_{1}^{R}\right)^{2}<0.93$	95	${ }^{4}$ ABAZOV	12E D0	Single-top
$\left\|\mathrm{f}_{1}^{R}\right\|^{2}<0.30$	95	${ }^{5}$ ABAZOV	12) D0	single- $t+W$ helicity
$\left\|f_{1}^{R}\right\|^{2}<1.01$	95	${ }^{6}$ ABAZOV	09. D0	$\left\|\mathrm{f}_{1}^{L}\right\|=1,\left\|\mathrm{f}_{2}^{L}\right\|=\left\|\mathrm{f}_{2}^{R}\right\|=$
$\left\|\mathrm{f}_{1}^{R}\right\|^{2}<2.5$	95	7 ABAZOV	08AI D0	$\left\|\mathrm{f}_{1}^{L}\right\|^{2}=1.8_{-1.3}^{+1.0}$

${ }^{1}$ AABOUD 17 BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
${ }^{2}$ KHACHATRYAN 17 G based on 5.0 and $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7$ and 8 TeV , respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of $\left(f_{1}^{L}, f_{1}^{R}, f_{2}^{R}\right)$.
${ }^{3}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BG studied $t t$ events with large E_{T} and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$.
${ }^{4}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
${ }^{5}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
${ }^{6}$ Based on $1 \mathrm{fb}^{-1}$ of data at $p \bar{p}$ collisions $\sqrt{s}=1.96 \mathrm{TeV}$. Combined result of the W helicity measurement in $t \bar{t}$ events (ABAZOV 08B) and the search for anomalous $t b W$ couplings in the single top production (ABAZOV 08AI). Constraints when f_{1}^{L} and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and 7 Table 1.
${ }^{7}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Single top quark production events are used to measure the Lorentz structure of the $t b W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $\mathrm{f}_{1}^{L}=\mathrm{v}_{t b}^{*}$.

$\mathbf{f}_{\mathbf{2}}^{L}$
$V A L U$

Value	CL\%	DOCUMENT ID TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -			
$\left\|\mathrm{f}_{2}^{L} / \mathrm{f}_{1}^{L}\right\|<0.29$	95	${ }^{1}$ aAboud 17 Bb ATLS	t-channel single top
$\left\|f_{2}^{L}\right\|<0.057$	95	${ }^{2}$ KHACHATRY...17G CMS	t-channel single-t prod.
$-0.14<\operatorname{Re}\left(f_{2}^{L}\right)<0.11$	95	${ }^{3} \mathrm{AAD} \quad 12 \mathrm{BG}$ ATLS	Constr. on $W t b \mathrm{vtx}$

$\left(v_{t b} \mathrm{f}_{2}^{L}\right)^{2}<0.13$	95	${ }^{4}$ ABAZOV	12E	D0	Single-top
$\left\|\mathrm{f}_{2}^{L}\right\|^{2}<0.05$	95	${ }^{5}$ ABAZOV	12।	D0	single- $t+W$ helicity
$\left\|\mathrm{f}_{2}^{L}\right\|^{2}<0.28$	95	6 ABAZOV	09」	D0	$\left\|\mathrm{f}_{1}^{L}\right\|=1,\left\|\mathrm{f}_{1}^{R}\right\|=\left\|\mathrm{f}_{2}^{R}\right\|=0$
$\|\mathrm{f} 2\|^{2}<0.5$	95	7 ABAZOV	08AI	D0	$\left\|\mathrm{f}_{1}^{L}\right\|^{2}=1.4_{-0.5}^{+0.6}$

${ }^{1}$ AABOUD 17BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
${ }^{2}$ KHACHATRYAN 17 G based on 5.0 and $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7$ and 8 TeV , respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of $\left(\mathrm{f}_{1}^{L}, \mathrm{f}_{2}^{L}, \mathrm{f}_{2}^{R}\right)$.
${ }^{3}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BG studied $t t$ events with large E_{T} and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$.
${ }^{4}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
${ }^{5}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
${ }^{6}$ Based on $1 \mathrm{fb}^{-1}$ of data at $p \bar{p}$ collisions $\sqrt{s}=1.96 \mathrm{TeV}$. Combined result of the W helicity measurement in $t \bar{t}$ events (ABAZOV 08B) and the search for anomalous $t b W$ couplings in the single top production (ABAZOV 08AI). Constraints when f_{1}^{L} and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and 7 Table 1.
7 Result is based on $0.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Single top quark production events are used to measure the Lorentz structure of the $t b W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $\mathrm{f}_{1}^{L}=\mathrm{V}_{t b}^{*}$.

f_{2}^{R}

$\frac{\text { VALUE }}{\text { • • We do not use the following data for averages, fits, limits, etc. — • } \frac{\text { DOCUMENT ID }}{} \frac{\text { TECN }}{} \text { COMMENT }}$

$-0.12<\operatorname{Re}\left(\mathrm{f}_{2}^{R} / \mathrm{f}_{1}^{L}\right)<0.17$	95	${ }^{1}$ AABOUD	17BB ATLS	t-channel single top
$-0.07<\operatorname{lm}\left(\mathrm{f}_{2}^{R} / \mathrm{f}_{1}^{L}\right)<0.06$	95	${ }^{1}$ AABOUD	17BB ATLS	t-channel single top
$-0.18<\operatorname{lm}\left(\mathrm{f}_{2}^{R}\right)<0.06$	95	2 AABOUD	171 ATLS	t-channel single top
$-0.049<\mathrm{f}_{2}^{R}<0.048$	95	3 KHACHAT	.17G CMS	t-channel single top
$-0.36<\operatorname{Re}\left(\mathrm{f}_{2}^{R} / \mathrm{f}_{1}^{L}\right)<0.10$	95	${ }^{4}$ AAD	16AK ATLS	Single-top
$-0.17<\operatorname{lm}\left(\mathrm{f}_{2}^{R} / \mathrm{f}_{1}^{L}\right)<0.23$	95	${ }^{4} \mathrm{AAD}$	16AK ATLS	Single-top
$-0.08<\operatorname{Re}\left(\mathrm{f}_{2}^{R}\right)<0.04$	95	${ }^{5} \mathrm{AAD}$	12bG ATLS	Constr. on W tb vtx
$\left(v_{t b} \mathrm{f}_{2}^{R}\right)^{2}<0.06$	95	${ }^{6}$ ABAZOV	12E D0	Single-top
$\left\|\mathrm{f}_{2}^{R}\right\|^{2}<0.12$	95	${ }^{7}$ ABAZOV	121 D0	single- $t+W$ helicity
$\left\|\mathrm{f}_{2}^{R}\right\|^{2}<0.23$	95	${ }^{8}$ ABAZOV	09」 D0	$\left\|\mathrm{f}_{1}^{L}\right\|=1,\left\|\mathrm{f}_{1}^{R}\right\|=\left\|\mathrm{f}_{2}^{L}\right\|=0$
$\left\|\mathrm{f}_{2}^{R}\right\|^{2}<0.3$	95	${ }^{9}$ ABAZOV	08AI D0	$\left\|\mathrm{f}_{1}^{L}\right\|^{2}=1.4_{-0.8}^{+0.9}$

${ }^{1}$ AABOUD 17 BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Triple-differential decay rate of top quark is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
${ }^{2}$ AABOUD 17। based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. A cut-based analysis is used to discriminate between signal and backgrounds. All anomalous couplings other than $\operatorname{Im}(\mathrm{f}) 2_{2}^{R}$ are assumed to be zero. See this paper for a number of other asymmetries 3 and measurements that are not included here.
3 KHACHATRYAN 17 G based on 5.0 and $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7$ and 8 TeV , respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of $\left(\mathrm{f}_{1}^{L}, \mathrm{f}_{2}^{L}, \mathrm{f}_{2}^{R}\right)$.
${ }^{4}$ AAD 16AK based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The results are obtained from an analysis of angular distributions of the decay products of single top quarks, assuming $f_{1}^{R}=f_{2}^{L}=0$. The fraction of decays containing transversely polarized W is measured to be $F_{+}{ }^{2}+F_{-}=0.37 \pm 0.07$.
${ }^{5}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BG studied $t t$ events with large E_{T} and either $\ell+\geq 4 \mathrm{j}$ or $\ell \ell+\geq 2 \mathrm{j}$.
${ }^{6}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
7 Based on $5.4 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
${ }^{8}$ Based on $1 \mathrm{fb}^{-1}$ of data at $p \bar{p}$ collisions $\sqrt{s}=1.96 \mathrm{TeV}$. Combined result of the W helicity measurement in $t \bar{t}$ events (ABAZOV 08B) and the search for anomalous $t b W$ couplings in the single top production (ABAZOV 08AI). Constraints when f_{1}^{L} and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and 9 Table 1.
${ }^{9}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Single top quark production events are used to measure the Lorentz structure of the $t b W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $\mathrm{f}_{1}^{L}=\mathrm{V}_{t b}^{*}$

$\left|\mathfrak{f}_{L V} \boldsymbol{V}_{t b}\right|$

Assumed that the top-quark-related CKM matrix elements obey the relation $\left|\mathrm{V}_{t d}\right|$, $\left|\mathrm{V}_{t s}\right| \ll\left|\mathrm{V}_{t b}\right|$ and a form factor $\mathrm{f}_{L V}$ is determined for each production mode and centre-of-mass energy.
$\frac{\text { VALUE }}{\mathbf{1 . 0 2} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 2}} \quad 1 \frac{\text { DOCUMENTID }}{\text { AABOUD } 19 \mathrm{R}} \frac{\text { TECN }}{\text { LHC }} \frac{\text { COMMENT }}{\text { ATLAS }+\mathrm{CMS} \text { at } 7,8 \mathrm{TeV}}$
1 The combination of single-top production cross-section measurements in the t-channel,
$t W$, and s-channel production modes from ATLAS and CMS at $\sqrt{s}=7$ and 8 TeV .

Quark Particle Listings

t

Chromo-magnetic dipole moment $\mu_{t}=g_{s} \hat{\mu}_{t} / m_{t}$

TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$-0.014<\hat{\mu}_{t}<0.004 \quad 95 \quad 1$ SIRUNYAN $\quad 19 \mathrm{BXCMS} \quad \ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$ $-0.053<\operatorname{Re}\left(\hat{\mu}_{t}\right)<0.02695 \quad 2$ KHACHATRY...16AI CMS $\quad \ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
${ }^{1}$ SIRUNYAN 19BX based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A set of parton-level normalized differential cross sections is measured to extract coefficients of the spindependent $t \bar{t}$ production density matrix. The coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections.
${ }^{2}$ KHACHATRYAN 16 Al based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using lepton angular distributions as a function of the $t \bar{t}$-system kinematical variables.

Chromo-electric dipole moment $d_{t}=g_{s} \delta_{t} / m_{t}$

VALUE CL\% DOCUMENT ID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - •
$-0.020<\hat{d}_{t}<0.012 \quad 95 \quad 1$ SIRUNYAN $19 \mathrm{BXCMS} \quad \ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$ $-0.068<\operatorname{lm}\left(\hat{d}_{t}\right)<0.06795 \quad 2$ KHACHATRY...16AI CMS $\quad \ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
${ }^{1}$ SIRUNYAN 19BX based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A set of parton-level normalized differential cross sections is measured to extract coefficients of the spindependent $t \bar{t}$ production density matrix and constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark. The coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections.
${ }^{2}$ KHACHATRYAN 16 Al based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using lepton angular distributions as a function of the $t \bar{t}$-system kinematical variables.

Spin Correlation in $t \bar{t}$ Production in $p \bar{p}$ Collisions
C is the correlation strength parameter, f is the ratio of events with correlated t and \bar{t} spins (SM prediction: $\mathrm{f}=1$), and κ is the spin correlation coefficient. See "The Top Quark" review for more information.
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

0.89 ± 0.22	${ }^{1}$ ABAZOV	16A D0	$\mathrm{f}(\ell \ell+\geq 2$ jets, $\ell+\geq 4$ jets $)$
0.85 ± 0.29	${ }^{2}$ ABAZOV	12B D0	$\mathrm{f}(\ell \ell+\geq 2$ jets, $\ell+\geq 4$ jets)
$1.15_{-0.43}^{+0.42}$	3 ABAZOV	12B D0	$\mathrm{f}\left(\ell+E_{T}+\geq 4\right.$ jets $)$
$0.60_{-0.16}^{+0.50}$	4 AALTONEN	11ar CDF	$\kappa\left(\ell+E_{T}+\geq 4\right.$ jets $)$
$0.74{ }_{-0.41}^{+0.40}$	${ }^{5}$ ABAZOV	11AE D0	$\mathrm{f}\left(\ell \ell+E_{T}+\geq 2\right.$ jets $)$
0.10 ± 0.45	${ }^{6}$ ABAZOV	11AF D0	$C\left(\ell \ell+E_{T}+\geq 2\right.$ jets $)$

${ }^{1}$ ABAZOV 16A based on $9.7 \mathrm{fb}^{-1}$ of data. A matrix element method is used. It corresponds to evidence of spin correlation at 4.2σ and is in agreement with the NLO SM prediction $0.80_{-0.02}^{+0.01}$
${ }^{2}$ This is a combination of the lepton + jets analysis presented in ABAZOV 12B and the dilepton measurement of ABAZOV 11AE. It provides a 3.1σ evidence for the $t \bar{t}$ spin correlation.
${ }^{3}$ Based on $5.3 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. A matrix element method is used
${ }^{4}$ Based on $4.3 \mathrm{fb}^{-1}$ of data. The measurement is based on the angular study of the top quark decay products in the helicity basis. The theory prediction is $\kappa \approx 0.40$.
${ }^{5}$ Based on $5.4 \mathrm{fb}^{-1}$ of data using a matrix element method. The error is statistical and systematic combined. The no-correlation hypothesis is excluded at the 97.7% CL.
${ }^{6}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. The NLO QCD prediction is $C=0.78 \pm 0.03$. The neutrino weighting method is used for reconstruction of kinematics

Spin Correlation in $t \bar{t}$ Production in $p p$ Collisions

Spin correlation, $\mathrm{f}_{S M}$, measures the strength of the correlation between the spins of the pair produced $t \bar{t} . \mathrm{f}_{S M}=1$ for the SM , while $\mathrm{f}_{S M}=0$ for no spin correlation
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.90 \pm 0.07 \pm 0.09 \pm 0.01 \quad 1$ SIRUNYAN 19 BX CMS $\quad C_{k k}$ in $\ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
$1.13 \pm 0.32 \pm 0.32_{-0.13}^{+0.10} \quad 1$ SIRUNYAN $\quad 19 B X$ CMS $\quad C_{r r}$ in $\ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
$1.01 \pm 0.04 \pm 0.05 \pm 0.01 \quad 1$ SIRUNYAN $\quad 19 \mathrm{BXCMS} \quad C_{n n}$ in $\ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
$0.94+0.17 \pm 0.26 \pm 0.01$
$\begin{array}{ll}\text { 19BX CMS } & C_{r k}+C_{k r} \text { in } \ell \ell+\geq 2 \mathrm{j}(\geq 1 b)\end{array}$ $(\geq 1 b)$
$0.98 \pm 0.03 \pm 0.04 \pm 0.01 \quad 1$ SIRUNYAN 19 BX CMS $\quad\left(C_{k k}+C_{r r}+C_{n n}\right) / 3$ in $\ell \ell$ $+\geq 2 \mathrm{j}(\geq 1 b)$
$0.74 \pm 0.07 \pm 0.19_{-0.08}^{+0.06} \quad 1$ SIRUNYAN $\quad 19 \mathrm{BXCMS} \quad A_{\cos \phi}^{l a b}$ in $\ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
$1.05 \pm 0.03 \pm 0.08_{-0.12}^{+0.09} \quad 1$ SIRUNYAN $\quad 19 \mathrm{BXCMS} \quad A_{|\Delta \phi(\ell \ell)|}$ in $\ell \ell+\geq 2 \mathrm{j}$ $(\geq 1 b)$
$1.12+0.12$
$0.72 \pm 0.08_{-0.13}^{+0.15}$
$1.20 \pm 0.05 \pm 0.13$
$1.19 \pm 0.09 \pm 0.18$
$1.12 \pm 0.11 \pm 0.22$
$0.87 \pm 0.11 \pm 0.14$
$0.75 \pm 0.19 \pm 0.23$
2 KHACHATRY...16AI CMS
3 KHACHATRY... $16 \times$ CMS $\quad \mu+4,5$
${ }^{4} \mathrm{AAD} \quad 15 \mathrm{~J}$ ATLS $\Delta \phi(\ell \ell)$ in $\ell \ell+\geq 2 \mathrm{j}(\geq 1 b)$
$5 \mathrm{AAD} \quad 14 \mathrm{BB}$ ATLS $\quad \Delta \phi(\ell \ell)$ in $\ell \ell+\geq 2 \mathrm{j}$ events
${ }^{5} \mathrm{AAD} \quad 14 \mathrm{BB}$ ATLS $\Delta \phi(\ell j)$ in $\ell+\geq 4 \mathrm{j}$ events
5,6 AAD $\quad 14 \mathrm{BB}$ ATLS \quad S-ratio in $\ell \ell+\geq 2 j$ events
$5,7 \mathrm{AAD} \quad 14 \mathrm{BB}$ ATLS $\cos \theta\left(\ell^{+}\right) \cos \theta\left(\ell^{-}\right)$in $\ell \ell+$ $\geq 2 \mathrm{j}$ events
$0.83 \pm 0.14 \pm 0.18$
5,8 AAD
14BB ATLS
$\cos \theta\left(\ell^{+}\right) \cos \theta\left(\ell^{-}\right)$in $\ell \ell+$
$\geq 2 \mathrm{j}$ events
${ }^{1}$ SIRUNYAN 19BX based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A set of partonlevel normalized differential cross sections sensitive to coefficients of the spin-dependent $t \bar{t}$ production density matrix is measured. The distributions and coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections. Three errors are from statistics, experimental systematics, and theory.
${ }^{2}$ KHACHATRYAN 16AI based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using lepton angular distributions as a function of the $t \bar{t}$-system kinematical variables.
${ }^{3}$ KHACHATRYAN 16 X based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Uses a template fit method. Spin correlation strength in the helicity basis is given by $A_{\text {hel }}=0.23 \pm$ $0.03_{-0.04}^{+0.05}$.
${ }^{4}$ AAD 15」 based on $20.3 \mathrm{fb}{ }^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Uses a fit including a linear superposition of $\Delta \phi$ distribution from the SM NLO simulation with coefficient $f_{S M}$ and from $t \bar{t}$ simulation without spin correlation with coefficient $\left(1-f_{S M}\right)$.
${ }^{5}$ Based on $4.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The results are for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{6}$ The S-ratio is defined as the SM spin correlation in the like-helicity gluon-gluon collisions normalized to the no spin correlation case; see eq.(6) for the LO expression.
7 The polar angle correlation along the helicity axis.
8 The polar angle correlation along the direction which maximizes the correlation.

t-quark FCNC Couplings $\kappa^{\boldsymbol{u t g}} / \Lambda$ and $\kappa^{\boldsymbol{c t g}} / \Lambda$

VALUE $\left(\mathrm{TeV}^{-1}\right)$ CL\% DOCUMENT ID LECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.0041 \quad 95 \quad 1$ KHACHATRY...17G CMS $\left|\kappa^{\text {tug }}\right| / \Lambda$
$<0.018 \quad 95 \quad 1$ KHACHATRY...17G CMS $\left|\kappa^{t c g}\right| / \Lambda$
$<0.0058 \quad 95 \quad 2$ AAD 16 AS ATLS $\kappa^{t u g} / \Lambda$
$<0.013 \quad 95 \quad 2$ AAD 16 AS ATLS $\kappa^{t c g} / \Lambda$
$<0.0069 \quad 95 \quad 3 \mathrm{AAD} \quad 12 \mathrm{BP} \mathrm{ATLS} \quad t^{t u g} / \Lambda\left(t^{t c g}=0\right)$
$<0.016 \quad 95 \quad 3 \mathrm{AAD} \quad 12 \mathrm{BP} \mathrm{ATLS} t^{t c g} / \Lambda\left(t^{t u g}=0\right)$
$<0.013 \quad 95 \quad 4$ ABAZOV 10 K D0 $\kappa^{\text {tug }} / \Lambda$
<0.057 95 4 ABAZOV 10K D0 $\kappa^{t c g} / \Lambda$
$<0.018 \quad 95 \quad 5$ AALTONEN 09 N CDF $\quad \kappa^{t u g} / \Lambda\left(\kappa^{t c g}=0\right)$
$<0.069 \quad 95 \quad 5$ AALTONEN 09 N CDF $\quad \kappa^{t c g} / \Lambda\left(\kappa^{t u g}=0\right)$
$<0.037 \quad 95 \quad 6$ ABAZOV $07 \vee$ D0 $\kappa^{u t g} / \Lambda$
$<0.15 \quad 95 \quad 6$ ABAZOV $07 \vee$ D0 $\kappa^{c t g} / \Lambda$
${ }^{1}$ KHACHATRYAN 17G based on 5.0 and $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7$ and 8 TeV , respectively. t-channel single top production is used. The result corresponds to $\mathrm{B}(t \rightarrow$ $u g)<2.0 \times 10^{-5}$ or $\mathrm{B}(t \rightarrow c g)<4.1 \times 10^{-4}$.
${ }^{2}$ AAD 16AS based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The results are obtained from the $95 \% \mathrm{CL}$ upper limit on the single top-quark production $\sigma(q g \rightarrow t) \cdot \mathrm{B}(t \rightarrow$ $b W)<3.4 \mathrm{pb}, \mathrm{B}(t \rightarrow u g)<4.0 \times 10^{-5}$ and $\mathrm{B}(t \rightarrow c g)<20 \times 10^{-5}$.
${ }^{3}$ Based on $2.05 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(q g \rightarrow t) \cdot \mathrm{B}(t \rightarrow b W)<3.9 \mathrm{pb}$, for $q=u$ or $q=c, \mathrm{~B}(t \rightarrow u g)<5.7 \times 10^{-5}$ and $\mathrm{B}(t \rightarrow u g)<2.7 \times 10^{-4}$.
${ }^{4}$ Based on $2.3 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Upper limit of single top quark production cross section 0.20 pb and 0.27 pb via FCNC $t-u-g$ and $t-c-g$ couplings, respectively, lead to the bounds without assuming the absence of the other coupling. $\mathrm{B}(t \rightarrow u+g)<2.0 \times 10^{-4}$ and $\mathrm{B}(t \rightarrow c+g)<3.9 \times 10^{-3}$ follow.
${ }^{5}$ Based on $2.2 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Upper limit of single top quark production cross section $\sigma(u(\mathrm{c})+g \rightarrow t)<1.8 \mathrm{pb}(95 \% \mathrm{CL})$ via FCNC $t-u-g$ and $t-c-g$ couplings lead to the bounds. $\mathrm{B}(t \rightarrow u+g)<3.9 \times 10^{-4}$ and $\mathrm{B}(t \rightarrow$ $c+g)<5.7 \times 10^{-3}$ follow.
${ }^{6}$ Result is based on $230 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96 \mathrm{TeV}$. Absence of single top quark production events via FCNC $t-u-g$ and $t-c-g$ couplings lead to the upper bounds on the dimensioned couplings, $\kappa^{u t g} / \Lambda$ and $\kappa^{c t g} / \Lambda$, respectively.

t-Quark Yukawa Coupling from $t \bar{t}$ Kinematic Distributions in pp Collisions

The ratio of t-quark Yukawa coupling to its standard model predicted value
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$1.07_{-0.43}^{+0.34} \quad 1$ SIRUNYAN $\quad 19 \mathrm{BY}$ CMS $\quad \ell+$ jets, $t \bar{t}$ threshold
${ }^{1}$ SIRUNYAN 19BY based on $35.8 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=13 \mathrm{TeV}$. Experimental sensitivity is enhanced in the low $M_{t \bar{t}}$ region. The distributions of $M_{t \bar{t}},\left|y_{t}-y_{\bar{t}}\right|$, and the number of reconstructed jets are compared with predictions by different Yukawa couplings which include NNLO QCD and NLO EW corrections.
$\sigma(H t \bar{t}) / \sigma(H t \bar{t})_{S M}$

1 SIRUNYAN 19 R based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at 13 TeV Multivariate techniques are employed to separate th for $m_{H}=125 \mathrm{GeV}$. The measured ratio corresponds to a signal significance of 1.6σ for $m_{H}=125 \mathrm{GeV}$. The measured rat
above the background-only hypothesis.
2 SIRUNYAN 18BD based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at 13 TeV . A combined fit of signal and background templates to data is performed in six event categories separated by jet and b-jet multiplicities. An upper limit of 3.8 is obtained for the cross section ratio.
${ }^{3}$ SIRUNYAN 18L based on up to $5.1,19.7$, and $35.9 \mathrm{fb}^{-1}$ of $p p$ data at 7,8 , and 13 TeV , respectively. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The result is for the Higgs boson mass of 125.09 GeV
${ }^{4}$ Based on $4.5 \mathrm{fb}^{-1}$ of data at 7 TeV and $20.3 \mathrm{fb}^{-1}$ at 8 TeV . The result is for m_{H} $=125.4 \mathrm{GeV}$. The measurement constrains the top quark Yukawa coupling strength parameter $\kappa_{t}=Y_{t} / Y_{t}^{S M}$ to be $-1.3<\kappa_{t}<8.0(95 \% \mathrm{CL})$.
${ }^{5}$ Based on $5.1 \mathrm{fb}^{-1}$ of $p p$ data at 7 TeV and $19.7 \mathrm{fb}^{-1}$ at 8 TeV . The results are obtained by assuming the SM decay branching fractions for the Higgs boson of mass 125.6 GeV . The signal strength for individual Higgs decay channels are given in Fig. 13, and the preferred region in the $\left(\kappa_{V}, \kappa_{f}\right)$ space is given in Fig. 14.

Single t-Quark Production Cross Section in $p \bar{p}$ Collisions at $\sqrt{s}=1.8 \mathrm{TeV}$
Direct probe of the $t b W$ coupling and possible new physics at $\sqrt{s}=1.8 \mathrm{TeV}$. VALUE (pb) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

<24	95	1 ACOSTA	04 H CDF	$p \bar{p} \rightarrow t b+X, t q b+X$
<18	95	2 ACOSTA	02	CDF
<13	95	3 ACOSTA	02	CDF
<13	$p \bar{p} \rightarrow t q b+X$			

${ }^{1}$ ACOSTA 04 H bounds single top-quark production from the s-channel W-exchange process, $q^{\prime} \bar{q} \rightarrow t \bar{b}$, and the t-channel W-exchange process, $q^{\prime} g \rightarrow q t \bar{b}$. Based on $\sim 106 \mathrm{pb}^{-1}$ of data.
${ }^{2}$ ACOSTA 02 bounds the cross section for single top-quark production via the s-channel W-exchange process, $q^{\prime} \bar{q} \rightarrow t \bar{b}$. Based on $\sim 106 \mathrm{pb}^{-1}$ of data.
${ }^{3}$ ACOSTA 02 bounds the cross section for single top-quark production via the t-channel W-exchange process, $q^{\prime} g \rightarrow q t \bar{b}$. Based on $\sim 106 \mathrm{pb}^{-1}$ of data.
Single t-Quark Production Cross Section in $p \bar{p}$ Collisions at $\sqrt{\boldsymbol{s}}=1.96 \mathrm{TeV}$ Direct probes of the $t b W$ coupling and possible new physics at $\sqrt{s}=1.96 \mathrm{TeV}$. OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.
$\operatorname{VALUE}(\mathrm{pb})$

- - We do not use the following data for averages, fits, limits, etc. • -
$3.53_{-1}^{+1.25} \quad 1$ AALTONEN 16 CDF s - $+t$-channels $(0 \ell+$
$2.25_{-0.31}^{+0.29}$
${ }^{2}$ AALTONEN 15 H TEVA t-channel
$3.30_{-0.40}^{+0.52}$
$1.12_{-0.57}^{+0.61}$
2,3 AALTONEN
15H TEVA
s- + t-channel
${ }^{4}$ AALTONEN $\quad 14 \mathrm{~K}$ CDF $\quad s$-channel $\left(0 \ell+E_{T}+2,3 \mathrm{j}\right.$
($\geq 1 b$-tag $)$)
$1.41_{-0.42}^{+0.44}$
${ }^{5}$ AALTONEN
14L CDF
s-channel $\left(\ell+E_{T}+2 \mathrm{j}(\geq\right.$ $1 b$-tag) $)$
$1.29+0.26$
$3.04+0.57$
${ }^{6}$ AALTONEN 14 M TEVA s-channel (CDF + D0)
${ }^{7}$ AALTONEN
140 CDF
$s+t+W t\left(\ell+E_{T}+\right.$ 2 or 3 jets ($\geq 1 b$-tag))
$1.10_{-0.31}^{+0.33}$
$3.07_{-0.49}^{+0.5}$
$4.11_{-0.55}^{+0.60}$
0.98 ± 0
2.90 ± 0
$3.43+0$
$3.43_{-0.74}^{+0.73}$
$1.8 \begin{array}{r}+0.7 \\ -0.5\end{array}$
0.8 ± 0.4
$4.9 \begin{array}{r}+2.5 \\ -2.2\end{array}$
$3.14+0.94$
1.05 ± 0.81
<7.3
$2.3_{-0.5}^{+0.6}$
3.94 ± 0.88
$2.2+0.7$
4.7 ± 1.3
4.9 ± 1.4
6.4
<5.0
<10.1
<13.6
<13.6
<17.8
${ }^{8}$ ABAZOV
130 D0
130 DO
130 Do
${ }^{8}$ ABAZOV
${ }_{9}^{9}$ ABAZOV
${ }^{9}$ ABAZOV
10 ABAZOV
11AA D0
11Ad D0
11 AALTONEN 10AB CDF
11 AALTONEN 10AB CDF
10U CDF
13 ABAZOV
13 ABAZOV
10 D

95
14 ABAZOV
10 DO
s-channel
${ }^{15}$ AALTONEN
09at CDF
s decay
16 ABAZOV
$09 z$ D0
s - $+t$-channel
17 AALTONEN
08Ан CDF
081 D0 s- +t-channel
18 ABAZOV 08I D0 $\quad s-+t$-channel
$\begin{array}{llll}19 & \text { ABAZOV } & 07 \mathrm{H} & \text { D0 } \\ 20 & s-+t \text {-channel } \\ \text { ABAZOV } & \text { 05p } & \text { D0 } & p \bar{p} \rightarrow t b+X\end{array}$
20 ABAZOV 05P D0 $\quad p \bar{p} \rightarrow t q b+X$
21 ACOSTA
21 ACOSTA
05N CDF
$p \bar{p} \rightarrow t q b+X$
05N CDF $\quad p \bar{p} \rightarrow t b+X$
${ }^{1}$ AALTONEN 16 based on $9.5 \mathrm{fb}^{-1}$ of data. This includes, as a part, the result of AALTONEN 14K. Combination of this result with that of AALTONEN 140 gives a $s+$ t cross section of $3.02_{-0.48}^{+0.49} \mathrm{pb}$ and $\left|V_{t b}\right|>0.84(95 \% \mathrm{CL})$.
${ }^{2}$ AALTONEN 15 H based on $9.7 \mathrm{fb}^{-1}$ of data per experiment. The result is for m_{t} $=172.5 \mathrm{GeV}$, and is a combination of the CDF measurements (AALTONEN 16) and the D0 measurements (ABAZOV 130) on the t-channel single t-quark production cross section. The result is consistent with the NLO+NNLL SM prediction and gives $\left|V_{t b}\right|=$ $1.02_{-0.05}^{+0.06}$ and $\left|V_{t b}\right|>0.92(95 \% \mathrm{CL})$.
${ }^{3}$ AALTONEN 15 H is a combined measurement of s-channel single top cross section by CDF + D0. AALTONEN 14 M is not included.
${ }^{4}$ Based on $9.45 \mathrm{fb}^{-1}$ of data, using neural networks to separate signal from backgrounds. The result is for $m_{t}=172.5 \mathrm{GeV}$. Combination of this result with the CDF measurement in the 1 lepton channel AALTONEN 14L gives $1.36_{-0.32}^{+0.37} \mathrm{pb}$, consistent with the SM prediction, and is 4.2 sigma away from the background only hypothesis.
${ }^{5}$ Based on $9.4 \mathrm{fb}^{-1}$ of data, using neural networks to separate signal from backgrounds. The result is for $m_{t}=172.5 \mathrm{GeV}$. The result is 3.8 sigma away from the background only hypothesis.
${ }^{6}$ Based on $9.7 \mathrm{fb}^{-1}$ of data per experiment. The result is for $m_{t}=172.5 \mathrm{GeV}$, and is a combination of the CDF measurements AALTONEN 14L, AALTONEN 14 K and the D0 measurement ABAZOV 130 on the s-channel single t-quark production cross section. The result is consistent with the SM prediction of $1.05 \pm 0.06 \mathrm{pb}$ and the significance 7 of the observation is of 6.3 standard deviations.
7 Based on $7.5 \mathrm{fb}^{-1}$ of data. Neural network is used to discriminate signals (s-, t - and Wt-channel single top production) from backgrounds. The result is consistent with the SM prediction, and gives $\left|V_{t b}\right|=0.95 \pm 0.09$ (stat + syst) ± 0.05 (theory) and $\left|V_{t b}\right|>$ $0.78(95 \% \mathrm{CL})$. The result is for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{8}$ Based on $9.7 \mathrm{fb}^{-1}$ of data. Events with $\ell+E_{T}+2$ or 3 jets (1 or $2 b$-tag) are analysed, assuming $m_{t}=172.5 \mathrm{GeV}$. The combined $\mathrm{s}-+\mathrm{t}$-channel cross section gives $\left|\mathrm{V}_{t b} f_{1}^{L}\right|$ $=1.12+0.09$, or $\left|V_{t b}\right|>0.92$ at $95 \% \mathrm{CL}$ for $f_{1}^{L}=1$ and a flat prior within $0 \leq$ $\left|\mathrm{V}_{t b}\right|^{2} \leq 1$.
${ }^{9}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. The error is statistical + systematic combined. The results are for $m_{t}=172.5 \mathrm{GeV}$. Results for other m_{t} values are given in Table 2 of ABAZOV 11AA.
${ }^{10}$ Based on $5.4 \mathrm{fb}^{-1}$ of data and for $m_{t}=172.5 \mathrm{GeV}$. The error is statistical + systematic combined. Results for other m_{t} values are given in Table III of ABAZOV 11AD. The result is obtained by assuming the SM ratio between $t b$ (s-channel) and $t q b$ (t-channel) productions, and gives $\left|\mathrm{V}_{t b} f_{1}^{L}\right|=1.02_{-0.11}^{+0.10}$, or $\left|\mathrm{V}_{t b}\right|>0.79$ at $95 \% \mathrm{CL}$ for a flat prior within $0<\left|\mathrm{V}_{t b}\right|^{2}<1$.
${ }^{1}$ Based on $3.2 \mathrm{fb}^{-1}$ of data. For combined $s-+t$-channel result see AALTONEN 09at
${ }^{12}$ Result is based on $2.1 \mathrm{fb}^{-1}$ of data. Events with large missing E_{T} and jets with at least one b-jet without identified electron or muon are selected. Result is obtained when observed 2.1σ excess over the background originates from the signal for $m_{t}=175 \mathrm{GeV}$, giving $\left|V_{t b}\right|=1.24_{-0.29}^{+0.34} \pm 0.07$ (theory).
${ }^{13}$ Result is based on $2.3 \mathrm{fb}^{-1}$ of data. Events with isolated $\ell+E_{T}+2,3,4$ jets with one or two b-tags are selected. The analysis assumes $m_{t}=170 \mathrm{GeV}$.
${ }^{14}$ Result is based on $4.8 \mathrm{fb}^{-1}$ of data. Events with an isolated reconstructed tau lepton, missing $E_{T}+2,3$ jets with one or two b-tags are selected. When combined with ABAZOV 09Z result for $e+\mu$ channels, the s - and t-channels combined cross section is $3.84_{-0.83}^{+0.89} \mathrm{pb}$.
${ }^{15}$ Based on $3.2 \mathrm{fb}^{-1}$ of data. Events with isolated $\ell+E_{T}+$ jets with at least one b-tag are analyzed and s - and t-channel single top events are selected by using the likelihood function, matrix element, neural-network, boosted decision tree, likelihood function optimized for s-channel process, and neural-networked based analysis of events with E_{T} that has sensitivity for $W \rightarrow \tau \nu$ decays. The result is for $m_{t}=175 \mathrm{GeV}$, and the mean value decreases by $0.02 \mathrm{pb} / \mathrm{GeV}$ for smaller m_{t}. The signal has 5.0 sigma significance. The result gives $\left|V_{t b}\right|=0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory), or $\left|V_{t b}\right|>0.71$ at 95% CL.
${ }^{16}$ Based on $2.3 \mathrm{fb}^{-1}$ of data. Events with isolated $\ell+E_{T}+\geq 2$ jets with 1 or $2 b$-tags are analyzed and s - and t-channel single top events are selected by using boosted decision tree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigma significance. The result gives $\left|V_{t b}\right|=1.07 \pm 0.12$, or $\left|V_{t b}\right|>0.78$ at $95 \% \mathrm{CL}$. The analysis assumes $m_{t}=170 \mathrm{GeV}$.
${ }^{17}$ Result is based on $2.2 \mathrm{fb}^{-1}$ of data. Events with isolated $\ell+E_{T}+2,3$ jets with at least one b-tag are selected, and s - and t-channel single top events are selected by using likelihood, matrix element, and neural network discriminants. The result can be interpreted as $\left|V_{t b}\right|=0.88_{-0.12}^{+0.13}$ (stat + syst) ± 0.07 (theory), and $\left|V_{t b}\right|>0.66$ (95\% CL) under the $\left|V_{t b}\right|<1$ constraint.
${ }^{18}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data. Events with isolated $\ell+E_{T}+2,3,4$ jets with one or two b-vertex-tag are selected, and contributions from $W+$ jets, $t \bar{t}, s$ - and t channel single top events are identified by using boosted decision trees, Bayesian neural networks, and matrix element analysis. The result can be interpreted as the measurement of the CKM matrix element $\left|V_{t b}\right|=1.31_{-0.21}^{+0.25}$, or $\left|V_{t b}\right|>0.68(95 \% \mathrm{CL})$ under the $\left|V_{t b}\right|<1$ constraint.
${ }^{19}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data. This result constrains $V_{t b}$ to $0.68<\left|V_{t b}\right| \leq 1$ at 95\% CL.
20 ABAZOV 05P bounds single top-quark production from either the s-channel W-exchange process, $q^{\prime} \bar{q} \rightarrow t \bar{b}$, or the t-channel W-exchange process, $q^{\prime} g \rightarrow q t \bar{b}$, based on $\sim 230 \mathrm{pb}^{-1}$ of data.
${ }^{21}$ ACOSTA 05 N bounds single top-quark production from the t-channel W-exchange process $\left(q^{\prime} g \rightarrow q t \bar{b}\right)$, the s-channel W-exchange process $\left(q^{\prime} \bar{q} \rightarrow t \bar{b}\right)$, and from the combined cross section of t - and s-channel. Based on $\sim 162 \mathrm{pb}^{-1}$ of data.
t-channel Single t Production Cross Section in $p p$ Collisions at $\sqrt{s}=7 \mathrm{TeV}$ Direct probe of the $t b W$ coupling and possible new physics at $\sqrt{s}=7 \mathrm{TeV}$.
VALUE (pb) DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$67.5 \pm 5.7 \quad 1$ AABOUD $19 R$ LHC combination of ATLAS + CMS
$68 \pm 2 \pm 8 \quad 2$ AAD 14 BI ATLS $\ell+E_{T}+2 \mathrm{j}$ or 3 j
$83 \pm 4 \begin{gathered}+20 \\ -19\end{gathered} \quad 3$ AAD \quad 12CH ATLS t-channel $\ell+E_{T}+(2,3) \mathrm{j}(1 b)$
$67.2 \pm 6.1 \quad{ }^{4}$ CHATRCHYAN 12BQ CMS $\quad t$-channel $\ell+E_{T}+\geq 2 \mathrm{j}(1 b)$
$83.6 \pm 29.8 \pm 3.3 \quad{ }^{5}$ CHATRCHYAN $11 R$ CMS t-channel
${ }^{1}$ AABOUD 19R based on 1.17 to $5.1 \mathrm{fb}^{-1}$ of data from ATLAS and CMS at 7 TeV .
${ }^{2}$ Based on $4.59 \mathrm{fb}^{-1}$ of data, using neural networks for signal and background separation. $\sigma(t q)=46 \pm 1 \pm 6 \mathrm{pb}$ and $\sigma(\bar{t} q)=23 \pm 1 \pm 3 \mathrm{pb}$ are separately measured, as well as their ratio $R=\sigma(t q) / \sigma(\bar{t} q)=2.04 \pm 0.13 \pm 0.12$. The results are for $m_{t}=172.5$ GeV , and those for other m_{t} values are given by eq.(4) and Table IV. The measurements give $\left|\mathrm{V}_{t b}\right|=1.02 \pm 0.07$ or $\left|\mathrm{V}_{t b}\right|>0.88(95 \% \mathrm{CL})$.
${ }^{3}$ Based on $1.04 \mathrm{fb}^{-1}$ of data. The result gives $\left|\mathrm{V}_{t b}\right|=1.13_{-0.13}^{+0.14}$ from the ratio $\sigma(\exp) / \sigma(\mathrm{th})$, where $\sigma(\mathrm{th})$ is the SM prediction for $\left|\mathrm{V}_{t b}\right|=1$. The $95 \% \mathrm{CL}$ lower bound of $\left|\mathrm{V}_{t b}\right|>0.75$ is found if $\left|\mathrm{V}_{t b}\right|<1$ is assumed. $\sigma(t)=59_{-16}^{+18} \mathrm{pb}$ and $\sigma(\bar{t})=33_{-12}^{+13} \mathrm{pb}$ are found for the separate single t and \bar{t} production cross sections, respectively. The results assume $m_{t}=172.5 \mathrm{GeV}$ for the acceptance.

Quark Particle Listings

${ }^{4}$ Based on $1.17 \mathrm{fb}^{-1}$ of data for $\ell=\mu, 1.56 \mathrm{fb}^{-1}$ of data for $\ell=e$ at 7 TeV collected during 2011. The result gives $\left|\mathrm{V}_{t b}\right|=1.020 \pm 0.046$ (meas) ± 0.017 (th). The $95 \% \mathrm{CL}$ lower bound of $\left|\mathrm{V}_{t b}\right|>0.92$ is found if $\left|\mathrm{V}_{t b}\right|<1$ is assumed. The results assume m_{t} $=172.5 \mathrm{GeV}$ for the acceptance.
${ }^{5}$ Based on $36 \mathrm{pb}^{-1}$ of data. The first error is statistical + systematic combined, the second is luminosity. The result gives $\left|\mathrm{V}_{t b}\right|=1.114 \pm 0.22(\mathrm{exp}) \pm 0.02$ (th) from the ratio $\sigma(\exp) / \sigma(\mathrm{th})$, where $\sigma(\mathrm{th})$ is the SM prediction for $\left|\mathrm{V}_{t b}\right|=1$. The $95 \% \mathrm{CL}$ lower bound of $\left|\mathrm{V}_{t b}\right|>0.62(0.68)$ is found from the 2D (BDT) analysis under the constraint $0<\left|\mathrm{V}_{t b}\right|^{2}<1$
t-channel Single t Production Cross Section in pp Collisions at $\sqrt{s}=8 \mathrm{TeV}$ VALUE (pb) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$87.7 \pm 5.8 \quad 1$ AABOUD $19 R$ LHC combination of ATLAS+CMS
$89.6_{-6.3}^{+7.1} \quad{ }^{2}$ AABOUD $\quad 17 \mathrm{~T}$ ATLS $\ell+E_{T}+2 \mathrm{j}(1 b \mathrm{j})$
$83.6 \pm 2.3 \pm 7.4 \quad 3$ KHACHATRY...14F CMS $\quad \ell+E_{T}+\geq 2 \mathrm{j}(1,2 b, 1$ forward j$)$
${ }_{2}^{1}$ AABOUD 19R based on 12.2 to $20.3 \mathrm{fb}^{-1}$ of data from ATLAS and CMS at 8 TeV .
${ }^{2}$ AABOUD 17T based on $20.2 \mathrm{fb}^{-1}$ of data. A maximum-likelihood fit to neural-network discriminant distributions is used to separate signal and background events. Individual cross sections are measured as $\sigma(t q)=56.7_{-3.8}^{+4.3} \mathrm{pb}$ and $\sigma(\bar{t} q)=32.9_{-2.7}^{+3.0} \mathrm{pb}$, while their ratio is given by $\sigma(t q) / \sigma(\bar{t} q)=1.72 \pm 0.09$. A lower limit $\left|V_{t b}\right|>0.92(95 \%$ CL) is obtained. Measured total and differential cross sections are described well by the ${ }_{3}$ SM.
${ }^{3}$ Based on $19.7 \mathrm{fb}^{-1}$ of data. The t and \bar{t} production cross sections are measured separately as $\sigma_{t-c h .}(t)=53.8 \pm 1.5 \pm 4.4 \mathrm{pb}$ and $\sigma_{t-c h .}(\bar{t})=27.6 \pm 1.3 \pm 3.7 \mathrm{pb}$, respectively, as well as their ratio $R_{t-c h}=\sigma_{t-c h .}(t) / \sigma_{t-c h .}(\bar{t})=1.95 \pm 0.10 \pm 0.19$, in agreement with the SM predictions. Combination with a previous CMS result at \sqrt{s} $=7 \mathrm{TeV}$ [CHATRCHYAN 12BQ] gives $\left|V_{t b}\right|=0.998 \pm 0.038 \pm 0.016$. Also obtained is the ratio $R_{8 / 7}=\sigma_{t-c h .}(8 \mathrm{TeV}) / \sigma_{t-c h}$. $(7 \mathrm{TeV})=1.24 \pm 0.08 \pm 0.12$.
s-channel Single t Production Cross Section in pp Collisions at $\sqrt{s}=8 \mathrm{TeV}$ VALUE (pb)
- . We do not use the following data for averages, fits, limits, etc. - . -
$4.9 \pm 1.4 \quad 1$ AABOUD $19 R$ LHC ATLAS + CMS
$4.8 \pm 0.8_{-1.3}^{+1.6} \quad{ }^{2}$ AAD $\quad 16 U$ ATLS $\ell+E_{T}+2 b$
$13.4 \pm 7.3 \quad{ }^{3}$ KHACHATRY...16AZ CMS $\quad \ell+\not{ }_{T}+2 b$
$5.0 \pm 4.3 \quad{ }^{4}$ AAD $\quad 15 \mathrm{~A}$ ATLS $\quad \ell+\mathbb{E}_{T}+2 b$
${ }_{1}^{1}$ AABOUD 19R based on 12.2 to $20.3 \mathrm{fb}^{-1}$ of data from ATLAS and CMS at 8 TeV .
${ }^{2}$ AAD 16 u based on $20.3 \mathrm{fb}^{-1}$ of data, using a maximum-likelihood fit of a matrix element method discriminant. The same data set as in AAD 15A is used. The result corresponds to an observed significance of 3.2σ.
${ }^{3}$ KHACHATRYAN 16AZ based on $19.7 \mathrm{fb}^{-1}$ of data, using a multivariate analysis to separate signal and backgrounds. The same method is applied to $5.1 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7 \mathrm{TeV}$, giving $7.1 \pm 8.1 \mathrm{pb}$. Combining both measurements, the observed at $\sqrt{s}=7 \mathrm{TeV}$, giving $7.1 \pm 8.1 \mathrm{pb}$. Combining both measurements, the observed
significance is 2.5σ. A best fit value of 2.0 ± 0.9 is obtained for the combined ratio of significance is 2.5σ. A best fit value of 2.0
the measured values and SM expectations.
${ }^{4}$ AAD 15A based on $20.3 \mathrm{fb}^{-1}$ of data, using a multivariate analysis to separate signal and backgrounds. The 95% CL upper bound of the cross section is 14.6 pb . The results are consistent with the SM prediction of $5.61 \pm 0.22 \mathrm{pb}$ at approximate NNLO.
t-channel Single t Production Cross Section in pp Collisions at $\sqrt{\boldsymbol{s}}=13 \mathrm{TeV}$ VALUE (pb) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$130 \pm 1 \pm 19 \quad 1$ SIRUNYAN 20D CMS $\quad \sigma(t q), \ell+E_{T^{+}} \geq 2 j$
$77 \pm 1 \pm 12 \quad 1$ SIRUNYAN 20D CMS $\sigma(\bar{t} q), \ell+\#_{T^{+}} \geq 2 j$
$156 \pm 5 \pm 27 \pm 3 \quad 2$ AABOUD $\quad 17$ ATLS $~ \sigma(t q), \ell+E_{T}+2 \mathrm{j}(1 b, 1$ forward j$)$
$91 \pm 4 \pm 18 \pm 2 \quad{ }_{3}^{2}$ AABOUD 17 H ATLS $\sigma(\bar{t} q), \ell+E_{T}+2 \mathrm{j}(1 b, 1$ forward j$)$ $154 \pm 8 \pm 9 \pm 19 \pm 4 \quad 3$ SIRUNYAN 17 AA CMS $\quad \sigma(t q), \mu+\geq 2 \mathrm{j}(1 b)$
$85 \pm 10 \pm 4 \pm 11 \pm 2 \quad{ }^{3}$ SIRUNYAN 17AA CMS $\quad \sigma(\bar{t} q), \mu+\geq 2 \mathrm{j}(1 b)$
${ }^{1}$ SIRUNYAN 20D based on $35.9 \mathrm{fb}^{-1}$ of data. Different categories of jet and b jet multiplicity and multivariate discriminators are used to separate signal and background events. The cross section ratio is measured to be $\sigma(t q) / \sigma(\bar{t} q)=1.68 \pm 0.02 \pm 0.05$. CKM matrix element is obtained as $\left|\mathrm{f}_{L V} V_{t b}\right|=0.98 \pm 0.07($ exp $) \pm 0.02$ (theo) where ${ }^{\mathrm{f}}{ }_{L V}$ is an anomalous form factor. All results are in agreement with the SM.
${ }^{2}$ AABOUD 17H based on $3.2 \mathrm{fb}^{-1}$ of data. A maximum-likelihood fit to neural-network discriminant distributions is used to separate signal and background events. The third error is for luminosity. The cross section ratio is measured to be $\sigma(t q) / \sigma(\bar{t} q)=1.72 \pm$ 0.09 ± 0.18. A lower limit $\left|V_{t b}\right|>0.84(95 \% \mathrm{CL})$ is obtained. All results are in agreement with the SM.
${ }^{3}$ SIRUNYAN 17AA based on $2.2 \mathrm{fb}^{-1}$ of data. A multivariate discriminator is used to separate signal and background events. The four errors are from statitics, experimental systematics, theory, and luminosity. The cross section ratio is measured to be $\sigma(t q) / \sigma(\bar{t} q)=1.81 \pm 0.18 \pm 0.15$. CKM matrix element is obtained as $\left|V_{t b}\right|=$ 1.05 ± 0.07 (exp) ± 0.02 (theo). All results are in agreement with the SM.
$\boldsymbol{t} \bar{t} \boldsymbol{H}$ Production Cross Section in pp Collisions at $\sqrt{s}=13 \mathrm{TeV}$
$\frac{\text { VALUE (fb) }}{\text { - • We do not use the following data for averages, fits, limits, etc. • • - }} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$
$670 \pm 90_{-100}^{+110} \quad{ }^{1}$ AABOUD \quad 18BK ATLS $H \rightarrow b \bar{b}, W W^{*} \tau \tau, \gamma \gamma, z z^{*}$ 【
${ }^{1}$ AABOUD 18BK based on $79.8 \mathrm{fb}^{-1}$ of data. The observed significance is 5.8σ relative to the background-only hypothesis. The measurement is consistent with the NLO SM prediction of $507_{-50}^{+35} \mathrm{fb}$. See Table 3 and Fig. 5 for measurements of individual modes. Combined with the measurements at 7 and 8 TeV , the observed significance is 6.3σ.

Wt Production Cross Section in pp Collisions at $\sqrt{s}=7 \mathrm{TeV}$

VALUE (pb) DOCUMENT ID — TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - •

16.3 ± 4.1	1 AABOUD	19 R	LHC
16	ATLAS + CMS combined		
-4	2 CHATRCHYAN $13 C$	CMS	$t+W$ channel, $2 \ell+E_{T}+1 b$

${ }_{2}^{1}$ AABOUD 19R bassed on 1.17 to $5.1 \mathrm{fb}^{-1}$ of data from ATLAS and CMS at 7 TeV .
${ }^{2}$ Based on $4.9 \mathrm{fb}^{-1}$ of data. The result gives $\mathrm{V}_{t b}=1.01_{-0.13}^{+0.16}(\exp)_{-0.04}^{+0.03}(\mathrm{th}) . \mathrm{V}_{t b}$ $0.79(95 \% \mathrm{CL})$ if $\mathrm{V}_{t b}<1$ is assumed. The results assume $m_{t}=172.5 \mathrm{GeV}$ for the acceptance.

Wt Production Cross Section in pp Collisions at $\sqrt{s}=8 \mathrm{TeV}$
VALUE (pb) DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • • $23.1 \pm 3.6 \quad 1$ AABOUD 19 R LHC ATLAS + CMS combined | $23.0 \pm 1.3_{-3.5}^{+3.2} \pm 1.1 \quad 2 \mathrm{AAD} \quad 16 \mathrm{~B}$ ATLS $2 \ell+E_{T}+1 b$ $23.4 \pm 5.4 \quad 3$ CHATRCHYAN $14 A C$ CMS $\quad t+W$ channel, $2 \ell+E_{T}+1 b$
${ }^{1}$ AABOUD 19R based on 12.2 to $20.3 \mathrm{fb}^{-1}$ of data from ATLAS and CMS at 8 TeV .
${ }^{2}$ AAD 16B based on $20.3 \mathrm{fb}^{-1}$ of data. The result gives $\left|V_{t b}\right|=1.01 \pm 0.10$ and $\left|V_{t b}\right|>$ $0.80(95 \% \mathrm{CL})$ without assuming unitarity of the CKM matrix. The results assume m_{t} $=172.5 \mathrm{GeV}$ for the acceptance
${ }^{3}$ Based on $12.2 \mathrm{fb}^{-1}$ of data. Events with two oppositely charged leptons, large E_{T} and a b-tagged jet are selected, and a multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the SM prediction of $22.2 \pm$ 0.6 (scale) ± 1.4 (PDF) pb at approximate NNLO.

Wt Production Cross Section in pp Collisions at $\sqrt{s}=13 \mathrm{TeV}$
$\operatorname{VALUE}(\mathrm{pb})$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$94 \pm 10 \begin{array}{r}+28 \\ -22\end{array} \pm 2 \quad 1$ AABOUD $\quad 18 \mathrm{H}$ ATLS $\ell^{+} \ell^{-}+\geq 1 \mathrm{j}$
$63.1 \pm 1.8 \pm 6.4 \pm 2.1 \quad 2$ SIRUNYAN 18 DL CMS $\quad e^{ \pm} \mu^{\mp}+\geq 1 \mathrm{j}(b-\operatorname{tag})$
${ }^{1}$ AABOUD 18 H based on $3.2 \mathrm{fb}^{-1}$ of data. The last error is from luminosity. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO+NNLL SM prediction of 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb.
2 SIRUNYAN 18DL based on $35.9 \mathrm{fb}^{-1}$ of data. The last error is from luminosity. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO + NNLL SM prediction of 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb.
$Z t$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=13 \mathrm{TeV}$
VALUE (fb) DOCUMENT ID TECN COMMENT
fits, limits, etc. • • •

$111 \pm 13_{-}^{+}+11$	1	1 SIRUNYAN	19BF CMS
$600 \pm 170 \pm 140$	2 AABOUD	18 AE ATLS	$3 \ell+1 \mathrm{j}+1 b \mathrm{j}$
$123 \pm 33+29$	3 SIRUNYAN	18 z CMS	$3 \ell+1 \mathrm{j}+1 b \mathrm{j}$

${ }^{1}$ SIRUNYAN 19BF based on $77.4 \mathrm{fb}^{-1}$ of data. Two BDT's are used in the analysis: one to discriminate prompt leptons from non-prompt ones; and one to discriminate $t Z q$ signal from backgrounds. The result is for the cross section $\sigma\left(p p \rightarrow t Z q \rightarrow t \ell^{+} \ell^{-} q\right)$ for dilepton invariant masses above 30 GeV and is consistent with the NLO SM prediction of $94.2 \pm 3.1 \mathrm{fb}$.
${ }^{2}$ AABOUD 18AE based on $36.1 \mathrm{fb}^{-1}$ of data. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO SM prediction of 800 fb with a scale uncertainty of ${ }_{-7.4}^{+6.1 \%}$.
${ }^{3}$ SIRUNYAN 18 Z based on $35.9 \mathrm{fb}^{-1}$ of data. A multivariate analysis is used to separate the signal from the backgrounds. The result is for the cross section $\sigma(p p \rightarrow t Z q \rightarrow$ $W b \ell^{+} \ell^{-} q$) and is consistent with the NLO SM prediction of $94.2_{-1.8}^{+1.9}$ (scale) \pm 2.5 (PDF) fb. Superseded by SIRUNYAN 19bF.

Single t-Quark Production Cross Section in ep Collisions

 VALUE (pb) CL\% DOCUMENT ID _ TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • • •| <0.25 | 95 | 1 | AARON | 09 A | H 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $e^{ \pm} p \rightarrow e^{ \pm} t X$ | | | | | |
| <0.55 | 95 | AKTAS | 04 | H 1 | $e^{ \pm} p \rightarrow e^{ \pm} t X$ |
| <0.225 | 95 | ${ }^{3}$ CHEKANOV | 03 | ZEUS | $e^{ \pm} p \rightarrow e^{ \pm} t X$ |

${ }^{1}$ AARON 09A looked for single top production via FCNC in $e^{ \pm} p$ collisions at HERA with $474 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=301-319 \mathrm{GeV}$. The result supersedes that of AKTAS 04.
2 AKTAS 04 looked for single top production via FCNC in $e^{ \pm}$collisions at HERA with $118.3 \mathrm{pb}^{-1}$, and found 5 events in the e or μ channels while 1.31 ± 0.22 events are expected from the Standard Model background. No excess was found for the hadronic channel. The observed cross section of $\sigma(e p \rightarrow$ et $X)=0.29{ }_{-0.14}^{+0.15} \mathrm{pb}$ at $\sqrt{s}=$ 319 GeV gives the quoted upper bound if the observed events are due to statistical ${ }_{3}$ fluctuation.
${ }^{3}$ CHEKANOV 03 looked in $130.1 \mathrm{pb}^{-1}$ of data at $\sqrt{s}=301$ and 318 GeV . The limit is for $\sqrt{s}=318 \mathrm{GeV}$ and assumes $m_{t}=175 \mathrm{GeV}$.

$\boldsymbol{t} \bar{t}$ Production Cross Section in $p \bar{p}$ Collisions at $\sqrt{s}=1.8 \mathrm{TeV}$

Only the final combined $t \bar{t}$ production cross sections obtained from Tevatron Run I by the CDF and D0 experiments are quoted below.
$\operatorname{VALUE}(\mathrm{pb})$ DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$5.69 \pm 1.21 \pm 1.04 \quad 1$ ABAZOV 03A D0 Combined Run I data
$6.5 \begin{gathered}\text { +1.4 } \\ -1.7\end{gathered} \quad 2$ AFFOLDER 01A CDF Combined Run I data
${ }^{1}$ Combined result from $110 \mathrm{pb}^{-1}$ of Tevatron Run I data. Assume $m_{t}=172.1 \mathrm{GeV}$.
${ }^{2}$ Combined result from $105 \mathrm{pb}^{-1}$ of Tevatron Run I data. Assume $m_{t}=175 \mathrm{GeV}$.

$t \bar{t}$ Production Cross Section in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

$\operatorname{VALUE}(\mathrm{pb})$ DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$7.26 \pm 0.13_{-0.50}^{+0.57}$
8.1 ± 2.1
$7.60 \pm 0.20 \pm 0.29 \pm 0.21$
$8.0 \pm 0.7 \pm 0.6 \pm 0.5$
7.09 ± 0.84
7.5 ± 1.0
$8.8 \pm 3.3 \pm 2.2$
$8.5 \pm 0.6 \pm 0.7$
$7.64 \pm 0.57 \pm 0.45$
$7.99 \pm 0.55 \pm 0.76 \pm 0.46$
$7.78+0.77$
$7.56{ }_{-0.56}^{+0.63}$
$6.27 \pm 0.73 \pm 0.63 \pm 0.39$
$7.2 \pm 0.5 \pm 1.0 \pm 0.4$
$7.8 \pm 2.4 \pm 1.6 \pm 0.5$
7.70 ± 0.52
6.9 ± 2.0
$6.9 \pm 1.2{ }_{-0.7}^{+0.8} \pm 0.4$
$9.6 \pm 1.2{ }_{-0.5}^{+0.6} \pm 0.6$
$9.1 \pm 1.1{ }_{-0.9}^{+1.0} \pm 0.6$
$8.18{ }_{-0.87}^{+0.98}$
$7.5 \pm 1.0 \begin{array}{cc}+0.7 & +0.6 \\ -0.6 & -0.5\end{array}$
$8.18_{-0.84}^{+0.90} \pm 0.50$
7.62 ± 0.85
$8.5+2.7$
$8.3 \pm 1.0{ }_{-1.5}^{+2.0} \pm 0.5$
$7.4 \pm 1.4 \pm 1.0$
$4.5{ }_{-1.9}^{+2.0}{ }_{-1.1}^{+1.4} \pm 0.3$
$6.4{ }_{-1.2}^{+1.3} \pm 0.7 \pm 0.4$
$6.6 \pm 0.9 \pm 0.4$
$8.7 \pm 0.9{ }_{-0.9}^{+1.1}$
$5.8 \pm 1.2 \underset{-0.7}{+0.9}$
$7.5 \pm 2.1 \begin{array}{r}+3.3 \\ -2.2\end{array}$
$8.9 \pm 1.0 \stackrel{1.1}{+1.0}$
$8.6{ }_{-1.5}^{+1.6} \pm 0.6$
$8.6_{-2.7}^{+3.2} \pm 1.1 \pm 0.6$
$6.7{ }_{-1.3}^{+1.4} \underset{-1.1}{+1.6} \pm 0.4$
$5.3 \pm 3.3 \begin{gathered}+1.3 \\ -1.0\end{gathered}$
$6.6 \pm 1.1 \pm 1.5$
$6.0 \begin{array}{r}+1.5+1.2 \\ -1.6-1.3\end{array}$
$5.6 \begin{array}{cc}+1.2 & +0.9 \\ -1.1 & -0.6\end{array}$
$7.0{ }_{-2.1}^{+2.4}+1.6 \pm 0.4$
${ }^{1}$ ABAZOV 16 F D0 $\ell \ell, \ell+$ jets channels
${ }_{2}^{2}$ AALTONEN 14 A CDF $\quad \ell+\tau_{h}+\geq 2$ jets $(\geq 1 b$-tag $)$
${ }^{3}$ AALTONEN $\quad 14 \mathrm{H}$ TEVA $\ell \ell, \ell+$ jets, all-jets channels
${ }^{4}$ ABAZOV $\quad 14 \mathrm{~K}$ D0 $\quad \ell+E_{T}+\geq 4$ jets $(\geq 1 b$-tag $)$
${ }^{5}$ AALTONEN $\quad 13$ ABCDF $\quad \ell \ell+E_{T}+\geq 2$ jets
${ }^{6}$ AALTONEN 13 G CDF $\ell+E_{T}+\geq 3$ jets $(\geq 1 b$-tag $)$
${ }^{7}$ AALTONEN $12 \mathrm{ALCDF} \tau_{h}+E_{T}+4 \mathrm{j}(\geq 1 b)$
${ }^{8}$ AALTONEN 11D CDF $\ell+E_{T}+$ jets $(\geq 1 b$-tag $)$
${ }^{9}$ AALTONEN 11 w CDF $\quad \ell+E_{T}+$ jets $(\geq 1 b$-tag $)$
10 AALTONEN $\quad 11 \mathrm{Y}$ CDF $E_{T}+\geq 4$ jets $(0,1,2 b$-tag $)$
11 ABAZOV 11 E D0 $\quad \ell+E_{T}+\geq 2$ jets
12 ABAZOV $11 z$ D0 Combination
13 AALTONEN 10AA CDF Repl. by AALTONEN 13AB
14 AALTONEN 10 E CDF ≥ 6 jets, vtx b-tag
15 AALTONEN 10 v CDF $\quad \ell+\geq 3$ jets, soft- $e b$-tag
16 AALTONEN 10 w CDF $\ell+E_{T}+\geq 3$ jets $+b$-tag,
norm. to $\sigma(Z \rightarrow \ell \ell)_{T H}$
17 ABAZOV $\quad 10$ । D0 ≥ 6 jets with $2 b$-tags
18 ABAZOV 10Q D0 $\tau_{h}+$ jets
19 AALTONEN 09ADCDF $\quad \ell+E_{T} /$ vtx b-tag
20 AALTONEN 09 H CDF $\ell+\geq 3$ jets $+E_{T} /$ soft μb-tag
21 ABAZOV 09AG D0 $\quad \ell+$ jets, $\ell \ell$ and $\ell \tau+$ jets
22 ABAZOV 09R D0 $\quad \ell \ell$ and $\ell \tau+$ jets
23 ABAZOV 08M D0 $\quad \ell+\mathrm{n}$ jets with $0,1,2 b$-tag
${ }^{24}$ ABAZOV 08 N D0 $\ell+\mathrm{n}$ jets $+b$-tag or kinematics
25 ABULENCIA 08 CDF $\ell^{+} \ell^{-}(\ell=e, \mu)$
26 AALTONEN 07D CDF ≥ 6 jets, vtx b-tag
27 ABAZOV 070 D0 $\quad \ell \ell+j e t s$, vtx b-tag
28 ABAZOV 07P D0 ≥ 6 jets, vtx b-tag
${ }^{29}$ ABAZOV 07R D0 $\ell+\geq 4$ jets
30 ABAZOV 06x D0 $\quad \ell+$ jets, vtx b-tag
31 ABULENCIA $06 z$ CDF $\ell+$ jets, vtx b-tag
32 ABULENCIA,A 06C CDF missing $E_{T}+$ jets, vtx b-tag
33 ABULENCIA,A 06E CDF 6-8 jets, b-tag
34 ABULENCIA,A 06F CDF $\ell+\geq 3$ jets, b-tag
${ }^{35}$ ABAZOV 05Q D0 $\quad \ell+\mathrm{n}$ jets
36 ABAZOV 05R D0 di-lepton +n jets
37 ABAZOV 05x D0 $\ell+$ jets / kinematics
38 ACOSTA 05 S CDF $\ell+$ jets $/$ soft μb-tag
${ }^{39}$ ACOSTA 05T CDF $\ell+$ jets $/$ kinematics
40 ACOSTA $\quad 05 u$ CDF $\ell+$ jets $/$ kinematics + vtx b-tag
41 ACOSTA 05 V CDF $\quad \ell+\mathrm{n}$ jets
42 ACOSTA 041 CDF di-lepton + jets + missing ET
${ }^{1}$ ABAZOV 16 F based on $9.7 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=172.5 \mathrm{GeV}$, and the m_{t} dependence is shown in Table V and Fig. 9. The result agrees with the NNLO+NNLL SM prediction of $7.35_{-0.27}^{+0.23} \mathrm{pb}$.
${ }^{2}$ Based on $9 \mathrm{fb}^{-1}$ of data. The measurement is in the channel $t \bar{t} \rightarrow(b \ell \nu)(b \tau \nu)$, where τ decays into hadrons $\left(\tau_{h}\right)$, and ℓ (e or μ) include ℓ from τ decays $\left(\tau_{\ell}\right)$. The result is for $m_{t}=173 \mathrm{GeV}$.
${ }^{3}$ Based on $8.8 \mathrm{fb}^{-1}$ of data. Combination of CDF and D0 measurements given, respectively, by $\sigma(t \bar{t} ;$ CDF $)=7.63 \pm 0.31 \pm 0.36 \pm 0.16 \mathrm{pb}, \sigma(t \bar{t} ; \mathrm{D} 0)=7.56 \pm 0.20 \pm 0.32 \pm$ 0.46 pb . All the results are for $m_{t}=172.5 \mathrm{GeV}$. The m_{t} dependence of the mean value is parametrized in eq. (1) and shown in Fig. 2.
${ }^{4}$ Based on $9.7 \mathrm{fb}^{-1}$ of data. Differential cross sections with respect to $m_{t t}, \mid y($ top $) \mid$, E_{T} (top) are shown in Figs. 9, 10, 11, respectively, and are compared to the predictions E_{T} (top) are

${ }^{6}$ Based on $8.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Measure the $t \bar{t}$ cross section simultaneously with the fraction of $t \rightarrow W b$ decays. The correlation coefficient between those two measurements is -0.434 . Assume unitarity of the 3×3 CKM matrix and set $\left|V_{t b}\right|>0.89$ at 95% CL.
${ }^{7}$ Based on $2.2 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . The result assumes the acceptance for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{8}$ Based on $1.12 \mathrm{fb}^{-1}$ and assumes $m_{t}=175 \mathrm{GeV}$, where the cross section changes by $\pm 0.1 \mathrm{pb}$ for every $\mp 1 \mathrm{GeV}$ shift in m_{t}. AALTONEN 11D fits simultaneously the $t \bar{t}$
production cross section and the b-tagging efficiency and find improvements in both measurements.
${ }^{9}$ Based on $2.7 \mathrm{fb}^{-1}$. The first error is from statistics and systematics, the second is from luminosity. The result is for $m_{t}=175 \mathrm{GeV}$. AALTONEN 11 w fits simultaneously a jet flavor discriminator between $b-$ - $c-$, and light-quarks, and find significant reduction in the systematic error.
${ }^{10}$ Based on $2.2 \mathrm{fb}^{-1}$. The result is for $m_{t}=172.5 \mathrm{GeV}$. AALTONEN 11 Y selects multi-jet events with large E_{T}, and vetoes identified electrons and muons.
${ }^{11}$ Based on $5.3 \mathrm{fb}^{-1}$. The error is statistical + systematic + luminosity combined. The result is for $m_{t}=172.5 \mathrm{GeV}$. The results for other m_{t} values are given in Table XII and eq.(10) of ABAZOV 11E.
${ }^{12}$ Combination of a dilepton measurement presented in ABAZOV 11 z (based on 5.4 fb^{-1}), which yields $7.36_{-0.79}^{+0.90}$ (stat+syst) pb , and the lepton + jets measurement of ABAZOV 11E. The result is for $m_{t}=172.5 \mathrm{GeV}$. The results for other m_{t} values is given by eq.(5) of ABAZOV 11A.
13 Based on $2.8 \mathrm{fb}^{-1}$. The result is for $m_{t}=175 \mathrm{GeV}$.
${ }^{14}$ Based on $2.9 \mathrm{fb}^{-1}$. Result is obtained from the fraction of signal events in the top quark mass measurement in the all hadronic decay channel.
${ }^{15}$ Based on $1.7 \mathrm{fb}^{-1}$. The result is for $m_{t}=175 \mathrm{GeV}$. AALTONEN 10 V uses soft electrons from b-hadron decays to suppress $W+$ jets background events.
${ }^{16}$ Based on $4.6 \mathrm{fb}^{-1}$. The result is for $m_{t}=172.5 \mathrm{GeV}$. The ratio $\sigma(t \bar{t} \rightarrow \ell+$ jets $) /$ $\sigma\left(Z / \gamma^{*} \rightarrow \ell \ell\right)$ is measured and then multiplied by the theoretical $Z / \gamma^{*} \rightarrow \ell \ell$ cross section of $\sigma\left(Z / \gamma^{*} \rightarrow \ell \ell\right)=251.3 \pm 5.0 \mathrm{pb}$, which is free from the luminosity error.
${ }^{17}$ Based on $1 \mathrm{fb}^{-1}$. The result is for $m_{t}=175 \mathrm{GeV} .7 .9 \pm 2.3 \mathrm{pb}$ is found for $m_{t}=$ 170 GeV . ABAZOV 10 uses a likelihood discriminant to separate signal from background, where the background model was created from lower jet-multiplicity data.
${ }^{18}$ Based on $1 \mathrm{fb}^{-1}$. The result is for $m_{t}=170 \mathrm{GeV}$. For $m_{t}=175 \mathrm{GeV}$, the result is $6.3_{-1.1}^{+1.2}$ (stat) ± 0.7 (syst) ± 0.4 (lumi) pb. Cross section of $t \bar{t}$ production has been measured in the $t \bar{t} \rightarrow \tau_{h}+$ jets topology, where τ_{h} denotes hadronically decaying τ leptons. The result for the cross section times the branching ratio is $\sigma(t \bar{t}) \cdot \mathrm{B}(t \bar{t} \rightarrow$ $\tau_{h}+$ jets $)=0.60_{-0.22}^{+0.23+0.15} \pm 0.04 \mathrm{pb}$ for $m_{t}=170 \mathrm{GeV}$.
${ }^{19}$ Based on $1.1 \mathrm{fb}^{-1}$. The result is for $\mathrm{B}(W \rightarrow \ell \nu)=10.8 \%$ and $m_{t}=175 \mathrm{GeV}$; the mean value is 9.8 for $m_{t}=172.5 \mathrm{GeV}$ and 10.1 for $m_{t}=170 \mathrm{GeV}$. AALTONEN 09AD used high $p_{T} e$ or μ with an isolated track to select $t \bar{t}$ decays into dileptons including ℓ $=\tau$. The result is based on the candidate event samples with and without vertex b-tag.
${ }^{20}$ Based on $2 \mathrm{fb}^{-1}$. The result is for $m_{t}=175 \mathrm{GeV}$; the mean value is 3% higher for m_{t} $=170 \mathrm{GeV}$ and 4% lower for $m_{t}=180 \mathrm{GeV}$.
${ }^{21}$ Result is based on $1 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=170 \mathrm{GeV}$, and the mean value decreases with increasing m_{t}; see their Fig. 2. The result is obtained after combining ℓ + jets, $\ell \ell$, and $\ell \tau$ final states, and the ratios of the extracted cross sections are $\mathrm{R}^{\ell \ell / \ell j}$ $=0.86_{-0.17}^{+0.19}$ and $\mathrm{R}^{\ell \tau / \ell \ell-\ell j}=0.97_{-0.29}^{+0.32}$, consistent with the SM expectation of R $=1$. This leads to the upper bound of $\mathrm{B}\left(t \rightarrow b H^{+}\right)$as a function of $m_{H^{+}}$. Results are shown in their Fig. 1 for $\mathrm{B}\left(H^{+} \rightarrow \tau \nu\right)=1$ and $\mathrm{B}\left(H^{+} \rightarrow c \bar{s}\right)=1$ cases. Comparison of the m_{t} dependence of the extracted cross section and a partial NNLO prediction gives $m_{t}=169.1_{-5.2}^{+5.9} \mathrm{GeV}$.
${ }^{22}$ Result is based on $1 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=170 \mathrm{GeV}$, and the mean value changes by $-0.07\left[m_{t}(\mathrm{GeV})-170\right] \mathrm{pb}$ near the reference m_{t} value. Comparison of the m_{t} dependence of the extracted cross section and a partial NNLO QCD prediction gives $m_{t}=171.5_{-8.8}^{+9.9} \mathrm{GeV}$. The $\ell \tau$ channel alone gives $7.6_{-4.3}^{+4.9+3.4+1.4} \mathrm{pb}$ and the $\ell \ell$ channel gives $7.5_{-1.1}^{+1.2+0.7+0.7} \mathrm{pb}$.
${ }^{23}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data. The first error is from stat + syst, while the latter error is from luminosity. The result is for $m_{t}=175 \mathrm{GeV}$, and the mean value changes by $-0.09 \mathrm{pb} \cdot\left[m_{t}(\mathrm{GeV})-175\right]$.
${ }^{24}$ Result is based on $0.9 \mathrm{fb}^{-1}$ of data. The cross section is obtained from the $\ell+\geq 3$ jet event rates with 1 or $2 b$-tag, and also from the kinematical likelihood analysis of the $\ell+3,4$ jet events. The result is for $m_{t}=172.6 \mathrm{GeV}$, and its m_{t} dependence shown in Fig. 3 leads to the constraint $m_{t}=170 \pm 7 \mathrm{GeV}$ when compared to the SM prediction.
${ }^{25}$ Result is based on $360 \mathrm{pb}^{-1}$ of data. Events with high p_{T} oppositely charged dileptons $\ell^{+} \ell^{-}(\ell=e, \mu)$ are used to obtain cross sections for $t \bar{t}, W^{+} W^{-}$, and $Z \rightarrow \tau^{+} \tau^{-}$ production processes simultaneously. The other cross sections are given in Table IV.
${ }^{26}$ Based on $1.02 \mathrm{fb}^{-1}$ of data. Result is for $m_{t}=175 \mathrm{GeV}$. Secondary vertex b-tag and neural network selections are used to achieve a signal-to-background ratio of about $1 / 2$.
${ }^{27}$ Based on $425 \mathrm{pb}^{-1}$ of data. Result is for $m_{t}=175 \mathrm{GeV}$. For $m_{t}=170.9 \mathrm{GeV}$, 7.8 ± 1.8 (stat + syst $) \mathrm{pb}$ is obtained.
${ }^{28}$ Based on $405 \pm 25 \mathrm{pb}^{-1}$ of data. Result is for $m_{t}=175 \mathrm{GeV}$. The last error is for luminosity. Secondary vertex b-tag and neural network are used to separate the signal events from the background.
${ }^{29}$ Based on $425 \mathrm{pb}^{-1}$ of data. Assumes $m_{t}=175 \mathrm{GeV}$.
${ }^{30}$ Based on $\sim 425 \mathrm{pb}^{-1}$. Assuming $m_{t}=175 \mathrm{GeV}$. The first error is combined statistical and systematic, the second one is luminosity.
31 Based on $\sim 318 \mathrm{pb}^{-1}$. Assuming $m_{t}=178 \mathrm{GeV}$. The cross section changes by ± 0.08 pb for each $\mp \mathrm{GeV}$ change in the assumed m_{t}. Result is for at least one b-tag. For at least two b-tagged jets, $t \bar{t}$ signal of significance greater than 5σ is found, and the cross section is $10.1_{-1.4-1.3}^{+1.6+2.0} \mathrm{pb}$ for $m_{t}=178 \mathrm{GeV}$.
${ }^{32}$ Based on $\sim 311 \mathrm{pb}^{-1}$. Assuming $m_{t}=178 \mathrm{GeV}$. For $m_{t}=175 \mathrm{GeV}$, the result is $6.0 \pm 1.2_{-0.7}^{+0.9}$. This is the first CDF measurement without lepton identification, and hence it has sensitivity to the $W \rightarrow \tau \nu$ mode.
${ }^{33}$ ABULENCIA,A 06E measures the $t \bar{t}$ production cross section in the all hadronic decay mode by selecting events with 6 to 8 jets and at least one b-jet. $S / B=1 / 5$ has been achieved. Based on $311 \mathrm{pb}^{-1}$. Assuming $m_{t}=178 \mathrm{GeV}$.
${ }^{34}$ Based on $\sim 318 \mathrm{pb}^{-1}$. Assuming $m_{t}=178 \mathrm{GeV}$. Result is for at least one b-tag. For at least two b-tagged jets, the cross section is $11.1+1.9+1.9 \mathrm{pb}$.
${ }^{35}$ ABAZOV 05Q measures the top-quark pair production cross section with $\sim 230 \mathrm{pb}^{-1}$ of data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is b-jet like. The first error is statistical and plus neutrino, and at least one of the jets is b-jet like. The first error is statistical and
systematic, and the second accounts for the luminosity uncertainty. The result assumes

Quark Particle Listings

$m_{t}=175 \mathrm{GeV}$; the mean value changes by $\left(175-m_{t}(\mathrm{GeV})\right) \times 0.06 \mathrm{pb}$ in the mass range 160 to 190 GeV .
${ }^{36}$ ABAZOV 05R measures the top-quark pair production cross section with $224-243 \mathrm{pb}^{-1}$ of data, based on the analysis of events with two charged leptons in the final state. The result assumes $m_{t}=175 \mathrm{GeV}$; the mean value changes by $\left(175-m_{t}(\mathrm{GeV})\right) \times 0.08 \mathrm{pb}$ in the mass range 160 to 190 GeV .
${ }^{37}$ Based on $230 \mathrm{pb}^{-1}$. Assuming $m_{t}=175 \mathrm{GeV}$
${ }^{38}$ Based on $194 \mathrm{pb}^{-1}$. Assuming $m_{t}=175 \mathrm{GeV}$
39 Based on $194 \pm 11 \mathrm{pb}^{-1}$. Assuming $m_{t}=175 \mathrm{GeV}$.
40 Based on $162 \pm 10 \mathrm{pb}^{-1}$. Assuming $m_{t}=175 \mathrm{GeV}$.
${ }^{41}$ ACOSTA 05 V measures the top-quark pair production cross section with $\sim 162 \mathrm{pb}^{-1}$ data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is b-jet like. Assumes $m_{t}=175 \mathrm{GeV}$.
42 ACOSTA 04I measures the top-quark pair production cross section with $197 \pm 12 \mathrm{pb}^{-1}$ data, based on the analysis of events with two charged leptons in the final state. Assumes $m_{t}=175 \mathrm{GeV}$.

Ratio of the Production Cross Sections of $t \bar{t} \gamma$ to $t \bar{t}$ at $\sqrt{s}=1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - .
$0.024 \pm 0.009 \quad 1$ AALTONEN 112 CDF $\quad E_{T}(\gamma)>10 \mathrm{GeV},|\eta(\gamma)|<1.0$
${ }^{1}$ Based on $6.0 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. Events with lepton $+E_{T}+\geq 3$ jets $(\geq 1 b)$ with and without central, high E_{T} photon are measured. The result is consistent with the SM prediction of 0.024 ± 0.005. The absolute production cross section is measured to be $0.18 \pm 0.08 \mathrm{fb}$. The statistical significance is 3.0 standard deviations.

$t \boldsymbol{t}$ Production Cross Section in pp Collisions at $\sqrt{s}=\mathbf{7 e V}$

VALUE (pb) CL\% DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • -
$<1.7 \quad 95 \quad 1$ AAD 12 BE ATLS $\quad \ell^{+} \ell^{+}+E_{T}+\geq 2 \mathrm{j}+\mathrm{HT}$
${ }^{1}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. The upper bounds are the same for LL , LR and RR chiral components of the two top quarks.
$t \bar{t}$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=5.02 \mathrm{TeV}$
Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.
VALUE (pb) DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$69.5 \pm 6.1 \pm 5.6 \pm 1.6 \quad 1$ SIRUNYAN 18 AQCMS $\ell+j e t s, \ell \ell+j e t s$
${ }^{1}$ SIRUNYAN 18AQ based on $27.4 \mathrm{pb}^{-1}$ of data from $p p$ collisions at \sqrt{s} $=5.02 \mathrm{TeV}$. The result is in agreement with the NNLO SM prediction $68.9_{-2.3}^{+1.9}($ scale $) \pm 2.3(\text { PDF })_{-1.0}^{+1.4}\left(\alpha_{s}\right) \mathrm{pb}$.

$t \bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s}=7 \mathrm{TeV}$

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.
VALUE (pb) DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$161.7 \pm 6.0 \pm 12.0 \pm 3.6 \quad 1$ KHACHATRY...17B CMS $\quad \ell+E_{T}+\geq 4 j(\geq 1 b)$
$173.6 \pm 2.1_{-}^{+} 4.5 \pm 3.8 \quad 2$ KHACHATRY...16AWCMS $\quad e+\mu+E_{T}+\geq 0 \mathrm{j}$
$181.2 \pm 2.8_{-10.6}^{+10.8} \quad 3 \mathrm{AAD} \quad$ 15BOATLS $\quad e+\mu+E_{T}+\geq 0 j$
$178 \pm 3 \pm 16 \pm 3 \quad{ }_{5}^{4}$ AAD $\quad 15 C C$ ATLS $\ell+$ jets, $\ell \ell+j e t s, \ell \tau_{h}+$ jets
$\begin{array}{lll}\text { AAD } & 15 C C \text { ATLS } & \ell+\text { jets, } \ell \ell+\text { jets, } \ell \tau_{h}+\text { jets } \\ \text { AAIJ } & 15 \mathrm{R} \text { LHCB } & \mu+\geq 1 \mathrm{j}(b \text {-tag }) \text { forward re- }\end{array}$

AAD 14AY ATLS \quad| gion |
| :--- |
| $+\mu+1$ or $2 b$ jets |

${ }^{7}$ AAD $\quad 13 x$ ATLS $\quad \tau_{h}+E_{T}+\geq 5 j(\geq 2 b)$
${ }^{8}$ CHATRCHYAN $13 A Y$ CMS ≥ 6 jets with 2 b-tags
9 CHATRCHYAN 13BB CMS $\quad \ell+E_{T}+$ jets $(\geq 1 \mathrm{~b}$-tag $)$
10 CHATRCHYAN 13be CMS $\quad \tau_{h}+E_{T}+\geq 4$ jets ($\geq 1 \mathrm{~b}$)
11 AAD 12 B ATLS Repl. by AAD 12bF
$176 \pm 5 \stackrel{+14}{+14} \pm$
$187 \pm 11{ }_{-17}^{+18} \pm 6$
12boATLS $\ell+4 T+\geq$ 3j with b-tag
$143 \pm 14-12 \mathrm{CG}$ ATLS $\quad \ell+\tau_{h}+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$
CHATRCHYAN12AC CMS $\quad \ell+\tau_{h}+\psi_{T}+\geq 2 \mathrm{j}(\geq 1 b)$
$161.9 \pm 2.5_{-}^{+} 5.1 \pm 3.6 \quad 16$ CHATRCHYAN $12 A X C M S \quad \ell \ell+E_{T}+\geq 2 b$
$145 \pm 31 \underset{-27}{+42} \quad 17$ AAD $\quad 11 \mathrm{~A}$ ATLS $\ell+E_{T}+\geq 4 \mathrm{j}, \ell \ell+E_{T^{+}} \geq 2 \mathrm{j}$
$173 \begin{aligned} &+39 \pm 7 \\ &-32\end{aligned} \quad 18$ CHATRCHYAN11AA CMS $\quad \ell+E_{T}+\geq 3$ jets
$168 \pm 18 \pm 14 \pm 7 \quad 19$ CHATRCHYAN11F CMS $\quad \ell \ell+E_{T}+$ jets
$154 \pm 17 \pm 6$
$\begin{array}{lll}{ }^{19} \text { CHATRCHYAN 11F } & \text { CMS } & \ell \ell+E_{T}+j \\ 20 \text { CHATRCHYAN } 11 z & \text { CMS } & \text { Combination }\end{array}$
$194 \pm 72 \pm 24 \pm 21 \quad 21$ KHACHATRY...11A CMS $\quad \ell \ell+E_{T}+\geq 2$ jets
${ }^{1}$ KHACHATRYAN 17 B based on $5.0 \mathrm{fb}^{-1}$ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t \bar{t} ; 8 \mathrm{TeV}) / \sigma(t \bar{t} ; 7 \mathrm{TeV})=1.43 \pm 0.04 \pm 0.07 \pm 0.05$ is reported. The results are in agreement with NNLO SM predictions
2 KHACHATRYAN 16AW based on $5.0 \mathrm{fb}^{-1}$ of data, using a binned likelihood fit to differential distributions of b-tagged and non- b-tagged jets. The result is in good agreement with NNLO SM predictions.
${ }^{3}$ Based on $4.6 \mathrm{fb}^{-1}$ of data. Uses a template fit to distributions of E_{T} and jet multiplicities to measure simultaneously $t \bar{t}, W W$, and $Z / \gamma^{*} \rightarrow \tau \tau$ cross sections, assuming $m_{t}=$ 172.5 GeV .
${ }^{4}$ AAD 15 cc based on $4.6 \mathrm{fb}^{-1}$ of data. The event selection criteria are optimized for the $\ell \tau_{h}+$ jets channel. Using only this channel $183 \pm 9 \pm 23 \pm 3 \mathrm{pb}$ is derived for the cross 5 section.
${ }^{5}$ AAIJ 15R, based on $1.0 \mathrm{fb}^{-1}$ of data, reports $0.239 \pm 0.053 \pm 0.033 \pm 0.024 \mathrm{pb}$ cross section for the forward fiducial region $p_{T}(\mu)>25 \mathrm{GeV}, 2.0<\eta(\mu)<4.5,50 \mathrm{GeV}<$ $p_{T}(b)<100 \mathrm{GeV}, 2.2<\eta(b)<4.2, \Delta R(\mu, b)>0.5$, and $p_{T}(\mu+b)>20 \mathrm{GeV}$. The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction.
${ }^{6}$ AAD 14AY reports $182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \mathrm{pb}$ value based on $4.6 \mathrm{fb}^{-1}$ of data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The energy uncertainty. We have combined the systematic uncertainties in quadrature. The
result is for $m_{t}=172.5 \mathrm{GeV}$; for other $m_{t}, \sigma\left(m_{t}\right)=\sigma(172.5 \mathrm{GeV}) \times\left[1-0.0028 \times\left(m_{t}-\right.\right.$ result is for $m_{t}=172.5 \mathrm{GeV}$; for other $m_{t}, \sigma\left(m_{t}\right)=\sigma(172.5 \mathrm{GeV}) \times[1$
$172.5 \mathrm{GeV})]$. The result is consistent with the SM prediction at NNLO.
${ }^{7}$ Based on $1.67 \mathrm{fb}^{-1}$ of data. The result uses the acceptance for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{8}$ Based on $3.54 \mathrm{fb}^{-1}$ of data.
${ }^{9}$ Based on $2.3 \mathrm{fb}^{-1}$ of data.
${ }^{10}$ Based on $3.9 \mathrm{fb}^{-1}$ of data.
${ }^{11}$ Based on $35 \mathrm{pb}^{-1}$ of data for an assumed top quark mass of $m_{t}=172.5 \mathrm{GeV}$.
${ }^{12}$ Based on $0.70 \mathrm{fb}^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{13}$ Based on $35 \mathrm{pb}^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_{t}=172.5 \mathrm{GeV}$ and $173 \pm 17_{-16}^{+18} \pm 6 \mathrm{pb}$ is found without the b-tag.
${ }^{14}$ Based on $2.05 \mathrm{fb}^{-1}$ of data. The hadronic τ candidates are selected using a BDT technique. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_{t}=172.5 \mathrm{GeV}$.
${ }^{15}$ Based on $2.0 \mathrm{fb}^{-1}$ and $2.2 \mathrm{fb}^{-1}$ of data for $\ell=e$ and $\ell=\mu$, respectively. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for m_{t} $=172.5 \mathrm{GeV}$
16 Based on $2.3 \mathrm{fb}^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the profile likelihood-ratio (PLB) method and an assumed m_{t} of 172.5 GeV .
17 Based on $2.9 \mathrm{pb}^{-1}$ of data. The result for single lepton channels is $142 \pm 34_{-31}^{+50} \mathrm{pb}$, while for the dilepton channels is $151+62+37 \mathrm{pb}$.
18 Result is based on $36 \mathrm{pb}^{-1}$ of data. The first uncertainty corresponds to the statistical and systematic uncertainties, and the second corresponds to the luminosity.
${ }^{19}$ Based on $36 \mathrm{pb}^{-1}$ of data. The ratio of $t \bar{t}$ and Z / γ^{*} cross sections is measured as $\sigma(p p \rightarrow t \bar{t}) / \sigma\left(p p \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}\right)=0.175 \pm 0.018$ (stat) ± 0.015 (syst) for $60<m_{\ell \ell}<120 \mathrm{GeV}$, for which they use an NNLO prediction for the denominator cross section of $972 \pm 42 \mathrm{pb}$.
${ }^{20}$ Result is based on $36 \mathrm{pb}^{-1}$ of data. The first error is from statistical and systematic uncertainties, and the second from luminosity. This is a combination of a measurement in the dilepton channel (CHATRCHYAN 11F) and the measurement in the $\ell+$ jets channel (CHATRCHYAN 11z) which yields $150 \pm 9 \pm 17 \pm 6 \mathrm{pb}$.
21 Result is based on $3.1 \pm 0.3 \mathrm{pb}^{-1}$ of data.

$t \bar{t}$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.
VALUE (pb) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$248.3 \pm 0.7 \pm 13.4 \pm 4.7 \quad 1$ AABOUD $\quad 18$ BH ATLS $\quad \ell+E_{T}+\geq 4 j(\geq 1 b)$
$239 \pm 4 \pm 28 \pm 5 \quad 2$ AABOUD $\quad 17 \mathrm{z}$ ATLS $\tau_{h}+E_{T}+\geq 2 \mathrm{j}(\geq 2 b)$
$228.5 \pm 3.8 \pm 13.7 \pm 6.0 \quad 3$ KHACHATRY...17B CMS $\quad \ell+E_{T}+\geq 4 j(\geq 1 b)$
$242.9 \pm 1.7 \pm 8.6 \quad 4$ AAD $\quad 16 \mathrm{BK}$ ATLS $e+\mu+1$ or $2 b$ jets
$244.9 \pm 1.4{ }_{-}^{+}{ }_{5.5}^{6.3} \pm 6.4 \quad 5$ KHACHATRY...16AWCMS $\quad e+\mu+E_{T}+\geq 0 j$
$275.6 \pm 6.1 \pm 37.8 \pm 7.2 \quad 6$ KHACHATRY..16BC CMS $\geq 6 \mathrm{j}(\geq 2 b)$
$260 \pm 1 \begin{array}{cc}+24 & 7 \mathrm{AAD}\end{array} \quad$ 15BP ATLS $\quad \ell+E_{T^{+}} \geq 3 \mathrm{j}(\geq 1 b)$
${ }^{8}$ AAIJ $\quad 15 \mathrm{R}$ LHCB $\mu+\geq 1 \mathrm{j}(b$-tag $)$ forward region
$242.4 \pm 1.7 \pm 10.2 \quad{ }^{9}$ AAD \quad 14AY ATLS $e+\mu+1$ or $2 b$ jets
$239 \pm 2 \pm 11 \pm 6 \quad 10$ CHATRCHYAN 14F CMS $\quad \ell \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 b$-tag $)$
$257 \pm 3 \pm 24 \pm 7 \quad 11$ KHACHATRY..14S CMS $\quad \ell+\tau_{h}+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$
1^{1} AABOUD 18 BH based on $20.2 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=172.5 \mathrm{GeV}$. To reduce effects of uncertainties in the jet energy scale and b-tagging efficiency, they are included as nuisance parameters in the fit of discriminant distributions, after separating selected events into three regions. Furthermore the $W+$ jets background distribution is modelled using $Z+$ jets event data.
${ }^{2}$ AABOUD $17 z$ based on $20.2 \mathrm{fb}^{-1}$ of data, using the mode $t \bar{t} \rightarrow \tau \nu q^{\prime} \bar{q} b \bar{b}$ with τ decaying hadronically. Single prong and 3 prong decays of τ are separately analyzed. The result is consistent with the SM. The third quoted uncertainty is due to luminosity.
${ }^{3}$ KHACHATRYAN 17B based on $19.6 \mathrm{fb}^{-1}$ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t \bar{t} ; 8 \mathrm{TeV}) / \sigma(t \bar{t} ; 7 \mathrm{TeV})=1.43 \pm 0.04 \pm 0.07 \pm 0.05$ plates to the data. Also the ratio $\sigma(t t ; 8 \mathrm{TeV}) / \sigma(t t ; 7 \mathrm{TeV})=1.43 \pm 0.0$ in is reported. The results are in agreement with NNLO SM predictions.
${ }^{4}$ AAD 16 BK is an update of the value from AAD 14AY using the improved luminosity calibration. The value $242.9 \pm 1.7 \pm 5.5 \pm 5.1 \pm 4.2 \mathrm{pb}$ is reported, where we have combined the systematic uncertainties in quadrature. Also the ratio $\sigma(t \bar{t}$; 8 TeV$) / \sigma(t \bar{t}$; 7 TeV) $=1.328 \pm 0.024 \pm 0.015 \pm 0.038 \pm 0.001$ has been updated. The former result is consistent with the SM predictions at NNLO, while the latter result is 2.1σ below the expectation.
${ }^{5}$ KHACHATRYAN 16 AW based on $19.7 \mathrm{fb}^{-1}$ of data, using a binned likelihood fit to differential distributions of b-tagged and non- b-tagged jets. The result is in good agreement with NNLO SM predictions.
${ }^{6} \mathrm{KHACHATRYAN} 16 \mathrm{BC}$ based on $18.4 \mathrm{fb}^{-1}$ of data. The last uncertainty is due to luminosity. Cuts on kinematical fit probability and $\Delta R(b, b)$ are imposed. The major QCD background is determined from the data. The result is for $m_{t}=172.5 \mathrm{GeV}$ and in agreement with the SM prediction. The top quark p_{T} spectra, also measured, are significantly softer than theoretical predictions.
${ }^{7}$ AAD 15 BP based on $20.3 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=172.5 \mathrm{GeV}$ and in agreement with the SM prediction $253_{-15}^{+13} \mathrm{pb}$ at NNLO+NNLL. Superseded by AABOUD 18BH
${ }^{8} \mathrm{AAIJ} 15 \mathrm{R}$, based on $2.0 \mathrm{fb}^{-1}$ of data, reports $0.289 \pm 0.043 \pm 0.040 \pm 0.029 \mathrm{pb}$ cross section for the forward fiducial region $p_{T}(\mu)>25 \mathrm{GeV}, 2.0<\eta(\mu)<4.5,50 \mathrm{GeV}<$ $p_{T}(b)<100 \mathrm{GeV}, 2.2<\eta(b)<4.2, \Delta R(\mu, b)>0.5$, and $p_{T}(\mu+b)>20 \mathrm{GeV}$. The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction.
${ }^{9} \mathrm{AAD} 14 \mathrm{AY}$ reports $242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 \mathrm{pb}$ value based on $20.3 \mathrm{fb}^{-1}$ of data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The result is for $m_{t}=172.5 \mathrm{GeV}$; for other $m_{t}, \sigma\left(m_{t}\right)=\sigma(172.5 \mathrm{GeV}) \times\left[1-0.0028 \times\left(m_{t}-\right.\right.$ $172.5 \mathrm{GeV})]$. Also measured is the ratio $\sigma(t \bar{t} ; 8 \mathrm{TeV}) / \sigma(t \bar{t} ; 7 \mathrm{TeV})=1.326 \pm 0.024 \pm$ $172.5 \mathrm{GeV})]$. Also measured is the ratio $\sigma(t t ; 8 \mathrm{TeV}) / \sigma(t \bar{t} ; 7 \mathrm{TeV})=1.326 \pm 0.024 \pm$
$0.015 \pm 0.049 \pm 0.001$. The results are consistent with the SM predictions at NNLO.
${ }^{10}$ Based on $5.3 \mathrm{fb}^{-1}$ of data. The result is for $m_{t}=172.5 \mathrm{GeV}$, and a parametrization is given in eq.(6.1) for the mean value at other m_{t} values. The result is in agreement with the SM prediction $252.9_{-8.6}^{+6.4} \mathrm{pb}$ at NNLO.
${ }^{11}$ Based on $19.6 \mathrm{fb}^{-1}$ of data. The measurement is in the channel $t \bar{t} \rightarrow(b \ell \nu)(b \tau \nu)$, where τ decays into hadrons $\left(\tau_{h}\right)$. The result is for $m_{t}=172.5 \mathrm{GeV}$. For $m_{t}=173.3$ GeV , the cross section is lower by 3.1 pb .
$t \bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s}=13 \mathrm{TeV}$
$\operatorname{VALUE}(\mathrm{pb}) \quad \frac{\text { DOCUMENT ID }}{\text { • } \text { We do not use the following data for averages, fits, limits, etc. • • }}$
$803 \pm 2 \pm 25 \pm 20 \quad 1$ SIRUNYAN 19AR CMS dilepton channel $(e \mu, 2 e, 2 \mu)$
$815 \pm 9 \pm 38 \pm 19 \quad 3$ SIRUNYAN 19P CMS dilepton channel
$e \mu+\geq 2 j(\geq 1 b j)$
$818 \pm 8 \pm 35 \quad 5$ AABOUD 16 R ATLS $e+\mu+1$ or $2 b$ jets
$746 \pm 58 \pm 53 \pm 36 \quad 6$ KHACHATRY...16J CMS $\quad e+\mu+\geq 2 \mathrm{j}$
${ }^{1}$ SIRUNYAN 19AR based on $35.9 \mathrm{fb}^{-1}$ of data. Obtained from the visible cross section measured using a template fit to multidifferential distributions categorized according to the b-tagged jet multiplicity. The result is for $m_{t}=172.5 \mathrm{GeV}$ and in agreement with the SM prediction at NNLO+NNLL
2 SIRUNYAN 19P reports differential $t \bar{t}$ cross sections measured using dilepton events at 13 TeV with $35.9 \mathrm{fb}^{-1}$ and compared to NLO predictions.
3 KHACHATRYAN 17 N based on $2.2 \mathrm{fb}^{-1}$ of data. The last quoted uncertainty is due to the beam luminosity. This measurement supersedes that of KHACHATRYAN 16 J.
${ }^{4}$ SIRUNYAN 17 w based on $2.2 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Events are categorized according to the jet multiplicity and the number of b-tagged jets. A likelihood fit is performed to the event distributions to compare to the NNLO+NNLL prediction.
${ }^{5}$ AABOUD 16R reported value $818 \pm 8 \pm 27 \pm 19 \pm 12 \mathrm{pb}$ based on $3.2 \mathrm{fb}^{-1}$ of data.
The four errors are from statistics, systematic, luminosity, and beam energy. We have combined the systematic uncertainties in quadrature. The result is in agreement with the SM prediction $832{ }_{-46}^{+40} \mathrm{pb}$ at NNLO+NNLL for $m_{t}=172.5 \mathrm{GeV}$
${ }^{6} \mathrm{KHACHATRYAN} 16 \mathrm{~J}$ based on $43 \mathrm{pb}^{-1}$ of data. The last uncertainty is due to luminosity. The result is for $m_{t}=172.5 \mathrm{GeV}$ and in agreement with the SM prediction 8322_{-46}^{+40} pb at NNLO+NNLL.

$t \bar{t} t \bar{t}$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$

VALUE (fb) COL DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

<23	95	1 AAD	15AR ATLS	$\ell+E_{T}+\geq 5 \mathrm{j}(\geq 2 b)$
<70	95	2 AAD	15BY ATLS	$\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$
<32	95	3 KHACHATRY...14R CMS	$\ell+E_{T}+\geq 6 \mathrm{j}(\geq 2 b)$	

${ }^{1}$ AAD 15AR based on $20.3 \mathrm{fb}^{-1}$ of data. A fit to H_{T} distributions in multi-channels classified by the number of jets and of b-tagged jets is performed.
${ }^{2}$ AAD 15By based on $20.3 \mathrm{fb}^{-1}$ of data. A same-sign lepton pair is required. An excess over the SM prediction reaches 2.5σ for hypotheses involving heavy resonances decaying into $t \bar{t} t \bar{t}$.
3 Based on $19.6 \mathrm{fb}^{-1}$ of data, using a multivariate analysis to separate signal from back grounds. About $\sigma(t \bar{t} t \bar{t})=1 \mathrm{fb}$ is expected in the SM.

$t \bar{t} t \bar{t}$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=13 \mathrm{TeV}$

$\operatorname{VALUE}(\mathrm{fb}) \quad \frac{C L \%}{\text { - }} \frac{\text { DOCUMENT ID }}{} \frac{\text { TE not use }}{} \frac{\text { COMMENT }}{\text { COM }} \frac{\text { following data for averages, fits, limits, etc. • • }}{}$

<47	95	${ }^{1}$ AABOUD	19ap ATLS	$\ell+\ell^{+} \ell^{-}$channels
<49	95	2 AABOUD	19AP ATLS	combination of ATLAS
$13 \begin{array}{r}+11 \\ -9\end{array}$		3 SIRUNYAN	19CN CMS	combination of CMS
<48	95	4 SIRUNYAN	19CN CMS	$\ell+$ jets, $\ell^{+} \ell^{-}+$jets channels
<69	95	${ }^{5}$ AABOUD	18CE ATLS	$\begin{aligned} & \geq 2 \ell(\text { same sign })+E_{T}+ \\ & \geq 1 b \mathrm{j} \end{aligned}$
16.9 ${ }_{-11.4}$		${ }^{6}$ SIRUNYAN	18BU CMS	$\begin{gathered} t \bar{t} t \bar{t} \rightarrow(\text { same sign } 2 \ell \text { or } \geq \\ 3 \ell)+\geq 4 \mathrm{j}(\geq 2 b) \end{gathered}$
<94	95	7 SIRUNYAN	17AB CMS	$\ell+$ jets, $\ell^{+} \ell^{-}+$jets channels
<42	95	8 SIRUNYAN	17s CMS	(same sign 2ℓ) $+E_{T}+\geq 2 \mathrm{j}$

${ }^{1}$ AABOUD 19AP based on $36.1 \mathrm{fb}^{-1}$ of data. The upper limit corresponds to 5.1 times 2 the NLO SM cross section
${ }^{2}$ AABOUD 19AP limit from data combined with AABOUD 18CE. The upper limit corresponds to 5.3 times the NLO SM cross section. Also a limit on the four-top-quark contact interaction of $\left|C_{4 t}\right| / \Lambda^{2}<1.9 \mathrm{TeV}^{-2}(95 \% \mathrm{CL})$ is obtained in an EFT model.
${ }^{3}$ SIRUNYAN 19CN based on $35.8 \mathrm{fb}^{-1}$ of data, combined with SIRUNYAN 18BU. The results are also interpreted in the effective field theory framework.
${ }^{4}$ SIRUNYAN 19 CN based on $35.8 \mathrm{fb}^{-1}$ of data. A multivariate analysis using global event and jet propoerties is performed to discriminate from $t \bar{t}$ background.
${ }^{5}$ AABOUD 18CE based on $36.1 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Events including a same-sign lepton pair are used. The result is consistent with the NLO SM cross section of 9.2 fb .
${ }^{6}$ SIRUNYAN 18BU based on $35.9 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Yields from signal regions and control regions defined based on $N_{j e t s}, N_{b}$ and N_{I} are combined in a maximum-likelihood fit. The result is in agreement with the NLO SM prediction $9.2_{-2.4}^{+2.9} \mathrm{fb}$. The measurement constrains the top quark Yukawa coupling strength parameter to be $\left|Y_{t} / Y_{t}^{S M}\right|<2.1$ ($95 \% \mathrm{CL}$).
7 SIRUNYAN 17AB based on $2.6 \mathrm{fb}^{-1}$ of data. A multivariate analysis is used to discriminate between $t \bar{t} t \bar{t}$ signal and $t \bar{t}$ background. A combination with a previous search (CMS, KHACHATRYAN 16BJ) in the same-sign dilepton channel gives an upper limit of $69 \mathrm{fb}(95 \% \mathrm{CL})$, corresponding to 7.4 .(SM prediction).
${ }^{8}$ SIRUNYAN 17 s based on $35.9 \mathrm{fb}^{-1}$. The limit is in agreement with the NLO SM prediction $9.2_{-2.4}^{+2.9} \mathrm{fb}$. Superseded by SIRUNYAN 18BU. The signal events are also used to constrain various new physics models.
$t \bar{t} W$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$
VALUE (fb) DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$

$170_{-80}^{+90} \pm 70 \quad 1$ KHACHATRY...14N CMS $\quad \begin{gathered}t \bar{t} W \rightarrow \text { same sign dilepton } \\ +E_{T}+\text { jets }\end{gathered}$
${ }^{1}$ Based on $19.5 \mathrm{fb}^{-1}$ of data. The result is consistent with the SM prediction of $\sigma(t \bar{t} W)$ $=206{ }_{-23}^{+21} \mathrm{fb}$.
$t \bar{t} W$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=13 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. • • -

$0.87 \pm 0.13 \pm 0.14$	1 AABOUD	19AR ATLS	$2,3,4 \ell+E_{T}+$ jets
$0.77_{-0.11}^{+0.12+0.13}$	2 SIRUNYAN	18BS CMS	$t \bar{t} W \rightarrow$ same sign dilepton
			$+E_{T}+$ jets

${ }^{1}$ AABOUD 19AR based on $35.9 \mathrm{fb}^{-1}$ of data. $t \bar{t} W$ and $t \bar{t} Z$ cross sections are simultaneously measured using a combined fit to the events divided into multiple regions. The result is consistent with the SM prediction at NLO $0.60_{-0.07}^{+0.08} \mathrm{pb}$. It is also used to constrain the Wilson coefficients for dimension-six operators which modify the $t \bar{t} Z$
$2 \begin{aligned} & \text { vertex. } \\ & \text { Based on } 35.9 \mathrm{fb}^{-1} \text { of proton-proton data taken at } \sqrt{s}=13 \mathrm{TeV} \text {. The result is consistent }\end{aligned}$ with the SM prediction and is used to constrain the Wilson coefficients for dimension-six operators describing new interactions. The result is consistent with the SM prediction at NLO $0.628 \pm 0.082 \mathrm{pb}$.
$t \bar{t} Z$ Production Cross Section in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$ $\operatorname{VALUE}(\mathrm{fb}) \quad$ DOCUMENT ID TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • • •
$200{ }_{-70}^{+80}+40 \quad 1$ KHACHATRY...14N CMS $\quad t \bar{t} Z \rightarrow 3,4 \ell+E_{T}+$ jets
${ }^{1}$ Based on $19.5 \mathrm{fb}^{-1}$ of data. The result is consistent with the SM prediction of $\sigma(t \bar{t} Z)$ $=197_{-25}^{+22} \mathrm{fb}$.
$t \bar{t} Z$ Production Cross Section in $p p$ Collisions at $\sqrt{8}=13 \mathrm{TeV}$
VALUE (pb) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.95 \pm 0.08 \pm 0.10 \quad 1$ AABOUD \quad 19AR ATLS $\quad 2,3,4 \ell+E_{T}+$ jets $0.99_{-0.08-0.10}^{+0.09}+2$ SIRUNYAN \quad 18BS CMS $\quad t \bar{t} Z \rightarrow 3,4 \ell+E_{T}+$ jets
${ }^{1}$ AABOUD 19ar based on $35.9 \mathrm{fb}^{-1}$ of data. $t \bar{t} W$ and $t \bar{t} Z$ cross sections are simultaneously measured using a combined fit to the events divided into multiple regions. The result is consistent with the SM prediction at NLO $0.88_{-0.11}^{+0.09} \mathrm{pb}$. It is also used to constrain the Wilson coefficients for dimension-six operators which modify the $t \bar{t} Z$ vertex.
$2 \begin{aligned} & \text { vertex. } \\ & \text { Based on } 35.9 \mathrm{fb}^{-1} \text { of proton-proton data taken at } \sqrt{s}=13 \mathrm{TeV} \text {. The result is consistent }\end{aligned}$ Bith the SM prediction and is used to constrain the Wilson coefficients for dimension-six with the SM prediction and is used to constrain the Wilson coefficients for dimension-six
operators describing new interactions. The result is consistent with the SM prediction at operators describing new
NLO $0.839 \pm 0.101 \mathrm{pb}$.
$\boldsymbol{t} \overline{\boldsymbol{t}} \boldsymbol{\gamma}$ Production Cross Section in pp Collisions at $\sqrt{\boldsymbol{s}}=\mathbf{1 3} \mathrm{TeV}$
VALUE (pb) DOCUMENT ID _ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
${ }^{1}$ AABOUD 19AD ATLS $\quad p p \rightarrow t \bar{t} \gamma$
${ }^{1}$ AABOUD 19AD measured fiducial inclusive and differential cross-sections for $p p \rightarrow t \bar{t} \gamma$ at 13 TeV with $36.1 \mathrm{fb}^{-1}$ of data. The results are in agreement with the theoretical predictions.
$\mathrm{f}\left(\mathrm{Q}_{0}\right): t \bar{t}$ Fraction of Events with a Veto on Additional Central Jet Activity in $p p$ Collisions at $\sqrt{s}=7 \mathrm{TeV}$
Q_{0} denotes the threshold of the additional jet p_{T}
$\operatorname{VALUE}(\%)$ DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$80.0 \pm 1.1 \pm 1.6 \quad 1$ CHATRCHYAN 14AE CMS $\quad Q_{0}=75 \mathrm{GeV}(|y|<2.4)$
$92.0 \pm 0.7 \pm 0.8 \quad 1$ CHATRCHYAN 14AE CMS $\quad Q_{0}=150 \mathrm{GeV}(|y|<2.4)$
$98.0 \pm 0.3 \pm 0.3 \quad 1$ CHATRCHYAN 14AE CMS $\quad Q_{0}=300 \mathrm{GeV}(|y|<2.4)$
$56.4 \pm 1.3_{-2.8}^{+2.6} \quad 2$ AAD $\quad 12 \mathrm{BL}$ ATLS $\quad \mathrm{Q}_{0}=25 \mathrm{GeV}(|\mathrm{y}|<2.1)$
$84.7 \pm 0.9 \pm 1.0 \quad 2 \mathrm{AAD} \quad 12 \mathrm{BL}$ ATLS $\quad \mathrm{Q}_{0}=75 \mathrm{GeV}(|\mathrm{y}|<2.1)$
$95.2_{-0.6}^{+0.5} \pm 0.4 \quad 2$ AAD \quad 12BL ATLS $Q_{0}=150 \mathrm{GeV}(|y|<2.1)$
${ }^{1}$ CHATRCHYAN 15 based on $5.0 \mathrm{fb}^{-1}$ of data. The $t \bar{t}$ events are selected in the dilepton and lepton + jets decay channels. For other values of Q_{0} see Table 5.
${ }^{2}$ Based on $2.05 \mathrm{fb}^{-1}$ of data. The $t \bar{t}$ events are selected in the dilepton decay channel with two identified b-jets.

Quark Particle Listings

Fraction of $t \bar{t}+$ multi-jet Events in $p p$ Collisions at $\sqrt{\boldsymbol{s}}=7 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$\begin{array}{lll}1 & 15 \mathrm{AAD} & \text { 15D ATLS } \quad \ell+E_{T}+\mathrm{nj}(\mathrm{n}=3 \text { to 8) }\end{array}$
2 CHATRCHYAN 14AE CMS $t \bar{t}(\ell \ell)+0$ jet $\left(E_{T}>30 \mathrm{GeV}\right)$
$0.436 \pm 0.098 \quad 2$ CHATRCHYAN 14AE CMS $\quad t \bar{t}(\ell \ell)+1$ jet $\left(E_{T}>30 \mathrm{GeV}\right)$
$0.232 \pm 0.125 \quad 2$ CHATRCHYAN 14AE CMS $\quad t \bar{t}(\ell \ell)+\geq 2$ jet $\left(E_{T}>30 \mathrm{GeV}\right)$
${ }^{1}$ Based on $4.6 \mathrm{fb}^{-1}$ of data. Fiducial $t \bar{t}$ production cross section is presented as a function of the jet multiplicity for up to eight jets with the jet p_{T} threshold of $25,40,60$, and 80 GeV , and as a function of jet p_{T} up to the 5 th jet. MC models can be discriminated by using data for high jet multiplicity and by p_{T} distributions of the leading and 5th jet.
${ }^{2}$ Based on $5.0 \mathrm{fb}^{-1}$ of data. Events with two oppositely charged leptons, large E_{T} and jets with at least $1 b$-tag are used to measure the fraction of $t \bar{t}$ plus additional jets. The gap fraction ($n=0$ jet rate) as a function of the jet p_{T} and that of H_{T}, the scalar sum of the p_{T} 's of additional jets, is shown in Fig. 8.
$t \bar{t}$ Charge Asymmetry (A_{C}) in pp Collisions at $\sqrt{s}=\mathbf{7 ~ T e V}$ $A_{C}=(N(\Delta|y|>0)-N(\Delta|y|<0)) /(N(\Delta|y|>0)+N(\Delta|y|<0))$ where $\Delta|y|$ $=\left|y_{t}\right|-\left|y_{\bar{t}}\right|$ is the difference between the absolute values of the top and antitop rapidities and N is the number of events with $\Delta|y|$ positive or negative.
VALUE (\%) DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.5 \pm 0.7 \pm 0.6 \quad 1$ AABOUD $\quad 18 \mathrm{AMLHC}$ ATLAS+CMS combina-
tion (lepton + jets)
$2.1 \pm 2.5 \pm 1.7$
${ }^{2}$ AAD 15A」 ATLS $\quad \ell \ell+E_{T}+\geq 2 j$
0.6 ± 1.0 3 AAD 14। ATLS $\quad \ell+E_{T}+\geq 4 j(\geq 1 \mathrm{~b})$
$-1.0 \pm 1.7 \pm 0.8 \quad{ }^{4}$ CHATRCHYAN 14D CMS $\quad \ell \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 \mathrm{~b})$
$-1.9 \pm 2.8 \pm 2.4 \quad{ }^{5} \mathrm{AAD} \quad 12 \mathrm{BK}$ ATLS $\quad \ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{~b})$
$0.4 \pm 1.0 \pm 1.1 \quad{ }^{6}$ CHATRCHYAN 12BBCMS $\quad \ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{~b})$
$-1.3 \pm 2.8_{-3.1}^{+2.9} \quad 7$ CHATRCHYAN 12BS CMS $\quad \ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{~b})$
${ }^{1}$ ATLAS and CMS combination based on the data of AAD 14 I and CHATRCHYAN 12BB. It takes into account the correlations of the measurements and systematic errors. The result is in agreement with the SM prediction (NLO QCD + NLO EW).
${ }^{2}$ AAD 15 AJ based on $4.6 \mathrm{fb}^{-1}$ of data. After kinematic reconstruction the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. The lepton charge asymmetry is measured as $\mathrm{A}_{C}^{\ell}=0.024 \pm 0.015 \pm 0.009$. All the measurements are consistent with the SM predictions.
${ }^{3}$ Based on $4.7 \mathrm{fb}^{-1}$ of data. The result is consistent with the SM prediction of $\mathrm{A}_{C}=$ 0.0123 ± 0.0005. The asymmetry is 0.011 ± 0.018 if restricted to those events where $\beta_{Z}(t \bar{t})>0.6$, which is also consistent with the SM prediction of $0.020_{-0.007}^{+0.006}$.
${ }^{4}$ Based on $5.0 \mathrm{fb}^{-1}$ of data. The lepton charge asymmetry is measured as $\mathrm{A}_{C}^{\ell}=0.009 \pm$ 0.0010 ± 0.006. A_{C}^{ℓ} dependences on $m_{t \bar{t}},|\mathrm{y}(t \bar{t})|$, and $p_{T}(t \bar{t})$ are given in Fig. 5. All measurements are consistent with the SM predictions.
${ }^{5}$ Based on $1.04 \mathrm{fb}^{-1}$ of data. The result is consistent with $\mathrm{A}_{C}=0.006 \pm 0.002$ (MC at NLO). No significant dependence of A_{C} on $m_{t \bar{t}}$ is observed.
${ }_{7}^{6}$ Based on $5.0 \mathrm{fb}^{-1}$ of data at 7 TeV .
7 Based on $1.09 \mathrm{fb}^{-1}$ of data. The result is consistent with the SM predictions.
$t \bar{t}$ Charge Asymmetry $\left(\mathrm{A}_{C}\right)$ in $p p$ Collisions at $\sqrt{\boldsymbol{s}}=8 \mathrm{TeV}$
VALUE (\%) DOCUMENT ID \quad TECN COMMENT
- - . We do not use the following data for averages, fits, limits, etc. - - -
$0.55 \pm 0.23 \pm 0.25 \quad 1$ AABOUD 18 AMLHC ATLAS+CMS combination
2 AAD 16 AE ATLS $\quad \ell \ell+E_{T}+\geq 2 j$
$\ell \ell+E_{T}+\geq 2 j$
16AZ ATLS $\quad \ell+E_{T}+\geq 4 j$
0.9 ± 0.5
0.9 ± 0.5
4 AAD
16 T ATLS $m_{t \bar{t}}>0.7 \overline{5} \mathrm{TeV},\left|\left|\mathrm{y}_{t}\right|-\right.$ $\left|\mathrm{y}_{\bar{t}}\right| \mid<2, \ell+\mathbb{E}_{T}+\mathrm{jets}$
$1.1 \pm 1.1 \pm 0.7$
$0.33 \pm 0.26 \pm 0.33$
5 KHACHATRY...16AD CMS $\quad \ell \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 \mathrm{~b})$
${ }^{6}$ KHACHATRY...16AH CMS $\quad \ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{~b})$
$0.10 \pm 0.68 \pm 0.37 \quad 7$ KHACHATRY...16T CMS $\quad \ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 \mathrm{~b})$
${ }^{1}$ ATLAS and CMS combination based on the data of AAD 16AZ and KHACHATRYAN 16AH. It takes into account the correlations of the measurements and systematic errors. A combination of the differential measurements of the charge asymmetry is also presented. The results are in agreement with the SM prediction (NNLO QCD + NLO EW).
${ }^{2}$ AAD 16AE is based on $20.3 \mathrm{fb}^{-1}$ of data. After kinematic reconstruction, the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. The lepton charge asymmetry is measured
as $\mathrm{A}_{C}^{\ell \ell}=0.008 \pm 0.006$. All the measurements are consistent with the SM predictions.
${ }^{3}$ AAD 16AZ based on $20.3 \mathrm{fb}^{-1}$ of data. All the differential and inclusive measurements are statistically limited and consistent with the SM predictions.
${ }^{4}$ AAD 16T based on $20.3 \mathrm{fb}^{-1}$ of data. Uses reconstruction techniques for the decay topology of highly boosted top quarks. The observed asymmetry is transformed by unfolding to a parton-level result in the shown fiducial region. The result is consistent with the NLO SM prediction.
${ }^{5}$ KHACHATRYAN 16AD based on $19.5 \mathrm{fb}^{-1}$ of data. The lepton charge asymmetry is measured as $A_{C}^{\ell \ell}=0.003 \pm 0.006 \pm 0.003$. All the measurements are consistent with the SM predictions.
6 KHACHATRYAN 16 AH based on $19.6 \mathrm{fb}^{-1}$ of data. The same data set as in KHACHATRYAN 16T is used. A template technique is used, which is sensitive to the charge anti-symmetric component of the $t \bar{t}$ rapidity distributions and statistically advantageous. The result is consistent with the SM predictions.
7 KHACHATRYAN 16T based on $19.7 \mathrm{fb}^{-1}$ of data. The same data set as in KHACHATRYAN 16AH is used. After kinematic reconstruction the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. All the measurements are consistent with the SM predictions.
t-quark Polarization in $t \bar{t}$ Events in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - • -

0.070 ± 0.055	1 ABAZOV	17	D0	$\ell+E_{T}+\geq 3 \mathrm{j}(\geq 1 b)$
-0.102 ± 0.061	2	ABAZOV	17	D0
0.040 ± 0.035	3 ABAZOV	17	D0	$\ell+E_{T}+\geq 3 \mathrm{j}(\geq 1 b)$
$0.113 \pm 0.091 \pm 0.019$	4	ABAZOV	15 K	D0

${ }^{1}$ ABAZOV 17 based on $9.7 \mathrm{fb}^{-1}$ of data. The value is top quark polarization times spin analyzing power in the yields 0.081 ± 0.048. This result together with the helicity polarization is shown in a 2-dimensional plot in Fig.4. These results are consistent with the SM prediction.
${ }^{2}$ ABAZOV 17 based on $9.7 \mathrm{fb}^{-1}$ of data. The value is top quark polarization times spin analyzing power in the helicity basis. The result is consistent with the SM prediction. This result together with the beam polarization is shown in a 2-dimensional plot in Fig.4.
${ }^{3}$ ABAZOV 17 based on $9.7 \mathrm{fb}^{-1}$ of data. The value is top quark polarization times spin analyzing power in the transverse basis. The result is consistent with the SM prediction.
${ }^{4}$ ABAZOV 15 K based on $9.7 \mathrm{fb}^{-1}$ of data. The value is top quark polarization times spin analyzing power in the beam basis. The result is consistent with the SM prediction of analyzing power in
-0.0019 ± 0.0005.
t-quark Polarization in $t \bar{t}$ Events in $p p$ Collisions at $\sqrt{\boldsymbol{s}}=7 \mathrm{TeV}$ The double differential distribution in polar angles, $\theta_{1}\left(\theta_{2}\right)$ of the decay particle of the top (anti-top) decay products, is parametrized as $(1 / \sigma) \mathrm{d} \sigma /\left(\mathrm{d} \cos \theta_{1} \mathrm{~d} \cos \theta_{2}\right)=$ $(1 / 4)\left(1+A_{t} \cos \theta_{1}+A_{\bar{t}} \cos \theta_{2}-C \cos \theta_{1} \cos \theta_{2}\right)$. The charged lepton is used to tag t or \bar{t}. The coefficient A_{t} and $\mathrm{A}_{\bar{t}}$ measure the average helicity of t and \bar{t}, respectively. $\mathrm{A}_{C P C}=\mathrm{A}_{t}=\mathrm{A}_{\bar{t}}$ assumes $C P$ conservation, whereas $\mathrm{A}_{C P V}=\mathrm{A}_{t}=$ $-A_{\bar{t}}$ corresponds to maximal $C P$ violation.
VALUE
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$-0.035 \pm 0.014 \pm 0.037 \quad{ }^{1}$ AAD $13 B E$ ATLS A $C P C$
$0.020 \pm 0.016_{-0.017}^{+0.013} \quad 1 \mathrm{AAD} \quad$ 13BE ATLS $\mathrm{A}_{C P V}$
${ }^{1}$ Based on $4.7 \mathrm{fb}^{-1}$ of data using the final states containing one or two isolated electrons or muons and jets with at least one b-tag.
t-quark Polarization in $t \bar{t}$ Events in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$
$\mathrm{A}_{t}, \mathrm{~A}_{\bar{t}}, \mathrm{~A}_{C P C}, \mathrm{~A}_{C P V}$, and A_{C} are defined in header texts in the subsections, just ${ }_{\text {alUE }}$ above.
VALUE DOCUMENT ID TECN COMMENT
$-0.044 \pm 0.038 \pm 0.027 \quad 1$ AABOUD 17 G ATLS At
$-0.064 \pm 0.040 \pm 0.027 \quad 1$ AABOUD 17 G ATLS $\mathrm{A}_{\bar{t}}$
$0.296 \pm 0.093 \pm 0.037 \quad 1$ AABOUD 17 G ATLS A ${ }_{C}$
$-0.022 \pm 0.058 \quad 2$ KHACHATRY...16AI CMS ${ }^{\text {A }} C P C$
${ }^{1}$ AABOUD 17 G based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data, using events with two leptons and two or more jets with at least one b-tag. Determined from measurements of 15 top quark spin observables. The second error corresponds to a variation of m_{t} about 172.5 GeV by 0.7 GeV . The values are consistent with the NLO SM predictions.
2 KHACHATRYAN 16AI based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$, using events with two leptons and two or more jets with at least one b-tag. Determined from the lepton angular distributions as a function of the $t \bar{t}$-system kinematical variables.
t-quark Polarization in Single Top Events in $p p$ Collisions at $\sqrt{s}=8 \mathrm{TeV}$
VALUE $\quad \frac{\text { DOCUMENT ID }}{\text { • }- \text { We do not use }} \frac{\text { TECN }}{\text { CLE }} \frac{\text { COMMENT }}{}$
$>0.72 \quad 95 \quad 1$ AABOUD $\quad 17 \mathrm{BB}$ ATLS $\quad \alpha_{\ell} P ;$ t-channel $0.97 \pm 0.05 \pm 0.11 \quad 2$ AABOUD 171 ATLS $\alpha_{\ell} P$; t-channel $0.25 \pm 0.08 \pm 0.14 \quad 3$ AABOUD 171 ATLS $\left(F_{+}+F_{-}\right) P$; t-channel $0.26 \pm 0.03 \pm 0.10 \quad 4$ KHACHATRY...16BOCMS $\quad\left(\alpha_{\mu} P\right) / 2$; t-channel
${ }^{1}$ AABOUD 17BB based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data. Triple-differential decay rate of top quark is used to simultaneously determine five generalized $W t b$ couplings as well as the top polarization. α_{ℓ} denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. The value is compatible with the SM prediction of about 0.9 .
${ }^{2}$ AABOUD 17। based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data. A cut-based analysis is used to discriminate between signal and backgrounds. α_{ℓ} denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here.
${ }^{3}$ AABOUD 17। based on $20.2 \mathrm{fb}^{-1}$ of $p p$ data. A cut-based analysis is used to discriminate between signal and backgrounds. $F_{ \pm}$denotes W helicity fraction, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here.
4 KHACHATRYAN 16Bo based on $19.7 \mathrm{fb}^{-1}$ of data. A high-purity sample with a muon is selected by a multivariate analysis. The value is the top spin asymmetry, given by one half of the spin analyzing power α_{μ} (=1 at LO of SM) times the top polarization, P, where the spin axis is defined as the direction of the untagged jet in the top rest frame. The value is compatible with the SM prediction of 0.44 with a 2.0σ deviation.

$g g \rightarrow t \bar{t}$ Fraction in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc
$\begin{array}{lllll}\bullet 0.33 & 68 & 1 \\ \text { AALTONEN } & 09 \mathrm{~F} & \text { CDF } & t \bar{t} \text { correlations }\end{array}$ $0.07 \pm 0.14 \pm 0.07 \quad 2$ AALTONEN 08AG CDF low p_{T} number of tracks
${ }^{1}$ Based on $955 \mathrm{pb}^{-1}$. AALTONEN 09F used differences in the $t \bar{t}$ production angular distribution and polarization correlation to descriminate between $g g \rightarrow t \bar{t}$ and $q \bar{q} \rightarrow$ $t \bar{t}$ subprocesses. The combination with the result of AALTONEN 08AG gives $0.07_{-0.07}^{+0.15}$.
${ }^{2}$ Result is based on $0.96 \mathrm{fb}^{-1}$ of data. The contribution of the subprocesses $g g \rightarrow t \bar{t}$ and $q \bar{q} \rightarrow t \bar{t}$ is distinguished by using the difference between quark and gluon initiated jets in the number of small $p_{T}\left(0.3 \mathrm{GeV}<p_{T}<3 \mathrm{GeV}\right)$ charged particles in the central region ($|\eta|<1.1$).
$A_{F B}$ of $t \bar{t}$ in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$
$A_{F B}=$ Forward-backward asymmetry.
- $\operatorname{ValUE}(\%)$

$12.8 \pm 2.1 \pm 1.4$	1 AALTONEN	18	TEVA	CDF, D0 combination
$17.5 \pm 5.6 \pm 3.1$	2 ABAZOV	15K	D0	$A_{F B}^{\ell}$ in $\ell \ell+E_{T^{+}} \geq 2 \mathrm{j}(\geq 1 b)$
7.2 ± 6.0	${ }^{3}$ AALTONEN	14F	CDF	$A_{F B}^{\ell}$ in dilepton channel $\left(\ell \ell+\nabla_{T}+\geq 2 \mathrm{j}\right)$
7.6 ± 8.2	${ }^{3}$ AALTONEN	14F	CDF	$A_{F B}^{\ell \ell}$ in dilepton channel $\left(\ell \ell+E_{T}+\geq 2 \mathrm{j}\right)$
$4.2 \pm 2.3{ }_{-2.0}^{+1.7}$	${ }^{4}$ ABAZOV	14G	D0	$A_{F B}^{\ell}\left(\ell+E_{T}+\geq 3 \mathrm{j}(0,1 \geq 2 b)\right)$
10.6 ± 3.0	${ }^{5}$ ABAZOV	14 H	D0	$A_{F B}\left(\ell+E_{T}+\geq 3 \mathrm{j}(\geq 1 b)\right)$
20.1 ± 6.7	${ }^{6}$ AALTONEN	13AD	CDF	a_{1} / a_{0} in $\ell+E_{T}+\geq 4 j(\geq 1 b)$
0.2 ± 3.1	${ }^{6}$ AALTONEN	13AD	CDF	a_{3}, a_{5}, a_{7} in $\ell+E_{T}+\geq 4 \mathrm{j}(\geq 1 b)$
16.4 ± 4.7	7 AALTONEN	13s	CDF	$\ell+E_{T}+\geq 4$ jets($\geq 1 b$-tag $)$
9.4 ± 3.2	${ }^{8}$ AALTONEN	13x	CDF	$\ell+E_{T}+\geq 4$ jets ($\geq 1 \mathrm{~b}$-tag)
11.8 ± 3.2	${ }^{9}$ ABAZOV	13A	D0	$\ell \ell \& \ell+$ jets comb.
-11.6 ± 15.3	10 AALTONEN	11F	CDF	$m_{t \bar{t}}<450 \mathrm{GeV}$
47.5 ± 11.4	10 AALTONEN	11F	CDF	$m_{t \bar{t}}>450 \mathrm{GeV}$
19.6 ± 6.5	11 ABAZOV	11AH		$\ell+E_{T}+\geq 4$ jets($\geq 1 b$-tag $)$
17 ± 8	12 AALTONEN	08AB	CDF	$p \bar{p}$ frame
24 ± 14	12 AALTONEN	08AB	CDF	$t \bar{t}$ frame
$12 \pm 8 \pm 1$	13 ABAZOV	08L	D0	$+E_{T}+\geq 4$

${ }^{1}$ AALTONEN 18 based on $9-10 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The value is the asymmetry in the number of reconstructed $t \bar{t}$ events with rapidity $\mathrm{y}_{t}>\mathrm{y}_{\bar{t}}$ and those with $\mathrm{y}_{t}<\mathrm{y}_{\bar{t}}$. The combined fits to CDF and D0 single lepton and $\ell \ell$ asymmetries give $A_{F B}^{\ell}=0.073 \pm 0.016 \pm 0.012$ and $A_{F B}^{\ell \ell}=0.108 \pm 0.043 \pm 0.016$, respectively. The results are consistent with the SM predictions.
${ }^{2}$ ABAZOV 15 K based on $9.7 \mathrm{fb}^{-1}$ of data. The result is consistent with the SM predictions. By combining with the previous D0 measurement in the $\ell+$ jet channel ABAZOV $14 \mathrm{H}, A_{F B}^{\ell}=0.118 \pm 0.025 \pm 0.013$ is obtained.
${ }^{3}$ AALTONEN 14 F based on $9.1 \mathrm{fb}{ }^{-1}$ of data. $A_{F B}^{\ell}$ and $A_{F B}^{\ell \ell}$ denote, respectively, the asymmetries $(N(x>0)-N(x<0)) / N_{t o t}$ for $x=q_{\ell} \eta_{\ell}\left(q_{\ell}\right.$ is the charge of $\left.\ell\right)$ and $x=\eta_{\ell+}{ }^{-}$ $\eta_{\ell^{-}}$. Both results are consistent with the SM predictions. By combining with the previous CDF measurement in the $\ell+$ jet channel AALTONEN $13 x, A_{F B}^{\ell}=0.098_{-0.026}^{+0.028}$ is obtained. The combined result is about two sigma larger than the SM prediction of $A_{F B}^{\ell}=0.038 \pm 0.003$.
${ }^{4}$ Based on $9.7 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The asymmetry is corrected for the production level for events with $\left|y_{l}\right|<1.5$. Asymmetry as functions of $E_{T}(\ell)$ and $\left|y_{l}\right|$ are given in Figs. 7 and 8, respectively. Combination with the asymmetry measured in the dilepton channel [ABAZOV 13P] gives $A_{F B}^{\ell}=4.2 \pm 2.0 \pm 1.4 \%$, in agreement with the SM prediction of 2.0%.
${ }^{5}$ Based on $9.7 \mathrm{fb}^{-1}$ of data of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The measured asymmetry is in agreement with the SM predictions of $8.8 \pm 0.9 \%$ [BERNREUTHER 12], which includes the EW effects. The dependences of the asymmetry on $|\mathrm{y}(t)-\mathrm{y}(\bar{t})|$ and $m_{t \bar{t}}$ are shown in Figs. 9 and 10, respectively.
${ }^{6}$ Based on $9.4 \mathrm{fb}^{-1}$ of data. Reported $A_{F B}$ values come from the determination of a_{i} coefficients of $\mathrm{d} \sigma / \mathrm{d}\left(\cos \theta_{t}\right)=\Sigma_{i} a_{i} \mathrm{P}_{i}\left(\cos \left(\theta_{t}\right)\right)$ measurement. The result of $a_{1} / a_{0}=$ $(40 \pm 12) \%$ seems higher than the NLO SM prediction of $\left(15_{-3}^{+7}\right) \%$.
${ }^{7}$ Based on $9.4 \mathrm{fb}^{-1}$ of data. The quoted result is the asymmetry at the parton level.
${ }^{8}$ Based on $9.4 \mathrm{fb}^{-1}$ of data. The observed asymmetry is to be compared with the SM prediction of $A_{F B}^{\ell}=0.038 \pm 0.003$.
${ }^{9}$ Based on $5.4 \mathrm{fb}^{-1}$ of data. ABAZOV 13A studied the dilepton channel of the $t \bar{t}$ events and measured the leptonic forward-backward asymmetry to be $A_{F B}^{\ell}=5.8 \pm 5.1 \pm 1.3 \%$, which is consistent with the SM (QCD+EW) prediction of $4.7 \pm 0.1 \%$. The result is obtained after combining the measurement $(15.2 \pm 4.0 \%)$ in the $\ell+$ jets channel ABAZOV 11AH. The top quark helicity is measured by using the neutrino weighting method to be consistent with zero in both dilepton and $\ell+$ jets channels.
${ }^{10}$ Based on $5.3 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. Events with lepton $+E_{T}+\geq 4$ jets $(\geq 1 b)$ are used. AALTONEN 11 F also measures the asymmetry as a function of the rapidity difference $\left|y_{t}-y_{\bar{t}}\right|$. The NLO QCD predictions [MCFM] are $(4.0 \pm 0.6) \%$ and $(8.8 \pm 1.3) \%$ for $m_{t \bar{t}}<450$ and $>450 \mathrm{GeV}$, respectively.
11 Based on $5.4 \mathrm{fb}^{-1}$ of data. The error is statistical and systematic combined. The quoted asymmetry is obtained after unfolding to be compared with the MC@NLO prediction of $(5.0 \pm 0.1) \%$. No significant difference between the $m_{t \bar{t}}<450$ and $>450 \mathrm{GeV}$ data samples is found. A corrected asymmetry based on the lepton from a top quark decay of $(15.2 \pm 4.0) \%$ is measured to be compared to the MC@NLO prediction of $(2.1 \pm 0.1) \%$.
12 Result is based on $1.9 \mathrm{fb}^{-1}$ of data. The $F B$ asymmetry in the $t \bar{t}$ events has been measured in the $\ell+$ jets mode, where the lepton charge is used as the flavor tag. The asymmetry in the $p \bar{p}$ frame is defined in terms of $\cos (\theta)$ of hadronically decaying t-quark momentum, whereas that in the $t \bar{t}$ frame is defined in terms of the t and \bar{t} rapidity difference. The results are consistent ($\leq 2 \sigma$) with the SM predictions.
13 Result is based on $0.9 \mathrm{fb}^{-1}$ of data. The asymmetry in the number of $t \bar{t}$ events with $\mathrm{y}_{t}>\mathrm{y}_{\bar{t}}$ and those with $\mathrm{y}_{t}<\mathrm{y}_{\bar{t}}$ has been measured in the lepton + jets final state. The observed value is consistent with the SM prediction of 0.8% by MC@NLO, and an upper bound on the $Z^{\prime} \rightarrow t \bar{t}$ contribution for the SM Z-like couplings is given in in Fig. 2 for $350 \mathrm{GeV}<m_{Z^{\prime}}<1 \mathrm{TeV}$.

t-Quark Electric Charge

$\frac{\text { VALUE }}{\mathbf{0 . 6 4} \pm \mathbf{0 . 0 2} \pm \mathbf{0 . 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAD }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{} \frac{13 \text { AY ATLS }}{\ell+E_{T}+\geq 4 \text { jets }(\geq 1 \mathrm{~b})}$ - - We do not use the following data for averages, fits, limits, etc. • •
${ }^{2}$ ABAZOV 14D D0 $\quad \ell+E_{T}+\geq 4$ jets $(\geq 2 b)$ ${ }^{3}$ AALTONEN 13 J CDF $p \bar{p}$ at 1.96 TeV 4 AALTONEN 10 s CDF Repl. by AALTONEN 13」 ${ }^{5}$ ABAZOV 07C D0 fraction of $|q|=4 e / 3$ pair
${ }^{1}$ AAD 13AY result is based on $2.05 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$, the result is obtained by reconstructing $t \bar{t}$ events in the lepton + jets final state, where b-jet charges are tagged by the jet-charge algorithm. This measurement excludes the charge $-4 / 3$ assignment to the top quark at more than 8 standard deviations
2 ABAZOV 14D result is based on $5.3 \mathrm{fb}^{-1}$ of $p \bar{p}$ data at $\sqrt{s}=1.96 \mathrm{TeV}$. The electric charge of $b+W$ system in $t \bar{t}$ candidate events is measured from the charges of the leptons from W decay and in b jets. Under the assumption that the $b+W$ system consists of the sum of the top quark and the charge $-4 / 3$ quark $b^{\prime}(-4 / 3)$ of the same mass, the top quark fraction is found to be $f=0.88 \pm 0.13$ (stat) ± 0.11 (syst), or the upper bound for the $b^{\prime}(-4 / 3)$ contamination of $1-f<0.46$ (95\% CL).
${ }^{3}$ AALTONEN 13 J excludes the charge $-4 / 3$ assignment to the top quark at $99 \% \mathrm{CL}$, using $5.6 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Result is obtained by reconstructing $t \bar{t}$ events in the lepton + jets final state, where b-jet charges are tagged by the jet-charge algorithm.
${ }^{4}$ AALTONEN 10 s excludes the charge $-4 / 3$ assignment for the top quark [CHANG 99] at $95 \% \mathrm{CL}$, using $2.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. Result is obtained by reconstructing $t \bar{t}$ events in the lepton + jets final state, where b-jet charges are tagged by the SLT (soft lepton tag) algorithm.
${ }^{5}$ ABAZOV 07C reports an upper limit $\rho<0.80(90 \% \mathrm{CL})$ on the fraction ρ of exotic quark pairs $Q \bar{Q}$ with electric charge $|\mathrm{q}|=4 \mathrm{e} / 3$ in $t \bar{t}$ candidate events with high p_{T} lepton, missing E_{T} and ≥ 4 jets. The result is obtained by measuring the fraction of events in which the quark pair decays into $W^{-}+b$ and $W^{+}+\bar{b}$, where b and \bar{b} jets are discriminated by using the charge and momenta of tracks within the jet cones. The maximum CL at which the model of CHANG 99 can be excluded is 92%. Based on 370 pb^{-1} of data at $\sqrt{s}=1.96 \mathrm{TeV}$.

t-Quark REFERENCES				
AAD	20B	PL B800 135082	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	20D	PL B800 135042	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	19AC	EPJ C79 290	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AD	EPJ C79 382	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AP	PR D99 052009	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AR	PR D99 072009	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19R	JHEP 1905088	M. Aaboud et al.	(ATLAS and CMS Collabs.)
AABOUD	19 S	JHEP 1905123	M. Aaboud et al.	(ATLAS Collab.)
AAD	19G	JHEP 1911150	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19AP	EPJ C79 313	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AR	EPJ C79 368	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BF	PRL 122132003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BX	PR D100 072002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BY	PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19 CN	JHEP 1911082	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19P	JHEP 1902149	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19R	JHEP 1903026	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18AE	PL B780 557	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AM	JHEP 1804033	M. Aabound et al.	(ATLAS and CMS Collabs.)
AABOUD	18AT	JHEP 1807176	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AZ	EPJ C78 129	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BH	EPJ C78 487	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BK	PL B784 173	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BW	JHEP 1809139	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CE	JHEP 1812039	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 H	JHEP 1801063	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18X	PR D98 032002	M. Aaboud et al.	(ATLAS Collab.)
AALTONEN	18	PRL 120042001	T. Aaltonen et al.	(CDF and Do Collabs.)
SIRUNYAN	18AQ	JHEP 1803115	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BC	JHEP 1806102	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BD	JHEP 1806101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BS	JHEP 1808011	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BU	EPJ C78 140	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DE	EPJ C78 891	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DL	JHEP 1810117	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18L	PRL 120231801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	182	PL B779 358	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	17 AH	JHEP 1709118	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 AV	JHEP 1710129	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17BB	JHEP 1712017	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17BC	EPJ C77 804	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17 G	JHEP 1703113	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17\%	JHEP 1704086	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	171	JHEP 1704124	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	177	EPJ C77 531	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	177	PR D95 072003	M. Aaboud et al.	(ATLAS Collab.)
ABAZOV	17	PR D95 011101	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	17B	PR D95 112004	V.M. Abazov et al.	(Do Collab.)
CHATRCHYAN	17	PL B770 50	S. Chatrchyan et al.	(CMS Collab.)
KHACHATRY...	17B	EPJ C77 15	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	17 G	JHEP 1702028	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	171	JHEP 1702079	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY...	17 N	EPJ C77 172	V. Khachatryan et al.	(CMS Collab.)
SIRUNYAN	17AA	PL B772 752	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17AB	PL B772 336	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17E	JHEP 1707003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17L	EPJ C77 354	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17N	EPJ C77 467	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	170	PR D96 032002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	175	EPJ C77 578	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17W	JHEP 1709051	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	16R	PL B761 136	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	16T	PL B761 350	M. Aaboud et al.	(ATLAS Collab.)
AAD	16AE	PR D94 032006	G. Aad et al.	(ATLAS Collab.)
AAD	16AK	JHEP 1604023	G. Aad et al.	(ATLAS Collab.)
AAD	16AS	EPJ C76 55	G. Aad et al.	(ATLAS Collab.)
AAD	16AZ	EPJ C76 87	G. Aad et al.	(ATLAS Collab.)
AAD	16B	JHEP 1601064	G. Aad et al.	(ATLAS Collab.)
AAD	16BK	EPJ C76 642	G. Aad et al.	(ATLAS Collab.)
AAD	16D	EPJ C76 12	G. Aad et al.	(ATLAS Collab.)
AAD	16T	PL B756 52	G. Aad et al.	(ATLAS Collab.)
AAD	16 U	PL B756 228	G. Aad et al.	(ATLAS Collab.)

Quark Particle Listings

ABAZOV	06 U	PR D74 092005	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	06X	PR D74 112004	V.M. Abazov et al.	(D0 Collab.)
ABULENCIA	06D	PRL 96022004	A. Abulencia et al.	(CDF Collab.)
Also		PR D73 032003	A. Abulencia et al.	(CDF Collab.)
Also		PR D73 092002	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06G	PRL 96152002	A. Abulencia et al.	(CDF Collab.)
Also		PR D74 032009	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06R	PL B639 172	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06 U	PR D73 111103	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06V	PR D73 112006	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	$06 Z$	PRL 97082004	A. Abulencia et al.	(CDF Collab.)
ABULENCIA,A	06C	PRL 96202002	A. Abulencia et al.	(CDF Collab.)
ABULENCIA,A	06E	PR D74 072005	A. Abulencia et al.	(CDF Collab.)
ABULENCIA,A	06F	PR D74 072006	A. Abulencia et al.	(CDF Collab.)
ABAZOV	05	PL B606 25	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05G	PL B617 1	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05L	PR D72 011104	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05P	PL B622 265	V.M. Abazov et al.	(D0 Collab.)
Also		PL B517 282	V.M. Abazov et al.	(D0 Collab.)
Also		PR D63 031101	B. Abbott et al.	(D0 Collab.)
Also		PR D75 092007	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05Q	PL B626 35	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05R	PL B626 55	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05X	PL B626 45	V.M. Abazov et al.	(D0 Collab.)
ACOSTA	05A	PRL 95102002	D. Acosta et al.	(CDF Collab.)
ACOSTA	05D	PR D71 031101	D. Acosta et al.	(CDF Collab.)
ACOSTA	05N	PR D71 012005	D. Acosta et al.	(CDF Collab.)
ACOSTA	05S	PR D72 032002	D. Acosta et al.	(CDF Collab.)
ACOSTA	05 T	PR D72 052003	D. Acosta et al.	(CDF Collab.)
ACOSTA	05 U	PR D71 072005	D. Acosta et al.	(CDF Collab.)
ACOSTA	05V	PR D71 052003	D. Acosta et al.	(CDF Collab.)
ABAZOV	04G	NAT 429638	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	04C	PL B590 21	J. Abdallah et al.	(DELPHI Collab.)
ACOSTA	04 H	PR D69 052003	D. Acosta et al.	(CDF Collab.)
ACOSTA	041	PRL 93142001	D. Acosta et al.	(CDF Collab.)
AKTAS	04	EPJ C33 9	A. Aktas et al.	(H1 Collab.)
ABAZOV	03A	PR D67 012004	V.M. Abazov et al.	(D0 Collab.)
CHEKANOV	03	PL B559 153	S. Chekanov et al.	(ZEUS Collab.)
ACHARD	02」	PL B549 290	P. Achard et al.	(L3 Collab.)
ACOSTA	02	PR D65 091102	D. Acosta et al.	(CDF Collab.)
HEISTER	02Q	PL B543 173	A. Heister et al.	(ALEPH Collab.)
ABBIENDI	01 T	PL B521 181	G. Abbiendi et al.	(OPAL Collab.)
AFFOLDER	01	PR D63 032003	T. Affolder et al.	(CDF Collab.)
AFFOLDER	01A	PR D64 032002	T. Affolder et al.	(CDF Collab.)
AFFOLDER	01 C	PRL 863233	T. Affolder et al.	(CDF Collab.)
AFFOLDER	00B	PRL 84216	T. Affolder et al.	(CDF Collab.)
BARATE	00 S	PL B494 33	S. Barate et al.	(ALEPH Collab.)
ABBOTT	99G	PR D60 052001	B. Abbott et al.	(D0 Collab.)
ABE	99B	PRL 82271	F. Abe et al.	(CDF Collab.)
Also CHANG		PRL 822808 (erratum) PR D59 091503	F. Abe et al.	(CDF Collab.)
CHANG	99	PR D59 091503	D. Chang, W. Chang, E. Ma	
ABBOTT	98D	PRL 802063	B. Abbott et al.	(D0 Collab.)
ABBOTT	98F	PR D58 052001	B. Abbott et al.	(D0 Collab.)
ABE	98 E	PRL 802767	F. Abe et al.	(CDF Collab.)
ABE	98 F	PRL 802779	F. Abe et al.	(CDF Collab.)
ABE	98G	PRL 802525	F. Abe et al.	(CDF Collab.)
BHAT	98B	IJMP A13 5113	P.C. Bhat, H.B. Prosper, S.S. Snyder	
ABACHI	97 E	PRL 791197	S. Abachi et al.	(D0 Collab.)
ABE	97 R	PRL 791992	F. Abe et al.	(CDF Collab.)
ABE	97 V	PRL 793585	F. Abe et al.	(CDF Collab.)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ABACHI	95	PRL 742632	S. Abachi et al.	(D0 Collab.)
ABE	95 F	PRL 742626	F. Abe et al.	(CDF Collab.)
ABE	94 E	PR D50 2966	F. Abe et al.	(CDF Collab.)
Also		PRL 73225	F. Abe et al.	(CDF Collab.)

b^{\prime} (4 $4^{\text {th }}$ Generation) Quark, Searches for

$b^{\prime}(-1 / 3)$-quark/hadron mass limits in $p \bar{p}$ and $p p$ collisions

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>1130	95	1 SIRUNYAN	19AQ CMS	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
>1230	95	${ }^{2}$ SIRUNYAN	19BWCMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>1350	95	${ }^{3}$ AABOUD	18AW ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>1000	95	${ }^{4}$ AABOUD	18CE ATLS	$\geq 2 \ell+E_{T}+\geq 1 b \mathrm{j}$
>950	95	${ }^{5}$ AABOUD	18CL ATLS	$W t, Z b, h b$ modes
>1010	95	6,7 AABOUD	18CP ATLS	$2,3 \ell$, singlet model
>1140	95	5,8 AABOUD	18CP ATLS	2,3 ℓ, doublet model
>1220	95	9,10 AABOUD	18CR ATLS	singlet b^{\prime}. ATLAS Combination
>1370	95	9,11 AABOUD	18CR ATLS	b^{\prime} in a weak isospin doublet $\left(t^{\prime}, b^{\prime}\right)$. ATLAS combination.
>910	95	12 SIRUNYAN	18BMCMS	$W t, Z b, h b$ modes
>845	95	13 SIRUNYAN	18Q CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W u\right)=1$
>730	95	14 SIRUNYAN	17aU CMS	
>880	95	15 KHACHATRY...	16an CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>620	95	16 AAD	15BY ATLS	$W t, Z b, h b$ modes
>730	95	17 AAD	15BY ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>810	95	18 AAD	$15 Z$ ATLS	
>755	95	19 AAD	14az ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>675	95	20 CHATRCHYAN	131 CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>190	95	21 ABAZOV	08x D0	$\mathrm{c} \tau=200 \mathrm{~mm}$
>190	95	22 ACOSTA	03 CDF	quasi-stable b^{\prime}
- - We do not use the following data for averages, fits, limits, etc. - -				
$<350,580-635,>700$	95	${ }^{23}$ AAD	15AR ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow H b\right)=1$
> 690	95	24 AAD	15CN ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W q\right)=1(q=u)$
>480	95	25 AAD	12AT ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>400	95	${ }^{26}$ AAD	12AU ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
>350	95	27 AAD	12BC ATLS	$\underset{(q=u, c)}{\mathrm{B}\left(b^{\prime} \rightarrow W q\right)}=1$
>450	95	28 AAD	12be ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>685	95	${ }^{29}$ CHATRCHYAN	12вн CMS	$m_{t^{\prime}}=m_{b^{\prime}}$

>611	95		CHATRCHYAN	12x	CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>372	95		AALTONEN	11J	CDF	$b^{\prime} \rightarrow W t$
>361	95		CHATRCHYAN	11L	CMS	Repl. by CHA- TRCHYAN 12 x
>338	95		AALTONEN	10H	CDF	$b^{\prime} \rightarrow W t$
> 380-430	95		FLACCO	10	RVUE	$m_{b^{\prime}}>m_{t^{\prime}}$
>268	95	35,36	AALTONEN	07C	CDF	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
>199	95		AFFOLDER	00	CDF	NC: $b^{\prime} \rightarrow Z \quad$ b
>148	95		ABE	98N	CDF	NC: $b^{\prime} \rightarrow$ Z $b+$ vertex
>96	95		ABACHI	97D	D0	NC: $b^{\prime} \rightarrow b \gamma$
>128	95		ABACHI	95F	D0	$\ell \ell+$ jets, $\ell+$ jets
>75	95		MUKHOPAD..	93	RVUE	NC: $b^{\prime} \rightarrow$ b $\ell \ell$
>85	95		ABE	92	CDF	CC: $\ell \ell$
>72	95		ABE	90 B	CDF	CC: $e+\mu$
>54	95		AKESSON	90	UA2	CC: $e+$ jets $+E_{T}$
>43	95		ALBAJAR	90B	UA1	CC: $\mu+$ jets
> 34	95		ALBAJAR	88	UA1	CC: e or $\mu+$ jet

${ }^{1}$ SIRUNYAN 19AQ based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair production of vector-like b^{\prime} is seached for with one b^{\prime} decaying into $Z b$ and the other b^{\prime} decaying into $W t, Z b, h b$. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b^{\prime}.
${ }^{2}$ SIRUNYAN 19BW based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using all-hadronic final state. The analysis is made for the $Z b, W t, h b$ modes and mass limits are obtained for a variety of branching ratios.
${ }^{3}$ AABOUD 18AW based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using lepton-plus-jets final state. The search is also sensitive to the decays into $Z b$ and $H b$ final states.
${ }^{4}$ AABOUD 18 CE based on $36.1 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b^{\prime} into $Z b, W t$ and $H b$ as predicted by the model.
${ }^{5}$ AABOUD 18 CL , AABOUD 18CP based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using all-hadronic final state. The analysis is particularly powerful for the $b^{\prime} \rightarrow h b$ mode. Assuming the pure decay only in this mode sets a limit $m_{b^{\prime}}>1010 \mathrm{GeV}$.
${ }^{6}$ AABOUD 18CP based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair and single production of vector-like b^{\prime} are seached for with at least one b^{\prime} decaying into $Z b$. In the case of $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$, the limit is $m_{b^{\prime}}>1220 \mathrm{GeV}$.
7 The limit is for the singlet model, assuming that the branching ratios into $W t, Z b, h b$ add up to one.
${ }^{8}$ The limit is for the doublet model, assuming that the branching ratios into $W t, Z b, h b$ add up to one.
${ }^{9}$ AABOUD 18CR based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A combination of searches for the pair-produced vector-like b^{\prime} in various decay channels $\left(b^{\prime} \rightarrow W t, Z b\right.$, $h b$). Also a model-independent limit is obtained as $m_{b^{\prime}}>1.03 \mathrm{TeV}$, assuming that the branching ratios into $Z b, W t$, and $h b$ add up to one.
${ }^{0}$ The limit is for the singlet b^{\prime}.
11 The limit is for b^{\prime} in a weak isospin doublet $\left(t^{\prime}, b^{\prime}\right)$ and $\left|V_{t^{\prime} b}\right| \ll\left|V_{t b^{\prime}}\right|$. For a b^{\prime} in a doublet with a charge $-4 / 3$ vector-like quark, the limit $m_{b^{\prime}}>1.14 \mathrm{TeV}$ is obtained.
12 SIRUNYAN 18BM based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime}. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming $\mathrm{B}(t W)=1$, the limit is 1240 GeV and for $\mathrm{B}(b Z)=1$ it is 960 GeV .
${ }^{13}$ SIRUNYAN $18 Q$ based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} that couple only to light quarks. Upper cross section limits on the single production of a b^{\prime} and constraints for other decay channels ($Z q$ and $H q$) are also given in the paper.
${ }^{14}$ SIRUNYAN 17AU based on 2.3-2.6 fb^{-1} of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Limit on pairproduced singlet vector-like b^{\prime} using one lepton and several jets. The mass bound is given for a b^{\prime} transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.
${ }^{15}$ KHACHATRYAN 16AN based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pairproduced vector-like b^{\prime} using 1,2 , and >2 leptons as well as fully hadronic final states. Other limits depending on the branching fractions to $t W, b Z$, and $b H$ are given in Table IX.
${ }^{6}$ AAD 15By based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-produced vector-like b^{\prime} assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing $\geq 2 \ell+E_{T}+\geq 2 j(\geq 1 b)$ and including a same-sign lepton pair.
${ }^{17}$ AAD 15BY based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-produced chiral b^{\prime}-quark. Used events containing $\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$ and including a same-sign lepton pair.
${ }^{18}$ AAD $15 z$ based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used events with $\ell+E_{T}+$ $\geq 6 \mathrm{j}(\geq 1 b)$ and at least one pair of jets from weak boson decay, primarily designed to select the signature $b^{\prime} \bar{b}^{\prime} \rightarrow W W t \bar{t} \rightarrow W W W W b \bar{b}$. This is a limit on pair-produced vector-like b^{\prime}. The lower mass limit is 640 GeV for a vector-like singlet b^{\prime}.
${ }^{19}$ Based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. No significant excess over SM expectation is found in the search for pair production or single production of b^{\prime} in the events with dilepton from a high $p_{T} Z$ and additional jets ($\geq 1 b$-tag). If instead of $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)$ $=1$ an electroweak singlet with $\mathrm{B}\left(b^{\prime} \rightarrow W t\right) \sim 0.45$ is assumed, the limit reduces to 685 GeV .
${ }^{20}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13। looked for events with one isolated electron or muon, large E_{T}, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
${ }^{21}$ Result is based on $1.1 \mathrm{fb}^{-1}$ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for $2<\mathrm{c} \tau<7000 \mathrm{~mm}$; see Fig. 3. $95 \% \mathrm{CL}$ excluded region of b^{\prime} lifetime and mass is shown in Fig. 4.

Quark Particle Listings

b^{\prime} (Fourth Generation) Quark

${ }^{22}$ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8 \mathrm{TeV} p \bar{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge $(2 / 3)$ e quark $\left(t^{\prime}\right)$ is 220 GeV . The t^{\prime} bound is higher than the b^{\prime} bound because t^{\prime} is more likely to produce charged hadrons than b^{\prime}. The $95 \% \mathrm{CL}$ upper bounds for the production cross sections are given in their Fig. 3.
${ }^{23}$ AAD 15AR based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)$ vs. $\mathrm{B}\left(b^{\prime} \rightarrow H b\right)$ from $b^{\prime} \bar{b}^{\prime} \rightarrow H b+X$ searches.
${ }^{24}$ AAD 15CN based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-production of chiral b^{\prime}-quark. Used events with $\ell+E_{T}+\geq 4 \mathrm{j}$ (non- b-tagged). Limits on a heavy vector-like quark, which decays into $W q, Z q, h q$, are presented in the plane $\mathrm{B}(Q \rightarrow$ $W q)$ vs. $\mathrm{B}(Q \rightarrow h q)$ in Fig. 12.
${ }^{25}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_{T} isolated lepton, large E_{T}, and at least 6 jets in which one, two or more dijets are from W.
${ }^{26}$ Based on $2.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No $b^{\prime} \rightarrow Z b$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z \rightarrow e^{+} e^{-}$and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b^{\prime} mixing solely with the third SM generation.
${ }^{27}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large E_{T}, and ≥ 2 jets.
${ }^{28}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large E_{T} and $\mathrm{H}_{T}>350 \mathrm{GeV}$.
${ }^{29}$ Based on $5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 12 BH searched for QCD and EW production of single and pair of degenerate 4 'th generation quarks that decay to $b W$ or $t W$. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of $25 \mathrm{GeV} / \mathrm{c}^{2}$ between $m_{t^{\prime}}$ and $m_{b^{\prime}}$, the corresponding limit shifts by about $\pm 20 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{30}$ Based on $4.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN $12 \times$ looked for events with trileptons or same-sign dileptons and at least one b jet.
${ }^{31}$ Based on $4.8 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . AALTONEN 11 J looked for events with $\ell+E_{T}+\geq 5 \mathrm{j}$ ($\geq 1 b$ or c). No signal is observed and the bound $\sigma\left(b^{\prime} \bar{b}^{\prime}\right)$ $<30 \mathrm{fb}$ for $m_{b^{\prime}}>375 \mathrm{GeV}$ is found for $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$.
${ }^{32}$ Based on $34 \mathrm{pb}^{-1}$ of data in $p p$ collisions at 7 TeV . CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b^{\prime}}$ between 255 and 361 GeV at $95 \% \mathrm{CL}$ for $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$.
${ }^{33}$ Based on $2.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. AALTONEN 10 H looked for pair production of heavy quarks which decay into $t W^{-}$or $t W^{+}$, in events with same sign dileptons (e or μ), several jets and large missing E_{T}. The result is obtained for b^{\prime} which decays into $t W^{-}$. For the charge $5 / 3$ quark ($T_{5 / 3}$) which decays into $t W^{+}, m_{T_{5 / 3}}>365 \mathrm{GeV}(95 \% \mathrm{CL})$ is found when it has the charge $-1 / 3$ partner B of the same mass.
34 FLACCO 10 result is obtained from AALTONEN 10 H result of $m_{b^{\prime}}>338 \mathrm{GeV}$, by relaxing the condition $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=100 \%$ when $m_{b^{\prime}}>m_{t^{\prime}}$.
${ }^{35}$ Result is based on $1.06 \mathrm{fb}^{-1}$ of data. No excess from the SM $Z+$ jet events is found when Z decays into $e e$ or $\mu \mu$. The $m_{b^{\prime}}$, bound is found by comparing the resulting upper bound on $\sigma\left(b^{\prime} \bar{b}^{\prime}\right)\left[1-\left(1-\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)\right)^{2}\right]$ and the LO estimate of the b^{\prime} pair production cross section shown in Fig. 38 of the article.
${ }^{36}$ HUANG 08 reexamined the b^{\prime} mass lower bound of 268 GeV obtained in AALTONEN 07 C that assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$, which does not hold for $m_{b^{\prime}}>25 \mathrm{GeV}$. The lower mass bound is given in the plane of $\sin ^{2}\left(\theta_{t b^{\prime}}\right)$ and $m_{b^{\prime}}$.
${ }^{37}$ AFFOLDER 00 looked for b^{\prime} that decays in to $b+Z$. The signal searched for is $b b Z Z$ events where one Z decays into $e^{+} e^{-}$or $\mu^{+} \mu^{-}$and the other Z decays hadronically. The bound assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=100 \%$. Between 100 GeV and 199 GeV , the $95 \% \mathrm{CL}$ upper bound on $\sigma\left(b^{\prime} \rightarrow \bar{b}^{\prime}\right) \times \mathrm{B}^{2}\left(b^{\prime} \rightarrow Z b\right)$ is also given (see their Fig. 2)
${ }^{38}$ ABE 98N looked for $Z \rightarrow e^{+} e^{-}$decays with displaced vertices. Quoted limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$ and $c \tau_{b^{\prime}}=1 \mathrm{~cm}$. The limit is lower than $m_{Z}+m_{b}(\sim 96 \mathrm{GeV})$ if $c \tau>22 \mathrm{~cm}$ or $c \tau<0.009 \mathrm{~cm}$. See their Fig. 4.
${ }^{39}$ ABACHI 97D searched for b^{\prime} that decays mainly via FCNC. They obtained 95% CL upper bounds on $\mathrm{B}\left(b^{\prime} \bar{b}^{\prime} \rightarrow \gamma+3\right.$ jets) and $\mathrm{B}\left(b^{\prime} \bar{b}^{\prime} \rightarrow 2 \gamma+2\right.$ jets), which can be interpreted as the lower mass bound $m_{b^{\prime}}>m_{Z}+m_{b}$.
${ }^{40}$ ABACHI 95F bound on the top-quark also applies to b^{\prime} and t^{\prime} quarks that decay predominantly into W. See FROGGATT 97.
${ }^{41}$ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92 G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow\right.$ $\left.b \ell^{+} \ell^{-}\right)=1 \%$. For an exotic quark decaying only via virtual $Z\left[\mathrm{~B}\left(b \ell^{+} \ell^{-}\right)=3 \%\right]$, the limit is 85 GeV .
${ }^{42} \mathrm{ABE} 92$ dilepton analysis limit of $>85 \mathrm{GeV}$ at $\mathrm{CL}=95 \%$ also applies to b^{\prime} quarks, as discussed in ABE 90b.
${ }^{43}$ ABE 90b exclude the region $28-72 \mathrm{GeV}$.
${ }^{44}$ AKESSON 90 searched for events having an electron with $p_{T}>12 \mathrm{GeV}$, missing momentum $>15 \mathrm{GeV}$, and a jet with $E_{T}>10 \mathrm{GeV},|\eta|<2.2$, and excluded $m_{b^{\prime}}$ between 30 and 69 GeV .
45 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90b.
${ }^{46}$ ALBAJAR 88 study events at $E_{c m}=546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b^{\prime} \bar{b}^{\prime}$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O\left(\alpha_{S}^{3}\right)$ cross section of ALTARELLI 88.
$b^{\prime}(-1 / 3)$ mass limits from single production in $p \bar{p}$ and $p p$ collisions

VALUE (GeV)	L\%	DOCUMENT ID		TECN	COMMENT
>1500	95	${ }^{1}$ AAD	16 ан	ATLS	$\underset{t W)=1}{g b \rightarrow t} \underset{\substack{b^{\prime} \\ t}}{ } t W, \mathrm{~B}\left(b^{\prime} \rightarrow\right.$
>1390	95	2 KHACHATRY .	. 161	CMS	$\underset{t W)=1}{g b \rightarrow} t W, \mathrm{~B}\left(b^{\prime} \rightarrow\right.$
>1430	95	${ }^{3} \mathrm{KHACHATRY}$.	. 161	CMS	
>1530	95	${ }^{4}$ KHACHATRY.	.. 16	CMS	$\underset{t W)=1}{g b \rightarrow t W, B\left(b^{\prime} \rightarrow\right.}$
> 693	95	${ }^{5}$ ABAZOV	11F	D0	$\begin{aligned} & q u \rightarrow q^{\prime} b^{\prime} \rightarrow q^{\prime}(W u) \\ & \widetilde{\kappa}_{u b^{\prime}}=1, \mathrm{~B}\left(b^{\prime} \rightarrow W u\right)=1 \end{aligned}$
> 430	95	${ }^{5}$ ABAZOV	11F	D0	$q d \rightarrow q b^{\prime} \rightarrow q(Z d)$

- - We do not use the following data for averages, fits, limits, etc. - ${ }^{6}$ SIRUNYAN 19AI CMS $b Z / t W \rightarrow b^{\prime} \rightarrow t W$ ${ }^{1}$ AAD 16AH based on $20.3 \mathrm{fb}{ }^{-1}$ of data in $p p$ collisions at 8 TeV . No significant excess over SM expectation is found in the search for a vector-like b^{\prime} in the single-lepton and dilepton channels (ℓ or $\ell \ell)+1,2,3 j(\geq 1 b)$. The model assumes that the b^{\prime} has the excited quark couplings.
${ }^{2}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on left-handed b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton + jets, and dilepton final states.
${ }^{3}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on right-handed b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton + jets, and dilepton final states.
${ }^{4}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on vector-like b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton+jets, and dilepton final states
${ }^{5}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in ppbar collisions at 1.96 TeV . ABAZOV 11 F looked for single production of b^{\prime} via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p \bar{p} \rightarrow b^{\prime} q \rightarrow W u q$, and $p \bar{p} \rightarrow b^{\prime} q \rightarrow Z d q$ are given in Figs. 3 and 4 , respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.
${ }^{6}$ SIRUNYAN 19AI based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Exclusion limits are set on the product of the production cross section and branching fraction for the $b^{\prime}(-1 / 3)+b$ and $b^{\prime}(-1 / 3)+t$ modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.

MASS LIMITS for b^{\prime} (4 ${ }^{\text {th }}$ Generation) Quark or Hadron in $e^{+} e^{-}$Collisions

 Search for hadrons containing a fourth-generation $-1 / 3$ quark denoted b^{\prime}.The last column specifies the assumption for the decay mode (C C denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL\%	DOCUMENT ID		TECN	COMMENT
>46.0	95	1 DECAMP	90F	ALEP	any decay
- - We do not use the following data for averages, fits, limits, etc. - -					
none 96-103	95	2 ABDALLAH ${ }^{3}$ ADRIANI	$\begin{aligned} & 07 \\ & 93 \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { DLPH } \\ & \text { L3 } \end{aligned}$	$b^{\prime} \rightarrow b Z, c W$ Quarkonium
>44.7	95	ADRIANI	93m	L3	$\Gamma(Z)$
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90D	VNS	Any decay; event shape
>45.0	95	ABREU	90D	DLPH	$\mathrm{B}(C C)=1 ; \text { event }$ shape
>44.5	95	${ }^{4}$ ABREU	90D	DLPH	$\begin{gathered} b^{\prime} \underset{\bar{c} s, \tau^{-} \nu}{ }, H^{-} \rightarrow \\ \end{gathered}$
>40.5	95	${ }^{5}$ ABREU	90D	DLPH	$\Gamma(Z \rightarrow$ hadrons $)$
>28.3	95	ADACHI	90	TOPZ	$\begin{aligned} & \mathrm{B}(\mathrm{FCNC})=100 \% \text {; isol. } \\ & \gamma \text { or } 4 \text { jets } \end{aligned}$
>41.4	95	${ }^{6}$ AKRAWY	90B	OPAL	Any decay; acoplanarity
>45.2	95	6 AKRAWY	90B	OPAL	$\begin{aligned} & \mathrm{B}(C C)=1 \text {; acopla- } \\ & \text { narity } \end{aligned}$
>46	95	7 AKRAWY	90」	OPAL	$b^{\prime} \rightarrow \gamma+$ any
>27.5	95	${ }^{8}$ ABE	89 E	VNS	$\mathrm{B}(C C)=1 ; \mu, e$
none 11.4-27.3	95	${ }^{9}$ ABE	89G	VNS	$\underset{\substack{\text { isolated } \gamma}}{ }\left(b^{\prime} \rightarrow b \gamma\right)>10 \% ;$
>44.7	95	10 ABRAMS	89C	MRK2	$\begin{aligned} & \mathrm{B}(C C)=100 \% \text {; isol. } \\ & \text { track } \end{aligned}$
>42.7	95	10 ABRAMS	89C	MRK2	$\begin{aligned} & \mathrm{B}(b g)=100 \% ; \text { event } \\ & \text { shape } \end{aligned}$
>42.0	95	${ }^{10}$ ABRAMS	89C	MRK2	Any decay; event shape
>28.4	95	11,12 ADACHI	89C	TOPZ	$\mathrm{B}(C C)=1 ; \mu$
>28.8	95	13 ENO	89	AMY	$\mathrm{B}(C C) \geq 90 \% ; \mu, e$
>27.2	95	13,14 ENO	89	AMY	any decay; event shape
>29.0	95	13 ENO	89	AMY	$\underset{\text { event shape }}{\mathrm{B}\left(b^{\prime} \rightarrow b g\right)} \gtrsim 85 \% ;$
>24.4	95	15 IGARASHI	88	AMY	μ, e
>23.8	95	16 SAGAWA	88	AMY	event shape
>22.7	95	17 ADEVA	86	MRKJ	μ
>21		18 ALTHOFF	84C	TASS	R, event shape
>19		19 ALTHOFF	841	TASS	Aplanarity

1^{1} DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b^{\prime} \rightarrow b g$ for $\mathrm{B}\left(b^{\prime} \rightarrow b g\right)>65 \% b^{\prime} \rightarrow b \gamma$ for $\mathrm{B}\left(b^{\prime} \rightarrow b \gamma\right)$ $>5 \%$ are excluded. Charged Higgs decay were not discussed.
${ }^{2}$ ABDALLAH 07 searched for b^{\prime} pair production at $E_{\mathrm{cm}}=196-209 \mathrm{GeV}$, with $420 \mathrm{pb}^{-1}$. No signal leads to the $95 \% \mathrm{CL}$ upper limits on $\mathrm{B}\left(b^{\prime} \rightarrow b Z\right)$ and $\mathrm{B}\left(b^{\prime} \rightarrow c W\right)$ for $m_{b^{\prime}}$ $=96$ to 103 GeV .
${ }^{3}$ ADRIANI 93 g search for vector quarkonium states near Z and give limit on quarkonium-
Z mixing parameter $\delta m^{2}<(10-30) \mathrm{GeV}^{2}(95 \% \mathrm{CL})$ for the mass $88-94.5 \mathrm{GeV}$. Using

Richardson potential, a $1 \mathrm{~S}\left(b^{\prime} b^{\prime}\right)$ state is excluded for the mass range $87.7-94.7 \mathrm{GeV}$. This range depends on the potential choice.
${ }^{4}$ ABREU 90D assumed $m_{H^{-}}<m_{b^{\prime}}-3 \mathrm{GeV}$.
${ }^{5}$ Superseded by ABREU 91F.
${ }^{6}$ AKRAWY 90 B search was restricted to data near the Z peak at $E_{\mathrm{Cm}}=91.26 \mathrm{GeV}$ at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^{+}decays exist. For charged Higgs decays the excluded regions are between ($m_{H^{+}}+1.5 \mathrm{GeV}$) and 45.5 ${ }_{7} \mathrm{GeV}$.
${ }^{7}$ AKRAWY 90J search for isolated photons in hadronic Z decay and derive $\mathrm{B}\left(Z \rightarrow b^{\prime} \bar{b}^{\prime}\right) \cdot \mathrm{B}\left(b^{\prime} \rightarrow \gamma \mathrm{X}\right) / \mathrm{B}(Z \rightarrow$ hadrons $)<2.2 \times 10^{-3}$. Mass limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow \gamma \mathrm{X}\right)>10 \%$.
${ }^{8} \mathrm{ABE} 89 \mathrm{E}$ search at $E_{\mathrm{cm}}=56-57 \mathrm{GeV}$ at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.
${ }^{9}$ ABE 89 g search was at $E_{\mathrm{Cm}}=55-60.8 \mathrm{GeV}$ at TRISTAN.
${ }^{10}$ If the photonic decay mode is large $\left(\mathrm{B}\left(b^{\prime} \rightarrow b \gamma\right)>25 \%\right)$, the ABRAMS 89 C limit is 45.4 GeV . The limit for for Higgs decay ($b^{\prime} \rightarrow c \mathrm{H}^{-}, \mathrm{H}^{-} \rightarrow \bar{c} s$) is 45.2 GeV .
${ }^{11}$ ADACHI 89C search was at $E_{\mathrm{Cm}}=56.5-60.8 \mathrm{GeV}$ at TRISTAN using multi-hadron events accompanying muons.
${ }^{12}$ ADACHI 89C also gives limits for any mixture of $C C$ and $b g$ decays.
${ }^{13}$ ENO 89 search at $E_{\mathrm{cm}}=50-60.8$ at TRISTAN.
${ }^{14}$ ENO 89 considers arbitrary mixture of the charged current, $b g$, and $b \gamma$ decays.
${ }^{5}$ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R\left(b^{\prime}\right)<0.26$ (95\% CL) assuming charged current decay, which translates to $m_{b^{\prime}}>24.4 \mathrm{GeV}$.
${ }^{16}$ SAGAWA 88 set limit σ (top) $<6.1 \mathrm{pb}$ at $\mathrm{CL}=95 \%$ for top-flavored hadron production from event shape analyses at $E_{\mathrm{cm}}=52 \mathrm{GeV}$. By using the quark parton model crosssection formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge $-1 / 3$ quarks.
${ }^{17}$ ADEVA 86 give $95 \% \mathrm{CL}$ upper bound on an excess of the normalized cross section, ΔR, as a function of the minimum c.m. energy (see their figure 3). Production of a pair of $1 / 3$ charge quarks is excluded up to $E_{\mathrm{cm}}=45.4 \mathrm{GeV}$.
${ }^{18}$ ALTHOFF 84 C narrow state search sets limit $\Gamma\left(e^{+} e^{-}\right) \mathrm{B}$ (hadrons) $<2.4 \mathrm{keV} \mathrm{CL}=95 \%$ and heavy charge $1 / 3$ quark pair production $m>21 \mathrm{GeV}, \mathrm{CL}=95 \%$.
${ }^{19}$ ALTHOFF 841 exclude heavy quark pair production for $7<m<19 \mathrm{GeV}$ ($1 / 3$ charge) using aplanarity distributions ($\mathrm{CL}=95 \%$).

REFERENCES FOR Searches for (Fourth Generation) \boldsymbol{b}^{\prime} Quark

SIRUNYAN	19al	EPJ C79 90	A.M. Sirunyan et al.		(CMs Collab.)
SIRUNYAN	19 AQ	EPJ C79 364	A.M. Sirunyan et al.		(CMS Collab.)
SIRUNYAN	19BW	PR D100 072001	A.M. Sirunyan et al.		(CMS Collab.)
AABOUD	18 AW	JHEP 1808048	M. Aaboud et al.		(ATLAS Collab.)
AABOUD	18CE	JHEP 1812039	M. Aaboud et al.		(ATLAS Collab.)
AABOUD	18 CL	PR D98 092005	M. Aaboud et al.		(ATLAS Collab.)
AABOUD	18 CP	PR D98 112010	M. Aaboud et al.		(ATLAS Collab.)
AABOUD	18CR	PRL 121211801	M. Aaboud et al.		(ATLAS Collab.)
SIRUNYAN	18BM	JHEP 1808177	A.M. Sirunyan et al.		(CMS Collab.)
SIRUNYAN	18 Q	PR D97 072008	A.M. Sirunyan et al.		(CMS Collab.)
SIRUNYAN	17 AU	JHEP 1711085	A.M. Sirunyan et al.		(CMS Collab.)
AAD	16 AH	JHEP 1602110	G. Aad et al.		(ATLAS Collab.)
KHACHATRY...	16AN	PR D93 112009	V. Khachatryan et al.		(CMS Collab.)
KHACHATRY...	161	JHEP 1601166	V. Khachatryan et al.		(CMS Collab.)
AAD	15 AR	JHEP 1508105	G. Aad et al.		(ATLAS Collab.)
AAD	15BY	JHEP 1510150	G. Aad et al.		(ATLAS Collab.)
AAD	15CN	PR D92 112007	G. Aad et al.		(ATLAS Collab.)
AAD	$15 Z$	PR D91 112011	G. Aad et al.		(ATLAS Collab.)
AAD	14 AZ	JHEP 1411104	G. Aad et al.		(ATLAS Collab.)
CHATRCHYAN	131	JHEP 1301154	s. Chatrchyan et al.		(CMS Collab.)
AAD	12AT	PRL 109032001	G. Aad et al.		(ATLAS Collab.)
AAD	12 AU	PRL 109071801	G. Aad et al.		(ATLAS Collab.)
AAD	12 BC	PR D86 012007	G. Aad et al.		(ATLAS Collab.)
AAD	12BE	JHEP 1204069	G. Aad et al.		(ATLAS Collab.)
CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan et al.		(cms Collab.)
CHATRCHYAN	12X	JHEP 1205123	S. Chatrchyan et al.		(CMS Collab.)
AALTONEN	${ }^{111}$	PRL 106141803	T. Aaltonen et al.		(CDF Collab.)
ABAZOV	11F	PRL 106081801	V.M. Abazov et al.		(D0 Collab.)
CHATRCHYAN	11L	PL B701 204	S. Chatrchyan et al.		(CMS Collab.)
AALTONEN	10 H	PRL 104091801	T. Aaltonen et al.		(CDF Collab.)
flacco	10	PRL 105111801	C.J. Flacco et al.		(UCI, HAIF)
ATRE	09	PR D79 054018	A. Atre et al.		
abazov	08X	PRL 101111802	V.M. Abazov et al.		(Do Collab.)
huang	08	PR D77 037302	P.Q. Hung, M. Sher		(UVA, WILL)
AALTONEN	${ }^{07 C}$	PR D76 072006	T. Alltonen et al.		(CDF Collab.)
abdallah	07	EPJ C50 507	J. Abdallah et al.		(DELPHI Collab.)
ACOSTA	03	PRL 90131801	D. Acosta et al.		(CDF Collab.)
AFFOLDER	00	PRL 84835	A. Affolder et al.		(CDF Collab.)
ABE	98 N	PR D58 051102	F. Abe et al.		(CDF Collab.)
ABACHI	97D	PRL 783818	S. Abachi et al.		(Do Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.	Nielsen	(GLAS+)
ABACHI	95 F	PR D52 4877	S. Abachi et al.		(Do Collab.)
ADRIANI	${ }^{93 \mathrm{G}}$	PL B313 326	O. Adriani et al.		(L3 Collab.)
ADRIANI	93M	PRPL 2361	O. Adriani et al.		(L3 Collab.)
MUKHOPAD...	93	PR D48 2105	B. Mukhopadhyaya, D.P. Roy		(TATA)
ABE	92	PRL 68447	F. Abe et al.		(CDF Collab.)
Also		PR D45 3921	F. Abe et al.		(CDF Collab.)
ABE	92 G	PR D45 3921	F. Abe et al.		(CDF Collab.)
ABREU	$91 F$	NP B367 511	P. Abreu et al.		(DELPHI Collab.)
ABE	90B	PRL 64147	F. Abe et al.		(CDF Collab.)
ABE	90 D	PL B234 382	K. Abe et al.		(VENUS Collab.)
ABREU	90 D	PL B242 536	P. Abreu et al.		(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi et al.		(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson et al.		(UA2 Collab.)
AKRAWY	90 B	PL B236 364	M.Z. Akrawy et al.		(OPAL Collab.)
AKRAWY	90 J	PL B246 285	M.Z. Akrawy et al.		(OPAL Collab.)
${ }^{\text {AlBAJAR }}$	${ }_{900} 90$	ZPHY C48 1	C. Albajar et al.		(UA1 Collab.)
${ }_{\text {ABE }}$	${ }_{89 \mathrm{E}}$	PR D39 3524	k. Abe et al.		(VENUS Collab.)
ABE	89 G	PRL 631776	K. Abe et al.		(VEnus Collab.)
ABRAMS	89 C	PRL 632447	G.S. Abrams et al.		(Mark II Collab.)
ADACHI	${ }^{89}$	PL B229 427	I. Adachi et al.		(TOPAZ Collab.)
ENO	89	PRL 631910	S. Eno et al.		(AMY Collab.)
Albajar	88	ZPHY C37 505			(UA1 Collab.)
Altarelli	88	NP B308 724	G. Altarelli et al.	(CERN,	N, ROMA, ETH)
IGARASH\|	88	PRL 602359	S. Igarashi et al.		(AMY Collab.)
SAGAWA	88	PRL 6093	H. Sagawa et al.		(AMY Collab.)
ADEVA	${ }^{86}$	PR D34 681	B. Adeva et al.		(Mark-J Collab.)
ALTHOFF ALTHOFF	84 C 841	PL 138 B ZPHY C22	M. Althoff et al. M. Althoff et al.		(TASSO Collab.)
ALthoff		ZPHY 22307	M. Althoff et al.		(TASSO Collab.)

t^{\prime} (4 $4^{\text {th }}$ Generation) Quark, Searches for

$\boldsymbol{t}^{\prime}(2 / 3)$-quark/hadron mass limits in $p \bar{p}$ and $p p$ collisions

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>1280	95	${ }^{1}$ SIRUNYAN	19AQ CMS	$\mathrm{B}\left(t^{\prime} \rightarrow Z t\right)=1$
>1370	95	${ }^{2}$ SIRUNYAN	19BWCMS	$\mathrm{B}\left(t^{\prime} \rightarrow h t\right)=1$
> 980	95	${ }^{3}$ AABOUD	18CE ATLS	$\geq 2 \ell+E_{T}+\geq 1 b \mathrm{j}$
>1010	95	4 AABOUD	18CL ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow h t\right)=1$
>1030	95	5,6 AABOUD	18CP ATLS	$2,3 \ell$, singlet model
>1210	95	5,7 AABOUD	18CP ATLS	2,3 ℓ, doublet model
>1310	95	8,9 AABOUD	18CR ATLS	singlet t^{\prime}. ATLAS combination
>1370	95	8,10 AABOUD	18CR ATLS	t^{\prime} in a weak isospin doublet $\left(t^{\prime}, b^{\prime}\right)$. ATLAS combination.
>1140	95	11 SIRUNYAN	18BM CMS	$W b, Z t, h t$ modes
>845	95	12 SIRUNYAN	18Q CMS	$\mathrm{B}\left(t^{\prime} \rightarrow W q\right)=1(q=d, s)$
>1295	95	13 SIRUNYAN	18W CMS	$\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$
>1160	95	14 AABOUD	17L ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow Z t\right)=1$
>860	95	15 SIRUNYAN	17AU CMS	
>770	95	16 AAD	15AR ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$
>590	95	17 AAD	15BY ATLS	$W b, Z t, h t$ modes
>745	95	18 KHACHATRY...	15aI CMS	$\mathrm{B}\left(t^{\prime} \rightarrow h t\right)=1$
>735	95	19 AAD	14AZ ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>700	95	20 CHATRCHYAN	14A CMS	$\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$
>706	95	20 CHATRCHYAN	14A CMS	$\mathrm{B}\left(t^{\prime} \rightarrow Z t\right)=1$
>782	95	20 CHATRCHYAN	14A CMS	$\mathrm{B}\left(t^{\prime} \rightarrow h t\right)=1$
>350	95	21 AAD	12BC ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow W q\right)=1(q=d, s, b)$
>420	95	22 AAD	12C ATLS	$t^{\prime} \rightarrow X t\left(m_{X}<140 \mathrm{GeV}\right)$
>685	95	23 CHATRCHYAN	12 BH CMS	$m_{b^{\prime}}=m_{t^{\prime}}$
> 557	95	24 CHATRCHYAN	12P CMS	$\underset{t^{\prime} \bar{t}^{\prime} \rightarrow{ }_{b \ell^{+}} W^{+} \bar{b}^{-} b W^{-} \bar{\nu}}{ } \rightarrow$
- - We do not use the following data for averages, fits, limits, etc. - -				
>656	95	25 AAD	13F ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$
>625	95	26 CHATRCHYAN	131 CMS	$\mathrm{B}\left(t^{\prime} \rightarrow Z t\right)=1$
>404	95	27 AAD	12AR ATLS	$\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$
>570	95	28 CHATRCHYAN	12bC CMS	$t^{\prime} \bar{t}^{\prime} \rightarrow W^{+} b W^{-} \bar{b}$
>400	95	29 AALTONEN	11aн CDF	$t^{\prime} \rightarrow X t\left(m_{X}<70 \mathrm{GeV}\right)$
>358	95	${ }^{30}$ AALTONEN	11AL CDF	$t^{\prime} \rightarrow W b$
>340	95	30 AALTONEN	11AL CDF	$t^{\prime} \rightarrow W \mathrm{~W}(q=d, s, b)$
>360	95	31 AALTONEN	110 CDF	$t^{\prime} \rightarrow X t\left(m_{X}<100 \mathrm{GeV}\right)$
>285	95	32 ABAZOV	11Q D0	$t^{\prime} \rightarrow W \mathrm{C}(q=d, s, b)$
> 256	95	33,34 AALTONEN	08H CDF	$t^{\prime} \rightarrow W q$

${ }^{1}$ SIRUNYAN 19AQ based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair production of vector-like t^{\prime} is seached for with one t^{\prime} decaying into $Z t$ and the other t^{\prime} decaying into $W b, Z t, h t$. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of t^{\prime}
${ }^{2}$ SIRUNYAN 19BW based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like t^{\prime} using all-hadronic final state. The analysis is made for the $W b, Z t, h t$ modes and mass limits are obtained for a variety of branching ratios
${ }^{3}$ AABOUD 18CE based on $36.1 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of t^{\prime} into $Z t, W b$ and $H t$ as predicted by the model.
${ }^{4}$ AABOUD 18 CL based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like t^{\prime} using all-hadronic final state. The analysis is also made for the $W b, Z t, h t$ modes and mass limits are obtained for a variety of branching ratios.
${ }^{5}$ AABOUD 18 CP based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair and single production of vector-like t^{\prime} are seached for with at least one t^{\prime} decaying into $Z t$. In the case of $\mathrm{B}\left(t^{\prime} \rightarrow Z t\right)=1$, the limit is $m_{t^{\prime}}>1340 \mathrm{GeV}$.
${ }^{6}$ The limit is for the singlet model, assuming that the branching ratios into $Z t, W b$, and $H t$ add up to one.
7 The limit is for the doublet model, assuming that the branching ratios into $Z t, W b$, and $H t$ add up to one.
${ }^{8}$ AABOUD 18 CR based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A combination of searches for the pair-produced vector-like t^{\prime} in various decay channels $\left(t^{\prime} \rightarrow W b, Z t\right.$, $h t$). Also a model-independent limit is obtained as $m_{t^{\prime}}>1.31 \mathrm{TeV}$, assuming that the branching ratios into $Z t, W b$ and $h t$ add up to one.
${ }^{9}$ The limit is for the singlet t^{\prime}.
${ }^{10}$ The limit is for t^{\prime} in a weak isospin doublet $\left(t^{\prime}, b^{\prime}\right)$ and $\left|V_{t^{\prime} b}\right| \ll\left|V_{t b^{\prime}}\right|$.
11 SIRUNYAN 18BM based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like t^{\prime}. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming $\mathrm{B}(t H)=1$, the limit is 1270 GeV and for $\mathrm{B}(t Z)=1$ it is 1300 GeV .
12 SIRUNYAN 18Q based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The limit is for the pair-produced vector-like t^{\prime} that couple only to light quarks. Constraints for other decay channels ($Z q$ and $H q$) are also given in the paper.
13 SIRUNYAN 18 W based on $35.8 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the vector-like t^{\prime} pair-produced by strong interaction using lepton-plus-jets mode and assuming that $\mathrm{B}\left(t^{\prime} \rightarrow W b\right)$ is 100 product of the production cross section and branching faction to $W b$ for any new pair-produced heavy quark decaying to this channel as a ${ }^{n}$ narrow resonance.
14 AABOUD 17L based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. No signal is found in the search for heavy quark pair production that decay into $Z t$ followed by $Z \rightarrow \nu \nu$ in

Quark Particle Listings

t^{\prime} (Fourth Generation) Quark

the events with one lepton, large E_{T}, and ≥ 4 jets. The lower mass limit 0.87 (1.05) TeV is obtained for the singlet (doublet) model with other possible decay modes.
${ }^{15}$ SIRUNYAN 17 AU based on $2.3-2.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Limit on pairproduced singlet vector-like t^{\prime} using one lepton and several jets. The mass bound is given for a t^{\prime} transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark. For a doublet, the limit is $>830 \mathrm{GeV}$. Other limits are also given in the paper.
${ }^{16}$ AAD 15AR based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used lepton-plus-jets final state. See Fig. 20 for mass limits in the plane of $\mathrm{B}\left(t^{\prime} \rightarrow H t\right)$ vs. $\mathrm{B}\left(t^{\prime} \rightarrow W b\right)$ from a combination of $t^{\prime} \bar{t}^{\prime} \rightarrow W b+X$ and $t^{\prime} \bar{t}^{\prime} \rightarrow H t+X$ searches. Any branching ratio scenario is excluded for mass below 715 GeV .
${ }^{17}$ AAD 15BY based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-produced vector-like t^{\prime} assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing $\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 \mathrm{~b})$ and including a same-sign lepton pair.
${ }^{18}$ KHACHATRYAN 15 Al based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The search exploits all-hadronic final states by tagging boosted Higgs boson using jet substructure and b-tagging
${ }^{19}$ Based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. No significant excess over SM expectation is found in the search for pair production or single production of t^{\prime} in the events with dilepton from a high $p_{T} Z$ and additional jets ($\geq 1 b$-tag). If instead of $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)$ $=1$ an electroweak singlet with $\mathrm{B}\left(b^{\prime} \rightarrow W t\right) \sim 0.45$ is assumed, the limit reduces to 685 GeV .
${ }^{20}$ Based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The t^{\prime} quark is pair produced and is assumed to decay into three different final states of $b W, t Z$, and $t h$. The search is carried out using events with at least one isolated lepton.
${ }^{21}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large E_{T}, and ≥ 2 jets.
${ }^{22}$ Based on $1.04 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 7 TeV . AAD 12 C looked for $t^{\prime} \bar{t}^{\prime}$ production followed by t^{\prime} decaying into a top quark and X, an invisible particle, in a final state with an isolated high- P_{T} lepton, four or more jets, and a large missing transverse energy. No excess over the SM $t \bar{t}$ production gives the upper limit on $t^{\prime} \bar{t}^{\prime}$ production cross section as a function of $m_{t^{\prime}}$ and m_{X}. The result is obtained for $\mathrm{B}\left(t^{\prime} \rightarrow W t\right)=1$.
${ }^{23}$ Based on $5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to $W b$ or $W t$. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of $25 \mathrm{GeV} / \mathrm{c}^{2}$ between $m_{t^{\prime}}$ and $m_{b^{\prime}}$, the corresponding limit shifts by about $\pm 20 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{24}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 12P looked for $t^{\prime} t^{\prime}$ production events with two isolated high p_{T} leptons, large E_{T}, and 2 high p_{T} jets with b-tag. The absence of signal above the SM background gives the limit for $\mathrm{B}\left(t^{\prime} \rightarrow W b\right)$ ${ }_{5}=1$.
${ }^{25}$ Based on $4.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a b quark in the events with a high p_{T} isolated lepton, large E_{T} and at least 3 jets ($\geq 1 b$-tag). Vector-like quark of charge $2 / 3$ with $400<m_{t^{\prime}}<550 \mathrm{GeV}$ and $\mathrm{B}\left(t^{\prime} \rightarrow W b\right)>0.63$ is excluded at $95 \% \mathrm{CL}$.
${ }^{26}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13। looked for events with one isolated electron or muon, large E_{T}, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
${ }^{27}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found in the search for pair produced heavy quarks that decay into W boson and a b quark in the events with a high p_{T} isolated lepton, large E_{T} and at least 3 jets ($\geq 1 b$-tag).
${ }^{28}$ Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 12BC looked for $t^{\prime} t^{\prime}$ production events with a single isolated high p_{T} lepton, large E_{T} and at least 4 high p_{T} jets with a b-tag. The absence of signal above the SM background gives the limit for $\mathrm{B}\left(t^{\prime} \rightarrow W b\right)=1$.
${ }^{29}$ Based on $5.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . AALTONEN 11AH looked for $t^{\prime} \bar{t}^{\prime}$ production followed by t^{\prime} decaying into a top quark and X, an invisible particle, in the all hadronic decay mode of $t \bar{t}$. No excess over the SM $t \bar{t}$ production gives the upper limit on $t^{\prime} \bar{t}^{\prime}$ production cross section as a function of $m_{t^{\prime}}$ and m_{X}. The result is obtained for $\mathrm{B}\left(t^{\prime} \rightarrow x t\right)=1$.
${ }^{30}$ Based on $5.6 \mathrm{fb}^{-1}$ of data in ppbar collisions at 1.96 TeV . AALTONEN 11AL looked for $\ell+\geq 4 \mathrm{j}$ events and set upper limits on $\sigma\left(t^{\prime} \bar{t}^{\prime}\right)$ as functions of $m_{t^{\prime}}$.
${ }^{31}$ Based on $4.8 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . AALTONEN 110 looked for $t^{\prime} \bar{t}^{\prime}$ production signal when t^{\prime} decays into a top quark and X, an invisible particle, in ℓ $+E_{T}+$ jets channel. No excess over the SM $t \bar{t}$ production gives the upper limit on $t^{\prime} \bar{t}^{\prime}$ production cross section as a function of $m_{t^{\prime}}$ and m_{X}. The result is obtained for $\mathrm{B}\left(t^{\prime} \rightarrow X t\right)=1$.
${ }^{32}$ Based on $5.3 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . ABAZOV 11 Q looked for $\ell+$ $\#_{T}+\geq 4 \mathrm{j}$ events and set upper limits on $\sigma\left(t^{\prime} \bar{t}^{\prime}\right)$ as functions of $m_{t^{\prime}}$
${ }^{33}$ Searches for pair production of a new heavy top-like quark t^{\prime} decaying to a W boson and another quark by fitting the observed spectrum of total transverse energy and reconstructed t^{\prime} mass in the lepton + jets events.
${ }^{34}$ HUANG 08 reexamined the t^{\prime} mass lower bound of 256 GeV obtained in AALTONEN 08H that assumes $\mathrm{B}\left(b^{\prime} \rightarrow q Z\right)=1$ for $q=u, c$ which does not hold when $m_{b^{\prime}}<m_{t^{\prime}}-m_{W}$ or the mixing $\sin ^{2}\left(\theta_{b t^{\prime}}\right)$ is so tiny that the decay occurs outside of the vertex detector. Fig. 1 gives that lower bound on $m_{t^{\prime}}$ in the plane of $\sin ^{2}\left(\theta_{b t^{\prime}}\right)$ and $m_{b^{\prime}}$.
$t^{\prime}(5 / 3)$-quark/hadron mass limits in $p \bar{p}$ and $p p$ collisions

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>1330	95	${ }^{1}$ SIRUNYAN	19T CMS	$t_{R}^{\prime}(5 / 3) \rightarrow t W^{+}$
>1300	95	${ }^{1}$ SIRUNYAN	19 T CMS	$t_{L}^{\prime}(5 / 3) \rightarrow t W^{+}$
>1350	95	${ }^{2}$ AABOUD	18aw ATLS	$t^{\prime}(5 / 3) \rightarrow t W^{+}$

>1190	95	${ }^{3}$ AABOUD	18CE ATLS	$\geq 2 \ell+E_{T}+\geq 1 \mathrm{bj}$
>1020	95	${ }^{4}$ SIRUNYAN	17J CMS	$t^{\prime}(5 / 3) \rightarrow t W^{+}$
> 990	95	${ }^{4}$ SIRUNYAN	17」 CMS	$t_{L}^{\prime}(5 / 3) \rightarrow t W^{+}$
>750	95	${ }^{5}$ AAD	15BY ATLS	$t^{\prime}(5 / 3) \rightarrow t W^{+}$
> 840	95	${ }_{6}^{6}$ AAD	$15 z$ ATLS	$t^{\prime}(5 / 3) \rightarrow t W^{+}$
> 800	95	${ }^{7}$ CHATRCH	14T CMS	$t^{\prime}(5 / 3) \rightarrow t W^{+}$

${ }^{1}$ SIRUNYAN 19T based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Signals are searched in the final states of t^{\prime} pair production, with same-sign leptons (which come from a t^{\prime} decay) or a single lepton (which comes from a W out of 4 Ws), along with jets, and no excess over the SM expectation is found.
${ }^{2}$ AABOUD 18AW based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Limit on $t^{\prime}(5 / 3)$ in pair production assuming its coupling to $W t$ is equal to one. Lepton-plus-jets final state is used, characterized by $\ell+E_{T}+$ jets ($\geq 1 b$-tagged).
${ }^{3}$ AABOUD 18CE based on $36.1 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Events including a same-sign lepton pair are used. The limit is for the pair-produced vector-like t^{\prime}. With single t^{\prime} production included, assuming $t^{\prime} t W$ coupling of one, the limit is $m_{t^{\prime}}>1.6 \mathrm{TeV}$
${ }^{4}$ SIRUNYAN 17 J based on $2.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Signals are searched in the final states of t^{\prime} pair production, with same-sign leptons (which come from a t^{\prime} decay) or a single lepton (which comes from a W out of 4 Ws), along with jets, and no excess over the SM expectation is found
${ }^{5}$ AAD 15BY based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on $t^{\prime}(5 / 3)$ in pair and single production assuming its coupling to $W t$ is equal to one. Used events containing $\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 \mathrm{~b})$ and including a same-sign lepton pair.
${ }^{6}$ AAD $15 z$ based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used events with $\ell+\not \mathbb{F}_{T}+$ $\geq 6 \mathrm{j}(\geq 1 b)$ and at least one pair of jets from weak boson decay, sensitive to the final 7 state $b \bar{b} W^{+} W^{-} W^{+} W^{-}$
${ }^{7}$ CHATRCHYAN 14 T based on $19.5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Non-observation of anomaly in H_{T} distribution in the same-sign dilepton events leads to the limit when pair produced $t^{\prime}(5 / 3)$ quark decays exclusively into t and W^{+}, resulting in the final state with $b \bar{b} W^{+} W^{-} W^{+} W^{-}$
$t^{\prime}(2 / 3)$ mass limits from single production in $p \bar{p}$ and $p p$ collisions

${ }^{1}$ AAD 16aV based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. No significant excess over SM expectation is found in the search for a fully reconstructed vector-like t^{\prime} in the mode $\ell+E_{T}+\geq 2 j(\geq 1 b)$. A veto on massive large-radius jets is used to reject the $t \bar{t}$ background.
${ }^{2}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in ppbar collisions at 1.96 TeV . ABAZOV 11 F looked for single production of t^{\prime} via the Z or E coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p \bar{p} \rightarrow t^{\prime} q \rightarrow(W d) q$, and $p \bar{p} \rightarrow t^{\prime} q \rightarrow(Z d) q$ are given in Figs. 3 and 4 , respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

$\boldsymbol{t}^{\prime}(5 / 3)$ mass limits from single production in $p \bar{p}$ and $p p$ collisions

Value (Gev)	DOCUMENT ID	TECN COMMENT

${ }^{1}$ SIRUNYAN 19AI CMS $\quad t W \rightarrow t^{\prime}(5 / 3) \rightarrow t W$
${ }^{1}$ SIRUNYAN 19 AI based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Exclusion limits are set on the product of the production cross section and branching fraction for the $b^{\prime}(-1 / 3)+$ t and $t^{\prime}(5 / 3)+t$ modes as a function of the vector-like quark mass in Fig. 8 and Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.

REFERENCES FOR Searches for (Fourth Generation) t^{\prime} Quark

RUNYAN	19A	EPJ C79
SIRUNYAN	19AQ	EPJ C79 364
SIRUNYAN	19BW	PR D100 072001
SIRUNYAN	19 T	JHEP 1903082
AABOUD	18AW	JHEP 1808048
AABOUD	18CE	JHEP 1812039
AABOUD	18CL	PR D98 092005
AABOUD	18 CP	PR D98 112010
AABOUD	18CR	PRL 121211801
UN	18BM	JHEP 1808
SIRUNYAN	18Q	PR D97 07200
SIRUNYAN	18W	PL B779 82
AABOUD	17L	JHEP 1708052
SIRUNYAN	17 AU	JHEP 1711085
IRUN	17J	JHEP 1708073
AD	16 AV	EPJ C76 442
AAD	15AR	JHEP 1508105
AAD	15BY	JHEP 1510150
AAD	$15 Z$	PR D91 112011
KHACH	15AI	JHEP 1506080
AAD	14AZ	JHEP 1411104
CHATR	14A	PL B729 149
CHATRCHYAN	14T	PRL 112171801
AAD	13F	PL B718 1284
CHATRCHYAN	131	JHEP 1301154
AAD	12AR	PRL 108261802
AAD	12BC	PR D86 012007
AAD	12 C	PRL 108041805
CHATRCHYAN	12BC	PL B718 307

[^106](CMS Collab.)

CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	12P	PL B716 103	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11AH	PRL 107191803	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11AL	PRL 107261801	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	110	PRL 106191801	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	11 F	PRL 106081801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	11Q	PRL 107082001	V.M. Abazov et al.	(D0 Collab.)
ATRE	09	PR D79 054018	A. Atre et al.	
AALTONEN	08H	PRL 100161803	T. Aaltonen et al.	(CDF Collab.)
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(UVA, WILL)

Free Quark Searches

FREE QUARK SEARCHES

The basis for much of the theory of particle scattering and hadron spectroscopy is the construction of the hadrons from a set of fractionally charged constituents (quarks). A central element of Quantum Chromodynamics is that quarks cannot be observed as free particles but are confined to mesons and baryons. Experiments have produced no evidence for free quarks.

This compilation is only a guide to the literature, since the quoted experimental limits are often only indicative. Reviews can be found in Refs. 1-4.

References

1. M.L. Perl, E.R. Lee, and D. Lomba, Mod. Phys. Lett. A19, 2595 (2004).
2. P.F. Smith, Ann. Rev. Nucl. and Part. Sci. 39, 73 (1989).
3. L. Lyons, Phys. Reports 129, 225 (1985).
4. M. Marinelli and G. Morpurgo, Phys. Reports 85, 161 (1982).

Quark Production Cross Section - Accelerator Searches								
$\begin{aligned} & \text { x-SECT } \\ & \left(\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} C H G \\ (e / 3) \end{gathered}$	MASS	ENERGY (GeV)	BEA	TS	DOCUMENT ID		TECN
<1.7-2.3E-39	39 ± 2	100-600	7000	$p p$	0	1 CHATRCHYAN	13 AR	CMS
<14-5.4E-39	± 1	100-600	7000	$p p$	0	${ }^{1}$ CHATRCHYAN	13 ar	CMS
$<1.3 \mathrm{E}-36$	± 2	45-84	130-172	$e^{+} e^{-}$	0	ABREU	97D	DLPH
$<2 . E-35$	+2	250	1800	$p \bar{p}$	0	${ }^{2}$ ABE	92J	CDF
$<1 . \mathrm{E}-35$	+4	250	1800	$p \bar{p}$	0	${ }^{2}$ ABE	92J	CDF
$<3.8 \mathrm{E}-28$			14.5A	${ }^{28} \mathrm{Si}-\mathrm{Pb}$	b	${ }^{3} \mathrm{HE}$	91	PLAS
<3.2E-28			14.5A	${ }^{28} \mathrm{Si}-\mathrm{Cu}$	u	${ }^{3} \mathrm{HE}$	91	PLAS
<1.E-40	$\pm 1,2$	<10		$p, \nu, \bar{\nu}$	0	BERGSMA	84B	CHRM
<1.E-36	$\pm 1,2$	<9	200	μ	0	AUBERT	83 C	SPEC
<2.E-10	$\pm 2,4$	1-3	200	p	0	${ }^{4}$ BUSSIERE	80	CNTR
$<5 . \mathrm{E}-38$	+1,2	>5	300	p	0	5,6 STEVENSON	79	CNTR
$<1 . \mathrm{E}-33$	± 1	<20	52	pp	0	BASILE	78	SPEC
<9.E-39	$\pm 1,2$	<6	400	p	0	${ }^{5}$ ANTREASYAN		SPEC
<8.E-35	+1,2	<20	52	$p p$	0	7 FABJAN	75	CNTR
<5.E-38	-1,2	4-9	200	p	0	NASH	74	CNTR
<1.E-32	+2,4	4-24	52	$p p$	0	ALPER	73	SPEC
<5.E-31	+1,2,4	<12	300	p	0	LEIPUNER	73	CNTR
<6.E-34	$\pm 1,2$	<13	52	$p p$	0	BOTT	72	CNTR
<1.E-36	-4	4	70	p	0	ANTIPOV	71	CNTR
<1.E-35	$\pm 1,2$	2	28	p	0	${ }^{8}$ ALLABY	69B	CNTR
$<4 . E-37$	-2	<5	70	p	0	${ }^{4}$ ANTIPOV	69	CNTR
$<3 . E-37$	-1,2	2-5	70	p	0	8^{8} ANTIPOV	69b	CNTR
$<1 . \mathrm{E}-35$	+1,2	<7	30	p	0	DORFAN	65	CNTR
<2.E-35	-2	<2.5-5	30	p	0	${ }^{9}$ FRANZINI	65B	CNTR
$<5 . \mathrm{E}-35$	+1,2	<2.2	21	p	0	BINGHAM	64	HLBC
$<1 . \mathrm{E}-32$	+1,2	<4.0	28	p	0	BLUM	64	HBC
$<1 . \mathrm{E}-35$	+1,2	<2.5	31	p	0	${ }^{9}$ HAGOPIAN	64	HBC
$<1 . \mathrm{E}-34$	+1	<2	28	p	0	LEIPUNER	64	CNTR
<1.E-33	+1,2	<2.4	24	p	0	MORRISON	64	HBC

[^107]Quark Differential Production Cross Section - Accelerator Searches

$\begin{aligned} & x-\mathrm{SECT}^{-1} \mathrm{Cm}^{2 \mathrm{srr}^{-1} \mathrm{ev}^{-}} \end{aligned}$		$\begin{aligned} & \text { MASS } \\ & (\mathrm{GeV}) \end{aligned}$	$\begin{gathered} \text { ENERGY } \\ (\mathrm{GeV}) \end{gathered}$	BEAM	EVTS	DOCUMENT ID		TECN
$<4 . E-36$	-2,4	1.5-6	70	p	0	BALDIN	76	CNTR
$<2 . E-33$	± 4	5-20	52	$p p$	0	ALBROW	75	SPEC
<5.E-34	<7	7-15	44	$p p$	0	Jovanov...	75	CNTR
<5.E-35			20	γ	0	${ }^{1}$ GALIK	74	CNTR
<9.E-35	-1,2		200	p	0	NASH	74	CNTR
<4.E-36	-4	2.3-2.7	70	p	0	ANTIPOV	71	CNTR
<3.E-35	$\pm 1,2$	<2.7	27	p	0	ALLABY	69B	CNTR
$<7 . \mathrm{E}-38$	-1,2	<2.5	70	p	0	ANTIPOV	69B	CNTR

${ }^{1}$ Cross section in $\mathrm{cm}^{2} / \mathrm{sr} /$ equivalent quanta.

Quark Flux - Accelerator Searches
The definition of FLUX depends on the experiment
(a) is the ratio of measured free quarks to predicted free quarks if there is no "confinement."
(b) is the probability of fractional charge on nuclear fragments. Energy is in $\mathrm{GeV} /$ nucleon.
(c) is the 90% CL upper limit on fractionally-charged particles produced per interaction.
(d) is quarks per collision.
(e) is inclusive quark-production cross-section ratio to $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$.
(f) is quark flux per charged particle.
(g) is the flux per ν-event.
(h) is quark yield per π^{-}yield.
(i) is 2-body exclusive quark-production cross-section ratio to $\sigma\left(e^{+} e^{-} \rightarrow\right.$

FLUX	$\mu^{+} \mu^{-}$).								
		$\begin{gathered} \text { chG } \\ (1 / 3) \end{gathered}$		$\begin{gathered} \text { ENRGY } \\ (\mathrm{GeV}) \end{gathered}$	BEAM EVT	EVTS	DOCUMENT ID		TECN
<1.6E-3	b	see note		200	${ }^{32} \mathrm{~S}-\mathrm{Pb}$	b	$1{ }^{1}$ HUENTRUP	96	PLAS
$<6.2 \mathrm{E}-4$	b	see note		10.6	${ }^{32} \mathrm{~S}-\mathrm{Pb}$	b	${ }^{1}$ HUENTRUP	96	PLAS
$<0.94 \mathrm{E}-4$	e	± 2	2-30	88-94	$e^{+} e^{-}$	0	AKERS	95 R	OPAL
$<1.7 \mathrm{E}-4$	e	± 2	30-40	88-94	$e^{+} e^{-}$	0	AKERS	95 R	OPAL
<3.6E-4	e	± 4	5-30	88-94	$e^{+} e^{-}$	0	AKERS	95 R	OPAL
$<1.9 \mathrm{E}-4$	e	± 4	30-45	88-94	$e^{+} e^{-}$	0	AKERS	95 R	OPAL
<2.E-3	e	+1	5-40	88-94	$e^{+} e^{-}$	0	${ }^{2}$ BUSKULIC	93 C	ALEP
<6.E-4	e	+2	5-30	88-94	$e^{+} e^{-}$	0	${ }^{2}$ BUSKULIC	93 C	ALEP
$<1.2 \mathrm{E}-3$	e	+4	15-40	88-94	$e^{+} e^{-}$	0	${ }^{2}$ BUSKULIC	93 C	ALEP
<3.6E-4	i	+4	5.0-10.2	88-94	$e^{+} e^{-}$	0	BUSKULIC	93 C	ALEP
<3.6E-4	i	+4	16.5-26.0	88-94	$e^{+} e^{-}$	0	BUSKULIC	93 C	ALEP
$<6.9 \mathrm{E}-4$	i	+4	26.0-33.3	88-94	$e^{+} e^{-}$	0	BUSKULIC	93 c	ALEP
<9.1E-4	i	+4	33.3-38.6	88-94	$e^{+} e^{-}$	0	BUSKULIC	93 C	ALEP
$<1.1 \mathrm{E}-3$	i	+4	38.6-44.9	88-94	$e^{+} e^{-}$	0	BUSKULIC	93 C	ALEP
$<1.6 \mathrm{E}-4$	b	see note		see note	${ }^{16} \mathrm{O} \quad 0,2,0,6$		${ }^{3}$ CECCHINI	93	PLAS
	b	4,5,7,8		2.1A			${ }^{4} \mathrm{GHOSH}$	92	Emul
$<6.4 \mathrm{E}-5$	g	1			$\begin{array}{ll}16 & 0,2 \\ \nu, \bar{\nu} & \end{array}$	1	${ }^{5}$ BASILE	91	CNTR
<3.7E-5	g	2			$\nu, \bar{\nu}$	0	${ }^{5}$ BASILE	91	CNTR
$<3.9 \mathrm{E}-5$	g	1			$\nu, \bar{\nu}$	1	${ }^{6}$ BASILE	91	CNTR
$<2.8 \mathrm{E}-5$	g	2			$\nu, \bar{\nu}$	0	${ }^{6}$ BASILE	91	CNTR
$<1.9 \mathrm{E}-4$	c			14.5A	${ }^{28} \mathrm{Si}-\mathrm{Pb}$	b	${ }^{7} \mathrm{HE}$	91	PLAS
<3.9E-4	c			14.5 A	${ }^{28} \mathrm{Si}-\mathrm{Cu}$	u	${ }^{7} \mathrm{HE}$	91	PLAS
$<1 . \mathrm{E}-9$	c	$\pm 1,2,4$		14.5 A	${ }^{16} \mathrm{O}-\mathrm{Ar}$	r	MATIS	91	MDRP
$<5.1 \mathrm{E}-10$	c	$\pm 1,2,4$		14.5 A	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	MATIS	91	MDRP
<8.1E-9	c	$\pm 1,2,4$		14.5A	$\mathrm{Si}-\mathrm{Hg}$	0	MATIS	91	MDRP
$<1.7 \mathrm{E}-6$	c	$\pm 1,2,4$		60A	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	MATIS	91	MDRP
$<3.5 \mathrm{E}-7$	c	$\pm 1,2,4$		200 A	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	MATIS	91	MDRP
$<1.3 \mathrm{E}-6$	c	$\pm 1,2,4$		200A	$\mathrm{S}-\mathrm{Hg}$	0	MATIS	91	MDRP
<5E-2	e	2	19-27	52-60	$e^{+} e^{-}$	0	ADACHI	90 C	TOPZ
<5E-2	e	4	<24	52-60	$e^{+} e^{-}$	0	ADACHI	90 C	TOPZ
<1.E-4	e	+2	<3.5	10	$e^{+} e^{-}$	0	BOWCOCK	89в	CLEO
<1.E-6	d	$\pm 1,2$		60	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	CALLOWAY	89	MDRP
$<3.5 \mathrm{E}-7$	d	$\pm 1,2$		200	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	CALLOWAY	89	MDRP
<1.3E-6	d	$\pm 1,2$		200	S-Hg	0	CALLOWAY	89	MDRP
<1.2E-10		± 1	1	800	$p-\mathrm{Hg}$	0	MATIS	89	MDRP
$<1.1 \mathrm{E}-10$		± 2	1	800	$p-\mathrm{Hg}$	0	MATIS	89	MDRP
$<1.2 \mathrm{E}-10$		± 1	1	800	$p-\mathrm{N}_{2}$	0	MATIS	89	MDRP
$<7.7 \mathrm{E}-11$		± 2	1	800	$p-\mathrm{N}_{2}$	0	MATIS	89	MDRP
<6.E-9	h	-5	0.9-2.3	12	p	0	NAKAMURA	89	SPEC
<5.E-5	g	1,2	<0.5		$\nu, \bar{\nu} d$	0	ALLASIA	88	BEBC
<3.E-4	b	See note		14.5	${ }^{16} \mathrm{O}-\mathrm{Pb}$	b	${ }^{8}$ HofFmann	88	PLAS
<2.E-4	b	See note		200	${ }^{16} \mathrm{O}-\mathrm{Pb}$	b	${ }^{9}$ HofFMANN	88	PLAS
$<8 \mathrm{E}-5$	b	19,20,22,23		200 A			GERBIER	87	PLAS
<2.E-4	a	$\pm 1,2$	<300	320	$\bar{p} p$	0	LYONS	87	MLEV
<1.E-9	c	$\pm 1,2,4,5$		14.5	${ }^{16} \mathrm{O}-\mathrm{Hg}$	g	SHAW	87	MDRP
<3.E-3	d	-1,2,3,4,6	<5	2	Si-Si	0	10 ABACHI	86C	CNTR
<1.E-4	e	$\pm 1,2,4$	<4	10	$e^{+} e^{-}$	0	AlBrecht	85 G	ARG
<6.E-5	b	$\pm 1,2$	1	540	$p \bar{p}$	0	BANNER	85	UA2
<5.E-3	e	-4	1-8	29	$e^{+} e^{-}$	0	AIHARA	84	TPC
<1.E-2	e	$\pm 1,2$	1-13	29	$e^{+} e^{-}$	0	AIHARA	84B	TPC
<2.E-4	b	± 1		72	${ }^{40} \mathrm{Ar}$	0	${ }^{11}$ BARWICK	84	CNTR
<1.E-4	e	± 2	<0.4	1.4	$e^{+} e^{-}$	0	BONDAR	84	olya
<5.E-1	e	$\pm 1,2$	<13	29	$e^{+} e^{-}$	0	GURYN	84	CNTR

Quark Particle Listings

Free Quark Searches

${ }^{1} 95 \%$ CL limit for fractional charge particles with $0.18 e \leq\left|Q_{\text {residual }}\right| \leq 0.82 e$ in total of 70.1 mg of silicone oil.
2 95\% CL limit for particles with fractional charge $\left|Q_{\text {residual }}\right|>0.16 \mathrm{e}$ in total of 17.4 mg
of silicone oil.
Also set limits for $Q= \pm e / 6$.
${ }^{4}$ Note that in PHILLIPS 88 these authors report a subtle magnetic effect which could
account for the apparent fractional charges.
${ }^{5}$ Limit inferred by JONES 77B.

REFERENCES FOR Free Quark Searches			
AGNESE	15	PRL 114111302	R. Agnese et al. (CDMS Collab.)
CHATRCHYAN	13AR	PR D87 092008	S. Chatrchyan et al. (CMS Collab.)
LEE	02	PR D66 012002	I.T. Lee et al.
AMBROSIO	00 C	PR D62 052003	M. Ambrosio et al. (MACRO Collab.)
HALYO	00	PRL 842576	V. Halyo et al.
ABREU	97D	PL B396 315	P. Abreu et al. (DELPHI Collab.)
HUENTRUP	96	PR C53 358	G. Huentrup et al. (SIEG)
MAR	96	PR D53 6017	N.M. Mar et al. (SLAC, SCHAF, LANL, UCI)
AKERS	95R	ZPHY C67 203	R. Akers et al. (OPAL Collab.)
BUSKULIC	93C	PL B303 198	D. Buskulic et al. (ALEPH Collab.)
CECCHINI	93	ASP 1369	S. Cecchini et al.
PERERA	93	PRL 701053	A.G.U. Perera et al. (PITT)
ABE	92 J	PR D46 1889	F. Abe et al (CDF Collab.)
GHOSH	92	NC 105A 99	D. Ghosh et al. (JADA, BANGB)
HOMER	92	ZPHY C55 549	G.J. Homer et al. (RAL, SHMP, LOQM)
BASILE	91	NC 104A 405	M. Basile et al. (BGNA, INFN, CERN, PLRM +)
HE	91	PR C44 1672	Y.B. He, P.B. Price (UCB)
MATIS	91	NP A525 513	H.S. Matis et al. (LBL, SFSU, UCI+)
MORI	91	PR D43 2843	M. Mori et al. (Kamiokande II Collab.)
ADACHI	90C	PL B244 352	I. Adachi et al. (TOPAZ Collab.)
BOWCOCK	89 B	PR D40 263	T.J.V. Bowcock et al. (CLEO Collab.)
CALLOWAY	89	PL B232 549	D. Calloway et al. (SFSU, UCI, LBL+)
JONES	89	ZPHY C43 349	W.G. Jones et al. (LOIC, RAL)
MATIS	89	PR D39 1851	H.S. Matis et al. (LBL, SFSU, UCI+)
NAKAMURA	89	PR D39 1261	T.T. Nakamura et al. (KYOT, TMTC)
ALLASIA	88	PR D37 219	D. Allasia et al. (WA25 Collab.)
HOFFMANN	88	PL B200 583	A. Hofmann et al. (SIEG, USF)
PHILLIPS	88	NIM A264 125	J.D. Phillips, W.M. Fairbank, J. Navarro (STAN)
WADA	88	NC 11C 229	T. Wada, Y. Yamashita, I. Yamamoto (OKAY)
GERBIER	87	PRL 592535	G. Gerbier et al. (UCB, CERN)
LYONS	87	ZPHY C36 363	L. Lyons et al. (OXF, RAL, LOIC)
MILNER	87	PR D36 37	R.E. Milner et al. (CIT)
SHAW	87	PR D36 3533	G.L. Shaw et al. (UCI, LBL, LANL, SFSU)
SMITH	87	PL B197 447	P.F. Smith et al. (RAL, LOIC)
VANPOLEN	87	PR D36 1983	J. van Polen, R.T. Hagstrom, G. Hirsch (ANL+)
ABACHI	86 C	PR D33 2733	S. Abachi et al. (UCLA, LBL, UCD)
SAVAGE	86	PL 167B 481	M.L. Savage et al. (SFSU)
SMITH	86	PL B171 129	P.F. Smith et al. (RAL, LOIC)
SMITH	86B	PL B181 407	P.F. Smith et al. (RAL, LOIC)
WADA	86	NC 9C 358	T. Wada (OKAY)
ALBRECHT	85 G	PL 156B 134	H. Albrecht et al. (ARGUS Collab.)
BANNER	85	PL 156B 129	M. Banner et al. (UA2 Collab.)
MILNER	85	PRL 541472	R.E. Milner et al. (CIT)
SMITH	85	PL 153B 188	P.F. Smith et al. (RAL, LOIC)
AIHARA	84	PRL 52168	H. Aihara et al. (TPC Collab.)
AIHARA	84B	PRL 522332	H. Aihara et al. (TPC Collab.)
BARWICK	84	PR D30 691	S.W. Barwick, J.A. Musser, J.D. Stevenson (UCB)
BERGSMA	84B	ZPHY C24 217	F. Bergsma et al. (CHARM Collab.)
BONDAR	84	JETPL 401265 Translated from ZETFP	A.E. Bondar et al. 40440. (NOVO)
GURYN	84	PL 139B 313	W. Guryn et al. (FRAS, LBL, NWES, STAN+)
KAWAGOE	84B	LNC 41604	K. Kawagoe et al. (TOKY)
KUTSCHERA	84	PR D29 791	W. Kutschera et al. (ANL, FNAL)
MARINELLI	84	PL 137B 439	M. Marinelli, G. Morpurgo (GENO)
WADA	84B	LNC 40329	T. Wada, Y. Yamashita, I. Yamamoto (OKAY)
AUBERT	83C	PL 133B 461	J.J. Aubert et al. (EMC Collab.)
BANNER	83	PL 121B 187	M. Banner et al. (UA2 Collab.)
JOYCE	83	PRL 51731	D.C. Joyce et al. (SFSU)
LIEBOWITZ	83	PRL 501640	D. Liebowitz, M. Binder, K.O.H. Ziock (UVA)
LINDGREN	83	PRL 511621	M.A. Lindgren et al. (SFSU, UCR, UCI+)
MASHIMO	83	PL 128B 327	T. Mashimo et al. (ICEPP)
PRICE	83	PRL 50566	P.B. Price et al. (UCB)
VANDESTEEG	83	PRL 501234	M.J.H. van de Steeg, H.W.H.M. Jongbloets, P. Wyder
MARINI	82	PR D26 1777	A. Marini et al. (FRAS, LBL, NWES, STAN+)
MARINI	82B	PRL 481649	A. Marini et al. (FRAS, LBL, NWES, STAN+)
MASHIMO	82	JPSJ 513067	T. Mashimo, K. Kawagoe, M. Koshiba (INUS)
NAPOLITANO	82	PR D25 2837	J. Napolitano et al. (STAN, FRAS, LBL+)
ROSS	82	PL 118B 199	M.C. Ross et al. (FRAS, LBL, NWES, STAN+)
HODGES	81	PRL 471651	C.L. Hodges et al. (UCR, SFSU)
LARUE	81	PRL 46967	G.S. Larue, J.D. Phillips, W.M. Fairbank (STAN)
WEISS	81	PL 101B 439	J.M. Weiss et al. (SLAC, LBL, UCB)
BARTEL	80	ZPHY C6 295	W. Bartel et al. (JADE Collab.)
BASILE	80	LNC 29251	M. Basile et al. (BGNA, CERN, FRAS, ROMA+)
BUSSIERE	80	NP B174 1	A. Bussiere et al. (BGNA, SACL, LAPP)
MARINELLI	80B	PL 94B 433	M. Marinelli, G. Morpurgo (GENO)
Also		PL 94B 427	M. Marinelli, G. Morpurgo (GENO)
BOYD	79	PRL 431288	R.N. Boyd et al. (OSU)
BOZZOLI	79	NP B159 363	W. Bozzoli et al. (BGNA, LAPP, SACL+)
LARUE	79	PRL 42142	G.S. Larue, W.M. Fairbank, J.D. Phillips (STAN)
Also		PRL 421019	G.S. Larue, W.M. Fairbank, J.D. Phillips
OGOROD...	79	JETP 49953	D.D. Ogorodnikov, I.M. Samoilov, A.M. Solntsev
STEVENSON	79	Translated from ZETF 76 PR D20 82	M.L. Stevenson (LBL)
BASILE	78	NC 45A 171	M. Basile et al. (CERN, BGNA)
BASILE	78B	NC 45A 281	M . Basile et al. (CERN, BGNA)
BOYD	78	PRL 40216	R.N. Boyd et al. (ROCH)
BOYD	78B	PL 72B 484	R.N. Boyd et al. (ROCH)
LUND	78	RA 2575	T. Lund, R. Brandt, Y. Fares (MARB)
PUTT	78	PR D17 1466	G.D. Putt, P.C.M. Yock (AUCK)

Quark Particle Listings

- Indicates the particle is in the Meson Summary Table

(Continued on the next page)

$D_{J}^{*}(2600)$ was $D(2600)$. 1445
$D^{*}(2640)^{ \pm}$. 1446
(2740) 1446
$D(3000)^{0} \ldots \ldots$.
CHARMED, STRANGE MESONS ($C=S= \pm 1$)
- $D_{s}^{ \pm}$. 1448
- $D_{s}^{* \pm}$. 1458
- $D_{s 0}^{*}(2317)^{ \pm}$. 1459
- $D_{s 1}(2460)^{ \pm}$. 1460
- $D_{s 1}(2536)^{ \pm}$. 1461
- $D_{s 1}^{*}(2700)^{ \pm}$. 1463
$D_{s 1}^{*}(2860)^{ \pm}$. 1464
${ }_{D_{s 3}(2860)^{ \pm}}$. 1464
BOTTOM MESONS $(B= \pm 1)$
- $B^{ \pm}$. 1466
- $B^{ \pm} / B^{0}$ ADMIXTURE 1603
- $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon ADMIXTURE 1625
- B^{*}. 1634
- $B_{1}(5721)^{+}$. 1635
$B_{1}(5721)^{0}$. 1635
$B_{2}^{*}(5747)^{+}$. 1636
- $B_{2}^{*}(5747)^{0}$. 1636
$B_{J}(5840)^{+}$. 1637
- $B_{J}(5970)^{+}$. 1638
- $B_{J}(5970)^{0}$. 1638

BOTTOM, STRANGE MESONS $(B= \pm 1, S=\mp 1)$

- B_{s}^{0}. 1640
B_{s}^{*}. 1661
- $B_{s 1}(5830)^{0}$. 1662
- $B_{s 2}^{*}(5840)^{0}$. 1663

BOTTOM, CHARMED MESONS $(B=C= \pm 1)$
B_{c}^{+}. 1664
$B_{c}(2 S)^{ \pm}$
1667

- $\eta_{c}(1 S)$. 1668
- $J / \psi(1 S)$. 1676
- $\chi_{c 0}(1 P)$. 1699
- $\chi_{c 1}(1 P)$. 1709
- $h_{c}(1 P)$. 1718
- $\psi(2 S)$. 1733
- $\psi(3770)$. 1749
- $\psi_{2}(3823)$ was $\psi(3823), X(3823)$. 1756
$\psi_{3}(3842)$. 1756
- $\chi_{c 1}(3872)$ aka $X(3872)$. 1757
- $Z_{c}(3900)$ was $X(3900)$. 1759
- $X(3915)$ was $\chi_{c 0}(3915)$. 1761
- $\chi_{c 2}(3930)$ was $\chi_{c 2}(2 P)$ 1761
$X(3940)$ 1762
- $X(4020)^{ \pm}$ 1763
- $\psi(4040)$ 1763
$X(4050)^{ \pm}$ 1765
$X(4055)^{ \pm}$ 1766
$X(4100)^{ \pm}$ 1766
- $\chi_{c 1}(4140)$ was $X(4140)$ 1767
- $\psi(4160)$ 1767
$X(4160)$ 1770
$Z_{c}(4200)$ was $X(4200)^{ \pm}$ 1770
- $\psi(4230)$ aka $Y(4230)$; was $X(4230)$ 1770
$R_{c 0}(4240)$ was $X(4240)^{ \pm}$ 1772
$X(4250)^{ \pm}$ 1772
- $\psi(4260)$ aka $Y(4260)$; was $X(4260)$ 1772
- $\chi_{c 1}(4274)$ was $X(4274)$ 1775
$X(4350)$ 1775
- $\psi(4360)$ aka $Y(4360)$; was $X(4360)$ 1776
$\psi(4390)$ was $X(4390)$ 1777
- $\psi(4415)$ 1777
- $Z_{c}(4430)$ was $X(4430)^{ \pm}$ 1779
$\chi_{c 0}(4500)$ was $X(4500)$ 1779
- $\psi(4660)$ aka $Y(4660)$; was $X(4660)$ 1780
$\chi_{c 0}(4700)$ was $X(4700)$ 1781
$b \bar{b}$ MESONS
- $\eta_{b}(1 S)$ 1783
- $\Upsilon(1 S)$ 1784
- $\chi_{b 0}(1 P)$ 1790
- $\chi_{b 1}(1 P)$ 1792
- $h_{b}(1 P)$ 1794
- $\chi_{b 2}(1 P)$ 1794
$\eta_{b}(2 S)$ 1796
- $\Upsilon(2 S)$ 1796
- $\Upsilon_{2}(1 D)$ was $\Upsilon(1 D)$ 1801
- $\chi_{b 0}(2 P)$ 1802
- $\chi_{b 1}(2 P)$ 1803
$h_{b}(2 P)$ 1806
- $\chi_{b 2}(2 P)$ 1806
- $\Upsilon(3 S)$ 1808
- $\chi_{b 1}(3 P)$ 1812
- $\chi_{b 2}(3 P)$ 1812
- $\Upsilon(4 S)$ aka $\Upsilon(10580)$ 1812
- $Z_{b}(10610)$ was $X(10610)$ 1814
- $Z_{b}(10650)$ was $X(10650)^{ \pm}$ 1816
$\Upsilon(10753)$ 1817
- $\Upsilon(10860)$ 1817
- $\Upsilon(11020)$ 1820
$\underline{\text { Notes in the Listings }}$

$\rho(770)$	1221
$\rho(1450)$ and the $\rho(1700)$ (rev.)	1302
Charged kaon mass	1337
Dalitz plot parameters for $K \rightarrow 3 \pi$ decays	1345
$K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ form factors	1347
$C P$-violation in $K_{S} \rightarrow 3 \pi$	1357
Heavy Flavor Averaging Group (rev.)	1465
Charmonium system	1668
Branching ratios of $\psi(2 S)$ and $\chi_{c 0,1,2}$ (rev.)	1698
Bottomonium system	1782
Width determination of the Υ states	. 1782

[^108]- Indicates the particle is in the Meson Summary Table

Related Reviews in Volume 1

61. Form factors for rad. pion \& kaon decays (rev.) 762
62. Scalar mesons below 2 GeV (rev.) 764
63. Pseudoscalar and pseudovector mesons 771 in the 1400 MeV region (rev.)
64. Rare kaon decays (rev.) 774
65. $C P T$ invariance tests in neutral kaon decay (rev.) 779
66. $V_{u d}$, $V_{u s}$, Cabibbo angle, and CKM unitarity (rev.) . . . 781
67. $C P$-violation in K_{L} decays 784
68. Review of multibody charm analyses (rev.) 788
69. $D^{0}-\bar{D}^{0}$ mixing (rev.) 792
70. D_{s}^{+}branching fractions (rev.) 801
71. Leptonic decays of charged pseudoscalar mesons (rev.) . . . 803
72. Production and decay of b-flavored hadrons (rev.) 814
73. Polarization in B decays (rev.) 824
74. $B^{0}-\bar{B}^{0}$ mixing (rev.) 828
75. Semileptonic B decays, $V_{c b}$ and $V_{u b}$ (rev.) 835
76. CKM angles from B hadrons, Determination of (new) . . . 849
77. Spectroscopy of mesons containing two heavy quarks (rev.) . 854
78. Non- $q \bar{q}$ mesons (rev.) 861

LIGHT UNFLAVORED MESONS ($S=C=B=0$)

For $I=1(\pi, b, \rho, a): \quad u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$;
for $I=0\left(\eta, \eta^{\prime}, h, h^{\prime}, \omega, \phi, f, f^{\prime}\right): \quad c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$

$I^{G}\left(J^{P}\right)=1^{-}\left(0^{-}\right)$
We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters B204 1 (1988).

$\pi^{ \pm}$MASS

The most accurate charged pion mass measurements are based upon x ray wavelength measurements for transitions in π^{-}-mesonic atoms. The observed line is the blend of three components, corresponding to different K-shell occupancies. JECKELMANN 94 revisits the occupancy question, with the conclusion that two sets of occupancy ratios, resulting in two different pion masses (Solutions A and B), are equally probable. We choose the higher Solution B since only this solution is consistent with a positive mass-squared for the muon neutrino, given the precise muon momentum measurements now available (DAUM 91, ASSAMAGAN 94, and ASSAMAGAN 96) for the decay of pions at rest. Earlier mass determinations with pi-mesonic atoms may have used incorrect K-shell screening corrections.

Measurements with an error of $>0.005 \mathrm{MeV}$ have been omitted from this Listing.

VALUE (MeV)
DOCUMENT ID
TECN CHG COMMENT
$\mathbf{1 3 9 . 5 7 0 3 9} \pm \mathbf{0 . 0 0 0 1 8}$ OUR FIT Error includes scale factor of 1.8 .
$\mathbf{1 3 9 . 5 7 0 3 9} \pm \mathbf{0 . 0 0 0 1 7}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.

139.56995 ± 0.000354 JECKELMANN 94 CNTR $-\pi^{-}$atom, Soln. B

- - We do not use the following data for averages, fits, limits, etc. - -
$139.57022 \pm 0.00014 \quad{ }^{5}$ ASSAMAGAN 96 SPEC $+\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$
$139.56782 \pm 0.00037 \quad 6$ JECKELMANN 94 CNTR $-\quad \pi^{-}$atom, Soln. A
$139.56996 \pm 0.00067 \quad 7$ DAUM $\quad 91$ SPEC $+\pi^{+} \rightarrow \mu^{+}{ }_{\nu}$
$139.56752 \pm 0.00037 \quad 8$ JECKELMANN 86B CNTR - Mesonic atoms
$139.5704 \pm 0.0011 \quad 7$ ABELA $\quad 84$ SPEC $+\quad$ See DAUM 91
$139.5664 \pm 0.0009 \quad{ }^{9}$ LU $\quad 80 \quad$ CNTR $-\quad$ Mesonic atoms
$139.5686 \pm 0.0020 \quad$ CARTER 76 CNTR - Mesonic atoms
$139.5660 \pm 0.0024 \quad 9,10$ MARUSHEN... 76 CNTR - Mesonic atoms
${ }^{1}$ DAUM 19 value is based on their previous $(1991+1996)$ measurements of the μ^{+} momentum of $29.79200 \pm 0.00011 \mathrm{MeV}$ for π^{+}decay at rest. It also uses $m_{\mu}=$ $105.6583745 \pm 0.0000024 \mathrm{MeV}$, and assumes conservatively $m_{\nu_{\mu}}=2.0 \pm 2.0 \mathrm{MeV}$. It is the most precise charged pion mass determination.
2 TRASSINELLI 16 use the muonic oxygen line for online energy calibration of the pionic
$3_{\text {LENZ }} 98$ result does not suffer K-electron configuration uncertainties as does JECKEL4 MANN 94.
4 JECKELMANN 94 Solution B (dominant 2-electron K-shell occupancy), chosen for consistency with positive $m_{\nu_{\mu}}^{2}$
${ }^{5}$ ASSAMAGAN 96 measures the μ^{+}momentum p_{μ} in $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ decay at rest to be $29.79200 \pm 0.00011 \mathrm{MeV} / c$. Combined with the μ^{+}mass and the assumption $m_{\nu_{\mu}}$ $=0$, this gives the π^{+}mass above; if $m_{\nu_{\mu}}>0, m_{\pi^{+}}$given above is a lower limit. Combined instead with m_{μ} and (assuming CPT) the π^{-}mass of JECKELMANN 94 , p_{μ} gives an upper limit on $m_{\nu_{\mu}}$ (see the ν_{μ}).
6 JECKELMANN 94 Solution A (small 2-electron K-shell occupancy) in combination with either the DAUM 91 or ASSAMAGAN 94 pion decay muon momentum measurement yields a significantly negative $m_{\nu_{\mu}}^{2}$. It is accordingly not used in our fits.
${ }^{7}$ The DAUM 91 value includes the ABELA 84 result. The value is based on a measurement of the μ^{+}momentum for π^{+}decay at rest, $p_{\mu}=29.79179 \pm 0.00053 \mathrm{MeV}$, uses $m_{\mu}=$ $105.658389 \pm 0.000034 \mathrm{MeV}$, and assumes that $m_{\nu_{\mu}}=0$. The last assumption means that in fact the value is a lower limit.
8 JECKELMANN 86B gives $m_{\pi} / m_{e}=273.12677$ (71). We use $m_{e}=0.51099906$ (15) MeV from COHEN 87. The authors note that two solutions for the probability distribution of K-shell occupancy fit equally well, and use other data to choose the lower of the two possible $\pi^{ \pm}$masses.
${ }^{9}$ These values are scaled with a new wavelength-energy conversion factor $V \lambda=$ $1.23984244(37) \times 10^{-6} \mathrm{eV} \mathrm{m}$ from COHEN 87. The LU 80 screening correction relies upon a theoretical calculation of inner-shell refilling rates.
10 This MARUSHENKO 76 value used at the authors' request to use the accepted set of calibration γ energies. Error increased from 0.0017 MeV to include QED calculation error of 0.0017 MeV (12 ppm).

VALUE (MeV) DOCUMENT ID EVTS TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •

33.91157 ± 0.00067		${ }^{1}$ DAUM	91	SPEC	+	$\pi^{+} \rightarrow \mu^{+} \nu^{\prime}$
33.9111 ± 0.0011		ABELA	84	SPEC		See DAUM 91
33.925 ± 0.025		BOOTH	70	CNTR	$+$	Magnetic spect.
33.881 ± 0.035	145	HYMAN	67	HEBC	$+$	$K^{-} \mathrm{He}$

${ }^{1}$ The DAUM 91 value assumes that $m_{\nu_{\mu}}=0$ and uses our $m_{\mu}=105.658389 \pm 0.000034$ MeV.

$$
\left(m_{\pi^{+}}-m_{\pi^{-}}\right) / m_{\text {average }}
$$

A test of CPT invariance.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 \pm 5}} \quad \frac{\text { DOCUMENT ID }}{\text { AYRES }} \frac{71}{\text { TECN }}$

$\pi^{ \pm}$MEAN LIFE

Measurements with an error $>0.02 \times 10^{-8} \mathrm{~s}$ have been omitted.

$\mathbf{2 . 6 0 3 3} \mathbf{\pm 0 . 0 0 0 5}$ OUR AVERAGE $\frac{\text { DOCUMENT ID }}{\text { Error includes scale fact }} \frac{\text { THG }}{1.2}$
$2.60361 \pm 0.00052 \quad 1$ KOPTEV 95 SPEC $+\quad$ Surface μ^{+}'s
$2.60231 \pm 0.00050 \pm 0.00084 \quad$ NUMAO 95 SPEC + Surface μ^{+}'s DUNAITSEV 73 CNTR AYRES
$\begin{array}{lllll}2.602 & \pm 0.004 & \text { AYRES } & 71 & \text { CNTR } \pm \\ 2.604 & \pm 0.005 & \text { NORDBERG } & 67 & \text { CNTR }+ \\ 2.602 & \pm 0.004 & \text { ECKHAUSE } & 65 & \text { CNTR }+\end{array}$
$2.602 \pm 0.004 \quad$ ECKHAUSE 65 CNTR +

- - We do not use the following data for averages, fits, limits, etc. • • -
$2.640 \pm 0.008 \quad 2$ KINSEY 66 CNTR +
${ }^{1}$ KOPTEV 95 combines the statistical and systematic errors; the statistical error dominates.
2 Systematic errors in the calibration of this experiment are discussed by NORDBERG 67.

```
\(\left(\tau_{\pi^{+}}-\tau_{\pi^{-}}\right) / \tau_{\text {average }}\)
```

A test of $C P T$ invariance.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{5 . 5} \pm 7.1} \quad \frac{\text { DOCUMENT ID }}{\text { AYRES }} 71 \frac{\text { TECN }}{\text { CNTR }}$

- - We do not use the following data for averages, fits, limits, etc. - -
-14 ± 29 PETRUKHIN 68 CNTR
$40 \pm 70 \quad$ BARDON 66 CNTR
$23 \pm 40 \quad 1$ LOBKOWICZ 66 CNTR
${ }^{1}$ This is the most conservative value given by LOBKOWICZ 66 .

π ELECTRIC POLARIZABILITY α_{π}

See HOLSTEIN 14 for a general review on hadron polarizability.
$\frac{\operatorname{VALUE}\left(10^{-4} \mathrm{fm}^{3}\right)}{\mathbf{2 . 0} \pm \mathbf{0 . 6} \pm \mathbf{0 . 7}} \frac{\text { EVTS }}{63 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADOLPH } \quad 15 \mathrm{~A}} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{\pi^{-} \gamma \rightarrow \pi^{-} \gamma \text { Compton scatt. }}$
${ }^{1}$ Value is derived assuming $\alpha_{\pi}=-\beta_{\pi}$.

Meson Particle Listings
$\pi^{ \pm}$

π^{+}DECAY MODES						
π^{-}modes are charge conjugates of the modes below.						
For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.						
	Mode		Fraction (Γ		Confiden	level
Γ_{1}	$\mu^{+} \nu_{\mu}$	[a]	(99.9877	± 0.0000	\%	
Γ_{2}	$\mu^{+} \nu_{\mu} \gamma$	[b]	(2.00	± 0.25) $\times 10^{-4}$	
Γ_{3}	$e^{+} \nu_{e}$	[a]	(1.230	± 0.004) $\times 10^{-4}$	
Γ_{4}	$e^{+} \nu_{e} \gamma$	[b]	(7.39	± 0.05) $\times 10^{-7}$	
Γ_{5}	$e^{+} \nu_{e} \pi^{0}$		(1.036	± 0.006) $\times 10^{-8}$	
Γ_{6}	$e^{+} \nu_{e} e^{+} e^{-}$		(3.2	± 0.5) $\times 10^{-9}$	
Γ_{7}	$e^{+} \nu_{e} \nu \bar{\nu}$		< 5		$\times 10^{-6}$	90\%

Lepton Family number ($L F$) or Lepton number (L) violating modes

Γ_{8}	$\mu^{+} \bar{\nu}_{e}$	L	$[c]<1.5$	$\times 10^{-3}$	90%
Γ_{9}	$\mu^{+} \nu_{e}$	$L F$	$[c]<8.0$	$\times 10^{-3}$	90%
Γ_{10}	$\mu^{-} e^{+} e^{+} \nu$	$L F$	<1.6	$\times 10^{-6}$	90%

[a] Measurements of $\Gamma\left(e^{+} \nu_{e}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$ always include decays with γ 's, and measurements of $\Gamma\left(e^{+} \nu_{e} \gamma\right)$ and $\Gamma\left(\mu^{+} \nu_{\mu} \gamma\right)$ never include low-energy γ^{\prime} s. Therefore, since no clean separation is possible, we consider the modes with γ^{\prime} s to be subreactions of the modes without them, and let $\left[\Gamma\left(e^{+} \nu_{e}\right)\right.$ $\left.+\Gamma\left(\mu^{+} \nu_{\mu}\right)\right] / \Gamma_{\text {total }}=100 \%$.
[b] See the Particle Listings below for the energy limits used in this measurement; low-energy γ 's are not included.
[c] Derived from an analysis of neutrino-oscillation experiments.

$\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \underset{\text { Note that measurements }}{\boldsymbol{\nu}} \boldsymbol{\mu}\right) / \boldsymbol{\Gamma}_{\text {total }}$ here do not cover the full kinematic range. $\quad \boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}$

Note that measurements here do not cover the full kinematic range.
VALUE (units 10^{-4}) EVTS DOCUMENTID TECN CHG COMMENT
$\mathbf{2 . 0} \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 0 8} \quad 1$ BRESSI 98 CALO $+{ }^{1}$ Stopping π^{+}

- - We do not use the following data for averages, fits, limits, etc. - • -
$1.24 \pm 0.25 \quad 26$ CASTAGNOLI 58 EMUL $\mathrm{KE}_{\mu}<3.38 \mathrm{MeV}$
${ }^{1}$ BRESSI 98 result is given for $E_{\gamma}>1 \mathrm{MeV}$ only. Result agrees with QED expectation, 2.283×10^{-4} and does not confirm discrepancy of earlier experiment CASTAGNOLI 58.

$\Gamma\left(e^{+} \nu_{e} \gamma\right) / \Gamma_{\text {total }}$

The very different values reflect the very different kinematic ranges covered (bigger range, bigger value). And none of them covers the whole kinematic range

$\Gamma\left(e^{+} \nu_{e} e^{+} e^{-}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$
Γ_{6} / Γ_{1}
$\frac{\text { VALUE (units } 10^{-9} \text {) }}{\mathbf{3 . 2} \pm \mathbf{0 . 5} \pm \mathbf{0 . 2}} \frac{C L \%}{98} \quad \frac{\text { DVTS }}{\text { EGLI }} \quad 89 \quad \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{\text { Uses RPCAC }=}$

- - We do not use the following data for averages, fits, limits, etc. 0.068
 Forbidden by total lepton number conservation. See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_{S}^{+}Listings.

VALUE (units 10^{-3})	CL\%	DOCUMEN		TECN	COMMENT
<1.5	90	${ }^{1}$ COOPER	82	HLBC	Wideband ν beam
${ }^{1}$ COOPER 82 limit on $\bar{\nu}_{e}$ observation is here interpreted as a limit on lepton number violation.					
$\Gamma\left(\boldsymbol{\mu}^{+} \nu_{\boldsymbol{\nu}}\right) / \Gamma_{\text {total }} \text { Forbidden by lepton family number conservation. }$					
VALUE (units 10^{-3})	CL\%	DOCUMENT		TECN	COMMENT
<8.0	90	${ }^{1}$ COOPER	82	HLBC	Wideband ν beam
${ }^{1}$ COOPER 82 limit on ν_{e} observation is here interpreted as a limit on lepton family number violation.					

$\Gamma\left(\mu^{-} \underset{\text { Forbidden by lepton family number conservation. }}{\left.e^{+} \nu\right)} / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 0}} /\right.$ Forbidden by lepton family number conservation.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<1.6} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BARANOV 91B }} \frac{\text { TECN }}{\text { SPEC }} \frac{C H G}{+}$

- - We do not use the following data for averages, fits, limits, etc. - - $<7.7 \quad 90$ KORENCHE... 87 SPEC +
$\pi^{+}-$POLARIZATION OF EMITTED μ^{+}
$\boldsymbol{\pi}^{+} \rightarrow \underset{\text { Tests }}{\boldsymbol{\mu}} \boldsymbol{\mu}^{+} \boldsymbol{\nu}$ the Lorentz structure of leptonic charged weak interactions.
VALUE CL\% DOCUMENTID $\frac{T E C N}{\text { CHG COMMENT }}$
- - We do not use the following data for averages, fits, limits, etc. - • -
$\begin{array}{lllllll}<(-0.9959) & 90 & 1 \text { FETSCHER } & 84 & \text { RVUE } & + \\ -0.99 \pm 0.16 & & 2 \text { ABELA } & 83 & \text { SPEC } & - & \mu \text { X-rays }\end{array}$
${ }_{2}^{1}$ FETSCHER 84 uses only the measurement of CARR 83.
${ }^{2}$ Sign of measurement reversed in ABELA 83 to compare with μ^{+}measurements.
See the related review(s):
Form Factors for Radiative Pion and Kaon Decays

$\pi^{ \pm}$FORM FACTORS

Fv, VECTOR FORM FACTOR

$\frac{V A L U E}{0.0254 \pm 0.0017 \text { OUR AVERAGE }} \frac{E V T S}{}$		DOCUMENT ID		TECN	COMMENT
0.0258 ± 0.0017	65k	${ }^{1}$ BYCHKOV	09	PIBE	$e^{+} \nu \gamma$ at rest
0.014 ± 0.009		${ }^{2}$ BOLOTOV	90B	SPEC	$\begin{gathered} 17 \mathrm{GeV} \pi^{-} \\ e^{-} \bar{\nu}_{e} \gamma \end{gathered} \rightarrow$
$0.023 \underset{-0.013}{+0.015}$	98	EGLI	89	SPEC	$\pi^{+} \rightarrow e^{+} \nu_{e} e^{+} e^{-}$

${ }^{1}$ The BYCHKOV $09 F_{A}$ and F_{V} results are highly (anti-)correlated: $F_{A}+1.0286 F_{V}$ $2=0.03853 \pm 0.00014$.
2 BOLOTOV 90 B only determines the absolute value.

See key on page 999

F_{A}, AXIAL-VECTOR FORM FACTOR

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.0119 ± 0.0001				PIBE	
- - We do not use the following data for averages, fits, limits, etc. - • -					
0.0115 ± 0.0004	41k	1,3 FRLEZ	04	PIBE	$\pi^{+} \rightarrow e^{+} \nu \gamma$ at rest
0.0106 ± 0.0060		1,4 BOLOTOV	90B	SPEC	$\begin{gathered} 17 \mathrm{GeV} \pi^{-} \\ e^{-} \nabla_{e}^{\gamma} \end{gathered} \rightarrow$
$0.021{ }_{-0.013}^{+0.011}$	98	EGLI	89	SPEC	$\pi^{+} \rightarrow e^{+} \nu_{e} e^{+} e^{-}$
0.0135 ± 0.0016		1,4 BAY	86	SPEC	$\pi^{+} \rightarrow e^{+} \nu \gamma$
0.006 ± 0.003		1,4 PIILONEN	86	SPEC	$\pi^{+} \rightarrow e^{+} \nu \gamma$
0.011 ± 0.003		1,4,5 STETZ	78	SPEC	$\pi^{+} \rightarrow e^{+} \nu \gamma$

${ }^{1}$ These values come from fixing the vector form factor at the CVC prediction, $F_{V}=$ 0.0259 ± 0.0005.
${ }^{2}$ When F_{V} is released, the BYCHKOV $09 F_{A}$ is 0.0117 ± 0.0017, and F_{A} and F_{V} results are highly (anti-)correlated: $F_{A}+1.0286 F_{V}=0.03853 \pm 0.00014$.
${ }^{3}$ The sign of $\gamma=F_{A} / F_{V}$ is determined to be positive.
${ }^{4}$ Only the absolute value of F_{A} is determined.
${ }^{5}$ The result of STETZ 78 has a two-fold ambiguity. We take the solution compatible with later determinations.

VECTOR FORM FACTOR SLOPE PARAMETER a
This is a in $F_{V}\left(\mathrm{q}^{2}\right)=F_{V}(0)\left(1+a \mathrm{q}^{2}\right)$
$\frac{V A L U E}{0.10 \pm 0.06}$

BYCHKOV TECN COMMENT

R, SECOND AXIAL-VECTOR FORM FACTOR

VALUE	EVTS	DOCUM		TECN	COMMENT
$0.059+0.009$	98	EGLI	89	SPEC	$\pi^{+} \rightarrow e^{+} \nu_{e} e^{+} e^{-}$

$\pi^{ \pm}$CHARGE RADIUS

The charge radius of the pion $\sqrt{\left\langle r_{\pi}^{2}\right\rangle}$ is defined in relation to the form factor of the pion electromagnetic vertex, called vector form factor VFF, F_{π}^{V}. The VFF is a function of the squared four-momentum transfer t, or of the squared c.m. energy s, depending on the channel in which the
photon exchange takes place. In both cases, it is related to the slope of the VFF at zero, namely

$$
\left\langle\mathrm{r}_{\pi}^{2}\right\rangle=6 \frac{d F_{\pi}^{V}(q)}{d q}(q=0) \text { where } q=t \text {, } s
$$

The quantity cannot be measured directly. It can be extracted from the cross sections of three processes: pion electroproduction, e $N \rightarrow e N \pi$, and pion electron scattering $e \pi \rightarrow e \pi$, for the t channel, and positron electron annihilation into two charged pions, $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$, for the s channel. We encode all measurements, but we do not use electroproduction data in averaging because the extraction of the pion radius involves, in this case, theoretical uncertainties that cannot be controlled at the needed level of accuracy. In case of analyses based on the same data set, as ANANTHANARAYAN 17 and COLANGELO 19, which cannot be averaged, we combine the results into a common value, with the uncertainty range chosen to cover both analyses. Note that for consistency the form factor needs to be defined in both channels with the vacuum polarisation removed. For details see COLANGELO 19 or Appendix B of ANANTHANARAYAN 16A.

VALUE (fm)
0.659 ± 0.004 OUR AVERAGE
0.656 ± 0.005
$0.65 \pm 0.05 \pm 0.06$
0.663 ± 0.006
0.663 ± 0.023

- - We do not use the following

0.655 ± 0.004	${ }^{2}$ COLANGELO 19	FIT	Fit existing data
0.657 ± 0.003	3 ANANTHANA.. 17	FIT	Fit existing data
$0.6603 \pm 0.0005 \pm 0.0004$	${ }^{4}$ HANHART 17	FIT	Fit existing data
0.740 ± 0.031	5 LIESENFELD 99	CNTR	$e p \rightarrow e \pi^{+} n$
0.661 ± 0.012	${ }^{6}$ BIJNENS 98	CNTR	χ PT extraction
0.660 ± 0.024	AMENDOLIA 84	CNTR	$\pi e \rightarrow \pi e$
$0.711 \pm 0.009 \pm 0.016$	${ }^{5}$ BEBEK 78	CNTR	$e N \rightarrow e \pi N$
$0.678 \pm 0.004 \pm 0.008$	${ }^{7}$ QUENZER 78	CNTR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$\begin{array}{ll} 0.78 & +0.09 \\ -0.10 \end{array}$	ADYLOV 77	CNTR	$\pi e \rightarrow \pi e$
$\begin{array}{ll}0.74 & +0.11 \\ -0.13\end{array}$	BARDIN 77	CNTR	$e p \rightarrow e \pi^{+} n$
0.56 ± 0.04	DALLY 77	CNTR	$\pi e \rightarrow \pi e$

${ }^{1}$ This value combines the measurements of ANANTHANARAYAN 17 and COLANGELO 19 which are based on the same data set. The uncertainty range is chosen to cover both results
${ }^{2}$ COLANGELO 19 fit existing F_{V} data, using an extended Omnes dispersive representation. This analysis is based on the same data set of ANANTHANARAYAN 17. Accordingly, they cannot be averaged. We combine the results into a common value, with the uncertainty range chosen to cover the uncertainty ranges of both analyses
${ }^{3}$ ANANTHANARAYAN 17 fit existing F_{V} data, using a mixed phase-modulus dispersive representation. This analysis is based on the same data set of COLANGELO 19. Accordingly, they cannot be averaged. We combine the results into a common value, with the uncertainty range chosen to cover the uncertainty ranges of both analyses.
${ }^{4}$ According to the authors the uncertainty could be underestimated. The value quoted omits the BaBar data AUBERT 09
5 The extractions could contain an additional theoretical uncertainty which cannot be sufficiently quantified

DOCUMENT ID TECN COMMENT
1 PDG 19 FIT
$\begin{array}{lll} & 19 & \\ \text { ESCHRICH } & 01 & \text { CNTR } \pi e \rightarrow \pi e\end{array}$ AMENDOLIA 86 CNTR $\pi e \rightarrow \pi e$ DALLY 82 CNTR $\pi e \rightarrow \pi e$
for averages, fits, limits, etc. - • -
ANANGELO 19 FIT Fit existing data HANHART 17 FIT Fit existing data 5 LIESENFELD 99 CNTR $e p \rightarrow e \pi^{+} n$ AMENDOLIA 84 CNTR $\pi e \rightarrow \pi e$
${ }^{5}$ BEBEK 78 CNTR $e N \rightarrow e \pi N$ ADYLOV 77 CNTR $\pi e \rightarrow \pi e$ BARDIN 77 CNTR ep $\rightarrow e \pi^{+} n$ DALLY 77 CNTR $\pi e \rightarrow \pi e$

${ }^{6}$ BIJNENS 98 fits existing data.
7^{7} The extraction is based on a parametrization that does not have correct analytic properties.
$\pi^{ \pm}$REFERENCES
We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters B204 1 (1988).

Meson Particle Listings
π^{0}

$$
I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)
$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters B204 1 (1988).

π^{0} MASS

The value is calculated from $m_{\pi^{ \pm}}$and $\left(m_{\pi^{ \pm}}-m_{\pi^{0}}\right)$. See also the notes under the $\pi^{ \pm}$Mass Listings.
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{1 3 4 . 9 7 6 8} \pm \mathbf{0 . 0 0 0 5} \text { OUR FIT }} \quad$ Error includes scale factor of 1.1
$\boldsymbol{m}_{\boldsymbol{\pi}^{ \pm}}-\boldsymbol{m}_{\boldsymbol{\pi}^{0}}$
Measurements with an error $>0.01 \mathrm{MeV}$ have been omitted.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.5936 ± 0.0005 OUR FIT				
4.5936 ± 0.0005 OUR AVERAGE				
4.59364 ± 0.00048	CRAWFORD	91	CNTR	$\pi^{-} p \rightarrow \pi^{0} n, n$ TOF
4.5930 ± 0.0013	CRAWFORD	86	CNTR	$\pi^{-} p \rightarrow \pi^{0} n, n$ TOF
- - We do not use the following data for averages, fits, limits, etc. - -				
4.59366 ± 0.00048	CRAWFORD	88B	CNTR	See CRAWFORD 91
4.6034 ± 0.0052	VASILEVSKY	66	CNTR	
4.6056 ± 0.0055	CZIRR	63	CNTR	

π^{0} MEAN LIFE

Most experiments measure the π^{0} width which we convert to a lifetime. ATHERTON 85 is the only direct measurement of the π^{0} lifetime. Our average based only on indirect measurement yields $(8.30 \pm 0.19) \times 10^{-17} \mathrm{~s}$. The two Primakoff measurements from 1970 have been excluded from our average because they suffered model-related systematics unknown at the time. More information on the π^{0} lifetime can be found in BERNSTEIN 13.

$\operatorname{VALUE}\left(10^{-17} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN	COMMENT
8.52 ± 0.18 OUR AVERAGE		Error includes scale factor of 1.2			
$8.32 \pm 0.15 \pm 0.18$		1 LARIN	11	PRMX	Primakoff effect
8.5 ± 1.1		${ }^{2}$ BYCHKOV	09	PIBE	$\pi^{+} \rightarrow e^{+} \nu \gamma$ at rest
$8.4 \pm 0.5 \pm 0.5$	1182	${ }^{3}$ WILLIAMS	88	CBAL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$
$8.97 \pm 0.22 \pm 0.17$		ATHERTON	85	CNTR	Direct measurement
8.2 ± 0.4		${ }^{4}$ BROWMAN	74	CNTR	Primakoff effect
- - We do not use the following data for averages, fits, limits, etc. - -					
5.6 ± 0.6		BELLETTINI 70 CNTR Primakoff effect			
9 ± 0.68		KRYSHKIN	70	CNTR	Primakoff effect
7.3 ± 1.1		BELLETTINI	65B	CNTR	Primakoff effect
${ }^{1}$ LARIN 11 reported $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.82 \pm 0.14 \pm 0.17 \mathrm{eV}$ which we converted to mean life $\tau=\hbar / \Gamma$ (total).					
${ }^{2}$ BYCHKOV 09 obtains this using the conserved-vector-current relation between the vector form factor F_{V} and the π^{0} lifetime.					
${ }^{3}$ WILLIAMS 88 gives $\Gamma(\gamma \gamma)=7.7 \pm 0.5 \pm 0.5 \mathrm{eV}$. We give here $\tau=\hbar / \Gamma$ (total).					
${ }^{4}$ BROWMAN 74 gives a π^{0} width $\Gamma=8.02 \pm 0.42 \mathrm{eV}$. The mean life is \hbar / Γ.					

π^{0} DECAY MODES

For decay limits to particles which are not established, see the appropriate Search sections (A^{0} (axion) and Other Light Boson (X^{0}) Searches, etc.).

Scale factor/

Charge conjugation (C) or Lepton Family number ($L F$) violating modes

Γ_{12}	3γ	C	<3.1	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
Γ_{13}	$\mu^{+} e^{-}$	$L F$	<3.8	$\times 10^{-10}$	$\mathrm{CL}=90 \%$
Γ_{14}	$\mu^{-} e^{+}$	$L F$	<3.4	$\times 10^{-9}$	$\mathrm{CL}=90 \%$
Γ_{15}	$\mu^{+} e^{-}+\mu^{-} e^{+}$	$L F$	<3.6	$\times 10^{-10}$	$\mathrm{CL}=90 \%$

[a] Astrophysical and cosmological arguments give limits of order 10^{-13}.

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=$ 4.6 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

| x_{2} | |
| :--- | ---: | ---: |
| x_{4} | -100
 0 -1
 $x_{1}$$x_{2}$ |

π^{0} BRANCHING RATIOS

$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma(2 \gamma) \quad \Gamma_{2} / \Gamma_{1}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 1 8 8} \mathbf{\pm 0 . 0 3 5} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of }} \frac{\text { DECUMENT ID }}{1.5}$
$1.188 \pm \mathbf{0 . 0 3 4}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
$1.140 \pm 0.024 \pm 0.033 \quad 12.5 \mathrm{k} \quad{ }^{1}$ BEDDALL 08 ALEP $e^{+} e^{-} \rightarrow Z \rightarrow$ hadrons
$1.25 \pm 0.04 \quad$ SCHARDT 81 SPEC $\pi^{-} p \rightarrow n \pi^{0}$
$1.166 \pm 0.047 \quad 3071 \quad{ }^{2}$ SAMIOS $61 \quad \mathrm{HBC} \quad \pi^{-} p \rightarrow n \pi^{0}$
$1.17 \pm 0.15 \quad 27$ BUDAGOV 60 HBC

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.1559 \pm 0.0047 \pm 0.0106 \quad 60 \mathrm{k} \quad 3$ ABOUZAID 19 KTEV $K_{L} \rightarrow 3 \pi^{0}$ in flight |
1.196 JOSEPH 60 THEO QED calculation
${ }_{2}^{1}$ BEDDALL 08 value is obtained from ALEPH archived data.
${ }_{2}^{2}$ SAMIOS 61 value uses a Panofsky ratio $=1.62$.
${ }^{3}$ ABOUZAID 19 measured a value of $(0.3920 \pm 0.0016 \pm 0.0036) \%$ from 1999 KTEV data in $K_{L} \rightarrow 3 \pi^{0} \rightarrow 5 \gamma e^{+} e^{-}$decays, normalised to $K_{L} \rightarrow 3 \pi^{0}$, for $\mathrm{m}(e e)>15$ MeV and then extrapolated it to the full $\mathrm{m}(e e)$ range using the Mikaelian and Smith predictions for the mass spectrum.

$\Gamma(\gamma$ positronium $) / \Gamma(\mathbf{2} \gamma)$
Γ_{3} / Γ_{1}
VALUE (units 10^{-9}) EVTS
$\frac{\text { DOCUMENT ID }}{\text { AFANASYEV } 90} \frac{\text { TECN }}{\text { CNTR }} \frac{\boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}_{\mathbf{1}}}{\text { COMMENT }} \quad 1$
$\Gamma\left(e^{+} e^{+} e^{-} e^{-}\right) / \Gamma(2 \gamma) \quad \Gamma_{4} / \Gamma_{1}$

UE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT

$\mathbf{3 . 3 8} \pm \mathbf{0 . 1 6}$ OUR FIT

DOCUMENT ID TECN COMMENT
3.38 ± 0.16 OUR AVERAGE

3.46 ± 0.19	30.5 k	${ }^{1}$ ABOUZAID	08 D	KTEV	$K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi_{D D}^{0}$
3.18 ± 0.30	146	${ }^{2}$ SAMIOS	62 B	HBC	

${ }^{1}$ This ABOUZAID 08D value includes all radiative final states. The error includes both statistical and systematic errors. The correlation between the Dalitz-pair planes gives a direct measurement of the π^{0} parity. The $\pi^{0} 2 \gamma^{*}$ form factor is measured and limits are
placed on a scalar contribution to the decay.
${ }^{2}$ SAMIOS 62B value uses a Panofsky ratio $=1.62$.

$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$

Experimental results are listed; branching ratios corrected for radiative effects are given in the footnotes. BERMAN 60 found $\mathrm{B}\left(\pi^{0} \rightarrow e^{+} e^{-}\right) \geq 4.69 \times 10^{-8}$ via an exact QED calculation.

VALUE (units 10^{-8}) EVTS

$\mathbf{6 . 4 6} \pm \mathbf{0 . 3 3}$ OUR AVERAGE

$6.44 \pm 0.25 \pm 0.22$	794	${ }^{1}$ ABOUZAID	07	KTEV	$K_{L}^{0} \rightarrow 3 \pi^{0}$ in flight
$6.9 \pm 2.3 \pm 0.6$	21	${ }^{2}$ DESHPANDE	93	SPEC	$K^{+} \rightarrow \pi^{+} \pi^{0}$
7.6 ± 2.9	-2.8 ± 0.5	8	${ }^{3}$ MCFARLAND 93	SPEC	$K_{L}^{0} \rightarrow 3 \pi^{0}$ in flight

- - We do not use the following data for averages, fits, limits, etc. - -			
$6.09 \pm 0.40 \pm 0.24 \quad 275 \quad 4$ ALAVI-HARATI99C SPEC 0 (0 Repl. by ABOUZAID 07			
${ }^{1}$ ABOUZAID 07 result is for $m_{e^{+} e^{-}} / m_{\pi^{0}}>0.95$. With radiative corrections the result becomes $(7.48 \pm 0.29 \pm 0.25) \times 10^{-8}$.			
${ }^{2}$ The DESHPANDE 93 result with bremsstrahlung radiative corrections is $(8.0 \pm 2.6 \pm$ $0.6) \times 10^{-8}$.			
${ }^{3}$ The MCFARLAND 93 result is for $\mathrm{B}\left[\pi^{0} \rightarrow e^{+} e^{-},\left(m_{e^{+}} e^{-} / m_{\pi^{0}}\right)^{2}>0.95\right]$. With radiative corrections it becomes $\left(8.8_{-3.2}^{+4.5} \pm 0.6\right) \times 10^{-8}$.			
${ }^{4}$ ALAVI-HARATI 99C quote result for $\mathrm{B}\left[\pi^{0} \rightarrow e^{+} e^{-},\left(m_{e^{+}} e^{-} / m_{\pi^{0}}\right)^{2}>0.95\right]$ to minimize radiative contributions from $\pi^{0} \rightarrow e^{+} e^{-} \gamma$. After radiative corrections they obtain $(7.04 \pm 0.46 \pm 0.28) \times 10^{-8}$.			

$\Gamma\left(e^{+} e^{-}\right) / \Gamma(2 \gamma)$
Γ_{5} / Γ_{1}
VALUE (units 10^{-7}) CL\% EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -

<1.3	90		NIEBUHR	89	SPEC	$\pi^{-} \underset{\text { rest }}{p \rightarrow} \pi^{0} n \text { at }$
<5.3	90		ZEPHAT	87	SPEC	$\begin{gathered} \pi^{-} p \rightarrow \pi^{0} n \\ 0.3 \mathrm{GeV} / c \end{gathered}$
$1.7 \pm 0.6 \pm 0.3$		59	FRANK	83	SPEC	$\pi^{-} p \rightarrow n \pi^{0}$
1.8 ± 0.6		58	MISCHKE	82	SPEC	See FRANK 83
$2.23_{-1.10}^{+2.40}$	90	8	FISCHER	78B	SPRK	$K^{+} \rightarrow \pi^{+} \pi^{0}$

$\Gamma(4 \gamma) / \Gamma_{\text {total }}$							$\Gamma 6 / \Gamma$
$V A L U E$ (units 10^{-8})	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT	
<2	90		MCDONOUGH 88		CBOX $\pi^{-} p$ at rest		
- We do not	use th	follow	data for averag	fits	limits,	tc. • • -	
<160	90		BOLOTOV	86C	CALO		
<440	90	0	AUERBACH	80	CNTR		

$\Gamma(\nu \bar{\nu}) / \Gamma_{\text {total }}$
The astrophysical and cosmological limits are many orders of magnitude lower, but we use the best laboratory limit for the Summary Tables.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 2 7}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ARTAMONOV 05A }} \frac{\text { TECN }}{\text { B949 }} \frac{\text { COMMENT }}{K^{+} \rightarrow \pi^{+} \pi^{0}}$

- - We do not use the following data for averages, fits, limits, etc. - • -

<0.83	90	${ }^{1}$ ATIYA	91	B787	$K^{+} \rightarrow \pi^{+} \nu \nu^{\prime}$
$<2.9 \times 10^{-7}$		${ }^{2}$ LAM	91		Cosmological limit
$<3.2 \times 10^{-7}$		3 NATALE	91		SN 1987A
< 6.5	90	DORENBOS...	88	CHRM	Beam dump, prompt ν
<24	90	${ }^{1}$ HERCZEG	81	RVUE	$K^{+} \rightarrow \pi^{+} \nu \nu^{\prime}$

${ }^{1}$ This limit applies to all possible $\nu \nu^{\prime}$ states as well as to other massless, weakly interacting states.
${ }^{2}$ LAM 91 considers the production of right-handed neutrinos produced from the cosmic thermal background at the temperature of about the pion mass through the reaction ${ }^{3} \gamma \gamma \rightarrow \pi^{0} \rightarrow \nu \bar{\nu}$.
${ }^{3}$ NATALE 91 considers the excess energy-loss rate from SN 1987A if the process $\gamma \gamma \rightarrow$ $\pi^{0} \rightarrow \nu \bar{\nu}$ occurs, permitted if the neutrinos have a right-handed component. As pointed out in LAM 91 (and confirmed by Natale), there is a factor 4 error in the NATALE 91 published result $\left(0.8 \times 10^{-7}\right)$.
$\Gamma\left(\nu_{e} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}$
Γ_{8} / Γ
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<1.7} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { DORENBOS... } 88} \frac{\text { TECN }}{\text { CHRM }} \frac{\text { COMMENT }}{\text { Beam dump, prompt } \nu}$

- - We do not use the following data for averages, fits, limits, etc. • •
<3.1 $90 \quad{ }^{1}$ HOFFMAN 88 RVUE Beam dump, prompt ν ${ }^{1}$ HOFFMAN 88 analyzes data from a $400-\mathrm{GeV}$ BEBC beam-dump experiment.

$\Gamma\left(\nu_{\mu} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}$							Г9/Г
VALUE (units 10^{-6})	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT	
<1.6	90	8.7	AUERBACH	04	LSND	800 MeV p	
<3.1	90		1 HOFFMAN	88	RVUE	Beam dum	mpt ν

- - We do not use the following data for averages, fits, limits, etc. - •
<7.8 90 DORENBOS... 88 CHRM Beam dump, prompt ν
${ }^{1}$ HOFFMAN 88 analyzes data from a $400-\mathrm{GeV}$ BEBC beam-dump experiment.

π^{0} ELECTROMAGNETIC FORM FACTOR

The amplitude for the process $\pi^{0} \rightarrow e^{+} e^{-} \gamma$ contains a form factor $\mathrm{F}(x)$ at the $\pi^{0} \gamma \gamma$ vertex, where $x=\left[m_{e^{+}} e^{-} / m_{\pi^{0}}\right]^{2}$. The parameter a in the linear expansion $\mathrm{F}(x)=1+a x$ is listed below.
All the measurements except that of BEHREND 91 are in the time-like region of momentum transfer.

LINEAR COEFFICIENT OF π^{0} ELECTROMAGNETIC FORM FACTOR

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT
3.35 ± 0.31 OUR AVERAGE				
$3.68 \pm 0.51 \pm 0.25$	1.1M	LAZZERONI 17	SPEC	$\begin{gathered} K^{ \pm} \rightarrow \pi^{0} \pi^{ \pm} ; \pi^{0} \rightarrow \\ e^{+} e^{-} \gamma \end{gathered}$
$2.6 \pm 2.4 \pm 4.8$	7.5k	FARZANPAY 92	SPEC	$\pi^{-} p \rightarrow \pi^{0} n$ at rest
$2.5 \pm 1.4 \pm 2.6$	54k	MEIJERDREES 92B	SPEC	$\pi^{-} p \rightarrow \pi^{0} n$ at rest
$3.26 \pm 0.26 \pm 0.26$	127	1 BEHREND 91	CELL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$
$-11 \pm 3 \pm 8$	32k	FONVIEILLE 89	SPEC	Radiation corr.
- - We do not use the following data for averages, fits, limits, etc. - - -				
$\begin{array}{r}12 \\ +5 \\ \hline\end{array}$		${ }^{2}$ TUPPER 83	THEO	FISCHER 78 data
10 ± 3	31k	${ }^{3}$ FISCHER 78	SPEC	Radiation corr.
1 ± 11	2.2k	DEVONS 69	OSPK	No radiation corr.
-15 ± 10	7.6k	KOBRAK 61	HBC	No radiation corr.
-24 ± 16	3.0k	SAMIOS 61	HBC	No radiation corr.

${ }^{1}$ BEHREND 91 estimates that their systematic error is of the same order of magnitude as their statistical error, and so we have included a systematic error of this magnitude. The value of a is obtained by extrapolation from the region of large space-like momentum transfer assuming vector dominance.
2 TUPPER 83 is a theoretical analysis of FISCHER 78 including 2-photon exchange in the
3 Corrections. $+0.05 \pm 0.03$.
π^{0} References
We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters B204 1 (1988).

ABOUZAID	19	PR D100 032003	E. Abouzaid et al.	(KTeV Collab.)
CORTINA-GIL	19	JHEP 1905182	E. Cortina Gil et al.	(NA62 Collab.)
LAZZERONI	17	PL B768 38	C. Lazzeroni et al.	(NA62 Collab.)
BERNSTEIN	13	RMP 8549	A.M. Bernstein, B. R. Holstein	(AMHT, MIT)
LARIN	11	PRL 106162303	I. Larin et al.	(PrimEx Collab.)
BYCHKOV	09	PRL 103051802	M. Bychkov et al.	(PSI PIBETA Collab.)
ABOUZAID	08C	PRL 100131803	E. Abouzaid et al.	(FNAL KTeV Collab.)
ABOUZAID	08D	PRL 100182001	E. Abouzaid et al.	(FNAL KTeV Collab.)
BEDDALL	08	EPJ C54 365	A. Beddall, A. Beddall	(UGAZ)
ABOUZAID	07	PR D75 012004	E. Abouzaid et al.	(KTeV Collab.)
ARTAMONOV	05A	PR D72 091102	A.V. Artamonov et al.	(BNL E949 Collab.)
AUERBACH	04	PRL 92091801	L.B. Auerbach et al.	(LSND Collab.)
APPEL	00	PRL 852450	R. Appel et al.	(BNL 865 Collab.)
Also		Thesis, Yale Univ.	D.R. Bergman	
Also		Thesis, Univ. Zurich	S. Pislak	
APPEL	00B	PRL 852877	R. Appel et al.	(BNL 865 Collab.)

Meson Particle Listings
π^{0}, η

η MASS

Recent measurements resolve the obvious inconsistency in previous η mass measurements in favor of the higher value first reported by NA48 (LAI 02). We use only precise measurements consistent with this higher mass value for our η mass average.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
547.862 ± 0.017 OUR AVERAGE					
$547.865 \pm 0.031 \pm 0.062$		NIKOLAEV	14	CRYB	$\gamma p \rightarrow p \eta$
$547.873 \pm 0.005 \pm 0.027$	1 M	GOSLAWSKI	12	SPEC	$d p \rightarrow{ }^{3} \mathrm{He} \eta$
$547.874 \pm 0.007 \pm 0.029$		AMBROSINO	07B	KLOE	$e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
$547.785 \pm 0.017 \pm 0.057$	16k	MILLER	07	CLEO	$\psi(2 S) \rightarrow J / \psi \eta$
$547.843 \pm 0.030 \pm 0.041$	1134	LAI	02	NA48	$\eta \rightarrow 3 \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$547.311 \pm 0.028 \pm 0.032$		${ }^{1}$ ABDEL-BARY	05	SPEC	$d p \rightarrow{ }^{3} \mathrm{He} \eta$
$547.12 \pm 0.06 \pm 0.25$		KRUSCHE	95D	SPEC	$\gamma p \rightarrow \eta p$, threshold
547.30 ± 0.15		PLOUIN	92	SPEC	$d p \rightarrow{ }^{3} \mathrm{He} \eta$
547.45 ± 0.25		DUANE	74	SPEC	$\pi^{-} p \rightarrow n$ neutrals
548.2 ± 0.65		FOSTER	65C	HBC	
549.0 ± 0.7	148	FOELSCHE	64	HBC	
548.0 ± 1.0	91	ALFF-.	62	HBC	
549.0 ± 1.2	53	BASTIEN	62	HBC	
${ }^{1}$ ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better precision. See comment in the header.					

η WIDTH

This is the partial decay rate $\Gamma(\eta \rightarrow \gamma \gamma)$ divided by the fitted branching fraction for that mode. See the note at the start of the $\Gamma(2 \gamma)$ data block, next below.
[a] Forbidden by angular momentum conservation.
[b] C parity forbids this to occur as a single-photon process.

CONSTRAINED FIT INFORMATION

An overall fit to 2 decay rate and 19 branching ratios uses 50 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^{2}=43.8$ for 42 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

Mode		Rate (keV)	Scale factor
Γ_{2}	2γ	0.515 ± 0.018	
Γ_{3}	$3 \pi^{0}$	0.427 ± 0.015	
Γ_{4}	$\pi^{0} 2 \gamma$	$(3.34 \pm 0.28) \times 10^{-4}$	
Γ_{9}	$\pi^{+} \pi^{-} \pi^{0}$	0.299 ± 0.011	
Γ_{10}	$\pi^{+} \pi^{-} \gamma$	0.0551 ± 0.0022	
Γ_{11}	$e^{+} e^{-} \gamma$	0.0090 ± 0.0006	1.2

Γ_{12}	$\mu^{+} \mu^{-} \gamma$	(4.1	± 0.5) $\times 10^{-4}$
Γ_{16}	$\pi^{+} \pi^{-} e^{+} e^{-}(\gamma)$	(3.50	± 0.19) $\times 10^{-4}$

η DECAY RATES

$\Gamma(2 \gamma)$
See the table immediately above giving the fitted decay rates. Following the advice of NEFKENS 02, we have removed the Primakoff-effect measurement from the average. See also the "Note on the Decay Width $\Gamma(\eta \rightarrow \gamma \gamma)$," in our 1994 edition, Phys. Rev. D50, 1 August 1994, Part I, p. 1451, for a discussion of the various measurements.
$\frac{V A L U E(\mathrm{keV})}{0.515 \pm 0.018 \text { OUR FITIT }} \frac{\text { EVTS }}{}$
0.516 ± 0.018 OUR AVERAGE
$0.520 \pm 0.020 \pm 0.013$
$0.51 \pm 0.12 \pm 0.05 \quad 36 \quad$ BABUSCI 13A KLOE $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$

| 0.49 | 36 | BARU | 90 | MD1 | $e^{+} e^{-} \rightarrow$ |
| :--- | ---: | :--- | :--- | :--- | :--- |$e^{+} e^{-} \eta$

$0.514 \pm 0.017 \pm 0.035 \quad 1295 \quad$ WILLIAMS $88 \quad$ CBAL $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$
$0.53 \pm 0.04 \pm 0.04$
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.476 \pm 0.062 \quad 1$ RODRIGUES 08 CNTR Reanalysis
$0.64 \pm 0.14 \pm 0.13 \quad$ AIHARA $86 \mathrm{TPC} e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$ $0.56 \pm 0.16 \quad 56 \quad$ WEINSTEIN 83 CBAL $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$ $0.324 \pm 0.046 \quad$ BROWMAN 74B CNTR Primakoff effect

1.00 ± 0.22

2 BEMPORAD 67 CNTR Primakoff effect
1^{1} RODRIGUES 08 uses a more sophisticated calculation for the inelastic background due to incoherent photoproduction to reanalyze the η photoproduction data on Be and Cu at 9 GeV from BROWMAN 74B. This brings the value of $\Gamma(\eta \rightarrow 2 \gamma)$ in line with direct measurements of the width. The error here is only statistical.
${ }^{2}$ BEMPORAD 67 gives $\Gamma(2 \gamma)=1.21 \pm 0.26 \mathrm{keV}$ assuming $\Gamma(2 \gamma) / \Gamma($ total $)=0.314$. Bemporad private communication gives $\Gamma(2 \gamma)^{2} / \Gamma$ (total) $=0.380 \pm 0.083$. We evaluate this using $\Gamma(2 \gamma) / \Gamma($ total $)=0.38 \pm 0.01$. Not included in average because the uncertainty resulting from the separation of the coulomb and nuclear amplitudes has apparently been underestimated.
$\Gamma\left(\pi^{0} 2 \gamma\right)$

VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT
0.334 ± 0.028 OUR FIT					
0.33 ± 0.03	1200	NEFKENS	14	CRYB	$\gamma p \rightarrow \eta p$

 $3 \pi^{0}, \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \gamma$, and $e^{+} e^{-} \gamma$ account for all η decays within a contribution of 0.3% to the systematic error.
$\Gamma(2 \gamma) / \Gamma$ (neutral modes)
$\frac{V A L U E}{0.5465 \pm 0.0019 \text { OUR FIT }}$
DOCUMENT ID
$\Gamma_{2} / \Gamma_{1}=\Gamma_{2} /\left(\Gamma_{2}+\Gamma_{3}+\Gamma_{4}\right)$
0.548 ± 0.023 OUR AVERAGE
0.535 ± 0.018
ror includes scale factor of 1.5
BUTTRAM 70 OSPK
BUNIATOV 67 OSPK

- - We do not use the following data for averages, fits, limits, etc. - -

0.52	± 0.09	88	ABROSIMOV	80	HLBC	
0.60	± 0.14	113	KENDALL	74	OSPK	
0.57	± 0.09		STRUGALSKI	71	HLBC	
0.579	± 0.052		FELDMAN	67	OSPK	
0.416	± 0.044		DIGIUGNO	66	CNTR	Error doubled
0.44	± 0.07		GRUNHAUS	66	OSPK	
0.39	± 0.06		1 JONES	66	CNTR	

$\Gamma\left(3 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{3} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{32.68 \pm 0.23 \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of } 1.1} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$
$32.68 \pm \mathbf{0 . 2 3}$ OUR FIT $\frac{\text { Error includes scale factor of 1.1. }}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$34.03 \pm 0.56 \pm 0.49 \quad 1821 \quad 1$ LOPEZ 07 CLEO $\psi(2 S) \rightarrow J / \psi \eta$
${ }^{1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta \rightarrow \gamma \gamma$, $3 \pi^{0}, \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \gamma$, and $e^{+} e^{-} \gamma$ account for all η decays within a contribution of 0.3% to the systematic error.

$\Gamma\left(3 \pi^{0}\right) / \Gamma($ neutral modes $)$		$\Gamma_{3} / \Gamma_{1}=\Gamma_{3} /\left(\Gamma_{2}+\Gamma_{3}+\Gamma_{4}\right)$
VALUE EVTS	DOCUMENT ID	TECN COMMENT
0.4531 ± 0.0019 OUR FIT		
0.439 ± 0.024	BUTTRAM 70	OSPK
- - We do not use the following data for averages, fits, limits, etc. - -		
$0.44 \pm 0.08 \quad 75$	ABROSIMOV 80	HLBC
0.32 ± 0.09	STRUGALSKI 71	HLBC
0.41 ± 0.033	BUNIATOV 67	OSPK Not indep. of $\Gamma(2 \gamma) /$ Γ (neutral modes)
0.177 ± 0.035	FELDMAN 67	OSPK
0.209 ± 0.054	DIGIUGNO 66	CNTR Error doubled
0.29 ± 0.10	GRUNHAUS 66	OSPK
$\Gamma\left(3 \pi^{0}\right) / \Gamma(2 \gamma)$		Γ_{3} / Γ_{2}
VALUE EVTS	DOCUMENT ID	TECN COMMENT
0.829 ± 0.006 OUR FIT		
0.829 ± 0.007 OUR AVERAGE		
$0.884 \pm 0.022 \pm 0.019 \quad 1821$	LOPEZ 07	CLEO $\quad \psi(2 S) \rightarrow J / \psi \eta$
$0.817 \pm 0.012 \pm 0.032 \quad 17.4 \mathrm{k}$	1 AKHMETSHIN 05	CMD2 $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
0.826 ± 0.024	ACHASOV 00D	SND $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
$0.832 \pm 0.005 \pm 0.012$	KRUSCHE 95D	SPEC $\quad \gamma p \rightarrow \eta p$, threshold
0.841 ± 0.034	AMSLER 93	CBAR $\bar{p} p \rightarrow \pi^{+} \pi^{-} \eta$ at rest
0.822 ± 0.009	ALDE 84	GAM2
- - We do not use the following data for averages, fits, limits, etc. - -		
$0.796 \pm 0.016 \pm 0.016$	ACHASOV 00	SND See ACHASOV 00d
0.91 ± 0.14	COX 70B	HBC
0.75 ± 0.09	DEVONS 70	OSPK
0.88 ± 0.16	BALTAY 67D	DBC
1.1 ± 0.2	CENCE 67	OSPK
1.25 ± 0.39	BACCI 63	CNTR Inverse BR reported

${ }^{1}$ Uses result from AKHMETSHIN 01B.
$\Gamma\left(\pi^{0} 2 \gamma\right) / \Gamma_{\text {total }}$
Early results are summarized in the review by LANDSBERG 85.
VALUE (units 10^{-4}) CL\% EVTS DOCUMENTID TECN COMMENT

2.56 ± 0.22 OUR FIT

$\mathbf{2 . 2 1} \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 4 7} \approx 500 \quad{ }^{1}$ PRAKHOV 08 CRYB $\pi^{-} p \rightarrow \eta n \approx$ threshold

- - We do not use the following data for averages, fits, limits, etc. - - -

$3.5 \pm 0.7 \pm 0.6$	1.6 k	2,3 PRAKHOV	05	CRYB	See PRAKHOV 08
<8.4	7	ACHASOV	01D	SND	$\rightarrow \phi \rightarrow$
<3090	0	DAVYDOV	81	GAM2	$p \rightarrow \eta n$
1^{1} PRAKHOV 08 is a reanalysis of the data of PRAKHOV 05 , using for the first time the invariant-mass spectrum of the two photons.					
${ }^{2}$ Normalized using $\Gamma(\eta \rightarrow 2 \gamma) / \Gamma=0.3943 \pm 0.0026$.					
${ }^{3}$ This measurement and the independent analysis of the same data by KNECHT 04 both imply a lower value of $\Gamma\left(\pi^{0} 2 \gamma\right)$ than the one obtained by ALDE 84 from $\Gamma\left(\pi^{0} 2 \gamma\right) / \Gamma(2 \gamma)$.					

$\Gamma\left(\pi^{0} 2 \gamma\right) / \Gamma(2 \gamma)$
Γ_{4} / Γ_{2}
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{0 . 6 5} \pm \mathbf{0 . 0 6} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN CHG COMMENT
1.8 ± 0.4
ALDE
84 GAM2 0

- - We do not use the following data for averages, fits, limits, etc. - - .

| 2.5 ± 0.6 | 70 | BINON |
| :--- | :--- | :--- | 82 GAM2 See ALDE 84

| $\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{\mathbf{0}} \mathbf{2} \gamma\right) / \Gamma\left(3 \pi^{\mathbf{0}}\right)$ | |
| :--- | :--- | :--- |
| VALUE (units $\left.10^{-4}\right)$ | $\Gamma_{\mathbf{4}} / \boldsymbol{\Gamma}_{\mathbf{3}}$ |

VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
7.8 ± 0.7 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - -
$8.3 \pm 2.8 \pm 1.4$
1 KNECHT 04 CRYB $\pi^{-} p \rightarrow n \eta$

1 Independent analysis of same data as PRAKHOV 05.

 $<4.0 \times 10^{-3} \quad 90 \quad$ BLIK 07 GAM4 $\pi^{-} p \rightarrow \eta n$
${ }^{1}$ Measurement is done in limited $\gamma \gamma$ energy range.
$\boldsymbol{\Gamma}(\mathbf{4} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2 . 8} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90}$$\frac{\text { DOCUMENT ID }}{\text { BLIK }} \frac{\text { TECN }}{\text { GAM4 }} \frac{\Gamma_{\mathbf{6}} / \boldsymbol{\Gamma}}{\pi^{-} p \rightarrow \eta n}$

$\Gamma($ invisible $) / \Gamma(2 \gamma)$						Γ_{7} / Γ_{2}
VALUE	CL\%	DOCUMEN		TECN	COMMENT	
<2.6 $\times 10^{-4}$	90	1 ABLIKIM	13	BES3	$J / \psi \rightarrow \phi \eta$	
- - We do not use the following data for averages, fits, limits, etc. - -						
$<1.65 \times 10^{-3}$	90	${ }^{2}$ ABLIKIM	06Q	BES2	$J / \psi \rightarrow \phi \eta$	
${ }^{1}$ Based on $225 \mathrm{M} \mathrm{J} / \psi$ decays.						
${ }^{2}$ Based on 58M J/ ψ decays.						

$\Gamma(2 \gamma) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$				Γ_{2} / Γ_{9}
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
1.720 ± 0.028 OUR FIT Error includes scale factor of 1.2.				
1.70 ± 0.04 OUR AVERAGE				
$1.704 \pm 0.032 \pm 0.026$	3915	${ }^{1}$ LOPEZ	07 CLEO	$\psi(2 S) \rightarrow J / \psi \eta$
1.61 ± 0.14		ABLIKIM	06E BES2	$e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow \eta \gamma$
$1.78 \pm 0.10 \pm 0.13$	1077	AMSLER	95 CBAR	$\bar{p} p \rightarrow \pi^{+} \pi^{-} \eta$ at rest
1.72 ± 0.25	401	BAGLIN	69 HLBC	
1.61 ± 0.39		FOSTER	65 HBC	
${ }^{1}$ LOPEZ 07 reports		$\left.\pi^{0}\right) / \Gamma(\eta$) $=\Gamma_{9} / \Gamma^{\prime}$	$0.587 \pm 0.011 \pm 0.0$

$\Gamma\left(3 \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
Γ_{3} / Γ_{9}
VALUE DOCUMENT ID EVTS TECN COMMENT
1.426 ± 0.026 OUR FIT Error includes scale factor of 12
1.48 ± 0.05 OUR AVERAGE

1.46 ± 0.03	± 0.09	
1.52 ± 0.04	± 0.08	$23 k$
1.44 ± 0.09	± 0.10	1627
$1.50+0.15$		199
	-0.29	
1.47	+0.20	

ACHASOV	06A	SND	$e^{+} e^{-} \rightarrow \eta \gamma$
1			
AKHMETSHIN 01B	CMD2	$e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$	
AMSLER	95	CBAR	$\bar{p} p \rightarrow \pi^{+} \pi^{-} \eta$ at rest
BAGLIN	69	HLBC	
BULLOCK	68	HLBC	

- - We do not use the following data for averages, fits, limits, etc. - - -

1.3	± 0.4	BAGLIN	67 B	HLBC
0.90	± 0.24	FOSTER	65	HBC
2.0	± 1.0	FOELSCHE	64	HBC
0.83	± 0.32	CRAWFORD	63	HBC

${ }^{1}$ AKHMETSHIN 01B uses results from AKHMETSHIN 99F.

$\mathbf{0 . 3 0 4} \pm \mathbf{0 . 0 1 2} \quad$ ACHASOV 00 D SND $\quad e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
• • We do not use the following data for averages, fits, limits, etc. • • •
$0.3141 \pm 0.0081 \pm 0.0058 \quad$ ACHASOV 00B SND See ACHASOV 00D

$\Gamma\left(\pi^{+} \pi^{-} \gamma\right) / \Gamma_{\text {total }}$					Γ_{10} / Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.96 \pm 0.14 \pm 0.14 \quad 859 \quad 1$ LOPEZ 07 CLEO $\psi(2 S) \rightarrow J / \psi \eta$
${ }^{1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta \rightarrow \gamma \gamma$, $3 \pi^{0}, \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \gamma$, and $e^{+} e^{-} \gamma$ account for all η decays within a contribution of 0.3% to the systematic error.
$\Gamma\left(\pi^{+} \pi^{-} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 1 8 4 2} \pm \mathbf{0 . 0 0 2 7} \text { OUR FIT }} \stackrel{\text { EVTS }}{ }$
$\mathbf{0 . 1 8 4 7} \pm \mathbf{0 . 0 0 3 0}$ OUR AVERAGE Error includes scale factor of 1.1.
$0.1856 \pm 0.0005 \pm 0.0028 \quad 200 \mathrm{k} \quad$ BABUSCI 13 KLOE $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$ $0.175 \pm 0.007 \pm 0.006 \quad 859 \quad$ LOPEZ 07 CLEO $\psi(2 S) \rightarrow J / \psi \eta$
- - We do not use the following data for averages, fits, limits, etc. - • •

0.209	± 0.004	$18 k$	THALER	73	ASPK
0.201	± 0.006	7250	GORMLEY	70	ASPK
0.28	± 0.04		BALTAY	67 B	DBC
0.25	± 0.035		LITCHFIELD	67	DBC
0.30	± 0.06		CRAWFORD	66	HBC
0.196	± 0.041		FOSTER	65 C	HBC

$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$			Γ_{11} / Γ	
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
$6.9 \pm \mathbf{\pm 0 . 4}$ OUR FIT Error includes scale factor of 1.3.				
6.7 ± 0.5 OUR AVERAGE Error includes scale factor of 1.2.				
$6.6 \pm 0.4 \pm 0.4$	1345	BERGHAUSER 11	SPEC	$\gamma p \rightarrow p \eta$
$7.8 \pm 0.5 \pm 0.8$	435 ± 31	BERLOWSKI 08	WASA	$p d \rightarrow{ }^{3} \mathrm{He} \eta$
$5.15 \pm 0.62 \pm 0.74$	283	ACHASOV 01B	SND	$e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
$7.10 \pm 0.64 \pm 0.46$	323	AKHMETSHIN 01	CMD2	$e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -				
$9.4 \pm 0.7 \pm 0.5$	172	${ }^{1}$ LOPEZ 07	CLEO	$\psi(2 S) \rightarrow J / \psi \eta$
${ }^{1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta \rightarrow \gamma \gamma$, $3 \pi^{0}, \pi^{+} \pi^{-} \pi^{0}$, $\pi^{+} \pi^{-} \gamma$, and $e^{+} e^{-} \gamma$ account for all η decays within a contribution of 0.3% to the systematic error.				
$\Gamma\left(e^{+} e^{-\gamma}\right) / \Gamma\left(\pi^{+} \boldsymbol{\gamma}\right.$	$\left.\pi^{-} \boldsymbol{\gamma}\right)$		$\Gamma_{11} / \Gamma_{10}$	
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 1 6 3} \pm \mathbf{0 . 0 1 1}$ OUR FIT Error includes scale factor of 1.2.				
$0.237 \pm 0.021 \pm 0.015$	- 172	LOPEZ 07	CLEO	$\psi(2 S) \rightarrow J / \psi \eta$
$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$				
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN COMMENT	
3.00 $\pm \mathbf{0 . 1 9}$ OUR FIT Error includes scale factor of 1.3.				
2.1 ± 0.5	80	JANE 75B	OSPK	See the erratum
$\begin{array}{r} \Gamma(\text { neutral modes }) /\left[\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)+\Gamma\left(\pi^{+} \pi^{-} \gamma\right)+\Gamma\left(e^{+} e^{-\gamma}\right)\right] \\ \Gamma_{1} /\left(\Gamma_{9}+\Gamma_{10}+\Gamma_{11}\right)=\left(\Gamma_{2}+\Gamma_{3}+\Gamma_{4}\right) /\left(\Gamma_{9}+\Gamma_{10}+\Gamma_{11}\right) \end{array}$				
VALUE	EVTS	DOCUMENT ID	TECN	
$\mathbf{2 . 5 9} \pm \mathbf{0 . 0 4}$ OUR FIT Error includes scale factor of 1.2.				
$2.64 \pm \mathbf{0 . 2 3}$ BALTAY 67B DBC				
- - We do not use the following data for averages, fits, limits, etc. - - -				
4.5 ± 1.0	280	1 JAMES 66	HBC	
3.20 ± 1.26	53	${ }^{1}$ BASTIEN 62	HBC	
2.5 ± 1.0	10	${ }^{1}$ PICKUP 62	HBC	

${ }^{1}$ These experiments are not used in the averages as they do not separate clearly $\eta \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ from each other. The reported values thus probably contain some unknown fraction of $\eta \rightarrow \pi^{+} \pi^{-} \gamma$.
$\Gamma(2 \gamma) /\left[\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)+\Gamma\left(\pi^{+} \pi^{-} \gamma\right)+\Gamma\left(e^{+} e^{-} \gamma\right)\right]$
$\Gamma_{2} /\left(\Gamma_{9}+\Gamma_{10}+\Gamma_{11}\right)$
$\frac{\text { VALUE }}{\mathbf{1 . 4 1 7} \mathbf{\pm} \mathbf{0 . 0 2 3} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.2. }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$
1.1 ± 0.4 OUR AVERAGE

1.51	± 0.93	75	KENDALL	74
0.99	± 0.48		CRAWFORD	63
OBPK				

- - We do not use the following data for averages, fits, limits, etc. • •

$<2.3 \times 10^{-6}$	90	AGAKISHIEV	14	$p p \rightarrow \eta+X$	
$<5.6 \times 10^{-6}$	90	1 AGAKISHIEV	12A SPEC	$p p \rightarrow \eta+X$	
$<2.7 \times 10^{-5}$	90	BERLOWSKI	08	WASA	$p d \rightarrow 3^{3} \mathrm{He} \eta$
$<0.77 \times 10^{-4}$	90	BROWDER	97B	CLE2	$e^{+} e^{-} \simeq 10.5 \mathrm{GeV}$
$<2 \times 10^{-4}$	90	WHITE	96	SPEC	$p d \rightarrow \eta^{3} \mathrm{He}$
$<3 \times 10^{-4}$	90	DAVIES	74	RVUE UseS ESTEN 67	

${ }^{1}$ AGAKISHIEV 12A uses a data sample of 3.5 GeV proton beam collisions on liquid hydrogen target collected by the HADES detector.
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-6}) CL\% EVTS

5.8 ± 0.8 OUR AVERAGE

$5.7 \pm 0.7 \pm 0.5 \quad 114 \quad$ ABEGG 94 SPEC $p d \rightarrow \eta^{3} \mathrm{He}$
$6.5 \pm 2.1 \quad 27$ DZHELYADIN 80B SPEC $\pi^{-} p \rightarrow \eta n$

- - We do not use the following data for averages, fits, limits, etc. - - -

$5.6_{-0.7}^{+0.6} \pm 0.5$		100	KESSLER	93	SPEC	See ABEGG 94
<20	95	0	WEHMANN	68	OSPK	

$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma(\mathbf{2} \gamma) \quad \Gamma_{14} / \Gamma_{\mathbf{2}}$
VALUE (units 10^{-5}) DOCUMENT ID TECN

- - We do not use the following data for averages, fits, limits, etc. - -
$5.9 \pm 2.2 \quad$ HYAMS 69 OSPK

$\Gamma\left(\mathbf{2} e^{+} \mathbf{2} e^{-}\right) / \Gamma_{\text {total }}$						Γ_{15} / Γ
VALUE (units 10^{-5})	CL\%	EVTS	DOCUMENT ID	TECN	COMMENT	
$\mathbf{2 . 4} \pm 0.2 \pm 0.1$		362	1 AMBROSINO	KLOE	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - . -						
<9.7	90		BERLOWSKI 08 WASA pd $\rightarrow{ }^{3} \mathrm{He} \eta$			
<6.9	90		AKHMETSHIN 01	CMD2 $e^{+} e^{-} \rightarrow \phi \rightarrow$		
${ }^{1}$ This measurement is fully inclusive (includes " $2 e^{+} 2 e^{-} \gamma$ " channel).						

$\Gamma\left(\pi^{+} \pi^{-} e^{+} e^{-}(\gamma)\right) / \Gamma_{\text {total }} \quad \Gamma_{16} / \Gamma$ VALUE (units 10^{-4}) EVTS $\begin{array}{lll}\mathbf{2 . 6 8} \pm \mathbf{0 . 1 1 ~ O U R ~ F I T ~} \\ \mathbf{2 . 6 8} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 7} & 1555 \pm 52 \quad 1 \text { AMBROSINO 09B KLOE } \quad e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma\end{array}$ - - We do not use the following data for averages, fits, limits, etc. - - -

$4.3{ }_{-1.6}^{+2.0} \pm 0.4$	16	BERLOWSKI 08	WASA pd $\rightarrow{ }^{3} \mathrm{He} \eta$
$4.3 \pm 1.3 \pm 0.4$	16	BARGHOLTZ 07	CNTR See BERLOWSKI 08
$3.7{ }_{-1.8}^{+2.5} \pm 0.3$	4	AKHMETSHIN 01	CMD2 $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$

$\Gamma\left(e^{+} e^{-} \mu^{+} \mu^{-}\right) / /_{\text {total }}$
$\frac{V A L U E}{<\mathbf{1 . 6} \times \mathbf{1 0}^{-\mathbf{4}}} \frac{C L \%}{90}$
$\Gamma\left(2 \mu^{+} 2 \mu^{-}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{3 . 6} \times \mathbf{1 0}^{-4}} \frac{C L \%}{90}$
$\Gamma\left(\mu^{+} \mu^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{3} .6 \times 10^{-4}} \frac{C L \%}{90}$
$\Gamma\left(\pi^{+} e^{-} \bar{\nu}_{e}+\right.$ c.c. $) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$

$\frac{V A L U E}{<0.24 \times 10^{-\mathbf{2}}} \frac{C L \%}{90} \frac{\text { EVTS }}{0} \frac{\text { DOCUMENT ID }}{\text { THALER } 73} \frac{\text { TECN }}{\text { ASPK }}$
•• We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$<1.7 \times 10^{-2}$
$<1.6 \times 10^{-2}$ $95 \quad$ ARNOLD $\quad 68$ HLBC

I ZHEVLAKOV 19 derives the value from the experimental limits of nEDM by a calculation
using an effective Lagrangian. using an effective Lagrangian.
$\Gamma\left(2 \pi^{0}\right) / \Gamma_{\text {total }}$
Forbidden by P and $C P$ invariance.
$\frac{V A L U E}{<\mathbf{3 . 5} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90} \frac{\text { EVTS }}{\text { BLIK }} \quad \frac{\text { DOCUMENTID }}{\text { BLECN }} \frac{\text { COMMENT }}{\text { GAM4 }} \frac{\pi}{\pi^{-} p \rightarrow \eta n}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$\begin{array}{llllllll}<2.7 \times 10^{-17} \\ <6.9 \times 10^{-4} & 90 & 225 M & 1 \text { ZHEVLAKOV } & 19 & \text { THEO } & \text { from nEDM limits } \\ \text { ABLIKIM } & 11 \mathrm{G} & \text { BES3 } & e^{+} e^{-} \rightarrow & \end{array}$ $<6.9 \times 10^{-4} \quad 90 \quad 225 \mathrm{M} \quad$ ABLIKIM $\quad 11 \mathrm{G}$ BES3 $e^{+} e^{-} \rightarrow J / \psi \rightarrow \eta \gamma$ $<4.3 \times 10^{-4} \quad 90 \quad$ AKHMETSHIN 99C CMD2 $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$ $<6 \times 10^{-4} 90 \quad 2$ ACHASOV 98 SND $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
1 ZHEVLAKOV 19 derives the value from the experimental limits of $n E D M$ by a calculation using an effective Lagrangian.
2 ACHASOV 98 observes one event in a $\pm 3 \sigma$ region around the η mass, while a Monte Carlo calculation gives 10 ± 5 events. The limit here is the Poisson upper limit for one observed event and no background.
$\Gamma\left(2 \pi^{0} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{27} / \Gamma$ Forbidden by C invariance.
$\frac{V A L U E}{} \frac{C L \%}{\text { DOCUMENT ID }}$ TECN CHG COMMENT
$<\mathbf{5 \times 1 0 ^ { - 4 }} 90 \quad$ NEFKENS 05 CRYB $0 \quad \mathrm{p}(720 \mathrm{MeV} / \mathrm{c}) \pi^{-} \rightarrow n \eta$
- - We do not use the following data for averages, fits, limits, etc. - -
$<17 \times 10^{-4} \quad 90 \quad$ BLIK $\quad 07$ GAM4 $\quad \pi^{-} p \rightarrow \eta n$
$\Gamma\left(3 \pi^{0} \gamma\right) / \Gamma_{\text {total }}$ Forbiden by C invariance. $\quad \Gamma_{\mathbf{2 8}} / \Gamma$
VALUE CLO DOCUMENTID TECN CHG COMMENT $<\mathbf{6 \times 1 0 ^ { - 5 }} 90 \quad$ NEFKENS 05 CRYB $0 \quad \mathrm{p}(720 \mathrm{MeV} / \mathrm{c}) \pi^{-} \rightarrow n \eta$ - - We do not use the following data for averages, fits, limits, etc. - -
$<24 \times 10^{-5}$
90 BLIK
07 GAM4 $\pi^{-} p \rightarrow \eta n$

- - We do not use the following data for averages, fits, limits, etc. - • -

$\begin{aligned} & <16 \times 10^{-5} \\ & <4 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	BLIK NEFKENS	$\begin{aligned} & 07 \\ & 05 \mathrm{~A} \end{aligned}$	$\begin{array}{ll} \text { GAM4 } & \pi \\ \text { CRYB } & \text { p } \end{array}$	$\begin{aligned} & \pi^{-} p \rightarrow \eta n \\ & \mathrm{p}(720 \mathrm{MeV} / \end{aligned}$	$\rightarrow n \eta$
$\Gamma(3 \gamma) / \Gamma(2 \gamma)$						Γ_{29} / Γ_{2}
VALUE	CL\%	DOCUMENT ID		TECN	CHG	
$<1.2 \times 10^{-3}$	95	ALDE	84	GAM2	0	
$\Gamma(3 \gamma) / \Gamma\left(3 \pi^{0}\right)$						Γ_{29} / Γ_{3}
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<4.9 \times 10^{-5}$	90	ALOISIO	04	KLOE	$\phi \rightarrow \eta \gamma$	

$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{31} / Γ
C parity forbids this to occur as a single-photon process.
VALUE COCUMENTID CL TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

$<7.5 \times 10^{-6}$	90	ADLARSON	18 C WASA $p d \rightarrow \eta^{3} \mathrm{He}$	
$<1.6 \times 10^{-4}$	90	MARTYNOV 76 HLBC		
$<8.4 \times 10^{-4}$	90	BAZIN	68	DBC
$<70 \times 10^{-4}$		RITTENBERG 65	HBC	

$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
Γ_{31} / Γ_{9}
C parity forbids this to occur as a single-photon process.
$\frac{V A L U E}{<3.28 \times 10^{-5}} \frac{C L \%}{20} \quad$ DOCUMENT ID $<3.28 \times 10^{-5} \quad 90 \quad$ ADLARSON 18C WASA $p d \rightarrow \eta^{3} \mathrm{He}$

- - We do not use the following data for averages, fits, limits, etc. - -

<1.9	$\times 10^{-4}$	90	JANE	75	OSPK
<42	$\times 10^{-4}$	90	BAGLIN	67	HLBC
<16	$\times 10^{-4}$	90	BILLING	67	HLBC
<77	$\times 10^{-4}$		FOSTER	65 B	HBC
<110	$\times 10^{-4}$		PRICE	65	HBC

$\Gamma\left(\pi^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \Gamma_{\text {total }}$						Γ_{32} / Γ
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<5 \times 10^{-6}$	90	DZHELY		SPEC	$\pi^{-} p \rightarrow \eta n$	
- - We do not use the following data for averages, fits, limits, etc. - -						
$<500 \times 10^{-6}$		WEHMA		OSPK		
$\left[\Gamma\left(\mu^{+} e^{-}\right)+\Gamma\left(\mu^{-} e^{+}\right)\right] / \Gamma_{\text {total }}$ Forbidden by lepton family number conservation.						$\Gamma 33 / \Gamma$
VALUE	CL\%	DOCUMEN		TECN	COMMENT	
$<6 \times 10^{-6}$	90	WHITE	96	SPEC	$p d \rightarrow \eta^{3} \mathrm{He}$	

$\boldsymbol{\eta}$ C-NONCONSERVING DECAY PARAMETERS						

$\pi^{+} \pi^{-} \gamma$ PARAMETER β (D-wave)
Sensitive to a D-wave contribution: $d N / d \cos \theta=\sin ^{2} \theta\left(1+\beta \cos ^{2} \theta\right)$.
$\frac{\text { VALUE }}{-0.02} \pm \mathbf{0 . 0 7}$ OUR AVERAGE $\frac{\text { EVTS }}{\text { DOCUMENT ID }} \stackrel{\text { TECN }}{\text { Error includes scale factor of } 1.3}$
$\begin{array}{rcccc}\mathbf{- 0 . 0 2} & \pm \mathbf{0 . 0 7} & \text { OUR AVERAGE } & \text { Error includes scale factor of 1.3 } \\ 0.11 & \pm 0.11 & 35 \mathrm{k} & \text { JANE } & 74 \mathrm{~B} \\ \text { OSPK }\end{array}$
$-0.060 \pm 0.065 \quad 7250$ GORMLEY 70 WIRE

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.12 \pm 0.06 \quad 1$ THALER 72 ASPK
${ }^{1}$ The authors don't believe this indicates D-wave because the dependence of β on the γ energy is inconsistent with the theoretical prediction. A $\cos ^{2} \theta$ dependence can also come from P - and F-wave interference

η CP-NONCONSERVING DECAY PARAMETER

$\pi^{+} \pi^{-} e^{+} e^{-}$DECAY-PLANE ASYMMETRY PARAMETER $\boldsymbol{A}_{\boldsymbol{\phi}}$

In the η rest frame, the total momentum of the $e^{+} e^{-}$pair is equal and opposite to that of the $\pi^{+} \pi^{-}$pair. Let \hat{z} be the unit vector along the momentum of the $e^{+} e^{-}$ pair; let $\hat{n}_{e e}$ and $\hat{n}_{\pi \pi}$ be the unit vectors normal to the $e^{+} e^{-}$and $\pi^{+} \pi^{-}$planes; and let ϕ be the angle between the two normals. Then

$$
\sin \phi \cos \phi=\left[\left(\hat{n}_{e e} \times \hat{n}_{\pi \pi}\right) \cdot \hat{z}\right]\left(\hat{n}_{e e} \cdot \hat{n}_{\pi \pi}\right),
$$

and

$$
A_{\phi} \equiv \frac{N_{\sin \phi \cos \phi>0}-N_{\sin \phi \cos \phi<0}}{N_{\sin \phi \cos \phi} \gg 0+N_{\sin \phi \cos \phi<0}}
$$

$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{- 0 . 6} \pm \mathbf{2 . 5} \pm \mathbf{1 . 8}} \frac{\text { EVTS }}{1555 \pm 52} \quad \frac{\text { DOCUMENT ID }}{\text { AMBROSINO 09B }} \frac{\text { TECN }}{\text { KLOE }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma}$

ENERGY DEPENDENCE OF $\eta \rightarrow 3 \pi$ DALITZ PLOTS

PARAMETERS FOR $\boldsymbol{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{\mathbf{0}}$
See the "Note on η Decay Parameters," page 1454, in our 1994 edition (Physical Review D50 1173 (1994)). The following experiments fit to one or more of the coefficients a, b, c, d, e, f or g for \mid matrix element $\left.\right|^{2}=1+a y+b y^{2}+c x+d x^{2}+e x y$ $+f y^{3}+g x^{2} y$.
VALUE DOCUMENTID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

4.7M	1	ANASTASI	16A	KLOE	$e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
79 k	ABLIKIM	15G	BES3	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta$	
174 k	ADLARSON	14A	WASA	$p d \rightarrow \eta^{3} \mathrm{He}$	
1.34 M	AMBROSINO	08D	KLOE		
3230	2 ABELE	98D	CBAR	$\bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$ at rest	
1077	3	AMSLER	95	CBAR	$\bar{p} p \rightarrow \pi^{+} \pi^{-} \eta$ at rest
81 k	LAYTER	73	ASPK		

1138	CARPENTER	70	HBC
349	DANBURG	70	DBC
7250	GORMLEY	70	WIRE
526	BAGLIN	69	HLBC
7170	CNOPS	68	OSPK
37 k	GORMLEY	68 C	WIRE
1300	CLPWY	66	HBC
705	LARRIBE	66	HBC

${ }^{1}$ ANASTASI 16A measure the Dalitz parameters a, b, d, f, and g. This is the first measurement of g.
${ }^{2}$ ABELE 98D obtains $a=-1.22 \pm 0.07$ and $b=0.22 \pm 0.11$ when c (or d) is fixed at
$3 \begin{aligned} & 0.06 \text {. } \\ & \text { AMSLER } 95\end{aligned}$ fits to $\left(1+a y+b y^{2}\right)$ and obtains $a=-0.94 \pm 0.15$ and $b=0.11 \pm 0.27$.
$\boldsymbol{\alpha}$ PARAMETER FOR $\boldsymbol{\eta} \Rightarrow 3 \boldsymbol{\pi}^{\mathbf{0}}$
See the "Note on η Decay Parameters" in our 1994 edition, Phys. Rev. D50, 1 August 1994, Part I, p. 1454. The value here is of α in \mid matrix element $\left.\right|^{2}=1+2 \alpha z$.

$-\mathbf{0 . 0 2 8 8} \pm \mathbf{0 . 0 0 1 2}$ OUR AVERAG

EVTS

$$
\frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 1.1 .} \frac{\text { TECN }}{\text { COMMENT }}
$$

$-0.0265 \pm 0.0010 \pm 0.0009 \quad 7 \mathrm{M}$ PRAKHOV 18 CRYB $\gamma p \rightarrow p \eta$
$-0.055 \pm 0.014 \pm 0.004 \quad 33 \mathrm{k} \quad$ ABLIKIM $\quad 15 \mathrm{G}$ BES3 $e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta$
$-0.0301 \pm 0.0035_{-0.0035}^{+0.0022} 512 \mathrm{k} \quad$ AMBROSINO 10 A KLOE $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
$-0.027 \pm 0.008 \pm 0.005 \quad 120 \mathrm{k} \quad 1$ ADOLPH 09 WASA $p p \rightarrow p p \eta$
$-0.0322 \pm 0.0012 \pm 0.0022 \quad 3 \mathrm{M} \quad 2$ PRAKHOV $09 \quad$ CRYB $\gamma p \rightarrow p \eta$
$-0.032 \pm 0.002 \pm 0.002 \quad 1.8 \mathrm{M} \quad 2$ UNVERZAGT 09 CRYB $\gamma p \rightarrow p \eta$
$-0.026 \pm 0.010 \pm 0.010 \quad 75 \mathrm{k} \quad$ BASHKANOV 07 WASA $p p \rightarrow p p \eta$
$-0.010 \pm 0.021 \pm 0.010 \quad 12 \mathrm{k} \quad$ ACHASOV \quad 01C SND $e^{+} e^{-} \rightarrow \phi \rightarrow \eta \gamma$
$-0.031 \pm 0.004 \quad 1 \mathrm{M}$ TIPPENS 01 CRYB $\pi^{-} p \rightarrow n \eta, 720 \mathrm{MeV}$
$-0.052 \pm 0.017 \pm 0.010 \quad 98 \mathrm{k} \quad$ ABELE $\quad 98 \mathrm{C}$ CBAR $\bar{p} p \rightarrow 5 \pi^{0}$
$-0.022 \pm 0.023 \quad 50 \mathrm{k}$ ALDE 84 GAM2

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.038 \pm 0.003{ }_{-0.008}^{+0.012} \quad 1.34 \mathrm{M} \quad{ }^{3}$ AMBROSINO 08D KLOE
$-0.32 \pm 0.37 \quad 192 \quad$ BAGLIN 70 HLBC
${ }^{1}$ This ADOLPH 09 result is independent of the BASHKANOV 07 result.
2 The PRAKHOV 09 and UNVERZAGT 09 results are independent.
${ }^{3}$ This AMBROSINO 08D value is an indirect result using $\eta \rightarrow \pi^{+} \pi^{0} \pi^{-}$events and a rescattering matrix that mixes isospin decay amplitudes.

PARAMETER $\boldsymbol{\wedge}$ IN $\eta \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-} \gamma$ DECAY

In the pole approximation the electromagnetic transition form factor for a resonance of mass M is given by the expression:
$|F|^{2}=\left(1-M_{\ell \ell}^{2} / \Lambda^{2}\right)^{-2}$,
where for the parameter Λ vector dominance predicts $\Lambda \approx 0.770 \mathrm{GeV}$.
VALUE $\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$ EVTS DOCUMENTID TECN COMMENT
$\overline{0.716} \pm 0.011$ OUR AVERAGE
0.712 ± 0.020
$0.7191 \pm 0.0125 \pm 0.0093$
${ }^{1}$ ADLARSON 17 B A2MM $\gamma p \rightarrow \eta p$
2 ARNALDI 16 NA60 $400 \mathrm{GeV} p-A$ collisions
$0.716 \pm 0.031 \pm 0.009 \quad 3$ ARNALDI $09 \quad$ NA60 $158 A \ln -\ln$ collisions
$0.72 \pm 0.09 \quad 600$
${ }^{1}$ ADLARSON $17 B$ reports $\Lambda^{-2}\left(\eta \rightarrow \gamma e^{+} e^{-}\right)=1.97 \pm 0.11\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-2}$ which we converted to the quoted Λ value and uncertainty (total $=$ statistical plus systematic).
${ }^{2}$ ARNALDI 16 reports $\Lambda^{-2}\left(\eta \rightarrow \gamma \mu^{+} \mu^{-}\right)=1.934 \pm 0.067 \pm 0.050\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-2}$ which
we converted to the quoted \wedge value
${ }^{3}$ ARNALDI 09 reports $\wedge^{-2}\left(\eta \rightarrow \gamma \mu^{+} \mu^{-}\right)=1.95 \pm 0.17 \pm 0.05\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-2}$ which we converted to the quoted Λ value.

η REFERENCES

ZHEVLAKOV	19	PR D99 031703	A.S. Zhevlakov et al.	(TMSK, MANZ, TUBIN+)
ACHASOV	18B	PR D98 052007	M.N. Achasov et al.	(SND Collab.)
ADLARSON	18C	PL B784 378	P. Adlarson et al.	(WASA-at-COSY Collab.)
PRAKHOV	18	PR C97 065203	S. Prakhov et al.	(A2 Collab. at MAMI)
AAIJ	17D	PL B764 233	R. Aaij et al.	(LHCb Collab.)
ADLARSON	17B	PR C95 035208	P. Adlarson et al.	(A2 Collab. at MAMI)
ANASTASI	16A	JHEP 1605019	A. Anastasi et al.	(KLOE-2 Collab.)
ARNALDI	16	PL B757 437	R. Arnaldi et al.	(NA60 Collab.)
ABLIKIM	15G	PR D92 012014	M. Ablikim et al.	(BESIII Collab.)
ADLARSON	14A	PR C90 045207	P. Adlarson et al.	(WASA-at-COSY Collab.)
AGAKISHIEV	14	PL B731 265	G. Agakishiev et al.	(HADES Collab.)
NEFKENS	14	PR C90 025206	B.M.K. Nefkens et al.	(A2 Collab. at MAMI)
NIKOLAEV	14	EPJ A50 58	A. Nikolaev et al.	(MAMI-B, MAINZ, BONN)
ABLIKIM	13	PR D87 012009	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13G	PR D87 032006	M. Ablikim et al.	(BESIII Collab.)
BABUSCI	13	PL B718 910	D. Babusci et al.	(KLOE/KLOE-2 Collab.)
BABUSCI	13A	JHEP 1301119	D. Babusci et al.	(KLOE-2 Collab.)
AGAKISHIEV	12A	EPJ A48 64	G. Agakishiev et al.	(HADES Collab.)
GOSLAWSKI	12	PR D85 112011	P. Goslawski et al.	(COSY-ANKE Collab.)
ABLIKIM	11G	PR D84 032006	M. Ablikim et al.	(BESIII Collab.)
AMBROSINO	11B	PL B702 324	F. Ambrosino et al.	(KLOE Collab.)
BERGHAUSER	11	PL B701 562	H. Berghauser et al.	(GIES, UCLA, GUTE)
AMBROSINO	10A	PL B694 16	F. Ambrosino et al.	(KLOE Collab.)
ADOLPH	09	PL B677 24	C. Adolph et al.	(WASA-at-COSY Collab.)
AMBROSINO	09B	PL B675 283	F. Ambrosino et al.	(KLOE Collab.)
ARNALDI	09	PL B677 260	R. Arnaldi et al.	(NA60 Collab.)
PRAKHOV	09	PR C79 035204	S. Prakhov et al.	(MAMI-C Crystal Ball Collab.)
UNVERZAGT	09	EPJ A39 169	M. Unverzagt et al.	(MAMI-B Crystal Ball Collab.)
AMBROSINO	08D	JHEP 0805006	F. Ambrosino et al.	(DAPHNE KLOE Collab.)
BERLOWSKI	08	PR D77 032004	M. Berlowski et al.	(CELSIUS/WASA Collab.)
PRAKHOV	08	PR C78 015206	S. Prakhov et al.	(BNL Crystal Ball Collab.)
RODRIGUES	08	PRL 101012301	T.E. Rodrigues et al.	(USP, FESP, UNESP+)
AMBROSINO	07B	JHEP 0712073	F. Ambrosino et al.	(KLOE Collab.)
BARGHOLTZ	07	PL B644 299	Chr. Bargholtz et al.	(CELSIUS/WASA Collab.)
BASHKANOV	07	PR C76 048201	M. Bashkanov et al.	(CELSIUS/WASA Collab.)
BLIK	07	PAN 70693	A.M. Blik et al.	(GAMS Collab.)

$\eta, f_{0}(500)$

${ }^{3}$ Uses the $K_{e 4}$ data of BATLEY 10 C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73,
GRAYER 74, and PROTOPOPESCU 73.
${ }_{5}^{4}$ Analytic continuation using Roy equations.
${ }^{5}$ Analytic continuation using GKPY equations.
${ }^{6}$ Using Roy equations.
${ }^{7}$ Average of three variants of the analytic K-matrix model. Uses the $K_{e 4}$ data of BAT-
8 LEY 08A and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73 and GRAYER 74
8 Average of the analyses of three data sets in the K-matrix model. Uses the data of BATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.
${ }^{9}$ From the $K_{e 4}$ data of BATLEY 08A and $\pi N \rightarrow \pi \pi N$ data of HYAMS 73.
${ }^{10}$ From the $K_{e 4}$ data of BATLEY 08A and $\pi N \rightarrow \pi \pi N$ data of PROTOPOPESCU 73, GRAYER 74, and ESTABROOKS 74.
1 From a mean of three different $f_{0}(500)$ parametrizations. Uses 40 k events.
12 From an isobar model using 2.6 k events.
13 Reanalysis of ABLIKIM 04A, PISLAK 01, and HYAMS 73 data.
14 Using the N/D method.
${ }^{15}$ From the solution of the Roy equation (ROY 71) for the isoscalar S-wave and using a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.
16 Reanalysis of the data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, ROSSELET 77, PISLAK 03, and AKHMETSHIN 04.
17 From a mean of six different analyses and $f_{0}(500)$ parameterizations.
${ }^{18}$ Using data on $\psi(2 S) \rightarrow J / \psi \pi \pi$ from BAI 00E and on $r(\mathrm{nS}) \rightarrow \quad \gamma(\mathrm{mS}) \pi \pi$ from BUTLER 94B and ALEXANDER 98
${ }^{19}$ Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, and COHEN 80 in the unitarized ChPT model.
20 From a combined analysis of HYAMS 73, AUGUSTIN 89, AITALA 01B, and PISLAK 01.
${ }^{21}$ A similar analysis (KOMADA 01) finds $\left(580_{-30}^{+79}\right)-i\left(190_{-}^{+107}\right) \mathrm{MeV}$.
${ }^{22}$ Coupled channel reanalysis of BATON 70, BENSINGER 71, BAILLON 72, HYAMS 73, HYAMS 75, ROSSELET 77, COHEN 80, and ETKIN 82B using the uniformizing variable.
23 Using the inverse amplitude method and data of ESTABROOKS 73, GRAYER 74, and PROTOPOPESCU 73.
24 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
${ }^{25}$ Average and spread of 4 variants ("up" and "down") of KAMINSKI 97B 3-channel model.
${ }^{26}$ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91b. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
27 Demonstrates explicitly that $f_{0}(500)$ and $f_{0}(1370)$ are two different poles.
28 Analysis of data from FALVARD 88.
${ }^{29}$ Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.
${ }^{30}$ Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.
${ }^{31}$ Coupled-channel analysis using data from PROTOPOPESCU 73, HYAMS 73, HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, CORDEN 79, BISWAS 81.
${ }^{32}$ Analysis of data from APEL 72C, GRAYER 74, CASON 76, PAWLICKI 77. Includes spread and errors of 4 solutions.
33 Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72,PROTOPOPESCU 73, and WALKER 67.

$f_{0}(500)$ BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400-550) OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -

513 ± 32	34 MURAMATSU	02	CLEO	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
$478{ }_{-23}^{+24} \pm 17$	AITALA	01B	E791	$D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
$563+58$	35 ISHIDA	01		$\gamma(3 S) \rightarrow \gamma_{\pi}$
555	36 ASNER	00	CLE2	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$
540 ± 36	ISHIDA	00B		$p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
750 ± 4	ALEKSEEV	99	SPEC	$1.78 \pi^{-} p_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
744 ± 5	ALEKSEEV	98	SPEC	$1.78 \pi^{-} p_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
759 ± 5	37 TROYAN	98		$5.2 n p \rightarrow n p \pi^{+} \pi^{-}$
780 ± 30	ALDE	97	GAM2	$450 p p \rightarrow p p \pi^{0} \pi^{0}$
585 ± 20	38 ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
761 ± 12	39 SVEC	96	RVUE	6-17 $\pi N_{\text {polar }} \rightarrow \pi^{+} \pi^{-} N$
860	40,41 TORNQVIST	96	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}, K \pi, \eta \pi$
1165 ± 50	42,43 ANISOVICH	95	RVUE	$\begin{aligned} & \pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \\ & \quad \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta \\ & \pi^{0} \eta \eta \end{aligned}$
1000	44 ACHASOV	94	RVUE	$\pi \pi \rightarrow \pi \pi$
414 ± 20	39 AUGUSTIN	89	DM2	

39 AUGUSTIN
DM2
34 Statistical uncertainty only.
${ }^{35}$ A similar analysis (KOMADA 01) finds $526_{-37}^{+48} \mathrm{MeV}$.
${ }^{36}$ From the best fit of the Dalitz plot.
376σ effect, no PWA.
38 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
${ }^{39}$ Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^{-} \pi^{+} N$ on polarized targets. The fit does not include $f_{0}(980)$.
40 Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
${ }^{41}$ Also observed by ASNER 00 in $\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$ decays.
42 Uses $\pi^{0} \pi^{0}$ data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^{+} \pi^{-}$data from OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta \eta$ data from ANISOVICH 94.
${ }^{43}$ The pole is on Sheet III. Demonstrates explicitly that $f_{0}(500)$ and $f_{0}(1370)$ are two different poles.
${ }^{44}$ Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

$f_{0}(500)$ BREIT-WIGNER WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400-700) OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - -

335 ± 67	45 MURAMATSU	02	CLEO	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
$324+42 \pm 21$	AITALA	01B	E791	$D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
$372+229$ -95	46 ISHIDA	01		
540	47 ASNER	00	CLE2	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$
372 ± 80	ISHIDA	00B		$p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
119 ± 13	ALEKSEEV	99	SPEC	$1.78 \pi^{-} p_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
77 ± 22	ALEKSEEV	98	SPEC	$1.78 \pi^{-} p_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
35 ± 12	48 TROYAN	98		$5.2 n p \rightarrow n p \pi^{+} \pi^{-}$
780 ± 60	ALDE	97	GAM2	$450 p p \rightarrow p p \pi^{0} \pi^{0}$
385 ± 70	49 ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
290 ± 54	50 SVEC	96	RVUE	6-17 $\pi N_{\text {polar }} \rightarrow \pi^{+} \pi^{-} N$
880	51,52 TORNQVIST	96	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}, K \pi, \eta \pi$
460 ± 40	53,54 ANISOVICH	95	RVUE	$\begin{aligned} & \pi^{-} p \rightarrow \pi^{0} \pi^{0} n \\ & \quad \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta \\ & \pi^{0} \eta \eta \end{aligned}$
3200	55 ACHASOV	94	RVUE	$\pi \pi \rightarrow \pi \pi$
494 ± 58	50 AUGUSTIN	89	DM2	

5 Statistical uncertainty only.
${ }^{46}$ A similar analysis (KOMADA 01) finds $301{ }_{-100}^{+145} \mathrm{MeV}$.
47 From the best fit of the Dalitz plot.
486σ effect, no PWA.
49 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
${ }^{50}$ Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^{-} \pi^{+} N$ on polarized targets. The fit does not include $f_{0}(980)$.
51 Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
${ }^{52}$ Also observed by ASNER 00 in $\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$ decays.
${ }^{53}$ Uses $\pi^{0} \pi^{0}$ data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^{+} \pi^{-}$data from OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta \eta$ data from ANISOVICH 94.
54 The pole is on Sheet III. Demonstrates explicitly that $f_{0}(500)$ and $f_{0}(1370)$ are two different poles.
55 Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

$f_{0}(500)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	seen
Γ_{2}	$\gamma \gamma$	seen

$f_{0}(500)$ PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$

VALUE (keV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

2.05 ± 0.21	56 DAI 14A	RVUE	Compilation
1.7 ± 0.4	57 HOFERICHTER11	RVUE	Compilation
3.08 ± 0.82	58 MENNESSIER 11	RVUE	Compilation
$2.08 \pm 0.2 \begin{gathered}+0.07 \\ -0.04\end{gathered}$	59 MOUSSALLAM11	RVUE	Compilation
2.08	60 MAO	RVUE	Compilation
1.2 ± 0.4	61 BERNABEU 08	RVUE	
3.9 ± 0.6	58 MENNESSIER 08	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
1.8 ± 0.4	62 OLLER 08	RVUE	Compilation
1.68 ± 0.15	62,63 OLLER 08A	RVUE	Compilation
3.1 ± 0.5	64,65 PENNINGTON 08	RVUE	Compilation
2.4 ± 0.4	65,66 PENNINGTON 08	RVUE	Compilation
4.1 ± 0.3	67 PENNINGTON 06	RVUE	$\gamma \gamma \rightarrow \pi^{0} \pi^{0}$
3.8 ± 1.5	68,69 BOGLIONE 99	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
5.4 ± 2.3	68 MORGAN 90	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
10	RA	DM1	$\pi^{-} e$

${ }^{56}$ Using dispersive analysis with phases from GARCIA-MARTIN 11A and BUETTIKER 04 as input.
${ }^{57}$ Using Roy-Steiner equations with $\pi \pi$ phase shifts from an update of COLANGELO 01 and from GARCIA-MARTIN 11A.
58 Using an analytic K-matrix model.
59 Using dispersion integral with phase input from Roy equations and data from MARSISKE 90, BOYER 90, BEHREND 92, UEHARA 08A, and MORI 07
60 Used dispersion theory. The value quoted used the $f_{0}(500)$ pole position of $457-i 276$ MeV.
${ }^{61}$ Using p, n polarizabilities from PDG 06 and fitting to $\pi \pi$ phase motion from GARCIAMARTIN 07 and σ-poles from GARCIA-MARTIN 07 and CAPRINI 06.
62 Using twice-subtracted dispersion integrals.
${ }^{63}$ Supersedes OLLER 08.
${ }^{64}$ Solution A (preferred solution based on χ^{2}-analysis).
65 Dispersion theory based amplitude analysis of BOYER 90 , MARSISKE 90 , BEHREND 92 ,
and MORI 07 .
66 Solution B (worse than solution A; still acceptable when systematic uncertainties are
included).
67 Using unitarity and the σ pole position from CAPRINI 06 .
68 This width could equally well be assigned to the $f_{0}(1370)$. The authors analyse data from
BOYER 90 and MARSISKE 90 and report strong correlation with $\gamma \gamma$ width of $f_{2}(1270)$.
69 Supersedes MORGAN 90 .

ABLIKIM	17	PRL 118012001	M. Ablikim et al.	(BESIII Collab.)
DAI	14A	PR D90 036004	L.-Y. Dai, M.R. Pennington	(CEBAF)
ALBALADEJO	12	PR D86 034003	M. Albaladejo, J.A. Oller	(MURC)
GARCIA-MAR...		PRL 107072001	R. Garcia-Martin et al.	(MADR, CRAC)
GARCIA-MAR...	11A	PR D83 074004	R. Garcia-Martin et al.	(MADR, CRAC)
HOFERICHTER		EPJ C71 1743	M. Hoferichter, D.R. Phillips, C. Schat	(BONN+)
MENNESSIER	11	PL B696 40	G. Mennessier, S. Narison, X.-G. Wang	
MOUSSALLAM	11	EPJ C71 1814	B. Moussallam	
BATLEY	10	PL B686 101	J.R. Batley et al. (CERN	NA48/2 Collab.)
BATLEY	10C	EPJ C70 635	J.R. Batley et al. (CERN	NA48/2 Collab.)
MENNESSIER	10	PL B688 59	G. Mennessier, S. Narison, X.-G. Wang	
MAO	09	PR D79 116008	Y. Mao et al.	
BATLEY	08A	EPJ C54 411	J.R. Batley et al. (CERN	NA48/2 Collab.)
BERNABEU	08	PRL 100241804	J. Bernabeu, J. Prades	(IFIC, GRAN)
CAPRINI	08	PR D77 114019	I. Caprini	
MENNESSIER	08	PL B665 205	G. Mennessier, S. Narison, W. Ochs	
OLLER	08	PL B659 201	J.A. Oller, L. Roca, C. Schat	(MURC, UBA)
OLLER	08A	EPJ A37 15	J.A. Oller, L. Roca	(MURC)
PENNINGTON	08	EPJ C56 1	M.R. Pennington et al.	
UEHARA	08A	PR D78 052004	S. Uehara et al.	(BELLE Collab.)
ABLIKIM	07A	PL B645 19	M. Ablikim et al.	(BES Collab.)
BONVICINI	07	PR D76 012001	G. Bonvicini et al.	(CLEO Collab.)
BUGG	07A	JP G34 151	D.V. Bugg et al.	
GARCIA-MAR...	07	PR D76 074034	R. Garcia-Martin, J.R. Pelaez, F.J. Yndu	rain
MORI	07	PR D75 051101	T. Mori et al.	(BELLE Collab.)
ANISOVICH	06	IJMP A21 3615	V.V. Anisovich	
CAPRINI	06	PRL 96132001	I. Caprini, G. Colangelo, H. Leutwyler	(BCIP+)
PDG	06	JP G33 1	W.-M. Yao et al.	(PDG Collab.)
PENNINGTON	06	PRL 97011601	M.R. Pennington	
ZHOU	05	JHEP 0502043	Z.Y. Zhou et al.	
ABLIKIM	04A	PL B598 149	M. Ablikim et al.	(BES Collab.)
AKHMETSHIN	04	PL B578 285	R.R. Akhmetshin et al. (Novosibirsk	CMD-2 Collab.)
BUETTIKER	04	EPJ C33 409	P. Buettiker, S. Descotes-Genon, B. Mou	ussallam
GALLEGOS	04	PR D69 074033	A. Gallegos et al.	
PELAEZ	04A	MPL A19 2879	J.R. Pelaez	
BUGG	03	PL B572 1	D.V. Bugg	
PISLAK	03	PR D67 072004	S. Pislak et al. (BNL	NL E865 Collab.)
Also		PR D81 119903E	S. Pislak et al. (BN	NL E865 Collab.)
MURAMATSU	02	PRL 89251802	H. Muramatsu et al.	(CLEO Collab.)
Also		PRL 90059901 (errat.)	H. Muramatsu et al.	(CLEO Collab.)
AITALA	01B	PRL 86770	E.M. Aitala et al. (FNAL	AL E791 Collab.)
BLACK	01	PR D64 014031	D. Black et al.	
COLANGELO	01	NP B603 125	G. Colangelo, J. Gasser, H. Leytwyler	
ISHIDA	01	PL B518 47	M. Ishida et al.	
KOMADA	01	PL B508 31	T. Komada et al.	
PISLAK	01	PRL 87221801	S. Pislak et al. (BNL	NL E865 Collab.)
Also		PR D67 072004	S. Pislak et al. (BNL	NL E865 Collab.)
Also		PRL 105019901 E	S. Pislak et al. (BNL	(${ }^{\text {d }}$ E65 Collab.)
SUROVTSEV	01	PR D63 054024	Y.S. Surovtsev, D. Krupa, M. Nagy	
ASNER	00	PR D61 012002	D.M. Asner et al.	(CLEO Collab.)
BAI	00E	PR D62 032002	J. Bai et al.	(BES Collab.)
ISHIDA	00B	PTP 104203	M. Ishida et al.	
ALEKSEEV	99	NP B541 3	I.G. Alekseev et al.	
BOGLIONE	99	EPJ C9 11	M. Boglione, M.R. Pennington	
HANNAH	99	PR D60 017502	T. Hannah	
KAMINSKI	99	EPJ C9 141	R. Kaminski, L. Lesniak, B. Loiseau	(CRAC, PARIN)
OLLER	99	PR D60 099906 (erratum).A. Oller et al.	
OLLER	99B	NP A652 407 (erratum)	J.A. Oller, E. Oset	
OLLER	99 C	PR D60 074023	J.A. Oller, E. Oset	
ALEKSEEV	98	PAN 61174	I.G. Alekseev et al.	
ALEXANDER	98	PR D58 052004	J.P. Alexander et al.	(CLEO Collab.)
ANISOVICH	98B	SPU 41419 Translat from UFN 168	V.V. Anisovich et al.	
LOCHER	98	Translated from UFN 168 EPJ C4 317	M.P. Locher et al.	(PSI)
TROYAN	98	JINRRC 5-9133	Yu. Troyan et al.	
ALDE	97	PL B397 350	D.M. Alde et al.	(GAMS Collab.)
DOBADO	97	PR D56 3057	A. Dobado, J.R. Pelaez	
ISHIDA	97	PTP 981005	S. Ishida et al. (TOK	KY, MIYA, KEK)
KAMINSKI	97B	PL B413 130	R. Kaminski, L. Lesniak, B. Loiseau	(CRAC, IPN)
Also		PTP 95745	S. Ishida et al. (TOK	KY, MIYA, KEK)
SVEC	96	PR D53 2343	M. Svec	(MCGI)
TORNQVIST	96	PRL 761575	N.A. Tornqvist, M. Roos	(HELS)
ALDE	95B	ZPHY C66 375	D.M. Alde et al.	(GAMS Collab.)
ANISOVICH	95	PL B355 363	V.V. Anisovich et al.	(PNPI, SERP)
JANSSEN	95	PR D52 2690	G. Janssen et al. (STO	ON, ADLD, JULI)
ACHASOV	94	PR D49 5779	N.N. Achasov, G.N. Shestakov	(NOVM)
AMSLER	94D	PL B333 277	C. Amsler et al. (Crysta	al Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al. (Crysta	al Barrel Collab.)
BUTLER	94B	PR D49 40	F. Butler et al.	(CLEO Collab.)
KAMINSKI	94	PR D50 3145	R. Kaminski, L. Lesniak, J.P. Maillet	(CRAC+)
zOU	94 B	PR D50 591	B.S. Zou, D.V. Bugg	(LOQM)
zou	93	PR D48 3948	B.S. Zou, D.V. Bugg	(LOQM)
BEHREND	92	ZPHY C56 381	H.J. Behrend	(CELLO Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong et al. (ATHU,	, BARI, BIRM +)
BOYER	90	PR D42 1350	J. Boyer et al.	(Mark II Collab.)
MARSISKE	90	PR D41 3324	H. Marsiske et al. (Crys	Stal Ball Collab.)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	(RAL, DURH)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
ASTON	88	NP B296 493	D. Aston et al. (SLAC, NAG	GO, CINC, INUS)
FALVARD	88	PR D38 2706	A. Falvard et al. (CLER,	FRAS, LALO+)
courau	86	NP B271 1	A. Courau et al.	(CLER, LALO)
VANBEVEREN	86	ZPHY C30 615	E. van Beveren et al.	(NIJM, BIEL)
CASON	83	PR D28 1586	N.M. Cason et al.	(NDAM, ANL)
ETKIN	82B	PR D25 1786	A. Etkin et al. (BNL, CUNY,	TUFTS, VAND)
BISWAS	81	PRL 471378	N.N. Biswas et al.	(NDAM, ANL)
COHEN	80	PR D22 2595	D. Cohen et al.	(ANL) IJP
MUKHIN	80	JETPL 32601	K.N. Mukhin et al. 32616.	(KIAE)
CORDEN	79	NP B157 250	M.J. Corden et al. (BIRM,	RHEL, TELA+) JP
ESTABROOKS	79	PR D19 2678	P. Estabrooks	(CARL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Petersen	(GLAS, NORD)
PAWLICKI	77	PR D15 3196	A.J. Pawlicki et al.	(ANL) IJ
ROSSELET	77	PR D15 574	L. Rosselet et al.	(GEVA, SACL)
CASON	76	PRL 361485	N.M. Cason et al.	(NDAM, ANL) IJ
ESTABROOKS	75	NP B95 322	P.G. Estabrooks, A.D. Martin	(DURH)
HYAMS	75	NP B100 205	B.D. Hyams et al.	(CERN, MPIM)

Updated September 2019 by S. Eidelman (Novosibirsk) and G. Venanzoni (Pisa).

The determination of the parameters of the $\rho(770)$ is beset with many difficulties because of its large width. In physical region fits, the line shape does not correspond to a relativistic Breit-Wigner function with a P-wave width, but requires some additional shape parameter. This dependence on parameterization was demonstrated long ago [1]. Bose-Einstein correlations are another source of shifts in the $\rho(770)$ line shape, particularly in multiparticle final-state systems [2].

The same model dependence afflicts any other source of resonance parameters, such as the energy dependence of the phase shift δ_{1}^{1}, or the pole position. It is, therefore, not surprising that a study of $\rho(770)$ dominance in the decays of the η and η^{\prime} reveals the need for specific dynamical effects, in addition to the $\rho(770)$ pole $[3,4]$.

The cleanest determination of the $\rho(770)$ mass and width comes from $e^{+} e^{-}$annihilation and τ-lepton decays. Analysis of ALEPH [5] showed that the charged $\rho(770)$ parameters measured from τ-lepton decays are consistent with those of the neutral one determined from $e^{+} e^{-}$data [6]. This conclusion is qualitatively supported by the later studies of CLEO [7] and Belle [8]. However, comparison of the two-pion mass spectrum in τ decays from OPAL [9], CLEO [7], and ALEPH [10,11], and the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$cross section from CMD-2 [12,13], showed significant discrepancies between the two shapes which can be as high as 10% above the ρ meson $[14,15]$. This discrepancy remains after measurements of the two-pion cross section in $e^{+} e^{-}$ annihilation at KLOE [16,17,18,19], SND [20,21], BaBar [22] and, more recently BESIII [23] The effect is not accounted for by isospin breaking $[24,25,26,27]$, but the accuracy of its calculation may be overestimated $[28,29]$.

This problem seems to be solved after a recent analysis in [30] which showed that after correcting the τ data for the missing $\rho-\gamma$ mixing contribution, besides the other known isospin symmetry violating corrections, the $\pi \pi \mathrm{I}=1$ part of the hadronic vacuum polarization contribution to the muon $\mathrm{g}-2$ is fully compatible between τ based and $e^{+} e^{-}$based evaluations. The global fit of the whole set of the ρ, ω, and ϕ decays, taking into account mixing effects in the hidden local symmetry model, also showed consistency of the data on τ decays to two pions and $e^{+} e^{-}$annihilation [31,32]. However, because

Meson Particle Listings
$\rho(770)$
of the progress in $e^{+} e^{-}$data, the τ input is now less precise and less reliable due to additional theoretical uncertainties [33] decreasing importance of τ versus $e^{+} e^{-}$comparison for the determination of $\rho(770)$ parameters and other applications, like, e.g., calculations of hadronic vacuum polarization.

References

1. J. Pisut and M. Roos, Nucl. Phys. B6, 325 (1968).
2. G.D. Lafferty, Z. Phys. C60, 659 (1993).
3. A. Abele et al., Phys. Lett. B402, 195 (1997).
4. M. Benayoun et al., Eur. Phys. J. C31, 525 (2003).
5. R. Barate et al., Z. Phys. C76, 15 (1997).
6. L.M. Barkov et al., Nucl. Phys. B256, 365 (1985).
7. S. Anderson et al., Phys. Rev. D61, 112002 (2000).
8. M. Fujikawa et al., Phys. Rev. D78, 072006 (2008).
9. K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
10. M. Davier et al., Nucl. Phys. (Proc. Supp.) B123, 47 (2003).
11. S. Schael et al., Phys. Reports 421, 191 (2005).
12. R.R. Akhmetshin et al., Phys. Lett. B527, 161 (2002).
13. R.R. Akhmetshin et al., Phys. Lett. B578, 285 (2004).
14. M. Davier et al., Eur. Phys. J. C27, 497 (2003).
15. M. Davier et al., Eur. Phys. J. C31, 503 (2003).
16. A. Aloisio et al., Phys. Lett. B606, 12 (2005).
17. F. Ambrosino et al., Phys. Lett. B670, 285 (2009).
18. F. Ambrosino et al., Phys. Lett. B700, 102 (2011).
19. D. Babusci et al., Phys. Lett. B720, 336 (2013).
20. M.N. Achasov et al., Sov. Phys. JETP 101, 1053 (2005).
21. M.N. Achasov et al., Sov. Phys. JETP 103, 380 (2006).
22. B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009).
23. M. Ablikim et al., Phys. Lett. B753, 629 (2016).
24. R. Alemany et al., Eur. Phys. J. C2, 123 (1998).
25. H. Czyz and J.J. Kuhn, Eur. Phys. J. C18, 497 (2001).
26. V. Cirigliano et al., Phys. Lett. B513, 361 (2001).
27. V. Cirigliano et al., Eur. Phys. J. C23, 121 (2002).
28. K. Maltman and C.E. Wolfe, Phys. Rev. D73, 013004 (2006).
29. C.E. Wolfe and K. Maltman, Phys. Rev. D80, 114024 (2009).
30. F. Jegerlehner and R. Szafron, Eur. Phys. J. C71, 1632 (2011).
31. M. Benayoun et al., Eur. Phys. J. C72, 1848 (2012).
32. M. Benayoun et al., Eur. Phys. J. C73, 2453 (2013).
33. M. Davier et al., Eur. Phys. J. C77, 827 (2017).

$\rho(770)$ MASS

We no longer list S-wave Breit-Wigner fits, or data with high combinatorial background.
NEUTRAL ONLY, $e^{+} e^{-}$ $\frac{V A L U E}{775.26 \pm 0.25}$ OUR AVERAGE 775.02 ± 0.35 $775.97 \pm 0.46 \pm 0.70 \quad 900 \mathrm{k}$ $774.6 \pm 0.4 \pm 0.5 \quad 800 \mathrm{k}$ $775.65 \pm 0.64 \pm 0.50 \quad 114 \mathrm{k}$ $775.9 \pm 0.5 \pm 0.5 \quad 1.98 \mathrm{M}$ $775.8 \pm 0.9 \pm 2.0 \quad 500 \mathrm{k}$ 775.9 ± 1.1

- - We do not use the following data for averages, fits, limits, etc. • • -

763.49 ± 0.53		${ }^{9}$ BARTOS	17	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
758.23 ± 0.46		10 BARTOS	17A	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$775.8 \pm 0.5 \pm 0.3$	1.98 M	11 ALOISIO	03	KLOE	$1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$775.9 \pm 0.6 \pm 0.5$	1.98 M	12 ALOISIO	03	KLOE	$1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$775.0 \pm 0.6 \pm 1.1$	500k	13 ACHASOV	02	SND	$1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$775.1 \pm 0.7 \pm 5.3$		14 BENAYOUN	98	RVUE	$\begin{gathered} e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \\ \mu^{+} \mu^{-} \end{gathered}$
$770.5 \pm 1.9 \pm 5.1$		15 GARDNER	98	RVUE	$\underset{\pi^{+}}{0.28-0.92} e^{+} e^{-} \rightarrow$
764.1 ± 0.7		16 O'CONNELL	97	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
757.5 ± 1.5		17 BERNICHA	94	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
768 ± 1		18 GESHKEN...	89	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

1 Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference and leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit
${ }^{2}$ A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05
${ }^{3}$ Supersedes ACHASOV 05A.
${ }^{4} \mathrm{~A}$ fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and $\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A
${ }^{5}$ Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference
${ }^{6}$ Update of AKHMETSHIN 02.
7 Assuming $m_{\rho^{+}}=m_{\rho^{-}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}$
${ }^{8}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{9}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
${ }^{10}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
${ }^{11}$ Assuming $m_{\rho^{+}}=m_{\rho^{-}}=m_{\rho^{0}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}=\Gamma_{\rho^{0}}$
${ }^{12}$ Without limitations on masses and widths.
${ }^{13}$ Assuming $m_{\rho^{0}}=m_{\rho^{ \pm}}, g_{\rho^{0} \pi \pi}=g_{\rho^{ \pm} \pi \pi}$
${ }^{14}$ Using the data of BARKOV 85 in the hidden local symmetry model.
${ }^{15}$ From the fit to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$data from the compilations of HEYN 81 and BARKOV 85, including the GOUNARIS 68 parametrization of the pion form factor.
${ }^{16}$ A fit of BARKOV 85 data assuming the direct $\omega \pi \pi$ coupling
${ }^{17}$ Applying the S-matrix formalism to the BARKOV 85 data.
${ }^{18}$ Includes BARKOV 85 data. Model-dependent width definition.
CHARGED ONLY, τ DECAYS and $e^{+} e^{-}$
$\frac{V A L U E(\mathrm{MeV})}{\mathbf{7 7 5 . 1 1 + 0 . 3 4} \text { OUR }}$ EVTS \quad DOCUMENT ID \quad TECN CHG COMMENT
775.11 ± 0.34 OUR AVERAGE

${ }^{1}\left|F_{\pi}(0)\right|^{2}$ fixed to 1.
${ }^{2}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{3}$ The error combines statistical and systematic uncertainties. Supersedes BARATE 97M.
${ }^{4}$ Assuming $m_{\rho^{+}}=m_{\rho^{-}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}$.
${ }^{5} \rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.
${ }^{6}$ From the GOUNARIS 68 parametrization of the pion form factor. The second error is a model error taking into account different parametrizations of the pion form factor.
7 Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of FUJIKAWA 08.
${ }^{8}$ Without limitations on masses and widths.
${ }^{9}$ Using the data of BARATE 97M and the effective chiral Lagrangian.
${ }^{10}$ From a fit of the model-independent parameterization of the pion form factor to the data of BARATE 97M.

MIXED CHARGES, OTHER REACTIONS

 ${ }^{1}$ Assuming the equality of ρ^{+}and ρ^{-}masses and widths.

CHARGED ONLY, HADROPRODUCED

$V A L U E(\mathrm{MeV})$	EVTS	DOCUMENT ID		TECN	$\underline{C H G}$	COMMENT
766.5土1.1 OUR AVERAGE						
763.7 ± 3.2		ABELE	97	CBAR		$\bar{p} n \rightarrow \pi^{-} \pi^{0} \pi^{0}$
768 ± 9		AGUILAR-..	91	EHS		400 pp
767 ± 3	2935	${ }^{1}$ CAPRARO	87	SPEC	-	$200 \pi^{-} \mathrm{Cu} \rightarrow \pi^{-} \pi^{0} \mathrm{Cu}$
761 ± 5	967	1 CAPRARO	87	SPEC	-	$200 \pi^{-} \mathrm{Pb} \rightarrow \pi^{-} \pi^{0} \mathrm{~Pb}$
771 ± 4		HUSTON	86	SPEC	+	$202 \pi^{+} \mathrm{A} \rightarrow \pi^{+} \pi^{0} \mathrm{~A}$
766 ± 7	6500	$2{ }^{2}$ BYERLY	73	OSPK	-	$5 \pi^{-} p$

NEUTRAL ONLY, OTHER REACTIONS

ALUE (MeV)		EVTS	DOCUMENT ID	TECN	COMMENT
769.0	± 0.9	OUR AVERAGE	Error includes scale factor of 1.4.		See the ideogram below.
765	± 6		BERTIN 97C	OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
773	± 1.6		WEIDENAUER 93	ASTE	$\bar{p} p \rightarrow \pi^{+} \pi^{-} \omega$
762.6	± 2.6		AGUILAR-... 91	EHS	400 pp
770	± 2		1 HEYN 81	RVUE	Pion form factor
768	± 4		2,3 BOHACIK 80	RVUE	
769	± 3		4 WICKLUND 78	ASPK	3,4,6 $\pi^{ \pm} N$
768	± 1	76k	DEUTSCH... 76	HBC	$16 \pi^{+} p$
767	± 4	4100	ENGLER 74	DBC	$6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p$
775	± 4	32k	2 PROTOPOP... 73	HBC	$7.1 \pi^{+} p, t<0.4$
764	± 3	6.8 k	5 RATCLIFF 72	ASPK	$15 \pi^{-} p, t<0.3$
774	± 3	1.7 k	REYNOLDS 69	HBC	$2.26 \pi^{-} p$
769.2	± 1.5	13.3k	${ }^{6}$ PISUT 68	RVUE	1.7-3.2 $\pi^{-} p, t<10$
- - We do not use the following data for averages, fits, limits, etc. - -					
774.3	± 0.18	± 0.35 970k	${ }^{7}$ ABLIKIM 18 C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
772.93	± 0.18	± 0.34 970k	${ }^{8}$ ABLIKIM 18C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
773.5	± 2.5		${ }^{9}$ COLANGELO 01	RVUE	$\pi \pi \rightarrow \pi \pi$
762.3	± 0.5	± 1.2 600k	10 ABELE 99E	CBAR	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
777	± 2	4.9k	11 ADAMS 97	E665	$470 \mu p \rightarrow \mu X B$
770	± 2		12 BOGOLYUB... 97	MIRA	$32 \bar{p} p \rightarrow \pi^{+} \pi^{-} \mathrm{X}$
768	± 8		12 BOGOLYUB... 97	MIRA	$32 p p \rightarrow \pi^{+} \pi^{-} \mathrm{X}$
761.1	± 2.9		DUBNICKA 89	RVUE	π form factor
777.4	± 2.0		13 CHABAUD 83	ASPK	$17 \pi^{-} p$ polarized
769.5	± 0.7		2,3 LANG 79	RVUE	
770	± 9		${ }^{3}$ ESTABROOKS 74	RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
773.5	± 1.7	11.2k	14 JACOBS 72	HBC	$2.8 \pi^{-} p$
775	± 3	2.2 k	15 HYAMS 68	OSPK	$11.2 \pi^{-} p$

${ }^{1}$ HEYN 81 includes all spacelike and timelike F_{π} values until 1978.
${ }^{2}$ From pole extrapolation.
${ }^{3}$ From phase shift analysis of GRAYER 74 data.
${ }^{4}$ Phase shift analysis. Systematic errors added corresponding to spread of different fits.
${ }^{5}$ Published values contain misprints. Corrected by private communication RATCLIFF 74.
${ }^{6}$ Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFFSTEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.
${ }^{7}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), ω (782), and box anomaly components.
${ }^{8}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), ω (782), and $\rho(1450)$ components.
${ }^{9}$ Breit-Wigner mass from a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.
${ }^{10}$ Using relativistic Breit-Wigner and taking into account $\rho-\omega$ interference.
${ }^{11}$ Systematic errors not evaluated.
${ }^{12}$ Systematic effects not studied.
${ }^{13}$ From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74.
${ }^{14}$ Mass errors enlarged by us to Γ / \sqrt{N}; see the note with the $K^{*}(892)$ mass.
${ }^{15}$ Of HYAMS 68 six parametrizations, this is theoretically soundest. MR

${ }^{1}$ From the combined fit of the τ^{-}data from ANDERSON 00A and SCHAEL 05C and $e^{+} e^{-}$data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. Supersedes BARATE 97M.
${ }^{2}$ Assuming $m_{\rho^{+}}=m_{\rho^{-}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}$.
${ }^{3}$ From quoted masses of charged and neutral modes.
${ }^{4}$ Includes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64, ABOLINS 63.
${ }^{5}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

$m_{\rho(770)^{+}}-m_{\rho(770)^{-}}$

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.5 \pm 0.8 \pm 0.7 \quad 1.98 \mathrm{M} \quad{ }^{1} \mathrm{ALOISIO} \quad 03 \mathrm{KLOE} 1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ Without limitations on masses and widths.

$\rho(770)$ RANGE PARAMETER

The range parameter R enters an energy-dependent correction to the width, of the form $\left(1+q_{r}^{2} R^{2}\right) /\left(1+q^{2} R^{2}\right)$, where q is the momentum of one of the pions in the $\pi \pi$ rest system. At resonance, $q=$ q_{r}.

VALUE $\left(\mathrm{GeV}^{-1}\right)$	DOCUMENT ID		TECN	CHG	COMMENT
$5.3{ }_{-0.7}^{+0.9}$	${ }^{1}$ CHABAUD	83	ASPK	0	$\begin{aligned} & 17 \pi^{-} p \text { polar- } \\ & \text { ized } \end{aligned}$

$\rho(770)$ WIDTH

We no longer list S-wave Breit-Wigner fits, or data with high combinatorial background.

NEUTRAL ONLY, $e^{+} e^{-}$

(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
147.8 ± 0.9 OUR AVERAGE		Error includes scale factor of 2.0.			See the ideogram below.
149.59 ± 0.67		1 LEES	12G	BABR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
$145.98 \pm 0.75 \pm 0.50$	900k	2 AKHMETSHIN			$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$146.1 \pm 0.8 \pm 1.5$	800k	${ }^{3,4}$ ACHASOV	06	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$143.85 \pm 1.33 \pm 0.80$	114k	5,6 AKHMETSHIN	04	CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$147.3 \pm 1.5 \pm 0.7$	1.98M	7 ALOISIO	03	KLOE	$\begin{gathered} 1.02 e^{+} e^{+} e^{-} \rightarrow \\ \pi^{0} \end{gathered}$
$151.1 \pm 2.6 \pm 3.0$	500k	7 ACHASOV	02	SND	$\begin{gathered} 1.02 e^{+} e^{+} e^{-} \rightarrow \end{gathered}$
150.5 ± 3.0		${ }^{8}$ BARKOV	85	OLYA	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
- - We do not	foll	data for average	, fits,	limits	
144.06 ± 0.85		${ }^{9}$ BARTOS	17	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
144.56 ± 0.80		10 BARTOS	17A	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$143.9 \pm 1.3 \pm 1.1$	1.98M	11 ALOISIO	03	KLOE	$\begin{gathered} 1.02 e^{+} e^{-} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$
$147.4 \pm 1.5 \pm 0.7$	1.98M	12 AlOISIO	03	KLOE	$\begin{gathered} 1.02 e^{+}+e^{-} \pi^{0} \\ \pi^{+} \end{gathered}$
$149.8 \pm 2.2 \pm 2.0$	500k	13 ACHASOV	02	SND	$\begin{gathered} 1.02 e^{++} e^{-} \\ \pi^{-} \end{gathered} \rightarrow$
$147.9 \pm 1.5 \pm 7.5$		14 BENAYOUN	98	RVUE	$\begin{gathered} e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \\ \mu^{+} \end{gathered}$
$153.5 \pm 1.3 \pm 4.6$		15 GARDNER	98	RVUE	$\begin{gathered} 0.28-0.92 e^{+} e^{-} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$
145.0 ± 1.7		16 O'CONNELL	97	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
142.5 ± 3.5		17 BERNICHA	94	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
138 ± 1		18 GESHKEN...	89	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

1 Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference and leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as
free parameters of the fit.
${ }^{2}$ A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05
${ }^{3}$ Supersedes ACHASOV 05A.
${ }^{4}$ A fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and
$\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.
${ }^{5}$ Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference.
${ }^{6}$ From a fit in the energy range 0.61 to 0.96 GeV . Update of AKHMETSHIN 02.
${ }^{7}$ Assuming $m_{\rho^{+}}=m_{\rho^{-}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}$.
${ }^{8}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{9}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
${ }^{10}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
$1_{\text {Assuming }} m_{\rho^{+}}=m_{\rho^{-}}=m_{\rho^{0}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}=\Gamma_{\rho^{0}}$.
12 Without limitations on masses and widths.
${ }^{13}$ Assuming $m_{\rho^{0}}=m_{\rho^{ \pm}}, g_{\rho^{0} \pi \pi}=g_{\rho^{ \pm} \pi \pi}$
14 Using the data of BARKOV 85 in the hidden local symmetry model.
${ }^{15}$ From the fit to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$data from the compilations of HEYN 81 and BARKOV 85, including the GOUNARIS 68 parametrization of the pion form factor.
${ }^{16}$ A fit of BARKOV 85 data assuming the direct $\omega \pi \pi$ coupling.
17 Applying the S-matrix formalism to the BARKOV 85 data.
18 Includes BARKOV 85 data. Model-dependent width definition.

${ }^{1}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{2}$ Phase shift analysis. Systematic errors added corresponding to spread of different fits.
${ }^{3}$ From fit of 3-parameter relativistic P-wave Breit-Wigner to total mass distribution. Includes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-
PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64
${ }^{4}$ S-matrix pole at a fixed ρ meson mass of 775.49 MeV .
NEUTRAL ONLY, PHOTOPRODUCED

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
151.7 \pm 2.6 OUR AVERAGE				
$155 \pm 5 \pm 2$	63.5 k	${ }^{1}$ ABRAMOWICZ12	ZEUS	$e p \rightarrow e \pi^{+} \pi^{-} p$
$146 \pm 3 \pm 13$	79k	2 BREITWEG 98B	ZEUS	50-100 γp
150.9 ± 3.0		BARTALUCCI 78	CNTR	$\gamma p \rightarrow e^{+} e^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -				
138 ± 3	79k	${ }^{3}$ BREITWEG 98B	ZEUS	50-100 $\gamma \mathrm{p}$
147 ± 11		GLADDING 73	CNTR	2.9-4.7 γp
155 ± 12	2430	BALLAM 72	HBC	$4.7 \gamma p$
145 ± 13	1930	BALLAM 72	HBC	$2.8 \gamma p$
140 ± 5		ALVENSLEB... 70	CNTR	$\gamma \mathrm{A}, t<0.01$
146.1 ± 2.9	140k	BIGGS 70	CNTR	$<4.1 \gamma \mathrm{C} \rightarrow \pi^{+} \pi^{-} \mathrm{C}$
160 ± 10		LANZEROTTI 68	CNTR	γp
130 ± 5	4000	ASBURY 67B	CNTR	$\gamma+\mathrm{Pb}$

${ }^{1}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
${ }^{2}$ From the parametrization according to SOEDING 66.
${ }^{3}$ From the parametrization according to ROSS 66.

NEUTRAL ONLY, OTHER REACTIONS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN COMMENT
150.9 ± 1.7 OUR AVERAGE		Error includes scale factor of 1.1.	
122 ± 20		BERTIN 97C	OBLX $0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
145.7 ± 5.3		WEIDENAUER 93	ASTE $\bar{p} p \rightarrow \pi^{+} \pi^{-} \omega$
144.9 ± 3.7		DUBNICKA 89	RVUE π form factor
148 ± 6		1,2 BOHACIK 80	RVUE
152 ± 9		3 WICKLUND 78	ASPK $3,4,6 \pi^{ \pm} p N$
154 ± 2	76k	DEUTSCH... 76	HBC $16 \pi^{+} p$
157 ± 8	6.8 k	4 RATCLIFF 72	ASPK $15 \pi^{-} p, t<0.3$
143 ± 8	1.7 k	REYNOLDS 69	HBC $2.26 \pi^{-} p$

$150.85 \pm 0.55 \pm 0.67$	970k	${ }^{5}$ ABLIKIM 18C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
$150.18 \pm 0.55 \pm 0.65$	970k	${ }^{6}$ ABLIKIM 18C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
147.0 ± 2.5	600k	7 ABELE 99E	CBAR	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
146 ± 3	4.9 k	${ }^{8}$ ADAMS 97	E665	$470 \mu p \rightarrow \mu X B$
160.0 ± 4.1		${ }^{9}$ CHABAUD 83	ASPK	$17 \pi^{-} p$ polarized
155 ± 1		10 HEYN 81	RVUE	π form factor
148.0 ± 1.3		1,2 LANG 79	RVUE	
146 ± 14	4.1k	ENGLER 74	DBC	$6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p$
143 ± 13		2 ESTABROOKS 74	RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
160 ± 10	32k	1 PROTOPOP... 73	HBC	$7.1 \pi^{+} p, t<0.4$
145 ± 12	2.2k	3,11 HYAMS 68	OSPK	$11.2 \pi^{-} p$
163 ± 15	13.3 k	12 PISUT 68	RVUE	1.7-3.2 $\pi^{-} p, t<10$

1 From pole extrapolation.
${ }^{2}$ From phase shift analysis of GRAYER 74 data.
${ }^{3}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass
${ }^{4}$ Published values contain misprints. Corrected by private communication RATCLIFF 74.
${ }^{5}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and box anomaly components.
${ }^{6}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach $), \omega(782)$, and $\rho(1450)$ components.
${ }^{7}$ Using relativistic Breit-Wigner and taking into account $\rho-\omega$ interference
${ }^{8}$ Systematic errors not evaluated.
${ }^{9}$ From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74.
${ }^{10}$ HEYN 81 includes all spacelike and timelike F_{π} values until 1978.
11 Of HYAMS 68 six parametrizations this is theoretically soundest. MR
12 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFFSTEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.
$\Gamma_{\rho(77)^{0}}-\Gamma_{\rho(70)^{ \pm}}$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN COMMEN
0.3 ± 1.3	OUR AVERAGE Error includes scale factor of 1.4.	Error includes scale factor of 1.4.	
-0.2 ± 1.0		1 SCHAEL 05C ALEP $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$	
3.6 ± 1.8	$\pm 1.7 \quad 1.98 \mathrm{M}$	${ }^{2}$ ALOISIO	03 KLOE $1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - -			
4.66 ± 0.85		${ }^{3}$ BARTOS	17A RVUE $e^{+} e^{-} \overrightarrow{\pi^{0}} \pi^{+} \pi^{-}, \tau^{-} \rightarrow$

${ }^{1}$ From the combined fit of the τ^{-}data from ANDERSON 00A and SCHAEL 05C and $e^{+} e^{-}$data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. Supersedes BARATE 97M.
${ }^{2}$ Assuming $m_{\rho^{+}}=m_{\rho^{-}}, \Gamma_{\rho^{+}}=\Gamma_{\rho^{-}}$
${ }^{3}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.
$\Gamma_{\rho(770)^{+}}-\Gamma_{\rho(770)^{-}}$
$\frac{\text { VALUE }}{\mathbf{1 . 8} \pm \mathbf{2 . 0} \mathbf{0} \mathbf{0} 5} \frac{\text { EVTS }}{1.98 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{ALOISIO}} \frac{03}{\operatorname{KLOE}} \frac{\text { COMMENT }}{1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}}$ ${ }^{1}$ Without limitations on masses and widths.

$\rho(770)$ DECAY MODES

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 10 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=10.7$ for 8 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$\begin{array}{r} x_{3} \\ \Gamma \end{array}$	$\begin{array}{r} -100 \\ 15 \\ \hline \end{array}$			
	x_{2}	x_{3}		
	Mode		Rate (MeV)	Scale factor
Γ_{2}	$\pi^{ \pm} \pi^{0}$		150.2 ± 2.4	
Γ_{3}	$\pi^{ \pm} \gamma$		0.068 ± 0.007	2.3

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 7 branching ratios uses 22 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^{2}=9.5$ for 14 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$\Gamma\left(\pi^{ \pm} \gamma\right)$
$\rho(770)$ PARTIAL WIDTHS

[a] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e \mu$ universality holds, $\Gamma\left(\rho^{0} \rightarrow \mu^{+} \mu^{-}\right)=\Gamma\left(\rho^{0} \rightarrow e^{+} e^{-}\right)$ $\times 0.99785$.

Meson Particle Listings
ρ (770)

- • We do not use the following data for averages, fits, limits, etc. • • •

$77 \pm 17 \pm 11$	36500	1 ACHASOV	03	SD	$0.60-0.97$
121 ± 31	$e^{+} e^{-} \rightarrow \pi^{0} \gamma$				
1	DOLINSKY	89	ND	$e^{+} e^{-} \rightarrow \pi^{0} \gamma$	

$\Gamma(\eta \gamma)$
VALUE (kV) DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$62 \pm 17 \quad 1$ DOLINSKY 89 ND $e^{+} e^{-} \rightarrow \eta \gamma$
${ }^{1}$ Solution corresponding to constructive ω - ρ interference.
$\Gamma\left(e^{+} e^{-}\right)$
$\frac{V A L U E(\mathrm{keV})}{7.04}$ EVTS
7.04 ± 0.06 OUR FIT
EVTS
7.04 ± 0.06 OUR AVERAGE

${ }^{1}$ A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.
${ }^{2}$ Using the GOUNARIS 68 parametrization with the complex phase of the ρ - ω interference.
${ }^{3}$ From a fit in the energy range 0.61 to 0.96 GeV . Update of AKHMETSHIN 02.
${ }^{4}$ Supersedes ACHASOV 05A.
${ }^{5}$ Using the data of BARKOV 85 in the hidden local symmetry model.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$
VALUE (keV) EV TS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

$2.8 \pm 1.4 \pm 0.5 \quad 153 \quad$ AKHMETSHIN 00 CMD2 | $0.6-0.97 e^{+} e^{-}$ |
| :---: |
| $\pi^{+}+\pi^{-} \pi^{+} \pi^{-}$ |

$\rho(770) \Gamma\left(e^{+} e^{-}\right) \Gamma(\mathrm{i}) / \Gamma^{2}($ total $)$

$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{12} / \Gamma \times \Gamma_{6} / \Gamma$ VALUE (units 10^{-5}) $\frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TERN }}{\text { COMMENT }}$ $\mathbf{4 . 8 7 6} \pm \mathbf{0 . 0 2 3} \pm \mathbf{0 . 0 6 4} \quad 800 \mathrm{k} \quad 1,2$ ACHASOV 06 SD $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - • -

1 Supersedes ACHASOV 05A.
${ }^{2} \mathrm{~A}$ fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and $\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.
A simultaneous fit of $e^{+} \rightarrow^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data
$\frac{\text { VALUE (units } 10^{-8} \text {) }}{2.22 \pm 0.29 \text { OUR FIT Error includes scale factor of }} \frac{\text { DOTS }}{1.4 .}$
$\mathbf{2 . 2 2} \pm \mathbf{0 . 2 6}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. $1.98 \pm 0.22 \pm 0.10 \quad 1$ ACHASOV $16 A$ ND $\quad 0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$ $2.90{ }_{-0.55}^{+0.60} \pm 0.18 \quad 18 \mathrm{k} \quad$ AKHMETSHIN 05 CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$ 2 ACHASOV 03 SND 0.60-0.97 $e^{+} e^{-} \rightarrow \pi^{0}$ - We do not use the follow

$.875 \pm 0.026$

${ }^{4}$ BENAYOUN 10 RUE $0.4-1.05 e^{+} e^{-}$
tonal resonances, and an addiSupersedes ACHASOV 03.
γ

\square ${ }_{12}$ 12
π^{-}
${ }^{2}$ Using $\sigma_{\phi \rightarrow \pi^{0} \gamma}$ from ACHASOV 00 and $m_{\rho}=775.97 \mathrm{MeV}$ in the model with the energy-independent phase of $\rho-\omega$ interference equal to $(-10.2 \pm 7.0)^{\circ}$.
energy-independent phase of ρ - ω interference equal to (
Recalculated by us from the cross section in the peak.
${ }^{4}$ A simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.

WEIGHTED AVERAGE
 2.22 ± 0.26 (Error scaled by 1.3)

$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{12} / \Gamma \times \Gamma_{13} / \Gamma$ $\frac{\text { VALUE (units } 10^{-9} \text {) EVES DOCUMENT ID TERN COMMENT }}{\text { CID }}$

- - We do not use the following data for averages, fits, limits, etc. • •

$\rho(770)$ BRANCHING RATIOS

$\frac{\text { VALUE }}{\mathbf{0 . 0 0 9 9} \pm \mathbf{0 . 0 0 1 6} \text { OUR FIT }} \frac{C L \%}{\text { DOCUMENT ID }}$ TECN COMMENT
$\mathbf{0 . 0 0 9 9} \pm \mathbf{0 . 0 0 1 6}$
\bullet DOLINSKY $91 \mathrm{ND} \quad e^{+} e^{-} \rightarrow \pi^{+}$
\bullet We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$0.0111 \pm 0.0014 \quad 2$ VASSERMAN 88 ND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
$<0.005 \quad 30 \quad 3$ VASSERMAN 88 ND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
${ }^{1}$ Bremsstrahlung from a decay pion and for photon energy above 50 MeV .
${ }^{2}$ Superseded by DOLINSKY 91.
${ }^{3}$ Structure radiation due to quark rearrangement in the decay.

$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units $\left.10^{-4}\right)$
EVES
TERN COMMENT

- • We do not use the following data for averages, fits, limits, etc. • • •
$4.20 \pm 0.52 \quad 1$ ACHASOV $16 A$ SD $0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$
$6.21_{-1.18}^{+1.28} \pm 0.39 \quad 18 \mathrm{k} \quad 2,3$ AKHMETSHIN 05 CMD2 $\quad 0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma_{\gamma}$
$5.22 \pm 1.17 \pm 0.75 \quad 36 \mathrm{k} \quad 3,4$ ACHASOV $\quad 03 \quad$ SD $\quad 0.60-0.97 e^{+} e^{-} \rightarrow \pi^{0} \gamma$
$\begin{array}{lllll}6.8 & \pm 1.7 & 5 \text { BENAYOUN } & 96 & \text { RUE } \\ 7.954-1.04 & e^{+} e^{-} \rightarrow \pi^{0} \gamma\end{array}$
${ }^{1}$ Using $\mathrm{B}\left(\rho \rightarrow e^{+} e^{-}\right)$from PDG 15. Supersedes ACHASOV 03.
${ }^{2}$ Using $\mathrm{B}\left(\rho \rightarrow e^{+} e^{-}\right)=(4.67 \pm 0.09) \times 10^{-5}$.
${ }^{3}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}^{2}$.
${ }^{4}$ Using $\mathrm{B}\left(\rho \rightarrow e^{+} e^{-}\right)=(4.54 \pm 0.10) \times 10^{-5}$.
${ }^{5}$ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account a triangle anomaly contribution.

$\boldsymbol{\Gamma}(\boldsymbol{\eta} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$		
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{3 . 0 0} \pm \mathbf{0 . 2 1 ~ O U R ~ F I T}} \quad$ EVTS	DOCUMENT ID	$\Gamma \mathbf{9} / \boldsymbol{\Gamma}$

3.00 ± 0.21 OUR FIT
2.90 ± 0.32 OUR AVERAGE
$2.79 \pm 0.34 \pm 0.03 \quad 33 \mathrm{k}$
$3.6 \pm 0.9 \quad 2$ ANDREWS $77 \quad$ CNTR $0 \quad 6.7-10 \gamma \mathrm{Cu}$

Meson Particle Listings
$\rho(770), \omega(782)$

$\omega(782)$ DECAY MODES					
Mode			Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$		ale factor/ dence level
Γ_{1}	$\pi^{+} \pi^{-} \pi^{0}$	(89.3 ± 0.6) \%			
Γ_{2}	$\pi^{0} \gamma$	(8.40 ± 0.22) \% S=1.8			
$\Gamma 3$	$\pi^{+} \pi^{-}$	(1.53 ± 0.06) \%			
Γ_{4}	neutrals (excluding $\pi^{0} \gamma$)		$\left(\begin{array}{lll}7 & +7\end{array}\right) \times 10^{-3}$		$\mathrm{S}=1.1$
Γ_{5}	$\eta \gamma$		$(4.5 \pm 0.4) \times 10^{-4} \quad \mathrm{~S}=1.1$		
Γ_{6}	$\pi^{0} e^{+} e^{-}$		$(7.7 \pm 0.6) \times 10^{-4}$		
Γ_{7}	$\pi^{0} \mu^{+} \mu^{-}$		$(1.34 \pm 0.18) \times 10^{-4}$		$\mathrm{S}=1.5$
Γ_{8}	$\eta e^{+} e^{-}$				
Γ_{9}	$e^{+} e^{-}$		$(7.36 \pm 0.15) \times 10^{-5}$		$\mathrm{S}=1.5$
Γ_{10}	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$		$<2 \times 10^{-4}$		$\mathrm{CL}=90 \%$
Γ_{11}	$\pi^{+} \pi^{-} \gamma$		$<3.6 \times 10^{-3}$		$\mathrm{CL}=95 \%$
Γ_{12}	$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$		$<1 \quad \times 10^{-3} \quad \mathrm{CL}=90 \%$		
Γ_{13}	$\pi^{0} \pi^{0} \gamma$		$(6.7 \pm 1.1) \times 10^{-5}$		
Γ_{14}	$\eta \pi^{0} \gamma$		$<3.3 \times 10^{-5} \quad \mathrm{CL}=90 \%$		
Γ_{15}	$\mu^{+} \mu^{-}$		$(7.4 \pm 1.8) \times 10^{-5}$		
Γ_{16}	3γ		< 1.9	$\times 10^{-4}$	CL=95\%
Charge conjugation (C) violating modes					
Γ_{17}	$\eta \pi^{0}$	C	<2.2	$\times 10^{-4}$	CL=90\%
Γ_{18}	$2 \pi^{0}$	c	<2.2	$\times 10^{-4}$	CL=90\%
Γ_{19}	$3 \pi^{0}$	c	< 2.3	$\times 10^{-4}$	CL=90\%
Γ_{20}	invisible		<7	$\times 10^{-5}$	$\mathrm{CL}=90 \%$

CONSTRAINED FIT INFORMATION

An overall fit to 15 branching ratios uses 55 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi^{2}=57.0$ for 46 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	28								
x_{3}	-9	-3							
x_{4}	-95	-55	0						
x_{5}	7	15	-1	-12					
x_{6}	-1	0	0	0	0				
x_{7}	0	0	0	0	0	0			
x_{9}	-35	-70	3	52	-22	0	0		
x_{13}	1	3	0	-2	0	0	0	-2	
x_{15}	0	0	0	0	0	0	0	0	0
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{9}	x_{13}

$\omega(782)$ PARTIAL WIDTHS
$\Gamma\left(\pi^{0} \gamma\right)$
VALUE (keV) EVTS DOCUMENT ID TECN COMMENT
Γ_{2}

- - We do not use the following data for averages, fits, limits, etc. - -

880 ± 50	7815	${ }_{1}^{1}$ ACHASOV		SND	$1.05-2.00 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$			
$788 \pm 12 \pm 27$	36500	2 ACHASOV	03	SND				
764 ± 51	10625	DOLINSKY	89	ND	$\begin{aligned} & 0.60-0.97 e^{+} e^{-} \\ & e^{+} e^{-} \rightarrow \pi^{0} \gamma \end{aligned}$			
${ }^{1}$ Systematic uncertainty not estimated.							${ }^{2}$ Using $\Gamma_{\omega}=8.44 \pm 0.09 \mathrm{MeV}$ and $\mathrm{B}\left(\omega \rightarrow \pi^{0} \gamma\right)$ from ACHASOV 03.	
$\Gamma(\eta \gamma)$								
VALUE (keV)		DOCUMENT ID			TECN	COMMEN		
- - We do not use the following data for averages, fits, limits, etc. - -								
6.1 ± 2.5		${ }^{1}$ DOLINSKY		89	ND	$e^{+} e^{-} \rightarrow \eta$		
${ }^{1}$ Using $\Gamma_{\omega}=8.4 \pm 0.1 \mathrm{MeV}$ and $\mathrm{B}(\omega \rightarrow \eta \gamma)$ from DOLINSKY 89.								
$\Gamma\left(e^{+} e^{-}\right)$								
$\operatorname{VALUE}(\mathrm{keV})$	-	DOCUM	T ID		TECN	COMMEN		

0.60 ± 0.02 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - - •
$0.591 \pm 0.015 \quad 11200 \quad 1,2$ AKHMETSHIN 04 CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ $0.653 \pm 0.003 \pm 0.021 \quad 1.2 \mathrm{M} \quad{ }^{3}$ ACHASOV 03 D RVUE $0.44-2.00 e_{0}^{+} e^{-} \rightarrow$ $0.600 \pm 0.031 \quad 10625 \quad$ DOLINSKY $89 \mathrm{ND} \quad e^{+} e^{-}{ }^{\pi} \rightarrow \pi^{0} \gamma$
${ }^{1}$ Using $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=0.891 \pm 0.007$ and $\Gamma_{\text {total }}=8.44 \pm 0.09 \mathrm{MeV}$.
${ }^{2}$ Update of AKHMETSHIN 00C.
${ }^{3}$ Using ACHASOV 03, ACHASOV 03D and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-}\right)=(1.70 \pm 0.28) \%$.
$\omega(782) \Gamma\left(e^{+} e^{-}\right) \Gamma(\mathrm{i}) / \Gamma^{2}$ (total)
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{9} / \Gamma \times \Gamma_{1} / \Gamma$
VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN COMMENT
6.56 ± 0.12 OUR FIT Error includes scale factor of 1.6 .
$\mathbf{6 . 3 8} \pm \mathbf{0 . 1 0}$ OUR AVERAGE Error includes scale factor of 1.1
$6.24 \pm 0.11 \pm 0.08 \quad 11.2 \mathrm{k} \quad{ }^{1}$ AKHMETSHIN 04 CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$6.70 \pm 0.06 \pm 0.27 \quad$ AUBERT,B 04N BABR $10.6 e^{+}+e^{-} \overrightarrow{\pi^{+}} \pi_{\gamma}$
$6.74 \pm 0.04 \pm 0.24 \quad 1.2 \mathrm{M} \quad 2,3 \mathrm{ACHASOV} \quad$ O3D RVUE $0.44-2.00 e_{0}^{+} e^{-} \rightarrow$
$6.37 \pm 0.35 \quad{ }^{2}$ DOLINSKY 89 ND $e^{+{ }^{+} e^{-}} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$6.45 \pm 0.24 \quad{ }^{2}$ BARKOV 87 CMD $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$5.79 \pm 0.42 \quad 1488 \quad{ }^{2}$ KURDADZE 83B OLYA $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\begin{array}{lrllll}5.89 \pm 0.54 & 433 & { }^{2} \text { CORDIER } & 80 & \text { DM1 } & e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ 7.54 \pm 0.84 & 451 & 2 \text { BENAKSAS } & 72 \text { B OSPK } & e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\end{array}$
- - We do not use the following data for averages, fits, limits, etc. • • •
$6.20 \pm 0.13 \quad{ }^{4}$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ Update of AKHMETSHIN 00C.
${ }^{2}$ Recalculated by us from the cross section in the peak.
${ }^{3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99e and ACHASOV 02E.
${ }^{4}$ A simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}$
$\Gamma_{9} / \Gamma \times \Gamma_{2} / \Gamma$
VALUE (units 10^{-6}) EVVS DOCUMENT ID TECN COMMENT
$6.18 \mathbf{\pm 0 . 1 1}$ OUR FIT Error includes scale factor of 1.6.
6.37 ± 0.09 OUR AVERAGE
$6.336 \pm 0.056 \pm 0.089 \quad 1$ ACHASOV 16 A SND $\quad 0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$ $6.47 \pm 0.14 \pm 0.39 \quad 18 \mathrm{k} \quad$ AKHMETSHIN 05 CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$ $6.50 \pm 0.11 \pm 0.20 \quad 36 \mathrm{k} \quad 2$ ACHASOV 03 SND $0.60-0.97 e^{+} e^{-} \rightarrow \pi^{0} \gamma_{\gamma}$ $6.34 \pm 0.21 \pm 0.21 \quad 10 \mathrm{k} \quad{ }^{3}$ DOLINSKY $89 \quad$ ND $\quad e^{+} e^{-} \rightarrow \pi^{0} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - • •
$6.80 \pm 0.13 \quad{ }^{4}$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ From the VMD model with the interfering $\rho(770), \omega(782), \phi(1020)$, and an additional resonance describing the total contribution of the $\rho(1450)$ and $\omega(1420)$ states. Supersedes ACHASOV 03
${ }^{2}$ Using $\sigma_{\phi \rightarrow \pi^{0}}$ from ACHASOV 00 and $m_{\omega}=782.57 \mathrm{MeV}$ in the model with the energy-independent phase of ρ - ω interference equal to $(-10.2 \pm 7.0)^{\circ}$.
${ }^{3}$ Recalculated by us from the cross section in the peak.
${ }^{4} \mathrm{~A}$ simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{+} \pi^{-}\right) / /_{\text {total }} \quad \Gamma_{9} / \Gamma \times \Gamma_{3} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{1 . 2 2 5} \pm \mathbf{0 . 0 5 8} \mathbf{0 . 0 4 1}} \frac{\text { EVTS }}{800 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ACHASOV } 06} \frac{\text { TECN }}{\text { SND }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}}$
- - We do not use the following data for averages, fits, limits, etc. - • -

1.166 ± 0.036	2	BENAYOUN	13	RVUE
$0.4-1.05 e^{+} e^{-}$				
1.05 ± 0.08	3 DAVIER	13	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)$

${ }^{1}$ Supersedes ACHASOV 05A.
${ }^{2}$ A simultaneous fit to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma, K \bar{K}$, and $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ data. Supersedes BENAYOUN 10.
${ }^{3}$ From $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)$ data of LEES 12G.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \times \Gamma(\eta \gamma) / \Gamma_{\text {total }}$
$\Gamma_{9} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-8}) EVTS DOCUMENT ID TECN COMMENT
$3.32 \pm \mathbf{0 . 2 8}$ OUR FIT Error includes scale factor of 1.1.

$3.18 \pm \mathbf{0 . 2 8}$ OUR AVERAGE

$3.10 \pm 0.31 \pm 0.11 \quad 33 \mathrm{k} \quad 1$ ACHASOV 07 B SND $\quad 0.6-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$3.17-1.31 \pm 0.21 \quad 17.4 \mathrm{k} \quad 2$ AKHMETSHIN 05 CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$3.41 \pm 0.52 \pm 0.21 \quad$ 23k 3,4 AKHMETSHIN 01B CMD2 $e^{+} e^{-} \rightarrow \eta \gamma$

- - We do not use the following data for averages, fits, limits, etc. - . -
$4.50 \pm 0.10 \quad 5$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ From a combined fit of $\sigma\left(e^{+} e^{-} \rightarrow \eta \gamma\right)$ with $\eta \rightarrow 3 \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$, and fixing $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right) / \mathrm{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=1.44 \pm 0.04$. Recalculated by us from the cross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.
${ }^{2}$ From the $\eta \rightarrow 2 \gamma$ decay and using $\mathrm{B}(\eta \rightarrow \gamma \gamma)=39.43 \pm 0.26 \%$.
${ }^{3}$ From the $\eta \rightarrow 3 \pi^{0}$ decay and using $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.24 \pm 0.29) \times 10^{-2}$.
${ }^{4}$ The combined fit from 600 to 1380 MeV taking into account $\rho(770), \omega(782), \phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).
${ }^{5}$ A simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.
$\boldsymbol{\Gamma}\left(\boldsymbol{e}^{\boldsymbol{+}} \boldsymbol{e}^{\mathbf{-}}\right) / \boldsymbol{\Gamma}_{\text {total }} \times \boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{\boldsymbol{-}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-9}\right)}{4.3 \pm 1.8 \pm \mathbf{2 . 2}} \frac{E V T S}{4.5 \mathrm{M}}$$\frac{\boldsymbol{\Gamma}_{\mathbf{9}} / \boldsymbol{\Gamma} \times \boldsymbol{\Gamma}_{\mathbf{1 5}} / \boldsymbol{\Gamma}}{1} \frac{\text { DOCUMENT ID }}{\text { ANASTASI } 17} \frac{T E C N}{\mathrm{KLOE}} \frac{C O M M E N T}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma}$
${ }^{1}$ From a fit of the real part of the vacuum polarization by a sum of the leptonic and hadronic contributions, where the hadronic contribution is parametrized as a sum of Breit-Wigner resonances $\omega(782), \phi(1020)$ and using a GOUNARIS 68 parametrization for the $\rho(770)$, and a non-resonant term

- - We do not use the following data for averages, fits, limits, etc. - • -

8.88 ± 0.18	${ }^{1}$ ACHASOV 16A		
8.09 ± 0.14	2		
$9.06 \pm 0.20 \pm 0.57 \quad 18 \mathrm{k}$			
$9.34 \pm 0.15 \pm 0.31$			
$8.65 \pm 0.16 \pm 0.421 .2 \mathrm{M}$		RVUE	0.44-2.00 $e^{+} e^{-}$
8.39 ± 0.24	NAYOUN		
8.88 ± 0.62			
${ }^{1}$ Using $\mathrm{B}\left(\omega \rightarrow e^{+} e^{-}\right)$from PDG 15. Supersedes ACHASOV 03. ${ }^{2}$ Not independent of $\Gamma\left(\pi^{0} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ from AMBROSINO 08G. ${ }^{3}$ Using $\mathrm{B}\left(\omega \rightarrow e^{+} e^{-}\right)=(7.14 \pm 0.13) \times 10^{-5}$. ${ }^{4}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}^{2}{ }^{2}$ ${ }^{5}$ Using ACHASOV 03, ACHASOV 03D and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-}\right)=(1.70 \pm 0.28) \%$. ${ }^{6}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}^{2}$. ${ }^{7}$ Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into account the triangle anomaly contributions.			

$\Gamma\left(\pi^{0} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
Γ_{2} / Γ_{1}
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
$\mathbf{9 . 4 1} \mathbf{\pm 0 . 2 3}$ OUR FIT Error includes scale factor of 2.0
$\mathbf{9 . 0 5} \pm \mathbf{0 . 2 7}$ OUR AVERAGE Error includes scale factor of 1.8.
$8.97 \pm 0.16 \quad$ AMBROSINO 08G KLOE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 2 \pi^{0}, 2 \pi^{0} \gamma$
$9.94 \pm 0.36 \pm 0.38 \quad 1$ AULCHENKO 00A SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 2 \pi^{0}, 2 \pi^{0} \gamma$
$8.4 \pm 1.3 \quad$ KEYNE 76 CNTR $\pi^{-} p \rightarrow \omega n$
$10.9 \pm 2.5 \quad$ BENAKSAS 72 C OSPK $e^{+} e^{-} \rightarrow \pi^{0} \gamma$
$8.1 \pm 2.0 \quad$ BALDIN 71 HLBC $2.9 \pi^{+} p$
$13 \pm 4 \quad$ JACQUET 69B HLBC $2.05 \pi^{+} p \rightarrow \pi^{+} p \omega$

- - We do not use the following data for averages, fits, limits, etc. - - -
$9.7 \pm 0.2 \pm 0.5 \quad 2,3$ ACHASOV 03D RVUE $0.44-2.00 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ $9.9 \pm 0.7 \quad 2$ DOLINSKY 89 ND $e^{+} e^{-} \rightarrow \pi^{0} \gamma$
${ }^{1}$ From $\sigma_{0}^{\omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma}\left(m_{\phi}\right) / \sigma_{0}^{\omega} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\left(m_{\phi}\right)$ with a phase-space correction factor of $1 / 1.023$
${ }^{2}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}^{2}$.
${ }^{3}$ Using ACHASOV 03. Based on 1.2 M events.

See also $\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$.
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT

1.53 ± 0.06 OUR FIT

1.51 ± 0.07 OUR AVERAGE Error includes scale factor of 1.1.
1.52 ± 0.08
$1.46 \pm 0.12 \pm 0.02900 \mathrm{k}$
$1.30 \pm 0.24 \pm 0.0511 .2 \mathrm{k}$
$2.38{ }_{-0.90}^{+1.77} \pm 0.18 \quad 5.4 \mathrm{k}$
2.3 ± 0.5
$1.6 \begin{array}{r}+0.9 \\ -0.7\end{array}$
3.6 ± 1.9
Error includes scale factor of 1.1.

1 HANHART	18	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
2 AKHMETSHIN 07		$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$	
3 AKHMETSHIN 04	CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$	
4 ACHASOV	$02 E$	SND	$1.1-1.38 e^{+} e^{-} \rightarrow$
BARKOV	85	OLYA	$e^{+} e^{+} \rightarrow \pi^{-} \rightarrow \pi^{+} \pi^{-}$
QUENZER	78	DM1	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
BENAKSAS	72	OSPK	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. .

$1.29 \pm 0.22 \pm 0.03$	970k	5,6 ABLIKIM	18C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
$1.28 \pm 0.22 \pm 0.03$	970k	7,8 ABLIKIM	18 C	BES3	$\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
1.75 ± 0.11	4.5M	${ }^{9}$ ACHASOV	05A	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
2.01 ± 0.29		10 BENAYOUN	03	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1.9 ± 0.3		11 GARDNER	99	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
2.3 ± 0.4		12 BENAYOUN	98	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \mu^{+} \mu^{-}$
1.0 ± 0.11		13 WICKLUND	78	ASPK	3,4,6 $\pi^{ \pm} N$
1.22 ± 0.30		ALVENSLEB...	71C	CNTR	Photoproduction
$1.3{ }_{-0.9}^{+1.2}$		MOFFEIT	71	HBC	2.8,4.7 γp
$0^{0.80}+0.28$		14 BIGGS	70B	CNTR	$4.2 \gamma \mathrm{C} \rightarrow \pi^{+} \pi^{-} \mathrm{C}$

${ }^{1}$ Dispersive analysis. Value extracted from average of data from AUBERT 09AS, AKHMETSHIN 07, ACHASOV 06, AMBROSINO 11A, BABUSCI 13D, ABLIKIM 16B normalised by PDG evaluation for $\Gamma\left(\omega \rightarrow e^{+} e^{-}\right)$.
${ }^{2}$ A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05
${ }^{3}$ Update of AKHMETSHIN 02.
${ }^{4}$ From the $m_{\pi^{+}} \pi^{-}$spectrum taking into account the interference of the $\rho \pi$ and $\omega \pi$ amplitudes.
${ }^{5}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and box anomaly components.
${ }^{6}$ ABLIKIM 18C reports $\left[\Gamma\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta^{\prime}(958) \rightarrow \omega \gamma\right)\right]=(3.25 \pm$ $0.21 \pm 0.52) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\eta^{\prime}(958) \rightarrow \omega \gamma\right)=(2.52 \pm$ $0.07) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{7}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach $), \omega(782)$, and $\rho(1450)$ components.
${ }^{8}$ ABLIKIM 18C reports $\left[\Gamma\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta^{\prime}(958) \rightarrow \omega \gamma\right)\right]=(3.22 \pm$ $0.21 \pm 0.52) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\eta^{\prime}(958) \rightarrow \omega \gamma\right)=(2.52 \pm$ $0.07) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{9}$ Using $\Gamma\left(\omega \rightarrow e^{+} e^{-}\right)$from the 2004 Edition of this Review (PDG 04).
10 Using the data of AKHMETSHIN 02 in the hidden local symmetry model
${ }^{11}$ Using the data of BARKOV 85.
2 Using the data of BARKOV 85 in the hidden local symmetry model.
13 From a model-dependent analysis assuming complete coherence.
${ }^{14}$ Re-evaluated under $\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ by BEHREND 71 using more accurate $\omega \rightarrow$ ρ photoproduction cross-section ratio.

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$	
VALUE	TECN

Value
0.026 ± 0.005 OUR AVERAGE

0.021	$\begin{array}{r} +0.028 \\ -0.009 \end{array}$	1,2 RATCLIFF	72	ASPK	$15 \pi^{-} p \rightarrow n 2 \pi$
0.028	± 0.006	${ }^{1}$ BEHREND	71	ASPK	Photoproduction
0.022	+0.009 +0.01	${ }^{3}$ ROOS	70	RVUE	

${ }^{1}$ The fitted width of these data is 160 MeV in agreement with present average, thus the ω contribution is overestimated. Assuming ρ width 145 MeV .
${ }^{2}$ Significant interference effect observed. NB of $\omega \rightarrow 3 \pi$ comes from an extrapolation.
${ }^{3}$ ROOS 70 combines ABRAMOVICH 70 and BIZZARRI 70.

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{0} \gamma\right)$		DOCUMENT ID		TECN	COMMENT	Γ_{3} / Γ_{2}	
VALUE	EVTS						
0.20 ± 0.04	1.98 M	${ }^{1}$ ALOISIO	03		KLOE	$\begin{gathered} 1.02 e^{+} e^{-} \rightarrow \\ \pi^{+} \pi^{-} \pi^{0} \end{gathered}$	

${ }^{1}$ Using the data of ALOISIO 02D.

$0.103{ }_{-0.010}^{+0.011}$ OUR AVERAGE

- - We do not use the following data for averages, fits, limits, etc. - -
$4.2 \pm 0.4 \pm 0.1 \quad 33 \mathrm{k} \quad{ }^{3}$ ACHASOV \quad 07B SND $\quad 0.6-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$4.44{ }_{-1.83}^{+2.59} \pm 0.28 \quad 17.4 \mathrm{k} \quad 4,5$ AKHMETSHIN 05 CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$5.10 \pm 0.72 \pm 0.34 \quad 23 \mathrm{k} \quad{ }_{7}^{6}$ AKHMETSHIN 01B CMD2 $\quad e^{+} e^{-} \rightarrow \eta \gamma$
0.7 to 5.5
$6.56{ }_{-2.55}^{+2.41}$
$3525 \quad 2,8$ BENAYOUN 96 RVUE $e^{+} e^{-} \rightarrow \eta \gamma$
$7.3 \pm 2.9 \quad 2,4$ DOLINSKY 89 ND $e^{+} e^{-} \rightarrow \eta \gamma$
${ }^{1}$ No flat $\eta \eta \gamma$ background assumed.
${ }^{2}$ Solution corresponding to constructive $\omega-\rho$ interference.
${ }^{3}$ ACHASOV 07B reports $\left[\Gamma(\omega(782) \rightarrow \eta \gamma) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\omega(782) \rightarrow e^{+} e^{-}\right)\right]=$ $(3.10 \pm 0.31 \pm 0.11) \times 10^{-8}$ which we divide by our best value $\left.\mathrm{B}(\omega)(782) \rightarrow e^{+} e^{-}\right)$ $=(7.36 \pm 0.15) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Supersedes ACHASOV OOD and ACHASOV 06A.
${ }^{4}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma(\eta \gamma) / \Gamma_{\text {total }}^{2}$
${ }^{5}$ Using $\mathrm{B}\left(\omega \rightarrow e^{+} e^{-}\right)=(7.14 \pm 0.13) \times 10^{-5}$ and $\mathrm{B}(\eta \rightarrow \gamma \gamma)=39.43 \pm 0.26 \%$.
${ }^{6}$ Using $\mathrm{B}\left(\omega \rightarrow e^{+} e^{-}\right)=(7.07 \pm 0.19) \times 10^{-5}$ and using $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.24 \pm$ $0.29) \times 10^{-2}$. Solution corresponding to constructive $\omega-\rho$ interference. The combined fit from 600 to 1380 MeV taking into account $\rho(770), \omega(782), \phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively). Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma(\eta \gamma) / \Gamma_{\text {total }}^{2}$.
${ }^{7}$ Depending on the degree of coherence with the flat $\eta \eta \gamma$ background and using $\mathrm{B}(\omega \rightarrow$ $\left.\pi^{0} \gamma\right)=(8.5 \pm 0.5) \times 10^{-2}$.
${ }^{8}$ Reanalysis of DRUZHININ 84, DOLINSKY 89 , DOLINSKY 91 taking into account the triangle anomaly contributions.

$\Gamma\left(\pi^{\mathbf{0}} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{7}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 3 4} \pm \mathbf{0 . 1 8} \text { OUR FIT EVTS }} \frac{\text { DOCUMENT ID }}{\text { Error includes }} \frac{\text { TECN }}{\text { SCOMMENT }}$
$\mathbf{1 . 3 4} \pm \mathbf{0 . 1 9}$ OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
$1.41 \pm 0.09 \pm 0.15 \quad$ ARNALDI $16 \quad$ NA60 $\quad 400 \mathrm{GeV}(p-A)$ colli- $1.72 \pm 0.25 \pm 0.14 \quad 3 k \quad$ ARNALDI $09 \quad$ NA60 $\quad 158 A$ In-In collisions 0.96 ± 0.23 DZHELYADIN 81B CNTR $25-33 \pi^{-} p \rightarrow \omega n$

Meson Particle Listings
$\omega(782)$

$\Gamma\left(\pi^{0} \pi^{0} \gamma\right) / \Gamma$ (neutrals)			$\Gamma_{13} /\left(\Gamma_{2}+\Gamma_{4}\right)$
VALUE CLC DOCUMENT ID TECN COMMENT			
- . We do not use the following data for averages, fits, limits, etc. -			
0.22 ± 0.07	${ }^{1}$ DAKIN 72	OSPK	$1.4 \pi^{-} p \rightarrow n \mathrm{MM}$
<0.19 90	DEINET 69B	OSPK	
${ }^{1}$ See $\Gamma\left(\pi^{0} \gamma\right) / \Gamma($ neutrals).			
$\Gamma\left(\eta \pi^{0} \gamma\right) / \Gamma_{\text {total }}$			$\Gamma_{14 / \Gamma}$
VaLUE (units 10^{-5})	DOCUMENT ID	TECN	Mment
<3.3 90	AKHMETSHIN 04b		$\begin{aligned} & 0.6-0.97 e^{+} e^{-} \rightarrow \\ & \eta \pi^{-} \end{aligned}$

$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{15 / \Gamma}$
$\frac{V A L U E}{7.4 \pm 1.8}$ (uit 10^{-5})
7.4 ± 1.8 OUR AVERAGE

$6.6 \pm 1.4 \pm 1.7$	4.5 M	${ }^{1}$ ANASTASI	17	KLOE	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$
$9.0 \pm 2.9 \pm 1.1$	18	HEISTER	02C ALEP $Z \rightarrow \mu^{+} \mu^{-}+\chi$		

${ }^{1}$ Assuming lepton universality in the decay $\omega \rightarrow \ell^{+} \ell^{-}$and correcting for different phase space between electron and muon final states.

$\Gamma\left(\pi^{0} \mu^{+} \mu^{-}\right) / \Gamma\left(\mu^{+} \mu^{-}\right)$
Γ_{7} / Γ_{15}
VALUE DOCUMENT ID COMTS COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.2 \pm 0.6 \quad 30 \quad{ }^{1}$ DZHELYADIN 79 CNTR $25-33 \pi^{-} p$
${ }^{1}$ Superseded by DZHELYADIN 81B result above.

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.045 \quad 95$ JACQUET 69B HLBC $2.05 \pi^{+} p \rightarrow \pi^{+} p \omega$
${ }^{1}$ Restated by us using $\mathrm{B}(\eta \rightarrow$ charged modes $)=29.2 \%$.

- - We do not use the following data for averages, fits, limits, etc. - - -
$<3 \times 10^{-4} \quad 90 \quad$ PROKOSHKIN 95 GAM2 $38 \pi^{-} p \rightarrow 3 \pi^{0} n$
$\Gamma\left(3 \pi^{\mathbf{0}}\right) / \Gamma\left(\pi^{\mathbf{0}} \gamma\right)$
Violates C conservation
<2.72
$\frac{}{} \frac{\Gamma_{19} / \Gamma_{\mathbf{2}}}{\text { DOCUMENT ID }}$ STAROSTIN $09 \frac{\text { TECN }}{\text { CRYM }} \frac{\text { COMMENT }}{\gamma p \rightarrow 3 \pi^{0} p}$

Meson Particle Listings
$\eta^{\prime}(958)$

Charge conjugation (C), Parity (P), Lepton family number ($L F$) violating modes

Γ_{31}	$\pi^{+} \pi^{-}$	$P, C P$	<1.8	$\times 10^{-5}$	90%
Γ_{32}	$\pi^{0} \pi^{0}$	$P, C P$	<4	$\times 10^{-4}$	90%
Γ_{33}	$\pi^{0} e^{+} e^{-}$	C	$[a]<1.4$	$\times 10^{-3}$	90%
Γ_{34}	$\eta e^{+} e^{-}$	C	$[a]<2.4$	$\times 10^{-3}$	90%
Γ_{35}	3γ	C	<1.0	$\times 10^{-4}$	90%
Γ_{36}	$\mu^{+} \mu^{-} \pi^{0}$	C	$[a]<6.0$	$\times 10^{-5}$	90%
Γ_{37}	$\mu^{+} \mu^{-} \eta$	C	$[a<1.5$	$\times 10^{-5}$	99%
Γ_{38}	$e \mu$	LF	<4.7	$\times 10^{-4}$	90%

[a] C parity forbids this to occur as a single-photon process.

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, 2 combinations of partial widths obtained from integrated cross section, and 19 branching ratios uses 51 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^{2}=69.4$ for 43 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	-24							
x_{4}	-74	-42						
x_{5}	-7	-6	-2					
${ }_{7}$	-11	-7	9	-1				
x_{8}	-17	-9	19	0	2			
x_{11}	-1	-1	-1	0	0	0		
x_{22}	-9	-7	-7	-1	-2	-2	0	
Γ	11	-10	-1	1	-40	0	0	2
	x_{1}	x_{2}	χ_{4}	x_{5}	${ }^{7}$	x_{8}	x_{11}	x_{22}
	Mode					Rate (MeV)		
Γ_{1}	$\pi^{+} \pi^{-} \eta$					0.0799 ± 0.0029		
Γ_{2}	$\rho^{0} \gamma$ (including non-resonant$\left.\pi^{+} \pi^{-} \gamma\right)$					0.0554 ± 0.0019		
Γ_{4}	$\pi^{0} \pi^{0} \eta$					0.0421 ± 0.0017		
Γ_{5}	$\omega \gamma$					0.00474 ± 0.00020		
Γ_{7}	$\gamma \gamma$					0.00434 ± 0.00013		
Γ_{8}	$3 \pi^{0}$					(4.7	± 0.4) $\times 10^{-4}$
Γ_{11}	$\pi^{+} \pi^{-} \pi^{0}$					(6.8	± 0.4) $\times 10^{-4}$
Γ_{22}	$\pi^{+} \pi^{-} e^{+} e^{-}$					(4.4	+2.3 -1.8) $\times 10^{-4}$

$\eta^{\prime}(958)$ PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$

$\eta^{\prime}(958) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

This combination of a partial width with the partial width into $\gamma \gamma$ and with the total width is obtained from the integrated cross section into channel(i) in the $\gamma \gamma$ annihilation.

$\eta^{\prime}(958)$ BRANCHING RATIOS

 VALUE DOCUMENT TECN COMMENT
$0.1185 \pm \mathbf{0 . 0 0 1 5}$ OUR FIT Error includes scale factor of 1.1

- - We do not use the following data for averages, fits, limits, etc. - - . $0.123 \pm 0.014 \quad 107 \quad$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$ $0.10 \pm 0.04 \quad 10 \quad$ LONDON 66 HBC $2.24 K^{-} p \rightarrow 12 \pi^{+} 2 \pi^{-} \pi^{0}$ $0.07 \pm 0.04 \quad 7 \quad$ BADIER 75 B HBC $3 K^{-} p$
$\Gamma\left(\pi^{+} \pi^{-} \eta(\right.$ neutral decay $\left.)\right) / \Gamma_{\text {total }} \quad 0.7212 \Gamma_{1} / \Gamma$
VALUE EVTS DOCUMENT ID TECN COMMENT
$\frac{\text { VALUE }}{\mathbf{0 . 3 0 6} \pm \mathbf{0 . 0 0 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.1 }}$.
- - We do not use the following data for averages, fits, limits, etc. - -
$0.314 \pm 0.026 \quad 281$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$
$\Gamma\left(\rho^{0} \gamma\right.$ (including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{2} / \Gamma$

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$29.5 \pm$ 0.4 OUR FIT Error includes scale factor of 1.1.
$\mathbf{2 9 . 9 0 \pm} \mathbf{0 . 0 3} \pm \mathbf{0 . 5 5} 913 \mathrm{k} \quad$ ABLIKIM \quad 19T BES $\mathrm{J} / \psi \rightarrow \gamma \eta^{\prime}$
\bullet - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$28.7 \pm 0.7 \pm 0.4 \quad 0.2 \mathrm{k} \quad{ }^{1}$ PEDLAR $\quad 09 \quad$ CLEO $\quad J / \psi \rightarrow \gamma \eta^{\prime}$
$32.9 \pm 3.3 \quad 298$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$

20	± 10	20	LONDON	66	HBC
34	± 9	35	BADIER	65 K	HBC

35 BADIER 65B HBC $3 K^{-} p$
${ }^{1}$ Not independent of other η^{\prime} branching fractions and ratios in PEDLAR 09.
$\Gamma\left(\rho^{0} \gamma\right) / \Gamma_{\text {total }}$
VALUE (\%) DOCUMENT ID TECN COMMENT T T

- • We do not use the following data for averages, fits, limits, etc. • • •
$33.34 \pm 0.06 \pm 1.60 \quad 970 \mathrm{k} \quad 1$ ABLIKIM $\quad 18 \mathrm{C}$ BES3 $\quad \eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
$34.43 \pm 0.52 \pm 1.97 \quad 970 \mathrm{k} \quad 2$ ABLIKIM $\quad 18 \mathrm{C}$ BES3 $\eta^{\prime}(958) \rightarrow \gamma \pi^{+} \pi^{-}$
${ }^{1}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770), \omega(782)$, and box anomaly components.
${ }^{2}$ From a fit to $\pi^{+} \pi^{-}$mass using $\rho(770), \omega(782)$, and $\rho(1450)$ components.

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\Gamma_{2} / 0.714 \Gamma_{1}$ $\frac{\text { VALUE }}{0.972 \pm 0.020 \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error }}$ DOCUMENT ID TECN COMMENT $0.972 \pm \mathbf{0 . 0 2 0}$ OUR FIT Error includes scale factor of 1.1 .
0.97 ± 0.09 OUR AVERAGE

0.70 ± 0.22		AMSLER	04B	CBAR	$0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \eta$
1.07 ± 0.17		BELADIDZE	92C	VES	$36 \pi^{-} \mathrm{Be} \rightarrow \pi^{-} \eta^{\prime} \eta \mathrm{Be}$
0.92 ± 0.14	473	DANBURG	73	HBC	$2.2 K^{-} p \rightarrow \Lambda X^{0}$
1.11 ± 0.18	192	JACOBS	73	HBC	$2.9 K^{-} p \rightarrow \Lambda X^{0}$

$\Gamma\left(\pi^{0} \pi^{0} \eta\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{2 2 . 4} \pm \mathbf{0 . 6} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of } 1.1 .}$ TECN COMMENT
$\mathbf{2 1 . 3 6} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 9 2} \quad 52 \mathrm{k} \quad$ ABLIKIM \quad 19T BES $J / \psi \rightarrow \gamma \eta^{\prime}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$23.5 \pm 1.3 \pm 0.4 \quad 3.2 \mathrm{k} \quad{ }^{1}$ PEDLAR $\quad 09 \quad$ CLEO $\quad J / \psi \rightarrow \gamma \eta^{\prime}$
${ }^{1}$ Not independent of other η^{\prime} branching fractions and ratios in PEDLAR 09.
$\Gamma\left(\pi^{0} \pi^{0} \eta\left(3 \pi^{0}\right.\right.$ decay $\left.)\right) / \Gamma_{\text {total }} \quad 0.321 \Gamma_{4} / \Gamma$ VALUE EVTS DOCUMENT ID TECN COMMENT $\mathbf{0 . 0 7 1 8} \pm \mathbf{0 . 0 0 1 8}$ OUR FIT Error includes scale factor of 1.1
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.11 \pm 0.06 \quad 4 \quad$ BENSINGER 70 DBC $2.2 \pi^{+} d$

$\Gamma\left(\pi^{0} \pi^{0} \eta\right) / \Gamma\left(\pi^{+} \pi^{-} \eta\right)$				Γ_{4} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 5 2 7} \pm \mathbf{0 . 0 1 9}$ OUR FIT Error includes scale factor of 1.1.				
$0.555 \pm 0.043 \pm 0.013$	PEDLAR	CLE3	$J / \psi \rightarrow \eta^{\prime} \gamma$	

$\frac{\text { VALUE }}{0.454+0.009}$ OUR FIT Error includ DOCUMENT ID TECN COMMENT
$\mathbf{0 . 4 3} \pm \mathbf{0 . 0 2} \pm \mathbf{0 . 0 2} \quad$ BARBERIS $\quad 98 \mathrm{C}$ OMEG $450 p p \rightarrow p_{f} \eta^{\prime} p_{S}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.31 \pm 0.15 \quad$ DAVIS 68 HBC $5.5 K^{-} p$
$\Gamma(\boldsymbol{\omega} \boldsymbol{\gamma}) / \Gamma_{\text {total }}$
VALUE (units 10^{-2}) EVCTS DOCUMENT ID TECN COMMENT
$\frac{2.52 \pm 0.07 \text { OUR FIT }}{}$
2.50 ± 0.07 OUR AVERAGE
$2.489 \pm 0.018 \pm 0.074 \quad 23 \mathrm{k} \quad$ ABLIKIM $\quad 19 \mathrm{~T}$ BES $\quad J / \psi \rightarrow \gamma \eta^{\prime}$ $2.55 \pm 0.03 \pm 0.16 \quad 33.2 \mathrm{k} \quad{ }^{1}$ ABLIKIM \quad 15ADBES3 $J / \psi \rightarrow \eta^{\prime} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - •
$2.34 \pm 0.30 \pm 0.04 \quad 70 \quad 2$ PEDLAR 09 CLEO $J / \psi \rightarrow \gamma \eta^{\prime}$
${ }^{1}$ Using $\mathrm{B}\left(J / \psi \rightarrow \eta^{\prime} \gamma\right)=(5.15 \pm 0.16) \times 10^{-3}$ and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.2 \pm 0.7) \%$.
${ }^{2}$ Not independent of other η^{\prime} branching fractions and ratios in PEDLAR 09.
$\Gamma(\omega \gamma) / \Gamma\left(\pi^{+} \pi^{-} \eta\right)$
Γ_{5} / Γ_{1}
$\frac{\text { VALUE }}{\mathbf{0 . 0 5 9 3} \mathbf{0 . 0 0 1 8} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of }} 1.1$ I.
$\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 0 7} \pm \mathbf{0 . 0 0 1} \quad$ PEDLAR 09 CLE3 $J / \psi \rightarrow \eta^{\prime} \gamma$
\bullet - We do not use the following data for averages, fits, limits, etc. • • •
$0.068 \pm 0.013 \quad 68 \quad$ ZANFINO 77 ASPK $8.4 \pi^{-} p$
$\Gamma(\omega \gamma) / \Gamma\left(\pi^{0} \pi^{0} \eta\right)$
DOCUMENT ID TECN COMMENT
Γ_{5} / Γ_{4}

$\Gamma\left(\omega e^{+} e^{-}\right) / \Gamma(\omega \gamma)$
Γ_{6} / Γ_{5}
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$7.71 \pm 1.34 \pm 0.54 \quad 1$ ABLIKIM \quad 15AD BES3 $\quad J / \psi \rightarrow \eta^{\prime} \gamma$
${ }^{1}$ Obtained from other ABLIKIM 15AD meausurements with common systematics taken into account.
$\Gamma\left(\omega e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{6} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 9 7} \pm \mathbf{0 . 3 4} \pm \mathbf{0 . 1 7}} \frac{\text { EVTS }}{66} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{15 \mathrm{AD}} \frac{\text { BES } 3}{\mathrm{~J} / \psi \rightarrow \eta^{\prime} \gamma}$
${ }^{1}$ Using $\mathrm{B}\left(J / \psi \rightarrow \eta^{\prime} \gamma\right)=(5.15 \pm 0.16) \times 10^{-3}$ and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.2 \pm 0.7) \%$.
$\Gamma\left(\rho^{0} \gamma\right.$ (including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right) /\left[\Gamma\left(\pi^{+} \pi^{-} \eta\right)+\Gamma\left(\pi^{0} \pi^{0} \eta\right)+\right.$
$\Gamma(\omega \gamma)]$
$\Gamma_{2} /\left(\Gamma_{1}+\Gamma_{4}+\Gamma_{5}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 4 3 7} \mathbf{\pm 0 . 0 0 8} \text { OUR FIT } \quad \text { Error includes scale factor of 1.1. }}$
- - We do not use the following data for averages, fits, limits, etc. - - -
0.25 ± 0.14
DAUBER 64 HBC $1.95 K^{-} p$
$\left[\Gamma\left(\pi^{0} \pi^{0} \eta(\right.\right.$ charged decay $\left.)\right)+\Gamma(\omega($ charged decay $\left.) \gamma)\right] / \Gamma_{\text {total }}$
$\left(0.286 \Gamma_{4}+0.89 \Gamma_{5}\right) / \Gamma$ VALUE EVTS DOCUMENT ID TECN COMMENT $\mathbf{0 . 0 8 6 4} \pm \mathbf{0 . 0 0 1 7}$ OUR FIT Error includes scale factor of 1.1 .
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.045 \pm 0.029 \quad 42$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$
$\Gamma\left(\pi^{+} \pi^{-}\right.$neutrals $) / \Gamma_{\text {total }}$
$\left(0.714 \Gamma_{1}+0.286 \Gamma_{4}+0.89 \Gamma_{5}\right) / \Gamma$
$\frac{\text { VALUE }}{\mathbf{0 . 3 8 9 7} \pm \mathbf{0 . 0 0 2 8}} \frac{\text { EVTS }}{\text { OUR FIT }} \quad \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 1.1 .}$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.4 \quad \pm 0.1 \quad 39 \quad$ LONDON $66 \quad \mathrm{HBC} \quad 2.24 K^{-} p \rightarrow \Lambda \pi^{+} \pi^{-}$neutrals
$0.35 \pm 0.06 \quad 33 \quad$ BADIER 65B HBC $3 K^{-} p$
$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
Γ_{7} / Γ
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$\overline{\mathbf{2} .307} \pm \mathbf{0 . 0 3 5}$ OUR FIT Error includes scale factor of 1.1 .
$\mathbf{2 . 3 1} \mathbf{\pm 0 . 0 6}$ OUR AVERAGE Error includes scale factor of 1.8.

$2.331 \pm 0.012 \pm 0.035$	71k	ABLIKIM	19 T	BES	$J / \psi \rightarrow \gamma \eta^{\prime}$
$1.99{ }_{-0.27}^{+0.31} \pm 0.07$	114	${ }^{1}$ WICHT	08	BELL	$B^{ \pm} \rightarrow K^{ \pm} \gamma \gamma$
2.00 ± 0.18		2 STANTON	80	SPEC	$8.45 \pi^{-} p \rightarrow n \pi^{+} \pi^{-} 2 \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -					
$2.25 \pm 0.16 \pm 0.03$	0.3k	3 PEDLAR	09	CLEO	$J / \psi \rightarrow \gamma \eta^{\prime}$
1.8 ± 0.2	6000	${ }^{4}$ APEL	79	NICE	$15-40 \pi^{-} p \rightarrow n 2 \gamma$
2.5 ± 0.7		DUANE	74	MMS	$\pi^{-} p \rightarrow n \mathrm{MM}$
1.71 ± 0.33	68	DALPIAZ	72	CNTR	$1.6 \pi^{-} p \rightarrow n X^{0}$
$2.0 \begin{aligned} & \text { 2 }\end{aligned}$	31	HARVEY	71	OSPK	$3.65 \pi^{-} p \rightarrow n X^{0}$

${ }^{1}$ WICHT 08 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \quad \eta^{\prime} K^{+}\right)\right]=$ $\left(1.40_{-0.15-0.12}^{+0.16}+0.15\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right)=$
$(7.04 \pm 0.25) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }_{3}^{2}$ Includes APEL 79 result.
${ }^{3}$ Not independent of other η^{\prime} branching fractions and ratios in PEDLAR 09.
${ }^{4}$ Data is included in STANTON 80 evaluation.

$\Gamma(\gamma \gamma) / \Gamma\left(\pi^{+} \pi^{-} \eta\right)$				Γ_{7} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 0 5 4 3} \pm \mathbf{0 . 0 0 1 2}$ OUR FIT Error includes scale factor of 1.1.				
$0.053 \pm 0.004 \pm 0.001$	PEDLAR	CLE3	$J / \psi \rightarrow \eta^{\prime} \gamma$	
$\Gamma(\gamma \gamma) / \Gamma\left(\rho^{0} \gamma\left(\right.\right.$ including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right)$				Γ_{7} / Γ_{2}
VALUE	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 0 7 8 3} \pm \mathbf{0 . 0 0 1 6}$ OUR FIT Error includes scale factor of 1.1.				
0.080 ± 0.008	ABLIKIM	BES2	$J / \psi \rightarrow \eta^{\prime} \gamma$	
$\Gamma(\gamma \gamma) / \Gamma\left(\pi^{0} \pi^{0} \eta\right)$				Γ_{7} / Γ_{4}
VALUE	DOCUMENT ID	TECN	COMMENT	

0.1031 ± 0.0028 OUR FIT
DOCUMENT ID TECN COMMENT
$0.105 \pm \mathbf{0 . 0 1 0}$ OUR AVERAGE Error includes scale factor of 1.9.
$0.091 \pm 0.009 \quad$ AMSLER 93 CBAR $0.0 \bar{p} p$
$0.112 \pm 0.002 \pm 0.006 \quad$ ALDE \quad 87B GAM2 $38 \pi^{-} p \rightarrow n 2 \gamma$
$\Gamma(\gamma \gamma) / \Gamma\left(\pi^{0} \pi^{0} \eta(\right.$ neutral decay $\left.)\right)$
VALUE DOCUMENT ID TECN COMMENT
${ }_{7} / 0.714 \Gamma_{4}$
0.144 ± 0.004 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.188 \pm 0.058 \quad 16 \quad$ APEL 72 OSPK $3.8 \pi^{-} p \rightarrow n X^{0}$
Γ (neutrals) $/ \Gamma_{\text {total }}$
$\left(0.714 \Gamma_{4}+0.09 \Gamma_{5}+\Gamma_{7}\right) / \Gamma$
$\frac{V A L U E}{0.185}+\mathbf{0 . 0 0 4}$ OUR FIT $\frac{\text { EVTS }}{\text { Error }}$ DOCUMENT ID TECN COMMENT
$\overline{\mathbf{0 . 1 8 5} \pm \mathbf{0 . 0 0 4} \text { OUR FIT }}$ Error includes scale factor of 1.1.
- - We do not use the following data for averages, fits, limits, etc. - - -

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{2 . 5 0} \pm \mathbf{0 . 1 7} \text { OUR FIT }} \stackrel{\text { EVTS }}{ }$
3.57 ± 0.26 OUR AVERAGE
$3.522 \pm 0.082 \pm 0.254 \quad 2015 \quad$ ABLIKIM 17 BES3 $J / \psi \rightarrow \gamma\left(3 \pi^{0}\right)$
$4.79 \pm 0.59 \pm 1.14 \quad 183 \quad 1$ ABLIKIM $\quad 15 \mathrm{P}$ BES3 $J / \psi \rightarrow K^{+} K^{-} 3 \pi$
- - We do not use the following data for averages, fits, limits, etc. - -
$3.56 \pm 0.22 \pm 0.34 \quad 309 \quad 2$ ABLIKIM $\quad 12 \mathrm{E}$ BES3 $\mathrm{J} / \psi \rightarrow \gamma\left(3 \pi^{0}\right)$
${ }^{1}$ We have added all systematic uncertainties in quadrature to a single value.
${ }^{2}$ Superseded by ABLIKIM 17.
$\Gamma\left(3 \pi^{0}\right) / \Gamma\left(\pi^{0} \pi^{0} \eta\right)$
VALUE (units 10^{-4}) EVTS
112 $\mathbf{1 8} 8$ OUR FIT
78 ± 10 OUR AVERAGE
86 ± 19
235
74 ± 15
BLIK 08 GAMS $32 \pi^{-} p \rightarrow \eta^{\prime} n$
ALDE $\quad 87 \mathrm{~B}$ GAM2 $38 \pi^{-} p \rightarrow n 6 \gamma$
BINON 84 GAM2 $30-40 \pi^{-} p \rightarrow n 6 \gamma$

Meson Particle Listings
$\eta^{\prime}(958)$

- - We do not use the following data for averages, fits, limits, etc. - - -

<0.29	90	1	ABLIKIM	130	BES3	$J / \psi \rightarrow \gamma \eta^{\prime}$
<2.4	90	2 NAIK	09	CLEO	$J / \psi \rightarrow \gamma \eta^{\prime}$	

${ }^{1}$ Using $\Gamma_{2} / \Gamma=(29.3 \pm 0.6) \%$ from PDG 12.
${ }^{2}$ Not independent of measured value of Γ_{10} / Γ_{1} from NAIK 09.

$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \eta\right)$					Γ_{10} / Γ_{1}
VALUE (units 10^{-3})	CL\%	DOCUM	TECN	COMMENT	
<0.5	90	1 NAIK	CLEO	$J / \psi \rightarrow \gamma \eta^{\prime}$	
1 NAIK 09 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow$ $2 \gamma)]<1.3 \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=39.41 \times 10^{-2}$.					
$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma\left(\rho^{0} \gamma\left(\right.\right.$ including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right)$					
VALUE (units 10^{-4})	CL\%	DOCUM	TECN	COMMENT	
<1.0	90	ABLIK	BES3	$J / \psi \rightarrow \gamma \eta^{\prime}$	

$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{11} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{361}$ EVTS
DOCUMENT ID TECN COMMENT
3.61 ± 0.18 OUR AVERAGE
$3.591 \pm 0.054 \pm 0.174 \quad 6067$
$4.28 \pm 0.49 \pm 1.11 \quad 78$
09 CLEO J/ $\psi \rightarrow \gamma \eta^{\prime}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.83 \pm 0.15 \pm 0.39 \quad 1014 \quad{ }^{3}$ ABLIKIM $\quad 12 \mathrm{E}$ BES3 $\mathrm{J} / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
${ }^{1}$ We have added all systematic uncertainties in quadrature to a single value.
${ }^{2}$ Not independent of measured value of Γ_{11} / Γ_{1} from NAIK 09 .
${ }^{3}$ Superseded by ABLIKIM 17.

$\Gamma\left(\left(\pi^{+} \pi^{-} \pi^{\mathbf{0}}\right)\right.$ S-wave $) / \Gamma_{\text {total }}$						Γ_{12} / Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT		TECN	COMMENT	
$\mathbf{3 7 . 6 3} \pm \mathbf{0 . 7 7} \pm \mathbf{5 . 0 0}$	6580	1 ABLIKIM	17	BES3	$J / \psi \rightarrow$	

${ }^{1}$ We have added all systematic uncertainties in quadrature .

$\Gamma\left(\pi^{\mp} \rho^{ \pm}\right) / \Gamma_{\text {total }}$					$13 / \Gamma$
VALUE (units 10^{-4})	EVTS	DOCUMENT	TECN	COMMENT	
$\mathbf{7 . 4 4} \pm \mathbf{0 . 6 0 \pm 2 . 2 3}$	1231	ABLIKIM	BES3	$J / \psi \rightarrow \gamma$	

${ }^{1}$ We have added all systematic uncertainties in quadrature .

$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \eta\right) \quad \Gamma_{11} / \Gamma_{1}$ $\frac{\text { VALUE (units } 10^{-3} \text {) }}{8.5 \text { EVTS }}$ DOCUMENT ID TECN COMMENT	$\mathbf{8 . 5} \mathbf{\pm 0 . 4}$	OUR FIT	Error includes scale factor of 1.1.				
$\mathbf{8 . 2 8} \mathbf{+ 2 . 4 9} \pm \mathbf{0 . 0 4}$	20	1	NAIK	09	CLEO	$J / \psi \rightarrow \gamma \eta^{\prime}$	

${ }^{1}$ NAIK 09 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow 2 \gamma)]=$ $\left(21_{-5}^{+6} \pm 2\right) \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=(39.41 \pm 0.20) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$
\begin{aligned}
& \Gamma\left(2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma\left(\pi^{+} \pi^{-} \eta\right) \quad \Gamma_{15} / \Gamma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { NAIK } 09 \text { reports }\left[\Gamma\left(\eta^{\prime}(958) \rightarrow 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow 2 \gamma)] \\
& <1.4 \times 10^{-3} \text { which we multiply by our best value } \mathrm{B}(\eta \rightarrow 2 \gamma)=39.41 \times 10^{-2} \text {. }
\end{aligned}
$$

| VALUE (units $\left.10^{-4}\right)$ |
| :--- | :--- |
| total |
| CL\% | $\mathbf{1 . 7 9} \pm \mathbf{0 . 3 8} \pm \mathbf{0 . 0 2} \quad 84 \quad 1$ ABLIKIM 14 M BES3 $\mathrm{J} / \psi \rightarrow \gamma \eta^{\prime}$ - - We do not use the following data for averages, fits, limits, etc. - - $<27 \quad 90 \quad 2$ NAIK 09 CLEO $J / \psi \rightarrow \gamma \eta^{\prime}$ 1^{1} ABLIKIM 14 M reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)\right]$ $=(9.38 \pm 1.79 \pm 0.89) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)$ $=(5.25 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

${ }^{2}$ Not independent of measured value of Γ_{16} / Γ_{1} from NAIK 09 .
$\Gamma\left(\pi^{+} \pi^{-} 2 \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \eta\right)$
Γ_{16} / Γ_{1}
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{<} \mathbf{< 6}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { NAIK }} \frac{09}{\text { CLEO }} \frac{\text { COMMENT }}{J / \psi \rightarrow \gamma \eta^{\prime}}$
${ }^{1}$ NAIK 09 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} 2 \pi^{0}\right) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow 2 \gamma)]$
$<15 \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=39.41 \times 10^{-2}$.

- - We do not use the following data for averages, fits, limits, etc. - -
$<0.01 \quad 90 \quad$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$
$\begin{aligned} & \boldsymbol{\Gamma}\left(\mathbf{2}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \text { VALUE } \\ & \text { CL\% } \quad \text { DOCUMENT ID } \quad \text { TECN COMMENT }\end{aligned} \boldsymbol{\Gamma}_{\mathbf{1 8}} / \boldsymbol{\Gamma}$ $\frac{\text { VALUE }}{\bullet \bullet \text { We do not use the }} \frac{\text { CL\% }}{\text { following data for averages, fits, limits, etc. • • }} \frac{\text { COMMENT }}{\text { le }}$
$<0.002 \quad 90 \quad 1$ NAIK 09 CLEO J/ $\psi \rightarrow \gamma \eta^{\prime}$ $<0.01 \quad 90 \quad$ RITTENBERG 69 HBC $1.7-2.7 K^{-} p$ ${ }^{1}$ Not independent of measured value of Γ_{18} / Γ_{1} from NAIK 09 .

$\Gamma\left(\mathbf{2}\left(\pi^{+} \pi^{-}\right) \mathbf{2} \pi^{0}\right) / \Gamma_{\text {total }}$					
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.01	95	KALBFLEISCH	HBC	$K^{-} p \rightarrow$	+

- - We do not use the following data for averages, fits, limits, etc. - - -
<0.01 $90 \quad$ LONDON 66 HBC Compilation
$\Gamma\left(3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{<3.1} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{13 \mathrm{U}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \gamma 3\left(\pi^{+} \pi^{-}\right)}$
- We do not use the following data for averages, fits, limits, etc. • •

<53	90	2	NAIK	09	CLEO	$J / \psi \rightarrow$
<500	95	KALBFLEISCH 64B	HBC	$K^{-} p \rightarrow$	$12\left(\pi^{+} \pi^{-}\right)$	

${ }^{1}$ Using $\mathrm{B}\left(J / \psi \rightarrow \gamma \eta^{\prime}(958)\right)=(5.16 \pm 0.15) \times 10^{-3}$.
${ }^{2}$ Not independent of measured value of Γ_{20} / Γ_{1} from NAIK 09 .

| $\boldsymbol{\Gamma}\left(\mathbf{3}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)\right) / \Gamma\left(\boldsymbol{\pi}^{+} \pi^{-} \boldsymbol{\eta}\right)$ | |
| :--- | :--- | :--- |
| VALUE (units $\left.10^{-3}\right)$ | $\Gamma_{\mathbf{2 0}} / \boldsymbol{\Gamma}_{\mathbf{1}}$ |

| 1.2 | 1 NAIK | 09 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ${ }^{1}$ NAIK 09 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow\right.\right.$ | $\left.\left.3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow 2 \gamma)]$ | | | $<3.0 \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=39.41 \times 10^{-2}$.

$\Gamma\left(K^{ \pm} \pi^{\mp}\right) / \Gamma\left(\rho^{0} \gamma\left(\right.\right.$ including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right)$
Γ_{21} / Γ_{2}
$\frac{\text { VALUE }}{<1.3 \times 10^{-4}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} 16 \mathrm{M} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow J / \psi \rightarrow \text { hadrons }}$
$\Gamma\left(\pi^{+} \pi^{-} e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{22 / \Gamma}$
$\underline{\text { VALUE (units } 10^{-3} \text {) CL\% EVTS DOCUMENT ID }}$ TECN COMMENT $2.4 \underset{-0.9}{ \pm 1.3}$ OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - - .

$2.11 \pm 0.12 \pm 0.14$		429	${ }^{1}$ ABLIKIM	130	BES3	$J / \psi \rightarrow \gamma \eta^{\prime}$
$2.5{ }_{-0.9}^{+1.2} \pm 0.5$			2 NAIK	09	CLEO	$J / \psi \rightarrow \gamma \eta^{\prime}$
<6	90		RITTENBERG	65	HBC	$2.7 K^{-} p$

${ }^{1}$ Using $\Gamma_{2} / \Gamma=(29.3 \pm 0.6) \%$ from PDG 12.
${ }^{2}$ Not independent of measured value of Γ_{22} / Γ_{1} from NAIK 09 .

$\Gamma\left(\pi^{+} \pi^{-} e^{+} e^{-}\right) / \Gamma\left(\rho^{0} \gamma\right.$ (including non-resonant $\left.\left.\pi^{+} \pi^{-} \gamma\right)\right) \quad \Gamma_{22} / \Gamma_{2}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{7 . 2} \pm \mathbf{0 . 4} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{429} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{130}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \gamma \eta^{\prime}}$

$\Gamma\left(\gamma e^{+} e^{-}\right) / \Gamma_{\text {total }}$
VALUE (units 10 0^{-3}) CL\% \quad DOCUMENT ID \quad TECN COMMENT
$\mathbf{2 4} / \Gamma$

<0.9	90	BRIERE	00	CLEO	$10.6 e^{+} e^{-}$	Γ_{24} / Γ_{7}
$\Gamma\left(\gamma e^{+} e^{-}\right) / \Gamma(\gamma \gamma)$						
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.13 \pm 0.09 \pm 0.07$	864	ABLIKIM	150	BES3	$J / \psi \rightarrow \gamma e^{+} e^{-}$	
$\Gamma\left(\pi^{\mathbf{0}} \boldsymbol{\gamma} \boldsymbol{\gamma}\right) / \Gamma_{\text {total }}$						Γ_{25} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.20 \pm 0.07 \pm 0.23$	3.4 k	ABLIKIM	17T	BES3	$J / \psi \rightarrow \gamma \eta^{\prime}$	

- - We do not use the following data for averages, fits, limits, etc. • •

| <23 | 90 | ALDE | 87B GAM2 $38 \pi^{-} p \rightarrow n 8 \gamma$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\Gamma}\left(e^{+} e^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | | | | $\boldsymbol{\Gamma}_{\mathbf{2 9}} / \boldsymbol{\Gamma}$ |
| VALUE | | | | |

$<5.6 \times 10^{-9} \quad 1 \quad 15 \quad 15 \quad$ ACHASOV $15 \quad 0.958 e^{+} e^{-} \rightarrow \pi \pi \eta$

- - We do not use the following data for averages, fits, limits, etc. - -
$<12 \times 10^{-9} \quad 90 \quad 2$ AKHMETSHIN 15 CMD3 $0.958 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \eta$ $<2.1 \times 10^{-7} \quad 90 \quad$ VOROBYEV $88 \mathrm{ND} \quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \eta$
${ }^{1}$ Combining data of ACHASOV 15 and AKHMETSHIN 15 and using $\Gamma\left(\eta^{\prime}\right)=0.198 \pm 0.009$ MeV.
${ }^{2}$ Using $\Gamma_{\eta^{\prime}(958)}=198 \pm 9 \mathrm{keV}, \mathrm{B}\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)=(42.9 \pm 0.7) \%$, and $\mathrm{B}(\eta \rightarrow$ $\gamma \gamma)=(39.41 \pm 0.20) \%$
Γ (invisibe) $/ \Gamma_{\text {total }}$
Γ_{30} / Γ
VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$\begin{array}{lllllll}<9.5 & 90 & 1 & \text { NAIK } \quad 09 & \text { CLEO } J / \psi \rightarrow \gamma \eta^{\prime}\end{array}$
${ }^{1}$ Not independent of measured value of Γ_{30} / Γ_{1} from NAIK 09.
$\Gamma($ invisible $) / \Gamma(\gamma \gamma)$
Γ_{30} / Γ_{7}
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { CL\% }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT - - We do not use the following dablikian $<6.69 \quad 90 \quad$ ABLIKIM 06Q BES $J / \psi \rightarrow \phi \eta^{\prime}$

$\Gamma($ invisible $) / \Gamma\left(\pi^{+} \pi^{-} \boldsymbol{\eta}\right)$			Γ_{30} / Γ_{1}	
VALUE (units 10^{-3})	CL\%	DOCUMENT ID	TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -				
<2.1	90	1 NAIK	CLE	$J / \psi \rightarrow \gamma \eta^{\prime}$
${ }^{1}$ NAIK 09 reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow\right.\right.$ invisible $\left.) / \Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta\right)\right] /[\mathrm{B}(\eta \rightarrow 2 \gamma)]$ $<5.4 \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=39.41 \times 10^{-2}$.				
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$				
VALUE (units 10^{-4})	CL\%	DOCUMENT ID	TECN	COMMENT
<0.18	90	${ }^{1}$ AAIJ	LHCB	$D_{(s)}^{+} \rightarrow \pi^{+}$

- - We do not use the following data for averages, fits, limits, etc. - -

<0.5	90	2 ABLIKIM	11G	BES3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
<29	90	${ }^{3} \mathrm{MORI}$	07A	BELL	$\gamma \gamma \rightarrow \pi^{+} \pi^{-}$
< 3.3	90	${ }^{4} \mathrm{MORI}$	07A	BELL	$\gamma \gamma \rightarrow \pi^{+} \pi^{-}$
<800	95	DANBURG	73	HBC	$2.2 \mathrm{~K}^{-} p \rightarrow \wedge X^{0}$
<200	90	RITTENBERG	69	HBC	1.7-2.7 $K^{-} p$

${ }^{1}$ Using branching fractions of $D_{(s)}^{+}$decays from PDG 15.
${ }^{2}$ ABLIKIM 11 G reports $\left[\mathrm{C}\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)\right]<$ 2.84×10^{-7} which we divide by our best value $\mathrm{B}\left(\mathrm{J} / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)=5.25 \times 10^{-3}$.
${ }^{3}$ Taking into account interference with the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$continuum.
${ }^{4}$ Without interference with the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$continuum.

$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{32} / Γ		
Value	$\underline{C L}$	DOCUMENT ID	TECN COMMENT				
<4×10-4	90	1 ABLIKIM	BES3	$J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$			
${ }^{1}$ ABLIKIM 11 G reports $\left[\Gamma\left(\eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)\right]<$ 2.84×10^{-7} which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta^{\prime}(958)\right)=5.25 \times 10^{-3}$.							
$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma\left(\pi^{0} \pi^{0} \eta\right)$			TECN	Γ_{32} / Γ_{4}			
VALUE (units 10^{-4})	CL\%	DOCUMENT ID		COMMENT			
<45	90	ALDE 87b	GAM2	$38 \pi^{-} p \rightarrow n 4 \gamma$			
$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$		DOCUMENT ID	$\underline{\text { TECN }}$ COMMENT $\quad \Gamma_{\mathbf{3 3}} / \boldsymbol{\Gamma}$				
VALUE (units 10^{-3})	CL\%						
< 1.4 90		BRIERE 00	CLEO $10.6 e^{+} e^{-}$limits, etc. ${ }^{\text {- }}$ -				
- - We do not use the following data for averages, fits, limits, etc. - -							
<13	90	RITTENBERG 65			HBC	$2.7 K^{-} p$	
$\Gamma\left(\eta e^{+} e^{-}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-3})	CL\%	DOCUMENT ID	TECN	COMMENT $\Gamma_{\mathbf{3 4}} / \boldsymbol{\Gamma}$			
<2.4	90	BRIERE 00	CLEO	$10.6 e^{+} e^{-}$			
- - We do not use the following data for averages, fits, limits, etc. - -							
<11	90	RITTENBERG 65	HBC	$2.7 K^{-} p$			
$\Gamma(3 \gamma) / \Gamma\left(\pi^{0} \pi^{0} \eta\right)$		DOCUMENT ID	TECN	COMMENT $\quad \Gamma_{\mathbf{3 5}} / \Gamma_{\mathbf{4}}$			
VALUE (units 10 ${ }^{-4}$)	CL\%						
<4.6	90	ALDE 87B	GAM2	$38 \pi^{-} p \rightarrow n 3 \gamma$			
$\Gamma\left(\mu^{+} \mu^{-} \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID	TECN	$\xrightarrow{\text { COMMENT }} \quad \Gamma_{\mathbf{3 6}} / \boldsymbol{\Gamma}$			
VALUE (units 10-5)	CL\%						
<6.0	90	DZHELYADIN 81	CNTR	$30 \pi^{-} p \rightarrow \eta^{\prime} n$			
$\Gamma\left(\mu^{+} \mu^{-} \boldsymbol{\eta}\right) / \Gamma_{\text {total }}$			TECN	COMMENT Γ_{37} / Γ			
VALUE (units 10 ${ }^{-5}$)	CL\%	DOCUMENT ID					
<1.5	90	DZHELYADIN 81	CNTR	$30 \pi^{-} p \rightarrow \eta^{\prime} n$			
$\Gamma(e \mu) / \Gamma_{\text {total }}$			TECN	Γ_{38} / Γ			
VALUE (units 10 ${ }^{-4}$)	CL\%	DOCUMENT ID		COMMENT			
<4.7	90	BRIERE 00	CLEO	$10.6 e^{+} e^{-}$			

$\eta^{\prime}(958) \rightarrow \eta \pi \pi$ DECAY PARAMETERS

\mid MATriX ELEMENT $\left.\right|^{2}=|1+\alpha Y|^{2}+C X+D X^{2}$

X and Y are Dalitz variables; α is complex and C, and D are real-valued. Parameters C and D are not necessarily equal to c and d, respectively, in the generalized parameterization following this one. May be different for $\eta^{\prime}(958) \rightarrow \eta \pi^{+} \pi^{-}$and $\eta^{\prime}(958) \rightarrow \eta \pi^{0} \pi^{0}$ decays. Because of different initial assumptions and strong correlations of the parameters we do not average the parameters in the section below.

$\operatorname{Re}(\alpha)$ decay parameter

VALUE	EVTS	DOCUMENT ID		TECN COMMENT	
- We do not use th	follow	data for average	, fits		
$-0.034 \pm 0.002 \pm 0.002$	351k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta$
$-0.054 \pm 0.004 \pm 0.001$	56k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta \pi$

Meson Particle Listings
$\eta^{\prime}(958)$

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.000 \pm 0.019 \pm 0.001$	351k	ABLIKIM 18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$
$0.000 \pm 0.038 \pm 0.002$	56k	ABLIKIM 18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$
$0.000 \pm 0.049 \pm 0.001$	44k	1 ABLIKIM 11	BES3	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
$0.0 \pm 0.1 \pm 0.0$	7k	2 AMELIN 05A	VES	$28 \underset{\eta \pi^{+} \pi^{-}}{ } \pi^{-} A^{*}$
$-0.00 \pm 0.13 \pm 0.00$	5.4k	${ }^{3}$ ALDE 86	GAM	$38 \pi^{-} p \rightarrow n \eta \pi^{0} \pi$
0.0 ± 0.3		3,4 KALBFLEISCH 74	RVUE	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$
${ }^{1}$ See ABLIKIM 11 for the full correlation matrix.				
${ }^{2}$ Superseded by DOROFEEV 07, which found this parameterization unacceptable. Se below.				
${ }^{3}$ Assuming $C=0$.				
${ }^{4}$ From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-				

C decay parameter
 VALUE EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

$0.0027 \pm 0.0024 \pm 0.0015$	351k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$
$0.018 \pm 0.009 \pm 0.003$	44k	${ }^{1}$ ABLIKIM	11	BES3	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
$0.020 \pm 0.018 \pm 0.004$	7k	2 AMELIN	05A	VES	$28 \pi^{\pi^{-} A} \pi^{+} \pi^{-} \pi^{-} A^{*}$

${ }^{1}$ See ABLIKIM 11 for the full correlation matrix.
${ }^{2}$ Superseded by DOROFEEV 07, which found this parameterization unacceptable. See below.

D decay parameter

- We do not use the fols $\frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT

$\eta^{\prime}(958) \rightarrow \eta \pi \pi$ DECAY PARAMETERS

\mid MATRIX ELEMENT $\left.\right|^{2} \propto 1+a Y+b Y^{2}+c X+d X^{2}$

X and Y are Dalitz variables and a, b, c, and d are real-valued parameters. May be different for $\eta^{\prime}(958) \rightarrow \eta \pi^{+} \pi^{-}$and $\eta^{\prime}(958) \rightarrow \eta \pi^{0} \pi^{0}$ decays. We do not average measurements in the section below because parameter values from each experiment are strongly correlated.

a decay parameter

VALUE DOCUMENT ID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

b decay parameter

VALUE C EVTS DOCUMENT ID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

$-0.049 \pm 0.006 \pm 0.006$	351 k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$	
$-0.073 \pm 0.014 \pm 0.005$	56 k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$	
$-0.063 \pm 0.014 \pm 0.005$	124 k	ADLARSON	18 A	A2MM $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$		
$-0.052 \pm 0.001 \pm 0.002$		1 GONZALEZ-S..18A	RVUE	$\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$		
$-0.069 \pm 0.019 \pm 0.009$	44 k	2 ABLIKIM	11	BES3	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$	
$-0.063 \pm 0.028 \pm 0.004$	$15 k$	3 BLIK	09	GAM4	$32.5 \pi^{-} p \rightarrow \eta^{\prime} n$	
$-0.106 \pm 0.028 \pm 0.014$	$20 k$	4	DOROFEEV	07	VES	$27 \pi^{-} p \rightarrow \eta^{\prime} n$,
					$\pi^{-} A \rightarrow \eta^{\prime} \pi^{-} A^{*}$	

1 Theoretical analysis of ADLARSON 18A using resonance chiral perturbation theory to one loop
${ }_{3}^{2}$ See ABLIKIM 11 for the full correlation matrix
${ }^{3}$ From $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ decay.
${ }^{4}$ From $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decay.

c decay parameter

VALUE EVTS
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

0.0027	$\pm 0.0024 \pm 0.0018$	351 k	ABLIKIM	18	BES3	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$
0.019	± 0.011	± 0.003	44 k	ABLIKIM	11	BES3
$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$						
-0.107	$\pm 0.096 \pm 0.003$	15 k	2 BLIK	09	GAM4	$32.5 \pi^{-} p \rightarrow \eta^{\prime} n$
0.015	$\pm 0.011 \pm 0.014$	20 k	3 DOROFEEV	07	VES	$27 \pi^{-} p \rightarrow \eta^{\prime} n$,

${ }_{2}^{1}$ See ABLIKIM 11 for the full correlation matrix.
${ }^{2}$ From $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ decay.
${ }^{3}$ From $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decay.

d decay parameter

$\eta^{\prime}(958) \beta$ PARAMETER

\mid MATRIX ELEMENT $\left.\right|^{2}=(1+2 \beta Z)$
See the "Note on η Decay Parameters" in our 1994 edition Physical Review D50 1173 (1994), p. 1454.
β decay parameter

VALUE	EVTS	DOCUMENT ID		TECN COMMENT	
-0.61 ± 0.08 OUR A	ERAGE	Error includes scale factor of 1.2.			
$-0.640 \pm 0.046 \pm 0.047$	1.8k	ABLIKIM	15 G	BES3	$J / \psi \rightarrow \gamma\left(\pi^{0} \pi^{0} \pi^{0}\right)$
-0.59 ± 0.18	235	BLIK	08	GAMS	$32 \pi^{-} p \rightarrow \eta^{\prime} n$
-0.1 ± 0.3		ALDE	87B	GAM2	$38 \pi^{-} p \rightarrow n 3 \pi^{0}$

$\eta^{\prime}(958)$ C-NONCONSERVING DECAY PARAMETER

See the note on η decay parameters in the Stable Particle Particle Listings for definition of this parameter.

DECAY ASYMMETRY PARAMETER FOR $\pi^{+} \pi^{-} \gamma$

$\boldsymbol{\eta}^{\prime}(958) \Rightarrow \boldsymbol{\gamma} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$TRANSITION FORM FACTOR SLOPE

Related to the effective virtual meson mass Λ, via slope $\approx \Lambda^{-2}$. See e.g. LANDSBERG 85, eq. (3.8), for a detailed definition.

VALUE $\left(\mathrm{GeV}^{-2}\right)$	EVTS	DOCUMENT ID	TECN	COMMENT
1.62 ± 0.17 OUR AVERAGE				
$1.60 \pm 0.17 \pm 0.08$	864	${ }^{1}$ ABLIKIM	150 BES3	$J / \psi \rightarrow \gamma e^{+} e^{-}$
1.7 ± 0.4	33	1 VIKTOROV	80	25,33 $\pi^{-} p \rightarrow 2 \mu \gamma$
${ }^{1}$ In the single-pole Ansatz where slope $=1 /\left(\Lambda^{2}+\gamma^{2}\right)$ with Λ, γ being a Breit-Wigner mass, width for the effective contributing vector meson.				

Meson Particle Listings
$f_{0}(980)$

${ }^{1}$ Analytic continuation using Roy equations. Uses the $K_{e 4}$ data of BATLEY 10C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.
${ }^{2}$ Quoted number refers to twice imaginary part of pole position.
${ }^{3}$ Analytic continuation using GKPY equations. Uses the $K_{e 4}$ data of BATLEY 10C and
the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.
${ }_{5}^{4}$ Pole position. Used Roy equations.
${ }^{5}$ Average of the analyses of three data sets in the K-matrix model. Uses the data of BATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.
${ }^{6}$ On sheet II in a 2-pole solution. The other pole is found on sheet III at ($850-100 i$ i MeV
${ }^{7}$ Using a relativistic Breit-Wigner function and taking into account the finite D_{S} mass.
${ }^{8}$ Breit-Wigner $\pi \pi$ width. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_{0}} K K / g_{f_{0} \pi \pi}=0$.
${ }^{9}$ Systematic errors not estimated.

10 to 100 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -

15.3 ± 4.7	424	ABLIKIM 15P	BES3	$J / \psi \rightarrow K^{+} K^{-} 3 \pi$
9.5 ± 1.1	706	ABLIKIM 12E	BES3	$J / \psi \rightarrow \gamma 3 \pi$
$\begin{array}{r}42 \\ \hline\end{array}$		1,2 GARCIA-MAR.. 11	RVUE	Compilation
$\begin{array}{r}50 \\ \hline-12\end{array}$		2,3 GARCIA-MAR.. 11	RVUE	Compilation
48 ± 22		4 MOUSSALLAM11	RVUE	Compilation

${ }^{10}$ Breit-Wigner $\pi \pi$ width. Using finite width corrections according to FLATTE 76 and ACHASOV 05, and the ratio $g_{f_{0} K K} / g_{f_{0} \pi \pi}=4.21 \pm 0.25 \pm 0.21$ from ABLIKIM 05 .
11 Breit-Wigner, solution 1, PWA ambiguous.
${ }^{12} \mathrm{~K}$-matrix pole from combined analysis of $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \pi^{-} p \rightarrow K \bar{K} n$, $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}, k_{S}^{0} K_{S}^{0} \pi^{0}$, $K^{+} K_{S}^{0} \pi^{-}$at rest, $\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{-}$at rest.
${ }^{13}$ Using the data of AKHMETSHIN 99c, ACHASOV 00H, and ALOISIO 02D.
${ }^{14}$ Breit-Wigner width.
${ }^{15}$ Supersedes ACHASOV 981. Using the model of ACHASOV 89
16 Supersedes ACHASOV 981.
17 In the "narrow resonance" approximation.
${ }^{18}$ From the combined fit of the photon spectra in the reactions $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$, $\pi^{0} \pi^{0} \gamma$.
${ }^{19}$ Supersedes BARBERIS 99 and BARBERIS 99b
${ }^{20} \mathrm{~T}$-matrix pole.
${ }^{21}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039-93i) MeV.
${ }_{23}^{22}$ From invariant mass fit.
${ }^{23}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV.
${ }^{24}$ Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
${ }^{25}$ At high $|t|$.
${ }^{26}$ At Iow $|t|$.
${ }^{27}$ On sheet II in a 4-pole solution, the other poles are found on sheet III at (953-55i) MeV and on sheet IV at (938-35i) MeV.
${ }^{28}$ Combined fit of ALDE 95B, ANISOVICH 94,
${ }^{29}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (996-103i) MeV. ${ }^{30}$ From sheet II pole position.
${ }^{31}$ On sheet II in a 2 pole solution. The other pole is found on sheet III at (797-185i) MeV and can be interpreted as a shadow pole.
${ }^{32} \mathrm{On}$ sheet II in a 2 pole solution. The other pole is found on sheet III at $(978-28 i) \mathrm{MeV}$.
${ }^{33}$ From coupled channel analysis.
34 Coupled channel analysis with finite width corrections.
${ }^{35}$ From coupled channel fit to the HYAMS 73 and PROTOPOPESCU 73 data. With a simultaneous fit to the $\pi \pi$ phase-shifts, inelasticity and to the $K_{S}^{0} K_{S}^{0}$ invariant mass.
${ }^{36}$ Included in AGUILAR-BENITEZ 78 fit.

$\Gamma\left(e^{+} e^{-}\right)$					
VALUE (eV)	CL\%	DOCUMENT ID		TECN	COMMENT
<8.4	90	VOROBYEV	88	ND	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0}$
$f_{0}(980)$ BRANCHING RATIOS					
$\Gamma(\pi \pi) /[\Gamma(\pi \pi)+\Gamma(K \bar{K})]$				$\Gamma_{1} /\left(\Gamma_{1}+\Gamma_{2}\right)$	
VALUE	EVTS	DOCUMENT ID		TECN COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
0.52 ± 0.12	9.9k	${ }^{1}$ AUBERT		BABR	$B^{ \pm} \rightarrow K^{ \pm} \pi^{ \pm} \pi$
$0.75{ }_{-0.13}^{+0.11}$		${ }^{2}$ ABLIKIM		BES2	$\chi_{C 0} \rightarrow 2 \pi^{+} 2 \pi^{-}$
0.84 ± 0.02		3^{3} ANISOVICH		SPEC	Combined fit
~ 0.68		OLLER		RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}$
0.67 ± 0.09		${ }^{4}$ LOVERRE		HBC	$4 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
$0.81-0.09$		${ }^{4}$ CASON		STRC	$7 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
0.78 ± 0.03		4 WETZEL		OSPK	$8.9 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
${ }^{1}$ Recalculated by us using $\Gamma\left(K^{+} K^{-}\right) / \Gamma\left(\pi^{+} \pi^{-}\right)=0.69 \pm 0.32$ from AUBERT 060 and isospin relations.					
${ }^{2}$ Using data from ABLIKIM 04G.					
${ }^{3}$ From a combined K-matrix analysis of Crystal Barrel ($0 . p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta$, $\left.\pi^{0} \pi^{0} \eta\right)$, GAMS $\left(\pi p \rightarrow \pi^{0} \pi^{0} n, \eta \eta n, \eta \eta^{\prime} n\right)$, and BNL $(\pi p \rightarrow K \bar{K} n)$ data.					
${ }^{4}$ Measure $\pi \pi$ elasticity assuming two resonances coupled to the $\pi \pi$ and $K \bar{K}$ channels only.					

$f_{0}(980)$ REFERENCES

MARSISKE	90	PR D41 3324	H. Marsiske et al.	(Crystal Ball Collab.)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
ACHASOV	89	NP B315 465	N.N. Achasov, V.N. Ivanchenko	
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	
VOROBYEV	88	SJNP 48273 Translated from	P.V. Vorobiev et al. 436.	(DM2 Collab.) (NOVO)
ABACHI	86B	PRL 571990	S. Abachi et al. (PUR)	(PURD, ANL, IND, MICH+)
ETKIN	82B	PR D25 1786	A. Etkin et al. (BNL	(BNL, CUNY, TUFTS, VAND)
GIDAL	81	PL 107B 153	G. Gidal et al. (SLAC, LBL)	
ACHASOV	80	Translated from YAF 32 1098.		
COHEN	80	PR D22 2595	D. Cohen et al.	(ANL) IJP
LOVERRE	80	ZPHY C6 187	P.F. Loverre et al.	(CERN, CDEF, MADR+) IJP
AGUILAR-...	78	NP B140 73	M. Aguilar-Benitez et al.	(MADR, BOMB+)
CASON	78	PRL 41271	N.M. Cason et al.	(NDAM, ANL)
LEEPER	77	PR D16 2054	R.J. Leeper et al.	
ROSSELET	77	PR D15 574	L. Rosselet et al.	(GEVA, SACL)
FLATTE	76	PL 63B 224	S.M. Flatte	(CERN)
WETZEL	76	NP B115 208	W. Wetzel et al.	(ETH, CERN, LOIC)
SRINIVASAN	75	PR D12 681	V. Srinivasan et al.	(NDAM, ANL)
GRAYER	74	NP B75 189	G. Grayer et al.	(CERN, MPIM)
BINNIE	73	PRL 311534	D.M. Binnie et al.	(LOIC, SHMP)
GRAYER	73	Tallahassee	G. Grayer et al.	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams et al.	(CERN, MPIM)
PROTOPOP...	73	PR D7 1279	S.D. Protopopescu et al.	(LBL)
$a_{0}(9$		${ }^{G}\left(J^{P C}\right)=1^{-}\left(0^{++}\right)$		
See the review on "Scalar Mesons below 2 GeV ."				

$a_{0}(980)$ MASS

VALUE (MeV)
$\mathbf{9 8 0} \pm \mathbf{2 0}$ OUR ESTIMATE Mass determination very model dependent
$\boldsymbol{\eta} \pi$ FINAL STATE ONLY

1 Using the model of ACHASOV 89 and ACHASOV 03B.
${ }^{2}$ From a fit with the S-wave amplitude including two interfering Breit-Wigners plus a background term.
${ }^{3}$ Parameterizes couplings to $\bar{K} K, \pi \eta$, and $\pi \eta^{\prime}$.
${ }^{4}$ Using AMSLER 94D and ABELE 98.
${ }^{5}$ From the T-matrix pole on sheet II.
${ }^{6}$ Using the model of ACHASOV 89. Supersedes ACHASOV 98B.
${ }^{7}$ Using the model of JAFFE 77. Supersedes ACHASOV 98B.
${ }^{8}$ T-matrix pole.
${ }^{9}$ Breit-Wigner fit, average between $a_{0}^{ \pm}$and a_{0}^{0}. The fit favors a slightly heavier $a_{0}^{ \pm}$
${ }^{10}$ From a single Breit-Wigner fit.
${ }^{11}$ From $f_{1}(1285)$ decay.
$K \bar{K}$ ONLY
VALUE (MeV) DOCUMENT ID TECN COMMENT

$947.7{ }_{-}^{+5.5} \pm 6.6$		${ }^{1}$ AAIJ	19 H	LHCB	$p p \rightarrow D^{ \pm} X$
$925 \pm 5 \pm 8$	190k	${ }^{2}$ AAIJ	16 N	LHCB	$D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
~ 1053		3 OLLER	99 C	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}$
982 ± 3		${ }^{4}$ ABELE	98	CBAR	$0.0 \bar{p} p \rightarrow K_{L}^{0} K^{ \pm} \pi^{\mp}$
975 ± 15		BERTIN	98B	OBLX	$0.0 \bar{p} p \rightarrow K^{ \pm} K_{S} \pi^{\mp}$
976 ± 6	316	DEBILLY	80	HBC	1.2-2 $\bar{p} p \rightarrow f_{1}(1285) \omega$
1016 ± 10	100	${ }^{5}$ ASTIER	67	HBC	$0.0 \bar{p} p$
1003.3 ± 7.0	143	6 ROSENFELD	65	RVUE	

${ }^{1}$ From the $D^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$Dalitz plot fit with the Triple-M amplitude in the multimeson model of AOUDE 18.
${ }_{2}$ Using a two-channel resonance parametrization with couplings fixed to ABELE 98.
3 T-matrix pole.
${ }^{4} \mathrm{~T}$-matrix pole on sheet II, the pole on sheet III is at $1006-\mathrm{i} 49 \mathrm{MeV}$.
${ }^{5}$ ASTIER 67 includes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.
${ }^{6}$ Plus systematic errors.

$a_{0}(980)$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{5 0} \text { to } 100 \text { OUR ESTIMATE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { CHG }} \frac{\text { COMMENT }}{\text { COM }}$
50 to 100 OUR ESTIMATE Width determination $\frac{\text { very model }}{}$ in $\eta \pi$ is about 60 MeV , but decay width can be much larger.

- - We do not use the following data for averages, fits, limits, etc.

${ }^{1}$ From a fit with the S-wave amplitude including two interfering Breit-Wigners plus a
background term.
From the T-matrix pole on sheet II, using AMSLER 94D and ABELE 98.
-matrix pole
${ }^{5}$ From a single Breit-Wigner fit.
${ }^{7}$ Using a two-channel resonance parametrization of GAY 76B data.

$\kappa \bar{K}$ ONLY

$\frac{\text { VALUE }(\mathrm{MeV})}{92 \text { 主 } \mathbf{8}} \frac{\text { EVTS }}{1} \quad \frac{\text { DOCUMENT ID }}{\text { ABELE }} \frac{\text { TECN }}{\text { CBAR }} \frac{\text { CHG }}{\frac{\text { COMMENT }}{0.0 \bar{p} p \rightarrow K_{L}^{0} K^{ \pm} \pi^{\mp}}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

~ 24		${ }^{2}$ OLLER	99C	RVUE		$\pi \pi \rightarrow \pi \pi, K \bar{K}$
~ 25	100	3 ASTIER	67	HBC	\pm	
57 ± 13	143	${ }^{4}$ ROSENFELD	65	RVUE	\pm	

${ }^{1}$ T-matrix pole on sheet II, the pole on sheet III is at $1006-\mathrm{i} 49 \mathrm{MeV}$.
${ }^{2}$ T-matrix pole.
${ }^{3}$ ASTIER 67 includes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.
${ }^{4}$ Plus systematic errors.

	$a_{0}(980)$ DECAY MODES	
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\eta \pi$	seen
Γ_{2}	$K \bar{K}$	seen
Γ_{3}	$\rho \pi$	not seen
Γ_{4}	$\gamma \gamma$	seen
Γ_{5}	$e^{+} e^{-}$	

${ }^{1}$ From a fit with the S-wave amplitude including two interfering Breit-Wigners plus a background term.

		DOCUMENT ID		TECN	COMMENT $\Gamma_{\mathbf{1}} \Gamma_{\mathbf{5}} / \boldsymbol{\Gamma}$	
<1.5	90	VOROBYEV	88	ND	$e^{+} e^{-} \rightarrow \pi^{0} \eta$	

$a_{0}(980)$ BRANCHING RATIOS

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.25 \quad 70 \quad$ AMMAR 70 HBC $\pm 4.1,5.5 K^{-} p \rightarrow 1 \eta 2 \pi$
${ }^{1}$ Coupled channel analysis of $\pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}$, and $K^{ \pm} K_{S}^{0} \pi^{\mp}$.
${ }^{2}$ Using $\pi^{0} \pi^{0} \eta$ from AMSLER 94D.
${ }^{3}$ From the decay of $f_{1}(1285)$.
${ }^{4}$ This is a ratio of couplings.
${ }^{5}$ A ratio of couplings, using AMSLER 94D and ABELE 98. Supersedes BUGG 94.
$a_{0}(980)$ REFERENCES

AAIJ	19H	JHEP 1904063	R. Aaij et al.	(LHCb Collab.)
AOUDE	18	PR D98 056021	R.T. Aoude et al.	
AAIJ	16N	PR D93 052018	R. Aaij et al.	(LHCb Collab.)
AMBROSINO	09F	PL B681 5	F. Ambrosino et al.	(KLOE Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sarantsev	
UEHARA	09A	PR D80 032001	S. Uehara et al.	(BELLE Collab.)
BUGG	08A	PR D78 074023	D.V. Bugg	(LOQM)
ACHASOV	03B	PR D68 014006	N.N. Achsaov, A.V. Kiselev	
BARGIOTTI	03	EPJ C26 371	M. Bargiotti et al.	(OBELIX Collab.)
ACHARD	02B	PL B526 269	P. Achard et al.	(L3 Collab.)
ACHASOV	00 F	PL B479 53	M.N. Achasov et al.	(Novosibirsk SND Collab.)
BARBERIS	00 H	PL B488 225	D. Barberis et al.	(WA 102 Collab.)
OLLER	99	PR D60 099906 () ل.A. Oller et al.	
OLLER	99B	NP A652 407 (err	J.A. Oller, E. Oset	
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset	
TEIGE	99	PR D59 012001	S. Teige et al.	(BNL E852 Collab.)
ABELE	98	PR D57 3860	A. Abele et al.	(Crystal Barrel Collab.)
ACHASOV	98B	PL B438 441	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AMSLER	98	RMP 701293	C. Amsler	
ANISOVICH	98B	SPU 41419 Translated from U	V.V. Anisovich et al. 481.	
BARBERIS	98C	PL B440 225	D. Barberis et al.	(WA 102 Collab.)
BERTIN	98B	PL B434 180	A. Bertin et al.	(OBELIX Collab.)
TORNQVIST	96	PRL 761575	N.A. Tornqvist, M. Roos	(HELS)
JANSSEN	95	PR D52 2690	G. Janssen et al.	(STON, ADLD, JULI)
AMSLER	94C	PL B327 425	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)

BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
AMSLER	92	PL B291 347	C. Amsler et al.	(Crystal Barrel Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
ACHASOV	89	NP B315 465	N.N. Achasov, V.N. Ivanchenko	
VOROBYEV	88	SJNP 48273 Translated from YAF 48	P.V. Vorobiev et al. 436.	(NOVO)
ANTREASYAN	86	PR D33 1847	D. Antreasyan et al.	(Crystal Ball Collab.)
ATKINSON	84E	PL 138B 459	M. Atkinson et al.	(BONN, CERN, GLAS+)
EVANGELIS...	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
DEBILLY	80	NP B176 1	L. de Billy et al.	(CURIN, LAUS, NEUC+)
GURTU	79	NP B151 181	A. Gurtu et al. (C	(CERN, ZEEM, NIJM, OXF)
CONFORTO	78	LNC 23419	B. Conforto et al.	(RHEL, TNTO, CHIC+)
CORDEN	78	NP B144 253	M.J. Corden et al.	(BIRM, RHEL, TELA+)
GRASSLER	77	NP B121 189	H. Grassler et al.	(AACH3, BERL, BONN+)
JAFFE	77	PR D15 267,281	R. Jaffe	(MIT)
FLATTE	76	PL 63B 224	S.M. Flatte	(CERN)
GAY	76B	PL 63B 220	J.B. Gay et al.	(CERN, AMST, NIJM) JP
WELLS	75	NP B101 333	J. Wells et al.	(OXF)
DEFOIX	72	NP B44 125	C. Defoix et al.	(CDEF, CERN)
AMMAR	70	PR D2 430	R. Ammar et al. (K	(KANS, NWES, ANL, WISC)
BARNES	69C	PRL 23610	V.E. Barnes et al.	(BNL, SYRA)
CAMPBELL	69	PRL 221204	J.H. Campbell et al.	(PURD)
MILLER	69B	PL 29B 255	D.H. Miller et al.	(PURD)
Also		PR 1882011	W.L. Yen et al.	(PURD)
AMMAR	68	PRL 211832	R. Ammar et al.	(NWES, ANL)
ASTIER	67	PL 25B 294	A. Astier et al.	(CDEF, CERN, IRAD)
Includes dat	ta	BARLOW 67, CONFORTO	67, and ARMENTEROS 65	
BARLOW	67	NC 50A 701	J. Barlow et al. (C	(CERN, CDEF, IRAD, LIVP)
CONFORTO	67	NP B3 469	G. Conforto et al.	(CERN, CDEF, IPNP+)
ARMENTEROS	65	PL 17344	R. Armenteros et al.	(CERN, CDEF)
ROSENFELD	65	Oxford Conf. 58	A.H. Rosenfeld	(LRL)

$\phi(1020)$

$\phi(1020) ~ M A S S$						
VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
1019.461 ± 0.016 OUR AVERAGE						
1019.463	± 0.061	2.3M	1 kozyrev	18	CMD3	$\underset{K_{S}^{+}}{e^{-}} \overrightarrow{K_{L}^{0}} K^{+} K^{-},$
1019.462	$\pm 0.042 \pm 0.056$	28k	${ }^{2}$ LEES	4H	BABR	$e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \gamma$
1019.51	$\pm 0.02 \pm 0.05$		${ }^{3}$ LEES	13Q	BABR	$e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
1019.30	$\pm 0.02 \pm 0.10$	105k	AKHMETSHIN		CMD2	$\stackrel{0.98-1.06}{\pi^{+} \pi^{-}}{\underset{\pi}{0}}_{+}^{e^{0}} e^{-} \rightarrow$
1019.52	$\pm 0.05 \pm 0.05$	17.4k	AKHMETSHIN		CMD2	$0.60-1.38 e^{+} e^{-} \rightarrow$
1019.483	$\pm 0.011 \pm 0.025$	272k	${ }^{4}$ AKHMETSHIN	04	CMD2	$e^{+}{ }^{\eta \gamma}{ }^{-} \rightarrow K_{L}^{0} K_{S}^{0}$
1019.42	± 0.05	1900k	${ }^{5}$ ACHASOV	01E	SND	$\begin{aligned} & e^{+} e^{-} \rightarrow K^{+}+K^{-} \\ & K_{S} K_{L}^{\prime}, \pi^{+} \pi^{-} \pi^{0} \end{aligned}$
1019.40	$\pm 0.04 \pm 0.05$	23k	AKHMETSHIN	018	CMD2	$e^{+} e^{-} \rightarrow \eta \gamma$
1019.36	± 0.12		${ }^{6}$ ACHASOV	00b	SND	$e^{+} e^{-} \rightarrow \eta \gamma$
1019.38	$\pm 0.07 \pm 0.08$	2200	${ }^{7}$ AKHMETSHIN		CMD2	$\underset{2 \gamma}{e^{+}}{ }_{2 \gamma}^{-} \rightarrow \pi^{+} \pi^{-} \geq$
1019.51	$\pm 0.07 \pm 0.10$	11169	AKHMETSHIN		CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1019.5	± 0.4		BARBERIS	98	OMEG	$\begin{aligned} & 450 p p \rightarrow \\ & p p 2 K^{+} 2 K^{-} \end{aligned}$
1019.42	± 0.06	55600	AKHMETSHIN		CMD2	$e^{+} e^{-} \rightarrow$ hadrons
1019.7	± 0.3	2012	DAVENPORT	86	MPSF	$400 \mathrm{pA} \rightarrow 4 \mathrm{KX}$
1019.7	$\pm 0.1 \pm 0.1$	5079	ALBRECHT	85D	ARG	$10 e^{+} e^{-} \rightarrow$
1019.3	± 0.1	1500	ARENTON	82	AEMS	11.8 polar. $p p \rightarrow$
1019.67	± 0.17	25080	${ }^{8}$ Pellinen	82	RVUE	
1019.52	± 0.13	3681	BUKIN	78 C	Olya	$e^{+} e^{-} \rightarrow$ hadrons
- - We do not use the following data for averages, fits, limits, etc. - -						
$1019.54 \pm 0.10 \pm 0.51$$1019.469 \pm 0.061$			${ }^{9}$ AAIJ	19 H	LHCB	$p p \rightarrow D^{ \pm} x$
		1.7M	KOZYREV	18	CMD3	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
1019.457 ± 0.061		610k	Kozyrev	16	CMD3	$e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0}$
1019.48 ± 0.01			LEES	13F	BABR	$\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$
$1019.441 \pm 0.008 \pm 0.080$		542k	${ }^{10}$ AKHMETSHIN		CMD2	$1.02{ }^{e^{+} e^{-}}$
$\begin{aligned} & 1019.63 \\ & 1019.8 \end{aligned}$	± 0.07	12540	11 AUBERT,B	05.	BABR	$\mathrm{D}^{0}{ }^{+}{ }^{+} \bar{K}^{0} K^{+} K^{-}$
	± 0.7		ARMSTRONG	86	OMEG	$\begin{array}{r} 85 \pi^{+} / p p \rightarrow \\ \pi^{+} / p 4 K p \end{array}$
1020.1	± 0.11	5526	${ }^{11}$ ATKINSON	86	OMEG	20-70 γp
1019.7	± 1.0		BEBEK	86	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
1019.411 ± 0.008		642k	${ }^{12}$ DIJKSTRA	86	SPEC	$\begin{gathered} 100-200 \pi^{ \pm}, \bar{p}, p \\ K^{ \pm}, \text {on } \mathrm{Be} \end{gathered}$
1020.9	± 0.2		11 frame	86	OMEG	$13 K^{+} p \rightarrow \phi K^{+} p$
1021.0	± 0.2		${ }^{11}$ ARMSTRONG		OMEG	$\begin{gathered} 18.5 K^{-} p \rightarrow \\ K^{-} K^{+}, \end{gathered}$
1020.0	± 0.5		${ }^{11}$ ARMSTRONG		OMEG	$\begin{aligned} & 18.5 K^{-} p \rightarrow \\ & K^{-} K^{+} \mathrm{C} \end{aligned}$
1019.7	± 0.3		${ }^{11}$ BARATE	83	GOLI	$190 \pi^{-} \mathrm{Be} \rightarrow 2 \mu \mathrm{X}$
1019.8	$\pm 0.2 \pm 0.5$	766	IVANOV	81	OLYA	$1-1.4 e^{+} e^{-} \rightarrow$
1019.4	± 0.5	337	COOPER	78B	HBC	$\begin{aligned} & 0.7-0.8 \overline{\bar{p}} p \rightarrow \\ & K_{S}^{0} K_{L}^{0} \pi^{+} \pi^{-} \end{aligned}$
1020	± 1	383	${ }^{11}$ BALDI	77	CNTR	$10 \pi^{-} p \rightarrow \pi^{-} \phi p$
1018.9	± 0.6	800	COHEN	77	ASPK	$\begin{aligned} & 6{ }_{K^{ \pm} N}^{ \pm} K^{-} N \end{aligned}$
1019.7	± 0.5	454	KALBFLEISCH		HBC	$2.18 K^{-} p \rightarrow \Lambda K \bar{K}$
1019.4	± 0.8	984	BESCH	74	CNTR	$2 \gamma p \rightarrow p K^{+} K^{-}$
1020.3	± 0.4	100	BALLAM	73	HBC	2.8-9.3 γp

Meson Particle Listings
$\phi(1020)$

CONSTRAINED FIT INFORMATION

An overall fit to 30 branching ratios uses 82 measurements and one constraint to determine 14 parameters. The overall fit has a $\chi^{2}=63.7$ for 69 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	-78										
x_{3}	-59	-4									
x_{6}	-23	19	6								
x_{7}	-15	14	4	10							
x_{9}	54	-52	-17	-38	-27						
x_{10}	-7	7	2	5	3	-13					
x_{12}	-3	3	1	2	2	-6	1				
x_{13}	-5	4	1	3	2	-8	1	1			
x_{17}	0	0	0	0	0	0	0	0	0		
x_{18}	-11	10	3	19	5	-20	2	1	2	0	
x_{19}	-1	1	0	1	0	-2	0	0	0	0	
x_{23}	0	0	0	0	0	0	0	0	0	0	
x_{25}	-8	6	2	33	3	-12	2	1	1	0	
	x_{1}	x_{2}	x_{3}	x_{6}	x_{7}	x_{9}	x_{10}	x_{12}	x_{13}	x_{17}	

x_{19}			
x_{23}			
x_{25}	0		
	0	0	
	x_{18}	x_{19}	x_{23}

$\phi(1020)$ PARTIAL WIDTHS

$\Gamma(\eta \gamma)$

[^109] $58.9 \pm 0.5 \pm 2.4 \quad$ ACHASOV 00 SND $e^{+} e^{-} \rightarrow \eta \gamma$
$3.8 \pm 0.7 \quad 454 \quad{ }^{6}$ BORENSTEIN 72 HBC $2.18 K^{-}{ }_{p} \rightarrow K K_{K}{ }^{\prime}$
${ }^{1}$ Average of KOZYREV 16 and KOZYREV 18 values taking into account the correlated uncertainties. Supersedes individual KOZYREV 16 and KOZYREV 18 results.
${ }^{2}$ Using a vector meson dominance model with contribution from $\phi(1020)$ and higher mass excitations of $\rho(770), \omega(782)$, and $\phi(1020)$.
${ }^{3}$ Using a phenomenological model based on KUHN 90 with a sum of Breit-Wigner resonances for $\rho(770), \omega(782), \phi(1020)$ and their higher mass excitations.
4 Update of AKHMETSHIN 99D
${ }^{5}$ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of $K^{+} K^{-}, K_{S} K_{L}, \pi^{+} \pi^{-} \pi^{0}$, and $\eta \gamma$ decays modes and using ACHASOV 00B for the $\eta \gamma$ decay mode.
${ }^{6}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{7}$ Strongly correlated with AKHMETSHIN 04.
${ }^{8}$ Systematic errors not evaluated.
$\phi(1020)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level	
Γ_{1}	$K^{+} K^{-}$	$(49.2$	± 0.5	$) \%$
Γ_{2}	$K_{L}^{0} K_{S}^{0}$	$(34.0$	± 0.4	$) \%$

$\Gamma\left(K_{L}^{0} K_{S}^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$

$\Gamma_{2} \Gamma_{9} / \Gamma$
$\frac{\text { VALUE (keV) }}{\mathbf{0 . 4 2 0 0} \pm \mathbf{0 . 0 0 3 3} \pm \mathbf{0 . 0 1 2 3}} \frac{\text { EVTS }}{28 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{14 \mathrm{H}}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \gamma}{}$
${ }^{1}$ Using a vector meson dominance model with contribution from $\phi(1020)$ and higher mass excitations of $\rho(770), \omega(782)$, and $\phi(1020)$.

$\Gamma\left(K_{L}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{2} / \Gamma \times \Gamma_{9} / \Gamma$ VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN COMMENT $\overline{\mathbf{1 0 . 1 0}} \mathbf{\pm 0 . 1 2}$ OUR FIT Error includes scale factor of 1.1.

10.07 ± 0.13 OUR AVERAGE

10.078 ± 0.223
$10.27 \pm 0.07 \pm 0.34 \quad 500 \mathrm{k} \quad{ }^{3}$ ACHASOV 01 E SND $e^{+} e^{-} \rightarrow K^{+} K^{-},{ }^{\prime}$
${ }^{1}$ KOZYREV 16 also reports $\Gamma\left(e^{+} e^{-}\right) \mathrm{B}\left(\phi \rightarrow K_{S}^{0} K_{L}^{0}\right)=(0.428 \pm 0.001 \pm 0.009) \mathrm{keV}$.
${ }^{2}$ Update of AKHMETSHIN 99D
${ }^{3}$ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of $K^{+} K^{-}, K_{S} K_{L}, \pi^{+} \pi^{-} \pi^{0}$, and $\eta \gamma$ decays modes and using ACHASOV 00B for the $\eta \gamma$ decay mode.
$\left[\Gamma(\rho \pi)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] / \Gamma_{\text {total }} \times \Gamma\left(\epsilon^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{3} / \Gamma \times \Gamma_{9} / \Gamma$
VALUE (Wints 10^{-5}) EVTS Doccunent id TECN CoMMENT
4.53 ± 0.10 OUR FIT Error includes scale factor of 1.1.
4.46 ± 0.12 OUR AVERAGE
$4.51 \pm 0.16 \pm 0.11 \quad 105 \mathrm{k} \quad$ AKHMETSHIN 06 CMD2 $0.98-1.06 e^{+} e^{-} \rightarrow$
$4.30 \pm 0.08 \pm 0.21 \quad$ AUBERT,B 04 N BABR $10.6{ }^{\pi^{+}} \pi^{+-} e^{-\frac{\pi^{0}}{}} \rightarrow$
$4.665 \pm 0.042 \pm 0.261 \quad 400 \mathrm{k} \quad{ }^{1}$ ACHASOV 01E SND $\begin{array}{r}e^{+} \underset{e^{-} \rightarrow K^{+}}{ } K^{-}, 0 \\ K_{S} K_{L}, \pi^{+} \pi^{-} \pi^{0}\end{array}$
$4.35 \pm 0.27 \pm 0.08 \quad 11169 \quad 2$ AKHMETSHIN 98 CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.38 \pm 0.12 \quad$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of $K^{+} K^{-}, K_{S} K_{L}, \pi^{+} \pi^{-} \pi^{0}$, and $\eta \gamma$ decays modes and using ACHASOV 00B for the $\eta \gamma$ decay mode.
${ }^{2}$ Recalculated by us from the cross section in the peak.

$\Gamma(\eta \gamma) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} \mathbf{e}^{-}\right) / \Gamma_{\text {total }}$

$\Gamma_{6} / \Gamma \times \Gamma_{9} / \Gamma$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT
$3.87 \pm \mathbf{0 . 0 7}$ OUR FIT Error includes scale factor of 1.2 .
$3.93 \mathbf{\pm 0 . 0 9}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. $4.050 \pm 0.067 \pm 0.118 \quad 33 \mathrm{k} \quad 1$ ACHASOV $\quad 07 \mathrm{~B}$ SND $\quad 0.6-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$4.093{ }_{-0.043}^{+0.040} \pm 0.247 \quad 17.4 \mathrm{k} \quad 2$ AKHMETSHIN 05 CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$3.850 \pm 0.041 \pm 0.159 \quad$ 23k $\quad 3,4$ AKHMETSHIN 01B CMD2 $e^{+} e^{-} \rightarrow \eta \gamma$
$4.00 \pm 0.04 \pm 0.11 \quad 5 \mathrm{ACHASOV} \quad 00 \quad$ SND $\quad e^{+} e^{-} \rightarrow \eta \gamma$
$3.53 \pm 0.08 \pm 0.17 \quad 2200 \quad 6,7$ AKHMETSHIN 99F CMD2 $e^{+} e^{-} \rightarrow \eta \gamma$

- - We do not use the following data for averages, fits, limits, etc. • • •
$4.19 \pm 0.06 \quad{ }^{8}$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ From a combined fit of $\sigma\left(e^{+} e^{-} \rightarrow \eta \gamma\right)$ with $\eta \rightarrow 3 \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$, and fixing $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right) / \mathrm{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=1.44 \pm 0.04$. Recalculated by us from the cross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.
${ }^{2}$ From the $\eta \rightarrow 2 \gamma$ decay and using $\mathrm{B}(\eta \rightarrow \gamma \gamma)=39.43 \pm 0.26 \%$.
${ }^{3}$ From the $\eta \rightarrow 3 \pi^{0}$ decay and using $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.24 \pm 0.29) \times 10^{-2}$.
${ }^{4}$ The combined fit from 600 to 1380 MeV taking into account $\rho(770), \omega(782), \phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).
${ }^{5}$ From the $\eta \rightarrow 2 \gamma$ decay and using $\mathrm{B}(\eta \rightarrow 2 \gamma)=(39.21 \pm 0.34) \times 10^{-2}$.
${ }^{6}$ Recalculated by the authors from the cross section in the peak.
${ }^{7}$ From the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay and using $\mathrm{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(23.1 \pm 0.5) \times 10^{-2}$.
${ }^{8} \mathrm{~A}$ simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.

3.93 ± 0.09 (Error scaled by 1.3)

Meson Particle Listings
$\phi(1020)$

$\Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{7} / \Gamma \times \Gamma_{9} / \Gamma$		
Value (units 100^{-7})	EVTS	Document id	TECN COMMENT				
3.88 ± 0.14 OUR FIT							
3.87 ± 0.15 OUR AVERAGE							
$4.04 \pm 0.09 \pm 0.19$		${ }^{1}$ AChasov 16a			SND	0.60-1.38	$e^{-} \rightarrow \pi^{0} \gamma$
$3.75 \pm 0.11 \pm 0.29$	18k	AKHMETSHIN 05	CMD2	0.60-1.38	$+e^{-} \rightarrow \pi^{0} \gamma$		
$3.67 \pm 0.10_{-0.25}^{+0.27}$		${ }^{2}$ ACHASOV 00	SND	$e^{+} e^{-} \rightarrow$			

- - We do not use the following data for averages, fits, limits, etc. - -
$4.29 \pm 0.11 \quad 3$ BENAYOUN 10 RVUE $0.4-1.05 e^{+} e^{-}$
${ }^{1}$ From the VMD model with the interfering $\rho(770), \omega(782), \phi(1020)$ resonances, and an additional resonance describing the total contribution of the $\rho(1450)$ and $\omega(1420)$ states. Supersedes ACHASOV 00.
${ }^{2}$ From the $\pi^{0} \rightarrow 2 \gamma$ decay and using $\mathrm{B}\left(\pi^{0} \rightarrow 2 \gamma\right)=(98.798 \pm 0.032) \times 10^{-2}$.
${ }^{3}$ A simultaneous fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma$ data.
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 0}} / \Gamma \times \Gamma_{\mathbf{9}} / \Gamma^{2}$

VALUE (units 10^{-8})
DOCUMENT ID TECN COMMENT
$8.5{ }_{-0.6}^{+0.5}$ OUR FIT
$8.8 \pm \mathbf{0 . 9}$ OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
$8.36 \pm 0.59 \pm 0.37 \quad$ ACHASOV 01G SND $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

9.9	± 1.4	± 0.9	1 ACHASOV	99C SND	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
14.4	± 3.0	2 VASSERMAN	81	OLYA	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

$8.6 \pm 5.9 \quad{ }^{2}$ AUGUSTIN 73 OSPK $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
${ }^{1}$ Recalculated by the authors from the cross section in the peak.
${ }^{2}$ Recalculated by us from the cross section in the peak.

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{12} / \Gamma \times \Gamma_{9} / \Gamma$ VALUE (units 10^{-8}) DOCUMENT ID TECN COMMENT
2.2 ± 0.4 OUR FIT
2.2 ± 0.4 OUR AVERAGE
$2.1 \pm 0.3 \pm 0.3 \quad 1$ ACHASOV 00 C SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$1.95_{-0.87}^{+1.15} \quad 2$ GOLUBEV $86 \mathrm{ND} \quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
$6.01{ }_{-2.51}^{+3.19} \quad{ }^{2}$ VASSERMAN 81 OLYA $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - - -
3.31 ± 0.99
${ }^{3}$ BENAYOUN 13 RVUE 0.4-1.05 $e^{+} e^{-}$
${ }^{1}$ Recalculated by the authors from the cross section in the peak.
${ }_{3}^{2}$ Recalculated by us from the cross section in the peak.
${ }^{3}$ A simultaneous fit to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \gamma, \eta \gamma, K \bar{K}$, and $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ data.

[^110]

$\phi(\mathbf{1 0 2 0})$ BRANCHING RATIOS

VALUE EVTS DOCUMENT ID TECN COMMENT
$\frac{V A L U E}{\mathbf{0 . 4 9 2} \pm \mathbf{0 . 0 0 5} \text { OUR FIT Error includes scale factor of }} \frac{\text { EVTS }}{\frac{\text { DOCUMENT ID }}{1.3} \text {. }}$

$0.493 \pm \mathbf{0 . 0 1 0}$ OUR AVERAGE

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.336 \pm 0.002 \pm 0.006 \quad 1$ AKHMETSHIN $11 \quad$ CMD2 $1.02 e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0}$

$0.27 \pm 0.03 \quad 133 \quad$ KALBFLEISCH $76 \quad \mathrm{HBC} \quad 2.18 K^{-} p \rightarrow \wedge K_{L}^{0} K_{S}^{0}$
$0.257 \pm 0.030 \quad 95 \quad{ }^{3}$ BALAKIN $\quad 71 \quad$ OSPK $\quad e^{+} e^{-} \rightarrow K_{L}^{0} K_{S}^{0}$
$0.40 \pm 0.04 \quad 167 \quad$ LINDSEY $66 \quad \mathrm{HBC} \quad 2.1-2.7 K^{-}{ }_{p} \rightarrow \Lambda K_{L}^{0} K_{S}^{0}$
${ }^{1}$ Combined analysis of the CMD-2 data on $\phi \rightarrow K^{+} K^{-}, K_{S}^{0} K_{L}^{0}, \pi^{+} \pi^{-} \pi^{0}, \eta \gamma$ assum-
ing that the sum of their branching fractions is 0.99741 ± 0.00007.
${ }^{2}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.93 \pm 0.14) \times 10^{-4}$.
${ }^{3}$ Balakin error increased by Paul.

${ }^{1}$ The prediction taking into account phase-space difference, radiative corrections, isospin breaking, and the Sommerfeld-Gamow-Sakharov factor gives 0.630 .
2 Theoretical analysis of BRAMON 00 taking into account phase-space difference, electromagnetic radiative corrections, as well as isospin breaking, predicts 0.62. FLOREZ-
BAEZ 08 predicts 0.63 considering also structure-dependent radiative corrections. FISCHBACH 02 calculates additional corrections caused by the close threshold and predicts 0.68. See also BENAYOUN 01 and DUBYNSKIY 07. BENAYOUN 12 obtains 0.71 ± 0.01 in the HLS model.
$\Gamma\left(K_{\mathcal{L}}^{0} K_{S}^{\mathbf{0}}\right) / \Gamma(\boldsymbol{K} \bar{K})$
VALUE DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2}} /\left(\Gamma_{\mathbf{1}}+\Gamma_{\mathbf{2}}\right)$
$\overline{\mathbf{0 . 4 0 8} \pm \mathbf{0 . 0 0 5} \text { OUR FIT }} \quad$ Error includes scale factor of 1.3.
0.45 ± 0.04 OUR AVERAGE

0.44 ± 0.07		1 LONDON	66	HBC	$2.24 K^{-} p \rightarrow \Lambda K \bar{K}$
0.48	52	BADIER	65 BBC	$3 K^{-} p$	
0.40 ± 0.10	34	SCHLEIN	63	HBC	$1.95 K^{-} p \rightarrow \Lambda K \bar{K}$

${ }^{1}$ This is probably not affected by their controversial background subtraction; the value is from their numbers of $K_{1} K_{2}$ vs $K^{+} K^{-}$events.
$\left[\Gamma(\rho \pi)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] / \Gamma_{\text {total }}$
「3/「 VALUE EVTS DOCUMENT ID TECN COMMENT
0.1524 ± 0.0033 OUR FIT Error includes scale factor of 1.2.
0.151 ± 0.009 OUR AVERAGE Error includes scale factor of 1.7.
$0.161 \pm 0.008 \quad 11761 \quad$ AKHMETSHIN 95 CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ $0.143 \pm 0.007 \quad$ DOLINSKY 91 ND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

 $\frac{\text { VALUE }}{\mathbf{0 . 3 1 0} \pm \mathbf{0 . 0 0 9} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.2 }} \frac{\text { DOCUMME } 1 D}{}$
$\mathbf{0 . 2 8} \mathbf{\pm 0 . 0 9} \quad 34 \quad$ AGUILAR-... $72 \mathrm{~B} \mathrm{HBC} \quad 3.9,4.6 K^{-} p$

$\left[\Gamma(\rho \pi)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] / \Gamma(K \bar{K})$				TECN	COMMENT	$\Gamma_{3} /\left(\Gamma_{1}+\Gamma_{2}\right)$
VALUE		DOCUMENT ID				
$\mathbf{0 . 1 8 3} \mathbf{\pm 0 . 0 0 5}$ OUR FIT Error includes scale factor of 1.2.						
0.24 ± 0.04	OUR AVERAGE					
0.237 ± 0.039		CERRADA	77B	HBC	$4.2 K^{-} p$	13π
0.30 ± 0.15		LONDON	66	HBC	2.24 $K^{-} p$	$\wedge \pi^{+} \pi^{-} \pi^{0}$

$\left[\Gamma(\rho \pi)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] / \Gamma\left(K_{L}^{0} K_{s}^{0}\right)$
Γ_{3} / Γ_{2}
VALUE COCUMENTID TECN COMMENT
$0.448 \pm \mathbf{0 . 0 1 1}$ OUR FIT Error includes scale factor of 1.1
0.51 ± 0.05 OUR AVERAGE

| 0.56 | ± 0.07 | 3681 | BUKIN | 78 C | OLYA | $e^{+} e^{-} \rightarrow K_{L}^{0} K_{S}^{0}, \pi^{+} \pi^{-} \pi^{0}$ |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| 0.47 | ± 0.06 | 516 | COSME | 74 | OSPK | $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ |

$\begin{aligned} & \boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \text { VALUE } \quad \text { DOCUMENT ID } \quad \text { TECN COMMENT }\end{aligned} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$\simeq 0.0087$		1.98 M	1,2 ALOISIO	03	KLOE	$1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
<0.0006	90		3 ACHASOV	02	SND	$1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
<0.23	90		3 CORDIER	80	DM1	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
<0.20	90		3 PARROUR	76 B	OSPK	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

${ }^{1}$ From a fit without limitations on charged and neutral ρ masses and widths.
${ }^{2}$ Adding the direct and $\omega \pi$ contributions and considering the interference between the $\rho \pi$ ${ }_{3}$ and $\pi^{+} \pi^{-} \pi^{0}$.

$\boldsymbol{\Gamma}(\boldsymbol{\eta} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units 10^{-2}) EVTS \quad DOCUMENT ID TECN COMMENT $\quad \boldsymbol{\Gamma}_{\mathbf{6} / \boldsymbol{\Gamma}}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 3 0 3} \pm \mathbf{0 . 0 2 5} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of } 1.2} \frac{\text { DOCUMENT }}{\text { TE }}$
1.26 ± 0.04 OUR AVERAGE

$1.246 \pm 0.025 \pm 0.057$	10k	${ }^{1}$ ACHASOV	98F	SND	$e^{+} e^{-} \rightarrow 7 \gamma$
1.18 ± 0.11	279	${ }^{2}$ AKHMETSHIN	95	CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \gamma$
1.30 ± 0.06		3 DRUZHININ	84	ND	$e^{+} e^{-} \rightarrow 3 \gamma$
1.4 ± 0.2		4 DRUZHININ	84	ND	$e^{+} e^{-} \rightarrow 6 \gamma$
0.88 ± 0.20	290	KURDADZE	83C	OLYA	$e^{+} e^{-} \rightarrow 3 \gamma$
1.35 ± 0.29		ANDREWS	77	CNTR	6.7-10 $\gamma \mathrm{Cu}$
1.5 ± 0.4	54	${ }^{3}$ COSME	76	OSPK	$e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.38 \pm 0.02 \pm 0.02 \quad 5$ AKHMETSHIN $11 \quad$ CMD2 $1.02 e^{+} e^{-} \rightarrow \eta \gamma$ $1.36 \pm 0.05 \pm 0.02 \quad 33 \mathrm{k} \quad 6$ ACHASOV $\quad 07 \mathrm{~B}$ SND $\quad 0.6-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$1.373 \pm 0.014 \pm 0.085 \quad 17.4 \mathrm{k} \quad 7,8$ AKHMETSHIN $05 \quad$ CMD2 $0.60-1.38 e^{+} e^{-} \rightarrow \eta \gamma$
$1.287 \pm 0.013 \pm 0.063 \quad 9,10$ AKHMETSHIN 01B CMD2 $e^{+} e^{-} \rightarrow \eta \gamma$
$1.338 \pm 0.012 \pm 0.052 \quad 11$ ACHASOV $00 \quad$ SND $\quad e^{+} e^{-} \rightarrow \eta \gamma$
$1.18 \pm 0.03 \pm 0.06 \quad 2200 \quad 12$ AKHMETSHIN 99F CMD2 $e^{+} e^{-} \rightarrow \eta \gamma$
$1.21 \pm 0.07 \quad 13$ BENAYOUN 96 RVUE $0.54-1.04 e^{+} e^{-} \rightarrow \eta \gamma$
${ }^{1} U \operatorname{sing} \mathrm{~B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$ and $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.2 \pm 0.4) \times 10^{-2}$.
${ }^{2}$ From $\pi^{+} \pi^{-} \pi^{0}$ decay mode of η.
${ }^{3}$ From 2γ decay mode of η.
${ }^{4}$ From $3 \pi^{0}$ decay mode of η.
${ }^{5}$ Combined analysis of the CMD-2 data on $\phi \rightarrow K^{+} K^{-}, K_{S}^{0} K_{L}^{0}, \pi^{+} \pi^{-} \pi^{0}, \eta \gamma$ assuming that the sum of their branching fractions is 0.99741 ± 0.00007.
${ }^{6}$ ACHASOV 07B reports $\left[\Gamma(\phi(1020) \rightarrow \eta \gamma) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow e^{+} e^{-}\right)\right]=$ $(4.050 \pm 0.067 \pm 0.118) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow e^{+} e^{-}\right)$ $=(2.973 \pm 0.034) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Supersedes ACHASOV 00D and ACHASOV 06A.
${ }^{7}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.98 \pm 0.04) \times 10^{-4}$ and $\mathrm{B}(\eta \rightarrow \gamma \gamma)=39.43 \pm 0.26 \%$.
${ }^{8}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma(\eta \gamma) / \Gamma_{\text {total }}^{2}$
${ }^{9}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$ and $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.24 \pm 0.29) \times 10^{-2}$.
10 The combined fit from 600 to 1380 MeV taking into account $\rho(770), \omega(782), \phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).
${ }^{11}$ From the $\eta \rightarrow 2 \gamma$ decay and using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$.
${ }^{12}$ From $\pi^{+} \pi^{-} \pi^{0}$ decay mode of η and using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$
${ }^{13}$ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account a triangle anomaly contribution.
$\Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{1.30 \pm 0.05 \text { OUR FIT }}$ EVTS
$\begin{array}{ll}1.30 \pm 0.05 & \text { OUR FIT } \\ 1.31 \pm 0.13 & \text { OUR AVERAGE }\end{array}$
$1.30 \pm 0.13 \quad$ DRUZHININ 84 ND $e^{+} e^{-} \rightarrow 3 \gamma$
$1.4 \pm 0.5 \quad 32 \quad$ COSME 76 OSPK $e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -
1.367 ± 0.072
1 ACHASOV 16A SND $0.60-1.38 e^{+} e^{-} \rightarrow \pi^{0} \gamma$ 18k 2,3 AKHMETSHIN 05 CMD2 0.60-1.38 $e^{+} e^{-} \rightarrow \pi^{0} \gamma$ $1.226 \pm 0.036_{-0.089}^{+0.096} \quad 4$ ACHASOV $00 \quad$ SND $\quad e^{+} e^{-} \rightarrow \pi^{0} \gamma$
$1.26 \pm 0.17 \quad{ }^{5}$ BENAYOUN 96 RVUE $0.54-1.04 e^{+} e^{-} \rightarrow \pi^{0} \gamma$
${ }^{1}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)$from PDG 15. Supersedes ACHASOV 00.
${ }^{2}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.98 \pm 0.04) \times 10^{-4}$.
${ }^{3}$ Not independent of the corresponding $\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }}^{2}$.
${ }^{4}$ From the $\pi^{0} \rightarrow 2 \gamma$ decay and using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$.
${ }^{5}$ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account a triangle anomaly contribution.
$\Gamma(\eta \gamma) / \Gamma\left(\pi^{0} \gamma\right)$

$10.9 \pm 0.3_{-0.8}^{+0.7} \quad$ ACHASOV $00 \quad$ SND $\quad e^{+} e^{-} \rightarrow \eta \gamma, \pi^{0} \gamma$
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{9} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 . 9 7 3} \pm \mathbf{0 . 0 3 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.3. }} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$
2.98 OUR AVERAGE Error includes scale factor of 1.1

${ }^{1}$ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of $K^{+} K^{-}, K_{S} K_{L}, \pi^{+} \pi^{-} \pi^{0}$, and $\eta \gamma$ decays modes and using ACHASOV 00B for the $\eta \gamma$ decay mode.
${ }^{2}$ Using total width 4.2 MeV . They detect 3π mode and observe significant interference with ω tail. This is accounted for in the result quoted above.

$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{2.86 \pm 0.19 \text { OUR FIT }}$
2.5 ± 0.4 OUR AVERAGE
2.69 ± 0.46
${ }^{1}$ HAYES $\quad 71$ CNTR $8.3,9.8 \gamma \mathrm{C} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$
$2.17 \pm 0.60 \quad{ }^{1}$ EARLES $\quad 70$ CNTR $6.0 \gamma \mathrm{C} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$
- - We do not use the following data for averages, fits, limits, etc. • - -
$2.87 \pm 0.20 \pm 0.14$ 2 ACHASOV
$\begin{array}{llll}2.87 \pm 0.20 \pm 0.14 & \text { ACHASOV 01G SND } & e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \\ 3.30 \pm 0.45 \pm 0.32 & \text { 3ACHASOV } & \text { 99C SND } & e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\end{array}$
$4.83 \pm 1.02 \quad 4$ VASSERMAN 81 OLYA $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$2.87 \pm 1.98 \quad{ }^{4}$ AUGUSTIN 73 OSPK $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
${ }^{1}$ Neglecting interference between resonance and continuum.
${ }^{2}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.91 \pm 0.07) \times 10^{-4}$.
${ }^{3}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$.
${ }^{4}$ Recalculated by us using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$.
$\Gamma\left(\eta e^{+} e^{-}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-4}) EVTS
$\overline{1.08} \mathbf{\pm 0 . 0 4}$ OUR AVERAGE
$1.075 \pm 0.007 \pm 0.038 \quad 30 \mathrm{k} \quad{ }^{1}$ BABUSCI $\quad 15 \mathrm{KLOE} 1.02 e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
$1.19 \pm 0.19 \pm 0.12 \quad 213 \quad{ }^{2}$ ACHASOV 01B SND $e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
$1.14 \pm 0.10 \pm 0.06 \quad 355 \quad{ }^{3}$ AKHMETSHIN 01 CMD2 $e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -
$1.13 \pm 0.14 \pm 0.07 \quad 183 \quad 4$ AKHMETSHIN $01 \quad$ CMD2 $\quad e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
$\begin{array}{rrrr}1.21 & \pm .14 & \pm 0.09 & 130 \\ 5 & \text { AKHMETSHIN 01 } & \text { CMD2 } & e^{+} e^{-} \rightarrow \eta e^{+} e^{-}\end{array}$
$1.04 \pm 0.20 \pm 0.08 \quad 42 \quad{ }^{6}$ AKHMETSHIN $01 \quad$ CMD2 $e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
$1.3 \begin{gathered}+0.8 \\ -0.6\end{gathered} 7 \quad$ GOLUBEV $85 \mathrm{ND} \quad e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$
${ }^{1}$ Using $\mathrm{B}\left(\eta \rightarrow 3 \pi^{0}\right)=(32.57 \pm 0.23) \%$ from PDG 12.
${ }^{2}$ Using $\mathrm{B}(\eta \rightarrow \gamma \gamma)=(39.25 \pm 0.32) \%, \mathrm{~B}(\phi \rightarrow \eta \gamma)=(1.26 \pm 0.06) \%$, and $\mathrm{B}(\phi \rightarrow$ $\left.e^{+} e^{-}\right)=(3.00 \pm 0.06) \times 10^{-4}$.
${ }^{3}$ The average of the branching ratios separately obtained from the $\eta \rightarrow \gamma \gamma, 3 \pi^{0}$, $\pi^{+} \pi^{-} \pi^{0}$ decays.
${ }^{4}$ From $\eta \rightarrow \gamma \gamma$ decays and using $\mathrm{B}(\eta \rightarrow \gamma \gamma)=(39.33 \pm 0.25) \times 10^{-2}, \mathbf{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)$ $=(4.75 \pm 11) \times 10^{-2}$, and $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.297 \pm 0.033) \times 10^{-2}$.
${ }^{5}$ From $\eta \rightarrow 3 \pi^{0}$ decays and using $\mathrm{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)=(98.798 \pm 0.033) \times 10^{-2}, \mathrm{~B}(\eta \rightarrow$
$\left.3 \pi^{0}\right)=(32.24 \pm 0.29) \times 10^{-2}, \mathrm{~B}\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)=(4.75 \pm 0.11) \times 10^{-2}$, and $\mathrm{B}(\phi \rightarrow$ $\eta \gamma)=(1.297 \pm 0.033) \times 10^{-2}$.
${ }^{6}$ From $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays and using $\mathrm{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)=(98.798 \pm 0.033) \times 10^{-2}$,
$\mathrm{B}\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right)=(1.198 \pm 0.032) \times 10^{-2}, \mathrm{~B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(23.0 \pm 0.4) \times 10^{-2}$,
$\mathrm{B}\left(\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(15.5 \pm 0.6) \times 10^{-2}$, and $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.297 \pm 0.033) \times 10^{-2}$.

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-4})		DOCUMENT ID		TECN $\frac{C O}{}$	COMMENT	Γ_{12} / Γ							
do dot use the following data for averages, fits, limits, etc. - .													
$0.71 \pm 0.11 \pm 0.09 \quad{ }^{1}$ ACHASOV Ooc SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$													
$0.65{ }_{-0.29}^{+0.38}$		golubev	86 N	ND e^{+}	$e^{+} e^{-}$								
${ }_{201}^{2.01+0.84}{ }_{-1.07}{ }^{1}$		1 Vasserman 81	81	OLYA e^{+}	${ }^{-}$								
<6.6	95	BUKINALVENSLEB788		OLYA e^{+}	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$$6.7 \gamma \mathrm{C} \rightarrow \mathrm{C}^{+} \pi^{-}$								
<2.7				CNTR 6.7									
${ }^{1}$ Using $\mathrm{B}\left(\phi \rightarrow e^{+} e^{-}\right)=(2.99 \pm 0.08) \times 10^{-4}$.													
$\Gamma\left(\omega \pi^{0}\right) / \Gamma_{\text {total }}$						Γ_{13} / Γ							
VALUE (units 10^{-5})	document id		TECN	COMment									
4.7 ± 0.5 OUR FIT													
$5.2{ }_{-1.1}^{1.3}$	1,2 AULCHENKO 00a SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$												
- . We do not use the following data for averages, fits, limits, etc. - . -													
- $\begin{array}{r}\text { 4.4 } \\ \sim \\ \sim\end{array}$	${ }^{3}$ ambrosino 086		Kloe $e^{+} e^{-}$		${ }^{-} \rightarrow \pi^{+} \pi$, $2 \pi^{0} \gamma$							
	${ }^{4}$ ACHASOV 00 E2,5AULCHENKOOOA				$\rightarrow \pi^{0} \pi$								
$5.5{ }_{-1.4}^{+1.6} \pm 0.3$			SND $e^{+} e^{-}$		$\rightarrow \pi^{+}$								
$4.8{ }_{-1.7}^{+1.9} \pm 0.8$	${ }^{4}$ ACHASOV 99		-		$\rightarrow \pi^{+}$								
${ }^{1}$ Using the 1996 and 1998 data. ${ }^{2}(2.3 \pm 0.3) \%$ correction for other decay modes of the $\omega(782)$ applied. ${ }^{3}$ Not independent of the corresponding $\Gamma\left(\omega \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}$ (total). ${ }^{4}$ Using the 1996 data. ${ }^{5}$ Using the 1998 data.													
$\Gamma(\omega \gamma) / \Gamma_{\text {total }}$			COMMENT		$\Gamma_{14 / 5}$								
$\frac{\text { VALUE }}{\langle 0.05} \frac{\text { CLO\% }}{84}$	DOCUMENT ID TECN												
	LINDSEY	66 HBC	2.1-2.7 $K^{-} p$		$p \rightarrow \Lambda \pi^{+} \pi^{-}$neutrals								
$\Gamma(\rho \gamma) / \Gamma_{\text {total }}$	document id				$\Gamma_{15 / \Gamma}$								
$\frac{\text { VALUE (units }}{10^{-4} \text {) }} \text { CL\% }$		ID TECN		омme									
<790	AKHMETSHIN 97C CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$												
<200 84	$\begin{array}{llll}\text { AKHMETSHIN } & \text { 97C } & \text { CMD2 } \\ \text { LINDSEY } & 66 & \text { HBC } & \end{array}$			2.1-2.7 $\mathrm{K}^{-} \rho \rightarrow \Lambda \pi^{+} \pi^{-}$neutrals									
${ }^{1}$ Supersedes AKHMETSHIN 97C.													
$\Gamma\left(\pi^{+} \pi^{-} \gamma\right) / \Gamma_{\text {total }}$		DOCuMENT ID			$\Gamma_{16 / 5}$								
VALUE (units 10^{-4})	CL\% EVTS			TECN	V сомmen								
$0.41 \pm 0.12 \pm 0.04 \quad 30175 \quad 1$ AKHMETSHIN 99B CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$ - - We do not use the following data for averages, fits, limits, etc. - -													
$\begin{aligned} & <0.3 \\ & <600 \end{aligned}$	9090	2^{2} AKHMETSHIN 97 C KALBFLEISCH 75		$\begin{array}{ll} 97 \mathrm{CMD2} \\ 75 & \mathrm{HBC} \end{array}$	$\begin{aligned} & e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma \\ & 2.18 K^{-} p \rightarrow \end{aligned}$								
< 70	90	COSMELINDSEY		74 OSPK	K e^{+}	γ							
<400	90			65 HBC		$p \rightarrow$							

${ }^{1}$ For $E_{\gamma}>20 \mathrm{MeV}$ and assuming that $\mathrm{B}\left(\phi(1020) \rightarrow f_{0}(980) \gamma\right)$ is negligible. Supersedes
AKHMETSHIN 97C.
${ }^{\text {AK }}$ For $E_{\gamma}>20 \mathrm{MeV}$ and assuming that $\mathrm{B}\left(\phi(1020) \rightarrow f_{0}(980) \gamma\right)$ is negligible.

$\Gamma\left(f_{0}(980) \gamma\right) / \Gamma_{\text {total }}$					Γ_{17} / Γ
VALUE (units 10^{-4})	CL\% EVTS	DOCUMENT ID	TECN	COMMENT	
3.22 ± 0.19 OUR FIT Error includes scale factor of 1.1.					
3.21 ± 0.19 OUR AVERAGE					
$3.21{ }_{-0.09}^{+0.03} \pm 0.18$		1 AMBROSINO 07	KLOE	$e^{+} e^{-} \rightarrow$	$\pi^{0} \pi^{0} \gamma$
$2.90 \pm 0.21 \pm 1.54$		2 AKHMETSHIN 99C	CMD2	$\begin{array}{r} e^{+} e^{-} \overrightarrow{\pi^{0}} \overrightarrow{\pi^{0}} \end{array}$	$\pi^{+} \pi^{-} \gamma$

$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
$4.47 \pm 0.21$$\quad 2438 \quad{ }^{2}$ ALOISIO \quad 02D KLOE $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$
$3.5 \pm 0.3 \pm 1.3 \quad 419 \quad 4,5 \mathrm{ACHASOV} \quad 00 \mathrm{H}$ SND $\quad e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$
$1.93 \pm 0.46 \pm 0.50 \quad 27188 \quad{ }^{6}$ AKHMETSHIN 99B CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
$3.05 \pm 0.25 \pm 0.72 \quad 268 \quad 7$ AKHMETSHIN 99C CMD2 $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$
1.5 ± 0.5
$268 \quad{ }^{8}$ AKHMETSHIN 99C CMD2 $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0}$
$3.42 \pm 0.30 \pm 0.36 \quad 164 \quad 4$ ACHASOV 98I SND $e^{+} e^{-} \rightarrow 5 \gamma$

<1	90	9	AKHMETSHIN 97C CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
<7	90	10	AKHMETSHIN 97C CMD2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
<20	90	DRUZHININ 87 ND	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$	

${ }^{1}$ Obtained by the authors taking into account the $\pi^{+} \pi^{-}$decay mode. Includes a component due to $\pi \pi$ production via the $f_{0}(500)$ meson. Supersedes ALOISIO 02D.
${ }^{2}$ From the combined fit of the photon spectra in the reactions $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$, $\pi^{0} \pi^{0} \gamma$.
${ }^{3}$ From the negative interference with the $f_{0}(500)$ meson of AITALA 01B using the ACHASOV 89 parameterization for the $f_{0}(980)$, a Breit-Wigner for the $f_{0}(500)$, and ACHASOV 01F for the $\rho \pi$ contribution. Superseded by AMBROSINO 07.
${ }^{4}$ Assuming that the $\pi^{0} \pi^{0} \gamma$ final state is completely determined by the $f_{0} \gamma$ mechanism, neglecting the decay $\mathrm{B}(\phi \rightarrow K \bar{K} \gamma)$ and using $\mathrm{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=2 \mathrm{~B}\left(f_{0} \rightarrow \pi^{0} \pi^{0}\right)$.
${ }^{5}$ Using the value $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.338 \pm 0.053) \times 10^{-2}$.
${ }^{6}$ For $E_{\gamma}>20 \mathrm{MeV}$. Supersedes AKHMETSHIN 97 C .
${ }^{7}$ Neglecting other intermediate mechanisms $(\rho \pi, \sigma \gamma)$.
${ }^{8} \mathrm{~A}$ narrow pole fit taking into account $f_{0}(980)$ and $f_{0}(1200)$ intermediate mechanisms.
${ }^{9}$ For destructive interference with the Bremsstrahlung process
${ }^{10}$ For constructive interference with the Bremsstrahlung process
or constructive interference with the Bremsstrahlung process
$\Gamma\left(f_{0}(980) \gamma\right) / \Gamma(\eta \gamma) \quad \Gamma_{17} / \Gamma_{6}$ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{2 . 4 7}=\mathbf{= 0 . 1 6} \mathbf{0 . 1 5}$ OUR FIT Error includes scale factor of 1.1.

1 Supersedes ALOISIO 02D.
${ }^{2}$ Using the value $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.338 \pm 0.053) \times 10^{-2}$.
${ }^{3}$ Supersedes ACHASOV 98I. Excluding $\omega \pi^{0}$.
$\Gamma\left(\pi^{0} \pi^{0} \gamma\right) / \Gamma(\eta \gamma)$
Γ_{18} / Γ_{6}
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{0 . 8 6} \pm \mathbf{0 . 0 4} \text { OUR FIT }}$ EVTS DOCUMENT ID \quad TECN COMMENT
$\mathbf{0 . 8 6 5} \pm \mathbf{0 . 0 7 0} \pm \mathbf{0 . 0 1 7} \quad 419 \quad 1$ ACHASOV 00 H SND $\quad e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.90 \pm 0.08 \pm 0.07 \quad 164 \quad$ ACHASOV 98। SND $e^{+} e^{-} \rightarrow 5 \gamma$
${ }^{1}$ Supersedes ACHASOV 98I. Excluding $\omega \pi^{0}$.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{19} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{6.5 \pm 2.7 \pm \mathbf{1 . 6}} \frac{C L \%}{6.8 \mathrm{k}} \quad \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { AKHMETSHIN } 17} \frac{\text { TECN }}{\text { CMD3 } 3} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$3.93 \pm 1.74 \pm 2.14 \quad 3.3 \mathrm{k} \quad$ AKHMETSHIN 00E CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ $<870 \quad 90 \quad$ CORDIER 79 WIRE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ ${ }^{1}$ Using the cross section at the ϕ meson peak $\sigma(\phi)=4172 \pm 42 \mathrm{nb}$, the nonresonant cross section $\sigma(0)=1.263 \pm 0.027 \mathrm{nb}$ and $\operatorname{Re}(Z)=0.146 \pm 0.030, \operatorname{lm}(Z)=-0.002 \pm 0.024$ for the complex amplitude of the $\phi \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$transition.
$\Gamma\left(\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{4 . 6}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AKHMETSHIN 00E }} \frac{\text { TECN }}{\text { CMD2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<150 \quad 95 \quad$ BARKOV $88 \mathrm{CMD} e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$
$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{21} / \Gamma$
VALUE (units 10-5) CL\% EVTS DOCUMENT ID TECN COMMENT

$1.33_{-0.10}^{+0.07}$ OUR AVERAGE

${ }^{1}$ Using $\mathrm{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)$ from the 2014 Edition of this Review (PDG 14).
${ }^{2}$ Using various branching ratios from the 2000 Edition of this Review (PDG 00).
${ }^{3}$ Using $\mathrm{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)=0.98798 \pm 0.00032, \mathrm{~B}(\phi \rightarrow \eta \gamma)=(1.297 \pm 0.033) \times 10^{-2}$, and $\mathrm{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)=(4.75 \pm 0.11) \times 10^{-2}$.

VALUE (units 10^{-5}) CL\% $\frac{\text { EVTS }}{\text { FIT }}$
DOCUMENT ID TECN COMMENT
7.6 ± 0.6 OUR FIT
$\mathbf{7 . 6} \pm 0.6$ OUR AVERAGE

7.4 ± 0.7		1	ALOISIO	02 C

- - We do not use the following data for averages, fits, limits, etc. - - -

$11 \quad \pm 2$
<500

${ }^{1}$ Using $M_{a_{0}}(980)=984.8 \mathrm{MeV}$ and assuming $a_{0}(980) \gamma$ dominance.
${ }^{2}$ Assuming $a_{0}(980) \gamma$ dominance in the $\eta \pi^{0} \gamma$ final state.
${ }^{3}$ Using data of ACHASOV 00F.

${ }^{1}$ Using results of ALOISIO 02D and assuming that $f_{0}(980)$ decays into $\pi \pi$ only and $a_{0}(980)$ into $\eta \pi$ only.

$\Gamma\left(K^{0} \bar{K}^{0} \gamma\right) / \Gamma_{\text {total }}$					Γ_{24} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<1.9 \times 10^{-8}$	90	AMBROSINO 09C	KLOE	$e^{+} e^{-} \rightarrow$	$K_{S}^{0} K_{S}^{0} \gamma$

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}^{\prime}(\mathbf{9 5 8}) \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{\left.\text { VALUE (units } 10^{-5}\right)}$ CL\% EVTS \quad DOCUMENT ID TECN COMMENT

6.22 ± 0.21 OUR FIT

$6.7 \underset{-2.4}{+2.8} \pm 0.8 \quad 12 \quad 2$ AULCHENKO 03B SND $e^{+} e^{-} \rightarrow \eta^{\prime} \gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }^{1}$ AMBROSINO 07A reports $\left[\Gamma\left(\phi(1020) \rightarrow \eta^{\prime}(958) \gamma\right) / \Gamma_{\text {total }}\right] /[\mathrm{B}(\phi(1020) \rightarrow \eta \gamma)]=$ $(4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$ which we multiply by our best value $\mathrm{B}(\phi(1020) \rightarrow \eta \gamma)=$ $(1.303 \pm 0.025) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Averaging AULCHENKO 03B with AULCHENKO 99.
${ }^{3}$ Using $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.297 \pm 0.033) \%$.
${ }^{4}$ Using the value $\mathrm{B}(\phi \rightarrow \eta \gamma)=(1.26 \pm 0.06) \times 10^{-2}$.
${ }^{5}$ Using $\mathrm{B}\left(\phi \rightarrow K_{L}^{0} K_{S}^{0}\right)=(33.8 \pm 0.6) \%$.
${ }^{6}$ Averaging AKHMETSHIN 00 B with AKHMETSHIN 00 F .
${ }^{7}$ Using the value $\mathrm{B}\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right)=(43.7 \pm 1.5) \times 10^{-2}$ and $\mathrm{B}(\eta \rightarrow \gamma \gamma)=(39.25 \pm$ $0.31) \times 10^{-2}$.

$\Gamma\left(\eta^{\prime}(958) \gamma\right) / \Gamma\left(K_{L}^{0} K_{S}^{0}\right)$				Γ_{25} / Γ_{2}
$\frac{V A L U E(u n i t s ~}{\left.10^{-4}\right)}$ EVTS	DOCUMENT ID	TECN	COMMENT	
1.83 ± 0.06 OUR FIT				
$1.46{ }_{-0.54}^{+0.64} \pm 0.18$	1 AKHMETSHI	CMD2	$\begin{gathered} e^{+} e_{2 \gamma}^{-} \rightarrow \end{gathered}$	$-$

${ }^{1}$ Using various branching ratios of $K_{S}^{0}, K_{L}^{0}, \eta, \eta^{\prime}$ from the 2000 edition (The European Physical Journal C15 1 (2000)) of this Review.
$\Gamma\left(\eta^{\prime}(958) \gamma\right) / \Gamma(\eta \gamma) \quad \Gamma_{25} / \Gamma_{6}$
$\frac{\left.\text { VALUE (units } 10^{-3}\right)}{\mathbf{4 . 7 7} \pm \mathbf{0 . 1 5} \text { OUR FIT }}$ EVTS DOCUMENT ID \quad TECN COMMENT
4.78 ± 0.20 OUR AVERAG
$4.77 \pm 0.09 \pm 0.19 \quad 3407 \quad$ AMBROSINO 07A KLOE $1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 7 \gamma$ $4.70 \pm 0.47 \pm 0.31 \quad 120 \quad{ }^{1}$ ALOISIO \quad 02E KLOE $1.02 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \gamma$ $6.5_{-1.5}^{+1.7} \pm 0.8 \quad 21 \quad$ AKHMETSHIN 00B CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \gamma$

- - We do not use the following data for averages, fits, limits, etc. - • -
$9.5 \underset{-4.0}{+5.2} \pm 1.4 \quad 6 \quad 2$ AKHMETSHIN 97B CMD2 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \gamma$
${ }^{1}$ From the decay mode $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}, \eta \rightarrow \gamma \gamma$.
${ }^{2}$ Superseded by AKHMETSHIN 00B.

$\Gamma(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \Gamma_{\text {total }}$					Γ_{28} / Γ
VALUE (units 10^{-4})	CL\%	DOCUMENT ID	TECN	COMMENT	
<1.2	90	AULCHENKO 08	CMD2	$\phi \rightarrow \pi^{+}$	
- - We do not use the following data for averages, fits, limits, etc. - -					
<5	90	AKHMETSHIN 98	CMD2	$e^{+} e^{-} \rightarrow$	$\gamma \gamma$

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units $\left.10^{-5}\right)$
DL\%
DOCUMENT ID
TECN
COMMENT

$<1.8 \quad \frac{1}{90}$ AKHMETSHIN OOE CMD2 $\frac{e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}}{\text { CM }}$

- - We do not use the following data for averages, fits, limits, etc. - • -

${ }^{1}$ For a narrow vector U with mass between 5 and 470 MeV , from the combined analysis of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ from ARCHILLI 12. Measured 90% CL limits as a function of m_{U} range from 2.2×10^{-8} to 10^{-6}.
Γ (invisible)/Г $\left.\Gamma^{+} \kappa^{+} \kappa^{-}\right)$

VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<3.4 \times 10^{-4}$	90	ABLIKIM	BES3		$+\pi^{-} \pi^{0}$

NIECKNIG 12 describes final-state interactions between the three pions in a dispersive framework using data on the $\pi \pi P$-wave scattering phase shift.

Meson Particle Listings
$\phi(1020), h_{1}(1170)$

PARAMETER β IN $\phi \Rightarrow P e^{+} e^{-}$DECAYS

In the one-pole approximation the electromagnetic transition form factor for $\phi \rightarrow P e^{+} e^{-}(P=\pi, \eta)$ is given as a function of the $e^{+} e^{-}$invariant mass squared, q^{2}, by the expression: $\left|F\left(q^{2}\right)\right|^{2}=\left(1-q^{2} / \Lambda^{2}\right)^{-2}$,
where vector meson dominance predicts parameter $\Lambda \approx 0.770 \mathrm{GeV}\left(\Lambda^{-2} \approx\right.$ $\left.1.687 \mathrm{GeV}^{-2}\right)$. The slope of this form factor, $\beta=\mathrm{d} F / \mathrm{d} q^{2}\left(q^{2}=0\right)$, equals Λ^{-2} in this approximation.
The measurements below obtain β in the one-pole approximation.
PARAMETER β IN $\phi \rightarrow \pi^{0} e^{+} e^{-}$DECAY
$\frac{\operatorname{VALUE}\left(\mathrm{GeV}^{-2}\right)}{\mathbf{2 . 0 2} \pm \mathbf{0 . 1 1}} \frac{\text { EVTS }}{9.5 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ANASTASI } 16 \mathrm{~B}} \frac{\text { COMMENT }}{\text { KLOE }} \frac{1.02 e^{+} e^{-} \rightarrow \pi^{0} e^{+} e^{-}}{}$

PARAMETER β IN $\phi \rightarrow \eta e^{+} e^{-}$DECAY				
1.29 ± 0.13 OUR AVERAGE				
$1.28 \pm 0.10_{-0.08}^{+0.09}$	30k	BABUSCI	15 KLOE	$1.02 e^{+}$
3.8 ± 1.8	213	${ }^{1}$ ACHASOV	01B SND	$1.02 e^{+} e$
${ }^{1}$ The uncertainty is statistical only. The systematic one is negligible, in comparison.				

$h_{1}(1170)$ REFERENCES				
ANDO	92	PL B291496	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+)
ATKINSON	84	NP B231 15	M. Atkinson et al.	(BONN, CERN, GLAS+)
DANKOWY...	81	PRL 46580	J.A. Dankowy et al.	(TNTO, BNL, CARL+)
BOWLER	75	NP B97 227	M.G. Bowler et al.	(OXFTP, DARE)
$b_{1}(1$			${ }^{G}\left(J^{P C}\right)$	$1^{+}\left(1^{+-}\right)$

$b_{1}(1235)$ MASS

b_{1} (1235) WIDTH

$b_{1}(1235)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
Γ_{1}	$\omega \pi$	seen	
Γ_{2}	$[D / S$ amplitude ratio $=0.277 \pm 0.027]$		
Γ_{3}	$\eta \rho$	$(1.6 \pm 0.4) \times 10^{-3}$	
Γ_{4}	$\pi^{+} \pi^{+} \pi^{-} \pi^{0}$	seen	
Γ_{5}	$K^{*}(892)^{ \pm} K^{\mp}$	<50	$\%$
Γ_{6}	$(K \bar{K})^{ \pm} \pi^{0}$	seen	
Γ_{7}	$K_{S}^{0} K_{L}^{0} \pi^{ \pm}$	<8	$\%$
Γ_{8}	$K_{S}^{0} K_{S}^{0} \pi^{ \pm}$	<6	$\%$
Γ_{9}	$\phi \pi$	<2	$\%$

$b_{1}(1235)$ PARTIAL WIDTHS
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{ \pm} \boldsymbol{\gamma}\right)$
$\frac{V A L U E(\mathrm{keV})}{\mathbf{2 3 0} \pm \mathbf{6 0}}$$\quad \frac{\text { DOCUMENT ID }}{\text { COLLICK } \quad 84} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { CHG }}{+} \frac{\Gamma_{\mathbf{2}}}{\substack{\text { COMMENT } \\ \mathrm{Z} \pi \omega}}$

$b_{1}(1235) D$-wave/ S-wave AMPLITUDE RATIO
 IN DECAY OF $b_{1}(1235) \rightarrow \omega \pi$

VALUE	EVTS	DOCUMENT ID		TECN	CHG COMMENT	
0.277 ± 0.027 OUR A	ERAGE	Error includes scale factor of 2.4. See the ideogram below.				
$0.269 \pm 0.009 \pm 0.010$		NOZAR	02	MPS	-	$18 \pi^{-} p \rightarrow \omega \pi^{-} p$
0.23 ± 0.03		AMSLER	94C	CBAR		$0.0 \bar{p} p \rightarrow \omega \eta \pi^{0}$
0.45 ± 0.04		AMSLER	93B	CBAR		$0.0 \bar{p} p \rightarrow \omega \pi^{0} \pi^{0}$
0.235 ± 0.047		ATKINSON	84C	OMEG		20-70 γp
$\begin{array}{ll}0.4 & +0.1 \\ -0.1\end{array}$		GESSAROLI	77	HBC	-	$11 \pi^{-} p \rightarrow \pi^{-} \omega p$
0.21 ± 0.08		CHUNG	75B	HBC	+	$7.1 \pi^{+} p$
0.3 ± 0.1		CHALOUPKA	74	HBC	-	3.9-7.5 $\pi^{-} p$
0.35 ± 0.25	600	KARSHON	74B	HBC	+	$4.9 \pi^{+} p$

b_{1} (1235) D-wave/ S-wave AMPLITUDE PHASE DIFFERENCE IN DECAY OF $b_{1}(1235) \rightarrow \omega \pi$

VALUE $\left({ }^{\circ}\right)$ DOCUMENT ID TECN CHG COMMENT
$\mathbf{1 0 . 5} \pm \mathbf{2 . 4} \pm \mathbf{3 . 9} \quad$ NOZAR $02 \mathrm{MPS}-18 \pi^{-} p \rightarrow \omega \pi^{-} p$

Meson Particle Listings
$b_{1}(1235), a_{1}(1260)$

$b_{1}(1235)$ REFERENCES

ABLIKIM	10E	PL B693 88	M. Ablikim et al.	(BES II Collab.)
NOZAR	02	PL B541 35	M. Nozar et al.	
VIKTOROV	96	PAN 591184 Translated from YAF 59	V.A. Viktorov et al. $1239 .$	(SERP)
AMSLER	94C	PL B327 425	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	93B	PL B311 362	C. Amsler et al.	(Crystal Barrel Collab.)
WEIDENAUER	93	ZPHY C59 387	P. Weidenauer et al.	(ASTERIX Collab.)
ALDE	92 C	ZPHY C54 553	D.M. Alde et al.	(BELG, SERP, KEK, LANL+)
FUKUI	91	PL B257 241	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
ATKINSON	84C	NP B243 1	M. Atkinson et al.	(BONN, CERN, GLAS+) JP
ATKINSON	84D	NP B242 269	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	84 E	PL 138B 459	M. Atkinson et al.	(BONN, CERN, GLAS+)
COLLICK	84	PRL 532374	B. Collick et al.	(MINN, ROCH, FNAL)
EVANGELIS...	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
BaLTAY	78B	PR D17 62	C. Baltay et al.	(COLU, BING)
GESSAROLI	77	NP B126 382	R. Gessaroli et al.	(BGNA, FIRZ, GENO+) JP
FLATTE	76C	PL 64B 225	S.M. Flatte et al.	(CERN, AMST, NIJM+) JP
CHUNG	75B	PR D11 2426	S.U. Chung et al.	(BNL, LBL, UCSC) JP
CHALOUPKA	74	PL 51B 407	V. Chaloupka et al.	(CERN) JP
KARSHON	74B	PR D10 3608	U. Karshon et al.	(REHO) JP
BIZZARRI	69	NP B14 169	R. Bizzarri et al.	(CERN, CDEF)
BALTAY	67	PRL 1893	C. Baltay et al.	(COLU)
DAHL	67	PR 1631377	O.I. Dahl et al.	(LRL)
ABOLINS	63	PRL 11381	M.A. Abolins et al.	(UCSD)

$a_{1}(1260)$

$$
I^{G}(J P C)=1^{-}\left(1^{++}\right)
$$

See also our review under the $a_{1}(1260)$ in PDG 06, Journal of Physics G33 1 (2006).

$a_{1}(1260)$ MASS

Value (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1230 ± 40	OUR ESTIMATE				
$\begin{array}{ll} 1299 & +12 \\ \hline \end{array}$	46M	${ }^{1}$ AGHASYAN	18B	COMP	$190 \pi^{-} p \rightarrow$

- - We do not use the following data for averages, fits, limits, etc. - . .

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1}$ Statistical error negligible.
${ }^{2}$ From the pole position. Using an amplitude analysis based on approximate three-body unitary of τ data from SCHAEL 05C.
${ }^{3}$ Superseded by AGHASYAN 2018B.
${ }^{4}$ The $\rho^{ \pm} \pi^{\mp}$ state can be also due to the $\pi(1300)$.
${ }^{5}$ Using the Breit-Wigner parameterization; strong correlation between mass and width.
${ }^{6}$ Using the data of BARATE 98R.
${ }^{7}$ From a fit of the $K^{-} K^{* 0}$ distribution assuming $m_{a_{1}}=1230 \mathrm{MeV}$ and purely resonant production of the $K^{-} K^{* 0}$ system.
${ }^{8}$ From a fit to the 3π mass spectrum including the $K \bar{K}^{*}$ (892) threshold.
${ }^{9}$ Using the $a_{1}(1260)$ mass of 1230 MeV .
${ }^{10}$ From AKHMETSHIN 99 E and ASNER 00 data using the $a_{1}(1260)$ mass of 1230 MeV .
${ }^{11}$ Uses the model of KUHN 90
12 Uses the model of ISGUR 89.
${ }^{13}$ Includes the effect of a possible a_{1}^{\prime} state.
14 Uses the model of FEINDT 90.
${ }^{15}$ Supersedes AKERS 95P.
${ }^{16}$ Average and spread of values using 2 variants of the model of BOWLER 75.
17 Reanalysis of RUCKSTUHL 86.
${ }^{18}$ Reanalysis of SCHMIDKE 86.
${ }^{19}$ Reanalysis of ALBRECHT 86B.
${ }^{20}$ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.
${ }^{21}$ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.
${ }^{22}$ Uses the model of BOWLER 75.
${ }^{2}$ Produced in K^{-}backward scattering.

$a_{1}(1260)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	
Γ_{1}	3π	seen
Γ_{2}	$(\rho \pi)_{S \text {-wave }}, \quad \rho \rightarrow \pi \pi$	seen
Γ_{3}	$(\rho \pi)_{D-\text { wave }}, \rho \rightarrow \pi \pi$	seen
Γ_{4}	$(\rho(1450) \pi)_{S \text {-wave }}, \rho \rightarrow \pi \pi$	seen
Γ_{5}	$(\rho(1450) \pi)_{D-w a v e}, \rho \rightarrow \pi \pi$	seen
Γ_{6}	$f_{0}(500) \pi, \quad f_{0} \rightarrow \pi \pi$	seen
Γ_{7}	$f_{0}(980) \pi, f_{0} \rightarrow \pi \pi$	not seen
Γ_{8}	$f_{0}(1370) \pi, f_{0} \rightarrow \pi \pi$	seen
Γ_{9}	$f_{2}(1270) \pi, f_{2} \rightarrow \pi \pi$	seen
Γ_{10}	$\pi^{+} \pi^{-} \pi^{0}$	seen
Γ_{11}	$\pi^{0} \pi^{0} \pi^{0}$	not seen
Γ_{12}	$K K \pi$	seen
Γ_{13}	$K^{*}(892) K$	seen
Γ_{14}	$\pi \gamma$	seen

$a_{1}(\mathbf{1 2 6 0})$ PARTIAL WIDTHS

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $a_{1}(1260) \rightarrow \rho \pi$

VALUE	DOCUMENT ID		TECN	COMMENT
$=0.062$ 主 0.020 OUR AVERAGE below.				
$-0.043 \pm 0.009 \pm 0.005$	LINK	07A	FOCS	$D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$
$-0.14 \pm 0.04 \pm 0.07$	${ }^{1}$ CHUNG	02	B852	$18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
$-0.10 \pm 0.02 \pm 0.02$	2,3 ACKERSTAFF	97R	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94, \tau \rightarrow 3 \pi \nu$
-0.11 ± 0.02	2 ALBRECHT	93C	ARG	$\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu$

Meson Particle Listings
$a_{1}(1260), f_{2}(1270)$

- - We do not use the following data for averages, fits, limits, etc. - -

196	± 10	3k	APEL	82	CNTR	$25 \pi^{-} p \rightarrow n 2 \pi^{0}$
152	± 9		${ }^{7}$ CASON	82	STRC	$8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
186	± 27	11600	GIDAL	81	MRK2	J / ψ decay
216	± 13		${ }^{8}$ Corden	79	OMEG	$12-15 \pi^{-} p \rightarrow n 2 \pi$
190	± 10	10k	APEL	75	NICE	$40 \pi^{-} p \rightarrow n 2 \pi^{0}$
192	± 16	4600	ENGLER	74	DBC	$6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p$
183	± 15	5300	FLATTE	71	HBC	$7 \pi^{+} p \rightarrow \Delta^{++} f_{2}$
196	± 30		${ }^{4}$ STUNTEBECK	70	HBC	$8 \pi^{-} p, 5.4 \pi^{+}{ }_{d}$
216	± 20	1960	${ }^{4}$ ARMENISE	68	DBC	$5.1 \pi^{+} n \rightarrow p \pi^{+} \mathrm{MM}^{-}$
128	± 27		${ }^{4}$ BOESEBECK	68	HBC	$8 \pi^{+} p$
176	± 21		4,9 JOHNSON	68	HBC	3.7-4.2 $\pi^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -						
194	± 36		${ }^{10}$ ANISOVICH	09	RVUE	$0.0 \bar{p} p, \pi N$
195	± 15	870	11 SCHEGELSKY	06A	RVUE	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
121	± 26		TIKHOMIROV	03	SPEC	$40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X}$
187	± 20		${ }^{12}$ ALDE	97	GAM2	$450 p p \rightarrow p p \pi^{0} \pi^{0}$
184	± 10		12 GRYGOREV	96	SPEC	$40 \pi^{-} N \rightarrow K_{S}^{0} K_{S}^{0} \mathrm{X}$
200	± 10		AKER	91	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}$
240	± 40	3k	BINON	83	GAM2	$38 \pi^{-} p \rightarrow n 2 \eta$
187	± 30	650	${ }^{4}$ ANTIPOV	77	CIBS	$25 \pi^{-} p \rightarrow p 3 \pi$
225	± 38	16000	DEUTSCH...	76	HBC	$16 \pi^{+} p$
166	± 28	600	4 TAKAHASHI	72	HBC	$8 \pi^{-} p \rightarrow n 2 \pi$
	± 53		${ }^{4}$ ARMENISE	70	HBC	$9 \pi^{+} n \rightarrow p \pi^{+} \pi^{-}$

${ }^{1}$ Averaged over six nuclear targets, no statistically significant dependence on target nucleus observed.
${ }^{2}$ Breit-Wigner width
${ }^{3}$ T-matrix pole.
${ }^{4}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the K^{*} (892) mass.
${ }^{5}$ From a partial-wave analysis of data using a K -matrix formalism with 5 poles.
${ }^{6}$ From an energy-independent partial-wave analysis.
${ }^{7}$ From an amplitude analysis of the reaction $\pi^{+} \pi^{-} \rightarrow 2 \pi^{0}$.
${ }^{8}$ From an amplitude analysis of $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$scattering data.
9 JOHNSON 68 includes BONDAR 63, LEE 64, DERADO 65, EISNER 67.
${ }^{4}$-poles, 5 -channel K matrix fit.
${ }^{11}$ From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$.
${ }^{12}$ Systematic uncertainties not estimated.

$f_{2}(1270)$ width (MeV)

	$f_{\mathbf{2}}(\mathbf{1 2 7 0)}$ DECAY MODES		
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level
Γ_{1}	$\pi \pi$	$\left(84.2{ }_{-0.9}^{+2.9}\right) \%$	$\mathrm{~S}=1.1$
Γ_{2}	$\pi^{+} \pi^{-} 2 \pi^{0}$	$\left(7.7_{-3.2}^{+1.1}\right) \%$	$\mathrm{~S}=1.2$
Γ_{3}	$K \bar{K}$	$\left(4.6{ }_{-0.4}^{+0.5}\right) \%$	$\mathrm{~S}=2.7$
Γ_{4}	$2 \pi^{+} 2 \pi^{-}$	$(2.8 \pm 0.4) \%$	$\mathrm{~S}=1.2$

Meson Particle Listings
f_{2} (1270)

$\Gamma(\eta \eta) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					$\Gamma_{5} \Gamma_{7} / \Gamma$
$\operatorname{VALUE}(\mathrm{eV})$	DOCUMENT		TECN	COMMENT	
$11.5 \pm 1.8+4.5$	1 UEHARA	10A	BELL	$10.6 e^{+} e^{-}$	$e^{-} \eta \eta$

1 Including interference with the $f_{2}^{\prime}(1525)$ (parameters fixed to the values from the 2008 edition of this review, PDG 08) and $f_{0}(\mathrm{Y})$.

π						
VALUE (units 10^{-2}) DOCUMENT ID TECN COMM						
$3.7 \pm 0.3+\mathbf{1 5 . 9}$- . - We do not	UEHARA 08A BELL $\begin{aligned} & 10.6 e^{+} e^{-} \overrightarrow{e^{+}} e^{-} \pi^{0} \pi^{0}\end{aligned}$					
	- - We do not use the following data for averages, fits, limits, etc. - -					
9.5 ± 1.8	${ }^{1}$ DAI $\quad 14 \mathrm{~A}$ RVUE Compilation 2,3 PENNINGTON 08 RVUE Compilation 3,4 PENNINGTON 08 RVUE Compilation					
13						
26						
${ }^{1}$ Based on a K-matrix analysis of BELLE data from MORI 07, UEHARA 08 A , UEHARA 09 and UEHARA 13. The width is derived for the pole on the third sheet which is closest to the physical axis.						
${ }^{2}$ Solution A (preferred solution based on χ^{2}-analysis).						
${ }^{3}$ Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92, and MORI 07. ${ }^{4}$ Solution B (worse than solution A; still acceptable when systematic uncertainties are included).						

$f_{2}(1270)$ REFERENCES

$f_{1}(1285)$ MASS

Meson Particle Listings
$f_{1}(1285)$

$f_{1}(1285)$ WIDTH
Only experiments giving width error less than 20 MeV are kept for averaging.

$f_{1}(1285)$ DECAY MODES

	Mode	Fraction (Γ_{i} / Γ)	Scale factor/ Confidence level
Γ_{1}	4π	$(32.7 \pm 1.9) \%$	$\mathrm{S}=1.2$
Γ_{2}	$\pi^{0} \pi^{0} \pi^{+} \pi^{-}$	$(21.8 \pm 1.3) \%$	$\mathrm{S}=1.2$
$\Gamma 3$	$2 \pi^{+} 2 \pi^{-}$	$(10.9 \pm 0.6) \%$	$\mathrm{S}=1.2$
Γ_{4}	$\rho^{0} \pi^{+} \pi^{-}$	$(10.9 \pm 0.6) \%$	$\mathrm{S}=1.2$
Γ_{5}	$\rho^{0} \rho^{0}$	seen	
Γ_{6}	$4 \pi^{0}$	$<7 \times 10^{-4}$	CL=90\%
Γ_{7}	$\eta \pi^{+} \pi^{-}$	(35 ± 15) \%	
Γ_{8}	$\eta \pi \pi$	(52.2土 2.0) \%	$\mathrm{S}=1.2$
Γ_{9}	$\begin{aligned} & a_{0}(980) \pi \text { [ignoring } a_{0}(980) \rightarrow \\ & K \bar{K}] \end{aligned}$	(38 $\pm 4) \%$	
Γ_{10}	$\eta \pi \pi$ [excluding $a_{0}(980) \pi$]	$(14 \pm 4) \%$	
Γ_{11}	$K \bar{K} \pi$	(9.0 ± 0.4) \%	$\mathrm{S}=1.1$
Γ_{12}	K \bar{K}^{*} (892)	not seen	
Γ_{13}	$\pi^{+} \pi^{-} \pi^{0}$	(3.0土 0.9$) \times 10^{-3}$	
Γ_{14}	$\rho^{ \pm} \pi^{\mp}$	$<3.1 \times 10^{-3}$	CL=95\%
Γ_{15}	$\gamma \rho^{0}$	(6.1 \pm 1.0) \%	$\mathrm{S}=1.7$
Γ_{16}	$\phi \gamma$	$(7.4 \pm 2.6) \times 10^{-4}$	
Γ_{17}	$e^{+} e^{-}$	$<9.4 \times 10^{-9}$	CL=90\%
Γ_{18}	$\gamma \gamma^{*}$		
Γ_{19}	$\gamma \gamma$		

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 18 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^{2}=$ 24.0 for 14 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$f_{1}(\mathbf{1 2 8 5})$ BRANCHING RATIOS

$\frac{\text { VALUE }}{\mathbf{0 . 2 1 8} \pm \mathbf{0 . 0 1 3} \text { OUR FIT }} \quad$ Error includes scale factor of 1.2.

$\Gamma\left(2 \pi^{+} 2 \pi^{-}\right) / \Gamma_{\text {total }}$	$\Gamma_{3} / \Gamma=\frac{1}{3} \Gamma_{1} / \Gamma$
$\frac{\text { VaLUE }}{0.109 \pm 0.006 \text { OUR FIT }}$ Error includes scale factor of 1.2.	
$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$\Gamma_{4} / \Gamma=\frac{1}{3} \Gamma_{1} / \Gamma$

$\frac{\text { VALUE }}{\mathbf{0 . 1 0 9} \pm \mathbf{0 . 0 0 6} \text { OUR FIT }} \quad \frac{\text { Error }}{}$ includes scale factor of 1.2.
Γ_{4} / Γ_{3}
$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma\left(2 \pi^{+} 2 \pi^{-}\right)$
DOCUMENT ID TECN COMMENT

- • We do not use the following data for averages, fits, limits, etc. • •
$1.0 \pm 0.4 \quad$ GRASSLER $77 \mathrm{HBC} \quad 16 \mathrm{GeV} \pi^{ \pm} p$

$\Gamma(\eta \pi \pi) / \Gamma_{\text {total }}$
$\Gamma_{8} / \Gamma=\left(\Gamma_{9}+\Gamma_{10}\right) / \Gamma$
$\Gamma(4 \pi) / \Gamma(\eta \pi \pi)$

$\Gamma_{1} / \Gamma_{8}=\Gamma_{1} /\left(\Gamma_{9}+\Gamma_{10}\right)$

0.41 ± 0.14 OUR AVERAGE

$\mathbf{0 . 4 1} \pm \mathbf{0 . 1 4}$ OUR AVERAGE				
$0.37 \pm 0.11 \pm 0.11$	BOLTON	92	MRK3	$J / \psi \rightarrow \gamma f_{1}(1285)$
0.64 ± 0.40	GURTU	79	HBC	$4.2 K^{-}$

$0.64 \pm 0.40 \quad$ GURTU $79 \mathrm{HBC} 4.2 \mathrm{~K}^{-} p$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.93 \pm 0.30 \quad 1$ GRASSLER 77 HBC $16 \pi^{\mp} p$
${ }^{1}$ Assuming $\rho \pi \pi$ and $a_{0}(980) \pi$ intermediate states.

 0.72 ± 0.08 OUR FIT
0.72 ± 0.07 OUR AVERAGE
$0.74 \pm 0.02 \pm 0.09$
0.72 ± 0.15
DICKSON 16 CLAS $\gamma p \rightarrow f_{1}(1285) p$
GURTU 79 HBC $4.2 K^{-} p$

>0.69	95	ACHARD	02B	L3	$\begin{gathered} 183-209 e^{+} e^{-} \rightarrow \\ e^{+} e^{-} \eta \pi^{+} \pi^{-} \end{gathered}$
0.28 ± 0.07		ALDE	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
1.0 ± 0.3		GRASSLER	77	HBC	$16 \pi^{\mp} p$

$\Gamma(K \bar{K} \pi) / \Gamma(\eta \pi \pi) \quad \Gamma_{11} / \Gamma_{8}=\Gamma_{11} /\left(\Gamma_{\mathbf{9}}+\Gamma_{10}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 1 7 2} \mathbf{0 . 0 1 2} \text { OUR FIT }}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor of }} \frac{\text { TECN }}{1.1}$
DOCUMENT ID
$0.176 \pm \mathbf{0 . 0 1 2}$ OUR AVERAGE
$0.216 \pm 0.010 \pm 0.031$
DICKSON 16 CLAS $\gamma p \rightarrow f_{1}(1285) p$
$0.166 \pm 0.01 \pm 0.008 \quad$ BARBERIS 98 C OMEG $450 p p \rightarrow p_{f} f_{1}(1285) p_{S}$
0.42 ± 0.15
GURTU 79 HBC $4.2 K^{-} p$

0.5 ± 0.2	1	CORDEN	78
0.20	OMEG $12-15 \pi^{-} p$		
0.08	2 DEFOIX	72	HBC $0.7 \bar{p} p \rightarrow-7 \pi$

$0.16 \pm 0.08 \quad$ CAMPBELL 69 DBC $2.7 \pi^{+} d$
${ }^{1}$ CORDEN 78 assumes low-mass $\eta \pi \pi$ region is dominantly $1^{+}+$. See BARBERIS 98C
$2 \begin{aligned} & \text { and MANAK 00A for discussion. } \\ & K\end{aligned}$
$\Gamma\left(K \bar{K}^{*}(892)\right) / \Gamma_{\text {total }}$
$\begin{array}{ll}\text { VALUE } \\ \text { not seen } & \text { DOCUMENT ID } \\ \text { NACASCH } 78 & \text { TECN } \\ \text { HBC COMMENT } \\ 0.7,0.76 \bar{p} p \rightarrow K \bar{K} 3 \pi\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - -
seen $\quad 1^{1}$ ACHARD 07 L3 $\quad 183-209 e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K^{ \pm} \pi^{\mp}$
${ }^{1}$ A clear signal of 19.8 ± 4.4 events observed at high Q^{2}.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 3 0} \mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 7 4}} \frac{\text { EVTS }}{2.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DOROFEEV } 11} \frac{\text { TECN }}{\text { VES }} \frac{\text { COMMENT }}{\pi^{-} N \rightarrow \pi^{-} f_{1}(1285) N}$
${ }^{1}$ Value obtained selecting the region corresponding to $f_{0}(980)$ in the $\pi^{+} \pi^{-}$mass spectrum. The sytematic error includes the uncertainty on the partial width $f_{1} \rightarrow \eta \pi \pi$ trum. The sytematic error
$\Gamma\left(\boldsymbol{\rho}^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E(\%)}{<0.31} \frac{C L \%}{95}$
$\frac{\text { DOCUMENT ID }}{\text { DOROFEEV } 11} \frac{\text { TECN }}{\text { VES }} \frac{\text { COMMENT } \quad \Gamma_{14} / \boldsymbol{\Gamma}}{\pi^{-} N \rightarrow \pi^{-} f_{1}(1285) N}$
$\Gamma\left(\gamma \rho^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{15 / \Gamma}$
VALUE (units 10^{-2}) CL\% DOCUMENT ID TECN COMMENT
6.1 \pm 1.0 OUR FIT Error includes scale factor of 1.7.
$2.8 \pm 0.7 \pm 0.6 \quad 1$ AMELIN 95 VES $37 \pi^{-} N \rightarrow \pi^{-} \pi^{+} \pi^{-} \gamma N$ $\begin{array}{lll}<5 & 95 \quad \text { BITYUKOV 91B SPEC } 32 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \gamma n\end{array}$
${ }^{1}$ Not an independent measurement.

$\Gamma\left(\gamma \rho^{0}\right) / \Gamma\left(2 \pi^{+} 2 \pi^{-}\right)$ VALUE		$\Gamma_{15} / \Gamma_{3}=\Gamma_{15} / \frac{1}{3} \Gamma_{1}$	
	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 5 5} \pm \mathbf{0 . 1 0}$ OUR FIT Error includes scale factor of 1.5.			
0.45 ± 0.18	1 COFFMAN	MRK	$J / \psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$
Using $\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285) \rightarrow \gamma \gamma \rho^{0}\right)=0.25 \times 10^{-4}$ and $\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285) \rightarrow\right.$ $\left.\gamma 2 \pi^{+} 2 \pi^{-}\right)=0.55 \times 10^{-4}$ given by MIR 88.			

$\Gamma(\eta \pi \pi) / \Gamma\left(\gamma \rho^{0}\right)$
VALUE DOCUMENT ID TECN COMMENT
$\Gamma_{8} / \Gamma_{15}=\left(\Gamma_{9}+\Gamma_{10}\right) / \Gamma_{15}$
8.6土1.6 OUR FIT Error includes scale factor of 1.9.
$\mathbf{8 . 5} \pm \mathbf{2 . 0}$ OUR AVERAGE Error includes scale factor of 2.2. See the ideogram below.
$21.3 \pm 4.4 \quad$ DICKSON 16 CLAS $\gamma p \rightarrow f_{1}(1285) p$
$10.0 \pm 1.0 \pm 2.0 \quad$ BARBERIS $\quad 98 \mathrm{C}$ OMEG $450 p p \rightarrow p_{f} f_{1}(1285) p_{S}$
$7.5 \pm 1.0 \quad 1$ ARMSTRONG 92C OMEG $300 p p \rightarrow p p \pi^{+} \pi^{-} \gamma, p p \eta \pi^{+} \pi^{-}$
${ }^{1}$ Published value multiplied by 1.5 .

Meson Particle Listings
$f_{1}(1285), \eta(1295)$

See key on page 999

	$\boldsymbol{\eta}(\mathbf{1 2 9 5})$ DECAY MODES	
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\eta \pi^{+} \pi^{-}$	seen
Γ_{2}	$a_{0}(980) \pi$	seen
Γ_{3}	$\gamma \gamma$	
Γ_{4}	$\eta \pi^{0} \pi^{0}$	seen
Γ_{5}	$\eta(\pi \pi)_{S \text {-wave }}$	seen
Γ_{6}	$\sigma \eta$	
Γ_{7}	$K \bar{K} \pi$	

$\eta(1295) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma$ (total)

$\Gamma\left(\eta \pi^{+} \pi^{-}\right.$	$) / \Gamma_{\text {t }}$				$\Gamma_{1} \Gamma_{3} / \Gamma^{\prime}$
VaLUE(keV)	c1\%	DOCUMENT ID	TECN	comment	
<0.066	95	ACCIARRI	L3	${ }^{183-2}$	

${ }^{4}$ Assuming three-body phase-space decay to $K_{S}^{0} K^{ \pm} \pi^{\mp}$.

$\eta(1295)$ BRANCHING RATIOS

$\Gamma\left(a_{0}(980) \pi\right) / \Gamma_{\text {total }}$

VALUE	DOCUMENT ID		TECN COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -				
not seen	BERTIN	97	OBLX	$\begin{aligned} & 0.0 \bar{p} p \rightarrow \\ & K^{ \pm}\left(K^{0}\right) \pi^{\mp} \pi^{+} \pi^{-} \end{aligned}$
seen	BIRMAN	88	MPS	$\begin{aligned} & 8 \pi^{-p} \overrightarrow{K^{+}} \vec{K}^{0} \pi^{-} n \end{aligned}$
large	ANDO	86	SPEC	$8 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
large	STANTON	79	CNTR	$8.4 \pi^{-} p \rightarrow n \eta 2 \pi$
$\Gamma\left(a_{0}(980) \pi\right) / \Gamma\left(\eta \pi^{0} \pi^{0}\right)$				Γ_{2} / Γ_{4}
VALUE	DOCUMENT ID		TECN	COMMENT
0.65 ± 0.10	${ }^{5}$ ALDE	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
${ }^{5}$ Assuming that $a_{0}(980)$ decays only to $\eta \pi$.				
$\Gamma\left(\eta(\pi \pi)_{S}\right.$-wave $) / \Gamma\left(\eta \pi^{0} \pi^{0}\right)$				Γ_{5} / Γ_{4}
VALUE	DOCUMENT ID		TECN	COMMENT
0.35 ± 0.10	ALDE	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
$\Gamma\left(a_{0}(980) \pi\right) / \Gamma(\sigma \eta)$				Γ_{2} / Γ_{6}
VALUE	DOCUMENT ID		TECN	COMMENT
0.48 ± 0.229082	MANAK	00A	MPS	$18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$

η (1295) REFERENCES				
ahohe	05	PR D71 072001	R. Ahohe et al.	(CLEO Collab.)
ACCIARRI	01 G	PL B501 1	M. Acciarri et al.	(L3 Collab.)
adams	01B	PL B516 264	G.S. Adams et al.	(BNL E852 Collab.)
manak	00A	PR D62 012003	J.J. Manak et al.	(BNL E852 Collab.)
ALDE	97B	PAN 60386	D. Alde et al.	(GAMS Collab.)
bertin	97	PL 8400226	A. Bertin et al.	(Obelix Collab.)
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
FUKUI	91 C	PL B267 293	S. Fukui et al.	(SUGI, NAGO, KEK, KYOT+)
AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)
AIHARA	88 C	PR D38 1	H. Aihara et al.	(TPC-2 2 Collab.)
birman	88	PRL 611557	A. Birman et al.	(BNL, FSU, IND, MASD) JP
ANTREASYAN	87	PR D36 2633	D. Antreasyan et al.	(Crystal Ball Collab.)
ANDO	86	PRL 571296	A. Ando et al.	(KEK, KYOT, NIRS, SAGA+) IJP
Stanton	79	PRL 42346	N.R. Stanton et al.	(OSU, CARL, MCGI+) JP

$\pi(1300)$
$I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)$

$\pi(1300)$ MASS

VALUE (MeV) EVTS

1300 ± 100 OUR ESTIMATE
DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

| $1128 \pm 26 \pm 70$ | | DARGENT | 17 | RVUE $D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1345 \pm 8 \pm 10$ | 18 k | 1 | SCHEGELSKY 06 | RVUE $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$ | |
| 1200 ± 40 | $90 k$ | SALVINI | 04 | OBLX $\bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$ | |
| $1343 \pm 15 \pm 24$ | | CHUNG | 02 | B852 | $18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$ |

1375 ± 40	ABELE		CBAR	$0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$
1275 ± 15	BERTIN	97D	OBLX	$0.05 \bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
~ 1114	ABELE	96	CBAR	$0.0 \bar{p} p \rightarrow 5 \pi^{0}$
1190 ± 30	ZIELINSKI	84	SPEC	$200 \pi^{+} \mathrm{Z} \rightarrow \mathrm{Z} 3 \pi$
1240 ± 30	BELLINI	82	SPEC	$40 \pi^{-} \mathrm{A} \rightarrow \mathrm{A} 3 \pi$
1273 ± 50	2 AARON	81	RVUE	
1342 ± 20	BONESINI	81	OMEG	$12 \pi^{-} p \rightarrow p 3 \pi$
~ 1400	DAUM	81B	SPEC	63,94 $\pi^{-} p$
${ }^{1}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.				
${ }^{2}$ Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.				

π (1300) WIDTH

VALUE (MeV) $\frac{\text { EVTS }}{}$ 200 to 600 OUR ESTIMATE

DOCUMENT ID TECN COMMENT

\qquad

ing data for averages, fits, limits, etc. • - -

$314 \pm 39 \pm 66$		DARGENT	17	RVUE	$D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$
$260 \pm 20 \pm 30$	18k	3 SCHEGELSKY	06	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
470 ± 120	90k	SALVINI	04	OBLX	$\bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
$449 \pm 39 \pm 47$		CHUNG	02	B852	$18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
268 ± 50		ABELE	01	CBAR	$0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$
218 ± 100		BERTIN	97D	OBLX	$0.05 \bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
~ 340		ABELE	96	CBAR	$0.0 \bar{p} p \rightarrow 5 \pi^{0}$
440 ± 80		ZIELINSKI	84	SPEC	$200 \pi^{+} \mathbf{Z} \rightarrow \mathrm{Z} 3 \pi$
360 ± 120		BELLINI	82	SPEC	$40 \pi^{-} \mathrm{A} \rightarrow \mathrm{A} 3 \pi$
580 ± 100		${ }^{4}$ AARON	81	RVUE	
220 ± 70		BONESINI	81	OMEG	$12 \pi^{-} p \rightarrow p 3 \pi$
~ 600		DAUM	81B	SPEC	63,94 $\pi^{-} p$
${ }^{3}$ From analysis ${ }^{4}$ Uses multich and DANKO	3 dat Aitc H 81.	$183-209 \mathrm{GeV}$. n-Bowler model (BOWL	LER 75).	Uses data from DAUM 80

$\pi(1300)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$\rho \pi$	seen
Γ_{2}	$\pi(\pi \pi)_{S}$-wave	seen
Γ_{3}	$\gamma \gamma$	

$\pi(1300) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

$\pi(1300)$ BRANCHING RATIOS
$\Gamma(\pi(\pi \pi) s$-wave $) / \Gamma(\rho \pi) \quad \Gamma_{\mathbf{2}} / \boldsymbol{\Gamma}_{\mathbf{1}}$

π (1300) REFERENCES				
DARGENT	17	JHEP 1705143	P. dArgent et al.	(HEID, BRIS)
SCHEGELSKY	06	EPJ A27 199	V.A. Schegelsky et al.	
SALVINI	04	EPJ C35 21	P. Salvini et al.	(OBELIX Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
ABELE	01	EPJ C19 667	A. Abele et al.	(Crystal Barrel Collab.)
ACCIARRI	97 T	PL B413 147	M. Acciarri et al.	(L3 Collab.)
ALBRECHT	97 B	ZPHY C74 469	H. Albrecht et al.	(ARGUS Collab.)
BERTIN	97D	PL B414 220	A. Bertin et al.	(OBELIX Collab.)
ABELE	96	PL B380 453	A. Abele et al.	(Crystal Barrel Collab.)
ZIELINSKI	84	PR D30 1855	M. Zielinski et al.	(ROCH, MINN, FNAL)
BELLINI	82	PRL 481697	G. Bellini et al.	(MILA, BGNA, JINR)
AARON	81	PR D24 1207	R.A. Aaron, R.S. Longacre	re (NEAS, BNL)
BONESINI	81	PL 103B 75	M. Bonesini et al.	(MILA, LIVP, DARE+)
DANKOWY...	81	PRL 46580	J.A. Dankowych et al.	(TNTO, BNL, CARL+)
DAUM	81B	NP B182 269	C. Daum et al. (AMser	(AMST, CERN, CRAC, MPIM+)
DAUM	80	PL 89B 281	C. Daum et al. (AMs)	(AMST, CERN, CRAC, MPIM+)
BOWLER	75	NP B97 227	M.G. Bowler et al.	(OXFTP, DARE)

Meson Particle Listings
$a_{2}(1320)$

3π MODE
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.
1318.6 $\mathbf{1 . 3}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. $1314.5_{-}^{+} 4.0 \quad 46 \mathrm{M} \quad{ }^{4}$ AGHASYAN \quad 18B COMP $\quad 190 \pi^{-} p \rightarrow$
$1326 \pm 2 \pm 2$
1317 ± 3
$1323 \pm 4 \pm 3$
1320 ± 7
$1311.3 \pm 1.6 \pm 3.072 .4 \mathrm{k}$
1310 ± 5
1323.8 ± 2.3
1320.6 ± 3.1
1317 ± 2
1320 ± 10
$1306+8-1097$
$1318 \pm 7 \quad 1.6 \mathrm{k} \quad 2$ EMMS $\quad 75$ DBC $0 \quad 4 \pi^{+} \begin{aligned} & \text { D }\end{aligned}$
$1315 \pm 5 \quad{ }^{2}$ ANTIPOV $73 C$ CNTR $-25,40 \pi^{-} p \rightarrow$
$1306 \pm 9 \quad 1580 \quad$ CHALOUPKA $73 \mathrm{HBC} \quad-\quad p \eta \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. • -
$1321 \pm 1 \underset{-7}{+0} \quad 420 k$
$1300 \pm 2 \pm 4 \quad 18 \mathrm{k}$
1305 ± 14
1310 ± 2
$1343 \pm 11 \quad 490$

${ }^{3}$ ALEKSEEV	10	COMP	$190 \pi^{-} P b \rightarrow$	
${ }^{-} \pi^{-} \pi^{+} P b^{\prime}$				
4 SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
CONDO	93	SHF	$\gamma p \rightarrow n \pi^{+} \pi^{+} \pi^{-}$	
2 EVANGELIS...	81	OMEG	-	$12 \pi^{-} p \rightarrow 3 \pi p$
BALTAY	78 B	HBC	0	$15 \pi^{+} p \rightarrow \Delta 3 \pi$

$\boldsymbol{\eta}^{\prime} \boldsymbol{\pi}$ MODE
VALUE (MeV)
The data in this block is included in the average printed for a previn COMMENT
The data in this block is included in the average printed for a previous datablock.
1322 ± 7 OUR AVERAGE
$1318 \pm 8 \begin{gathered}+3 \\ -5\end{gathered} \quad$ IVANOV 01 B852 $18 \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$ $1327.0 \pm 10.7 \quad$ BELADIDZE 93 VES $37 \pi^{-N} \rightarrow \eta^{\prime} \pi^{-N}$

$a_{2}(1320)$ WIDTH						
3π MODE						
105.0 ± 1.7 1.9 OUR AVERAGE						
$106.6-3.4$	46M	${ }^{1}$ AGHASYAN	18B	COMP		$\begin{aligned} & 190 \pi^{-} p \rightarrow \\ & \pi^{-} \pi^{+} \pi^{-} p \end{aligned}$
$108 \pm 3 \pm 15$		CHUNG	02	B852		$\begin{aligned} & 18.3 \pi^{-} p \rightarrow \\ & \pi^{+} \pi^{-} \pi^{-} p \end{aligned}$
120 ± 10		BARBERIS	98B			$\begin{aligned} & 450 p p \rightarrow \\ & p_{f} \pi^{+} \pi^{-} \pi^{0} p_{S} \end{aligned}$
$105 \pm 10 \pm 11$		ACCIARRI	97T	L3		$\begin{aligned} & e^{+} e^{-} \rightarrow e^{+} \\ & e^{+}+\pi^{-} \pi^{0} \end{aligned}$
120 ± 10		ALBRECHT	97B	ARG		$\begin{aligned} & e^{+} e^{-} e^{+} e^{-} \pi^{+} \pi^{-} \pi^{0} \end{aligned}$
$103.0 \pm 6.0 \pm 3.3$	72.4k	AMELIN	96	VES		$\begin{aligned} & 36 \pi^{-} p \rightarrow \\ & \pi^{+} \pi^{-} \pi^{0} n_{n} \end{aligned}$
120 ± 10		ARMSTRONG	90	OMEG	0	$\begin{aligned} & 300.0 p p \rightarrow \\ & p p \pi^{+} \pi^{-} \pi^{0} \end{aligned}$
107.0 ± 9.7	4022	AUGUSTIN	89	DM2	\pm	$J / \psi \rightarrow \rho^{ \pm} a_{2}^{\mp}$
118.5 ± 12.5	3562	AUGUSTIN	89	DM2	0	$J / \psi \rightarrow \rho^{0} a_{2}^{0}$
97 ± 5		2 EVANGELIS...	81	OMEG	-	$12 \pi^{-} p \rightarrow 3 \pi p$
96 ± 9	25k	${ }^{2}$ DAUM	80C	SPEC	-	63,94 $\pi^{-} p \rightarrow 3 \pi p$
110 ± 15	1097	2 BALTAY	78B	HBC	+0	$15 \pi^{+} p \rightarrow p 4 \pi$
112 ± 18	1.6k	${ }^{2}$ EMMMS	75	DBC	0	$4 \pi^{+} n \rightarrow p(3 \pi)^{0}$
122 ± 14	1.2k	2,3 WAGNER	75	HBC	0	$\begin{aligned} & 7 \pi^{+} p \rightarrow \\ & \Delta^{++}(3 \pi)^{0} \end{aligned}$
115 ± 15		2 ANTIPOV	73C	CNTR	-	$\begin{gathered} 25,40 \pi^{-} p \rightarrow \\ p \eta \pi^{-} \end{gathered}$
99 ± 15	1580	CHALOUPKA	73	HBC	-	$3.9 \pi^{-} p$
105 ± 5	28k	BOWEN	71	MMS	-	$5 \pi^{-} p$
99 ± 5	24k	BOWEN	71	MMS	$+$	$5 \pi^{+} p$
103 ± 5	17k	BOWEN	71	MMS	-	$7 \pi^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -						
$110 \pm 2 \underset{-15}{2}$	420k	${ }^{4}$ ALEKSEEV	10	COMP		$190 \pi_{\pi^{-}}^{\pi^{-}} \pi^{+} P b b^{\prime}$
$117 \pm 6 \pm 20$	18k	5 SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
120 ± 40		CONDO	93	SHF		$\gamma p \rightarrow n \pi^{+} \pi^{+} \pi^{-}$
115 ± 14	490	BALTAY	78B	HBC	0	$15 \pi^{+} p \rightarrow \Delta 3 \pi$
72 ± 16	5 k	BINNIE	71	MMS	-	$\begin{aligned} & \pi^{-} p \text { near } a_{2} \text { thresh- } \\ & \text { old } \end{aligned}$
79 ± 12	941	ALSTON-...	70	HBC	$+$	$7.0 \pi^{+} p \rightarrow 3 \pi p$

${ }^{1}$ Statistical error negligible.
${ }^{2}$ From a fit to $J^{P}=2^{+} \rho \pi$ partial wave.
${ }^{3}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{4}$ Superseded by AGHASYAN 2018B.
${ }^{5}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.
$K \bar{K}$ AND $\eta \pi$ MODES
$\frac{\text { VALUE (NeV) }}{107} \pm 5$ OUR ESTIMATE
112.5 \pm 1.2 OUR AVERAGE Includes data from the 2 datablocks that follow this one
$K \bar{K}$ MODE
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.
109.8土 2.4 OUR AVERAGE

112	± 20	4700	1,2 CLELAND	82B	SPEC	+	$50 \pi^{+} p \rightarrow K_{S}^{0} K^{+} p$
120	± 25	5200	1,2 CLELAND	82B	SPEC	-	$50 \pi^{-} p \rightarrow K_{S}^{0} K^{-} p$
106	± 4	4000	CHABAUD	80	SPEC	-	$17 \pi^{-} \mathrm{A} \rightarrow \mathrm{K}_{S}^{0} K^{-} \mathrm{A}$
126	± 11	11000	CHABAUD	78	SPEC	-	$9.8 \pi^{-} p \rightarrow K^{-} K_{S}^{0} p$
101	± 8	4730	CHABAUD	78	SPEC	-	$18.8 \pi^{-} p \rightarrow K^{-} K_{S}^{0} p$
113	± 4		1,3 MARTIN	78D	SPEC	-	$10 \pi^{-} p \rightarrow K_{S}^{0} K^{-} p$
105	± 8	2724	3 MARGULIE	76	SPEC	-	$23 \pi^{-} p \rightarrow K^{-} K_{S}^{0} p$
113	± 19	730	FOLEY	72	CNTR	-	$20.3 \pi^{-} p \rightarrow K^{-} K_{S}^{0} p$
123	± 13	1500	${ }^{3}$ GRAYER	71	ASPK	-	$17.2 \pi^{-} p \rightarrow K^{-} K_{S}^{0} p$

- - We do not use the following data for averages, fits, limits, etc. - -

120	± 15	870	${ }^{4}$ SCHEGELSKY	06A	RVUE	0	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
121	± 51	1000	1,2	CLELAND	$82 B$	SPEC	+
110	± 18	350	HYAMS	78	ASPK	+	$12.7 \pi^{+} p \rightarrow K_{S}^{+} K^{+} K_{S}^{0} p$

${ }^{1}$ From a fit to $J^{P}=2^{+}$partial wave.
${ }^{2}$ Number of events evaluated by us.
${ }^{3}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{4}$ From analysis of L3 data at 91 and 183-209 GeV.

$\boldsymbol{\eta} \pi$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.

113.4 ± 1.3 OUR AVERAGE

$114.4 \pm 1.6 \pm 0.0$		${ }^{1}$ RODAS	19	JPAC		$\begin{array}{r} 191 \pi^{-} p \rightarrow \\ \left.\eta^{\prime \prime}\right)_{\pi^{-}} p \end{array}$
115 ± 20		BARBERIS	00 H			$450 p p \rightarrow p_{f} \eta \pi^{0} p_{S}$
112 ± 14		BARBERIS	00H			$\begin{aligned} & 450 p p \rightarrow \\ & \Delta_{f}^{++}{ }_{\eta} \pi^{-} p_{S} \end{aligned}$
$112 \pm 3 \pm 2$		${ }^{2}$ AMSLER	94D	CBAR		$0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$
$103 \pm 6 \pm 3$		BELADIDZE	93	VES		$37 \pi^{-} N \rightarrow \eta \pi^{-} N$
112.2 ± 5.7	2561	DELFOSSE	81	SPEC	$+$	$\pi^{ \pm} p \rightarrow p \pi^{ \pm} \eta$
116.6 ± 7.7	1653	DELFOSSE	81	SPEC	-	$\pi^{ \pm} p \rightarrow p \pi^{ \pm} \eta$
108 ± 9	1000	KEY	73	OSPK	-	$6 \pi^{-} p \rightarrow p \pi^{-} \eta$
- - We do not use the following data for averages, fits, limits, etc. - -						
$112 \pm 1 \pm 8$		3 JACKURA	18	JPAC		$\pi^{-} p \rightarrow \eta \pi^{-} p$
119 ± 14		${ }^{4}$ ADOLPH	15	COMP		$\begin{array}{r} 191 \pi^{-} p \rightarrow \\ \eta^{\prime}(\prime) \pi^{-} p \end{array}$
110 ± 4		ANISOVICH	09	RVUE		$\bar{p} p, \pi N$
$127 \pm 2 \pm 2$		5 THOMPSON	97	MPS		$18 \pi^{-} p \rightarrow \eta \pi^{-} p$
118 ± 10		ARMSTRONG	93C	E760	0	$\bar{p} p \rightarrow \pi^{0} \eta \eta \rightarrow 6 \gamma$
104 ± 9	6200	${ }^{6}$ CONFORTO	73	OSPK	-	$6 \pi^{-} p \rightarrow p \mathrm{MM}^{-}$

${ }^{1}$ The coupled-channel analysis of both the $\eta \pi$ and $\eta^{\prime} \pi$ systems using ADOLPH 15data. The width is extracted from the T-matrix pole.
2 The systematic error of 2 MeV corresponds to the spread of solutions.
${ }^{3}$ Superseded by RODAS 19.
${ }^{4}$ ADOLPH 15 value is derived from a Breit-Wigner fit with mass-dependent width taking
the $\eta \pi$ and $\rho \pi$ channels into account.
the $\eta \pi$ and $\rho \pi$ channels in
${ }_{6}^{5}$ Resolution is not unfolded.
${ }^{6}$ Missing mass with enriched MMS $=\eta \pi^{-}, \eta=2 \gamma$.
$\eta^{\prime} \pi$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
119 ± 25 OUR AVERAGE				
$140 \pm 35 \pm 20$	IVANOV	01	B852	$18 \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$
106 ± 32	BELADIDZE	93	VES	$37 \pi^{-} N \rightarrow \eta^{\prime} \pi^{-} N$

$a_{2}(1320)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \boldsymbol{\Gamma}\right)$	Scale factor/ Confidence level
Γ_{1}	3π	$(70.1 \pm 2.7) \%$	$\mathrm{~S}=1.2$
Γ_{2}	$\rho(770) \pi$		
Γ_{3}	$f_{2}(1270) \pi$		
Γ_{4}	$\rho(1450) \pi$	$(14.5 \pm 1.2) \%$	
Γ_{5}	$\eta \pi$	$(10.6 \pm 3.2) \%$	
Γ_{6}	$\omega \pi \pi$	$(4.9 \pm 0.8) \%$	$\mathrm{~S}=1.3$
Γ_{7}	$K \bar{K}$	$(5.5 \pm 0.9) \times 10^{-3}$	
Γ_{8}	$\eta^{\prime}(958) \pi$	$(2.91 \pm 0.27) \times 10^{-3}$	
Γ_{9}	$\pi^{ \pm} \gamma$	$(9.4 \pm 0.7) \times 10^{-6}$	
Γ_{10}	$\gamma \gamma$	<5	$\times 10^{-9}$

Meson Particle Listings
$a_{2}(1320)$

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 18 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^{2}=$ 9.3 for 15 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{5}	10		
x_{6}	-89	-46	
x_{7}	-1	-2	-24
	x_{1}	x_{5}	x_{6}

$a_{2}(1320)$ PARTIAL WIDTHS

$\Gamma(3 \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{1} \Gamma_{10} / \Gamma$
VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.65 \pm 0.02 \pm 0.02 \quad 18 \mathrm{k} \quad 1$ SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.
$\Gamma(\eta \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{5} \Gamma_{10} / \Gamma$
VALUE (keV) DOCUMENT ID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • •
$0.145_{-0.034}^{+0.097} \quad 1$ UEHARA \quad 09A BELL $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \pi^{0}$
${ }^{1}$ From the D_{2}-wave. The fraction of the D_{0}-wave is $3.4_{-1.1}^{+2.3} \%$.
$\Gamma(\kappa \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
DOCUMENT ID $\xlongequal{\text { TECN }} \xlongequal{\text { COMMENT } \quad \Gamma_{7} \Gamma_{10} / \Gamma^{-1}}$
$0.126 \pm 0.007 \pm 0.028 \quad 1$ ALBRECHT $\quad 90 G \quad$ ARG $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
- . We do not use the following data for averages, fits, limits, etc. - . .
$0.081 \pm 0.006 \pm 0.027 \quad{ }^{2}$ ALBRECHT $\quad 90 G$ ARG $e^{+} e^{-} \rightarrow e^{+} e^{-} \kappa^{+} \kappa^{-}$
${ }^{1}$ Using an incoherent background.
${ }^{2}$ Using a coherent background.

${ }^{1}$ KARSHON 74 suggest an additional $I=0$ state strongly coupled to $\omega \pi \pi$ which could explain discrepancies in branching ratios and masses. We use a central value and a systematic spread.
${ }^{2}$ Decays to $b_{1}(1040) \pi, b_{1} \rightarrow \omega \pi$. Error increased to account for possible systematic errors of complicated analysis.

VALUE (MeV)

DOCUMENT ID
TECN COMMENT (1200-1500)-i(150-250) OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -
$(1290 \pm 50)-i\left(170_{-40}^{+20}\right)$
$(1373 \pm 15)-i(137 \pm 10)$
09 RVUE $0.0 \bar{p} p$, π
${ }^{2}$ BARGIOTTI 03 OBLX $\bar{p} p$
$(1312 \pm 25 \pm 10)-i(109 \pm$ $22 \pm 15)$
$(1406 \pm 19)-i(80 \pm 6)$
$(1300 \pm 20)-i(120 \pm 20)$
$00 \mathrm{C} \quad 450 p p \rightarrow p_{f} 4 \pi p_{S}$
BARBERIS 99D OMEG $450 p p \rightarrow K^{+} K^{-}$
4 KAMINSKI 99 RVUE $\pi \pi \rightarrow \pi \pi, K \bar{K}, \sigma \sigma$
ANISOVICH 98B RVUE Compilation
BARBERIS 97B OMEG $450 p p \rightarrow$

Meson Particle Listings
$f_{0}(1370)$

$(1548 \pm 40)-i(560 \pm 40)$	BERTIN		OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$(1380 \pm 40)-i(180 \pm 25)$	ABELE		CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} K_{L}^{0} K_{L}^{0}$
$(1300 \pm 15)-i(115 \pm 8)$	BUGG	96	RVUE	
$(1330 \pm 50)-i(150 \pm 40)$	5 AMSLER		CBAR	$\bar{p} p \rightarrow 3 \pi^{0}$
(1360 $\pm 35)-i(150-300)$	${ }^{5}$ AMSLER		CBAR	$\bar{p} p \rightarrow \pi^{0} \eta \eta$
$(1390 \pm 30)-i(190 \pm 40)$	${ }^{6}$ AMSLER		CBAR	$\begin{gathered} \bar{p} p \rightarrow \underset{\pi^{0}}{\rightarrow} 3 \pi^{0}, \pi^{0} \eta \eta, \\ \pi^{0} \eta \end{gathered}$
$1346-i 249$	7,8 JANSSEN		RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}$
$1214-i 168$	8,9 TORNQVIST	95	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}, K \pi$
1364-i139	AMSLER		CBAR	$\bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$
$\left(1365{ }_{-55}^{+20}\right)-i(134 \pm 35)$	ANISOVICH		CBAR	$\bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$
$(1340 \pm 40)-i\left(127_{-20}^{+30}\right)$	10 BUGG		RVUE	$\begin{gathered} \bar{p} p \rightarrow 3 \pi^{0}, \eta \eta \pi^{0} \\ \eta \pi^{0} \pi^{0} \end{gathered}$
$(1430 \pm 5)-i(73 \pm 13)$	11 KAMINSKI		RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}$
$1420-i 220$	12 AU	87	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}$
${ }^{1}$ Another pole is found at $(1510 \pm 130)-i\left(800{ }_{-150}^{+100}\right) \mathrm{MeV}$.				
${ }^{2}$ Coupled channel analysis of $\pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}$, and $K^{ \pm} K_{S}^{0} \pi^{\mp}$.				
${ }^{3}$ Average between $\pi^{+} \pi^{-} 2 \pi^{0}$ and $2\left(\pi^{+} \pi^{-}\right)$.				
${ }^{4} \mathrm{~T}$-matrix pole on sheet --- .				
${ }^{5}$ Supersedes ANISOVICH 94.				
${ }^{6}$ Coupled-channel analysis of $\bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$, and $\pi^{0} \pi^{0} \eta$ on sheet IV. Demonstrates explicitly that $f_{0}(500)$ and $f_{0}(1370)$ are two different poles.				
7 Analysis of data from FALVARD 88.				
${ }^{8}$ The pole is on Sheet III. Demonstrates explicitly that $f_{0}(500)$ and $f_{0}(1370)$ are two different poles.				
${ }^{9}$ Uses data from BEIER SON 83, ASTON 88, symmetry and all light	OCHS 73, HYAMS ARMSTRONG 91B seudoscalars system	73,	RAYER led cha	74, ROSSELET 77, CA nnel analysis with flavo
10 Reanalysis of ANISOVICH 94 data.				
${ }^{11} \mathrm{~T}$-matrix pole on sheet III.				
12 Analysis of data from OCHS 73,GRAYER 74, BECKER 79, and CASON 83.				

$f_{0}(1370)$ BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETER

VALUE (MeV)

1200 to 1500 OUR ESTIMATE
$\pi \pi$ MODE
VALUE (MEV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1400 \pm 40 \quad 1$ AUBERT 09L BABR $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$
$1470_{-}^{+6+72}+2$ UEHARA $\quad 08 \mathrm{~A}$ BELL $10.6 e^{+} e^{-} \overrightarrow{\sigma_{0}}$
$1259 \pm 55 \quad 2.6 \mathrm{k}$ BONVICINI 07 CLEO $D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
$1309 \pm 1 \pm 15 \quad{ }^{3}$ BUGG 07A RVUE $0.0 p \bar{p} \rightarrow 3 \pi^{0}$
$1449 \pm 13 \quad 4.3 \mathrm{k} \quad{ }^{4}$ GARMASH 06 BELL $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$
$1350 \pm 50 \quad$ ABLIKIM 05 BES2 $J / \psi \rightarrow \phi \pi^{+} \pi^{-}$
$1265 \pm 30_{-}^{+} 20 \quad$ ABLIKIM $\quad 05 Q$ BES2 $\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$
$1434 \pm 18 \pm 988 \quad$ AITALA 94 A E791 $\quad D_{s}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
$1308 \pm 10 \quad$ BARBERIS 99B OMEG $450 p p \rightarrow p_{S} p_{f} \pi^{+} \pi^{-}$
$1315 \pm 50 \quad$ BELLAZZINI 99 GAM4 $450 p p \rightarrow p p \pi^{0} \pi^{0}$
$1315 \pm 30 \quad$ ALDE 98 GAM4 $100 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
$1280 \pm 55 \quad$ BERTIN 98 OBLX $0.05-0.405 \bar{n} p \rightarrow$
1186 5,6 TORNQVIST 95 RVUE $\pi \pi^{\pi+\pi} \pi \pi, K \bar{K}, K \pi, \eta \pi$
$1472 \pm 12 \quad$ ARMSTRONG 91 OMEG $300 p p \rightarrow p p \pi \pi, p p K \bar{K}$
$1275 \pm 20 \quad$ BREAKSTONE 90 SFM $62 p p \rightarrow p p \pi^{+} \pi^{-}$
$1420 \pm 20 \quad$ AKESSON 86 SPEC $63 p p \rightarrow p p \pi^{+} \pi^{-}$
1256 FROGGATT 77 RVUE $\pi^{+} \pi^{-}$channel
${ }^{1}$ Breit-Wigner mass.
${ }^{2}$ Breit-Wigner mass. May also be the $f_{0}(1500)$.
${ }^{3}$ Reanalysis of ABELE 96C data.
${ }^{4}$ Also observed by GARMASH 07 in $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays. Supersedes GARMASH 05.
${ }^{5}$ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91b. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
${ }^{6}$ Also observed by ASNER 00 in $\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$ decays

$K \bar{K}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

${ }^{1}$ From the $D^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$Dalitz plot fit with the isobar model A.
${ }^{2}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{3}$ From a fit to a Breit-Wigner line shape with fixed $\Gamma=346 \mathrm{MeV}$.
4π MODE $2(\pi \pi)_{S}+\rho \rho$
VALUE (MeV) EVTS DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

1395 ± 40	ABELE	01	CBAR $0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$	
1374 ± 38	AMSLER	94	CBAR $0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} 3 \pi^{0}$	
1345 ± 12		ADAMO	93	OBLX $\bar{n} p \rightarrow 3 \pi^{+} 2 \pi^{-}$
1386 ± 30		GASPERO	93	DBC
~ 1410	5751	1	BETTINI	66
			DBC	$0.0 \bar{p} n \rightarrow 2 \pi^{+} 3 \pi^{-}$

$1 \rho \rho$ dominant.
$\boldsymbol{\eta} \boldsymbol{\eta}$ MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

$1262+51+82$	$-78-103$	1	UEHARA	10A $\operatorname{BELL} 10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \eta$
1430	AMSLER	92 CBAR $0.0 \bar{p} p \rightarrow \pi^{0} \eta \eta$		
1220 ± 40	ALDE	86D GAM4 $100 \pi^{-} p \rightarrow n 2 \eta$		

${ }^{1}$ Breit-Wigner mass. May also be the $f_{0}(1500)$.
COUPLED CHANNEL MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -

$f_{0}(\mathbf{1 3 7 0})$ BREIT-WIGNER WIDTH

$K \bar{K}$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

$324 \pm 38 \pm 42$	${ }^{1}$ AAIJ 19 H	LHCB $p p \rightarrow D^{ \pm} X$
121 ± 15	VLADIMIRSK... 06	SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
55 ± 26	TIKHOMIROV 03	SPEC $40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X}$
250 ± 80	BOLONKIN 88	SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$118{ }_{-16}^{+138}$	ETKIN 82B	MPS $23 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
160 ± 30	WICKLUND 80	SPEC $6 \pi N \rightarrow K^{+} K^{-} N$
~ 150	POLYCHRO... 79	STRC $7 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
${ }^{1}$ From the $D^{ \pm}$	K^{-}Dalitz plot fit w	the isobar model A .

4π MODE $2(\pi \pi) s+\rho \rho$

- - We do not use the following data for averages, fits, limits, etc. - - - $275 \pm 55 \quad$ ABELE $01 \quad$ CBAR $0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$

- - We do not use the following data for averages, fits, limits, etc. - - -

$484+246+246$	1	UEHARA	10A	BELL
250	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \eta$			
250	AMSLER	92	CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} \eta \eta$
320 ± 40	ALDE	86D GAM4 $100 \pi^{-} p \rightarrow n 2 \eta$		
1	Breit-Wigner width. May also be the $f_{0}(1500)$.			

COUPLED CHANNEL MODE

VALUE (MeV) DOCUMENT ID TECN

- - We do not use the following data for averages, fits, limits, etc. - - -
$147_{-50}^{+30} \quad 1$ ANISOVICH 03 RVUE
${ }^{1} \mathrm{~K}$-matrix pole from combined analysis of $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \pi^{-} p \rightarrow K \bar{K} n$, $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{0}$, $K^{+} K_{S}^{0} \pi^{-}$at rest, $\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{-}$at rest.
$f_{0}(1370)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	seen
Γ_{2}	4π	seen
Γ_{3}	$4 \pi^{0}$	seen
Γ_{4}	$2 \pi^{+} 2 \pi^{-}$	seen
Γ_{5}	$\pi^{+} \pi^{-} 2 \pi^{0}$	seen
Γ_{6}	$\rho \rho$	seen
Γ_{7}	$2(\pi \pi)_{S-w a v e}$	seen
Γ_{8}	$\pi(1300) \pi$	seen
Γ_{9}	$a_{1}(1260) \pi$	seen
Γ_{10}	$\eta \eta$	seen
Γ_{11}	$K \bar{K}$	seen
Γ_{12}	$K \bar{K} n \pi$	not seen
Γ_{13}	6π	not seen
Γ_{14}	$\omega \omega$	not seen
Γ_{15}	$\gamma \gamma$	seen
Γ_{16}	$e^{+} e^{-}$	not seen

$f_{0}(1370)$ PARTIAL WIDTHS
$\Gamma(\gamma \gamma)_{\text {See } \gamma \gamma \text { widths under } f_{0}(500) \text { and MORGAN 90. }} \quad \Gamma_{15}$

$\Gamma\left(e^{+} e^{-}\right)$	DOCUMENT ID	TECN		Γ_{16}
$\underline{\text { VaLue (ev) }}$			COMMEN	
<20	VOROBYEV	88 ND	$e^{+} e^{-}$	
$f_{0}(1370) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$				
$\underset{\text { VALUE }(\mathrm{eV})}{\Gamma(\eta \eta) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}}$	DOCUMENT ID	TECN	Comment	$\Gamma_{10} \Gamma_{15} / \Gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$121{\underset{-}{2}}_{+133+169}^{+106} \quad 1$ UEHARA $\quad 10 \mathrm{~A}$ BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \eta$
1 Including interference with the $f_{2}^{\prime}(1525)$ (parameters fixed to the values from the 2008
edition of this review, PDG 08) and $f_{2}(1270)$. May also be the $f_{0}(1500)$.

$f_{0}(1370)$ BRANCHING RATIOS

VALUE CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

$\Gamma\left(4 \pi^{0}\right) / \Gamma(4 \pi)$
- - WALUE do not use the following
- - We do not use the following data for averages, fits, limits, etc. • • -
seen ABELE 96 CBAR $0.0 \bar{p} p \rightarrow 5 \pi^{0}$
$0.068 \pm 0.005 \quad 1$ GASPERO $\quad 93 \quad$ DBC $\quad 0.0 \bar{p} n \rightarrow$ hadrons
${ }^{1}$ Model-dependent evaluation.
$\Gamma\left(2 \pi^{+} 2 \pi^{-}\right) / \Gamma(4 \pi)$
VALUE
DOCUMENT ID
$\Gamma_{4} / \Gamma_{2}=\Gamma_{4} /\left(\Gamma_{3}+\Gamma_{4}+\Gamma_{5}\right)$
- - We do not use the following data for averages, fits, limits, etc. • •
$0.420 \pm 0.014 \quad 1$ GASPERO $\quad 93$ DBC $0.0 \bar{p} n \rightarrow 2 \pi^{+} 3 \pi^{-}$
1 Model-dependent evaluation.
$\Gamma\left(\pi^{+} \pi^{-} \mathbf{2} \pi^{0}\right) / \Gamma(\mathbf{4} \pi) \quad$ DOCUMENT ID $\Gamma_{\mathbf{5}} / \Gamma_{\mathbf{2}}=\Gamma_{\mathbf{5}} /\left(\boldsymbol{\Gamma}_{\mathbf{3}}+\Gamma_{\mathbf{4}}+\Gamma_{\mathbf{5}}\right)$
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
$0.512 \pm 0.019 \quad 1$ GASPERO 93 DBC $0.0 \bar{p} n \rightarrow$ hadrons
${ }^{1}$ Model-dependent evaluation.
$\boldsymbol{\Gamma}(\boldsymbol{\rho} \rho) / \Gamma(\mathbf{4} \boldsymbol{\pi})$
$\underline{V A L U E}$
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -

0.26 ± 0.07	ABELE	01B	CBAR	$0.0 \bar{p} d$	$5 \pi p$
$\Gamma\left(2(\pi \pi)_{S-w a v e}\right) / \Gamma(\pi \pi)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
5.6 ± 2.6	${ }^{1}$ ABELE	01	CBAR $0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$		
${ }^{1}$ From the combined data of ABELE 96 and ABELE 96C.					
$\Gamma\left(2(\pi \pi)_{S-w a v e}\right) / \Gamma(4 \pi)$			Γ_{7} / Γ_{2}		
VALUE	DOCUMENT ID		TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
0.51 ± 0.09	ABELE	01B	CBAR	$0.0 \bar{p} d \rightarrow$	$5 \pi p$
$\Gamma(\rho \rho) / \Gamma\left(2(\pi \pi)_{s-w a v e}\right)$			Γ_{6} / Γ_{7}		
VALUE	DOCUMENT ID		TECN	COMMENT	
- - We do not use the foll	data for averag	, fits,	mits,	tc. - •	
large	BARBERIS	00c		450 pp	$p_{f} 4$
1.6 ± 0.2	AMSLER	94	CBAR	$\bar{p} p \rightarrow \pi$	$\pi{ }^{-} 3$
~ 0.65	GASPERO	93	DBC	$0.0 \bar{p} n \rightarrow$	hadro

$\Gamma(\pi(1300) \pi) / \Gamma(4 \pi) \quad \Gamma_{8} / \Gamma_{2}$
VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.17 \pm 0.06 \quad$ ABELE 01 B CBAR $0.0 \bar{p} d \rightarrow 5 \pi p$
$\Gamma\left(a_{1}(1260) \pi\right) / \Gamma(4 \pi)$
- - We do not use the following data for averages, fits, limits, etc. • •

0.06 ± 0.02	ABELE	01B CBAR $0.0 \bar{p} d \rightarrow 5 \pi p$	
$\boldsymbol{\Gamma}(\boldsymbol{\eta} \boldsymbol{\eta}) / \boldsymbol{~}(\mathbf{4} \boldsymbol{\pi})$		$\boldsymbol{\Gamma}_{\mathbf{1 0}} / \boldsymbol{\Gamma}_{\mathbf{2}}=\boldsymbol{\Gamma}_{\mathbf{1 0}} /\left(\boldsymbol{\Gamma}_{\mathbf{3}}+\boldsymbol{\Gamma}_{\mathbf{4}}+\boldsymbol{\Gamma}_{\mathbf{5}}\right)$	
VALUE		DOCUMENT ID	TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$(28 \pm 11) \times 10^{-3} \quad{ }^{1}$ ANISOVICH 02D SPEC Combined fit
$(4.7 \pm 2.0) \times 10^{-3} \quad$ BARBERIS $\quad 00 \mathrm{E} \quad 450 p p \rightarrow p_{f} \eta \eta p_{S}$
${ }^{1}$ From a combined K-matrix analysis of Crystal Barrel (0. $p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta$, $\left.\pi^{0} \pi^{0} \eta\right)$, GAMS $\left(\pi p \rightarrow \pi^{0} \pi^{0} n, \eta \eta n, \eta \eta^{\prime} n\right)$, and BNL $(\pi p \rightarrow K \bar{K} n)$ data.
$\Gamma(\boldsymbol{K} \bar{K}) / \Gamma_{\text {total }}$
Γ_{11} / Γ
VALUE DOCUMENT ID _ TECN
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.35 \pm 0.13 \quad$ BUGG 96 RVUE
$\Gamma(K \bar{K}) / \Gamma(\pi \pi)$
Γ_{11} / Γ_{1}
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • •

- - We do not use the following data for averages, fits, limits, etc. • • -

Meson Particle Listings
$f_{0}(1370), \pi_{1}(1400)$

$\Gamma(6 \pi) / \Gamma_{\text {total }}$		Γ_{13} / Γ		
VALUE	DOCUMENT ID	TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -				
<0.22	GASPERO	DBC	$0.0 \bar{p} n \rightarrow$	hadrons
$\Gamma(\omega \omega) / \Gamma_{\text {total }}$				Γ_{14} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT	

• - We do not use the following data for averages, fits, limits, etc. \begin{tabular}{l}
•

| GASPERO |
| :--- |$\quad 93 \quad$ DBC $\quad 0.0 \bar{p} n \rightarrow$ hadrons

\end{tabular}

$f_{0}(1370)$ REFERENCES

See the review on "Non- $q \bar{q}$ Mesons" and a note in PDG 06, Journal of Physics G33 1 (2006).
$\pi_{1}(1400)$ MASS
DOCUMENT ID TECN CHG COMMENT
Error includes scale factor of 1.8. See the ideogram $1257 \pm 20 \pm 25 \quad 23.5 \mathrm{k} \quad$ ADAMS $\quad 07 \mathrm{~B}$ B852 $\quad 18 \pi^{-} p \rightarrow \eta \pi^{0} n$

1384	± 20	± 35	$90 k$	SALVINI	04	OBLX	$\bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
1360	± 25			ABELE	99	CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$
1400	± 20	± 20		ABELE	98 B	CBAR	$0.0 \bar{p} n \rightarrow \pi^{-} \pi^{0} \eta$
1370	± 16	± 50		1 THOMPSON	97	MPS	$18 \pi^{-} p \rightarrow \eta \pi^{-} p$

- - We do not use the following data for averages, fits, limits, etc. - - -

| 1323.1 ± 4.6 | 2 AOYAGI | 93 BKEI | $\pi^{-} p \rightarrow \eta \pi^{-} p$ |
| :--- | :--- | :--- | :--- | :--- |
| 1406 ± 20 | 3 ALDE | 88B GAM4 0 | $100 \pi^{-} p \rightarrow \eta \pi^{0} n$ |

${ }^{1}$ Natural parity exchange, questioned by DZIERBA 03.
${ }^{2}$ Unnatural parity exchange.
${ }^{3}$ Seen in the P_{0}-wave intensity of the $\eta \pi^{0}$ system, unnatural parity exchange.

VALUE (MeV)			EVTS	DOCUMENT ID		TECN	$\underline{C H G}$	COMMENT
330	± 35	OUR AVERAGE						
354	± 64	± 58	23.5k	ADAMS	07B	B852		$18 \pi^{-} p \rightarrow \eta \pi^{0} n$
378	± 50	± 50	90k	SALVINI	04	OBLX		$\bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
220	± 90			ABELE	99	CBAR		$0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$
310	± 50	+ 50 $-\quad 30$		ABELE	98B	CBAR		$0.0 \bar{p} n \rightarrow \pi^{-} \pi^{0} \eta$
385	± 40	+ 65 +-105		4 THOMPS	97	MPS		$18 \pi^{-} p \rightarrow \eta \pi^{-} p$

143.2 ± 12.5	${ }^{5}$ AOYAGI	93	BKEI
180 ± 20	${ }^{6}$ ALDE	88B	GAM4

${ }^{4}$ Resolution is not unfolded, natural parity exchange, questioned by DZIERBA 03.
${ }^{5}$ Unnatural parity exchange.
${ }^{6}$ Seen in the P_{0}-wave intensity of the $\eta \pi^{0}$ system, unnatural parity exchange.

$\pi_{1}(1400)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\eta \pi^{0}$	seen
Γ_{2}	$\eta \pi^{-}$	seen
Γ_{3}	$\eta^{\prime} \pi$	
Γ_{4}	$\rho(770) \pi$	not seen

π_{1} (1400) BRANCHING RATIOS
$\Gamma\left(\eta \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{1 / \Gamma}$
VALUE DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

not seen	PROK	95B	GAM4		$\begin{gathered} 100 \pi^{-} p \rightarrow \\ \eta \pi^{0} n \end{gathered}$
not seen	7 BUGG	94	RVUE		$\bar{p} p \rightarrow \eta 2 \pi^{0}$
not seen	${ }^{8}$ APEL	81	NICE	0	$40 \pi^{-} p \rightarrow$

${ }^{7}$ Using Crystal Barrel data.
${ }^{8}$ A general fit allowing S, D, and P waves (including $m=0$) is not done because of limited statistics.

$\Gamma\left(\eta \pi^{-}\right) / \Gamma_{\text {total }}$				$\Gamma 2 / \Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT	
We do not use the following data for averages, fits, limits, etc. - -				
possibly seen	BELADIDZE	VES	$37 \pi^{-} N \rightarrow \eta \pi^{-} N$	

$\eta(1405) \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$
See also the $\eta(1475)$.
See the related review(s):
Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region

$\eta(1405)$ MASS

VALUE (MeV)
DOCUMENT ID
1408.8 \pm 2.0 OUR AVERAGE Includes data from the 2 datablocks that follow this one Error includes scale factor of 2.2. See the ideogram below.

$\eta \pi \pi$ MODE
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { The data in this block is included in }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { for average printed }} \frac{\text { COMMENT }}{\text { forious datablock. }}$

$K \bar{K} \pi$ MODE ($a_{0}(980) \pi$ or direct $K \bar{K} \pi$)

The data in this block is included in the average printed for a previous datablock
1413.9士 1.7 OUR AVERAGE Error includes scale factor of 1.1.

4π MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$1420 \pm 20 \quad$ BUGG 95 MRK3 $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ $1489 \pm 12 \quad 3270 \quad 1$ BISELLO $\quad 89 \mathrm{DM} 2 \quad \mathrm{~J} / \psi \rightarrow 4 \pi \gamma$
${ }^{1}$ Estimated by us from various fits

$K \bar{K} \pi$ MODE (unresolved)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN COMMENT	
- We do	use the	owing data for	ge	fits,	ts, etc.
1452.7 ± 3.3	191	1,2 ABLIKIM	13M	BES3	$\psi(2 S) \rightarrow \omega K K \pi$
1437.6 ± 3.2	249 ± 35	1,2 ABLIKIM	08E	BES2	$J / \psi \rightarrow \omega K_{S}^{0} K^{+} \pi^{-}+$c.c.
1445.9 ± 5.7	62 ± 18	1,2 ABLIKIM	08E	BES2	$J / \psi \rightarrow \omega K^{+} K^{-} \pi^{0}$
1442 ± 10	410	${ }^{1} \mathrm{BAI}$	98C	BES	$J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
1445 ± 8	693	${ }^{1}$ AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
1433 ± 8	296	${ }^{1}$ AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
1413 ± 8	500	${ }^{1} \mathrm{DUCH}$	89	ASTE	$\bar{p} p \rightarrow \pi^{+} \pi^{-} K^{ \pm} \pi^{\mp} K^{0}$
1453 ± 7	170	${ }^{1}$ RATH	89	MPS	$21.4 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} \pi^{0} n$
1419 ± 1	8800	${ }^{1}$ BIRMAN	88	MPS	$8 \pi^{-} p \rightarrow K^{+} \bar{K}^{0} \pi^{-} n$
1424 ± 3	620	${ }^{1}$ REEVES	86	SPEC	$6.6 p \bar{p} \rightarrow K \bar{K} \pi \mathrm{X}$
1421 ± 2		${ }^{1}$ CHUNG	85	SPEC	$8 \pi^{-} p \rightarrow K \bar{K} \pi n$
$1440 \begin{aligned} & +20 \\ & -15\end{aligned}$	174	${ }^{1}$ EDWARDS	82E	CBAL	$J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$

Meson Particle Listings
η（1405）

| 1440 | ${ }_{-15}^{10}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1425 | ± 7 | 800 | ${ }^{1}$ SCHARRE | 80 | MRK2 $\quad J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi \mp$ |
| 1,3 | | | | | |

${ }^{1}$ These experiments identify only one pseudoscalar in the 1400－1500 range．Data could also refer to $\eta(1475)$
${ }^{2}$ Systematic uncertainty not evaluated．
${ }^{3}$ From best fit of 0^{-+}partial wave， $50 \% K^{*}(892) K, 50 \% a_{0}(980) \pi$ ．

$\eta(1405)$ WIDTH

50.1 ± 2.6 OUR AVERAGE Includes data from the 2 datablocks that follow this one．Er－ ror includes scale factor of 1．7．See the ideogram below．

η（1405）width（MeV）
$\boldsymbol{\eta} \pi \pi$ MODE
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock．
52．6 \pm 3．2 OUR AVERAGE Error includes scale factor of 1．3．See the ideogram below．

48.3 ± 5.2	743	ABLIKIM	12E	BES3	$J / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
55.0 ± 11.0	198	ABLIKIM	12E	BES3	$J / \psi \rightarrow \gamma\left(\pi^{0} \pi^{0} \pi^{0}\right)$
$52.8 \pm 7.6_{-7.6}^{+0.1}$		${ }^{1}$ ABLIKIM	11」	BES3	$J / \psi \rightarrow \omega\left(\eta \pi^{+} \pi^{-}\right)$
55 ± 11	900	AMSLER	04B	CBAR	$0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \eta$
55 ± 12	6．6k	AMSLER	04B	CBAR	$0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \gamma$
80 ± 21	9．0k	MANAK	00A	MPS	$18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
85 ± 18	2．2k	ALDE	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
47 ± 13		2 BOLTON	92B	MRK3	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
59 ± 4		FUKUI	91C	SPEC	$8.95 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
53 ± 11		${ }^{3}$ AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
31 ± 7		ANDO	86	SPEC	$8 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$

－－We do not use the following data for averages，fits，limits，etc．－．－
$79.0 \pm 16.0 \quad 195 \quad$ ABLIKIM 19BA BES3 $e^{+} e^{-} \rightarrow \psi(2 S) \quad$｜ $86 \pm 10 \quad{ }^{4}$ AMSLER $\quad 95 \mathrm{~F}$ CBAR $0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta$

η（1405）width $\eta \pi \pi$ mode（ MeV ）
${ }^{1}$ The selected process is $J / \psi \rightarrow \omega a_{0}(980) \pi$ ．
${ }^{2}$ From fit to the $a_{0}(980) \pi 0^{-+}$partial wave．
${ }^{3}$ From $\eta \pi^{+} \pi^{-}$mass distribution－mainly $a_{0}(980) \pi$－no spin－parity determination avail－ 4 able．
${ }^{4}$ Superseded by AMSLER 04B．

$K \bar{K} \pi$ MODE（ $a_{0}(980) \pi$ or direct $K \bar{K} \pi$ ）

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock．
48土 4 OUR AVERAGE Error includes scale factor of 2．1．See the ideogram below．

51 ± 6	3651	1 NICHITIU	02	Oblx	$0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
$42 \pm 10 \pm 9$	20k	ADAMS	01B	B852	$18 \mathrm{GeV} \pi^{-} p \rightarrow K^{+} K^{-} \pi^{0} n$
50 ± 4		CICALO	99	OBLX	$0 \bar{p} p \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp} \pi^{+} \pi^{-}$
48 ± 5		${ }^{2}$ BERTIN	97	Oblx	$0.0 \bar{p} p \rightarrow K^{ \pm}\left(K^{0}\right) \pi^{\mp} \pi^{+} \pi^{-}$
50 ± 4		${ }^{2}$ bertin	95	OBLX	$0 \bar{p} p \rightarrow K \bar{K} \pi \pi \pi$
75 ± 9		AUGUSTIN	92	DM2	$J / \psi \rightarrow \gamma K \bar{K} \pi$
$\begin{aligned} & 91_{-31}^{+67+38}+15 \end{aligned}$		${ }^{3} \mathrm{BAI}$	90 C	MRK3	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
19 ± 7		${ }^{3}$ RATH	89	MPS	$21.4 \pi^{-} p \rightarrow n K_{S}^{0} K_{S}^{0} \pi^{0}$

${ }^{1}$ Decaying dominantly directly to $K^{+} K^{-} \pi^{0}$ ．
${ }^{2}$ Decaying into $(K \bar{K})_{S} \pi,(K \pi)_{S} \bar{K}$ ，and $a_{0}(980) \pi$ ．
${ }^{3}$ From fit to the $a_{0}(980) \pi 0^{-+}$partial wave ，but $a_{0}(980) \pi 1^{++}$cannot be excluded．

$\eta(1405)$ width $K \bar{K} \pi$ mode（ $a_{0}(980) \pi$ dominant）(MeV)
$\pi \pi \gamma$ MODE
$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{8 9} \mathbf{1 7} \text { EVRS }}$ DVERAGE DOCUMENT ID TECN COMMENT

89 ± 17 OUR AVERAGE Error includes scale factor of 1.7

$64 \pm 18 \quad 235 \pm 91 \quad$ AMSLER \quad 04B CBAR $0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$
$101.0 \pm 8.8 \pm 8.8 \quad 547 \quad$ BAI \quad 04」 BES2 $\mathrm{J} / \psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$
\bullet We do not use the following data for averages，fits，limits，etc．$\bullet \bullet$
$174 \pm 44 \quad$ AUGUSTIN 90 DM2 $J / \psi \rightarrow \pi^{+} \pi^{-} \gamma \gamma$
$90 \pm 26 \quad{ }^{1}$ COFFMAN 90 MRK3 $\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-}{ }^{2 \gamma}$
${ }^{1}$ This peak in the $\gamma \rho$ channel may not be related to the $\eta(1405)$ ．

4π MODE

VALUE（MeV）EVTS DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •

$K \bar{K} \pi$ MODE（unresolved）

VALUE（MeV）	EVTS	DOCUMENT ID		TECN	COMMENT
－We do	use the	lowing data for	ages	fits，	its，et
45.9 ± 8.2	191	1，2 ABLIKIM	13m	BES3	$\psi(2 S) \rightarrow \omega K K \pi$
48.9 ± 9.0	249 ± 35	1，2 ABLIKIM	08E	BES2	$J / \psi \rightarrow \omega K_{S}^{0} K^{+} \pi^{-}+$c．c．
34.2 ± 18.5	62 ± 18	1，2 ABLIKIM	08E	BES2	$J / \psi \rightarrow \omega K^{+} K^{-} \pi^{0}$
93 ± 14	296	1 AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
105 ± 10	693	${ }^{1}$ AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
62 ± 16	500	${ }^{1}$ DUCH	89	ASTE	$\bar{p} p \rightarrow K \bar{K} \pi \pi \pi$
100 ± 11	170	${ }^{1}$ RATH	89	MPS	$21.4 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} \pi^{0}$
66 ± 2	8800	${ }_{1}^{1}$ BIRMAN	88	MPS	$8 \pi^{-} p \rightarrow K^{+} \bar{K}^{0} \pi^{-} n$
60 ± 10	620	${ }^{1}$ REEVES	86	SPEC	$6.6 p \bar{p} \rightarrow K K \pi X$
60 ± 10		${ }^{1}$ CHUNG	85	SPEC	$8 \pi^{-} p \rightarrow K \bar{K} \pi n$
55 -30	174	1 EDWARDS	82E	CBAL	$J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{0}$
50 +20 -20		${ }^{1}$ SCHARRE	80	MRK2	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
80 ± 10	800	1，3 BAILLON	67	HBC	$0.0 \bar{p} p \rightarrow K \bar{K} \pi \pi \pi$

${ }^{1}$ These experiments identify only one pseudoscalar in the $1400-1500$ range．Data could also refer to $\eta(1475)$ ．
${ }^{2}$ Systematic uncertainty not evaluated．
${ }^{3}$ From best fit to 0^{-+}partial wave， $50 \% K^{*}(892) K, 50 \% a_{0}(980) \pi$ ．

	$\boldsymbol{\eta}(\mathbf{1 4 0 5})$ DECAY MODES		
		Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
	Mode	seen	
Γ_{1}	$K \bar{K} \pi$	seen	
Γ_{2}	$\eta \pi \pi$	seen	
Γ_{3}	$a_{0}(980) \pi$	seen	
Γ_{4}	$\eta(\pi \pi) S$-wave	not seen	
Γ_{5}	$f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	seen	
Γ_{6}	$f_{0}(980) \eta$	seen	
Γ_{7}	4π		
Γ_{8}	$\rho \rho$		
Γ_{9}	$\gamma \gamma$	seen	
Γ_{10}	$\rho^{0} \gamma$		
Γ_{11}	$\phi \gamma$	seen	
Γ_{12}	$K^{*}(892) K$		

$\eta(1405) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$
$\Gamma(K \bar{K} \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{1} \Gamma_{9} / \Gamma$
 $<0.035 \quad 90 \quad 1,2 \mathrm{AHOHE} \quad 05$ CLE2 $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K^{ \pm} \pi^{\mp}$ 1 Using $\eta(1405)$ mass and width 1410 MeV and 51 MeV , respectively. ${ }^{2}$ Assuming three-body phase-space decay to $K_{S}^{0} K^{ \pm} \pi^{\mp}$.
$\Gamma(\eta \pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{2} \Gamma_{9} / \Gamma$
$\frac{\operatorname{VALUE}(\mathrm{keV})}{<\mathbf{0 . 0 9 5}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { ACCIARRI } 01 \mathrm{G}} \frac{\text { TECN }}{\mathrm{L} 3} \frac{\text { COMMENT }}{183-202 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \pi^{+} \pi^{-}}$
VALUE (keV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$<1.5 \quad 95 \quad$ ALTHOFF \quad 84E TASS $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-} \gamma$
$\eta(1405)$ BRANCHING RATIOS

$\Gamma(\eta \pi \pi) / \Gamma(K \bar{K} \pi)$				Γ_{2} / Γ_{1}	
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
1.09 ± 0.48		${ }^{1}$ AMSLER	04B	CBAR	$0 \bar{p} p \rightarrow \pi^{+}$
- - We do not use	fo	g data for ave	es,	, limi	etc.
<0.5	90	EDWARDS	83B	CBAL	$J / \psi \rightarrow \eta \pi \pi \gamma$
<1.1	90	SCHARRE	80	MRK2	$J / \psi \rightarrow \eta \pi \pi \gamma$
<1.5	95	FOSTER	68B	HBC	$0.0 \bar{p} p$

${ }^{1}$ Using the data of BAILLON 67 on $\bar{p} p \rightarrow K \bar{K} \pi$.

| $\boldsymbol{\Gamma}\left(\boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \Gamma(\boldsymbol{\eta} \boldsymbol{\pi} \boldsymbol{\pi})$ | | |
| :--- | :--- | :--- | :--- | :--- |
| $\frac{V A L U E}{}$ | | |
| $\mathbf{0 . 1 1 1 \pm \mathbf { 0 . 0 6 4 }}$ | DOCUMENT ID
 AMSLER$\frac{\boldsymbol{\Gamma}_{\mathbf{1 0}} / \boldsymbol{\Gamma}_{\mathbf{2}}}{\text { 04B }} \frac{\text { TECN }}{\text { CBAR }} \frac{\text { COMMENT }}{0 \bar{p} p}$ | |

- - We do not use the following data for averages, fits, limits, etc. - -

~ 0.15		1 BERTIN		OBLX 0	$0 \bar{p} p \rightarrow K$			
~ 0.8	500	1 DUCH		ASTE \bar{p}	$\bar{p} p \rightarrow \pi^{+} \pi^{-}$	$\pi \mp K^{0}$		
~ 0.75		1 REEVES	86	SPEC 6.	$6.6 p \bar{p} \rightarrow K$			
${ }^{1}$ Assuming that the $a_{0}(980)$ decays only into $K \bar{K}$.								
$\Gamma\left(a_{0}(980) \pi\right) / \Gamma(\eta \pi \pi)$				Γ_{3} / Γ_{2}				
VALUE	EVTS	DOCUMENT		TECN CO	COMMENT			
- - We do not use the following data for averages, fits, limits, etc. - -								
0.29 ± 0.10		ABELE		CBAR $0 p \bar{p} \rightarrow \eta \pi^{0} \pi^{0} \pi^{0}$				
0.19 ± 0.04		1 ALDE 97B		GAM4 $100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$				
$0.56 \pm 0.04 \pm 0.03$		${ }^{1}$ AMSLER		CBAR $0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \eta$				
${ }^{1}$ Assuming that the $a_{0}(980)$ decays only into $\eta \pi$.								
$\Gamma\left(a_{0}(980) \pi\right) / \Gamma\left(\eta(\pi \pi) S_{S-w a v e}\right)$				Γ_{3} / Γ_{4}				
VALUE	EVTS	DOCUMENT ID		TECN COMMENT				
- - We do not use the following data for averages, fits, limits, etc. - -								
0.91 ± 0.12		ANISOVICH 01		SPEC $0.0 \bar{p} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{+} \pi^{-}$				
0.15 ± 0.04	9082	1 MANAK		MPS 1	$18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$			
$0.70 \pm 0.12 \pm 0.20$		${ }^{2} \mathrm{BAI}$	99	BES J	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$			
${ }_{1}^{1}$ Statistical error only.								
$\left.\underset{\text { VALUE }}{\boldsymbol{\Gamma}} \mathrm{\rho}^{\mathbf{0}} \gamma\right) / \Gamma(K \bar{K} \pi)$		DOCUMENT ID		TECN	Γ_{10} / Γ_{1}			
		N COMMENT						
0.0152 ± 0.0038				${ }^{1}$ COFFMAN		90 MRK3	K3 $\mathrm{J} / \psi \rightarrow$	
$\begin{gathered} { }^{1} \text { Using } \mathrm{B}(\mathrm{~J} / \psi \\ \left.\gamma \gamma \rho^{0}\right)=6.4 \times \end{gathered}$	${ }_{-5}^{\gamma \eta(1}$	$\rightarrow \gamma K \bar{K}$		10^{-3} and	$\mathrm{B}(J / \psi \rightarrow$	$\text { 1405) } \rightarrow$		

Meson Particle Listings
$h_{1}(1415), a_{1}(1420), f_{1}(1420)$

$a_{1}(1420)$ WIDTH

$a_{1}(1420)$ DECAY MODES

See the review on "Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region."

$f_{1}(1420)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1426.3土 0.9 OUR AVERAGE		Error includes scale factor of 1.1.			
$1434 \pm 5 \pm 5$	133	${ }^{1}$ ACHARD	07	L3	$\begin{aligned} & 183-209 e^{+} e^{-} \rightarrow \\ & e^{+} e^{-} k_{G}^{k_{c}^{0}} k^{ \pm} \pi^{\mp} \end{aligned}$
1426 ± 6	711	ABDALLAH	03H	DLPH	$\begin{aligned} & 91.2 e_{S}^{+}{e^{ \pm}}^{-} \vec{\mp} \vec{\mp} \end{aligned}+x$
1420 ± 14	3651	NICHITIU	02	OBLX	$\begin{array}{r} 0 \bar{p} p \\ K^{+}+K^{-} \pi^{+} \pi^{-} \pi^{0} \end{array}$
$1428 \pm 4 \pm 2$	20k	ADAMS	01B	B852	$\begin{gathered} 18 \mathrm{GeV} \pi^{-} p \rightarrow \\ K^{+} K^{-} \pi^{0}{ }_{n} \end{gathered}$
1426 ± 1		BARBERIS	97C	OMEG	${ }_{p p K_{S}^{0}}^{450 p p \rightarrow K^{\mp}}$
1425 ± 8		BERTIN	97	OBLX	
1430 ± 4		${ }^{2}$ ARMSTRONG	92E	OMEG	$\begin{gathered} 85,300 \pi^{+} p, p p \rightarrow \\ \pi^{+} p, p p(K \bar{K} \pi) \end{gathered}$
1462 ± 20		${ }^{3}$ AUGUSTIN	92	DM2	$J / \psi \rightarrow \gamma K \bar{K} \pi$
$1443 \pm 7 \pm 3$	1100	BAI	90 C	MRK3	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
1425 ± 10	17	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$1442 \pm 5{ }_{-17}^{+10}$	111	BECKER	87	MRK3	$e^{+} e^{-}, \omega K \bar{K} \pi$
1423 ± 4		GIDAL	87B	MRK2	e^{+}
1417 ± 13	13	AIHARA	86 C	TPC	$\begin{aligned} & e^{-} e^{-} K \bar{K} \pi \end{aligned}$
1422 ± 3		CHAUVAT	84	SPEC	ISR 31.5 pp
1440 ± 10		${ }^{4}$ BROMBERG	80	SPEC	$100 \pi^{-} p \rightarrow K \bar{K} \pi \mathrm{X}$
1426 ± 6	221	DIONISI	80	HBC	$4 \pi^{-} p \rightarrow K \bar{K} \pi n$
1420 ± 20		DAHL	67	HBC	1.6-4.2 $\pi^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -					
1430.8 ± 0.9		${ }^{5}$ SOSA	99	SPEC	$\begin{aligned} & p p \rightarrow p_{\text {slow }} \\ & \quad\left(K_{S}^{0} K^{+} \pi^{-}\right) p_{\text {fast }} \end{aligned}$
1433.4 ± 0.8		${ }^{5}$ SOSA	99	SPEC	$\begin{aligned} & p p \rightarrow p_{\text {slow }} \\ & \left(K_{S}^{0} K^{-} \pi^{+}\right) p_{\text {fast }} \end{aligned}$
1435 ± 9		PROKOSHKIN	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0}{ }_{n}$
1429 ± 3	389	ARMSTRONG	89	OMEG	300 pp $\rightarrow K \bar{K} \pi p p$
1425 ± 2	1520	ARMSTRONG	84	OMEG	$\begin{aligned} & 85 \pi^{+} p, p p \rightarrow \\ & \quad\left(\pi^{+}, p\right)(K \vec{K} \pi) p \end{aligned}$
~ 1420		BITYUKOV	84	SPEC	$\begin{gathered} 32 K^{-} p \rightarrow \\ K^{+} K^{-} \pi^{0} Y \end{gathered}$
${ }^{1}$ From a fit with a width fixed at 55 MeV . ${ }^{2}$ This result supersedes ARMSTRONG 84, ARMSTRONG 89. ${ }^{3}$ From fit to the $K^{*}(892) K 1++$ partial wave. ${ }^{4}$ Mass error increased to account for $a_{0}(980)$ mass cut uncertainties. ${ }^{5}$ No systematic error given.					

$f_{1}(1420)$ WIDTH					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
54.5 \ddagger 2.6 OUR AVERAGE					
51 ± 14	711	ABDALLAH		DLPH	$\begin{aligned} & 91.2 e^{+} e^{-} \vec{S} \\ & K_{S}^{0} K^{\mp} \end{aligned}+X$
61 ± 8	3651	NICHITIU	02	OBLX	$\begin{aligned} & 0 \bar{p} p \xrightarrow[K^{+}]{ }{ }^{-} \pi^{+} \pi^{-} \pi^{0} \end{aligned}$
$38 \pm 9 \pm 6$	20k	ADAMS	01B	B852	$\begin{gathered} 18 \mathrm{GeV} \pi^{-} p \rightarrow \\ K^{+} K^{-} \pi^{0}{ }_{n} \end{gathered}$
58 ± 4		BARBERIS	97C	OMEG	$\begin{aligned} & 450 p p \rightarrow \\ & \quad p p K_{S}^{0} K^{ \pm} \pi^{\mp} \end{aligned}$
45 ± 10		BERTIN	97	OBLX	$\begin{aligned} & 0.0 \bar{p} p \rightarrow \\ & K^{ \pm}\left(K^{0}\right) \pi^{\mp} \pi^{+} \pi^{-} \end{aligned}$
58 ± 10		${ }^{6}$ ARMSTRONG		OMEG	$\begin{gathered} 85,300 \pi^{+} p, p p \rightarrow \\ \pi^{+} p, p p(K \bar{K} \pi) \end{gathered}$
129 ± 41		7 AUGUSTIN	92	DM2	$J / \psi \rightarrow \gamma K \bar{K} \pi$
$68 \begin{array}{ll}+29 & +8 \\ -18 & -9\end{array}$	1100	BAI	90C	MRK3	$J / \psi \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
42 ± 22	17	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$40 \begin{array}{r}+17 \\ -13\end{array}$	111	BECKER	87	MRK3	$e^{+} e^{-} \rightarrow \omega K \bar{K} \pi$
35 $\begin{aligned} & +47 \\ & -20\end{aligned}$	13	AIHARA	86C	TPC	$\begin{aligned} & e^{+} e^{-} \rightarrow \overrightarrow{e^{+}} k \bar{K} \pi \end{aligned}$
47 ± 10		CHAUVAT	84	SPEC	ISR $31.5 p p$
62 ± 14		BROMBERG	80	SPEC	$100 \pi^{-} p \rightarrow K \bar{K} \pi \times$
40 ± 15	221	DIONISI	80	HBC	$4 \pi^{-} p \rightarrow K \bar{K} \pi n$
60 ± 20		DAHL	67	HBC	1.6-4.2 $\pi^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -					
68.7 ± 2.9		${ }^{8}$ SOSA	99	SPEC	$\begin{aligned} & p p \rightarrow p_{\text {slow }} \\ & \quad\left(K_{S}^{0} K^{+} \pi^{-}\right) p_{\text {fast }} \end{aligned}$
58.8 ± 3.3		8 SOSA	99	SPEC	$\begin{aligned} & p p \rightarrow p_{\text {slow }} \\ & \quad\left(K_{S}^{0} K^{-} \pi^{+}\right) p_{\text {fast }} \end{aligned}$
90 ± 25		PROKOSHKIN	97B	GAM4	$100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$
58 ± 8	389	ARMSTRONG	89	OMEG	$300 p p \rightarrow K \bar{K} \pi p p$
62 ± 5	1520	ARMSTRONG	84	OMEG	$\begin{aligned} & 85 \pi^{+} p, p p \rightarrow \\ & \quad\left(\pi^{+}, p\right)(K \bar{K} \pi) p \end{aligned}$
~ 50		BITYUKOV	84	SPEC	$\begin{aligned} & 32 K^{-} p \rightarrow \\ & K^{+} K^{-} \pi^{0} Y \end{aligned}$
${ }^{6}$ This result supersedes ARMSTRONG 84, ARMSTRONG 89. ${ }^{7}$ From fit to the $K^{*}(892) K 1^{+}+$partial wave. ${ }^{8}$ No systematic error given.					

$f_{1}(1420)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K} \pi$	seen
Γ_{2}	$\bar{K}^{*}(892)+$ c.c.	seen
Γ_{3}	$\eta \pi \pi$	possibly seen
Γ_{4}	$a_{0}(980) \pi$	
Γ_{5}	$\pi \pi \rho$	
Γ_{6}	4π	
Γ_{7}	$\rho^{0} \gamma$	seen
Γ_{8}	$\phi \gamma$	

$f_{1}(1420) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma$ (total)

$\Gamma(K \bar{K} \pi) \times \Gamma\left(\gamma \gamma^{*}\right) / \Gamma_{\text {total }}$

VALUE (keV)	CL\% EVTS	DOCUMENT ID		TECN	COMMENT
1.9 ± 0.4 OUR AVERAGE					
$3.2 \pm 0.6 \pm 0.7$	133	9,10 ACHARD	07	L3	$\begin{aligned} & 183-209 e^{+} e^{-} \rightarrow \overrightarrow{ } \\ & e^{+} e^{-} K_{S}^{0} K^{ \pm} \mp \end{aligned}$
$3.0 \pm 0.9 \pm 0.7$		11,12 BEHREND	89	CELL	$e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K \pi$
$2.3{ }_{-0.9}^{+1.0} \pm 0.8$		HILL	89	JADE	$\begin{aligned} & e^{+} e^{-} \rightarrow \overrightarrow{e^{-}} K^{ \pm} K_{S}^{0} \pi^{\mp} \end{aligned}$
$1.3 \pm 0.5 \pm 0.3$		AIHARA	88B	TPC	$\begin{aligned} & e^{+} e^{-} \rightarrow \overrightarrow{e^{+}} e^{ \pm} K_{S}^{0} \pi^{\mp} \end{aligned}$
$1.6 \pm 0.7 \pm 0.3$		11,13 GIDAL	87B	MRK2	$e^{+} e^{-} \rightarrow e^{+} e^{-} K \bar{K} \pi$

- - We do not use the following data for averages, fits, limits, etc. - - -
<8.0 95 JENNI 83 MRK2 $e^{+} e^{-} \rightarrow e^{+} e^{-} K \bar{K} \pi$
${ }^{9}$ From a fit with a width fixed at 55 MeV .
10 The form factor parameter from the fit is $926 \pm 78 \mathrm{MeV}$
11 Assume a ρ-pole form factor.
${ }^{12} \mathrm{~A} \phi$ - pole form factor gives considerably smaller widths.
13 Published value divided by 2 .

$f_{1}(1420)$ BRANCHING RATIOS				
$\Gamma\left(K \bar{K}^{*}(892)+\right.$ c.c. $) / \Gamma(K \bar{K} \pi)$				
VALUE	DOCUMENT ID	TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -				
0.76 ± 0.06	BROMBERG	SPEC	$100 \pi^{-} p$	$\bar{K} \pi \times$
0.86 ± 0.12	DIONISI	HBC	$4 \pi^{-} p \rightarrow$	

$\Gamma(\pi \pi \rho) / \Gamma(K \bar{K} \pi)$
VALUE CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

<0.3	95	CORDEN	78	OMEG	$12-15 \pi^{-} p$
<2.0		DAHL	67	HBC	1.6-4.2 $\pi^{-} p$
$\Gamma(\eta \pi \pi) / \Gamma(K \bar{K} \pi)$					
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
<0.1	95	ARMSTRON	91B	OMEG	300 pp \rightarrow
- - We do not use the following data for averages, fits, limits, etc. - -					
1.35 ± 0.75		KOPKE	89	MRK3	$J / \psi \rightarrow \omega \eta \pi$
<0.6	90	GIDAL	87	MRK2	$e^{+} e_{e^{+}}^{-} e^{-} \eta \pi \pi^{-}$
<0.5	95	CORDEN	78	OMEG	12-15 $\pi^{-} p$
1.5 ± 0.8		DEFOIX	72	HBC	$0.7 \bar{p} p$

$\Gamma\left(a_{0}(980) \pi\right) / \Gamma(\eta \pi \pi)$
VALUE COCUMENT ID $\frac{\text { CL\% }}{\text { TECN COMMENT }}$
$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
>0.1
$90 \quad$ PROKOSHKIN 97B GAM4 $100 \pi^{-} p \rightarrow \eta \pi^{0} \pi^{0} n$

not seen in either mode	ANDO	86	SPEC $8 \pi^{-} p$	
not seen in either mode	CORDEN	78	OMEG $12-15 \pi^{-} p$	
$0.4+0.2$	DEFOIX	72	HBC	$0.7 \bar{p} p \rightarrow 7$

$\Gamma(4 \pi) / \Gamma\left(K \bar{K}^{*}(892)+\right.$ c.c. $) \quad \Gamma_{6} / \Gamma_{\mathbf{2}}$
$\frac{\text { VALUE }}{\bullet \bullet \text { We do not use the }} \frac{\text { CL\% }}{\text { following data for averages, fits, limits, etc. • • }} \frac{\text { TECN }}{\text { COMMENT }}$
$\Gamma(K \bar{K} \pi) /\left[\Gamma\left(K \overline{K^{*}}(892)+\right.\right.$ c.c. $\left.)+\Gamma\left(a_{0}(980) \pi\right)\right] \quad \Gamma_{1} /\left(\Gamma_{2}+\Gamma_{4}\right)$
VALUE DOCUMENT ID _TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
${ }^{14}$ Calculated using $\Gamma(K \bar{K}) / \Gamma(\eta \pi)=0.24 \pm 0.07$ for $a_{0}(980)$ fractions.

- - We do not use the following data for averages, fits, limits, etc. -
$<0.04 \quad 68 \quad$ ARMSTRONG 84 OMEG $85 \pi^{+} p$

$\Gamma(4 \pi) / \Gamma(K \bar{K} \pi)$					Γ_{6} / Γ_{1}
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.62	95	ARMSTRONG 89G	OMEG	$85 \pi p \rightarrow 4 \pi \mathrm{X}$	
$\Gamma\left(\rho^{0} \gamma\right) / \Gamma_{\text {total }}$					Γ_{7} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.08	95	ARMSTRONG 92C	SPEC	$300 p p \rightarrow p p \pi$	${ }^{+} \pi^{-} \gamma$

${ }^{15}$ Using the data on the $\bar{K} K \pi$ mode from ARMSTRONG 89.

$\Gamma\left(\rho^{0} \gamma\right) / \Gamma(K \bar{K} \pi)$						Γ_{7} / Γ_{1}
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
<0.02	95	BARBERIS	98C	OMEG	450 pp \rightarrow	
					$p_{f} f_{1}(1$	

$\Gamma(\phi \gamma) / \Gamma(\kappa \bar{K} \pi)$
Γ_{8} / Γ_{1}
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 3} \mathbf{\pm 0 . 0 0 1} \mathbf{\pm 0 . 0 0 1}} \quad \frac{\text { DOCUMENT ID }}{\text { BARBERIS 98C }} \frac{\text { TECN }}{\text { OMEG }} \frac{\text { COMMENT }}{450 p p \rightarrow}$
$p_{f} f_{1}(1420) p_{S}$

2 From a fit with contributions from $\omega(782), \phi(1020), \omega(1420)$, and $\omega(1650)$.
${ }^{3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{4}$ Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and ANTONELLI 92.
${ }^{5}$ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho \pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
${ }^{6}$ Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.
${ }^{7}$ Using the data from ANTONELLI 92.
${ }^{8}$ Using the data from IVANOV 81 and BISELLO 88B.
${ }^{9}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
${ }^{10}$ From a fit to two Breit-Wigner functions interfering between them and with the ω, ϕ tails with fixed $(+,-,+)$ phases.

$\omega(1420)$ WIDTH

VALUE (MeV)
 EVTS
 DOCUMENT ID TECN COMMENT

290 ± 190 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - -

$104 \pm 35 \pm 10$	824	${ }^{1}$ AKHMETSHIN	17A	CMD3	$1.4-2.0 e^{+} e^{-} \rightarrow \omega \eta$
880 ± 170	13.1k	2 AULCHENKO	15A	SND	$\begin{gathered} 1.05-1.80 \\ \pi^{+}+\pi^{-} \\ \pi^{0} \end{gathered}$
480 ± 180		3 ACHASOV	10D	SND	$1.075-2.0 e^{+} e^{-} \rightarrow \pi^{0} \gamma$
$130 \pm 50 \pm 100$		AUBERT	07AU	BABR	$10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$
$450 \pm 70 \pm 70$		AUBERT,B	04N	BABR	$10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$
$870{ }_{-300}^{+500} \pm 450$	1.2M	${ }^{4}$ ACHASOV	03D	RVUE	$\begin{gathered} 0.44-2.00 \\ \pi^{+} \pi^{-} e_{\pi^{0}}^{+} e^{-} \rightarrow \end{gathered}$
199 ± 15		${ }^{5}$ HENNER	02	RVUE	$1.2-2.0 e^{+} e^{-} \rightarrow \rho \pi, \omega \pi$
188 ± 45	177	${ }^{6}$ AKHMETSHIN	00D	CMD2	$\begin{gathered} 1.2-1.38 e^{+} e^{-} \rightarrow \\ \omega \pi^{+} \pi^{-} \end{gathered}$
$360 \pm \begin{aligned} & +100 \\ & -60\end{aligned}$	5095	ANISOVICH	00H	SPEC	$0.0 p \bar{p} \rightarrow \omega \pi^{0} \pi^{0} \pi^{0}$
240 ± 70		${ }^{7}$ CLEGG	94	RVUE	
174 ± 59	315	${ }^{8}$ ANTONELLI	92	DM2	$1.34-2.4 e^{+} e^{-} \rightarrow \rho \pi$

${ }^{1}$ From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating.
${ }^{2}$ From a fit with contributions from $\omega(782), \phi(1020), \omega(1420)$, and $\omega(1650)$.
${ }^{3}$ From a fit of a VMD model with two effective resonances with masses of 1450 MeV and 1700 MeV to describe the excited vector states $\omega(1420), \rho(1450), \omega(1650)$, and $\rho(1700)$. Systematic errors not evaluated.
${ }^{4}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{5}$ Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and ANTONELLI 92.
${ }^{6}$ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho \pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
${ }^{7}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
${ }^{8}$ From a fit to two Breit-Wigner functions interfering between them and with the ω, ϕ tails with fixed $(+,-,+)$ phases.
$\boldsymbol{\Gamma}(\boldsymbol{\omega} \boldsymbol{\pi} \boldsymbol{\pi}) / \boldsymbol{\Gamma}_{\text {total }} \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units $\left.10^{-8}\right)$
\quad TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$19.7 \pm 5.7 \quad$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$
$1.9 \pm 1.9 \quad 1$ AKHMETSHIN OOD CMD2 $1.2-2.4 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-}$
${ }^{1}$ Using the data of AKHMETSHIN O0D and ANTONELLI 92. The $\rho \pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
$\Gamma(\omega \eta) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{3} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-8}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -

$2.1_{-0.8}^{+1.0}$		ACHASOV	19	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta$
$5.0 \pm 2.6 \pm 0.3$	824	1 AKHMETSHIN	17A	CMD3	$1.4-2.0 e^{+} e^{-} \rightarrow \omega \eta$
$1.6{ }_{-0.7}^{+0.9}$	898	2 ACHASOV	16B	SND	$1.34-2.00 e^{+} e^{-} \rightarrow \omega \eta$

${ }^{1}$ From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating. From an alternative fit $\Gamma(\omega(1420) \rightarrow \omega \eta) / \Gamma_{\text {total }} \times \Gamma(\omega(1420) \rightarrow$ $\left.e^{+} e^{-}\right)=5.3 \pm 1.6 \mathrm{eV}$.
${ }^{2}$ From a fit with contributions from $\omega(1420), \omega(1650)$, and $\phi(1680)$. The mass and the width of $\omega(1420)$ are fixed to the 2014 edition (PDG 14) of this review.

$\Gamma\left(\pi^{0} \gamma\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{6} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-8})	DOCUMENT ID	TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -				
0.23 ± 0.14	1 ACHASOV 10D	SND	1.075-2.0	${ }^{-} \rightarrow \pi^{0} \gamma$
$2.03_{-0.75}^{+0.70}$	2 AKHMETSHIN 05	CMD2	0.60-1.38	$e^{-} \rightarrow \pi^{0} \gamma$

${ }^{1}$ From a fit of a VMD model with two effective resonances with masses of 1450 MeV and 1700 MeV to describe the excited vector states $\omega(1420), \rho(1450), \omega(1650)$, and $\rho(1700)$. Systematic errors not evaluated.
${ }^{2}$ Using 1420 MeV and 220 MeV for the $\omega(1420)$ mass and width.

$\omega(\mathbf{1 4 2 0})$ BRANCHING RATIOS

$f_{2}(1430)$
$I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$
OMITTED FROM SUMMARY TABLE
This entry lists nearby peaks observed in the D wave of the $K \bar{K}$ and $\pi^{+} \pi^{-}$systems. Needs confirmation.

$f_{2}(1430)$ MASS

VALUE (MeV)
≈ 1430 OUR ESTIMATE
\qquad TECN COMMENT
≈ 1430 OUR ESTIMATE

1453 ± 4	${ }^{1}$ VLADIMIRSK... 01		SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
1421 ± 5	AUGUSTIN	87	DM2	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
1480 ± 50	AKESSON	86	SPEC	$p p \rightarrow p p \pi^{+} \pi^{-}$
$1436{ }_{-16}^{+26}$	DaUM	84	CNTR	17-18 $\pi^{-} p \rightarrow K^{+} K^{-} n$
1412 ± 3	DAUM	84	CNTR	$63 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n, K^{+} K^{-} n$
$1439+5$	${ }^{2}$ BEUSCH	67	OSPK	5,7,12 $\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
${ }_{1} J^{P C}=0$ ${ }^{2}$ Not seen				

$f_{2}(1430)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -				
13 ± 5	3 VLADIMIRS	.. 01	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
30 ± 9	AUGUSTIN	87	DM2	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
150 ± 50	AKESSON	86	SPEC	$p p \rightarrow p p \pi^{+} \pi^{-}$
$\begin{aligned} & 81+56 \\ & -29 \end{aligned}$	DAUM	84	CNTR	17-18 $\pi^{-} p \rightarrow K^{+} K^{-} n$
14 ± 6	DAUM	84	CNTR	$63 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n, K^{+} K^{-} n$
${ }_{43}^{+17} \begin{aligned} & \text {-18 }\end{aligned}$	${ }^{4} \mathrm{BEUSCH}$	67	OSPK	5,7,12 $\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$3 \jmath P C=0^{++} \text {or } 2^{++} .$ ${ }^{4}$ Not seen by WETZEL 76.				

$f_{2}(1430)$ DECAY MODES

	Mode
Γ_{1}	$K \bar{K}$
Γ_{2}	$\pi \pi$

$f_{2}(1430)$ REFERENCES

VLADIMIRSK... 01		PAN 641895Translated from YAF 64 1979. V Vladmirsky et al.		
AUGUSTIN	87			
AKESSON	86	NP B264 154	T. Akesson et al.	(Axial Field Spec. Collab.)
DAUM	84	ZPHY C23 339	C. Daum et al.	(AMST, CERN, CRAC, MPIM+) JP
WETZEL	76	NP B115 208	W. Wetzel et al.	(ETH, CERN, LOIC)
BEUSCH	67	PL 25B 357	W. Beusch et al.	(ETH, CERN)

$a_{0}(1450)$

$$
I^{G}\left(J^{P C}\right)=1^{-}\left(0^{++}\right)
$$

See the review on "Scalar Mesons below 2 GeV ."

$a_{0}(1450)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
1474 圭19	OUR AVERAGE					
1480 ± 30		ABELE	98	CBAR	$0.0 \bar{p} p \rightarrow$	$K^{0} K^{ \pm} \pi^{\mp}$
1470 ± 25		1 AMSLER	95D	CBAR	$0.0 \bar{p} p \rightarrow$	$\pi^{0} \pi^{0} \pi^{0}$,

$\pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta$

- - We do not use the following data for averages, fits, limits, etc. - -
$1458 \pm 14 \pm 15 \quad 190 \mathrm{k} \quad{ }^{2}$ AAIJ 16 N LHCB $D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi_{\pi}^{\mp}$
$1515 \pm 30 \quad 3$ ANISOVICH 09 RVUE $0.0 \bar{p} p, \pi N$
$1316.8_{-}^{+} 0.7+24.7 \quad 4$ UEHARA 09A BELL $\gamma \gamma \rightarrow \pi^{0} \eta$
$1432 \pm 13 \pm 25 \quad{ }^{5}$ BUGG 08A RVUE $\bar{p} p$
$1477 \pm 10 \quad 80 \mathrm{k} \quad{ }^{6}$ UMAN 06 E835 $5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
$1441 \begin{aligned} & +40 \\ & -15\end{aligned} \quad 35280 \quad{ }^{3}$ BAKER 03 SPEC $\bar{p} p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}$
$1303 \pm 16 \quad 7$ BARGIOTTI 03 OBLX $\bar{p} p$
$1296 \pm 10 \quad 8$ AMSLER 02 CBAR $0.9 \bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$
$1565 \pm 30 \quad{ }^{8}$ ANISOVICH 98B RVUE Compilation
$1290 \pm 10 \quad{ }^{9}$ BERTIN $\quad 98 \mathrm{~B}$ OBLX $0.0 \bar{p} p \rightarrow K^{ \pm} K_{S} \pi^{\mp}$
$1450 \pm 40 \quad$ AMSLER 94D CBAR $0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \eta_{\eta}$
$1410 \pm 25 \quad$ ETKIN $\begin{array}{lll} & \text { 82C MPS } 23 \pi^{-} p \rightarrow n 2 K_{S}^{0} \\ 1300\end{array}$
$\sim 1300 \quad$ MARTIN 78 SPEC $10 K^{ \pm} p \rightarrow K_{S}^{0} \pi p$
$1255 \pm 5 \quad 10$ CASON 76
${ }^{1}$ Coupled-channel analysis of AMSLER 95B, AMSLER 95c, and AMSLER 94D.
${ }^{2}$ Using a model with Gaussian constraints to the PDG averaged values
${ }^{3}$ From the pole position.
${ }^{4}$ May be a different state.
${ }^{5}$ Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.
${ }^{6}$ Statistical error only.
${ }^{7}$ Coupled channel analysis of $\pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}$, and $K^{ \pm} K_{S}^{0} \pi^{\mp}$
${ }^{8}$ T-matrix pole.
${ }^{9}$ Not confirmed by BUGG 08A.
${ }^{10}$ Isospin 0 not excluded.

$a_{0}(1450)$ WIDTH

Meson Particle Listings
$a_{0}(1450), \rho(1450)$

$\rho(1450)$

$$
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
$$

THE $\rho(1450)$ AND THE $\rho(1700)$

Updated September 2019 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Pisa).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the $1600-\mathrm{MeV}$ region actually contains two ρ-like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi \pi$ scattering length. Donnachie [2], with a full analysis of data on the 2π and 4π final states in $e^{+} e^{-}$annihilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta \rho^{0}$ mass spectra obtained in photoproduction and $e^{+} e^{-}$annihilation [3], as well as that of $e^{+} e^{-} \rightarrow \omega \pi$ [4].

The analysis of [2] was further extended by [5,6] to include new data on 4π-systems produced in $e^{+} e^{-}$annihilation, and in τ-decays (τ decays to 4π, and $e^{+} e^{-}$annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two ρ-like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \rightarrow 4 \pi$ were obtained, little could be said about the $\rho(1700)$.

Independent evidence for two 1^{-}states is provided by [7] in 4π electroproduction at $\left\langle Q^{2}\right\rangle=1(\mathrm{GeV} / c)^{2}$, and by [8] in a high-statistics sample of the $\eta \pi \pi$ system in $\pi^{-} p$ charge exchange.

This scenario with two overlapping resonances is supported by other data. Bisello [9] measured the pion form factor in the interval $1.35-2.4 \mathrm{GeV}$, and observed a deep minimum around 1.6 GeV . The best fit was obtained with the hypothesis of ρ-like resonances at 1420 and 1770 MeV , with widths of about 250 MeV . Antonelli [10] found that the $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$cross section is better fitted with two fully interfering Breit-Wigners, with parameters in fair agreement with those of [2] and [9]. These results can be considered as a confirmation of the $\rho(1450)$.

Decisive evidence for the $\pi \pi$ decay mode of both $\rho(1450)$ and $\rho(1700)$ comes from $\bar{p} p$ annihilation at rest [11]. It has been shown that these resonances also possess a $K \bar{K}$ decay mode [12-14]. . High-statistics studies of the decays $\tau \rightarrow \pi \pi \nu_{\tau}[15,16]$, and $\tau \rightarrow 4 \pi \nu_{\tau}[17]$ also require the $\rho(1450)$, but are not sensitive to the $\rho(1700)$, because it is too close to the τ mass. A recent very-high-statistics study of the $\tau \rightarrow \pi \pi \nu_{\tau}$ decay performed at Belle [18] reports the first observation of both $\rho(1450)$ and $\rho(1700)$ in τ decays. A clear picture of the two $\pi^{+} \pi^{-}$resonances interfering with the $\rho(770)$ in $e^{+} e^{-}$annihilation was also reported by BaBar using the ISR method [19].

The structure of these ρ states is not yet completely clear. Barnes [20] and Close [21] claim that $\rho(1450)$ has a mass
consistent with radial $2 S$, but its decays show characteristics of hybrids, and suggest that this state may be a $2 S$-hybrid mixture. Donnachie [22] argues that hybrid states could have a 4π decay mode dominated by the $a_{1} \pi$. Such behavior has been observed by [23] in $e^{+} e^{-} \rightarrow 4 \pi$ in the energy range $1.05-1.38 \mathrm{GeV}$, and by [17] in $\tau \rightarrow 4 \pi$ decays. CLEO [24] and Belle [25] observe the $\rho(1450) \rightarrow \omega \pi$ decay mode in B-meson decays, however, do not find $\rho(1700) \rightarrow \omega \pi^{0}$. A similar conclusion is made by $[26,27]$, who studied the process $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and do not observe a statistically significant signal of the $\rho(1700)$. Various decay modes of the $\rho(1450)$ and $\rho(1700)$ are observed in $\bar{p} n$ and $\bar{p} p$ annihilation $[28,29]$, but no definite conclusions can be drawn. More data should be collected to clarify the nature of the ρ states, particularly in the energy range above 1.6 GeV .

We now list under a separate entry the $\rho(1570)$, the $\phi \pi$ state with $J^{P C}=1^{--}$earlier observed by [30] (referred to as $C(1480)$) and recently confirmed by [31]. While [32] shows that it may be a threshold effect, [5] and [33] suggest two independent vector states with this decay mode. The $C(1480)$ has not been seen in the $\bar{p} p$ [34] and $e^{+} e^{-}[35,36]$ experiments. However, the sensitivity of the two latter is an order of magnitude lower than that of [31]. Note that [31] can not exclude that their observation is due to an OZIsuppressed decay mode of the $\rho(1700)$.

Several observations on the $\omega \pi$ system in the $1200-\mathrm{MeV}$ region [37-43] mmay be interpreted in terms of either $J^{P}=$ $1^{-} \rho(770) \rightarrow \omega \pi$ production [44], or $J^{P}=1^{+} b_{1}(1235)$ production $[42,43]$. We argue that no special entry for a $\rho(1250)$ is needed. The LASS amplitude analysis [45] showing evidence for $\rho(1270)$ is preliminary and needs confirmation. For completeness, the relevant observations are listed under the $\rho(1450)$.

Recently [46] reported a very broad 1^{--}resonance-like $K^{+} K^{-}$state in $J / \psi \rightarrow K^{+} K^{-} \pi^{0}$ decays. Its pole position corresponds to mass of 1576 MeV and width of 818 MeV . [47-49] ssuggest its exotic structure (molecular or multiquark), while [50] and [51] explain it by the interference between the $\rho(1450)$ and $\rho(1700)$. The latter statement is qualitatively supported by BaBar [52] and SND [53]. We quote [46] as $X(1575)$ in the section "Further States."

Evidence for ρ-like mesons decaying into 6π states was first noted by [54] in the analysis of 6π mass spectra from $e^{+} e^{-}$annihilation [55,56] and diffractive photoproduction [57]. Clegg [54] argued that two states at about 2.1 and 1.8 GeV exist: while the former is a candidate for the $\rho(2150)$, the latter could be a manifestation of the $\rho(1700)$ distorted by threshold effects. BaBar reported observations of the new decay modes of the $\rho(2150)$ in the channels $\eta^{\prime}(958) \pi^{+} \pi^{-}$and $f_{1}(1285) \pi^{+} \pi^{-}$ [58]. The relativistic quark model [59] predicts the $2^{3} D_{1}$ state with $J^{P C}=1^{--}$at 2.15 GeV which can be identified with the $\rho(2150)$.

We no longer list under a separate particle $\rho(1900)$ various observations of irregular behavior of the cross sections near the $N \bar{N}$ threshold. Dips of various width around 1.9

GeV were reported by the E687 Collaboration (a narrow one in the $3 \pi^{+} 3 \pi^{-}$diffractive photoproduction $[60,61]$), by the FENICE experiment (a narrow structure in the R value [62]) , by BaBar in ISR (a narrow structure in $e^{+} e^{-} \rightarrow \phi \pi$ final state [63], but much broader in $e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$ and $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ [64]), by CMD-3 (also a rather broad dip in $\left.e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}[65]\right)$. A dedicated scan of the $N \bar{N}$-threshold region by CMD-3 confirms this effect in the $e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$and $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$final states, but does not see it in the cross section of $e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}$[66]. Most probably, these structures emerge as a threshold effect due to the opening of the $N \bar{N}$ channel $[67,68,69]$.

References

1. C. Erkal, Z. Phys. C31, 615 (1986).
2. A. Donnachie and H. Mirzaie, Z. Phys. C33, 407 (1987).
3. A. Donnachie and A.B. Clegg, Z. Phys. C34, 257 (1987).
4. A. Donnachie and A.B. Clegg, Z. Phys. C51, 689 (1991).
5. A.B. Clegg and A. Donnachie, Z. Phys. C40, 313 (1988).
6. A.B. Clegg and A. Donnachie, Z. Phys. C62, 455 (1994).
7. T.J. Killian et al., Phys. Rev. D21, 3005 (1980).
8. S. Fukui et al., Phys. Lett. B202, 441 (1988).
9. D. Bisello et al., Phys. Lett. B220, 321 (1989).
10. A. Antonelli et al., Phys. Lett. B212, 133 (1988).
11. A. Abele et al., Phys. Lett. B391, 191 (1997).
12. A. Abele et al., Phys. Rev. D57, 3860 (1998).
13. A. Bertin et al., Phys. Lett. B434, 180 (1998).
14. A. Abele et al., Phys. Lett. B468, 178 (1999).
15. R. Barate et al., Z. Phys. C76, 15 (1997).
16. S. Anderson, Phys. Rev. D61, 112002 (2000).
17. K.W. Edwards et al., Phys. Rev. D61, 072003 (2000).
18. M. Fujikawa et al., Phys. Rev. D78, 072006 (2008).
19. J.P. Lees et al., Phys. Rev. D86, 032013 (2012).
20. T. Barnes et al., Phys. Rev. D55, 4157 (1997).
21. F.E. Close et al., Phys. Rev. D56, 1584 (1997).
22. A. Donnachie and Yu.S. Kalashnikova, Phys. Rev. D60, 114011 (1999).
23. R.R. Akhmetshin et al., Phys. Lett. B466, 392 (1999).
24. J.P. Alexander et al.,Phys. Rev. D64, 092001 (2001).
25. D. Matvienko et al.,Phys. Rev. D92, 012013 (2015).
26. R.R. Akhmetshin et al., Phys. Lett. B562, 173 (2003).
27. M.N. Achasov et al., Phys. Rev. D94, 112001 (2016).
28. A. Abele et al., Eur. Phys. J. C21, 261 (2001).
29. M. Bargiotti et al., Phys. Lett. B561, 233 (2003).
30. S.I. Bityukov et al., Phys. Lett. B188, 383 (1987).
31. B. Aubert et al., Phys. Rev. D77, 092002 (2008).
32. N.N. Achasov and G.N. Shestakov, Phys. Atom. Nucl. 59, 1262 (1996).
33. L.G. Landsberg, Sov. J. Nucl. Phys. 55, 1051 (1992).
34. A. Abele et al., Phys. Lett. B415, 280 (1997).
35. V.M. Aulchenko et al., Sov. Phys. JETP Lett. 45, 145 (1987).
36. D. Bisello et al., Z. Phys. C52, 227 (1991).
37. P. Frenkiel et al., Nucl. Phys. B47, 61 (1972).
38. G. Cosme et al., Phys. Lett. B63, 352 (1976).
39. D.P. Barber et al., Z. Phys. C4, 169 (1980).
40. D. Aston, Phys. Lett. B92, 211 (1980).
41. M. Atkinson et al., Nucl. Phys. B243, 1 (1984).
42. J.E. Brau et al., Phys. Rev. D37, 2379 (1988).
43. C. Amsler et al., Phys. Lett. B311, 362 (1993).
44. J. Layssac and F.M. Renard, Nuovo Cimento 6A, 134 (1971).
45. D. Aston et al., Nucl. Phys. (Proc. Supp.) B21, 105 (1991).
46. M. Ablikim et al., Phys. Rev. Lett. 97, 142002 (2006).
47. G.-J. Ding and M.-L. Yan, Phys. Lett. B643, 33 (2006).
48. F.K. Guo et al., Nucl. Phys. A773, 78 (2006).
49. A. Zhang et al., Phys. Rev. D76, 036004 (2007).
50. B.A. Li, Phys. Rev. D76, 094016 (2007).
51. X. Liu et al., Phys. Rev. D75, 074017 (2007).
52. J.P. Lees et al., Phys. Rev. D88, 032013 (2013).
53. M.N. Achasov et al., Phys. Rev. D94, 112006 (2016).
54. A.B. Clegg and A. Donnachie, Z. Phys. C45, 677 (1990).
55. D. Bisello et al., Phys. Lett. 107B, 145 (1981).
56. A. Castro et al., LAL-88-58(1988).
57. M. Atkinson et al., Z. Phys. C29, 333 (1985).
58. B. Aubert et al., Phys. Rev. D76, 092005 (2007).
59. S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985).
60. P.L. Frabetti et al., Phys. Lett. B514, 240 (2001).
61. P.L. Frabetti et al., Phys. Lett. B578, 290 (2004).
62. A. Antonelli et al., Phys. Lett. B365, 427 (1996).
63. B. Aubert et al., Phys. Rev. D77, 092002 (2008).
64. B. Aubert et al., Phys. Rev. D73, 052003 (2006).
65. R.R. Akhmetshin et al., Phys. Lett. B723, 83 (2013).
66. R.R. Akhmetshin et al., Phys. Lett. B794, 64 (2019).
67. A. Obrazovsky and S. Serednyakov, Sov. Phys. JETP Lett. 99, 315 (2014).
68. J. Heidenauer et al., Phys. Rev. D92, 054032 (2015).
69. A.I. Milstein and S.G. Salnikov, Nucl. Phys. A977, 60 (2018).

$\rho(1450)$ MASS

$\rho(1450)$ MASS
VALUE (MeV) DOCUMENT ID
$\overline{1465 \pm 25 \text { OUR ESTIMATE This is only an educated guess; the error given is larger than }}$ the error on the average of the published values.

$\eta \rho^{0}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1500 \pm 10 \quad 7.4 \mathrm{k} \quad 1$ ACHASOV 18 SND $1.22-2.00 e^{+} e^{-}$
$1497 \pm 14 \quad 2$ AKHMETSHIN 01B CMD2 $e^{+} e^{\eta \pi^{+}} \rightarrow \eta \gamma$
$1421 \pm 15 \quad 3$ AKHMETSHIN 00D CMD2 $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
$1470 \pm 20 \quad$ ANTONELLI 88 DM2 $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
$1446 \pm 10 \quad$ FUKUI 88 SPEC $8.95 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
${ }^{1}$ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV , respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
${ }^{2}$ Using the data of AKHMETSHIN 01B on $e^{+} e^{-} \rightarrow \eta \gamma$, AKHMETSHIN O0D and ANTONELLI 88 on $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
${ }^{3}$ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energyindependent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.
$\boldsymbol{\omega} \pi$ MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
$1510 \pm 7 \quad 10.2 \mathrm{k} \quad 1$ ACHASOV 16 D SND $\quad 1.05-2.00 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$ $1544 \pm 22_{-46}^{+11} \quad 821 \quad 2$ MATVIENKO 15 BELL $\quad \bar{B}^{0} \rightarrow D^{*+} \omega \pi^{-}$

		4 AKHMETSHIN 03B		
1523 ± 10				
463				
250				
$1290 \pm$		8	SPE	
${ }^{1}$ From a phenomenological model based on vector meson dominance with interfering $\rho(770), \rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV , respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13. ${ }^{2}$ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi \pi$ and $\rho(1450) \rightarrow \omega \pi$ decays. ${ }^{3}$ From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV , respectively. Systematic uncertainty not estimated. ${ }^{4}$ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega \pi^{0}$ and $\pi^{+} \pi^{-}$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV , respectively. ${ }^{5}$ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega \pi^{-}$mass dependence for the total width. ${ }^{6}$ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively. 7 Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87 L. ${ }^{8}$ Not separated from $b_{1}(1235)$, not pure $J^{P}=1^{-}$effect.				

4π MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

1435 ± 40	ABELE	01B CBAR $0.0 \bar{p} n \rightarrow 2 \pi^{-} 2 \pi^{0} \pi^{+}$
1350 ± 50	ACHASOV	97 RVUE $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$

$1449 \pm 4 \quad 1$ ARMSTRONG 89E OMEG $300 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
${ }^{1}$ Not clear whether this observation has $I=1$ or 0 .

$\pi \pi$ MODE

VALUE (MeV) DOCUMENT ID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

1326.35 ± 3.46				1 BARTOS	17	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1342.31 ± 46.62				2 BARTOS	17A	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1373.83 ± 11.37				${ }^{3}$ BARTOS	17A	RVUE	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
1429	± 41		20K	${ }^{4}$ LEES	17C	BABR	$J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1350	± 20	$\begin{array}{r} +20 \\ -30 \end{array}$	63.5k	${ }^{5}$ ABRAMOWIC	Z12	ZEUS	$e p \rightarrow e \pi^{+} \pi^{-} p$
1493	± 15			${ }^{6}$ LEES	12G	BABR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
1446	± 7	± 28	5.4M	7,8 FUJIKAWA	08	BELL	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
1328	± 15			${ }^{9}$ SCHAEL	05C	ALEP	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
1406	± 15		87k	7,10 ANDERSON	00A	CLE2	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
~ 1368				11 ABELE	99C	CBAR	$0.0 \bar{p} d \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
1348	± 33			BERTIN	98	OBLX	$\begin{gathered} 0.05-0.405 \bar{n} p \rightarrow \\ 2 \pi^{+} \pi^{-} \end{gathered}$
1411	± 14			12 ABELE	97	CBAR	$\bar{p} n \rightarrow \pi^{-} \pi^{0} \pi^{0}$
1370	$\begin{aligned} & +90 \\ & -70 \end{aligned}$			ACHASOV	97	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1359	± 40			10 BERTIN	97C	OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1282	± 37			BERTIN	97D	OBLX	$0.05 \bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
1424	± 25			BISELLO	89	DM2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1265.5	± 75.3			DUBNICKA	89	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1292	± 17			13 KURDADZE	83	OLYA	$0.64-1.4 e^{+} e^{-} \rightarrow$

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
${ }^{2}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
3 Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of FUJIKAWA 08.
${ }^{4}$ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
${ }^{5}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
${ }^{6}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and
widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
${ }^{7}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{8}\left|F_{\pi}(0)\right|^{2}$ fixed to 1.
${ }^{9}$ From the combined fit of the τ^{-}data from ANDERSON 00A and SCHAEL 05C and $e^{+} e^{-}$data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. ρ (1700) mass and width fixed at 1713 MeV and 235 MeV , respectively. Supersedes BARATE 97M.
$10 \rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV , respectively.
$11 \rho(1700)$ mass and width fixed at 1780 MeV and 275 MeV respectively.
12 T-matrix pole.
${ }^{13}$ Using for $\rho(1700)$ mass and width 1600 ± 20 and $300 \pm 10 \mathrm{MeV}$ respectively.

$K \bar{K}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
 $1422.8 \pm 6.5 \quad 27 \mathrm{k} \quad 2$ ABELE $\quad 99 \mathrm{D}$ CBAR $\pm 0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$ ${ }^{1}$ Using the GOUNARIS 68 parameterization with fixed width.
${ }^{2}$ K-matrix pole. Isospin not determined, could be $\omega(1420)$

$K \bar{K}^{*}(892)+$ c.c. MODE	
VALUE (MeV)	DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -	
$1505 \pm 19 \pm 7$	AUBERT $\quad 08 \mathrm{~S}$ BABR $10.6 e^{+} e^{-} \rightarrow K \bar{K}^{*}(892) \gamma$
$m_{\rho(1450)^{0}}-m_{\rho(1450)^{ \pm}}$	
VALUE (MeV)	DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -	
-31.53 ± 47.99	$\begin{aligned} { }^{1} \text { BARTOS 17A RVUE } \begin{aligned} & e^{+} e^{-} \\ & \tau^{-} \rightarrow \pi^{+} \pi^{-}, \\ & \pi^{-} \pi^{0} \nu_{\tau} \end{aligned} \end{aligned}$
${ }^{1}$ Applies the Unitary \& Analy NICKA 10 to analyze the	tic Model of the pion electromagnetic form factor of DUB ata of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS,

NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

$\rho(1450)$ WIDTH

$\rho(1450)$ WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT
400士 60 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

- - We do not use the following data for averages, fits, limits, etc. - - •
$480 \pm 180 \quad 1$ ACHASOV $\quad 10 \mathrm{D}$ SND $\quad 1.075-2.0 e^{+} e^{-} \rightarrow \pi^{0} \gamma$
${ }^{1}$ From a fit of a VMD model with two effective resonances with masses of 1450 MeV and 1700 MeV to describe the excited vector states $\omega(1420), \rho(1450), \omega(1650)$, and $\rho(1700)$. Systematic errors not evaluated.

$\eta \rho^{\circ}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$280 \pm 20 \quad 7.4 \mathrm{k} \quad 1 \mathrm{ACHASOV} \quad 18$ SND $\quad 1.22-2.00 e^{+} e^{-} \rightarrow$
$226 \pm 44 \quad 2$ AKHMETSHIN 01B CMD2 $e^{+} e^{\eta \pi^{+}} \rightarrow$
$211 \pm 31 \quad 3$ AKHMETSHIN OOD CMD2 $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
$230 \pm 30 \quad$ ANTONELLI 88 DM2 $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
$60 \pm 15 \quad$ FUKUI 88 SPEC $8.95 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
${ }^{1}$ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV ,
respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
${ }^{2}$ Using the data of AKHMETSHIN 01b on $e^{+} e^{-} \rightarrow \eta \gamma$, AKHMETSHIN 00D and ANTONELLI 88 on $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$
${ }^{3}$ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energyindependent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

$\boldsymbol{\omega} \boldsymbol{\pi}$ MODE

VALUE (MeV) EOCUMENT ID EV_ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$440 \pm 40 \quad 10.2 \mathrm{k} \quad 1$ ACHASOV 16 D SND $\underset{\pi^{0} \pi^{0} \gamma_{\gamma}}{1.05-2.00} e^{+} e^{-} \rightarrow$

$303_{-}^{+} 52+69$| 2 |
| :--- |$\quad 821 \quad{ }^{2}$ MATVIENKO $15 \quad$ BELL $\quad \bar{B}^{0} \rightarrow D^{*+} \omega \pi^{-}$

$429 \pm 42 \pm 10 \quad 2382 \quad{ }^{3}$ AKHMETSHIN 03B CMD2 $e^{+} e \rightarrow \pi^{0} \pi^{0} \gamma$
$547 \pm 86_{-45}^{+46} \quad 341 \quad 4$ ALEXANDER 01B CLE2 $B \rightarrow D^{(*)} \omega \pi^{-}$
$400 \pm 35 \quad{ }^{5}$ EDWARDS 00A CLE2 $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau}$
311 ± 62
300
320 ± 100
${ }^{6}$ CLEGG
${ }^{7}$ ASTON $\quad 80 \mathrm{C}$ OMEG $20-70 \gamma p \rightarrow \omega \pi^{0} p$
${ }^{7}$ BARBER $\quad 80 \mathrm{C}$ SPEC $\quad 3-5 \gamma p \rightarrow \omega \pi^{0} p$
${ }^{1}$ From a phenomenological model based on vector meson dominance with interfering $\rho(770), \rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV , respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13.
${ }^{2}$ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi \pi$ and $\rho(1450) \rightarrow \omega \pi$ decays.
${ }^{3}$ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega \pi^{0}$ and $\pi^{+} \pi^{-}$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV , respectively.
${ }^{4}$ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega \pi^{-}$mass de5 pendence for the total width.
${ }_{5}$ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.
${ }^{6}$ Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L
${ }^{7}$ Not separated from $b_{1}(1235)$, not pure $J^{P}=1^{-}$effect.

4π MODE
 \section*{VALUE (MeV)}

DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
325 ± 100
ABELE \quad 01B CBAR $0.0 \bar{p} n \rightarrow 2 \pi^{-} 2 \pi^{0} \pi^{+}$
$\pi \pi$ MODE
VALUE (MeV) EVTS
DOCUMENT ID
TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -

| 324.13 ± 12.01 | | 1 BARTOS | 17 RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$ |
| :--- | :--- | :--- | :--- | :--- |
| 492.17 ± 138.38 | 2 BARTOS | 17A RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$ | |
| 340.87 ± 23.84 | | 3 BARTOS | 17A RVUE $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ |
| 576 ± 29 | 20 K | ${ }^{4}$ LEES | 17C BABR $J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ |

460	± 30	${ }_{-45}^{+40} 63.5 \mathrm{k}$	${ }^{5}$ ABRAMOWI	Z12	ZEUS	$e p \rightarrow e \pi^{+} \pi^{-} p$
427	± 31		${ }^{6}$ LEES	12G	BABR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
434	± 16	$\pm 605.4 \mathrm{M}$	7,8 FUJIKAWA	08	BELL	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
468	± 41		${ }^{9}$ SCHAEL	05C	ALEP	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
455	± 41	87k	7,10 ANDERSON	00A	CLE2	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
~ 374			11 ABELE	99C	CBAR	$0.0 \bar{p} d \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
275	± 10		BERTIN	98	OBLX	$\begin{gathered} 0.05-0.405 \bar{n} p \rightarrow \\ \pi^{+}+\pi^{+}+ \end{gathered}$
343	± 20		12 ABELE	97	CBAR	$\bar{p} n \rightarrow \pi^{-} \pi^{0} \pi^{0}$
310	± 40		10 BERTIN	97C	OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
236	± 36		BERTIN	97D	OBLX	$0.05 \bar{p} p \rightarrow 2 \pi^{+} 2 \pi^{-}$
269	± 31		BISELLO	89	DM2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
391	± 70		DUBNICKA	89	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
218	± 46		13 KURDADZE	83	OLYA	$\underset{\pi}{\substack{0.64-1.4}} \mathrm{\pi}^{+} e^{-} \rightarrow$

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUB-
NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
2 Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS,
3 Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of FUJIKAWA 08.
${ }^{4}$ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
${ }^{5}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
${ }^{6}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
7 From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{8}\left|F_{\pi}(0)\right|^{2}$ fixed to 1 .
${ }^{9}$ From the combined fit of the τ^{-}data from ANDERSON 00A and SCHAEL 05C and $e^{+} e^{-}$data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. $\rho(1700)$ mass and width fixed at 1713 MeV and 235 MeV , respectively. Supersedes BARATE 97M.
$10 \rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV , respectively.
$11 \rho(1700)$ mass and width fixed at 1780 MeV and 275 MeV respectively.
12 T-matrix pole.
${ }^{13}$ Using for $\rho(1700)$ mass and width 1600 ± 20 and $300 \pm 10 \mathrm{MeV}$ respectively.

$\kappa \bar{K}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc • • $410 \pm 19 \pm 35190 \mathrm{k} \quad{ }^{1}$ AAIJ $\quad 16 \mathrm{~N}$ LHCB $\quad D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ $146.5 \pm 10.5 \quad 27 \mathrm{k} \quad 2 \mathrm{ABELE} \quad$ 99D CBAR $\pm 0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
${ }^{1}$ Using the GOUNARIS 68 parameterization with fixed mass.
2 K-matrix pole. Isospin not determined, could be $\omega(1420)$.
$K \bar{K}^{*}(892)+$ c.c. MODE

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09As, AMBROSINO 11A, and FUJIKAWA 08.
$\rho(1450)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	seen
Γ_{2}	$\pi^{+} \pi^{-}$	seen
Γ_{3}	4π	seen
Γ_{4}	$\omega \pi$	
Γ_{5}	$a_{1}(1260) \pi$	
Γ_{6}	$h_{1}(1170) \pi$	
Γ_{7}	$\pi(1300) \pi$	
Γ_{8}	$\rho \rho$	seen
Γ_{9}	$\rho(\pi \pi) s$-wave	not seen
Γ_{10}	$e^{+} e^{-}$	seen
Γ_{11}	$\eta \rho$	seen
Γ_{12}	$a_{2}(1320) \pi$	possibly seen
Γ_{13}	K	
Γ_{14}	$K^{+}+K$	seen
Γ_{15}	$K \bar{K} *(892)+$ c.c.	not seen
Γ_{16}	$\pi^{0} \gamma$	not seen
Γ_{17}	$\eta \gamma$	not seen
Γ_{18}	$f_{0}(500) \gamma$	not seen
Γ_{19}	$f_{0}(980) \gamma$	
Γ_{20}	$f_{0}(1370) \gamma$	
Γ_{21}	$f_{2}(1270) \gamma$	

Meson Particle Listings
$\rho(1450)$

$\Gamma\left(K \bar{K}^{*}(892)+\right.$ c.c. $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$127 \pm 15 \pm 6$
AUBERT \quad 08S BABR $10.6 e^{+} e^{-} \rightarrow K \bar{K}^{*}(892) \gamma$

$\rho(1450) \Gamma\left(\right.$ i) $/ \Gamma($ total $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$

$\Gamma(\omega \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{4} / \Gamma \times \Gamma_{10} / \Gamma$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.1 \pm 0.4 \quad 10.2 \mathrm{k} \quad 1$ ACHASOV 16 D SND $1.05-2.00 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$
$5.3 \pm 0.4 \quad 7815 \quad 2 \mathrm{ACHASOV} 13$ SND $1.05-2.00 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$
1 From a phenomenological model based on vector meson dominance with interfer-
ing $\rho(770), \rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720
MeV and 250 MeV , respectively. Systematic uncertainties not estimated. Supersedes
ACHASOV 13.
From a phenomenological model based on vector meson dominance with the interfering
$\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV , respectively. Systematic $\rho(1450)$ and $\rho(1700)$ and
$\Gamma(\eta \rho) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{11} / \Gamma \times \Gamma_{10} / \Gamma$
VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

| 7.3 ± 0.3 | 7.4 k | ${ }^{1}$ ACHASOV | 18 | SND | $1.22-2.00$
 $\eta \pi^{+}+\pi^{-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $4.3_{-0.9}^{+1.1} \pm 0.2$ | 4.9 k | 2 AULCHENKO | 15 | SND | $1.22-2.00$
 $\eta \pi^{+} \pi^{-}$ |

${ }^{1}$ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV , respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
${ }^{2}$ From a fit to the $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$cross section with vector meson dominance model including $\rho(770), \rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real.

$\rho(1450)$ BRANCHING RATIOS

${ }^{1}$ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi \pi$ and $\rho(1450) \rightarrow \omega \pi$ decays.

VALUE $\frac{\text { DOCUMENT ID }}{\text { • • We do not use the following data for averages, fits, limits, etc. • • - }} \frac{\text { TECN }}{\text { COMMENT }}$
$0.27 \pm 0.08 \quad{ }^{1}$ ABELE \quad 01B CBAR $0.0 \bar{p} n \rightarrow 5 \pi$
$1 \omega \pi$ not included.
$\Gamma\left(h_{1}(1170) \pi\right) / \Gamma(4 \pi) \quad \Gamma_{6} / \Gamma_{3}$
VALUE $\frac{\text { DOCUMENT ID }}{\text { • }- \text { We do not use the following data for averages, fits, limits, etc. • • • }}$
$0.08 \pm 0.04 \quad 1$ ABELE $\quad 01 \mathrm{~B}$ CBAR $0.0 \bar{p} n \rightarrow 5 \pi$
$1_{\omega \pi}$ not included.
$\Gamma(\pi(1300) \pi) / \Gamma(4 \pi)$
VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$0.37 \pm 0.13 \quad{ }^{1}$ ABELE $\quad 01 \mathrm{~B}$ CBAR $0.0 \bar{p} n \rightarrow 5 \pi$
${ }^{1} \omega \pi$ not included.
$\Gamma(\rho \rho) / \Gamma(\mathbf{4} \pi) \quad$ DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{8}} / \Gamma_{\mathbf{3}}$
VALUE $\frac{\text { DOCUMENT ID }}{\text { • • We do not use the following data for averages, fits, limits, etc. • • • }} \frac{\text { TECN }}{\text { COMMENT }}$
$0.11 \pm 0.05 \quad{ }^{1}$ ABELE $\quad 01 \mathrm{~B}$ CBAR $0.0 \bar{p} n \rightarrow 5 \pi$
$1^{1} \omega \pi$ not included.
$\Gamma\left(\rho(\pi \pi)_{S \text {-wave }}\right) / \Gamma(4 \pi) \quad \Gamma_{9} / \Gamma_{\mathbf{3}}$
VALUE DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$0.17 \pm 0.09 \quad 1$ ABELE \quad 01B CBAR $0.0 \bar{p} n \rightarrow 5 \pi$
${ }^{1} \omega \pi$ not included.
$\boldsymbol{\Gamma}(\boldsymbol{\eta} \boldsymbol{\rho}) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\text { seen }} \frac{E V T S}{35}$$\frac{\text { DOCUMENT ID }}{\text { ACHASOV } 14} \frac{\text { TECN }}{\text { SND }} \frac{\text { COMMENT }}{1.15-2.00 e^{+} e^{-} \rightarrow \eta \gamma}$
- - We do not use the following data for averages, fits, limits, etc. • •
<0.04 DONNACHIE 87B RVUE
${ }^{1}$ From a phenomenological model based on vector meson dominance with $\rho(1450)$ and $\phi(1680)$ masses and widths from the PDG 12.

$\Gamma(\eta \rho) / \Gamma(\omega \pi)$						Γ_{11} / Γ_{4}			
VALUE	DOCUMENT ID		TECN	COMMENT					
- - We do not use the following data for averages, fits, limits, etc. - -									
0.081 ± 0.020	1,2 AULCHENKO 15 SND ${ }^{3}$ DONNACHIE 91 RVUE			$1.22-2.00 e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$					
~ 0.24									
>2	FUKUI 91 SPEC			$8.95 \pi^{-} p \rightarrow \omega \pi^{0}$					
${ }^{1}$ From a fit to the $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$cross section with vector meson dominance mode including $\rho(770), \rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real. ${ }^{2}$ Reports the inverse of the quoted value as 12.3 ± 3.1. ${ }^{3}$ Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L									
$\Gamma(\pi \pi) / \Gamma(\eta \rho)$						Γ_{1} / Γ_{11}			
VALUE	DOCUMENT ID TECN COMMENT								
- - We do not use the following data for averages, fits, limits, etc. - -									
1.3 ± 0.4	${ }^{1}$ AULCHENKO 15 SND $1.22-2.00 e^{+} e^{-} \rightarrow \eta \pi^{+} \pi$								
${ }^{1}$ From a fit to the $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$cross section with vector meson dominance model including $\rho(770), \rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real									
$\Gamma\left(\mathrm{a}_{2}(1320) \pi\right) /$						12/Г			
VALUE		DOCUMENT		TECN COMMENT					
- - We do not use the following data for averages, fits, limits, etc. - - • not seen AMELIN 00 VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$									
$\Gamma(K \bar{K}) / \Gamma(\omega \pi)$						Γ_{13} / Γ_{4}			
VALUE		DOCUMENT		TECN					
- - We do not use the following data for averages, fits, limits, etc. - -									
<0.08		${ }^{1}$ DONNACHIE 91 RVUE							
${ }^{1}$ Using data from	LLO	DOLINSKY	and	BRE					
$\Gamma\left(K \bar{K}^{*}(892)\right.$	tota					Γ_{15} / Γ			
VALUE		DOCUMENT		TECN COMMENT					
- - We do not use the following data for averages, fits, limits, etc. - - possibly seen COAN 04 CLEO $\tau^{-} \rightarrow K^{-} \pi^{-} K^{+} \nu_{\tau}$									
$\Gamma(\eta \gamma) / \Gamma_{\text {total }}$						Γ_{17} / Γ			
VALUE	EVTS	DOCUMENT ID		TECN					
seen	35	1 ACHASOV	14						
${ }^{1}$ From a phenomenological model based on vector meson dominance with $\rho(1450)$ and $\phi(1680)$ masses and widths from the PDG 12.									

Meson Particle Listings
$\eta(1475), f_{0}(1500)$

$\eta(1475)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K} \pi$	seen
Γ_{2}	$K \overline{K^{*}}(892)+$ c.c.	seen
Γ_{3}	$a_{0}(980) \pi$	seen
Γ_{4}	$\gamma \gamma$	seen
Γ_{5}	$K_{S}^{0} K_{S}^{0} \eta$	possibly seen
Γ_{6}	$\gamma \phi(1020)$	possibly seen

$\eta(1475) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$
$\Gamma(K \bar{K} \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \Gamma_{1} \Gamma_{4} / \Gamma$ $\frac{\operatorname{VALUE}(\mathrm{keV})}{\mathbf{0 . 2 3} \mathbf{0 . 0 5} \pm \mathbf{0 . 0 5}} \frac{C L \%}{74} \quad \frac{\text { EVTS }}{7} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ACHARD }} \frac{07}{\frac{\text { COMMENT }}{183-209 e^{+} e^{-} \rightarrow}} \begin{array}{r}e^{+} e^{-} K_{S}^{0} K^{ \pm} \pi^{\mp}\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - • -

η (1475) REFERENCES				
ABLIKIM	181	PR D97 051101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	180	PR D97 072014	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15 T	PRL 115091803	M. Ablikim et al.	(BESIII Collab.)
ACHARD	07	JHEP 0703018	P. Achard et al.	(L3 Collab.)
AHOHE	05	PR D71 072001	R. Ahohe et al.	(CLEO Collab.)
NICHITIU	02	PL B545 261	F. Nichitiu et al.	(OBELIX Collab.)
ACCIARRI	01G	PL B501 1	M. Acciarri et al.	(L3 Collab.)
ADAMS	01B	PL B516 264	G.S. Adams et al.	(BNL E852 Collab.)
BAI	00D	PL B476 25	J.Z. Bai et al.	(BES Collab.)
CICALO	99	PL B462 453	C. Cicalo et al.	(OBELIX Collab.)
BERTIN	97	PL B400 226	A. Bertin et al.	(OBELIX Collab.)
BERTIN	95	PL B361 187	A. Bertin et al.	(OBELIX Collab.)
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
BAI	90 C	PRL 652507	Z. Bai et al.	(Mark III Collab.)
RATH	89	PR D40 693	M.G. Rath et al.	(NDAM, BRAN, BNL, CUNY +)
EDWARDS	82 E	PRL 49259	C. Edwards et al.	(CIT, HARV, PRIN+)
BAILLON	67	NC 50A 393	P.H. Baillon et al.	(CERN, CDEF, IRAD)
$f_{0}(1$			${ }^{G}\left(J^{P C}\right)$	$0^{+}\left(0^{++}\right)$
See the reviews on "Scalar Mesons below 2 GeV " and on "Non- $q \bar{q}$ Mesons".				

$f_{0}(1500)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN COMMENT	
1506 ± 6	OUR AVERAGE	Error includes	-	ctor of	1.4. See the ideogram
1515 ± 12		${ }^{1}$ BARBERIS	00A		$450 p p \rightarrow p_{f} \eta \eta p_{S}$
1511 ± 9		1,2 BARBERIS	00C		$450 p p \rightarrow p_{f} 4 \pi p_{S}$
1510 ± 8		${ }^{1}$ BARBERIS	00E		$450 p p \rightarrow p_{f} \eta \eta p_{S}$
1522 ± 25		${ }^{1}$ BERTIN	98	OBLX	$\begin{gathered} 0.05-0.405 \bar{n} p \rightarrow \\ \pi^{+} \pi^{+} \pi^{-} \end{gathered}$
1449 ± 20		${ }^{1}$ BERTIN		OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1500 ± 10		${ }^{3}$ AMSLER	95D	CBAR	$\begin{gathered} 0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0} \\ \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta \end{gathered}$

- - We do not use the following data for averages, fits, limits, etc. • •

$f_{0}(1500)$ WIDTH

112土 9 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
110 ± 24	${ }^{1}$ BARBERIS	00A		$450 p p \rightarrow p_{f} \eta \eta p_{S}$
102 ± 18	1,2 BARBERIS	00C		$450 p p \rightarrow p_{f} 4 \pi p_{S}$
110 ± 16	${ }^{1}$ BARBERIS	00E		$450 \mathrm{pp} \rightarrow p_{f} \eta \eta p_{S}$
108 ± 33	${ }^{1}$ bertin	98	Oblx	0.05-0.405 $\bar{n} p \rightarrow \pi^{+} \pi^{+} \pi^{-}$
114 ± 30	${ }^{1}$ BERTIN	97 C	Oblx	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
154 ± 30	${ }^{3}$ AMSLER	95D	CBAR	$\begin{gathered} 0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \\ \pi^{0}, \end{gathered}$

108 ± 9	80k	8,9 UMAN	06	E835	$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
119 ± 10		VLADIMIRSK..	. 06	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
90 ± 15		${ }^{8}$ BINON	05	GAMS	$33 \pi^{-} p \rightarrow \eta \eta n$
136 ± 23	1400	10 GARMASH	05	BELL	$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \mathrm{K}^{-}$
102 ± 10		11 ANISOVICH	03	RVUE	
140 ± 40		${ }^{8}$ ABELE	01	CBAR	$0.0 \bar{p} d \rightarrow \pi^{-} 4 \pi^{0} p$
104 ± 25		${ }^{8}$ BARBERIS	99	OMEG	$450 p p \rightarrow p_{S} p_{f} K^{+} K^{-}$
131 ± 15		${ }^{8}$ BARBERIS	99B	OMEG	$450 p p \rightarrow p_{s} p_{f} \pi^{+} \pi^{-}$
$98 \pm 18 \pm 16$		12 BARBERIS	99D	OMEG	$450 p p \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$
160 ± 50		${ }^{8}$ BELLAZZINI	99	GAM4	$450 p p \rightarrow p p \pi^{0} \pi^{0}$
100 ± 33		${ }^{8}$ FRENCH	99		$300 p p \rightarrow p_{f}\left(K^{+} K^{-}\right) p_{S}$
108 ± 46		13 KAMINSKI	99	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}, \sigma \sigma$
280 ± 100		${ }^{8}$ ALDE	98	GAM4	$100 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
130 ± 20		${ }^{1}$ ANISOVICH	98B	RVUE	Compilation
120 ± 35		${ }^{1}$ BARBERIS	97B	OMEG	$450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
~ 100		FRABETTI	97D	E687	$D_{s}^{ \pm} \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}$
~ 169		ABELE	96	CBAR	$0.0 \bar{p} p \rightarrow 5 \pi^{0}$
105 ± 15		ABELE	96B	CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} K_{L}^{0} K_{L}^{0}$
100 ± 30	120	${ }^{8}$ AMELIN	96B	VES	$37 \pi^{-} A \rightarrow \eta \eta \pi^{-}{ }^{\text {A }}$
132 ± 15		BUGG	96	RVUE	
120 ± 25		14 AMSLER	95B	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}$
120 ± 30		15 AMSLER	95 C	CBAR	$0.0 \bar{p} p \rightarrow \eta \eta \pi^{0}$
65 ± 10		16 ANTINORI	95	OMEG	$300,450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
199 ± 30		${ }^{8}$ ANTINORI	95	OMEG	$300,450 p p \rightarrow p p \pi^{+} \pi^{-}$
56 ± 12		${ }^{8}$ ABATZIS	94	OMEG	$450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
100 ± 40		8 AMSLER	94E	CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} \eta \eta^{\prime}$
148 ± 20		1,17 ANISOVICH	94	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$
150 ± 20		1,18 BUGG	94	RVUE	$\bar{p} p \rightarrow 3 \pi^{0}, \eta \eta \pi^{0}, \eta \pi^{0} \pi^{0}$
245 ± 50		${ }^{8}$ AMSLER	92	CBAR	$0.0 \bar{p} p \rightarrow \pi^{0} \eta \eta$
$153 \pm 67 \pm 50$		${ }^{8}$ BELADIDZE	92C	VES	$36 \pi^{-} \mathrm{Be} \rightarrow \pi^{-} \eta^{\prime} \eta \mathrm{Be}$
78 ± 18		${ }^{8}$ ARMSTRONG	89E	OMEG	$300 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
170 ± 40		${ }^{8}$ ALDE	88	GAM4	$300 \pi^{-} N \rightarrow \pi^{-} N 2 \eta$
150 ± 20	600	${ }^{8}$ ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4 \pi^{0} n$
265 ± 65		19 ALDE	86D	GAM4	$100 \pi^{-} p \rightarrow 2 \eta n$
260 ± 60		${ }^{8}$ BINON	84 C	GAM2	$38 \pi^{-} p \rightarrow \eta \eta^{\prime} n$
210 ± 40		${ }^{8}$ BINON	83	GAM2	$38 \pi^{-} p \rightarrow 2 \eta n$
101 ± 13		${ }^{8}$ GRAY	83	DBC	$0.0 \bar{p} N \rightarrow 3 \pi$

${ }^{1}$ T-matrix pole.
${ }^{2}$ Average between $\pi^{+} \pi^{-} 2 \pi^{0}$ and $2\left(\pi^{+} \pi^{-}\right)$.
3 T-matrix pole. Coupled-channel analysis of AMSLER 95B, AMSLER 95c, and AMSLER 94D.
4 T-matrix pole of 3 channel unitary model fit to data from AAIJ 14 BR and AAIJ 17 V extracted using Pade approximants.
extracted using Pade approxima
5 Solution I, statistical error only.
${ }^{5}$ Solution I, statistical error only.
${ }_{7} \begin{aligned} & \text { resonances. } \\ & \text { Breit-Wigner width. May also be the } f_{0}(1370) \text {. }\end{aligned}$
${ }^{8}$ Breit-Wigner width.
${ }^{9}$ Statistical error only.
${ }^{10}$ Breit-Wigner, solution 1, PWA ambiguous.
${ }^{11} \mathrm{~K}$-matrix pole from combined analysis of $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \pi^{-} p \rightarrow K \bar{K} n$, $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{0}$, $K^{+} K_{S}^{0} \pi^{-}$at rest, $\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{-}$at rest.
12 Supersedes BARBERIS 99 and BARBERIS 99b.
${ }^{13}$ T-matrix pole on sheet --+ .
14 T-matrix pole, supersedes ANISOVICH 94.
15 T-matrix pole, supersedes ANISOVICH 94 and AMSLER 92.
16 Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.
${ }^{17}$ From a simultaneous analysis of the annihilations $\bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$.
${ }^{18}$ Reanalysis of ANISOVICH 94 data.
${ }^{19}$ From central value and spread of two solutions. Breit-Wigner mass.

$f_{0}(1500)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor
Γ_{1}	$\pi \pi$	$(34.5 \pm 2.2) \%$	1.2
Γ_{2}	$\pi^{+} \pi^{-}$	seen	
Γ_{3}	$2 \pi^{0}$	seen	
Γ_{4}	4π	$(48.9 \pm 3.3) \%$	1.2
Γ_{5}	$4 \pi^{0}$	seen	
Γ_{6}	$2 \pi^{+} 2 \pi^{-}$	seen	
Γ_{7}	$2(\pi \pi)_{S} S$-wave	seen	
Γ_{8}	$\rho \rho$	seen	
Γ_{9}	$\pi(1300) \pi$	seen	
Γ_{10}	$a_{1}(1260) \pi$	seen	1.1
Γ_{11}	$\eta \eta$	$(6.0 \pm 0.9) \%$	1.4
Γ_{12}	$\eta \eta^{\prime}(958)$	$(2.2 \pm 0.8) \%$	1.1
Γ_{13}	$K \bar{K}$	$(8.5 \pm 1.0) \%$	
Γ_{14}	$\gamma \gamma$	not seen	

Meson Particle Listings

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 10 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^{2}=$ 5.6 for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$\Gamma\left(2(\pi \pi)_{S} \text {-wave }\right) / \Gamma(\pi \pi)$	DOCUMENT ID	TECN COMMENT	Γ_{7} / Γ_{1}
- - We do not use the following data for averages, fits, limits, etc. - -			
0.42 ± 0.26	${ }^{1}$ AbeLE	CBAR $0.0 \bar{p} d \rightarrow$	$\pi^{-} 4 \pi^{0} p$
${ }^{1}$ From the combined data of ABELE 96 and ABELE 960			
$\Gamma(2(\pi \pi) s$-wave $) / \Gamma(4 \pi)$			Γ_{7} / Γ_{4}

VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
0.26 ± 0.07
ABELE 01B CBAR $0.0 \bar{p} d \rightarrow 5 \pi p$
Γ_{8} / Γ_{4}
$\Gamma(\rho \rho) / \Gamma(4 \pi)$
VALUE DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -
$0.13 \pm 0.08 \quad$ ABELE 01B CBAR $0.0 \bar{p} d \rightarrow 5 \pi p$
$\Gamma(\rho \rho) / \Gamma(2(\pi \pi) s$-wave $)$
2.87 ± 0.34 OUR AVERAGE Error DOCUMENT ID COMMENT
$\begin{array}{lll}2.6 \pm 0.4 & \text { BARBERIS } & 00 C \\ & \text { BARBERIS } & 00 c \\ 450 p p \rightarrow p_{f} \pi^{+} \pi^{-} 2 \pi^{0} p_{S} \\ p_{f} 2\left(\pi^{+} \pi^{-}\right) p_{S}\end{array}$
$\Gamma(\pi(1300) \pi) / \Gamma(4 \pi)$
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
0.50 ± 0.25
ABELE $\quad 01 \mathrm{~B}$ CBAR $0.0 \bar{p} d \rightarrow 5 \pi \rho$
$\Gamma\left(a_{1}(1260) \pi\right) / \Gamma(4 \pi)$
Γ_{10} / Γ_{4}
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -

0.12 ± 0.05	ABELE	01B CBAR	$0.0 \bar{p} d \rightarrow$	$5 \pi p$
$\Gamma(\eta \eta) / \Gamma_{\text {total }}$				
value			O	

VALUE DOCUMENT ID_TECN COMMENT TECN
•• We do not use the following data for averages, fits, limits, etc. • •
large
ALDE
la
large \quad BINON 83 GAM2 $38 \pi^{-} p \rightarrow 2 \eta n$
$\Gamma(\eta \eta) / \Gamma(\pi \pi) \quad \Gamma_{11} / \Gamma_{1}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 7 3} \pm \mathbf{0 . 0 2 4} \text { OUR FIT }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale }} \frac{\text { TECN }}{\text { factor }}$ COMMEN
0.175 ± 0.027 OUR AVERAGE
$\begin{array}{lcll}0.18 \pm 0.03 & \text { BARBERIS } & \text { O0E } & 450 p p \rightarrow p_{f} \eta \eta p_{S} \\ 0.157 \pm 0.060 & 1 & \text { AMSLER } & \text { 95D CBAR } 0.0 \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.080 \pm 0.033 \quad$ AMSLER $02 \quad \operatorname{CBAR} 0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$
$0.11 \pm 0.03 \quad 2$ ANISOVICH 02D SPEC Combined fit
$0.078 \pm 0.013 \quad 3$ ABELE $\quad 96 \mathrm{C}$ RVUE Compilation
$0.230 \pm 0.097 \quad 4$ AMSLER 95C CBAR $0.0 \bar{p} p \rightarrow \eta \eta \pi^{0}$
${ }^{1}$ Coupled-channel analysis of AMSLER 95B, AMSLER 95c, and AMSLER 94D.
${ }^{2}$ From a combined K-matrix analysis of Crystal Barrel ($0 . p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta$,
$\pi^{0} \pi^{0} \eta$), GAMS $\left(\pi p \rightarrow \pi^{0} \pi^{0} n, \eta \eta n, \eta \eta^{\prime} n\right)$, and BNL $(\pi p \rightarrow K \bar{K} n)$ data.
${ }^{3} 2 \pi$ width determined to be $60 \pm 12 \mathrm{MeV}$.
${ }^{4}$ Using AMSLER 95B $\left(3 \pi^{0}\right)$.
$\Gamma\left(4 \pi^{0}\right) / \Gamma(\eta \eta)$ Γ_{5} / Γ_{11}
VALUE $\frac{\text { DOCUMENT ID }}{\text { • - We do not use the following data for averages, fits, limits, etc. • • - }}$
$0.8 \pm 0.3 \quad$ ALDE 87 GAM4 $100 \pi^{-} p \rightarrow 4 \pi^{0} n$

$\Gamma\left(\eta \eta^{\prime}(958)\right) / \Gamma(\pi \pi)$				Γ_{12} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
0.064 ± 0.022 OUR FIT	des scale factor			
0.095 ± 0.026	BARBERIS		450 Pp	

$0.095 \pm \mathbf{0 . 0 2 6} \quad$ BARBERIS 00A $450 p p \rightarrow p_{f} \eta \eta p_{S}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.005 \pm 0.003 \quad 1$ ANISOVICH 02D SPEC Combined fit
${ }^{1}$ From a combined K-matrix analysis of Crystal Barrel ($0 . p \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta$,
$\pi^{0} \pi^{0} \eta$), GAMS $\left(\pi p \rightarrow \pi^{0} \pi^{0} n, \eta \eta n, \eta \eta^{\prime} n\right)$, and BNL $(\pi p \rightarrow K \bar{K} n)$ data.

$\Gamma(K \bar{K}) / \Gamma_{\text {total }} \quad \Gamma_{13} / \Gamma$

VALUE $\frac{\text { DOCUMENT ID }}{\text { - We do not use the following data for averages, fits, limits, etc. • • - }}$
$0.044 \pm 0.021 \quad$ BUGG 96 RVUE
$\boldsymbol{\Gamma}(\boldsymbol{K} \bar{K}) / \Gamma(\boldsymbol{\pi} \boldsymbol{\pi})$
VALUE DOCUMENT ID TECN COMMENT $\quad \Gamma_{13} / \Gamma_{\mathbf{1}}$

0.246 ± 0.025 OUR FIT

${ }^{13} /{ }_{1}$
0.236 ± 0.026 OUR AVERAGE

$\Gamma(K \bar{K}) / \Gamma(\boldsymbol{\eta} \boldsymbol{\eta})$				$\Gamma_{13} / \Gamma_{11}$	
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
1.43 ± 0.24 OUR FIT Error includes scale factor of 1.1.	Error includes scale factor of 1.1.				
1.85 ± 0.41		BARBERIS 00E		$450 p p \rightarrow$	$p_{f} \eta \eta p_{S}$
- - We do not use the following data for averages, fits, limits, etc. - -					
1.5 ± 0.6		${ }^{1}$ ANISOVICH 02d	SPEC	Combined fit	
<0.4	90	2 PROKOSHKIN 91	GAM4	$300 \pi^{-} p \rightarrow$	$\rightarrow \pi^{-} p \eta \eta$

Meson Particle Listings
$f_{2}^{\prime}(1525)$

$f_{2}^{\prime}(1525)$

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)
$$

$f_{2}^{\prime}(1525)$ MASS

VALUE (MeV)
DOCUMENT ID
1517.4 \pm 2.5 OUR AVERAGE Includes data from the 6 datablocks that follow this one Error includes scale factor of 2.8 . See the ideogram below.

PRODUCED BY PION BEAM
$\frac{V A L U E(\mathrm{MeV})}{\text { The data in this }} \frac{E V T S}{\text { block }}$
BEAM
DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.

- - We do not use the following data for averages, fits, limits, etc. - • -

1521 ± 13		TIKHOMIROV		SPEC	$40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X}$
$1547{ }_{-}^{+10}$		1 LONGACRE	86	MPS	$22 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$1496{ }_{-}^{+} 9$		2 CHABAUD	81	ASPK	$6 \pi^{-} p \rightarrow K^{+} K^{-} n$
$1497{ }_{-}^{+} 8$		CHABAUD	81	ASPK	$18.4 \pi^{-} p \rightarrow K^{+} K^{-} n$
1492 ± 29		GORLICH	80	ASPK	$17 \pi^{-} p$ polarized $\rightarrow K^{+} K^{-} n$
1502 ± 25		3 CORDEN	79	OMEG	$12-15 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
1480	14	CRENNELL	66	HBC	$6.0 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$

PRODUCED BY $K^{ \pm}$BEAM
VALUE (MeV) EVTS EVTS DOCUMENT ID \qquad TECN COMMENT
The data in this block is included in the average printed for a previous datablock.
1518.1 \pm 2.8 OUR AVERAGE Includes data from the datablock that follows this one. Error includes scale factor of 3.0. See the ideogram below.

1526.8 ± 4.3		ASTON	88D	LASS	$11 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} \Lambda$
1504 ± 12		BOLONKIN	86	SPEC	$40 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} Y$
1529 ± 3		ARMSTRONG	83B	OMEG	$18.5 K^{-} p \rightarrow K^{-} K^{+} \Lambda$
1521 ± 6	650	AGUILAR-...	81B	HBC	$4.2 K^{-} p \rightarrow \wedge K^{+} K^{-}$
1521 ± 3	572	ALHARRAN	81	HBC	$8.25 K^{-} p \rightarrow \Lambda K \bar{K}$
1522 ± 6	123	BARREIRO	77	HBC	$4.15 K^{-} p \rightarrow \Lambda K_{S}^{0} K_{S}^{0}$
1528 ± 7	166	EVANGELIS...	77	OMEG	$10 K^{-} p \rightarrow K^{+} K^{-}(\Lambda, \Sigma)$
1527 ± 3	120	BRANDENB...	76C	ASPK	$13 K^{-} p \rightarrow K^{+} K^{-}(\Lambda, \Sigma)$
1519 ± 7	100	AGUILAR-...	72B	HBC	3.9,4.6 $K^{-} p \rightarrow K \bar{K}(\Lambda, \Sigma)$

- - We do not use the following data for averages, fits, limits, etc. • -
1514 ± 8
1513 ± 10
61 BINON
07 GAMS 32.5 $K^{-} p \rightarrow \eta \eta\left(\Lambda / \Sigma^{0}\right)$
1513 ± 10
${ }^{4}$ BARKOV
99 SPEC $40 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} y$

PRODUCED IN $e^{+} e^{-}$ANNIHILATION AND PARTICLE DECAYS

1514 ± 5 OUR AVERAGE Error includes scale factor of 3.8. See the ideogram below.

$1522.2 \pm 2.8 \pm \begin{aligned} & \text { + } 2.3\end{aligned}$		AAIJ	13 AN	LHCB	$\bar{B}_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$
$1513 \pm 5{ }_{-10}^{+}$	5.5k	${ }^{5}$ ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta \eta$
$1525.3 \pm 1.2+3.7$		UEHARA	13	BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
1521 ± 5		ABLIKIM	05	BES2	$J / \psi \rightarrow \phi K^{+} K^{-}$
$1518 \pm 1 \pm 3$		ABE	04	BELL	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & e^{+} e^{-} K^{+} K^{-} \end{aligned}$
$1519 \pm 2 \begin{array}{r}+15 \\ -5\end{array}$		BAI	03G	BES	$J / \psi \rightarrow \gamma K \bar{K}$
1523 ± 6	331	${ }^{6}$ ACCIARRI	01H	L3	$\begin{gathered} \text { 91, 183-209 } e^{+} e^{-} \rightarrow \\ e^{+} e^{-} K_{S}^{0} K_{S}^{0} \end{gathered}$
$1535 \pm 5 \pm 4$		ABREU	96C	DLPH	$z^{0} \rightarrow K^{+} K^{-}+\mathrm{X}$
$1516 \pm 5{ }_{-15}^{+9}$		BAI	96C	BES	$J / \psi \rightarrow \gamma K^{+} K^{-}$
1531.6 ± 10.0		AUGUSTIN	88	DM2	$J / \psi \rightarrow \gamma K^{+} K^{-}$
1496 ± 2		7 FALVARD	88	DM2	$J / \psi \rightarrow \phi K^{+} K^{-}$
$1525 \pm 10 \pm 10$		BALTRUSAIT	.. 87	MRK3	$J / \psi \rightarrow \gamma K^{+} K^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1532 \pm 3 \pm 6$	644	8,9 DOBBS	15		$J / \psi \rightarrow \gamma K^{+} K^{-}$
$1557 \pm 9 \pm 3$	113	8,9 DOBBS	15		$\psi(2 S) \rightarrow \gamma K^{+} K^{-}$
1526 ± 7	29	10 LEES	14H	BABR	$e^{+}+e_{S}^{-} \overrightarrow{K_{S}^{0}} K^{+} K^{-} \gamma$
1523 ± 5	870	11 SCHEGELSK		RVUE	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
1515 ± 5		12 FALVARD	88	DM2	$J / \psi \rightarrow \phi K^{+} K^{-}$

PRODUCED IN $\bar{p} p$ ANNIHILATION

VALUE (MeV) DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.

1513 ± 4	AMSLER	06	CBAR	$0.9 \bar{p} p \rightarrow$	$K^{+} K^{-} \pi^{0}$
1508 ± 9	13 AMSLER	02	CBAR	$0.9 \bar{p} p \rightarrow$	$\pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
1530 ± 12	14 ANISOVIC	09	RVUE	$0.0 \bar{p} p, \pi N$	

CENTRAL PRODUCTION

VALUE (MeV) The data in this block is included in the average printed for a previous datablock.
$1515 \pm 15 \quad$ BARBERIS 99 OMEG $450 p p \rightarrow p_{S} p_{f} K^{+} K^{-}$

PRODUCED IN ep COLLISIONS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.
$1512 \pm \mathbf{3}_{-\mathbf{0}}^{\mathbf{+ 1 . 5}} \quad{ }^{15}$ CHEKANOV 08 ZEUS ep $\rightarrow K_{S}^{0} K_{S}^{0} X$

- - We do not use the following data for averages, fits, limits, etc. - - -
$1537_{-8}^{+9} \quad 84 \quad{ }^{16}$ CHEKANOV 04 ZEUS ep $\rightarrow K_{S}^{0} K_{S}^{0} X$
${ }^{1}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
${ }^{2}$ CHABAUD 81 is a reanalysis of PAWLICKI 77 data.
${ }^{3}$ From an amplitude analysis where the $f_{2}^{\prime}(1525)$ width and elasticity are in complete disagreement with the values obtained from $K \bar{K}$ channel, making the solution dubious.
${ }^{4}$ Systematic errors not estimated.
${ }^{5}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} 6 resonances.
${ }^{6}$ Supersedes ACCIARRI 95J.
${ }^{7}$ From an analysis including interference with $f_{0}(1710)$.
${ }^{8}$ Using CLEO-C data but not authored by the CLEO Collaboration.
${ }^{9}$ From a fit to a Breit-Wigner line shape with fixed $\Gamma=73 \mathrm{MeV}$.
${ }^{10}$ From a fit to a Breit-Wigner line shape plus a second-order polynomial function. Systematic errors not evaluated.
11 From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$.
${ }^{12}$ From an analysis ignoring interference with $f_{0}(1710)$.
${ }^{13}$ T-matrix pole
14 4-poles, 5-channel K matrix fit.
${ }^{15}$ In the $\operatorname{SU}(3)$ based model with a specific interference pattern of the $f_{2}(1270), a_{2}^{0}(1320)$, and $f_{2}^{\prime}(1525)$ mesons incoherently added to the $f_{0}(1710)$ and non-resonant background. 16 Systematic errors not estimated.

$f_{2}^{\prime}(1525)$ WIDTH

VALUE (MeV) DOCUMENT ID COMMENT
$\overline{86} \mathbf{\pm 5}$ OUR FIT Error includes scale factor of 2.2.
86.9 ± 2.3
PDG
18 Average of width measurements

PRODUCED BY PION BEAM

VALUE (MeV)
DOCUMENT ID TECN COMMENT
86.9 2 2.3 OUR AVERAGE Includes data from the 5 datablocks that follow this one. Error includes scale factor of 1.4. See the ideogram below.

- - We do not use the following data for averages, fits, limits, etc. - - -

102	± 42	TIKHOMIRO		SPEC	$40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X}$
108	$\begin{array}{r} +5 \\ -\quad 2 \end{array}$	17 LONGACRE	86	MPS	$22 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
69	$\begin{array}{r} +22 \\ -16 \end{array}$	18 CHABAUD	81	ASPK	$6 \pi^{-} p \rightarrow K^{+} K^{-} n$
137	$\begin{array}{r} +23 \\ -21 \end{array}$	CHABAUD	81	ASPK	$18.4 \pi^{-} p \rightarrow K^{+} K^{-} n$
150	$\begin{array}{r} +83 \\ -50 \end{array}$	GORLICH	80	ASPK	$17 \pi^{-}$ppolarized $\rightarrow K^{+} K^{-} n$
165	± 42	19 CORDEN	79	OMEG	$12-15 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
92	$\begin{array}{r} +39 \\ -22 \end{array}$	20 POLYCHRO.	79	STRC	$7 \pi^{-} p \rightarrow n K_{S}^{0} K_{S}^{0}$

PRODUCED BY $K^{ \pm}$BEAM
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT The data in this block is included in the average printed for a previous datablock.

82杗 6 OUR AVERAGE
90 ± 12
73 ± 18
83 ± 15
$85 \pm 16 \quad 650$
$80_{-11}^{+14} 572$
$72 \pm 25 \quad 166$
$69 \pm 22 \quad 100$

ASTON 88D LASS $11 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} \wedge$ BOLONKIN 86 SPEC $40 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} Y$ ARMSTRONG 83B OMEG $18.5 K^{-} p \rightarrow K^{-} K^{+} \Lambda$ AGUILAR-... 81B HBC $4.2 K^{-} p \rightarrow \Lambda K^{+} K^{-}$ ALHARRAN 81 HBC $8.25 K^{-} p \rightarrow \Lambda K \bar{K}$ EVANGELIS... 77 OMEG $10 K^{-} p \rightarrow K^{+} K^{-}(\Lambda, \Sigma$ AGUILAR-... 72B HBC 3.9,4.6 $K^{-} p \rightarrow K \bar{K}(\Lambda, \Sigma)$ - - We do not use the following data for averages, fits, limits, etc. - -

$92+25$	61	BINON	07	GAMS	$32.5 K^{-} p \rightarrow \eta \eta\left(\Lambda / \Sigma^{0}\right)$
75 ± 20		21 BARKOV	99	SPEC	$40 K^{-} p \rightarrow K_{S}^{0} K_{S}^{0} y$
62_{-14}^{+19}	123	BARREIRO	77	HBC	$4.15 K^{-} p \rightarrow \Lambda K_{S}^{0} K_{S}^{0}$
61 ± 8	120	BRANDENB... 76 ASPK	ASPK $13 K^{-} p \rightarrow K^{+} K^{-}(\Lambda, \Sigma)$		

PRODUCED IN $e^{+} e^{-}$ANNIHILATION AND PARTICLE DECAYS
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { The data in this block }} \frac{E V T S}{\frac{\text { is included }}{\text { in the average printed }} \frac{\text { TECN }}{\text { for a previous datablock }} \text { COMMENT }}$
89.2 $=3.4$ OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below.

Meson Particle Listings

PRODUCED IN $\bar{p} p$ ANNIHILATION
$\operatorname{VALUE}(\mathrm{MeV})$ DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.

77 ± 5 OUR AVERAGE

$76 \pm 6 \quad$ AMSLER 06 CBAR $0.9 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
$79 \pm 8 \quad 28$ AMSLER 02 CBAR $0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - -
$128 \pm 20 \quad 29$ ANISOVICH 09 RVUE $0.0 \bar{p} p, \pi N$

CENTRAL PRODUCTION

VALUE (MeV) DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.

$\mathbf{7 0} \pm \mathbf{2 5} \quad$ BARBERIS 99 OMEG $450 p p \rightarrow p_{s} p_{f} K^{+} K^{-}$

PRODUCED IN ep COLLISIONS

VALUE (MeV) COCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.
$83 \pm{ }_{-4}^{+5} \quad 30$ CHEKANOV 08 ZEUS ep $\rightarrow K_{S}^{0} K_{S}^{0} X$

- - We do not use the following data for averages, fits, limits, etc. - • •
$50_{-22}^{+34} \quad 84 \quad 31$ CHEKANOV 04 ZEUS ep $\rightarrow K_{S}^{0} K_{S}^{0} X$
17 From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
18 CHABAUD 81 is a reanalysis of PAWLICKI 77 data.
${ }^{19}$ From an amplitude analysis where the $f_{2}^{\prime}(1525)$ width and elasticity are in complete disagreement with the values obtained from $K \bar{K}$ channel, making the solution dubious.
${ }^{20}$ From a fit to the D with $f_{2}(1270)-f_{2}^{\prime}(1525)$ interference. Mass fixed at 1516 MeV .
${ }^{21}$ Systematic errors not estimated.
${ }^{22}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} 3 resonances.
23 Supersedes ACCIARRI 95」.
${ }^{24}$ From an analysis including interference with $f_{0}(1710)$.
${ }^{25}$ From a fit to a Breit-Wigner line shape plus a second-order polynomial function. Systematic errors not evaluated.
${ }^{26}$ From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$.
27 From an analysis ignoring interference with $f_{0}(1710)$.
28 T-matrix pole.
29 4-poles, 5-channel K matrix fit.
30 In the $\operatorname{SU}(3)$ based model with a specific interference pattern of the $f_{2}(1270), a_{2}^{0}(1320)$, and $f_{2}^{\prime}(1525)$ mesons incoherently added to the $f_{0}(1710)$ and non-resonant background. 31 Systematic errors not estimated.

$f_{2}^{\prime}(1525)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor
Γ_{1}	$K \bar{K}$	$(87.6 \pm 2.2) \%$	1.1
Γ_{2}	$\eta \eta$	$(11.6 \pm 2.2) \%$	1.1
Γ_{3}	$\pi \pi$	$(8.3 \pm 1.6) \times 10^{-3}$	
Γ_{4}	$K \overline{K^{*}}(892)+$ c.c.		
Γ_{5}	$\pi K \bar{K}$		
Γ_{6}	$\pi \pi \eta$		
Γ_{7}	$\pi^{+} \pi^{+} \pi^{-} \pi^{-}$	$(9.5 \pm 1.1) \times 10^{-7}$	1.1
Γ_{8}	$\gamma \gamma$		

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 2 partial widths, a combination of partial widths obtained from integrated cross sections, and 3 branching ratios uses 17 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^{2}=18.2$ for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$f_{2}^{\prime}(1525)$ PARTIAL WIDTHS
$\Gamma(\kappa \bar{K})$
Γ_{1}
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{75 \pm 4 \text { OUR FIT Error includes DOCUMENT ID } \quad \text { TECN COMMENT }}$
$63_{-5}^{+6} \quad 32$ LONGACRE $86 \mathrm{MPS} \quad 22 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$\Gamma(\eta \eta)$
Γ_{2}
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{9 . 9} \pm \mathbf{1 . 9} \text { OUR FIT Error includes }} \frac{\text { DOCUMENT ID }}{\text { EVAle factor of } 11}$ COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$$
\begin{array}{llllll}
5.0 \pm 0.8 & 870 & 33 \text { SCHEGELSKY } 06 A & \text { RVUE } \gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0} \\
24 \\
24 & & 32 \text { LONGACRE } & 86 & \text { MPS } & 22 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n
\end{array}
$$

$\Gamma(\pi \pi)$
$\frac{V A L U E(M e V)}{\mathbf{0 . 7 1} \pm \mathbf{0 . 1 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error }} \frac{\text { DOCUMENT ID }}{\text { SECN }}$
$\begin{array}{lc}\mathbf{0 . 7 1} \pm \mathbf{0 . 1 4} \text { OUR FIT } & \text { Error includes scale factor of } 1.1 . \\ \mathbf{1 . 4} \pm \mathbf{+ \mathbf { 1 } . 0} & 32 \text { LONGACRE } 86 \mathrm{MPS} \quad 22 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.2 \underset{-0.2}{+1.0} \quad 870 \quad 33$ SCHEGELSKY 06A RVUE $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
$\Gamma(\gamma \gamma)$
VALUE (keV)
EVTS
DOCUMENT ID TECN COMMENT
0.082 ± 0.009 OUR FIT
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.13 \pm 0.03 \quad 870 \quad 33$ SCHEGELSKY 06A RVUE $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
${ }^{32}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
${ }^{33}$ From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$, using $\Gamma\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=68 \mathrm{MeV}$ and $\operatorname{SU}(3)$ relations.

$f_{2}^{\prime}(1525) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

 $\frac{V A L U E(\mathrm{keV})}{0.072 \pm 0.007 \text { OUR FIT }} \frac{E V T S}{}$ 0.072 ± 0.007 OUR AVERAGE
$0.048{ }_{-0.008}^{+0.067}+0.0108 \quad$ UEHARA $\quad 13$ BELL $\quad \gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
$0.0564 \pm 0.0048 \pm 0.0116 \quad 04$ BELL $10.6 e^{+} e^{-} \vec{C}^{-}$
$0.076 \pm 0.006 \pm 0.011331 \quad 34 \mathrm{ACCIARRI} \quad 01 \mathrm{H}$ L3 $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K_{S}^{0}$
$0.067 \pm 0.008 \pm 0.015 \quad 35$ ALBRECHT $\quad 90 G$ ARG $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
$0.11 \underset{-0.02}{+0.03} \pm 0.02 \quad$ BEHREND $\quad 89 \mathrm{C}$ CELL $e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K_{S}^{0}$
$0.10 \begin{array}{cc}+0.04 & +0.03 \\ -0.02 & \quad \text { BERGER }\end{array} 88$ PLUT $e^{+} e^{-} \rightarrow e^{+} e^{-} K_{S}^{0} K_{S}^{0}$
$0.12 \pm 0.07 \pm 0.04 \quad 35$ AIHARA $\quad 86 \mathrm{~B}$ TPC $e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
$0.11 \pm 0.02 \pm 0.04 \quad 35$ ALTHOFF $\quad 83$ TASS $e^{+} e^{-} \rightarrow e^{+} e^{-} K \bar{K}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.0314 \pm 0.0050 \pm 0.0077 \quad 36$ ALBRECHT $90 G$ ARG $e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
${ }^{34}$ Supersedes ACCIARRI 95J. From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$,
${ }^{35}$ Using an incoherent background.
36 Using a coherent background.

$\left[\Gamma\left(\kappa \bar{K}^{*}(892)+\right.\right.$ c.c. $\left.)+\Gamma(\pi K \bar{K})\right] / \Gamma(\kappa \bar{K}) \quad\left(\Gamma_{4}+\Gamma_{5}\right) / \Gamma_{1}$
VALUE COCUMENT ID _TECN COMMENT
• • We do not use the following data for averages, fits, limits, etc. • • •
$<0.35$$\quad 95 \quad$ AGUILAR-... $72 \mathrm{~B} \quad \mathrm{HBC} \quad 3.9,4.6 \mathrm{~K}^{-} p$

<0.41	95	AGUILAR-...	72 B	HBC	$3.9,4.6 K^{-} p$
<0.3	67	AMMAR	67	HBC	

$\Gamma\left(\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right) / \Gamma(\boldsymbol{K}) \quad \Gamma_{\mathbf{7}} / \Gamma_{\mathbf{1}}$
VALUE COCUMENTID _ CL\% TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -
$<0.32 \quad 95$ AGUILAR-... 72B HBC 3.9,4.6 $K^{-} p$
$f_{2}^{\prime}(1525)$ REFERENCES

PDG	18	PR D98 030001	M. Tanabashi et al.	(PDG Collab.)
DOBBS	15	PR D91 052006	S. Dobbs et al.	(NWES)
LEES	14 H	PR D89 092002	J.P. Lees et al.	(BABAR Collab.)
AAIJ	13AN	PR D87 072004	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	13N	PR D87 092009	Ablikim M. et al.	(BESIII Collab.)
UEHARA	13	PTEP 2013 123C01	S. Uehara et al.	(BELLE Collab.)
UEHARA	10A	PR D82 114031	S. Uehara et al.	(BELLE Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sarantsev	
CHEKANOV	08	PRL 101112003	S. Chekanov et al.	(ZEUS Collab.)
BINON	07	PAN 701713 Translated from YAF 70	F. Binon et al. 1758.	(GAMS Collab.)
AMSLER	06	PL B639 165	C. Amsler et al.	(CBAR Collab.)
SCHEGELSKY	06A	EPJ A27 207	V.A. Schegelsky et al.	
ABLIKIM	05	PL B607 243	M. Ablikim et al.	(BES Collab.)
ABE	04	EPJ C32 323	K. Abe et al.	(BELLE Collab.)
CHEKANOV	04	PL B578 33	S. Chekanov et al.	(ZEUS Collab.)
BAI	03G	PR D68 052003	J.Z. Bai et al.	(BES Collab.)
TIKHOMIROV	03	PAN 66828 Translated from YAF 6	G.D. Tikhomirov et al. 860.	

AMSLER	02	EPJ C23 29	C. Amsler et al.	
ACCIARRI	01 H	PL B501 173	M. Acciarri et al.	(L3 Collab.)
BARBERIS	00E	PL B479 59	D. Barberis et al.	(WA 102 Collab.)
BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega Expt.)
BARKOV	99	JETPL 70248 Translated from ZETFP	B.P. Barkov et al. 70242 .	
ABreu	96C	PL B379 309	P. Abreu et al.	(DELPHI Collab.)
BAI	96C	PRL 773959	J.Z. Bai et al.	(BES Collab.)
ACCIARRI	95J	PL B363 118	M. Acciarri et al.	(L3 Collab.)
PROKOSHKIN	91	SPD 36155 Translated from DANS	Y.D. Prokoshkin 316900.	(GAM2 and GAM4 Collab.)
ALBRECHT	90G	ZPHY C48 183	H. Albrecht et al.	(ARGUS Collab.)
BEHREND	89C	ZPHY C43 91	H.J. Behrend et al.	(CELLO Collab.)
ASTON	88D	NP B301 525	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
AUGUSTIN	88	PRL 602238	J.E. Augustin et al.	(DM2 Collab.)
BERGER	88	ZPHY C37 329	C. Berger et al.	(PLUTO Collab.)
FALVARD	88	PR D38 2706	A. Falvard et al.	(CLER, FRAS, LALO+)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+)
BALTRUSAIT..	87	PR D35 2077	R.M. Baltrusaitis et al.	(Mark III Collab.)
AIHARA	86B	PRL 57404	H. Aihara et al.	(TPC-2 2 Collab.)
BOLONKIN	86	SJNP 43776 Translated from YAF 43	B.V. Bolonkin et al. 1211.	(ITEP) JP
LONGACRE	86	PL B177 223	R.S. Longacre et al.	(BNL, BRAN, CUNY+)
ALTHOFF	83	PL 121B 216	M. Althoff et al.	(TASSO Collab.)
ARMSTRONG	83B	NP B224 193	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
AGUILAR-...	81B	ZPHY C8 313	M. Aguilar-Benitez et al.	(CERN, CDEF+)
ALHARRAN	81	NP B191 26	S. Al-Harran et al.	(BIRM, CERN, GLAS+)
CHABAUD	81	APP B12 575	V. Chabaud et al.	(CERN, CRAC, MPIM)
COSTA	80	NP B175 402	G. Costa et al. (B	(BARI, BONN, CERN, GLAS+)
GORLICH	80	NP B174 16	L. Gorlich et al.	(CRAC, MPIM, CERN+)
CORDEN	79	NP B157 250	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP
MARTIN	79	NP B158 520	A.D. Martin, E.N. Ozmutlu	tlu (DURH)
POLYCHRO...	79	PR D19 1317	V.A. Polychronakos et al.	(NDAM, ANL)
BARREIRO	77	NP B121 237	F. Barreiro et al.	(CERN, AMST, NIJM+)
EVANGELIS...	77	NP B127 384	C. Evangelista et al.	(BARI, BONN, CERN+)
PAWLICKI	77	PR D15 3196	A.J. Pawlicki et al.	(ANL) IJP
BRANDENB...	76C	NP B104 413	G.W. Brandenburg et al.	(SLAC)
BEUSCH	75B	PL 60B 101	W. Beusch et al.	(CERN, ETH)
AGUILAR-...	72B	PR D6 29	M. Aguilar-Benitez et al.	(BNL)
AMMAR	67	PRL 191071	R. Ammar et al.	(NWES, ANL) JP
BARNES	67	PRL 19964	V.E. Barnes et al.	(BNL, SYRA) IJPC
CRENNELL	66	PRL 161025	D.J. Crennell et al.	(BNL)।

$f_{2}(1565) \quad \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$
OMITTED FROM SUMMARY TABLE
Seen mostly in antinucleon-nucleon annihilation. Needs confirmation in other channels.

$f_{2}(1565)$ MASS

${ }^{1}$ T-matrix pole.
${ }^{2}$ On sheet II in a two-pole solution.
${ }^{3}$ Supersedes the $\omega \omega$ state of BELADIDZE 92B earlier assigned to the $f_{2}(1640)$.
${ }^{4}$ Breit-Wigner width.
${ }^{5}$ T-matrix pole, large coupling to $\rho \rho$ and $\omega \omega$, could be $f_{2}(1640)$.
${ }^{6}$ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.
${ }^{7}$ From a simultaneous analysis of the annihilations $\bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$ including AKER 91
$8{ }_{j}{ }^{\text {data. }}$
P not determined, could be partly $f_{0}(1500)$.
${ }^{9} J^{P}$ not determined.
10 Superseded by AMSLER 95B.

Meson Particle Listings
f_{2}（1565），$\rho(1570)$

$f_{2}(1565)$ WIDTH

VALUE（MeV）DOCUMENT ID	DOCUMENT ID		TECN	COMMENT
122土 13 OUR	RAGE			
113 ± 23	11 AMSLER	02	CBAR	$0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$
119 ± 24	${ }^{11}$ BERTIN	98	OBLX	0．05－0．405 $\bar{n} p \rightarrow \pi^{+} \pi^{+} \pi^{-}$
130 ± 20	${ }^{11}$ BERTIN	97 C	OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
－－We do not use the following data for averages，fits，limits，etc．－－				
280 ± 40	12 ANISOVICH	09	RVUE	$0.0 \bar{p} p, \pi N$
140 ± 11	13，14 AMELIN	06	VES	$36 \pi^{-} p \rightarrow \omega \omega n$
$130 \pm 20 \pm 40$	14 AMELIN	00	VES	$37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
180 ± 60	${ }^{15}$ ABELE	96 C	RVUE	Compilation
~ 142	16 AMSLER	95D	CBAR	$\begin{aligned} & 0.0 \bar{p} p \overrightarrow{\pi^{0}} \pi^{0} \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta \text {, } \end{aligned}$
263 ± 101	BALOSHIN	95	SPEC	$40 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} \mathrm{X}$
$166 \pm{ }_{-}{ }^{80}$	17 ANISOVICH	94	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}, \eta \eta \pi^{0}$
130 ± 10	18 ADAMO	93	OBLX	$\bar{n} p \rightarrow \pi^{+} \pi^{+} \pi^{-}$
148 ± 27	19 ARMSTRONG	93 C	E760	$\bar{p} p \rightarrow \pi^{0} \eta \eta \rightarrow 6 \gamma$
103 ± 15	19 ARMSTRONG	93D	E760	$\bar{p} p \rightarrow 3 \pi^{0} \rightarrow 6 \gamma$
111 ± 10	19 ARMSTRONG	93D	E760	$\bar{p} p \rightarrow \eta \pi^{0} \pi^{0} \rightarrow 6 \gamma$
~ 206	${ }^{20}$ WEIDENAUER		ASTE	$0.0 \bar{p} N \rightarrow 3 \pi^{-} 2 \pi^{+}$
132 ± 37	19 ADAMO	92	Oblx	$\bar{n} p \rightarrow \pi^{+} \pi^{+} \pi^{-}$
120 ± 10	${ }^{21}$ AKER	91	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}$
170 ± 40	MAY	90	ASTE	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
116土 9	BRIDGES	86 C	DBC	$0.0 \bar{p} N \rightarrow 3 \pi^{-} 2 \pi^{+}$

11 T－matrix pole
12 On sheet II in a two－pole solution
${ }^{13}$ Supersedes the $\omega \omega$ state of BELADIDZE 92B earlier assigned to the $f_{2}(1640)$ ．
14 Breit－Wigner width．
${ }^{15}$ T－matrix pole，large coupling to $\rho \rho$ and $\omega \omega$ ，could be $f_{2}(1640)$ ．
${ }^{16}$ Coupled－channel analysis of AMSLER 95B，AMSLER 95C，and AMSLER 94D．
${ }^{17}$ From a simultaneous analysis of the annihilations $\bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta \eta$ including AKER 91 18 data．
18 Supersedes ADAMO 92.
$19 \mathrm{~J}^{P}$ not determined，could be partly $f_{0}(1500)$ ．
$20 J^{P}$ not determined．
21 Superseded by AMSLER 95B

$f_{2}(1565)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	seen
Γ_{2}	$\pi^{+} \pi^{-}$	seen
Γ_{3}	$\pi^{0} \pi^{0}$	seen
Γ_{4}	$\rho^{0} \rho^{0}$	seen
Γ_{5}	$2 \pi^{+} 2 \pi^{-}$	seen
Γ_{6}	$\eta \eta$	seen
Γ_{7}	$\omega \omega$	seen
Γ_{8}	$K \bar{K}$	seen
Γ_{9}	$\gamma \gamma$	seen

$f_{2}(1565)$ PARTIAL WIDTHS
$\Gamma(\eta \eta)$
VALUE（MEV）EVTS DOCUMENT ID TECN COMMENT

－－We do not use the following data for averages，fits，limits，etc．－－－

[^111]$\Gamma(K \bar{K})$
VALUE（MeV）EOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •
$2.0 \pm 1.0 \quad 870 \quad 22$ SCHEGELSKY 06A RVUE $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
$\Gamma(\gamma \gamma)$
㑆

VALUE (keV) EVTS DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •
$0.70 \pm 0.14 \quad 870 \quad 22$ SCHEGELSKY 06A RVUE $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
${ }^{22}$ From analysis of L3 data at 91 and $183-209 \mathrm{GeV}$ ，using $f_{2}(1565)$ mass of 1570 MeV ， width of $160 \mathrm{MeV}, \Gamma(\pi \pi)=25 \mathrm{MeV}$ ，and $\mathrm{SU}(3)$ relations．
$f_{2}(1565)$ BRANCHING RATIOS

$\Gamma(\pi \pi) / \Gamma_{\text {total }}$					Γ_{1} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
－－We do not use the following data for averages，fits，limits，etc．－－					
seen	BAKER	99B	SPEC	$0 \bar{p} p \rightarrow \omega \omega \pi^{0}$	
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$			Γ_{2} / Γ		
Value	DOCUMENT ID		TECN	COMMENT	
－－We do not use the following data for averages，fits，limits，etc．－－					
seen	BERTIN	98	OBLX	$0.05-0.405 \bar{n} p \rightarrow$	
	23 ANISOVICH	94B		$\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$	
seen	MAY	89	ASTE	$\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$	
23 ANISOVICH 94B is from a reanalysis of MAY 90.					
$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$			TECN	$\Gamma 3 / \Gamma$	
VALUE	DOCUMENT ID			COMMENT	
seen	AMSLER	95B	CBAR	$0.0 \bar{p} p \rightarrow 3 \pi^{0}$	
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\rho^{0} \rho^{0}\right)$					Γ_{2} / Γ_{4}
VALUE	DOCUMENT ID		TECN	COMMENT	

－• We do not use the following data for averages，fits，limits，etc．• •
$0.042 \pm 0.013 \quad$ BRIDGES 86 B DBC $\bar{p} N \rightarrow 3 \pi^{-} 2 \pi^{+}$
$\Gamma(\eta \eta) / \Gamma\left(\pi^{0} \pi^{0}\right)$
－－We do not use the following data for averages，fits，limits，etc．－•
$0.024 \pm 0.005 \pm 0.012 \quad 24$ ARMSTRONG 93C E760 $\quad \bar{p} p \rightarrow \pi^{0} \eta \eta \rightarrow 6 \gamma$
$24 J^{P}$ not determined，could be partly $f_{0}(1500)$ ．

$f_{2}(1565)$ REFERENCES

OMITTED FROM SUMMARY TABLE
May be an OZl－violating decay mode of $\rho(1700)$ ．See our mini－ review under the $\rho(1700)$ ．

See key on page 999

Meson Particle Listings
$\pi_{1}(1600), a_{1}(1640)$
${ }^{4}$ Natural parity exchange.
${ }^{5}$ Superseded by AGHASYAN 2018B.
${ }^{6}$ Superseded by DZIERBA 06 excluding this state in a more refined PWA analysis, with 2.6 M events of $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$ and 3 M events of $\pi^{-} p \rightarrow \pi^{-} \pi^{0} \pi^{0} p$ of E852 data.

$\pi_{1}(1600)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi \pi$	seen
Γ_{2}	$\rho^{0} \pi^{-}$	seen
Γ_{3}	$f_{2}(1270) \pi^{-}$	not seen
Γ_{4}	$b_{1}(1235) \pi$	seen
Γ_{5}	$\eta^{\prime}(958) \pi^{-}$	seen
Γ_{6}	$f_{1}(1285) \pi$	seen

$\pi_{1}(1600)$ BRANCHING RATIOS

$\pi_{1}(1600)$ REFERENCES

Possibly seen in the study of the hadronic structure in decay $\tau \rightarrow$ $3 \pi \nu_{\tau}$ (ABREU 98G and ASNER 00).

$a_{1}(1640)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1655 16 OUR AVERAGE		Error includes scale factor of 1.2.			
$1700{ }_{-130}^{35}$	46M	${ }^{1}$ AGHASYAN		COMP	$190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$
$1691 \pm 18 \pm 30$		DARGENT	17	RVUE	$D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$
1630 ± 20	35k	${ }^{2}$ BAKER	03	SPEC	$\bar{p} p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}$
$1714 \pm 9 \pm 36$		CHUNG	02	B852	$18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
$1640 \pm 12 \pm 30$		BAKER	99	SPEC	$1.94 \bar{p} p \rightarrow 4 \pi$

- - We do not use the following data for averages, fits, limits, etc. - . -
1670 ± 90
${ }^{1}$ Statistical error negligible.
${ }^{2}$ BELLINI 85
${ }^{2}$ Using the $a_{1}(1260)$ mass and width results of BOWLER 88.

a_{1} (1640) WIDTH

$\underline{V A L U E}(\mathrm{MeV})$ EVTS	DOCUMENT ID	TECN COMMENT
254土 40 OUR AVERAGE	Error includes scale factor	r of 1.8. See the ideogram below.
$510{ }_{-}^{+170} 90$	${ }^{1}$ AGHASYAN 18B	COMP $190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$
$171 \pm 33 \pm 40$	DARGENT 17	RVUE $D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$
$225 \pm 30 \quad 35 k$	${ }^{2}$ BAKER 03	SPEC $\bar{p} p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}$
$308 \pm 37 \pm 62$	CHUNG 02	B852 18.3 $\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
$300 \pm 22 \pm 40$	BAKER 99	SPEC $1.94 \bar{p} p \rightarrow 4 \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - -		
300 ± 100	BELLINI 85	SPEC $40 \pi^{-} A \rightarrow \pi^{-} \pi^{+} \pi^{-} A$
${ }^{1}$ Statistical error negligible.		
${ }^{2}$ Using the $a_{1}(1260)$ mas	d width r	

 a_{1} (1640) width (MeV)

$a_{1}(1640)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi \pi$	seen
Γ_{2}	$f_{2}(1270) \pi$	seen
Γ_{3}	$\sigma \pi$	seen
Γ_{4}	$\rho \pi$	
$\Gamma_{5}-$ wave	$\rho \pi{ }_{D-w a v e}$	seen
Γ_{6}	$\omega \pi \pi$	seen
Γ_{7}	$f_{1}(1285) \pi$	seen
Γ_{8}	$a_{1}(1260) \eta$	seen

$a_{1}(1640)$ BRANCHING RATIOS

$\Gamma(\omega \pi \pi) / \Gamma_{\text {total }}$
VALUE EVTS
DOCUMENT ID \qquad TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • •
seen $35280{ }^{1}$ BAKER 03 SPEC $\bar{p} p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ Assuming the $\omega \rho$ mechanism for the $\omega \pi \pi$ state.
$\Gamma\left(f_{1}(1285) \pi\right) / \Gamma_{\text {total }}$
$\xrightarrow[\text { VALUE }]{\text { - } \quad \text { DOCUMENT ID do not use the following data for averages, fits, limits, etc. • • • }} \frac{\text { TECN }}{\text { COMMENT }}$
$\Gamma 7 / \Gamma$

| not seen | KUHN | 04 | B852 | $18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| seen | LEE | 94 | MPS2 | $18 \pi^{-} p \rightarrow K^{+} \bar{K}^{0} \pi^{-} \pi^{-} p$ |

See key on page 999
Meson Particle Listings
$a_{1}(1640), f_{2}(1640), \eta_{2}(1645), \omega(1650)$

$f_{2}(1640) \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{+}+\right)$
OMITTED FROM SUMMARY TABLE

$f_{2}(1640)$ WIDTH

VALUE (MeV) \qquad CL\%

DOCUMENT ID TECN COMMENT
${ }^{99}{ }_{-40}^{\mathbf{6 0}}$ OUR AVERAGE Error includes scale factor of 2.9.

	$\boldsymbol{f}_{\mathbf{2}}(\mathbf{1 6 4 0)}$ DECAY MODES	
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\omega \omega$	seen
Γ_{2}	4π	seen
Γ_{3}	$K \bar{K}$	seen

$f_{2}(\mathbf{1 6 4 0})$ BRANCHING RATIOS

$\Gamma(K \bar{K}) / \Gamma_{\text {total }}$	DOCuMENT id		TECN	COMMENT	Γ_{3} / Γ	
$\frac{\text { VALUE }}{\text { seen }}$						
	AMSLER	06				$K^{+} K^{-}$

$f_{2}(1640)$ REFERENCES

AMSLER	06	PL B639 165	C. Amsler et al.	(CBAR Collab.)
VLADIMIRSK.	06	PAN 69493	V.V. Vladimirsky et al.	(ITEP, Moscow)
BUGG	95	Translated from PL B353 378	YAF 69 515. ${ }^{\text {D.V. }}$ Bugg et al.	(LOQM, PNPI, WASH) JP
ADAMO	92	PL B287 368	A. Adamo et al.	(OBELIX Collab.)
ALDE	90	PL B241 600	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
ALDE	89B	PL B216 451	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+) IGJPC

$\eta_{2}(1645)$
$I^{G}\left(J^{P C}\right)=0^{+}\left(2^{-+}\right)$
$\eta_{2}(\mathbf{1 6 4 5})$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
1617 ± 5 OUR AVERAGE						
1613 ± 8	BARBERIS	00B			450 pp	$p_{f} \eta \pi^{+} \pi^{-} p_{S}$
1617 ± 8	BARBERIS	00C			450 pp	$p_{f} 4 \pi p_{S}$
1620 ± 20	BARBERIS	97B	OMEG		450 pp	pp2 ($\left.^{+} \pi^{-}\right)$
$1645 \pm 14 \pm 15$	ADOMEIT	96	CBAR	0	$1.94 \bar{p} p$	$\eta 3 \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - -
$1645 \pm 6 \pm 20 \quad$ ANISOVICH O0E SPEC $\quad 0.9-1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$

$\eta_{\mathbf{2}}(1645)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
181 ± 11 OUR AVERAGE						
185 ± 17	BARBERIS	00B			450 pp	$p_{f} \eta \pi^{+}$
177 ± 18	BARBERIS	00C			$450 p p \rightarrow$	$p_{f} 4 \pi p_{S}$
180 ± 25	BARBERIS	97B	OMEG		450 pp	pp2 $2 \pi^{+}$
$180{ }_{-21}^{+40} \pm 25$	ADOMEIT	96	CBAR	0	$1.94 \bar{p} p$	$\eta 3 \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - -
$200 \pm 25 \quad$ ANISOVICH \quad O0E SPEC $\quad 0.9-1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$
$\eta_{2}(\mathbf{1 6 4 5})$ DECAY MODES

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$a_{2}(1320) \pi$	seen
Γ_{2}	$K \bar{K} \pi$	seen
Γ_{3}	$K^{*} \bar{K}$	seen
Γ_{4}	$\eta \pi^{+} \pi^{-}$	seen
Γ_{5}	$a_{0}(980) \pi$	seen
Γ_{6}	$f_{2}(1270) \eta$	not seen

$\eta_{2}(1645)$ BRANCHING RATIOS

$\Gamma(K \bar{K} \pi) / \Gamma\left(a_{2}(1320) \pi\right)$	DOCUMENT ID T			TECN	COMMENT	Γ_{2} / Γ_{1}	
VALUE							
0.07 ± 0.03	${ }^{1}$ BARBE				OME	450 pp	$p p K \bar{K} \pi$
${ }^{1}$ Using $2\left(\pi^{+} \pi^{-}\right)$data from BARBERIS 97b.							
$\Gamma\left(a_{2}(1320) \pi\right) / \Gamma\left(a_{0}(980) \pi\right)$							
VALUE	DOCUMENT ID		TECN		MENT		
13.1 ± 2.3 OUR AVERAGE							
13.5 ± 4.6	${ }^{2}$ ANISOVICH	11	SPEC	C 0.9	$1.94 p \bar{p}$		
13.0 ± 2.7	BARBERIS	008			$p p \rightarrow p_{f}$	${ }^{+}{ }^{-} p_{S}$	

${ }^{2}$ Reanalysis of ADOMEIT 96 and ANISOVICH 00E.
$\boldsymbol{\Gamma}\left(\boldsymbol{f}_{\mathbf{2}}(\mathbf{1 2 7 0}) \boldsymbol{\eta}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$V A L U E$
DOCUMENT ID COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • not seen \quad BARBERIS $00 \mathrm{~B} 450 p p \rightarrow p_{f} \eta \pi^{+} \pi^{-} p_{S}$ $\eta_{2}(1645)$ REFERENCES

VALUE (MeV) EVTS
DOCUMENT ID
TECN COMMENT
1670 ± 30 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -

$1651 \pm \begin{aligned} & +16\end{aligned}$	183k	${ }^{1}$ ABLIKIM	19AQ	BES	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
$1673 \pm{ }_{-}^{6}$		ACHASOV	19	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta$
$1671 \pm 6 \pm 10$	824	${ }^{2}$ AKHMETSHIN	17A	CMD3	$1.4-2.0 e^{+} e^{-} \rightarrow \omega \eta$
1660 ± 10	898	3 ACHASOV	16B	SND	$1.34-2.00 e^{+} e^{-} \rightarrow \omega \eta$
1680 ± 10	13.1k	${ }^{4}$ AULCHENKO	15A	SND	$\underset{\pi^{+}}{1.05-1.80} \pi^{-} e_{\pi^{0}}^{+} e^{-} \rightarrow$
$1667 \pm 13 \pm 6$		AUBERT	07aU	BABR	$10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$
1645 ± 8	13	AUBERT	06D	BABR	$10.6 e^{+} e^{-} \rightarrow \omega \eta \gamma$
$1660 \pm 10 \pm 2$		AUBERT,B	04N	BABR	$10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$
$1770 \pm 50 \pm 60$	1.2M	5 ACHASOV	03D	RVUE	$\begin{gathered} 0.44-2.00 \\ \pi^{+} \pi^{-}-e^{+} \end{gathered}$
1619土 5		${ }^{6}$ HENNER	02	RVUE	$\begin{aligned} & 1.2-2.0 e^{+} e^{-} \rightarrow \rho \pi \\ & \omega \pi \end{aligned}$
1700 ± 20		EUGENIO	01	SPEC	$18 \pi^{-} p \rightarrow \omega \eta n$
1705 ± 26	612	7 AKHMETSHIN	00D	CMD2	$e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-}$
1820_{-150}^{+190}		${ }^{8}$ ACHASOV	98H	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$1840{ }_{-}^{+100}$		${ }^{9}$ ACHASOV	98H	RVUE	$e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-}$

Meson Particle Listings
$\omega(1650)$

$1780{ }_{-300}^{+170}$		10 ACHASOV	98H	RVUE	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
~ 2100		11 ACHASOV	98H	RVUE	$e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
1606 ± 9		12 CLEGG	94	RVUE	
1662 ± 13	750	13 ANTONELLI	92	DM2	$\underset{\omega \pi \pi}{1.34-2.4 e^{+}} e^{-} \rightarrow \rho \pi$
1670 ± 20		ATKINSON	83B	OMEG	20-70 $\gamma p \rightarrow 3 \pi \mathrm{X}$
1657 ± 13		CORDIER	81	DM1	$e^{+} e^{-} \rightarrow \omega 2 \pi$
1679 ± 34	21	ESPOSITO	80	FRAM	$e^{+} e^{-} \rightarrow 3 \pi$
1652 ± 17		cosme	79	OSPK	$e^{+} e^{-} \rightarrow 3 \pi$

${ }^{1}$ Could also be $\rho(1700)$. Branching ratio $J / \psi \rightarrow X \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}=\left(5.3 \pm 0.3_{-0.5}^{+0.6}\right) \times$ 10^{-5}.
${ }^{2}$ From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating.
${ }^{3}$ From a fit with contributions from $\omega(1420), \omega(1650)$, and $\phi(1680)$.
${ }^{4}$ From a fit with contributions from $\omega(782), \phi(1020), \omega(1420)$, and $\omega(1650)$.
${ }^{5}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{6}$ Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and ANTONELLI 92.
${ }^{7}$ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho \pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
${ }^{8}$ Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.
${ }^{9}$ Using the data from ANTONELLI 92.
10 Using the data from IVANOV 81 and BISELLO 88B.
11 Using the data from BISELLO 91C.
${ }^{12}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
13 From the combined fit of the $\rho \pi$ and $\omega \pi \pi$ final states.
$\omega(1650)$ WIDTH
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
315 ± 35 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - •
$194 \pm 8_{-}^{+} 15 \quad 183 \mathrm{k} \quad{ }^{1}$ ABLIKIM \quad 19AQ BES $\quad J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
95 ± 11
ACHASOV 19 SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta$
$113 \pm 9 \pm 10 \quad 824 \quad 2$ AKHMETSHIN 17A CMD3 $1.4-2.0 e^{+} e^{-} \rightarrow \omega \eta$
$110 \pm 20 \quad 898 \quad 3$ ACHASOV 16 B SND $1.34-2.00 e^{+} e^{-} \rightarrow \omega \eta$
$310 \pm 30 \quad 13.1 \mathrm{k} \quad{ }^{4}$ AULCHENKO 15 A SND $\underset{\pi^{+}+\pi^{-}}{1.05-1.80}{ }_{\pi}^{0} e^{+} \rightarrow$
$222 \pm 25 \pm 20 \quad$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$
$114 \pm 14 \quad 13$ AUBERT 06D BABR $10.6 e^{+} e^{-} \rightarrow \omega \eta \gamma$
$230 \pm 30 \pm 20 \quad$ AUBERT,B 04 N BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$
$490{ }_{-150}^{+200} \pm 130 \quad 1.2 \mathrm{M} \quad{ }^{5}$ ACHASOV 03D RVUE $\underset{\pi^{+}+\pi^{-}}{0.44-2.00} e_{0}^{+} e^{-} \rightarrow$
$250 \pm 14 \quad{ }^{6}$ HENNER 02 RVUE $1.2-2.0 e^{+} e^{-} \rightarrow \rho \pi, \omega \pi \pi$
$250 \pm 50 \quad$ EUGENIO 01 SPEC $18 \pi^{-} p \rightarrow \omega \eta n$
$370 \pm 25 \quad 612 \quad 7$ AKHMETSHIN 00D CMD2 $e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-}$
$113+20$
$\begin{array}{lllll} & 750 & 9 & \text { ANTONELLI } & 92 \\ 280 \pm & \text { DM2 } & 1.34-2.4 e^{+} e^{-} \rightarrow \rho \pi, \omega \pi \pi\end{array}$
$160 \pm 20 \quad$ ATKINSON 83B OMEG 20-70 $\gamma p \rightarrow 3 \pi \mathrm{X}$
$136 \pm 46 \quad$ CORDIER 81 DM1 $e^{+} e^{-} \rightarrow \omega 2 \pi$
$99 \pm 49 \quad 21$ ESPOSITO 80 FRAM $e^{+} e^{-} \rightarrow 3 \pi$
${ }^{1}$ Could also be $\rho(1700)$. Branching ratio $J / \psi \rightarrow X \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}=\left(5.3 \pm 0.3_{-0.5}^{+0.6}\right) \times$ 10^{-5}.
${ }_{2}$ From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating.
${ }^{3}$ From a fit with contributions from $\omega(1420), \omega(1650)$, and $\phi(1680)$.
${ }^{4}$ From a fit with contributions from $\omega(782), \phi(1020), \omega(1420)$, and $\omega(1650)$.
${ }^{5}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{6}$ Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and ANTONELLI 92.
7 Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho \pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
${ }^{8}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
${ }^{9}$ From the combined fit of the $\rho \pi$ and $\omega \pi \pi$ final states.
$\omega(1650)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\rho \pi$	seen
Γ_{2}	$\omega \pi \pi$	seen
Γ_{3}	$\omega \eta$	seen
Γ_{4}	$e^{+} e^{-}$	seen
Γ_{5}	$\pi^{0} \gamma$	not seen

$\omega(1650) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}$ (total)
 $\Gamma(\rho \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
 $\Gamma_{1} / \Gamma \times \Gamma_{4} / \Gamma$
 VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.56 \pm 0.23 \quad 13.1 \mathrm{k} \quad 1$ AULCHENKO 15 A SND $\quad 1.05-1.80 e^{+} e^{-} \rightarrow$
$1.3 \pm 0.1 \pm 0.1$
$1.2 \begin{array}{ccc}+0.4 \\ -0.1\end{array} \quad \pm 0.8 \quad 1.2 \mathrm{M}$
0.921 ± 0.230
0.921 ± 0.230
0.479 ± 0.050
4,5 CLEGG
750 6,7 ANT
${ }^{1}$ From a fit with contributions from $\omega(782), \phi(1020), \omega(1420)$, and $\omega(1650)$
${ }^{2}$ Calculated by us from the cross section at the peak.
${ }^{3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{4}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
${ }^{5}$ From the partial and leptonic width given by the authors.
${ }^{6}$ From the combined fit of the $\rho \pi$ and $\omega \pi \pi$ final states.
${ }^{7}$ From the product of the leptonic width and partial branching ratio given by the authors.
$\Gamma(\omega \pi \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{2} / \Gamma \times \Gamma_{4} / \Gamma$
VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$7.0 \pm 0.5 \quad$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$
$4.1 \pm 0.9 \pm 1.3 \quad 1.2 \mathrm{M} \quad 1,2$ ACHASOV \quad 03D RVUE $\begin{gathered}0.44-2.00 \\ \pi^{+}+\pi^{-} e_{\pi^{0}}^{+}\end{gathered} e^{-} \rightarrow$
5.40 ± 0.95
3.18 ± 0.80
3 AKHMETSHIN 00D CMD2 $1.2-1.38 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-}$
$6.07 \pm 0.61 \quad 750 \quad 6,7$ ANTONELLI 92 DM2 $1.34-2.4 e^{+} e^{-} \rightarrow \rho \pi, \omega \pi \pi$
${ }^{1}$ Calculated by us from the cross section at the peak.
${ }^{2}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{3}$ Using the data of AKHMETSHIN OOD and ANTONELLI 92. The $\rho \pi$ dominance for the
energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.
${ }^{4}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.
${ }^{5}$ From the partial and leptonic width given by the authors.
${ }^{6}$ From the combined fit of the $\rho \pi$ and $\omega \pi \pi$ final states.
${ }^{7}$ From the product of the leptonic width and partial branching ratio given by the authors.

$\Gamma(\omega \eta) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$

$\Gamma_{3} / \Gamma \times \Gamma_{4} / \Gamma$
VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$5.62_{-0.42}^{+0.45} \quad$ ACHASOV 19 SND $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta \quad$ |
$4.5 \pm 0.3 \pm 0.3 \quad 824 \quad 1$ AKHMETSHIN 17A CMD3 $1.4-2.0 e^{+} e^{-} \rightarrow \omega \eta$
$4.4 \pm 0.5 \quad 898 \quad 2$ ACHASOV 16B SND $1.34-2.00 e^{+} e^{-} \rightarrow \omega \eta$
$5.7 \pm 0.6 \quad 13 \quad$ AUBERT 06D BABR $10.6 e^{+} e^{-} \rightarrow \omega \eta \gamma$
<60 at 90% CL $\quad 3$ AKHMETSHIN 03B CMD2 $e^{+} e \rightarrow \eta \pi^{0} \gamma$
${ }^{1}$ From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating. From an alternative fit $\Gamma(\omega(1650) \rightarrow \omega \eta) / \Gamma_{\text {total }} \times \Gamma(\omega(1650) \rightarrow$ $\left.e^{+} e^{-}\right)=51 \pm 3 \mathrm{eV}$.
${ }^{2}$ From a fit with contributions from $\omega(1420), \omega(1650)$, and $\phi(1680)$.
$3 \omega(1650)$ mass and width fixed at 1700 MeV and 250 MeV , respectively.

$\omega(1650)$ BRANCHING RATIOS						
$\Gamma(\rho \pi) / \Gamma_{\text {total }}$VALUE	EVTS	DOCUMENT ID		TECN COMMENT		Γ / Γ
- - We do not use the following data for averages, fits, limits, etc. - - -						
~ 0.65	1.2 M	${ }^{1}$ ACHASOV		RVUE	0.44-2.00	
0.380 ± 0.014		2 HENNER		RVUE	$1.2-2.0 e^{+}$	$\omega \pi \pi$

${ }^{1}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{2}$ Assuming that the $\omega(1650)$ decays into $\rho \pi$ and $\omega \pi \pi$ only.
$\Gamma(\omega \pi \pi) / \Gamma_{\text {total }}$
Γ_{2} / Γ

$\sim 0.35 \quad 1.2 \mathrm{M} \quad 1$ ACHASOV \quad 03D RVUE $\begin{gathered}0.44-2.00{ }_{\pi^{-}}^{+} e_{\pi^{+}}^{+} e^{-} \rightarrow\end{gathered}$ $0.620 \pm 0.014 \quad 2$ HENNER 02 RVUE $\begin{aligned} \pi-2.0 \\ e^{+} \\ \pi^{0} \\ e^{-}\end{aligned} \rho \rho \pi, \omega \pi \pi$
${ }^{1}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^{+} \pi^{-} \pi^{0}$ and ANTONELLI 92 on the $\omega \pi^{+} \pi^{-}$final states. Supersedes ACHASOV 99E and ACHASOV 02E.
${ }^{2}$ Assuming that the $\omega(1650)$ decays into $\rho \pi$ and $\omega \pi \pi$ only.

$\omega(1650)$ REFERENCES				
ABLIKIM	19AQ	PR D100 032004	M. Ablikim et al.	(BESIII Collab.)
ACHASOV	19	PR D99 112004	M.N. Achasov et al.	(SND Collab.)
AKHMETSHIN	17A	PL B773 150	R.R. Akhmetshin et al.	(CMD-3 Collab.)
ACHASOV	16B	PR D94 092002	M.N. Achasov et al.	(SND Collab.)
AULCHENKO	15A	JETP 12127 Translated from Z	V.M. Aulchenko et al.	(SND Collab.)
ACHASOV	10D	PR D98 112001	M.N. Achasov et al.	(SND Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert et al.	(BABAR Collab.)
AUBERT	06D	PR D73 052003	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04N	PR D70 072004	B. Aubert et al.	(BABAR Collab.)
ACHASOV	03D	PR D68 052006	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN	03B	PL B562 173	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ACHASOV	02E	PR D66 032001	M.N. Achasov et al.	(Novosibirsk SND Collab.)
HENNER	02	EPJ C26 3	V.K. Henner et al.	
ACHASOV	01 E	PR D63 072002	M.N. Achasov et al.	(Novosibirsk SND Collab.)
EUGENIO	01	PL B497 190	P. Eugenio et al.	
AKHMETSHIN	00D	PL B489 125	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ACHASOV	99E	PL B462 365	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhe	nikov
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelii et al.	(DM2 Collab.)
BISELLO	91 C	ZPHY C52 227	D. Bisello et al.	(DM2 Collab.)
DOLINSKY	91	PRPL 20299	S.I. Dolinsky et al.	(NOVO)
BISELLO	88 B	ZPHY C39 13	D. Bisello et al.	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46164 Translated from Z	L.M. Barkov et al. 46132	(NOVO)
ATKINSON	83B	PL 127 B 132	M. Atkinson et al.	(BONN, CERN, GLAS+)
CORDIER	81	PL 106B 155	A. Cordier et al.	(ORSAY)
IVANOV	81	PL 107B 297	P.M. Ivanov et al.	(NOVO)
ESPOSITO	80	LNC 28195	B. Esposito et al.	(FRAS, NAPL, PADO+)
COSME	79	NP B152 215	G. Cosme et al.	(IPN)

$\omega_{3}(1670)$		$I^{G}\left(J^{P C}\right)=0^{-}\left(3^{--}\right)$			
$\omega_{3}(1670)$ MASS					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1667 ± 4 OUR AVERAGE					
$1665.3 \pm 5.2 \pm 4.5$	23400	AMELIN	96	VES	$\begin{aligned} & 36 \pi^{-} p \rightarrow \\ & \pi^{+}+\pi^{-} \pi^{0} n \end{aligned}$
1685 ± 20	60	BAUBILLIER	79	HBC	$8.2 \mathrm{~K}^{-} p$ backward
1673 ± 12	430	1,2 BALTAY	78E	HBC	$15 \pi^{+} p \rightarrow \Delta 3 \pi$
1650 ± 12		CORDEN	78B	OMEG	$8-12 \pi^{-} p \rightarrow N 3 \pi$
1669 ± 11	600	2 WAGNER	75	HBC	$7 \pi^{+} p \rightarrow \Delta^{++} 3 \pi$
1678 ± 14	500	DIAZ	74	DBC	$6 \pi^{+} n \rightarrow p 3 \pi^{0}$
1660 ± 13	200	DIAZ	74	DBC	$6 \pi^{+} n \rightarrow p \omega \pi^{0} \pi^{0}$
1679 ± 17	200	MATTHEWS	71D	DBC	$7.0 \pi^{+} n \rightarrow p 3 \pi^{0}$
1670 ± 20		KENYON	69	DBC	$8 \pi^{+} n \rightarrow p 3 \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
~ 1700	110	${ }^{1}$ CERRADA	77B	HBC	$4.2 K^{-} p \rightarrow \Lambda 3 \pi$
1695 ± 20		BARNES	69B	HBC	4.6 $\mathrm{K}^{-} p \rightarrow \omega 2 \pi \mathrm{X}$
1636 ± 20		ARMENISE		DBC	$5.1 \pi^{+} n \rightarrow p 3 \pi^{0}$
${ }^{1}$ Phase rotation seen for $J^{P}=3^{-} \rho \pi$ wave. ${ }^{2}$ From a fit to $I\left(J^{P}\right)=0\left(3^{-}\right) \rho \pi$ partial wave.					

$\omega_{3}(1670)$ WIDTH

$\operatorname{VALUE}(\mathrm{MeV})$	EVTS	DOCUMENT ID		TECN	COMMENT
168 ± 10 OUR AVERAGE					
$149 \pm 19 \pm 7$	23400	AMELIN	96	VES	$\begin{aligned} & 36 \pi^{-} p \rightarrow \\ & \pi^{+} \pi^{-} \pi^{0} n \end{aligned}$
160 ± 80	60	${ }^{3}$ BAUBILLIER	79	HBC	$8.2 K^{-} p$ backward
173 ± 16	430	4,5 BALTAY	78E	HBC	$15 \pi^{+} p \rightarrow \Delta 3 \pi$
253 ± 39		CORDEN	78B	OMEG	$8-12 \pi^{-} p \rightarrow N 3 \pi$
173 ± 28	600	3,5 WAGNER	75	HBC	$7 \pi^{+} p \rightarrow \Delta^{++} 3 \pi$
167 ± 40	500	DIAZ	74	DBC	$6 \pi^{+} n \rightarrow p 3 \pi^{0}$
122 ± 39	200	DIAZ	74	DBC	$6 \pi^{+} n \rightarrow p \omega \pi^{0} \pi^{0}$
155 ± 40	200	3 MATTHEWS		DBC	$7.0 \pi^{+} n \rightarrow p 3 \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - -					
90 ± 20		BARNES	69B	HBC	$4.6 \mathrm{~K}^{-} \mathrm{p} \rightarrow \omega 2 \pi$
100 ± 40		KENYON	69	DBC	$8 \pi^{+} n \rightarrow p 3 \pi^{0}$
112 ± 60		ARMENISE		DBC	$5.1 \pi^{+} n \rightarrow p 3 \pi^{0}$
${ }^{3}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass. ${ }^{4}$ Phase rotation seen for $J^{P}=3^{-} \rho \pi$ wave. ${ }^{5}$ From a fit to $I\left(J^{P}\right)=0\left(3^{-}\right) \rho \pi$ partial wave.					

$\omega_{3}(1670)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\rho \pi$	seen
Γ_{2}	$\omega \pi \pi$	seen
Γ_{3}	$b_{1}(1235) \pi$	possibly seen

$\omega_{\mathbf{3}}(\mathbf{1 6 7 0})$ BRANCHING RATIOS

$\Gamma(\omega \pi \pi) / \Gamma(\rho \pi)$ EVTS DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2}} / \Gamma_{\mathbf{1}}$ VALUE DOCUMENT ID EVTS TECN COMMENT $\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
0.71 ± 0.27
100 DIAZ $\quad 74 \quad$ DBC $\quad 6 \pi^{+} n \rightarrow p 5 \pi^{0}$

$\omega_{3}(1670)$ REFERENCES

$\pi_{2}(1670)$ MASS

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
$\mathbf{1 6 7 0 . 6}=\mathbf{2 . 9}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

1642	$\begin{array}{r} +12 \\ -\quad 1 \end{array}$		46M	${ }^{1}$ AGHASYAN	18B	COMP		$\begin{aligned} & 190 \pi^{-} p \rightarrow \\ & \pi^{-} \pi^{+} \pi^{-} p \end{aligned}$
1749	± 10	± 100	145k	LU	05	B852		$\begin{aligned} & 18 \pi^{-} p \vec{a}^{\omega \pi^{-}} \pi^{0} p \end{aligned}$
1676	± 3	± 8		${ }^{2}$ CHUNG	02	B852		$\begin{aligned} & 18.3 \pi^{-} p \rightarrow \\ & \pi^{+} \pi^{-} \pi^{-} p \end{aligned}$
1685	± 10	± 30		BARBERIS	01			$\begin{aligned} & 450 p p \overrightarrow{p_{f} 3 \pi^{0} p_{S}} \end{aligned}$
1687	± 9	± 15		AMELIN	99	VES		${ }^{37}{ }_{\omega \pi^{-}}{ }^{-} \pi^{0} A^{*}$
1669	± 4			BARBERIS	98B			$450 p p \rightarrow p_{f} \rho \pi p_{S}$
1670	± 4			BARBERIS	98B			$\begin{aligned} & 450 p p \rightarrow \\ & p_{f} f_{2}(1270) \pi p_{S} \end{aligned}$
1690	± 14			3 BERDNIKOV	94	VES		$\begin{aligned} & \left.37 \begin{array}{l} \pi^{-} A \\ K^{+}+K^{-} \\ \pi^{-} \end{array}\right) \end{aligned}$
1710	± 20		700	ANTIPOV	87	SIGM	-	$\begin{gathered} 50 \pi_{\mu^{+}}^{-} \mathrm{Cu} \end{gathered} \mu^{-} \mathrm{Cu}$
1676	± 6			3 EVANGELIS...	81	OMEG	-	$12 \pi^{-} p \rightarrow 3 \pi p$
1657	± 14			3,4 DAUM	80D	SPEC	-	63-94 $\pi p \rightarrow 3 \pi \mathrm{X}$
1662	± 10		2000	${ }^{3}$ BALTAY	77	HBC	+	$15 \pi^{+} p \rightarrow p 3 \pi$

- - We do not use the following data for averages, fits, limits, etc. - - -

Meson Particle Listings
π_{2} (1670)

π_{2} (1670) WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

258 ${ }_{-}^{+}{ }_{9}^{8}$ OUR AVERAGE Error includes scale factor of 1.2.

10 Statistical error negligible.
11 From $f_{2}(1270) \pi$ decay.
${ }^{12}$ From a fit to $J^{P}=2^{-} f_{2}(1270) \pi$ partial wave.
${ }^{13}$ Clear phase rotation seen in $2^{-} S, 2^{-} P, 2^{-} D$ waves. We quote central value and spread of single-resonance fits to three channels
14 Superseded by AGHASYAN 2018B.
15 JPC ambiguous.
${ }^{16}$ From $\rho \pi$ decay.
17 From $\sigma \pi$ decay.
${ }^{18}$ From a two-resonance fit to four $2^{-} 0^{+}$waves. This should not be averaged with all the single resonance fits.

$\pi_{2}(\mathbf{1 6 7 0)}$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence Ievel
Γ_{1}	3π	$(95.8 \pm 1.4) \%$	
Γ_{2}	$\pi^{+} \pi^{-} \pi^{0}$		
Γ_{3}	$\pi^{0} \pi^{0} \pi^{0}$	$(56.3 \pm 3.2) \%$	
Γ_{4}	$f_{2}(1270) \pi$	$(31 \pm 4) \%$	

Γ_{6}	$\sigma \pi$	$(10 \pm 4) \%$	
Γ_{7}	$\pi(\pi \pi)_{S}$-wave	$(8.7 \pm 3.4) \%$	
Γ_{8}	$\pi^{ \pm} \pi^{+} \pi^{-}$	$(53 \pm 4) \%$	
Γ_{9}	$K \bar{K}^{*}(892)+$ c.c.	$(4.2 \pm 1.4) \%$	
Γ_{10}	$\omega \rho$	$(2.7 \pm 1.1) \%$	
Γ_{11}	$\pi^{ \pm} \gamma$	$(7.0 \pm 1.2) \times 10^{-4}$	
Γ_{12}	$\gamma \gamma$	<2.8	$\times 10^{-7}$
Γ_{13}	$\eta \pi$	<5	9
Γ_{14}	$\pi^{ \pm} 2 \pi^{+} 2 \pi^{-}$	<3.6	90%
Γ_{15}	$\rho(1450) \pi$	<1.9	$\times 10^{-3}$
Γ_{16}	$b_{1}(1235) \pi$		97.7%
Γ_{17}	$\eta 3 \pi$	possibly seen	97.7%
Γ_{18}	$f_{1}(1285) \pi$	not seen	
Γ_{19}	$a_{2}(1320) \pi$		

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 6 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^{2}=$ 1.9 for 3 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

| x_{5} | |
| :--- | ---: | ---: | ---: |
| x_{7} | -53
 x_{9} -29 -59
 -8 -21 -9
 x_{4} $x_{5}$$x_{7}$ |

$\pi_{2}(1670)$ PARTIAL WIDTHS

$\Gamma\left(\pi^{ \pm} \gamma\right)$
$\frac{\operatorname{VALUE}(\mathrm{keV})}{\mathbf{1 8 1}+\mathbf{1 1 + 2 7}} 19 \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { CHG }}{\text { COMMENT }} \frac{11}{190 \pi^{-} \mathrm{Pb} \rightarrow \pi^{+} \pi^{-} \pi^{-} \mathrm{Pb}^{\prime}}$
19 Primakoff reaction. Assumes incoherent $f_{2}(1270) \pi$ contribution to 3π final state and uses $\mathrm{B}\left(\pi_{2}(1670) \rightarrow f_{2} \pi\right)=56 \%$.
$\Gamma(\gamma \gamma)$
VALUE (keV)
<0.072 \qquad $\frac{C L \%}{90}$ \% $20 \frac{\text { DOCUMENT ID }}{\text { ACCIARRI }}$ TECN CHG COMMENT ${ }^{+} e^{-} \rightarrow{ }^{-} \pi^{+} \pi_{\pi^{0}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<0.19		90		ALBRECHT	97B	ARG		$e^{+} e^{-} \rightarrow$
1.41	$\pm 0.23 \pm 0.28$			ANTREASYA		CBAL	0	
0.8	$\pm 0.3 \pm 0.12$			BEHREND	90C	CELL	0	$e^{+} e^{-} \rightarrow$
1.3	$\pm 0.3 \pm 0.2$			BEHREND	90C	CELL	0	$e^{+}+e^{-} e^{-} \pi^{+} \pi^{-} \pi^{0}$

${ }^{20}$ Decaying into $f_{2}(1270) \pi$ and $\rho \pi$.
${ }^{21}$ Constructive interference between $f_{2}(1270) \pi, \rho \pi$ and background.
22 Incoherent Ansatz

$\pi_{2}(1670) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$					
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					$\Gamma_{2} \Gamma_{12} / \Gamma$
VALUE (keV)	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.1		23 SCHEGELSKY	RVUE	$\gamma \gamma \rightarrow \pi^{+}$	π^{0}
${ }^{23}$ From a	ta	-209 GeV.			

$\pi_{2}(1670)$ BRANCHING RATIOS

See key on page 999

- - We do not use the following data for averages, fits, limits, etc. - . $0.24 \pm 0.10 \quad 24,25$ BAKER 99 SPEC $1.94 \bar{p} p \rightarrow 4 \pi^{0}$

$\Gamma\left(b_{1}(1235) \pi\right) / \Gamma_{\text {total }}$ VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	Γ_{16} / Γ
<0.0019	97.7	AMELIN	99	VES	$37 \pi^{-} A$	

$\Gamma\left(f_{1}(1285) \pi\right) / \Gamma_{\text {total }}$			TECN	COMMENT	Γ_{18} / Γ
Value EVTS	DOCUME				
possibly seen 69k	KUHN	04	B852	$\begin{array}{r} 18 \pi^{-} p \rightarrow \\ \eta \pi^{+} \pi^{-} \end{array}$	
$\Gamma\left(a_{2}(1320) \pi\right) / \Gamma_{\text {total }}$					Γ_{19} / Γ
Value evis	DOCUME		TECN	COMMENT	
not seen 69k	KUHN	04	B852	$18 \pi^{-} p \rightarrow$	

D-wave/ S-wave RATIO FOR $\pi_{2}(1670) \rightarrow f_{2}(\mathbf{1 2 7 0}) \pi$

VALUE		
$\mathbf{- 0 . 1 8 \pm 0 . 0 6}$	$24 \frac{\text { DOCUMENT ID }}{\text { BAKER }} \quad 99$	$\frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{1.94 \bar{p} p \rightarrow 4 \pi^{0}}$

. We do not use the following data for averages, fits, limits, etc. - . -
$0.22 \pm 0.10 \quad{ }^{26}$ DAUM $\quad 81$ B SPEC $63,94 \pi^{-} p$

$\phi(1680)$ MASS

$e^{+} e^{-}$PRODUCTION
VALUE (MeV) EVTS \qquad
DOCUMENT ID TECN COMMENT
1680 ± 20 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -

1641 ${ }_{-18}^{+24}$		ACHASOV	19	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta$
$1667 \pm 5 \pm 11$	3k	1 IVANOV	19A	CMD3	1.59-2.007 $e^{+} e^{-} \rightarrow K^{+} K^{-} \eta$
1700 ± 23	2k	${ }^{2}$ ACHASOV	18A	SND	$1.3-2.0 e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \pi^{0}$
$1674 \pm 12 \pm 6$	6.2k	3 LEES	14 H	BABR	$e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \gamma$
$1733 \pm 10 \pm 10$		${ }^{4}$ LEES	12 F	BABR	$10.6 e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-} \gamma$
$1689 \pm 7 \pm 10$	4.8k	5 SHEN	09	BELL	$10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
$1709 \pm 20 \pm 43$		${ }^{6}$ AUBERT	08S	BABR	$10.6 e^{+} e^{-} \rightarrow$ hadrons
1623 ± 20	948	7 AKHMETSHIN	03	CMD2	$1.05-1.38 e^{+} e^{-} \rightarrow K_{L}^{0} K_{S}^{0}$
~ 1500		${ }^{8}$ ACHASOV	98H	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \omega \pi^{+} \pi^{-},$ $K^{+} K^{-}$
~ 1900		${ }^{9}$ ACHASOV	98H	RVUE	$e^{+}{ }^{-}{ }^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
1700 ± 20		10 CLEGG	94	RVUE	$e^{+} e^{-} \rightarrow K^{+} K^{-}, K_{S}^{0} K \pi$
1657 ± 27	367	BISELLO	91C	DM2	$e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
1655 ± 17		11 BISELLO	88B	DM2	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
1680 ± 10		12 BUON	82	DM1	$e^{+} e^{-} \rightarrow$ hadrons
1677 ± 12		13 MANE	82	DM1	$e^{+} e^{-} \rightarrow K_{S}^{0} K \pi$

${ }^{1}$ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.
${ }^{2}$ Assuming the $K \bar{K}^{*}(892)+$ c.c. dynamics. Systematic uncertainties not estimated.
${ }^{3}$ Using a vector meson dominance model with contribution from $\phi(1020), \phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.
${ }^{4}$ Using events with $\pi \pi$ invariant mass less than 0.85 GeV .
${ }^{5}$ From a fit with two incoherent Breit-Wigners.
${ }^{6}$ From the simultaneous fit to the $K \bar{K}^{*}(892)+$ c.c. and $\phi \eta$ data from AUBERT 08s using the results of AUBERT 07AK
${ }^{7}$ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ, ω, and ϕ. Neither isospin nor flavor structure known.
${ }^{8}$ Using data from IVANOV 81, BARKOV 87, BISELLO 88B, DOLINSKY 91, and ANTONELLI 92.
${ }^{9}$ Using the data from BISELLO 91c.
10 Using BISELLO 88B and MANE 82 data.
${ }^{11}$ From global fit including ρ, ω, ϕ and $\rho(1700)$ assume mass 1570 MeV and width 510 MeV for ρ radial excitation.
${ }^{12}$ From global fit of ρ, ω, ϕ and their radial excitations to channels $\omega \pi^{+} \pi^{-}, K^{+} K^{-}$, $K_{S}^{0} K_{L}^{0}, K_{S}^{0} K^{ \pm} \pi^{\mp}$. Assume mass 1570 MeV and width 510 MeV for ρ radial excita-
tions, mass 1570 and width 500 MeV for ω radial excitation.
${ }^{13}$ Fit to one channel only, neglecting interference with $\omega, \rho(1700)$.

Meson Particle Listings

PHOTOPRODUCTION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -				
1753土 3	${ }^{1}$ LINK	02K	FOCS	$20-160 \gamma p \rightarrow K^{+} K^{-} p$
1726 ± 22	1 BUSENITZ	89	TPS	$\gamma p \rightarrow K^{+} K^{-} \times$
1760 ± 20	${ }^{1}$ ATKINSON		OMEG	20-70 $\gamma p \rightarrow K \bar{K} X$
1690 ± 10	${ }^{1}$ ASTON		OMEG	25-70 $\gamma p \rightarrow K^{+} K^{-} \mathrm{X}$
${ }^{1}$ We list here a state decaying into $K^{+} K^{-}$possibly different from $\phi(1680)$.				

$p \bar{p}$ ANNIHILATION

${ }^{1}$ Could also be $\rho(1700)$.

$\phi(\mathbf{1 6 8 0})$ WIDTH

$e^{+} e^{-}$PRODUCTION
VALUE (MeV)
$150 \pm \mathbf{5 0}$ OUR ESTIMATE $\frac{\text { DOCUMENT ID }}{\text { This is }}$
$150 \pm \mathbf{5 0}$ OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

- - We do not use the following data for averages, fits, limits, etc. - - -

$103-26$		ACHASOV	19	SND	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \eta$
$176 \pm 23 \pm 38$	3k	1 IVANOV	19A	CMD3	1.59-2.007 $e^{+} e^{-} \rightarrow K^{+} K^{-} \eta$
300 ± 50	2k	${ }^{2}$ ACHASOV	18A	SND	$1.3-2.0 e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \pi^{0}$
$165 \pm 38 \pm 70$	6.2 k	${ }^{3}$ LEES	14 H	BABR	$e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \gamma$
$300 \pm 15 \pm 37$		4 LEES	12F	BABR	$10.6 e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-} \gamma$
$211 \pm 14 \pm 19$	4.8k	5 SHEN	09	BELL	$10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
$322 \pm 77 \pm 160$		${ }^{6}$ AUBERT	08s	BABR	$10.6 e^{+} e^{-} \rightarrow$ hadrons
139 ± 60	948	7 AKHMETSHIN	03	CMD2	${ }_{1} .05-1.38 e^{+} e^{-} \rightarrow K_{L}^{0} K_{S}^{0}$
300 ± 60		${ }^{8}$ CLEGG	94	RVUE	$e^{+} e^{-} \rightarrow K^{+} K^{-}, K_{S}^{0} K \pi$
146 ± 55	367	BISELLO	91C	DM2	$e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
207 ± 45		${ }^{9}$ BISELLO	88B	DM2	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
185 ± 22		10 BUON	82	DM1	$e^{+} e^{-} \rightarrow$ hadrons
102 ± 36		11 MANE	82	DM1	$e^{+} e^{-} \rightarrow K_{S}^{0} K \pi$

${ }^{1}$ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.
${ }^{2}$ Assuming the $K \bar{K}^{*}(892)+$ c.c. dynamics. Systematic uncertainties not estimated.
${ }^{3}$ Using a vector meson dominance model with contribution from $\phi(1020), \phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.
4 Using events with $\pi \pi$ invariant mass less than 0.85 GeV
${ }^{5}$ From a fit with two incoherent Breit-Wigners.
${ }^{6}$ From the simultaneous fit to the $K \bar{K}^{*}(892)+$ c.c. and $\phi \eta$ data from AUBERT $08 s$ using the results of AUBERT 07AK.
7 From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ, ω, and ϕ.
Neither isospin nor flavor structure known.
8 Using BISELLO 88B and MANE 82 data.
${ }^{9}$ From global fit including ρ, ω, ϕ and $\rho(1700)$
${ }^{10}$ From global fit of ρ, ω, ϕ and their radial excitations to channels $\omega \pi^{+} \pi^{-}, K^{+} K^{-}$, $K_{S}^{0} K_{L}^{0}, K_{S}^{0} K^{ \pm} \pi^{\mp}$. Assume mass 1570 MeV and width 510 MeV for ρ radial excita-
tions, mass 1570 and width 500 MeV for ω radial excitation.
11 Fit to one channel only, neglecting interference with $\omega, \rho(1700)$.

PHOTOPRODUCTION

VALUE (MeV) DOCUMENT ID TECN COMMENT

$\phi(1680)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K^{\prime} \bar{K}^{*}(892)+$ c.c.	seen
Γ_{2}	$K_{S}^{0} K \pi$	seen
Γ_{3}	$K \bar{K}$	seen
Γ_{4}	$K_{L}^{0} K_{S}^{0}$	
Γ_{5}	$e^{+} e^{-}$	seen
Γ_{6}	$\omega \pi \pi$	not seen
Γ_{7}	$\phi \pi \pi$	
Γ_{8}	$K^{+} K^{-} \pi^{+} \pi^{-}$	seen
Γ_{9}	$\eta \phi$	seen
Γ_{10}	$K^{+} K^{-} \eta$	
Γ_{11}	$\eta \gamma$	seen
Γ_{12}	$K+K^{-} \pi^{0}$	

$\phi(1680) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$

This combination of a partial width with the partial width into $e^{+} e^{-}$ and with the total width is obtained from the integrated cross section into channel (I) in $e^{+} e^{-}$annihilation. We list only data that have not been used to determine the partial width $\Gamma(1)$ or the branching ratio $\Gamma(1) /$ total.
$\Gamma\left(K_{L}^{0} K_{S}^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{4} \Gamma_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$14.3 \pm 2.4 \pm 6.2 \quad 6.2 \mathrm{k} \quad{ }^{1}$ LEES $\quad 14 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \gamma$
${ }^{1}$ Using a vector meson dominance model with contribution from $\phi(1020), \phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.
$\Gamma(\phi \pi \pi) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{7} \Gamma_{5} / \Gamma$
VALUE $\left(10^{-2} \mathrm{keV}\right)$ DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$4.2 \pm 0.2 \pm 0.3 \quad$ LEES 12 F BABR $10.6 e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-} \gamma$

${ }^{1}$ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.
I

$\phi(1680) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}$ (total)

This combination of a branching ratio into channel (i) and branching ratio into $e^{+} e^{-}$is directly measured and obtained from the cross section at the peak. We list only data that have not been used to determine the branching ratio into (i) or $e^{+} e^{-}$
$\Gamma\left(K_{L}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{4} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.131 \pm 0.059 \quad 948 \quad{ }^{1}$ AKHMETSHIN 03 CMD2 $1.05-1.38 e^{+} e^{-} \rightarrow K_{L}^{0} K_{S}^{0}$
${ }^{1}$ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ, ω, and ϕ. Neither isospin nor flavor structure known. Recalculated by us.
$\Gamma\left(K \bar{K}^{*}(892)+\right.$ c.c. $) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{1} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$1.15 \pm 0.16 \pm 0.01 \quad{ }^{1}$ AUBERT $\quad 08 \mathrm{~S}$ BABR $10.6 e^{+} e^{-} \rightarrow K \bar{K}^{*}(892) \gamma+$
$3.29 \pm 1.57 \quad 367 \quad{ }^{2}$ BISELLO \quad 91C DM2 $\quad \begin{gathered}\text { C.C. } \\ 1.35-2.40\end{gathered} e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
${ }^{1}$ From the simultaneous fit to the $K \bar{K}^{*}(892)+$ c.c. and $\phi \eta$ data from AUBERT $08 S$ using the results of AUBERT 07AK.
${ }^{2}$ Recalculated by us with the published value of $\mathrm{B}\left(K \bar{K}^{*}(892)+\right.$ c.c. $) \times \Gamma\left(e^{+} e^{-}\right)$.
$\Gamma(\phi \pi \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{7} / \Gamma \times \Gamma_{5} / \Gamma$
VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
$1.86 \pm 0.14 \pm 0.21 \quad 4.8 \mathrm{k} \quad 1$ SHEN $\quad 09$ BELL $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
${ }^{1}$ Multiplied by $3 / 2$ to take into account the $\phi \pi^{0} \pi^{0}$ mode. Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=$ (49.2 ± 0.6) \% .
$\Gamma(\eta \phi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{9} / \Gamma \times \Gamma_{5} / \Gamma$ VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -

$5.3 \pm 0.6 \pm 0.9 \quad 3 k \quad 1$ IVANOV \quad 19A CMD3 $\underset{K^{+}}{1.59-2.007} K_{\eta}^{+} e^{+} e^{-} \rightarrow$
$4.3 \pm 1.0 \pm 0.9 \quad 2$ AUBERT $\quad 08 \mathrm{~S}$ BABR $10.6 e^{+} e^{-} \rightarrow \phi \eta \gamma$
${ }^{1}$ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.
${ }^{2}$ From the simultaneous fit to the $K \bar{K}^{*}(892)+$ c.c. and $\phi \eta$ data from AUBERT 08s using the results of AUBERT 07AK.
$\phi(\mathbf{1 6 8 0})$ BRANCHING RATIOS
$\begin{aligned} & \boldsymbol{\Gamma}\left(\boldsymbol{K} \overline{\boldsymbol{K}^{*}}(\mathbf{8 9 2})+\mathbf{c . c .}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{S}}^{\mathbf{0}} \boldsymbol{K} \boldsymbol{\pi}\right) \\ & \text { VALUE } \\ & \text { DOCUMENT ID } \\ & \text { TECN COMMENT }\end{aligned} \boldsymbol{\Gamma}_{\mathbf{1}} / \boldsymbol{\Gamma}_{\mathbf{2}}$
$\frac{\text { VALUE }}{\text { dominant }} \frac{\text { DOCUMENT ID }}{\text { MANE }} \frac{\text { TECN }}{\text { DM1 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}}$
$\Gamma(K \bar{K}) / \Gamma\left(K \bar{K}^{*}(892)+\right.$ с.c. $)$
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
0.07 ± 0.01
BUON
82 DM1 $e^{+} e^{-}$

$$
\rho_{\mathbf{3}} \mathbf{(1 6 9 0)} \text { MASS }
$$

$\frac{\text { VALUE }(\mathrm{MeV})}{1688.8 \pm \mathbf{2 . 1} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{}$ Includes data from the 5 datablocks that follow this one．
2π MODE
VALUE（MeV）EVTS DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock．

1686土 4 OUR AVERAGE

1677 ± 14		EVANGELIS．．． 81	OMEG－	$12 \pi^{-} p \rightarrow 2 \pi p$
1679 ± 11	476	BALTAY 78B	HBC 0	$15 \pi^{+} p \rightarrow \pi^{+} \pi^{-}$
1678 ± 12	175	${ }^{1}$ ANTIPOV 77	CIBS 0	$25 \pi^{-} p \rightarrow p 3 \pi$
1690 ± 7	600	1 ENGLER 74	DBC 0	$6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p$
1693 ± 8		2 GRAYER 74	ASPK 0	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
1678 ± 12		MATTHEWS 71C	DBC 0	$7 \pi^{+} N$
－－We do not use the following data for averages，fits，limits，etc．－－				
1734 ± 10		${ }^{3}$ CORDEN 79	OMEG	$12-15 \pi^{-} p \rightarrow n 2 \pi$
1692 ± 12		2，4 ESTABROOKS 75	RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
1737 ± 23		ARMENISE 70	DBC 0	$9 \pi^{+} N$
1650 ± 35	122	BARTSCH 70B	$\mathrm{HBC}+$	$8 \pi^{+} p \rightarrow N 2 \pi$
1687 ± 21		STUNTEBECK 70	HDBC 0	$8 \pi^{-} p, 5.4 \pi^{+} d$
1683 ± 13		ARMENISE 68	DBC 0	$5.1 \pi^{+} d$
1670 ± 30		GOLDBERG 65	HBC 0	$6 \pi^{+} d, 8 \pi^{-} p$

[^112]
$K \bar{K}$ AND $K \bar{K} \pi$ MODES

VALUE（MeV）EVTS DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock．
1696土 4 OUR AVERAGE
$1699 \pm 5 \quad$ ALPER 80 CNTR $0 \quad 62 \pi^{-} p \rightarrow K^{+} K^{-}{ }_{n}$
$1698 \pm 12 \quad 6 \mathrm{k} \quad 5,6$ MARTIN $\quad 78 \mathrm{D}$ SPEC $\quad 10 \pi p \rightarrow K_{S}^{0} K^{-}{ }_{p}$
$1692 \pm 6 \quad$ BLUM 75 ASPK $0 \quad 18.4 \pi^{-} p \rightarrow n K^{+} K^{-}$
$1690 \pm 16 \quad$ ADERHOLZ $69 \mathrm{HBC}+8 \pi^{+} p \rightarrow K \bar{K} \pi$
－－We do not use the following data for averages，fits，limits，etc．•－
$1694 \pm 8 \quad 7$ COSTA $\quad 80$ OMEG $\quad 10 \pi^{-} p \rightarrow K^{+} K^{-} n$
${ }^{5}$ From a fit to $J^{P}=3^{-}$partial wave．
${ }^{6}$ Systematic error on mass scale subtracted．
7 They cannot distinguish between $\rho_{3}(1690)$ and $\omega_{3}(1670)$ ．

$(4 \pi)^{ \pm}$MODE

$\frac{V A L U E(M e V)}{\text { EVTS }}$ DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock．
1686土 5 OUR AVERAGE Error includes scale factor of 1．1．

1694 ± 6		EVANGELIS．．	81	OMEG	－	$12 \pi^{-} p \rightarrow p 4 \pi$
1665 ± 15	177	BALTAY	78B	HBC	$+$	$15 \pi^{+} p \rightarrow p 4 \pi$
1670 ± 10		THOMPSON	74	HBC	＋	$13 \pi^{+} p$
1687 ± 20		CASON	73	HBC	－	8，18．5 $\pi^{-} p$
1685 ± 14		${ }^{9}$ CASON	73	HBC	－	8，18．5 $\pi^{-} p$
1680 ± 40	144	BARTSCH	70B	HBC	＋	$8 \pi^{+} p \rightarrow N 4 \pi$
1689 ± 20	102	${ }^{9}$ BARTSCH	70B	HBC	＋	$8 \pi^{+} p \rightarrow N 2 \rho$
1705 ± 21		CASO	70	HBC	－	$11.2 \pi^{-} p$

－－We do not use the following data for averages，fits，limits，etc．－－

1718 ± 10		10 EVANGELIS．．．	81	OMEG	－	$12 \pi^{-} p$	$p 4 \pi$
1673 ± 9		11 EVANGELIS．．．	81	OMEG	－	$12 \pi^{-} p$	$p 4 \pi$
1733 ± 9	66	${ }^{9}$ KLIGER	74	HBC	－	$4.5 \pi^{-} p$	$p 4 \pi$
1630 ± 15		HOLMES	72	HBC	＋	10－12 K^{+}	
1720 ± 15		BALTAY	68	HBC	＋	7， $8.5 \pi^{+}$	

${ }^{8}$ From $\rho^{-} \rho^{0}$ mode，not independent of the other two EVANGELISTA 81 entries．
${ }^{9}$ From $\rho^{ \pm} \rho^{0}$ mode．
${ }^{10}$ From $a_{2}(1320)^{-} \pi^{0}$ mode，not independent of the other two EVANGELISTA 81 entries．
${ }^{11}$ From $a_{2}(1320)^{0} \pi^{-}$mode，not independent of the other two EVANGELISTA 81 entries．
$\omega \boldsymbol{\omega} \boldsymbol{\pi}$ MODE
VALUE（MeV）DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock．
1681土 7 OUR AVERAGE

1670 ± 25	12 ALDE	95	GAM2		$38 \pi^{-} p \rightarrow$	$\omega \pi^{0} n$
1690 ± 15	EVANGELIS．．．	81	OMEG		$12 \pi^{-} p \rightarrow$	$\omega \pi p$
1666 ± 14	GESSAROLI	77	HBC		$11 \pi^{-} p \rightarrow$	$\omega \pi p$
1686 ± 9	THOMPSON	74	HBC	＋	$13 \pi^{+} p$	
－－We do not use the following data for averages，fits，limits，etc．－－						
1654 ± 24	BARNHAM	70	HBC	＋	$10 K^{+} p$	$\omega \pi \mathrm{X}$
12 Supers						

$\boldsymbol{\eta} \pi^{+} \pi^{-}$MODE
（For difficulties with MMS experiments，see the $a_{2}(1320)$ mini－review in the 1973 edition．）
VALUE（MeV）DOCUMENTID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock．
1682 ± 12 OUR AVERAGE
$1685 \pm 10 \pm 20 \quad$ AMELIN 00 VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$ $1680 \pm 15 \quad$ FUKUI 88 SPEC $0 \quad 8.95 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
－－We do not use the following data for averages，fits，limits，etc．－－－

1700 ± 47	13 ANDERSON	69	MMS	$-16 \pi^{-} p$ backward
1632 ± 15	13,14 FOCACCI	66	MMS	$-7-12 \pi^{-} p \rightarrow p$ MM
1700 ± 15	13,14 FOCACCI	66	MMS	$-7-12 \pi^{-} p \rightarrow p$ MM
1748 ± 15	13,14 FOCACCI	66	MMS -	$7-12 \pi^{-} p \rightarrow p$ MM

${ }^{13}$ Seen in $2.5-3 \mathrm{GeV} / c \bar{p} p .2 \pi^{+} 2 \pi^{-}$，with $0,1,2 \pi^{+} \pi^{-}$pairs in ρ band not seen by OREN 74 （ $2.3 \mathrm{GeV} / c \bar{p} p$ ）with more statistics．（Jan．1976）
${ }^{14}$ Not seen by BOWEN 72 ．

$\rho_{3}(1690)$ WIDTH

$2 \pi, K \bar{K}$ ，AND $K \bar{K} \pi$ MODES
$\frac{\text { VALUE（MeV）}}{\text { 161 } \mathbf{1 0} \text { OUR AVERAGE }}$ Includes data from the 5 datablocks that follow this one．Error includes scale factor of 1．5．See the ideogram below．

ρ_{3} (1690) width, $2 \pi, K \bar{K}$, and $K \bar{K} \pi$ modes (MeV)
2π MODE
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.
186 ± 14 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

220 ± 29		DENNEY	83	LASS	$10 \pi^{+} N$		
246 ± 37		EVANGELIS...	81	OMEG	-	$12 \pi^{-} p \rightarrow 2 \pi p$	
116 ± 30	476	BALTAY	$78 B$	HBC	0	$15 \pi^{+} p \rightarrow \pi^{+} \pi^{-} n$	
162 ± 50	175	15	ANTIPOV	77	CIBS	0	$25 \pi^{-} p \rightarrow p 3 \pi$
167 ± 40	600	ENGLER	74	DBC	0	$6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p$	
200 ± 18		16	GRAYER	74	ASPK	0	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
156 ± 36	MATTHEWS	$71 C$	DBC	0	$7 \pi^{+} N$		
171 ± 65		ARMENISE	70	DBC	0	$9 \pi^{+} d$	

- - We do not use the following data for averages, fits, limits, etc. - - -
$322 \pm 35 \quad 17$ CORDEN 79 OMEG $\quad 12-15 \pi^{-} p \rightarrow n 2 \pi$
$240 \pm 30 \quad 16,18$ ESTABROOKS 75 RVUE $17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
$180 \pm 30 \quad 122 \quad$ BARTSCH $70 \mathrm{~B} \mathrm{HBC}+8 \pi^{+} p \rightarrow N 2 \pi$
$267_{-46}^{+72} \quad$ STUNTEBECK 70 HDBC $0 \quad 8 \pi^{-} p, 5.4 \pi^{+} d$
$188 \pm 49 \quad$ ARMENISE 68 DBC $0 \quad 5.1 \pi^{+}{ }_{d}$
$180 \pm 40 \quad$ GOLDBERG 65 HBC $0 \quad 6 \pi^{+} d, 8 \pi^{-} p$
${ }^{15}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{16}$ Uses same data as HYAMS 75 and BECKER 79.
${ }^{17}$ From a phase shift solution containing a $f_{2}^{\prime}(1525)$ width two times larger than the $K \bar{K}$
${ }^{18} \begin{aligned} & \text { result. } \\ & \text { From phase-shift analysis. Error takes account of spread of different phase-shift solutions. }\end{aligned}$

$\rho_{3}(1690)$ width, 2π mode (MeV)

$K \bar{K}$ AND $K \bar{K} \pi$ MODES

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { EVTS }}$ DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.
204 ± 18 OUR AVERAGE

| 199 ± 40 | 6000 | 19 MARTIN | 78D SPEC | | $10 \pi p \rightarrow K_{S}^{0} K^{-} p$ | |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| 205 ± 20 | | BLUM | 75 | ASPK | 0 | $18.4 \pi^{-} p \rightarrow n K^{+} K^{-}$ |

- - We do not use the following data for averages, fits, limits, etc. - -

219 ± 4	ALPER	80	CNTR	0	$62 \pi^{-} p \rightarrow K^{+} K^{-} n$
186 ± 11	20 COSTA	80	OMEG	$10 \pi^{-} p \rightarrow K^{+} K^{-} n$	
112 ± 60	ADERHOLZ	69	HBC +	$8 \pi^{+} p \rightarrow K \bar{K} \pi$	
19 From a fit to $J^{P}=3^{-}$partial wave.					
20 They cannot distinguish between $\rho_{3}(1690)$ and $\omega_{3}(1670)$.					

$(4 \pi)^{ \pm}$MODE
VALUE (MeV) DEVTS DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.
129 ± 10 OUR AVERAGE

123 ± 13		21 EVANGELIS...	81	OMEG	-	$12 \pi^{-} p \rightarrow p 4 \pi$
105 ± 30	177	BALTAY	78B	HBC	+	$15 \pi^{+} p \rightarrow p 4 \pi$
$169+70$		CASON	73	HBC	-	8,18.5 $\pi^{-} p$
135 ± 30	144	BARTSCH	70B	HBC	+	$8 \pi^{+} p \rightarrow N 4 \pi$
160 ± 30	102	BARTSCH	70B	HBC	+	$8 \pi^{+} p \rightarrow N 2 \rho$
- - We do not use the following data for averages, fits, limits, etc. - - -						
230 ± 28		22 EVANGELIS... 81		OMEG -		$12 \pi^{-} p \rightarrow p 4 \pi$
184 ± 33		23 EVANGELIS...		OMEG		$12 \pi^{-} p \rightarrow p 4 \pi$
150	66	24 KLIGER	74	HBC	-	$4.5 \pi^{-} p \rightarrow p 4 \pi$
106 ± 25		THOMPSON	74	HBC	$+$	$13 \pi^{+} p$
$125{ }_{-35}^{+83}$		24 CASON	73	HBC	-	$8,18.5 \pi^{-} p$
130 ± 30		HOLMES	72	HBC	+	10-12 $K^{+} p$
180 ± 30	90	24 BARTSCH	70B	HBC	+	$8 \pi^{+} p \rightarrow N a_{2} \pi$
100 ± 35		BALTAY	68	HBC	+	7, $8.5 \pi^{+} p$

${ }^{21}$ From $\rho^{-} \rho^{0}$ mode, not independent of the other two EVANGELISTA 81 entries.
${ }^{22}$ From $a_{2}(1320)^{-} \pi^{0}$ mode, not independent of the other two EVANGELISTA 81 entries.
${ }^{23}$ From $a_{2}(1320)^{0} \pi^{-}$mode, not independent of the other two EVANGELISTA 81 entries.
${ }^{24}$ From $\rho^{ \pm} \rho^{0}$ mode.
$\boldsymbol{\omega} \boldsymbol{\pi}$ MODE
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.

190 ± 40 OUR AVERAGE

230 ± 65	${ }^{25}$ ALDE	95	GAM2
190 ± 65	EVANGELIS... 81	OMEG $-\quad 12 \pi^{-} p \rightarrow \omega \pi^{0} n$	
160		$12 \pi p$	

$160 \pm 56 \quad$ GESSAROLI $77 \mathrm{HBC} \quad 11 \pi^{-} p \rightarrow \omega \pi p$

- - We do not use the following data for averages, fits, limits, etc. - - -

89 ± 25	THOMPSON $74 \mathrm{HBC}+13 \pi^{+} p$
130_{-43}^{+73}	BARNHAM $70 \mathrm{HBC}+10 K^{+} p \rightarrow \omega \pi \mathrm{X}$

${ }^{25}$ Supersedes ALDE 92C.
$\boldsymbol{\eta} \pi^{+} \boldsymbol{\pi}^{-}$MODE
(For difficulties with MMS experiments, see the $a_{2}(1320)$ mini-review in the 1973 edition.)
VALUE (MeV) DOCUMENTID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.
$\mathbf{1 2 6} \pm \mathbf{4 0}$ OUR AVERAGE Error includes scale factor of 1.8.

$\rho_{3}(1690)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor
Γ_{1}	4π	$(71.1 \pm 1.9) \%$	
Γ_{2}	$\pi^{ \pm} \pi^{+} \pi^{-} \pi^{0}$	$(67 \quad \pm 22) \%$	
Γ_{3}	$\omega \pi$	$(16 \quad \pm 6 \quad) \%$	
Γ_{4}	$\pi \pi$	$(23.6 \pm 1.3) \%$	
Γ_{5}	$K \bar{K} \pi$	$(3.8 \pm 1.2) \%$	
Γ_{6}	$K \bar{K}$	$(1.58 \pm 0.26) \%$	
Γ_{7}	$\eta \pi^{+} \pi^{-}$	seen	1.2
Γ_{8}	$\rho(770) \eta$	seen	
Γ_{9}	$\pi \pi \rho$	seen	
Γ_{10}	$a_{2}(1320) \pi$	seen	
Γ_{11}	$\rho \rho$	seen	
Γ_{12}	$\phi \pi$		
Γ_{13}	$\eta \pi$		
Γ_{14}	$\pi^{ \pm} 2 \pi^{+} 2 \pi^{-} \pi^{0}$		

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 10 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^{2}=$ 14.7 for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

| x_{4} | -77
 x_{5} -74 17
 x_{6}
 x_{6} 2 0
 x_{1} $x_{4}$$x_{5}$ |
| ---: | ---: | ---: | ---: |

$\rho_{3}(1690)$ BRANCHING RATIOS

$\Gamma(\omega \pi) / \Gamma\left(\pi^{ \pm} \pi^{+} \pi^{-} \pi^{0}\right)$					
VALUE CL\%	DOCUMENT ID		TECN	CHG	COMMENT
$\mathbf{0 . 2 3} \pm 0.05$ OUR AVERAGE	Error includes scale factor of 1.2.				
0.33 ± 0.07	THOMPSON	74	HBC	+	$13 \pi^{+} p$
0.12 ± 0.07	BALLAM	71B	HBC	-	$16 \pi^{-} p$
0.25 ± 0.10	BALTAY	68	HBC	+	7,8.5 $\pi^{+} p$
0.25 ± 0.10	JOHNSTON	68	HBC	-	$7.0 \pi^{-} p$

- - We do not use the following data for averages, fits, limits, $7.0 \pi^{-} p$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.15 \quad$ BALTAY $68 \mathrm{HBC}+7,8.5 \pi^{+} p$
$\Gamma(\eta \pi) / \Gamma\left(\pi^{ \pm} \pi^{+} \pi^{-} \pi^{0}\right)$
BALTAY $68 \mathrm{HBC}+7,8.5 \pi^{+} p$

VALUE DOCUMENT ID_TECN CHG COMMENT $\boldsymbol{\Gamma}_{\mathbf{1 3}} / \boldsymbol{\Gamma}_{\mathbf{2}}$

- - We do not use the following data for averages, fits, limits, etc. • • •
$<0.02 \quad$ THOMPSON $74 \mathrm{HBC}+13 \pi^{+}{ }_{p}$
$\Gamma(K \bar{K}) / \Gamma_{\text {total }}$
VALUE DOCUMENT ID TECN CHG COMMENT
$\mathbf{0 . 0 1 5 8} \mathbf{\pm 0 . 0 0 2 6}$ OUR FIT Error includes scale factor of 1.2
0.0130 ± 0.0024 OUR AVERAGE
0.013 ± 0.003
0.013 ± 0.004
33 From $\left(\Gamma_{4} \Gamma_{6}\right)^{1 / 2}=$
$\Gamma(\omega \pi) /[\Gamma(\omega \pi)+\Gamma(\rho \rho)]$
$\Gamma_{3} /\left(\Gamma_{3}+\Gamma_{11}\right)$

0.22 ± 0.08
CASON
73 HBC - 8,18.5 π^{-}
$\Gamma\left(\eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
VALUE

$\Gamma\left(a_{2}(1320) \pi\right) / \Gamma(\rho(770) \eta)$
$\frac{V A L U E}{5.5 \pm 2.0}$

DOCUMENT ID TECN COMMENT Γ_{10} / Γ_{8}
5.5 ± 2.0

$$
-
$$

THE $\rho(1450)$ AND THE $\rho(1700)$

Updated September 2019 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Pisa).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the $1600-\mathrm{MeV}$ region actually contains two ρ-like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi \pi$ scattering length. Donnachie [2], with a full analysis of data on the 2π and 4π final states in $e^{+} e^{-}$annihilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta \rho^{0}$ mass spectra obtained in photoproduction and $e^{+} e^{-}$annihilation [3], as well as that of $e^{+} e^{-} \rightarrow \omega \pi$ [4].

The analysis of [2] was further extended by [5,6] to include new data on 4π-systems produced in $e^{+} e^{-}$annihilation, and in τ-decays (τ decays to 4π, and $e^{+} e^{-}$annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two ρ-like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \rightarrow 4 \pi$ were obtained, little could be said about the $\rho(1700)$.

Independent evidence for two 1^{-}states is provided by [7] in 4π electroproduction at $\left\langle Q^{2}\right\rangle=1(\mathrm{GeV} / c)^{2}$, and by [8] in a high-statistics sample of the $\eta \pi \pi$ system in $\pi^{-} p$ charge exchange.

This scenario with two overlapping resonances is supported by other data. Bisello [9] measured the pion form factor in the interval $1.35-2.4 \mathrm{GeV}$, and observed a deep minimum around 1.6 GeV . The best fit was obtained with the hypothesis of ρ-like resonances at 1420 and 1770 MeV , with widths of about 250 MeV . Antonelli [10] found that the $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$cross section is better fitted with two fully interfering Breit-Wigners, with parameters in fair agreement with those of [2] and [9]. These results can be considered as a confirmation of the $\rho(1450)$.

Decisive evidence for the $\pi \pi$ decay mode of both $\rho(1450)$ and $\rho(1700)$ comes from $\bar{p} p$ annihilation at rest [11]. It has been shown that these resonances also possess a $K \bar{K}$ decay mode [12-14]. . High-statistics studies of the decays $\tau \rightarrow \pi \pi \nu_{\tau}[15,16]$, and $\tau \rightarrow 4 \pi \nu_{\tau}$ [17] also require the $\rho(1450)$, but are not sensitive to the $\rho(1700)$, because it is too close to the τ mass. A recent very-high-statistics study of the $\tau \rightarrow \pi \pi \nu_{\tau}$ decay performed at Belle [18] reports the first observation of both $\rho(1450)$ and $\rho(1700)$ in τ decays. A clear picture of the two $\pi^{+} \pi^{-}$resonances interfering with the $\rho(770)$ in $e^{+} e^{-}$annihilation was also reported by BaBar using the ISR method [19].

The structure of these ρ states is not yet completely clear. Barnes [20] and Close [21] claim that $\rho(1450)$ has a mass consistent with radial $2 S$, but its decays show characteristics of hybrids, and suggest that this state may be a $2 S$-hybrid mixture. Donnachie [22] argues that hybrid states could have a 4π decay mode dominated by the $a_{1} \pi$. Such behavior has been observed by [23] in $e^{+} e^{-} \rightarrow 4 \pi$ in the energy range $1.05-1.38 \mathrm{GeV}$, and by [17] in $\tau \rightarrow 4 \pi$ decays. CLEO [24] and Belle [25] observe the $\rho(1450) \rightarrow \omega \pi$ decay mode in B-meson decays, however, do not find $\rho(1700) \rightarrow \omega \pi^{0}$. A similar conclusion is made by [26,27], who studied the process $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and do not observe a statistically significant signal of the $\rho(1700)$. Various decay modes of the $\rho(1450)$ and $\rho(1700)$ are observed in $\bar{p} n$ and $\bar{p} p$ annihilation $[28,29]$, but no definite conclusions can be drawn. More data should be collected to clarify the nature of the ρ states, particularly in the energy range above 1.6 GeV .

We now list under a separate entry the $\rho(1570)$, the $\phi \pi$ state with $J^{P C}=1^{--}$earlier observed by [30] (referred to as $C(1480)$) and recently confirmed by [31]. While [32] shows that it may be a threshold effect, [5] and [33] suggest two independent vector states with this decay mode. The $C(1480)$ has not been seen in the $\bar{p} p[34]$ and $e^{+} e^{-}[35,36]$ experiments. However, the sensitivity of the two latter is an order of magnitude lower than that of [31]. Note that [31] can not exclude that their observation is due to an OZIsuppressed decay mode of the $\rho(1700)$.

Several observations on the $\omega \pi$ system in the $1200-\mathrm{MeV}$ region [37-43] mmay be interpreted in terms of either $J^{P}=$ $1^{-} \rho(770) \rightarrow \omega \pi$ production [44], or $J^{P}=1^{+} b_{1}(1235)$ production $[42,43]$. We argue that no special entry for a $\rho(1250)$ is needed. The LASS amplitude analysis [45] showing evidence for $\rho(1270)$ is preliminary and needs confirmation.

For completeness, the relevant observations are listed under the $\rho(1450)$.

Recently [46] reported a very broad 1^{--}resonance-like $K^{+} K^{-}$state in $J / \psi \rightarrow K^{+} K^{-} \pi^{0}$ decays. Its pole position corresponds to mass of 1576 MeV and width of 818 MeV . [47-49] ssuggest its exotic structure (molecular or multiquark), while [50] and [51] explain it by the interference between the $\rho(1450)$ and $\rho(1700)$. The latter statement is qualitatively supported by BaBar [52] and SND [53]. We quote [46] as $X(1575)$ in the section "Further States."

Evidence for ρ-like mesons decaying into 6π states was first noted by [54] in the analysis of 6π mass spectra from $e^{+} e^{-}$annihilation $[55,56]$ and diffractive photoproduction [57]. Clegg [54] argued that two states at about 2.1 and 1.8 GeV exist: while the former is a candidate for the $\rho(2150)$, the latter could be a manifestation of the $\rho(1700)$ distorted by threshold effects. BaBar reported observations of the new decay modes of the $\rho(2150)$ in the channels $\eta^{\prime}(958) \pi^{+} \pi^{-}$and $f_{1}(1285) \pi^{+} \pi^{-}$ [58]. The relativistic quark model [59] predicts the $2^{3} D_{1}$ state with $J^{P C}=1^{--}$at 2.15 GeV which can be identified with the $\rho(2150)$.

We no longer list under a separate particle $\rho(1900)$ various observations of irregular behavior of the cross sections near the $N \bar{N}$ threshold. Dips of various width around 1.9 GeV were reported by the E687 Collaboration (a narrow one in the $3 \pi^{+} 3 \pi^{-}$diffractive photoproduction $[60,61]$), by the FENICE experiment (a narrow structure in the R value [62]) , by BaBar in ISR (a narrow structure in $e^{+} e^{-} \rightarrow \phi \pi$ final state [63], but much broader in $e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$ and $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ [64]), by CMD-3 (also a rather broad dip in $e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$[65]). A dedicated scan of the $N \bar{N}$-threshold region by CMD-3 confirms this effect in the $e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$and $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$final states, but does not see it in the cross section of $e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}$[66]. Most probably, these structures emerge as a threshold effect due to the opening of the $N \bar{N}$ channel $[67,68,69]$.

References

1. C. Erkal, Z. Phys. C31, 615 (1986).
. A. Donnachie and H. Mirzaie, Z. Phys. C33, 407 (1987).
2. A. Donnachie and A.B. Clegg, Z. Phys. C34, 257 (1987).
A. Donnachie and A.B. Clegg, Z. Phys. C51, 689 (1991).
A.B. Clegg and A. Donnachie, Z. Phys. C40, 313 (1988).
A.B. Clegg and A. Donnachie, Z. Phys. C62, 455 (1994).
T.J. Killian et al., Phys. Rev. D21, 3005 (1980).
S. Fukui et al., Phys. Lett. B202, 441 (1988).
D. Bisello et al., Phys. Lett. B220, 321 (1989).
A. Antonelli et al., Phys. Lett. B212, 133 (1988).
A. Abele et al., Phys. Lett. B391, 191 (1997).
A. Abele et al., Phys. Rev. D57, 3860 (1998).
A. Bertin et al., Phys. Lett. B434, 180 (1998).
A. Abele et al., Phys. Lett. B468, 178 (1999).
R. Barate et al., Z. Phys. C76, 15 (1997).
S. Anderson, Phys. Rev. D61, 112002 (2000).
3. K.W. Edwards et al., Phys. Rev. D61, 072003 (2000).
4. M. Fujikawa et al., Phys. Rev. D78, 072006 (2008).
5. J.P. Lees et al., Phys. Rev. D86, 032013 (2012).
6. T. Barnes et al., Phys. Rev. D55, 4157 (1997).
7. F.E. Close et al., Phys. Rev. D56, 1584 (1997).
8. A. Donnachie and Yu.S. Kalashnikova, Phys. Rev. D60, 114011 (1999).
9. R.R. Akhmetshin et al., Phys. Lett. B466, 392 (1999).
10. J.P. Alexander et al.,Phys. Rev. D64, 092001 (2001).
11. D. Matvienko et al.,Phys. Rev. D92, 012013 (2015).
12. R.R. Akhmetshin et al., Phys. Lett. B562, 173 (2003).
13. M.N. Achasov et al., Phys. Rev. D94, 112001 (2016).
14. A. Abele et al., Eur. Phys. J. C21, 261 (2001).
15. M. Bargiotti et al., Phys. Lett. B561, 233 (2003).
16. S.I. Bityukov et al., Phys. Lett. B188, 383 (1987).
17. B. Aubert et al., Phys. Rev. D77, 092002 (2008).
18. N.N. Achasov and G.N. Shestakov, Phys. Atom. Nucl. 59, 1262 (1996).
19. L.G. Landsberg, Sov. J. Nucl. Phys. 55, 1051 (1992).
20. A. Abele et al., Phys. Lett. B415, 280 (1997).
21. V.M. Aulchenko et al., Sov. Phys. JETP Lett. 45, 145 (1987).
22. D. Bisello et al., Z. Phys. C52, 227 (1991).
23. P. Frenkiel et al., Nucl. Phys. B47, 61 (1972).
24. G. Cosme et al., Phys. Lett. B63, 352 (1976).
25. D.P. Barber et al., Z. Phys. C4, 169 (1980).
26. D. Aston, Phys. Lett. B92, 211 (1980).
27. M. Atkinson et al., Nucl. Phys. B243, 1 (1984).
28. J.E. Brau et al., Phys. Rev. D37, 2379 (1988).
29. C. Amsler et al., Phys. Lett. B311, 362 (1993).
30. J. Layssac and F.M. Renard, Nuovo Cimento 6A, 134 (1971).
31. D. Aston et al., Nucl. Phys. (Proc. Supp.) B21, 105 (1991).
32. M. Ablikim et al., Phys. Rev. Lett. 97, 142002 (2006).
33. G.-J. Ding and M.-L. Yan, Phys. Lett. B643, 33 (2006).
34. F.K. Guo et al., Nucl. Phys. A773, 78 (2006).
35. A. Zhang et al., Phys. Rev. D76, 036004 (2007).
36. B.A. Li, Phys. Rev. D76, 094016 (2007).
37. X. Liu et al., Phys. Rev. D75, 074017 (2007).
38. J.P. Lees et al., Phys. Rev. D88, 032013 (2013).
39. M.N. Achasov et al., Phys. Rev. D94, 112006 (2016).
40. A.B. Clegg and A. Donnachie, Z. Phys. C45, 677 (1990).
41. D. Bisello et al., Phys. Lett. 107B, 145 (1981).
42. A. Castro et al., LAL-88-58(1988).
43. M. Atkinson et al., Z. Phys. C29, 333 (1985).
44. B. Aubert et al., Phys. Rev. D76, 092005 (2007).
45. S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985).
46. P.L. Frabetti et al., Phys. Lett. B514, 240 (2001).
47. P.L. Frabetti et al., Phys. Lett. B578, 290 (2004).
48. A. Antonelli et al., Phys. Lett. B365, 427 (1996).
49. B. Aubert et al., Phys. Rev. D77, 092002 (2008).
50. B. Aubert et al., Phys. Rev. D73, 052003 (2006).
51. R.R. Akhmetshin et al., Phys. Lett. B723, 83 (2013).
52. R.R. Akhmetshin et al., Phys. Lett. B794, 64 (2019).

Meson Particle Listings

67. A. Obrazovsky and S. Serednyakov, Sov. Phys. JETP Lett. 99, 315 (2014).
68. J. Heidenauer et al., Phys. Rev. D92, 054032 (2015).
69. A.I. Milstein and S.G. Salnikov, Nucl. Phys. A977, 60 (2018).

$\rho(1700)$ MASS

$\eta \rho^{0}$ AND $\pi^{+} \pi^{-}$MODES
$\frac{V A L U E(\mathrm{MeV})}{1720 \pm 20 \text { OUR ESTIMATE }}$
DOCUMENTID
$\eta \rho^{0}$ MODE
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for $\frac{\text { a }}{\text { previous datablock. }}$

${ }^{1}$ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV , respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
${ }^{2}$ Assuming $\rho+f_{0}(1370)$ decay mode interferes with $a_{1}(1260)^{+} \pi$ background. From a two Breit-Wigner fit.
$\pi \pi$ MODE
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

1770.54 ± 5.49				${ }^{1}$ BARTOS	17	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1718.50 ± 65.44				${ }^{2}$ BARTOS	17A	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1766.80 ± 52.36				${ }^{3}$ BARTOS	17A	RVUE	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
1644	± 36		20K	4 LEES	17C	BABR	$J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1780	± 20	$\begin{array}{r} +15 \\ -20 \end{array}$	63.5k	5 ABRAMOWICZ12		ZEUS	$e p \rightarrow e \pi^{+} \pi^{-} p$
1861	± 17			${ }^{6}$ LEES	12G	BABR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
1728	± 17	± 89	5.4 M	7,8 FUJIKAWA	08	BELL	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
1780	$\begin{array}{r} +37 \\ +29 \end{array}$			${ }^{9}$ ABELE	97	CBAR	$\bar{p} n \rightarrow \pi^{-} \pi^{0} \pi^{0}$
1719	± 15			${ }^{9}$ BERTIN	97C	OBLX	$0.0 \bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1730	± 30			CLEGG	94	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1768	± 21			BISELLO	89	DM2	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1745.7	± 91.9			DUBNICKA	89	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
1546	± 26			GESHKEN...	89	RVUE	
1650				10 ERKAL	85	RVUE	20-70 $\gamma p \rightarrow \gamma \pi$
1550	± 70			ABE	84B	HYBR	$20 \gamma p \rightarrow \pi^{+} \pi^{-} p$
1590	± 20			11 ASTON	80	OMEG	$20-70 \gamma p \rightarrow p 2 \pi$
1600	± 10			12 ATIYA	79B	SPEC	$50 \gamma \mathrm{C} \rightarrow \mathrm{C} 2 \pi$
1598	+24 -22			BECKER	79	ASPK	$17 \pi^{-} p$ polarized
1659	± 25			10 LANG	79	RVUE	
1575				10 MARTIN	78C	RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
1610	± 30			10 FROGGATT	77	RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
1590	± 20			13 HYAMS	73	ASPK	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
${ }^{2}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09As, NICKA 10 to analyze the
and AMBROSINO 11A.
$3 \begin{aligned} & \text { and AMBROSINO 11A. } \\ & \text { Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUB- }\end{aligned}$
NICKA 10 to analyze the data of FUJIKAWA 08.
${ }^{4}$ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
${ }^{5}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
${ }^{6}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and
widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
${ }^{7}\left|F_{\pi}(0)\right|^{2}$ fixed to 1.
${ }^{8}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{9}$ T-matrix pole.
${ }^{10}$ From phase shift analysis of HYAMS 73 data
11 Simple relativistic Breit-Wigner fit with constant width.
${ }^{12}$ An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.
13 Included in BECKER 79 analysis.

$\pi \omega$ MODE

VALUE (MeV) DOCUMENT ID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1708 \pm 41 \quad 7815 \quad 1$ ACHASOV 13 SND $\quad 1.05-2.00 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$ 1550 to $1620 \quad 2$ ACHASOV 00 I SND $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$

1580 to 1710
1710 ± 90
$\begin{array}{rlll}{ }^{3} \text { ACHASOV } & 001 & \text { SND } & e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma \\ \text { ACHASOV } & 97 & \text { RVUE } & e^{+} e^{-} \rightarrow \omega \pi^{0}\end{array}$
${ }^{1}$ From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV , respectively. Systematic uncertainty not estimated.
${ }^{2}$ Taking into account both $\rho(1450)$ and $\rho(1700)$ contributions. Using the data of ACHASOV 00 on $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and of EDWARDS 00A on $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau} . \rho(1450)$ mass and width fixed at 1400 MeV and 500 MeV respectively.
3 Taking into account the $\rho(1700)$ contribution only. Using the data of ACHASOV 00 on $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and of EDWARDS 00A on $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau}$.

$K \bar{K}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - •

$1541 \pm 12 \pm 33$	190 k	${ }^{1}$ AAIJ	16 N LHCB	$D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi_{\pi}{ }^{\mp}$
1740.8 ± 22.2	27 k	${ }^{2}$ ABELE	99D CBAR \pm	$0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
1582 ± 36	1600	CLELAND	82B SPEC \pm	$50 \pi p \rightarrow K_{S}^{0} K^{ \pm} p$

${ }^{1}$ Using the GOUNARIS 68 parameterization with a fixed width. Value is average using different $K \pi S$-wave parametrizations in fit.
${ }^{2}$ K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.
$2\left(\pi^{+} \pi^{-}\right)$MODE
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • •
$1851_{-24}^{+27} \quad$ ACHASOV 97 RVUE $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$1570 \pm 20 \quad 1$ CORDIER 82 DM1 $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$1520 \pm 30 \quad 2$ ASTON $\quad 81 \mathrm{E}$ OMEG $20-70 \gamma p \rightarrow p 4 \pi$
$1654 \pm 25 \quad 3$ DIBIANCA 81 DBC $\pi^{+} d \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
$1666 \pm 39 \quad{ }^{1} \mathrm{BACCI} \quad 80$ FRAG $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$1780 \quad 34$ KILLIAN 80 SPEC $11 e^{-} p \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$1500 \quad{ }^{4}$ ATIYA $\quad 79$ B SPEC $\quad 50 \gamma \mathrm{C} \rightarrow \mathrm{C} 4 \pi^{ \pm}$
$1570 \pm 60 \quad 65 \quad 5$ ALEXANDER $75 \quad$ HBC $7.5 \gamma p \rightarrow p 4 \pi$
$1550 \pm 60 \quad 2$ CONVERSI 74 OSPK $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$1550 \pm 50 \quad 160 \quad$ SCHACHT $74 \quad$ STRC $5.5-9 \gamma p \rightarrow p 4 \pi$
$\begin{array}{llllll}1450 \pm 100 & 340 & \text { SCHACHT } & 74 & \text { STRC } & 9-18 \gamma p \rightarrow p 4 \pi \\ 1430 \pm 50 & 400 & \text { BINGHAM } & 72 \mathrm{~B} & \text { HBC } & 9.3 \gamma p \rightarrow p 4 \pi\end{array}$
${ }^{1}$ Simple relativistic Breit-Wigner fit with model dependent width.
${ }^{2}$ Simple relativistic Breit-Wigner fit with constant width.
${ }^{3}$ One peak fit result.
${ }_{5}^{4}$ Parameters roughly estimated, not from a fit.
${ }^{5}$ Skew mass distribution compensated by Ross-Stodolsky factor.
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$ MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • • $1660 \pm 30 \quad$ ATKINSON 85B OMEG 20-70 γp

3($\left.\pi^{+} \pi^{-}\right)$AND $2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ MODES

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

1730 ± 34	1	FRABETTI	04	E687 $\gamma p \rightarrow 3 \pi^{+} 3 \pi^{-} p$
1783 ± 15	CLEGG	90	RVUE $e^{+} e^{-} \rightarrow 3\left(\pi^{+} \pi^{-}\right) 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$	

${ }^{1}$ From a fit with two resonances with the JACOB 72 continuum.

$m_{\rho(1700)^{0}}-m_{\rho(1700)^{ \pm}}$

VALUE (MeV)
DOCUMENT ID
$\frac{\text { TECN }}{\text { limits, etc } \bullet \bullet \bullet}$

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

$\rho(1700)$ WIDTH

$\underset{\text { VALUE (MeV) } \pi^{+} \pi^{-} \text {MODES }}{\boldsymbol{\eta} \rho^{0} \text { (}}$
$\frac{V A L U E ~(M e V)}{250 \pm 100 ~ O U R ~ E S T I M A T E ~}$
DOCUMENT ID
$\eta \rho^{0}$ MODE
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
$\frac{V A L U E(\mathrm{MeV})}{\text { The data in this block is included in the average printed for }} \frac{\text { EVTS }}{\text { COMMENT }} \frac{\text { previous datablock. }}{\text { DECUMENT ID }}$

- - We do not use the following data for averages, fits, limits, etc. - - -

132 ± 40	7.4 k	1 ACHASOV	18	SND	$1.22-2.00 e^{+} e^{-} \rightarrow$
				$\eta \pi^{+} \pi^{-}$	
150 ± 30	ANTONELLI	88	DM2	$e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$	
282 ± 44	2 FUKUI	88	SPEC	$8.95 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$	

${ }^{1}$ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ interfering $\rho(1450), \rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$
floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV , floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV
respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
respectively. The phases of the resonances are $\pi, 0$ and π, respectively.
${ }^{2}$ Assuming $\rho^{+} f_{0}(1370)$ decay mode interferes with $a_{1}(1260)^{+} \pi$ background. From a two Breit-Wigner fit.

$\pi \pi$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
The data in this block is included in the average printed for a previous datablock.

${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
${ }^{2}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, 3 and AMBROSINO 11A.
${ }^{3}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUB-
NICKA 10 to analyze the data of FUJIKAWA 08.
${ }^{4}$ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
${ }^{5}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
${ }^{6}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
${ }^{7}\left|F_{\pi}(0)\right|^{2}$ fixed to 1 .
${ }^{8}$ From the GOUNARIS 68 parametrization of the pion form factor.
${ }^{9}$ T-matrix pole.
${ }^{10}$ From phase shift analysis of HYAMS 73 data
11 Simple relativistic Breit-Wigner fit with constant width.
${ }^{12}$ An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.
13 Included in BECKER 79 analysis.

$K \bar{K}$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$187.2 \pm 26.7 \quad 27 \mathrm{k} \quad{ }^{1}$ ABELE $\quad 99 \mathrm{D}$ CBAR $\pm 0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$ $265 \pm 120 \quad 1600 \quad$ CLELAND \quad 82B SPEC $\pm \quad 50 \pi p \rightarrow K_{S}^{0} K^{ \pm} p$
${ }^{1}$ K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.

$2\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)$MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$510 \pm 40 \quad{ }^{1}$ CORDIER 82 DM1 $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$
$400 \pm 50 \quad 2$ ASTON $\quad 81 \mathrm{E}$ OMEG $20-70 \gamma p \rightarrow p 4 \pi$
$400 \pm 146 \quad{ }^{3}$ DIBIANCA 81 DBC $\pi^{+} d \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
$700 \pm 160 \quad 1$ BACCI 80 FRAG $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$

100
600
340 ± 160
360 ± 100
400 ± 120
$160 \quad 6$ SCHACHT 74 STRC $\quad 5.5-9 \gamma p \rightarrow p 4 \pi$
$\begin{array}{llrlll} & 340 & 6 & \text { SCHACHT } & 74 & \text { STRC } \\ 650 \pm 10 & 9-18 \gamma \rightarrow p 4 \pi \\ & 400 & \text { BINGHAM } & 72 \mathrm{~B} & \text { HBC } & 9.3 \gamma p \rightarrow p 4 \pi\end{array}$
${ }^{1}$ Simple relativistic Breit-Wigner fit with model-dependent width.
${ }_{2}$ Simple relativistic Breit-Wigner fit with constant width.
${ }^{3}$ One peak fit result.
${ }^{4}$ Parameters roughly estimated, not from a fit.
${ }^{5}$ Skew mass distribution compensated by Ross-Stodolsky factor.
${ }^{6}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$ MODE
VALUE (MeV)
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$\omega \pi^{0}$ MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •

350 to 580	1	ACHASOV	001	SND
490 to 1040	2 ACHASOV	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma$		
	001	SND	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma_{\gamma}$	

1 Taking into account both $\rho(1450)$ and $\rho(1700)$ contributions. Using the data of ACHASOV 00 I on $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and of EDWARDS 00A on $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau} . \rho(1450)$ mass and width fixed at 1400 MeV and 500 MeV respectively.
2 Taking into account the $\rho(1700)$ contribution only. Using the data of ACHASOV 00 on $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and of EDWARDS 00A on $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau}$.

$3\left(\pi^{+} \pi^{-}\right)$AND $2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ MODES

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$315 \pm 100 \quad{ }^{1}$ FRABETTI 04 E687 $\gamma p \rightarrow 3 \pi^{+} 3 \pi^{-} p$
$285 \pm 20 \quad$ CLEGG 90 RVUE $e^{+} e^{-} \rightarrow 3\left(\pi^{+} \pi^{-}\right) 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$
${ }^{1}$ From a fit with two resonances with the JACOB 72 continuum.

$\Gamma_{\rho(1700)^{0}}-\Gamma_{\rho(1700)^{ \pm}}$

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$74.87 \pm 120.67 \quad{ }^{1}$ BARTOS \quad 17A RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
${ }^{1}$ Applies the Unitary \& Analytic Model of the pion electromagnetic form factor of DUBNICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

		$\rho(1700)$ DECAY MODES
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	4π	
Γ_{2}	$2\left(\pi^{+} \pi^{-}\right)$	seen
Γ_{3}	$\rho \pi \pi$	seen
Γ_{4}	$\rho^{0} \pi^{+} \pi^{-}$	seen
Γ_{5}	$\rho^{0} \pi^{0} \pi^{0}$	
Γ_{6}	$\rho^{ \pm} \pi^{\mp} \pi^{0}$	seen
Γ_{7}	$a_{1}(1260) \pi$	seen
Γ_{8}	$h_{1}(1170) \pi$	seen
Γ_{9}	$\pi(1300) \pi$	seen
Γ_{10}	$\rho \rho$	seen
Γ_{11}	$\pi^{+} \pi^{-}$	seen
Γ_{12}	$\pi \pi$	seen
Γ_{13}	$K \overline{K^{*}}(892)+$ c.c.	seen
Γ_{14}	$\eta \rho$	seen
Γ_{15}	$a_{2}(1320) \pi$	not seen
Γ_{16}	K	seen
Γ_{17}	$e^{+} e^{-}$	seen
Γ_{18}	$\pi^{0} \omega$	seen
Γ_{19}	$\pi^{0} \gamma$	not seen

$\rho(1700) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total)

This combination of a partial width with the partial width into $e^{+} e^{-}$and with the total width is obtained from the cross-section into channel in $e^{+} e^{-}$annihilation.
$\Gamma\left(2\left(\pi^{+} \pi^{-}\right)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{2} \Gamma_{17} / \Gamma$
VALUE (keV) DOCUMENT ID TECN COMMENT
Г

$\bullet \bullet$ - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$			
2.6 ± 0.2	DELCOURT	81 B	DM1
$+e^{+} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$			
2.83 ± 0.42	BACCI	80	FRAG $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$

$\Gamma\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \times \Gamma\left(\boldsymbol{e}^{+} e^{-}\right) / \Gamma_{\text {total }}^{\text {VALUE }(\mathrm{keV})} \boldsymbol{D O C U M E N T ~ I D} \quad \Gamma_{\mathbf{1 1}} \Gamma_{\mathbf{1 7}} / \Gamma^{T E C N}$
$\frac{\operatorname{VALUE}(\mathrm{keV})}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$

VALUE (keV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$0.305 \pm 0.071 \quad{ }^{1}$ BIZOT 80 DM1 $e^{+} e^{-}$
${ }^{1}$ Model dependent.

Meson Particle Listings
$\rho(1700)$

$\rho(1700)$ BRANCHING RATIOS

$\Gamma(\rho \pi \pi) / \Gamma(4 \pi)$	Γ_{3} / Γ_{1}			
$\xrightarrow{\text { VALUE }}$ - We do not use the following data for averages, fits, limits, etc. - $\frac{\text { IECN }}{}$				
$\begin{aligned} & 0.28 \pm 0.06 \\ & 1_{\omega \pi} \text { not included. } \end{aligned}$	${ }^{1}$ ABELE \quad 01B CBAR $0.0 \bar{p} n \rightarrow 5 \pi$			
$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma\left(2\left(\pi^{+} \pi^{-}\right)\right)$	Γ_{4} / Γ_{2}			
VALUE EVTS	DOCUMENT ID TECN COMMENT			
- - We do not use the following data for averages, fits, limits, etc. - -				
~ 1.0	DELCOURT 81B DM1 $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$ SCHACHT 74 STRC $5.5-18 \gamma p \rightarrow p 4 \pi$ 1^{1} BINGHAM $72 B$ HBC $9.3 \gamma p \rightarrow p 4 \pi$			
$0.7 \pm$				
0.80				
${ }^{1}$ The $\pi \pi$ system is in s-wave.				
$\Gamma\left(\rho^{0} \pi^{0} \pi^{0}\right) / \Gamma\left(\rho^{ \pm} \pi^{\mp} \pi^{0}\right)$	Γ_{5} / Γ_{6}			
VALUE	DOCUMENT ID TECN CHG COMMENT			
- - We do not use the following data for averages, fits, limits, etc. - -				
<0.10	ATKINSON 85b	OMEG	20-70 \%p	
<0.15	ATKINSON 82	OMEG 0	20-70 $\gamma \mathrm{p} \rightarrow$	
$\Gamma\left(a_{1}(1260) \pi\right) / \Gamma(4 \pi)$	DOCUMENT ID TECN COMMENT Γ_{7} / Γ_{1}			
VALUE				

 $\omega \pi$ not included.
$\Gamma\left(h_{1}(1170) \pi\right) / \Gamma(4 \pi)$
DOCUMENT ID TECN COMMENT
-

0.17 ± 0.06	${ }^{1}$ Abele	01B CBAR $0.0 \bar{p} n \rightarrow 5$

[^113]${ }^{1} \omega \pi$ not included.

$a_{2}(1700) \quad I^{G}(J P C)=1^{-}\left(2^{++}\right)$

$a_{2}(1700)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1705 ± 40 OUR AVERAGE					
$1722 \pm 15 \pm 67$		1 RODAS	19	JPAC	$191 \pi^{-} p \rightarrow \eta^{(\prime)} \pi^{-} p$
1698 ± 44		2 AMSLER	02	CBAR	$0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta$
- - We do not use the following data for averages, fits, limits, etc. - -					
1681 -35	46M	3,4 AGHASYAN	18B	COMP	$190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$
$1720 \pm 10 \pm 60$		5 JACKURA	18	JPAC	$\pi^{-} p \rightarrow \eta \pi^{-} p$
$1726 \pm 12 \pm 25$		${ }^{4}$ ABLIKIM	17K	BES3	$\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}$
1675 ± 25		ANISOVICH	09	RVUE	$0.0 \bar{p} p, \pi N$
$1722 \pm 9 \pm 15$	18k	6 SCHEGELSKY	06	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
1702 ± 7	80k	7 UMAN	06	E835	$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
$1721 \pm 13 \pm 44$	145k	LU	05	B852	$18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$
$1737 \pm 5 \pm 7$		ABE	04	BELL	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & e^{+} e^{-} K^{+} K^{-} \end{aligned}$
1767 ± 14	221	8 ACCIARRI	01H	L3	$\begin{gathered} \gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}, E_{\mathrm{Cm}}^{e e}=91 \\ 183-209 \mathrm{GeV} \end{gathered}$
1660 ± 40		${ }^{4}$ ABELE	99B	CBAR	$1.94 \bar{p} p \rightarrow \pi^{0} \eta \eta$
~ 1775		${ }^{9}$ GRYGOREV	99	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$1752 \pm 21 \pm 4$		ACCIARRI	97T	L3	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$

${ }^{1}$ The coupled-channel analysis of both the $\eta \pi$ and $\eta^{\prime} \pi$ systems using ADOLPH 15data.
The mass is extracted from the T-matrix pole.
2 T-matrix pole
${ }^{3}$ Statistical error negligible.
${ }^{4}$ Breit-Wigner mass.
${ }^{5}$ Superseded by RODAS 19.
${ }^{6}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.
${ }^{7}$ Statistical error only.
${ }^{8}$ Spin 2 dominant, isospin not determined, could also be $I=1$.
${ }^{9}$ Possibly two $J^{P}=2^{+}$resonances with isospins 0 and 1 .

$a_{2}(1700)$ WIDTH

$\frac{V A L U E(\mathrm{MeV})}{258 \pm 40 \text { OUR AVERAGE }}$

$247 \pm 17 \pm 63$
DOCUMENT ID TECN COMMENT $265 \pm 55 \quad 2$ AMSLER 02 CBAR $0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta$
$\begin{aligned} & \bullet \bullet \text { - We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ & 436_{-}^{+} 20\end{aligned} 46 \mathrm{M} \quad 3,4$ AGHASYAN $\quad 18 \mathrm{~B}$ COMP $190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

-16	5	JACKURA	18	JPAC	$\pi^{-} p \rightarrow \eta \pi^{-} p$
$280 \pm 10 \pm 70$	4 ABLKIM	17 K BES		\|	

$190 \pm 18 \pm 30 \quad{ }^{4}$ ABLIKIM $\quad 17 \mathrm{~K}$ BES3 $\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}$
$270{ }_{-}^{+} 50 \quad$ ANISOVICH 09 RVUE $0.0 \bar{p} p, \pi N$
$336 \pm 20 \pm 20 \quad 18 \mathrm{k} \quad 6$ SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\begin{array}{lrclll}417 \pm 19 & 80 \mathrm{k} & 7 \text { UMAN } & 06 & \text { E835 } & 5.2 \bar{p} p \rightarrow \eta \eta \pi^{0} \\ 279 \pm 49 \pm 66 & 145 \mathrm{k} & \text { LU } & 05 & \text { B852 } & 18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p\end{array}$
$151 \pm 22 \pm 24 \quad \mathrm{ABE} \quad 04 \mathrm{BELL} 10.6 e^{+} e^{-} \rightarrow{ }_{-}^{-}$
$187 \pm 60 \quad 221$
280 ± 70
$150 \pm 110 \pm 34$
${ }^{1}$ The coupled-channel analysis of both the $\eta \pi$ and $\eta^{\prime} \pi$ systems using ADOLPH 15data.
The width is extracted from the T-matrix pole.
${ }^{2}$ T-matrix pole.
${ }^{3}$ Statistical error negligible.
${ }^{4}$ Breit-Wigner width.
${ }^{5}$ Superseded by RODAS 19.
${ }^{6}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.
${ }^{7}$ Statistical error only.
${ }^{8}$ Spin 2 dominant, isospin not determined, could also be $I=1$.

$a_{2}(1700)$ DECAY MODES

$\Gamma(\gamma \gamma)$	EVTS	Dociumat io	TECN	Γ_{2}
0.30 ± 0.05	$\frac{\mathrm{EVTS}}{870}$	$1 \frac{\text { Docoment id }}{\text { SCHEGELSKY O6A }}$	$\frac{\text { TECN }}{\text { RVUE }} \frac{\text { Comment }}{\gamma \gamma \rightarrow K_{S}^{0} \kappa_{S}^{0}}$	
$\Gamma(k \bar{K})$				${ }_{5}$
$\frac{\text { Vatue (} \mathrm{Ne})}{5.0 \pm 3.0}$	$\frac{\text { EVTS }}{870}$	$\frac{\text { DOCCMENT ID }}{1 \text { SCHEGELSKY O6a }}$	$\frac{\text { TECN }}{\text { RVUE }} \frac{\text { comment }}{}$	
			${ }_{5}$	

and width of 340 MeV , and $\mathrm{SU}(3)$ relations.

$a_{2}(1700)$ BRANCHING RATIOS				
$\Gamma(\rho \pi) / \Gamma\left(f_{2}(1270) \pi\right)$			COMMENT	
CALUE - We do not use the following data for averages, fits, limits, etc. - . -				
$3.4 \pm 0.4 \pm 0.1 \quad 18 \mathrm{k} \quad{ }^{1}$ SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$				

$a_{2}(\mathbf{1 7 0 0})$ REFERENCES				
Rodas	${ }^{19}$	PRL 122022002	A. Rodas et al.	(JPAC Colab.)
${ }^{\text {atackura }}$	${ }_{18}^{188}$	PL B779 464	A. Jackura et al.	(JPAC and Compass coliab.)
${ }_{\text {A ALIKIM }}^{\text {ADOIPH }}$	${ }_{15}^{17 \mathrm{~K}}$		M. Abikim et al.	(COMESASS Collab Col)
ADOLPH	${ }_{09}^{15}$	PL B740 3038	M. Adolph et al.	tsev (Compass collab.)
SCHEGELSKY	06	EPJ A27 199	V.A. Schegesky et	
SCHEGELSKY	064	EPJ A27 207	V.A. Schegesky et	
UMAN	${ }_{0}^{06}$	PR D73 052009	l. M Uman et al.	
ABE	04	EPJ 332323	K. Abe et al.	(BELLE Collab.)
${ }_{\text {ACSILER }}^{\text {AMSI }}$	${ }_{0}^{02}$		C. Amsier et al.	
ABELE	${ }_{998}$	EFJ 6867		(Crystal Barel Collabo)
Grygorev	99	PAN 62470		
ACCIA	${ }_{97}$	(trincle	M. Acciari et	ab.)

$f_{0}(1710)$

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

See the review on "Non $-q \bar{q}$ Mesons."

$f_{0}(1710)$ MASS

OUR EVALUATION below is based on T-matrix poles from BARBERIS 00E and BARBERIS 99D.
$\frac{V A L U E(\mathrm{MeV})}{\mathbf{1 7 0 4} \mathbf{1 2} \text { OUR EVALUATION DOCUMENT ID }} \frac{\text { EVTS }}{\text { TECN }}$ COMMENT
1704 ± 12 OUR EVALUATION
1732 $\mathbf{+ 9} \mathbf{9}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.

$1759 \pm 6{ }_{-25}^{+14}$	5.5k	${ }^{1}$ ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow \gamma \eta \eta$
$1750{ }_{-7}^{+6}{ }_{-18}^{+29}$		2 UEHARA	13	BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
$1701 \pm 5 \pm 9$	4 k	3 CHEKANOV	08	zeus	$e p \rightarrow K_{S}^{0} K_{S}^{0} X$
$1765 \pm{ }_{-}^{4} \pm 13$		${ }^{4}$ ABLIKIM	06 V	BES2	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
1738 ± 30		ABLIKIM	04E	BES2	$J / \psi \rightarrow \omega K^{+} K^{-}$
$1740 \pm 4{ }_{-25}^{+10}$		BAI	03 G	BES	$J / \psi \rightarrow \gamma K \bar{K}$
$1740{ }_{-25}^{+30}$		BAI	00A	BES	$J / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$
1710 ± 25		${ }^{5}$ FRENCH	99		$300 \mathrm{pp} \rightarrow p_{f}\left(K^{+} K^{-}\right) p_{s}$

- - We do not use the following data for averages, fits, limits, etc. - -
$1744 \pm 7 \pm 5 \quad 381 \quad$ 6,7 DOBBS $\quad 15 \quad \mathrm{~J} / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
$1705 \pm 11 \pm 5 \quad 237 \quad 6,7$ DOBBS $\quad 15 \quad \psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
$1706 \pm 4 \pm 5 \quad 1.0 \mathrm{k} \quad 6,7$ DOBBS $\quad 15 \quad J / \psi \rightarrow \gamma K^{+} K^{-}$
$1690 \pm 8 \pm 3 \quad 349 \quad 6,7$ DOBBS $\quad 15 \quad \psi(2 S) \rightarrow \gamma K^{+} K^{-}$
$1750 \pm 13 \quad$ AMSLER 06 CBAR $1.64 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
$\begin{array}{llllll}1747 \pm 5 & 80 \mathrm{k} & 4,8 \text { UMAN } & 06 & \text { E835 } & 5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}\end{array}$
$1776 \pm 15 \quad$ VLADIMIRSK... 06 SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$1790_{-30}^{+40} \quad{ }^{9}$ ABLIKIM 05 BES2 $\quad J / \psi \rightarrow \phi \pi^{+} \pi^{-}$
$1760 \pm 15 \begin{array}{r}+15 \\ -10\end{array} \quad 9$ ABLIKIM \quad 05Q BES2 $\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$
$1670 \pm 20 \quad 4$ BINON 05 GAMS $33 \pi^{-} p \rightarrow \eta \eta n$
$1732+15$
1682 ± 16
$\begin{array}{llllll}1682 \pm 16 & & \text { TIKHOMIROV 03 } & \text { SPEC } & 40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X} \\ 1670 \pm 26\end{array} \quad 3.6 \mathrm{k} \quad 11$ NICHITIU $\quad 02$ OBLX $0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
1698 ± 18
1770 ± 12
1730 ± 15
1750 ± 20
$1710 \pm 12=$
1750 ± 30
1720 ± 39
1775 ± 1.5
11
$6 \mathrm{k} \quad 11$ NICHITIU
$450 p p \rightarrow p_{f} \eta \eta p_{S}$
3 ANISOVICH 99B SPEC $\begin{array}{ll}0.6-1.2 p \bar{p} \rightarrow \eta \eta \pi^{0}\end{array}$
BARBERIS 99 OMEG $450 p p \rightarrow p_{S} p_{f} K^{+} K^{-}$
BARBERIS 99B OMEG $450 p p \rightarrow p_{S} p_{f} \pi^{+} \pi^{-}$
14 BARBERIS 99D OMEG $450 p p \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$
15 ANISOVICH 98B RVUE Compilation
BAI $\quad 98 \mathrm{H}$ BES $\quad \mathrm{J} / \psi \rightarrow \gamma \pi^{0} \pi^{0}$
6 BARKOV $98 \quad \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
17 ABREU $\quad 96 \mathrm{C}$ DLPH $\quad Z^{0} \rightarrow K^{+} K^{-}+X$
18 BAI
C BES $J / \psi \rightarrow \gamma K^{+} K^{-}$
BAI 96C BES $J / \psi \rightarrow \gamma K^{+} K^{-}$
BALOSHIN 95 SPEC $40 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} \mathrm{X}$
19 BUGG 95 MRK3 $\mathrm{J} / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
18 BUGG 95 MRK3 $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
${ }^{20}$ ARMSTRONG 93C E760 $\quad \bar{p} p \rightarrow \pi^{0} \eta \eta \rightarrow 6 \gamma$ BREAKSTONE 93 SFM $p p \rightarrow p p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
21 ALDE 92D GAM2 $38 \pi^{-} p \rightarrow \eta \eta n$
22 ARMSTRONG 89D OMEG $300 p p \rightarrow p p K^{+} K^{-}$
22 ARMSTRONG 89D OMEG $300 p p \rightarrow p p K_{S}^{0} K_{S}^{0}$
20 AUGUSTIN 88 DM2 $J / \psi \rightarrow \gamma K^{+} K^{-}, K_{S}^{0} K_{S}^{0}$
18 BOLONKIN 88 SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n^{n}$ BOLONKIN 88 SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$\begin{array}{llll}23 \text { FALVARD } & 88 & \text { DM2 } & J / \psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0} \\ 24 \text { FAIVARD } & 88 & \text { DM2 } & J / \psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0}\end{array}$
$\begin{array}{llll}20 \text { AUGUSTIN } & 88 & \text { DM2 } & J / \psi \rightarrow \phi K^{+} K \\ \text { DM2 } & J / \psi \rightarrow \gamma \pi^{+} \pi^{-}\end{array}$
18 BALTRUSAIT... 87 MRK3 $J / \psi \rightarrow \gamma K^{+} K^{-}$
${ }^{25}$ ALDE $\quad 86 \mathrm{C}$ GAM2 $38 \pi^{-} p \rightarrow n 2 \eta$
26 LONGACRE 86 RVUE $22 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
${ }^{20}$ WILLIAMS 84 MPSF $200 \pi^{-} N \rightarrow 2 K_{S}^{0} \mathrm{X}$
$\begin{array}{llll}\text { BLOOM } & 83 & \text { CBAL } & J / \psi \rightarrow \gamma 2 \eta \\ \text { BURKE } & 82 & \text { MRK2 } & J / \psi \rightarrow \gamma 2 \rho\end{array}$
27,28 EDWKERDS 82 MRK2 $J / \psi \rightarrow \gamma 2 \rho$
$\begin{array}{lll}29 \text { ETKIN } & 82 \mathrm{C} & \text { MPS } \\ 23 \pi^{-} p \rightarrow n 2 K_{S}^{0}\end{array}$
${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.
${ }^{2}$ Spin 0 favored over spin 2.
${ }^{3}$ In the $\operatorname{SU}(3)$ based model with a specific interference pattern of the $f_{2}(1270), a_{2}^{0}(1320)$,
and $f_{2}^{\prime}(1525)$ mesons incoherently added to the $f_{0}(1710)$ and non-resonant background.
${ }^{4}$ Breit-Wigner mass.
${ }_{5} J^{P}=0^{+}$, supersedes by ARMSTRONG 89D.
${ }^{6}$ Using CLEO-C data but not authored by the CLEO Collaboration.
${ }^{7}$ From a fit to a Breit-Wigner line shape with fixed $\Gamma=135 \mathrm{MeV}$.
${ }^{8}$ Systematic errors not estimated.
${ }^{9}$ This state may be different from $f_{0}(1710)$, see CLOSE 05.
${ }^{10} \mathrm{~K}$-matrix pole, assuming $J^{P}=0^{+}$, from combined analysis of $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \pi^{-} p \rightarrow$ $K \bar{K} n, \pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}$, $K_{S}^{0} K_{S}^{0} \pi^{0}, K^{+} K_{S}^{0} \pi^{-}$at rest, $\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{-}$at rest.
${ }^{11}$ Decaying to $f_{0}(1370) \pi \pi$.
12 T-matrix pole.
13 Not seen by AMSLER 02.
14 Supersedes BARBERIS 99 and BARBERIS 99b.
${ }^{15} \mathrm{~T}$-matrix pole, assuming $J^{P}=0^{+}$
16 No $J P C$ determination.
17 No $J P C$ determination, width not determined.
$18 J^{P}=2^{+}$.
19 From a fit to the 0^{+}partial wave.
20 No $J P C$ determination.
21 ALDE 92D combines all the GAMS-2000 data.
$22 J^{P}=2^{+}$, superseded by FRENCH 99.
${ }^{23}$ From an analysis ignoring interference with $f_{2}^{\prime}(1525)$.
${ }^{24}$ From an analysis including interference with $f_{2}^{\prime}(1525)$.
${ }^{25}$ Superseded by ALDE 92D.
${ }^{26}$ Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity.
$27{ }^{5}{ }^{P}$ poles, but assuming $=2^{+}$preferred.
${ }^{28}$ From fit neglecting nearby $f_{2}^{\prime}(1525)$. Replaced by BLOOM 83.

$f_{0}(1710)$ WIDTH
OUR EVALUATION below is based on T-matrix poles from BARBERIS O0E and BARBERIS 99D.

VALUE (MeV)		EVTS		DOCUMENT ID		TECN	COMMENT
123 ± 18	OUR EVALUATION						
147 ± 12	OUR	AVER	E	Error includes	scale	factor of	f 1.2.
172 ± 10	$\begin{aligned} & +32 \\ & -16 \end{aligned}$	5.5k		ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta \eta$
$139+11$	$\begin{array}{r} +96 \\ +50 \end{array}$			2 UEHARA	13	BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
100 ± 24	$\begin{aligned} & +7 \\ & -22 \end{aligned}$	4k		${ }^{3}$ CHEKANOV	08	ZEUS	$e p \rightarrow K_{S}^{0} K_{S}^{0} X$
145 ± 8	± 69			${ }^{4}$ ABLIKIM	06V	BES2	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
125 ± 20				ABLIKIM	04E	BES2	$J / \psi \rightarrow \omega K^{+} K^{-}$
166 ± 5	$\begin{aligned} & +15 \\ & -10 \end{aligned}$			BAI	03G	BES	$J / \psi \rightarrow \gamma K \bar{K}$
120 ± 50				BAI	00A	BES	$J / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$
105 ± 34				5 FRENCH	99		$300 p p \rightarrow p_{f}\left(K^{+} K^{-}\right) p_{S}$

- - We do not use the following data for averages, fits, limits, etc. • • -

148		AMSLER	06	CBAR	$1.64 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
188 ± 13	80k	4,6 UMAN	06	E835	$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
250 ± 30		VLADIMIRSK... 0	. 06	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$270 \pm \begin{aligned} & +60 \\ & -30\end{aligned}$		7 ABLIKIM	05	BES2	$J / \psi \rightarrow \phi \pi^{+} \pi^{-}$
$125 \pm 25 \begin{aligned} & +10 \\ & -15\end{aligned}$		${ }^{4}$ ABLIKIM	05Q	BES2	$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$
260 ± 50		${ }^{4}$ BINON	05	GAMS	$33 \pi^{-} p \rightarrow \eta \eta n$
144 ± 30		8,9 ANISOVICH	03	RVUE	
320		9,10 ANISOVICH	03	RVUE	
102 ± 26		TIKHOMIROV	03	SPEC	$40.0 \pi^{-} \mathrm{C} \rightarrow \mathrm{K}_{S}^{0} \mathrm{~K}_{S}^{0} K_{l}^{0} \mathrm{X}$
267 ± 44	3651	11 NICHITIU	02	OBLX	$0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
120 ± 26		12 BARBERIS	00E		$450 p p \rightarrow p_{f} \eta \eta p_{S}$
220 ± 40		13,14 ANISOVICH	99B	SPEC	0.6-1.2 $p \bar{p} \rightarrow \eta \eta \pi^{0}$
100 ± 25		BARBERIS	99	OMEG	$450 p p \rightarrow p_{s} p_{f} K^{+} K^{-}$
160 ± 30		BARBERIS	99B	OMEG	$450 p p \rightarrow p_{S} p_{f} \pi^{+} \pi^{-}$
$126 \pm 16 \pm 18$		12,15 BARBERIS	99D	OMEG	$450 p p \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$
250 ± 140		16 ANISOVICH	98B	RVUE	Compilation
30 ± 7	57	17 BARKOV	98		$\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$103 \pm 18{ }_{-11}^{+30}$		18 BAI	96C	BES	$J / \psi \rightarrow \gamma K^{+} K^{-}$
$85 \pm 24 \begin{aligned} & +22 \\ & -19\end{aligned}$		BAI	96C	BES	$J / \psi \rightarrow \gamma K^{+} K^{-}$
56 ± 19		BALOSHIN	95	SPEC	$40 \pi^{-} \mathrm{C} \rightarrow \mathrm{K}_{S}^{0} K_{S}^{0} \mathrm{X}$
160 ± 40		19 BUGG	95	MRK3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
160 -20		18 BUGG	95	MRK3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
264 ± 25		20 ARMSTRONG	93C	E760	$\bar{p} p \rightarrow \pi^{0} \eta \eta \rightarrow 6 \gamma$
200 to 300		BREAKSTONE	93	SFM	$p p \rightarrow p p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
< 8090% CL		21 ALDE	92D	GAM2	$38 \pi^{-} p \rightarrow \eta \eta N^{*}$
181 ± 30		22 ARMSTRONG	89D	OMEG	$300 \mathrm{pp} \rightarrow \mathrm{ppK} \mathrm{K}^{+} \mathrm{K}^{-}$
104 ± 30		22 ARMSTRONG	89D	OMEG	$300 p p \rightarrow p p K_{S}^{0} K_{S}^{0}$
166.4 ± 33.2		20 AUGUSTIN	88	DM2	$J / \psi \rightarrow \gamma K^{+} K^{-}, K_{S}^{0} K_{S}^{0}$
30 ± 20		18 BOLONKIN	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
350 ± 150		BOLONKIN	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
148 ± 17		23 FALVARD	88	DM2	$J / \psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0}$

184	± 6
136	± 28
130	± 20
122	± 74
57	± 38
160	± 80
200	± 100
220	± 100
	-70
200	+156
	-9

24 FALVARD	88	DM2	$J / \psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0}$
20 AUGUSTIN	87	DM2	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
18 BALTRUSAIT.. 87	MRK3	$J / \psi \rightarrow \gamma K^{+} K^{-}$	
25 LONGACRE	86	RVUE	$22 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
26 WILLIAMS	84	MPSF	$200 \pi^{-} N \rightarrow 2 K_{S}^{0} \mathrm{X}$
BLOOM	83	CBAL	$J / \psi \rightarrow \gamma 2 \eta$
BURKE	82	MRK2	$J / \psi \rightarrow \gamma 2 \rho$
27,28 EDWARDS	82 D	CBAL	$J / \psi \rightarrow \gamma 2 \eta$
29 ETKIN	$82 B$	MPS	$23 \pi^{-} p \rightarrow n 2 K_{S}^{0}$

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++}
resonances.
2 Spin 0 favored over spin 2.
${ }^{3}$ In the $\operatorname{SU}(3)$ based model with a specific interference pattern of the $f_{2}(1270), a_{2}^{0}(1320)$, and $f_{2}^{\prime}(1525)$ mesons incoherently added to the $f_{0}(1710)$ and non-resonant background.
${ }^{4}$ Breit-Wigner width.
${ }_{6} J^{P}=0^{+}$, supersedes by ARMSTRONG 89D.
${ }_{7}$ Systematic errors not estimated.
7 This state may be different from $f_{0}(1710)$, see CLOSE 05.
${ }^{8}$ (Solution I)
${ }^{9} \mathrm{~K}$-matrix pole, assuming $J^{P}=0^{+}$, from combined analysis of $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n, \pi^{-} p \rightarrow$ $K \bar{K} n, \pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \pi^{+} \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{0}$, $K_{S}^{0} K_{S}^{0} \pi^{0}, K^{+} K_{S}^{0} \pi^{-}$at rest, $\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, K_{S}^{0} K_{S}^{0} \pi^{-}$at rest.
10 (Solution I)
11 Decaying to $f_{0}(1370) \pi \pi$.
12 T-matrix pole.
$13 J^{P}=0^{+}$.
14 Not seen by AMSLER 02.
${ }^{15}$ Supersedes BARBERIS 99 and BARBERIS 99B.
${ }^{16} \mathrm{~T}$-matrix pole, assuming $J^{P}=0^{+}$
${ }_{18} \mathrm{Ng} J^{P C}$ determination.
19 Fros $=2$ fit to the 0^{+}partial wave
20 No JPC determination
21 ALDE 92D combines all the GAMS-2000 data.
$22 \mathrm{~J} P=2^{+},\left(0^{+}\right.$excluded $)$.
${ }^{23}$ From an analysis ignoring interference with f_{2}^{\prime} (1525).
${ }^{24}$ From an analysis including interference with $f_{2}^{\prime}(1525)$
25 Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity.
${ }_{27} \mathrm{No} J^{P C}$ determination
$27 J^{P}=2^{+}$preferred.
${ }^{28}$ From fit neglecting nearby $f_{2}^{\prime}(1525)$. Replaced by BLOOM 83.
${ }^{29}$ From an amplitude analysis of the $K_{S}^{0} K_{S}^{0}$ system, superseded by LONGACRE 86.

$f_{0}(1710)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K}$	seen
Γ_{2}	$\eta \eta$	seen
Γ_{3}	$\pi \pi$	seen
Γ_{4}	$\gamma \gamma$	seen
Γ_{5}	$\omega \omega$	seen

$f_{0}(1710) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$				
$\Gamma(K \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$				$\Gamma_{1} \Gamma_{4} / \Gamma$
$\underline{V A L U E ~(e V) ~}$	DOCUMENT ID	TECN	COMMENT	
$12 \pm 3+227$ $-2-8$	UEHARA	BELL	$\gamma \gamma \rightarrow K_{S}^{0}$	

- - We do not use the following data for averages, fits, limits, etc \bullet -

<480	95	ALBRECHT	90 ARG	ARG	$\gamma \gamma \rightarrow K^{+} K^{-}$
<110	95	1 BEHREND	89 C	CELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
<280	95	1 ALTHOFF	85 B	TASS	$\gamma \gamma \rightarrow K K K$

Meson Particle Listings
$f_{0}(1710), \eta(1760)$

$f_{0}(1710)$ REFERENCES

$\eta(1760)$ MASS

$\eta(1760)$ WIDTH

$\frac{V A L U E(M e V)}{240} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT

$\eta(1760)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \overline{\text { r }}\right.$)			
$\Gamma_{1} 4 \pi$					
$\Gamma_{2} 2 \pi^{+} 2 \pi^{-}$seen					
$\Gamma_{3} \pi^{+} \pi^{-} 2 \pi^{0}$ seen					
$\Gamma_{4} \rho^{0} \rho^{0}$ seen					
$\Gamma_{5} \rho^{+} \rho^{-}$seen					
$\Gamma_{6} \omega \omega \omega$ seen					
$\Gamma_{7} \eta^{\prime} \pi^{+} \pi^{-}$seen					
$\Gamma_{8} \quad \gamma \gamma$ seen					
$\eta(1760) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$					
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
$28.2 \pm 7.9 \pm 3.7$	465	${ }^{9}$ ZHANG	BELL	$\begin{gathered} e^{+} e^{-}{ }_{e^{+}} e^{-} \end{gathered}$	

- - We do not use the following data for averages, fits, limits, etc. - - -

$3.0 \pm 2.0{ }_{-}^{+2.2} \pm 0.8$	52	10 ZHANG	12A	BELL	$\begin{aligned} & e^{+} e^{-} \xrightarrow{+} e^{-} \eta^{\prime} \pi^{+} \pi^{-} \end{aligned}$
$18 \begin{array}{r}+13 \\ -10\end{array} \pm 5$	315	11 ZHANG	12A	BELL	$\begin{gathered} e^{+} e^{-}{ }_{e^{+}} e^{-} \eta^{\prime} \pi^{+} \pi^{-} \end{gathered}$

${ }^{9}$ From a single-resonance fit.
${ }^{10}$ From a two-resonance fit. For constructive interference with the $X(1835)$
${ }^{11}$ From a two-resonance fit. For destructive interference with the $X(1835)$.

$\eta(1760)$ BRANCHING RATIOS									
$\Gamma_{\text {VALUE }}\left(2 \pi^{+} 2 \pi^{-}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	COMMENT	Γ_{2} / Γ			
seen				BISELLO	89B	DM2	$J / \psi \rightarrow \gamma 2$	$\gamma 2 \pi^{+} 2 \pi$	
$\Gamma\left(\pi^{+} \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}$ value		DOCUMENT ID		TECN	Γ_{3} / Γ				
		COMMENT							
seen				BISELLO		DM2	$J / \psi \rightarrow \gamma \pi$	$\gamma \pi^{+} \pi^{-}$	$2 \pi^{0}$
${ }_{\text {VALUE }} \Gamma\left(\rho^{0} \rho^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	Γ_{4} / Γ				
		COMMENT							
seen				BISELLO		DM2	$\mathrm{J} / \psi \rightarrow \gamma \rho$	$\gamma \rho^{0} \rho^{0}$	
seen		BALTRUS	. 86	MRK3	$J / \psi \rightarrow \gamma \rho$	$\gamma \rho^{0} \rho^{0}$			
$\Gamma_{\text {VALUE }}\left(\rho^{+} \rho^{-}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	Γ_{5} / Γ				
		COMMENT							
seen				BISELLO		DM2	$J / \psi \rightarrow \gamma \rho$	$\gamma \rho^{+} \rho^{-}$	
seen		BALTRUS	. 86	MRK3	$J / \psi \rightarrow \gamma \rho$	$\gamma \rho^{+} \rho^{-}$			
$\Gamma(\omega \omega) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	Γ_{6} / Γ				
		COMMENT							
seen seen				$\begin{array}{lc} \text { BISELLO } & 87 \\ \text { BALTRUSAIT...85c } \end{array}$		DM2 MRK3	$\begin{aligned} & J / \psi \rightarrow \omega \omega \\ & J / \psi \rightarrow \gamma \omega \omega \end{aligned}$		
$\Gamma(\gamma \gamma) / \Gamma(\omega \omega)$	CL\%	DOCHMENT ID		TECN	Γ_{8} / Γ_{6}				
				COMmENT					
$<\mathbf{2 . 4 8} \times \mathbf{1 0}^{\mathbf{- 3}}$12Using results from	90	12 ABLIKIM	180		BES3	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} \gamma \gamma \gamma$			
	LIKIM								

$\boldsymbol{\eta}(1760)$ REFERENCES

$\pi(1800)$ MASS

VALUE (MEV) EVTS DOCUMENT ID TECN CHG COMMENT
$\mathbf{1 8 1 0}_{-\mathbf{1 1}}^{\mathbf{+}} \mathbf{9}$ OUR AVERAGE Error includes scale factor of 2.2. See the ideogram below.
$1804+9 \quad 46 \mathrm{M} \quad{ }_{9}^{6}$ AGHASYAN \quad 18B COMP $\quad 190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$ |
$1876 \pm 18 \pm 16 \quad 4 \mathrm{k} \quad{ }^{2}$ EUGENIO 08 B852 - $18 \pi^{-} p \rightarrow \eta \eta \pi^{-} p$
$1774 \pm 18 \pm 20 \quad{ }^{3}$ CHUNG 02 B852 $\quad 18.3 \pi^{-} p \rightarrow$
$\pi^{+} \pi^{-} \pi^{-} p$
$1840 \pm 10 \pm 10 \quad 1.2 \mathrm{k} \quad$ AMELIN $\quad 96 \mathrm{~B}$ VES $\quad \begin{gathered}\pi^{+} \pi^{-} \pi^{-} p \\ \pi^{-} A \rightarrow \eta \eta \pi^{-} A\end{gathered}$
$1775 \pm 7 \pm 10 \quad{ }^{5}$ AMELIN 95B VES $-36 \pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$
1790 ± 14
${ }^{6}$ BERDNIKOV 94 VES - $37 \pi^{-} A \rightarrow K^{+} K^{-} \pi^{-} A$
$1873 \pm 33 \pm 20 \quad$ BELADIDZE 92C VES - $36 \pi^{-} \mathrm{Be} \rightarrow \pi^{-} \eta^{\prime} \eta \mathrm{Be}$
$1814 \pm 10 \pm 23 \quad 426 \quad$ BITYUKOV 91 VES $-36 \pi^{-} \mathrm{C} \rightarrow \pi^{-} \eta \eta \mathrm{C}$ $1770 \pm 30 \quad 1.1 \mathrm{k}$ BELLINI $82 \mathrm{SPEC}-40 \pi^{-} \mathrm{A} \rightarrow 3 \pi \mathrm{~A}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$1785 \pm 9_{-6}^{+12}$	420k	7 ALEKSEEV	10	COMP	$\begin{gathered} 190 \pi^{-} P b \rightarrow \\ \pi^{-} \pi^{-} \pi^{+} P b^{\prime} \end{gathered}$
$1737 \pm 5 \pm 15$		AMELIN	99	VES	$37 \pi^{-} A \rightarrow \omega \pi^{-} \pi^{0} A^{*}$

${ }^{1}$ Statistical error negligible.
${ }^{2}$ From a single-pole fit.
${ }^{3}$ In the $f_{0}(980) \pi$ wave.
${ }^{4}$ In the $f_{0}(500) \pi$ wave.
${ }^{5}$ From a fit to $J P C=0^{-}+f_{0}(980) \pi, f_{0}(1370) \pi$ waves.
${ }^{6}$ From a fit to $J^{P C}=0^{-+} K_{0}^{*}(1430) K^{-}$and $f_{0}(980) \pi^{-}$waves.
${ }^{7}$ Superseded by AGHASYAN 2018B.

$\pi(1800)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	$\underline{C H G}$	COMMEN
215 ${ }^{+} 78$ OUR AVERAGE						
$220{ }_{-11}^{+}$	46M	${ }^{8}$ AGHASYAN		COMP		190π
$221 \pm 26 \pm 38$	4k	9 EUGENIO	08	B852	-	$18 \pi^{-}$
$223 \pm 48 \pm 50$		10 CHUNG	02	B852		$\begin{gathered} 18.3 \pi \\ \pi^{+} \end{gathered}$
$191 \pm 21 \pm 20$		11 CHUNG	02	B852		$\begin{gathered} 18.3 \pi \\ \pi^{+} \end{gathered}$
$210 \pm 30 \pm 30$	1.2k	AMELIN	96B	VES	-	$37 \pi^{-}$
$190 \pm 15 \pm 15$		12 AMELIN	95B	VES	-	$36 \pi^{-}$
210 ± 70		13 BERDNIKOV	94	VES	-	$37 \pi^{-}$
$225 \pm 35 \pm 20$		BELADIDZE	92C	VES	-	$36 \pi^{-}$
$205 \pm 18 \pm 32$	426	BITYUKOV	91	VES	-	$36 \pi^{-}$
310 ± 50	1.1 k	BELLINI	82	SPEC	-	$40 \pi^{-}$
- - We do not use the following data for averages, fits, limits, etc. • • -						
$208 \pm 22+21$	420k	14 ALEKSEEV	10	COMP		$\begin{gathered} 190 \pi^{-} \\ \pi^{-} \end{gathered}$
$259 \pm 19 \pm 6$		AMELIN	99	VES		$37 \pi^{-}$
${ }^{8}$ Statistical error negligible.						
10 In the $f_{0}(980) \pi$ wave.						
11 In the $f_{0}(500) \pi$ wave.						
${ }^{12}$ From a fit to $J^{P C}=0^{-}+f_{0}(980) \pi, f_{0}(1370) \pi$ waves.						
${ }^{13}$ From a fit to $J^{P C}=0^{-}+K_{0}^{*}(1430) K^{-}$and $f_{0}(980) \pi^{-}$waves.						
14 Superseded by AGHASYAN 2018B.						

$\pi(1800)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{+} \pi^{-} \pi^{-}$	seen
Γ_{2}	$f_{0}(500) \pi^{-}$	seen
Γ_{3}	$f_{0}(980) \pi^{-}$	seen
Γ_{4}	$f_{0}(1370) \pi^{-}$	seen
Γ_{5}	$f_{0}(1500) \pi^{-}$	not seen
Γ_{6}	$\rho \pi^{-}$	not seen
Γ_{7}	$\eta \eta \pi^{-}$	seen
Γ_{8}	$a_{0}(980) \eta$	seen
Γ_{9}	$a_{2}(1320) \eta$	not seen
Γ_{10}	$f_{2}(1270) \pi$	not seen
Γ_{11}	$f_{0}(1370) \pi^{-}$	not seen
Γ_{12}	$f_{0}(1500) \pi^{-}$	seen
Γ_{13}	$\eta \eta^{\prime}(958) \pi^{-}$	seen
Γ_{14}	$K_{0}^{*}(1430) K^{-}$	seen
Γ_{15}	$K^{*}(892) K^{-}$	not seen

$\pi(1800)$ BRANCHING RATIOS
$\boldsymbol{\Gamma}\left(\boldsymbol{f}_{\mathbf{0}}(\mathbf{9 8 0}) \pi^{-}\right) / \Gamma\left(\mathrm{f}_{\mathbf{0}}(\mathbf{5 0 0}) \pi^{-}\right)$
$\frac{V A L U E}{\mathbf{0 . 4 4} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 3 8}} \quad 15 \frac{\text { DOCUMENT ID }}{\text { CHUNG }} \quad 02$

Meson Particle Listings
$\pi(1800), f_{2}(1810)$
$\Gamma\left(f_{0}(980) \pi^{-}\right) / \Gamma\left(f_{0}(1370) \pi^{-}\right) \quad \Gamma_{3} / \Gamma_{4}$

VALUE
\cdots
$\cdots+1.71 .3$

$\Gamma\left(f_{0}(1370) \pi^{-}\right) / \Gamma_{\text {total }}$	Dociment in	TECN $\frac{\text { CHG }}{}$ Comment		
sen	вEL	3 SPEC -		
$\Gamma\left(f_{0}(1500) \pi^{-}\right) / \Gamma_{\text {total }}$	nociumer in	TECN Coment		$\mathrm{r}_{5} / \mathrm{\Gamma}$
not seen	chung	B852		

$\Gamma\left(\pi \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{V}{\text { Valle }}$ net sen

$\Gamma\left(\rho \pi^{-}\right) / \Gamma\left(f_{0}(980) \pi^{-}\right)$
Γ_{6} / Γ_{3}
$\frac{V A L U E}{\text { - • We do not use the fol }}$

<0.25			CHUNG	02 B852
<0.14	90	AMELIN	$95 B$ VES	$18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
		$36 \pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$		

0.48 ± 0.17	4 k	16,17 EUGENIO	08	B852	-	$18 \pi^{-} p \rightarrow \eta \eta \pi^{-} p$
$0.030_{-0.011}^{+0.014}$		16 ANISOVICH	01B	SPEC	0	0.6-1.94 $p \bar{p} \rightarrow \eta \eta \pi^{0} \pi^{0}$
0.08 ± 0.03	1200	16,18 AMELIN	96B	VES	-	$37 \pi^{-} \boldsymbol{A} \rightarrow \eta \eta \pi^{-}$A

 - - We do not use the following data for averages, fits, limits, etc. • • •

0.29 ± 0.07		${ }^{16}$ BELADIDZE	92 C
0.3 ± 0.1	426 ± 57	${ }^{16}$ BITYUKOV $-36 \pi^{-} \mathrm{Be} \rightarrow \pi^{-} \eta^{\prime} \eta \mathrm{Be}$	
01	VES $-36 \pi^{-} \mathrm{C} \rightarrow \pi^{-}{ }_{\eta \eta} \mathrm{C}$		

$\pi(1800)$ REFERENCES

AGHASYAN	18B	PR D98 092003	M. Aghasyan et al.	(COMP	PASS Collab.)
ALEKSEEV	10	PRL 104241803	M.G. Alekseev et al.	(COMP	PASS Collab.)
EUGENIO	08	PL B660 466	P. Eugenio et al.	(BNL	E852 Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL	E852 Collab.)
ANISOVICH	01B	PL B500 222	A.V. Anisovich et al.		
AMELIN	99	PAN 62445 Translated from YAF 62	D.V. Amelin et al. 487.		(VES Collab.)
AMELIN	96B	PAN 59976 Translated from YAF 59	D.V. Amelin et al. 1021.		(SERP, TBIL) IGJPC
AMELIN	95B	PL B356 595	D.V. Amelin et al.		(SERP, TBIL)
BERDNIKOV	94	PL B337 219	E.B. Berdnikov et al.		(SERP, TBIL)
BELADIDZE	92C	SJNP 551535 Translated from YAF 55	G.M. Beladidze, S.I. Bityukov, G.V. 2748.	Borisov	(SERP+)
BITYUKOV	91	PL B268 137	S.I. Bityukov et al.		(SERP, TBIL)
BELLINI	82	PRL 481697	G. Bellini et al.	(MILA,	BGNA, JINR)

$f_{2}(1810) \quad I_{(}\left({ }^{P C}\right)=0^{+}\left(2^{++}\right)$
OMITTED FROM SUMMARY TABLE Needs confirmation.

$f_{2}(1810)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1815 ± 12 OUR AVERAGE		Error includes scale factor of 1.4.			See the ideogram below.
$1822+29+66$	5.5k	${ }^{1}$ ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta \eta$
$1737 \pm 9+198$		2 UEHARA	10A	BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \eta$
1800 ± 30	40	ALDE	88D	GAM4	$300 \pi^{-} p \rightarrow \pi^{-} p 4 \pi^{0}$
1806 ± 10	1600	ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4 \pi^{0} n$
1870 ± 40		${ }^{3}$ ALDE	86D	GAM4	$100 \pi^{-} p \rightarrow \eta \eta n$
$1857+35$		${ }^{4}$ costa	80	OMEG	$10 \pi^{-} p \rightarrow K^{+} K^{-} n$

- - We do not use the following data for averages, fits, limits, etc. - - -

1858_{-71}^{+18}	${ }^{5}$ LONGACRE	86	RVUE Compilation	
1799 ± 15	${ }^{6}$ CASON	82	STRC	$8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++}
${ }_{2}$ resonances. Breit-Wigner mass. Could also be the $f_{2}(1910)$.
${ }^{3}$ Seen in only one solution.
${ }^{4}$ Error increased by spread of two solutions. Included in LONGACRE 86 global analysis.
${ }^{5}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.
${ }^{6}$ From an amplitude analysis of the reaction $\pi^{+} \pi^{-} \rightarrow 2 \pi^{0}$. The resonance in the $2 \pi^{0}$
final state is not confirmed by PROKOSHKIN 97.

$f_{2}(1810)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
197士 22 OUR AVERAGE		Error includes scale factor of 1.5.			See the ideogram below.
$\begin{array}{r} 229+52+88 \\ -42-155 \end{array}$	5.5k	7 ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \eta \eta$
228-21+234		8 UEHARA	10A	BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \eta$
160 ± 30	40	ALDE	88D	GAM4	$300 \pi^{-} p \rightarrow \pi^{-} p 4 \pi^{0}$
190 ± 20	1600	ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4 \pi^{0} n$
250 ± 30		${ }^{9}$ ALDE	86D	GAM4	$100 \pi^{-} p \rightarrow \eta \eta n$
$185{ }_{-139}^{+102}$		10 COSTA	80	OMEG	$10 \pi^{-} p \rightarrow K^{+} K^{-} n$

- - We do not use the following data for averages, fits, limits, etc. - - -
$388{ }_{-}^{+} 1511$ LONGACRE 86 RVUE Compilation
$280{ }_{-}^{+} 425 \quad 12$ CASON 82 STRC $8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
${ }^{7}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.
${ }^{8}$ Breit-Wigner width. Could also be the $f_{2}(1910)$.
${ }^{9}$ Seen in only one solution.
${ }^{10}$ Error increased by spread of two solutions. Included in LONGACRE 86 global analysis.
${ }^{11}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.
${ }^{12}$ From an amplitude analysis of the reaction $\pi^{+} \pi^{-} \rightarrow 2 \pi^{0}$. The resonance in the $2 \pi^{0}$ final state is not confirmed by PROKOSHKIN 97.

$f_{2}(1810)$ DECAY MODES

13 Including interference with the $f_{2}^{\prime}(1525)$ (parameters fixed to the values from the 2008 edition of this review, PDG 08) and $f_{2}(1270)$. May also be the $f_{0}(1500)$.

$f_{2}(\mathbf{1 8 1 0})$ BRANCHING RATIOS

$\Gamma(\pi \pi) / \Gamma_{\text {total }}$		Γ_{1} / Γ
VALUE	DOCUMENT ID	TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -		
not seen	AMSLER 02	CBAR $0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$
not seen	PROKOSHKIN 97	GAM2 $38 \pi^{-} p \rightarrow \pi^{0} \pi^{0} n$
${ }^{0.21}+0.02$	14 LONGACRE 86	RVUE Compilation
0.44 ± 0.03	15 CASON 82	STRC $8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
${ }^{14}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments. 15 Included in LONGACRE 86 global analysis.		

$f_{2}(1810)$ REFERENCES				
ABLIKIM	13N	PR D87 092009	9 Ablikim M. et al.	(BESIII Collab.)
UEHARA	10A	PR D82 114031	1 S. Uehara et al.	(BELLE Collab.)
PDG	08	PL B667 1	C. Amsler et al.	(PDG Collab.)
AMSLER	02	EPJ C23 29	C. Amsler et al.	
PROKOSHKIN	97	PD 42117 Translated from	Y.D. Prokoshkin et al. DANS 353323.	(SERP)
ALDE	88D	SJNP 47810 Translated from	D.M. Alde et al. YAF 471273.	(SERP, BELG, LANL, LAPP+)
ALDE	87	PL B198 286	D.M. Alde et al.	(LANL, BRUX, SERP, LAPP)
ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
LONGACRE	86	PL B177 223	R.S. Longacre et al.	(BNL, BRAN, CUNY+)
CASON	82	PRL 481316	N.M. Cason et al.	(NDAM, ANL)
COSTA	80	NP B175 402	G. Costa et al.	(BARI, BONN, CERN, GLAS+)
$X(18$		$I^{G}\left(J^{P C}\right)=?^{?}\left(0^{-+}\right)$		

OMITTED FROM SUMMARY TABLE
Could be a superposition of two states, one with small width appearing as threshold enhancement in $p \bar{p}$, the other one with a larger width. For the former ABLIKIM 12D determine $J^{P C}=0^{-+}$.

$X(1835)$ MASS

VALUE (MeV) \qquad EVTS
DOCUMENT ID TECN COMMENT

1826.5 ${ }_{-}^{+13.0}$ OUR AVERAGE

$1825.3 \pm 2.4_{-}^{+17.3}$
${ }^{1}$ ABLIKIM 16 J BES3 $\mathrm{J} / \psi \rightarrow \gamma \pi^{+} \pi^{-} \eta^{\prime}$
$1844 \pm 9 \begin{array}{r}+16 \\ -25\end{array}$
ABLIKIM
15T BES3 $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta$

- - We do not use the following data for averages, fits, limits, etc. - -

$1839 \pm 26 \pm 26$		2 ABLIKIM	181	BES3	$J / \psi \rightarrow$	$\gamma \gamma \phi(1020)$
$1909.5 \pm 15.9{ }_{-27.5}$		3 ABLIKIM	16J	BES3	$J / \psi \rightarrow$	$\gamma \pi^{+} \pi^{-} \eta^{\prime}$
$1842.2 \pm 4.2+2.1$	0.6k	ABLIKIM	13U	BES3	$J / \psi \rightarrow$	$\gamma 3\left(\pi^{+} \pi^{-}\right)$
$1832 \begin{array}{r}+19 \\ -5\end{array} \pm 26$		4 ABLIKIM	12D	BES3	$J / \psi \rightarrow$	$\gamma p \bar{p}$
$1836.5 \pm 3.0 \pm 5.6$	4265	${ }^{5}$ ABLIKIM	11C	BES3	$J / \psi \rightarrow$	$\gamma \pi^{+} \pi^{-} \eta^{\prime}$
$1877.3 \pm 6.3_{-}^{+} 3.4$		${ }^{6}$ ABLIKIM	11」	BES3	$J / \psi \rightarrow$	$\omega\left(\eta \pi^{+} \pi^{-}\right)$
$1837+10 \pm 9$	231	7,8 ALEXANDER	10	CLEO	$J / \psi \rightarrow$	$\gamma p \bar{p}$
$1833.7 \pm 6.1 \pm 2.7$	264	ABLIKIM	05R	BES2	$J / \psi \rightarrow$	$\gamma \pi^{+} \pi^{-} \eta^{\prime}$
1831 ± 7		8,9 ABLIKIM	05R	BES2	$J / \psi \rightarrow$	
$1859 \begin{array}{ll}+3 & +5 \\ -10\end{array}$		${ }^{8} \mathrm{BAI}$	03F	BES2	$J / \psi \rightarrow$	$\gamma p \bar{p}$

${ }^{1}$ From a fit of the measured $\pi^{+} \pi^{-} \eta^{\prime}$ lineshape that accounts for the abrupt distortion observed at the $p \bar{p}$ threshold through interference with a second previously unseen narrow resonance near 1870 MeV . The fit uses Breit-Wigner functions for the signal shapes and includes known backgrounds and contributors.
${ }^{2}$ From a fit to $\gamma \phi$ invariant mass. Angular analysis consistent with $J^{P C}=0^{-}+$. Other ${ }^{J} P C$ not excluded
${ }^{3}$ Pole mass from a fit of the measured $\pi^{+} \pi^{-} \eta^{\prime}$ lineshape to a Flatte formula that accounts for the abrupt distortion observed at the $p \bar{p}$ threshold; the fit also includes known backgrounds and contributors, as well as an ad hoc Breit-Wigner function (M ₹ $1919 \mathrm{MeV} ; \Gamma \approx 51 \mathrm{MeV}$) that is required for a good fit.
${ }^{4}$ From the fit including final state interaction effects in isospin $0 S$-wave according to SIBIRTSEV 05A. Supersedes ABLIKIM 10G.
${ }^{5}$ From a fit of the $\pi^{+} \pi^{-} \eta^{\prime}$ mass distribution to a combination of $\gamma f_{1}(1510), \gamma X(1835)$, and two unconfirmed states $\gamma X(2120)$, and $\gamma X(2370)$, for $M(p \bar{p})<2.8 \mathrm{GeV}$, and accounting for backgrounds from non $-\eta^{\prime}$ events and $J / \psi \rightarrow \pi^{0} \pi^{+} \pi^{-} \eta^{\prime}$.
${ }^{6}$ The selected process is $J / \psi \rightarrow \omega a_{0}(980) \pi$. This state may be due also to $\eta_{2}(1870)$ or to a combination of $X(1835)$ and $\eta_{2}(1870)$.
${ }^{7}$ From a fit of the $p \bar{p}$ mass distribution to a combination of $\gamma X(1835), \gamma R$ with $M(R)$ $=2100 \mathrm{MeV}$ and $\Gamma(R)=160 \mathrm{MeV}$, and $\gamma p \bar{p}$ phase space, for $M(p \bar{p})<2.85 \mathrm{GeV}$.
${ }^{8}$ Evidence for a threshold enhancement in the $p \bar{p}$ mass spectrum was also reported by ABE 02K, AUBERT, B 05L, and WANG 05A in $B^{+} \rightarrow p \bar{p} K^{+}$, WANG 05A in $B^{0} \rightarrow$ $p \bar{p} K_{S}^{0}$, ABE 02W in $\bar{B}^{0} \rightarrow p \bar{p} D^{0}$, DEL-AMO-SANCHEZ 12 in $B \rightarrow D\left(D^{*}\right) p \bar{p}(\pi)$,
and WEI 08 in $B^{+} \rightarrow p \bar{p} \pi^{+}$decays. Not seen by ATHAR 06 in $\gamma(1 S) \rightarrow p \bar{p} \gamma$.
${ }^{9}$ From the fit including final state interaction effects in isospin $0 S$-wave according to SIBIRTSEV 05A. Systematic errors not estimated.

X (1835) WIDTH

VALUE (MeV) \qquad CL\% EVTS

DOCUMENT ID \qquad COMMENT
$242 \begin{aligned} & \mathbf{+ 1 4} \\ & -15\end{aligned}$ OUR AVERAGE
$245.2 \pm 13.1_{-}^{+} 9.6$
${ }^{1}$ ABLIKIM
16」 BES3 J/ $\psi \rightarrow \gamma \pi^{+} \pi^{-} \eta^{\prime}$
$\begin{array}{lll}192 & +20 & +62 \\ -17 & -43\end{array}$
ABLIKIM
15T BES3 $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta$

- - We do not use the following data for averages, fits, limits, etc. - - -

$175 \pm 57 \pm 25$		2 ABLIKIM	18\|	BES3	$J / \psi \rightarrow \gamma \gamma \phi(1020)$
$273.5 \pm 21.4{ }_{-64.0}^{+6.1}$		${ }^{3}$ ABLIKIM	16J	BES3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \eta^{\prime}$
$83 \pm 14 \pm 11$	0.6k	ABLIKIM	13 U	BES3	$J / \psi \rightarrow \gamma 3\left(\pi^{+} \pi^{-}\right)$
<76		${ }^{4}$ ABLIKIM	12D	BES3	$J / \psi \rightarrow \gamma p \bar{p}$

Meson Particle Listings
$X(1835), \phi_{3}(1850)$

X(1835) DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$p \bar{p}$	seen
Γ_{2}	$\eta^{\prime} \pi^{+} \pi^{-}$	seen
Γ_{3}	$\gamma \gamma$	
Γ_{4}	$K_{S}^{0} K_{S}^{0} \eta$	seen
Γ_{5}	$\gamma \phi(1020)$	possibly seen
Γ_{6}	$3\left(\pi^{+} \pi^{-}\right)$	seen

$X(1835) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

$\Gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{2} \Gamma_{3} / \Gamma$
VALUE (eV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

<35.6	90	1	ZHANG	12A	BELL
$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta^{\prime} \pi^{+} \pi^{-}$					
<83	90	2 ZHANG	12A BELL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta^{\prime} \pi^{+} \pi^{-}$	

${ }^{1}$ From a two-resonance fit and constructive interference of the $\eta(1760)$ and $X(1835)$, a significance of 2.8σ.
${ }^{2}$ From a two-resonance fit and destructive interference of the $\eta(1760)$ and $X(1835)$, a significance of 2.8σ.

$x(1835)$ BRANCHING RATIOS

$\Gamma(p \bar{p}) / \Gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$
Γ_{1} / Γ_{2}
VALUE $\frac{\text { DOCUMENT ID }}{\text { • • We do not use the following data for averages, fits, limits, etc. • • • }}$
$0.333 \quad$ ABLIKIM 05R BES2 $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \eta^{\prime}$
$\Gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} K_{S}^{0} \eta\right)$
DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • -
$6.7 \pm 1.8 \quad 1$ ABLIKIM $\quad 15 \mathrm{~T}$ BES3 $\quad \mathrm{J} / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta$
${ }^{1}$ Using resutls from ABLIKIM 05R.

$\Gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	${ }^{1}$ ABLIKIM	16J	BES3	$J / \psi \rightarrow$	

${ }^{1}$ ABLIKIM 16J quotes $\mathrm{B}(J / \psi \rightarrow \gamma X(1835)) \times \mathrm{B}\left(X(1835) \rightarrow \pi^{+} \pi^{-} \eta^{\prime}\right)=(3.93 \pm$ $\left.0.38_{-0.84}^{+0.31}\right) \times 10^{-4}$ from a fit of the measured $\pi^{+} \pi^{-} \eta^{\prime}$ lineshape that accounts for the abrupt distortion observed at the $p \bar{p}$ threshold with a Flatte formula in addition to known backgrounds and contributors, as well as an ad hoc Breit-Wigner ($\mathrm{M} \approx 1919 \mathrm{MeV}$; $\Gamma \approx$ 51 MeV) that is required for a good fit. Another explanation for the distortion provided by ABLIKIM 16J is that a second resonance near 1870 MeV interferes with the $X(1835)$; fits to this possibility yield product branching fraction values compatible with that shown
within the respective systematic uncertainties.

$\Gamma\left(3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	$\Gamma 6 / \Gamma$	
seen	0.6k	ABLIKIM	13 u		BES3	$J / \psi \rightarrow \gamma$	

$X(1835)$ REFERENCES				
ABLIKIM	181	PR D97 051101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	180	PR D97 072014	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16J	PRL 117042002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15 T	PRL 115091803	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13 U	PR D88 091502	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	12D	PRL 108112003	M. Ablikim et al.	(BESIII Collab.) JPC
DEL-AMO-SA...	12	PR D85 092017	P. del Amo Sanchez et al.	(BABAR Collab.)
ZHANG	12A	PR D86 052002	C.C. Zhang et al.	(BELLE Collab.)
ABLIKIM	11 C	PRL 106072002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	11J	PRL 107182001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	10G	CP C34 421	M. Ablikim et al.	(BESIII Collab.)
ALEXANDER	10	PR D82 092002	J.P. Alexander et al.	(CLEO Collab.)
WEI	08	PL B659 80	J.-T. Wei et al.	(BELLE Collab.)
ATHAR	06	PR D73 032001	S.B. Athar et al.	(CLEO Collab.)
ABLIKIM	05R	PRL 95262001	M. Ablikim et al.	(BES Collab.)
AUBERT, B	05L	PR D72 051101	B. Aubert et al.	(BABAR Collab.)
SIBIRTSEV	05A	PR D71 054010	A. Sibirtsev, J. Haiden bauer	
WANG	05A	PL B617 141	M.-z. Wang et al.	(BELLE Collab.)
BAI	03F	PRL 91022001	J.z. Bai et al.	(BES II Collab.)
ABE	02K	PRL 88181803	K. Abe et al.	(BELLE Collab.)
ABE	02W	PRL 89151802	K. Abe et al.	(BELLE Collab.)

$\phi_{3}(1850) \quad{ }^{G}\left(J^{P C}\right)=0^{-\left(3^{--}\right)}$
$\phi_{3}(1850)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1854土 7 OUR AVERAGE					
1855 ± 10		ASTON	88E	LASS	$\begin{gathered} 11 K^{-} p \rightarrow K^{-} K^{+} \Lambda \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{gathered}$
$1870+30$	430	ARMSTRONG	82	OMEG	$\begin{gathered} 18.5 K^{-} p \rightarrow \\ K^{-} K^{+} \Lambda \end{gathered}$
1850 ± 10	123	ALHARRAN	81B	HBC	$8.25 K^{-} p \rightarrow K \bar{K} \wedge$
$\phi_{3}(1850)$ WIDTH					

$\underline{\operatorname{VALUE}(\mathrm{MeV})}$ EVTS DOCUMENT ID TECN COMMENT
$\mathbf{8 7}_{\mathbf{- 2 3}}^{\mathbf{+ 2 8}}$ OUR AVERAGE Error includes scale factor of 1.2.

| 64 ± 31 | ASTON | 88E LASS $11 K^{-} p \rightarrow K^{-} K^{+} \Lambda$, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K_{S}^{0} K^{ \pm} \pi^{\mp} \Lambda$ | | |,

$\phi_{3}(1850)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K}$	seen
Γ_{2}	$K \bar{K}^{*}(892)+$ c.c.	seen

$\phi_{3}(\mathbf{1 8 5 0})$ BRANCHING RATIOS
$\Gamma\left(\boldsymbol{K} \bar{K}^{*}(892)+\right.$ c.c. $) / \Gamma(\kappa \bar{K})$
Γ_{2} / Γ_{1}

VALUE	DOCUMENT ID		TECN	COMMENT	
$0.55_{-0.45}^{ \pm 0.85}$	ASTON	88E	LASS	$\begin{array}{r} 11 K^{-} p \\ K_{S}^{0} K^{-} \end{array}$	$K^{+} \Lambda,$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.8 \pm 0.4 \quad$ ALHARRAN $81 \mathrm{~B} \mathrm{HBC} 8.25 K^{-} p \rightarrow K \bar{K} \pi \Lambda$
$\phi_{3}(1850)$ REFERENCES

ASTON	88E	PL B208 324	D. Aston et al.	(SLAC, NAGO, CINC, INUS) IGJPC
ARMSTRONG	82	PL 110B 77	T.A. Armstrong et al.	(BARI, BIRM, CERN+) JP
ALHARRAN	81B	PL 101B 357	S. Al-Harran et al.	(BIRM, CERN, GLAS+)

$\eta_{2}(1870)$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{-+}\right)$		
$\boldsymbol{\eta}_{\mathbf{2}}(1870) \mathrm{MASS}$			
VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT
1842土 8 OUR AVERAGE			
1835 ± 12	BARBERIS	00B	$450 p p \rightarrow p_{f} \eta \pi^{+} \pi^{-} p_{S}$
1844 ± 13	BARBERIS	00C	$450 p p \rightarrow p_{f} 4 \pi p_{S}$
1840 ± 25	BARBERIS	97B OMEG	$450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
$1875 \pm 20 \pm 35$	ADOMEIT	96 CBAR	$1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$
$1881 \pm 32 \pm 40 \quad 26$	KARCH	92 CBAL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \pi^{0} \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - -			
$1860 \pm 5 \pm 15$	ANISOVICH	00E SPEC	0.9-1.94 $\bar{p} p \rightarrow \eta 3 \pi^{0}$
1840 ± 15	BAI	99 BES	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
$\boldsymbol{\eta}_{\mathbf{2}}(1870)$ WIDTH			
VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT
225 $\mathbf{1 4} \mathbf{4}$ OUR AVERAGE			
235 ± 22	BARBERIS	00B	$450 p p \rightarrow p_{f} \eta \pi^{+} \pi^{-} p_{S}$
228 ± 23	BARBERIS	00C	$450 p p \rightarrow p_{f} 4 \pi p_{S}$
200 ± 40	BARBERIS	97B OMEG	$450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
$200 \pm 25 \pm 45$	ADOMEIT	96 CBAR	$1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$
$221 \pm 92 \pm 44 \quad 26$	KARCH	92 CBAL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta \pi^{0} \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - -			
$250 \pm 25_{-35}^{+50}$	ANISOVICH	00E SPEC	0.9-1.94 $\bar{p} p \rightarrow \eta 3 \pi^{0}$
170 ± 40	BAI	99 BES	$J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$

$\eta_{2}(1870)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\eta \pi \pi$	
Γ_{2}	$a_{2}(1320) \pi$	
Γ_{3}	$f_{2}(1270) \eta$	
Γ_{4}	$a_{0}(980) \pi$	seen
Γ_{5}	$\gamma \gamma$	

$\eta_{2}(1870)$ BRANCHING RATIOS
$\Gamma\left(a_{2}(1320) \pi\right) / \Gamma\left(f_{2}(1270) \eta\right)$
Γ_{2} / Γ_{3}
$\frac{V A L U E}{1.7} \pm 0.4$ OUR AVERAGE

$\mathbf{1 . 7} \pm \mathbf{0 . 4}$ OUR AVERAGE						
± 0.40	1	ANISOVICH	11	SPEC		$0.9-1.94 p \bar{p}$
20.4	± 6.6		BARBERIS	00 B		$450 p p \rightarrow p_{\boldsymbol{f}} \eta \pi^{+} \pi^{-} p_{S}$
4.1	± 2.3	ADOMEIT	96	CBAR	$1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$	

1 Reanalysis of ADOMEIT 96 and ANISOVICH 00E.

$\boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$ $V A L U E$	
seen	$\frac{\text { DOCUMENT ID }}{\mathrm{KARCH}} 92$
$\boldsymbol{\eta}_{\mathbf{2}}(\mathbf{1 8 7 0})$ REFERENCES	$\boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$

ANISOVICH	11	EPJ C71 1511	A.V. Anisovich et al.	(LOQM, RAL, PNPI)
ANISOVICH	00E	PL B477 19	A.V. Anisovich et al.	
BARBERIS	00B	PL B471 435	D. Barberis et al.	(WA 102 Collab.)
BARBERIS	00C	PL B471 440	D. Barberis et al.	(WA 102 Collab.)
BAI	99	PL B446 356	J.Z. Bai et al.	(BES Collab.)
BARBERIS	97B	PL B413 217	D. Barberis et al.	(WA 102 Collab.)
ADOMEIT	96	ZPHY C71 227	J. Adomeit et al.	(Crystal Barrel Collab.)
KARCH	92	ZPHY C54 33	K. Karch et al.	(Crystal Ball Collab.)
π_{2}			$I^{G}\left(J^{P C}\right)=1^{-}\left(2^{-+}\right)$	

π_{2} (1880) MASS

- - We do not use the following data for averages, fits, limits, etc. - -
$\begin{array}{ccccc}1880 \pm 20 & \text { ANISOVICH } \quad 01 \mathrm{~B} \text { SPEC } 0 & 0.6-1.94 \bar{p} p \rightarrow \eta \eta \pi^{0} \pi^{0}\end{array}$
${ }^{1}$ Statistical error negligible.

$\pi_{2}(\mathbf{1 8 8 0})$ WIDTH

VALUE (MeV) EVTS
DOCUMENT ID TECN CHG COMMENT
$\mathbf{2 3 7}=\mathbf{3 0}$ OUR AVERAGE Error includes scale factor of 1.2.

246-28	46M	2 AGHASYAN	18B	COMP		$190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$
$323 \pm 87 \pm 43$	4k	EUGENIO	08	B852	-	$18 \pi^{-} p \rightarrow \eta \eta \pi^{-} p$
$146 \pm 17 \pm 62$	145k	LU	05	B852	-	$18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$
$306 \pm 132 \pm 121$	69k	KUHN	04	B852	-	$18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p$

$306 \pm 132 \pm 121 \quad 69 \mathrm{~K} \quad \mathrm{KUHN} \quad 04 \mathrm{~B} 852-18 \pi p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p$
$\bullet \bullet$ - We do not use the following data for averages, fits, limits, etc. • • •
255 ± 45
ANISOVICH 01B SPEC $0 \quad 0.6-1.94 \bar{p} p \rightarrow \eta \eta \pi^{0} \pi^{0}$
2 Statistical error negligible.

$\pi_{2}(1880)$ DECAY MODES

Mode	
Γ_{1}	$\eta \eta \pi^{-}$
Γ_{2}	$a_{0}(980) \eta$
Γ_{3}	$a_{2}(1320) \eta$
Γ_{4}	$f_{0}(1500) \pi$
Γ_{5}	$f_{1}(1285) \pi$
Γ_{6}	$\omega \pi^{-} \pi^{0}$

$\Gamma\left(a_{2}(1320) \eta\right) / \Gamma\left(f_{1}(1285) \pi\right) \quad \Gamma_{3} / \Gamma_{5}$

$22.7 \pm 7.3 \quad 69 \mathrm{k} \quad \mathrm{KUHN} \quad 04 \mathrm{~B} 852-18 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-}{ }_{\rho}$
$\Gamma\left(f_{0}(1500) \pi\right) / \Gamma\left(a_{0}(980) \eta\right)$
Γ_{4} / Γ_{2}

- - We do not use the following data for averages, fits, limits, etc • •

| $0.28_{-0.15}^{+0.20}$ | ${ }^{3}$ ANISOVICH | 01B SPEC | 0 | $0.6-1.94 \bar{p} p \rightarrow \eta \eta \pi^{0} \pi^{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ${ }^{3}$ Systematic errors not estimated. | | | | |

$\pi_{2}(1880)$ REFERENCES				
AGHASYAN	18B	PR D98 092003	M. Aghasyan et al.	(COMPASS Collab.)
EUGENIO	08	PL B660 466	P. Eugenio et al.	(BNL E852 Collab.)
LU	05	PRL 94032002	M. Lu et al.	(BNL E852 Collab.)
KUHN	04	PL B595 109	J. Kuhn et al.	(BNL E852 Collab.)
ANISOVICH	01B	PL B500 222	A.V. Anisovich et al.	

$$
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
$$

OMITTED FROM SUMMARY TABLE
See our mini-review under the $\rho(1700)$.

Meson Particle Listings
$\rho(1900), f_{2}(1910)$

$\rho(1900)$ MASS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

| $1909 \pm 17 \pm 25$ | 54 | 1 | AUBERT | 08S BABR $10.6 e^{+} e^{-} \rightarrow \phi \pi^{0} \gamma$ |
| :--- | ---: | ---: | :--- | :--- | :--- |
| 1880 ± 30 | | AUBERT | 06D BABR $10.6 e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-} \gamma$ | |
| 1860 ± 20 | AUBERT | 06D BABR $10.6 e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right) \gamma$ | | |
| 1910 ± 10 | 2,3 | FRABETTI | 04 | E687 $\gamma p \rightarrow 3 \pi^{+} 3 \pi^{-} p$ |
| 1870 ± 10 | ANTONELLI | 96 | SPEC $e^{+} e^{-} \rightarrow$ hadrons | |

${ }_{2}^{1}$ From the fit with two resonances
${ }_{3}^{2}$ From a fit with two resonances with the JACOB 72 continuum.
${ }^{3}$ Supersedes FRABETTI 01.

$\rho(1900)$ WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

$48 \pm 17 \pm 2$	54	${ }^{4}$ AUBERT	08 s	BABR	$10.6 e^{+} e^{-} \rightarrow \phi \pi^{0} \gamma$
130 ± 30		AUBERT	06D	BABR	$10.6 e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-} \gamma$
160 ± 20		AUBERT	06D	BABR	$10.6 e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right) \gamma$
37 ± 13		5,6 FRABETTI	04	E687	$\gamma p \rightarrow 3 \pi^{+} 3 \pi^{-} p$
10 ± 5		ANTONELLI	96	SPEC	$e^{+} e^{-} \rightarrow$ hadrons

${ }_{5}^{4}$ From the fit with two resonances.
${ }^{5}$ From a fit with two resonances with the JACOB 72 continuum.
6 Supersedes FRABETTI 01.

$\rho(1900) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}$ (total)

$\Gamma(\phi \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{4} / \Gamma \times \Gamma_{6} / \Gamma$
VALUE (units 10^{-8}) EVTS DOCUMENT ID TECN COMmENT

- - We do not use the following data for averages, fits, limits, etc. • • -

$4.2 \pm 1.2 \pm 0.8$ 7 From the fit with two resonances.${ }^{7}$ AUBERT
${ }^{7}$ 08S BABR $10.6 e^{+} e^{-} \rightarrow \phi \pi^{0} \gamma$

$\rho(1900)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	6π	seen
Γ_{2}	$3 \pi^{+} 3 \pi^{-}$	seen
Γ_{3}	$2 \pi^{+} 2 \pi^{-} 2 \pi^{0}$	
Γ_{4}	$\phi \pi$	seen
Γ_{5}	hadrons	seen
Γ_{6}	$e^{+} e^{-}$	not seen
Γ_{7}	$\bar{N} N$	

$\rho(1900)$ BRANCHING RATIOS

$\Gamma(6 \pi) / \Gamma_{\text {total }}$					Γ_{1} / Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
seen	8k	AKHMETSHIN		CMD3	$e^{+} e^{-} \rightarrow 3 \pi^{+} 3 \pi^{-}$
not seen		AGNELLO	02	OBLX	$\bar{n} p \rightarrow 3 \pi^{+} 2 \pi^{-} \pi^{0}$
seen		FRABETTI	01	E687	$\gamma p \rightarrow 3 \pi^{+} 3 \pi^{-} p$
seen		ANTONELLI	96	SPEC	$e^{+} e^{-} \rightarrow$ hadrons

$\rho(1900)$ REFERENCES

OMITTED FROM SUMMARY TABLE
We list here three different peaks with close masses and widths seen in the mass distributions of $\omega \omega, \eta \eta^{\prime}$, and $K^{+} K^{-}$final states. ALDE 91B argues that they are of different nature.

$f_{2}(1910)$ MASS

$f_{2}(1910) \omega \omega$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 9 OUR AVERAGE	cludes scale fa	of	1.4. Se	the ideogram below.
1890 ± 10	${ }^{1}$ AMELIN	06	VES	$36 \pi^{-} p \rightarrow \omega \omega n$
1897 ± 11	BARBERIS	00F		$450 p p \rightarrow p_{f} \omega \omega p_{S}$
1924 ± 14	ALDE	90	GAM2	$38 \pi^{-} p \rightarrow \omega \omega n$
${ }^{1}$ Supersedes BELADIDZE				

$f_{2}(1910) \eta \eta^{\prime}$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1934圭16	${ }^{1}$ BARBERIS 00A		$450 p p \rightarrow p_{f} \eta \eta^{\prime} p_{S}$

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{2}$ Combined fit with $\eta \eta, \pi \pi$, and $\eta \pi \pi$
$\boldsymbol{f}_{2}\left(\mathbf{1 9 1 0)} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right.$MODE
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

| 1941 ± 18
 1
 Tentative, could be $f_{2}(1950)$. | ${ }^{1}$ AMSLER $\quad 06 \quad$ CBAR $1.64 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$ | |
| :--- | :--- | :--- | :--- | :--- |
| | | |

$f_{2}(1910)$ WIDTH

$f_{2}(1910) \boldsymbol{\eta} \eta^{\prime}$ MODE

- - We do not use the following data for averages, fits, limits, etc. • • -

| 271 ± 25 | 2 ANISOVICH | $00 J$ SPEC |
| :---: | :---: | :---: | :---: |
| 90 ± 35 | ALDE | $91 B$ GAM2 $38 \pi^{-} p \rightarrow \eta \eta^{\prime} n$ |
| 1 Also compatible with $J P C=1-+$. | | |
| 2 | | |

$90 \pm 35 \quad$ ALDE \quad 91B GAM2 $38 \pi^{-} p \rightarrow \eta \eta^{\prime} n$
${ }^{2}$ Combined fit with $\eta \eta, \pi \pi$, and $\eta \pi \pi$.

See key on page 999
$f_{2}(1910) K^{+} K^{-}$MODE
VALUE（MeV）DOCUMENT ID＿TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－ $120 \pm 40 \quad$ AMSLER 06 CBAR $1.64 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$

$f_{2}(1910)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{0} \pi^{0}$	
Γ_{2}	$K^{+} K^{-}$	seen
Γ_{3}	$K_{S}^{0} K_{S}^{0}$	
Γ_{4}	$\eta \eta$	seen
Γ_{5}	$\omega \omega$	seen
Γ_{6}	$\eta \eta^{\prime}$	seen
Γ_{7}	$\eta^{\prime} \eta^{\prime}$	
Γ_{8}	$\rho \rho$	seen
Γ_{9}	$a_{2}(1320) \pi$	seen
Γ_{10}	$f_{2}(1270) \eta$	seen

$f_{2}(\mathbf{1 9 1 0)}$ BRANCHING RATIOS
$\Gamma\left(K^{+} K^{-}\right) / \Gamma_{\text {total }}$
$\frac{\text { DOCUMENT ID }}{1} \frac{}{\text { AMSLER }} 06 \frac{\text { TECN }}{\text { CBAR }} \frac{\Gamma_{2} / \boldsymbol{\Gamma}}{1.64 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}}$
${ }^{1}$ Tentative，could be $f_{2}(1950)$ ．
$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma\left(\eta \eta^{\prime}\right)$
Γ_{1} / Γ_{6}
DALUE DOCUMENT ID－TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－
<0.1
ALDE
89 GAM2 $38 \pi^{-} p \rightarrow \eta \eta^{\prime} n$
$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma\left(\eta \eta^{\prime}\right)$
Γ_{3} / Γ_{6}
－－We do not use the following data for averages，fits，limits，etc．• •
$<0.066 \quad 90 \quad$ BALOSHIN 86 SPEC $40 \pi p \rightarrow K_{S}^{0} K_{S}^{0} n$
$\Gamma(\eta \eta) / \Gamma\left(\eta \eta^{\prime}\right)$
CL\％ DOCUMENT ID TECN COMMENT
• • We do not use the following data for averages，fits，limits，etc．• • •

| <0.05 | 90 | ALDE | 91 B |
| :--- | :---: | :--- | :--- | $\mathrm{GAM} 238 \pi^{-} p \rightarrow \eta \eta^{\prime} n$

$\Gamma(\omega \omega) / \Gamma\left(\eta \eta^{\prime}\right)$
－－Walue do not use the following
DOCUMENT ID COMMENT
Γ_{5} / Γ_{6}
• • We do not use the following data for averages，fits，limits，etc．$\bullet \bullet$
$2.6 \pm 0.6 \quad$ BARBERIS $00 \mathrm{~F} 450 p p \rightarrow p_{f} \omega \omega p_{S}$

$\Gamma\left(\boldsymbol{\eta}^{\prime} \boldsymbol{\eta}^{\prime}\right) / \Gamma_{\text {total }}$		Γ_{7} / Γ		
VALUE	DOCUMENT ID	TECN	COMMENT	
－－We do not use the following data for averages，fits，limits，etc．－－				
probably not seen possibly seen	BARBERIS 00 A BELADIDZE 92 D		$\begin{aligned} & 450 p p \rightarrow p \\ & 37 \pi^{-} p \rightarrow r \end{aligned}$	$\begin{aligned} & f \eta^{\prime} \eta^{\prime} p_{S} \\ & \eta^{\prime} \eta^{\prime} n \end{aligned}$
$\Gamma(\rho \rho) / \Gamma(\omega \omega)$				Γ_{8} / Γ_{5}
VALUE	DOCUMENT ID	COMM		
－－We do not use the following data for averages，fits，limits，etc．－－				
2.6 ± 0.4	BARBERIS 00F	450 pp	$\rightarrow p_{f} \omega \omega p_{S}$	
$\Gamma\left(f_{2}(1270) \eta\right) / \Gamma\left(a_{2}(1320) \pi\right)$				Γ_{10} / Γ_{9}
VALUE	DOCUMENT ID	TECN	COMMENT	
0.09 ± 0.05	1 ANISOVICH 11	SPEC	0．9－1．94 \bar{p}	
${ }^{1}$ Reanalysis of ADOMEIT 96 and ANISOVICH 00E．				

$f_{2}(1910)$ REFERENCES				
ANISOVICH	11	EPJ C71 1511	A．V．Anisovich et al．	（LOQM，RAL，PNPI）
AMELIN	06	PAN 69690 Translated from	D．V．Amelin et al． YAF 69715.	（VES Collab．）
AMSLER	06	PL B639 165	C．Amsler et al．	（CBAR Collab．）
ANISOVICH	00E	PL B477 19	A．V．Anisovich et al．	
ANISOVICH	00」	PL B491 47	A．V．Anisovich et al．	（RAL，LOQM，PNPI＋）
BARBERIS	00A	PL B471 429	D．Barberis et al．	（WA 102 Collab．）
BARBERIS	00 F	PL B484 198	D．Barberis et al．	（WA 102 Collab．）
ADOMEIT	96	ZPHY C71 227	7 J．Adomeit et al．	（Crystal Barrel Collab．）
BELADIDZE	92B	ZPHY C54 367	7 G．M．Beladidze et al．	（VES Collab．）
BELADIDZE	92D	ZPHY C57 13	G．M．Beladidze et al．	（VES Collab．）
ALDE	91B	SJNP 54455 Translated from	D．M．Alde et al． YAF 54751.	（SERP，BELG，LANL，LAPP＋）
Also		PL B276 375	D．M．Alde et al．	（BELG，SERP，KEK，LANL＋）
ALDE	90	PL B241 600	D．M．Alde et al．	（SERP，BELG，LANL，LAPP＋）
ALDE	89	PL B216 447	D．M．Alde et al．	（SERP，BELG，LANL，LAPP）
Also		SJNP 481035 Translated from	D．M．Alde et al． YAF 481724.	（BELG，SERP，LANL，LAPP）
BALOSHIN	86	SJNP 43959 Translated from	O．N．Baloshin et al． YAF 431487.	（ITEP）

$a_{0}(1950) \quad I^{G}\left(J^{P C}\right)=1^{-}\left(0^{++}\right)$
OMITTED FROM SUMMARY TABLE
Needs confirmation．Seen in $\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K \bar{K} \pi$ by LEES 16A with significance 2.5σ in $K_{S}^{0} K^{ \pm} \pi^{\mp}$ and 4.2σ in $K^{+} K^{-} \pi^{0}$ ．

$a_{0}(1950)$ MASS

$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{1 9 3 1} \mathbf{1 4} \mathbf{1 4 2}} \frac{\text { EVTS }}{12 \mathrm{k}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{16 \mathrm{~A}}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K \bar{K} \pi}$
－－We do not use the following data for averages，fits，limits，etc．• •－
$\begin{array}{lll}\bullet \bullet \text {－We do not use the following data for averages，fits，limits，etc．• • • } \\ 1949 \pm 32 \pm 76 & 8 k & 1_{\text {LEES }}\end{array} \quad 16 \mathrm{~A}$ BABR $\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ $\begin{array}{lll}1927 \pm 15 \pm 23 & 4 \mathrm{k} & 1 \text { LEES }\end{array} \quad \begin{aligned} & 16 \mathrm{~A} \text { BABR } \gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K^{+} K^{-} \pi^{0}\end{aligned}$
${ }^{1}$ From a model－independent partial wave analysis fit to a relativistic Breit－Wigner function with a floating width．
${ }^{2}$ Weighted average of the $K_{S}^{0} K^{ \pm}$and $K^{+} K^{-}$decay modes．

$a_{0}(1950)$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{271} \frac{\text { EVTS }}{12 \mathrm{~L}} \quad$ DOCUMENT ID \quad TECN $\frac{\text { COMMENT }}{\text { BABR }}$
271志22杗29 12k 1，2 LEES $\quad 16 \mathrm{~A}$ BABR $\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K \bar{K} \pi$
－－We do not use the following data for averages，fits，limits，etc．－－
$265 \pm 36 \pm 110 \quad 8 \mathrm{k} \quad 1$ LEES $\quad 16 \mathrm{~A} \quad \mathrm{BABR} \quad \gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$274 \pm 28 \pm 30 \quad 4 \mathrm{k} \quad 1$ LEES $\quad 16 \mathrm{~A}$ BABR $\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K^{+} K^{-} \pi^{0}$
${ }^{1}$ From a model－independent partial wave analysis fit to a relativistic Breit－Wigner function with a floating mass．
${ }^{2}$ Weighted average of the $K_{S}^{0} K^{ \pm}$and $K^{+} K^{-}$decay modes．

Meson Particle Listings
$f_{2}(1950), a_{4}(1970)$

$f_{2}(1950)$ WIDTH

VALUE（MeV）	DOCUMENT ID		TECN	COMMENT
464土 24 OUR AVERAGE				
380 ± 120	BAI	00A	BES	$J / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$
520 ± 50	${ }^{8}$ BARBERIS	00C		$450 \mathrm{pp} \rightarrow \mathrm{p} p 4 \pi$
485 ± 55	${ }^{9}$ BARBERIS	00c		$450 p p \rightarrow p p 4 \pi$
460 ± 40	BARBERIS	97B	OMEG	$450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$
390 ± 60	ANTINORI	95	OMEG	$300,450 p p \rightarrow p p 2\left(\pi^{+} \pi^{-}\right)$

－－We do not use the following data for averages，fits，limits，etc．•－

$441 \pm 27+28$	10 UEHARA		BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$
450 ± 50	11 BINON		GAMS	$33 \pi^{-} p \rightarrow \eta \eta n$
$297 \pm 12 \pm 6$	ABE		BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
385 ± 58	12 AMSLER		CBAR	$0.9 \bar{p} p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$
495 ± 35	ANISOVICH	00」	SPEC	
500 ± 100	ANISOVICH	99B	SPEC	$1.35-1.94 p \bar{p} \rightarrow \eta \eta \pi^{0}$
~ 100	13 OAKDEN	94	RVUE	0．36－1．55 $\bar{p} p \rightarrow \pi \pi$
250 ± 50	14 ASTON	91	LASS	$11 K^{-} p \rightarrow \Lambda K \bar{K} \pi \pi$
${ }^{8}$ Decaying into $\pi^{+} \pi^{-} 2 \pi^{0}$ ． ${ }^{9}$ Decaying into $2\left(\pi^{+} \pi^{-}\right)$．				
10 Taking into account $f_{4}(2050)$.				
11 First solution，PWA is ambiguous．12 T－matrix pole．				
${ }^{13}$ From solution B of amplitude analysis of data on $\bar{p} p \rightarrow \pi \pi$ ．See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant．				
14 Cannot determ	to be 2 ．			

$f_{2}(1950)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K^{*}(892) \bar{K}^{*}(892)$	seen
Γ_{2}	$\pi \pi$	
Γ_{3}	$\pi^{+} \pi^{-}$	seen
Γ_{4}	$\pi^{0} \pi^{0}$	seen
Γ_{5}	4π	seen
Γ_{6}	$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$	
Γ_{7}	$a_{2}(1320) \pi$	
Γ_{8}	$f_{2}(1270) \pi \pi$	seen
Γ_{9}	$\eta \eta$	seen
Γ_{10}	$K \bar{K}$	seen
Γ_{11}	$\gamma \gamma$	seen
Γ_{12}	$p \bar{p}$	
		$f_{\mathbf{2}}(1950) \Gamma(\mathbf{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

$\Gamma(K \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{10} \Gamma_{11} / \Gamma$
VALUE（eV）DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
$122 \pm 4 \pm 26 \quad 15 \mathrm{ABE} \quad 04 \quad \mathrm{BELL} \quad 10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
15 Assuming spin 2.
$\Gamma(\pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
VALUE DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－
$162 \underset{-42-204}{+69}+1137 \quad 16$ UEHARA $\quad 09$ BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$
16 Taking into account $f_{4}(2050)$ ．
$f_{2}(1950)$ BRANCHING RATIOS

$f_{2}(1950)$ REFERENCES				
ALEXANDER	10	PR D82 092002	J．P．Alexander et al．	（CLEO Collab．）
UEHARA	09	PR D79 052009	S．Uehara et al．	（BELLE Collab．）
BINON	05	PAN 68960 Translated from	F．Binon et al． 998.	
ABE	04	EPJ C32 323	K．Abe et al．	（BELLE Collab．）
AMSLER	02	EPJ C23 29	C．Amsler et al．	
ANISOVICH	00」	PL B491 47	A．V．Anisovich et al．	（RAL，LOQM，PNPI＋）
BAI	00A	PL B472 207	J．Z．Bai et al．	（BES Collab．）
BARBERIS	00 B	PL B471 435	D．Barberis et al．	（WA 102 Collab．）
BARBERIS	00 C	PL B471 440	D．Barberis et al．	（WA 102 Collab．）
BARBERIS	00E	PL B479 59	D．Barberis et al．	（WA 102 Collab．）
ANISOVICH	99B	PL B449 154	A．V．Anisovich et al．	
BARBERIS	97B	PL B413 217	D．Barberis et al．	（WA 102 Collab．）
KLOET	96	PR D53 6120	W．M．Kloet，F．Myhrer	（RUTG，NORD）
ANTINORI	95	PL B353 589	F．Antinori et al．	（ATHU，BARI，BIRM＋）JP
OAKDEN	94	NP A574 731	M．N．Oakden，M．R．Pennington	（DURH）
ASTON	91	NPBPS B21 5	D．Aston et al．	（LASS Collab．）

$a_{4}(1970) \quad I^{G}\left(J^{P C}\right)=1^{-}\left(4^{++}\right)$
was $a_{4}(2040)$

$a_{4}(1970)$ MASS						
VALUE（MeV）	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1967 ± 16 OUR AVERAGE		Error includes scale factor of 2．1．See the ideogram below．				
$1935{ }_{-13}^{+11}$	46M	1 AGHASYAN	18B	COMP		$\begin{aligned} & 190 \pi^{-} p \rightarrow \\ & \pi^{-} \pi^{+} \pi^{-} p \end{aligned}$
$1900{ }_{-20}^{+80}$		ADOLPH	15	COMP		$191 \pi^{-} p \rightarrow \eta^{(\prime)} \pi^{-} p$
$1985 \pm 10 \pm 13$	145k	LU	05	B852		$18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$
$1996 \pm 25 \pm 43$		CHUNG	02	B852		$18.3 \pi^{-} p \rightarrow 3 \pi p$
$2000 \pm 40{ }_{-20}^{+60}$		IVANOV	01	B852		$18 \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$
2010 ± 20		2 DONSKOV	96	GAM2	0	$38 \pi^{-} p \rightarrow \eta \pi^{0} n$
2040 ± 30		${ }^{3}$ CLELAND		SPEC		$50 \pi p \rightarrow K_{S}^{0} K^{ \pm} p$
－－We do not use the following data for averages，fits，limits，etc．－－－						
$1885 \pm 13_{-2}^{+50}$	420k	${ }^{4}$ ALEKSEEV	10	COMP		$190 \pi^{-} \mathrm{Pb} \rightarrow$
2004 ± 6	80k	${ }^{5}$ UMAN	06	E835		$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
$2005+25$		${ }^{6}$ ANISOVICH	01F	SPEC		$\underset{\pi^{0} \eta^{\prime}}{2.0 \bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta,}$
$1944 \pm 8 \pm 50$		7 AMELIN		VES		$37 \pi^{-} A \rightarrow \omega \pi^{-} \pi^{0} A^{*}$
1903 ± 10		${ }^{8}$ BALDI		SPEC		$10 \pi^{-} p \rightarrow p K_{S}^{0} K^{-}$
2030 ± 50		${ }^{9}$ CORDEN	78C	OMEG	0	$15 \pi^{-} p \rightarrow 3 \pi n$

${ }^{1}$ Statistical error negligible．
${ }^{2}$ From a simultaneous fit to the G_{+}and G_{0} wave intensities．
${ }^{3}$ From an amplitude analysis．
${ }^{4}$ Superseded by AGHASYAN 2018B．
${ }^{5}$ Statistical error only．
${ }^{6}$ From the combined analysis of ANISOVICH 99C，ANISOVICH 99E，and ANISOVICH 01F．

See key on page 999

$a_{4}(1970)$ WIDTH

Value (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
324 ± 18 OUR AVERAGE					
$333-16$	46M	${ }^{1}$ AGHASYAN	18B	COMP	$\begin{aligned} & 190 \pi^{-} p \rightarrow \\ & \pi^{-} \pi^{+} \pi^{-} p \end{aligned}$
$300{ }_{-100}^{+80}$		ADOLPH	15	COMP	$191 \pi^{-} p \rightarrow \eta^{(\prime)} \pi^{-} p$
$231 \pm 30 \pm 46$	145k	LU	05	B852	$18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$
$298 \pm 81 \pm 85$		CHUNG	02	B852	$18.3 \pi^{-} p \rightarrow 3 \pi p$
$350 \pm 100{ }_{-50}^{+70}$		IVANOV	01	B852	$18 \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$
370 ± 80		${ }^{2}$ DONSKOV	96	GAM2 0	$38 \pi^{-} p \rightarrow \eta \pi^{0} n$
380 ± 150		${ }^{3}$ CLELAND	82B	SPEC \pm	$50 \pi p \rightarrow K_{S}^{0} K^{ \pm} p$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$294 \pm 25{ }_{-19}^{+46}$	420k	${ }^{4}$ ALEKSEEV	10	COMP	$\begin{gathered} 190 \pi^{-} P b \rightarrow \\ \pi^{-} \pi^{-} \pi^{+} P b^{\prime} \end{gathered}$
401 ± 16	80k	${ }^{5}$ UMAN	06	E835	$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
180 ± 30		${ }^{6}$ ANISOVICH	01F	SPEC	$\begin{gathered} 2.0 \bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta, \\ \pi^{0} \eta^{\prime} \end{gathered}$
$324 \pm 26 \pm 75$		7 AMELIN	99	VES	$37 \pi^{-} A \rightarrow \omega \pi^{-} \pi^{0} A^{*}$
166 ± 43		${ }^{8}$ BALDI	78	SPEC	$10 \pi^{-} p \rightarrow p K_{S}^{0} K^{-}$
510 ± 200		${ }^{9}$ CORDEN	78C	OMEG 0	$15 \pi^{-} p \rightarrow 3 \pi n$

${ }^{1}$ Statistical error negligible.
${ }^{2}$ From a simultaneous fit to the G_{+}and G_{0} wave intensities.
${ }^{3}$ From an amplitude analysis.
${ }^{4}$ Superseded by AGHASYAN 2018B.
${ }^{5}$ Statistical error only.
${ }_{7}^{6}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.
${ }^{7}$ May be a different state.
${ }^{8}$ From a fit to the Y_{8}^{0} moment. Limited by phase space.
${ }^{9} J^{P}=4^{+}$is favored, though $J^{P}=2^{+}$cannot be excluded.

$a_{4}(1970)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K}$	seen
Γ_{2}	$\pi^{+} \pi^{-} \pi^{0}$	seen
Γ_{3}	$\rho \pi$	seen
Γ_{4}	$f_{2}(1270) \pi$	seen
Γ_{5}	$\omega \pi^{-} \pi^{0}$	seen
Γ_{6}	$\omega \rho$	seen
Γ_{7}	$\eta \pi$	seen
Γ_{8}	$\eta^{\prime}(958) \pi$	seen

a_{4} (1970) BRANCHING RATIOS
$\Gamma(K \bar{K}) / \Gamma_{\text {total }}$
VALUE

DOCUMENT ID			
TECN			
BALDI	78	$\frac{\text { CHG }}{ \pm}$	$\frac{\text { COMMENT }}{} 1 \boldsymbol{\Gamma}$
$10 \pi_{1}^{-} p \rightarrow$	$K_{S}^{0} K^{-} p$		

$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$ VALUE

$$
\frac{\text { DOCUMENT ID }}{} \text { CORDEN } \quad \text { 78C } \frac{\text { TECN }}{\text { OMEG }} \frac{\text { CHG }}{0} \frac{\text { COMMENT }}{15 \pi^{-} p \rightarrow 3 \pi n}
$$

CLELAND	82 B	NP B208 228	W.E. Cleland et al.	(DURH, GEVA, LAUS+)

BALDI	78	PL 74B 413	R. Baldi et al. M.J. Corden et al.	(BIRM, RHEL, TELA+) JP

ρ_{3} (1990)

$$
I^{G}\left(J^{P C}\right)=1^{+}\left(3^{---}\right)
$$

OMITTED FROM SUMMARY TABLE

$\rho_{3}(\mathbf{1 9 9 0})$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -			
1982 ± 14	${ }^{1}$ ANISOVICH	SPEC	$\begin{gathered} 0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0} \\ \omega \eta \pi^{0}, \pi^{+} \pi^{-} \end{gathered}$
~ 2007	HASAN	RVUE	$\bar{p} p \rightarrow \pi \pi$
${ }^{1}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.			
$\rho_{3}(1990)$ WIDTH			
- - We do not use the following data for averages, fits, limits, etc. • -			
188 ± 24	${ }^{2}$ ANISOVICH	SPEC	$\begin{gathered} 0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0} \\ \omega \eta \pi^{0}, \pi^{+} \pi^{-} \end{gathered}$
~ 287	HASAN	RVUE	$\bar{p} p \rightarrow \pi \pi$
${ }^{2}$ From the combined analysis of ANISOVICH 00」, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.			

ρ_{3} (1990) REFERENCES

OMITTED FROM SUMMARY TABLE
$\pi_{2}(2005)$ MASS
VALUE (MeV) EVTS
DOCUMENT ID TECN COMMENT
$1963{ }_{-27}^{+17}$ OUR AVERAGE

Meson Particle Listings
π_{2} (2005), $f_{2}(2010), f_{0}(2020)$
π_{2} (2005) WIDTH
VALUE (MeV) EVTS
DOCUMENT ID TECN COMMENT
370 ± 16 OUR AVERAGE
$371_{-120}^{+16} \quad 46 \mathrm{M} \quad{ }^{1}$ AGHASYAN 18 B COMP $190 \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$ |
$341 \pm 61 \pm 139 \quad 145 k \quad$ LU 05 B852 $18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$

- - We do not use the following data for averages, fits, limits, etc. - • •
$200 \pm 40 \quad$ ANISOVICH 01F SPEC $2.0 \bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta, \pi^{0} \eta^{\prime}$
${ }^{1}$ Statistical uncertainty negligible.

$\pi_{2}(\mathbf{2 0 0 5})$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{-} \pi^{+} \pi^{-}$	seen
Γ_{2}	$\omega \pi^{0} \pi^{-}$	seen

$\pi_{2}(2005)$ BRANCHING RATIOS

$f_{2}(2010) \quad \quad 1^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$

$f_{2}(2010)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\phi \phi$	seen
Γ_{2}	$K \bar{K}$	seen

$f_{2}(\mathbf{2 0 1 0})$ BRANCHING RATIOS
$\Gamma(K \bar{K}) / \Gamma_{\text {total }}$
Γ_{2} / Γ VALUE $\frac{\text { DOCUMENT ID }}{\text { VLADIMIRSK... } 06} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n}$

$f_{2}(2010)$ REFERENCES

VLADIMIRSK... 06	PAN 69493 Translated from		V.V. Vladimirsky et al. 515.	(ITEP, Moscow)
BOLONKIN 88	NP B309 426		B.V. Bolonkin et al.	(ITEP, SERP)
ETKIN 88	PL B201 568		A. Etkin et al.	(BNL, CUNY)
ETKIN 85	PL 165B 217		A. Etkin et al.	(BNL, CUNY)
LINDENBAUM 84	CNPP 13285		S.J. Lindenbaum	(CUNY)
ETKIN 82	PRL 491620		A. Etkin et al.	(BNL, CUNY)
Also	Brighton Conf.	35	S.J. Lindenbaum	(BNL, CUNY)
$f_{0}(2020)$			${ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{+}+\right)$	

OMITTED FROM SUMMARY TABLE Needs confirmation.

- - We do not use the following data for averages, fits, limits, etc •

$f_{0}(2020)$ WIDTH

$\frac{\text { VALUE }(\mathrm{MeV})}{442 \pm 60} \frac{\text { EVTS }}{1,2} \frac{\text { DOCUMENT ID }}{\text { BARBERIS }}$
442 ± 60

- - We do not use the following data for averages, fits, limits, etc. - -

$f_{0}(2020)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\rho \pi \pi$	seen
Γ_{2}	$\pi^{0} \pi^{0}$	seen
Γ_{3}	$\rho \rho$	seen
Γ_{4}	$\omega \omega$	seen
Γ_{5}	$\eta \eta$	seen

$f_{0}(\mathbf{2 0 2 0})$ BRANCHING RATIOS
$\Gamma(\rho \rho) / \Gamma(\omega \omega)$

VALUE DOCUMENT ID	DOCUMENT ID		COMMENT		
- - We do not use the following data for averages, fits, limits,					
~ 3	BARBE	00F	450 p	$\rightarrow p_{f} \omega \omega p_{s}$	
$\Gamma(\eta \eta) / \Gamma_{\text {total }}$					Γ_{5} / Γ
VALUE	DOCUME		TECN	COMMENT	
seen	UMAN	06	E835	$5.2 \bar{p} p \rightarrow$	

$f_{0}(2020)$ REFERENCES

ROPERTZ	18	EPJ C78 1000	S. Ropertz, C. Hanhart, B. Kubis	(BONN, JULI)
AAIJ	17V	JHEP 1708037	R. Aaij et al.	(LHCb Collab.)
AAIJ	14BR	PR D89 092006	R. Aaij et al.	(LHCb Collab.)
UMAN	06	PR D73 052009	I. Uman et al.	(FNAL E835)
ANISOVICH	00 J	PL B491 47	A.V. Anisovich et al.	(RAL, LOQM, PNPI+)
BARBERIS	00C	PL B471 440	D. Barberis et al.	(WA 102 Collab.)
BARBERIS	00 F	PL B484 198	D. Barberis et al.	(WA 102 Collab.)
ALDE	98	EPJ A3 361	D. Alde et al.	(GAM4 Collab.)
Also		PAN 62405	D. Alde et al.	(GAMS Collab.)
BARBERIS	97B	PL B413 217	D. Barberis et al.	(WA 102 Collab.)

$f_{4}(2050)$ WIDTH

400 ± 100		ALDE	86D GAM4 $100 \pi^{-} p \rightarrow n 2 \eta$		
240 ± 40	40 k	13 BINON	84B GAM2 $38 \pi^{-} p \rightarrow n 2 \pi^{0}$		
190 ± 14		DENNEY	83	LASS $10 \pi^{+} n / \pi^{+} p$	
186_{-}^{+103}		14 CASON	82	STRC $8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$	
305_{-119}^{+}		ETKIN	$82 B$	MPS	$23 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
180 ± 60	700	APEL	75	NICE $40 \pi^{-} p \rightarrow n 2 \pi^{0}$	
225_{-}^{+120}		BLUM	75	ASPK $18.4 \pi^{-} p \rightarrow n K^{+} K^{-}$	

- - We do not use the following data for averages, fits, limits, etc. - • -

260 ± 40	15 ANISOVICH	09	RVUE	$0.0 \bar{p} p, \pi N$
$453 \pm 20{ }_{-129}^{+31}$	16 UEHARA	09	BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$
182 ± 7	ANISOVICH	00」	SPEC	$\begin{aligned} & 2.0 \bar{p} p \rightarrow \eta \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \\ & \eta \eta, \eta \eta^{\prime}, \pi \pi \end{aligned}$
~ 170	17 MARTIN	98	RVUE	$N \bar{N} \rightarrow \pi \pi$
~ 200	18 MARTIN	97	RVUE	$\bar{N} N \rightarrow \pi \pi$
~ 60	19 OAKDEN	94	RVUE	$0.36-1.55 \bar{p} p \rightarrow \pi \pi$
~ 80	20 OAKDEN	94	RVUE	0.36-1.55 $\bar{p} p \rightarrow \pi \pi$
243 ± 16	21 ALPER	80	CNTR	$62 \pi^{-} p \rightarrow K^{+} K^{-} n$
140 ± 15	21 ROZANSKA	80	SPRK	$18 \pi^{-} p \rightarrow p \bar{p} n$
263 ± 57	${ }^{21}$ CORDEN	79	OMEG	$12-15 \pi^{-} p \rightarrow n 2 \pi$
100 ± 28	EVANGELIS...	79B	OMEG	$10 \pi^{-} p \rightarrow K^{+} K^{-} n$
107 ± 56	22 ANTIPOV	77	CIBS	$25 \pi^{-} p \rightarrow p 3$

12 From the first PWA solution.
${ }^{13}$ From a partial-wave analysis of the data.
${ }^{14}$ From an amplitude analysis of the reaction $\pi^{+} \pi^{-} \rightarrow 2 \pi^{0}$
${ }^{15} \mathrm{~K}$ matrix pole.
16 Taking into account the $f_{2}(1950)$. Helicity-2 production favored
17 Energy-dependent analysis.
18 Single energy analysis.
${ }^{19}$ From solution A of amplitude analysis of data on $\bar{p} p \rightarrow \pi \pi$. See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.
20 From solution B of amplitude analysis of data on $\bar{p} p \rightarrow \pi \pi$. See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly
${ }_{21}^{\text {resonant. }} I\left(J^{P}\right)=0\left(4^{+}\right)$from amplitude analysis assuming one-pion exchange.
${ }^{22}$ Width errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.

$f_{4}(2050)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\omega \omega$	seen
Γ_{2}	$\pi \pi$	$(17.0 \pm 1.5) \%$
Γ_{3}	$K \bar{K}$	$\left(6.8_{-1.8}^{+3.4}\right) \times 10^{-3}$
Γ_{4}	$\eta \eta$	$(2.1 \pm 0.8) \times 10^{-3}$
Γ_{5}	$4 \pi^{0}$	<1.2
Γ_{6}	$\gamma \gamma$	
Γ_{7}	$a_{2}(1320) \pi$	seen

$f_{4}(2050) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma$ (total)
$\Gamma(K \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{3} \Gamma_{6} / \Gamma$
VALUE (keV) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
<0.29
95 ALTHOFF 85B TASS $\gamma \gamma \rightarrow K \bar{K} \pi$

Meson Particle Listings
$f_{4}(2050), \pi_{2}(2100), f_{0}(2100)$

$\Gamma(\pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$			DOCUMENT ID	TECN		$\Gamma_{2} \Gamma_{6} / \Gamma$
VALUE (eV)	CL\%	EVTS			COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -						
$23.1+3.6+$			23 UEHARA	BELL	$10.6 e^{+} e$	
<1100		13 ± 4	OEST	JADE	$\begin{gathered} e^{+}+e^{-} \\ e^{+} e^{-} \end{gathered}$	
${ }^{23}$ Taking into account the $f_{2}(1950)$. Helicity- 2 production favored.						

$f_{4}(2050)$ BRANCHING RATIOS

- - We do not use the following data for averages, fits, limits, etc. \quad - \quad -

not seen	BARBERIS	00F		$450 p p \rightarrow p_{f} \omega \omega p_{S}$
$\Gamma(\omega \omega) / \Gamma(\pi \pi)$				Γ_{1} / Γ_{2}
VALUE	DOCUMENT ID		TECN	COMMENT
1.5 ± 0.3	ALDE	90	GAM2	$38 \pi^{-} p \rightarrow \omega \omega n$
$\Gamma(\pi \pi) / \Gamma_{\text {total }}$				Γ_{2} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.170 ± 0.015 OUR AVERAGE				
0.18 ± 0.03	24 BINON	83C	GAM2	$38 \pi^{-} p \rightarrow n 4 \gamma$
0.16 ± 0.03	24 CASON	82	STRC	$8 \pi^{+} p \rightarrow \Delta^{++} \pi^{0} \pi^{0}$
0.17 ± 0.02	24 CORDEN	79	OMEG	$12-15 \pi^{-} p \rightarrow n 2 \pi$
${ }^{24}$ Assuming one pion exchange.				
$\Gamma(K \bar{K}) / \Gamma(\pi \pi)$				$\Gamma 3 / \Gamma_{2}$
VALUE	DOCUMENT ID		TECN	COMMENT
$0.04{ }_{-0.01}^{+0.02}$	ETKIN	82B	MPS	$23 \pi^{-} p \rightarrow n 2 K_{S}^{0}$
$\Gamma(\eta \eta) / \Gamma_{\text {total }}$				Γ_{4} / Γ
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
2.1 ± 0.8	ALDE	86D	GAM4	$100 \pi^{-} p \rightarrow n 4 \gamma$
$\Gamma\left(4 \pi^{0}\right) / \Gamma_{\text {total }}$				Γ_{5} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT
<0.012	ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4 \pi^{0} n$
$\Gamma\left(\boldsymbol{a}_{\mathbf{2}}(\mathbf{1 3 2 0}) \boldsymbol{\pi}\right) / \boldsymbol{\Gamma}_{\text {total }}$ VILUEDOCUMENT ID				$\Gamma 7 / \Gamma$
			TECN	COMMENT
seen	AMELIN	00	VES	$37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$

$f_{4}(2050)$ REFERENCES

$\pi_{2}(2100)$
$\iota^{G}\left(J^{P C}\right)=1^{-}\left(2^{-+}\right)$
OMITTED FROM SUMMARY TABLE
Needs confirmation.

$\pi_{2}(2100)$ MASS

VALUE (MeV) \qquad
2090 ± 29 OUR AVERAGE
$2090 \pm 30 \quad 1$ AMELIN 95B VES $36 \pi^{-} \boldsymbol{A} \rightarrow$
$2100 \pm 150 \quad 2$ DAUM 81B CNTR $63,94 \pi^{-}{ }_{p}^{\pi} \rightarrow 3 \pi$
${ }^{1}$ From a fit to $J^{P C}=2^{-+} f_{2}(1270) \pi,(\pi \pi)_{S} \pi$ waves.
${ }^{2}$ From a two-resonance fit to four $2^{-} 0^{+}$waves.

π_{2} (2100) WIDTH

π_{2} (2100) BRANCHING RATIOS

$\Gamma(\rho \pi) / \Gamma(3 \pi)$				Γ_{2} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
0.19 ± 0.05	${ }^{5}$ DAUM ${ }^{\text {81b }}$	CNTR	63,94 $\pi^{-} p$	
$\Gamma\left(f_{2}(1270) \pi\right) / \Gamma(3 \pi)$				Γ_{3} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
0.36 ± 0.09	${ }^{5}$ DAUM 81 8	CNTR	63,94 $\pi^{-} p$	
$\Gamma\left((\pi \pi)_{s} \pi\right) / \Gamma(3 \pi)$				Γ_{4} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	
0.45 ± 0.07	${ }^{5}$ DAUM 81 B	CNTR	63,94 $\pi^{-} p$	
VALUE	DOCUMENT ID	TECN	COMMENT	
0.39 ± 0.23	${ }^{5}$ DAUM 81 B	CNTR	63,94 $\pi^{-} p$	
${ }^{5}$ From a two-resonance	ur $2^{-} 0^{+}$waves.			

$\pi_{2}(\mathbf{2 1 0 0})$ REFERENCES

AMELIN $95 B$ DAUM $81 B$	PL B356 595 NP B182 269	D.V. Amelin et al. C. Daum et al.	(SERP, TBIL) (AMST, CERN, CRAC, MPIM+)
$f_{0}(2100)$		${ }^{G}\left(J^{P C}\right.$	$=0^{+}\left(0^{++}\right)$

OMITTED FROM SUMMARY TABLE Needs confirmation.

$f_{0}(2100)$ MASS					
Value (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{2 0 8 6}{ }_{-24}^{+20}$ OUR AVERAGE					
$2081 \pm 13_{-36}^{+24}$	5.5k	${ }^{1}$ ABLIKIM	13N	BES3	$e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow \gamma \eta \eta$
2090 ± 30		BAI		BES	$\mathrm{J} / \psi \rightarrow \gamma\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$2090 \pm 10 \pm 6$	529	2,3 DOBBS	15		$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
$2099 \pm 17 \pm 8$	283	2,3 DOBBS	15		$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
2105 ± 8	80k	${ }^{4}$ UMAN	06	E835	$5.2 \bar{p} p \rightarrow \eta \eta \pi^{0}$
2102 ± 13		${ }^{5}$ ANISOVICH	00」	SPEC	$\begin{aligned} & 2.0 \bar{p} p \rightarrow \eta \pi^{0} \pi^{0}, \pi^{0} \pi^{0}, \\ & \eta \eta, \eta \eta^{\prime}, \pi^{+} \pi^{-} \end{aligned}$
2105 ± 10		ANISOVICH	99k	SPEC	$0.6-1.94 \bar{p} p \rightarrow \eta \eta, \eta \eta^{\prime}$
~ 2104		BUGG	95		$J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
~ 2122		HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++}
2 Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{3}$ From a fit to a Breit-Wigner line shape with fixed $\Gamma=209 \mathrm{MeV}$.
${ }^{4}$ Statistical error only.
${ }^{5}$ Includes the data of ANISOVICH 00B indicating to exotic decay pattern.

Meson Particle Listings
$f_{2}(2150), \rho(2150)$

$\eta \pi \pi$ MODE

- - We do not use the following data for averages, fits, limits, etc. • • -
$250 \pm 25 \pm 45 \quad 15$ ADOMEIT 96 CBAR $0 \quad 1.94 \bar{p} p \rightarrow \eta 3 \pi^{0}$
${ }^{15}$ ANISOVICH OOE recommends to withdraw ADOMEIT 96 that assumed a single $J^{P}=$ 2^{+}resonance.
$\bar{p} p \rightarrow \pi \pi$

250 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - - -

~ 70	16 OAKDEN	94	RVUE	$0.36-1.55 \bar{p} p \rightarrow \pi$
~ 250	17 MARTIN	80 B	RVUE	
~ 250	17 MARTIN	80 C	RVUE	
~ 250	18 DULUDE	78 B OSPK	$1-2 \bar{p} p \rightarrow \pi^{0} \pi^{0}$	

${ }^{16}$ See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.
$17 I\left(J^{P}\right)=0\left(2^{+}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$.
$18 I^{G}\left(J^{P}\right)=0^{+}\left(2^{+}\right)$from partial-wave amplitude analysis.

S-CHANNEL $\overline{\mathbf{p}} p, \overline{\mathbf{N}} N$ or $\bar{K} K$

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - •

56_{-16}^{+31}	19	EVANGELIS...	97	SPEC
	$0.6-2.4 \bar{p} p \rightarrow K_{S}^{0} K_{S}^{0}$			
135 ± 75	20,21 COUPLAND	77	CNTR	0
98 ± 8	21 ALSPECTOR	73	CNTR	$\bar{p} p S-2.4 \bar{p} p \rightarrow \bar{p} p$
19				

19 Isospin 0 and 2 not separated.
${ }_{21}$ From a fit to the total elastic cross section.
21 Isospins 0 and 1 not separated.

$K \bar{K}$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

91 ± 62	VLADIMIRSK...06	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$	
150 ± 30	ABLIKIM	04 E	BES2	$J / \psi \rightarrow \omega K^{+} K^{-}$
270 ± 50	BARBERIS	99	OMEG	$450 p p \rightarrow p_{S} p_{f} K^{+} K^{-}$

$f_{2}(2150)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	
Γ_{2}	$\eta \eta$	seen
Γ_{3}	$K \bar{K}$	seen
Γ_{4}	$f_{2}(1270) \eta$	seen
Γ_{5}	$a_{2}(1320) \pi$	seen
Γ_{6}	$p \bar{p}$	seen

$f_{2}(2150)$ BRANCHING RATIOS

$\Gamma(K \bar{K}) / \Gamma(\eta \eta)$			Γ_{3} / Γ_{2}		
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
1.28 ± 0.23		BARBERIS 00E		450 pp	ηp_{S}
- - We do not use the following data for averages, fits, limits, etc. - -					
<0.1	95	22 PROKOSHKIN 95D GAM4		$\begin{aligned} 300 \pi^{-} N & \rightarrow \pi^{-} N 2 \eta, \\ 450 p p & \rightarrow p p 2 \eta \end{aligned}$	
22 Using data fr	ST	89D.			

OMITTED FROM SUMMARY TABLE
This entry was previously called $T_{1}(2190)$. See our mini-review under the $\rho(1700)$.

$\rho(2150)$ MASS

$\boldsymbol{e}^{+} \boldsymbol{e}^{-}$PRODUCED

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }^{1}$ From the fit to the BABAR data of LEES 13Q assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution. The resonance significance is 3.5σ.
${ }^{2}$ From the fit to the BABAR data of LEES 13Q and BESIII data of ABLIKIM 19L assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution.
${ }^{3}$ Could also be another state. Seen in J / ψ decay with branching ratio $J / \psi \rightarrow X \pi^{0} \rightarrow$ $K^{+} K^{-} \pi^{0}=\left(6.7 \pm 1.1_{-1.8}^{+2.2}\right) \times 10^{-6}$
${ }^{4}$ The observed structure can be due to both the $\phi(2170)$ and $\rho(2150)$.
${ }^{5}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
${ }^{6}$ Includes ATKINSON 85.
$\bar{p} p \rightarrow \pi \pi$
VALUE (MeV) DOCUMENT ID CO_ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -

~ 2191	HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$
~ 2070	1	OAKDEN	94	RVUE
$0.36-1.55 \bar{p} p \rightarrow \pi \pi$				
~ 2170	2 MARTIN	80 B	RVUE	
~ 2100	2 MARTIN	$80 C$	RVUE	

1 See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.
${ }^{2} I\left(J^{P}\right)=1\left(1^{-}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$.

S-CHANNEL $\bar{N} N$
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
 of ABRAMS 70, no narrow structure.
$\pi^{-} p \rightarrow \omega \pi^{0} n$
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
2140 ± 30
$2170 \pm 30$$\quad$ ALDE $\quad 95$ GAM2 $38 \pi^{-} p \rightarrow \omega \pi^{0} n$
$2170 \pm 30 \quad$ ALDE $\quad 92 \mathrm{C}$ GAM4 $100 \pi^{-} p \rightarrow \omega \pi^{0} n$
$\rho(2150)$ WIDTH
$e^{+} e^{-}$PRODUCED
VALUE (MeV)
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •

70 ± 38	1 LEES	20	BABR	$e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
$127 \pm 14 \pm 4$	2 LEES	20	RVUE	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
$196 \pm 23 \quad \begin{array}{ll}+25 \\ -27\end{array}$	${ }^{3}$ ABLIKIM	19AQ	BES	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
$139.8 \pm 12.3 \pm 20.6$	${ }^{4}$ ABLIKIM	19L	BES3	$e^{+} e^{-} \rightarrow K^{+} K^{-}$
109 ± 76	${ }^{5}$ LEES	12G	BABR	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
$350 \pm 40 \pm 50$	AUBERT	07au	BABR	$10.6 e^{+} e^{-} \rightarrow f_{1}(1285) \pi^{+} \pi^{-} \gamma$
310 ± 140	AUBERT	07au	BABR	$10.6 e^{+} e^{-} \rightarrow \eta^{\prime} \pi^{+} \pi^{-} \gamma$
389 ± 79	BIAGINI	91	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, K^{+} K^{-}$
410 ± 100	${ }^{6}$ CLEGG	90	RVUE	$\begin{gathered} e^{+} e^{-} \rightarrow 3\left(\pi^{+} \pi^{-}\right) \\ 2\left(\pi^{+} \pi^{-} \pi^{0}\right) \end{gathered}$

${ }^{1}$ From the fit to the BABAR data of LEES 13Q assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution. The resonance significance is 23.5σ.
2 From the fit to the BABAR data of LEES 13Q and BESIII data of ABLIKIM 19L assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution.
${ }^{3}$ Could also be another state. Seen in J / ψ decay with branching ratio $J / \psi \rightarrow X \pi^{0}$ $K^{+} K^{-} \pi^{0}=\left(6.7 \pm 1.1_{-1.8}^{+2.2}\right) \times 10^{-6}$.
${ }^{4}$ The observed structure can be due to both the $\phi(2170)$ and $\rho(2150)$
${ }^{5}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450), \rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.
${ }^{6}$ Includes ATKINSON 85.
$\bar{p} p \rightarrow \pi \pi$
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

~ 296	HASAN	94	RVUE $\bar{p} p \rightarrow \pi \pi$	
~ 40	1 OAKDEN	94	RVUE	$0.36-1.55 \bar{p} p \rightarrow \pi \pi$
~ 250	2 MARTIN	80 B	RVUE	
~ 200	2 MARTIN	80 C	RVUE	

${ }^{1}$ See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.
${ }^{2} I\left(J^{P}\right)=1\left(1^{-}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$.

s-CHANNEL $\bar{N} N$

VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$230 \pm 50 \quad 1$ ANISOVICH 02 SPEC $0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0}, \omega \eta \pi^{0}, \pi^{+} \pi^{-}$
$135 \pm 75 \quad 2,3$ COUPLAND $77 \quad$ CNTR $0.7-2.4 \bar{p} p \rightarrow \bar{p} p$
$98 \pm 8 \quad 3$ ALSPECTOR 73 CNTR $\bar{p} p$ S channel
$85-40$ CNTR S channel $\bar{p} N$
${ }^{1}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01d, ANISOVICH 01E, and ANISOVICH 02.
${ }_{3}^{2}$ From a fit to the total elastic cross section.
${ }^{3}$ Isospins 0 and 1 not separated.
${ }^{4}$ Seen as bump in $I=1$ state. See also COOPER 68. PEASLEE 75 confirm $\bar{p} p$ results of ABRAMS 70, no narrow structure.
$\pi^{-} p \Rightarrow \omega \pi^{0} n$
VALUE (MeV) DOCUMENT ID LECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -

	320 ± 70	ALDE
\sim	ALDE	95 GAM2 $38 \pi^{-} p \rightarrow \omega \pi^{0} n$
	ALC GAM4 $100 \pi^{-} p \rightarrow \omega \pi^{0} n$	

$\rho(2150)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$\pi^{+} \pi^{-}$	seen
Γ_{3}	$K^{+} K^{-}$	seen
Γ_{4}	$3\left(\pi^{+} \pi^{-}\right)$	seen
Γ_{5}	$2\left(\pi^{+} \pi^{-} \pi^{0}\right)$	seen
Γ_{6}	$\eta^{\prime} \pi^{+} \pi^{-}$	seen
Γ_{7}	$f_{1}(1285) \pi^{+} \pi^{-}$	seen
Γ_{8}	$\omega \pi^{0}$	seen
Γ_{9}	$\omega \pi^{0} \eta$	seen
Γ_{10}	$p \bar{p}$	

${ }^{1}$ Calculated by us from the reported value of cross section at the peak
$\Gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{6} / \Gamma \times \Gamma_{1} / \Gamma$
VALUE (units 10^{-8}) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.9 \pm 1.9 \quad 1$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \eta^{\prime} \pi^{+} \pi^{-} \gamma$
${ }^{1}$ Calculated by us from the reported value of cross section at the peak

$\rho(2150)$ REFERENCES

LEES	20	PR D101 012011	J.P. Lees et al.	(BESIII Collab.)
ABLIKIM	19AQ	PR D100 032004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19L	PR D99 032001	M. Ablikim et al.	(BESIII Collab.)
LEES	13Q	PR D88 032013	J.P. Lees et al. (Bater	(BABAR Collab.)
LEES	12 G	PR D86 032013	J.P. Lees et al. ((BABAR Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert et al. ((BABAR Collab.)
ANISOVICH	02	PL B542 8	A.V. Anisovich et al.	
ANISOVICH	01D	PL B508 6	A.V. Anisovich et al.	
ANISOVICH	01 E	PL B513 281	A.V. Anisovich et al.	
ANISOVICH	00」	PL B491 47	A.V. Anisovich et al. (RAL, Lo	LOQM, PNPI+)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
ALDE	95	ZPHY C66 379	D.M. Alde et al.	(GAMS Collab.) JP
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Pennington	(DURH)
ALDE	92 C	ZPHY C54 553	D.M. Alde et al. (BELG, SERP,	P, KEK, LANL+)
BIAGINI	91	NC 104A 363	M.E. Biagini et al.	(FRAS, PRAG)
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ATKINSON	85	ZPHY C29 333	M. Atkinson et al. (BONN,	CERN, GLAS+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80 C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOQM, RHEL)
PEASLEE	75	PL 57B 189	D.C. Peaslee et al. (CANB,	BARI, BROW+)
ALSPECTOR	73	PRL 30511	J. Alspector et al.	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams et al.	(BNL)
COOPER	68	PRL 201059	W.A. Cooper et al.	(ANL)
GOUNARIS	68	PRL 21244	G.J. Gounaris, J.J. Sakurai	

$\phi(2170)$

$$
I^{G}\left(J^{P C}\right)=0^{-\left(1^{---}\right)}
$$

$\phi(2170)$ MASS

$\frac{V A L U E(\mathrm{MeV})}{2160 \pm 80 \text { OUR EVALU }}$
DOCUMENT ID TECN COMMENT
2160 ± 80 OUR EVALUATION

1 The observed structure can be due to both the $\phi(2170)$ and $\rho(2150)$.
${ }^{2}$ Fit includes interference with the $\phi(1680)$.
${ }^{3}$ From the ϕf_{0} (980) component.
${ }^{4}$ From a fit with two incoherent Breit-Wigners.
${ }^{5}$ From the $K^{+} K^{-} f_{0}(980)$ component.
${ }^{6}$ Superseded by LEES 12F.

Meson Particle Listings
$\phi(2170)$ WIDTH
$\frac{V A L U E(M e V)}{125}$
125 ± 65 OUR EVALUATION
DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$\phi(2170)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	seen
Γ_{2}	$\phi \eta$	
Γ_{3}	$\phi \pi \pi$	seen
Γ_{4}	$\phi f_{0}(980)$	
Γ_{5}	$K^{+} K^{-} \pi^{+} \pi^{-}$	
Γ_{6}	$K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$	seen
Γ_{7}	$K^{+} K^{-} \pi^{0} \pi^{0}$	
Γ_{8}	$K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{0} \pi^{0}$	seen
Γ_{9}	$K^{* 0} K^{ \pm} \pi^{\mp}$	not seen
Γ_{10}	$K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$	not seen

$\phi(2170) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$
$\Gamma(\phi \eta) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{2} \Gamma_{1} / \Gamma$
VALUE (eV) EVTS $\frac{\text { DOCUMENT ID }}{\text { • } \bullet \text { TECN }} \frac{\text { COMMENT }}{\text { CO }}$
• • - We do not use the following data for averages, fits, limits, etc. • • •
$1.7 \pm 0.7 \pm 1.3$ $483 \quad$ AUBERT $\quad 08 \mathrm{SABR} \quad 10.6 e^{+} e^{-} \rightarrow \phi \eta \gamma$

$\mathbf{2 . 3} \mathbf{\pm 0 . 3} \mathbf{\pm \mathbf { 0 . 3 }} \quad 1,2$ LEES $\quad 12 \mathrm{~F}$ BABR $10.6 e^{+} e^{-} \rightarrow \phi \pi^{+} \pi^{-} \gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.5 \pm 0.8 \pm 0.4 \quad 201 \quad 2,3$ AUBERT,BE \quad 06D BABR $\quad 10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi \pi \gamma$
${ }^{1}$ From a fit with constructive interference with the $\phi(1680)$. In a fit with destructive
interference, the value is larger by a factor of 12 .
2 From the $\phi f_{0}(980)$ component
${ }^{3}$ Superseded by LEES 12F.

$\phi(2170) \Gamma(i) \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}($ total $)$

$\Gamma(\phi \pi \pi) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{3} / \Gamma \times \Gamma_{1} / \Gamma$
VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • •
$1.65 \pm 0.15 \pm 0.18 \quad 4.8 \mathrm{k} \quad 1$ SHEN $\quad 09$ BELL $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
${ }^{1}$ Multiplied by $3 / 2$ to take into account the $\phi \pi^{0} \pi^{0}$ mode. Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=$ (49.2 ± 0.6) \%.

$\phi(2170)$ BRANCHING RATIOS

$\Gamma\left(K^{+} K^{-} f_{0}(980) \rightarrow K\right.$	$\left.\mathbf{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {total }}$	COMMENT $\Gamma_{\mathbf{6} / \boldsymbol{\Gamma}}$
VALUE	DOCUMENT ID TECN	COMMENT
seen	AUBERT 07ak BABR	$10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
$\Gamma\left(K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$ ($\Gamma_{8} / \Gamma^{\prime}$		
VALUE	DOCUMENT ID TECN	COMMENT
seen	AUBERT 07ak BABR	$10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \gamma$
$\Gamma\left(K^{* 0} K^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}$		Г9/Г
VALUE	DOCUMENT ID	TECN COMMENT

$\Gamma\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$				TECN	Γ_{10} / Γ	
VALUE			DOCUMENT ID		COMMENT	
not seen			ABLIKIM 10C	BES2	$J / \psi \rightarrow$	$\eta K^{+} \pi^{-} K^{-} \pi^{+}$
			(2170) REFEREN			
ABLIKIM	191	PR D99 012014	M. Ablikim et al.			(BESIII Collab.)
ABLIKIM	19L	PR D99 032001	M. Ablikim et al.			(BESIIII Collab.)
ABLIKIM	15 H	PR D91 052017	M. Ablikim et al.			(BESIIII Collab.)
LEES	12F	PR D86 012008	J.P. Lees et al.			(BABAR Collab.)
ABLIKIM	10 C	PL B685 27	M. Ablikim et al.			(BES II Collab.)
SHEN	09	PR D80 031101	C.P. Shen et al.			(BELLE Collab.)
ABLIKIM	08F	PRL 100102003	M. Ablikim et al.			(BES Collab.)
AUBERT	08 S	PR D77 092002	B. Aubert et al.			(BABAR Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert et al.			(BABAR Collab.)
AUBERT, BE	06D	PR D74 091103	B. Aubert et al.			(BABAR Collab.)

f_{0} (2200)

$$
\left.I_{\left(J^{P C}\right)}\right)=0^{+}\left(0^{++}\right)
$$

OMITTED FROM SUMMARY TABLE Seen in $K_{S}^{0} K_{S}^{0}$ (AUGUSTIN 88), $K^{+} K^{-}$(ABLIKIM 05Q) and $\eta \eta$ (BINON 05) system. Not seen in $\Upsilon(1 S)$ radiative decays (BARU 89).

$f_{0}(2200)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
2187 ± 14 OUR AVERAGE						
$2170 \pm 20{ }_{-15}^{+10}$		ABLIKIM	05Q	BES2	$\psi(2 S) \rightarrow$	
2197 ± 17		${ }^{1}$ AUGUST	88	DM2	$\gamma \pi^{+}$ J / ψ	$K^{+} K^{-}$ K_{S}^{0}
- - We do not use the following data for averages, fits, limits, etc. - -						
$2206 \pm 12 \pm 8$	381	2,3 DOBBS	15		$\begin{aligned} & J / \psi \rightarrow \gamma K^{+} K^{-} \\ & \psi(2 S) \rightarrow \gamma K^{+} K^{-} \end{aligned}$	
$2188 \pm 17 \pm 16$	203	${ }^{2,3}$ DOBBS	15			
2210 ± 50		${ }^{4}$ BINON	05	GAMS	$33 \pi^{-} p$	$\rightarrow \eta \eta n$
~ 2122		HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$	
~ 2321		HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$	

${ }^{1}$ Cannot determine spin to be 0 .
${ }^{2}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }_{4}^{3}$ From a fit to a Breit-Wigner line shape with fixed $\Gamma=238 \mathrm{MeV}$.
${ }^{4}$ First solution, PWA is ambiguous.

$f_{0}(2200)$ WIDTH

VALUE (MEV)
207 ± 40 OUR AVERAGE
$220 \pm 60_{-45}^{+40}$
201 ± 51

DOCUMENT ID TECN COMMENT ABLIKIM $\quad 05 \mathrm{Q}$ BES2 $\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$ ${ }^{5}$ AUGUSTIN 88 DM2 $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$

- - We do not use the following data for averages, fits, limits, etc. - . -

	380 ± 90	6 BINON	05
\sim	GAMS $33 \pi^{-} p \rightarrow \eta \eta n$		
\sim	223	HASAN	94
RVUE $\bar{p} p \rightarrow \pi \pi$			
	HASAN	94	RVUE $\bar{p} p \rightarrow \pi \pi$

$\sim 223 \quad$ HASAN 94 RVUE $\bar{p} p \rightarrow \pi \pi$
${ }^{5}$ Cannot determine spin to be 0 .
${ }^{6}$ First solution, PWA is ambiguous

$f_{0}(2200)$ REFERENCES

DOBBS	15	PR D91 052006	S. Dobbs et al.	(NWES)
ABLIKIM	05Q	PR D72 092002	M. Ablikim et al.	(BES Collab.)
BINON	05	PAN 68960	F. Binon et al.	
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
BARU	89	ZPHY C42 505	S.E. Baru et al.	(NOVO)
AUGUSTIN	88	PRL 602238	J.E. Augustin et al.	(DM2 Collab.)
$f_{J}(2$			$\left.{ }_{1}{ }_{(J}{ }^{P C}\right)$	or 4^{+}

OMITTED FROM SUMMARY TABLE
Needs confirmation. See our mini-review in the 2004 edition of this Review, PDG 04.

$f_{J}(2220)$ MASS

VALUE (MeV) EVTS

2231.1志 3.5 OUR AVERAGE

2235	\pm	± 6	74	BAI	96B	BES	$e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
2230	+6 -7	± 16	46	BAI	96B	BES	$\begin{gathered} e^{+} e^{-} \rightarrow J / \psi \rightarrow \\ \gamma K^{+} K^{-} \end{gathered}$
2232	+ 8	± 15	23	BAI	96B	BES	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$
2235	± 4	± 5	32	BAI	96B	BES	$e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow \gamma p \bar{p}$
2209	${ }_{-15}^{+17}$	± 10		ASTON	88F	LASS	$11 K^{-} p \rightarrow K^{+} K^{-} \wedge$
2230	± 20			bolonkin	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
2220	± 10		41	${ }^{1}$ ALDE	86B	GA24	38-100 $\pi p \rightarrow n \eta \eta^{\prime}$
2230	± 6	± 14	93	BALTRUSAIT	.86D	MRK3	$e^{+} e^{-} \rightarrow \gamma \mathrm{K}^{+} \mathrm{K}^{-}$
2232	± 7	± 7	23	BALTRUSAI	. 86 D	MRK3	$e^{+} e^{-} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$

- - We do not use the following data for averages, fits, limits, etc. - - -

2223.9 ± 2.5	2 VLADIMIRSK $\ldots 08$	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n+m \pi^{0}$
2246 ± 36	BAI	98 H	BES
$J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$			

$f_{J}(2220)$ WIDTH

$f_{J}(2220)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi \pi$	not seen
Γ_{2}	$\pi^{+} \pi^{-}$	not seen
Γ_{3}	$K \frac{K}{K}$	not seen
Γ_{4}	$p \bar{p}$	not seen
Γ_{5}	$\gamma \gamma$	not seen
Γ_{6}	$\eta \eta^{\prime}(958)$	seen
Γ_{7}	$\phi \phi$	not seen
Γ_{8}	$\eta \eta$	not seen

$f_{J}(2220) \Gamma(i) \Gamma(\gamma \gamma) / \Gamma$ (total)

$\Gamma(K \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	COMMENT	$\Gamma_{3} \Gamma_{5} / \Gamma$
VALUE (eV)	CL\%					
<1.4	95	${ }^{1}$ ACCIARRI	01H	L3	$\gamma \gamma \rightarrow K_{S}^{0}$, $E_{\text {cm }}^{e e}$

- - We do not use the following data for averages, fits, limits, etc. $91,183-209 \mathrm{GeV}$

< 5.6	95	${ }^{1}$ GODANG	97	CLE2	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
<86	95	${ }^{1}$ ALBRECHT	90G	ARG	$\gamma \gamma \rightarrow K^{+} K^{-}$
<1000	95	2 ALTHOFF	85B	TASS	$\gamma \gamma, K \bar{K} \pi$

$\Gamma(\pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{<\mathbf{2 . 5}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { ALAM }} \frac{\text { TECN }}{\text { 98C }} \frac{\text { COMMENT }}{\text { CLE2 }} \frac{\gamma \gamma \rightarrow \pi^{+} \pi^{-}}{\gamma}$
${ }^{1}$ Assuming $J^{P}=2^{+}$.
${ }^{2}$ True for $J^{P}=0^{+}$and $J^{P}=2^{+}$
$f_{J}(2220) \Gamma(\mathrm{i}) \Gamma(p \bar{p}) / \Gamma^{2}$ (total)
$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\pi \pi) / \Gamma_{\text {total }} \quad \Gamma_{4} / \Gamma \times \Gamma_{1} / \Gamma$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{<\mathbf{1 8}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{AMSLER} \quad 01} \frac{\text { TECN }}{\text { CBAR }} \frac{\text { COMMENT }}{1.4-1.5 p \bar{p} \rightarrow \pi^{0} \pi^{0}}$ - - We do not use the following data for averages, fits, limits, etc. • -

$<(11-42) \quad 99 \quad 2$ HASAN 96 SPEC | $1.35-1.55 p \bar{p} \rightarrow$ |
| :--- |
| $\pi^{+}+\pi^{-}$ |

$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\phi \phi) / \Gamma_{\text {total }}$
$\Gamma_{4} / \Gamma \times \Gamma_{7} / \Gamma$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{<6} \frac{C L \%}{95} \quad 3 \frac{\text { DOCUMENT ID }}{\text { EVANGELIS... } 98} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{1.1-2.0 p \bar{p} \rightarrow \phi \phi}$ $\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\eta \eta) / \Gamma_{\text {total }}$
$\Gamma_{4} / \Gamma \times \Gamma_{8} / \Gamma$ VALUE (units 10^{-5}) CL\% DOCUMENT ID \quad TECN COMMENT

${ }^{1}$ For $J^{P}=2^{+}$in the mass range $2222-2240 \mathrm{MeV}$ and the total width between 10 and
${ }^{2}{ }_{\text {For }}^{20} \mathrm{JeV}^{P}$. $=2^{+}$and $J^{P}=4^{+}$in the mass range $2220-2245 \mathrm{MeV}$ and the total width of $3{ }^{15 \mathrm{Mer} J^{P} P}=2^{+}$, the mass of 2235 MeV and the total width of 15 MeV .

$f_{J}(2220)$ BRANCHING RATIOS

$\Gamma(\pi \pi) / \Gamma_{\text {total }}$				Γ_{1} / Γ
VALUE	DOCUMEN		COMMENT	
not seen	${ }^{1}$ DOBBS	15	$J / \psi \rightarrow \gamma \pi \pi$	
not seen	${ }^{1}$ DOBBS	15	$\psi(2 S) \rightarrow \gamma \pi \pi$	

${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(K \bar{K}) / \Gamma_{\text {total }}$				$\Gamma 3 / \Gamma$
VALUE	DOCUMEN		COMMENT	
not seen	1 DOBBS	15	$J / \psi \rightarrow \gamma K \bar{K}$	
not seen	${ }^{1}$ DOBBS	15	$\psi(2 S) \rightarrow \gamma K \bar{K}$	

$\Gamma(\pi \pi) / \Gamma(K \bar{K})$ VALUE	DOCUMENT ID		TECN	COMMENT	Γ_{1} / Γ_{3}
1.0 ± 0.5	BAI		BES	$e^{+} e^{-} \rightarrow$	r, $k \bar{K}$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$
VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

not seen		1 AUBERT	07AV	BABR	$B \rightarrow p \bar{p} K^{(*)}$
not seen		WANG	05A	BELL	$\mathrm{B}^{+} \rightarrow \bar{p} p K^{+}$
<3.0	95	${ }^{2}$ EVANGELIS...	97	SPEC	1.96-2.40 $\bar{p} p \rightarrow K_{S}^{0} K_{S}^{0}$
<1.1	99.7	${ }^{3}$ BARNES	93	SPEC	1.3-1.57 $\bar{p} p \rightarrow K_{S}^{0} K_{S}^{0}$
<2.6	99.7	3 BARDIN	87	CNTR	1.3-1.5 $\bar{p} p \rightarrow K^{+} K^{-}$
<3.6	99.7	3 SCULLI	87	CNTR	1.29-1.55 $\bar{p} p \rightarrow K^{+} K^{-}$

${ }^{1}$ Assuming $\Gamma<30 \mathrm{MeV}$
${ }^{2}$ Assuming $\Gamma \sim 20 \mathrm{MeV}, J^{P}=2^{+}$and $\mathrm{B}\left(f_{J}(2220) \rightarrow K \bar{K}\right)=100 \%$.
${ }^{3}$ Assuming $\Gamma=30-35 \mathrm{MeV}, J^{P}=2^{+}$and $\mathrm{B}\left(f_{J}(2220) \rightarrow K \bar{K}\right)=100 \%$.

$\boldsymbol{\Gamma}(\boldsymbol{p} \overline{\boldsymbol{p}}) / \boldsymbol{\Gamma}(\boldsymbol{K} \overline{\boldsymbol{K}})$		
$\frac{\text { VALUE }}{\mathbf{0 . 1 7} \pm \mathbf{0 . 0 9}}$	$\frac{\text { DOCUMENT ID }}{\text { BAI }}$	96B

$f_{J}(2220)$ REFERENCES

DOBBS	15	PR D91 052006	S. Dobbs et al.	(NWES)
VLADIMIRSK...	08	PAN 712129 Translated from YAF 71	V.V. Vladimirsky et al. 2166.	(ITEP)
AUBERT	07AV	PR D76 092004	B. Aubert et al.	(BABAR Collab.)
WANG	05A	PL B617 141	M.-Z. Wang et al.	(BELLE Collab.)
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)
ACCIARRI	01H	PL B501 173	M. Acciarri et al.	(L3 Collab.)
AMSLER	01	PL B520 175	C. Amsler et al.	(Crystal Barrel Collab.)
ALAM	98C	PRL 813328	M.S. Alam et al.	(CLEO Collab.)
BAI	98H	PRL 811179	J.Z. Bai et al.	(BES Collab.)
EVANGELIS...	98	PR D57 5370	C. Evangelista et al.	(JETSET Collab.)
EVANGELIS...	97	PR D56 3803	C. Evangelista et al.	(LEAR Collab.)
GODANG	97	PRL 793829	R. Godang et al.	(CLEO Collab.)
BAI	96B	PRL 763502	J.Z. Bai et al.	(BES Collab.)
HASAN	96	PL B388 376	A. Hasan, D.V. Bugg	(BRUN, LOQM)
BARNES	93	PL B309 469	P.D. Barnes et al.	(PS185 Collab.)
ALBRECHT	90G	ZPHY C48 183	H. Albrecht et al.	(ARGUS Collab.)
ASTON	88F	PL B215 199	D. Aston et al.	(SLAC, NAGO, CINC, INUS) JP
BOLONKIN	88	NP B309 426	B.V. Bolonkin et al.	(ITEP, SERP)
ALDE	87C	SJNP 45255	D. Alde et al.	
BARDIN	87	Translated from YAF 45 PL B195 292	G. Bardin et al.	(SACL, FERR, CERN, PADO+)
SCULLI	87	PRL 581715	J. Sculli et al.	($\mathrm{NYU}, \mathrm{BNL}$)
ALDE	86B	PL B177 120	D.M. Alde et al.	(SERP, BELG, LANL, LAPP)
BALTRUSAIT...	86D	PRL 56107	R.M. Baltrusaitis	(CIT, UCSC, ILL, SLAC+)
ALTHOFF	85B	ZPHY C29 189	M. Althoff et al.	(TASSO Collab.)

DEL-AMO-SA... 100 PRL 105172001 P. del Amo Sanchez et al.
(BABAR Collab.)
$\eta(2225) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$

OMITTED FROM SUMMARY TABLE
Seen in J/ $\psi \rightarrow \gamma \phi \phi$. Possibly seen in $B \rightarrow \phi \phi K$ by LEES 11A.

$\eta(2225)$ MASS

$\underline{V A L U E}(\mathrm{MeV}) \quad E V T S$
DOCUMENT ID TECN COMMENT
$\mathbf{2 2 2 1}+13$ OUR AVERAGE

$16+4$		${ }^{1}$ ABLIKIM		BES3	
$2240 \begin{aligned} & +30+30 \\ & -20-20\end{aligned}$	196 ± 19	IM	081	BES	
$2230 \pm 25 \pm 15$		BAI	90 B		,
$2214 \pm 20 \pm$		BA	90	MR	J / ψ
- - We do not use the following data for averages, fits, limits, etc. - - -					
~ 2220		SEL			J / ψ
${ }^{1}$ From a partial wave analysis of $J / \psi \rightarrow \gamma \phi \phi$ that also finds significant signals for for $\eta(2100), 0^{-+}$phase space, $f_{0}(2100), f_{2}(2010), f_{2}(2300), f_{2}(2340)$, and a previously unseen 0^{-+}state $X(2500)\left(M=2470_{-19-23}^{+15} \mathrm{MeV}, \Gamma=230{ }_{-35}^{+64+56} \mathrm{MeV}\right)$.					

Meson Particle Listings
$\eta(2225), \rho_{3}(2250), f_{2}(2300)$

$\eta(2225)$ WIDTH

VALUE (MeV) EVTS
DOCUMENT ID \qquad COMMENT

185 ± 40 OUR AVERAGE

$185{ }_{-}^{+} 12+43$		1 ABLIKIM		S3	
$190 \pm 30{ }_{-40}^{+60}$	196 ± 19	ABLIKIM	081	BES	
$150{ }_{-}^{+300} \pm 60$		BAI	90		
- - We do not use the following data for averages, fits, limits, etc. - - -					
${ }^{1}$ From a partial wave analysis of $J / \psi \rightarrow \gamma \phi \phi$ that also finds significant signals for for $\eta(2100), 0^{-+}$phase space, $f_{0}(2100), f_{2}(2010), f_{2}(2300), f_{2}(2340)$, and a previously unseen 0^{-+}state $X(2500)\left(M=2470_{-19-23}^{+15} \mathrm{MeV}, \Gamma=230_{-35-33}^{+64+56} \mathrm{MeV}\right)$.					

$\eta(2225)$ REFERENCES

ABLIKIM	16N	PR D93 112011	M. Ablikim	(BESIII Collab.)
LEES	11A	PR D84 012001	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	081	PL B662 330	M. Ablikim et al.	(BES Collab.)
BAI	90B	PRL 651309	Z. Bai et al.	(Mark III Collab.)
BISELLO	86B	PL B179 294	D. Bisello et al.	(DM2 Collab.)
ρ_{3}	50		${ }^{G}\left(J^{P C}\right)=1^{+}\left(3^{--}\right)$	

OMITTED FROM SUMMARY TABLE
Contains results mostly from formation experiments. For further production experiments see the Further States entry. See also $\rho(2150)$, $f_{2}(2150), f_{4}(2300), \rho_{5}(2350)$.

$\rho_{3}(2250)$ MASS

$\bar{p} p \Rightarrow \pi \pi$ or $K \bar{K}$

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- • We do not use the following data for averages, fits, limits, etc. • • •

~ 2232	HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$
~ 2090	${ }^{1}$ OAKDEN	94	RVUE	0.36-1.55 $\bar{p} p \rightarrow \pi \pi$
~ 2250	${ }^{2}$ MARTIN	80B	RVUE	
~ 2300	${ }^{2}$ MARTIN	80C	RVUE	
~ 2140	${ }^{3}$ CARTER	78B	CNTR	0.7-2.4 $\bar{p} p \rightarrow K^{-} K^{+}$
~ 2150	${ }^{4}$ CARTER	77	CNTR	0.7-2.4 $\bar{p} p \rightarrow \pi \pi$
${ }^{1}$ See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.				
${ }_{3}^{2} I\left(J^{P}\right)=1\left(3^{-}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$.				
${ }^{3} I=0,1 . J^{P}=3^{-}$from Barrelet-zero analysis.				
${ }^{4} I\left(J^{P}\right)=1\left(3^{-}\right)$from amplitude analysis.				

S-CHANNEL $\overline{\boldsymbol{N}} \boldsymbol{N}$

VALUE (MeV)	DOCUMENT ID		TECN	CHG COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
2260 ± 20	${ }^{5}$ ANISOVICH	02	SPEC		$\begin{gathered} 0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0}, \\ \omega \eta \pi^{0}, \pi^{+} \pi^{-} \end{gathered}$
~ 2190	${ }^{6}$ CUTTS	78B	CNTR		0.97-3 $\bar{p} p \rightarrow \bar{N} N$
2155 ± 15	6,7 COUPLAND	77	CNTR	0	0.7-2.4 $\bar{p} p \rightarrow \bar{p} p$
2193 ± 2	6,8 ALSPECTOR	73	CNTR		$\bar{p} p S$ channel
2190 ± 10	${ }^{9}$ ABRAMS	70	CNTR		S channel $\bar{p} N$

${ }^{5}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01d, ANISOVICH 01E, and ANISOVICH 02
${ }^{6}$ Isospins 0 and 1 not separated.
${ }_{8}^{7}$ From a fit to the total elastic cross section.
${ }^{8}$ Referred to as T or T region by ALSPECTOR 73.
${ }^{9}$ Seen as bump in $I=1$ state. See also COOPER 68. PEASLEE 75 confirm $\bar{p} p$ results of ABRAMS 70, no narrow structure.
$\pi^{-} p \rightarrow \eta \pi \pi$
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$2290 \pm 20 \pm 30 \quad$ AMELIN 00 VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
$\rho_{3}(2250)$ WIDTH

$\bar{p} p \rightarrow \pi \pi$ or $K \bar{K}$

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- • We do not use the following data for averages, fits, limits, etc. • • •

~ 220	HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$
~ 60	10 OAKDEN	94	RVUE	$0.36-1.55 \bar{p} p \rightarrow \pi \pi$
~ 250	11 MARTIN	80 B	RVUE	
~ 200	11 MARTIN	80 C	RVUE	
~ 150	12 CARTER	78 CNTR	0	$0.7-2.4 \bar{p} p \rightarrow K^{-} K^{+}$
~ 200	13 CARTER	77	CNTR	0
			$0.7-2.4 \bar{p} p \rightarrow \pi \pi$	

10 See however KLOET 96 who fit $\pi^{+} \pi^{-}$only and find waves only up to $J=3$ to be important but not significantly resonant.
$11 I\left(J^{P}\right)=1\left(3^{-}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$
$12 I=0,1 . J^{P}=3^{-}$from Barrelet-zero analysis.
$13 I\left(J^{P}\right)=1\left(3^{-}\right)$from amplitude analysis.

S-CHANNEL $\bar{N} N$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{14}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
${ }^{15}$ From a fit to the total elastic cross section
16 Isospins 0 and 1 not separated
17 Seen as bump in $I=1$ state. See also COOPER 68. PEASLEE 75 confirm $\bar{p} p$ results of ABRAMS 70, no narrow structure.
$\pi^{-} p \rightarrow \eta \pi \pi$
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
$230 \pm 50 \pm 80 \quad$ AMELIN 00 VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$

VALUE $(\mathrm{MeV}) \quad$ DOCUMENT ID \quad TECN COMMENT
. We not use
use the following data for averages, fits, limits, etc. -
$2243+\begin{gathered}+7+3 \\ +6-29\end{gathered} \quad 2$ UEHARA $\quad 13 \quad$ BELL $\quad \gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
$2270 \pm 12 \quad$ VLADIMIRSK... 06 SPEC $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
$2327 \pm 9 \pm 6 \quad 04$ BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} K^{+} K^{-}$
$2231 \pm 10 \quad$ BOOTH 86 OMEG $85 \pi^{-} \mathrm{Be} \rightarrow 2 \phi \mathrm{Be}$
2220 - 90 LINDENBAUM 84 RVUE
$2320 \pm 40 \quad$ ETKIN 82 MPS $22 \pi^{-} p \rightarrow 2 \phi n$
${ }^{1}$ Includes data of ETKIN 85. The percentage of the resonance going into $\phi \phi 2++S_{2}$, D_{2}, and D_{0} is $6_{-}^{+15}, 25_{-14}^{+18}$, and $69{ }_{-27}^{+16}$, respectively.
${ }^{2}$ Spin 2 preferred, tentatively assigned to $f_{2}(2300)$.
$f_{2}(2300)$ WIDTH
$\frac{V A L U E(M e V)}{\mathbf{1 4 9} \mathbf{\pm} \mathbf{4 1}} \quad 3 \frac{\text { DOCUMENT ID }}{\text { ETKIN }} \frac{88}{\text { TECN }} \frac{\text { COMMENT }}{22 \pi^{-} p \rightarrow \phi \phi n}$
- - We do not use the following data for averages, fits, limits, etc. - - -

$f_{2}(2300)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\phi \phi$	seen
Γ_{2}	$K \bar{K}$	seen
Γ_{3}	$\gamma \gamma$	seen

$f_{2}(2300)$ REFERENCES			
$\begin{aligned} & \text { UEEARA ASG } \\ & \text { VLADIMIRK... } 06 \end{aligned}$	PTEP 2013123 C0 PAN 69493	S．Uehara et al V．V．Vladimirsky et al．	（BELLE Colab．） （ITEP，Moscow）
ABE 0^{4}	Trf］ 323 233	K．Abe etal．	（BELLE Collab．）
			（LINP．（GALAS，CUERN）
${ }_{\text {ETKIN }}$	PL 1655817	A．Etkin et a l	（ant，CuNY）
LINDENBAUM ${ }^{84}$	CNPP 13285	S．J．Lindenbaum	（Cunv）
ETKIN ${ }^{2}$	PRL 491620	A．Etkin et al．	（BNL，CUNY）

$f_{4}(2300)$
 $$
I^{G}\left(J^{P C}\right)=0^{+}\left(4^{++}\right)
$$

OMITTED FROM SUMMARY TABLE
This entry was previously called $U_{0}(2350)$ ．Contains results mostly from formation experiments．For further production experiments see the Further States entry．See also $\rho(2150), f_{2}(2150), \rho_{3}(2250)$ ， $\rho_{5}(2350)$ ．

$f_{4}(2300)$ MASS

$\bar{p} p \rightarrow \pi \pi$ or $\bar{K} K$
DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－

~ 2314	HASAN	94	RVUE	$\bar{p} p \rightarrow \pi \pi$
~ 2300	1 MARTIN	80B	RVUE	
~ 2300	1 MARTIN	80C	RVUE	
~ 2340	${ }^{2}$ CARTER	78B	CNTR	0．7－2．4 $\bar{p} p \rightarrow K^{-} K^{+}$
~ 2330	DULUDE		OSPK	$1-2 \bar{p} p \rightarrow \pi^{0} \pi^{0}$
~ 2310	${ }^{3}$ CARTER	77	CNTR	0．7－2．4 $\bar{p} p \rightarrow \pi \pi$
$\begin{aligned} & 1 I\left(J^{P}\right. \\ & 2 I\left(J^{P}\right. \\ & 3 l J^{P} \end{aligned}$	ous analysis zero analysis analysis．		$\pi^{-} \pi^{+}$	$\text { and } \pi^{0} \pi^{0} \text {. }$

S－CHANNEL $\bar{p} p$ or $\bar{N} N$

VALUE (MeV) DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－

2283 ± 17	4 ANISOVICH	$00 」$	SPEC	
\sim	2380	5	CUTTS	78 B
2345 ± 15	5,6	CNTR	$0.97-3 \bar{p} p \rightarrow \bar{N} N$	
2359 ± 2	5,7	ALSPECTOR	77	CNTR
$0.7-2.4 \bar{p} p \rightarrow \bar{p} p$				
2375 ± 10	ABRAMS	70	CNTR $\bar{p} p S$ Channel	
			CNTR	S channel $\bar{N} N$

${ }^{4}$ From the combined analysis of ANISOVICH 99C and ANISOVICH 99F on $\bar{p} p \rightarrow \eta \pi^{0} \pi^{0}$ ， $\pi^{0} \pi^{0}, \eta \eta, \eta \eta^{\prime}, \pi^{+} \pi^{-}$
${ }^{5}$ Isospins 0 and 1 not separated．
${ }_{7}$ From a fit to the total elastic cross section．
${ }^{7}$ Referred to as U or U region by ALSPECTOR 73.
$\pi^{-} p \Rightarrow \eta \pi \pi n$
VALUE（MeV）DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •
$2330 \pm 20 \pm 40 \quad$ AMELIN 00 VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
$p p$ CENTRAL PRODUCTION

2320 ± 60 OUR ESTIMATE

DOCUMENT ID
－COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－ $2332 \pm 15 \quad$ BARBERIS 00F $450 p p \rightarrow p_{f} \omega \omega p_{S}$

$f_{4}(2300)$ WIDTH

$\bar{p} p \rightarrow \pi \pi$ or $\bar{K} K$

DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－

S－CHANNEL $\bar{p} p$ or $\bar{N} N$

VALUE（MeV）		
－－We do	ing data for averages，fits	limits，etc．
310 ± 25	11 ANISOVICH 00」	SPEC
135－65	12，13 COUPLAND 77	CNTR 0．7－2．4 $\bar{p} p \rightarrow \bar{p} p$
$165-18$	13 ALSPECTOR 73	CNTR $\bar{p} p$ S channel
~ 190	ABRAMS 70	CNTR S channel $\bar{N} N$
${ }^{11}$ From the combined analysis of ANISOVICH 99C and ANISOVICH 99F $\pi^{0} \pi^{0}, \eta \eta, \eta \eta^{\prime}, \pi^{+} \pi^{-}$ ${ }_{12}$ From a fit to the total elastic cross section． 13 Isospins 0 and 1 not separated．		
$\pi^{-} \boldsymbol{p} \rightarrow \boldsymbol{\eta} \boldsymbol{\pi} \boldsymbol{\pi} \boldsymbol{n}$		
－－We do not use the following data for averages，fits，limits，etc．－－		
$235 \pm 50 \pm 40$	AMELIN 00	VES $37 \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} n$
$p p$ CENTRAL PRODUCTION		
VALUE（MeV）	DOCUMENT ID	COMMENT

－－We do not use the following data for averages，fits，limits，etc．－•－
$260 \pm 57 \quad$ BARBERIS 00F $450 p p \rightarrow p_{f} \omega \omega p_{S}$
$f_{4}(2300)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\rho \rho$	seen
Γ_{2}	$\omega \omega$	seen
Γ_{3}	$\eta \pi \pi$	seen
Γ_{4}	$\pi \pi$	seen
Γ_{5}	$K \bar{K}$	seen
Γ_{6}	$N \bar{N}$	seen

$f_{4}(2300)$ BRANCHING RATIOS
$\boldsymbol{\Gamma}(\boldsymbol{\rho} \boldsymbol{\rho}) / \boldsymbol{\Gamma}(\boldsymbol{\omega} \boldsymbol{\omega})$
VALUE

OMITTED FROM SUMMARY TABLE

$f_{0}(2330)$ MASS

VALUE (MeV) DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－

	2314 ± 25	1	BUGG
2337 ± 14	ANISOVICH	04A RVUE	
\sim	00」 SPEC 2321	HASAN	94 RVUE $\bar{p} p \rightarrow \pi \pi, \eta \eta$
	${ }^{1}$ Partial wave analysis of the data on $p \bar{p} \rightarrow \bar{\Lambda} \Lambda$ from BARNES 00.		

$f_{0}(2330)$ WIDTH

$f_{0}(2330)$ REFERENCES

BUGG	04A	EPJ C36 161	D．V．Bugg	
ANISOVICH	$00 J$	PL B491 47	A．V．Anisovich et al．	（RAL，LOQM，PNPI＋）
BARNES	00	PR C62 055203	P．D．Barnes et al．	
HASAN	94	PL B334 215	A．Hasan，D．V．Bugg	（LOQM）

Meson Particle Listings
$f_{2}(2340), \rho_{5}(2350)$

$f_{2}(2340) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$

$f_{2}(\mathbf{2 3 4 0})$ MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMEN
$\mathbf{2 3 4 5} \mathbf{- 4 0} \mathbf{+ 5 0}$ OUR AVERAGE				
$2362+31+140$	5.5k	1 ABLIKIM	BES3	$e^{+} e^{-}$
2339 ± 55		${ }^{2}$ ETKIN	MPS	$22 \pi^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -				
2350 ± 7	80k	${ }^{3}$ UMAN	E835	$5.2 \bar{p} p$
2392 ± 10		BOOTH	OMEG	$85 \pi^{-}$B
2360 ± 20		LINDENBAUM	RVUE	
${ }^{1}$ From partial resonances. ${ }^{2}$ Includes dat D_{2}, and D_{0} ${ }^{3}$ Statistical	analys KIN 19 , y.	cluding all possib The percentage 4, and $59{ }_{-19}^{+21}$,	bination resonanc ively.	of 0^{++} going

$f_{2}(2340)$ WIDTH

VALUE (MeV) \qquad EVTS

DOCUMENT ID TECN COMMENT

$322=70$ OUR AVERAGE

$f_{2}(2340)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\phi \phi$	seen
Γ_{2}	$\eta \eta$	seen

$f_{2}(2340)$ BRANCHING RATIOS					
$\underset{\text { VALUE }}{\Gamma(\eta \eta) / \Gamma_{\text {total }}}$	DOCUME		TECN	COMMENT	$\Gamma_{2} / \overline{ }$
seen	UMAN	06	E835	$5.2 \bar{p} p \rightarrow$	

$f_{2}(2340)$ REFERENCES			
		Ablikim M. et al. 1. Uman et al. $\begin{aligned} & \text { A. Ektin } \\ & \text { et al }\end{aligned}$ A.S.L. Booth et a A. Etkin et al. s.J. Lindenbaum \square	
$\rho_{5}(2350)$		${ }_{\prime}\left(J^{P C}\right)=1^{+}\left(5^{--}\right)$	

OMITTED FROM SUMMARY TABLE
This entry was previously called $U_{1}(2400)$. See also $\rho(2150)$, $f_{2}(2150), \rho_{3}(2250), f_{4}(2300)$.

$\rho_{5}(2350)$ MASS

$\pi^{-} p \rightarrow \omega \pi^{0} n$

$\frac{V A L U E ~(M e V)}{2330 \pm 35}$

$\bar{p} p \rightarrow \pi \pi$ or $\bar{K} K$

$\rho_{5}(2350)$ MASS						$\boldsymbol{\rho}_{5}(\mathbf{2 3 5 0})$ REFERENCES						
$\pi^{-} p \rightarrow \omega \pi^{0} n$	DOCUMENT ID			TECN	COMMENT	ANISOVICH	02	PL B542 8	A.V. Anisovich et al.			
				ANISOVICH		01D	PL B508 6	A.V. Anisovich et al.				
				ANISOVICH		01 E	PL B513 281	A.V. Anisovich et al.				
				ANISOVICH		00 J	PL B491 47	A.V. Anisovich et al.	(RAL,	LOQM, PNPI+)		
				ALDE		95	ZPHY C66 379	D.M. Alde et al.		(GAMS Collab.) JP		
	ALDE				GAM2	$38 \pi^{-} p \rightarrow \omega \pi^{0} n$	HASAN	94	PL B334 215	A. Hasan, D.V. Bugg		(LOQM)
2330 ± 35			95				ALPER	80	PL 94B 422	B. Alper et al. (AMST,	CERN,	CRAC, MPIM +
							MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan		(LOUC, RHEL) JP
$\bar{p} p \rightarrow \pi \pi$ or $\bar{K} K$						COMMENT	MARTIN	80 C	NP B169 216	A.D. Martin, M.R. Pennington		(DURH) JP
	DOCUMENT ID			CHG	CARTER		78 B	NP B141 467	A.A. Carter		(LOQM)	
VALUE (MeV)			TECN		CUTTS		78B	PR D17 16	D. Cutts et al.		(STON, WISC)	
- - We do not use the following data for averages, fits, limits, etc. - -						CARTER	77 77	PL 67B 117 PL 71 B 460	A.A. Carter et al. M. Coupland et al.		(LOQM, RHEL) JP $($ LOQM, RHEL)	
~ 2303	HASAN		RVUE		$\bar{p} p \rightarrow \pi \pi$	ALSPECTOR	73	PRL 30511	J. Alspector et al.		(RUTG, UPNJ)	
~ 2300	${ }_{1}^{1}$ MARTIN		RVUE			OH ${ }^{\text {CHAPMAN }}$	73		B.Y. Oh et al.		(MSU)	
~ 2250	1 MARTIN		RVUE			ABRAMS	70	PR D1 1917	R.J. Abrams et al.		(BNL)	
~ 2500	${ }^{2}$ CARTER	78B	CNTR	0	0.7-2.4 $\bar{p} p \rightarrow K^{-} K^{+}$	OH	${ }^{70 B}$	PRL 241257	B.Y. Oh et al.		(MSU)	
~ 2480	${ }^{3}$ CARTER	77	CNTR	0	0.7-2.4 $\bar{p} p \rightarrow \pi \pi$	ABRAMS	67	PRL 181209	R.J. Abrams et al.		(BNL)	

s-CHANNEL $\bar{N} N$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

2300 ± 45	${ }^{4}$ ANISOVICH	02	SPEC	$\begin{gathered} 0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0}, \\ \omega \eta \pi^{0}, \pi^{+} \pi^{-} \end{gathered}$
2295 ± 30	ANISOVICH	00」	SPEC	
~ 2380	${ }^{5}$ CUTTS	78B	CNTR	0.97-3 $\bar{p} p \rightarrow \bar{N} N$
2345 ± 15	5,6 COUPLAND	77	CNTR 0	0.7-2.4 $\bar{p} p \rightarrow \bar{p} p$
2359 ± 2	5,7 ALSPECTOR	73	CNTR	$\bar{p} p S$ channel
2350 ± 10	8 ABRAMS	70	CNTR	S channel $\bar{N} N$
2360 ± 25	${ }^{9} \mathrm{OH}$	70B	HDBC -0	$\bar{p}(p n), K^{*} K 2 \pi$

$\boldsymbol{\pi}^{-} \boldsymbol{p} \rightarrow K^{+} K^{-} \boldsymbol{n}$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$2307 \pm 6 \quad$ ALPER 80 CNTR $0 \quad 62 \pi^{-} p \rightarrow K^{+} K^{-} n$
${ }^{1} I\left(J^{P}\right)=1\left(5^{-}\right)$from simultaneous analysis of $p \bar{p} \rightarrow \pi^{-} \pi^{+}$and $\pi^{0} \pi^{0}$.
${ }^{2} I=0(1) ; J^{P}=5^{-}$from Barrelet-zero analysis.
${ }^{3} I\left(J^{P}\right)=1\left(5^{-}\right)$from amplitude analysis.
${ }^{4}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
5 Isospins 0 and 1 not separated.
${ }^{6}$ From a fit to the total elastic cross section
${ }_{7}$ Referred to as U or U region by ALSPECTOR 73
${ }^{8}$ For $I=1 \bar{N} N$.
${ }^{2}$ For $I=1 \bar{N} N$.
${ }^{9}$ No evidence for this bump seen in the $\bar{p} p$ data of CHAPMAN 71B. Narrow state not confirmed by OH 73 with more data.

$\rho_{5}(2350)$ WIDTH

$\pi^{-} p \rightarrow \omega \pi^{0} n$
VALUE (MeV)
$\frac{\text { DOCUMENT ID }}{\text { ALDE }} 95 \frac{\text { TECN }}{\text { GAM2 } 25} \frac{\text { COMMENT }}{38 \pi^{-} p \rightarrow \omega \pi^{0} n}$
$\bar{p} p \rightarrow \pi \pi$ or $\bar{K} K$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

~ 169	HASAN	94	RVUE		$\bar{p} p \rightarrow \pi \pi$	
~ 250	10 MARTIN	80B	RVUE			
~ 300	10 MARTIN	80C	RVUE			
~ 150	11 CARTER	78B	CNTR	0	0.7-2.4 $\bar{p} p \rightarrow$	$K^{-} K^{+}$
~ 210	12 CARTER	77	CNTR	0	0.7-2.4 $\bar{p} p \rightarrow$	$\pi \pi$

S-CHANNEL $\bar{N} N$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

$\rho_{5}(2350)$ REFERENCES

| $f_{6}(2510)$ |
| :--- | :--- | :--- | :--- | :--- |

$f_{6}(2510)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$			
$\Gamma_{1} \quad \pi \pi$	$(6.0 \pm 1.0) \%$			
$f_{6}(\mathbf{2 5 1 0})$ BRANCHING RATIOS				
$\Gamma(\pi \pi) / \Gamma_{\text {total }}$$\Gamma_{1} / \Gamma$				
VALUE	DOCUMENT ID	- TECN	COMMENT	
0.06 ± 0.01	${ }^{3}$ BINON	83C GAM2	$38 \pi^{-} p \rightarrow n 4 \gamma$	
${ }^{3}$ Assuming one pion exchange and using data of BOLOTOV 74.				

$f_{6}(2510)$ REFERENCES

Further States

OTHER LIGHT MESONS

Further States

OMITTED FROM SUMMARY TABLE
This section contains states observed by a single group or states poorly established that thus need confirmation.

QUANTUM NUMBERS, MASSES, WIDTHS, AND BRANCHING RATIOS
$\boldsymbol{X}(\mathbf{3 6 0}) \quad I^{G}\left(J^{P C}\right)=?^{?}\left(?^{?+}\right)$
MASS (MeV) WIDTH (MeV) EVTS DOCUMENTID TECN COMMENT
$360 \pm 7 \pm 9 \quad 64 \pm 18 \quad 2.3 \mathrm{k} \quad 1$ ABRAAMYAN $09 \quad \overline{\text { CNTR }} \overline{2.75 d C \rightarrow \gamma \gamma X}$
${ }^{1}$ Not seen in $p C \rightarrow \gamma \gamma X$ at $5.5 \mathrm{GeV} / \mathrm{c}$.

$X(1070)$	$I^{G}\left(J^{P C}\right)=? ?\left(0^{++}\right)$		COMMENT
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	
1072 ± 1	3.5 ± 0.5	2 VLADIMIRSK... 08	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n+\mathrm{m} \pi^{0}$
${ }^{2}$ Supersedes	GRIGOR'EV 05		

$\boldsymbol{X}(\mathbf{1 1 1 0}) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(\right.$even $\left.{ }^{+}+\right)$
$\frac{\text { MASS (MeV) }}{1107 \pm 4} \frac{\text { WIDTH (MeV) }}{111 \pm 8 \pm 15} \quad \frac{\text { DOCUMENT ID }}{\text { DAFTARI } \quad 87} \frac{\text { TECN }}{\text { DBC }} \frac{\text { COMMENT }}{0 . \bar{p} n \rightarrow \rho^{-} \pi^{+} \pi^{-}}$

$\mathbf{f}_{\mathbf{0}}(\mathbf{1 2 0 0} \mathbf{- 1 6 0 0}) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(0^{+}+\right)$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMmENT
1323土 8	237 ± 20	VLADIMIRSK... 06		$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
1480_{-150}^{+100}	$1030_{-170}^{+} 80$	${ }^{3}$ ANISOVICH 03	SPE	
$1530{ }_{-250}^{+90}$	560 ± 40	${ }^{4}$ ANISOVICH 03	SPEC	
${ }^{3}$ K-matrix $\pi^{+} \pi^{-}$ $K^{+} K_{S}^{0}$ ${ }^{4} \mathrm{~K}$-matrix $\pi^{0} \pi^{0} \pi^{0}$	pole from co $\pi^{+} \pi^{-}, \bar{p} p \rightarrow$ at rest, $\bar{p} n$ ole from com ${ }^{0} \eta \eta, \pi^{0} \pi^{0} \eta$	$\begin{aligned} & \text { analysis of } \pi^{-} p \\ & \pi^{0}, \pi^{0} \eta \eta, \pi^{0} \pi^{0} \eta, \\ & \pi^{-} \pi^{+}, K_{S}^{0} K^{-} \pi^{0}, \end{aligned}$ nalysis of $\pi^{-} p \rightarrow$	$\begin{gathered} \pi^{0} \pi^{0} \\ \pi^{-} \pi^{0} \\ K_{S}^{0} \pi \\ 0 \pi^{0}{ }_{n} \end{gathered}$	$\begin{aligned} & n, \pi^{-} p \rightarrow \quad k \bar{K} n, \\ & +k^{-} \pi^{0}, k_{S}^{0} k_{S}^{0} \pi^{0}, \end{aligned}$ rest. $p \rightarrow K \bar{K} n, \bar{p} p \rightarrow$

$\boldsymbol{x}(\mathbf{1 6 0 0}) \quad I^{G}\left(J^{P C}\right)=2^{+}\left(2^{++}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$1600 \pm 100 \quad 400 \pm 200 \quad 7$ ALBRECHT 91F ARG $\frac{102 e^{+} e^{-} \rightarrow e^{+} e^{-} 2\left(\pi^{+} \pi^{-}\right)}{10.2}$
${ }^{7}$ Our estimate.

$\boldsymbol{X}(1650) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(?^{?-}\right)$						
MASS (MeV)	WIDTH (MeV) EVTS	DOCUMENT ID		TECN CO	COMMENT	
$1652 \pm 7<5$	<50 100		PROKOSHKIN 96 G	GAM2 32,3	$38 \pi p \rightarrow$	$\omega \eta n$
$X(1730)$	$\left.{ }_{1}{ }^{(} J^{P C}\right)=? ?$					
MASS (MeV)	WIDTH (MeV)	EVTS	DOCUMENT ID	TECN	COMME	
$1731.0 \pm 1.2 \pm 2.0$	$2.03 .2 \pm 0.8 \pm 1.3$	58	VLADIMIRSK... 07	7 SPEC	$\begin{array}{r} 40 \pi^{-} \\ K_{S}^{0} \end{array}$	${ }_{K_{S}^{0}}^{0} X$

$\boldsymbol{X}(\mathbf{1 7 5 0}) \quad I^{G}\left(J^{P C}\right)=? ?^{?}\left(1^{--}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENTID TECN COMMENT
$\overline{1753.5 \pm 1.5 \pm 2.3} \begin{aligned} & 122.2 \pm 6.2 \pm 8.0 \\ & \text { LINK 02K FOCS } \\ & 20-160 \gamma p \rightarrow K^{+} K^{-} p\end{aligned}$

$\boldsymbol{X}(\mathbf{1 9 3 5}) \quad I^{G}\left(J^{P C}\right)=1^{+}\left(1^{-?}\right)$				
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
1935 ± 20	215 ± 30	EVANGELIS... 79	OMEG	10,16 $\pi^{-} p \rightarrow \bar{p} p n$
$\rho_{2}(1940)$	${ }_{1}{ }_{(J}{ }^{P C}$	$1^{+}\left(2^{--}\right)$		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
1940 ± 40	155 ± 40	14 ANISOVICH 02	SPEC	$\begin{gathered} 0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0}, \\ \omega \eta \pi^{0}, \pi^{+} \pi^{-} \end{gathered}$

${ }^{14}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

$\omega_{\mathbf{3}} \mathbf{(1 9 4 5)} \quad I^{G}\left(J^{P C}\right)=0^{-}\left(3^{--}\right)$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$1945 \pm 20 \quad 15 \overline{\text { ANISOVICH }} 115 \pm 22 \mathrm{O2B} \frac{\text { SPEC }}{0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}}$
${ }^{15}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
$\mathbf{a}_{\mathbf{2}}$ (1950) $\quad I^{G}\left(J^{P C}\right)=1^{-}(2++)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID
$1950{ }_{-70}^{+30} \quad 180{ }_{-70}^{+30} \quad 16$ ANISOVICH $01 F$ SPEC $1.96-2.41 \bar{p} p$
${ }^{16}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.
$\omega \mathbf{(1 9 6 0)} \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID _ TECN COMMENT
$1960 \pm 25 \quad 195 \pm 60 \quad 17$ ANISOVICH 02B $\overline{\text { SPEC }} \xlongequal[0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}]{0.0}$
${ }^{17}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
\boldsymbol{b}_{1} (1960) $\quad I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)$
$\frac{\text { MASS (MeV) }}{1960 \pm 35} \frac{\text { WIDTH (MeV) }}{230 \pm 50} \quad 18 \frac{\text { DOCUMENT ID }}{\text { ANISOVICH }} 02 \quad \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0},}$ $\omega \eta \pi^{0}, \pi^{+} \pi^{-}$
${ }^{18}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
$\boldsymbol{h}_{\mathbf{1}}\left(\mathbf{1 9 6 5)} \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{+-}\right)\right.$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$1965 \pm 45 \quad 345 \pm 75 \quad 19$ ANISOVICH 02B $\overline{\text { SPEC }} \frac{0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}}{0.6}$
${ }^{19}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

$f_{1}(19$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(1^{+}+\right)$			TECN
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		
1971 ± 15	240 ± 45	ANISOVICH	00」	SPEC

$\boldsymbol{X}(\mathbf{1 9 7 0}) \quad I^{G}(J P C)=? ?(? ? ?)$

$\frac{\text { MASS }(\mathrm{MeV})}{1970 \pm 10} \frac{\text { WIDTH (MeV) }}{40 \pm 20} \quad \frac{\text { DOCUMENT ID }}{\text { CHLIAPNIK... } 80} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { COMMENT }}{32 K^{+} p \rightarrow 2 K_{S}^{0} 2 \pi \mathrm{X}}$
$\boldsymbol{x}(1975) \quad I^{G}(J P C)=? ?(? ? ?)$
$\frac{\text { MASS }(\mathrm{MeV})}{1973 \pm 15} \frac{\text { WIDTH (MeV) }}{80} \frac{\text { EVTS }}{30} \quad \frac{\text { DOCUMENT ID }}{\text { CASO }} \frac{70}{\mathrm{HBC}} \frac{\text { TECN }}{11.2 \pi^{-} p \rightarrow \rho 2 \pi}$

$$
\boldsymbol{\omega}_{\mathbf{2}}\left(\mathbf{1 9 7 5)} \quad I^{G}\left(J^{P C}\right)=0^{-}\left(2^{--}\right)\right.
$$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$1975 \pm 20 \quad 175 \pm 25 \quad 20$ ANISOVICH $02 \mathrm{~B} \quad \overline{\text { SPEC }} \frac{0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}}{0.6}$
${ }^{20}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
$\mathbf{a}_{\mathbf{2}}$ (1990) $\quad I^{G}\left(J^{P C}\right)=1^{-}\left(2^{+}+\right)$
$\frac{\text { MASS }(\mathrm{MeV})}{2050 \pm 10 \pm 40} \frac{\text { WIDTH (MeV) }}{190 \pm 22 \pm 100} \frac{\text { EVTS }}{18 \mathrm{k}} \quad 21 \frac{\text { DOCUMENT ID }}{\text { SCHEGELSKY } 06} \frac{\text { TECN }}{\text { RVUE }} \frac{\text { COMMENT }}{\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}}$ $2003 \pm 10 \pm 19 \quad 249 \pm 23 \pm 32 \quad 05$ B852 $18 \pi^{-} p \vec{r}^{p}$
${ }^{21}$ From analysis of L3 data at $183-209 \mathrm{GeV}$.

$\Gamma(\gamma \gamma) \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma($ total $)$			TECN	COMMENT
VALUE (keV)	EVTS	DOCUMENT ID		
$0.11 \pm 0.04 \pm 0.05$	18k	22 SCHEGELSKY 06	RVUE	$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$
${ }^{22}$ From analysis	ata a	-209 GeV.		

$\mathbf{a}_{\mathbf{2}}$ (2030) $\quad I^{G}\left(J^{P C}\right)=1^{-}\left(2^{+}+\right)$

$\frac{\text { MASS }(\mathrm{MeV})}{\text { WIDTH (MeV) }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT
$2030 \pm 20 \quad 28$ ANISOVICH 01F SPEC $1.96-2.41 \bar{p} p$
${ }^{28}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

$\mathbf{a}_{\mathbf{3}} \mathbf{(2 0 3 0)} \quad I^{G}\left(J^{P C}\right)=1^{-}\left(3^{+}+\right)$

$\frac{\text { MASS (MeV) }}{\text { WIDTH (MeV) }}$
$2031 \pm 12 \quad 29$ ANISOVICH 01F SPEC $150 \pm 18 \quad 1.96-2.41 \bar{p} p$
${ }^{29}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.
$\boldsymbol{\eta}_{\mathbf{2}} \mathbf{(2 0 3 0)} \quad I^{G}\left(J^{P C}\right)=0^{+}\left(2^{-+}\right)$
$\frac{\text { MASS }(\mathrm{MeV})}{2030 \pm 5 \pm 15} \frac{\text { WIDTH (MeV) }}{205 \pm 10 \pm 15} \quad \frac{\text { DOCUMENT ID }}{\text { ANISOVICH OOE }} \frac{\text { TECN }}{\text { SPEC }}$

$\left.\boldsymbol{h}_{\mathbf{1}}(\mathbf{2 2 1 5}) \quad, G^{(} J^{P C}\right)=0^{-}\left(1^{+-}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2215 \pm 40 \quad 325 \pm 55 \quad 39$ ANISOVICH 02B SPEC $0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}$
${ }^{39}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
$\boldsymbol{\rho}_{2}(\mathbf{2 2 2 5}) \quad I^{G}\left(J^{P C}\right)=1^{+}\left(2^{--}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENTID TECN COMMENT
$\overline{2225 \pm 35} \quad \begin{aligned} & 335_{-}^{+100}\end{aligned} \quad 40$ ANISOVICH $02 ~$ SPEC $\xlongequal[0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0},]{ }$
$\omega \eta \pi^{0}, \pi^{+} \pi^{-}$
${ }^{40}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
$\boldsymbol{\rho}_{\mathbf{4}}(\mathbf{2 2 3 0}) \quad I^{G}\left(J^{P C}\right)=1^{+}\left(4^{--}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2230 \pm 25 \quad 41$ ANISOVICH 02 SPEC $\begin{aligned} & \text { 0.6-1.9 } p \bar{p} \rightarrow \omega \pi^{0} \text {, }\end{aligned}$
$\omega \eta \pi^{0}, \pi^{+} \pi^{-}$
${ }^{41}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
$\boldsymbol{b}_{\mathbf{1}}(\mathbf{2 2 4 0}) \quad I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)$
$\frac{\text { MASS (MeV) }}{2240 \pm 35} \frac{\text { WIDTH (MeV) }}{320 \pm 85} \quad 42 \frac{\text { DOCUMENT ID }}{\text { ANISOVICH }} 02 \quad \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0},}$
${ }^{42}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
$\boldsymbol{f}_{\mathbf{2}}(\mathbf{2 2 4 0}) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$
$\frac{\text { MASS (MeV) }}{2240 \pm 15} \frac{\text { WIDTH (MeV) }}{241 \pm 30} \quad 43 \frac{\text { DOCUMENT ID }}{\text { ANISOVICH } 00 \mathrm{~J}} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{1.92-2.41 p \bar{p}}$

- - We do not use the following data for averages, fits, limits, etc. • -
$\sim 2226 \sim 226 \quad$ HASAN 94 RVUE $p \bar{p} \rightarrow \pi \pi$
${ }^{43}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99, ANISOVICH 99k, and ANISOVICH 00b. See also ANISOVICH 12.

$\mathbf{a}_{\mathbf{2}}$ (2255) $\quad I^{G}\left(J^{P C}\right)=1^{-}\left(2^{+}+\right)$
$\frac{\text { MASS }(\mathrm{MeV})}{2255 \pm 20} \frac{\text { WIDTH (MeV) }}{230 \pm 15} \quad 49 \frac{\text { DOCUMENT ID }}{\text { ANISOVICH }} 01 \mathrm{TECN} \frac{\text { COMMENT }}{\text { SPEC }} \frac{\text { TEMME }}{1.96-2.41 \bar{p} p}$
${ }^{49}$ From the combined analysis of ANISOVICH 99c, ANISOVICH 99E, ANISOVICH 01F, and ANISOVICH 01 G .

$\boldsymbol{X}(\mathbf{2 2 6 0}) \quad I^{G}\left(J^{P C}\right)=0^{+}\left(4^{+}\right.$? $)$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2260 \pm 20 \quad 400 \pm 100 \quad$ EVANGELIS... 79 OMEG $10,16 \pi^{-} p \rightarrow \bar{p} p n$

$\boldsymbol{p}(\mathbf{2 2 7 0}) \quad I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2265 \pm 40 \quad 325 \pm 80 \quad 50$ ANISOVICH 02 SPEC $0.6-1.9 p \bar{p} \rightarrow \omega \pi^{0}$, $\omega \eta \pi^{0}, \pi^{+} \pi^{-}$
$2280 \pm 50 \quad 440 \pm 110 \quad$ ATKINSON 85 OMEG $20-70 \gamma p \rightarrow p \omega \pi^{+} \pi^{-} \pi^{0}$
${ }^{50}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.
$a_{1}(\mathbf{2 2 7 0}) \quad I^{G}\left(J^{P C}\right)=1^{-}\left(1^{+}+\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2270_{-40}^{+55} \quad 305_{-40}^{+70} \quad$ ANISOVICH 01F SPEC $2.0 \bar{p} p \rightarrow 3 \pi^{0}, \pi^{0} \eta, \pi^{0} \eta^{\prime}$
$\boldsymbol{h}_{\mathbf{3}}(\mathbf{2 2 7 5}) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(3^{+-}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENTID TECN COMMENT
$2275 \pm 25 \quad 190 \pm 45 \quad 51$ ANISOVICH 02B SPEC $0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}$
${ }^{51}$ From the combined analysis of ANISOVICH 00D, ANISOVICH 01c, and ANISOVICH 02B.
a_{3} (2275) $\quad I^{G}\left(J^{P C}\right)=1^{-}\left(3^{+}+\right)$
$\frac{\text { MASS }(\mathrm{MeV})}{3270+100} \quad \frac{\text { WIDTH }(\mathrm{MeV})}{32}$ DOCUMENT ID \quad TECN COMMENT
$\begin{array}{lllll}2275 \pm 35 & 350 & -50 & 52 \\ \text { ANISOVICH } & 01 G & \text { SPEC } & 1.96-2.41 \bar{p} p\end{array}$
${ }^{52}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, ANISOVICH 01F, and ANISOVICH 01G.
$\boldsymbol{\pi}_{\mathbf{2}}$ (2285) $\quad I^{G}\left(J^{P C}\right)=1^{-}\left(2^{-+}\right)$
MASS (MeV) WIDTH (MEV) DOCUMENT ID TECN COMMENT
$2285 \pm 20 \pm 25 \quad 250 \pm 20 \pm 25 \quad 53$ ANISOVICH $\quad 11 \quad$ SPEC $\quad 0.9-1.94 p \bar{p}$
${ }^{53}$ Reanalysis of ADOMEIT 96 and ANISOVICH OOE.
$\boldsymbol{\omega}_{\mathbf{3}}(\mathbf{2 2 8 5}) \quad{ }^{G}\left(J^{P C}\right)=0^{-}\left(3^{--}\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
$2278 \pm 28 \quad 224 \pm 50 \quad 54$ BUGG 04A RVUE
$2285 \pm 60 \quad 230 \pm 40 \quad 55$ ANISOVICH $\quad 02 \mathrm{~B}$ SPEC $\quad 0.6-1.9 p \bar{p} \rightarrow \omega \eta, \omega \pi^{0} \pi^{0}$
${ }^{54}$ Partial wave analysis of the data on $p \bar{p} \rightarrow \bar{\Lambda} \wedge$ from BARNES 00.
55 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

ω (2290)	$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$			TECN
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		
2290 ± 20	275 ± 35	56 BUGG	04A	RVUE
56 Partial wav	nalysis of the	$p \bar{p} \rightarrow \bar{\Lambda}$	BAR	ES 00.

$f_{\mathbf{2}}$ (2295) $\quad I^{G}(J P C)=0^{+}\left(2^{+}+\right)$
MASS (MeV) WIDTH (MeV) DOCUMENT ID _ TECN COMMENT
$2293 \pm 13 \quad 57$ ANISOVICH 00」 SPEC $1.92-2.41 p \bar{p}$
${ }^{57}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99」, ANISOVICH 99k, and ANISOVICH 00b. See also ANISOVICH 12.

$f_{3}(\mathbf{2 3 0 0})$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(3^{++}\right)$			
ASS (MeV)	WIDTH (MeV)	DOCUM		TECN
± 25	200 ± 20	58 BUGG	04A	RVUE

$\boldsymbol{X}(\mathbf{2 3 4 0}) \quad I^{G}(J P C)=? ?(? ? ?)$
$\frac{\text { MASS }(\mathrm{MeV})}{2340 \pm 20} \frac{\text { WIDTH (MeV) }}{180 \pm 60} \frac{\text { EVTS }}{126} \quad 60 \frac{\text { DOCUMENT ID }}{\text { BALTAY }} \frac{75}{\mathrm{HBC}} \frac{\text { TECN }}{15 \pi^{+} p \rightarrow p 5 \pi}$
${ }^{60}$ Dominant decay into $\rho^{0} \rho^{0} \pi^{+}$. BALTAY 78 finds confirmation in $2 \pi^{+} \pi^{-} 2 \pi^{0}$ events which contain $\rho^{+} \rho^{0} \pi^{0}$ and $2 \rho^{+} \pi^{-}$.

Meson Particle Listings

Further States

STRANGE MESONS
 ($S= \pm 1, C=B=0$)
 $K^{+}=u \bar{s}, K^{0}=d \bar{s}, \bar{K}^{0}=\bar{d} s, K^{-}=\bar{u} s, \quad$ similarly for K^{*} 's

$K^{ \pm} \quad I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)$

CHARGED KAON MASS

Revised 1994 by T.G. Trippe (LBNL).
The average of the six charged kaon mass measurements which we use in the Particle Listings is

$$
\begin{equation*}
m_{K^{ \pm}}=493.677 \pm 0.013 \mathrm{MeV}(\mathrm{~S}=2.4) \tag{1}
\end{equation*}
$$

where the error has been increased by the scale factor S. The large scale factor indicates a serious disagreement between different input data. The average before scaling the error is

$$
\begin{align*}
& m_{K^{ \pm}}=493.677 \pm 0.005 \mathrm{MeV} \\
& \quad \chi^{2}=22.9 \text { for } 5 \text { D.F., Prob. }=0.04 \% \tag{2}
\end{align*}
$$

where the high χ^{2} and correspondingly low χ^{2} probability further quantify the disagreement.

The main disagreement is between the two most recent and precise results,

$$
\begin{gather*}
m_{K^{ \pm}}=493.696 \pm 0.007 \mathrm{MeV} \quad \text { DENISOV } 91 \\
m_{K^{ \pm}}=493.636 \pm 0.011 \mathrm{MeV}(\mathrm{~S}=1.5) \text { GALL } 88 \\
\text { Average }=493.679 \pm 0.006 \mathrm{MeV} \\
\qquad \chi^{2}=21.2 \text { for } 1 \mathrm{D} . \mathrm{F} ., \text { Prob. }=0.0004 \% \tag{3}
\end{gather*}
$$

both of which are measurements of x-ray energies from kaonic atoms. Comparing the average in Eq. (3) with the overall average in Eq. (2), it is clear that DENISOV 91 and GALL 88 dominate the overall average, and that their disagreement is responsible for most of the high χ^{2}.

The GALL 88 measurement was made using four different kaonic atom transitions, $K^{-} \mathrm{Pb}(9 \rightarrow 8), K^{-} \mathrm{Pb}(11 \rightarrow 10)$, $K^{-} \mathrm{W}(9 \rightarrow 8)$, and $K^{-} \mathrm{W}(11 \rightarrow 10)$. The $m_{K^{ \pm}}$values they obtain from each of these transitions is shown in the Particle Listings and in Fig. 1. Their $K^{-} \mathrm{Pb}(9 \rightarrow 8) m_{K^{ \pm}}$is below and somewhat inconsistent with their other three transitions. The average of their four measurements is

$$
\begin{align*}
& m_{K^{ \pm}}=493.636 \pm 0.007 \\
& \quad \chi^{2}=7.0 \text { for } 3 \text { D.F., Prob. }=7.2 \% \tag{4}
\end{align*}
$$

This is a low but acceptable χ^{2} probability so, to be conservative, GALL 88 scaled up the error on their average by $\mathrm{S}=1.5$ to obtain their published error ± 0.011 shown in Eq. (3) above and used in the Particle Listings average.

Figure 1: Ideogram of $m_{K^{ \pm}}$mass measurements. GALL 88 and CHENG 75 measurements are shown separately for each transition they measured.

The ideogram in Fig. 1 shows that the DENISOV 91 measurement and the GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$ measurement yield two well-separated peaks. One might suspect the GALL 88 $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ measurement since it is responsible both for the internal inconsistency in the GALL 88 measurements and the disagreement with DENISOV 91.

To see if the disagreement could result from a systematic problem with the $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition, we have separated the CHENG 75 data, which also used $K^{-} \mathrm{Pb}$, into its separate transitions. Figure 1 shows that the CHENG 75 and GALL 88 $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ values are consistent, suggesting the possibility of a common effect such as contaminant nuclear γ rays near the $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition energy, although the CHENG 75 errors are too large to make a strong conclusion. The average of all 13 measurements has a χ^{2} of 52.6 as shown in Fig. 1 and the first line of Table 1 , yielding an unacceptable χ^{2} probability of 0.00005%. The second line of Table 1 excludes both the GALL 88 and CHENG 75 measurements of the $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition and yields a χ^{2} probability of 43%. The third [fourth] line of Table 1 excludes only the GALL 88 $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ [DENISOV 91] measurement and yields a χ^{2} probability of 20% [8.6\%]. Table 1 shows that removing both measurements of the $K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition produces the most consistent set of data, but that excluding only the GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition or DENISOV 91 also produces acceptable probabilities.

Meson Particle Listings
$K^{ \pm}$

Table 1: $\quad m_{K^{ \pm}}$averages for some combinations of Fig. 1 data.

$m_{K^{ \pm}}(\mathrm{MeV})$	χ^{2}	D.F.	Prob. (\%)	Measurements used
493.664 ± 0.004	52.6	12	0.00005	all 13 measurements
493.690 ± 0.006	10.1	10	43	no $K^{-} \operatorname{Pb}(9 \rightarrow 8)$
493.687 ± 0.006	14.6	11	20	no GALL $88 K^{-} \operatorname{Pb}(9 \rightarrow 8)$
493.642 ± 0.006	17.8	11	8.6	no DENISOV 91

Yu.M. Ivanov, representing DENISOV 91, has estimated corrections needed for the older experiments because of improved ${ }^{192} \mathrm{Ir}$ and ${ }^{198} \mathrm{Au}$ calibration γ-ray energies. He estimates that CHENG 75 and BACKENSTOSS $73 m_{K^{ \pm}}$values could be raised by about 15 keV and 22 keV , respectively. With these estimated corrections, Table 1 becomes Table 2. The last line of Table 2 shows that if such corrections are assumed, then GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$ is inconsistent with the rest of the data even when DENISOV 91 is excluded. Yu.M. Ivanov warns that these are rough estimates. Accordingly, we do not use Table 2 to reject the GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$ transition, but we note that a future reanalysis of the CHENG 75 data could be useful because it might provide supporting evidence for such a rejection.

Table 2: $\quad m_{K^{ \pm}}$averages for some combinations of Fig. 1 data after raising CHENG 75 and BACKENSTOSS 73 values by 0.015 and 0.022 MeV respectively.

$m_{K^{ \pm}}(\mathrm{MeV})$	χ^{2}	D.F.	Prob. (\%)	Measurements used
493.666 ± 0.004	53.9	12	0.00003 all 13 measurements	
493.693 ± 0.006	9.0	10	53	no $K^{-} \operatorname{Pb}(9 \rightarrow 8)$
493.690 ± 0.006	11.5	11	40	no GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$
493.645 ± 0.006	23.0	11	1.8	no DENISOV 91

The GALL 88 measurement uses a Ge semiconductor spectrometer which has a resolution of about 1 keV , so they run the risk of some contaminant nuclear γ rays. Studies of γ rays following stopped π^{-}and Σ^{-}absorption in nuclei (unpublished) do not show any evidence for contaminants according to GALL 88 spokesperson, B.L. Roberts. The DENISOV 91 measurement uses a crystal diffraction spectrometer with a resolution of 6.3 eV for radiation at 22.1 keV to measure the $4 \mathrm{f}-3 \mathrm{~d}$ transition in $K^{-12} \mathrm{C}$. The high resolution and the light nucleus reduce the probability for overlap by contaminant γ rays, compared with the measurement of GALL 88. The DENISOV 91 measurement is supported by their high-precision measurement of the $4 \mathrm{~d}-2 \mathrm{p}$ transition energy in $\pi^{-12} \mathrm{C}$, which is good agreement with the calculated energy.

While we suspect that the GALL $88 K^{-} \mathrm{Pb}(9 \rightarrow 8)$ measurements could be the problem, we are unable to find clear grounds for rejecting it. Therefore, we retain their measurement in the average and accept the large scale factor until further information can be obtained from new measurements and/or from reanalysis of GALL 88 and CHENG 75 data.

We thank B.L. Roberts (Boston Univ.) and Yu.M. Ivanov (Petersburg Nuclear Physics Inst.) for their extensive help in understanding this problem.

$\boldsymbol{m}_{\boldsymbol{K}^{+}}=\boldsymbol{m}_{\boldsymbol{K}^{-}}$					
Test of CPT.					
VALUE (MeV)	EVTS	DOCUME			CHG
-0.032 ± 0.090	1.5M	$1{ }^{1}$ FORD	72		
${ }^{1}$ FORD 72 uses $m_{\pi^{+}}-m_{\pi^{-}}=+28 \pm 70 \mathrm{keV}$.					

$K^{ \pm}$MEAN LIFE

$\operatorname{VALUE}\left(10^{-8} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1.2380 ± 0.0020 OUR FIT Error includes scale factor of 1.8.					
$\mathbf{1 . 2 3 7 9} \mathbf{0 . 0 0 2 1}$ OUR AVERAGE Error includes scale factor below.					
1.2347 ± 0.0030	15M	${ }^{1}$ AMBROSINO	08	KLOE \pm	$\phi \rightarrow K^{+} K^{-}$
1.2451 ± 0.0030	250k	KOPTEV	95	CNTR	K at rest, U target
1.2368 ± 0.0041	150k	KOPTEV	95	CNTR	K at rest, Cu target
1.2380 ± 0.0016	3M	OTT	71	CNTR +	K at rest
1.2272 ± 0.0036		LOBKOWICZ	69	CNTR +	K in flight
1.2443 ± 0.0038		FITCH	65B	CNTR +	K at rest
- - We do not use the following data for averages, fits, limits, etc. - -					
1.2415 ± 0.0024	400k	2 KOPTEV	95	CNTR	K at rest
1.221 ± 0.011		FORD	67	CNTR \pm	
1.231 ± 0.011		BOYARSKI	62	CNTR +	

[^114]

See the related review(s):
Rare Kaon Decays

K^{+}DECAY MODES

K^{-}modes are charge conjugates of the modes below.

Hadronic modes with photons or $\bar{\ell} \overline{\boldsymbol{\ell}}$ pairs

$\Gamma_{21} \pi^{+} \pi^{0} \gamma$ (INT)
$(-4.2 \pm 0.9) \times 10^{-6}$
$[a, e] \quad\left(\begin{array}{ll}6.0 & \pm 0.4\end{array}\right) \times 10^{-6}$
$(4.24 \pm 0.14) \times 10^{-6}$
$\left[\begin{array}{llll}a, b] & \left(\begin{array}{lll}7.6 & { }_{-3.0}^{+6.0}\end{array}\right) \times 10^{-6}\end{array}\right.$
$[a, b] \quad\left(\begin{array}{lll}7.1 & \pm 0.5\end{array}\right) \times 10^{-6}$

Γ_{26}	$\pi^{+} \gamma \gamma$
Γ_{27}	$\pi^{+} 3 \gamma$
Γ_{28}	$\pi^{+} e^{+} e^{-} \gamma$
Γ_{29}	$e^{+} \nu_{e} \nu \bar{\nu}$
Γ_{30}	$\mu^{+} \nu_{\mu} \nu \bar{\nu}$
Γ_{31}	$e^{+} \nu_{e} e^{+} e^{-}$
Γ_{32}	$\mu^{+} \nu_{\mu} e^{+} e^{-}$
Γ_{33}	$e^{+} \nu_{e} \mu^{+} \mu^{-}$
Γ_{34}	$\mu^{+} \nu_{\mu} \mu^{+} \mu^{-}$

Leptonic modes with $\ell \bar{\ell}$ pairs

Lepton family number ($L F$), Lepton number (L), $\Delta S=\Delta Q(S Q$) violating modes, or $\Delta S=1$ weak neutral current (S1) modes

Γ_{35}	$\pi^{+} \pi^{+} e^{-} \bar{\nu}_{e}$	SQ	<	1.3		$\times 10^{-8}$	CL=90\%
Γ_{36}	$\pi^{+} \pi^{+} \mu^{-} \bar{\nu}_{\mu}$	SQ	$<$	3.0		$\times 10^{-6}$	$\mathrm{CL}=95 \%$
Γ_{37}	$\pi^{+} e^{+} e^{-}$	S1	(3.00	± 0.09) $\times 10^{-7}$	
Γ_{38}	$\pi^{+} \mu^{+} \mu^{-}$	S1	(9.4	± 0.6) $\times 10^{-8}$	$\mathrm{S}=2.6$
「39	$\pi^{+} \nu \bar{\nu}$	S1	(1.7	± 1.1) $\times 10^{-10}$	
Γ_{40}	$\pi^{+} \pi^{0} \nu \bar{\nu}$	S1	$<$	4.3		$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{41}	$\mu^{-} \nu e^{+} e^{+}$	LF	$<$	2.1		$\times 10^{-8}$	CL=90\%
Γ_{42}	$\mu^{+} \nu_{e}$	LF	$[f]<$	4		$\times 10^{-3}$	CL=90\%
Γ_{43}	$\pi^{+} \mu^{+} e^{-}$	LF	<	1.3		$\times 10^{-11}$	$\mathrm{CL}=90 \%$
Γ_{44}	$\pi^{+} \mu^{-} e^{+}$	LF	$<$	5.2		$\times 10^{-10}$	$\mathrm{CL}=90 \%$
Γ_{45}	$\pi^{-} \mu^{+} e^{+}$	L	$<$	5.0		$\times 10^{-10}$	CL=90\%
Γ_{46}	$\pi^{-} e^{+} e^{+}$	L	<	2.2		$\times 10^{-10}$	$\mathrm{CL}=90 \%$
Γ_{47}	$\pi^{-} \mu^{+} \mu^{+}$	L	$<$	4.2		$\times 10^{-11}$	$\mathrm{CL}=90 \%$
Γ_{48}	$\mu^{+} \bar{\nu}_{e}$	L	$[f]<$	3.3		$\times 10^{-3}$	CL=90\%
Γ_{49}	$\pi^{0} e^{+} \bar{\nu}_{e}$	L	<	3		$\times 10^{-3}$	CL=90\%
Γ_{50}	$\pi^{+} \gamma$		g] <	2.3		$\times 10^{-9}$	CL=90\%

[a] See the Particle Listings below for the energy limits used in this measurement.
[b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
[c] Structure-dependent part.
[d] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
[e] Direct-emission branching fraction.
[f] Derived from an analysis of neutrino-oscillation experiments.
$[g]$ Violates angular-momentum conservation.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, a decay rate, and 15 branching ratios uses 35 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^{2}=53.4$ for 28 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$K^{ \pm}$DECAY RATES

$\Gamma\left(\mu^{+} \nu_{\mu}\right)$				
$\operatorname{VALUE}\left(10^{6} \mathrm{~s}^{-1}\right)$		DOCUMENT ID		TECN CHG
$\mathbf{5 1 . 3 4} \pm 0.12$ OUR FIT Error includes scale factor of 1.5.				
- - We do not use the following data for averages, fits,				
51.2 ± 0.8		FORD	67	CNTR \pm
$\Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right)$				
$\operatorname{VaLUE}\left(10^{6} \mathrm{~s}^{-1}\right)$	EVTS	DOCUMENT ID		TECN CHG
4.510 ± 0.019 OUR FIT				
4.511 ± 0.024		${ }^{1}$ FORD	70	ASPK
- - We do not use the following data for averages, fits, limits,				
4.529 ± 0.032	3.2 M	${ }^{1}$ FORD	70	ASPK
4.496 ± 0.030		${ }^{1}$ FORD	67	CNTR \pm
${ }^{1}$ First FORD 70 value is second FORD 70 combined with FORD 67.				

K^{+}BRANCHING RATIOS

${ }^{1}$ LAZZERONI 13 uses full data sample collected from 2007 to 2008. This ratio is defined to be fully inclusive, including internal-bremsstrahlung.
2 The ratio is defined to include internal-bremsstrahlung, ignoring direct-emission contributions. AMBROSINO 09E determined the ratio from the measurement of $\Gamma(K \rightarrow e \nu(\gamma)$, $\left.E_{\gamma}<10 \mathrm{MeV}\right) / \Gamma(K \rightarrow \mu \nu(\gamma)) .89 .8 \%$ of $K \rightarrow e \nu(\gamma)$ events had $E_{\gamma}<10 \mathrm{MeV}$.
${ }^{3}$ This ratio is defined to be fully inclusive, including internal-bremsstrahlung.
$\Gamma\left(\mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$
Γ_{2} / Γ
See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_{s}^{+} Listings.
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG COMMENT
$\mathbf{6 3 . 5 6} \pm \mathbf{0 . 1 1}$ OUR FIT Error includes scale factor of 1.2.
$\mathbf{6 3 . 6 0} \pm \mathbf{0 . 1 6}$ OUR AVERAGE
$63.66 \pm 0.09 \pm 0.15 \quad 865 \mathrm{k} \quad 1$ AMBROSINO 06A KLOE +
$63.24 \pm 0.44 \quad 62 \mathrm{k} \quad$ CHIANG $72 \mathrm{OSPK}+1.84 \mathrm{GeV} / \mathrm{c}^{+}$
${ }^{1}$ Fully inclusive. Used tagged kaons from ϕ decays.
$\Gamma\left(\pi^{0} e^{+} \nu_{e}\right) / \Gamma_{\text {total }} \quad \Gamma_{3} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{5.07 \text { EVTS }}$ DOCUMENT ID TECN CHG COMMENT
5.07 ± 0.04 OUR FIT \quad Error includes scale factor of 2.1.
4.94 ± 0.05 OUR AVERAGE
$4.965 \pm 0.038 \pm 0.037 \quad{ }^{1}$ AMBROSINO 08A KLOE \pm
$4.86 \pm 0.10 \quad 3516 \quad$ CHIANG 72 OSPK $+1.84 \mathrm{GeV} / \mathrm{c}^{+}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.7 \pm 0.3 \quad 429 \quad$ SHAKLEE $64 \quad$ HLBC +
$5.0 \pm 0.5 \quad$ ROE $61 \mathrm{HLBC}+$
${ }^{1}$ Depends on K^{+}lifetime τ. AMBROSINO 08A uses PDG 06 value of $\tau=(1.2385 \pm$ $0.0024) \times 10^{-8} \mathrm{sec}$. The correlation between $K_{e 3}^{+}$and $K_{\mu 3}^{+}$branching fraction measurements is 62.7%.
$\Gamma\left(\pi^{0} e^{+} \nu_{e}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$
Γ_{3} / Γ_{2}
$\frac{V A L U E}{0.0798} \mathbf{+ 0 . 0 0 0 8}$ OUR FIT EVTS DOCUMENTID $\frac{T E C N}{\text { CHG }}$
$\Gamma\left(\pi^{0} e^{+} \nu_{e}\right) / \Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 9 0 8} \pm \mathbf{0 . 0 0 9} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.6. }} \frac{\text { DECN }}{\text { CHG }}$
- - We do not use the following data for averages, fits, limits, etc. - -

0.867 ± 0.027	2768	BARMIN	87	XEBC	+
0.856 ± 0.040	2827	BRAUN	75	HLBC	+
0.850 ± 0.019	4385	1	HAIDT	71	HLBC

${ }^{1}$ HAIDT 71 is a reanalysis of EICHTEN 68. Not included in average because of large discrepancy in $\Gamma\left(\pi^{0} \mu^{+} \nu\right) / \Gamma\left(\pi^{0} e^{+} \nu\right)$ with more precise results.
$\Gamma\left(\pi^{0} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }} \quad \Gamma_{4} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{3 . 3 5 2} \pm \mathbf{0 . 0 3 3} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.9. }} \frac{\text { DOCUMENT ID }}{\text { CHG }}$ COMMENT 3.24 ± 0.04 OUR AVERAGE
$3.233 \pm 0.029 \pm 0.026$
$3.33 \pm 0.16 \quad 2345 \quad$ CHIANG 72 OSPK $+1.84 \mathrm{GeV} / \mathrm{CK}^{+}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$2.8 \pm 0.4 \therefore 2$ TAYLOR $59 \mathrm{EMUL}+$
${ }^{1}$ Depends on K^{+}lifetime τ. AMBROSINO 08A uses PDG 06 value of $\tau=(1.2385 \pm$
$0.0024) \times 10^{-8} \mathrm{sec}$. The correlation between K^{+}and K^{+}branching fraction mea$0.0024) \times 10^{-8} \mathrm{sec}$. The correlation between $K_{e 3}^{+}$and $K_{\mu 3}^{+}$branching fraction mea2 surements is 62.7%.
2 Earlier experiments not averaged.
$\Gamma\left(\pi^{0} \mu^{+} \nu_{\mu}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$
Γ_{4} / Γ_{2}

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.054 \pm 0.009 \quad 240 \quad$ ZELLER $\quad 69 \quad$ ASPK +
$0.0480 \pm 0.0037 \quad 424 \quad 1$ GARLAND $68 \quad$ OSPK +
$0.0486 \pm 0.0040 \quad 307 \quad 2$ AUERBACH 67 OSPK +
${ }^{1}$ GARLAND 68 changed from 0.055 ± 0.004 in agreement with μ-spectrum calculation of GAILLARD 70 appendix B. L.G.Pondrom, (private communication 73).
${ }^{2}$ AUERBACH 67 changed from 0.0602 ± 0.0046 by erratum which brings the μ-spectrum calculation into agreement with GAILLARD 70 appendix B.

- AMBROSINO 08A KLOE \pm

1.9.
- - We do not use the following data for averages, fits, limits, etc. - - -

| 0.069 ± 0.006 | 350 | ZELLER | 69 | ASPK + |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0775 ± 0.0033 | 960 | BOTTERILL | 68 C | ASPK + |
| 0.069 ± 0.006 | 561 | GARLAND | 68 | OSPK + |
| 0.0791 ± 0.0054 | 295 | AUERBACH | 67 | OSPK + |

${ }^{1}$ AUERBACH 67 changed from 0.0797 ± 0.0054. See comment with ratio $\Gamma\left(\pi^{0} \mu^{+} \nu_{\mu}\right) /$ $\Gamma\left(\mu^{+} \nu_{\mu}\right)$. The value 0.0785 ± 0.0025 given in AUERBACH 67 is an average of AUERBACH $67 \Gamma\left(\pi^{0} e^{+} \nu_{e}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$ and CESTER $66 \Gamma\left(\pi^{0} e^{+} \nu_{e}\right) /\left[\Gamma\left(\mu^{+} \nu_{\mu}\right)+\right.$ $\left.\Gamma\left(\pi^{+} \pi^{0}\right)\right]$.
$\Gamma\left(\pi^{0} e^{+} \nu_{e}\right) /\left[\Gamma\left(\mu^{+} \nu_{\mu}\right)+\Gamma\left(\pi^{+} \pi^{0}\right)\right]$
$\Gamma_{3} /\left(\Gamma_{2}+\Gamma_{9}\right)$

6.02 ± 0.15 OUR AVERAGE

6.16 ± 0.22	5110	ESCHSTRUTH 68	OSPK +	
5.89 ± 0.21	1679	CESTER	66	OSPK +

- - We do not use the following data for averages, fits, limits, etc. - - .
$5.92 \pm 0.65 \quad 1$ WEISSENBE... 76 SPEC +
${ }^{1}$ Value calculated from WEISSENBERG $76\left(\pi^{0} e \nu\right)$, $(\mu \nu)$, and ($\pi \pi^{0}$) values to eliminate dependence on our $1974\left(\pi 2 \pi^{0}\right)$ and $\left(\pi \pi^{+} \pi^{-}\right)$fractions.

$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{e}^{+} \boldsymbol{\nu}_{\boldsymbol{e}}\right) / \Gamma^{+}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right)_{\text {EVTS }}^{\text {DOCUMENT ID }} \quad$ TECN CHG $\boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}_{\mathbf{9}}$
$\frac{\text { VALUE }}{\mathbf{0 . 2 4 5 4} \pm \mathbf{0 . 0 0 2 3} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of } 2.6} \frac{\text { DECN }}{\text { DOCUMENT ID }}$ CHG COMMENT
$\mathbf{0 . 2 4 6 7} \pm \mathbf{0 . 0 0 1 1}$ OUR AVERAGE Error includes scale factor of 1.1.
$0.2423 \pm 0.0015 \pm 0.0037$ 31k UVAROV 14 ISTR - ISTRA+
$0.2470+0.0009+0.0004-87 \mathrm{k}$ BATLEY 07 A NA48
- - We do not use the following data for averages, fits, limits, etc. - -
$0.221 \pm 0.012 \quad 786 \quad 1$ LUCAS 73 B HBC $\quad-\quad$ Dalitz pairs only ${ }^{1}$ LUCAS 73B gives $\mathrm{N}\left(K_{e 3}\right)=786 \pm 3.1 \%, N(2 \pi)=3564 \pm 3.1 \%$. We use these values
to obtain quoted result.
$0.846 \pm 0.021 \quad 4385{ }^{1}$ EICHTEN $68 \mathrm{HLBC}+$
$\begin{array}{lllll}0.94 \pm 0.09 & 854 & \text { BELLOTTI } & 67 \mathrm{~B} & \mathrm{HLBC} \\ 0.90 \pm 0.06 & 230 & \text { BORREANI } & 64 \mathrm{HBC} & +\end{array}$

${ }^{1}$ HAIDT 71 is a reanalysis of EICHTEN 68. Not included in average because of large discrepancy in $\Gamma\left(\pi^{0} \mu^{+} \nu\right) / \Gamma\left(\pi^{0} e^{+} \nu\right)$ with more precise results.
${ }^{2}$ Error enlarged for background problems. See GAILLARD 70.
$\Gamma\left(\pi^{0} \pi^{\mathbf{0}} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
$\Gamma 5 / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{2 . 5 5} \pm \mathbf{0 . 0 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes }} \frac{\text { DOCUMENT ID }}{\text { scale factor of 1.1. }}$ TECN CHG
$\begin{array}{lccc}\mathbf{2 . 5 5} \pm \mathbf{0 . 0 4} & \text { OUR FIT } & \text { Error } \\ \mathbf{2 . 5 4} & 10.89 & \text { BARMIN } & 88 \mathrm{~B} \\ \mathrm{HLBC} & +\end{array}$
$\Gamma\left(\pi^{0} \pi^{0} e^{+} \nu_{e}\right) / \Gamma\left(\pi^{+} \pi^{0} \pi^{0}\right)$
Γ_{5} / Γ_{10}
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{1.449+0.008}$ EVTS FIT DOCUMENTID CHEN
1.449 ± 0.008 OUR FIT
$\mathbf{1 . 4 4 9} \pm \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 0 6} \quad 65.2 \mathrm{k} \quad{ }^{1}$ BATLEY $\quad 14 \mathrm{~A}$ NA48 \pm
${ }^{1}$ Data collected in 2003-2004. This leads to the scalar form factor $\left(1+\delta_{E M}\right) f_{S}=$ $6.079 \pm 0.012 \pm 0.027 \pm 0.046$ where the last error is due to the normalizing decay mode uncertainty.
$\Gamma\left(\pi^{0} \pi^{0} e^{+} \nu_{e}\right) / \Gamma\left(\pi^{0} e^{+} \nu_{e}\right)$
Γ_{5} / Γ_{3}
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{5 . 0 3} \pm \mathbf{0 . 0 9} \text { OUR FIT }}$ Error includes $\frac{\text { DOCUMENT ID }}{\text { Scale factor of 1.2. }}$ TECN CHG
$4.1+0.0$ OUR AVERAGE

4.2	25	BOLOTOV	86 B	CALO	-
-1.0					
3.8	2	LJUNG	73	HLBC	+

$\Gamma\left(\pi^{+} \pi^{-} e^{+} \nu_{e}\right) / \Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right) \quad \Gamma_{6} / \Gamma_{11}$

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	CHG
7.606 ± 0.029 OUR AVERAGE					
$7.615 \pm 0.008 \pm 0.028$	1.1 M	${ }^{1}$ BATLEY	12	NA48	\pm
$7.35 \pm 0.01 \pm 0.19$	388k	2 PISLAK	01	B865	
\pm	30			SPE	

$7.21 \pm 0.32 \quad 30 \mathrm{k} \quad$ ROSSELET $77 \mathrm{SPEC}+$

- - We do not use the following data for averages, fits, limits, etc. - - -

7.36 ± 0.68	500	BOURQUIN	71	ASPK	
7.0	± 0.9	106	SCHWEINB...	71	HLBC +
5.83 ± 0.63	269	ELY	69	HLBC +	

${ }^{1}$ BATLEY 12 uses data collected in 2003-2004. The result is inclusive of $K^{ \pm} \rightarrow$ $\pi^{+} \pi^{-} e^{ \pm} \nu \gamma$ decays. Using PDG 12 value for $\Gamma\left(\pi^{+} \pi^{-} \pi^{+}\right) / \Gamma=(5.59 \pm 0.04) \times 10^{-2}$. BATLEY 12 obtains $\mathrm{B}\left(\pi^{+} \pi^{-} e \nu\right)=(4.257 \pm 0.004 \pm 0.035) \times 10^{-5}$ where the syst. error is dominated by the error on the normalization mode.
${ }^{2}$ PISLAK 01 reports $\Gamma\left(\pi^{+} \pi^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}=(4.109 \pm 0.008 \pm 0.110) \times 10^{-5}$ using the PDG 00 value $\Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}=(5.59 \pm 0.05) \times 10^{-2}$. We divide by the PDG value and unfold its error from the systematic error. PISLAK 03 and PISLAK 10A give additional details on the branching ratio measurement and give improved errors on the S-wave $\pi-\pi$ scattering length: $a_{0}^{0}=0.235 \pm 0.013$ and $a_{0}^{2}=-0.0410 \pm 0.0027$.

$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$

Γ_{7} / Γ
VALUE (units 10^{-5}) EVTS
DOCUMENT ID TECN CHG

- - We do not use the following data for averages, fits, limits, etc. - -
$0.77{ }_{-0.50}^{+0.54}$
1 CLINE
65 FBC +
$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \nu_{\mu}\right) / \Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right)$
Γ_{7} / Γ_{11}
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 5 7} \pm \mathbf{1 . 5 5}} \frac{\text { EVTS }}{7} \quad \frac{\text { DOCUMENT ID }}{\text { BISI }} \frac{\text { TECN }}{\text { DBC }} \frac{C H G}{+}$
- - We do not use the following data for averages, fits, limits, etc. - . .
~ $2.5 \quad 1 \quad$ GREINER $64 \mathrm{EMUL}+$
$\Gamma\left(\pi^{0} \pi^{0} \pi^{0} e^{+} \nu_{e}\right) / \Gamma_{\text {total }} \quad \Gamma_{8} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{3 . 5}} \frac{C L \%}{90} \frac{E V T S}{0} \quad \frac{\text { DOCUMENT ID }}{\text { BOLOTOV } 88} \frac{T E C N}{\text { SPEC }} \frac{C H G}{-}$
- - We do not use the following data for averages, fits, limits, etc. • •
$\begin{array}{ccc} & 90 & 0 \\ \text { BARMIN } & 92 & \text { XEBC }+\end{array}$
$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma_{\text {total }} \Gamma_{\mathbf{9}} / \Gamma^{2}$ $\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{2 0 . 6 7} \mathbf{\pm 0 . 0 8} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes SCale factor of 1.2. }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$ CHG COMMENT 20.67 ± 0.08 OUR FIT Error includes scale factor of 1.2.
$\mathbf{2 0 . 7 0} \pm \mathbf{0 . 1 6}$ OUR AVERAGE Error includes scale factor of 1.8 .

$20.65 \pm 0.05 \pm 0.08$	1.4M	${ }^{1}$ AMBROSINO	08E	KLOE	$\phi \rightarrow K^{+} K^{-}$
21.18 ± 0.28	16k	CHIANG	72	K +	$1.84 \mathrm{GeV} / \mathrm{c}^{+}{ }^{+}$
- - We do not use the following data for averages, fits, limits, etc. - -					
21.0 ± 0.6		CALLAHAN	65	BC	9

$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right)$
「9/「 ${ }_{\mathbf{1 1}}$
$\frac{\text { VALUE }}{\mathbf{3 . 7 0 2} \pm \mathbf{0 . 0 2 2} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error }}$ DOCUMENT ID TECN CHG
$\mathbf{3 . 7 0 2} \pm \mathbf{0 . 0 2 2}$ OUR FIT $\quad \frac{E V}{\text { Error includes scale factor of 1.1. }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.96 \pm 0.15 \quad 1045 \quad$ CALLAHAN $66 \mathrm{FBC}+$

0.3325 ± 0.0032 OUR AVERAGE
$0.3329 \pm 0.0047 \pm 0.001045 \mathrm{k} \quad$ USHER 92 SPEC $+p \bar{p}$ at rest
$0.3355 \pm 0.0057 \quad 1$ WEISSENBE... 76 SPEC +
$0.3277 \pm 0.0065 \quad 4517 \quad 2$ AUERBACH 67 OSPK +
- - We do not use the following data for averages, fits, limits, etc. - -
$0.328 \pm 0.005 \quad 25 \mathrm{k} \quad 1$ WEISSENBE... 74 STRC +
$0.305 \pm 0.018 \quad 1600 \quad$ ZELLER 69 ASPK +
${ }^{1}$ WEISSENBERG 76 revises WEISSENBERG 74.
2 AUERBACH 67 changed from 0.3253 ± 0.0065. See comment with ratio $\Gamma\left(\pi^{0} \mu^{+} \nu_{\mu}\right) /$ $\Gamma\left(\mu^{+} \nu_{\mu}\right)$.
$\Gamma\left(\pi^{+} \pi^{\mathbf{0}} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}$
Γ_{10} / Γ
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { EVTS }}$ DOCUMENT ID TECN CHG COMMENT
$\frac{1.760 \pm 0.023 \text { OUR FIT }}{} \frac{\text { Error includes scale factor of 1.1 }}{}$.
$\mathbf{1 . 7 7 5} \mathbf{\pm 0 . 0 2 8}$ OUR AVERAGE Error includes scale factor of 1.2

$1.763 \pm 0.013 \pm 0.022$		ALOISIO	04A	KLOE \pm	
1.84 ± 0.06	1307	CHIANG	72	OSPK +	$1.84 \mathrm{GeV} / \mathrm{c}^{+}{ }^{+}$
- - We do not use the following d					
1.53 ± 0.11	198	1 PANDOULAS	70	EMUL +	
1.8 ± 0.2	108	SHAKLEE	64	HLBC +	
1.7 ± 0.2		ROE	61	HLBC +	
1.5 ± 0.2		2 TAYLOR	59	EMUL +	
${ }^{1}$ Includes events of TAYLOR 59. ${ }^{2}$ Earlier experiments not averaged.					

$\Gamma\left(\pi^{+} \pi^{0} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{0}\right)$
Γ_{10} / Γ_{9}

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.081 \pm 0.005 \quad 574 \quad 1$ LUCAS $\quad 73 \mathrm{~B}$ HBC $-\quad$ Dalitz pairs only ${ }^{1}$ LUCAS 73B gives $\mathrm{N}\left(\pi 2 \pi^{0}\right)=574 \pm 5.9 \%, \mathrm{~N}(2 \pi)=3564 \pm 3.1 \%$. We quote $0.5 N\left(\pi 2 \pi^{0}\right) / N(2 \pi)$ where 0.5 is because only Dalitz pair π^{0} 's were used.

$\mathbf{0 . 3 1 5} \pm \mathbf{0 . 0 0 4}$ OUR FIT $\frac{\text { Error includes scale factor of 1.1. }}{\text {. }}$
$\mathbf{0 . 3 0 3} \pm \mathbf{0 . 0 0 9} \quad 2027 \quad$ BISI $\quad 65 \mathrm{BC}+\mathrm{HBC}+\mathrm{HLBC}$
- - We do not use the following data for averages, fits, limits, etc. • •
$0.393 \pm 0.099 \quad 17 \quad$ YOUNG $65 \mathrm{EMUL}+$
$\Gamma\left(\pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E \text { (units } 10^{-2} \text {) }}{\mathbf{5 . 5 8 3} \pm \mathbf{0 . 0 2 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN CHG COMMENT
$\overline{5.583} \pm 0.024$ OUR FIT
Γ_{11} / Γ
$5.565 \pm \mathbf{0 . 0 3 1} \pm \mathbf{0 . 0 2 5} \quad 68 \mathrm{~K} \quad{ }^{1} \mathrm{BABUSCI} \quad 14 \mathrm{~B}$ KLOE +
- - We do not use the following data for averages, fits, limits, etc. - -

5.56 ± 0.20	2330	${ }^{2}$ CHIANG	72	OSPK +	$1.84 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{+}$
5.34 ± 0.21	693	3 PANDOULAS	70	EMUL +	
5.71 ± 0.15		DEMARCO	65	HBC	
6.0 ± 0.4	44	YOUNG	65	EMUL +	
5.54 ± 0.12	2332	CALLAHAN	64	HLBC +	
5.1 ± 0.2	540	SHAKLEE	64	HLBC +	
5.7 ± 0.3		ROE	61	HLBC +	
${ }^{1}$ Inclusive of final-state radiation. Result obtained from averaging two branching ratios: one from a sample with $K^{-} \rightarrow \mu \nu(\gamma)$ tagging and another with $K^{-} \rightarrow \pi^{-} \pi^{0}(\gamma)$ tagging.					
${ }^{2}$ Value is $\Gamma\left(\pi^{+} \pi^{0}\right.$ ${ }^{3}$ Includes	penden $\Gamma\left(\pi^{0}\right.$ AYLOR	of CHIANG 72 $\left.\nu_{\mu}\right) / \Gamma_{\text {total }}$, and	$\Gamma(\mu$	$\begin{aligned} & \left.+\nu_{\mu}\right) / \Gamma_{\text {tota }} \\ & \left.+\nu_{e}\right) / \Gamma_{\text {tota }} \end{aligned}$	$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$

Meson Particle Listings
$K^{ \pm}$

$\Gamma\left(\mu^{+} \nu_{\mu} \gamma\left(\mathrm{SD}^{+} \mathrm{INT}\right)\right) / \Gamma_{\text {total }}$
Γ_{14} / Γ
Interference term between internal Bremsstrahlung and SD^{+}term. See the "Note on $\pi^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ and $K^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ Form Factors" in the $\pi^{ \pm}$section of the Particle Data Listings above.
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{<\mathbf{2} .7} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AKIBA }} \frac{\text { TECN }}{\text { SPEC }}$
$\Gamma\left(\mu^{+} \nu_{\mu} \gamma\left(\mathrm{SD}^{-}+\mathrm{SD}^{-} \mathrm{INT}\right)\right) / \Gamma_{\text {total }}$
Γ_{15} / Γ
Sum of structure-dependent part with $-\gamma$ helicity (SD ${ }^{-}$term) and interference term between internal Bremsstrahlung and SD ${ }^{-}$term. See the "Note on $\pi^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ and $K^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ Form Factors" in the $\pi^{ \pm}$section of the Particle Data Listings above.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\substack{\text { 2.6 }}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AKIBA }} \quad 85 \quad \frac{\text { TECN }}{\text { SPEC }}$
${ }^{1}$ Assumes μ-e universality and uses constraints from $K \rightarrow e \nu \gamma$.
$\Gamma\left(e^{+} \nu_{e} \gamma\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right) \quad \Gamma_{\mathbf{1 6}} / \Gamma_{\mathbf{2}}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 4 8 3} \pm \mathbf{0 . 0 6 6} \pm \mathbf{0 . 0 1 3}} \frac{E V T S}{1.4 \mathrm{~K}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AMBROSINO } 09 \mathrm{E}} \frac{\text { CHG }}{\mathrm{KLOE}} \frac{\text { COMMENT }}{E_{\gamma} \text { in } 10-250 \mathrm{MeV} \text {, }}$
${ }^{1}$ AMBROSINO 09E measured the differential width $\mathrm{dR}_{\gamma} / \mathrm{d} E_{\gamma}=(1 / \Gamma(K \rightarrow \mu \nu))$ $\left(\mathrm{d} \Gamma(K \rightarrow e \nu \gamma) / \mathrm{d} E_{\gamma}\right)$. Result obtained by integrating the differential width over E_{γ} from 10 to 250 MeV .
$\Gamma\left(\pi^{0} e^{+} \nu_{e} \gamma\right) / \Gamma\left(\pi^{0} e^{+} \nu_{e}\right)$
Γ_{17} / Γ_{3}
VALUE (units 10^{-2}) EVTS
DOCUMENT ID TECN CHG COMMENT
$\mathbf{0 . 5 0 5} \pm \mathbf{0 . 0 3 2}$ OUR AVERAGE Error includes scale factor of $\frac{C H G}{1.3} \frac{C O M M E N T}{\text { see the ideogram below. }}$
$0.47 \pm 0.02 \pm 0.034476 \quad 1$ AKIMENKO 07 ISTR $-E_{\gamma}>10 \mathrm{MeV}, 0.6<$

$0.46 \pm 0.08 \quad 82 \quad 2$ BARMIN $\quad 91 \quad$ XEBC \quad| $\cos \left(\theta_{e \gamma}\right)<0.9$ |
| :---: |
| $E_{\gamma}>10 \mathrm{MeV}, 0.6<$ |
| $\cos \left(\theta_{e \gamma}\right)<0.9$ |

$0.56 \pm 0.04 \quad 192 \quad 3$ BOLOTOV 86 B CALO $-E_{\gamma}>10 \mathrm{MeV}$

- - We do not use the following data for averages, fits, limits, etc. - •
$1.81 \pm 0.03 \pm 0.074476 \quad 1$ AKIMENKO $07 \quad$ ISTR $\quad-\quad E_{\gamma}>10 \mathrm{MeV}, \theta_{e \gamma}>10^{\circ}$
$0.63 \pm 0.02 \pm 0.034476 \quad{ }^{1}$ AKIMENKO 07 ISTR $-E_{\gamma}>30 \mathrm{MeV}, \theta_{e \gamma}>20^{\circ}$
$1.51 \pm 0.25 \quad 82 \quad{ }^{2}$ BARMIN 91 XEBC $\quad E_{\gamma}>10 \mathrm{MeV}, \cos \left(\theta_{e \gamma}\right)$
$0.48 \pm 0.20 \quad 16 \quad{ }^{4}$ LJUNG $73 \mathrm{HLBC}+E_{\gamma} \stackrel{<0.98}{>} 30 \mathrm{MeV}$
$0.22 \underset{-0.10}{+0.15} \quad{ }^{4}$ LJUNG $73 \mathrm{HLBC}+E_{\gamma}>30 \mathrm{MeV}$
$0.76 \pm 0.28 \quad 13 \quad 5$ ROMANO $71 \mathrm{HLBC} \quad E_{\gamma}>10 \mathrm{MeV}$
$\begin{array}{lccc}0.53 \pm 0.22 & 5 \text { ROMANO } & 71 \mathrm{HLBC}+E_{\gamma}>30 \mathrm{MeV} \\ 1.2 & \pm 0.8 & \text { BEILOTTI } 67 \mathrm{HLBC} & E_{\gamma}>30 \mathrm{MeV}\end{array}$
${ }^{1}$ AKIMENKO 07 provides values for three kinematic regions. For averaging, we use value with $E_{\gamma}>10 \mathrm{MeV}$ and $0.6<\cos \left(\theta_{e \gamma}\right)<0.9$.
${ }^{2}$ BARMIN 91 quotes branching ratio $\Gamma\left(K \rightarrow e \pi^{0} \nu \gamma\right) / \Gamma_{\text {all }}$. The measured normalization is $\left[\Gamma\left(K \rightarrow e \pi^{0} \nu\right)+\Gamma\left(K \rightarrow \pi^{+} \pi^{+} \pi^{-}\right)\right]$. For comparison with other experiments we used $\Gamma\left(K \rightarrow e \pi^{0} \nu\right) / \Gamma_{\text {all }}=0.0482$ to calculate the values quoted here.
${ }^{3} \cos \left(\theta_{e \gamma}\right)$ between 0.6 and 0.9.
${ }^{4}$ First LJUNG 73 value is for $\cos \left(\theta_{e \gamma}\right)<0.9$, second value is for $\cos \left(\theta_{e \gamma}\right)$ between 0.6 and 0.9 for comparison with ROMANO 71.
${ }^{5}$ Both ROMANO 71 values are for $\cos \left(\theta_{e \gamma}\right)$ between 0.6 and 0.9 . Second value is for comparison with second LJUNG 73 value. We use lowest E_{γ} cut for Summary Table value. See ROMANO 71 for E_{γ} dependence.

$\begin{equation*} \Gamma\left(\pi^{0} e^{+} \nu_{e} \gamma(S D)\right) / \Gamma_{\text {total }} \tag{18} \end{equation*}$ Structure-dependent part.							
VALUE (units 10^{-5})	CL\%	DOCUMENT ID		TECN			
<5.3	90	BOLOTOV	86B	CALO	-		
$\Gamma\left(\pi^{0} \mu^{+} \nu_{\mu} \gamma\right) / \Gamma_{\text {total }}$ ($\Gamma_{19} / \Gamma^{\prime}$							
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	HG	COMMENT	
1.25 ± 0.25 OUR AVERAGE							
$1.10 \pm 0.32 \pm 0.05$	23	${ }^{1}$ ADLER		B787		$30<E_{\gamma}$	0 MeV
$1.46 \pm 0.22 \pm 0.32$	153	2 TCHIKILEV		ISTR		$30<E_{\gamma}$	60 MeV
- - We do not use the following data for averages, fits, limits, etc. - - -							
$2.4 \pm 0.5 \pm 0.6$		SHIMIZU		K470		$\begin{gathered} E_{\gamma}>30 \\ \Theta_{\mu \gamma}> \end{gathered}$	
<6.1	0	LJUNG		HLBC		$E(\gamma)>30$	
${ }^{1}$ Value obtained from $\mathrm{B}\left(K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} \gamma\right)=(2.51 \pm 0.74 \pm 0.12) \times 10^{-5}$ obtained in the kinematic region $E_{\gamma}>20 \mathrm{MeV}$, and then theoretical $K_{\mu 3 \gamma}$ spectrum has been used. Also $\mathrm{B}\left(K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} \gamma\right)=(1.58 \pm 0.46 \pm 0.08) \times 10^{-5}$, for $E_{\gamma}>30 \mathrm{MeV}$ and $\theta_{\mu \gamma}>20^{\circ}$, was determined.							
${ }^{2}$ Obtained from measuring $\mathrm{B}\left(K_{\mu 3}\right) / \mathrm{B}\left(K_{\mu 3}\right)$ and using PDG 02 value $\mathrm{B}\left(K_{\mu 3}\right)=3.27 \%$. $\mathrm{B}\left(K_{\mu 3 \gamma}\right)=(8.82 \pm 0.94 \pm 0.86) \times 10^{-5}$ is obtained for $5 \mathrm{MeV}<E_{\gamma}<30 \mathrm{MeV}$.							

$\Gamma\left(\pi^{0} \pi^{0} e^{+} \nu_{e} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0}} / \Gamma$ $\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<5} \frac{C L \%}{90} \frac{E V T S}{0} \quad \frac{\text { DOCUMENT ID }}{\text { BARMIN } 92} \frac{\text { TECN }}{\text { XEBC }}+\frac{C H G}{E_{\gamma}>10 \mathrm{MeV}}$
$\Gamma\left(\pi^{+} \pi^{0} \gamma(\right.$ INT $\left.)\right) / \Gamma_{\text {total }}$
The $K^{+} \rightarrow \pi^{+} \pi^{0} \gamma$ differential decay rate can be described in terms of $\mathrm{T}_{\pi^{+}}$, the charged pion kinetic energy, and $\mathrm{W}^{2}=\left(\mathrm{P}_{K} \cdot \mathrm{P}_{\gamma}\right)\left(\mathrm{P}_{\pi^{+}} \cdot \mathrm{P}_{\gamma}\right) /\left(m_{K}{\stackrel{m}{\pi^{+}}}\right)^{2}$; then we can write d ${ }^{2} \Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{0} \gamma\right) /\left(\mathrm{dT}_{\pi^{+}} \mathrm{dW}^{2}\right)=\mathrm{d}^{2} \Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{0} \gamma\right)_{I B}$ $/\left(\mathrm{dT}_{\pi^{+}} \mathrm{dW}^{2}\right)\left[1+2 \cos \left(\pm \phi+\delta_{1}^{1}-\delta_{0}^{2}\right) m_{\pi}^{2} m_{K}^{2} \mathrm{~W}^{2} \mathrm{X}_{E}+m_{\pi}^{4} m_{K}^{4}\left(\mathrm{X}_{E}^{2}+\right.\right.$ $\left.\mathrm{X}_{M}^{2}\right) \mathrm{W}^{4}$. The IB differential and total branching ratios are expressed in terms of the non-radiative experimental width $\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{0}\right)$ by Low's theorem. Using PDG $10 \mathrm{~B}\left(K^{+} \rightarrow \pi^{+} \pi^{0}\right)=0.2066 \pm 0.0008$, one obtains respectively $\mathrm{B}\left(K^{+} \rightarrow\right.$ $\left.\pi^{+} \pi^{0} \gamma\right)_{I B}\left(55<\mathrm{T}_{\pi^{+}}<90 \mathrm{MeV}\right)=2.55 \times 10^{-4}$ and $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} \pi^{0} \gamma\right)_{I B}(0$ $<\mathrm{T}_{\pi^{+}}<80 \mathrm{MeV}$) $=1.80 \times 10^{-4}$. Fitting respectively the piece proportional to W^{2} and the piece proportional to W^{4}, the interference contribution (INT), proportional to X_{E}, and the direct contribution (DE) proportional to $\mathrm{X}_{E}^{2}+\mathrm{X}_{M}^{2}$ are extracted.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{- 4 . 2 4} \pm \mathbf{0 . 6 3} \pm \mathbf{0 . 7 0}} \frac{\text { EVTS }}{600 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY 10A }} \frac{\text { TECN }}{\text { NA } 48} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{\mathrm{T}_{\pi^{+}} 0-80 \mathrm{MeV}}$
${ }^{1}$ The cut on the photon energy implies $W^{2}>0.2$. BATLEY 10A obtains the INT and DE fractional branchings with respect to IB from a simultaneous kinematical fit of INT and DE and then we use the PDG 10 value for $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} \pi^{0}\right)=20.66 \pm 0.08$ to determine the IB. The INT and DE correlation coefficients -0.83 . Assuming a constant electric amplitude, X_{E}, this INT value implies $\mathrm{X}_{E}=-24 \pm 6 \mathrm{GeV}^{-4}$
$\Gamma\left(\pi^{+} \pi^{0} \gamma(\mathrm{DE})\right) / \Gamma_{\text {total }} \quad \Gamma_{22} / \Gamma$ Direct emission (DE) part of $\Gamma\left(\pi^{+} \pi^{0} \gamma\right) / \Gamma_{\text {total }}$, assuming that interference (INT) component is zero.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{5 . 9 9} \pm \mathbf{0 . 2 7} \pm \mathbf{0 . 2 5}} \frac{\text { EVTS }}{600 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY 10A }} \frac{\text { TECN }}{\text { NA } 48} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{\mathrm{T}_{\pi^{+}} 0-80 \mathrm{MeV}}$

$3.8 \pm 0.8 \pm 0.7$	10k	ALIEV	06	K470	+	$\mathrm{T}_{\pi^{+}} 55-90 \mathrm{MeV}$
$3.7 \pm 3.9 \pm 1.0$	930	UVAROV	06	ISTR	-	$\mathrm{T}_{\pi^{-}}{ }^{55-90} \mathrm{MeV}$
$3.2 \pm 1.3 \pm 1.0$	4 k	ALIEV	03	K470	$+$	$\mathrm{T}_{\pi^{+}}{ }^{55-90} \mathrm{MeV}$
$6.1 \pm 2.5 \pm 1.9$	4 k	ALIEV	03	K470	+	$\mathrm{T}_{\pi^{+}}$full range
$4.7 \pm 0.8 \pm 0.3$	20k	${ }^{2}$ ADLER	00c	B787	+	$\mathrm{T}_{\pi^{+}}{ }^{55-90 \mathrm{MeV}}$
$20.5 \pm 4.6{ }_{-2.3}^{+3.9}$		BOLOTOV	87	WIRE	-	$\mathrm{T}_{\pi^{-}}{ }^{55-90} \mathrm{MeV}$
$15.6 \pm 3.5 \pm 5.0$		ABRAMS	72	ASPK	\pm	$\mathrm{T}_{\pi^{ \pm}}{ }^{55-90 \mathrm{MeV}}$

${ }^{1}$ The cut on the photon energy implies $\mathrm{W}^{2}>0.2$. BATLEY 10 A obtains the INT and DE fractional branchings with respect to IB from a simultaneous kinematical fit of INT and DE and then we use the PDG 10 value for $\mathrm{B}\left(K^{+} \rightarrow \pi^{+} \pi^{0}\right)=20.66 \pm 0.08$ to determine the IB. The INT and DE correlation coefficients -0.93. Assuming constant electric and magnetic amplitudes, X_{E} and X_{M}, these INTand DE values imply $\mathrm{X}_{E}=$ $-24 \pm 6 \mathrm{GeV}^{-4}$ and $\mathrm{X}_{M}=-254 \pm 9 \mathrm{GeV}^{-4}$.
${ }^{2}$ ADLER 00 c measures the INT component to be $(-0.4 \pm 1.6) \%$ of the inner bremsstrahlung (IB) component.
$\Gamma\left(\pi^{+} \pi^{0} \pi^{0} \gamma\right) / \Gamma\left(\pi^{+} \pi^{0} \pi^{0}\right)$
$\Gamma_{24} / \Gamma_{10}$
VALUE (units 10^{-4})
DOCUMENT ID $\frac{\text { TECN }}{\text { CHG }} \frac{\text { COMMENT }}{5(\gamma)>10 \mathrm{MeV}}$

$4.3_{-1.7}^{+3.2}$

$\Gamma\left(\pi^{+} \pi^{+} \pi^{-} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{0.071}$ EVTS
0.071 ± 0.005 OUR AVERAGE
$0.071 \pm 0.005 \quad 450$
1.10 ± 0.48
Γ_{25} / Γ
DOCUMENT ID TECN CHG COMMENT
$\begin{array}{llll}48 & 7 & \text { BARMIN } & 89 \\ \text { XEBC } & E(\gamma)>30 \mathrm{MeV} \\ E(\gamma)>5 \mathrm{MeV}\end{array}$
$\Gamma\left(\pi^{+} \pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$

SHAPKIN	19	OKA	$+\quad E(\gamma)>30 \mathrm{MeV}$
BARMIN	89	XEBC	$E(\gamma)>5 \mathrm{MeV}$
STAMER	65	EMUL $+\quad$	
$E(\gamma)>11 \mathrm{MeV}$			

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{4 . 2 4} \pm \mathbf{0 . 1 4}} \frac{\text { EVTS }}{4.9 \mathrm{~K}}$
$1 \frac{\text { DOCUMENT ID }}{1} \frac{19}{\text { BATLEY }} \frac{\text { TECN }}{\text { NA48 }}$
Γ_{23} / Γ
${ }^{1}$ BATLEY 19 result is obtained from an exposure of 1.7×10^{11} charged kaon decays recorded in 2003-2004. The study of the kinematic space shows evidence for a structure dependent contribution consistent with predictions from chiral perturbation theory.

$\Gamma\left(\pi^{+} \gamma \gamma\right) / \Gamma_{\text {total }}$

Γ_{26} / Γ
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{1 0 . 1} \pm \mathbf{0 . 6 ~ O U R}} \frac{\text { CL\% }}{\text { AVERAGE }}$
DOCUMENT ID TECN CHG COMMENT
$10.03 \pm 0.51 \pm 0.24 \quad 215 \quad 1$ LAZZERONI $14 \quad$ NA62 \pm
$11 \pm 3 \quad \pm 1 \quad 31 \quad{ }^{2}$ KITCHING $97 \quad$ B787 +

- - We do not use the following data for averages, fits, limits, etc. - . -

$9.10 \pm 0.72 \pm 0.22$	149	3 BATLEY	14	NA48	\pm		
<0.083	90		4	ARTAMONOV 05	B949	+	$\mathrm{P}_{\pi}>213 \mathrm{MeV} / \mathrm{c}$
<10	90	0	ATIYA	90 B	B 787	+	$\mathrm{T} \pi 117-127 \mathrm{MeV}$
<84	90	0	ASANO	82	CNTR +	$\mathrm{T} \pi 117-127 \mathrm{MeV}$	
-420 ± 520		0	ABRAMS	77	SPEC	+	$\mathrm{T} \pi<92 \mathrm{MeV}$
<350	90	0	LJUNG	73	HLBC	+	$6-102,114-127 \mathrm{MeV}$
<500	90	0	KLEMS	71	OSPK +	$\mathrm{T} \pi<117 \mathrm{MeV}$	
-100 ± 600			CHEN	68	OSPK +	$\mathrm{T} \pi 60-90 \mathrm{MeV}$	

${ }^{1}$ LAZZERONI 14 combines NA62 and NA48/2 results. The result for the full kinematic range is extrapolated from the model-independent branching fraction $(9.65 \pm 0.61 \pm$ $0.14) \times 10^{-7}$ for $\left(m_{\gamma \gamma} / m_{K}\right)^{2}>0.2$. The measured ChPT parameter $\hat{c}=1.86 \pm 0.25$.
${ }^{2}$ KITCHING 97 is extrapolated from their model-independent branching fraction ($6.0 \pm$ $1.5 \pm 0.7) \times 10^{-7}$ for $100 \mathrm{MeV} / c<\mathrm{P}_{\pi^{+}}<180 \mathrm{MeV} / c$ using Chiral Perturbation Theory.
${ }^{3}$ BATLEY 14 uses data collected in 2003 and 2004. Branching ratio is obtained by determining the parameter $\hat{c}=1.41 \pm 0.38 \pm 0.11$ and integrating the $\mathcal{O}\left(p^{6}\right)$ chiral spectrum. A model independent value for the branching ratio is also obtained ($8.77 \pm$ $0.87 \pm 0.17) \times 10^{-7}$ for kinematic range $\left(m_{\gamma \gamma} / m_{K}\right)^{2}>0.2$.
${ }^{4}$ ARTAMONOV 05 limit assumes ChPT with $\hat{c}=1.8$ with unitarity corrections. With $\hat{c}=$ 1.6 and no unitarity corrections they obtain < 2.3×10^{-8} at 90% CL. This partial branching ratio is predicted to be 6.10×10^{-9} and 0.49×10^{-9} for the cases with and without unitarity correction.
$\Gamma\left(\pi^{+} 3 \gamma\right) / \Gamma_{\text {total }}$
Γ_{27} / Γ Values given here assume a phase space pion energy spectrum.

$$
\begin{array}{llllll}
<3.0 & 90 & \text { KLEMS } & 71 & \text { OSPK }+ & T(\pi)>117 \mathrm{MeV}
\end{array}
$$

$\Gamma\left(\pi^{+} e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-8}\right)}{\mathbf{1 . 1 9} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{113} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { BATLEY }}{} \frac{\text { TECN }}{\text { NA48 }} \frac{\text { COMMENT }}{m_{\text {ee } \gamma}>260 \mathrm{MeV}}$
${ }^{1}$ BATLEY 08 also reports the Chiral Perturbation Theory parameter $\hat{c}=0.9 \pm 0.45$ obtained using the shape of the $e^{+} e^{-} \gamma$ invariant mass spectrum. By extrapolating the theoretical amplitude to $m_{e e \gamma}<260 \mathrm{MeV}$, it obtains the inclusive $\mathrm{B}\left(K^{+} \rightarrow\right.$ $\left.\pi^{+} e^{+} e^{-} \gamma\right)=(1.29 \pm 0.13 \pm 0.03) \times 10^{-8}$, where the first error is the combined statistical and systematic errors and the second error is from the uncertainty in \hat{c}.

- - We do not use the following data for averages, fits, limits, etc. • • $\begin{array}{llll}<50 & 90 & \text { ADLER } & 98 \\ \text { B787 }\end{array}$
$\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{V A L U E\left(\text { units } 10^{-7}\right)} \quad \boldsymbol{\Gamma}_{\mathbf{3 4}} / \boldsymbol{\Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-7}\right)}{<4.1} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ATIYA }} \frac{89}{\text { B787 }} \frac{\text { TECN }}{+}$

$\Gamma\left(\pi^{+} \pi^{+} e^{-} \bar{\nu}_{e}\right) / \Gamma\left(\pi^{+} \pi^{-} e^{+} \nu_{e}\right) \quad \Gamma_{35} / \Gamma_{6}$ Test of $\Delta S=\Delta Q$ rule.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<3} \frac{C L \%}{9} \frac{\text { EVTS }}{3} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { SLOCH }}$
- - We do not use the following data for averages, fits, limits, etc. - -
<130. $950 \quad$ BOURQUIN 71 ASPK
${ }^{1}$ BLOCH 76 quotes 3.6×10^{-4} at $C L=95 \%$, we convert.
$\Gamma\left(\pi^{+} \pi^{+} \mu^{-} \boldsymbol{\nu}_{\mu}\right) / \Gamma_{\text {total }}$
$\Gamma 36 / \Gamma$
VALUE (units $\left.10^{-6}\right)$
$<3.0$$\frac{C L \%}{95} \frac{C V T S}{0} \quad \begin{aligned} & \text { DOCUMENT ID } \\ & \text { BIRGE } \\ & \frac{\text { TECN }}{}\end{aligned}$
$\Gamma\left(\pi^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 7}} / \Gamma$
Test for $\Delta S=1$ weak neutral current. Allowed by combined first-order weak and electromagnetic interactions.
VALUE (units 10^{-7}) EVTS DOCUMENTID TECN CHG
3.00 ± 0.09 OUR AVERAGE
$3.11 \pm 0.04 \pm 0.12 \quad 7253$
$2.94 \pm 0.05 \pm 0.14 \quad 10300$
$10300 \quad 2$ APPEL 99 SPEC
$\begin{array}{lrllll}2.7 \pm 0.5 & 500 & \text { ALLIEGRO } & 92 & \text { SPEC } & + \\ \text { BLOCH } & 75 & \text { SPEC } & +\end{array}$
${ }^{1}$ Value extrapolated from a measurement in the region $\mathrm{z}=\left(m_{e e} / m_{K}\right)^{2}>0.08$. BATLEY 09 also evaluated the shape of the form factor using four different theoretical models.
${ }^{2}$ APPEL 99 establishes vector nature of this decay and determines form factor $f(Z)=$ $f_{0}(1+\delta Z), Z=M_{e e}^{2} / m_{K}^{2}, \delta=2.14 \pm 0.13 \pm 0.15$.
${ }^{3}$ ALLIEGRO 92 assumes a vector interaction with a form factor given by $\lambda=0.105 \pm$
40.035 ± 0.015 and a correlation coefficient of -0.82 .
${ }^{4}$ BLOCH 75 assumes a vector interaction.

Meson Particle Listings
$K^{ \pm}$
$\Gamma\left(\pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}{ }_{\text {Test for }} \Delta S=1$ weak neutral current. Allowed by higher-order electroweak interac- tions.
VALUE (units 10^{-8}) CL\% EVTS DOCUMENT ID TECN CHG COMMENT 9.4 ± 0.6 OUR AVERAGE Error includes scale factor of 2.6. See the ideogram below.
$9.62 \pm 0.21 \pm 0.13 \quad 3120 \quad{ }^{1}$ BATLEY 11 A NA48 $\pm \quad 2003-04$ data
$\begin{array}{lrll}9.8 \pm 1.0 \pm 0.5 & 110 & 2 \text { PARK } & 02 \\ \text { HYCP } & \pm\end{array}$
$\begin{array}{llllll}9.22 \pm 0.60 \pm 0.49 & 402 & 3 \mathrm{MA} & 00 & \text { B865 } & + \\ 5.0 \pm 0.4 \pm 0.9 & 207 & 4 \text { ADLER } & 97 \mathrm{C} & \text { B787 } & +\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - -

9.7	± 1.2	± 0.4	65	PARK	02	HYCP
10.0	± 1.9	± 0.7		35	PARK	02
<23						

${ }^{1}$ BATLEY 11 A also studies the form factor $f(z)$ dependence of the decay, described via single photon exchange: i) assuming a linear form factor, $f(z)=f_{0}(1+\delta \mathrm{z}), \mathrm{z}=$ $\left(M_{\mu \mu} / m_{K}\right)^{2}$, finding $f_{0}=0.470 \pm 0.040$ and $\delta=3.11 \pm 0.57$ and ii) assuming a linear form factor including $\pi-\pi$ rescattering, $W_{\pi \pi}$, as in DAMBROSIO 98A, finding $f(z)=$ $G_{F} m_{K}^{2}\left(a_{+}+b_{+} \mathrm{z}\right)+W_{\pi \pi}(\mathrm{z}), a_{+}=-0.575 \pm 0.039, b_{+}=-0.813 \pm 0.145$.
${ }^{2}$ PARK 02 " \pm " result comes from combining $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$and $K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}$, assuming $C P$ is conserved
3^{3} MA 00 establishes vector nature of this decay and determines form factor $f(z)=f_{0}$ (1 $+\delta \mathrm{z}), \mathrm{z}=\left(M_{\mu \mu} / m_{K}\right)^{2}, \delta=2.45_{-0.95}^{+1.30}$.
${ }^{4}$ ADLER 97 C gives systematic error 0.7×10^{-8} and theoretical uncertainty 0.6×10^{-8}, which we combine in quadrature to obtain our second error

$\Gamma\left(\pi^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
Γ_{38} / Γ
$\Gamma\left(\pi^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
「39/Г
Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interactions. Branching ratio values are extrapolated from the momentum or energy regions shown in the comments assuming Standard Model phase space except for those labeled "Scalar" or "Tensor" to indicate the assumed non-Standard-Model interaction.

VALUE (units 10^{-9}) CL\% EVTS DOCUMENT ID TECN CHG COMMENT
$\mathbf{0 . 1 7 3} \mathbf{=} \mathbf{+ 0 . 1 1 5} \mathbf{0 . 1 0 5} \quad 1$ ARTAMONOV $08 \mathrm{~B} 949+140<\mathrm{P}_{\pi}<199 \mathrm{MeV}$,
$211 \stackrel{\pi}{<} \mathrm{P}_{\pi}<229 \mathrm{MeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

< 1.1	90	1	2 CORTINA-GIL 19B	NA62	+	decay-in-flight
$\begin{gathered} 0.789+0.926 \\ -0.510 \end{gathered}$		3	3 ARTAMONOV 08	B949	+	$140<\mathrm{P}_{\pi}<199 \mathrm{MeV}$
< 2.2	90	1	4 ADLER 04	B787	+	$211<P_{\pi}<229 \mathrm{MeV}$
<2.7	90		ADLER 04	B787	+	Scalar
< 1.8	90		ADLER 04	B787	$+$	Tensor
$0.147_{-0.089}^{+0.130}$		3	5 ANISIMOVSK.. 04	B949	+	$211<P_{\pi}<229 \mathrm{MeV}$
$0.157_{-0.082}^{+0.175}$		2	ADLER 02	B787	+	$P_{\pi}>211 \mathrm{MeV} / \mathrm{C}$
<4.2	90	1	ADLER 02C	B787	$+$	$140<P_{\pi}<195 \mathrm{MeV}$
<4.7	90		${ }^{6}$ ADLER $\quad 02 \mathrm{C}$	B787	+	Scalar
<2.5	90		6 ADLER 02C	B787	+	Tensor
$0.15 \begin{gathered} +0.34 \\ -0.12 \end{gathered}$		1	ADLER 00	B787		In ADLER 02
${ }_{0.42}{ }_{-0.97}^{+0.35}$		1	ADLER 97	B787		
< 2.4	90		ADLER 96	B787		
<7.5	90		ATIYA 93	B787	$+$	$T(\pi)$ 115-127 MeV
<5.2	90		7 ATIYA 93	B787	+	
<17	90	0	ATIYA 93B	B787	+	$T(\pi) 60-100 \mathrm{MeV}$
<34	90		ATIYA 90	B787	+	
<140	90		ASANO 81b	CNTR	+	$T(\pi)$ 116-127 MeV

${ }^{1}$ Value obtained combining ANISIMOVSKY 04, ADLER 04, and the present ARTAMONOV 08 results.
${ }^{2}$ Based on a sample of $1.21 \times 10^{11} \mathrm{~K}^{+}$decays collected in 2016. One signal candidate is observed while the expected background is 0.152 events. The single-event-sensitivity is estimated to be 3.15×10^{-10}
${ }^{3}$ Observed 3 events with an estimated background of $0.93 \pm 0.17_{-0.24}^{+0.32}$. Signal-tobackground ratio for each of these 3 events is $0.20,0.42$, and 0.47 .
${ }^{4}$ Value obtained combining the previous result ADLER 02c with 1 event and the present result with 0 events to obtain an expected background 1.22 ± 0.24 events and 1 event observed.
5 Value obtained combining the previous E787 result ADLER 02 with 2 events and the present E949 with 1 event. The additional event has a signal-to-background ratio 0.9. Superseded by ARTAMONOV 08
${ }_{7}^{6}$ Superseded by ADLER 04.
${ }^{7}$ Combining ATIYA 93 and ATIYA 93B results. Superseded by ADLER 96.
$\Gamma\left(\pi^{+} \pi^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{<\mathbf{4} .3} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADLER }} \quad 01$
${ }^{1}$ Search region defined by $90 \mathrm{MeV} / c<P_{\pi^{+}}<188 \mathrm{MeV} / c$ and $135 \mathrm{MeV}<E_{\pi^{0}}<180 \mathrm{MeV}$.
$\Gamma\left(\boldsymbol{\mu}^{-} \boldsymbol{\nu}^{+\boldsymbol{e}^{+}} \boldsymbol{e}^{+}\right) / \Gamma\left(\pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{e}^{+} \boldsymbol{\nu}_{\boldsymbol{e}}\right)$
$\Gamma\left(\mu^{-} \nu e^{+} e^{+}\right) / \Gamma\left(\pi^{+} \pi^{-} e^{+} \nu_{e}\right)$
Γ_{41} / Γ_{6}
Test of lepton family number conservation.
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{<0.5} \frac{C L \%}{90} \frac{\text { EVTS }}{0} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DIAMANT-... } 76} \frac{\text { TECN }}{\text { SPEC }} \frac{C H G}{+}$
${ }^{1}$ DIAMANT-BERGER 76 quotes this result times our $1975 \pi^{+} \pi^{-} e \nu$ BR ratio.
$\Gamma\left(\mu^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
Forbidden by lepton family number conservation.

- - We do not use the following data for averages, fits, limits, etc. $-\quad$ beam
$<0.012 \quad 90 \quad 1$ COOPER 82 HLBC Wideband ν beam
${ }^{1}$ COOPER 82 and LYONS 81 limits on ν_{e} observation are here interpreted as limits on lepton family number violation in the absence of mixing.
$\Gamma\left(\pi^{+} \mu^{+} e^{-}\right) / \Gamma_{\text {total }}$
Test of lepton family number conservation.
$\frac{V A L U E \text { (units } 10^{-10} \text {) }}{<0.13} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { SHER }} \frac{C H G}{\text { RVUE }}$
- - We do not use the following data for averages, fits, limits, etc. • • •

<0.21	90	SHER	05	B865	+
<0.39	90	APPEL	00	B865	+
<2.1	90	LEE	90	SPEC	+

${ }^{1}$ This result combines SHER 051998 data, APPEL 001996 data, and data from BERGMAN 97 and PISLAK 97 theses, all from BNL-E865, with LEE 90 BNL-E777 data.

$\frac{V A L U E}{<\mathbf{2 . 2} \times \mathbf{1 0}^{\mathbf{- 1 0}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { CORTINA-GIL 19A }} \frac{\text { TECN }}{\text { NA62 }}+\frac{C H G}{+} \frac{\text { COMMENT }}{\text { decay-in-flight }}$ - - We do not use the following data for averages, fits, limits, etc. - - -

- - We do not use the following data for averages, fits, limits, etc. - - .

$<8.6 \times 10^{-11}$	90	2	BATLEY	17	NA48
1.1×10^{-9}	90	BATLEY	11 A	NA48	\pm
$<3.0 \times 10^{-9}$	90	APPEL	00 B	B865	+
$<1.5 \times 10^{-4}$	90	3 LITTENBERG	92	HBC	

${ }^{1}$ CORTINA-GIL 19A results are obtained with 2017 data.
2 BATLEY 17 result is based on data taken in 2003 to 2004. Limits for two-body resonance
X in $K^{ \pm} \rightarrow \pi \mu \mu$ decays are also reported.
${ }^{3}$ LITTENBERG 92 is from retroactive data analysis of CHANG 68 bubble chamber data.

CPT VIOLATION TESTS IN $K^{ \pm}$DECAYS

$$
\Delta=\left(\Gamma\left(K^{+}\right)-\Gamma\left(K^{-}\right)\right) /\left(\Gamma\left(K^{+}\right)+\Gamma\left(K^{-}\right)\right)
$$

$\Delta\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}\right)$ RATE DIFFERENCE/SUM

Value (\%)	DOCUMENT ID	TECN
-0.27 ± 0.21	FORD 67	CNTR
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)$ RATE VALUE (\%)	ERENCE/SUM DOCUMENT ID	TECN
0.4 ± 0.6	HERZO 69	OSPK

CP VIOLATION TESTS IN $K^{ \pm}$DECAYS

$\Delta=\left(\Gamma\left(K^{+}\right)-\Gamma\left(K^{-}\right)\right) /\left(\Gamma\left(K^{+}\right)+\Gamma\left(K^{-}\right)\right)$
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} e^{+} e^{-}\right)$RATE DIFFERENCE/SUM
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{\mathbf{- 2 . 2} \pm \mathbf{1 . 5} \pm \mathbf{0 . 6}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} 09 \frac{\text { TECN }}{\text { NA48 }}$
${ }^{1}$ This implies an upper limit of 2.1×10^{-2} at $90 \% \mathrm{CL}$.
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$RATE DIFFERENCE/SUM

value	DOCUMENT ID		TECN
$\mathbf{0 . 0 1 0} \pm 0.023$ OUR AVERAGE			
0.011 ± 0.023	${ }^{1}$ batLey	11A	NA48
$-0.02 \pm 0.11 \pm 0.04$	PARK	02	HYCP

$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \gamma\right)$ RATE DIFFERENCE/SUM

VALUE (units 10^{-3})	EVTS	DOCUMENT		TECN	CHG	COMMENT
0.0土 1.2 OUR AVERAGE						
$0.0 \pm 1.0 \pm 0.6$	1 M	${ }^{1}$ BATLEY	10A	NA48		
4 ± 29	2461	SMITH	76	WIRE	\pm	$\mathrm{E}_{\pi} 55-90 \mathrm{MeV}$
± 20	400	AB	73в	ASPK		$\mathrm{E}_{T} 51-100 \mathrm{M}$

${ }^{1}$ This value implies the upper bound for this asymmetry 1.5×10^{-3} at $90 \% \mathrm{CL}$.
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right)$RATE DIFFERENCE/SUM
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 0 4} \pm \mathbf{0 . 0 6}} \frac{\text { EVTS }}{\frac{\text { DOCUMENT ID }}{\text { FORD }} 70} \frac{\text { TECN }}{\text { ASPK }} \frac{\text { CHG }}{}$

- - We do not use the following data for averages, fits, limits, etc. - -

-0.01 ± 0.08		2 SMITH	73	ASPK
0.05 ± 0.07	$3.2 M$	1 FORD	70	ASPK
-0.25 ± 0.45		FLETCHER	67	OSPK
-0.02 ± 0.11		1 FORD	67	CNTR

${ }^{1}$ First FORD 70 value is second FORD 70 combined with FORD 67.
${ }^{2}$ SMITH 73 value of $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$rate difference is derived from SMITH 73 value of $K^{ \pm} \rightarrow \pi^{ \pm} 2 \pi^{0}$ rate difference.
$\Delta\left(K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\right)$ RATE DIFFERENCE/SUM

-0.02 ± 0.28 OUR AVERAGE		DOCUMENT ID		TECN	CHG
0.04 ± 0.29		SMITH	73	ASPK	\pm
-0.6 ± 0.9	1802	HERZO	69	OSPK	

T VIOLATION TESTS IN K^{+}AND K^{-}DECAYS

$\boldsymbol{P}_{\boldsymbol{T}}$ in $\boldsymbol{K}^{+} \rightarrow \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}$
T -violating muon polarization. Sensitive to new sources of $C P$ violation beyond the Standard Model.
$\frac{V A L U E\left(\text { unit } 10^{-3}\right)}{-1.7 \pm 2.3 \pm 1.1} \quad \frac{\text { EVTS }}{\frac{\text { DOCUMENT ID }}{\text { ABE }} \frac{\text { TECN }}{\text { 04F }} \frac{\text { CHG }}{+} .4246}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-4.2 \pm 4.9 \pm 0.9 \quad 3.9 \mathrm{M} \quad \mathrm{ABE}$ 995 K246 +
1^{1} Includes three sets of data: 96-97 (ABE 99s), 98, and 99-00 totaling about three times the ABE 995 data sample. Corresponds to $\mathrm{P}_{T}<5.0 \times 10^{-3}$ at $90 \% \mathrm{CL}$.
P_{T} in $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma$
T-violating muon polarization. Sensitive to new sources of $C P$ violation beyond the Standard Model
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{- 0 . 6 4} \pm \mathbf{1 . 8 5} \pm \mathbf{0 . 1 0}} \frac{\text { EVTS }}{114 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ANISIMOVSK... } 03} \frac{\text { TECN }}{\mathrm{K} 246} \frac{\text { CHG }}{+}$
${ }^{1}$ Muons stopped and polarization measured from decay to positrons.
$\operatorname{Im}(\xi)$ in $K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu}$ DECAY (from transverse μ pol.) Test of T reversal invariance

DOCUMENTID TECN CHG COMMENT
$\mathbf{- 0 . 0 0 6} \pm 0.008$ OUR AVERAGE
$-0.0053 \pm 0.0071 \pm 0.0036 \quad 1 \mathrm{ABE} \quad$ 04F K246 +
$-0.016 \pm 0.025 \quad 20 \mathrm{M}$ CAMPBELL 81 CNTR + Pol.

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.013 \pm 0.016 \pm 0.003 \quad 3.9 \mathrm{M} \quad \mathrm{ABE} \quad$ 99S CNTR $+p_{T} K^{+}$at rest
1 Includes three sets of data: 96-97 (ABE 99S), 98, and 99-00 totaling about three times the ABE 99S data sample. Corresponds to $\operatorname{Im}(\xi)<0.016$ at $90 \% \mathrm{CL}$.

DALITZ PLOT PARAMETERS FOR

$K \rightarrow 3 \pi$ DECAYS
Revised 1999 by T.G. Trippe (LBNL).
The Dalitz plot distribution for $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}, K^{ \pm} \rightarrow$ $\pi^{0} \pi^{0} \pi^{ \pm}$, and $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ can be parameterized by a series expansion such as that introduced by Weinberg [1]. We use the form

$$
\begin{align*}
& |M|^{2} \propto 1+g \frac{\left(s_{3}-s_{0}\right)}{m_{\pi^{+}}^{2}}+h\left[\frac{s_{3}-s_{0}}{m_{\pi^{+}}^{2}}\right]^{2} \\
& \quad+j \frac{\left(s_{2}-s_{1}\right)}{m_{\pi^{+}}^{2}}+k\left[\frac{s_{2}-s_{1}}{m_{\pi^{+}}^{2}}\right]^{2} \\
& \quad+f \frac{\left(s_{2}-s_{1}\right)}{m_{\pi^{+}}^{2}} \frac{\left(s_{3}-s_{0}\right)}{m_{\pi^{+}}^{2}}+\cdots, \tag{1}
\end{align*}
$$

where $m_{\pi^{+}}^{2}$ has been introduced to make the coefficients g, h, j, and k dimensionless, and

$$
\begin{aligned}
& s_{i}=\left(P_{K}-P_{i}\right)^{2}=\left(m_{K}-m_{i}\right)^{2}-2 m_{K} T_{i}, i=1,2,3, \\
& s_{0}=\frac{1}{3} \sum_{i} s_{i}=\frac{1}{3}\left(m_{K}^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)
\end{aligned}
$$

Here the P_{i} are four-vectors, m_{i} and T_{i} are the mass and kinetic energy of the $i^{\text {th }}$ pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_{3} (or T_{3}) of the Dalitz plot, while h and k measure the quadratic dependence on s_{3} and $\left(s_{2}-s_{1}\right)$, respectively. The coefficient j is related to the asymmetry of the plot and must be zero if $C P$ invariance holds. Note also that if $C P$ is good, g, h, and k must be the same for $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$as for $K^{-} \rightarrow \pi^{-} \pi^{-} \pi^{+}$.

Since different experiments use different forms for $|M|^{2}$, in order to compare the experiments we have converted to g, h, j, and k whatever coefficients have been measured. Where such conversions have been done, the measured coefficient a_{y}, a_{t}, a_{u}, or a_{v} is given in the comment at the right. For definitions of

Meson Particle Listings
$K^{ \pm}$
these coefficients, details of this conversion, and discussion of the data, see the April 1982 version of this note [2].

References

1. S. Weinberg, Phys. Rev. Lett. 4, 87 (1960).
2. Particle Data Group, Phys. Lett. 111B, 69 (1982).
```
    ENERGY DEPENDENCE OF K# DALITZ PLOT
matrix element }\mp@subsup{|}{}{2}=1+gu+h\mp@subsup{u}{}{2}+k\mp@subsup{v}{}{2
where }u=(\mp@subsup{s}{3}{}-\mp@subsup{s}{0}{})/\mp@subsup{m}{\pi}{2}\mathrm{ and }v=(\mp@subsup{s}{2}{}-\mp@subsup{s}{1}{})/\mp@subsup{m}{\pi}{2
```

LINEAR COEFFICIENT g FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$

Some experiments use Dalitz variables x and y. In the comments we give $a_{y}=$ coefficient of y term. See note above on "Dalitz Plot Parameters for $K \rightarrow 3 \pi$ Decays." For discussion of the conversion of a_{y} to g, see the earlier version of the same note in the Review published in Physics Letters 111B 70 (1982).
VALUE $\frac{\text { EVTS }}{\text { DOCUMENTID }}$ TECN CHG COMMENT
$\mathbf{- 0 . 2 1 1 3 4} \pm \mathbf{0 . 0 0 0 1 7} \quad 471 \mathrm{M} \quad 1$ BATLEY $\quad 07 \mathrm{~B}$ NA48 \pm

- - We do not use the following data for averages, fits, limits, etc. - . .

-0.2221	± 0.0065	225k	DEVAUX	77	SPEC	+	$a_{y}=.2814 \pm .0082$
-0.199	± 0.008	81k	2 LUCAS	73	HBC	-	$a_{y}=0.252 \pm 0.011$
-0.2157	± 0.0028	750k	FORD	72	ASPK	$+$	$a_{y}=.2734 \pm .0035$
-0.2186	± 0.0028	750k	FORD	72	ASPK	-	$a_{y}=.2770 \pm .0035$
-0.200	± 0.009	39819	${ }^{3}$ HOFFMASTER		HLBC	$+$	
-0.196	± 0.012	17898	${ }^{4}$ GRAUMAN	70	HLBC	$+$	$a_{y}=0.228 \pm 0.030$
-0.193	± 0.010	50919	MAST	69	HBC	-	$a_{y}=0.244 \pm 0.013$
-0.218	± 0.016	9994	${ }^{5}$ BUTLER	68	HBC	$+$	$a_{y}=0.277 \pm 0.020$
-0.190	± 0.023	5778	5,6 MOSCOSO	68	HBC	-	$a_{y}=0.242 \pm 0.029$
-0.22	± 0.024	5428	5,6 ZINCHENKO	67	HBC	$+$	$a_{y}=0.28 \pm 0.03$
-0.220	± 0.035	1347	7 FERRO-LUZZI	61	HBC	-	$a_{y}=0.28 \pm 0.045$

${ }^{1}$ Final state strong interaction and radiative corrections not included in the fit.
${ }^{2}$ Quadratic dependence is required by K_{L}^{0} experiments.
${ }^{3}$ HOFFMASTER 72 includes GRAUMAN 70 data.
4 Emulsion data added - all events included by HOFFMASTER 72.
${ }^{5}$ Experiments with large errors not included in average.
${ }_{7}^{6}$ Also includes DBC events.
7 No radiative corrections included.
QUADRATIC COEFFICIENT \boldsymbol{h} FOR $\boldsymbol{K}^{ \pm} \rightarrow \pi^{ \pm} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$
$\frac{V A L U E \text { (units } 10^{-2} \text {) }}{\mathbf{1 . 8 4 8} \pm \mathbf{0 . 0 4 0}} \frac{\text { EVTS }}{471 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} \frac{\text { TECN }}{\text { NA48 }} \frac{C H G}{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$-0.06 \pm 1.43 \quad$ 225k \quad DEVAUX 77 SPEC +

1.87	± 0.62	$750 k$	FORD	72	ASPK
1.25	± 0.62	$750 k$	FORD	72	ASPK

$-0.9 \quad \pm 1.4 \quad 39819 \quad$ HOFFMASTER72 \quad HLBC +
$\pm 1.2 \quad 50919 \quad$ MAST 69 HBC -
QUADRATIC COEFFICIENT \boldsymbol{k} FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \boldsymbol{\pi}^{-}$
VALUE (units 10^{-3}) EVTS DOCUMENT ID $\frac{\text { TECN } C H G}{\text { CH }}$

- 4.63 $\pm 0.14 \quad 471 \mathrm{M} \quad{ }^{1}$ BATLEY 07 B NA48 \pm
- - We do not use the following data for averages, fits, limits, etc. - -
$-20.5 \pm 3.9 \quad 225 k \quad$ DEVAUX 77 SPEC +
$\begin{array}{lllll}-7.5 \pm 1.9 & 750 k & \text { FORD } & 72 & \text { ASPK } \\ -8.3 \pm 1.9 & 750 k & \text { FORD } & 72 & \text { ASPK }\end{array}$

$-10.5 \pm 4.5 \quad 39819 \quad$ HOFFMASTER72 | HLBC | + |
| ---: | :--- |

$-14 \pm 12 \quad 50919 \quad$ MAST 69 HBC -
${ }^{1}$ Final state strong interaction and radiative corrections not included in the fit.
$\left(g_{+}-g_{-}\right) /\left(g_{+}+g_{-}\right)$FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$
This is a $C P$ violating asymmetry between linear coefficients g_{+}for $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ decay and g_{-}for $K^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}$decay.
VALUE (units 10^{-4}) - EVTS DOCUMENTID TECN

- $1.5 \pm 1.5 \pm 1.6 \quad 3.1 \mathrm{G} \quad 1$ BATLEY 07E NA48
- - We do not use the following data for averages, fits, limits, etc. - - •
$1.7 \pm 2.1 \pm 2.0 \quad 1.7 \mathrm{G} \quad{ }^{2}$ BATLEY 06 NA48
$\begin{array}{lll}-70.0 \pm 53 & 3.2 \mathrm{M} & \text { FORD }\end{array}$
${ }^{1}$ BATLEY 07E includes data from BATLEY 06. Uses quadratic parametrization and value $g_{+}+g_{-}=2 g$ from BATLEY 07B. This measurement neglects any possible charge
asymmetries in higher order slope parameters h or k
2 This measurement neglects any possible charge asymmetries in higher order slope parameters h or k.

LINEAR COEFFICIENT \boldsymbol{g} FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$

Unless otherwise stated, all experiments include terms quadratic in $\left(s_{3}-s_{0}\right) / m_{\pi^{+}}^{2}$. See note above on "Dalitz Plot Parameters for $K \rightarrow 3 \pi$ Decays." See BATUSOV 98 for a discussion of the discrepancy between their result and others, especially BOLOTOV 86. At this time we have no way to resolve the discrepancy so we depend on the large scale factor as a warning.

VALUE	EVTS	DOCUMENT ID		TECN		COMMENT
$\mathbf{0 . 6 2 6} \mathbf{\pm 0 . 0 0 7}$ OUR AVERAGE - -						
$0.6259 \pm 0.0043 \pm 0.0093$	493k	AKOPDZHAN..05B		TNF	\pm	
$0.627 \pm 0.004 \pm 0.010$	252k	1,2 AJINENKO	03B ISTR		-	
- - We do not use the following data for averages, fits, limits, etc. - -						
$0.736 \pm 0.014 \pm 0.012$	33k	BATUSOV	98	SPEC	+	
0.582 ± 0.021	43k	BOLOTOV	86	CALO	-	
0.670 ± 0.054	3263	BRAUN	76B	HLBC	$+$	
0.630 ± 0.038	5635	SHEAFF	75	HLBC	$+$	
0.510 ± 0.060	27k	SMITH	75	WIRE	$+$	
0.67 ± 0.06	1365	AUBERT	72	HLBC	+	
0.544 ± 0.048	4048	DAVISON	69	HLBC	+	Also emu

1^{1} Measured using in-flight decays of the 25 GeV negative secondary beam.
2 They form new world averages $g_{-}=(0.617 \pm 0.018)$ and $g_{+}=(0.684 \pm 0.033)$ which give $\Delta g_{\tau^{\prime}}=0.051 \pm 0.028$

QUADRATIC COEFFICIENT \boldsymbol{h} FOR $K^{ \pm \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$						
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.052 ± 0.008 OUR AVERAGE						
$0.0551 \pm 0.0044 \pm 0.0086$	493k	AKOPDZHA	N..05B	TNF	\pm	
$0.046 \pm 0.004 \pm 0.012$	252k	${ }^{1}$ AJINENKO	03B	ISTR	-	
- - We do not use the following data for averages, fits, limits, etc. - -						
$0.128 \pm 0.015 \pm 0.024$	33k	BATUSOV	98	SPEC	+	
0.037 ± 0.024	43k	BOLOTOV	86	CALO	-	
0.152 ± 0.082	3263	BRAUN	76B	HLBC	$+$	
0.041 ± 0.030	5635	SHEAFF	75	HLBC	$+$	
0.009 ± 0.040	27k	SMITH	75	WIRE	$+$	
-0.01 ± 0.08	1365	AUBERT	72	HLBC	$+$	
0.026 ± 0.050	4048	DAVISON	69	HLBC	+	Also emulsion

QUADRATIC COEFFICIENT k FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$
$\frac{V A L U E}{0.0054+0.0035}$ OUR AVERRAGE $\frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { CHG }}$ $0.0054 \pm \mathbf{0 . 0 0 3 5}$ OUR AVERAGE Error includes scale factor of 2.5. $0.0082 \pm 0.0011 \pm 0.0014$ 493k AKOPDZHAN..05B TNF \pm $0.001 \pm 0.001 \pm 0.002 \quad 252 \mathrm{k} \quad 1$ AJINENKO 03B ISTR -

- We do not use the following data for averages, fits, limits, etc. - $0.0197 \pm 0.0045 \pm 0.0029 \quad 33 \mathrm{k} \quad$ BATUSOV 98 SPEC +
${ }^{1}$ Measured using in-flight decays of the 25 GeV negative secondary beam.
$\left(\boldsymbol{g}_{+}-\underset{\text { A }}{\boldsymbol{g}_{-}}\right) / \underset{\text { nonzero value for this quantity indicates } C P \text { violation. }}{\left(\boldsymbol{g}_{+}+\boldsymbol{g}_{-}\right) \text {FOR } \boldsymbol{K}^{ \pm} \rightarrow \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\text { EVTS }}$ DOCUMENTID
$\begin{array}{llll}1.8 \pm & \text { 1.8 OUR AVERAGE } & & \\ 1.8 \pm 1.7 \pm 0.6 & 91.3 \mathrm{M} & 1 \text { BATLEY } & 07 \mathrm{E} \\ \text { NA48 }\end{array}$
$2 \pm 18 \pm 5 \quad 619 \mathrm{k} \quad 2$ AKOPDZHAN.. 05 TNF
- - We do not use the following data for averages, fits, limits, etc. - • -
$1.8 \pm 2.2 \pm 1.3 \quad 47 \mathrm{M} \quad{ }^{3}$ BATLEY 06A NA48
${ }^{1}$ BATLEY 07E includes data from BATLEY 06A. Uses quadratic parametrization and PDG 06 value $g=0.626 \pm 0.007$ to obtain $g_{+} g_{-}=(2.2 \pm 2.1 \pm 0.7) \times 10^{-4}$. Neglects any possible charge asymmetries in higher order slope parameters h or k.
${ }^{2}$ Asymmetry obtained assuming that $g_{+}+g_{-}=2 \times 0.652$ (PDG 02) and that asymmetries in h and k are zero
3 Linear and quadratic slopes from PDG 04 are used. Any possible charge asymmetries in higher order slope parameters h or k are neglected.

ALTERNATIVE PARAMETRIZATIONS OF $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$ DALITZ PLOT
The following functional form for the matrix element suggested by $\pi \pi$ rescattering in $K^{+} \rightarrow \pi^{+" "} \pi^{+} \pi^{-} " \rightarrow \pi^{+} \pi^{0} \pi^{0}$ is used for this fit (CABIBBO 04A, CABIBBO 05): Matrix element $=M_{0}+M_{1}$ where M_{0} $=1+(1 / 2) g_{0} u+(1 / 2) h^{\prime} u^{2}+(1 / 2) k_{0} v^{2}$ with $u=\left(s_{3}-s_{0}\right) /\left(m_{\pi^{+}}\right)^{2}$, $v=\left(s_{2}-s_{1}\right) /\left(m_{\pi^{+}}\right)^{2}$ and where M_{1} takes into account the non-analytic piece due to pi pi rescattering amplitudes a_{0} and a_{2}; The parameters g_{0} and h^{\prime} are related to the parameters g and h of the matrix element squared given in the previous section by the approximations $g_{0} \sim g^{P D G}$ and $h^{\prime} \sim h^{P D G}-(\mathrm{g} / 2)^{2}$ and $k_{0} \sim k^{P D G}$.
In addition, we also consider the effective field theory framework of COLANGELO 06A and BISSEGGER 09 to extract $g_{B B}$ and $h_{B B}^{\prime}$

LINEAR COEFFICIENT g_{0} FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$
$\frac{V A L U E}{\mathbf{0 . 6 5 2 5} \mathbf{0 . 0 0 0 9} \mathbf{0 . 0 0 3 3}} \frac{\text { EVTS }}{60 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} \frac{\text { O9A }}{} \frac{\text { TECN }}{\text { NA48 }} \frac{\text { CHG }}{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.645 \pm 0.004 \pm 0.009 \quad 23 \mathrm{M} \quad 2$ BATLEY \quad 06B NA48 \pm
${ }^{1}$ This fit is obtained with the CABIBBO 05 matrix element in the $2 \pi^{0}$ invariant mass squared range $0.074094<m_{2 \pi^{0}}^{2}<0.104244 \mathrm{GeV}^{2}$. Electromagnetic corrections and CHPT constraints for $\pi \pi$ phase shifts (a_{0} and a_{2}) have been used. Also measured $\left(a_{0}-a_{2}\right) m_{\pi^{+}}=0.2646 \pm 0.0021 \pm 0.0023$, where k_{0} was kept fixed in the fit at - 0.0099 .
${ }^{2}$ Superseded by BATLEY 09A. This fit is obtained with the CABIBBO 05 matrix element in the $2 \pi^{0}$ invariant mass squared range $0.074 \mathrm{GeV}^{2}<m_{2 \pi^{0}}^{2}<0.097 \mathrm{GeV}^{2}$, assuming $k=0$ (no term proportional to $\left(s_{2}-s_{1}\right)^{2}$) and excluding the kinematic region around the cusp $\left(m_{2 \pi^{0}}^{2}=\left(2 m_{\pi^{+}}\right)^{2} \pm 0.000525 \mathrm{GeV}^{2}\right)$. Also $\pi-\pi$ phase shifts a_{0} and a_{2} are measured: $\left(a_{0}-a_{2}\right) m_{\pi^{+}}=0.268 \pm 0.010 \pm 0.004 \pm 0.013$ (external) and $a_{2} m_{\pi^{+}}=$ $-0.041 \pm 0.022 \pm 0.014$.

QUADRATIC COEFFICIENT $\boldsymbol{k}_{\mathbf{0}}$ FOR $K^{ \pm} \Rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$
$\frac{\text { VALUE }}{0.0095+0.00017+0.00048} \frac{\text { EVTS }}{60 M} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CHG }}$
$\overline{\mathbf{0 . 0 0 9 5} \pm \mathbf{0 . 0 0 0 1 7} \pm \mathbf{0 . 0 0 0 4 8}} \frac{1}{60 M} \quad 1$ BATLEY \quad 09A \quad NA48 $\quad \pm$
${ }^{1}$ Assumed $a_{2} m_{\pi^{+}}=-0.0044$ in the fit.

${ }^{1}$ This fit is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 in the $2 \pi^{0}$ invariant mass squared range $0.074094<m_{2 \pi^{0}}^{2}<0.104244 \mathrm{GeV}^{2}$. Electromagnetic corrections and CHPT constraints for $\pi \pi$ phase shifts (a_{0} and a_{2}) have been used. Also measured $\left(a_{0}-a_{2}\right) m_{\pi^{+}}=0.2633 \pm 0.0024 \pm 0.0024$, where k_{0} was kept fixed in the fit at 0.0085 .

QUADRATIC COEFFICIENT $\boldsymbol{h}_{B B}^{\prime}$ FOR $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$

VALUE $\frac{\text { EVTS }}{\text { BL }} \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{C H G}{1}$
$\overline{\mathbf{- 0 . 0 5 2 0} \pm \mathbf{0 . 0 0 0 9} \pm \mathbf{0 . 0 0 2 6}} \frac{1}{60 \mathrm{M}} \quad 1$ BATLEY 09A $\frac{\text { NA48 }}{ \pm}$
${ }^{1}$ This fit is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 in the $2 \pi^{0}$ invariant mass squared range $0.074094<m_{2 \pi^{0}}^{2}<0.104244 \mathrm{GeV}^{2}$. Electromagnetic corrections and CHPT constraints for $\pi \pi$ phase shifts (a_{0} and a_{2}) have been used. Also measured $\left(a_{0}-a_{2}\right) m_{\pi^{+}}=0.2633 \pm 0.0024 \pm 0.0024$, where k_{0} was kept fixed in the fit at 0.0085 .

$K_{\ell 3}^{ \pm}$AND $K_{\ell 3}^{0}$ FORM FACTORS

Updated September 2013 by T.G. Trippe (LBNL) and C.-J. Lin (LBNL).

Assuming that only the vector current contributes to $K \rightarrow$ $\pi \ell \nu$ decays, we write the matrix element as

$$
\begin{align*}
M \propto & f_{+}(t)\left[\left(P_{K}+P_{\pi}\right)_{\mu} \bar{\ell} \gamma_{\mu}\left(1+\gamma_{5}\right) \nu\right] \\
& +f_{-}(t)\left[m_{\ell} \bar{\ell}\left(1+\gamma_{5}\right) \nu\right], \tag{1}
\end{align*}
$$

where P_{K} and P_{π} are the four-momenta of the K and π mesons, m_{ℓ} is the lepton mass, and f_{+}and f_{-}are dimensionless form factors which can depend only on $t=\left(P_{K}-P_{\pi}\right)^{2}$, the square of the four-momentum transfer to the leptons. If timereversal invariance holds, f_{+}and f_{-}are relatively real. $K_{\mu 3}$ experiments, discussed immediately below, measure f_{+}and f_{-}, while $K_{e 3}$ experiments, discussed further below, are sensitive only to f_{+}because the small electron mass makes the f_{-}term negligible.
$\boldsymbol{K}_{\mu 3}$ Experiments. Analyses of $K_{\mu 3}$ data frequently assume a linear dependence of f_{+}and f_{-}on t, i.e.,

$$
\begin{equation*}
f_{ \pm}(t)=f_{ \pm}(0)\left[1+\lambda_{ \pm}\left(t / m_{\pi^{+}}^{2}\right)\right] . \tag{2}
\end{equation*}
$$

Most $K_{\mu 3}$ data are adequately described by Eq. (2) for f_{+}and a constant $f_{-}\left(\right.$i.e., $\left.\lambda_{-}=0\right)$.
Two commonly used equivalent parametrizations:
(1) $\lambda_{+}, \boldsymbol{\xi}(0)$ parametrization. Older analyses of $K_{\mu 3}$ data often introduce the ratio of the two form factors

$$
\begin{equation*}
\xi(t)=f_{-}(t) / f_{+}(t) . \tag{3}
\end{equation*}
$$

The $K_{\mu 3}$ decay distribution is then described by the two parameters λ_{+}and $\xi(0)$ (assuming time reversal invariance and $\left.\lambda_{-}=0\right)$.
(2) $\boldsymbol{\lambda}_{+}, \boldsymbol{\lambda}_{\mathbf{0}}$ parametrization. More recent $K_{\mu 3}$ analyses have parametrized in terms of the form factors f_{+}and f_{0}, which are associated with vector and scalar exchange, respectively, to the lepton pair. f_{0} is related to f_{+}and f_{-}by

$$
\begin{equation*}
f_{0}(t)=f_{+}(t)+\left[t /\left(m_{K}^{2}-m_{\pi}^{2}\right)\right] f_{-}(t) . \tag{4}
\end{equation*}
$$

Here $f_{0}(0)$ must equal $f_{+}(0)$ unless $f_{-}(t)$ diverges at $t=0$. The earlier assumption that f_{+}is linear in t and f_{-}is constant leads to f_{0} linear in t :

$$
\begin{equation*}
f_{0}(t)=f_{0}(0)\left[1+\lambda_{0}\left(t / m_{\pi^{+}}^{2}\right)\right] . \tag{5}
\end{equation*}
$$

With the assumption that $f_{0}(0)=f_{+}(0)$, the two parametrizations, $\left(\lambda_{+}, \xi(0)\right)$ and $\left(\lambda_{+}, \lambda_{0}\right)$ are equivalent as long as correlation information is retained. $\left(\lambda_{+}, \lambda_{0}\right)$ correlations tend to be less strong than $\left(\lambda_{+}, \xi(0)\right)$ correlations.

Since the 2006 edition of the Review [4], we no longer quote results in the $\left(\lambda_{+}, \xi(0)\right)$ parametrization. We have removed many older low statistics results from the Listings. See the 2004 version of this note [5] for these older results, and the 1982 version [6] for additional discussion of the $K_{\mu 3}^{0}$ parameters, correlations, and conversion between parametrizations.
Quadratic Parametrization. More recent high-statistics experiments have included a quadratic term in the expansion of $f_{+}(t)$,

$$
\begin{equation*}
f_{+}(t)=f_{+}(0)\left[1+\lambda_{+}^{\prime}\left(t / m_{\pi^{+}}^{2}\right)+\frac{\lambda_{+}^{\prime \prime}}{2}\left(t / m_{\pi^{+}}^{2}\right)^{2}\right] \tag{6}
\end{equation*}
$$

If there is a non-vanishing quadratic term, then λ_{+}of Eq. (2) represents the average slope, which is then different from λ_{+}^{\prime}. Our convention is to include the factor $\frac{1}{2}$ in the quadratic term, and to use $m_{\pi^{+}}$even for $K_{e 3}^{+}$and $K_{\mu 3}^{+}$decays. We have converted other's parametrizations to match our conventions, as noted in the beginning of the " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" sections of the Listings.
Pole Parametrization. The pole model describes the t dependence of $f_{+}(t)$ and $f_{0}(t)$ in terms of the exchange of the lightest vector and scalar K^{*} mesons with masses M_{v} and M_{s}, respectively:

$$
\begin{equation*}
f_{+}(t)=f_{+}(0)\left[\frac{M_{v}^{2}}{M_{v}^{2}-t}\right], \quad f_{0}(t)=f_{0}(0)\left[\frac{M_{s}^{2}}{M_{s}^{2}-t}\right] . \tag{7}
\end{equation*}
$$

Dispersive Parametrization. This approach $[7,8]$ uses dispersive techniques and the known low-energy K- π phases to parametrize the vector and scalar form factors:

$$
\begin{gather*}
f_{+}(t)=f_{+}(0) \exp \left[\frac{\mathrm{t}}{\mathrm{~m}_{\pi}^{2}}\left(\Lambda_{+}+\mathrm{H}(\mathrm{t})\right)\right] \tag{8}\\
f_{0}(t)=f_{+}(0) \exp \left[\frac{\mathrm{t}}{\left(\mathrm{~m}_{\mathrm{K}}^{2}-\mathrm{m}_{\pi}^{2}\right)}(\ln [\mathrm{C}]-\mathrm{G}(\mathrm{t}))\right], \tag{9}
\end{gather*}
$$

where Λ_{+}is the slope of the vector form factor, and $\ln [\mathrm{C}]=$ $\ln \left[f_{0}\left(m_{\mathrm{K}}^{2}-\mathrm{m}_{\pi}^{2}\right)\right]$ is the logarithm of the scalar form factor at

Meson Particle Listings
$K^{ \pm}$
the Callan-Treiman point. The functions $H(t)$ and $G(t)$ are dispersive integrals.
$\boldsymbol{K}_{e 3}$ Experiments. Analysis of $K_{e 3}$ data is simpler than that of $K_{\mu 3}$ because the second term of the matrix element assuming a pure vector current [Eq. (1) above] can be neglected. Here f_{+}can be assumed to be linear in t, in which case the linear coefficient λ_{+}of Eq. (2) is determined, or quadratic, in which case the linear coefficient λ_{+}^{\prime} and quadratic coefficient $\lambda_{+}^{\prime \prime}$ of Eq. (6) are determined.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in Eq. (1), would contain

$$
\begin{align*}
& +2 m_{K} f_{S} \bar{\ell}\left(1+\gamma_{5}\right) \nu \\
& \quad+\left(2 f_{T} / m_{K}\right)\left(P_{K}\right)_{\lambda}\left(P_{\pi}\right)_{\mu} \bar{\ell} \sigma_{\lambda \mu}\left(1+\gamma_{5}\right) \nu \tag{10}
\end{align*}
$$

where f_{S} is the scalar form factor, and f_{T} is the tensor form factor. In the case of the $K_{e 3}$ decays where the f_{-}term can be neglected, experiments have yielded limits on $\left|f_{S} / f_{+}\right|$and $\left|f_{T} / f_{+}\right|$.
Fits for $\boldsymbol{K}_{\ell 3}$ Form Factors. For $K_{e 3}$ data, we determine best values for the three parametrizations: linear $\left(\lambda_{+}\right)$, quadratic $\left(\lambda_{+}^{\prime}, \lambda_{+}^{\prime \prime}\right)$ and pole $\left(M_{v}\right)$. For $K_{\mu 3}$ data, we determine best values for the three parametrizations: linear $\left(\lambda_{+}, \lambda_{0}\right)$, quadratic $\left(\lambda_{+}^{\prime}, \lambda_{+}^{\prime \prime}, \lambda_{0}\right)$ and pole $\left(M_{v}, M_{s}\right)$. We then assume $\mu-e$ universality so that we can combine $K_{e 3}$ and $K_{\mu 3}$ data, and again determine best values for the three parametrizations: linear $\left(\lambda_{+}, \lambda_{0}\right)$, quadratic $\left(\lambda_{+}^{\prime}, \lambda_{+}^{\prime \prime}, \lambda_{0}\right)$, and pole $\left(M_{v}, M_{s}\right)$. When there is more than one parameter, fits are done including input correlations. Simple averages suffice in the two $K_{e 3}$ cases where there is only one parameter: linear $\left(\lambda_{+}\right)$and pole $\left(M_{v}\right)$.

Both KTeV and KLOE see an improvement in the quality of their fits relative to linear fits when a quadratic term is introduced, as well as when the pole parametrization is used. The quadratic parametrization has the disadvantage that the quadratic parameter $\lambda_{+}^{\prime \prime}$ is highly correlated with the linear parameter λ_{+}^{\prime}, in the neighborhood of 95%, and that neither parameter is very well determined. The pole fit has the same number of parameters as the linear fit, but yields slightly better fit probabilities, so that it would be advisable for all experiments to include the pole parametrization as one of their choices [9].

The "Kaon Particle Listings" show the results with and without assuming μ-e universality. The "Meson Summary Tables" show all of the results assuming μ-e universality, but most results not assuming μ-e universality are given only in the Listings.

References

1. L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199 (1972).
2. H.W. Fearing, E. Fischbach, and J. Smith, Phys. Rev. D2, 542 (1970).
3. N. Cabibbo and A. Maksymowicz, Phys. Lett. 9, 352 (1964).
4. W.-M. Yao et al., Particle Data Group, J. Phys. G33, 1 (2006).
5. S. Eidleman et al., Particle Data Group, Phys. Lett. B592, 1 (2004).
6. M. Roos et al., Particle Data Group, Phys. Lett. 111B, 73 (1982).
7. V. Bernard et al., Phys. Lett. B638, 48 (2006).
8. A. Lai et al., Phys. Lett. B647, 341 (2007), and references therein.
9. We thank P. Franzini (Rome U. and Frascati) for useful discussions on this point.

$K_{t 3}^{ \pm}$FORM FACTORS

In the form factor comments, the following symbols are used.
f_{+}and f_{-}are form factors for the vector matrix element.
f_{S} and f_{T} refer to the scalar and tensor term.
$f_{0}=f_{+}+f_{-} t /\left(m_{K^{+}}^{2}-m_{\pi^{0}}^{2}\right)$.
$t=$ momentum transfer to the π.
λ_{+}and λ_{0} are the linear expansion coefficients of f_{+}and f_{0} :
$f_{+}(t)=f_{+}(0)\left(1+\lambda_{+} t / m_{\pi^{+}}^{2}\right)$
For quadratic expansion
$f_{+}(t)=f_{+}(0)\left(1+\lambda^{\prime}{ }_{+} t / m_{\pi^{+}}^{2}+\frac{\lambda^{\prime \prime}{ }_{+}}{2} t^{2} / m_{\pi^{+}}^{4}\right)$
as used by KTeV . If there is a non-vanishing quadratic term, then λ_{+}
represents an average slope, which is then different from $\lambda^{\prime}{ }_{+}$.
NA48/2 and OKA quadratic expansion coefficients are converted with
$\lambda^{\prime}{ }_{+}^{P D G}=\lambda^{\prime}{ }_{+}{ }^{N A 48 / 2}$ and $\lambda^{\prime \prime}{ }_{+}{ }^{P D G}=2 \lambda^{\prime \prime}{ }_{+}{ }^{N A 48 / 2}$
$\lambda^{\prime}{ }_{+} P D G=\left(\frac{m_{\pi^{+}}}{m_{\pi^{0}}}\right)^{2} \lambda^{\prime}{ }_{+} O K A$ and
$\lambda^{\prime \prime}{ }_{+} P D G=2\left(\frac{m_{\pi^{+}}}{m_{\pi^{0}}}\right)^{4} \lambda^{\prime \prime}+O K A$
OKA linear expansion coefficients are converted with
$\lambda_{+} P D G=\left(\frac{m_{\pi^{+}}}{m_{\pi^{0}}}\right)^{2} \lambda_{+} O K A$ and $\lambda_{0} P D G=\left(\frac{m_{\pi^{+}}}{m^{0}}\right)^{2} \lambda_{0} O K A$
The pole parametrization is
$f_{+}(t)=f_{+}(0)\left(\frac{M_{V}^{2}}{M_{V}^{2}-t}\right)$
$f_{0}(t)=f_{0}(0)\left(\frac{M_{S}^{2}}{M_{S}^{2}-t}\right)$
where M_{V} and M_{S} are the vector and scalar pole masses.
The following abbreviations are used:
DP = Dalitz plot analysis.
$\mathrm{PI}=\pi$ spectrum analysis.
$\mathrm{MU}=\mu$ spectrum analysis.
$\mathrm{POL}=\mu$ polarization analysis.
$\mathrm{BR}=K_{\mu 3}^{ \pm} / K_{e 3}^{ \pm}$branching ratio analysis.
$\mathrm{E}=$ positron or electron spectrum analysis.
$\mathrm{RC}=$ radiative corrections.
For previous $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$parametrizations used by NA48 (e.g. LAI 07A) and ISTRA (e.g. YUSHCHENKO 04B) see PDG 18.

λ_{+}(LINEAR ENERGY DEPENDENCE OF f_{+}IN $K_{e 3}^{ \pm}$DECAY)

These results are for a linear expansion only. See the next section for fits including a quadratic term. For radiative correction of the $K_{e_{3}}^{ \pm}$Dalitz plot, see GINSBERG 67, BECHERRAWY 70, CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).

VALUE (units 10 ${ }^{-2}$)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
$2.959 \pm \mathbf{0 . 0 2 5}$ OUR FIT Assuming μ - e universality					
$2.95 \pm 0.022 \pm 0.018$	5.25 M	YUSHCHENKO 18	OKA	+	
$3.044 \pm 0.083 \pm 0.074$	1.1M	AKOPDZANOV 09	TNF	\pm	
$2.966 \pm 0.050 \pm 0.034$	919k	1 YUSHCHENKO 04B	ISTR	-	DP
$2.78 \pm 0.26 \pm 0.30$	41k	SHIMIZU 00	SPEC	$+$	DP
$2.84 \pm 0.27 \pm 0.20$	32k	${ }^{2}$ AKIMENKO 91	SPEC		PI, no RC
2.9 ± 0.4	62k	${ }^{3}$ BOLOTOV 88	SPEC		PI, no RC
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.06 \pm 0.09 \pm 0.06$	550k	1,4 AJINENKO 03C	ISTR	-	DP
$2.93 \pm 0.15 \pm 0.2$	130k	${ }^{4}$ AJINENKO 02	SPEC		DP
${ }^{1}$ Rescaled to agree with our conventions as noted above. ${ }^{2}$ AKIMENKO 91 state that radiative corrections would raise λ_{+}by 0.0013 .					

λ_{+}(LINEAR ENERGY DEPENDENCE OF f_{+}IN $K_{\mu 3}^{ \pm}$DECAY)
Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG COMMENT
2.959 ± 0.025 OUR FIT Assuming μ-e universality
$3.09 \pm \mathbf{0 . 2 5}$ OUR FIT Error includes scale factor of 1.5. Not assuming μ-e universality $2.96 \pm 0.14 \pm 0.10 \quad 540 \mathrm{k} \quad{ }^{1}$ YUSHCHENKOO4 ISTR - DP

- - We do not use the following data for averages, fits, limits, etc. - -
$3.21 \pm 0.45 \quad 112 \mathrm{k} \quad{ }^{2}$ AJINENKO 03 ISTR - DP
${ }^{1}$ Rescaled to agree with our conventions as noted above.
${ }^{2}$ Superseded by YUSHCHENKO 04.
λ_{0} (LINEAR ENERGY DEPENDENCE OF f_{0} IN $K_{\mu 3}^{ \pm}$DECAY)
Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).
VALUE (units 10^{-2}) $\frac{d \lambda_{0} / d \lambda_{+}}{}$EVTS DOCUMENTID TECN CHG COMMENT
$\overline{\mathbf{1 . 7 6} \pm \mathbf{0 . 2 5} \text { OUR FIT Error includes scale factor of 2.7. Assuming } \mu-e} \overline{\text { universality }}$
$1.73 \pm \mathbf{0 . 2 7}$ OUR FIT Error includes scale factor of 2.6. Not assuming μ - e universality
$1.420 \pm 0.114 \pm 0.107 \quad 2.3 \mathrm{M} \quad 1$ BATLEY 18 NA48
$1.96 \pm 0.12 \pm 0.06-0.348 \quad 540 \mathrm{k} \quad 2$ YUSHCHENKO04 ISTR - DP
- - We do not use the following data for averages, fits, limits, etc. • •
$2.09 \pm 0.45 \quad-0.46 \quad 112 \mathrm{k} \quad 3$ AJINENKO 03 ISTR $-\quad$ DP
$\begin{array}{lllll}1.9 & \pm 0.64 & 24 \mathrm{k} & { }^{4} \mathrm{HORIE} & 01 \\ \text { SPEC }\end{array}+\quad \mathrm{BR}$
$1.9 \pm 1.0 \quad+0.03 \quad 55 \mathrm{k} \quad 5$ HEINTZE $77 \mathrm{SPEC}+\mathrm{BR}$
${ }^{1}$ Data collected in 2004 by NA48/2. Obtained from a fit with a quadratic vector form factor. Correlation coefficient with linear slope is 0.511 , with quadratic slope is -0.513 .
$\chi^{2} / N D F=409.9 / 381 . \quad$ BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit
assuming $\mu-e$ universality and obtained $(14.47 \pm 0.63 \pm 1.17) \times 10^{-3}$.
${ }^{2}$ Rescaled to agree with our conventions as noted above.
3 Superseded by YUSHCHENKO 04.
${ }^{4}$ HORIE 01 assumes μ-e universality in $K_{\ell 3}^{+}$decay and uses SHIMIZU 00 value $\lambda=0.0278 \pm$ 0.0040 from $K_{e 3}^{ \pm}$decay.
${ }^{5}$ HEINTZE 77 uses $\lambda_{+}=0.029 \pm 0.003 . d \lambda_{0} / d \lambda_{+}$estimated by us.
$\lambda^{\prime}+$ (LINEAR $K_{e 3}^{ \pm}$FORM FACTOR FROM QUADRATIC FIT)

VALUE (units 10 ${ }^{-2}$)	EVTS	DOCUMENT ID	TECN		COMMENT
2.59 ± 0.04 OUR AVERAGE					
$2.426 \pm 0.078 \pm 0.130$	4.4 M	1 BATLEY 18	NA48	\pm	
$2.611 \pm 0.035 \pm 0.028$	5.25M	YUSHCHENKO18	OKA	+	
$2.485 \pm 0.163 \pm 0.034$	919 k	2,3 YUSHCHENKO04B	ISTR	-	DP
- - We do not use the following data for averages, fits, limits, etc. - -					
3.07 ± 0.21	550k	2,4 AJINENKO 03C	ISTR	-	DP
1 Data collected in 20 $\chi^{2} / N D F=569.1 /$ assuming $\mu-e$ uni	6 by NA	2. Correlation coefficient EY 18 also performed obtained (24.24 ± 0.75	with qua combin $\pm 1.3) \times$	dratic ed 10^{-}	and $K_{\mu 3}^{ \pm}$
${ }^{2}$ Rescaled to agree with our conventions as noted above.					
${ }^{3}$ YUSHCHENKO 04B $\lambda^{\prime}+$ and $\lambda^{\prime \prime}{ }_{+}$are strongly correlated with coefficient $\rho\left(\lambda^{\prime}{ }_{+}, \lambda^{\prime \prime}\right.$ $=-0.95$.					
$\lambda^{\prime \prime}{ }_{+}$(QUADRATIC $K_{e 3}^{ \pm}$FORM FACTOR)					
VALUE (units 10 ${ }^{-2}$)	EVTS	DOCUMENT ID	TECN		COMMENT
$\mathbf{0 . 1 8 6} \pm 0.021$ OUR AVERAGE					
$0.164 \pm 0.030 \pm 0.039$	4.4M	${ }^{1}$ BATLEY 18	NA48	\pm	
$0.191 \pm 0.019 \pm 0.014$	5.25M	YUSHCHENKO18	OKA	+	
$0.192 \pm 0.062 \pm 0.071$	919k	2,3 YUSHCHENKO04B	ISTR	-	
- - We do not use t	follo	ta for averages, fits,	ts,		
$-0.5 \pm 0.7 \pm 1.5$	550k	2,4 AJINENKO 03C	ISTR	-	DP
${ }^{1}$ Data collected in 20 $\chi^{2} / N D F=569.1 /$ assuming $\mu-e$ uni	68 by NA	2. Correlation coefficient EY 18 also performed obtained $(1.67 \pm 0.29$	with qu combi 0.41)	dratic ed 10^{-}	lope is -0.
${ }^{2}$ Rescaled to agree with our conventions as noted above.					
${ }^{3}$ YUSHCHENKO 04B $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$are strongly correlated with coefficient $\rho\left(\lambda^{\prime}{ }_{+}, \lambda^{\prime \prime}{ }_{+}\right)$ $=-0.95$.					

$\boldsymbol{\lambda}^{\prime}{ }_{+}\left(\right.$LINEAR $K_{\mu 3}^{ \pm}$FORM FACTOR FROM QUADRATIC FIT)
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{2 4 . 2 7} \pm \mathbf{2 . 8 8} \pm \mathbf{2 . 8 9}} \frac{\text { EVTS }}{2.3 M} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { BATLEY }} \frac{C H G}{ \pm}$
${ }^{1}$ Data collected in 2004 by NA48/2. Correlation coefficient with quadratic slope is -0.974 , with scalar slope is $0.511 . \quad \chi^{2} / N D F=409.9 / 381$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $(24.24 \pm 0.75 \pm 1.3) \times 10^{-3}$.
$\lambda^{\prime \prime}{ }_{+}$(QUADRATIC $K_{\mu 3}^{ \pm}$FORM FACTOR)
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{1.83 \pm \mathbf{1 . 0 5} \pm 1.09} \frac{\text { EVTS }}{2.3 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY } 18} \frac{\text { TECN }}{\text { NA48 }} \frac{C H G}{ \pm}$
${ }^{1}$ Data collected in 2004 by NA48/2. Correlation coefficient with linear slope is -0.974 , with scalar slope is 0.513 . $\chi^{2} / N D F=409.9 / 381$. BATLEY 18 also performed a com-
bined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $(1.67 \pm 0.29 \pm 0.41) \times$ 10^{-3}.
M_{V} (VECTOR POLE MASS FOR K $\boldsymbol{e 3}_{ \pm}^{ \pm}$DECAY)
See the review on $K_{13}^{ \pm}$and K_{13}^{0} Form Factors for details.
$V \operatorname{VALUE}(\mathrm{MeV})$ EVTS DOCUMENTID TECN CHG
$\begin{array}{llllll}\mathbf{8 9 0 . 3} \pm \mathbf{2 . 8} & \text { OUR AVERAGE } & & & & \\ 885.2 \pm 3.3 \pm 7.2 & 4.4 \mathrm{M} & 1 & 18 & \text { BATLEY } & 18 \\ 8 & \text { NA48 } & \pm\end{array}$
$\begin{array}{lll}891 \pm 3 & 5.25 \mathrm{M} & 2 \text { YUSHCHENKO18 OKA }+ \\ +\end{array}$
${ }^{1}$ Data collected in 2004 by NA48/2. $\chi^{2} / N D F=568.9 / 688$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $884.4 \pm 3.1 \pm 6.7$ 2 MeV .
${ }^{2}$ Assumed no scalar or tensor contributions to the form factor.
M_{V} (VECTOR POLE MASS FOR K $\boldsymbol{\mu}_{\boldsymbol{\mu}}^{ \pm}$DECAY)
$\frac{V A L U E(\mathrm{MeV})}{878.4 \pm 8.8 \pm \mathbf{8 . 3}} \frac{E V T S}{2.3 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY } 18} \frac{T E C N}{\text { NA48 }} \frac{C H G}{ \pm}$
${ }^{1}$ Data collected in 2004 by NA48/2. $\chi^{2} / N D F=409.9 / 382$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $884.4 \pm 3.1 \pm 6.7$ MeV .
M_{S} (SCALAR POLE MASS FOR $K_{\mu 3}^{ \pm}$DECAY)
VALUE $(\mathrm{MeV}) \quad$ EVTS \quad DOCUMENT ID $\frac{T E C N}{\text { CHG }}$
1214.8 $\pm \mathbf{2 3 . 5} \pm \mathbf{4 9 . 2} \quad 2.3 \mathrm{M} \quad{ }^{1}$ BATLEY $\quad 18$ NA48 \pm
${ }^{1}$ Data collected in 2004 by NA48/2. χ 2/NDF $=409.9 / 382$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $1208.3 \pm 21.2 \pm 47.5$ MeV .
Λ_{+}(DISPERSIVE VECTOR FORM FACTOR IN $K_{e 3}^{ \pm}$DECAY)
See the review on $K_{13}^{ \pm}$and K_{13}^{0} Form Factors for details.
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG
$\mathbf{2 . 4 6 0 \pm 0 . 0 1 7}$ OUR AVERAGE \quad COCN
$\begin{array}{lllrll}2.494 & \pm 0.021 & \pm 0.064 & 4.4 \mathrm{M} & 1 & \text { BATLEY } \\ & 5.25 \mathrm{M} & 2 \text { YUSHCHENKO } & 18 & \text { NA48 } & \pm\end{array}$
$\begin{array}{lll}2.458 \pm 0.018 & 5.25 \mathrm{M} & 2 \text { YUSHCHENKO18 OKA }+\end{array}$
${ }^{1}$ Data collected in 2004 by NA48/2. $\chi^{2} / N D F=569.0 / 688$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $(24.99 \pm 0.20 \pm$
$0.62) \times 10^{-3}$.
2 Assumed no scalar or tensor contributions to the form factor.
Λ_{+}(DISPERSIVE VECTOR FORM FACTOR IN $K_{\mu 3}^{ \pm}$DECAY)
$\frac{V A L U E \text { (units } 10^{-3} \text {) }}{25.36} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { CHG }}$
$\mathbf{2 5 . 3 6} \pm \mathbf{0 . 5 8} \pm \mathbf{0 . 7 2} \quad 2.3 \mathrm{M} \quad 1$ BATLEY 18 NA48 \pm
${ }^{1}$ Data collected in 2004 by NA48/2. $\chi^{2} / N D F=410.3 / 382$. BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $(24.99 \pm 0.20 \pm$ $0.62) \times 10^{-3}$.
$\ln (C)$ (DISPERSIVE SCALAR FORM FACTOR in $\boldsymbol{K}_{\boldsymbol{\mu} 3}^{ \pm}$decays)
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{1 8 2} .17 \pm \mathbf{6 . 3 1} \pm \mathbf{1 4 . 4 5}} \frac{\text { EVTS }}{2.3 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} \frac{18}{\text { TECN }} \frac{C H G}{ \pm}$
${ }^{1}$ Data collected in 2004 by NA48/2. Combined fit with dispersive vector form factor $\Lambda_{+}=25.36 \pm 0.58 \pm 0.72$. Correlation coefficient is $0.104 . \chi^{2} / N D F=410.3 / 382$.
BATLEY 18 also performed a combined $K_{e 3}^{ \pm}$and $K_{\mu 3}^{ \pm}$fit assuming $\mu-e$ universality and obtained $(183.65 \pm 5.92 \pm 14.25) \times 10^{-3}$.

 Ratio of scalar to f_{+}couplings.

$\underline{\text { VALUE (units } 10^{-2} \text {) } C L \% \text { EVTS }}$
DOCUMENT ID \qquad TECN CHG COMMENT

$-0.08=0.34$ OUR AVERAGE

$0.01_{-0.46}^{+0.38}$	5.25 M
$-0.37_{-0.56}^{+0.66} \pm 0.41$	919 k
$0.2 \pm 2.6 \pm 1.4$	41 k

$-0.37_{-0.56}^{+0.66} \pm 0.41 \quad 919 k$
41k
$\begin{aligned} & \text { YUSHCHENKO18 OKA } \\ & \text { YUSHCHENKO04B ISTR }\end{aligned} \lambda^{\prime}{ }_{+}, \lambda^{\prime \prime}{ }_{+}, f_{S}$ fit

- - SHIMIZU 00 SPEC $+\lambda_{+}, f_{S}, f_{T}$ fit

$-1.9 \begin{array}{r}+2.5 \\ -1.6\end{array}$
$7.0 \pm 1.6 \pm 1.6$
0 ± 10
90
<13
14_{-4}^{+3}
$90 \quad 4017$
$<23 \quad 90$
90

Meson Particle Listings
$K^{ \pm}$

<18	90	BELLOTTI	67B	HLBC
< 30	95	KALMUS	67	HLBC
${ }^{1}$ Superseded by YUSHCHENKO 04B. ${ }^{2}$ Statistical errors only.				

$\left|f_{T} / f_{+}\right|$FOR $K_{\text {e3 }}^{ \pm}$DECAY
Ratio of tensor to f_{+}couplings.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN CHG COMMENT
-1.2 ± 1.3 OUR AVERAGE
$-1.24+1.6 \quad 5.25 \mathrm{M}$
$-1.2 \pm 2.1 \pm 1.1 \quad 919 \mathrm{k} \quad$ YUSHCHENKO04B ISTR $\quad-\quad \lambda_{+}^{\prime}, \lambda^{\prime \prime}{ }_{+}, f_{T}$ fit
YUSHCHENKO18 OKA $+\quad \lambda^{\prime}{ }_{+}, \lambda^{\prime \prime}{ }_{+}, f_{T}$ fit 【
$1 \pm 14 \pm 9 \quad 41 \mathrm{k} \quad$ SHIMIZU 00 SPEC $+\lambda_{+}, f_{S}, f_{T}$ fit

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }^{1}$ Superseded by YUSHCHENKO 04B.
$f_{\boldsymbol{s}} / \boldsymbol{f}_{+}$FOR $K_{\mu 3}^{ \pm}$DECAY
Ratio of scalar to f_{+}couplings.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{0.17 \pm 0.14 \pm 0.54} \frac{\text { EVTS }}{540} \quad \frac{\text { DOCUMENT ID }}{\text { TECN }}$ CHG COMMENT
$0.17 \pm \mathbf{0 . 1 4 \pm 0 . 5 4} \quad 540 \mathrm{k} \quad{ }^{1}$ YUSHCHENKO04 ISTR - DP
- - We do not use the following data for averages, fits, limits, etc. - • -
$0.4 \pm 0.5 \pm 0.5 \quad 112 \mathrm{k} \quad 2$ AJINENKO 03 ISTR - DP
1 The second error is the theoretical error from the uncertainty in the chiral perturbation theory prediction for $\lambda_{0}, \pm 0.0053$, combined in quadrature with the systematic error ± 0.0009.
2 The second error is the theoretical error from the uncertainty in the chiral perturbation theory prediction for λ_{0}. Superseded by YUSHCHENKO 04.

f_{T} / f_{+}FOR $K_{\mu 3}^{ \pm}$DECAY

Ratio of tensor to f_{+}couplings

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.07士 0.71 ± 0.20	540k	YUSHCHEN	04	ISTR	-	DP
- - We do not use the following data for averages, fits, limits, etc. - - -						
$-2.1 \pm 2.8 \pm 1.4$	112k	${ }^{1}$ AJINENKO	03	ISTR	-	DP
2 ± 12	1585	BRAUN	75	HLBC		

${ }^{1}$ The second error is the theoretical error from the uncertainty in the chiral perturbation theory prediction for λ_{0}. Superseded by YUSHCHENKO 04.

$K_{\text {E4 }}^{ \pm}$FORM FACTORS

Based on the parametrizations of AMOROS 99, the $K_{\ell 4}^{ \pm}$form factors can be expressed as

$$
\begin{aligned}
& F_{s}=f_{s}+f_{s}^{\prime} q^{2}+f_{s}^{\prime \prime} \mathrm{q}^{4}+f_{e}^{\prime} \mathrm{s}_{e} / 4 m_{\pi}^{2} \\
& F_{p}=f_{p} \\
& G_{p}=g_{p}+g_{p}^{\prime} \mathrm{q}^{2} \\
& H_{p}=h_{p}
\end{aligned}
$$

where $\mathrm{q}^{2}=\left(\mathrm{S}_{\pi} / 4 m_{\pi}^{2}\right)-1, \mathrm{~S}_{\pi}$ is the invariant mass squared of the dipion, and S_{e} is the invariant mass squared of the dilepton.
f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
$\frac{V A L U E}{5.712}$ EVTS DOCUMENTID TECN CHG
5.712 ± 0.032 OUR AVERAGE
$5.705 \pm 0.003 \pm 0.035 \quad 1.1 \mathrm{M} \quad 1$ BATLEY $\quad 12$ NA48 \pm
$5.75 \pm 0.02 \pm 0.08 \quad 400 \mathrm{k} \quad 2$ PISLAK 03 B865 +
${ }^{1}$ BATLEY 12 uses data collected in 2003-2004. The result is obtained from a measurement of $\Gamma\left(\pi^{+} \pi^{-} e \nu\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{+}\right)$and assumed PDG 12 value of $\Gamma\left(\pi^{+} \pi^{-} \pi^{+}\right) / \Gamma=$ $(5.59 \pm 0.04) \times 10^{-2}$.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, PISLAK 03 obtains the following $\pi \pi$ scattering lengths $a_{0}^{0}=0.228 \pm 0.012 \pm$ $0.004_{-0.016}^{+0.012}$ (theor.) and $a_{0}^{2}=-0.0365 \pm 0.0023 \pm 0.0008_{-0.0026}^{+0.0031}$ (theor.).
f_{s}^{\prime} / f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{15.2 \pm 0.7 \pm 0.5} \frac{\text { EVTS }}{1.13 M} \frac{\text { DOCUMENT ID }}{10 C N} \frac{C H G}{1}$

$17.2 \pm 0.9 \pm 0.6 \quad 670 \mathrm{k} \quad 2$ BATLEY 08A NA48 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). The correlation with $f_{s}^{\prime \prime} / f_{S}=-0.954$ and with $f_{e}^{\prime} / f_{S}=0.080$. Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
$f_{s}^{\prime \prime} / f_{s}$ FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{-7.3 \pm 0.7 \pm 0.6} \frac{\text { EVTS }}{1.13 \mathrm{M}} \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { CHG }}{ \pm}$
$\begin{array}{lc}\mathbf{- 7 . 3} \pm \mathbf{0 . 7} \pm \mathbf{0 . 6} \quad 1.13 \mathrm{M} & 1 \text { BATLEY } \quad 10 \mathrm{C} \text { NA48 } \pm \\ \bullet \bullet \text { We do not use the following data for averages, fits, limits, etc. } & \text { • • }\end{array}$
$-9.0 \pm 0.9 \pm 0.7 \quad 670 \mathrm{k} \quad{ }^{2}$ BATLEY 08A NA48 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). The correlation with $f_{S}^{\prime} / f_{S}=-0.954$ and with $f_{e}^{\prime} / f_{S}=0.019$. Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
f_{e}^{\prime} / f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{6 . 8} \pm \mathbf{0 . 6} \pm \mathbf{0 . 7}} \frac{\text { EVTS }}{1.13 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{10 \mathrm{BATLEY}} \frac{\text { TECN }}{\text { NA48 }} \frac{C H G}{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. • •
$8.1 \pm 0.8 \pm 0.9 \quad 670 \mathrm{k} \quad 2$ BATLEY 08A NA48 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10 C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). The correlation with $f_{S}^{\prime} / f_{S}=0.080$ and with $f_{S}^{\prime \prime} / f_{S}=0.019$. Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
f_{p} / f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
VALUE (units 10^{-2}) EVTS DOCUMENT ID $\frac{\text { TECN }}{\text { CHG }}$
$-4.8 \pm 0.3 \pm \mathbf{0 . 4} \quad 1.13 \mathrm{M} \quad{ }^{1}$ BATLEY 10 C NA48 \pm
- - We do not use the following data for averages, fits, limits, etc. - -
$-4.8 \pm 0.4 \pm 0.4 \quad 670 \mathrm{k} \quad 2$ BATLEY 08A NA48 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10 C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
g_{p} / f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{ \pm} \nu$ DECAY
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{8 6 . 8} \pm \mathbf{1 . 0} \pm \mathbf{1 . 0}} \frac{E V T S}{1.13 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{T E C N}{\text { BATLEY }} \frac{\text { CHG }}{\text { NA48 }} \frac{10 \mathrm{C}}{ \pm}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$87.3 \pm 1.3 \pm 1.2 \quad 670 \mathrm{k} \quad 2$ BATLEY 08A NA48 \pm
$80.9 \pm 0.9 \pm 1.2 \quad 400 \mathrm{k} \quad 3$ PISLAK 03 B865 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). Supersedes BATLEY 08A. The correlation with $g_{p}^{\prime} / f_{S}=-0.914$. Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
${ }^{3}$ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_{0}^{0}=0.203 \pm 0.033 \pm 0.004, a_{0}^{2}=-0.055 \pm 0.023 \pm 0.003$.
g_{p}^{\prime} / f_{s} FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ DECAY
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{8 . 9} \mathbf{1 . 7} \pm \mathbf{1 . 3}} \frac{\text { EVTS }}{1.13 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{10 \mathrm{BATLEY}} \frac{\text { TECN }}{\text { NA48 }} \frac{\text { CHG }}{ \pm}$
- - We do not use the following data for averages, fits, limits, etc. - - -

$8.1 \pm 2.2 \pm 1.5$	$670 k$	2 BATLEY	08A	NA48	\pm
$12.0 \pm 1.9 \pm 0.7$	$400 k$	3 PISLAK	03	B865	\pm

${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). The correlation with $g_{p} / f_{s}=-0.914$. Supersedes BATLEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
${ }^{3}$ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_{0}^{0}=0.203 \pm 0.033 \pm 0.004, a_{0}^{2}=-0.055 \pm 0.023 \pm 0.003$.
$h_{p} / \boldsymbol{f}_{s}$ FOR $K^{ \pm} \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{ \pm} \boldsymbol{\nu}$ DECAY
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{- 3 9 . 8} \pm \mathbf{1 . 5} \pm \mathbf{0 . 8}} \frac{\text { EVTS }}{1.13 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY } 10 \mathrm{C}} \frac{\text { TECN }}{\text { NA48 }} \frac{C H G}{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-41.1 \pm 1.9 \pm 0.8 \quad 670 \mathrm{k} \quad 2$ BATLEY 08A NA48 \pm
$51.3 \pm 3.3 \pm 3.5 \quad 400 \mathrm{k} \quad 3$ PISLAK 03 B865 \pm
${ }^{1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10 C obtains the following scattering lengths $a_{0}^{0}=0.2220 \pm 0.0128 \pm 0.0050 \pm$ 0.0037 (theor.), $a_{0}^{2}=-0.0432 \pm 0.0086 \pm 0.0034 \pm 0.0028$ (theor.). Supersedes BAT2 LEY 08A.
${ }^{2}$ Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi \pi$ scattering length $a_{0}^{0}=0.233 \pm 0.016 \pm 0.007$ $a_{0}^{2}=-0.0471 \pm 0.011 \pm 0.004$.
${ }^{3}$ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_{0}^{0}=0.203 \pm 0.033 \pm 0.004, a_{0}^{2}=-0.055 \pm 0.023 \pm 0.003$.
DECAY FORM FACTOR FOR $\boldsymbol{K}^{ \pm} \rightarrow \pi^{0} \pi^{0} e^{ \pm} \boldsymbol{\nu}$ Given in BOLOTOV 86B, BARMIN 88B, and SHIMIZU 04.

$K^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ FORM FACTORS

For definitions of the axial-vector F_{A} and vector F_{V} form factor, see the "Note on $\pi^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ and $K^{ \pm} \rightarrow \ell^{ \pm} \nu \gamma$ Form Factors" in the $\pi^{ \pm}$ section. In the kaon literature, often different definitions $a_{K}=F_{A} / m_{K}$ and $v_{K}=F_{V} / m_{K}$ are used.
$F_{A}+F_{V}$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \Rightarrow e \nu_{e} \gamma$

$\frac{V A L U E}{0.133 \pm 0.008 \text { OUR AVERAGE }} \frac{E V T S}{\text { RAG }}$		DOCUMENT ID		TECN	COMMENT
		Error includes scale factor of 1.3.			See the ideogram below.
$0.125 \pm 0.007 \pm 0.001$	1.4K	${ }^{1}$ AMBROSIN	09E	KLOE	$\begin{array}{r} E_{\gamma} \text { in } 10-250 \mathrm{MeV} \\ p_{e}>200 \mathrm{MeV} / \mathrm{c} \end{array}$
0.147 ± 0.011	51	2 HEINTZE	79	SPEC	
$0^{0.150}{ }_{-0.023}^{+0.018}$	56	${ }^{3}$ HEARD	75	SPEC	

${ }^{1}$ AMBROSINO 09E measures the absolute value $\left|\mathrm{F}_{A}+\mathrm{F}_{V}\right|$ which is parametrized as $\left|\mathrm{F}_{A}+\mathrm{F}_{V}\right|=\mathrm{F}_{V}(1+\lambda(1-\mathrm{x}))+\mathrm{F}_{A}, \mathrm{x}=2 E_{\gamma} / m_{K} \cdot\left(\mathrm{~F}_{A}+\mathrm{F}_{V}\right)$ and λ are fit parameters. The fitted value of $\lambda=0.38 \pm 0.20 \pm 0.02$ with a correlation of -0.93 between $\left(\mathrm{F}_{A}+\mathrm{F}_{V}\right)$ and λ.
${ }^{2}$ HEINTZE 79 quotes absolute value of $\left|F_{A}+F_{V}\right| \sin \theta_{C}$. We use $\sin \theta_{C}=V_{u s}=0.2205$.
${ }^{3}$ HEARD 75 quotes absolute value of $\left|F_{A}+F_{V}\right| \sin \theta_{C}$. We use $\sin \theta_{c}=V_{u S}=0.2205$.

FOR $K \rightarrow e \nu_{e} \gamma$
$F_{A}+F_{V}$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \Rightarrow \mu \nu_{\mu} \boldsymbol{\gamma}$

VALUE	CL\%	EVTS	DOCUMENT ID		TECN	CHG
$0.165 \pm 0.007 \pm 0.011$		2588	1 ADLER	00B	B787	+
- - We do not use the following data for averages, fits, limits, etc. - -						
-1.2 to 1.1	90		DEMIDO	90	XEBC	
< 0.23	90		${ }^{1}$ AKIBA	85	SPEC	
${ }^{1}$ Quotes absolute value. Sign not determined.						

$F_{A}-F_{V}$, DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \rightarrow e \nu_{e} \gamma$

VALUE	CL\%	DOCUMENT ID		TECN
<0.49	90	1 HEINTZE	79	SPEC
${ }^{1} \mathrm{HE}$		$<\sqrt{11}$		

$F_{A}-F_{V}$, DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \rightarrow \mu \nu_{\mu} \gamma$

- - We do not use the following data for averages, fits, limits, etc. • •

-0.24	to 0.04	90	2588	ADLER	00 B	B787
-2.2	to 0.6	90		DEMIDOV	90	XEBC
-2.5	to 0.3	90		AKIBA	85	SPEC

$K^{ \pm}$CHARGE RADIUS

VALUE (fm)
0.560 ± 0.031 OUR AVERAGE
0.580 ± 0.040
DOCUMENT ID
COMMENT
AMENDOLIA 86B $K e \rightarrow K e$
0.530 ± 0.050
DALLY $80 \quad K e \rightarrow K e$

- - We do not use the following data for averages, fits, limits, etc. - •
0.620 ± 0.037
BLATNIK 79 VMD + dispersion relations

κ^{+}LONGITUDINAL POLARIZATION OF EMITTED μ^{+}

VALUE	CL\%	DOCUMENT ID		TECN	CHG COMMENT	
<-0.990	90	${ }^{1} \mathrm{AOKI}$	94	SPEC	+	
- - We do not use the following data for averages, fits, limits, etc. - -						
<-0.990	90	IMAZATO	92	SPEC	+	Repl. by AOKI 94
-0.970 ± 0.047		2 YAMANAKA	86	SPEC	+	
-1.0 ± 0.1		${ }^{2}$ CUTTS	69	SPRK	+	
-0.96 ± 0.12		2 COOMBES	57	CNTR	+	

${ }^{1}$ AOKI 94 measures $\xi P_{\mu}=-0.9996 \pm 0.0030 \pm 0.0048$. The above limit is obtained by summing the statistical and systematic errors in quadrature, normalizing to the physically significant region $\left(\left|\xi P_{\mu}\right|<1\right)$ and assuming that $\xi=1$, its maximum value.
${ }^{2}$ Assumes $\xi=1$.

FORWARD-BACKWARD ASYMMETRY IN $K^{ \pm}$DECAYS

$A_{F B}\left(K_{\pi \mu \mu}^{ \pm}\right)=\frac{\Gamma\left(\cos \left(\theta_{K \mu}\right)>0\right)-\Gamma\left(\cos \left(\theta_{K \mu}\right)<0\right)}{\Gamma\left(\cos \left(\theta_{K \mu}\right)>0\right)+\Gamma\left(\cos \left(\theta_{K \mu}\right)<0\right)}$

$\frac{V A L U E}{<\mathbf{2} .3 \times \mathbf{1 0}^{\mathbf{- 2}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} \frac{11 \mathrm{~A}}{} \frac{\text { TECN }}{\text { NA48 }}$
${ }^{1}$ BATLEY 11 A gives a corresponding value of the asymmetry $\mathrm{A}_{F B}=(-2.4 \pm 1.8) \times 10^{-2}$.

Meson Particle Listings
$K^{ \pm}$

K^{0} MEAN SQUARE CHARGE RADIUS

$\operatorname{VALUE}\left(\mathrm{fm}^{2}\right)$ EVTS	DOCUMENT ID		TECN	COMMENT
-0.077 ± 0.010 OUR AVERAGE				
$-0.077 \pm 0.007 \pm 0.0115037$	ABOUZAID	06	KTEV	$K_{L}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$
-0.090 ± 0.021	LAI	03C	NA48	$K_{L}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$
-0.054 ± 0.026	MOLZON	78		K_{S} regen. by electrons
- - We do not use the following data for averages, fits, limits, etc. - -				
-0.087 ± 0.046	BLATNIK	79		VMD + dispersion relations
-0.050 ± 0.130	FOETH	69B		K_{S} regen. by electrons

T-VIOLATION PARAMETER IN $\boldsymbol{K}^{0}-\bar{K}^{0}$ MIXING

The asymmetry $A_{T}=\frac{\Gamma\left(\bar{K}^{0} \rightarrow K^{0}\right)-\Gamma\left(K^{0} \rightarrow \bar{K}^{0}\right)}{\Gamma\left(K^{0} \rightarrow K^{0}\right)+\Gamma\left(K^{0} \rightarrow \overline{K^{0}}\right)}$ must vanish if T invariance holds.

ASYMMETRY $\boldsymbol{A}_{\boldsymbol{T}}$ IN $\boldsymbol{K}^{0}-\bar{K}^{0}$ MIXING
 $\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{6 . 6} \pm \mathbf{1 . 3} \pm \mathbf{1 . 0}} \frac{\text { EVTS }}{640 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ANGELOPO... 98E }} \frac{T E C N}{\text { CPLR }}$

${ }^{1}$ ANGELOPOULOS 98E measures the asymmetry $A_{T}=\left[\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow e^{+} \pi^{-} \nu_{t=\tau}\right)-\right.$ $\left.\Gamma\left(K_{t=0}^{0} \rightarrow e^{-} \pi^{+} \bar{\nu}_{t=\tau}\right)\right] /\left[\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow e^{+} \pi^{-} \nu_{t=\tau}\right)+\Gamma\left(K_{t=0}^{0} \rightarrow e^{-} \pi^{+} \bar{\nu}_{t=\tau}\right)\right]$ as a $\overline{\text { function }}$ of the neutral-kaon eigentime τ. The initial strangeness of the neutral kaon is tagged by the charge of the accompanying charged kaon in the reactions $p \bar{p} \rightarrow$ $K^{-} \pi^{+} K^{0}$ and $p \bar{p} \rightarrow K^{+} \pi^{-} \bar{K}^{0}$. The strangeness at the time of the decay is tagged by the lepton charge. The reported result is the average value of A_{T} over the interval $1 \tau_{S}<$ $\tau<20 \tau_{s}$. From this value of A_{T} ANGELOPOULOS 01B, assuming CPT invariance in the $e \pi \nu$ decay amplitude, determine the T-violating as $\Delta S=\Delta S$ conserving parameter (for its definition, see Review below) $4 \operatorname{Re}(\epsilon)=(6.2 \pm 1.4 \pm 1.0) \times 10^{-3}$.

See the related review(s):
CPT Invariance Tests in Neutral Kaon Decay

CP-VIOLATION PARAMETERS

$\operatorname{Re}(\epsilon)$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{1 \text { DOCUMENT ID }} \frac{\text { TECN }}{\text { LID }}$
$\mathbf{1 . 5 9 6} \pm \mathbf{0 . 0 1 3} 1$ AMBROSINO 06H KLOE

- - We do not use the following data for averages, fits, limits, etc. • •
1.664 ± 0.010
${ }^{2}$ LAI
05A NA48
${ }^{1}$ AMBROSINO 06 H uses Bell-Steinberger relations with the following measurements: $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$in AMBROSINO 06F, $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$ in AMBROSINO 05B, the K_{S}^{0}-semileptonic charge asymmetry in AMBROSINO 06E, and K^{0}-semileptonic results in ANGELOPOULOS 98F.
${ }^{2}$ LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improving determination of η_{000} and combining other data from PDG 04 and APOSTOLAKIS 99B.

CPT-VIOLATION PARAMETERS

In $K^{0}-\bar{K}^{0}$ mixing, if $C P$-violating interactions include a T conserving part then

$$
\begin{aligned}
&\left|K_{S}\right\rangle=\left[\left|K_{1}\right\rangle+(\epsilon+\delta)\left|K_{2}\right\rangle\right] / \sqrt{1+|\epsilon+\delta|^{2}} \\
&\left|K_{L}\right\rangle=\left[\left|K_{2}\right\rangle+(\epsilon-\delta)\left|K_{1}\right\rangle\right] / \sqrt{1+|\epsilon-\delta|^{2}} \\
& \text { where } \\
&\left|K_{1}\right\rangle=\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] / \sqrt{2} \\
&\left|K_{2}\right\rangle=\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] / \sqrt{2} \\
& \text { and } \\
&\left|\bar{K}^{0}\right\rangle=C P\left|K^{0}\right\rangle .
\end{aligned}
$$

The parameter δ specifies the CPT-violating part.
Estimates of δ are given below assuming the validity of the $\Delta S=\Delta Q$ rule. See also THOMSON 95 for a test of CPT-symmetry conservation in K^{0} decays using the Bell-Steinberger relation.

REAL PART OF $\boldsymbol{\delta}$
A nonzero value violates $C P T$ invariance

VALUE (units 10^{-4})	EVT	DOCUMENTID TECN	ENT
2.51 ± 2.25		${ }^{1}$ ABOUZAID 11 KTEV	
- - We do not use the following data for averages, fits, limits, etc. - -			
2.3 ± 2.7		${ }^{2}$ AMBROSINO 06H KLOE	
2.4 ± 2.8		3 APOSTOLA... 99b RVUE	
$2.9 \pm 2.6 \pm 0.6$	1.3M	4 ANGELOPO... 98F CPLR	
180 ± 200	6481	${ }^{5}$ DEMIDOV 95	$K_{\ell 3}$ reanalys
${ }^{1}$ ABOUZAID 11 uses Bell-Steinberger relations.			
${ }^{2}$ AMBROSINO 06 H uses Bell-Steinberger relations with the following measurements: $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$in AMBROSINO 06F, $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$ in AMBROSINO 05B, the			
${ }^{4}$ ANGELOPOULOS 98F use $\Delta S=\Delta Q$. If $\Delta S=\Delta Q$ is not assumed, they find $\operatorname{Re} \delta=(3.0 \pm$$3.3 \pm 0.6) \times 10^{-4}$			

IMAGINARY PART OF δ

A nonzero value violates $C P T$ invariance.

${ }^{1}$ ABOUZAID 11 uses Bell-Steinberger relations.
${ }^{2}$ AMBROSINO 06 H uses Bell-Steinberger relations with the following measurements: $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$in AMBROSINO 06F, $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$ in AMBROSINO 05B, the K_{S}^{0}-semileptonic charge asymmetry in AMBROSINO 06E, and K^{0}-semileptonic results in ANGELOPOULOS 98F.
${ }^{3}$ LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improving determination of η_{000} and combining other data from PDG 04 and APOSTOLAKIS 99b.
${ }^{4}$ APOSTOLAKIS 99B assumes only unitarity and combines CPLEAR and other results.
${ }^{5}$ If $\Delta S=\Delta Q$ is not assumed, ANGELOPOULOS 98F finds Im $\delta=(-15 \pm 23 \pm 3) \times 10^{-3}$.
${ }^{6}$ DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.

$\operatorname{Re}(y)$

A non-zero value would violate $C P T$ invariance in $\Delta S=\Delta Q$ amplitude. $\operatorname{Re}(\mathrm{y})$ is the following combination of $K_{e 3}$ decay amplitudes:

$$
\operatorname{Re}(\mathrm{y})=\operatorname{Re}\left(\frac{A\left(\bar{K}^{0} \rightarrow e^{-} \pi^{+} \bar{\nu}_{e}\right)^{*}-A\left(K^{0} \rightarrow e^{+} \pi^{-} \nu_{e}\right)}{A\left(\bar{K}^{0} \rightarrow e^{-} \pi^{+} \bar{\nu}_{e}\right)^{*}+A\left(K^{0} \rightarrow e^{+} \pi^{-} \nu_{e}\right)}\right)
$$

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{0 . 4} \pm \mathbf{2 . 5}} \frac{\text { EVTS }}{13 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AMBROSINO 06E }} \frac{\text { TECN }}{\text { KLOE }}$

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.3 \pm 3.1 \quad 2$ APOSTOLA... 99B CPLR
${ }^{1}$ They use the PDG 04 for the K_{L}^{0} semileptonic charge asymmetry and PDG 04 (CP
review, CPT NOT ASSUMED) for $\operatorname{Re}(\epsilon)$.
${ }^{2}$ Constrained by Bell-Steinberger (or unitarity) relation.
$\operatorname{Re}\left(X_{-}\right)$
A non-zero value would violate $C P T$ invariance in decay amplitudes with $\Delta S \neq \Delta Q$. x_{-}, used here to define $\operatorname{Re}\left(\mathrm{x}_{-}\right)$, and x_{+}, used below in the $\Delta S=\Delta Q$ section are the following combinations of $K_{e 3}$ decay amplitudes:

$$
\mathrm{x}_{ \pm}=\frac{1}{2}\left(\frac{A\left(\bar{K}^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)}{A\left(K^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)} \pm \frac{A\left(K^{0} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)^{*}}{A\left(\bar{K}^{0} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)^{*}}\right) .
$$

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{- 2 . 9 \pm 2 . 0}} \frac{\text { EVTS }}{1 \frac{\text { DOCUMENT ID }}{\text { AMBROSINO } 06 \mathrm{H}} \frac{\text { TECN }}{\text { KLOE }} \xlongequal{\text { COMMENT }}}$

Meson Particle Listings
K^{0}, K_{S}^{0}

- - We do not use the following data for averages, fits, limits, etc. - -

-0.8 ± 2.5	13 k	${ }^{2}$ AMBROSINO 06E KLOE		
-0.5 ± 3.0		${ }^{3}$ APOSTOLA... 99B	CPLR	Strangeness tagged
$2 \pm 13 \pm 3$	650 k	ANGELOPO... 98F	CPLR	Strangeness tagged

$2 \pm 13 \pm 3 \quad 650 \mathrm{k}$ ANGELOPO... 98F CPLR Strangeness tagged
$1_{\text {AMBROSINO }} 06 \mathrm{H}$ uses Bell-Steinberger relations with the following measurements: $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$in AMBROSINO 06F, $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$ in AMBROSINO 05B, the K_{S}^{0}-semileptonic charge asymmetry in AMBROSINO 06E, and K^{0}-semileptonic results in ANGELOPOULOS 98F
2 Uses PDG 04 for the K_{L}^{0} semileptonic charge asymmetry and $\operatorname{Re}(\delta)$ from CPLEAR,
${ }^{3}$ ANGELOPOULOS 98F.

$\left|\boldsymbol{m}_{K^{0}}=\boldsymbol{m}_{K^{0}}\right| / m_{\text {average }}$

A test of CPT invariance. "Our Evaluation" is described in the "Tests of Conservation Laws" section. It assumes CPT invariance in the decay and neglects some contributions from decay channels other than $\pi \pi$.

VALUE	CL\%	DOCUMENTID TECN
$<6 \times 10^{-19}$	90	PDG 12
- - We do not use the following data for averages, fits, limits, etc. - -		
$(-3 \pm 4) \times 10^{-18} \quad 1$ ANGELOPO... 99B RVUE		
${ }^{1}$ ANGELOPOULOS 99B assumes only unitarity and combines CPLEAR and other results.		
$\left(\Gamma_{K^{0}}-\Gamma_{K^{0}}\right) / m_{\text {average }}$		
A test of CPT invariance.		
VALUE		DOCUMENTID TECN
$(7.8 \pm 8.4) \times 10^{-18}$		1 ANGELOPO... 99b RVUE
${ }^{1}$ ANGELOPOULOS 99B assumes only unitarity and combines CPLEAR with other results. Correlated with $\left(m_{K^{0}}-m_{\bar{K}^{0}}\right) / m_{\text {average }}$ with a correlation coefficient of -0.95 .		

TESTS OF $\Delta S=\Delta Q$ RULE
$\operatorname{Re}\left(x_{+}\right)$
A non-zero value would violate the $\Delta S=\triangle Q$ rule in CPT conserving transitions. x_{+} is defined above in the $\operatorname{Re}\left(x_{-}\right)$section.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN
-0.9土 3.0 OUR AVERAGE			
-2 ± 10		${ }^{1}$ BATLEY	NA48
-0.5 ± 3.6	13k	${ }^{2}$ AMBROSINO	KLOE
-1.8 ± 6.1		${ }^{3}$ ANGELOPO..	CPLR
${ }^{1}$ Result obtained from the measurement $\Gamma\left(K_{S}^{0} \rightarrow \pi e \nu\right) / \Gamma\left(K_{L}^{0} \rightarrow \pi e \nu\right)=0.993 \pm 0.34$			
${ }^{2} \operatorname{Re}\left(\mathrm{x}_{+}\right)$can be shown to be equal to the following combination of rates:			
$\operatorname{Re}\left(\mathrm{x}_{\perp}\right)=\frac{1}{2} \Gamma\left(K_{S}^{0} \rightarrow \pi e \nu\right)-\Gamma\left(K_{L}^{0} \rightarrow \pi e \nu\right)$			
which is valid up to first order in terms violating CPT and/or the $\Delta S=\Delta Q$			

${ }^{3}$ Obtained neglecting CPT violating amplitudes.

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

K_{S}^{0} MEAN LIFE

For earlier measurements, beginning with BOLDT 58B, see our 1986 edition, Physics Letters 170B 130 (1986).

OUR FIT is described in the note on " $C P$ violation in K_{L} decays" in the K_{L}^{0} Particle Listings. The result labeled "OUR FIT Assuming CPT" ["OUR FIT Not assuming $C P T^{\prime \prime}$] includes all measurements except those with the comment "Not assuming CPT" ["Assuming CPT"]. Measurements with neither comment do not assume CPT and enter both fits.

VALUE $\left(10^{-10} \mathrm{~s}\right)$ EVTS DOCUMENT ID TECN COMMENT
$\mathbf{0 . 8 9 5 4} \mathbf{\pm 0 . 0 0 0 4}$ OUR FIT Error includes scale factor of 1.1. Assuming $C P T$
$\mathbf{0 . 8 9 5 6 4} \pm \mathbf{0 . 0 0 0 3 3}$ OUR FIT Not assuming CPT
0.89589 ± 0.00070
1,2 ABOUZAID 11 KTEV Not assuming $C P T$
$0.89623 \pm 0.00047 \quad 1,3$ ABOUZAID 11 KTEV Assuming CPT
$0.89562 \pm 0.00029 \pm 0.0004320 \mathrm{M} \quad{ }^{4}$ AMBROSINO 11 KLOE Not assuming CPT
$0.89598 \pm 0.00048 \pm 0.0005116 \mathrm{M}$ LAI 02C NA48
$0.8971 \pm 0.0021 \quad$ BERTANZA 97 NA31
$0.8941 \pm 0.0014 \pm 0.0009 \quad$ SCHWINGEN... 95 E773 Assuming CPT
$0.8929 \pm 0.0016 \quad$ GIBBONS 93 E731 Assuming CPT

- - We do not use the following data for averages, fits, limits, etc. - -
0.8965 ± 0.0007
${ }^{5}$ ALAVI-HARATIO3 KTEV Assuming CPT
$0.8958 \pm 0.0013 \quad 6$ ALAVI-HARATIO3 KTEV Not assuming CPT
$0.8920 \pm 0.0044 \quad 214 \mathrm{k} \quad$ GROSSMAN 87 SPEC
$0.905 \pm 0.007 \quad 7$ ARONSON 82B SPEC
$0.881 \pm 0.009 \quad 26 \mathrm{k} \quad$ ARONSON 76 SPEC
$0.8926 \pm 0.0032 \pm 0.0002 \quad{ }^{8}$ CARITHERS 75 SPEC
$0.8937 \pm 0.0048 \quad 6 \mathrm{M}$ GEWENIGER 74B ASPK
$0.8958 \pm 0.0045 \quad 50 \mathrm{k} \quad 9$ SKJEGGEST... 72 HBC
$0.856 \pm 0.008 \quad 19994 \quad 10$ DONALD \quad 68B HBC
$0.872 \pm 0.009 \quad 20000{ }^{9,10}$ HILL 68 DBC
${ }^{1}$ The two ABOUZAID 11 values use the same full KTeV dataset from 1996, 1997, and 1999. The first enters the "assuming CPT" fit and the second enters the "not assuming $C P T^{\prime \prime}$ fit.
${ }^{2}$ ABOUZAID 11 fit has $\Delta m, \tau_{S}, \phi_{\epsilon}, \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$, and $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ as free parameters. See $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ in the " $K_{L}^{0} C P$ violation" section for correlation information.
${ }^{3}$ ABOUZAID 11 fit has Δm and τ_{S} free but constrains ϕ_{ϵ} to the Superweak value, i.e. assumes $C P T$. This τ_{S} value is correlated with their $\Delta m \stackrel{\epsilon}{=} m_{K_{L}^{0}}-m_{K_{S}^{0}}$ measurement
in the K_{L}^{0} listings. The correlation coefficient $\rho\left(\tau_{S}, \Delta m\right)=-0.670$.
${ }^{4}$ Fit to the proper time distribution.
${ }^{5}$ This ALAVI-HARATI 03 fit has Δm and τ_{S} free but constrains ϕ_{+-}to the Superweak value, i.e. assumes $C P T$. This τ_{S} value is correlated with their $\Delta m=m_{K_{L}^{0}}{ }^{-}$
$m_{K_{S}^{0}}$ measurement in the K_{L}^{0} listings. The correlation coefficient $\rho\left(\tau_{S}, \Delta m\right)=-0.396$. Superseded by ABOUZAID 11.
${ }^{6}$ This ALAVI-HARATI 03 fit has $\Delta m, \phi_{+-}$, and $\tau_{K_{S}}$ free. See ϕ_{+-}in the " $K_{L} C P$ violation" section for correlation information. Superseded by ABOUZAID 11.
${ }^{7}$ ARONSON 82 find that K_{S}^{0} mean life may depend on the kaon energy.
${ }^{8}$ CARITHERS 75 measures the Δm dependence of the total decay rate (inverse mean life) to be $\Gamma\left(K_{S}^{0}\right)=[(1.122 \pm 0.004)+0.16(\Delta m-0.5348) / \Delta m] 10^{10} / \mathrm{s}$, or, in terms of mean life, CARITHERS 75 measures $\tau_{s}=(0.8913 \pm 0.0032)-0.238[\Delta m-0.5348]$ $\left(10^{-10} \mathrm{~s}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{9}$ HILL 68 has been changed by the authors from the published value (0.865 ± 0.009) because of a correction in the shift due to η_{+-}. SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment.
${ }^{10}$ Pre-1971 experiments are excluded from the average because of disagreement with later more precise experiments.
K_{S}^{0} DECAY MODES

Mode \quad Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right) \quad$| Scale factor/ |
| ---: |
| Confidence level |

Γ_{1}	$\pi^{0} \pi^{0}$
Γ_{2}	$\pi^{+} \pi^{-}$
Γ_{3}	$\pi^{+} \pi^{-} \pi^{0}$
Γ_{4}	$\pi^{+} \pi^{-} \gamma$
Γ_{5}	$\pi^{+} \pi^{-} e^{+} e^{-}$
Γ_{6}	$\pi^{0} \gamma \gamma$
Γ_{7}	$\gamma \gamma$
Γ_{8}	$\pi^{ \pm} e^{\mp} \nu_{e}$
Γ_{9}	$\pi^{ \pm} \mu^{\mp} \nu_{\mu}$

Hadronic modes
$(30.69 \pm 0.05) \%$
$(69.20 \pm 0.05) \%$
$\left({ }^{3.5}{ }_{-0.9}^{+1.1}\right) \times 10^{-7}$

Modes with photons or $\bar{\ell} \bar{\ell}$ pairs

$[a, b] \quad(1.79 \pm 0.05) \times 10^{-3}$
$(4.79 \pm 0.15) \times 10^{-5}$
[a] $\quad(4.9 \pm 1.8) \times 10^{-8}$ ($2.63 \pm 0.17) \times 10^{-6}$
$\mathrm{S}=3.0$

Semileptonic modes

[c] $\quad(7.04 \pm 0.08) \times 10^{-4}$
$[c, d] \quad(4.69 \pm 0.05) \times 10^{-4}$

$C P$ violating ($C P$) and $\Delta S=1$ weak neutral current ($S 1$) modes					
Γ_{10}	$3 \pi^{0}$	CP	< 2.6	$\times 10^{-8}$	CL=90\%
Γ_{11}	$\mu^{+} \mu^{-}$	S1	< 8	$\times 10^{-10}$	CL=90\%
Γ_{12}	$e^{+} e^{-}$	S1	< 9	$\times 10^{-9}$	CL=90\%
Γ_{13}	$\pi^{0} e^{+} e^{-}$		[a] (3.0	$\times 10^{-9}$	
Γ_{14}	$\pi^{0} \mu^{+} \mu^{-}$	s1	(2.9	$\times 10^{-9}$	

[a] See the Particle Listings below for the energy limits used in this measurement.
[b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
[c] The value is for the sum of the charge states or particle/antiparticle states indicated.
[d] Not a measurement. Calculated as $0.666 \cdot \mathrm{~B}\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$.

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^{2}=$ 0.1 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	-100		
x_{8}	-6	3	
x_{9}	-6	3	100
	x_{1}	x_{2}	x_{8}

\boldsymbol{K}_{S}^{0} decay rates

$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$
VALUE $\left(10^{6} \mathrm{~s}^{-1}\right)$ EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

1.6	75	TSHIN 99	CMD2 Tagged K_{S}^{0} using $\phi \rightarrow K_{L}^{0} K_{S}^{0}$				
7.50 ± 0.08		2 PDG 98					
seen		BURGUN	$\mathrm{HBC} \quad K^{+} p \rightarrow K^{0} p \pi^{+}$				
9.3 ± 2.5		AUBERT 65	HLBC $\quad \Delta \mathrm{S}=\Delta \mathrm{Q}, C P$ cons. not assumed				
${ }^{1}$ AKHMETSHIN 99 is from a measured branching ratio $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi e \nu_{e}\right)=(7.2 \pm 1.4) \times$ 10^{-4} and $\tau_{K_{S}^{0}}=(0.8934 \pm 0.0008) \times 10^{-10} \mathrm{~s}$. Not independent of measured branching ratio.							
${ }^{2}$ PDG 98 from K_{L}^{0} measurements, assuming that $\Delta S=\Delta Q$ in K^{0} decay so that $\Gamma\left(K_{S}^{0} \rightarrow\right.$							

${ }^{1}$ AKHMETSHIN 99 is from a measured branching ratio $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi e \nu_{e}\right)=(7.2 \pm 1.4) \times$ 10^{-4} and $\tau_{K_{S}^{0}}=(0.8934 \pm 0.0008) \times 10^{-10} \mathrm{~s}$. Not independent of measured branching ${ }_{2}$ ratio.
${ }^{2}$ PDG 98 from K_{L}^{0} measurements, assuming that $\Delta S=\Delta Q$ in K^{0} decay so that $\Gamma\left(K_{S}^{0} \rightarrow\right.$ $\left.\pi^{ \pm} e^{\mp} \nu_{e}\right)=\Gamma\left(K_{L}^{0} \rightarrow \pi^{ \pm} e^{\mp} \nu_{e}\right)$.
$\Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)$
「9
VALUE $\left(10^{6} \mathrm{~s}^{-1}\right) \quad$ DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. - - -
$5.25 \pm 0.07 \quad 1$ PDG 98
${ }^{1}$ PDG 98 from K_{1}^{0} measurements, assuming that $\Delta S=\Delta Q$ in κ^{0} decay so that $\Gamma\left(K_{S}^{0} \rightarrow\right.$ $\left.\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)=\Gamma\left(K_{L}^{0} \rightarrow \pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)$.

Meson Particle Listings
K_{S}^{0}
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\gamma} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-8}\right)}{\mathbf{4 . 9} \pm \mathbf{1 . 6} \pm \mathbf{0 . 9}} \frac{C L \%}{17} \quad \frac{E V T S}{1} \quad \frac{\text { DOCUMENT ID }}{\text { LAI }} \frac{T E C N}{\text { NA48 }} \frac{\Gamma_{\mathbf{6}} / \boldsymbol{\Gamma}}{m_{\gamma \gamma}^{2} / m_{K}^{2}>0.2}$

- - We do not use the following data for averages, fits, limits, etc. . - -
<330 LAI $90 \quad$ 03B NA48 $\quad m_{\gamma}^{2} / m_{K}^{2}>0.2$

1 Spectrum also measured and found consistent
matrix element.

$\Gamma(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \Gamma_{\text {total }}$						
VALUE (units 10^{-6})	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT
2.63 圭0.17 OUR AVERAGE			Error includes scale factor of 3.0.			
2.26 ± 0.12	± 0.06	711	1 ambrosino	08C	KLOE	$\phi \rightarrow K_{S}^{0} K_{L}^{0}$
2.713 ± 0.063	± 0.005	7.5k	${ }^{2}$ LAI	03	NA48	
- - We do not use the following data for averages, fits, limits, etc. - -						
2.58 ± 0.36	± 0.22	149	LAI	00	NA48	
2.2 ± 1.1		16	${ }^{3}$ BARR	95B	NA31	
2.4 ± 0.9		35	${ }^{4}$ BARR	95B	NA31	
< 13	90		BALATS	89	SPEC	
2.4 ± 1.2		19	BURKHARDT	87	NA31	
<133	90		BARMIN	86B	XEBC	

${ }^{1}$ AMBROSINO 08C reports $(2.26 \pm 0.12 \pm 0.06) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(K_{S}^{0} \rightarrow\right.\right.$ $\left.\gamma \gamma) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)\right]$ assuming $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(30.69 \pm 0.05) \times 10^{-2}$.
${ }^{2}$ LAI 03 reports $\left[\Gamma\left(K_{S}^{0} \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)\right]=(8.84 \pm 0.18 \pm 0.10) \times 10^{-6}$ which we multiply by our best value $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(30.69 \pm 0.05) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ BARR 95B result is calculated using $\mathrm{B}\left(K_{L} \rightarrow \gamma \gamma\right)=(5.86 \pm 0.17) \times 10^{-4}$
${ }^{4}$ BARR 95B quotes this as the combined BARR 95B + BURKHARDT 87 result after rescaling BURKHARDT 87 to use same branching ratios and lifetimes as BARR 95B.

—— Semileptonic modes

$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right) / \Gamma_{\text {total }}$
Γ_{8} / Γ
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
7.04 ± 0.08 OUR FIT

7.04 ± 0.08 OUR AVERAGE

$\begin{array}{lllll}7.046 \pm 0.18 \pm 0.16 & 1 & \text { BATLEY } & \text { 07D NA48 } & K^{0}\left(\bar{K}^{0}\right)(\mathrm{t}) \rightarrow \pi e \nu \\ 6.91 \pm 0.34 \pm 0.15 & 624 & { }^{2} \text { ALOISIO } & 02 \text { KLOE } & \text { Tagged } K_{S}^{0} \text { using } \phi \rightarrow\end{array} K_{L}^{0} K_{S}^{0}$

- - We use the following data for averages but not for fits. - . -
$7.05 \pm 0.09 \quad 13 \mathrm{k} \quad{ }^{3}$ AMBROSINO 06E KLOE Not fitted
- - We do not use the following data for averages, fits, limits, etc. • • -
$7.2 \pm 1.4 \quad 75 \quad$ AKHMETSHIN 99 CMD2 Tagged K_{S}^{0} using $\phi \rightarrow K_{L}^{0} K_{S}^{0}$ ${ }^{1}$ Reconstructed from $K^{0}\left(\bar{K}^{0}\right)(\mathrm{t}) \rightarrow \pi e \nu$ distributions using PDG values of $\mathrm{B}\left(K_{L}^{0} \rightarrow\right.$ $\pi e \nu)=0.4053 \pm 0.0015, \tau_{L}=(5.114 \pm 0.021) \times 10^{-8} \mathrm{~s}$ and $\tau_{S}=(0.8958 \pm 0.0005) \times$ $10^{-10} \mathrm{~s}$.
${ }^{2}$ Uses the PDG 00 value for $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$.
${ }^{3}$ Obtained by imposing $\Sigma_{i} \mathrm{~B}\left(K_{S}^{0} \rightarrow i\right)=1$, where i runs over all the four branching ratios $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \pi e \nu$, and $\pi \mu \nu$. Input value of $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ from AMBROSINO 06C is used. To derive $\Gamma\left(K_{S}^{0} \rightarrow \pi^{+} \mu \nu\right) / \Gamma\left(K_{S}^{0} \rightarrow \pi^{+} e \nu\right)$, lepton universality is assumed, radiative corrections from ANDRE 07 are used, and phase space integrals are taken from KTeV, ALEXOPOULOS 04A. This branching fraction enters our fit via their $\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right) / \Gamma\left(\pi^{+} \pi^{-}\right)$branching ratio measurement.
$\Gamma\left(\pi^{ \pm=} \boldsymbol{\mu}^{\mp} \nu_{\boldsymbol{\mu}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\Gamma 9 / \Gamma$
The PDG 06 value below has not been measured but is computed to be 0.666 times the $K_{S} \rightarrow \pi^{ \pm} e^{\mp} \nu_{e}$ branching fraction. It is included in the fit that constrains the four branching ratios $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \pi e \nu$, and $\pi \mu \nu$ to sum to 1 . This treatment, used by AMBROSINO 06E, is preferable to our previous practice of constraining the $\pi^{+} \pi^{-}$ and $\pi^{0} \pi^{0}$ modes to sum to 1 . The 0.666 factor is obtained from AMBROSINO 06E and assumes lepton universality, radiative corrections from ANDRE 07, and phase space integrals from KTeV, ALEXOPOULOS 04A.
VALUE (units 10^{-4}) DOCUMENTID COMMENT
4.69 ± 0.06 OUR FIT
$4.691 \pm 0.001 \pm 0.056$
1 PDG
06 calculated from $\pi^{ \pm} e^{\mp} \nu_{e}$
${ }^{1}$ The PDG 06 value is computed to be $\mathrm{BPDG}_{\mathrm{PD}}(\pi \mu \nu)=0.666 \mathrm{~B}_{\mathrm{FIT}}(\pi e \nu)$. The first error specifies the arbitrarily small error, 0.001×10^{-4}, on ${ }^{B}$ PDG06 $(\pi \mu \nu)$ for fixed $\mathrm{B}_{\mathrm{FIT}}(\pi e \nu)$. The second error is that due to the uncertainty in $\mathrm{B}_{\mathrm{FIT}}(\pi e \nu)$.
$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right) / \Gamma\left(\pi^{+} \pi^{-}\right)$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 0 . 1 8} \pm \mathbf{0 . 1 2} \text { OUR FIT }} \stackrel{\text { EVTS }}{ }$
$\overline{10.18} \pm 0.12$ OUR FIT
$10.19 \pm 0.11 \pm 0.07 \quad 13 \mathrm{k}$
DOCUMENT ID TECN
$C P$ violating ($C P$) and $\Delta S=1$ weak neutral current ($S 1$) modes

$\Gamma\left(3 \pi^{0}\right) / \Gamma_{\text {total }}$							Γ_{10} / Γ
Violates CP	cons	rvation					
VALUE (units 10^{-7})	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT	
< 0.26	90	590M	1 BABUSCI	13C	KLOE	$\phi \rightarrow K_{L}^{0} K_{S}^{0}$	

- - We do not use the following data for averages, fits, limits, etc. - - -

| $<$ | 90 | 97.8 M |
| :--- | :--- | :--- | AMBROSINO 05B KLOE

$\begin{array}{llll} & 7.4 & 90 & 4.9 \mathrm{M}\end{array}{ }^{2}$ LAI \quad 05A NA48
$<140 \quad 90 \quad 7 \mathrm{M} \quad$ ACHASOV 99D SND
$<190 \quad 90 \quad 17300 \quad 3$ ANGELOPO... 98B CPLR
$<370 \quad 90$ BARMIN 83 HLBC
${ }^{1}$ BABUSCI 13C uses $1.7 \mathrm{fb}^{-1}$ of data of $\phi \rightarrow K_{L}^{0} K_{S}^{0}$ decays with K_{L}^{0} interaction in the calorimeter, collected from 2004 to 2005. No candidate events were found in the data with an expected background of $0.04_{-0.03}^{+0.15}$ events. Upper limit is obtained by normalizing to $K_{S}^{0} \rightarrow 2 \pi^{0}$ decays.
${ }^{2}$ LAI 05A value is obtained from their bound on $\left|\eta_{000}\right|$ (not assuming $C P T$) and $\mathrm{B}\left(K_{L}^{0} \rightarrow\right.$ $\left.3 \pi^{0}\right)=0.211 \pm 0.003$, and PDG 04 values for K_{L}^{0} and K_{S}^{0} lifetimes. If CPT is assumed then $\mathrm{B}\left(K_{S}^{0} \rightarrow 3 \pi^{0}\right)_{C P T}<2.3 \times 10^{-7}$ at $90 \% \mathrm{CL}$
${ }^{3}$ ANGELOPOULOS 98B is from $\operatorname{Im}\left(\eta_{000}\right)=-0.05 \pm 0.12 \pm 0.05$, assuming $\operatorname{Re}\left(\eta_{000}\right)$
$=\operatorname{Re}(\epsilon)=1.635 \times 10^{-3}$ and using the value $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)=0.2112 \pm 0.0027$.
$\Gamma\left(\boldsymbol{\mu}^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
Γ_{11} / Γ
Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.
$\frac{\text { VALUE }}{<\mathbf{8} \times \mathbf{1 0}^{\mathbf{- 1 0}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{AAIJ}} \frac{\text { TECN }}{17 \mathrm{BQ}} \frac{\text { LHCB }}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$<9 \times 10^{-9}$	90	${ }^{2}$ AAIJ	13 G	LHCB
$<3.2 \times 10^{-7}$	90	GJESDAL	73	ASPK
$<7 \times 10^{-6}$	90	HYAMS	69 B	OSPK

${ }^{1}$ AAIJ 17BQ uses $3.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $\sqrt{s}=7$ and 8 TeV . The result utilizes the normalization mode branching fraction $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(69.20 \pm 0.05) \times 10^{-2}$ from PDG 16. Supersedes AAIJ 13G.
${ }^{2}$ AAIJ 13G uses $1.0 \mathrm{fb}^{-1}$ of $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. They obtained $\mathrm{B}\left(K_{S}^{0} \rightarrow\right.$ $\left.\mu^{+} \mu^{-}\right)<11 \times 10^{-9}$ at 95% C.L.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{12} / Γ Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.
VALUE (units 10^{-7}) CL\% DOCUMENT ID COMMENT
$<0.09 \quad 1 \quad 1 \begin{aligned} & \text { AMBROSINO 09A } \\ & \text { KLOE } \\ & e^{+} e^{-} \rightarrow \phi \rightarrow K_{S}^{0} K_{L}^{0}\end{aligned}$

- - We do not use the following data for averages, fits, limits, etc. - • -

<1.4	90	ANGELOPO... 97	CPLR		
<28	90	BLICK	94	CNTR	Hyperon facility
<100	90	BARMIN	86	XEBC	

${ }^{1}$ AMBROSINO 09A reports $<0.09 \times 10^{-7}$ from a measurement of $\left[\Gamma\left(K_{S}^{0} \rightarrow e^{+} e^{-}\right) /\right.$
$\left.\Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(69.20 \pm 0.05) \times 10^{-2}$.
$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{13} / Γ
Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.
VALUE (units 10^{-9}) CL\% EVTS DOCUMENT ID TECN COMMENT $\mathbf{3 . 0}=\mathbf{1 . 2} \pm \mathbf{1 . 2} \quad 7 \quad{ }^{1}$ BATLEY 03 NA48 $m_{e e}>0.165 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<140	90		LAI	01	NA48
<1100	90	0	BARR	$93 B$	NA31
<45000	90		GIBBONS	88	E731

${ }^{1}$ BATLEY 03 extrapolate also to the full kinematical region using a constant form factor and a vector matrix element. The resulting branching ratio is $\left(5.8_{-2.4}^{+2.9}\right) \times 10^{-9}$.

$$
\Gamma\left(\pi^{0} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}
$$

$\Gamma_{14 / \Gamma}$
Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.
VALUE (units 10^{-9}) EVTS DOCUMENTID TECN COMMENT
$\mathbf{2 . 9} \mathbf{+ 1 . 5} \pm \mathbf{1 . 2} \quad 6 \quad 1$ BATLEY 04 A NA48 NA48/1 K_{S}^{0} beam
${ }^{1}$ Background estimate is $0.22_{-0.11}^{+0.18}$ events. Branching ratio assumes a vector matrix element and unit form factor.

K_{s}^{0} FORM FACTORS

For discussion, see note on $K_{\ell 3}$ form factors in the $K^{ \pm}$section of the Particle Listings above. Because the semileptonic branching fraction is smaller in K_{S}^{0} than K_{S}^{0} by the ratio of the mean lives, the K_{S}^{0} semileptonic form factor has so far been measured only in the $K_{e 3}$ mode using the linear expansion $f_{+}(t)=f_{+}(0)\left(1+\lambda_{+} t / m_{\pi^{+}}^{2}\right)$, which gives the vector form factor $f_{+}(t)$ relative to its value at $t=0$.
λ_{+}(LINEAR ENERGY DEPENDENCE OF f_{+}IN $K_{e 3}^{0}$ DECAY)
$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\text { EVTS }}$ DOCUMENT ID $\frac{\text { TECN }}{15 \mathrm{~K}}$
$\mathbf{3 . 3 9} \pm \mathbf{0 . 4 1} \quad 15 \mathrm{k} \quad$ AMBROSINO 06E KLOE

$C P$ VIOLATION IN $K_{S} \rightarrow 3 \pi$

Written 1996 by T. Nakada (Paul Scherrer Institute) and L. Wolfenstein (Carnegie-Mellon University).

The possible final states for the decay $K^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ have isospin $I=0,1,2$, and 3 . The $I=0$ and $I=2$ states have $C P=+1$ and K_{S} can decay into them without violating $C P$ symmetry, but they are expected to be strongly suppressed by centrifugal barrier effects. The $I=1$ and $I=3$ states, which have no centrifugal barrier, have $C P=-1$ so that the K_{S} decay to these requires $C P$ violation.

In order to see $C P$ violation in $K_{S} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, it is necessary to observe the interference between K_{S} and K_{L} decay, which determines the amplitude ratio

$$
\begin{equation*}
\eta_{+-0}=\frac{A\left(K_{S} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}{A\left(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)} \tag{1}
\end{equation*}
$$

If η_{+-0} is obtained from an integration over the whole Dalitz plot, there is no contribution from the $I=0$ and $I=2$ final states and a nonzero value of η_{+-0} is entirely due to $C P$ violation.

Only $I=1$ and $I=3$ states, which are $C P=-1$, are allowed for $K^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays and the decay of K_{S} into $3 \pi^{0}$ is an unambiguous sign of $C P$ violation. Similarly to η_{+-0}, η_{000} is defined as

$$
\begin{equation*}
\eta_{000}=\frac{A\left(K_{S} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)}{A\left(K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)} \tag{2}
\end{equation*}
$$

If one assumes that $C P T$ invariance holds and that there are no transitions to $I=3$ (or to nonsymmetric $I=1$ states), it can be shown that

$$
\begin{align*}
\eta_{+-0} & =\eta_{000} \\
& =\epsilon+i \frac{\operatorname{Im} a_{1}}{\operatorname{Re} a_{1}} \tag{3}
\end{align*}
$$

With the Wu-Yang phase convention, a_{1} is the weak decay amplitude for K^{0} into $I=1$ final states; ϵ is determined from $C P$ violation in $K_{L} \rightarrow 2 \pi$ decays. The real parts of η_{+-0} and η_{000} are equal to $\operatorname{Re}(\epsilon)$. Since currently-known upper limits on $\left|\eta_{+-0}\right|$ and $\left|\eta_{000}\right|$ are much larger than $|\epsilon|$, they can be interpreted as upper limits on $\operatorname{Im}\left(\eta_{+-0}\right)$ and $\operatorname{Im}\left(\eta_{000}\right)$ and so as limits on the $C P$-violating phase of the decay amplitude a_{1}.

CP-VIOLATION PARAMETERS IN K_{S}^{0} DECAY

```
AS}=[\Gamma(\mp@subsup{K}{S}{0}->\mp@subsup{\pi}{}{-}\mp@subsup{e}{}{+}\mp@subsup{\nu}{e}{})-\Gamma(\mp@subsup{K}{S}{0}->\mp@subsup{\pi}{}{+}\mp@subsup{e}{}{-}\mp@subsup{\overline{\nu}}{e}{})]/\mathrm{ SUM
    Such asymmetry violates CP. If CPT is assumed then }\mp@subsup{A}{S}{}=2\operatorname{Re}(\epsilon)\mathrm{ .
VALUE (units 10-3)
- - We do not use the following data for averages, fits, limits, etc. - - - 
    1.5\pm9.6\pm2.9 13k AMBROSINO 06E KLOE
    1 ANASTASI 18A result is a combination of the new measurement and AMBROSINO 06E.
    The new ANASTASI 18A measurement using data collected from 2004-2005, which
    corresponds to an integrated luminosity of 1.63 fb }\mp@subsup{}{}{-1}\mathrm{ is }\mp@subsup{A}{S}{}=(-4.9\pm5.7\pm2.6)\times1\mp@subsup{0}{}{-3}
- PARAMETERS FOR K K
        CPT}\mathrm{ assumed valid (i.e. }\operatorname{Re}(\mp@subsup{\eta}{+-0}{})\simeq0)
VALUE CL% EVTS DOCUMENTID TECN
- - - We do not use the following data for averages, fits, limits, etc. - - -
<0.23 90 601 1 BARMIN 85 HLBC
<0.12 90 384 METCALF 72 ASPK
    \mp@subsup{}{}{1}\mathrm{ BARMIN }85\mathrm{ find }\operatorname{Re}(\mp@subsup{\eta}{+-0}{})=(0.05\pm0.17) and Im}(\mp@subsup{\eta}{+-0}{})=(0.15\pm0.33). Includes
    events of BALDO-CEOLIN 75.
```

$\operatorname{Im}\left(\eta_{+=0}\right)=\operatorname{Im}\left(\mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}, C P\right.\right.$-violating $\left.) / \mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right)$
VALUE DOCUMENT ID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.002 \pm 0.018 \pm 0.003$ 137k $\quad 2$ ADLER \quad 96D CPLR Sup. by ADLER 97B
$-0.015 \pm 0.017 \pm 0.025 \quad 272 k \quad 3$ ZOU 94 SPEC
${ }^{1}$ ADLER 97B also find $\operatorname{Re}\left(\eta_{+-0}\right)=-0.002 \pm 0.007_{-0.001}^{+0.004}$. See also ANGELOPOULOS 98C.
2 The ADLER 96D fit also yields $\operatorname{Re}\left(\eta_{+-0}\right)=0.006 \pm 0.013 \pm 0.001$ with a correlation +0.66 between real and imaginary parts. Their results correspond to $\left|\eta_{+-0}\right|<0.037$
with 90% CL.
ZOU 94 use theoretical constraint $\operatorname{Re}\left(\eta_{+-0}\right)=\operatorname{Re}(\epsilon)=0.0016$. Without this constraint they find $\operatorname{Im}\left(\eta_{+-0}\right)=0.019 \pm 0.061$ and $\operatorname{Re}\left(\eta_{+-0}\right)=0.019 \pm 0.027$.
$\operatorname{Im}\left(\eta_{000}\right)^{\mathbf{2}}=\Gamma\left(K_{S}^{0} \rightarrow 3 \pi^{0}\right) / \Gamma\left(K_{\mathcal{L}}^{0} \rightarrow 3 \pi^{0}\right)$
$C P T$ assumed valid (i.e. $\left.\operatorname{Re}\left(\eta_{000}\right) \simeq 0\right)$. This limit determines branching ratio $\Gamma\left(3 \pi^{0}\right) / \Gamma_{\text {total }}$ above.
VALUE CL\% EVTS DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$\begin{array}{lllllll}<0.1 & 90 & 632 & { }^{1} \text { BARMIN } & 83 & \text { HLBC } & \\ <0.28 & 90 & & { }^{2} \text { GJESDAL } & 74 B & \text { SPEC } & \text { Indirect meas. }\end{array}$
${ }^{1}$ BARMIN 83 find $\operatorname{Re}\left(\eta_{000}\right)=(-0.08 \pm 0.18)$ and $\operatorname{Im}\left(\eta_{000}\right)=(-0.05 \pm 0.27)$. Assuming CPT invariance they obtain the limit quoted above.
${ }^{2}$ GJESDAL 74B uses $K 2 \pi, K_{\mu 3}$, and $K_{e 3}$ decay results, unitarity, and CPT. Calculates $\left|\left(\eta_{000}\right)\right|=0.26 \pm 0.20$. We convert to upper limit.
$\operatorname{Im}\left(\eta_{000}\right)=\operatorname{Im}\left(A\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right) / A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)\right)$ $K_{S}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ violates $C P$ conservation, in contrast to $K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ which has a $C P$-conserving part.

This is the $C P$-violating asymmetry

$$
A=\frac{N_{\sin \phi} \cos \phi>0.0-N_{\sin \phi \cos \phi<0.0}}{N_{\sin \phi} \phi \cos \phi>0.0+N_{\sin \phi} \phi \cos \phi<0.0}
$$

where ϕ is the angle between the $e^{+} e^{-}$and $\pi^{+} \pi^{-}$planes in the K_{S}^{0} rest frame.

$C P$ asymmetry A in $K_{S}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$			TECN	COMMENT
VALUE (\%)	DOCUMENT ID			
-0.4 ± 0.8 OUR AVERAGE				
-0.4 ± 0.8	${ }^{1}$ BATLEY	11	NA48	2002 data
-1.1 ± 4.1	LAI	03C	NA48	1998+1999
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.5 \pm 4.0 \pm 1.6$	LAI	03c	NA48	1999 data
${ }^{1}$ The result is used to set the limit $A<1.5 \%$ at 90% C.L.				

ANASTASI	18A	JHEP 1809021	A. Anastasi et al.	(KLOE-2 Collab.)
AAIJ	17BQ	EPJ C77 678	R. Aaij et al.	(LHCb Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
AAIJ	13G	JHEP 1301090	R. Aaij et al.	(LHCb Collab.)
BABUSCI	13 C	PL B723 54	D. Babusci et al.	(KLOE-2 Collab.)
ABOUZAID	11	PR D83 092001	E. Abouzaid et al.	(FNAL KTeV Collab.)
AMBROSINO	11	EPJ C71 1604	F. Ambrosino et al.	(KLOE Collab.)
BATLEY	11	PL B694 301	J.R. Batley et al.	(CERN NA48/1 Collab.)
AMBROSINO	09A	PL B672 203	F. Ambrosino et al.	(KLOE Collab.)
AMBROSINO	08C	JHEP 0805051	F. Ambrosino et al.	(KLOE Collab.)
ANDRE	07	ANP 3222518	T. Andre	(EFI)
BATLEY	07D	PL B653 145	J.R. Batley et al.	(CERN NA48 Collab.)
AMBROSINO	06C	EPJ C48 767	F. Ambrosino et al.	(KLOE Collab.)
AMBROSINO	06E	PL B636 173	F. Ambrosino et al.	(KLOE Collab.)
PDG	06	JP G33 1	W.-M. Yao et al.	(PDG Collab.)
AMBROSINO	05B	PL B619 61	F. Ambrosino et al.	(KLOE Collab.)
BATLEY	05	PL B630 31	J.R. Batley et al.	(NA48 Collab.)
LAI	05A	PL B610 165	A. Lai et $\mathrm{al}^{\text {l }}$	(CERN NA48 Collab.)
ALEXOPOU...	04A	PR D70 092007	T. Alexopoulos et al.	(FNAL KTeV Collab.)
BATLEY	04 A	PL B599 197	J.R. Batley et al.	(NA48 Collab.)
LAI	04	PL B578 276	A. Lai et al.	(CERN NA48 Collab.)

Meson Particle Listings
K_{S}^{0}, K_{L}^{0}

$m_{K_{L}^{0}}-m_{K_{S}^{0}}$

For earlier measurements, beginning with GOOD 61 and FITCH 61, see our 1986 edition, Physics Letters 170B 132 (1986).

OUR FIT is described in the note on " $C P$ violation in K_{L} decays" in the K^{0} Particle Listings. The result labeled "OUR FIT Assuming CPT" ["OUR FIT Not assuming $\left.C P T^{\prime \prime}\right]$ includes all measurements except those with the comment "Not assuming CPT" ["Assuming CPT"]. Measurements with neither comment do not assume CPT and enter both fits.

K_{L}^{0} MEAN LIFE

$\frac{\operatorname{VALUE}\left(10^{-8} \mathrm{~s}\right)}{\mathbf{5 . 1 1 6} \mathbf{0 . 0 2 1} \text { OUR FIT }} \frac{\operatorname{EVTS}}{\text { Erro }}$
DOCUMENT ID
TECN COMMENT

5.099 ± 0.021 OUR AVERAGE

$5.072 \pm 0.011 \pm 0.035 \quad 13 \mathrm{M} \quad{ }^{1}$ AMBROSINO 06 KLOE $\sum_{i} \mathrm{~B}_{i}=1$
$5.092 \pm 0.017 \pm 0.025 \quad 15 \mathrm{M} \quad$ AMBROSINO 05C KLOE
$5.154 \pm 0.044 \quad 0.4 \mathrm{M}$ VOSBURGH 72 CNTR

- - We do not use the following data for averages, fits, limits, etc. - - -
5.15 ± 0.14
DEVLIN 67 CNTR
${ }^{1}$ AMBROSINO 06 uses $\phi \rightarrow K_{L} K_{S}$ with K_{L} tagged by $K_{S} \rightarrow \pi^{+} \pi^{-}$. The four major K_{L} BR's are measured, the small remainder $\left(\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \gamma \gamma\right)$ is taken from PDG 04. This KLOE K_{L} lifetime is obtained by imposing $\sum_{i} \mathrm{~B}_{i}=1$. The correlation matrix
among the four measured K_{L} BR's and this K_{L} lifetime is

${ }^{\tau} K_{L}{ }_{\text {ne }}$
These correlations are taken into account in our fit. The average of this KLOE mean life measurement and the independent KLOE measurement in AMBROSINO 05C is (5.084 \pm $0.023) \times 10^{-8} \mathrm{~s}$.

K_{L}^{0} DECAY MODES			
	Mode	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Scale factor/ Confidence level
Semileptonic modes			
Γ_{1}	$\begin{gathered} \pi^{ \pm} e^{\mp} \nu_{e} \\ \text { Called } K_{e 3}^{0} . \end{gathered}$	[a] (40.55 $\pm 0.11) \%$	$\mathrm{S}=1.7$

Γ_{2}	$\pi^{ \pm} \mu^{\mp} \nu_{\mu}$	[a]	$(27.04 \pm 0.07) \%$
	Called $K_{\mu 3}^{0}$.		$(1.05 \pm 0.11) \times 10^{-7}$
Γ_{3}	$(\pi \mu$ atom $) \nu$	$[a]$	$(5.20 \pm 0.11) \times 10^{-5}$
Γ_{4}	$\pi^{0} \pi^{ \pm} e^{\mp} \nu$	$[a]$	$(1.26 \pm 0.04) \times 10^{-5}$
Γ_{5}	$\pi^{ \pm} e^{\mp} \nu e^{+} e^{-}$		

Hadronic modes, including Charge conjugation \times Parity Violating (CPV) modes

Γ_{6}	$3 \pi^{0}$		$(19.52 \pm 0.12) \%$	$\mathrm{~S}=1.6$
Γ_{7}	$\pi^{+} \pi^{-} \pi^{0}$		$(12.54 \pm 0.05) \%$	
Γ_{8}	$\pi^{+} \pi^{-}$	$C P V$	$[b]$	$(1.967 \pm 0.010) \times 10^{-3}$
Γ_{9}	$\pi^{0} \pi^{0}$	$C P V$	$(8.64 \pm 0.06) \times 10^{-4}$	$\mathrm{~S}=1.5$

$\Gamma_{10} \quad \pi^{ \pm} e^{\mp} \nu_{e} \gamma$

Semileptonic modes with photons

$\Gamma_{11} \pi^{ \pm} \mu^{\mp} \nu_{\mu} \gamma$

$$
\left[\begin{array}{ll}
{[a, c, d]} & (3.79 \pm 0.06) \times 10^{-3} \\
& (5.65 \pm 0.23) \times 10^{-4}
\end{array}\right.
$$

Hadronic modes with photons or $\ell \bar{\ell}$ pairs

Γ_{12}	$\pi^{0} \pi^{0} \gamma$
Γ_{13}	$\pi^{+} \pi^{-} \gamma$
Γ_{14}	$\pi^{+} \pi^{-} \gamma($ DE $)$
Γ_{15}	$\pi^{0} \gamma \gamma$
Γ_{16}	$\pi^{0} \gamma e^{+} e^{-}$

$$
\begin{array}{rrrr}
& <2.43 & \times 10^{-7} & \mathrm{CL}=90 \% \\
{[c, d]} & (4.15 \pm 0.15) \times 10^{-5} & \mathrm{~S}=2.8 \\
& (2.84 \pm 0.11) \times 10^{-5} & \mathrm{~S}=2.0 \\
{[c]} & (1.273 \pm 0.033) \times 10^{-6} & \\
& (1.62 \pm 0.17) \times 10^{-8} &
\end{array}
$$

Other modes with photons or $\ell \bar{\ell}$ pairs

Γ_{17}	2γ
Γ_{18}	3γ
Γ_{19}	$e^{+} e^{-} \gamma$
Γ_{20}	$\mu^{+} \mu^{-} \gamma$
Γ_{21}	$e^{+} e^{-} \gamma \gamma$
Γ_{22}	$\mu^{+} \mu^{-} \gamma \gamma$

	(5.47	± 0.04	$) \times 10^{-4}$	$\mathrm{S}=1.1$
	<7.4		$\times 10^{-8}$	CL=90\%
	(9.4	± 0.4	$) \times 10^{-6}$	$\mathrm{S}=2.0$
	(3.59	± 0.11) $\times 10^{-7}$	$\mathrm{S}=1.3$
[c]	(5.95	± 0.33) $\times 10^{-7}$	
[c]	(1.0	+0.8 +0.6) $\times 10^{-8}$	

Charge conjugation \times Parity (CP) or Lepton Family number (LF) violating modes, or $\Delta S=1$ weak neutral current ($S 1$) modes
$\Gamma_{23} \mu^{+} \mu^{-}$
$\Gamma_{24} e^{+} e^{-}$
$\Gamma_{25} \pi^{+} \pi^{-} e^{+} e^{-}$
$\Gamma_{26} \pi^{0} \pi^{0} e^{+} e^{-}$
$\Gamma_{27} \pi^{0} \pi^{0} \mu^{+} \mu^{-}$
$\Gamma_{28} \mu^{+} \mu^{-} e^{+} e^{-}$
$\Gamma_{29} e^{+} e^{-} e^{+} e^{-}$
$\Gamma_{30} \pi^{0} \mu^{+} \mu^{-}$
$\Gamma_{31} \pi^{0} e^{+} e^{-}$
$\begin{array}{ll}\Gamma_{32} & \pi^{0} \nu \bar{\nu} \\ \Gamma_{32} & \pi^{0} \pi^{0} \nu \bar{\nu}\end{array}$
「33 $\pi^{0} \pi^{0} \nu \bar{\nu}$
$\begin{array}{ll}\Gamma_{34} & e^{ \pm} \mu^{\mp} \\ \Gamma_{35} & e^{ \pm} e^{ \pm} \mu^{\mp} \mu^{\mp}\end{array}$
$\Gamma_{36} \quad \pi^{0} \mu^{ \pm} e^{\mp}$
$\pi^{0} \pi^{0} \mu^{ \pm} e^{\mp}$

S1 $\quad\left(\begin{array}{ll}9 & { }_{-4}^{6}\end{array}\right) \times 10^{-12}$
$\begin{array}{lll}\text { S1 } \quad\left[\begin{array}{lll}(9 & +6\end{array}\right) \times 10^{-12} \\ S 1\end{array} \quad[c] \quad(3.11 \pm 0.19) \times 10^{-7}$
$\begin{array}{rll}\text { S1 } \quad[c] \quad(3.11 \pm 0.19) & \times 10^{-7} \\ \text { S1 } & <6.6 & \times 10^{-9} \quad \mathrm{CL}=90 \%\end{array}$
$S_{1}<9.2 \times 10^{-11} \quad \mathrm{CL}=90 \%$
S1 $\quad(2.69 \pm 0.27) \times 10^{-9}$
$(3.56 \pm 0.21) \times 10^{-8}$
$C P, S 1[e]<3.8 \quad \times 10^{-10} \quad \mathrm{CL}=90 \%$
$C P, S 1[e]<2.8 \quad \times 10^{-10} \quad \mathrm{CL}=90 \%$
$C P, S 1[f]<3.0 \times 10^{-9} \quad \mathrm{CL}=90 \%$
$S_{1}<8.1 \quad \times 10^{-7} \quad \mathrm{CL}=90 \%$
LF $[a]<4.7 \times 10^{-12} \quad \mathrm{CL}=90 \%$
LF $[a]<4.12 \times 10^{-11} \quad$ CL=90\%
$\begin{array}{lrlll}L F & {[a]<7.6} & \times 10^{-11} & C L=90 \% \\ L F & <1.7 & \times 10^{-10} & C L=90 \%\end{array}$
[a] The value is for the sum of the charge states or particle/antiparticle states indicated.
$[b]$ This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma(\mathrm{DE})$.
[c] See the Particle Listings below for the energy limits used in this measurement.
[d] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
[e] Allowed by higher-order electroweak interactions.
$[f]$ Violates $C P$ in leading order. Test of direct $C P$ violation since the indirect $C P$-violating and $C P$-conserving contributions are expected to be suppressed.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life and 15 branching ratios uses 27 measurements and one constraint to determine 11 parameters. The overall fit has a $\chi^{2}=37.4$ for 17 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

k_{L}^{0} DECAY RATES
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right)$
$\underline{V A L U E\left(10^{6}{ }^{-1}\right)}$ EVTS \quad DOCUMENT ID \quad TECN COMMENT 2.451 ± 0.015 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - -

2.32 ± 0.13	192	BALDO-...	75	HLBC	Assumes CP
2.35 ± 0.20	180	1 JAMES	72	HBC	Assumes CP
2.71 ± 0.28	99	CHO	71	DBC	Assumes CP
2.5	± 0.3	98	1 JAMES	71	HBC
2.12 ± 0.33	50	MEISNER	71	HBC	Assumes CP $C P$
2.20 ± 0.35	53	WEBBER	70	HBC	Assumes CP
2.62 ± 0.28	136	BEHR	66	HLBC	Assumes CP
3.26 ± 0.77	18	ANDERSON	65	HBC	
1.4 ± 0.4	14	FRANZINI	65	HBC	

1 JAMES 72 is a final measurement and includes JAMES 71.
$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$
VALUE $\left(10^{6} \mathrm{~s}^{-1}\right)$ EVTS DOCUMENT ID TECN COMMENT
7.927 ± 0.034 OUR FIT \quad Error includes scale factor of 1.1

- - We do not use the following data for averages, fits, limits, etc. • - .

7.81 ± 0.56	620	CHAN	71	HBC	
7.52	+0.85		AUBERT	65	HLBC

$\frac{\operatorname{VALUE}\left(10^{6} \mathrm{~s}^{-1}\right)}{13.21 \pm 0.05}$ DUR FIT DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

12.4 ± 0.7	410	${ }^{1}$ BURGUN	72	HBC	$K^{+} p \rightarrow K^{0} p \pi^{+}$
8.47 ± 1.69	126	1 MANN	72	HBC	$K^{-} p \rightarrow n \bar{K}^{0}$
13.1 ± 1.3	252	1 WEBBER	71	HBC	$K^{-} p \rightarrow n \bar{K}^{0}$
11.6 ± 0.9	393	$1,2 \mathrm{CHO}$	70	DBC	$K+n \rightarrow K^{0} p$
10.3 ± 0.8	335	${ }^{2}$ HILL	67	DBC	$K^{+} n \rightarrow K^{0} p$
$9.85{ }_{-1.05}^{+1.15}$	109	${ }^{1}$ FRANZINI	65	HBC	
${ }^{1}$ Assumes ${ }^{2} \mathrm{CHO} 70$	ule. ts of	$\text { LL } 67 .$			

K_{L}^{0} BRANCHING RATIOS

Meson Particle Listings
K_{L}^{0}

1 AMBROSINO 06 enters the fit via their separate measurements of these two modes
${ }^{2}$ ALEXOPOULOS 04 enters the fit via their separate measurements of these two modes.
$\Gamma((\pi \mu$ atom $) \nu) / \Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)$
Γ_{3} / Γ_{2}
$\frac{V A L U E\left(\text { units } 10^{-7} \text {) }\right.}{\mathbf{3 . 9 0} \pm \mathbf{0 . 3 9}} \frac{\text { EVTS }}{155} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TROCN }}{\text { ARONSON } 86} \frac{\text { SPEC }}{}$

- - We do not use the following data for averages, fits, limits, etc. • -
seen 18 COOMBES 76 WIRE
${ }^{1}$ ARONSON 86 quote theoretical value of $(4.31 \pm 0.08) \times 10^{-7}$.
$\Gamma\left(\pi^{0} \pi^{ \pm} e^{\mp} \nu\right) / \Gamma_{\text {total }}$
Γ_{4} / Γ
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{5.20 \pm 0.11 \text { OUR AVERA }} \frac{C L \%}{\text { DOCUMENT ID }}$ TECN
5.20 ± 0.11 OUR AVERAGE

$5.21 \pm 0.07 \pm 0.09 \quad 5402 \quad$ BATLEY 04 NA48
$5.16 \pm 0.20 \pm 0.22 \quad 729$ MAKOFF 93 E731

- - We do not use the following data for averages, fits, limits, etc. - - -
$6.2 \pm 2.0 \quad 16$ CARROLL 80C SPEC
$<220 \quad 90 \quad 1$ DONALDSON 74 SPEC
${ }^{1}$ DONALDSON 74 uses $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} /\left(\right.$ all $\left.K_{L}^{0}\right)$ decays $=0.126$.
$\Gamma\left(\pi^{ \pm} e^{\mp} \nu e^{+} e^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
Γ_{5} / Γ_{7}
VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 0 . 0 2} \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 2 9} \quad 19 \mathrm{k} 1$ ABOUZAID 07 C KTEV $\mathrm{M}_{e e}>5 \mathrm{MeV}, \mathrm{E}_{e e}^{*}>30 \mathrm{MeV}$
${ }^{1} \mathrm{E}_{e e}^{*}$ is the energy of the $e^{+} e^{-}$pair in the kaon rest frame. ABOUZAID 07C reports
$\left[\Gamma\left(K_{L}^{0} \rightarrow \pi^{ \pm} e^{\mp} \nu e^{+} e^{-}\right) / \Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right] /\left[\mathrm{B}\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right)\right]=(8.54 \pm$
$0.07 \pm 0.13) \times 10^{-3}$ which we multiply by our best value $\mathrm{B}\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right)=(1.174 \pm$
$0.035) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Hadronic modes,

$\Gamma\left(3 \pi^{0}\right) / \Gamma_{\text {total }}$					$6 / \Gamma$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$\overline{\mathbf{0 . 1 9 5 2} \mathbf{\pm 0 . 0 0 1 2 ~ O U R ~ F I T ~}}$ Error includes scale factor of 1.6.					
$\mathbf{0 . 1 9 6 9} \pm \mathbf{0 . 0 0 2 6}$ OUR AVERAGE Error includes scale factor of 2.0.					
- - We use the following data for averages but not for fits. - -					
$0.1997 \pm 0.0003 \pm 0.0019$	13M	${ }_{1}^{1}$ AMBROSINO	KLOE	Not fitted	
0.1945 ± 0.0018		1 ALEXOPOU..	KTEV	Not fitted	
${ }^{1}$ We exclude these $\mathrm{B}\left(K_{L} \rightarrow 3 \pi^{0}\right)$ measurements from our fit because the authors have constrained K_{L} branching fractions to sum to one. It enters our fit via the other measurements from the experiment and their correlations, along with our constraint that the fitted branching fractions sum to one.					

$\Gamma\left(3 \pi^{0}\right) / \Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$
Γ_{6} / Γ_{1}
VALUE $\mathbf{0 . 4 8 1} \mathbf{~ E V O T S}$ DOCUMENT ID TECN COMMENT
OUR FIT Error includes scale factor of 1.8 .

- - We use the following data for averages but not for fits. - . -
$\mathbf{0 . 4 7 8 2} \pm \mathbf{0 . 0 0 1 4} \mathbf{0 . 0 0 5 3} \quad 209 \mathrm{~K} \quad 1$ ALEXOPOU... 04 KTEV Not in fit
- - We do not use the following data for averages, fits, limits, etc. • • •
$0.545 \pm 0.004 \pm 0.009 \quad 38 k \quad$ KREUTZ 95 NA31
${ }^{1}$ This measurement enters the fit via their separate measurements of these two modes.
$\Gamma\left(3 \pi^{0}\right) /\left[\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)+\Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] \quad \Gamma_{6} /\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{7}\right)$ $\frac{\text { VALUE }}{\mathbf{0 . 2 4 3 6} \pm \mathbf{0 . 0 0 1 8} \text { OUR FIT EVTS }} \frac{\text { Error includes scale factor of }}{} 1.6$ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -

0.251	± 0.014	549	BUDAGOV	68	HLBC	ORSAY measur.
0.277	± 0.021	444	BUDAGOV	68	HLBC	Ecole polytec.meas
0.31	+0.07	29	KULYUKINA	68	CC	

$\begin{array}{llll}0.24 & \pm 0.08 & 24 & \text { ANIKINA } 64 \text { CC }\end{array}$
$\boldsymbol{\Gamma}\left(3 \pi^{\mathbf{0}}\right) / \Gamma\left(\pi^{+} \pi^{-} \boldsymbol{\pi}^{\mathbf{0}}\right)$
VALUE
EVTS \quad DOCUMENT ID \quad TECN COMMENT $\Gamma_{\mathbf{6} / \boldsymbol{\Gamma}_{\mathbf{7}}}$
$\frac{\text { VALUE }}{\mathbf{1 . 5 5 7} \pm \mathbf{0 . 0 1 2} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes Scale factor of 1.3. }} \frac{\text { DECN }}{\text { CO }}$
$\begin{array}{ll}\text { - - We use the following data for averages but not for fits. } & \text { 13M } \\ 1 \text { AMBROSINO } 06 & \text { KLOE } \\ \mathbf{1 5 8 2} \pm \mathbf{0 . 0 2 7} & \text { Not in fit }\end{array}$
$1.582 \pm \mathbf{0 . 0 2 7} \quad 13 \mathrm{M} \quad{ }^{1}$ AMBROSINO 06 KLOE Not in fit
$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
$1.611 \pm 0.014 \pm 0.034 \quad 28 \mathrm{k} \quad$ KREUTZ 95 NA31
$1.65 \pm 0.07 \quad 883 \quad$ BARMIN $\quad 72 \mathrm{~B}$ HLBC Error statistical only
$\begin{array}{lrl}1.80 \pm 0.13 & 1010 & \text { BUDAGOV } 68 \\ 20 & \pm 0.6 & 188\end{array}$
${ }^{1}$ AMBROSINO 06 enters the fit via their separate measurements of these two modes.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma 7 / \Gamma$
$\frac{V A L U E}{0.1254 \pm \mathbf{0 . 0 0 0 5} \text { OUR FIT }}$ EVTS
0.1255 ± 0.0006 OUR AVERAGE
$0.1263 \pm 0.0004 \pm 0.0011 \quad 13 \mathrm{M}$
0.1252 ± 0.0007
${ }^{1}$ There are correlations between these five KLOE measurements: $\mathrm{B}\left(K_{L} \rightarrow \pi e \nu\right), \mathrm{B}\left(K_{L} \rightarrow\right.$ $\pi \mu \nu), \mathrm{B}\left(K_{L} \rightarrow 3 \pi^{0}\right), \mathrm{B}\left(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$, and τK_{L} measured in AMBROSINO 06. See the footnote for the $\tau_{K_{L}}$ measurement for the correlation matrix.
${ }^{2}$ For correlations with other ALEXOPOULOS 04 measurements, see the footnote with their $\mathrm{B}\left(K_{L} \rightarrow \pi e \nu\right)$ measurement.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$
VALUE $\frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
$\mathbf{0 . 3 0 9 2} \mathbf{\pm 0 . 0 0 1 6}$ OUR FIT Error includes scale factor of 1.1

- - We use the following data for averages but not for fits. - . -
$\mathbf{0 . 3 0 7 8} \pm \mathbf{0 . 0 0 0 5} \pm \mathbf{0 . 0 0 1 7} \quad 799 \mathrm{~K} \quad{ }^{1}$ ALEXOPOU... 04 KTEV Not in fit
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.336 \pm 0.003 \pm 0.007 \quad 28 k \quad$ KREUTZ 95 NA31
${ }^{1}$ This measurement enters the fit via their separate measurements for the two modes.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) /\left[\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)+\Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] \Gamma_{7} /\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{7}\right)$
$\frac{V A L U E}{\mathbf{0 . 1 5 6 5} \pm \mathbf{0 . 0 0 0 6} \text { OUR FIT EVTS }} \stackrel{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

0.163 ± 0.003	6499	CHO	77	HBC	
0.1605 ± 0.0038	1590	ALEXANDER	73 B	HBC	
0.146 ± 0.004	3200		BRANDENB... 73	HBC	
0.159 ± 0.010	558	EVANS	73	HLBC	
0.167 ± 0.016	1402	KULYUKINA	68	CC	
0.161 ± 0.005		HOPKINS	67	HBC	
0.162 ± 0.015	126	HAWKINS	66	HBC	
0.159 ± 0.015	326	ASTBURY	65 B	CC	
0.178	± 0.017	566	GUIDONI	65	HBC
0.144 ± 0.004	1729	HOPKINS	65	HBC	See HOPKINS 67

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 9 6 7} \pm \mathbf{0 . 0 1 0} \text { OUR FIT Error includes scale factor of 1.5. }} \frac{\text { DECN }}{\text { TECUMENT ID }}$
 $\mathbf{1 . 9 7 5} \pm \mathbf{0 . 0 1 2} 1$ ALEXOPOU... 04 KTEV

${ }^{1}$ For correlations with other ALEXOPOULOS 04 measurements, see the footnote with their $\mathrm{B}\left(K_{L} \rightarrow \pi e \nu\right)$ measurement.
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$
Γ_{8} / Γ_{1}
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
$\frac{4.849 \pm 0.020 \text { OUR FIT }}{\text { Error }}$
$4.840 \pm \mathbf{0 . 0 2 0}$ OUR AVERAGE
$4.826 \pm 0.022 \pm 0.016 \quad 47 \mathrm{k} \quad 1 \mathrm{LAI} \quad 07$ NA48

- - We use the following data for averages but not for fits. - - .
$4.856 \pm 0.017 \pm 0.023 \quad 84 \mathrm{k} \quad 2$ ALEXOPOU... 04 KTEV Not in fit
${ }^{1}$ The LAI 07 central value of 4.835×10^{-3} has been reduced by 0.19% to 4.826×10^{-3}
to subtract the contribution from the direct emission mode $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma(\mathrm{DE})$.
2 This measurement enters the fit via their separate measurements for the two modes

${ }^{1}$ OId experiments excluded from fit. See subsection on η_{+-}in section on "PARAMETERS FOR $K_{L}^{0} \rightarrow 2 \pi$ DECAY" below for average η_{+-}of these experiments and for note on discrepancy.
$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right) / \Gamma(2$ tracks $) \quad \Gamma_{1} /\left(\Gamma_{1}+\Gamma_{\mathbf{2}}+\mathbf{0 . 0 3 5 0 8} \Gamma_{\mathbf{6}}+\Gamma_{\mathbf{7}}+\Gamma_{\mathbf{8}}\right)$ $\Gamma(2$ tracks $)=\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)+\Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)+0.03508 \Gamma\left(3 \pi^{0}\right)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ $+\Gamma\left(\pi^{+} \pi^{-}\right)$where 0.03508 is the fraction of $3 \pi^{0}$ events with one Dalitz decay $\left(\pi^{0} \rightarrow\right.$ $\gamma e^{+} e^{-}$).
$\frac{\text { VALUE }}{0.5006 \pm 0.0009 \text { OUR FIT EVTS }} \frac{\text { Error }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{3}$
$\mathbf{0 . 4 9 7 8} \pm \mathbf{0 . 0 0 3 5} \quad 6.8 \mathrm{M} \quad \mathrm{LAI} \quad$ 04B NA48
$\Gamma\left(\pi^{+} \pi^{-}\right) /\left[\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)+\Gamma\left(\pi^{ \pm} \mu^{\mp} \nu_{\mu}\right)+\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)\right] \quad \Gamma_{8} /\left(\Gamma_{\mathbf{1}}+\Gamma_{\mathbf{2}}+\Gamma_{\mathbf{7}}\right)$ Violates $C P$ conservation.
VALUE (units 10^{-3}) EVTS DOCUMENTID TECN COMMENT
$\mathbf{2 . 4 5 4} \pm \mathbf{0 . 0 1 1}$ OUR FIT \quad Error includes scale factor of 1.3.
- - We do not use the following data for averages, fits, limits, etc. - - -
$2.60 \pm 0.07 \quad 4200 \quad 1$ MESSNER 73 ASPK $\quad \eta_{+-}=2.23 \pm 0.05$
${ }^{1}$ From same data as $\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ MESSNER 73 , but with different normalization.

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.64 \pm 0.04 \quad 4200 \quad$ MESSNER 73 ASPK $\eta_{+-}=2.23$

${ }^{1}$ This measurement enters the fit via their separate measurements for the two modes.

$\Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e} \gamma\right) / \Gamma\left(\pi^{ \pm} e^{\mp} \nu_{e}\right)$			Γ_{10} / Γ_{1}		
Value (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 9 3 5} \pm \mathbf{0 . 0 1 5}$ OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below.					
$0.924 \pm 0.023 \pm 0.016$	9 k	${ }^{1}$ AMBROSINO 08F	Kloe	$E_{\gamma}^{*}>30 \mathrm{M}$	> $>20^{\circ}$
0.916 ± 0.017	4309	2 ALEXOPOU... 05	KTEV	$E_{\gamma}^{*}>30 \mathrm{M}$	$\gamma>20^{\circ}$
$0.964 \pm 0.008{ }_{-0.009}^{+0.011}$	19K	LAI 05	NA48	$E_{\gamma}^{*}>30 \mathrm{M}$	> $>20^{\circ}$
$0.908 \pm 0.008{ }_{-0.012}^{+0.013}$	15k	ALAVI-HARATI01J	KTEV	$E_{\gamma}^{*} \geq 30$	$\gamma \geq 20^{\circ}$
$0.934 \pm 0.036{ }_{-0.039}^{+0.055}$	1384	LEBER 96	NA31	$E_{\gamma}^{*} \geq 30$	$\gamma \geq 20^{\circ}$

Meson Particle Listings
K_{L}^{0}

$\Gamma\left(\pi^{0} 2 \gamma\right) / \Gamma_{\text {total }}$				
$1.28 \pm 0.06 \pm 0.01$	${ }^{1.4 .4}$	${ }_{2}^{1}$ AbOUZAID 08	KTEV	
$1.68 \pm 0.07 \pm 0.08$	884	${ }^{3}$ ALAVI-HARATI998		
$1.7 \pm 0.2 \pm 0.2$			na31	
$1.86 \pm 0.60 \pm 0.60$	60	PAPADIMITR. 91	E731	$m_{\gamma \gamma}>280 \mathrm{MeV}$
<5.1	90	PAPADIMITR.. 91	E731	$m_{\gamma \gamma}<264 \mathrm{MeV}$
2.1 ± 0.6	${ }^{14}$	${ }^{5}$ BaRR 900		

${ }^{1}$ ABOUZAID 08 reports $(1.29 \pm 0.03 \pm 0.05) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(K_{L}^{0} \rightarrow\right.\right.$ $\left.\left.\pi^{0} 2 \gamma\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)\right]$ assuming $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(8.69 \pm 0.04) \times 10^{-4}$, which we rescale to our best value $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(8.64 \pm 0.06) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2} \begin{aligned} & \text { our best value. } 02 \mathrm{~B} \text { reports }\end{aligned}\left[\left(K_{L}^{0} \rightarrow \pi^{0} 2 \gamma\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)\right]=(1.467 \pm 0.032 \pm$ $0.032) \times 10^{-3}$ which we multiply by our best value $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(8.64 \pm 0.06) \times$ 10^{-4}. Our first error is their experiment's error and our second error is the systematic error from using our best value. They also find that $\mathrm{B}\left(\pi^{0} 2 \gamma, m_{\gamma \gamma}<110 \mathrm{MeV}\right)<$ $0.6 \times 10^{-8}(90 \% \mathrm{CL})$.
${ }^{3}$ ALAVI-HARATI 99B finds that $\left.\Gamma\left(\pi^{0} 2 \gamma, m_{\gamma \gamma}<240 \mathrm{MeV}\right)\right) / \Gamma\left(\pi^{0} 2 \gamma\right)=(17.3 \pm 1.3 \pm$ $1.5) \%$. Superseded by ABOUZAID 08.
${ }^{4}$ BARR 92 find that $\Gamma\left(\pi^{0} 2 \gamma, m_{\gamma \gamma}<240 \mathrm{MeV}\right) / \Gamma\left(\pi^{0} 2 \gamma\right)<0.09(90 \% \mathrm{CL})$.
${ }^{5}$ BARR 90 C superseded by BARR 92.
$\Gamma\left(\pi^{0} \gamma e^{+} e^{-}\right) / /_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-8} \text {) }}{1.62(0.14 \%} \frac{\text { CLOCUMENT ID }}{\text { EVTS }} \frac{\text { TECN }}{\text { AOCN }}$
$\mathbf{1 . 6 2} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 0 9} \quad 125 \quad 1$ ABOUZAID 07D KTEV

- - We do not use the following data for averages, fits, limits, etc. - - -

| $2.34 \pm 0.35 \pm 0.13$ | | 44 | ALAVI-HARATIO1E | KTEV |
| :---: | :---: | :---: | :--- | :--- | :--- |
| <71 | 90 | 0 | MURAKAMI 99 | SPEC |

${ }^{1}$ ABOUZAID 07D includes 1997 (ALAVI-HARATI 01E) and 1999 data. It measures the ratio of $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \gamma e^{+} e^{-}\right) / \mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi_{D}^{0}\right)$, where π_{D}^{0} is the Dalitz decaying π^{0}, and uses PDG 06 values $\mathrm{B}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(8.69 \pm 0.04) \times 10^{-4}$, and $\mathrm{B}\left(\pi_{D}^{0} \rightarrow\right.$ $\left.e^{+} e^{-} \gamma\right)=(1.198 \pm 0.032) \times 10^{-2}$. Supersedes ALAVI-HARATI 01E result.

- Other modes with photons or $\bar{\ell} \bar{\ell}$ pairs

$\Gamma(2 \gamma) / \Gamma_{\text {total }}$
Γ_{17} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) EVTS }}{5.47}$ DOCUMENT ID TECN COMMEN
$5.47 \pm \mathbf{0 . 0 4}$ OUR FIT Error includes scale factor of 1.1

- - We do not use the following data for averages, fits, limits, etc. - - -

$\Gamma(2 \gamma) / \Gamma\left(\pi^{0} \pi^{0}\right)$			
VALUE	EVTS	DOCUMENT ID	TECN
0.633 ± 0.006 OUR FIT	Error	des scale facto	
$0.632 \pm 0.004 \pm 0.008$	110k	BURKHARDT	NA31

| $\Gamma(3 \gamma) / \Gamma_{\text {total }}$ |
| :--- | :--- |
| $V A L U E$ |$\quad \Gamma_{\mathbf{1 8}} / \Gamma^{\text {CL\% }}$

$<2.4 \times 10^{-7}$
$90 \quad 2$ BARR
95C NA31

1 TUNG 11 reports the result assuming parity violating interaction and using 2005 data (Run-II and III). Assuming parity conserving or phase space interaction, the 90% upper limits obtained are 7.5×10^{-8} and 8.6×10^{-8}, respectively.
${ }^{2}$ Assumes a phase-space decay distribution.
$\Gamma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{\mathbf{9 . 4} \pm \mathbf{0 . 4} \text { OUR FIT }} \frac{\text { EVTS }}{} \frac{\text { DOCUMENT ID }}{\text { Error }}$ TECN
$\mathbf{9 . 4} \pm \mathbf{0 . 4}$ OUR FIT Error includes scale factor of 2.0.
$\mathbf{1 0 . 0} \pm \mathbf{0 . 5}$ OUR AVERAGE Error includes scale factor of 1.5. Se

$10.6 \pm 0.2 \pm 0.4$	6864	${ }^{1}$ FANTI	99B	NA48
$9.2 \pm 0.5 \pm 0.5$	1053	BARR	90 B	NA31
$9.1 \pm 0.4_{-0.5}^{+0.6}$	919	OHL	90B	B845

${ }^{1}$ For FANTI 99B, the ± 0.4 systematic error includes for uncertainties in the calculation, primarily uncertainties in the $\pi^{0} \rightarrow e^{+} e^{-} \gamma$ and $K_{L}^{0} \rightarrow \pi^{0} \pi^{0}$ branching ratios, evaluated using our 1999 Web edition values.

$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma\left(3 \pi^{0}\right) \quad \Gamma_{19} / \Gamma_{6}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{4 . 8 2} \pm \mathbf{0 . 2 1} \text { OUR FIT }} \frac{E V T S}{\text { Error includes }} \frac{\text { DOCUMENT ID }}{\text { scale factor of } 2.0 .}$ TECN
$\mathbf{4 . 6 3} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 1 3} \quad 83 \mathrm{k} \quad{ }^{1}$ ABOUZAID 07B KTEV
${ }^{1}$ ABOUZAID 07B reports $\left[\Gamma\left(K_{L}^{0} \rightarrow e^{+} e^{-} \gamma\right) / \Gamma\left(K_{L}^{0} \rightarrow 3 \pi^{0}\right)\right] /\left[3 \Gamma\left(\pi^{0} \rightarrow 2 \gamma\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}\right]=(1.3302 \pm 0.0046 \pm 0.0103) \times 10^{-3}$ which we multiply by our best value $3 \Gamma\left(\pi^{0} \rightarrow 2 \gamma\right) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}=$ 0.0348 ± 0.0010. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\mu^{+} \mu^{-\gamma} \gamma\right) / \Gamma_{\text {total }}$

$\frac{V A L U E \text { (units } 10^{-7} \text {) }}{\mathbf{5 . 9 5} \pm \mathbf{0 . 3 3} \text { OUR AVERA }} \frac{E V T S}{}$
DOCUMENT ID TECN COMMENT
$5.84 \pm 0.15 \pm 0.32 \quad 1543 \quad$ ALAVI-HARATI01F KTEV $E_{\gamma}^{*}>5 \mathrm{MeV}$
$8.0 \pm 1.5 \underset{-1.2}{+1.4} \quad 40 \quad$ SETZU 98 NA31 $E_{\gamma}^{*}>5 \mathrm{MeV}$
$6.5 \pm 1.2 \pm 0.6 \quad 58 \quad$ NAKAYA $94 \quad$ E799 $\quad E_{\gamma}^{*}>5 \mathrm{MeV}$
6.6 ± 3.2
Γ_{22} / Γ
$F\left(\mu^{+} \mu^{-} \gamma \gamma\right) / \Gamma_{\text {total }}$
$\mathbf{1 0 . 4} \mathbf{+ 5 . 5} \pm \mathbf{0 . 7} \quad 4 \quad$ ALAVI-HARATIOOE KTEV $m_{\gamma \gamma} \geq 1 \mathrm{MeV} / c^{2}$

$\Gamma\left(\mu^{+} \mu_{\text {Test for }}^{-}\right) / \Gamma\left(\pi^{+} \pi^{-}\right)$
VALUE (units 10^{-6}) EVTS

3.48 ± 0.05 OUR AVERAGE

$3.474 \pm 0.057 \quad 6210$
$3.87 \pm 0.30 \quad 179$

3.38	± 0.17	707	HEINSON	95
B791				

- - We do not use the following data for averages, fits, limits, etc. - -

Meson Particle Listings
K_{L}^{0}

$\Gamma\left(\pi^{\mathbf{0}} \pi^{\mathbf{0}} \mu^{ \pm} e^{\mp}\right) / \Gamma_{\text {total }}$
Test of lepton
VALUE (units $\left.10^{-10}\right)$
$<\mathbf{1 . 7}$

See the related review(s):
$V_{u d}, V_{u s}$ the Cabibbo Angle, and CKM Unitarity

ENERGY DEPENDENCE OF K_{L}^{0} DALITZ PLOT

For discussion, see note on Dalitz plot parameters in the $K^{ \pm}$section of the Particle Listings above. For definitions of a_{v}, a_{t}, a_{u}, and a_{v}, see the earlier version of the same note in the 1982 edition of this Review published in Physics Letters 111B 70 (1982).
\mid matrix element $\left.\right|^{2}=1+g u+h u^{2}+j v+k v^{2}+f u v$
where $u=\left(s_{3}-s_{0}\right) / m_{\pi}^{2}$ and $v=\left(s_{2}-s_{1}\right) / m_{\pi}^{2}$
LINEAR COEFFICIENT g FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

${ }^{1}$ Quadratic dependence required by some experiments. (See sections on "QUADRATIC COEFFICIENT h " and "QUADRATIC COEFFICIENT k " below.) Correlations prevent us from averaging results of fits not including g, h, and k terms.
${ }^{2}$ BISI 74 value comes from quadratic fit with quad. term consistent with zero. g error is thus larger than if linear fit were used.
${ }^{3}$ BUCHANAN 70 result revised by BUCHANAN 75 to include radiative correlations and to use more reliable K_{L}^{0} momentum spectrum of second experiment (had same beam).

QUADRATIC COEFFICIENT \boldsymbol{h} FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
See notes in section "LINEAR COEFFICIENT g FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \mid$ MATRIX element $\left.\right|^{2 n}$ above.

VALUE	EVTS	DOCUMENT ID	TECN
$\mathbf{0 . 0 7 6} \pm 0.006$ OUR AVERAGE			
$0.061 \pm 0.004 \pm 0.015$	500k	ANGELOPO... 98C	CPLR
0.095 ± 0.032	6499	$\mathrm{CHO} \quad 77$	HBC
0.048 ± 0.036	4709	PEACH 77	HBC
0.079 ± 0.007	509k	MESSNER 74	ASPK
- - We do not use the following data for averages, fits, limits, etc. - -			
-0.011 ± 0.018	29k	1 ALBROW 70	ASPK
0.043 ± 0.052	4400	$1{ }^{1}$ SMITH 70	OSPK
${ }^{1}$ Quadratic coefficients h and k required by some experiments. (See section on "QUADRATIC COEFFICIENT k " below.) Correlations prevent us from averaging results of fits not including g, h, and k terms.			

QUADRATIC COEFFICIENT k FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$				
Value	EVTS	DOCUMENT ID		TECN
$\mathbf{0 . 0 0 9 9} \pm 0.0015$ OUR AVERAGE				
$0.0104 \pm 0.0017 \pm 0.0024$	500k	ANGELOPO...	98C	CPLR
0.024 ± 0.010	6499	CHO	77	HBC
-0.008 ± 0.012	4709	PEACH	77	HBC
0.0097 ± 0.0018	509k	MESSNER	74	ASPK

LINEAR COEFFICIENT j FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (CP-VIOLATING TERM) Listed in $C P$-violation section below.
QUADRATIC COEFFICIENT f FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (CP-VIOLATING TERM)

Listed in $C P$-violation section below.
QUADRATIC COEFFICIENT h FOR $K_{L}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
We do not average measurements that do not account for the effect of final state rescattering.
VALUE (units 10^{-3}) $\frac{\text { EVTS }}{68}$ DOCUMENT ID
$\mathbf{+ 0 . 5 9} \pm \mathbf{0 . 2 0} \pm \mathbf{1 . 1 6} \quad 68 \mathrm{M} \quad 1$ ABOUZAID 08A KTEV

- - We do not use the following data for averages, fits, limits, etc. - -
$-6.1 \pm 0.9 \pm 0.5 \quad 14.7 \mathrm{M} \quad{ }^{2}$ LAI 01B NA48
$-3.3 \pm 1.1 \pm 0.7 \quad 5 \mathrm{M} \quad 2,3$ SOMALWAR 92 E731
${ }^{1}$ Result obtained using Cl3pl model of CABIBBO 05 to include $\pi \pi$ rescattering effects. The systematic error includes an external error of 1.06×10^{-3} from the parametrization input of $\left(\mathrm{a}_{0}-\mathrm{a}_{2}\right) m_{\pi^{+}}=0.268 \pm 0.017$ from BATLEY 06B.
${ }^{2}$ LAI 01B and SOMALWAR 92 results do not include $\pi \pi$ final state rescattering effects.
${ }^{3}$ SOMALWAR 92 chose $m_{\pi^{+}}$as normalization to make it compatible with the Particle Data Group $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ definitions.

K_{L}^{0} FORM FACTORS

For discussion, see note on form factors in the $K^{ \pm}$section of the Particle Listings above

In the form factor comments, the following symbols are used.
f_{+}and f_{-}are form factors for the vector matrix element.
f_{S} and f_{T} refer to the scalar and tensor term.
$f_{0}(t)=f_{+}(t)+f_{-}(t) t /\left(m_{K^{0}}^{2}-m_{\pi^{+}}^{2}\right)$.
$t=$ momentum transfer to the π
λ_{+}and λ_{0} are the linear expansion coefficients of f_{+}and f_{0} :
$f_{+}(t)=f_{+}(0)\left(1+\lambda_{+} t / m_{\pi^{+}}^{2}\right)$
For quadratic expansion
$f_{+}(t)=f_{+}(0)\left(1+\lambda^{\prime}{ }_{+} t / m_{\pi^{+}}^{2}+\frac{\lambda^{\prime \prime}}{2}{ }_{+} t^{2} / m_{\pi^{+}}^{4}\right)$
as used by KTeV . If there is a non-vanishing quadratic term, then λ_{+} represents an average slope, which is then different from $\lambda^{\prime}{ }_{+}$
NA48 ($K_{e 3}$) and ISTRA quadratic expansion coefficients are converted with
$\lambda^{\prime}{ }_{+} P D G=\lambda_{+} N A 48$ and $\lambda^{\prime \prime}{ }_{+} P D G=2 \lambda^{\prime}{ }_{+} N A 48$
$\lambda^{\prime}+P D G=\left(\frac{\stackrel{\rightharpoonup}{m}^{+}}{m_{\pi^{0}}}\right)^{2} \lambda_{+} I S T R A$ and
$\lambda^{\prime \prime}{ }_{+} P D G=2\left(\frac{m_{\pi^{+}}^{0}}{m_{\pi^{0}}}\right)^{4} \lambda^{\prime}{ }_{+}$ISTRA
ISTRA linear expansion coefficients are converted with
$\lambda_{+} P D G=\left(\frac{m_{\pi^{+}}}{m_{\pi^{0}}}\right)^{2} \lambda_{+} I S T R A$ and $\lambda_{0} P D G=\left(\frac{m_{\pi^{+}}}{m_{\pi^{0}}}\right)^{2} \lambda_{0} I S T R A$
The pole parametrization is

$$
\begin{aligned}
& f_{+}(t)=f_{+}(0)\left(\frac{M_{V}^{2}}{M_{V}^{2}-t}\right) \\
& f_{0}(t)=f_{0}(0)\left(\frac{M_{S}^{2}}{M_{S}^{2}-t}\right)
\end{aligned}
$$

where M_{V} and M_{S} are the vector and scalar pole masses.
The dispersive parametrization is

$$
\begin{aligned}
& f_{+}(t)=f_{+}(0) \exp \left[\frac{t}{m_{\pi}^{2}}\left(\Lambda_{+}+H(t)\right)\right] \\
& f_{0}(t)=f_{+}(0) \exp \left[\frac{t}{m_{K}^{2}-m_{\pi}^{2}}(\ln [C]-G(t))\right]
\end{aligned}
$$

where Λ_{+}is the slope parameter and $\ln [C]=\ln \left[f_{0}\left(m_{K}^{2}-m_{\pi}^{2}\right)\right]$
is the logarithm of the scalar form factor at the Callan-Treiman point.
$H(t)$ and $G(t)$ are dispersive integrals.
The following abbreviations are used:
DP $=$ Dalitz plot analysis.
$\mathrm{PI}=\pi$ spectrum analysis.
$\mathrm{MU}=\mu$ spectrum analysis.
$\mathrm{POL}=\mu$ polarization analysis.
$\mathrm{BR}=K_{\mu 3}^{0} / K_{e 3}^{0}$ branching ratio analysis.
$\mathrm{E}=$ positron or electron spectrum analysis.
$\mathrm{RC}=$ radiative corrections.
λ_{+}(LINEAR ENERGY DEPENDENCE OF f_{+}IN $K_{e 3}^{0}$ DECAY)
For radiative correction of k^{0} DP, see GINSBERG 67, BECHERRAWY 70, CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results labeled OUR FIT are discussed in the review "K $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" in the $K^{ \pm}$Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
2.82 ± 0.04 OUR FIT Error includes scale factor of 1.1. Assuming μ-e universality
2.85 ± 0.04 OUR AVERAGE
$2.86 \pm 0.05 \pm 0.04 \quad 2 \mathrm{M} \quad$ AMBROSINO 06D KLOE
$2.832 \pm 0.037 \pm 0.043 \quad 1.9 \mathrm{M} \quad$ ALEXOPOU... 04A KTEV PI, no $\mu=e$
$2.88 \pm 0.04 \pm 0.11 \quad 5.6 \mathrm{M} \quad{ }^{1}$ LAI 04 C NA48 DP

- - We do not use the following data for averages, fits, limits, etc. • • •
$2.84 \pm 0.07 \pm 0.13 \quad 5.6 \mathrm{M} \quad{ }^{2}$ LAI $\quad 04 \mathrm{C}$ NA48 DP
$2.45 \pm 0.12 \pm 0.22 \quad 366 \mathrm{k} \quad$ APOSTOLA... 00 CPLR DP
$3.06 \pm 0.34 \quad 74 \mathrm{k}$ BIRULEV 81 SPEC DP
$3.12 \pm 0.25 \quad 500 \mathrm{k}$ GJESDAL 76 SPEC DP
$2.70 \pm 0.28 \quad$ 25k BLUMENTHAL75 SPEC DP
${ }^{1}$ Results from linear fit and assuming only vector and axial couplings.
${ }^{2}$ Results from linear fit with $\left|f_{S} / f_{+}\right|$and $\left|f_{T} / f_{+}\right|$free.

λ_{+}(LINEAR ENERGY DEPENDENCE OF \boldsymbol{f}_{+}IN $K_{\mu 3}^{0}$ DECAY)

Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" in the $K^{ \pm}$Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT
$\frac{2.82 \pm 0.04 \text { OUR FIT }}{\text { Error includes scale factor of 1.1. }} \frac{\text { ASSU }}{\text { A }} \frac{\text { COMMENT }}{} \mu$-e universality
$2.71 \pm \mathbf{0 . 1 0}$ OUR FIT Error includes scale factor of 1.4. Not assuming μ-e universality
$2.67 \pm 0.06 \pm 0.08 \quad$ 2.3M $\quad{ }^{1}$ LAI $\quad 07 \mathrm{~A}$ NA48 DP
$2.745 \pm 0.088 \pm 0.063 \quad 1.5 \mathrm{M}$ ALEXOPOU... 04A KTEV DP, no $\mu=$
$2.813 \pm 0.051 \quad 3.4 \mathrm{M} \quad$ ALEXOPOU... 04A KTEV PI, DP, $\mu=e$
$3.0 \pm 0.3 \quad 1.6 \mathrm{M}$ DONALDSON 74B SPEC DP

- - We do not use the following data for averages, fits, limits, etc. - -
$4.27 \pm 0.44 \quad 150 \mathrm{k} \quad$ BIRULEV 81 SPEC DP
${ }^{1}$ LAI 07A gives a correlation -0.40 between their λ_{0} and λ_{+}measurements.
λ_{0} (LINEAR ENERGY DEPENDENCE OF f_{0} IN $K_{\mu 3}^{0}$ DECAY)
Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_{0} using the associated λ_{+}^{μ} and $d \xi(0) / d \lambda_{+}$. Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" in the $K^{ \pm}$Listings. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters B592 1 (2004).
VALUE (units 10^{-2}) $\quad d \lambda_{0} / d \lambda_{+}$EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 . 3 8} \pm \mathbf{0 . 1 8}$ OUR $\overline{\text { FIT }}$ Error includes scale factor of 2.2. Assuming μ - e universality $\mathbf{1 . 4 2} \mathbf{\pm 0 . 2 3}$ OUR FIT Error includes scale factor of 2.8. Not assuming μ-e universal ity

1.17 ± 0.07	± 0.10	2.3 M	${ }^{1}$ LAI	07A	NA48	DP
1.657 ± 0.125	-0.44	1.5 M	${ }^{2}$ ALEXOPOU... 04 A	KTEV	DP, no $\mu=e$	
1.635 ± 0.121	-0.85	3.4 M	3 ALEXOPOU... 04 A	KTEV	PI, DP, $\mu=e$	

$+1.9 \quad \pm 0.4 \quad-0.47 \quad 1.6 \mathrm{M} \quad{ }^{4}$ DONALDSON 74B SPEC DP

- - We do not use the following data for averages, fits, limits, etc. - • -
3.41 ± 0.67 unknown $150 \mathrm{k} \quad{ }^{5}$ BIRULEV 81 SPEC DP
${ }^{1}$ LAI 07A gives a correlation -0.40 between their λ_{0} and λ_{+}measurements.
${ }^{2}$ ALEXOPOULOS 04 A gives a correlation -0.38 between their λ_{0} and λ_{+}measurements.
${ }^{3}$ ALEXOPOULOS 04 A gives a correlation -0.36 between their λ_{0} and λ_{+}measurements.
${ }^{4}$ DONALDSON $74 \mathrm{~B} d \lambda_{0} / d \lambda_{+}$obtained from figure 18.
${ }^{5}$ BIRULEV 81 gives $d \lambda_{0} / d \lambda_{+}=-1.5$, giving an unreasonably narrow error ellipse which dominates all other results. We use $d \lambda_{0} / d \lambda_{+}=0$.
$\lambda^{\prime}{ }_{+}$(LINEAR $K_{\text {e3 }}^{0}$ FORM FACTOR FROM QUADRATIC FIT)
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$2.40 \mathbf{\pm 0 . 1 2}$ OUR FIT $\frac{}{\text { Error includes scale factor of 1.2. Assuming } \mu \text {-e universality }}$
$\mathbf{2 . 4 9} \mathbf{\pm 0 . 1 3}$ OUR FIT Error includes scale factor of 1.1. Not assuming μ-e universality
2.48 ± 0.17 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. $2.55 \pm 0.15 \pm 0.10 \quad 2 \mathrm{M} \quad 1$ AMBROSINO 06D KLOE
$2.167 \pm 0.137 \pm 0.143 \quad 1.9 \mathrm{M} \quad{ }^{2}$ ALEXOPOU... 04A KTEV PI, no $\mu=e$
$2.80 \pm 0.19 \pm 0.15 \quad 5.6 \mathrm{M} \quad{ }^{3}$ LAI $\quad 04 \mathrm{C}$ NA48 DP
${ }^{1}$ We use AMBROSINO 06D result in the fit not assuming $\mu-e$ universality. This result enters the fit assuming $\mu-e$ universality via AMBROSINO 07C measurement of $\lambda^{\prime}{ }_{+}$in $K_{\mu 3}$ decays. AMBROSINO 06D gives a correlation -0.95 between their $\lambda^{\prime}+$ and $\lambda^{\prime \prime}{ }_{+} \cdot$
${ }^{2}$ ALEXOPOULOS 04A gives a correlation -0.97 between their $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$.
${ }^{3}$ For LAI 04C we calculate a correlation -0.88 between their $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$.

$\lambda^{\prime \prime}{ }_{+}$(QUADRATIC $K_{\text {e3 }}^{0}$ FORM FACTOR)

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
0.20 ± 0.05 OUR FIT $\frac{\text { Error includes scale factor of 1.2. Assuming } \mu \text {-e universality }}{}$
$\mathbf{0 . 1 6} \pm 0.05$ OUR FIT Error includes scale factor of 1.1. Not assuming μ-e universality
0.17 ± 0.07 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
$0.14 \pm 0.07 \pm 0.04 \quad 2 \mathrm{M} \quad 1$ AMBROSINO 06D KLOE
$0.287 \pm 0.057 \pm 0.053 \quad 1.9 \mathrm{M} \quad 2$ ALEXOPOU... 04A KTEV PI, no $\mu=e$
$0.04 \pm 0.08 \pm 0.04 \quad 5.6 \mathrm{M} \quad 3,4 \mathrm{LAI} \quad 04 \mathrm{C}$ NA48 DP
${ }^{1}$ We use AMBROSINO 06D result in the fit not assuming $\mu-e$ universality. This result enters the fit assuming $\mu-e$ universality via AMBROSINO 07 C measurement of $\lambda^{\prime \prime}{ }_{+}$in $K_{\mu 3}$ decays. AMBROSINO 06D gives a correlation -0.95 between their $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$.
${ }^{2}$ ALEXOPOULOS 04A gives a correlation -0.97 between their λ^{\prime} and $\lambda^{\prime \prime}{ }_{+}$.
${ }^{3}$ Values doubled to agree with PDG conventions described above.
${ }^{4}$ LAI 04C gives a correlation -0.88 between their $\lambda^{\prime}{ }_{+}$and $\lambda^{\prime \prime}{ }_{+}$.

$\lambda^{\prime}{ }_{+}$(LINEAR $K_{\mu 3}^{0}$ FORM FACTOR FROM QUADRATIC FIT)

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$\overline{2.40} \pm \mathbf{0 . 1 2}$ OUR FIT Error includes scale factor of 1.2. Assuming μ-e universality
$\mathbf{1 . 8 9} \pm \mathbf{0 . 2 4}$ OUR FIT Not assuming μ-e universality
$2.23 \pm 0.98 \pm 0.37 \quad 1.8 \mathrm{M} \quad$ 1 AMBROSINO 07C KLOE no $\mu=e$
$2.56 \pm 0.15 \pm 0.09 \quad 3.8 \mathrm{M} \quad{ }^{1}$ AMBROSINO 07C KLOE $\mu=e$
$2.05 \pm 0.22 \pm 0.24 \quad 2.3 \mathrm{M} \quad{ }^{1}$ LAI $\quad 07 \mathrm{~A}$ NA48 DP
$1.703 \pm 0.319 \pm 0.177 \quad 1.5 \mathrm{M} \quad 1$ ALEXOPOU... 04A KTEV DP, no $\mu=e$
$2.064 \pm 0.175 \quad 3.4 \mathrm{M} \quad 1$ ALEXOPOU... 04A KTEV PI, DP, $\mu=e$
${ }^{1}$ See section λ_{0} below for correlations.

$\lambda^{\prime \prime}{ }_{+}$(QUADRATIC $\boldsymbol{K}_{\mu 3}^{\mathbf{0}}$ FORM FACTOR)

$0.37 \pm \mathbf{0 . 1 2}$ OUR FIT Error includes scale factor of 1.3. Not assuming μ-e universality
$0.48 \pm 0.49 \pm 0.16 \quad 1.8 \mathrm{M} \quad{ }^{1}$ AMBROSINO 07C KLOE no $\mu=e$
$0.15 \pm 0.07 \pm 0.04 \quad 3.8 \mathrm{M} \quad 1$ AMBROSINO 07C KLOE $\mu=e$
$0.26 \pm 0.09 \pm 0.10 \quad 2.3 \mathrm{M} \quad 1 \mathrm{LAI} \quad$ 07A NA48 DP
$0.443 \pm 0.131 \pm 0.072 \quad 1.5 \mathrm{M} \quad 1$ ALEXOPOU... 04A KTEV DP, no $\mu=e$
$0.320 \pm 0.069 \quad 3.4 \mathrm{M} \quad{ }^{1}$ ALEXOPOU... 04A KTEV PI, DP, $\mu=e$
${ }^{1}$ See section λ_{0} below for correlations.

Meson Particle Listings
K_{L}^{0}

M_{V}^{e} (POLE MASS FOR $K_{\text {e3 }}^{0}$ DECAY)

M_{V}^{μ} (POLE MASS FOR $K_{\mu 3}^{0}$ DECAY)

VALUE (MeV)			EVTS	DOCUMENT ID	TECN	COMMENT
878	± 6	OUR FIT	Error includes scale factor of 1.1. Assuming μ-e universality			
900	± 21	OUR FIT	Error includes scale factor of 1.7. Not assuming μ-e universality			
905	± 9	± 17	2.3 M	${ }^{1}$ LAI	07A NA48	DP
889.1	9 ± 12.8	± 9.92	1.5 M	1 ALEXOPOU...	04A KTEV	DP, no $\mu=e$
882.3	2 ± 6.5		3.4 M	1 ALEXOPOU...	04A KTEV	PI, DP, $\mu=e$

${ }^{1}$ see section M_{S}^{μ} below for correlations.
M_{S}^{μ} (POLE MASS FOR $K_{\mu 3}^{0}$ DECAY)
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { EVTS DOCUMENT ID }}$ TECN COMMENT $\begin{array}{llll}1252 & \mathbf{9 0} & \text { OUR FIT } & \text { Error includes scale factor of } 2.6 \text {. Assuming } \mu \text {-e universality } \\ \mathbf{1 2 2 2} & \mathbf{8 0} & \text { OUR FIT } & \text { Error includes scale factor of } 2.3 \text {. Not assuming } \mu \text {-e universal }\end{array}$ $\mathbf{1 2 2 2} \mathbf{\pm 8 0} \quad$ OUR FIT Error includes scale factor of 2.3. Not assuming μ-e universal-
$1400 \quad \pm 46 \quad \pm 53 \quad 2.3 \mathrm{M} \quad{ }^{1} \mathrm{LAI} \quad 07 \mathrm{~A}$ NA48 DP
$1167.14 \pm 28.30 \pm 31.04 \quad 1.5 \mathrm{M} \quad{ }^{2}$ ALEXOPOU... 04A KTEV PI, no $\mu=e$
$1173.80 \pm 39.47 \quad 3.4 \mathrm{M} \quad{ }^{3}$ ALEXOPOU... 04A KTEV PI, DP, $\mu=e$
$1_{\text {LAI 07A }}$ gives a correlation -0.47 between their M_{S}^{μ} and M_{V}^{μ} measurements, not assuming μ-e universality.
${ }^{2}$ ALEXOPOULOS 04A gives a correlation -0.46 between their M_{S}^{μ} and M_{V}^{μ} and measurements, not assuming μ-e universality.
${ }^{3}$ ALEXOPOULOS 04A gives a correlation -0.40 between their M_{S}^{μ} and M_{V}^{μ} and measurements, assuming μ-e universality.

Λ_{+}(DISPERSIVE VECTOR FORM FACTOR FOR $K_{\mu 3}^{0}$ DECAY)

See the review on " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" for details of the dispersive parametrization.

$2.51 \pm \mathbf{0 . 0 6}$ OUR AVERAGE \quad Error includes scale factor of 1.5 . See the ideogram below.
$2.509 \pm 0.035 \pm 0.043 \quad 3.4 \mathrm{M} \quad 1$ ABOUZAID $10 \quad$ KTEV $\mu=e$
$2.509 \pm 0.035 \pm 0.043 \quad 3.4 \mathrm{M} \quad 1$ ABOUZAID 10 KTEV $\mu=e$
$\begin{array}{lllllll}2.57 \pm 0.04 & \pm 0.04 & 3.8 \mathrm{M} & { }^{2} \mathrm{AMBROSINO} & 07 \mathrm{C} & \mathrm{KLOE} & \mu=e \\ 2.33 & \pm 0.05 & \pm 0.08 & 2.3 \mathrm{M} & 3 \mathrm{LAI} & \text { 07A } & \text { NA48 }\end{array}$
${ }^{1}$ Obtained from a sample of $1.9 \mathrm{M} K_{e 3}$ and $1.5 \mathrm{M}_{\mu 3}$. The correlation between Λ_{+} and $\operatorname{In}(C)$ is -0.269 .
${ }^{2}$ AMBROSINO 07C results include $2 \mathrm{M} K_{e 3}$ events from AMBROSINO 06D. The correlation between Λ_{+}and $\ln (C)$ is -0.26 .
${ }^{3}$ LAI 07A gives a correlation -0.44 between their Λ_{+}and $\ln (C)$ measurements.

Λ_{+}(DISPERSIVE VECTOR FORM FACTOR FOR $K_{\mu 3}^{0}$ DECAY) (units 10^{-2})
$\operatorname{In}(C)$ (DISPERSIVE SCALAR FORM FACTOR FOR $K_{\mu 3}^{0}$ DECAY)
See the review on " $K_{\ell 3}^{ \pm}$and $K_{\ell 3}^{0}$ Form Factors" for details of the dispersive parametrization.
VALUE (units 10^{-1}) EVTS DOCUMENTID TECN COMMENT
$\mathbf{1 . 7 5} \pm \mathbf{0 . 1 8}$ OUR AVERAGE Error includes scale factor of 2.0 . See the ideogram below.
$1.915 \pm 0.078 \pm 0.094 \quad 3.4 \mathrm{M} \quad{ }^{1}$ ABOUZAID 10 KTEV $\mu=e$
$2.04 \pm 0.19 \pm 0.15 \quad 3.8 \mathrm{M} \quad{ }^{2}$ AMBROSINO 07C KLOE $\mu=e$
$1.438 \pm 0.080 \pm 0.112 \quad 2.3 \mathrm{M} \quad{ }^{3} \mathrm{LAI} \quad$ 07A NA48 DP
${ }^{1}$ Obtained from a sample of $1.9 \mathrm{M} K_{e 3}$ and $1.5 \mathrm{M} K_{\mu 3}$. The correlation between Λ_{+} and $\ln (C)$ is -0.269
${ }^{2}$ AMBROSINO 07 C results include $2 \mathrm{M} K_{e 3}$ events from AMBROSINO 06D. We convert $\left(\Lambda_{+}, \Lambda_{0}\right)$ to $\left(\Lambda_{+}, \ln (C)\right)$ parametrization using $\ln (C)=\left(\Lambda_{0} \cdot 11.713+0.0398\right) \pm 0.0041$, where the error is due to theory parametrization of the form factor. The correlation between Λ_{+}and $\ln (C)$ is -0.26 .
${ }^{3}$ LAI 07A gives a correlation -0.44 between their Λ_{+}and $\ln (C)$ measurements.

$\ln (C)$ (DISPERSIVE SCALAR FORM FACTOR FOR $K_{\mu 3}^{0}$ DECAY) (units 10^{-1})

$a_{1}\left(t_{0}, Q^{2}\right)$ FORM FACTOR PARAMETER See HILL 06 for a definition of this parameter.				
Value	EVTS	DOCUMENT ID		TECN
$1.023 \pm 0.028 \pm 0.029$	2M	1 ABOUZAID	06C	KTEV
${ }^{1} Q^{2}=2 \mathrm{GeV}^{2}, t_{0}=0.49\left(m_{K}-m_{\pi}\right)^{2}$. Correlation between a_{1} and $a_{2}: \rho_{12}=-0.064$.				
$a_{2}\left(t_{0}, Q^{2}\right)$ FORM FACTOR PARAMETER See HILL 06 for a definition of this parameter.				
VALUE	EVTS	DOCUMENT ID		TECN
$0.75 \pm 1.58 \pm 1.47$	2M	${ }^{1}$ ABOUZAID	06C	KTEV
${ }^{1} Q^{2}=2 \mathrm{GeV}^{2}, t_{0}=0.49\left(m_{K}-m_{\pi}\right)^{2}$. Correlation between a_{1} and $a_{2}: \rho_{12}=-0.064$.				

$\left|f_{S} / f_{+}\right|$Ratio of scalar to f_{+}coupl
VALUE (units 10^{-2}) CL\% EVTS DOCUMENTID TECN COMMENT

$$
\mathbf{1 . 5}_{-1.0}^{\mathbf{+ 0 . 7} \pm 1.2} \quad 5.6 \mathrm{M} \quad 1_{\mathrm{LAI}} \quad 04 \mathrm{C} \text { NA48 }
$$

- - We do not use the following data for averages, fits, limits, etc. - - -

<9.5	95	18k	HILL	78	STRC	
<7.	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
<4.	68	25k	BLUMEN		SPEC	
${ }^{1}$ Results from linear fit with $\left\|f_{S} / f_{+}\right\|$and $\left\|f_{T} / f_{+}\right\|$free.						
$\left\|f_{T} / f_{+}\right\|$FOR $K_{e 3}^{0}$ DECAY Ratio of tensor to f_{+}couplings.						
VALUE (units 10^{-2}	CL\%	EVTS	DOCUMENT		TECN	COMMENT
$5 \pm{ }_{-4}^{+3} \pm 3$		5.6 M	${ }^{1}$ LAI	04c	NA48	

- - We do not use the following data for averages, fits, limits, etc. • - .

$$
\begin{array}{llllrll}
<40 . & 95 & 18 k & \text { HILL } & 78 & \text { STRC } & \\
<34 . & 68 & 48 k & \text { BIRULEV } & 76 & \text { SPEC } & \text { See also BIRULEV } 81 \\
<23 . & 68 & 25 k & \text { BLUMENTHAL75 } & \text { SPEC } &
\end{array}
$$

${ }^{1}$ Results from linear fit with $\left|f_{S} / f_{+}\right|$and $\left|f_{T} / f_{+}\right|$free.
$\left|f_{T} / f_{+}\right|$FOR $K_{\mu 3}^{0}$ DECAY
Ratio of tensor to f_{+}couplings.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { 12. } \mathbf{\pm 1 2} .} \quad \frac{\text { DOCUMENT ID }}{\text { BIRULEV } 81} \frac{\text { TECN }}{\text { SPEC }}$
$\boldsymbol{\alpha}_{K^{*}}$ DECAY FORM FACTOR FOR $\boldsymbol{K}_{\boldsymbol{L}} \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-} \boldsymbol{\gamma}, \boldsymbol{K}_{\boldsymbol{L}}^{0} \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-} \boldsymbol{\ell}^{\boldsymbol{\prime}+\boldsymbol{\ell}^{\boldsymbol{\prime}}}$
Average of all $\alpha_{K^{*}}$ measurements (from each of three datablocks following this one) assuming lepton universality.
$-\mathbf{0 . 2 0 5} \mathbf{\pm \mathbf { 0 }} \mathbf{0 . 0 2 2}$ OUR AVERAGE Includes data from the 3 datablocks that follow this one. Error includes scale factor of 1.8. See the ideogram below.

$\alpha_{K^{*}}$ DECAY FORM FACTOR FOR $K_{L} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-\boldsymbol{\gamma}}$
${ }^{\alpha^{*}}$ is the constant in the model of BERGSTROM 83 which measures the relative strength of the vector-vector transition $K_{L} \rightarrow K^{*} \gamma$ with $K^{*} \rightarrow \rho, \omega, \phi \rightarrow \gamma^{*}$ and the pseudoscalar-pseudoscalar transition $K_{L} \rightarrow \pi, \eta, \eta^{\prime} \rightarrow \gamma \gamma^{*}$.
$\frac{\text { VALUE }}{\text { The data in this block is }} \frac{\text { EVTS }}{\text { included }} \frac{\text { DOCUMENT ID }}{\text { in average printed for a previous datablock. }}$
$\mathbf{- 0 . 2 1 7} \pm \mathbf{0 . 0 3 4}$ OUR AVERAGE Error includes scale factor of 2.4.

$-0.207 \pm 0.012 \pm 0.009$	$83 k$	1	ABOUZAID	07B KTEV
$-0.36 \pm 0.06 \pm 0.02$	6864	FANTI	99 B	NA48
-0.28 ± 0.13		BARR	90B	NA31
-0.280	+0.099		OHL	90B
-0.090				

${ }^{1}$ ABOUZAID 07B measures $C \cdot \alpha_{K^{*}}=-0.517 \pm 0.030 \pm 0.022$. We assume $C=2.5$, as in all other measurements
$\boldsymbol{\alpha}_{\boldsymbol{K}^{*}}$ DECAY FORM FACTOR FOR $\boldsymbol{K}_{\boldsymbol{L}} \Rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-\boldsymbol{\gamma}} \boldsymbol{\gamma}$
${ }_{K_{K}}$ is the constant in the model of BERGSTROM 83 described in the previous section.
$\frac{\text { VALUE }}{\text { The data in this block is is }} \frac{\text { EVTS }}{\text { included in the average printed for a previon }}$
The data in this block is included in the average printed for a previous datablock.

$\mathbf{- 0 . 1 5 8} \pm \mathbf{0 . 0 2 7}$	OUR AVERAGE			
$-0.160_{-0}^{+0.026}$	9100	ALAVI-HARATI01G	KTEV	
-0.04				
		FANTI	97	NA48

$\alpha_{K^{*}}^{\text {eff }}$ DECAY FORM FACTOR FOR $K_{L} \rightarrow e^{+} e^{-} e^{+} e^{-}$
$\alpha_{K^{*}}^{\text {eff }}$ is the parameter describing the relative strength of an intermediate pseudoscalar decay amplitude and a vector meson decay amplitude in the model of BERGSTROM 83. It takes into account both the radiative effects and the form factor. Since there are two $e^{+} e^{-}$pairs here compared with one in $e^{+} e^{-} \gamma$ decays, a factorized expression is used for the $e^{+} e^{-} e^{+} e^{-}$decay form factor.
VALUE EVTS DOCUMENTID TECN
The data in this block is $\frac{E V T S}{\text { included in the average printed for a previous datablock. }}$
$=0.14 \pm \mathbf{0 . 1 6} \pm \mathbf{0 . 1 5} 441$ ALAVI-HARATIO1D KTEV
$\alpha_{D I P}$ DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow \ell^{+} \ell^{-} \gamma, K_{L}^{0} \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$
Average of all $\alpha_{D I P}$ measurements (from each of three datablocks following this one) assuming lepton universality.
VALUE DOCUMENTID
$-\mathbf{1 . 6 9} \pm \mathbf{0 . 0 8}$ OUR AVERAGE Includes data from the 3 datablocks that follow this one. Error includes scale factor of 1.7.
$\alpha_{D I P}$ DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow e^{+} e^{-} \boldsymbol{\gamma}$
$\alpha_{\text {DIP }}$ parameter in $K_{L}^{0} \rightarrow \gamma^{*} \gamma^{*}$ form factor by DAMBROSIO 98, motivated by vector meson dominance and a proper short distance behavior
$\frac{V A L U E}{T h e ~ d a t a ~ i n ~ t h i s ~ b o c k ~ i s ~} \frac{E V T S}{\text { included in }} \frac{\text { DOCUMENT ID }}{}$
The data in this block is included in the average printed for a previous datablock.
$=\mathbf{1 . 7 2 9} \pm \mathbf{0 . 0 4 3} \pm \mathbf{0 . 0 2 8}$ 83k ABOUZAID 07B KTEV
$\alpha_{D I P}$ DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow \mu^{+} \mu^{-} \boldsymbol{\gamma}$
$\alpha_{D I P}$ is a constant in the model of DAMBROSIO 98 described in the previous section.
$\frac{\text { VALUE }}{\text { The data in this block is }} \frac{\text { EVTS }}{\text { included in }} \frac{\text { DOCUMENT ID }}{}$
The data in this block is included in the average printed for a previous datablock.
$\mathbf{- 1 . 5 4} \mathbf{0 0 . 1 0} 9100 \quad$ ALAVI-HARATI01G KTEV
$\alpha_{D I P}$ DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$
$\alpha_{D I P}$ is a constant in the model of DAMBROSIO 98 described in the previous section.
$\frac{V A L U E}{\text { The data in this block is }} \frac{\text { EVTS }}{\text { included in the average printed for a prev }}$
The data in this block is included in the average printed for a previous datablock.
$\mathbf{- 1 . 5 9} \mathbf{\pm} \mathbf{0 . 3 7} 131$ ALAVI-HARATI03B KTEV
a_{1} / a_{2} FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDE
Form factor $=\tilde{g}_{M 1}\left[1+\frac{a_{1} / a_{2}}{\left(M_{\rho}^{2}-M_{K}^{2}\right)+2 M_{K} E_{\gamma}^{*}}\right]$ as described in ALAVI-HARATI 00B.
$\frac{\operatorname{VALUE}\left(\mathrm{GeV}^{2}\right)}{\mathbf{- 0 . 7 3 7} \pm \mathbf{0 . 0 1 4} \text { OUR AVERAGE }}$ EVTS DOCUMENT ID TECN COMMENT

$-0.744 \pm 0.027 \pm 0.032$	5241	1 ABOUZAID 06	KTEV $\pi^{+} \pi^{-} e^{+}$
$-0.738 \pm 0.007 \pm 0.018$	111k	2 ABOUZAID 06A	KTEV $\pi^{+} \pi^{+} \gamma$
${ }_{-0.81}{ }_{-0.13}^{+0.07} \pm 0.02$		${ }^{3}$ LAI 03C	NA48 $\pi^{+} \pi^{-} e^{+} e^{-}$
$-0.737 \pm 0.026 \pm 0.022$		${ }^{4}$ ALAVI-HARATI01b	γ
$-0.720 \pm 0.028 \pm 0.009$	1766	${ }^{5}$ ALAVI-HARATI00b	KTEV $\pi^{+} \pi^{-} e^{+} e$
${ }^{1}$ ABOUZAID 06 also measured $\left\|\widetilde{g}_{M 1}\right\|=1.11 \pm 0.14$. ${ }^{2}$ ABOUZAID 06A also measured $\left\|\widetilde{g}_{M 1}\right\|=1.198 \pm 0.035 \pm 0.086$. ${ }^{3}$ LAI 03C also measured $\widetilde{g}_{M 1}=0.99_{-0.27}^{+0.28} \pm 0.07$.			
${ }^{4}$ ALAVI-HARATI 01B fit gives $\chi^{2} /$ DOF $=38.8 / 27$. Linear and quadratic fits give $\chi^{2} /$ DOF $=43.2 / 27$ and $37.6 / 26$ respectively.			

${ }^{5}$ ALAVI-HARATI 00B also measured $\left|\widetilde{g}_{M 1}\right|=1.35_{-0.17}^{+0.20} \pm 0.04$.
$\overline{\boldsymbol{f}}_{S}$ DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow \pi^{ \pm} \pi^{0} e^{\mp} \nu_{e}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 4 9} \pm \mathbf{0 . 0 1 1} \text { OUR AVERAGE }} \quad \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor }} \frac{\text { TECN }}{\text { of 1.7. }}$
$0.052 \pm 0.006 \pm 0.002 \quad$ BATLEY 04 NA48
$0.010 \pm 0.016 \pm 0.017$ MAKOFF 93 E731
\bar{f}_{P} DECAY FORM FACTOR FOR $K_{L}^{0} \rightarrow \pi^{ \pm} \pi^{0} e^{\mp} \nu_{e}$
$\frac{V A L U E}{-0.052 \pm 0.012 ~ O U R ~ A V E R A G E}$
$-0.051 \pm 0.011 \pm 0.005 \quad$ BATLEY 04 NA48
$-0.079 \pm 0.049 \pm 0.022 \quad$ MAKOFF 93 E731

$\boldsymbol{\lambda}_{\boldsymbol{g}}$ DECAY FORM FACTOR FOR $K_{\boldsymbol{L}}^{0} \Rightarrow \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{e}^{\mp} \boldsymbol{\nu}_{\boldsymbol{e}}$
 VALUE DOCUMENT ID
 0.085 ± 0.020 OUR AVERAGE
 $0.087 \pm 0.019 \pm 0.006 \quad$ BATLEY 04 NA48
 $0.014 \pm 0.087 \pm 0.070 \quad$ MAKOFF 93 E731

| $\overline{\boldsymbol{h}}$ DECAY FORM FACTOR FOR $\boldsymbol{K}_{\boldsymbol{L}}^{\mathbf{0}} \rightarrow$ | $\boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{e}^{\mp} \boldsymbol{\nu}_{\boldsymbol{e}}$ | | |
| :--- | :--- | :--- | :--- | :--- |
| VALUE | DOCUMENT ID | | |
| $-\mathbf{0 . 3 0} \pm \mathbf{0 . 1 3}$ OUR AVERAGE | | | |
| $-0.32 \pm 0.12 \pm 0.07$ | BATLEY | 04 | NA48 |
| $-0.07 \pm 0.31 \pm 0.31$ | MAKOFF | 93 | E731 |

L_{3} CHIRAL PERT. THEO. PARAM. FOR $K_{L}^{0} \rightarrow \pi^{ \pm} \pi^{0} e^{\mp} \nu_{e}$
${ }^{1}$ MAKOFF 93 sign has been changed to negative to agree with the sign convention used in BATLEY 04.

Meson Particle Listings
K_{L}^{0}
a_{v}, VECTOR MESON EXCHANGE CONTRIBUTION
VALUE EVTS DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{- 0 . 4 3} \pm \mathbf{0 . 0 6}$ OUR AVERAGE Error includes scale factor of 1.5 .
$\begin{array}{lllllll}-0.31 \pm 0.05 \pm 0.07 & 1.4 \mathrm{k} & 1 \text { ABOUZAID } & 08 & \text { KTEV } & & \\ -0.46 \pm 0.03 \pm 0.04 & & \text { LAI } & 02 \mathrm{~B} & \text { NA48 } & K_{L}^{0} \rightarrow \pi^{0} 2 \gamma \\ -0.67 & & & \end{array}$
$-0.67 \pm 0.21 \pm 0.12 \quad$ ALAVI-HARATIO1E KTEV $K_{L}^{0} \rightarrow \pi^{0} e^{+} e^{-} \gamma$

- - We do not use the following data for averages, fits, limits, etc. • - -
$-0.72 \pm 0.05 \pm 0.06 \quad 2$ ALAVI-HARATI99B KTEV $K_{L}^{0} \rightarrow \pi^{0} 2 \gamma$
${ }^{1}$ Using KTeV dataset collected in 1996, 1997, and 1999.
${ }^{2}$ Superseded by ABOUZAID 08.
See the related review(s):
$C P$ Violation in K_{L}^{0} Decays

CP-VIOLATION PARAMETERS IN K_{L}^{0} DECAYS

CHARGE ASYMMETRY IN $K_{\ell 3}^{0}$ DECAYS
Such asymmetry violates $C P$. It is related to $\operatorname{Re}(\epsilon)$.
$A_{L}=$ weighted average of $A_{L}(\mu)$ and $A_{L}(e)$
In previous editions and in the literature the symbol used for this asymmetry was δ_{L} or δ. We use A_{L} for consistency with B^{0} asymmetry notation and with recent K_{S}^{0} notation.
0.332 ± 0.006 OUR AVERAGE
$0.333 \pm 0.050 \quad 33 \mathrm{M}$
DOCUMENT ID TECN COMMENT
Includes data from the 2 datablocks that follow this one.
WILLIAMS 73 ASPK $K_{\mu 3}+K_{e 3}$
$A_{L}(\mu)=\left[\Gamma\left(\pi^{-} \mu^{+} \nu_{\mu}\right)-\Gamma\left(\pi^{+} \mu^{-} \boldsymbol{\nu}_{\mu}\right)\right] /$ SUM
Only the combined value below is put into the Meson Summary Table.
VALUE (\%) DOCUMENTID TECN
The data in this block is included in the average printed for a previous datablock.

$\begin{array}{lrlll}\mathbf{0 . 3 0 4} \pm \mathbf{0 . 0 2 5} \text { OUR AVERAGE } & & & \\ 0.313 \pm 0.029 & 15 \mathrm{M} & \text { GEWENIGER } & 74 & \text { ASPK } \\ 0.278 \pm 0.051 & 7.7 \mathrm{M} & \text { PICCIONI } & 72 & \text { ASPK }\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - -

0.60 ± 0.14	4.1 M	MCCARTHY	73	CNTR
0.57 ± 0.17	1 M	1 PACIOTTI	69	OSPK
0.403 ± 0.134	1 M	1 DORFAN	67	OSPK

${ }^{1}$ PACIOTTI 69 is a reanalysis of DORFAN 67 and is corrected for $\mu^{+} \mu^{-}$range difference in MCCARTHY 72.

$A_{L}(e)=\left[\Gamma\left(\pi^{-} e^{+} \nu_{e}\right)-\Gamma\left(\pi^{+} e^{-} \bar{\nu}_{e}\right)\right] /$ SUM

Only the combined value below is put into the Meson Summary Table.
$\frac{V A L U E ~(\%)}{\text { EVTS }}$ DOCUMENT ID $\frac{\text { TECN }}{}$
The data in this block is included in the average printed for a previous datablock.
0.334 ± 0.007 OUR AVERAGE

$0.3322 \pm 0.0058 \pm 0.0047$	298 M	ALAVI-HARATI02		
0.341 ± 0.018	34 M	GEWENIGER	74	ASPK
0.318 ± 0.038	40 M	FITCH	73	ASPK
0.346 ± 0.033	10 M	MARX	70	CNTR

- - We do not use the following data for averages, fits, limits, etc. - -

0.36	± 0.18	600 k	ASHFORD	72	ASPK
0.246	± 0.059	10 M	1 SAAL	69	CNTR
0.224	+0.036	10 M	1 BENNETT	67	CNTR

67 CNTR
${ }^{1}$ SAAL 69 is a reanalysis of BENNETT 67.

PARAMETERS FOR $K_{L}^{0} \rightarrow 2 \pi$ DECAY

$$
\begin{aligned}
& \eta_{+-}=\mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& \eta_{00}=\mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)
\end{aligned}
$$

The fitted values of $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ given below are the results of a fit to $\left|\eta_{+-}\right|,\left|\eta_{00}\right|,\left|\eta_{00} / \eta_{+-}\right|$, and $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$. Independent information on $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ can be obtained from the fitted values of the $K_{L}^{0} \rightarrow$ $\pi \pi$ and $K_{S}^{0} \rightarrow \pi \pi$ branching ratios and the K_{L}^{0} and K_{S}^{0} lifetimes. This information is included as data in the $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ sections with a Document ID "BRFIT." See the note " $C P$ violation in K_{L} decays" above for details.
$\left|\eta_{00}\right|=\left|\mathrm{A}\left(K_{L}^{0} \rightarrow 2 \pi^{0}\right) / \mathbf{A}\left(K_{S}^{0} \rightarrow 2 \pi^{0}\right)\right|$

VALUE (units 10 ${ }^{-3}$)	DOCUMENT ID TECN	COMMENT
2.220 ± 0.011 OUR FIT	Error includes scale factor of 1.8.	
2.243 ± 0.014	BRFIT 16	

- - We do not use the following data for averages, fits, limits, etc. - •
$2.47 \pm 0.31 \pm 0.24 \quad$ ANGELOPO... 98 CPLR
$2.49 \pm 0.40 \quad 1$ ADLER $\quad 96 \mathrm{~B}$ CPLR Sup. by ANGELOPOULOS 98
$2.33 \pm 0.18 \quad$ CHRISTENS... 79 ASPK
$2.71 \pm 0.37 \quad{ }^{2}$ WOLFF 71 OSPK Cureg., 4γ 's
$2.95 \pm 0.63 \quad 2$ CHOLLET 70 OSPK Cureg., 4γ 's
${ }^{1}$ Error is statistical only.
${ }^{2}$ CHOLLET 70 gives $\left|\eta_{00}\right|=(1.23 \pm 0.24) \times($ regeneration amplitude, $2 \mathrm{GeV} / \mathrm{c}$ $\mathrm{Cu}) / 10000 \mathrm{mb}$. WOLFF 71 gives $\left|\eta_{00}\right|=(1.13 \pm 0.12) \times($ regeneration amplitude, 2 $\mathrm{GeV} / \mathrm{Cu}) / 10000 \mathrm{mb}$. We compute both $\left|\eta_{00}\right|$ values for (regeneration amplitude, 2 $\mathrm{GeV} / \mathrm{CCu})=24 \pm 2 \mathrm{mb}$. This regeneration amplitude results from averaging over $\mathrm{GeV} / \mathrm{C} \mathrm{Cu}=24 \pm 2 \mathrm{mb}$. This regeneration amplitude results from averaging over
FAISSNER 69, extrapolated using optical-model calculations of Bohm et al., Physics Letters 27B 594 (1968) and the data of BALATS 71. (From H. Faissner, private communication).
$\left|\eta_{+-}\right|=\left|\mathrm{A}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{A}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)\right|$
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
$\overline{2.232} \pm \mathbf{0 . 0 1 1}$ OUR FIT Error includes scale factor of 1.8.
$\mathbf{2 . 2 2 6} \pm \mathbf{0 . 0 0 7}$ BRFIT 16
- - We do not use the following data for averages, fits, limits, etc. • - -

2.223 ± 0.012		1	LAI	07	NA48
2.219 ± 0.013		2	AMBROSINO	06 F	KLOE
2.228 ± 0.010		3			
$2.286 \pm 0.023 \pm 0.026$	$70 M$	4	APSXOPOU...	04	KTEV

${ }^{1}$ Value obtained from the NA48 measurements of $\Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(K_{L}^{0} \rightarrow \pi e \nu_{e}\right)$ and τK_{S}^{0} and KLOE measurements of $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$and $\tau_{K_{L}^{0}} \Gamma\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)$ is defined to include the inner bremsstrahlung component $\boldsymbol{\Gamma}\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \gamma(\mathrm{IB})\right)$ but exclude the direct emission component $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}(\mathrm{DE})\right)$. Their $\left|\eta_{+-}\right|$value is not directly used in our fit, but enters the fit via their branching ratio and lifetime measurements.
2 AMBROSINO 06F uses KLOE branching ratios and τ_{L} together with τ_{S} from PDG 04. Their $\left|\eta_{+-}\right|$value is not directly used in our fit, but enters the fit via their branching 3 ratio and lifetime measurements.
${ }^{3}$ ALEXOPOULOS $04\left|\eta_{+-}\right|$uses their $K_{L}^{0} \rightarrow \pi \pi$ branching fractions, $\tau_{S}=(0.8963 \pm$ $0.0005) \times 10^{-10} \mathrm{~s}$ from the average of KTeV and NA48 τ_{S} measurements, and assumes that $\Gamma\left(K_{S}^{0} \rightarrow \pi \ell \nu_{\ell}\right)=\Gamma\left(K_{L}^{0} \rightarrow \pi \ell \nu_{\ell}\right)$ giving $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi \ell \nu_{\ell}\right)=0.118 \%$. Their η_{+-}
is not directly used in our fit, but enters our fit via their branching ratio measurements.
${ }^{4}$ APOSTOLAKIS 99C report $\left(2.264 \pm 0.023 \pm 0.026+9.1\left[\tau_{S}-0.8934\right]\right) \times 10^{-3}$. We evaluate for our 2006 best value $\tau_{S}=(0.8958 \pm 0.0005) \times 10^{-10} \mathrm{~s}$.
${ }^{5}$ ADLER 95B report $\left(2.312 \pm 0.043 \pm 0.030-1[\Delta m-0.5274]+9.1\left[\tau_{S}-0.8926\right]\right) \times 10^{-3}$. We evaluate for our 1996 best values $\Delta m=(0.5304 \pm 0.0014) \times 10^{-10} \hbar \mathrm{~s}^{-1}$ and τ_{S} $=(0.8927 \pm 0.0009) \times 10^{-10} \mathrm{~s}$. Superseded by APOSTOLAKIS 99c.
$|\epsilon|=\left(2\left|\eta_{+-}\right|+\left|\eta_{00}\right|\right) / 3$
This expression is a very good approximation, good to about one part in 10^{-4} because of the small measured value of $\phi_{00}-\phi_{+-}$and small theoretical ambiguities.
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{2 . 2 2 8} \pm \mathbf{0 . 0 1 1} \text { OUR FIT }} \quad \frac{\text { Error includes scale factor of 1.8. }}{}$
$\left|\eta_{00} / \eta_{+}\right|$
VALUE DOCUMENT ID EVTS TECN
$0.9950 \pm \mathbf{0 . 0 0 0 7}$ OUR FIT Error includes scale factor of 1.6.
0.9930 ± 0.0020 OUR AVERAGE
$0.9931 \pm 0.0020 \quad 1,2$ BARR 93D NA31
$0.9904 \pm 0.0084 \pm 0.0036 \quad 3$ WOODS 88 E731

- - We do not use the following data for averages, fits, limits, etc. - •
$0.9939 \pm 0.0013 \pm 0.0015 \quad 1 \mathrm{M} \quad{ }^{1}$ BARR \quad 93D NA31
$0.9899 \pm 0.0020 \pm 0.0025 \quad 1$ BURKHARDT 88 NA31
${ }^{1}$ This is the square root of the ratio R given by BURKHARDT 88 and BARR 93D.
2 This is the combined results from BARR 93D and BURKHARDT 88, taking into account
a common systematic uncertainty of 0.0014 .
${ }^{3}$ We calculate $\left|\eta_{00} / \eta_{+-}\right|=1-3\left(\epsilon^{\prime} / \epsilon\right)$ from WOODS $88\left(\epsilon^{\prime} / \epsilon\right)$ value.
$\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=\left(1-\left|\eta_{00} / \eta_{+-}\right|\right) / 3$
We have neglected terms of order $\omega \cdot \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$, where $\omega=\operatorname{Re}\left(\mathrm{A}_{2}\right) / \operatorname{Re}\left(\mathrm{A}_{0}\right) \simeq 1 / 22$. If included, this correction would lower $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$ by about 0.04×10^{-3}. See SOZZI 04 .
VALUE (units 10^{-3}) DOCUMENTID TECN COMMENT

${ }^{1}$ The two ABOUZAID 11 values use the same data. The fits are performed with and without $C P T$ invariance requirement.
${ }^{2}$ These values are derived from $\left|\eta_{00} / \eta_{+-}\right|$measurements. They enter the average in this section but enter the fit via the $\left|\eta_{00} / \eta_{+-}\right|$only.
${ }^{3}$ This is the combined results from BARR 93D and BURKHARDT 88, taking into account their common systematic uncertainty.
${ }^{4}$ We use ABOUZAID $11 \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$ value with CPT assumption in our fits for $\left|\eta_{+-}\right|,\left|\eta_{00}\right|$, and $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$.
${ }^{5}$ These values are derived from $\left|\eta_{00} / \eta_{+-}\right|$measurements.

$\phi_{+=}$, PHASE of $\boldsymbol{\eta}_{+=}$
The dependence of the phase on Δm and τ_{S} is given for each experiment in the comments below, where Δm is the $K_{L}^{0}-K_{S}^{0}$ mass difference in units $10^{10} \hbar \mathrm{~s}^{-1}$ and τ_{S} is the K_{S} mean life in units $10^{-10} \mathrm{~s}$. We also give the regeneration phase $\phi_{\boldsymbol{f}}$ in the comments below.
OUR FIT is described in the note on " $C P$ violation in K_{L} decays" in the K_{L}^{0} Particle Listings. Most experiments in this section are included in both the "Not Assuming $C P T$ " and "Assuming $C P T$ " fits. In the latter fit, they have little direct influence on ϕ_{+-}because their errors are large compared to that assuming CPT, but they influence Δm and τ_{S} through their dependencies on these parameters, which are given in the footnotes.
$\frac{V A L U E}{}\left({ }^{\circ}\right)$ EVTS $\frac{\text { DOCUMENT ID }}{43.51+0.05}$ OUR FIT TECN COMMENT
$\overline{43.51} \pm \mathbf{0 . 0 5}$ OUR FIT Error includes scale factor of 1.2. Assuming $C P T$
$\mathbf{4 3 . 4} \mathbf{\pm 0 . 5}$ OUR FIT Error includes scale factor of 1.2. Not assuming $C P T$
$42.9 \pm 0.6 \pm 0.3 \quad 70 \mathrm{M} \quad 1$ APOSTOLA... 99C CPLR $K^{0}-\bar{K}^{0}$ asymmetry
$42.9 \pm 0.8 \pm 0.2 \quad 2,3$ SCHWINGEN... 95 E773 $\mathrm{CH}_{1.1}$ regenerator
$41.4 \pm 0.9 \pm 0.2 \quad 3,4$ GIBBONS $\quad 93 \quad$ E731 $\quad \mathrm{B}_{4} \mathrm{C}$ regenerator
$44.5 \pm 1.6 \pm 0.6 \quad 5$ CAROSI $\quad 90$ NA31 Vacuum regen.
$43.3 \pm 1.0 \pm 0.5 \quad{ }^{6}$ GEWENIGER 74B ASPK Vacuum regen.
- - We do not use the following data for averages, fits, limits, etc. - - -
43.76 ± 0.64
$44.12 \pm 0.72 \pm 1.20$
$42.5 \pm 0.4 \pm 0.3$
${ }^{7}$ ABOUZAID 11 KTEV Not assuming CPT
$\begin{array}{lllll}43.4 \pm 1.1 & \pm 0.3 & 9,10 \text { ADLER } & 96 \mathrm{C} & \text { RVUE } \\ & 11 \text { ADLER } & 95 B & \\ \text { CPLR } & K^{0}-\bar{K}^{0} \text { asymmetry }\end{array}$

$47.7 \pm 2.0 \pm 0.9$
$44.3 \pm 2.8 \pm 0.2$

14 CARITHERS 75 SPEC $\quad C$ regenerator
${ }^{1}$ APOSTOLAKIS 99C measures $\phi_{+-}=(43.19 \pm 0.53 \pm 0.28)+300[\Delta m-0.5301]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=0.5293 \pm 0.0009)$ $\left(10^{10} \hbar \mathrm{~s}^{-1}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
2 SCHWINGENHEUER 95 measures $\phi_{+-}=(43.53 \pm 0.76)+173[\Delta m-0.5282]-275$ $\left[\tau_{S}-0.8926\right]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best 3 values.
${ }^{3}$ These experiments measure $\phi_{+-}-\phi_{f}$ and calculate the regeneration phase from the power law momentum dependence of the regeneration amplitude using analyticity and dispersion relations. SCHWINGENHEUER 95 [GIBBONS 93] includes a systematic error of $0.35^{\circ}\left[0.5^{\circ}\right]$ for uncertainties in their modeling of the regeneration amplitude.
${ }^{4}$ GIBBONS 93 measures $\phi_{+-}=(42.21 \pm 0.9)+189[\Delta m-0.5257]-460\left[\tau_{S}-\right.$ 0.8922] $\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best values. This is actually reported in SCHWINGENHEUER 95, footnote 8. GIBBONS 93 reports $\phi_{+-}(42.2 \pm 1.4)^{\circ}$. They measure $\phi_{+}-\phi_{f}$ and calculate the regeneration phase ϕ_{f} from the power law momentum dependence of the regeneration amplitude using analyticity. An error of 0.6° is included for possible uncertainties in the regeneration phase.
${ }^{5}$ CAROSI 90 measures $\phi_{+-}=(46.9 \pm 1.4 \pm 0.7)+579[\Delta m-0.5351]+303$ $\left[\tau_{S}-0.8922\right]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of ($\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best their ex
values.
${ }^{6}$ GEWENIGER 74B measures $\phi_{+-}=(49.4 \pm 1.0)+565[\Delta m-0.540]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=0.5293 \pm 0.0009)\left(10^{10} \hbar\right.$ s^{-1}). Our first error is their experiment's error and our second error is the systematic 7 error from using our best values.
${ }_{8}^{7}$ Not independent of other phase parameters reported in ABOUZAID 11.
${ }^{8}$ ALAVI-HARATI $03 \phi_{+-}$is correlated with their $\Delta m=m_{K_{L}^{0}}-m_{K_{S}^{0}}$ and $\tau_{K_{S}}$ measurements in the K_{L}^{0} and K_{S}^{0} sections respectively. The correlation coefficients are $\rho\left(\phi_{+-}, \Delta m\right)=+0.955, \rho\left(\phi_{+-}, \tau_{S}\right)=-0.871$, and $\rho\left(\tau_{S}, \Delta m\right)=-0.840$. CPT is not assumed. Uses scintillator Pb regenerator. Superseded by ABOUZAID 11.
 $0.8922]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best 10 values.
ADLER 96C is the result of a fit which includes nearly the same data as entered into the "OUR FIT" value in the 1996 edition of this Review (Physical Review D54 1 (1996)).
ADLER 95B measures $\phi_{+-}=(42.7 \pm 0.9 \pm 0.6)+316[\Delta m-0.5274]+30\left[\tau_{s}-\right.$ $0.8926]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of ($\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best
12 values. 92 B quote separately two systematic errors: ± 0.4 from their experiment and ± 1.0 degrees due to the uncertainty in the value of Δm.
${ }^{13}$ KARLSSON 90 systematic error does not include regeneration phase uncertainty.
${ }^{14}$ CARITHERS 75 measures $\phi_{+-}=(45.5 \pm 2.8)+224[\Delta m-0.5348]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=0.5293 \pm 0.0009)\left(10^{10} \hbar\right.$ s^{-1}). Our first error is their experiment's error and our second error is the systematic error from using our best values. $\phi_{f}=-40.9 \pm 2.6^{\circ}$.

ϕ_{00}, PHASE OF η_{00}

See comment in ϕ_{+-}header above for treatment of Δm and τ_{S} dependence, as well as for the inclusion of data in both the "Assuming CPT" and "Not Assuming CPT" fits.
OUR FIT is described in the note on " $C P$ violation in K_{L} decays" in the K_{L}^{0} Particle Listings.
$\frac{V A L U E\left({ }^{\circ}\right)}{\mathbf{4 3 . 5 2} \pm \mathbf{0 . 0 5} \text { OUR FIT }}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor }} \frac{\text { TECN }}{\text { of 1.3. }} \frac{\text { ASOMMENT }}{\text { Assuming C }}$
$43.52 \pm \mathbf{0 . 0 5}$ OUR FIT
$\mathbf{4 3 . 7} \pm \mathbf{0 . 6}$ OUR FIT Error includes scale factor of 1.3. Assuming CPT
$43.7 \pm \mathbf{0 . 6}$ OUR FIT Error includes scale factor of 1.2. Not assuming CPT
$44.5 \pm 2.3 \pm 0.5 \quad{ }^{1}$ CAROSI 90 NA31

- - We do not use the following data for averages, fits, limits, etc. - -
$44.06 \pm 0.68 \quad 2$ ABOUZAID 11 KTEV Not assuming CPT
$41.7 \pm 5.9 \pm 0.2 \quad 3$ ANGELOPO... 98 CPLR
$50.8 \pm 7.1 \pm 1.7 \quad{ }^{4}$ ADLER $\quad 96 \mathrm{~B}$ CPLR Sup. by ANGELOPOULOS 98
$47.4 \pm 1.4 \pm 0.9 \quad 5$ KARLSSON $90 \quad$ E731
${ }^{1}$ CAROSI 90 measures $\phi_{00}=(47.1 \pm 2.1 \pm 1.0)+579[\Delta m-0.5351]+252\left[\tau_{s}-\right.$ 0.8922] $\left(^{\circ}\right)$. We have adjusted the measurement to use our best values of ($\Delta m=$ $0.5293 \pm 0.0009)\left(10^{10} \hbar \mathrm{~s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best 2 values.
${ }^{2}$ Not independent of other phase parameters reported in ABOUZAID 11.
${ }^{3}$ ANGELOPOULOS 98 measures $\phi_{00}=(42.0 \pm 5.6 \pm 1.9)+240[\Delta m-0.5307]\left({ }^{\circ}\right)$. We have adjusted the measurement to use our best values of ($\Delta m=0.5293 \pm 0.0009$) $\left(10^{10} \hbar \mathrm{~s}^{-1}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best values. The τ_{s} dependence is negligible.
${ }^{4}$ ADLER 96B identified initial neutral kaon individually as being a K^{0} or a \bar{K}^{0}. The systematic uncertainty is $\pm 1.5^{\circ}$ combined in quadrature with $\pm 0.8^{\circ}$ due to Δm.
${ }^{5}$ KARLSSON 90 systematic error does not include regeneration phase uncertainty.

$\phi_{\epsilon}=\left(2 \phi_{+-}+\phi_{00}\right) / 3$

This expression is a very good approximation, good to about 10^{-3} degrees because of the small measured values of $\phi_{00}{ }^{-\phi_{+-}}$and $\operatorname{Re} \epsilon^{\prime} / \epsilon$, and small theoretical ambiguities.
DOCUMENT ID

43.5 $\mathbf{\pm 0 . 5} \quad$ OUR FIT Error includes scale factor of 1.3. Not assuming CPT
$43.5164 \pm 0.0002 \pm 0.0518 \quad{ }^{1}$ SUPERWEAK $16 \quad$ Assuming CPT
$43.86 \pm 0.63 \quad{ }^{2}$ ABOUZAID 11 KTEV Not assuming CPT
${ }^{1}$ SUPERWEAK 16 is a fake measurement used to impose the CPT or Superweak constraint $\phi_{+-}=\phi_{\mathrm{SW}}=\tan ^{-1}\left[2 \frac{\Delta m}{\hbar}\left(\frac{\tau_{S} \tau_{L}}{\tau_{L}-\tau_{S}}\right)\right]$. This "measurement" is linearized using values near the PDG 04 edition values of $\Delta m, \tau_{S}$ and τ_{l}, and then adjusted to our current values as described in the following "measurement". SUPERWEAK 16 measures $\phi_{\epsilon}=$ $(43.50258 \pm 0.00021)+54.1[\Delta m-0.5289]+32.0\left[\tau_{S}-0.89564\right]\left(^{\circ}\right)$. We have adjusted the measurement to use our best values of $(\Delta m=0.5293 \pm 0.0009)\left(10^{10} \hbar\right.$
$\left.\mathrm{s}^{-1}\right),\left(\tau_{s}=0.8954 \pm 0.0004\right)\left(10^{-10} \mathrm{~s}\right)$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ ABOUZAID 11 uses the full KTeV dataset collected in 1996, 1997, and 1999. See $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ section for correlation information.
$\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)=-\left(\phi_{00}-\phi_{+-}\right) / 3$
For small $\left|\epsilon^{\prime} / \epsilon\right|, \operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ is related to the phases of η_{00} and η_{+-}by the above expression.
VALUE $\left({ }^{\circ}\right)$ DOCUMENTID TECN COMMENT
$\mathbf{= 0 . 0 0 2} \mathbf{\pm 0 . 0 0 5}$ OUR FIT Error includes scale factor of 1.7. Assuming CPT
$-\mathbf{0 . 1 1} \mathbf{\pm 0 . 1 1}$ OUR FIT Not assuming CPT
$-\mathbf{0 . 0 9 8 5} \pm \mathbf{0 . 1 1 5 7} \quad 1$ ABOUZAID 11 KTEV Not assuming CPT
${ }^{1}$ ABOUZAID 11 uses the full KTeV dataset collected in 1996, 1997, and 1999. The fit has $\Delta m, \tau_{s}, \phi_{\epsilon}, \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$, and $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ as free parameters. The reported value of $\operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right)$ $=(-17.20 \pm 20.20) \times 10^{-4} \mathrm{rad}$. The correlation coefficients are $\rho\left(\phi_{\epsilon}, \Delta m\right)=0.828$, $\rho\left(\phi_{\epsilon}, \tau_{S}\right)=-0.765, \rho\left(\Delta m, \tau_{S}\right)=-0.858, \rho\left(\operatorname{lm}\left(\epsilon^{\prime} / \epsilon\right), \phi_{\epsilon}\right)=-0.041, \rho\left(\operatorname{lm}\left(\epsilon^{\prime} / \epsilon\right)\right.$, $\Delta m)=0.026, \rho\left(\operatorname{lm}\left(\epsilon^{\prime} / \epsilon\right), \tau_{S}\right)=-0.010$.

Meson Particle Listings
K_{L}^{0}

CHARGE ASYMMETRY IN $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$ DECAYS				
These are $C P$-violating charge-asymmetry parameters, defined ning of section "LINEAR COEFFICIENT g FOR $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$				
See also note on Dalitz plot parameters in $K^{ \pm}$section and note violation in K_{L} decays" above.				
AR COEFFICIENT \boldsymbol{j} FOR $K_{\boldsymbol{L}}^{\mathbf{0}} \Rightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$				
012 $\mathbf{0 . 0 0 0 8}$ OUR AVERAGE				
$10 \pm 0.0024 \pm 0.0030$	500k	ANGELOPO...	98 C	CPLR
± 0.011	6499	CHO	77	
± 0.003	4709	PEACH	77	
13 ± 0.0009	3M	SCRIBANO	70	
± 0.017	4400	SMITH	70	OSPK
± 0.004	238k	BLANPIED	68	

T VIOLATION TESTS IN K_{L}^{0} DECAYS

$\operatorname{Im}(\xi)$ in $K_{\mu 3}^{0}$ DECAY (from transverse μ pol.)
Test of T reversal invariance.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.007 ± 0.026 OUR AVERAGE					
0.009 ± 0.030	12M	MORSE	80	CNTR	Polarization
0.35 ± 0.30	207k	${ }^{1}$ CLARK	77	SPEC	POL, $t=0$
-0.085 ± 0.064	2.2M	2 SANDWEISS	73	CNTR	POL, $t=0$
-0.02 ± 0.08		LONGO	69	CNTR	POL, $t=3.3$
-0.2 ± 0.6		ABRAMS	68B	OSPK	Polarization
- - We do not use the following data for averages, fits, limits, etc. - -					
0.012 ± 0.026		SCHMIDT	79	CNTR	Repl. by MORSE 80
${ }^{1}$ CLARK 77 value has additional $\xi(0)$ dependence $+0.21 \operatorname{Re}[\xi(0)]$.					
${ }^{2}$ SANDWEISS 73 value corrected from value quoted in their paper due to new value of $\operatorname{Re}(\xi)$. See footnote 4 of SCHMIDT 79.					

CPT-INVARIANCE TESTS IN K_{L}^{0} DECAYS

PHASE DIFFERENCE $\phi_{00}-\phi_{+}$

Test of CPT.
OUR FIT is described in the note on " $C P$ violation in K_{L} decays" in the K_{L}^{0} Particle Listings.
VALUE $\left({ }^{\circ}\right)$ DOCUMENTID TECN COMMENT
$\mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 1 4}$ OUR FIT Error includes scale factor of 1.7 . Assuming $C P T$
0.34 ± 0.32 OUR FIT Not assuming CPT
$0.006 \pm 0.008 \quad 1$ SUPERWEAK $16 \quad$ Assuming CPT
$-0.30 \pm 0.88 \quad 2$ SCHWINGEN... 95 Combined E731, E773

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.30 \pm 0.35 \quad 3$ ABOUZAID 11 KTEV Not assuming CPT
$0.39 \pm 0.22 \pm 0.45 \quad 4$ ALAVI-HARATIO3 KTEV
$0.62 \pm 0.71 \pm 0.75 \quad$ SCHWINGEN... 95 E773
$-1.6 \pm 1.2 \quad 5$ GIBBONS 93 E731
$0.2 \pm 2.6 \pm 1.2 \quad{ }^{6}$ CAROSI 90 NA31
$-0.3 \pm 2.4 \pm 1.2 \quad$ KARLSSON 90 E731
${ }^{1}$ SUPERWEAK 16 is a fake experiment to constrain $\phi_{00}-\phi_{+-}$to a small value as described in the note " $C P$ violation in K_{L} decays."
2 This SCHWINGENHEUER 95 values is the combined result of SCHWINGENHEUER 95 and GIBBONS 93, accounting for correlated systematic errors.
${ }^{3}$ Not independent of other phase parameters reported in ABOUZAID 11.
${ }^{4}$ ALAVI-HARATI 03 fit $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right), \operatorname{Im}\left(\epsilon^{\prime} / \epsilon\right), \Delta m, \tau_{S}$, and ϕ_{+-}simultaneously, not assuming CPT. Phase difference is obtained from $\phi_{00}-\phi_{+-} \approx-3 \operatorname{lm}\left(\epsilon^{\prime} / \epsilon\right)$ for small $\left|\epsilon^{\prime} / \epsilon\right|$. Superseded by ABOUZAID 11.
${ }^{5}$ GIBBONS 93 give detailed dependence of systematic error on lifetime (see the section on the K_{S}^{0} mean life) and mass difference (see the section on $m_{K_{L}^{0}}-m_{K_{S}^{0}}$).
${ }^{6}$ CAROSI 90 is excluded from the fit because it it is not independent of ϕ_{+-}and ϕ_{00} values.

PHASE DIFFERENCE $\phi_{+=}-\phi_{\text {SW }}$
Test of CPT. The Superweak phase $\phi_{\mathrm{SW}} \equiv \tan ^{-1}(2 \Delta m / \Delta \Gamma)$ where $\Delta m=m_{K_{L}^{0}}{ }^{-}$ $m_{K_{S}^{0}}$ and $\Delta \Gamma=\hbar\left(\tau_{L}-\tau_{S}\right) /\left(\tau_{L} \tau_{S}\right)$.
$\frac{\operatorname{VALUE}\left({ }^{\circ}\right)}{\mathbf{0 . 6 1} \pm \mathbf{0 . 6 2} \pm \mathbf{1 . 0 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ALAVI-HARATI03 }} \frac{\text { TECN }}{\text { KTEV }}$
${ }^{1}$ ALAVI-HARATI 03 fit is the same as their $\phi_{+-}, \tau_{K_{S}}, \Delta m$ fit, except that the parameter $\phi_{+-}-\phi_{\text {SW }}$ is used in place of ϕ.
$\operatorname{Re}\left(\frac{2}{3} \boldsymbol{\eta}_{++-}+\frac{1}{3} \boldsymbol{\eta}_{\mathbf{0 0}}\right)-\frac{\boldsymbol{A}_{\boldsymbol{L}}}{\mathbf{2}}$
DOCUMENTID TECN COMMENT
$\mathbf{- 3} \mathbf{4 5 5} 1$ ALAVI-HARATI02 E799 Uses A_{L} from $K_{e 3}$ decays
${ }^{1}$ ALAVI-HARATI 02 uses PDG 00 values of η_{+-}and η_{00}.
$\Delta S=\Delta Q$ IN K^{0} DECAYS
The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$
x=A\left(\bar{K}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) / A\left(K^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) .
$$

We list $\operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ for $K_{e 3}$ and $K_{\mu 3}$ combined.

$$
x=\mathrm{A}\left(\bar{K}^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) / \mathrm{A}\left(K^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=\mathrm{A}(\Delta S=-\Delta Q) / \mathrm{A}(\Delta S=\Delta Q)
$$

REAL PART OF x
VALUE
$-0.0018 \pm 0.0041 \pm 0.0045$

DOCUMENT ID TECN COMMENT
ANGELOPO... 98D CPLR $K_{e 3}$ from K^{0}

 MESTVIRISH 65 Argonne Conf.
 Updated from 1965 Argonne Confere JOVANOV... $63 \quad$ BNL Conf. 42
(YALE, BNL)
(EPOL, MILA, PADO)
(JINR)
$($ LRL) $)$
$(B N L, ~ U M D)$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)
$$

also known as κ; was $K_{0}^{*}(800)$
Needs confirmation. See the mini-review on scalar mesons under $f_{0}(500)$ (see the index for the page number).

$K_{0}^{*}(700)$ T-Matrix Pole \sqrt{s}

VALUE (MeV)

DOCUMENT ID

 TECN COMMENT
(630-730) - i (260-340) OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -

12 VANBEVEREN 86 RVUE
${ }^{1}$ Extracted from Forward Dispersion Relations using sequences of Pade approximants .
${ }^{2}$ Extracted from Breit-Wigner parameters.
${ }^{3}$ Fit to scattering phase shifts using UChPT amplitudes with explicit resonances.
${ }^{4}$ Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C, AITALA 06, and LINK 09 using an s-dependent width with couplings to $K \pi$ and $K \eta^{\prime}$, and the Adler zero near thresholds.
${ }^{5}$ From a complex pole included in the fit. Using parameters from the model that fits data best.
${ }^{6}$ Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C using for the κ an s-dependent 7 width with an Adler zero near threshold.
7 Using Roy-Steiner equations (ROY 71) consistent with unitarity, analyticity and crossing symmetry constraints.
8 From UChPT fitted to MERCER 71, BINGHAM 72 and ESTABROOKS 78. Amplitude shown to be consistent with data of ABLIKIM 06C
${ }^{9}$ Reanalysis of ASTON 88 data.
${ }^{10}$ Reanalysis of data from LINGLIN 73, ESTABROOKS 78, and ASTON 88 using the Inverse Amplitude Method.
11 Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes. Extracted from Breit-Wigner parameters.
12 Unitarized Quark Model.

${ }^{1}$ The Breit-Wigner parameters from a fit with seven intermediate resonances. The Smatrix pole position is $\left(764 \pm 63_{-54}^{+71}\right)-i\left(306 \pm 149_{-}^{+143}\right) \mathrm{MeV}$.
${ }^{2}$ From a fit including ten additional resonances and energy-independent Breit-Wigner width.
${ }^{3} \mathrm{~A}$ fit in the $K_{0}^{*}(700)+K^{*}(892)+K^{*}(1410)$ model with mass and width of the $K_{0}^{*}(700)$ from ABLIKIM 06C well describes the left slope of the $K_{S}^{0} \pi^{-}$invariant mass spectrum in $\tau^{-} \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$ decay studied by EPIFANOV 07. Averaged value from different parameterizations.
${ }^{4}$ Not seen by KOPP 01 using 7070 events of $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$. LINK 02E and LINK 05I show clear evidence for a constant non-resonant scalar amplitude rather than $K_{0}^{*}(700)$ in their high statistics analysis of $D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$.
${ }^{5}$ AUBERT 07 T does not find evidence for the charged $K_{0}^{*}(700)$ using 11 k events of $D^{0} \rightarrow$ $K^{-} K^{+} \pi^{0}$.
${ }_{7}^{6}$ Using parameters from the model that fits data best
${ }^{7}$ A Breit-Wigner mass and width.
${ }^{8}$ Breit-Wigner parameters. A significant S-wave can be also modeled as a non-resonant
${ }^{9}$ contribution. Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.

$K_{0}^{*}(700)$ Breit-Wigner Width

VALUE (MeV)		DOCUMENT ID	TECN	COMMENT
478 ± 50 OUR AVERAGE				
449 $\pm 156$${ }_{-14}^{+144}$	1.3k	${ }^{1}$ ABLIKIM	11B BES2	$J / \psi \rightarrow K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}$
$536 \pm 87{ }_{-}^{+106}$	1.4k	${ }^{2}$ ABLIKIM	10E BES2	$J / \psi \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp} \pi^{0}$
$499 \pm 52 \pm 55$ 87	25k	${ }^{3}$ ABLIKIM	06C BES2	$J / \psi \rightarrow \bar{K}^{*}(892)^{0} K^{+} \pi^{-}$
$410 \pm 43 \pm 87$	15k	4,5 AITALA	02 E791	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
- - We do not use the following data for averages, fits, limits, etc. - -				
550.4 ± 11.8	141 k	${ }^{6}$ BONVICINI	08A CLEO	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
$464 \pm 28 \pm 22$	54k	7 LINK	07B FOCS	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
251 ± 48	0.6k	${ }^{8}$ Cawlfield	06a CLEO	$D^{0} \rightarrow K^{+} K^{-} \pi^{0}$
$\begin{array}{ll} 545 \\ + \\ -2110 \end{array}$		${ }^{9}$ ISHIDA	97b RVUE	$11 \mathrm{~K}^{-} p \rightarrow K^{-} \pi^{+} n$

${ }^{1}$ The Breit-Wigner parameters from a fit with seven intermediate resonances. The Smatrix pole position is $\left(764 \pm 63_{-54}^{+71}\right)-i\left(306 \pm 1499_{-85}^{+143}\right) \mathrm{MeV}$.
${ }^{2}$ From a fit including ten additional resonances and energy-independent Breit-Wigner 3 width.
3^{3} fit in the $K_{0}^{*}(700)+K^{*}(892)+K^{*}(1410)$ model with mass and width of the $K_{0}^{*}(700)$ from ABLIKIM 06 C well describes the left slope of the $K_{S}^{0} \pi^{-}$invariant mass spectrum in $\tau^{-} \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$ decay studied by EPIFANOV 07. Averaged value from different parameterizations.
${ }^{4}$ Not seen by KOPP 01 using 7070 events of $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$. LINK 02E and LINK 051 show clear evidence for a constant non-resonant scalar amplitude rather than $K_{0}^{*}(700)$ in their high statistics analysis of $D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$.
${ }^{5}$ AUBERT 07T does not find evidence for the charged $K_{0}^{*}(700)$ using 11 k events of $D^{0} \rightarrow$ $K^{-} K^{+} \pi^{0}$.
${ }^{6}$ Using parameters from the model that fits data best.
${ }^{7}$ A Breit-Wigner mass and width.
${ }^{8}$ Statistical error only. A fit to the Dalitz plot including the $K_{0}^{*}(700)^{ \pm}, K^{*}(892)^{ \pm}$, and ϕ resonances modeled as Breit-Wigners. A significant S-wave can be also modeled as a non-resonant contribution.
${ }^{9}$ Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.
$K_{0}^{*}(700)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \pi$	100%

$K_{0}^{*}(700)$ REFERENCES

$K^{*}(892)$ MASSES AND MASS DIFFERENCES

Unrealistically small errors have been reported by some experiments. We use simple "realistic" tests for the minimum errors on the determination of a mass and width from a sample of N events:

$$
\begin{equation*}
\delta_{\min }(m)=\frac{\Gamma}{\sqrt{N}}, \quad \delta_{\min }(\Gamma)=4 \frac{\Gamma}{\sqrt{N}} \tag{1}
\end{equation*}
$$

We consistently increase unrealistic errors before averaging. For a detailed discussion, see the 1971 edition of this Note.

$\boldsymbol{m}_{\boldsymbol{K}^{*} \text { (892) }}{ }^{\mathbf{0}} \mathbf{- m}_{\boldsymbol{K}^{*} \text { (892) }^{ \pm}}$							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	$\underline{C H G}$	COMMENT	
6.7 \pm 1.2 OUR AVERAGE							
7.7 ± 1.7	2980	AGUILAR-...	78B	HBC	± 0	$0.76 \bar{p} p \rightarrow$	$K^{\mp} K_{S}^{0} \pi^{ \pm}$
5.7 ± 1.7	7338	AGUILAR-...	71B	HBC	-0	3.9,4.6 $K^{-} p$	
6.3 ± 4.1	283	${ }^{1}$ BARASH	67B	HBC		$0.0 \bar{p} p$	
1 Number of events in peak reevaluated by us.							

K^{*} (892) RANGE PARAMETER

All from partial wave amplitude analyses.

VALUE (GeV^{-1})	EVTS	DOCUMENT ID	TECN CHG	COMMENT
$2.1 \pm 0.5 \pm 0.5$	243k	1 DEL-AMO-SA.1.1।	BABR 0	$D^{+} \rightarrow K^{-} \pi^{+} e^{+} \nu_{e}$
$3.96 \pm 0.54{ }_{-0.90}^{+1.31}$	18k	2 LINK 05I	FOCS	$D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$
3.4 ± 0.7		ASTON 88	LASS 0	$11 \mathrm{~K}^{-} p \rightarrow K^{-} \pi^{+} n$
- - We do not use the following data for averages, fits, limits, etc. - - -				
$12.1 \pm 3.2 \pm 3.0$		BIRD 89	LASS -	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
${ }^{1}$ Taking into account the $K^{*}(892)^{0}$, S-wave and P-wave ($\left.K^{*}(1410)^{0}\right)$.				

K^{*} (892) WIDTH

CHARGED ONLY, HADROPRODUCED
$\frac{V A L U E(\mathrm{MeV})}{\mathbf{5 0 . 8} \mathbf{0 . 9} \text { OUR }} \frac{\text { EVTS }}{\text { FIT }}$ DOCUMENT ID TECN CHG COMMENT 50.8 ± 0.9 OUR AVERAGE

49 ± 2	5840	BAUBILLIER	84B	HBC	-	$8.25 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
56 ± 4		NAPIER	84	SPEC	-	$200 \pi^{-} p \rightarrow 2 K_{S}^{0} \mathrm{X}$
51 ± 2	4100	TOAFF	81	HBC	-	$6.5 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
50.5 ± 5.6		AJINENKO	80	HBC	+	$32 K^{+} p \rightarrow K^{0} \pi^{+} \times$
45.8 ± 3.6	1800	AGUILAR-...	78B	HBC	\pm	$0.76 \bar{p} p \rightarrow K^{\mp} K_{S}^{0} \pi^{ \pm}$
52.0 ± 2.5	6706	${ }^{1}$ COOPER	78	HBC	\pm	$0.76 \bar{p} p \rightarrow(K \pi)^{ \pm} \times$
52.1 ± 2.2	9000	${ }^{2}$ PALER	75	HBC	-	$14.3 K^{-} p \rightarrow(K \pi)^{-} \mathrm{X}$
46.3 ± 6.7	765	${ }^{1}$ CLARK	73	HBC	-	$3.13 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
48.2 ± 5.7	1150	1,3 CLARK	73	HBC	-	$3.3 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
54.3 ± 3.3	4404	${ }^{1}$ AGUILAR-...	71B	HBC	-	$\begin{gathered} \text { 3.9,4.6 } K^{-} p \rightarrow \\ (K \pi)^{-} p \end{gathered}$
46 ± 5	1700	1,3 WOJCICKI	64	HBC	-	$1.7 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$

- - We do not use the following data for averages, fits, limits, etc. - - -

$46.7 \pm 0.2_{-0.2}^{+0.1}$	183k	ABLIKIM	19AQ	BES	\pm	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
43.6 ± 1.3	4K	${ }^{4}$ LEES	17C	BABR		$J / \psi \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$47.2 \pm 0.3 \pm 2.3$	190k	${ }^{5}$ AAIJ	16N	LHCB		$D^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
54.8 ± 1.7	27k	${ }^{6}$ ABELE	99D	CBAR	\pm	$0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
$45.2 \pm 1 \pm 2$	80k	7 BIRD	89	LASS	-	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
42.8 ± 7.1	3700	BARTH	83	HBC	$+$	$70 K^{+} p \rightarrow K^{0} \pi^{+} \mathrm{X}$
64.0 ± 9.2	800	1,3 CLELAND	82	SPEC	+	$30 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
62.0 ± 4.4	3200	1,3 CLELAND	82	SPEC	$+$	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
55 ± 4	3600	1,3 CLELAND	82	SPEC	-	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
62.6 ± 3.8	380	DELFOSSE	81	SPEC	+	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0} p$
50.5 ± 3.9	187	DELFOSSE	81	SPEC	-	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0} p$

NEUTRAL ONLY
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{473 \text { EVTS }}$ DOCUMENT ID TECN COMMENT
$47.3 \mathbf{\pm 0 . 5}$ OUR FIT Error includes scale factor of 1.9.
47.3 ± 0.5 OUR AVERAGE Error includes scale factor of 2.0. See the ideogram below.

$46.53 \pm 0.56 \pm 0.31$	1 ABLIKIM $\quad 16 \mathrm{~F}$
BES3	$D^{+} \rightarrow K^{-} \pi^{+} e^{+} \nu_{e}$

$46.5 \pm 0.3 \pm 0.2 \quad 243 k \quad 2$ DEL-AMO-SA..11। BABR $D^{+} \rightarrow K^{-} \pi^{+} e^{+}+\nu_{e}$
$45.3 \pm 0.5 \pm 0.6 \quad 141 \mathrm{k} \quad{ }^{3}$ BONVICINI 08 A CLEO $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
$47.79 \pm 0.86_{-1.06}^{+1.32} \quad 18 \mathrm{k} \quad{ }^{4}$ LINK $\quad 05$ FOCS $\quad D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$
$54+3$
$50.8 \pm 0.8 \pm 0.9 \quad$ ASTON 88 LASS $11 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$
$46.5 \pm 4.3 \quad 5900 \quad$ BARTH $83 \mathrm{HBC} 70 K^{+} p \rightarrow K^{+} \pi^{-} \mathrm{X}$
$\begin{array}{lrr}54 & 28 \mathrm{k} & \text { EVANGELIS... } 80 \\ & 1180 & \text { OMEG } 10 \pi^{-} p \rightarrow K^{+} \pi^{-}(\Lambda, \Sigma)\end{array}$
$45.9 \pm 4.8 \quad 1180 \quad$ AGUILAR-... 78 B \quad HBC $\quad 0.76 \bar{p} p \rightarrow K^{\mp} K_{S}^{0} \pi^{ \pm}$
$51.2 \pm 1.7 \quad$ WICKLUND 78 ASPK $3,4,6 K^{ \pm} N \rightarrow(K \pi)^{0} N$
$48.9 \pm 2.5 \quad$ BOWLER 77 DBC $5.4 K^{+} d \rightarrow K^{+} \pi^{-} p p$
$48 \quad 3600 \quad$ MCCUBBIN $75 \mathrm{HBC} \quad 3.6 K^{-} p \rightarrow K^{-} \pi^{+} n$
$50.6 \pm 2.5 \quad 22 \mathrm{k} \quad{ }^{5}$ PALER $\quad 75 \mathrm{HBC} \quad 14.3 K^{-} p \rightarrow(K \pi)^{0} \mathrm{X}$
47 ± 2 10k FOX 74 RVUE $2 K^{-} p \rightarrow K^{-} \pi^{+} n$
$51 \pm 2 \quad$ FOX 74 RVUE $2 K^{+} n \rightarrow K^{+} \pi^{-} p$
$46.0 \pm 3.3 \quad 3186 \quad 6$ LEWIS $\quad 73 \mathrm{HBC} \quad 2.1-2.7 K^{+} p \rightarrow K \pi \pi p$
$51.4 \pm 5.0 \quad 1700 \quad{ }^{6}$ BUCHNER $\quad 72$ DBC $4.6 K^{+} n \rightarrow K^{+} \pi^{-} p$
$55.8 \underset{-3.4}{+4.2} \quad 2934 \quad{ }^{6}$ AGUILAR- $\ldots \quad 71 \mathrm{~B}$ HBC $\quad 3.9,4.6 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$
$48.5 \pm 2.7 \quad 5362 \quad$ AGUILAR-... 71B HBC 3.9,4.6 $K^{-} p \rightarrow$
$54.0 \pm 3.3 \quad 4300 \quad 6,7$ HABER $\quad 70 \quad$ DBC $\quad 3 K^{-} N \rightarrow K^{-} \pi^{+} \mathrm{x}$
$53.2 \pm 2.1 \quad 10 \mathrm{k} \quad{ }^{6}$ DAVIS $\quad 69 \mathrm{HBC} \quad 12 K^{+} p \rightarrow K^{+} \pi^{-} \pi^{+} p$
$44 \pm 5.5 \quad 1040 \quad 6$ DAUBER 67 B HBC $2.0 K^{-} p \rightarrow K^{-} \pi^{+} \pi^{-} p$

- - We do not use the following data for averages, fits, limits, etc. - -
$\begin{array}{llllll}52.6 & \pm 1.7 & 4 K & 8 \\ \text { LEES } & 17 C & B A B R & J / \psi \rightarrow & K_{S}^{0} K^{ \pm} \pi \mp\end{array}$
$44.90 \pm 0.30 \quad$ LEES $\quad 13 \mathrm{~F}$ BABR $D^{+} \rightarrow K^{+} K^{-} \pi^{+}$
$45.7 \pm 1.1 \pm 0.5 \quad 14.4 \mathrm{k} \quad{ }^{9}$ MITCHELL $\quad 09 \mathrm{~A}$ CLEO $\quad D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$
$50.6 \pm 0.9 \quad 20 \mathrm{k} \quad 10$ AUBERT 07 AK BABR $10.6{ }^{e^{+}+e^{-}}{ }_{K^{ \pm}}^{\pi^{\mp}} \gamma$
${ }^{1}$ Taking also into account the $K_{0}^{*}(1430)^{0}$ and $K_{2}^{*}(1430)^{0}$.
${ }_{2}^{2}$ Taking into account the $K^{*}(892)^{0}$, S-wave and P-wave $\left(K^{*}(1410)^{0}\right)$.
${ }^{3}$ From the isobar model with a complex pole for the κ.
${ }^{4}$ Fit to $K \pi$ mass spectrum includes a non-resonant scalar component.
${ }^{5}$ Inclusive reaction. Complicated background and phase-space effects.
${ }^{6}$ Width errors enlarged by us to $4 \times \Gamma / \sqrt{N}$; see note.
${ }^{7}$ Number of events in peak reevaluated by us.
${ }^{8}$ From a Dalitz plot analysis in an isobar model with charged and neutral $K^{*}(892)$ masses and widths floating.
${ }^{9}$ This value comes from a fit with χ^{2} of 178/117.
10 Systematic uncertainties not estimated.

NEUTRAL ONLY (MeV)

Meson Particle Listings
$K^{*}(892), K_{1}(1270)$

$K^{*}(892)$ DECAY MODES				
Mode		Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Confidence level	
Γ_{1}	$K \pi$	~ 100	\%	
Γ_{2}	$(K \pi)^{ \pm}$	(99.901 ± 0.009		
$\Gamma 3$	$(K \pi)^{0}$	(99.754 ± 0.021		
Γ_{4}	$K^{0} \gamma$	(2.46 ± 0.21) $\times 10^{-3}$	
Γ_{5}	$K^{ \pm} \gamma$	(9.9 ± 0.9	$) \times 10^{-4}$	
Γ_{6}	$K \pi \pi$	<7	$\times 10^{-4}$	95\%

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=7.8$ for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

Mode		Rate (MeV)
Γ_{2}	$(K \pi)^{ \pm}$	$50.7 \quad \pm 0.9$
Γ_{5}	$K^{ \pm} \gamma$	0.050 ± 0.005

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 23 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=68.4$ for 21 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$K^{*}(892)$ BRANCHING RATIOS
$\Gamma\left(K^{0} \gamma\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-3})
DOCUMENT ID
TECN CHG COMMENT
2.46 ± 0.21 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - . .
$1.5 \pm 0.7 \quad$ CARITHERS $\quad 75 \mathrm{~B}$ CNTR $0 \quad 8-16 \bar{K}^{0} \mathrm{~A}$
$\Gamma\left(K^{ \pm} \gamma\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{0.99 \pm 0.09 \text { OUR }} \frac{C L \%}{\text { FIT }}$
DOCUMENT ID TECN CHG COMMENT

0.99 ± 0.09 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - -
$<1.6 \quad 95$ BEMPORAD 73 CNTR $+10-16 K^{+} \mathrm{A}$
$\Gamma(K \pi \pi) / \Gamma\left((K \pi)^{ \pm}\right)$
VALUE CL\%
- - We do not use the following data for averages, fits, limits, etc. • •
$<20 \times 10^{-4} \quad$ WOJCICKI $64 \mathrm{HBC}-1.7 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
$K^{*}(892)$ REFERENCES

VALUE (MeV) DOCUMENT ID
$\mathbf{1 2 5 3} \mathbf{\pm 7}$ OUR AVERAGE Includes data from the 4 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

${ }^{1}$ Well described in the chiral unitary approach of GENG 07 with two poles at 1195 and 1284 MeV and widths of 246 and 146 MeV , respectively.
${ }^{2}$ From a unitarized quark-model calculation.
${ }^{3}$ From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

PRODUCED BY BEAMS OTHER THAN K MESONS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

 The data in this block is included in the average printed for a previous datablock.$1248.1 \pm 3.3 \pm 1.4 \quad$ GULER $\quad 11$ BELL $B^{+} \rightarrow J / \psi K^{+} \pi^{+} \pi^{-}$
• • - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$1289.81 \pm 0.56 \pm 1.66 \quad 894 \mathrm{k} \quad$ AAIJ $\quad 18 \mathrm{Al}$ LHCB $D^{0} \rightarrow K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$

$1289.81 \pm 0.56 \pm 1.66$	894 k	AAIJ	18AI LHCB	$D^{0} \rightarrow K^{+} \pi^{ \pm} \pi^{ \pm} \pi^{+}$		
1279	± 10	25 k	${ }^{1}$ ABLIKIM	06C	BES2	$J / \psi \rightarrow$
$K^{*}(892)^{0} K^{+} \pi^{-}$						

$1294 \pm 10 \quad 310 \quad$ RODEBACK $81 \quad$ HBC $\quad 4 \pi^{-} p \rightarrow \Lambda K 2 \pi$
$1300 \quad 40$ CRENNELL $72 \mathrm{HBC} \quad 4.5 \pi^{-} p \rightarrow \Lambda K 2 \pi$
$\begin{array}{llllll}1242 & +9 \\ 1300 & & 2 \text { ASTIER } & 69 & \text { HBC } & \bar{p} p\end{array}$
${ }^{1}$ Systematic errors not estimated
${ }^{2}$ This was called the C meson.

PRODUCED IN τ LEPTON DECAYS

$\frac{V A L U E(\mathrm{MeV})}{\text { The }}$ EVTS TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.
$1254 \pm 33 \pm 34 \quad 7 \mathrm{k} \quad$ ASNER \quad 00B CLEO $\pm \tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$

$K_{1}(1270)$ WIDTH

$\frac{\text { VALUE (MeV) }}{\mathbf{9 0} \pm \mathbf{2 0} \text { OUR ESTIMATE This ID }}$
$\mathbf{9 0} \pm 20$ OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.
101 ± 12 OUR AVERAGE Includes data from the 4 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

PRODUCED BY K^{-}, BACKWARD SCATTERING, HYPERON EXCHANGE $\frac{V A L U E(M e V)}{\text { The data in this block is included in the average printed for }} \frac{\text { DECN }}{\text { a previous datablock }}$
75 ± 15
700
GAVILLET $78 \mathrm{HBC}+4.2 K^{-} p \rightarrow$ ミ $^{-} K \pi$

PRODUCED BY K BEAMS

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
The data in this block is included in the average printed for a previous datablock.

${ }^{1}$ Well described in the chiral unitary approach of GENG 07 with two poles at 1195 and 1284 MeV and widths of 246 and 146 MeV , respectively.
${ }^{2}$ From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

PRODUCED BY BEAMS OTHER THAN K MESONS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

$119.5 \pm 5.2 \pm 6.7 \quad$ GULER $\quad 11$ BELL $B^{+} \rightarrow J / \psi K^{+} \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$116.11 \pm 1.65 \pm 2.96$	894k	AAIJ	18AI	LHCB	$D^{0} \rightarrow K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$
131 ± 21	25k	${ }^{1}$ ABLIKIM	06C	BES2	$J / \psi \rightarrow \bar{K}^{*}(892)^{0} K^{+} \pi^{-}$
66 ± 15	310	RODEBACK	81	HBC	$4 \pi^{-} p \rightarrow \Lambda K 2 \pi$
60	40	CRENNELL	72	HBC	$4.5 \pi^{-} p \rightarrow \Lambda K 2 \pi$
$127 \quad \begin{aligned} & +7 \\ & -25\end{aligned}$		ASTIER	69	HBC	$\bar{p} p$
60	45	CRENNELL	67	HBC	$6 \pi^{-} p \rightarrow \Lambda K 2 \pi$

PRODUCED IN τ LEPTON DECAYS

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { The data in this block is included }} \frac{\text { DOCUMENT ID }}{\text { in the average printed for a previous datablock }}$
$\mathbf{2 6 0}_{=\mathbf{7 0}}^{\mathbf{+ 9 0}} \mathbf{+ 8 0} \quad 7 \mathrm{k} \quad$ ASNER $\quad 00 \mathrm{~B}$ CLEO $\pm \quad \tau^{-} \underset{K^{-}}{ } \pi^{+} \pi^{-} \nu_{\tau}$
$K_{1}(1270)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$K \rho$	$(42 \pm 6) \%$
Γ_{2}	$K_{0}^{*}(1430) \pi$	$(28 \pm 4) \%$
Γ_{3}	$K^{*}(892) \pi$	$(16 \pm 5) \%$
Γ_{4}	$K \omega$	$(11.0 \pm 2.0) \%$
Γ_{5}	$K f_{0}(1370)$	$(3.0 \pm 2.0) \%$
Γ_{6}	γK^{0}	seen

$K_{1}(1270)$ PARTIAL WIDTHS

$\Gamma(K \rho)$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$57 \pm 5 \quad$ MAZZUCATO $79 \mathrm{HBC}+4.2 K^{-} p \rightarrow \Xi^{-}(K \pi \pi)^{+}$
$75 \pm 6 \quad$ CARNEGIE 77 B ASPK $\pm 13 K^{ \pm}{ }_{p} \rightarrow(K \pi \pi)^{ \pm} p$
$\Gamma\left(K_{0}^{*}(1430) \pi\right)$
$\boldsymbol{\Gamma}_{2}$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$26 \pm 6 \quad$ CARNEGIE 77 B ASPK $\pm 13 K^{ \pm} p \rightarrow(K \pi \pi)^{ \pm} p$
$\Gamma\left(K^{*}(892) \pi\right)$
VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$22 \pm 5 \quad$ CARNEGIE 77 B ASPK $\pm 13 K^{ \pm} p \rightarrow(K \pi \pi)^{ \pm} p$
$\Gamma\left(\gamma K^{0}\right)$
Γ_{6}
VALUE (keV)
DOCUMENT ID TECN COMMENT ALAVI-HARATIO2B KTEV $K+A \rightarrow K^{*}+A$

Meson Particle Listings
$K_{1}(1270), K_{1}(1400)$

$\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. • • •
$0.225 \pm 0.052$${ }^{2}$ GULER $\quad 11$ BELL $B^{+} \rightarrow J / \psi K^{+} \pi^{+} \pi^{-}$

$K_{1}(1270)$ REFERENCES

$K_{1}(1400)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1403土 7 OUR AVERAGE						
$1463 \pm 64 \pm 68$	7k	ASNER	00B	CLEO	\pm	$\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \nu_{\tau}$
$1373 \pm 14 \pm 18$		${ }^{1}$ ASTON	87	LASS	0	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{+} \pi^{-} n$
1392 ± 18		BAUBILLIER	82B	HBC	0	$\begin{aligned} & 8.25 K^{-} p \rightarrow \\ & K_{S}^{0} \pi^{+} \pi^{-} n \end{aligned}$
1410 ± 25		DAUM	81C	CNTR	-	$63 K^{-} p \rightarrow K^{-} 2 \pi p$
1415 ± 15		ETKIN	80	MPS	0	$6 K^{-} p \rightarrow \bar{K}^{0} \pi^{+} \pi^{-} n$
1404 ± 10		${ }^{2}$ CARNEGIE	77	ASPK	\pm	$13 K^{ \pm} p \rightarrow(K \pi \pi)^{ \pm} p$

See key on page 999

D-wave/S-wave RATIO FOR $K_{1}(\mathbf{1 4 0 0}) \rightarrow K^{*}(892) \pi$				
VALUE	DOCUMENT ID TECN		COMMENT	
0.04 ± 0.01	${ }^{8}$ DAUM	81C CNTR	$63 K^{-} p$	$K^{-} 2 \pi p$
${ }^{8}$ Average from	and high t			

$K_{1}(1400)$ REFERENCES				
AbLIKIM	06 C	PL B633 681	M. Ablikim et al.	(BES Collab.)
ALAVI-HARAT।	02B	PRL 89072001	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
ASNER	00B	PR D62 072006	D.M. Asner et al.	(CLEO Collab.)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
baubillier	82B	NP B202 21	M. Baubillier et al.	(BIRM, CERN, GLAS+)
TORNQVIST	82B	NP B203 268	N.A. Tornquist	(HELS)
daum	$8_{1 C}$	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM +)
ETKIN	80	PR D22 42	A. Etkin et al.	(BNL, CUNY) JP
VERGEEST	79	NP B158 265	J.S.M. Vergeest et al.	(NIJM, AMST, CERN+)
CARNEGIE	77	NP B127 509	R.K. Carnegie et 2 al.	(SLAC)
BRANDENB...	76	PRL 36703	G.W. Brandenburg et al.	(SLAC) JP
DAVIS	72	PR D 26288	P.J. Davis et al.	(LBL)
FIRESTONE	72 B	PR D5 505	A. Firestone et al.	(LBL)

$K^{*}(1410)$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(1^{-}\right)
$$

$K^{*}(1410)$ MASS

VALUE (MEV)	EVTS	Cument		TECN	$\underline{C H G}$	COMmENT
1414 ± 15 OUR AVERAGE Error includes scale				actor of		
$1380 \pm 21 \pm 19$		ASton	88	LASS	0	$11 K^{-} p$
$1420 \pm 7 \pm 10$		ASTON		LASS	0	$11 K^{-} p$
- - We do not use the following data for averages, fits, limits, etc. - -						
$1437 \pm 8 \pm 16$	190k	${ }^{1}$ AAIJ	16N	LHCB		$D^{0} \rightarrow$
$1426 \pm 8 \pm 24$	190k	${ }^{2}$ AAIJ	16 N	LHCB		$D^{0} \rightarrow$
$1276{ }_{-77}^{+72}$		${ }^{3,4}$ BOITO	09	RVUE		\rightarrow
1367 ± 54		BIRD		LASS	-	$11 K^{-} p$
1474 ± 25		BAUBILLIER	82B	HBC	0	$8.25 \mathrm{~K}^{-}$
1500 ± 30		ETKIN	80	MPS	0	$6 K^{-} p$
${ }^{1}$ Using a parametrization for the $K \pi S$-wave similar to ASTON 88 with fixed resonance width. ${ }^{2}$ Using a $K \pi S$-wave parametrization with resonant and non-resonant contributions.						
${ }^{3}$ From the pole position of the $K \pi$ vector form factor in the complex s plane and using EPIFANOV 07 data.						

$K^{*}(1410)$ WIDTH

$\frac{V A L U E(M E V)}{E V T S}$
232 ± 21 OUR AVERAGE
$176 \pm 52 \pm 22$ $\frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of }} \frac{\text { THG }}{1.1 .}$
$240 \pm 18 \pm 12$

ASTON	88	LASS	0	$11 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$	
ASTON	87	LASS	0	$11 K^{-} p \rightarrow$	$\bar{K}^{0} \pi^{+} \pi^{-} n$

Meson Particle Listings
$K_{0}^{*}(1430), K_{2}^{*}(1430)$

$K_{0}^{*}(1430)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
270 ± 80 OUR ESTIMATE				
- - We do not use the following data for averages, fits, limits, etc. - -				
$210 \pm 20 \pm 12$	5.4k	${ }^{1}$ LEES	14E BABR	$\eta_{C}(1 S) \rightarrow K^{+} K^{-} \eta / \pi^{0}$
$270 \pm 10 \pm 40$		${ }^{2}$ BUGG	10 RVUE	S-matrix pole
$174.2 \pm 1.9 \pm 3.2$	141k	3^{3} BONVICINI	08A CLEO	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
~ 500		${ }^{4}$ LINK	07 FOCS	$D^{+} \rightarrow K^{-} K^{+} \pi^{+}$
$177.0 \pm 8.0 \pm 3.4$	54k	${ }^{5}$ LINK	07B FOCS	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
350 ± 40		${ }^{6}$ BUGG	06 RVUE	
288 ± 22		${ }^{7}$ zHOU	06 RVUE	$K p \rightarrow K^{-} \pi^{+} n$
$270 \pm 45{ }_{-35}^{+30}$		ABLIKIM	05Q BES2	$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$
217 ± 31		${ }^{8}$ ZHENG	04 RVUE	$K^{-} p \rightarrow K^{-} \pi^{+} n$
316		${ }^{9}$ BUGG	03 RVUE	$11 K^{-} p \rightarrow K^{-} \pi^{+} n$
~350		${ }^{10} \mathrm{LI}$	03 RVUE	$11 K^{-} p \rightarrow K^{-} \pi^{+} n$
175 ± 17	15k	${ }^{11}$ AItala	02 E791	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
~ 300		12 JAMIN	00 RVUE	$K p \rightarrow K p$
196 ± 45		13 BARBERIS	98E OMEG	$450 \mathrm{pp} \rightarrow$
				$p_{f} p_{S} K^{+} K^{-} \pi^{+} \pi^{-}$
330 ± 50		${ }^{9}$ ANISOVICH	97C RVUE	$11 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$
~ 320		14 TORNQVIST	96 RVUE	$\pi \pi \rightarrow \pi \pi, k \bar{K}, K \pi$
294 ± 23		ASton	88 LASS	$11 K^{-} p \rightarrow K^{-} \pi^{+} n$
~ 200		BAUBILLIER	84B HBC	$8.25 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
200 to 300		15 ESTABROOK	78 ASPK	$13 K^{ \pm} p \rightarrow K^{ \pm} \pi^{ \pm}(n, \Delta)$
${ }^{1}$ Using both $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$. From a likelihood scan in the presence of several interfering scalar-meson resonances with fixed mass $M\left(K_{0}^{*}(1430)\right)=1435 \mathrm{MeV}$.				
AITALA 06, and LINK 09 using an s-dependent width with couplings to $K \pi$ and $K \eta^{\prime}$, and the Adler zero near thresholds.				
${ }^{3}$ From the isobar model with a complex pole for the κ.				
${ }^{4}$ From a non-parametric analysis.				
${ }^{5}$ A Breit-Wigner mass and width.				
${ }^{6} \mathrm{~S}$-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C including the κ with an s-dependent width and an Adler zero near threshold.				
${ }^{7}$ S-matrix pole. Using ASTON 88 and assuming $K_{0}^{*}(700), K_{0}^{*}(1950)$.				
${ }^{8}$ Using ASTON 88 and assuming K_{0}^{*} (700).				
${ }^{9} \mathrm{~T}$-matrix pole. Reanalysis of ASTON 88 data.				
${ }^{10}$ Breit-Wigner fit. Using ASTON 88.				
${ }_{11}^{11}$ Assuming a low-mass scalar $K \pi$ resonance, $\kappa(700)$.				
${ }^{12}$ T-matrix pole. Using data from ESTABROOKS 78 and ASTON 88.				
$13 J^{P}$ not determined, could be $K_{2}^{*}(1430)$.				
${ }^{14} \mathrm{~T}$-matrix pole.				
${ }^{15}$ From elastic $K \pi$ partial-wave analysis.				

$K_{0}^{*}(1430)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \pi$	$(93 \pm 10) \%$
Γ_{2}	$K \eta$	$(8.6 \pm-3.7) \%$
Γ_{3}	$K \eta^{\prime}(958)$	seen

$K_{0}^{*}(1430)$ BRANCHING RATIOS

$K_{0}^{*}(1430)$ REFERENCES

ABLIKIM	14」	PR D89 074030	M. Ablikim et al.	(BESIIII Collab.)
LEES	14 E	PR D89 112004	J.P. Lees et al.	(BABAR Collab.)
BUGG	10	PR D81 014002	D.V. Bugg	(LOQM)
LINK	09	PL B681 14	J.M. Link et al.	(FNAL FOCUS Collab.)
BONVICINI	08A	PR D78 052001	G. Bonvicini et al.	(CLEO Collab.)
LINK	07	PL B648 156	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	07B	PL B653 1	J.M. Link et al.	(FNAL FOCUS Collab.)
ABLIKIM	06C	PL B633 681	M. Ablikim et al.	(BES Collab.)
AITALA	06	PR D73 032004	E.M. Aitala et al.	(FNAL E791 Collab.)
Also		PR D74 059901 (errat.)	E.M. Aitala et al.	(FNAL E791 Collab.)
BUGG	06	PL B632 471	D.V. Bugg	(LOQM)
ZHOU	06	NP A775 212	Z.Y. Zhou, H.Q. Zheng	
ABLIKIM	05Q	PR D72 092002	M. Ablikim et al.	(BES Collab.)
ZHENG	04	NP A733 235	H.Q. Zheng et al.	
BUGG	03	PL B572 1	D.V. Bugg	
LI	03	PR D67 034025	L. Li, B. Zou, G. Li	
AITALA	02	PRL 89121801	E.M. Aitala et al.	(FNAL E791 Collab.)
JAMIN	00	NP B587 331	M. Jamin et al.	
BARBERIS	98E	PL B436 204	D. Barberis et al.	(Omega Expt.)
ANISOVICH	97 C	PL B413 137	A.V. Anisovich, A.V. Sarantsev	
TORNQVIST	96	PRL 761575	N.A. Tornqvist, M. Roos	(HELS)
ASTON	88	NP B296 493	D. Aston et al. (SL	SLAC, NAGO, CINC, INUS)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier et al.	(BIRM, CERN, GLAS+)
ESTABROOKS	78	NP B133 490	P.G. Estabrooks et al.	(MCGI, CARL, DURH+)
MARTIN	78	NP B134 392	A.D. Martin et al.	(DURH, GEVA)

$K_{2}^{*}(1430) \quad \quad /\left(\mu^{P}\right)=\frac{1}{2}\left(2^{+}\right)$

We consider that phase-shift analyses provide more reliable determinations of the mass and width.

$K_{2}^{*}(1430)$ MASS

CHARGED ONLY, WITH FINAL STATE $K \pi$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG COMMENT	
1427.3土 1.5 OUR	AVER	EE Error includes	ale fa	actor of	1.3	See the ideogram below.
$1432.7 \pm 0.7_{-2.3}^{+2.2}$	183k	ABLIKIM	19AQ	BES	\pm	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
1420 ± 4	1587	BAUBILLIER	84B	HBC	-	$\begin{gathered} 8.25 K^{-} p \rightarrow \\ \bar{K}^{0} \pi^{-} p \end{gathered}$
1436 ± 5.5	400	1,2 CLELAND	82	SPEC	$+$	$30 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
1430 ± 3.2	1500	1,2 CLELAND	82	SPEC	$+$	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
1430 ± 3.2	1200	1,2 CLELAND	82	SPEC	-	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
1423 ± 5	935	TOAFF	81	HBC	-	$\begin{gathered} 6.5 K^{-} p \rightarrow \\ K^{0} \pi^{-} p \end{gathered}$
1428.0 ± 4.6		3 MARTIN	78	SPEC	$+$	$10 K^{ \pm} p \rightarrow K_{S}^{0} \pi p$
1423.8 ± 4.6		3 MARTIN	78	SPEC	-	$10 K^{ \pm} p \rightarrow K_{S}^{0} \pi p$
1420.0 ± 3.1	1400	AGUILAR-...	71B	HBC	-	3.9,4.6 $K^{-} p$
1425 ± 8.0	225	1,2 BARNHAM	71C	HBC	+	$K^{+} p \rightarrow K^{0} \pi^{+} p$
1416 ± 10	220	CRENNELL	69D	DBC	-	$3.9 \frac{K^{-}}{K^{0}} \pi^{-} \vec{N}$
1414 ± 13.0	60	1 LIND	69	HBC	$+$	$9 K^{+} p \rightarrow K^{0} \pi^{+} p$
1427 ± 12	63	1 SCHWEING...	68	HBC	_	$5.5 \mathrm{~K}^{-} p \rightarrow \bar{K} \pi N$
1423 ± 11.0	39	${ }^{1}$ BASSANO	67	HBC	-	$\begin{gathered} 4.6-5.0 K^{-} p \rightarrow \\ \bar{K}^{0} \pi^{-} p \end{gathered}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$1423.4 \pm 2 \pm 3 \quad 24809 \pm{ }^{4}$ BIRD 89 LASS $-11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$ 820

${ }^{1}$ Errors enlarged by us to Γ / \sqrt{N}; see the note with the $K^{*}(892)$ mass.
${ }^{2}$ Number of events in peak re-evaluated by us.
${ }^{3}$ Systematic error added by us.
${ }^{4}$ From a partial wave amplitude analysis.
${ }^{5}$ From phase shift or partial-wave analysis.
6 Systematic errors not estimated.
${ }^{7}$ From pole extrapolation, using world $K^{+} p$ data summary tape.

$K_{2}^{*}(1430)$ WIDTH

CHARGED ONLY, WITH FINAL STATE $K \pi$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
100.0土 2.1 OUR FIT						
100.0土 2.2 OUR	VERAGE	Error includes s	cale fac	ctor of 1		
$102.5 \pm 1.6_{-2.8}^{+3.1}$	183k	ABLIKIM	19AQ	BES	\pm	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
109 ± 22	400	8,9 CLELAND	82	SPEC	$+$	$30 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
124 ± 12.8	1500	8,9 CLELAND	82	SPEC	$+$	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
113 ± 12.8	1200	8,9 CLELAND	82	SPEC	-	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
85 ± 16	935	TOAFF	81	HBC	-	$\begin{gathered} 6.5 K^{-} p \rightarrow \\ \bar{K}^{0} \pi^{-} p \end{gathered}$
96.5 ± 3.8		MARTIN	78	SPEC	$+$	$10 K^{ \pm} p \rightarrow K_{S}^{0} \pi p$
97.7 ± 4.0		MARTIN	78	SPEC	-	$10 K^{ \pm} p \rightarrow K_{S}^{0} \pi p$
$94.7{ }_{-12.5}^{+15.1}$	1400	AGUILAR-...	71B	HBC	-	3.9,4.6 $K^{-} p$

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
$98 \pm 4 \pm 4 \quad 25 \mathrm{k} \quad{ }^{10} \mathrm{BIRD}$

- - We do not use the following data for averages, fits, limits, etc. - - -

113.7 ± 9.2	$\begin{gathered} 1786 \pm \\ 127 \end{gathered}$	12 AUBERT		BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \overrightarrow{K^{* 0}} K^{ \pm}{ }_{\pi}^{\mp} \end{aligned}$
125 ± 29	300	${ }^{8}$ HENDRICK	76	DBC	$8.25 K^{+} N \rightarrow K^{+} \pi N$
116 ± 18	800	MCCUBBIN	75	HBC	$3.6 K^{-} p \rightarrow K^{-} \pi^{+} n$
61 ± 14		13 LINGLIN	73	HBC	$2-13 K^{+} p \rightarrow K^{+} \pi^{-} \mathrm{X}$
$116.6{ }_{-15.5}^{+10.3}$	1800	AGUILAR-...	71B	HBC	3.9,4.6 $K^{-} p$
144 ± 24.0	600	${ }^{8}$ CORDS	71	DBC	$9 K^{+} n \rightarrow K^{+} \pi^{-} p$
101 ± 10	2200	DAVIS	69	HBC	$12 K^{+} p \rightarrow K^{+} \pi^{-} \pi^{+} p$

$$
K_{2}^{*}(1430)^{0} \text { width }(\mathrm{MeV})
$$

${ }^{8}$ Errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{9}$ Number of events in peak re-evaluated by us.
${ }^{10}$ From a partial wave amplitude analysis.
${ }^{11}$ From phase shift or partial-wave analysis.
${ }^{12}$ Systematic errors not estimated.
${ }^{13}$ From pole extrapolation, using world $K^{+} p$ data summary tape.
$K_{2}^{*}(1430)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \boldsymbol{\Gamma}\right)$	Scale factor/ Confidence level	
Γ_{1}	$K \pi$	$(49.9 \pm 1.2) \%$	
Γ_{2}	$K^{*}(892) \pi$	$(24.7 \pm 1.5) \%$	
Γ_{3}	$K^{*}(892) \pi \pi$	$(13.4 \pm 2.2) \%$	
Γ_{4}	$K \rho$	$(8.7 \pm 0.8) \%$	
Γ_{5}	$K \omega$	$(2.9 \pm 0.8) \%$	$\mathrm{~S}=1.2$
Γ_{6}	$K^{+} \gamma$	$(2.4 \pm 0.5) \times 10^{-3}$	$\mathrm{~S}=1.1$
Γ_{7}	$K \eta$	$\left(1.5_{-1.0}^{+3.4}\right) \times 10^{-3}$	$\mathrm{~S}=1.3$
Γ_{8}	$K \omega \pi$	<7.2	$\times 10^{-4}$
Γ_{9}	$K^{0} \gamma$	<9	$\mathrm{CL}=95 \%$
			$\mathrm{CL}=90 \%$

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 10 branching ratios uses 32 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^{2}=21.1$ for 25 degrees of freedom.
The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$$
\begin{array}{r|rrrrrrr}
x_{2} \\
x_{3} & -9 & & & & & & \\
x_{4} & -40 & -73 & & & & & \\
x_{5} & -8 & 36 & -52 & & & & \\
x_{6} & -11 & -3 & -26 & -7 & & & \\
x_{7} & -1 & -1 & -1 & -1 & 0 & & \\
\Gamma & -4 & -7 & -5 & -5 & -2 & 0 & \\
& x_{1} & x_{2} & x_{3} & x_{4} & x_{4} & x_{5} & x_{6}
\end{array} x_{7}
$$

Meson Particle Listings
$K_{2}^{*}(1430)$

$K_{\mathbf{2}}^{*}(1430)$ REFERENCES

ABLIKIM	19AQ	PR D100 032004	M. Ablikim et al.	(BESIII Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert et al.	(BABAR Collab.)
ALAVI-HARATI	02B	PRL 89072001	A. Alavi-Harati et al.	(FNAL KTeV Collab.)
BIRD	89	SLAC-332	P.F. Bird	(SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	88B	PL B201 169	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
CARLSMITH	87	PR D36 3502	D. Carlsmith et al.	(EFI, SACL)
ASTON	84B	NP B247 261	D. Aston et al.	(SLAC, CARL, OTTA)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier et al.	(BIRM, CERN, GLAS+)
BAUBILLIER	82B	NP B202 21	M. Baubillier et al.	(BIRM, CERN, GLAS+)
CIHANGIR	82	PL 117B 123	S. Cihangir et al.	(FNAL, MINN, ROCH)
CLELAND	82	NP B208 189	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
ASTON	81 C	PL 106B 235	D. Aston et al.	(SLAC, CARL, OTTA) JP
DAUM	81 C	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM +)
TOAFF	81	PR D23 1500	S. Toaff et al.	(ANL, KANS)
ETKIN	80	PR D22 42	A. Etkin et al.	(BNL, CUNY) JP
ESTABROOKS	78	NP B133 490	P.G. Estabrooks et al.	(MCGI, CARL, DURH+)
Also		PR D17 658	P.G. Estabrooks et al.	(MCGI, CARL, DURH+)
JONGEJANS	78	NP B139 383	B. Jongejans et al.	(ZEEM, CERN, NIJM+)
MARTIN	78	NP B134 392	A.D. Martin et al.	(DURH, GEVA)
BOWLER	77	NP B126 31	M.G. Bowler et al.	(OXF)
GOLDBERG	76	LNC 17253	J. Goldberg	(HAIF)

See key on page 999

HENDRICK	76	NP B112 189	K. Hendrickx et al.	(MONS, SACL, PARIS+)
LAUSCHER	75	NP B86 189	P. Lauscher et al.	(ABCLV Collab.) JP
MCCUBBIN	75	NP B86 13	N.A. McCubbin, L. Lyons	(OXF)
DEHM	74	NP B75 47	G. Dehm et al.	(MPIM, BRUX, MONS, CERN)
LINGLIN	73	NP B55 408	D. Linglin	(CERN)
AGUILAR-...	71B	PR D4 2583	M. Aguilar-Benitez, R.L.	Eisner, J.B. Kinson (BNL)
BARNHAM	71C	NP B28 171	K.W.J. Barnham et al.	(BIRM, GLAS)
CORDS	71	PR D4 1974	D. Cords et al.	(PURD, UCD, IUPU)
BASSOMPIE	69	NP B13 189	G. Bassompierre et al.	(CERN, BRUX) JP
BISHOP	69	NP B9 403	J.M. Bishop et al.	(WISC)
CRENNELL	69D	PRL 22487	D.J. Crennell et al.	(BNL)
DAVIS	69	PRL 231071	P.J. Davis et al.	(LRL)
LIND	69	NP B14 1	V.G. Lind et al.	(LRL) JP
SCHWEING...	68	PR 1661317	F. Schweingruber et al.	(ANL, NWES)
Also		Thesis	F.L. Schweingruber	(NWES, NWES)
BASSANO	67	PRL 19968	D. Bassano et al.	(BNL, SYRA)
FIELD	67	PL 24B 638	J.H. Field et al.	(UCSD)
BADIER	65C	PL 19612	J. Badier et al.	(EPOL, SACL, AMST)

$\left.K(1460) \quad I(\lrcorner^{P}\right)=\frac{1}{2}\left(0^{-}\right)$

OMITTED FROM SUMMARY TABLE Observed in $K \pi \pi$ partial-wave analysis.

$K(1460)$ MASS

VALUE(MeV) \qquad EVTS
DOCUMENT ID
TECN CHG COMMENT

$\sim 1460 \quad 63$ DAUM 81C CNTR - $K^{-} p \rightarrow K^{-} 2 \pi p$
$\sim 1400 \quad 13{ }^{1}$ BRANDENB... 76B ASPK $\pm K^{ \pm} p \rightarrow K^{+} 2 \pi p$
${ }^{1}$ Coupled mainly to $K f_{0}(1370)$. Decay into $K^{*}(892) \pi$ seen.

$K(1460)$ WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$K(1460)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K^{*}(892) \pi$	seen
Γ_{2}	K_{ρ}	seen
Γ_{3}	$K_{0}^{*}(1430) \pi$	seen

$K(1460)$ PARTIAL WIDTHS
$\Gamma\left(K^{*}(892) \pi\right)$
Γ_{1}
VALUE (MeV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

OMITTED FROM SUMMARY TABLE
Seen in partial-wave analysis of the $K^{-} \pi^{+} \pi^{-}$system. Needs confirmation.

$K_{2}(1580)$ MASS

VALUE (MeV) DOCUMENT ID CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

[^115]$K_{2}(1580)$ WIDTH
VALUE (MeV) DOCUMENT ID CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$\sim 110 \quad$ OTTER $79-10,14,16 K^{-} p$

$K_{2}(1580)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K^{*}(892) \pi$	seen
Γ_{2}	$K_{2}^{*}(1430) \pi$	possibly seen

$K_{2}(1580)$ BRANCHING RATIOS

$K(1630) \quad I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$

OMITTED FROM SUMMARY TABLE
Seen as a narrow peak, compatible with the experimental resolution, in the invariant mass of the $K_{S}^{0} \pi^{+} \pi^{-}$system produced in $\pi^{-} p$ interactions at high momentum transfers.

$K(1630)$ MASS				
VALUE (MeV)	EVTS	DOCUMENT ID		COMMENT
1629 ± 7	~ 75	KARNAUKHOV98		$\begin{aligned} & 16.0 \pi^{-} p \rightarrow\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \\ & X^{+} \pi^{-} X^{0} \end{aligned}$
$K(1630)$ WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$\begin{gathered} 16 \# 19 \\ -16 \end{gathered}$	~ 75	1 KARNAUKHOV98		$\begin{gathered} 16.0 \pi^{-} p \rightarrow\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \\ X^{+} \pi^{-} X^{0} \end{gathered}$
${ }^{1}$ Compatible with an experimental resolution of $14 \pm 1 \mathrm{MeV}$.				
$K(1630)$ DECAY MODES				
Mode				
$\Gamma_{1} \quad K_{S}^{0} \pi^{+} \pi^{-}$				

K(1630) REFERENCES

K_{1} (1650)

$$
l\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)
$$

OMITTED FROM SUMMARY TABLE
This entry contains various peaks in strange meson systems ($K^{+} \phi$, $K \pi \pi$) reported in partial-wave analysis in the 1600-1900 mass region.

$K_{1}(1650)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1672 ± 50 OUR	VERAGE	Error includes scale factor of 1.1.			
$1793 \pm 59{ }_{-101}^{+153}$	4289	${ }^{1}$ AAIJ	17 C	LHCB	$\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \phi K^{+}$
1650 ± 50 - - We do not	the	FRAME wing data for av		fits, limits, etc. - • •	
~ 1840		ARMSTRONG	83	OMEG -	18.5 K
~ 1800		DAUM		CNTR -	$63 K^{-} p$
${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow \mathrm{J} / \psi \phi K^{+}$with a significance of 7.6σ.					

Meson Particle Listings
$K_{1}(1650), K^{*}(1680), K_{2}(1770)$

VALUE (MeV)		$K^{*}(1680)$ MASS				COMMENT
		DOCUMENT ID		TECN		
1718 ± 18 OUR AVERAGE						
$1722 \pm 20{ }_{-109}^{33}$	4289	${ }^{1}$ AAIJ	17C	LHCB		$B^{+} \rightarrow J / \psi \phi K^{+}$
$1677 \pm 10 \pm 32$		ASTON	88	LASS	0	$11 K^{-} p \rightarrow$
						$K^{-} \pi^{+} n$
$1735 \pm 10 \pm 20$		ASTON	87	LASS		${ }^{11} \frac{K^{-}}{K^{0}}{ }^{p} \rightarrow$
- - We do not use the following data for averages, fits, limits, etc. - -						
1678 ± 64		BIRD	89	LASS		$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
1800 ± 70		ETKIN	80	MPS	0	$6 \mathrm{~K}^{-} \mathrm{p} \rightarrow$
		ESTABROOKS 78		ASPK		${ }_{13} \bar{K}^{K^{ \pm} \pi_{p}^{+} \pi^{-}} \boldsymbol{n}$
~ 1650					$13 K^{ \pm} p \rightarrow$	

$K^{*}(1680)$ WIDTH

VALUE (MeV)	EVTS	DOCUMEN		TECN	CHG	COMMENT
322 ± 110 OUR AVERAGE		Error includes scale factor of 4.2.				
$354 \pm 75{ }_{-181}^{+140}$	4289	2 AAIJ	17C	LHCB		$B^{+} \rightarrow J / \psi \phi K^{+}$
$205 \pm 16 \pm 34$		ASTON	88	LASS	0	$\begin{aligned} & 11 \begin{array}{l} K^{-} p \rightarrow \\ K^{-} \pi^{+} \end{array} \end{aligned}$
$423 \pm 18 \pm 30$		ASTON	87	LASS	0	$11 \frac{K^{-} p \rightarrow}{K^{0}} \pi^{+} \pi^{-} n$

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$

454 ± 270	BIRD 89	LASS	-	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
170 ± 30	ETKIN 80	MPS	0	$\begin{aligned} & 6 K_{K^{-}}^{K^{-} \pi^{+}} \pi^{-} n \end{aligned}$
250 to 300	ESTABROOKS 78	ASPK	0	$\begin{array}{r} 13 \underset{K^{ \pm} p \rightarrow}{K^{ \pm}}{ }_{\pi^{ \pm}}^{n} \end{array}$

$K^{*}(1680)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	
Γ_{1}	$K \pi$	$(38.7 \pm 2.5) \%$
Γ_{2}	$K \rho$	$\left(31.4_{-2.1}^{+5.0}\right) \%$
Γ_{3}	$K^{*}(892) \pi$	$\left(29.9_{-5.0}^{+2.2}\right) \%$
Γ_{4}	$K \phi$	seen

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 4 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=$ 2.9 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

| x_{2} | -36

 x_{3}
 -39 -72
 x_{1} |
| :--- | ---: | ---: |

$K^{*}(1680)$ BRANCHING RATIOS

$K^{*}(1680)$ REFERENCES

AAIJ	17C	PRL 118022003	R. Aaij et al.	(LHCb Collab.)
Also		PR D95 012002	R. Aaij et al.	(LHCb Collab.)
BIRD	89	SLAC-332	P.F. Bird	(SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	84	PL 149B 258	D. Aston et al.	(SLAC, CARL, OTTA) JP
ETKIN	80	PR D22 42	A. Etkin et al.	(BNL, CUNY) JP
ESTABROOKS	78	NP B133 490	P.G. Estabrooks et al.	(MCGI, CARL, DURH+) JP

$$
I\left(J^{P}\right)=\frac{1}{2}\left(2^{-}\right)
$$

See our mini-review in the 2004 edition of this Review, PDG 04.

$K_{2}(1770)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1773土 8 OUR AVERAGE						
$1777 \pm 35{ }_{-}^{+122}$	4289	${ }^{1}$ AAIJ	17C	LHCB		$B^{+} \rightarrow J / \psi \phi K^{+}$
1773 ± 8		2 ASTON	93	LASS		$11 K^{-} p \rightarrow K^{-} \omega p$
\bullet - We do not use the following data for averages, fits, limits, etc. - -						
1743 ± 15		TIKHOMIROV		SPEC		$\begin{aligned} & 40.0 \pi^{-} \mathrm{C} \vec{S} K_{S}^{0} \\ & K_{L}^{0} \mathrm{x} \end{aligned}$
1810 ± 20		FRAME	86	OMEG	$+$	$13 K^{+}{ }_{p} \rightarrow \phi K^{+}{ }_{p}$
~ 1730		ARMSTRONG	83	OMEG	-	$18.5 \mathrm{~K}^{-} p \rightarrow 3 \mathrm{Kp}$
~ 1780		${ }^{3}$ DAUM	81c	CNTR	-	$63 K^{-} p \rightarrow K^{-} 2 \pi p$
1710 ± 15	60	CHUNG	74	HBC	-	$7.3 K^{-} p \rightarrow K^{-} \omega p$
1767 ± 6		BLIEDEN	72	MMS	-	11-16 K ${ }^{-}$
1730 ± 20	306	${ }^{4}$ FIRESTONE	72B	DBC	$+$	$12 K^{+} d$
1765 ± 40		${ }^{5}$ COLLEY	71	HBC	+	$10 K^{+} p \rightarrow K 2 \pi N$
1740		DENEGRI	71	DBC	-	$12.6 K^{-} d \rightarrow \bar{K} 2 \pi d$
1745 ± 20		AGUILAR-...	70c	HBC	-	$4.6 K^{-} p$
1780 ± 15		BARTSCH	70C	HBC	-	$10.1 K^{-} p$
1760 ± 15		LUDLAM	70	HBC	-	12.6 $K^{-} p$

${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of 5.0σ.
${ }^{2}$ From a partial wave analysis of the $K^{-} \omega$ system.
${ }^{3}$ From a partial wave analysis of the $K^{-} 2 \pi$ system.
${ }^{4}$ Produced in conjunction with excited deuteron.
${ }^{5}$ Systematic errors added correspond to spread of different fits.

K_{2} (1770) WIDTH

VALUE (MeV) EVTS 186土 14 OUR AVERAGE

$217 \pm 116_{-154}^{+221}$	4289	${ }^{6}$ AAIJ	17C LHCB	$B^{+} \rightarrow J / \psi \phi K^{+}$
186 ± 14		${ }^{7}$ ASTON	93 LASS	$11 K^{-} p \rightarrow K^{-} \omega p$

147 ± 70		TIKHOMIROV		SPEC		$\begin{aligned} & 40.0 \pi^{-}-\mathrm{C} \vec{S} K_{S}^{0} \\ & K_{L}^{0} \mathrm{X} \end{aligned}$
140 ± 40		FRAME	86	OMEG	$+$	$13 \mathrm{~K}^{+}{ }_{p} \rightarrow \phi K^{+}{ }_{p}$
~ 220		ARMSTRONG	83	OMEG	-	$18.5 \mathrm{~K}^{-} p \rightarrow 3 \mathrm{Kp}$
~ 210		8 DAUM	81C	CNTR	-	$63 K^{-} p \rightarrow K^{-} 2 \pi p$
110 ± 50	60	CHUNG	74	HBC	-	$7.3 K^{-} p \rightarrow K^{-} \omega p$
100 ± 26		BLIEDEN	72	MMS	-	11-16 K ${ }^{-}$p
210 ± 30	306	${ }^{9}$ FIRESTONE	72B	DBC	$+$	$12 K^{+} d$
90 ± 70		10 COLLEY	71	HBC	+	$10 K^{+} p \rightarrow K 2 \pi N$
130		DENEGRI	71	DBC	-	$12.6 K^{-} d \rightarrow \bar{K} 2 \pi d$
100 ± 50		AGUILAR-...	70c	HBC	-	$4.6 K^{-} p$
138 ± 40		BARTSCH	70c	HBC	-	$10.1 K^{-} p$
50 ± 40		LUDLAM	70	HBC	-	$12.6 K^{-} p$

${ }^{6}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of 5.0σ.
${ }^{7}$ From a partial wave analysis of the $K^{-} \omega$ system.
${ }^{8}$ From a partial wave analysis of the $K^{-} 2 \pi$ system
${ }^{9}$ Produced in conjunction with excited deuteron.
10 Systematic errors added correspond to spread of different fits.

		$K_{\mathbf{2}}(\mathbf{1 7 7 0})$ DECAY MODES
	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \pi \pi$	
Γ_{2}	$K_{2}^{*}(1430) \pi$	seen
Γ_{3}	$K^{*}(892) \pi$	seen
Γ_{4}	$K f_{2}(1270)$	seen
Γ_{5}	$K f_{0}(980)$	seen
Γ_{6}	$K \phi$	seen
Γ_{7}	$K \omega$	

$\Gamma\left(K^{*}(892) \pi\right) / \Gamma(K \pi \pi)$
Γ_{3} / Γ_{1}

- - We do not use the following data for averages, fits, limits, etc. - • •
~ 0.23
DAUM 81C CNTR $63 K^{-} p \rightarrow K^{-} 2 \pi p$

$\begin{gathered} \Gamma\left(K f_{\mathbf{2}}(\mathbf{1 2 7 0})\right) / \Gamma(K \pi \pi) \\ \left(f_{2}(1270) \rightarrow \pi \pi\right) \end{gathered}$				Γ_{4} / Γ_{1}
VALUE	DOCUMENT ID	TECN	COMMENT	

- - We do not use the following data for averages, fits, limits, etc. • • •

$K_{2}(1770)$ REFERENCES				
AAIJ	17C	PRL 118022003	R. Aaij et al.	(LHCb Collab.)
Also		PR D95 012002	R. Aaij et al.	(LHCb Collab.)
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)
TIKHOMIROV	03	PAN 66828	G.D. Tikhomirov et al.	
ASTON	93	Translated from YA PL B308 186	$860 .$	(SLAC, NAGO, CINC, INUS)

$K_{3}^{*}(1780)$ WIDTH

$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{1 5 9} \pm \mathbf{2 1} \text { OUR AVERAGE }}$

DOCUMENT ID TECN CHG COMMENT Error includes scale factor of 1.3. See the ideogram below.
${ }^{6}$ ASTON 88 LASS $0 \quad 11 K^{-} p \rightarrow$ ${ }^{6}$ ASTON 87 LASS $0 \quad 11 \begin{aligned} & K^{-} \pi^{-} n \\ & K^{-} \rightarrow\end{aligned}$ 7 BALDI
135 ± 22

- We do not use the following data for averages, fits, limits, etc. \bullet - \quad -
- - We do not use the following data for averages, fits, limits, etc. - •

$187 \pm 31 \pm 20$	6111	8 BIRD	89	LASS	-	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
193_{-37}^{+51}		ASTON	88B	LASS	-	$11 K^{-} p \rightarrow K^{-} \eta p$
99 ± 30	300	BAUBILLIER	84B	HBC	-	$\begin{gathered} 8.25 K^{-} p \rightarrow \\ \bar{K}^{0} \pi^{-} p \end{gathered}$
~ 130		BAUBILLIER	82B	HBC	0	$\begin{gathered} 8.25 K^{-} p \rightarrow \\ K_{S}^{0} 2 \pi N \end{gathered}$
191 ± 24	2060	CLELAND	82	SPEC	\pm	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{ \pm} p$
225 ± 60		9 ASTON	81D	LASS	0	$11 K^{-} p \rightarrow$
~ 80	190	TOAFF	81	HBC	-	$\begin{gathered} K^{-} \pi^{+} n \\ 6.5 K^{-} p \rightarrow \\ \bar{K}^{0} \pi^{-} p \end{gathered}$
240 ± 50		ETKIN	80	MPS	0	$\begin{aligned} & 6 K^{-} p \rightarrow \\ & \bar{K}^{0} \pi^{+} \pi^{-} \end{aligned}$
181 ± 44		10 BEUSCH	78	OMEG		$10 \frac{K^{-} p \rightarrow}{K^{0} \pi^{+} \pi^{-}} n$
96 ± 31		CHUNG	78	MPS	0	$6 K^{-} p \rightarrow K^{-} \pi^{+} n$
270 ± 70		11 BRANDENB...	76D	ASPK	0	$13 K^{ \pm} p \rightarrow$

${ }^{6}$ From energy-independent partial-wave analysis.
${ }^{7}$ From a fit to Y_{6}^{2} moment. $J^{P}=3^{-}$found.
${ }^{8}$ From a partial wave amplitude analysis.
${ }^{9}$ From a fit to Y_{6}^{0} moment.
${ }^{10}$ Errors enlarged by us to $4 \Gamma / \sqrt{N}$; see the note with the $K^{*}(892)$ mass.
${ }^{11}$ ESTABROOKS 78 find that BRANDENBURG 76D data are consistent with 175 MeV width. Not averaged.

Meson Particle Listings
$K_{3}^{*}(1780), K_{2}(1820)$

See key on page 999

OMITTED FROM SUMMARY TABLE
Seen in partial-wave analysis of $K \phi$ system. Needs confirmation.

$K(1830)$ MASS					
Value (MeV)	EVTS	DOCUMENT ID	TECN	CHC	COMMENT

17C LHCB $\quad B^{+} \rightarrow J / \psi \phi K^{+}$

- - We do not use the following data for averages, fits, limits, etc. - - -
~ $1830 \quad$ ARMSTRONG 83 OMEG - $18.5 K^{-} p \rightarrow 3 K p$
${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of 3.5σ.

$K(1830)$ WIDTH

$K(1830)$ DECAY MODES

| Mode |
| :--- | :--- |
| $\Gamma_{1} \quad K \phi$ |

$K(1830)$ REFERENCES

AAIJ	17C	PRL 118022003	R. Aaij et al.		(LHCb Collab.)
Also		PR D95 012002	R. Aaij et al.		(LHCb Collab.)
ARMSTRONG	83	NP B221 1	T.A. Armstrong et al.	(BARI,	BIRM, CERN+) JP

$$
\begin{array}{ll}
\hline K_{0}^{*}(1950) & \left.I J^{P}\right)=\frac{1}{2}\left(0^{+}\right)
\end{array}
$$

OMITTED FROM SUMMARY TABLE
Seen in partial-wave analysis of the $K^{-} \pi^{+}$system. Needs confirmation.

$K_{0}^{*}(1950)$ MASS

VALUE (MeV) DOCUMENT ID TECN CHG COMmENT
$1945 \pm 10 \pm 20 \quad 1$ ASTON 88 LASS $0 \quad 11 K^{-} p \rightarrow K^{-} \pi^{+} n_{n}$

- - We do not use the following data for averages, fits, limits, etc. - . -

1917 ± 12	2 ZHOU	06	RVUE	$K p \rightarrow K^{-} \pi^{+}{ }_{n}$
1820 ± 40	3 ANISOVICH	97C RVUE	$11 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$	

${ }^{1}$ We take the central value of the two solutions and the larger error given.
${ }^{2} \mathrm{~S}$-matrix pole. Using ASTON 88 and assuming $K_{0}^{*}(700), K_{0}^{*}(1430)$.
${ }^{3}$ T-matrix pole. Reanalysis of ASTON 88 data.

$K_{0}^{*}(1950)$ WIDTH

VALUE (MeV)
201 \ddagger 34 ± 79
DOCUMENT ID

DOCUMENTID TECN CHG COMMENT
4 ASTON 88 LASS $0 \quad 11 K^{-} p \rightarrow K^{-} \pi^{+} n$

- - We do not use the following data for averages, fits, limits, etc. - .

145 ± 38	5			
250 ± 100	${ }^{6}$ ZHOU	06 RVOVICH	RVC	$K p \rightarrow K^{-} \pi^{+}{ }_{n}$
RVUE	$11 K^{-} p \rightarrow K^{-} \pi^{+} n$			

${ }^{4}$ We take the central value of the two solutions and the larger error given.
${ }^{5}$ S-matrix pole. Using ASTON 88 and assuming $K_{0}^{*}(700), K_{0}^{*}(1430)$.
${ }^{6}$ T-matrix pole. Reanalysis of ASTON 88 data.
$K_{0}^{*}(1950)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K^{-} \pi^{+}$	$(52 \pm 14) \%$

$K_{0}^{*}(1950)$ BRANCHING RATIOS

$\boldsymbol{K}_{0}^{*}(1950)$ REFERENCES

OMITTED FROM SUMMARY TABLE Needs confirmation.

$K_{2}^{*}(1980)$ MASS

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT $\overline{1943 \pm 50 \text { OUR AVERAGE Error includes scale factor of 2.2. }}$

$1868 \pm 8_{-5}^{+} 40$	$183 k$	ABLIKIM	19 AQBES \pm	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$	
$2073 \pm 94-245$	4289	1_{-240}^{+245}	AAIJ	$17 C$ LHCB	$B^{+} \rightarrow J / \psi \phi K^{+}$
$1973 \pm 8 \pm 25$		ASTON	87 LASS 0	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{+} \pi^{-} n$	

- - We do not use the following data for averages, fits, limits, etc. - • -
$2020 \pm 20 \quad$ TIKHOMIROV 03 SPEC $\quad 40.0 \pi^{-} \mathrm{C} \rightarrow K_{S}^{0} K_{S}^{0} K_{L}^{0} \mathrm{X}$
$1978 \pm 40 \quad 241 \quad 89$ LASS - $11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of 5.4 σ.

$K_{2}^{*}(1980)$ WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
307 $\mathbf{I}_{\mathbf{-}}^{\mathbf{5 0}}$ OUR AVERAGE Error includes scale factor of 1.2.

$K_{\mathbf{2}}^{*}(1980)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$K^{*}(892) \pi$	possibly seen
Γ_{2}	$K \rho$	possibly seen
Γ_{3}	$K f_{2}(1270)$	possibly seen
Γ_{4}	$K \phi$	seen

$K_{2}^{*}(1980)$ BRANCHING RATIOS

Meson Particle Listings
$K_{2}^{*}(1980), K_{4}^{*}(2045), K_{2}(2250), K_{3}(2320)$

$K_{4}^{*}(2045)$ MASS

$\underline{\text { VALUE }(\mathrm{MeV})} \xrightarrow{\text { EVTS }}$
DOCUMENT ID TECN CHG COMMENT
2048 ${ }_{-}^{\mathbf{+}} \mathbf{9}_{9}^{8}$ OUR AVERAGE Error includes scale factor of 1.1.
$2090 \pm{ }_{-29}^{+11} \quad 183 k \quad$ ABLIKIM $\quad 19 \mathrm{AQBES} \quad \pm \quad J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
$2062 \pm 14 \pm 13 \quad 1$ ASTON 86 LASS $0 \quad 11 K^{-} p \rightarrow K^{-} \pi^{+}{ }_{n}$
$2039 \pm 10 \quad 400 \quad{ }^{2,3}$ CLELAND 82 SPEC $\pm 50 K^{+} p \rightarrow K_{S}^{0} \pi^{ \pm} p$
$2070 \pm 400 \quad 4$ ASTON 81 C LASS $0 \quad 11 K^{-} p \rightarrow K^{-} \pi^{+} n$

- - We do not use the following data for averages, fits, limits, etc. - - -
$2079 \pm 731 \quad$ TORRES $76 \mathrm{MPSF} \quad 400 \mathrm{pA} \rightarrow 4 \mathrm{KX}$
$2088 \pm 20 \quad 650 \quad$ BAUBILLIER $82 \mathrm{HBC}-8.25 K^{-} p \rightarrow K_{S}^{0} \pi^{-} p$
$2115 \pm 46 \quad 488 \quad$ CARMONY $77 \mathrm{HBC} 0 \quad 9 K^{+} d \rightarrow K^{+} \pi^{\prime}$'s X
${ }^{1}$ From a fit to all moments.
${ }^{2}$ From a fit to 8 moments.
${ }^{3}$ Number of events evaluated by us.
${ }^{4}$ From energy-independent partial-wave analysis.

$K_{4}^{*}(2045)$ WIDTH

$\underline{\operatorname{VALUE}(\mathrm{MeV})}$ EVTS
DOCUMENT ID TECN CHG COMMENT
199 ± 27 OUR AVERAGE
$201 \pm 19+57 \quad$ - 18 ABLIKIM \quad 19AQ BES $\quad \pm \quad J / \psi \rightarrow K^{+} K^{-} \pi^{0}$

$189 \pm 35 \quad 400 \quad 6,7$ CLELAND 82 SPEC $\pm 50 K^{+} p \rightarrow K_{S}^{0} \pi^{ \pm} p$

- - We do not use the following data for averages, fits, limits, etc. - - -

61 ± 58	431	TORRES	86	MPSF		$400 \mathrm{pA} \rightarrow 4 \mathrm{KX}$
$170{ }_{-50}^{+100}$	650	BAUBILLIER	82	HBC		$8.25 K^{-} p \rightarrow K_{S}^{0} \pi^{-} p$
240 +500		8 ASTON	81C	LASS	0	$11 K^{-} p \rightarrow K^{-} \pi^{+} n$
300 ± 200		CARMONY	77	HBC	0	$9 K^{+} d \rightarrow K^{+} \pi$'s X
${ }^{5}$ From a fit to all moments. ${ }^{6}$ From a fit to 8 moments. 7 Number of events evaluated by us. ${ }^{8}$ From energy-independent partial-wave analysis.						

$K_{4}^{*}(2045)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \pi$	$(9.9 \pm 1.2) \%$
Γ_{2}	$K^{*}(892) \pi \pi$	$(9 \pm 5) \%$
Γ_{3}	$K^{*}(892) \pi \pi \pi$	$(7 \pm 5) \%$
Γ_{4}	$\rho K \pi$	$(5.7 \pm 3.2) \%$
Γ_{5}	$\omega K \pi$	$(5.0 \pm 3.0) \%$
Γ_{6}	$\phi K \pi$	$(2.8 \pm 1.4) \%$
Γ_{7}	$\phi K^{*}(892)$	$(1.4 \pm 0.7) \%$

$K_{4}^{*}(2045)$ BRANCHING RATIOS

$\Gamma(K \pi) / \Gamma_{\text {total }}$ VALUE	DOCUMENT ID		TECN	$\underline{\text { CHG }}$	COMMENT	Γ_{1} / Γ
0.099 ± 0.012	ASton	88	LASS	0	$11 K^{-} p \rightarrow$	$K^{-} \pi^{+} n$
$\Gamma\left(K^{*}(892) \pi \pi\right) / \Gamma(K \pi)$						Γ_{2} / Γ_{1}
			TECN	CHG	COMMENT	
0.89 ± 0.53	BAUBILLIER	82	HBC	-	$8.25 K^{-} p$	$p K_{S}^{0} 3 \pi$
$\Gamma\left(K^{*}(892) \pi \pi \pi\right) / \Gamma(K \pi)$						Γ_{3} / Γ_{1}
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
0.75 ± 0.49	BAUBILLIER	82	HBC		$8.25 K^{-} p$	$p K_{S}^{0} 3 \pi$
$\Gamma(\rho K \pi) / \Gamma(K \pi)$VALUE						Γ_{4} / Γ_{1}
	DOCUMENT ID		TECN	$\underline{C H G}$	COMMENT	
0.58 ± 0.32	BAUBILLIER	82	HBC		$8.25 K^{-} p$	$\rightarrow p K_{S}^{0} 3 \pi$

OMITTED FROM SUMMARY TABLE
This entry contains various peaks in strange meson systems reported in the $2150-2260 \mathrm{MeV}$ region, as well as enhancements seen in the antihyperon-nucleon system, either in the mass spectra or in the J^{P} $=2^{-}$wave.

$K_{2}(2250)$ MASS

VALUE (MeV) EVTS	DOCUMENT ID	TECN CHG	COMMENT
2247 ± 17 OUR AVERAGE			
2200 ± 40	1 ARMSTRONG 83C	OMEG -	$18 K^{-} p \rightarrow \Lambda \bar{p} X$
2235 ± 50	${ }^{1}$ BAUBILLIER 81	HBC -	$8 K^{-} p \rightarrow \Lambda \bar{p} \mathrm{X}$
2260 ± 20	${ }^{1}$ CLELAND 81	SPEC \pm	$50 K^{+} p \rightarrow \Lambda \bar{p} \mathrm{X}$
- - We do not use the following data for averages, fits, limits, etc. - -			
2280 ± 20	TIKHOMIROV 03	SPEC	$\begin{gathered} 40.0 \pi_{S}^{-}-{ }_{K_{S}^{0}}^{-} K_{S}^{0} K_{L}^{0} \\ \end{gathered}$
2147 ± 437	CHLIAPNIK... 79	HBC +	$32 K^{+} p \rightarrow \bar{\Lambda} p \mathrm{X}$
2240 ± 20	LISSAUER 70	HBC	$9 K^{+} p$
$1 J^{P}=2^{-}$from moments analysis.			
$K_{2}(\mathbf{2 2 5 0})$ WIDTH			
180 ± 30 OUR AVERAGE Error includes scale factor of 1.4.			
150 ± 30	${ }^{2}$ ARMSTRONG 83C	OMEG -	$18 K^{-} p \rightarrow \Lambda \bar{p} \mathrm{X}$
210 ± 30	${ }^{2}$ CLELAND 81	SPEC \pm	$50 K^{+} p \rightarrow \Lambda \bar{p} \mathrm{X}$
- We do not use the for	owing data for averages,	fits, limits, e	\cdots
180 ± 60	TIKHOMIROV 03	SPEC	$\begin{aligned} & 40.0 \pi_{K_{c}^{0}}^{-} K_{c}^{0} \overrightarrow{K_{1}^{0}} \mathrm{x} \end{aligned}$
~ 200	${ }^{2}$ BAUBILLIER 81	HBC -	$8 K^{-} p \rightarrow \Lambda \bar{p} \mathrm{X}$
~ 4037	CHLIAPNIK... 79	HBC +	$32 K^{+} p \rightarrow \bar{\Lambda} p \mathrm{X}$
80 ± 20	LISSAUER 70	HBC	$9 K^{+} p$
$2 J^{P}=2^{-}$from moments analysis.			
$K_{2}(2250)$ DECAY MODES			
Mode			
$\Gamma_{1} \quad K \pi \pi$			
$2 K f_{2}(1270)$			
$3 \quad K_{-}^{*}(892) f_{0}(980)$			
$\Gamma_{4} p \bar{\Lambda}$			

$K_{2}(\mathbf{2 2 5 0})$ REFERENCES

TIKHOMIROV	03			
armstrong	83 C	NP B227 365	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
BAUBILLIER	81	NP B183 1	M. Baubilier et al.	(BIRM, CERN, GLAS+) JP
CLELAND	81	NP B184 1	W.E. Cleland et al.	(PITT, GEVA, LAUS+) JP
CHLIAPNIK...	79	NP B158 253	P.V. Chliapnikov et al.	(CERN, BELG, MONS)
LISSAUER	70	NP B18 491	D. Lissauer et al.	(LBL)

$K_{3}(2320) \quad I\left(J^{P}\right)=\frac{1}{2}\left(3^{+}\right)$
OMITTED FROM SUMMARY TABLE
Seen in the $J^{P}=3^{+}$wave of the antihyperon-nucleon system. Needs confirmation.

See key on page 999

$K_{3}(2320)$ DECAY MODES

Mode
$\Gamma_{1} \quad p \bar{\Lambda}$

$\boldsymbol{K}_{\mathbf{3}} \mathbf{(2 3 2 0)}$ REFERENCES

| ARMSTRONG | $83 C$ | NP | B227 | 365 | T.A. Armstrong et al. |
| :--- | :--- | :--- | :--- | :--- | :--- | | (BARI, BIRM, CERN+) |
| :--- |
| CLELAND |
| 81 | | NP | B184 | 1 | W.E. Cleland et al. |
| :--- | :--- | :--- | :--- |

$K_{5}^{*}(2380)$
 $I\left(J^{P}\right)=\frac{1}{2}\left(5^{-}\right)$

OMITTED FROM SUMMARY TABLE Needs confirmation.

$K_{5}^{*}(2380)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$				
$\Gamma_{1} K \pi$	(6.1 ± 1.2) \%				
K_{5}^{*} (2380) BRANCHING RATIOS					
$\Gamma(K \pi) / \Gamma_{\text {total }}$ VALUE	DOCUMENT ID	TECN CHG COMMENT $\quad \Gamma_{\mathbf{1} / \boldsymbol{\Gamma}}$			
0.061 ± 0.012	ASTON 88	LASS	0	$11 K^{-} p \rightarrow$	

$K_{5}^{*}(2380)$ REFERENCES

ASTON ASTON	88 86	NP B296 493 PL B180 308	D. Aston et al. D. Aston et al.	(SLAC, NAGO, CINC, INUS) (SLAC, NAGO, CINC,
$K_{4}(2500)$				

OMITTED FROM SUMMARY TABLE Needs confirmation.

$K_{4}(2500)$ MASS

$K_{4}(2500)$ WIDTH

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$\sim 250 \quad{ }^{2}$ CLELAND 81 SPEC $\pm 50 K^{+} p \rightarrow \Lambda \bar{p}$
$2 J^{P}=4^{-}$from moments analysis.
$K_{4}(\mathbf{2 5 0 0})$ DECAY MODES

Mode				
$\Gamma_{1} p \bar{\Lambda}$				
$K_{\mathbf{4}} \mathbf{(2 5 0 0)}$ REFERENCES				
CLELAND	81	NP B184 1	W.E. Cleland et al.	(PITT, GEVA, LAUS+)
K		$I^{G}(J P C)=? ?(? ? ?)$		

OMITTED FROM SUMMARY TABLE
Narrow peak observed in several ($\Lambda \bar{p}+$ pions) and ($\bar{\Lambda} p+$ pions) states in Σ^{-}Be reactions by BOURQUIN 86 and in $n p$ and n A reactions by ALEEV 93. Not seen by BOEHNLEIN 91. If due to strong decays, this state has exotic quantum numbers ($B=0, Q=+1, S=-1$ for $\Lambda \bar{p} \pi^{+} \pi^{+}$and $I \geq 3 / 2$ for $\left.\Lambda \bar{p} \pi^{-}\right)$. Needs confirmation.

$K(3100)$ MASS					
$V A L U E(\mathrm{MeV})$	DOCUMENT ID				
₹ 3100 OUR ESTIMATE					
3-BODY DECAYS					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
3054 ± 11 OUR AVERAGE					
$3060 \pm 7 \pm 20$	${ }^{1}$ ALEEV	93	BIS2	$K(3100)$	$\Lambda \bar{p} \pi^{+}$
$3056 \pm 7 \pm 20$	${ }^{1}$ ALEEV	93	BIS2	$K(3100)$	$\bar{\Lambda} p \pi^{-}$
$3055 \pm 8 \pm 20$	${ }^{1}$ ALEEV	93	BIS2	$K(3100) \rightarrow$	$\Lambda \bar{p} \pi^{-}$
$3045 \pm 8 \pm 20$	${ }^{1}$ ALEEV	93	BIS2	$K(3100)$	$\bar{\Lambda} p \pi^{+}$
4-BODY DECAYS					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
3059 ± 11 OUR AVERAGE					
$3067 \pm 6 \pm 20$	${ }^{1}$ ALEEV 93		BIS2	$K(3100)$	$\wedge \bar{p} \pi^{+}$
$3060 \pm 8 \pm 20$	${ }^{1}$ ALEEV 93		BIS2	$K(3100)$	$\Lambda \bar{p} \pi^{+}$
$3055 \pm 7 \pm 20$	1 ALEEV 93		BIS2	$K(3100) \rightarrow$	$\bar{\Lambda} p \pi^{-}$
$3052 \pm 8 \pm 20$	1 ALEEV 93		BIS2	$K(3100)$	$\bar{\Lambda} p \pi^{-}$
- - We do not use the following data for averages, fits, limits, etc. - .					
3105 ± 30	BOURQUIN	86	SPEC	$K(3100) ~-$	$\Lambda \bar{p} \pi^{+}$
3115 ± 30	BOURQUIN	86	SPEC	$K(3100)$	$\wedge \bar{p} \pi^{+}$
5-BODY DECAYS					
VALUE (MeV)	DOCUMENT ID TECN COMMENT				
- - We do not use the following data for averages, fits, limits, etc. - -					
3095 ± 30	BOURQUIN	SPEC K		(3100) \rightarrow ¢	$\pi^{+} \pi^{+}$
${ }^{1}$ Supersedes ALEEV 90.					
$K(3100)$ WIDTH					
3-BODY DECAYS					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
42 ± 16	2 ALEEV	93	BIS2	$K(3100)$	$\Lambda \bar{p} \pi^{+}$
36 ± 15	${ }^{2}$ ALEEV	93	BIS2	$K(3100) \rightarrow$	$\bar{\wedge} p \pi^{-}$
50 ± 18	${ }^{2}$ ALEEV	93	BIS2	$K(3100) \rightarrow$	$\wedge \bar{p} \pi^{-}$
30 ± 15	2 ALEEV	93	BIS2	$K(3100)$	$\bar{\Lambda} p \pi^{+}$

4-BODY DECAYS
VALUE (MeV) COCUMENT ID CLO TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc.

22 ± 8		${ }^{2}$ ALEEV	93	BIS2	$K(3100)$	$\Lambda \bar{p} \pi^{+} \pi^{+}$
28 ± 12		2 ALEEV	93	BIS2	$K(3100) \rightarrow$	$\Lambda \bar{p} \pi^{+} \pi^{-}$
32 ± 15		2 ALEEV	93	BIS2	$K(3100) \rightarrow$	$\bar{\Lambda} p \pi^{-} \pi^{-}$
30 ± 15		${ }^{2}$ ALEEV	93	BIS2	$K(3100) \rightarrow$	$\bar{\Lambda} p \pi^{-} \pi^{+}$
<30	90	BOURQUIN	86	SPEC	$K(3100) \rightarrow$	$\Lambda \bar{p} \pi^{+} \pi^{+}$
<80	90	BOURQUIN	86	SPEC	$K(3100) \rightarrow$	$\Lambda \bar{p} \pi^{+} \pi^{-}$

5-BODY DECAYS

$K(3100)$ DECAY MODES

Mode	
Γ_{1}	$K(3100)^{0} \rightarrow \Lambda \bar{p} \pi^{+}$
Γ_{2}	$K(3100)^{--} \rightarrow \Lambda \bar{p} \pi^{-}$
Γ_{3}	$K(3100)^{-} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{-}$

Meson Particle Listings
K (3100)
$\Gamma_{4} \quad K(3100)^{+} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{+}$
$\Gamma_{5} \quad K(3100)^{0} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{+} \pi^{-}$
$\Gamma_{6} K(3100)^{0} \rightarrow \Sigma(1385)^{+} \bar{p}$

$K(3100)$ REFERENCES

ALEEV	93	PAN 56 1358	A.N. Aleev et al.	(BIS-2 Collab.)
BOEHNLEIN	91	Translated from YAF 56 10.	APBPS B21 174	A. Boehnlein et al.

ALEEV 90 ZPHY C47 533 A. Boev et BOURQUIN 86 PL B172 113 M.H. Bourquin et al (GEVA, RAL HEIDP+)

$D^{ \pm}$MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

${ }^{1}$ PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J / \psi(1 S)$ and $\psi(2 S)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted

$D^{ \pm}$MEAN LIFE

Measurements with an error $>100 \times 10^{-15}$ s have been omitted from the Listings.

$\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN	COMMENT
1040 ± 7 OUR AVERAGE					
1039.4土 4.3土 7.0	110k	LINK	02F	FOCS	γ nucleus, $\approx 180 \mathrm{GeV}$
$1033.6 \pm 22.1{ }_{-12.7}{ }^{9} 9$	3.7k	BONVICINI	99	CLEO	$e^{+} e^{-} \approx r(4 S)$
$1048 \pm 15 \pm 11$	9 k	FRABETTI		E687	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1075 \pm 40 \pm 18$	2.4 k	FRABETTI	91	E687	$\gamma \mathrm{Be}, \mathrm{D}^{+} \rightarrow$
$1030 \pm 80 \pm 60$	200	ALVAREZ	90	NA14	$\stackrel{K^{-} \pi^{+} \pi^{+}}{D^{+}} K^{-} \pi^{+} \pi^{+}$
$1050 \begin{aligned} & +77 \\ & -72\end{aligned}$	317	${ }^{1}$ BARLAG	90c	ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
$1050 \pm 80 \pm 70$	363	ALBRECHT	881	ARG	$e^{+} e^{-} 10 \mathrm{GeV}$
$1090 \pm 30 \pm 25$	2.9 k	RAAB	88	E691	Photoproduction
1 BARLAG 90C estimates the systematic error to be negligible.					

D^{+}DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_{S}^{0} modes, not as \bar{K}^{0} modes. Nearly always it is a K_{S}^{0} that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma\left(K_{S}^{0}\right)=\Gamma\left(\bar{K}^{0}\right)$

	Mode	Fraction ($\Gamma_{i} / \overline{\text { r }}$)		Scale factor/ Confidence level
Inclusive modes				
Γ_{1}	e^{+}semileptonic	$(16.07 \pm 0.30$		
Γ_{2}	μ^{+}anything	$(17.6 \pm 3.2$) \%	
Γ_{3}	K^{-}anything	$(25.7 \pm 1.4$) \%	
Γ_{4}	\bar{K}^{0} anything $+K^{0}$ anything	(61 ± 5) \%	
Γ_{5}	K^{+}anything	$(5.9 \pm 0.8$) \%	
Γ_{6}	$\underline{K^{*}}(892)^{-}$a ${ }^{\text {a }}$ (${ }^{\text {athing }}$	(6 ± 5) \%	
Γ_{7}	$\bar{K}^{*}(892)^{0}$ anything	(23 ± 5) \%	
Γ_{8}	$K^{*}(892)^{0}$ anything	< 6.6	\%	CL=90\%
Γ_{9}	η anything	$(6.3 \pm 0.7$		
Γ_{10}	η^{\prime} anything	$(1.04 \pm 0.18$		
Γ_{11}	ϕ anything	$(1.12 \pm 0.04$) \%	

Meson Particle Listings

[a] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
[b] These subfractions of the $K^{-} 2 \pi^{+}$mode are uncertain: see the Particle Listings.
[c] Submodes of the $D^{+} \rightarrow K^{-} 2 \pi^{+} \pi^{0}$ and $K_{S}^{0} 2 \pi^{+} \pi^{-}$modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second - not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters B667 1 (2008), for those results.
[d] The unseen decay modes of the resonances are included.
[e] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^{+} \ell^{+} \ell^{-}$final state.
[f] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.

CONSTRAINED FIT INFORMATION

An overall fit to 31 branching ratios uses 41 measurements and one constraint to determine 17 parameters. The overall fit has a $\chi^{2}=62.8$ for 25 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{18}	0										
x_{25}	0	0									
x_{29}	8	0	0								
x_{39}	0	0	0	0							
x_{46}	0	5	0	0	0						
x_{48}	0	28	0	0	0	19					
x_{71}	0	5	0	0	0	4	19				
x_{80}	0	6	0	0	0	4	22	4			
x_{96}	0	5	0	0	0	3	17	75	4		
x_{97}	0	4	0	0	0	3	14	3	3	2	
x_{100}	0	5	0	0	0	4	19	4	4	3	
x_{102}	0	9	0	0	0	29	31	6	7	5	
x_{124}	0	1	0	0	0	1	5	1	1	1	
x_{125}	0	1	0	0	0	0	2	0	0	0	
x_{126}	0	2	0	0	0	1	6	1	1	1	
x_{162}	-49	-57	-26	-41	-5	-19	-58	-26	-14	-23	

D^{+}BRANCHING RATIOS

Some now-obsolete measurements have been omitted from these Listings.

c-quark decays

$\Gamma\left(c \Rightarrow e^{+}\right.$anything $) / \Gamma(c \Rightarrow$ anything $)$
For the Summary Table, we only use the average of e^{+}and μ^{+}measurements from $Z^{0} \rightarrow c \bar{c}$ decays; see the second data block below.
$\frac{\text { VALUE }}{\mathbf{0 . 1 0 3} \pm \mathbf{0 . 0 0 9} \mathbf{+ 0 . 0 0 9}} \frac{\text { EVTS }}{378} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABBIENDI } 99 \mathrm{~K}} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{Z^{0} \rightarrow c \bar{c}}$
${ }^{1}$ ABBIENDI 99 K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$decays in $Z^{0} \rightarrow c \bar{c}$.
$\Gamma\left(c \rightarrow \mu^{+}\right.$anything $) / \Gamma(c \rightarrow$ anything $)$
For the Summary Table, we only use the average of e^{+}and μ^{+}measurements from $z^{0} \rightarrow c \bar{C}$ decays; see the next data block.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{0 . 0 8 2} \pm \mathbf{0 . 0 0 5}$ OUR AVERAGE					
$0.073 \pm 0.008 \pm 0.002$	73	KAYIS-TOPA		CHRS	ν_{μ} emulsion
$0.095 \pm 0.007{ }_{-0.013}^{+0.014}$	2829	ASTIER	00D	NOMD	$\nu_{\mu} \mathrm{Fe} \rightarrow \mu^{-} \mu^{+} \mathrm{X}$
$0.090 \pm 0.007{ }_{-0.006}^{+0.007}$	476	1 ABBIENDI	99k	OPAL	$z^{0} \rightarrow c \bar{C}$
$0.086 \pm 0.017{ }_{-0.007}^{+0.008}$	69	2 ALBRECHT	92F	ARG	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
$0.078 \pm 0.009 \pm 0.012$		ONG	88	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$
$0.078 \pm 0.015 \pm 0.02$		BARTEL	87	JADE	$e^{+} e^{-} 34.6 \mathrm{GeV}$
$0.082 \pm 0.012_{-0.01}^{+0.02}$		ALTHOFF	84G	TASS	$e^{+} e^{-} 34.5 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.093 \pm 0.009 \pm 0.009 \quad 88$ KAYIS-TOPAK.02 CHRS See KAYIS-TOPAKSU 05 $0.089 \pm 0.018 \pm 0.025 \quad$ BARTEL 85」 JADE See BARTEL 87
${ }^{1}$ ABBIENDI 99 k uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$decays in $Z^{0} \rightarrow c \bar{c}$.
${ }^{2}$ ALBRECHT 92F uses the excess of right-sign over wrong-sign leptons in a sample of events tagged by fully reconstructed $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$decays.

VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
25.7 \pm 1.4 OUR AVERAGE				
$24.7 \pm 1.3 \pm 1.2$	631 ± 33	ABLIKIM	07G BES2	$e^{+} e^{-} \approx \psi(3770)$
$27.8{ }_{-3.1}^{+3.6}$		BARLAG	92C ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
$27.1 \pm 2.3 \pm 2.4$		COFFMAN	91 MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$
VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
61 ± 5 OUR AVERAGE				
$60.5 \pm 5.5 \pm 3.3$	244 ± 22	ABLIKIM	$06 \cup$ BES2	$e^{+} e^{-}$at 3773 MeV
$61.2 \pm 6.5 \pm 4.3$		COFFMAN	91 MRK3	$3 e^{+} e^{-} 3.77 \mathrm{GeV}$

$\Gamma(\boldsymbol{\eta}$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{9} / \Gamma$

This ratio includes η particles from η^{\prime} decays.				
VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
$6.3 \pm 0.5 \pm 0.5$	1972 ± 142	HUANG	06B CLEO	$e^{+} e^{-}$at $\psi(3770)$
$\Gamma\left(\eta^{\prime}\right.$ anything $) / \Gamma_{\text {total }}$				Γ_{10} / Γ
VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
$1.04 \pm 0.16 \pm 0.09$	82 ± 13	HUANG	06B CLEO	$e^{+} e^{-}$at $\psi(3770)$

Meson Particle Listings
$D^{ \pm}$
 See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_{S}^{+} Listings.
VALUE (units 10^{-4}) EOCUMENTID EVTS TECN COMMENT
$\begin{array}{lllll}3.74 \pm & \text { 0.17 OUR AVERAGE } \\ 3.71 \pm & 0.19 \pm 0.06 & 409 \pm 21 & 1 \\ \text { ABLIKIM } & 14 \mathrm{~F} \text { BES3 } & e^{+} e^{-} \text {at } \psi(3770)\end{array}$
$3.82 \pm 0.32 \pm 0.09 \quad 150 \pm 12 \quad{ }^{2}$ EISENSTEIN 08 CLEO $e^{+} e^{-}$at $\psi(3770)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$12.2 \underset{-}{ \pm}+11.1 \pm 1.0 \quad 3 \quad 3$ ABLIKIM $05 \mathrm{D} \mathrm{BES} e^{+} e^{-} \approx 3.773 \mathrm{GeV}$ $4.40 \pm 0.66_{-0.12}^{+0.09} \quad 47 \pm 7 \quad 4$ ARTUSO \quad 05A CLEO See EISENSTEIN 08
$3.5 \pm 1.4 \pm 0.6 \quad 7 \quad{ }^{5}$ BONVICINI 04A CLEO Incl. in ARTUSO 05A
$8 \begin{array}{rrrr}+16 & +5 \\ -5 & -2\end{array} \quad 1 \quad 98 \mathrm{BAI} \quad 9 \mathrm{BES} \quad e^{+} e^{-} \rightarrow D^{*+} D^{-}$
${ }^{1}$ ABLIKIM 14F obtain $\left|\mathrm{V}_{c d}\right| \cdot f_{D^{+}}=(45.75 \pm 1.20 \pm 0.39) \mathrm{MeV}$, and using $\left|\mathrm{V}_{c d}\right|=$ 0.22520 ± 0.00065 gets $f_{D^{+}} \stackrel{D}{=}(203.2 \pm 5.3 \pm 1.8) \mathrm{MeV}$.
${ }^{2}$ EISENSTEIN 08, using the D^{+}lifetime and assuming $\left|V_{c d}\right|=\left|V_{u s}\right|$, gets $f_{D^{+}}=$ ($205.8 \pm 8.5 \pm 2.5$) MeV from this measurement.
${ }^{3}$ ABLIKIM 05D finds a background-subtracted $2.67 \pm 1.74 D^{+} \rightarrow \mu^{+} \nu_{\mu}$ events, and from this obtains $f_{D^{+}}=371_{-119}^{+129} \pm 25 \mathrm{MeV}$.
${ }^{4}$ ARTUSO 05A obtains $f_{D^{+}}=222.6 \pm 16.7_{-3.4}^{+2.8} \mathrm{MeV}$ from this measurement.
${ }^{5}$ BONVICINI 04A finds eight events with an estimated background of one, and from the branching fraction obtains $f_{D^{+}}=202 \pm 41 \pm 17 \mathrm{MeV}$.
${ }^{6} \mathrm{BAI} 98 \mathrm{~B}$ obtains $f_{D^{+}}=(300+180+80) \mathrm{MeV}$ from this measurement.

<1.2	90	EISENSTEIN	08	CLEO	$e^{+} e^{-}$at $\psi(3770)$
<2.1	90	RUBIN	06 A	CLEO	See EISENSTEIN 08

 also the form-factor parameters near the end of this D^{+}Listing.
${ }^{2}$ See the form-factor parameters near the end of this D^{+}Listing.
${ }^{3}$ The ABLIKIM 05A result together with the $D^{0} \rightarrow K^{-} e^{+} \nu_{e}$ branching fraction of ABLIKIM 04C and Particle Data Group lifetimes gives $\Gamma\left(D^{0} \rightarrow K^{-} e^{+} \nu_{e}\right) / \Gamma\left(D^{+} \rightarrow\right.$ $\left.\bar{K}^{0} e^{+} \nu_{e}\right)=1.08 \pm 0.22 \pm 0.07$; isospin invariance predicts the ratio is 1.0 .
${ }^{4}$ DOBBS 08 establishes $\left|\frac{V_{c d}}{V_{c s}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|=0.188 \pm 0.008 \pm 0.002$ from the D^{+}and D^{0} decays to $\bar{K} e^{+} \nu_{e}$ and $\pi e^{+} \nu_{e}$. It also finds $\Gamma\left(D^{0} \rightarrow K^{-} e^{+} \nu_{e}\right) / \Gamma\left(D^{+} \rightarrow \bar{K}^{0} e^{+} \nu_{e}\right)$ $=1.06 \pm 0.02 \pm 0.03$; isospin invariance predicts the ratio is 1.0 .
$\Gamma\left(k^{0} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$
Γ_{17} / Γ
VALUE (units 10^{-2})
EVTS
DOCUMENT ID
ABLIKIM 16 G BES3 $e^{+} e^{-}$at 3773 MeV
$\mathbf{8 . 7 2} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 1 8} \quad 21 \mathrm{k} \quad$ ABLIKIM $\quad 16 \mathrm{G}$ BES3 $e^{+} e^{-}$at
$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. • -
$10.3 \pm 2.3 \pm 0.8 \quad 29 \pm 6 \quad$ ABLIKIM 07 BES2 $e^{+} e^{-}$at 3773 MeV

Meson Particle Listings
$D^{ \pm}$

$\underset{\text { VALUE }}{ } \Gamma\left(D^{0} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$	CL\%	DOCUMENT ID		comment	$\Gamma_{45} / \overline{ }$
$<1.0 \times 10^{-4}$	90	ABLIKIM	17ad BES3	$e^{+} e^{-}$at	

$\Gamma\left(\kappa_{s}^{0} \pi^{+}\right) / /_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 5 6 2} \pm \mathbf{0 . 0 3 1 ~ O U R ~ F I T ~}} \frac{\text { EVTS }}{\text { Error includes scale factor of } 1.7}$ TECN $\frac{\text { DOCUMENT ID }}{\text { COMMENT }}$
$\mathbf{1 . 5 6 2} \mathbf{0 . 0 3 1}$ OUR FIT Error includes scale factor of 1.7.
$\mathbf{1 . 5 9 1} \pm \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 3 0} \quad 94 \mathrm{k} \quad$ ABLIKIM 18 W BES3 $e^{+} e^{-}, 3773 \mathrm{MeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

1.526	$\pm 0.022 \pm 0.038$		1		
1.55	± 0.05	± 0.06	2.2 k	1 HE	07
$1.6 \quad \pm 0.3 \quad \pm 0.1$	161	ADLER	05	CLEO	88 C

${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
$\Gamma\left(\kappa_{S}^{0} \pi^{+}\right) / \Gamma\left(\kappa^{-} 2 \pi^{+}\right)$
VALUE EVTS DOCUMENT ID TECN COMMENT \quad 46/ $\mathbf{4 8}$
$0.167 \mathbf{\pm 0 . 0 0 4}$ OUR FIT Error includes scale factor of 2.4 .
$\mathbf{0 . 1 6 2} \mathbf{\pm 0 . 0 0 9}$ OUR AVERAGE Error includes scale factor of 4.5.
$0.171 \pm 0.002 \pm 0.002 \quad$ BONVICINI 14 CLEO All CLEO-C runs $0.1530 \pm 0.0023 \pm 0.0016$ 10.6k LINK 02B FOCS γ nucleus, $\bar{E}_{\gamma} \approx 180 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.1682 \pm 0.0012 \pm 0.0037 \quad 30 \mathrm{k} \quad$ MENDEZ $\quad 10 \quad$ CLEO See BONVICINI 14 $0.174 \pm 0.012 \pm 0.011 \quad 473 \quad 1$ BISHAI $97 \mathrm{CLEO} \quad e^{+} e^{-} \approx r(4 S)$ $0.137 \pm 0.015 \pm 0.016 \quad 264 \quad$ ANJOS 90C E691 Photoproduction ${ }^{1}$ See BISHAI 97 for an isospin analysis of $D^{+} \rightarrow \bar{K} \pi$ amplitudes.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\boldsymbol{L}}^{\mathbf{0}} \boldsymbol{\pi}^{\boldsymbol{+}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{1 . 4 6 0} \pm \mathbf{0 . 0 4 0} \pm \mathbf{0 . 0 3 5}} \frac{\text { EVTS }}{2023 \pm 54}$ (DOBBS 07 and HE 08) is $+0.022 \pm 0.016 \pm 0.018$.
$\Gamma\left(K^{-} 2 \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 8}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes SCale factor of } 16}$ TECN COMMENT
$9.38 \pm \mathbf{0 . 1 6}$ OUR FIT Error includes scale factor of 1.6
$9.224 \pm 0.059 \pm 0.157 \quad$ BONVICINI 14 CLEO AlI CLEO-C runs
- - We do not use the following data for averages, fits, limits, etc. - -
$9.14 \pm 0.10 \pm 0.17 \quad{ }^{1}$ DOBBS $\quad 07$ CLEO See BONVICINI 14

9.5	± 0.2	± 0.3	15.1 k	1 HE	05	CLEO	See DOBBS 07

$9.3 \pm 0.6 \pm 0.8 \quad 1502 \quad{ }^{2}$ BALEST $\quad 94$ CLEO $e^{+} e^{-} \approx \Upsilon(4 S)$

6.4 | +1.5 | 3 BARLAG |
| ---: | :--- |
| -1.4 | 92 C |
| ACCM $\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$ | |

$9.1 \pm 1.3 \pm 0.4 \quad 1164 \quad$ ADLER $\quad 88 \mathrm{C}$ MRK3 $e^{+} e^{-} 3.77 \mathrm{GeV}$
$9.1 \pm 1.9 \quad 239 \quad 4$ SCHINDLER 81 MRK2 $e^{+} e^{-} 3.771 \mathrm{GeV}$
${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
${ }^{2}$ BALEST 94 measures the ratio of $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$and $D^{0} \rightarrow K^{-} \pi^{+}$branching fractions to be $2.35 \pm 0.16 \pm 0.16$ and uses their absolute measurement of the $D^{0} \rightarrow$ $K^{-} \pi^{+}$fraction (AKERIB 93)
${ }^{3}$ BARLAG 92C computes the branching fraction by topological normalization.
${ }^{4}$ SCHINDLER 81 (MARK-2) measures $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times$ branching fraction to be $0.38 \pm 0.05 \mathrm{nb}$. We use the MARK-3 (ADLER 88c) value of $\sigma=4.2 \pm 0.6 \pm 0.3 \mathrm{nb}$.

See the related review(s):
Review of Multibody Charm Analyses
$\Gamma\left(\left(K^{-} \pi^{+}\right) S_{s-\text { wave }} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right) \quad \Gamma_{49} / \Gamma_{48}$
This is the "fit fraction" from the Dalitz-plot analysis. The $K^{-} \pi^{+} S$-wave includes a broad scalar $\kappa\left(\bar{K}_{0}^{*}(700)\right)$, the $\bar{K}_{0}^{*}(1430)^{0}$, and non-resonant background.
$\frac{\text { VALUE }}{0.801 \pm 0.012}$ OUR AVERAGE
$0.8024 \pm 0.0138 \pm 0.0043$
0.838 ± 0.038
${ }^{1}$ LINK
0.838 ± 0.038
$0.786 \pm 0.014 \pm 0.018$
${ }^{2}$ BONVICINI

- AITALA AITALA

09 Focs MIPWA fit, 53 k evts
06 E791 Dalitz fit, 15.1k events
號
$0.8323 \pm 0.0150 \pm 0.0008 \quad{ }^{3}$ LINK 07B FOCS See LINK 09
${ }^{1}$ This LINK 09 model-independent partial-wave analysis of the $K^{-} \pi^{+} S$-wave slices the $K^{-} \pi^{+}$mass range into 39 bins.
${ }^{2}$ The BONVICINI 08A QMIPWA (quasi-model-independent partial-wave analysis) of the $K^{-} \pi^{+} S$-wave amplitude slices the $K^{-} \pi^{+}$mass range into 26 bins but keeps the Breit-Wigner $\bar{K}_{0}^{*}(1430)^{0}$.
${ }^{3}$ This LINK 07B fit uses a K matrix. The $K^{-} \pi^{+} S$-wave fit fraction given above breaks down into $(207.3 \pm 25.5 \pm 12.4) \%$ isospin- $1 / 2$ and $(40.5 \pm 9.6 \pm 3.2) \%$ isospin- $3 / 2$ with large interference between the two. The isospin- $1 / 2$ component includes the κ (or $\left.\bar{K}_{0}^{*}(700)^{0}\right)$ and $\bar{K}_{0}^{*}(1430)^{0}$.
$\Gamma\left(\bar{K}_{0}^{*}(700)^{0} \pi^{+}, \bar{K}_{0}^{*}(700) \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
$\Gamma_{50} / \Gamma_{48}$ This is the "fit fraction" from the Dalitz-plot analysis.
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.478 \pm 0.121 \pm 0.053$
AITALA
02 E791 See AITALA 06

$\Gamma\left(\bar{K}^{*}(892)^{0} \pi^{+}, \bar{K}^{*}(892)^{0} \Rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
This is the "fit fraction" from the Dalitz-plot analysis.
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 1 1 1} \pm \mathbf{0 . 0 1 2}$ OUR AVERAGE Error includes scale factor of 3.7.
$0.1236 \pm 0.0034 \pm 0.0034 \quad$ LINK 09 FOCS MIPWA fit, 53 k evts 0.0988 ± 0.0046 BONVICINI 08A CLEO QMIPWA fit, 141k evts $0.119 \pm 0.002 \pm 0.020 \quad$ AITALA 06 E791 Dalitz fit, 15.1 k events
- - We do not use the following data for averages, fits, limits, etc. - -

| $0.1361 \pm 0.0041 \pm 0.0030$ | 1 | LINK | 07B | FOCS |
| :--- | :--- | :--- | :--- | :--- | See LINK 09

${ }^{1}$ The statistical error on this LINK 07B value is corrected in LINK 09.

$\Gamma\left(\bar{K}^{*}(1410)^{0} \pi^{+}, \bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} \mathbf{2} \pi^{+}\right)$					$\Gamma_{53} / \Gamma_{48}$
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
not seen	LINK	09	FOCS	MIPWA fit	
not seen	BONVICINI	08A	CLEO	QMIPWA	

- - We do not use the following data for averages, fits, limits, etc. - -
$4.8 \pm 2.1 \pm 1.7 \quad$ LINK 07B FOCS See LINK 09
$\Gamma\left(\bar{K}_{2}^{*}(1430)^{0} \pi^{++}, \bar{K}_{2}^{*}(1430)^{0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right) \quad \Gamma_{54} / \Gamma_{\mathbf{4 8}}$
$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{0 . 2 4} \pm \mathbf{0 . 0 8} \text { OUR AVERAGE }} \frac{\text { DOCUMENTID }}{\text { Error includes scale factor of }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { See the ideogram below. }}{2.2 \text {. Se }}$
$0.58 \pm 0.10 \pm 0.06 \quad$ LINK 09 FOCS MIPWA fit, 53k evts
$0.204 \pm 0.040 \quad$ BONVICINI 08A CLEO QMIPWA fit, 141k evts
$0.2 \pm 0.1 \pm 0.1 \quad$ AITALA 06 E791 Dalitz fit, 15.1k events
- - We do not use the following data for averages, fits, limits, etc. - -
$0.39 \pm 0.09 \pm 0.05 \quad$ LINK 07B FOCS See LINK 09
$0.5 \pm 0.1 \pm 0.2 \quad$ AITALA 02 E791 See AITALA 06

WEIGHTED AVERAGE

(units 10^{-2})
$\Gamma\left(\bar{K}^{*}(1680)^{0} \pi^{+}, \bar{K}^{*}(1680)^{0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right) \quad \Gamma_{55} / \Gamma_{48}$
This is the "fit fraction" from the Dalitz-plot analysis.
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT

0.23 ± 0.12 OUR AVERAGE

$1.75 \pm 0.62 \pm 0.54$
0.196 ± 0.118
LINK BONVICINI

09 FOCS MIPWA fit, 53k evts 1 08A CLEO QMIPWA fit, 141k evt $1.2 \pm 0.6 \pm 1.2 \quad$ AITALA 06 E791 Dalitz fit, 15.1k events

- - We do not use the following data for averages, fits, limits, etc. - •
$1.90 \pm 0.63 \pm 0.43 \quad$ LINK 07B FOCS See LINK 09
$2.5 \pm 0.7 \pm 0.3 \quad$ AITALA 02 E791 See AITALA 06
$4.7 \pm 0.6 \pm 0.7 \quad$ FRABETTI 94 G E687 $\begin{array}{lllll} & \pm 0 & \text { Dalitz fit, } 8800 \text { evts }\end{array}$
$3.0 \pm 0.4 \pm 1.3 \quad$ ANJOS $93 \quad$ E691 γ Be $90-260 \mathrm{GeV}$

$\Gamma\left(K^{-}\left(2 \pi^{+}\right)_{I \equiv 2}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$				$\Gamma_{56} / \Gamma_{48}$
VALUE	DOCUMENT ID	TECN	COMMENT	
0.155 ± 0.028	BONVICINI 08A	CLEO	QMIPWA	141k evts

${ }^{1}$ Fit fraction from Dalitz plot analysis of $142 \mathrm{k} D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ events.

${ }^{1}$ Fit fraction from Dalitz plot analysis of $142 \mathrm{k} D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ events.
$\Gamma\left(K_{S}^{0} \pi^{+} \pi^{0}\right.$ nonresonant and $\left.\pi^{0} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{0}\right) \quad \Gamma_{66} / \Gamma_{58}$
This is the "fit fraction" from the Dalitz-plot analysis.

$\Gamma\left(\left(K_{S}^{0} \pi^{0}\right)_{S-\text { wave }} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{0}\right)$
$\Gamma_{67} / \Gamma_{58}$
The numerator here is the coherent sum of the $\bar{K}_{0}^{*}(1430)^{0} \pi^{+}, \bar{\kappa}^{0} \pi^{+}$, and nonresonant contributions.
$\frac{\operatorname{VALUE}(\%)}{17.3 \pm 1.4+\mathbf{4 . 4}}$
DOCUMENTID TECN COMMENT
$\Gamma\left(K_{S}^{0} \pi^{+} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-3}) EVTS

ABLIKIM 14 E BES3 $e^{+} e^{-}$at $\psi(3770)$
$1.90 \pm 0.17 \pm 0.13 \quad 267$

$\Gamma\left(K^{-} 2 \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$
Г $69 / \Gamma$
See our 2008 Review (Physics Letters B667 1 (2008)) for measurements of submodes of this mode. There is nothing new since 1992, and the two papers, ANJOS 92C, with 91 ± 12 events above background, and COFFMAN 92B, with 142 ± 20 such events, could not determine submode fractions with much accuracy.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

$5.98 \pm 0.08 \pm 0.16$		1 DOBBS	07	CLEO	See BONVICINI 14
$6.0 \pm 0.2 \pm 0.2$	4.8k	${ }^{1} \mathrm{HE}$	05	CLEO	See DOBBS 07
$5.8 \pm 1.2 \pm 1.2$	142	COFFMAN	92B	MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$
$6.3{ }_{-1.3}^{+1.4} \pm 1.2$	175	BALTRUSAI	.86E	MRK3	See COFFMAN 92B

${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
$\Gamma\left(K^{-} 2 \pi^{+} \pi^{0}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
$\frac{V A L U E}{0.666 \pm 0.006} \pm 0.014$
$\frac{\text { DOCUMENT ID }}{\text { BONVICINI } 14} \frac{}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { All CLEO-C runs }}$
$\Gamma\left(K_{S}^{0} 2 \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
See our 2008 Review (Physics Letters B667 1 (2008)) for measurements of submodes of this mode. There is nothing new since 1992, and the two papers, ANJOS 92C, with 229 ± 17 events above background, and COFFMAN 92B, with 209 ± 20 such events, could not determine submode fractions with much accuracy.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

$3.122 \pm 0.046 \pm 0.096$				$\begin{aligned} & 1 \text { DOBBS } \\ & 1 \mathrm{HE} \end{aligned}$	$\begin{aligned} & 07 \\ & 05 \end{aligned}$	$\begin{aligned} & \text { CLEO } \\ & \text { CLEO } \end{aligned}$	See BONVICINI 14 See DOBBS 07
3.2	± 0.1	± 0.2	3.2 k				
2.1	$\begin{array}{r} +1.0 \\ -0.9 \end{array}$			${ }^{2}$ BARLAG	92C	ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
3.3	± 0.8	± 0.2	168	ADLER	88C	MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$

${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
${ }^{2}$ BARLAG 92C computes the branching fraction by topological normalization.
 VALUE DOCUMENT ID EVTS TECN COMMENT $\mathbf{0 . 0 6 1} \pm \mathbf{0 . 0 0 5}$ OUR FIT Error includes scale factor of 1.1.
$\mathbf{0 . 0 6 2} \pm \mathbf{0 . 0 0 8}$ OUR AVERAGE
Error includes scale factor of 1.3.

| $0.058 \pm 0.002 \pm 0.006$ | 2923 | LINK | 03D FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$ |
| :--- | ---: | :--- | :--- | :--- |
| $0.077 \pm 0.008 \pm 0.010$ | 239 | FRABETTI | 97C E687 $\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$ | - - We do not use the following data for averages, fits, limits, etc. • • $0.09 \pm 0.01 \pm 0.01 \quad 113$ ANJOS 90D E691 Photoproduction

$\Gamma\left(\bar{K}^{*}(892)^{0} \rho^{0} \pi^{+}, \bar{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right) \quad \Gamma_{73} / \Gamma_{48}$ VALUE DOCUMENTID TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. - • $0.016 \pm 0.007 \pm 0.004 \quad$ FRABETTI 97C E687 $\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$
$\Gamma\left(\bar{K}^{*}(892)^{0} \rho^{0} \pi^{+}, \bar{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 3 \pi^{+} \pi^{-}\right) \quad \Gamma_{73} / \Gamma_{\mathbf{7 1}}$ $\frac{\text { VALUE }}{\mathbf{0 . 4 0} \pm \mathbf{0 . 0 3} \pm \mathbf{0 . 0 6}} \quad \frac{\text { DOCUMENT ID }}{\text { LINK }} \frac{\text { TECN }}{\text { O3D }} \frac{\text { COMMENT }}{\text { FOCS }} \frac{\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}}{}$ $\Gamma\left(\bar{K}^{*}(892)^{0} a_{1}(1260)^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
$\Gamma_{74} / \Gamma_{48}$
Unseen decay modes of the $\bar{K}^{*}(892)^{0}$ and $a_{1}(1260)^{+}$are included.
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 0 9 9} \pm \mathbf{0 . 0 0 8} \pm \mathbf{0 . 0 1 8} \quad$ LINK 03 D FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
$\Gamma\left(\bar{K}^{*}(892)^{0} \mathbf{2} \pi^{+} \pi^{-}\right.$no- $\left.\rho, \bar{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} \mathbf{2} \pi^{+}\right) \quad \Gamma_{\mathbf{7 5}} / \Gamma_{\mathbf{4 8}}$ VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.032 \pm 0.010 \pm 0.008 \quad$ FRABETTI 97C E687 $\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$
$\Gamma\left(K^{-} \rho^{0} \mathbf{2} \pi^{+}\right) / \Gamma\left(K^{-} \mathbf{2 \pi}^{+}\right)$
$\Gamma_{76 / \Gamma_{48}}$
VALUE DOCUMENT ID _ TECN COMMENT
$0.034 \pm 0.009 \pm 0.005 \quad$ FRABETTI 97C E687 $\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$

$\Gamma\left(K^{-} \rho^{0} 2 \pi^{+}\right) / \Gamma\left(K^{-} 3 \pi^{+} \pi^{-}\right)$ VALUE	DOCUMENT ID	TECN	COMMENT	$\Gamma_{76} / \Gamma_{71}$
$0.30 \pm 0.04 \pm 0.01$	LINK 03D	FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma} \approx$	180 GeV
$\Gamma\left(K^{-3} \pi^{+} \pi^{-}\right.$nonresonant $) / \Gamma$	$\left.K^{-3} \pi^{+} \pi^{-}\right)$			$\Gamma_{77} / \Gamma_{71}$
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$0.07 \pm 0.05 \pm 0.01$	LINK 03D	FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma} \approx$	180 GeV

Meson Particle Listings
$D^{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$<0.026 \quad 90 \quad$ FRABETTI 97C E687 $\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$

$\Gamma\left(K^{+} K^{-} K_{S}^{0} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \mathbf{2} \pi^{+} \pi^{-}\right)$					$\Gamma_{79} / \Gamma_{70}$
VALUE (units 10-3)	EVTS	DOCUM	TECN	COMMENT	
$7.7 \pm 1.5 \pm 0.9$	35 ± 7	LINK	01C FOCS	γ nucleus, $\bar{E}_{\gamma} \approx$	180 GeV

$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E \text { (units } 10^{-3} \text {) }}{1.247 \pm 0.033}$ EVT
$\frac{1.247 \pm 0.033 \text { OUR FIT }}{}$
$\mathbf{1 . 2 5 9} \pm \mathbf{0 . 0 3 3} \pm \mathbf{0 . 0 2 3} 10 \mathrm{k} \quad$ ABLIKIM 18 W BES3 $e^{+} e^{-}, 3773 \mathrm{MeV}$
$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
VALUE (units 10^{-2}) EVTS DOCUMENT ID_TECN COMMENT
$\overline{\mathbf{1 . 3 3}} \mathbf{\pm 0 . 0 4}$ OUR FIT Error includes scale factor of 1.1
$\mathbf{1 . 3 1} \pm \mathbf{0 . 0 6}$ OUR AVERAGE

$1.29 \pm 0.04 \pm 0.05$	2649 ± 76	MENDEZ	$10 \mathrm{CLEO} e^{+} e^{-}$at 3774 MeV	
$1.33 \pm 0.11 \pm 0.09$	1229 ± 99	AUBERT,B	06 F BABR $e^{+} e^{-} \approx r(4 S)$	
$1.44 \pm 0.19 \pm 0.10$	171 ± 22	ARMS	$04 \mathrm{CLEO} e^{+} e^{-} \approx 10 \mathrm{GeV}$	
$\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$				
$1.33 \pm 0.07 \pm 0.06$	914 ± 46	RUBIN	06	CLEO See MENDEZ 10

$\Gamma\left(2 \pi^{+} \pi^{-}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)$
$\Gamma_{81} / \Gamma_{48}$

$3.52 \pm 0.11 \pm 0.12$	3303 ± 95	RUBIN	06 CLEO	$e^{+} e^{-}$at $\psi(3770)$
$4.1 \pm 1.1 \pm 0.3$	85 ± 22	ABLIKIM	05 F BES	$e^{+} e^{-} \approx \psi(3770)$
$3.11 \pm 0.18_{-0.26}^{+0.16}$	1172	AITALA	01 B E791	π^{-}nucleus, 500 GeV
$4.3 \pm 0.3 \pm 0.3$	236	FRABETTI	97D E687	γ Be $\approx 200 \mathrm{GeV}$
$3.5 \pm 0.7 \pm 0.3$	83	ANJOS	89 E691	Photoproduction

WEIGHTED AVERAGE
3.48 ± 0.19 (Error scaled by 1.4

$\Gamma\left(2 \pi^{+} \pi^{-}\right) / \Gamma\left(K^{-} 2 \pi^{+}\right)\left(\right.$units $\left.10^{-2}\right)$
$\Gamma\left(\rho^{0} \pi^{+}\right) / \Gamma\left(2 \pi^{+} \pi^{-}\right)$
$\Gamma_{82} / \Gamma_{81}$
This is the "fit fraction" from the Dalitz-plot analysis.
DOCUMENT ID TECN COMMENT

$0.200 \pm 0.023 \pm 0.009$ $0.3082 \pm 0.0314 \pm 0.0230$ $0.336 \pm 0.032 \pm 0.022$

BONVICINI	07	CLEO	Dalitz fit, ≈ 2240 evts
LINK	04	FOCS	Dalitz fit, 1527 ± 51 evts
AITALA	$01 B$	E791	Dalitz fit, 1172 evts

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right) / /_{\text {total }} \quad \Gamma_{107 / \Gamma}$

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.935 \pm 0.017 \pm 0.024 \quad 1$ DOBBS 07 CLEO See BONVICINI 14
$0.97 \pm 0.04 \pm 0.04 \quad 1250 \pm 40 \quad 1 \mathrm{HE} \quad 05$ CLEO See DOBBS 07
${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
$\Gamma\left(K^{+} K^{-} \pi^{+}\right) / \Gamma\left(K^{-} \mathbf{2} \pi^{+}\right)$
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 0 . 3 2} \mathbf{\pm 0 . 0 9}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

| 10.282 | $\pm 0.002 \pm 0.068$ | 23 M | AAIJ | 19G LHCB $p p$ at 8 TeV | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 10.6 | ± 0.2 | ± 0.3 | | BONVICINI 14 CLEO All CLEO-c runs | |
| 11.7 | ± 1.3 | ± 0.7 | 181 ± 20 | ABLIKIM | 05F BES $e^{+} e^{-} \approx \psi(3770)$ |
| 10.7 | ± 0.1 | ± 0.2 | 43 k | AUBERT | 05S BABR $e^{+} e^{-} \approx \gamma(4 S)$ |
| 9.3 | ± 1.0 | +0.8 | | JUN | $00 \mathrm{SELX} \quad \Sigma^{-}$nucleus, 600 GeV |
| 9.76 | ± 0.42 | ± 0.46 | | | FRABETTI 95 B E687 $\quad \gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$ |

- - We do not use the following data for averages, fits, limits, etc. - - -
$29.2 \pm 3.1 \pm 3.0 \quad$ FRABETTI 95B E687 Dalitz fit, 915 evts

$\mathbf{2 5 . 7} \pm \mathbf{0 . 5} \mathbf{- 1 . 2} \mathbf{0 . 4} \quad$ RUBIN 08 CLEO Dalitz fit, 19,458 ± 163 evts
- - We do not use the following data for averages, fits, limits, etc. • • •
$30.1 \pm 2.0 \pm 2.5 \quad$ FRABETTI 95B E687 Dalitz fit, 915 evts

$\begin{gathered} \Gamma\left(\begin{array}{l} 1680) \end{array} \pi^{+},\right. \\ \text {This is the } \end{gathered}$	$) / \Gamma(k$ rom the				$\Gamma_{115} / \Gamma_{107}$
VALUE (\%)	DOCUME		TECN	COMMENT	
$0.51 \pm 0.11{ }_{-0.16}^{+0.37}$	RUBIN	08	CLEO	Dalitz fit,	58 ± 163 evts

$\Gamma\left(K_{S}^{0} K_{S}^{0} \pi^{+}\right) / \Gamma_{\text {total }}$		DOCUMENT ID TECN		COMMENT $\Gamma_{116} / \boldsymbol{\Gamma}$	Γ_{116} / Γ
$\text { VALUE (units } 10^{-4} \text {) }$	EVTS				
$27.0 \pm 0.5 \pm 1.2$	4897	ABLIKIM	17A BES3	$e^{+} e^{-}$	$\psi(3770)$
$\Gamma\left(K^{+} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}\right.$	$\Gamma\left(K_{S}^{0} 2\right.$				$\Gamma_{117} / \Gamma_{70}$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
$5.62 \pm 0.39 \pm 0.40$	469 ± 32	LINK	01C FOCS	γ nucleus,	$\approx 180 \mathrm{GeV}$
$\Gamma\left(K_{S}^{0} K^{-2} \pi^{+}\right)$	$\left(K_{S}^{\mathbf{0}} \mathbf{2} \boldsymbol{\pi}^{+}\right.$				$\Gamma_{118} / \Gamma_{70}$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
$7.68 \pm 0.41 \pm 0.32$	670 ± 35	LINK	01c FOCS	γ nucleus,	$\approx 180 \mathrm{GeV}$

Meson Particle Listings

$D^{ \pm}$

$\Gamma\left(\pi^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$ A test of lepton－number conservation．				Γ_{153} / Γ	
Value	CL\％	DOCUMENT ID		TECN	COMMENT
$<2.2 \times 10^{-8}$	90	AAIJ	13AF	LHCB	$p p$ at 7 TeV
－－We do not use the following data for averages，fits，limits，etc．－－					
$<2.0 \times 10^{-6}$	90	LEES	11G	BABR	$e^{+} e^{-} \approx r(4 S)$
$<4.8 \times 10^{-6}$	90	LINK	03F	FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
$<1.7 \times 10^{-5}$	90	AITALA	99G	E791	$\pi^{-} N 500 \mathrm{GeV}$
$<8.7 \times 10^{-5}$	90	FRABETTI	97B	E687	$\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 220 \mathrm{GeV}$
$<2.2 \times 10^{-4}$	90	KODAMA	95	E653	π^{-}emulsion 600 GeV
$<6.8 \times 10^{-3}$	90	WEIR	90B	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$

$\Gamma\left(K_{S}^{0} \pi^{-} \mathbf{2} e^{+}\right) / \Gamma_{\text {total }}$ VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	Γ_{157} / Γ
$<3.3 \times 10^{-6}$	90	ABLIKIM	19aL BES3	$e^{+} e^{-}$at 3773	MeV
$\Gamma\left(K^{-} \pi^{0} 2 e^{+}\right) / \Gamma_{\text {total }}$					Γ_{158} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	
$<8.5 \times 10^{-6}$	90	ABLIKIM	19AL BES3	$e^{+} e^{-}$at 3773	MeV

$\Gamma\left(\kappa^{-} 2 \mu^{+}\right) / \Gamma_{\text {total }}$

$\Gamma_{159 / \Gamma}$ A test of lepton－number conservation．
$\frac{\text { VALUE }}{<\mathbf{1 0} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{11 \mathrm{G}}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \approx r(4 S)}$
－We do not use the following data for averages，fits，limits，etc．\quad ．

| $<1.3 \times 10^{-5}$ | 90 | LINK | 03F FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $<1.2 \times 10^{-4}$ | 90 | FRABETTI | 97 B E687 γ Be， $\bar{E}_{\gamma} \approx 220 \mathrm{GeV}$ | |
| $<3.2 \times 10^{-4}$ | 90 | KODAMA | 95 E653 π^{-}emulsion 600 GeV | |
| $<4.3 \times 10^{-3}$ | 90 | WEIR | 90 B | MRK2 $e^{+} e^{-} 29 \mathrm{GeV}$ |

$\Gamma\left(K^{*}(892)-\mathbf{2} \mu^{+}\right) / \Gamma_{\text {total }}$						Γ_{161} / Γ
VALUE	CL\％	DOCUMENT		TECN	COMMENT	
$<8.5 \times 10^{-4}$	90	KODAMA	95	E653	π^{-}emulsion 600	0 GeV

$D^{ \pm} C P$－VIOLATING DECAY－RATE ASYMMETRIES

This is the difference between D^{+}and D^{-}partial widths for the decay to state f ，divided by the sum of the widths：
$A_{C P}(f)=\left[\Gamma\left(D^{+} \rightarrow f\right)-\Gamma\left(D^{-} \rightarrow \bar{f}\right)\right] /\left[\Gamma\left(D^{+} \rightarrow f\right)+\Gamma\left(D^{-} \rightarrow \bar{f}\right)\right]$.

$\boldsymbol{A}_{C P}\left(\mu^{ \pm} \nu\right)$ in $D^{+} \rightarrow \mu^{+} \nu_{\mu}, D^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$			
＋8士8	EISENSTEIN	08 CLEO	$e^{+} e^{-}$at $\psi(3770)$
$A_{C P}\left(K_{L}^{0} e^{ \pm} \nu\right)$ in $D^{+} \rightarrow K_{L}^{0} e^{+} \nu_{e}, D^{-} \rightarrow K_{L}^{0} e^{-\bar{\nu}_{e}}$			
$-0.59 \pm 0.60 \pm 1.48$	ABLIKIM	15AF BES3	$e^{+} e^{-} 3773 \mathrm{MeV}$
$\boldsymbol{A}_{C P}\left(K_{S}^{0} \pi^{ \pm}\right)$in $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$			
VALUE（\％）EVTS	DOCUMENT ID	TECN	COMMENT
－0．41 ± 0.09 OUR AVERAGE			
$-1.1 \pm 0.6 \pm 0.2$	BONVICINI	14 CLEO	All CLEO－c runs
$-0.363 \pm 0.094 \pm 0.067$ 1738k	${ }^{1} \mathrm{KO}$	12A BELL	$e^{+} e^{-} \approx r(\mathrm{nS})$
$-0.44 \pm 0.13 \pm 0.10 \quad 807 \mathrm{k}$	DEL－AMO－SA	11н BABR	$e^{+} e^{-} \approx \Upsilon(4 S)$
－1．6 $\pm 1.5 \pm 0.9 \quad 10.6 \mathrm{k}$	${ }^{2}$ LINK	02B FOCS	γ nucleus， $\bar{E}_{\gamma} \approx 180$
－－We do not use the following data for averages，fits，limits，etc．－•－			
$-0.71 \pm 0.19 \pm 0.20$	KO	10 BELL	See KO 12A
－1．3 $\pm 0.7 \pm 0.3$ 30k	MENDEZ	10 CLEO	See BONVICINI 14
$-0.6 \pm 1.0 \pm 0.3$	DOBBS	07 CLEO	See MENDEZ 10

${ }^{1}$ KO 12A finds that after subtracting the contribution due to $K^{0}-\bar{K}^{0}$ mixing，the $C P$ asymmetry due to the change of charm is $(-0.024 \pm 0.094 \pm 0.067) \%$ ，consistent with
${ }^{2}$ LINK 02B measures $N\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right) / N\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)$，the ratio of numbers of events observed，and similarly for the D^{-}．

$\boldsymbol{A}_{C P}\left(K_{L}^{0} K^{ \pm}\right)$in $D^{ \pm} \rightarrow K_{L}^{0} K^{ \pm}$					
VALUE（units 10^{-2} ）	EVTS	DOCUMENT ID		TECN	COMMENT
－4．2土3．2土1．2	650	ABLIKIM	19M	BES3	$e^{+} e^{-}$at 3773 MeV
$A_{C P}\left(K^{\mp} \mathbf{2} \pi^{ \pm}\right)$in $D^{+} \rightarrow K^{-} \mathbf{2} \pi^{+}, D^{-} \rightarrow K^{+} \mathbf{2} \pi^{-}$					
VALUE（\％）	EVTS	DOCUMENT ID		TECN	COMMENT
－0．18 ± 0.16 OUR AVERAGE					
$-0.16 \pm 0.15 \pm 0.09$	2.3 M	ABAZOV	14L	D0	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$-0.3 \pm 0.2 \pm 0.4$		BONVICINI	14	CLEO	All CLEO－c runs
－－We do not use the following data for averages，fits，limits，etc．－－					
$-0.1 \pm 0.4 \pm 0.9$	231k	MENDEZ	10	CLEO	See BONVICINI 14
$-0.5 \pm 0.4 \pm 0.9$		DOBBS	07	CLEO	See MENDEZ 10
$\boldsymbol{A}_{C P}\left(K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{0}\right)$ in $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{0}, D^{-} \rightarrow K^{+} \pi^{-} \pi^{-} \pi^{0}$					
VALUE（\％）		DOCUMENT ID		TECN	COMMENT
$-0.3 \pm 0.6 \pm 0.4$		BONVICINI 14	－－We do not use the following data for averages，fits，limits，etc．－－		All CLEO－c runs
$1.0 \pm 0.9 \pm 0.9$		DOBBS		CLEO	See BONVICINI 14
$\boldsymbol{A}_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{0}\right)$ in $D^{+} \Rightarrow K_{S}^{0} \pi^{+} \pi^{0}, D^{-} \Rightarrow K_{S}^{0} \pi^{-} \pi^{0}$					
VALUE（\％）		DOCUMENT ID		TECN	COMMENT
$-0.1 \pm 0.7 \pm 0.2$		BONVICIN		CLEO	All CLEO－C runs
－－We do not use the following data for averages，fits，limits，etc．－－					
$0.3 \pm 0.9 \pm 0.3$		DOBBS	07	CLEO	See BONVICINI 14
$\boldsymbol{A}_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{+} \pi^{-}\right)$in $D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}, D^{-} \rightarrow K_{S}^{0} \pi^{-} \pi^{-} \pi^{+}$					
VALUE（\％）		DOCUMENT ID		TECN	COMMENT
$0.0 \pm 1.2 \pm 0.3$		BONVICINI		CLEO	All CLEO－c runs
－－We do not use the following data for averages，fits，limits，etc．－－－					
$0.1 \pm 1.1 \pm 0.6$		DOBBS	07	CLEO	See BONVICINI 14
$\boldsymbol{A}_{C P}\left(\pi^{ \pm} \pi^{0}\right)$ in $D^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$					
VALUE（\％）	EVTS	DOCUMENT ID		TECN	COMMENT
2.4 ± 1.2 OUR AVERAGE					
$2.31 \pm 1.24 \pm 0.23$	108k	BABU	18	BELL	At／near $\gamma(4 S), \Upsilon(5 S)$
$2.9 \pm 2.9 \pm 0.3$	2．6k	MENDEZ	10	CLEO	$e^{+} e^{-}$at 3774 MeV
$\boldsymbol{A}_{C P}\left(\pi^{ \pm} \eta\right)$ in $D^{ \pm} \rightarrow \pi^{ \pm} \boldsymbol{\eta}$					
VALUE（\％）EVTS		DOCUMENT ID		TECN	COMMENT
1.0 ± 1.5 OUR AVERAGE		ror includes scale factor of 1．4．			
$+1.74 \pm 1.13 \pm 0.19$		WON	11	BELL	$e^{+} e^{-} \approx \Upsilon(4 S)$
$-2.0 \pm 2.3 \pm 0.3$	2．9k	MENDEZ	10	CLEO	$e^{+} e^{-}$at 3774 MeV
$\boldsymbol{A}_{C P}\left(\pi^{ \pm} \boldsymbol{\eta}^{\prime}(958)\right)$ in $D^{ \pm} \rightarrow \pi^{ \pm} \boldsymbol{\eta}^{\prime}(958)$					
VALUE（\％）	EVTS	DOCUMENT ID		TECN	COMMENT
－0．6 ± 0.7 OUR AVERAGE					
$-0.61 \pm 0.72 \pm 0.54$	63k	AAIJ	17AF	LHCB	$p p$ at 7， 8 TeV
$-0.12 \pm 1.12 \pm 0.17$		WON	11	BELL	$e^{+} e^{-} \approx \gamma(4 S)$
$-4.0 \pm 3.4 \pm 0.3$	1．0k	MENDEZ	10	CLEO	$e^{+} e^{-}$at 3774 MeV

$\boldsymbol{A}_{C P}\left(K_{S}^{0} K^{ \pm} \pi^{0}\right)$ in $D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{0}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 4 \pm 3 . 7} \pm \mathbf{2 . 4}} \frac{\text { EVTS }}{470} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{19 \mathrm{M}}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 3773 \mathrm{MeV}}$
$\boldsymbol{A}_{C P}\left(K_{L}^{0} K^{ \pm} \boldsymbol{\pi}^{0}\right)$ in $D^{ \pm} \Rightarrow K_{L}^{0} K^{ \pm} \boldsymbol{\pi}^{0}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{- 0 . 6} \pm \mathbf{4 . 1} \mathbf{1 . 7}} \frac{\text { EVTS }}{410} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 19 \mathrm{M}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 3773 \mathrm{MeV}}$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(K^{+} K^{-} \pi^{ \pm}\right)$in $\boldsymbol{D}^{ \pm} \rightarrow K^{+} \boldsymbol{K}^{-} \pi^{ \pm}$
See also AAIJ 11 G for a search for $C P$ asymmetry in the $D^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$Dalitz plots using 370 k decays and four different binning schemes. No evidence for $C P$ asymmetry was found.

VALUE (\%)	EVTS	DOCUMENTID		TECN	COMMENT
0.37 ± 0.29 OUR AVERAGE					
$0.37 \pm 0.30 \pm 0.15$	224k	${ }^{1}$ LEES	13F	BABR	$e^{+} e^{-}$at $\Upsilon(4 S)$
$-0.03 \pm 0.84 \pm 0.29$		RUBIN	08	CLEO	$e^{+} e^{-}$at 3774 MeV
$1.4 \pm 1.0 \pm 0.8$	43k	${ }^{2}$ AUBERT	05s	BABR	$e^{+} e^{-}$at $\gamma(4 S)$
$0.6 \pm 1.1 \pm 0.5$	14k	${ }^{3}$ LINK	00B	FOCS	
-1.4 ± 2.9		${ }^{3}$ AITALA	97B	E791	$\begin{aligned} & -0.062<A_{C P}< \\ & +0.034(90 \% \mathrm{CL}) \end{aligned}$
-3.1 ± 6.8		${ }^{3}$ FRABETTI	941	E687	$\begin{aligned} & -0.14<A C P< \\ & \quad+0.081(90 \% \mathrm{CL}) \end{aligned}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$-0.1 \pm 0.9 \pm 0.4$		${ }^{4}$ BONVICINI	14	CLEO	See RUBIN 08
$-0.1 \pm 1.5 \pm 0.8$		DOBBS	07	CLEO	See BONVICINI 14 and RUBIN 08

${ }^{1}$ This is the integrated $C P$ asymmetry. LEES 13F also searches for $C P$ asymmetries in four regions of the Dalitz plots (two of which are listed below); in comparisons of binned D^{+} and D^{-}Dalitz plots; in parametrized fits to those plots, including 2-body submodes; and in comparisons of Legendre-polynomial distributions for the $K^{+} K^{-}$and $K^{-} \pi^{+}$ systems.
${ }^{2}$ AUBERT 05s measures $N\left(D^{+} \rightarrow K^{+} K^{-} \pi^{+}\right) / N\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)$, the ratio of the numbers of events observed, and similarly for the D^{-}
${ }^{3}$ FRABETTI 94I, AITALA 98C, and LINK 00B measure $N\left(D^{+} \rightarrow K^{-} K^{+} \pi^{+}\right) / N\left(D^{+} \rightarrow\right.$ $K^{-} \pi^{+} \pi^{+}$), the ratio of numbers of events observed, and similarly for the D^{-}
${ }^{4}$ RUBIN 08 performs a dedicated analysis of this decay mode on the same dataset, with slightly better precision. We therefore take it that BONVICINI 14 does not supersede RUBIN 08's $A_{C P}$ result.
$A_{C P}\left(K^{ \pm} K^{* 0}\right)$ in $D^{+} \rightarrow K^{+} \bar{K}^{* 0}, D^{-} \rightarrow K^{-} K^{* 0}$
VALUE (\%) DOCUMENT ID EVTS TECN COMMENT

- 0.3土 0.4 OUR AVERAGE

$-0.3 \pm 0.4 \pm 0.2$ 73k
$-\quad 0.4 \pm 2.0 \pm 0.6$
$0.9 \pm 1.7 \pm 0.7$ 11k
-1.0 ± 5.0
-12 ± 13
${ }^{1}$ LEES 13F BABR $e^{+} e^{-}$at $r(4 S)$ RUBIN 08 CLEO Fit-fraction asymmetry 2 AUBERT 05 s BABR $e^{+} e^{-}$at $r(4 S)$
${ }^{3}$ AITALA $\quad 97 \mathrm{~B}$ E791 $-0.092<A_{C P}<$
$+0.072(90 \% \mathrm{CL})$
$-0.33<A_{C P}<$ $+0.094(90 \% \mathrm{CL})$
4 and $1.0 \mathrm{GeV}^{2}$, and
${ }^{1}$ This LEES 13 F result is for the $K^{\mp} \pi^{ \pm}$mass-squared between 0.4 and $1.0 \mathrm{GeV}^{2}$, and does not actually separate out the K^{*}.
${ }^{2}$ AUBERT 05s measures $N\left(D^{+} \rightarrow K^{+} \bar{K}^{* 0}\right) / N\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)$, the ratio of the numbers of events observed, and similarly for the D^{-}
${ }^{3}$ FRABETTI 94ı and AITALA 97B measure $N\left(D^{+} \rightarrow K^{+} \bar{K}^{*}(892)^{0}\right) / N\left(D^{+} \rightarrow\right.$ $K^{-} \pi^{+} \pi^{+}$), the ratio of numbers of events observed, and similarly for the D^{-}.
$\underset{\substack{\text { VALUE }(\%)}}{A_{C P}\left(\phi \pi^{ \pm}\right) \text {in } D^{ \pm} \rightarrow \underset{\text { EVTS }}{ } \boldsymbol{\pi}^{ \pm}}$
$0.01 \mathbf{\pm 0 . 0 9}$ OUR AVERAGE DOCUMENT ID TECN COMMENT

土 0.09 OUR AVERAGE
$0.003 \pm 0.040 \pm 0.029 \quad 55 \mathrm{M}$
$+0.51 \pm 0.28 \pm 0.05 \quad 237 \mathrm{k}$
$\begin{array}{lll}-1.8 & \pm 1.6 & +0.2 \\ -0.4\end{array}$
$+0.2 \pm 1.5 \pm 0.6$
10k
-2.8 ± 3.6
$+6.6 \pm 8.6$

- We do not use the following data for averages, fits, limits, etc. - -
$-0.04 \pm 0.14 \pm 0.14 \quad 1.58 \mathrm{M} \quad{ }^{4} \mathrm{AAIJ} \quad 13 \mathrm{w}$ LHCB $p p$ at 7 TeV
${ }^{1}$ This LEES 13 F result is for the $K^{+} K^{-}$mass-squared less than $1.3 \mathrm{GeV}^{2}$ and the $K^{\mp} \pi^{ \pm}$ mass-squared above $1.0 \mathrm{GeV}^{2}$, and does not actually separate out the ϕ.
${ }^{2}$ AUBERT 05s measures $N\left(D^{+} \rightarrow \phi \pi^{+}\right) / N\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)$, the ratio of the numbers of events observed, and similarly for the D^{-}.
${ }^{3}$ FRABETTI 941 and AITALA 97B measure $N\left(D^{+} \rightarrow \phi \pi^{+}\right) / N\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)$, the ratio of numbers of events observed, and similarly for the D^{-}. ${ }^{4}$ See AAIJ 19T.
$A_{C P}\left(K^{ \pm} K_{0}^{*}(1430)^{0}\right.$) in $D^{+} \rightarrow K^{+} \bar{K}_{0}^{*}(1430)^{0}$, $D^{-} \rightarrow K^{-} K_{0}^{*}(1430)^{0}$

$A_{C P}\left(K^{ \pm} K_{2}^{*}(1430)^{0}\right)$ in $D^{+} \Rightarrow K^{+} \bar{K}_{2}^{*}(1430)^{0}, D^{-} \Rightarrow K^{-} K_{2}^{*}(1430)^{0}$

$A_{C P}\left(K^{ \pm} K_{0}^{*}(700)\right)$ in $D^{+} \rightarrow K^{+} \bar{K}_{0}^{*}(700), D^{-} \rightarrow K^{-} K_{0}^{*}(700)$

$\operatorname{VALUE}(\%)$	DOCUMENT ID			
$\mathbf{- 1 2 \pm 1 1 + \mathbf { 1 4 }}$	RUBIN	TECN	$\frac{\text { COMMENT }}{\text { CLEO }}$	Fit-fraction asymmetry

$A_{C P}\left(a_{0}(1450)^{0} \pi^{ \pm}\right)$in $D^{ \pm} \Rightarrow a_{0}(1450)^{0} \pi^{ \pm}$			TECN	COMMENT
VALUE (\%)	DOCUME			
$-19 \pm 12+{ }_{-11}^{8}$	RUBIN	08	CLEO	Fit-fraction

$\boldsymbol{A}_{C P}\left(\phi(1680) \pi^{ \pm}\right)$in $D^{ \pm} \rightarrow \phi(1680) \pi^{ \pm}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 9} \mathbf{\pm 2 2} \mathbf{\pm 1 4}} \quad \frac{\text { DOCUMENT ID }}{\text { RUBIN }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Fit-fraction asymmetry }}$
$\boldsymbol{A}_{C P}\left(\pi^{+} \pi^{-} \pi^{ \pm}\right)$in $D^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$
See also AAIJ 14C for a search for $C P$ violation in $D^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$Dalitz plots using model-independent binned and unbinned methods. No evidence was found.
$\frac{V A L U E(\%)}{-\mathbf{1 . 7} \pm \mathbf{4 . 2}} \quad 1 \frac{\text { DOCUMENTID }}{\text { AITALA }} \quad$ 97B $\frac{\text { TECN }}{\text { E791 }} \frac{\text { COMMENT }}{-0.086<\boldsymbol{A}_{C P}<+0.052(90 \% \mathrm{CL})}$
${ }^{1}$ AITALA 97B measure $N\left(D^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right) / N\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)$, the ratio of numbers of events observed, and similarly for the D^{-}.
$\boldsymbol{A}_{\boldsymbol{C P}}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)$in $D^{ \pm} \Rightarrow K_{S}^{\mathbf{0}} K^{ \pm} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$
$\frac{V A L U E(\%)}{-\mathbf{4 . 2} \pm \mathbf{6 . 4} \mathbf{4} .2} \frac{\text { EVTS }}{523 \pm 32} \quad \frac{\text { DOCUMENT ID }}{\text { LINK }} \frac{\text { TECN }}{\text { FOCS }} \frac{\text { COMMENT }}{\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}}$
$A_{C P}\left(K^{ \pm} \pi^{0}\right)$ in $D^{ \pm} \rightarrow K^{ \pm} \pi^{0}$
$\frac{\operatorname{VALUE}(\%)}{-\mathbf{3 . 5} \pm \mathbf{1 0 . 7} \pm \mathbf{0 . 9}} \frac{\text { EVTS }}{343 \pm 37} \quad \frac{\text { DOCUMENT ID }}{\text { MENDEZ } \quad 10} \frac{\text { TECN }}{\text { CLEO }} \frac{}{} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 3774 \mathrm{MeV}}$

$D^{ \pm} \chi^{2}$ TESTS OF CP-VIOLATION (CPV)

We list model-independent searches for local $C P$ violation in phase-space distributions of multi-body decays.
Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^{2} test comparing normalised yields N_{i}, \bar{N}_{i} in $C P$-conjugate bin pairs i: $\chi^{2}=$ $\Sigma_{i}\left(N_{i}-\alpha \bar{N}_{i}\right) / \sigma\left(N_{i}-\alpha \bar{N}_{i}\right)$. The factor $\alpha=\left(\Sigma_{i} N_{i}\right) /\left(\Sigma_{i} \bar{N}_{i}\right)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p -value) to obtain the measured χ^{2} or larger under the assumption of CP conservation [AUBERT 08AO, BEDIAGA 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

Meson Particle Listings
$D^{ \pm}$

$\frac{\text { VALUE }}{\mathbf{0 . 7 1 9}} \mathbf{\pm 0 . 0 1 1}$ OUR AVERAGE $\frac{\text { DOCUMENTID }}{\text { Error includes scale factor }} \frac{\text { COMMENT }}{\text { of 1.6. See the ideogram }}$ below.

${ }^{1}$ DEL-AMO-SANCHEZ 111 finds the pole mass $m_{A}=(2.63 \pm 0.10 \pm 0.13) \mathrm{GeV}$ (m_{V} is fixed at 2 GeV).
${ }^{2}$ LINK 02L includes the effects of interference with an S-wave background. This much improves the goodness of fit, but does not much shift the values of the form factors.

See key on page 999

${ }^{3}$ This is slightly different from the AITALA 98B value: see ref. [5] in AITALA 98F.				
$r_{2} \equiv A_{2}(0) / A_{1}(0)$ in $D^{+} \rightarrow \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\ell}$				
See also BRIERE 10 for $\bar{K}^{*} \ell^{+} \nu_{\ell}$ helicity-basis form-factor measurements.				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.802 ± 0.021 OUR AVERAGE				
$0.788 \pm 0.042 \pm 0.008$	16.2k	ABLIKIM 16F	BES3	$\bar{K}^{*}(892)^{0} e^{+} \nu_{e}$
$0.801 \pm 0.020 \pm 0.020$		1 DEL-AMO-SA..11ı	BABR	
$0.875 \pm 0.049 \pm 0.064$	15k	2 LINK 02L	FOCS	$\bar{K}^{*}(892){ }^{0} \mu^{+} \nu_{\mu}$
$1.00 \pm 0.15 \pm 0.03$	763	ADAMOVICH 99	BEAT	$\bar{K}^{*}(892)^{0} \mu^{+}{ }_{\nu}{ }_{\mu}$
$0.71 \pm 0.08 \pm 0.09$	3000	AITALA 98B	E791	$\bar{K}^{*}(892){ }^{0} e^{+} \nu^{\prime}$
$0.75 \pm 0.08 \pm 0.09$	3034	AITALA 98F	E791	$\bar{K}^{*}(892)^{0} \mu^{+}{ }_{\nu}{ }_{\mu}$
$0.78 \pm 0.18 \pm 0.10$	874	FRABETTI 93E	E687	$\bar{K}^{*}(892){ }^{0} \mu^{+} \nu_{\mu}$
$0.82{ }_{-0.23}^{+0.22} \pm 0.11$	305	KODAMA 92	E653	$\bar{K}^{*}(892)^{0} \mu^{+}{ }_{\nu}{ }_{\mu}$
- - We do not use the following data for averages, fits, limits, etc. - - -				
${ }^{1}$ DEL-AMO-SANCHEZ 11 I finds the pole mass $m_{A}=(2.63 \pm 0.10 \pm 0.13) \mathrm{GeV}\left(m_{V}\right.$ is fixed at 2 GeV).				
${ }^{2}$ LINK 02L includes the effects of interference with an S-wave background. This much improves the goodness of fit, but does not much shift the values of the form factors.				
$r_{3} \equiv A_{3}(0) / A_{1}(0)$ in $D^{+} \rightarrow \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\boldsymbol{\ell}}$				
See also BRIERE 10 for $\bar{K}^{*} \ell^{+} \nu_{\ell}$ helicity-basis form-factor measurements.				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 0 4} \pm 0.33 \pm 0.29$	3034	AITALA 98F	E791	$\bar{K}^{*}(892){ }^{0} \mu^{+} \nu_{\mu}$
Γ_{L} / Γ_{T} in $D^{+} \rightarrow \bar{K}^{*}(892)^{0} \ell^{+} \nu_{\boldsymbol{\ell}}$				
See also BRIERE 10 for $\bar{K}^{*} \ell^{+} \nu_{\ell}$ helicity-basis form-factor measurements.				
VALUE DOCUMENTID TECN COMMENT				
1.13 ± 0.08 OUR AVERAGE				
$1.09 \pm 0.10 \pm 0.02$		ADAMOVICH 99	BEAT	$\bar{K}^{*}(892){ }^{0} \mu^{+} \nu_{\mu}$
$1.20 \pm 0.13 \pm 0.13$	874	FRABETTI 93E	E687	$\bar{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
$1.18 \pm 0.18 \pm 0.08$	305	KODAMA 92	E653	$\bar{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$1.8{ }_{-0.4}^{+0.6} \pm 0.3$		ANJOS 90E	E691	$\bar{K}^{*}(892){ }^{0} e^{+} \nu_{e}$
Γ_{+} / Γ_{-}in $D^{+} \rightarrow \bar{K}^{*}(892)^{\mathbf{0}} \ell^{+} \nu_{\boldsymbol{\ell}}$				
See also BRIERE 10 for $\bar{K}^{*} \ell^{+} \nu_{\ell}$ helicity-basis form-factor measurements.				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 2 2 \pm 0 . 0 6 ~ O U R ~ A V E R A G E ~ E r r o r ~ i n c l u d e s ~ s c a l e ~ f a c t o r ~ o f ~ 1 . 6 . ~}$				
$0.28 \pm 0.05 \pm 0.02$	763	ADAMOVICH 99	BEAT	$\bar{K}^{*}(892){ }^{0} \mu^{+} \nu_{\mu}$
$0.16 \pm 0.05 \pm 0.02$	305	KODAMA 92	E653	$\bar{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.15{ }_{-0.05}^{+0.07} \pm 0.03$	183	ANJOS 90E	E691	$\bar{K}^{*}(892)^{0} e^{+} \nu_{e}$

Amplitude analyses

$D \rightarrow K \pi \pi \pi$ partial wave analyses

Amplitude analyses of D^{+}decays to a variety of 4-body kaon or pion final states, fitting simultaneously different partial wave components.
$\frac{\text { VALUE }}{\text { ABLIKIM } \quad \text { 19AZ BES3 }} \frac{\text { TECN }}{D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}}$

AAIJ	19G	JHEP 1903176
AAIJ	19H	JHEP 1904063
AAIJ	19 T	PRL 122191803
ABLIKIM	19AL	PR D99 112002
ABLIKIM	19AY	PR D100 072006
ABLIKIM	19AZ	PR D100 072008
ABLIKIM	19BG	PRL 123211802
ABLIKIM	19BH	PRL 123231801
ABLIKIM	19BI	PL B798 135017
ABLIKIM	19 C	PRL 122062001
ABLIKIM	19M	PR D99 032002
ABLIKIM	18AC	PR D98 092009
ABLIKIM	18AE	PRL 121171803
ABLIKIM	18 F	PRL 121081802
ABLIKIM	18P	PR D97 072015
ABLIKIM	18R	PR D97 092009
ABLIKIM	18W	PR D97 072004
BABU	18	PR D97 011101
AAIJ	17AF	PL B771 21
ABLIKIM	17A	PL B765 231
ABLIKIM	17AD	PR D96 092002
ABLIKIM	17M	PR D95 071102
ABLIKIM	17 S	PR D96 012002
ABLIKIM	16D	PRL 116082001
ABLIKIM	16F	PR D94 032001
ABLIKIM	16G	EPJ C76 369
ABLIKIM	16 V	CP C40 113001
ABLIKIM	15AF	PR D92 112008
ABLIKIM	15W	PR D92 071101
AAIJ	14BD	JHEP 1410025
AAIJ	14 C	PL B728 585
ABAZOV	14L	PR D90 111102
ABLIKIM	14E	PR D89 052001
ABLIKIM	14F	PR D89 051104
BONVICINI	14	PR D89 072002
AAIJ	13AF	PL B724 203
AAIJ	13W	JHEP 1306112

$D^{ \pm}$REFERENCES

AAIJ
AAIJ
AAIJ
ABLIKIM
BABU
AABIJ
ABLIKIM
AAIJ
AAIJ
ABAZOV
ABLIKIM
ABLIKIM
BRNVICIII
AAIJ
AAIJ

R. Aaij et al.	(LHCb Collab.)
R. Aaij et al.	(LHCb Collab.)
R. Aaij et al.	(LHCb Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
V. Babu et al.	(BELLE Collab.)
R. Aaij et al.	(LHCb Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
R. Aaij et al.	(LHCb Collab.)
R. Aaij et al.	(LHCb Collab.)
V.M. Abazov et al.	(D0 Collab.)
M. Ablikim et al.	(BESIII Collab.)
M. Ablikim et al.	(BESIII Collab.)
G. Bonvicini et al.	(CLEO Collab.)
R. Aaij et al.	(LHCb Collab.)
R. Aaij et al.	(LHCb Collab.)

D^{0} MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.
Given the recent addition of much more precise measurements, we have omitted all those masses published up through 1990. See any Review before 2015 for those earlier results.

$\boldsymbol{m}_{\boldsymbol{D}^{ \pm}}-\boldsymbol{m}_{\boldsymbol{D}^{\mathbb{C}}}$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.822 ± 0.015 OUR FIT				
$4.76 \pm 0.12 \pm 0.07$	AAIJ	13 V	LHCB	$D^{+} \rightarrow K^{+} K^{-} \pi^{+}$

D^{0} MEAN LIFE

Measurements with an error $>10 \times 10^{-15} \mathrm{~s}$ have been omitted from the average.

$\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN	COMMENT
410.1 1.5 OUR AVERAGE					
409.6土 1.1 ± 1.5	210k	LINK	02F	FOCS	γ nucleus, $\approx 180 \mathrm{GeV}$
$407.9 \pm 6.0 \pm 4.3$	10k	KUSHNIR...	01	SELX	$K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{-}$
$413 \pm 3 \pm 4$	35k	AITALA	99E	E791	$K^{-} \pi^{+}$
$408.5 \pm 4.1_{-}^{+} 3.5$	25k	BONVICINI	99	CLE2	$e^{+} e^{-} \approx \gamma(4 S)$
$413 \pm 4 \pm 3$	16k	FRABETTI		E687	$K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{-}$
- - We do not use the following data for averages, fits, limits, etc. • - -					
$424 \pm 11 \pm 7$	5118	FRABETTI	91	E687	$K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{-}$
$417 \pm 18 \pm 15$	890	ALVAREZ	90	NA14	$K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{-}$
$388 \begin{aligned} & +23 \\ & -21\end{aligned}$	641	${ }^{1}$ BARLAG	90C	ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
$480 \pm 40 \pm 30$	776	ALBRECHT	881	ARG	$e^{+} e^{-} 10 \mathrm{GeV}$
$422 \pm 8 \pm 10$	4212	RAAB	88	E691	Photoproduction
420 ± 50	90	BARLAG	87B	ACCM	K^{-}and $\pi^{-} 200 \mathrm{GeV}$
${ }^{1}$ BARLAG 90C estimate systematic error to be negligible.					

See the related review(s):
$D^{0}-\bar{D}^{0}$ Mixing

$$
\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|=x \Gamma
$$

The D_{1}^{0} and D_{2}^{0} are the mass eigenstates of the D^{0} meson, as described in the note on " $D^{0}-\bar{D}^{0}$ Mixing,' above. The experiments usually present $x \equiv \Delta m / \Gamma$. Then $\Delta m=x \Gamma=x \hbar / \tau$.
"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " $D^{0}-\bar{D}^{0}$ Mixing."
$\underline{\operatorname{VALUE}\left(10^{10} \hbar \mathrm{~s}^{-1}\right) \quad \text { CL\% DOCUMENT ID } \quad \text { TECN COMMENT }}$

-

${ }^{1}$ AAIJ $19 \times D^{0}$ come from D^{*+} and $\bar{B} \rightarrow D^{0} \mu^{-} X$ decays (and c.c.) in $p p$ collisions at 7 and 8 TeV . Measurement allows for $C P$ violation (none seen).
${ }^{2}$ The result was established with D^{0} from prompt and secondary D^{*}. Based on $5 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8,13 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=$ $(3.9 \pm 2.7) \times 10^{-5}$ and $y^{\prime}=(5.28 \pm 0.52) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y \sin (\delta)$, $y^{\prime}=y$
${ }^{3}$ Model-independent measurement of the charm mixing parameters in the decay $D^{0} \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$using $1.0 \mathrm{fb}^{-1}$ of LHCb data at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{4}$ Time-dependent amplitude analysis of $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
${ }^{5}$ Based on $976 \mathrm{fb}^{-1}$ of data collected at $Y(\mathrm{nS})$ resonances. Assumes no $C P$ violation. Reported $x^{\prime 2}=(0.09 \pm 0.22) \times 10^{-3}$ and $y^{\prime}=(4.6 \pm 3.4) \times 10^{-3}$, where $x^{\prime}=\mathrm{x} \cos (\delta)$ $+\mathrm{y} \sin (\delta), y^{\prime}=\mathrm{y} \cos (\delta)-\mathrm{x} \sin (\delta)$ and δ is the strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$
${ }^{6}$ The time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$is emplored. Decaytime information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow$ $K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This value allows $C P$ violation and is sensitive to the sign of Δm.
${ }^{7}$ Based on $9.6 \mathrm{fb}^{-1}$ of data collected at the Tevatron. Assumes no $C P$ violation. Reported $x^{\prime 2}=(0.08 \pm 0.18) \times 10^{-3}$ and $y^{\prime}=(4.3 \pm 4.3) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y$ $\sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$
$8{ }^{8}$ and $\bar{D}^{0} \rightarrow K^{+}{ }^{+} \pi^{-}$events in a time-dependent amplitude analysis of the D^{0} and \bar{D}^{0} Dalitz plots. No evidence was found for $C P$ violation, and the values here assume no such violation.
${ }^{9}$ The result was established with D^{0} from prompt and secondary D^{*}. Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=(3.6 \pm$ 4.3) $\times 10^{-5}$ and $y^{\prime}=(5.23 \pm 0.84) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y \sin (\delta), y^{\prime}=$ $y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow$ ${ }_{10} K^{+} \pi^{-}$.
${ }^{10}$ Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=(5.5 \pm 4.9) \times 10^{-4}$ and $y^{\prime}=(4.8 \pm 1.0) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y$ $\sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$
11 Based on ${ }_{1}{ }^{\text {and }}{ }^{K+1}{ }^{\pi^{-}}$of data collected at $\sqrt{s}=7 \mathrm{TeV}$ in 2011. Assumes no $C P$ violation. Reported $x^{\prime 2}=(-0.9 \pm 1.3) \times 10^{-4}$ and $y^{\prime}=(7.2 \pm 2.4) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)$ $+y \sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow$ $K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$
12 The AUBERT 09AN values are inferred from the branching ratio $\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right.$ via $\left.\bar{D}^{0}\right) / \Gamma\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)$ given near the end of this Listings. Mixing is distinguished from DCS decays using decay-time information. Interference between mixing and DCS is allowed. The phase between $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ is assumed to be small. The width difference here is $y^{\prime \prime}$, which is not the same as $y_{C P}$ in the note on $D^{0}-\bar{D}^{0}$ mixing.
${ }^{13}$ LOWREY 09 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$. See below for coherence factors and average relative strong phases for both $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{-} 2 \pi^{+}$. A fit that includes external measurements of charm mixing parameters gets $\Delta m=(2.34 \pm 0.61) \times 10^{10} \hbar \mathrm{~s}^{-1}$.
${ }^{14}$ The ASNER 05 and ZHANG 07B values are from the time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. Decay-time information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This value allows $C P$ violation and is sensitive to the sign of Δm.
${ }^{15}$ The AUBERT 03Z, LI 05A, and ZHANG 06 limits are inferred from the $D^{0}-\bar{D}^{0}$ mixing ratio $\Gamma\left(K^{+} \pi^{-}\left(\right.\right.$via $\left.\left.\bar{D}^{0}\right)\right) / \Gamma\left(K^{-} \pi^{+}\right)$given near the end of this D^{0} Listings. Decaytime information is used to distinguish DCS decays from $D^{0}-\bar{D}^{0}$ mixing. The limit allows interference between the DCS and mixing ratios, and also allows $C P$ violation. AUBERT $03 z$ assumes the strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$ amplitudes is small; if an arbitrary phase is allowed, the limit degrades by 20%. The LI 05A and ZHANG 06 limits are valid for an arbitrary strong phase.
${ }^{16}$ This LINK 05 H limit is inferred from the $D^{0}-D^{0}$ mixing ratio $\Gamma\left(K^{+} \pi^{-}\right.$(via $\left.\left.\bar{D}^{0}\right)\right) / \Gamma\left(K^{-} \pi^{+}\right)$given near the end of this D^{0} Listings. Decay-time information is used to distinguish DCS decays from $D^{0}-\bar{D}^{0}$ mixing. The limit allows interference between the DCS and mixing ratios, and also allows $C P$ violation. The strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$is assumed to be small. If an arbitrary relative strong phase is allowed, the limit degrades by 25%
${ }^{17}$ This GODANG 00 limit is inferred from the $D^{0}-\bar{D}^{0}$ mixing ratio $\Gamma\left(K^{+} \pi^{-}\right.$(via $\left.\left.\bar{D}^{0}\right)\right) / \Gamma\left(K^{-} \pi^{+}\right)$given near the end of this D^{0} Listings. Decay-time information is used to distinguish DCS decays from $D^{0}-\bar{D}^{0}$ mixing. The limit allows interference between the DCS and mixing ratios, and also allows $C P$ violation. The strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$is assumed to be small. If an arbitrary relative strong phase is allowed, the limit degrades by a factor of two.
${ }^{18}$ AITALA 98 allows interference between the doubly Cabibbo-suppressed and mixing amplitudes, and also allows $C P$ violation in this term, but assumes that $A_{D}=A_{R}=0$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing," above.
${ }^{19}$ This limit is inferred from R_{M} for $f=K^{+} \pi^{-}$and $f=K^{+} \pi^{-} \pi^{+} \pi^{-}$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing," above. Decay-time information is used to distinguish doubly Cabibbosuppressed decays from $D^{0}-\bar{D}^{0}$ mixing.
${ }^{20}$ This limit is inferred from R_{M} for $f=K^{+} \ell^{-} \bar{\nu}_{\ell}$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing,"
${ }^{21}$ above. 88 C assumes that $y=0$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing," above. Without this assumption, the limit degrades by about a factor of two.

$\left(\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}}\right) / \Gamma=2 y$

The D_{1}^{0} and D_{2}^{0} are the mass eigenstates of the D^{0} meson, as described in the note on " $D^{0}-D^{0}$ Mixing," above.
Due to the strong phase difference between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow$ $K^{+} \pi^{-}$, we exclude from the average those measurements of y^{\prime} that are inferred from the $D^{0}-\bar{D}^{0}$ mixing ratio $\Gamma\left(K^{+} \pi^{-}\right.$via $\left.\bar{D}^{0}\right) / \Gamma\left(K^{+} \pi^{-}\right)$ given near the end of this D^{0} Listings.
Some early results have been omitted. See our 2006 Review (Journal of Physics G33 1 (2006)).
"OUR EVALUATION" Comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " $D^{0}-\bar{D}^{0}$ Mixing."

${ }^{1}$ Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Measures the lifetime difference between $D^{0} \rightarrow K^{-} K^{+}$and $D^{0} \rightarrow \pi^{-} \pi^{+}(C P$ even $)$ decays and $D^{0} \rightarrow K^{-} \pi^{+}$ ($C P$ mixed) decays, or $y_{C P}=\left(\Gamma_{C P+}-\Gamma_{C P-}\right) /\left(\Gamma_{C P+}+\Gamma_{C P-}\right)$. The D^{0} mesons are required to originate from semimuonic decays of B mesons. We list $2 y_{C P}=\Delta \Gamma / \Gamma$.
${ }^{2}$ AAIJ $19 \times D^{0}$ come from D^{*+} and $\bar{B} \rightarrow D^{0} \mu^{-} X$ decays (and c.c.) in $p p$ collisions at 7 and 8 TeV . Measurement allows for $C P$ violation (none seen).
${ }^{3}$ The result was established with D^{0} from prompt and secondary D^{*}. Based on $5 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8,13 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=$ $(3.9 \pm 2.7) \times 10^{-5}$ and $y^{\prime}=(5.28 \pm 0.52) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y \sin (\delta)$,
$y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$
${ }^{4}$ Model-independent measurement of the charm mixing parameters in the decay $D^{0} \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$using $1.0 \mathrm{fb}^{-1}$ of LHCb data at $\sqrt{s}=7 \mathrm{TeV}$.
${ }^{5}$ Time-dependent amplitude analysis of $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
${ }^{6}$ An improved measurement of $\bar{D}^{0}-D^{0}$ mixing and a search for $C P$ violation in D^{0} decays to $C P$-even final states $K^{+} K^{-}$and $\pi^{+} \pi^{-}$using the final Belle data sample of $976 \mathrm{fb}^{-1}$.
${ }^{7}$ ABLIKIM 15D uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$.
${ }^{8}$ Based on $976 \mathrm{fb}^{-1}$ of data collected at $Y(\mathrm{nS})$ resonances. Assumes no $C P$ violation. Reported $x^{\prime 2}=(0.09 \pm 0.22) \times 10^{-3}$ and $y^{\prime}=(4.6 \pm 3.4) \times 10^{-3}$, where $x^{\prime}=\mathrm{x} \cos (\delta)$ $+\mathrm{y} \sin (\delta), y^{\prime}=\mathrm{y} \cos (\delta)-\mathrm{x} \sin (\delta)$ and δ is the strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.

Meson Particle Listings

${ }^{9}$ The time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$is emplored. Decaytime information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow$ $K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This value allows $C P$ violation and is sensitive to the sign of Δm.
${ }^{10}$ Based on $9.6 \mathrm{fb}^{-1}$ of data collected at the Tevatron. Assumes no $C P$ violation. Reported $x^{\prime 2}=(0.08 \pm 0.18) \times 10^{-3}$ and $y^{\prime}=(4.3 \pm 4.3) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y$ $\sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.
11 Obtained $y_{C P}=(0.72 \pm 0.18 \pm 0.12) \%$ based on three effective D^{0} lifetimes measured in $K^{\mp} \pi^{ \pm}, K^{-} K^{+}$, and $\pi^{-} \pi^{+}$. We list $2 y_{C P}=\Delta \Gamma / \Gamma$.
${ }^{12}$ Compared the lifetimes of D^{0} decay to the $C P$ eigenstate $K^{+} K^{-}$with D^{0} decay to $\pi^{+} K^{-}$. The values here assume no $C P$ violation.
${ }^{13}$ DEL-AMO-SANCHEZ 10D uses $540,800 \pm 800 K_{S}^{0} \pi^{+} \pi^{-}$and $79,900 \pm 300 K_{S}^{0} K^{+} K^{-}$ events in a time-dependent amplitude analyses of the D^{0} and \bar{D}^{0} Dalitz plots. No evidence was found for $C P$ violation, and the values here assume no such violation.
${ }^{14}$ ZUPANC 09 uses a method based on measuring the mean decay time of $D^{0} \rightarrow$ $K_{S}^{0} K^{+} K^{-}$events for different $K^{+} K^{-}$mass intervals.
${ }^{15}$ LINK 00 , AITALA 99 E , and ABE 021 measure the lifetime difference between $D^{0} \rightarrow K^{-} K^{+}\left(C P\right.$ even) decays and $D^{0} \rightarrow K^{-} \pi^{+}$(CP mixed) decays, or $y_{C P}=$ $[\Gamma(C P+)-\Gamma(C P-)] /[\Gamma(C P+)+\Gamma(C P-)]$. We list ${ }^{2 y}{ }_{C P}=\Delta \Gamma / \Gamma$.
${ }^{16}$ CSORNA 02 measures the lifetime difference between $D^{0} \rightarrow K^{-} K^{+}$and $\pi^{-} \pi^{+}$(CPeven) decays and $D^{0} \rightarrow K^{-} \pi^{+}(C P$ mixed $)$ decays, or $y_{C P}=$ $[\Gamma(C P+)-\Gamma(C P-)] /[\Gamma(C P+)+\Gamma(C P-)]$. We list $2 y_{C P}=\Delta \Gamma / \Gamma$.
${ }^{17}$ The result was established with D^{0} from prompt and secondary D^{*}. Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=(3.6 \pm$ $4.3) \times 10^{-5}$ and $y^{\prime}=(5.23 \pm 0.84) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y \sin (\delta), y^{\prime}=$ $y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow$ ${ }_{8}{ }^{K^{+}} \pi^{-}$.
${ }^{18}$ Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Assumes no $C P$ violation. Reported $x^{\prime 2}=(5.5 \pm 4.9) \times 10^{-4}$ and $y^{\prime}=(4.8 \pm 1.0) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)+y$ $\sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow K^{+} \pi^{-}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.
${ }^{19}$ Based on $1 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7 \mathrm{TeV}$ in 2011. Assumes no $C P$ violation. Reported $x^{\prime 2}=(-0.9 \pm 1.3) \times 10^{-4}$ and $y^{\prime}=(7.2 \pm 2.4) \times 10^{-3}$, where $x^{\prime}=x \cos (\delta)$ $+y \sin (\delta), y^{\prime}=y \cos (\delta)-x \sin (\delta)$ and δ is the strong phase between the $D^{0} \rightarrow$ $K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$
${ }^{20}$ This combines the $y_{C P}=(\tau K \pi / \tau K K)-1$ using untagged $K^{-} \pi^{+}$and $K^{-} K^{+}$events of AUBERT 09Al with the disjoint $y_{C P}$ using tagged $K^{-} \pi^{+}, K^{-} K^{+}$, and $\pi^{-} \pi^{+}$ 21 events of AUBERT 08 U .
${ }^{21}$ The AUBERT 09AN values are inferred from the branching ratio $\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right.$ via $\left.\bar{D}^{0}\right) / \Gamma\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)$ given near the end of this Listings. Mixing is distinguished from DCS decays using decay-time information. Interference between mixing and DCS is allowed. The phase between $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ and $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ is assumed to be small. The width difference here is $y^{\prime \prime}$, which is not the same as $y_{C P}$ in the note on $D^{0}-\bar{D}^{0}$ mixing.
${ }^{22}$ LOWREY 09 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$. See below for coherence factors and average relative strong phases for both $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{-} 2 \pi^{+}$. A fit that includes external measurements of charm mixing parameters gets $2 y=(1.62 \pm 0.32) \times 10^{-2}$.
${ }^{23}$ The GODANG 00, AUBERT 03z, LINK 05H, LI 05A, ZHANG 06, AUBERT 07w, and AALTONEN 08E limits are inferred from the $D^{0}-\bar{D}^{0}$ mixing ratio $\Gamma\left(K^{+} \pi^{-}\right.$(via $\left.\left.\bar{D}^{0}\right)\right) / \Gamma\left(K^{-} \pi^{+}\right)$given near the end of this D^{0} Listings. Decay-time information is used to distinguish DCS decays from $D^{0}-\bar{D}^{0}$ mixing. The limits allow interference between the DCS and mixing ratios, and all except AUBERT 07W and AALTONEN 08 E also allow $C P$ violation. The phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$is assumed to be small. This is a measurement of y^{\prime} and is not the same as the $y_{C P}$ of our note above on " $D^{0}-\bar{D}^{0}$ Mixing."
24 This value combines the results of AUBERT 08 U and AUBERT 03P.
${ }^{25}$ STARIC 07 compares the lifetimes of D^{0} decay to the CP eigenstates $K^{+} K^{-}$and $\pi^{+} \pi^{-}$with D^{0} decay to $K^{-} \pi^{+}$.
${ }^{26}$ The ASNER 05 and ZHANG 07 B values are from the time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. Decay-time information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This limit allows $C P$ 27 violation.
27 The ranges of AUBERT 03Z, LINK 05H, LI 05A, and ZHANG 06 measurements are for
${ }^{28} \begin{aligned} & 95 \% \text { confidence level. } \\ & \text { AUBERT 03P measures } \\ & Y\end{aligned} 2 \tau^{0} /\left(\tau^{+}+\tau^{-}\right)-1$, where τ^{0} is the $D^{0} \rightarrow K^{-} \pi^{+}$ (and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$) lifetime, and τ^{+}and τ^{-}are the D^{0} and \bar{D}^{0} lifetimes to $C P$-even states (here $K^{-} K^{+}$and $\pi^{-} \pi^{+}$). In the limit of $C P$ conservation, $Y=y \equiv \Delta \Gamma / 2 \Gamma$ (we list $2 \mathrm{y}=\Delta \Gamma / \Gamma$). AUBERT 03P also uses $\tau^{+}-\tau^{-}$to get $\Delta \mathrm{Y}=-0.008 \pm 0.006 \pm 0.002$.

$|q / p|$

The mass eigenstates D_{1}^{0} and D_{2}^{0} are related to the $C= \pm 1$ states by $\left|D_{1,2}\right\rangle=$ $\mathrm{p}\left|D^{0}>+\mathrm{q}\right| \bar{D}^{0}>$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing" above.
"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group. This would include as-yet-unpublished results, see the note on " $D^{0}-\bar{D}^{0}$ Mixing."
VALUE DEVTS DOCUMENTID TECN COMMENT
$0.92{ }_{-0.09}^{\mathbf{0} .12}$ OUR EVALUATION HFAG fit; see the note on " $D^{0}-\bar{D}^{0}$ Mixing."
$0.97{ }_{-0.12}^{+0.14}$ OUR AVERAGE
$1.05{ }_{-0.17}^{+0.22} \quad 2.3 \mathrm{M} \quad 1 \mathrm{AAIJ} \quad 19 \times \operatorname{LHCB} \quad D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$
$\begin{array}{lll} & { }^{2} \text { AAIJ } & 18 \mathrm{k} \\ \text { LHCB } & p p \text { at } 7,8,13 \mathrm{TeV} \\ 0.90_{-0.15-0.08}^{+0.16+0.08} & { }^{3} \text { PENG } & 14\end{array}$

- . . We do not use the following data for averages, fits, limits, etc. - . -

0.86			
$+0.30+0.10$	AAIJ	13CE LHCB	Repl. by AAIJ 18 K

${ }^{1}$ AAIJ $19 \times D^{0}$ come from D^{*+} and $\bar{B} \rightarrow D^{0} \mu^{-} X$ decays (and c.c.) in $p p$ collisions at 7 and 8 TeV .
${ }^{2}$ Based on $5 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8,13 \mathrm{TeV}$. Allowing for $C P$ violation, the direct $C P$ violation in mixing is reported $1.00<|\mathrm{q} / \mathrm{p}|<1.35$ at the $68.3 \% \mathrm{CL}$ for the $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.
3 The time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$is employed. Decaytime information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow$ $K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This value allows $C P$ violation and is sensitive to the sign of Δm.
${ }^{4}$ Based on $3 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Allowing for $C P$ violation, the direct $C P$ violation in mixing is reported $0.75<|\mathrm{q} / \mathrm{p}|<1.24$ at the $68.3 \% \mathrm{CL}$ for the ${ }_{5} D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.
5 The phase of p / q is $\left(-14_{-18}^{+} \pm 5\right)^{\circ}$. The ZHANG 07B value is from the time-dependent Dalitz-plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. Decay-time information and interference on the Dalitz plot are used to distinguish doubly Cabibbo-suppressed decays from mixing and to measure the relative phase between $D^{0} \rightarrow K^{*+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{*+} \pi^{-}$. This value allows $C P$ violation.
A_{Γ}
A_{Γ} is the decay-rate asymmetry for $C P$-even final states $\mathrm{A}_{\Gamma}=\left(\bar{\tau}_{+}-\tau_{+}\right) /\left(\bar{\tau}_{+}+\tau_{+}\right)$. See the note on " $D^{0}-\bar{D}^{0}$ Mixing" above.
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
-0.125 ± 0.526 OUR EVALUATION
$\mathbf{- 0 . 3 1} \pm \mathbf{0 . 2 3}$ OUR AVERAGE Error includes scale factor of 1.1.

-0.44	± 0.23	± 0.06	21M	${ }^{1}$ AAIJ	20	LHCB	$D^{0} \rightarrow K^{+} K^{-}$
0.25	± 0.43	± 0.07	7M	${ }^{2}$ AAIJ	20	LHCB	$D^{0} \rightarrow \pi^{+} \pi^{-}$
-0.3	± 2.0	± 0.7		3 STARIC	16	BELL	$e^{+} e^{-} \rightarrow \gamma(\mathrm{nS})$
-1.2	± 1.2		1.8M	${ }^{4}$ AALTONEN	14Q	CDF	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
0.9	± 2.6	± 0.6	0.7 M	LEES	13	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
-5.9	± 5.9	± 2.1		${ }^{5}$ AAIJ	12 K	LHCB	$p p \text { at } 7 \mathrm{TeV}, 2010$
- - We do not use the following data for averages, fits, limits, etc. - -							
-0.30	± 0.32	± 0.10	9.6 M	${ }^{5}$ AAIJ	17AK	LHCB	Repl. by AAIJ 20
0.46	± 0.58	± 0.12	3.0 M	6 AAIJ	17AK	LHCB	Repl. by AAIJ 20
-1.34	± 0.77	$\begin{aligned} & +0.26 \\ & -0.34 \end{aligned}$	2.3M	7 AAIJ	15AA	LHCB	Repl. by AAIJ 20
-0.92	± 1.45	$\begin{array}{r} +0.25 \\ -0.33 \end{array}$	0.8 M	${ }^{8}$ AAIJ	15AA	LHCB	Repl. by AAIJ 20
-0.35	± 0.62	± 0.12		${ }^{5}$ AAIJ	14AL	LHCB	Repl. by AAIJ 17AK
0.33	± 1.06	± 0.14		6 AAIJ	14AL	LHCB	Repl. by AAIJ 17AK
2.6	± 3.6	± 0.8		AUBERT	08 u	BABR	See LEES 13
0.1	± 3.0	± 2.5		STARIC	07	BELL	Repl. by STARIC 16
8	± 6	± 2		AUBERT	03P	BABR	$e^{+} e^{-} \approx r(4 S)$

${ }^{1}$ Measured using $D^{0} \rightarrow K^{+} K^{-}$decays, combines measurements with D^{0} either from partially reconstructed semileptonic B hadron decays or from $D^{*+} \rightarrow D^{0} \pi^{+}$.
${ }^{2}$ Measured using $D^{0} \rightarrow \pi^{+} \pi^{-}$decays, combines measurements with D^{0} either from partially reconstructed semileptonic B hadron decays or from $D^{*+} \rightarrow D^{0} \pi^{+}$
${ }^{3}$ An improved measurement of $\bar{D}^{0}-D^{0}$ mixing and a search for $C P$ violation in D^{0} decays to $C P$-even final states $K^{+} K^{-}$and $\pi^{+} \pi^{-}$using the final Belle data sample of $976 \mathrm{fb}^{-1}$.
${ }^{4}$ Combined result from $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$, with D^{0} from $D^{*+} \rightarrow$ $D^{0} \pi^{+}$(and cc).
${ }^{5}$ Measured using $D^{*+} \rightarrow D^{0} \pi^{+}, D^{0} \rightarrow K^{+} K^{-}$decays (and cc).
${ }^{6}$ Measured using $D^{*+} \rightarrow D^{0} \pi^{+}, D^{0} \rightarrow \pi^{+} \pi^{-}$decays (and cc).
${ }^{7}$ Measured using $D^{0} \rightarrow K^{+} K^{-}$decays, with D^{0} from partially reconstructed semileptonic B hadron decays.
${ }^{8}$ Measured using $D^{0} \rightarrow \pi^{+} \pi^{-}$decays, with D^{0} from partially reconstructed semileptonic B hadron decays.

$\phi^{k_{S}^{0} \pi \pi}$

Parametrizes $C P$ violation in the interference between D^{0} mixing and decay. The mass eigenstates D_{1}^{0} and D_{2}^{0} are related to the $C= \pm 1$ states by $\left|D_{1,2}>=\mathrm{p}\right| D^{0}>+$ $\mathrm{q} \mid \bar{D}^{0}>$. In the absence of $C P$ violation in the decay, and using the usual phase convention where $C P$ conservation implies q / p is real, $\phi^{K_{S}^{0} \pi \pi}$ is identical to the decay-mode-independent parameter $\phi=\arg (q / p)$.
VALUE EVTS DOCUMENTID LECN COMMENT
$=0.09{ }_{-0.13}^{0.10}$ OUR AVERAGE
$\begin{array}{lllll}-0.09_{-0.16}^{+0.11} & 2.3 \mathrm{M} & 1_{\text {AAIJ }} & 19 \times \text { LHCB } & D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \\ -0.10 \pm 0.19 \pm 0.05_{-0.07}^{+0.05} & 1.2 \mathrm{M} & 2 \text { PENG } & 14 & \mathrm{BELL} \\ e^{+} e^{-} \text {at } r(4 \mathrm{~S}, 5 \mathrm{~S})\end{array}$
${ }^{1}$ AAIJ $19 \times D^{0}$ come from D^{*+} and $\bar{B} \rightarrow D^{0} \mu^{-} X$ decays (and c.c.) in $p p$ collisions at
7 and 8 TeV .
2 The last uncertainty is due to the amplitude model.
$\cos \delta$
δ is the $D^{0} \rightarrow K^{+} \pi^{-}$relative strong phase.

- - We do not use the following data for averages, fits, limits, etc. - -
$1.03{ }_{-0.17}^{+0.31} \pm 0.06 \quad{ }^{3}$ ASNER 08 CLEO Repl. by ASNER 12
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$ to measure the asymmetry of the branching fraction of $D^{0} \rightarrow K^{-} \pi^{+}$in $C P$-odd and $C P$-even eigenstates to be ($12.7 \pm 1.3 \pm 0.7$) \%. A fit that includes external measurements of charm mixing parameters finds the value quoted above.
${ }^{2}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where decay rates of $C P$-tagged $K \pi$ final states depend on the strong phases between the decays of $D^{0} \rightarrow$ $K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$. The measurements obtained $\sin (\delta)=-0.01 \pm 0.41 \pm 0.04$ and $|\delta|=\left(10_{-53-00}^{+28}\right)^{\circ}$ as well. A fit that includes external measurements of charm mixing parameters finds $\cos (\delta)=1.15_{-0.17}^{+0.19}+0.000, \sin (\delta)=0.56_{-0.31}^{+0.32+0.21}{ }_{-0.20}$, and $|\delta|$ $=\left(18_{-17}^{+11}\right)^{\circ}$.
${ }^{3}$ ASNER 08 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where decay rates of $C P$-tagged $K \pi$ final states depend on $\cos \delta$ because of interfering amplitudes. The above measurement implies $|\delta|<75^{\circ}$ with a confidence level of 95%. A fit that includes external measurements of charm mixing parameters finds $\cos \delta=1.10 \pm 0.35 \pm$ 0.07 . See also the note on " $D^{0}-\bar{D}^{0}$ Mixing" p. 783 in our 2008 Review (PDG 08).

$D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ COHERENCE FACTOR $\boldsymbol{R}_{K \pi \pi^{0}}$

See the note on ' $D^{0}-\bar{D}^{0}$ Mixing' for the definition. $R_{K \pi \pi^{0}}$ can have any value between 0 and 1. A value near 1 indicates the decay is dominated by a few intermediate states with limited interference.
Value

- - We do not use the following data for averages, fits, limits, etc. - -
0.82 ± 0.07
1,3
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{+} \pi^{0}$ final states depend on $R_{K \pi \pi^{0}}$ and $\delta^{K \pi \pi^{0}}$.
${ }^{2}$ A combined fit with a recent LHCb $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16 F is also reported to be 0.81 ± 0.06.
${ }^{3}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{4}$ LOWREY 09 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{+} \pi^{0}$ final states depend on $R_{K \pi \pi^{0}}$ and $\delta K \pi \pi^{0}$. A fit that includes external measurements of charm mixing parameters gets $R_{K \pi \pi^{0}}=$ 0.84 ± 0.07.
$D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ AVERAGE RELATIVE STRONG PHASE $\delta^{K} \pi \pi^{0}$
The quoted value of δ is based on the same sign $C P$ phase of D^{0} and \bar{D}^{0} convention. VALUE ${ }^{\circ}$) DOCUMENTID TECN COMMENT $199{ }_{-14}^{\mathbf{1 3}} \quad 1,2,3$ EVANS $\quad 16 \quad e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at $\psi(3770)$
- - We do not use the following data for averages, fits, limits, etc. - - -

1644_{-14}^{+20}	1,3	LIBBY	14	
$239+32$	${ }^{4}$ LOWREY	09	CLEO	Repl. by LIBBY 14

${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{+} \pi^{0}$ final states depend on $R_{K \pi \pi^{0}}$ and $\delta^{K \pi \pi^{0}}$.
${ }^{2}$ A combined fit with a recent LHCB $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16F is also reported to be $198{ }_{-15}^{+14}$ degree.
${ }^{3}$ Obtained by analyzing CLEO-C data but not authored by the CLEO Collaboration.
${ }^{4}$ LOWREY 09 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{+} \pi^{0}$ final states depend on $R_{K \pi \pi^{0}}$ and $\delta K \pi \pi^{0}$. A fit that includes external measurements of charm mixing parameters gets $\delta^{K} \pi \pi^{0}=$ $(227-14)^{\circ}$.

$D^{0} \rightarrow K^{-} \pi^{-} 2 \pi^{+}$COHERENCE FACTOR $R_{K} 3 \pi$

See the note on ' $D^{0}-\bar{D}^{0}$ Mixing' for the definition. $R_{K 3 \pi}$ can have any value between 0 and 1. A value near 1 indicates the decay is dominated by a few intermediate states with limited interference.

- . We do not use the following data for averages, fits, limits, etc. - . .
$0.458 \pm 0.010 \pm 0.023 \quad 0.9 \mathrm{M}, 3 \mathrm{k} \quad{ }^{4} \mathrm{AAIJ} \quad 18 \mathrm{AI}$ LHCB amplitude models 【
$0.32{ }_{-0.28}^{+0.20} \quad 1,3$ LIBBY $14 \quad$ Repl. by EVANS 16
$0.36{ }_{-0.30}^{+0.24} \quad{ }^{5}$ LOWREY 09 CLEO Repl. by LIBBY 14
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates
of $C P$-tagged $K^{-} \pi^{-} 2 \pi^{+}$final states depend on $R_{K} 3 \pi$ and $\delta^{K} 3 \pi$.
${ }^{2}$ A combined fit with a recent LHCB $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16 F is also reported, to be $0.43{ }_{-0.13}^{+0.17}$.

${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{-} 2 \pi^{+}$final states depend on $R_{K 3}$ and $\delta K 3 \pi$.
${ }^{2}$ A combined fit with a recent LHCb $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16 F is also reported to be $\left(128_{-17}^{+28}\right)^{\circ}$.
${ }^{3}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{4}$ LOWREY 09 uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the decay rates of $C P$-tagged $K^{-} \pi^{-} 2 \pi^{+}$final states depend on $R_{K 3 \pi}$ and $\delta K 3 \pi$. A fit that includes external measurements of charm mixing parameters gets $\delta^{K 3 \pi}=$ $\left(114{ }_{-23}^{+26}\right)^{\circ}$.

$D^{0} \rightarrow K^{-} \pi^{-} 2 \pi^{+}, R_{K 3 \pi}\left(y \cos \delta^{K 3 \pi}-\mathrm{x} \sin \delta^{K 3 \pi}\right)$

VALUE $\left(10^{-3} \mathrm{TeV}^{-1}\right)$ EVTS \quad DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\overline{-\mathbf{3 . 0} \pm \mathbf{0 . 7}} \frac{42.5 \mathrm{k}}{1 \mathrm{AAIJ}} \quad 16 \mathrm{~F} \quad \mathrm{LHCB} \quad p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ From a time-dependent analysis of D mixing in $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$. This result uses external constraints on $\mathrm{R}_{M}=1 / 2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$. Without such constraints, AAIJ 16F measure (0.3 ± 1.8) $\times 10^{-3}$, with a large correlation coefficient to R_{M}.

```
\(\boldsymbol{D}^{\mathbf{0}} \boldsymbol{\rightarrow} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{K}^{+} \boldsymbol{\pi}^{-}\)COHERENCE FACTOR \(\mathbf{R}_{\boldsymbol{K}_{\boldsymbol{S}}^{0} \boldsymbol{K} \boldsymbol{\pi}}\)
VALUE
VALUE \(\quad\) DOCUMENT ID TECN COMMENT
\(\mathbf{0 . 7 0 \pm 0 . 0 8} \quad{ }^{1}\) INSLER \(\quad 12 \quad\) CLEO \(\underset{\mathrm{GeV}}{e^{+}} \rightarrow D^{0} \bar{D}^{0}\) at 3.77
```

${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the signal side D decays to $K_{S}^{0} K \pi$ and the tag-side D decays to $K \pi, K \pi \pi \pi, K \pi \pi^{0}$, and 10 additional $C P$-even, $C P$-odd, and mixed $C P$ modes involving K_{S}^{0} or K_{L}^{0}.
$D^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-}$AVERAGE RELATIVE STRONG PHASE $\delta^{K}{ }_{S}^{0} \kappa \pi$
The quoted value of δ is based on the same sign $C P$ phase of D^{0} and \bar{D}^{0} convention.
$\frac{\operatorname{VALUE}\left({ }^{\circ}\right)}{\mathbf{0 . 1} \pm \mathbf{1 5 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{12}{\text { INSLER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \text { at } 3.77}$
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the signal side D decays to $K_{S}^{0} K \pi$ and the tag-side D decays to $K \pi, K \pi \pi \pi, K \pi \pi^{0}$, and 10 additional $C P$-even, $C P$-odd, and mixed $C P$ modes involving K_{S}^{0} or K_{L}^{0}.
$\boldsymbol{D}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{*} \boldsymbol{K}$ COHERENCE FACTOR $\mathbf{R}_{\boldsymbol{K}^{*}} \boldsymbol{K}$
VALUE
DOCUMENT ID
$\frac{\text { VALUE }}{\mathbf{0 . 9 4} \pm \mathbf{0 . 1 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { INSLER }} 12 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\substack{e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \text { at } 3.77 \\ \mathrm{GeV}}}$
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the signal side D decays to $K_{S}^{0} K \pi$ and the tag-side D decays to $K \pi, K \pi \pi \pi, K \pi \pi^{0}$., and 10 additional $C P$-even, $C P$-odd, and mixed $C P$ modes involving K_{S}^{0} or K_{L}^{0}.
$D^{0} \rightarrow \boldsymbol{K}^{*} \boldsymbol{K}$ AVERAGE RELATIVE STRONG PHASE $\boldsymbol{\delta}^{\boldsymbol{K}^{*} \boldsymbol{K}}$
The quoted value of δ is based on the same sign $C P$ phase of D^{0} and \bar{D}^{0} convention. $\frac{\operatorname{VALUE}\left({ }^{\circ}\right)}{-\mathbf{1 6 . 6} \pm \mathbf{1 8 . 4}} \quad 1 \frac{\text { DOCUMENT ID }}{12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\substack{e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \\ \mathrm{GeV}}}$ at 3.77
${ }^{1}$ Uses quantum correlations in $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at the $\psi(3770)$, where the signal side D decays to $K_{S}^{0} K \pi$ and the tag-side D decays to $K \pi, K \pi \pi \pi, K \pi \pi^{0}$, and 10 additional $C P$-even, $C P$-odd, and mixed $C P$ modes involving K_{S}^{0} or K_{L}^{0}.

D^{0} DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_{S}^{0} modes, not as \bar{K}^{0} modes. Nearly always it is a K_{S}^{0} that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma\left(K_{S}^{0}\right)=\Gamma\left(\bar{K}^{0}\right)$.

Meson Particle Listings
D^{0}

Meson Particle Listings
D^{0}

$\Delta C=1$ weak neutral current（C1）modes， Lepton Family number（ $L F$ ）violating modes， Lepton（ L ）or Baryon（ B ）number violating modes					
Γ_{270}	$\gamma \gamma$	C1	＜ 8.5	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{271}	$e^{+} e^{-}$	C1	<7.9	$\times 10^{-8}$	CL＝90\％
Γ_{272}	$\mu^{+} \mu^{-}$	C1	＜ 6.2	$\times 10^{-9}$	CL＝90\％
「273	$\pi^{0} e^{+} e^{-}$	C1	＜ 4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
「274	$\pi^{0} \mu^{+} \mu^{-}$	C1	＜ 1.8	$\times 10^{-4}$	CL＝90\％
Γ_{275}	$\eta e^{+} e^{-}$	C1	<3	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{276}	$\eta \mu^{+} \mu^{-}$	C1	＜ 5.3	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{277}	$\pi^{+} \pi^{-} e^{+} e^{-}$	C1	$<$	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
「278	$\rho^{0} e^{+} e^{-}$	C1	＜ 1.0	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{279}	$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$	C1	（ 9.6	$\pm 1.2) \times 10^{-7}$	
Γ_{280}	$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$（non－res）		<5.5	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{281}	$\rho^{0} \mu^{+} \mu^{-}$	C1	＜ 2.2	$\times 10^{-5}$	CL＝90\％
Γ_{282}	$\omega e^{+} e^{-}$	C1	$<$	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
「283	$\omega \mu^{+} \mu^{-}$	C1	＜ 8.3	$\times 10^{-4}$	CL＝90\％
Γ_{284}	$K^{-} K^{+} e^{+} e^{-}$	C1	＜ 1.1	$\times 10^{-5}$	CL＝90\％
「285	$\phi e^{+} e^{-}$	C1	<5.2	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{286}	$K^{-} K^{+} \mu^{+} \mu^{-}$	C1	（ 1.54	$\pm 0.32) \times 10^{-7}$	
Γ_{287}	$K^{-} K^{+} \mu^{+} \mu^{-}$（non－res）		<3.3	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{288}	$\phi \mu^{+} \mu^{-}$	C1	＜ 3.1	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「289	$\overline{K^{0}} e^{+} e^{-}$		$[i]<2.4$	$\times 10^{-5}$	CL＝90\％
$\Gamma 290$	$\bar{K}^{0} \mu^{+} \mu^{-}$		$[i]<2.6$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「291	$K^{-} \pi^{+} e^{+} e^{-}$				
Γ_{292}	$\begin{gathered} K^{-} \pi^{+} e^{+} e^{-}, 675< \\ m_{e e}<875 \mathrm{MeV} \end{gathered}$		（ 4.0	$\pm 0.5) \times 10^{-6}$	
「293	$\begin{gathered} K^{-} \pi^{+} e^{+} e^{-}, 1.005< \\ m_{e e}<1.035 \mathrm{GeV} \end{gathered}$		<5	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
「294	$\bar{K}^{*}(892)^{0} e^{+} e^{-}$		$[i]<4.7$	$\times 10^{-5}$	CL＝90\％
「295	$K^{-} \pi^{+} \mu^{+} \mu^{-}$	C1	<3.59	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{296}	$\begin{gathered} K^{-} \pi^{+} \mu^{+} \mu^{-}, 675< \\ m_{\mu \mu}<875 \mathrm{MeV} \end{gathered}$		（ 4.2	$\pm 0.4) \times 10^{-6}$	
Γ_{297}	$\bar{K}^{*}(892){ }^{0} \mu^{+} \mu^{-}$		［i］＜ 2.4	$\times 10^{-5}$	CL＝90\％
「298	$\pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$	C1	＜ 8.1	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「299	$\mu^{ \pm} e^{\mp}$	LF	$[j]<1.3$	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
「300	$\pi^{0} e^{ \pm} \mu^{\mp}$	LF	$[j]<8.6$	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「301	$\eta e^{ \pm} \mu^{\mp}$	LF	［j］＜ 1.0	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「302	$\pi^{+} \pi^{-} e^{ \pm} \mu^{\mp}$	LF	［j］＜ 1.5	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「303	$\rho^{0} e^{ \pm} \mu^{\mp}$	LF	$[j]<4.9$	$\times 10^{-5}$	CL＝90\％
「304	$\omega e^{ \pm} \mu^{\mp}$	LF	［j］＜ 1.2	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「305	$K^{-} K^{+} e^{ \pm} \mu^{\mp}$	LF	$[j]<1.8$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「306	$\phi e^{ \pm} \mu^{\mp}$	LF	［j］＜ 3.4	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「307	$\bar{K}^{0} e^{ \pm} \mu^{\mp}$	LF	$[j]<1.0$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「308	$K^{-} \pi^{+} e^{ \pm} \mu^{\mp}$	LF	$[j]<5.53$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「309	$\bar{K}^{*}(892)^{0} e^{ \pm} \mu^{\mp}$	LF	$[j]<8.3$	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「310	$2 \pi^{-} 2 e^{+}+$c．c．	L	＜ 1.12	$\times 10^{-4}$	CL＝90\％
「311	$2 \pi^{-} 2 \mu^{+}+$c．c．	L	<2.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「312	$K^{-} \pi^{-} 2 e^{+}+$c．c．				
「313	$K^{-} \pi^{-} 2 e^{+}$		＜ 2.8	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma 314$	$K^{-} \pi^{-} 2 \mu^{+}+$c．c．	L	<3.9	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「315	$2 K^{-} 2 e^{+}+$c．c．	L	＜ 1.52	$\times 10^{-4}$	CL＝90\％
「316	$2 K^{-} 2 \mu^{+}+$c．c．	L	＜ 9.4	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma 317$	$\pi^{-} \pi^{-} e^{+} \mu^{+}+$c．c．	L	＜ 7.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「318	$K^{-} \pi^{-} e^{+} \mu^{+}+$c．c．	L	<2.18	$\times 10^{-4}$	CL＝90\％
「319	$2 K^{-} e^{+} \mu^{+}+$c．c．	L	＜ 5.7	$\times 10^{-5}$	CL＝90\％
「320	$p e^{-}$	L，B	$[k]<1.0$	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「321	$\bar{p} e^{+}$	L，B	$[1]<1.1$	$\times 10^{-5}$	CL＝90\％

［a］This value is obtained by subtracting the branching fractions for 2－，4－ and 6－prongs from unity．
［b］This is the sum of our $K^{-} 2 \pi^{+} \pi^{-}, K^{-} 2 \pi^{+} \pi^{-} \pi^{0}$ ， $\bar{K}^{0} 2 \pi^{+} 2 \pi^{-}, K^{+} 2 K^{-} \pi^{+}, 2 \pi^{+} 2 \pi^{-}, 2 \pi^{+} 2 \pi^{-} \pi^{0}, K^{+} K^{-} \pi^{+} \pi^{-}$，and $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ ，branching fractions．
[c] This is the sum of our $K^{-} 3 \pi^{+} 2 \pi^{-}$and $3 \pi^{+} 3 \pi^{-}$branching fractions.
[d] The branching fractions for the $K^{-} e^{+} \nu_{e}, K^{*}(892)^{-} e^{+} \nu_{e}, \pi^{-} e^{+} \nu_{e}$, and $\rho^{-} e^{+} \nu_{e}$ modes add up to $6.17 \pm 0.17 \%$.
[e] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
[f] This is a doubly Cabibbo-suppressed mode.
[g] Submodes of the $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ mode with a K^{*} and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters B667 1 (2008), for those results.
[h] This branching fraction includes all the decay modes of the resonance in the final state.
[i] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
[j] The value is for the sum of the charge states or particle/antiparticle states indicated.
[k] This limit is for either D^{0} or \bar{D}^{0} to $p e^{-}$.
[/] This limit is for either D^{0} or \bar{D}^{0} to $\bar{p} e^{+}$.

CONSTRAINED FIT INFORMATION

An overall fit to 64 branching ratios uses 126 measurements and one constraint to determine 32 parameters. The overall fit has a $\chi^{2}=141.9$ for 95 degrees of freedom.
The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{19}											
x_{20}	0										
x_{21}	0	0									
x_{30}	0	0	0								
x_{31}	0	0	0	0	0						
x_{35}	0	4	0	1	5	0					
x_{36}	0	1	0	1	1	0	15				
x_{38}	0	0	0	14	0	0	5	8			
x_{53}	0	1	0	0	1	0	22	3	1		
x_{70}	0	2	0	0	2	0	46	7	2	10	
x_{81}	0	0	0	5	0	0	2	3	37	0	
x_{85}	0	0	0	0	0	0	8	1	0	2	
x_{99}	0	0	0	0	0	0	5	1	0	1	
x_{100}	0	0	0	1	0	0	0	0	4	0	
x_{101}	0	0	0	2	0	0	9	2	12	2	
x_{116}	0	0	0	3	0	0	1	2	21	0	
x_{123}	0	2	0	0	2	0	43	6	2	9	
x_{124}	0	0	0	0	0	0	7	1	0	2	
x_{125}	0	1	0	0	1	0	19	3	1	81	
x_{143}	0	1	0	0	1	0	30	5	2	7	
x_{171}	0	0	0	0	0	0	4	1	0	1	
x_{179}	0	0	0	0	0	0	4	1	0	1	
x_{181}	0	0	0	0	0	0	2	0	0	0	
x_{184}	0	0	0	0	0	0	2	0	0	0	
x_{185}	0	2	0	0	2	0	49	7	3	11	
x_{186}	0	0	0	1	0	0	7	47	4	2	
x_{187}	0	0	0	5	0	0	3	3	34	1	
x_{198}	0	0	0	5	0	0	3	3	34	1	
x_{252}	0	0	0	0	0	0	11	2	1	2	
x_{256}	0	1	0	0	1	0	16	3	1	4	
x_{322}	-48	-4	-6	-18	-1	-1	-24	-8	-39	-50	
	x_{6}	x_{19}	$x_{20} 0$	x_{21}	x_{30}	x_{31}	x_{35}	x_{36}	x_{38}	x_{53}	

$x_{322} \quad \begin{array}{r}-4 \\ x_{256}\end{array}$

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^{2}=$ 0.0 for 0 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$
$\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	-100 x_{3} -46 39 x_{4} 0 0	0	
	x_{1}	x_{2}	x_{3}

D^{0} branching ratios

Some older now obsolete results have been omitted from these Listings.

Meson Particle Listings
D^{0}

$\Gamma\left(K^{-}\right.$anything $) / \Gamma_{\text {total }}$		Γ_{7} / Γ		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 5 4 7} \pm \mathbf{0 . 0 2 8}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogr				
$0.578 \pm 0.016 \pm 0.032$	2098 ± 59	ABLIKIM	07G BES2	$e^{+} e^{-} \approx \psi(3770)$
$0^{0.546}+0.039$		${ }^{1}$ BARLAG	92C ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
$0.609 \pm 0.032 \pm 0.052$		COFFMAN	91 MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$
0.42 ± 0.08		AGUILAR-...	87E HYBR	$\pi p, p p 360,400 \mathrm{GeV}$
0.55 ± 0.11	121	SCHINDLER	81 MRK2	$e^{+} e^{-} 3.771 \mathrm{GeV}$
0.35 ± 0.10	19	VUILLEMIN	78 LGW	$e^{+} e^{-} 3.772 \mathrm{GeV}$
${ }^{1}$ BARLAG 92C computes the branching fraction using topological normalization.				

$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{e}^{+} \boldsymbol{\nu}_{\boldsymbol{e}}\right) / \Gamma\left(\boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 8 9 7} \pm \mathbf{0 . 0 1 1} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes }} \frac{\text { DOCUMENT ID }}{\text { scale factor of } 1.4}$ TECN COMMENT 0.897 ± 0.011 OUR FIT Error
$0.930 \pm \mathbf{0 . 0 1 3}$ OUR AVERAGE

$0.927 \pm 0.007 \pm 0.012$	$76 \mathrm{k} \pm 323$	${ }^{1}$ AUBERT	07BG BABR	$e^{+} e^{-} \approx \gamma(4 S)$
$0.978 \pm 0.027 \pm 0.044$	2510	${ }^{2}$ BEAN	93C CLE2	$e^{+} e^{-} \approx r(4 S)$
$0.90 \pm 0.06 \pm 0.06$	584	${ }^{3}$ CRAWFORD	91B CLEO	$e^{+} e^{-} \approx 10.5 \mathrm{GeV}$
$0.91 \pm 0.07 \pm 0.11$	250	${ }^{4}$ ANJOS	89F E691	Photoproduction
${ }^{1}$ The event samples $K^{-} e^{+} \nu_{e}$ form fa	in this AU or at q^{2}	07BG result $f_{+}(0)=0.7$	ude radiati $=0.007 \pm$	photons. The D^{0} 05 ± 0.007.

${ }^{2}$ BEAN 93C uses $K^{-} \mu^{+} \nu_{\mu}$ as well as $K^{-} e^{+} \nu_{e}$ events and makes a small phase-space adjustment to the number of the μ^{+}events to use them as e^{+}events. A pole mass of $2.00 \pm 0.12 \pm 0.18 \mathrm{GeV} / c^{2}$ is obtained from the q^{2} dependence of the decay rate.
${ }^{3}$ CRAWFORD 91B uses $K^{-} e^{+} \nu_{e}$ and $K^{-} \mu^{+} \nu_{\mu}$ candidates to measure a pole mass of $2.1+0.2+0.3 \mathrm{GeV} / c^{2}$ from the q^{2} dependence of the decay rate.
${ }^{4}$ ANJOS 89 F measures a pole mass of $2.1_{-0.2}^{+0.4} \pm 0.2 \mathrm{GeV} / c^{2}$ from the q^{2} dependence of the decay rate.
$\Gamma_{\text {VALUE (\%) }}\left(\boldsymbol{K}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \Gamma_{\text {total }} \quad$ EVTS DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2 0}} / \boldsymbol{\Gamma}$ $\frac{\operatorname{VALUE}(\%)}{3.41 \pm 0.04}$ OUR FIT
3.41 ± 0.04 OUR AVERAGE
$3.413 \pm 0.019 \pm 0.035$ DOCUMENT ID TECN COMMENT
 $3.45 \pm 0.10 \pm 0.21 \quad 1249 \pm 43 \quad$ WIDHALM 06 BELL $e^{+} e^{-} \approx \Upsilon(4 S)$

$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \Gamma\left(\boldsymbol{K}^{-} \pi^{+}\right)$
VALUE
EVTS DOCUMENT ID TECN COMMENT $\quad \Gamma_{\mathbf{2 0}} / \Gamma_{\mathbf{3 5}}$ $\frac{\text { VALUE }}{0.863} \pm \mathbf{0 . 0 1 2}$ OUR FIT $\frac{\text { EVTS }}{\text { Error includes scale factor of 1.1. }} \frac{\text { DOCUENT ID }}{\text {. }}$
0.84 ± 0.04 OUR AVERAGE

$0.852 \pm 0.034 \pm 0.028$	1897	${ }^{1}$ FRABETTI	956	E687	$\gamma \mathrm{Be} \bar{E}_{\gamma}=220 \mathrm{GeV}$
$0.82 \pm 0.13 \pm 0.13$	338	${ }^{2}$ FRABETTI	931	E687	$\gamma \mathrm{Be} \bar{E}_{\gamma}=221 \mathrm{GeV}$
$0.79 \pm 0.08 \pm 0.09$	231	${ }^{3}$ CRAWFORD	91B	CLEO	$e^{+} e^{-} \approx 10.5 \mathrm{GeV}$

${ }^{1}$ FRABETTI 95 G extracts the ratio of form factors $f_{-}(0) / f_{+}(0)=-1.3_{-3.4}^{+3.6} \pm 0.6$, and measures a pole mass of $1.87_{-0.08}^{+0.11}+0.07 \mathrm{GeV} / c^{2}$ from the q^{2} dependence of the decay
${ }^{2} \begin{aligned} & \text { rate. } \\ & \text { FRABETTI } 931 \\ & \text { measures a pole mass of } 2.1 \\ & -0.3\end{aligned}+0.7+0.7 \mathrm{GeV} / c^{2}$ from the q^{2} dependence of the decay rate.
${ }^{3}$ CRAWFORD 91B measures a pole mass of $2.00 \pm 0.12 \pm 0.18 \mathrm{GeV} / \mathrm{c}^{2}$ from the q^{2} dependence of the decay rate.
$\Gamma\left(K^{*}(892)^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
Γ_{21} / Γ Both decay modes of the $K^{*}(892)^{-}$are included $\frac{\operatorname{VALUE}(\%)}{\mathbf{2 . 1 5} \pm \mathbf{0 . 1 6} \text { OUR FIT }}$ EVTS DOCUMENTID \quad TECN COMMENT $\begin{array}{lllll}\overline{2} .15 \pm \mathbf{0 . 1 6} \text { OUR FIT } & & \\ \mathbf{2 . 1 6} \pm \mathbf{0 . 1 5} \mathbf{0 . 0 8} & 219 \pm 16 & { }^{1} \text { COAN } & 05 & \text { CLEO } \\ e^{+} e^{-} \text {at } \psi(3770)\end{array}$ ${ }^{1}$ COAN 05 uses both $K^{-} \pi^{0}$ and $K_{S}^{0} \pi^{-}$events.

$\Gamma\left(K^{*}(892)^{-} e^{+} \nu_{e}\right) / \Gamma\left(K^{0} \pi^{-} e^{+} \nu_{e}\right)$						$\Gamma_{21} / \Gamma_{24}$
VALUE (units 10^{-2})	EVTS	DOCUMENT		TECN	COMment	
$94.52 \pm 0.97 \pm 0.62$	3.1 k	ABLIKIM	19 G	BES3	$K_{S}^{0} \pi^{-}$	

VALUE EVTS DOCUMENT ID TECN COMMENT
$\begin{array}{llllll}\mathbf{0 . 7 7} \pm \mathbf{0 . 0 7} \text { OUR FIT } \\ \mathbf{0 . 7 6} \pm \mathbf{0 . 1 2} \mathbf{\pm 0 . 0 6} & 152 \quad{ }^{1} \text { BEAN } & \text { 93c CLE2 } & e^{+} e^{-} \approx \Upsilon(4 S)\end{array}$
${ }^{1}$ BEAN 93 C uses $K^{*-} \mu^{+} \nu_{\mu}$ as well as $K^{*-} e^{+} \nu_{e}$ events and makes a small phase-space adjustment to the number of the μ^{+}events to use them as e^{+}events.
$\Gamma\left(K^{*}(892)^{-} \mu^{+} \nu_{\mu}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{22} / \Gamma_{\mathbf{3 8}}$ Unseen decay modes of the $K^{*}(892)^{-}$are included.
VALUE $\frac{\text { VALUE }}{\mathbf{0 . 6 7 4} \pm \mathbf{0 . 0 6 8} \pm \mathbf{0 . 0 2 6}} \frac{\text { EVTS }}{175 \pm 17} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LINK }} \quad$ 05B $\frac{\text { TECN }}{\text { FOCS }} \frac{\text { COMMENT }}{\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}}$ ${ }^{1}$ LINK 05B finds that in $D^{0} \rightarrow \bar{K}^{0} \pi^{-} \mu^{+} \nu_{\mu}$ the $\bar{K}^{0} \pi^{-}$system is 6% in S-wave.

$\frac{\text { VALUE }}{\mathbf{0 . 0 1 6} \mathbf{- 0 . 0 0 5}_{\mathbf{0}}^{\mathbf{0 . 0 1 3}} \pm \mathbf{0 . 0 0 2}} \frac{\text { EVTS }}{4} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { BAI COMMENT }} \frac{91}{\text { MRK3 }} \frac{e^{+} e^{-} \approx 3.77 \mathrm{GeV}}{}$
${ }^{1}$ BAI 91 finds that a fraction $0.799_{-0.17}^{+0.15}+0.09$ of combined D^{+}and D^{0} decays to $\bar{K} \pi e^{+} \nu_{e}$ (24 events) are $\bar{K}^{*}(892) e^{+} \nu_{e}$. BAI 91 uses $56 K^{-} e^{+} \nu_{e}$ events to measure a pole mass of $1.8 \pm 0.3 \pm 0.2 \mathrm{GeV} / c^{2}$ from the q^{2} dependence of the decay rate.
$\Gamma\left(\boldsymbol{K}^{0} \pi^{-} \boldsymbol{e}^{+} \nu_{e}\right) / \Gamma_{\text {total }}$ $\frac{\operatorname{VALUE}(\%)}{1.44 \pm 0.04}$ OUR AVE EVAGE $1.434 \pm 0.029 \pm 0.032 \quad 3.1 \mathrm{k}$ $2.61 \pm 1.04 \pm 0.28$ $2.8{ }_{-0.8}^{+1.7} \pm 0.3 \quad 6 \quad 1 \mathrm{BAL} \quad 91 \quad$ MRK3 $e^{+} e^{-} \approx 3.77 \mathrm{GeV}$
${ }^{1}$ BAI 91 finds that a fraction $0.79{ }_{-0.17}^{+0.15}+0.09$ of combined D^{+}and D^{0} decays to $\bar{K} \pi e^{+} \nu_{e}$ (24 events) are $\bar{K}^{*}(892) e^{+} \nu_{e}$.

$\Gamma\left(\left(\bar{K}^{0} \pi^{-}\right) s_{-w a v e} e^{+} \nu_{e}\right) / \Gamma\left(\bar{K}^{0} \pi^{-} e^{+} \nu_{e}\right)$			TECN	COMMENT $\Gamma_{\mathbf{2 5}} / \Gamma_{\mathbf{2 4}}$	
VALUE (units 10-2) EVTS	DOCUMENT ID				
$5.51 \pm 0.97 \pm 0.62 \quad 3.1 \mathrm{k}$	ABLIKIM	19G	BES3	$K_{S}^{0} \pi^{-} e^{+}$	events
$\Gamma\left(K^{-} \pi^{+} \pi^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$					Γ_{26} / Γ
VALUE (units 10-4) EVTS	DOCUMENT ID		TECN	COMMENT	
$2.8{ }_{-1.1}^{+1.4} \pm 0.3$	ARTUSO	07A	CLEO	$e^{+} e^{-}$at	3770)
$\Gamma\left(K_{1}(1270)^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$					Γ_{27} / Γ

$\frac{\left.\text { VALUE (unit } 10^{-4}\right)}{\mathbf{7 . 6} \mathbf{+ 4 . 1} \pm \mathbf{0 . 9}} \frac{\text { EVTS }}{8} \quad \frac{\text { DOCUMENT ID }}{1 \text { ARTUSO } \quad \text { 07A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } r(3770)}$

${ }^{1}$ This ARTUSO 07A result is corrected for all decay modes of the $K_{1}(1270)^{-}$

$\Gamma\left(K^{-} \pi^{+} \pi^{-} \mu^{+} \nu_{\mu}\right) / \Gamma\left(K^{-} \mu^{+} \nu_{\mu}\right)$			TECN	COMMENT	$\Gamma_{28} / \Gamma_{20}$
VALUE CL\%	DOCUMENT				
<0.037 90	KODAMA	93B	E653	π^{-}emulsion	600 GeV
$\Gamma\left(\left(\overline{K^{*}}(892) \pi\right)^{-} \mu^{+} \nu_{\mu}\right) / \Gamma$	$\mu^{+} \nu_{\mu}$)				$\Gamma_{29} / \Gamma_{20}$
VALUE CL\%	DOCUMENT		TECN	COMMENT	

1 KODAMA 93B searched in $K^{-} \pi^{+} \pi^{-} \mu^{+} \nu_{\mu}$, but the limit includes other $\left(\bar{K}^{*}(892) \pi\right)^{-}$ charge states.
$\Gamma\left(\pi^{-} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
VALUE (\%) DOCUMENT ID_ TECN COMMENT \quad EVTS
0.291 ± 0.004 OUR FIT
0.293 ± 0.004 OUR AVERAGE
$0.295 \pm 0.004 \pm 0.003 \quad 6.3 \mathrm{k} \quad{ }^{1}$ ABLIKIM $\quad 15 \mathrm{x}$ BES3 $2.92 \mathrm{fb}^{-1}, 3.773 \mathrm{GeV}$
$0.288 \pm 0.008 \pm 0.003 \quad 1.3 \mathrm{k} \quad{ }^{1}$ BESSON 09 CLEO $e^{+} e^{-}$at $\psi(3770)$
$0.279 \pm 0.027 \pm 0.016 \quad 126 \quad 2$ WIDHALM 06 BELL $e^{+} e^{-} \approx r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • •
$0.299 \pm 0.011 \pm 0.009 \quad 3$ DOBBS 08 CLEO See BESSON 09
$0.262 \pm 0.025 \pm 0.008 \quad 117$ COAN 05 CLEO See DOBBS 08 ${ }^{1}$ See the form-factor parameters near the end of this D^{0} Listing.
${ }^{2}$ The $\pi^{-} e^{+} \nu_{e}$ and $K^{-} e^{+} \nu_{e}$ results of WIDHALM 06 give $\left|\frac{V_{c d}}{V_{c s}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|^{2}=0.042 \pm$ 0.003 ± 0.003.
${ }^{3}$ DOBBS 08 establishes $\left|\frac{V_{c d}}{V_{c s}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|=0.188 \pm 0.008 \pm 0.002$ from the D^{+}and D^{0} decays to $\bar{K} e^{+} \nu_{e}$ and $\pi e^{+} \nu_{e}$.
 $\mathbf{0 . 0 8 2 2} \mathbf{\pm 0 . 0 0 1 4}$ OUR FIT Error includes scale factor of 1.1.
0.085 ± 0.007 OUR AVERAGE
$0.082 \pm 0.006 \pm 0.005 \quad 1$ HUANG 05 CLEO $e^{+} e^{-} \approx \gamma(4 S)$
$0.101 \pm 0.020 \pm 0.003 \quad 91 \quad 2$ FRABETTI $\quad 96 \mathrm{~B}$ E687 $\quad \gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$
$0.103 \pm 0.039 \pm 0.013 \quad 87 \quad{ }^{3}$ BUTLER $\quad 95 \quad$ CLE2 $<0.156(90 \% \mathrm{CL})$
${ }^{1}$ HUANG 05 uses both e and μ events, and makes a small correction to the μ events to make them effectively e events. This result gives $\left|\frac{V_{c d}}{V_{c s}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|^{2}=$ $0.038+0.006+0.005$
${ }^{2}$ FRABETTI 96B uses both e and μ events, and makes a small correction to the μ events to make them effectively e events. This result gives $\left|\frac{V_{c d}}{V_{C S}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|^{2}=0.050 \pm 0.011 \pm 0.002$.
${ }^{3}$ BUTLER 95 has $87 \pm 33 \pi^{-} e^{+} \nu_{e}$ events. The result gives $\left|\frac{V_{c d}}{V_{c s}} \cdot \frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}\right|^{2}=0.052 \pm$ 0.020 ± 0.007.
$\Gamma\left(\pi^{-} e^{+} \nu_{e}\right) / \Gamma\left(K^{-} \pi^{+}\right)$
$\Gamma_{30} / \Gamma_{35}$

$\overline{7.37} \pm \mathbf{0 . 1 2}$ OUR FIT Error includes scale factor of 1.1 .
$\begin{array}{llllll}7.02 \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 2 3} & 375 \mathrm{k} & 1 \text { LEES } & 15 \mathrm{~F} & \text { BABR } 347 \mathrm{fb}^{-1}, 10.58 \mathrm{GeV}\end{array}$
${ }^{1}$ See the form-factor parameters near the end of the D^{0} Listing.
$\begin{aligned} & \boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \operatorname{VALUE(\%)} \quad \text { EVTS } \quad \text { DOCUMENT ID } \quad \text { TECN } \quad \text { COMMENT }\end{aligned} \boldsymbol{\Gamma}_{\mathbf{3 1}} / \boldsymbol{\Gamma}$ $\frac{\text { VALUE (\%) }}{\mathbf{0 . 2 6 7} \pm \mathbf{0 . 0 1 2} \text { OUR FIT }} \frac{\text { EVTS includes }}{\text { DOCUMENT ID }}$ TEALe factor of 1.3 .
$\mathbf{0 . 2 6 8} \pm \mathbf{0 . 0 1 2}$ OUR AVERAGE Error includes scale factor of 1.2.

$0.272 \pm 0.008 \pm 0.006$	2.3 k	ABLIKIM	18AEBES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$
$0.231 \pm 0.026 \pm 0.019$	106 ± 13	WIDHALM	06 BELL	$e^{+} e^{-} \approx r(4 S)$

$\boldsymbol{\Gamma}\left(\pi^{-} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \Gamma\left(\boldsymbol{K}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right)$
VALUE
EVTS
 ${ }^{1}$ LINK 05 finds the form-factor ratio $\left|f_{0}^{\pi}(0) / f_{0}^{K}(0)\right|$ to be $0.85 \pm 0.04 \pm 0.04 \pm 0.01$.

Meson Particle Listings

D^{0}

$\Gamma\left(a(980)^{-} e^{+} \nu_{e}, \mathrm{a}^{-} \rightarrow \eta \pi^{-}\right) / \Gamma_{\text {total }}$				TECN		「34/「
VALUE (unit 10^{-4})	EVTS	document			COMMENT	
$1.33{ }_{-0.29}^{+0.33} \pm 0.09$	26	${ }^{1}$ ABLIKIM	18 F	beS3	$e^{+} e^{-}$at	MeV
${ }^{\text {Signal observe }}$	$4 \sigma \mathrm{C}$					

$\Gamma\left(K^{-} \pi^{+}\right) / \Gamma_{\text {total }}$					
$\mathrm{VALUE}(\%)$	EVTS	DOCUMENT ID		TECN	COMMENT
$3.950 \pm \mathbf{0 . 0 3 1}$ OUR FIT Error includes scale factor of 1.2.					
3.909 ± 0.034 OUR AVERAGE					
$3.883 \pm 0.006 \pm 0.051$	0.5M	${ }^{1}$ ABLIKIM	18w	BES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$
$3.934 \pm 0.021 \pm 0.061$		BONVICINI	14	CLEO	All CLEO-c runs
$4.007 \pm 0.037 \pm 0.072$	33.8k	AUBERT	08L	BABR	$e^{+} e^{-}$at $\gamma(4 S)$
$3.82 \pm 0.07 \pm 0.12$		${ }^{2}$ ARTUSO	98	CLE2	CLEO average
$3.90 \pm 0.09 \pm 0.12$	5.4 k	${ }^{3}$ BARATE	97 C	ALEP	From Z decays
$3.41 \pm 0.12 \pm 0.28$	1.2k	${ }^{3}$ ALBRECHT	94F	ARG	$e^{+} e^{-} \approx r(4 S)$
$3.62 \pm 0.34 \pm 0.44$		${ }^{3}$ DECAMP	91J	ALEP	From Z decays
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.891 \pm 0.035 \pm 0.069$		${ }^{4}$ DOBBS		CLEO	See BONVICINI 14
$3.91 \pm 0.08 \pm 0.09$	10.3k	${ }^{4} \mathrm{HE}$	05	CLEO	See DOBBS 07
$3.81 \pm 0.15 \pm 0.16$	1.2k	${ }^{5}$ ARTUSO	98	CLE2	$e^{+} e^{-}$at $\Upsilon(4 S)$
$3.69 \pm 0.11 \pm 0.16$		${ }^{6}$ COAN	98	CLE2	See ARTUSO 98
$4.5 \pm 0.6 \pm 0.4$		${ }^{7}$ ALBRECHT	94	ARG	$e^{+} e^{-} \approx \gamma^{(4 S)}$
$3.95 \pm 0.08 \pm 0.17$	4.2 k	${ }^{3,8}$ AKERIB	93	CLE2	See ARTUSO 98
$4.5 \pm 0.8 \pm 0.5$	56	${ }^{3}$ ABACHI	88	HRS	$e^{+} e^{-} 29 \mathrm{GeV}$
$4.2 \pm 0.4 \pm 0.4$	0.9k	ADLER	88C	MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$
4.1 ± 0.6	0.3k	${ }^{9}$ SCHINDLER	81	MRK2	$e^{+} e^{-} 3.771 \mathrm{GeV}$
4.3 ± 1.0	130	10 PERUZZI		LGW	$e^{+} e^{-} 3.77 \mathrm{GeV}$

${ }^{1}$ ABLIKIM 18 w measured the combined $K^{\mp} \pi^{ \pm}$branching fraction to be 3.898%. We have subtracted off the doubly Cabibbo-suppressed branching fraction $\mathrm{B}\left(D^{0} \rightarrow K^{+} \pi^{-}\right)$ $=(1.50 \pm 0.07) \times 10^{-4}$, even though it is less than one-third of the uncertainty of the combined measurement, in order to treat this as a measurement of $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{2}$ This combines the CLEO results of ARTUSO 98, COAN 98, and AKERIB 93.
${ }^{3}$ ABACHI 88, DECAMP 91J, AKERIB 93, ALBRECHT 94F, and BARATE 97C use $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$decays. The π^{+}is both slow and of low p_{T} with respect to the event thrust axis or nearest jet ($\approx D^{*+}$ direction). The excess number of such π^{+}'s over background gives the number of $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$events, and the fraction with $D^{0} \rightarrow K^{-} \pi^{+}$gives the $D^{0} \rightarrow K^{-} \pi^{+}$branching fraction.
${ }^{4}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
${ }^{5}$ ARTUSO 98, following ALBRECHT 94, uses D^{0} mesons from $\bar{B}^{0} \rightarrow$ $D^{*}(2010)^{+} x \ell^{-} \bar{\nu}_{\ell}$ decays. Our average uses the CLEO average of this value with the values of COAN 98 and AKERIB 93.
${ }^{6}$ COAN 98 assumes that $\Gamma\left(B \rightarrow \bar{D} X \ell^{+}{ }^{\nu}\right) / \Gamma\left(B \rightarrow X \ell^{+}{ }_{\nu}\right)=1.0-3\left|V_{u b} / V_{c b}\right|^{2}-$ 0.010 ± 0.005, the last term accounting for $\bar{B} \rightarrow D_{S}^{+} K X \ell^{-} \bar{\nu}$. COAN 98 is included in the CLEO average in ARTUSO 98.
${ }^{7}$ ALBRECHT 94 uses D^{0} mesons from $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ decays. This is a different set of events than used by ALBRECHT 94F.
${ }^{8}$ This AKERIB 93 value includes radiative corrections; without them, the value is $0.0391 \pm$ 0.0008 ± 0.0017. AKERIB 93 is included in the CLEO average in ARTUSO 98.
${ }^{9}$ SCHINDLER 81 (MARK-2) measures $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times$ branching fraction to be $0.24 \pm 0.02 \mathrm{nb}$. We use the MARK-3 (ADLER 88C) value of $\sigma=5.8 \pm 0.5 \pm 0.6 \mathrm{nb}$.
${ }^{10}$ PERUZZI 77 (MARK-1) measures $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times$ branching fraction to be $0.25 \pm 0.05 \mathrm{nb}$. We use the MARK-3 (ADLER 88C) value of $\sigma=5.8 \pm 0.5 \pm 0.6 \mathrm{nb}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{\operatorname{VALUE}(\%)} \mathrm{EVTS}$ DOCUMENT ID TECN COMMENT $\quad \Gamma_{\mathbf{3 6}} / \boldsymbol{\Gamma}$

$\frac{\text { VALUE (\%) }}{\mathbf{1 . 2 4 0} \pm \mathbf{0 . 0 2 2} \text { OUR FIT }}$	EVTS		DOCUMENT ID		TECN	COMMENT
$\mathbf{1 . 2 3 9} \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 2 7}$	67 k	ABLIKIM	18 w	BES 3	$e^{+} e^{-}, 3773 \mathrm{MeV}$	

- - We do not use the following data for averages, fits, limits, etc. - - .
$1.240 \pm 0.017 \pm 0.056 \quad 614 \quad$ HE 08 CLEO See MENDEZ 10

${ }^{1}$ The error on this AUBERT 08AL value includes both statistical and systematic uncertainties; the latter dominates.
$\Gamma\left(K_{\mathbf{0}}^{*}(\mathbf{1 4 3 0})^{-} \pi^{+}, K_{0}^{*-} \rightarrow K_{S}^{0} \pi^{-}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right)$
$\Gamma_{46} /{ }^{2}$ з This is the "fit fraction" from the Dalitz-plot analysis.
$\frac{V A L U E}{0.095+\mathbf{0 . 0 1 4}} \mathbf{0 . 0 1 0}$ OUR AVERAGE
0.102 ± 0.015
${ }^{1}$ AUBERT 08AL BABR Dalitz fit, $\approx 487 \mathrm{k}$ evts
$0.073 \pm 0.007_{-0.011}^{+0.031} \quad$ MURAMATSU 02 CLE2 Dalitz fit, 5299 evts
- - We do not use the following data for averages, fits, limits, etc. - -
$0.072 \pm 0.007_{-0.013}^{+0.014} \quad$ ASNER 04A CLEO See MURAMATSU 02 $0.109 \pm 0.027 \pm 0.029$ FRABETTI 94G E687 Dalitz fit, 597 evts $0.129 \pm 0.034 \pm 0.021$ ALBRECHT 93D ARG Dalitz fit, 440 evts

1 The error on this AUBERT 08AL value includes both statistical and systematic uncertainties; the latter dominates.

1 The error on this AUBERT 08AL value includes both statistical and systematic uncertainties; the latter dominates.
$\Gamma\left(K^{*}(1680)^{-} \pi^{+}, K^{*=} \rightarrow \underset{S}{T h i s ~ i s ~ t h e ~ " f i t ~ f r a c t i o n " ~ f r o m ~ t h e ~ D a l i t z-p l o t ~ a n a l y s i s . ~} K_{\mathbf{S}}^{0} \pi^{-}\right) / \Gamma\left(K_{0}^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{4 8}} / \Gamma_{\mathbf{3 8}}$ VALUE 0.016 ± 0.013 OUR AVERAGE
0.007 ± 0.019
DOCUMENTID TECN COMMENT
${ }^{1}$ AUBERT 08AL BABR Dalitz fit, $\approx 487 \mathrm{k}$ evts
$0.022 \pm 0.004_{-0.015}^{+0.018} \quad$ MURAMATSU 02 CLE2 Dalitz fit, 5299 evts

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.023 \pm 0.005_{-0.014}^{+0.007} \quad$ ASNER 04A CLEO See MURAMATSU 02
${ }^{1}$ The error on this AUBERT 08AL value includes both statistical and systematic uncertainties; the latter dominates.
$\Gamma\left(K^{*}(892)^{+} \pi^{-}, K^{*+} \rightarrow K_{\mathbf{S}}^{\mathbf{0}} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{49} / \Gamma_{\mathbf{3 8}}$ This is the "fit fraction" from the Dalitz-plot analysis. This is a doubly Cabibbosuppressed mode.
VALUE (units 10^{-3})
DOCUMENT ID \qquad TECN COMMENT

$4.0_{-1.2}^{+2.0}$ OUR AVERAGE

4.6 ± 2.3
$3.4 \pm 1.3_{-0.4}^{+4.1}$
1 AUBERT 08AL BABR Dalitz fit, $\approx 487 \mathrm{k}$ evts

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.4 \pm 1.3_{-0.5}^{+3.6}$
ASNER 04A CLEO See MURAMATSU 02
${ }^{1}$ The error on this AUBERT 08AL value includes both statistical and systematic uncertainties; the latter dominates.
$\Gamma\left(K_{0}^{*}(1430)^{+} \pi^{-}, K_{0}^{*+} \Rightarrow K_{S}^{0} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right)$ This is the "fit fraction" from the Dalitz-plot analysis. This is a doubly Cabibbosuppressed mode.
$\frac{V A L U E}{<\mathbf{5} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 08AL }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\text { Dalitz fit, } \approx 487 \mathrm{k} \text { evts }}$
$\Gamma\left(K_{2}^{*}(1430)^{+} \pi^{-}, K_{2}^{*+} \Rightarrow K_{S}^{0} \pi^{+}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{51} / \Gamma_{38}$ This is the "fit fraction" from the Dalitz-plot analysis. This is a doubly Cabibbosuppressed mode.

VALUE	CL\%	DOCUMENTID	TECN	COMMENT
$<1.2 \times 10^{-3}$	95	AUBERT	BAB	

$\Gamma\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right.$nonresonant $) / \boldsymbol{\Gamma}^{(}\left(\boldsymbol{K}_{\mathbf{S}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \quad \boldsymbol{\Gamma}_{\mathbf{5 2}} / \boldsymbol{\Gamma}_{\mathbf{3 8}}$ This is the "fit fraction" from the Dalitz-plot analysis. Neither FRABETTI 94G nor
ALBRECHT 93D (quoted in many of the earlier submodes of $K_{S}^{0} \pi^{+} \pi^{-}$) sees evidence for a nonresonant component.
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 0 0 9} \pm \mathbf{0 . 0 0 4} \mathbf{+ 0 . 0 0 4} \mathbf{0 . 0 2 0} \quad$ MURAMATSU 02 CLE2 Dalitz fit, 5299 evts

- - We do not use the following data for averages, fits, limits, etc. - -

$0.007 \pm 0.007_{-0.006}^{+0.021}$	ASNER	04A	CLEO	See MURAMATSU 02
$0.263 \pm 0.024 \pm 0.041$	ANJOS	93	E691	γ Be $90-260 \mathrm{GeV}$
$0.26 \pm 0.08 \pm 0.05$	FRABETTI	92 B	E687	$\gamma \mathrm{Be}, \bar{E}_{\gamma}=221 \mathrm{GeV}$
$0.33 \pm 0.05 \pm 0.10$	ADLER	87	MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ EVTS DOCUMENT ID TECN COMMENT $\boldsymbol{\Gamma}_{\mathbf{5 3}} / \boldsymbol{\Gamma}^{\boldsymbol{L}}$

$14.57 \pm 0.12 \pm 0.38$		${ }^{1}$ DOBBS	07	CLEO	See BONVICINI 14
$14.9 \pm 0.3 \pm 0.5$	$19 \mathrm{k} \pm 150$	${ }^{1} \mathrm{HE}$	05	CLEO	See DOBBS 07
$13.3 \pm 1.2 \pm 1.3$	931	ADLER	88C	MRK3	$e^{+} e^{-3.77 ~ G e V}$
11.7 ± 4.3	37	2 SCHINDLER	81	MRK2	$e^{+} e^{-} 3.771 \mathrm{GeV}$

${ }^{1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
${ }^{2}$ SCHINDLER 81 (MARK-2) measures $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times$ branching fraction to be $0.68 \pm 0.23 \mathrm{nb}$. We use the MARK-3 (ADLER 88C) value of $\sigma=5.8 \pm 0.5 \pm 0.6 \mathrm{nb}$.
$\Gamma\left(\kappa^{-} \pi^{+} \pi^{0}\right) / \Gamma\left(\kappa^{-} \pi^{+}\right)$
$\frac{V A L U E}{\mathbf{3 . 6 5} \pm \mathbf{0 . 1 3} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 2.1. }} \frac{\text { DECN }}{\text { COMMENT }}$
$\Gamma_{53} / \Gamma_{35}$
$3.76 \pm \mathbf{0 . 1 0}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
$3.802 \pm 0.022 \pm 0.073 \quad$ BONVICINI 14 CLEO All CLEO-C runs
$3.81 \pm 0.07 \pm 0.26 \quad 10 \mathrm{k} \quad$ BARISH 96 CLE2 $e^{+} e^{-} \approx \gamma(4 S)$
$3.04 \pm 0.16 \pm 0.34 \quad 931 \quad{ }^{1}$ ALBRECHT 92 P ARG $e^{+} e^{-} \approx 10 \mathrm{GeV}$
$2.8 \pm 0.14 \pm 0.52 \quad 1050 \quad$ KINOSHITA 91 CLEO $e^{+} e^{-} \sim 10.7 \mathrm{GeV}$
${ }^{1}$ This value is calculated from numbers in Table 1 of ALBRECHT 92p.

Meson Particle Listings
D^{0}

$\Gamma\left(K^{-} \rho^{+}\right) / \Gamma\left(K^{-} \pi^{+} \pi^{0}\right)$				$\Gamma_{54} / \Gamma_{53}$
$\frac{\text { VALUE }}{0.78 \pm 0.04 \text { OUR AVERAGE }}$ DOCUMENT ID				
$0.788 \pm 0.019 \pm 0.048$	KOPP	01 CLE2	Dalitz fit, \approx	7,000 evts
$0.765 \pm 0.041 \pm 0.054$ FRABETTI 946 E687 Dalitz fit, 530 evts				
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.647 \pm 0.039 \pm 0.150$	anjos	93 E691	γ Be 90-260	
$0.81 \pm 0.03 \pm 0.06$	ADLER	87 MRK3	+ $e^{-} 3.77$	

$\Gamma\left(K^{-} \rho(1700)^{+}, \rho^{+} \rightarrow \pi^{+} \pi^{0}\right) / \Gamma\left(K^{-} \pi^{+} \pi^{0}\right)$
$\Gamma_{55} / \Gamma_{53}$
This is the "fit fraction" from the Dalitz-plot analysis.
$\frac{\text { VALUE }}{\mathbf{0 . 0 5 7} \pm \mathbf{0 . 0 0 8} \pm \mathbf{0 . 0 0 9}} \frac{\text { DOCUMENT ID }}{\text { KOPP }} 01 \frac{\text { TECN }}{\text { CLE2 }} \frac{\text { COMMENT }}{\text { Dalitz fit, } \approx 7,000 \mathrm{evts}}$
$\Gamma\left(K^{*}(892)^{-} \pi^{+}, K^{*}(892)^{-} \rightarrow K^{-} \pi^{0}\right) / \Gamma\left(K^{-} \pi^{+} \pi^{0}\right) \quad \Gamma_{56} / \Gamma_{53}$ VALUE

DOCUMENTID TECN COMMENT
$0.160{ }_{-0.013}^{\mathbf{+ 0 . 0 2 5}}$ OUR AVERAGE

$0.161 \pm 0.007_{-0.011}^{+0.027}$	KOPP	01	CLE2	Dalitz fit, $\approx 7,000$ evts
$0.148 \pm 0.028 \pm 0.049$	FRABETTI	$94 G$	E687	Dalitz fit, 530 evts

$0.148 \pm 0.028 \pm 0.049$

- - We do not use the following data for averages, fits, limits, etc. - • -

$0.084 \pm 0.011 \pm 0.012$	ANJOS	93	E691	$\gamma \mathrm{Be} 90-260 \mathrm{GeV}$
$0.12 \pm 0.02 \pm 0.03$	ADLER	87	MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$

$\Gamma\left(K^{-2} 2 \pi^{+} \pi^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right)$				$\Gamma_{70} / \Gamma_{35}$	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
2.083 ± 0.031 OUR FIT					
2.087 ± 0.032 OUR AVERAGE					
$2.106 \pm 0.013 \pm 0.032$		BONVICINI	14	CLEO	All CLEO-C runs
$1.94 \pm 0.07{ }_{-0.11}^{+0.09}$		JUN	00	SELX	Σ^{-}nucleus, 600 GeV
$1.7 \pm 0.2 \pm 0.2$	1745	ANJOS	92C	E691	γ Be 90-260 GeV
$1.90 \pm 0.25 \pm 0.20$	337	ALVAREZ	91B	NA14	Photoproduction
$2.12 \pm 0.16 \pm 0.09$		BORTOLET		CLEO	$e^{+} e^{-} 10.55 \mathrm{GeV}$
$2.17 \pm 0.28 \pm 0.23$		ALBRECHT	85F	ARG	$e^{+} e^{-} 10 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - .					
2.0 ± 0.9	48	BAILEY	86	ACCM	π^{-}Be fixed target
2.0 ± 1.0	10	BAILEY	83B	SPEC	$\pi^{-} \mathrm{Be} \rightarrow D^{0}$
2.2 ± 0.8	214	PICCOLO	77	MRK1	$e^{+} e^{-} 4.03,4.41 \mathrm{GeV}$

$\Gamma\left(K^{-} \pi^{+} \rho^{0}\right.$ total $) / \Gamma\left(K^{-2} \pi^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{7 1}} / \Gamma_{\mathbf{7 0}}$

| $80 \pm 3 \pm 5$ | ANJOS | 92C | E691 | $1745 K^{-} 2 \pi^{+} \pi^{-}$evts |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $85.5 \pm 3.2 \pm 3.0$ | COFFMAN | 92B | MRK3 | $1281 \pm 45 K^{-} 2 \pi^{+} \pi^{-}$evts |

$\Gamma\left(K^{-} \pi^{+} \rho^{0} 3\right.$-body $) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$						$\Gamma_{72} / \Gamma_{70}$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
7.4土2.0 OUR AVERAGE						
$8.4 \pm 1.1 \pm 2.5$	16k	ABLIKIM	170	BES3	$D^{0} \rightarrow K$	
$5 \pm 3 \pm 2$		ANJOS	92C	E691	$1745 K^{-} 2$	evts
$8.4 \pm 2.2 \pm 4.0$		COFFMAN	92B	MRK3	1281 ± 45	${ }^{+}{ }^{-}$evts

$\Gamma\left(\bar{K}^{*}(892)^{\mathbf{0}} \rho^{\mathbf{0}}, \bar{K}^{* 0} \Rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} \mathbf{2} \pi^{+} \pi^{-}\right)$				$\Gamma_{73} / \Gamma_{70}$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT
$\overline{\mathbf{1 2 . 3} \pm \mathbf{0 . 6} \text { OUR AVERAGE }}$				
$12.3 \pm 0.4 \pm 0.5$	16k	ABLIKIM	170 BES3	$D^{0} \rightarrow K$
$13 \pm 2 \pm 2$		ANJOS	92C E691	$1745 K^{-} 2 \pi$
$\Gamma\left(\bar{K}^{*}(892)^{0} \rho^{0}\right.$ transverse, $\left.\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$				
VALUE	EVTS	DOCUMENT	- TEC	COMMENT
$0.142 \pm 0.016 \pm 0.05$	1281	COFFMAN	92B MR	3 $K^{-} 2 \pi^{+} \pi$

${ }^{1}$ The 3rd error is due to the uncertainty in the amplitude model composition.
${ }^{2}$ In addition to the 14 ABLIKIM 170 branching ratios we have listed, the paper gives 15 more ratios for mostly non-resonant modes. Four of the 15 have less than 2 -standard-deviation significance. Here are some of the omitted modes, with S, P, V, A, and T for scalar, pseudo-scalar, vector, axial-vector, and tensor spin sub-structures: $\pi^{+}\left(K^{-} \rho^{0}\right)_{P}, \pi^{+}\left(K^{-} \rho^{0}\right)_{V}, \pi^{+}\left(\bar{K}^{* 0} \pi^{-}\right)_{P}, \pi^{+}\left(\bar{K}^{* 0} \pi^{-}\right)_{V}$, $\pi^{+}\left(\pi^{-}\left(K^{-} \pi^{+}\right)_{S-\text { wave }}\right)_{A},\left(K^{-} \pi^{+}\right)_{V}\left(\pi^{+} \pi^{-}\right)_{S},\left(K^{-} \pi^{+}\right)_{T}\left(\pi^{+} \pi^{-}\right)_{S}$.
$\Gamma\left(\kappa_{\boldsymbol{S}}^{0} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$

- $\mathbf{\Sigma 8 1}^{\mathbf{1} / \Gamma}$
$\frac{\operatorname{VALUE}(\%)}{5.2 \pm 0.6 \text { OUR FIT }}$ EVTS
$5.2 \pm 1.1 \pm 1.2 \quad 140$
140 COFFMAN 92B MRK3 $e^{+} e^{-} 3.77 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$6.7_{-1.7}^{+1.6} \quad{ }^{1}$ BARLAG 92C ACCM $\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
${ }^{1}$ BARLAG $92 C$ computes the branching fraction using topological normalization.
$\Gamma\left(K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right)$
$\Gamma_{81} / \Gamma_{38}$
Branching fractions for submodes of this mode with narrow resonances (the $\eta, \omega, \eta^{\prime}$) are fairly well determined (see below). COFFMAN 92B gives fractions of k^{*} and ρ submodes, but with only 140 ± 28 events above background could not determine them with much accuracy. We omit those measurements here; they are in our 2008 Review (Physics Letters B667 1 (2008)).
VALUE EVTS DOCUMENTID TECN COMMENT
1.85 ± 0.20 OUR FIT
1.86 ± 0.23 OUR AVERAGE

$1.80 \pm 0.20 \pm 0.21$	190	${ }^{1}$ ALBRECHT	92P	ARG	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
$2.8 \pm 0.8 \pm 0.8$	46	ANJOS	92 C	E691	γ Be $90-260 \mathrm{GeV}$
$1.85 \pm 0.26 \pm 0.30$	158	KINOSHITA	91	CLEO	$e^{+} e^{-} \sim 10.7 \mathrm{GeV}$
${ }^{1}$ This value is calculated from numbers in Table 1 of ALBRECHT 92p.					
$\Gamma\left(K^{-} \pi^{+} 2 \pi^{0}\right) / \Gamma_{\text {total }}$					

$\mathbf{8 . 8 6} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 1 9} \quad 6.1 \mathrm{k} \quad$ ABLIKIM 19AK BES3 $e^{+} e^{-}$at 3773 MeV |

- - We do not use the following data for averages, fits, limits, etc. -

${ }^{1}$ AGUILAR-BENITEZ 87F and BARLAG 92C compute the branching fraction using topological normalization. They do not distinguish the presence of a third π^{0}, and thus are not included in the average.
${ }^{2}$ ADLER 88 c uses an absolute normalization method finding this decay channel opposite a detected $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$in pure $D \bar{D}$ events.
$\Gamma\left(K^{-} 2 \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(K^{-} \pi^{+}\right)$
$\Gamma_{85} / \Gamma_{35}$
VALUE
DOCUMENT ID \qquad TECN COMMENT
\square
$\mathbf{0 . 9 8} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 1 1} 225 \quad{ }^{1}$ ALBRECHT 92P ARG $e^{+} e^{-} \approx 10 \mathrm{GeV}$
${ }^{1}$ This value is calculated from numbers in Table 1 of ALBRECHT 92p.
$\Gamma\left(K^{-} 2 \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$
$\Gamma_{85} / \Gamma_{70}$
$\frac{\text { VALUE }}{0.52 \pm 0.05 \text { OUR FIT }}$ EVTS
$\mathbf{0 . 5 6} \pm \mathbf{0 . 0 7}$ OUR AVERAGE
$0.55 \pm 0.07_{-0.09}^{+0.12} \quad 167$
$0.57 \pm 0.06 \pm 0.05 \quad 180$
KINOSHITA 91 CLEO $e^{+} e^{-} \sim 10.7 \mathrm{GeV}$
ANJOS 90D E691 Photoproduction

			TECN		93/ ${ }_{92}$	
			COMMENT			
$0.40 \pm 0.24 \pm 0.07$	LINK	04D		FOCS	$\gamma \mathrm{A}$,	GeV

$\Gamma\left(K^{*}(892)^{-} 2 \pi^{+} \pi^{-}, K^{*}(892)^{-} \rightarrow K_{S}^{0} \pi^{-}\right.$, no $\left.\rho^{0}\right) / \Gamma\left(K_{S}^{0} 2 \pi^{+} 2 \pi^{-}\right) \Gamma_{94} / \Gamma_{92}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 7} \pm \mathbf{0 . 2 8} \pm \mathbf{0 . 0 2}} \quad \frac{\text { DOCUMENT ID }}{\text { LINK }} \frac{\text { TECN }}{\text { OUD }} \frac{\text { COMMENT }}{\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}}$

$\Gamma\left(K_{S}^{0} \eta\right) / \Gamma_{\text {total }}$				Г99/Г	
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
5.09 ± 0.13 OUR FIT					
$5.13 \pm 0.07 \pm 0.12$	9.5k	ABLIKIM		BES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$
- - We do not use the following data for averages, fits, limits, etc. - . -					
$4.42 \pm 0.15 \pm 0.28$		ASNER	08	CLEO	See MENDEZ 10
$\Gamma\left(K_{S}^{0} \eta\right) /\left[\Gamma\left(K^{-} \pi^{+}\right)+\Gamma\left(K^{+} \pi^{-}\right)\right]$ Unseen decay modes of the η are included.					$\Gamma_{99} /\left(\Gamma_{35}+\Gamma_{256}\right)$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
12.83 ± 0.33 OUR FIT					
$12.3 \pm 0.3 \pm 0.7$	2864 ± 65	MENDEZ	10	CLEO	$e^{+} e^{-}$at 3774 MeV

$\Gamma\left(K_{S}^{0} \eta\right) / \Gamma\left(K_{S}^{0} \pi^{0}\right)$
Unseen decay modes of the η are included
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.32 \pm 0.04 \pm 0.03 \quad 225 \pm 30 \quad$ PROCARIO 93B CLE2 $\quad \eta \rightarrow \gamma \gamma$
$\boldsymbol{\Gamma (\boldsymbol { K } _ { \boldsymbol { S } } ^ { \mathbf { 0 } } \boldsymbol { \eta }) / \Gamma (\boldsymbol { K } _ { \boldsymbol { S } } ^ { \mathbf { 0 } } \boldsymbol { \pi } ^ { + + } \boldsymbol { \pi } ^ { - })} \quad \Gamma_{\mathbf{9 9}} / \boldsymbol{\Gamma}_{\mathbf{3 8}}$

VALUE EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.14 \pm 0.02 \pm 0.02 \quad 80 \pm 12 \quad$ PROCARIO 93B CLE2 $\quad \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\omega}\right) / \boldsymbol{\Gamma}_{\text {Unseen decay }}$ modes of the ω are included.
Γ_{100} / Γ
$\operatorname{VALUE}(\%)$ DOCUMENTID TECN COMMENT

| $\mathbf{1 . 1 1 \pm 0 . 0 6 ~ O U R ~ F I T ~}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 . 1 2} \mathbf{0 . 0 4} \pm \mathbf{0 . 0 5}$ | | | |\quad ASNER $\quad 08$ CLEO $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}, 3.77 \mathrm{GeV}$

$\Gamma\left(K_{S}^{0} \omega\right) / \Gamma\left(K^{-} \pi^{+}\right)$
$\Gamma_{100} / \Gamma_{35}$
Unseen decay modes of the ω are included
VALUE DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.50 \pm 0.18 \pm 0.10$
ALBRECHT 89D ARG $e^{+} e^{-} 10 \mathrm{GeV}$

Meson Particle Listings
D^{0}

$\boldsymbol{\Gamma}\left(\bar{K}^{*}(\mathbf{8 9 2})^{\mathbf{0}} \boldsymbol{\eta}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)$	$\Gamma_{\mathbf{1 0 3}} / \Gamma_{\mathbf{3 5}}$	
Unseen decay modes of the $\bar{K}^{*}(892)^{0}$ and η are included.		
VALUE	EVTS	DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. \bullet
$0.58 \pm 0.19_{-0.28}^{+0.24} \quad 46 \quad$ KINOSHITA 91 CLEO $\quad e^{+} e^{-} \sim 10.7 \mathrm{GeV}$
$\Gamma\left(\bar{K}^{*}(892)^{0} \eta\right) / \Gamma\left(\kappa^{-} \pi^{+} \pi^{0}\right)$
$\Gamma_{103} / \Gamma_{53}$ Unseen decay modes of the $\bar{K}^{*}(892)^{0}$ and η are included.
VALUE EVTS DOCUMENTID COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
$0.13 \pm 0.02 \pm 0.03 \quad 214 \quad$ PROCARIO $\quad 93 \mathrm{~B}$ CLE2 $\quad \bar{K}^{* 0} \eta \rightarrow K^{-} \pi^{+} / \gamma \gamma$

${ }^{1}$ This value is calculated from numbers in Table 1 of ALBRECHT 92P.
$\Gamma\left(\bar{K}^{*}(892)^{0} \omega\right) / \Gamma\left(K^{-} \pi^{+}\right) \quad \Gamma_{105} / \Gamma_{\mathbf{3 5}}$
$\frac{V A L U E}{\mathbf{0 . 2 8} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{17} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ALBRECHT }} 92 \mathrm{P} \frac{\text { TECN }}{\text { ARG }} \frac{\text { COMMENT }}{e^{+} e^{-} \approx 10 \mathrm{GeV}}$
${ }^{1}$ This value is calculated from numbers in Table 1 of ALBRECHT 92P.

$\Gamma\left(K^{-} \pi^{+} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$				Γ_{106} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
$6.43 \pm 0.15 \pm 0.31$	2.5k	ABLIKIM	18AC BES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$
$\Gamma\left(K^{-} \pi^{+} \eta^{\prime}(958)\right) / \Gamma\left(K^{-2} \pi^{+} \pi^{-}\right)$				$\Gamma_{106} / \Gamma_{70}$
Unseen decay modes of the η^{\prime} (958) are included.				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$0.093 \pm 0.014 \pm 0.019$	286	PROCARIO	93B CLE2	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}, \rho^{0} \gamma$
$\Gamma\left(K_{S}^{0} \eta^{\prime}(958) \pi^{0}\right) / \Gamma_{\text {total }}$				Γ_{107} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{2 . 5 2} \pm 0.22 \pm 0.15$	289	ABLIKIM	18AC BES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$
$\Gamma\left(\bar{K}^{*}(892){ }^{0} \boldsymbol{\eta}^{\prime}(958)\right) / \Gamma\left(\boldsymbol{K}^{-} \pi^{+} \boldsymbol{\eta}^{\prime}(958)\right)$				$\Gamma_{108} / \Gamma_{106}$

Unseen decay modes of the $\bar{K}^{*}(892)^{0}$ are included.
$\frac{V A L U E}{<\mathbf{0 . 1 5}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { PROCARIO 93B }} \frac{T E C N}{C L E 2}$

$\Gamma\left(2 \kappa_{9}^{0} \kappa^{ \pm} \pi^{\mp}\right) / \Gamma\left(\kappa_{9}^{0} \pi^{+} \pi^{-}\right)$	
$2.12 \pm 0.38 \pm 0.20 \quad 57 \pm 10$	
- ${ }^{-}$	
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{3.68 \text { EVTS DOCUMENT ID TECN COMMENT }}$	
3.59 m0.06 OUR AVERAG	
	ocs
\#0.10 \pm.08 $2005 \pm \pm 54$	
$3.4 \pm 0.7 \pm 0.1{ }^{76 \pm}$	
	ALEXANDER 90 CLEO $e^{+} e^{-1} 10.5-11 \mathrm{cev}$
$\underbrace{3.70}$	
(2x)//roal	${ }_{124} /$ 「
$\Gamma\left(2 \pi^{0}\right) /\left\ulcorner\left(\kappa^{-} \pi^{+}\right)\right.$	
$\begin{array}{llllll}2.2 \pm 0.4 \pm 0.4 & 40 & \text { SELEN } & 93 & \text { CLE2 } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$	RUBIN 06 CLEO See MENDEZ 10 SELEN 93 CLE2 $e^{+} e^{-} \rightarrow \quad r(4 S)$
(V)	
「($\left.\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\kappa^{-} \pi^{+}\right)$	
+ $\left.\pi^{-} \pi^{0}\right) /\left(\kappa^{-} \pi^{+} \pi^{0}\right)$	$\Gamma_{125} /$

$\overline{\mathbf{1 0 . 3 2}} \mathbf{\pm 0 . 2 5}$ OUR FIT Error includes scale factor of 2.3.
$\mathbf{1 0 . 4 1} \pm \mathbf{0 . 2 3}$ OUR AVERAGE Error includes scale factor of 2.0.

$10.12 \pm 0.04 \pm 0.18$	$123 \mathrm{k} \pm 490$	ARINSTEIN	08 BELL	$e^{+} e^{-} \approx r(4 S)$
$10.59 \pm 0.06 \pm 0.13$	$60 \mathrm{k} \pm 343$	AUBERT,B	$06 \times \mathrm{BABR}$	$e^{+} e^{-} \approx \gamma(4 S)$

$\Gamma\left(\rho^{+} \pi^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
$\Gamma_{126} / \Gamma_{125}$
This is the "fit fraction" from the Dalitz-plot analysis, with interference. See GASPERO 08 and BHATTACHARYA 10A for isospin decompositions of the $D^{0} \rightarrow$ $\pi^{+} \pi^{0} \pi^{-}$Dalitz plot, both based on the amplitudes of AUBERT 07BJ. They quantify the conclusion that the final state is dominantly isospin 0 .

68.1 $\pm \mathbf{0 . 6}$ OUR AVERAGE

$67.8 \pm 0.0 \pm 0.6$
$76.3 \pm 1.9 \pm 2.5$
DOCUMENT ID TECN COMMENT
AUBERT 07BJ BABR Dalitz fit, 45k events CRONIN-HEN.. 05 CLEO $e^{+} e^{-} \approx 10 \mathrm{GeV}$
$\Gamma\left(\rho^{0} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
This is the "fit fraction" from the Dalitz-plot analysis, with interference $\Gamma_{127} / \Gamma_{125}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{25.9 \pm 1.1 ~ O U R ~ A V E R A G E ~ D O C U M E N T ~ I D ~}$ TECN COMMENT

$\mathbf{2 5 . 9} \pm \mathbf{1 . 1}$ OUR AVERAGE

$26.2 \pm 0.5 \pm 1.1$
$24.4 \pm 2.0 \pm 2.1$
AUBERT 07BJ BABR Dalitz fit, 45k events CRONIN-HEN.. 05 CLEO $e^{+} e^{-} \approx 10 \mathrm{GeV}$
$\Gamma\left(\rho^{-} \pi^{+}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
$\Gamma_{128} / \Gamma_{125}$
This is the "fit fraction" from the Dalitz-plot analysis, with interference
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
34.6 ± 0.8 OUR AVERAGE
$34.6 \pm 0.8 \pm 0.3$
$34.5 \pm 2.4 \pm 1.3$
AUBERT 07BJ BABR Dalitz fit, 45k events CRONIN-HEN.. 05 CLEO $e^{+} e^{-} \approx 10 \mathrm{GeV}$

$\Gamma\left(\rho(1450)^{+} \pi^{-}, \rho^{+} \rightarrow \pi^{+}\right.$ This is the "fit fraction" VALUE (units 10^{-2})	$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ he Dalitz-plot DOCUMENT ID	alysis. tec	COMMENT ${ }^{\text {Ci29/ }} \Gamma_{125}$
$0.11 \pm 0.07 \pm 0.12$	AUBERT	07BJ BABR	Dalitz fit, 45k events
$\Gamma\left(\rho(\underline{1450})^{0} \pi^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}-\boldsymbol{\rho}^{-1 i s ~ i s ~ t h e ~ " f i t ~ f r a c t i o n " ~} f\right.$	$/ \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$	nalysis.	$\Gamma_{130} / \Gamma_{125}$
$\mathrm{VaLUE}\left(\right.$ unit 10^{-2})	document id	TECN	COMMENT
$0 \pm 0.11 \pm 0.07$	aubert	07bJ BABR	Dalitz fit, 45k events
$\Gamma\left(\rho(\underline{1450})^{-} \pi^{+}, \rho^{-} \rho^{-} \rightarrow \pi^{-}\right. \text {is the "fit fraction" }$	$\begin{aligned} & / \Gamma\left(\pi^{+} \pi^{-} \pi\right. \\ & \text { nt the Dalitipl } \\ & \text { DOCIMENT } \end{aligned}$	nalysis.	$\Gamma_{131} / \Gamma_{125}$
$1.79 \pm 0.22 \pm 0.12$	aubert	078J BABR	Dalitz fit, 45k events
$\Gamma\left(\rho(\mathbf{1 7 0 0})^{+} \pi^{-}, \rho^{+} \rightarrow \pi^{+}\right.$ This is the "fit fraction" VALUE (units 10^{-2})	$/ \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$ DOCUMENT ID	nalysis.	${ }_{\text {COMMENT }} \Gamma_{132} / \Gamma_{125}$
$4.1 \pm 0.7 \pm 0.7$	aubert		Dalitz fit, 45k events
$\Gamma\left(\rho(\mathbf{1 7 0 0})^{0} \pi^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}-\boldsymbol{\rho}^{-}\right. \text {is the "fit fraction" fr }$	$\begin{aligned} & \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \\ & \text { the Dalitz-plot } \end{aligned}$ DOCUMENT ID	nalysis.	${ }_{\text {COMMENT }} \Gamma_{133 / \Gamma_{125}}$
$5.0 \pm 0.6 \pm 1.0$	AUBERT	bı BABR	Dalitz fit, 45k events
$\Gamma\left(\rho(\mathbf{1 7 0 0})^{-} \pi^{+}, \rho^{-} \rho^{-} \rightarrow \pi^{-} \pi \pi^{-\pi}\right. \text { is the "fit fraction" fro }$	$\begin{aligned} & \Gamma \\ & \text { the } \\ & \hline \end{aligned} \pi^{+} \pi^{-}$	alysis.	$\Gamma_{134} / \Gamma_{125}$
$3.2 \pm 0.4 \pm 0.6$	AUBERT	07BJ BABR	Dalitz fit, 45k events
$\Gamma\left(f_{0}(980) \pi^{0}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / / \text {This is the "fit fraction" fri }$ VALUE (units 10^{-2})	$\left(\pi^{+} \pi^{-} \pi^{0}\right)$ the Dalitz-plot document id	alysis. TECN	${ }_{\text {COMMENT }} \Gamma_{135 / \Gamma_{125}}$
$0.25 \pm 0.04 \pm 0.04$	RT	J BABR	45k even
$\begin{aligned} \Gamma\left(f_{0}(500) \pi^{0}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \\ \text {The } f_{0}(500) \text { is the } \sigma \text {. This } \end{aligned}$	$\begin{aligned} & \left(\pi^{+} \pi^{-} \pi^{0}\right) \\ & \text { the "fit fraction } \end{aligned}$	from the	$\underset{\text { tz-plot analysis. }}{\Gamma_{136} / \Gamma_{125}}$
$\mathrm{VALUE}\left(\right.$ (unit 10^{-2})	DOCUMENT ID	TECN	COMment
$0.82 \pm 0.10 \pm 0.10$	AUBERT	BABR	Dalitz fit, 45k events
$\Gamma\left(f_{0}\left(\begin{array}{l} \text { This is the "fit fraction" fr } \end{array} \pi^{0}, f_{0} \pi^{+}\right)\right.$	$\begin{aligned} \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \\ \text { the Dalitz-plot } \end{aligned}$	nalysis.	$\Gamma_{137} / \Gamma_{125}$
VALUE (units 10^{-2})	document id	- TECN	com
0.37 $\pm 0.11 \pm 0.09$	AUBERT	07BJ BABR	45k event
$\Gamma\left(f _ { 0 } \left(\begin{array}{l} 1500) \pi^{0} \\ \text { This is the "fit fraction" fr } \end{array}\right.\right.$	$\begin{aligned} & \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \\ & \text { the Dalitz-plot } \end{aligned}$	alysis. TECN	${ }_{\text {COMMENT }} \Gamma_{138} / \Gamma_{125}$
$\pm 0.08 \pm 0.07$	aubert	07bJ BABR	Dalitz fit, 45k event
$\Gamma\left(f_{0}\left(\begin{array}{l} (1710) \\ \text { This is the } \end{array} \pi^{0}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) ~\right. \text { fit fraction" fro }$ VALUE (units 10^{-2}	the Dalitz-plot document id	alysis. TECN	${ }_{\text {COMMENT }} \Gamma_{139} / \Gamma_{125}$
$0.31 \pm 0.07 \pm 0.08$	AUBERT	07BJ BABR	Dalitz fit, 45k events
$\Gamma\left(f_{2}(1270) \pi^{0}, \boldsymbol{f}_{\text {This is the }} \boldsymbol{f}_{2} \rightarrow \pi^{+} \pi^{+} \pi^{-}\right) / I$	$\begin{aligned} \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \\ \text { the Dalitz-plot } \end{aligned}$ DOCUMENT ID	alysis. TECN	${ }_{\text {Comment }} \Gamma_{140} / \Gamma_{125}$
$1.32 \pm 0.08 \pm 0.10$	ER	07bJ BABR	Dalitz fit, 45k events
$\begin{array}{r} \Gamma\left(\pi^{+} \pi^{-} \pi^{0} \text { nonresonant }\right) / \Gamma\left(\pi^{-}\right. \\ \text {This is the "fit fraction" from } \end{array}$ $\operatorname{VALUE}\left(\right.$ units $\left.10^{-2}\right)$	$\left.+\pi^{-} \pi^{0}\right)$ the Dalitz-plot DOCUMENT ID	nalysis. TECN	${ }_{\text {COMMENT }} \Gamma_{141 / \Gamma_{125}}$
0.84 $\pm 0.21 \pm 0.12$	AUBERT	07bJ BABR	Dalitz fit, 45k events
$\Gamma\left(3 \pi^{0}\right) / \Gamma_{\text {total }}$			Γ_{142} / Γ
VALUE (unit $\left.10^{-4}\right)$ CL\% EVTS	DOCUMENT ID	TECN	COMMEN
$\begin{aligned} & 2.0 \pm \mathbf{0 . 4 \pm 0 . 3} \\ & \text { - We do not use the following } \end{aligned}$	${ }^{1}$ ABLIKIM data for averages,	18x BES3 s, fits, limits,	$e^{+} e^{-}, 3773 \mathrm{MeV}$ etc. • . .
<3.5 90	RUBIN	06 CLEO	${ }^{+} e^{-}$at $\psi(3770)$
${ }^{1}$ Significance of signal reported by	b AbLIKIM 1	is 4.8σ.	
$\Gamma\left(2 \pi^{+} 2 \pi^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right)$			$\Gamma_{143} / \Gamma_{35}$
VaLUE (units 10^{-2})	document	TECN	N Commen
19.1 ± 0.5 OUR FIT $19.1 \pm 0.4 \pm 0.6 \quad 7331 \pm 130$	RUBIN	06 CLE	EO $e^{+} e^{-}$at $\psi(3770)$
$\Gamma\left(2 \pi^{+} 2 \pi^{-}\right) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$			$\Gamma_{143} / \Gamma_{70}$
VALUE (units 10-2) EVTS	document	TECN	COMment
9.19 ± 0.22 OUR FIT			
$6360 \pm$	LINK	S	$\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
$\pm 1.8 \pm 0.5$	АвLıкім	05 F BES	$e^{+} e^{-} \approx \psi(3770)$
\pm	frabetti	95 C E687	${ }_{\gamma} \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$
10.2 ± 1.3	ammar	91 CLEO	$e^{+} e^{-} \approx 10.5 \mathrm{GeV}$

Meson Particle Listings
D^{0}

This is the fit fraction from a coherent amplitude analysis.VALUE (units 10^{-2}) EVTS ${ }^{\text {dOCUMENT ID }}$ COMMENT				
$\mathbf{2 . 7} \pm 0.6 \pm 1.1$	7.3k	1 DARGENT		4-body fit, 4π evts
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.				
$\Gamma\left(\pi_{2}(1670)^{+} \pi^{-}, \pi_{2}^{+} \rightarrow \sigma \pi^{+}\right) / \Gamma\left(2 \pi^{+} 2 \pi^{-}\right)$ This is the fit fraction from a coherent amplitude analysis.				
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		COMMENT
$3.5 \pm 0.6 \pm 1.2$	7.3k	${ }^{1}$ DARGENT	17	4-body fit, 4π evts

$\Gamma(\omega \eta) / \Gamma_{\text {total }}$					Γ_{173} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	
1.98 $\pm \mathbf{0 . 1 8}$ OUR AVERAGE Error includes scale factor of 1.1.					
$2.15 \pm 0.17 \pm 0.15$	2.2k	ABLIKIM	18L BES3	$e^{+} e^{-}, 3773$	MeV
$1.78 \pm 0.19 \pm 0.15$	600	1 SMITH	18	$e^{+} e^{-}, 3773$	MeV
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.					

$\Gamma\left(\omega \pi^{+} \pi^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right)$				$\Gamma_{176} / \Gamma_{35}$
VALUE (units 10^{-2}) EVTS	DOCUMENT ID TECN		COMMENT	
$4.1 \pm 1.2 \pm 0.4 \quad 472 \pm 132$	RUBIN	06 CLEO	$e^{+} e^{-}$a	at $\psi(3770)$
$\Gamma\left(3 \pi^{+} \mathbf{3} \pi^{-}\right) / \Gamma\left(K^{-} \mathbf{2} \pi^{+} \pi^{-}\right)$				$\Gamma_{178} / \Gamma_{70}$
VALUE (units 10^{-3}) EVTS	DOCUMENT ID	TECN	COMMENT	
$5.23 \pm 0.59 \pm 1.35 \quad 149 \pm 17$	LINK	04B FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma} \approx$	$\approx 180 \mathrm{GeV}$
$\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma\left(K^{-} 3 \pi^{+} 2 \pi^{-}\right)$				$\Gamma_{178} / \Gamma_{98}$
VALUE	DOCUMENT ID	TECN C	COMMENT	

- - We do not use the following data for averages, fits, limits, etc. - - $1.93 \pm 047 \pm 0.48 \quad 1$ LINK 04B FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
${ }^{1}$ This LINK 04B result is not independent of other results in these Listings.
$\Gamma\left(\eta^{\prime}(958) \pi^{0}\right) / \Gamma_{\text {total }}$
Γ_{179} / Γ Unseen decay modes of the η^{\prime} (958) are included.

VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
9.2土1.0 OUR FIT				
$9.3 \pm 1.1 \pm 0.9$	469 ± 56	ABLIKIM	BES3	$e^{+} e^{-}, 3773 \mathrm{MeV}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$8.1 \pm 1.5 \pm 0.6 \quad 50 \pm 9 \quad$ ARTUSO 08 CLEO See MENDEZ 10
$\Gamma\left(\eta^{\prime}(958) \pi^{0}\right) /\left[\Gamma\left(K^{-} \pi^{+}\right)+\Gamma\left(K^{+} \pi^{-}\right)\right] \quad \Gamma_{179} /\left(\Gamma_{35}+\Gamma_{256}\right)$ Unseen decay modes of the η^{\prime} (958) are included.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT
2.32 ± 0.25 OUR FIT				
$2.3 \pm 0.3 \pm 0.2$	± 19	MENDEZ	CLEO	e^{+}

$\Gamma\left(\boldsymbol{\eta}^{\prime}(958) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$	$\Gamma_{\mathbf{1 8 0}} / \Gamma$
Unseen decay modes of the $\eta^{\prime}(958)$ are included.	

$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{4 . 5} \mathbf{1} \mathbf{1 . 6} \mathbf{0 . 5}} \frac{\text { EVTS }}{21 \pm 8} \quad \frac{\text { DOCUMENT ID }}{\text { ARTUSO } 08} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } \psi(3770)}$
$\Gamma(2 \eta) / \Gamma_{\text {total }}$
Unseen decay modes of the η are included.
VALUE (units 10^{-4}) EVTS DOCUMENTID TECN COMMENT

$\mathbf{2 2 . 0} \pm \mathbf{0 . 7} \pm \mathbf{0 . 6} \quad 3.4 \mathrm{k} \quad$ ABLIKIM 18 L BES3 $e^{+} e^{-}, 3773 \mathrm{MeV}$

Unseen decay modes of the η and $\eta^{\prime}(958)$ are included.
 - - We do not use the following data for averages, fits, limits, etc. - -
$12.6 \pm 2.5 \pm 1.1 \quad 46 \pm 9 \quad$ ARTUSO 08 CLEO See MENDEZ 10
$\Gamma\left(\eta \eta^{\prime}(958)\right) /\left[\Gamma\left(K^{-} \pi^{+}\right)+\Gamma\left(K^{+} \pi^{-}\right)\right] \quad \Gamma_{184} /\left(\Gamma_{35}+\Gamma_{256}\right)$
Unseen decay modes of the η and $\eta^{\prime}(958)$ are included.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.5 ± 0.5 OUR FIT					
$2.7 \pm 0.6 \pm 0.3$	66 ± 15	MENDEZ	10	CLEO	$e^{+} e^{-}$at 3774 MeV

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{195 / \Gamma}$ $\frac{\text { VALUE (units } 10^{-3} \text {) }}{4.08 \pm \mathbf{0 . 0 6} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes }} \frac{\text { DOCUMENT ID }}{\text { scale factor of 1.6. }} \frac{\text { TECN }}{\text { COMMENT }}$ $\mathbf{4 . 2 3 3} \pm \mathbf{0 . 0 2 1} \pm \mathbf{0 . 0 6 4} \quad 56 \mathrm{k} \quad$ ABLIKIM 18 W BES3 $e^{+} e^{-}, 3773 \mathrm{MeV}$ - - We do not use the following data for averages, fits, limits, etc. - - .
$4.08 \pm 0.08 \pm 0.09 \quad 4.7 \mathrm{k} \quad$ BONVICINI 08 CLEO See MENDEZ 10

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)$
$\frac{\text { VALUE }}{\text { EVTS }} \quad \Gamma_{\mathbf{1 8 5}} / \boldsymbol{\Gamma}_{\mathbf{3 5}}$
DOCUMENT ID

$0.1010 \pm \mathbf{0 . 0 0 1 6}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

$0.122 \pm 0.011 \pm 0.004$	242 ± 20	ABLIKIM	05F BES	$e^{+} e^{-} \approx \psi(3770)$
$0.0992 \pm 0.0011 \pm 0.0012$	$16 \mathrm{k} \pm 200$	ACOSTA	05c CDF	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$0.0993 \pm 0.0014 \pm 0.0014$	11k	LINK	03 FOCS	$\begin{gathered} \gamma \text { nucleus, } \bar{E}_{\gamma} \approx \\ 180 \mathrm{GeV} \end{gathered}$
$0.1040 \pm 0.0033 \pm 0.0027$	1900	CSORNA	02 CLE2	$e^{+} e^{-} \approx r(4 S)$
$0.109 \pm 0.003 \pm 0.003$	3317	AITALA	98C E791	π^{-}nucleus, 500 GeV
$0.116 \pm 0.007 \pm 0.007$	1102	ASNER	96B CLE2	$e^{+} e^{-} \approx r(4 S)$
$0.109 \pm 0.007 \pm 0.009$	581	FRABETTI	94C E687	$\gamma \mathrm{Be} \bar{E}_{\gamma}=220 \mathrm{GeV}$
$0.107 \pm 0.010 \pm 0.009$	193	ANJOS	91D E691	Photoproduction
$0.117 \pm 0.010 \pm 0.007$	249	ALEXANDER	90 CLEO	$e^{+} e^{-} 10.5-11 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - .				
$0.107 \pm 0.029 \pm 0.015$	103	ADAMOVICH	92 OMEG	$\pi^{-} 340 \mathrm{GeV}$
$0.138 \pm 0.027 \pm 0.010$	155	FRABETTI	92 E687	$\gamma \mathrm{Be}$
0.16 ± 0.05	34	ALVAREZ	91B NA14	Photoproduction
$0.10 \pm 0.02 \pm 0.01$	131	ALBRECHT	90c ARG	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
$0.122 \pm 0.018 \pm 0.012$	118	BALTRUSAIT	.. 85 E MRK3	$e^{+} e^{-} 3.77 \mathrm{GeV}$
0.113 ± 0.030		ABRAMS	79D MRK2	$e^{+} e^{-} 3.77 \mathrm{GeV}$
WEIGHTED AVERAGE 0.1010 ± 0.0016 (Error scaled by 1.4)				

$\Gamma\left(K^{+} K^{-}\right) /\left[\Gamma\left(K^{-} \pi^{+}\right)+\Gamma\left(K^{+} \pi^{-}\right)\right] \quad \Gamma_{185} /\left(\Gamma_{35}+\Gamma_{256}\right)$ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT $\overline{\mathbf{1 0 . 2 9}} \mathbf{\pm 0 . 1 3}$ OUR FIT $\overline{\text { Error }}$ includes scale factor of 1.6. $\mathbf{1 0 . 4 1} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 1 2} \quad 13.8 \mathrm{k} \quad$ MENDEZ $10 \quad \mathrm{CLEO} e^{+} e^{-}$at 3774 MeV
$\Gamma\left(K^{+} K^{-}\right) / \Gamma\left(\pi^{+} \pi^{-}\right) \quad \Gamma_{185} / \Gamma_{123}$
The unused results here are redundant with $\Gamma\left(K^{+} K^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right)$and
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right)$measurements by the same experiments.
VALUE DOCUMENTID EVTS TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.760 \pm 0.040 \pm 0.034 \quad 7334 \quad$ ACOSTA 05 C CDF $p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$2.81 \pm 0.10 \pm 0.06 \quad$ LINK 03 FOCS γ nucleus, $\bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
$2.96 \pm 0.16 \pm 0.15 \quad 710 \quad$ CSORNA 02 CLE2 $\quad e^{+} e^{-} \approx r(4 S)$
$2.75 \pm 0.15 \pm 0.16 \quad$ AITALA 98 C E791 π^{-}nucleus, 500 GeV
$2.53 \pm 0.46 \pm 0.19 \quad$ FRABETTI 94 C E687 γ Be $\bar{E}_{\gamma}=220 \mathrm{GeV}$
$2.23 \pm 0.81 \pm 0.46 \quad$ ADAMOVICH 92 OMEG $\pi^{-} 340 \mathrm{GeV}$
$1.95 \pm 0.34 \pm 0.22$ ANJOS 91D E691 Photoproduction
$2.5 \pm 0.7 \quad$ ALBRECHT 90 C ARG $e^{+} e^{-} \approx 10 \mathrm{GeV}$
$2.35 \pm 0.37 \pm 0.28 \quad$ ALEXANDER 90 CLEO $e^{+} e^{-} 10.5-11 \mathrm{GeV}$
$\Gamma\left(2 K_{S}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{186} / \Gamma$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 . 4 1 \pm 0 . 0 5 ~ O U R ~ F I T ~ E r r o r ~ i n c l u d e s ~ s c a l e ~ f a c t o r ~ o f ~ 1 . 1 . ~}$
$\mathbf{1 . 6 7} \mathbf{\pm 0 . 1 1 \pm \mathbf { 0 . 1 1 } \quad 5 7 6 \quad \text { ABLIKIM } 1 7 \mathrm { A } \text { BES3 } e ^ { + } e ^ { - } \rightarrow \psi (3 7 7 0)}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$1.46 \pm 0.32 \pm 0.09 \quad 68 \pm 15 \quad$ BONVICINI 08 CLEO See MENDEZ 10
$\Gamma\left(2 K_{S}^{0}\right) /\left[\Gamma\left(K^{-} \pi^{+}\right)+\Gamma\left(K^{+} \pi^{-}\right)\right]$
$\Gamma_{186} /\left(\Gamma_{35}+\Gamma_{256}\right)$
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$0.357 \pm \mathbf{0 . 0 1 3}$ OUR FIT Error includes scale factor of 1.1. TECN COMMENT
$\mathbf{0 . 4 1} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 2} 215 \pm 23 \quad$ MENDEZ $\quad 10 \quad$ CLEO $e^{+} e^{-}$at 3774 MeV
$\Gamma\left(\mathbf{2} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) / \Gamma\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \quad \Gamma_{\mathbf{1 8 6}} / \boldsymbol{\Gamma}_{\mathbf{3 8}}$
This is the same as $\Gamma\left(K^{0} \bar{K}^{0}\right) / \Gamma\left(\bar{K}^{0} \pi^{+} \pi^{-}\right)$because $D^{0} \rightarrow K_{S}^{0} K_{L}^{0}$ is forbidden by $C P$ conservation.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT
0.506 ± 0.034 OUR FIT
1.20 ± 0.22 OUR AVERAGE

1.44	± 0.32	± 0.16	79 ± 17	LINK	05A FOCS γ Be, $\bar{E}_{\gamma} \approx 180 \mathrm{GeV}$	
1.01 ± 0.22	± 0.16	26	ASNER	96B CLE2	$e^{+} e^{-} \approx \gamma(4 S)$	
3.9	± 1.3	± 1.3	20 ± 7	FRABETTI	94」 E687	$\gamma \mathrm{Be} \bar{E}_{\gamma}=220 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$2.1 \begin{array}{rlllll}+1.1 \\ -0.8\end{array} \pm 0.2 \quad 5 \quad$ ALEXANDER $90 \quad$ CLEO $\quad e^{+} e^{-} 10.5-11 \mathrm{GeV}$
$\Gamma\left(2 K_{S}^{0}\right) / \Gamma\left(\boldsymbol{K}_{S}^{0} \pi^{0}\right)$
$\Gamma_{186} / \Gamma_{36}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 1 4} \pm \mathbf{0 . 0 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1.1. }} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$
$\begin{array}{llllll}\mathbf{1 . 1 4} \pm \mathbf{0 . 0 4} \text { OUR FIT } & & \text { Error includes scale factor of 1.1. } & \\ \mathbf{1 . 1 0 1} \mathbf{0 . 0 2 3} \mathbf{0 . 0 3 0} & 4.8 \mathrm{k} & \text { DASH } & 17 \mathrm{BELL} & \text { At } / \text { near } r(4 S), r(5 S)\end{array}$
$\Gamma\left(K_{5}^{0} \kappa^{-} \pi^{+}\right) / \Gamma\left(\kappa^{-} \pi^{+}\right)$
$\Gamma_{187} / \Gamma_{35}$

${ }^{1}$ The factor 100 at the top of column 2 of Table I of ANJOS 91 should be omitted.

$\Gamma\left(\phi \pi^{0}\right) / \Gamma_{\text {total }}$					$\Gamma_{247 / \Gamma}$
Value (unit 10^{-3})	EVTS	DOCUMENT ID	TECN	COMment	
$1.168 \pm 0.028 \pm 0.028$	3.3k	ABL			

$\Gamma(\phi \eta) / \Gamma_{\text {total }}$					Γ_{248} / Γ
$1.81 \pm 0.46 \pm \pm 0.06$	102	АвLIKı	1981 BES3	$e^{+} e^{-}$at	м
$\Gamma\left(\kappa_{S}^{0} \boldsymbol{K}^{-} \pi^{+}\right) / \Gamma$	${ }^{+} \pi^{-}$)				$\Gamma_{187} / \Gamma_{38}$

VALUE DOCUMENT ID TECN COMMENT
$\mathbf{0 . 1 1 9} \pm 0.021$ OUR AVERAGE Error includes scale factor of 1.3.

0.108 ± 0.019	61	AMMAR	91	CLEO $e^{+} e^{-} \approx 10.5 \mathrm{GeV}$	
$0.16 \pm 0.03 \pm 0.02$	39	ALBRECHT	$90 c$	ARG	$e^{+} e^{-} \approx 10 \mathrm{GeV}$

$\Gamma\left(\bar{K}^{*}(892)^{0} K_{S}^{0}, \bar{K}^{*} \mathbf{0} \Rightarrow K^{-} \pi^{+}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right)$
$\Gamma_{188} / \Gamma_{187}$
Fit fraction from Dalitz plot analyses. The fraction for the $K_{S}^{0} \pi^{+}$mass between 792 and 992 MeV is $0.370 \pm 0.003 \pm 0.012$.
VALUE (units 10^{-2}) EVTS \quad DOCUMENT ID \quad TECN COMMENT
$2.47 \pm 0.15 \pm \mathbf{0 . 2 3} \quad 113 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.

$\Gamma\left(\overline{\boldsymbol{K}}^{*}(1410)^{0} K_{\text {Fit fraction from Dalitz plot analyses. }}^{0}, \bar{K}_{S}^{* 0} \boldsymbol{K}^{-} \pi^{+}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{190} / \Gamma_{187}$
$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{3 . 8} \pm \mathbf{0 . 5} \pm \mathbf{5 . 6}} \frac{\text { EVTS }}{113 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a uncertainty (which in this case dominates)
$\Gamma\left(K^{*}(\mathbf{1 4 1 0})^{+} K^{-}, K^{*+} \rightarrow K_{S}^{\mathbf{0}} \pi^{+}\right) / \Gamma\left(K_{S}^{\mathbf{0}} K^{-} \pi^{+}\right) \quad \Gamma_{191} / \Gamma_{187}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{9.6 \pm 1.1 \pm 5.4} \frac{E V T S}{113 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
$\begin{array}{ccccc}9.6 \pm 1.1 \pm 5.4 & 113 \mathrm{k} & 16 \mathrm{NAIJ} & \text { LHCB } \\ { }^{1} \text { AAIJ } 16 \mathrm{~N} \text { gives results for two S-wave parameterisations. We take the values from the }\end{array}$ model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(\left(K^{-} \pi^{+}\right)_{S-w a v e} K_{S}^{0}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{192} / \Gamma_{187}$ Fit fraction from Dalitz plot analyses.
$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{1 8 + 2 + 8}} \frac{\text { EVTS }}{113 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { COMMENT }}$
$18 \pm 2 \pm 8$
AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(\left(K_{S}^{0} \pi^{+}\right)_{S-\text { wave }} K^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{193} / \Gamma_{187}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{1 1 . 7} \pm \mathbf{1 . 0} \pm \mathbf{2 . 3}} \frac{E V T S}{113 \mathrm{k}} \quad 1 \frac{\text { DOCUMENTID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(a_{0}(980)^{-} \pi^{+}, a_{0}^{-} \rightarrow K_{S}^{0} K^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{194} / \Gamma_{187}$
VALUE (units 10^{-2}) $\frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
$4.0 \pm \mathbf{0 . 7} \pm \mathbf{4 . 1} \quad 113 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S -wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(a_{0}(1450)^{-} \pi^{+}, a_{0}^{-} \rightarrow K_{S}^{0} K^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{195} / \Gamma_{187}$ LUE (units 10^{-2}) $\frac{\text { EVTS }}{113 \mathrm{~K}}, \frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT
$\mathbf{0 . 7 4} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 5 7} \quad 113 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(\mathrm{a}_{2}(1320)^{-} \pi^{+}, \mathrm{a}_{2}^{-} \rightarrow K_{S}^{0} \kappa^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{196} / \Gamma_{187}$ $\frac{\text { VALUE (units } 10^{-2} \text {) }}{0.15+0.06+0.14} \frac{\text { EVTS }}{113 k} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$
$\overline{0.15 \pm 0.06 \pm 0.14} \quad 113 \mathrm{k} \quad 1$ AAIJ $\overline{\text { LHCB }}$ Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(\rho(1450)^{-} \pi^{+}, \rho^{-} \rightarrow K_{S}^{0} K^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{197} / \Gamma_{187}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { EVTS }}$ DOCUMENT ID \quad TECN COMMENT
$\mathbf{1 . 4} \mathbf{\pm 0 . 2} \mathbf{\pm 0 . 7} \quad 113 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S -wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) / \Gamma\left(K^{-} \pi^{+}\right) \quad \Gamma_{198} / \Gamma_{35}$
VALUE DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$0.05 \pm 0.025 \quad{ }^{1}$ ANJOS $91 \quad$ E691 $\quad \gamma$ Be 80-240 GeV
${ }^{1}$ The factor 100 at the top of column 2 of Table I of ANJOS 91 should be omitted.
$\Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{198} / \Gamma_{38}$ VALUE \bullet - We do not use the following data for averages, fits, limits, etc. • • •
$0.098 \pm 0.020 \quad 55 \quad$ AMMAR $91 \mathrm{CLEO} \quad e^{+} e^{-} \approx 10.5 \mathrm{GeV}$
$\Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} K^{-} \pi^{+}\right) \quad \Gamma_{198} / \Gamma_{187}$
$\frac{V A L U E}{0.654 \pm \mathbf{0 . 0 0 7} \text { OUR FIT }}$ EVTS
$0.654 \pm \mathbf{0 . 0 0 7}$ OUR AVERAGE
$0.655 \pm 0.004 \pm 0.006 \quad 76 \mathrm{k}, 113 \mathrm{k}$ AAIJ 16 N LHCB $p p$ at $7,8 \mathrm{TeV}$ $0.592 \pm 0.044 \pm 0.018 \quad$ INSLER 12 CLEO $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at

$\Gamma\left(K^{*}(892){ }^{0} \boldsymbol{K}_{S}^{0}, \boldsymbol{K}^{* 0} \Rightarrow K^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{199} / \Gamma_{198}$
Fit fraction from Dalitz plot analyses.
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{\mathbf{5 . 1 7} \pm \mathbf{0 . 2 1} \pm \mathbf{0 . 4 7}} \frac{E V T S}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENTID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { LHCB }} \frac{16 \mathrm{~N}}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(K^{*}(892)^{-} K^{+}, K^{*-} \rightarrow \underset{\boldsymbol{S}}{\boldsymbol{K}} \boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{-}\right) / \Gamma\left(K_{\boldsymbol{S}}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{2 0 0}} / \Gamma_{\mathbf{1 9 8}}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{2 8 . 8} \pm \mathbf{0 . 4} \mathbf{1 . 5}} \frac{\text { EVTS }}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{16 \mathrm{~N}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.

$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{2 . 2} \pm \mathbf{0 . 6} \mathbf{3 . 7}} \frac{\text { EVTS }}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(K^{*}(1410)^{-} K^{+}, K^{*-} \rightarrow K_{S}^{0} \pi^{-}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{202} / \Gamma_{198}$ LUE (units 10^{-2}) $\frac{\text { EVTS }}{76} \quad \frac{\text { DOCUMENTID }}{\text { TECN }} \frac{\text { COMMENT }}{\text { LHAT }}$
$11.9 \pm 1.5 \pm 9.1 \quad 76 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(\left(K^{+} \pi^{-}\right)_{S-w a v e} K_{S}^{0}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{2 0 3}} / \Gamma_{\mathbf{1 9 8}}$ Fit fraction from Dalitz plot analyses.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{17 \pm 2 \pm 8} \frac{\text { EVTS }}{76 k} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { COMMENT }}$
$17 \pm 2 \pm 8$
${ }^{1}$ AAIJ 16N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(\left(K_{S}^{0} \pi^{-}\right)_{S-w a v e} K^{+}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{204} / \Gamma_{198}$ Fit fraction from Dalitz plot analyses.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{6 . 3} \mathbf{0} \mathbf{0 . 9} \mathbf{2} . \mathbf{3}} \frac{\text { EVTS }}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{16 \mathrm{~N}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(a_{0}(980)^{+} \pi^{-}, a_{0}^{+} \Rightarrow K_{S}^{0} K^{+}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{205} / \Gamma_{198}$ Fit fraction from Dalitz plot analyses.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{2 6} \pm \mathbf{2} \pm \mathbf{1 8}} \frac{\text { EVTS }}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(a_{0}(1450)^{+} \pi^{-}, a_{0}^{+} \rightarrow K_{S}^{0} K^{+}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{206} / \Gamma_{198}$ Fit fraction from Dalitz plot analyses.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 5} \pm \mathbf{0 . 3} \pm \mathbf{1 . 1}} \frac{\text { EVTS }}{76 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Dalitz plot fit }}$
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty (which in this case dominates).
$\Gamma\left(\rho(1700)^{+} \pi^{-}, \rho^{+} \rightarrow K_{S}^{0} K^{+}\right) / \Gamma\left(K_{S}^{0} K^{+} \pi^{-}\right) \quad \Gamma_{207} / \Gamma_{198}$ Fit fraction from Dalitz plot analyses.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT
$\mathbf{0 . 5 3} \pm \mathbf{0 . 1 1 \pm 0 . 2 3} \quad 76 \mathrm{k} \quad 1$ AAIJ 16 N LHCB Dalitz plot fit
${ }^{1}$ AAIJ 16 N gives results for two S-wave parameterisations. We take the values from the model with LASS parametrization, and the difference as a systematic uncertainty.
$\Gamma\left(K^{+} K^{-} \pi^{\mathbf{0}}\right) / \Gamma\left(K^{-} \pi^{+} \pi^{\mathbf{0}}\right)$
$\Gamma_{208} / \Gamma_{53}$
VALUE (units 10^{-2})
$2.37 \pm 0.03 \pm \mathbf{0 . 0 4} \quad 11 \mathrm{k} \pm 122$
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - •
$0.95 \pm 0.26 \quad 151 \quad$ ASNER 96B CLE2 $e^{+} e^{-} \approx r(4 S)$
$\Gamma\left(K^{*}(892)^{+} K^{-}, K^{*}(892)^{+} \rightarrow K^{+} \pi^{0}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{209} / \Gamma_{208}$

VALUE (units 10^{-2})	DOCUMENT	TECN	COMMENT
$\mathbf{4 4 . 4} \pm \mathbf{0 . 8} \pm \mathbf{0 . 6}$	AUBERT	BABR	Dalitz fit
- - We do not use the following data for averages, fits, limits, etc. - -			
46.1 ± 3.1	1 CAWLFIELD 06a CLEO		Dalitz fit, 627 ± 30 evts

${ }^{1}$ The error on this CAWLFIELD 06A result is statistical only.
$\Gamma\left(K^{*}(892)^{-} K^{+}, K^{*}(892)^{-} \rightarrow K^{-} \pi^{0}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{210} / \Gamma_{208}$ This is the "fit fraction" from the Dalitz-plot analysis with interference.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$
15.9 $\pm \mathbf{0 . 7} \pm \mathbf{0 . 6} \quad$ AUBERT 07T BABR Dalitz fit II, 11k evts

- - We do not use the following data for averages, fits, limits, etc. - -
$12.3 \pm 2.2 \quad{ }^{1}$ CAWLFIELD 06A CLEO Dalitz fit, 627 ± 30 evts
${ }^{1}$ The error on this CAWLFIELD 06A result is statistical only.
$\Gamma\left(\left(K^{+} \pi^{0}\right)_{S-\text { wave }} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right)$
This is the "fit fraction" from the Dalitz-plot analysis with interference.
VALUE (units 10^{-2}) DOCUMENT ID TECN
$\overline{71.1} \pm \mathbf{3 . 7} \pm \mathbf{1 . 9} \quad 1$ AUBERT $07 \mathrm{~T} \frac{\text { BABR }}{} \frac{1}{}$
${ }^{1}$ The only major difference between fits I and II in the AUBERT 07T analysis is in this mode, where the fit-I fraction is $(16.3 \pm 3.4 \pm 2.1) \%$.
$\Gamma\left(\left(K^{-} \pi^{0}\right)_{S-w a v e} K^{+}\right) / \Gamma\left(K^{+} K^{-} \boldsymbol{\pi}^{0}\right)$
This is the "fit fraction" from the Dalitz-plot analysis with interference.
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
$\overline{3.9 \pm 0.9 \pm 1.0} \quad$ AUBERT 07T BABR Dalitz fit II, 11k evts
$\Gamma\left(f_{0}(980) \pi^{0}, f_{0} \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{213} / \Gamma_{208}$ This is the "fit fraction" from the Dalitz-plot analysis with interference.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 0 . 5} \pm \mathbf{1 . 1} \pm \mathbf{1 . 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }}$
${ }^{1}$ When AUBERT 07T replace the $f_{0}(980) \pi^{0}$ mode with $a_{0}(980) \pi^{0}$, the fit fraction is a negligibly different $(11.0 \pm 1.5 \pm 1.2) \%$.
$\Gamma\left(\phi \pi^{0}, \phi \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right)$
$\Gamma_{214} / \Gamma_{208}$
This is the "fit fraction" from the Dalitz-plot analysis with interference.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 9 . 4} \mathbf{\pm 0 . 6} \mathbf{\pm 0 . 5}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 07T }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\text { Dalitz fit II, 11k evts }}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$14.9 \pm 1.6 \quad 1$ CAWLFIELD 06A CLEO Dalitz fit, 627 ± 30 evts
${ }^{1}$ The error on this CAWLFIELD 06A result is statistical only.
$\Gamma\left(K^{+} K^{-} \pi^{0}\right.$ nonresonant $) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{215} / \Gamma_{208}$ This is the "fit fraction" from the Dalitz-plot analysis with interference.
VALUE DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -
0.360 ± 0.037
${ }^{1}$ CAWLFIELD 06A CLEO Dalitz fit, 627 ± 30 evts
${ }^{1}$ The error is statistical only. CAWLFIELD 06A also fits the Dalitz plot replacing this flat nonresonant background with broad S-wave $\kappa^{ \pm} \rightarrow K^{ \pm} \pi^{0}$ resonances. There is no significant improvement in the fit, and $K^{* \pm} K^{\mp}$ and $\phi \pi^{0}$ results are not much changed.
$\boldsymbol{\Gamma}\left(\mathbf{2} \mathbf{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<0.00059}$$\frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad$ 96B $\frac{\text { TECN }}{\text { CLE2 }} \frac{\boldsymbol{\Gamma}_{\mathbf{2 1 6}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \approx \gamma(4 S)}$
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(K^{-2} \pi^{+} \pi^{-}\right)$
$\Gamma\left(K^{+} K^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \Gamma\left(K^{\mathbf{2}} \boldsymbol{\pi}^{+}\right.$
VALUE (units $\left.10^{-2}\right)$
3.00 ± 0.13 OUR AVERAGE
$2.95 \pm 0.11 \pm 0.08 \quad 2669 \pm 101 \quad 1$ LINK $\quad 05 \mathrm{GFOCS} \quad \gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$

$3.13 \pm 0.37 \pm 0.36$	136 ± 15	AITALA	98 D E791	π^{-}nucleus, 500 GeV
$3.5 \pm 0.4 \pm 0.2$	244 ± 26	FRABETTI	95 CE 587	$\gamma \mathrm{Be}, \bar{E} \approx 200 \mathrm{GeV}$

$3.5 \pm 0.4 \pm 0.2 \quad 244 \pm 26 \quad$ FRABETTI 95C E687 $\quad \gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 200 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

4.4 ± 1.8	± 0.5	19 ± 8	ABLIKIM	05F BES	$e^{+} e^{-} \approx \psi(3770)$
$4.1 \pm 0.7 \pm 0.5$	114 ± 20	ALBRECHT	94 । ARG	$e^{+} e^{-} \approx 10 \mathrm{GeV}$	
3.14 ± 1.0	89 ± 29	AMMAR	91 CLEO	$e^{+} e^{-} \approx 10.5 \mathrm{GeV}$	
$2.8{ }_{-0.7}^{ \pm 0.8}$		ANJOS	91	E691	γ Be $80-240 \mathrm{GeV}$

${ }^{1}$ LINK 05G uses a smaller, cleaner subset of 1279 ± 48 events for the amplitude analysis that gives the results in the next data blocks.
$\Gamma\left(\phi\left(\pi^{+} \pi^{-}\right)_{S-\text { wave, }} \phi \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{218} / \Gamma_{217}$ This is the fraction from a coherent amplitude analysis.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{4 . 0} \mathbf{\pm 0 . 6} \mathbf{\pm 2 . 1}} \frac{\text { EVTS }}{3 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { DARGENT } 17}{\text { COMMENT }} \frac{\text {-body fit, } K K \pi \pi}{4}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$10.3 \pm 1.0 \pm 0.8 \quad 3 \mathrm{k} \quad{ }^{2}$ ARTUSO 12 CLEO 4 -body fit, $K K \pi \pi$ $1 \pm 1 \quad$ LINK $\quad 1.3 \mathrm{k} \quad$ 05G FOCS $\begin{gathered}\text { events } \\ \text { 4-body fit, } K K \pi \pi\end{gathered}$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{2}$ See DARGENT 17

Meson Particle Listings
D^{0}

$\Gamma\left(\left(\phi \rho^{0}\right)_{\text {S-wave, }}, \phi \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$ This is the fraction from a coherent amplitude analysis.						Γ_{2}
VALUE (units 10^{-2})	EVTS	DOCUMENTID		TECN	MMENT	
$28.1 \pm 1.3 \pm$	2.9k	1,2 DARGENT	17		4-body fit	
- - We do not use the following data for averages, fits, limits, etc. - -						
$38.3 \pm 2.5 \pm 3.8$		1,3 ARTUSO		CLEO	Fitting 29	
$29 \pm 2 \pm 1$		LINK		FOCS	Fits 1279	8 evt

${ }^{1}$ ARTUSO 12 and DARGENT 17 use the same dataset, but ARTUSO 12 uses a formulation for the D-wave component that is in fact a mix of S- and D-wave, while DARGENT 17 uses a pure D-wave. This explains the discrepancy in their $\rho \phi$ S- and
D-wave components.
${ }_{3}^{2}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{3}$ See DARGENT 17
$\Gamma\left(\left(\phi \rho^{0}\right)_{P-w a v e}, \phi \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{220} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{16 \text { EVTS }} \frac{\text { DOCUMENT ID }}{2.9}$ COMMENT
$\mathbf{1 . 6} \pm \mathbf{0 . 3} \pm \mathbf{0 . 7} \quad 2.9 \mathrm{k} \quad 1$ DARGENT 17 4-body fit, $K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(\left(\phi \rho^{0}\right)_{D-w a v e}, \phi \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{221} / \Gamma_{217}$ VALUE (units 10^{-2}) EVTS \quad DOCUMENT ID TECN COMMENT $\mathbf{1 . 7} \pm \mathbf{0 . 4} \pm \mathbf{0 . 4} \quad 2.9 \mathrm{k} \quad 1,2$ DARGENT $17 \quad 4$-body fit, $K K \pi \pi$ evts - - We do not use the following data for averages, fits, limits, etc. - - •
$3.4 \pm 0.7 \pm 0.6 \quad 1,3$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ ARTUSO 12 use a formulation for the D-wave component that is in fact a mix of S- and
D-wave, while DARGENT 17 uses a pure D-wave.
${ }^{2}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{3}$ See DARGENT 17
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}, K^{* 0} \rightarrow K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{222} / \Gamma_{217}$ This is the fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$3 \pm 2 \pm 1$
LINK
05G FOCS Fits 1279 ± 48 evts.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\rho}^{\mathbf{0}}{ }^{3}\right.$-body $) / \Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)$
$\Gamma_{223} / \Gamma_{217}$
This is the fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
$2 \pm 2 \pm 2 \quad$ LINK 05G FOCS Fits 1279 ± 48 evts.
$\Gamma\left(f_{0}(980) \pi^{+} \pi^{-}, f_{0} \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{224} / \Gamma_{217}$
This is the fraction from a coherent amplitude analysis.
VALUE (units 10 0^{-2}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - . -
$15 \pm 3 \pm 2 \quad$ LINK 05G FOCS Fits 1279 ± 48 evts.
$\Gamma\left(\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right)_{S-w a v e}, K^{* 0} \rightarrow K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{225} / \Gamma_{217}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{9.06 \pm 0.35 \text { OUR AVERAGE }}$
DOCUMENT ID TECN
COMMENT
$9.18 \pm 0.21 \pm 0.28 \quad 163 \mathrm{k}$ AAIJ 19C LHCB 4 -body fit, $K K \pi \pi$ evts
$4.5 \pm 0.8 \pm 2.0 \quad 3 \mathrm{k} \quad 1$ DARGENT $17 \quad$ 4-body fit, $K K \pi \pi$ evts
- - We do not use the following data for averages, fits, limits, etc. - -
$6.1 \pm 0.8 \pm 0.9 \quad 3 \mathrm{k} \quad{ }^{2}$ ARTUSO $\quad 12$ CLEO $\quad 4$-body fit, $K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{2}$ See DARGENT 17
$\Gamma\left(\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right)_{P-w a v e}, K^{*} \rightarrow K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right){ }_{\Gamma_{226} / \Gamma_{217}}$
This is the fit fraction from a coherent amplitude analysis.
VALUE (units 10 0^{-2}) EVTS DOCUMENTID TECN COMMENT
$\begin{array}{llllll}\begin{array}{llll}4.87 \pm 0.24 & \text { OUR AVERAGE } \\ 4.90 \pm 0.16 \pm 0.18 & 163 \mathrm{k}\end{array} & \text { AAIJ } & \text { 19C } & & & \\ & \text { LHCB } & \text { 4-body fit, } K K \pi \pi \text { evts }\end{array}$
$\begin{array}{llllll}4.90 \pm 0.16 \pm 0.18 & 163 \mathrm{k} & \text { AAIJ } & \text { 19C } & \text { LHCB } & \text { 4-body fit, } K K \pi \pi \text { evts } \\ 3.6 \pm 0.7 \pm 1.5 & 2.9 \mathrm{k} & 1 \text { DARGENT } & 17 & \text { 4-body fit, } K K \pi \pi \text { evts }\end{array}$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right)_{D-w a v e}, K^{*} \rightarrow K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{227} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) EVTS DOCUMENTID TECN COMMENT
1.89 ± 0.13 OUR AVERAGE
$1.85 \pm 0.09 \pm 0.10 \quad 163 \mathrm{k} \quad$ AAIJ 19 C LHCB 4-body fit, $K K \pi \pi$ evts
$4.0 \pm 0.6 \pm 0.7 \quad 2.9 \mathrm{k} \quad 1$ DARGENT $\quad 17 \quad$ 4-body fit, $K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(K^{*}(892)^{0} K^{\mp} \pi^{ \pm}\right.$3-body, $\left.K^{* 0} \rightarrow K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{228} / \Gamma_{217}$ This is the fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$11 \pm 2 \pm 1 \quad$ LINK 05G FOCS Fits 1279 ± 48 evts.
$\Gamma\left(K^{*}(892)^{0}\left(K^{-} \pi^{+}\right)_{S-\text { wave }}\right.$ 3-body, $\left.K^{* 0} \rightarrow K^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{229} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{\mathbf{5 . 8} \pm \mathbf{1 . 2} \pm \mathbf{2 . 1}} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } \quad 17} \frac{\text { COMMENT }}{4 \text {-body fit, } K K \pi \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(\left(K^{-} \pi^{+}\right)_{P-w a v e},\left(K^{+} \pi^{-}\right)_{S-w a v e}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{230} / \Gamma_{217}$
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$10.9 \pm 1.2 \pm 1.7 \quad 1$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ See DARGENT 17
$\Gamma\left(K_{1}(1270)^{ \pm} K^{\mp}, K_{1}^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{231} / \Gamma_{217}$
This is the fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$33 \pm 6 \pm 4 \quad{ }^{1}$ LINK 05G FOCS Fits 1279 ± 48 evts.
${ }^{1}$ This LINK 05 G value includes $K_{1}(1270)^{ \pm} \rightarrow \rho^{0} K^{ \pm}, \rightarrow K_{0}^{*}(1430)^{0} \pi^{ \pm}$, and $K^{*}(892)^{0} \pi^{ \pm}$.
$\Gamma\left(K_{1}(1270)^{+} K^{-}, K_{1}^{+} \rightarrow K^{* 0} \pi^{+}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{232} / \Gamma_{217}$ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
$5.5 \pm 1.4 \pm 3.4 \quad 3 \mathrm{k} \quad 1$ DARGENT $17 \quad 4$-body fit, $K K \pi \pi$ evts
- - We do not use the following data for averages, fits, limits, etc. - . -
$7.3 \pm 0.8 \pm 1.9 \quad 3 \mathrm{k} \quad{ }^{2}$ ARTUSO 12 CLEO 4 -body fit, $K K \pi \pi$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{2}$ See DARGENT 17
$\Gamma\left(K_{1}(1270)^{+} K^{-}, K_{1}^{+} \rightarrow K^{*}(1430)^{0} \pi^{+}, K^{* 0} \rightarrow K^{+} \pi^{-}\right) /$
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{233} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) EVTS DOCUMENTID COMMENT
$6.1 \pm 1.2 \pm 1.8 \quad 2.9 \mathrm{k} \quad 1$ DARGENT 17 4-body fit, $K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(K_{1}(1270)^{+} K^{-}, K_{1}^{+} \rightarrow \rho^{0} K^{+}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{234} / \Gamma_{217}$
$\frac{\text { VALUE }\left(\text { units } 10^{-2}\right)}{9.1 \pm 1.5+1.9} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{4 \text {-body fit, } K K \pi \pi}$
- - We do not use the following data for averages, fits, limits, etc. - . -
$4.7 \pm 0.7 \pm 0.8 \quad 2$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{2}$ see DARGENT 17
$\Gamma\left(K_{1}(1270)^{+} K^{-}, K_{1}^{+} \Rightarrow \omega(782) K^{+}, \omega \Rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$ $\Gamma_{235} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
VALUE (units 10^{-2}) EVTS $\frac{\text { DOCUMENT ID }}{2.9}$ COMMENT
$\mathbf{0 . 6} \pm \mathbf{0 . 3} \pm \mathbf{0 . 4} \quad 2.9 \mathrm{k} \quad 1$ DARGENT 17 4-body fit, $K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(K_{1}(\mathbf{1 2 7 0})^{-} K^{+}, K_{1}^{-} \rightarrow \bar{K}^{* 0} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{236} / \Gamma_{217}$
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.9 \pm 0.3 \pm 0.4 \quad 1$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ See DARGENT 17
$\Gamma\left(K_{1}(1270)^{-} K^{+}, K_{1}^{-} \rightarrow \rho^{0} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{237} / \Gamma_{217}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{5.4 \pm \mathbf{0 . 7} \pm 1.3} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{4 \text {-body fit, } K K \pi \pi \text { evts }}$
- - We do not use the following data for averages, fits, limits, etc. - . -
$6.0 \pm 0.8 \pm 0.6 \quad{ }^{2}$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
${ }^{2}$ See DARGENT 17
$\Gamma\left(K_{1}(\mathbf{1 4 0 0})^{ \pm} K^{\mp}, K_{1}^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{2 3 8}} / \Gamma_{\mathbf{2 1 7}}$
This is the fraction from a coherent amplitude analysis.
VALUE (units 10^{-2})
DOCUMENT ID
TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
$22 \pm 3 \pm 4 \quad$ LINK 05G FOCS Fits 1279 ± 48 evts.
$\Gamma\left(K_{1}(1400)^{+} K^{-}, K_{1}^{+} \Rightarrow K^{*}(892)^{0} \pi^{+}, K^{* 0} \Rightarrow K^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$

This is the fit fraction from a coherent amplitude analysis.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
18.7 ± 1.5 OUR AVERAGE					
$19.08 \pm 0.60 \pm 1.46$	163k	AAIJ	19C	LHCB	4-body fit, $K K \pi \pi$ evts
$12.4 \pm 2.6 \pm 6.3$	2.9 k	1 DARGENT	17		4-body fit, $K K \pi \pi$ evts

${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.

```
\(\Gamma\left(K^{*}(\mathbf{1 4 1 0})^{+} K^{-}, K^{*+} \rightarrow K^{* 0} \pi^{+}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)\)
\(\Gamma_{240} / \Gamma_{217}\)
```

VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.2 \pm 0.7 \pm 0.8 \quad 1,2$ ARTUSO 12 CLEO Fitting 2959 evts.
${ }^{1}$ DARGENT 17 find $K^{*}(1410)^{+} \pi^{-}$and $K^{*}(1680)^{+} \pi^{-}$, which both peak outside the $D^{0} \rightarrow K K \pi \pi$ kinematic range, effectively indistinguishable; we list their result under $K^{*}(1680)^{+} \pi^{-}$
${ }^{2}$ See DARGENT 17
$\Gamma\left(K^{*}(1410)^{-} K^{+}, K^{*-} \rightarrow \bar{K}^{* 0} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right) \quad \Gamma_{241} / \Gamma_{217}$ VALUE (units 10^{-2}) DEVTS DOCUMENT ID TECN COMMENT $\mathbf{2 . 8 2} \pm \mathbf{0 . 1 9} \mathbf{0 . 3 9} \quad 163 \mathrm{k} \quad$ AAIJ 19C LHCB 4-body fit, $K K \pi \pi$ evts
- - We do not use the following data for averages, fits, limits, etc. - - -
$4.7 \pm 0.7 \pm 0.7 \quad 3 k \quad 1$ ARTUSO 12 CLEO 4 -body fit, $K K \pi \pi$ evts
${ }^{1}$ See DARGENT 17.
$\Gamma\left(K_{1}(1680)^{+} K^{-}, K_{1}^{+} \rightarrow K^{* 0} \pi^{+}, K^{* 0} \rightarrow K^{+} \pi^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{242} / \Gamma_{217}$
This is the fit fraction from a coherent amplitude analysis.
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{3 . 6} \pm \mathbf{0 . 8} \pm \mathbf{1 . 0}} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } K K \pi \pi \text { evts }}$
${ }^{1}$ DARGENT 17 find $K^{*}(1410)^{+} \pi^{-}$and $K^{*}(1680)^{+} \pi^{-}$, which both peak outside the $D^{0} \rightarrow K K \pi \pi$ kinematic range, effectively indistinguishable.
${ }^{2}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right.$non-resonant $) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$
$\Gamma_{243} / \Gamma_{217}$ This is the fit fraction from a coherent amplitude analysis.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 1 . 1} \pm \mathbf{1 . 2} \pm \mathbf{2 . 2}} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } K K \pi \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.
$\Gamma\left(2 K_{S}^{0} \pi^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right)$

DOCUMENT ID TECN COMMENT

4.3 ± 0.8 OUR AVERAGE

$4.16 \pm 0.70 \pm 0.42 \quad 113 \pm 21 \quad$ LINK $05 \mathrm{AFOCS} \quad \gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$ $6.2 \pm 2.0 \pm 1.6 \quad 25 \quad$ ALBRECHT $94 \mathrm{ARG} e^{+} e^{-} \approx 10 \mathrm{GeV}$

$\Gamma\left(K_{S}^{0} K^{-2} 2 \pi^{+} \pi^{-}\right) / \Gamma\left(K_{S}^{0} 2 \pi^{+} 2 \pi^{-}\right)$			TECN	$\Gamma_{245} / \Gamma_{92}$	
VALUE CL\%	DOCUMENT ID			COMMENT	
<0.054 90	LINK	04D	FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180$	30 GeV
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{246} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT	

${ }^{1}$ BARLAG 92C computes the branching fraction using topological normalization.
$\Gamma\left(\phi \pi^{0}\right) / \Gamma\left(K^{+} K^{-}\right)$
$\Gamma_{247} / \Gamma_{185}$
VALUE $\frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.194 \pm 0.006 \pm 0.009 \quad 1254 \quad$ TAJIMA 04 BELL $e^{+} e^{-}$at $\gamma(4 S)$
$\Gamma(\phi \eta) / \Gamma\left(K^{+} \boldsymbol{K}^{-}\right)$
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{3.59 \pm 1.14 \pm 0.18} \frac{\text { EVTS }}{31}$
DOCUMENT ID TECN COMMENT
$\Gamma_{248} / \Gamma_{185}$
$\Gamma(\phi \omega) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{0 . 0 0 2 1}} \frac{C L}{90}$ COUMENT ${ }_{249} / \Gamma$ ALBRECHT 941 $\frac{1}{\text { ARG }} \frac{1}{e^{+} e^{-} \approx 10 \mathrm{GeV}}$

Radiative modes
$\Gamma\left(\rho^{0} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-}\right)$
$\Gamma_{250} / \Gamma_{123}$
VALUE (units 10^{-2}) EVTS
DOCUMENT ID TECN COMMENT
$\Gamma(\omega \gamma) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{4}}} \frac{C L \%}{90}$
$\Gamma(\phi \gamma) / \Gamma\left(\kappa^{-} \pi^{+}\right)$
VALUE (units 10^{-4}) EVTS
7.1 ± 0.5 OUR FIT
$7.15 \pm 0.78 \pm 0.69$
243 ± 25
$\frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLE }}$
$\Gamma_{251 / \Gamma}$
$\Gamma(\phi \gamma) / \Gamma\left(\kappa^{+} \boldsymbol{K}^{-}\right)$
VALUE (units 10^{-3}) EVTS
6.9 ± 0.5 OUR FIT
$6.88 \pm 0.47 \pm 0.21 \quad 524$
DOCUMENT ID DOCUMENT ID TECN COMMENT
$\Gamma_{252} / \Gamma_{35}$ AUBERT 08AZ BABR $e^{+} e^{-} \approx 10.6 \mathrm{GeV}$ $\Gamma_{252} / \Gamma_{185}$ TECN COMMENT

NANUT $\quad 17$ BELL $e^{+} e^{-}$at $r(\mathrm{nS}), \mathrm{n}=2,3,4,5$

- - We do not use the following data for averages, fits, limits, etc. - -
$6.31+1.70+0.30$
$-1.48-0.36$
28
TAJIMA
04 BELL See NANUT 17
$\Gamma\left(\bar{K}^{*}(892)^{0} \gamma\right) / \Gamma\left(K^{-} \pi^{+}\right) \quad \Gamma_{253} / \Gamma_{\mathbf{3 5}}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{10.5 \text { EVTS }}$ DOCUMENT ID COMMENT
$\overline{10.5} \pm$ 1.7 OUR AVERAGE Error includes scale factor of 3.1.
$11.9 \pm 0.5 \pm 0.5 \quad 9.1 \mathrm{k} \quad$ NANUT $\quad 17 \mathrm{BELL} e^{+} e^{-}$at $r(\mathrm{nS}), \mathrm{n}=2,3,4,5$ $8.43 \pm 0.51 \pm 0.70 \quad 2.2 \mathrm{k} \quad$ AUBERT 08AZ BABR $e^{+} e^{-} \approx 10.6 \mathrm{GeV}$

——Doubly Cabibbo-suppressed / Mixing modes

$\Gamma\left(K^{+} \ell^{-} \nu_{\text {via }} \bar{D}^{0}\right) / \Gamma\left(K^{-} \ell^{+} \nu_{\ell}\right)$
$\Gamma_{254} / \Gamma_{18}$
This is a limit on R_{M} without the complications of possible doubly Cabibbo-suppressed decays that occur when using hadronic modes. For the limits on $\left|m_{1}-m_{2}\right|$ and $\left(\Gamma_{1}-\Gamma_{2}\right) / \Gamma$ that come from the best mixing limit, see near the beginning of these D^{0} Listings.
VALUE
$<6.1 \times 10^{-4}$

CL\%

DOCUMENTID \qquad - TECN COMMENT
$<6.1 \times 10^{-4} 90 \quad 1$ BITENC 08 BELL $e^{+} e^{-}, 10.58 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<50 \times 10^{-4} \quad 90 \quad 2$ AITALA 96 C E791 π^{-}nucleus, 500 GeV
${ }^{1}$ The BITENC 08 right-sign sample includes about 15% of $D^{0} \rightarrow K^{-} \pi^{0} \ell^{+} \nu_{\ell}$ and other decays.
${ }^{2}$ AITALA 96C uses $D^{*+} \rightarrow D^{0} \pi^{+}$(and charge conjugate) decays to identify the charm at production and $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}$ (and charge conjugate) decays to identify the charm at decay.
$\Gamma\left(K^{+}\right.$or $K^{*}(892)^{+} e^{-} \nu_{e}$ via $\left.\bar{D}^{0}\right) /\left[\Gamma\left(K^{-} e^{+} \nu_{e}\right)+\Gamma\left(K^{*}(892)^{-} e^{+} \nu_{e}\right)\right]$
$\Gamma_{255} /\left(\Gamma_{19}+\Gamma_{21}\right)$
This is a limit on R_{M} without the complications of possible doubly Cabibbo-suppressed decays that occur when using hadronic modes. The experiments use $D^{*+} \rightarrow D^{0} \pi^{+}$ (and charge conjugate) decays to identify the charm at production and the charge of the e to identify the charm at decay. These limits do not allow $C P$ violation. For the limits on $\left|m_{1}-m_{2}\right|$ and $\left(\Gamma_{1}-\Gamma_{2}\right) / \Gamma$ that come from the best mixing limit, see near the beginning of these D^{0} Listings.

VALUE	$\underline{C L \%}$	DOCUMENT ID	TECN	COMMENT
<0.001		BITENC		

- - We do not use the following data for averages, fits, limits, etc. - -
$-0.0013<R<+0.001290 \quad$ AUBERT 07AB BABR $e^{+} e^{-} \approx 10.58 \mathrm{GeV}$ $<0.0078 \quad 90 \quad$ CAWLFIELD $05 \mathrm{CLEO} e^{+} e^{-} \approx 10.6 \mathrm{GeV}$
<0.004290 AUBERT,B 04Q BABR See AUBERT 07AB
$\Gamma\left(K^{+} \pi^{-}\right) / \Gamma\left(K^{=} \pi^{+}\right)$
$\Gamma_{256} / \Gamma_{35}$
This is R, the time-integrated wrong-sign rate compared to the right-sign rate. See the note on " $D^{0}-\bar{D}^{0}$ Mixing," near the start of the D^{0} Listings.

The experiments here use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born. The $D^{0} \rightarrow K^{+} \pi^{-}$decay can occur directly by doubly Cabibbo-suppressed (DCS) decay, or indirectly by $D^{0} \rightarrow \bar{D}^{0}$ mixing followed by $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$decay. Some of the experiments can use the decaytime information to disentangle the two mechanisms. Here, we list the experimental branching ratio, which if there is no mixing is the DCS ratio. See the next data block for values of the DCS ratio R_{D}, and the following data block for limits on the mixing ratio R_{M}. See the section on $C P$-violating asymmetries near the end of this D^{0} Listing for values of A_{D}, and the note on " $D^{0}-\bar{D}^{0}$ Mixing" for limits on x ' and y '

Some early limits have been omitted from this Listing; see our 1998 edition (The European Physical Journal C3 1 (1998)) and our 2006 edition (Journal of Physics G33 1 (2006))
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{3 . 7 9 \pm 0 . 1 8 ~ O U R ~ F I T ~}} \frac{\text { EVTS }}{\text { Error includes scale factor of } 3.3 .} \frac{\text { DOCUMENT ID }}{}$ TECN COMMENT
3.79 $\pm \mathbf{0 . 1 8}$ OUR AVERAGE Error includes scale factor of 3.3. See the ideogram below.
$4.15 \pm 0.10 \quad 12.7 \pm 0.3 \mathrm{k} \quad 1$ AALTONEN 08E CDF $p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$3.53 \pm 0.08 \pm 0.04 \quad 4030 \pm 90 \quad{ }^{2}$ AUBERT \quad 07w BABR $e^{+} e^{-} \approx 10.6 \mathrm{GeV}$
$3.77 \pm 0.08 \pm 0.05 \quad 4024 \pm 88 \quad 1$ ZHANG 06 BELL $e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$4.05 \pm 0.21 \pm 0.11 \quad 2.0 \pm 0.1 \mathrm{k} \quad 3$ ABULENCIA $06 x$ CDF See AALTONEN 08E
$3.81 \pm 0.17_{-0.16}^{+0.08} \quad 845 \pm 40 \quad 2 \mathrm{LI} \quad$ 05A BELL See ZHANG 06
$4.29_{-0.61}^{+0.63} \pm 0.27 \quad 234 \quad 4$ LINK 05H FOCS γ nucleus
$3.57 \pm 0.22 \pm 0.27 \quad 5$ AUBERT $03 z$ BABR See AUBERT 07W
$4.04 \pm 0.85 \pm 0.25 \quad 149 \quad 6$ LINK 01 FOCS γ nucleus
$3.32_{-0.65}^{+0.63} \pm 0.40 \quad 45 \quad 1$ GODANG $00 \quad$ CLE2 $\quad e^{+} e^{-}$
$6.8 \underset{-3.3}{+3.4} \pm 0.7 \quad 34 \quad{ }^{2}$ AITALA 98 E791 π^{-}nucl., 500 GeV

[^116]Meson Particle Listings
D^{0}

$\Gamma\left(K^{+} \pi^{-}\right.$via DCS $) / \Gamma\left(K^{-} \pi^{+}\right)$
$\Gamma_{257} / \Gamma_{35}$
This is R_{D}, the doubly Cabibbo-suppressed ratio when mixing is allowed.
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
$3.45 \pm \mathbf{0 . 0 6}$ OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
$3.454 \pm 0.040 \pm 0.020 \quad 722 \mathrm{k} \quad{ }^{1}$ AAIJ $\quad 18 \mathrm{~K}$ LHCB pp at $7,8,13 \mathrm{TeV}$
$3.53 \pm 0.13 \quad 2 \mathrm{KO} \quad 14 \mathrm{BELL} e^{+} e^{-} \rightarrow r(\mathrm{nS})$
$3.51 \pm 0.35 \quad 3$ AALTONEN 13AECDF $p \bar{p}$ at 1.96 TeV
$3.04 \pm 0.55 \quad 13 \mathrm{k} \quad$ AALTONEN 08E CDF $p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$3.03 \pm 0.16 \pm 0.10 \quad 4.0 \mathrm{k} \quad 4$ AUBERT $\quad 07 \mathrm{w} \mathrm{BABR} e^{+} e^{-} \approx 10.6 \mathrm{GeV}$
$3.64 \pm 0.17 \quad 4.0 \mathrm{k} \quad{ }^{5}$ ZHANG $06 \mathrm{BELL} e^{+} e^{-}$
$5.17 \underset{-1.58}{+1.47} \pm 0.76 \quad 234 \quad 6$ LINK 05 H FOCS γ nucleus
$4.8 \pm 1.2 \quad \pm 0.4 \quad 45 \quad 7$ GODANG $00 \quad$ CLE2 $\quad e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. - -

| 3.533 ± 0.054 | 236 k | ${ }^{8} \mathrm{AAIJ}$ | 17AO LHCB See AAIJ 18 k |
| :--- | :---: | ---: | :--- | :--- |
| 3.568 ± 0.066 | | ${ }^{9}$ AAIJ | 13CE LHCB pp at $7,8 \mathrm{TeV}$ |
| 3.52 ± 0.15 | | 10 AAIJ | 13N LHCB Repl. by AAIJ 13CE |
| 2.87 ± 0.37 | 0.8 k | LI | 05A BELL See ZHANG 06 |

${ }^{1}$ This AAIJ 18 K value is for direct and indirect $C P$ violation allowed. The value is the same if either one or the other is not allowed, but in each case the error then is $(0.028 \pm$ $0.014) \times 10^{-3}$.
${ }^{2}$ Based on $976 \mathrm{fb}^{-1}$ of data collected at $Y(\mathrm{nS})$ resonances. Assumes no $C P$ violation.
${ }^{3}$ Based on $9.6 \mathrm{fb}^{-1}$ of data collected at the Tevatron. Assumes no $C P$ violation.
4 Based on $9.6 \mathrm{fb}^{-1}$ of data collected at the Tevatron. Assum
Result is the same whether or not $C P$ violation is allowed
4 Result is the same whether or not $C P$ violation
5 This ZHANG 06 assumes no $C P$ violation.
5 This ZHANG 06 assumes no $C P$ violation.
6 This LINK 05 H result allows $C P$ violation. $(3.81+1.67 \pm 0.92) \times 10^{-3}$.
${ }^{7}$ This GODANG 00 result allows $C P$ violation.
${ }^{8}$ The result was established with D^{0} from prompt and secondary D^{*} assuming no CPV 9 or no direct CPV.
${ }^{9}$ Based on $3 \mathrm{fb}^{-1}$. of data collected at $\sqrt{s}=7,8 \mathrm{TeV}$. Assumes no $C P$ violation.
${ }^{10}$ Based on $1 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=7 \mathrm{TeV}$ in 2011. Assumes no $C P$ violation.

$\Gamma\left(\kappa^{+} \pi^{-}\right.$via $\left.\bar{D}^{0}\right) / \Gamma\left(\kappa^{-} \pi^{+}\right)$
$\Gamma_{258} / \Gamma_{35}$
This is R_{M} in the note on " $D^{0}-D^{0}$ Mixing" near the start of the D^{0} Listings. The experiments here (1) use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born; and (2) use the decay-time distribution to disentangle doubly Cabibbo-suppressed decay and mixing. For the limits on $m_{1}-$ $m_{2} \mid$ and $\left(\Gamma_{1}-\Gamma_{2}\right) / \Gamma$ that come from the best mixing limit, see near the beginning of these D^{0} Listings.

VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
<0.00040	95	${ }^{1}$ ZHANG	06	BELL	$e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -					
<0.00046	95	${ }^{2} \mathrm{LI}$	05A	BELL	See ZHANG 06
<0.0063	95	${ }^{3}$ LINK	05H	FOCS	γ nucleus
<0.0013	95	${ }^{4}$ AUBERT	$03 z$	BABR	$e^{+} e^{-}, 10.6 \mathrm{GeV}$
<0.00041	95	5 GODANG	00	CLE2	$e^{+} e^{-}$
<0.0092	95	${ }^{6}$ BARATE	98w	ALEP	$e^{+} e^{-}$at Z^{0}
<0.005	90	7 ANJOS	88C	E691	Photoproduction

1 This ZHANG 06 result allows $C P$ violation, but the result does not change if $C P$ violation is not allowed.
2 This LI 05A result allows $C P$ violation. The limit becomes $<0.00042(95 \% \mathrm{CL})$ if $C P$ 3 violation is not allowed
${ }^{3}$ LINK 05 H obtains the same result whether or not $C P$ violation is allowed.
4 This AUBERT $03 z$ result allows $C P$ violation and assumes that the strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$is small, and limits only $D^{0} \rightarrow \bar{D}^{0}$ transitions via off-shell intermediate states. The limit on transitions via on-shell intermediate states is 0.0016.

5 This GODANG 00 result allows $C P$ violation and assumes that the strong phase between $D^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$is small, and limits only $D^{0} \rightarrow \bar{D}^{0}$ transitions via off-shell intermediate states. The limit on transitions via on-shell intermediate states is 0.0017.

6 This BARATE 98w result assumes no interference between the DCS and mixing amplitudes ($y^{\prime}=0$ in the note on " $D^{0}-\bar{D}^{0}$ Mixing" near the start of the D^{0} Listings). When interference is allowed, the limit degrades to 0.036 ($95 \% \mathrm{CL}$).
7 This ANJOS 88C result assumes no interference between the DCS and mixing amplitudes ($y^{\prime}=0$ in the note on " $D^{0}-\bar{D}^{0}$ Mixing" near the start of the D^{0} Listings). When interference is allowed, the limit degrades to 0.019 .
$\Gamma\left(\boldsymbol{K}_{S}^{0} \pi^{+} \pi^{-}\right.$in $\left.D^{0} \rightarrow \overline{D^{0}}\right) / \Gamma\left(K_{S}^{0} \pi^{+} \pi^{-}\right)$
$\Gamma_{259} / \Gamma_{36}$
This is R_{M} in the note on " $D^{0}-\bar{D}^{0}$ Mixing" near the start of the D^{0} Listings. The experiments here (1) use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born; and (2) use the decay-time distribution to disentangle doubly Cabibbo-suppressed decay and mixing. For the limits on $\mid m_{1}-$ $m_{2} \mid$ and $\left(\Gamma_{1}-\Gamma_{2}\right) / \Gamma$ that come from the best mixing limit, see near the beginning of these D^{0} Listings.
$\frac{\text { VALUE }}{<\mathbf{0 . 0 0 6 3}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENTID }}{\text { ASNER } \quad 05} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \approx 10 \mathrm{GeV}}$
${ }^{1}$ This ASNER 05 limit allows $C P$ violation. If $C P$ violation is not allowed, the limit is 0.0042 at 95% CL.
$\Gamma\left(\kappa^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\kappa^{-} \pi^{+} \pi^{0}\right)$
$\Gamma_{263} / \Gamma_{53}$ The experiments here use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born. The $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decay can occur directly by doubly Cabibbo-suppressed (DCS) decay, or indirectly by $D^{0} \rightarrow \bar{D}^{0}$ mixing followed by $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decay.
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{2 . 1 2 \pm 0 . 0 7 ~ O U R ~ A V E R A G E ~}}$
2.01 ± 0.11
$2.14+0.08 \pm 0.08-763$
$2.29 \pm 0.15+0.13 \quad 1.9 \mathrm{k}$
$4.3 \begin{array}{r}+1.1 \\ +1.0\end{array} \pm 0.7$
DOCUMENT ID
TECN COMMENT
1 EVANS
16 CLEO $e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0}$ at $\psi(3770)$
2 AUBERT,B
06N BABR $e^{+} e^{-} \approx \Upsilon(4 S)$
TIAN 05 BELL $e^{+} e^{-} \approx r(4 S)$
BRANDENB... 01 CLE2 $e^{+} e^{-} \approx r(4 S)$
${ }^{1}$ A combined fit with a recent LHCb $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16F is also reported to be $(2.00 \pm 0.11) \times 10^{-3}$.
2 This AUBERT, B 06 N result assumes no mixing.
$\Gamma\left(\boldsymbol{K}^{+} \pi^{-} \pi^{\mathbf{0}}\right.$ via $\left.\bar{D}^{0}\right) / \Gamma\left(K^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right)$
$\Gamma_{264} / \Gamma_{53}$ This is R_{M} in the note on " $D^{0}-\bar{D}^{0}$ Mixing" near the start of the D^{0} Listings. The experiments here (1) use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born; and (2) use the decay-time distribution to disentangle doubly Cabibbo-suppressed decay and mixing. For the limits on $\mid m_{1}-$ $m_{2} \mid$ and $\left(\Gamma_{1}-\Gamma_{2}\right) / \Gamma$ that come from the best mixing limit, see near the beginning of these D^{0} Listings.
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{5 . 2 5} \mathbf{+ 0 . 2 5} \pm \mathbf{0 . 1 2}} \frac{\text { CL\% }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { AUBERT COMMENT }} \frac{\text { 09AN BABR }}{} e^{+} e^{-}$at 10.58 GeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.54 \quad 95 \quad 1$ AUBERT,B 06 N BABR $e^{+} e^{-} \approx \Upsilon(4 S)$
${ }^{1}$ This AUBERT, $B 06 \mathrm{~N}$ limit assumes no $C P$ violation. The measured value corresponding to the limit is $\left(2.3_{-1.4}^{+1.8} \pm 0.4\right) \times 10^{-4}$. If $C P$ violation is allowed, this becomes $\left(1.0_{-0.7}^{+2.2} \pm 0.3\right) \times 10^{-4}$.

$\Gamma\left(K^{+} \pi^{+} 2 \pi^{-}\right.$via DCS $) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$					$\Gamma_{265} / \Gamma_{70}$	
VALUE（units 10 ${ }^{-3}$ ）	EVTS	DOCUMENT ID		TECN	COMMENT	
3.03 ± 0.07 OUR	ERAGE					
3.025 ± 0.077	42k，11M	${ }^{1}$ AAIJ	16F	LHCB	$p p$ at 7， 8 T	
3.03 ± 0.13		${ }^{2}$ EVANS	16	CLEO	$e^{+} e^{-} \rightarrow \square$	$D^{0} \bar{D}^{0} \text { at }$

${ }^{1}$ This result uses external input on the mixing parameters x, y ．Without this input，the result is $(3.215 \pm 0.136) \times 10^{-3}$ ．
${ }^{2}$ A combined fit with a recent LHCb $D^{0} \bar{D}^{0}$ mixing results in AAIJ 16 F is also reported to be $(3.01 \pm 0.07) \times 10^{-3}$ ．
$\Gamma\left(K^{+} \pi^{+} 2 \pi^{-}\right) / \Gamma\left(\kappa^{-} 2 \pi^{+} \pi^{-}\right)$
$\Gamma_{266} / \Gamma_{70}$
The experiments here use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$ decay to tell whether a D^{0} or a \bar{D}^{0} was born．The $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$decay can occur directly by doubly Cabibbo－suppressed（DCS）decay，or indirectly by $D^{0} \rightarrow$ \bar{D}^{0} mixing followed by $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$decay．Some of the experiments can use the decay－time information to disentangle the two mechanisms．Here，we list the experimental branching ratio，which if there is no mixing is the DCS ratio；in the next data block we give the limits on the mixing ratio．
Some early limits have been omitted from this Listing；see our 1998 edition（EPJ C3 1）．

VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID		TECN	COMMENT
3.22 ± 0.05 OUR AVERAGE					
3.22 ± 0.05	42k，11M	${ }^{1}$ AAIJ	16F	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$3.24 \pm 0.08 \pm 0.07$	3.3 k	2 WHITE	13	BELL	$e^{+} e^{-} \approx r(4 S)$
$4.4{ }_{-1.2}^{+1.3} \pm 0.4$	54	2 DYTMAN	01	CLE2	$e^{+} e^{-} \approx r(4 S)$
$2.5{ }_{-3.4}^{+3.6} \pm 0.3$		${ }^{3}$ AITALA	98	E791	π^{-}nucl．， 500 GeV

－－We do not use the following data for averages，fits，limits，etc．－－－
$3.20 \pm 0.18_{-0.13}^{+0.18} \quad 1.7 \mathrm{k} \quad 2$ TIAN 05 BELL See WHITE 13 $<18 \quad 90 \quad 2$ AMMAR 91 CLEO $e^{+} e^{-} \approx 10.5 \mathrm{GeV}$
${ }^{1}$ AAIJ 16 F result comes from time－dependent analysis that uses external input on the mixing parameters x, y ．Without this input，the result is $(3.29 \pm 0.08) \times 10^{-3}$ ．
${ }^{2}$ AMMAR 91 cannot and DYTMAN 01，TIAN 05 do not distinguish between doublyCabibbo－suppressed decay and $D^{0}-\bar{D}^{0}$ mixing
3 This AITALA 98result assumes no $D^{0}-\bar{D}^{0}$ mixing（ R_{M} in the note on＂$D^{0}-\bar{D}^{0}$ Mix－ ing＂）．It becomes $-0.0020_{-0.0106}^{+0.0117} \pm 0.0035$ whenmixing is allowed and decay－time in－ formation is used todistinguish doubly Cabibbo－suppressed decays from mixing．
${ }^{4}$ ANJOS 88C uses decay－time information to distinguish doubly Cabibbo－suppressed（DCS） decays from $D^{0}-\bar{D}^{0}$ mixing．However，the result assumes no interference between the DCS and mixing amplitudes $\left(y^{\prime}=0\right.$ in the note on＂$D^{0}-\bar{D}^{0}$ Mixing＂near the start of the D^{0} Listings）．When interference is allowed，the limit degrades to 0.033 ．
$\Gamma\left(K^{+} \pi^{+} 2 \pi^{-}\right.$via $\left.\bar{D}^{0}\right) / \Gamma\left(K^{-} 2 \pi^{+} \pi^{-}\right)$
$\Gamma_{267} / \Gamma_{70}$
This is a $D^{0}-\bar{D}^{0}$ mixing limit．The experiments here（1）use the charge of the pion in $D^{*}(2010)^{ \pm} \rightarrow\left(D^{0}\right.$ or $\left.\bar{D}^{0}\right) \pi^{ \pm}$decay to tell whether a D^{0} or a \bar{D}^{0} was born；and （2）use the decay－time distribution to disentangle doubly Cabibbo－suppressed decay and mixing．For the limits on $\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|$ and $\left(\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}}\right) / \Gamma_{D^{0}}$ that come from the best mixing limit，see near the beginning of these D^{0} Listings．

VALUE（units 10^{-5} ）CL\％DOCUMENTID TECN COMMENT 9．6土3．6 $1 \overline{\mathrm{AAIJ}} \quad 16 \mathrm{~F} \quad \mathrm{LHCB} \overline{p p}$ at $7,8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．•－
$<500 \quad 90 \quad{ }^{2}$ ANJOS 88C E691 Photoproduction
${ }^{1}$ AAIJ 16F result comes from an unconstrained decay－time dependent fit to the wrong－sign to right－sign decay rates ratio as $\left(x^{2}+y^{2}\right) / 2$ ．
${ }^{2}$ ANJOS 88C uses decay－time information to distinguish doubly Cabibbo－suppressed（DCS） decays from $D^{0}-\bar{D}^{0}$ mixing．However，the result assumes no interference between the DCS and mixing amplitudes（ $y^{\prime}=0$ in the note on＂$D^{0}-\bar{D}^{0}$ Mixing＂near the start of the D^{0} Listings）．When interference is allowed，the limit degrades to 0.007 ．
$\Gamma\left(K^{+} \pi^{-}\right.$or $K^{+} \pi^{+} 2 \pi^{-}$via $\left.\bar{D}^{0}\right) / \Gamma\left(K^{-} \pi^{+}\right.$or $\left.K^{-} 2 \pi^{+} \pi^{-}\right)$
$\Gamma_{268} / \Gamma_{0}$ This is a $D^{0}-\bar{D}^{0}$ mixing limit．For the limits on $\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|$ and $\left(\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}}\right) / \Gamma_{D^{0}}$ that come from the best mixing limit，see near the beginning of these D^{0} Listings．
VALUE $\frac{C L \%}{\text { DOCUMENTID TECN COMMENT }}$
－－We do not use the following data for averages，fits，limits，etc．－－－

| <0.0085 | 90 | 1 | AITALA | 98 | E791 |
| :--- | :--- | :--- | :--- | :--- | :--- |π^{-}nucleus， 500 GeV

${ }^{1}$ AITALA 98 uses decay－time information to distinguish doubly Cabibbo－suppressed decays from $D^{0}-\bar{D}^{0}$ mixing．The fit allows interference between the two amplitudes，and also allows $C P$ violation in this term．The central value obtained is $0.0039_{-0.0032}^{+0.0036} \pm 0.0016$ ． When interference is disallowed，the result becomes $0.0021 \pm 0.0009 \pm 0.0002$ ．
2 This combines results of ANJOS 88C on $K^{+} \pi^{-}$and $K^{+} \pi^{-} \pi^{+} \pi^{-}$（via \bar{D}^{0} ）reported in the data block above（see footnotes there）．It assumes no interference．
$\Gamma\left(\mu^{-}\right.$anything via $\left.\bar{D}^{0}\right) / \Gamma\left(\mu^{+}\right.$anything $)$
$\Gamma_{269} / \Gamma_{6}$
This is a $D^{0}-\bar{D}^{0}$ mixing limit．See the somewhat better limits above．

$<0.044 \quad 90 \quad$ BODEK 82 SPEC $\pi^{-}, p \mathrm{Fe} \rightarrow D^{0}$

$\boldsymbol{\Gamma}\left(\boldsymbol{e}^{++} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
A test for the $\Delta C=1$ weak neutral current．Allowed by first－order weak interaction
combined with electromagnetic interaction．
VALUE
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
A test for the $\Delta C=1$ weak neutral current．Allowed by first－order weak interaction combined with electromagnetic interaction．

VALUE	CL\％	DOCUMENT ID		TECN	COMMENT
$<6.2 \times 10^{-9}$	90	AAIJ	13al	LHCB	$p p$ at 7 TeV
－－We do not use the following					
$0.6-8.1 \times 10^{-7}$	90	${ }^{1}$ LEES	12Q	BABR	$e^{+} e^{-} \approx 10.58 \mathrm{GeV}$
$<2.1 \times 10^{-7}$	90	AALTONEN	10x	CDF	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$<1.4 \times 10^{-7}$	90	PETRIC	10	BELL	$e^{+} e^{-} \approx r(4 S)$
$<2.0 \times 10^{-6}$	90	ABT	04	HERB	$p A, 920 \mathrm{GeV}$
$<1.3 \times 10^{-6}$	90	AUBERT，B	04Y	BABR	$e^{+} e^{-} \approx \Upsilon(4 S)$
$<2.5 \times 10^{-6}$	90	ACOSTA	03F	CDF	See AALTONEN 10x
$<1.56 \times 10^{-5}$	90	PRIPSTEIN	00	E789	p nucleus， 800 GeV
$<5.2 \times 10^{-6}$	90	AITALA	99G	E791	$\pi^{-} N 500 \mathrm{GeV}$
$<4.1 \times 10^{-6}$	90	ADAMOVICH	97	BEAT	$\pi^{-} \mathrm{Cu}, \mathrm{W} 350 \mathrm{GeV}$
$<4.2 \times 10^{-6}$	90	ALEXOPOU．．．	96	E771	$p \mathrm{Si}, 800 \mathrm{GeV}$
$<3.4 \times 10^{-5}$	90	FREYBERGER	96	CLE2	$e^{+} e^{-} \approx r(4 S)$
$<7.6 \times 10^{-6}$	90	ADAMOVICH	95	BEAT	See ADAMOVICH 97
$<4.4 \times 10^{-5}$	90	KODAMA	95	E653	π^{-}emulsion 600 GeV
$<3.1 \times 10^{-5}$	90	2 MISHRA	94	E789	-4.1 ± 4.8 events
$<7.0 \times 10^{-5}$	90	ALBRECHT	88G	ARG	$e^{+} e^{-} 10 \mathrm{GeV}$
$<1.1 \times 10^{-5}$	90	LOUIS	86	SPEC	π^{-}W 225 GeV
$<3.4 \times 10^{-4}$	90	AUBERT	85	EMC	Deep inelast．$\mu^{-} N$

${ }^{1}$ LEES 12 Q gives a 2 －sided range．
${ }^{2}$ Here MISHRA 94 uses＂the statistical approach advocated by the PDG．＂For an alternate approach，giving a limit of 9×10^{-6} at 90% confidence level，see the paper．
$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{273 / \Gamma}$
A test for the $\Delta C=1$ weak neutral current．Allowed by higher－order electroweak interactions．
$\frac{\text { VALUE }}{<\mathbf{4} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { ABLIKIM } 18 \mathrm{P}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-}, 3773 \mathrm{MeV}}$
－－We do not use the following data for averages，fits，limits，etc．－•
$<4.5 \times 10^{-5} \quad 90 \quad$ FREYBERGER 96 CLE2 $e^{+} e^{-} \approx r(4 S)$
$\Gamma\left(\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \Gamma_{\text {total }}$
A test for the $\Delta C=1$ weak neutral current．Allowed by higher－order electroweak inter－ actions．

$\frac{\text { VALUE }}{<1.8 \times \mathbf{1 0}^{-4}} \frac{C L \%}{90} \quad$	DOCUMENT ID		$\frac{\text { TECN }}{\text { KODAMA }} \frac{95}{\text { COMMENT }}$
$\frac{\pi}{\pi^{-} \text {emulsion } 600 \mathrm{GeV}}$			

－－We do not use the following data for averages，fits，limits，etc．－－－
$<5.4 \times 10^{-4} 90 \quad$ FREYBERGER 96 CLE2 $e^{+} e^{-} \approx r(4 S)$

Meson Particle Listings
D^{0}

${ }^{1}$ The second AAIJ 17BG error is the systematic 0.51×10^{-7} and normalization 0.97×10^{-7} mode errors added in quadrature.
$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right.$(non-res) $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 8 0}} / \Gamma$ $\frac{V A L U E}{<\mathbf{5} \times \mathbf{1 0} \mathbf{- 7}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{14 \mathrm{BAIJ}} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { CD } 7 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$<3.0 \times 10^{-5} \quad 90 \quad$ AITALA 01 C E791 π^{-}nucleus, 500 GeV
${ }^{1}$ AAIJ 14B measures this branching-fraction limit relative to the $\pi^{+} \pi^{-}{ }_{\phi, \phi} \rightarrow \mu^{+} \mu^{-}$ fraction. The above limit excludes the resonant ϕ, ω, and ρ regions, and then fills those gaps with a phase-space model.
$\boldsymbol{\Gamma}\left(\boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
A test for the $\Delta C=1$
interactions.
${ }^{1}$ This FREYBERGER 96 limit is obtained using a phase-space model. The limit changes to $<4.5 \times 10^{-4}$ using a photon pole amplitude model.
$\Gamma\left(\omega e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{282} / Γ
A test for the $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE }}{<6 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENTID }}{\text { ABLIKIM } 18 \mathrm{P}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-}, 3773 \mathrm{MeV}}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$<1.8 \times 10^{-4} 90 \quad 1$ FREYBERGER 96 CLE2 $\quad e^{+} e^{-} \approx r(4 S)$
${ }^{1}$ This FREYBERGER 96 limit is obtained using a phase-space model. The limit changes to $<2.7 \times 10^{-4}$ using a photon pole amplitude model.
 to $<6.5 \times 10^{-4}$ using a photon pole amplitude model.
$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{K}^{+} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \Gamma_{\text {total }}$
Γ_{244} / Γ
A test for the $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE }}{<\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 18 \mathrm{P}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-}, 3773 \mathrm{MeV}}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<3.15 \times 10^{-4} \quad 90 \quad$ AITALA 01 C E791 π^{-}nucleus, 500 GeV
$\Gamma\left(K^{-} \pi^{+} e^{+} e^{-}, 675<m_{e e}<875 \mathrm{MeV}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 9 2}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{4.0 \pm \mathbf{0 . 5}+0.2+0.1} \frac{\text { EVTS }}{68} \quad \frac{\text { DOCUMENT ID }}{1,2} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { CES }}{+-e^{-}}$
$\overline{\mathbf{4 . 0} \pm \mathbf{0 . 5} \pm \mathbf{0 . 2} \pm \mathbf{0 . 1}} \quad 1,2 \overline{\text { LEES }} \overline{68} \overline{\mathrm{BABR}} \overline{e^{+} e^{-} \text {near } r(4 S)}$ ${ }^{1}$ Observation with 9.7σ significance. The last uncertainty is due to the uncertainty on the branching fraction of the normalization mode, $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$. The second uncertainty is other systematic and is dominated by the model parameterization.
${ }^{2}$ LEES 19A also sets an upper limit for non-resonant regions, where long-distance effects are expected to be small: $<3.1 \times 10^{-6}$ at 90% CL.

1 This is the corrected result given in the erratum to FREYBERGER 96 .
${ }^{2}$ RILES 87 assumes $\mathrm{B}(D \rightarrow K \pi)=3.0 \%$ and has production model dependency.

A test of lepton family number conservation. The value is for the sum of the two charge states.
$\frac{\text { VALUE }}{<\mathbf{8 . 6 \times 1 0 ^ { - 5 }}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { FREYBERGER } 96} \frac{\text { TECN }}{\text { CLE } 2} \frac{\text { COMMENT }}{e^{+} e^{-} \approx r(4 S)}$
$\Gamma\left(\eta e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
「301/Г
A test of lepton family number conservation. The value is for the sum of the two charge states.
$\frac{\text { VALUE }}{<\mathbf{1 . 0} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { FREYBERGER 96 }} \frac{\text { TECN }}{\text { CLE2 } 2} \frac{\text { COMMENT }}{e^{+} e^{-} \approx r(4 S)}$

$\Gamma\left(\omega e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{304} / \Gamma$
A test of lepton family number conservation. The value is for the sum of the two charge states.
$\frac{\text { VALUE }}{<\mathbf{1} .2 \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TREYBEN }}{\text { FRETGER } 96} \frac{\text { COMMENT }}{\text { CLE2 }} \frac{e^{+} e^{-} \approx r(4 S)}{}$
${ }^{1}$ This FREYBERGER 96 limit is obtained using a phase-space model. The same limit is obtained using a photon pole amplitude model.
$\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{K}^{+} \boldsymbol{e}^{ \pm} \boldsymbol{\mu}^{\mp}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\Gamma 305 / \Gamma$ A test of lepton family-number conservation. The value is for the sum of the two charge states.
$\frac{V A L U E}{<\mathbf{1 . 8} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AITALA }} \quad$ 01C $\frac{\text { TECN }}{\text { E791 }} \frac{\text { COMMENT }}{\pi^{-} \text {nucleus, } 500 \mathrm{GeV}}$

Meson Particle Listings
D^{0}

$D^{0} C P$-VIOLATING DECAY-RATE ASYMMETRIES

This is the difference between D^{0} and \bar{D}^{0} partial widths for the decay to state f, divided by the sum of the widths:
$A_{C P}(f)=\left[\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow \bar{f}\right)\right] /\left[\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow \bar{f}\right)\right]$.
$A_{C P}\left(K^{+} K^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-}$

VALUE (\%)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.07 ± 0.11 OUR AVERAGE					
$0.04 \pm 0.12 \pm 0.10$	4.56 M	AAIJ	17M	LHCB	pp 7, 8 TeV
$-0.24 \pm 0.22 \pm 0.09$	476k	${ }^{1}$ AALTONEN	12B	CDF	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$0.00 \pm 0.34 \pm 0.13$	129k	2 AUBERT	08M	BABR	$e^{+} e^{-} \approx 10.6 \mathrm{GeV}$
$-0.43 \pm 0.30 \pm 0.11$	120k	${ }^{3}$ STARIC	08	BELL	$e^{+} e^{-} \approx r(4 S)$
$+2.0 \pm 1.2 \pm 0.6$		${ }^{4}$ ACOSTA	05c	CDF	$p \bar{p}, \sqrt{s}=1.96 \mathrm{TeV}$
$0.0 \pm 2.2 \pm 0.8$	3023	${ }^{4}$ CSORNA	02	CLE2	$e^{+} e^{-} \approx r(4 S)$
$-0.1 \pm 2.2 \pm 1.5$	3330	${ }^{4}$ LINK	00B	FOCS	
$-1.0 \pm 4.9 \pm 1.2$	609	${ }^{4}$ AITALA	98C	E791	$-0.093<A_{C P}<$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.06 \pm 0.15 \pm 0.10 \quad 1.8 \mathrm{M} \quad{ }^{1}$ AAIJ 14 A K LHCB See AAIJ 17 M
${ }^{1}$ See also " $D^{0} C P$-violating asymmetry differences" at the end of the $C P$-violating asymmetries.
${ }^{2}$ AUBERT 08 m uses corrected numbers of events directly, not ratios with $K^{\mp} \pi^{ \pm}$events.
${ }^{3}$ STARIC 08 uses $D^{0} \rightarrow K^{-} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$decays to correct for detectorinduced asymmetries
${ }^{4}$ AITALA 98C, LINK 00B, CSORNA 02, and ACOSTA 05C measure $N\left(D^{0} \rightarrow\right.$ $\left.K^{+} K^{-}\right) / N\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$, the ratio of numbers of events observed, and similarly for the \bar{D}^{0}.
$A_{C P}\left(K_{S}^{0} K_{S}^{0}\right)$ in $D^{0}, \overline{D^{0}} \rightarrow K_{S}^{0} K_{S}^{0}$

VALUE (\%)	EVTS	DOCUMENT ID	TECN	COMMENT
0.4 ± 1.4 OUR AVERAGE				
$2.3 \pm 2.8 \pm 0.9$	1.7 k	AAIJ	18AV LHCB	$p p$ at 7, 8, 13 TeV
$-0.02 \pm 1.53 \pm 0.17$	5.4k	${ }^{1}$ DASH	17 BELL	At/near $\Upsilon(4 S), r(5 S)$
-23 ± 19	65	BONVICINI	01 CLE2	$e^{+} e^{-} \approx 10.6 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -				
$-2.9 \pm 5.2 \pm 2.2$	630	AAIJ	15at LHCB	see AAIJ 18AV
${ }^{1}$ The systematic uncertainty is dominated by the uncertainty on $\mathrm{A}_{C P}$ in the control channel $D^{0} \rightarrow K_{S}^{0} \pi^{0}$.				

$A_{C P}\left(\pi^{+} \pi^{-}\right)$in $D^{0},{\overline{D^{0}} \Rightarrow \pi^{+} \pi^{-}}^{-}$
$\frac{V A L U E(\%)}{\mathbf{0 . 1 3} \pm \mathbf{0 . 1 4} \text { OUR AVERAG }}$
$0.07 \pm 0.14 \pm 0.11$
0.72
$-0.24 \pm 0.52 \pm 0.22 \quad 63$. $0.43 \pm 0.52 \pm 0.12 \quad 51 \mathrm{k}$
$0.43 \pm 0.52 \pm 0.12$
$1.0 \pm 1.3 \pm 0.6$
$1.0 \pm 1.3 \pm 0.6$ $1.9 \pm 3.2 \pm 0.8$
$4.9 \pm 7.8 \pm 3.0$

- - We do not use the following data for averages, fits, limits, etc. • •
$-0.20 \pm 0.19 \pm 0.10 \quad 774 \mathrm{k} \quad 2,6 \mathrm{AAIJ} \quad 14 \mathrm{AK}$ LHCB See AAIJ 17M
${ }^{1}$ AAIJ 17 M value combines $\Delta \mathrm{A}_{C P}(\pi \pi, K K)$ from AAIJ 16D, $\mathrm{A}_{C P}(K K)$ from AAIJ 17 M , and $\mathrm{A}_{C P}(\pi \pi)$ from AAIJ 14AK.
${ }^{2}$ See also " $D^{0} C P$-violating asymmetry differences" at the end of the $C P$-violating asymmetries.
${ }^{3}$ metries. ${ }^{\text {AUBERT }} 08 \mathrm{~m}$ uses corrected numbers of events directly, not ratios with $K^{\mp} \pi^{ \pm}$events.
${ }^{4}$ STARIC 08 uses $D^{0} \rightarrow K^{-} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$decays to correct for detectorinduced asymmetries.
${ }^{5}$ AITALA 98C, LINK 00B, CSORNA 02, and ACOSTA 05C measure $N\left(D^{0} \rightarrow\right.$ $\left.\pi^{+} \pi^{-}\right) / N\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$, the ratio of numbers of events observed, and similarly for the \bar{D}^{0}.
${ }^{6}$ AAIJ 14AK uses $\Delta A_{C P}(\pi \pi, K K)$ and $A_{C P}(K K)$ reported in the same paper.

${ }^{1}$ Decay rate asymmetry integrated in decay time and across full 4π phase space.
${ }^{2}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(a_{1}(1260)^{+} \pi^{-} \Rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \Rightarrow a_{1}(1260)^{+} \pi^{-}, \bar{D}^{0} \Rightarrow$ c.c.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{4 . 7} \pm \mathbf{2 . 6} \pm \mathbf{4 . 9}} \frac{\operatorname{EVTS}}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(a_{1}(1260)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \rightarrow a_{1}(1260)^{-} \pi^{+}, \bar{D}^{0} \rightarrow$ c.c. $\frac{V A L U E(\%)}{13.7 \pm 13.8 \pm \mathbf{1 1 . 4}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(\pi(1300)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \rightarrow \pi(1300)^{+} \pi^{-}, \bar{D}^{0} \rightarrow$ c.c.
$\frac{\operatorname{VALUE}(\%)}{-1.6 \pm 12.9 \pm 6.7} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(\pi(1300)^{-} \pi^{+} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \rightarrow \pi(1300)^{-} \pi^{+}, \bar{D}^{0} \rightarrow$ c.c.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 5 . 6} \pm \mathbf{1 1 . 9} \mathbf{2 7 . 7}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-C data but not authored by the CLEO Collaboration.
$\boldsymbol{A}_{C P}\left(a_{1}(1640)^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \rightarrow a_{1}(1640)^{+} \pi^{-}, \bar{D}^{0} \rightarrow$ c.c.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{8 . 6} \mathbf{1 7} . \mathbf{8} \pm \mathbf{1 9 . 3}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
$8.6 \pm 17.8 \pm 19.3$
1 Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(\pi_{2}(1670)^{+} \pi^{-} \Rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0} \Rightarrow \pi_{2}(1670)^{+} \pi^{-},{\overline{D^{0}}}^{\boldsymbol{0}}$ c.c.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{7 . 3} \pm \mathbf{1 5 . 1} \pm \mathbf{1 0 . 4}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-C data but not authored by the CLEO Collaboration.
$A_{C P}\left(\sigma f_{0}(1370) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow \sigma f_{0}(1370)$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 1 4 . 6} \pm \mathbf{1 6 . 5} \pm \mathbf{9 . 4}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(\sigma \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow \sigma \rho(770)^{0}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{2 . 5} \mathbf{5} \mathbf{1 6 . 8} \pm \mathbf{2 0 . 8}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$\boldsymbol{A}_{C P}\left(2 \rho(770)^{0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow 2 \rho(770)^{0}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 5 . 6} \pm \mathbf{5 . 0} \pm \mathbf{2 . 9}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
1 Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$A_{C P}\left(2 f_{2}(1270) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow 2 f_{2}(1270)$
$\frac{V A L U E(\%)}{\mathbf{- 2 8 . 3} \pm \mathbf{1 2 . 3} \pm \mathbf{2 0 . 9}} \frac{\text { EVTS }}{7.3 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {-body fit, } 4 \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$\boldsymbol{A}_{\boldsymbol{C P}}\left(K^{+} K^{=} \boldsymbol{\pi}^{0}\right)$ in $\boldsymbol{D}^{0},{\overline{D^{0}}}^{\mathbf{0}} \boldsymbol{K} K^{+} K^{=} \boldsymbol{\pi}^{\mathbf{0}}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 1 . 0 0} \pm \mathbf{1 . 6 7} \pm \mathbf{0 . 2 5}} \frac{\text { EVTS }}{11 \pm 0.11 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT O8AO BABR }} \frac{\text { TECN }}{\text { COMMENT }} \frac{e^{+} e^{-} \approx 10.6 \mathrm{GeV}}{11}$
$\boldsymbol{A}_{C P}\left(K^{*}(892)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{0}\right)$ in $D^{0} \rightarrow K^{*}(892)^{+} K^{-}, \bar{D}^{0} \rightarrow$ c.c.

${ }^{1}$ AUBERT 08AO report their result using a different sign convention.
$\boldsymbol{A}_{C P}\left(K^{*}(1410)^{+} K^{=} \rightarrow K^{+} K^{-} \pi^{0}\right)$ in $D^{0} \rightarrow K^{*}(1410)^{+} K^{=}, \bar{D}^{0} \rightarrow$ c.c.
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 2 1} \pm \mathbf{2 3} \pm \mathbf{8}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 08 \mathrm{AO}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\text { Table 1,-Col.5/2×Col. } 2}$
$A_{C P}\left(\left(K^{+} \pi^{0}\right)_{S-w a v e} K^{-} \rightarrow K^{+} K^{-} \pi^{0}\right)$ in $D^{0} \rightarrow\left(K^{+} \pi^{0}\right)_{S} K^{-}, \bar{D}^{0} \rightarrow$ C.C.
$\operatorname{VALUE}(\%)$
$+7 \pm 15 \pm 3$
DOCUMENT ID TECN COMMENT
AUBERT 08AO BABR Table $1,-$ Col. $5 / 2 \times$ Col. 2

${ }^{1}$ This is the overall result of AALTONEN 12AD．Following are the $15 C P$ fit－fraction asymmetries from the amplitude analysis of the D^{0} and $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$Dalitz plots．
${ }^{2}$ This is the overall result of ASNER 04A；$C P$－violating limits are also given below for each of the 10 resonant submodes found in an amplitude analysis of the D^{0} and $\bar{D}^{0} \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$Dalitz plots．
$\boldsymbol{A}_{C P}\left(K^{*}(892)^{\mp} \pi^{ \pm} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K^{*-} \pi^{+}, \bar{D}^{0} \rightarrow K^{*+} \pi^{-}$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{+ 0 . 3 6} \pm \mathbf{0 . 3 3} \mathbf{+ 0 . 4 0}} \frac{\text { DOCUMENT ID }}{\text { AALTONEN 12AD }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{\text { Dalitz fit，} \sim 350 \mathrm{k} \text { evts }}$
－－We do not use the following data for averages，fits，limits，etc．－－－

$+2.5 \pm 1.9$| +3.3 |
| :---: |
| +0.8 |\quad ASNER 04A CLEO Dalitz fit， 4854 evts

$\boldsymbol{A}_{C P}\left(\underset{\text { This is a doubly Cabibbo－suppressed mode．}}{\left.K^{*}(\mathbf{8 9 2})^{ \pm} \pi^{\mp} \underset{K^{+}}{\rightarrow} \boldsymbol{K}^{+} \pi^{-}\right) \text {in } \boldsymbol{D}^{\mathbf{0}} \rightarrow K^{*+} \bar{D}^{\mathbf{0}} \rightarrow K^{*-} \pi^{+}}\right.$ （\％）
VALUE（\％）DOCUMENT ID TECN COMMENT
$+\mathbf{1 . 0 \pm 5 . 7 \pm 2 . 1} \quad$ AALTONEN 12AD CDF Dalitz fit，～350k evts
－－We do not use the following data for averages，fits，limits，etc．－－•
$-21 \pm 42 \pm 28$ ASNER 04A CLEO Dalitz fit， 4854 evts
$A_{C P}\left(K_{S}^{0} \rho^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow \bar{K}^{0} \rho^{0}, \bar{D}^{0} \rightarrow K^{0} \rho^{0}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 0 . 0 5} \pm \mathbf{0 . 5 0} \pm \mathbf{0 . 0 8}} \quad \frac{\text { DOCUMENT ID }}{\text { AALTONEN 12AD }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{\text { Dalitz fit，} \sim 350 \mathrm{k} \text { evts }}$
$\mathbf{- 0 . 0 5} \pm \mathbf{0 . 5 0} \pm \mathbf{0 . 0 8} \quad$ AALTONEN 12AD CDF Dalitz fit，~ 35
\bullet－We do not use the following data for averages，fits，limits，etc．• •
$+3.1 \pm 3.8 \underset{-2.2}{+2.7} \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts
$A_{C P}\left(K_{S}^{0} \omega \Rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \Rightarrow \bar{K}^{0} \omega, \bar{D}^{0} \Rightarrow K^{0} \omega$
VALUE（\％）DOCUMENT ID TECN COMMENT
－12．6士 6．0士 2.6 AALTONEN 12AD CDF Dalitz fit，～350k evts
－－We do not use the following data for averages，fits，limits，etc．－－－
$-26 \pm 24 \begin{gathered}+22 \\ -4\end{gathered} \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts
$\boldsymbol{A}_{C P}\left(K_{S}^{0} f_{0}(980) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow \bar{K}^{0} f_{0}(980), \bar{D}^{0} \rightarrow K^{0} f_{0}(980)$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{- 0 . 4} \mathbf{2 . 2} \mathbf{2} \mathbf{1 . 6}} \frac{\text { DOCUMENT ID }}{\text { AALTONEN 12AD }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{\text { Dalitz fit，} \sim 350 \mathrm{k} \text { evts }}$
－－We do not use the following data for averages，fits，limits，etc．－－
$-4.7 \pm 11.0_{-}^{+24.9} \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts
$A_{C P}\left(K_{S}^{0} f_{2}(1270) \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow \bar{K}^{0} f_{2}(1270), \bar{D}^{0} \rightarrow K^{0} f_{2}(1270)$
VALUE（\％）DOCUMENT ID＿TECN COMMENT
－4．0士 3．4士 3.0 AALTONEN 12AD CDF Dalitz fit，～350k evts
－－We do not use the following data for averages，fits，limits，etc．－－
$+34 \pm 51 \begin{gathered}+33 \\ -79\end{gathered} \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts
$A_{C P}\left(K_{S}^{0} f_{0}(1370) \Rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \Rightarrow \bar{K}^{0} f_{0}(1370), \bar{D}^{0} \Rightarrow K^{0} f_{0}(1370)$
$\frac{\operatorname{VALUE~(\%)~}}{\mathbf{- 0 . 5} \mathbf{0 . 6} \mathbf{7 . 7}} \frac{\text { DOCUMENT ID }}{\text { AALTONEN 12AD }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{\text { Dalitz fit，} \sim 350 \mathrm{k} \text { evts }}$
－－We do not use the following data for averages，fits，limits，etc．－－
$+18 \pm 10 \begin{gathered}+13 \\ -22\end{gathered} \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts

$A_{C P}\left(K_{2}^{*}(1430)^{ \pm} \pi^{\mp}\right)$ in $D^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}, \bar{D}^{0} \rightarrow K_{2}^{*}(1430)^{-} \pi^{+}$ This is a doubly Cabibbo－suppressed mode．
$\frac{V A L U E(\%)}{\mathbf{- 1 0} \pm \mathbf{1 4} \mathbf{2 9}} \quad \frac{\text { DOCUMENT ID }}{\text { AALTONEN }} \frac{\text { 12AD }}{} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{\text { Dalitz fit，} \sim 350 \mathrm{k} \text { evts }}$
$\boldsymbol{A}_{C P}\left(K^{*}(1680)^{\mp} \pi^{ \pm} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K^{*}(1680)^{-} \pi^{+}, \bar{D}^{0} \rightarrow$ c．c． VALUE（\％）DOCUMENT ID TECN COMMENT －－We do not use the following data for averages，fits，limits，etc．－－•
$-36 \pm 19 \pm 35+10 \quad$ ASNER 04A CLEO Dalitz fit， 4854 evts

$\boldsymbol{A}_{C P}\left(K^{-} \pi^{+} \pi^{+} \pi^{-}\right)$in $D^{0} \Rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}, \bar{D}^{0} \Rightarrow K^{+} \pi^{+} \pi^{+} \pi^{+}$	
VALUE（\％）	DOCUMENT ID TECN COMMENT
$0.2 \pm 0.3 \pm 0.4$	BONVICINI 14 CLEO All CLEO－C runs
－－We do not use the following	ata for averages，fits，limits，etc．－
$+0.7 \pm 0.5 \pm 0.9$	DOBBS 07 CLEO See BONVICINI 14
$\boldsymbol{A}_{C P}\left(K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}, \bar{D}^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$	
VALUE（\％）EVTS	DOCUMENT ID TECN COMMENT
$\mathbf{- 1 . 8} \pm 4.4 \quad 1721 \pm 75$	TIAN 05 BELL $e^{+} e^{-} \approx r(4 S)$

$\boldsymbol{A}_{C P}\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$
See also AAIJ 13BR for a search for $C P$ violation in $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$in binned phase space．No evidence of $C P$ violation was found．
$\frac{\operatorname{VALUE}(\%)}{1.3 \pm 1.7} \frac{\text { EVTS AVERAGE DOCUMENTID }}{\text { OURCN COMMENT }}$
1.3 ± 1.7 OUR AVERAGE
$1.84 \pm 1.74 \pm 0.3 \quad 2.9 \mathrm{k} \quad{ }^{1}$ DARGENT $17 \quad e^{+} e^{-}$
$-8.2 \pm 5.6 \pm 4.7 \quad 828 \pm 46 \quad$ LINK 05 E FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$ ${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$A_{C P}\left(K_{1}^{*}(1270)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-}, \bar{D}^{0} \rightarrow$ c．c．

Including the full $K_{1}^{*}(1270)^{+}$phase space accessible in this decay chain，with its various resonance contributions
VALUE（\％）EOCUMENT ID \qquad TECN COMMENT
－2．3土1．7 OUR AVERAGE
$-2.6 \pm 1.7 \pm 0.2 \quad 163 \mathrm{k} \quad$ AAIJ 19 C LHCB 4 －body fit，$K K \pi \pi$ evts $25.3 \pm 9.7 \pm 12.7 \quad 2.9 \mathrm{k} \quad 1$ DARGENT $17 \quad$ 4－body fit，$K K \pi \pi$ evts ${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$\boldsymbol{A}_{C P}\left(K_{1}^{*}(1270)+K^{-} \Rightarrow K^{* 0} \pi^{+} K^{-}\right)$in $D^{0} \Rightarrow K_{1}^{*}(1270)^{+} K^{-}, \overline{D^{0}} \Rightarrow$ c．c．
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 0 . 7} \pm \mathbf{1 0 . 4}} \quad \frac{\text { DOCUMENT ID }}{\text { ARTUSO } 12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Amplitude fit，} 2959 \text { evts．}}$
$\boldsymbol{A}_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow{\overline{K^{* 0}}}^{-} \pi^{+}\right)$in $D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+}, \bar{D}^{0} \rightarrow$ c．c． VALUE（\％）
$\frac{\text { DOCUMENT ID }}{\text { ARTUSO } 12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Amplitude fit，} 2959 \text { evts．}}$
$A_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+}, \bar{D}^{0} \rightarrow$ c．c．

Including the full $K_{1}^{*}(1270)^{-}$phase space accessible in this decay chain，with its various resonance contributions．

VALUE（\％）	EVTS	DOCUMENT ID	TECN	COMMENT
1．7 \pm 3．5 OUR AVERAGE				
$3.3 \pm 3.5 \pm 0.5$	163k	AAIJ	19C LHCB	4－body fit，$K K \pi \pi$ evts
$-50.4 \pm 12.0 \pm 16.1$	2．9k	${ }^{1}$ DARGENT	17	4－body fit，$K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．				
$A_{C P}\left(K_{1}^{*}(1270)^{+} K^{-} \rightarrow \rho^{0} K^{+} K^{-}\right)$in $D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-}, \bar{D}^{0} \rightarrow$ c．c．				
－6．5士16．9		ARTUSO	12 CLEO	Amplitude fit， 2959 evts．
$A_{C P}\left(K_{1}^{*}(1270)^{-} K^{+} \rightarrow \rho^{0} K^{-} K^{+}\right)$in $D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+}, \overline{D^{0}} \rightarrow$ c．c．				
＋9．6 ± 12.9		ARTUSO	CLEO	Amplitude fit， 2959 evts．
$A_{C P}\left(K_{1}(1400)^{+} K^{-} \Rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0} \Rightarrow K_{1}(1400)^{+} K^{-}, \bar{D}^{0} \Rightarrow$				
C．C．				
Including the full $K_{1}(1400)^{+}$phase space accessible in this decay chain，with its various resonance contributions．				
－4．4土 2．1 OUR AVERAGE				
$-4.5 \pm 2.1 \pm 0.3$	163k	AAIJ	19C LHCB	4－body fit，$K K \pi \pi$ evts
$9.2 \pm 15.2 \pm 20.3$	2．9k	${ }^{1}$ DARGENT	17	4－body fit，$K K \pi \pi$ evts

${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$A_{C P}\left(K^{*}(1410)^{+} K^{-} \rightarrow K^{* 0} \pi^{+} K^{-}\right)$in $D^{0} \rightarrow K^{*}(1410)^{+} K^{-}, \overline{D^{0}} \rightarrow$ c．c．
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 2 0 . 0} \pm \mathbf{1 6 . 8}} \quad \frac{\text { DOCUMENT ID }}{\text { ARTUSO } 12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Amplitude fit，} 2959 \text { evts．}}$
$A_{C P}\left(K^{*}(1410)^{-} K^{+} \rightarrow \bar{K}^{* 0} \pi^{-} K^{+}\right)$in $D^{0} \rightarrow K^{*}(1410)^{-} K^{+}, \bar{D}^{0} \rightarrow$ c．c．
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 1 . 1} \pm \mathbf{1 3 . 7}} \quad \frac{\text { DOCUMENT ID }}{\text { ARTUSO } 12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Amplitude fit，} 2959 \text { evts．}}$
$A_{C P}\left(K^{*}(1680)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0} \rightarrow K^{*}(1680)^{+} K^{-}, \bar{D}^{0} \rightarrow$ C．C．

Including the full $K^{*}(1680)^{+}$phase space accessible in this decay chain，with its various resonance contributions

VALUE（\％）	EVTS	DOCUMENT ID		COMMENT
－17．1 $\pm 21.8 \pm 18.5$	2.9 k	1 DARGENT	17	4－body fit，$K K \pi \pi$ evts

${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$A_{C P}\left(K^{* 0} \bar{K}^{* 0}\right)$ in $D^{0}, \bar{D}^{0} \Rightarrow K^{* 0} \bar{K}^{* 0}$
Including S，P，D wave
VALUE（\％）
$\mathbf{- 4 . 6 \pm 9 . 0 \pm 1 1 . 3} \quad \frac{19}{2.9 k} \quad 1$ DARGENT 17 －body fit，$K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$A_{C P}\left(K^{* 0} \bar{K}^{* 0} S\right.$－wave $)$ in $D^{0}, \bar{D}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} S$－wave

VALUE（\％）	EVTS	DOCUMENT		TECN	COMMENT
－3．9土 2．2 OUR AVERAGE					
$-4.3 \pm 2.2 \pm 0.5$	163k	AAIJ	19C	LHCB	4－body fit，$K K \pi \pi$ evts
$+9.5 \pm 13.5$	3 k	ARTUSO	12	CLEO	4－body fit，$K K \pi \pi$ evts
$\begin{gathered} A_{C P}\left(\phi \rho^{0}\right) \text { in } D^{0}, \overline{D^{0}} \rightarrow \phi \rho^{0} \\ \text { Including S, P, D wave } \end{gathered}$					
VALUE（\％）	EVTS	DOCUMENTID		COMMENT	
$1.5 \pm 4.6 \pm 8.0$	2.9 k	${ }^{1}$ DARGENT	17	4－bod	fit，$K K \pi \pi$ evts

${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．
$A_{C P}\left(\phi \rho^{0} S\right.$－wave $)$ in $D^{0},{\overline{D^{0}}}^{0} \phi \rho^{0} S$－wave
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 2 . 7} \pm \mathbf{5 . 3}} \quad \frac{\text { DOCUMENT ID }}{\text { ARTUSO } 12} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\text { Amplitude fit，} 2959 \text { evts．}}$
$A_{C P}\left(\phi \rho^{0} D\right.$－wave $)$ in $D^{0}, \bar{D}^{0} \Rightarrow \phi \rho^{0} D$－wave
VALUE（\％）DOCUMENT ID TECN COMMENT
$=\mathbf{3 7 . 1} \pm \mathbf{1 9 . 0} \quad$ ARTUSO 12 CLEO Amplitude fit， 2959 evts．
$\boldsymbol{A}_{C P}\left(\phi\left(\pi^{+} \pi^{-}\right)_{S-w a v e}\right)$ in $D^{0}, \overline{D^{0}} \Rightarrow \phi\left(\pi^{+} \pi^{-}\right)_{S-w a v e}$
$\frac{\operatorname{VALUE}(\%)}{6 \pm 6}$ OUR AVERAGE DOCUMENT ID $\frac{\text { EVTS }}{\text { TECN COMMENT }}$
6 ± 6 OUR AVERAGE
$5.8 \pm 6.1 \pm 0.8 \quad 163 \mathrm{k} \quad$ AAIJ 19 C LHCB 4 －body fit，$K K \pi \pi$ evts
$-4.0 \pm 18.0 \pm 44.6 \quad 3 k \quad 1$ DARGENT $17 \quad 4$－body fit，$K K \pi \pi$ evts
－－We do not use the following data for averages，fits，limits，etc．－－－
$-8.6 \pm 10.4 \quad 3 \mathrm{k} \quad 2$ ARTUSO 12 CLEO 4 －body fit，$K K \pi \pi$ evts
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration． ${ }^{2}$ see DARGENT 17
$A_{C P}\left(K^{*}(892)^{0}\left(K^{-} \pi^{+}\right)_{S=\text { wave }}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow K^{*}(892)^{0}\left(K^{-} \pi^{+}\right)_{S=\text { wave }}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{- 1 3 . 1} \pm \mathbf{1 7 . 9} \pm \mathbf{3 1 . 2}} \frac{\text { EVTS }}{2.9 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DARGENT } 17} \frac{\text { COMMENT }}{4 \text {－body fit，} K K \pi \pi \text { evts }}$
${ }^{1}$ Obtained by analyzing CLEO data but not authored by the CLEO Collaboration．

D^{0} CP－VIOLATING ASYMMETRY DIFFERENCES

$\Delta A_{C P}=A_{C P}\left(K^{+} K^{-}\right)=A_{C P}\left(\pi^{+} \pi^{-}\right)$
$C P$ violation in these modes can come from the decay amplitudes（direct）and／or from mixing or interference of mixing and decay（indirect）．The difference $\Delta A_{C P}$ is primar－ ily sensitive to the direct component，and only retains a second－order dependence on the indirect component for measurements where the mean decay time of the $K^{+} K^{-}$ and $\pi^{+} \pi^{-}$samples are not identical．The results below are averaged assuming the indirect component can be neglected．
VALUE（\％）EVTS DOCUMENTID TECN COMMENT
$\mathbf{= 0 . 1 5 4} \pm \mathbf{0 . 0 2 9} \quad 53 \mathrm{M}, 17 \mathrm{M}$ AAIJ 19D LHCB Time－integrated
－－We do not use the following data for averages，fits，limits，etc．•－
$-0.10 \pm 0.08 \pm 0.03 \quad 6.5 \mathrm{M}, 2.2 \mathrm{M}$ AAIJ 16D LHCB See AAIJ 19D $0.14 \pm 0.16 \pm 0.08 \quad 2.2 \mathrm{M}, 0.8 \mathrm{M} \quad$ AAIJ \quad 14AK LHCB See AAIJ 19D $0.49 \pm 0.30 \pm 0.140 .56 \mathrm{M}, 0.22 \mathrm{M} \quad$ AAIJ \quad 13AD LHCB See AAIJ 14AK
$-0.82 \pm 0.21 \pm 0.11 \quad 1.4 \mathrm{M}, 0.4 \mathrm{M}$ AAIJ 12 G LHCB See AAIJ 16D
$-0.46 \pm 0.31 \pm 0.12$
$-0.62 \pm 0.21+0.10$
$0.86 \quad 1$ AUBERT 08M BABR Time－integrated
${ }^{1}$ Calculated from the AUBERT 08M values of $A_{C P}\left(K^{+} K^{-}\right)$and $A_{C P}\left(\pi^{+} \pi^{-}\right)$．The systematic error here combines the systematic errors in quadrature，and therefore some－ what over－estimates it．

Meson Particle Listings
D^{0}

D^{0} TESTS OF LOCAL CP-VIOLATION (CPV)

We list model-independent searches for local $C P$ violation in phase-space distributions of multi-body decays.
Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^{2} test comparing normalised yields N_{i}, \bar{N}_{i} in CP-conjugate bin pairs $i: \chi^{2}=$ $\Sigma_{i}\left(N_{i}-\alpha \bar{N}_{i}\right) / \sigma\left(N_{i}-\alpha \bar{N}_{i}\right)$. The factor $\alpha=\left(\Sigma_{i} N_{i}\right) /\left(\Sigma_{i} \bar{N}_{i}\right)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p -value) to obtain the measured χ^{2} or larger under the assumption of CP conservation [AUBERT 08AO, BEDIAGA 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

Local CPV in $D^{0}, \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

p-value (\%)	EVTS	DOCUMEN	TECN	COMMENT
4.9 OUR EVALUATION				
2.6	566k	1 AAIJ	15A LHCB	unbinned method
32.8	82k	AUBERT	08AO BABR	

p-value (\%)	EVTS	DOCU	TECN	COMMENT
0.6 ± 0.2	1.0M	1 AAIJ	LHCB	unbinned, P-odd

- - We do not use the following data for averages, fits, limits, etc. • • -

CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTS

The $C P$-sensitive P-odd (T-odd) correlation in D^{0}, \bar{D}^{0} decays. The D^{0} and \bar{D}^{0} are distinguished by the charge of the parent $D^{*}: D^{*+} \rightarrow D^{0} \pi^{+}$ and $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$
$A_{\text {Tviol }}\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$in $D^{0}, \bar{D}^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$
$C_{T} \equiv \vec{p}_{K^{+}} \cdot\left(\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}\right)$is a parity-odd correlation of the K^{+}, π^{+}, and π^{-} momenta (evaluated in the D^{0} rest frame) for the $D^{0} . \bar{C}_{T} \equiv \vec{p}_{K^{-}} \cdot\left(\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}\right)$ is the corresponding quantity for the \bar{D}^{0}. Then
$\mathrm{A}_{T} \equiv\left[\Gamma\left(\mathrm{C}_{T}>0\right)-\Gamma\left(\mathrm{C}_{T} \leq 0\right)\right] /\left[\Gamma\left(\mathrm{C}_{T}>0\right)+\Gamma\left(\mathrm{C}_{T}<0\right)\right]$, and
$\bar{A}_{T} \equiv\left[\Gamma\left(-\bar{C}_{T}>0\right)-\Gamma\left(-\bar{C}_{T}<0\right)\right] /\left[\Gamma\left(-\bar{C}_{T}>0\right)+\Gamma\left(-\bar{C}_{T}<0\right)\right]$, and
$\mathrm{A}_{\text {Tviol }} \equiv \frac{1}{2}\left(\mathrm{~A}_{T}-\bar{A}_{T}\right) . \mathrm{C}_{T}$ and \bar{C}_{T} are commonly referred to as T-odd moments, because they are odd under T reversal. However, the T-conjugate process $K^{+} K^{-} \pi^{+} \pi^{-} \rightarrow D^{0}$ is not accessible, while the P-conjugate process is.
VALUE (units 10^{-3}) EVTS DOCUMENTID TECN COMMENT

2.9 2.2 OUR AVERAGE					
$5.2 \pm$	3.7 ± 0.7	110 k	1 KIM	19	BELL
e^{+}	e^{-}at $r(1 S)-\gamma(6 S)$				

$1.8 \pm 2.9 \pm 0.4 \quad 171 \mathrm{k} \quad$ AAIJ 14 BC LHCB $B \rightarrow D^{0} \mu^{-} X$
$1.0 \pm 5.1 \pm 4.4 \quad 47 \mathrm{k} \quad$ DEL-AMO-SA.. 10 BABR $e^{+} e^{-} \approx 10.6 \mathrm{GeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$10 \quad \pm 57 \pm 37$
0.8k LINK
05E FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
${ }^{1}$ KIM 19 also study $C P$-violating asymmetries in several other kinematic variables. No evidence for $C P$ violation is found in any of them.
$A_{\text {Tviol }}\left(K_{S} \pi^{+} \pi^{-} \pi^{0}\right)$ in $D^{0}, \bar{D}^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}$
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
$-\mathbf{0 . 2 8} \pm 1.38+\mathbf{0 . 7 6} \quad 745 \mathrm{k} \quad 1$ PRASANTH 17 BELL $e^{+} e^{-}$at $\gamma(\mathrm{nS})$'s
${ }^{1}$ PRASANTH 17 also measures $A_{\text {Tviol }}$ in sub-regions of the $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}$ phasespace. No evidence of T violation is found.

D0 CPT-VIOLATING DECAY-RATE ASYMMETRIES

$\boldsymbol{A}_{\boldsymbol{C P T}}\left(K^{\mp} \pi^{ \pm}\right)$in $D^{\mathbf{0}} \rightarrow K^{-} \pi^{+}, \overline{D^{0}} \rightarrow K^{+} \pi^{-}$
${ }^{A_{C P T}}{ }^{(\mathrm{t})}$) is defined in terms of the time-dependent decay probabilities $P\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+}\right)$and $\bar{P}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)$by $A_{C P T}(\mathrm{t})=(\bar{P}-P) /(\bar{P}+P)$. For small mixing parameters $\mathrm{x} \equiv \Delta m / \Gamma$ and $\mathrm{y} \equiv \Delta \Gamma / 2 \Gamma$ (as is the case), and times $\mathrm{t}, A_{\left.C P T^{(}\right)}{ }^{\mathrm{t}}$) reduces to [y $\operatorname{Re} \xi-\mathrm{x} \operatorname{Im} \xi$] t , where ξ is the $C P T$-violating parameter.
The following is actually y $\operatorname{Re} \xi-\mathrm{x} \operatorname{Im} \xi$.
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 8 3} \pm \mathbf{0 . 0 0 6 5} \pm \mathbf{0 . 0 0 4 1}} \quad \frac{\text { DOCUMENT ID }}{\text { LINK }} \frac{\text { 03B }}{\text { TECN }} \frac{\text { COMMENT }}{\gamma \text { nucleus, } \bar{E}_{\gamma} \approx 180 \mathrm{GeV}}$
$D^{0} \rightarrow K^{*}(892)^{-} \ell^{+} \nu_{\ell}$ FORM FACTORS
$\mathrm{r}_{V} \equiv \mathrm{~V}(0) / \mathrm{A}_{1}(0)$ in $D^{0} \rightarrow K^{*}(892)^{-} \ell^{+} \nu_{\ell}$
$\frac{V A L U E}{1.46 \pm 0.07 \text { OUR AVERAGE }}$ EVTS \quad DOCUMENT ID

| $1.46 \pm 0.07 \pm 0.02$ | $3 k$ | ABLIKIM 19 GBES 3 | $K^{*}(892)^{-}-e^{+} \nu_{e} \quad$ \| |
| :--- | :--- | :--- | :--- | :--- |

$1.71 \pm 0.68 \pm 0.34 \quad$ LINK 05B FOCS $K^{*}(892)^{-} \mu^{+} \nu_{\mu}$
$\mathbf{r}_{\mathbf{2}} \underline{\underline{\underline{\underline{\underline{玉}}}}} \mathrm{~A}_{\mathbf{2}}(\mathbf{0}) / \mathrm{A}_{\mathbf{1}}(\mathbf{0})$ in $D^{0} \rightarrow K^{*}(892)^{-} \ell^{+} \nu_{\boldsymbol{\ell}}$
$\frac{V A L U E}{0.68 \pm 0.06 \text { OUR AVERAGE }}$ EVTS DOCUMENT ID TECN COMMENT
$0.67 \pm 0.06 \pm 0.01 \quad 3 \mathrm{k} \quad$ ABLIKIM $\quad 19 \mathrm{G}$ BES3 $K^{*}(892)^{-} e^{+} \nu_{e} \quad$ |
$0.91 \pm 0.37 \pm 0.10 \quad$ LINK 05B FOCS $K^{*}(892)^{-} \mu^{+} \nu_{\mu}$
$D^{0} \rightarrow K^{-} / \pi^{-} \ell^{+} \nu_{\ell}$ FORM FACTORS
$f_{+}(0)$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\ell}$
$\frac{V A L U E}{0.736} \pm 0.004$ OUR AVERAGE
$0.7368 \pm 0.0026 \pm 0.0036 \quad 71 \mathrm{k}$ $0.727 \pm 0.007 \pm 0.009$
\qquad
DOCUMENT ID TECN COMMENT $\begin{array}{ll}\text { ABLIKIM } & 15 x \text { BES3 } \quad \ell=e, \text { 2-parameter fit } \\ \text { AUBERT } & 07 \mathrm{BG} \text { BABR } \quad \ell=e, 2 \text {-parameter fit }\end{array}$
$f_{+}(\mathbf{0})\left|V_{c s}\right|$ in $D^{0} \rightarrow K^{-} \ell^{+} \nu_{\boldsymbol{\ell}}$
$\frac{V A L U E}{0.7166} \pm \mathbf{0 . 0 0 3 0}$ OUR AVERAGE
$0.7133 \pm 0.0038 \pm 0.0029 \quad 47 \mathrm{k} \quad$ ABLIKIM $\quad 19 \mathrm{~B}$ BES3 $\quad \ell=\mu, 2$-parameter fit
DOCUMENT ID TECN COMMENT
$0.7172 \pm 0.0025 \pm 0.0035 \quad 71 \mathrm{k} \quad 1$ ABLIKIM $\quad 15 \mathrm{x}$ BES3 $\ell=e$, 2-parameter fit
$0.726 \pm 0.008 \pm 0.004 \quad$ BESSON 09 CLEO $\ell=e, 3$-parameter fit
${ }^{1}$ The 3-parameter fit yields $0.7195 \pm 0.0035 \pm 0.0041$.
$r_{1} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow K^{-} \boldsymbol{\ell}^{+} \boldsymbol{\nu} \boldsymbol{\ell}$

$\underset{\substack{\text { VALUE }}}{\boldsymbol{f}_{+}(\mathbf{0})}$ in $D^{\mathbf{0}} \Rightarrow \pi^{-} \boldsymbol{\ell}^{+} \boldsymbol{\nu} \boldsymbol{\ell}^{E V T S}$
$\frac{V A L U E}{\mathbf{0 . 6 3 7 2} \pm \mathbf{0 . 0 0 8 0} \pm \mathbf{0 . 0 0 4 4}} \frac{\text { EVTS }}{6.3 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 15 \mathrm{x}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\ell=e, 2-\text { parameter fit }}$
$f_{+}(0)\left|V_{c d}\right|$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 4 3 6} \pm \mathbf{0 . 0 0 2 6} \text { OUR AVERAGE EVR }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$
$0.1436 \pm \mathbf{0 . 0 0 2 6}$ OUR AVERAGE Error includes scale factor of 1.5 . See the ideogram
below.
$0.1435 \pm 0.0018 \pm 0.0009 \quad 6.3 \mathrm{k} \quad 1$ ABLIKIM $\quad 15 \mathrm{x}$ BES3 $\ell=e, 2$-parameter fit
$\begin{array}{llcl}0.1374 \pm 0.0038 \pm 0.0024 & 5.3 \mathrm{k} & 2 \text { LEES } & 15 \mathrm{~F} \\ 0.152 \pm 0.005 \pm 0.001 & & \text { BESSON } & 09 \\ \text { BLEO } \ell=e, 3 \text {-parameter fit }\end{array}$ $0.152 \pm 0.005 \pm 0.001 \quad$ BESSON 09 CLEO $\ell=e, 3$-parameter fit

${ }^{1}$ The 3-parameter fit yields $0.1420 \pm 0.0024 \pm 0.0010$.
${ }^{2}$ LEES 15F reports a value $0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009$, where the last
uncertainty is due to the uncertainties of the $D^{0} \rightarrow K^{-} \pi^{+}$branching fraction.
$r_{1} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$
$\frac{\text { VALUE }}{\mathbf{- 1 . 9 7} \pm \mathbf{0 . 2 8} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { CoMMENT }}$
$-1.84 \pm 0.22 \pm 0.07 \quad 6.3 \mathrm{k} \quad 1$ ABLIKIM $\quad 15 \mathrm{x}$ BES3 $\ell=e, 3$-parameter fit $-1.31 \pm 0.70 \pm 0.43 \quad$ LEES 15 F BABR $\ell=e, 3$-parameter fit
${ }^{1}$ The 2-parameter fit yields $-2.04 \pm 0.08 \pm 0.03$.
WEIGHTED AVERAGE
-1.97 ± 0.28 (Error scaled by 1.4)

$r_{1} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$
$r_{2} \equiv a_{1} / a_{0}$ in $D^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$

Amplitude analyses
$D \rightarrow K \pi \pi \pi, D \rightarrow K K \pi \pi$ partial wave analyses
Amplitude analyses of D^{0} decays to a variety of 4-body kaon or pion final states, fitting simultaneously different partial wave components.

DOCUMENT	TECN	COMMENT
${ }^{1}$ AAIJ	19C LHCB	$D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$
ABLIKIM	19ak BES3	$D^{0} \rightarrow K^{-} \pi^{+} \pi^{0} \pi^{0}$
AAIJ	18AI LHCB	$D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$
ABLIKIM	170 BES3	$D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$

${ }^{1}$ AAIJ 19C also provides measurements of $C P$ violation in $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$, with results compatible with $C P$ symmetry
D^{0} REFERENCES

Meson Particle Listings
$D^{0}, D^{*}(2007)^{0}$

ARTUSO	08	PR D77 092003	M. Artuso et al.	(CLEO Collab.)	ADAMOVICH	95	PL B353 563	M.I. Adamovich et al.	(CERN BEATRICE Collab.)		
ASNER	08	PR D78 012001	D.M. Asner et al.	(CLEO Collab.)	BARTELT	95	PR D52 4860	J.E. Bartelt et al.	(CLEO Collab.)		
AUBERT	08AL	PR D78 034023	B. Aubert et al.	(BABAR Collab.)	BUTLER		PR D52 2656	F. Butter et al.	CLEO Collab.)		
AUBERT	08AO	PR D78 051102	B. Aubert et al.	(BABAR Collab.)	FRABETTI	95 C	PL B354 486	P.L. Frabetti et al.	(FNAL E687 Collab.)		
AUBERT	08AZ	PR D78 071101	B. Aubert et al.	(BABAR Collab.)	FRABETTI	956	PL B364 127	P.L. Frabetti et al.	(FNAL E687 Collab.)		
AUBERT	08 L	PRL 100051802	B. Aubert et al.	(babar collab.)	kodama	95	PL B345 85	K. Kodama et al.	(FNAL E653 Collab.)		
AUBERT	08M	PRL 100061803	B. Aubert et al.	(BABAR Collab.)	ALBRECHT	94	PL B324 249	H. Albrecht et al.	(ARGUS Collab.)		
AUBERT	08 U	PR D78 011105	B. Aubert et al.	(BABAR Collab.)	ALBRECHT	94F	PL B340 125	H. Albrecht et al.	(ARGUS Collab.)		
BITENC	08	PR 777112003	U. Bitenc et al.	(BELLE Collab.)	${ }_{\text {albrecht }}$	941	ZPHY C64 375	H. Albrecht et al.	(ARGUS Collab.)		
bonvicini	08	PR D77 091106	G. Bonvicini et al.	(CLEO Collab.)	FRABETTI	94 C	PL B321 295	P.L. Frabetti et al.	(fNAL E687 Collab.)		
DOBBS	08	PR D77 112005	S. Dobbs et al.	(CLEO Collab.)	FRABETTI	94 D	PL B323 459	P.L. Frabetti et al.	(FNAL E687 Collab.)		
Also		PRL 100251802	D. Cronin-Hennessy et al.	(CLEO Collab.)	FRABETTI	94 G	PL B331 217	P.L. Frabetti et al.	(FNAL E687 Collab.)		
GASPERO	08	PR D78 014015	M. Gaspero et al.	(ROMA, CINN, TELA)	FRABETTI	94.	PL B340 254	P.L. Frabetti et al.	(FNAL E687 Collab.)		
HE	08	PRL 100091801	Q. He et 2 \%	(CLEO Collab.)	kodama	94	PL B336 605	K. Kodama et al.	(fNAL E653 Collab.)		
PDG	08	PL B667 1	C. Amsler et al.	(PDG Collab.)	MISHRA	94	PR D50 9	C.S. Mishra et al.	(FNAL E789 Collab.)		
STARIC	08	PL B670 190	M. Staric et al.	(BELLE Collab.)	AKERIB	93	PRL 713070	D.S. Akerib et al.	(CLEO Collab.)		
ABLIKIM	07 G	PL B658 1	M. Ablikim et al.	(BES Collab.)	ALBRECHT	93D	PL B308 435	H. Albrecht et al.	(ARGUS Collab.)		
ARTUSO	07A	PRL 99191801	M. Artuso et al.	(CLEO Collab.)	ANJOS	93	PR D48 56	J.C. Anjos et al.	(FNAL E691 Collab.)		
AUBERT	07AB	PR D76 014018	B. Aubert et al.	(BABAR Collab.)	BEAN	93 C	PL B317 647	A. Bean et al.	(CLEO Collab.)		
AUBERT	07BG	PR D76 052005	B. Aubert et al.	(BABAR Collab.)	FRABETTI	931	PL B315 203	P.L. Frabetti et al.	(fNAL E687 Collab.)		
AUBERT	07BJ	PRL 99251801	B. Aubert et al.	(BABAR Collab.)	KODAMA	${ }^{93 \mathrm{~B}}$	PL B313 260	K. Kodama et al.	(FNAL E653 Collab.)		
AUBERT	07 T	PR D76 011102	B. Aubert et al.	(BABAR Collab.)	PROCARIO	${ }^{93}$	PR D48 4007	M. Procario et al.	(CLEEO Collab.)		
AUBERT	07W	PRL 98211802	B. Aubert et al.	(BABAR Collab.)	SELEN	93	PRL 711973	M.A. Selen et al.	(CLEO Collab.)		
CAWLFIELD	07	PRL 98092002	C. Cawlifield et al.	(CLEO Collab.)	ADAMOIICH	92	PL B280 163	M.I. Adamovich et	(CERN WA82 Collab.)		
DOBBS LINK	$\begin{aligned} & 07 \\ & 07 \mathrm{~A} \end{aligned}$	PR D76 112001 PR D75 052003	S. Dobbs et al.		ALBRECHT ANJOS	${ }_{92}^{92}$	ZPHY C56 ${ }^{\text {PR }}$	H. Albrecht et al. J.C. Anjos et al.	(ARGUS Collab.) (FNAL E691 Collab.)		
STARIC	07	PRL 98211803	M. Staric et al.	(BELLE Collab.)	barlag	92 C	ZPHY C55 383	S. Barlag et al.	(ACCMOR Collab.)		
zHANG	07B	PRL 99131803	L.M. Zhang etal.	(BELLE Collab.)	Also		ZPHY C48 29	S. Barlag et al.	(ACCMOR Collab.)		
ABLIKIM	060	EPJ C47 31	M. Ablikim et al.	(BES Collab.)	COFFMAN	92 B	PR D45 2196	D.M. Coffman et al.	(Mark III Collab.)		
ABLIKIM	064	PL B643 246	M. Ablikim et al.	(BES Collab.)	Also		PRL 642615	J. Adler et al.	(Mark III Collab.)		
ABULENCIA	06 X	PR D74 031109	A. Abulencia et al.	(CDF Collab.)	FRABETTI	92	PL B281 167	P.L. Frabetti et al.	(FNAL E687 Collab.)		
ADAM	06 A	PRL 97251801	N.E. Adam et al.	(CLEO Collab.)	FRABETTI	92 B	PL B286 195	P.L. Frabetti et al.	(FNAL E687 Collab.)		
AUBERT,B	06 N	PRL 97221803	B. Aubert et al.	(BABAR Collab.)	Alvarez	91B	ZPHY C50 11	M.P. Alvarez et al.	(CERN NA14/2 Collab.)		
AUBERT, B	${ }^{068}$	PR D74 091102	B. Aubert et al.	(BABAR Collab.)	AMMAR	91	PR D44 3383	R. Ammar et al.	(CLEO Collab.)		
	$\begin{aligned} & 06 \mathrm{~A} \\ & 06 \mathrm{~B} \end{aligned}$	PR D74 031108	C. Cawlield et ald G.S. Huang et al.	(CLEO Collab.)	ANJOS ANJOS	${ }_{91 \mathrm{D}}^{91}$	PR D43 635 PR D44 3371	J.C. Anjos et al.	(FNAL-TPS Collab.) (FNAL-TPS Collab.)		
PDG	06	JP G33 1	W.-M. Yao et al.	(PDG Collab.)	BAl	91	PRL 661011	Z. Bai et al.	(Mark III Collab.)		
RUBIN	06	PRL 96081802	P. Rubin et al.	(CLEO Collab.)	COFFMAN	91	PL B263 135	D.M. Coffman et al.	(Mark III Collab.)		
WIDHALM	06	PRL 97061804	L. Widhalm et al.	(BELLE Collab.)	CRAWFORD	91B	PR D44 3394	G. Crawford et al.	(CLEOO Collab.)		
zHANG	06	PRL 96151801	L.M. Zhang et al.	(BELLE COIlab.)	DECAMP	${ }^{91 J}$	PL B266 218	D. Decamp et al.	(ALEPH Collab.)		
ABLIKIM	${ }^{055}$	PL B622 6	M. Ablikim et al.	(BES Collab.)	FRABETTI	91	PL B263 584	P.L. Frabetti et al.	(FNAL E687 Collab.)		
${ }_{\text {ABLIKIM }}$	${ }^{05 P}$	PL B625 196	M. Ablikim et al.	(BES Collab.)	KINOSHITA	91	PR D43 2836	K. Kinoshita et al.	(CLEEO Collab.)		
${ }_{\text {A A OSTA }}$	$\begin{aligned} & 05 \mathrm{C} \\ & 05 \end{aligned}$	PRL 94122001 PR D72 012001	D. Acosta et al. D.M. Asner et al.	(FNAL CDF Collab.)	KODAMA	91	PRL 661819	K. Kodama et al.	(FNAL E653 Collab.)		
AUBERT,B	05J	PR D72 052008	D.M. Asner et al.	(BABAR Collab.)	Albrechi AlEXANDER	90	PRL 651184	${ }_{\text {J. Ale }}$. Alexander et al.	(CLEO Collab.)		
BITENC	05	PR D72 071101	U. Bitenc et al.	(BELLE Collab.)	Alvarez	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)		
CAWLFIELD	05	PR D71 077101	C. Cawlield et al.	(Cleo collab.)	ANJOS	90 D	PR D42 2414	J.C. Anjos et al.	(FNAL E691 Collab.)		
COAN	05	PRL 95181802	T.E. Coan et al.	(CLEO Collab.)	BARLAG	90 C	ZPHY $\mathrm{C} 46^{563}$	5. Barlag et al.	(ACCMOR Collab.)		
CRONIN-HEN..	. 05	PR D72 031102	D. Cronin-Hennessy et al.	(CLEO Collab.)	ADLER	89	PRL 621821	J. Adler et al.	(Mark III Collab.)		
HE Also	05	PRL 95121801 (errat)	Q. He et al.	(CLEO Collab.)	${ }^{\text {ALLER }}$ ALBRECHT	89 C	PR D40 906	J. Adler et al. ${ }_{\text {a }}$	(Mark III Collab.)		
Also HUANG		PRL 96199903 (errat.)	Q. He et al.	(CLEO Collab.)	Albrecht	89D	ZPHY 443181	H. Albrecht et al.	(ARGUS Collab.)		
HUANG KAYIS-TOPAK.	05	PRL 94011802	G.S. Huang et al.	(CLEO Collab.)	ANJOS	89 F	PRL 621587	J.C. Anjos et al.	(FNAL E691 Collab.)		
KAYIS-TOPAK.	\ldots	PL B626 24	A. Kayis-Topaksu et al.	(CERN CHORUS Collab.)	ABACHI	88	PL B205 411	S. Abachi et al.	(MRS Collab.)		
LINK	${ }_{0} 5$	PL B60751	J.M. Link et al.	(FNAL FOCUS Collab.)	${ }^{\text {ADLER }}$	${ }_{88}^{88}$	PRL 6089	J. Adler et al.	(Mark III Collab.)		
LINK	05A	PL B607 59	J.M. Link et al.	(FNAL FOCUS Collab.)	ALBRECHT	886	PL B209 380	H. Albrecht et al.	(ARGUS Collab.)		
LINK	05B	PL B607 67	J.M. Link et al.	(FNAL FOCUS Collab.)	Albrecht	881	PL B210 267	H. Albrecht et al.	(ARGUS Collab.)		
LINK	05E	PL B622 239	J.M. Link et al.	(FNAL FOCUS Collab.)	ANJOS	88 C	PRL 601239	J.C. Anjos et al.	(FNAL E691 Collab.)		
LINK	05 G	PL B610 225	J.M. Link et al.	(FNAL FOCUS Collab.)	BORTOL	88	PR D37 1719	D. Bortoletto et al.	(CLEO Collab.)		
LINK	${ }^{055}$	PL B61823	J.M. Link et al.	(FNAL FOCUS Collab.)	Also		PR D39 1471 (erratum)	D. Bortoletto et al.	(CLEO Collab.)		
ONENGUT	05	PL B613 105	G. Onengut et al.	(CERN Chorus collab.)	HAAS	88	PRL 601614	P. Haas et al.	(CLEO Collab.)		
TIAN	05	PRL 95231801	x.C. Tian et al.	(BELLE Collab.)	RAAB	88	PR D37 2391	J.R. Raab et al.	(FNAL E691 Collab.)		
${ }_{\text {ABL }}$ ABIM	${ }_{04}^{04 C}$	PL B597 39	M. Ablikim et al.	(BEPC BES Collab.)	${ }^{\text {ALLER }}$	87	PL B196 107		(Mark IIIC Collab.)		
ABT ASNER	$\begin{aligned} & 04 \\ & 04 \mathrm{~A} \end{aligned}$	PL B596 173 PR D70 091101	I. Abt et al. D.M. Asner et al.	(HERA B Collab.) (CLEO Collab.)	AGUILAR-...	87E	ZPHY ZPHY C46 40 321	M. Aguilar-Benitez et al. M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)		
AUBERT	04 Q	PR D69 051101	B. Aubert et al.	(BABAR Collab.)	AGUILAR-...	87 F	ZPHY C36 559	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)		
AUBERT,B	04Q	PR D70 091102	B. Aubert et al.	(babar Collab.)	Also		ZPHY C38 520 (erratum)	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)		
AUBERT,B	04 Y	PRL 93191801	B. Aubert et al.	(BABAR Collab.)	BARLAG	${ }^{878}$	ZPHY C37 17	S. Barlag et al.	(ACCMOR Collab.)		
LINK	04B	PL B586 21	J.M. Link et al.	(fNAL FOCUS Collab.)	BECKER	87 C	PL B193 147	J.J. Becker et al.	(Mark IIIC Collab.)		
LINK	04D	PL B586 191	J.M. Link et al.	(FNAL FOCUS Collab.)	Also		PL B198590 (erratum)	J.J. Becker et al.	(Mark III Collab.)		
RUBIN	04	PRL 93111801	P. Rubin et al.	(CLEO Collab.)	Palka	87	PL B189 238	H. Palka et al.	(ACCMOR Collab.)		
TAJIMA	04	PRL 92101803	O. Tajima et al.	(BELLE Collab.)	RILES	87	PR D35 2914	K. Riles et al.	(Mark II Collab.)		
ACOSTA	${ }^{03 \mathrm{~F}}$	PR D68 091101	D. Acosta et al.	(CDF Collab.)	BALLEY	86	ZPHY C30 51	R. Bailey et al.	(ACCMOR Collab.)		
AUBERT AUBERT	03P 038	PRL 91121801 PRL 91171801	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	BEBEK LOUIS	86 86	PRL 561893 PRL 561027	C. Bebek et al. W.C. Louis et al.	(CLEO Collab.) (PRIN, CHIC, ISU)		
COAN	03	PRL 90101801	T.E. Coan et al.	(BABAR Coillab.)	Albrecht	85B	PL 158B 525	H. Albrecht et al.	(ARGUS Collab.)		
Link	03	PL B555 167	J.M. Link et al.	(FNAL FOCUS Collab.)	Albrecht	85F	PL 150B 235	H. Albrecht et al.	(ARGUS Collab.)		
LINK	${ }^{03 B}$	PL B556 7	J.M. Link et al.	(FNAL FOCUS Collab.)	AUBERT	85	PL 155B 461	J.J. Aubert et al.	(EMC Collab.)		
LINK	${ }^{036}$	PL B575 190	J.M. Link et al.	(FNAL FOCUS Collab.)	BALTRUSAIT...	855	PRL 55150	R.M. Baltrusaitis et al.	(Mark III Collab.)		
ABE	021	PRL 88162001	K. Abe et al.	(KEK BELLE Collab.)	BENVENUTI	85	PL 1588 531	A.C. Benvenuti et al.	(BCDMS Collab.)		
CSORNA	02	PR D65 092001	S.E. Csorna et al.	(CLEO Collab.)	SUMMERS	84	PRL 52410	D.J. Summers et al.	(UCSB, CARL, COLO+)		
LINK	${ }^{02 F}$	PL B537 192	J.M. Link et al.	(FNAL FOCUS Collab.)	BALLEY BIDEK				(ROCH, (ACCMOR Collab.)		
MURAMATSU Also	02	$\begin{aligned} & \text { PRL } 89251802 \\ & \text { PRL } 90059901 \text { (errat.) } \end{aligned}$	H. Muramatsu et al. H. Muramatsu et al.	(CLEO Collab.) (CLEO Collab.)	BODEK SCHINDLER	$\begin{aligned} & 82 \\ & 81 \end{aligned}$	$\begin{aligned} & \text { PL } 113 \mathrm{~B} 82 \\ & \text { PR } 12478 \end{aligned}$	A. Bodek et al. R.H. Schindler et al.	(ROCH, CIT, CHIC, FNAL+)		
AITALA	01 C	PRL 863969	E.M. Aitala et al.	(FNAL E791 Collab.)	AVERY	80	PRL 441309	P. Avery et al.	(ILL, FNAL, COLU)		
AITALA	${ }^{01 \mathrm{D}}$	PR D64 112003	E.M. Alitala et al.	(FNAL E791 Collab.)	Abrams		PRL 43481	G.S. Abrams et al.	(Mark II Collab.)		
BONVICIINI BRANDENB...	01 01	PR D63 071101 PRL 87071802	G. Bonvicini et al.	(CLEO Collab.)	VUILLEMIN	78 77	PRL 411149 PRL 391301	V. Vuillemin et al. I. Peruzzi et al.	(LGW Collab.) (LGW Collab.)		
	01	PR D64 111101	S.A. Dytman et al.	(CLEO Collab.)	PICCOLO	77	PRL 708 260	M. Piccolo et al.	(Mark I Collab.)		
KOPP	01	PR D63 092001	S. Kopp et al.	(CLEO Collab.)	mosteller	48	Am.Stat. 3 No. 530	R.A. Fisher, F. Mosteller			
KUSHNIR...	01	PRL 865243 PRL 862955	A. Kushnirenko et al. J.M. Link et al.	(fNAL SELEX Collab.)							
BAI	${ }_{0} 00$	PR D62 052001	J.z. Bai et al.	(BEPC BES Collab.)			OTHER	RELATED PAPERS			
GODANG	00	PRL 845038	R. Godang et al.	(CLEOO Collab.)							
JUN	00 00	PRL 841857 PL B485 62	S.Y. Jun et al. J.M. Link et al.	(FNAL SELEX Collab.)	ROSNER	95	CNPP 21369	J. Rosner	(UCSB, (CHIC)		
LINK	00B	PL B491 232	J.M. Link et al.	(FNAL FOCUS Collab.)							
Also		PL B495 443 (errat.)	J.M. Link et al.	(FNAL FOCUS Collab.)							
PRIPSTEIN AITALA	${ }_{99}^{00}$	PR D61 032005 PRL 8332	D. Pripstein et al.	(FNAL E789 Collab.)							
AITALA	${ }_{99 \mathrm{G}}^{99}$	PRL 8362 PL B462 401	E.M. Aitala et al. E.M. Aitala et al.	(FNAL E791 Collab.) (FNAL E791 Collab.)	$D *(2007)$			I, J, P need confirmation.			
BoNVICINI	99	PRL 824586	G. Bonvicini et al.	(CLEO Collab.)							
AITALA AITALA	${ }_{98 \mathrm{C}}^{98}$	PR D57 13 PL B421 05	E.M. Aitala et al. E.M. Aitala et al.	(FNAL E791 Collab.) (FNAL E791 Collab.)	J consistent with 1, value 0 ruled out (NGUYEN 77).						
AITALA	98 D	PL B423 185	E.M. Aitala et al.	(FNAL E791 Collab.)							
ARTUSO	98	PRL 803193	M. Artuso et al.	(CLEO Collab.)							
$\xrightarrow[\text { ASNER }]{\text { BARATE }}$	${ }_{98}^{98} \mathrm{~W}$		D.M. Asner et al. R. Barate et al.	(CLEO Collab.) (ALEPH Colab.)	$D^{*}(2007)^{0}$ MASS						
${ }_{\text {POA }}$ PDG	98 98	PRL 801150 EPJ C3 10	${ }^{\text {T.E. Coan et al. }}$ C. Caso et al	(CLEO Collab.)	The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$,						
PDDAMOVICH	98 97	PL B408 469	M.I. Adamovich et al.	(CeRN beatrice Collab.)	and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.						
${ }_{\text {AITALA }}^{\text {BARATE }}$	97 C 96 C	PL B403 367	R. Barate et al. E.M. Aitala et al.	(ALEPH Collab.) (FNAL E791 Collab.)							
ALbrecht	${ }_{966} 96$	PRL ${ }^{\text {P374 }} 249$	H. Albrecht et al.	(FNAL (ARGUS Collab.)	VALUE (MeV) DOCUMENT ID TECN COMMENT						
ALEXOPOU...	96	PRL 772380	T. Alexopoulos et al.	(fNAL E771 Collab.)							
ASNER	${ }_{96}^{96}$	PR D54 4211	D.M. Asner et al.	(CLEO Collab.)	2006.85 ± 0.05 OUR FIT Error includes scale factor of 1.1.						
$\xrightarrow{\text { BARISH }}$ FRABETTI	${ }_{968}^{96}$	PL B373 334	B.C. Barish et al.	(CLEO Collab.)	- - We do not use the following data for averages, fits, limits, etc. - -						
FRABETTI FREYBERGER	${ }_{96}^{96}$	PL ${ }^{\text {P }}$ P382 312 PRL 76065	P.L. Frabetti et al. A. Freyberger et al.								
Also		PRL 772147 (erratum)	A. Freyberger et al.	(CLEO Collab.)	$2006 \pm 1.5 \quad 1 \text { GOLDHABER } 77 \text { MRK1 } e^{+} e^{-}$						
bota	96 B	PR D54 2994	Y. Kubota et al.	(CLEO Collab.)							

$D^{*}(2007)^{0}$ WIDTH

VALUE (MeV)	CL\%	DOCUMEN		TECN	COMMENT
<2.1	90	${ }^{4} \mathrm{ABACHI}$	88B	HRS	$D^{* 0} \rightarrow D^{+} \pi^{-}$
${ }^{4}$ Assuming $m^{*}{ }^{* 0}=2007.2 \pm 2.1 \mathrm{MeV} / \mathrm{c}^{2}$.					

$D^{*}(2007)^{0}$ DECAY MODES

$\bar{D}^{*}(2007)^{0}$ modes are charge conjugates of modes below.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{0} \pi^{0}$	$(64.7 \pm 0.9) \%$
Γ_{2}	$D^{0} \gamma$	$(35.3 \pm 0.9) \%$

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 5 measurements and one constraint to determine 2 parameters. The overall fit has a $\chi^{2}=$ 2.5 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$$
x_{2} \quad \frac{-100}{x_{1}}
$$

$D^{*}(2007)^{0}$ BRANCHING RATIOS

$\Gamma\left(D^{0} \pi^{0}\right) / \Gamma\left(D^{0} \gamma\right)$
Γ_{1} / Γ_{2}
$\frac{\text { VALUE }}{1.83 \pm 0.07 \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes SCale factor of 1.1. }} \frac{\text { DECN }}{\text { COMMENT }}$

$1.90 \pm 0.07 \pm 0.05$	4.9k	ABLIKIM AUBERT,BE	15B	BES3	$10.6 e^{+} e^{-} \rightarrow$ hadrons	
$1.74 \pm 0.02 \pm 0.13$			05 G	BABR	$10.6 e^{+} e^{-}$	hadrons
$\Gamma\left(D^{0} \pi^{0}\right) / \Gamma_{\text {total }}$						Γ_{1} / Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	

$\mathbf{0 . 6 4 7} \pm \mathbf{0 . 0 0 9}$ OUR FIT

- . . We do not use the
- - We do not use the following data for averages, fits, limits, etc. - - -

| $0.655 \pm 0.008 \pm 0.005$ | 3.2 k | ${ }^{5}$ ABLIKIM | 15B BES3 | $e^{+} e^{-} \rightarrow$ hadrons |
| :--- | ---: | :--- | :--- | :--- | :--- |
| $0.635 \pm 0.003 \pm 0.017$ | 69 k | ${ }^{5}$ AUBERT, BE | 05G BABR | $10.6 e^{+} e^{-} \rightarrow$ hadrons |
| $0.596 \pm 0.035 \pm 0.028$ | 858 | ${ }^{6}$ ALBRECHT | 95F ARG | $e^{+} e^{-} \rightarrow$ hadrons |

0.596	$\pm .035$	$\pm .028$	858	${ }^{6}$ ALBRECHT	95F
$0.636 \pm 0.023 \pm 0.033$	1097	6 BUTLER	92	CLE2	$e^{+} e^{-} \rightarrow$ hadrons

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
$D^{*}(2007)^{0}$ REFERENCES

ABLIKIM	15B	PR D91 031101	M. Ablikim et al.	(BESIII Collab.)
TOMARADZE	15	PR D91 011102	A. Tomaradze et al.	(NWES)
AUBERT,BE	05G	PR D72 091101	B. Aubert et al.	(BABAR Collab.)
ALBRECHT	95F	ZPHY C66 63	H. Albrecht et al.	(ARGUS Collab.)
BORTOLETTO	92B	PRL 692046	D. Bortoletto et al.	(CLEO Collab.)
BUTLER	92	PRL 692041	F. Butler et al.	(CLEO Collab.)
ABACHI	88B	PL B212 533	S. Abachi et al.	(ANL, IND, MICH, PURD+)
ADLER	88D	PL B208 152	J. Adter et al.	(Mark III Collab.)
LOW	87	PL B183 232	E.H. Low et al.	(HRS Collab.)
BARTEL	85G	PL 161B 197	W. Bartel et al.	(JADE Collab.)
COLES	82	PR D26 2190	M.W. Coles et al.	(LBL, SLAC)
SADROZINSKI	80	Madison Conf. 681	H.F.W. Sadrozinski et al.	(PRIN, CIT+)
GOLDHABER	77	PL 69B 503	G. Goldhaber et al.	(Mark I Collab.)
NGUYEN	77	PRL 39262	H.K. Nguyen et al.	(LBL, SLAC) J

$I\left(J^{P}\right)=\frac{1}{2}\left(1^{-}\right)$
I, J, P need confirmation.

$D^{*}(2010)^{ \pm}$MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV) \qquad DOCUMENT ID \qquad TECN CHG COMMENT

2010.26 ± 0.05 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - - -

2008	± 3	1	GOLDHABER 77	MRK1	\pm
2008.6	+1.0	e^{+}			

${ }^{1}$ From simultaneous fit to $D^{*}(2010)^{+}, D^{*}(2007)^{0}, D^{+}$, and D^{0}; not independent of FELDMAN 77B mass difference below.
${ }^{2}$ PERUZZI 77 mass not independent of FELDMAN 77B mass difference below and PERUZZI $77 D^{0}$ mass value.

$m_{D^{*}(2010)^{+}}-m_{D^{+}}$

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)
DOCUMENT ID \qquad TECN COMMENT
140.603 ± 0.015 OUR FIT
140.602 ± 0.014 OUR AVERAGE
$140.6010 \pm 0.0068 \pm 0.0129 \quad 151 \mathrm{k}$
LEES 17F BABR $e^{+} e^{-} \rightarrow$ hadrons

$m_{D^{*}(\mathbf{2 0 1 0})}{ }^{-} \boldsymbol{m}_{D^{0}}$

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (M			EVTS	DOCUMENT ID		TECN	COMMENT
145.4257 ± 0.0017 OUR FIT							
145.4258 ± 0.0020 OUR AVERAGE				Error includes scale factor of 1.2.			
145.4259	± 0.000	4 ± 0.0017	312.8 k	LEES	13x	BABR	$\underset{(K \pi, K 3 \pi) \pi^{ \pm}}{D^{* \pm}} \rightarrow$
145.412	± 0.002	± 0.012		ANASTASSOV		CLE2	$\begin{gathered} D^{* \pm} \rightarrow D^{0} \pi^{ \pm} \rightarrow \\ (K \pi) \pi^{ \pm} \end{gathered}$
145.54	± 0.08		611	3 ADINOLFI	99	BEAT	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.45	± 0.02			3 BREITWEG	99	ZEUS	$D_{(K \pi) \pi^{ \pm}}^{D^{0}} \pi^{ \pm} \rightarrow$
145.42	± 0.05			3 BREITWEG	99	ZEUS	$\begin{gathered} D^{* \pm} \rightarrow D^{0} \pi^{ \pm} \\ \left(K^{-} 3 \pi\right) \pi^{ \pm} \end{gathered}$
145.5	± 0.15		103	${ }^{4}$ ADLOFF	97B	H1	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.44	± 0.08		152	4 BREITWEG	97	ZEUS	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$,
145.42	± 0.11		199	${ }^{4}$ BREITWEG	97	ZEUS	$\begin{gathered} D^{0} \rightarrow K^{-} 3 \pi \\ D^{*} \rightarrow D^{0}, \end{gathered}$
145.4	± 0.2		48	${ }^{4}$ DERRICK	95	ZEUS	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.39	± 0.06	± 0.03		BARLAG	92B	ACCM	$\pi^{-} 230 \mathrm{GeV}$
145.5	± 0.2		115	${ }^{4}$ ALEXANDER	91B	OPAL	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.30	± 0.06			${ }^{4}$ DECAMP	91J	ALEP	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.40	± 0.05	± 0.10		ABACHI	88B	HRS	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.46	± 0.07	± 0.03		ALBRECHT	85F	ARG	$D^{* \pm} \rightarrow D^{0} \pi^{+}$
145.5	± 0.3		28	BAILEY	83	SPEC	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.5	± 0.3		60	FITCH	81	SPEC	$\pi^{-} \mathrm{A}$
145.3	± 0.5		30	FELDMAN	77B	MRK1	$D^{*+} \rightarrow D^{0} \pi^{+}$
- - We do not use the following data for averages, fits, limits, etc. - -							
$145.4256 \pm 0.0006 \pm 0.0017$			138.5k	LEES	13x	BABR	$\underset{\left(K^{-} \pi^{*}\right) \pi^{ \pm}}{D^{0}} \rightarrow$
145.4266	± 0.000	± 0.0019	174.3k	LEES	13x	BABR	$\begin{gathered} D^{* \pm} \rightarrow K^{\prime} D^{0} \pi^{ \pm} \\ \left.\pi^{-}\right) \pi^{ \pm} \end{gathered}$
145.44	± 0.09		122	4 BREITWEG	97B	ZEUS	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$
145.8	± 1.5		16	AHLEN	83	HRS	$D^{*+}{ }^{D^{0}} \rightarrow{D^{0}}_{K^{-}}^{+}$
145.1	± 1.8		12	BAILEY	83	SPEC	$D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$

Meson Particle Listings
$D^{*}(2010)^{ \pm}, D_{0}^{*}(2300)^{0}$

145.1 ± 0.5	14	BAILEY	83	SPEC	D^{*}
145.5 ± 0.5	14	YELTON	82	MRK2	$29 e_{K}^{-}$
~ 145.5		AVERY	80	SPEC	$\gamma \mathrm{A}$
145.2 ± 0.6	2	BLIETSCHAU	79	BEBC	νp
${ }^{3}$ Statistical errors only. ${ }^{4}$ Systematic error not evaluated.					
$\boldsymbol{m}_{\boldsymbol{D}^{\boldsymbol{*}} \mathbf{(2 0 1 0)}}{ }^{+}-\boldsymbol{m}_{\boldsymbol{D}^{\boldsymbol{*}} \mathbf{(2 0 0 7)}}{ }^{\mathbf{0}}$					
VALUE (MeV)	DOCUMENT ID			CN C	MMEN
- - We do not use the following data for averages, fits, limits, etc. - -					
2.6 ± 1.8		PERUZZI		W	e^{-}
${ }^{5}$ Not independent of FELDMAN 77B mass difference above, PERUZZI $77 D^{0}$ mass, and GOLDHABER $77 D^{*}(2007)^{0}$ mass.					

$D^{*}(2010)^{ \pm}$WIDTH

VALUE (keV)	CL\%	EVTS	DOCUMENT ID	TECN	COMMENT
83.4 ± 1.8 OUR AVERAGE					
$83.3 \pm 1.2 \pm 1.4$		312.8 k	${ }^{6}$ LEES $\quad 13 \mathrm{x}$	BABR	(K
$96 \pm 4 \quad \pm 22$- - We do not us			${ }^{6}$ ANASTASSOV 02	CLE2	$\begin{array}{r} D^{* \pm} \\ (K \pi) \end{array}$
	- - We do not use the following data for averages, fits, limits, etc. - -				
$83.4 \pm 1.7 \pm 1.5$		138.5k	${ }^{6}$ LEES	BABR	$D_{\left(K^{-} \pi^{+}\right) \pi^{ \pm}}^{D^{0}}$
$83.2 \pm 1.5 \pm 2.6$		174.3k	${ }^{6}$ LEES	BABR	$\underset{\left(K^{-} 2 \pi^{+} \pi^{-}\right) \pi^{ \pm}}{D^{* \pm}} \rightarrow$
<131	90	110	BARLAG 92B	ACCM	
${ }^{6}$ Ignoring the electromagnetic contribution from $D^{* \pm} \rightarrow D^{ \pm} \gamma$.					

$D^{*}(2010)^{ \pm}$DECAY MODES

$D^{*}(2010)^{-}$modes are charge conjugates of the modes below.

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{0} \pi^{+}$	$(67.7 \pm 0.5) \%$
Γ_{2}	$D^{+} \pi^{0}$	$(30.7 \pm 0.5) \%$
Γ_{3}	$D^{+} \gamma$	$(1.6 \pm 0.4) \%$

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=$ 0.3 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$D^{*}(2010)^{+}$BRANCHING RATIOS

- We do not use the following data for averages, fits, limits, etc....

0.312	± 0.011	± 0.008	1404	ALBRECHT	95F	ARG
$e^{+} e^{-} \rightarrow$ hadrons						
0.308	± 0.004	± 0.008	410	7 BUTLER	92	CLE2
$e^{+} e^{-} \rightarrow$ hadrons						
0.26	± 0.02	± 0.02		ADLER	88D MRK3	$e^{+} e^{-}$
0.34	± 0.07		COLES	82	MRK2	$e^{+} e^{-}$

$D^{*}(2010)^{ \pm}$REFERENCES

LEES	17F	PRL 119202003	J.P. Lees et al.	(BABAR Collab.)
LEES	13X	PRL 111111801	J.P. Lees et al.	(BABAR Collab.)
Also		PR D88 052003	J.P. Lees et al.	(BABAR Collab.)
Also		PR D88 079902 (errat.)	J.P. Lees et al.	(BABAR Collab.)
ANASTASSOV	02	PR D65 032003	A. Anastassov et al.	(CLEO Collab.)
ADINOLFI	99	NP B547 3	M. Adinolfi et al.	(Beatrice Collab.)
BREITWEG	99	EPJ C6 67	J. Breitweg et al.	(ZEUS Collab.)
BARTELT	98	PRL 803919	J. Bartelt et al.	(CLEO Collab.)
ADLOFF	97B	ZPHY C72 593	C. Adloff et al.	(H1 Collab.)
BREITWEG	97	PL B401 192	J. Breitweg et al.	(ZEUS Collab.)
BREITWEG	97B	PL B407 402	J. Breitweg et al.	(ZEUS Collab.)
ALBRECHT	95 F	ZPHY C66 63	H. Albrecht et al.	(ARGUS Collab.)
DERRICK	95	PL B349 225	M. Derrick et al.	(ZEUS Collab.)
BARLAG	92B	PL B278 480	S. Barlag et al.	(ACCMOR Collab.)
BORTOLETTO	92B	PRL 692046	D. Bortoletto et al.	(CLEO Collab.)
BUTLER	92	PRL 692041	F. Butler et al.	(CLEO Collab.)
ALEXANDER	91B	PL B262 341	G. Alexander et al.	(OPAL Collab.)
DECAMP	91J	PL B266 218	D. Decamp et al.	(ALEPH Collab.)
ABACHI	88B	PL B212 533	S. Abachi et al.	(ANL, IND, MICH, PURD+)
ADLER	88D	PL B208 152	J. Adter et al.	(Mark III Collab.)
ALBRECHT	85F	PL 150B 235	H. Albrecht et al.	(ARGUS Collab.)
AHLEN	83	PRL 511147	S.P. Ahlen et al.	(ANL, IND, LBL+)
BAILEY	83	PL 132B 230	R. Bailey et al.	(AMST, BRIS, CERN, CRAC+)
COLES	82	PR D26 2190	M.W. Coles et al.	(LBL, SLAC)
YELTON	82	PRL 49430	J.M. Yelton et al.	(SLAC, LBL, UCB+)
FITCH	81	PRL 46761	V.L. Fitch et al.	(PRIN, SACL, TORI+)
AVERY	80	PRL 441309	P. Avery et al.	(ILL, FNAL, COLU)
BLIETSCHAU	79	PL 86B 108	J. Blietschau et al.	(AACH3, BONN, CERN+)
FELDMAN	77B	PRL 381313	G.J. Feldman et al.	(Mark \| Collab.)
GOLDHABER	77	PL 69B 503	G. Goldhaber et al.	(Mark \| Collab.)
PERUZZI	77	PRL 391301	I. Peruzzi et al.	(LGW Collab.)

$D_{0}^{*}(2300)^{0}$
 $I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)$
 was $D_{0}^{*}(2400)^{0}$
 $J^{P}=0^{+}$assignment favored (ABE 04D).

$D_{0}^{*}(2300)^{0}$ MASS

$\boldsymbol{D}_{0}^{*}(\mathbf{2 3 0 0})^{0} \mathrm{MASS}$				
$V A L U E(\mathrm{MeV}) \quad$ EVTS		DOCUMENT ID	TECN	COMMENT
2300 ± 19 OUR AVERAGE				
$\begin{aligned} & 2297 \pm 8 \pm 20 \\ & 2308 \pm 17 \pm 32 \end{aligned}$	3.4 k	AUBERT	09 ab BABR	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
		ABE	04D BELL	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$2407 \pm 21 \pm 35$$1_{\text {Possibly }}$ the		${ }^{1}$ LINK	04A FOCS	
	${ }^{1}$ Possibly the feed-down from another state.			
$D_{0}^{*}(2300){ }^{0}$ WIDTH				
$\frac{V A L U E(\mathrm{MeV})}{274 \pm \mathbf{4 0} \text { OUR AVERAGE }}$		DOCUMENT ID	TECN	COMMENT
		274 ± 40 OUR AVERAGE		
$273 \pm 12 \pm 48$		AUBERT	09 Ab BABR	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
$276 \pm 21 \pm 63$		ABE	04D BELL	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
	follow	data for averages	fits, limits,	tc. -
$240 \pm 55 \pm 59$		${ }^{2}$ LINK	04A FOCS	$\gamma \mathrm{A}$
${ }^{2}$ Possibly the feed-down from another state.				

$D_{0}^{*}(2300)^{0}$ WIDTH

DOCUMENT ID TECN COMMENT

$\boldsymbol{D}_{0}^{*}(\mathbf{2 3 0 0})^{0} \mathrm{MASS}$				
$V A L U E(\mathrm{MeV}) \quad$ EVTS		DOCUMENT ID	TECN	COMMENT
2300 ± 19 OUR AVERAGE				
$\begin{aligned} & 2297 \pm 8 \pm 20 \\ & 2308 \pm 17 \pm 32 \end{aligned}$	3.4 k	AUBERT	09 ab BABR	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
		ABE	04D BELL	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$2407 \pm 21 \pm 35$$1_{\text {Possibly }}$ the		${ }^{1}$ LINK	04A FOCS	
	${ }^{1}$ Possibly the feed-down from another state.			
$D_{0}^{*}(2300){ }^{0}$ WIDTH				
$\frac{V A L U E(\mathrm{MeV})}{274 \pm \mathbf{4 0} \text { OUR AVERAGE }}$		DOCUMENT ID	TECN	COMMENT
		274 ± 40 OUR AVERAGE		
$273 \pm 12 \pm 48$		AUBERT	09 Ab BABR	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
$276 \pm 21 \pm 63$		ABE	04D BELL	$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
	follow	data for averages	fits, limits,	tc. -
$240 \pm 55 \pm 59$		${ }^{2}$ LINK	04A FOCS	$\gamma \mathrm{A}$
${ }^{2}$ Possibly the feed-down from another state.				

$D_{0}^{*}(2300)^{0}$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{+} \pi^{-}$	seen

$D_{0}^{*}(2300)^{0}$ REFERENCES

AUBERT	09AB PR D79 112004	B. Aubert et al.	(BABAR Collab.)	
ABE	04D	PR D69 112002	K. Abe et al.	(BELLE Collab.)
LINK	04 A	PL B586 11	J.M. Link et al.	(FOCUS Collab.)

(FOCUS Collab.)

$D_{0}^{*}(2300)^{ \pm}$
 $I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)$

OMITTED FROM SUMMARY TABLE was $D_{0}^{*}(2400)^{ \pm}$
J, P need confirmation.

$D_{0}^{*}(2300)^{ \pm}$WIDTH
VALUE (MeV) EVTS
221 ± 18 OUR AVERAGE
$255 \pm 26 \pm 51$
$217 \pm 13 \pm 13$

- - We do not use the following data for averages, fits, limits, etc. - - -

$230 \pm 15 \pm 21$		${ }^{3} \mathrm{AAI}$	5 Y L	$\rightarrow \bar{D}$
$283 \pm 24 \pm 34$	18.8k	${ }^{4}$ LINK	4A FO	$\gamma \mathrm{A}$
${ }^{1}$ From the Dalitz plot analysis including various K^{*} and $D^{* *}$ mesons as well as broad structures in the $K \pi S$-wave and the $D \pi S$ - and P-waves. ${ }^{2}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the Isobar formalism. ${ }^{3}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the K-matrix formalism. ${ }^{4}$ Possibly the feed-down from another state.				

$D_{0}^{*}(2300)^{ \pm}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{0} \pi^{+}$	seen

$D_{0}^{*}(2300)^{ \pm}$REFERENCES

$D_{1}(2420)^{0} \quad \quad \quad\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$

$D_{1}(2420)^{0}$ MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV) EVTS DOCUMENTID TECN COMMENT
2420.8 $\mathbf{\pm 0 . 5}$ OUR FIT Error includes scale factor of 1.3.
$\mathbf{2 4 2 0 . 5} \pm \mathbf{0 . 6}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

$2419.6 \pm 0.1 \pm 0.7$	210k	AAIJ 13cc	LHCB	$p p \rightarrow D^{*+} \pi^{-} X$
$2423.1 \pm 1.5_{-1.0}^{+0.4}$	2.7k	1 ABRAMOWICZ13	ZEUS	$e^{ \pm} p \rightarrow D^{(*)+} \pi^{-} x$
$2420.1 \pm 0.1 \pm 0.8$	103k	DEL-AMO-SA..10P	BABR	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} X$
$2426 \pm 3 \pm 1$	151	ABE 05A	BELL	$B^{-} \rightarrow D^{0} \pi^{+} \pi^{-} \pi^{-}$
$2421.4 \pm 1.5 \pm 0.9$		2 ABE 04D	BELL	$B^{-} \rightarrow D^{*+} \pi^{-} \pi^{-}$
$2421 \begin{aligned} & +1 \\ & -2\end{aligned}$	286	AVERY 94C	CLE2	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
$2422 \pm 2 \pm 2$	51	FRABETTI 94b	E687	$\gamma \mathrm{Be} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
$2428 \pm 3 \pm 2$	279	AVERY 90	CLEO	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
$2414 \pm 2 \pm 5$	171	ALBRECHT 89H	ARG	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
$2428 \pm 8 \pm 5$	171	ANJOS 89C	TPS	$\gamma N \rightarrow D^{*+} \pi^{-} \mathrm{X}$

- - We do not use the following data for averages, fits, limits, etc. - -
$2420.5 \pm 2.1 \pm 0.9 \quad 3110 \pm 340 \quad{ }^{3}$ CHEKANOV 09 ZEUS $e^{ \pm} p \rightarrow D^{*+} \pi^{-} X$ $2421.7 \pm 0.7 \pm 0.6 \quad 7.5 \mathrm{k} \quad$ ABULENCIA 06A CDF $1900 p \bar{p} \rightarrow D^{*+} \pi^{-} X$ $2425 \pm 3235{ }^{4}$ ABREU 98M DLPH $e^{+} e^{-}$
${ }^{1}$ From the combined fit of the $M\left(D^{+} \pi^{-}\right)$and $M\left(D^{*+} \pi^{-}\right)$distributions. and $\mathrm{A}_{D_{2}}$ fixed to the theoretical prediction of -1 .
${ }^{2}$ Fit includes the contribution from $D_{1}^{*}(2430)^{0}$.
${ }^{3}$ Calculated using the mass difference $m\left(D_{1}^{0}\right)-m\left(D^{*+}\right)_{P D G}$ reported below and $m\left(D^{*+}\right)_{P D G}=2010.27 \pm 0.17 \mathrm{MeV}$. The 0.17 MeV uncertainty of the PDG mass value should be added to the experimental uncertainty of 0.9 MeV .

$m_{D_{1}^{0}}-m_{D^{++}}$
The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
410.6 $\mathbf{\pm 0 . 5}$ OUR FIT Error includes scale factor of 1.3. 411.5 ± 0.8 OUR AVERAGE					
$410.2 \pm 2.1 \pm 0.9$	3110 ± 340	CHEKANOV	09	ZEUS	$e^{ \pm} p \rightarrow D^{*+} \pi^{-} X$
$411.7 \pm 0.7 \pm 0.4$	7.5k	ABULENCIA	06A	CDF	$1900 p \bar{p} \rightarrow D^{*+} \pi^{-} X$
$D_{1}(2420)^{0}$ WIDTH					

- - We do not use the following data for averages, fits, limits, etc. - • -

$$
\left.\begin{array}{ccclll}
53.2 \pm 7.2 & +3.3 & 3110 \pm 340 & \text { CHEKANOV } & 09 & \text { ZEUS }
\end{array} e^{ \pm} p \rightarrow D^{*+} \pi^{-} x\right]
$$

${ }^{1}$ From the combined fit of the $M\left(D^{+} \pi^{-}\right)$and $M\left(D^{*+} \pi^{-}\right)$distributions. and $\mathrm{A}_{D_{2}}$ fixed to the theoretical prediction of -1 .

Meson Particle Listings
$D_{1}(2420)^{0}, D_{1}(2420)^{ \pm}$
${ }^{2}$ Fit includes the contribution from $D_{1}^{*}(2430)^{0}$.

$D_{1}(2420)^{0}$ DECAY MODES

$\bar{D}_{1}(2420)^{0}$ modes are charge conjugates of modes below.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{*}(2010)^{+} \pi^{-}$	seen
Γ_{2}	$D^{0} \pi^{+} \pi^{-}$	seen
Γ_{3}	$D^{0} \rho^{0}$	
Γ_{4}	$D^{0} f_{0}(500)$	
Γ_{5}	$D_{0}^{*}(2300)^{+} \pi^{-}$	not seen
Γ_{6}	$D^{+} \pi^{-}$	not seen
Γ_{7}	$D^{* 0} \pi^{+} \pi^{-}$	

$D_{1}(\mathbf{2 4 2 0})^{0}$ BRANCHING RATIOS

$\Gamma\left(D^{*}(2010)^{+} \pi^{-}\right) / \Gamma_{\text {total }}$

VALUE	DOCUMENT ID		TECN	COMMENT
seen	ACKERSTAFF	97w	OPAL	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
seen	AVERY	90	CLEO	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$
seen	ALBRECHT	89н	ARG	$e^{+} e^{-} \rightarrow D^{*} \pi^{-} \mathrm{X}$
seen	ANJOS	89C	TPS	$\gamma N \rightarrow D^{*+} \pi^{-} \mathrm{X}$
$\Gamma\left(D^{+} \pi^{-}\right) / \Gamma\left(D^{*}(2010)^{+} \pi^{-}\right)$				Γ_{6} / Γ_{1}
VALUE	DOCUMENT ID		TECN	COMMENT
<0.24	AVERY	90	CLEO	$e^{+} e^{-} \rightarrow D^{+} \pi^{-} \mathrm{X}$

$D_{1}(2420){ }^{0}$ POLARIZATION AMPLITUDE A $_{D_{1}}$

A polarization amplitude $\mathrm{A}_{D_{1}}$ is a parameter that depends on the initial polarization of the D_{1} and is sensitive to a possible S-wave contribution to its decay. For D_{1} decays the helicity angle, θ_{h}, distribution varies like $1+\mathrm{A}_{D_{1}} \cos ^{2} \theta_{h}$, where θ_{h} is the angle in the D^{*} rest frame between the two pions emitted by the $D_{1} \rightarrow D^{*} \pi$ and the $D^{*} \rightarrow D \pi$
Unpolarized D_{1} decaying purely via D-wave is predicted to give $\mathrm{A}_{D_{1}}=3$.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
5.73 ± 0.25 OUR AVERAGE				
${ }_{7.8}{ }^{+}{ }^{+6.7}{ }_{-2.7}+4.6$	2.7k	1 ABRAMOWICZ13	ZEUS	$e^{ \pm} p \rightarrow D^{(*)+} \pi^{-} X$
5.72 ± 0.25	103k	DEL-AMO-SA..10P	BABR	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} X$
${ }_{5.9}{ }_{-1}^{+3.0}+2.4$		CHEKANOV 09	ZEUS	$e^{ \pm} p \rightarrow D^{*+} \pi^{-} X$
- - We do not use the following data for averages, fits, limits, etc. - . -				
3.30 ± 0.48	210k	${ }^{2}$ AAIJ 13cc	LHCB	$p p \rightarrow D^{*+} \pi^{-} X$
$3.8 \pm 0.6 \pm 0.8$		${ }^{3}$ AUBERT 09Y	BABR	$B^{+} \rightarrow D_{1}^{0} \ell^{+} \nu_{\ell}$
$2.74{ }_{-0.93}^{+1.40}$		4 AVERY 94C	CLE2	$e^{+} e^{-} \rightarrow D^{*+} \pi^{-} X$

${ }^{1}$ From the combined fit of the $M\left(D^{+} \pi^{-}\right)$and $M\left(D^{*+} \pi^{-}\right)$distributions. and $\mathrm{A}_{D_{2}}$ fixed to the theoretical prediction of -1 . A pure D-wave not excluded although some S-wave mixing possible.
${ }^{2}$ Systematic uncertainty not estimated. Resonance parameters fixed.
${ }^{3}$ Assuming $\Gamma\left(\gamma(4 S) \rightarrow B^{+} B^{-}\right) / \Gamma\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=1.065 \pm 0.026$ and equal partial widths and helicity angle distributions for charged and neutral D_{1} mesons.
${ }^{4}$ Systematic uncertainties not estimated.

OMITTED FROM SUMMARY TABLE
Seen in $D^{*}(2007)^{0} \pi^{+} . J^{P}=0^{+}$ruled out.

$D_{1}(\mathbf{2 4 2 0})^{ \pm}$MASS				
VALUE (MeV) EVTS		DOCUMENT ID TECN		COMMENT
2423.2 $\pm \mathbf{2 . 4}$ OUR	AGE	includes scale	factor of 1.5.	See the ideogram below.
$2421.9 \pm 4.7_{-1.2}^{+3.4}$	759	${ }^{1}$ ABRAMOWIC	3 ZEUS	$e^{ \pm} p \rightarrow D^{(*) 0} \pi^{+} x$
$2421 \pm 2 \pm 1$	124	ABE	05A BELL	$\bar{B}^{0} \rightarrow D^{+} \pi^{+} \pi^{-} \pi^{-}$
$2425 \pm 2 \pm 2$	146	BERGFELD	94B CLE2	$e^{+} e^{-} \rightarrow D^{* 0} \pi^{+} \mathrm{x}$
$2443 \pm 7 \pm 5$	190	ANJOS	89C TPS	$\gamma N \rightarrow D^{0} \pi^{+} x^{0}$

${ }^{1}$ From the fit of the $M\left(D^{0} \pi^{+}\right)$distribution. The widths of the D_{1}^{+}and D_{2}^{*+} are fixed to 25 MeV and 37 MeV , and $\mathrm{A}_{D_{1}}$ and $\mathrm{A}_{D_{2}}$ are fixed to the theoretical predictions of 3 and -1 , respectively.

$m_{D_{1}^{*}(2420)^{ \pm}}-m_{D_{1}^{*}(2420)^{0}}$

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
$\mathbf{4 - 3}_{-2}^{+3}$		BERGFELD	94B	CLE2	$e^{+} e^{-} \rightarrow$ hadrons
$D_{1}(2420){ }^{ \pm}$WIDTH					
Value (meV)	EVTS	DOCUMENT ID		TECN	COMMENT
25\# 6 OUR AVERAGE					
$21 \pm 5 \pm 8$	124	ABE	05A	BELL	$\bar{B}^{0} \rightarrow D^{+} \pi^{+} \pi^{-} \pi^{-}$
$26_{-}^{+8} \pm 4$	146	BERGFELD	94 B	CLE2	$e^{+} e^{-} \rightarrow D^{* 0} \pi^{+} \mathrm{x}$
$41 \pm 19 \pm 8$	190	ANJOS	89 C	TPS	$\gamma N \rightarrow D^{0} \pi^{+} x^{0}$

$D_{1}(2420)^{ \pm}$DECAY MODES

$D_{1}^{*}(2420)^{-}$modes are charge conjugates of modes below.

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{*}(2007)^{0} \pi^{+}$	seen
Γ_{2}	$D^{+} \pi^{+} \pi^{-}$	seen
Γ_{3}	$D^{+} \rho^{0}$	
Γ_{4}	$D^{+} f_{0}(500)$	
Γ_{5}	$D_{0}^{*}(2300)^{0} \pi^{+}$	
Γ_{6}	$D^{0} \pi^{+}$	not seen
Γ_{7}	$D^{*+} \pi^{+} \pi^{-}$	not seen

$D_{1}(2420)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(D^{*}(2007)^{0} \pi^{+}\right) / \Gamma_{\text {total }}$			TECN COMMENT $\Gamma_{\mathbf{1}} / \boldsymbol{\Gamma}$		
seen	DOCUMENT ID $\quad 8$ ANJOS		TPS	$\gamma N \rightarrow D^{0} \pi^{+} x^{0}$	
$\Gamma\left(D^{0} \pi^{+}\right) / \Gamma\left(D^{*}(2007)^{0} \pi^{+}\right)$					
VALUE CLL\%	DOCUMENT ID		TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
<0.18 90	BERGFELD	94B	CLE2	$e^{+} e^{-} \rightarrow$	hadrons

$D_{1}(\mathbf{2 4 2 0})^{ \pm}$POLARIZATION AMPLITUDE $A_{D_{1}}$

A polarization amplitude $\mathrm{A}_{D_{1}}$ is a parameter that depends on the initial polarization of the D_{1} and is sensitive to a possible S-wave contribution to its decay. For D_{1} decays the helicity angle, θ_{h}, distribution varies like

$D_{2}^{*}(2460) 0$ MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.
VALUE (MEV) EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$2469.1 \pm 3.7{ }_{-1.3}^{+1.2} \quad 1.5 \mathrm{k} \quad{ }^{4}$ CHEKANOV 09 ZEUS $\quad e^{ \pm} p \rightarrow D^{(*)+} \pi^{-} x$
$2463.3 \pm 0.6 \pm 0.8 \quad$ 20k ABULENCIA 06A CDF $1900 p \bar{p} \rightarrow D^{+} \pi^{-} x$
$\begin{array}{llrclll}2461 & \pm 6 & 126 & { }^{5} \text { ABREU } & 98 \mathrm{MLPH} & e^{+} e^{-} \\ 2466 & \pm 7 & 1 & \text { ASRATYAN } & 95 & \text { BEBC } & 53,40 \nu(\bar{\nu}) \rightarrow p X, d X\end{array}$
${ }^{1}$ From the amplitude analysis in the model describing the $D^{+} \pi^{-}$wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{* 0}$ states, and components corresponding to the $D_{2}^{*}(2460)^{0}, D_{1}^{*}(2680)^{0}, D_{3}^{*}(2760)^{0}$, and $D_{2}^{*}(3000)^{0}$ resonances.
${ }^{2}$ From the combined fit of the $M\left(D^{+} \pi^{-}\right)$and $M\left(D^{*+} \pi^{-}\right)$distributions. and $\mathrm{A}_{D_{2}}$ fixed to the theoretical prediction of -1 .
${ }^{3}$ Fit includes the contribution from $D_{0}^{*}(2400)^{0}$.
${ }^{4}$ Calculated using the mass difference $m\left(D_{2}^{* 0}\right)-m\left(D^{*+}\right)_{P D G}$ reported below and $m\left(D^{*+}\right)_{P D G}=2010.27 \pm 0.17 \mathrm{MeV}$. The 0.17 MeV uncertainty of the PDG mass value should be added to the experimental uncertainty of ${ }_{-1.3}^{+1.2} \mathrm{MeV}$.
${ }^{5}$ No systematic error given.

$$
m_{D_{2}^{* 0}}=m_{D^{+}}
$$

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

$D_{2}^{*}(2460)^{0}$ WIDTH

Value (MeV)	EVTS	DOCUMENT ID	TECN COMMENT
47.5土 1.1 OUR AVERAGE		Error includes scale factor of 1.8. See the ideogram below.	
$47.0 \pm 0.8 \pm 1.0$	28k	${ }^{6}$ AAIJ 16aH	LHCB $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
$43.2 \pm 1.2 \pm 3.0$	82k	AAIJ 13CC	LHCB $p p \rightarrow D^{*+} \pi^{-} \boldsymbol{x}$
$45.6 \pm 0.4 \pm 1.1$	675k	AAIJ 13cc	LHCB $p p \rightarrow D^{+} \pi^{-} \boldsymbol{X}$
$46.6 \pm 8.1 \pm$5.9 .8	2.3k	7 ABRAMOWICZ13	ZEUS $e^{ \pm} p \rightarrow D^{(*)+} \pi^{-} x$
$50.5 \pm 0.6 \pm 0.7$	243k	DEL-AMO-SA..10P	BABR $e^{+} e^{-} \rightarrow D^{+} \pi^{-} x$
$41.8 \pm 2.5 \pm 2.9$	3.4 k	AUBERT 09ab	BABR $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
$49.2 \pm 2.3 \pm 1.3$	20k	ABULENCIA 06A	CDF $1900 \rho \bar{p} \rightarrow D^{+} \pi^{-} \boldsymbol{X}$
$45.6 \pm 4.4 \pm 6.7$		${ }^{8} \mathrm{ABE} \quad 04 \mathrm{D}$	BELL $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$
$38.7 \pm 5.3 \pm 2.9$	5.8k	${ }^{8}$ LINK 04A	FOCS γ A
$28 \pm{ }_{-7}^{8} \pm 6$	486	AVERY 94C	CLE2 $e^{+} e^{-} \rightarrow D^{+} \pi^{-} \mathrm{X}$
$25 \pm 10 \pm 5$	128	FRABETTI 94b	E687 $\gamma \mathrm{Be} \rightarrow D^{+} \pi^{-} \mathrm{X}$
$20{ }_{-12}^{+}{ }_{-}^{+}{ }_{-10}{ }^{\text {a }}$	440	AVERY 90	CLEO $e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \mathrm{X}$

Meson Particle Listings
$D_{2}^{*}(2460)^{0}, D_{2}^{*}(2460)^{ \pm}$

$D_{2}^{*}(2460)^{0}$ DECAY MODES

$\bar{D}_{2}^{*}(2460)^{0}$ modes are charge conjugates of modes below.

| Mode |
| :--- | :--- | :--- | :--- | :--- | :--- |

$D_{2}^{*}(2460)^{0}$ POLARIZATION AMPLITUDE $A_{D_{2}}$

A polarization amplitude $A_{D_{2}}$ is a parameter that depends on the initial polarization of the D_{2}. For D_{2} decays the helicity angle, θ_{H}, distribution varies like $1+\mathrm{A}_{D_{2}} \cos ^{2}\left(\theta_{H}\right)$, where θ_{H} is the angle in the D^{*} rest frame between the two pions emitted by the $D_{2} \rightarrow D^{*} \pi$ and $D^{*} \rightarrow D \pi$.

VALUE \qquad EVTS DOCUMENT ID \qquad TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -
$-1.16 \pm 0.35 \quad 2.3 \mathrm{k} \quad 11$ ABRAMOWICZ13 ZEUS $e^{ \pm} p \rightarrow D^{(*)+} \pi^{-} x$ consistent with $-1 \quad$ 243k \quad DEL-AMO-SA..10P BABR $e^{+} e^{-} \rightarrow D^{+} \pi^{-} X$ $-0.74_{-0.38}^{+0.49} \quad 12$ AVERY 94C CLE2 $e^{+} e^{-} \rightarrow D^{*+} \pi^{-} \boldsymbol{X}$
${ }^{11}$ From the combined fit of the $M\left(D^{+} \pi^{-}\right)$and $M\left(D^{*+} \pi^{-}\right)$distributions.
12 Systematic uncertainties not estimated.

$D_{2}^{*}(2460)^{ \pm}$MASS

$\frac{V A L U E(\mathrm{MeV})}{\mathbf{2 4 6 5 . 4} \mathbf{1 . 3} \text { OUR AVERAGE }} \frac{E V T S}{}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor }} \frac{T E C N}{\text { of 3.1. See the ideogram below. }}$
$2465.6 \pm 1.8 \pm 1.3 \quad 1 \mathrm{AAIJ} \quad 15 \mathrm{LHCB} \quad B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$
$2468.6 \pm 0.6 \pm 0.3 \quad{ }^{2}$ AAIJ $\quad 15 \mathrm{Y}$ LHCB $B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$
$2463.1 \pm 0.2 \pm 0.6 \quad 342 \mathrm{k} \quad$ AAIJ 13 CC LHCB $p p \rightarrow D^{0} \pi^{+} \boldsymbol{X}$
$2460.6 \pm 4.4_{-0.8}^{+3.6} \quad 1371 \quad{ }^{3}$ ABRAMOWICZ13 ZEUS $e^{ \pm} p \rightarrow D^{(*) 0} \pi^{+} x$
$2465.4 \pm 0.2 \pm 1.1 \quad 111 \mathrm{k} \quad{ }^{4}$ DEL-AMO-SA..10P BABR $e^{+} e^{-} \rightarrow D^{0} \pi^{+} X$
$2465.7 \pm 1.8_{-4.8}^{+1.4} \quad 2909 \quad$ KUZMIN 07 BELL $e^{+} e^{-} \rightarrow$ hadrons
$2463 \pm 3 \pm 3 \quad 310 \quad$ BERGFELD 94B CLE2 $\quad e^{+} e^{-} \rightarrow D^{0} \pi^{+} \mathrm{X}$
$2453 \pm 3 \pm 2 \quad 185 \quad$ FRABETTI 94 B E687 $\gamma \mathrm{Be} \rightarrow D^{0} \pi^{+} \mathrm{X}$
$2469 \pm 4 \pm 6 \quad$ ALBRECHT 89 F ARG $e^{+} e^{-} \rightarrow D^{0} \pi^{+} \mathrm{X}$

- - We do not use the following data for averages, fits, limits, etc. - -
$2468.1 \pm 0.6 \pm 0.5 \quad 15 \mathrm{Y}$ LHCB $B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$
$2467.6 \pm 1.5 \pm 0.8 \quad$ 3.5k 6 LINK 04A FOCS $\gamma \mathrm{A}$

${ }^{1}$ From the Dalitz plot analysis including various K^{*} and $D^{* *}$ mesons as well as broad structures in the $K \pi S$-wave and the $D \pi S$ - and P-waves.
${ }^{2}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the Isobar formalism.
${ }^{3}$ From the fit of the $M\left(D^{0} \pi^{+}\right)$distribution. The widths of the D_{1}^{+}and D_{2}^{*+} are fixed to 25 MeV and 37 MeV , and $\mathrm{A}_{D_{1}}$ and $\mathrm{A}_{D_{2}}$ are fixed to the theoretical predictions of 3 and -1 , respectively.
${ }^{4} \mathrm{At}$ a fixed width of 50.5 MeV .
${ }^{5}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the K-matrix formalism.
${ }^{6}$ Fit includes the contribution from $D_{0}^{*}(2400)^{ \pm}$. Not independent of the corresponding mass difference measurement, $\left(m_{D_{2}^{*}(2460)^{ \pm}}\right)-\left(m_{D_{2}^{*}(2460)^{0}}\right)$.

$\boldsymbol{m}_{\left.\boldsymbol{D}_{\mathbf{2}}^{*} \mathbf{(2 4 6 0}\right)^{ \pm}}-\boldsymbol{m}_{\left.\boldsymbol{D}_{\mathbf{2}}^{*} \mathbf{(2 4 6 0}\right)^{\mathbf{0}}}$						
VALUE (MeV)		DOCUMENT ID		TECN	COMMENT	
$2.4 \pm$ 1.7 OUR AVERAGE						
$3.1 \pm 1.9 \pm 0.9$		LINK		FOCS	$\gamma \mathrm{A}$	
$-2 \pm 4 \pm 4$		BERGFELD	94B	CLE2	$e^{+} e^{-} \rightarrow$	\rightarrow hadrons
0 ± 4		FRABETTI		E687	$\gamma \mathrm{Be} \rightarrow$	$D \pi$ X
$14 \pm 5 \pm 8$		ALBRECHT		ARG	$e^{+} e^{-}$	$\rightarrow D^{0} \pi^{+} \mathrm{x}$
D $_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{ \pm}$WIDTH						
$\frac{V A L U E(\mathrm{MeV})}{46.7 \pm 1.2 \mathrm{OUR} \text { AVERA }} \frac{\text { EVTS }}{\text { (}}$		DOCUMENT ID		TECN	COMMENT	
$46.0 \pm 3.4 \pm 3.2$		${ }^{1}$ AAIJ		LHCB	$B^{0} \rightarrow \bar{D}$	${ }^{0} K^{+} \pi^{-}$
$47.3 \pm 1.5 \pm 0.7$		2 AAIJ		LHCB	$B^{0} \rightarrow \bar{D}$	${ }^{0} \pi^{+} \pi^{-}$
$48.6 \pm 1.3 \pm 1.9$ 342k		AAIJ	13cc	LHCB	$p p \rightarrow D^{0}$	${ }^{0} \pi^{+} x$
$49.7 \pm 3.8 \pm 6.4$$34.1 \pm 6.5 \pm 4.2$	2909	KUZMIN		BELL	$e^{+} e^{-} \rightarrow$	\rightarrow hadrons
	3.5k	${ }^{3}$ LINK		FOCS	$\gamma \mathrm{A}$	
$27 \begin{array}{r}+11 \\ -8\end{array}$	310	BERGFELD		CLE2	$e^{+} e^{-}$	$D^{0} \pi^{+} \times$
$23 \pm 9 \pm 5$	185	FRABETTI		E687	$\gamma \mathrm{Be} \rightarrow$	$D^{0} \pi^{+} \mathrm{x}$
- - We do not use the following data for averages, fits, limits, etc. - -						
$46.0 \pm 1.4 \pm 1.8$		${ }^{4}$ AAIJ	15Y LHCB $B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$			
${ }^{1}$ From the Dalitz plot analysis including various K^{*} and $D^{* *}$ mesons as well as broad structures in the $K \pi S$-wave and the $D \pi S$ - and P-waves. ${ }^{2}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the Isobar formalism. ${ }^{3}$ Fit includes the contribution from $D_{0}^{*}(2400)^{ \pm}$. ${ }^{4}$ Modeling the $\pi^{+} \pi^{-} S$-wave with the K-matrix formalism.						

$D_{2}^{*}(2460)^{ \pm}$DECAY MODES

$D_{2}^{*}(2460)^{-}$modes are charge conjugates of modes below.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{0} \pi^{+}$	seen
Γ_{2}	$D^{* 0} \pi^{+}$	seen
Γ_{3}	$D^{+} \pi^{+} \pi^{-}$	not seen
Γ_{4}	$D^{*+} \pi^{+} \pi^{-}$	not seen

$D_{2}^{*}(2460)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(D^{0} \pi^{+}\right) / \Gamma_{\text {total }}$				
VALUE	DOCUMENT ID	TECN	COMMENT	
seen	ALBRECHT 89F	ARG	$e^{+} e^{-} \rightarrow$	
$\Gamma\left(D^{0} \pi^{+}\right) / \Gamma\left(D^{* 0} \pi^{+}\right) \quad \Gamma_{1} / \Gamma_{2}$				
VALUE EVTS	DOCUMENT ID	TECN	COMMENT	
1.2 ± 0.4 OUR AVERAGE				
$1.1 \pm 0.4_{-0.2}^{+0.3} 1371$	1 ABRAMOWICZ13	ZEUS	$e^{ \pm} p \rightarrow$	
$1.9 \pm 1.1 \pm 0.3$	BERGFELD 94B	CLE2	${ }^{+} e^{-} \rightarrow$	
${ }^{1}$ From the fit of the $M\left(D^{0} \pi^{+}\right)$distribution. The widths of the D_{1}^{+}and D_{2}^{*+} are fixed to 25 MeV and 37 MeV , and $\mathrm{A}_{D_{1}}$ and $\mathrm{A}_{D_{2}}$ are fixed to the theoretical predictions of 3 and -1 , respectively.				
$\Gamma\left(D^{0} \pi^{+}\right) /\left[\Gamma\left(D^{0} \pi^{+}\right)+\Gamma\left(D^{* 0} \pi^{+}\right)\right]$				
VALUE DEVTS DOCUMENT ID LECN COMMENT				
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.62 \pm 0.03 \pm 0.02 \quad 3361 \quad 1$ AUBERT $09 Y \mathrm{BABR} \bar{B}^{0} \rightarrow D_{2}^{*+} \ell^{-} \nu_{\ell}$				
${ }^{1}$ Assuming $\Gamma\left(r(4 S) \rightarrow B^{+} B^{-}\right) / \Gamma\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=1.065 \pm 0.026$ and equal partial widths for charged and neutral D_{2}^{*} mesons.				

$D_{2}^{*}(2460)^{ \pm}$REFERENCES

AAIJ	15X	PR D92 012012	R. Aaij et al.	(LHCb Collab.)
AAIJ	15Y	PR D92 032002	R. Aaij et al.	(LHCb Collab.)
AAIJ	13CC	JHEP 1309145	R. Aaij et al.	(LHCb Collab.)
ABRAMOWICZ	13	NP B866 229	H. Abramowicz et al.	(ZEUS Collab.)
DEL-AMO-SA...	10P	PR D82 111101	P. del Amo Sanchez et al.	(BABAR Collab.)
AUBERT	09Y	PRL 103051803	B. Aubert et al.	(BABAR Collab.)
KUZMIN	07	PR D76 012006	A. Kuzmin et al.	(BELLE Collab.)
LINK	04A	PL B586 11	J.M. Link et al.	(FOCUS Collab.)
BERGFELD	94B	PL B340 194	T. Bergfeld et al.	(CLEO Collab.)
FRABETTI	94B	PRL 72324	P.L. Frabetti et al.	(FNAL E687 Collab.)
ALBRECHT	89B	PL B221 422	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	89F	PL B231 208	H. Albrecht et al.	(ARGUS Collab.)

$D(2550)^{0} \quad I\left(د^{P}\right)=\frac{1}{2}\left(?^{2}\right)$
OMITTED FROM SUMMARY TABLE
Unnatural parity according to the helicity analysis of DEL-AMOSANCHEZ 10P and AAIJ 13CC. DEL-AMO-SANCHEZ 10P suggests $J^{P}=0^{-}$.

VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.2 \pm 1.3 \quad 60 \mathrm{k} \quad{ }^{1} \mathrm{AAIJ} \quad 13 \mathrm{CC}$ LHCB $p p \rightarrow D^{*+} \pi^{-} \boldsymbol{X}$
${ }^{1}$ Systematic uncertainty not estimated.
$D(2550)^{0}$ REFERENCES
$\begin{array}{lllll}\text { AAIJ } & \text { 13CC JHEP } 1309145 & \text { R. Aaij et al. } & \text { (LHCb Collab.) } \\ \text { DEL-AMO-SA... 10P } & \text { PR D82 } 111101 & \text { P. del Amo Sanchez et al. } & \text { (BABAR Collab.) }\end{array}$

$\left.D_{J}^{*}(2600) \quad \quad \quad I^{P}\right)=\frac{1}{2}\left(?^{?}\right)$

OMITTED FROM SUMMARY TABLE
was $D(2600)$
${ }^{J} P$ consistent with natural parity (DEL-AMO-SANCHEZ 10P, AAIJ 13CC).

$D_{J}^{*}(2600)$ MASS

Meson Particle Listings
$D_{J}^{*}(2600), D^{*}(2640)^{ \pm}, D(2740)^{0}, D_{3}^{*}(2750)$

$D_{J}^{*}(2600)$ WIDTH

$D_{J}^{*}(2600)$ WIDTH (MeV)
$D_{J}^{*}(2600)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D \pi$	seen
Γ_{2}	$D^{+} \pi^{-}$	seen
Γ_{3}	$D^{0} \pi^{ \pm}$	seen
Γ_{4}	$D^{*} \pi$	seen
Γ_{5}	$D^{*+} \pi^{-}$	seen

$D_{j}^{*}(2600)$ BRANCHING RATIOS
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{+} \pi^{-}\right) / \Gamma\left(\boldsymbol{D}^{*+} \boldsymbol{\pi}^{-}\right)$
$\frac{V A L U E}{\mathbf{0 . 3 2} \pm \mathbf{0 . 0 2} \pm \mathbf{0 . 0 9}} \frac{\text { EVTS }}{76 \mathrm{k}}$$\quad \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..10P }} \frac{\text { TECN }}{\text { BABR }} \frac{\boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}_{\mathbf{5}}}{\frac{\text { COMMENT }}{e^{+e^{-}} \vec{D}^{(*)+} \pi^{-} x}}$
$D_{J}^{*}(2600)$ REFERENCES

AAIJ	16AH	PR D94 072001	
AAIJ	13CC	JHEP 1309	145
DEL-AMO-SA...	10P	PR D82	111101

R. Aaij et al.
(LHCb Collab.)
(LHCb Collab.) (BABAR Collab.)
$D^{*}(2640)^{ \pm} \quad I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$
OMITTED FROM SUMMARY TABLE
Seen in Z decays by ABREU 98M. Not seen by ABBIENDI 01N and CHEKANOV 09. Needs confirmation.

$D^{*}(2640)^{ \pm}$MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	- TECN	COMMENT
$2637 \pm 2 \pm 6$	66 ± 14	ABREU	98m DLPH	$\begin{aligned} & e^{+} e^{-} \rightarrow \overrightarrow{\pi^{*}}+\pi^{-} \chi \end{aligned}$
$D^{*}(2640)^{ \pm}$WIDTH				
VALUE (MeV)	CL\%	DOCUMENT ID	TECN	COMMENT
<15	95	ABREU	98M DLPH	$\begin{aligned} & e^{+} e_{D^{*+}}^{-} \rightarrow+\pi^{-} \end{aligned}$
$D^{*}(\mathbf{2 6 4 0})^{+}$DECAY MODES				

Mode			Fraction ($\Gamma_{i} / \overline{\text { r }}$)	
$D^{*}(2010)^{+} \pi^{+} \pi^{-}$			seen	
$D^{*}(\mathbf{2 6 4 0})^{ \pm}$REFERENCES				
CHEKANOV	09	EPJ C60 25	S. Chekanov et al.	(ZEUS Collab.)
ABBIENDI	01N	EPJ C20 445	G. Abbiendi et al.	(OPAL Collab.)
ABREU	98M	PL B426 231	P. Abreu et al.	(DELPHI Collab.)

$$
D(2740)^{0} \quad I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)
$$

OMITTED FROM SUMMARY TABLE
J^{P} consistent with unnatural parity (AAIJ 13CC).

$D(2740)^{0}$ MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$2737.0 \pm 3.5 \pm 11.2$	7.7 k	AAIJ	13CC LHCB	$p p \rightarrow D^{*+} \pi^{-} X$
$D(2740)^{0}$ WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	- TECN	COMMENT
$73.2 \pm 13.4 \pm 25.0$	7.7 k	AAIJ	13CC LHCB	$p p \rightarrow D^{*+} \pi^{-} X$
$\boldsymbol{D}(\mathbf{2 7 4 0})^{0}$ DECAY MODES				
Mode	Fraction (Γ_{i} / Γ)			
$\Gamma_{1} \quad D^{*+} \pi^{-}$	seen			

$D(2740)^{0}$ POLARIZATION AMPLITUDE $A_{D J}$

A polarization amplitude A_{D}, is a parameter that depends on the initial polarization of the D_{J}. For D_{J} decays the helicity angle, θ_{H}, distribution varies like $1+\mathrm{A}_{D_{J}} \cos ^{2}\left(\theta_{H}\right)$, where θ_{H} is the angle in the D_{J} rest frame between the two pions emitted in the $D_{J} \rightarrow D^{*} \pi$ and $D^{*} \rightarrow D \pi$ decays.

VALUE EVTS DOCUMENT ID _ TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$3.1 \pm 2.2 \quad 7.7 \mathrm{k} \quad{ }^{1} \mathrm{AAIJ} \quad 13 \mathrm{CC}$ LHCB $p p \rightarrow D^{*+} \pi^{-} \boldsymbol{X}$
${ }^{1}$ Systematic uncertainty not estimated.
$D(2740)^{0}$ REFERENCES

AAIJ	13CC JHEP 1309145	R. Aaij et al.	(LHCb Collab.)

$$
D_{3}^{*}(2750) \quad \quad \quad I\left(J^{P}\right)=\frac{1}{2}\left(3^{-}\right)
$$

OMITTED FROM SUMMARY TABLE
J^{P} determined by AAIJ 15Y from the Dalitz plot analysis of $B^{0} \rightarrow$ $\bar{D}^{0} \pi^{+} \pi^{-}$decays. J^{P} consistent with natural parity (AAIJ 13CC).

$D_{3}^{*}(2750)$ WIDTH

66 ± 5 OUR AVERAGE		DOCUMENT ID		COMMENT
$95.3 \pm 9.6 \pm 34.0$	28k	${ }^{6}$ AAIJ	16 ah LHCB	
$105 \pm 18 \pm 24$		${ }^{7} \mathrm{AAI}$	$15 Y$ LHCB	$B^{0} \rightarrow$
$74.4 \pm 3.4 \pm 37.0$	14 k	AAIJ	13 CC LHCB	$p p \rightarrow$
. $\pm 3.4 \pm 19.1$	56	AAIJ	13 CCC LHCB	P \rightarrow
$66.7 \pm 6.6 \pm 10.5$	20k	AAI	13 CC LHCB	pp
$71 \pm 6 \pm 11$	3.5	${ }^{8}$ DEL-AMO-SA...10P BABR		
$60.9 \pm 5.1 \pm 3.611 .3 \mathrm{k}$		${ }^{8}$ DEL-AMO-SA..10P BABR		
- - We do not use the following data for averages, fits, limits, etc. - -				
$154 \pm 27 \pm 16$		${ }^{9}$ AAIJ	15Y LHCB	$B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$
${ }^{6}$ From the amplitude analysis in the model describing the $D^{+} \pi^{-}$wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{* 0}$ states, and components corresponding to the $D_{2}^{*}(2460)^{0}, D_{1}^{*}(2680)^{0}, D_{3}^{*}(2760)^{0}$, and $D_{2}^{*}(3000)^{0}$ resonances.				
7 Modeling the π ${ }^{8}$ The states obse ${ }^{9}$ Modeling the π	$\pi^{-} S$-w red in th $\pi^{-} S$-w	ve with the ${ }^{*} \pi$ an	formalism. l states are rix formalism	ssarily

$D_{3}^{*}(2750)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D \pi$	seen
Γ_{2}	$D^{+} \pi^{-}$	seen
Γ_{3}	$D^{0} \pi^{ \pm}$	seen
Γ_{4}	$D^{*} \pi$	seen
Γ_{5}	$D^{*+} \pi^{-}$	seen

$D_{3}^{*}(\mathbf{2 7 5 0})$ BRANCHING RATIOS
$\Gamma\left(D^{+} \pi^{-}\right) / \Gamma\left(D^{*+} \pi^{-}\right)$
Γ_{2} / Γ_{5}
VALUE DOCUMENT ID TECN COMMENT
10 DEL-AMO-SA..10P BABR $e^{+} e^{-}{ }^{(*)+{ }_{\pi}}{ }_{\pi^{-}}$
${ }^{10}$ The states observed in the $D^{*} \pi$ and $D \pi$ final states are not necessarily the same.

$D_{3}^{*}(2750)$ POLARIZATION AMPLITUDE A D_{D}

A polarization amplitude A_{D} is a parameter that depends on the initial polarization of the $D_{3}^{*}(2750)$. For $D_{3}^{*}(2750)$ decays the helicity angle, θ_{H}, distribution varies like $1+\mathrm{A}_{D} \cos \left(\theta_{H}\right)$, where θ_{H} is the angle in the D^{*} rest frame between the two pions emitted by the $D_{3}^{*}(2750) \rightarrow D^{*} \pi$ and $D^{*} \rightarrow D \pi$.

VALUE
EVTS
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.33 \pm 0.28 \quad 23.5 \mathrm{k} \quad 11$ DEL-AMO-SA..10P BABR $e^{+} e^{-} \rightarrow D^{*+} \pi^{-} X$
${ }^{11}$ Systematic uncertainties not estimated. The states observed in the $D^{*} \pi$ and $D \pi$ final states are not necessarily the same.

$D_{3}^{*}(2750)$ REFERENCES

$D(3000)^{0} \quad \quad I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$

OMITTED FROM SUMMARY TABLE
Both natural- and unnatural-parity components observed depending on the decay mode (AAIJ 13CC).

$D(3000)^{0}$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{1 8 6} \mathbf{\pm 3 8} \mathbf{\pm \mathbf { 7 2 }}} \frac{\text { EVTS }}{28 \mathrm{k}} \quad 5 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 16AH LHCB }} \frac{\text { COMMENT }}{B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

188.1 ± 44.8	9.5 k	$6,7 \mathrm{AAIJ}$	13CC LHCB $p p \rightarrow D^{*+} \pi^{-} X$
110.5 ± 11.5	17.6 k	$6,8 \mathrm{AAIJ}$	13CC LHCB $p p \rightarrow D^{+} \pi^{-} X$

${ }^{5}$ From the amplitude analysis in the model describing the $D^{+} \pi^{-}$wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{* 0}$ states, and components corresponding to the $D_{2}^{*}(2460)^{0}, D_{1}^{*}(2680)^{0}, D_{3}^{*}(2760)^{0}$, and $D_{2}^{*}(3000)^{0}$ resonances.
${ }^{6}$ Systematic uncertainty not estimated.
${ }^{7}$ Unnatural parity preferred.
${ }^{8}$ Natural parity state. A state $D(3000)^{+}$is possibly seen in $D^{0} \pi^{+}$final state.

$D(3000)^{0}$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D^{*+} \pi^{-}$	seen
		$D(\mathbf{3 0 0 0})^{0}$ POLARIZATION AMPLITUDE A A

A polarization amplitude A_{D}, is a parameter that depends on the initial polarization of the D_{J}. For D_{J} decays the helicity angle, θ_{H}, distribution varies like $1+\mathrm{A}_{D_{J}} \cos ^{2}\left(\theta_{H}\right)$, where θ_{H} is the angle in the D_{J} rest frame between the two pions emitted in the $D_{J} \rightarrow D^{*} \pi$ and $D^{*} \rightarrow D \pi$ decays.
VALUE
EVTS
DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$1.5 \pm 0.9 \quad 9.5 \mathrm{k} \quad{ }^{9} \mathrm{AAIJ} \quad 13 \mathrm{CC}$ LHCB $p p \rightarrow D^{*+} \pi^{-} \boldsymbol{X}$
${ }^{9}$ Systematic uncertainty not estimated.
$D(3000)^{0}$ REFERENCES
AAIJ 16AH PR D94 072001
13CC JHEP 1309145
R. Aaij et al.
R. Aaij et al.
(LHCb Collab.)
(LHCb Collab.)

CHARMED, STRANGE MESONS
 ($C=S= \pm 1$)
 $D_{s}^{+}=c \bar{s}, D_{s}^{-}=\bar{c} s, \quad$ similarly for $D_{s}^{* ' s}$

$D_{s}^{ \pm}$

$1\left(\mu^{\rho}\right)=0\left(0^{-}\right)$
The angular distributions of the decays of the ϕ and $\bar{K}^{*}(892)^{0}$ in the $\phi \pi^{+}$and $K^{+} \bar{K}^{*}(892)^{0}$ modes strongly indicate that the spin is zero. The parity given is that expected of a $c \bar{s}$ ground state.

$D_{s}^{ \pm}$MASS

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements. Measurements of the $D_{s}^{ \pm}$mass with an error greater than 10 MeV are omitted from the fit and average. A number of early measurements have been omitted altogether.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1968.34土 0.07 OUR FIT					
1969.0 ± 1.4 OUR AVERAGE below.					
$1967.0 \pm 1.0 \pm 1.0$	54	BARLAG	90C	ACCM	$\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}$
$1969.3 \pm 1.4 \pm 1.4$		ALBRECHT	88	ARG	$e^{+} e^{-} 9.4-10.6 \mathrm{GeV}$
$1972.7 \pm 1.5 \pm 1.0$	21	BECKER	87B	SILI	$200 \mathrm{GeV} \pi, K, p$
$1972.4 \pm 3.7 \pm 3.7$	27	BLAYLOCK	87	MRK3	$e^{+} e^{-} 4.14 \mathrm{GeV}$
$1963 \pm 3 \pm 3$	30	DERRICK	85B	HRS	$e^{+} e^{-} 29 \mathrm{GeV}$
$1970 \pm 5 \pm 5$	104	CHEN	83C	CLEO	$e^{+} e^{-} 10.5 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1968.3 \pm 0.7 \pm 0.7$	290	${ }^{1}$ ANJOS	88	E691	Photoproduction
1980 ± 15	6	USHIDA	86	EMUL	ν wideband
$1973.6 \pm 2.6 \pm 3.0$	163	ALBRECHT	85D	ARG	$e^{+} e^{-} 10 \mathrm{GeV}$
$1948 \pm 28 \pm 10$	65	AIHARA	84D	TPC	$e^{+} e^{-} 29 \mathrm{GeV}$
$1975 \pm 9 \pm 10$	49	ALTHOFF	84	TASS	$e^{+} e^{-} 14-25 \mathrm{GeV}$
1975 ± 4	3	BAILEY	84	ACCM	hadron+ ${ }^{+} \mathrm{Be} \rightarrow \phi \pi^{+} \mathrm{X}$
${ }^{1}$ ANJOS 88 enters the fit via $m_{D_{s}}^{ \pm}-m_{D^{ \pm}}$(see below).					

$m_{D_{s}^{ \pm}}-m_{D^{ \pm}}$
The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)

98.69 ± 0.05 OUR FIT 98.69 ± 0.05 OUR AVERAGE

$98.68 \pm 0.03 \pm 0.04$
$99.41 \pm 0.38 \pm 0.21$
$98.4 \pm 0.1 \pm 0.3$
$99.5 \pm 0.6 \pm 0.3$
98.5 ± 1.5
99.0 ± 0.8

DOCUMENT ID TECN COMMENT
AAI

AAIJ	13V	LHCB	$D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$
ACOSTA	03D	CDF2	$\bar{p} p, \sqrt{s}=1.96 \mathrm{TeV}$
AUBERT	02G	BABR	$e^{+} e^{-} \approx r(4 S)$
BROWN	94	CLE2	$e^{+} e^{-} \approx r(4 S)$
CHEN	89	CLEO	$e^{+} e^{-} 10.5 \mathrm{GeV}$
ANJOS	88	E691	Photoproduction

$D_{s}^{ \pm}$MEAN LIFE

Measurements with an error greater than $100 \times 10^{-15} \mathrm{~S}$ or with fewer than 100 events have been omitted from the Listings.

$\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right)$	EVTS	DOCUMENT ID	TECN	COMMENT
504 ± 4 OUR AVERAGE Error includes scale factor of 1.2.				
$506.4 \pm 3.0 \pm 1.7 \pm 1.7$		${ }^{1}$ AAIJ	17AN LHCB	$p p$ at 7, 8
$507.4 \pm 5.5 \pm 5.1$	13.6k	LINK	05」 FOCS	$\phi \pi^{+}$and $\bar{K}^{* 0} K^{+}$
$472.5 \pm 17.2 \pm 6.6$	760	IORI	01 SELX	$600 \mathrm{GeV} \Sigma^{-}, \pi^{-}, p$
$518 \pm 14 \pm 7$	1662	AITALA	99 E791	π^{-}nucleus, 500 GeV
$486.3 \pm 15.0{ }_{-}^{+} 5.9$	2167	2 BONVICINI	99 CLE2	$e^{-} \approx r(4 S)$
$475 \pm 20 \pm 7$	900	FRABETTI	93 F E687	$\gamma \mathrm{Be}, \phi \pi^{+}$
$500 \pm 60 \pm 30$	104	FRABETTI	90 E687	$\gamma \mathrm{Be}, \phi \pi^{+}$
$470 \pm 40 \pm 20$	228	RAAB	88 E691	Photoproduction
${ }^{1}$ This AAIJ 17AN value is derived from the difference between the D_{S}^{-}and D^{-}widths. The 3rd uncertainty, $\pm 1.7 \times 10^{-15} \mathrm{~s}$, arises from the uncertainty of the D^{-}width. ${ }^{2}$ BONVICINI 99 obtains 1.19 ± 0.04 for the ratio of D_{S}^{+}to D^{0} lifetimes.				

D_{s}^{+}DECAY MODES

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_{S}^{-}modes are charge conjugates of the modes below.

Scale factor/
Mode
Fraction $\left(\Gamma_{i} / \Gamma\right)$ Confidence level

Inclusive modes								
Γ_{1}	e^{+}semileptonic			(6.5	$\pm 0.4)$			
Γ_{2}	π^{+}anything			(119.3	$\pm 1.4)$			
$\Gamma 3$	π^{-}anything			(43.2	$\pm 0.9)$			
Γ_{4}	π^{0} anything			(123	± 7			
Γ_{5}	K^{-}anything			(18.7	$\pm 0.5)$			
Γ_{6}	K^{+}anything			(28.9	$\pm 0.7)$			
Γ_{7}	K_{S}^{0} anything			(19.0	± 1.1			
Γ_{8}	η anything			(29.9	$\pm 2.8)$			
$\Gamma 9$	ω anything			(6.1	$\pm 1.4)$			
Γ_{10}	η^{\prime} anything		[c]	(10.3	± 1.4			$\mathrm{S}=1.1$
Γ_{11}	$f_{0}(980)$ anything, $f_{0} \rightarrow$	$\pi^{+} \pi^{-}$		<1.3		\%		CL=90\%
Γ_{12}	ϕ anything			(15.7	± 1.0			
Γ_{13}	$K^{+} K^{-}$anything			(15.8	$\pm 0.7)$) \%		
Γ_{14}	$K_{S}^{0} K^{+}$anything			(5.8	$\pm 0.5)$			
Γ_{15}	$K_{S}^{0} K^{-}$anything			(1.9	$\pm 0.4)$			
Γ_{16}	$2 K_{S}^{0}$ anything			(1.70	$\pm 0.32)$			
Γ_{17}	$2 K^{+}$anything			<2.6			10^{-3}	CL=90\%
$\Gamma 18$	$2 K^{-}$anything			< 6	-		$\times 10^{-4}$	CL=90\%

Γ_{91}	$K^{+} \pi^{0} \quad$ Modes with one
Γ_{92}	$K_{S}^{0} \pi^{+}$
Γ_{93}	$K^{+} \eta$
Γ_{94}	$K^{+} \omega$
Γ_{95}	$K^{+} \eta^{\prime}(958)$
Γ_{96}	$K^{+} \pi^{+} \pi^{-}$
Γ_{97}	$K^{+} \rho^{0}$
Γ_{98}	$K^{+} \rho(1450)^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$
Γ_{99}	$K^{*}(892)^{0} \pi^{+}, K^{* 0} \rightarrow K^{+} \pi^{-}$
Γ_{100}	$K^{*}(1410)^{0} \pi^{+}, K^{* 0} \rightarrow$
Γ_{101}	$K^{+} \pi^{-}(1430)^{0} \pi^{+}, K^{* 0} \rightarrow$
Γ_{102}	$K^{+} \pi^{+}$
Γ_{103}	$K^{0} \pi^{+} \pi^{-} \pi^{0}$
Γ_{104}	$K_{S}^{0} 2 \pi^{+} \pi^{-}$
Γ_{105}	$K^{+} \omega \pi^{0}$
Γ_{106}	$K^{+} \omega \pi^{+} \pi^{-}$
Γ_{107}	$K^{+} \omega \eta$
Γ_{108}	$2 K^{+} K^{-}$
Γ_{109}	$\phi K^{+}, \phi \rightarrow K^{+} K^{-}$

$(6.1 \pm 2.1) \times 10^{-4}$
$(1.19 \pm 0.05) \times 10^{-3}$
［d］$(1.72 \pm 0.34) \times 10^{-3}$
［d］$(8.7 \pm 2.5) \times 10^{-4}$
［d］$(1.7 \pm 0.5) \times 10^{-3}$ （ $6.5 \pm 0.4) \times 10^{-3}$
$(2.5 \pm 0.4) \times 10^{-3}$
$(6.9 \pm 2.4) \times 10^{-4}$
$(1.41 \pm 0.24) \times 10^{-3}$
（ $1.23 \pm 0.28) \times 10^{-3}$
$(5.0 \pm 3.5) \times 10^{-4}$
（ $1.03 \pm 0.34) \times 10^{-3}$
（ 1.00 ± 0.18 ）\％
（ 3.0 ± 1.1 ）$\times 10^{-3}$
$[d]<8.2 \times 10^{-3} \quad \mathrm{CL}=90 \%$
$\begin{array}{lll}{[d]<5.4} & \times 10^{-3} & \mathrm{CL}=90 \% \\ {[d]<7.9} & \times 10^{-3} & \mathrm{CL}=90 \%\end{array}$
$\left(\begin{array}{ll}7.9 \\ (2.16 \pm 0.20) \times 10^{-4}\end{array} \quad \mathrm{CL}=90 \%\right.$
$\begin{array}{lcr} & & \text { Doubly Cabibbo－suppressed modes } \\ \Gamma_{110} & 2 K^{+} \pi^{-} & (1.28 \pm 0.04) \times 10^{-4} \\ \Gamma_{111} & K^{+} K^{*}(892)^{0}, K^{* 0} \rightarrow & (6.0 \pm 3.4) \times 10^{-5} \\ & K^{+} \pi^{-}\end{array}$
Baryon－antibaryon mode

	$\begin{aligned} & p \bar{n} \\ & p \bar{p} e^{+} \nu_{e} \end{aligned}$		（ $1.22 \pm 0.11) \times 10^{-3}$			
			$<$	2.0	$\times 10^{-4}$	CL＝90\％
	$\Delta C=1$ weak neutral current（ $C 1$ ）modes， Lepton family number（LF），or Lepton number（ L ）violating modes					
Γ_{114}	$\pi^{+} e^{+} e^{-}$		［i］＜	1.3	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{115}	$\pi^{+} \phi, \phi \rightarrow e^{+} e^{-}$		［j］（	$6 \quad+8$	）$\times 10^{-6}$	
Γ_{116}	$\pi^{+} \mu^{+} \mu^{-}$		［i］＜	4.1	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{117}	$K^{+} e^{+} e^{-}$	C1	$<$	3.7	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{118}	$K^{+} \mu^{+} \mu^{-}$	C1	＜	2.1	$\times 10^{-5}$	CL＝90\％
「119	$K^{*}(892)^{+} \mu^{+} \mu^{-}$	C1	$<$	1.4	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{120}	$\pi^{+} e^{+} \mu^{-}$	LF	$<$	1.2	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{121}	$\pi^{+} e^{-} \mu^{+}$	LF	＜	2.0	$\times 10^{-5}$	CL＝90\％
Γ_{122}	$K^{+} e^{+} \mu^{-}$	LF	$<$	1.4	$\times 10^{-5}$	CL＝90\％
「123	$K^{+} e^{-} \mu^{+}$	LF	＜	9.7	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{124}	$\pi^{-} 2 e^{+}$	L	$<$	4.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{125}	$\pi^{-} 2 \mu^{+}$	L	$<$	1.2	$\times 10^{-7}$	CL＝90\％
「126	$\pi^{-} e^{+} \mu^{+}$	L	$<$	8.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{127}	$K^{-} 2 e^{+}$	L	$<$	5.2	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{128}	$K^{-} 2 \mu^{+}$	L	$<$	1.3	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「129	$K^{-} e^{+} \mu^{+}$	L	$<$	6.1	$\times 10^{-6}$	CL＝90\％
Γ_{130}	$K^{*}(892)^{-2} \mu^{+}$	L	$<$	1.4	$\times 10^{-3}$	$\mathrm{CL}=90 \%$

［a］This is the purely e^{+}semileptonic branching fraction：the e^{+}fraction from τ^{+}decays has been subtracted off．The sum of our（non－τ ）e^{+} exclusive fractions－an $e^{+} \nu_{e}$ with an $\eta, \eta^{\prime}, \phi, K^{0}$ ，or $K^{* 0}$－is $5.99 \pm 0.31 \%$ ．
［ b ］This fraction includes η from η^{\prime} decays．
［c］The sum of our exclusive η^{\prime} fractions－$\eta^{\prime} e^{+} \nu_{e}, \eta^{\prime} \mu^{+} \nu_{\mu}, \eta^{\prime} \pi^{+}, \eta^{\prime} \rho^{+}$， and $\eta^{\prime} K^{+}$－is $11.8 \pm 1.6 \%$ ．
［d］This branching fraction includes all the decay modes of the final－state resonance．
［e］A test for $u \bar{u}$ or $d \bar{d}$ content in the D_{s}^{+}．Neither Cabibbo－favored nor Cabibbo－suppressed decays can contribute，and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} ．
［ f ］The branching fraction for this mode may differ from the sum of the submodes that contribute to it，due to interference effects．See the relevant papers．
［g］We decouple the $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fraction obtained from mass projections（and used to get some of the other branching fractions）from the $D_{s}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow K^{+} K^{-}$branching fraction obtained from the Dalitz－plot analysis of $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$．That is，the ratio of these two branching fractions is not exactly the $\phi \rightarrow K^{+} K^{-}$branching fraction 0.491 ．
［ h ］This is the average of a model－independent and a K－matrix parametriza－ tion of the $\pi^{+} \pi^{-} S$－wave and is a sum over several f_{0} mesons．
［i］This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay．
［j］This is not a test for the $\Delta C=1$ weak neutral current，but leads to the $\pi^{+} \ell^{+} \ell^{-}$final state．

CONSTRAINED FIT INFORMATION

An overall fit to 13 branching ratios uses 18 measurements and one constraint to determine 10 parameters．The overall fit has a $\chi^{2}=6.8$ for 9 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$ ，in percent，from the fit to the branching fractions，$x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$ ．The fit constrains the x_{i} whose labels appear in this array to sum to one．

Meson Particle Listings

$D_{s}^{ \pm}$

x_{38}	51							
x_{50}	22	29						
x_{52}	28	30	11					
x_{54}	23	25	13	38				
x_{64}	34	50	19	19	17			
x_{74}	-7	-7	-15	1	-7	-7		
x_{75}	0	0	-1	0	0	0	4	
x_{96}	5	12	-6	7	1	3	16	1

See the related review(s):
D_{s}^{+}Branching Fractions

D_{s}^{+}BRANCHING RATIOS

A number of older, now obsolete results have been omitted. They may be found in earlier editions

See the related review(s):
Leptonic Decays of Charged Pseudoscalar Mesons

$\Gamma\left(\boldsymbol{e}^{+}\right.$
$\left.\boldsymbol{\nu}_{\boldsymbol{e}}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{}$
$<\mathbf{0 . 8 3 \times 1 0 ^ { - 4 }}$
90

- - We do not use the following data for averages, fits, limits, etc. - -

| $<2.3 \times 10^{-4}$ | 90 | DEL-AMO-SA..10」 | BABR | $e^{+} e^{-}, 10.58 \mathrm{GeV}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $<1.2 \times 10^{-4}$ | 90 | ALEXANDER 09 CLEO $e^{+} e^{-}$at 4170 MeV | | |
| $<1.3 \times 10^{-4}$ | 90 | PEDLAR 07A CLEO | See ALEXANDER 09 | |
| 1 ZUPANC 13 also gives the limit as $<1.0 \times 10^{-4}$ at $95 \% \mathrm{CL}$. | | | | |

$\Gamma\left(\boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\mu}\right) / \Gamma\left(\phi \pi^{+}\right)$ See the note on "Decay Constants of Charged Pseudoscalar Mesons" above.
VALUE D EVTS DOCUMENTID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.143 \pm 0.018 \pm 0.006 \quad 489 \pm 55 \quad 1$ AUBERT $\quad 07 \vee$ BABR $e^{+} e^{-} \approx \gamma(4 S)$
$0.23 \pm 0.06 \pm 0.04 \quad 18{ }^{2}$ ALEXANDROV 00 BEAT π^{-}nucleus, 350 GeV

$\Gamma\left(\tau^{+} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{21} / Γ
See the note on＂Decay Constants of Charged Pseudoscalar Mesons＂above．
$\frac{\operatorname{VALUE}(\%)}{5.48 \pm 0.23}$ OUR AVERAGE EVTS DOCUMENTID \quad TECN COMMENT

5.48 ± 0.23 OUR AVERAGE

$4.83 \pm 0.65 \pm 0.26 \quad 33 \quad 1$ ABLIKIM $\quad 160$ BES3 $e^{+} e^{-}$at 4.009 GeV
$5.70 \pm 0.21_{-0.30}^{+0.31} \quad 2.2 \mathrm{k} \quad 2$ ZUPANC $\quad 13 \mathrm{BELL} \quad e^{+} e^{-}$at $r(4 S), r(5 S)$
$4.96 \pm 0.37 \pm 0.57 \quad 748 \pm 53 \quad{ }^{3}$ DEL－AMO－SA．．10」 BABR $e^{-} \bar{\nu}_{e} \nu_{\tau}, \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$
$6.42 \pm 0.81 \pm 0.18 \quad 126 \pm 16 \quad{ }^{4}$ ALEXANDER 09 CLEO $\quad \tau^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau}$
$5.52 \pm 0.57 \pm 0.21 \quad 155 \pm 17 \quad 4$ NAIK 09A CLEO $\tau^{+} \rightarrow \rho^{+} \bar{\nu}_{\tau}$
$5.30 \pm 0.47 \pm 0.22 \quad 181 \pm 16 \quad 4$ ONYISI 09 CLEO $\tau^{+} \rightarrow e^{+} \nu_{e^{\nu}} \bar{\nu}^{2}$
－－We do not use the following data for averages，fits，limits，etc．．．．
$6.17 \pm 0.71 \pm 0.34 \quad 102 \quad 5$ ECKLUND 08 CLEO See ONYISI 09 $8.0 \pm 1.3 \pm 0.4 \quad 47 \quad 5$ PEDLAR 07A CLEO \quad See ALEXANDER 09 $5.79 \pm 0.77 \pm 1.84 \quad 881 \quad 6$ HEISTER 02। ALEP $\quad Z$ decays $7.0 \pm 2.1 \pm 2.0 \quad 22 \quad{ }^{7}$ ABBIENDI 01 L OPAL $D_{S}^{*+} \rightarrow \gamma D_{S}^{+}$from Z＇s $7.4 \pm 2.8 \pm 2.4 \quad 16 \quad{ }^{8}$ ACCIARRI 97F L3 $\quad D_{s}^{*+} \rightarrow \gamma D_{s}^{+}$from Z＇s ${ }^{1}$ ABLIKIM 160 value is constrained by the Standard Model ratio of $\Gamma\left(D_{s}^{+} \rightarrow\right.$ $\left.\tau^{+} \nu_{\tau}\right) / \Gamma\left(D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=9.76$ ；the unconstrained value is $(3.28 \pm 1.83 \pm 0.37) \%$ ．
${ }^{2}$ ZUPANC 13 uses both $\mu^{+} \nu$ and $\tau^{+} \nu$ events to get $f_{D_{s}}=(255.5 \pm 4.2 \pm 5.1) \mathrm{MeV}$ ．
${ }^{3}$ DEL－AMO－SANCHEZ 10 」（with a small correction；see LEES 15D）uses $\mu^{+} \nu_{\mu}$ and $\tau^{+} \nu_{\tau}$ events together to get $f_{D_{S}}=(259.9 \pm 6.6 \pm 7.6) \mathrm{MeV}$
${ }^{4}$ ALEXANDER 09，NAIK 09A，and ONYISI 09 use different τ decay modes and are inde－ pendent．The three papers combined give $f_{D_{S}}=(259.7 \pm 7.8 \pm 3.4) \mathrm{MeV}$ ．
${ }^{5}$ ECKLUND 08 and PEDLAR 07A are independent：ECKLUND 08 uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ events，PEDLAR 07A uses $\tau^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau}$ events．
${ }^{6}$ HEISTER 02I combines its $D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}$ and $\mu^{+} \nu_{\mu}$ branching fractions to get $f_{D_{s}}=$ （ $285 \pm 19 \pm 40$ ）MeV．
7 This ABBIENDI 01L value gives a decay constant $f_{D_{S}}$ of $(286 \pm 44 \pm 41) \mathrm{MeV}$ ．
${ }^{8}$ The second ACCIARRI 97F error here combines in quadrature systematic（0．016）and normalization（0．018）errors．The branching fraction gives $f_{D_{S}}=(309 \pm 58 \pm 33 \pm 38)$ MeV ．
$\Gamma\left(\tau^{+} \nu_{\tau}\right) / \Gamma\left(\mu^{+} \nu_{\mu}\right)$
$\Gamma_{21} / \Gamma_{20}$
VALUE EVTS DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－
$10.73 \pm 0.69{ }_{-0.53}^{+0.56} \quad 2.2 \mathrm{k} / 492 \quad 1$ ZUPANC $\quad 13$ BELL $e^{+} e^{-}$at
$11.0 \pm 1.4 \pm 0.6 \quad 102 \quad{ }^{2}$ ECKLUND 08 CLEO See ONYISI 09
${ }^{1}$ This ZUPANC 13 ratio is not independent of the separate $\tau \nu$ and $\mu \nu$ fractions listed
2 This ECKLUND 08 value also uses results from PEDLAR 07A，and it is not independent of other results in these Listings．Combined with earlier CLEO results，the decay constant $f_{D_{s}}$ is $274 \pm 10 \pm 5 \mathrm{MeV}$.

$\Gamma\left(\gamma \boldsymbol{e}^{+} \nu_{e}\right) / \Gamma_{\text {total }}$ VALUE	CL\％	DOCUMENT ID	TECN	COMMENT		Γ_{22} / Γ
$<1.3 \times 10^{-4}$	90	ABLIKIM	19AD BES3	for E_{γ}	>1	
$\Gamma\left(K^{+} K^{-} e^{+} \nu_{e}\right) / \Gamma\left(K^{+} K^{-} \boldsymbol{\pi}^{+}\right)$						

－－We do not use the following data for averages，fits，limits，etc．－－－
$0.558 \pm 0.007 \pm 0.016 \quad 1$ AUBERT 08AN BABR $e^{+} e^{-}$at $\gamma(4 S)$
${ }^{1}$ This AUBERT 08AN ratio is only for the $K^{+} K^{-}$mass in the range $1.01-$ to -1.03 GeV in the numerator and 1.0095 －to－ 1.0295 GeV in the denominator．
$\Gamma\left(\phi e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
Γ_{24} / Γ
See the end of the D_{S}^{+}Listings for measurements of $D_{S}^{+} \rightarrow \phi e^{+} \nu_{e}$ form factors． Unseen decay modes of the ϕ are included
 $2.14 \pm 0.17 \pm 0.08 \quad 207 \quad$ HIETALA $15 \quad$ Uses CLEO data $2.61 \pm 0.03 \pm 0.17 \quad 25 \mathrm{k} \quad$ AUBERT 08AN BABR $e^{+} e^{-}$at $r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•－
$2.36 \pm 0.23 \pm 0.13 \quad 106 \quad$ ECKLUND 09 CLEO See HIETALA 15 $2.29 \pm 0.37 \pm 0.11 \quad 45 \quad$ YELTON 09 CLEO See ECKLUND 09

$\Gamma\left(\phi e^{+} \nu_{e}\right) / \Gamma\left(\phi \pi^{+}\right)$
$\Gamma_{24} / \Gamma_{39}$
As noted in the comment column，most of these measurements use $\phi \mu^{+} \nu_{\mu}$ events in addition to or instead of $\phi e^{+} \nu_{e}$ events．
VALUE EV DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－

$0.540 \pm 0.033 \pm 0.048$	793	LINK	02」	FOCS	Uses $\phi \mu^{+} \nu_{\mu}$
$0.54 \pm 0.05 \pm 0.04$	367	BUTLER	94	CLE2	Uses $\phi e^{+} \nu_{e}$ and $\phi \mu^{+} \nu_{\mu}$
$0.58 \pm 0.17 \pm 0.07$	97	FRABETTI	93 G	E687	Uses $\phi \mu^{+} \nu_{\mu}$
$0.57 \pm 0.15 \pm 0.15$	104	ALBRECHT	91	ARG	Uses $\phi e^{+} \nu_{e}$
0.49 ± 0.10	+0.10	54	ALEXANDER	90 B	CLEO

$\boldsymbol{\Gamma}\left(\boldsymbol{\phi} \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E(\%)}{\mathbf{1 . 9 4} \pm \mathbf{0 . 5 3} \pm \mathbf{0 . 0 9}} \frac{\text { EVTS }}{22} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 18 \mathrm{~A}} \frac{\operatorname{TECN}}{\mathrm{BES} 3} \frac{\boldsymbol{\Gamma}_{\mathbf{2 5}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \text {at } 4.009 \mathrm{GeV}}$

$\Gamma\left(\eta e^{+} \nu_{e}\right) / \Gamma_{\text {Unseen detal }}$					
VALUE（\％）	EVTS	DOCUMENT		TECN	COMMENT
2.32 ± 0.08 OUR AVERAGE					
$2.323 \pm 0.063 \pm 0.063$	1.8 k	ABLIKIM	19S	BES3	$e^{+} e^{-}$at 4178 MeV
$2.30 \pm 0.31 \pm 0.08$	63	ABLIKIM	16 T	BES3	$e^{+} e^{-}$at 4.009 GeV
$2.28 \pm 0.14 \pm 0.19$	358	${ }^{1}$ HIETALA	15		Uses CLEO data
－－We do not use the following data for averages，fits，limits，etc．－－					
$2.48 \pm 0.29 \pm 0.13$	82	YELTON	09	CLEO	See HIETALA 15

$\Gamma\left(\eta^{\prime}(958) e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$
Γ_{28} / Γ
Unseen decay modes of the η^{\prime}（958）are included．
VALUE（\％）EVTS DOCUMENTID TECN COMMENT
0.80 ± 0.07 OUR AVERAGE
$0.824 \pm 0.073 \pm 0.027 \quad 261 \quad$ ABLIKIM $\quad 195$ BES3 $e^{+} e^{-}$at 4178 MeV $0.93 \pm 0.30 \pm 0.05 \quad 14 \quad$ ABLIKIM 16 T BES3 $e^{+} e^{-}$at 4009 MeV $0.68 \pm 0.15 \pm 0.06 \quad 20 \quad 1$ HIETALA $\quad 15 \quad$ Uses CLEO data －－We do not use the following data for averages，fits，limits，etc．－－－
$0.91 \pm 0.33 \pm 0.05 \quad 7.5 \quad$ YELTON 09 CLEO See HIETALA 15
${ }^{1}$ Obtained by analyzing CLEO－c data but not authored by the CLEO Collaboration．
$\Gamma\left(\eta^{\prime}(958) e^{+} \nu_{e}\right) / \Gamma\left(\phi e^{+} \nu_{e}\right)$
Unseen decay modes of the resonances are included．
VALUE EVTS DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－• •
$0.43 \pm 0.11 \pm 0.07 \quad 291$ BRANDENB．．． 95 CLE2 See HIETALA 15
${ }^{1}$ BRANDENBURG 95 uses both e^{+}and μ^{+}events and makes a phase－space adjustment to use the μ^{+}events as e^{+}events．
$\left[\Gamma\left(\eta e^{+} \nu_{e}\right)+\Gamma\left(\eta^{\prime}(958) e^{+} \nu_{e}\right)\right] / \Gamma\left(\phi e^{+} \nu_{e}\right) \quad \Gamma_{26} / \Gamma_{24}=\left(\Gamma_{27}+\Gamma_{28}\right) / \Gamma_{24}$ Unseen decay modes of the resonances are included．

TECN COMMENT
－• We do not use the following data for averages，fits，limits，etc．• • •
$1.67 \pm 0.17 \pm 0.17 \quad 1$ BRANDENB．．． 95 CLE2 See HIETALA 15
${ }^{1}$ This BRANDENBURG 95 data is redundant with data in previous blocks．

Meson Particle Listings
$D_{s}^{ \pm}$

$\begin{aligned} & \Gamma\left(\eta \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }} \\ & \text { Value }\left(\nu_{2}\right) \end{aligned}$	EvTs			$\Gamma_{29} /{ }^{\text {r }}$						
$\Gamma\left(\eta^{\prime}(958) \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$		TECN		${ }^{30} /{ }^{\text {c }}$						
（10 0.54 ± 0.07	10			АВ	18 A					
$\left.{ }^{+} \nu_{e}\right) / \Gamma_{\text {t }}$				「31／「						
A test for $u \bar{\pi}$ or $d \bar{d}$ content in the D_{s}^{+}．Neither Cabibbo－favored nor Cabibbo suppressed decays can contribute，and $\omega-\phi$ mixing is an unikiely explanation for any fraction above about 2×10^{-4} ．										
UE\％）	ct\％	DOCCMENTID TECN								
＜0．20	90	MARTIN	CLEO	$e^{+} e^{-}$at						
$\Gamma\left(K^{0} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$				Γ_{32} / Γ						
$\frac{\text { Vatue }}{0.34}$（\％） 0.04 OUR AVERAGE										
$0.325 \pm 0.038 \pm 0.016$	117	${ }^{1}$ A ABLKIM		$e^{+} e^{-}$at 4178 MeVUses cleo data						
$0.37 \pm 0.10 \pm 0.02 \quad{ }^{14} \underset{K^{0}}{ } K^{0}$ reconstructed via $K^{0} \rightarrow K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays．										
$\Gamma\left(K^{*}(892)^{0} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$				「33／Г						
Unseen decay modes of to										
				comment						
				起－						
37 $\pm 0.026 \pm \pm .020$	155	ror includes scale fatoro of 1．1．ABLIkIM190BES3								
${ }^{0} .18 \pm 0.07 \pm 0.01$	\％	YELTon 09 CLEO hored by the CLEO collaboration		${ }_{\text {etc．．．．}}^{\text {see HIETALA } 15}$						

$\Gamma\left(f_{0}(980) e^{+} \nu_{e}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{34} / \Gamma$

VALUE（\％）EVTS DOCUMENTID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•
$0.13 \pm 0.03 \pm 0.01 \quad 42 \quad 1$ HIETALA $15 \quad$ Uses CLEO data
$0.20 \pm 0.03 \pm 0.01 \quad 44 \quad$ ECKLUND 09 CLEO See HIETALA 15
$0.13 \pm 0.04 \pm 0.01 \quad 13 \quad$ YELTON 09 CLEO See ECKLUND 09
${ }^{1}$ HIETALA 15 uses a tighter cut on the reconstructed $\pi^{+} \pi^{-}$mass $(\pm 60 \mathrm{MeV}$ around the f^{0} ）than ECKLUND 09．It finds that applying the same tight cut to both analyses gives consistent results．

Hadronic modes with a $\boldsymbol{K} \bar{K}$ pair

$\frac{1.46 \pm 0.04}{}$ OUR FIT Error includes scale factor of 1．1．
1.46 ± 0.05 OUR AVERAGE Error includes scale factor of 1．2．
$1.425 \pm 0.038 \pm 0.031 \quad 1.8 \mathrm{k} \quad$ ABLIKIM $19 \mathrm{AMBES} 3 e^{+} e^{-}$at 4178 MeV $1.52 \pm 0.05 \pm 0.03 \quad$ ONYISI 13 CLEO $e^{+} e^{-}$at 4.17 GeV
－－We do not use the following data for averages，fits，limits，etc．－－－
$1.49 \pm 0.07 \pm 0.05 \quad 1$ ALEXANDER 08 CLEO See ONYISI 13
${ }^{1}$ ALEXANDER 08 uses single－and double－tagged events in an overall fit

$\Gamma\left(K^{+} K_{L}^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		COMMENT $\quad \Gamma_{\mathbf{3 6}} / \boldsymbol{\Gamma}$
VALUE（\％）	EVTS			
$1.485 \pm 0.039 \pm 0.046$	2.3 k	ABLIKIM	19AM BES3	$e^{+} e^{-}$at 4178 MeV
$\Gamma\left(K^{+} \bar{K}^{0}\right) / \Gamma_{\text {total }}$				Γ_{37} / Γ
VALUE（\％）	EVTS	DOCUMENT ID	TECN	COMMENT
$2.95 \pm 0.11 \pm 0.09$	2．0k	1 ZUPANC	13 BELL	$\begin{aligned} & e^{+} e^{-} \text {at } \\ & \quad r(4 S), r(5 S) \end{aligned}$

${ }^{1}$ ZUPANC 13 finds the \bar{K}^{0} from its missing－mass squared，not from $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$． The DCS $\left(D_{s}^{+} \rightarrow K^{+} K^{0}\right)$ contribution to this fraction is estimated to be an order of magnitude below the statistical uncertainty．
$\Gamma\left(K^{+} K^{-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 8}} / \Gamma$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{5 . 3 9} \pm \mathbf{0 . 1 5} \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of 1．2．}} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$ $\mathbf{5 . 4 4} \pm \mathbf{0 . 1 8}$ OUR AVERAGE Error includes scale factor of 1．3．See the ideogram below．
$5.55 \pm 0.14 \pm 0.13 \quad$ ONYISI 13 CLEO $e^{+} e^{-}$at 4.17 GeV $5.06 \pm 0.15 \pm 0.21 \quad 4.1 \mathrm{k} \quad$ ZUPANC $\quad 13 \mathrm{BELL} \quad e^{+} e^{-}$at $r(4 S), r(5 S)$ $5.78 \pm 0.20 \pm 0.30 \quad$ DEL－AMO－SA．． 10 J BABR $e^{+} e^{-}, 10.58 \mathrm{GeV}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$5.50 \pm 0.23 \pm 0.16 \quad 1$ ALEXANDER 08 CLEO See ONYISI 1
${ }^{1}$ ALEXANDER 08 uses single－and double－tagged events in an overall fit．

$\Gamma\left(\phi \pi^{+}\right) / \Gamma_{\text {total }}$
Γ_{39} / Γ
The results here are model－independent．For earlier，model－dependent results，see our PDG 06 edition．We decouple the $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fraction obtained from mass projections（and used to get some of the other branching fractions）from the $D_{S}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow K^{+} K^{-}$branching fraction obtained from the Dalitz－plot analysis of $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$．That is，the ratio of these two branching fractions is not exactly the $\phi \rightarrow K^{+} K^{-}$branching fraction 0．491．
VALUE（\％）DOCUMENTID TECN COMMENT
4.5 ± 0.4 OUR AVERAGE
$4.62 \pm 0.36 \pm 0.51 \quad 1$ AUBERT $06 \mathrm{NBABR} e^{+} e^{-}$at $r(4 S)$ $4.81 \pm 0.52 \pm 0.38 \quad 212 \pm 19 \quad 2$ AUBERT 05 V BABR $e^{+} e^{-} \approx r(4 S)$ $3.59 \pm 0.77 \pm 0.48 \quad 3$ ARTUSO 96 CLE2 $e^{+} e^{-}$at $\gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．•－－
$3.9{ }_{-1.9}^{+5.1}+1.8 \quad 4 \mathrm{BAI} \quad 95 \mathrm{CBES} \quad e^{+} e^{-} 4.03 \mathrm{GeV}$
${ }^{1}$ This AUBERT 06 N measurement uses $\bar{B}^{0} \rightarrow D_{S}^{(*)-} D^{(*)+}$ and $B^{-} \rightarrow D_{S}^{(*)-} D^{(*) 0}$ decays，including some from other papers．However，the result is independent of AUBERT 05 V ．
${ }^{2}$ AUBERT 05 V uses the ratio of $B^{0} \rightarrow D^{*-} D_{S}^{*+}$ events seen in two different ways，in both of which the $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$decay is fully reconstructed：（1）The $D_{S}^{*+} \rightarrow D_{S}^{+} \gamma$ ， $D_{S}^{+} \rightarrow \phi \pi^{+}$decay is fully reconstructed．（2）The number of events in the D_{S}^{+}peak in the missing mass spectrum against the $D^{*-} \gamma$ is measured．
${ }^{3}$ ARTUSO 96 uses partially reconstructed $\bar{B}^{0} \rightarrow D^{*+} D_{S}^{*-}$ decays to get a model－ independent value for $\Gamma\left(D_{S}^{-} \rightarrow \phi \pi^{-}\right) / \Gamma\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$of $0.92 \pm 0.20 \pm 0.11$ ．
${ }^{4} \mathrm{BAI} 95 \mathrm{C}$ uses $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s}^{-}$events in which one or both of the $D_{s}^{ \pm}$are observed to obtain the first model－independent measurement of the $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fraction， without assumptions about $\sigma\left(D_{s}^{ \pm}\right)$．However，with only two＂doubly－tagged＂events，the statistical error is very large．
$\Gamma\left(\phi \pi^{+}, \phi \rightarrow \kappa^{+} \kappa^{-}\right) / \Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \pi^{+}\right)$
$\Gamma_{40} / \Gamma_{38}$
This is the＂fit fraction＂from the Dalitz－plot analysis．We decouple the $D_{s}^{+} \rightarrow \phi \pi^{+}$ branching fraction obtained from mass projections（and used to get some of the other branching fractions）from the $D_{s}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow K^{+} K^{-}$branching fraction obtained from the Dalitz－plot analysis of $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$．That is，the ratio of these two branching fractions is not exactly the $\phi \rightarrow K^{+} K^{-}$branching fraction 0．491．
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\text { DOCUMENTID }}$ TECN COMMENT
$\overline{41.6 \pm 0.8}$ OUR AVERAGE
$41.4 \pm 0.8 \pm 0.5$
DEL－AMO－SA．．11G BABR Dalitz fit， $96 \mathrm{k} \pm 369$ evts
$42.2 \pm 1.6 \pm 0.3$ MITCHELL 09A CLEO Dalitz fit，12k evts
－－We do not use the following data for averages，fits，limits，etc．－－－
$39.6 \pm 3.3 \pm 4.7 \quad$ FRABETTI 95B E687 Dalitz fit， 701 evts
$\Gamma\left(\boldsymbol{K}^{+} \overline{\boldsymbol{K}}^{*}(892)^{\mathbf{0}}, \overline{\boldsymbol{K}}^{* 0} \rightarrow \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right) / \Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right) \quad \Gamma_{\mathbf{4 1}} / \Gamma_{\mathbf{3 8}}$
This is the＂fit fraction＂from the Dalitz－plot analysis． VALUE（units 10^{-2} ）DOCUMENTID TECN COMMENT
47．8 $\pm \mathbf{0 . 6}$ OUR AVERAGE
$47.9 \pm 0.5 \pm 0.5$
DEL－AMO－SA．．11G BABR Dalitz fit， $96 \mathrm{k} \pm 369$ evts
$47.4 \pm 1.5 \pm 0.4$ MITCHELL 09A CLEO Dalitz fit，12k evts
－－We do not use the following data for averages，fits，limits，etc．－－
$47.8 \pm 4.6 \pm 4.0 \quad$ FRABETTI 95B E687 Dalitz fit， 701 evts

$\Gamma\left(f_{0}(980) \pi^{+}, f_{0} \rightarrow K^{+} K^{-}\right) / \Gamma\left(K^{+} K^{-} \pi^{+}\right)$ This is the＂fit fraction＂from the Dalitz－plot analysis．		
VALUE（units 10^{-2} ）	DOCUMENTID TECN	COMMENT
21 ± 6 OUR AVERAGE Error includes scale factor of 3．5．		
$16.4 \pm 0.7 \pm 2.0$	DEL－AMO－SA．．11G BABR	Daltz fit， $96 \mathrm{k} \pm 369 \mathrm{evt}$
$28.2 \pm 1.9 \pm 1.8$	MITCHELL 09a CLEO	Dalitz fit，12k evts
－－We do not use the following data for averages，fits，limits，etc．－－		
$11.0 \pm 3.5 \pm 2.6$	FRABETTI 95B E687	Dalitz fit， 701 evts

Meson Particle Listings
$D_{s}^{ \pm}$

	$\begin{aligned} & \left.\pi^{+} \pi^{-}\right) \\ & n \text { the Dalitz-plot } \end{aligned}$	See above for the full
	Document in	
- We d		
$\Gamma\left(f_{0}(1370) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(2 \pi^{+} \pi^{-}\right)$ This is the "it fraction" from the Datiz-plot analysis. See above for the $\mathrm{F}_{68} / \mathrm{F}_{6}$ $\pi^{\pi+\left(\pi^{+} \pi^{-}\right)} S_{\text {-wave }}$ if fit fraction.		

- - We do not use the following data for averages, fits, limits, etc. - • -
$0.324 \pm 0.077 \pm 0.017 \quad$ AITALA $\quad 01 \mathrm{~A}$ E791 Dalitz fit, 848 evts
$\Gamma\left(f_{0}(1500) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(2 \pi^{+} \pi^{-}\right) \quad \Gamma_{69} / \Gamma_{64}$ This is the "fit fraction" from the Dalitz-plot analysis. See above for the full $\pi^{+}\left(\pi^{+} \pi^{-}\right)_{S-w a v e}$ fit fraction.
VALUE DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

$\Gamma\left(\rho\left({ }_{\text {This is the " }}+{ }^{1450}\right)^{0} \pi^{+}, \rho^{0} \rightarrow \pi^{+} \pi^{*}\right.$	$-) / \Gamma\left(2 \pi^{+} \pi^{-}\right)$ me Dalitz-plot	$\Gamma_{71} / \Gamma_{64}$	
VALUE	DOCUMENT ID	TECN COMMENT	COMMENT
0.027 ± 0.018 OUR AVERAGE			
$0.023 \pm 0.008 \pm 0.017$	AUBERT 090	BABR D	Dalitz fit, $\approx 10.5 \mathrm{k}$ evts
$0.0656 \pm 0.0343 \pm 0.0440$	LINK 04	FOCS Da	Dalitz fit, 1475 ± 50 evts
- - We do not use the following data for averages, fits, limits, etc. - . -			
$0.044 \pm 0.021 \pm 0.002$	AITALA 01A	E791 Da	itz fit, 848 evts
$\Gamma\left(\pi^{+} 2 \pi^{0}\right) / \Gamma_{\text {total }}$			Γ_{72} / Γ
VALUE (\%) EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 6 5} \pm \mathbf{0 . 1 3} \pm 0.03 \quad 72 \pm 16$	NAIK	09A CLEO	$e^{+} e^{-}$at 4170 MeV

$\Gamma\left(2 \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\phi \pi^{+}\right)$
$\Gamma_{73} / \Gamma_{39}$

- - We do not use the following data for averages, fits, limits, etc. • • -
<3.3 90 ANJOS 89E E691 Photoproduction

VALUE (\%)	EVTS	DOCUMENTID	TECN	COMMENT
$\overline{1.68 \pm 0.10 ~ O U R ~ F I T ~}{ }^{\text {Error }}$ includes scale factor of 1.2.				
$\mathbf{1 . 7 1} \pm \mathbf{0 . 0 8}$ OUR AVERAGE				
$1.67 \pm 0.08 \pm 0.06$		ONYISI	13 CLEO	$e^{+} e^{-}$at 4.17 GeV
$1.82 \pm 0.14 \pm 0.07$	0.8k	ZUPANC	13 BELL	$e^{+} e^{-}$at $\gamma(4 S), \Upsilon(5 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$1.58 \pm 0.11 \pm 0.18$		${ }^{1}$ ALEXANDER	08 CLEO	See ONYISI 13
${ }^{1}$ ALEXANDER	Si	double-tag	nts	erall

$\begin{array}{cc}\Gamma\left(\boldsymbol{\eta} \boldsymbol{\pi}^{+}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) & \Gamma_{\mathbf{7 4}} / \boldsymbol{\Gamma}_{\mathbf{3 5}}\end{array}$
$\frac{\text { VALUE }}{1.15} \mathbf{+ 0 . 0 8}$ OUR FIT EVTS $\frac{\text { EOCUMENT ID }}{\text { Error incN }}$ COMMENT
$\mathbf{1 . 1 5} \mathbf{\pm 0 . 0 8}$ OUR FIT Error includes scale factor of 1.3.

- - We do not use the following data for averages, fits, limits, etc. - • -
$1.236 \pm 0.043 \pm 0.063 \quad 2587 \pm 89 \quad$ MENDEZ 10 CLEO See ONYISI 13
$\Gamma\left(\eta \pi^{+}\right) / \Gamma\left(\phi \pi^{+}\right)$
${ }_{574} /{ }^{39}$
VALUE EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - •
$0.48 \pm 0.03 \pm 0.04 \quad 920 \quad$ JESSOP 98 CLE2 $e^{+} e^{-} \approx r(4 S)$
$0.54 \pm 0.09 \pm 0.06 \quad 165$ ALEXANDER 92 CLE2 See JESSOP 98
$\Gamma\left(\omega \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{7 5}} / \Gamma$
Unseen decay modes of the ω are included.
VALUE (\%)
DOCUMENTID TECN COMMENT
0.192 ± 0.030 OUR FIT
0.181 ± 0.032 OUR AVERAGE
$0.177 \pm 0.032 \pm 0.01365 \pm 12$ $0.21 \pm 0.09 \pm 0.01 \quad 6 \pm 2.4 \quad$ GE 09 A CLEO $e^{+} e^{-}$at 4170 MeV

ABLIKIM 19Ан BES3 $e^{+} e^{-}$at 4.178 GeV

$\Gamma\left(\omega \pi^{+}\right) / \Gamma\left(\eta \pi^{+}\right)$	es of	onances are in	uded		$\Gamma_{75} / \Gamma_{74}$	
VALUE		DOCUMENT ID		TECN	COMMENT	
0.114 ± 0.018 OUR FIT						
$0.16 \pm 0.04 \pm 0.03$		BALEST	97	CLE2	$e^{+} e^{-} \approx$	$r(4 S)$
$\Gamma\left(3 \pi^{+} 2 \pi^{-}\right) / \Gamma(K$	π					$\Gamma_{76} / \Gamma_{38}$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.146 ± 0.014 OUR AVERAGE						
$0.145 \pm 0.011 \pm 0.010$	671	LINK	03D	FOCS	$\gamma \mathrm{A}, \bar{E}_{\gamma}$	$\approx 180 \mathrm{GeV}$
$0.158 \pm 0.042 \pm 0.031$	37	FRABETTI	97C	E687	$\gamma \mathrm{Be}, \bar{E}_{\gamma}$	$\approx 200 \mathrm{GeV}$

$\Gamma\left(\eta \rho^{+}\right) / \Gamma_{\text {total }}$						Γ_{78} / Γ
Unseen decay modes of the η are included.						
VALUE (\%)	EVTS	DOCUM		TECN	COMMENT	
$8.9 \pm 0.6 \pm 0.5$	328 ± 22	NAIK	09A	CLEO	$\eta \rightarrow 2 \gamma$	
$\Gamma\left(\eta \rho^{+}\right) / \Gamma\left(\phi \pi^{+}\right)$						$\Gamma_{78} / \Gamma_{39}$

. We do not use the TECN COMMENT

$2.98 \pm 0.20 \pm 0.39$	447	JESSOP	98	CLE2	$e^{+} e^{-} \approx r(4 S)$
$2.86 \pm 0.38_{-0.38}^{+0.36}$	217	AVERY	92	CLE2	See JESSOP 98

$\Gamma\left(\boldsymbol{\eta} \rho^{+}\right) / \Gamma\left(\boldsymbol{\eta} \boldsymbol{\pi}^{+} \pi^{\mathbf{0}}\right)$					$\Gamma_{78} / \Gamma_{79}$
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN C	COMMENT	
$78.3 \pm 5.0 \pm 2.1$	1.2k	ABLIKIM	19be BES3 η	$\eta \pi^{+} \pi^{0}$ ampl	e analysis
$\Gamma\left(\eta \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$					「79/Г
VALUE (\%)	EVTS	DOCUMENT ID	D TECN	- COMMENT	
9.5 ± 0.5 OUR AVERAGE					
$9.50 \pm 0.28 \pm 0.41$	2.6k	ABLIKIM	19be BES3	$3 e^{+} e^{-}$at	78 GeV
$9.2 \pm 0.4 \pm 1.1$		ONYISI	13 CLEO	$0 e^{+} e^{-}$at	GeV

$\Gamma\left(\omega 2 \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{84} / Γ
VALUE (\%)	EVTS			TECN	COMMENT	
$1.58 \pm 0.45 \pm 0.09$	29 ± 8.2	GE	09A	CLEO	$e^{+} e^{-}$at 4170	MeV
$\Gamma\left(\eta^{\prime}(958) \pi^{+}\right) / \Gamma_{\text {total }}$						Γ_{85} / Γ

Unseen decay modes of the $\eta^{\prime}(958)$ are included.
$\frac{\text { VALUE (\%) }}{\mathbf{3 . 9 4} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 2 0}} \quad \frac{\text { DOCUMENT ID }}{\text { ONYISI }} 13 \quad \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 4.17 \mathrm{GeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.77 \pm 0.25 \pm 0.30 \quad 1$ ALEXANDER 08 CLEO See ONYISI 13
${ }^{1}$ ALEXANDER 08 uses single- and double-tagged events in an overall fit.
$\Gamma\left(\boldsymbol{\eta}^{\prime}(958) \pi^{+}\right) / \Gamma\left(K^{+} K_{S}^{\mathbf{0}}\right) \quad \Gamma_{85} / \Gamma_{\mathbf{3 5}}$

Unseen decay modes of the $\eta^{\prime}(958)$ are included.
VALUE EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$2.654 \pm 0.088 \pm 0.139 \quad 1436 \pm 47$ MENDEZ 10 CLEO See ONYISI 13
$\Gamma\left(\eta^{\prime}(958) \pi^{+}\right) / \Gamma\left(\phi \pi^{+}\right)$
Unseen decay modes of the resonances are included
VALUE EVTS DOCUMENTID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • •
$1.03 \pm 0.06 \pm 0.07 \quad 537 \quad$ JESSOP 98 CLE2 $e^{+} e^{-} \approx r(4 S)$
$1.20 \pm 0.15 \pm 0.11 \quad 281$ ALEXANDER 92 CLE2 See JESSOP 98
$2.5 \pm 1.0 \begin{gathered}\text { - } \\ +1.5\end{gathered} \quad 22$ ALVAREZ 91 NA14 Photoproduction
$2.5 \pm 0.5 \pm 0.3 \quad 215 \quad$ ALBRECHT 90D ARG $e^{+} e^{-} \approx 10.4 \mathrm{GeV}$

VALUE (units 10^{-2})_EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$8.9 \pm 1.5 \pm 0.4 \quad 113 \pm 18 \quad$ ADAMS 07A CLEO See MENDEZ 10

Meson Particle Listings
$D_{s}^{ \pm}$

$\boldsymbol{A}_{C P}\left(\overline{K^{0}} / K^{0} \pi^{ \pm}\right)$in $D_{s}^{+} \rightarrow \bar{K}^{0} \pi^{+}, D_{s}^{-} \rightarrow K^{0} \pi^{-}$				
VALUE (\%)	EVTS	DOCUN	TECN	COMMENT
0.4 ± 0.5 OUR AVERAGE				
$0.38 \pm 0.46 \pm 0.17$	121k	${ }^{1}$ AAIJ	14BD LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.3 \pm 2.0 \pm 0.3$	14k	LEES	13E BABR	$e^{+} e^{-}$at $\gamma(4 S)$

$\begin{array}{lll}\bullet-\bullet \text { We do not use the following data for averages, fits, limits, etc. • • - } \\ 0.61 \pm 0.83 \pm 0.14 & 26 k \quad \text { AAIJ } & 13 \mathrm{w} \text { LHCB See AAIJ 14BD }\end{array}$ ${ }^{1} \mathrm{AAIJ} 14 \mathrm{BD}$ reports its result as $A_{C P}\left(D_{S}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}\right)$with $C P$-violation effects in the $K^{0}-\bar{K}^{0}$ system subtracted. It also measures $A_{C P}\left(D^{ \pm} \rightarrow \bar{K}^{0} / K^{0} K^{ \pm}\right)+$ $A_{C P}\left(D_{s}^{ \pm} \rightarrow \bar{K}^{0} / K^{0} \pi^{ \pm}\right)=(0.41 \pm 0.49 \pm 0.26) \%$.

```
\(\underset{\operatorname{VALUE}(\%)}{\boldsymbol{A}_{\boldsymbol{S}}\left(\boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{t}}\right) \text { in } \boldsymbol{D}_{\boldsymbol{S}}^{ \pm} \underset{E V T S}{\Rightarrow} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{\pm}}, ~}\)
```

$\frac{V A L U E(\%)}{\mathbf{0 . 2 0 \pm} \mathbf{0 . 1 8} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
$0.16 \pm 0.17 \pm 0.05 \quad 721 \mathrm{k} \quad$ AAIJ 19T LHCB $p p$ at $7,8,13 \mathrm{TeV}$
$0.6 \pm 2.0 \pm 0.3 \quad 14 \mathrm{k} \quad$ LEES \quad KO $\quad 13 \mathrm{BABR} e^{+} e^{-}$at $r(4 S)$
$5.45 \pm 2.50 \pm 0.33 \quad$ KO $10 \mathrm{BELL} e^{+} e^{-} \approx r(4 S)$
$16.3 \pm 7.3 \pm 0.3 \quad 0.4 \mathrm{k} \quad$ MENDEZ 10 CLEO $e^{+} e^{-}$at 4170 MeV

- - We do not use the following data for averages, fits, limits, etc. - - •
$27 \quad \pm 11 \quad$ ADAMS 07A CLEO See MENDEZ 10
$\boldsymbol{A}_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)$in $D_{s}^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{4 . 5} \pm \mathbf{4 . 8} \pm \mathbf{0 . 6}} \quad \frac{\text { DOCUMENT ID }}{\text { ONYISI }} 13 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 4.17 \mathrm{GeV}}$
- - We do not use the following data for averages, fits, limits, etc. • • -
$11.2 \pm 7.0 \pm 0.9$ ALEXANDER 08 CLEO See ONYISI 13
$\boldsymbol{A}_{C P}\left(K^{ \pm} \eta\right)$ in $D_{s}^{ \pm} \rightarrow K^{ \pm} \eta$
$\frac{\text { VALUE (\%) }}{\text { EOCUMENT ID }} \frac{\text { EVTS }}{\text { TECN }} \frac{\text { COMMENT }}{+15}$
$\mathbf{9 . 3} \mathbf{\pm 1 5 . 2} \mathbf{\pm 0 . 9} \quad 222 \pm 41 \quad$ MENDEZ 10 CLEO $e^{+} e^{-}$at 4170 MeV
- - We do not use the following data for averages, fits, limits, etc. - -
-20 ± 18 ADAMS 07A CLEO See MENDEZ 10
$\boldsymbol{A}_{C P}\left(K^{ \pm} \boldsymbol{\eta}^{\prime}(958)\right)$ in $D_{s}^{ \pm} \rightarrow K^{ \pm} \eta^{\prime}(958)$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{6 . 0} \pm \mathbf{1 8 . 9} \mathbf{\pm 0 . 9}} \frac{\text { EVTS }}{56 \pm 17} \quad \frac{\text { DOCUMENT ID }}{\text { MENDEZ } 10} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \text {at } 4170 \mathrm{MeV}}$
- - We do not use the following data for averages, fits, limits, etc. • - -
$-17 \pm 37 \quad$ ADAMS 07A CLEO See MENDEZ 10

CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTS

$\boldsymbol{A}_{\text {Tviol }}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)$in $D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}$
$\mathrm{C}_{T} \equiv \vec{p}_{K^{+}} \cdot\left(\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}\right)$is a parity-odd correlation of the K^{+}, π^{+}, and π^{-}
momenta for the $D_{S}^{+} \cdot \bar{C}_{T} \equiv \vec{p}_{K^{-}} \cdot\left(\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}\right)$is the corresponding quantity for
the D_{S}^{-}. Then
$\underline{A}_{T} \equiv\left[\Gamma\left(\mathrm{C}_{\underline{T}}>0\right)-\Gamma\left(\mathrm{C}_{T} \leq 0\right)\right] /\left[\Gamma\left(\mathrm{C}_{T}>0\right)+\Gamma\left(\mathrm{C}_{T}<0\right)\right]$, and
$\bar{A}_{T} \equiv\left[\Gamma\left(-\bar{C}_{T}>0\right)-\Gamma\left(-\bar{C}_{T}<0\right)\right] /\left[\Gamma\left(-\bar{C}_{T}>0\right)+\Gamma\left(-\bar{C}_{T}<0\right)\right]$, and
$\mathrm{A}_{\text {Tviol }} \equiv \frac{1}{2}\left(\mathrm{~A}_{T}-\bar{A}_{T}\right) . \mathrm{C}_{T}$ and \bar{C}_{T} are commonly referred to as T-odd mo-
ments, because they are odd under T reversal. However, the T-conjugate process
$K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-} \rightarrow D_{S}^{ \pm}$is not accessible, while the P-conjugate process is.
VALUE (units 10^{-3})_EVTS DOCUMENTID TECN COMMENT
$-13.6 \pm 7.7 \pm 3.4 \quad 29.8 \pm 0.3 \mathrm{k} \quad$ LEES 11 E BABR $e^{+} e^{-} \approx r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-36 \pm 67 \pm 23 \quad 508 \pm 34 \quad$ LINK 05E FOCS $\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}$
D_{s}^{+}Semileptonic Form Factors and Decay Constants
$\boldsymbol{r}_{\mathbf{2}} \equiv \boldsymbol{A}_{\mathbf{2}}(\mathbf{0}) / \boldsymbol{A}_{\mathbf{1}}(\mathbf{0})$ in $\boldsymbol{D}_{\mathbf{s}}^{+} \rightarrow \phi \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}$
VALUE $\frac{s_{\text {EVTS }}}{\text { DOCUMENT ID }}$ TECN COMMENT
$0.84 \pm \mathbf{0 . 1 1}$ OUR AVERAGE Error includes scale factor of $\frac{\text { TECN }}{2.4}$

[^117]
Meson Particle Listings

$D_{s}^{ \pm}, D_{s}^{* \pm}$

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 3 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=$ 0.0 for 1 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	-97 x_{3} -19	-4
	x_{1}	x_{2}

D_{s}^{*+} BRANCHING RATIOS

$\frac{\text { VALUE }}{0.935 \pm 0.007 \text { OUR FIT }}$
 0.935 ± 0.007 OUR FIT

DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

seen	ASRATYAN	91	HLBC $\bar{\nu}_{\mu} \mathrm{Ne}$		
seen	ALBRECHT	88	ARG e^{+}	$e^{-} \rightarrow D_{S}^{ \pm} \gamma \mathrm{X}$	
seen	AIHARA	84D			
seen	ALBRECHT	84B			
seen	BRANDELIK	79			
$\Gamma\left(D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{+} \gamma\right)$					Γ_{2}
VALUE	DOCUMENT ID		TECN	COMMENT	
0.062 ± 0.008 OUR FIT					
$\mathbf{0 . 0 6 2} \pm \mathbf{0 . 0 0 8}$ OUR AVER					
$0.062 \pm 0.005 \pm 0.006$	AUBERT,BE		05G BABR	$10.6 e^{+} e^{-}$	drons
$0.062{ }_{-0.018}^{+0.020} \pm 0.022$	GRONBERG		95 CLE2	$e^{+} e^{-}$	

$\Gamma\left(D_{s}^{+} e^{+} e^{-}\right) / \Gamma\left(D_{s}^{+} \gamma\right)$
Γ_{3} / Γ_{1}
VALUE (units 10^{-3}) EVTS
7.2 ± 1.7 OUR FIT
$7.2_{-1.3}^{+1.5} \pm 1.0$
38 CRONIN-HEN... 12 CLEO $4.17 e^{+} e^{-} \rightarrow$ hadrons

$\boldsymbol{D}_{\boldsymbol{s}}^{* \pm}$ REFERENCES				
CRONIN-HEN... 12	PR D86 072005			(CLEO Collab.) (BABAR Collab.)
AUBERT,BE 05 G	PR D72 091101			
GRONBERG 95	PRL 753232	B. Aubert et al. J. Gronberg et al		((CLEO Collab.)
BROWN 94	PR D50 1884	D. Brown et al.		(CLEOO Collab.)
ASRATYAN 91	PL B257 525	A.E. Asratyan et al.		(ITEP, BELG, SACL+)
ALBRECHT 88	PL B207 349	H. Albrecht et al.		(MRGUS Collab.)
BLAYLOCK 87	PRL 582171	A.E. Asratyan et a al		
ASRATYAN 85	PL 156B 441			(Mark (ITEP, SERP)
AlHaRA 84D	PRL 532465	H. Aihara et al.		(TPC, Collab.)
ALBRECHT 84B	PL 146B 111	H. Albrecht et al. R. Brandelik et al.		(ARGUS Collab.)
BRANDELIK 79	PL 80B 412			(DASP Collab.)
$D_{s 0}^{*}(2317)^{ \pm}$		$I\left(J^{P}\right)=0\left(0^{+}\right)$		
AUBERT 06P and CHOI 15A do not observe neutral and doubly charged partners of the $D_{s 0}^{*}(2317)^{+}$.				
$D_{s 0}^{*}(2317)^{ \pm}$MASS				
The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.				
VALUE (MeV)	EVTS	DOCUMENT ID TECN		COMMENT
2317.8 ± 0.5 OUR FIT				
2318.0 ± 0.7 OUR	AVERAGE			
$2318.3 \pm 1.2 \pm 1.2$	115	${ }^{1}$ ABLIKIM	18J BES3	$\begin{aligned} & 4.6 e_{D_{S}^{+}}^{e^{-}} \overrightarrow{D_{S 0}^{*}(2317)^{*}} \end{aligned}$
$2319.6 \pm 0.2 \pm 1.4$	3.1k	AUBERT	06P BABR	$10.6 e^{+} e^{-} \rightarrow D_{S}^{+} \pi^{0} X$
$2317.3 \pm 0.4 \pm 0.8$	1.0k	${ }^{2}$ AUBERT	04E BABR	$10.6 e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -				
2317.2 ± 1.3	88	${ }^{3}$ AUBERT, B 045 BABR $B \rightarrow D_{50}^{(*)}(2317)^{+} \bar{D}^{(*)}$		
$2317.2 \pm 0.5 \pm 0.9$	761	${ }^{4}$ MIKAMI	04 BELL	$10.6 e^{+}{ }^{\text {S0 }}{ }^{-}$
$2316.8 \pm 0.4 \pm 3.0$	1.2 k	4,5 AUBERT	03 G BABR	$10.6 e^{+} e^{-}$
2317.6 ± 1.3	273 4	4,6 AUBERT	03G BABR	$10.6 e^{+} e^{-}$
$2319.8 \pm 2.1 \pm 2.0$		4 KROKOVNY 03b BELL $10.6 e^{+} e^{-}$		
${ }^{1}$ From a fit of the D_{S}^{*} recoil mass where the $D_{s 0}^{*}(2317)$ signal is described with a Crystal Ball function convolved with a Gaussian function.				
${ }_{3}^{2}$ Supersedes AUBERT 03g.				
${ }^{3}$ Systematic errors not evaluated.				
${ }^{4}$ Not independent of the corresponding $m_{D_{s 0}^{*}}(2317)-m_{D_{s}}$.				
${ }^{5}$ From $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$decay.				
${ }^{6}$ From $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+} \pi^{0}$ decay.				

$\boldsymbol{m}_{\boldsymbol{D}_{s 0}^{*}(2317)^{ \pm}}-\boldsymbol{m}_{\boldsymbol{D}_{s}^{ \pm}}$
The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
349.4 ± 0.5 OUR FIT					
349.2 ± 0.7 OUR AVERAGE					
$348.7 \pm 0.5 \pm 0.7$	761	MIKAMI	04	BELL	$10.6 e^{+} e^{-}$
$350.0 \pm 1.2 \pm 1.0$	135	BESSON	03	CLE2	$10.6 e^{+} e^{-}$
$351.3 \pm 2.1 \pm 1.9$	24	7 KROKOVNY	03B	BELL	$10.6 e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -					
$349.6 \pm 0.4 \pm 3.0$	1267	8,9 AUBERT	03G	BABR	$10.6 e^{+} e^{-}$
350.2 ± 1.3	273	0,11 AUBERT	03G	BABR	$10.6 e^{+} e^{-}$
${ }^{7}$ Recalculated by us using $m_{D_{S}^{+}}=1968.5 \pm 0.6 \mathrm{MeV}$.					
${ }^{8}$ From $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$decay.					
${ }^{9}$ Recalculated by us using $m_{D_{s}^{+}}=1967.20 \pm 0.03 \mathrm{MeV}$.					
${ }^{10}$ From $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+} \pi^{0}$ decay.					
${ }^{11}$ Recalculated by us using $m_{D_{S}^{+}}=1967.4 \pm 0.2 \mathrm{MeV}$. Systematic errors not estimated.					

$\boldsymbol{D}_{\boldsymbol{s} 0}^{*}(2317)^{ \pm}$WIDTH							
VALUE (MeV)	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT	
< 3.8	95	3180	AUBERT		BABR	$10.6 e^{+} e^{-}$	$D_{S}^{+} \pi^{0} X$
- - We do not use the following data for averages, fits, limits, etc. - -							
< 4.6	90	761	MIKAMI	04	BELL	$10.6 e^{+} e^{-}$	
<10			AUBERT	03G	BABR	$10.6 e^{+} e^{-}$	
<7	90	135	BESSON	03	CLE2	$10.6 e^{+} e^{-}$	

Meson Particle Listings
$D_{s 0}^{*}(2317)^{ \pm}, D_{s 1}(2460)^{ \pm}$

$D_{s 0}^{*}(2317)^{ \pm}$DECAY MODES

$D_{S 0}^{*}(2317)^{-}$modes are charge conjugates of modes below.

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Confidence level
Γ_{1}	$D_{S}^{+} \pi^{0}$	$\left(100_{-20}^{+}{ }^{0}\right) \%$	
Γ_{2}	$D_{S}^{+} \gamma$	<5	$\%$
Γ_{3}	$D_{S}^{*}(2112)^{+} \gamma$	<6	$\%$
Γ_{4}	$D_{S}^{+} \gamma \gamma$	<18	9
Γ_{5}	$D_{S}^{*}(2112)^{+} \pi^{0}$	<11	90%
Γ_{6}	$D_{S}^{+} \pi^{+} \pi^{-}$	<4	90%
Γ_{7}	$D_{S}^{+} \pi^{0} \pi^{0}$	not seen	

$D_{s 0}^{*}(2317)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(D_{s}^{*}(2112)^{+} \gamma\right) / \Gamma\left(D_{s}^{+} \pi^{0}\right)$				Γ_{3} / Γ_{1}
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
<0.059	BESSON 03	CLE2	$10.6 e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -				
<0.16	AUBERT 06P	BABR	$10.6 e^{+} e^{-}$	
<0.18 90	MIKAMI 04	BELL	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{+} \gamma \gamma\right) / \Gamma\left(D_{s}^{+} \pi^{0}\right)$				Γ_{4} / Γ_{1}
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
<0.18	AUBERT 06P	BABR	$10.6 e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -				
not seen	AUBERT 03G	BABR	$10.6 e^{+} e^{-}$	

$\Gamma\left(D_{s}^{*}(2112)+\pi^{0}\right) / \Gamma\left(D_{s}^{+} \pi^{0}\right)$				Γ_{5} / Γ_{1}
VaLUE CL\%	DOCUMENT ID	TECN	COMMENT	

| $\frac{V A L U E}{<\mathbf{0 . 1 1}}$ | $\frac{C L \%}{90}$ | $\frac{\text { DOCUMENT ID }}{\text { BESSON }} 03$ | $\frac{T E C N}{C L E 2}$ | $\frac{C O M M E N T}{10.6 e^{+} e^{-}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\Gamma\left(\boldsymbol{D}_{\mathbf{+}}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \Gamma\left(\boldsymbol{D}_{\boldsymbol{+}}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right)$ | | | $\boldsymbol{\Gamma}_{\mathbf{6}} / \boldsymbol{\Gamma}_{\mathbf{1}}$ | |

- - We do not use the following data for averages, fits, limits, etc.

<0.005	AUBERT	06P	BABR	$10.6 e^{+} e^{-}$	
<0.019	BESSON	03	CLE2	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{+} \pi^{0} \pi^{0}\right) / \Gamma\left(D_{s}^{+} \pi^{0}\right)$					Γ_{7} / Γ_{1}
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
<0.25 95	AUBERT	06P	BABR	$10.6 e^{+} e^{-}$	

$D_{50}^{*}(2317)^{ \pm}$REFERENCES

ABLIKIM	18」	PR D97 051103	M. Ablikim et al.	(BESIII Collab.)
CHOI	15A	PR D91 092011	S.-K. Choi et al.	(BELLE Collab.)
AUBERT	06P	PR D74 032007	B. Aubert et al.	(BABAR Collab.)
AUBERT	04E	PR D69 031101	B. Aubert et al.	(BABAR Collab.)
AUBERT, B	04S	PRL 93181801	B. Aubert et al.	(BABAR Collab.)
MIKAMI	04	PRL 92012002	Y. Mikami et al.	(BELLE Collab.)
AUBERT	03G	PRL 90242001	B. Aubert et al.	(BABAR Collab.)
BESSON	03	PR D68 032002	D. Besson et al.	(CLEO Collab.)
KROKOVNY	03B	PRL 91262002	P. Krokovny et al.	(BELLE Collab.)

$D_{s 1}(2460)^{ \pm}$
$I\left(J^{P}\right)=0\left(1^{+}\right)$

$D_{\text {s1 }}(\mathbf{2 4 6 0})^{ \pm}$MASS

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.
$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{2 4 5 9 . 5} \pm \mathbf{0 . 6} \text { OUR }} \frac{\text { EVTS }}{\text { FIT }}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor of } 1.1 .}$ TECN COMMENT
$\mathbf{2 4 5 9 . 5} \pm \mathbf{0 . 6}$ OUR FIT Error includes scale factor of 1.1.
$\mathbf{2 4 5 9 . 6} \mathbf{\pm 0 . 9}$ OUR AVERAGE Error includes scale factor of 1.3.

$60.1 \pm 0.2 \pm 0.8$		${ }^{1}$ AUBERT		BABR	0.6
$2458.0 \pm 1.0 \pm$	195	AU			
- - We do not use the following data for averages, fits, limits, etc. -					
$2459.5 \pm 1.2 \pm 3.7$	920	AUBERT		BABR $10.6 e^{+} e^{-} \rightarrow D_{s}^{+} \gamma X$	
$2458.6 \pm 1.0 \pm 2.5$	560	AUBERT		BABR $10.6 e^{+} e^{-} \rightarrow D_{s}^{+} \pi^{0} \gamma X$	
$2460.2 \pm 0.2 \pm 0.8$	123	AUBERT		BABR $10.6 e^{+} e^{-} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	
2458.9 ± 1.5	112	2 AUBERT, B		BABR $B \rightarrow D_{S 1}(2460)^{+} \bar{D}^{(*)}$	
2461.1 ± 1.6	139	3 AUBERT, B		BABR $B \rightarrow D_{S 1}(2460)^{+} \bar{D}^{(*)}$	
$2456.5 \pm 1.3 \pm 1.3$	126	4,5 MIKAMI		BELL $10.6 e^{+} e^{-}$	
$2459.5 \pm 1.3 \pm 2.0$	152	6,7 MIKAMI	04	BELL $10.6 e^{+} e^{-}$	
$2459.9 \pm 0.9 \pm 1.6$	60	6,7 MIKAMI	04	BELL $10.6 e^{+} e^{-}$	
$2459.2 \pm 1.6 \pm 2.0$	57	KROKOVN	03B	$\text { BELL } \quad 10.6 e^{+} e^{-}$	
${ }^{1}$ The average of the values obtained from the $D_{S}^{+} \gamma, D_{S}^{+} \pi^{0} \gamma, D_{S}^{+} \pi^{+} \pi^{-}$final state. ${ }^{2}$ Systematic errors not evaluated. From the decay to $D_{s}^{*+} \pi^{0}$. ${ }^{3}$ Systematic errors not evaluated. From the decay to $D_{S}^{+} \gamma$. ${ }^{4}$ Not independent of the corresponding $m_{D_{S 1}(2460)^{ \pm}}-m_{D_{s}^{* \pm}}$. ${ }^{5}$ Using $m_{D_{s}^{*+}}=2112.4 \pm 0.7 \mathrm{MeV}$. ${ }^{6}$ Not independent of the corresponding $m_{D_{s 1}(2460)^{ \pm}}-m_{D_{s}^{ \pm}}$. ${ }^{7}$ Using $m_{D_{S}^{+}}=1968.5 \pm 0.6 \mathrm{MeV}$.					

$$
m_{D_{s 1}(2460)^{ \pm}}=m_{D_{s}^{* \pm}}
$$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
$\frac{V A L U E(\mathrm{MeV})}{\mathbf{3 4 7 . 3} \pm \mathbf{0 . 7} \text { OUR FIT }} \frac{E V T S}{} \frac{D O C U M E N T}{}$ ID
$347.3 \pm \mathbf{0 . 7}$ OUR FIT Error includes scale factor of 1.2.
347.1 ± 2.2 OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below.

$\boldsymbol{m}_{\boldsymbol{D}_{\mathbf{s 1}}(\mathbf{2 4 6 0})^{ \pm}}=\boldsymbol{m}_{\boldsymbol{D}_{s}^{ \pm}}$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
491.2 $\mathbf{0} \mathbf{0 . 6}$ OUR FIT Error includes scale factor of 1.1. 491.3土1.4 OUR AVERAGE
$491.0 \pm 1.3 \pm 1$.
$\begin{array}{rr}152 & 9 \text { MIKAMI } \\ 60 & 10 \text { MIKAMI }\end{array}$
$91.4 \pm 0.9 \pm 1.5 \quad 60 \quad 10$ MIKAMI 04 BELL $10.6 e^{+} e^{-}$
${ }^{9}$ From the decay to $D_{S}^{ \pm} \gamma$.
${ }^{10}$ From the decay to $D_{S}^{ \pm} \pi^{+} \pi^{-}$.

$D_{S 1}(2460)^{ \pm}$WIDTH

$\frac{\text { VALUE }(\mathrm{MeV})}{95} \frac{C L \%}{123}$ EVTS $\frac{\text { DOCUMENT ID }}{\text { AUBERT 06p }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow D^{+} \pi^{+} \pi^{-} \boldsymbol{x}}$

- - We do not use the following data for averages, fits, limits, etc. - -

<6.3	95	560	AUBERT	06 P	BABR	$10.6 e^{+} e^{-} \rightarrow D_{S}^{+} \pi^{0}{ }_{\gamma} X$
<10		195	AUBERT	04 E	BABR	$10.6 e^{+} e^{-}$
<5.5	90	126	MIKAMI	04	BELL	$10.6 e^{+} e^{-}$
<7	90	41	BESSON	03	CLE2	$10.6 e^{+} e^{-}$

$D_{s 1}(2460)^{+}$DECAY MODES

$D_{S 1}(2460)^{-}$modes are charge conjugates of the modes below.

	Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor/ Confidence Ievel
Γ_{1}	$D_{S}^{*+} \pi^{0}$	$(48 \pm 11) \%$	
Γ_{2}	$D_{S}^{+} \gamma$	$(18 \pm 4) \%$	
Γ_{3}	$D_{S}^{+} \pi^{+} \pi^{-}$	$(4.3 \pm 1.3) \%$	
Γ_{4}	$D_{S}^{*+} \gamma$	<8	$\%$

CONSTRAINED FIT INFORMATION

An overall fit to 7 branching ratios uses 8 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^{2}=$ 3.4 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{2}	80		
x_{3}	68	62	
x_{5}	-3	25	26
	x_{1}	x_{2}	x_{3}

$D_{s 1}(2460)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(D_{s}^{*+} \pi^{0}\right) / \Gamma_{\text {total }}$					$\Gamma 1 / \Gamma$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.48 ± 0.11 OUR FIT					
$0.56 \pm 0.13 \pm 0.09$	11 AUBERT $\quad 06 \mathrm{~N}$ BABR $B \rightarrow D_{S 1}(2460)^{-} \bar{D}^{(*)}$				
- - We do not use the following data for averages, fits, limits, etc. - -					
seen	41	BESSON	CLE2	$10.6 e^{+} e$	
11 Evaluated in AUB	T 06	cluding measure	m	BERT,B	

$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{s}}^{+} \gamma\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$\frac{V A L U E}{\mathbf{0 . 1 8} \pm \mathbf{0 . 0 4} \text { OUR FIT }} \quad$ DOCUMENT ID	TECN COMMENT

$\overline{0.18 \pm 0.04 \text { OUR FIT }}$

$0.16 \pm 0.04 \pm 0.03$

12 AUBERT

06N BABR $B \rightarrow D_{S 1}(2460)^{-} \bar{D}^{(*)}$
${ }^{12}$ Evaluated in AUBERT 06N including measurements from AUBERT,B 045.
$\Gamma\left(D_{s}^{+} \gamma\right) / \Gamma\left(D_{s}^{*+} \pi^{0}\right)$
Γ_{2} / Γ_{1}
$\frac{\text { VALUE }}{0.38 \pm 0.05 \text { OUR FIT }} \frac{C L \%}{}$
0.44 ± 0.09 OUR AVERAGE
$0.55 \pm 0.13 \pm 0.08 \quad 152 \quad$ MIKAMI 04 BELL $10.6 e^{+} e^{-}$
$0.38 \pm 0.11 \pm 0.04 \quad 38 \quad$ KROKOVNY 03B BELL $10.6 e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.274 \pm 0.045 \pm 0.020 \quad 251 \quad 13$ AUBERT,B $\quad 04 \mathrm{~s}$ BABR $B \rightarrow$
$\vec{D}_{S 1}(2460)+\bar{D}^{(*)}$ $<.49$
90
BESSON 03
CLE2
$10.6 e^{+} e^{-}$
${ }^{13}$ Used by AUBERT 06N in their measurement of $\mathrm{B}\left(D_{s}^{*-} \pi^{0}\right)$ and $\mathrm{B}\left(D_{s}^{-} \gamma\right)$.
$\Gamma\left(D_{s}^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(D_{s}^{*+} \pi^{0}\right)$
Γ_{3} / Γ_{1}
$\frac{\text { VALUE }}{\mathbf{0 . 0 9 0} \mathbf{\pm 0 . 0 2 0} \text { OUR FIT }} \frac{\text { CL\% }}{\text { Error }} \frac{\text { EVTS }}{\text { includes scale factor of } 1.2 .}$ TECN COMMENT 0.090 $\mathbf{\pm 0 . 0 2 0 \text { OUR FIT }}$ Error includes scale factor of 1.2.
- - We do not use the following data for averages, fits, limits, etc. - .
$<0.08 \quad 90 \quad$ BESSON 03 CLE2 $10.6 e^{+} e^{-}$

$\Gamma\left(D_{s}^{*+} \gamma\right) / \Gamma\left(D_{s}^{*+} \pi^{0}\right)$					Γ_{4} / Γ_{1}		
$\frac{10.16}{}$			DOCUMENT ID		TECN	COMMENT	
			BESSON	03	CLE2	$10.6 e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -							
<0.31		90	MIKAMI		BELL	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right) / \Gamma\left(D_{s}^{*+} \pi^{0}\right)$						Γ_{5} / Γ_{1}	
VALUE		CL\%	DOCUMENT ID		TECN	COMMENT	
<0.22		95	AUBERT		BABR	$10.6 e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -							
<0.58		90	BESSON		CLE2	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{*+} \pi^{0}\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{1} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE			DOCUMENT ID		TECN	COMMENT	
0.93 ± 0.09 OUR FIT						$10.6 e^{+} e^{-}$	
0.97 ± 0.09	0.05		AUBERT	06P	BABR		
$\Gamma\left(D_{s}^{+} \gamma\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{2} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE			DOCUMENT ID		TECN	COMMENT	
0.35 ± 0.04 OUR FIT						$10.6 e^{+} e^{-}$	
0.337 ± 0.03	6 ± 0.		AUBERT	06P	BABR		
$\Gamma\left(D_{s}^{+} \pi^{+} \pi^{-}\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{3} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE			DOCUMENT		TECN	COMMENT	
0.083 $\pm \mathbf{0 . 0 1 7}$ OUR FIT Error includes scale factor of 1.2							
0.077 ± 0.01	3 ± 0.		AUBERT		BABR	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{*+} \gamma\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{4} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE		- CL\%	DOCUMENT		TECN	COMMENT	
<0.24		95	AUBERT 06P		BABR	$10.6 e^{+} e^{-}$	
						$\Gamma_{5} /\left(\Gamma_{1}+\Gamma_{5}\right.$	
					TECN	COMMENT	
<0.25		95	AUBERT 06P		BABR	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{+} \pi^{0}\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{6} /\left(\Gamma_{1}+\Gamma_{5}\right.$	
VALUE		- CL\%	DOCUMENT ID		TECN	COMMENT	
<0.042		95	AUBERT 06P		BABR	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{+} \pi^{0} \pi^{0}\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{7} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE		- CL\%	DOCUMENT ID		TECN	COMMENT	
<0.68		95	AUBERT	06P	BABR	$10.6 e^{+} e^{-}$	
$\Gamma\left(D_{s}^{+} \gamma \gamma\right) /\left[\Gamma\left(D_{s}^{*+} \pi^{0}\right)+\Gamma\left(D_{s 0}^{*}(2317)^{+} \gamma\right)\right]$						$\Gamma_{8} /\left(\Gamma_{1}+\Gamma_{5}\right)$	
VALUE		CL\%	DOCUMENT ID		TECN	COMMENT	
<0.33		95	AUBERT	06P	BABR	$10.6 e^{+} e^{-}$	
$D_{s 1}(2460)^{ \pm}$REFERENCES							
AUBERT	06N	PR D74 031103	B. Aubert et al.			(BABAR Collab.)	
AUBERT	06P	PR D74 032007				(BABAR Collab.)	
AUBERT	04 E	PR D69 031101	B. Aubert et al.B. Aubert et al.			(BABAR Collab.)	
AUBERT,B	04 S	PRL 93181801					
MIKAMI	04	PRL 92012002	B. Aubert et al.Y. Mikami et al.			(BABAR Collab.)(BELLE Collab.)	
BESSON	03	PR D68 032002	D. Besson et al.			(CLEO Collab.)	
KROKOVNY	03B	PRL 91262002	P. Krokovny et al.			(BELLE Collab.)	
$D_{s 1}(2$	53	$6)^{ \pm}$		$=$	$\begin{gathered} 0\left(1^{+}\right. \\ \text {d conf } \end{gathered}$	irmation.	

Seen in $D^{*}(2010)^{+} K^{0}, D^{*}(2007)^{0} K^{+}$, and $D_{s}^{+} \pi^{+} \pi^{-}$. Not seen in $D^{+} K^{0}$ or $D^{0} K^{+}$. J $J^{P}=1^{+}$assignment strongly favored.

$D_{s 1}(2536)^{ \pm}$MASS

The fit includes $D^{ \pm}, D^{0}, D_{S}^{ \pm}, D^{* \pm}, D^{* 0}, D_{S}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

VALUE (MeV)
EVTS DOCUMENT ID
DOCUMENT ID TECN COMMENT
$\mathbf{2 5 3 5 . 1 1} \pm \mathbf{0 . 0 6}$ OUR FIT
$\mathbf{2 5 3 5 . 2 1} \pm \mathbf{0 . 2 8}$ OUR AVERAGE

$2537.7 \pm 0.5 \pm 3.1$	24	1 ABLIKIM	19P	BES3	$4.6 \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow D_{S}^{+} \bar{D}^{0} \mathrm{~K}^{-}$
$2535.7 \pm 0.6 \pm 0.5$	46	${ }^{2}$ ABAZOV	09G	D0	$B_{s}^{0} \rightarrow D_{s 1}^{-} \mu^{+} \nu_{\mu} X$
$2534.78 \pm 0.31 \pm 0.40$	182	AUBERT	08B	BABR	$B \rightarrow \bar{D}^{(*)} D^{*} K$
$2534.6 \pm 0.3 \pm 0.7$	193	AUBERT	06P	BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & D_{s}^{+} \pi^{+} \pi^{-} x \end{aligned}$
2535.3 ± 0.7	92	${ }^{3}$ HEISTER	02B	ALEP	$\begin{gathered} e^{+} e^{-} \rightarrow D^{*+} K^{0} X \\ D^{* 0} K^{+} X \end{gathered}$
2534.2 ± 1.2	9	ASRATYAN	94	BEBC	$\stackrel{\nu N \rightarrow D^{*}}{ } K^{0} \times, D^{* 0} K^{ \pm} \mathrm{X}$
$2535 \pm 0.6 \pm 1$	75	FRABETTI	94B	E687	$\begin{gathered} \gamma \mathrm{Be} \rightarrow D^{*+} K^{0} \mathrm{X} \\ D^{* 0} K^{+} \mathrm{X} \end{gathered}$
$2535.2 \pm 0.5 \pm 1.5$	28	ALBRECHT	92R	ARG	$\begin{gathered} 10.4 e^{+} e^{-} \\ D^{* 0} K^{+} \end{gathered}$
$2536.6 \pm 0.7 \pm 0.4$		AVERY	90	CLEO	$e^{+} e^{-} \rightarrow D^{*+} K^{0} \mathrm{X}$
$2535.9 \pm 0.6 \pm 2.0$		ALBRECHT	89 E	ARG	$D_{S 1}^{*} \rightarrow D^{*}(2010) K^{0}$

Meson Particle Listings
$D_{s 1}(2536)^{ \pm}$

- - We do not use the following data for averages, fits, limits, etc. - - -

2534.1 ± 0.6	116	${ }^{4}$ AUSHEV	11	BELL	$B \rightarrow D_{S 1}(2536)^{+} D^{(*)}$
$2535.08 \pm 0.01 \pm 0.15$	8038	${ }^{5}$ LEES	11B	BABR	$\begin{gathered} 10.6 e^{++} e^{-} \\ D^{*+}+k_{S}^{0} x \end{gathered}$
$2535.57{ }_{-0.41}^{+0.44} \pm 0.10$	236	${ }^{6}$ CHEKANOV	09	ZEUS	$\begin{aligned} & e^{ \pm} p \rightarrow D^{*+} K_{S}^{0} x, \\ & D^{* 0} K^{+} x \end{aligned}$
$2535.3 \pm 0.2 \pm 0.5$	134	7 ALEXANDER	93	CLE2	$e^{+} e^{-} \rightarrow D^{* 0} K^{+} \mathrm{X}$
$2534.8 \pm 0.6 \pm 0.6$	44	8^{8} ALEXANDER	93	CLE2	$e^{+} e^{-} \rightarrow D^{*+} K^{0} \mathrm{X}$
2535 ± 28		${ }^{9}$ ASRATYAN	88	HLBC	$\nu N \rightarrow D_{s} \gamma \gamma \mathrm{X}$

${ }^{1}$ From a fit of the D_{s}^{+}recoil mass distribution with an incoherent sum of the S-wave and
D-wave Breit-Wigner line shapes.
${ }^{2}$ Using the $D^{*}(2010)^{ \pm}$mass of $2010.0 \pm 0.4 \mathrm{MeV}$ from PDG 06 .
${ }^{3}$ Calculated using $m\left(D^{*}(2010)^{ \pm}\right)=2010.0 \pm 0.5 \mathrm{MeV}, m\left(D^{*}(2007)^{0}\right)=2006.7 \pm 0.5$
${ }_{4} \mathrm{MeV}$, and the mass difference below.
${ }^{4}$ Systematic uncertainties not evaluated.
${ }^{5}$ Calculated using the mass difference $m\left(D_{s 1}^{+}\right)-m\left(D^{*+}\right)_{P D G}$ below and $m\left(D^{*+}\right)_{P D G}$ $=2010.25 \pm 0.14 \mathrm{MeV}$. Assuming S-wave decay of the $D_{S 1}(2536)$ to $D^{*+} K_{S}^{0}$, using a Breit-Wigner line shape corresponding to $\mathrm{L}=0$.
${ }^{6}$ Calculated using the mass difference $m\left(D_{s 1}^{+}\right)-m\left(D^{*+}\right)_{P D G}$ reported below and $m\left(D^{*+}\right)_{P D G}=2010.27 \pm 0.17 \mathrm{MeV}$.
${ }^{7}$ Calculated using $m\left(D^{*}(2007)^{0}\right)=2006.6 \pm 0.5 \mathrm{MeV}$ and the mass difference below.
${ }^{8}$ Calculated using $m\left(D^{*}(2010)^{ \pm}\right)=2010.1 \pm 0.6 \mathrm{MeV}$ and the mass difference below. ${ }^{9}$ Not seen in $D^{*} K$.

$$
m_{D_{51}(2536)^{ \pm}}-m_{D_{s}^{*}(2111)}
$$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

$\boldsymbol{m}_{D_{s 1}(2536)^{ \pm}}=m_{D^{*}(2010)^{ \pm}}$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

Value (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
524.85 ± 0.04 OUR FIT				
524.84 ± 0.04 OUR AVERAGE				
$524.83 \pm 0.01 \pm 0.04$	8038	10 LEES 11B	BABR	$10.6 e^{+} e^{-} \rightarrow D^{*+} K_{S}^{0} X$
$525.30_{-0.41}^{+0.44} \pm 0.10$	236 ± 30	CHEKANOV 09	zEUS	$\begin{gathered} e^{ \pm} p \rightarrow D^{*+} K_{S}^{0} x \\ D^{* 0} K^{+} x \end{gathered}$
$525.3 \pm 0.6 \pm 0.1$	41	HEISTER 02B	ALEP	$e^{+} e^{-} \rightarrow D^{*+} K^{0} X$
$524.7 \pm 0.6 \pm 0.2$	44	ALEXANDER 93	CLE2	$e^{+} e^{-} \rightarrow D^{*+} K_{S}^{0} \mathrm{X}$
${ }^{10}$ Assuming S-wave decay of the $D_{S 1}(2536)$ to $D^{*+} K_{S}^{0}$, using a Breit-Wigner line shape				

$m_{D_{s 1}(2536)^{ \pm}}-m_{D^{*}(2007)^{0}}$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$, and $D_{S 1}(2536)^{ \pm}$mass and mass difference measurements.

$\operatorname{VALUE}(\mathrm{MeV})$ EVTS		DOCUMENTID		TECN	COMMENT	
$528.26 \pm \mathbf{0 . 0 5}$ OUR FIT Error includes scale factor of 1.2. 528.68 ± 0.28 OUR AVERAGE						
$528.7 \pm 1.9 \pm 0.5$	51	HEISTER	02B	ALEP	$e^{+} e^{-}$	$D^{* 0} K^{+} x$
527.3 ± 2.2	29	ACKERSTAFF	97w	OPAL	$e^{+} e^{-}$	$D^{* 0} K^{+} \mathrm{x}$
$528.7 \pm 0.2 \pm 0.2$	134	ALEXANDER	93	CLE2	$e^{+} e^{-}$	$D^{* 0} K^{+} \mathrm{X}$

			$D_{s 1}(2536) \pm$	VID		
VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
0.92 ± 0.05 OUR	VER	AGE				
$1.7 \pm 1.2 \pm 0.6$		24	${ }^{11}$ ABLIKIM	19P	BES3	$4.6 e^{+} e^{-} \rightarrow D_{s}^{+} \bar{D}^{0} K^{-}$
$0.92 \pm 0.03 \pm 0.04$		8038	12 LeES		BABR	$10.6 e^{+} e^{-} \rightarrow D^{*+} K_{S}^{0} X$
- - We do not	use th	fo foll	wing data for aver	ages,	fits, limits	, etc
0.75 ± 0.23		116	${ }^{13}$ AUSHEV	11	BELL	$B \rightarrow D_{S 1}(2536)^{+} D^{(*)}$
<2.5	95	193	AUBERT	06P	BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & D_{c}^{+} \pi^{+} \pi^{-} x \end{aligned}$
< 3.2	90	75	FRABETTI	94B	E687	$\underset{D^{* 0}}{\gamma \mathrm{Be}^{5}{ }_{K^{+} \mathrm{x}}}$
<2.3	90		ALEXANDER	93	CLEO	$e^{+} e^{-} \rightarrow D^{* 0} K^{+} \mathrm{X}$
< 3.9	90		ALBRECHT	92R	ARG	$10.4 e^{+} e^{-} \rightarrow D^{* 0} K^{+} \mathrm{X}$
< 5.44	90		AVERY	90	CLEO	$e^{+} e^{-} \rightarrow D^{*+} K^{0} \mathrm{X}$
<4.6	90		ALBRECHT	89 E	ARG	$D_{S 1}^{*} \rightarrow D^{*}(2010) K^{0}$

${ }^{11}$ From a fit of the D_{s}^{+}recoil mass distribution with an incoherent sum of the S-wave and s-wave Breit-Wigner line shapes.
${ }^{12}$ Assuming S-wave decay of the $D_{S 1}(2536)$ to $D^{*+} K_{S}^{0}$, using a Breit-Wigner line shape corresponding to $\mathrm{L}=0$.
${ }^{13}$ Systematic uncertainties not evaluated.

$D_{s 1}(2536)^{+}$DECAY MODES

$D_{s 1}(2536)^{-}$modes are charge conjugates of the modes below.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
Γ_{1}	$D^{*}(2010)^{+} K^{0}$	0.85 ± 0.12	
Γ_{2}	$\left(D^{*}(2010)^{+} K^{0}\right)_{S \text {-wave }}$	0.61 ± 0.09	
Γ_{3}	$\left(D^{*}(2010)^{+} K^{0}\right)_{D \text {-wave }}$		
Γ_{4}	$D^{+} \pi^{-} K^{+}$	0.028 ± 0.005	
Γ_{5}	$D^{*}(2007)^{0} K^{+}$	DEFINED AS 1	
Γ_{6}	$D^{+} K^{0}$	<0.34	
Γ_{7}	$D^{0} K^{+}$	<0.12	90%
Γ_{8}	$D_{S}^{*+} \gamma$	possibly seen	90%
Γ_{9}	$D_{S}^{+} \pi^{+} \pi^{-}$	seen	

$D_{s 1}(\mathbf{2 5 3 6})^{+}$BRANCHING RATIOS					
$\Gamma\left(D^{*}(2007)^{0} K^{+}\right) / \Gamma\left(D^{*}(2010)+K^{0}\right)$				TECN	COMMENT $\quad \Gamma_{\mathbf{5}} / \Gamma_{\mathbf{1}}$
VALUE	EVTS	DOCUMENT ID			
1.18 ± 0.16 OUR AVERAGE					
$0.88 \pm 0.24 \pm 0.08$	116	AUSHEV	11	BELL	$B \rightarrow D_{S 1}(2536)+D^{(*)}$
$2.3 \pm 0.6 \pm 0.3$	236 ± 30	CHEKANOV	09	ZEUS	$e^{ \pm} p \rightarrow D^{*+} K_{S}^{0} X$,
$1.32 \pm 0.47 \pm 0.23$	92	14 HEISTER	02B	ALEP	$\begin{aligned} & \quad D^{* 0} K^{+} X \\ & e^{+} \rightarrow D^{*+} K^{0} X, \\ & D^{* 0} K \end{aligned}$
$1.9{ }_{-0.9}^{+1.1} \pm 0.4$	35	14 ACKERSTAFF	97w	OPAL	$\begin{aligned} & e^{+} e^{-} \rightarrow D^{* 0} K^{+} \mathrm{X} \\ & D^{*+} K^{0} \mathrm{X} \end{aligned}$
1.1 ± 0.3		ALEXANDER	93	CLEO	$e^{+}{ }_{D^{* 0}}^{-} \xrightarrow[K]{\vec{K}}+\mathrm{x}, D^{*+} K^{0} \mathrm{x}$
$1.4 \pm 0.3 \pm 0.2$		15 ALBRECHT		ARG	$\begin{aligned} & 10.4 e^{+} e^{-} \rightarrow \\ & D^{* 0} K^{+} \times D^{*+} K^{0} \mathrm{x} \end{aligned}$

${ }^{14}$ Ratio of the production rates measured in Z^{0} decays.
${ }^{15}$ Evaluated by us from published inclusive cross-sections.

$\boldsymbol{\Gamma}\left(\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{+} \boldsymbol{K}^{\mathbf{0}}\right)_{\boldsymbol{S - w a v e}}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{+} \boldsymbol{K}^{\mathbf{0}}\right)$	$\boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}_{\mathbf{1}}$	
$\frac{\text { VALUE }}{\mathbf{0 . 7 2} \pm \mathbf{0 . 0 5} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{5485}$	$\frac{\text { DOCUMENT ID }}{\text { BALAGURA }} 0$	TECN
BELL	$\frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow D^{*+} K^{0} X}$	

$\Gamma\left(D^{+} \pi^{-} K^{+}\right) / \Gamma\left(D^{*}(2010)+K^{0}\right)$						Γ_{4} / Γ_{1}
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.27 \pm 0.18 \pm 0.37$	1264	BALAGURA	08	BELL	$10.6 e^{+} e^{-}$	K^{+}

$<\mathbf{0 . 4 0} \frac{10}{90} \frac{\text { ALEXANDER } 93}{\text { CLEO }} \frac{e^{+} e^{-} \rightarrow D^{*+} K^{0} \mathrm{X}}{}$

- - We do not use the following data for averages, fits, limits, etc. - • -

$D_{s 1}(2536)^{ \pm}$REFERENCES

ABLIKIM	19P	CP C43 031001	M. Ablikim et al.	(BESIII Collab.)
AUSHEV	11	PR D83 051102	T. Aushev et al.	(BELLE Collab.)
LEES	11B	PR D83 072003	J.P. Lees et al.	(BABAR Collab.)
ABAZOV	09G	PRL 102051801	V.M. Abazov et al.	(D0 Collab.)
CHEKANOV	09	EPJ C60 25	S. Chekanov et al.	(ZEUS Collab.)
AUBERT	08B	PR D77 011102	B. Aubert et al.	(BABAR Collab.)
BALAGURA	08	PR D77 032001	V. Balagura et al.	(BELLE Collab.)
AUBERT	06P	PR D74 032007	B. Aubert et al.	(BABAR Collab.)
PDG	06	JP G33 1	W.-M. Yao et al.	(PDG Collab.)
HEISTER	02B	PL B526 34	A. Heister et al.	(ALEPH Collab.)
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff et al.	(OPAL Collab.)
ASRATYAN	94	ZPHY C61 563	A.E. Asratyan et al.	(BIRM, BELG, CERN+)
FRABETTI	94B	PRL 72324	P.L. Frabetti et al.	(FNAL E687 Collab.)
ALEXANDER	93	PL B303 377	J. Alexander et al.	(CLEO Collab.)
ALBRECHT	92 R	PL B297 425	H. Albrecht et al.	(ARGUS Collab.)
AVERY	90	PR D41 774	P. Avery, D. Besson	(CLEO Collab.)
ALBRECHT	89 E	PL B230 162	H. Albrecht et al.	(ARGUS Collab.)
ASRATYAN	88	ZPHY C40 483	A.E. Asratyan et al.	(ITEP, SERP)

Meson Particle Listings
$D_{s 1}^{*}(2700)^{ \pm}, D_{s 1}^{*}(2860)^{ \pm}, D_{s 3}^{*}(2860)^{ \pm}, D_{s J}(3040)^{ \pm}$

$D_{51}^{*}(2700)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(D^{*} K\right) / \Gamma(D K)$		ENT ID		COMMENT	Γ_{4} / Γ_{1}
$0.91 \pm 0.13 \pm 0.12$	10.4 k	${ }^{9}$ aubert 09ar ba		$e^{+} e^{-}$	
${ }^{9}$ From the average of the corresponding ratios with $D^{(*) 0} K^{+}$and $D^{(*)+} K_{S}^{0}$.					
$\Gamma\left(D^{* 0} K^{+}\right) / \Gamma\left(D^{\prime}\right.$					Γ_{5} / Γ_{2}
value	EvTS	DOCUMENT ID TECN COMMENT			
- - We do not use the following data for averages, fits, limits, etc. - -					
$\begin{aligned} & 0.88 \pm 0.14 \pm 0.14 \\ & { }^{10} \text { From the } D^{* 0} K \end{aligned}$	$\begin{gathered} 7716 \\ \text { and } D^{0} \end{gathered}$	${ }^{10}$ aubert 09ar babr $e^{+} e^{-} \rightarrow D^{(*)} k X$, where $D^{* 0} \rightarrow D^{0} \pi^{0}$.			
$\Gamma\left(D^{*+} K_{S}^{0}\right) / \Gamma\left(D^{-1}\right.$ VALUE			DOCUMENT ID TECN COMMENT		Γ_{6} / Γ_{3}
- - We do not use the following data for averages, fits, limits, etc. - - -					
$1.14 \pm 0.39 \pm 0.23 \quad 2700 \quad{ }^{11}$ AUBERT O9AR BABR $e^{+} e^{-} \rightarrow D^{(*)} K X$ ${ }^{11}$ From the $D^{*+} K_{S}^{0}$ and $D^{+} K_{S}^{0}$, where $D^{*+} \rightarrow D^{+} \pi^{0}$.					

$D_{s 1}^{*}(2700)^{ \pm}$REFERENCES

LEES	15C	PR D91 052002	J.P. Lees et al.	(BABAR Collab.)
AAIJ	12AU	JHEP 1210151	R. Aaij et al.	(LHCb Collab.)
AUBERT	09AR	PR D80 092003	B. Aubert et al.	(BABAR Collab.)
BRODZICKA	08	PRL 100092001	J. Brodzicka et al.	(BELLE Collab.)
AUBERT,BE	06E	PRL 97222001	B. Aubert et al.	(BABAR Collab.)
$D_{s 1}^{*}$	86	$) \pm$	$I\left(J^{P}\right)$	

OMITTER FROM SUMMARY TABLE
J^{P} consitent with 1^{-}from angular analysis of AAIJ 14AW. Observed by AUBERT,BE 06E and AUBERT 09AR in inclusive production of $D K$ and $D^{*} K$ in $e^{+} e^{-}$annihilation

$D_{s 1}^{*}(2860)^{ \pm}$DECAY MODES

Mode	
Γ_{1}	$D K$
Γ_{2}	$D^{0} K^{+}$
Γ_{3}	$D^{+} K_{S}^{0}$
Γ_{4}	$D^{*} K$
Γ_{5}	$D^{* 0} K^{+}$
Γ_{6}	$D^{*+} K_{S}^{0}$

$D_{s 1}^{*}(\mathbf{2 8 6 0})^{ \pm}$REFERENCES

AAIJ	14AW PRL 113162001	R. Aaij et al.	(LHCb Collab.) JP
AAIJ	12AU JHEP 1210151	R. Aaij et al.	(LHCb Collab.)
AUBERT	09AR PR D80 092003	B. Aubert et al.	(BABAR Collab.)
AUBERT,BE	06E PRL 97222001	B. Aubert et al.	(BABAR Collab.)
$D_{s 3}^{*}(2860) \pm$			
OMITTER FROM SUMMARY TABLE ${ }^{P}$ consitent with 3^{-}from angular analysis of AAIJ 14 AW.			
$D_{s 3}^{*}(2860)^{+}$MASS			
VALUE (MeV)		DOCUMENT ID TECN COMMENT	
$\mathbf{2 8 6 0 . 5} \pm \mathbf{2 . 6 \pm 6 . 5}{ }^{1} \mathrm{AAIJ}$ 14AWLHCB $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$			
${ }^{1}$ Separated from the spin-1 component $D_{S 1}^{*}(2860)^{-}$by a fit of the helicity angle of the $\bar{D}^{0} K^{-}$system, with a statistical significance of the spin-3 and spin-1 components in excess of 10σ.			

$\boldsymbol{D}_{s 3}^{*}(2860)^{+}$WIDTH

VALUE (MeV)
$53 \pm 7 \pm 7$
DOCUMENT ID TECN COMMENT
${ }^{1}$ Separated from the spin-1 component $D_{S 1}^{*}(2860)^{-}$by a fit of the helicity angle of the $\bar{D}^{0} K^{-}$system, with a statistical significance of the spin-3 and spin-1 components in excess of 10σ.

$D_{s 3}^{*}(2860)^{ \pm}$REFERENCES

AAIJ 14AW PRL $113162001 \quad$ R. Aaij et al. \quad (LHCb Collab.) JP

OMITTED FROM SUMMARY TABLE
Observed by AUBERT 09AR in inclusive production of $D^{*} K$ in $e^{+} e^{-}$annihilation.

$D_{s J}(3040){ }^{+}$MASS			
Value (meV)	DOCUMENT ID	TECN	COMMENT
$3044 \pm 8 \pm{ }_{-}^{+30}$	AUBERT	09AR BABR	$e^{+} e^{-} \rightarrow D^{*} K X$
$D_{s J}(3040)+$ WIDTH			
Value (MeV)	DOCUMENT ID	- TECN	COMMENT
$239 \pm 35{ }_{-42}^{46}$	AUBERT	09AR BABR	$e^{+} e^{-} \rightarrow D^{*} K X$

$D_{s J}(3040)^{ \pm}$DECAY MODES

	Mode
Γ_{1}	$D^{*} K$
Γ_{2}	$D^{* 0} K^{+}$
Γ_{3}	$D^{*+} K_{S}^{0}$

BOTTOM MESONS
 ($B= \pm 1$)
 $B^{+}=u \bar{b}, B^{0}=d \bar{b}, \bar{B}^{0}=\bar{d} b, B^{-}=\bar{u} b, \quad$ similarly for $B^{* ' s}$

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the $B^{ \pm}$section, but because of their importance we have created two new sections: " $B^{ \pm} / B^{0}$ Admixture" for $\gamma(4 S)$ results and " $B^{ \pm} / B^{0} / B_{S}^{0} / b$-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_{b} at high energy are found in the Admixture sections. $B^{0}-\bar{B}^{0}$ mixing data are found in the B^{0} section, while $B_{S}^{0}-\bar{B}_{S}^{0}$ mixing data and $B-\bar{B}$ mixing data for a B^{0} / B_{s}^{0} admixture are found in the B_{s}^{0} section. $C P$-violation data are found in the $B^{ \pm}, B^{0}$, and $B^{ \pm} B^{0}$ Admixture sections. b-baryons are found near the end of the Baryon section. Recently, we also created a new section: " $V_{c b}$ and $v_{u b}$ CKM Matrix Elements."
The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

```
[Production and Decay of \(b\)-flavored Hadrons]
[A Short Note on HFLAV Activities]
- \(B^{ \pm}\)
    mass, mean life
    branching fractions
    polarization in \(B^{ \pm}\)decay
        \(C P\) violation
- \(B^{0}\)
    mass, mean life
    branching fractions
    [Polarization in \(B\) decay]
    polarization in \(B^{0}\) decay
    [ \(B-\bar{B}\) Mixing]
    \(B^{0}-\bar{B}^{0}\) mixing
    \(C P\) violation
- \(B^{ \pm} B^{0}\) Admixture
    branching fractions, \(C P\) violation
    \(C P\) violation
- \(B^{ \pm} / B^{0} / B_{S}^{0} / b\)-baryon Admixture
    mean life
    production fractions
    branching fractions
    \(\chi_{b}\) at high energy
    production fractions in hadronic \(Z\) decay
- \(V_{c b}\) and \(V_{u b}\) CKM Matrix Elements
    [Determination of \(V_{C b}\) and \(V_{u b}\) ]
- \(B^{*}\)
    mass
- \(B_{1}(5721)^{0}\)
    mass
- \(B_{J}^{*}(5732)\)
    mass, width
- \(B_{2}(5747)^{0}\)
    mass
- \(B_{s}^{0}\)
    mass, mean life
    branching fractions
    polarization in \(B_{S}^{0}\) decay
    \(B_{S}^{0}-\bar{B}_{S}^{0}\) mixing
- \(B_{S}^{*}\)
    mass
- \(B_{s J}^{*}(5850)\)
        mass, width
- \(B_{c}^{ \pm}\)
    mass, mean life
    branching fractions
```

At the end of Baryon Listings:

- Λ_{b}
mass, mean life branching fractions
- $\Sigma_{b}, \Sigma_{b}^{*}$
mass
- Ξ_{b}^{0}, Ξ_{b}^{-}
mean life
- Ω_{b}^{-}
mass, mean life branching fractions
- b-baryon Admixture mean life
branching fractions

See the related review(s):
 Production and Decay of b-flavored Hadrons

HEAVY FLAVOR AVERAGING GROUP

Revised August 2019 by U. Egede (Monash University) and A. Soffer (Tel Aviv University)

The Heavy Flavor Averaging Group (HFLAV)* is an international collaboration of physicists from experiments measuring properties of heavy flavored particles, i.e., hadrons containing b and c quarks, and τ leptons. HFLAV calculates and publishes [1] world average values of quantities such as lifetimes, branching fractions, form factors, mixing parameters, and $C P$ violating asymmetries. Most parameters concern decays of B and D mesons, and many are related to elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [2], [3].

HFLAV was originally formed in 2002 to continue the activities of the LEP Heavy Flavor Steering group. Since its inception, a wide range of results have become available from increasingly larger data sets. Consequently, HFLAV has expanded to include seven subgroups:

- b-hadron lifetimes and oscillations, including parameters of $C P$ violation in b mixing;
- decay-time-dependent $C P$ violation in B decays, and angles of the CKM Unitarity Triangle;
- semileptonic decays of b-hadrons $(B \rightarrow X \ell \nu$, $\ell=e, \mu, \tau)$, including determinations of the CKM matrix elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$;
- b-hadron decays to hadronic final states containing c-quarks (open charm and charmonium);
- (rarer) b-hadron decays to final states not containing c-quarks, including fully hadronic, semileptonic ($B \rightarrow X \ell \ell, X \nu \bar{\nu}$), leptonic, and radiative decays;
- c-hadron physics including branching fractions, $C P$ and T-violating asymmetries, $D^{0}-\bar{D}^{0}$ mixing, semileptonic decays, and properties of excited D states and charm baryons;
- τ-lepton physics including branching fractions, tests of lepton universality, determination of the CKM matrix element $\left|V_{u s}\right|$, and searches for lepton flavor violation.

[^118]
Meson Particle Listings

b-flavored hadrons, $B^{ \pm}$

Each subgroup has one or two conveners and typically a halfdozen members representing experiments that conduct measurements in that area. Most groups contain representatives from the BABAR, Belle, Belle II and LHCb experiments, and some groups have representatives from the ATLAS, BESIII, CLEO(c), CDF, CMS and D0 experiments. Members of HFLAV are appointed by their respective experimental collaborations. HFLAV has two co-leaders, who are appointed by the managements of Belle II and LHCb.

The averaging procedures used by HFLAV are similar to those of the PDG [4]. When calculating world averages, common parameters used for different input measurements are adjusted (rescaled) to common values. The confidence level of the fit is provided to indicate the consistency of the measurements included in the average. However, unlike the PDG, when obtaining a world average with a small confidence level (i.e., a large χ^{2} per degree of freedom), HFLAV does not usually scale the resulting uncertainty. Rather, the systematic uncertainties of the measurements are reviewed with experts from the experiments to understand the discrepancy. Unless inconsistencies among measurements are found, no correction is made to the calculated uncertainty. Close communication between representatives of the experiments and HFLAV members who perform averages helps ensure that measurement uncertainties, known correlations, and systematic effects are properly accounted for. If a special treatment is needed to calculate an average, or if an approximation used in an average calculation might not be sufficiently accurate (e.g., assuming Gaussian uncertainties when the likelihood function is non-Gaussian), a note is included in the HFLAV publication and online documentation to describe this.

In general, HFLAV uses all publicly available results that have written documentation such as a journal publication, preprint, or conference note. These include preliminary results presented at conferences and workshops. However, preliminary results that remain unpublished for an extended period of time, or for which no publication is planned, are not included. A special subset of HFLAV averages are included in the PDG listings; for these averages, only measurements that are published or accepted for publication are used. The averages provided by HFLAV are listed by the PDG as "OUR EVALUATION" with a corresponding note.

All HFLAV averages and input measurements are documented in an approximately biennial journal paper or preprint; the most recent version is Ref. [1]. The latest results and plots are posted on an extensive set of webpages that are updated several times per year; these are available at
https://hflav.web.cern.ch.

References:

1. Y. Amhis et al. (Heavy Flavor Averaging Group) (2018), [arXiv:1909.12524], updated results and plots available at https://hflav.web.cern.ch/..
2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
3. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
4. See Section 5 of the "Introduction" to this Review.

$B^{ \pm}$	$I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)$				
Quantum numbers not measured. Values shown are quark-model predictions.					
See also the $B^{ \pm} / B^{0}$ ADMIXTURE and $B^{ \pm} / B^{0} / B_{S}^{0} / b$-baryon ADMIXTURE sections.					
$B^{ \pm}$MASS					
The fit uses $m_{B^{+}},\left(m_{B^{0}}-m_{B^{+}}\right)$, and $m_{B^{0}}$ to determine $m_{B^{+}}, m_{B^{0}}$, and the mass difference.					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
5279.34 ± 0.12 OUR FIT					
5279.25 ± 0.26 OUR AVERAGE					
$5279.38 \pm 0.11 \pm 0.33$		${ }^{1}$ AAIJ		LHCB	$p p$ at 7 TeV
$5279.10 \pm 0.41 \pm 0.36$		${ }^{2}$ ACOSTA		CDF	$p \bar{p}$ at 1.96 TeV
$5279.1 \pm 0.4 \pm 0.4$	526	${ }^{3}$ CSORNA		CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$5279.1 \pm 1.7 \pm 1.4$	147	ABE		CDF	$p \bar{p}$ at 1.8 TeV
- - We do not use the following data for averages, fits, limits, etc. - -					
$5278.8 \pm 0.54 \pm 2.0$	362	ALAM		CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$5278.3 \pm 0.4 \pm 2.0$		BORTOLET	92	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
$5280.5 \pm 1.0 \pm 2.0$		${ }^{4}$ ALBRECHT		ARG	$e^{+} e^{-} \rightarrow r(4 S)$
$5275.8 \pm 1.3 \pm 3.0$	32	ALBRECHT	87C	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
$5278.2 \pm 1.8 \pm 3.0$	12	${ }^{5}$ ALBRECHT	87D	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
$5278.6 \pm 0.8 \pm 2.0$		BEBEK	87	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses $B^{+} \rightarrow J / \psi K^{+}$fully reconstructed decays. ${ }^{2}$ Uses exclusively reconstructed final states containing a $J / \psi \rightarrow \mu^{+} \mu^{-}$decays.					
${ }^{3}$ CSORNA 00 uses fully reconstructed $526 B^{+} \rightarrow J / \psi\left({ }^{\prime}\right) K^{+}$events and invariant masses without beam constraint. ${ }^{4}$ ALBRECHT 90 assumes 10580 for $\Upsilon(4 S)$ mass. Supersedes ALBRECHT 87 C and ${ }_{5}$ ALBRECHT 87D.					
${ }^{5}$ Found using fully reconstructed decays with $J / \psi(1 S)$. ALBRECHT 87D assume $m \gamma(4 S)$$=10577 \mathrm{MeV}$					

$B^{ \pm}$MEAN LIFE

See $B^{ \pm} / B^{0} / B_{S}^{0} / b$-baryon ADMIXTURE section for data on B-hadron mean life averaged over species of bottom particles.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

$\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN	COMMENT
1.638 ± 0.004 OUR EVALUATION					
$1.637 \pm 0.004 \pm 0.003$		AAIJ	14 E	LHCB	$p p$ at 7 TeV
$1.639 \pm 0.009 \pm 0.009$		${ }^{1}$ AALTONEN	11	CDF	$p \bar{p}$ at 1.96 TeV
$1.663 \pm 0.023 \pm 0.015$		${ }^{2}$ AALTONEN	11B	CDF	$p \bar{p}$ at 1.96 TeV
$1.635 \pm 0.011 \pm 0.011$		${ }^{3} \mathrm{ABE}$	05B	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$1.624 \pm 0.014 \pm 0.018$		${ }^{4}$ AbDALLAH	04E	DLPH	$e^{+} e^{-} \rightarrow$ Z
$1.636 \pm 0.058 \pm 0.025$		${ }^{5}$ ACOSTA	02C	CDF	$p \bar{p}$ at 1.8 TeV
$1.673 \pm 0.032 \pm 0.023$		${ }^{6}$ AUBERT	01F	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.648 \pm 0.049 \pm 0.035$		7 barate	OOR	ALEP	$e^{+} e^{-} \rightarrow$ Z
$1.643 \pm 0.037 \pm 0.025$		${ }^{8}$ ABBIENDI	99」	OPAL	$e^{+} e^{-} \rightarrow$ Z
$1.637 \pm 0.058{ }_{-0.043}^{+0.045}$		${ }^{7}$ ABE	98 Q	CDF	$p \bar{p}$ at 1.8 TeV
$1.66 \pm 0.06 \pm 0.03$		${ }^{8}$ ACCIARRI	985	L3	$e^{+} e^{-} \rightarrow$ Z
$1.66 \pm 0.06 \pm 0.05$		${ }^{8} \mathrm{ABE}$	97」	SLD	$e^{+} e^{-} \rightarrow$ Z
$1.58{ }_{-0.18}^{+0.21}{ }_{-0.03}^{+0.04}$	94	${ }^{5}$ BUSKULIC	96 J	ALEP	$e^{+} e^{-} \rightarrow$ Z
$1.61 \pm 0.16 \pm 0.12$		7,9 AbREU	$95 Q$	DLPH	$e^{+} e^{-} \rightarrow$ Z
$1.72 \pm 0.08 \pm 0.06$		${ }^{10}$ ADAM	95	DLPH	$e^{+} e^{-} \rightarrow$ Z
$1.52 \pm 0.14 \pm 0.09$		${ }^{7}$ AKERS	95 T	OPAL	$e^{+} e^{-} \rightarrow$ Z
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.695 \pm 0.026 \pm 0.015$		${ }_{5}^{6}$ ABE	02H	BELL	Repl. by ABE 05B
$1.68 \pm 0.07 \pm 0.02$		${ }^{5}$ ABE	98B	CDF	Repl. by ACOSTA 02C
$1.56 \pm 0.13 \pm 0.06$		${ }^{7}$ ABE	96 C	CDF	Repl. by ABE 98Q
$1.58 \pm 0.09 \pm 0.03$		${ }^{11}$ BUSKUULIC	96 J	ALEP	$e^{+} e^{-} \rightarrow$ Z
$1.58 \pm 0.09 \pm 0.04$		7 BUSKULIC	$96 J$	ALEP	Repl. by BARATE 00R
1.70 ± 0.09		12 ADAM	95	DLPH	$e^{+} e^{-} \rightarrow$ Z
$1.61 \pm 0.16 \pm 0.05$	148	${ }^{5}$ ABE	94D	CDF	Repl. by ABE 98B
$1.30{ }_{-0.29}^{+0.33} \pm 0.16$	92	${ }^{7}$ ABREU	93D	DLPH	Sup. by ABREU 95Q
$1.56 \pm 0.19 \pm 0.13$	134	10 Abreu	93 G	DLPH	Sup. by ADAM 95
$1.51{ }_{-0.28}^{+0.30}{ }_{-0.14}^{+0.12}$	59	${ }^{7}$ ACTON	93 C	OPAL	Sup. by AKERS 95T
$1.47{ }_{-0.19}^{+0.22}{ }_{-0.14}^{+0.15}$	77	7 BUSKULIC	93D	ALEP	Sup. by BUSKULIC 96J

B^{+}DECAY MODES

B^{-}modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the $B^{ \pm} / B^{0}$ ADMIXTURE section.

The branching fractions listed below assume $50 \% B^{0} \bar{B}^{0}$ and $50 \% B^{+} B^{-}$ production at the $\gamma(4 S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\gamma(4 S)$ production ratio to 50:50 and their assumed D, D_{S}, D^{*}, and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.
For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Scale factor/ Confidence level	

Semileptonic and leptonic modes

Inclusive modes

8.6	± 0.7) \%
(79	$\pm 4 \quad$)
2.5	± 0.5) \%
9.9	± 1.2)
7.9	+ 1.4) $\%$
1.10	+ $\left.\begin{array}{r}0.40 \\ -\quad 0.32\end{array}\right) \%$
2.1	+ 0.9)
(2.8	+ 1.1) $\%$
(97	$\pm 4 \quad$ \%
(23.4	+ 2.2) $\%$
(120	± 6

D, D^{*}, or D_{s} modes
$(4.68 \pm 0.13) \times 10^{-3}$
[b] $\quad(2.05 \pm 0.18) \times 10^{-3}$
[b] $(2.0 \pm 0.4) \times 10^{-3}$
(1.34 ± 0.18) \%
$(3.63 \pm 0.12) \times 10^{-4}$
[b] $\quad(1.80 \pm 0.07) \times 10^{-4}$
[b] $\quad(1.96 \pm 0.18) \times 10^{-4}$
$(3.57 \pm 0.35) \times 10^{-6}$
$[c]<2.8 \quad \times 10^{-7} \mathrm{CL}=90 \%$
$[c]<1.5 \times 10^{-5} \mathrm{CL}=90 \%$
seen
seen
seen
seen
[c]
[c]
[c] $\left(\begin{array}{l}6.3 \pm 1.1) \times 10^{-7} \\ \hline\end{array}\right.$
$(1.78 \pm 0.32) \times 10^{-4}$
seen
seen
seen
seen
$\left[K^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} \pi^{+}$
$\left[K^{-} \pi^{+}\right]_{(D \pi)} \pi^{+}$
$\quad\left[K^{+} \pi^{-}\right]_{(D \pi)} \pi^{+}$
$77\left[^{-} \pi^{+}\right]_{(D \gamma)} \pi^{+}$
$\left[K^{+} \pi^{-}\right]_{(D \gamma)} \pi^{+}$
$\left[K^{-} \pi^{+}\right]_{(D \pi)} K^{+}$
$\left.{ }^{0} K^{+} \pi^{-}\right]_{(D \pi)} K^{+}$
$\Gamma_{81} \quad\left[K^{-} \pi^{+}\right]_{(D \gamma)} K^{+}$
$\Gamma_{82} \quad\left[K^{+} \pi^{-}\right]_{(D \gamma)} K^{+}$
$\Gamma_{83} \quad\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{-}$
$\Gamma_{84} \quad\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} K^{+}$
$\Gamma_{85} \quad\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} K^{+}$
$\left[K^{*}(892)^{+} K^{-}\right]_{D} K^{+}$
$\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} \pi^{+}$
$\left[K^{*}(892)^{+} K^{-}\right]_{D} \pi^{+}$
$\left.{ }^{[} K_{S}^{0} K^{+} \pi^{-}\right]_{D} \pi^{+}$
$\left[K^{*}(892)^{-} K^{+}\right]_{D} \pi^{+}$
$\left[K^{+} K^{-} \pi^{0}\right]_{D} K^{+}$
$\left[K^{+} K^{-} \pi^{0}\right]_{D} \pi^{+}$
$\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}$
$\frac{\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} \pi^{+}}{D^{0} K^{*}(892)^{+}}$

Meson Particle Listings
$B^{ \pm}$

Γ_{96}	$D_{C P(-1)} K^{*}(892)^{+}$
Γ_{97}	$D_{C P(+1)} K^{*}(892)^{+}$
Γ_{98}	$D^{0} K^{*}(892)^{+}$
Γ_{99}	$\bar{D}^{0} K^{+} \pi^{+} \pi^{-}$
Γ_{100}	$\left[K^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}$
Γ_{101}	$\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}$
Γ_{102}	$D_{C P(+1)} K^{+} \pi^{-} \pi^{+}$
Γ_{103}	$\bar{D}^{0} K^{+} \bar{K}^{0}$
Γ_{104}	$\bar{D}^{0} K^{+} \bar{K}^{*}(892)^{0}$
Γ_{105}	$\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}$
Γ_{106}	$\left.{ }^{\left[K^{-}\right.} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}$
Γ_{107}	$\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}$nonresonant
Γ_{108}	$\bar{D}^{0} \pi^{+} \rho^{0}$
Γ_{109}	$\bar{D}^{0} a_{1}(1260)^{+}$
Γ_{110}	$\bar{D}^{0} \omega \pi^{+}$
Γ_{111}	$D^{*}(2010)^{-} \pi^{+} \pi^{+}$
Γ_{112}	$D^{*}(2010)^{-} K^{+} \pi^{+}$
Γ_{113}	$\bar{D}_{1}(2420)^{0} \pi^{+}, \bar{D}_{1}^{0} \rightarrow$

$\Gamma_{114} D^{-} \pi^{+} \pi^{+}$
$\Gamma_{115} D^{-} K^{+} \pi^{+}$
$\Gamma_{116} \quad D_{0}^{*}(2300)^{0} K^{+}, D_{0}^{* 0} \rightarrow$ $D^{-} \pi^{+}$
$\Gamma_{117} D_{2}^{*}(2460)^{0} K^{+}, D_{2}^{* 0} \rightarrow$
$\Gamma_{118} \quad D_{1}^{*}(2760)^{0} K^{+}, D_{1}^{* 0} \rightarrow$

	$D^{-} \pi^{+}$
Γ_{119}	$D^{+} K^{0}$
Γ_{120}	$D^{+} K^{+} \pi^{-}$

$\Gamma_{121} \quad D_{2}^{*}(2460)^{0} K^{+}, D_{2}^{* 0} \rightarrow$

	$D^{+} \pi^{-}$
Γ_{122}	$D^{+} K^{* 0}$
Γ_{123}	$D^{+} \bar{K}^{* 0}$
Γ_{124}	$\bar{D}^{*}(2007)^{0} \pi^{+}$
Γ_{125}	$\bar{D}_{C P}^{* 0}(+1)$
Γ_{126}	$\pi_{C P(-1)}^{*} \pi^{+}$
Γ_{12}^{*}	$\bar{D}^{*}(2007)$

$\Gamma_{127} \bar{D}^{*}(2007)^{0} \omega \pi^{+}$
$\Gamma_{128} \bar{D}^{*}(2007)^{0} \rho^{+}$
$\Gamma_{129} \bar{D}^{*}(2007)^{0} K^{+}$
$\begin{array}{ll}\Gamma_{130} & \bar{D}_{C P(+1)}^{* 0} K^{+} \\ \Gamma_{131} & \bar{D}_{C P(-1)}^{* *} K^{+}\end{array}$
$\Gamma_{132} D^{*}(2007)^{0} K^{+}$
$\Gamma_{133} \bar{D}^{*}(2007)^{0} K^{*}(892)^{+}$
${ }^{134} \bar{D}^{*}(2007)^{0} K^{+} \bar{K}^{0}$
$\Gamma_{135} \bar{D}^{*}(2007)^{0} K^{+} \bar{K}^{*}(892)^{0}$
$\Gamma_{136} \bar{D}^{*}(2007)^{0} \pi^{+} \pi^{+} \pi^{-}$
$\Gamma_{137} \bar{D}^{*}(2007)^{0} a_{1}(1260)^{+}$
$\Gamma_{138} \bar{D}^{*}(2007)^{0} \pi^{-} \pi^{+} \pi^{+} \pi^{0}$
$\Gamma_{139} \bar{D}^{* 0} 3 \pi^{+} 2 \pi^{-}$
$\Gamma_{140} D^{*}(2010)^{+} \pi^{0}$
$\Gamma_{141} D^{*}(2010)^{+} K^{0}$
$\Gamma_{142} D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{0}$
$\Gamma_{143} D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{+} \pi^{-}$
$\Gamma_{144} \bar{D}^{* * 0} \pi^{+}$
$\Gamma_{145} \bar{D}_{1}^{*}(2420)^{0} \pi^{+}$
$\Gamma_{146} \bar{D}_{1}(2420)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{1}^{0} \rightarrow\right.$ $\bar{D}^{0} \pi^{+} \pi^{-}$)
$\Gamma_{147} \quad \bar{D}_{1}(2420)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{1}^{0} \rightarrow\right.$ $\bar{D}^{0} \pi^{+} \pi^{-}$(nonresonant))
$\Gamma_{148} \bar{D}_{2}^{*}(2462)^{0} \pi^{+}$
$\times \mathrm{B}\left(\bar{D}_{2}^{*}(2462)^{0} \rightarrow D^{-} \pi^{+}\right)$
$\Gamma_{149} \bar{D}_{2}^{*}(2462)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{2}^{* 0} \rightarrow\right.$ $\bar{D}^{0} \pi^{-} \pi^{+}$)
$\Gamma_{150} \quad \bar{D}_{2}^{*}(2462)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{2}^{* 0} \rightarrow\right.$ $\bar{D}^{0} \pi^{-} \pi^{+}$(nonresonant))
$\Gamma_{151} \bar{D}_{2}^{*}(2462)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{2}^{* 0} \rightarrow\right.$ $\left.D^{*}(2010)^{-} \pi^{+}\right)$
$\Gamma_{152} \bar{D}_{0}^{*}(2400)^{0} \pi^{+}$
$\times \mathrm{B}\left(\bar{D}_{0}^{*}(2400)^{0} \rightarrow D^{-} \pi^{+}\right)$
$\Gamma_{153} \bar{D}_{1}(2421)^{0} \pi^{+}$
$\times \mathrm{B}\left(\bar{D}_{1}(2421)^{0} \rightarrow D^{*-} \pi^{+}\right)$
[b] $(2.7 \pm 0.8) \times 10^{-4}$
[b] $\left(\begin{array}{lll} \\ 6.2 & \pm & 7\end{array}\right) \times 10^{-4}$
$(3.1 \pm 1.6) \times 10^{-6}$
$(5.2 \pm 2.1) \times 10^{-4}$
$\left(\begin{array}{l}5.5 \pm 1.6\end{array}\right) \times 10^{-4}$
$(7.5 \pm 1.7) \times 10^{-4}$
$(5.6 \pm 2.1) \times 10^{-3} \quad \mathrm{~S}=3.6$
$\left(\begin{array}{ll}5 & \pm 4\end{array}\right) \times 10^{-3}$
$(4.2 \pm 3.0) \times 10^{-3}$
$\left(\begin{array}{ll}4 & \pm\end{array}\right) \times 10^{-3}$
$(4.1 \pm 0.9) \times 10^{-3}$
$(1.35 \pm 0.22) \times 10^{-3}$
$(8.2 \pm 1.4) \times 10^{-5}$
$(5.2 \pm 2.2) \times 10^{-4}$
$(1.07 \pm 0.05) \times 10^{-3}$
$(7.7 \pm 0.5) \times 10^{-5}$
$(6.1 \pm 2.4) \times 10^{-6}$
$(2.32 \pm 0.23) \times 10^{-5}$
$(3.6 \pm 1.2) \times 10^{-6}$
$<2.9 \times 10^{-6} \mathrm{CL}=90 \%$
$(5.6 \pm 1.1) \times 10^{-6}$
$<6.3 \times 10^{-7} \mathrm{CL}=90 \%$
$<4.9 \times 10^{-7} \mathrm{CL}=90 \%$
$<1.4 \times 10^{-6} \mathrm{CL}=90 \%$
$(4.90 \pm 0.17) \times 10^{-3}$
[d] $(2.7 \pm 0.6) \times 10^{-3}$
[d] $(2.4 \pm 0.9) \times 10^{-3}$
$(4.5 \pm 1.2) \times 10^{-3}$
$(9.8 \pm 1.7) \times 10^{-3}$
$(3.97 \pm 0.38) \times 10^{-4}$
[d] $\quad(2.60 \pm 0.33) \times 10^{-4}$
[d] $\quad(2.19 \pm 0.30) \times 10^{-4}$
$(7.8 \pm 2.2) \times 10^{-6}$
$(8.1 \pm 1.4) \times 10^{-4}$
$<1.06 \times 10^{-3} \mathrm{CL}=90 \%$
$(1.5 \pm 0.4) \times 10^{-3}$
$(1.03 \pm 0.12) \%$
(1.9 ± 0.5) \%
(1.8 ± 0.4) \%
$(5.7 \pm 1.2) \times 10^{-3}$
$<3.6 \times 10^{-6}$
$<9.0 \times 10^{-6} \mathrm{CL}=90 \%$
(1.5 ± 0.7) \%
$(2.6 \pm 0.4) \times 10^{-3}$
[e] $(5.7 \pm 1.2) \times 10^{-3}$
$(1.5 \pm 0.6) \times 10^{-3} \quad \mathrm{~S}=1.3$
$(2.5 \pm 1.6) \times 10^{-4} \quad \mathrm{~S}=3.9$
$(2.2 \pm 1.0) \times 10^{-4}$
$(3.56 \pm 0.24) \times 10^{-4}$
$(2.2 \pm 1.0) \times 10^{-4}$
$<1.7 \times 10^{-4} \mathrm{CL}=90 \%$
$(2.2 \pm 1.1) \times 10^{-4}$
$\left(\begin{array}{l}6.4 \pm 1.4) \times 10^{-4}\end{array}\right.$
$(6.8 \pm 1.5) \times 10^{-4}$

Charmonium modes						
Γ_{230}	$\eta_{c} K^{+}{ }^{+}$		1.06	± 0.09) $\times 10^{-3}$	S=1.2
Γ_{231}	$\eta_{c} K^{+}, \eta_{c} \rightarrow K_{S}^{0} K^{\mp} \pi^{ \pm}$		2.7	± 0.6) $\times 10^{-5}$	
Γ_{232}	$\eta_{c} K^{*}(892)^{+}$		1.1	+0.5) $\times 10^{-3}$	
Γ_{233}	$\eta_{c} K^{+} \pi^{+} \pi^{-}$	<	3.9		$\times 10$	L=90\%
Γ_{234}	$\eta_{c} K^{+} \omega(782)$	<	5.3		$\times 10^{-}$	L=90\%
Γ_{235}	$\eta_{c} K^{+} \eta$	<	2.2		$\times 10$	L=90\%
Γ_{236}	$\eta_{c} K^{+} \pi^{0}$	$<$	6.2		$\times 10^{-5}$	L=90\%
Γ_{237}	$\eta_{c}(2 S) K^{+}$		4.4	± 1.0) $\times 10^{-}$	
Γ_{238}	$\eta_{c}(2 S) K^{+}, \eta_{c} \rightarrow p \bar{p}$		3.5	± 0.8	$) \times 10^{-}$	
Γ_{239}	$\eta_{c}(2 S) K^{+}, \eta_{c} \rightarrow K_{S}^{0} K^{\mp} \pi^{ \pm}$		3.4	+ 2.3) $\times 10^{-6}$	
Γ_{240}	$\eta_{c}(2 S) K^{+}, \eta_{c} \rightarrow p \bar{p} \pi^{+} \pi^{-}$		1.12	± 0.18) $\times 10^{-6}$	
Γ_{241}	$h_{c}(1 P) K^{+}, h_{c} \rightarrow J / \psi \pi^{+} \pi^{-}$	$<$	3.4		$\times 10^{-6}$	L=90\%
Γ_{242}	$X(3730)^{0} K^{+}, X^{0} \rightarrow \eta_{c} \eta$	$<$	4.6		$\times 10^{-5}$	L=90\%
Γ_{243}	$X(3730)^{0} K^{+}, X^{0} \rightarrow \eta_{c} \pi^{0}$	$<$	5.7		$\times 10^{-6}$	L=90\%
Γ_{244}	$\chi_{C 1}(3872) K^{+}$	<	2.6		$\times 10^{-4}$	L=90\%
Γ_{245}	$\chi_{c 1}(3872) K^{+}, \chi_{c 1} \rightarrow p \bar{p}$	<	5		$\times 10^{-9}$	L=95\%
Γ_{246}	$\chi_{C 1}(3872) K^{+}, \psi \pi^{+} \pi^{-}, \chi_{C 1} \rightarrow$		8.6	± 0.8) $\times 10^{-6}$	
Γ_{247}	$\chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \gamma$		2.1	± 0.4) $\times 10^{-6}$	$\mathrm{S}=1.1$
Γ_{248}	$\underset{\psi(2 S) \gamma}{\chi_{C 1}(3872) K^{+},} \chi_{C 1} \rightarrow$		4	± 4) $\times 10^{-6}$	$\mathrm{S}=2.5$
Γ_{249}	$\chi_{C 1}(3872) K^{+}, \psi(1 S) \eta, \chi_{c 1} \rightarrow$	<	7.7		$\times 10^{-6}$	L=90\%
Γ_{250}	$\chi_{C 1}(3872) K_{D^{0}}^{D^{0}}, \chi_{C 1} \rightarrow$	<	6.0		$\times 10^{-5}$	L=90\%
Γ_{251}	$\underset{D^{+} D^{-}}{\chi_{C 1}\left(3872 K^{+},\right.} \chi_{C 1} \rightarrow$	<	4.0		$\times 10^{-5}$	L=90\%
Γ_{252}	$\underset{D_{C 1}^{0}}{\chi_{D^{0}}(3872)} K^{+}, \quad \chi_{c 1} \rightarrow$		1.0	± 0.4) $\times 10^{-4}$	
Γ_{253}	$\chi_{C 1} \frac{(3872) K^{*}}{D^{*}} K^{0}, \quad \chi_{C 1} \rightarrow$		8.5	± 2.6) $\times 10^{-5}$	$\mathrm{S}=1.4$
Γ_{254}	$\chi_{C 1}(3872)^{0} K^{+}, \chi_{c 1}^{0} \rightarrow$	<	3.0		$\times 10^{-5}$	L=90\%
Γ_{255}	$\underset{\substack{\eta_{c} \pi^{+} \pi^{-} \\ \chi_{c 1}(3872)^{0} K^{+}}}{ }, \chi_{c 1}^{0} \rightarrow$	$<$	6.9		$\times 10^{-5}$	L=90\%

Meson Particle Listings
$B^{ \pm}$

Γ_{309}	$J / \psi(1 S) \bar{D}^{0} \pi^{+}$	＜	2.5		$\times 10^{-5} \mathrm{CL}=90 \%$	
Γ_{310}	$\psi(2 S) \pi^{+}$		2.44	± 0.30	）$\times 10^{-5}$	
Γ_{311}	$\psi(2 S) K^{+}$		6.19	± 0.22	）$\times 10^{-4}$	
Γ_{312}	$\psi(2 S) K^{*}(892)^{+}$			± 1.4	$) \times 10^{-4}$	$\mathrm{S}=1.3$
Γ_{313}	$\psi(2 S) K^{0} \pi^{+}$					
Γ_{314}	$\psi(2 S) K^{+} \pi^{+} \pi^{-}$		4.3	± 0.5	）$\times 10^{-4}$	
Γ_{315}	$\psi(2 S) \phi(1020) K^{+}$		4.0	± 0.7	）$\times 10^{-6}$	
Γ_{316}	$\psi(3770) K^{+}$		4.9	± 1.3	$) \times 10^{-4}$	
Γ_{317}	$\psi(3770) K+, \psi \rightarrow D^{0} \bar{D}^{0}$		1.5	± 0.5	）$\times 10^{-4}$	$\mathrm{S}=1.4$
Γ_{318}	$\psi(3770) K+, \psi \rightarrow D^{+} D^{-}$		9.4	± 3.5	$) \times 10^{-5}$	
Γ_{319}	$\psi(3770) K^{+}, \psi \rightarrow p \bar{p}$	＜	2		$\times 10^{-7}$	L＝95\％
Γ_{320}	$\psi(4040) K^{+}$		1.3		$\times 10^{-4}$	L＝90\％
Γ_{321}	$\psi(4160) K^{+}$		5.1	± 2.7	）$\times 10^{-4}$	
Γ_{322}	$\psi(4160) K^{+}, \psi \rightarrow \bar{D}^{0} D^{0}$		8	± 5	）$\times 10^{-5}$	
Γ_{323}	$\chi_{C 0} \pi^{+}, \chi_{C 0} \rightarrow \pi^{+} \pi^{-}$	$<$	1		$\times 10^{-7}$	L＝90\％
Γ^{224}	$\chi_{C 0} K^{+}$		1.50	$\pm{ }_{-}^{0.15}$	）$\times 10^{-4}$	
Γ_{325}	$\chi_{C 0} K^{*}(892)^{+}$	＜	2.1		$\times 10^{-4}$	L＝90\％
Γ_{326}	$\chi_{c 1}(1 P) \pi^{+}$		2.2	± 0.5	）$\times 10^{-5}$	
Γ_{327}	$\chi_{c 1}(1 P) K^{+}$		4.85	± 0.33	）$\times 10^{-4}$	$\mathrm{S}=1.5$
Γ_{328}	$\chi_{c 1}(1 P) K^{*}(892)^{+}$		3.0	± 0.6	$) \times 10^{-4}$	$\mathrm{s}=1.1$
Γ_{329}	$\chi_{C 1}(1 P) K^{0} \pi^{+}$		5.8	± 0.4	）$\times 10^{-4}$	
Γ_{330}	$\chi_{c 1}(1 P) K^{+} \pi^{0}$		3.29	± 0.35	）$\times 10^{-4}$	
Γ_{331}	$\chi_{c 1}(1 P) K^{+} \pi^{+} \pi^{-}$		3.74	± 0.30	）$\times 10^{-4}$	
Γ_{332}	$\underset{\pi^{+} \pi^{-} \chi_{c 1}(1 P)}{\substack{1 \\ \chi_{1} \\ x^{+} \\ \chi_{c 1}(2 P)}}$		1.1		$\times 10^{-5}$	L＝90\％
Γ_{333}	$\chi_{c 2} K^{+}$		1.1	± 0.4	）$\times 10^{-5}$	
Γ_{334}	$\chi_{c 2} K^{+}, \chi_{c 2} \rightarrow p \bar{p} \pi^{+} \pi^{-}$	＜	1.9		$\times 10^{-7}$	
Γ_{335}	$\chi_{\text {c2 }} K^{*}(892)^{+}$		1.2		$\times 10^{-4}$	L＝90\％
Γ_{336}	$\chi_{\text {c2 }} K^{0} \pi^{+}$		1.16	± 0.25	）$\times 10^{-4}$	
Γ_{337}	$\chi_{c 2} K^{+} \pi^{0}$	＜	6.2		$\times 10^{-5}$	L＝90\％
Γ_{338}	$\chi_{c 2} K^{+} \pi^{+} \pi^{-}$		1.34	± 0.19	$) \times 10^{-4}$	
Γ_{339}	$\chi_{C 2}(3930) \pi^{+}, \chi_{C 2} \rightarrow \pi^{+} \pi^{-}$	＜			$\times 10^{-7}$	L＝90\％
Γ_{340}	$h_{c}(1 P) K^{+}$		3.7	± 1.2	）$\times 10^{-5}$	
Γ_{341}	$h_{c}(1 P) K^{+}, h_{c} \rightarrow p \bar{p}$		6.4		$\times 10^{-8}$	L＝95\％

$\Gamma_{341} \quad h_{c}(1 P) K$,	$h_{c} \rightarrow p \bar{p}$	
Γ_{342}	$K^{0} \pi^{+}$	\boldsymbol{K} or \boldsymbol{K}^{*} modes

$\Gamma 342$	$K^{0} \pi^{+}$
「343	$K^{+} \pi^{0}$
Γ^{544}	$\eta^{\prime} K^{+}$
Γ_{345}	$\eta^{\prime} K^{*}(892)^{+}$
Γ_{346}	$\eta^{\prime} K_{0}^{*}(1430)^{+}$
Γ_{347}	$\eta^{\prime} K_{2}^{*}(1430)^{+}$
「348	ηK^{+}
「349	$\eta K^{*}(892)^{+}$
「350	$\eta K_{0}^{*}(1430)^{+}$
Γ_{351}	$\eta K_{2}^{*}(1430)^{+}$
Γ_{352}	$\underset{\eta \pi \pi)}{\eta(1295)} K^{+} \times \mathrm{B}(\eta(1295) \rightarrow$
「353	$\underset{\substack{\left.\eta(1405) K^{+} \\ \eta \pi \pi\right)}}{ } \times \mathrm{B}(\eta(1405) \rightarrow$
「354	$\underset{\substack{\left.\eta(1405) K^{+} \\ K^{*} K\right)}}{ } \times \mathrm{B}(\eta(1405) \rightarrow$
Γ_{355}	$\underset{\substack{\left.\eta(1475) K^{+} \\ K^{*} K\right)}}{ } \times \mathrm{B}(\eta(1475) \rightarrow$
「356	$f_{1}(1285) K^{+}$
「357	$\underset{\eta \pi \pi)}{f_{1}(1420) K^{+}} \times \mathrm{B}\left(f_{1}(1420) \rightarrow\right.$
「358	$\begin{aligned} & f_{1}(1420) K^{+} \times \mathrm{B}\left(f_{1}(1420) \rightarrow\right. \\ & \left.K^{*} K\right) \end{aligned}$
「359	$\begin{aligned} & \phi(1680) K^{+} \times \mathrm{B}(\phi(1680) \rightarrow \\ & \left.K^{*} K\right) \end{aligned}$
Γ_{360}	$f_{0}(1500) K^{+}$
${ }^{5} 361$	ωK^{+}
「362	$\omega K^{*}(892)^{+}$
「363	$\omega(K \pi)_{0}^{*+}$
「364	$\omega K_{0}^{*}(1430)^{+}$
Γ^{365}	$\omega K_{2}^{*}(1430)^{+}$
Γ_{366}	$\underset{\left.\eta \pi^{+}\right)}{\mathrm{a}_{0}(980)^{+}} K^{0} \times \mathrm{B}\left(\mathrm{a}_{0}(980)^{+} \rightarrow\right.$
Γ_{367}	$\underset{\left.\eta \pi^{0}\right)}{a_{0}(980)^{0}} K^{+} \times \mathrm{B}\left(a_{0}(980)^{0} \rightarrow\right.$
Γ_{368}	$K^{*}(892)^{0} \pi^{+}$
「369	$K^{*}(892)^{+} \pi^{0}$

$$
\left.\begin{array}{ll}
\text { Co } & (2.37 \pm 0.08) \times 10^{-5} \\
(1.29 \pm 0.05
\end{array}\right) \times 10^{-5} 5
$$

$$
(7.04 \pm 0.25) \times 10^{-5}
$$

$$
\left(\begin{array}{l}
4.8 \pm \underset{1.6}{1.8}) \times 10^{-6} \\
\hline
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
5.2 \pm 2.1
\end{array}\right) \times 10^{-6}
$$

$$
(2.8 \pm 0.5) \times 10^{-5}
$$

$$
(2.4 \pm 0.4) \times 10^{-6} \quad \mathrm{~S}=1.7
$$

$$
(1.93 \pm 0.16) \times 10^{-5}
$$

$$
\left(\begin{array}{lll}
1.8 \pm 0.4
\end{array}\right) \times 10^{-5}
$$

$$
(9.1 \pm 3.0) \times 10^{-6}
$$

$$
(2.9 \pm 0.8) \times 10^{-6}
$$

＜ $1.3 \times 10^{-6} \mathrm{CL}=90 \%$
$<1.2 \times 10^{-6} \mathrm{CL}=90 \%$
$(1.38 \pm 0.18) \times 10^{-5}$
$<2.0 \times 10^{-6} \mathrm{CL}=90 \%$
$<2.9 \times 10^{-6} \mathrm{CL}=90 \%$
$<4.1 \times 10^{-6} \mathrm{CL}=90 \%$
＜ $3.4 \times 10^{-6} \mathrm{CL}=90 \%$
$\Gamma_{360} f_{0}(1500) K^{+}$
$\Gamma_{361} \omega K^{+}$
${ }^{362} \omega K^{*}(892)^{+}$
$(6.5 \pm 0.4) \times 10^{-6}$
$<7.4 \times 10^{-6} \mathrm{CL}=90 \%$
$(2.8 \pm 0.4) \times 10^{-5}$
$(2.4 \pm 0.5) \times 10^{-5}$
$(2.1 \pm 0.4) \times 10^{-5}$
$<3.9 \times 10^{-6} \mathrm{CL}=90 \%$
$<2.5 \times 10^{-6} \mathrm{CL}=90 \%$
$\Gamma_{368} K^{*}(892)^{0} \pi^{+}$
$(1.01 \pm 0.08) \times 10^{-5}$
$(6.8 \pm 0.9) \times 10^{-6}$

Γ_{370}	$K^{+} \pi^{-} \pi^{+}$		5.10 ± 0.29	）$\times 10^{-5}$	
Γ_{371}	$K^{+} \pi^{-} \pi^{+}$nonresonant		$1.63 \pm{ }_{0.15}^{0.21}$	）$\times 10^{-5}$	
Γ_{372}	$\omega(782) K^{+}$		± 9	）$\times 10^{-6}$	
Γ_{373}	$\underset{\substack{K^{+} \\ \pi_{0}(980) \\ \pi^{-}}}{ } \times \mathrm{B}\left(f_{0}(980) \rightarrow\right.$		9.4 ± 1.2	）$\times 10^{-6}$	
Γ^{374}	$\mathrm{f}_{2}(1270)^{0} K^{+}$	$($	1.07 ± 0.27	）$\times 10^{-6}$	
「375	$\begin{aligned} & f_{0}(1370)^{0} K^{+} \times \\ & \mathrm{B}\left(f_{0}(1370)^{0} \rightarrow \pi^{+} \pi^{-}\right) \end{aligned}$	$<$	1.07	$\times 10^{-5}$	CL＝90\％
Γ_{376}	$\begin{aligned} & \rho^{0}(1450) K^{+} \times \mathrm{K}\left(\rho^{0}(1450)\right. \\ & \left.\pi^{+} \pi^{-}\right) \end{aligned}$	＜	1.17	$\times 10^{-5}$	CL＝90\％
${ }^{377}$	$\underset{\left.\pi^{+} \pi^{-}\right)}{f_{2}^{\prime}(1525) K^{+}} \times \mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow\right.$	＜	3.4	$\times 10^{-6}$	CL＝90\％
「378	$K^{+} \rho^{0}$	$($	3.7 ± 0.5	）$\times 10^{-6}$	
「379	$K_{0}^{*}(1430)^{0} \pi^{+}$		3.9 ± 0.6	$) \times 10^{-5}$	$\mathrm{S}=1.4$
Γ_{380}	$K_{0}^{*}(1430)^{+} \pi^{0}$	$($	1.19 ± 0.23	$) \times 10^{-5}$	
${ }^{\text {381 }}$	$K_{2}^{*}(1430)^{0} \pi^{+}$	$($	5.6 ± 2.2	）$\times 10^{-6}$	
Γ_{382}	$K^{*}(1410)^{0} \pi^{+}$	＜	4.5	$\times 10^{-5}$	CL＝90\％
「383	$K^{*}(1680)^{0} \pi^{+}$	＜	1.2	$\times 10^{-5}$	CL＝90\％
「384	$K^{+} \pi^{0} \pi^{0}$	$($	1.62 ± 0.19	）$\times 10^{-5}$	
「385	$f_{0}(980) K^{+} \times \mathrm{B}\left(f_{0} \rightarrow \pi^{0} \pi^{0}\right)$	$($	2.8 ± 0.8	）$\times 10^{-6}$	
「386	$K^{-} \pi^{+} \pi^{+}$	$<$	4.6	$\times 10^{-8}$	CL＝90\％
「387	$K^{-} \pi^{+} \pi^{+}$nonresonant	＜	5.6	$\times 10^{-5}$	CL＝90\％
「388	$K_{1}(1270)^{0} \pi^{+}$	$<$	4.0	$\times 10^{-5}$	CL＝90\％
「389	$K_{1}(1400)^{0} \pi^{+}$	$<$	3.9	$\times 10^{-5}$	CL＝90\％
「390	$K^{0} \pi^{+} \pi^{0}$	$<$	6.6	$\times 10^{-5}$	CL＝90\％
「391	$K^{0} \rho^{+}$	$($	7.3 ± 1.0	）$\times 10^{-6}$	
「392	$K^{*}(892)^{+} \pi^{+} \pi^{-}$	$($	7.5 ± 1.0	）$\times 10^{-5}$	
「393	$K^{*}(892)^{+} \rho^{0}$	（	4.6 ± 1.1	）$\times 10^{-6}$	
「394	$K^{*}(892)^{+} f_{0}(980)$	$($	4.2 ± 0.7	）$\times 10^{-6}$	
「395	$a_{1}^{+} K^{0}$	$($	3.5 ± 0.7	）$\times 10^{-5}$	
「396	$b_{1}^{+} K^{0} \times \mathrm{B}\left(b_{1}^{+} \rightarrow \omega \pi^{+}\right)$	$($	9.6 ± 1.9	）$\times 10^{-6}$	
「397	$K^{*}(892)^{0} \rho^{+}$	（	9.2 ± 1.5	）$\times 10^{-6}$	
「398	$K_{1}(1400)^{+} \rho^{0}$	$<$	7.8	$\times 10^{-4}$	CL＝90\％
「399	$K_{2}^{*}(1430)^{+} \rho^{0}$	＜	1.5	$\times 10^{-3}$	CL＝90\％
Γ_{400}	$b_{1}^{0} K^{+} \times \mathrm{B}\left(b_{1}^{0} \rightarrow \omega \pi^{0}\right)$		9.1 ± 2.0	）$\times 10^{-6}$	
Γ_{401}	$b_{1}^{+} K^{* 0} \times \mathrm{B}\left(b_{1}^{+} \rightarrow \omega \pi^{+}\right)$	$<$	5.9	$\times 10^{-6}$	CL＝90\％
Γ_{402}	$b_{1}^{0} K^{*+} \times \mathrm{B}\left(b_{1}^{0} \rightarrow \omega \pi^{0}\right)$	＜	6.7	$\times 10^{-6}$	CL＝90\％
Γ_{403}	$K^{+} \bar{K}^{0}$	$($	1.31 ± 0.17	）$\times 10^{-6}$	$\mathrm{S}=1.2$
Γ_{404}	$\bar{K}^{0} K^{+} \pi^{0}$	＜	2.4	＋10－5	CL＝90\％
Γ_{405}	$K^{+} K_{S}^{0} K_{S}^{0}$	$($	1.05 ± 0.04	）$\times 10^{-5}$	
Γ_{406}	$f_{0}(980) K^{+}, f_{0} \rightarrow K_{S}^{0} K_{S}^{0}$		1.47 ± 0.33	）$\times 10^{-5}$	
Γ_{407}	$f_{0}(1710) K^{+}, f_{0} \rightarrow K_{S}^{0} K_{S}^{0}$	$($	$4.8 \pm{ }_{2}{ }^{4.6}$	$) \times 10^{-7}$	
Γ_{408}	$K^{+} K_{S}^{0} K_{S}^{0}$ nonresonant	$($	（ 2.0 ± 0.4	）$\times 10^{-5}$	
Γ_{409}	$K_{S}^{0} K_{S}^{0} \pi^{+}$	＜	5.1	$\times 10^{-7}$	CL＝90\％
Γ_{410}	$K^{+} K^{-} \pi^{+}$		5.2 ± 0.4	）$\times 10^{-6}$	
Γ_{411}	$K^{+} K^{-} \pi^{+}$nonresonant		1.68 ± 0.26	）$\times 10^{-6}$	
Γ_{412}	$K^{+} \bar{K}^{*}(892)^{0}$		5.9 ± 0.8	）$\times 10^{-7}$	
Γ_{413}	$K^{+} \bar{K}_{0}^{*}(1430)^{0}$		$(3.8 \pm 1.3$	）$\times 10^{-7}$	
Γ_{414}	$\pi^{+}\left(K^{+} K^{-}\right)$S－wave		（8．5 ± 0.9	）$\times 10^{-7}$	
Γ_{415}	$K^{+} K^{+} \pi^{-}$	＜	1.1	$\times 10^{-8}$	CL＝90\％
Γ_{416}	$K^{+} K^{+} \pi^{-}$nonresonant	＜	8.79	$\times 10^{-5}$	CL＝90\％
Γ_{417}	$f_{2}^{\prime}(1525) K^{+}$	（	1.8 ± 0.5	）$\times 10^{-6}$	$\mathrm{s}=1.1$
Γ_{418}	$K^{+} f_{J}(2220)$				
Γ_{419}	$K^{*+} \pi^{+} K^{-}$	＜	1.18	$\times 10^{-5}$	CL＝90\％
Γ_{420}	$K^{*}(892)^{+} K^{*}(892)^{0}$		9.1 ± 2.9	）$\times 10^{-7}$	
Γ_{421}	$K^{*+} K^{+} \pi^{-}$	$<$	6.1	$\times 10^{-6}$	CL＝90\％
Γ_{422}	$K^{+} K^{-} K^{+}$	$($	3.40 ± 0.14	）$\times 10^{-5}$	$\mathrm{S}=1.4$
Γ_{423}	$K^{+}{ }^{+}$	$($	8.8 ± 0.7	）$\times 10^{-6}$	$\mathrm{S}=1.1$
Γ_{424}	$\begin{aligned} & f_{0}(980) K^{+} \times \mathrm{B}\left(f_{0}(980) \rightarrow\right. \\ & \left.K^{+} K^{-}\right) \end{aligned}$		9.4 ± 3.2	）$\times 10^{-6}$	
Γ_{425}	$\underset{\left.K^{+} K^{-}\right)}{\mathrm{a}_{2}(1320)} \mathrm{K}^{+} \times \mathrm{B}\left(\mathrm{a}_{2}(1320) \rightarrow\right.$	＜	1.1	$\times 10^{-6}$	CL＝90\％
Γ_{426}	$\begin{aligned} & X_{0}(1550) K^{+} \times \\ & \mathrm{B}\left(X_{0}(1550) \rightarrow K^{+} K^{-}\right) \end{aligned}$		4.3 ± 0.7	）$\times 10^{-6}$	
Γ_{427}	$\underset{\substack{\left.\phi(1680) K^{+} \\ K^{+} K^{-}\right)}}{ } \times \mathrm{B}(\phi(1680) \rightarrow$	＜	8	$\times 10^{-7}$	CL＝90\％
Γ_{428}	$\underset{\substack{\left.K_{0}(1710) K^{+} \\ K^{+}\right)}}{ } \times \mathrm{B}\left(f_{0}(1710) \rightarrow\right.$		1.1 ± 0.6	）$\times 10^{-6}$	
Γ_{429}	$K^{+} K^{-} K^{+}$nonresonant		2.38 ± 0.28	$) \times 10^{-5}$	

Light unflavored meson modes					
Γ_{462}	$\rho^{+} \gamma$		9.8 ± 2.5) $\times 10^{-7}$	
Γ_{463}	$\pi^{+} \pi^{0}$		5.5 ± 0.4) $\times 10^{-6}$	$\mathrm{S}=1.2$
Γ_{464}	$\pi^{+} \pi^{+} \pi^{-}$		$1.52 \pm 0.14)$) $\times 10^{-5}$	
Γ_{465}	$\rho^{0} \pi^{+}$		8.3 ± 1.2	$) \times 10^{-6}$	
Γ_{466}	$\pi^{+} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$		1.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{467}	$\pi^{+} f_{2}(1270)$		2.2) $\times 10^{-6}$	
Γ_{468}	$\rho(1450)^{0} \pi^{+}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$		1.4) $\times 10^{-6}$	
Γ_{469}	$\rho(1450)^{0} \pi^{+}, \rho^{0} \rightarrow K^{+} K^{-}$		1.60 ± 0.14) $\times 10^{-6}$	
Γ_{470}	$f_{0}(1370) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}$	<	4.0	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{471}	$f_{0}(500) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}$	$<$	4.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{472}	$\pi^{+} \pi^{-} \pi^{+}$nonresonant		5.3 ± 1.5) $\times 10^{-6}$	
Γ_{473}	$\pi^{+} \pi^{0} \pi^{0}$	$<$	8.9	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{474}	$\rho^{+} \pi^{0}$		1.09 ± 0.14) $\times 10^{-5}$	
Γ_{475}	$\pi^{+} \pi^{-} \pi^{+} \pi^{0}$	$<$	4.0	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{476}	$\rho^{+} \rho^{0}$		2.40 ± 0.19) $\times 10^{-5}$	
Γ_{477}	$\rho^{+} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$	$<$	2.0	$\times 10^{-6}$	CL=90\%
Γ_{478}	$\mathrm{a}_{1}(1260)^{+} \pi^{0}$		2.6 ± 0.7) $\times 10^{-5}$	
Γ_{479}	$a_{1}(1260)^{0} \pi^{+}$		2.0 ± 0.6	$) \times 10^{-5}$	
Γ_{480}	$\omega \pi^{+}$		6.9 ± 0.5) $\times 10^{-6}$	
Γ_{481}	$\omega \rho^{+}$		$1.59 \pm 0.21) \times$) $\times 10^{-5}$	
Γ_{482}	$\eta \pi^{+}$		4.02 ± 0.27) $\times 10^{-6}$	
Γ_{483}	$\eta \rho^{+}$		7.0 ± 2.9) $\times 10^{-6}$	$\mathrm{S}=2.8$
Γ_{484}	$\eta^{\prime} \pi^{+}$		2.7 ± 0.9) $\times 10^{-6}$	S=1.9
Γ_{485}	$\eta^{\prime} \rho^{+}$		9.7 ± 2.2) $\times 10^{-6}$	
Γ_{486}	$\phi \pi^{+}$		3.2 ± 1.5) $\times 10^{-8}$	
Γ_{487}	$\phi \rho^{+}$	$<$	3.0	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{488}	$a_{0}(980)^{0} \pi^{+}, a_{0}^{0} \rightarrow \eta \pi^{0}$	<	5.8	$\times 10^{-6}$	CL=90\%
Γ_{489}	$a_{0}(980)^{+} \pi^{0}, a_{0}^{+} \rightarrow \eta \pi^{+}$	$<$	1.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{490}	$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	<	8.6	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{491}	$\rho^{0} a_{1}(1260)^{+}$	$<$	6.2	$\times 10^{-4}$	CL=90\%
Γ_{492}	$\rho^{0} a_{2}(1320)^{+}$	$<$	7.2	$\times 10^{-4}$	CL=90\%
「493	$b_{1}^{0} \pi^{+}, b_{1}^{0} \rightarrow \omega \pi^{0}$		6.7 ± 2.0) $\times 10^{-6}$	
$\Gamma 494$	$b_{1}^{+} \pi^{0}, b_{1}^{+} \rightarrow \omega \pi^{+}$	$<$	3.3	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{495}	$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	<	6.3	$\times 10^{-3}$	$\mathrm{CL}=90 \%$

Meson Particle Listings
$B^{ \pm}$

$\Gamma_{560} \bar{\Xi}_{c}^{0} \Lambda_{c}^{+}, \bar{\Xi}_{c}^{0} \rightarrow \Lambda K^{+} \pi^{-}$	$(1.14 \pm 0.26) \times 10^{-5}$			
$\Gamma_{561} \bar{\Xi}_{c}^{0} \Lambda_{c}^{+}, \bar{\Xi}_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}$		5.5	± 1.9) $\times 10^{-6}$
$\Gamma_{562} \Lambda_{c}^{+}{ }_{\text {E }}^{+\prime}{ }_{c}^{\prime \prime}$	$<$	6.5		$\times 10^{-4}$
$\Gamma_{563} \Lambda_{c}^{+} \bar{\Xi}_{c}^{c}(2645)^{0}$	<			$\times 10^{-4}$
$\Gamma_{564} \Lambda_{c}^{+} \bar{\Xi}_{c}(2790)^{0}$		1.1	± 0.4	$) \times 10^{-3}$

Lepton Family number ($L F$) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B=1$ weak neutral current (B1) modes

[a] An ℓ indicates an e or a μ mode, not a sum over these modes.
[b] An $C P(\pm 1)$ indicates the $C P=+1$ and $C P=-1$ eigenstates of the $D^{0}-\bar{D}^{0}$ system.
[c] D denotes D^{0} or \bar{D}^{0}.
[d] $D_{C P+}^{* 0}$ decays into $D^{0} \pi^{0}$ with the D^{0} reconstructed in $C P$-even eigenstates $K^{+} K^{-}$and $\pi^{+} \pi^{-}$.
$[e] \bar{D}^{* *}$ represents an excited state with mass $2.2<\mathrm{M}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
[f] $\chi_{c 1}(3872)^{+}$is a hypothetical charged partner of the $\chi_{c 1}(3872)$.
[g] $\Theta(1710)^{++}$is a possible narrow pentaquark state and $G(2220)$ is a possible glueball resonance.
[h] $\left(\bar{\Lambda}_{c}^{-} p\right)_{s}$ denotes a low-mass enhancement near $3.35 \mathrm{GeV} / \mathrm{c}^{2}$.

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^{2}=$ 3.7 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$$
x_{403} \quad \begin{array}{r}
10 \\
x_{342}
\end{array}
$$

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{7}	33										
x_{49}	0	0									
x_{105}	0	0	7								
x_{146}	0	0	1	13							
x_{275}	0	0	0	0	0						
x_{280}	0	0	0	0	0	0					
x_{299}	0	0	0	0	0	92	0				
x_{311}	0	0	0	0	0	56	0	52			
x_{571}	0	0	0	0	0	13	0	12	7		
x_{578}	0	0	0	0	0	0	5	0	0	0	
	x_{6}	x_{7}	x_{49}	x_{105}	x_{146}	x_{275}	x_{280}	x_{299}	x_{311}	x_{571}	

B^{+}BRANCHING RATIOS
$\Gamma\left(\ell^{+} \nu_{\ell} x\right) / \Gamma_{\text {total }}$
Γ_{1} / Γ "OUR EVALUATION" is an average using rescaled values of the data listed below. The
average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
10.99 ± 0.28 OUR EVALUATION
$\mathbf{1 0 . 7 6} \pm \mathbf{0 . 3 2}$ OUR AVERAGE Error includes scale factor of 1.1.

| 10.76 ± 0.32 | Err | 1 | URQUIJO | 07 | BELL |
| :--- | :--- | :--- | :--- | :--- | :--- |$e^{+} e^{-} \rightarrow r(4 S)$

$10.25 \pm 0.57 \pm 0.65 \quad 3$ ARTUSO 97 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$11.15 \pm 0.26 \pm 0.41 \quad 4$ OKABE 05 BELL Repl. by URQUIJO 07
$10.1 \pm 1.8 \pm 1.5 \quad$ ATHANAS 94 CLE2 Sup. by ARTUSO 97
1 URQUIJO 07 report a measurement of $(10.34 \pm 023 \pm 0.25) \%$ for the partial branching fraction of $B^{+} \rightarrow e^{+} \nu_{e} X_{C}$ decay with electron energy above 0.6 GeV . We converted the result to $B^{+} \rightarrow e^{+} \nu_{e} X$ branching fraction.
2 The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{c}$ in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of $1.0 \mathrm{GeV}: \mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.e^{+} \nu_{e} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.074 \pm 0.041 \pm 0.026$.
${ }^{3}$ ARTUSO 97 uses partial reconstruction of $B \rightarrow D^{*} \ell \nu_{\ell}$ and inclusive semileptonic branching ratio from BARISH 96B ($0.1049 \pm 0.0017 \pm 0.0043$).
${ }^{4}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{C}$ in the B rest frame, and their ratio of $\mathrm{B}\left(B^{+} \rightarrow e^{+} \nu_{e} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.08 \pm 0.05 \pm 0.02$.
 $\mathbf{1 0 . 7 9} \pm \mathbf{0 . 2 5} \pm \mathbf{0 . 2 7} \quad{ }^{1}$ URQUIJO 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ Measure the independent B^{+}and B^{0} partial branching fractions with electron threshold energies of 0.4 GeV .

$\left(D^{0} \ell^{+} \nu_{\ell}\right) / \boldsymbol{\Gamma}_{\text {total }}$
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements. $\ell=e$ or μ, not sum over e and μ modes.

2.29 ± 0.08 OUR AVERAGE

1 Uses a fully reconstructed B meson on the recoil side.
$0.77 \pm \mathbf{0 . 2 2} \mathbf{\pm 0 . 1 2} 1$ BOZEK 10 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -

OoN BABR Repl. by AUBERT 09S
${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side

- - We do not use the following data for averages, fits, limits, etc. • • •
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side
${ }^{2}$ Uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and e^{+}or μ^{+}as ℓ^{+}.
$=(63.6 \pm 2.3 \pm 3.3) \%$.
${ }^{7}$ Combining $\bar{D}^{* 0} \ell^{+} \nu_{\ell}$ and $\bar{D}^{*-} \ell^{+} \nu_{\ell}$ SANGHERA 93 test $V-A$ structure and fit the decay angular distributions to obtain $A_{F B}=3 / 4 *\left(\Gamma^{-}-\Gamma^{+}\right) / \Gamma=0.14 \pm 0.06 \pm 0.03$. Assuming a value of $V_{C b}$, they measure V, A_{1}, and A_{2}, the three form factors for the $D^{*} \ell \nu_{\ell}$ decay, where results are slightly dependent on model assumptions.
${ }^{8}$ Assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at the $\gamma(4 S)$. Uncorrected for D and D^{*} branching ratio assumptions.
${ }^{9}$ ANTREASYAN 90 B is average over B and $\bar{D}^{*}(2010)$ charge states.

$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{\pi}^{+} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
Γ_{8} / Γ
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{4.4 \pm 0.4 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$4.55 \pm 0.27 \pm 0.39 \quad$ VOSSEN $\quad 18$ BELL $\quad e^{+} e^{-} \rightarrow \gamma(4 S)$
$4.2 \pm 0.6 \pm 0.3 \quad 1$ AUBERT 08 B BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -
$4.4 \pm 0.6 \pm 0.2 \quad 1,2$ LIVENTSEV 08 BELL Repl. by VOSSEN 18
$5.8 \pm 1.0 \pm 0.2 \quad 3$ LIVENTSEV 05 BELL Repl. by LIVENTSEV 08
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.
${ }^{2}$ LIVENTSEV 08 reports $(4.0 \pm 0.4 \pm 0.6) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D^{-} \pi^{+} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)\right]$ assuming $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)=(2.15 \pm$ $0.22) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)=(2.35 \pm 0.09) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ LIVENTSEV 05 reports $\left[\Gamma\left(B^{+} \rightarrow D^{-} \pi^{+} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right)\right]$ $=0.25 \pm 0.03 \pm 0.03$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right)=$ $(2.31 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{D}_{0}^{*}(\mathbf{2 4 2 0})^{0} \ell^{+} \nu_{\ell}, \bar{D}_{0}^{* 0} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}$				Г9/Г
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	
2.5 \pm 0.5 OUR AVERAGE				
$2.6 \pm 0.5 \pm 0.4$	${ }^{1}$ AUBERT	08BL BABR	$e^{+} e^{-}$	$r(4 S)$
$2.4 \pm 0.4 \pm 0.6$	1 LIVENTSEV	08 BELL	$e^{+} e^{-}$	$r(4 S)$

Meson Particle Listings
$B^{ \pm}$

號

$\Gamma\left(D^{(*)} \mathrm{n} \pi \ell^{+} \nu_{\boldsymbol{\ell}}(\mathrm{n} \geq 1)\right) / \Gamma\left(D \ell^{+} \nu_{\boldsymbol{\ell}} X\right)$		$11 / \Gamma_{3}$		
$\frac{\text { VALUE }}{\mathbf{0 . 1 9 3} \pm \mathbf{0 . 0 2 2} \text { OUR AVERAGE }}$ DOCUMENT				
0.21 ± 0.07	2 AAIJ	19aC LHC	t 7	
$0.191 \pm 0.013 \pm 0.019$	${ }^{3}$ AUBERT	07AN BAB	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ The relative branching fractions of $B^{-} \rightarrow D^{0}, D^{* 0}, D^{* * 0}$ in the $B^{-} \rightarrow D^{0} X \mu^{-} \bar{\nu}$ channel are determined by fitting the distribution of the missing mass in $\bar{B}_{s 2}^{* 0} \rightarrow B^{-} K^{+}$ decays.				
${ }^{2}$ In this measurement of $\mathrm{f}_{D^{* * 0}}=\mathrm{B}\left(B^{-} \rightarrow\left(D^{* * 0} \rightarrow D^{0} X\right) \mu^{-} \bar{\nu}\right) / \mathrm{B}\left(B^{-} \rightarrow\right.$ $\left.D^{0} X \mu^{-} \bar{\nu}\right), D^{* * 0}$ refers collectively to $\mathrm{L}=1$ states $D_{0}^{*}(2400), D_{1}(2420), D_{1}(2430)$, and $D_{2}^{*}(2460)$, as well as other resonances such as radially excited D mesons, and to nonresonant contributions with additional pions.				

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{*-} \boldsymbol{\pi}^{+} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{6 . 0} \pm \mathbf{0 . 4 ~ O U R ~ A V E R A G E}}$	$\boldsymbol{\Gamma}_{\mathbf{1 2}} / \boldsymbol{\Gamma}$
DOCUMENT ID	

$\begin{array}{lllll}6.0 \pm 0.4 & \text { OUR AVERAGE } \\ 6.03 \pm 0.43 \pm 0.38\end{array} \quad$ VOSSEN 18 BELL $\quad e^{+} e^{-} \rightarrow r(4 S) \quad$ |
$5.9 \pm 0.5 \pm 0.4 \quad 1$ AUBERT \quad 08Q BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$7.0 \pm 1.1 \pm 0.3 \quad 1,2$ LIVENTSEV 08 BELL Repl. by VOSSEN 18
$6.1 \pm 1.4 \pm 0.2 \quad 3,4$ LIVENTSEV 05 BELL Repl. by LIVENTSEV 08
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.
${ }^{2}$ LIVENTSEV 08 reports $(6.4 \pm 0.8 \pm 0.9) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D^{*-} \pi^{+} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)\right]$ assuming $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)=$ $(2.15 \pm 0.22) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)=$ $(2.35 \pm 0.09) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Excludes D^{*+} contribution to $D \pi$ modes.
 $\left.\Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \ell^{+} \nu_{\ell}\right)\right]=0.12 \pm 0.02 \pm 0.02$ which we multiply by our best value $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow D^{*}(2010)^{-} \ell^{+} \nu_{\ell}\right)=(5.05 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

3.03 ± 0.20 OUR AVERAGE

$2.97 \pm 0.17 \pm 0.17$	1 AUBERT	09Y	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$2.9 \pm 0.3 \pm 0.3$	2 AUBERT	08BL BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
$4.2 \pm 0.7 \pm 0.7$	2 LIVENTSEV	08	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$3.73 \pm 0.85 \pm 0.57$	3 ANASTASSOV 98	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$		

${ }^{1}$ Uses a simultaneous measurement of all B semileptonic decays without full reconstruction of events.
${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(\bar{D}_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{0} \ell^{+} \nu_{\boldsymbol{\ell}}, \bar{D}_{\mathbf{2}}^{* 0} \rightarrow D^{*-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 5}} / \Gamma$

VALUE (units 10^{-3}) CL\%	DOCUMENT ID	TECN	COMMENT
1.01 ± 0.24 OUR AVERAGE	Error includes scale factor of 2.0.		
$0.87 \pm 0.11 \pm 0.07$	${ }^{1}$ AUBERT	09Y BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.5 \pm 0.2 \pm 0.2$	2 AUBERT	08BL BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.8 \pm 0.6 \pm 0.3$	2 LIVENTSEV	08 BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • - •
$\begin{array}{lll}<1.6 & 90 \quad 3 \text { ANASTASSOV } 98 \text { CLE2 } \quad e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09Y reports $\mathrm{B}\left(B^{+} \rightarrow \bar{D}_{2}^{*}(2460)^{0} \ell^{+} \nu_{\ell}\right) \cdot \mathrm{B}\left(\bar{D}_{2}^{*}(2460)^{0} \rightarrow D^{(*)-} \pi^{+}\right)=$ $(2.29 \pm 0.23 \pm 0.21) \times 10^{-3}$ and the authors have provided us the individual measurement.
${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

1 Measurement used electrons and muons as leptons.

$\Gamma\left(\bar{D}^{* 0} \pi^{+} \pi^{-} \ell^{+} \nu_{\boldsymbol{\ell}}\right) / \Gamma\left(\bar{D}^{*}(2007)^{0} \ell^{+} \nu_{\boldsymbol{\ell}}\right)$					Γ_{17} / Γ_{6}
VALUE (units 10^{-2})	DOCUN		TECN	COMMENT	
$1.4 \pm 0.7 \pm 0.4$	1 LEES	16	BABR	$e^{+} e^{-} \rightarrow$	

1^{1} Measurement used electrons and muons as leptons.

$\Gamma\left(D_{s}^{(*)-} K^{+} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$	DOCUMENT ID	TECN	COMMENT	Γ_{18} / Γ
VALUE (units 10^{-4})				
6.1 ± 1.0 OUR AVERAGE				
$5.9 \pm 1.2 \pm 1.5$	1 STYPULA 12	BELL	$e^{+} e^{-}$	$r(4 S)$
$6.13{ }_{-1.03}^{+1.04} \pm 0.67$	1 DEL-AMO-SA...11L	BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production	and B^{0} at the $r(4$			

$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{s}}^{-} \boldsymbol{K}^{+} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\text { DOCUMENT ID }}$ TECN COMMENT

$\mathbf{3 . 0} \pm \mathbf{0 . 9} \mathbf{+ 1 . 1} \mathbf{1 . 8} \quad{ }^{1}$ STYPULA $\quad 12$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ STYPULA 12 provides also an upper limit of 0.56×10^{-3} at $90 \% \mathrm{CL}$ for the same data. Also measures branching fraction of the combined modes of $D_{s}^{-} K^{+} \ell^{+} \nu_{\ell}$ and $D_{S}^{*-} K^{+} \ell^{+}{ }_{\nu_{\ell}}$ as $\mathrm{B}\left(B^{+} \rightarrow D_{s}^{(*)-} K^{+} \ell^{+}{ }_{\nu}{ }_{\ell}\right)=(5.9 \pm 1.2 \pm 1.5) \times 10^{-4}$.
$\Gamma\left(\pi^{0} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
Γ_{21} / Γ "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
$\frac{V A L U E \text { (units } 10^{-4} \text {) DOCUMENT ID TECN COMMENT }}{\text { D.780 }}$
0.780 ± 0.027 OUR EVALUATION
$0.748 \pm \mathbf{0 . 0 2 9}$ OUR AVERAGE
$0.80 \pm 0.08 \pm 0.04 \quad 1$ SIBIDANOV 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.77 \pm 0.04 \pm 0.03 \quad{ }^{2}$ LEES \quad 12AA BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.705 \pm 0.025 \pm 0.035 \quad{ }^{3}$ DEL-AMO-SA..11C BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.82 \pm 0.09 \pm 0.05 \quad{ }^{3}$ AUBERT \quad 08AV BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.77 \pm 0.14 \pm 0.08 \quad{ }^{4}$ HOKUUE 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.74 \pm 0.05 \pm 0.10 \quad{ }^{5}$ AUBERT,B $\quad 050$ BABR Repl. by DEL-AMO
${ }^{1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.
${ }^{2}$ Uses loose neutrino reconstruction technique. Assumes $\mathrm{B}\left(Y(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm$ $0.6) \%$ and $\mathrm{B}\left(Y(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{3}$ Using the isospin symmetry relation, B^{+}and B^{0} branching fractions are combined.
${ }^{4}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \rightarrow D^{(*)} \ell \nu_{\ell}$.
${ }^{5} B^{+}$and B^{0} decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

$\Gamma\left(\eta \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$

$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{0.39+0.05}$ OUR AVER $\frac{C L \%}{A G E}$ 0.39 ± 0.05 OUR AVERAGE
$0.42 \pm 0.11 \pm 0.03$
$0.38 \pm 0.05 \pm 0.05$
$0.31 \pm 0.06 \pm 0.08$
$0.64 \pm 0.20 \pm 0.03$

09Q BABR $e^{+} \rightarrow \gamma(4 S)$
08AV BABR $e^{+} e^{-} \rightarrow r(4 S)$

$\Gamma\left(\omega \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }} \quad \Gamma_{26} / \Gamma$ VALUE $\quad \frac{\text { DOCUMENT ID }}{\text { - We do not use the following data for averages, fits, limits, etc. • • • }}$ seen

1 ALBRECHT 91C ARG
${ }^{1}$ In ALBRECHT 91c, one event is fully reconstructed providing evidence for the $b \rightarrow u$ transition.

$\Gamma\left(\boldsymbol{\rho}^{0} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right) / \Gamma_{\text {total }}$

Γ_{27} / Γ
$\ell=e$ or μ, not sum over e and μ modes.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

DOCUMENT ID TECN COMMENT
1.42 $\mathbf{~ 0 . 2 3}$ OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.
$1.83 \pm 0.10 \pm 0.10$
$0.94 \pm 0.08 \pm 0.14$
$1.33 \pm 0.23 \pm 0.18$
$1.34 \pm 0.15_{-0.32}^{+0.28}$

1 SIBIDANOV 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{2}$ DEL-AMO-SA..11C BABR $e^{+} e^{-} \rightarrow r(4 S)$
3 HOKUUE 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{4}$ BEHRENS 00 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - .

$1.16 \pm 0.11 \pm 0.30$		2 AUBERT, B	050	BABR	Repl. by DEL-AMO SANCHEZ 11C	
$1.40 \pm 0.21_{-0.33}^{+0.32}$		${ }^{4}$ BEHRENS	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$1.2 \pm 0.2{ }_{-0.4}^{+0.3}$		${ }^{4}$ ALEXANDER	96T	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
<2.1	90	${ }^{5}$ BEAN	93B	CLE2	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$

${ }^{1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.
${ }^{2} B^{+}$and B^{0} decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.
${ }^{3}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \rightarrow D^{(*)} \ell \nu_{\ell}$.
${ }^{4}$ Derived based in the reported B^{0} result by assuming isospin symmetry: $\Gamma\left(B^{0} \rightarrow\right.$ $\left.\rho^{-} \ell^{+} \nu\right)=2 \Gamma\left(B^{+} \rightarrow \rho^{0} \ell^{+} \nu\right) \approx 2 \Gamma\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$.
${ }^{5}$ BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma\left(\omega^{0} \ell^{+} \nu_{\ell}\right)$ and $\Gamma\left(\rho^{-} \ell^{+} \nu_{\ell}\right)$ with this result, they obtain a limit $<(1.6-2.7) \times 10^{-4}$ at $90 \% \mathrm{CL}$ for $B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $\left|V_{u b} / V_{C b}\right|<0.8-0.13$ at $90 \% \mathrm{CL}$ is derived as well.

$\Gamma\left(p \bar{p} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-6})
$\frac{\text { DOCUMENT ID }}{1 \text { TIEN }} 14$ BELL $\frac{\text { COMMENT }}{\text { BEL }} \frac{\Gamma_{\mathbf{2 8}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(p \bar{p} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$					Γ_{29} / Γ
VALUE	CL\%	DOCUMENT ID TECN		COMMENT	
$<8.5 \times 10^{-6}$	90	1 TIEN	14 BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
$\Gamma\left(p \bar{p} e^{+} \nu_{e}\right) / \Gamma_{\text {total }}$					Γ_{30} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	

$$
\mathbf{8 . 2} \mathbf{Z}_{-3.2}^{\mathbf{3} .7} \pm \mathbf{0 . 6} \quad 1 \text { TIEN } \quad 14 \text { BELL } e^{+} e^{-} \rightarrow \Upsilon(4 S)
$$

- - We do not use the following data for averages, fits, limits, etc. - -
$<5200 \quad 90 \quad 2$ ADAM
03B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Based on phase-space model; if $V-A$ model is used, the $90 \% \mathrm{CL}$ upper limit becomes $<1.2 \times 10^{-3}$.

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 9 8}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { SATOYAMA }} 07 \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
\cdots We do not use the following data for averages, fits, limits, etc. $\bullet \bullet r(4 S)$
$<3.5 \quad 90 \quad 2$ YOOK 15 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$<8 \quad 90 \quad 1$ AUBERT 10 EE BABR $e^{+} e^{-} \rightarrow r(4 S)$
$<1.9 \quad 90 \quad 1$ AUBERT 09 V BABR $e^{+} e^{-} \rightarrow r(4 S)$
$<5.290 \quad 1$ AUBERT 08AD BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
$\begin{array}{llll}<15 & 90 & \text { ARTUSO } 95 & \text { CLE2 } \\ e^{+} & e^{-} \rightarrow & \rightarrow(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Assumes $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$.

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(\mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$				「32/Г
VALUE (units 1^{-6})	CL\%	Document id	TECN	Comment
0.29 to 1.07	90	${ }^{1}$ SIBIDANov	18 beLL	$e^{+} e^{-} \rightarrow r_{(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - .				
< 2.7	90	${ }^{2}$ Yook	15 bel	$e^{+} e^{-} \rightarrow$ (4S)
<11	90	${ }^{3}$ aUbert	10 E BABR	$e^{+} e^{-} \rightarrow$ r(4S)
< 1.0	90	${ }^{3}$ AUBERT	09v BABR	R $e^{+} e^{-} \rightarrow r_{\text {(4S) }}$
< 5.6	90	${ }^{3}$ AUBERT	08AD BABR	R $e^{+} e^{-} \rightarrow r_{\text {(4S) }}$
< 1.7	90	3,4 SATOYAMA	07 BELL	$e^{+} e^{-} \rightarrow r_{\text {(4S) }}$
< 6.6	90	aubert	040 babr	Repl. by Aubert 09
<21	90	ARTUSO	95 CLE2	$e^{+} e^{-} \rightarrow{ }^{\text {(4S }}$)
${ }^{1}$ This is a 90% confidence interval in the frequentist approach. A 2.4 standard deviation signal above the background is found, with a measured branching fraction ($6.46 \pm 2.22 \pm$ $1.60) \times 10^{-7}$. ${ }^{2}$ Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$. ${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{4}$ Superseded by SIBIDANOV 18.				
$\Gamma\left(\tau^{+} \nu_{\tau}\right) / \Gamma_{\text {total }}$				Г33/Г
See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_{S}^{+} Listings.				
1.09 ± 0.24 OUR AVERAGE Error includes scale factor of 1.2.				
$0.72{ }_{-0.25}^{+0.27} \pm 0.11$		${ }^{3}$ HARA		$e^{+} e^{-} \rightarrow r(4 S)$
$1.83-{ }_{-0.49}^{+0.53} \pm 0.24$		2,4 Lees $\quad 13 \mathrm{~K}$ babr		$e^{+} e^{-} \rightarrow r_{(4 S)}$
$1.7 \pm 0.8 \pm 0.2$		2,5 aubert 10e babr e		$e^{+} e^{-} \rightarrow r(4 S)$
- We do not use the following data for averages, fits, limits, etc. - . -				
$1.54{ }_{-0.37}^{+0.38+0.31}$		2,6 HARA	10 bell R	Repl. by KRONENBITTER 15
$1.8{ }_{-0.8}^{+0.9} \pm 0.45$		${ }^{2,7}$ aUbert	08 D babr R	Repl. by Lees 13k
$\begin{aligned} & 0.9 \pm 0.6 \pm 0.1 \\ & 2.6 \end{aligned}$		2,5 AUBERT ${ }^{2}$ aUBERT	07AL BABR 06K BABR	Repl. by AUBERT 10E $e^{+} e^{-} \rightarrow r(4 S)$
	90			
$1.79{ }_{-0.49}^{+0.56}+0.41$		2,7 IKADO	06 beLL R	Repl. by HARA 13
	90	${ }^{2}$ aubert, ${ }^{\text {a }}$	05B BABR R	Repl. by Aubert 06k
	90	${ }^{8}$ barate	01E ALEP e	$e^{+} e^{-} \rightarrow$
< 8.4	90	${ }^{2}$ browder	01 CLE2 e^{+}	$e^{+} e^{-} \rightarrow r^{(4 S)}$
5.7	90	${ }^{9}$ AcCiarri	97 L L3 e^{+}	$e^{+} e^{-} \rightarrow$
<104	90	${ }^{10}$ ALBRECHT	95d ARG e	$e^{+} e^{-} \rightarrow$ r (4S)
< 22	90	ARTUSO	95 CLE2 e^{+}	$e^{+} e^{-} \rightarrow$ r(4S)
< 18	90	${ }^{\text {buskulic }}$		$e^{+} e^{-} \rightarrow$ Z

${ }^{1}$ Requires one reconstructed semileptonic B decay $B^{-} \rightarrow D^{(*) 0} \ell^{-} \bar{\nu}_{\ell}$ in the recoil.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ The authors combine their result with that from HARA 10 obtaining $\mathrm{B}\left(B^{-} \rightarrow\right.$ $\left.\tau^{-} \bar{\nu}_{\tau}\right)=(0.96 \pm 0.26) \times 10^{-4}$ and deriving $f_{B}\left|V_{u b}\right|=(7.4 \pm 0.8 \pm 0.5) \times 10^{-4} \mathrm{GeV}$.
${ }^{4}$ Requires a fully reconstructed hadronic B-decay in the recoil. Reports that this result
combined with AUBERT 10E value gives $\mathrm{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=(1.79 \pm 0.48) \times 10^{-4}$.
${ }^{5}$ Requires one reconstructed semileptonic B decay $B^{-} \rightarrow D^{0} \ell^{-} \bar{\nu}_{\ell} X$ in the recoil.
${ }^{6}$ Requires one reconstructed semileptonic B decay $B^{-} \rightarrow D^{(*) 0} \ell^{-} \bar{\nu}_{\ell} X$ in the recoil.
${ }^{7}$ The analysis is based on a sample of events with one fully reconstructed tag B in a hadronic decay mode $B^{-} \rightarrow D^{(*) 0} X^{-}$.
${ }^{8}$ The energy-flow and b-tagging algorithms were used.
${ }^{9}$ ACCIARRI 97F uses missing-energy technique and $f\left(b \rightarrow B^{-}\right)=(38.2 \pm 2.5) \%$.
${ }^{10}$ ALBRECHT 95D uses full reconstruction of one B decay as tag.
${ }^{11}$ BUSKULIC 95 uses same missing-energy technique as in $\bar{b} \rightarrow \tau^{+} \nu_{\tau}$ X, but analysis is restricted to endpoint region of missing-energy distribution.

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{rrrrrr}<3.5 \times 10^{-6} & 90 & 2,3 \text { HELLER } \quad 15 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$<15.6 \times 10^{-6} \quad 90 \quad 2$ AUBERT \quad 09AT BABR $e^{+} e^{-} \rightarrow r(4 S)$
1 Supersedes HELLER 15.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ Superseded by GELB 18.
「35/Г
$\Gamma\left(e^{+} \nu_{\mathrm{e}} \gamma\right) / \mathrm{I}_{\text {total }}$
$\frac{\text { VALUE }}{<4.3 \times 10^{-6}} \quad \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { GELB }} \frac{18}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{l}$
- - We do not use the following data for averages, fits, limits, etc. - •

$<6.1 \times 10^{-6}$	90	2,3 HELLER	15 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$<17 \times 10^{-6}$	90	2 AUBERT	09AT BABR $e^{+} e^{-} \rightarrow r(4 S)$	

$\begin{array}{lllll}<17 & \times 10 & 90 & 4 \text { AUBERT } & \text { 09AT BABR } \\ <200 & e^{+} e^{-} & \rightarrow & r(4 S) \\ & 90 & \text { BROWDER } & 97 & \text { CLE2 } \\ e^{+} & e^{-} \rightarrow & r(4 S)\end{array}$
1 Supersedes HELLER 15.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ Superseded by GELB 18.
${ }^{4}$ BROWDER 97 uses the hermiticity of the CLEO II detector to reconstruct the neutrino energy and momentum.

$\Gamma\left(D^{0} X\right) / \Gamma_{\text {total }}$
DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT } \quad \Gamma_{39} / \boldsymbol{\Gamma}}$
$\mathbf{0 . 7 8 6} \pm \mathbf{0 . 0 1 6} \mathbf{+ 0 . 0 3 4} \mathbf{0 . 0 3 3} \quad 1$ AUBERT $\quad 07 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.793 \pm 0.025{ }_{-0.044}^{+0.045} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma\left(D^{0} \boldsymbol{X}\right) /\left[\Gamma\left(D^{0} \boldsymbol{X}\right)+\Gamma\left(\bar{D}^{0} \boldsymbol{X}\right)\right]_{\text {DOCUMENT ID }}^{\text {VALUE }}$
$\mathbf{0 . 0 9 8 \pm 0 . 0 0 7 \pm 0 . 0 0 1}$
- - We do not use the following data for averages, fits, limits, etc. • • •
$0.110 \pm 0.010 \pm 0.003$
AUBERT,BE 04B BABR Repl. by AUBERT 07N
$\Gamma\left(D^{+} x\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 2 5} \pm \mathbf{0 . 0 0 5} \pm \mathbf{0 . 0 0 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { O7N }} \frac{\text { COMMENT }}{\text { BABR }} \frac{\mathbf{4 0} / \mathrm{T}}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.038 \pm 0.009 \pm 0.005$
1 AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm charmed particle in the rest of
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{X}\right) / \boldsymbol{\Gamma}_{\text {total }}$ VALUE $\quad \boldsymbol{\Gamma}_{\mathbf{4 1}} / \boldsymbol{\Gamma}$ $\frac{V A L U E}{\mathbf{0 . 0 9 9} \mathbf{0 . 0 0 8} \mathbf{0 . 0 0 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 07 \mathrm{~N}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.098 \pm 0.012 \pm 0.0141$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma\left(D^{+} X\right) /\left[\Gamma\left(D^{+} X\right)+\Gamma\left(D^{-} \boldsymbol{X}\right)\right]$
VALUE
DOCUMENT ID $\quad \Gamma_{\mathbf{4 0}} /\left(\Gamma_{\mathbf{4 0}}+\Gamma_{\mathbf{4 1}}\right)$
$\mathbf{0 . 2 0 4} \pm \mathbf{0 . 0 3 5} \pm \mathbf{0 . 0 0 1} \quad$ AUBERT 07 N BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.278 \pm 0.052 \pm 0.009$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{s}}^{+} \boldsymbol{X}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DOCUMENT ID
$\mathbf{0 . 0 7 9 \pm 0 . 0 0 6} \mathbf{+ 0 . 0 1 3} \quad 1$ AUBERT $\quad 07 \mathrm{~N}$ BABR $\frac{e^{+} e^{-} \rightarrow \gamma(4 S)}{}$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.143 \pm 0.016_{-0.034}^{+0.051} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm charmed particle in the rest of

• - We do not use the following data for averages, fits, limits, etc. \bullet •
$0.035 \pm 0.008_{-0.009}^{+0.013}$
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm charmed particle in the rest of
 $\mathbf{0 . 4 2 7} \pm \mathbf{0 . 0 7 1} \pm \mathbf{0 . 0 0 1} \quad$ AUBERT 07N BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - • -
$0.452 \pm 0.090 \pm 0.003$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
$\Gamma(\bar{c} X) / \Gamma_{\text {total }}$
Γ_{46} / Γ

| VALUE | DOCUMENT ID | |
| :--- | :--- | :--- | :--- |
| $\mathbf{0 . 9 6 8} \pm \mathbf{0 . 0 1 9} \mathbf{+ 0 . 0 4 1}$ | 1 TECN | COMMENT |
| AUBERT \quad 07N | BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |

- - We do not use the following data for averages, fits, limits, etc. - • -
$0.983 \pm 0.030_{-0.051}^{+0.054} \quad{ }^{1}$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma(c X) / \Gamma_{\text {total }}$
Γ_{47} / Γ

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.330 \pm 0.0222_{-0.037}^{+0.055} \quad{ }^{1}$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
$1_{\text {Events are selected by completely reconstructing one } B \text { and searching for a reconstructed }}^{\text {charmed particle in the rest of the event. The last error includes systematic and charm }}$
branching ratio uncertainties.
$\Gamma(c / \bar{c} X) / \Gamma_{\text {total }}$
Γ_{48} / Γ

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.313 \pm 0.037_{-0.075}^{+0.088} \quad{ }^{1}$ AUBERT,BE 04B BABR Repl. by AUBERT 07N

$1_{\text {Events are selected by completely reconstructing one } B \text { and searching for a reconstructed }}$| charmed particle in the rest of the event. The last error includes systematic and charm |
| :--- |
| branching ratio uncertainties. |

$\Gamma\left(\bar{D}^{0} \pi^{+}\right) / \Gamma_{\text {total }}$
Γ_{49} / Γ
VALUE (units 10^{-3}) EVTS
DOCUMENT ID TECN COMMENT
4.70 ± 0.13 OUR AVERAGE
$4.34 \pm 0.10 \pm 0.23$
$4.90 \pm 0.07 \pm 0.22$
1 KATO $\quad 18 \quad \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \Upsilon(4 S)$
2 AUBERT $\quad 07 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$5.0 \pm 0.6 \pm 0.3$
$4.49 \pm 0.21 \pm 0.23$
$4.97 \pm 0.12 \pm 0.29$
$5.0 \pm 0.7 \pm 0.6$
$5.4 \begin{gathered}+1.8 \\ +1.5 \\ +0.9\end{gathered} \quad 14 \quad 7$ BEBEK $\quad 87$ CLEO $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$4.67 \pm 0.26 \pm 0.04 \quad 8$ AUBERT,B 04P BABR Repl. by AUBERT 07H $5.5 \pm 0.4 \pm 0.5 \quad 304 \quad 9$ ALAM 94 CLE2 Repl. by AHMED 02B $2.0 \pm 0.8 \pm 0.6 \quad 12 \quad{ }^{6}$ ALBRECHT $\quad 90$ J ARG $e^{+} e^{-} \rightarrow r(4 S)$
$1.9 \pm 1.0 \pm 0.6 \quad 7 \quad 10$ ALBRECHT 88 K ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Measures absolute branching fractions using a missing-mass technique.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ ABULENCIA 06J reports $\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]=1.97 \pm$ 0.10 ± 0.21 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.52 \pm 0.13) \times$ 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ User a missing-mass method. Does not depend on D branching fractions or B^{+} / B^{0} uses a missing-m
${ }_{5}{ }^{\text {production rates. }}$ AHMED 02B reports an additional uncertainty on the branching ratios to account for 6.5% uncertainty on relative production of B^{0} and B^{+}, which is not included here.
${ }^{6}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses the Mark III branching
$7 \begin{aligned} & \text { fractions for the } D \text {. } \\ & \text { BEBEK } 87 \text { value has been updated in BERKELMAN } 91 \text { to use same assumptions as }\end{aligned}$
$8 \begin{aligned} & \text { noted for BORTOLETTO 92. } \\ & \text { AUBERT,B 04P reports }\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]=(1.846 \pm\end{aligned}$ $0.032 \pm 0.097) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.950 \pm$ $0.031) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{9}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{10}$ ALBRECHT 88 K assumes $B^{0} \bar{B}^{0}: B^{+} B^{-}$ratio is 45:55. Superseded by ALBRECHT 90J.
$\Gamma\left(\overline{D^{0}} \rho^{+}\right) / /_{\text {total }}$
Γ_{52} / Γ

$0.0135 \pm 0.0012 \pm 0.0015 \quad 212 \quad 1$ ALAM $\quad 94 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$0.013 \pm 0.004 \pm 0.004 \quad 19 \quad 2$ ALBRECHT $90 」$ ARG $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • - -
$0.021 \pm 0.008 \pm 0.009 \quad 10 \quad{ }^{3}$ ALBRECHT 88 K ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
2 Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses the Mark III branching
$3 \begin{aligned} & \text { fractions for the } D \text {. } \\ & \text { ALBRECHT } 88 \mathrm{~K} \text { assumes } B^{0} \bar{B}^{0}: B^{+} B^{-} \text {ratio is 45:55. }\end{aligned}$
$\Gamma\left(\bar{D}^{0} K^{+}\right) / \Gamma\left(\bar{D}^{0} \pi^{+}\right)$
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT \quad 53/ $\mathbf{4 9}$
7.75 ± 0.15 OUR AVERAGE $\frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 2.1 \text {. See the ideogram below. }}$
$7.768 \pm 0.038 \pm 0.06$

${ }^{1}$ AAIJ	18 A	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
HORII	08	BELL	$e^{+} e^{-} \rightarrow$
AUBERT	04 N	BABR	$e^{+} e^{-} \rightarrow$
AUB(4S)			

$8.31 \pm 0.35 \pm 0.20 \quad$ AUBERT $\quad 04 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{lllllll} & +1.4 & +0.7 \\ -1.2 & -0.6 & \text { BORNHEIM } 03 & \text { CLE2 } & e^{+} e^{-} \rightarrow & r(4 S)\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - -
$7.79 \pm 0.06 \pm 0.19 \quad$ AAIJ 16 L LHCB $p p$ at $7,8 \mathrm{TeV}$
$7.93 \pm 0.10 \pm 0.18 \quad 2 \mathrm{AAIJ} \quad 16 \mathrm{~L}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$7.71 \pm 0.17 \pm 0.26 \quad 2$ AAIJ \quad 13AE LHCB Repl. by AAIJ 16L
$7.74 \pm 0.12 \pm 0.19 \quad$ AAIJ $\quad 12 \mathrm{M}$ LHCB Repl. by AAIJ 16L
$\begin{array}{llllll}9.4 & \pm 0.9 & \pm 0.7 & \text { ABE } & \text { 03D BELL Repl. by SWAIN } 03 \\ 7.7 & \pm 0.5 & \pm 0.6 & \text { SWAIN } & 03 & \text { BEII }\end{array}$
$7.7 \pm 0.5 \pm 0.6 \quad$ SWAIN 03 BELL Repl. by HORII 08
$7.9 \pm 0.9 \pm 0.6 \quad$ ABE 01। BELL Repl. by ABE 03D
$\begin{array}{llllll}5.5 & \pm 1.4 & \pm 0.5 & \text { ATHANAS } 98 & \text { CLE2 } & \text { Repl. by BORNHEIM } 03\end{array}$
WEIGHTED AVERAGE
7.75 ± 0.15 (Error scaled by 2.1)

${ }^{1}$ Supersedes AAIJ 16L.

Meson Particle Listings
$B^{ \pm}$

${ }^{1}$ Uses $D \rightarrow K^{+} K^{-}$decay mode and reports $R_{C P+}=0.988 \pm 0.015 \pm 0.011$ which we have divided by 2.
${ }^{2}$ Uses $D \rightarrow \pi^{+} \pi^{-}$decay mode and reports $R_{C P+}=0.992 \pm 0.027 \pm 0.015$ which we have divided by 2 .
${ }^{3}$ AAIJ 16L reports $R_{C P+}=0.978 \pm 0.019 \pm 0.018$ which we have divided by 2 .
${ }^{4}$ Reports $R_{C P+}=2\left(\mathrm{~B}\left(B^{-} \rightarrow D_{C P(+1)} K^{-}\right)+\mathrm{B}\left(B^{+} \rightarrow D_{C P(+1)} K^{+}\right)\right) /$ $\left(\mathrm{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)+\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right)=1.30 \pm 0.24 \pm 0.12$ that we have divided by 2.
${ }^{5}$ Reports $R_{C P+}=1.18 \pm 0.09 \pm 0.05$ that we have divided by 2 .
${ }^{6}$ AAIJ 12 M reports $R_{C P+}=1.007 \pm 0.038 \pm 0.012$ which we have divided by 2 .

$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{C P}(-\mathbf{1})} \boldsymbol{K}^{+}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{C P}(-\mathbf{1})} \boldsymbol{\pi}^{+\boldsymbol{+}}\right)_{\text {VALUE }}^{\text {DOCUMENT ID }} \quad$ TECN COMMENT
$\mathbf{5 5} / \boldsymbol{\Gamma}_{\mathbf{5 1}}$

$\mathbf{0 . 0 9 7} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 0 7} \quad 1 \mathrm{ABE} \quad 06 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -
$0.119 \pm 0.028 \pm 0.006$ $\begin{array}{lllll}0.119 \pm 0.028 \pm 0.006 & 2 & \text { ABE } & \text { 03D BELL } & \text { Repl. by SWAIN } 03 \\ 0.108 \pm 0.019 \pm 0.007 & 2 \text { SWAIN } & 03 & \text { BELL } & \text { Repl. by ABE } 06\end{array}$
${ }^{1}$ Reports a double ratio of $\mathrm{B}\left(B^{+} \rightarrow D_{C P(-1)} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow D_{C P(-1)} \pi^{+}\right)$and $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right), 1.17 \pm 0.14 \pm 0.14$. We multiply by our best value of $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)=0.083 \pm 0.006$. Our first error is their experiment's error and the second error is systematic error from using our best value.
${ }^{2} C P=-1$ eigenstate of $D^{0} \bar{D}^{0}$ system is reconstructed via $K_{S}^{0} \pi^{0}, K_{S}^{0} \omega, K_{S}^{0} \phi, K_{S}^{0} \eta$, and $K_{S}^{0} \eta^{\prime}$.

$\Gamma\left(D_{C P(-1)} K^{+}\right) / \Gamma\left(\bar{D}^{0} K^{+}\right)$			$\Gamma_{55} / \Gamma_{53}$
VALUE	DOCUMENT ID	TECN	COMMENT
$0.54 \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 2} \quad 1$ DEL-AMO-SA..10G BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$			
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.515 \pm 0.05 \pm 0.025$	AUBERT 08AA	BABR	Repl. by DEL-AMO- SANCHEZ 10G Repl. by AUBERT 08AA
$0.43 \pm 0.05 \pm 0.02$	AUBERT 06J	BABR	
${ }^{1}$ Reports $R_{C P+}=1.07 \pm 0$	± 0.04 that we ha	vid	2.

$\Gamma\left(D^{0} K^{+}\right) / \Gamma\left(D^{0} K^{+}\right) \quad \Gamma_{56} / \Gamma_{53}$ "OUR EVALUATION" is derived from $\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)$data block listed in "CP vilation parameters" section.
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{9.86 \pm 0.91 \text { OUR EVALUATION }}$

－－We do not use the following data for averages，fits，limits，etc．－－			
$4.10 \pm 0.25 \pm 0.05$	AAIJ	12 M	LHCB
Repl．by AAIJ 16L			
$3.40_{-0.53-0.22}^{+0.55+0.15}$	HORII	08	BELL
Repl．by HORII 11			
$3.5_{-0.9}^{+1.0} \pm 0.2$	SAIGO	05	BELL

${ }^{1}$ AALTONEN 11AJ also measures the ratio separately for $B^{+}\left(\mathrm{R}^{+}(\pi)\right)$ and $B^{-}\left(\mathrm{R}^{-}(\pi)\right)$ and obtains： $\mathrm{R}^{+}(\pi)=(2.4 \pm 1.0 \pm 0.4) \times 10^{-3}, \mathrm{R}^{-}(K)=(3.1 \pm 1.1 \pm 0.4) \times 10^{-3}$ ．

$\Gamma\left(\left[K^{-} \pi^{+} \pi^{0}\right]_{D} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-} \pi^{0}\right]_{D} \pi^{+}\right)$		$\Gamma_{71} / \Gamma_{72}$				
TECN 2.2 ± 0.4 OUR AVERAGE \qquad COMMENT						
$2.35 \pm 0.49 \pm 0.06$	${ }^{1}$ AAIJ 15w	LHCB	$p p$ at 7	TeV		
$1.89 \pm 0.54{ }_{-0.25}^{+0.22}$	NAYAK 13	BELL	$e^{+} e^{-}$	$r(4 S)$		
${ }^{1}$ Uses $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ for the favored mode，and $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ for the suppressed mode．						
$\Gamma\left(\left[K^{-} \pi^{+} \pi^{+} \pi^{-}\right]_{D} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} \pi^{+}\right)$		$\Gamma_{73} / \Gamma_{74}$				
VALUE（units 10^{-3} ）	DOCUMENT ID	TECN	COMMENT			
$3.77 \pm \mathbf{0 . 1 8} \pm \mathbf{0 . 0 6} \quad$ AAIJ 16 L LHCB $p p$ at $\mathbf{7 , 8} \mathbf{8 e V}$ －－We do not use the following data for averages，fits，limits，etc．						
3.7 ± 0.4	AAIJ 13AE	LHCB	Repl．	AIJ 16L		
$\Gamma\left(\left[K^{-} \pi^{+}\right]_{(D \pi)} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{(D \pi)} \pi^{+}\right)$		TECN	COMMENT $\Gamma_{\mathbf{7 5}} / \Gamma_{\mathbf{7 6}}$			
VALUE（units 10^{-3} ）	DOCument id					
$3.2 \pm 0.9 \pm 0.8$	DEL－AMO－SA．．．10H	BABR	$e^{+} e^{-}$	$r(4 S)$		
$\Gamma\left(\left[K^{-} \pi^{+}\right]_{(D \gamma)} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{(D \gamma)} \pi^{+}\right)$		TECN	COMMENT $\Gamma^{\text {C77 }} / \Gamma_{\mathbf{7 8}}$			
$2.7 \pm 1.4 \pm 2.2$	DEL－AMO－SA．．．10H	BABR	$e^{+} e^{-}$	$r(4 S)$		
$\Gamma\left(\left[K^{-} \pi^{+}\right]_{(D \pi)} K^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{(D \pi)} K^{+}\right)$				$\Gamma_{79} / \Gamma_{80}$		
VALUE（units 10 ${ }^{-3}$ ）	DOCUMENT ID	TECN	COMMENT			
$1.8 \pm 0.9 \pm 0.4$	$\overline{\text { DEL-AMO-SA...10H }}$	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$			
$\Gamma\left(\left[K^{-} \pi^{+}\right]_{(D \gamma)} K^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{(D \gamma)} K^{+}\right)$		TECN	COMMENT ${ }^{\text {Col }}$			
$1.3 \pm 1.4 \pm 0.8$	document id					
	DEL－AMO－SA．．． 10 H	BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$				
$\Gamma\left(\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{-}\right) / \Gamma_{\text {total }}$$\text { VALUE (units } 10^{-6} \text {) }$		TECN COMMENT $\Gamma_{83} / \Gamma^{\text {Con }}$				
	DOCUMENT ID					
$\mathbf{4 . 6} \pm \mathbf{0 . 8} \pm \mathbf{0 . 4} \quad 1$ AUBERT 07BJ BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$ －－We do not use the following data for averages，fits，limits，etc．－－						
$5.5 \pm 1.0 \pm 0.7$	${ }^{1}$ AUBERT，B 05T	BABR	Repl．by	UBERT 07bJ		
${ }^{1}$ Assumes equal production of	B^{+}and B^{0} at the $\gamma(4 S)$					

 $\frac{\text { VALUE }}{\mathbf{0 . 0 9 2} \mathbf{\pm 0 . 0 0 9} \pm \mathbf{0 . 0 0 4}} \frac{1}{1} \frac{\text { DOCUMENT ID }}{\text { AAIJ }} 14 \mathrm{~V} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { PD }} \mathbf{8 4} / \mathrm{F} 89$ ${ }^{1}$ The anaysis uses all of $D \rightarrow K_{S}^{0} K \pi$ Dalitz decays．

| $\Gamma\left(\left[K^{*}(892)^{+} K^{-}\right]_{D} K^{+}\right) / \Gamma\left(\left[K^{*}(892)^{-} K^{+}\right]_{D} \pi^{+}\right)$ | $\Gamma_{\mathbf{8 6}} / \Gamma_{\mathbf{9 0}}$ |
| :--- | :--- | :--- |
| VALUE | |

$\mathbf{0 . 0 5 6} \mathbf{\pm 0 . 0 1 3} \mathbf{\pm 0 . 0 0 2} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} 14 \mathrm{~V} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ The Analysis uses $D \rightarrow K^{*}(892) K \rightarrow K_{S}^{0} K \pi$ decays．

$\Gamma\left(\left[K_{S}^{0} K^{+} \pi^{-}\right]_{D} \pi^{+}\right) / \Gamma\left(\left[K_{S}^{0} K^{-} \pi^{+}\right]_{D} \pi^{+}\right)$
$\Gamma_{89} / \Gamma_{87}$ $\frac{\text { VALUE }}{1.528 \pm 0.058 \pm 0.025} 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ TECN }} \frac{\text { COMMENT }}{14 \mathrm{~L}} \frac{1}{\text { THCB }}$ $1.528 \pm 0.058 \pm \mathbf{0 . 0 2 5} \quad 1$ AAIJ $14 \vee$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ The anaysis uses all of $D \rightarrow K_{S}^{0} K \pi$ Dalitz decays．

$2.57 \pm 0.13 \pm 0.06$	${ }^{1}$ AAIJ	14	LHCB	$p p$ at 7， 8 TeV

${ }^{1}$ The Analysis uses $D \rightarrow K^{*}(892) K \rightarrow K_{S}^{0} K \pi$ decays．
$\Gamma\left(\bar{D}^{0} K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma 95 / \Gamma$
5.3 ± 0.4 OUR AVERAGE
$5.29 \pm 0.30 \pm 0.34$
${ }^{\text {MAHAPATRA }} 02$ CLE2 $\quad e+e \rightarrow r(4 S)$
$6.3 \pm 0.7 \pm 0.5 \quad{ }^{1}$ AUBERT $\quad 04 Q$ BABR Repl．by AUBERT $06 z$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
$\Gamma\left(D_{C P(-1)} K^{*}(892)^{+}\right) / \Gamma\left(\bar{D}^{0} K^{*}(892)^{+}\right) \quad \Gamma_{96} / \Gamma_{95}$
$\frac{\text { VALUE }}{\mathbf{0 . 5 1 5} \pm \mathbf{0 . 1 3 5} \pm \mathbf{0 . 0 6 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT 09A」 }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
－．We do not use the following data for averages，fits，limits，etc．－．
$0.325 \pm 0.13 \pm 0.04 \quad{ }^{2}$ AUBERT，B $05 u$ BABR Repl．by AUBERT 09A」
${ }^{1}$ The authors report $R_{C P-}=1.03 \pm 0.27 \pm 0.13$ which is，assuming $C P$ conservation， twice the value of the quoted above branching ratio，
${ }^{2}$ The authors report $R_{C P-}=0.65 \pm 0.26 \pm 0.08$ which is，assuming $C P$ conservation， twice the value of the quoted above branching ratio．
$\Gamma\left(D_{C P(+1)} K^{*}(892)^{+}\right) / \Gamma\left(\bar{D}^{0} K^{*}(892)^{+}\right)$
$\Gamma_{97} / \Gamma_{95}$
1.16 ± 0.08 OUR AVERAGE

$1.18 \pm 0.08 \pm 0.02$	1	AAIJ
$1.085 \pm 0.175 \pm 0.045$	2	AUBERT

use the following aub for averages，fits，
$1.18 \pm 0.08 \pm 0.01 \quad{ }^{3}$ AAIJ $\quad 17$ Bo LHCB Repl．by AAIJ 18 x $0.98 \pm 0.20 \pm 0.055 \quad{ }^{4}$ AUBERT，B 050 BABR Repl．by AUBERT 09A」
${ }^{1}$ Measures the ratio separately for $K^{+} K^{-}$and $\pi^{+} \pi^{-}$final states，$R_{K K}=1.22 \pm 0.09 \pm$ 0.02 and $R_{\pi \pi}=1.08 \pm 0.14 \pm 0.03$ ，and combines the two results．
${ }^{2}$ The authors report $R_{C P+}=2.17 \pm 0.35 \pm 0.09$ which is，assuming $C P$ conservation， twice the value of the quoted above branching ratio，
${ }^{3}$ Measures the ratio separately for $K^{+} K^{-}$and $\pi^{+} \pi^{-}$final states，$R_{K K}=1.22 \pm 0.09 \pm$ 0.01 and $R_{\pi \pi}=1.08 \pm 0.14 \pm 0.03$ ，and combines the two results．
${ }^{4}$ The authors report $R_{C P+}=1.96 \pm 0.40 \pm 0.11$ which is，assuming $C P$ conservation， twice the value of the quoted above branching ratio．
$\Gamma\left(D^{0} K^{*}(892)^{+}\right) / \Gamma\left(\bar{D}^{0} K^{*}(892)^{+}\right)$
$\Gamma_{98} / \Gamma_{95}$ ＂OUR EVALUATION＂is derived from $\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$ data block listed in＂CP vilation parameters＂section．
VALUE（units 10^{-3} ）DOCUMENT ID
5．8 ± 3.0 OUR EVALUATION

$\Gamma\left(D^{0} K^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(D^{0} \pi^{+} \pi^{+} \pi^{-}\right)$		$\Gamma_{99} / \Gamma_{105}$
VALUE（units 10－2）	DOCUMENT ID TECN	COMMENT
$9.4 \pm 1.3 \pm 0.9$	AAIJ 12T LHCB	$p p$ at 7 TeV
$\Gamma\left(D_{C P(+1)} K^{+} \pi^{-} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$		$\Gamma_{102} / \Gamma_{100}$
value	DOCUMENT ID TECN	COMMENT
1.040 ± 0.064	AAIJ 15BC LHCB	$p p$ at $7,8 \mathrm{TeV}$
$\Gamma\left(\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$		$\Gamma_{101} / \Gamma_{100}$
VALUE（units 10^{-4} ）	DOCUMENT ID TECM	COMMENT
${ }_{85}{ }_{-33}^{+36}$	AAIJ 15BC LHCB	$p p$ at 7， 8 TeV
$\Gamma\left(D^{0} K^{+} \bar{K}^{0}\right) / \Gamma_{\text {total }}$		$\Gamma_{103 / \Gamma}$
VALUE（units 10^{-4} ）	DOCUMENT ID TECN	COMMENT
$5.5 \pm 1.4 \pm 0.8$	${ }^{1}$ DRUTSKOY 02 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．		
$\Gamma\left(\bar{D}^{0} K^{+} \bar{K}^{*}(892){ }^{0}\right) / \Gamma_{\text {total }}$		$\Gamma_{104} /{ }^{\text {／}}$
	DOCUMENT ID TECN	co
	DRUTSKOY 02	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．		
$\Gamma\left(\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$ VALUE		COMMENT $\quad \Gamma_{105} / \Gamma^{\prime}$
	DOCUMENT ID TECN	
$\mathbf{0 . 0 0 5 6} \mathbf{\pm 0 . 0 0 2 1}$ OUR FIT Error includes scale factor of 3.6 ．		
$0.0115 \pm 0.0029 \pm 0.0021$ ${ }^{1}$ BORTOLETTO92 CLEO		$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D ．		

$$
\Gamma\left(D^{0} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(D^{0} \pi^{+}\right)
$$

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(\left[K^{-} \pi^{+}\right]_{D} \pi^{+} \pi^{-} \pi^{+}\right) / \Gamma\left(\left[K^{+} \pi^{-}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$		106／$/ \Gamma_{100}$
VALUE（units 10－4）	TECN	comment
42．7 \pm 5．6	AAIJ 15BC LHCB	$p p$ at 7， 8 T
$\Gamma\left(\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }}$		107／「
value	DOCuMENT ID	COMMENT
$\mathbf{0 . 0 0 5 1 \pm 0 . 0 0 3 4 \pm 0 . 0 0 2 3 ~} \quad 1 \begin{aligned} & \text { BORTOLETTO92 } \\ & \text { CLEO }\end{aligned} e^{+} e^{-} \rightarrow r(4)$		
${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．		
$\Gamma\left(\bar{D}^{0} \pi^{+} \rho^{0}\right) / \Gamma_{\text {total }}$		108／「
$0.0042 \pm 0.0023 \pm 0.0020 \quad{ }^{1}$ BORTOLETTO $92 \quad$ CLEO $\quad e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ bortoletto 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．		
$\Gamma\left(\bar{D}^{0} a_{1}(1260)^{+}\right) / \Gamma_{\text {total }}$	DOCUMENT ID TEC	$\xrightarrow{\text { COMMENT }} \quad \Gamma_{109} / \Gamma^{\text {a }}$
$0.0045 \pm \mathbf{0 . 0 0 1 9} \pm 0.0031 \quad{ }^{1}$ BORTOLETTO92 \quad CLEO $\quad e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．		
$\underset{\text { VALUE }}{\Gamma\left(\bar{D}^{0} \omega \pi^{+}\right) / \Gamma_{\text {total }}}$	DOCUMENT ID TECN	$\Gamma_{110} / \overline{ }$
$\mathbf{0 . 0 0 4 1 \pm 0 . 0 0 0 7 \pm 0 . 0 0 0 6 ~} \quad 1 \begin{aligned} & \text { ALEXANDER } \\ & \text { 01B } \\ & \text { CLE2 }\end{aligned} e^{+} e^{-} \rightarrow$（4S）		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．The signal is consistent with all observed $\omega \pi^{+}$having proceeded through the $\rho^{\prime+}$ resonance at mass $1349 \pm 25+10$ MeV and width $547 \pm 86_{-45}^{+46} \mathrm{MeV}$ ．		

$\Gamma\left(D^{*}(2010)^{-} \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E \text {（units } 10^{-3} \text { ）}}{\text { CL\％}}$ EVTS 1.35 ± 0.22 OUR AVERAGE $1.25 \pm 0.08 \pm 0.22$ $1.9 \pm 0.7 \pm 0.3$

DOCUMENT ID
$\Gamma_{111 / \Gamma}$ 0.22 $2.6 \pm 1.4 \pm 0.7 \quad 11 \quad 3$ ALBRECHT $2.4{ }_{-1.6}^{+1.7}{ }_{-0.6}^{+1.0}$

1 ABE	04D	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{\text {A ALAM }}$	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{3}$ ALBRECHT	$90 」$	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{4}$ BEBEK	87	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．－－－
＜4． $90 \quad{ }^{5}$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$ 5．$\pm 2 . \pm 3 . \quad 7 \quad{ }^{6}$ ALBRECHT 87 C ARG $e^{+} e^{-} \rightarrow \gamma(4 S)$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses the Mark III branching fractions for the D ．
${ }^{4}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as 5 noted for BORTOLETTO 92.
${ }^{5}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D and $D^{*}(2010)$ ．The authors also find the product branching fraction into $D^{* *} \pi$ followed by $D^{* *} \rightarrow D^{*}(2010) \pi$ to be $0.0014_{-0.0006}^{+0.0008} \pm$ 0.0003 where $D^{* *}$ represents all orbitally excited D mesons．
${ }^{6}$ ALBRECHT 87C use PDG 86 branching ratios for D and $D^{*}(2010)$ and assume $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=55 \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=45 \%$ ．Superseded by AL－ BRECHT 90J．

${ }^{1}$ The branching fraction of the normalization mode $B^{+} \rightarrow D^{*-} \pi^{+} \pi^{+}$is rescaled to the updated ratio of $\gamma(4 S) \rightarrow B^{+} B^{-}$to $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ decay rates of 1.058 ± 0.024 ．
$\Gamma\left(D^{*}(\mathbf{2 0 1 0})^{-} K^{+} \pi^{+}\right) / \Gamma\left(D^{*}(\mathbf{2 0 1 0})^{-} \pi^{+} \pi^{+}\right)$
$\Gamma_{112} / \Gamma_{111}$
VALUE（units 10^{-2} ）DOCUMENT ID TECN COMMENT
$\mathbf{6 . 3 9 \pm 0 . 2 7 \pm \mathbf { 0 . 4 8 }} 1 \frac{17 \mathrm{ARIJ}}{\mathrm{AHCB}} \frac{1}{p p}$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$decays．
$\Gamma\left(\bar{D}_{1}(2420)^{0} \pi^{+}, \bar{D}_{1}^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}\right) / \Gamma\left(\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right) \quad \Gamma_{113} / \Gamma_{105}$ VALUE（units 10^{-2} ）DOCUMENT ID TECN COMMENT

$$
\overline{9.3 \pm \mathbf{1 . 6} \pm \mathbf{0 . 9}} \quad 1 \overline{\mathrm{AAIJ}} \quad 11 \mathrm{E} \quad \overline{\mathrm{LHCB}} \overline{p p \text { at } 7 \mathrm{TeV}}
$$

${ }^{1}$ AAIJ 11 E reports $(9.3 \pm 1.6 \pm 0.9) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{D}_{1}(2420)^{0} \pi^{+}, \quad \bar{D}_{1}^{0} \rightarrow \quad D^{*}(2010)^{-} \pi^{+}\right) / \Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right)\right] \quad \times$ $\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$ ．
$\Gamma\left(D^{-} \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{114 / \Gamma}$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\text { CL\％}}$ EVTS
1.07 ± 0.05 OUR AVERAGE
$1.08 \pm 0.03 \pm 0.05$
$1.02 \pm 0.04 \pm 0.15$

DOCUMENT ID TECN COMMENT
${ }^{1}$ AUBERT \quad 09AB BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$ 1 ABE 04D BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－．

<1.4	90		${ }^{2}$ ALAM	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
<7	90		3 BORTOL		CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$
2．5 ${ }_{\text {－}}^{+4.1}{ }_{-2.3}^{+2.4}$		1	${ }^{4}$ BEBEK	87	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the Mark III $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)$．
${ }^{3}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D ．The product branching fraction into $D_{0}^{*}(2340) \pi$ followed by $D_{0}^{*}(2340) \rightarrow D \pi$ is <0.005 at $90 \% \mathrm{CL}$ and into $D_{2}^{*}(2460)$ followed by $D_{2}^{*}(2460) \rightarrow D \pi$ is <0.004 at 90% CL．
${ }^{4}$ BEBEK 87 assume the $\Upsilon(4 S)$ decays 43% to $B^{0} \bar{B}^{0} . \mathrm{B}\left(D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}\right)=(9.1 \pm$ $1.3 \pm 0.4) \%$ is assumed．

$\Gamma\left(D^{-} K^{+} \pi^{+}\right) / \Gamma\left(D^{-} \pi^{+} \pi^{+}\right)$			$\Gamma_{115} / \Gamma_{114}$		
VALUE（units 10^{-2} ）	DOCUMENT ID		TECN	COMMENT	
7．20 $\pm 0.19 \pm 0.21$	AAIJ	15v	LHCB	$p p$ at $7,8 \mathrm{TeV}$	
$\Gamma\left(D_{0}^{*}(\mathbf{2 3 0 0})^{0} K^{+}, D_{0}^{* 0} \rightarrow D^{-}\right.$	$\left.\pi^{+}\right) / \Gamma_{\text {total }}$				Γ_{116} / Γ
VALUE（units 10^{-6} ）	DOCUMENT ID		TECN	COMMENT	
6．1 $\pm 1.9 \pm 1.5$	1 AAIJ	15v	LHCB	$p p$ at $7,8 \mathrm{TeV}$	

$\Gamma\left(D_{1}^{*}(2760)^{0} K^{+}, D_{1}^{* 0} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}$				Γ_{118} / Γ		
VALUE（units 10^{-6} ）		DOCUMENT ID		TECN	COMMENT	
$\mathbf{3 . 6} \pm 0.9 \pm 0.8$		1 AAIJ		LHCB	$p p$ at $7,8 \mathrm{TeV}$	
${ }^{1}$ Performs the amplitude analysis by fitting the square－Dalitz－plot distribution．						
$\Gamma\left(D^{+} K^{0}\right) / \Gamma_{\text {total }}$				Γ_{119} / Γ		
VALUE（units 10^{-6} ）	CL\％	DOCUMENT ID		TECN	COMMENT	
<2.9		${ }^{1}$ DEL－AMO－SA．．10K		BABR $e^{+} e^{-} \rightarrow r(4 S)$		
－－We do not use the following data for averages，fits，limits，etc．－－						
＜5．0	90	1 AUBERT，B 05E		BABR	Repl．by DEL－AMO SANCHEZ 10K	
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．						
$\Gamma\left(D^{+} K^{+} \pi^{-}\right) /$	K^{+}				$\Gamma_{120} / \Gamma_{115}$	
VALUE（units 10^{-2} ）		DOCUMENT ID		TECN	COMMENT	
7．3 $\pm 1.2 \pm 0.7$		AAIJ	16m	LHCB	$p p$ at 7，	
$\Gamma\left(D_{2}^{*}(2460)^{0} K\right.$	\rightarrow	$\left.\pi^{-}\right) /$			$\Gamma_{121} /{ }^{\text {／}}$	
VALUE	CL\％	DOCUMENT ID		TECN	COMMENT	
$<6.3 \times 10^{-7}$	90	AAIJ	16R	LHCB	$p p$ at 7，	
$\Gamma\left(D^{+} K^{* 0}\right) / \Gamma_{\text {to }}$					$\Gamma_{122} /{ }^{\text {／}}$	
VALUE	CL\％	DOCUMENT ID		TECN	COMMENT	
$<4.9 \times 10^{-7}$	90	AAIJ 16M		LHCB	$p p$ at $7,8 \mathrm{TeV}$	
－－We do not use the following data for averages，fits，limits，etc．－－						
$<1.8 \times 10^{-6}$	90			LHCB	Repl．by AAIJ 16M$e^{+} e^{-} \rightarrow \Upsilon(4 S)$	
$<3.0 \times 10^{-6}$	90			BABR		
${ }^{1}$ Assumes equa	ction	+ and B	$r(4 S$		$e^{+} e^{-} \rightarrow \gamma(4 S)$	

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{+} \overline{\left.\boldsymbol{K}^{\mathbf{* 0}}\right) / \boldsymbol{\Gamma}_{\text {total }}}\right.$

$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<\mathbf{1 . 4}} \frac{C L \%}{90}$$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad$| $\mathbf{1 2 3} / \boldsymbol{\Gamma}$ |
| :--- |

$\begin{array}{lllll}\bullet \bullet \text {－We do not use the following data for averages，fits，limits，etc．} & \bullet \bullet \\ 2.7 & \pm 4.4 & 8 \text { BEBEK } & 87 & \text { CLEO }\end{array} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Measures absolute branching fractions using a missing－mass technique．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{3}$ AUBERT，BE 06J reports $\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)\right]$ $=1.14 \pm 0.07 \pm 0.04$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)=$ $(4.68 \pm 0.13) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{4}$ Uses a missing-mass method. Does not depend on D branching fractions or B^{+} / B^{0} production rates.
${ }^{5}$ BRANDENBURG 98 assume equal production of B^{+}and B^{0} at $\Upsilon(4 S)$ and use the D^{*} reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of $\mathrm{B}\left(D^{*} \rightarrow D \pi\right)$.
${ }^{6}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{7}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D and $D^{*}(2010)$.
${ }^{8}$ This is a derived branching ratio, using the inclusive pion spectrum and other two-body B decays. BEBEK 87 assume the $r(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$.
 $\mathbf{0 . 0 0 4 5} \pm \mathbf{0 . 0 0 1 0} \pm \mathbf{0 . 0 0 0 7} \quad 1$ ALEXANDER 01B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$. The signal is consistent with all observed $\omega \pi^{+}$having proceeded through the $\rho^{\prime+}$ resonance at mass $1349 \pm 25_{-}^{+10}$ MeV and width $547 \pm 86_{-45}^{+46} \mathrm{MeV}$.
$\Gamma\left(\bar{D}^{*}(2007)^{0} \rho^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\text {EVTS }} \quad$ DOCUMENT ID TECN $/ \Gamma$ $\frac{V A L U E}{\mathbf{0 . 0 0 9 8} \pm \mathbf{0 . 0 0 1 7} \text { OUR AVERAGE }} \frac{\text { EVTS }}{}$

DOCUMENT ID TECN COMMENT
$0.0098+0.0006+0.0017$
$0.010 \pm 0.006 \pm 0.004 \quad 7 \quad 2$ ALBRECHT $90 」$ ARG $e^{+} e^{-} \rightarrow r(4 S)$

- - . We do not use the following data for averages, fits, limits, etc. - • -
$0.0168 \pm 0.0021 \pm 0.0028 \quad 86 \quad 3 \mathrm{ALAM} \quad 94 \mathrm{CLE} 2 e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}at the $\Upsilon(4 S)$ resonance. The second error combines the systematic and theoretical uncertainties in quadrature. CSORNA 03 includes data used in ALAM 94. A full angular fit to three complex helicity amplitudes is performed.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D and $D^{*}(2010)$.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$. The nonresonant $\pi^{+} \pi^{0}$ contribution under the ρ^{+}is negligible.
$\Gamma\left(\bar{D}^{*}(2007)^{0} K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{129} / \Gamma$
VALUE (units 10^{-4})

DOCUMENT ID TECN COMMENT
$3.97+0.31$ OUR AVERAGE

${ }^{1}$ AUBERT 05 N reports $\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} \pi^{+}\right)\right]$ $=0.0813 \pm 0.0040_{-0.0031}^{+0.0042}$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{*}(2007)^{0} \pi^{+}\right)=(4.90 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2} \mathrm{ABE} 01$ । reports $\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} \pi^{+}\right)\right]=$ $0.078 \pm 0.019 \pm 0.009$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} \pi^{+}\right)$ $=(4.90 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{D}_{C P(+1)}^{+0} K^{+}\right) / /_{\text {total }}$
$\Gamma_{130 / \Gamma}$
value (ninit $\left.10^{-4}\right)$
$\mathbf{2 . 6 0} \pm \mathbf{0 . 2 7} \underset{=\mathbf{0 . 1 8}}{\mathbf{+ 0} \mathbf{0}} \quad 1$ AUBERT \quad 08BF BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
${ }^{1}$ AUBERT 08BF reports $\left[\Gamma\left(B^{+} \rightarrow \bar{D}_{C P(+1)}^{* 0} K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} K^{+}\right)\right]$ $=0.655 \pm 0.065 \pm 0.020$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{*}(2007)^{0} K^{+}\right)$ $=\left(3.97_{-0.28}^{+0.31}\right) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{D}^{*}(2007)^{0} K^{+}\right) / \Gamma\left(\bar{D}^{*}(2007)^{0} \pi^{+}\right)$
$\Gamma_{129} / \Gamma_{124}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{7 . 9 3 0} \pm \mathbf{0 . 1 1 0} \pm \mathbf{0 . 5 6 0}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8,13 \mathrm{TeV}}$
$\Gamma\left(\bar{D}_{C P(+1)}^{* 0} K^{+}\right) / \Gamma\left(\bar{D}_{C P(+1)}^{* 0} \pi^{+}\right) \quad \Gamma_{130} / \Gamma_{125}$
$\frac{V A L U E}{0.095} \pm 0.017$ OUR AVERAGE
$0.11 \pm 0.02 \pm 0.02$
${ }_{1}^{1} \mathrm{ABE} \quad 06$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.086 \pm 0.021 \pm 0.007 \quad 2$ AUBERT $05 \mathrm{~N} \mathrm{BABR} e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Reports a double ratio of $\mathrm{B}\left(B^{+} \rightarrow D_{C P(+1)}^{* 0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow D_{C P(+1)}^{* 0} \pi^{+}\right)$and $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right), 1.41 \pm 0.25 \pm 0.06$. We multiply by our best value of $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right)=0.080 \pm 0.011$. Our first error is their experiment's error and the second error is systematic error from using our best
${ }^{2}$ Uses $D^{* 0} \rightarrow D^{0} \pi^{0}$ with D^{0} reconstructed in the $C P$-even eigenstates $K^{+} K^{-}$and

 $\frac{\text { VALUE }}{0.09 \pm 0.03 \pm 0.01} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CBE }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Reports a double ratio of $\mathrm{B}\left(B^{+} \rightarrow\left(D_{C P(-1)}^{*}\right)^{0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow\left(D_{C P(-1)}^{*}\right)^{0} \pi^{+}\right)$ and $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right), 1.15 \pm 0.31 \pm 0.12$. We multiply by our best value of $\mathrm{B}\left(B^{+} \rightarrow \overline{D^{* 0}} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right)=0.080 \pm 0.011$. Our first error is their experiment's error and the second error is systematic error from using our best value.
$\Gamma\left(D^{*}(2007)^{0} K^{+}\right) / \Gamma\left(D^{*}(2007)^{0} K^{+}\right) \quad \Gamma_{132} / \Gamma_{129}$ "OUR EVALUATION" is derived from $\mathrm{r}_{B}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$data block listed in "CP vilation parameters" section.
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 9 6 \pm 0 . 5 3 ~ O U R ~ E V A L U A T I O N ~}}$
$\Gamma\left(\bar{D}^{*}(2007)^{0} K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{133} / \Gamma$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
8.1 ± 1.4 OUR AVERAGE
$8.3 \pm 1.1 \pm 1.0 \quad 1$ AUBERT $\quad 04 \mathrm{~K}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$7.2 \pm 2.2 \pm 2.6 \quad 2$ MAHAPATRA 02 CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and an unpolarized final state.
$\Gamma\left(\bar{D}^{*}(2007)^{0} K^{+} \bar{K}^{\mathbf{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{134} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{1 0 . 6}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { DRUTSKOY } 02} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\bar{D}^{*}(2007)^{0} K^{+} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{135 / \Gamma}$

$\Gamma\left(\bar{D}^{*}(2007)^{0} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{136} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 . 0 3} \mathbf{0 0 . 1 2} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$

$1.055 \pm 0.047 \pm 0.129$		1			
$0.94 \pm 0.20 \pm 0.17$	48	$2,3 \mathrm{ALAJMMDER}$	04	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{3}$ The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_{1} meson. (If this channel is dominated by a_{1}^{+}, the branching ratio for $\bar{D}^{* 0} a_{1}^{+}$is twice that for $\bar{D}^{* 0} \pi^{+} \pi^{+} \pi^{-}$.)
$\Gamma\left(\bar{D}^{*}(2007)^{0} a_{1}(1260)^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{137 / \Gamma}$

$\overline{\mathbf{0 . 0 1 8 8} \pm \mathbf{0 . 0 0 4 0} \pm \mathbf{0 . 0 0 3 4}} \quad 1,2 \mathrm{ALAM} \quad 94 \overline{\mathrm{CLE} 2} \xrightarrow[e^{+} e^{-} \rightarrow \gamma(4 S)]{ }$
${ }^{1}$ ALAM 94 value is twice their $\Gamma\left(\bar{D}^{*}(2007)^{0} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$ value based on their observation that the three pions are dominantly in the $a_{1}(1260)$ mass range 1.0 to 1.6 ${ }_{2} \mathrm{GeV}$.
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.

$\mathbf{0 . 0 1 8 0} \pm \mathbf{0 . 0 0 2 4} \pm \mathbf{0 . 0 0 2 7} \quad 1$ ALEXANDER 01B CLE2 $\xrightarrow[e^{+} e^{-} \rightarrow r(4 S)]{ }$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$. The signal is consistent with all observed $\omega \pi^{+}$having proceeded through the $\rho^{\prime+}$ resonance at mass $1349 \pm 25_{-}^{+10}$ MeV and width $547 \pm 86_{-45}^{+46} \mathrm{MeV}$.

$\Gamma\left(\bar{D}^{* 0} 3 \pi^{+} 2 \pi^{-}\right) / \Gamma_{\text {total }}$	DOCUMENT ID	Γ_{139} / Γ		
VALUE (units 10^{-3})		TECN	COMMENT	
$5.67 \pm 0.91 \pm 0.85$	1 MAJUMDER	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal productio	and B^{0} at the			

Meson Particle Listings

$B^{ \pm}$

$\Gamma\left(D^{*}(2010)^{+} \pi^{0}\right) / \Gamma_{\text {total }}$		$\Gamma_{140 / \Gamma}$
$\frac{3}{<3.6 \times 10^{-6}} \stackrel{ }{ }{ }^{\text {WWABUCHI }}$		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(45)$ ． ${ }^{2}$ BRANDENBURG 98 assume equal production of B^{+}and B^{0} at $r(4 S)$ and use the D^{*} partial reconstruction techique．The first error is their experiment＇s eroror and the second eroro is the systematic error trom the $P D G 96$ value of $B\left(D^{*} \rightarrow D\right)$ ．		
$\begin{aligned} & \Gamma\left(D^{*}(2010)+K^{0}\right) / \Gamma_{\text {total }} \\ & \text { value } \end{aligned}$		$\Gamma_{141 / \Gamma}$
$\begin{aligned} & <\mathbf{9 . 0} \times \mathbf{1 0}^{\mathbf{- 6}} \quad 90 \\ & \bullet \text { - We do not use the following } \end{aligned}$	${ }^{1}$ AUBERT，${ }^{1}$ O5E BAB	
$<9.5 \times 10^{-5} \quad 90$		

$\mathbf{0 . 0 1 5 2} \pm \mathbf{0 . 0 0 7 1} \pm \mathbf{0 . 0 0 0 1} \quad 26 \quad 1$ ALBRECHT $90 」 1$
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.043 \pm 0.013 \pm 0.026 \quad 24 \quad 2$ ALBRECHT 87 C ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALBRECHT $90 」$ reports $0.018 \pm 0.007 \pm 0.005$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assum－ ing $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D ．
${ }^{2}$ ALBRECHT 87C use PDG 86 branching ratios for D and $D^{*}(2010)$ and assume $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=55 \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=45 \%$ ．Superseded by AL－ BRECHT 90」
$\Gamma\left(D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{143} / \Gamma$
VALUE（units 10^{-3} ）CL\％DOCUMENT ID \quad TECN COMMENT $\mathbf{2 . 5 6} \pm \mathbf{0 . 2 6} \pm \mathbf{0 . 3 3} \quad 1$ MAJUMDER 04 BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•－
$<10 \quad 90 \quad 2$ ALBRECHT 90 J ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D and $D^{*}(2010)$ ．

$\Gamma\left(\bar{D}_{1}^{*}(2420)^{0} \pi^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{145 / \Gamma}$
EVTS DOCCUENT ID TECN COMMENT \qquad $\mathbf{0 . 0 0 1 5} \mathbf{\mathbf { 0 . 0 0 0 6 } \text { OUR AVERAGE }}$ Error includes scale factor of 1．3．
$0.0011 \pm 0.0005 \pm 0.0002 \quad 8 \quad 1$ ALAM $\quad 94 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$ $0.0025 \pm 0.0007 \pm 0.0006 \quad 2$ ALBRECHT 94D ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and assuming $\mathrm{B}\left(D_{1}(2420)^{0} \rightarrow D^{*}(2010)^{+} \pi^{-}\right)=67 \%$ ．
${ }^{2}$ ALBRECHT 94D assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$assuming $\mathrm{B}\left(D_{1}(2420)^{0} \rightarrow D^{*}(2010)^{+} \pi^{-}\right)=$ 67\％．
$\Gamma\left(\bar{D}_{1}(2420)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{1}^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{146} / \Gamma$ VALUE（units 10^{-4} ）DOCUMENT ID TECN COMMENT
$2.5 \pm \mathbf{~} \mathbf{+ 1 . 6}$ OUR FIT Error includes scale factor of 3．9．
$1.85 \pm \mathbf{0 . 2 9} \mathbf{+} \mathbf{+ 0 . 3 5} \quad 1 \mathrm{ABE} \quad$ 05A BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(\bar{D}_{1}(2420)^{0} \pi^{+} \times \mathbf{B}\left(\bar{D}_{1}^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)\right) / \Gamma\left(D^{0} \pi^{+} \pi^{+} \pi^{-}\right) \quad \Gamma_{146} / \Gamma_{105}$
VALUE（units 10^{-2} ）DOCUMENT ID TECN COMMENT
$\mathbf{4 . 6}^{\mathbf{+}} \mathbf{2 . 3}$ OUR FIT Error includes scale factor of 3．9．
$\mathbf{1 0 . 3} \mathbf{\pm 1 . 5} \pm \mathbf{0 . 9}$ AAIJ 11E LHCB pp at 7 TeV

$\Gamma\left(\bar{D}_{1}(2420)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{1}^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}(\text {nonresonant })\right) /\left\ulcorner\left(\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right)\right.\right.$	
$\left\ulcorner\left(\bar{D}_{2}^{*}(2462)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{2}^{*}(2462)^{0} \rightarrow D^{-} \pi^{+}\right)\right) / \Gamma_{\text {total }}\right.$	
3.5$3.4 \pm 0.2 \pm 0.4$and	
${ }^{1}$ Measured using a Dalitz plot analysis of $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$decays． ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．	
$\begin{aligned} \\ \\ \left(\bar{D}_{2}^{*}(2462)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{2}^{00} \rightarrow \bar{D}^{0} \pi^{-} \pi^{+}(\text {nonresonant })\right)\right) / \Gamma\left(\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}\right) \\ \Gamma_{150} / \Gamma_{105} \end{aligned}$	
${ }^{1}$ Excludes decays where $\left.\bar{D}_{2}^{*}(2462)\right)^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}$．	
$\pm 1.2 \pm \mathbf{0 . 4} \quad{ }^{1} \mathrm{AAIJ} \quad 11 \mathrm{E}$${ }^{1}$ Uses $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7+-0.5) \%$.	

$\Gamma\left(\bar{D}_{1}^{\prime}(2427)^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{1}^{\prime}(2427)^{0} \rightarrow D^{*-} \pi^{+}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{155} / \Gamma$
$\frac{\left.\text { VALUE（units } 10^{-4}\right)}{\mathbf{5 . 0} \pm \mathbf{0 . 4} \mathbf{1 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABE }} \frac{\text { 04D }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．

$\Gamma\left(\bar{D}_{1}^{*}(2420)^{0} \rho^{+}\right) / \Gamma_{\text {total }}$						Γ_{157} / Γ
VALUE	CL\％	DOCUME		TECN	COMMENT	
<0.0014	90	${ }^{1}$ ALAM	94	CLE2	$e^{+} e^{-}$	

${ }^{1}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$assuming $\mathrm{B}\left(D_{1}(2420)^{0} \rightarrow D^{*}(2010)^{+} \pi^{-}\right)=67 \%$ ．

$\Gamma\left(\bar{D}_{2}^{*}(2460)^{0} \pi^{+}\right) / \Gamma_{\text {total }}$				TECN		Γ_{158} / Γ
VALUE	CL\％	DOCUMENT ID			COMMENT	
＜0．0013	90	${ }^{1}$ ALAM	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
－－We	follo	data for avera	fit	limits	c．－•	
＜0．0028	90	${ }^{2}$ ALAM	94	CLE2	$e^{+} e^{-}$	$r(4 S)$
<0.0023	90	${ }^{3}$ ALBRECHT	94D	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the Mark III $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)$and $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow D^{+} \pi^{-}\right)=30 \%$ ．
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the Mark III $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)$，the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow\right.$ $\left.D^{*}(2010)^{+} \pi^{-}\right)=20 \%$ ．
${ }^{3}$ ALBRECHT 94D assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow D^{*}(2010)^{+} \pi^{-}\right)=30 \%$ ．

$\Gamma\left(\bar{D}_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{0} \pi^{+} \times \mathrm{B}\left(\bar{D}_{\mathbf{2}}^{* 0} \rightarrow \bar{D}^{* 0} \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$				TECN	COMMENT ${ }^{\text {159/ }}$	
<0.22	90	${ }^{1} \mathrm{ABE}$		BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.						
$\Gamma\left(\bar{D}_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{\mathbf{0}} \rho^{+}\right) / \Gamma_{\text {total }}$						$\Gamma_{163} /{ }^{\text {/ }}$
VALUE	$\underline{C L \%}$	DOCUME		TECN	COMMENT	
<0.0047	90	${ }^{1}$ ALAM	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
<0.005	90	${ }^{2}$ ALAM	94	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the Mark III $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)$and $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow D^{+} \pi^{-}\right)=30 \%$.
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the Mark III $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)$, the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow\right.$ $\left.D^{*}(2010)^{+} \pi^{-}\right)=20 \%$.
$\Gamma\left(\bar{D}_{1}^{*}(2680)^{0} \pi^{+}, \bar{D}_{1}^{*}(2680)^{0} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{160} / \Gamma$

VALUE (units 10 ${ }^{-4}$)	DOCUMENT ID TEC		COMMENT	
$\mathbf{0 . 8 4} \pm \mathbf{0 . 0 6 \pm 0 . 2 0}$				
${ }^{1}$ Measured using a Dalitz plot analysis of $B^{+} \rightarrow D^{-} \pi^{+} \pi^{+}$decays.				
$\Gamma\left(\bar{D}_{\mathbf{3}}^{*}(\mathbf{2 7 6 0})^{\mathbf{0}} \pi^{+}, \bar{D}_{\mathbf{3}}^{*}(\mathbf{2 7 6 0})^{\mathbf{0}} \pi^{+} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}$				
VALUE (units 10 ${ }^{-5}$)			COMMENT	
$\overline{\mathbf{1 . 0} \pm \mathbf{0 . 1} \pm \mathbf{0} \mathbf{2}} 1$				
${ }^{1}$ Measured using a Dalitz plot analysis of $B^{+} \rightarrow D^{-} \pi^{+} \pi^{+}$decays.				
$\Gamma\left(\bar{D}_{\mathbf{2}}^{*}(\mathbf{3 0 0 0})^{\mathbf{0}} \pi^{+}, \bar{D}_{\mathbf{2}}^{*}(\mathbf{3 0 0 0})^{\mathbf{0}} \pi^{+} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}$				$\Gamma_{162 / \Gamma}$

VALUE (units 10^{-6}) DOCUMENT ID 16AHLHCB ppat 7, 8 TeV
${ }^{1}$ Measured using a Dalitz plot analysis of $B^{+} \rightarrow D^{-} \pi^{+} \pi^{+}$decays.
$\Gamma\left(\bar{D}^{0} D_{s}^{+}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{9.0 \pm 0.9 \text { OUR AVERAGE }}$
$8.6 \pm 0.2 \pm 1.1 \quad 1$ AAIJ $\quad 13$ AP LHCB $p p$ at 7 TeV
$9.5 \pm 2.0 \pm 0.8 \quad 2$ AUBERT $\quad 06 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$9.8 \pm 2.6 \pm 0.9 \quad 3$ GIBAUT $\quad 96$ CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
$14 \pm 8 \pm 1 \quad 4$ ALBRECHT 92G ARG $e^{+} e^{-} \rightarrow r(4 S)$
$13 \pm 6 \pm 1 \quad 5$ BORTOLETTO90 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$.
${ }^{2}$ AUBERT 06N reports $(0.92 \pm 0.14 \pm 0.18) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{D}^{0} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.0462 \pm 0.0062$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using 3 our best value.
${ }^{3}$ GIBAUT 96 reports $0.0126 \pm 0.0022 \pm 0.0025$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{D}^{0} D_{s}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
${ }^{4}$ value. ${ }_{\text {ALBRECHT }} 92 \mathrm{G}$ reports $0.024 \pm 0.012 \pm 0.004$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{D}^{0} D_{s}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG $1990 D^{0}$ branching ratios, e.g., $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=3.71 \pm 0.25 \%$.
${ }^{5}$ BORTOLETTO 90 reports 0.029 ± 0.013 from a measurement of $\left[\Gamma\left(B^{+} \rightarrow \bar{D}^{0} D_{S}^{+}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.02$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s 0}^{*}(2317)+\overline{D^{0}}, D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{165} / \Gamma$
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT
$0.800_{-0.13}^{+0.16}$ OUR AVERAGE
$0.80_{-0.16}^{+0.17} \pm 0.02 \quad 1,2 \mathrm{CHOI} \quad 15 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.80_{-0.21}^{+0.35} \pm 0.07 \quad 2,3 \mathrm{AUBERT}, \mathrm{B} \quad 04 \mathrm{~s}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.65_{-0.24}^{+0.26} \pm 0.06 \quad 2,4$ KROKOVNY 03B BELL Repl. by CHOI 15A ${ }^{1} \mathrm{CHOI} 15 \mathrm{~A}$ reports $\left(8.0_{-1.2}^{+1.3} \pm 1.1 \pm 0.4\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} \bar{D}^{0}, \quad D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.39 \pm 0.21) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.39 \pm 0.15) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ AUBERT, B 04s reports $\left(1.0 \pm 0.3_{-0.2}^{+0.4}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} \bar{D}^{0}, D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$
$0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ KROKOVNY 03B reports $\left(0.81_{-0.27}^{+0.30} \pm 0.24\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} \bar{D}^{0}, D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(D_{s J}(2457)+\bar{D}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{168} / \Gamma$
VALUE (units 10 ${ }^{-3}$)

DOCUMENT ID TECN COMMENT
$3.1{ }_{-0.9}^{\mathbf{1 . 0}}$ OUR AVERAGE

| $4.3 \pm 1.6 \pm 1.3$ | $1_{\text {AUBERT }}$ | 06N BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :---: | :---: | :---: | :---: |
| $4.6_{-1.6}^{+1.8} \pm 1.0$ | 2,3 AUBERT,B | 04s BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |
| $2.1_{-0.9}^{+1.1} \pm 0.5$ | 2,4 KROKOVNY | 03B BELL | $e^{+} e^{-} \rightarrow r(4 S)$ |

${ }^{1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ AUBERT,B 04s reports $\left[\Gamma\left(B^{+} \rightarrow D_{S J}(2457)^{+} \bar{D}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.\right.$ $\left.\left.D_{s}^{*+} \pi^{0}\right)\right]=\left(2.2_{-0.7}^{+0.8} \pm 0.3\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.$
$\left.D_{s}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ KROKOVNY 03B reports $\left[\Gamma\left(B^{+} \rightarrow D_{s J}(2457)^{+} \bar{D}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.\right.$ $\left.\left.D_{s}^{*+} \pi^{0}\right)\right]=\left(1.0_{-0.4}^{+0.5} \pm 0.1\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.$ $\left.D_{s}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s J}(2457)^{+} \bar{D}^{0} \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow D_{s}^{+} \gamma\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{169} / \Gamma$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT $0.46{ }_{-0.11}^{\mathbf{0} .13}$ OUR AVERAGE

$0.48_{-0.13}^{+0.19} \pm 0.04$	1,2	AUBERT,B	04s	BABR
e^{+}	$e^{-} \rightarrow r(4 S)$			
$0.45_{-0.14}^{+0.15} \pm 0.04$	1,3 KROKOVNY	03B BELL	$e^{+} e^{-} \rightarrow r(4 S)$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ AUBERT,B 045 reports $\left(0.6 \pm 0.2_{-0.1}^{+0.2}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s J}(2457)^{+} \bar{D}^{0} \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow D_{s}^{+} \gamma\right)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$ $=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ KROKOVNY 03B reports $\left(0.56_{-0.15}^{+0.16} \pm 0.17\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s J}(2457)^{+} \bar{D}^{0} \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow D_{s}^{+} \gamma\right)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$
$=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s J}(2457)^{+} \bar{D}^{0} \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{170} / \Gamma$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{<0.22} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { KROKOVNY 03B }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{<0.27} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KROKOVNY 03B }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(D_{s J}(2457)+\bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }}$					
VaLUE (units 10^{-3})	document id		TECN	COMment	
12.0 ± 3.0 OUR AVERAGE					
$11.2 \pm 2.6 \pm 2.0$	${ }^{1}$ aUbert	06n	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$16{ }_{-6}^{+8} \pm 4$	${ }^{2,3}$ aubert, b	045	babr	$e^{+} e^{-} \rightarrow$	r (4S)

${ }^{1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed. ${ }^{2}$ AUBERT,B 04 S reports $\left[\Gamma\left(B^{+} \quad \rightarrow \quad D_{s J}(2457)^{+} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}\right)\right]=\left(7.6 \pm 1.7_{-2.4}^{+3.2}\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow D_{S}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(D_{s J}(2457)^{+} \bar{D}^{*}(2007)^{0} \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow D_{s}^{+} \gamma\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{174} / \Gamma$ $\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 4} \mathbf{0 . 4} \mathbf{- 0}_{-\mathbf{0 . 4}}^{\mathbf{0 . 6}}} \quad \frac{\text { DOCUMENT ID }}{{ }^{1} \text { AUBERT,B }} \frac{\text { 04s }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D^{0} D_{s 1}(2536)^{+} \times \mathrm{B}\left(D_{s 1}(2536)^{+} \rightarrow D^{*}(2007)^{0} K^{+}+D^{*}(2010)^{+} K^{0}\right)\right) /$ $\Gamma_{\text {total }}$
$\frac{\text { VALUE }\left(\text { units } 10^{-4}\right)}{\mathbf{3 . 9 7} \pm \mathbf{0 . 8 5} \pm \mathbf{0 . 5 6}} \quad 1, \frac{\text { DOCUMENT ID }}{\text { AUSHEV }} \frac{11}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$ ${ }^{1}$ Uses $\Gamma\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{*}(2007)^{0} \rightarrow D^{0} \gamma\right)=1.74 \pm 0.13$ and $\Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2007)^{0} K^{+}\right) / \Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2010)^{+} K^{0}\right)=1.36 \pm 0.2$. ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\bar{D}^{*}(2007)^{0} D_{s 1}(2536)^{+} \times B\left(D_{s 1}(2536)^{+} \rightarrow D^{*}(2007)^{0} K^{+}\right)\right) / \Gamma_{\text {total }} \Gamma_{177} / \Gamma$
$\frac{\text { VALUE }\left(\text { units } 10^{-4}\right)}{5.46 \pm 1.17 \pm 1.04} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT 08B }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. • • •
<7
90
AUBERT
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\bar{D}^{0} D_{s 1}(2536)^{+} \times \mathrm{B}\left(D_{s 1}(2536)^{+} \rightarrow D^{*+} K^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{178} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 3 0} \pm \mathbf{0 . 9 8} \pm \mathbf{0 . 4 3}} \quad \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \quad$ 08B $\frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\bar{D}^{0} D_{s J}(2700)^{+} \times \mathrm{B}\left(D_{s J}(2700)^{+} \rightarrow D^{0} K^{+}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{179} / \Gamma$
 $11.3 \pm 2.2{ }_{-2.8}^{+1.4} \quad{ }^{1}$ BRODZICKA 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\bar{D}^{* 0} D_{s 1}(2536){ }^{+}, D_{s 1}^{+} \rightarrow D^{*+} K^{0}\right) / \Gamma_{\text {total }}$					$\Gamma_{180} /{ }^{\prime}$
VALUE (units 10-4)	DOCUMEN		TECN	COMMENT	
$3.92 \pm 2.46 \pm 0.83$	${ }^{1}$ AUBERT		BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equa	and B^{0}				

$\Gamma\left(\bar{D}^{* 0} D_{s J}(2573), D_{s J}^{+} \rightarrow D^{0} K^{+}\right) / \Gamma_{\text {total }}$						$\Gamma_{182} /{ }^{\text {/ }}$
VALUE (units 10 ${ }^{-4}$)	$\underline{C L}$	DOCUMEN		TECN	COMMENT	
<2	90	AUBERT	03x	BABR	$e^{+} e^{-}$	

$\Gamma\left(D^{+} \bar{D}^{*}(2007)^{0}\right) / /_{\text {toatal }}$	Γ_{19}
	$r_{\text {(4) }}$

$\Gamma\left(\bar{D}^{*}(2007)^{0} D^{+}+K^{0}\right) / \Gamma_{\text {toatal }}$	$\Gamma_{19 / 5}$
$2.060 .3 .3 \pm 0.30$	DEL-AMO.SA..118 Babr e+
$\underset{<6,1}{ }$	Sata taverese, its, inits etc. \cdot.
¢0.	
(1000**010)	
	${ }_{1959} / \Gamma$

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{3 . 8 1} \pm \mathbf{0 . 3 1} \pm \mathbf{0 . 2 3}} \quad \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..11B }} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc.

$\mathbf{9 . 1 7} \pm \mathbf{0 . 8 3} \pm \mathbf{0 . 9 0} \quad 1$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - •
$7.8 \underset{-2.1}{+2.3} \pm 1.4 \quad 1$ AUBERT $\quad 03 \times$ BABR Repl. by DEL-AMO-
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\bar{D}^{0} D^{0} K^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{197 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 4 5} \pm \mathbf{0 . 3 3} \text { OUR AVERAGE }}$
$\mathbf{1 . 4 5} \pm \mathbf{0 . 3 3}$ OUR AVERAGE
$1.31 \pm 0.07 \pm 0.12$
DOCUMENT ID TECN COMMENT
$\begin{array}{r}1.31 \pm 0.07 \pm 0.12 \\ \hline 0.26\end{array}$
Error includes scale factor of 2.6 .
DEL-AMO-SA...11B BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -

$1.17 \pm 0.21 \pm 0.15$	${ }^{1}$ CHISTOV	04	BELL	Repl. by BRODZICKA 08
$1.9 \pm 0.3 \pm 0.3$	${ }^{1}$ AUBERT	03x	BABR	Repl. by DEL-AMO- SANCHEZ 11B

$\Gamma\left(\bar{D}^{*}(2007)^{0} D^{0} K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{198} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{2 . 2 6} \pm \mathbf{0 . 1 6 \pm 0 . 1 7}} \frac{C L \%}{1} \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..11B }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
• - We do not use the following data for averages, fits, limits, etc. • • •
$\begin{array}{lcc}<3.8 & 90 & 1 \\ \text { AUBERT } & 03 \times & \text { BABR Repl. by DEL-AMO }\end{array}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$. SANCHEZ 11B

$\mathbf{1 1 . 2 3} \pm \mathbf{0 . 3 6} \pm \mathbf{1 . 2 6} \quad 1$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$5.3{ }_{-1.0}^{+1.1} \pm 1.2$	${ }^{1}$ AUBERT	03x BABR	Repl. by DEL-AMOSANCHEZ 11B	
${ }^{1}$ Assumes equal production	and B^{0} at th	$r(4 S)$		
$\Gamma\left(D^{-} D^{+} K^{+}\right) / \Gamma_{\text {total }}$				Γ_{201} / Γ
VALUE (units 10^{-3}) CL\%	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$

| <0.90 | 90 | 1 | CHISTOV | 04 | BELL |
| :--- | :--- | :--- | :--- | :--- | :--- |$e^{+} e^{-} \rightarrow r(4 S)$

<0.4

SANCHEZ 11B
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\mathbf{0 . 6 3} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 6} \quad 1$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -

<0.7	90	1 AUBERT	$03 \times$ BABR
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the	$r(4 S)$.	SANCHEZ 11BO-	

$\mathbf{0 . 6 0} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 0 8} \quad 1$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

- - We do not use the following data for averages, fits, limits, etc. • • -
$<16 \quad 90 \quad 2$ ALEXANDER 93B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT 07 M reports $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=$ $\left(7.0_{-2.1-0.8}^{+2.4}\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=$ $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2 ALEXANDER 93B reports $<2.0 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{+} \pi^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

Meson Particle Listings
$B^{ \pm}$

 ${ }^{1}$ ALEXANDER $93 B$ reports $<7.5 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \eta\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
 $<\mathbf{3 . 0 \times 1 0 ^ { - 4 }} \quad 90 \quad 1$ ALEXANDER 93B $\quad \frac{1}{90} \xrightarrow{e^{+} e^{-} \rightarrow Y(4 S)}$ ${ }^{1}$ ALEXANDER 93B reports $<3.7 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{+} \rho^{0}\right) /\right.$ $\Gamma_{\text {total }} \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
$\left[\Gamma\left(D_{s}^{+} \rho^{0}\right)+\Gamma\left(D_{s}^{+} \bar{K}^{*}(892)^{0}\right)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{210}+\Gamma_{221}\right) / \Gamma$ $\frac{\text { VALUE }}{<\mathbf{2} .0 \times 10^{\mathbf{- 3}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ALBRECHT }} \quad 93 \mathrm{E} \frac{\text { TECN }}{\text { ARG }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ ALBRECHT 93E reports $<3.4 \times 10^{-3}$ from a measurement of $\left[\left[\left(\mathrm{B}^{+} \rightarrow D_{s}^{+} \rho^{0}\right)+\right.\right.$ $\left.\left.\Gamma\left(B^{+} \rightarrow D_{s}^{+} \bar{K}^{*}(892)^{0}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=$ 0.027 , which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
 $\frac{V A L U E}{<\mathbf{4} \times \mathbf{1 0}^{-\mathbf{4}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ALEXANDER }} \frac{\text { 93B }}{} \frac{\text { COMMENT }}{\text { CLE2 }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$ ${ }^{1}$ ALEXANDER $93 B$ reports $<4.8 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \rho^{0}\right) /\right.$ $\Gamma_{\text {total }} \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
$\left[\Gamma\left(D_{s}^{*+} \rho^{0}\right)+\Gamma\left(D_{s}^{*+} \bar{K}^{*}(892)^{0}\right)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{211}+\Gamma_{223}\right) / \Gamma$ $\frac{V A L U E}{<\mathbf{1} .2 \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ALBRECHT 93E }} \frac{\text { TECN }}{\text { ARG }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ ALBRECHT 93E reports $<2.0 \times 10^{-3}$ from a measurement of $\left[\left[\mathrm{r}\left(B^{+} \rightarrow D_{s}^{*+} \rho^{0}\right)+\right.\right.$ $\left.\left.\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \bar{K}^{*}(892)^{0}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$ $=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

 $<6 \times \mathbf{1 0}^{\mathbf{- 4}} \frac{10}{10} \quad \frac{1}{\text { ALEXANDER } 93 B} \frac{C L E 2}{} \frac{1}{e^{+} e^{-} \rightarrow r(4 S)}$

- - . We do not use the following data for averages, fits, limits, etc. - - -
$<1.1 \times 10^{-3} \quad 90 \quad 2$ ALBRECHT 93E ARG $e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ ALEXANDER 93 B reports $<6.8 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \omega\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{2}$ ALBRECHT 93E reports $<1.9 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \omega\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\Gamma\left(D_{s}^{+} K^{+} K^{-}\right) / \Gamma\left(\bar{D}^{0} D_{s}^{+}\right) \quad \Gamma_{216} / \Gamma_{164}$
VALUE (units 10^{-4}) $\quad \frac{\text { DOCUMENT ID }}{18 \mathrm{~A}} \frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{8 . 0} \pm \mathbf{0 . 9} \pm \mathbf{0 . 1} \quad 1 \mathrm{AAIJ} \quad 18 \mathrm{~B}$ LHCB pp at 7,8,13 TeV ${ }^{1} \mathrm{AAIJ} 18 \mathrm{~B}$ reports $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{+} K^{+} K^{-}\right) / \Gamma\left(B^{+} \rightarrow \bar{D}^{0} D_{S}^{+}\right)\right] /\left[\mathrm{B}\left(D^{0} \rightarrow K^{+} K^{-}\right)\right]$ $=0.197 \pm 0.015 \pm 0.017$ which we multiply by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{+} K^{-}\right)=$ $(4.08 \pm 0.06) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s}^{+} \phi\right) / \Gamma_{\text {total }} \quad \Gamma_{217} / \Gamma$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 4 2}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { COMM }}{\text { LHCB }}$
- - We do not use the following data for averages, fits, limits, etc. - - -

$1.7{ }_{-0.7}^{+1.1} \pm 0.2$		2 AAIJ	13R	LHCB	Repl. by AAIJ 18B
< 1.9	90	3 AUBERT	06F	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<1000	90	${ }^{4}$ ALBRECHT	93E	ARG	$e^{+} e^{-} \rightarrow \gamma(4 S)$
< 260	90	${ }^{5}$ ALEXANDER	93b	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

AAIJ 18B uses $B^{+} \rightarrow D_{S}^{+} \bar{D}^{0}$ decays for normalization
${ }^{2}$ AAIJ 13 R reports $\left(1.87_{-0.73}^{+1.25} \pm 0.19 \pm 0.32\right) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s}^{+} \phi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D_{s}^{+}\right)\right]$assuming $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D_{s}^{+}\right)=(10.0 \pm 1.7) \times$ 10^{-3}, which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D_{s}^{+}\right)=(9.0 \pm 0.9) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{4}$ ALBRECHT 93E reports $<1.7 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{+} \phi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{5}$ ALEXANDER 93b reports $<3.1 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{+} \phi\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
$\Gamma\left(D_{s}^{*+} \phi\right) / \Gamma_{\text {total }}$
Γ_{218} / Γ

- - We do not use the following data for averages, fits, limits, etc. - - -

$<1.3 \times 10^{-3}$	90	2 ALBRECHT	93E ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
$<3.5 \times 10^{-4}$	90	3 ALEXANDER	$93 B$	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ALBRECHT 93E reports $<2.1 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{s}^{*+} \phi\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$
${ }^{3}$ ALEXANDER 93B reports $<4.2 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{*+}{ }_{\phi}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\Gamma\left(D_{s}^{-} \pi^{+} \kappa^{+}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-4}) CL\% DOCUMENT ID_TECN COMMENT 224/T 1.80 ± 0.22 OUR AVERAGE
$1.71{ }_{-0.07}^{+0.08} \pm 0.25$
${ }^{1}$ WIECHCZYN... 09 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$2.02 \pm 0.13 \pm 0.38 \quad{ }^{1}$ AUBERT $\quad 08 \mathrm{G}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<7 \quad 90 \quad{ }^{2}$ ALBRECHT $93 \mathrm{ARG} \quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ ALBRECHT 93E reports $<1.1 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{-} \pi^{+} K^{+}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
$\Gamma\left(D_{s}^{*-} \pi^{+} K^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{225 / \Gamma}$

$\frac{\text { VALUE (units } 10^{-4} \text {) }}{1.45 \pm \mathbf{0 . 2 4} \text { OUR AVERAGE }}$

$1.31_{-0.12}^{+0.13} \pm 0.28$
DOCUMENT ID TECN COMMENT
${ }^{1}$ WIECHCZYN... 09 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$1.67 \pm 0.16 \pm 0.35 \quad 1$ AUBERT \quad 08G BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<10 \quad 90 \quad 2$ ALBRECHT 93E ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ALBRECHT 93E reports $<1.6 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow D_{S}^{*-} \pi^{+} K^{+}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$
$\Gamma\left(D_{s}^{-} \pi^{+} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}$
catuE
cle
DOCUMENT ID TECN COMMENT ${ }_{\mathbf{2 2 6}} /{ }^{2}$
$\overline{<5 \times 10^{-3}} 90 \quad 1$ ALBRECHT 93E ARG $\frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
${ }^{1}$ ALBRECHT 93E reports $<8.6 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.D_{s}^{-} \pi^{+} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\Gamma\left(\eta_{c} \kappa^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{233} / \Gamma$

$0.74_{-0.08}^{+0.09} \pm 0.25 \quad{ }^{1}$ CHILIKIN 19 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$1.20 \pm 0.08 \pm 0.07 \quad 2$ KATO 18 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.87 \pm 0.15 \quad 2,3$ AUBERT $\quad 06 \mathrm{E}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.24_{-0.19}^{+0.25} \pm 0.12 \quad 4$ AUBERT,B 05 L BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.25 \pm 0.14_{-0.40}^{+0.39} \quad{ }^{5}$ FANG 03 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.69{ }_{-0.21}^{+0.26} \pm 0.22 \quad{ }^{6}$ EDWARDS 01 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{ll}\text { - - We do not use the following data for averages, fits, limits, etc. • • - } \\ 1.01 \pm 0.12 \pm 0.05 & 3,7 \text { AUBERT,B 04B BABR } e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ CHILIKIN 19 reports $\left[\Gamma\left(B^{+} \rightarrow \eta_{C} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-} p \bar{p}\right)\right]=$ $\left(39.4_{-3.9-1.8}^{+4.1+2.2}\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-} p \bar{p}\right)$ $=(5.3 \pm 1.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measures absolute branching fractions using a missing-mass technique.
${ }^{3}$ The ratio of $\mathrm{B}\left(B^{ \pm} \rightarrow K^{ \pm} \eta_{C}\right) \mathrm{B}\left(\eta_{C} \rightarrow K \bar{K} \pi\right)=(7.4 \pm 0.5 \pm 0.7) \times 10^{-5}$ reported in AUBERT, B 04B and $\mathrm{B}\left(B^{ \pm} \rightarrow K^{ \pm} \eta_{C}\right)=(8.7 \pm 1.5) \times 10^{-3}$ reported in AUBERT 06E contribute to the determination of $\mathrm{B}\left(\eta_{C} \rightarrow K \bar{K} \pi\right)$, which is used by
$\left.4 \begin{array}{l}\text { others for normalization. } \\ \text { AUBERT, } \\ \text { 05L reports }\end{array} \Gamma\left(B^{+} \rightarrow \eta_{C} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)\right]=\left(1.8_{-0.2}^{+0.3} \pm\right.$ $0.2) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)=(1.45 \pm 0.14) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{6}$ EDWARDS 01 assumes equal production of B^{0} and B^{+}at the $\gamma(4 S)$. The correlated uncertainties (28.3)\% from $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}\right)$ in those modes have been accounted
$7 \begin{aligned} & \text { for. } \\ & \text { AUBERT, } \\ & \text { 04B reports }\end{aligned}\left[\Gamma\left(B^{+} \rightarrow \eta_{C} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K \bar{K} \pi\right)\right]=(0.074 \pm$ $0.005 \pm 0.007) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K \bar{K} \pi\right)=$ $(7.3 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(B^{+} \rightarrow \eta_{c} K^{+}\right) / \Gamma_{\text {total }} \times \Gamma\left(\eta_{c}(1 S) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$
$\Gamma_{230} / \Gamma \times \Gamma_{49}^{\eta_{4}(15)} / \Gamma_{c}^{\eta_{c}(1 s)}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\boldsymbol{\eta}_{\boldsymbol{c}} K^{+}, \eta_{\boldsymbol{c}} \rightarrow K_{S}^{0} K^{\mp} \pi^{ \pm}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 3 1}} / \Gamma$ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT $\mathbf{2 6 . 7} \pm \mathbf{1 . 4}_{-\mathbf{5 . 5}}^{\mathbf{+ 5} .7} \quad 1,2$ VINOKUROVA $11 \quad$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
${ }^{2}$ VINOKUROVA 11 reports $\left(26.7 \pm 1.4_{-2.6}^{+2.9} \pm 4.9\right) \times 10^{-6}$, where the first uncertainty is statistical, the second is due to systematics, and the third comes from interference of $\eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ with nonresonant $K_{S}^{0} K^{ \pm} \pi^{\mp}$. We combined both systematic uncertainties to single values.

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}_{\boldsymbol{c}} \boldsymbol{K}^{\boldsymbol{*}}(\mathbf{8 9 2})^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$
V VALUE (units $\left.10^{-3}\right)$

$\mathbf{1 . 1}_{\mathbf{- 0 . 4}}^{\mathbf{+ 0 . 5} \pm \mathbf{0 . 1} \quad 1,2 \text { AUBERT } \quad 07 \mathrm{AV} \text { BABR } e^{+} e^{-} \rightarrow r(4 S), ~}$
${ }^{1}$ AUBERT 07AV reports $\left[\Gamma\left(B^{+} \rightarrow \eta_{C} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)\right]=$ $\left(1.57_{-0.46-0.36}^{+0.56}\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)=$ $(1.45 \pm 0.14) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\eta_{C} K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\underline{\text { VALUE }}$
$\frac{\text { DOCUMENT ID }}{\text { VINOKUROVA } 15} \frac{\text { TECN }}{\text { BELI }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(\eta_{c} K^{+} \omega(782)\right) / \Gamma_{\text {total }}$				Γ_{234} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$<5.3 \times 10^{-4} 90$	VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$\Gamma\left(\eta_{c} K^{+} \eta\right) / \Gamma_{\text {total }}$				Γ_{235} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
<2.2 $\times 10^{-4} 90$	VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$\Gamma\left(\eta_{c} K^{+} \pi^{0}\right) / \Gamma_{\text {total }}$				Γ_{236} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$<6.2 \times 10^{-5} 90$	VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$\Gamma\left(\eta_{\boldsymbol{C}}(2 S) K^{+}\right) / \Gamma_{\text {total }}$				Γ_{237} / Γ
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
4.4土1.0 OUR AVERAGE				
$4.8 \pm 1.1 \pm 0.3$	1 KATO 18	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$3.4 \pm 1.8 \pm 0.3$	1 AUBERT 06E	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
${ }^{1}$ Measures absolute branchin	ctions using a missing	mass t	chnique.	

$\Gamma\left(\eta_{c}(2 S) K^{+}, \eta_{c} \Rightarrow p \bar{p}\right) / \Gamma_{\text {total }}$					238/Г
VALUE (units 10 0^{-8})		OCUMENT ID	ECN	MEN	
$3.47 \pm 0.72 \pm 0.26$					
- - We do not use the following data for averages, fits, limits, etc. - -					
<10.6	95	${ }^{2}$ AAIJ	13 S LH	epl.	
${ }^{1}$ Measured relative to $B^{+} \rightarrow J / \psi K^{+}$decay with charmonia reconstructed in $p \bar{p}$ final state and using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right) \times \mathrm{B}(J / \psi \rightarrow p \bar{p})=(2.17 \pm 0.08) \times 10^{-6}$. The last uncertainty includes the uncertainty of $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right) \times \mathrm{B}(J / \psi \rightarrow p \bar{p})$.					
${ }^{2}$ Measured relative to $B^{+} \rightarrow J / \psi K^{+}$decay with charmonia reconstructed in $p \bar{p}$ final state and using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.013 \pm 0.034) \times 10^{-3}$ and $\mathrm{B}(J / \psi \rightarrow p \bar{p})=$ $(2.17 \pm 0.07) \times 10^{-3}$.					

$\Gamma\left(\eta_{c}(2 S) K^{+}, \eta_{c} \rightarrow p \bar{\rho} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$

VALUE (units 10-7)	DOCUMENT ID		TECN	COMMENT	
$11.2+1.8+0.5$	CHILIKIN	19	BELL	$e^{+} e^{-}$	$r(4 S)$

$\Gamma\left(B^{+} \rightarrow h_{c}(1)\right.$ VALUE (units 10^{-4})	$\Gamma\left(h_{c}(1 P) \rightarrow \gamma \eta_{c}(1 S)\right) / \Gamma_{\text {total }}$		
	CL\%	DOCUMENT ID	TECN

$<\mathbf{0 . 4 8}$	1 AUBERT	08AB BABR
$e^{+} e^{-} \rightarrow r(4 S)$		

${ }^{1}$ Uses the production ratio of $\left(B^{+} B^{-}\right) /\left(B^{0} \bar{B}^{0}\right)=1.026 \pm 0.032$ at $r(4 S)$.
$\Gamma\left(B^{+} \rightarrow \eta_{c}(2 S) K^{+}\right) / \Gamma_{\text {total }} \times \Gamma\left(\eta_{c}(2 S) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$ $\Gamma_{237} / \Gamma \times \Gamma_{16}^{\eta_{c}(2 S)} / \Gamma_{c}^{\eta_{c}(2 S)}$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 1 8}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { WICHT }}{\text { TECN }} \frac{08}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\eta_{c}(2 S) K^{+}, \eta_{c} \rightarrow K_{S}^{0} K^{\mp} \pi^{ \pm}\right) / \Gamma_{\text {total }} \quad \Gamma_{239} / \Gamma$

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
$3.4+2.2+0.5$	1,2 VINOKUROVA 11	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
2 The first uncertainty includes both statistical and interference effects while the second is
due to systematics.
$\Gamma\left(J / \psi(1 S) K^{+}\right) / \Gamma_{\text {total }}$

| DOCUMENT ID | |
| :--- | :--- | :--- |
| | $\boldsymbol{\Gamma}_{\mathbf{2 7 5}} / \boldsymbol{\Gamma}$ |
| | |
| TECN | |

${ }^{2}$ Measures absolute branching fractions using a missing-mass technique.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4}$ AUBERT,B 05 L reports $\left[\Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})]=$
$(2.2 \pm 0.2 \pm 0.1) \times 10^{-6}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})=$
$(2.121 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error
is the systematic error from using our best value.
${ }^{5}$ BORTOLETTO 92 reports $(8 \pm 2 \pm 2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.J / \psi(1 S) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$
0.069 ± 0.009, which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm$
$0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the
systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at
the $\gamma(4 S)$.
${ }^{6}$ ALBRECHT 90J reports $(7 \pm 3 \pm 1) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.J / \psi(1 S) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$
$=0.069 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$
$(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second
error is the systematic error from using our best value. Assumes equal production of B^{+}
and B^{0} at the $\gamma(4 S)$.
7 ALBRECHT 87D assume $B^{+} B^{-} / B^{0} \bar{B}^{0}$ ratio is 55/45. Superseded by ALBRECHT 90J.
${ }^{8}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as
noted for BORTOLETTO 92 . 9 noted for BORTOLETTO 92.
$\Gamma\left(\eta_{c} \boldsymbol{K}^{+}\right) / \Gamma\left(J / \psi(1 S) K^{+}\right)$
VALUE DOCUMENT ID TECN COMMENT $\Gamma_{230} / \Gamma_{275}$
$\mathbf{0 . 8 7} \pm \mathbf{0 . 1 0}$ OUR AVERAGE
$0.84 \pm 0.06 \pm 0.08$
$1.33 \pm 0.10 \pm 0.43 \quad 2$ AUBERT, B \quad 04B BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AAIJ 13 s reports $\left[\Gamma\left(B^{+} \rightarrow \eta_{C} K^{+}\right) / \Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)\right]$
$/[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})]=0.578 \pm 0.035 \pm 0.026$ which we multiply or divide by our best values $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)=(1.45 \pm 0.14) \times 10^{-3}, \mathrm{~B}(J / \psi(1 S) \rightarrow p \bar{p})=(2.121 \pm$ $0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
2 Uses BABAR measurement of $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(10.1 \pm 0.3 \pm 0.5) \times 10^{-4}$.

$\Gamma\left(J / \psi(1 S) K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{277} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{0.81} \frac{\text { CL\% }}{10} \frac{\text { EVTS }}{\text { DE }}$ DOCUMENT ID $\frac{T E C N}{\text { COMMENT }}$ $\mathbf{0 . 8 1} \mathbf{\pm 0 . 1 3}$ OUR AVERAGE Error includes scale factor of 2.5. See the ideogram below.

| $0.716 \pm 0.010 \pm 0.060$ | | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | - - We do not use the following data for averages, fits, limits, etc. • - -

<1.8 90 ${ }^{5}$ ALBRECHT 90」 ARG $e^{+} e^{-} \rightarrow r(4 S)$
WEIGHTED AVERAGE

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ACOSTA 02F uses as reference of $\mathrm{B}\left(B \rightarrow J / \psi(1 S) K^{+}\right)=(10.1 \pm 0.6) \times 10^{-4}$. The second error includes the systematic error and the uncertainties of the branching ratio.
${ }^{3}$ BORTOLETTO 92 reports $(1.2 \pm 0.6 \pm 0.4) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=0.069 \pm 0.009$, which we rescale to our best value
$\mathrm{B}\left(J / \psi(1 S) \rightarrow \quad e^{+} e^{-}\right)=(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their
experiment's error and our second error is the systematic error from using our
best value. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4}$ ALBRECHT 87D reports $(1.2 \pm 0.8) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.J / \psi(1 S) K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$
$\left.e^{+} e^{-}\right)=0.069 \pm 0.009$, which we rescale to our best value $\mathrm{B}(J / \psi(1 S) \rightarrow$
$\left.e^{+} e^{-}\right)=(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and
our second error is the systematic error from using our best value. They actually
report 0.0011 ± 0.0007 assuming $B^{+} B^{-} / B^{0} \bar{B}^{0}$ ratio is 55/45. We rescale to
$50 / 50$. Analysis explicitly removes $B^{+} \rightarrow \psi(2 S) K^{+}$.
${ }^{5} \mathrm{ALBRECHT} 90 J$ reports $<1.6 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.J / \psi(1 S) K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$
$\left.e^{+} e^{-}\right)=0.069$, which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ 5.971×10^{-2}. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(J / \psi(1 S) \kappa^{+} \kappa^{-} \kappa^{+}\right) / \Gamma_{\text {total }}$
Γ_{278} / Γ

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\chi_{\text {c1 }}(3872) K^{+}\right) / /_{\text {total }}$			$\Gamma_{24 / \Gamma}$
-26.10-4	1 Docament io		

- - We do not use the following data for averages, fits, limits, etc. \bullet $<3.2 \times 10^{-4} \quad 90 \quad 1$ AUBERT 06E BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
1^{1} Measures absolute branching fractions using a missing-mass technique.
$\Gamma\left(B^{+} \rightarrow \chi_{c 1}(3872) K^{+}\right) / \Gamma_{\text {total }} \times \Gamma\left(\chi_{c 1}(3872) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$
$\Gamma_{244} / \Gamma \times \Gamma_{c}^{c(1372)} / \Gamma_{\chi_{c 1}(3872)}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<\mathbf{0 . 2 4}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { WICHT }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. - -
 second error is the systematic error from using our best value.

$\Gamma\left(\chi_{c 1}(3872) K^{+}, \chi_{c 1} \rightarrow J / \psi \gamma\right) / \Gamma_{\text {total }}$					Γ_{247} / Γ
VALUE (units 10^{-6})		DOCUMENT ID TECN COMMENT			
2.1 $\pm \mathbf{0 . 4}$ OUR AVERAGE Error includes scale factor of 1.1.					
$1.78{ }_{-0.44}^{+0.48} \pm 0.12$		${ }^{1}$ BHARDWAJ 11 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$			
$2.8 \pm 0.8 \pm 0.1$		2 AUBERT		$r(4 S)$	
We do no		data for averages, fits, limits, etc. • - -			
$3.3 \pm 1.0 \pm 0.3$		${ }^{1}$ AUBERT,BE 06m BABR Repl. by AUBERT 09b			
${ }^{1}$ Assumes equa	io	+ and B^{0} at the $\gamma(4 S)$.			
${ }^{2}$ Uses B $(\Upsilon(4 S$		$51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.			
$\Gamma\left(\chi_{c 1}(3872) K^{*}(892)^{+}, \chi_{c 1} \rightarrow J / \psi \gamma\right) / \Gamma_{\text {total }}$					Γ_{265} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENTID TECN		COMMENT	
<4.8		AUBERT	09B BABR	$+e^{-}$	
${ }^{1}$ Uses $\mathrm{B}(r) 4 \mathrm{~S}$	B	$1.6 \pm 0.6) \%$ and	$\mathrm{B}(r(4 S) \rightarrow$	$\left.{ }^{0} \bar{B}^{0}\right)=$	0.6)\%

${ }^{1}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
 $\frac{V A L U E}{<6.0 \times 10^{-5}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { CHISTOV } 04} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\chi_{c 1}(3872) K^{+}, \chi_{c 1} \Rightarrow D^{0} \bar{D}^{0} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 5 2}} / \Gamma$

VALUE (units 10^{-4})	CL\%	DOCUMENT ID	TECN	COMMENT
$1.02 \pm 0.31+0.21$		GOKHROO	BELL	

- - We following data for averages, fits, limits, etc \quad -
$<0.6 \quad 90 \quad{ }^{2}$ CHISTOV 04 BELL Repl. by GOKHROO 06
${ }^{1}$ Measure the near-threshold enhancements in the ($D^{0} \bar{D}^{0} \pi^{0}$) system at a mass $3875.2 \pm$ $0.7_{-1.6}^{+0.3} \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\chi_{c 1}(3872) K^{+}, \chi_{c 1} \rightarrow \bar{D}^{+0} D^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{253} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) } \frac{\text { DOCUMENT ID }}{0.85+0.26 ~ O U R ~ A V E R A G E ~ T E C N ~ C O M M E N T ~}}{1}$
$\mathbf{0 . 8 5} \pm \mathbf{0 . 2 6}$ OUR AVERAGE Error includes scale factor of 1.4.
$0.77 \pm 0.16 \pm 0.10 \quad 1$ AUSHEV 10 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$1.67 \pm 0.36 \pm 0.47 \quad{ }^{1}$ AUBERT 08B BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
 $\frac{\text { VALUE }}{<\mathbf{3 . 0} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{\frac{C L \%}{90}}{\text { VINOKUROVA } 15} \frac{\text { DECUMENT ID }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

$\Gamma\left(\chi_{c 1}(3872)^{0} K^{+}, \chi_{c 1}^{0} \rightarrow \eta_{c} \omega(782)\right) / \Gamma_{\text {total }}$			TECN		255/Г
VALUE	CL\%	DOCUMENT ID		COMMENT	
$<6.9 \times 10^{-5}$	90	VINOKUROVA 15	BELL	$+e^{-}$	

$\Gamma\left(\chi_{c 1}(3872) K^{+}, \chi_{c 1} \rightarrow \chi_{c 1}(1 P) \pi^{+} \pi^{-}\right) / /_{\text {total }} \quad \Gamma_{256} / \Gamma$ $\frac{V A L U E}{<1.5 \times 10^{-6}} \frac{C L \%}{90} \quad 1 \begin{aligned} & \text { DOCUMENT ID } \\ & \text { BHARDWAJ } 16 \\ & \text { BELL } \\ & \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}\end{aligned}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\frac{V A L U E}{<8.1 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 19} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(X(3915)^{0} K^{+}, X^{0} \rightarrow \eta_{c} \eta\right) / \Gamma_{\text {total }}$	Γ_{259} / Γ			
VALUE COCUMENT ID	TECN	COMMENT		
$<4.7 \times 10^{\mathbf{- 5}} \quad 90 \quad 1$ VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$		
${ }^{1}$ Upper limit is corrected in the Erratum.				
$\Gamma\left(X(3915)^{0} K^{+}, X^{0} \rightarrow \eta_{c} \pi^{0}\right) / \Gamma_{\text {total }}$		Γ_{260} / Γ		
VALUE COCUMENT ID	TECN	COMMENT		
$<1.7 \times 10^{\mathbf{- 5}} \quad 90 \quad 1$ VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
${ }^{1}$ Upper limit is corrected in the Erratum.				

$\Gamma\left(X(4014)^{0} K^{+}, X^{0} \Rightarrow \eta_{c} \eta\right) / \Gamma_{\text {total }}$					Γ_{261} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<3.9 \times 10^{-5}$	90	VINOKUROVA 15	BELL	$e^{+} e^{-} \rightarrow$	

Meson Particle Listings
$B^{ \pm}$

$<6.1 \quad \frac{11}{90} \quad 1,2 \frac{11}{\mathrm{CHOI}} \frac{11}{\mathrm{BELL}} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$
－－We do not use the following data for averages，fits，limits，etc．－•－

$$
<22 \quad 90 \quad{ }^{3} \text { AUBERT } \quad 05 \mathrm{~B} \text { BABR } e^{+} e^{-} \rightarrow r(4 S)
$$

${ }^{1}$ Assumes $\pi^{+} \pi^{0}$ originates from ρ^{+}．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．The isovector $-X$ hypothesis is excluded with a likelihood test at 1×10^{-4} level．

$\Gamma\left(z_{c}(4430)^{+} K^{0}, z_{c}^{+} \rightarrow J / \psi \pi^{+}\right) / /_{\text {total }} \quad \Gamma_{269} / \Gamma$

VALUE（units 10^{-5} ）	CL\％	DOCUMENT	TECN	COMMENT
＜1．5	95	${ }^{1}$ AUBERT	09AA BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(Z_{c}(4430)^{+} K^{0}, Z_{c}^{+} \rightarrow \psi(2 S) \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{270} / \Gamma$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(\psi(4260)^{0} K^{+}, \psi^{0} \rightarrow J / \psi \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{271} / \Gamma$
 －－We do not use the following data for averages，fits，limits，etc．－－－
$<29 \quad 2$ AUBERT $06 \mathrm{BABR} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Corresponds to a 90% CL upper limit of $<14 \times 10^{-6}$ ．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(X(3915) K^{+}, X \rightarrow J / \psi \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{272} / \Gamma$ $\frac{\text { VALUE（units } 10^{-6} \text { ）}}{<\mathbf{1 4}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT，BE }} \quad 06 \mathrm{TECN} \quad \frac{\text { COMMENT }}{\text { BABR }} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．

| $\boldsymbol{\Gamma}\left(\boldsymbol{J} / \boldsymbol{\psi}(\mathbf{1 S}) K^{\mathbf{0}} \pi^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$ |
| :--- | :--- |
| VALUE（units $\left.10^{-3}\right)$ |$\quad \Gamma_{\mathbf{2 7 6}} / \boldsymbol{\Gamma}$

－－We do not use the following data for averages，fits，limits，etc．• •
$1.101 \pm 0.021 \quad 1$ AUBERT \quad 09AA BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Does not report systematic uncertainties．
$\Gamma\left(J / \psi(1 S) K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{280} / \Gamma$
For polarization information see the Listings at the end of the＂B^{0} Branching Ratios＂ section．
VALUE（units 10^{-3} ）EVTS DOCUMENTID TECN COMMENT
1.43 ± 0.08 OUR FIT
1.43 ± 0.08 OUR AVERAGE
$1.78{ }_{-0.32}^{+0.36} \pm 0.02$
1，2 AUBERT 07AV BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.454 \pm 0.047 \pm 0.097 \quad 2$ AUBERT 05」 BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.28 \pm 0.07 \pm 0.14 \quad 2 \mathrm{ABE} \quad$ 02N BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.41 \pm 0.23 \pm 0.24 \quad 2 \mathrm{JESSOP} \quad 97 \mathrm{CLE2} \quad e^{+} e^{-} \rightarrow r(4 S)$
$1.58 \pm 0.47 \pm 0.27 \quad 3 \mathrm{ABE} \quad 96 \mathrm{HCDF} \quad p \bar{p}$ at 1.8 TeV
$1.50 \pm 1.08 \pm 0.01 \quad{ }^{4}$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$1.85 \pm 1.30 \pm 0.01 \quad 2 \quad 5$ ALBRECHT 90 J ARG $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•
$1.37 \pm 0.09 \pm 0.11 \quad{ }^{2}$ AUBERT 02 BABR Repl．by $\begin{gathered}\text { AUBERT 05J }\end{gathered}$
$1.78 \pm 0.51 \pm 0.23 \quad 13 \quad{ }^{2}$ ALAM $94 \quad$ CLE2 \quad Sup．by JESSOP 97
${ }^{1}$ AUBERT 07 AV reports $\left[\Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})]$ $=\left(3.78_{-0.64-0.23}^{+0.72}\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})=$ $(2.121 \pm 0.029) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3} \mathrm{ABE} 96 \mathrm{H}$ assumes that $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.02 \pm 0.14) \times 10^{-3}$ ．
${ }^{4}$ BORTOLETTO 92 reports $(1.3 \pm 0.9 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.e^{+} e^{-}\right)=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{5}$ ALBRECHT 90 J reports $(1.6 \pm 1.1 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.e^{+} e^{-}\right)=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．

$\Gamma\left(J / \psi(1 S) K^{*}(892){ }^{+}\right) / \Gamma\left(J / \psi(1 S) K^{+}\right)$			$\Gamma_{280} / \Gamma_{275}$		
Value	DOCUMENT ID		TECN	COMMENT	
1.39 ± 0.09 OUR AVERAGE					
$1.37 \pm 0.05 \pm 0.08$	AUBERT	05」	BABR	$e^{+} e^{-}$	$r(4 S)$
$1.45 \pm 0.20 \pm 0.17$	1 JESSOP	97	CLE2	$e^{+} e^{-}$	$r(4 S)$
$1.92 \pm 0.60 \pm 0.17$	ABE	96Q	CDF	$p \bar{p}$	
－－We do not use the following data for averages，fits，limits，etc．－－－					
$1.37 \pm 0.10 \pm 0.08$	2 AUBERT	02	BABR	Repl．by A	UUBERT 05」
${ }^{1}$ JESSOP 97 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．The measurement is actually measured as an average over kaon charged and neutral states． ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．					

| $\boldsymbol{\Gamma}\left(J / \boldsymbol{\psi}(\mathbf{1 S}) \boldsymbol{K}(\mathbf{1 2 7 0})^{+}\right) / \Gamma_{\text {total }}$ | $\Gamma_{\mathbf{2 8 1}} / \boldsymbol{\Gamma}$ |
| :--- | :--- | :--- |
| VALUE（units $\left.10^{-3}\right)$ | |

$\mathbf{1 . 8 0 \pm \mathbf { 0 . 3 4 } \pm \mathbf { 0 . 3 9 }} \quad 1 \frac{1 \mathrm{LBE}}{\mathrm{ABLL}} \frac{01 \mathrm{~L}}{e^{+} e^{-} \rightarrow r(4 S)}$

$\frac{V A L U E}{<\mathbf{0 . 3 0}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABE }} \frac{\operatorname{TECN}}{} \frac{\text { COMMENT }}{}$

$\frac{\text { VALUE（units } 10-5)}{12.4 \pm \mathbf{1 . 4} \text { OUR AVERAGE }}$

1 IWASHITA 14 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{lllll}12.7 \pm 1.1 \pm 1.1 & 1 & \text { IWASHITA } & 14 & \mathrm{BELL} \\ 10.8 \pm 2.3 \pm 2.4 & 1 \text { AUBERT } & e^{-} \rightarrow r(4 S) \\ 1 & 04 \mathrm{Y} & \mathrm{BABR} & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．

$\Gamma\left(\psi(4160) K^{+}, \psi \rightarrow J / \psi \eta\right) / \Gamma_{\text {total }}$						Γ_{285} / Γ
VALUE	CL\％	DOCUMENT		TECN	COMMENT	
$<7.4 \times 10^{-6}$	90	IWASHITA	14	BELL	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(J / \psi(1 S) \eta^{\prime} K^{+}\right) / \Gamma_{\text {total }}$					Γ_{286} / Γ	
VALUE（units 10^{-5} ）	CL\％	DOC		TECN	COMMENT	
＜8．8	90	1 XIE	07	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
$\Gamma\left(J / \psi(1 S) \boldsymbol{K}^{*}(1680)^{+}, \boldsymbol{K}^{*} \rightarrow \phi \boldsymbol{K}^{+}\right) / \Gamma\left(J / \psi(1 S) \phi \boldsymbol{K}^{+}\right) \quad \Gamma_{299} / \Gamma_{287}$

${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
$\Gamma\left(J / \psi(1 S) K_{2}^{*}(1980), \boldsymbol{K}_{2}^{*} \rightarrow \phi K^{+}\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right) \quad \Gamma_{290} / \Gamma_{207}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{2.9 \pm 0.8 \pm \mathbf{- 1 . 7}}$
DOCUMENT ID TECN COMMENT
$\Gamma_{290} / \Gamma_{287}$
$\mathbf{2 . 9} \pm \mathbf{0 . 8} \mathbf{+ 1 . 7} \quad 1$ AAIJ $17 \quad$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
$\Gamma\left(J / \psi(1 S) K(1830)^{+}, K(1830)^{+} \Rightarrow \phi K^{+}\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right) \quad \Gamma_{291} / \Gamma_{287}$ VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT $\mathbf{2 . 6 \pm 1 . 1} \mathbf{+ 1 . 8} \quad 1$ AAIJ $\quad 17 \quad$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
$\Gamma\left(\chi_{c 1}(4140) K^{+}, \chi_{c 1} \rightarrow J / \psi(1 S) \phi\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right) \quad \Gamma_{292} / \Gamma_{287}$ $\frac{\text { VALUE }}{0.19} \pm 0.08$ OUR AVERAGE

0.13	± 0.032	+2.0	1		
AAIJ	17	LHCB	$p p$ at $7,8 \mathrm{TeV}$		
0.19	± 0.07	± 0.04	${ }^{2}$ ABAZOV	14 A	D0
$p \bar{p}$ at 1.96 TeV					

- - We do not use the following data for averages, fits, limits, etc. - -

<0.133	90	LEES	15	BABR
$e^{+} e^{-} \rightarrow r$	$r(4 S)$			
<0.07	90	3 AAIJ	$12 A A$ LHCB $p p$ at 7 TeV	

${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
${ }^{2}$ Reported a threshold enhancement in the $J / \psi \phi$ mass distribution consistent with the
$\chi_{c 1}(4140)$ state with a statistical significance of 3.1 standard deviations.
${ }^{3}$ Branching fractions are normalized to 382 ± 22 events of $B^{+} \rightarrow J / \psi \phi K^{+}$.
$\Gamma\left(\chi_{c 1}(4274) K^{+}, \chi_{c 1} \rightarrow J / \psi(1 S) \phi\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right) \quad \Gamma_{293} / \Gamma_{287}$ VALUE (units 10^{-2}) CL\% DOCUMENT ID TECN COMMENT $\mathbf{7 . 1 \pm 2 . 5}{ }_{-2.4}^{\mathbf{+ 3 . 5}} \quad 1$ AAIJ $\quad 17$ LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$<18.1 \quad 90 \quad$ LEES $\quad 15 \mathrm{BABR} e^{+} e^{-} \rightarrow r(4 S)$
$<8 \quad 90 \quad 2$ AAIJ 12AA LHCB Repl. by AAIJ 17
${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$
${ }^{2}$ Branching fractions are normalized to 382 ± 22 events of $B^{+} \rightarrow J / \psi \phi K^{+}$.
$\Gamma\left(\chi_{c 0}(4500) K^{+}, \chi_{c}^{0} \rightarrow J / \psi(1 S) \phi\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right) \quad \Gamma_{294} / \Gamma_{287}$

VALUE (units 10^{-2})	DOCU	TECN	COMMENT
$6.6 \pm 2.4{ }_{-2.3}^{3.5}$	${ }^{1}$ AAIJ	LHCB	$p p$ at 7, 8 TeV

${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$

$\mathbf{0 . 1 2 \pm 0 . 0 5} \mathbf{+ 0 . 0 9} \quad 1{ }^{\mathbf{0}} \mathbf{1 7}$ AAIJ $\quad 17$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in amplitude analysis of $B^{+} \rightarrow J / \psi(1 S) \phi K^{+}$.
$\Gamma\left(J / \psi(1 S) \omega K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{296} / \Gamma$ VALUE (units 10^{-4})
$3.2 \pm 0.1+0.6$
DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.5 \pm 0.2 \pm 0.4$
${ }^{1}$ AUBERT $08 w$ BABR Repl. by DEL-AMOSANCHEZ 10B

[^119]

$\Gamma\left(J / \psi(1 S) \pi^{+}\right) / \Gamma\left(J / \psi(1 S) K^{+}\right) \quad \Gamma_{299} / \Gamma_{275}$
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
3.85 ± 0.04 OUR FIT
3.85 ± 0.04 OUR AVERAG
$3.83 \pm 0.03 \pm 0.03 \quad$ AAIJ 170 LHCB pp at 7, 8 TeV
$3.5 \pm 0.3 \pm 1.2 \quad$ AABOUD 16 L ATLS $p p$ at $7,8 \mathrm{TeV}$
$4.86 \pm 0.82 \pm 0.15 \quad$ ABULENCIA 09 CDF $p \bar{p}$ at 1.96 TeV
$5.37 \pm 0.45 \pm 0.11 \quad$ AUBERT 04P BABR $e^{+} e^{-} \rightarrow r(4 S)$
$5.0 \underset{-1.7}{+1.9} \pm 0.1 \quad$ ABE 96 R CDF $p \bar{p} 1.8 \mathrm{TeV}$
$5.2 \pm 2.4 \quad$ BISHAI 96 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -

$3.83 \pm 0.11 \pm 0.07$		AAIJ	12AC LHCB	Repl. by AAIJ 170
$3.91 \pm 0.78 \pm 0.19$		AUBERT	02F BABR	Repl. by AUBERT 04P
4.3 ± 2.3	5	${ }^{1}$ ALEXANDER	95 CLE2	Sup. by BISHAI 96
${ }^{1}$ Assumes equ		B^{-}and $B^{0} \bar{B}^{0}$	n $\gamma(4 S)$.	

$\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}\right) / \Gamma\left(\psi(2 S) K^{+}\right)$					$\Gamma_{300} / \Gamma_{311}$
VALUE (units 10^{-2})	DOCU		TECN	COMMENT	
$1.88 \pm 0.17 \pm 0.09$	${ }^{1}$ AAIJ	17K	LHCB	$p p$ at 7 an	d 8 TeV

${ }^{1}$ Contains also the contribution from $B^{+} \rightarrow \psi(2 S)\left[\rightarrow J / \psi \pi^{+} \pi^{-}\right] \pi^{+} \pi^{+} \pi^{-}$decays.
$\Gamma\left(\psi(2 S) \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(\psi(2 S) K^{+}\right)$
$\Gamma_{301} / \Gamma_{311}$
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{\mathbf{3 . 0 4} \pm \mathbf{0 . 5 0} \pm \mathbf{0 . 2 6}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}$
$\Gamma\left(J / \psi(1 S) \rho^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{302} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{4.1 \pm \mathbf{0 . 5} \text { OUR AVERAGE }} \frac{C L \%}{\text { Error includes scale factor of 1.4. }} \xrightarrow{\text { DOCUMENT ID }} \frac{\text { COMMENT }}{}$
$3.81_{-0.24}^{+0.25} \pm 0.35 \quad$ AAIJ 190 LHCB $p p$ at 7 and 8 TeV
$5.0 \pm 0.7 \pm 0.3 \quad 1$ AUBERT 07AC BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -

<77	90	BISHAI 96	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{0}\right.$ nonresonant $) / \Gamma_{\text {total }}$					Γ_{303} / Γ
VALUE (units 10-5)	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.73	90	${ }^{1}$ AUBERT	07AC BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.					
$\Gamma\left(J / \psi(1 S) a_{1}(1260)^{+}\right) / \Gamma_{\text {total }}$					Γ_{304} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<1.2 \times 10^{-3}$	90	BISHAI	96 CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(J / \psi(1 S) D^{+}\right) / \Gamma_{\text {total }}$					$\Gamma_{308} /{ }^{\text {／}}$
VALUE（units 10^{-5} ）	CL\％	DOCUMENT ID	TECN	COMMENT	
＜12	90	${ }^{1}$ AUBERT	05 U BABR	$e^{+} e^{-}-$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．					
					Γ_{309} / Γ
VALUE（units 10^{-5} ）	CL\％	DOCUMENT ID	TECN	COMMENT	
＜2．5	90	1 ZHANG	05B BELL	$e^{+} e^{-}$	$r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－．－					
＜5．2	90	${ }^{1}$ AUBERT	05R BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．					

$\begin{aligned} & \Gamma\left(\psi(2 S) \pi^{+}\right) / \Gamma_{\text {total }} \\ & \text { VALUE (unitis i0 } \left.0^{-5}\right) \end{aligned}$	T 10			$\Gamma_{310} /{ }^{\text {r }}$
4 $\pm 0.22 \pm 0.20$	1 Bhardw	$\begin{aligned} & 08 \text { BELL } \\ & r(4 S) . \end{aligned}$	ment	r（4S）
${ }^{1}$ Assumes equal production of	and B^{0} at			
$\Gamma\left(\psi(2 S) \pi^{+}\right) / \Gamma\left(\psi(2 S) K^{+}\right)$				$\Gamma_{310} / \Gamma_{311}$
VaLUE（units 10^{-2} ）	DOCUMENT	TECN COMMENT		
3.97 ± 0.29 OUR AVERAGE				
$3.95 \pm 0.40 \pm 0.12$	AAIJ	12aC LHCB	$p p$ at 7 T	
$3.99 \pm 0.36 \pm 0.17$	BHARDWAJ	08 BELL	$e^{+} e^{-} \rightarrow$	
$\Gamma\left(\psi(2 S) K^{+}\right) / \Gamma_{\text {total }}$				「311／「
VALUE（units 10－4）EVTS	DOCUMENT ID		COMMENT	

6.19 ± 0.22 OUR FIT
DOCUMENT ID TECN COMMENT
6.48 ± 0.34 OUR AVERAGE

$6.4 \pm 1.0 \pm 0.4$	${ }^{1}$ KATO	18	BELL	$e^{+} e^{-}$	$\rightarrow \quad \Upsilon(4 S)$
$6.65 \pm 0.17 \pm 0.55$	${ }^{2}$ GULER	11	BELL	$e^{+} e^{-}$	$\rightarrow \gamma(4 S)$
$4.9 \pm 1.6 \pm 0.4$	${ }^{1}$ AUBERT	06E	BABR	$e^{+} e^{-}$	$\rightarrow \quad r(4 S)$
$6.17 \pm 0.32 \pm 0.44$	${ }^{2}$ AUBERT	05」	BABR	$e^{+} e^{-}$	$\rightarrow \quad$（4S）
$7.8 \pm 0.7 \pm 0.9$	${ }^{2}$ RICHICHI	01	CLE2	$e^{+} e^{-}$	$\rightarrow \quad r(4 S)$
$18 \pm 8 \pm 4$	2 ALBRECH	90	ARG	$e^{+} e^{-}$	r

$18 \pm 8 \pm 4 \quad 5 \quad 2$ ALBRECHT 90」 ARG $e^{+} e \rightarrow \gamma(4 S)$
• • We do not use the following data for averages，fits，limits，etc．• • •
$\begin{array}{llll}6.9 \pm 0.6 & 2 & \text { ABE } & \text { 03B BELL }\end{array}$ Repl．by GULER 11

$6.4 \pm 0.5 \pm 0.8$		2 AUBERT	02	BABR	Repl．by AUBERT 05J
$6.1 \pm 2.3 \pm 0.9$	7	2 ALAM	94	CLE2	Repl．by RICHICHI 01
<5 at $90 \% \mathrm{CL}$		2 BORTOLETTO 92	CLEO	$e^{+} e^{-} \rightarrow \gamma(4 S)$	

$22 \pm 17 \quad 3 \quad 3$ ALBRECHT 87D ARG $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Measures absolute branching fractions using a missing－mass technique．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ ALBRECHT 87D assume $B^{+} B^{-} / B^{0} \bar{B}^{0}$ ratio is 55／45．Superseded by ALBRECHT 90J．

$(2.121 \pm 0.029) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error
is the systematic error from using our best values．
2 AAIJ 12L reports $0.594 \pm 0.006 \pm 0.016 \pm 0.015$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.\psi(2 S) K^{+}\right) / \Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right] /[\mathrm{B}(\psi(2 S) \rightarrow$
$\left.\left.e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.94 \pm 0.06) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)$
$=(7.72 \pm 0.17) \times 10^{-3}$ ，which we rescale to our best values $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$
$=(5.971 \pm 0.032) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=(7.93 \pm 0.17) \times 10^{-3}$ ．Our first
error is their experiment＇s error and our second error is the systematic error from using
our best values．
${ }^{3}$ Assumes $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$
$\left.e^{+} e^{-}\right)=7.69 \pm 0.19$ ．
${ }^{4}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\psi(2 S) K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{312} / \Gamma$
VALUE（units 10^{-4} ）CL\％DOCUMENT ID TECN COMMENT T TL

$9.2 \pm 1.9 \pm 1.2$
\bullet R ${ }^{1} \mathrm{RICHICHI} 01 \mathrm{CLE}$ do not use the following data for averages，fits，limits，etc．$e^{+} e^{-} \rightarrow$

| <30 | 90 | 1 | ALAM | 94 | CLE2 |
| :--- | :--- | :--- | :--- | :--- | :--- | Repl．by RICHICHI 01

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(\psi(2 S) \phi(1020) K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{315} / \Gamma$
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{\mathbf{4 . 0} \mathbf{0 . 4} \mathbf{0 . 6}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { KHACHATRY 17C }} \frac{\text { TECN }}{\text { COMMENT }}$

$\mathbf{4 . 0} \pm \mathbf{0 . 4} \mathbf{0 . 6} \quad 1,2$ KHACHATRY．．．17C CMS $p p$ at 8 TeV

${ }^{1}$ Measured using $B^{+} \rightarrow \psi(2 S) K^{+}$as a normalization channel．The second error repre－ sents total systematic uncertainties including those from branching fractions which were taken from PDG 16 as $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=0.489 \pm 0.005$ and $\mathrm{B}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)$ $=(6.26 \pm 0.24) \times 10^{-4}$ ．
${ }^{2}$ An upper limit on the fraction of the non－ϕ component in $B^{+} \rightarrow \psi(2 S) K^{+} K^{-} K^{+}$ decays is set as 0.26 at the 95% confidence level．

$\Gamma\left(\psi(3770) K^{+}\right) / \Gamma_{\text {total }}$					Γ_{316} / Γ
VALUE（units 10^{-3} ）CL\％	DOCUMENT ID		TECN	COMMENT	
0．49 ± 0.13 OUR AVERAGE					
$3.5 \pm 2.5 \pm 0.3$	1 AUBERT		BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$0.48 \pm 0.11 \pm 0.07$	2 CHISTOV	04	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－					
<0.23 90	${ }^{1}$ KATO	18	BELL	$e^{+} e^{-}$	$r(4 S)$
1 Measures absolute branching fractions using a missing－mass technique．${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．					

$\Gamma\left(\psi(3770) K+, \psi \rightarrow D^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{317} / \Gamma$
VALUE（units 10^{-4} ）DOCUMENT ID TECN COMMENT
1.5 ± 0.5 OUR AVERAGE
Error includes scale factor of 1.4
$1.18 \pm 0.41 \pm 0.15 \quad 1$ LEES $\quad 15 C$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.2 \pm 0.5 \pm 0.3 \quad 1$ BRODZICKA 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．

$\Gamma\left(\psi(3770) K+, \psi \Rightarrow D^{+} D^{-}\right) / \Gamma_{\text {total }}$				Γ_{318} / Γ
VALUE（units 10^{-4} ）	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 9 4} \pm 0.35$ OUR AVERAGE				
$0.84 \pm 0.32 \pm 0.21$	${ }^{1}$ AUBERT	08B BABR	$e^{+} e^{-}$	$r(4 S)$
$1.4 \pm 0.8 \pm 0.2$	${ }^{1}$ CHISTOV	04 BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．				
$\Gamma\left(\psi(3770) K^{+}, \psi \Rightarrow p \bar{p}\right) / \Gamma_{\text {total }}$（ Γ_{319}				

${ }^{1}$ Measured relative to $B^{+} \rightarrow J / \psi K^{+}$decay with charmonia reconstructed in $p \bar{p}$ final state and using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right) \times \mathrm{B}(J / \psi \rightarrow p \bar{p})=(2.17 \pm 0.08) \times 10^{-6}$ ．

$\Gamma\left(\psi(4040) K^{+}\right) / \Gamma_{\text {total }}$		$\Gamma_{320} / \overline{ }$							
$<\mathbf{1 . 3 \times 1 \mathbf { 1 0 } ^ { \mathbf { - 4 } } \quad 9 0 \quad \text { AAIJ } \quad 1 3 \mathrm { BC } \text { LHCB } p p \text { at } 7 , 8 \mathrm { TeV } , ~}$ - - We do not use the following data for averages, fits, limits, etc. - . -									
$<3.0 \times 10^{-3} \quad 90 \quad 1$ IWASHITA $\quad 14 \quad$ BELL $e^{+} e^{-} \rightarrow r(4 S)$									
${ }^{1}$ IWASHITA 14 reports $\left[\Gamma\left(B^{+} \rightarrow \psi(4040) K^{+}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(4040) \rightarrow J / \psi \eta)]$ 15.5×10^{-6} which we divide by our best value $\mathrm{B}(\psi(4040) \rightarrow J / \psi \eta)=5.2 \times 10^{-3}$									

$\Gamma\left(\psi(4160) K^{+}\right) / \Gamma_{\text {total }}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\chi_{c 0} \pi^{+}, \chi_{c 0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{323} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.1	90	${ }^{1}$ AUBERT	09L BABR	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -					
<0.3	90	${ }^{1}$ AUBERT, B	05G BABR	Repl. by	ERT 09L
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

1 CHILIKIN	19	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
2,3 LEES	120	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
2,4 LEES	120	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
${ }^{5}$ LEES	111	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{2,6}$ AUBERT	$08 A I$	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
${ }^{7}$ AUBERT, BE	$06 m$	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
${ }^{2}$ GARMASH	06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	

<3.3	90	8 KATO	18	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<2.7	95	${ }^{9}$ AAIJ	13 S	LHCB	$p p$ at 7 TeV
<5	90	2,10 WICHT	08	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<1.8	90	${ }^{8}$ AUBERT	06E	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.84 \pm 0.32 \pm 0.31$		2,11 AUBERT	060	BABR	Repl. by LEES 120
<8.9	90	2 AUBERT	05K	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$1.39 \pm 0.49 \pm 0.11$		12 AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$1.96 \pm 0.35{ }_{-0.42}^{+2.00}$		2 GARMASH	05	BELL	Repl. by GARMASH 06
2.7 ± 0.7		13 AUBERT	04T	BABR	Repl. by AUBERT, B 04p
$3.0 \pm 0.8 \pm 0.3$		14 AUBERT, B	04P	BABR	Repl. by AUBERT,B 05N
$6.0{ }_{-1.8}^{+2.1} \pm 1.1$		15 ABE	02B	BELL	Repl. by GARMASH 05
<4.8	90	16 EDWARDS	01	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ CHILIKIN 19 reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)\right]=$ $\left(3.7_{-1.0}^{+1.2}+0.2\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)$ $=(2.1 \pm 0.7) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay.
${ }^{4}$ Measured in the $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ decay.
${ }^{5}$ LEES 111 reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \pi \pi\right)\right]=(1.53 \pm 0.66 \pm$ $0.27) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\chi_{c 0}(1 P) \rightarrow \pi \pi\right)=(8.51 \pm 0.33) \times$ 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{6}$ AUBERT 08AI reports $\left(0.70 \pm 0.10_{-0.10}^{+0.12}\right) \times 10^{-6}$ for $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) \times \mathrm{B}\left(\chi_{c 0} \rightarrow\right.$ $\left.\pi^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right)$using the PDG value $\mathrm{B}\left(\chi_{C 0} \rightarrow \pi \pi\right)=(8.51 \pm$ $0.33) \times 10^{-3}$ and $2 / 3$ for the $\pi^{+} \pi^{-}$fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.
${ }^{7}$ AUBERT,BE 06 M reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ $=(6.1 \pm 2.6 \pm 1.1) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right)$ $=(1.40 \pm 0.05) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The significance of the observed signal is 2.4σ.
${ }^{8}$ Measures absolute branching fractions using a missing-mass technique.
${ }^{9}$ AAIJ 13 s reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow p \bar{p}\right)\right]<6 \times 10^{-8}$ which we divide by our best value $\mathrm{B}\left(\chi_{c 0}(1 P) \rightarrow p \bar{p}\right)=2.21 \times 10^{-4}$.
${ }^{10}$ WICHT 08 reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma \gamma\right)\right]<0.11 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma \gamma\right)=2.04 \times 10^{-4}$.
${ }^{11}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay.
12 AUBERT,B 05 N reports $(0.66 \pm 0.22 \pm 0.08) \times 10^{-6}$ for $\mathrm{B}\left(B^{+} \rightarrow \chi_{C}^{0} K^{+}\right) \times \mathrm{B}\left(\chi_{C}^{0} \rightarrow\right.$ $\left.\pi^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow \chi_{C}^{0} K^{+}\right)$using the PDG value $\mathrm{B}\left(\chi_{c}^{0} \rightarrow \pi^{+} \pi^{-}\right)=$ $(7.1 \pm 0.6) \times 10^{-3}$ and $2 / 3$ for the $\pi^{+} \pi^{-}$fraction.
13 The measurement performed using decay channels $\chi_{c 0} \rightarrow \pi^{+} \pi^{-}$and $\chi_{C 0} \rightarrow K^{+} K^{-}$. The ratio of the branching ratios for these channels is found to be consistent with world average.
14 AUBERT 04P reports $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) \times \mathrm{B}\left(\chi_{C 0} \rightarrow \pi^{+} \pi^{-}\right)=(1.5 \pm 0.4 \pm 0.1) \times 10^{-6}$ and used PDG value of $\mathrm{B}\left(\chi_{C O} \rightarrow \pi \pi\right)=(7.4 \pm 0.8) \times 10^{-3}$ and Clebsh-Gordan coefficient to compute $\mathrm{B}\left(B^{ \pm}{ }_{-}>\chi_{C 0} K^{+}\right)$.
${ }^{15} \mathrm{ABE} 02 \mathrm{~B}$ measures the ratio of $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 0} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=0.60+$ $0.21-0.18 \pm 0.05 \pm 0.08$, where the third error is due to the uncertainty in the $\mathrm{B}\left(\chi_{C 0} \rightarrow\right.$ $\left.\pi^{+} \pi^{-}\right)$, and uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(10.0 \pm 1.0) \times 10^{-4}$ to obtain the result.
${ }^{16}$ EDWARDS 01 assumes equal production of B^{0} and B^{+}at the $r(4 S)$. The correlated uncertainties $(28.3) \%$ from $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}\right)$ in those modes have been accounted for.
$\Gamma\left(\chi_{c 0} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}$
「325/「
$\frac{V A L U E \text { (units } 10^{-4} \text {) }}{<\mathbf{2 . 1}} \frac{C L \%}{90}$

DOCUMENT ID TECN COMMENT
 AUBERT 08BD BABR $e+e \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -
<28.6 $90 \quad 1$ AUBERT 05k BABR Repl. by AUBERT 08BD ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ CHILIKIN 19 reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)\right]$ $=\left(4.7_{-1.2}^{+1.3}+0.4\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)$ $=(5.0 \pm 1.9) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measures absolute branching fractions using a missing-mass technique.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{4}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(\gamma(4 S) \rightarrow$ $\left.B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{5}$ ACOSTA 02F uses as reference of $\mathrm{B}\left(B \rightarrow J / \psi(1 S) K^{+}\right)=(10.1 \pm 0.6) \times 10^{-4}$.
The second error includes the systematic error and the uncertainties of the branching ratio.

Meson Particle Listings

${ }^{6}$ AUBERT,BE 06M reports $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\gamma J / \psi(1 S))]=(1.76 \pm 0.07 \pm 0.12) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{7}$ AUBERT 02 reports $(7.5 \pm 0.9 \pm 0.8) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\chi_{C 1}(1 P) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=0.273 \pm 0.016$, which we rescale to our best value $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{8}$ ALBRECHT 92E assumes no $\chi_{C 2}(1 P)$ production and $B\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=$ 50%.
$\Gamma\left(\chi_{c 1}(1 P) K^{+}\right) / \Gamma\left(J / \psi(1 S) K^{+}\right)$
$\Gamma_{327} / \Gamma_{275}$
$\frac{\text { VALUE }}{\mathbf{0 . 6 0 \pm 0 . 0 7} \pm \mathbf{0 . 0 2}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 02} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ AUBERT 02 reports $0.75 \pm 0.08 \pm 0.05$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right) /\right.$ $\left.\Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma \mathrm{J} / \psi(1 S))=0.273 \pm 0.016$, which we rescale to our best value $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\chi_{c 1}(1 P) \pi^{+}\right) / \Gamma\left(\chi_{c 1}(1 P) K^{+}\right)$
$\Gamma_{326} / \Gamma_{327}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 4 3} \pm \mathbf{0 . 0 0 8} \pm \mathbf{0 . 0 0 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KUMAR }} 06 \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(426)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\chi_{c 1}(1 P) K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{328} / \Gamma$

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{1}$ LEES 12B reports $0.501 \pm 0.024 \pm 0.028$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\chi_{C 1}(1 P) K^{0} \pi^{+}\right) / \Gamma\left(B^{+} \rightarrow J / \psi(1 S) K^{0} \pi^{+}\right)\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.4 \pm 1.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\chi_{c 1}(1 P) K^{+} \pi^{0}\right) / \Gamma_{\text {total }}$
「330/Г
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{3 . 2 9} \pm \mathbf{0 . 2 9} \pm \mathbf{0 . 1 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 16} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\chi_{c 1}(1 P) K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{331} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{3 . 7 4} \pm \mathbf{0 . 1 8} \mathbf{0} \mathbf{0 . 2 4} \quad 1$ BHARDWAJ 16 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\chi_{c 1}(2 P) K^{+}, \chi_{c 1}(2 P) \rightarrow \pi^{+} \pi^{-} \chi_{c 1}(1 P)\right) / \Gamma_{\text {total }} \quad \Gamma_{332} / \Gamma$ $\frac{\text { VALUE }}{<\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 16} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ BHARDWAJ 16 analysis fixes mass and width of the $\chi_{C 1}(2 P)$ state to 3920 MeV and $2{ }_{2}^{20 \mathrm{MeV} \text {. }}$
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(\chi_{c 2} K^{+}\right) / \Gamma_{\text {total }}$ $\operatorname{VALUE}\left(\right.$ units $\left.10^{-5}\right)$	CL\%	DOCUMENT ID	TECN	COMMENT	333/Г
$1.11_{-0.34}^{+0.36} \pm 0.09$		${ }^{1}$ BHARDWAJ	11 BELL	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -					
< 1.8	90	${ }^{2}$ AUBERT	09B BABR	$e^{+} e^{-}$	
<20	90	${ }^{3}$ AUBERT	06E BABR	$e^{+} e^{-} \rightarrow$	
<2.9	90	${ }^{1}$ SONI	06 BELL	Repl. by	WAJ 11
< 3.0	90	${ }^{1}$ AUBERT	05k BABR	Repl. by	T 06E

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(\gamma(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(\gamma(4 S) \rightarrow$ $\left.B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{3}$ Perform measurements of absolute branching fractions using a missing mass technique.

$\Gamma\left(B^{+} \rightarrow \chi_{c 2} K^{+}\right) / \Gamma_{\text {total }} \times \Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}$ $\Gamma_{333} / \Gamma \times \Gamma_{93}^{\chi_{c 2}(1 P)} / \Gamma_{C 2}(1 P)$

$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<0.09} \frac{C L \%}{90} \quad 1$| DOCUMENT ID |
| :--- |
| WICHT |$\frac{08}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. - . -

$<12.7 \times 10^{-5}$	90	2 SONI	06	BELL $e^{+} e^{-} \rightarrow r(4 S)$
$<1.2 \times 10^{-5}$	90	2 AUBERT	05 K BABR Repl. by AUBERT 09B	

${ }^{1}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(r(4 S) \rightarrow$ $\left.B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\boldsymbol{\Gamma}\left(\chi_{\boldsymbol{c} 2} \boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{1 . 1 6} \pm \mathbf{0 . 2 2} \pm \mathbf{0 . 1 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ }} 16$
$1.16 \pm \mathbf{0 . 2 2} \mathbf{\pm 0 . 1 2}$ BHARDWAJ 16 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\chi_{c 2}(3930) \pi^{+}, \chi_{c 2} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{339} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<0.1} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TUBBERT }}{\text { 09L }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. - . -
$\begin{array}{llllll}<3.8 & 90 & 1 \\ \text { FANG } & 06 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and $\mathrm{B}\left(h_{C} \rightarrow \eta_{C} \gamma\right)=50 \%$.

$\Gamma\left(h_{c}(1 P) K^{+}, h_{c} \Rightarrow p \bar{p}\right) / \Gamma_{\text {total }}$					341/Г
VALUE	CL\%	DOC	CN	MMENT	
<6.4 $\times 10^{-8}$	95	${ }^{1}$ AAIJ	13 S LHCB	$p p$ at 7 TeV	
${ }^{1}$ Measured relative to $B^{+} \rightarrow J / \psi K^{+}$decay with charmonia reconstructed in $p \bar{p}$ final state and using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.013 \pm 0.034) \times 10^{-3}$ and $\mathrm{B}(J / \psi \rightarrow p \bar{p})=$ $(2.17 \pm 0.07) \times 10^{-3}$.					

$\Gamma\left(K^{0} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{342} / \Gamma$
VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT
23.7 ± 0.8 OUR FIT
23.8 ± 0.7 OUR AVERAGE

.97 $\pm 0.53 \pm 0.71$	${ }^{1}$ DUH	13	B		r(4s)
$23.9 \pm 1.1 \pm 1.0$	${ }^{1}$ AUBERT, BE	06 C	BABR	$e^{+} e^{-}$	$r(4 S)$
$18.8+3.7+2.1$	${ }^{1}$ BORNHEIM	03	CL	$e^{+} e^{-}$	$r(4$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AVERY 89B reports $<9 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(K^{+} \pi^{0}\right) / \Gamma_{\text {total }}$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{1 2 . 9} \pm \mathbf{0 . 5} \text { OUR AVERAGE }} \frac{C L \%}{\text { RR }}$
$12.62 \pm 0.31 \pm 0.56$
1 DUH 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$13.6 \pm 0.6 \pm 0.7 \quad 1$ AUBERT \quad 07BC BABR $e^{+} e^{-} \rightarrow r(4 S)$
$12.9 \underset{-2.2}{+2.4}+1.2 \quad 1$ BORNHEIM 03 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • •				
12.4 ± 0.5	± 0.6	1 LIN	07 l	BELL

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(K^{+} \pi^{0}\right) / \Gamma\left(K^{0} \pi^{+}\right)$	DOCUMENT ID			$\Gamma_{343} / \Gamma_{342}$
VALUE			COMMENT	
$0.54 \pm 0.03 \pm 0.04$	LIN	07A BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
- We do not use the	ata for	fits, limits,	c. - - -	
$2.38_{-1.10-0.26}^{+0.98+0.39}$	ABE	01H BELL	Repl. by	N 07A

$\Gamma\left(\eta^{\prime} \boldsymbol{K}^{+}\right) / \Gamma_{\text {total }}$

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{70.4 \pm 2.5 \text { OUR AVERAGE }}$

$71.5 \pm 1.3 \pm 3.2$	${ }^{1}$ AUBERT	09AV	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$61 \begin{array}{r}+10 \\ -8\end{array}$	1,2 WICHT	08	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$69.2 \pm 2.2 \pm 3.7$	${ }^{1}$ SCHUEMANN	06	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
80+10 -9	${ }^{1} \mathrm{RICHICHI}$	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

- - We do not use the following data for averages, fits, limits, etc. - - -

$2.21{ }_{-0.42}^{+0.48} \pm 0.01$	1,2 WICHT	08	BELL	Repl. by HOI
$3.7 \pm 0.4 \pm 0.1$	1 AUBERT	07	BABR	Repl. by AUBERT 09aV
$1.9 \pm 0.3{ }_{-0.1}^{+0.2}$	${ }^{1}$ CHANG	07B	BELL	Repl. by HOI 12
$3.3 \pm 0.6 \pm 0.3$	${ }^{1}$ AUBERT,B	05K	BABR	Repl. by AUBERT 07AE
$2.1 \pm 0.6 \pm 0.2$	${ }^{1}$ CHANG	05A	BELL	Repl. by CHANG 07B
$3.4 \pm 0.8 \pm 0.2$	${ }^{1}$ AUBERT	04H	BABR	Repl. by AUBERT,B 05k
<14	BEHRENS	98	CLE2	Repl. by RICHICHI 00
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
${ }^{2}$ WICHT 08 reports $\left[\Gamma\left(B^{+} \rightarrow \eta K^{+}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\eta \rightarrow 2 \gamma)]=\left(0.87{ }_{-0.15}^{+0.16+0.10}+0.0\right.$				
10^{-6} which we divide by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=(39.41 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.				

$\Gamma\left(\eta \boldsymbol{K}^{*}(892)^{+}\right) / \Gamma_{\text {total }}$
「349/Г
$\frac{V A L U E \text { (units } 10^{-6} \text {) }}{19.3 \pm 1.6 \text { OUR AVERAGE }}$

$19.3_{-1.9}^{+2.0} \pm 1.5$	${ }^{1}$ WANG	07B	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$18.9 \pm 1.8 \pm 1.3$	${ }^{1}$ AUBERT, ${ }^{1}$	06H	BABR	$e^{+} e^{-}$	$r(4 S)$
$26.4{ }_{-8.2}^{+9.6} \pm 3.3$	1 RICHICHI	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(\eta(1475) K^{+} \times \mathrm{B}(\eta(1475) .\right.$ VALUE（units 10^{-6} ）	$\left.\left.K^{*} K\right)\right) / \Gamma_{\text {total }}$	TECN	COMment	「355／「
$13.8{ }_{-1.7}+1.8+1.0$	${ }^{1}$ AUBERT	08x BABR	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ Assumes equal production	and B^{0} at the	$r(4 S)$ ．		

$\Gamma\left(f_{1}(1285) K^{+}\right.$					$\Gamma_{356 / \Gamma}$
VALUE （units 10^{-6} ）	cl\％	DOCuMENT ID	TECN	COMment	
＜2．0	90	${ }^{1}$ AUBERT	08x BABR	$e^{+} e^{-} \rightarrow$	$r(4 \mathrm{~S})$
${ }^{1}$ Assumes equal	ction	${ }^{+}$and B^{0} at the	$r(4 S)$ ．		

$\Gamma\left(f_{0}(\mathbf{1 5 0 0}) K^{+}\right) / \Gamma_{\text {total }}$	DOCUMENT ID		TECN		$\Gamma_{360} /{ }^{\text {r }}$	
			comment			
3.7 ± 2.2 OUR AVERAGE						
$17 \pm 4 \pm 12$	${ }^{1}$ Lees	120	babr	$e^{+} e^{-} \rightarrow$		
$20 \pm 10 \pm 27$	${ }^{2}$ Lees	120	babr	$e^{+} e^{-} \rightarrow$	$r(45)$	
$3.2 \pm 2.3 \pm 0.2$	3，4 AUBERT	08AI	babr	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．•－•
$<19 \quad 90 \quad 4,5$ AUBERT，B 05N BABR Repl．by AUBERT 08AI ${ }^{1}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay．
${ }^{2}$ Measured in the $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ decay．
${ }^{3}$ AUBERT 08AI reports $\mathrm{B}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right) \cdot \mathrm{B}\left(f_{0}(1500) \rightarrow \pi^{+} \pi^{-}\right)=(0.73 \pm$ $\left.0.21_{-0.48}^{+0.47}\right) \times 10^{-6}$ ．We divide this result by our best value of $\mathrm{B}\left(f_{0}(1500) \rightarrow \pi \pi\right)$ $=(34.5 \pm 2.2) \times 10^{-2}$ multiplied by $2 / 3$ to account for the $\pi^{+} \pi^{-}$fraction．Our first quoted uncertainty is the combined experiment＇s uncertainty and our second is the systematic uncertainty from using out best value．
${ }^{4}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
5^{5} AUBERT，B 05N reports $\mathrm{B}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right) \cdot \mathrm{B}\left(f_{0}(1500) \rightarrow \pi^{+} \pi^{-}\right)<4.4 \times 10^{-6}$ ． We divide this result by our best value of $\mathrm{B}\left(f_{0}(1500) \rightarrow \pi \pi\right)=(34.5 \pm 2.2) \times 10^{-2}$ multiplied by $2 / 3$ to account for the $\pi^{+} \pi^{-}$fraction．Our first quoted uncertainty is the combined experiment＇s uncertainty and our second is the systematic uncertainty from using out best value．
$\Gamma\left(\omega \boldsymbol{K}^{+}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{6.5 \pm 0.4 \text { OUR AVERAGE }}$
$6.8 \pm 0.4 \pm 0.4$
DOCUMENT Γ_{361} / Γ $6.3+0$.
${ }^{1}$ CHOBANOVA 14 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ AUBERT $\quad 07 \mathrm{AE} \mathrm{BABR} \quad e^{+} e^{-} \rightarrow r(4 S)$ $3.2_{-1.9}^{+2.4} \pm 0.8 \quad 1$ JESSSOP 00 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•－

$6.1 \pm 0.6 \pm 0.4$	1	AUBERT，B	06 E	BABR
$8.1 \pm 0.6 \pm 0.6$	1	AUBER	06	BELL

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
$\Gamma\left(\omega K^{*}(892)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{362} / \Gamma$

－－We do not use the following data for averages，fits，limits，etc．－－－

| <3.4 | 90 | 1 | AUBERT，B | 06 T | BABR |
| :--- | :--- | :--- | :--- | :--- | :--- | Repl．by AUBERT 09H

${ }^{1}$ Assumes equal production of charged and neutral B mesons from $\Upsilon(4 S)$ decays．
$\Gamma\left(a_{0}(980)^{+} \boldsymbol{K}^{\mathbf{0}} \times \mathbf{B}\left(a_{0}(980)^{+} \rightarrow \eta \pi^{+}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 6 6}} / \Gamma$
$\frac{\text { VALUE（units } 10^{-6} \text { ）CL\％DOCUMENT ID }}{\text { CLECN COMMENT }}$
$90 \quad 1$ AUBERT，BE 04 BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of charged and neutral B mesons from $\gamma(4 S)$ decays．
$\Gamma\left(\kappa^{*}(892)^{0} \pi^{+}\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE（units } 10^{-6}\right)}{\mathbf{1 0 . 1} \pm \mathbf{0 . 8} \text { OUR AVERAGE }}$

10.1 ± 0.8 OUR AVERAGE

$10.1 \pm 1.7 \pm 1.0$	1	LEES	17G BABR	$e^{+} e^{-} \rightarrow r(4 S)$
10.8 ± 0.6	+1.4	2	AUBERT	08AI BABR

－－We do not use the following data for averages，fits，limits，etc．－－

${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays．The first error is statistical，the second combines all the systematic uncertainties reported in the paper， including signal modelling．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ AUBERT 04P also report a branching ratio for $B^{+} \rightarrow$＂higher $K *$ resonances＂π^{+}， $K * \rightarrow K^{+} \pi^{-},\left(25.1 \pm 2.0_{-}^{+11.0}\right) \times 10^{-6}$ ．
${ }^{4}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$
${ }^{5} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$ ．
${ }^{6}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0．12．
${ }^{7}$ AVERY 89B reports $<1.3 \times 10^{-4}$ assuming the $\Upsilon(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}^{*}(\mathbf{8 9 2})^{+} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | $\Gamma_{\mathbf{3 6 9}} / \boldsymbol{\Gamma}$ |
| :--- | :--- | :--- |
| $\underline{V A L U E\left(\text { units } 10^{-6}\right)}$ | | 6.8 ± 0.9 OUR AVERA A

$6.4 \pm 0.9_{-0.5}^{+0.4} \quad 1$ LEES $\quad 17 \mathrm{G}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$8.2 \pm 1.5 \pm 1.1 \quad 2$ LEES 11 BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－
$6.9 \pm 2.0 \pm 1.3 \quad 2$ AUBERT $05 \times$ BABR Repl．by LEES 11।
$\begin{array}{llclll}<31 & 90 & 2 & \text { JESSOP } & 00 & \text { CLE2 }\end{array} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays．The first error is statistical，the second combines all the systematic uncertainties reported in the paper， including signal modelling．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(K^{+} \pi^{-} \pi^{+}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{371} / \Gamma$
$\underline{\text { VALUE (units } 10^{-6} \text {) CL\% DOCUMENT ID } \quad \text { TECN COMMENT }}$

16.3 ± 2.1 OUR AVERAGE

| $9.3 \pm 1.0_{-}^{+}+9.7$ | 1,2 | AUBERT | 08AI BABR |
| ---: | :---: | :---: | :--- |$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -

$2.9 \pm 0.6{ }_{-}^{+} 0.5$		${ }^{1}$ AUBERT, B	05N	BABR	Repl. by AUBERT 08al
$17.3 \pm 1.7_{-}^{+17.2}$ 8.0		${ }^{1}$ GARMASH	05	BELL	Repl. by GARMASH 06
<17	90	1 AUBERT, B	04P	BABR	Repl. by AUBERT, B 05N
<330	90	${ }^{3}$ ADAM	96D	DLPH	$e^{+} e^{-} \rightarrow Z$
< 28	90	BERGFELD	96B	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<400	90	3 ABREU	95N	DLPH	Sup. by ADAM 96D
<330	90	ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
<190	90	${ }^{4}$ AVERY	89B	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Calculate the total nonresonant contribution by combining the S -wave composed of $K_{0}^{*}(1430)$ and nonresonant that are described using LASS shape.
${ }^{3}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0.12 .
${ }^{4}$ AVERY 89B reports $<1.7 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(\omega(782) K^{+}\right) / \Gamma_{\text {total }}$
DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$5.9_{-9.0}^{+8.8} \pm 0.2$
1,2 AUBERT 08AI BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AUBERT 08Al reports $\left[\Gamma\left(B^{+} \rightarrow \omega(782) K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)\right]=$ $\left(0.09 \pm 0.13_{-0.045}^{+0.036}\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)$ $=(1.53 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} f_{0}(980) \times \mathrm{B}\left(f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{373} / \Gamma$
VALUE (units 10^{-6}) CL\%

$9.4 \underset{-1.2}{+1.0}$ OUR AVERAGE

- - We do not use the following data for averages, fits, limits, etc. - -
$9.47 \pm 0.97_{-0.88}^{+0.62} \quad 1$ AUBERT,B $\quad 05 \mathrm{~N}$ BABR Repl. by AUBERT 08AI
$7.55 \pm 1.24_{-1.18}^{+1.63} \quad 1$ GARMASH 05 BELL Repl. by GARMASH 06
$9.2 \pm 1.2 \pm 2.6$ 2 2 AUBERT, B 04P BABR Repl. by AUBERT, B 05N
$9.6 \underset{-2.3}{+2.5} \underset{-1.7}{+3.7} \quad 3$ GARMASH 02 BELL Repl. by GARMASH 05
<80 $90 \quad 4$ AVERY 89B CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ AUBERT, B 04 P also reports $\mathrm{B}\left(B^{+} \rightarrow\right.$ "higher f^{0} resonances" $\left.\pi^{+}, f(980)^{0} \rightarrow \pi^{+} \pi^{-}\right)$ $=\left(3.2 \pm 1.2_{-2.9}^{+6.0}\right) \times 10^{-6}$.
${ }^{3}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \times \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$. Only charged pions from the $f_{0}(980)$ are used.
${ }^{4}$ AVERY 89B reports $<7 \times 10^{-5}$ assuming the $r(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(f_{2}(1270)^{0} K^{+}\right) / \Gamma_{\text {total }}$				Γ_{374} / Γ		
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT	
1.07 ± 0.27 OUR AVERAGE						
$0.89{ }_{-0.33-0.38-0.01}^{+0.03}$		1,2 AUBERT	08AI	BABR	$e^{+} e^{-}$	$r(4 S)$
$1.33 \pm 0.30_{-0.34}^{+0.23}$		${ }^{1}$ GARMASH	06	BELL	$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -						
<16	90	${ }^{3}$ AUBERT,B	05N	BABR	Repl. by	AUBERT 08AI
< 2.3	90	${ }^{4}$ GARMASH	05	BELL	Repl. by	GARMASH 06

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AUBERT 08AI reports $\left(0.50 \pm 0.15_{-0.11}^{+0.15}\right) \times 10^{-6}$ for $\mathrm{B}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right) \times \mathrm{B}\left(f_{2} \rightarrow\right.$ $\left.\pi^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right)$using the PDG value $\mathrm{B}\left(f_{2}(1270) \rightarrow\right.$ $\pi \pi)=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$ and $2 / 3$ for the $\pi^{+} \pi^{-}$fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.
${ }^{3}$ AUBERT, B 05 N reports 8.9×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right) \times$ $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)$ $=84.7 \%$ and $2 / 3$ for the $\pi^{+} \pi^{-}$fraction.
${ }^{4}$ GARMASH 05 reports 1.3×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right) \times$ $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)$ $=84.7 \%$ and $2 / 3$ for the $\pi^{+} \pi^{-}$fraction.

$\Gamma\left(f_{0}(1370)^{0} K^{+} \times \mathrm{B}\left(f_{0}(1370)^{0} \rightarrow \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$					$\Gamma 375 / \Gamma$
VALUE	$\underline{C L \%}$	DOCUMENT ID	TECN	COMMENT	
$<10.7 \times 10^{-6}$	90	1 AUBERT, B	05N BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.					
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<11.7 \times 10^{-6}$		${ }^{1}$ AUBERT, ${ }^{\text {a }}$	05N BABR	$e^{+} e^{-}$	$r(4 S)$
Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
$\Gamma\left(f_{2}^{\prime}(1525) K^{+} \times \mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow \pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$					
VALUE	$\underline{C L} \%$	DOCUMENT ID	TECN	COMMENT	
$<3.4 \times 10^{\mathbf{- 6}}$	90	1 AUBERT, B	05N BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes eq	tion	and B^{0} at th	$r(4 S)$.		

- - We do not use the following data for averages, fits, limits, etc. - • -
$5.07 \pm 0.75_{-0.88}^{+0.55} \quad 1$ AUBERT,B 05 N BABR Repl. by AUBERT 08AI
$4.78 \pm 0.75_{-0.97}^{+1.01} \quad 1$ GARMASH 05 BELL Repl. by GARMASH 06
$6.290 \quad 2$ AUBERT,B 04P BABR Repl. by AUBERT,B 05N
$12 \quad 90 \quad{ }^{3}$ GARMASH $02 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma(4 S)$
$86 \quad 90 \quad{ }^{4} \mathrm{ABE} \quad 00 \mathrm{C}$ SLD $e^{+} e^{-} \rightarrow$ Z
$\begin{array}{lllll} & 90 & 17 \text { JESSOP } & 00 & \text { CLE2 } \\ e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$\begin{array}{rlrl}5 & 90 & 5 & \text { ADAM } \\ 19 & 90 & \text { ASNER } & 96 \mathrm{DLPH} \\ e^{+} e^{-} \rightarrow Z\end{array}$
190 ASNER 90 CLE2 Repl. by JESSOP 00
$<180 \quad 90 \quad 95 \mathrm{~N}$ DLPH Sup. by ADAM 96D
180
$\begin{array}{ll} \\ <260 & 90 \\ 90\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
2 AUBERT 04P reports a central value of $\left(3.9 \pm 1.2_{-3.5}^{+1.3}\right) \times 10^{-6}$ for this branching ratio.
${ }^{3}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$.
${ }^{4} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{5}$ Assumes production fractions $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$.
${ }^{6}$ AVERY 89B reports $<7 \times 10^{-5}$ assuming the $\Upsilon(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\begin{array}{lll}\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{0}}^{*}(\mathbf{1 4 3 0})^{\mathbf{0}} \boldsymbol{\pi}^{\boldsymbol{+}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ V A L U E\left(\text { units } 10^{-6}\right)\end{array} \quad \boldsymbol{\Gamma}_{\mathbf{3 7 9}} / \boldsymbol{\Gamma}^{\text {DOCUMENT ID }}$
$39 \begin{aligned} & \mathbf{+ 6} \\ & \mathbf{- 5}\end{aligned}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

$34.6 \pm 3.3 \pm 4.6$	1 LEES	17 G BABR $e^{+} e^{-} \rightarrow r(4 S)$
$32.0 \pm 1.2_{-6.0}^{+10.8}$	2 AUBERT	08 AI BABR $e^{+} e^{-} \rightarrow r(4 S)$
$51.6 \pm 1.7_{-7.5}^{+7.0}$	${ }^{2}$ GARMASH	$06 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$

Meson Particle Listings

$B^{ \pm}$

- . We do not use the following data for averages, fits, limits, etc. - . .
$44.4 \pm 2.2 \pm 5.3 \quad 2,3$ AUBERT,B 05N BABR Repl. by AUBERT 08AI
$45.0 \pm 2.9+10.0 \quad{ }_{-10}^{+15}$ GARMASH 05 BELL Repl. by GARMASH 06
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ See erratum: AUBERT,BE 06A.

$\Gamma\left(K_{2}^{*}(1430)^{0} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{381} / \Gamma$ VALUE (units 10 0^{-6}) $C L \%$ $\mathbf{5 . 6} \mathbf{+ 2 . 2} \pm \mathbf{2} \mathbf{0} \quad 1,2$ AUBERT \quad 08AI BABR $e^{+} e^{-} \rightarrow r(4 S)$
- . We do not use the following data for averages, fits, limits, etc. - . -

<23	90	3	AUBERT,B	$05 N$	BABR
<6.9	Repl. by AUBERT 08AI				
<6.9	90	4 GARMASH	05	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<680	90	ALBRECHT	$91 B$	ARG	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ AUBERT 08AI reports $\left(1.85 \pm 0.41_{-0.29}^{+0.61}\right) \times 10^{-6}$ for $\mathrm{B}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow K^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right)$using the PDG value $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow K \pi\right)=(49.9 \pm 1.2) \times 10^{-2}$ and $2 / 3$ for the $K^{+} \pi^{-}$fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.
${ }^{3}$ AUBERT, B 05 N reports 7.7×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow K^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow\right.$ $K \pi)=49.9 \%$ and $2 / 3$ for the $K^{+} \pi^{-}$fraction.
${ }^{4}$ GARMASH 05 reports 2.3×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow K^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(K_{2}^{*}(1430)^{0} \rightarrow\right.$ $K \pi)=49.9 \%$ and $2 / 3$ for the $K^{+} \pi^{-}$mode.
$\Gamma\left(K_{0}^{*}(1430)^{+} \pi^{0}\right) / \Gamma_{\text {total }}$
Γ_{380} / Γ

${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.
 $\frac{\text { VALUE (units 10 }}{<45} \frac{1}{90} \quad 1 \frac{\text { DOCUMENT }}{\text { GARMASH }} \quad 05 \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ GARMASH 05 reports 2.0×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow K^{*}(1410)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K^{*}(1410)^{0} \rightarrow K^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(K^{*}(1410)^{0} \rightarrow\right.$ $K \pi)=6.6 \%$ and $2 / 3$ for the $K^{+} \pi^{-}$mode.
$\Gamma\left(K^{*}(1680)^{0} \pi^{+}\right) / \Gamma_{\text {total }}$
VALUE (units $\left.10^{-6}\right)$ CL\% DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{3 8 3}} / \Gamma^{\text {Cl }}$
$<\mathbf{1 2} \quad 1$ GARMASH $05 \quad$ BELL $\frac{1}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$<15 \quad 90 \quad{ }^{2}$ AUBERT,B 05N BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ GARMASH 05 reports 3.1×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow K^{*}(1680)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K^{*}(1680)^{0} \rightarrow K^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(K^{*}(1680)^{0} \rightarrow\right.$ $K \pi)=38.7 \%$ and $2 / 3$ for the $K^{+} \pi^{-}$mode.
${ }^{2}$ AUBERT,B 05 N reports 3.8×10^{-6} at $90 \% \mathrm{CL}$ for $\mathrm{B}\left(B^{+} \rightarrow K^{*}(1680)^{0} \pi^{+}\right) \times$ $\mathrm{B}\left(K^{*}(1680)^{0} \rightarrow K^{+} \pi^{-}\right)$. We rescaled it using the PDG value $\mathrm{B}\left(K^{*}(1680)^{0} \rightarrow\right.$ $K \pi)=38.7 \%$ and $2 / 3$ for the $K^{+} \pi^{-}$fraction.

$\Gamma\left(K^{*}(892)+f_{0}(980)\right) / \Gamma_{\text {total }}$				Γ_{394} / Γ
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
$\mathbf{4 . 2} \pm \mathbf{0 . 6} \pm \mathbf{0 . 3} 11$ DEL-AMO-SA..11D BABR				
- - We do not use the following data for averages, fits, limits, etc. - -				
$5.2 \pm 1.2 \pm 0.5$	1 AUBERT, B	BABR	Repl. by	HEZ 11D
${ }^{1}$ Assumes equa	duction of B^{+}and	at the	(4S).	

$\Gamma\left(b_{1}^{+} K^{0} \times \mathrm{B}\left(b_{1}^{+} \rightarrow \omega \pi^{+}\right)\right) / \Gamma_{\text {total }}$			Γ_{396} / Γ	
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
$9.6 \pm 1.7 \pm 0.9$	${ }^{1}$ AUBERT	08AG BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(K^{*}(892)^{0} \rho^{+}\right) / \Gamma_{\text {total }}$				Γ_{397} / Γ
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
9.2圭1.5 OUR AVERAGE				
$9.6 \pm 1.7 \pm 1.5$	${ }^{1}$ AUBERT, B	06G BABR	$e^{+} e^{-}$	$r(4 S)$
$8.9 \pm 1.7 \pm 1.2$	${ }^{1}$ ZHANG	05D BELL	$e^{+} e^{-}-$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				

$\Gamma\left(K_{1}(1400)+\rho^{0}\right) / \Gamma_{\text {total }}$			TECN	COMMENT	Γ_{398} / Γ
VALUE CL\%	DOCUMENT ID				
$<7.8 \times 10^{-4} 90$	ALBRECHT	91B	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Gamma\left(K_{2}^{*}(1430)^{+} \rho^{0}\right) / \Gamma_{\text {total }}$					$\Gamma_{399} /{ }^{\prime}$
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
$<1.5 \times 10^{-3} \quad 90$	ALBRECHT	91B	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Gamma\left(b_{1}^{0} K^{+} \times \mathrm{B}\left(b_{1}^{0} \rightarrow \omega \pi^{0}\right)\right) / \Gamma_{\text {total }}$					Γ_{400} / Γ
VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	

$9.1 \pm 1.7 \pm 1.0 \quad 1$ AUBERT 07BI BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(b_{1}^{+} K^{* 0} \times \mathrm{B}\left(b_{1}^{+} \rightarrow \omega \pi^{+}\right)\right) / \Gamma_{\text {total }}$				Γ_{401} / Γ
VALUE $C L \%$	DOCUMENT ID	TECN	COMMENT	
$<5.9 \times 10^{-6} 90$	1 AUBERT	09AF BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(b_{1}^{0} K^{*+} \times \mathrm{B}\left(b_{1}^{0} \rightarrow \omega \pi^{0}\right)\right) / \Gamma_{\text {total }}$				Γ_{402} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$<6.7 \times 10^{-6} 9$	1 AUBERT	09AF BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of	+ and B^{0} at th	$r(4 S)$.		

$\Gamma\left(K^{+} \bar{K}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{403} / \Gamma$

VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT	
1.31 $\mathbf{\pm 0 . 1 7 \text { OUR FIT }}$ Error includes scale factor of 1.2.						
1.19 ± 0.18 OUR AVERAGE						
$1.11 \pm 0.19 \pm 0.05$		${ }^{1}$ DUH	13	BELL	$e+e$	$r(4 S)$
$1.61+0.44 \pm 0.09$		1 AUBERT,B	06C	BAB	+	

- - We do not use the following data for averages, fits, limits, etc $\rightarrow r($

$\Gamma\left(K^{+} \bar{K}^{0}\right) / \Gamma\left(K^{0} \pi^{+}\right)$
$\Gamma_{403} / \Gamma_{342}$ VALUE DOCUMENT ID TECN COMMENT
$\begin{array}{lcc}\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 0 7} \text { OUR FIT } & \text { Error includes scale factor of } 1.2 . & \\ \mathbf{0 . 0 6 4} \pm \mathbf{0 . 0 0 9} \pm \mathbf{0 . 0 0 4} & \text { AAIJ } & \text { 13BS LHCB }\end{array}$

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$V A L U E\left(\right.$ units $\left.10^{-6}\right)$	$\Gamma_{\mathbf{4 0 5}} / \boldsymbol{\Gamma}$
DOCUMENT ID	

$10.6 \pm 0.5 \pm 0.3 \quad 1,2$ LEES \quad 120 BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

$10.7 \pm 1.2 \pm 1.0$	1	AUBERT,B	04 V	BABR
13.4	± 1.9	$\pm .5$	1 GARMASH	04
1	BELL	Repl. by LEES 120		
1	Assumes equal production of B^{+}and B^{0} at the	$\gamma(4 S)$.		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ All intermediate charmonium and charm resonances are removed, except of $\chi_{C 0}$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(f_{0}(1710) K^{+}, f_{0} \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$					Γ_{407} / Γ	
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$0.48 \pm 0.40{ }^{+0.24} \pm 0.11$		${ }^{1}$ LEES	120	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						
$\Gamma\left(K^{+} K_{S}^{0} K_{S}^{0}\right.$ nonresonant $) / \Gamma_{\text {total }}$				Γ_{408} / Γ		
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$19.8 \pm 3.7 \pm 2.5$		1 LEES		BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						
$\Gamma\left(K_{S}^{0} K_{S}^{0} \pi^{+}\right) / \Gamma_{\text {total }}$				「409/Г		
VALUE	$\underline{C L \%}$	DOCUMENT ID		TECN	COMMENT	
$<5.1 \times 10^{-7}$		${ }^{1}$ AUBERT		BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
\bullet - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$						
$<8.7 \times 10^{-7}$		${ }^{1}$ KALIYAR	19	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$<3.2 \times 10^{-6}$	90	${ }^{1}$ GARMASH	04	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.						
$\Gamma\left(K^{+} K^{-} \pi^{+}\right) / \Gamma_{\text {total }}$				Γ_{410} / Γ		
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT	
5.2 ± 0.4 OUR AVERAGE						
$5.38 \pm 0.40 \pm 0.35$		1,2 HSU	17	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$5.0 \pm 0.5 \pm 0.5$		${ }^{2}$ AUBERT	07BB	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -						
<13	90	${ }^{2}$ GARMASH	04	BELL	$e^{+} e^{-} \rightarrow$	$\Upsilon(4 S)$
<6.3	90	2,3 AUBERT	03M	BABR	Repl. by A	UBERT 07BB
<12	90	${ }^{4}$ GARMASH	02	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$

${ }^{1}$ HSU 17 provides also measurement as a function of $K^{+} K^{-}$invariant mass.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.
${ }^{4}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$.
$\Gamma\left(K^{+} K^{-} \pi^{+}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 1 1}} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{1 . 6 8} \pm \mathbf{0 . 2 3} \pm \mathbf{0 . 1 3}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19AL }} \frac{\text { COMMENT }}{\text { LHCB at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$<75 \quad 90 \quad$ BERGFELD 96 B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AAIJ 19AL reports $0.323 \pm 0.015 \pm 0.041$ fit fraction for $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$nonresonant from the amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$decays. We use the PDG 19 value $\mathrm{B}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.2 \pm 0.4) \times 10^{-6}$ to obtain $\mathrm{B}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right.$nonresonant). Our first error is the experiment's error and the second error is systematic error from using our best value.
$\Gamma\left(\boldsymbol{K}^{+} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
Γ_{412} / Γ
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{5 . 9} \mathbf{+ 0 . 6} \mathbf{0 . 5}} \frac{C L \%}{1} \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { CHCB }}{\text { PD }}$
- - We do not use the following data for averages, fits, limits, etc. • •

| <11 | 90 | 2 AUBERT | 07AR BABR $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | :--- | :--- | :--- |
| <1290 | 90 | ABBIENDI | 00B OPAL $e^{+} e^{-} \rightarrow z$ |
| <1380 | 90 | 3 ABE | 00 CLD SLD $e^{+} e^{-} \rightarrow z$ |
| <53 | 90 | 2 JESSOP | 00 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$ |

${ }^{1}$ AAIJ 19AL reports $(7.5 \pm 0.6 \pm 0.5) \times 10^{-2}$ fit fraction for $B^{+} \rightarrow K^{+} \bar{K}^{*}(892)^{0}$ from the amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$decays. We use the PDG 19 value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.K^{+} K^{-} \pi^{+}\right)=(5.2 \pm 0.4) \times 10^{-6}$ to obtain $\mathrm{B}\left(B^{+} \rightarrow K^{+} \bar{K}^{*}(892)^{0}, \bar{K}^{*}(892)^{0} \rightarrow\right.$ $\left.K^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow K^{+} \bar{K}^{*}(892)^{0}\right)$ using $2 / 3$ of $\mathrm{B}\left(\bar{K}^{*}(892)^{0} \rightarrow(K \pi)^{0}\right)$ $=(99.754 \pm 0.021) \%$ for the $K^{+} \pi^{-}$fraction. Our first error is the experiment's error and the second error is systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.

Meson Particle Listings
$B^{ \pm}$

$\left.\bar{K}_{0}^{*}(1430){ }^{0}\right) / \Gamma_{\text {tot }}$	/		
	document id tecn comment		
$0.38 \pm 0.12 \pm 0.05$	19AL L-LCB ${ }^{\text {pp at } 7,8}$		
- We do not use the following data for averages, fits, limits, etc. - . -			
2.2	${ }^{2}$ aubert	07ar BABR $e^{+} e^{-}$	
${ }^{1}$ AAIJ 19AL reports ($4.5 \pm 0.7 \pm 1.2$) $\times 10^{-2}$ for fit fraction for $B^{+} \rightarrow K^{+} \bar{K}_{0}^{*}(1430){ }^{0}$			
from the amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$decays. We use the PDG 19 value $\mathrm{B}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.2 \pm 0.4) \times 10^{-6}$ to obtain $\mathrm{B}\left(B^{+} \rightarrow K^{+} \bar{K}_{0}^{*}(1430)^{0}\right.$,			
$\left.\bar{K}_{0}^{*}(1430){ }^{0} \rightarrow \kappa^{+} \pi^{-}\right)$. We compute $\mathrm{B}\left(B^{+} \rightarrow \kappa^{+}{\overline{K_{0}^{*}}}^{*}(1430)^{0}\right)$ using $2 / 3$ of PDG 19			

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {total }}$
VALUE
CL\%
DOCUMENT ID
$\frac{\text { VALUE }}{\left\langle\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 8}}\right.} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 17E }}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$<1.6 \times 10^{-7}$	90	${ }^{1}$ AUBERT	08BE BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$<2.4 \times 10^{-6}$	90	${ }^{1}$ GARMASH	04 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$<1.3 \times 10^{-6}$	90	${ }^{2}$ AUBERT	03m BABR	Repl. by AUBERT 08BE
$<3.2 \times 10^{-6}$	90	3 GARMASH	02 BELL	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at the $r(4 S)$; charm and charmonium contri-
butions are subtracted, otherwise no assumptions about intermediate resonances.
${ }^{3}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$.
$\Gamma\left(K^{+} K^{+} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{416} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<87.9} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABBIENDI OOB }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow z}$
$\Gamma\left(f_{2}^{\prime}(1525) K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{417} / \Gamma$
VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT

1.8 ± 0.5 OUR AVERAGE	Error includes scale factor of 1.1.				
$1.56 \pm 0.36 \pm 0.30$	1,2 LEES	120	BABR	$e^{-} \rightarrow$	$r(4 S)$
$2.8 \pm 0.9{ }^{+}+0.5$	1,3 LEES		BABR	$+e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$<8 \quad 90 \quad 1,4$ GARMASH 05 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay.
${ }^{3}$ Measured in the $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ decay.
${ }^{4}$ GARMASH 05 reports $\mathrm{B}\left(B^{+} \rightarrow f_{2}^{\prime}(1525) K^{+}\right) \cdot \mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)<4.9 \times 10^{-6}$ at $90 \% \mathrm{CL}$. We divide this result by our best value of $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=87.6 \times 10^{-2}$ multiplied by $2 / 3$ to account for the $K^{+} K^{-}$fraction.

$\Gamma\left(K^{*}(892)+K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$			Γ_{420} / Γ		
VALUE (units 10^{-6}) CL\%	DOCUMENT ID		TECN	COMMENT	
0.91 ± 0.29 OUR AVERAGE					
$0.77{ }_{-0.30}^{+0.35} \pm 0.12$	${ }^{1} \mathrm{GOH}$	15	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$1.2 \pm 0.5 \pm 0.1$	2 AUBERT	09F	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Signal significance is 2.7 standard deviations. This measurement corresponds to an upper limit of $<1.31 \times 10^{-6}$ at 90% CL.
${ }^{2}$ Signal signicance is 3.7 standard deviations.
${ }^{3}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 4.8×10^{-5}.

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{422 / \Gamma}$

VALUE (units 10-6)	CL\%	DOCUMENT ID	TECN	COMMENT
34.0 ± 1.4 OUR AVERAGE		Error includes scale factor of 1.4.		
$34.6 \pm 0.6 \pm 0.9$		1,2 LEES	0 B	$e^{+} e^{-} \rightarrow r(4 S)$
$30.6 \pm 1.2 \pm 2.3$		1 GARMA	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following				
$35.2 \pm 0.9 \pm 1.6$		${ }^{1}$ AUBERT	060 BABR	Repl. by LEES 120
$32.8 \pm 1.8 \pm 2.8$		${ }^{1}$ GARMASH	04 BELL	Repl. by GARMASH 05
$29.6 \pm 2.1 \pm 1.6$		${ }^{3}$ AUBERT	03M BABR	Repl. by AUBERT 060
$35.3 \pm 3.7 \pm 4.5$		4 GARMASH	02 BELL	Repl. by GARMASH 04
<200	90	${ }^{5}$ ADAM	96D DLPH	$e^{+} e^{-} \rightarrow Z$
<320	90	${ }^{5}$ ABREU	95N DLPH	Sup. by ADAM 96D
<350	90	ALBRECHT	1 E ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{2}$ All intermediate charmonium and charm resonances are removed, except of $\chi_{C 0}$. ${ }^{3}$ Assumes equal production of B^{0} and B^{+}at the $\gamma(4 S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.				
${ }^{4}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$.				
${ }^{5}$ Assumes B^{0} and B^{-}production fractions of 0.39 , and B_{S} production fraction of 0.12				
$\Gamma\left(K^{+} \phi\right) / \Gamma_{\text {total }}$				Γ_{423} / Γ
CALUE (units 10^{-6})	L\%	DOCUMENT ID	TECN	MMENT

9.2 ± 0.4	+0.7	1	120	LEES
$7.6 \pm 1.3 \pm 0.6$	2	ACOSTA	$05 J$	CDF

- - We do not use the following data for averages, fits, limits, etc. • • -
$8.4 \pm 0.7 \pm 0.7$
1 AUBERT 060 BABR Repl. by LEES 120

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.00 \pm 0.04) \times 10^{-3}$ and $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=0.0588 \pm$ 30.0010.
${ }^{3}$ Uses a reference decay mode $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$with $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+}\right) \cdot \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(20.3 \pm 2.0) \times 10^{-5}$.
${ }^{4} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{5}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$.
${ }^{6}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0.12 .
${ }^{7}$ AVERY 89B reports $<8 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(K^{+} K^{-} K^{+}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{429} / \Gamma$
$\underline{V A L U E ~(u n i t s ~} 10^{-6}$ ）CL\％ DOCUMENT ID TECN COMMENT $23.8_{-5.0}^{+2.8}$ OUR AVERAGE

$22.8 \pm 2.7 \pm 7.6$	1	LEES	120	BABR	$e^{+} e^{-} \rightarrow$
$24.0 \pm 1.5_{-6.0}^{+2.6}$	1	$r(4 S)$			

$50.0 \pm 6.0 \pm 4.0$		${ }^{1}$ AUBERT	060 BABR	Repl．by LEES 120
＜38	90	BERGFELD	96B CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．				

$\Gamma\left(K^{*}(892)+K^{+} K^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{430} /{ }^{\text {／}}$
VALUE（units 10^{-6} ）	CL\％	DOCUMENT ID	TECN	COMMENT	

$36.2 \pm 3.3 \pm 3.6 \quad 1$ AUBERT，B $06 U$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•－
$<1600 \quad 90 \quad$ ALBRECHT 91E ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(K^{*}(892)+\phi\right) / \Gamma_{\text {total }}$
$\Gamma_{431 / \Gamma}$
VALUE（units 10^{-6} ）
DOCUMENT ID TECN COMMENT 10.0 ± 2.0 OUR AVERAGE $\frac{T E C N}{}$

$11.2 \pm 1.0 \pm 0.9$	1	AUBERT	07BA BABR $e^{+} e^{-} \rightarrow r(4 S)$
$6.7_{-1.9}^{+2.1+0.7}$	${ }_{-1}$ CHEN	03B BELL $e^{+} e^{-} \rightarrow r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．• • •

$12.7{ }_{-2.0}^{+2.2} \pm 1.1$		1 AUBERT	03v	BABR	Repl．by AUBERT 07bA
$9.7{ }_{-3.4}^{+4.2} \pm 1.7$		1 AUBERT	01D	BABR	Repl．by AUBERT 03v
＜ 22.5	90	1 BRIERE	01	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<41	90	${ }^{1}$ BERGFELD	98	CLE2	
＜ 70	90	ASNER	96	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<1300	90	ALBRECHT	91B	ARG	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(\phi(K \pi)_{0}^{*+}\right) / \Gamma_{\text {total }}$
Γ_{432} / Γ
$(K \pi)_{0}^{*+}$ is the total S－wave composed of $K_{0}^{*}(1430)$ and nonresonant that are described using LASS shape．
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6} \text { ）}\right.}{\mathbf{8 . 3} \pm \mathbf{1 . 4} \pm \mathbf{0 . 8}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \frac{\text { TECN }}{\text { 08BI }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(\phi K_{1}(1270)^{+}\right) / \Gamma_{\text {total }}$
「433／「
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{\mathbf{6 . 1} \pm \mathbf{1 . 6} \pm \mathbf{1 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad \text { 08BI }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．

$\Gamma\left(\phi K_{1}(1400)^{+}\right) / \Gamma_{\text {total }}$					Γ_{434} / Γ
VALUE（units 10^{-6} ）	CL\％	DOCUMENT ID	TECN	COMMENT	
<3.2	90	1 AUBERT	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－					
＜1100	90	ALBRECHT	ARG	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．					

$\Gamma\left(\phi K_{\mathbf{2}}^{*}(1770)^{+}\right) / \Gamma_{\text {total }}$					Γ_{438} / Γ
VALUE（units 10 ${ }^{-6}$ ）	CL\％	DOCUMENT ID	TECN	COMMENT	
＜15．0	90	${ }^{1}$ AUBERT	08BI BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．					
$\Gamma\left(\phi K_{2}^{*}(1820)^{+}\right) / \Gamma_{\text {total }}$（1）$\Gamma_{439} / \Gamma^{\prime}$					
VALUE（units 10^{-6} ）	CL\％	DOCUMENT ID	TECN	COMMENT	
＜16．3	90	${ }^{1}$ AUBERT	08BI BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．					

$\Gamma\left(a_{1}^{+} K^{* 0}\right) / \Gamma_{\text {total }}$					Γ_{440} / Γ
VALUE（units 10 0^{-6} ）	CL\％	DOCUMENT ID	TECN	COMMENT	
＜3．6	90	1，2 DEL－AMO－SA． 10	BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes $\mathrm{B}\left(a_{1}^{ \pm} \rightarrow \pi^{ \pm} \pi^{\mp} \pi^{ \pm}\right)=0.5$					
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．					
$\Gamma\left(K^{+} \phi \phi\right) / \Gamma_{\text {total }}$					

$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{5.0 \pm 1.2 \text { OUR AVERAGE Error includes scale factor of } 2} \frac{\text { DOCUMENT ID }}{3}$ COMMENT $\overline{5.0 \pm 1.2 \text { OUR AVERAGE Error includes scale factor of 2．3．}}$

$5.6 \pm 0.5 \pm 0.3$	1 LEES	11 A BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.6_{-0.9}^{+1.1} \pm 0.3$	1 HUANG	$03 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$

－－We do not use the following data for averages，fits，limits，etc．－－
$7.5 \pm 1.0 \pm 0.7 \quad 1$ AUBERT，BE 06H BABR Repl．by LEES 11A
${ }^{1}$ Assumes equal production of B^{0} and B^{+}at the $r(4 S)$ and for a $\phi \phi$ invariant mass below $2.85 \mathrm{GeV} / \mathrm{c}^{2}$ ．
$\Gamma\left(\eta^{\prime} \eta^{\prime} K^{+}\right) / \Gamma_{\text {total }}$

$\Gamma\left(\boldsymbol{\eta}^{\prime} \boldsymbol{\eta}^{\prime} \boldsymbol{K}^{+}\right) / \Gamma_{\text {total }}$					「442／Г
VALUE（units 10－6）	CL\％	DOCUMENT ID	TECN	COMMENT	

$<\mathbf{2 5} \quad 90 \quad 1 \overline{\text { AUBERT，B }} 06 \mathrm{P} \overline{\mathrm{BABR}} \overline{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(\omega \phi K^{+}\right) / \Gamma_{\text {total }}$
Γ_{443} / Γ
$\frac{\operatorname{VALUE~(units~} 10^{-6} \text { ）}}{<1.9} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TIU }}{\text { LIUCN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{X}(\mathbf{1 8 1 2}) K^{+} \times \mathrm{B}(X \rightarrow \boldsymbol{\omega})\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 4 4}} / \boldsymbol{\Gamma}$

| $\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<0.32}$ | $\frac{C L \%}{90}$ | $1 \frac{\text { DOCUMENT ID }}{\text { LIU }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ |
| :--- | :--- | :--- | :--- |

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(\boldsymbol{K}^{*}(892)^{+} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{445} / \Gamma$
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{\text { DOCUMENT ID }}$ TECN COMMENT $\mathbf{3 . 9 2} \mathbf{\pm 0 . 2 2}$ OUR AVERAGE Error includes scale factor of 1．7．
$3.76 \pm 0.10 \pm 0.12 \quad 1$ HORIGUCHI 17 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$4.22 \pm 0.14 \pm 0.16 \quad 2$ AUBERT \quad 09AO BABR $e^{+} e^{-} \rightarrow r(4 S)$
$3.76_{-0.83}^{+0.89} \pm 0.28 \quad{ }^{3}$ COAN $\quad 00 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(K_{1}(1270)+\gamma\right) / \Gamma_{\text {total }}$
$\Gamma_{446 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{4.4{ }_{-0.6}^{\mathbf{+ 0}} \mathbf{0 . 7} \text { OUR AVERAGE }}$
$4.41_{-0.44}^{+0.63} \pm 0.58 \quad 1,2$ DEL-AMO-SA.. $16 \quad$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$4.3 \pm 0.9 \pm 0.9 \quad 3$ YANG $05 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • -
< $9.9 \quad 90 \quad 3$ NISHIDA 02 BELL Repl. by YANG 05
$<730 \quad 90 \quad 4$ ALBRECHT $89 \mathrm{GARG} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{C}^{2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4}$ ALBRECHT 89 G reports <0.0066 assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$7.9 \pm \mathbf{0 . 9}$ OUR AVERAGE
$7.7 \pm 1.0 \pm 0.4$
DOCUMENT ID TECN COMMENT

1,2 AUBERT 09 BABR $e^{+} e^{-} \rightarrow r(4 S)$
$8.4 \pm 1.5_{-0.9}^{+1.2}$
23 NISHIDA
05 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$10.0 \pm 1.3 \pm 0.5 \quad 1,2$ AUBERT,B 06m BABR Repl. by AUBERT 09 $1 m_{\eta K}<3.25 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3} m_{\eta K}<2.4 \mathrm{GeV} / \mathrm{c}^{2}$
$\Gamma\left(\boldsymbol{\eta}^{\prime} \boldsymbol{K}^{+} \boldsymbol{\gamma}\right) / \Gamma_{\text {total }}$
Γ_{448} / Γ
VALUE (units 10^{-6})
$2 . \mathbf{9}_{\mathbf{- 0 . 9}}^{\mathbf{1} .0}$ OUR AVERAGE
$3.6 \pm 1.2 \pm 0.4$
1,2 WEDD
10 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.9_{-1.2}^{+1.5} \pm 0.1$
1,3 AUBERT,B
06M BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2} m_{\eta^{\prime} K}<3.4 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{3}$ Set the upper limit of 4.2×10^{-6} at $90 \% \mathrm{CL}$ with $m_{\eta^{\prime} K}<3.25 \mathrm{GeV} / \mathrm{c}^{2}$.

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$ |
| :--- | :--- | :--- |
| $V A L U E\left(\right.$ units $\left.10^{-6}\right)$ |

$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{8 . 2}+\mathbf{0 . 4} \mathbf{+ 0 . 8}} \frac{C L \%}{1,2} \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA } 16} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 \mathrm{~S})}$
$\mathbf{8 . 2} \pm \mathbf{0 . 4} \mathbf{0 . 8} \quad 1,2$ DEL-AMO-SA.. 16 BABR $e^{+} e^{-} \rightarrow \boldsymbol{r}(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$<20 \quad 90 \quad 3,4$ NISHIDA $\quad 02$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4} M_{K \pi \pi}<2.4 \mathrm{GeV} / C^{2}$.
$\begin{array}{lll}\boldsymbol{\Gamma}\left(\left(\boldsymbol{K}^{+} \boldsymbol{\pi}^{-}\right)_{\mathbf{N R}} \boldsymbol{\pi}^{+} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }} & & \boldsymbol{\Gamma}_{\mathbf{4 5 3}} / \boldsymbol{\Gamma} \\ \left.\text { VALUE (units } 10^{-6}\right) & \text { CL\% }\end{array}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{9 . 9 \pm \mathbf { 0 . 7 }} \mathbf{+ 1 . 5}} \frac{\text { CL\% }}{1,2} \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA.. } 16} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{llll}<9.2 & 90 & 3,4 \text { NISHIDA } 02 & \text { BELL } \\ e^{+} & e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{C}^{2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{4} M_{K \pi \pi}<2.4 \mathrm{GeV} / c^{2}$.
$\Gamma\left(\boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 5 4}} / \boldsymbol{\Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\mathbf{4 . 5 6} \pm \mathbf{0 . 4 2} \mathbf{0 . 3 1}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { O7R }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)}{}$
${ }^{1} M_{K \pi \pi}<1.8 \mathrm{GeV} / c^{2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(K_{1}(1400)+\gamma\right) / \Gamma_{\text {total }}$
$\Gamma_{455 / \Gamma}$
VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -

$\Gamma\left(K^{*}(1410)^{+} \gamma\right) / \Gamma_{\text {total }}$				$\Gamma_{456} /{ }^{\text {/ }}$
VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
$2.71+0.54+0.59$	FL-AMO-			

$\mathbf{2 . 7 1} \mathbf{- 0 . 4 8} \mathbf{+ 0 . 0 . 3 7} \quad 1,2$ DEL-AMO-SA... 16 BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{C}^{2}$.
${ }^{2}$ Uses $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$.

$\Gamma\left(K_{3}^{*}(1780)^{+} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{460} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<39} \frac{\text { CL\% }}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { NISHIDA } 05} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Uses $\mathrm{B}\left(K_{3}^{*}(1780) \rightarrow \eta K\right)=0.11_{-0.04}^{+0.05}$.
${ }^{3}$ ALBRECHT 89 G reports <0.005 assuming the $r(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(\kappa_{4}^{*}(2045)^{+} \gamma\right) / \Gamma_{\text {total }}$

${ }^{1}$ ALBRECHT 89 G reports <0.0090 assuming the $\Upsilon(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(\rho^{+} \gamma\right) / \Gamma_{\text {total }}$				Γ_{462} / Γ
VALUE (units 10^{-6}) CL\%	DOCUMENT ID	TECN	COMMENT	
0.98 ± 0.25 OUR AVERAGE				
$1.20{ }_{-0.37}^{+0.42} \pm 0.20$	${ }^{1}$ AUBERT	08BH BABR	$e^{+} e^{-}$	$r(4 S)$
$0.87{ }_{-0.27}^{+0.29+0.09}$	1 TANIGUCHI	08 BELL	$e^{+} e^{-}$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -$1.10_{-0.33}^{+0.37} \pm 0.09 \quad 1$ AUBERT 07L BABR Repl. by AUBERT 08BH 0.55 ${ }_{-0.36-0.08}^{+0.42+0.09} \quad 1$ MOHAPATRA 06 BELL Repl. by TANIGUCHI 08 $0.9{ }_{-0.5}^{+0.6} \pm 0.1 \quad 90 \quad{ }^{1}$ AUBERT 05 BABR Repl. by AUBERT 07L
<2.2 90 $\quad 1$ MOHAPATRA $05 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$
$<2.190 \quad 1$ AUBERT 94 C BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
$\begin{array}{lll}<13 & 90 & 1,2 \\ \text { COAN } & 00 & \text { CLE2 }\end{array} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at $\gamma(4 S)$.
${ }^{2}$ No evidence for a nonresonant $K \pi \gamma$ contamination was seen; the central value assumes no contamination.
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units $\left.10^{-6}\right)$
- - We do not use the following data for averages, fits, limits, etc. - -

Meson Particle Listings
$B^{ \pm}$

${ }^{1}$ AAIJ 19AL reports $0.075 \pm 0.008 \pm 0.007$ fit fraction for $B^{+} \rightarrow f_{2}(1270) \pi^{+}$from the amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} \kappa^{+} \kappa^{-}$decays. We use the PDG 19 value $\mathrm{B}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.2 \pm 0.4) \times 10^{-6}$ to obtain $\mathrm{B}\left(B^{+} \rightarrow \mathrm{f}_{2}(1270) \pi^{+}\right.$, $\left.f_{2}(1270) \rightarrow K^{+} K^{-}\right)$. We compute $B\left(B^{+} \rightarrow f_{2}(1270) \pi^{+}\right)$using $1 / 2$ of PDG 19 value of $\mathrm{B}\left(f_{2}(1270) \rightarrow K \bar{K}\right)=\left(4.6_{-0.4}^{+0.5}\right) \%$ for $K^{+} \kappa^{-}$fraction. Our first error is the experiment's error and the second error is systematic error from using our best value. ${ }^{2}$ AUBERT 09L reports $\left[\Gamma\left(B^{+} \rightarrow \pi^{+} f_{2}(1270)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)\right]=$ $\left(0.9 \pm 0.2 \pm 0.1_{-0.1}^{+0.3}\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\mathrm{f}_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)$ $=\left(56.2_{-0.6}^{+1.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{4}$ AUBERT, B 056 reports $\left[\Gamma\left(B^{+} \rightarrow \pi^{+} f_{2}(1270)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)\right]$ $=(2.3 \pm 0.6 \pm 0.4) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right)$ $=\left(56.2_{-0.6}^{+1.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ BORTOLETTO 89 reports $<2.1 \times 10^{-4}$ assuming the $r(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(\rho(1450){ }^{0} \pi^{+}\right.$,	$/ \Gamma_{\text {total }}$			$\Gamma_{468} /{ }^{\text {r }}$
VaLUE (unit 10^{-6})	cL\%	document id	TECN	comment	
$1.4 \pm 0.4{ }_{-0.8}^{+0.5}$		${ }^{1}$ Aubert		$e^{+} e^{-} \rightarrow$	

- - We do not use the following data for averages, fits, limits, etc. • - -
<2.3 $90 \quad 1$ AUBERT,B 05G BABR Repl. by AUBERT 09L ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(f_{0}(1370) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{470} / \Gamma$

VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
<4.0	90	AUBERT	BABR	

- - We do not use the following data for averages, fits, limits, etc. - - •
$\begin{array}{ccc}<3.0 & 90 & 1 \\ \text { AUBERT,B } & 05 G & \text { BABR Repl. by AUBERT 09L }\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(f_{0}(500) \pi^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}\right) / /_{\text {total }} \quad \Gamma_{471} / \Gamma$
 ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\pi^{+} \pi^{-} \pi^{+}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{472} / \Gamma$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{5 . 3} \mathbf{\pm 0 . \mathbf { 7 } _ { - 0 } ^ { + 1 . 3 }}} \frac{\text { CL\% }}{\text { DOCUMENT ID }}$ 1 AUBERT \quad 09L $\frac{\text { TECN }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{\text { COMMENT }}$

$\Gamma\left(\pi^{+} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{473} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$\mathbf{< 8 . 9 \times 1 0}{ }^{-4}$	90	${ }^{1}$ ALBRECHT	ARG	$e^{+} e^{-} \rightarrow$	

$\boldsymbol{\Gamma}\left(\boldsymbol{\rho}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{V A L U E\left(\text { units } 10^{-6}\right)}$ CL\% \quad DOCUMENT ID TECN COMMENT

VALUE (units 10^{-6}) CL\%	DOCUMENT ID		TECN	COMMENT	
10.9 ± 1.4 OUR AVERAGE					
$10.2 \pm 1.4 \pm 0.9$	1 AUBERT	07x	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$13.2 \pm 2.3+1.4$	1 ZHANG	05A	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

$10.9 \pm 1.9 \pm 1.9$		1 AUBERT	04Z	BABR	Repl. by AUBERT 07x
<43	90	1,2 JESSOP	00	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<77	90	ASNER	96	CLE2	Repl. by JESSOP 00
<550	90	${ }^{1}$ ALBRECHT	90B	ARG	$e^{+} e^{-} \rightarrow r(4 S)$

${ }_{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Assumes no nonresonant contributions of $B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$
${ }^{2}$ Assumes no nonresonant contributions of $B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$.

$\Gamma\left(a_{1}(\mathbf{1 2 6 0})^{0} \pi^{+}\right) / \Gamma_{\text {total }}$					79/「	
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT		
- - We do not use the following data for averages, fits, limits, etc. - • •$<900 \quad 90 \quad{ }^{1} \text { ALBRECHT } \quad 90 \mathrm{~b} \text { ARG } e^{+} e^{-} \rightarrow r(4 S)$						
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						
${ }^{2}$ Assumes a_{1}^{0} decays only to 3π and $\mathrm{B}\left(a_{1}^{+} \rightarrow \pi^{ \pm} \pi^{\mp} \pi^{0}\right)=1.0$.						

$\begin{aligned} & 6.1 \pm 0.7 \pm 0.4 \\ & 5.5 \pm 0.9 \pm 0.5 \end{aligned}$		${ }^{1}$ AUBERT,B ${ }^{1}$ AUBERT	$\begin{aligned} & \text { 06E } \\ & \text { 04H } \end{aligned}$	BABR BABR	Repl. by AUBERT 07aE
					Repl. by AUBERT,B O6E
$5.7-1.3 \pm 0.6$		${ }^{1}$ WANG	04A	BELL	Repl. by JEN 06
$4.2{ }_{-1.8}^{+2.0} \pm 0.5$		${ }^{1}$ LU	02	BELL	Repl. by WANG 04A
$6.6-1.1{ }_{-1.8}^{+2.1} \pm 0.7$		${ }^{1}$ aubert	01 G	BABR	Repl. by AUBERT 04 H
< 23	90	${ }^{1}$ bergmeld		CLE2	Repl. by JESSOP 00
<400	90	${ }^{1}$ ALBRECHT	90B	ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

$\Gamma\left(\omega \rho^{+}\right) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{15.9 \pm 1.6 \pm 1.4} \quad \frac{\text { CL\% }}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT } 09 \mathrm{H}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - -

$10.6 \pm 2.1_{-1.0}^{+1.6}$		${ }^{1}$ AUBERT, B	06T	BABR	Repl. by AUBERT 09H
$12.6{ }_{-3.3}^{+3.7} \pm 1.6$		${ }^{1}$ AUBERT	050	BABR	Repl. by AUBERT,B 06T
<61	90	${ }^{1}$ BERGFELD	98	CLE2	
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\Gamma\left(\phi \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{486} / \Gamma$
$\frac{\text { VALUE（units } 10^{-8} \text { ）}}{\mathbf{3 . 2 \pm 1 . 5} \pm \mathbf{0 . 3}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19AL }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{\text { at } 7,8 \mathrm{TeV}}{}$ －－We do not use the following data for averages，fits，limits，etc．－－－

＜ 15	90	${ }^{2}$ AAIJ	14A	LHCB	Repl．by AAIJ 19AL
<33	90	${ }^{3} \mathrm{KIM}$	12A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
＜ 24	90	${ }^{3}$ AUBERT，B	06C	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<41	90	${ }^{3}$ AUBERT	04A	BABR	Repl．by AUBERT，B 06C
<140	90	${ }^{3}$ AUBERT	01D	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<15300	90	${ }^{4}$ ABE	00C	SLD	$e^{+} e^{-} \rightarrow Z$
＜ 500	90	3 BERGFELD	98	CLE2	

${ }^{2}$ Measures $\mathrm{B}\left(B^{+} \rightarrow \phi \pi^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow \phi K^{+}\right)<0.018$ at 90% C．L．and assumes $\mathrm{B}\left(B^{+}\right.$ $\left.\phi K^{+}\right)=\left(8.8_{-0.6}^{+0.7}\right) \times 10^{-6}$ ．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{4} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$

$\Gamma\left(\rho^{0} a_{2}(1320)^{+}\right) / \Gamma_{\text {total }}$				「492／Г		
VALUE C CL\％	DOCUMENT ID	TECN	COMMENT		$\frac{V A L U E}{<7.2 \times 10^{-4}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { BORTOLETTO89 }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$	•－We do not use the following data for averages，fits，limits，etc．
:---						
$\begin{array}{lcllll}<2.6 \times 10^{-3} & 90 & 2 & \text { BEBEK } & 87 & \text { CLEO }\end{array} e^{+} e^{-} \rightarrow$	${ }^{1}$ BORTOLETTO 89 reports $<6.3 \times 10^{-4}$ assuming the $r(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ． 2 We rescale to 50% ．					

${ }^{2}$ BEBEK 87 reports $<2.3 \times 10^{-3}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
$\boldsymbol{\Gamma}\left(\boldsymbol{b}_{\mathbf{1}}^{\mathbf{0}} \boldsymbol{\pi}^{\boldsymbol{+}}, \boldsymbol{b}_{\mathbf{1}}^{\mathbf{0}} \Rightarrow \boldsymbol{\omega} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{} \quad \boldsymbol{\Gamma}_{\mathbf{4 9 3}} / \boldsymbol{\Gamma}$
DOCUMENT ID
$6.7 \pm 1.7 \pm 1.0 \quad 1 \frac{1}{\text { AUBERT }} \quad$ 07BI BABR $\overline{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(b_{1}^{+} \pi^{0}, b_{1}^{+} \rightarrow \omega \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{494} / \Gamma$
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{<3.3} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 08AG }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$						Γ_{495} / Γ
VALUE	CL\％	DOCUMENT ID		TECN	COMMENT	
$<6.3 \times 10^{-3}$	90	1 ALBRECHT	90B	ARG	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$ ．

$\Gamma\left(b_{1}^{+} \rho^{0}, b_{1}^{+} \rightarrow \omega \pi^{+}\right) / \Gamma_{\text {total }}$				Γ_{496} / Γ
VALUE CL\％	DOCUMENT ID	TECN	COMMENT	
$<5.2 \times 10^{\mathbf{- 6}} 90$	1 AUBERT	09AF BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．				
$\Gamma\left(b_{1}^{0} \rho^{+}, b_{1}^{0} \rightarrow \omega \pi^{0}\right) / \Gamma_{\text {total }}$（ Γ_{498} / Γ				
VALUE CL\％	DOCUMENT ID	TECN	COMMENT	
$<3.3 \times 10^{\mathbf{- 6}} \quad 90$	${ }^{1}$ AUBERT	09AF BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．				

$<1.3 \times 10^{\mathbf{- 2}} \quad 90 \quad 1$ ALBRECHT 90 B ARG $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$ ．
$\Gamma\left(h^{+} \pi^{\mathbf{0}}\right) / \Gamma_{\text {tota }}$
DOCUMENTID TECN COMMENT
$16=5 \pm 3.6$
GODANG 98 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$\Gamma\left(\boldsymbol{\omega} \boldsymbol{h}^{+}\right) / \Gamma_{\text {total }}$

$$
h^{+}=K^{+} \text {or } \pi^{+}
$$

\qquad
$13 . \mathbf{8}_{-2.4}^{+2.7}$ OUR AVERAGE

$13.4_{-2.9}^{+3.3} \pm 1.1$	1 LU	02	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$14.3_{-3.2}^{+3.6} \pm 2.0$	1 JESSOP	00	CLE 2	$e^{+} e^{-} \rightarrow r(4 S)$

$14.3_{-3.2}^{+3.6} \pm 2.0$
1 JESSOP
$00 \mathrm{CLE} 2 \quad e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．•－－
$25{ }_{-7}^{+8} \pm 3 \quad{ }^{1}$ BERGFELD 98 CLE2 Repl．by JESSOP 00
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{h}^{+} \boldsymbol{X}^{\mathbf{0}}\right.$（Familon）$) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<49} \frac{C L \%}{90}$
${ }^{1}$ AMMAR 01B searched for the two－body decay of the B meson to a massless neutral feebly－interacting particle X^{0} such as the familon，the Nambu－Goldstone boson associ－ ated with a spontaneously broken global family symmetry．

Meson Particle Listings
$B^{ \pm}$

$\begin{gathered} \Gamma\left(\kappa^{+} x^{0}, x^{0} \rightarrow \mu^{+} \mu^{-}\right) / /_{\text {rotal }} \\ x^{0} \text { stands here for a longlived } \end{gathered}$			$\Gamma_{502 / \Gamma}$
	clv		
$<1 \times 10^{-7}$	95	${ }^{1}$ Ald	
${ }^{1}$ AAIJ 17AQ searched for a long-lived scalar particle $X^{0} \rightarrow \mu^{+} \mu^{-}$in the mass range $250-4700 \mathrm{MeV}$ and lifetime range $0.1-1000 \mathrm{ps}$. The limit is between 10^{-7} and 2×10^{-1}			

$\Gamma\left(p \bar{p} \pi^{+}\right) / \Gamma_{\text {total }}$				「503/「
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{1.62 \pm \mathbf{0 . 2 0} \text { OUR AVERAGE }}$				
1.62 ± 0.20 OUR AVERAGE				
$1.69 \pm 0.29 \pm 0.26$	$1{ }^{1}$ AuB	otav babr		
- We do not use the following data for averages, fits, limits, etc. - . .				
$1.07 \pm 0.11 \pm 0.11$	${ }^{4}$ AAIJ	14AF LLCB $p p$ at 7,8 TeV		
${ }^{3.06 \pm}{ }_{-}^{0.62} \pm 0.3{ }^{0.73}$	${ }^{1,3}$ wang	04 BELL Repl. by WEl 08		
< 3.7	${ }_{5}^{1,2}$ ABE	O2k bell repl. by wang		
		${ }^{89}$ CLEO $e^{+} e^{-} \rightarrow r_{\text {(4S) }}$		
$570 \pm 150 \pm 210$	7 AlBrecht	88F ARG		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r_{(4 S)}$. ${ }^{2}$ Explicitly vetoes resonant production of $p \bar{p}$ from Charmonium states. ${ }^{3}$ Also provides results with $m_{\rho \bar{D}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$ and angular asymmetry of $p \bar{p}$ system.				
${ }^{5}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and $a B_{s}$ production fraction of 0.12 . ${ }^{6}$ BEBEK 89 reports $<1.4 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale 				
$\Gamma\left(p \overline{\mathrm{p}} \pi^{+}\right.$nonresonant $) / \Gamma_{\text {total }}$$\qquad$				$\Gamma_{504 / \Gamma}$
	document in	TECN Comment		
	BERGFELD	CLE2	e^{-}	
$\left.\bar{p} \pi^{+} \pi^{+} \pi^{-}\right) / /_{\text {total }}$				$\Gamma_{505 / \Gamma}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
2 Explicitly vetoes resonant production of $p \bar{p}$ from Charmonium states.
${ }^{3}$ Provides also results with $m_{p \bar{p}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$ and angular asymmetry of $p \bar{p}$ system.

$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<\mathbf{0 . 0 9 1}} \frac{\text { CL\% }}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { WANG }} \frac{\text { COMMENT }}{} \frac{\text { 05A }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.1 \quad 90 \quad 1,2$ AUBERT,B 05 L BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Provides upper limits depending on the pentaquark masses between 1.43 to $2.0 \mathrm{GeV} / \mathrm{c}^{2}$.
$\Gamma\left(f_{J}(2220) K^{+}, f_{J} \rightarrow p \bar{p}\right) / /_{\text {total }}$
Γ_{508} / Γ
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 4 1}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { WANG }} \frac{\text { COMMENT }}{\text { BELL }} \frac{\text { COA }}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
 3.6 ± 0.7 OUR AVERAGE

$3.38{ }_{-0.60}^{+0.73} \pm 0.39$	1,2 CHEN	$08 \mathrm{CBELL} e^{+} e^{-} \rightarrow r(4 S)$
$5.3 \pm 1.5 \pm 1.3$	2 AUBERT	07AV BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$10.3{ }_{-2.8}^{+3.6}{ }_{-1.7}^{+1.3} \quad 2,3$ WANG 04 BELL Repl. by CHEN O8C
${ }_{2}^{1}$ Explicitly vetoes resonant production of $p \bar{D}$ from charmonium states.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Explicitly vetoes resonant production of $p \bar{p}$ from charmonium states. The branching fraction for $M_{p \bar{p}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$ is also reported.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma(p \bar{\pi}) / \Gamma_{\text {total }} \quad \Gamma_{513} / \Gamma$

	VALUE (units 10-6)	$\underline{C L \%}$	DOCUMENT ID	TECN COMMENT

$\mathbf{0 . 2 4}{ }_{-0.08}^{+0.10} \pm \mathbf{0 . 0 3} \quad 1$ AAIJ 17R LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. • - -

<0.32	90	2	TSAI	07	BELL
<0.4	$e^{+} \rightarrow r(4 S)$				
<0.49	90	2	CHANG	05	BELL

${ }^{1}$ Statistical significance of the signal is 4.1 standard deviations where the the normalisation is based on $\mathrm{B}\left(B^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=(11.895 \pm 0.375) \times 10^{-06}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ AVERY 89 B reports $<5 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale
${ }^{4}$ to ALBRECHT 88 F reports $<8.5 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

- - We do not use the following data for averages, fits, limits, etc. - -
$2.16_{-0.53}^{+0.58} \pm 0.20 \quad 1$ LEE 05 BELL Repl. by WANG 07C $<3.9 \quad 90 \quad 2$ EDWARDS 03 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Corresponds to $E_{\gamma}>1.5 \mathrm{GeV}$. The limit changes to 3.3×10^{-6} for $E_{\gamma}>2.0 \mathrm{GeV}$.

$\Gamma\left(p \bar{\Lambda} \pi^{0}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	Γ_{515} / Γ
$3.00{ }_{-0.53}^{+0.61} \pm 0.33$	${ }^{1}$ WANG	07C BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(p \bar{\Sigma}(1385){ }^{0}\right) / \Gamma_{\text {total }}$				Γ_{516} / Γ
VALUE (units 10-6) CLL	DOCUMENT ID	TECN	COMMENT	
<0.47 90	${ }^{1}$ WANG	07C BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(\Delta^{+} \bar{\Lambda}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	$\Gamma_{517} /{ }^{\prime}$
<0.82 90	${ }^{1}$ WANG	07C BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.				

${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(p \bar{\Lambda}^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
$1.43_{-0.25}^{+0.28} \pm 0.18$	2 CHEN 11F BELL $e^{+} e^{-} \rightarrow r(4 S)$		$e^{+} e^{-} \rightarrow r(4 S)$	
$\begin{gathered} { }^{1} \text { Uses } \mathrm{B}(\Lambda \rightarrow p \pi \\ \left.K^{-} \pi^{+} \pi^{0}\right)=13 . \\ { }^{2} \text { Assumes equal pro } \end{gathered}$	$0.5 \%, \mathrm{~B}\left(D^{0} \rightarrow\right.$ B^{0} and B^{+}from		$9 \pm 0.05 \%$ cays.	

$\Gamma\left(\Lambda \bar{\Lambda} K^{+}\right) / \Gamma_{\text {total }}$		Γ_{527} / Γ		
VALUE (units 10 ${ }^{-6}$)	DOCUMENT ID TECN		COMMENT	
$3.38{ }_{-0.36}^{+0.41} \pm 0.41$	1,2 CHANG	BELL $e^{+} e^{-} \rightarrow r(4 S)$		
- We do not use		limits		
$2.91{ }_{-0.70}^{+0.9} \pm 0.38$	${ }^{2} \text { LEE }$	BELL Repl. by CHANG 09		
${ }^{1}$ Excluding charm $3.735 \mathrm{GeV} / \mathrm{C}^{2}$. ${ }^{2}$ Assumes equal pr	s in $2.85<m_{\Lambda} \bar{\Lambda}$ s in various $m_{\Lambda} \bar{\Lambda}$ B^{+}and B^{0} at the		$c^{2} \text { and } 3.3$ ported.	

${ }^{1}$ Excluding charmonium events in $2.85<m_{\Lambda} \bar{\Lambda}<3.128 \mathrm{GeV} / \mathrm{c}^{2}$ and $3.315<m_{\Lambda \bar{\Lambda}}<$ $3.735 \mathrm{GeV} / \mathrm{C}^{2}$. Measurements in various $m_{\Lambda} \bar{\Lambda}$ bins are also reported.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
Γ_{527} / Γ
$\Gamma\left(\boldsymbol{\Lambda} \bar{\Lambda} K^{*+}\right) / \Gamma_{\text {total }}$ DALUE (units $\left.10^{-6}\right) \quad \Gamma_{\mathbf{5 2 8}} / \Gamma^{\text {DOCUMENT ID }}$

[^120]Meson Particle Listings
$B^{ \pm}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ AUBERT 08BN reports $(3.4 \pm 0.1 \pm 0.9) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ GABYSHEV 06A reports $(2.01 \pm 0.15 \pm 0.20) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ DYTMAN 02 reports $\left(2.4_{-0.62}^{+0.63}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow \bar{\Lambda}_{C}^{-} p \pi^{+}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ${ }^{5}$ GABYSHEV 02 reports $\left(1.87_{-0.49}^{+0.51}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{6}$ FU 97 uses PDG 96 values of Λ_{C} branching fraction.

$\Gamma\left(\bar{\Lambda}_{c}^{-} \boldsymbol{\Delta}(\mathbf{1 2 3 2})^{++}\right) / \Gamma_{\text {total }}$					Γ_{542} / Γ
VALUE (units 10^{-5})	CL\%	DOCUMENT ID	TECN	COMMENT	
<1.9	90	GABYSHEV	BELL	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ GABYSHEV 06A reports $(5.9 \pm 1.0 \pm 0.6) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{C}^{-} \Delta_{X}(1600)^{++}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\left(\bar{\Lambda}_{c}^{-} p\right)_{s} \pi^{+}\right) / \Gamma_{\text {total }}$
$\Gamma_{545 / \Gamma}$
$\left(\bar{\Lambda}_{c}^{-} p\right)_{s}$ denotes a low-mass enhancement near $3.35 \mathrm{GeV} / \mathrm{c}^{2}$.
$\frac{\left.\text { VALUE (units } 10^{-5}\right)}{\mathbf{3 . 1}_{-0.6}^{\mathbf{+ 0 . 7}} \pm \mathbf{0 . 2}} \quad \frac{\text { DOCUMENT ID }}{1 \text { GABYSHEV 06A }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ GABYSHEV 06A reports $\left(3.99_{-0.7}^{+0.8} \pm 0.4\right) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\left(\bar{\Lambda}_{c}^{-} p\right)_{s} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{\Sigma}_{c}(2520)^{0} p\right) / \Gamma_{\text {total }}$
$\Gamma_{546 / \Gamma}$ $\frac{\operatorname{VALUE}\left(\text { units 10 } 0^{-5}\right)}{<0.3} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT 08BN }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<2.7	90	1,2 GABYSHEV	06 A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<4.6	90	1,2 GABYSHEV	02	BELL	Repl. by GABYSHEV 06A

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Uses the value for $\Lambda_{C} \rightarrow p K^{-} \pi^{+}$branching ratio (5.0 ± 1.3) \%.
$\Gamma\left(\bar{\Sigma}_{c}(2520)^{0} p\right) / \Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+}\right) \quad \Gamma_{546} / \Gamma_{541}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{<9} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad \text { 08BN }} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

$\Gamma\left(\Sigma_{c}(2800)^{0} p\right) / \Gamma_{\text {total }}$		
VALUE (units 10^{-5})	DOCUMENT ID	N

$\mathbf{2 . 6} \pm \mathbf{0 . 7} \pm \mathbf{0 . 4} \quad 1$ AUBERT \quad 08BN BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
${ }^{1}$ AUBERT 08BN reports $\left[\Gamma\left(B^{+} \rightarrow \bar{\Sigma}_{C}(2800)^{0} p\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{\Lambda}_{c}^{-} p \pi^{+}\right)\right]=$ $0.117 \pm 0.023 \pm 0.024$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{\Lambda}_{c}^{-} p \pi^{+}\right)=$ $(2.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$					「548/「
VALUE (units 10 ${ }^{-3}$)	$\underline{C L}$	DOCUMENT ID	TECN	COMMENT	
$1.81 \pm 0.29+0.52$		DYTMAN	CLE2	$e^{+} e^{-}$	

- . We do not use the following data for averages, fits, limits, etc. - . .

<3.12	90	${ }^{3} \mathrm{FU}$	97	CLE 2	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ DYTMAN 02 measurement uses $\mathrm{B}\left(\Lambda_{-}^{-} \rightarrow \bar{p} K^{+} \pi^{-}\right)=5.0 \pm 1.3 \%$. The second error includes the systematic and the uncertainty of the branching ratio.
${ }^{3}$ FU 97 uses PDG 96 values of Λ_{C} branching ratio.

$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{549} / Γ
VALUE (units 10^{-3})	CL\%	DOCUMENT ID	TECN	COMMENT	

$$
\longrightarrow r(4 S
$$

- - We do not use the following data for averages, fits, limits, etc. - . -
$\begin{array}{llllll}<1.46 & 90 & { }^{3} \mathrm{FU} \quad 97 & \mathrm{CLE} 2 & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ DYTMAN 02 measurement uses $\mathrm{B}\left(\Lambda_{C}^{-} \rightarrow \bar{p} K^{+} \pi^{-}\right)=5.0 \pm 1.3 \%$. The second error includes the systematic and the uncertainty of the branching ratio.
${ }^{3}$ FU 97 uses PDG 96 values of Λ_{C} branching ratio.

$\Gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-} \kappa^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{551} / \Gamma$

VALUE (units 10^{-4}
DOCUMENT ID TECN COMMENT
4.9 ± 0.7 OUR AVERAGE
$4.80 \pm 0.43 \pm 0.60 \quad$ LI 18A BELL $e^{+} e^{-} \rightarrow r(4 S)$
$9.1 \pm 4.5 \pm 0.5 \quad 1,2$ AUBERT $\quad 08 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$6.3 \pm 2.5 \pm 0.3 \quad 2,3$ GABYSHEV 06 BELL Repl. by LI 18A ${ }^{1}$ AUBERT 08H reports $(1.14 \pm 0.15 \pm 0.62) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\Lambda_{c}^{+} \Lambda_{c}^{-} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm$ 1.3) $\times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ GABYSHEV 06 reports $\left(7.9_{-0.9}^{+1.0} \pm 3.6\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\Lambda_{c}^{+} \Lambda_{c}^{-} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm$ 1.3) $\times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{\Sigma}_{c}(2455)^{\circ} p\right) / \Gamma\left(\bar{c}_{c}^{-} p \pi^{+}\right)$		$\mathrm{r}_{53} / 5_{541}$
0.133 ± 0.01		$r_{\text {(4) }}$
	,	

$\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}_{\boldsymbol{c}}(\mathbf{2 4 5 5})^{\mathbf{0}} \mathbf{p} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$V A L U E\left(\right.$ units $\left.10^{-4}\right)$
DOCUMENT ID
TECN COMMENT

VALUE (units 10^{-4})	OCUMENT ID		TECN	COMMENT
3.5 $\pm 1.1 \pm 0.2$	1,2 DYTMAN	02	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(\overline{\boldsymbol{\Sigma}}_{\boldsymbol{c}}(\mathbf{2 4 5 5})^{\mathbf{0}} \mathbf{p} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{5 5 5}} / \boldsymbol{\Gamma}^{\mathbf{T}}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{3 . 5} \pm \mathbf{1 . 0} \pm \mathbf{0 . 2}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { DYTMAN }} \frac{\text { TECN }}{\text { CLE2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ DYTMAN 02 reports $(4.4 \pm 1.3) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{0} p \pi^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\boldsymbol{\Sigma}_{\boldsymbol{C}}(\mathbf{2 4 5 5})^{--} p \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}$			Γ_{556} / Γ		
VALUE (units 10 ${ }^{-4}$)	DOCUMENT ID		TECN	COMMENT	
$\mathbf{2 . 3 7} \pm 0.20$ OUR AVERAGE					
$2.37 \pm 0.16_{-0.12}^{+0.13}$	1,2 LEES	12 z	BABR	${ }^{+} e^{-}$	$r(4 S)$
$2.2 \pm 0.8 \pm 0.1$	1,3 DYTMAN	02	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ LEES $12 z$ reports $(2.98 \pm 0.16 \pm 0.15 \pm 0.77) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{--} p \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ DYTMAN 02 reports $(2.8 \pm 0.9 \pm 0.5 \pm 0.7) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{--} p \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
 $\frac{V A L U E}{<\mathbf{1 . 9} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { DYTMAN } \quad 02} \frac{\text { TECN }}{\text { CLE2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ DYTMAN 02 measurement uses $\mathrm{B}\left(\Lambda_{C}^{-} \rightarrow \bar{p} K^{+} \pi^{-}\right)=5.0 \pm 1.3 \%$. The second error includes the systematic and the uncertainty of the branching ratio.
$\Gamma\left(\overline{E=}_{\boldsymbol{c}}^{0} \Lambda_{\boldsymbol{c}}^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{5 5 8}} / \Gamma^{\boldsymbol{r}}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{9 . 5 1}+\mathbf{2 . 1 0} \mathbf{+ 0 . 8 8}} \quad \frac{\text { DOCUMENT ID }}{19 \mathrm{~A}} \frac{\text { TECN }}{\text { COMMENT }}$ ${ }^{1}$ First measured the absolute branching fraction using a missing-mass technique.

Meson Particle Listings
$B^{ \pm}$

$\Gamma\left(\pi^{+} \mu^{+} \mu^{-}\right) / \Gamma\left(K^{+} \mu^{+} \mu^{-}\right) \quad \Gamma_{567} / \Gamma_{571}$
－• We do not use the following data for averages，fits，limits，etc．• • •
$0.053 \pm 0.014 \pm 0.001$ AAIJ 12AY LHCB Repl．by AAIJ 15AR
$\Gamma\left(\pi^{+} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$ Test for $\Delta=1$ weak neutral current．Alowed by higher－order electroweak intens ${ }_{568} / \Gamma$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions．
$\frac{V A L U E}{<1.4 \times 10^{-5}} \frac{C L \%}{90} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { GRYGIER }} \frac{\text { COMMENT }}{+e^{-}}$
$<1.4 \times 10^{-5} 90 \quad 1$ GRYGIER $17 \mathrm{BELL} e^{+} e^{-} \rightarrow \gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•－

$<9.8 \times 10^{-5}$	90	1 LUTZ	13	BELL	$e^{+} e^{-} \rightarrow$
$<1.7 \times 10^{-4}$	90	1 CHEN	07D	BELL	$e^{+} e^{-} \rightarrow$
$<1.0 \times 10^{-4}$	90	1 AUBERT	05H	BABR	$e^{+} e^{-} \rightarrow$
			$r(4 S)$		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}\right) / \Gamma_{\text {total }}$
Γ_{569} / Γ
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions．
VALUE（units 10^{-7} ）DOCUMENT ID TECN COMMENT

$\mathbf{4 . 5 1} \pm \mathbf{0 . 2 3}$ OUR AVERAGE	Error includes scale factor of 1.1.		
$4.36 \pm 0.15 \pm 0.18$	1 AAIJ	13 H LHCB	pp at 7 TeV

$\begin{array}{lll}4.36 \pm 0.15 \pm 0.18 & \text { AAIJ } & 13 \mathrm{H} \text { LHCB } p p \text { at } 7 \mathrm{TeV} \\ 4.8 \pm 0.9 \pm 0.2 & 2 \text { AUBERT } & \text { 09т BABR } e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$5.3{ }_{-0.5}^{+0.6} \pm 0.3 \quad 2 \mathrm{WEI} \quad 09 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

$3.8{ }_{-0.8}^{+0.9} \pm 0.2$	2 AUBERT，B	06J	BABR	Repl．by AUBERT 09T
$5.3{ }_{-1.0}^{+1.1} \pm 0.3$	2 ISHIKAWA	03	BELL	Repl．by WEI 09a

${ }^{1}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$ ．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(\kappa^{+} e^{+}+e^{-}\right) / \Gamma_{\text {totat }}$ ．${ }^{2}$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions． VALUE（units 10^{-7} ）CL\％DOCUMENT ID TECN COMMENT 5．5 ± 0.7 OUR AVERAGE

| $5.1_{-1.1}^{+1.2} \pm 0.2$ | 1 | | |
| :--- | :--- | :--- | :--- | :--- |
| $5.7_{-0.8}^{+0.9} \pm 0.3$ | 1 | WUBERT | 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$ |
| | | 09A BELL | $e^{+} e^{-} \rightarrow r(4 S)$ |

－－We do not use the following data for averages，fits，limits，etc．－－－

$4.2{ }_{-1.1}^{+1.2} \pm 0.2$		1 AUBERT，B	06J	BABR	Repl．by AUBERT 09T
$10.5{ }_{-2.2}^{+2.5} \pm 0.7$		${ }^{1}$ AUBERT	03 U	BABR	Repl．by AUBERT，B 06J
$6.3_{-1.7}^{+1.9} \pm 0.3$		2 ISHIKAWA	03	BELL	Repl．by WEI 09A
14	90	${ }^{1} \mathrm{ABE}$	02	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
9	90	${ }^{1}$ AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
24	90	${ }^{3}$ ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
990	90	${ }^{4}$ ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow \gamma(4 S)$
3000	90	${ }^{5}$ WEIR	90B	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$
600	90	${ }^{6}$ AVERY	89B	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
2500	90	7 AVERY	87	CLEO	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$ ．The second error is a total of systematic uncertainties including model dependence．
${ }^{3}$ The result is for di－lepton masses above 0.5 GeV ．
${ }^{4}$ ALBRECHT 91E reports $<9.0 \times 10^{-5}$ assuming the $r(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
${ }^{5}$ WEIR 90B assumes B^{+}production cross section from LUND．
${ }^{6}$ AVERY 89B reports $<5 \times 10^{-5}$ assuming the $r(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50\％．
7^{7} AVERY 87 reports $<2.1 \times 10^{-4}$ assuming the $\Upsilon(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
$\Gamma\left(\boldsymbol{K}^{+} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{571} / \Gamma$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions． VALUE（units 10^{-7} ）CL\％DOCUMENT ID TECN COMMENT
$4.41 \pm \mathbf{0 . 2 2}$ OUR FIT Error includes scale factor of 1．2．
$\mathbf{4 . 3 6} \pm \mathbf{0 . 2 7}$ OUR AVERAGE Error includes scale factor of 1.3.

－－We do not use the following data for averages，fits，limits，etc．－－－

$4.36 \pm 0.15 \pm 0.18$		${ }^{3}$ AAIJ	13H	LHCB	Repl．by AAIJ 14 M
$3.1{ }_{-1.2}^{+1.5} \pm 0.3$		2 AUBERT，B	06」	BABR	Repl．by AUBERT 09T
$0.7{ }_{-1.1}^{+1.9} \pm 0.2$		2 AUBERT	03u	BABR	Repl．by AUBERT，B 06」
$4.5{ }_{-1.2}^{+1.4} \pm 0.3$		${ }^{4}$ ISHIKAWA	03	BELL	Repl．by WEI 09a
$9.8{ }_{-3.6}^{+4.6} \pm 1.6$		2 ABE	02	BELL	Repl．by ISHIKAWA 03
12	90	${ }^{2}$ AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
36.8	90	${ }^{5}$ ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
52	90	${ }^{6}$ AFFOLDER	99B	CDF	$p \bar{p}$ at 1.8 TeV
100	90	${ }^{7}$ ABE	96L	CDF	Repl．by AFFOLDER 99B
2400	90	${ }^{8}$ ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
64000	90	${ }^{9}$ WEIR	90B	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$
1700	90	10 AVERY	89B	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
3800	90	11 AVERY	87	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(0.998 \pm 0.014 \pm 0.040) \times 10^{-3}$ for normalization．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$ ．
${ }^{4}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$ ．The second error is a total of systematic uncertainties including model dependence．
${ }^{5}$ The result is for di－lepton masses above 0.5 GeV ．
${ }^{6}$ AFFOLDER 99B measured relative to $B^{+} \rightarrow J / \psi(1 S) K^{+}$．
${ }^{7}$ ABE 96 L measured relative to $B^{+} \rightarrow J / \psi(1 S) K^{+}$using PDG 94 branching ratios．
${ }^{8}$ ALBRECHT 91 E reports $<2.2 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
${ }^{9}$ WEIR 90B assumes B^{+}production cross section from LUND
1^{10} AVERY 89B reports $<1.5 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
11 AVERY 87 reports $<3.2 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right.$nonresonant $) / \Gamma_{\text {total }}$
「572／「
$\frac{\text { VALUE（units } 10^{-7} \text { ）}}{\mathbf{4 . 3 7} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 2 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Measured in amplitude analysis using model including short－distance $K^{+} \mu^{+} \mu^{-}$and $\rho(770), \omega(782), \phi(1020), J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160)$ ，and $\psi(4415)$ con－ tributions．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{573 / \Gamma}$
$\frac{\text { VALUE }}{<\mathbf{2} . \mathbf{2 5} \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{17}{\text { TECN }} \frac{\text { COMMENT }}{\mathrm{BABR}^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses only leptonic decays of τ and the quoted limit combines the final states $K^{+} e^{+} e^{-}$， $K^{+} \mu^{+} \mu^{-}$，and $K^{+} e^{ \pm} \mu^{\mp}$ ．
2 If observed events are interpreted as a signal the branching fraction measurement becomes $(1.31+0.66+0.35) \times 10^{-3}$.
$\Gamma\left(K^{+} \mu^{+} \mu^{-}\right) / \Gamma\left(J / \psi(1 S) K^{+}\right)$
$\Gamma_{571 / \Gamma_{275}}$
VALUE（units 10^{-3} ）DOCUMENT ID TECN COMMENT
$0.439 \pm \mathbf{0 . 0 2 4}$ OUR FIT Error includes scale factor of 1.1 ．
$0.46 \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 2} \quad$ AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV
－－We do not use the following data for averages，fits，limits，etc．• • •
$0.38 \pm 0.05 \pm 0.02 \quad$ AALTONEN 11L CDF Repl．by AALTONEN 11AI
$0.59 \pm 0.15 \pm 0.03 \quad$ AALTONEN 09B CDF Repl．by AALTONEN 11L
$\Gamma\left(K^{+} \nu \nu\right) / \Gamma_{\text {total }} \quad \Gamma_{574} / \Gamma$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions． VALUE CL\％DOCUMENT ID TECN COMMENT
$<1.6 \times \mathbf{1 0}^{-5} \quad 90 \quad 1,2$ LEES \quad 13। BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

$<1.9 \times 10^{-5}$
$<5.5 \times 10^{-5}$
<0

-. We not use the following data for average, fits, limits, etc.

11.6 ± 1.9		2 AAIJ	12AH LHCB	Repl. by AAIJ 14M
$7.3{ }_{-4.2}^{+5.0} \pm 2.1$		${ }^{1}$ AUBERT, B	06J BABR	Repl. by AUBERT 09T
<22	90	1 ISHIKAWA	03 BELL	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Measured in $B^{+} \rightarrow K^{*}(892)^{+} \mu^{+} \mu^{-}$decays.
$\Gamma\left(K^{*}(892)^{+} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{577} / Γ
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-7}) CL\% DOCUMENT ID TECN COMMENT

15.5 ${ }_{-}^{+} 4.0$ OUR AVERAGE

$13.8_{-}^{+} 4.7 \pm 0.8$
${ }^{1}$ AUBERT
09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
$17.3_{-}^{+5.0} \pm 2.0$
${ }^{1}$ WEI
09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$$
\begin{aligned}
& 7.5_{-}^{+} 7.5^{ \pm} \pm 3.8 \\
& { }^{1} \text { AUBERT,B 06J BABR Repl. by AUBERT 09T } \\
& 2.0_{-}^{+13.4} \pm 2.8 \\
& 1 \text { AUBERT } 03 \mathrm{U} \text { BABR } e^{+} e^{-} \rightarrow r(4 S) \\
& \begin{array}{lllllll}
<46 & 90 & 2 \text { ISHIKAWA } & 03 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S) \\
< & 89 & 90 & 1 & \text { ABE } & 02 & \text { BELL } \\
\text { Repl. by ISHIKAWA 03 }
\end{array} \\
& \begin{array}{llllll}
<95 & 90 & 1 \text { AUBERT } & 02 \mathrm{~L} & \text { BABR } e^{+} e^{-} \rightarrow r(4 S) \\
<6900 & 90 & 3 \text { ALBRECHT } & 91 E & \text { ARG } e^{+} e^{-} \rightarrow r(4 S)
\end{array}
\end{aligned}
$$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$. The second error is a total of systematic uncertainties including model dependence.
${ }^{3}$ ALBRECHT 91E reports $<6.3 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.			
$\underline{\text { VALUE (units } 10^{-7} \text {) }}$ CL\%	DOCUMENT ID	TECN	COMMENT
9.6 ± 1.0 OUR FIT			
9.6 ± 1.1 OUR AVERAGE			
$9.24 \pm 0.93 \pm 0.67$	1 AAIJ	14M LHCB	$p p$ at $7,8 \mathrm{TeV}$
$14.6 \pm 7.9 \pm 1.2$	2 AUBERT	09T BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$11.1 \pm 3.2 \pm 1.0$	2 WEI	09A BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -

11.6 ± 1.9	AAIJ	12AH LHCB	Repl. by AAIJ 14M
$9.7 \pm 9.4 \pm 1.4$	2 AUBERT, B	06J BABR	Repl. by AUBERT 09T
$30.7{ }_{-17.8}^{+25.8} \pm 4.2$	2 AUBERT	03 U BAB	$+e^{-} \rightarrow \gamma(4 S)$
$6.5 \pm 5.9+1.5$	$3{ }^{3}$ ISHIKAWA	03 BELL	Repl. by WEI 09A
< 39 90	${ }^{2} \mathrm{ABE}$	02 BELL	Repl. by ISHIKAWA 03
<170	${ }^{2}$ AUBERT	02L BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{*}(892)^{+}\right)=(1.431 \pm 0.027 \pm 0.090) \times 10^{-3}$ for normalization. ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.			
${ }^{3}$ Assumes equal productio systematic uncertainties 10^{-6}	B^{0} and B^{+}at ng model depen	(4S). The ce. The 90\%	cond error is a total of C.L. upper limit is $2.2 \times$

$\Gamma\left(K^{*}(892)^{+} \mu^{+} \mu^{-}\right) / \Gamma\left(J / \psi(1 S) K^{*}(892)^{+}\right)$					$\Gamma_{578} / \Gamma_{280}$
VALUE (units 10 ${ }^{-3}$)	DOCUMENT ID		TECN	COMMENT	
0.67 ± 0.08 OUR FIT					
$0.67 \pm 0.22 \pm 0.04$	AALTONEN	11AI	CDF	$p \bar{p}$ at 1.9	TeV

$\Gamma\left(\boldsymbol{K}^{*} \mathbf{(8 9 2)}^{+} \boldsymbol{\nu} \overline{\boldsymbol{\nu}}\right) / \Gamma_{\text {tetal }}$					
VALUE	CL\%	DOCUMENT ID		COMMENT	
$<4.0 \times 10^{-5}$	90	1 LUTZ	13 BELL	$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$<6.1 \times 10^{-5}$	90	${ }_{1}^{1}$ GRYGIER	17 BELL	$e^{+} e^{-}$	$r(4 S)$
$<6.4 \times 10^{-5}$	90	1,2 LEES	131 BABR	$e^{+} e^{-}$	$r(4 S)$
$<8 \times 10^{-5}$	90	AUBERT	08BC BABR	Repl. by	EES 131
$<1.4 \times 10^{-4}$	90	${ }^{1} \mathrm{CHEN}$	07D BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
${ }^{2}$ Also reported a limit $<11.6 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic B-tag evnets.					
$\Gamma\left(K^{+} \pi^{+} \pi^{-} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \Gamma\left(\psi(2 S) \boldsymbol{K}^{+}\right)$				$\Gamma_{580} / \Gamma_{311}$	
VALUE (units 10^{-4})		DOCUMENT ID	TECN	COMMENT	
$6.95{ }_{-0.43}^{+0.46} \pm 0.34$		AAIJ	14AZ LHCB	$p p$ at 7	TeV

$\Gamma\left(\phi K^{+} \mu^{+} \mu^{-}\right) / \Gamma\left(J / \psi(1 S) \phi K^{+}\right)$

${ }^{1}$ Signal candidates are identified by first fully reconstructing B^{+}in one of many possible exclusive decays to hadronic final states.

$\Gamma\left(\pi^{+} e^{+} \mu^{-}\right) / \Gamma_{\text {total }}$						Γ_{583} / Γ
VALUE	CL\%	DOCUM		TECN	COMMENT	
<0.0064	90	1 WEIR	90B	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$	
${ }^{1}$ WEIR 90B assumes B^{+}production cross section from LUND.						
$\Gamma\left(\pi^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$						Γ_{584} / Γ
Test of lepton family number conservation.						
VALUE	CL\%	DOCUM		TECN	COMMENT	
<0.0064	90	1 WEIR	90B	MRK2	$e^{+} e^{-} 29 \mathrm{GeV}$	

${ }^{1}$ WEIR 90B assumes B^{+}production cross section from LUND.

$\Gamma\left(\pi^{+} e^{-} \tau^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{5 8 7}} / \boldsymbol{\Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<\mathbf{2 0}} \frac{C L \%}{90}$
1 Uses a fully reconstructed hadronic B decay as a tag on the recoil side.
$\Gamma\left(\boldsymbol{\pi}^{+} e^{e^{ \pm}} \tau^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{5 8 8}} / \boldsymbol{\Gamma}$

$\boldsymbol{\Gamma (\boldsymbol { \pi } ^ { + } \boldsymbol { \mu } ^ { + } \boldsymbol { \tau } ^ { - }) / \boldsymbol { \Gamma } _ { \text { total } }} \quad \Gamma_{\mathbf{5 8 9} / \boldsymbol{\Gamma}}^{\text {Test of lepton family number conservation. }}$

VALUE (units 10^{-6})	CL\%	DOCUM		TECN	COMMENT	
<62	90	1 LEES	12P	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side.

Meson Particle Listings
$B^{ \pm}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ WEIR 90B assumes B^{+}production cross section from LUND.

$\Gamma\left(K^{+} e^{-} \mu^{+}\right) / \Gamma_{\text {total }}$				Γ_{593} / Γ	
Test of lepton family number conservation.					
<6.4 $\times 10^{-9}$	90	AAIJ	19amLHCB	$p p$ at 7, 8	
- - We do not use the following data for averages, fits, limits, etc. - -					
$<1.3 \times 10^{-7}$	90	${ }^{1}$ AUBERT, ${ }^{\text {b }}$	06J BABR	$e^{+} e^{-} \rightarrow$	
$<6.4 \times 10^{-3}$	90	${ }^{2}$ WEIR	90B MRK2	$e^{+} e^{-} 29$	
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

${ }^{1}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{e}^{-} \boldsymbol{\tau}^{+}\right) / \Gamma_{\text {total }}$
Test of lepton family number conservation.

$\Gamma\left(K^{+} e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$						Γ_{597} / Γ
Test of lepton family number conservation.						
VALUE (units 10^{-6})	CL\%	DOCUN		TECN	COMMENT	
<30	90	1,2 LEES	12P	BABR	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Assumes $\mathrm{B}\left(B^{+} \rightarrow h^{+} \ell^{+} \tau^{-}\right)=\mathrm{B}\left(B^{+} \rightarrow h^{+} \ell^{-} \tau^{+}\right)$.
${ }^{2}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\tau}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \Gamma_{\mathbf{5 9 8}} / \boldsymbol{\Gamma}$

VALUE (units 10^{-6})	CL\%	DOCUM		TECN	COMMENT	
<45	90	1 LEES	12P	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\mu}^{-} \boldsymbol{\tau}^{+}\right) / \Gamma_{\text {tetal }}$ of lepton family number conservation. $\quad \Gamma_{\mathbf{5 9 9}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{< 2 8}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { TECN }}{\text { 12P }} \frac{\text { COMMENT }}{} \frac{\text { BABR }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ WEIR 90B assumes B^{+}production cross section from LUND.

$\Gamma\left(K^{*}(892)^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$					
VALUE (units 10^{-6})	CL\%	DOCUM	TECN	COMMENT	
<0.40	90	1 LEES	14A BABR	$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
<2.8	90	1 EDWA	02B CLE2	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\Gamma\left(\boldsymbol{K}^{*}(892)^{-} \boldsymbol{\mu}^{+} \mu^{+}\right) / \Gamma_{\text {total }}$ of total lepton number conservation. $\quad \Gamma_{\mathbf{6 1 4}} / \Gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<8.3 \quad 90 \quad 1$ EDWARDS 02B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(K^{*}(892)-e^{+} \mu^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6 1 5}} / \Gamma$

VALUE (units 10^{-6})	CL\%	DOCUMENTID TECN		COMMENT	
<0.30	90	1 LEES 14A BABR		$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
<4.4	90	1 EDWARDS 02B CLE2		$e^{+} e^{-} \rightarrow \Upsilon(4 S)$	
${ }^{1}$ Assumes equ	tion	+ and	$r(4 S)$.		

$\Gamma\left(D^{-} e^{+} e^{+}\right) / \Gamma_{\text {total }}$VALUE	CL\%	DOCUMENT ID		Γ_{616} / Γ		
				TECN	COMMENT	
$<2.6 \times 10^{-6}$	90	1 LEES	14A	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$<\mathbf{2 . 6 \times 1 0}{ }^{-6}$	90	1,2 SEON	11	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
${ }^{2}$ Uses $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$mode and 3-body phase-space hypothesis for the signal decays.
$\Gamma\left(D^{-} e^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
Γ_{617} / Γ
$\frac{\text { VALUE }}{<\mathbf{1 . 8} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { SEON }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<2.1 \times 10^{-6} \quad 90 \quad 1$ LEES $\quad 14 \mathrm{~A}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
${ }^{2}$ Uses $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$mode and 3-body phase-space hypothesis for the signal decays.
$\Gamma\left(D^{-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
Γ_{618} / Γ
$\frac{\text { VALUE }}{<\mathbf{6 . 9} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{AAIJ}} \frac{\text { TECN }}{\text { 12AD LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - . -
$<17 \times 10^{-7} \quad 90 \quad 2$ LEES $\quad 14 \mathrm{~A}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$<1.1 \times 10^{-6} \quad 90 \quad 2,3$ SEON $\quad 11$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses $B^{+} \rightarrow \psi(2 S) K^{+}, \psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$mode for normalization.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
${ }^{3}$ Uses $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$mode and 3-body phase-space hypothesis for the signal decays.
$\Gamma\left(D^{*-} \mu^{+} \mu^{+}\right) / \Gamma_{\text {total }}$
VALUE $\boldsymbol{\mu}^{+}$total CL\% DOCUMENT ID TECN COMMENT $\boldsymbol{\Gamma}_{\mathbf{6 1 9}} / \boldsymbol{\Gamma}$
$\overline{<2.4 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{1}{95} \quad 1 \mathrm{AAIJ} \quad 12 \mathrm{AD}$ LHCB $\frac{1}{p p}$ at 7 TeV
${ }^{1}$ Uses $B^{+} \rightarrow \psi(2 S) K^{+}, \psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$mode for normalization.
$\Gamma\left(D_{s}^{-} \mu^{+} \mu^{+}\right) / /_{\text {total }}$
$\frac{\text { VALUE }}{<\mathbf{5 . 8} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AAIJ }} \frac{\text { COMMENT }}{\text { 12AD LHCB }} \xrightarrow{p p \text { at } 7 \mathrm{TeV}}$
Γ_{620} / Γ
${ }^{1}$ Uses $B^{+} \rightarrow \psi(2 S) K^{+}, \quad \psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$mode for normalization. Obtains neutrino-mass-dependent upper limits in the range $1.5-8.0 \times 10^{-7}$.

${ }^{1}$ Uses $B^{+} \rightarrow \psi(2 S) K^{+}, \psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$mode for normalization. Obtains neutrino-mass-dependent upper limits in the range $0.3-1.5 \times 10^{-6}$.

$\Gamma\left(\Lambda^{0} \mu^{+}\right) / /_{\text {total }}$

${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\Lambda^{0} \mathrm{e}^{+}\right) / \mathrm{F}_{\text {total }}$
$\Gamma_{623 / \Gamma}$
$\frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..11K }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ DEL-AMO-SANCHEZ 11 K reports $<3.2 \times 10^{-8}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.\Lambda^{0} e^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \times 10^{-2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(48.4 \pm 0.6) \%$.

$\mathbf{6} \times \mathbf{1 0}^{\mathbf{- 8}} \quad 90 \quad 1,2$ DEL-AMO-SA.. 11 K BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ DEL-AMO-SANCHEZ 11 K reports $<6.2 \times 10^{-8}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$
$\left.\left.\bar{\Lambda}^{0} \mu^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \times 10^{-2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\Lambda^{0} e^{+}\right) / \Gamma_{\text {total }}$
VALUE CL\% DOCUMENT ID TECN COMMENT ${ }_{\mathbf{6 2 5}} / \boldsymbol{\Gamma}$
$<8 \times \mathbf{1 0}^{\mathbf{- 8}} \quad 90 \quad 1,2$ DEL-AMO-SA..11K BABR $\xrightarrow[e^{+} e^{-} \rightarrow r(4 S)]{ }$ ${ }^{1}$ DEL-AMO-SANCHEZ 11 K reports $<8.1 \times 10^{-8}$ from a measurement of $\left[\Gamma\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}^{0} e^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \times 10^{-2}$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(48.4 \pm 0.6) \%$.

POLARIZATION IN B^{+}DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel $(\|)$ or perpendicular (\perp) to each other with the parameters $\Gamma_{L} / \Gamma, \Gamma_{\perp} / \Gamma$, and the relative phases $\phi_{\|}$and ϕ_{\perp}. See the definitions in the note on "Polarization in B Decays" review in the B^{0} Particle Listings.

Γ_{L} / Γ in $B^{+} \Rightarrow \bar{D}^{* 0} \rho^{+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.892 \pm 0.018 \pm 0.016$	CSORNA	03	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
Γ_{L} / Γ in $B^{+} \rightarrow \bar{D}^{* 0} K^{*+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.86 \pm 0.06 \pm 0.03$	AUBERT	04K	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
Γ_{L} / Γ in $B^{+} \Rightarrow J / \psi K^{*+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.604 \pm 0.015 \pm 0.018$	ITOH	05	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
Γ_{\perp} / Γ in $B^{+} \Rightarrow J / \psi K^{*+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.180 \pm 0.014 \pm 0.010$	ITOH	05	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
Γ_{L} / Γ in $B^{+} \rightarrow \omega K^{*+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.41 \ddagger 0.18 ± 0.05	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
Γ_{L} / Γ in $B^{+} \rightarrow \omega K_{2}^{*}(1430)^{+}$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.56 \pm 0.10 \pm 0.04$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
Γ_{L} / Γ in $B^{+} \rightarrow K^{*+} \bar{K}^{* 0}$				
VALUE	DOCUMENT ID		TECN	COMMENT

$\frac{V A L U E}{0.82+0.15}$ OUR AVERAGE

$1.06 \pm 0.30 \pm 0.14$	1		
GOH	15	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$0.75_{-0.26}^{+0.16} \pm 0.03$	2,3 AUBERT	09 F	BABR
$e^{+} e^{-} \rightarrow r(4 S)$			

$0.75+0.16 \pm 0.03$
${ }^{1}$ Signal significance 2.7 standard deviations.
${ }^{2}$ Signal significance 3.7 standard deviations
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
Γ_{L} / Γ in $B^{+} \rightarrow \phi K^{*}(892)^{+}$
0.50 ± 0.05 OUR AVERAGE
DOCUMENT ID TECN COMMENT
$0.49 \pm 0.05 \pm 0.03 \quad$ AUBERT 07BA BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.52 \pm 0.08 \pm 0.03 \quad$ CHEN 05A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.46 \pm 0.12 \pm 0.03$
AUBERT 03 V BABR Repl. by AUBERT 07ba

Meson Particle Listings
$B^{ \pm}$

$\underset{\text { VALUE }}{\Gamma_{L} / \Gamma \text { in } B^{+} \rightarrow \omega \rho^{+}}$ DOCUMENT ID		TECN COMMENT
$0.90 \pm 0.05 \pm 0.03$	AUBERT ${ }^{\text {09 }}$	BABR $e^{+} e^{-} \rightarrow$ (4S)
- . We do not use the following data for averages, fits, limits, etc. - . -		
$0.82 \pm 0.11 \pm 0.02$	AUBERT,B 06T	BABR Repl. by AUBERT 09н
$0.88{ }_{-0.15}^{+0.12} \pm 0.03$	AUBERT 050	babr Repl. by Aubert, ${ }^{\text {06t }}$
$\Gamma_{L} / \overline{\text { in }}$ in $B^{+} \rightarrow p \bar{p} K^{*}(892)^{+}$		
$0.32 \pm 0.17 \pm 0.09$	CHEN	08C BELL $e^{+} e^{-} \rightarrow r_{(4 S)}$
CP VIOLATION		
${ }^{\text {A }}$ CP ${ }^{\text {is defined as }}$		
$\frac{B\left(B^{-} \rightarrow \bar{f}\right)-B\left(B^{+} \rightarrow f\right)}{B\left(B^{-} \rightarrow \bar{f}\right)+B\left(B^{+} \rightarrow f\right)}$,		

P-violation charge asymmetry of exclusive B^{-}and B^{+}decay.			
$A_{C P}\left(B^{+} \Rightarrow \mathrm{J} / \psi(\mathbf{1 S}) \mathrm{K}^{+}\right)$			
VALUE (Units 10^{-3}) DOC			
1.8土 3.0 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below			
$0.9 \pm 2.7 \pm 0.7$	AAIJ	17AP LHCB	$p p$ at 7, 8 TeV
$5.9 \pm 3.6 \pm 0.7$	abazov	13M D0	$p \bar{p}$ at 1.96 TeV
$7.6 \pm 5.0 \pm 2.2$	SAKAI	10 bell	$e^{+} e^{-} \rightarrow$ r(4S)
$90 \pm 70 \pm 20$	${ }^{1}$ WEI	08 beLL	$e^{+} e^{-} \rightarrow$ r(4S)
$30 \pm 14 \pm$	${ }^{2}$ aUbert	05J babr	$e^{+} e^{-} \rightarrow$ r(4S)
$18 \pm 43 \pm 4$	$3^{\text {bonvicini }}$	00 CLE2	$e^{+} e^{-} \rightarrow Y_{(4 S)}$
- We do not use the following data for averages, fits, limits, etc. - -			
$7.5 \pm 6.1 \pm 3.0$	${ }^{4}$ abazov	080 D0	Repl. by Abazov
$30 \pm 15 \pm 6$	aubert	04P babr	Repl. by Aubert 05.
$-26 \pm 22 \pm 17$	ABE	03b beLL	Repl. by SAKAI 10
$3 \pm 30 \pm 4$	aubert	02F BABR	Repl. by AUBERT 04P
${ }^{1}$ Uses $B^{+} \rightarrow J / \psi K^{+}$, where $J / \psi \rightarrow p \bar{p}$. ${ }^{2}$ The result reported corresponds to $-A_{C P}$. ${ }^{3} \mathrm{~A}+0.3 \%$ correction is applied due to a slightly higher reconstruction efficiency for the			

positive kaons.
${ }^{4}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}$decay.

$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow J / \psi(1 S) \pi^{+}\right)$

VALUE (units 10^{-2})	DOCUMENT ID TECN		COMMENT
1.8 ± 1.2 OUR AVERAG	Error includes scale factor of 1.3.		
$1.91 \pm 0.89 \pm 0.16$	${ }^{1}$ AAIJ	170 LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-4.2 \pm 4.4 \pm 0.9$	ABAZOV	13M D0	$p \bar{p}$ at 1.96 TeV
$12.3 \pm 8.5 \pm 0.4$	AUBERT	04P BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$-2.3 \pm 16.4 \pm 1.5$	ABE	03B BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.5 \pm 2.7 \pm 1.1$	${ }^{2}$ AAIJ	12AC LHCB	Repl. by AAIJ 170
$9 \pm 8 \pm 3$	3 ABAZOV	080 D0	Repl. by ABAZOV 13M
$1 \pm 22 \pm 1$	AUBERT	02F BABR	Repl. by AUBERT 04P
${ }^{1}$ Obtained by using LHCb measurement of $A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(0.09 \pm 0.27 \pm$ $0.07) \times 10^{-2}$ of AAIJ 17AP.			
${ }^{2}$ Uses $A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)=0.001 \pm 0.007$ to extract production asymmetry.			
${ }^{3}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}$decay.			

$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \mathrm{J} / \psi \rho^{+}\right)$
$\frac{V A L U E}{-0.05} \pm 0.05$ OUR AVERAGE
$-0.045{ }_{-0.057}^{+0.056} \pm 0.008$
$-0.11 \pm 0.12 \pm 0.08 \quad$ AUBERT 07AC BABR $e^{+} e^{-} \rightarrow r(4 S)$

See key on page 999

$A_{C P}\left(B^{+} \rightarrow J / \psi K^{*}(892)^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
-0.048 $\pm 0.029 \pm 0.016$	${ }^{1}$ AUBERT	05」 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ The result reported corresponds to $-A_{C P}$.			
$A_{C P}\left(B^{+} \rightarrow \eta_{c} K^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
0.01 ± 0.07 OUR AVERAGE$0.040 \pm 0.034 \pm 0.004$	Error includes scale factor of 2.2.		
	${ }^{1}$ AAIJ	14AF LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-0.16 \pm 0.08 \pm 0.02$	${ }^{1}$ WEI	08 BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.046 \pm 0.057 \pm 0.007$	${ }^{1}$ AAIJ	13au LHCB	Repl. by AAIJ 14AF
${ }^{1}$ Uses $B^{+} \rightarrow \eta_{C} K^{+}$, where $\eta_{C} \rightarrow p \bar{p}$.			
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) \pi^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
0.03 ± 0.06 OUR AVERAGE			
$0.048 \pm 0.090 \pm 0.011$	${ }^{1}$ AAIJ	12AC LHCB	$p p$ at 7 TeV
$0.022 \pm 0.085 \pm 0.016$	BHARDWAJ	08 BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Uses $A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)=0.001 \pm 0.007$ to extract production asymmetry.			
$A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
0.012 ± 0.020 OUR AVERAGE below.	Error includes scale factor of 1.5. See the ideogram		
$0.092 \pm 0.058 \pm 0.004$	1 AAIJ	14aF LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.024 \pm 0.014 \pm 0.008$	${ }^{2}$ AAIJ	12AC LHCB	$p p$ at 7 TeV
$0.052 \pm 0.059 \pm 0.020$	AUBERT	05」 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$-0.042 \pm 0.020 \pm 0.017$	ABE	03B BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.02 \pm 0.091 \pm 0.01$	3 BONVICINI	00 CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.002 \pm 0.123 \pm 0.012 \quad 1,2$	1,2 AAIJ	13AU LHCB	Repl. by AAIJ 14AF
${ }^{1}$ Uses $\psi(2 S) \rightarrow p \bar{p}$ decays.			
${ }^{2}$ Uses $A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)=0.001 \pm 0.007$ to extract production asymmetry.			
${ }^{3} \mathrm{~A}+0.3 \%$ correction is applied due to a slightly higher reconstruction efficiency for the positive kaons.			

$\boldsymbol{A}_{\boldsymbol{C P}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}^{\mathbf{0}} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right)} \begin{aligned} & \left.\text { VALUE (units } 10^{-2}\right) \\ & \mathbf{- \mathbf { 0 . 1 4 } \pm \mathbf { 0 . 1 4 } \pm \mathbf { 0 . 1 4 }} \\ & 1\end{aligned} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABAZOV }} 17 \mathrm{~A}$
$A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)$
$\frac{\text { VALUE }}{-0.007 \pm 0.007 \text { OUR AVERAGE }}$
$-0.006 \pm 0.005 \pm 0.010$
-0.008 ± 0.008

${ }^{1}$ Uses $B^{ \pm} \rightarrow\left[K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right]_{D} h^{ \pm}$mode.
$A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} \pi^{+}\right)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.0080 ± 0.0026 OUR AVERAGE				
$-0.008 \pm 0.003 \pm 0.002$	${ }^{1}$ AAIJ	18A	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$-0.008 \pm 0.006 \pm 0.002$	2 AAIJ	18A	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$-0.0098 \pm 0.0043 \pm 0.0021$	AAIJ	16L	LHCB	$p p$ at $7,8 \mathrm{TeV}$
0.035 ± 0.024	ABE	06	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Uses $D \rightarrow K^{+} K^{-}$decay mod ${ }^{2}$ Uses $D \rightarrow \pi^{+} \pi^{-}$decay mode				

$A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} \pi^{+}\right)$

$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{+} \pi^{-} \pi^{-}\right]_{D} K^{+}\right)$				
Value	DOCUMENT ID		TECN	COMMENT
$0.100 \pm 0.034 \pm 0.018$	AAIJ	16L	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} K^{*}(892){ }^{+}\right)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.02 \pm 0.11 \pm 0.01$	AAIJ	17во	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)$				
VALUE	DOCUMENT ID		TECN	COMMENT
-0.017 ± 0.005 OUR AVERAGE				
$-0.019 \pm 0.005 \pm 0.002$	${ }^{1}$ AAIJ	18A	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$-0.0194 \pm 0.0072 \pm 0.0060$	AAIJ	16L	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.010 \pm 0.026 \pm 0.005$	${ }^{2}$ AAIJ	15w	LHCB	$p p$ at $7,8 \mathrm{TeV}$
0.066 ± 0.036	ABE	06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

Meson Particle Listings
$B^{ \pm}$

$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{+}\right)$

VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 0 7} \pm \mathbf{0 . 3 0}$ OUR AVERAGE	Error includes scale factor	of 1.5.	
$-0.20 \pm 0.27 \pm 0.04$	${ }^{1}$ AAIJ 15w	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.41 \pm 0.30 \pm 0.05$	NAYAK 13	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ Uses $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ for the favored mode, and $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ for the suppressed mode.
$\underset{\text { VALUE }}{\boldsymbol{A}_{\boldsymbol{C P}}}\left(B^{+} \rightarrow\left[K^{+} K^{-} \pi^{0}\right]_{\boldsymbol{D}} K^{+}\right)$

${ }^{1}$ Uses $D \rightarrow K^{+} K^{-} \pi^{0}$ mode.
$\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{\boldsymbol{D}} K^{+}\right)$

Value	DOCUMENT ID		TECN	COMMENT
$0.054 \pm 0.091 \pm 0.011$	${ }^{1}$ AAIJ	15w	LHCB	$p p$ at $7,8 \mathrm{TeV}$

$\underset{\text { VALUE }}{\boldsymbol{A}_{\boldsymbol{C P}}}\left(B^{+} \rightarrow \overline{\left.\boldsymbol{D}^{0} K^{*}(892)^{+}\right)}\right.$
$\frac{V A L U E}{-0.007} \pm \mathbf{0 . 0 1 9}$ OUR AVERAGE

-0.007 ± 0.019 OUR AVERAGE			
$-0.004 \pm 0.023 \pm 0.008$	${ }^{1}$ AAIJ	1780 LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$-0.013 \pm 0.031 \pm 0.009$	${ }^{2}$ AAIJ	17bo LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
${ }^{1}$ Uses $B^{ \pm} \rightarrow\left[K^{ \pm} \pi^{\mp}\right]_{D} K^{*}(892)^{ \pm}$decay mode .			
${ }^{2}$ Uses $B^{ \pm} \rightarrow\left[K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{ \pm}$decay mode .			
$A_{C P}\left(B^{+} \Rightarrow\left[K^{-} \pi^{+}\right]_{\bar{D}} K^{*}(892)^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
-0.75 ± 0.16 OUR AVERAGE			
$-0.81 \pm 0.17 \pm 0.04$	AAIJ	17bo LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$-0.34 \pm 0.43 \pm 0.16$	AUBERT	09AJ BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.22 \pm 0.61 \pm 0.17$	AUBERT,B	05v BABR	Repl. by AUBERT

$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{-} \pi^{+}\right]_{\bar{D}} K^{*}(892)^{+}\right)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.45 \pm 0.21 \pm 0.14$	AAIJ	17BO	LHCB	$p p$ at 7, 8, 13 TeV
$A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+}\right)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$\mathbf{0 . 0 0} \pm 0.09$ OUR AVERAGE				
$0.13 \pm 0.25 \pm 0.02$	AALTONEN	11AJ	CDF	$p \bar{p}$ at 1.96 TeV
$-0.04 \pm 0.11_{-0.01}^{+0.02}$	HORII	11	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.03 \pm 0.17 \pm 0.04$	DEL-AMO-SA	10H	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$-0.02{ }_{-0.16}^{+0.15} \pm 0.04$	HORII	08	BELL	Repl. by HORII 11
$+0.30{ }_{-0.25}^{+0.29} \pm 0.06$	SAIGO	05	BELL	Repl. by HORII 08

VALUE	DOCU	TECN	COMMENT
$-0.403 \pm 0.056 \pm 0.011$	AAIJ	LHCB	$p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.52 \pm 0.15 \pm 0.02$	AAIJ	LHCB	Repl. by AAIJ 16L

$$
\begin{aligned}
& \boldsymbol{A}_{\boldsymbol{A D S}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D} \boldsymbol{\pi}^{+}\right) \\
& \quad \boldsymbol{A}_{A D S}\left(B^{+} \rightarrow D \pi^{+}\right)=\frac{\left(R_{\pi}^{-}-R_{\pi}^{+}\right)}{\left(R_{\pi}^{-}+R_{\pi}^{+}\right)} \text {where } \\
& R_{\pi}^{-}=\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} \pi^{-}\right) / \Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{-}\right) \text {and } \\
& R_{\pi}^{+}=\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+}\right) / \Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} \pi^{+}\right)
\end{aligned}
$$

$\frac{\text { VALUE }}{\mathbf{0 . 1 0 0} \pm \mathbf{0 . 0 3 1} \pm \mathbf{0 . 0 0 9}} \quad \frac{\text { DOCUMENTID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7.8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.143 \pm 0.062 \pm 0.011$
AAIJ
12m LHCB Repl. by AAIJ 16L
$A_{A D S}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+} \pi^{-} \pi^{+}\right)$

$\frac{\text { VALUE }}{-0.37 \pm 0.08 ~ O U R ~ A V E R A G E ~}$
$-0.38 \pm 0.11 \pm 0.01$
$-0.36 \pm 0.11 \pm 0.03$
- - We do not use the follo
$-0.22 \pm 0.11 \pm 0.01$
$-0.39 \pm 0.16 \pm 0.03$
$-0.20 \pm 0.15 \pm 0.01$
$-0.49 \pm 0.31 \pm 0.07$
$-0.52 \pm 0.24 \pm 0.01$
$A_{C P}\left(B^{+} \Rightarrow \eta K^{*}(892)^{+}\right.$
value
0.02 ± 0.06 OUR AVERAGE

$0.03 \pm 0.10 \pm 0.01$ $0.01 \pm 0.08 \pm 0.02$

DOCUMENT ID TECN COMMENT

HOI 12 BELL $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$ AUBERT 09AV BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$ wing data for averages, fits, limits, etc. • - -
AUBERT 07aE BABR Repl. by AUBERT 09AV CHANG 07B BELL Repl. by HOI 12 AUBERT,B 05k BABR Repl. by AUBERT 07AE CHANG 05A BELL Repl. by CHANG 07B AUBERT 04 H BABR Repl. by AUBERT,B 05 K
\qquad
WANG 07B BELL $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$ AUBERT,B 06 H BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

- We do not use the following data for averages, fits, limits, etc. • • $0.13 \pm 0.14 \pm 0.02$ AUBERT,B 04D BABR Repl. by AUBERT,B 06H
$A_{C P}\left(B^{+} \rightarrow \eta K_{0}^{*}(1430)^{+}\right)$
$V A L U E$
$0.05 \pm 0.13 \pm 0.02$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \Rightarrow \eta K_{2}^{*}(1430)^{+}\right)$
$V A L U E$
$\frac{V A L U E}{-0.45 \pm 0.30 \pm 0.02}$
DOCUMENT ID TECN COMMENT
AUBERT,B 06 H BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\underset{\text { VALUE }}{\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \omega K^{+}\right)}$
$\frac{V A L U E}{-0.02 \pm 0.04 \text { OUR AVERAGE }}$

| $-0.03 \pm 0.04 \pm 0.01$ | CHOBANOVA | 14 | BELL | $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $-0.01 \pm 0.07 \pm 0.01$ | AUBERT | 07AE BABR | $e^{+} e^{-} \rightarrow r(4 S)$ | |

- AUBERT 07AE BABR $e^{+} e \rightarrow r(4 S)$
$0.05 \pm 0.09 \pm 0.01$ AUBERT,B 06E BABR Repl. by AUBERT
$0.05_{-0.07}^{+0.08} \pm 0.01$ JEN 06 BELL Repl. by CHOBANOVA 14
$-0.09 \pm 0.17 \pm 0.01 \quad$ AUBERT 04H BABR Repl. by AUBERT,B 06E
$0.06_{-0.18}^{+0.21} \pm 0.01 \quad 1$ WANG 04A BELL Repl. by JEN 06 $-0.21 \pm 0.28 \pm 0.03 \quad 2$ LU 02 BELL Repl. by WANG 04A
${ }^{1}$ Corresponds to 90% CL interval $0.15<A_{C P}<0.90$
${ }^{2}$ Corresponds to 90% confidence range $-0.70<A_{C P}<+0.38$.

$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \omega K^{*+}\right)$					
Value	DOCUMENT ID		TECN	COMMENT	
$+0.29 \pm 0.35 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{+} \Longrightarrow \omega(K \pi)_{0}^{*+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$=0.10 \pm 0.09 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{+} \Rightarrow \omega K_{2}^{*}(1430)^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.14 \pm 0.15 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$\mathbf{- 0 . 0 4} \pm \mathbf{0 . 0 9}$ OUR AVERAGE Error includes scale factor of 2.1					
$-0.12 \pm 0.21{ }_{-0.14}^{+0.08}$	${ }^{1}$ LEES	17G	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$0.032 \pm 0.052_{-0.013}^{+0.016}$	AUBERT	08AI	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$-0.149 \pm 0.064 \pm 0.022$	GARMASH	06	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.068 \pm 0.078_{-0.067}^{+0.070} \quad$ AUBERT,B 05 N BABR Repl. by AUBERT 08AI
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \pi^{0}\right)$
$-\mathbf{0 . 3 9} \pm \mathbf{0 . 2 1}$ OUR AVERAGE DOCUMENT ID TECN COMMENT

$-0.52 \pm 0.14_{-0.05}^{+0.06}$	1 LEES	17 G	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.06 \pm 0.24 \pm 0.04$	LEES	$11 । ~ B A B R ~$	$e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. • . -
$0.04 \pm 0.29 \pm 0.05 \quad$ AUBERT $05 \times$ BABR Repl. by LEES 11।
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.
$\underset{\text { VALUE }}{\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}\right)}$
0.027 ± 0.008 OUR AVERAGE
$0.025 \pm 0.004 \pm 0.008$
$0.028 \pm 0.020 \pm 0.023$
$0.049 \pm 0.026 \pm 0.020 \quad$ AUBERT 08AI BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages fits limits, etc $e^{+} \operatorname{lin}^{-} r(4 S)$
$0.032 \pm 0.008 \pm 0.008$ AAIJ 13AZ LHCB Repl. by AAIJ 14BO $\begin{array}{cll}-0.013 \pm 0.037 \pm 0.011 & \text { AUBERT,B } & 05 \mathrm{~N} \\ 0.01 \pm 0.07 \pm 0.03 & \text { AUBERT } & 03 \mathrm{M} \\ & \text { BABR Repl. by AUBERT 08Al }\end{array}$ ${ }^{1}$ AAIJ 14BO reports also $C P$ asymmetries in restricted regions of phase space.

$A_{C P}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right)$
$\frac{V A L U E}{-0.68 \mathbf{- 0}_{0}^{+0.17} \text { OUR AVERAGE }}$
$-0.85 \pm 0.22_{-0.13}^{+0.26}$
AUBERT 08AI BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.59 \pm 0.22 \pm 0.036$
GARMASH 06 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$A_{C P}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right)$
$\frac{\text { VALUE }}{0.28 \pm 0.26 \pm 0.15}$
DOCUMENT ID TECN COMMENT
AUBERT 08AI BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow f_{2}^{\prime}(1525)^{0} K^{+}\right)$
VALUE DOCUMENT ID TECN COMMENT
-0.08 ± 0.05 OUR AVERAGE

$0.18 \pm 0.18 \pm 0.04$	1 LEES		BABR	$e^{+} e^{-}$	$r(4 S)$
$-0.106 \pm 0.050_{-0.015}^{+0.036}$	AUBERT	08AI	BABR	e	$r(4 S)$
$-0.077 \pm 0.065_{-0.026}^{+0.046}$	GARMASH	06	BELL	e^{-}	$\gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$0.14 \pm 0.10 \pm 0.04$	${ }^{2}$ LEES		BABR	$e^{+} e^{-}$	$r(4 S)$
$-0.31 \pm 0.25 \pm 0.08$	${ }^{3}$ AUBERT		BABR	Repl. by	LEES 12
$0.088 \pm 0.095{ }_{-0.056}^{+0.097}$	AUBERT,B	05N	BABR	Repl. by	AUBER
${ }^{1}$ Measured in $B^{+} \rightarrow f_{0} K^{+}$with $f_{0} \rightarrow \pi^{0} \pi^{0}$ decay. ${ }^{2}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay assuming $A_{C P}\left(B^{+} \rightarrow f_{2}^{\prime}(1525)^{0} K^{+}\right)=$ $A_{C P}\left(B^{+} \rightarrow f_{0}(1500)^{0} K^{+}\right)=A_{C P}\left(B^{+} \rightarrow f_{0}(1710)^{0} K^{+}\right)$					
${ }^{3}$ Measured in the $B^{+} \rightarrow$	$K^{-} K^{+}$decay.				
$A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.37 ± 0.10 OUR AVERAGE					
$0.44 \pm 0.10_{-0.14}^{+0.06}$	AUBERT		BABR	$e^{+} e^{-}$	$r(4 S)$
$0.30 \pm 0.11_{-0.04}^{+0.11}$	GARMASH	06	BELL	$e^{+} e^{-}$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.32 \pm 0.13_{-0.08}^{+0.10} \quad$ AUBERT,B 05 N BABR Repl. by AUBERT 08AI
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{0} \pi^{+} \pi^{0}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 0 7} \pm \mathbf{0 . 0 5} \pm \mathbf{0 . 0 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{17 \mathrm{G}}{} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.
$A_{C P}\left(B^{+} \rightarrow K_{0}^{*}(1430)^{0} \pi^{+}\right)$
$\frac{V A L U E}{0.061 \pm 0.032 \text { OUR AVERAGE }}$

0.14 ± 0.10	1 LEES	17 G BABR
-0.06	$e^{+} e^{-} \rightarrow r(4 S)$	
$0.032 \pm 0.035_{-0.028}^{+0.034}$	AUBERT	08 AI BABR

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.064 \pm 0.032_{-0.026}^{+0.023} \quad$ AUBERT,B 05 N BABR Repl. by AUBERT 08AI
${ }^{1}$ Obtains the result from a Dalitz analysis of $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$ decays. The first error is statistical, the second combines all the systematic uncertainties reported in the paper, including signal modelling.

Meson Particle Listings
$B^{ \pm}$

$\underset{\substack{\text { ValuE }}}{A_{C P}\left(B^{+} \rightarrow K^{*+} \pi^{+} \pi^{-}\right)}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 7} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 0 4}} \frac{\text { DOCUMENT ID }}{\text { AUBERT,B } \quad 06 U} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \quad r(4 S)}$
$\mathrm{A}_{C P}\left(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{0 . 3 1} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 0 3} \quad$ DEL-AMO-SA..11D BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • •
$0.20_{-0.29}^{+0.32} \pm 0.04 \quad$ AUBERT $03 v$ BABR Repl. by DEL-AMO-SANCHEZ 11D
$A_{C P}\left(B^{+} \rightarrow K^{*}(892)+f_{0}(980)\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{- 0 . 1 5 \pm 0 . 1 2 \pm \mathbf { 0 . 0 3 }}$ DEL-AMO-SA..11D BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • -
$-0.34 \pm 0.21 \pm 0.03$ AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 11D

$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)$	
VALUE	DOCUMENT ID TECN COMMENT
-0.122 ± 0.021 OUR AVERAGE	
$-0.170 \pm 0.073 \pm 0.017$	${ }^{1} \mathrm{HSU} \quad 17 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$
$-0.123 \pm 0.017 \pm 0.014$	2 AAIJ 14B0 LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.00 \pm 0.10 \pm 0.03$	AUBERT 07BB BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -	
$-0.141 \pm 0.040 \pm 0.019$	${ }^{3}$ AAIJ 14 LHCB Repl. by AAIJ 14BO
${ }^{1}$ HSU 17 provides also measurement as a function of $K^{+} K^{-}$invariant mass. ${ }^{2}$ AAIJ 14BO reports also $C P$ asymmetries in restricted regions of phase space.	
${ }^{3}$ AAIJ 14 reports $A_{C P}\left(B^{+}\right.$ Dalitz plot region of m^{2} asymmetry of the $B^{ \pm} \rightarrow \mathrm{J} /$	$<1.5 \mathrm{GeV}^{2} / \mathrm{C}^{4}$. The third uncertainty is due to the $C P$ $K^{ \pm}$reference mode uncertainty.

$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right.$nonresonant)

$A_{C P}\left(B^{+} \Rightarrow K^{+} \bar{K}_{0}^{*}(1430)^{0}\right)$

$A_{C P}\left(B^{+} \rightarrow \phi \pi^{+}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 0 9 8} \pm 0.436 \pm 0.266$	${ }^{1}$ AAIJ	19AL LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses amplitude ana	$\rightarrow \pi^{ \pm} K^{+} K^{-}$	decays.	

${ }^{1}$ Uses amplitude analysis of $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$decays in the $\pi \pi-K K$ rescattering mass region of $0.95<\mathrm{m}\left(K^{+} K^{-}\right)<1.42 \mathrm{GeV} / \mathrm{c}^{2}$.
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)$
$-\mathbf{0 . 0 3 3} \pm \mathbf{0 . 0 0 8}$ OUR AVERAGE
$-0.036 \pm 0.004+0.007$

- - We do not use the following data for averages, fits, limits, etc. - - -

$-0.043 \pm 0.009 \pm 0.008$	AAIJ	13AZ LHCB Repl. by AAIJ 14BO
$-0.017 \pm 0.026 \pm 0.015$	AUBERT	060 BABR Repl. by LEES 12O
$0.02 \pm 0.07 \pm 0.03$	AUBERT	03 m BABR Repl. by AUBERT 060

${ }^{1}$ AAIJ 14BO reports also $C P$ asymmetries in restricted regions of phase space.
${ }^{2}$ All intermediate charmonium and charm resonances are removed, except of $\chi_{C 0}$.
$\boldsymbol{A}_{C P}\left(B^{+} \Rightarrow \phi K^{+}\right)$
0.024 ± 0.028 OUR AVERAGE
DOCUMENT ID TECN COMMENT
0.024 $\pm \mathbf{0 . 0 2 8}$ OUR AVERAGE Error includes scale factor of 2.3.

$0.017 \pm 0.011 \pm 0.006$	1 AAIJ	150 LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.128 \pm 0.044 \pm 0.013$	LEES	120 BABR $e^{+} e^{-\rightarrow r(4 S)}$
$-0.07 \pm 0.17 \pm 0.03$	ACOSTA	05 J CDF $p \bar{p}$ at 1.96 TeV
0.02	2 CHEN	03 BELL
$+e^{-} r(4 S)$		

03B BELL $e+e \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - •

$\underset{V A L U E}{\boldsymbol{A}_{C P}\left(B^{+} \rightarrow X_{0}(1550) K^{+}\right)}$
$\frac{V A L U E}{\mathbf{- 0 . 0 4} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 0 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{060}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Measured in the $B^{+} \rightarrow K^{+} K^{-} K^{+}$decay.
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow K^{*+} K^{+} K^{-}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 1 1} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 3}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT,B } \quad 06 \mathrm{U}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
$A_{C P}\left(B^{+} \rightarrow \phi K^{*}(892)^{+}\right)$
$\stackrel{V A L U E}{=0.01} \pm 0.08$ OUR AVERAGE
$0.00 \pm 0.09 \pm 0.04$
$-0.02 \pm 0.14 \pm 0.03$
\bullet We do not use the follo
$0.16 \pm 0.17 \pm 0.03$
$-0.13 \pm 0.29{ }_{-0.11}^{+0.08}$
$-0.43_{-0.30}^{+0.36} \pm 0.06$
${ }^{1}$ Corresponds to 90% confid
${ }^{2}$ Corresponds to 90% confi
${ }^{3}$ Corresponds to 90% confi
$\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\phi}(\boldsymbol{K} \boldsymbol{\pi})_{\mathbf{0}}^{*+}\right)$
$\frac{V A L U E}{0.04 \pm 0.15 \pm 0.04}$
$A_{C P}\left(B^{+} \rightarrow \phi K_{1}(1270)^{+}\right)$
$\frac{V A L U E}{0.15 \pm 0.19 \pm 0.05}$
$A_{C P}\left(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}\right)$
$\frac{V A L U E}{-0.23 \pm 0.19 \pm 0.06}$
$A_{C P}\left(B^{+} \Rightarrow K^{+} \phi \phi\right)$
$\frac{V A L U E}{-0.10 \pm 0.08 \pm 0.02}$
$-\mathbf{0 . 1 0} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 2}$
${ }^{1} m_{\phi \phi}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$.
$A_{C P}\left(B^{+} \rightarrow K^{+}[\phi \phi]_{c}\right)$

${ }^{1} m_{\phi \phi}$ is consistent with η_{C} mass $[2.94,3.02] \mathrm{GeV} / \mathrm{c}^{2}$.
$A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \gamma\right)$
$\mathbf{0 . 0 1 4} \pm \mathbf{0 . 0 1 8}$ OUR AVERAGE
$0.011 \pm 0.023 \pm 0.003$
$0.018 \pm 0.028 \pm 0.007$
\qquad
1 HORIGUCHI 17 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.4 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.6 \pm 0.6) \%$.
$A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 0 2 7 5} \mathbf{\pm 0 . 0 1 8 4} \mathbf{\pm 0 . 0 0 3 2}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { WATANUKI } 19} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Using a sum-of-exclusive technique with $m_{X_{S}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
$A_{C P}\left(B^{+} \rightarrow \eta K^{+} \gamma\right)$

$=\mathbf{0 . 1 2} \pm 0.07$ OUR AVERAGE

$-0.09 \pm 0.10 \pm 0.01$
$-0.16 \pm 0.09 \pm 0.06$

- - We do not use the following
${ }^{1} m_{\eta K}<3.25 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2} m_{\eta K}<2.4 \mathrm{GeV} / \mathrm{c}^{2}$
$A_{C P}\left(B^{+} \rightarrow \phi K^{+} \gamma\right)$

$-0.26 \pm 0.14 \pm 0.05 \quad$ AUBERT \quad 07Q BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \rightarrow \rho^{+} \gamma\right)$
$\frac{V A L U E}{-0.11 \pm 0.32 \pm 0.09}$
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$
$\frac{V A L U E}{0.03} \pm 0.04$ OUR AVERAGE

$0.025 \pm 0.043 \pm 0.007$	DUH	13	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$0.03 \pm 0.08 \pm 0.01$	AUBERT	07BC	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.07 \pm 0.06 \pm 0.01$	LIN	08	BELL	Repl. by DUH 13
$-0.01 \pm 0.10 \pm 0.02$	${ }^{1}$ AUBERT	05L	BABR	Repl. by AUBERT 07BC
$0.00 \pm 0.10 \pm 0.02$	${ }^{2} \mathrm{CHAO}$	05A	BELL	Repl. by CHAO 04B
$-0.02 \pm 0.10 \pm 0.01$	${ }^{3} \mathrm{CHAO}$	04B	BELL	Repl. by LIN 08
$-0.03{ }_{-0.17}^{+0.18} \pm 0.02$	${ }^{4}$ AUBERT	03L	BABR	Repl. by AUBERT 05L
$0.30 \pm 0.30{ }_{-0.06}^{+0.06}$	${ }^{5}$ CASEY	02	BELL	Repl. by CHAO 04B

${ }^{1}$ Corresponds to a 90% CL interval of $-0.19<A_{C P}<0.21$.
${ }^{2}$ Corresponds to a 90% CL interval of $-0.17<A_{C P}<0.16$.
${ }^{3}$ This corresponds to $90 \% \mathrm{CL}$ interval of $-0.18<A_{C P}<0.14$.
${ }^{4}$ Corresponds to 90% confidence range $-0.32<A_{C P}<0.27$.
${ }^{5}$ Corresponds to 90% confidence range $-0.23<A_{C P}<+0.86$.
$-0.09 \pm 0.12 \pm 0.01 \quad 1$ AUBERT,B 06m BABR Repl. by AUBERT 09

DOCUMENT ID TECN COMMENT

${ }^{1}$ AUBERT 09 BABR $e^{+} e^{-} \rightarrow r(4 S)$
2 NISHIDA 05 BELL $e^{+} e^{-} \rightarrow r(4 S)$

DOCUMENT ID TECN COMMENT
TANIGUCHI 08 BELL $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

DOCUMENT ID TECN COMMENT
DUH 13 BELL $e^{+} e^{-} \rightarrow \quad r(4 S)$
\quad O7BC BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
LIN 08 BELL Repl. by DUH 13
2 CHAO 05L BABR Repl. by AUBERT 07BC
${ }^{3}$ CHAO 04B BELL Repl by LIN 08
${ }^{4}$ AUBERT 03L BABR Repl. by AUBERT 05L
${ }^{5}$ CASEY 02 BELL Repl. by CHAO 04B

Meson Particle Listings
$B^{ \pm}$

$A_{C P}\left(B^{+} \rightarrow \omega \pi^{+}\right)$			
VALUE	DOCUMENT ID TECN		COMMENT
-0.04 ± 0.05 OUR AVERAGE			
$-0.048 \pm 0.065 \pm 0.038$	${ }^{1}$ AAIJ	20A LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-0.02 \pm 0.08 \pm 0.01$	AUBERT	07ae BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.02 \pm 0.09 \pm 0.01$	JEN	06 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
-0.34 ± 0.25	$2{ }^{2}$ CHEN	00 CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.01 \pm 0.10 \pm 0.01$	AUBERT,B	06E BABR	Repl. by AUBERT 07aE
$0.03 \pm 0.16 \pm 0.01$	AUBERT	04H BABR	Repl. by AUBERT,B 06E
$0.50{ }_{-0.20}^{+0.23} \pm 0.02$	${ }^{3}$ WANG	04A BELL	Repl. by JEN 06
$-0.01 \underset{-0.31}{+0.29} \pm 0.03$	${ }^{4}$ AUBERT	02E BABR	Repl. by AUBERT 04H

${ }^{1}$ This result is obtained with an amplitude analysis of $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays, using the isobar model within the mass range $1.0<\mathrm{m}\left(\pi^{+} \pi^{-}\right)<1.5 \mathrm{GeV}$ to describe the $\pi^{+} \pi^{-} S$-wave contribution.
${ }^{2}$ Corresponds to 90% confidence range $-0.75<A_{C P}<0.07$.
${ }^{3}$ Corresponds to 90% CL interval $-0.25<A_{C P}<0.41$
${ }^{4}$ Corresponds to 90% confidence range $-0.50<A_{C P}<0.46$.
$\underset{\substack{V A L U E}}{\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \Rightarrow \boldsymbol{\omega} \boldsymbol{\rho}^{+}\right)}$
DOCUMENT ID TECN COMMENT \qquad
$=\mathbf{0 . 2 0} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 2} \quad$ AUBERT 09 H BABR $e^{+} e^{-} \rightarrow \boldsymbol{r}(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.04 \pm 0.18 \pm 0.02 \quad$ AUBERT,B 06T BABR Repl. by AUBERT 09H $0.05 \pm 0.26 \pm 0.02 \quad$ AUBERT 050 BABR Repl. by AUBERT, B 06T
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \eta \pi^{+}\right)$
$\frac{V A L U E}{-0.14 \pm 0.07 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$=0.14 \pm \mathbf{0 . 0 7}$ OUR AVERAGE Error includes scale factor of 1.4.
$-0.19 \pm 0.06 \pm 0.01 \quad \mathrm{HOI} \quad 12 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$
$-0.03 \pm 0.09 \pm 0.03 \quad$ AUBERT 09 AV BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • • -
$-0.08 \pm 0.10 \pm 0.01$ AUBERT 07AE BABR Repl. by AUBERT 09AV
$-0.23 \pm 0.09 \pm 0.02$ CHANG 07B BELL Repl. by HOI 12
$-0.13 \pm 0.12 \pm 0.01$ AUBERT,B 05k BABR Repl. by AUBERT 07AE $0.07 \pm 0.15 \pm 0.03$ CHANG 05A BELL Repl. by CHANG 07B $-0.44 \pm 0.18 \pm 0.01$ AUBERT 04H BABR Repl. by AUBERT,B 05K
$\underset{\text { VALUE }}{\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \rightarrow \boldsymbol{\eta} \rho^{+}\right)}$ $\mathbf{0 . 1 1} \pm \mathbf{0 . 1 1}$ OUR AVERAGE $0.13 \pm 0.11 \pm 0.02$ $-0.04+0.32 \pm 0.01$
\qquad TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • $0.02 \pm 0.18 \pm 0.02$ AUBERT,B 05K BABR Repl. by AUBERT 08AH
$\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \boldsymbol{\eta}^{\prime} \pi^{+}\right)$
$\frac{V A L U E}{0.06 \pm \mathbf{0 . 1 6} \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$0.03 \pm 0.17 \pm 0.02$
AUBERT $\quad 09 \mathrm{AV}$ BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
$0.20_{-0.36}^{+0.37} \pm 0.04 \quad$ SCHUEMANN 06 BELL $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.21 \pm 0.17 \pm 0.01$ AUBERT 07AE BABR Repl. by AUBERT 09AV $0.14 \pm 0.16 \pm 0.01 \quad$ AUBERT,B 05K BABR Repl. by AUBERT 07AE
$\underset{V A L U E}{\boldsymbol{A}_{C P}\left(B^{+} \rightarrow \boldsymbol{\eta}^{\prime} \rho^{+}\right)}$

$0.26 \pm 0.17 \pm 0.02$

DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - $0.04 \pm 0.28 \pm 0.02 \quad 1$ AUBERT 07E BABR Repl. by DEL-AMO-
${ }^{1}$ Reports $A_{C P}$ with the opposite sign convention.
$A_{C P}\left(B^{+} \rightarrow b_{1}^{0} \pi^{+}\right)$

VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.05 \pm 0.16 \pm 0.02$	AUBERT	07BI	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\boldsymbol{A}_{C P P}\left(B^{+} \rightarrow p \bar{p} \pi^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	

$\frac{V A L U E}{\mathbf{0 . 0 0} \pm \mathbf{0 . 0 4} \text { OUR AVERAGE }}$

$-0.02 \pm 0.05 \pm 0.02$
DOCUMENT ID TECN COMMENT
${ }^{1}$ WEI 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$ AUBERT 07AV BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
\bullet - We do not use the following data for averages, fits, limits, etc. • •

[^121]| $\boldsymbol{A}_{C P}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)$ | |
| :---: | :---: |
| Value | DOCUMENT ID TECN COMMENT |
| 0.00 ± 0.04 OUR AVERAGE Error includes scale factor of 2.2. | |
| $0.021 \pm 0.020 \pm 0.004$ | ${ }^{1}$ AAIJ 14aF LHCB $p p$ at $7,8 \mathrm{TeV}$ |
| $-0.17 \pm 0.10 \pm 0.02$ | 1 WEI 08 BELL $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$ |
| $-0.16{ }_{-0.08}^{+0.07} \pm 0.04$ | ${ }^{1}$ AUBERT, B 05L BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$ |
| - - We do not use the following data for averages, fits, limits, etc. - - | |
| $-0.047 \pm 0.036 \pm 0.007$ | ${ }^{1}$ AAIJ 13 AU LHCB Repl. by AAIJ 14AF |
| $-0.05 \pm 0.11 \pm 0.01$ | WANG 04 BELL Repl. by WEI 08 |
| ${ }^{1}$ Requires $m_{p \bar{p}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$. | |
| $\boldsymbol{A}_{C P}\left(B^{+} \Rightarrow p \bar{p} K^{*}(892)^{+}\right)$ | |
| VALUE | DOCUMENT ID TECN COMMENT |
| $\mathbf{0 . 2 1} \pm \mathbf{0 . 1 6}$ OUR AVERAGE Error includes scale factor of 1.4. | |
| $-0.01 \pm 0.19 \pm 0.02$ | CHEN 08C BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$ |
| $+0.32 \pm 0.13 \pm 0.05$ | AUBERT 07AV BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$ |
| $A_{C P}\left(B^{+} \Rightarrow p \bar{\Lambda} \gamma\right)$ | |
| VALUE | DOCUMENT ID TECN COMMENT |
| +0.17 $\pm 0.16 \pm 0.05$ | WANG 07C BELL $e^{+} e^{-} \rightarrow r(4 S)$ |
| $\boldsymbol{A}_{C P}\left(B^{+} \rightarrow p \bar{\Lambda} \pi^{0}\right)$ | |
| VALUE | DOCUMENT ID TECN COMMENT |
| $+0.01 \pm 0.17 \pm 0.04$ | WANG 07C BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$ |
| $A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)$ | |
| VALUE | DOCUMENT ID TECN COMMENT |
| -0.02 ± 0.08 OUR AVERAGE | |
| $-0.03 \pm 0.14 \pm 0.01$ | ${ }^{1}$ LEES $\quad 12 \mathrm{~S}$ BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$ |
| $-0.18 \pm 0.18 \pm 0.01$ | AUBERT 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$ |
| $+0.04 \pm 0.10 \pm 0.02$ | WEI 09A BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$ |
| \bullet - We do not use the following data for averages, fits, limits, etc. - - | |
| $-0.07 \pm 0.22 \pm 0.02$ | AUBERT,B 06J BABR Repl. by AUBERT 09T |
| ${ }^{1}$ Measured in the union of $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. LEES 12 s reports also individual measurements $A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)=0.02 \pm$ 0.18 ± 0.01 for $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)=$ $-0.06_{-0.21}^{+0.22} \pm 0.01$ for $q^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. | |

$\boldsymbol{A}_{C P}\left(B^{+} \Rightarrow K^{+} e^{+} e^{-}\right)$

$\frac{V A L U E}{+\mathbf{0 . 1 4} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 0 3}}$
$\underset{V A L U E}{\boldsymbol{A}_{C P}\left(B^{+} \Rightarrow K^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}$ 0.011 ± 0.017 OUR AVERAGE $0.012 \pm 0.017 \pm 0.001$ DOCUMENT ID TECN COMMENT

AAIJ 14an LHCB $p p$ at $7,8 \mathrm{TeV}$
$-0.05 \pm 0.13 \pm 0.03$
WEI 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • $0.000 \pm 0.033 \pm 0.009$ AAIJ 13BN LHCB Repl. by AAIJ 14AN
$\boldsymbol{A}_{C P}\left(B^{+} \Rightarrow \pi^{+} \mu^{+} \mu^{-}\right)$
$\frac{V A L U E}{-\mathbf{0 . 1 1} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 0 1}}$
DOCUMENT ID TECN COMMENT
AAIJ 15AR LHCB pp at $7,8 \mathrm{TeV}$
$\underset{\text { VALUE }}{\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)}$
$-\mathbf{0 . 0 9} \pm 0.14$ OUR AVERAGE $0.01_{-0.24}^{+0.26} \pm 0.02$

DOCUMENT ID TECN COMMENT
$-0.13_{-0.16}^{+0.17} \pm 0.01$

- W
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.03 \pm 0.23 \pm 0.03$ AUBERT,B 06J BABR Repl. by AUBERT 09T
$A_{C P}\left(B^{+} \rightarrow K^{*} e^{+} e^{-}\right)$
$-0.14 \underset{=0.22}{+0.23} \pm 0.02$
DOCUMENT ID TECN COMMENT
$\underset{\substack{V A L U E}}{\boldsymbol{A}_{\boldsymbol{C P}}\left(B^{+} \Rightarrow \boldsymbol{K}^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}$
$\mathbf{- 0 . 1 2} \mathbf{\pm 0 . 2 4} \mathbf{\pm 0 . 0 2} \quad \frac{\text { DOCUMENT ID }}{\text { WEI }} \frac{\text { 09A }}{} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

CP VIOLATION PARAMETERS IN $B^{+} \rightarrow D K^{+}$AND SIMILAR DECAYS

The parameters $r_{B^{+}}$and $\delta_{B^{+}}$are the magnitude ratio and strong phase difference between the amplitudes of $\mathrm{A}\left(B^{+} \rightarrow \overline{\left.D^{(}\right) 0} K^{(*)+}\right)$ and $\mathrm{A}\left(B^{-} \rightarrow D^{(*) 0} K^{(*)-}\right)$. The measured observables are defined as $x_{ \pm}$ $=r_{B^{+}} \cos \left(\delta_{B^{+}} \pm \gamma\right)$ and $y_{ \pm}=r_{B^{+}} \sin \left(\delta_{B^{+}} \pm \gamma\right)$, and can be used to measure the CKM angle γ.
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from combinations of their results on $B^{+} \rightarrow D K^{+}$ and related processes.
γ
For angle $\gamma\left(\phi_{3}\right)$ of the CKM unitarity triangle, see the review on "CP Violation" in the Reviews section.
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). $\operatorname{VALUE}\left({ }^{\circ}\right)$

CL\% DOCUMENTID TECN COMMENT

71.1 ${ }_{-}^{+} \mathbf{4 . 6}_{5.3}$ OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -
$5.7_{-}^{+10.2} \pm 6.7$
${ }^{1}$ RESMI
19 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$44 \begin{array}{r}-16 \\ +43 \\ -38\end{array}$
$77.3_{-14.9}^{+15.1} \pm 5.9$
$68 \pm 14 \pm 5$
7 to 173
95
$78.4_{-11.6}^{+10.8} \pm 9.6$
162 ± 56
$76 \underset{-23}{+22} \pm 7.1$
$53 \begin{array}{r}+15 \\ -18\end{array} \pm 10$
$\begin{array}{lll}70 & \pm 31 & +18 \\ -15\end{array}$
$\begin{array}{ll}77 & +17 \\ -19\end{array} \pm 17$

18ad LHCB $p p$ at 13 TeV
18 u LHCB $p p$ at $7,8 \mathrm{TeV}$
18 z LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{5}$ AAIJ 16AA LHCB Repl. by AAIJ 16z
${ }^{6}$ AAIJ 16 AQ LHCB $p p$ at $7,8 \mathrm{TeV}$
$\begin{aligned} 7,8 \text { AAIJ } & 16 z \text { LHCB } \\ \text { AAIJ } & 15 p \text { at } 7,8 \mathrm{TeV} \\ & \end{aligned}$
$\begin{aligned} 7,8 \text { AAIJ } & 16 z \text { LHCB } \\ \text { AAIJ } & 15 p \text { at } 7,8 \mathrm{TeV} \\ & \end{aligned}$
9,10 AAIJ 15 K LHCB $p p$ at $7,8 \mathrm{TeV}$
11 AAIJ 14ba LHCB $p p$ at $7,8 \mathrm{TeV}$
12 AAIJ 14be LHCB Repl. by AAIJ 14BA
13 AAIJ 14BF LHCB Repl. by AAIJ 18 u
14 AAIJ 13 AK LHCB $p p$ at 7 TeV
15 LEES $\quad 13$ B BABR $e^{+} e^{-} \rightarrow r(4 S)$
16,17 AAIJ 12AQ LHCB Repl. by AAIJ 13AK
2 AAIJ
${ }^{3}$ AAIJ
${ }^{4}$ AAIJ

17,18 AIHARA $\quad 12$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
19 DEL-AMO-SA..10F BABR Repl. by LEES 13B
20 DEL-AMO-SA..10G BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
21 POLUEKTOV 10 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
22 AUBERT 09R BABR $e^{+} e^{-} \rightarrow r(4 S)$
23 AUBERT 08AL BABR Repl. by DEL-AMO-
24 POLUEKTOV 06 BELL Repl. by POLUEKTOV 10
25 AUBERT,B $05 Y$ BABR Repl. by AUBERT 08AL
26 POLUEKTOV 04 BELL Repl. by POLUEKTOV 06
${ }^{1}$ Uses binned analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ from $B^{ \pm} \rightarrow D K^{ \pm}$modes over the phase space. Strong phase measurements from RESMI 18 analysis of CLEO-c data of the D decay over the phase space binning are used as input.
${ }^{2}$ Uses binned Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $K_{S}^{0} K^{+} K^{-}$from $B^{ \pm} \rightarrow$ $D K^{ \pm}$modes. Strong phase measurements from CLEO-c of the D decay over the Dalitz plot are used as input.
${ }^{3}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ 0.030 ± 0.033 from HFLAV. The value is modulo 180°.
${ }^{4}$ AAIJ 182 reports the intervals $(5-86)^{\circ}$ or $(185-266)^{\circ}$ at 68% C.L. The extraction uses the time dependent $C P$ violation measurement in $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$decays with external input and some theoretical assumptions.
${ }^{5}$ Uses Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D K^{*}(892)^{0}$ modes. Measures $r_{B^{0}}=0.39 \pm 0.13$, and $\delta_{B^{0}}=197_{-20}^{+24}$ degrees.
${ }^{6}$ A combination of measurements from analyses of time-integrated $B^{+} \rightarrow D K^{+}, B^{0} \rightarrow$ $D K^{(*) 0}, B^{0} \rightarrow D K^{+} \pi^{-}$, and $B^{+} \rightarrow D K^{+} \pi^{+} \pi^{-}$tree-level decays. In addition, results from a time-dependent analysis of $B_{S}^{0} \rightarrow D_{S} K$ decays are included.
${ }^{7} \mathrm{~A}$ model-independent binned Dalitz plot analysis of the decays $B^{0} \rightarrow D K^{* 0}$, with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{S}^{0} K^{+} K^{-}$. The results cannot be combined with the model-dependent analysis of the same dataset reported in AAIJ 16AA.
${ }^{8}$ Angle γ required to satisfy $0<\gamma<180$ degrees.
${ }^{9}$ Obtained by measuring time-dependent $C P$ asymmetry in $B_{S}^{0} \rightarrow K^{+} K^{-}$and using a U-spin relation between $B_{S}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$.
${ }^{10}$ Results are also presented using additional inputs on $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.
11 Uses binned Dalitz plot analysis of $B^{+} \rightarrow D K^{+}$decays, with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{S}^{0} K^{+} K^{-}$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input. Solution that satisfies $0<\gamma<180$ is chosen.
12 AAIJ 14BE uses model-dependent analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10 F.
13 Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ $0.01 \pm 0.07 \pm 0.0$ from AAIJ 13AR. The value is modulo 180° at $68 \% \mathrm{CL}$.
$14 \begin{aligned} & 0.01 \pm 0.07 \pm 0.0 \text { from } \text { Presents a confidence region } 55.4^{\circ}<\gamma<82.3^{\circ} \text { at } 68 \% \mathrm{CL} \text { with best fit value } 72.6^{\circ}\end{aligned}$ and includes both statistical and systematic uncertainties. The corresponding $95 \% \mathrm{CL}$ and includes both statistical and systematic uncertainties. The corresponding 95\% CL
is $40.2^{\circ}<\gamma<92.7^{\circ}$. The value is determined from combination of measuremets using D meson decaying to $K^{+} K^{-}, \pi^{+} \pi^{-}, K^{ \pm} \pi^{\mp}, K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$, and $K^{ \pm} \pi^{\mp} \pi^{ \pm} \pi^{\mp}$. Combines $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$.
${ }^{15}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of $41-102^{\circ}$ and a 5.9σ significance for $\gamma\left(B^{+} \rightarrow D^{(*) 0} K^{(*)+}\right)$ $\neq 0$ hypothesis.
${ }^{16}$ Reports combined statistical and systematic uncertainties.
${ }^{17}$ Uses binned Dalitz plot of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow \bar{D}^{0} K^{+}$. Measurement of strong phases in $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$Dalitz plot from LIBBY 10 is used as input.
${ }^{18}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^{0} and \bar{D}^{0} amplitudes.
${ }^{19}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays from $B^{+} \rightarrow$ $D^{(*)} K^{+}, D K^{*+}$ modes. The corresponding two standard deviation interval for γ is $39^{\circ}<\gamma<98^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
${ }^{20}$ Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^{ \pm} \rightarrow D K^{ \pm}$decays with D mesons decaying to non- $C P(K \pi), C P$ even ($K^{+} K^{-}, \pi^{+} \pi^{-}$), and $C P$-odd $\left(K_{S}^{0} \pi^{0}, K_{S}^{0} \omega\right)$ states.
${ }^{21}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow D^{(*)} K^{+}$modes. The corresponding two standard deviation interval for γ is $54.2^{\circ}<\gamma<100.5^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
${ }^{22}$ Uses Dalitz plot analysis of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D^{0} K^{* 0}$ modes. The corresponding 95% CL interval is $77^{\circ}<\gamma<247^{\circ}$. A 180 degree ambiguity is implied.
${ }^{23}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes. The corresponding two standard deviation interval is $29^{\circ}<\gamma<122^{\circ}$.
${ }^{24}$ Uses a Dalitz plot analysis of the $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ and $D K^{*+}$ modes. The corresponding two standard deviations interval for gamma is $8^{\circ}<\gamma<111^{\circ}$.
${ }^{25}$ Uses a Dalitz plot analysis of neutral $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{ \pm} \rightarrow$ $D K^{ \pm}$and $B^{ \pm} \rightarrow D^{* 0} K^{ \pm}$followed by $D^{* 0} \rightarrow D \pi^{0}, D \gamma$. The corresponding two standard deviations interval for gamma is $12^{\circ}<\gamma<137^{\circ}$. AUBERT,B 05Y also reports the amplitude ratios and the strong phases.
${ }^{26}$ Uses a Dalitz plot analysis of the 3-body $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{ \pm} \rightarrow$ $D K^{ \pm}$and $B^{ \pm} \rightarrow D^{*} K^{ \pm}$followed by $D^{*} \rightarrow D \pi^{0}$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^{0} and \bar{D}^{0}. The corresponding two standard deviations interval for γ is $26^{\circ}<\gamma<126^{\circ}$. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.
$\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)$
r_{B} and δ_{B} are the amplitude ratio and relative strong phase between the amplitudes of $A\left(B^{+} \rightarrow D^{0} K^{+}\right)$and $A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)$,
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV).

VALUE

CL\% DOCUMENTID TECN COMMENT
0.0993 ± 0.0046 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. • - -

Meson Particle Listings
${ }^{9}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^{0} and \bar{D}^{0} amplitudes.
10 Uses decays of neutral D to $K^{-} \pi^{+} \pi^{0}$.
${ }^{11}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays from $B^{+} \rightarrow$ $D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is $0.037<$ $r_{B}<0.155$.
${ }^{12}$ Uses the Cabibbo suppressed decay of $B^{+} \rightarrow \bar{D} K^{+}$followed by $\bar{D} \rightarrow K^{-} \pi^{+}$.
${ }^{13}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow D^{0} K^{+}$modes. The corresponding two standard deviation interval is $0.084<r_{B}<0.239$.
${ }^{14}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.
15 fres a Dalitz plot analysis of the $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ 6 and $D K^{*+}$ modes.
16 Uses a Dalitz analysis of neutral D decays to $K_{S}^{0} \pi^{+} \pi^{-}$in the processes $B^{ \pm} \rightarrow$ $D^{(*)} K^{ \pm}, D^{*} \rightarrow D \pi^{0}, D \gamma$.

$\delta_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)$

OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). VALUE (${ }^{\circ}$) DOCUMENTID TECN COMMENT

129.6 ± 5.0 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -

$83.4-18.6 \pm 5.1$	${ }^{1}$ RESMI	19 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
101 ± 11	${ }^{2}$ AAIJ	18ad LHCB	$p p$ at 13 TeV
$134{ }_{-15}^{+14}$	${ }^{3}$ AAIJ	14BA LHCB	$p p$ at $7,8 \mathrm{TeV}$
$115{ }_{-51}^{+41}$	${ }^{4}$ AAIJ	14BE LHCB	Repl. by AAIJ 14BA
$105{ }_{-17}^{+16}$	${ }^{5}$ LEES	13B BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$137{ }_{-46}^{+35}$	6,7 AAIJ	12AQ LHCB	$p p$ at 7 TeV
$129.9 \pm 15.0 \pm 6.0$	7,8 AIHARA	12 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$119{ }_{-20}^{+19} \pm 4$	$9{ }^{9}$ DEL-AMO-SA...	.10F BABR	Repl. by LEES 13B
$136.7_{-15.8}^{+13.0} \pm 23.2$	10 Poluektov	10 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$109{ }_{-30}^{+27} \pm 8$	${ }^{11}$ AUBERT	08AL BABR	Repl. by DEL-AMO-SANCHEZ 10F
$145.7{ }_{-19.7}^{+19.0} \pm 23.1$	12 poluektov	06 BELL	Repl. by POLUEKTOV 10
$104 \pm 45{ }_{-32}^{+23}$	13 AUBERT, B	$05 Y$ BABR	Repl. by AUBERT 08AL

${ }^{1}$ Uses binned analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ from $B^{ \pm} \rightarrow D K^{ \pm}$modes over the phase space. Strong phase measurements from RESMI 18 analysis of CLEO-c data of the D decay over the phase space binning are used as input.
${ }^{2}$ Uses binned Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $K_{S}^{0} K^{+} K^{-}$from $B^{ \pm} \rightarrow$ $D K^{ \pm}$modes. Strong phase measurements from CLEO-c of the D decay over the Dalitz ${ }_{3}$ plot are used as input.
${ }^{3}$ Uses binned Dalitz plot analysis of $B^{+} \rightarrow D K^{+}$decays, with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $D \rightarrow K_{S}^{0} K^{+} K^{-}$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input.
${ }^{4}$ AAIJ 14BE uses model-dependent analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$amplitudes. The model 5 is the same as in DEL-AMO-SANCHEZ 10F.
5 is the same as in DEL-AMO-SANCHEZ 10F.
${ }_{7}^{6}$ Reports combined statistical and systematic uncertainties.
${ }^{7}$ Uses binned Dalitz plot of $\bar{D}^{0} \xrightarrow{\text { Reports }} K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow \bar{D}^{0} K^{+}$. Measurement of strong phases in $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$Dalitz plot from LIBBY 10 is used as input.
${ }^{8}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong ${ }_{9}$ phase difference between D^{0} and \bar{D}^{0} amplitudes.
${ }^{9}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays from $B^{+} \rightarrow$ $D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is $75^{\circ}<$ $\delta_{B}<157^{\circ}$.
${ }^{10}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow \bar{D}^{0} K^{+}$modes. The corresponding two standard deviation interval is $102.2^{\circ}<\delta_{B}<162.3^{\circ}$.
${ }^{11}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.,
12 from Uses a Dalitz plot analysis of the $\widetilde{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$
${ }^{13}$ and $D K^{*+}$ modes. a Dalitz analysis of neutral D decays to $K_{S}^{0} \pi^{+} \pi^{-}$in the processes $B^{ \pm} \rightarrow$ $D^{(*)} K^{ \pm}, D^{*} \rightarrow D \pi^{0}, D \gamma$.
$\mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$ r_{B} and δ_{B} are the amplitude ratio and relative strong phase between the amplitudes of $A_{C P}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$ and $A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{*+}\right)$, "OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV).

$\frac{V A L U E}{0.076} \pm 0.020$ OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - - .

$0.143_{-0.049}^{+0.048}$	1 LEES	13B	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.166_{-0.069}^{+0.073}$	${ }^{2}$ DEL-AMO-SA...10F	BABR	Repl. by LEES 13B	
0.31	± 0.07	${ }^{3}$ AUBERT	09AJ BABR	Repl. by LEES 13B
$0.181_{-0.108}^{+0.088} \pm 0.042$	${ }^{4}$ AUBERT	08AL BABR	Repl. by AUBERT 09AJ	
$0.564_{-0.155}^{+0.216} \pm 0.093$	5 POLUEKTOV 06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	

${ }^{1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.
${ }^{2}$ DEL-AMO-SANCHEZ 10F reports $\mathrm{r}_{B} \cdot \mathrm{k}=0.149{ }_{-0}^{+0.066}$ for $\mathrm{k}=0.9$.
${ }^{3}$ Obtained by combining the GLW and ADS methods. The 2 -sigma range corresponds to [0.17, 0.43].
${ }^{4}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.
${ }^{5}$ Uses a Dalitz plot analysis of the $\overline{D^{0}} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ and $D K^{*+}$ modes.

$\delta_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)$

$$
-2
$$

\qquad

$\begin{array}{ll}98 & +18 \\ -18\end{array}$ OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - - -
$101 \pm 43 \quad 1$ LEES \quad 13B BABR $e^{+} e^{-} \rightarrow r(4 S)$
111 ± 32 DEL-AMO-SA...10F BABR Repl. by LEES 13B
$104{ }_{-37}^{+39} \pm 18 \quad{ }^{2}$ AUBERT 08AL BABR Repl. by LEES 13B
$242.6_{-23.2}^{+20.2} \pm 49.4 \quad{ }^{3}$ POLUEKTOV 06 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.
${ }^{2}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming
${ }_{3}$ from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.
${ }^{3}$ Uses a Dalitz plot analysis of the $\overline{D^{0}} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ and $D K^{*+}$ modes.
$\mathbf{r}_{B}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$
r_{B} and δ_{B} are the amplitude ratio and relative strong phase between the amplitudes of $A\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$and $A\left(B^{+} \rightarrow \bar{D}^{* 0} \mathrm{~K}^{+}\right)$,
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV).

VALUE DOCUMENTID TECN COMMENT

0.140 ± 0.019 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -
$0.106_{-0.036}^{+0.019} \quad 1$ LEES \quad 13B BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.133_{-0.039}^{+0.042} \pm 0.013 \quad 2$ DEL-AMO-SA.. 10 F BABR Repl. by LEES 13B
$0.096_{-0.051}^{+0.035} \quad{ }^{3}$ DEL-AMO-SA.. 10 H BABR Repl. by LEES 13B
$0.196_{-0.069}^{+0.072}+0.064 \quad 4$ POLUEKTOV 10 BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$0.135 \pm 0.050 \pm 0.012 \quad 5$ AUBERT 08AL BABR Repl. by DEL-AMO-
$0.175_{-0.099}^{+0.108} \pm 0.050 \quad 6$ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10
$0.17 \pm 0.10 \pm 0.04 \quad 7$ AUBERT,B 05Y BABR Repl. by AUBERT 08AL
${ }^{1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.
${ }^{2}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays from $B^{+} \rightarrow$ $D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is $0.049<$ $r_{B}^{*}<0.215$.
${ }^{3}$ Uses the Cabibbo suppressed decay of $B^{+} \rightarrow \bar{D}^{*} K^{+}$followed by $\bar{D}^{*} \rightarrow \bar{D} \pi^{0}$ or $\bar{D} \gamma$, 4 and $\bar{D} \rightarrow K^{-} \pi^{+}$.
${ }^{4}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow D^{* 0} K^{+}$modes.
The corresponding two standard deviation interval is $0.061<r_{B}^{*}<0.271$.
${ }^{5}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming
from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.
${ }^{6}$ Uses a Dalitz plot analysis of the $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ 7 and $D K^{*+}$ modes.
${ }^{7}$ Uses a Dalitz analysis of neutral D decays to $K_{S}^{0} \pi^{+} \pi^{-}$in the processes $B^{ \pm} \rightarrow$ $D^{(*)} K^{ \pm}, D^{*} \rightarrow D \pi^{0}, D \gamma$.
$\delta_{B}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)$
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). VALUE (${ }^{\circ}$) DOCUMENTID TECN COMMENT

319.2 ${ }^{+} \mathbf{8 . 7}$ OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -
$294 \begin{array}{r}+21 \\ -31\end{array} \quad 1$ LEES \quad 13B BABR $e^{+} e^{-} \rightarrow r(4 S)$
$278 \pm 21 \pm 6 \quad 2$ DEL-AMO-SA..10F BABR Repl. by LEES 13b
$341.9_{-19.6}^{+18.0} \pm 23.1 \quad 3$ POLUEKTOV 10 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$297 \begin{array}{r}+27 \\ -29\end{array} \pm 6.4 \quad 4$ AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F
302.0 ${ }_{-}^{+35.1} \pm 23.7 \quad 5$ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10
$296 \pm 41 \begin{gathered}+20 \\ -19\end{gathered} \quad{ }^{6}$ AUBERT,B $05 Y$ BABR Repl. by AUBERT 08AL

[^122]${ }^{3}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays from $B^{+} \rightarrow D^{*} K^{+}$modes. The corresponding two standard deviation interval is $296.5^{\circ}<\delta_{B}^{*}<382.7^{\circ}$.
${ }^{4}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays coming from $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ modes.
5 Uses a Dalitz plot analysis of the $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays; Combines the $D K^{+}, D^{*} K^{+}$ and $D K^{*+}$ modes.
${ }^{6}$ Uses a Dalitz analysis of neutral D decays to $K_{S}^{0} \pi^{+} \pi^{-}$in the processes $B^{ \pm} \rightarrow$ $D^{(*)} K^{ \pm}, D^{*} \rightarrow D \pi^{0}, D \gamma$.

PARTIAL BRANCHING FRACTIONS

$\mathrm{B}\left(\mathrm{B}^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
1.4 ± 0.5 OUR AVERAGE		
$1.37{ }_{-0.58}^{+0.60}$	AAIJ 12AH LHCB	$p p$ at 7 TeV
$1.30 \pm 0.98 \pm 0.14$	AALTONEN 11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}{ }^{\mathbf{2}} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENTID TECN	COMMENT
1.1 ± 0.5 OUR AVERAGE		
$1.24_{-0.55}^{+0.60}$	AAIJ 12AH LHCB	$p p$ at 7 TeV
$0.71 \pm 1.00 \pm 0.15$	AALTONEN 11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(4.3<\mathrm{q}^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENTID TECN	COMMENT

$2.4{ }_{-0.7}^{+0.8}$ OUR AVERAGE

$2.50{ }_{-0.74}^{+0.88}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$1.71 \pm 1.58 \pm 0.49$	AALTONEN	11Al CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
2.1 ± 0.6 OUR AVERAGE			
$2.13{ }_{-0.66}^{+0.72}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$1.97 \pm 0.99 \pm 0.22$	AALTONEN	11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(14.18<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 8 6}=0.40$ OUR AVERAGE			
$1.00{ }_{-0.38}^{+0.47}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$0.52 \pm 0.61 \pm 0.09$	AALTONEN	11al CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \Rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(15.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT

${ }^{1}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{*}(892)^{+}\right)=(1.431 \pm 0.027 \pm 0.090) \times 10^{-3}$ for normalization and $\mu^{+} \mu^{-}$as a lepton pair.
$\mathrm{B}\left(\mathrm{B}^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(\mathrm{q}^{2}>16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\left.\text { VALUE (units } 10^{-7}\right)}{1.3 \pm 0.4 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
1.25 ± 0.46
AAIJ 12AH LHCB $p p$ at 7 TeV
$1.57 \pm 0.96 \pm 0.17 \quad$ AALTONEN 11Al CDF $p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{18 \pm 0.4 \text { OUR AVERAGE }}$ DOCUMENT ID TECN COMMENT 1.8 ± 0.4 OUR AVERAGE

AAIJTONEN 14M LhCB pp 11.6 TeV

- - We do not use the following data for averages, fits, limits, etc. - . -
$2.90_{-0.85}^{+0.90}$ AAIJ 12AH LHCB Repl. by AAIJ 14M
${ }^{1}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{*}(892)^{+}\right)=(1.431 \pm 0.027 \pm 0.090) \times 10^{-3}$ for normalization and $\mu^{+} \mu^{-}$as a lepton pair. Measured in $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\mathrm{B}\left(\mathrm{B}^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
$2.01 \pm 1.39 \pm 0.27$	AALTONEN	11AI	CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \ell^{+} \ell^{-}\right)\left(\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$				
VALUE (units 10-7)	DOCUMENT ID TECN COMMENT			
0.51 ± 0.08 OUR AVERAGE Error includes scale factor of 1.5.				
$0.556 \pm 0.053 \pm 0.027$	${ }^{1}$ AAIJ	13H	LHCB	$p p$ at 7 TeV
$0.36 \pm 0.11 \pm 0.03$	AALTONEN	11AI	CDF	$p \bar{p}$ at 1.96 TeV
${ }^{1}$ Measured in $0.05<\mathrm{q}^{2}<$	$\mathrm{GeV}^{2} / \mathrm{c}^{4}$ range.			

Meson Particle Listings
$B^{ \pm}$

$\mathrm{F}_{H}\left(\mathrm{~B}^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<\mathbf{2 2 . 0} \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
F_{H} is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.
$\frac{\text { VALUE }}{\mathbf{0 . 0 3 5} \pm \mathbf{0 . 0 3 5} \pm \mathbf{0 . 0 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad 140 \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as
half of the width of interval.

FORWARD-BACKWARD ASYMMETRIES

The forward-backward assymmetry is defined as $A_{F B}=\left[N\left(q_{F B}>\right.\right.$ $\left.0)-\mathrm{N}\left(\mathrm{q}_{F B}<0\right)\right] /\left[\mathrm{N}\left(\mathrm{q}_{F B}>0\right)+\mathrm{N}\left(\mathrm{q}_{F B}<0\right)\right]$, where $\mathrm{q}_{F B}$ $=-\mathrm{q}_{B} \cdot \operatorname{sgn}\left(\eta_{B}\right)$ with q_{B} as the B hadron electric charge, η_{B} as its pseudorapidity, and $\operatorname{sgn}\left(\eta_{B}\right)$ as a sign function of η_{B}.
$\mathrm{A}_{F B}\left(B^{ \pm} \rightarrow J / \psi K^{ \pm}\right)$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{\mathbf{- 0 . 2 4} \pm \mathbf{0 . 4 1} \pm \mathbf{0 . 1 9}} \quad \frac{\text { DOCUMENT ID }}{\text { ABAZOV } 15} \frac{\text { TECN }}{\text { DO }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}}$
$A_{P}\left(B^{+}\right)=\left[\sigma\left(B^{-}\right)=\sigma\left(B^{+}\right)\right] /\left[\sigma\left(B^{-}\right)+\sigma\left(B^{+}\right)\right]$
Production asymmetries
VALUE (units 10^{-3})
-5.2 ± 1.9 OUR AVERAGE
$\mathrm{B}\left(B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right)\left(14.18<\mathrm{q}^{2}<19.00 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

VALUE (units 10^{-8})	DOCUMENT ID	TECN	COMMENT
$0.48{ }_{-0.29}^{+0.39} \pm 0.05$	AAIJ	LHCB	$p p$ at 7, 8 TeV

$\mathrm{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)\left(1.00<\mathrm{q}^{2}<6.00 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-9})

DOCUMENT ID TECN COMMENT
$4.55{ }_{-1.00}^{+1.05} \pm 0.15$
AAIJ
15AR LHCB $p p$ at $7,8 \mathrm{TeV}$
$\mathrm{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)\left(15.00<\mathrm{q}^{2}<22.00 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

VALUE (units 10^{-9})	DOCUMENT ID	TECN	COMMENT
$3.29 \pm 0.84 \pm 0.07$	AAIJ	15AR LHCB	$p p$ at 7, 8 TeV
$\mathrm{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \mathrm{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<22.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$			
VALUE (units 10^{-2})	DOCUMENT ID TECN COMMENT		
$3.7 \pm 0.8 \pm 0.1$	AAIJ	15AR LHCB	$p p$ at 7, 8 TeV
$A_{F B}$ is the forward-backward angular asymmetry of the lepton pair in $B \rightarrow$ $K^{(*)} \ell^{+} \ell^{-}$decay as defined in B^{+}, B^{0} admixture particle listings.			
VALUE	DOCUMENTID	- TECN	COMMENT
-0.003 ± 0.017 OUR AVERAGE			
$-0.14{ }_{-0.06}^{+0.07} \pm 0.03$	1 SIRUNYAN	18DX CMS	$p p$ at 8 TeV
$0.005 \pm 0.015 \pm 0.010$	2 AAIJ	140 LHCB	$p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.02{ }_{-0.03}^{+0.05}+0.02 \quad$ AAIJ 13 H LHCB Repl. by AAIJ 140
${ }^{1}$ Measurement is performed in $1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. SIRUNYAN 18DX reports also
measurements in several other q^{2} intervals.
${ }^{2}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as
half of the width of interval.

$\mathrm{A}_{\mathrm{FB}}\left(\mathrm{B}^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<22.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

$\mathbf{- 0 . 0 1 5} \pm \mathbf{0 . 0 1 5} \pm \mathbf{0 . 0 1} \quad 1 \mathrm{AAIJ} \quad 140 \quad$ LHCB $\frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.
$\mathrm{F}_{\boldsymbol{H}}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\left(1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
F_{H} is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.
\qquad TECN COMMENT

0.04 ± 0.04 OUR AVERAGE

DOCUMENT ID
$0.38_{-0.21}^{+0.17} \pm 0.09$
1 SIRUNYAN 18DX CMS pp at 8 TeV
$0.03 \pm 0.03 \pm 0.02$
${ }^{2}$ AAIJ
140 LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. • •
$0.05_{-0.05-0.02}^{+0.08}+0.04 \quad$ AAIJ 13 H LHCB Repl. by AAIJ 140
${ }^{1}$ Measurement is performed in $1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. SIRUNYAN 18DX reports also measurements in several other q^{2} intervals.
${ }^{2}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.
$-4.1 \pm 4.9 \pm 1.0$
$-5.3 \pm 3.1 \pm 1.0$
$-7.4 \pm 1.5 \pm 3.2 \quad 2 \mathrm{AAIJ} \quad 17 \mathrm{BF}$ LHCB $p p$ at 7 TeV
${ }^{1}$ AAIJ 17AP uses $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$decays with B^{+}transverse momenta p_{T} and rapidities y in the region of $2<p_{T}<30 \mathrm{GeV} / \mathrm{c}$ and $2.1<\mathrm{y}<4.5$.
${ }^{2}$ AAIJ 17BF uses $B^{+} \rightarrow J / \psi K^{+}$decays with B^{+}transverse momenta p_{T} and rapidities y in the region of $0<p_{T}<30 \mathrm{GeV} / \mathrm{C}$ and $2.1<\mathrm{y}<4.5$.

$B^{ \pm}$REFERENCES				
AAIJ	20A	PRL 124031801	R. Aaij et al.	(LHCb Collab.)
Also		PR D101 012006	R. Aaij et al.	(LHCb Collab.)
AAIJ	19AC	PR D99 092009	R. Aaij et al.	(LHCb Collab.)
AAIJ	19AL	PRL 123231802	R. Aaij et al.	(LHCb Collab.)
AAIJ	19AM	PRL 123241802	R. Aaij et al.	(LHCb Collab.)
AAIJ	190	EPJ C79 537	R. Aaij et al.	(LHCb Collab.)
AAIJ	19P	EPJ C79 675	R. Aaij et al.	(LHCb Collab.)
AAIJ	19 S	PRL 122191801	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	19	PR D99 111101	V. Bhardwaj et al.	(BELLE Collab.)
CHILIKIN	19	PR D100 012001	K. Chilikin et al.	(BELLE Collab.)
GARG	19	PR D99 071102	R. Garg et al.	(BELLE Collab.)
KALIYAR	19	PR D99 031102	A.B. Kaliyar et al.	(BELLE Collab.)
LEES	19 C	PR D100 111101	J.P. Lees et al.	(BABAR Collab.)
LI	19A	PRL 122082001	Y.B. Li et al.	(BELLE Collab.)
LI	19G	PR D100 112010	Y. Li et al.	(BELLE Collab.)
LU	19	PR D99 032003	P.-C. Lu et al.	(BELLE Collab.)
PDG	19	RPP 2019 at pdg.lbl.gov	M. Tanabashi et al.	(PDG Collab.)
RESMI	19	JHEP 1910178	P.K. Resmi et al.	(BELLE Collab.)
SIRUNYAN	19 CM	JHEP 1912100	A.M. Sirunyan et al.	(CMS Collab.)
WATANUKI	19	PR D99 032012	S. Watanuki et al.	(BELLE Collab.)
AAIJ	18A	PL B777 16	R. Aaij et al.	(LHCb Collab.)
AAIJ	18AD	JHEP 1808176	R. Aaij et al.	(LHCb Collab.)
Also		JHEP 1810107 (errat.)	R. Aaij et al.	(LHCb Collab.)
AAIJ	18B	JHEP 1801131	R. Aaij et al.	(LHCb Collab.)
AAIJ	18 U	JHEP 1803059	R. Aaij et al.	(LHCb Collab.)
AAIJ	18W	JHEP 1805160	R. Aaij et al.	(LHCb Collab.)
AAIJ	18X	JHEP 1805067	R. Aaij et al.	(LHCb Collab.)
AAIJ	182	JHEP 1806084	R. Aaij et al.	(LHCb Collab.)
GELB	18	PR D98 112016	M. Gelb et al.	(BELLE Collab.)
KATO	18	PR D97 012005	Y. Kato et al.	(BELLE Collab.)
LI	18A	EPJ C78 252	Y.B. Li et al.	(BELLE Collab.)
PDG	18	PR D98 030001	M. Tanabashi et al.	(PDG Collab.)
RESMI	18	JHEP 1801082	P.K. Resmi et al.	
SIBIDANOV	18	PRL 121031801	A. Sibidanov et al.	(BELLE Collab.)
SIRUNYAN	18DX	PR D98 112011	A.M. Sirunyan et al.	(CMS Collab.)
VOSSEN	18	PR D98 012005	A. Vossen et al.	(BELLE Collab.)
AAIJ	17	PR D95 012002	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 AD	PL B769 305	R. Aalij et al.	(LHCb Collab.)
AAIJ	17AP	PR D95 052005	R. Aaij et al.	(LHCb Collab.)
AAIJ	17AQ	PR D95 071101	R. Aaij et al.	(LHCb Collab.)
AAIJ	17AR	PR D96 011101	R. Aaij et al.	(LHCb Collab.)
AAIJ	17BF	PL B774 139	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 BO	JHEP 1711156	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 E	PL B765 307	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 K	EPJ C77 72	R. Aaij et al.	(LHCD Collab.)
AAIJ	170	JHEP 1703036	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 R	JHEP 1704162	R. Aaij et al.	(LHCb Collab.)
AAIJ	17 Y	EPJ C77 161	R. Aaij et al.	(LHCb Collab.)
ABAZOV	17 A	PR D95 031101	V.M. Abazov et al.	(D0 Collab.)
BELENO	17	PR D96 091102	C. Beleno et al.	(BELLE Collab.)
GRYGIER	17	PR D96 091101	J. Grygier et al.	(BELLE Collab.)
HORIGUCHI	17	PRL 119191802	T. Horiguchi et al.	(BELLE Collab.)
HSU	17	PR D96 031101	C.-L. Hsu et al.	(BELLE Collab.)
KHACHATRY...	17 C	PL B764 66	V. Khachatryan et al.	(CMS Collab.)
LEES	17	PRL 118031802	J.P. Lees et al.	(BABAR Collab.)
LEES	17 G	PR D96 072001	J.P. Lees et al.	(BABAR Collab.)
AABOUD	16L	EPJ C76 513	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	16 AA	JHEP 1608137	R. Aaij et al.	(LHCb Collab.)
AAIJ	16 AH	PR D94 072001	R. Aalij et al.	(LHCD Collab.)
AAIJ	16AQ	JHEP 1612087	R. Aaij et al.	(LHCb Collab.)
AAIJ	16 L	PL B760 117	R. Aaij et al.	(LHCb Collab.)
AAIJ	16 M	PR D93 051101	R. Aaij et al.	(LHCb Collab.)
AAIJ	16R	PR D93 119902	R. Aaij et al.	(LHCb Collab.)
AAIJ	16 Z	JHEP 1606131	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj et al.	(BELLE Collab.)
DEL-AMO-SA...	16	PR D93 052013	P. del Amo Sanchez et al.	(BABAR Collab.)
LEES	16	PRL 116041801	J.P. Lees et al.	(BABAR Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
AAIJ	15AR	JHEP 1510034	R. Aaij et al.	(LHCb Collab.)
AAIJ	15BC	PR D92 112005	R. Aaij et al.	(LHCb Collab.)
AAIJ	15 K	PL B741 1	R. Aaij et al.	(LHCb Collab.)
AAIJ	150	PRL 115051801	R. Aaij et al.	(LHCb Collab.)
AAIJ	15 V	PR D91 092002	R. Aaij et al.	(LHCb Collab.)
Also		PR D93 119901 (errat.)	R. Aaij et al.	(LHCb Collab.)

Meson Particle Listings

ABE	06	PR D73 051106	K. Abe et al.	(BELLE Collab.)	NAKAO	04	PR D69 112001	M. Nakao et al.	(BELLE	Collab.)
ABULENCIA	$06 J$	PRL 96191801	A. Abulencia et al.	(CDF Collab.)	POLUEKTOV	04	PR D70 072003	A. Poluektov et al.	(BELLE	Collab.)
ACOSTA	06	PRL 96202001	D. Acosta et al.	(CDF Collab.)	SCHWANDA	04	PRL 93131803	C. Schwanda et al.	(bELLE	Collab.)
AUBERT	06	PR D73 011101	B. Aubert et al.	(BABAR Collab.)	WANG	04	PRL 92131801	M.z. Wang et al.	(bELLE	Collab.)
AUBERT	06E	PRL 96052002	B. Aubert et al.	(BABAR Collab.)	wang	04A	PR D70 012001	C.H. Wang et al.	(BELLE	Collab.)
AUBERT	06 F	PR D73 011103	B. Aubert et al.	(BABAR Collab.)	ZANG	04	PR D69 017101	S.L. Zang et al.	(BELLE	Collab.)
AUBERT	06 J	PR D73 051105	B. Aubert et al.	(BABAR Collab.)	ABE	03B	PR D67 032003	K. Abe et al.	(BELLE	Collab.)
AUBERT	06 K	PR D73 057101	B. Aubert et al.	(BABAR Collab.)	ABE	03D	PRL 90131803	K. Abe et al.	(BELLE	Collab.)
AUBERT	06 N	PR D74 031103	B. Aubert et al.	(BABAR Collab.)	ADAM	03	PR D67 032001	N.E. Adam et al.	(CLEO	Collab.)
AUBERT	060	PR D74 032003	B. Aubert et al.	(BABAR Collab.)	ADAM	03B	PR D68 012004	N.E. Adam et al.	(CLEO	Collab.)
AUBERT	06 Z	PR D73 111104	B. Aubert et al.	(BABAR Collab.)	ATHAR	03	PR D68 072003	S.B. Athar et al.	(CLEO	Collab.)
AUBERT,B	06A	PR D73 112004	B. Aubert et al.	(BABAR Collab.)	AUBERT	03K	PRL 90231801	B. Aubert et al.	(BABAR	Collab.)
AUBERT,B	06 C	PR D74 011102	B. Aubert et al.	(BABAR Collab.)	AUBERT	03L	PRL 91021801	B. Aubert et al.	(babar	Collab.)
AUBERT,B	06E	PR D74 011106	B. Aubert et al.	(BABAR Collab.)	AUBERT	озM	PRL 91051801	B. Aubert et al.	(babar	Collab.)
AUBERT,B	06 G	PRL 97201801	B. Aubert et al.	(BABAR Collab.)	AUBERT	030	PRL 91071801	B. Aubert et al.	(babar	Collab.)
AUBERT, B	06H	PRL 97201802	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 U	PRL 91221802	B. Aubert et al.	(babar	Collab.)
AUBERT, B	06 J	PR D73 092001	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 V	PRL 91171802	B. Aubert et al.	(babar	Collab.)
AUBERT,B	06M	PR D74 031102	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 W	PRL 91161801	B. Aubert et al.	(BABAR	Collab.)
AUBERT,B	06P	PR D74 031105	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 X	PR D68 092001	B. Aubert et al.	(BABAR	Collab.)
AUBERT, B	$06 T$	PR D74 051102	B. Aubert et al.	(BABAR Collab.)	BORNHEIM	03	PR D68 052002	A. Bornheim et al.	(CLEO	Collab.)
AUBERT,B	06 U	PR D74 051104	B. Aubert et al.	(BABAR Collab.)	CHEN	03B	PRL 91201801	K.-F. Chen et al.	(BELLE	Collab.)
AUBERT,B	${ }^{06 Y}$	PR D74 091105	B. Aubert et al.	(BABAR Collab.)	CHOI	03	PRL 91262001	S.-K. Choi et al.	(BELLE	Collab.)
AUBERT,BE	06A	PR D74 099903 (errat.)	B. Aubert et al.	(BABAR Collab.)	Csorna	03	PR D67 112002	S.E. Csorna et al.	(CLEO	Collab.)
AUBERT,BE	06C	PRL 97171805	B. Aubert et al.	(BABAR Collab.)	EDWARDS	03	PR D68 011102	K.W. Edwards et al.	(CLEO	Collab.)
AUBERT,BE	06 G	PRL 97261801	B. Aubert et al.	(BABAR Collab.)	FANG	03	PRL 90071801	F. Fang et al.	(BELLE	Collab.)
AUBERT,BE	06H	PRL 97261803	B. Aubert et al.	(BABAR Collab.)	HUANG	03	PRL 91241802	H.-C. Huang et al.	(BELLE	Collab.)
AUBERT,BE	06 J	PR D74 111102	B. Aubert et al.	(BABAR Collab.)	ISHIKAWA	03	PRL 91261601	A. Ishikawa et al.	(BELLE	Collab.)
AUBERT,BE	06M	PR D74 071101	B. Aubert et al.	(BABAR Collab.)	KROKOVNY	03B	PRL 91262002	P. Krokovny et al.	(BELLE	Collab.)
CHISTOV	06A	PR D74 111105	R. Chistov et al.	(BELLE Collab.)	SWAIN	03	PR D68 051101	S.K. Swain et al.	(BELLE	Collab.)
	06	PR D74 012007	F. Fang et al.	(BELLE Collab.)	UNNO	03	PR D68 011103	Y. Unno et al.	(BELLE	Collab.)
GABYSHEV	06	PRL 97202003	N. Gabyshev et al.	(BELLE Collab.)	zHANG	03B	PRL 91221801	J. Zhang et al.	(BELLE	Collab.)
GABYSHEV	06A	PRL 97242001	N. Gabyshev et al.	(BELLE Collab.)	ABE	02	PRL 88021801	K. Abe et al.	(BELLE	Collab.)
GARMASH	06	PRL 96251803	A. Garmash et al.	(BELLE Collab.)	${ }_{\text {ABE }}{ }^{\text {ABE }}$	${ }^{02 \mathrm{~B}}$	PRL 88031802	K. Abe et al.	(BELLE	Collab.)
GOKHROO	06	PRL 97162002	G. Gokhroo et al.	(BELLE Collab.)	ABE	02 H	PRL 88171801	K. Abe et al.	(BELLE	Collab.)
IKADO	06	PRL 97251802	K. Ikado et al.	(BELLE Collab.)	ABE	02K	PRL 88181803	K. Abe et al.	(BELLE	Collab.)
JEN	06	PR D74 111101	C.-M. Jen et al.	(BELLE Collab.)	${ }^{\text {ABE }}$	02 N	PL B538 11	K. Abe et al.	(BELLE	Collab.)
KUMAR MOHAPATRA	06 06	PR D74 051103 PRL 9621601	R. Kumar et al. D. Mohapatra et al.	(BELLE Collab.)	ABE ABE	020	PR D65 091103 PRL 89151802	K. Abe et al. K. Abe et al.	(BELLE	Colab.)
POLUEKTOV	06	PR D73 112009	A. Poluektov et al.	(BELLE Collab.)	ACOSTA	02 C	PR D65 092009	D. Acosta et al.	(CDF	Collab.)
schuemann	06	PRL 97061802	J. Schuemann et al.	(BELLE Colab.)	ACOSTA	02 F	PR D66 052005	D. Acosta et al.	(CDF	Collab.)
SONI	06	PL B634 155	N. Soni et al.	(BELLE Collab.)	AHMED	02B	PR D66 031101	S. Ahmed et al.	(CLEO	Collab.)
ABE	05A	PRL 94221805	K. Abe et al.	(BELLE Colab.)	AUBERT	02	PR D65 032001	B. Aubert et al.	(BABAR	Collab.)
ABE	05B	PR D71 072003	K. Abe et al.	(BELLE Collab.)	AUBERT	02 C	PRL 88101805	B. Aubert et al.	(BABAR	Collab.)
Also		PR D71 079903 (errat.)	K. Abe et al.	(BELLE Collab.)	AUBERT	02 E	PR D65 051101	B. Aubert et al.	(BABAR	Collab.)
ABE	${ }^{05 G}$	PRL 95231802	K. Abe et al.	(BELLE Collab.)	AUBERT	02 F	PR D65 091101	B. Aubert et al.	(BABAR	Collab.)
ACOSTA	05J	PRL 95031801	D. Acosta et al.	(CDF Collab.)	AUBERT	02 L	PRL 88241801	B. Aubert et al.	(BABAR	Collab.)
AUBERT	05	PRL 94011801	B. Aubert et al.	(BABAR Collab.)	BRIERE	02	PRL 89081803	R. Briere et al	(CLEO	Collab.)
AUBERT	05B	PR D71 031501	B. Aubert et al.	(BABAR Collab.)	CASEY	02	PR D66 092002	B.C.K. Casey et al.	(BELLE	Collab.)
AUBERT	${ }^{056}$	PR D72 032004	B. Aubert et al.	(BABAR Collab.)	CHEN	${ }^{02 B}$	PL B546 196	K.-F. Chen et al.	(BELLE	Collab.)
AUBERT	${ }^{05 \mathrm{H}}$	PRL 94101801	B. Aubert et al.	(BABAR Collab.)	DRUTSKOY	02	PL B542 171	A. Drutskoy et al.	(BELLE	Collab.)
AUBERT	05 J	PRL 94141801	B. Aubert et al.	(BABAR Collab.)	DYTMAN	02	PR D66 091101	S.A. Dytman et al.	(CLEO	Collab.)
AUBERT	05 K	PRL 94171801	B. Aubert et al.	(BABAR Collab.)	ECKHART	02	PRL 89251801	E. Eckhart et al.	(CLEO	Collab.)
AUBERT	05 L	PRL 94181802	B. Aubert et al.	(BABAR Collab.)	EDWARDS	${ }^{02 \mathrm{~B}}$	PR D65 111102	K.W. Edwards et al.	(CLEO	Collab.)
AUBERT	05M	PRL 94191802	B. Aubert et al.	(BABAR Collab.)	GABYSHEV	02	PR D66 091102	N. Gabyshev et al.	(BELLE	Collab.)
AUBERT	05N	PR D71 031102	B. Aubert et al.	(BABAR Collab.)	GARMASH	02	PR D65 092005	A. Garmash et al.	(BELLE	Collab.)
AUBERT AUBERT	050 058 05	PR PR PR1 D7 10311103 07103	B. Aubert et al.	(BABAR Collab.)	GODANG GORDON	02 02	PRL 88021802 PL B542 183	R. Godang et al.	(CLEO	Collab.)
AUBERT	05 U	PR D71 091103	B. Aubert et al.	(BABAR Collab.)	Lu	02	PRL 89191801	R.-S. Lu et al.	(BELLE	Collab.)
AUBERT	05X	PR D71 111101	B. Aubert et al.	(BABAR Collab.)	MAHAPATRA	02	PRL 88101803	R. Mahapatra et al.	(CLEO	Collab.)
AUBERT,B	05B	PRL 95041804	B. Aubert et al.	(BABAR Collab.)	NISHIDA	02	PRL 89231801	S. Nishida et al.	(BELLE	Collab.)
AUBERT, ${ }^{\text {b }}$	05E	PR D72 011102	B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$	${ }^{01 H}$	PRL 87101801	K. Abe et al.	(BELLE	Collab.)
AUBERT,B AUBERT B	${ }_{0}^{05 \mathrm{~K}}$	PR D72 052002 PRL 95131803	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	ABE ABE	011	PRL 87111801 PR D64 071101	K. Abe et al. K. Abe et al.	(BELLE	Collab.)
AUBERT,B	05L	PR D72 051101	B. Aubert et al.	(BABAR Collab.)	ABE	011	PRL 87161601	K. Abe et al	(BELLE	Collab.)
AUBERT,B	05N	PR D72 072003	B. Aubert et al.	(BABAR Collab.)	ABE	01M	PL B517 309	K. Abe et al.	(bELLE	Collab.)
Also		PR D74 099903 (errat.)	B. Aubert et al.	(BABAR Collab.)	ALEXANDER	01B	PR D64 092001	J.P. Alexander et al.	(CLEO	Collab.)
AUBERT, B	050	PR D72 051102	B. Aubert et al.	(BABAR Collab.)	AMMAR	01B	PRL 87271801	R. Ammar et al.	(CLEO	Collab.)
AUBERT,B	05T	PR D72 071102	B. Aubert et al.	(BABAR Collab.)	ANDERSON	01B	PRL 87181803		(CLEO	Collab.)
AUBERT, AUBERT	05 V	PR D72 071103	B. Aubert et al.	(BABAR Collab.)	AUBERT	01 D	PRL 87151801	B. Aubert et al.	(BABAR	Collab.)
AUBERT, ${ }_{\text {AU }}{ }_{\text {AUBERT }}$	$\begin{aligned} & 05 \mathrm{~V} \\ & 05 \mathrm{Y} \end{aligned}$	PR D72 071104	B. Aubert et al.	(BABAR Collab.)	AUBERT	$\begin{aligned} & 01 \mathrm{E} \\ & { }_{01 \mathrm{~F}} \end{aligned}$	PRL 87151802	B. Aubert et al.	(BABAR	
AUBERT,B AUBERT,BE	$\begin{aligned} & 05 \mathrm{Y} \\ & 05 \mathrm{E} \end{aligned}$	PRL 95121802	B. Aubert et al. B. Aubert et $a l$	(BABAR Collab.) (BABAR Collab.)	AUBERT AUBERT	${ }_{0}^{01 \mathrm{~F}}$	PRL 87201803 PRL 87221802		(BABAR (BABAR	Collab.)
CHANG	05	PR D71 072007	M.-C. Chang et al.	(BELLE Collab.)	barate	01 E	EPJ C19 213	R. Barate et al.	(ALEPH	Collab.)
CHANG	05A	PR D71 091106	P. Chang et al.	(BELLE Collab.)	BRIERE	01	PRL 863718	R.A. Biere et al.	(CLEO	Collab.)
CHAO	05A	PR D71 031502	Y. Chao et al.	(BELLE Collab.)	BROWDER	01	PRL 862950	T.E. Browder et al.	(CLEO	Collab.)
CHEN	05A	PRL 94221804	K.-F. Chen et al.	(belle Collab.)	EDWARDS	01	PRL 8630	K.W. Edwards et al.	CLEO	Collab.)
GARMASH	05	PR D71 092003	A. Garmash et al.	(belle Collab.)	GRITSAN	01	PR D64 077501	A. Gritsan et al.	CLEO	Collab.)
${ }_{\text {LEE }}^{\text {LTOH }}$	05 05	PRL 95091601 PRL 95061802	R. Itoh et al.	(BELLE Collab.)	RICHICHI ABBIENDI	${ }_{01}^{00}$	PR D63 031103 PL B476 233	S.J. Richichi et al. G. Abbiendi et al.	(CLEO	Collab.)
LIVENTSEV	05	PR D72 051109	D. Liventsev et al	(BELLE Collab.)	${ }_{\text {ABE }}$ ABBIENI	${ }_{0} 00 \mathrm{C}$	PR D62 071101	G. Abe et al.	(SLD	Collab.)
MAJUMDER	05	PRL 95041803	G. Majumder et al.	(BELLE Collab.)	AHMED	00B	PR D62 112003	S. Ahmed et al.	(Cleo	Collab.)
MOHAPATRA	05	PR D72 011101	D. Mohapatra et al.	(BELLE Collab.)	ANASTASSOV	00	PRL 841393	A. Anastassov et al.	(CLEO	Collab.)
NISHIDA	05	PL B610 23	S. Nishida et al.	(BELLE Collab.)	BARATE	00 R			(ALEPH	Collab.)
OKABE SAIGO	05 05	PL B614 27	T. Okabe et al.	(BELLE Collab.)	BEHRENS BONVICINI	00 00	PR D61 052001 PRL 845940	B.H. Behrens et al. G. Bonvicini et al.	(CLEO	Collab.) Collab.)
WANG	05A	PL B617 141	M.-z. Wang et al.	(belle collab.)	CHEN	00	PRL 85525	S. Chen et al.	(CLEO	Collab.)
XIE	05	PR D72 051105	Q.L. Xie et al.	(BELLE Collab.)	COAN	00	PRL 845283	T.E. Coan et al.	(CLEO	Collab.)
YANG	05	PRL 9411802	H. Yang et al.	(BELLE Collab.)	CRONIN-HEN...	00	PRL 85515	D. Cronin-Hennessy et al.	(CLEO	Collab.)
ZHANG	05A	PRL 94031801	J. Zhang et al.	(BELLE Collab.)	Csorna	00	PR D61 111101		CLEOO	
ZHANG	${ }^{\text {05B }}$ 05	PR D71 091107	L.M. Zhang et al.	(BELLE Collab.)	${ }^{\text {JESSOP }}$	00 00	PRL 852881 PRL 85500	C.P. Jessop et al. S.J. Richichi et a.	(CLEEO	Collab.)
AbDALLAH	04E	EPJ C33 307	J. Abdallah et al.	(DELPHI Collab.)	AbBIENDI	99]	EPJ C12 609	G. Abbiendi et al.	(OPAL	Collab.)
ABE	04D	PR D69 112002	K. Abe et al.	(BELLE Collab.)	AFFOLDER	99B	PRL 833378	T. Affolder et al.	(CDF	Collab.)
AUBERT AUBERT	04A	PR D69 011102	B. Aubert et al.	(BABAR Collab.)	BARTELT	99	PRL 823746	J. Bartelt et al.	(CLEO	Collab.)
AUBERT AUBERT	${ }^{04 \mathrm{C}}$	PRL 92111801 PRL 92061801	B. Aubert et al.	(BABAR Collab.)	${ }_{\text {Clian }}^{\text {ABE }}$	${ }_{988}^{99}$	PR D59 111101	T.E. Coan et al. F. Abe et al.	${ }^{\text {(CLEO }}$	Collab.)
AUBERT	04 K	PRL 92141801	B. Aubert et al.	(BABAR Collab.)	${ }_{\text {ABE }}$ A	980	PR D58 072001	F. Abe et al.	(CDF	Collab.)
AUBERT	04M	PRL 92201802	B. Aubert et al.	(BABAR Collab.)	ABE	98Q	PR D58 092002	F. Abe et al.	(CDF	Collab.)
AUBERT	04N	PRL 92202002	B. Aubert et al.	(BABAR Collab.)	ACCIARRI	985	PL B438417	M. Acciarri et al.		Collab.)
AUBERT AUBERT	040	PRL 92221803 PRL 92241802	B. Aubert et al.	(${ }_{\text {(BABAR Collab.) }}($ BABAR Collab.)	ANASTASSOV ATHANAS	${ }_{98}^{98}$	PRL 804127 PRL 805493	A. Anastassov et al. M. Athanas et al.	(CLEO	Collab.)
AUBERT	04Q	PRL ${ }^{\text {P2 }}$ P69 241802	B. Aubert et al.	(BABAR Collab.)	ATHANAS BARATE	${ }_{988}^{98}$	PRL 805493 EPJ C4 387	M. Athanas et al. R. Barate et al.	${ }_{\text {(}}^{\text {(CLEPO }}$	
Aubert	047	PR D69 071103	B. Aubert et al.	(babar Collab.)	BEHRENS	98	PRL 803710	B.H. Behrens et al.	(CLEO	Collab.)
AUBERT	04Y	PRL 93041801	B. Aubert et al.	(BABAR Collab.)	BERGFELD	98	PRL 81272	T. Bergfeld et al.	(CLEO	Collab.)
${ }^{\text {AUEERERT }}$	04 Z	PRL 93051802	B. Auberr et al	(BABAR Collab.)	BRANDENB...	98	PRL 802762	G. Branden brug et al.		Collab.)
AUBERT, ${ }^{\text {AUBERT,B }}$	04B	PR D70 011101 PR D70 032006	B. Aubert et al. B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	CAPRINI GODANG	${ }_{98}^{98}$		I. Caprini, L. Lellouch, M. Neubert R. Godang et al.	(CLEO)	(CERN)
AUBERT,B	04L	PRL 93131804	B. Aubert et al.	(BABAR Collab.)	ABE	97 J	PRL 79590	K. Abe et al.	(SLD	Collab.)
AUBERT, ${ }^{\text {a }}$	04P	PR D70 0922001	B. Aubert et al.	(BABAR Collab.)	ACCIARRI	977	PL B396327	M. Acciarri et al.	(L3	Collab.)
AUBERT, ${ }^{\text {a }}$	04S	PRL 93181801	B. Aubert et al.	(BABAR Collab.)	ARTUSO	97	PL B399 321	M. Artuso et al.	(CLEO	Collab.)
${ }^{\text {AUBERT, }}$ AUBERT	04 U	PR D70 091105		(BABAR Collab.)	ATHANAS	97	PRL 792208	M. Athanas et al.		Collab.)
AUBERT, ${ }^{\text {AUBERT,BE }}$	${ }_{04}^{04}$	PRL 93181805 PR D70 111102	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	BROWDER FU	${ }_{97}^{97}$	PR D56 11 PRL 7912512050	T. Browder et al. X. Fu et al.	(CLEO	Collab.) Collab.)
AUBERT,BE	04A	PR D70 112006	B. Aubert et al.	(BABAR Collab.)	JESSOP	97	PRL 794533	C.P. Jessop et al.	(CLEO	Collab.)
AUBERT,BE	04B	PR D70 091106	B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$	${ }^{96 \mathrm{~B}}$	PR D53 3496	F. Abe et al.	(CDF	Collab.)
CHAO	004	PR D69 111102	Y. Chao et al.	(BELLE Collab.)	${ }^{\text {ABE }}$	${ }^{966}$	PRL 764462	F. Abe et al.	(CDF	Collab.)
CHAO CHISTOV	${ }_{04}^{04}$	PRL 93191802 PRL 93051803	Y. Chao et al R. Chistov et ald	(BELLE Collab.)	${ }_{\text {A }}^{\text {ABE }}$ A	${ }_{96 \mathrm{~L}}^{96}$	PRL 762015 PRL 764675	F. Abe et al. F. Abe et al.	(CDF	Collab.)
DRUTSKOY	04	PRL 92051801	A. Drutskoy et al.	(BELLE COlab.)	ABE	96 Q	PR D54 6596	F. Abe et al.	(CDF	Collab.)
GARMASH	04	PR D69 012001	A. Garmash et al.	(BELLE Collab.)	ABE	96 R	PRL 775176	F. Abe et al.	(CDF	Collab.)
LEE MAJMDER	- 04	PRL 93211801	Y.-J. Lee et al.	(BELLE Collab.)	$\stackrel{\text { AdAM }}{\text { ALEXANDER }}$	96D ${ }_{96 \mathrm{~T}}$	PRHY 775000 PRL	W.P. Adam et al. J.exander et al.		Collab.)

ASNER	96	PR D53 1039	D．M．Asner et al．	（CLEO Collab．）
BARISH	96B	PRL 761570	B．C．Barish et al．	（CLEO Collab．）
BERGFELD	96B	PRL 774503	T．Bergfeld et al．	（CLEO Collab．）
BISHAI	96	PL B369 186	M．Bishai et al．	（CLEO Collab．）
BUSKULIC	96 J	ZPHY C71 31	D．Buskulic et al．	（ALEPH Collab．）
GIBAUT	96	PR D53 4734	D．Gibaut et al．	（CLEO Collab．）
PDG	96	PR D54 1	R．M．Barnett et al．	（PDG Collab．）
ABREU	95N	PL B357 255	P．Abreu et al．	（DELPHI Collab．）
ABREU	95Q	ZPHY C68 13	P．Abreu et al．	（DELPHI Collab．）
ADAM	95	ZPHY C68 363	W．Adam et al．	（DELPHI Collab．）
AKERS	95 T	ZPHY C67 379	R．Akers et al．	（OPAL Collab．）
ALBRECHT	95D	PL B353 554	H．Albrecht et al．	（ARGUS Collab．）
ALEXANDER	95	PL B341 435	J．Alexander et al．	（CLEO Collab．）
Also		PL B347 469 （erratum）	J．Alexander et al．	（CLEO Collab．）
ARTUSO	95	PRL 75785	M．Artuso et al．	（CLEO Collab．）
BARISH	95	PR D51 1014	B．C．Barish et al．	（CLEO Collab．）
BUSKULIC	95	PL B343 444	D．Buskulic et al．	（ALEPH Collab．）
ABE	94D	PRL 723456	F．Abe et al．	（CDF Collab．）
ALAM	94	PR D50 43	M．S．Alam et al．	（CLEO Collab．）
ALBRECHT	94D	PL B335 526	H．Albrecht et al．	（ARGUS Collab．）
ATHANAS	94	PRL 733503	M．Athanas et al．	（CLEO Collab．）
Also		PRL 743090 （erratum）	M．Athanas et al．	（CLEO Collab．）
PDG	94	PR D50 1173	L．Montanet et al．	（CERN，LBL，BOST＋）
STONE	94	HEPSY 93－11	S．Stone	
Published	B D	Decays，2nd Edition，World	Scientific，Singapore	
ABREU	93D	ZPHY C57 181	P．Abreu et al．	（DELPHI Collab．）
ABREU	93G	PL B312 253	P．Abreu et al．	（DELPHI Collab．）
ACTON	93 C	PL B307 247	P．D．Acton et al．	（OPAL Collab．）
ALBRECHT	93E	ZPHY C60 11	H．Albrecht et al．	（ARGUS Collab．）
ALEXANDER	93 B	PL B319 365	J．Alexander et al．	（CLEO Collab．）
AMMAR	93	PRL 71674	R．Ammar et al．	（CLEO Collab．）
BEAN	93B	PRL 702681	A．Bean et al．	（CLEO Collab．）
BUSKULIC	93D	PL B307 194	D．Buskulic et al．	（ALEPH Collab．）
Also		PL B325 537 （erratum）	D．Buskulic et al．	（ALEPH Collab．）
SANGHERA	93	PR D47 791	S．Sanghera et al．	（CLEO Collab．）
ALBRECHT	92 C	PL B275 195	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	92 E	PL B277 209	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	92 G	ZPHY C54 1	H．Albrecht et al．	（ARGUS Collab．）
BORTOLETTO	92	PR D45 21	D．Bortoletto et al．	（CLEO Collab．）
BUSKULIC	92 G	PL B295 396	D．Buskulic et al．	（ALEPH Collab．）
ALBRECHT	91 B	PL B254 288	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	91C	PL B255 297	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	91 E	PL B262 148	H．Albrecht et al．	（ARGUS Collab．）
BERKELMAN ＂Decays of	${ }_{8}^{91}$	ARNPS 411 esons＂	K．Berkelman，S．Stone	（CORN，SYRA）
FULTON	91	PR D43 651	R．Fulton et al．	（CLEO Collab．）
ALBRECHT	90B	PL B241 278	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	90 J	ZPHY C48 543	H．Albrecht et al．	（ARGUS Collab．）
ANTREASYAN	90 B	ZPHY C48 553	D．Antreasyan et al．	（Crystal Ball Collab．）
BORTOLETTO	90	PRL 642117	D．Bortoletto et al．	（CLEO Collab．）
Also		PR D45 21	D．Bortoletto et al．	（CLEO Collab．）
WEIR	90 B	PR D41 1384	A．J．Weir et al．	（Mark II Collab．）
ALBRECHT	89 G	PL B229 304	H．Albrecht et al．	（ARGUS Collab．）
AVERY	89 B	PL B223 470	P．Avery et al．	（CLEO Collab．）
BEBEK	89	PRL 628	C．Bebek et al．	（CLEO Collab．）
BORTOLETTO	89	PRL 622436	D．Bortoletto et al．	（CLEO Collab．）
ALBRECHT	88 F	PL B209 119	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	88 K	PL B215 424	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	87 C	PL B185 218	H．Albrecht et al．	（ARGUS Collab．）
ALBRECHT	87D	PL B199 451	H．Albrecht et al．	（ARGUS Collab．）
AVERY	87	PL B183 429	P．Avery et al．	（CLEO Collab．）
BEBEK	87	PR D36 1289	C．Bebek et al．	（CLEO Collab．）
ALAM	86	PR D34 3279	M．S．Alam et al．	（CLEO Collab．）
PDG	86	PL 170B 1	M．Aguilar－Benitez et al．	（CERN，CIT＋）
GILES	84	PR D30 2279	R．Giles et al．	（CLEO Collab．）

B^{0}

$$
l\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

Quantum numbers not measured．Values shown are quark－model predictions．
See also the $B^{ \pm} / B^{0}$ ADMIXTURE and $B^{ \pm} / B^{0} / B_{S}^{0} / b$－baryon AD－ MIXTURE sections．

See the Note＂Production and Decay of b－flavored Hadrons＂at the beginning of the $B^{ \pm}$Particle Listings and the Note on＂$B^{0}-\bar{B}^{0}$ Mixing＂near the end of the B^{0} Particle Listings．
B^{0} MASS
The fit uses $m_{B^{+}},\left(m_{B^{0}}-m_{B^{+}}\right)$，and $m_{B^{0}}$ to determine $m_{B^{+}}, m_{B^{0}}$ ，
and the mass difference．
VALUE（MeV）
．12 OUR FIT
5279.65 ± 0.12 OUR FIT
5279.63 ± 0.20 OUR AVERAGE
$5279.74 \pm 0.30 \pm 0.10$
$5279.6 \pm 0.2 \pm 1.0$
$5279.58 \pm 0.15 \pm 0.28$
$5279.63 \pm 0.53 \pm 0.33$
$5279.1 \pm 0.7 \pm 0.3$
$5281.3 \pm 2.2 \pm 1.4$

DOCUMENT ID
－TECN \qquad

－－We do not use the following data for averages，fits，limits，etc．$\bullet \bullet \bullet$
$5279.2 \pm 0.54 \pm 2.0 \quad 340 \quad$ ALAM $94 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$5278.0 \pm 0.4 \pm 2.0 \quad$ BORTOLETTO92 \quad CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$5279.6 \pm 0.7 \pm 2.0 \quad 40 \quad{ }^{6}$ ALBRECHT $90 」$ ARG $e^{+} e^{-} \rightarrow r(4 S)$
$5278.2 \pm 1.0 \pm 3.0 \quad 40 \quad$ ALBRECHT 87 C ARG $e^{+} e^{-} \rightarrow r(4 S)$
$5279.5 \pm 1.6 \pm 3.0 \quad 7 \quad 7$ ALBRECHT $87 \mathrm{D} \mathrm{ARG} e^{+} e^{-} \rightarrow r(4 S)$
$5280.6 \pm 0.8 \pm 2.0$ BEBEK 87 CLEO $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi p \bar{p}$ decays．
${ }^{2}$ Measured with $B_{d}^{0} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$decays．
${ }^{3}$ Uses $B^{0} \rightarrow J / \psi K^{0}$ fully reconstructed decays．
${ }^{4}$ Uses exclusively reconstructed final states containing a $J / \psi \rightarrow \mu^{+} \mu^{-}$decays．
${ }^{5}$ CSORNA 00 uses fully reconstructed $135 B^{0} \rightarrow J / \psi\left({ }^{\prime}\right) K_{S}^{0}$ events and invariant masses 6 without beam constraint．
6 ALBRECHT 90」 assumes 10580 for $\Upsilon(4 S)$ mass．Supersedes ALBRECHT 87C and 7ALBRECHT 87D．
${ }^{7}$ Found using fully reconstructed decays with J / ψ ．ALBRECHT 87D assume $m_{r(4 S)}=$ 10577 MeV．

$m_{B^{0}}-m_{B^{+}}$			
VALUE（MeV）	DOCUMENT ID	TECN	COMMENT
$\begin{aligned} & \hline 0.31 \pm 0.05 \text { OUR FIT } \\ & 0.32 \pm 0.05 \text { OUR AVERAGE } \end{aligned}$			
$0.20 \pm 0.17 \pm 0.11$	1 AAIJ 12E	LHCB	$p p$ at 7 TeV
$0.33 \pm 0.05 \pm 0.03$	2 AUBERT 08AF	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.53 \pm 0.67 \pm 0.14$	3 ACOSTA 06	CDF	$p \bar{p}$ at 1.96 TeV
$0.41 \pm 0.25 \pm 0.19$	ALAM 94	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.4 \pm 0.6 \pm 0.5$	BORTOLETTO92	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.9 \pm 1.2 \pm 0.5$	ALBRECHT 90」	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
$2.0 \pm 1.1 \pm 0.3$	4 BEBEK 87	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses exclusively reconstructed final states containing a $J / \psi \rightarrow \mu^{+} \mu^{-}$decay．			
${ }^{2}$ Uses the B－momentum distributions in the $e^{+} e^{-}$rest frame． ${ }^{3}$ Uses exclusively reconstructed final states containing a $J / \psi \rightarrow \mu^{+} \mu^{-}$decays．			
${ }^{4}$ BEBEK 87 actually measure the difference between half of $E_{C m}$ and the $B^{ \pm}$or B^{0} mass，so the $m_{B^{0}}-m_{B^{ \pm}}$is more accurate．Assume $m_{r(4 S)}=10580 \mathrm{MeV}$ ．			

$m_{B_{H}^{0}}-m_{B_{L}^{0}}$
See the $B^{0}-\bar{B}^{0}$ MIXING PARAMETERS section near the end of these B^{0} Listings．

B^{0} MEAN LIFE

See $B^{ \pm} / B^{0} / B_{S}^{0} / b$－baryon ADMIXTURE section for data on B－hadron mean life averaged over species of bottom particles．
＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Av－ eraging Group（HFLAV）and are described at https：／／hflav．web．cern．ch／． The averaging／rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors．

$\operatorname{VaLUE}\left(10^{-12} \mathrm{~s}\right)$	EVTS DOCUMENT ID		TECN	COMMENT
1．519 ± 0.004 OUR EVALUATION				
$1.515 \pm 0.005 \pm 0.006$	${ }^{1}$ SIRUNYAN	18BY	CMS	$p p$ at 8 TeV
$1.534 \pm 0.019 \pm 0.021$	${ }^{2}$ ABAZOV	15A	D0	$p \bar{p}$ at 1.96 TeV
$1.499 \pm 0.013 \pm 0.005$	${ }^{3}$ AAIJ	14E	LHCB	$p p$ at 7 TeV
$1.524 \pm 0.006 \pm 0.004$	${ }^{4}$ AAIJ	14E	LHCB	$p p$ at 7 TeV
$1.524 \pm 0.011 \pm 0.004$	${ }^{5}$ AAIJ	14R	LHCB	$p p$ at 7 TeV
$1.509 \pm 0.012 \pm 0.018$	${ }^{6}$ AAD	13 U	ATLS	$p p$ at 7 TeV
$1.508 \pm 0.025 \pm 0.043$	3 ABAZOV	12 U	D0	$p \bar{p}$ at 1.96 TeV
$1.507 \pm 0.010 \pm 0.008$	${ }^{7}$ AALTONEN	11	CDF	$p \bar{p}$ at 1.96 TeV
$1.414 \pm 0.018 \pm 0.034$	${ }^{8}$ ABAZOV	09E	D0	$p \bar{p}$ at 1.96 TeV
$1.504 \pm 0.013{ }_{-0.013}^{+0.018}$	${ }^{9}$ AUBERT	06 G	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.534 \pm 0.008 \pm 0.010$	${ }^{10}$ ABE	05B	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$1.531 \pm 0.021 \pm 0.031$	${ }^{11}$ AbDALLAH	04E	DLPH	$e^{+} e^{-} \rightarrow Z$
$1.523{ }_{-0.023}^{+0.024} \pm 0.022$	12 AUBERT	03C	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.533 \pm 0.034 \pm 0.038$	${ }^{13}$ AUBERT	03H	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.497 \pm 0.073 \pm 0.032$	14 ACOSTA	02C	CDF	$p \bar{p}$ at 1.8 TeV
$1.529 \pm 0.012 \pm 0.029$	${ }^{15}$ AUBERT	02H	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.546 \pm 0.032 \pm 0.022$	16 AUBERT	01F	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.541 \pm 0.028 \pm 0.023$	15 ABBIENDI，G	00b	OPAL	$e^{+} e^{-} \rightarrow Z$
$1.518 \pm 0.053 \pm 0.034$	17 BARATE	00R	ALEP	$e^{+} e^{-} \rightarrow Z$
$1.523 \pm 0.057 \pm 0.053$	18 AbBIENDI	991	OPAL	$e^{+} e^{-} \rightarrow Z$
$1.474 \pm 0.039{ }_{-0.051}^{+0.052}$	17 ABE	98 Q	CDF	$p \bar{p}$ at 1.8 TeV
$1.52 \pm 0.06 \pm 0.04$	${ }^{18}$ ACCIARRI	985	L3	$e^{+} e^{-} \rightarrow$ Z
$1.64 \pm 0.08 \pm 0.08$	18 ABE	97 J	SLD	$e^{+} e^{-} \rightarrow Z$
$1.532 \pm 0.041 \pm 0.040$	${ }^{19}$ ABREU	97 F	DLPH	$e^{+} e^{-} \rightarrow Z$
$1.25{ }_{-0.13}^{+0.15} \pm 0.05$	$121 \quad 14$ BUSKULIC	96 J	ALEP	$e^{+} e^{-} \rightarrow Z$
$1.49{ }_{-0.15}^{+0.17}{ }_{-0.06}^{+0.08}$	${ }^{20}$ BUSKULIC	96 J	ALEP	$e^{+} e^{-} \rightarrow Z$
$1.61{ }_{-0.13}^{+0.14} \pm 0.08$	17，21 ABREU	$95 Q$	DLPH	$e^{+} e^{-} \rightarrow Z$
$1.63 \pm 0.14 \pm 0.13$	${ }^{22}$ ADAM	95	DLPH	$e^{+} e^{-} \rightarrow Z$
$1.53 \pm 0.12 \pm 0.08$	17，23 AKERS	95T	OPAL	$e^{+} e^{-} \rightarrow Z$
－－We do not use the following data for averages，fits，limits，etc．－－				
$1.501_{-0.074}^{+0.078} \pm 0.050$	${ }^{3}$ ABAZOV	07 S	D0	Repl．by ABAZOV 12 U
$1.524 \pm 0.030 \pm 0.016$	${ }^{3}$ ABULENCIA	07A	CDF	Repl．by AALTONEN 11
$1.473_{-0.050}^{+0.052} \pm 0.023$	${ }^{8}$ ABAZOV	05B	D0	Repl．by ABAZOV 05w
$1.40{ }_{-0.10}^{+0.11} \pm 0.03$	${ }^{3}$ ABAZOV	05 C	D0	Repl．by ABAZOV 07S
$1.530 \pm 0.043 \pm 0.023$	${ }^{8}$ ABAZOV	05w	D0	Repl．by ABAzov 09E
$1.54 \pm 0.05 \pm 0.02$	${ }^{24}$ ACOSTA	05	CDF	Repl．by AALTONEN 11
$1.554 \pm 0.030 \pm 0.019$	16 ABE	02H	BELL	Repl．by ABE 05B
$1.58 \pm 0.09 \pm 0.02$	${ }^{14}$ ABE	98B	CDF	Repl．by ACOSTA 02C

Meson Particle Listings
B^{0}

1.54	± 0.08	± 0.06		${ }^{17}$ ABE	96 C	CDF	Repl．by ABE 98Q
1.55	± 0.06	± 0.03		${ }^{25}$ BUSKULIC	96J	ALEP	$e^{+} e^{-} \rightarrow$ Z
1.61	± 0.07	± 0.04		${ }^{17}$ BUSKULIC	96 J	ALEP	Repl．by BARATE 00R
1.62	± 0.12			${ }^{26}$ ADAM	95	DLPH	$e^{+} e^{-} \rightarrow$ Z
1.57	± 0.18	± 0.08	121	${ }^{14}$ ABE	94D	CDF	Repl．by ABE 98B
1.17	$\begin{aligned} & +0.29 \\ & { }_{-0.23} \end{aligned}$	± 0.16	96	17 ABREU	93D	DLPH	Sup．by ABREU 95Q
1.55	± 0.25	± 0.18	76	${ }^{22}$ Abreu	93 G	DLPH	Sup．by ADAM 95
1.5	$\begin{aligned} & +0.24 \\ & -0.23 \end{aligned}$	${ }_{-0.14}^{+0.12}$	78	17 ACton	93 C	OPAL	Sup．by AKERS 95T
1.52	$\begin{aligned} & +0.20 \\ & { }_{-0.18} \end{aligned}$	$\begin{array}{r} +0.07 \\ { }_{0.13}^{0} \end{array}$	77	${ }^{17}$ BUSKULIC	93D	ALEP	Sup．by BUSKULIC 96J
	$\begin{aligned} & +0.52 \\ & { }_{-0.36} \end{aligned}$	$\begin{array}{r} +0.16 \\ { }_{-0.14}^{0} \end{array}$	15	27 WAGNER	90	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
0.82	$\begin{aligned} & +0.57 \\ & { }_{-0.37} \end{aligned}$	± 0.27		28 AVERILL	89	HRS	$E_{\mathrm{cm}}^{e e}=29 \mathrm{GeV}$

$1.091 \pm 0.023 \pm 0.014$		${ }^{7}$ ABE	02H	BELL	Repl．by ABE 05B
$1.06 \pm 0.07 \pm 0.02$		${ }^{6}$ ABE	98B	CDF	Repl．by ACOSTA 02C
$1.01 \pm 0.11 \pm 0.02$		${ }^{3} \mathrm{ABE}$	96C	CDF	Repl．by ABE 98Q
$1.03 \pm 0.08 \pm 0.02$		12 BUSKULIC	96J	ALEP	$e^{+} e^{-} \rightarrow Z$
$0.98 \pm 0.08 \pm 0.03$		${ }^{3}$ BUSKULIC	96J	ALEP	Repl．by BARATE 00R
$1.02 \pm 0.16 \pm 0.05$	269	${ }^{6}$ ABE	94D	CDF	Repl．by ABE 98B
$1.11{ }_{-0.39}^{+0.51} \pm 0.11$	188	${ }^{3}$ ABREU	93D	DLPH	Sup．by ABREU 95Q
$1.01{ }_{-0.22}^{+0.29} \pm 0.12$	253	10 ABREU	93G	DLPH	Sup．by ADAM 95
${ }_{1.0} \begin{array}{r}+0.33 \\ -0.25\end{array} \pm 0.08$	130	ACTON	93C	OPAL	Sup．by AKERS 95T
$0.96 \underset{-0.15}{+0.19} \underset{-0.12}{+0.18}$	154	${ }^{3}$ BUSKULIC	93D	ALEP	Sup．by BUSKULIC 96」

${ }^{1}$ Measured using $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ and $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays．
${ }^{2}$ Measured using $B^{0} \rightarrow D^{-} \mu^{+} \nu X$ decays．
${ }^{3}$ Measured mean life using $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays．
${ }^{4}$ Measured using $B^{0} \rightarrow J / \psi K^{* 0}$ decays．
${ }^{5}$ Measured using $B^{0} \rightarrow K^{+} \pi^{-}$decays．
${ }^{6}$ Measured with $B_{d}^{0} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) K_{S^{0}}^{0}\left(\pi^{+} \pi^{-}\right)$decays．
${ }^{7}$ Measured mean life using fully reconstructed decays $\left(J / \psi K K^{(*)}\right)$ ．
${ }^{8}$ Measured mean life using $B^{0} \rightarrow J / \psi K^{* 0}$ decays．
${ }^{9}$ Measured using a simultaneous fit of the B^{0} lifetime and $\bar{B}^{0} B^{0}$ oscillation frequency Δm_{d} in the partially reconstructed $B^{0} \rightarrow D^{*-} \ell \nu$ decays．
${ }^{10}$ Measurement performed using a combined fit of $C P$－violation，mixing and lifetimes．
${ }^{11}$ Measurement performed using an inclusive reconstruction and B flavor identification technique．
${ }^{12}$ AUBERT $03 C$ uses a sample of approximately 14,000 exclusively reconstructed $B^{0} \rightarrow$ $D^{*}(2010)^{-} \ell \nu$ and simultaneously measures the lifetime and oscillation frequency．
${ }^{13}$ Measurement performed with decays $B^{0} \rightarrow D^{*-} \pi^{+}$and $B^{0} \rightarrow D^{*-} \rho^{+}$using a partial reconstruction technique．
${ }^{14}$ Measured mean life using fully reconstructed decays．
${ }^{15}$ Data analyzed using partially reconstructed $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}$ decays．
${ }^{16}$ Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively．
${ }^{17}$ Data analyzed using $D / D^{*} \ell$ X event vertices．
${ }^{18}$ Data analyzed using charge of secondary vertex．
${ }^{19}$ Data analyzed using inclusive $D / D^{*} \ell X$ ．
${ }^{20}$ Measured mean life using partially reconstructed $D^{*-} \pi^{+} \mathrm{X}$ vertices．
${ }^{21}$ ABREU 95Q assumes $\mathrm{B}\left(B^{0} \rightarrow D^{* *-} \ell^{+} \nu_{\ell}\right)=3.2 \pm 1.7 \%$ ．
${ }^{22}$ Data analyzed using vertex－charge technique to tag B charge．
${ }^{23}$ AKERS 95T assumes $\mathrm{B}\left(B^{0} \rightarrow D_{S}(*) D^{0(*)}\right)=5.0 \pm 0.9 \%$ to find B^{+} / B^{0} yield．
${ }^{24}$ Measured using the time－dependent angular analysis of $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ decays．
${ }^{25}$ Combined result of $D / D^{*} \ell x$ analysis，fully reconstructed B analysis，and partially recon－ structed $D^{*-} \pi^{+} \mathrm{X}$ analysis．
${ }^{26}$ Combined ABREU 95Q and ADAM 95 result．
${ }^{27}$ WAGNER 90 tagged B^{0} mesons by their decays into $D^{*-} e^{+} \nu$ and $D^{*-} \mu^{+} \nu$ where the D^{*-} is tagged by its decay into $\pi^{-} \bar{D}^{0}$ ．
${ }^{28}$ AVERILL 89 is an estimate of the B^{0} mean lifetime assuming that $B^{0} \rightarrow D^{*+}+\mathrm{X}$ always．
$\boldsymbol{\tau}_{B^{0}} / \boldsymbol{\tau} \bar{B}_{B^{0}}$

${ }^{1}$ Measured using $B^{0} \rightarrow J / \psi K^{* 0}$ decays．

MEAN LIFE RATIO $\tau_{B^{+}} / \tau_{B^{0}}$

$\tau_{\boldsymbol{B}^{+}} / \tau_{\boldsymbol{B}^{0}}$（direct measurements）

保 average and rescaling were performed by the Heavy Flavor Averaging Group（HFLAV） and are described at https：／／hflav．web．cern．ch／．The averaging／rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors．
$\frac{V A L U E}{\mathbf{1 . 0 7 6} \pm \mathbf{0 . 0 0 4} \text { OUR EVALUATION }}$
$1.074 \pm 0.005 \pm 0.003$
$1.088 \pm 0.009 \pm 0.004$
$1.080 \pm 0.016 \pm 0.014$
$1.066 \pm 0.008 \pm 0.008$
$1.060 \pm 0.021 \pm 0.024$
$1.093 \pm 0.066 \pm 0.028$
$1.082 \pm 0.026 \pm 0.012$
$1.085 \pm 0.059 \pm 0.018$
$1.079 \pm 0.064 \pm 0.041$
$1.110 \pm 0.056_{-0.030}^{+0.033}$
$1.09 \pm 0.07 \pm 0.03$
$1.01 \pm 0.07 \pm 0.06$
$1.27 \underset{-0.19}{+0.23}{ }_{-0.02}^{+0.03}$
$1.00 \begin{array}{r}+0.17 \\ \underset{-0.15}{+0.10}\end{array} \pm 0.10$
DOCUMENT ID TECN COMMENT
${ }^{1}$ AAIJ 2 AALTONEN 3 ABAZOV ${ }^{4} \mathrm{ABE}$ ${ }^{5}$ ABDALLAH
6 ACOSTA
7 AUBERT
${ }^{3}$ BARATE
${ }^{8}$ ABBIENDI
${ }^{3} \mathrm{ABE}$
${ }^{8}$ ACCIARRI
${ }^{8} \mathrm{ABE}$
${ }^{6}$ BUSKULIC
3，9 ABREU
10 ADAM
$1.06{ }_{-0.11}^{+0.13} \pm 0.10$
$0.99 \pm 0.14 \underset{-0.04}{+0.05} \quad$ 3，11 AKERS \quad 95T OPAL $e^{+} e^{-} \rightarrow Z$
14E LHCB $p p$ at 7 TeV
$11 \mathrm{CDF} p \bar{p}$ at 1.96 TeV
05D D0 $p \bar{p}$ at 1.96 TeV 05B BELL $e^{+} e^{-} \rightarrow r(4 S)$ 04E DLPH $e^{+} e^{-} \rightarrow Z$ 02C CDF $p \bar{p}$ at 1.8 TeV 01F BABR $e^{+} e^{-} \rightarrow r(4 S)$ 00R ALEP $e^{+} e^{-} \rightarrow Z$ 99」 OPAL $e^{+} e^{-} \rightarrow Z$ 98Q CDF $p \bar{p}$ at 1.8 TeV
98S L3 $\quad e^{+} e^{-} \rightarrow Z$
97」 SLD $e^{+} e^{-} \rightarrow Z$
96J ALEP $e^{+} e^{-} \rightarrow Z$
95Q DLPH $e^{+} e^{-} \rightarrow Z$
95 DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Measured using $B \rightarrow J / \psi K^{(*)}$ decays．
${ }^{2}$ Measured mean life using fully reconstructed decays $\left(J / \psi K^{(*)}\right)$ ．
${ }^{3}$ Data analyzed using $D / D^{*} \mu \times$ vertices．
${ }^{4}$ Measurement performed using a combined fit of $C P$－violation，mixing and lifetimes
${ }^{5}$ Measurement performed using an inclusive reconstruction and B flavor identification technique．
${ }^{6}$ Measured using fully reconstructed decays．
7 Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively．
${ }^{8}$ Data analyzed using charge of secondary vertex．
${ }^{9}$ ABREU 95Q assumes $\mathrm{B}\left(B^{0} \rightarrow D^{* *-} \ell^{+} \nu_{\ell}\right)=3.2 \pm 1.7 \%$ ．
${ }^{10}$ Data analyzed using vertex－charge technique to tag B charge．
11 AKERS 95т assumes $\mathrm{B}\left(B^{0} \rightarrow D_{S}{ }^{(*)} D^{0}(*)\right)=5.0 \pm 0.9 \%$ to find B^{+} / B^{0} yield．
${ }^{12}$ Combined result of $D / D^{*} \ell X$ analysis and fully reconstructed B analysis．

$\tau_{\boldsymbol{B}^{+}} / \tau_{\boldsymbol{B}^{0}}$（inferred from branching fractions）

These measurements are inferred from the branching fractions for semileptonic decay or other spectator－dominated decays by assuming that the rates for such decays are equal for B^{0} and B^{+}．We do not use measurements which assume equal production of B^{0} and B^{+}because of the large uncertainty in the production ratio．
＂OUR EVALUATION＂has been obtained by the Heavy Flavor Averaging Group （HFLAV）by taking into account correlations between measurements．

1.076 ± 0.034 OUR EVALUATION

1.07 ± 0.04 OUR AVERAGE

$1.07 \pm 0.04 \pm 0.03$
DOCUMENTID TECN COMMENT

URQUIJO 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$1.067 \pm 0.041 \pm 0.033 \quad$ AUBERT，B 06Y BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

$0.95{ }_{-0.080}^{+0.117} \pm 0.091$		${ }^{1}$ ARTUSO		CLE2	$+e^{-}$	$r(4$
$1.15 \pm 0.17 \pm 0.06$		2 JESSOP	97	CLE2	e	r
$0.93 \pm 0.18 \pm 0.12$		3 ATHANAS	94	CLE2	Sup．by	T
$0.91 \pm 0.27 \pm 0.21$		${ }^{4}$ ALBRECHT	92C	ARG	$+e^{-}$	r
1.0 ± 0.4	29	4，5 ALBRECHT	92 G	ARG	$e^{+} e^{-}$	$r($
$0.89 \pm 0.19 \pm 0.13$		${ }^{4}$ FULTON	91	CLEO	$e^{+} e^{-}$	r
$1.00 \pm 0.23 \pm 0.14$		${ }^{4}$ ALBRECHT	89L	ARG	$e^{+} e^{-}$	$r(4$
0.49 to 2.3 90		${ }^{6}$ BEAN	87	CLEO	$e^{+} e^{-}$	r
${ }^{1}$ ARTUSO 97 uses partial reconstruction of $B \rightarrow D^{*} \ell \nu_{\ell}$ and independent of B^{0} and B^{+}production fraction．						
${ }^{3}$ ATHANAS 94 uses events tagged by fully reconstructed B^{-}decays and partially or fully reconstructed B^{0} decays．						
${ }^{4}$ Assumes equal production of B^{0} and B^{+}．						
${ }^{5}$ ALBRECHT 92 G data analyzed using $B \rightarrow D_{S} \bar{D}, D_{s} \bar{D}^{*}, D_{S}^{*} \bar{D}, D_{S}^{*} \bar{D}^{*}$ events．						
${ }^{6}$ BEAN 87B assume the fraction of $B^{0} \bar{B}^{0}$ events at the $r(4 S)$ is 0.41 ．						

$\Delta \Gamma_{B_{d}^{0}} / \Gamma_{B_{d}^{0}}$

$\Gamma_{B_{d}^{0}}$ and $\Delta \Gamma_{B_{d}^{0}}$ are the decay rate average and difference between two $B_{d}^{0} C P$ eigenstates（light－heavy）．The $\lambda_{C P}$ characterizes B^{0} and \bar{B}^{0} decays to states of charmonium plus K_{L}^{0} ，see the review on＂$C P$ Violation＂ in the reviews section．
＂OUR EVALUATION＂has been obtained by the Heavy Flavor Averaging Group（HFLAV）by taking into account correlations between measure－ ments．
$\frac{\left.\text { VALUE（units } 10^{-2}\right)}{0.1 \pm 1.0 \text { OUR EVALUATION }} \frac{\text { DL\％CUMENT ID }}{\text { TECN COMMENT }}$
0.1 ± 1.0 OUR EVALUATION
0.1 ± 1.0 OUR AVERAGE
$3.4 \pm 2.3 \pm 2.4$
$-0.1 \pm 1.1 \pm 0.9$
1 SIRUNYAN
${ }^{2}$ AABOUD
3 AAIJ
$\begin{array}{lll}4.4 \pm 2.5 \pm 1.1 & 3 \text { AAIJ } \\ 1.7 & \pm 1.8 & \pm 1.1\end{array}$
$0.8 \pm 3.7 \pm 1.8 \quad 5$ AUBERT，B
0 ± 9

18By CMS $p p$ at 8 TeV 16 G ATLS $p p$ at $7,8 \mathrm{TeV}$ 14 E LHCB $p p$ at 7 TeV 12 BELL $e^{+} e^{-} \rightarrow r(4 S)$ 04C BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$ 03B DLPH $e^{+} e^{-} \rightarrow Z$

B^{0} DECAY MODES

\bar{B}^{0} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the $B^{ \pm} / B^{0}$ ADMIXTURE section.

The branching fractions listed below assume $50 \% B^{0} \bar{B}^{0}$ and $50 \% B^{+} B^{-}$ production at the $\gamma(4 S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4 S)$ production ratio to 50:50 and their assumed D, D_{S}, D^{*}, and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.
Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one

Mode
Fraction $\left(\Gamma_{i} / \Gamma\right) \quad$ Scale factor/

$$
\begin{aligned}
& \ell^{+} \nu_{\ell} X \\
& e^{+} \nu_{e} X_{C} \\
& D \ell^{+} \nu_{\ell} X \\
& D^{-} \ell^{+} \nu_{\ell} \\
& D^{-} \tau^{+} \nu_{\tau} \\
& D^{*}(2010)^{-} \ell^{+} \nu_{\ell} \\
& D^{*}(2010)^{-} \tau^{+} \nu_{\tau} \\
& \bar{D}^{0} \pi^{-} \ell^{+} \nu_{\ell} \\
& D_{0}^{*}(2300)^{-} \ell^{+} \nu_{\ell}, \quad D_{0}^{*-} \rightarrow \\
& \bar{D}^{0} \pi^{-} \\
& D_{2}^{*}(2460)^{-} \ell^{+} \nu_{\ell}, \quad D_{2}^{*-} \rightarrow \\
& \overline{D^{0}} \pi^{-} \\
& \bar{D}^{(*)} \mathrm{n} \pi \ell^{+} \nu_{\ell}(\mathrm{n} \geq \\
& \bar{D}^{* 0} \pi^{-} \ell^{+} \nu_{\ell} \\
& D_{1}(2420)^{-} \ell^{+} \nu_{\ell}, \quad D_{1}^{-} \rightarrow \\
& \bar{D}^{* 0} \pi^{-} \\
& D_{1}^{\prime}(2430)^{-} \ell^{+} \nu_{\ell}, \quad D_{1}^{\prime-} \rightarrow \\
& \overline{D^{* 0}} \pi^{-} \\
& D_{2}^{*}(2460)^{-} \ell^{+} \nu_{\ell}, \quad D_{2}^{*-} \rightarrow \\
& \overline{D^{* 0}} \pi^{-} \\
& D^{-} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell} \\
& D^{*-} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell} \\
& \rho^{-} \ell^{+} \nu_{\ell} \\
& \pi^{-} \ell^{+} \nu_{\ell} \\
& \pi^{-} \mu^{+} \nu_{\mu} \\
& \pi^{-} \tau^{+} \nu_{\tau}
\end{aligned}
$$

[a] ($10.33 \pm 0.28) \%$
$(10.1 \pm 0.4) \%$
(9.4 ± 0.9) \%
[a] ($2.31 \pm 0.10) \%$ (1.08 ± 0.23) \%
[a] ($5.05 \pm 0.14) \%$ $(1.57 \pm 0.09) \% \quad \mathrm{~S}=1.1$ $(4.1 \pm 0.5) \times 10^{-3}$ $(3.0 \pm 1.2) \times 10^{-3} \quad \mathrm{~S}=1.8$
$(1.21 \pm 0.33) \times 10^{-3} \quad \mathrm{~S}=1.8$
(2.3 ± 0.5) \%
$(5.8 \pm 0.8) \times 10^{-3} \quad \mathrm{~S}=1.4$
($2.80 \pm 0.28) \times 10^{-3}$
$(3.1 \pm 0.9) \times 10^{-3}$
$(6.8 \pm 1.2) \times 10^{-4}$
$(1.3 \pm 0.5) \times 10^{-3}$
$(1.4 \pm 0.5) \times 10^{-3}$
[a] $\quad(\quad 2.94 \pm 0.21) \times 10^{-4}$
[a] $(1.50 \pm 0.06) \times 10^{-4}$
$<2.5 \quad \times 10^{-4} \quad \mathrm{CL}=90 \%$

Inclusive modes

		lusive mode	
Γ_{22}	$K^{ \pm} X$	$(78 \pm 8) \%$	
Γ_{23}	$D^{0} X$	$(8.1 \pm 1.5) \%$	
Γ_{24}	$\bar{D}^{0} X$	$(47.4 \pm 2.8) \%$	
Γ_{25}	$D^{+} X$	<3.9 \%	CL=90\%
Γ_{26}	$D^{-} X$	$(36.9 \pm 3.3) \%$	
Γ_{27}	$D_{s}^{+} X$	$(10.3 \pm 1.1) \%$	
Γ_{28}	$D_{s}^{-} X$	<2.6 \%	CL=90\%
Γ_{29}	$\wedge_{c}^{+} X$	<3.1 \%	$\mathrm{CL}=90 \%$
Γ_{30}	$\bar{\Lambda}_{c}^{-} X$	$(5.0 \pm 2.1) \%$	
Γ_{31}	$\bar{c} X$	(95 ± 5) \%	
Γ_{32}	$c X$	(24.6 ± 3.1) \%	
Γ_{33}	$\bar{c} / c X$	(119 $\pm 6) \%$	

Meson Particle Listings
B^{0}

Γ_{94}	$D_{s 0}(2317)^{+} D^{-}, \quad D_{s 0}^{+} \rightarrow D_{s}^{*+} \gamma$		9.5×10^{-4}	CL＝90\％		$\left[\pi^{+} K^{-} \pi^{+} \pi^{-}\right]_{D} K^{* 0}$		
Γ_{95}	$D_{s 0}(2317)^{+} D^{*}(2010)^{-}, D_{s 0}^{+} \rightarrow$		$1.5 \pm 0.6) \times 10^{-3}$		Γ_{14}	$\left[K^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} K^{* 0}$		
	$D_{s}^{+} \pi^{0}$				Γ_{149}	$\bar{D}^{0} \pi^{0}$	$(2.63 \pm 0.14) \times 10^{-4}$	
「96	$D_{s J}(2457)^{+} D^{-}$		$3.5 \pm 1.1) \times 10^{-3}$		Γ_{15}	$\bar{D}^{0} \rho^{0}$	$(3.21 \pm 0.21) \times 10^{-4}$	
Γ_{97}	$D_{s J}(2457)^{+} D^{-}, D_{s J}^{+} \rightarrow D_{s}^{+} \gamma$		$(6.5 \pm 1.7) \times 10^{-4}$			$\bar{D}^{0} f_{2}$	$(1.56 \pm 0.21) \times 10^{-4}$	S $=25$
「98	$D_{s J}(2457)^{+} D^{-}, D_{s J}^{+} \rightarrow$	＜	6.0×10^{-4}	CL＝90\％	Γ_{15}	$\bar{D}^{0} \eta^{\prime}$	（ $1.38 \pm 0.16) \times 10^{-4}$	$\mathrm{S}=1.3$
	$D_{s}^{*+} \gamma$				Γ_{15}	$\bar{D}^{0} \omega$	$(2.54 \pm 0.16) \times 10^{-4}$	
「99	$D_{s J}(2457)^{+} D^{-}, \quad D_{s J}^{+} \rightarrow$	＜	2.0×10^{-4}	CL＝90\％	Γ_{155}	$D^{0} \phi$	$<2.3 \times 10^{-6}$	$\mathrm{CL}=95 \%$
	$D_{s}^{+} \pi^{+} \pi^{-}$			CL－90\％	Γ_{15}	$D^{0} K^{+} \pi^{-}$	$(5.3 \pm 3.2) \times 10^{-6}$	
Γ_{100}	$D_{s J}(2457)^{+} D^{-}, D_{s,}^{+} \rightarrow$	＜	3.6×10^{-4}	CL＝90\％	Γ_{15}	$D^{0} K^{*}(892)^{0}$	$\left(2.2 \pm \begin{array}{l}0.9 \\ 1.0\end{array}\right) \times 10^{-6}$	
	$D_{s}^{+} \pi^{0}$				Γ_{158}	$\bar{D}^{*}{ }^{*} \gamma$	＜ 2.5×10^{-5}	CL＝90\％
$「_{101}$	$D^{*}(2010)^{-} D_{s J}(2457)^{+}$		$9.3 \pm 2.2) \times 10^{-3}$		Γ_{15}	$\bar{D}^{*}(2007)^{0} \pi^{0}$	$(2.2 \pm 0.6) \times 10^{-4}$	$\mathrm{S}=2.6$
Γ_{102}	$D_{s J}(2457)^{+} D^{*}(2010)$,		$2.3+0.9) \times 10^{-3}$		Γ_{16}	$\bar{D}^{*}(2007)^{0} \rho^{0}$	$<5.1 \times 10^{-4}$	$\mathrm{CL}=90 \%$
	$D_{s J}(2457)$ $D_{s}^{+} \gamma$				Γ_{16}	$\begin{aligned} & \bar{D}^{*}(2007)^{0} \eta \\ & \bar{D}^{*}(2007)^{0} \eta^{\prime} \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} 2.3 \pm 0.6) \times 10^{-4} \\ (1.40 \pm 0.22) \times 10^{-4} \end{array}, ~\right. \end{aligned}$	$\mathrm{S}=2.8$
Γ_{103}	$D^{-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	（	$2.8 \pm 0.7) \times 10^{-4}$		Γ_{16}	$\bar{D}^{*}(2007)^{0} \pi^{+} \pi^{-}$	$(6.2 \pm 2.2) \times 10^{-4}$	
	$D^{* 0} K^{+}+D^{*+} K^{0}$				Γ_{16}	$\bar{D}^{*}(2007)^{0} K^{0}$	$(3.6 \pm 1.2) \times 10^{-5}$	
Γ_{104}	$D^{-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	（	$1.7 \pm 0.6) \times 10^{-4}$		Γ_{165}	$\bar{D}^{*}(2007)^{0} K^{*}(892)^{0}$	$<6.9 \times 10^{-5}$	CL＝90\％
	$D^{* 0} K^{+}$，				Γ_{166}	$D^{*}(2007)^{0} K^{*}(892)^{0}$	$<4.0 \times 10^{-5}$	CL＝90\％
Γ_{105}	$D^{-} D_{S 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	（	$2.6 \pm 1.1) \times 10^{-4}$		Γ_{16}	$D^{*}(2007)^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	$(2.7 \pm 0.5) \times 10^{-3}$	
	$D^{*+} K^{0}$				Γ_{16}	$D^{*}(2010)^{+} D^{*}(2010)^{-}$	$(8.0 \pm 0.6) \times 10^{-4}$	
Γ_{106}	$D^{*}(2010)^{-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	（	$5.0 \pm 1.4) \times 10^{-4}$		Γ_{16}	$\bar{D}^{*}(2007)^{0} \omega$	$(3.6 \pm 1.1) \times 10^{-4}$	$\mathrm{S}=3.1$
	$D^{* 0} K^{+}+D^{*+} K^{0}$				Γ_{17}	$D^{*}(2010)^{+} D^{-}$	$(6.1 \pm 1.5) \times 10^{-4}$	$\mathrm{S}=1.6$
Γ_{107}	$D^{*}(2010)^{-} D_{s 1}(2536)^{+}$，	（	$3.3 \pm 1.1) \times 10^{-4}$		Γ_{171}	$D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}$	$<9 \times 10^{-5}$	CL＝90\％
	$D_{s 1}^{+} \rightarrow D^{* 0} K^{+}$				Γ_{17}	$D^{-} D^{0} K^{+}$	（ $1.07 \pm 0.11) \times 10^{-3}$	
Γ_{108}	$D^{*-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	（	$5.0 \pm 1.7) \times 10^{-4}$		Γ_{17}	$D^{-} D^{*}(2007)^{0} K^{+}$	$(3.5 \pm 0.4) \times 10^{-3}$	
					Γ_{17}	$D^{*}(2010)^{-} D^{0} K^{+}$	$(2.47 \pm 0.21) \times 10^{-3}$	
Γ_{109}	$D^{-} D_{s J}(2573)^{+}, D_{s J}^{+} \rightarrow$	（	$3.4 \pm 1.8) \times 10^{-5}$		Γ_{175}	$D^{*}(2010)^{-} D^{*}(2007)^{0} K^{+}$	（ $1.06 \pm 0.09) \%$	
	$D^{0} K^{+}$				Γ_{17}	$D^{-} D^{+} K^{0}$	$(7.5 \pm 1.7) \times 10^{-4}$	
Γ_{110}	$D^{*}(2010)^{-} D_{s J}(2573)^{+}$,	$<$	2×10^{-4}	$\mathrm{CL}=90 \%$	Γ_{17}	$D^{*}(2010)^{-} D^{+} K^{0}+$	$(6.4 \pm 0.5) \times 10^{-3}$	
	$D_{s J}^{+} \rightarrow D^{0} K^{+}$					$D^{-} D^{*}(2010)^{+} K^{0}$		
Γ_{111}	$D^{-} D_{s J}(2700)^{+}, \quad D_{s J}^{+} \rightarrow$	（	$7.1 \pm 1.2) \times 10^{-4}$		Γ_{178}	$D^{*}(2010)^{-} D^{*}(2010)^{+} K^{0}$	$(8.1 \pm 0.7) \times 10^{-3}$	
${ }_{111}$	$D^{0} K^{+}$	（	$7.1 \pm 1.2) \times 10$		Γ_{17}	$D^{*-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow$	$(8.0 \pm 2.4) \times 10^{-4}$	
Γ_{112}	$D^{+} \pi^{-}$		$7.4 \pm 1.3) \times 10^{-7}$			$\bar{D}^{0} D^{0}{D^{0}}^{*+} K^{0}$		
Γ_{113}	$D_{s}^{+} \pi^{-}$	（	$2.16 \pm 0.26) \times 10^{-5}$		18	$D^{0} D^{*}(2007)^{0} K^{0}$	$\begin{aligned} & \left(\begin{array}{l} 2.7 \pm 1.1 \end{array}\right) \times 10^{-4} \\ & (1.1+0.5) \times 10^{-3} \end{aligned}$	
Γ_{114}	$D_{s}^{*+} \pi^{-}$	（	$2.1 \pm 0.4) \times 10^{-5}$	$\mathrm{S}=1.4$		$\frac{D^{*}}{D^{*}}(2007)^{0} K^{0}+{ }^{0}$		
Γ_{115}	$D_{s}^{+} \rho^{-}$	＜	2.4×10^{-5}	CL＝90\％	Γ_{182}	$\bar{D}^{*}(2007)^{0} D^{*}(2007)^{0} K^{0}$	$(2.4 \pm 0.9) \times 10^{-3}$	
Γ_{116}	$D_{s}^{*+} \rho^{-}$	（	$4.1 \pm 1.3) \times 10^{-5}$		Γ_{18}	$\left(\bar{D}+\bar{D}^{*}\right)\left(D+D^{*}\right) K$	（ 3．68土 0．26）\％	
Γ_{117}	$D_{s}^{+} a_{0}^{-}$	$<$	1.9×10^{-5}	CL＝90\％				
Γ_{118}	$D_{s}^{*+} a_{0}^{-}$	$<$	3.6×10^{-5}	CL＝90\％	Γ_{18}	$\eta_{C} K^{0} \quad \text { Charmoni }$	$(8.0 \pm 1.1) \times 10^{-4}$	
Γ_{119}	$D_{s}^{+} a_{1}(1260)^{-}$	＜	2.1×10^{-3}	CL＝90\％	Γ_{185}	$\eta_{c}(1 S) K^{+} \pi^{-}$	$(6.0 \pm 0.7) \times 10^{-4}$	
Γ_{120}	$D_{s}^{*+} a_{1}(1260)^{-}$	＜	1.7×10^{-3}	CL＝90\％	Γ_{186}	$\eta_{c}(1 S) K^{+} \pi^{-}(\mathrm{NR})$	$(6.2 \pm 1.3) \times 10^{-5}$	
Γ_{121}	$D_{s}^{+} a_{2}^{-}$	＜	1.9×10^{-4}	CL＝90\％	Γ_{18}	$X(4100)^{-} K^{+}, X^{-} \rightarrow \eta_{c} \pi^{-}$	$(2.0 \pm 1.0) \times 10^{-5}$	
Γ_{122}	$D_{s}^{*+} a_{2}^{-}$	＜	2.0×10^{-4}	CL＝90\％	Γ_{18}	$\eta_{c}(1 S) K^{*}(1410)^{0}$	$(1.9 \pm 1.5) \times 10^{-4}$	
Γ_{123}	$D_{s}^{-} K^{+}$		$2.7 \pm 0.5) \times 10^{-5}$	$\mathrm{S}=2.7$	Γ_{18}	$\eta_{C}(1 S) K_{0}^{*}(1430)^{0}$	$(1.6 \pm 0.4) \times 10^{-4}$	
Γ_{124}	$D_{s}^{*-} K^{+}$		$2.19 \pm 0.30) \times 10^{-5}$		Γ_{19}	$\eta_{C}(1 S) K_{2}^{*}(1430)^{0}$	$(4.9 \pm 2.7) \times 10^{-5}$	
Γ_{125}	$D_{s}^{-} K^{*}(892)^{+}$		$3.5 \pm 1.0) \times 10^{-5}$		Γ_{191}	$\eta_{c}(1 S) K^{*}(1680)^{0}$	$\left(\begin{array}{ll}3 & \pm\end{array}\right) \times 10^{-5}$	
Γ_{126}	$D_{s}^{*-} K^{*}(892)^{+}$		$(3.2 \pm 1.3) \times 10^{-5}$		Γ_{192}	$\eta_{c}(1 S) K_{0}^{*}(1950)^{0}$	$(4.4 \pm 4.0) \times 10^{-5}$	
Γ_{127}	$D_{s}^{-} \pi^{+} K^{0}$		$9.7 \pm 1.4) \times 10^{-5}$		「193	$\eta_{c} K^{*}(892)^{0}$	$(5.2+0.7) \times 10^{-4}$	$\mathrm{S}=1.5$
Γ_{128}	$D_{s}^{*-} \pi^{+} K^{0}$	＜	1.10×10^{-4}	CL＝90\％	19	$\eta_{C} K(892)$	$(5.2-0.8) \times 10^{-4}$	$\mathrm{S}=1.5$
Γ_{129}	$D_{s}^{-} K^{+} \pi^{+} \pi^{-}$	（	$1.7 \pm 0.5) \times 10^{-4}$		Γ_{19}	$\eta_{c}(2 S) K_{S}^{0}, \eta_{c} \rightarrow p \bar{p} \pi^{+} \pi^{-}$	$(4.2 \pm 1.4) \times 10^{-7}$	
Γ_{130}	$D_{s}^{-} \pi^{+} K^{*}(892)^{0}$	$<$	3.0×10^{-3}	$\mathrm{CL}=90 \%$	Γ_{195}	$\eta_{c}(2 S) K^{* 0}$	$<3.9 \times 10^{-4}$	CL＝90\％
Γ_{131}	$D_{S}^{*-} \pi^{+} K^{*}(892)^{0}$	$<$	1.6×10^{-3}	CL＝90\％	Γ_{196}	$h_{c}(1 P) K_{S}^{0}$	$<1.4 \times 10^{-5}$	
Γ_{132}	$\bar{D}^{0} K^{0}$		$5.2 \pm 0.7) \times 10^{-5}$		Γ_{19}	$h_{c}(1 P) K^{* 0}$	$<4 \times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{133}	$\bar{D}^{0} K^{+} \pi^{-}$		$8.8 \pm 1.7) \times 10^{-5}$		「198	$J / \psi(1 S) K^{0}$	（ $8.68 \pm 0.30) \times 10^{-4}$	
Γ_{134}	$\bar{D}^{0} K^{*}(892)^{0}$		$4.5 \pm 0.6) \times 10^{-5}$		Γ_{19}	$J / \psi(1 S) K^{+} \pi^{-}$	（ $1.15 \pm 0.05) \times 10^{-3}$	
Γ_{135}	$\bar{D}^{0} K^{*}(1410)^{0}$	＜	6.7×10^{-5}	CL＝90\％	$\Gamma 20$	$J / \psi(1 S) K^{*}(892)^{0}$	$(1.27 \pm 0.05) \times 10^{-3}$	
Γ_{136}	$\bar{D}^{0} K_{0}^{*}(1430)^{0}$		$7 \pm 7) \times 10^{-6}$		$\Gamma 20$	$J / \psi(1 S) \eta K_{S}^{0}$	$(5.4 \pm 0.9) \times 10^{-5}$	
Γ_{137}	$\bar{D}^{0} K_{2}^{*}(1430)^{0}$		$2.1 \pm 0.9) \times 10^{-5}$		Γ_{202}	$J / \psi(1 S) \eta^{\prime} K_{S}^{0}$	$<2.5 \times 10^{-5}$	CL＝90\％
Γ_{138}	$D_{0}^{*}(2300)^{-} K^{+}, D_{0}^{*-} \rightarrow$	（	$1.9 \pm 0.9) \times 10^{-5}$		$\Gamma 20$	$J / \psi(1 S) \phi K^{0}$	$(4.9 \pm 1.0) \times 10^{-5}$	$\mathrm{S}=1.3$
	$\bar{D}^{0} \pi^{-}$				「20	$J / \psi(1 S) \omega K^{0}$	$(2.3 \pm 0.4) \times 10^{-4}$	
Γ_{139}	$D_{2}^{*}(2460)^{-} K^{+}, D_{2}^{*-} \rightarrow$	（	$2.03 \pm 0.35) \times 10^{-5}$		Γ_{205}	$\chi_{c 1}(3872) K^{0}, \chi_{c 1} \rightarrow J / \psi \omega$	$(6.0 \pm 3.2) \times 10^{-6}$	
	$\bar{D}^{0} \pi^{-}$				$\Gamma 206$	$X(3915), X \rightarrow J / \psi \omega$	$(2.1 \pm 0.9) \times 10^{-5}$	
Γ_{140}	$D_{3}^{*}(2760)^{-} K^{+}, D_{3}^{*-} \rightarrow$	$<$	1.0×10^{-6}	$\mathrm{CL}=90 \%$	$\Gamma 20$	$J / \psi(1 S) K(1270)^{0}$	$(1.3 \pm 0.5) \times 10^{-3}$	
	$\bar{D}^{0} \pi^{-}$				Γ_{208}	$J / \psi(1 S) \pi^{0}$	（ $1.66 \pm 0.10) \times 10^{-5}$	
Γ_{141}	$\bar{D}^{0} K^{+} \pi^{-}$nonresonant	$<$	3.7×10^{-5}	CL＝90\％	Γ_{20}	$J / \psi(1 S) \eta$	（ $1.08 \pm 0.23) \times 10^{-5}$	$\mathrm{S}=1.5$
「142	${ }^{\left(K^{+} K^{-}\right]_{D} K^{*}(892)^{0}}$		$4.2 \pm 0.7) \times 10^{-5}$		Γ_{210}	$J / \psi(1 S) \pi^{+} \pi^{-}$	（ 3．94土 0．17）$\times 10^{-5}$	
Γ_{143}	$\left[\pi^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}$	（	$6.0 \pm 1.1) \times 10^{-5}$		Γ_{211}	$J / \psi(1 S) \pi^{+} \pi^{-}$nonresonant	$<1.2 \times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{144}	$\left[\pi^{+} K^{-}\right]_{D} K^{*}(892)^{0}$				Γ_{21}	$J / \psi(1 S) f_{0}(500), f_{0} \rightarrow \pi \pi$	$\left(8.8 \pm{ }_{-}^{1.2}\right) \times 10^{-6}$	
Γ_{145}	$\left[K^{+} \pi^{-}\right]_{D} K^{*}(892)^{0}$					J／$/ 1 S) f_{0}(500), f_{0} \rightarrow \pi \pi$	$(3.8-1.6) \times 10-6$	
Γ_{146}	$\left[\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right]_{D} K^{* 0}$		$4.6 \pm 0.9) \times 10^{-5}$		Γ_{213}	$J / \psi(1 S) f_{2}$	$(3.3 \pm 0.5) \times 10^{-6}$	$\mathrm{S}=1.5$

Meson Particle Listings
B^{0}

	$p p \bar{p} \bar{p}$	＜	2.0	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{471}	$p \bar{\Lambda} \pi^{-}$	（	$3.14 \pm$	$0.29) \times 10^{-6}$	
Γ_{472}	$p \bar{\Lambda} \pi^{-} \gamma$	＜	6.5	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{473}	$p \bar{\Sigma}(1385)^{-}$	＜	2.6	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{474}	$\Delta(1232)^{+} \bar{p}+\Delta(1232)^{-} p$	＜	1.6	$\times 10^{-6}$	
「475	$\Delta^{0} \bar{\Lambda}$	＜	9.3	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{476}	$p \bar{\Lambda} K^{-}$	＜	8.2	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{477}	$p \bar{\Lambda} D^{-}$		$2.5 \pm$	$0.4) \times 10^{-5}$	
Γ_{478}	$p \bar{\Lambda} D^{*-}$		$3.4 \pm$	$0.8) \times 10^{-5}$	
「479	$p \bar{\Sigma}^{0} \pi^{-}$	＜	3.8	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{480}	入＾	＜	3.2	$\times 10^{-7}$	$\mathrm{CL}=90 \%$
Γ_{481}	$\bar{\wedge} \wedge K^{0}$		$4.8+$	$\left.{ }_{0.9}^{1.0}\right) \times 10^{-6}$	
Γ_{482}	$\bar{\Lambda} \wedge K^{* 0}$			0．9 0.8$) \times 10^{-6}$	
Γ_{483}	$\bar{\wedge} \wedge D^{0}$	（	$1.00 \pm$	$\left.{ }_{0.26}^{0.30}\right) \times 10^{-5}$	
Γ_{484}	$D^{0} \underline{\Sigma}^{0} \bar{\Lambda}+$ c．c．	＜	3.1	$\times 10^{-5}$	CL＝90\％
Γ_{485}	$\Delta^{0} \bar{\Delta}^{0}$	＜	1.5	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{486}	$\Delta^{++} \bar{\Delta}^{\text {a }}$	＜	1.1	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「487	$\bar{D}^{0} p \bar{p}$	（	$1.04 \pm$	$0.07) \times 10^{-4}$	
Γ_{488}	$\underline{D}_{s}^{-} \bar{\Lambda} p$		$2.8 \pm$	$0.9) \times 10^{-5}$	
Γ_{489}	$\bar{D}^{*}(2007)^{0} p \bar{p}$		$9.9 \pm$	1．1）$\times 10^{-5}$	
Γ_{490}	$D^{*}(2010)^{-} p \bar{n}$		$1.4 \pm$	$0.4) \times 10^{-3}$	
「491	$D^{-} p \bar{p} \pi^{+}$		$3.32 \pm$	0．31）$\times 10^{-4}$	
「492	$D^{*}(2010)^{-} p \bar{p} \pi^{+}$		$4.7 \pm$	$0.5) \times 10^{-4}$	$\mathrm{S}=1.2$
「493	$\bar{D}^{0} p \bar{p} \pi^{+} \pi^{-}$		$3.0 \pm$	$0.5) \times 10^{-4}$	
$\Gamma 494$	$\bar{D}^{* 0} p \bar{p} \pi^{+} \pi^{-}$		$1.9 \pm$	$0.5) \times 10^{-4}$	
「495	$\Theta_{c} \bar{p} \pi^{+}, \Theta_{c} \rightarrow D^{-} p$	＜	9	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
「496	$\Theta_{c} \bar{p} \pi^{+}, \Theta_{c} \rightarrow D^{*-} p$	＜	1.4	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
「497	$\bar{\Sigma}_{c}^{--} \Delta^{++}$	$<$	8	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
「498	$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}$	（	1．02 \pm	$0.14) \times 10^{-3}$	$\mathrm{S}=1.3$
「499	$\bar{\Lambda}_{c}^{-} p$		1．54 \pm	$0.18) \times 10^{-5}$	
Γ_{500}	$\bar{\Lambda}_{c}^{-} p \pi^{0}$		1．55 \pm	$0.19) \times 10^{-4}$	
Γ_{501}	$\Sigma_{c}(2455)^{-} p$	＜	2.4	$\times 10^{-5}$	
「502	$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{0}$	＜	5.07	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{503}	$\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$<$	2.74	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{504}	$\overline{\bar{\Lambda}}_{c}^{-} p \pi^{+} \pi^{-}$（nonresonant）		$5.5 \pm$	$1.0) \times 10^{-4}$	$\mathrm{S}=1.3$
Γ_{505}	$\bar{\Sigma}_{\bar{\Sigma}}(2520)^{--} p \pi^{+}$		1．02 \pm	$0.18) \times 10^{-4}$	
Γ_{506}	$\bar{\Sigma}_{\bar{\Sigma}}^{c}(2520)^{0} p \pi^{-}$	＜	3.1	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{507}	$\bar{\Sigma}_{\underline{c}}(2455)^{0} p \pi^{-}$		$1.08 \pm$	0．16）$\times 10^{-4}$	
Γ_{508}	$\underset{p \pi^{-}}{\Sigma_{c}(2455)^{0}} N^{0}, \quad N^{0} \rightarrow$		$6.4 \pm$	$1.7) \times 10^{-5}$	
「509	$\bar{\Sigma}_{c}(2455)^{--} p \pi^{+}$		1．83	$0.24) \times 10^{-4}$	
Γ_{510}	$\Lambda_{c}^{-} p K^{+} \pi^{-}$		$3.4 \pm$	$0.7) \times 10^{-5}$	
Γ_{511}	$\begin{gathered} \bar{\Sigma}_{c}(2455)^{--} p K^{+}, \bar{\Sigma}_{c}^{--} \rightarrow \\ \bar{\Lambda}_{c}^{-} \pi^{-} \end{gathered}$		$8.8 \pm$	$2.5) \times 10^{-6}$	
Γ_{512}	$\Lambda_{c}^{-} p K^{*}(892)^{0}$	＜	2.42	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{513}	$\Lambda_{c}^{-} p K^{+} K^{-}$		$2.0 \pm$	$0.4) \times 10^{-5}$	
Γ_{514}	$\Lambda_{c}^{-} p \phi$	＜	1.0	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{515}	$\Lambda_{c}^{-} p \bar{p} p$	＜	2.8	$\times 10^{-6}$	
Γ_{516}	$\bar{\Lambda}_{c}^{-} \wedge K^{+}$		$4.8 \pm$	1．1）$\times 10^{-5}$	
	$\bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$	$<$	1.6	$\times 10^{-5}$	CL＝95\％
Γ_{518}	$\bar{\Lambda}_{C}(2593)^{-} / \bar{\Lambda}_{C}(2625)^{-} p$	＜	1.1	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
	$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}$		$1.2 \pm$	$0.8) \times 10^{-3}$	
	$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}$，$\overline{\bar{E}}_{c}^{-} \rightarrow \overline{\bar{E}}^{+} \pi^{-} \pi^{-}$		$2.4 \pm$	$1.1) \times 10^{-5}$	$\mathrm{S}=1.8$
	$\overline{\bar{E}}_{c}^{-} \Lambda_{c}^{+}, \overline{\bar{\Xi}}_{c}^{-} \rightarrow \bar{p} K^{+} \pi^{-}$			$1.7) \times 10^{-6}$	
Γ_{522}	$\Lambda_{c}^{+} \Lambda_{c}^{-} K^{0}$		$4.0 \pm$	$0.9) \times 10^{-4}$	
	$\overline{\bar{E}}_{c}(2930)^{-} \Lambda_{c}^{+}, \overline{\bar{X}}_{c}^{-} \rightarrow \Lambda_{c}^{-} K^{0}$		$2.4 \pm$	$0.6) \times 10^{-4}$	

Lepton Family number（ $L F$ ）or Lepton number（ L ）or Baryon number（ B ） violating modes，or／and $\Delta B=1$ weak neutral current（ $B 1$ ）modes

Γ_{524}	$\gamma \gamma$	B1	＜	3.2	$\times 10^{-7}$	CL＝90\％
Γ_{525}	$e^{+} e^{-}$	B1	$<$	8.3	$\times 10^{-8}$	CL＝90\％
Γ_{526}	$e^{+} e^{-} \gamma$	B1	$<$	1.2	$\times 10^{-7}$	CL＝90\％
Γ_{527}	$\mu^{+} \mu^{-}$	B1	$($	1.1	$\times 10^{-10}$	S＝1．6
Γ_{528}	$\mu^{+} \mu^{-} \gamma$	B1	＜	1.6	$\times 10^{-7}$	CL＝90\％
Γ_{529}	$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	＜	6.9	$\times 10^{-10}$	CL＝95\％
Γ_{530}	$\begin{aligned} S P, \\ P \rightarrow \mu^{+} \mu^{-} \mu^{-} \\ P \end{aligned}$	B1	［j］＜	6.0	$\times 10^{-10}$	CL＝95\％

Γ_{531}	$\tau^{+} \tau^{-}$	B1	＜	2.1	$\times 10^{-3}$	CL＝95\％
Γ_{532}	$\pi^{0} \ell^{+} \ell^{-}$	B1	＜	5.3	$\times 10^{-8}$	CL＝90\％
Γ_{533}	$\pi^{0} e^{+} e^{-}$	B1	＜	8.4	$\times 10^{-8}$	CL＝90\％
Γ_{534}	$\pi^{0} \mu^{+} \mu^{-}$	B1	＜	6.9	$\times 10^{-8}$	CL＝90\％
Γ_{535}	$\eta \ell^{+} \ell^{-}$	B1	＜	6.4	$\times 10^{-8}$	CL＝ 90%
Γ_{536}	$\eta e^{+} e^{-}$	B1	＜	1.08	$\times 10^{-7}$	CL＝90\％
Γ_{537}	$\eta \mu^{+} \mu^{-}$	B1	＜	1.12	$\times 10^{-7}$	CL＝90\％
Γ_{538}	$\pi^{0} \nu \bar{\nu}$	B1	＜	9	$\times 10^{-6}$	CL＝90\％
Γ_{539}	$K^{0} \ell^{+} \ell^{-}$	B1		$3.1 \pm$	${ }_{0.7}^{0.8} \times \times 10^{-7}$	
Γ_{540}	$K^{0} e^{+} e^{-}$	B1		$1.6 \pm$	$\left.{ }_{0.8}^{1.0}\right) \times 10^{-7}$	
Γ_{541}	$K^{0} \mu^{+} \mu^{-}$	B1	$($	$3.39 \pm$	0．34）$\times 10^{-7}$	
Γ_{542}	$K^{0} \nu \bar{\nu}$	B1	＜	2.6	$\times 10^{-5}$	CL＝90\％
Γ_{543}	$\rho^{0} \nu \bar{\nu}$	B1	＜	4.0	$\times 10^{-5}$	CL＝ 90%
Γ_{544}	$K^{*}(892)^{0} \ell^{+} \ell^{-}$	B1		$9.9 \pm$	$\left.{ }_{1.1}^{1.2}\right) \times 10^{-7}$	
Γ_{545}	$K^{*}(892)^{0} e^{+} e^{-}$	B1		$1.03+$	${ }_{0}^{0.19}$（19）$\times 10^{-6}$	
$\begin{aligned} & \Gamma_{546} \\ & \Gamma_{547} \end{aligned}$	$\begin{gathered} K^{*}(892)^{0} \mu^{+} \mu^{-} \\ \left.K^{*}(892)^{0}\right)^{+} \mu^{+} \mu^{-}, \quad \chi \rightarrow \end{gathered}$	B1			$0.5) \times 10^{-7}$	
Γ_{548}	$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$	B1	$($	$2.1 \pm$	$0.5) \times 10^{-8}$	
Γ_{549}	$K^{*}(892)^{0} \nu \bar{\nu}$	B1	＜	1.8	$\times 10^{-5}$	CL＝90\％
「550	invisible	B1	＜	2.4	$\times 10^{-5}$	CL＝90\％
Γ_{551}	$\nu \bar{\nu} \gamma$	B1	$<$	1.7	$\times 10^{-5}$	CL＝90\％
Γ_{552}	$\phi \nu \bar{\nu}$	B1	＜	1.27	$\times 10^{-4}$	CL＝90\％
「553	$e^{ \pm} \mu^{\mp}$	LF	［h］＜	1.0	$\times 10^{-9}$	CL＝90\％
Γ_{554}	$\pi^{0} e^{ \pm} \mu^{\mp}$	LF	＜	1.4	$\times 10^{-7}$	CL＝90\％
Γ_{555}	$K^{0} e^{ \pm} \mu^{\mp}$	LF	＜	2.7	$\times 10^{-7}$	CL＝90\％
Γ_{556}	$K^{*}(892)^{0} e^{+} \mu^{-}$	LF	$<$	1.6	$\times 10^{-7}$	CL＝90\％
Γ_{557}	$K^{*}(892)^{0} e^{-} \mu^{+}$	LF	＜	1.2	$\times 10^{-7}$	CL＝90\％
Γ_{558}	$K^{*}(892)^{0} e^{ \pm} \mu^{\mp}$	LF	$<$	1.8	$\times 10^{-7}$	CL＝90\％
Γ_{559}	$e^{ \pm} \tau^{\mp}$	LF	［h］＜	2.8	$\times 10^{-5}$	CL＝90\％
Γ_{560}	$\mu^{ \pm} \tau^{\mp}$	LF	［h］＜	1.4	$\times 10^{-5}$	CL＝95\％
Γ_{561}	$\wedge_{c}^{+} \mu^{-}$	L，B	＜	1.4	$\times 10^{-6}$	CL＝90\％
Γ_{562}	$\wedge_{c}^{+} e^{-}$	L，B	＜	4	$\times 10^{-6}$	CL＝90\％

［a］An ℓ indicates an e or a μ mode，not a sum over these modes．
［b］ $\bar{D}^{* *}$ represents an excited state with mass $2.2<\mathrm{M}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$ ．
［c］$\chi_{c 1}(3872)^{+}$is a hypothetical charged partner of the $\chi_{c 1}(3872)$ ．
［d］Stands for the possible candidates of $K^{*}(1410), K_{0}^{*}(1430)$ and $K_{2}^{*}(1430)$ ．
［e］B^{0} and B_{s}^{0} contributions not separated．Limit is on weighted average of the two decay rates．
$[f]$ This decay refers to the coherent sum of resonant and nonresonant J^{P} $=0^{+} K \pi$ components with $1.60<m_{K \pi}<2.15 \mathrm{GeV} / \mathrm{c}^{2}$ ．
［g］$X(214)$ is a hypothetical particle of mass $214 \mathrm{MeV} / \mathrm{c}^{2}$ reported by the HyperCP experiment，Physical Review Letters 94021801 （2005）
［ h ］The value is for the sum of the charge states or particle／antiparticle states indicated．
［i］$\Theta(1540)^{+}$denotes a possible narrow pentaquark state．
［j］Here S and P are the hypothetical scalar and pseudoscalar particles with masses of $2.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$ ，respectively．

CONSTRAINED FIT INFORMATION

An overall fit to 34 branching ratios uses 89 measurements and one constraint to determine 22 parameters．The overall fit has a $\chi^{2}=64.3$ for 68 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$ ，in percent，from the fit to the branching fractions，$x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$ ．The fit constrains the x_{i} whose labels appear in this array to sum to one．

Meson Particle Listings
B^{0}

x_{7}	43									
x_{34}	0	0								
x_{46}	0	0	43							
x_{72}	0	0	6	13						
x_{123}	0	0	10	4	1					
x_{198}	0	0	0	0	0	0				
x_{200}	0	0	0	0	0	0	0			
\times_{252}	0	0	0	0	0	0	0	0		
χ_{257}	0	0	0	0	0	0	0	0	19	
x_{263}	0	0	0	0	0	0	0	29	0	0
\times_{269}	0	0	0	0	0	0	0	6	0	0
\times_{275}	0	0	0	0	0	0	0	0	0	0
x_{309}	0	0	0	0	0	0	0	0	0	0
x_{343}	0	0	0	0	0	0	0	0	0	0
x_{350}	0	0	0	0	0	0	0	0	0	0
\times_{364}	0	0	0	0	0	0	0	0	0	0
x_{408}	0	0	0	0	0	0	0	0	0	0
χ_{439}	0	0	0	0	0	0	0	0	0	0
x_{541}	0	0	0	0	0	0	4	0	0	0
${ }_{5} 46$	0	0	0	0	0	0	0	15	0	0
	x_{6}	${ }_{7}$	x_{34}	x_{46}	${ }^{72}$	x_{123}	χ_{198}	${ }_{200}$	${ }_{2} 25$	${ }_{2} 25$
x_{269}	22									
x_{275}	0	0								
x_{309}	0	0	0							
x_{343}	0	0	0	16						
χ_{350}	0	0	0	27	4					
x_{364}	0	0	0	0	0	0				
\times_{408}	0	0	27	0	0	0	0			
χ_{439}	0	0	0	0	0	0	20	0		
${ }^{541}$	0	0	0	0	0	0	0	0	0	
χ_{546}	4	1	0	0	0	0	0	0	0	0
	${ }_{263}$	${ }_{269}$	x_{275}	\times_{309}	x_{343}	x_{350}	${ }^{364}$	χ_{408}	x_{439}	${ }_{541}$

B^{0} BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the $B^{ \pm}$section.
$\Gamma\left(\ell^{+} \nu_{\ell} X\right) / \Gamma_{\text {total }}$
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
$\frac{V A L U E}{}\left(\right.$ units 10^{-2}) $\quad 10.33 \pm 0.28$ OUR EVALUATION
DOCUMENT ID TECN

COMMENT
$\mathbf{1 0 . 1 4} \mathbf{\pm 0 . 3 0}$ OUR AVERAGE Error includes scale factor of 1.1
$10.46 \pm 0.30 \pm 0.23$
${ }^{1}$ URQUIJO 07 BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$9.64 \pm 0.27 \pm 0.33 \quad{ }^{2}$ AUBERT, B O O Y BABR $e^{+} e^{-} \rightarrow r(4 S)$
$10.78 \pm 0.60 \pm 0.69 \quad{ }^{3}$ ARTUSO 97 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$9.3 \pm 1.1 \pm 1.5 \quad$ ALBRECHT $94 \quad$ ARG $e^{+} e^{-} \rightarrow r(4 S)$
$9.9 \pm 3.0 \pm 0.9 \quad$ HENDERSON 92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$10.32 \pm 0.36 \pm 0.35 \quad 4$ OKABE 05 BELL Repl. by URQUIJO 07 $10.9 \pm 0.7 \pm 1.1 \quad$ ATHANAS 94 CLE2 \quad Sup. by ARTUSO 97
${ }^{1}$ URQUIJO 07 report a measurement of $(9.80 \pm 0.29 \pm 0.21) \%$ for the partial branching fraction of $B \rightarrow e \nu_{e} X_{c}$ decay with electron energy above 0.6 GeV . We converted the result to $B \rightarrow e \nu_{e} X$ branching fraction.
${ }^{2}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{c}$ in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of $1.0 \mathrm{GeV}: \mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.e^{+} \nu_{e} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.074 \pm 0.041 \pm 0.026$.
${ }^{3}$ ARTUSO 97 uses partial reconstruction of $B \rightarrow D^{*} \ell \nu_{\ell}$ and inclusive semileptonic branching ratio from BARISH 96B ($0.1049 \pm 0.0017 \pm 0.0043$).
${ }^{4}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{c}$ in the B rest frame, and their ratio of $\mathrm{B}\left(B^{+} \rightarrow e^{+} \nu_{e} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.08 \pm 0.05 \pm 0.02$.

$\Gamma\left(D^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
ℓ denotes e or μ, not the sum.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE (\%)
$2.31 \pm 0.04 \pm 0.09$ OUR EVALUATION
$\mathbf{2 . 2 5} \pm \mathbf{0 . 0 8}$ OUR AVERAGE

$\frac{\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}} \boldsymbol{X}\right)}{\frac{V A L U E}{\mathbf{0 . 2 3 0} \pm \mathbf{0 . 0 1 1} \pm \mathbf{0 . 0 1 1}}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\boldsymbol{\Gamma}_{\mathbf{4}} / \boldsymbol{\Gamma}_{\mathbf{1}}}{\text { TECN }} \frac{\text { COMMENT }}{e^{+e^{-} \rightarrow r(4 S)}}$
$0.230 \pm \mathbf{0 . 0 1 1} \pm \mathbf{0 . 0 1 1} \quad 1$ AUBERT 10 BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses a fully reconstructed B meson on the recoil side.
$\Gamma\left(D^{-} \ell^{+} \nu_{\ell}\right) / \Gamma\left(D \ell^{+} \nu_{\ell} X\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 2 1 5} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 1 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT O7AN }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses a fully reconstructed B meson on the recoil side.
$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{\tau}^{+} \nu_{\boldsymbol{\tau}}\right) / \Gamma_{\text {total }} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$
VALUE (units 10^{-2}) DOCUMENT ID _TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$1.04 \pm 0.35 \pm 0.18 \quad 1$ AUBERT 08N BABR Repl. by AUBERT 09S
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.
$\Gamma\left(D^{-} \tau^{+} \nu_{\tau}\right) / \Gamma\left(D^{-} \ell^{+} \nu_{\ell}\right)$
Γ_{5} / Γ_{4}
$\frac{V A L U E}{\mathbf{0 . 4 6 9} \mathbf{\pm 0 . 0 8 4} \mathbf{\pm 0 . 0 5 3}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { TECN }}{\text { 12D COMMENT }} \frac{\text { BABR }}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.489 \pm 0.165 \pm 0.069 \quad 1$ AUBERT 09s BABR Repl. by LEES 12D
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.
${ }^{2}$ Uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and e^{+}or μ^{+}as ℓ^{+}.
$\Gamma\left(D^{*}(2010)^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
Γ / Γ
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
VALUE (\%) EVTS DOCUMENTID TECN COMMENT
$5.05 \pm 0.02 \pm 0.14$ OUR EVALUATION This value assumes isospin symmetry.
5.08 ± 0.17 OUR FIT Error includes scale factor of 1.4.
5.09 $\mathbf{\pm} \mathbf{0 . 1 7}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

$4.90 \pm 0.02 \pm 0.16$	1 WAHEED	19	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$5.49 \pm 0.16 \pm 0.25$	2 AUBERT	08Q	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$4.69 \pm 0.04 \pm 0.34$	${ }^{3}$ AUBERT	08R	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$5.90 \pm 0.22 \pm 0.50$	${ }^{4}$ ABDALLAH	04D	DLPH	$e^{+} e^{-} \rightarrow$	z^{0}
$6.09 \pm 0.19 \pm 0.40$	${ }^{5}$ ADAM	03	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$4.70 \pm 0.13_{-0.31}^{+0.36}$	${ }^{6}$ ABREU	01H	DLPH	$e^{+} e^{-} \rightarrow$	Z
$5.26 \pm 0.20 \pm 0.46$	${ }^{7}$ ABBIENDI	00Q	OPAL	$e^{+} e^{-} \rightarrow$	Z
$5.53 \pm 0.26 \pm 0.52$	8 BUSKULIC	97	ALEP	$e^{+} e^{-} \rightarrow$	Z

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.58 \pm 0.03 \pm 0.26 \quad 1$ DUNGEL 10 BELL Repl. by WAHEED 19 $4.90 \pm 0.07_{-0.35}^{+0.36} \quad 4$ AUBERT 05E BABR Repl. by AUBERT 08R $5.39 \pm 0.11 \pm 0.34 \quad{ }^{9}$ ABDALLAH 04 D DLPH $e^{+} e^{-} \rightarrow z^{0}$ $4.59 \pm 0.23 \pm 0.40 \quad 10 \mathrm{ABE} \quad$ 02F BELL Repl. by DUNGEL 10 $6.09 \pm 0.19 \pm 0.40 \quad 11$ BRIERE 02 CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$ $5.08 \pm 0.21 \pm 0.66$ ACKERSTAFF 97G OPAL Repl. by ABBIENDI 00Q $5.52 \pm 0.17 \pm 0.68 \quad 13$ ABREU 96P DLPH Repl. by ABREU 01H $4.49 \pm 0.32 \pm 0.39 \quad 376 \quad 14$ BARISH 95 CLE2 Repl. by ADAM 03 $5.18 \pm 0.30 \pm 0.62 \quad 410 \quad 15$ BUSKULIC $\quad 95 \mathrm{~N}$ ALEP Sup. by BUSKULIC 97

$4.5 \pm 0.3 \pm 0.4$		16 ALBRECHT 94	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$4.7 \pm 0.5 \pm 0.5$	235	17 ALBRECHT 93	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
seen	398	18 SANGHERA 93	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$7.0 \pm 1.8 \pm 1.4$		19 ANTREASYAN 90B	CBAL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
		20 ALBRECHT 89C	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$6.0 \pm 1.0 \pm 1.4$		21 ALBRECHT 89」	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$4.0 \pm 0.4 \pm 0.6$		22 BORTOLETTO89B	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$7.0 \pm 1.2 \pm 1.9$	47	23 ALBRECHT 87J	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$

1 Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events（ $\ell=e$ or μ ）．
${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{3}$ Measured using fully reconstructed D^{*} sample and a simultaneous fit to the Caprini－ Lellouch－Neubert form factor parameters：$\rho^{2}=1.191 \pm 0.048 \pm 0.028, R_{1}(1)=1.429 \pm$ 0.061 ± 0.044 ，and $R_{2}(1)=0.827 \pm 0.038 \pm 0.022$ ．
${ }^{4}$ Measured using fully reconstructed D^{*} sample．
${ }^{5}$ Uses the combined fit of both $B^{0} \rightarrow D^{*}(2010)^{-} \ell \nu$ and $B^{+} \rightarrow \bar{D}(2007)^{0} \ell \nu$ samples．
${ }^{6}$ ABREU 01H measured using about 5000 partial reconstructed D^{*} sample．
7 ABBIENDI 00Q assumes the fraction $\mathrm{B}\left(b \rightarrow B^{0}\right)=\left(39.7_{-2.2}^{+1.8}\right) \%$ ．This result is an average of two methods using exclusive and partial D^{*} reconstruction．
${ }^{8}$ BUSKULIC 97 assumes fraction $\left(B^{+}\right)=$fraction $\left(B^{0}\right)=(37.8 \pm 2.2) \%$ and PDG 96 values for B lifetime and D^{*} and D branching fractions．
${ }^{9}$ Combines with previous partial reconstructed D^{*} measurement．
${ }^{10}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{11}$ The results are based on the same analysis and data sample reported in ADAM 03.
12 ACKERSTAFF 97G assumes fraction $\left(B^{+}\right)=$fraction $\left(B^{0}\right)=(37.8 \pm 2.2) \%$ and PDG 96 values for B lifetime and branching ratio of D^{*} and D decays．
13 ABREU 96P result is the average of two methods using exclusive and partial D^{*} recon－
$\left.14 \begin{array}{l}\text { struction．} \\ \text { BARISH } 95 \\ \text { use } \\ \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right.\end{array}\right)=(3.91 \pm 0.08 \pm 0.17) \%$ and $\mathrm{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)$ $=(68.1 \pm 1.0 \pm 1.3) \%$ ．
${ }^{15}$ BUSKULIC 95 N assumes fraction $\left(B^{+}\right)=$fraction $\left(B^{0}\right)=38.2 \pm 1.3 \pm 2.2 \%$ and τB^{0} $=1.58 \pm 0.06 \mathrm{ps} . \Gamma\left(D^{*-} \ell^{+} \nu_{\ell}\right) /$ total $=\left[5.18-0.13\left(\right.\right.$ fraction $\left.\left(B^{0}\right)-38.2\right)-1.5\left(\tau B^{0} B^{-}\right.$ 1．58）］\％．
${ }^{16}$ ALBRECHT 94 assumes $\mathrm{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=68.1 \pm 1.0 \pm 1.3 \%$ ．Uses partial recon－ struction of D^{*+} and is independent of D^{0} branching ratios．
17 ALBRECHT 93 reports $0.052 \pm 0.005 \pm 0.006$ ．We rescale using the method described in STONE 94 but with the updated PDG $94 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$．We have taken their average e and μ value．They also obtain $\alpha=2 * \Gamma^{0} /\left(\Gamma^{-}+\Gamma^{+}\right)-1=1.1 \pm 0.4 \pm 0.2$ ， $A_{A F}=3 / 4 *\left(\Gamma^{-}-\Gamma^{+}\right) / \Gamma=0.2 \pm 0.08 \pm 0.06$ and a value of $\left|V_{c b}\right|=0.036-0.045$ depending on model assumptions．
${ }^{18}$ Combining $\bar{D}^{* 0} \ell^{+} \nu_{\ell}$ and $\bar{D}^{*-} \ell^{+} \nu_{\ell}$ SANGHERA 93 test $V-A$ structure and fit the decay angular distributions to obtain $A_{F B}=3 / 4 *\left(\Gamma^{-}-\Gamma^{+}\right) / \Gamma=0.14 \pm 0.06 \pm 0.03$ ． Assuming a value of $V_{c b}$ ，they measure V, A_{1} ，and A_{2} ，the three form factors for the $D^{*} \ell \nu_{\ell}$ decay，where results are slightly dependent on model assumptions．
${ }^{19}$ ANTREASYAN $90 B$ is average over B and $\bar{D}^{*}(2010)$ charge states．
${ }^{20}$ The measurement of ALBRECHT 89C suggests a D^{*} polarization γ_{L} / γ_{T} of 0.85 ± 0.45 ． or $\alpha=0.7 \pm 0.9$ ．
${ }^{21}$ ALBRECHT 89」 is ALBRECHT 87」 value rescaled using $\mathrm{B}\left(D^{*}(2010)^{-} \rightarrow D^{0} \pi^{-}\right)=$ $0.57 \pm 0.04 \pm 0.04$ ．Superseded by ALBRECHT 93.
${ }^{22}$ We have taken average of the the BORTOLETTO 89B values for electrons and muons， $0.046 \pm 0.005 \pm 0.007$ ．We rescale using the method described in STONE 94 but with the updated PDG $94 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$．The measurement suggests a D^{*} polarization parameter value $\alpha=0.65 \pm 0.66 \pm 0.25$ ．
${ }^{23}$ ALBRECHT 87J assume μ－e universality，the $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=0.45$ ，the $\mathrm{B}\left(D^{0} \rightarrow\right.$
 Superseded by ALBRECHT 89J．

$\Gamma\left(D^{*}(2010)^{-} \ell^{+} \nu_{\ell}\right) / \Gamma\left(D \ell^{+} \nu_{\ell} X\right)$
Γ_{6} / Γ_{3} $\frac{\text { VALUE }}{\mathbf{0 . 5 3 7} \pm \mathbf{0 . 0 3 1} \pm \mathbf{0 . 0 3 6}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { AUBERT } \quad \text { 07AN BABR }} \frac{\text { TECN }}{\text { COMMENT }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
${ }^{1}$ Uses a fully reconstructed B meson on the recoil side．

$\Gamma\left(D^{*}(\mathbf{2 0 1 0})^{-} \tau^{+} \nu_{\tau}\right) / \Gamma_{\text {total }}$				Γ_{7} / Γ
VALUE（units 10^{-2} ）	DOCUMENT ID	TECN	COMMENT	

$\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{1 . 5 7} \pm \mathbf{0 . 0 9} \text { OUR FIT Error includes scale factor of 1．1．}} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}$

$\mathbf{1 . 4 8} \pm \mathbf{0 . 1 8}$	OUR AVERAGE	Error includes scale factor of 1．1．		
$1.42 \pm 0.094 \pm 0.140$	1 AAIJ	18D LHCB	$p p$ at $7,8 \mathrm{TeV}$	
$2.02_{-0.37}^{+0.40} \pm 0.37$	2 MATYJA	07	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

－－We do not use the following data for averages，fits，limits，etc．• •－
$1.11 \pm 0.51 \pm 0.06 \quad 3$ AUBERT 08N BABR Repl．by AUBERT 09s
${ }^{1}$ Noramlizes to $\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+} \pi^{-} \pi^{+}\right)=(7.214 \pm 0.28) \times 10^{-3}$ ．
${ }^{2}$ Observed in the recoil of the accompanying B meson．
${ }^{3}$ Uses a fully reconstructed B meson as a tag on the recoil side．

$\Gamma\left(D^{*}(2010)^{-} \tau^{+} \nu_{\tau}\right) / \Gamma($	10）${ }^{-} \ell^{+} \nu_{\ell}$ ）			$\Gamma_{7 /} / \Gamma_{6}$
VALUE	DOCUMENT ID	TECN COMMENT		
0.309 ± 0.016 OUR FIT				

0.315 ± 0.018 OUR AVERAGE

$0.291 \pm 0.019 \pm 0.029$	1	AAIJ	18D LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.302 \pm 0.030 \pm 0.011$	SATO	16B BELL $e^{+} e^{-} \rightarrow r(4 S)$	
$0.336 \pm 0.027 \pm 0.030$	3 AAIJ	15Q LHCB $p p$ at $7,8 \mathrm{TeV}$	
$0.355 \pm 0.039 \pm 0.021$	4,5 LEES	12D BABR $e^{+} e^{-} \rightarrow r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．－－－
$0.207 \pm 0.095 \pm 0.008 \quad 4$ AUBERT \quad 09S BABR Repl．by LEES 12D
${ }^{1}$ Uses $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{0} \bar{\nu}_{\tau}$ ，and μ^{+}as ℓ^{+}.
${ }^{2}$ Uses semileptonic B decay events for tagging and $\tau^{+} \rightarrow \ell^{+} \nu_{\ell} \bar{\nu}_{\tau}$ mode．
${ }^{3}$ Uses $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and μ^{+}as ℓ^{+}.
${ }^{4}$ Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{5}$ Uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and e^{+}or μ^{+}as ℓ^{+}.

$\Gamma\left(D^{*}(2010)^{-} \tau^{+} \nu_{\tau}\right) / \Gamma\left(D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-}\right)$				Γ_{7} / Γ_{57}
VALUE	DOCUMENT ID	TECN	COMMENT	
$1.97 \pm 0.13 \pm 0.18$	1 AAIJ	LHCB	$p p$ at 7， 8	
${ }^{1}$ Uses $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{0} \bar{\nu}_{\tau}$ modes．				

$\frac{\text { 4．1 } \pm \mathbf{0 . 5} \text { OUR AVERAGE }}{}$
$4.05 \pm 0.36 \pm 0.41 \quad$ VOSSEN $18 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$｜
$4.3 \pm 0.8 \pm 0.3 \quad 1$ AUBERT $\quad 08 \mathrm{Q}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．• • •
$\begin{array}{llrlll}4.6 \pm 0.9 & \pm 0.2 & 1,2 \text { LIVENTSEV } & 08 & \text { BELL } & \text { Repl．by VOSSEN } 18 \\ 3.5 \pm 1.0 \pm 0.1 & 3 \text { LIVENTSEV } & 05 & \text { BELL } & \text { Repl．by LIVENTSEV } 08\end{array}$
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{2}$ LIVENTSEV 08 reports $(4.2 \pm 0.7 \pm 0.6) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{D}^{0} \pi^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right)=(2.12 \pm$ $0.20) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right)=(2.31 \pm 0.10) \times$ 10^{-2} ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ LIVENTSEV 05 reports $\left[\Gamma\left(B^{0} \rightarrow \bar{D}^{0} \pi^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)\right]=$ $0.15 \pm 0.03 \pm 0.03$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right)=(2.35 \pm$ $0.09) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

					Г9／Г
VALUE（units 10^{-3} ）	DOCUMENT ID	TECN	COMMENT		
3．0 \pm 1．2 OUR AVERAGE Error includes scale factor of 1．8．					
$4.4 \pm 0.8 \pm 0.6$	${ }^{1}$ AUBERT	08BL BABR	$e^{+} e^{-}$	$r(4 S)$	
$2.0 \pm 0.7 \pm 0.5$	1 LIVENTSEV	08 BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side．					
$\Gamma\left(D_{2}^{*}(\mathbf{2 4 6 0})^{-} \ell^{+} \nu_{\ell}, D_{2}^{*-} \rightarrow \bar{D}^{0} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{10} / Γ

$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{1 . 2 1} \pm \mathbf{0 . 3 3} \text { OUR AVERAGE Error } \frac{\text { DOCUMENT ID }}{\text { includes scale factor of }} \frac{\text { TECN }}{1.8} \text { COMMENT }}$

| $1.21 \pm \mathbf{0 . 3 3}$ OUR AVERAGE | Error includes scale factor of 1.8. | | |
| :--- | :---: | :---: | :---: | :---: |
| $1.10 \pm 0.17 \pm 0.08$ | 1 AUBERT | 09 Y BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |

$2.2 \pm 0.4 \pm 0.4 \quad 2$ LIVENTSEV 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events． AUBERT 09Y reports $\mathrm{B}\left(B^{0} \rightarrow \bar{D}_{2}^{*}(2460)^{-} \ell^{+} \nu_{\ell}\right) \cdot \mathrm{B}\left(\bar{D}_{2}^{*}(2460)^{-} \rightarrow \bar{D}^{(*) 0} \pi^{-}\right)=$ （ $1.77 \pm 0.26 \pm 0.11) \times 10^{-3}$ and the authors have provided us the individual measurement． ${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side．

$\Gamma\left(\bar{D}^{(*)} \mathrm{n} \pi \ell^{+} \nu_{\ell}(\mathrm{n} \geq 1)\right) / \Gamma\left(D \ell^{+} \nu_{\ell} X\right)$				Γ_{11} / Γ_{3}
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.248 \pm 0.032 \pm 0.030$	1 AUBERT	07AN BABR	$e^{+} e^{-} \rightarrow$	4S）

${ }^{1}$ Uses a fully reconstructed B meson on the recoil side．

Meson Particle Listings
B^{0}

$\Gamma\left(D_{1}^{\prime}(\mathbf{2 4 3 0})^{-} \ell^{+} \nu_{\ell}, D_{1}^{\prime-} \rightarrow \bar{D}^{* 0} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{14} / Γ
VALUE (units 10^{-3})	CL\%	DOCUMEN	TECN	COMMEN	
$3.1 \pm 0.7 \pm 0.5$		1 AUBERT	08BL BABR	$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
<5.0	90	1 LIVENT	08 BELL	e^{-}	$r(4 S)$
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.					

					Γ_{15} / Γ
VALUE (units 10-3)	CL\%	DOCUMENT ID	TECN	COMMENT	

0.68 ± 0.12 OUR AVERAGE

$0.67 \pm 0.12 \pm 0.05$	1	AUBERT	09Y BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.7 \pm 0.2 \pm 0.2$	2	AUBERT	08BL BABR $e^{+} e^{-} \rightarrow$	$r(4 S)$
	- We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$			

$\begin{array}{lll}<3.0 & 90 & 2 \\ \text { LIVENTSEV } 08 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09y reports $\mathrm{B}\left(B^{0} \rightarrow \bar{D}_{2}^{*}(2460)^{-} \ell^{+} \nu_{\ell}\right) \cdot \mathrm{B}\left(\bar{D}_{2}^{*}(2460)^{-} \rightarrow \bar{D}^{(*) 0} \pi^{-}\right)=$ $(1.77 \pm 0.26 \pm 0.11) \times 10^{-3}$ and the authors have provided us the individual measurement. 2 Uses a fully reconstructed B meson as a tag on the recoil side.

${ }^{1}$ Measurement used electrons and muons as leptons.

$\Gamma\left(D^{*-} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell}\right) / \Gamma\left(D^{*}(2010)^{-} \ell^{+} \nu_{\ell}\right)$					Γ_{17} / Γ_{6}
VALUE (units 10^{-2})	DOCUM		TECN	COMMENT	
$2.8 \pm 0.8 \pm 0.6$	${ }^{1}$ LEES	16	BABR	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Measurement used electrons and muons as leptons.

$\Gamma\left(\rho^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$

Γ_{18} / Γ
$\ell=e$ or μ, not sum over e and μ modes.
"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by including both B^{0} and B^{+}decays. The average assumes equality of the semileptonic decay width for these isospin conjugate states.
VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT

$2.94 \pm 0.11 \pm 0.18$ OUR EVALUATION

$2.45 \pm \mathbf{0 . 3 2}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.

$3.22 \pm 0.27 \pm 0.24$	1	SIBIDANOV	13	BELL	$e^{+} e^{-} \rightarrow$
$1.75 \pm 0.15 \pm 0.27$	2 DEL-AMO-SA..11C	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
$2.93 \pm 0.37 \pm 0.37$	${ }^{3}$ ADAM	07	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$2.17 \pm 0.54 \pm 0.32$	${ }^{4}$ HOKUUE	07	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$2.57 \pm 0.29+0.53$	${ }^{5}$ BEHRENS	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

| $2.14 \pm 0.21 \pm 0.56$ | 2 | AUBERT,B | 050 | BABR |
| :---: | :---: | :--- | :--- | :--- | Repl. by DEL-AMO-

1 The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.
${ }^{2} B^{+}$and B^{0} decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.
${ }^{3}$ The B^{0} and B^{+}results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4 S)$.
${ }^{4}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \rightarrow D^{(*)} \ell \nu_{\ell}$.
${ }^{5}$ Averaging with ALEXANDER 96T results including experimental and theoretical correlations considered, BEHRENS 00 reports systematic errors ${ }_{-0.46}^{+0.33} \pm 0.41$, where the second error is theoretical model dependence. We combine these in quadrature.
${ }^{6}$ ATHAR 03 reports systematic errors ${ }_{-0.50}^{+0.47} \pm 0.41 \pm 0.01$, which are experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We combine these in quadrature.
7 Uses isospin constraints and extrapolation to all electron energies according to five different form-factor calculations. The second error combines the systematic and theoretical uncertainties in quadrature.
${ }^{8}$ BEHRENS 00 reports $\underset{-0.40}{+0.35} \pm 0.50$, where the second error is the theoretical model dependence. We combine these in quadrature. B^{+}and B^{0} decays combined using isospin symmetry: $\Gamma\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right)=2 \Gamma\left(B^{+} \rightarrow \rho^{0} \ell^{+} \nu\right) \approx 2 \Gamma\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$. No evidence for $\omega \ell \nu$ is reported.
${ }^{9}$ ALEXANDER 96 T reports ${ }_{-0.7}^{+0.5} \pm 0.5$ where the second error is the theoretical model dependence. We combine these in quadrature. B^{+}and B^{0} decays combined using isospin symmetry: $\Gamma\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right)=2 \Gamma\left(B^{+} \rightarrow \rho^{0} \ell^{+} \nu\right) \approx 2 \Gamma\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$. No evidence for $\omega \ell \nu$ is reported.
${ }^{10}$ BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma\left(\rho^{0} \ell^{+} \nu_{\ell}\right)$ and $\Gamma\left(\omega \ell^{+} \nu_{\ell}\right)$ with this result, they obtain a limit $<(1.6-2.7) \times 10^{-4}$ at $90 \% \mathrm{CL}$ for $B^{+} \rightarrow\left(\omega\right.$ or $\left.\rho^{0}\right) \ell^{+} \nu_{\ell}$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $\left|V_{u b} / V_{c b}\right|<0.08-0.13$ at $90 \% \mathrm{CL}$ is derived as well.

$\Gamma\left(\pi^{-} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$

Γ_{19} / Γ "OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV) and the procedure is described at https://hflav.web.cern.ch/.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 5 0} \pm \mathbf{0 . 0 6} \text { OUR EVALUATION }}$
1.50 ± 0.06 OUR EVALUATIO
1.46 ± 0.04 OUR AVERAGE
$1.49 \pm 0.09 \pm 0.07$
$1.47 \pm 0.05 \pm 0.06$
$1.41 \pm 0.05 \pm 0.07$
$1.49 \pm 0.04 \pm 0.07$
$1.54 \pm 0.17 \pm 0.09$
$1.37 \pm 0.15 \pm 0.11$
$1.38 \pm 0.19 \pm 0.14$

DOCUMENTID TECN COMMENT

1 SIBIDANOV	13	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
2,3 LEES	12AA BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
4 DEL-AMO-SA..11C	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
2 HA	11	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
4 AUBERT	08AV BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	
5,6 ADAM	07	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
7 HOKUUE	07	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . .
$1.42 \pm 0.05 \pm 0.08$
$1.46 \pm 0.07 \pm 0.08$
${ }^{2}$ DEL-AMO-SA.. 11 F BABR Repl. by LEES 12AA ${ }^{8}$ AUBERT 07」 BABR Repl. by DEL-AMO ${ }^{9}$ AUBERT,B 06 k BABR Repl. by AUBERT 08AV 10 AUBERT,B 050 BABR Repl. by DEL-AMO11 ATHAR 03 CLE2 Repl. by ADAM 07
$\begin{array}{lllll}1.33 \pm 0.18 \pm 0.13 & 11 & \text { ATHAR } & 03 & \text { CLE2 }\end{array}$ Repl. by ADAM 07
${ }^{1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.
${ }^{2}$ Uses loose neutrino reconstruction technique. Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm$ $0.6) \%$ and $\mathrm{B}\left(\gamma(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{3}$ Reports also a branching fraction value $\mathrm{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=(1.45 \pm 0.04 \pm 0.06) \times 10^{-4}$ from the decays of B^{+}and B^{0} that are combined using the isospin symmetry relation.
${ }^{4}$ Using the isospin symmetry relation, B^{+}and B^{0} branching fractions are combined.
${ }^{5}$ The B^{0} and B^{+}results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4 S)$.
${ }^{6}$ Also report the rate for $\mathrm{q}^{2}>16 \mathrm{GeV}^{2}$ of $(0.41 \pm 0.08 \pm 0.04) \times 10^{-4}$ from which they obtain $\left|V_{u b}\right|=3.6 \pm 0.4 \pm 0.2_{-0.4}^{+0.6}$ (last error is from theory).
${ }^{7}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \rightarrow D^{(*)} \ell \nu_{\ell}$.
${ }^{8}$ The analysis uses events in which the signal B decays are reconstructed with an innovative loose neutrino reconstruction technique.
${ }^{9}$ The signals are tagged by a second B meson reconstructed in a semileptonic or hadronic decay. The B^{0} and B^{+}results are combined assuming the isospin symmetry.
$10 B^{+}$and B^{0} decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.
11 ATHAR 03 reports systematic errors $0.11 \pm 0.01 \pm 0.07$, which are experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We combine these in quadrature.
${ }^{12}$ ALEXANDER 96T gives systematic errors $\pm 0.3 \pm 0.2$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=2 \times \Gamma\left(B^{+} \rightarrow \pi^{0} \ell^{+} \nu\right)$.
$\Gamma\left(\pi^{-} \mu^{+} \nu_{\mu}\right) / \Gamma_{\text {total }}$
Γ_{20} / Γ
- - We do not use the following data for averages, fits, limits, etc. - . -
seen 1 ALBRECHT 91C ARG
${ }^{1}$ In ALBRECHT 91c, one event is fully reconstructed providing evidence for the $b \rightarrow u$ transition.
$\Gamma\left(\pi^{-} \tau^{+} \nu_{\tau}\right) / \Gamma_{\text {total }}$
Γ_{21} / Γ

VALUE	CL\%	DOCUMEN		TECN	COMMENT	
<2.5 $\times 10^{-4}$	90	${ }^{1}$ HAMER	16	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{ \pm} \boldsymbol{X}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DOCUMENT ID
$\mathbf{T E C N}$ COMMENT
$\boldsymbol{\Gamma}_{\mathbf{2 2}} / \boldsymbol{\Gamma}$

$\frac{\text { VALUE }}{\mathbf{0 . 7 8} \mathbf{0 . 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ALBRECHT } 96 \mathrm{D}} \frac{\text { TECN }}{\text { ARG }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Average multiplicity.
$\Gamma\left(D^{0} X\right) / \Gamma_{\text {total }}$
Γ_{23} / Γ
$\frac{\text { VALUE }}{\mathbf{0 . 0 8 1} \pm \mathbf{0 . 0 1 4} \pm \mathbf{0 . 0 0 5}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{\text { COMMENT }}{} \frac{\text { BABR }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.063 \pm 0.019 \pm 0.005 \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma\left(\overline{D^{0}} \boldsymbol{X}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad$ DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2 4}} / \boldsymbol{\Gamma}$ VALUE DOCUMENT ID TECN COMMENT $\mathbf{0 . 4 7 4 \pm 0 . 0 2 0} \mathbf{+ 0 . 0 1 9} \mathbf{+ 0 . 0 2 0} \quad 1$ AUBERT $\quad 07 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.511 \pm 0.031 \pm 0.028 \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma\left(D^{\mathbf{0}} \boldsymbol{X}\right) /\left[\Gamma\left(D^{\mathbf{0}} X\right)+\Gamma\left(\overline{\left.D^{0} X\right)} \begin{array}{l}\text { VALUE }\end{array} \quad \Gamma_{\mathbf{2 3}} /\left(\Gamma_{\mathbf{2 3}}+\Gamma_{\mathbf{2 4}}\right)\right.\right.$
DOCUMENT ID $\mathbf{0 . 1 4 6} \mathbf{\pm 0 . 0 2 2} \mathbf{\pm 0 . 0 0 6} \quad$ AUBERT 07 N BABR $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$ - - We do not use the following data for averages, fits, limits, etc. - - $0.110 \pm 0.031 \pm 0.008$ AUBERT,BE 04B BABR Repl. by AUBERT 07N

$\Gamma\left(D^{+} X\right) / \Gamma_{\text {total }}$					Γ_{25} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	

$<0.039 \quad 1$ AUBERT $90 \quad \frac{1 N}{\text { BABR }} \underset{e^{+} e^{-} \rightarrow r(4 S)}{ }$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.051 \quad 90 \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N ${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.397 \pm 0.0300_{-0.038}^{+0.040} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

$\Gamma\left(D^{+} X\right) /\left[\Gamma\left(D^{+} X\right)+\Gamma\left(D^{-} X\right)\right]$			$\Gamma_{25} /\left(\Gamma_{25}+\Gamma_{26}\right)$	
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.058 \pm 0.028 \pm 0.006$	AUBERT	BABR	$e^{+} e^{-} \rightarrow$	$\rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.055 \pm 0.040 \pm 0.006$	AUBERT,BE	BABR	Repl. by	by AUBER

- - We do not use the following data for averages, fits, limits, etc. - -
$0.109 \pm 0.021_{-0.024}^{+0.039} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

- - We do not use the following data for averages, fits, limits, etc. — -
$<0.087 \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

$\Gamma\left(D_{s}^{+} X\right) /\left[\Gamma\left(D_{s}^{+} X\right)\right.$		$\Gamma_{27} /\left(\Gamma_{27}+\Gamma_{28}\right)$		
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.879 \pm 0.066 \pm 0.005$	AUBERT	BABR	$e^{+} e^{-}$	$r(4 S)$
- - We do not use	ta for avera	limi	tc. - -	
$0.733 \pm 0.092 \pm 0.010$	AUBERT,BE	BABR	Repl. by	AUBERT

$\boldsymbol{\Gamma}\left(\boldsymbol{\Lambda}_{\boldsymbol{c}}^{+\boldsymbol{X}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{}<\mathbf{0 . 0 3 1}$

- - We do not use the following data for averages, fits, limits, etc. • - .
$<0.038 \quad 90 \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm charmed particle in the rest of

$\boldsymbol{\Gamma}\left(\bar{\Lambda}_{\boldsymbol{c}}^{-} \boldsymbol{X}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DOCUMENT ID
$\mathbf{T E C N}$ COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - .
$0.049 \pm 0.017_{-0.011}^{+0.018} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

$\Gamma\left(\Lambda_{c}^{+} X\right) /\left[\Gamma\left(\Lambda_{c}^{+} X\right)+\Gamma\left(\bar{\Lambda}_{c}^{-} X\right)\right]$			$\Gamma_{29} /\left(\Gamma_{29}+\Gamma_{30}\right)$
	DOCUMENT ID	TECN	COMMENT
$0.243{ }_{-0.121}^{+0.119} \pm 0.003$	AUBERT	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.286 \pm 0.142 \pm 0.007$ AUBERT,BE 04B BABR Repl. by AUBERT 07N

$\Gamma(\bar{\tau} X) / \Gamma_{\text {total }}$ VALUE	DOCUMENT ID		TECN	COMMENT	Γ_{31} / Γ
0.947 $\pm 0.030 \pm 0.045$	1 AUBERT	07N	BABR	$e^{+} e^{-} \rightarrow$	

- - We do not use the following data for averages, fits, limits, etc. - -
$1.039 \pm 0.051_{-0.058}^{+0.063} \quad 1$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

Meson Particle Listings
B^{0}

$\Gamma(c X) / \Gamma_{\text {total }}$	DOCUMENT ID	Γ_{32} / Γ		
VALUE		TECN	COMMENT	
$0.246 \pm 0.024{ }_{-0.017}^{+0.021}$	${ }^{1}$ AUBERT	BABR	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.237 \pm 0.036{ }_{-0.027}^{+0.041}$	1 AUBERT,BE	BABR	Repl.	T 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.				

$\Gamma(\bar{c} / c x) / \Gamma_{\text {total }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.276 \pm 0.0622_{-0.074}^{+0.088} \quad{ }^{1}$ AUBERT,BE 04B BABR Repl. by AUBERT 07N
${ }^{1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.
$\Gamma\left(D^{-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{34} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{2.52 \pm \mathbf{0 . 1 3} \text { OUR FIT }} \frac{\text { Error includes }}{\frac{\text { DOCUMENT ID }}{\text { scale factor of } 1.1 .} \xrightarrow{\text { TECN }} \text { COMMENT }}$
2.52 $\mathbf{\pm 0 . 1 3}$ OUR FIT Error includes scale factor of 1.1.
2.68 ± 0.13 OUR AVERAGE

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses a missing-mass method. Does not depend on D branching fractions or B^{+} / B^{0} production rates.
${ }^{3}$ AHMED 02B reports an additional uncertainty on the branching ratios to account for 4.5% uncertainty on relative production of B^{0} and B^{+}, which is not included here.
${ }^{4}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D.
${ }^{5}$ ALBRECHT 88 K assumes $B^{0} \bar{B}^{0}: B^{+} B^{-}$production ratio is 45:55. Superseded by AL6 BRECHT 90J which assumes 50:50.
${ }^{6}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as
${ }^{7} \begin{aligned} & \text { noted for BORTOLETTO 92. } \\ & \text { AUBERT, B } 040 \text { reports }\left[\Gamma\left(B^{0} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right)\right]=(42.7 \pm\end{aligned}$ $2.1 \pm 2.2) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=(1.562 \pm$ $0.031) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{8}$ ALAM 94 reports $\left[\Gamma\left(B^{0} \rightarrow D^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=(0.265 \pm$ $0.032 \pm 0.023) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(D^{-} \ell^{+} \nu_{\ell}\right) / \Gamma\left(D^{-} \pi^{+}\right)$		DOCUMENT ID		TECN	COMMENT		Γ_{4} / Γ_{34}		
$9.9 \pm 1.0 \pm 0.9$				AALTONEN	09E	CDF		at 1.96	
$\Gamma\left(D^{-} \rho^{+}\right) / \Gamma_{\text {total }}$									
VALUE	EVTS	DOCUMEN				COMMEN			

$\mathbf{0 . 0 0 7 6} \pm \mathbf{0 . 0 0 1 2}$ OUR AVERAGE

$0.0075 \pm 0.0013 \pm 0.0001 \quad 79 \quad 1$ ALAM $94 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$0.009 \pm 0.005 \pm 0.003 \quad 9 \quad{ }^{2}$ ALBRECHT $90 」$ ARG $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.022 \pm 0.012 \pm 0.009 \quad 6 \quad{ }^{2}$ ALBRECHT 88 K ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALAM 94 reports $\left[\Gamma\left(B^{0} \rightarrow D^{-} \rho^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=0.000704 \pm$ 0.000096 ± 0.000070 which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=(9.38 \pm$ $0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ALBRECHT 88 k assumes $B^{0} \bar{B}^{0}: B^{+} B^{-}$production ratio is $45: 55$. Superseded by ALBRECHT 90」 which assumes 50:50.

$\Gamma\left(D^{-} K^{0} \pi^{++}\right) / \Gamma_{\text {total }}$				
VALUE (units 10-4)	DOCUMENT ID	TECN	COMMENT	
$4.9 \pm 0.7 \pm 0.5$	1 AUBERT,BE	BABR	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(D^{-} \kappa^{+}\right) / \Gamma\left(D^{-} \pi^{+}\right)$
$\Gamma_{39} / \Gamma_{34}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{8 . 2 2} \pm \mathbf{0 . 1 1} \mathbf{0} \mathbf{0 . 2 5}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \mathrm{TeV}}$

$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{K}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}\right.$			
VALUE (units 10^{-2})	DOCU	TECN	COMMENT
$5.9 \pm 1.1 \pm 0.5$	AAIJ	LHCB	$p p$ at 7 TeV

$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{K}^{+} \overline{\boldsymbol{K}^{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 1}} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<3.1} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { DRUTSKOY } \quad 02} \quad \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{K}^{+} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{42} / \Gamma$

$\frac{\text { VALUE (units } 10^{-4} \text {) }}{8.8 \pm 1.1 \pm 1.5} \quad 1$| DOCUMENT ID | $\frac{\text { TECN }}{\text { DRUTSKOY }} 02$ | $\frac{\text { COMMENT }}{\text { BELL }}$ |
| :--- | :--- | :--- |
| $e^{+} e^{-} \rightarrow r(4 S)$ | | |

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\bar{D}^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{43} / Γ
VALUE (units 10^{-4}) CL\% EVTS	DOCUMENT ID		TECN	COMMENT	
8.8 ± 0.5 OUR AVERAGE					
$8.95 \pm 0.15 \pm 0.52$	${ }^{1}$ AAIJ	15Y	LHCB	$p p$ at 7, 8	
$8.4 \pm 0.4 \pm 0.8$	2 KUZMIN	07	BELL	$e^{+} e^{-} \rightarrow$	

- - We do not use the following data for averages, fits, limits, etc. - - -
$8.0 \pm 0.6 \pm 1.5 \quad 2,3$ SATPATHY 03 BELL Repl. by KUZMIN 07

${ }^{1}$ The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper. AAIJ 15 Y reports $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=(8.46 \pm 0.14 \pm 0.49) \times 10^{-4}$ in the kinematic region $m\left(\bar{D}^{0} \pi^{ \pm}\right)>2.1 \mathrm{GeV}$ which we corrected to the full phase-space dividing by 0.945 from Belle.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ No assumption about the intermediate mechanism is made in the analysis.
${ }^{4}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_{0}^{*}(2340) \pi$ followed by $D_{0}^{*}(2340) \rightarrow D^{0} \pi$ is <0.0001 at $90 \% \mathrm{CL}$ and into $D_{2}^{*}(2460)$ followed by $D_{2}^{*}(2460) \rightarrow D^{0} \pi$ is <0.0004 at $90 \% \mathrm{CL}$.
${ }^{5}$ BEBEK 87 assume the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%. $\mathrm{B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+}\right)=(4.2 \pm 0.4 \pm 0.4) \%$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}\right)=(9.1 \pm 0.8 \pm 0.8) \%$ were used.
${ }^{6}$ Corrected by us using assumptions: $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(0.042 \pm 0.006)$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=50 \%$. The product branching ratio is $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.\bar{D}^{0} \pi^{+} \pi^{-}\right) \mathrm{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=(0.39 \pm 0.26) \times 10^{-2}$

－－We do not use the following data for averages，fits，limits，etc．－－－

10	± 4	± 1	8	9	AKERS	$94 」$	OPAL	$e^{+} e^{-} \rightarrow z$
2.7	± 1.4	± 1.0	5	10 ALBRECHT	87 C	ARG	$e^{+} e^{-} \rightarrow r(4 S)$	
3.5	± 2	± 2		11	ALBRECHT	$86 F$	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
17	± 5	± 5	41	12	GILES	84	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{2}$ AUBERT，BE 06J reports［ $\left.\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]$ $=0.99 \pm 0.11 \pm 0.08$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=$ $(2.52 \pm 0.13) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ Uses a missing－mass method．Does not depend on D branching fractions or B^{+} / B^{0} production rates．
${ }^{4}$ BRANDENBURG 98 assume equal production of B^{+}and B^{0} at $\Upsilon(4 S)$ and use the D^{*} reconstruction technique．The first error is their experiment＇s error and the second error is the systematic error from the PDG 96 value of $\mathrm{B}\left(D^{*} \rightarrow D \pi\right)$ ．
${ }^{5}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$．
${ }^{6}$ BORTOLETTO 92 reports $(4.0 \pm 1.0 \pm 0.7) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．
${ }^{7}$ ALBRECHT 90」 reports $(2.8 \pm 0.9 \pm 0.6) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D ．
${ }^{8}$ BEBEK 87 reports $\left(2.8_{-1.2}^{+1.5+0.6}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92 and ALBRECHT 90J．
${ }^{9}$ Assumes $\mathrm{B}(Z \rightarrow b \bar{b})=0.217$ and $38 \% B_{d}$ production fraction．
${ }^{10}$ ALBRECHT 87C use PDG 86 branching ratios for D and $D^{*}(2010)$ and assume $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=55 \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=45 \%$ ．Superseded by AL－ BRECHT 90J．
${ }^{11}$ ALBRECHT 86 F uses pseudomass that is independent of D^{0} and D^{+}branching ratios．
${ }^{12}$ Assumes $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.60_{-0.15}^{+0.08}$ ．Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=$ 0.40 ± 0.02 Does not depend on D branching ratios．

${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．

$\Gamma\left(D^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(D^{-} \pi^{+}\right)$				$\Gamma_{46} / \Gamma_{34}$
Value	DOCUMENT ID	TECN	COMMENT	
2.39 ± 0.23 OUR FIT				
2．38 $\pm 0.11 \pm 0.21$	AAIJ	LHCB	$p p$ at 7 T	

 $\mathbf{0 . 0 0 3 9 \pm \mathbf { 0 . 0 0 1 4 } \pm \mathbf { 0 . 0 0 1 3 } \quad 1 \quad 1 \text { BORTOLETTO92 } \quad \text { CLEO } e ^ { + } e ^ { - } \rightarrow r (4 S) ~}$ ${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．

${ }_{\text {Value }}{ }_{\text {c }}\left(D^{-} \pi^{+} \rho^{0}\right) / \Gamma_{\text {total }}$	$\Gamma_{48 / 5}$

${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D ．

${ }^{1}$ The second error combines the systematic and theoretical uncertainties in quadrature． CSORNA 03 includes data used in ALAM 94．A full angular fit to three complex helicity amplitudes is performed．
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at the $\Upsilon(4 S)$ resonance．
${ }^{3}$ BORTOLETTO 92 reports $0.019 \pm 0.008 \pm 0.011$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \rho^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D ．
${ }^{4}$ ALBRECHT 90」 reports $0.007 \pm 0.003 \pm 0.003$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \rho^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$ ，which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D ．
${ }^{5}$ MATVIENKO 15 reports $\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \rho^{+}, \quad \rho^{+} \rightarrow \omega \pi^{+}\right)=(1.48 \pm$ $0.27_{-0.09}^{+0.15+0.56}+0.510^{-3}$ ．The last uncertainty is a model one．
${ }^{6}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$．
7 This decay is nearly completely longitudinally polarized，$\Gamma_{L} / \Gamma=(93 \pm 5 \pm 5) \%$ ，as expected from the factorization hypothesis（ROSNER 90）．The nonresonant $\pi^{+} \pi^{0}$ contribution under the ρ^{+}is less than 9% at $90 \% \mathrm{CL}$ ．
8 Uses $\mathrm{B}\left(D^{*} \rightarrow D^{0} \pi^{+}\right)=0.6 \pm 0.15$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=0.4$ ．Does not depend
on D branching ratios． on D branching ratios．
$\Gamma\left(D^{*}(2010)^{-} K^{+}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{2.12 \pm 0.15 \text { OUR AVERAGE }}$
$\mathbf{2 . 1 2 \pm 0 . 1 5}$ OUR AVERAGE
$\begin{array}{lllll}2.13 \pm 0.12 \pm 0.10 & 1 & \text { AUBERT } & 06 \mathrm{~A} & \mathrm{BABR} \\ e^{+} e^{-} \rightarrow r(4 S) \\ 2.0 \pm 0.4 \pm 0.1 & 2 \mathrm{ABE} & 01 ı & \text { BELL } e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ AUBERT 06A reports $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}\right)\right]$ $=0.0776 \pm 0.0034 \pm 0.0029$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.D^{*}(2010)^{-} \pi^{+}\right)=(2.74 \pm 0.13) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABE 01। reports $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}\right)\right]=$ $0.074 \pm 0.015 \pm 0.006$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}\right)$ $=(2.74 \pm 0.13) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(D^{*}(2010)^{-} K^{+}\right) / \Gamma\left(D^{*}(2010)^{-} \pi^{+}\right)$ \qquad TECN Comment
$\Gamma_{52} / \Gamma_{44}$
$\frac{\text { VALUE }}{\mathbf{(7 . 7 6} \pm \mathbf{0 . 3 4} \pm \mathbf{0 . 2 6}) \times \mathbf{1 0}^{\mathbf{- 2}}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 13AO }} \frac{\text { LHCB }}{\text { COMMENT }}$

Meson Particle Listings
B^{0}

$7.26+0.11+0.31$
$7.26 \pm 0.11 \pm 0.31$
1 LEES $\quad 16 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$6.81 \pm 0.23 \pm 0.72 \quad 2$ MAJUMDER 04 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$6.3 \pm 1.0 \pm 1.1 \quad 3,4 \mathrm{ALAM} \quad 94 \quad \mathrm{CLE} 2 e^{+} e^{-} \rightarrow \gamma(4 S)$
$13.4 \pm 3.6 \pm 0.1 \quad{ }^{5}$ BORTOLETTO92 \quad CLEO $\quad e^{+} e^{-} \rightarrow \gamma(4 S)$
$10.1 \pm 4.1 \pm 0.1 \quad{ }^{6}$ ALBRECHT 90」 ARG $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

33	± 9	± 16			7 ALBRECHT	87 C	ARG
<42							

${ }^{1}$ Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=0.486 \pm 0.006$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{4}$ The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_{1} meson. (If this channel is dominated by a_{1}^{+}, the branching ratio for $\bar{D}^{*-} a_{1}^{+}$is twice that for $\bar{D}^{*-} \pi^{+} \pi^{+} \pi^{-}$.)
${ }^{5}$ BORTOLETTO 92 reports $0.0159 \pm 0.0028 \pm 0.0037$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.57 \pm 0.06$, which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for
${ }^{6}$ the D. $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.57 \pm 0.06$, which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses Mark III branching fractions for the D.
${ }^{7}$ ALBRECHT $87 C$ use PDG 86 branching ratios for D and $D^{*}(2010)$ and assume $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=55 \%$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=45 \%$. Superseded by ALBRECHT 90J.
${ }^{8}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92

$\boldsymbol{\Gamma}\left(\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{-} \pi^{+} \pi^{+} \boldsymbol{\pi}^{-}\right)\right.$nonresonant $) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DOCUMENT ID

$\mathbf{0 . 0 0 0 0} \pm \mathbf{0 . 0 0 1 9} \pm \mathbf{0 . 0 0 1 6} \quad 1$ BORTOLETTO92 \quad CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D and D^{*} (2010).
$\left.\boldsymbol{\Gamma}\left(\boldsymbol{D}^{\boldsymbol{*}} \mathbf{(2 0 1 0}\right)^{-} \boldsymbol{\pi}^{+} \boldsymbol{\rho}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DOCUMENT ID \quad TECN $\xrightarrow{\text { COMMENT }} \quad \boldsymbol{\Gamma}_{\mathbf{5 9}} / \boldsymbol{\Gamma}$ $\mathbf{0 . 0 0 5 7 3} \pm \mathbf{0 . 0 0 3 1 7} \pm \mathbf{0 . 0 0 0 0 4} \quad 1$ BORTOLETTO92 2 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ BORTOLETTO 92 reports $0.0068 \pm 0.0032 \pm 0.0021$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} \pi^{+} \rho^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=0.57 \pm 0.06$, which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$ $=(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D.

$\Gamma\left(D^{*}(2010)^{-} a_{1}(1260)^{+}\right) / \Gamma_{\text {total }}$		TECN	COMMENT	Γ_{60} / Γ
VALUE	DOCUMENT ID			
0.0130 ± 0.0027 OUR AVERAGE				
$0.0126 \pm 0.0020 \pm 0.0022$	1,2 ALAM 94	CLE2	$e^{+} e^{-}$	$r(4 S)$
$0.0152 \pm 0.0070 \pm 0.0001$	3 BORTOLETTO92	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ ALAM 94 value is twice their $\Gamma\left(D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$ value based on their observation that the three pions are dominantly in the $a_{1}(1260)$ mass range 1.0 to 1.6 GeV
${ }^{2}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)$and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{3}$ BORTOLETTO 92 reports $0.018 \pm 0.006 \pm 0.006$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} a_{1}(1260)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.57 \pm 0.06$, which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D.

$\begin{aligned} & \left.\boldsymbol{\Gamma}\left(\boldsymbol{D}^{*} \mathbf{(2 0 1 0}\right)^{-} K^{+} \pi^{-} \pi^{+}\right) / \Gamma\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{-} \pi^{+} \pi^{+} \pi^{-}\right) \\ & \text {VALUE } \\ & \text { DOCUMENT ID }\end{aligned} \quad \Gamma_{\mathbf{6 2}} / \Gamma_{\mathbf{5 7}}$

$\Gamma\left(D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{63} / \Gamma$ $\frac{V A L U E}{0.0176+0.0027 \text { OUR AVERAGE DOCUMENT ID TECN COMMENT }}$

0.0176 ± 0.0027 OUR AVERAGE

$0.0172 \pm 0.0014 \pm 0.0024$ 1 ALEXANDER 01B CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.0345 \pm 0.0181 \pm 0.0003 \quad 28 \quad 2$ ALBRECHT $90 」$ ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$. The signal is consistent with all observed $\omega \pi^{+}$having proceeded through the $\rho^{\prime+}$ resonance at mass $1349 \pm 25_{-}^{+10}$ MeV and width $547 \pm 86_{-45}^{+46} \mathrm{MeV}$.
${ }^{2}$ ALBRECHT 90 J reports $0.041 \pm 0.015 \pm 0.016$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=0.57 \pm 0.06$, which we rescale to our best value $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D.

$\Gamma\left(\bar{D}_{1}(2430)^{0} \omega, \bar{D}_{1}^{0} \rightarrow D^{*-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{66} / \Gamma$ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT

2.7. ${ }_{-0.4}^{0.8}$ OUR AVERAGE

$2.5 \pm 0.4_{-0.2}^{+0.8}$	1,2 MATVIENKO	15	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$4.1 \pm 1.2 \pm 1.1$	3 AUBERT	06L	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0}.
${ }^{2}$ The measurement is obtained by amplitude analysis of $B^{0} \rightarrow D^{*-} \omega \pi^{+}$. The second uncertainty combines in quadrature experimental systematic and model uncertainties.
${ }^{3}$ Obtained by fitting the events with $\cos \theta_{D^{*}}<0.5$ and scaling up the result by a factor of $4 / 3$. No interference effects between $B^{0} \rightarrow D_{1}^{\prime} \omega$ and $D^{*} \omega \pi$ are assumed.

[^123]| $\Gamma\left(\bar{D}_{1}(2420){ }^{0} \omega, \bar{D}_{1}^{0} \rightarrow D^{*-} \pi^{+}\right) / \Gamma_{\text {total }}$ | | | | $\Gamma_{68} /{ }^{\text {/ }}$ |
| :---: | :---: | :---: | :---: | :---: |
| VaLUE (units 10-4) | document id | TECN COMMENT | | |
| 0.7 $\pm 0.2 \pm 0.1{ }^{1,2}$ MATVIENKO 15 BELL $e^{+} e^{-} \rightarrow Y_{(45)}$ | | | | |
| ${ }^{1}$ Obtained by amplitude ana
 in qudrature experimental s
 ${ }^{2}$ Assumes equal production | $\begin{aligned} & \text { sis of }{\overrightarrow{B^{0}}}^{0} D^{*-} \omega \pi^{+} \\ & \text {stematic and model unc } \\ & B^{0} \text { and } B^{+} \text {at } r(4 S) \text {. } \end{aligned}$ | | ond uncert | ombines |

$\Gamma\left(\bar{D}_{2}^{*}(2460)^{0} \omega, \bar{D}_{2}^{0} \rightarrow D^{*-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{69} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{0 . 4} \mathbf{0 . 1} \mathbf{0 . 1}} \quad \frac{\text { DOCUMENT ID }}{\text { MATVIENKO } 15} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Obtained by amplitude analysis of $\bar{B}^{0} \rightarrow D^{*-} \omega \pi^{+}$. The second uncertainty combines in qudrature experimental systematic and model uncertainties.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$.

VALUE (units 10^{-2}) DOCUMENT ID_TECN COMMENT $1.65{ }_{-0.40}^{+0.35}$ OUR FIT

$\Gamma\left(\bar{D}_{2}^{*}(2460)^{-} \pi^{+},\left(D_{2}^{*}\right)^{-} \rightarrow D^{0} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{74} / \Gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{llllll}<14.7 & 90 & 2 & \text { ALAM } & 94 & \text { CLE2 } \\ e^{+} & e^{-} \rightarrow & r(4 S)\end{array}$
${ }^{1}$ Result obtained using the isobar formalism. The second uncertainty combines in quadra-
ture all systematic uncertainties quoted in the paper.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Our second uncertainty combines systematics and model errors quoted in the paper.
$\Gamma\left(\bar{D}_{0}^{*}(2400)^{-} \pi^{+},\left(D_{0}^{*}\right)^{-} \rightarrow D^{0} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{7 5}} / \Gamma$ VALUE (units 10^{-4}) DOCUMENT ID 0.76 ± 0.08 OUR AVERAGE

$0.77 \pm 0.05 \pm 0.06$	1 AAIJ	$15 Y$	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.60 \pm 0.13 \pm 0.27$	$2,3 \mathrm{KUZMIN}$	07	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Result obtained using the isobar formalism. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Our second uncertainty combines systematics and model errors quoted in the paper.
$\Gamma\left(D_{2}^{*}(\mathbf{2 4 6 0})^{-} \pi^{+},\left(D_{2}^{*}\right)^{-} \rightarrow D^{*=} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\boldsymbol{\Gamma}\left(\overline{\boldsymbol{D}}_{\mathbf{2}}^{*}(\mathbf{2 4 6 0})^{-} \boldsymbol{\rho}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{}$
$\mathbf{< 0 . 0 0 4 9}$
${ }^{1}$ ALAM 94 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II

$\Gamma\left(D^{0} D^{0}\right) / \Gamma_{\text {total }}$
Γ_{78} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{0 . 1 4 \pm 0 . 0 6 \pm 0 . 0 3}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\mathrm{F}}{}$

- - WAP LHCB $\quad p p$ at 7 TeV

<0.43	90	2	2 ADACHI	08	BELL
<0.6	90	2 AUBERT,B	$e^{-} \rightarrow r(4 S)$		
$<06 A$	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$		

${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow D^{-} D^{+}\right)=(2.11 \pm 0.31) \times 10^{-4}$ and $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D_{S}^{+}\right)=(10.1 \pm$ $1.7) \times 10^{-3}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(D^{-} D^{+}\right) / \Gamma_{\text {total }} \Gamma_{80} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 . 1 1} \pm \mathbf{0 . 1 8} \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$2.12 \pm 0.16 \pm 0.18$
$1.97 \pm 0.20 \pm 0.20$
1 ROHRKEN 12 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ FRATINA 07 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$2.8 \pm 0.4 \pm 0.5 \quad 1$ AUBERT,B 06A BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. $-\bullet$
$1.91 \pm 0.51 \pm 0.30$$\quad 1$ MAJUMDER 05 BELL Repl. by FRATINA 07

$1.91 \pm 0.51 \pm 0.30$		1 MAJUMDER	05	BELL	Repl. by FRATINA 07
<9.4	90	1 LIPELES	00	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

<59	90	BARATE	$98 Q$	ALEP
<12	90	ASNER	97	$e^{+} \rightarrow z$
$<$	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(\boldsymbol{D}^{ \pm} \boldsymbol{D}^{* \mp}(C\right.$-averaged $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{8 1}} / \Gamma^{1}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{6 . 1 4} \pm \mathbf{0 . 2 9} \pm \mathbf{0 . 5 0}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ROHRKEN } 12} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{D}_{\boldsymbol{s}}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{0.0072+0.0008 ~ O U R ~ A V E R A G E ~} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT $\Gamma_{\mathbf{8 2}} / \boldsymbol{\Gamma}$

0.0072 ± 0.0008 OUR AVERAGE

$0.0073 \pm 0.0004 \pm 0.0007$

1 ZUPANC	07	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
2 AUBERT	$06 N$	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{3}$ GIBAUT	96	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
4 ALBRECHT	$92 G$	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{5}$ BORTOLETTO92	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

$0.0068 \pm 0.0024 \pm 0.0006$
$0.010 \pm 0.009 \pm 0.001$
$0.0053 \pm 0.0030 \pm 0.0005$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.012 \pm 0.007 \quad 3 \quad{ }^{6}$ BORTOLETTO90 \quad CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ZUPANC 07 reports $(7.5 \pm 0.2 \pm 1.1) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.4 \pm 0.6) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
2 AUBERT 06 N reports $(0.64 \pm 0.13 \pm 0.10) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.0462 \pm 0.0062$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using
${ }^{3}$ our best value. 90.00024 ± 0.0020 from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
${ }^{4}$ value. $\left.\left.D^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG $1990 D^{+}$branching ratios, e.g., $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $7.7 \pm 1.0 \%$.
${ }^{5}$ BORTOLETTO 92 reports $0.0080 \pm 0.0045 \pm 0.0030$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.030 \pm 0.011$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D.
${ }^{6}$ BORTOLETTO 90 assume $\mathrm{B}\left(D_{S} \rightarrow \phi \pi^{+}\right)=2 \%$. Superseded by BORTOLETTO 92.

Meson Particle Listings
B^{0}
$\Gamma\left(D^{*}(\mathbf{2 0 1 0})^{-} D_{s}^{+}\right) / \Gamma_{\text {total }}$ DOCUMENT ID TECN COMMENT Γ_{83} / Γ

$\frac{V A L U E}{0.0080 \pm 0.0011 ~ O U R ~ A V E R A G E}$

$0.0073 \pm 0.0013 \pm 0.0007$
$0.0083 \pm 0.0015 \pm 0.0007$ $0.0088 \pm 0.0017 \pm 0.0008$
$0.008 \pm 0.006 \pm 0.001$
$0.011 \pm 0.006 \pm 0.001$
Г $83 / \Gamma$
${ }^{1}$ AUBERT $\quad 06 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

2 AUBERT 03I BABR $e^{+} e^{-} \rightarrow r(4 S)$
3 AHMED 00 B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{4}$ ALBRECHT 92 G ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{5}$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.0072 \pm 0.0022 \pm 0.0006 \quad{ }^{6}$ GIBAUT 96 CLE2 Repl. by AHMED 00B
$0.024 \pm 0.014 \quad 3 \quad 7$ BORTOLETTO90 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT 06 N reports $(0.71 \pm 0.13 \pm 0.09) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.0462 \pm$ 0.0062 , which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AUBERT 03ı reports $0.0103 \pm 0.0014 \pm 0.0013$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ AHMED 00B reports $0.0110 \pm 0.0018 \pm 0.0011$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using
4
our best value.
ALBRECHT 92 G reports $0.014 \pm 0.010 \pm 0.003$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{s}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG $1990 D^{+}$and $D^{*}(2010)^{+}$branching ratios, e.g., $\mathrm{B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+}\right)=3.71 \pm 0.25 \%, \mathrm{~B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=7.1 \pm 1.0 \%$, and $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=55 \pm 4 \%$.
${ }^{5}$ BORTOLETTO 92 reports $0.016 \pm 0.009 \pm 0.006$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.030 \pm$ 0.011 , which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and uses Mark III branching fractions for the D and $D^{*}(2010)$.
${ }^{6}$ GIBAUT 96 reports $0.0093 \pm 0.0023 \pm 0.0016$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{s}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$7 \begin{aligned} & \text { BORTOLETTO } 90 \text { assume } \mathrm{B}\left(D_{S} \rightarrow \phi \pi^{+}\right)=2 \% \text {. Superseded by BORTOLETTO } 92 . . ~\end{aligned}$

$\Gamma\left(D^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}$
 $\mathbf{0 . 0 0 7 4} \pm \mathbf{0 . 0 0 1 6}$ OUR AVERAGE

$0.0071 \pm 0.0016 \pm 0.0006$
$0.0078 \pm 0.0032 \pm 0.0007$
$0.016 \pm 0.012 \pm 0.001$
${ }^{3}$ ALBRECHT 92 G ARG $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ AUBERT 06N reports $(0.69 \pm 0.16 \pm 0.09) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.0462 \pm 0.0062$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ GIBAUT 96 reports $0.0100 \pm 0.0035 \pm 0.0022$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best 3 value.
${ }^{3}{ }_{\text {ALBRECHT }} 92 \mathrm{G}$ reports $0.027 \pm 0.017 \pm 0.009$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG $1990 D^{+}$branching ratios, e.g., $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $7.7 \pm 1.0 \%$.
$\Gamma\left(D^{*}(\mathbf{2 0 1 0})^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}$ DOLUE
DOCUMENT ID
TECN COMMENT
Γ_{85} / Γ 0.0177 ± 0.0014 OUR AVERAGE
$0.0173 \pm 0.0018 \pm 0.0015$
$0.0188 \pm 0.0009 \pm 0.0017$
$0.0158 \pm 0.0027 \pm 0.0014$
$0.015 \pm 0.004 \pm 0.001$

${ }^{1}$ AUBERT	06 N	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{2}$ AUBERT	05 V	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{3}$ AUBERT	031	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{4}$ AHMED	00b	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{5}$ ALBRECHT	92 G		$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . . ${ }^{1}$ AUBERT 06N reports $(1.68 \pm 0.21 \pm 0.19) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.0462 \pm$
0.0062 , which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ A partial reconstruction technique is used and the result is independent of the particle decay rate of D_{S}^{+}meson. It also provides a model-independent determination of $\mathrm{B}\left(D_{S}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=(4.81 \pm 0.52 \pm 0.38) \%$.
${ }^{3}$ AUBERT 031 reports $0.0197 \pm 0.0015 \pm 0.0030$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using
${ }^{4} \begin{aligned} & \text { our best value. } \\ & \text { AHMED 00B reports } \\ & 0.0182\end{aligned} \pm 0.0037 \pm 0.0025$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ ALBRECHT ${ }^{\text {Our best value. }}$ reports $0.026 \pm 0.014 \pm 0.006$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{s}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG $1990 D^{+}$and $D^{*}(2010)^{+}$branching ratios, e.g., $\mathrm{B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+}\right)=3.71 \pm 0.25 \%, \mathrm{~B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=7.1 \pm 1.0 \%$, and $\mathrm{B}\left(D^{*}(2010)^{+} \rightarrow\right.$ $\left.D^{0} \pi^{+}\right)=55 \pm 4 \%$.
${ }^{6}$ GIBAUT 96 reports $0.0203 \pm 0.0050 \pm 0.0036$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{*}(2010)^{-} D_{S}^{*+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\left[\Gamma\left(D^{*}(2010)^{-} D_{s}^{+}\right)+\Gamma\left(D^{*}(2010)-D_{s}^{*+}\right)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{83}+\Gamma_{85}\right) / \Gamma$ VALUE (units 10^{-2}) EVVTS DOCUMENT ID TECN COMMENT 2.5 ± 0.4 OUR AVERAGE
$2.40 \pm 0.35 \pm 0.22 \quad 1$ AUBERT $\quad 031$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$3.3 \pm 0.9 \pm 0.3 \quad 22 \quad{ }^{2}$ BORTOLETTO90 CLEO $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT 031 reports $(3.00 \pm 0.19 \pm 0.39) \times 10^{-2}$ from a measurement of $\left[\left[\Gamma\left(B^{0} \rightarrow\right.\right.\right.$ $\left.\left.\left.D^{*}(2010)^{-} D_{s}^{+}\right)+\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} D_{s}^{*+}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=$ $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ BORTOLETTO 90 reports $(7.5 \pm 2.0) \times 10^{-2}$ from a measurement of $\left[\left[\Gamma\left(B^{0} \rightarrow\right.\right.\right.$ $\left.\left.\left.D^{*}(2010)^{-} D_{s}^{+}\right)+\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} D_{s}^{*+}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.02$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=$ $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s 0}(\mathbf{2 3 1 7})^{-} K^{+}, D_{s 0}^{-} \rightarrow D_{s}^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{86} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-5}\right)}{4 . \mathbf{2}_{-1.3}^{\mathbf{1} .4} \pm \mathbf{0 . 4}} \quad \frac{\text { DOCUMENT ID }}{1 \text { DRUTSKOY } 05} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ DRUTSKOY 05 reports $\left(5.3_{-1.3}^{+1.5} \pm 1.6\right) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{S 0}(2317)^{-} K^{+}, D_{S 0}^{-} \rightarrow D_{S}^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(D_{s 0}(2317)^{-} \pi^{+}, D_{s 0}^{-} \rightarrow D_{s}^{-} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{87} / Γ
VALUE (units 10-5)	CL\%	DOCUMENT ID	TECN	COMMENT	
<2.5	90	${ }^{1}$ DRUTSKOY		$e^{+} e^{-} \rightarrow$	
${ }^{1}$ Assumes equal	ion	and B^{0} at th			

$\Gamma\left(D_{s J}(2457)^{-} K^{+}, D_{s J}^{-} \rightarrow D_{s}^{-} \pi^{0}\right) / \Gamma_{\text {total }}$					$\Gamma_{88} /{ }^{\text {/ }}$
VALUE (units 10-5)	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.94	90	1 DRUTSKOY		$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{<0.40} \quad \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DRUTSKOY }} 05 \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 0 6} \pm \mathbf{0 . 1 6} \text { OUR AVERAGE }}$ Error includes scale factor of $\frac{\text { DECN }}{1.1}$

$0.99_{-0.15}^{+0.16} \pm 0.03$	$1,2 \mathrm{CHOI}$	15 A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
1.4	2,3 AUBERT,B	04 s	BABR	$e^{+} e^{-} \rightarrow$
$0.5(4 S)$				

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.69{ }_{-0.24}^{+0.29} \pm 0.06 \quad 2,4$ KROKOVNY 03B BELL Repl. by CHOI 15A
${ }^{1} \mathrm{CHOI} 15 \mathrm{~A}$ reports $\left(10.2_{-1.2}^{+1.3} \pm 1.0 \pm 0.4\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} D^{-}, D_{S 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow\right.\right.$ $\left.K^{-} 2 \pi^{+}\right)$] assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.39 \pm 0.21) \times 10^{-2}, \mathrm{~B}\left(D^{+} \rightarrow\right.$ $\left.K^{-} 2 \pi^{+}\right)=(9.13 \pm 0.19) \times 10^{-2}$, which we rescale to our best values $\mathrm{B}\left(D_{S}^{+} \rightarrow\right.$ $\left.K^{+} K^{-} \pi^{+}\right)=(5.39 \pm 0.15) \times 10^{-2}, \mathrm{~B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=(9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ AUBERT,B 04 s reports $\left(1.8 \pm 0.4_{-0.5}^{+0.7}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} D^{-}, D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ KROKOVNY 03B reports $\left(0.86_{-0.26}^{+0.33} \pm 0.26\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s 0}^{*}(2317)^{+} D^{-}, D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s 0}(2317)^{+} D^{-}, D_{s 0}^{+} \rightarrow D_{s}^{*+} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{94} / \Gamma$ $\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{0} .95} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KROKOVNY }} \frac{\text { 03B }}{} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D_{s 0}(\mathbf{2 3 1 7})^{+} D^{*}(\mathbf{2 0 1 0})^{-}, D_{s 0}^{+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{95} / \Gamma$ $\frac{\operatorname{VALUE} \text { (units } 10^{-3} \text {) }}{\mathbf{1 . 5 \pm 0 . 4} \mathbf{+ 0 . 5}} \quad \frac{\text { DOCUMENT ID }}{\text { 1 AUBERT,B }} \frac{\text { TECN }}{\text { 0.4 }} \frac{\text { COMMENT }}{} \begin{aligned} & \text { BABR } \\ & e^{+} e^{-} \rightarrow r(4 S)\end{aligned}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D_{8 J J}(\mathbf{2 4 5 7})^{+} D^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{96} / \Gamma$
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT
3.5 ± 1.1 OUR AVERAGE
$2.6 \pm 1.5 \pm 0.7$
$4.8-2.2 \pm 1.1$
1 AUBERT $\quad 06 \mathrm{~N}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
2,3 AUBERT,B 04S BABR $e^{+} e^{-} \rightarrow r(4 S)$
$3.9_{-1.3}^{+1.5} \pm 0.9$
2,4 KROKOVNY 03B BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ AUBERT,B 04S reports $\left[\Gamma\left(B^{0} \rightarrow D_{s J}(2457)^{+} D^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s 1}(2460)^{+} \rightarrow\right.\right.$ $\left.\left.D_{S}^{*+} \pi^{0}\right)\right]=\left(2.3_{-0.7}^{+1.0} \pm 0.3\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.$ $\left.D_{S}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ KROKOVNY 03B reports $\left[\Gamma\left(B^{0} \rightarrow D_{s J}(2457)^{+} D^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.\right.$ $\left.\left.D_{S}^{*+} \pi^{0}\right)\right]=\left(1.9_{-0.6}^{+0.7} \pm 0.2\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow\right.$ $\left.D_{S}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s J}(2457)^{+} D^{-}, D_{s J}^{+} \rightarrow D_{s}^{+} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{97} / \Gamma$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT $0.65{ }_{-0.14}^{+0.17}$ OUR AVERAGE
$0.64{ }_{-0.16}^{+0.24} \pm 0.06$
$0.66_{-0.19}^{+0.21} \pm 0.06$
1,2 AUBERT,B 04s BABR $e^{+} e^{-} \rightarrow r(4 S)$
1,3 KROKOVNY 03B BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ AUBERT,B 04 s reports $\left(0.8 \pm 0.2_{-0.2}^{+0.3}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s J}(2457)^{+} D^{-}, \quad D_{s J}^{+} \rightarrow D_{s}^{+} \gamma\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$
$\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ KROKOVNY 03B reports $\left(0.82_{-0.19}^{+0.22} \pm 0.25\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s J}(2457)^{+} D^{-}, D_{s J}^{+} \rightarrow D_{s}^{+} \gamma\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=0.036 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(D_{s J}(2457)^{+} D^{-}, D_{s J}^{+} \rightarrow D_{s}^{*+} \gamma\right) / \Gamma_{\text {total }}$			Г98/Г	
VALUE (units 10^{-3}) CLO	CL\% DOCUMENT ID	TECN	COMMENT	
<0.60 90	$90 \quad 1$ KROKOVNY	03B BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
VALUE (units 10^{-3}) $C L \%$	CL\% DOCUMENT ID	TECN	COMMENT	
<0.20 90	$90 \quad 1$ KROKOVNY	03B BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(D_{s J}(\mathbf{2 4 5 7})^{+} D^{-}, D_{s J}^{+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{100} / \Gamma$				
VALUE (units 10^{-3}) CLO	CL\% DOCUMENT ID	TECN	COMMENT	
<0.36 90	$90 \quad 1$ KROKOVNY	03B BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
$\Gamma\left(D^{*}(2010)^{-} D_{s J}(2457)^{+}\right) / \Gamma_{\text {total }}$ (Γ_{101} / Γ				
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	
9.3土2.2 OUR AVERAGE				
$8.8 \pm 2.0 \pm 1.4$	1 AUBERT	06N BABR	$e^{+} e^{-}$	$r(4 S)$
$11 \begin{aligned} & +5 \\ & -4\end{aligned}$	2,3 AUBERT, B	04s BABR	$e^{+} e^{-}$	$r(4 S)$

${ }^{1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed. ${ }^{2}$ AUBERT, B 04 S reports $\left[\Gamma\left(B^{0} \rightarrow D^{*}(2010)^{-} D_{s J}(2457)^{+}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow D_{S}^{*+} \pi^{0}\right)\right]=\left(5.5 \pm 1.2_{-1.6}^{+2.2}\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S 1}(2460)^{+} \rightarrow D_{S}^{*+} \pi^{0}\right)=(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D_{s J J}(\mathbf{2 4 5 7})^{+} D^{*}(\mathbf{2 0 1 0}), D_{s, J}^{+} \rightarrow D_{s}^{+} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{102} / \Gamma$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\left[\Gamma\left(D^{-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow D^{* 0} K^{+}\right)+\Gamma\left(D^{*+} K^{0}\right)\right] / \Gamma_{\text {total }}$
$\Gamma_{103} / \Gamma=\left(\Gamma_{104}+\Gamma_{105}\right) / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 7 5} \pm \mathbf{0 . 6 2} \pm \mathbf{0 . 3 6}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AUSHEV } 11} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses $\Gamma\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{*}(2007)^{0} \rightarrow \quad D^{0} \gamma\right)=1.74 \pm 0.13$ and
$\Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2007)^{0} K^{+}\right) / \Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2010)^{+} K^{0}\right)=1.36 \pm 0.2$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\boldsymbol{D}^{-} \boldsymbol{D}_{\boldsymbol{s 1}}(\mathbf{2 5 3 6})^{+}, D_{\boldsymbol{s 1}}^{+} \rightarrow D^{*+} \boldsymbol{K}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 0 5}} / \Gamma$ $\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 . 6 1} \pm \mathbf{1 . 0 3} \pm \mathbf{0 . 3 1}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{\text { COMMENT }}{\text { BABR }} \frac{\text { COB }}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\left[\Gamma\left(D^{*}(2010)^{-} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow D^{* 0} K^{+}\right)+\Gamma\left(D^{*+} K^{0}\right)\right] / \Gamma_{\text {total }} \Gamma_{106} / \Gamma=\left(\Gamma_{107}+\Gamma_{108}\right) / \Gamma$

${ }^{1}$ Uses $\Gamma\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{*}(2007)^{0} \rightarrow D^{0} \gamma\right)=1.74 \pm 0.13$ and $\Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2007)^{0} K^{+}\right) / \Gamma\left(D_{S 1}(2536)^{+} \rightarrow D^{*}(2010)^{+} K^{0}\right)=1.36 \pm 0.2$. ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

Meson Particle Listings
B^{0}

${ }^{1}$ DAS 10 reports $\left[\Gamma\left(B^{0} \rightarrow D^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]=(2.92 \pm 0.38 \pm$ $0.31) \times 10^{-4}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.52 \pm 0.13) \times$ 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Derived using $\tan \left(\theta_{C}\right) f_{D} / f_{D_{S}} \sqrt{B\left(B^{0} \rightarrow D_{S}^{+} \pi^{-}\right) / B\left(B^{0} \rightarrow D^{-} \pi^{+}\right)}$by assuming the flavor $\operatorname{SU}(3)$ symmetry, where θ_{C} is the Cabibbo angle, $f_{D}\left(f_{D_{S}}\right)$ is the $D\left(D_{S}\right)$ meson decay constant.
$\Gamma\left(D_{s}^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{113} / \Gamma$

$\underline{V A L U E ~(u n i t s ~ 10-6) ~}{ }^{\text {c }}$) ${ }^{\text {cL\% }}$	DOCUMENT ID		TECN	COMMENT
21.6 ± 2.6 OUR AVERAGE				
$19.9 \pm 2.6 \pm 1.8$	${ }^{1}$ DAS		BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$25 \pm 4 \pm 2$	${ }^{1}$ AUBERT	08AJ	BABR	$e^{+} e^{-} \rightarrow r(4 S)$

$14.0 \pm 3.5 \pm 1.3 \quad{ }_{3}^{2}$ AUBERT 07 K BABR Repl. by AUBERT 08AJ
$25 \pm 9 \pm 2{ }^{3}$ AUBERT O3D BABR Repl. by AUBERT 07k
$19{ }_{-7}^{+9} \pm 2 \quad 4$ KROKOVNY 02 BELL Repl. by DAS 10
$<220 \quad 90 \quad{ }^{5}$ ALEXANDER 93b CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$<1300 \quad 90 \quad{ }^{6}$ BORTOLETTO90 CLEO $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AUBERT 07K reports $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=(0.63 \pm 0.15 \pm$ $0.05) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ AUBERT 03D reports $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=(1.13 \pm 0.33 \pm$ $0.21) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ KROKOVNY 02 reports $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=$ $\left(0.86_{-0.30}^{+0.37} \pm 0.11\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=$ $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ ALEXANDER 93B reports $<270 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right) /\right.$
$\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{6}$ BORTOLETTO 90 assume $\mathrm{B}\left(D_{S} \rightarrow \phi \pi^{+}\right)=2 \%$.
 ${ }^{1}$ ALBRECHT 93E reports $<1.7 \times 10^{-3}$ from a measurement of $\left[\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \pi^{-}\right)+\right.\right.$ $\left.\left.\Gamma\left(B^{0} \rightarrow D_{S}^{-} K^{+}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

- - We do not use the following data for averages, fits, limits, etc. - . -

$2.9 \pm 0.7 \pm 0.3$		${ }^{2}$ AUBERT	07k BABR	Repl. by AUBERT 08A」
< 4.1	90	AUBERT	03D BABR	Repl. by AUBERT 07k
<40	90	${ }^{3}$ ALEXANDER	93B CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ AUBERT 07 K reports $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{*+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=(1.32 \pm 0.27 \pm$ $0.15) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ALEXANDER 93B reports $<44 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$

${ }^{1}$ ALBRECHT 93E reports $<1.2 \times 10^{-3}$ from a measurement of $\left[\left[\Gamma\left(B^{0} \rightarrow D_{S}^{*+} \pi^{-}\right)+\right.\right.$ $\left.\left.\Gamma\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)\right] / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
$\Gamma\left(D_{s}^{+} \rho^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{115} / \Gamma$

- - We do not use the following data for averages, fits, limits, etc. - - .
$<130 \quad 90 \quad{ }^{2}$ ALBRECHT $93 \mathrm{ARG} \quad e^{+} e^{-} \rightarrow r(4 S)$
$<50 \quad 90 \quad{ }^{3}$ ALEXANDER 93 B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ ALBRECHT $93 E$ reports $<2.2 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \rho^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{3}$ ALEXANDER 93B reports $<6.6 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{+} \rho^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\Gamma\left(D_{s}^{*+} \rho^{-}\right) / \Gamma_{\text {total }}$					/
VALUE (units 10-5)	$\underline{C L}$	DOCUMENT ID	TECN	COMMENT	

$\mathbf{4 . 1}_{-1.2}^{\mathbf{+ 1 . 3}} \mathbf{\pm 0 . 4} \quad 1$ AUBERT \quad 08AJ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • •
$<150 \quad 90 \quad{ }^{2}$ ALBRECHT 93 E ARG $e^{+} e^{-} \rightarrow r(4 S)$
$<60 \quad 90 \quad{ }^{3}$ ALEXANDER 93 B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ALBRECHT 93 E reports $<2.5 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{*+} \rho^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{3}$ ALEXANDER $93 B$ reports $<7.4 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{S}^{*+} \rho^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\left.\underset{\text { VALUE }}{\Gamma\left(D_{s}^{+}\right.} \mathrm{a}_{1}(\mathbf{1 2 6 0})^{-}\right) / \Gamma_{\text {total }}$		DOCUMENT ID TECN		Γ_{119} / Γ			
		COMMENT					
$<2.1 \times 10^{-3}$	90			$1{ }^{\text {ALBRECHT }}$ 93E ARG $e^{+} e^{-} \rightarrow r(4 S)$			
${ }^{1}$ ALBRECHT $D_{s}^{+} a_{1}(1260$ which we re	ports al] ur best	$\begin{aligned} & 3.5 \times 10^{-3} \\ & \left(D_{s}^{+} \rightarrow \phi \pi^{+}\right. \\ & \text {lue } \mathrm{B}\left(D_{s}^{+} \rightarrow\right. \end{aligned}$		rement ${ }^{+} \rightarrow$ ${ }^{-2}$.			

$\Gamma\left(D_{s}^{*-} \kappa^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{124} / \Gamma$

2.19 ± 0.30 OUR AVERAGE	
$2.02 \pm 0.33 \pm 0.22$	1 JOSHI $\quad 10$ BELL $e^{+} e^{-} \rightarrow \quad \begin{array}{r}\text { (4S) }\end{array}$
2.4	${ }^{1}$ AUBERT $\quad 08 \mathrm{AJ}$ BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
- We do not use the following data for averages, fits, limits, etc. - -	
$2.2 \pm 0.6 \pm 0.2$	${ }^{2}$ AUBERT 07 K BABR
2.5	AUBERT 03d babr Repl. by AUBERT 07k
90	${ }^{3}$ ALEXANDER 93b CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.	
${ }^{2}$ AUBERT 07K reports $\left[\mathrm{r}\left(B^{0} \rightarrow D_{S}^{*-} K^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=(0.97 \pm 0.24 \pm$	
Our first error is their experiment's error and our second error is the systematic error from using our best value.	
ALEXANDER 93B reports	measurement of $\left[\Gamma\left(B^{0}\right.\right.$

| $1.29 \pm 0.05 \pm \mathbf{0 . 0 8}$ | AAIJ | 15 AC LHCB $p p$ at $7,8 \mathrm{TeV}$ |
| :--- | :--- | ---: | :--- |
| $\Gamma\left(\boldsymbol{D}_{\boldsymbol{s}}^{-} K^{*}(\mathbf{8 9 2})^{+}\right) / \Gamma_{\text {total }}$ | | $\Gamma_{\mathbf{1 2 5}} / \Gamma$ |

VALUE (units 10^{-5}) CL
$\mathbf{3 . 5} \underset{-\mathbf{0 . 9}}{\mathbf{1} .0} \pm \mathbf{0 . 4} \quad 1$ AUBERT $\quad 08 \mathrm{AJ}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<280 \quad 90 \quad 2$ ALBRECHT 93E ARG $e^{+} e^{-} \rightarrow r(4 S)$
$<80 \quad 90 \quad 3$ ALEXANDER 93B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ALBRECHT 93E reports $<4.6 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{S}^{-} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=0.027$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.
${ }^{3}$ ALEXANDER 93 B reports $<9.7 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{S}^{-} K^{*}(892)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$.

$\Gamma\left(D_{s}^{-} K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 7 3} \pm \mathbf{0 . 3 2} \pm \mathbf{0 . 3 5}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{AAIJ}} \frac{\text { TECN }}{\text { 12AX }} \frac{\text { COMMENT }}{\text { LHCB }}$ $\left.\begin{array}{cc}\mathbf{1 . 7 3} \pm \mathbf{0 . 3 2} \pm \mathbf{0 . 3 5} & 1 \mathrm{AAIJ}\end{array} \begin{array}{c}12 \mathrm{AX} \\ { }^{1} \text { LAIJ } 12 \mathrm{AX} \text { reports }\left[\Gamma\left(B^{0} \rightarrow D_{S}^{-} K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B_{S}^{0} \rightarrow D_{S}^{-} K^{+} \pi^{+} \pi^{-}\right)\right.\end{array}\right]=$ $0.54 \pm 0.07 \pm 0.07$ which we multiply by our best value $\mathrm{B}\left(B_{s}^{0} \rightarrow D_{S}^{-} K^{+} \pi^{+} \pi^{-}\right)=$ $(3.2 \pm 0.6) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{\mathbf{0}} \boldsymbol{K}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
VALUE (units $\left.10^{-5}\right)$	$\Gamma_{\mathbf{1 3 2}} / \boldsymbol{\Gamma}$

5.2 ± 0.7 OUR AVERAGE

$5.3 \pm 0.7 \pm 0.3 \quad 1$ AUBERT,B $\quad 06 \mathrm{~L} \quad \mathrm{BABR} \quad e^{+} e^{-} \rightarrow r(4 S)$
$5.0_{-1.2}^{+1.3} \pm 0.6 \quad{ }^{1}$ KROKOVNY 03 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\bar{D}^{0} K^{+} \pi^{-}\right) / \Gamma\left(\bar{D}^{0} \pi^{+} \pi^{-}\right)$
VALUE DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\Gamma_{133} / \Gamma_{43}$
$0.106 \pm 0.007 \pm 0.008$

AAIJ 13AQ LHCB $p p$ at 7 TeV

Meson Particle Listings
B^{0}

$\Gamma\left(\bar{D}^{0} K^{*}(1410)^{0}\right) / \Gamma_{\text {total }}$						Γ_{135} / Γ
VALUE	CL\%	DOCU		TECN	COMMENT	
$<6.7 \times 10^{-5}$	90	1 AAIJ	15x	LHCB	$p p$ at 7, 8	

${ }^{1}$ Measured via amplitude analysis of $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$, which excludes contribution from decay via $D^{*}(2010)^{-}$resonance.

1 AAIJ 15 X reports $(0.71 \pm 0.27 \pm 0.33 \pm 0.47 \pm 0.08) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \bar{D}^{0} K_{0}^{*}(1430)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.\bar{D}^{0} K^{+} \pi^{-}\right)=(9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured via amplitude analysis of $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$, which excludes contribution from decay via $D^{*}(2010)^{-}$resonance.
$\Gamma\left(\bar{D}^{0} K_{2}^{*}(1430)^{0}\right) / /_{\text {total }}$
Γ_{137} / Γ
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{2 . 1} \mathbf{1} \mathbf{0 . 8} \pm \mathbf{0 . 4}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{15 x}{} \frac{\text { COMMENT }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 15 X reports $(2.04 \pm 0.45 \pm 0.30 \pm 0.54 \pm 0.25) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \bar{D}^{0} K_{2}^{*}(1430)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.\bar{D}^{0} K^{+} \pi^{-}\right)=(9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2 Measured via amplitude analysis of $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$, which excludes contribution from decay via $D^{*}(2010)^{-}$resonance.

${ }^{1}$ AAIJ 15 X reports $(1.77 \pm 0.26 \pm 0.19 \pm 0.67 \pm 0.20) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{0}^{*}(2300)^{-} K^{+}, D_{0}^{*-} \rightarrow \bar{D}^{0} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured via amplitude analysis of $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$, which excludes contribution from decay via $D^{*}(2010)^{-}$resonance.

					Γ_{139} / Γ
VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	
20.3 ± 3.5 OUR AVERAGE					
$22 \pm 2 \pm 4$	1,2 AAIJ	15x	LHCB	$p p$ at 7,	
$18.3 \pm 4.0 \pm 3.1$	3 AUBERT	06A	BABR	$e^{+} e^{-}$	

${ }^{1}$ AAIJ 15 X reports $(2.12 \pm 0.10 \pm 0.11 \pm 0.11 \pm 0.25) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow D_{2}^{*}(2460)^{-} K^{+}, \quad D_{2}^{*-} \rightarrow \bar{D}^{0} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured via amplitude analysis of $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$, which excludes contribution from decay via $D^{*}(2010)^{-}$resonance.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\bar{D}^{0} K^{+} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }}$
$\Gamma_{141 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{< 3 7}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \frac{\text { 06A }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. • - -

$\Gamma\left(\bar{D}^{0} \rho^{0}\right) / /_{\text {total }}$
$\Gamma_{150 / \Gamma}$
VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT 3.21 ± 0.21 OUR AVERAGE
$\begin{array}{lrl}3.21 \pm 0.10 \pm 0.21 & 1 \\ \text { AAIJ } & 15 Y \\ \text { LHCB } p p \text { at } 7,8 \mathrm{TeV}\end{array}$
$3.19 \pm 0.20 \pm 0.45 \quad 2,3$ KUZMIN 07 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -
$2.9 \pm 1.0 \pm 0.4 \quad 2$ SATPATHY 03 BELL Repl. by KUZMIN 07

| <3.9 | 90 | 4 | NEMATI | 98 | CLE2 |
| :--- | :--- | :--- | :--- | :--- | :--- |$e^{+} e^{-} \rightarrow r(4 S)$

$\begin{array}{rllll}5.5 & 90 & { }^{5} \text { ALAM } & 94 & \text { CLE2 } \\ 6.0 & 90 & { }^{6} \text { BORTOLETTO } 92 & \text { Repl. by NEMATI } 98\end{array}$
$<27.0 \quad 90 \quad 7$ ALBRECHT 88 K ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Measured using isobar formalism in the decay chain $B^{0} \rightarrow \bar{D}^{0} \rho(770), \rho \rightarrow \pi^{+} \pi^{-}$ assuming $\mathrm{B}\left(\rho(770) \rightarrow \pi^{+} \pi^{-}\right)=1$. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Our second uncertainty combines systematics and model errors quoted in the paper.
${ }^{4}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{5}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
${ }^{6}$ BORTOLETTO 92 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and uses Mark III branching fractions for the D.
${ }^{7}$ ALBRECHT 88 k reports <0.003 assuming $B^{0} \bar{B}^{0}: B^{+} B^{-}$production ratio is 45:55. We rescale to 50%.
$\Gamma\left(\bar{D}^{0} f_{2}\right) / \Gamma_{\text {total }} \quad \Gamma_{151} / \Gamma$
VALUE (units 10^{-4})
1.56 ± 0.21 OUR AVERAGE
$1.68 \pm 0.11 \pm 0.21 \quad 15 \mathrm{Y}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$1.20 \pm 0.18 \pm 0.38 \quad 2,3$ KUZMIN 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Result obtained using the isobar formalism. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper. Measured in the decay chain $B^{0} \rightarrow$ $\bar{D}^{0} f_{2}(1270), f_{2} \rightarrow \pi^{+} \pi^{-}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Our second uncertainty combines systematics and model errors quoted in the paper

$\Gamma\left(D^{0} \eta\right) / \Gamma_{\text {total }}$				$\Gamma_{152} / \Gamma^{\prime}$		
VALUE (units 10^{-4})	CL\%	DOCUMENT ID		TECN	COMMENT	
$\mathbf{2 . 3 6} \pm \mathbf{0 . 3 2}$ OUR AVERAGE Error includes scale factor of 2.5.						
$2.53 \pm 0.09 \pm 0.11$		${ }^{1}$ LEES		BABR	$e^{+} e^{-}$	$r(4 S)$
$1.77 \pm 0.16 \pm 0.21$		${ }^{1}$ blyth		BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -						
$2.5 \pm 0.2 \pm 0.3$		${ }^{1}$ AUBERT		BABR	Repl. by L	EES 11m
$1.4{ }_{-0.4}^{+0.5} \pm 0.3$		${ }^{1} \mathrm{ABE}$		BELL	Repl. by B	LYTH 06
$\begin{aligned} & <1.3 \\ & <6.8 \end{aligned}$	90	${ }^{2}$ NEMATI	98	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
	90	${ }^{3}$ ALAM	94	CLE2	Repl. by	EMATI
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						
${ }^{2}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.						
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.						

$\Gamma\left(\bar{D}^{0} \eta^{\prime}\right) / \Gamma_{\text {total }}$

$1.7 \pm 0.4 \pm 0.2$		${ }^{1}$ AUBERT	04B	BABR	Repl. by LEES 11M
<9.4	90	2 NEMATI	98	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<8.6	90	${ }^{3}$ ALAM	94	CLE2	Repl. by NEMATI 98

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
$\Gamma\left(\bar{D}^{0} \eta^{\prime}\right) / \Gamma\left(D^{0} \eta\right)$
$\Gamma_{153} / \Gamma_{152}$
$0.54 \pm 0.07 \pm 0.01$
$\frac{\text { DOCUMENT ID }}{\text { LEES }} 11 \mathrm{M} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.7 \pm 0.2 \pm 0.1 \quad$ AUBERT 04B BABR Repl. by LEES 11 M

$\boldsymbol{\Gamma}\left(\overline{\left.\boldsymbol{D}^{\mathbf{0}} \boldsymbol{\omega}\right)} / \boldsymbol{\Gamma}_{\text {total }}\right.$	
VALUE (units $\left.10^{-4}\right)$	$\Gamma_{\mathbf{1 5 4}} / \boldsymbol{\Gamma}$

$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 . 5 4} \pm \mathbf{0 . 1 6 ~ O U R ~ A V E R E}} \frac{C L \%}{\text { AGE }}$
$2.75 \pm 0.72 \pm 0.35 \quad 1$ AAIJ 15 Y LHCB pp at $7,8 \mathrm{TeV}$
$2.57 \pm 0.11 \pm 0.14 \quad 2$ LEES $\quad 11 \mathrm{M}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.37 \pm 0.23 \pm 0.28 \quad 2$ BLYTH 06 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$3.0 \pm 0.3 \pm 0.4 \quad 2$ AUBERT 04B BABR Repl. by LEES 11 M $1.8 \pm 0.5_{-0.3}^{+0.4} \quad 2 \mathrm{ABE} \quad 02 \mathrm{~J}$ BELL Repl. by BLYTH 06
<5.1
90 ${ }^{3}$ NEMATI $98 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
<6.3 $90 \quad 4$ ALAM 94 CLE2 \quad Repl. by NEMATI 98
${ }^{1}$ Result obtained using the isobar model. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{4}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the CLEO II absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.

 - - We do not use the following data for averages, fits, limits, etc. - • -
$<11.6 \times 10^{-6} \quad 90 \quad 1$ AUBERT \quad 07AO BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(D^{0} K^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{156} / \Gamma^{2}$
VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • • •
$<19 \quad 90 \quad 1$ AUBERT 06A BABR Repl. by AUBERT 09AE ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D^{0} K^{+} \pi^{-}\right) / \Gamma\left(D^{0} K^{+} \pi^{-}\right) \quad \Gamma_{156} / \Gamma_{133}$ 0.060 ± 0.034 OUR AVERAGE
$0.045_{-0.050}^{+0.056}+0.028 \quad 1,2 \mathrm{NEGISHI} \quad 12$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$0.068 \pm 0.042 \quad{ }^{3}$ AUBERT \quad 09AE BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}at $\Upsilon(4 S)$.
${ }^{2}$ Uses $D^{0} \rightarrow K^{-} \pi^{+}$mode. Restricts $K^{+} \pi^{-}$mass within $\pm 50 \mathrm{MeV}$ of the nominal $K^{* 0}$
mass. Corresponds to the upper limit, <0.16 at 95% CL
${ }^{3}$ Reports a signal at the level of 2.5 standard deviations after combining results from $D^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{+} \pi^{-}$

$\Gamma\left(D^{0} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$						Γ_{157} / Γ
VALUE (units 10^{-5})	CL\%	DOCUMENT ID		TECN	COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -						
<1.1	90	${ }^{1}$ AUBERT,B	06L	BABR	$e^{+} e^{-}$	$r(4 S)$
<1.8	90	1 KROKOVNY	03	BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						

$\Gamma\left(D^{\circ} K^{\circ}(892)^{\circ}\right) / \Gamma\left(D^{\circ} K^{*}(892)^{\circ}\right)$
"OUR EVALUATION" is derived from $r_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)$ data block listed in "CP vilation parameters" section
VALUE (units 10^{-2}) DOCUMENT ID
$\mathbf{4 . 8 4}_{-2.07}^{\mathbf{+ 1 . 8 0}}$ OUR EVALUATION

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.

WEIGHTED AVERAGE
2.2 ± 0.6 (Error scaled by 2.6)
$\Gamma\left(\bar{D}^{*}(2007)^{0} \pi^{0}\right) / \Gamma_{\text {total }}\left(\right.$ units $\left.10^{-4}\right)$
$\Gamma\left(\bar{D}^{0} \pi^{0}\right) / \Gamma\left(\bar{D}^{*}(2007)^{0} \pi^{0}\right)$
$\frac{V A L U E}{0.90 \pm 0.08 \text { OUR AVERAGE }}$
DOCUMENT ID
$\Gamma_{149} / \Gamma_{159}$
$\mathbf{0 . 9 0} \pm \mathbf{0 . 0 8}$ OUR
$0.88 \pm 0.05 \pm 0.06$
LEES $\quad 11 \mathrm{M}$ BABR $e^{+} e^{-} \rightarrow r(4 S$
$1.62 \pm 0.23 \pm 0.35 \quad$ BLYTH 06 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$1.0 \pm 0.1 \pm 0.2$ AUBERT 04B BABR Repl. by LEES 11 M

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.

Meson Particle Listings
B^{0}

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Reports an upper limit $<2.6 \times 10^{-4}$ at $90 \% \mathrm{CL}$.
${ }^{3}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{4}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
$\Gamma\left(\bar{D}^{0} \eta^{\prime}\right) / \Gamma\left(\bar{D}^{*}(2007)^{0} \eta^{\prime \prime}\right)$

$\Gamma\left(D^{*}(2007){ }^{0} K^{0}\right) / /_{\text {total }}$			Γ_{164} / Γ
$\frac{\text { valuE (uitis } 10^{-5} \text {) }}{\text { a }}$	DOCUMENT ID	TECN COMMENT	

${ }^{1}$ AUBERT,B 06L BABR $\frac{e^{+} e^{-} \rightarrow r(4 S)}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lll}<6.6 & 90 \quad 1 \text { KROKOVNY } 03 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\frac{\text { VALUE }}{<6.9 \times 10^{\mathbf{- 5}}} \frac{\text { CL\% }}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KROKOVNY } 03} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AUBERT 02M also assumes the measured $C P$-odd fraction of the final states is $0.22 \pm$ 0.18 ± 0.03.
${ }^{3}$ ARTUSO 99 uses $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48 \pm 4) \%$.
${ }^{4}$ BARATE $98 Q$ (ALEPH) observes 2 events with an expected background of 0.10 ± 0.03 which corresponds to a branching ratio of $\left(2.3_{-1.2}^{+1.9} \pm 0.4\right) \times 10^{-3}$.
${ }^{5}$ ASNER 97 at CLEO observes 1 event with an expected background of 0.022 ± 0.011. This corresponds to a branching ratio of $\left(5.3_{-3.7}^{+7.1} \pm 1.0\right) \times 10^{-4}$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ NEMATI 98 assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and use the PDG 96 values for $D^{0}, D^{* 0}, \eta, \eta^{\prime}$, and ω branching fractions.
${ }^{3}$ ALAM 94 assume equal production of B^{+}and B^{0} at the $r(4 S)$ and use the CLEO II $\mathrm{B}\left(D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}\right)$ and absolute $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and the PDG $1992 \mathrm{~B}\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$and $\mathrm{B}\left(D^{0} \rightarrow K^{-} 2 \pi^{+} \pi^{-}\right) / \mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$.
$\Gamma\left(\bar{D}^{0} \omega\right) / \Gamma\left(\bar{D}^{*}(2007)^{0} \omega\right)$
$\frac{\text { VALUE }}{0.58 \pm 0.06 \text { OUR AVERAGE }}$ DOCUMENT ID TECN COMMENT ${ }^{154 / \Gamma_{169}}$
0.58 ± 0.06 OUR AVERAGE
$0.56 \pm 0.04 \pm 0.04 \quad$ LEES $\quad 11 \mathrm{M}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.04 \pm 0.20 \pm 0.17 \quad$ BLYTH 06 BELL $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.7 \pm 0.1 \pm 0.1 \quad$ AUBERT 04B BABR Repl. by LEES 11M
$\Gamma\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{+} \boldsymbol{D}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 7 0}} / \Gamma$

$8.8 \pm 1.0 \pm 1.3$		${ }^{1}$ AUBERT	03J	BABR	Repl. by	AUBERT
$14.8 \pm 3.8_{-3.1}^{+2.8}$		1,3 ABE	$02 Q$	BELL	$e^{+} e^{-}$	$r(4 S)$
< 6.3	90	${ }^{1}$ LIPELES	00	CLE2	$e^{+} e^{-}$	$r(4 S)$
<56	90	BARATE	$98 Q$	ALEP	$e^{+} e^{-}$	
<18	90	ASNER	97	CLE2	$e^{+} e^{-}$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ The measurement is performed using fully reconstructed D^{*} and D^{+}decays.
${ }^{3}$ The measurement is performed using a partial reconstruction technique for the D^{*} and fully reconstructed D^{+}decays as a cross check.

$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<0.9} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT,B 06A }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

$<270 \quad 90 \quad$ BARATE 98Q ALEP $\quad e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(D^{-} D^{0} K^{+}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-3})	DOCUMENT ID $\frac{\text { TECN }}{\text { SAL }}$	COMMENT $\Gamma_{172 / \Gamma}$
$1.07 \pm 0.07 \pm 0.09$	DEL-AMO-SA...11B BABR	$e^{+} e^{-} \rightarrow{ }_{\text {(4S }}$
- - We do not use the following data for averages, fits, limits, etc. - . -		
$1.7 \pm 0.3 \pm 0.3 \quad{ }^{1}$ AUBERT $03 x$ BABR Repl. by DEL-AMO-		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.		
$\Gamma\left(D^{-} \boldsymbol{D}^{*}(2007)^{0} K^{+}\right) /{ }^{\text {d }}$		$\Gamma_{173 / \Gamma}$
VALUE (unit 10^{-3}) DOCUMENT ID TECN COMMENT		
$\mathbf{3 . 4 6 \pm 0 . 1 8 \pm 0 . 3 7 ~}{ }^{1}$ DEL-AMO-SA..118 BABR $e^{+} e^{-} \rightarrow$ (4S)		
- - We do not use the following	ta for averages, fits, lim	
$4.6 \pm 0.7 \pm 0.7 \quad{ }^{1}$ AUBERT $\quad 03 x$ BABR Repl. by DEL-AMO-		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.		
$\Gamma\left(D^{*}(2010){ }^{-} D^{0} K^{+}\right) / \Gamma_{\text {total }}$		$\Gamma_{174 / \Gamma}$
VALUE (unit 10^{-3}) DoCument Id \quad TECN COMMENT		
$2.47 \pm 0.10 \pm 0.18 \quad{ }^{1}$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow r_{(4 S)}$ - - . We do not use the following data for averages, fits, limits, etc. - . -		
$3.1{ }_{-0.3}^{+0.4} \pm 0.4 \quad 1$ AUBERT $\quad 03 \times$ BABR Repl. by DEL-AMOSANCHEZ 11B		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.		
$\Gamma\left(D^{*}(2010)^{-} D^{*}(2007)^{0} K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{175} / \Gamma$		
VALUE (units 10^{-3})	DOCUMENT ID TECN	COMMENT
$10.6 \pm 0.33 \pm 0.86$		
ata for averages, fits, limits,		
$11.8 \pm 1.0 \pm 1.7 \quad{ }^{1}$ AUBERT $\quad 03 x$ BABR Repl. by DEL-AMO-		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.		
$\Gamma\left(D^{-} D^{+} K^{0}\right) / \Gamma_{\text {total }}$		
VALUE (units 10-3) CLL\% DOCUMENT ID TECN COMMENT		
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.		
$\left[\Gamma\left(D^{*}(2010)^{-} D^{+} K^{0}\right)+\Gamma\left(D^{-} D^{*}(2010)^{+} K^{0}\right)\right] / \Gamma_{\text {total }} \quad \Gamma_{177} / \Gamma$		
We do not use the following data for averages, fits, limits, etc. - . -		
$6.5 \pm 1.2 \pm 1.0 \quad{ }^{1}$ AUBERT $\quad 03 x$ BABR Repl. by DEL-AMO-		

 8.1 ± 0.7 OUR AVERAGE

| $8.26 \pm 0.43 \pm 0.67$ | 1,2 | DEL-AMO-SA..11B | BABR | $e^{+} e^{-} \rightarrow$ | $r(4 S)$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| $6.8 \pm 0.8 \pm 1.4$ | 1,2 DALSENO 07 | BELL | $e^{+} e^{-} \rightarrow$ | $r(4 S)$ | |

$8.8 \pm 0.8 \pm 1.4 \quad 1,2$ AUBERT,B 06Q BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -
$8.8{ }_{-1.4}^{+1.5} \pm 1.3 \quad 1$ AUBERT $\quad 03 x$ BABR Repl. by AUBERT,B 06Q
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ The result is rescaled by a factor of 2 to convert from K_{S}^{0} to K^{0}.

$\Gamma\left(D^{*=} D_{s 1}(2536)^{+}, D_{s 1}^{+} \rightarrow D^{*+} K^{0}\right) / \Gamma_{\text {total }}$				Γ_{179} / Γ
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
8.0土2.4 OUR AVERAGE				
$7.6{ }_{-4.2}^{+4.8}+1.6$	1,2 DALSENO	07 BELL	$e^{+} e^{-}$	$r(4 S)$
$8.2 \pm 2.6 \pm 1.2$	1,2 AUBERT, B	06Q BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{2}$ The result is rescaled by a factor of 2 to convert from K_{S}^{0} to K^{0}.				

$\Gamma\left(D^{0} D^{0} K^{0}\right) / \Gamma_{\text {total }}$					Γ_{180} / Γ
VALUE (units 10 ${ }^{-3}$)	$\underline{C L \%}$	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 2 7} \pm \mathbf{0 . 1 0 \pm 0 . 0 5} \quad 1$ DEL-AMO-SA..11B BABR $e^{+} e^{-} \rightarrow r(4 S)$					
- - We do not use the following data for averages, fits, limits, etc. - -					
<1.4	90	${ }^{1}$ AUBERT	3x BABR Repl. by DEL-AMOSANCHEZ 11B		

Meson Particle Listings
B^{0}

$\Gamma\left(\eta_{c}(1 S) K^{*}(1680)^{0}\right) / \Gamma\left(\eta_{c}(1 S) K^{+} \pi^{-}\right) \quad \Gamma_{191} / \Gamma_{185}$

$\Gamma\left(\eta_{c}(1 S) K_{0}^{*}(1950)^{0}\right) / \Gamma\left(\eta_{c}(1 S) K^{+} \pi^{-}\right) \quad \Gamma_{192} / \Gamma_{185}$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{\mathbf{7}_{-6}^{+\mathbf{4}} \mathbf{\pm 2}} \frac{\text { DOCUMENT ID }}{1^{\text {AAIJ }} \quad \text { 18AN LHCB }} \frac{\text { TECN }}{\text { pp at } 7,8,13 \mathrm{TeV}}$ COMMENT ${ }^{1}$ AAIJ 18AN reports $\left[\Gamma\left(B^{0} \rightarrow \eta_{C}(1 S) K_{0}^{*}(1950)^{0}\right) / \Gamma\left(B^{0} \rightarrow \quad \eta_{C}(1 S) K^{+} \pi^{-}\right)\right] \times$ $\left[\mathrm{B}\left(K_{0}^{*}(1950) \rightarrow K^{-} \pi^{+}\right)\right]=0.038 \pm 0.018_{-0.025}^{+0.014}$ which we divide by our best value $\mathrm{B}\left(K_{0}^{*}(1950) \rightarrow K^{-} \pi^{+}\right)=(52 \pm 14) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(X(4100)^{-} K^{+}, X^{-} \rightarrow \eta_{c} \pi^{-}\right) / \Gamma\left(\eta_{c}(1 S) K^{+} \pi^{-}\right) \quad \Gamma_{187} / \Gamma_{185}$ $\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{3 . 3} \mathbf{1 . 1} \mathbf{+ 1 . 2}} \quad$ AAIJ $\quad \frac{\text { DECUMENT ID }}{\text { 18AN LHCB }} \frac{\text { COMMENT }}{}$ $\Gamma\left(\eta_{c} K^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{193} / \Gamma^{2}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{5 . 2} \mathbf{-}_{-\mathbf{0 . 8}}^{\mathbf{0 . 7}} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of 1．5．See the ideogram below．}} \frac{\text { TECN }}{\text { COMMENT }}$

$4.42 \pm 0.24{ }_{-0.66}^{+0.54}$	${ }^{1}$ AAIJ	18AN LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$6.6 \pm 0.8 \pm 0.5$	2，3 AUBERT	08AB BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$7.1{ }_{-2.0}^{+2.2} \pm 0.7$	4,5 AUBERT	07av BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$16.2 \pm 3.2{ }_{-6.0}^{+5.5}$	${ }^{5}$ FANG	03 BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{2}$ AUBERT 08AB reports $\left[\Gamma\left(B^{0} \rightarrow \eta_{c} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[B\left(B^{+} \rightarrow \eta_{c} K^{+}\right)\right]=$ $0.62 \pm 0.06 \pm 0.05$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=$ $(1.06 \pm 0.09) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ Uses the production ratio of $\left(B^{+} B^{-}\right) /\left(B^{0} \bar{B}^{0}\right)=1.026 \pm 0.032$ at $\Upsilon(4 S)$ ．
${ }^{4}$ AUBERT 07AV reports $\left[\Gamma\left(B^{0} \rightarrow \eta_{C} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right)\right]$ $=\left(1.03_{-0.24}^{+0.27} \pm 0.17\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow\right.$ $p \bar{p})=(1.45 \pm 0.14) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{5}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．

$\Gamma\left(\eta_{C}(2 S) K_{S}^{0}, \eta_{C} \rightarrow p \bar{p} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{194} / Γ
VALUE（units 10^{-7} ）		DOCUMENT ID	TECN	COMMENT	
$4.2=1.4+0.3$		CHILIKIN	19 BELL	$e^{+} e^{-}$	$r(4 S)$
$\Gamma\left(\eta_{C}(2 S) K^{* 0}\right) / \Gamma_{\text {total }}$					$\Gamma_{195} /{ }^{\prime}$
VALUE（units 10^{-4} ）	CL\％	DOCUMENT ID TECN		COMMENT	
＜3．9	90	${ }^{1}$ AUBERT	08AB BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Uses the production ratio of $\left(B^{+} B^{-}\right) /\left(B^{0} \bar{B}^{0}\right)=1.026 \pm 0.032$ at $\Upsilon(4 S)$ ．					

$\boldsymbol{\Gamma}\left(\boldsymbol{h}_{\boldsymbol{C}}(1 P) K_{\boldsymbol{S}}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<1.4 \times 10^{-5}}$$\frac{\text { DOCUMENT ID }}{\text { CHILIKIN } 19} \frac{\text { TECN }}{\text { BELL }} \frac{\Gamma_{\mathbf{1 9 6}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
$\Gamma\left(B^{0} \rightarrow h_{C}(1 P) K^{* 0}\right) / \Gamma_{\text {total }} \times \Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }}$ $\Gamma_{197} / \Gamma \times \Gamma_{12}^{h_{c}(1 P)} / \Gamma_{c}^{h_{c}(1 P)}$ $\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{< 2 . 2}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{\text { O8AB }}{\text { COMMENT }}$ ${ }^{1}$ Uses the production ratio of $\left(B^{+} B^{-}\right) /\left(B^{0} \bar{B}^{0}\right)=1.026 \pm 0.032$ at $\gamma(4 S)$ ．

$\Gamma\left(\eta_{c} K^{*}(892)^{0}\right) / \Gamma\left(\eta_{c} K^{0}\right)$$V A L U E$	DOCUMENT ID	$\Gamma_{193} / \Gamma_{184}$		
		TECN	COMMENT	
$1.33 \pm 0.36=0.24$	FANG 03	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Gamma\left(J / \psi(1 S) K^{0}\right) / \Gamma_{\text {total }}$				$\Gamma_{198} / \Gamma^{\prime}$
VALUE（units 10^{-4} ）CL\％EVTS	DOCUMENT ID	TECN	COMMENT	
8.68 ± 0.30 OUR FIT				
8.67 ± 0.30 OUR AVERAGE				
$8.1 \pm 0.9 \pm 0.6$	${ }^{1}$ CHILIKIN 19	BELL	$e^{+} e^{-}$	$r(4 S)$
$8.8{ }_{-1.3}^{+1.4} \pm 0.1$	2，3 AUBERT 07AV	BABR	$e^{+} e^{-}$	$r(4 S)$
$8.69 \pm 0.22 \pm 0.30$	${ }^{3}$ AUBERT 05J	BABR	$e^{+} e^{-}$	$r(4 S)$
$7.9 \pm 0.4 \pm 0.9$	3 ABE 03B	BELL	$e^{+} e^{-}$	$r(4 S)$
$9.5 \pm 0.8 \pm 0.6$	3 AVERY 00	CLE2	$e^{+} e^{-}$	$r(4 S)$
$11.5 \pm 2.3 \pm 1.7$	${ }^{4}$ ABE 96H	CDF	$p \bar{p}$ at 1.8	TeV
$6.93 \pm 4.07 \pm 0.04$	${ }^{5}$ BORTOLETTO92	CLEO	$e^{+} e^{-}$	$r(4 S)$
$9.24 \pm 7.21 \pm 0.05$	${ }^{6}$ ALBRECHT 90」	ARG	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－				
$8.3 \pm 0.4 \pm 0.5$	3 AUBERT 02	BABR	Repl．by	AUBERT 05」
$8.5{ }_{-1.2}^{+1.4} \pm 0.6$	3 JESSOP 97	CLE2	Repl．by	AVERY 00
$7.5 \pm 2.4 \pm 0.8 \quad 10$	${ }^{5}$ ALAM 94	CLE2	Sup．by J	ESSOP 97
<50	ALAM 86	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ CHILIKIN 19 reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)\right]=$ $\left(48.6_{-4.4}^{+4.6+2.4}\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)$ $=(6.0 \pm 0.5) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ AUBERT 07AV reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})]=$ $\left(1.87_{-0.26}^{+0.28} \pm 0.07\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})=$ $(2.121 \pm 0.029) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{4} \mathrm{ABE} 96 \mathrm{H}$ assumes that $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.02 \pm 0.14) \times 10^{-3}$
${ }^{5}$ BORTOLETTO 92 reports $(6 \pm 3 \pm 2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ 0.069 ± 0.009 ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm$ $0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{6}$ ALBRECHT 90 」 reports $(8 \pm 6 \pm 2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$ $=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+} and B^{0} at the $r(4 S)$ ．

${ }^{1}$ BORTOLETTO 92 reports $(1.0 \pm 0.4 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$ $=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(\mathrm{J} / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm$ $0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{2}$ Does not report systematic uncertainties．
${ }^{3}$ ALBRECHT 87 D assume $B^{+} B^{-} / B^{0} \bar{B}^{0}$ ratio is $55 / 45$ ．$K \pi$ system is specifically se－ lected as nonresonant．
$\Gamma\left(J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{200} / \Gamma$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{1.27 \pm 0.05 \text { OUR FIT }}$
DOCUMENT ID
TECN COMMENT

1.28 ± 0.05 OUR AVERAGE

$1.19 \pm 0.01 \pm 0.08$
CHILIKIN $\quad 14$ BELL $\bar{B}^{0} \rightarrow J / \psi K^{-} \pi^{+}$
$1.33{ }_{-0.21}^{+0.22} \pm 0.02$
1，2 AUBERT
$1.309 \pm 0.026 \pm 0.077$
${ }^{2}$ AUBERT
${ }_{3}^{2} \mathrm{ABE}$
07AV BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.29 \pm 0.05 \pm 0.13$
05」 BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.74 \pm 0.20 \pm 0.18$
${ }^{3} 4 \mathrm{ABE}$
02N BELL $e^{+} e^{-} \rightarrow r(4 S)$
980 CDF $p \bar{p} 1.8 \mathrm{TeV}$
$1.27 \pm 0.65 \pm 0.01 \quad 5$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$1.27 \pm 0.60 \pm 0.01 \quad 6 \quad{ }^{6}$ ALBRECHT 90 J ARG $e^{+} e^{-} \rightarrow r(4 S)$
$4.04 \pm 1.81 \pm 0.02 \quad 5 \quad 7$ BEBEK $\quad 87$ CLEO $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．•－
$1.24 \pm 0.05 \pm 0.09 \quad 2$ AUBERT 02 BABR Repl．by AUBERT 05」
$1.36 \pm 0.27 \pm 0.22 \quad{ }^{8} \mathrm{ABE} \quad 96 \mathrm{H}$ CDF \quad Sup．by ABE 980
$1.69 \pm 0.31 \pm 0.18 \quad 29 \quad{ }^{9}$ ALAM 94 CLE2 \quad Sup．by JESSOP 97
4.0 ± 0.30
$3.3 \pm 0.18 \quad 5 \quad 12$ ALBRECHT 87D ARG $e^{+} e^{-} \rightarrow r(4 S)$
$4.1 \pm 0.18 \quad 5 \quad 13$ ALAM $\quad 86$ CLEO Repl．by BEBEK 87
${ }^{1}$ AUBERT 07AV reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})]$ $=(2.82-0.30+0.36) \times 10_{-0.3}^{+6}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})=$ $(2.121 \pm 0.029) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3} \mathrm{ABE} 980$ reports $\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]=1.76 \pm$
0.14 ± 0.15 ．We multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(9.9 \pm 1.0) \times 10^{-4}$ ． Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{4}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{5}$ BORTOLETTO 92 reports $(1.1 \pm 0.5 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.e^{+} e^{-}\right)=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{6}$ ALBRECHT 90J reports $(1.1 \pm 0.5 \pm 0.2) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.e^{+} e^{-}\right)=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{7}$ BEBEK 87 reports $(3.5 \pm 1.6 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.e^{+} e^{-}\right)=0.069 \pm 0.009$ ，which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Updated in BORTOLETTO 92 to use the same assumptions．
${ }^{8} \mathrm{ABE} 96 \mathrm{H}$ assumes that $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.02 \pm 0.14) \times 10^{-3}$ ．
${ }^{9}$ The neutral and charged B events together are predominantly longitudinally polarized， $\Gamma_{L} / \Gamma=0.080 \pm 0.08 \pm 0.05$ ．This can be compared with a prediction using HQET， 0.73 （KRAMER 92）．This polarization indicates that the $B \rightarrow \psi K^{*}$ decay is dominated by the $C P=-1 C P$ eigenstate．Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
10 ALBRECHT 94 G measures the polarization in the vector－vector decay to be predominantly longitudinal，$\Gamma_{T} / \Gamma=0.03 \pm 0.16 \pm 0.15$ making the neutral decay a $C P$ eigenstate when the $K^{* 0}$ decays through $K_{S}^{0} \pi^{0}$ ．
${ }^{11}$ ALBAJAR 91E assumes B_{d}^{0} production fraction of 36% ．
${ }^{12}$ ALBRECHT 87D assume $B^{+} B^{-} / B^{0} \bar{B}^{0}$ ratio is $55 / 45$ ．Superseded by ALBRECHT 90J．
${ }^{13}$ ALAM 86 assumes $B^{ \pm} / B^{0}$ ratio is $60 / 40$ ．The observation of the decay $B^{+} \rightarrow$ $J / \psi K^{*}(892)^{+}($HAAS 85$)$ has been retracted in this paper．

$\Gamma\left(J / \psi(1 S) K^{*}(892)^{0}\right) / \Gamma\left(J / \psi(1 S) K^{0}\right)$			$\Gamma_{200} / \Gamma_{198}$	
VALUE	DOCUMENT ID	TECN	COMMENT	
1．50 ± 0.09 OUR AVERAGE				
$1.51 \pm 0.05 \pm 0.08$	AUBERT	05」 BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$1.39 \pm 0.36 \pm 0.10$	ABE	96Q CDF	$p \bar{p}$	
－－We do not use the following data for averages，fits，limits，etc．－－				
$1.49 \pm 0.10 \pm 0.08$	${ }^{1}$ AUBERT	02 BABR	Repl．by	UBERT 05」
${ }^{1}$ Assumes equal production	and B^{0} at the	$r(4 S)$ ．		

$\Gamma\left(J / \psi(1 S) \omega K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0 4}} / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{2 . 3} \pm \mathbf{0 . 3} \mathbf{0 . 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DEL－AMO－SA．．10B }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
－－We do not use the following data for averages，fits，limits，etc．－－•
$3.1 \pm 0.6 \pm 0.3 \quad 1$ AUBERT 08w BABR Repl．by DEL－AMO－SANCHEZ 10B
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(\chi_{c 1}(3872) K\right.$	$) / \Gamma_{\text {total }}$			
VALUE（units 10 ${ }^{-6}$ ）	DOCUMENT ID	TECN	COMMENT	
6 $\pm 3 \pm 1$	1 DEL－AMO－SA	BABR	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma(X(3915), X \rightarrow J / \psi \omega) / \Gamma_{\text {total }} \quad \Gamma_{206} / \Gamma$
VALUE（units 10^{-5} ）DOCUMENT ID TECN COMMENT
$\mathbf{2 . 1} \pm \mathbf{0 . 9} \mathbf{\pm 0 . 3} \quad 1$ DEL－AMO－SA．．10B BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－．－
$1.3_{-1.1}^{+1.3} \pm 0.2 \quad 1,2$ AUBERT 08W BABR Repl．by DEL－AMO－SANCHEZ 10B
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{2}$ Corresponds to upper limit of 3.9×10^{-5} at 90% CL．

$\Gamma\left(J / \psi(1 S) \phi K^{0}\right) / \Gamma_{\text {total }}$			Γ_{203} / Γ	
VALUE（units 10^{-5} ）	DOCUMENT ID	TECN	COMMENT	
4.9 ± 1.0 OUR AVERAGE	Error includes scale factor of 1．3．			
$4.43 \pm 0.76 \pm 0.19$	LEES 15	BABR	$e^{+} e^{-}$	$r(4 S)$
$10.2 \pm 3.8 \pm 1.0$	1 AUBERT 030	BABR	$e^{+} e^{-}$	$r(4 S)$
$8.8{ }_{-3.0}^{+3.5} \pm 1.3$	2 ANASTASSOV 00	CLE2	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production	of B^{+}and B^{0} at the $r($			
${ }^{2}$ ANASTASSOV 00 finds 1 tion of B^{0} and B^{+}at the and ϕ decays，and $\mathrm{B}\left(B^{+}\right.$	events on a background of $\gamma(4 S)$ ，a uniform Dalitz plot $\left.\rightarrow J / \psi(1 S) \phi K^{+}\right)=\mathrm{B}\left(B^{0}\right.$	$0.5 \pm 0 .$ ot distri $\rightarrow J / \psi$	2．Assume ution，isot $\text { (1S) } \phi K^{0}$	equal pr opic J / ψ

$\Gamma\left(J / \psi(1 S) K(1270)^{0}\right) / \Gamma_{\text {total }}$					Γ_{207} / Γ
VALUE（units 10^{-3} ）	DOCU		TECN	COMMENT	
$1.30 \pm 0.34 \pm 0.32$	${ }^{1} \mathrm{ABE}$		BELL	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ and uses the PDG value of $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(1.00 \pm 0.10) \times 10^{-3}$.
$\Gamma\left(J / \psi(1 S) \pi^{0}\right) / \Gamma_{\text {total }}$
Γ_{208} / Γ
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{1.66 \pm 0.10 \text { OUR }} \frac{C L}{}$
DOCUMENT ID 1.66 ± 0.10 OUR AVERAGE TECN COMMENT

208 $1.62 \pm 0.11 \pm 0.06 \quad 1 \mathrm{PAL} \quad 18 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$ $1.69 \pm 0.14 \pm 0.07 \quad 1$ AUBERT \quad 08AU BABR $e^{+} e^{-} \rightarrow r(4 S)$ $2.5{ }_{-0.9}^{+1.1} \pm 0.2 \quad{ }_{-1}$ AVERY 00 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

| $1.94 \pm 0.22 \pm 0.17$ | | 1 | AUBERT，B | $06 B$ | BABR |
| :---: | :--- | :--- | :--- | :--- | :--- | Repl．by AUBERT 08AU

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ ACCIARRI 97C assumes B^{0} production fraction $(39.5 \pm 4.0) \%$ and $B_{S}(12.0 \pm 3.0) \%$ ．

Meson Particle Listings
B^{0}

$\Gamma\left(J / \psi(1 S) f_{0}(500), f_{0} \Rightarrow \pi \pi\right) / \Gamma_{\text {total }} \quad \Gamma_{212} / \Gamma$ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT
$\mathbf{8 . 8} \pm \mathbf{0 . 5}=\mathbf{= 1 . 5} \quad 1$ AAIJ $14 \times$ LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - .
$6.4_{-1.1}^{+2.5} \pm 0.3$
2,3 AAIJ
13m LHCB Repl. by AAIJ $14 \times$
${ }^{1}$ AAIJ 14x uses Dalitz plot analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.
${ }^{2}$ AAIJ 13 M reports $\left(6.4 \pm 0.8_{-0.8}^{+2.4}\right) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{0}(500), f_{0} \rightarrow \pi \pi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(3.94 \pm 0.17) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ${ }^{3}$ AAIJ 13M does not report correlations between various measurements of the $J / \psi \pi \pi$ final state. Measured in Dalitz plot like analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.
$\Gamma\left(J / \psi(1 S) f_{2}\right) / \Gamma_{\text {total }} \quad \Gamma_{213} / \Gamma^{2}$

VALUE (units 10^{-5}) CL\%	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 3 3} \pm 0.05$ OUR AVERAGE	Error includes scale factor of 1.5.		
$0.30 \pm 0.03_{-0.03}^{+0.02}$	${ }^{1}$ AAIJ	14x LHCB	p at $7,8 \mathrm{TeV}$
$0.41 \pm 0.06 \pm 0.02$	2,3 AAIJ	13m LHCB	$p p$ at 7 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.5 \quad 90 \quad 4,5$ AUBERT 07AC BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AAIJ $14 \times$ uses Dalitz plot analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.
${ }^{2}$ AAIJ 13 M reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) f_{2}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=(3.5 \pm 0.4 \pm$ $0.4) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) f_{2}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow\right.\right.$ $\pi \pi)] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(3.97 \pm$ $0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best values $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)$ $=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}, \mathrm{~B}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(3.94 \pm 0.17) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{3}$ our best values. 13 M does not report correlations between various measurements of the $J / \psi \pi \pi$ final state. Measured in Dalitz plot like analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.
${ }^{4}$ AUBERT 07AC reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) f_{2}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]<0.46 \times$ 10^{-5} which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)=84.2 \times 10^{-2}$.
${ }^{5}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(J / \psi(1 S) \rho^{0}\right) / \Gamma_{\text {total }}$
Γ_{214} / Γ
$2.55{ }_{-0.16}^{+0.18}$ OUR AVERAGE
$2.50 \pm 0.10_{-0.15}^{+0.18} \quad 1$ AAIJ $14 \times$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$2.7 \pm 0.3 \pm 0.2 \quad 2$ AUBERT \quad 07AC BABR $e^{+} e^{-} \rightarrow r(4 S)$

$<1.1 \times 10^{-6}$
${ }^{1}$ AAIJ 13 M does not provide correlations between various measurements of the $J / \psi \pi^{+} \pi^{-}$ final state. The measurements were obtained from a Dalitz plot like analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$. Also reports $\Gamma\left(J / \psi(1 S) f_{0}(980), \quad f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}=$ $\left(6.1_{-2.0}^{+3.1+1.7}\right) \times 10^{-6}$.

$\boldsymbol{\Gamma}\left(J / \psi(\mathbf{1 S}) \boldsymbol{\rho}(\mathbf{1 4 5 0})^{\mathbf{0}}, \boldsymbol{\rho}^{\mathbf{0}} \Rightarrow \boldsymbol{\pi} \boldsymbol{\pi}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$\underline{\left.\text { VALUE (units } 10^{-6}\right)}$	$\Gamma_{\mathbf{2 1 6}} / \boldsymbol{\Gamma}$

$2.9 \mathbf{-}_{\mathbf{0}}^{\mathbf{1} .6}$ OUR AVERAGE

${ }^{1}$ AAIJ 14X uses Dalitz plot analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.
$\Gamma(J / \psi(1 S) \omega) / \Gamma_{\text {total }} \quad \Gamma_{218} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 8} \mathbf{+ 0 . 7} \pm \mathbf{0 . 1}} \frac{\text { CL\% }}{1 \text { AOCUMENT ID }} \frac{\text { TECN }}{\text { AAIJ }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{14 \times \text { at } 7,8 \mathrm{TeV}}{}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{llllll}<27 & 90 & \text { BISHAI } 96 & \text { CLE2 } & e^{+} e^{-} \rightarrow & r(4 S)\end{array}$
${ }^{1}$ AAIJ $14 \times$ reports $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)\right]=$ $\left(2.7_{-0.6-0.5}^{+0.8}+0.7\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)=$ $(1.53 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(J / \psi(1 S) \omega) / \Gamma\left(J / /(1 S) \rho^{0}\right)$
$\Gamma_{218} / \Gamma_{214}$

VALUE	DOCUMENT ID	TECN COMMENT
$0.61{ }_{-0.21}^{+0.39} \pm 0.03$	1,2 AAIJ $\quad 13 \mathrm{M}$	LHCB $p p$ at 7 TeV

${ }^{1}$ AAIJ 13 M reports $0.61{ }_{-0.14}^{+0.24}{ }_{-0.16}^{0.31}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) \omega\right) /\right.$ $\left.\Gamma\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)\right] \times\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)$ $=\left(1.53_{-0.13}^{+0.11}\right) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-}\right)=$ $(1.53 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AAIJ 13 M does not report correlations between various measurements of the $J / \psi \pi \pi$ final state. Measured in Dalitz plot like analysis of $B^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$. Assumes $\mathrm{B}\left(\rho(770)^{0} \rightarrow\right.$ $\pi \pi)=100 \%$.
$\Gamma(J / \psi(1 S) \omega) / \Gamma\left(J / \psi(1 S) \rho^{0}\right) \quad \Gamma_{218} / \Gamma_{214}$
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 8 9} \pm \mathbf{0 . 1 9}=\mathbf{0} \mathbf{0} .13 \quad$ AAIJ 13 A LHCB $p p$ at 7 TeV

$\Gamma\left(J / \psi(1 S) K^{+} K^{-}\right) / \Gamma_{\text {total }}$				Γ_{219} / Γ
VALUE (units 10-6)	DOCUMENT ID	TECN	COMMENT	
$2.50 \pm 0.34 \pm 0.07$	${ }^{1}$ AAIJ	LHCB	$p p$ at 7 TeV	

${ }^{1}$ AAIJ ${ }^{13 B T}$ reports $(2.53 \pm 0.31 \pm 0.19) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]$assuming $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.J / \psi(1 S) K^{+}\right)=(1.018 \pm 0.042) \times 10^{-3}$, which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.J / \psi(1 S) K^{+}\right)=(1.006 \pm 0.027) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J / \psi(1 S) \eta) / \Gamma\left(J / \psi(1 S) \eta^{\prime}(958)\right)$
$\Gamma_{209} / \Gamma_{222}$

value	DOCUMENT ID		TECN COMMENT		
$1.111 \pm 0.475 \pm 0.062$	AAIJ	15D	LHCB	$p p$ at 7, 8	
${ }^{1}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}, \eta^{\prime} \rightarrow \rho^{0} \gamma$, and $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decays.					
$\Gamma\left(J / \psi(1 S) K^{0} \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) K^{0}\right)$			TECN COMment		$\Gamma_{223} / \Gamma_{198}$
$\frac{\text { VALUE }}{0.50} \pm 0.04$ OUR AVERAGE	DOCuMENT ID				
$0.493 \pm 0.034 \pm 0.027$	AAIJ	${ }^{142}$	LHCB	$p p$ at 7 TeV $\overline{\bar{P}} 18 \mathrm{TeV}$	

$\Gamma\left(J / \psi(1 S) K^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{225 / \Gamma}$

$\Gamma\left(J / \psi(1 S) K^{0} K^{-} \pi^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma_{224 / \Gamma}$
$\frac{V A L U E}{<\mathbf{2 1} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{14 \mathrm{~L}}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7 \mathrm{TeV}}$
${ }^{1}$ Measured with $\mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0} \pi^{+} \pi^{-}\right)$using PDG 12 values for the involved branching fractions.
$\Gamma\left(J / \psi(1 S) K^{0} \rho^{0}\right) / \Gamma_{\text {total }}$
「227/Г
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{5 . 4} \mathbf{\pm 2 . 9} \pm \mathbf{0 . 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AFFOLDER 02B }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} 1.8 \mathrm{TeV}}$
$1_{\text {Uses } B^{0} \rightarrow J / \psi(1 S) K_{S}^{0} \text { decay as a reference and } \mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=8.3 \times 10^{-4} .}$.
$\Gamma\left(J / \psi(1 S) K^{*}(892)^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{228} / Γ
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$ decay as a reference and $B\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=8.3 \times 10^{-4}$.
$\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 3 6 1}+\mathbf{0 . 0 1 7}+\mathbf{0 . 0 2 1}}$ DOCUMENT ID TECN COMMENT
$\mathbf{0 . 3 6 1} \pm \mathbf{0 . 0 1 7} \pm \mathbf{0 . 0 2 1} \quad{ }^{1} \mathrm{AAIJ} \quad 14 \mathrm{Y}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Excludes contributions from $\psi(2 S)$ and $\chi_{C 1}(3872)$ decaying to $J / \psi(1 S) \pi^{+} \pi^{-}$
$\Gamma\left(J / \psi(1 S) f_{1}(1285)\right) / \Gamma_{\text {total }}$
$\frac{\text { DOCUMENT ID }}{1 \text { AAIJ }} 14$ Y $\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 14Y reports $\left(8.37 \pm 1.95{ }_{-0.66}^{+0.71} \pm 0.35\right) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{1}(1285)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)\right]$assuming $\mathrm{B}\left(f_{1}(1285) \rightarrow\right.$ $\left.2 \pi^{+} 2 \pi^{-}\right)=0.11_{-0.006}^{+0.007}$, which we rescale to our best value $\mathrm{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$ $=(10.9 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\chi_{c 1}(3872)-K^{+}\right) / \Gamma_{\text {total }}$						Γ_{232} / Γ
VALUE	CL\%	DOCUMEN		TECN	COMMENT	
$<5 \times 10^{-4}$	90	1 AUBERT	06E	BABR	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Perform measurements of absolute branching fractions using a missing mass technique.
$\Gamma\left(\chi_{c 1}(3872)^{-} K^{+}, \chi_{c 1}(3872)^{-} \rightarrow J / \psi(1 S) \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{233} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<4.2} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { CHOI }} \frac{11}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - . -
$\begin{array}{lll}<5.4 & 90 \quad 2,3 & \text { AUBERT } \quad 05 \mathrm{~B} \\ \mathrm{BABR} & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes $\pi^{+} \pi^{0}$ originates from ρ^{+}.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ The isovector- X hypothesis is excluded with a likelihood test at 1×10^{-4} level.

$\Gamma\left(\chi_{c 1}(3872) K\right.$		$\left.\pi^{-}\right) / \Gamma_{\text {total }}$			Γ_{234} / Γ
VALUE (units 10 ${ }^{-6}$)	CL\%	DOCUMENT ID	TECN	COMMENT	

4.3 $\pm 1.2 \pm \mathbf{0 . 4} \quad 1,2 \frac{}{\mathrm{CHOI}} \frac{11}{\mathrm{BELL}} \frac{\operatorname{TOCN}}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. • • -

<6.0	90	2 AUBERT	08 Y BABR $e^{+} e^{-} \rightarrow r(4 S)$
<10.3	90	2,3 AUBERT	06
BABR Repl. by AUBERT 08Y			

${ }^{1} \mathrm{CHOI} 11$ reports $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 1}(3872) K^{0}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)\right]=0.50 \pm 0.14 \pm 0.04$ which we multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(8.6 \pm 0.8) \times 10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{3}$ The lower limit is also given to be 1.34×10^{-6} at $90 \% \mathrm{CL}$
$\Gamma\left(\chi_{c 1}(3872) K^{0}, \chi_{c 1} \rightarrow J / \psi \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{235} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{10}$ CL\% \quad DOCUMENT ID \quad TECN $\frac{\text { COMMENT }}{+e^{-}}$
<2.4 90 BHARDWAJ 11 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<4.9 \quad 90 \quad 2$ AUBERT 09B BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\chi_{c 1}(3872) K^{*}(892)^{0}, \chi_{c 1} \rightarrow J / \psi \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{236} / \Gamma$

VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT

$<\mathbf{2 . 8} \mathrm{C}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\chi_{c 1}(3872) \kappa^{0}, \chi_{c 1} \rightarrow \psi(2 S) \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{237} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{6} \frac{C L \%}{\text { CLOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}$
<6.62 $90 \quad{ }^{1}$ BHARDWAJ 11 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • •
$<19 \quad 90 \quad 2$ AUBERT 09B BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Uses $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\chi_{c 1}(3872) \kappa^{*}(892)^{0}, \chi_{c 1} \rightarrow \psi(2 S) \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{238} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<4.4} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\gamma(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
$\Gamma\left(\chi_{\boldsymbol{c 1}}(3872) K^{0}, \chi_{\boldsymbol{c 1}} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 3 9}} / \boldsymbol{\Gamma}$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$\mathbf{1 . 6 6} \pm \mathbf{0 . 7 0} \mathbf{+ 0 . 3 2} \quad 1$ GOKHROO $06 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Measure the near-threshold enhancements in the ($D^{0} \bar{D}^{0} \pi^{0}$) system at a mass $3875.2 \pm$ $0.7_{-1.6}^{+0.3} \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2}$.

$\Gamma\left(\chi_{c 1}(3872) K^{+} \pi^{-}, \chi_{c 1} \Rightarrow J / \psi \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{241} / Γ
VALUE (units 10 0^{-6})	DOCUM		TECN	COMMENT	
$7.9 \pm 1.3 \pm 0.4$	${ }^{1}$ BALA	15	BELL	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equa	and B	$r($			

Meson Particle Listings
B^{0}

<8.3	90	3 XIE	05	BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
<19	90	${ }^{3}$ AUBERT	03 K	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$

${ }^{1}$ Measured relative to $B_{S}^{0} \rightarrow J / \psi \phi$ assuming $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi \phi\right)=(10.5 \pm 0.13 \pm 0.64) \times$ 10^{-4} and taking into account small $K^{+} K^{-} S$－wave contribution．Measurement assumes $\mathrm{f}_{s} / \mathrm{f}_{d}=0.259 \pm 0.015$ for $7,8 \mathrm{TeV}$ data and $\mathrm{f}_{s} / \mathrm{f}_{d}$ multiplied by 1.068 ± 0.046 for 13 ${ }_{2} \mathrm{TeV}$ data．
${ }^{2}$ Uses $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(1.98 \pm 0.20) \times 10^{-4}$
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma(J / \psi(1 S) \gamma) / /_{\text {total }}$
$\Gamma_{249 / \Gamma}$
VALUE（units 10^{-6} ）CL\％
DOCUMENT ID TECN COMMENT
15BB LHCB $p p$ at $7,8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$<1.6 \quad 90 \quad 2$ AUBERT，B 04 T BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Branching fractions of normalization modes $B^{0} \rightarrow J / \psi \gamma X$ taken from PDG 14．Uses
$f_{S} / f_{d}=0.259 \pm 0.015$ ．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{J} / \boldsymbol{\psi}(\mathbf{1 S}) \overline{\left.\boldsymbol{D}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}}\right.$
$\frac{\left.\text { VALUE（units 10 } 0^{-5}\right)}{<\mathbf{1 . 3}} \frac{C L \%}{90}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$<2.0 \quad 90 \quad 1$ ZHANG 05B BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(\psi(2 S) \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{251 / \Gamma}$
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{\mathbf{1 . 1 7} \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { CHOBANOVA } 16} \frac{\text { TECN }}{\text { COMMENT }}$

CHOBANOVA 16 BELL $e^{+} e^{-} \rightarrow r(4 S$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(\psi(2 S) K^{0}\right) / \Gamma_{\text {total }}$		Γ_{252} / Γ	
VALUE（units 10^{-4} ）COCUMENT ID		TECN	COMMENT
5.8 ± 0.5 OUR FIT 5.8 ± 0.5 OUR AVERAGE			
$4.7 \pm 0.7 \pm 0.7$	${ }^{1}$ AAIJ 14L	LHCB	$p p$ at 7 TeV
$6.46 \pm 0.65 \pm 0.51$	2 AUBERT 05」	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
6.7 ± 1.1	${ }^{2}$ ABE 03 B	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$5.0 \pm 1.1 \pm 0.6$	${ }^{2}$ RICHICHI 01	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•			
$6.9 \pm 1.1 \pm 1.1$	${ }^{2}$ AUBERT 02	BABR	Repl．by AUBERT 05」
<89	${ }^{2}$ ALAM 94	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<15	2 BORTOLETTO92	CLEO	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<28	2 ALBRECHT 90」	ARG	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Measured with $\mathrm{B}\left(B^{0} \rightarrow \psi(2 S) K_{S}^{0}\right) \times \mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right)$ using PDG 12 values for the involved branching fractions． ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．			
$\Gamma\left(\psi(2 S) K^{0}\right) / \Gamma\left(J / \psi(1 S) K^{0}\right)$		$\Gamma_{252} / \Gamma_{198}$	
VALUE	DOCUMENT ID	BABR	COMMENT
$0.82 \pm 0.13 \pm 0.12$	${ }^{1}$ AUBERT 02		$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．			
			Γ_{253} / Γ
VALUE（units 10^{-4} ）	DOCUMENT ID	TECN	COMMENT
<1.23 90	1 AUBERT	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．			
$\Gamma\left(\psi(3770) K^{0}, \psi \rightarrow D^{-} D^{+}\right) / \Gamma_{\text {total }}$			Γ_{254} / Γ
VALUE（units 10^{-4} ）CL\％	DOCUMENT ID	TECN	COMMENT
<1.88	${ }^{1}$ AUBERT 08B	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of	+ and B^{0} at the $\gamma_{(4 S)}$		

$\left.\underset{\text { VALUE }}{\Gamma(\psi)} \boldsymbol{\pi}^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{2 5 5}} / \Gamma_{\mathbf{2 1 0}}$
$\frac{V A L U E}{0.56+0.07 \pm 0.05} 1 \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { COMMENT }}{\text { CAIJ }}$
${ }^{1}$ Assuming lepton universality for dimuon decay modes of J / ψ and $\psi(2 S)$ mesons，the ratio $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$ $\left.e^{+} e^{-}\right)=7.69 \pm 0.19$ was used．
$\Gamma\left(\psi(2 S) K^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{256} / \Gamma$
VALUE（units 10^{-4} ）CL\％DOCUMENT ID \quad TECN COMMENT
$\mathbf{5 . 8 0} \pm \mathbf{0 . 3 9} \quad 1,2$ CHILIKIN $13 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma(4 S)$
－．We do not use the following data for averages，fits，limits，etc．－．－
$5.57 \pm 0.16 \quad 3$ AUBERT \quad 09AA BABR $e^{+} e^{-} \rightarrow r(4 S)$
$5.68 \pm 0.13 \pm 0.42 \quad 2$ MIZUK 09 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$<10 \quad 90 \quad 2$ ALBRECHT 90 J ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Combines measurements with $\psi(2 S) \rightarrow \ell^{+} \ell^{-}$with measurement from MIZUK 09 which
uses $\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$．
${ }_{3}^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{3}$ Does not report systematic uncertainties．
$\Gamma\left(\psi(2 S) K^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{257} / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{5 . 9} \mathbf{\pm 0 . 4} \text { OUR FIT }}$ CL\％DOCUMENT ID TECN COMMENT
$\mathbf{6 . 0} \mathbf{+ 0 . 5}$ OUR AVERAGE Error includes scale factor of 1．1．

${ }_{5.55}^{+0.22}+0.41$		${ }^{1}$ CHILIKIN	13	BELL	$e^{+} e^{-}$	$r(4 S)$
$6.49 \pm 0.59 \pm 0.97$		${ }^{1}$ AUBERT	05」	BABR	$e^{+} e^{-}$	$r(4 S)$
$7.6 \pm 1.1 \pm 1.0$		${ }^{1} \mathrm{RICHICHI}$	01	CLE2	$e^{+} e^{-}$	$r(4 S)$
$9.0 \pm 2.2 \pm 0.9$		${ }^{2} \mathrm{ABE}$	980	CDF	$p \bar{p} 1.8 \mathrm{TeV}$	
－We do not use the following data for averages，fits，limits，etc．－－－						
${ }_{5.52}^{+}+0.35+0.53-0.58$		${ }^{1}$ MIZUK	09	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
＜19	90	${ }^{1}$ ALAM	94	CLE2	Repl．by R	RICHICHI 01
$14 \pm 8 \pm 4$		${ }^{1}$ BORTOLE	092	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$
＜23	90	1 ALBREC	90」	ARG	$e^{+} e^{-}$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2} \mathrm{ABE} 980$ reports $\left[\mathrm{B}\left(B^{0} \rightarrow \psi(2 S) K^{*}(892)^{0}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]=0.908 \pm$ 0.194 ± 0.10 ．We multiply by our best value $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=(9.9 \pm 1.0) \times 10^{-4}$ ． Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\psi(2 S) K^{*}(892)^{0}\right) / \Gamma\left(J / \psi(1 S) K^{*}(892)^{0}\right) \quad \Gamma_{257} / \Gamma_{200}$ $\frac{V A L U E}{0.487+0.018+0.011} \quad$ DOCUMENT ID \quad TECN COMMENT
$\mathbf{0 . 4 8 7} \pm \mathbf{0 . 0 1 8} \pm \mathbf{0 . 0 1 1} \quad 1,2 \mathrm{AAIJ} \quad 12 \mathrm{~L}$ LHCB pp at 7 TeV
${ }^{1}$ AAIJ 12L reports $0.476 \pm 0.014 \pm 0.010 \pm 0.012$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\psi(2 S) K^{*}(892)^{0}\right) / \Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right] /$ $\left[\mathrm{B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.94 \pm 0.06) \times$ $10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=(7.72 \pm 0.17) \times 10^{-3}$ ，which we rescale to our best values $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm 0.032) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=$ $(7.93 \pm 0.17) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
${ }^{2}$ Assumes $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$ $\left.e^{+} e^{-}\right)=7.69 \pm 0.19$ ．

${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays. For the branching fraction of the reference mode, the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm$ $0.20) \times 10^{-5}$ is used.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ LEES 121 reports $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 0} K^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C O}(1 P) \rightarrow \quad K_{S}^{0} K_{S}^{0}\right)\right]=$ $\left(0.46_{-0.17}^{+0.25} \pm 0.21\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow K_{S}^{0} K_{S}^{0}\right)$ $=(3.16 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ Measured in the $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decay.
${ }^{5}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$final state decays.
${ }^{6}$ EDWARDS 01 assumes equal production of B^{0} and B^{+}at the $\Upsilon(4 S)$. The correlated uncertainties (28.3)\% from $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}\right)$ in those modes have been accounted for.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\chi_{c 1} K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{261} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{3.95 \pm 0.27 \text { OUR AVERAGE }} \frac{\text { CL\% }}{\text { DOCUMENT ID }}$ TECN COMMENT

| 3.78 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.16 | | | | | |
| +0.17 | | | | | |
| -0.33 | ${ }^{2}$ BHARDWAJ | 11 | BELL | $e^{+} e^{-} \rightarrow r(4 S)$ | |
| $4.2 \pm 0.3 \pm 0.3$ | ${ }^{3}$ AUBERT | 09B | BABR | $e^{+} e^{-} \rightarrow r(4 S)$ | |
| $3.1+1.5$ | +0.1 | ${ }^{4}$ AVERY | 00 | CLE2 | $e^{+} e^{-} \rightarrow r(4 S)$ |

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.51 \pm 0.33 \pm 0.45 \quad 2$ SONI 06 BELL Repl. by BHARDWAJ 11 $4.53 \pm 0.41 \pm 0.51 \quad 2$ AUBERT 05」 BABR Repl. by AUBERT 09B $4.3 \pm 1.4 \pm 0.1 \quad{ }^{5}$ AUBERT 02 BABR Repl. by AUBERT 05」 $\begin{array}{llllll}<27 & 90 & { }^{2} \text { ALAM } & 94 & \text { CLE2 } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$ ${ }^{1}$ CHILIKIN 19 reports $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 1} K^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)\right]=$ $\left(7.4_{-2.0}^{+2.4}{ }_{-0.4}^{+0.6}\right) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)$ $=(5.0 \pm 1.9) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(\gamma(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(\gamma(4 S) \rightarrow$ $\left.B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{4}$ AVERY 00 reports $\left(3.9_{-1.3}^{+1.9} \pm 0.4\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 1} K^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=0.273 \pm$ 0.016 , which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \xrightarrow{ }{ }^{(1)} J / \psi(1 S)\right)=(34.3 \pm 1.0) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{5}$ AUBERT 02 reports ($\left.5.4 \pm 1.4 \pm 1.1\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 1} K^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow \gamma \mathrm{J} / \psi(1 S)\right)=0.273 \pm$ 0.016 , which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.3 \pm 1.0) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\chi_{c 1} \pi^{-} K^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{262} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{4 . 9 7} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 2 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 16} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
$4.97 \pm \mathbf{0 . 1 2} \pm 0.28 \quad 1$ BHARDWAJ 16 BELL $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc .
$3.83 \pm 0.10 \pm 0.39 \quad 1$ MIZUK 08 BELL Repl. by BHARDWAJ 16
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\chi_{c 1} \pi^{-} \kappa^{+}\right) / \Gamma\left(J / \psi(1 S) \kappa^{+} \pi^{-}\right) \quad \Gamma_{262} / \Gamma_{199}$
$\frac{V A L U E}{\mathbf{0 . 4 7 6} \pm \mathbf{0 . 0 2 1} \pm \mathbf{0 . 0 1 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES 12B }} \frac{\text { TECN }}{\mathrm{BABR}}$
$1_{\text {LEES }} 12 \mathrm{~B}$ reports $0.474 \pm 0.013 \pm 0.026$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \chi_{C 1} \pi^{-} K^{+}\right) /\right.$ $\left.\Gamma\left(B^{0} \rightarrow J / \psi(1 S) K^{+} \pi^{-}\right)\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(34.4 \pm 1.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
$\Gamma\left(\chi_{c 1} \kappa^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{263 / \Gamma}$
VALUE (units 10^{-4}) CL\% DOCUMENT ID TECN COMMENT $\mathbf{2 . 3 8} \pm \mathbf{0 . 1 9}$ OUR FIT Error includes scale factor of 1.2 .
$\mathbf{2 . 2 2}_{-\mathbf{0}}^{\mathbf{+ 0 . 3 1}} \mathbf{0 . 4 0}$ OUR AVERAGE Error includes scale factor of 1.6 .

$2.5 \pm 0.2 \pm 0.2$	1	AUBERT	09 B	BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.73_{-0.12}^{+0.15+0.34}+0.22$	2 MIZUK	08	BELL $e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.14 \pm 0.34 \pm 0.72 \quad{ }^{2}$ SONI
$3.27 \pm 0.42 \pm 0.64$
$3.8 \pm 1.3 \pm 0.1$
<21

$\Gamma\left(\chi_{c 1} K^{*}\right.$ (892)	$\left.(892)^{0}\right)$			$\mathrm{F}_{263} / \Gamma_{200}$
VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT	

18.8 ± 1.5 OUR FIT Error includes scale factor of 1.1 . 19.8 $\pm 1.1 \pm 1.51$ AAIJ 13AC LHCB pp at 7 TeV ${ }^{1}$ Uses $\mathrm{B}\left(\chi_{C 1} \rightarrow J / \psi \gamma\right)=(34.4 \pm 1.5) \%$.
$\Gamma\left(\chi_{c 1} K^{*}(892)^{0}\right) / \Gamma\left(\chi_{c 1} K^{0}\right)$

$\Gamma\left(\chi_{c 1} K^{*}(892)^{0}\right) / \Gamma\left(\chi_{c 1} K^{0}\right)$				$\Gamma_{263} / \Gamma_{261}$
VALUE	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 7 2} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 1 2}$	AUBERT	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -
$0.89 \pm 0.34 \pm 0.17 \quad 1$ AUBERT 02 BABR Repl. by AUBERT 05J
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. - -
$\begin{array}{lll}<1.8 & 90 & 1,2 \\ \text { LEES } & 12 \mathrm{~B} & \text { BABR }\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses $\chi_{C 1} \rightarrow J / \psi \gamma$ mode. Uses $\chi_{C 1} \rightarrow J / \psi \gamma$ mode. Finds a good description of the data without this $B^{0} \rightarrow X(4051)^{+} K^{-}$decay mode in a fit.
$\Gamma\left(X(4248)^{-} K^{+}, X^{-} \rightarrow \chi_{c 1} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 6 5}} / \Gamma$
VALUE (units 10^{-5}) CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - .
$4.090 \quad 1,2$ LEES 12B BABR
${ }^{2}$ Uses $\chi_{C 1} \rightarrow J / \psi \gamma$ mode. Finds a good description of the data without this $B^{0} \rightarrow$ $X(4248)^{+} K^{-}$decay mode in a fit.

Meson Particle Listings
B^{0}

$\Gamma\left(\chi_{c 1} \pi^{+} \pi^{-} K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{266} / \Gamma$		
VALUE (units 10^{-4})	DOCUMENT ID TECN	COMMENT
$\mathbf{3 . 1 6} \pm \mathbf{0 . 3 5} \pm \mathbf{0 . 3 2}$	1 BHARDWAJ 16 BEL	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.		
VALUE (units 10^{-4})	DOCUMENT ID TECN	COMMENT
3.52 $\pm 0.52 \pm 0.24$	BHARDWAJ 16 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.		
$\Gamma\left(\chi_{c 2} K^{0}\right) / \Gamma_{\text {total }}$		Γ_{268} / Γ
VALUE CL\%	DOCUMENT ID TECN	COMMENT
$<1.5 \times 10^{-5} \quad 90$	${ }^{1}$ BHARDWAJ 11 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -		
$<2.8 \times 10^{-5} 90$	${ }^{2}$ AUBERT 09B BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$<2.6 \times 10^{-5} 90$	${ }^{1}$ SONI 06 BELL	Repl. by BHARDWAJ 11
$<4.1 \times 10^{-5} 90$	${ }^{1}$ AUBERT 05K BABR	$e^{+} e^{-} \rightarrow \boldsymbol{r}(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.		
${ }^{2}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(\Upsilon(4 S) \rightarrow$		

$\Gamma\left(\chi_{c 2} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{269 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{4.9 \pm 1.2 \text { OUR FIT }} \frac{\text { Error includes }}{\text { DOCUMENT ID }} \xrightarrow{\text { SCale factor of 1.1. }} \xrightarrow{\text { COMMENT }}$
$\mathbf{6 . 6} \pm 1.8 \pm \mathbf{0 . 5} \quad 1$ AUBERT $\quad 09 \mathrm{~B} \quad \mathrm{BABR} e^{+} e^{-} \rightarrow \quad r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • •

| <7.1 | 90 | 2 | |
| :--- | :--- | :--- | :--- | :--- |
| | SONI | 06 BELL | $e^{+} e^{-} \rightarrow r(4 S)$ |

<3.6 $90 \quad 2$ AUBERT 05K BABR Repl. by AUBERT 09B
${ }^{1}$ Uses $\chi_{c 1,2} \rightarrow J / \psi \gamma$. Assumes $\mathrm{B}\left(\gamma(4 S) \rightarrow B^{+} B^{-}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}(\gamma(4 S) \rightarrow$ $\left.B^{0} \bar{B}^{0}\right)=(48.4 \pm 0.6) \%$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(\chi_{c 2} K^{*}(892)^{0}\right) / \Gamma\left(\chi_{c 1} K^{*}(892)^{0}\right)$
$\Gamma_{269} / \Gamma_{263}$
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{20 \pm 5 \text { OUR FIT Error includes } \frac{\text { DOCUMENT ID }}{\text { scale factor of 1.1. }} \text { TECN COMMENT }}$
$\begin{array}{lcc}\mathbf{2 0} \mathbf{\pm 5} \text { OUR FIT } & \text { Error includes scale factor of 1.1. } & \\ \mathbf{1 7 . 1} \pm \mathbf{5 . 0} \mathbf{2} .0 & 1 \text { AAIJ } & 13 \mathrm{AC} \text { LHCB }\end{array}$
${ }^{1}$ Uses $\mathrm{B}\left(\chi_{C 1} \rightarrow J / \psi \gamma\right) / \mathrm{B}\left(\chi_{C 2} \rightarrow J / \psi \gamma\right)=1.76 \pm 0.11$.

$\begin{aligned} & \boldsymbol{\Gamma}\left(\chi_{\boldsymbol{c} \mathbf{2}} \pi^{+} \pi^{-} \boldsymbol{K}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \text { VALUE } \\ & \text { CL\% }\end{aligned} \quad \boldsymbol{\Gamma}_{\mathbf{2 7 1}} / \boldsymbol{\Gamma}$ $<\mathbf{1 . 7 0 \times 1 0 ^ { - 4 }} 90 \quad 1$ BHARDWAJ $16 \quad$ BELL $\quad \frac{e^{+} e^{-} \rightarrow \gamma(4 S)}{}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\left[\Gamma\left(\kappa^{+} \pi^{-}\right)+\Gamma\left(\pi^{+} \pi^{-}\right)\right] / /_{\text {total }}$
$\left(\Gamma_{275}+\Gamma_{408}\right) / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT

19 ± 60				
$28_{-10}^{+15} \pm 20$		ADAM	96D DLPH	$e^{+} e^{-} \rightarrow Z$
$18_{-}^{+} 6+3$	17.2	ASNER	96	CLE2

- - We do not use the following data for averages, fits, limits, etc. - - .
$24_{-}^{+}{ }_{7}^{8} \pm 2 \quad{ }^{2}$ BATTLE $\quad 93$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$. Contributions from B^{0} and B_{S} decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.
${ }^{2}$ BATTLE 93 assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $r(4 S)$.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{2 7 6}} / \boldsymbol{\Gamma}$

VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT

$\Gamma\left(\eta^{\prime} K_{0}^{*}(1430)^{0}\right) / \Gamma_{\text {total }}$			$\Gamma_{279} /{ }^{\text {r }}$
VaLue (units 10-6)	DOCUMENT ID TECN	COMment	
$6.3 \pm 1.3 \pm 0.9$	${ }^{1}$ Del-Amo-SA...10A BABR	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ Assumes equal produc	and B^{0} at the $r(4 S)$.		

$\Gamma\left(\eta K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{281} / \Gamma$

VALUE (units 10^{-6}) CLL\%
DOCUMENT ID TECN
COMMENT
$1.23_{-0.24}^{+0.27}$ OUR AVERAGE

$1.27_{-0.29}^{+0.33} \pm 0.08$	${ }^{1} \mathrm{HOI}$	12	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$1.15{ }_{-}^{+0.43} \pm 0.09$	${ }^{1}$ AUBERT	09AV BABR	$e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - - -

< 1.9	90	${ }^{1}$ CHANG	07B	BELL	Repl. by HOI 12
<2.9	90	${ }^{1}$ AUBERT, ${ }^{1}$	06V	BABR	$e^{+} e^{-} \rightarrow \gamma_{(4 S)}$
<2.5	90	${ }_{1}^{1}$ AUBERT, B	05k	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<2.0	90	${ }^{1}$ CHANG	05A	BELL	Repl. by CHANG 07B
<5.2	90	${ }^{1}$ AUBERT	04H	BABR	Repl. by AUBERT, B 05 K
< 9.3	90	${ }^{1}$ RICHICHI	00	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<33	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

$\Gamma\left(\eta K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
Γ_{282} / Γ
VALUE (units 10^{-6}) $\frac{C L \%}{159}$
15.9 ± 1.0 OUR AVERAGE

$15.2 \pm 1.2 \pm 1.0$	1	WANG	$07 B$	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$16.5 \pm 1.1 \pm 0.8$	1 AUBERT,	06 H	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$13.8_{-4 .}^{+5.5} \pm 1.6$	${ }^{1}$ RICHICHI	00	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - . -

$\Gamma\left(\omega K^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 8 5}} / \Gamma$					
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT
4.8 ± 0.4 OUR AVERAGE					
$4.5 \pm 0.4 \pm 0.3$		${ }^{1}$ CHOBANOVA	14	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$5.4 \pm 0.8 \pm 0.3$		${ }^{1}$ AUBERT	07aE	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$10.0{ }_{-4.2}^{+5.4} \pm 1.4$		1 JESSOP	00	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$6.2 \pm 1.0 \pm 0.4$		1 AUBERT, B	06E	BABR	Repl. by AUBERT 07aE
$4.4{ }_{-0.7}^{+0.8} \pm 0.4$		1 JEN	06	BELL	Repl. by CHOBANOVA 14
$5.9{ }_{-1.3}^{+1.6} \pm 0.5$		${ }^{1}$ AUBERT	04H	BABR	Repl. by AUBERT,B 06E
$4.0{ }_{-1.6}^{+1.9} \pm 0.5$		${ }^{1}$ WANG	04A	BELL	Repl. by JEN 06
<13	90	${ }^{1}$ AUBERT	01G	BABR	Repl. by AUBERT 04H
<57	90	${ }^{1}$ BERGFELD	98	CLE2	Repl. by JESSOP 00
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\Gamma\left(b_{1}^{0} K^{0}, b_{1}^{0} \rightarrow \omega \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{287} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<7.8} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 08AG BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(a_{0}(980)^{ \pm} K^{\mp}, a_{0}^{ \pm} \Rightarrow \eta \pi^{ \pm}\right) / \Gamma_{\text {total }}$					Γ_{288} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	
<1.9	90	1 AUBERT	07Y BABR	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -					
<2.1	90	1 AUBERT,BE	04 BABR	Repl. by	RT 07Y
${ }^{1}$ Assumes eq	on	and B^{0} at th	$r(4 S)$.		

$\Gamma\left(b_{1}^{-} K^{+}, b_{1}^{-} \rightarrow \omega \pi^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{289} /{ }^{\text {/ }}$
VALUE (units 10 0^{-6})	DOCUMENT ID	TECN	COMMENT	
$7.4 \pm 1.0 \pm 1.0$	1 AUBERT	07BI BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equa	and B^{0} at th	$r(4 S)$.		

$\Gamma\left(b_{1}^{-} K^{*+}, b_{1}^{-} \rightarrow \omega \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{291} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
$<5.0 \times 10^{-6}$	90	${ }^{1}$ AUBERT	09AF BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
$\Gamma\left(\mathrm{a}_{0}(1450)^{ \pm} K^{\mp}, a_{0}^{ \pm} \rightarrow \eta \pi^{ \pm}\right) / \Gamma_{\text {total }}$					$\Gamma_{292} /{ }^{\prime}$
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	
<3.1	90	${ }^{1}$ AUBERT	$07 Y$ BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equa	ction	${ }^{+}$and B^{0} at the	$r(4 S)$.		

$\Gamma\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{X}^{\mathbf{0}}\right.$ (Familon) $) / \Gamma_{\text {total }}$					Γ_{293} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ AMMAR 01B searched for the two-body decay of the B meson to a massless neutral feebly-interacting particle X^{0} such as the familon, the Nambu-Goldstone boson associated with a spontaneously broken global family symmetry.
$\Gamma\left(\omega K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
Г $294 / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{2.0 \pm 0.5 \text { OUR AVERAGE }}$
$2.2 \pm 0.6 \pm 0.2$
DOCUMENT ID TECN COMMENT

1 BABR $e \rightarrow$ (4S
GOLDENZWE..08 BELL $e+e \rightarrow r(4 S)$

<4.2	90	1	1	AUBERT,B	$06 T$
BABR	Repl. by AUBERT 09H				
<6.0	90	${ }^{1}$ AUBERT	050	BABR	Repl. by AUBERT,B 06T
<23	90	1 BERGFELD	98	CLE2	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\omega(K \pi)_{0}^{* 0}\right) / \Gamma_{\text {total }}$
Γ_{295} / Γ
$(K \pi)_{0}^{* 0}$ is the total S-wave composed of $K_{0}^{*}(1430)$ and nonresonant that are described using LASS shape.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{1 8 . 4} \mathbf{1 . 8} \pm \mathbf{1 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \quad 09 \mathrm{H} \quad \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

Meson Particle Listings
B^{0}

$\Gamma\left(\omega K_{0}^{*}(1430)^{0}\right) / \Gamma_{\text {total }}$	DOCUMENT ID	TECN	COMMENT	Γ_{296} / Γ
$16.0 \pm 1.6 \pm 3.0$	1 AUBERT	О9н BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal produ	and B^{0} at the	$r(4 S)$ ．		

$\Gamma\left(\omega K_{2}^{*}(\mathbf{1 4 3 0})^{0}\right) / \Gamma_{\text {total }}$				「297／「
VaLUE（units 10 0^{-6} ）	DOCUMENT ID TECN		COMment	
$10.1 \pm 2.0 \pm 1.1$	${ }^{1}$ AUBERT	09H BABR	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ Assumes equal produc	B^{+}and B^{0} at the			

$\Gamma\left(K^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$					「299／「
$\left.\frac{V A L U E ~(u n i t s ~}{10} 0^{-6}\right) \quad \frac{\text { cl\％}}{}$	DOCUMENT ID		TECN COMMENT		
37．8 ± 3.2 OUR AVERAGE					
$38.5 \pm 1.0 \pm 3.9$	${ }^{1,2}$ Lees	11	babr	$e^{+} e^{-} \rightarrow$	
$36.6+4.3 \pm 3.0$	${ }^{1}$ chang	04	BELL	$e^{+} e^{-} \rightarrow$	

－－We do not use the following data for averages，fits，limits，etc．－－

＜1．1	90	1 AUBERT	08AQ BABR

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．

－－We do not use the following data for averages，fits，limits，etc．－－－
$4.4 \pm 0.9 \pm 0.5$
1 AUBERT

$4.4 \pm 0.9 \pm 0.5$		1 AUBERT	08AQ BABR
<9.4	90	1 CHANG	04 BELL $e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．The quoted value is only for the flat part of the non－resonant component．
$\Gamma\left((K \pi)_{0}^{*+} \pi^{-},(K \pi)_{0}^{*+} \rightarrow K^{+} \pi^{0}\right) / /_{\text {total }}$ using LASS shape．
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{\mathbf{3 4 . 2} \pm \mathbf{2 . 4} \mathbf{4 . 1}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{11}{\text { BABRN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
－－We do not use the following data for averages，fits，limits，etc．－－
$9.4-1.1+2.3$
${ }^{1}$ AUBERT 08AQ BABR Repl．by LEES 11
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．
$\Gamma\left((K \pi)_{0}^{* 0} \pi^{0},(K \pi)_{0}^{* 0} \rightarrow K^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{305} / \Gamma$
$(K \pi)_{0}^{* 0}$ is the total S－wave composed of $K_{0}^{*}(1430)$ and nonresonant that are described using Lass shape．
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{8.6 \pm 1.1 \pm 1.3} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{11}{\text { TECN }} \frac{\text { COMMENT }}{\mathrm{BABR}^{+} e^{-} \rightarrow r(4 S)}$
$0.6 \pm 1.1 \pm 1.3 \quad 11$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－•
$8.7_{-0.9}^{+1.1+2.8} \quad 1$ AUBERT \quad 08AQ BABR Repl．by LEES 11
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．

$\Gamma\left(K_{2}^{*}(1430)^{0} \pi^{0}\right) / \Gamma_{\text {total }}$				Γ_{306} / Γ
VALUE（units 10^{-6} ）C CL\％	DOCUMENT ID	TECN	COMMENT	
＜4．0 90	${ }^{1}$ AUBERT	BABR	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(K^{*}(1680){ }^{0} \pi^{0}\right) / \Gamma_{\text {total }}$				
VALUE（units 10^{-6} ）CL\％	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．

VALUE（units 10^{-6} ）	DOCUMEN	TECN	COMMENT
$\begin{aligned} & 6.1+1.6+0.5 \\ & -1.5-0.6 \end{aligned}$	1 CHANG	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．

$\Gamma\left(K^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{309} /{ }^{\text {／}}$
VALUE（units 10^{-6} ）CL\％	DOCUMENT ID	TECN	COMMENT	
49．7 \pm 1．8 OUR FIT				
49．6土 $\mathbf{2 . 0}$ OUR AVERAGE				
$50.2 \pm 1.5 \pm 1.8$	1 AUBERT	09AU BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$47.5 \pm 2.4 \pm 3.7$	2 GARMASH	07 BELL	$e^{+} e^{-} \rightarrow \quad \gamma(4 S)$	
$50 \pm 10 \pm 7$	${ }^{1}$ ECKHART	02 CLE2	$e^{+} e^{-} \rightarrow r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．• • •

$43.0 \pm 2.3 \pm 2.3$		${ }^{1}$ AUBERT	061	BABR	Repl．by AUBERT 09au
$43.7 \pm 3.8 \pm 3.4$		${ }^{1}$ AUBERT，B	040	BABR	Repl．by AUBERT 061
$45.4 \pm 5.2 \pm 5.9$		1 GARMASH	04	BELL	Repl．by GARMASH 07
＜440	90	ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ． ${ }^{2}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$final state decays．					

$\Gamma\left(K^{0} \pi^{+} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{310} / \Gamma$
VALUE（units 10^{-6} ）DOCUMENT ID TECN COMMENT
$\mathbf{1 3 . 9}_{\mathbf{- 1 . 8}}^{\mathbf{+ 2 . 6}}$ OUR AVERAGE Error includes scale factor of 1．6．See the ideogram below．

$12.1 \pm 0.6 \pm 2.9$	1 AAIJ	18 F LHCB $p p$ at $7,8 \mathrm{TeV}$	
$11.1_{-1.0}^{+2.5} \pm 0.9$	2 AUBERT	09 AU BABR $e^{+} e^{-} \rightarrow r(4 S)$	
$19.9 \pm 2.5_{-2.0}^{+1.7}$	${ }^{3}$ GARMASH	07 BELL	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays．For the branching fraction of the reference mode，the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm$ $0.20) \times 10^{-5}$ is used．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{3}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$final state decays．

$\Gamma\left(\kappa^{0} \rho^{0}\right) / \Gamma_{\text {total }}$	noc	「311/「
${ }^{3.4} \pm 1.1$ OUR AVERAGE Error includes scale factor of 2.3 . See the ideogram	Eroor includes scale factor of 2.3 . See the ideogram	
${ }_{1.89}+0.559 \pm 0.40$	${ }^{1}$ AAIJ	${ }_{18} 8 \mathrm{LHCB}$ ppat 7,8 TeV
$4.4{ }_{-0.6}^{+0.7} \pm 0.3$	${ }^{2}$ aubert	09aU BABR $e^{+} e^{-} \rightarrow r(45)$
$6.1 \pm 1.0{ }_{-1.1}^{+1.1}$	${ }^{3}$ GARMASH	BELL $e^{+} e^{-} \rightarrow{ }^{\text {(4S }}$)
- . . We do not use the folowing data for averages, fits, imits, et.		
$4.9 \pm 0.8 \pm 0.9$	${ }^{2}$ aubert	07 Babr Repl. by Aubert
<39 90	asner	${ }^{96}$ CLEEO $e^{++e^{-} \rightarrow r^{(45)}}$
<320 <500	${ }_{4}^{\text {ALVERE }}$ ALECHT	
<500	${ }^{4}$ AVERY	${ }^{\text {898 }}$ CLEEO $e^{+} e^{-} \rightarrow r_{\text {(4S) }}$

${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays. For the branching fraction of the reference mode, the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm$ $0.20) \times 10^{-5}$ is used.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$final state decays.
${ }^{4}$ AVERY 89 B reports $<5.8 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(K^{*}(892)^{+} \pi^{=}\right) / \Gamma_{\text {total }}$			TECN	Γ_{312} / Γ	
	DOCUMENT ID			COMMENT	
7.5 ± 0.4 OUR AVERAGE					
$7.02 \pm 0.30 \pm 0.45$	${ }^{1}$ AAIJ	18F	LHCB	$p p$ at 7, 8	
$8.0 \pm 1.1 \pm 0.8$	2,3 LEES	11	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$8.3{ }_{-0.8}^{+0.9} \pm 0.8$	3,4 AUBERT	09au	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$8.4 \pm 1.1{ }_{-0.9}^{+1.0}$	${ }^{4}$ GARMASH	07	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$16 \quad \begin{array}{lll}+6 & \pm 2\end{array}$	${ }^{3}$ ECKHART	02	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - •

$12.6{ }_{-1.6}^{+2.7} \pm 0.9$		2,3 AUBERT	08AQ BABR	Repl. by LEES
$11.0 \pm 1.5 \pm 0.71$		${ }^{3}$ AUBERT	061 BABR	Repl. by
$12.9 \pm 2.4 \pm 1.4$		3 AUBERT,B	040 BABR	AUBERT 09AU Repl. by AUBERT 06I
$14.8{ }_{-4.4}^{+4.6}+2.8$		${ }^{3}$ CHANG	04 BELL	Repl. by GARMASH 07
<72	90	ASNER	96 CLE2	$e^{-} \rightarrow r(4 S)$
<620	90	ALBRECHT	91B ARG	${ }^{+} e^{-} \rightarrow \gamma(4 S)$
<380	90	${ }^{5}$ AVERY	89B CLEO	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<560	90	6 AVERY	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays. For the branching fraction of the reference mode, the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm$ $0.20) \times 10^{-5}$ is used.				
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.				
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
${ }^{5}$ AVERY 89 B reports $<4.4 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.				
${ }^{6}$ AVERY 87 reports $<7 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$. We rescale to 50%.				

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

- - We do not use the following data for averages, fits, limits, etc. - - -
$5.5 \pm 0.7 \pm 0.6 \quad 2$ AUBERT 06I BABR Repl. by AUBERT 09AU
$\begin{array}{ll}<360 & 90 \\ 4 & \text { AVERY 89B CLEO } e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays. For the branching fraction of the reference mode, the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm$ $0.20) \times 10^{-5}$ is used.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$final state decays.
${ }^{4}$ AVERY 89B reports $<4.2 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

Meson Particle Listings
B^{0}

$\Gamma\left(f_{x}(1300) K 0, f_{x} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(K^{0} f_{0}(1500)\right) / /_{\text {total }} \quad \Gamma_{319} / \Gamma$

VALUE（units 10^{-6} ）	DOCUMENT ID		TECN	COMMENT
$1.29 \pm 0.27 \pm 0.70$	${ }^{1} \mathrm{AAIJ}$	18F	LHCB	$p p$ at $7,8 \mathrm{TeV}$

$\Gamma\left(K^{*}(892)^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
「322／「
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{\mathbf{3 . 3} \mathbf{0 . 5} \mathbf{0 . 4}} \frac{C L \%}{1,2} \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
 ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
$\Gamma\left(\kappa_{2}^{*}(1430)^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{323} / \Gamma^{2}$
VALUE（units 10^{-6} ）CL\％ DOCUMENT ID TECN COMMENT $3.65{ }_{=0.12}^{\mathbf{+ 0 . 1 5}} \pm \mathbf{0 . 3 1} 1 \mathrm{AAIJ} \quad 18 \mathrm{~F}$ LHCB pp at $7,8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．－．－

＜ 16.2	90	2，3 AUBERT	08AQ BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
＜ 6	90	${ }^{4}$ GARMASH	07 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
＜ 18	90	3 GARMASH	04 BELL	Repl．by GARMASH 07
＜2600	90	ALBRECHT	91B ARG	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays．We compute $\mathrm{B}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}\right)$using the PDG 18 value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=49.9 \times 10^{-2}$ and $2 / 3$ for the $K^{0} \pi^{+}$fraction．For the branching fraction of the reference mode，the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm 0.20) \times 10^{-5}$ is used．
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$ ．
${ }^{4}$ GARMASH 07 reports $\mathrm{B}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}\right) \times \mathrm{B}\left(K_{2}^{*+} \rightarrow K^{0} \pi^{+}\right)<2.1 \times 10^{-6}$ using Dalitz plot analysis．We compute $\mathrm{B}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}\right)$using the PDG value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=49.9 \times 10^{-2}$ and $2 / 3$ for the $K^{0} \pi^{+}$fraction．
$\Gamma\left(\kappa^{*}(1680)^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{324 / \Gamma}$
$\frac{\text { VALUE（units } 10^{-6} \text { ）}}{\mathbf{1 4 . 1} \pm \mathbf{0 . 5 8} \pm \mathbf{0 . 8 4}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
－ $14.1 \pm \mathbf{0 . 5 8} \pm \mathbf{0 . 8 4}$ do not use the following data for averages，fits，limits，etc．$\bullet \bullet-\quad$
$<25 \quad 90 \quad 2,3$ AUBERT \quad 08AQ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$<10 \quad 90 \quad 4$ GARMASH 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays．We compute $\mathrm{B}\left(B^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}\right)$using the PDG 18 value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=(49.9 \pm$ 1．2）$\times 10^{-2}$ and $2 / 3$ for the $K^{0} \pi^{+}$fraction．For the branching fraction of the reference mode，the PDG 18 average $\mathrm{B}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm 0.20) \times 10^{-5}$ is used．
${ }_{3}^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays．
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{4} \mathrm{GARMASH} 07$ reports $\mathrm{B}\left(B^{0} \rightarrow K^{*}(1680)^{+} \pi^{-}\right) \times \mathrm{B}\left(K^{*+} \rightarrow K^{0} \pi^{+}\right)<2.6 \times 10^{-6}$ using Dalitz plot analysis．We compute $\mathrm{B}\left(B^{0} \rightarrow K^{*}(1680)^{+} \pi^{-}\right)$using the PDG value $\mathrm{B}\left(K^{*}(1680) \rightarrow K \pi\right)=38.7 \times 10^{-2}$ and $2 / 3$ for the $K^{0} \pi^{+}$fraction．
$\Gamma\left(\kappa^{+} \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
「325／Г
$\frac{V A L U E}{<\mathbf{2} .3 \times \mathbf{1 0}^{-\mathbf{4}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ADAM }} \frac{\text { COMMENT }}{\text { 96D }} \frac{}{\text { DLPH }} \frac{e^{+} e^{-} \rightarrow z}{}$
\cdots We do not use the following data for averages，fits，limits，etc．$\bullet \bullet$
$<2.1 \times 10^{-4} \quad 90 \quad 2$ ABREU 95 N DLPH Sup．by ADAM 96D ${ }^{1}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{s}}=0.12$ ．Contributions from B^{0} and B_{S} decays cannot be separated．Limits are given for the weighted average of the decay 2 rates for the two neutral B mesons．
${ }^{2}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0．12． Contributions from B^{0} and B_{S}^{0} decays cannot be separated．Limits are given for the weighted average of the decay rates for the two neutral B mesons．

$\Gamma\left(\rho^{0} K^{+} \pi^{-}\right) / /_{\text {total }}$	DOCLIMENT ID TECN	Comment	$\Gamma_{326 / 5}$
$2.8 \pm 0.5 \pm 0.5$	1，2 ${ }^{\text {KYEong }} 09$ bell	ent	$r_{\text {（4s）}}$
${ }^{1}$ Assumes equal prodit ${ }_{2}$ Required $0.75<m_{K}$	B^{+}and B^{0} at the $r_{(45)}$ ． $1.20 \mathrm{GeV} / \mathrm{c}^{2}$ ．		
$\Gamma\left(f_{0}(980) \kappa^{+} \boldsymbol{\pi}^{-}, f_{0}\right.$	／／ total		$\Gamma_{327} /{ }^{\text {r }}$
value（unis 10^{-6} ）	DoCUMENT ID TEC	comment	
$1.4 \pm 0.4{ }_{-0.4}^{0.3}$	1，2 KYeong 09 bell	$e^{+} e^{-}$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Required $0.75<m_{K^{+}} K^{-}<1.2 \mathrm{GeV} / \mathrm{c}^{2}$ ．

$\Gamma\left(\kappa^{+} \pi^{-} \pi^{+} \boldsymbol{\pi}^{-}\right.$nonresonant $) / /_{\text {total }}$

$\frac{2.1 \times \mathbf{1 0}^{\mathbf{- 6}}}{<\mathbf{6}} \quad 1,2 \frac{\text { KYCUMENT ID }}{\text { KYEONG }} 00 \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Required $0.55<m_{\pi^{+}} \pi^{-}<1.42$ and $0.75<m_{K^{+}} \pi^{-}<1.20 \mathrm{GeV} / \mathrm{c}^{2}$ ．

$\Gamma\left(K^{*}(892){ }^{\mathbf{0}} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{329} / Γ
VALUE（units 10^{-6} ）	CL\％	DOCUMENT ID	TECN	COMMENT	

$54.5 \pm 2.9 \pm 4.3 \quad 1$ AUBERT 07AS BABR $e^{+} e^{-} \rightarrow r(4 S)$

	• We do not use the following data for averages，fits，limits，etc．	$\bullet \bullet$			
$4.5_{-1.0}^{+1.1+0.9}$	1,2 KYEONG	09	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$

$<1400 \quad 90 \quad$ ALBRECHT 91 E ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ Required $0.55<m_{\pi^{+}} \pi^{-}<1.42 \mathrm{GeV} / \mathrm{c}^{2}$ ．

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
${ }^{2}$ Assumes a helicity 00 configuration．For a helicity 11 configuration，the limit decreases to 2.4×10^{-5} ．
${ }^{3} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$ ．
${ }^{4}$ AVERY 89 B reports $<6.7 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
${ }^{5}$ AVERY 87 reports $<1.2 \times 10^{-3}$ assuming the $\Upsilon(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
$\Gamma\left(\boldsymbol{\kappa}^{*}(892)^{0} f_{0}(980), f_{0} \rightarrow \pi \pi\right) / \Gamma_{\text {total }} \quad \Gamma_{331} / \Gamma$
VALUE（units 10^{-6} ）CL\％DOCUMENT ID TECN COMMENT $\mathbf{3 . 9} \mathbf{+ 1 . 8}$ 2．1 OUR AVERAGE Error includes scale factor of 3．9．

$5.7 \pm 0.6 \pm 0.4$	1	LEES	12 K	BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.4+0.6+0.6$	1,2 KYEONG	09	BELL $e^{+} e^{-} \rightarrow r(4 S)$	

－－We do not use the following data for averages，fits，limits，etc．－－－

<4.3	90	1	AUBERT，B	06G BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<170	90	3 AVERY	89B CLEO $e^{+} e^{-} \rightarrow r(4 S)$		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ The upper limit is 2.2×10^{-6} at $90 \% \mathrm{CL}$ ．
${ }^{3}$ AVERY 89B reports $<2.0 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．

$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{1}}(\mathbf{1 2 7 0})^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{}$
$\mathbf{3 . 0 \times 1 \mathbf { 1 0 } ^ { - 5 }}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{1}}(\mathbf{1 4 0 0})^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$V A L U E$$\quad$ DOCUMENT ID $\quad \Gamma_{\mathbf{3 3 3}} / \boldsymbol{\Gamma}^{\text {CLECN }}$

－－We do not use the following data for averages，fits，limits，etc．－－－
$90 \quad$ ALBRECHT 91B ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．

$\Gamma\left(K_{0}^{*}(1430)^{+} \rho^{-}\right) / \Gamma_{\text {total }}$				
VALUE (units 10 ${ }^{-6}$)	DOCUMENT ID	TECN	COMMENT	
$28 \pm 10 \pm 6$	${ }^{1}$ LEES	12K BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
VALUE $C L \%$	DOCUMENT ID	TECN	COMMENT	
$<3.0 \times 10^{\mathbf{- 3}} \quad 90$	ALBRECHT	91B ARG	$e^{+} e^{-}$	$r(4 S)$
$\Gamma\left(K_{0}^{*}(1430)^{0} \rho^{0}\right) / \Gamma_{\text {total }}$ ($\Gamma_{338} / \Gamma^{\prime}$				
VALUE (units 10^{-6}) DOCUMENT ID CECN COMMENT				
$\mathbf{2 7 \pm 4 \pm 4} \quad 1$ LEES 12 K BABR $e^{+} e^{-} \rightarrow r(4 S)$				
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT				
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
$8.6 \pm 1.7 \pm 1.0$	1 LEES	12K BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.				
$\Gamma\left(K^{+} K^{-}\right) / \Gamma_{\text {total }}$				Γ_{341} / Γ

12 | +8 | ± 1 | ${ }^{4}$ AAIJ |
| :--- | :--- | :--- |

$23 \pm 10 \pm 10 \quad 5$ AALTONEN 12 L CDF $p \bar{p}$ at 1.96

< 70	90	6 AALTONEN	09C	CDF	Repl. by AALTONEN 12L
<50	90	${ }^{3}$ AUBERT	07B	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<41	90	${ }^{3}$ LIN	07	BELL	Repl. by DUH 13
<180	90	7 ABULENCIA,A	06D	CDF	Repl. by AALTONEN 09C
<37	90	ABE	05G	BELL	Repl. by LIN 07
<70	90	CHAO	04	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<80	90	${ }^{3}$ BORNHEIM	03	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
< 60	90	${ }^{3}$ AUBERT	02Q	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<90	90	${ }^{3}$ CASEY	02	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<270	90	${ }^{3}$ ABE	01H	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
< 250	90	${ }^{3}$ AUBERT	01E	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
< 6600	90	${ }^{8}$ ABE	00C	SLD	$e^{+} e^{-} \rightarrow Z$
<190	90	3 CRONIN-HEN.		CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
< 430	90	GODANG	98	CLE2	Repl. by CRONINHENNESSY 00
<4600		9 ADAM	96D	DLPH	$e^{+} e^{-} \rightarrow Z$
< 400	90	ASNER	96	CLE2	Repl. by GODANG 98
<1800	90	10 BUSKULIC	96 V	ALEP	$e^{+} e^{-} \rightarrow Z$
<12000	90	11 ABREU	95N	DLPH	Sup. by ADAM 96D
<700	90	${ }^{3}$ BATTLE	93	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ Supercedes results of AAIJ 12AR.
${ }^{2}$ DUH 13 reports also for the same data $\mathrm{B}\left(B^{0} \rightarrow K^{+} K^{-}\right)<0.20 \times 10^{-6}$ at $90 \% \mathrm{CL}$.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4}$ AAIJ 12AR reports $\left[\Gamma\left(B^{0} \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)\right] /\left[\Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) /\right.$ $\left.\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.018_{-0.007}^{+0.008} \pm 0.009$ which we multiply by our best values $\mathrm{B}\left(B_{S}^{0} \rightarrow\right.$
$\left.K^{+} K^{-}\right)=(2.66 \pm 0.22) \times 10^{-5}, \Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{5}$ Reported a central value of $(0.23 \pm 0.10 \pm 0.10) \times 10^{-6}$ using $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=$ $(19.4 \pm 0.6) \times 10^{-6}$
${ }^{6}$ Obtains this result from $\mathrm{B}\left(K^{+} K^{-}\right) / \mathrm{B}\left(K^{+} \pi^{-}\right)=0.020 \pm 0.008 \pm 0.006$, assuming $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.4 \pm 0.6) \times 10^{-6}$.
${ }^{7}$ ABULENCIA,A 06D obtains this from $\Gamma\left(K^{+} K^{-}\right) / \Gamma\left(K^{+} \pi^{-}\right)<0.10$ at 90% CL, assuming $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(18.9 \pm 0.7) \times 10^{-6}$.
${ }^{8} \mathrm{ABE} \mathrm{OOC}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{9}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$. Contributions from B^{0} and B_{S} decays cannot be separated. Limits are given for the weighted average of the decay B_{S} decays cannot be separated. Lim
rates for the two neutral B mesons.
10 BUSKULIC 96 V assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons.
${ }^{11}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0.12 . Contributions from B^{0} and B_{S}^{0} decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

VALUE (units 10^{-6})	L\%	DOCUMENT ID	TECN	COMMEN	
6.7 ± 0.5 OUR FIT					
7.0 ± 0.6 OUR AVERAGE					
$7.2 \pm 0.7 \pm 0.3$		$1^{\text {LAI }} \quad 19$	BELL		$r(4 S)$
$6.4 \pm 1.0 \pm 0.6$		${ }^{1}$ DEL-AMO-SA.. 10 E	BABR	e	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
<18	90	1 GARMASH 04	BELL	$e^{+} e^{-}$	$r(4 S)$
<21	90	${ }^{1}$ ECKHART 02	CLE2	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.					

$\Gamma\left(\boldsymbol{K}^{*}(892)^{ \pm} \boldsymbol{K}^{\mp}\right) / \Gamma_{\text {total }}$

$\Gamma\left(K^{0} K^{-} \pi^{+}\right) / \Gamma\left(K^{0} \pi^{+} \pi^{-}\right) \quad \Gamma_{343} / \Gamma_{309}$
VALUE DOCUMENT ID \qquad TECN COMMENT
0.134 ± 0.011 OUR FIT

AAIJ
17BP LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.128 \pm 0.017 \pm 0.009 \quad$ AAIJ 13BP LHCB Repl. by AAIJ 17BP
$\left[\Gamma\left(\bar{K}^{* 0} K^{0}\right)+\Gamma\left(K^{* 0} \bar{K}^{0}\right)\right] / \Gamma_{\text {total }} \quad \Gamma_{345} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<0.96} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{16} \frac{\text { TECN }}{\text { AAIJ }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{16}{p p \text { at } 7 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. • • -
$<1.9 \quad 90 \quad 2$ AUBERT,BE 06 N BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm 0.20) \times 10^{-5}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{2 . 1 7} \pm \mathbf{0 . 6 0} \pm \mathbf{0 . 2 4}} \frac{C L \%}{} \quad 1 \frac{\text { DOCUMENT ID }}{\text { GAUR }} \quad 13$
$\boldsymbol{\Gamma}_{\mathbf{3 4 6}} / \boldsymbol{\Gamma}$
BELL
$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -

$$
<19 \quad 90 \quad 1_{\text {ECKHART }} 02 \text { CLE2 } e^{+} e^{-} \rightarrow r(4 S)
$$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

Meson Particle Listings
B^{0}

$\Gamma\left(K_{s}^{0} K_{S}^{0} \eta^{\prime}\right) / \Gamma_{\text {total }}$				「39/「			
-6/ CL\%							
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r^{(45)}$.							
$\Gamma\left(\boldsymbol{K}^{0} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{350 / \Gamma}$			
	26 (units 10^{-6}) $\quad \frac{C L \%}{}$ DOCUMENT ID TECN COMMENT						
${ }^{26.5 \pm 0.9 \pm 0.8}$	${ }^{1,2}$ LEES ${ }_{\text {GARMA }}$	26.6 ± 1.2 OUR AVERAGE					
$28.3 \pm 3.3 \pm 4.0$		04 beLL					
- We do not use the folowing data for averages, fits, ilimis							
3. $8 \pm 2.0 \pm 1.6$	1 aub	04V BABR	Repl. by L	ESS 120			
${ }^{<1300} 90$	ALBrECHT+ ${ }^{\text {and } B^{0} \text { at the }}$ (91 ARG	$e^{+} e^{-}$				
,							
$\Gamma\left(\kappa^{0} \kappa^{+} \kappa^{-}\right) / \Gamma\left(\kappa^{0} \pi^{+} \pi^{-}\right)$				$\Gamma_{350 / 5309}$			
0.539 ± 0.025 OUR FIT $0.549 \pm 0.018 \pm 0.033$				AAIJ 178P LHCB ${ }_{\text {ppat } 7,8 \text { TeV }}$			
- We do not use the following data for averages, fits, limits,							
$5 \pm 0.031 \pm 0.023$	AAIJ	${ }^{138 P}$ LHCB	A	AIJ 1788			
$\Gamma\left(K^{0} \phi\right) / \Gamma_{\text {total }}$				$\Gamma_{351 / \Gamma}$			
$\frac{\text { Value fuis } 10-6}{7.3 \pm 0.7}$ OUR AVERAGE	${ }_{1}^{1}$ LESS						
$7.1 \pm 0.6{ }^{\text {a }}$		120					
$9.0 \pm{ }_{-18}+0.7$	${ }^{1}$ CHEN	038 bELL	$e^{+} e^{-} \rightarrow$	$r_{\text {(4S) }}$			

$8.4{ }_{-1.3}^{+1.5} \pm 0.5$		1 AUBERT	04A	BABR	Repl. by LEES 120	
$8.1-2.1+0.8$		1 AUBERT	01D	BABR	$e^{+} e^{-}$	$r(4 S)$
< 12.3	90	${ }^{1}$ BRIERE	01	CLE2	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
< 31	90	1 BERGFELD	98	CLE2		
< 88	90	ASNER	96	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
< 720	90	ALBRECHT	91B	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
< 420	90	2 AVERY	89B	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$
<1000	90	${ }^{3}$ AVERY	87	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ AVERY 89B reports $<4.9 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We
rescale to 50%.
AVERY 87 reports $<1.3 \times 10^{-3}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(f_{0}(980) K^{0}, f_{0} \rightarrow \kappa^{+} \kappa^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{352} / \Gamma$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(K^{0} K^{+} K^{-}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{356} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{3 3} \pm \mathbf{5} \pm \mathbf{9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(f_{0}(980) K^{0}, f_{0} \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$				$\Gamma_{358} /{ }^{\prime}$
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
$2.7{ }_{-1.2}^{+1.3} \pm 1.3$	1,2 LEES	BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{2}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}$ decay.				
$\Gamma\left(f_{0}(1710) K^{0}, f_{0} \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$				
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
$0.50{ }_{-0.24}^{+0.46} \pm 0.11$	1,2 LEES	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}$ decay.
$\Gamma\left(K_{S}^{0} K_{S}^{0} K_{S}^{0}\right.$ nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{361} / \Gamma$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}$ decay.

$\Gamma\left(K_{S}^{0} K_{S}^{0} K_{L}^{0}\right) / \Gamma_{\text {total }}$	CL\%	DOCUMENT ID	TECN	Γ_{362} / Γ	
				COMMENT	
<16	90	1 AUBERT, B	BABR	$e^{+} e^{-} \rightarrow$	

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}^{*}(\mathbf{8 9 2})^{\mathbf{0}} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | |
| :--- | :--- | :--- |
| $V A L U E\left(\right.$ units $\left.10^{-6}\right)$ | $\boldsymbol{\Gamma}_{\mathbf{3 6 3}} / \boldsymbol{\Gamma}$ |

27.5 $\pm 1.3 \pm \mathbf{2 . 2} \quad 1$ AUBERT 07AS BABR $\overline{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<610 \quad 90 \quad$ ALBRECHT 91E ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(K^{*}(892){ }^{\mathbf{0}} \boldsymbol{\phi}\right) / \Gamma_{\text {total }}$			Γ_{364} / Γ	
VALUE (units 10^{-6}) CL\%	DOCUMENT ID	TECN	COMMENT	
10.0 ± 0.5 OUR FIT				
10.0 ± 0.5 OUR AVERAGE				
$10.4 \pm 0.5 \pm 0.6$	1 PRIM	13 BELL	$e^{+} e^{-}$	$r(4 S)$
$9.7 \pm 0.5 \pm 0.5$	${ }^{1}$ AUBERT	08BG BABR	$e^{+} e^{-}$	$r(4 S)$
$11.5{ }_{-3.7}^{+4.5+1.8}$	1 BRIERE	01 CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • •

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
AVERY 89B reports $<4.4 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We
${ }^{4}$ AVERY 87 reports $<4.7 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{365} / \Gamma$
$\begin{array}{lcccccc}<71.7 & 90 & 1,2 & \text { CHIANG } 10 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S) \\ 1 \text { Measured in the range } 0.7<m^{\prime} & <1.7 \text { and corrected using PS assumption for the full }\end{array}$
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\kappa^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{367} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{0 . 8 3} \pm \mathbf{0 . 2 4} \text { OUR AVERAGE }} \quad \frac{C L \%}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { Error includes scale factor of } 1.5 \text {. See the ideogram }}$ below.

$0.85 \pm 0.07 \pm 0.20$	${ }^{1}$ AAIJ	19L	LHCB	$p p$ at 7	8 TeV
$\begin{aligned} & 0.26+0.33+0.10 \\ & -0.29-0.08 \end{aligned}$	2,3 CHIANG	10	BELL	$e^{+} e^{-}$	$r(4 S)$
$1.28{ }_{-0.30}^{+0.35} \pm 0.11$	${ }^{3}$ AUBERT	081	BABR	$e^{+} e^{-}$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

<22		90	4 GODANG	$02 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$	
<469		90	5 ABE	$00 \mathrm{CLD} \quad e^{+} e^{-} \rightarrow$	z

2 best value. $K \pi$ mass range. The quoted result is equivalent to the upper limit of $<0.8 \times 10^{-6}$ at 90% CL.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{4}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 1.9×10^{-5}.
${ }^{5} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.

$\Gamma\left(K^{+} K^{+} \pi^{-} \pi^{-}\right.$nonresonant $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 6 8}} / \Gamma$

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{\boldsymbol{*}}(\mathbf{8 9 2})^{\mathbf{0}} \boldsymbol{K}^{+} \boldsymbol{\pi}^{\boldsymbol{=}}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$\operatorname{VALUE}\left(\right.$ units $\left.10^{-6}\right)$	CL\%

- - We do not use the following data for averages, fits, limits, etc. • • -
$\begin{array}{lll}<7.6 & 90 & 1 \\ \text { CHIANG } \quad 10 & \mathrm{BELL} & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\boldsymbol{K}^{*}(892)^{\mathbf{0}} \boldsymbol{K}^{*}(892)^{\mathbf{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 7 0}} / \boldsymbol{\Gamma}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<0.2} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CHIANG }} \frac{10}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - - -

<0.41	90	1	AUBERT	081	BABR
<37	90	2 GODANG	$e^{-} \rightarrow r(4 S)$		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 2.9×10^{-5}.

$\Gamma\left(K^{*}(892)+K^{*}(892){ }^{-}\right) / \Gamma_{\text {total }}$					$\Gamma 371 / \Gamma$
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	
<2.0	90	1 AUBERT	08AP BABR	$e^{+} e^{-}$	$r(4 S)$
\bullet - We do not use the following data for averages, fits, limits, etc. - - -					
<141	90	2 GODANG	02 CLE2	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
${ }^{2}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 8.9×10^{-5}					

$\Gamma\left(K_{1}(1400)^{0} \phi\right) / \Gamma_{\text {total }}$
$\frac{\text { DOCUMENT ID }}{\text { ALBRECHT }}$ 91B $\frac{\text { TECN }}{\text { ARG }} \frac{\Gamma_{\mathbf{3 7 2}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
$\Gamma\left(\phi(K \pi)_{0}^{* 0}\right) / \Gamma_{\text {total }}$
This decay refers to the coherent sum of resonant and nonresonant $J^{P}=0^{+} K \pi$ This decay refers to the coherent sum of resonant
components with $1.13<m_{K \pi}<1.53 \mathrm{GeV} / \mathrm{c}^{2}$.

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
4.3 \pm 0.4 OUR AVERAGE			
$4.3 \pm 0.4 \pm 0.4$	1 PRIM	13 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$4.3 \pm 0.6 \pm 0.4$	${ }^{1}$ AUBERT	08BG BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$5.0 \pm 0.8 \pm 0.3$	${ }^{1}$ AUBERT	07D BABR	Repl. by AUBERT 08bg
1 Assumes equal produ	B^{+}and B^{0}	, $\gamma(4 S)$	

$\Gamma\left(\phi(K \pi)_{0}^{* 0}\left(1.60<m_{K \pi}<2.15\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{374} / \Gamma$

This decay refers to the coherent sum of resonant and nonresonant $J^{P}=0^{+} K \pi$ components with $1.60<m_{K \pi}<2.15 \mathrm{GeV} / \mathrm{c}^{2}$.
VALUE (units 10^{-6}) CL\% DOCUMENT ID TECN COMMENT
$<1.7 \quad 90 \quad 1$ AUBERT 07AO BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{0}}^{\boldsymbol{0}}(\mathbf{1 4 3 0})^{\mathbf{0}} \boldsymbol{K}^{\boldsymbol{-}} \boldsymbol{\pi}^{+}\right) / \boldsymbol{\Gamma}_{\mathbf{t o t a l}}$ | |
| :--- | :--- | :--- |
| $V A L U E\left(\right.$ units $\left.10^{-6}\right)$ | $\boldsymbol{\Gamma}_{\mathbf{3 7 5}} / \boldsymbol{\Gamma}$ |

$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<31.8} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { CHIANG }} \frac{10}{\text { TECN }} \frac{\text { COMMENT }}{\text { BELL }} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Measured in the range $0.7<m_{K \pi}<1.7$ and corrected using PS assumption for the full $K \pi$ mass range.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(K_{0}^{*}(1430)^{0} \bar{K}\right.$	$\left.{ }^{0}\right) /$				「376/Г
VALUE (units 10-6)	CL\%	DOCUMENT ID	TECN	COMMENT	

$<3.3 \quad 90 \quad 1,2$ CHIANG 10 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Measured in the range $0.7<m_{K \pi}<1.7$ and corrected using PS assumption for the full $K \pi$ mass range.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{0}}^{*}(\mathbf{1 4 3 0})^{\mathbf{0}} \overline{\boldsymbol{K}}_{\mathbf{0}}^{\boldsymbol{*}} \mathbf{(1 4 3 0}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | $\boldsymbol{\Gamma}_{\mathbf{3 7 7}} / \boldsymbol{\Gamma}$ |
| :--- | :--- | :--- |
| $\underline{V A L U E\left(\text { units } 10^{-6}\right)}$ | |

<8.4 $\quad 90 \quad 1,2$ CHIANG 10 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
 $K \pi$ mass range.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(K_{0}^{*}(1430)^{0} \phi\right) / \Gamma_{\text {total }}$				Γ_{378} / Γ
VALUE (units 10^{-6})	DOCUMENT ID TECN		COMMENT	
$3.9 \pm 0.5 \pm 0.6$	1 AUBERT		$e^{+} e^{-} \rightarrow \Upsilon(4 S)$	
- - We do not use the	d data for aver	s, fits, limits	etc.	
$4.6 \pm 0.7 \pm 0.6$	${ }^{1}$ AUBERT	07D BABR	Repl. by	T 08BG
seen	2 AUBERT, B	04w BABR	Repl. by	T 07D

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Observed 181 ± 17 events with statistical significance greater than 10σ.

$\Gamma\left(K_{0}^{*}(1430)^{0} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$						Г379/Г
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT	
<1.7	90	$1{ }^{1}$ CHIANG	10	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equa	tion	and B^{0}				

$\Gamma\left(K_{0}^{*}(1430){ }^{0} K_{0}^{*}(1430)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 8 0}} / \Gamma$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(K^{*}(1680)^{0} \phi\right) / \Gamma_{\text {total }}$					Γ_{381} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	

$<3.5 \quad 90 \quad 1$ AUBERT 07AO BABR $\xlongequal[e^{+} e^{-} \rightarrow r(4 S)]{ }$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

Meson Particle Listings
B^{0}

$\Gamma\left(K^{*}(\mathbf{2 0 4 5})^{0} \phi\right) / \Gamma_{\text {total }}$					Γ_{383} / Γ
VaLue (units 1^{-6})	ct\%	document id	TECN	COMment	
<15.3	90	${ }^{1}$ AUBERT	07a0 BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes eq	ction	and B^{0} at t			

$\Gamma\left(K_{2}^{*}(1430)^{0} \phi\right) / \Gamma_{\text {total }}$	Γ_{385} / Γ							
VALUE (units 10-6) CL\%	DOCUMENT ID TECN COMMENT							
6.8 ± 0.9 OUR AVERAGE Error includes scale factor of 1.2.								
$5.5{ }_{-0.7}^{+0.9} \pm 1.0$	1 PRIM 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$							
$7.5 \pm 0.9 \pm 0.5$	${ }^{1}$ AUBERT \quad 08BG BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$							
- - We do not use the following data for averages, fits, limits, etc. - -								
$7.8 \pm 1.1 \pm 0.6$	1 AUBERT 07 D BABR Repl. by AUBERT 08BG 2 AUBERT,B 04 w BABR Repl. by AUBERT 07D							
seen								
<140090	ALBRECHT 91b ARG $e^{+} e^{-} \rightarrow r(4 S)$							
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{2}$ The angular distribution of $B \rightarrow \phi K^{*}(1430)$ provides evidence with statistical significance of 3.2σ.								
$\Gamma\left(K^{0} \phi \phi\right) / \Gamma_{\text {total }}$	DOCUMENT ID TECN COMMENT $\quad \Gamma_{\mathbf{3 8 6}} / \boldsymbol{\Gamma}$							
VALUE (units 10^{-6})								
$4.5 \pm 0.8 \pm 0.3$	1 LEES	11A BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$						

- - We do not use the following data for averages, fits, limits, etc. \bullet

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{7 . 6} \pm \mathbf{1 . 8} \text { OUR AVERAGE }}$

$7.1_{-2.0}^{+2.1} \pm 0.4$	1,2	AUBERT	09	BABR
$e^{+} e^{-} \rightarrow r(4 S)$				
$8.7_{-2.7}^{+3.1}+1.9$	2,3 NISHIDA	05	BELL $e^{+} e^{-} \rightarrow r(4 S)$	

$8.7_{-2.7}^{+3.1+1.9}$
2,3 NISHIDA $\quad 05$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -
$11.3_{-1.6}^{+2.8} \pm 0.6 \quad 1,2$ AUBERT,B 06m BABR Repl. by AUBERT 09
${ }^{1} m_{\eta K}<3.25 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3} m_{\eta K}<2.4 \mathrm{GeV} / \mathrm{c}^{2}$

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{2 . 7 4} \pm \mathbf{0 . 6 0} \mathbf{\pm 0 . 3 2}} \frac{C L \%}{1} \frac{\text { DOCUMENT ID }}{\text { SAHOO }} \frac{11 \mathrm{~A}}{} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

<2.7	90	${ }^{1}$ AUBERT	07Q	BABR	$e^{+} e^{-}$		$r(4 S)$
<8.3	90	1 DRUTSKOY	04	BELL	$e^{+} e^{-}$		$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at $\Upsilon(4 S)$.

$\Gamma\left(K^{+} \pi^{-} \gamma\right) / \Gamma_{\text {total }}$					Γ_{391} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$\left(4.6=1.2+0.5{ }_{=1.7}^{+0.5}\right) \times 10^{-6}$	1,2 NISHIDA	02	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal produ ${ }^{2} 1.25 \mathrm{GeV} / c^{2}<M_{K \pi}$	$\begin{aligned} & B^{+} \text {and } B^{0} \\ & \mathrm{eV} / c^{2} \end{aligned}$				

$\Gamma\left(K^{*}(892)^{0} X(214), X \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{395} / \Gamma$ $X(214)$ is a hypothetical particle of mass $214 \mathrm{MeV} / \mathrm{c}^{2}$ reported by the HyperCP experiment (PARK 05)
$\frac{\text { VALUE (units } 10^{-8} \text {) }}{\mathbf{< 2 . 2 6}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { HYUN }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Based on scalar nature of X particle. With a vector X assumption, the upper limit is 2.27×10^{-8}.

$\Gamma\left(K^{0} \boldsymbol{\pi}^{+} \pi^{-} \gamma\right) / \Gamma_{\text {total }}$				Γ_{396} / Γ
VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	

1.99 ± 0.18 OUR AVERAGE

$2.05 \pm 0.20_{-0.22}^{+0.26}$
1,2 DEL-AMO-SA.. 16 BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.85 \pm 0.21 \pm 0.12 \quad 1,3$ AUBERT $\quad 07 \mathrm{R}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.40 \pm 0.4 \pm 0.3 \quad 3,4$ YANG 05 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1} M_{K \pi \pi}<1.8 \mathrm{GeV} / c^{2}$.
${ }^{2}$ Uses $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=0.513 \pm 0.006$
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{4} M_{K \pi \pi}<2.0 \mathrm{GeV} / c^{2}$.
$\Gamma\left(K^{+} \pi^{-} \pi^{0} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{397} / \Gamma$

$\mathbf{4 . 0 7} \pm \mathbf{0 . 2 2} \pm \mathbf{0 . 3 1} \quad 1,2$| AUBERT $\quad 07 \mathrm{R}$ |
| :--- |
| BABR |$\frac{e^{+} e^{-} \rightarrow \quad r(4 S)}{}$

${ }^{1} M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{<5.8} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { YANG }}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<700 \quad 90 \quad 2$ ALBRECHT 89 G ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ ALBRECHT 89 G reports <0.0078 assuming the $r(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

$\Gamma\left(K_{1}(1400)^{0} \gamma\right) / \Gamma_{\text {total }}$					「399/Г
VALUE (units 10^{-5})	CL\%	DOCUM	TECN	COMMENT	
$\leqslant 1.2$	90	1 YANG	05 BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
<430	90	${ }^{2}$ ALBRE	89G ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					
${ }^{2}$ ALBRECHT 89 G reports <0.0048 assuming the $\Upsilon(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$ rescale to 50%.					

$\Gamma\left(K_{4}^{*}(2045)^{0} \gamma\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	Γ_{403} / Γ	
VALUE	$\underline{C L} \%$			COMMENT		
<0.0043	90	${ }^{1}$ ALBRECHT	89G		ARG	$e^{+} e^{-} \rightarrow$

$\Gamma\left(\rho^{0} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{404} / \Gamma$
$\frac{V A L U E \text { (units } 10^{-6} \text {) }}{\mathbf{0 . 8 6} \pm \mathbf{0 . 1 5} \text { OUR AVERAGE }} \frac{C L \%}{\text { DOCUMENT ID }}$

$0.97_{-0.22}^{+0.24} \pm 0.06$	1	AUBERT	08BH BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.78+0.17+0.09$	1 TANIGUCHI 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$		

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.79{ }_{-0.20}^{+0.22} \pm 0.06 \quad 1$ AUBERT 07L BABR Repl. by AUBERT 08BH
$1.25_{-0.33-0.06}^{+0.37}+0.07 \quad 1$ MOHAPATRA 06 BELL Repl. by TANIGUCHI 08 $0.0 \pm 0.2 \pm 0.1 \quad 90 \quad 1$ AUBERT 05 BABR Repl. by AUBERT 07L

$<1.2 \quad 90 \quad 1$ AUBERT $\quad 04 \mathrm{C}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{lllllll}<17 & 90 & \text { COAN } & 00 & \text { CLE2 } & e^{+} e^{-} & \rightarrow \\ 1_{\text {Assumes equal production of }} B^{+} \text {and } B^{0} & \text { at the } & \gamma(4 S) . & & & \end{array}$
$\Gamma\left(\rho^{0} X(214), X \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{405 / \Gamma}$ $X(214)$ is a hypothetical particle of mass $214 \mathrm{MeV} / \mathrm{c}^{2}$ reported by the HyperCP experiment (PARK 05)
$\frac{\text { VALUE (units } 10^{-8} \text {) }}{\mathbf{< 1 . 7 3}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { HYUN }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ The result is the same for a scalar or vector X particle.
$\Gamma\left(\rho^{0} \gamma\right) / \Gamma\left(\kappa^{*}(892)^{0} \gamma\right)$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{2.06+0.45+0.14}$
$2.06 \pm 0.45+0.14$
DOCUMENT ID TECN COMMENT
$\Gamma_{404} / \Gamma_{392}$
$\Gamma(\omega \gamma) / \Gamma_{\text {total }}$
TANIGUCHI 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$

VALUE (units 10^{-6}) CL\%
DOCUMENT ID
COMMENT
$\mathbf{0 . 4 4}{ }_{-0.16}^{+0.18}$ OUR AVERAGE

$0.50_{-0.23}^{+0.27} \pm 0.09$	1 AUBERT	08BH BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.40_{-0.17}^{+0.19} \pm 0.13$	1 TANIGUCHI	08 BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -

$0.40_{-0.20}^{+0.24} \pm 0.05$		${ }^{1}$ AUBERT	07L	BABR	Repl. by AUBERT 08BH
$0.56+0.34+0.05$		1 MOHAPATRA	06	BELL	Repl. by TANIGUCHI 08
<1.0	90	${ }_{1}^{1}$ AUBERT	05	BABR	Repl. by AUBERT 07L
<0.8	90	${ }^{1}$ MOHAPATRA	05	BELL	Repl. by MOHAPATRA 06
<1.0	90	${ }^{1}$ AUBERT	04C	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<9.2	90	${ }^{1}$ COAN	00	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$					

$\Gamma(\phi \gamma) / \Gamma_{\text {total }}$						Γ_{407} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<1.0 \times 10^{-7}$	90	$1{ }^{1} \mathrm{KING}$	16	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
- - We do no	follow	data for	fits,	limits	c.	
$<8.5 \times 10^{-7}$	90	${ }^{1}$ AUBE	05c	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$<3.3 \times 10^{-6}$	90	$1{ }^{1}$ COAN	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equ	tion	+ and B	$r(4$			

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{408} / Γ
VALUE (units 10-6) CL\%	DOCUMENT ID		TECN	COMMENT	
5.12 ± 0.19 OUR FIT					
5.13 ± 0.24 OUR AVERAGE					
$5.04 \pm 0.21 \pm 0.18$	${ }^{1}$ DUH	13	BELL	$e^{+} e^{-}$	$r(4 S)$
$5.5 \pm 0.4 \pm 0.3$	${ }^{1}$ AUBERT	07B	BABR	$e^{+} e^{-}$	$r(4 S)$
${ }_{4.5}{ }_{-1.4}^{+1.4}{ }_{-1}^{+0.5}$	${ }^{1}$ BORNHEIM	03	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc \bullet -

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(K^{+} \pi^{-}\right) \quad \Gamma_{\mathbf{4 0 8}} / \Gamma_{\mathbf{2 7 5}}$
$\frac{V A L U E}{0.261 \pm 0.010 \text { OUR FIT }}$
0.261 ± 0.010 OUR FIT
0.261 ± 0.015 OUR AVERAG
0.261 ± 0.015 OUR AVERAGE
$0.262 \pm 0.009 \pm 0.017 \quad$ AAIJ 12AR LHCB $p p$ at 7 TeV $0.259 \pm 0.017 \pm 0.016 \quad$ AALTONEN 11 N CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. • • -
$0.21 \pm 0.05 \pm 0.03 \quad$ ABULENCIA,A 06D CDF Repl. by AALTONEN 11N

$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$		$\Gamma_{409} /{ }^{\text {/ }}$			
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT
1.59 ± 0.26 OUR AVERAGE		Error includes scale factor of 1.4.			
$1.31 \pm 0.19 \pm 0.19$		1 JULIUS	17	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$1.83 \pm 0.21 \pm 0.13$		${ }^{1}$ LEES		BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.47 \pm 0.25 \pm 0.12$		1 AUBERT 1 AUBERT	07BC BABR		Repl. by LEES 13D
$1.17 \pm 0.32 \pm 0.10$			05L	BABR	Repl. by AUBERT 07BC
$2.3{ }_{-0.5}^{+0.4}{ }_{-0.3}^{+0.2}$		${ }^{1} \mathrm{CHAO}$	05	BELL	Repl. by JULIUS 17
< 3.6	90	${ }^{1}$ AUBERT 1 AUBERT	03L	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$2.1 \pm 0.6 \pm 0.3$			03 s	BABR	Repl. by AUBERT 05L
< 4.4	90	${ }^{1}$ BORNHEIM ${ }^{1}$ LEE	03	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$1.7 \pm 0.6 \pm 0.2$			03	BELL	Repl. by CHAO 05
<5.7	90	${ }_{1}$ ASNER	02	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<6.4	90	${ }^{1}$ CASEY	02	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
<9.3	90	GODANG	98	CLE2	Repl. by ASNER 02
<9.1	90	ASNER	96	CLE2	Repl. by ASNER 02 Repl. by GODANG 98
<60	90	2 ACCIARRI	95 H L3		Repl. by GODANG 98 $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Assumes equal pr	ction	B^{+}and B^{0} at th	$r(4)$		
${ }^{2}$ ACCIARRI 95 H as	es	39.5 ± 4.0 an	$B_{s}=$	$12.0 \pm$	3.0\%.

Meson Particle Listings
B^{0}

$\begin{aligned} & \Gamma\left(\eta \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }} \\ & \operatorname{VALUE}\left(\text { units } 10^{-6}\right) \end{aligned}$	$\underline{C L}$	DOCUMENT ID	TECN	$\underline{\text { COMMENT }} \quad \Gamma_{410 / \Gamma}$
$0.41{ }_{-0.15}^{+0.17}+0.05$		1,2 PAL	15 BELL	$e^{+} e^{-} \rightarrow$ r (4S)
- . We do not use the following data for averages, fits, limits, etc. - . .				
1.5	90	${ }^{2}$ aUbert	08ah babr	$e^{+} e^{-} \rightarrow{ }_{\text {(4S }}$ (
1.3	90	${ }^{2}$ aubert	06w babr	Repl. by Aubert 08ah
< 2.5	90	${ }^{2}$ Chang	05a bell	Repl. by PAL 15
< 2.5	90	${ }^{2}$ aUbert, ${ }^{\text {a }}$	04D babr	Repl. by Aubert 06w
2.9	90	${ }^{2} \mathrm{RICHICHI}$	00 CLE2	$e^{+} e^{-} \rightarrow r_{(4 S)}$
	90	behrens	98 CLE2	Repl. by RICHICHI 00
< 250	90	${ }^{3}$ ACCIARRI	95H L3	$e^{+} e^{-} \rightarrow$ Z
<1800	90	${ }^{2}$ Albrecht	90b ARG	$e^{+} e^{-} \rightarrow{ }_{\text {(4S }}$ (

${ }^{1}$ PAL 15 signal significance is 3.0 standard deviations. The measurement corresponds to 90% CL upper limit of $<6.5 \times 10^{-7}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ ACCIARRI 95 H assumes $f_{B^{0}}=39.5 \pm 4.0$ and $f_{B_{S}}=12.0 \pm 3.0 \%$.

VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
$\leqslant 1.0$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet r(4 S)$				
< 1.8	90	${ }^{1}$ AUBERT,B	06 v BABR	Repl. by AUBERT 09av
< 2.0	90	${ }^{1}$ CHANG	05A BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
< 2.8	90	1 AUBERT, B	04X BABR	$e^{+} e^{-} \rightarrow r(4 S)$
< 18	90	BEHRENS	98 CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<410	90	2 ACCIARRI	95H L3	$e^{+} e^{-} \rightarrow$ z
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				

$\Gamma\left({ }^{\prime} \pi^{0}\right) / /_{\text {toatal }}$	
	Eroctubil
(0.90.4.0.1	

$0.8_{-0.6}^{+0.8} \pm 0.1$		${ }^{1}$ AUBERT	06w	BABR	Repl. by AUBERT 08AH
$1.0{ }_{-1.0}^{+1.4} \pm 0.8$	90	${ }^{1}$ AUBERT, B	04D	BABR	Repl. by AUBERT 06w
< 5.7	90	${ }^{1} \mathrm{RICHICHI}$	00	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
<11	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\eta^{\prime} \eta^{\prime}\right) / \Gamma_{\text {total }} \quad \Gamma_{413} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<1.7} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \frac{\text { 09AV }}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. • •

< 6.5	90	${ }^{1}$ SCHUEMANN	07	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
< 2.4	90	${ }^{1}$ AUBERT, B	06V	BABR	Repl. by AUBERT 09aV
<10	90	${ }^{1}$ AUBERT, B	04X	BABR	Repl. by AUBERT, B 06V
<47	90	BEHRENS	98	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

$\Gamma\left(\boldsymbol{\eta}^{\prime} \rho^{\mathbf{0}}\right) / \Gamma_{\text {total }}$			Γ_{415} / Γ	
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
< 1.3	90	1 SCHUEMANN 07	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
< 2.8	90	1 DEL-AMO-SA..10A	BABR $e^{+} e^{-} \rightarrow r(4 S)$	
< 3.7	90	AUBERT 07E	BABR	Repl. by DEL-AMOSANCHEZ 10A Repl. by AUBERT 07E
<4.3	90	${ }^{1}$ AUBERT,B 04D	BABR	
<12	90	${ }^{1}$ RICHICHI 00	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<23	90	BEHRENS 98	CLE2	Repl. by RICHICHI 00
${ }^{1}$ Assumes equa	tion	and B^{0} at the $\gamma(4$		

$\Gamma\left(\eta f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{418} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	

$\Gamma(\omega \eta) / \Gamma_{\text {total }} \quad \Gamma_{419} / \Gamma$
$\underline{\text { VALUE (units } 10^{-6} \text {) CL\% DOCUMENT ID } \quad \text { TECN COMMENT }}$

$$
\mathbf{0 . 9 4} \mathbf{+ 0 . 3 0} \mathbf{0 . 3 5} \pm \mathbf{0 . 0 9} \quad 1 \text { AUBERT } \quad \text { 09AV BABR } e^{+} e^{-} \rightarrow r(4 S)
$$

- - We do not use the following data for averages, fits, limits, etc. - - -

< 1.9	90	${ }^{1}$ AUBERT,B	05K	BABR	Repl. by AUBERT 09av
$4.0{ }_{-1.2}^{+1.3} \pm 0.4$		${ }^{1}$ AUBERT,B	04X	BABR	Repl. by AUBERT,B 05k
<12	90	${ }^{1}$ BERGFELD	98	CLE2	

| $\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{\eta}^{\prime}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | |
| :--- | :--- | :--- |
| VALUE (units $\left.10^{-6}\right)$ | COCUMENT ID |

$\mathbf{1 . 0 1} \underset{-\mathbf{0} .38}{\mathbf{0 . 4 6}} \pm \mathbf{0 . 0 9} \quad 1$ AUBERT $\quad 09 \mathrm{AV}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

<2.2	90	1	SCHUEMANN 07 BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
<2.8	90	1	AUBERT,B $04 \times \mathrm{BABR}$	$e^{+} e^{-} \rightarrow$	$r(4 S)$
<60	90	1	BERGFELD 98 CLE2		

$\Gamma\left(\omega \rho^{0}\right) / \Gamma_{\text {total }}$		Γ_{421} / Γ		
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
< 1.6	90	1 AUBERT	09H BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -				
< 1.5	90	${ }^{1}$ AUBERT,B	06T BABR	Repl. by AUBERT 09H
<3.3	90	${ }^{1}$ AUBERT	050 BABR	Repl. by AUBERT,B 06T
<11	90	${ }^{1}$ BERGFELD	98 CLE2	
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				

$\Gamma\left(\omega f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$				Γ_{422} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
<1.5	90	1 AUBERT	09H BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
<1.5	90	${ }^{1}$ AUBERT,B	06T BABR	Repl. by AUBERT 09H
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				

$\Gamma(\phi \eta) / \Gamma_{\text {total }}$		Γ_{425} / Γ		
VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT
<0.5	90	${ }^{1}$ AUBERT	09AV BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
<0.6	90	${ }_{1}^{1}$ AUBERT, B	06V BABR	Repl. by AUBERT 09aV
<1.0	90	${ }^{1}$ AUBERT, B	04x BABR	Repl. by AUBERT, B 06 V
<9	90	${ }^{1}$ BERGFELD	98 CLE2	

[^124]

$\Gamma(\phi \omega) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 3 0}} / \Gamma$

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 7}} \frac{\text { CL\% }}{90} \quad 1$	1	$\frac{\text { DOCUMENT ID }}{\text { LEES }}$	$\frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. $-\bullet$
$\begin{array}{llllll}<1.2 & 90 & 1 & \text { AUBERT,B } & 06 T & \text { BABR }\end{array}$ Repl. by LEES 14
<21 <21 $90 \quad 1$ BERGFELD 98 CLE
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma(\phi \phi) / \Gamma_{\text {total }} \quad$ CLU
 - - We do not use the following data for averages, fits, limits, etc. - -
$<2.8 \times 10^{-8}$
$<2 \times 10^{-7}$
$<1.5 \times 10^{-6}$
$\Gamma\left(a_{0}(980)^{ \pm} \pi^{\mp}, a_{0}^{ \pm} \rightarrow \eta \pi^{ \pm}\right) / \Gamma_{\text {total }}$
Γ_{432} / Γ
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{3 . 1}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{07 Y}{} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{e^{+}}$ - - We do not use the following data for averages, fits, limits, etc. - • -
$<5.1 \quad 90 \quad 1$ AUBERT,BE 04 BABR Repl. by AUBERT 07Y ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\pi^{+} \pi^{-} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}$VALUE	CL\%	DOCUMENT ID		TECN	Γ_{434} / Γ		
				COMMENT			
$<7.2 \times 10^{-4}$	90	${ }^{1}$ ALBRECHT	90B		ARG	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\gamma(4 S)$.

$\Gamma\left(\rho^{0} \pi^{0}\right) / \Gamma_{\text {total }}$			TECN	COMMENT	Γ_{435} / Γ
VALUE (units 10^{-6}) $C L \%$	DOCUMENT ID				
2.0 ± 0.5 OUR AVERAGE					
$3.0 \pm 0.5 \pm 0.7$	1,2 KUSAKA	08	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$1.4 \pm 0.6 \pm 0.3$	1 AUBERT	04z	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$1.6{ }_{-1.4}^{+2.0} \pm 0.8$	1 JESSOP	00	CLEO	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ This is the first measurement that excludes contributions from $\rho(1450)$ and $\rho(1570)$ ${ }_{3}$ resonances.
${ }^{3}$ BEBEK 87 reports $<6.1 \times 10^{-3}$ assuming the $\Upsilon(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{=}} \boldsymbol{\pi}^{\boldsymbol{+}} \boldsymbol{\pi}^{\boldsymbol{=}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
CL\% DOCUMENT ID \quad TECN COMMENT $\quad \boldsymbol{\Gamma}_{\mathbf{4 3 7}} / \boldsymbol{\Gamma}$
$\frac{V A L U E}{<11.2 \times 10^{-6}} \frac{C L \%}{90} \quad 1$ DOCUMENT ID $\quad \frac{\text { TECN }}{\text { VANHOEFER } 14} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$<23.1 \times 10^{-6}$	90	1 AUBERT	08bb BABR	$r(4 S)$
$<19.3 \times 10^{-6}$	90	1 CHIANG	08 BELL	Repl. by VANHOEFER 14
$<2.3 \times 10^{-4}$	90	${ }^{2}$ ADAM	96D DLPH	$e^{+} e^{-} \rightarrow Z$
$<2.8 \times 10^{-4}$	90	${ }^{3}$ ABREU	95N DLPH	Sup. by ADAM 96D
$<6.7 \times 10^{-4}$	90	${ }^{1}$ ALBRECHT	B ARG	$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$. ${ }^{2}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$. ${ }^{3}$ Assumes a B^{0}, B^{-}production fraction of 0.39 and a B_{S} production fraction of 0.12 .				

VALUE (units 10^{-6})	CL\%	DOCUMENT ID	TECN	COMMENT	
< 8.8 90 ${ }^{1}$ AUBERT 08BB BABR $e^{+} e^{-} \rightarrow \boldsymbol{\gamma}(4 S)$					
- - We do not use the following data for averages, fits, limits, etc. - -					
<12.0	90	1 VANHOEFER	14 BELL	$e^{+} e^{-} \rightarrow$	
<12.0	90	${ }^{1}$ CHIANG	08 BELL	Repl. by	EFER 14
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\Gamma\left(\rho^{0} \rho^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{439} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{0 . 9 6} \pm \mathbf{0 . 1 5} \text { OUR FIT }} \frac{C L \%}{\text { DOCUMENT ID }}$ TECN COMMENT

0.97 ± 0.24 OUR AVERAGE

$1.02 \pm 0.30 \pm 0.15 \quad 1,2$ VANHOEFER 14 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.92 \pm 0.32 \pm 0.14 \quad 2$ AUBERT 08BB BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • •

$0.4 \pm 0.4{ }_{-0.3}^{+0.2}$		2 CHIANG	08	BELL	Repl. by VANHOEFER 14
$1.07 \pm 0.33 \pm 0.19$		${ }^{2}$ AUBERT	07G	BABR	Repl. by AUBERT 08Bb
1.1	90	${ }^{2}$ AUBERT	051	BABR	Repl. by AUBERT 07G
<2.1	90	${ }^{2}$ AUBERT	03v	BABR	Repl. by AUBERT 05ı
< 18	90	3 GODANG	02	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<136	90	${ }^{4} \mathrm{ABE}$	00C	SLD	$e^{+} e^{-} \rightarrow Z$
<280	90	${ }^{2}$ ALBRECHT	90B	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
<290	90	${ }^{5}$ BORTOLET	89	CLEO	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
<430	90	5^{5} BEBEK	87	CLEO	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ Signal significance 3.4 standard deviations.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 1.4×10^{-5}.
${ }^{4} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{5}$ Paper assumes the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(\rho^{0} \rho^{0}\right) / \Gamma\left(\kappa^{*}(892)^{0} \phi\right)$
VALUE (units 10^{-2})
9.5 ± 1.5 OUR FIT
$9.4 \pm 1.7 \pm 0.9$

DOCUMENT ID TECN COMMENT
AAIJ
15T LHCB $p p$ at $7,8 \mathrm{TeV}$

Meson Particle Listings
B^{0}

${ }^{1}$ Signal significance of 3.1 standard deviations.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
 $\frac{\operatorname{VALUE} \text { (units } 10^{-6} \text {) }}{<\mathbf{0} \mathbf{1 9}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 08 \mathrm{BB}} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. • • •

<0.2	90	1			
1 VANHOEFER	14	BELL	$e^{+} e^{-} \rightarrow r(4 S)$		
<0.1	90	1 CHIANG	08	BELL	Repl. by VANHOEFER 14
<0.16	90	1 AUBERT	$07 G$	BABR	Repl. by AUBERT 08BB

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(f_{0}(980) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}, f_{0} \rightarrow \kappa^{+} \kappa^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{443} / \Gamma$ $\begin{array}{llll}\frac{\left.\text { VALUE (units } 10^{-6}\right)}{<0.23} & \frac{C L \%}{90} & \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \quad \text { 08BK BABR } & \frac{\text { TECN }}{\text { COMMENT }} \\ e^{+} e^{-} \rightarrow r(4 S)\end{array}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\boldsymbol{\Gamma}\left(\boldsymbol{a}_{\mathbf{2}}(\mathbf{1 3 2 0})^{\mp} \boldsymbol{\pi}^{ \pm}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
$\frac{C L \%}{9}$

12 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$<3.0 \times 10^{-4} \quad 90 \quad 2$ BORTOLETTO89 CLEO $e^{+} e^{-} \rightarrow r(4 S)$ $<1.4 \times 10^{-3} \quad 90 \quad 2$ BEBEK 87 CLEO $e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ DALSENO 12 reports $\mathrm{B}\left(B^{0} \rightarrow a_{2}^{ \pm} \pi^{\mp}\right) \mathrm{B}\left(a_{2}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right)<2.2 \times 10^{-6}$ which we rescaled using $\mathrm{B}\left(a_{2}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right)=1 / 2 \mathrm{~B}\left(a_{2}^{ \pm} \rightarrow 3 \pi\right)=0.35 \pm 0.013$.
${ }^{2}$ Paper assumes the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<\mathbf{3 . 1} \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90}$$\frac{\text { DOCUMENT ID }}{\text { ALBRECHT }} \quad 90 \mathrm{~B} \frac{\text { TECN }}{\text { ARG }} \frac{\boldsymbol{\Gamma}_{\mathbf{4 4 6}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$.

$\Gamma\left(\rho^{+} \rho^{-}\right) / \Gamma_{\text {total }}$							Γ_{447} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT		
27.7 ± 1.9 OUR AVERAGE							
$28.3 \pm 1.5 \pm 1.5$		1 VANHOEFER	16	BELL	$e^{+} e^{-}$	$r(4 S)$	
$25.5 \pm 2.1{ }_{-3.9}^{+3.6}$		1 AUBERT	07BF	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. • • -

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ The quoted result is obtained after combining with AUBERT 04G result by AUBERT 04R alone gives ($33 \pm 4 \pm 5$) $\times 10^{-6}$.

$\Gamma\left(a_{1}(1260)^{0} \pi^{0}\right) / \Gamma_{\text {total }}$		Γ_{448} / Γ		
VALUE	CL\%	DOCUMENT ID TECN		COMMENT
$<1.1 \times 10^{-3}$	90	${ }^{1}$ ALBRECHT 90B ARG		$e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\gamma(4 S)$.				
VALUE (units 10^{-6})	CL\%	DOCUMENT ID TECN		COMMENT
<0.5	90	${ }^{1}$ AUBERT	08Aн BABR	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
< 2.0	90	1 JEN	06 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<1.2	90	${ }^{1}$ AUBERT,B	04D BABR	Repl. by AUBERT 08AH
< 1.9	90	${ }^{1}$ WANG	04A BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<3	90	${ }^{1}$ AUBERT	01G BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
<5.5	90	1 JESSOP	00 CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
< 14	90	${ }^{1}$ BERGFELD	98 CLE2	Repl. by JESSOP 00
<460	90	2 ALBRECHT	90B ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$. ${ }^{2}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\gamma(4 S)$.				

$\Gamma\left(\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	Γ_{450} / Γ		
VALUE	CL\%			COMMENT			
$<9.0 \times 10^{-3}$	90	${ }^{1}$ ALBRECHT	90B		ARG	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$.
$\Gamma\left(a_{1}(1260)^{+} \rho^{-}\right) / /_{\text {total }}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{6 1}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AUBERT,B } \quad 060} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - •
$<3400 \quad 90 \quad 1$ ALBRECHT 90 B ARG $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Assumes $a_{1}(1260)$ decays only to 3π and $\mathrm{B}\left(a_{1}^{ \pm} \rightarrow \pi^{ \pm} \pi^{\mp} \pi^{ \pm}\right)=0.5$.

$\Gamma\left(\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{457} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<\mathbf{3 . 0 \times 1 0}{ }^{\mathbf{- 3}}$	90	1 ALBRECHT	90B	ARG	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$.
$\Gamma\left(a_{1}(1260)^{+} a_{1}(1260)^{-}, a_{1}^{+} \rightarrow 2 \pi^{+} \pi^{-}, a_{1}^{-} \rightarrow 2 \pi^{-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{458} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{11.8 \pm \mathbf{2 . 6} \pm \mathbf{1 . 6}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 09AL }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$

- - We do not use the following data for averages, fits, limits, etc. • • •
<6000 $90 \quad 1$ ALBRECHT 90 B ARG $e^{+} e^{-} \rightarrow r(4 S)$
$<2800 \quad 90 \quad 2$ BORTOLETTO89 CLEO $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\gamma(4 S)$.
${ }^{2}$ BORTOLETTO 89 reports $<3.2 \times 10^{-3}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.

${ }^{1}$ ALBRECHT 90B limit assumes equal production of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$at $\Upsilon(4 S)$.

$\Gamma\left(p \bar{\rho} \pi^{+} \pi^{-}\right) / \Gamma\left(p \bar{\rho} K^{+} \pi^{-}\right)$
$\Gamma_{461} / \Gamma_{462}$

- - We do not use the following data for averages, fits, limits, etc. - -		
$0.46 \pm 0.02 \pm 0.02$	1 AAIJ	17BD LHCB
${ }^{1}$ The ratio is giv	85 GeV	

$\Gamma\left(p \bar{p} K^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{463 / \Gamma}$
$\frac{\operatorname{VALUE} \text { (units } 10^{-6} \text {) }}{\mathbf{2} .66+0.32}$ CL\% DOCUMENT ID TECN COMMENT $\mathbf{2 . 6 6} \pm 0.32$ OUR AVERAGE

$2.51{ }_{-0.29}^{+0.35} \pm 0.21$		1,2 CHEN		BELL	e^{-}	$r(4 S)$
$3.0 \pm 0.5 \pm 0.3$		2 AUBERT			$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -						
$2.40{ }_{-0.44}^{+0.64} \pm 0.28$		2,3,4 WANG	05A	BELL	Repl. by	HEN 08C
$1.88{ }_{-0.60}^{+0.77} \pm 0.23$		2,3,5 WANG	04	BELL	Repl. b	JANG 05A
<7.2	90	2,3 ABE	02K	BELL	Repl. by	WANG 04

${ }^{1}$ Explicitly vetoes resonant production of $p \bar{p}$ from charmonium states.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ Explicitly vetoes resonant production of $p \bar{p}$ from charmonium states and $p K^{0}$ production from Λ_{C}.
${ }^{4}$ Provides also results with $M_{p} \bar{p}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$ and angular asymmetry of $p \bar{p}$ system
${ }^{5}$ The branching fraction for $M_{p \bar{p}}<2.85$ is also reported.

$\boldsymbol{\Gamma}\left(\boldsymbol{\Theta}(\mathbf{1 5 4 0})^{+} \overline{\boldsymbol{p}}, \boldsymbol{\Theta}^{+} \rightarrow \boldsymbol{p} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$		
$V A L U E\left(\right.$ units $\left.10^{-6}\right)$	DL\%	$\boldsymbol{\Gamma}_{\mathbf{4 6 4}} / \boldsymbol{\Gamma}$

$<0.05 \quad 90 \quad 1$ AUBERT 07AV BABR $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -
$<0.23 \quad 90 \quad 1$ WANG 05A BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(f_{J}(\mathbf{2 2 2 0}) K^{0}, f_{J} \rightarrow p \bar{p}\right) / \Gamma_{\text {total }}$
$\Gamma_{465 / \Gamma}$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{0 . 4 5}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 07AV }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\boldsymbol{\Gamma}\left(\boldsymbol{p} \overline{\boldsymbol{p}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-7}\right)}{\mathbf{5 . 0} \pm \mathbf{1 . 8} \pm \mathbf{0 . 6}}$$\quad \frac{\text { DOCUMENT ID }}{\text { PAL }} \quad 19 \quad \frac{\text { TECN }}{\text { BELL }} \frac{\boldsymbol{\Gamma}_{\mathbf{4 6 9}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
$\boldsymbol{\Gamma}\left(\boldsymbol{f}_{\boldsymbol{J}}(\mathbf{2 2 2 0}) \boldsymbol{K}_{\mathbf{0}}^{*}, \boldsymbol{f}_{\boldsymbol{J}} \rightarrow p \bar{p}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{4 6 7}} / \boldsymbol{\Gamma}$

| $\frac{V A L U E}{}\left(\right.$ units $\left.10^{-6}\right)$ | | |
| :--- | :--- | :--- | :--- |
| $<\mathbf{0 . 1 5}$ | $\frac{C L \%}{90}$ | $1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 07AV }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ |

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(p \bar{p} K^{+} K^{-}\right) / \Gamma_{\text {total }}$			$\Gamma_{468} /{ }^{\text {/ }}$
VALUE (units 10^{-8})	DOCUMENT ID TECN	COMMENT	
12.1 $\pm 3.1 \pm 0.5$			
${ }^{1}$ AAIJ 17BD reports [$\left.\Gamma\left(B^{0} \rightarrow p \bar{p} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right]$			
$/[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})] /\left[\mathrm{B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)\right]=0.045 \pm 0.011 \pm 0.004$ which			
we multiply by our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}$,			
$0.009) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.			
The branching ratio	r $m_{p \bar{p}}<2.85 \mathrm{GeV}$.		

$\Gamma\left(p \bar{p} K^{+} K^{-}\right) / \Gamma\left(p \bar{p} K^{+} \pi^{-}\right)$

$\Gamma_{468} / \Gamma_{462}$
VALUE (\%)
DALUE (\%) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •
$1.9 \pm 0.5 \pm 0.2 \quad 1 \mathrm{AAIJ} \quad 17 \mathrm{BDLHCB} p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ The ratio is given for $m_{p \bar{p}}<2.85 \mathrm{GeV}$.

$\Gamma\left(p \bar{\Lambda} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 7 1}} / \Gamma$
$\frac{V A L U E \text { (units } 10^{-6} \text {) }}{3.14 \pm \mathbf{0 . 2 9} \text { OUR AVERAGE }}$
3.14 ± 0.29 OUR AVERAGE
$3.07 \pm 0.31 \pm 0.23 \quad 1$ AUBERT \quad 09AC BABR $e^{+} e^{-} \rightarrow r(4 S)$ $3.23_{-0.29}^{+0.33} \pm 0.29 \quad 1$ WANG 07 C BELL $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -
$2.622_{-0.40}^{+0.44} \pm 0.31 \quad 1,2$ WANG 05A BELL Repl. by WANG 07C
$3.97_{-0.80}^{+1.00} \pm 0.56 \quad 1$ WANG 03 BELL Repl. by WANG 05A
$<13 \quad 90 \quad{ }^{1}$ COAN $99 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$<180 \quad 90 \quad 3$ ALBRECHT 88 F ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Provides also results with $M_{p \bar{p}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$ and angular asymmetry of $p \bar{\Lambda}$ system.
${ }^{3}$ ALBRECHT 88 F reports $<2.0 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\boldsymbol{\Gamma}\left(\boldsymbol{p} \overline{\boldsymbol{\Lambda}} \boldsymbol{\pi}^{-} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }}{}<6.5 \times \mathbf{1 0}^{\mathbf{- 7}}$$\frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{14} \frac{\text { TECN }}{\text { LAI }} \frac{\text { COMMENT }}{e_{\text {472 }} / \boldsymbol{\Gamma}}$ ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(p \bar{\Sigma}(1385)^{-}\right) / \Gamma_{\text {total }}$						Γ_{473} / Γ
VALUE (units 10^{-6})	CL\%	DOCUME		TECN	COMMENT	
<0.26	90	1 WANG	07C	BELL	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

Meson Particle Listings
B^{0}

- - We do not use the following data for averages, fits, limits, etc. • • •

<0.69	90	1	1		
<1.2	90	1	BORNHEIM	05	03
BELL 2	Repl. by TSAI 07				
$<e^{+} e^{-} \rightarrow r(4 S)$					
<1.0	90	1 ABE	020	BELL	Repl. by CHANG 05
<3.9	90	1 COAN	99	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

| <3.9 | 90 | 1 | |
| :--- | :--- | :--- | :--- | :--- |
| COAN | 99 | CLE2 | $e^{+} e^{-} \rightarrow r(4 S)$ |

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
「 $\left(\boldsymbol{\lambda} \wedge \kappa^{0}\right) / /_{\text {total }}$
$\Gamma_{481 / \Gamma}$
VALUE (units 10^{-6}) \qquad - TECN COMMENT
$\mathbf{4 . 7 6}_{-\mathbf{0 . 6 8}}^{\mathbf{0} .84} \pm \mathbf{0 . 6 1} \quad 1,2 \mathrm{CHANG} \quad 09$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Excluding charmonium events in $2.85<m_{\Lambda} \bar{\Lambda}<3.128 \mathrm{GeV} / \mathrm{c}^{2}$ and $3.315<m_{\Lambda} \bar{\Lambda}<$ $3.735 \mathrm{GeV} / \mathrm{c}^{2}$. Measurements in various $m_{\Lambda \bar{\Lambda}}$ bins are also reported.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\bar{\Lambda} \wedge K^{* 0}\right) / \Gamma_{\text {total }} \Gamma_{482} / \Gamma$

VALUE (units 10^{-6})	DOCUMENT ID	TECN	$\frac{\text { COMMENT }}{\mathbf{2 . 4 6} \mathbf{+ 0 . 8 7} \pm \mathbf{0 . 3 4}}$	1,2 CHANG	09
BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$				

${ }^{1}$ Excluding charmonium events in $2.85<m_{\Lambda \bar{\Lambda}}<3.128 \mathrm{GeV} / \mathrm{c}^{2}$ and $3.315<m_{\Lambda \bar{\Lambda}}<$ $3.735 \mathrm{GeV} / \mathrm{c}^{2}$. Measurements in various $m_{\Lambda \bar{\Lambda}}$ bins are also reported.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\boldsymbol{\Gamma}\left(\overline{\boldsymbol{\Lambda}} \boldsymbol{\wedge} \boldsymbol{D}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad$ DOCUMENT ID $\boldsymbol{\Gamma}_{\mathbf{4 8 3}} / \boldsymbol{\Gamma}^{\text {TECN }}$
VALUE (units 10^{-5}) DOCUMENT ID

$1.00=0.30$ OUR AVERAGE

$0.98_{-0.26}^{+0.29} \pm 0.19$	1,2			
LEES	14B	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$1.05_{-0.44}^{+0.57} \pm 0.14$	2	CHANG	09	BELL

${ }^{1}$ Evidence for 3.4 st . dev. signal significance.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(D^{0} \Sigma^{\mathbf{0}} \bar{\Lambda}+\right.$ c.c. $) / \Gamma_{\text {total }}$				$\Gamma_{484} /{ }^{\text {/ }}$
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ Here $\Sigma^{0} \rightarrow \Lambda \gamma$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\Delta^{0} \bar{\Delta}^{0}\right) / \Gamma_{\text {total }}$					Γ_{485} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.0015	90	${ }^{1}$ BORTOLETTO89	CLEO	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ BORTOLETTO to 50%.	ports	$.0018 \text { assuming } r(4 S)$	decays	$3 \% \text { to } B^{0}$	

$\Gamma\left(\Delta^{++} \bar{\Delta}^{--}\right) / \Gamma_{\text {total }}$		Γ_{486} / Γ
VALUE	CL\% DOCUMENT ID	TECN COMMENT
$<1.1 \times 10^{-4}$	$90 \quad 1$ BORTOLETTO89	CLEO $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ BORTOLETTO 89 reports $<1.3 \times 10^{-4}$ assuming $\Upsilon(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50%.		
$\Gamma\left(\bar{D}^{0} p \bar{p}\right) / \Gamma_{\text {tot }}$		Γ_{487} / Γ
VALUE (units 10^{-4})	DOCUMENT ID TECN	COMMENT
1.04 ± 0.07 OUR AVERAGE		
$1.02 \pm 0.04 \pm 0.06$	1,2 DEL-AMO-SA.. 12 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.18 \pm 0.15 \pm 0.16$	${ }^{2}$ ABE 02w BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -		
$1.13 \pm 0.06 \pm 0.08$	2 AUBERT,B 06s BABR	Repl. by DEL-AMO-SANCHEZ 12
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08. ${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.		

$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{s}}^{-} \overline{\boldsymbol{\Lambda}} \boldsymbol{p}\right) / \boldsymbol{\Gamma}_{\text {total }}$	
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\mathbf{2 . 8} \pm \mathbf{0 . 8} \pm \mathbf{0 . 3}}$	$1,2 \frac{\text { DOCUMENT ID }}{\text { MEDVEDEVA } 07}$

1,2 MEDVEDEVA 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
2 MEDVEDEVA 07 reports $(2.9 \pm 0.7 \pm 0.5 \pm 0.4) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D_{s}^{-} \bar{\Lambda} p\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.4 \pm 0.6) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{D}^{*}(2007)^{0} p \bar{p}\right) / \Gamma_{\text {total }} \quad \Gamma_{489} / \Gamma$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
0.99 $\mathbf{\pm 0 . 1 1}$ OUR AVERAGE
$0.97 \pm 0.07 \pm 0.09 \quad 1,2$ DEL-AMO-SA.. $12 \quad \mathrm{BABR} \quad e^{+} e^{-} \rightarrow r(4 S)$
$1.20_{-0.29}^{+0.33} \pm 0.21 \quad 2 \mathrm{ABE} \quad 02 \mathrm{~W}$ BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - •
$1.01 \pm 0.10 \pm 0.09 \quad 2$ AUBERT,B 06s BABR Repl. by DEL-AMO-SANCHEZ 12
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(D^{-} p \bar{p} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{491 / \Gamma}$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$\mathbf{3 . 3 2} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 2 9} \quad 1,2$ DEL-AMO-SA.. 12 BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • •
$3.38 \pm 0.14 \pm 0.29 \quad 2$ AUBERT,B 06 s BABR Repl. by DEL-AMO-SANCHEZ 12
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(D^{*}(2010)^{-} p \overline{\bar{p}} \pi^{+}\right) / \Gamma_{\text {total }}$
Γ_{492} / Γ
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$\overline{4.7} \mathbf{\pm 0 . 5}$ OUR AVERAGE Error includes scale factor of 1.2
$4.55 \pm 0.16 \pm 0.39 \quad 1,2$ DEL-AMO-SA.. 12 BABR $e^{+} e^{-} \rightarrow r(4 S)$
$6.5{ }_{-1.2}^{+1.3} \pm 1.0 \quad 2$ ANDERSON 01 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$4.81 \pm 0.22 \pm 0.44 \quad 2$ AUBERT,B 06s BABR Repl. by DEL-AMO-SANCHEZ 12
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{\mathbf{0}} \boldsymbol{p} \overline{\boldsymbol{p}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{-}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{2 . 9 9} \pm \mathbf{0 . 2 1} \pm \mathbf{0 . 4 5}}$
$e^{-} \rightarrow \gamma(4 S$
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\boldsymbol{\Gamma}\left(\overline{\boldsymbol{D}}^{* \mathbf{0}} \boldsymbol{p} \overline{\boldsymbol{p}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{=}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{1 . 9 1 \pm 0 . 3 6 \pm 0 . 2 9}}$
$1,2 \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..12 }} \frac{\text { TECN }}{\text { BABR }} \frac{\boldsymbol{\Gamma}_{\mathbf{4 9 4}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses the values of D and D^{*} branching fractions from PDG 08.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\theta_{c} \overline{\boldsymbol{p}} \pi^{+}, \theta_{c} \rightarrow D^{-} p\right) / \Gamma_{\text {total }} \quad \Gamma_{495} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<9} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT,B }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { BABR }} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Uses $\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}$mode. The second error includes the uncertainty of the branching fraction of the Λ_{C} decay, $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$.
${ }^{3}$ PARK 07 reports $(11.2 \pm 0.5 \pm 3.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ DYTMAN 02 reports $\left(1.67_{-0.25}^{+0.27}\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ GABYSHEV 02 reports $(1.1 \pm 0.2) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.05$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{6}$ FU 97 uses PDG 96 values of Λ_{C} branching fraction.

$\Gamma\left(\bar{\Lambda}_{c}^{-} p\right) / \Gamma_{\text {total }}$

$\Gamma_{499 / \Gamma}$

$\frac{\operatorname{VALUE}}{}$ (units 10^{-5}) CL\%	DOCUMENT ID		MENT
1.54 ± 0.18 OUR AVERAGE			
$1.51 \pm 0.16 \pm 0.08$	1,2 AUBERT	08bn BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$2.19{ }_{-0.49}^{+0.56} \pm 0.65$	1,3 GABYSHEV	03 BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . .

$2.10_{-0.55}^{+0.67}{ }_{-0.46}^{+0.77}$		1,4 AUBERT	07AV	BABR	Repl. by	UBERT
< 9	90	1,5 DYtMAN	02	CLE2	$e^{+} e^{-}$	$r(4 S)$
<3.1	90	1,4 GABYSHEV	02	BELL	$e^{+} e^{-}$	$r(4 S)$
<21	90	${ }^{6} \mathrm{FU}$	97	CLE2	$e^{+} e^{-}$	$r(4 S)$

${ }^{2}$ AUBERT 08BN reports $(1.89 \pm 0.21 \pm 0.49) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{c}^{-} p\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ The second error for GABYSHEV 03 includes the systematic and the error of $\Lambda_{C} \rightarrow$ $\bar{p} K^{+} \pi^{-}$decay branching fraction.
${ }^{4}$ Uses the value for $\Lambda_{C} \rightarrow p K^{-} \pi^{+}$branching ratio $(5.0 \pm 1.3) \%$.
${ }^{5}$ DYTMAN 02 measurement uses $\mathrm{B}\left(\Lambda_{c}^{-} \rightarrow \bar{p} K^{+} \pi^{-}\right)=5.0 \pm 1.3 \%$. The second error includes the systematic and the uncertainty of the branching ratio.
${ }^{6}$ FU 97 uses PDG 96 values of Λ_{C} branching ratio.

$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{0}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-4})	CL\%	DOCUMENT ID	Γ_{500} / Γ		
$1.55 \pm 0.17 \pm 0.08$		1,2 AUBERT	BAB	$e^{+} e^{-}$	$r(4$
- We do not use the following data for averages, fits, limits, etc.					
<5.9	90	${ }^{3} \mathrm{FU}$	CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$		
${ }^{1}$ AUBERT 10 H reports ($\left.1.94 \pm 0.17 \pm 0.52\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$					
$\left.\left.\bar{\Lambda}_{C}^{-} p \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times$					
Our first error is their experiment's error and our second error is the systematic error from using our best value.					
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{2 . 0} \pm \mathbf{0 . 4} \pm \mathbf{0 . 1}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 15B }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{\text { en }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ LEES 15B reports $\left[\Gamma\left(B^{0} \rightarrow \Lambda_{c}^{-} p K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]=(12.5 \pm$ $2.0 \pm 1.0) \times 10^{-7}$ which we divide by our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm$ $0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\begin{aligned} & \Gamma\left(\Lambda_{c}^{-} p \phi\right) / \Gamma_{\text {total }} \\ & \text { VALUE } \end{aligned}$	$\underline{C L \%}$	DOCUMENT ID		TECN	COMMENT	Γ_{514} / Γ
$<1.0 \times 10^{-5}$	90	1,2 Lees	15B	BABR	$e^{+} e^{-} \rightarrow$	

${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\Sigma_{c}(2455)^{-} p\right) / \Gamma_{\text {total }} \quad \Gamma_{501} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{2 4}} \quad 1, \frac{\text { DOCUMENT ID }}{\text { AUBERT }} 10 \mathrm{TH} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ AUBERT 10 H reports $\left[\Gamma\left(B^{0} \rightarrow \Sigma_{C}(2455)^{-} p\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]<$ 1.5×10^{-6} which we divide by our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=6.28 \times 10^{-2}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{<5.07 \times 10^{-3}}$$\frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{FU}} \quad 97 \frac{\text { TECN }}{\text { CLE2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ FU 97 uses PDG 96 values of Λ_{C} branching ratio.

$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}\right.$	$/ \Gamma_{\text {total }}$					Γ_{503} / Γ
Value	$\underline{C L}$			TECN	COMMENT	
$<2.74 \times 10^{-3}$	90	$1{ }^{\text {FU }}$	97	CLE2	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ FU 97 uses PDG 96 values of Λ_{C} branching ratio.
$\Gamma\left(\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}(\right.$nonresonant $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{504} / \Gamma$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
5.5 \pm 1.0 OUR AVERAGE Error includes scale factor of 1.3 .
$7.9 \pm 0.4 \pm 2.0 \quad 1,2$ LEES $\quad 13 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{llll}5.1 \pm 0.8 \pm 0.3 & 1,3 \text { PARK } \quad 07 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Uses $\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}$mode. The second error includes the uncertainty of the branching fraction of the Λ_{C} decay, $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$.
${ }^{3}$ PARK 07 reports $(6.4 \pm 0.4 \pm 1.9) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\bar{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}($nonresonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings
B^{0}

$\Gamma\left(\bar{\Sigma}_{c}(2455)^{0} p \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{507} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{1 . 0 8} \pm \mathbf{0 . 1 6} \text { OUR AVERAGE }} \frac{C L \%}{E}$
$\begin{array}{lllll}0.91 \pm 0.07 \pm 0.24 & 1,2 & \text { LEES } & 13 \mathrm{H} & \text { BABR } e^{+} e^{-} \rightarrow r(4 S) \\ 1.12 \pm 0.21 \pm 0.06 & 1,3 \text { PARK } & 07 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$1.8 \pm 0.6 \pm 0.1 \quad 4$ DYTMAN 02 CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.38_{-0.33}^{+0.37} \pm 0.02 \quad 90 \quad{ }^{5}$ GABYSHEV 02 BELL Repl. by PARK 07
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Uses $\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}$mode. The second error includes the uncertainty of the branching fraction of the Λ_{C} decay, $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$.
${ }^{3}$ PARK 07 reports $(1.4 \pm 0.2 \pm 0.4) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{0} p \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ DYTMAN 02 reports $(2.2 \pm 0.7) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{0} p \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ GABYSHEV 02 reports $\left(0.48_{-0.41}^{+0.46}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{0} p \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{\Sigma}_{c}(2455)^{--} p \pi^{+}\right) / /_{\text {total }}$
「509/「
VALUE (units 10^{-4})

1.83 ± 0.24 OUR AVERAGE

- 1,2 LEES

1,3 PARK
13H BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.67 \pm 0.25_{-0.08}^{+0.09}$
$2.9 \pm 0.9{ }_{-0.1}^{+0.2} \quad 4$ DYTMAN 02 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
07 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$1.9{ }_{-0.5}^{+0.6} \pm 0.1 \quad{ }^{5}$ GABYSHEV 02 BELL Repl. by PARK 07
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Uses $\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}$mode. The second error includes the uncertainty of the branching fraction of the Λ_{C} decay, $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \%$.
${ }^{3}$ PARK 07 reports $(2.1 \pm 0.2 \pm 0.6) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{--} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ DYTMAN 02 reports $(3.7 \pm 1.1) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{c}(2455)^{--} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ GABYSHEV 02 reports $\left(2.38_{-0.69}^{+0.75}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Sigma}_{C}(2455)^{--} p \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.05 , which we rescale to our best value $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\Lambda_{c}^{-} p K^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{510} / \Gamma$ VALUE (units 10^{-5}
$\mathbf{3 . 4} \pm \mathbf{0 . 7} \pm \mathbf{0 . 2} \quad 1,2$ AUBERT \quad 09AG BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ AUBERT 09AG reports $(4.33 \pm 0.82 \pm 0.33 \pm 1.13) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \Lambda_{c}^{-} p K^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
 $\mathbf{0 . 8 8} \pm \mathbf{0 . 2 5}=\mathbf{0} \mathbf{+ 0 . 0 5} \quad 1,2$ AUBERT \quad 09AG BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT 09AG reports $(1.11 \pm 0.30 \pm 0.09 \pm 0.29) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \bar{\Sigma}_{c}(2455)^{--} p K^{+}, \bar{\Sigma}_{c}^{--} \rightarrow \bar{\Lambda}_{c}^{-} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$ assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\Gamma\left(\Lambda_{c}^{-} p K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$				Γ_{512} / Γ
VALUE (units 10^{-5}) CL\%	DOCUMENT ID	TECN	COMMENT	
<2.42 90	${ }^{1}$ AUBERT	09AG BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.				
VALUE (units 10 ${ }^{-6}$)	DOCUMENT ID TECN		COMMENT	
<2.8	${ }^{1}$ LEES	14C BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ and $B\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ 0.050 ± 0.013.				

| $\boldsymbol{\Gamma}\left(\bar{\Lambda}_{\boldsymbol{c}}^{-} \boldsymbol{\Lambda} \mathbf{K}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}$ |
| :--- | :--- |
| VALUE (units $\left.10^{-5}\right)$ |$\quad \boldsymbol{\Gamma}_{\mathbf{5 1 6}} / \boldsymbol{\Gamma}^{\text {DOCUMENT ID }}$

$\overline{4.8 \pm \mathbf{1 . 1}+\mathbf{0 . 2}} \quad 1,2$ LEES $\quad 11 \mathrm{~F}$ BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}from Upsilon(4S) decays.
${ }^{2}$ LEES 11F reports $(3.8 \pm 0.8 \pm 0.2 \pm 1.0) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow\right.\right.$ $\left.\left.\bar{\Lambda}_{C}^{-} \Lambda K^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right] /\left[\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times 10^{-2}, \mathrm{~B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best values $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}, \mathrm{~B}\left(\Lambda \rightarrow p \pi^{-}\right)$ $=(63.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. The reported uncertainties are statistical, systematic, and $\bar{\Lambda}_{c}^{-}$branching fraction uncertainty.

$\Gamma\left(\bar{\Xi}_{c}^{-} \Lambda_{c}^{+}, \bar{\Xi}_{c}^{-} \rightarrow \bar{\Xi}^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{520} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\text { DOCUMENT ID }}$ TECN COMMENT
2.4 \pm 1.1 OUR AVERAGE Error includes scale factor of 1.8.
$3.3 \pm 0.7 \pm 0.3 \quad 19 \mathrm{CL} \quad \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$
$1.2 \pm 0.9 \pm 0.1 \quad$ 2,3 AUBERT 08H BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$7.4_{-2.7}^{+3.3} \pm 0.4 \quad 3,4$ CHISTOV 06A BELL Repl. by LI 19 C
$1^{1} \mathrm{LI} 19 \mathrm{C}$ reports $(3.32 \pm 0.74 \pm 0.33) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \bar{\Xi}_{C}^{-} \Lambda_{c}^{+}\right.\right.$, $\left.\left.\overline{\bar{\Xi}}_{C}^{-} \rightarrow \bar{\Xi}^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(6.28 \pm 0.32) \times 10^{-2}$.
${ }^{2}$ AUBERT 08H reports $(1.5 \pm 1.07 \pm 0.44) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0}\right.\right.$ $\left.\left.\overline{\bar{\Xi}}_{c}^{-} \Lambda_{C}^{+}, \overline{\bar{\Xi}}_{c}^{-} \rightarrow \overline{\bar{B}}+\pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{4}$ CHISTOV 06A reports $\left(9.3_{-2.8}^{+3.7} \pm 3.1\right) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \bar{\Xi}_{C}^{-} \Lambda_{C}^{+}\right.\right.$, $\left.\left.\overline{\bar{\Xi}}_{C}^{-} \rightarrow \overline{\bar{\Xi}}+\pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$ $=(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{\Xi}_{c}^{-} \Lambda_{c}^{+}, \bar{\Xi}_{c}^{-} \rightarrow \bar{\rho} \boldsymbol{K}^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{521} / \Gamma$ $\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{5 . 3} \pm \mathbf{1 . 5} \pm \mathbf{0 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TI }}{\text { LI }} \frac{\text { CIN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1} \mathrm{LI} 19 \mathrm{C}$ reports $(5.27 \pm 1.51 \pm 0.69) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \overline{\bar{E}}_{C}^{-} \Lambda_{C}^{+}\right.\right.$, $\left.\left.\bar{\Xi}_{C}^{-} \rightarrow \bar{p} K^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=$ $(6.28 \pm 0.32) \times 10^{-2}$.
$\Gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-} \kappa^{0}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{4.0 \pm 0.9 \text { OUR AVERAGE }}$
$3.99 \pm 0.76 \pm 0.51 \quad 18 \mathrm{LI}$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$ $3.8 \pm 3.1 \pm 2.1 \quad 2,3$ AUBERT 08 H BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$7.9 \underset{-2.3}{+2.9} \pm 4.3 \quad 2,3$ GABYSHEV 06 BELL Repl. by LI 18D
${ }^{1}$ Assumes $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=48.6 \pm 0.6 \%$ and $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=6.23 \pm 0.33 \%$.
${ }^{2}$ Assumes $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=5.0 \pm 1.3 \%$.
${ }^{3}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma\left(\bar{E}_{c}(2930) \Lambda_{c}^{+}, \bar{E}_{c} \rightarrow \Lambda_{c}^{-} K^{0}\right) / \Gamma_{\text {total }}$				Γ_{523} / Γ
VALUE (units 10^{-4})		TECN	COMMEN	
$\mathbf{2 . 3 7} \pm 0.51 \pm 0.31$	$1^{\text {LI }}$	18D BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
${ }^{1}$ Assumes $\mathrm{B}(\Upsilon$	48	$\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow\right.$	$\left.{ }^{-} \pi^{+}\right)$	

 VALUE CL\% DOCUMENTID TECN COMMENT $<3.2 \times \mathbf{1 0}^{\mathbf{- 7}} \quad 90 \quad 1$ DEL-AMO-SA..11A BABR $e^{+} e^{-} \rightarrow r(4 S)$ - - We do not use the following data for averages, fits, limits, etc. - - -

$<6.2 \times 10^{-7}$	90	1 VILLA	06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$<1.7 \times 10^{-6}$	90	1 AUBERT	01 I	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$<3.9 \times 10^{-5}$	90	2 ACCIARRI	95 I	L3	$e^{+} e^{-} \rightarrow$	z

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ACCIARRI 95I assumes $f_{B^{0}}=39.5 \pm 4.0$ and $f_{B_{S}}=12.0 \pm 3.0 \%$.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{525} / \Gamma$
VALUE CL\% DOCUMENTID TECN COMMENT
$<\mathbf{8 . 3} \times \mathbf{1 0}^{\mathbf{- 8}} \quad 90 \quad$ AALTONEN 09p CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. • • -

$<11.3 \times 10^{-8}$	90	${ }^{1}$ AUBERT	08P	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$<6.1 \times 10^{-8}$	90	${ }^{1}$ AUBERT	05w	BABR	Repl. by AUBERT 08P
$<1.9 \times 10^{-7}$	90	${ }^{1}$ CHANG	03	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$<8.3 \times 10^{-7}$	90	${ }^{1}$ BERGFELD	00B	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$<1.4 \times 10^{-5}$	90	${ }^{2}$ ACCIARRI	97B	L3	$e^{+} e^{-} \rightarrow Z$
$<5.9 \times 10^{-6}$	90	AMMAR	94	CLE2	Repl. by BERGFELD 00B
$<2.6 \times 10^{-5}$	90	${ }^{3}$ AVERY	89B	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
$<7.6 \times 10^{-5}$	90	${ }^{4}$ ALBRECHT	87D	ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$<6.4 \times 10^{-5}$	90	${ }^{5}$ AVERY	87	CLEO	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$<3 \times 10^{-4}$	90	GILES	84	CLEO	Repl. by AVERY 87

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ ACCIARRI 97B assume PDG 96 production fractions for B^{+}, B^{0}, B_{S}, and Λ_{b}
${ }^{3}$ AVERY 89 B reports $<3 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 43% to $B^{0} \bar{B}^{0}$. We rescale to 50\%.
${ }^{4}$ ALBRECHT 87D reports $<8.5 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 45% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
${ }^{5}$ AVERY 87 reports $<8 \times 10^{-5}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$. Allowed by higher-order electroweak interactions. Test for $\triangle B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
COOCUMENTID
TECN COMMENT $\overline{<1.2 \times 10^{\mathbf{- 7}}} \frac{90}{90} \quad$ AUBERT $08 \mathrm{C} \quad \mathrm{BABR} \underset{e^{+} e^{-} \rightarrow \gamma(4 S)}{ }$
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{527} / \Gamma$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

$\mathbf{0 . 1 1}=\mathbf{0 . 1 4}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
$-0.19 \pm 0.16 \quad 1,2$ AABOUD 19 L ATLS $p p$ at $7,8,13 \mathrm{TeV}$ $0.15_{-0.10}^{+0.12+0.02} \quad 3 \mathrm{AAIJ} \quad 17 \mathrm{AI}$ LHCB $p p$ at $7,8,13 \mathrm{TeV}$ $0.35_{-0.18}^{+0.21} \quad 4$ CHATRCHYAN 13AWCMS $\quad p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. • • •

${ }^{1}$ Corresponds to a 95% CL upper limit of $<2.1 \times 10^{-10}$.
${ }^{2}$ Uses normalization mode $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.010 \pm 0.029) \times 10^{-3}$ and B production ratio $\mathrm{f}\left(b \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(b \rightarrow B^{0}\right)=0.256 \pm 0.013$.
${ }^{3}$ Corresponds to a 95% CL upper limit of $<3.4 \times 10^{-10}$.
${ }^{4}$ Reports also a limit of $<9.2 \times 10^{-10}$ at $90 \% \mathrm{CL}$. and uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow\right.$ $\left.\mu^{+} \mu^{-} K^{+}\right)=(6.0 \pm 0.2) \times 10^{-5}$ for normalization.
${ }^{5}$ This value is obtained from a profile-likelihood fit, see Fig. 9. It corresponds to an uppper limit of $<0.42 \times 10^{-9}$ at 95% C.L.
${ }^{6}$ Derived from the combined fit to CMS and LHCb data. Uncertainty includes both statistical and systematic component. Also reports $\mathrm{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(B_{S} \rightarrow \mu^{+} \mu^{-}\right)$ $=0.14_{-0.06}^{+0.08}$.
${ }^{7}$ Uses $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$ and $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)$ $=(1.94 \pm 0.06) \times 10^{-5}$ for normalization.
${ }^{8}$ Reports also a limit of $<7.4 \times 10^{-10}$ at 95% CL. Uses normalization modes $B^{+} \rightarrow$ $J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}$and $B^{0} \rightarrow K^{+} \pi^{-}$
$J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}$and $B^{0} \rightarrow K^{+} \pi^{-}$.
${ }^{9}$ Uses normalization mode $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(10.22 \pm 0.35) \times 10^{-4}$.
${ }^{10}$ Uses $\mathrm{B}\left(B^{+} \rightarrow \mathrm{J} / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$.
${ }^{11}$ Uses B production ratio $f\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)=3.71 \pm 0.47$ and three normalization modes.
$\Gamma\left(\mu^{+} \mu^{-} \gamma\right) / \Gamma_{\text {total }}$
Γ_{528} / Γ
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. $\frac{V A L U E}{\left\langle\mathbf{1 . 6} \times \mathbf{1 0}^{\mathbf{- 7}}\right.} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 08 \mathrm{C}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ $\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$ weak neutral current. Allowed by higher-order electroweak interactions, Test for $\triangle B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
COCUMENTID \quad CL\% \quad TECN \quad COMMENT $<\mathbf{2 . 1} \times \mathbf{1 0}^{\mathbf{- 3}} \frac{17 \mathrm{AJ}}{95} \quad 1 \mathrm{AACB} \quad \frac{1}{\mathrm{AAIJ}} \quad 1 \mathrm{th} 7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - - -

$$
<4.1 \times 10^{-3} \quad 90 \quad 2 \text { AUBERT } \quad 06 \mathrm{~S} \text { BABR } e^{+} e^{-} \rightarrow r(4 S)
$$

${ }^{1}$ Assuming no contribution from $B_{S}^{0} \rightarrow \tau^{+} \tau^{-}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.

$\boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
DL\%

$\frac{V A L U E}{<\mathbf{6 . 9} \times \mathbf{1 0}^{\mathbf{- 1 0}}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LTN }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{17}{p \text { at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - - • $<5.3 \times 10^{-9} \quad 90 \quad 1 \mathrm{AAIJ} \quad$ 13AWLHCB Repl. by AAIJ 17 N
${ }^{1}$ Also reports a limit of $<6.6 \times 10^{-9}$ at 95% CL.
$\Gamma\left(S P, S \rightarrow \mu^{+} \mu^{-}, P \rightarrow \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
Γ_{530} / Γ Here S and P are the hypothetical scalar and pseudoscalar particles with masses of $2.5 \mathrm{GeV} / \mathrm{C}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$, respectively.
$\frac{V A L U E}{<6.0 \times \mathbf{1 0}^{\mathbf{- 1 0}}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{17 \mathrm{~N}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - -
$<5.1 \times 10^{-9} \quad 90 \quad 1$ AAIJ 13AWLHCB Repl. by AAIJ 17 N
${ }^{1}$ Also reports a limit of $<6.3 \times 10^{-9}$ at 95% CL.
$\Gamma\left(\pi^{0} \ell^{+} \ell^{-}\right) / /_{\text {total }}$

- Wh BABR $e^{+} e \rightarrow \gamma(4 S)$
$\begin{array}{llllll}<1.5 \times 10^{-7} & 90 & 1 & \text { WEI } & \text { 08A BELL } & e^{+} e^{-} \rightarrow \\ <1.2 \times 10^{-7} & 90 & 1 & r(4 S) \\ \text { AUBERT } & \text { 07AG BABR } & \text { Repl. by LEES 13M }\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\nu} \overline{\boldsymbol{\nu}}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \Gamma_{\mathbf{5 3 8}} / \boldsymbol{\Gamma}$

$\Gamma\left(\pi^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$ VALUE	CL\%	DOCUMENT ID		Γ_{533} / Γ		
				TECN	COMMENT	
$<8.4 \times 10^{-8}$	90	1 LEES		BABR	$e^{+} e^{-} \rightarrow$	
- - We do not use the following data for averages, fits, limits, etc. - -						
$<2.3 \times 10^{-7}$	90	1 WEI		BELL	$e^{+} e^{-}$	
$<1.4 \times 10^{-7}$	90	1 AUBERT	07AG	BABR	Repl. by	13M
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.						

$$
\begin{aligned}
& \frac{\text { VALUE }}{\text { CL\% }} \text { DOCUMENT ID } \quad \frac{\text { TECN }}{1} \frac{\text { COMMENT }}{\text { DOC }} \\
& <6.9 \times \mathbf{1 0}^{-8} \quad 90 \quad 1 \text { LEES } \quad 13 \mathrm{M} \text { BABR } e^{+} e^{-} \rightarrow r(4 S)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \text { Assumes equal production of } B^{+} \text {and } B^{0} \text { at the } \gamma(4 S) \text {. }
\end{aligned}
$$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

| $\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad$ CL\% \quad DOCUMENT ID | |
| :--- | :--- | :--- | :--- |
| VALUE | |
| TECN | |
| COMMENT | Γ_{537} / Γ | $\frac{\text { VALUE }}{\left\langle 11.2 \times 10^{-\mathbf{8}}\right.} \frac{C L \%}{90} \quad 1 \begin{aligned} & \text { DOCUMENT ID } \\ & \text { LEES } \\ & 13 \mathrm{M} \\ & \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}\end{aligned}$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
$\Gamma\left(K^{0} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{539} / \Gamma$
VALUE (units 10^{-7}) CL\% DOCUMENT ID TECN COMMENT $3 . \mathbf{1}_{-0.7}^{+0.8}$ OUR AVERAGE

$2.1_{-1.3}^{+1.5} \pm 0.2$	${ }^{1}$ AUBERT	09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
$3.4_{-0.8}^{+0.9} \pm 0.2$	${ }^{1}$ WEI	09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -
$2.9_{-1.3}^{+1.6} \pm 0.3 \quad 1$ AUBERT,B 06J BABR Repl. by AUBERT 09T
$\begin{array}{llllll}<6.8 & 90 \quad{ }^{1} \text { ISHIKAWA } \quad 03 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$.
$\Gamma\left(K^{0} e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{540 / \Gamma}$
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-7}) CL\% DOCUMENTID TECN COMMENT

$1.6_{0.8}^{+1.0}$ OUR AVERAGE

- - We do not use the following data for averages, fits, limits, etc. - . -

$1.3{ }_{-1.1}^{+1.6} \pm 0.2$			${ }^{1}$ AUBERT, B	06J	BABR	Repl. by AUBERT 09t
$2.1_{-1.6}^{+2.3} \pm 0.8$			${ }^{1}$ AUBERT	03 u	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
<	5.4	90	${ }^{2}$ ISHIKAWA	03	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
<	27	90	${ }^{1}$ ABE	02	BELL	Repl. by ISHIKAWA 03
<	38	90	${ }^{1}$ aubert	02L	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$<$	84.5	90	${ }^{3}$ ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow r^{(4 S)}$
	3000	90	Albrecht	91E	ARG	$e^{+} e^{-} \rightarrow r(4 S)$
	5200	90	${ }^{4}$ AVERY	87	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$.
${ }^{3}$ The result is for di-lepton masses above 0.5 GeV .
${ }^{4}$ AVERY 87 reports $<6.5 \times 10^{-4}$ assuming the $\gamma(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$. We rescale to 50%.
$\Gamma\left(\boldsymbol{K}^{0} \boldsymbol{\nu} \boldsymbol{\nu}\right) / \Gamma_{\text {tetal }}$ (est for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interaction.
VALUE CL\% DOCUMENTID TECN COMMENT
< $\mathbf{2 . 6 \times 1 0 ^ { - 5 }} \quad 90 \quad 1$ GRYGIER 17 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

$<4.9 \times 10^{-5}$	90	1,2 LEES	13 I	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$<19.4 \times 10^{-5}$	90	1 LUTZ	13	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$<5.6 \times 10^{-5}$	90	1 DEL-AMO-SA..10Q	BABR	Repl. by LEES 13।	

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ Also reported a limit $<8.1 \times 10^{-5}$ at $90 \% \mathrm{CL}$ obtained using a fully reconstructed hadronic B-tag evnets.
$\Gamma\left(\rho^{0} \nu \bar{\nu}\right) / \Gamma_{\text {total }}$
Γ_{543} / Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE			
$<4.0 \times 10^{-5}$	$\frac{C L \%}{90}$	$1 \frac{\text { DOCUMENT ID }}{\text { GRYGIER }} 17$	$\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - -

$<2.08 \times 10^{-4}$	90	${ }^{1}$ LUTZ	13	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$<4.4 \times 10^{-4}$	90	${ }^{1}$ CHEN	07D	BELL	Repl. by LUTZ 13

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Gamma\left(\boldsymbol{K}^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE (units } 10^{-7} \text {) CL\% DOCUMENT ID }}{\text { TECN COMMENT }}$
3.39 ± 0.34 OUR FIT
3.4 ± 0.4 OUR AVERAGE

$3.27 \pm 0.34 \pm 0.17$	${ }^{1}$ AAIJ	14M	LHCB	$p p$ at 7,	8 TeV
$4.9{ }_{-2.5}^{+2.9} \pm 0.3$	2 AUBERT	09 T	BABR	$e^{+} e^{-}$	$r(4 S)$
$4.4+1.3 \pm 0.3$	2 WEI	09A	BELL	$e^{+} e^{-}$	$r(4 S)$

$3.1{ }^{+0.7}{ }_{-0.6}^{+0.3}$		AAIJ	12AH	LHCB	Repl．by AAIJ 14M
$5.9{ }_{-2.6}^{+3.6} \pm 0.7$		2 AUBERT，B	06J	BABR	Repl．by AUBERT 09T
$1.63-0.63 \pm 0.14$		2 AUBERT	03 U	BABR	Repl．by AUBERT，B 06J
$5.6{ }_{-2.3}^{+2.9} \pm 0.5$		3 ISHIKAWA	03	BELL	Repl．by WEI 09A
＜33	90	${ }^{2}$ ABE	02	BELL	Repl．by ISHIKAWA 03
＜36	90	AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
＜66．4	90	${ }^{4}$ ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
＜5200	90	ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow \gamma(4 S)$
＜3600	90	5 AVERY	87	CLEO	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=(0.928 \pm 0.013 \pm 0.037) \times 10^{-3}$ for normalization．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$ ．The second error is a total of systematic uncertainties including model dependence．
4 The result is for di－lepton masses above 0.5 GeV ．
${ }^{5}$ AVERY 87 reports $<4.5 \times 10^{-4}$ assuming the $\Upsilon(4 S)$ decays 40% to $B^{0} \bar{B}^{0}$ ．We rescale to 50% ．
$\Gamma\left(K^{0} \mu^{+} \mu^{-}\right) / \Gamma\left(J / \psi(1 S) K^{0}\right)$
$\Gamma_{541} / \Gamma_{198}$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{0.39 \pm 0.04}$ \qquad TECN COMMENT
0.39 ± 0.04 OUR FIT
$0.37 \pm 0.12 \pm 0.02$
DOCUMENT ID
$\Gamma\left(K^{*}(892)^{0} \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
AALTONEN 11 Al CDF $p \bar{p}$ at 1.96 TeV
est for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions． VALUE（units 10^{-7} ）DOCUMENT ID TECN COMMENT 9.9 ± 1.2 OUR AVERAGE
$10.3_{-2.1}^{+2.2} \pm 0.7 \quad 1$ AUBERT 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
$9.7_{-1.1}^{+1.3} \pm 0.7$
${ }^{1}$ WEI
09A BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

$8.1_{-1.9}^{+2.1} \pm 0.9$	1 AUBERT，B	06 J	BABR	Repl．by AUBERT 09T
$11.7_{-2.9}^{+3.0} \pm 0.9$	1 ISHIKAWA	03	BELL	Repl．by WEI 09A
$1_{\text {Assumes equal production of }} B^{0}$ and B^{+}at $r(4 S)$.				

${ }^{1}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$

$10.4_{-2.9}^{+3.3} \pm 1.1$		1 AUBERT，B	06J	BABR	Repl．by AUBERT 09T
$11.1{ }_{-4.7}^{+5.6} \pm 1.1$		${ }^{1}$ AUBERT	03 u	BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
＜ 24	90	2 ISHIKAWA	03	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
＜ 64	90	${ }^{1} \mathrm{ABE}$	02	BELL	Repl．by ISHIKAWA 03
＜ 67	90	${ }^{1}$ AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
<2900	90	ALBRECHT	91E	ARG	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ． ${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$ ．					

$\Gamma\left(K^{*}(892)^{0} \mu^{+4} \mu^{-}\right) / \Gamma_{\text {tetal }}$
Γ_{546} / Γ $\frac{\text { VALUE（units } 10^{-7} \text { ）}}{\mathbf{9 . 4} \pm \mathbf{0 . 5} \text { OUR FIT }} \frac{C L \%}{\text { DOCUMENTID }}$ TECN COMMENT $\begin{array}{ll}9.4 & \pm 0.5 \\ 9.4 & \text { OUR FIT } \\ & \text { O．6 }\end{array}$
9.4 ± 0.6 OUR AVERAGE

| $9.04_{-0.15}^{+0.16} \pm 0.62$ | 1 | AAIJ |
| :--- | :--- | :--- |\quad| 17 Q LHCB $p p$ at $7,8 \mathrm{TeV}$ |
| :--- |
| $13.5 \underset{-3.7}{+4.0} \pm 1.0$ |

－－We do not use the following data for averages，fits，limits，etc．－－－

$10.36_{-0.17}^{+0.18} \pm 0.71$		${ }^{1}$ AAIJ	16AO	LHCB	Repl．by AAIJ 17Q
$8.7{ }_{-3.3}^{+3.8} \pm 1.2$		2 AUBERT，B	06J	BABR	Repl．by AUBERT 09T
$8.6{ }_{-5.8}^{+7.9} \pm 1.1$		2 AUBERT	03U	BABR	Repl．by AUBERT，B 06J
$13.3{ }_{-3.7}^{+4.2} \pm 1.1$		${ }^{3}$ ISHIKAWA	03	BELL	Repl．by WEI 09a
<42	90	2 ABE	02	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
＜33	90	AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
＜40	90	4 AFFOLDER	99B	CDF	$p \bar{p}$ at 1.8 TeV

${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)=(1.19 \pm 0.01 \pm 0.08) \times 10^{-3}$ ．The second error is the total systematic uncertainty．
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{3}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$ ．The second error is a total of systematic uncertainties including model dependence．
${ }^{4}$ AFFOLDER 99B measured relative to $B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}$ ．
$\Gamma\left(K^{*}(892)^{0} \mu^{+} \mu^{-}\right) / \Gamma\left(J / \psi(1 S) K^{*}(892)^{0}\right) \quad \Gamma_{546} / \Gamma_{200}$
VALUE（units 10^{-3} ）DOCUMENTID＿TECN COMMENT
0.75 ± 0.05 OUR FIT
$0.77 \pm 0.08 \pm 0.03$
AALTONEN 11 AI CDF $p \bar{p}$ at 1.96 TeV
－•－We do not use the following data for averages，fits，limits，etc．• • •
$0.80 \pm 0.10 \pm 0.06$ AALTONEN 11 L CDF Repl．by AALTONEN 11AI
$0.61 \pm 0.23 \pm 0.07 \quad$ AALTONEN 09B CDF Repl．by AALTONEN 11L

$\Gamma\left(K^{*}(892)\right.$	$\boldsymbol{\mu}$				Γ_{547} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMMENT	
$<\sim 10^{-9}$	95	AAIJ	LHCB	pp at 7，	

${ }^{1}$ The limt is obtained as a function of di－muon mass．A normalizing mode branching fraction value of $\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)=(1.6 \pm 0.3) \times 10^{-7}$ is used．
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{5 4 8}} / \boldsymbol{\Gamma}$
VALUE（units 10^{-8} ）DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{2 . 1} \pm \mathbf{0 . 5} \pm \mathbf{0 . 1} \quad 1 \mathrm{AAIJ} \quad 15 \mathrm{~s}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 15 S reports $(2.11 \pm 0.51 \pm 0.15 \pm 0.16) \times 10^{-8}$ from a measurement of $\left[\Gamma\left(B^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi(1 S) K^{*}(892)^{0}\right)=(1.3 \pm 0.1) \times 10^{-3}$ ，which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(K^{*}(892)^{0} \boldsymbol{\nu} \bar{\nu}\right) / \Gamma_{\text {total }}$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interactions．
$\frac{V A L U E}{<1.8 \times 10^{-5}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { GRYGIER }} \frac{17}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
－－We do not use the following data for averages，fits，limits，etc．－•－

$<1.2 \times 10^{-4}$	90	1,2	LEES	$13 ।$	BABR
e^{+}	$e^{-} \rightarrow r(4 S)$				

$<5.5 \times 10^{-5} \quad 90 \quad 1$ LUTZ $\quad 13$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$<1.2 \times 10^{-4} 90 \quad$ AUBERT 08BC BABR Repl．by LEES 13।
$<3.4 \times 10^{-4} \quad 90 \quad 1 \mathrm{CHEN} \quad 07 \mathrm{D}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$

DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Also reported a limit $<9.3 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic B－tag evnets．
${ }^{3}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$ ．

$\Gamma(\phi \nu \bar{\nu}) / \Gamma_{\text {total }}$
Test for $\Delta B=1$ weak neutral current．Allowed by higher－order electroweak interaction．

VALUE				
$<1.27 \times 10^{-4}$	$\frac{C L \%}{}$	$\frac{\text { DOCUMENT ID }}{\text { LUTZ }}$	13	$\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

－－We do not use the following data for averages，fits，limits，etc．－－－
$<5.8 \times 10^{-5} \quad 90 \quad{ }^{1}$ CHEN \quad 07D BELL Repl．by LUTZ 13
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$ ．
$\Gamma\left(e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$
「553／「
Test of lepton family number conservation．Allowed by higher－order electroweak inter－ actions．

VALUE	$\underline{C L \%}$	DOCU	TECN	COMMENT
$<1.0 \times 10^{-9}$	90	1 AAIJ	LHCB	$p p$ at $7,8 \mathrm{TeV}$

－－We do not use the following data for averages，fits，limits，etc．•－－
$<2.8 \times 10^{-9} \quad 90 \quad 2$ AAIJ 13BMLHCB Repl．by AAIJ 18T
$<2.8 \times 10^{-9}$
$<6.4 \times 10^{-8}$
2 AAIJ 13bmLHCB Repl．by AAIJ 18
AALTONEN
9.2×10^{-8}
$<1.8 \times 10^{-7}$
$<1.7 \times 10^{-7}$
3 AUBERT $\quad 08 \mathrm{P}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{3}$ AUBERT $\quad 05 \mathrm{~W}$ BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{3}$ CHANG 03 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{3}$ BERGFELD 00 B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
ABE $\quad 98 \mathrm{~V}$ CDF $p \bar{p}$ at 1.8 TeV
${ }^{4}$ ACCIARRI 97B L3 $\quad e^{+} e^{-} \rightarrow Z$
AMMAR 94 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{llll}5 \text { AVERY } & \text { 89B } & \text { CLEO } & e^{+} e^{-} \rightarrow r(4 S) \\ { }^{6} \text { ALBRECHT } & \text { 87D ARG } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$

Meson Particle Listings

B^{0}

$\Gamma\left(\boldsymbol{K}^{\mathbf{0}} \boldsymbol{e}^{\left.\boldsymbol{\boldsymbol { m } ^ { \pm }} \boldsymbol{\mu}^{\mp}\right) / \Gamma_{\text {total }}} \quad \boldsymbol{\Gamma}_{\mathbf{5 5 5}} / \boldsymbol{\Gamma}\right.$

${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$.
$\Gamma\left(K^{*}(892)^{0} e^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{558} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-7}\right)}{<\mathbf{1 . 8}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { SANDILYA }} 18 \quad \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - . -

<5.8	90	2	AUBERT,B	06 J	BABR
$e^{+} e^{-} \rightarrow r(4 S)$					
<34	90	2 AUBERT	02 L	BABR	Repl. by AUBERT,B 06J

${ }^{1}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=0.486 \pm 0.006$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
$\Gamma\left(e^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {total }}$
「559/Г
Test of lepton family number conservation. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE }}{<\mathbf{2} .8 \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { O8AD BABR }}{} \frac{\text { TECN }}{\frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$<1.1 \times 10^{-4}$	90	BORNHEIM	04	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$<5.3 \times 10^{-4}$	90	AMMAR	94	CLE2	Repl. by BORNHEIM 04
1 Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.					

$\Gamma\left(\mu^{ \pm} \tau^{\mp}\right) / \Gamma_{\text {tota }}$
$\Gamma_{560 / \Gamma}$
Test of lepton family number conservation. Allowed by higher-order electroweak interactions.
$\frac{V A L U E}{<\mathbf{1 . 4} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19AK LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. • • -

$<2.2 \times 10^{-5}$	90	2	AUBERT	08AD BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$<3.8 \times 10^{-5}$	90	BORNHEIM	04	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
$<8.3 \times 10^{-4}$	90	AMMAR	94	CLE2	Repl. by BORNHEIM 04

${ }^{1}$ Assuming no contribution from $B_{s}^{0} \rightarrow \mu^{ \pm} \tau^{\mp}$.
${ }^{2}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

$\Gamma\left(\Lambda_{c}^{+} \mu^{-}\right) / \Gamma_{\text {total }}$			Γ_{561} / Γ		
VALUE	CL\%	DOCUMENT ID	COMMENT		
$<1.4 \times 10^{-6}$	90	1,2 DEL-AMO-SA..11K BABR $e^{+} e^{-} \rightarrow \Upsilon(4 S)$			
${ }^{1}$ DEL-AMO-SANCHEZ 11 K reports $<180 \times 10^{-8}$ from a measurement of [$\Gamma\left(B^{0} \rightarrow\right.$					
$\left.\left.\Lambda_{C}^{+} \mu^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(5.0 \pm$					
${ }^{2}$ Uses $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(51.6 \pm 0.6) \%$ and $\mathrm{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=(48.4 \pm 0.6) \%$.					

B_{s}^{0} CROSS-PARTICLE BRANCHING RATIOS

$\Gamma\left(\left[K^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(B_{s}^{0} \rightarrow\left[K^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right)$
$\Gamma_{142} / \Gamma \times B$

See the related review(s):
Polarization in B Decays

POLARIZATION IN B^{0} DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel $(\|)$ or perpendicular (\perp) to each other with the
 definitions in the note on "Polarization in B Decays" review in the B^{0} Particle Listings.
Γ_{L} / Γ in $B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}$

VALUE EVTS	DOCUMENT ID	TECN	COMMENT		
$\mathbf{0 . 5 7 1} \pm 0.007$ OUR AVERAGE					
$0.572 \pm 0.006 \pm 0.014$	${ }^{1}$ AAIJ	13AT LHCB	$p p$ at 7 TeV		
$0.587 \pm 0.011 \pm 0.013$	2 ABAZOV	09E D0	$p \bar{p}$ at 1.96 TeV		
$0.556 \pm 0.009 \pm 0.010$	${ }^{3}$ AUBERT	07AD BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$		
$0.562 \pm 0.026 \pm 0.018$	ACOSTA	05 CDF	$p \bar{p}$ at 1.96 TeV		
$0.574 \pm 0.012 \pm 0.009$	ITOH	05 BELL	$e^{+} e^{-} \rightarrow r(4 S)$		
$0.59 \pm 0.06 \pm 0.01$	${ }^{4}$ AFFOLDER	00N CDF	$p \bar{p}$ at 1.8 TeV		
$0.52 \pm 0.07 \pm 0.04$	5 JESSOP	97 CLE2	$e^{+} e^{-} \rightarrow r(4 S)$		
$0.65 \pm 0.10 \pm 0.04 \quad 65$	ABE	$95 z$ CDF	$p \bar{p}$ at 1.8 TeV		
$0.97 \pm 0.16 \pm 0.15 \quad 13$	${ }^{6}$ ALBRECHT	94G ARG	$e^{+} e^{-} \rightarrow r(4 S)$		
- - We do not use the following data for averages, fits, limits, etc. - -					
$0.566 \pm 0.012 \pm 0.005$	${ }^{3}$ AUBERT	05P BABR	Repl. by AUBERT 07AD		
$0.62 \pm 0.02 \pm 0.03$	${ }^{7}$ ABE	02N BELL	Repl. by ITOH 05		
$0.597 \pm 0.028 \pm 0.024$	8 AUBERT	01H BABR	Repl. by AUBERT 07ad		
$0.80 \pm 0.08 \pm 0.05 \quad 42$	${ }^{6}$ ALAM	94 CL	Sup. by JESSOP 97		
${ }^{1}$ AAIJ 13AT obtains $\Gamma_{\\|} / \Gamma=0.227 \pm 0.004 \pm 0.011$. The relation $1=\left(\Gamma_{L}+\Gamma_{\perp}+\right.$ $\left.\Gamma_{\\|}\right) / \Gamma$ is used to obtain Γ_{L} / Γ.					
${ }^{2}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ and $B_{S}^{0} \rightarrow J / \psi \phi$.					
${ }^{3}$ Obtained by combining the B^{0} and B^{+}modes.					
${ }^{4}$ AFFOLDER 00 N measurements are based on $190 B^{0}$ candidates obtained from a data sample of $89 \mathrm{pb}^{-1}$. The P-wave fraction is found to be $0.13_{-0.09}^{+0.12} \pm 0.06$.					
${ }^{5}$ JESSOP 97 is the average over a mixture of B^{0} and B^{+}decays. The P-wave fraction is found to be $0.16 \pm 0.08 \pm 0.04$.					
${ }^{6}$ Averaged over an admixture of B^{0} and B^{+}decays.					
${ }^{7}$ Averaged over an admixture of B^{0} and B^{+}decays and the P wave fraction is $(19 \pm 2 \pm$ 3) $\%$.					
${ }^{8}$ Averaged over an admixture of B^{0} and B^{-}decays and the P wave fraction is $(16.0 \pm$ $3.2 \pm 1.4) \times 10^{-2}$.					
Γ_{\perp} / Γ in $B^{0} \Rightarrow J / \psi K^{* 0}$					
VALUE	DOCUMENT ID TECN		COMMENT		
$\mathbf{0 . 2 1 1} \pm 0.008$ OUR AVERAGE	Error includes scale factor of 1.3. See the ideogram below.				
$0.201 \pm 0.004 \pm 0.008$	AAIJ	13AT LHCB	$p p$ at 7 TeV		
$0.230 \pm 0.013 \pm 0.025$	${ }^{1}$ ABAZOV	09e D0	$p \bar{p}$ at 1.96 TeV		
$0.233 \pm 0.010 \pm 0.005$	2 AUBERT	07AD BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$		
$0.215 \pm 0.032 \pm 0.006$	ACOSTA	05 CDF	$p \bar{p}$ at 1.96 TeV		
$0.195 \pm 0.012 \pm 0.008$	ITOH	05 BELL	$e^{+} e^{-} \rightarrow r(4 S)$		

[^125]
$\phi_{\|}$in $B^{0} \rightarrow J / \psi K^{* 0}$
$\mathbf{- 2 . 9 2} \pm \mathbf{0 . 0 4}$ OUR AVERAGE Error includes scale factor $\frac{T E C N}{\text { of 1.3. See the ideogram below. }}$

ϕ_{\perp} in $B^{0} \rightarrow J / \psi K^{* 0}$

Γ_{L} / Γ in $B^{0} \rightarrow \psi(2 S) K^{*}(892)^{0}$					
VALUE	DOCUMENT ID	TECN	COMMENT		
0.463 ${ }_{-0.040}^{+0.028}$ OUR AVERAGE					
$0.455{ }_{-0.029}^{+0.031}+0.014$	CHILIKIN	13 BELL	$e^{+} e^{-}$	$r(4 S)$	
$0.48 \pm 0.05 \pm 0.02$	${ }^{1}$ AUBERT	07Ad BABR	$e^{+} e^{-}$	$r(4 S)$	
$0.45 \pm 0.11 \pm 0.04$	2 RICHICHI	01 CLE2	$e^{+} e^{-}$	$r(4 S)$	
\bullet - We do not use the following data for averages, fits, limits, etc. - -					
$\begin{gathered} 0.448{ }_{-0.027}^{+0.040}+0.040 \\ -0.053 \end{gathered}$	MIZUK	09 BELL	$e^{+} e^{-}$	$r(4 S)$	
${ }^{1}$ Obtained by combining the B^{0} and B^{+}modes. ${ }^{2}$ Averages between charged and neutral B mesons.					
Γ_{\perp} / Γ in $B^{0} \Rightarrow \psi(2 S) K^{* 0}$					
VALUE	DOCUMENT ID	TECN	COMMENT		
$0.30 \pm 0.06 \pm 0.02$	1 AUBERT	07AD BABR	$e^{+} e^{-}$	$r(4 S)$	
${ }^{1}$ Obtained by combining the B^{0} and B^{+}modes.					
$\phi_{\\|}$in $B^{0} \Rightarrow \psi(2 S) K^{* 0}$					
VALUE (rad)	DOCUMENT ID	TECN	COMMENT		
-2.8 $\pm 0.4 \pm 0.1$	${ }^{1}$ AUBERT	07AD BABR	$e^{+} e^{-}$	$r(4 S)$	
${ }^{1}$ Obtained by combining the B^{0} and B^{+}modes.					
ϕ_{\perp} in $B^{0} \rightarrow \psi(2 S) K^{* 0}$					
VALUE (rad)	DOCUMENT ID	TECN	COMMENT		
$2.8 \pm 0.3 \pm 0.1$	1 AUBERT	07AD BABR	$e^{+} e^{-}$	$r(4 S)$	
${ }^{1}$ Obtained by combining the B^{0} and B^{+}modes.					
Γ_{L} / Γ in $B^{0} \Rightarrow \chi_{c 1} K^{*}(892)^{0}$					
VALUE	DOCUMENT ID	TECN	COMMENT		

$\overline{\mathbf{0 . 8 3} \mathbf{+ 0 . 0 6} \text { OUR AVERAGE }}$ Error includes scale factor of 1.3.

Meson Particle Listings
B^{0}

Γ_{L} / Γ in $B^{0} \rightarrow \bar{D}_{1}(2420)^{0} \omega$
VALUE (\%) DOCUMENT ID TECN COMMENT
$\mathbf{6 7 . 1} \pm \mathbf{1 1 . 7} \mathbf{- 5 . 3} \boldsymbol{- 5 . 3} \quad 1,2$ MATVIENKO 15 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Obtained by amplitude analysis of $\bar{B}^{0} \rightarrow D^{*-} \omega \pi^{+}$. The second uncertainty combines
in qudrature experimental systematic and model uncertainties.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $r(4 S)$.
Γ_{L} / Γ in $B^{0} \rightarrow \bar{D}_{2}^{*}(2460)^{0} \omega$

VALUE (\%)	DOCUMENT ID	TECN	COMMENT
$76.0 \pm \begin{array}{r} 18.3+3.5 \\ -2.5-2.8 \end{array}$	1,2 MATVIENKO 15	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ Obtained by in qudrature ${ }^{2}$ Assumes equ	is of $\bar{B}^{0} \rightarrow D^{*-} \omega \pi^{+}$ stematic and model unce B^{0} and B^{+}at $r(4 S)$.	The s tainti	nd uncertainty co

Γ_{L} / Γ in $B^{0} \rightarrow D^{*-} \omega \pi^{+}$
$\frac{V A L U E}{\mathbf{0 . 6 5 4} \pm \mathbf{0 . 0 4 2} \pm \mathbf{0 . 0 1 6}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad \text { 06L }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Invariant mass of the $[\omega \pi]$ system is restricted in the region 1.1 and 1.9 GeV .
Γ_{L} / Γ in $B^{0} \rightarrow \omega K^{* 0}$
$\frac{V A L U E}{0.69 \pm 0.11 \text { OUR AVERAGE }}$
$0.68 \pm 0.17 \pm 0.16$
$0.72 \pm 0.14 \pm 0.02$
$0.56 \pm 0.29_{-0.08}^{+0.18}$
Γ_{\perp} / Γ in $B^{0} \rightarrow \omega K^{*}(892)^{0}$
$\frac{V A L U E}{0.10 \pm 0.09 \pm 0.09}$
$A_{C P}^{0}$ in $B^{0} \rightarrow \omega K^{*}(892)^{0}$
$\frac{\text { VALUE }}{-0.13 \pm 0.27 \pm 0.13}$
$A_{C}^{\perp} P$ in $B^{0} \rightarrow \omega K^{*}(892)^{0}$
$\frac{V A L U E}{0.3 \pm 0.8 \pm 0.4}$
$A_{C P}^{\|}$in $^{\prime \prime} B^{0} \rightarrow \omega K^{*}(892)^{0}$
$0.26 \pm 0.55 \pm 0.22$
ϕ_{0} in $B^{0} \rightarrow \omega K^{*}(892)^{0}$
VALUE
$-0.86 \pm 0.29 \pm 0.71$
ϕ_{\perp} in $B^{0} \rightarrow \omega K^{*}(892)^{0}$
$\frac{V A L U E}{1.6 \pm 0.4 \pm 0.6}$
$\phi_{\|}$in $B^{0} \Rightarrow \omega K^{*}(892)^{0}$
$-1.83 \pm 0.29 \pm 0.32$
Γ_{L} / Γ in $B^{0} \rightarrow \omega K_{2}^{*}(1430)^{0}$
$\frac{V A L U E}{0.45 \pm 0.12 \pm 0.02}$

DOCUMENT ID TECN COMMENT

$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 19 \mathrm{IECN} \frac{\text { COMMENT }}{\text { LHCB }} \frac{p p \text { at } 7,8 \mathrm{TeV}}{}$
$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 19$ IESN $\frac{\text { COMMENT }}{\text { LHCB }} \frac{\text { TE }}{p p \text { at } 7,8 \mathrm{TeV}}$

$\frac{\text { DOCUMENT ID }}{}$| AAIJ | TECN |
| :--- | :--- |
| LHCB | $\frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$ |

$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19J }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$

DOCUMENT ID	TECN	COMMENT
AAIJ 19」	LHCB	$p p$ at $7,8 \mathrm{TeV}$

DOCUMENT ID TECN COMMENT
AAIJ $19 \mathrm{~J} \frac{\text { LHCB }}{} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$

DOCUMENT ID TECN COMMENT
AUBERT $\quad 09 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$\Gamma_{L / \Gamma}$ in $B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$
$\frac{\text { VALUE }}{0.74 \pm 0.05 \text { OUR AVERAGE }}$
$0.724 \pm 0.051 \pm 0.016$
DOCUMENT ID TECN COMMENT

1 AAIJ	19L	LHCB	$p p$ at 7 and 8 TeV
AUBERT	081	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ Untagged and time-integrated analysis within 150 MeV of the $K^{* 0}$ mass.
Γ_{L} / Γ in $B^{0} \rightarrow \phi K^{*}(892)^{0}$
$\frac{V A L U E}{0.497 \pm 0.017 \text { OUR AVERAGE }}$
$0.497 \pm 0.019 \pm 0.015$
$0.499+0.030+0.018$ $0.494 \pm 0.034 \pm 0.013 \quad 13 \mathrm{BRIM} \quad e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.506 \pm 0.040 \pm 0.015$ AUBERT 07D BABR Repl. by AUBERT 08BG $0.45 \pm 0.05 \pm 0.02 \quad$ CHEN 05A BELL Repl. by PRIM 13 $0.52 \pm 0.05 \pm 0.02 \quad 1$ AUBERT,B 04w BABR Repl. by AUBERT 07D $0.65 \pm 0.07 \pm 0.02 \quad$ AUBERT 03 V BABR Repl. by AUBERT,B 04w $0.41 \pm 0.10 \pm 0.04 \quad$ CHEN 03B BELL Repl. by CHEN 05A
${ }^{1}$ AUBERT,B 04 W also measures the fraction of parity-odd transverse contribution $\mathrm{f}_{\perp}=$ $0.22 \pm 0.05 \pm 0.02$ and the phases of the parity-even and parity-odd transverse amplitudes relative to the longitudinal amplitude.
Γ_{\perp} / Γ in $B^{0} \Rightarrow \phi K^{*}(892)^{0}$
$\frac{V A L U E}{0.224 \pm 0.015}$ OUR AVERAGE
$0.221 \pm 0.016 \pm 0.013$
$0.238 \pm 0.026 \pm 0.008$ DOCUMENT ID TECN COMMENT

AAIJ 14AMLHCB $p p$ at 7 TeV
$0.212 \pm 0.032 \pm 0.013 \quad$ PRIM $\quad 13$ BELL $e^{+} e^{\rightarrow} r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - .

$0.227 \pm 0.038 \pm 0.013$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$0.31{ }_{-0.05}^{+0.06} \pm 0.02$	${ }^{1}$ CHEN	05A BELL	Repl. by PRIM 13
$0.22 \pm 0.05 \pm 0.02$	AUBERT,B	04w BABR	Repl. by AUBERT 07D

${ }^{1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.
$\phi_{\| \|}$in $B^{0} \rightarrow \phi K^{*}(892)^{0}$

VALUE (rad)	DOCUMENT ID TECN		COMMENT
2.43 ± 0.11 OUR AVERAGE	Error includes scale factor of 1.8. See the ideogram below.		
$2.562 \pm 0.069 \pm 0.040$	AAIJ	14am LHCB	$p p$ at 7 TeV
$2.23 \pm 0.10 \pm 0.02$	PRIM	13 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$2.40 \pm 0.13 \pm 0.08$	AUBERT	08BG BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$2.31 \pm 0.14 \pm 0.08$	AUBERT	07D BABR	Repl. by AUBERT 08bg
$2.40{ }_{-0.24}^{+0.28} \pm 0.07$	${ }^{1}$ CHEN	05A BELL	Repl. by PRIM 13
$2.34{ }_{-0.20}^{+0.23} \pm 0.05$	AUBERT,B	04w BABR	Repl. by AUBERT 07D

ϕ_{\perp} in $B^{0} \rightarrow \phi K^{*}(892)^{0}$

$2.633 \pm 0.062 \pm 0.037$ AAIJ 14AMLHCB $p p$ at 7 TeV

$2.37 \pm 0.10 \pm 0.04 \quad$ PRIM $13 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$
$2.35 \pm 0.13 \pm 0.09 \quad$ AUBERT \quad 08BG BABR $e^{+} e^{-} \rightarrow r(4 S)$

$\delta_{0}\left(B^{0} \rightarrow \phi K^{*}(892)^{0}\right)$

$\begin{array}{lll}2.91 \pm 0.10 \pm 0.08 & \text { PRIM } & 13 \\ \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$ $2.82 \pm 0.15 \pm 0.09 \quad$ AUBERT 08BG BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • $2.78 \pm 0.17 \pm 0.09 \quad$ AUBERT 07D BABR Repl. by AUBERT 08BG
$A_{C P}^{0}$ in $B^{0} \rightarrow \phi K^{*}(892)^{0}$
$\frac{\text { VALUE }}{-\mathbf{0} 0.007 \pm \mathbf{0 . 0 3 0} \text { OUR AVERAGE }}$
$=0.007 \pm \mathbf{0 . 0 3 0}$ OUR AVERAGE
$-0.003 \pm 0.038 \pm 0.005 \quad$ AAIJ 14AMLHCB $p p$ at 7 TeV
$-0.030 \pm 0.061 \pm 0.007 \quad$ PRIM 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.01 \pm 0.07 \pm 0.02 \quad$ AUBERT \quad 08BG BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -
$-0.03 \pm 0.08 \pm 0.02 \quad$ AUBERT 07D BABR Repl. by AUBERT 08BG $0.13 \pm 0.12 \pm 0.04 \quad 1$ CHEN \quad 05A BELL Repl. by PRIM 13 $-0.06 \pm 0.10 \pm 0.01 \quad$ AUBERT,B 04w BABR Repl. by AUBERT 07D
${ }^{1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.
$A_{C P}^{\frac{1}{C}}$ in $B^{0} \rightarrow \phi K^{*}(892)^{0}$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.02 ± 0.06 OUR AVERAGE			
$0.047 \pm 0.074 \pm 0.009$	AAIJ	14AMLHCB	$p p$ at 7 TeV
$-0.14 \pm 0.11 \pm 0.01$	PRIM	13 BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$-0.04 \pm 0.15 \pm 0.06$	AUBERT	08BG BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.03 \pm 0.16 \pm 0.05$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$-0.20 \pm 0.18 \pm 0.04$	${ }^{1}$ CHEN	05A BELL	Repl. by PRIM 13
$-0.10 \pm 0.24 \pm 0.05$	AUBERT,B	04w BABR	Repl. by AUBERT 07D
${ }^{1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper			

$\Delta \phi_{\|}$in $B^{0} \Rightarrow \phi K^{*}(892)^{0}$

$V A L U E(\mathrm{rad})$	DOCUMENT ID		COMMENT
0.05 ± 0.05 OUR AVERAGE			
$0.045 \pm 0.069 \pm 0.015$	AAIJ	14AMLHCB	at 7 TeV
$-0.02 \pm 0.10 \pm 0.01$	PRIM	13	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$0.22 \pm 0.12 \pm 0.08$	AUBERT	08BG BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.24 \pm 0.14 \pm 0.08$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$-0.32 \pm 0.27 \pm 0.07$	CHEN	05A BELL	Repl. by PRIM 13
$0.27{ }_{-0.23}^{+0.20} \pm 0.05$	AUBERT,B	04w BABR	Repl. by AUBERT 07D
${ }^{1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper			

$\Delta \phi_{\perp}$ in $B^{0} \rightarrow \phi K^{*}(892)^{0}$
$\frac{V A L U E(\mathrm{rad})}{0.08 \pm 0.05 \text { OUR AVERAGE }}$

0.08 ± 0.05			
$0.062 \pm 0.062 \pm 0.005$	AAIJ	14AMLHCB $p p$ at 7 TeV	
$0.05 \pm 0.10 \pm 0.02$	PRIM	13 BELL $e^{+} e^{-} \rightarrow r(4 S)$	
$0.21 \pm 0.13 \pm 0.08$	AUBERT	08BG BABR	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - •

0.19	± 0.15	± 0.08	AUBERT	07D BABR
$-0.30 \pm 0.25 \pm 0.06$	1 CHEN	05A BEL. by AUBERT 08BG		
	\pm	BELL	Repl. by PRIM 13	

| -0.30 ± 0.25 | ± 0.06 | 1 CHEN | 05A BELL Repl. by PRIM 13 |
| ---: | :---: | :---: | :---: | $0.36 \pm 0.25 \pm 0.05 \quad$ AUBERT,B 04w BABR Repl. by AUBERT 07D ${ }^{1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$\Delta \delta_{0}\left(B^{0} \rightarrow \phi K^{*}(892)^{0}\right)$ $\frac{V A L U E(\mathrm{rad})}{0.13 \pm 0.09 \text { OUR AVERAGE }}$
$0.08 \pm 0.10 \pm 0.01$
$0.27 \pm 0.14 \pm 0.08$

DOCUMENT ID TECN COMMENT
PRIM 13 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

AUBERT \quad 08BG BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

$\frac{\text { DOCUMENT ID }}{\text { AUBERT }}$ 08BG $\frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

$0.918_{-0.060}^{+0.029} \pm 0.012$	PRIM	$13 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$
$0.901_{-0.058}^{+0.046} \pm 0.037$	AUBERT	08BG BABR $e^{+} e^{-} \rightarrow r(4 S)$

VALUE DOCUMENTID TECN COMMENT

$0.056_{-0.035}^{+0.050} \pm 0.009$	PRIM	13	BELL	$e^{+} e^{-}$	$r(4 S)$	
$0.002{ }_{-0.002}^{+0.018} \pm 0.031$	AUBERT		B	$e^{+} e^{-}$	$r(4 S)$	
- - We do not use the following data for averages, fits, limits, etc. - - -						
$0.045{ }_{-0.040}^{+0.049} \pm 0.013$	AUBERT	07D	BABR	Repl. by	AUBERT 08bG	
$\phi_{\\|}$in $B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}$						
VALUE (rad)	DOCUMENT ID		TECN	COMMENT		

$2.90 \pm 0.39 \pm 0.06 \quad$ AUBERT 07D BABR Repl. by AUBERT 08BG

$V A L U E(\mathrm{rad})$

$\mathbf{4 . 4 5}_{-0.38}^{\mathbf{0} . \mathbf{4 3} \mathbf{0 . 1 3} \quad \text { PRIM } 13 \text { BELL } e^{+} e^{-} \rightarrow \gamma(4 S)}$

-0.03 ± 0.04 OUR AVERAGE
$-0.016_{-0.051}^{+0.066} \pm 0.008$
$-0.05 \pm 0.06 \pm 0.01$

$A_{C P}^{\perp}$ in $B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}$
$-0.01+0.85 \pm 0.09$
$\Delta \phi_{\|}\left(B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}\right)$
$\frac{V A L U E(\mathrm{rad})}{-0.9 \pm 0.4 \text { OUR AVERAGE }}$
$-0.02 \pm 1.08 \pm 1.01$
$-1.00 \pm 0.38 \pm 0.09$
$\Delta \phi_{\perp}\left(B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}\right)$
VALUE
$-0.19 \pm 0.42 \pm 0.11$
$\Delta \delta_{0}$ in $B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}$
0.08 ± 0.09 OUR AVERAGE
$0.06 \pm 0.11 \pm 0.02$
$0.11 \pm 0.13 \pm 0.06$

PRIM 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$
AUBERT \quad 08BGBABR $e^{+} e^{-} \rightarrow \quad r(4 S)$

DOCUMENT ID TECN COMMENT
PRIM 13 BELL $e^{+} e^{-} \rightarrow r(4 S)$

| DOCUMENT ID | | | TECN | | COMMENT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| PRIM | 13 | BELL | $e^{+} e^{-} \rightarrow$ | $r(4 S)$ | |
| AUBERT | $08 B G B A B R$ | $e^{+} e^{-} \rightarrow$ | $r(4 S)$ | | |

DOCUMENT ID TECN COMMENT
PRIM 13 BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$

DOCUMENT ID TECN COMMENT
PRIM 13 BELL $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
AUBERT \quad 08BG BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

Meson Particle Listings
B^{0}
Γ_{L} / Γ in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$
$\frac{V A L U E}{0.173 \pm 0.026 ~ O U R ~ A V E R A G E}$ $0.164 \pm 0.015 \pm 0.02$ $0.40 \pm 0.08 \pm 0.11$

DOCUMENT ID TECN COMMENT
AAIJ 19」 LHCB $p p$ at $7,8 \mathrm{TeV}$

LEES $\quad 12 \mathrm{k}$ BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.57 \pm 0.09 \pm 0.08 \quad$ AUBERT,B 06G BABR Repl. by LEES 12K
Γ_{\perp} / Γ in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$
$\frac{V A L U E}{\mathbf{0 . 4 0 1} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 3 7}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LIJ }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
$A_{C P}^{0}$ in $B^{0} \Longrightarrow K^{*}(892)^{0} \rho^{0}$
$-0.62 \pm 0.09 \pm 0.09$
$\frac{\text { DOCUMENT ID }}{\text { AAIJ 19」 }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
$A_{C P}^{\perp}$ in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$ $0.050 \pm \mathbf{0 . 0 3 9} \pm \mathbf{0 . 0 1 5}$
$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 1$
$\underset{\substack{V A L U E}}{A_{C P}}$ in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$
$\frac{V A L U E}{0.188 \pm 0.037} \pm \mathbf{0 . 0 2 2}$ $\frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{19 \mathrm{~J}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
ϕ_{0} in $B^{0} \Rightarrow K^{*}(892)^{0} \rho^{0}$ $\frac{V A L U E}{1.57 \pm 0.08 \pm 0.18}$
ϕ_{\perp} in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$
$\frac{V A L U E}{-2.365 \pm 0.032 \pm 0.054}$
$\phi_{\|}$in $B^{0} \rightarrow K^{*}(892)^{0} \rho^{0}$
$V A L U E$
$\frac{V A L U E}{\mathbf{0 . 7 9 5} \pm \mathbf{0 . 0 3 0} \pm \mathbf{0 . 0 6 8}}$
$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 19J }}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
Γ_{L} / Γ in $B^{0} \rightarrow K^{*+} \rho^{-}$
VALUE
$0.38 \pm 0.13 \pm 0.03$

DOCUMENT ID			
LEES	12 K		
$\frac{\text { TECN }}{\text { BABR }}$			
$\mathrm{COMMENT}^{+} e^{-} \rightarrow r(4 S)$			

Γ_{L} / Γ in $B^{0} \Rightarrow \rho^{+} \rho^{-}$
$\frac{\text { VALUE }}{0.990_{-0.019}^{+0.021} \text { OUR AVERAGE }}$

$0.988 \pm 0.012 \pm 0.023$	VANHOEFER	16 BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
0.992 ± 0.024	+0.026	AUBERT	07BF BABR	$e^{+} e^{-} \rightarrow r(4 S)$

$0.992 \pm 0.024-0.013$
AUBERT \quad 07BF BABR $e^{+} e^{-} \rightarrow \quad r(4 S$

- - We do not use the following data for averages, fits, limits, etc. - - -

$\mathbf{0 . 7 1}{ }_{-0.09}^{\mathbf{+ 0 . 0 8}}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
$0.745_{-0.058}^{+0.048} \pm 0.034 \quad$ AAIJ 15 T LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.21 \underset{-0.22}{+0.18} \pm 0.15 \quad$ VANHOEFER 14 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.75{ }_{-0.14}^{+0.11} \pm 0.05 \quad$ AUBERT 08BB BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • -
$0.87 \pm 0.13 \pm 0.04$ AUBERT 07G BABR Repl. by AUBERT 08BB

See the related review(s):
$B^{0}-\bar{B}^{0}$ Mixing

$B^{0}-\bar{B}^{0}$ MIXING PARAMETERS

For a discussion of $B^{0}-\bar{B}^{0}$ mixing see the note on " $B^{0} \bar{B}^{0}$ Mixing" in the B^{0} Particle Listings above.
χ_{d} is a measure of the time-integrated $B^{0}-\bar{B}^{0}$ mixing probability that a produced $B^{0}\left(\bar{B}^{0}\right)$ decays as a $\bar{B}^{0}\left(B^{0}\right)$. Mixing violates $\Delta B \neq 2$ rule.

$$
\begin{aligned}
& \chi_{d}=\frac{x_{d}^{2}}{2\left(1+x_{d}^{2}\right)} \\
& x_{d}=\frac{\Delta m_{B^{0}}}{\Gamma_{B^{0}}}=\left(m_{B_{H}^{0}}-m_{B_{L}^{0}}\right) \tau_{B^{0}},
\end{aligned}
$$

where H, L stand for heavy and light states of two $B^{0} C P$ eigenstates and $\tau_{B^{0}}=\frac{1}{0.5\left(\Gamma_{B_{H}^{0}}+\Gamma_{B_{L}^{0}}\right)}$.
χ_{d}
This $B^{0}-\bar{B}^{0}$ mixing parameter is the probability (integrated over time) that a produced B^{0} (or \bar{B}^{0}) decays as a \bar{B}^{0} (or B^{0}), e.g. for inclusive lepton decays
$\chi_{d}=\Gamma\left(B^{0} \rightarrow \ell^{-} \mathrm{X}\left(\right.\right.$ via $\left.\left.\bar{B}^{0}\right)\right) / \Gamma\left(B^{0} \rightarrow \ell^{ \pm} \mathrm{X}\right)$

$$
=\Gamma\left(\bar{B}^{0} \rightarrow \ell^{+} \mathrm{X}\left(\text { via } B^{0}\right)\right) / \Gamma\left(\bar{B}^{0} \rightarrow \ell^{ \pm} \mathrm{X}\right)
$$

Where experiments have measured the parameter $r=\chi /(1-\chi)$, we have converted to χ. Mixing violates the $\Delta B \neq 2$ rule.

Note that the measurement of χ at energies higher than the $\gamma(4 S)$ have not separated χ_{d} from χ_{s} where the subscripts indicate $B^{0}(\bar{b} d)$ or $B_{s}^{0}(\bar{b} s)$. They are listed in the $B^{ \pm} / B^{0} / B_{S}^{0} / b$-baryon ADMIXTURE section.

The experiments at $\Upsilon(4 S)$ make an assumption about the $B^{0} \bar{B}^{0}$ fraction and about the ratio of the $B^{ \pm}$and B^{0} semileptonic branching ratios (usually that it equals one).
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements, includes χ_{d} calculated from $\Delta m_{B^{0}}$ and $\tau_{B^{0}}$.

Value		CL\%	DOCUMENT ID		TECN	COMMENT
0.1858 ± 0.0011 OUR EVALUATION						
0.182 ± 0.015	OUR AV	ERAG				
0.198 ± 0.013	± 0.014		${ }^{1}$ behrens	00B	CLE2	$e^{+} e^{-} \rightarrow r_{(4 S)}$
0.16 ± 0.04	± 0.04		${ }^{2}$ ALBRECHT	94	ARG	$e^{+} e^{-} \rightarrow r_{(4 S)}$
0.149 ± 0.023	± 0.022		${ }^{3}$ bartelt	93	CLE2	$e^{+} e^{-} \rightarrow$ (4S)
0.171 ± 0.048			${ }^{4}$ ALBRECHT	92L	ARG	$e^{+} e^{-} \rightarrow{ }^{(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - -						
0.20 ± 0.13	± 0.12		${ }^{5}$ ALBRECHT	96D	ARG	$e^{+} e^{-} \rightarrow r_{(4 S)}$
0.19 ± 0.07	± 0.09		${ }^{6}$ ALBRECHT	96D	ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
0.24 ± 0.12			${ }^{7}$ ELSEN	90	Jade	$e^{+} e^{-} 35-44 \mathrm{GeV}$
$0.158{ }_{-0.059}^{+0.052}$			ARTUSO	89	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$
0.17 ± 0.05			${ }^{8}$ ALBRECHT	871	ARG	$e^{+} e^{-} \rightarrow$ r(4S)
<0.19		90	${ }^{9}$ bean	87B	CLEO	$e^{+} e^{-} \rightarrow{ }^{\text {(4S }}$ (
<0.27		90	10 AVERY	84	CLEO	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ BEHRENS OOB uses high-momentum lepton tags and partially reconstructed $\bar{B}^{0} \rightarrow$ $D^{*+} \pi^{-}, \rho^{-}$decays to determine the flavor of the B meson.
${ }^{2}$ ALBRECHT 94 reports $r=0.194 \pm 0.062 \pm 0.054$. We convert to χ for comparison. Uses tagged events (lepton + pion from D^{*}).
${ }^{3}$ BARTELT 93 analysis performed using tagged events (lepton+pion from D^{*}). Using dilepton events they obtain $0.157 \pm 0.016_{-0.028}^{+0.033}$.
${ }^{4}$ ALBRECHT 92L is a combined measurement employing several lepton-based techniques. It uses all previous ARGUS data in addition to new data and therefore supersedes ALBRECHT 871. A value of $r=20.6 \pm 7.0 \%$ is directly measured. The value can be used to measure $x=\Delta M / \Gamma=0.72 \pm 0.15$ for the B_{d} meson. Assumes $f_{+-} / f_{0}=1.0 \pm 0.05$
and uses $\tau{ }_{B^{ \pm}} / \tau B^{0}=(0.95 \pm 0.14)\left(f_{+-} / f_{0}\right)$.
${ }^{5}$ Uses $D^{*+} K^{ \pm}$correlations.
${ }^{6}$ Uses $\left(D^{*+} \ell^{-}\right) K^{ \pm}$correlations.
${ }^{7}$ These experiments see a combination of B_{S} and B_{d} mesons.
${ }^{8}$ ALBRECHT 87 I is inclusive measurement with like-sign dileptons, with tagged B decays plus leptons, and one fully reconstructed event. Measures $r=0.21 \pm 0.08$. We convert to χ for comparison. Superseded by ALBRECHT 92L.
${ }^{9}$ BEAN 87B measured $r<0.24$; we converted to χ.
${ }^{10}$ Same-sign dilepton events. Limit assumes semileptonic BR for B^{+}and B^{0} equal. If $B^{0} / B^{ \pm}$ratio <0.58, no limit exists. The limit was corrected in BEAN 87 B from r <0.30 to $r<0.37$. We converted this limit to χ.

$\Delta m_{B^{0}}=m_{B_{H}^{0}}-m_{B_{L}^{0}}$

$\Delta m B^{0}$ is a measure of 2π times the $B^{0}-\bar{B}^{0}$ oscillation frequency in time-dependent mixing experiments.

The second "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
The first "OUR EVALUATION", also provided by the HFLAV, includes Δm_{d} calculated from χ_{d} measured at $r(4 S)$.

UE (10 $0^{12} \hbar \mathrm{~s}^{-1}$)	DOCUMENT ID		TECN	COMMENT
0.5065 ± 0.0019 OUR EVALUATION First				
0.5065 ± 0.0019 OUR EV	JATION Second			
$0.5050 \pm 0.0021 \pm 0.0010$	${ }^{1}$ AAIJ	16 AV	LHCB	$p p$ at 7, 8 TeV
$0.503 \pm 0.011 \pm 0.013$	${ }^{2}$ AAIJ	13CF	LHCB	$p p$ at 7 TeV
$0.5156 \pm 0.0051 \pm 0.0033$	${ }^{3}$ AAIJ	13 F	LHCB	$p p$ at 7 TeV
$0.499 \pm 0.032 \pm 0.003$	${ }^{4}$ AAIJ	121	LHCB	$p p$ at 7 TeV
$0.506 \pm 0.020 \pm 0.016$	${ }^{5}$ ABAZOV	06w	D0	$p \bar{p}$ at 1.96 TeV
$0.511 \pm 0.007{ }_{-0.006}^{+0.007}$	${ }^{6}$ AUBERT	06 G	BABR	$e^{+} e^{-} \rightarrow{ }^{(4 S)}$
$0.511 \pm 0.005 \pm 0.006$	${ }^{7}$ ABE	05B	BELL	$e^{+} e^{-} \rightarrow{ }^{\text {a }}$ (4S)
$0.531 \pm 0.025 \pm 0.007$	${ }^{8}$ ABDALLAH	03в	DLPH	$e^{+} e^{-} \rightarrow$
$0.492 \pm 0.018 \pm 0.013$	${ }^{9}$ AUBERT	03¢	BABR	$e^{+} e^{-} \rightarrow r_{(4 S)}$
$0.503 \pm 0.008 \pm 0.010$	10 HAstings	03	BELL	$e^{+} e^{-} \rightarrow r^{(4 S)}$
$0.509 \pm 0.017 \pm 0.020$	11 zHENG	03	BELL	$e^{+} e^{-} \rightarrow r_{(4 S)}$
$0.516 \pm 0.016 \pm 0.010$	12 AUBERT	021	BABR	$e^{+} e^{-} \rightarrow r_{(4 S)}$
$0.493 \pm 0.012 \pm 0.009$	${ }^{13}$ AUBERT	02J	BABR	$e^{+} e^{-} \rightarrow r_{(4 S)}$
$0.497 \pm 0.024 \pm 0.025$	14 AbBIENDI,G	00b	OPAL	$e^{+} e^{-} \rightarrow$ Z

0.503	± 0.064	± 0.071	${ }^{15}$ ABE	99k	CDF	$p \bar{p}$ at 1.8 TeV
0.500	± 0.052	± 0.043	${ }^{16}$ ABE	99 Q	CDF	$p \bar{p}$ at 1.8 TeV
0.516	± 0.099	${ }_{-0.035}^{+0.029}$	17 AFFOLDER	99 C	CDF	$p \bar{p}$ at 1.8 TeV
0.471	$\begin{aligned} & { }_{-0.068}^{+0.078} \end{aligned}$	$\begin{aligned} & +0.033 \\ & -0.034 \end{aligned}$	${ }^{18} \mathrm{ABE}$	98C	CDF	$p \bar{p}$ at 1.8 TeV
0.458	± 0.046	± 0.032	19 ACCIARRI	98D	L3	$e^{+} e^{-} \rightarrow Z$
0.437	± 0.043	± 0.044	${ }^{20}$ ACCIARRI	98D	L3	$e^{+} e^{-} \rightarrow Z$
0.472	± 0.049	± 0.053	${ }^{21}$ ACCIARRI	98D	L3	$e^{+} e^{-} \rightarrow Z$
0.523	± 0.072	± 0.043	${ }^{22}$ ABREU	97N	DLPH	$e^{+} e^{-} \rightarrow Z$
0.493	± 0.042	± 0.027	${ }^{20}$ Abreu	97N	DLPH	$e^{+} e^{-} \rightarrow Z$
0.499	± 0.053	± 0.015	${ }^{23}$ ABREU	97N	DLPH	$e^{+} e^{-} \rightarrow Z$
0.480	± 0.040	± 0.051	${ }^{19}$ ABREU	97N	DLPH	$e^{+} e^{-} \rightarrow$ Z
0.444	± 0.029	${ }_{-0.017}^{+0.020}$	${ }^{20}$ ACKERSTAFF	974	OPAL	$e^{+} e^{-} \rightarrow$ Z
0.430	± 0.043	${ }_{-0.030}^{+0.028}$	19 ACKERSTAFF	97 V	OPAL	$e^{+} e^{-} \rightarrow Z$
0.482	± 0.044	± 0.024	${ }^{24}$ BUSKULIC	97D	ALEP	$e^{+} e^{-} \rightarrow Z$
0.404	± 0.045	± 0.027	${ }^{20}$ BUSKULIC	97D	ALEP	$e^{+} e^{-} \rightarrow Z$
0.452	± 0.039	± 0.044	19 BUSKULIC	97D	ALEP	$e^{+} e^{-} \rightarrow Z$
0.539	± 0.060	± 0.024	${ }^{25}$ ALEXANDER	96 V	OPAL	$e^{+} e^{-} \rightarrow Z$
0.567	± 0.089	${ }_{-0.023}^{+0.029}$	${ }^{26}$ ALEXANDER	96 V	OPAL	$e^{+} e^{-} \rightarrow Z$
- - We do not use the following data for averages, fits, limits, etc. - -						
0.516	± 0.016	± 0.010	${ }^{27}$ AUBERT	02N	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
0.494	± 0.012	± 0.015	${ }^{28}$ HARA	02	BELL	Repl. by ABE 05B
0.528	± 0.017	± 0.011	29 TOMURA	02	BELL	Repl. by ABE 05B
0.463	± 0.008	± 0.016	${ }^{13} \mathrm{ABE}$	01D	BELL	Repl. by HASTINGS 03
0.444	± 0.028	± 0.028	${ }^{30}$ ACCIARRI	98D	L3	$e^{+} e^{-} \rightarrow Z$
0.497	± 0.035		${ }^{31}$ ABREU	97N	DLPH	$e^{+} e^{-} \rightarrow Z$
0.467	± 0.022	${ }_{-0.015}^{+0.017}$	${ }^{32}$ ACKERSTAFF	97V	OPAL	$e^{+} e^{-} \rightarrow Z$
0.446	± 0.032		${ }^{33}$ BUSKULIC	97D	ALEP	$e^{+} e^{-} \rightarrow Z$
0.531	${ }^{+}+0.0500$	± 0.078	${ }^{34}$ ABREU	96 Q	DLPH	Sup. by ABREU 97N
0.496	$\begin{aligned} & { }_{-0.051}^{+0.055} \end{aligned}$	± 0.043	19 ACCIARRI	96E	L3	Repl. by ACCIARRI 98D
0.548	± 0.050	$\begin{array}{r} +0.023 \\ -0.019 \end{array}$	${ }^{35}$ ALEXANDER	96 V	OPAL	$e^{+} e^{-} \rightarrow Z$
0.496	± 0.046		${ }^{36}$ AKERS	95J	OPAL	Repl. by ACKERSTAFF 97v
0.462	${ }_{-0.053}^{+0.040}$	$\begin{aligned} & +0.052 \\ & { }_{-0.035}^{+0.0} \end{aligned}$	19 AKERS	95 J	OPAL	Repl. by ACKERSTAFF 97v
0.50	± 0.12	± 0.06	${ }^{22}$ ABREU	94M	DLPH	Sup. by ABREU 97n
0.508	± 0.075	± 0.025	${ }^{25}$ AKERS	94C	OPAL	Repl. by ALEXANDER 96V
0.57	± 0.11	± 0.02	${ }^{26}$ AKERS	94 H	OPAL	Repl. by ALEXANDER 96V
0.50	${ }_{-0.06}^{+0.07}$	$\begin{aligned} & +0.11 \\ & { }_{-0.10}^{0 .} \end{aligned}$	${ }^{19}$ BUSKULIC	94B	ALEP	Sup. by BUSKULIC 97d
0.52	$\begin{array}{r} +0.10 \\ { }_{-0.11} \end{array}$	$\begin{aligned} & +0.04 \\ & { }_{-0.03} \end{aligned}$	${ }^{26}$ BUSKULIC	93k	ALEP	Sup. by BUSKULIC 97D

${ }^{1}$ Uses semileptonic decays of $B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu} X$ and $B^{0} \rightarrow D^{(*)-} \mu^{+} \nu_{\mu} X$, where the
D mesons are reconstructed in $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$and $D^{(*)-} \rightarrow \bar{D}^{0} \pi^{-}$with $\bar{D}^{0} \rightarrow$
$K^{+} \pi^{-}$
${ }^{2}$ Uses semileptonic decays of $B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu} X$ where the D^{-}mesons are reconstructed

${ }^{4}$ Measured using $B^{0} \rightarrow D^{-} \pi^{+}$.
${ }^{5}$ Uses opposite-side flavor-tagging with $B \rightarrow D^{(*)} \mu \nu_{\mu} X$ events.
${ }^{6}$ Measured using a simultaneous fit of the B^{0} lifetime and $\bar{B}^{0} B^{0}$ oscillation frequency Δm_{d} in the partially reconstructed $B^{0} \rightarrow D^{*-} \ell \nu$ decays.
${ }^{7}$ Measurement performed using a combined fit of $C P$-violation, mixing and lifetimes.
${ }^{8}$ Events with a high transverse momentum lepton were removed and an inclusively reconstructed vertex was required.
${ }^{9}$ AUBERT $03 C$ uses a sample of approximately 14,000 exclusively reconstructed $B^{0} \rightarrow$ $D^{*}(2010)^{-} \ell \nu$ and simultaneously measures the lifetime and oscillation frequency.
${ }^{10}$ HASTINGS 03 measurement based on the time evolution of dilepton events. It also reports $f_{+} / f_{0}=1.01 \pm 0.03 \pm 0.09$ and $C P T$ violation parameters in $B^{0}-\bar{B}^{0}$ mixing.
${ }^{11}$ ZHENG 03 data analyzed using partially reconstructed $\bar{B}^{0} \rightarrow D^{*-} \pi^{+}$decay and a
flavor tag based on the charge of the lepton from the accompanying B decay.
${ }^{12}$ Uses a tagged sample of fully-reconstructed neutral B decays at $\Upsilon(4 S)$.
${ }^{13}$ Measured based on the time evolution of dilepton events in $\Upsilon(4 S)$ decays.
${ }^{14}$ Data analyzed using partially reconstructed $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}$ decay and a combination of flavor tags from the rest of the event.
${ }_{16}$ Uses di-muon events.
${ }^{16}$ Uses jet-charge and lepton-flavor tagging.
17 Uses $\ell^{-} D^{*+}-\ell$ events.
${ }^{18}$ Uses $\pi-B$ in the same side.
${ }^{19}$ Uses $\ell-\ell$.
${ }^{20}$ Uses $\ell-Q_{\text {hem }}$
${ }^{21}$ Uses $\ell-\ell$ with impact parameters.
${ }^{22}$ Uses $D^{* \pm}$ - $Q_{\text {hem }}$.
${ }^{23}$ Uses $\pi_{s}^{ \pm} \ell-Q_{\text {hem }}$.
${ }^{24}$ Uses $D^{* \pm}-\ell / Q_{\text {hem }}$.
${ }^{25}$ Uses $D^{* \pm} \ell$ - $Q_{\text {hem }}$.
${ }^{26}$ Uses $D^{* \pm}-\ell$.
${ }^{27}$ AUBERT 02 N result based on the same analysis and data sample reported in AUBERT 021.
${ }^{28}$ Uses a tagged sample of B^{0} decays reconstructed in the mode $B^{0} \rightarrow D^{*} \ell \nu$.
${ }^{29}$ Uses a tagged sample of fully-reconstructed hadronic B^{0} decays at $\Upsilon(4 S)$.
${ }^{30}$ ACCIARRI 98D combines results from $\ell-\ell, \ell-Q_{\text {hem }}$, and $\ell-\ell$ with impact parameters.

Meson Particle Listings
B^{0}
${ }^{31}$ ABREU 97 N combines results from $D^{* \pm}{ }_{-} Q_{\text {hem }}, \ell-Q_{\mathrm{hem}}, \pi_{s}^{ \pm} \ell-Q_{\mathrm{hem}}$, and $\ell-\ell$
${ }^{32}$ ACKERSTAFF 97 v combines results from $\ell-\ell, \ell-Q_{\mathrm{hem}}, D^{*}-\ell$, and $D^{* \pm}-Q_{\mathrm{hem}}$
${ }^{33}$ BUSKULIC 97D combines results from $D^{* \pm}-\ell / Q_{\mathrm{hem}}, \ell-Q_{\mathrm{hem}}$, and $\ell-\ell$.
${ }^{34}$ ABREU $96 Q$ analysis performed using lepton, kaon, and jet-charge tags.
${ }^{35}$ ALEXANDER 96 V combines results from $D^{* \pm}-\ell$ and $D^{* \pm} \ell-Q_{\text {hem }}$.
${ }^{36}$ AKERS 95 J combines results from charge measurement, $D^{* \pm} \ell-Q_{\text {hem }}$ and $\ell-\ell$.

$x_{d}=\Delta m_{B^{0}} / \Gamma_{B^{0}}$

OUR EVALUATION" is an average using rescaled values of the data listed . The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements
The first "OUR EVALUATION", also provided by the HFLAV, includes χ_{d} measured at $\gamma(4 S)$.

VALUE 0.04 OUR EVALUATION DOCUMENT ID
 0.769 ± 0.004 OUR EVALUATION Second

$\operatorname{Re}\left(\lambda_{C P} /\left|\lambda_{C P}\right|\right) \operatorname{Re}(z)$
The $\lambda_{C P}$ characterizes B^{0} and \bar{B}^{0} decays to states of charmonium plus K_{l}^{0}. Param eter z is used to describe CPT violation in mixing, see the review on " $C P$ Violation" in the reviews section.
value
DOCUMENT ID TECN COMMENT
$0.047 \pm \mathbf{0 . 0 2 2} \pm \mathbf{0 . 0 0 3} \quad 1$ LEES $\quad 16 \mathrm{E}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.014 \pm 0.035 \pm 0.034 \quad{ }^{2}$ AUBERT,B 04C BABR Repl. by LEES 16E
${ }^{1}$ The first uncertainty is the uncertainty from $\operatorname{Re}(z)$ and the second uncertainty is from $\operatorname{Re}(\lambda /|\lambda|)$.
${ }^{2}$ Corresponds to 90% confidence range $[-0.072,0.101]$.
$\Delta \Gamma \operatorname{Re}(z)$
$\frac{\text { VALUE }}{-0.0071} \mathbf{+ 0 . 0 0 3 9} \pm \mathbf{0 . 0 0 2 0} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 06T }} \frac{\text { COMMENT }}{\text { BABR }} e^{+} e^{-} r(4 S)$
$\operatorname{Re}(z)$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{-4 \pm 4 \text { OUR AVERAGE }}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor of } 1.4 \text { TECN }}$ COMMENT
$-6.5 \pm 2.8 \pm 1.4 \quad 1$ LEES $\quad 16 \mathrm{E}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.9 \pm 3.7 \pm 3.3 \quad{ }^{2}$ HIGUCHI $12 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0 \pm 12 \pm 1 \quad 3$ HASTINGS 03 BELL Repl. by HIGUCHI 12
${ }^{1}$ Measurement uses decays $B^{0} / \bar{B}^{0} \rightarrow c \bar{c} K_{S}^{0} / K_{L}^{0}$.
${ }^{2}$ Measured using $B^{0} \rightarrow J / \psi K_{S}^{0}, J / \psi K_{L}^{0}, D^{-} \pi^{+}, D^{*-} \pi^{+}, D^{*-} \rho^{+}$, and $D^{*-} \ell^{+}{ }_{\nu}$ decays.
${ }^{3}$ Measured using inclusive dilepton events from B^{0} decay.
$\operatorname{Im}(z)$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-2}\right)}{-0.8 \pm 0.4 \text { OUR AVERAGE }}$

$1.0 \pm 3.0 \pm 1.3$	${ }^{1}$ LEES		BABR $e^{+} e^{-}$	r
$-0.57 \pm 0.33 \pm 0.33$	${ }^{2}$ HIGUCHI		BELL $e^{+} e^{-}$	$r(4$
$-1.39 \pm 0.73 \pm 0.32$	${ }^{3}$ AUBERT		BABR $e^{+} e^{-}$	$r(4$
- - We do not use the following data for averages, fits, limits, etc. - . -				
$3.8 \pm 2.9 \pm 2.5$	${ }^{4}$ AUBERT, B	04C BABR Repl. by AUBERT 06T		
$-3 \pm 1 \pm 3$	${ }^{5}$ HASTINGS	03	Repl. by HIGUCHI 12	
${ }^{1}$ Measurement uses decay				
${ }^{2}$ Measured using $B^{0} \rightarrow$ decays.	$J / \psi K_{L}^{0}, D^{-} \pi^{+}, D^{*-} \pi^{+}, D^{*-} \rho^{+}$, and $D^{*-} \ell^{+} \nu^{\prime}$			
$\begin{aligned} & { }^{3} \text { Measurement uses } B^{0} / \bar{B}^{0} \\ & \operatorname{Im}(z)=(-0.37 \pm 0.54) \times \end{aligned}$	-2	Assuming $\Delta \Gamma=0$, the result becomes		
${ }^{4}$ Corresponds to 90% confid	e range $[-0.028,0.104]$.			
${ }^{5}$ Measured using inclusive	events from B^{0} decay.			

CP VIOLATION PARAMETERS

$\operatorname{Re}\left(\epsilon_{B^{0}}\right) /\left(1+\left|\epsilon_{B^{0}}\right|^{2}\right)$
$C P$ impurity in B_{d}^{0} system. It is obtained from either $a_{\ell \ell}$, the charge asymmetry in like-sign dilepton events or $a_{C p}$, the time-dependent asymmetry of inclusive B^{0} and \bar{B}^{0} decays.
"OUR EVALUATION" is an average obtained by the Heavy Flavor Averaging Group (HFLAV) and described at https://hflav.web.cern.ch/. It is the result of a fit to B_{d} and $B_{S} C P$ asymmetries, which includes the B_{d} measurements listed below and the B_{S} measurements listed in the B_{S} section, taking into account correlations between those measurements.

- - We do not use the following data for averages, fits, limits, etc. - •

0.3	± 1.3		${ }^{9}$ ABAZOV	110	D0	Repl. by ABAZOV 14
2.3	± 1.1	± 0.8	${ }^{10}$ ABAZOV	065	D0	Repl. by ABAZOV 110
-14.7	± 6.7	± 5.7	11 AUBERT, ${ }^{\text {a }}$	04c	BABR	Repl. by AUBERT 06T
1.2	± 2.9	± 3.6	${ }^{2}$ AUBERT	02k	BABR	Repl. by LEES 15A
3.2	± 6.5		${ }^{12}$ barate	01D	ALEP	$e^{+} e^{-} \rightarrow$ Z
4	± 18	± 3	13 behrens	00B	CLE2	Repl. by JAFFE 01
1.2	± 13.8	± 3.2	14 ABBIENDI	99」	OPAL	$e^{+} e^{-} \rightarrow Z$
2	± 7	± 3	15 ACKERSTAFF	974	OPAL	$e^{+} e^{-} \rightarrow Z$
< 45			16 BARTELT	93	CLE2	$e^{+} e^{-} \rightarrow{ }_{\text {c }}(4 S)$

${ }^{1}$ AAIJ 15F uses semileptonic B^{0} decays in the inclusive final states $D^{-} \mu^{+}$and $D^{*-} \mu^{+}$, where the D^{-}meson decays into the $K^{+} \pi^{-} \pi^{-}$final state, and the D^{*-} meson into the $\bar{D}^{0}\left(\rightarrow K^{+} \pi^{-}\right) \pi^{-}$final state. Reports $A_{S L}^{d}=(-0.02 \pm 0.19 \pm 0.30) \%$, which equals to $4 \operatorname{Re}\left(\epsilon_{B^{0}}\right) /\left(1+\left|\epsilon_{B^{0}}\right|^{2}\right)$.
${ }^{2}$ Uses the charge asymmetry in like-sign dilepton events. LEES 15A reports $A_{S L}^{d}=$ $(-3.9 \pm 3.5 \pm 1.9) \times 10^{-3}$.
${ }^{3}$ ABAZOV 14 uses the dimuon charge asymmetry with different impact parameters from which it reports $A_{S L}^{d}=(-0.62 \pm 0.42) \times 10^{-2}$.
${ }^{4}$ Uses $B^{0} \rightarrow D^{*-} X \ell^{+} \nu_{\ell}$ and a kaon-tagged sample which yields measurement of $A_{S L}^{d}=$ $\left(0.06 \pm 0.17_{-0.32}^{+0.38}\right) \%$, corresponding to $\Delta_{C P}=1-|\mathrm{q} / \mathrm{p}|=\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$.
${ }^{5}$ ABAZOV 12AC uses $B^{0} \rightarrow D^{-} \mu^{+} X$ and $B^{0} \rightarrow D^{*}(2010)^{-} \mu^{+} X$ decays without initial state flavor tagging which yields measurement of $\mathrm{A}_{S L}^{d}=(6.8 \pm 4.5 \pm 1.4) \times 10^{-3}$.
${ }^{6}$ AUBERT $06 T$ reports $|q / p|-1=(-0.8 \pm 2.7 \pm 1.9) \times 10^{-3}$. We convert to $\left(1-|q / p|^{2}\right) / 4$.
${ }^{7}$ Uses the charge asymmetry in like-sign dilepton events and reports $|q / p|=1.0005 \pm$ 0.0040 ± 0.0043.
${ }^{8}$ JAFFE 01 finds $a_{\ell \ell}=0.013 \pm 0.050 \pm 0.005$ and combines with the previous BEHRENS OOB independent measurement.
${ }^{9}$ ABAZOV 110 uses the dimuon charge asymmetry with different impact parameters from which it reports $A_{S L}^{d}=(-1.2 \pm 5.2) \times 10^{-3}$.
${ }^{10}$ Uses the dimuon charge asymmetry.
${ }^{11}$ AUBERT 04 c reports $|\mathrm{q} / \mathrm{p}|=1.029 \pm 0.013 \pm 0.011$ and we converted it to $\left(1-|\mathrm{q} / \mathrm{p}|^{2}\right) / 4$.
${ }^{12}$ BARATE 01D measured by investigating time-dependent asymmetries in semileptonic and fully inclusive B_{d}^{0} decays.
${ }^{13}$ BEHRENS OOB uses high-momentum lepton tags and partially reconstructed $\bar{B}^{0} \rightarrow$ $D^{*+} \pi^{-}, \rho^{-}$decays to determine the flavor of the B meson.
${ }^{14}$ Data analyzed using the time-dependent asymmetry of inclusive B^{0} decay. The production flavor of B^{0} mesons is determined using both the jet charge and the charge of secondary vertex in the opposite hemisphere.
${ }^{15}$ ACKERSTAFF 97U assumes CPT and is based on measuring the charge asymmetry in a sample of B^{0} decays defined by lepton and $Q_{\text {hem }}$ tags. If $C P T$ is not invoked, $\operatorname{Re}\left(\epsilon_{B}\right)=$ $-0.006 \pm 0.010 \pm 0.006$ is found. The indirect $C P T$ violation parameter is determined $-0.006 \pm 0.010 \pm 0.006$ is found. The
to $\operatorname{lm}(\delta B)=-0.020 \pm 0.016 \pm 0.006$.
${ }^{16}$ BARTELT 93 finds $a_{\ell \ell}=0.031 \pm 0.096 \pm 0.032$ which corresponds to $\left|a_{\ell \ell}\right|<0.18$, which yields the above $\left|\operatorname{Re}\left(\epsilon_{B^{0}}\right) /\left(1+\left|\epsilon_{B^{0}}\right|^{2}\right)\right|$.

$\boldsymbol{A}_{\boldsymbol{T} / \mathrm{CP}}$

${ }^{A_{T / C P}}$ is defined as

$$
\frac{P\left(\bar{B}^{0} \rightarrow B^{0}\right)-P\left(B^{0} \rightarrow \bar{B}^{0}\right)}{P\left(\bar{B}^{0} \rightarrow B^{0}\right)+P\left(B^{0} \rightarrow \bar{B}^{0}\right)},
$$

the CPT invariant asymmetry between the oscillation probabilities $\mathrm{P}\left(\bar{B}^{0} \rightarrow B^{0}\right)$ and $\mathrm{P}\left(B^{0} \rightarrow \bar{B}^{0}\right)$.
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 5} \pm \mathbf{0 . 0 1 2} \pm \mathbf{0 . 0 1 4}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT COMMENT }} \frac{02 \mathrm{~K}}{\text { BABR }} \frac{}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
${ }^{1}$ AUBERT 02 K uses the charge asymmetry in like-sign dilepton events.
$A_{C P}\left(B^{0} \Rightarrow D^{*}(2010)^{+} D^{-}\right)$
$A_{C P}$ is defined as

$$
\frac{B\left(\bar{B}^{0} \rightarrow \bar{f}\right)-B\left(B^{0} \rightarrow f\right)}{B\left(\bar{B}^{0} \rightarrow \bar{f}\right)+B\left(B^{0} \rightarrow f\right)},
$$

the $C P$-violation charge asymmetry of exclusive B^{0} and \bar{B}^{0} decay.

VALUE DOCUMENT ID TECN COMMENT

0.037 ± 0.034 OUR AVERAGE

$0.06 \pm 0.05 \pm 0.02$	ROHRKEN	12	BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$0.008 \pm 0.048 \pm 0.013$	AUBERT	09C	BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$0.07 \pm 0.08 \pm 0.04$	1	AUSHEV	04	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc . $(4 S)$
$-0.12 \pm 0.06 \pm 0.02 \quad$ AUBERT 07Al BABR Repl. by AUBERT 09C
$-0.03 \pm 0.10 \pm 0.02 \quad$ AUBERT,B 06A BABR Repl. by AUBERT 07AI
$-0.03 \pm 0.11 \pm 0.05$ AUBERT 03」 BABR Repl. by AUBERT,B 06B
${ }^{1}$ Combines results from fully and partially reconstructed $B^{0} \rightarrow D^{* \pm} D^{\mp}$ decays.

$A_{C P}\left(B^{0} \rightarrow\left[K^{+} K^{-}\right]_{D} K^{*}(892)^{0}\right)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.05 \pm 0.10 \pm 0.01$	AAIJ	19N	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$-0.20 \pm 0.15 \pm 0.02$	AAIJ	14BN	LHCB	Repl. by AAIJ 16 S
$-0.45 \pm 0.23 \pm 0.02$	AAIJ	13L	LHCB	Repl. by AAIJ 14BN

$\underset{\text { VALUE }}{\boldsymbol{A}_{C P}\left(B^{0} \rightarrow \eta^{\prime} K^{*}(892)^{0}\right)}$
-0.07 ± 0.18 OUR AVERAGE
$-0.22 \pm 0.29 \pm 0.07$
$0.02 \pm 0.23 \pm 0.02$

DOCUMENT ID TECN COMMENT
SATO 14 BELL $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$
DEL-AMO-SA..10A BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • $0.08 \pm 0.25 \pm 0.02 \quad{ }^{1}$ AUBERT 07 E BABR Repl. by DEL-AMO-
${ }^{1}$ Reports $A_{C P}$ with the opposite sign convention.
$A_{C P}\left(B^{0} \rightarrow \eta^{\prime} K_{0}^{*}(1430)^{0}\right)$

$-0.19 \pm 0.17 \pm 0.02$
$A_{C P}\left(B^{0} \Rightarrow \eta^{\prime} K_{2}^{*}(1430)^{0}\right)$
VALUE
$0.14 \pm 0.18 \pm 0.02$
$A_{C P}\left(B^{0} \rightarrow \eta K^{*}(892)^{0}\right)$
$\frac{\text { VALUE }}{0.19 \pm 0.05 \text { OUR AVERAGE }}$
$0.17 \pm 0.08 \pm 0.01$
$0.21 \pm 0.06 \pm 0.02$
$0.02 \pm 0.11 \pm 0.02$ AUBERT,B 04D BABR Repl. by AUBERT,B 06H

$A_{C P}\left(B^{0} \Rightarrow \eta K_{0}^{*}(1430)^{0}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.06 \pm 0.13 \pm 0.02$	AUBERT,B	06H	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$A_{C P}\left(B^{0} \rightarrow \eta K_{2}^{*}(1430)^{0}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.07 $\pm 0.19 \pm 0.02$	AUBERT,B	06H	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{0} \Rightarrow b_{1} K^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.07 $\pm 0.12 \pm 0.02$	AUBERT	07BI	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{0} \rightarrow \omega K^{* 0}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.45 \pm 0.25 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$A_{C P}\left(B^{0} \rightarrow \omega(K \pi)_{0}^{* 0}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.07 \pm 0.09 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$A_{C P}\left(B^{0} \Rightarrow \omega K_{2}^{*}(1430)^{0}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.37 \pm 0.17 \pm 0.02$	AUBERT	09H	BABR	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$\boldsymbol{A}_{C P P}\left(B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)$					
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
0 ± 6 OUR AVERAGE					
$-3.0{ }_{-}^{+}{ }_{5.1}^{4.5} \pm 5.5$	1 AUBERT	08AQ	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$7 \pm 11 \pm 1$	${ }^{2}$ CHANG	04	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.					

$\underset{\text { VALUE }}{A_{C P}\left(B^{0} \rightarrow \rho^{-} K^{+}\right)}$
$\frac{V A L U E}{0.20 \pm 0.11 \text { OUR AVERAGE }}$

$0.20 \pm 0.09 \pm 0.08$	1	LEES	11	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.22+0.22+0.06$	2	CHANG	04	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.11+0.15 \pm 0.07 \quad 1$ AUBERT 08AQ BABR Repl. by LEES 11
$-0.28 \pm 0.17 \pm 0.08 \quad 3$ AUBERT 03T BABR Repl. by AUBERT 08AQ
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.
${ }^{2}$ Corresponds to 90% confidence range $-0.18<A_{C P}<0.64$.
${ }^{3}$ The result reported corresponds to $-A_{C P}$.
$A_{C P}\left(B^{0} \rightarrow \rho(1450)^{-} K^{+}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 1 0} \pm \mathbf{0 . 3 2} \mathbf{0 . 0 9}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { LEES }} \frac{11}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.
$A_{C P}\left(B^{0} \rightarrow \rho(1700)^{-} K^{+}\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{- 0 . 3 6} \pm \mathbf{0 . 5 7} \pm \mathbf{0 . 2 3} \quad 1$ LEES $11 \quad$ BABR $\xrightarrow[e^{+} e^{-} \rightarrow r(4 S)]{ }$
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.

Meson Particle Listings
B^{0}

$-0.19{ }_{-0.15}^{+0.20} \pm 0.04$	${ }^{2}$ AUBERT	08AQ BABR	Repl. by LEES 11
$-0.11 \pm 0.14 \pm 0.05$	${ }^{3}$ AUBERT	061 BABR	Repl. by AUBERT 09au
$0.23 \pm 0.18{ }_{-0.06}^{+0.09}$	AUBERT,B	040 BABR	Repl. by AUBERT 06I
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$final state decays.			
${ }^{2}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays.			
${ }^{3}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays.			
${ }^{5}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two consistent solutions that may be preferred.			
${ }^{6}$ Corresponds to 90	ence range -0	$<A_{C P}<0$.	

$\underset{A C P}{A_{C P}}\left(B^{0} \rightarrow K^{*}(1680)^{+} \pi^{-}\right)$

$A_{C P}\left(B^{0} \rightarrow f_{0}(980) K_{s}^{0}\right)$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.28 \pm 0.27 \pm 0.15$	${ }^{1}$ AAIJ	18F	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses Dalitz plot analysis of	$B^{0} \rightarrow$		state	ecays.

$\underset{\text { VALUE }}{\boldsymbol{A}_{\boldsymbol{C P}}}\left(B^{0} \Rightarrow K^{* 0} \boldsymbol{\pi}^{0}\right)$

Meson Particle Listings
B^{0}
${ }^{4}$ AUBERT 03Q reports $|\lambda|=0.75 \pm 0.19 \pm 0.02$ and $\operatorname{Im}(\lambda)=0.05 \pm 0.29 \pm 0.10$. We
convert them to S and C parameters taking into account correlations. convert them to S and C parameters taking into account correlations.

$S_{D^{*+} D^{*-}}\left(B^{0} \Rightarrow D^{*+} D^{*-}\right)$
VALUE DOCUMENT ID TECN COMMENT
$-\mathbf{0 . 5 9} \pm \mathbf{0 . 1 4 ~ O U R ~ A V E R A G E ~} \frac{\text { DOCUMENT } 1 D}{\text { Error includes scale } \frac{\text { TECN }}{\text { factor of } 1.8 \text {. See the ideogram below. }} \text { COMMENT }}$

| $-0.79 \pm 0.13 \pm 0.03$ | 1 KRONENBIT... 12 BELL | $e^{+} e^{-} \rightarrow r(4 S)$ | |
| :--- | :--- | :--- | :--- | :--- |
| $-0.34 \pm 0.12 \pm 0.05$ | 2 LEES | 12AF BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |

$-0.70 \pm 0.16 \pm 0.03 \quad 1$ AUBERT $\quad 09 \mathrm{C}$ BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -

$-0.96 \pm 0.25_{-0.16}^{+0.13}$	VERVINK	09	BELL	Repl. by KRONENBITTER 12
$-0.66 \pm 0.19 \pm 0.04$	${ }^{1}$ AUBERT	07BO	BABR	Repl. by AUBERT 09C
$-0.75 \pm 0.56 \pm 0.12$	MIYAKE	05	BELL	Repl. by VERVINK 09
$0.06 \pm 0.37 \pm 0.13$	${ }^{3}$ AUBERT	03Q	BABR	Repl. by AUBERT 07BO

${ }^{1}$ Assumes both $C P$-even and $C P$-odd states having the $C P$ asymmetry.
${ }^{2}$ Measured partially reconstructed candidates when one D^{0} meson is not excplicitely reconstructed. Analysis does not separate $C P$-even and $C P$-odd component.
${ }^{3}$ AUBERT 03Q reports $|\lambda|=0.75 \pm 0.19 \pm 0.02$ and $\operatorname{Im}(\lambda)=0.05 \pm 0.29 \pm 0.10$. We convert them to S and C parameters taking into account correlations.

$C_{+}\left(B^{0} \rightarrow D^{*+} D^{*=}\right)$
See the note in the $C_{\pi \pi}$ datablock, but for $C P$ even final state.

VALUE	DOCUMENTID TECN COMMENT
$\mathbf{0 . 0 0} \pm \mathbf{0 . 1 0}$ OUR AVE	ror includes scale factor of 1.6. See the ideogram below.
$-0.18 \pm 0.10 \pm 0.05$	1 KRONENBIT... 12 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$+0.15 \pm 0.09 \pm 0.04$	2 LEES 12AF BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
$0.00 \pm 0.12 \pm 0.02$	AUBERT 09C BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -	
$-0.05 \pm 0.14 \pm 0.02$	AUBERT 07bo BABR Repl. by AUBERT 09C
$0.06 \pm 0.17 \pm 0.03$	${ }^{3}$ AUBERT,BE 05A BABR Repl. by AUBERT 07B0
${ }^{1}$ Belle Collab. quotes $A_{D^{*+}} D^{*-}$ which is equal to $-C_{D^{*+}} D^{*-}$.	
${ }^{2}$ Measured partially reconstructed candidates when one D^{0} meson is not excplicitely reconstructed. Extracted under assumption of equal C_{+}and C_{-}.	
A	0.125

$S_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$
See the note in the $S_{\pi \pi}$ datablock, but for $C P$ even final state.
$\frac{V A L U E}{-0.73+0.09 \text { OUR AVERAGE DOCUMENT ID TECN COMMENT }}$
0.73 $\mathbf{0 . 0 9}$ OUR AVERAGE
$-0.81 \pm 0.13 \pm 0.03$
0.03

KRONENBIT... 12 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$-0.49 \pm 0.18 \pm 0.08 \quad 1$ LEES \quad 12AF BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.76 \pm 0.16 \pm 0.04 \quad$ AUBERT 09 C BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - • -
$-0.72 \pm 0.19 \pm 0.05 \quad$ AUBERT 07BO BABR Repl. by AUBERT 09C $-0.75 \pm 0.25 \pm 0.03 \quad 2$ AUBERT,BE 05A BABR Repl. by AUBERT 07BO ${ }^{1}$ Measured partially reconstructed candidates when one D^{0} meson is not excplicitely reconstructed. Analysis does not separate $C P$-even and $C P$-odd component. Value is obtained from $S=-0.34 \pm 0.12 \pm 0.05$ using $S=S_{+}\left(1-2 R_{\perp}\right)$ with $R_{\perp}=0.158 \pm 0.029$.
${ }^{2}$ AUBERT,BE 05A reports a $C P$-odd fraction $R_{\perp}=0.125 \pm 0.044 \pm 0.007$.
$C=\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$
See the note in the $C_{\pi \pi}$ datablock, but for $C P$ odd final state.
$\frac{V A L U E}{0.19 \pm 0.31 \text { OUR AVERAGE }}$
$0.05 \pm 0.39 \pm 0.08$
DOCUMENT ID TECN COMMENT
1 KRONENBIT... 12 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.41 \pm 0.49 \pm 0.08$
AUBERT 09C BABR $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. • - -
$0.23 \pm 0.67 \pm 0.10 \quad$ AUBERT 07Bo BABR Repl. by AUBERT 09C
$-0.20 \pm 0.96 \pm 0.11 \quad 2$ AUBERT,BE 05A BABR Repl. by AUBERT 07BO
${ }^{1}$ Belle Collab. quotes $A_{D^{*+}} D^{*-}$ which is equal to $-C_{D^{*+}} D^{*-}$.
${ }^{2}$ AUBERT,BE 05A reports a $C P$-odd fraction $\mathrm{R}_{\perp}=0.125 \pm 0.044 \pm 0.007$.
$S=\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$
See the note in the $S_{\pi \pi}$ datablock, but for $C P$ odd final state
VALUE DOCUMENT ID TECN COMMENT

$\mathbf{0 . 1} \pm \mathbf{1 . 6}$ OUR AVERAGE	Error includes scale factor of 3.5. $1.52 \pm 0.62 \pm 0.12$	KRONENBIT...12	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$-1.80 \pm 0.70 \pm 0.16$	AUBERT	09C BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - - •
$-1.83 \pm 1.04 \pm 0.23$ AUBERT 07Bo BABR Repl. by AUBERT 09C
$-1.75 \pm 1.78 \pm 0.22 \quad 1$ AUBERT,BE 05A BABR Repl. by AUBERT 07BO
${ }^{1}$ AUBERT,BE 05 A reports a $C P$-odd fraction $R_{\perp}=0.125 \pm 0.044 \pm 0.007$.
$C\left(B^{0} \Rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 0 1} \pm \mathbf{0 . 2 8} \pm \mathbf{0 . 0 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DALSENO } 07} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma(4 S)}$
${ }^{1}$ Reports value of A which is equal to $-C$.
$S\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.06 \pm 0.45 \pm 0.06$	1 DALSENO 07	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ This value includes an unknown $C P$ dilution factor D due to possible contributions from intermediate resonances and different partial waves.
$C_{D^{+} D^{-}}\left(B^{0} \rightarrow D^{+} D^{-}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 2 2} \pm \mathbf{0 . 2 4} \text { OUR AVERAGE }} \quad \frac{\text { DOCUMENT ID }}{\text { Error }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { See the ideogram below. }}$

$0.26_{-0.17}^{+0.18} \pm 0.02$	AAIJ	16AN LHCB $p p$ at $7,8 \mathrm{TeV}$		
$-0.43 \pm 0.16 \pm 0.05$	ROHRKEN	$12 \quad$ BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$-0.07 \pm 0.23 \pm 0.03$	AUBERT	09C BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$-0.91 \pm 0.23 \pm 0.06$	1 FRATINA	07	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

$\mathbf{- 0 . 7 6}_{-\mathbf{0 . 1 3}}^{\mathbf{+ 0 . 1 5}}$ OUR AVERAGE Error includes scale factor of 1.2.

${ }^{1}$ Time-dependent $C P$ violation is measured in the $B^{0} \rightarrow J / \psi \rho^{0}$ and was used to limit the size of penguin amplitude contributions to ϕ_{S} in $B_{S}^{0} \rightarrow J / \psi \phi$ decays to be between $\left[-1.05^{\circ}, 1.18^{\circ}\right]$ at 95% confidence level.
$S\left(B^{0} \Rightarrow J / \psi(1 S) \rho^{0}\right)$

VALUE	DOCU	TECN	COMMENT
$-0.66 \pm 0.13+0.09$	1 AAIJ	LHCB	$p p$ at 7, 8 TeV

${ }^{1}$ Time-dependent $C P$ violation is measured in the $B^{0} \rightarrow J / \psi \rho^{0}$ and was used to limit the size of penguin amplitude contributions to ϕ_{S} in $B_{S}^{0} \rightarrow J / \psi \phi$ decays to be between $\left[-1.05^{\circ}, 1.18^{\circ}\right]$ at 95% confidence level.
 $K_{S}^{0} \pi^{0}, K_{S}^{0} \omega$, and $h^{0}=\pi^{0}, \eta, \omega$.
$S_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{- 0 . 6 6} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 0 6} \quad 1$ ABDESSALAM $15 \quad e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.56 \pm 0.23 \pm 0.05 \quad$ AUBERT 07A」 BABR Repl. by ABDESSALAM 15
${ }^{1}$ BABAR and BELLE combined analysis uses $C P$-eigenstate decay modes $D^{0} \rightarrow K^{+} K^{-}$, $K_{S}^{0} \pi^{0}, K_{S}^{0} \omega$, and $h^{0}=\pi^{0}, \eta, \omega$.
$\underset{K_{K A L U E}^{0}}{C_{\text {V }}^{0}} \underset{\left(B^{0} \rightarrow K^{0} \pi^{0}\right)}{ }$
$\frac{\text { VALUE }}{\mathbf{0 . 0 0} \mathbf{\pm 0 . 1 3} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of }} \frac{\text { COMMENT }}{1.4}$
$\begin{array}{rcclll}-0.14 \pm 0.13 \pm 0.06 & 1 & \text { FUJIKAWA } & \text { 10A BELL } & e^{+} e^{-} \rightarrow r(4 S) \\ 0.13 \pm 0.13 \pm 0.03 & \text { AUBERT } & \text { 091 } & \text { BABR } & e^{+} e^{-} \rightarrow & r(4 S)\end{array}$
- • - We do not use the following data for averages, fits, limits, etc. • • •

$0.24 \pm 0.15 \pm 0.03$	AUBERT	08E	BABR	Repl. by AUBERT 09।
$0.05 \pm 0.14 \pm 0.05$	1	CHAO	07	BELL

${ }^{1}$ Reports A which is equal to $-C$.
${ }^{2}$ Corresponds to a $90 \% \mathrm{CL}$ interval of $-0.33<A_{C P}<0.64$.
${ }^{3}$ Based on a total signal yield of 122 ± 16 events.
$S_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$
$\frac{V A L U E}{0.58 \pm 0.17 \text { OUR AVERAGE }}$

| $0.67 \pm 0.31 \pm 0.08$ | FUJIKAWA \quad 10A BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | $0.55 \pm 0.20 \pm 0.03 \quad$ AUBERT 09। BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

$0.40 \pm 0.23 \pm 0.03$	AUBERT	08E	BABR	Repl. by AUBERT 09।
$0.33 \pm 0.35 \pm 0.08$	CHAO	07	BELL	Repl. by FUJIKAWA 10A
$0.35{ }_{-0.33}^{+0.30} \pm 0.04$	AUBERT	05Y	BABR	Repl. by AUBERT 08E
$0.32 \pm 0.61 \pm 0.13$	CHEN	05B	BELL	Repl. by CHAO 07
$0.48{ }_{-0.47}^{+0.38} \pm 0.06$	1 AUBERT,B	04M	BABR	Repl. by AUBERT 05Y

$C_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \Rightarrow \eta^{\prime}(958) K_{S}^{0}\right)$			
VALUE	DOCUMENTID	TECN	COMMENT
$\mathbf{- 0 . 0 4} \pm \mathbf{0 . 2 0}$ OUR AVERAGE Error includes scale factor of 2.5.			
$-0.21 \pm 0.10 \pm 0.02$	AUBERT	05m BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.19 \pm 0.11 \pm 0.05$	${ }^{1}$ CHEN	05B BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.26 \pm 0.22 \pm 0.03$	${ }^{1} \mathrm{ABE}$	03C BELL	Repl. by ABE 03H
$0.01 \pm 0.16 \pm 0.04$	${ }^{1}$ ABE	03H BELL	Repl. by CHEN 05B
$0.10 \pm 0.22 \pm 0.04$	AUBERT	03w BABR	Repl. by AUBERT 05m
$-0.13 \pm 0.32_{-0.09}^{+0.06}$	${ }^{1}$ CHEN	02B BELL	Repl. by ABE 03C
${ }^{1}$ BELLE Collab. quotes $A_{\eta^{\prime}(958)} K_{S}^{0}$ which is equal to $-C_{\eta^{\prime}(958)} K_{S}^{0}$			

$S_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)$

See updated measurements in $S_{\eta^{\prime} K^{0}}$

VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 4 3} \pm \mathbf{0 . 1 7}$ OUR AVERAGE Error includes scale factor of 1.5.			
$0.30 \pm 0.14 \pm 0.02$	AUBERT	05m BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.65 \pm 0.18 \pm 0.04$	CHEN	05B BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -			
$0.71 \pm 0.37{ }_{-0.06}^{+0.05}$	ABE	03C BELL	Repl. by ABE 03H
$0.43 \pm 0.27 \pm 0.05$	ABE	03H BELL	Repl. by CHEN 05B
$0.02 \pm 0.34 \pm 0.03$	AUBERT	03W BABR	Repl. by AUBERT 05m
$0.28 \pm 0.55{ }_{-0.08}^{+0.07}$	CHEN	02B BELL	Repl. by ABE 03C

Meson Particle Listings
B^{0}
$\boldsymbol{C}_{\boldsymbol{\eta}^{\prime} \boldsymbol{K}^{0}}\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}^{\mathbf{0}}\right)$
VALUE
$S_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)$

VALUE	DOCUMENT ID		TECN	COMMENT	
$\mathbf{0 . 6 3} \pm \mathbf{0 . 0 6}$ OUR AVERAGE					
$0.68 \pm 0.07 \pm 0.03$	SANTELJ	14	BELL	$e^{+} e^{-}$	$r(4 S)$
$0.57 \pm 0.08 \pm 0.02$	AUBERT	091	BABR	$e^{+} e^{-}$	$r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$0.58 \pm 0.10 \pm 0.03$	${ }^{1}$ AUBERT	07A	BABR	Repl. by	UUBERT 091
$0.64 \pm 0.10 \pm 0.04$	${ }^{1}$ CHEN	07	BELL	Repl. by	ANTELJ 14

${ }^{1}$ The mixing-induced $C P$ violation is reported with a significance of more than 5 standard deviations in this $b \rightarrow s$ penguin dominated mode.
$C_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)$
$\frac{V A L U E}{0.0 \pm 0.4 \text { OUR AVERAGE }}$
$0.36 \pm 0.19 \pm 0.05$
DOCUMENT ID TECN COMMENT
error includes scale factor of 3.0 .
${ }^{1}$ CHOBANOVA 14 BELL $e^{+} e^{-} \rightarrow r(4 S)$ AUBERT 091 BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.09 \pm 0.29 \pm 0.06 \quad 1$ CHAO 07 BELL Repl. by CHOBANOVA 14 $-0.55_{-0.26}^{+0.28} \pm 0.03$ AUBERT,B 06E BABR Repl. by AUBERT 09। $-0.27 \pm 0.48 \pm 0.15 \quad{ }^{1}$ CHEN $05 B$ BELL Repl. by CHAO 07 ${ }^{1}$ Belle Collab. quotes $A_{\omega} K_{S}^{0}$ which is equal to $-C_{\omega} K_{S}^{0}$.
$\underset{\substack{\text { Valus } \\ S_{S}^{0}}}{ }\left(B^{0} \rightarrow \omega K_{s}^{0}\right)$
$\overline{0.70} \pm \mathbf{0 . 2 1}$ OUR AVERAGE
$0.91 \pm 0.32 \pm 0.05$
$0.55_{-0.29}^{+0.26} \pm 0.02$

DOCUMENT ID \qquad TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

| $0.11 \pm 0.46 \pm 0.07$ | CHAO | 07 | BELL Repl. by CHOBANOVA 14 |
| :--- | :--- | :--- | :--- | :--- |
| 0.51 | | | |
| -0.35 | | | |
| -0.02 | AUBERT,B | $06 E$ | BABR Repl. by AUBERT 09। |
| $0.76 \pm 0.65_{-0.16}^{+0.13}$ | CHEN | $05 B$ | BELL Repl. by CHAO 07 |

$C\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)$
$=0.21 \pm 0.20$ OUR AVERAGE
DOCUMENT ID TECN COMMENT
-0.21 0.20 OUR AVERAGE
$0.28 \pm 0.21 \pm 0.04$
1 YUSA 19 BELL $e^{+} e^{-} \rightarrow r(4 S)$ AUBERT 07AQ BABR $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$
${ }^{1}$ Reports value of A which is equal to $-C$.
$\underset{\text { Value }}{S\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)}$
$0.89{ }_{-0.30}^{\mathbf{+ 0 . 2 7}}$ OUR AVERAGE
$0.92{ }_{-0.31}^{+0.27} \pm 0.11$
DOCUMENT ID TECN COMMENT
$0.72 \pm 0.71 \pm 0.08$
YUSA 19 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$C_{\rho^{\circ}} K_{s}^{0}\left(B^{0} \rightarrow \rho^{0} K_{s}^{0}\right)$
$\frac{V A L U E}{-0.04 \pm 0.20 \text { OUR AVERAGE }}$
$\begin{array}{lllll}-0.05 \pm 0.26 \pm 0.10 & 1 & \text { AUBERT } & \text { 09AU BABR } & e^{+} e^{-} \rightarrow r(4 S) \\ -0.03_{-0.23}^{+0.24} \pm 0.15 & 2,3 \text { DALSENO } & 09 & \text { BELL } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - • -

$$
0.64 \pm 0.41 \pm 0.20 \quad \text { AUBERT } \quad 07 \mathrm{~F} \text { BABR Repl. by AUBERT 09AU }
$$

${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent solutions is used.
${ }^{2}$ Quotes $A_{\rho^{0}(K S)^{0}}$ which is equal to $-C_{\rho^{0}} K_{S}^{0}$.
${ }^{3}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two consistent solutions that may be preferred.

$S_{f_{0}(980) K_{S}^{0}}\left(B^{0} \Rightarrow f_{0}(980) K_{S}^{0}\right)$
$\frac{V A L U E}{\mathbf{- 0 . 5 0} \pm \mathbf{0 . 1 6} \text { OUR AVERAGE DOCUMENT ID TECN COMMENT }}$
$-0.55 \pm 0.18 \pm 0.12 \quad 120$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.43_{-0.20}^{+0.22} \pm 0.14 \quad 2$ DALSENO 09 BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • - -
 solutions is used.
$S_{f_{X}(1300) K_{S}^{0}}\left(B^{0} \rightarrow f_{x}(1300) K_{S}^{0}\right)$

Value	DOCUMENT ID	TECN	COMMENT
-0.20 $\pm 0.52 \pm 0.10$	${ }^{1}$ AUBERT	09AU BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Uses Dalitz plot	$\rightarrow K^{0} \pi^{+}{ }_{\pi}$	decays and th	fir

${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent solutions is used.

1 Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalen solutions is used.	
$\mathcal{K}_{K_{s}^{0} K_{s}^{0}}\left(B^{0} \rightarrow K_{S}^{0} K_{s}^{0}\right)$	
${ }^{1}$ Reports $A_{\kappa_{S}^{0}} \kappa_{s}^{0}$ which equals to $-C_{\kappa_{S}^{0}} \kappa_{s}^{0}$.	
$S_{\kappa_{s}^{0}} \kappa_{s}^{0}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$	
$\frac{\text { Value }}{-0.8} \pm 0.5$ OUR AVERA	
${ }_{-0.38}+0.00^{0.77} \pm 0.09$ NAKAHAMA 08 beLL $e^{+} e^{-} \rightarrow r(45)$	
$C_{K^{+} K^{-} K_{s}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{s}^{0}\right.$ nonresonan	
0.06 ± 0.08	
0.02 ± 0.09 ± 0.03 1,2 LEES 120 BABR $0 .+e^{-} \rightarrow$ $(4 S)$ 0.14 +0.11 +0.09 3,4 NAKAHAMA 10 BELL $e^{+} e^{-} \rightarrow$	
$0.40 \pm 0.33{ }_{-0.10}^{00.28} \quad{ }^{3} \mathrm{ABE} \quad$ O3C BELL Repl. by ABE	
${ }^{2}$ This measurement is performed on all the isobar components, excluding $\phi \kappa_{S}^{0}$ and $f_{0}(980) \kappa \kappa_{S}^{0}$.	
${ }^{3}$ Qutes $A^{+}{ }^{+} K^{-} K_{s}^{0}$ which is equal to $-C^{+}{ }^{+} K^{-} K_{s}^{0}$.	
${ }^{4}$ Uses Dalitr plot analysis of $B^{0} \rightarrow \kappa_{S}^{0} \kappa^{+} \kappa^{-}$decays and the first of four consistent solutions that may be prefered.	
Xcludes the events from $B^{0} \rightarrow \phi \kappa_{S}^{0}$ decay. The results are derived from a combined	

$S_{K^{+} K^{-} K_{s}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ nonresonant)
VALUE DOCUMENT ID TECN COMMENT

-0.66	土 0.11	OUR AVERAGE				
-0.65	± 0.12	± 0.03	1,2			
LEES	120 BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$			

$-0.68 \pm 0.15 \underset{-0.13}{+0.21} \quad{ }^{3} \mathrm{CHAO} \quad 07 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

$-0.764 \pm 0.111_{-0.040}^{+0.071}$	3,4 AUBERT	07AX BABR	Repl. by LEES 120
$-0.42 \pm 0.17 \pm 0.03$	3,5 AUBERT	05 T BABR	Repl. by AUBERT 07AX
$-0.49 \pm 0.18 \pm 0.04$	CHEN	05B BELL	Repl. by CHAO 07
$-0.56 \pm 0.25 \pm 0.04$	3,6 AUBERT,B	04 V BABR	Repl. by AUBERT 05T
$-0.49 \pm 0.43 \pm 0.11$	ABE	03C BELL	Repl. by ABE 03H
$-0.51 \pm 0.26 \pm 0.05$	3,7 ABE	03H BELL	Repl. by CHEN 05B

${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decay.
${ }^{2}$ This measurement is performed on all the isobar components, excluding ϕK_{S}^{0} and $f_{0}(980) K_{S}^{0}$. Note that the nonresonant component is not a $C P$ eigenstate.
${ }^{3}$ Excludes events from $B^{0} \rightarrow \phi K_{S}^{0}$ decay. The results are derived from a combined sample of $K^{+} K^{-} K_{S}^{0}$ and $K^{+} K^{-} K_{L}^{0}$ decays.
${ }^{4}$ Reports $\beta_{\text {eff }}$. We quote S obtained from epaps: E-PRLTAO-99-076741.
${ }^{5}$ The measured $C P$-even final states fraction is $0.89 \pm 0.08 \pm 0.06$.
${ }^{6}$ The measured $C P$-even final states fraction is $0.98 \pm 0.15 \pm 0.04$.
7 The measured $C P$-even final states fraction is $1.03 \pm 0.15 \pm 0.05$.
$C_{K+K} K_{S}^{0}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ inclusive)
$\frac{V A L U E}{\mathbf{0 . 0 1 5} \mathbf{\pm} \mathbf{0 . 0 7 7} \mathbf{\pm 0 . 0 5 3}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { O7AX }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)}{}$
${ }^{1}$ Measured using full Dalitz plot fit including ϕ component.
${ }^{2}$ The results are derived from a combined sample of $K^{+} K^{-} K_{S}^{0}$ and $K^{+} K^{-} K_{L}^{0}$ decays.

$$
\begin{aligned}
& S_{K^{+} K^{-} K_{s}^{0}}\left(B^{0} \rightarrow K^{+} K^{-} K_{s}^{0}\right. \text { inclusive) } \\
& \text { VALUE DOCUMENT ID TECN COMMENT } \\
& \mathbf{- 0 . 6 4 7} \pm \mathbf{0 . 1 1 6} \pm \mathbf{0 . 0 4 0} \quad 1 \text { AUBERT } \quad 07 \mathrm{AX} \text { BABR } \xrightarrow[e^{+} e^{-} \rightarrow r(4 S)]{ } \\
& { }^{1} \text { Measured using full Dalitz plot fit including } \phi \text { component. }
\end{aligned}
$$

$C_{\phi K_{S}^{0}}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
0.01 ± 0.14 OUR AVERAGE			
$0.05 \pm 0.18 \pm 0.05$	1 LEES	120 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$-0.04 \pm 0.20 \pm 0.10$	2,3 NAKAHAMA	10 BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$0.08 \pm 0.18 \pm 0.04$	2,4 AUBERT	07AX BABR	Repl. by LEES 120
$-0.07 \pm 0.15 \pm 0.05$	2,4 CHEN	07 BELL	Repl. by NAKAHAMA 10
$0.00 \pm 0.23 \pm 0.05$	${ }^{4}$ AUBERT	05T BABR	Repl. by AUBERT 07ax
$-0.08 \pm 0.22 \pm 0.09$	2,4 CHEN	05B BELL	Repl. by CHEN 07
$0.01 \pm 0.33 \pm 0.10$	${ }^{4}$ AUBERT,B	04G BABR	Repl. by AUBERT 05T
$0.56 \pm 0.41 \pm 0.16$	${ }^{2} \mathrm{ABE}$	03C BELL	Repl. by ABE 03H
$0.15 \pm 0.29 \pm 0.07$	${ }^{2} \mathrm{ABE}$	03H BELL	Repl. by CHEN 05B
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decay.			
${ }^{2}$ Quotes $A_{\phi} K_{S}^{0}$ which is equal to $-C_{\phi} K_{S}^{0}$			
${ }^{3}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays and the first of four consistent solutions that may be preferred.			
${ }^{4}$ Result combines B-meson final states ϕK_{S}^{0} and ϕK_{L}^{0} by assuming $S_{\phi K_{S}^{0}}=-S_{\phi K_{L}^{0}}$			

$\underset{\substack{ \\S_{\phi K_{S}^{0}}}}{ }\left(B^{0} \Rightarrow \phi K_{S}^{0}\right)$
0.59 ± 0.14 OUR AVERAGE
$\begin{array}{llllll}0.66 \pm 0.17 \pm 0.07 & 1 & \text { LEES } & 120 & \text { BABR } & e^{+} e^{-} \rightarrow \gamma(4 S) \\ 0.50 \pm 0.21 \pm 0.06 & 2 & \text { CHEN } & 07 & \text { BELL } & e^{+} e^{-} \rightarrow \gamma(4 S)\end{array}$
$\begin{array}{rl}0.50 \pm 0.21 \pm 0.06 & 2 \\ \bullet & \text { CHEN } \quad \text { We do not use the following data for averages, fits, limits, etc. } e^{+} e^{-} \rightarrow \\ \bullet\end{array}$
$0.21 \pm 0.26 \pm 0.11 \quad 2,3$ AUBERT 07AX BABR Repl. by LEES 120
$0.50 \pm 0.25_{-0.04}^{+0.07} \quad 2$ AUBERT 05T BABR Repl. by AUBERT 07AX
$0.08 \pm 0.33 \pm 0.09 \quad 2$ CHEN 05B BELL Repl. by CHEN 07
$0.47 \pm 0.34_{-0.06}^{+0.08} \quad 2$ AUBERT,B 04 G BABR Repl. by AUBERT 05T
$-0.73 \pm 0.64 \pm 0.22$ ABE 03C BELL Repl. by ABE 03H
$-0.96 \pm 0.50_{-0.11}^{+0.09} \quad$ ABE 03 H BELL Repl. by CHEN 05B
${ }^{1}$ Uses Dalitz plot analysis of the $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decay.
${ }^{2}$ Result combines B-meson final states ϕK_{S}^{0} and ϕK_{L}^{0} by assuming $S_{\phi K_{S}^{0}}=-S_{\phi K_{L}^{0}}$
${ }^{3}$ Reports $\beta_{\text {eff }}$. We quote S obtained from epaps: E-PRLTAO-99-076741.
$C_{K_{S}} K_{S} K_{\boldsymbol{S}}\left(B^{0} \Rightarrow K_{\boldsymbol{S}} \boldsymbol{K}_{\boldsymbol{S}} \boldsymbol{K}_{\boldsymbol{S}}\right)$
-0.23 ± 0.14 OUR AVERAGE

$-0.17 \pm 0.18 \pm 0.04$	LEES	121	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$-0.31 \pm 0.20 \pm 0.07$	1	CHEN	07	BELL	$e^{+} e^{-} \rightarrow$

- - We do not use the following data for averages, fits, limits, etc. - • •

$0.02 \pm 0.21 \pm 0.05$	AUBERT	07AT BABR	Repl. by LEES 12।	
$-0.34_{-0.25}^{+0.28} \pm 0.05$	AUBERT,B	05	BABR	Repl. by AUBERT 07AT
$-0.54 \pm 0.34 \pm 0.09$	1 SUMISAWA	05	BELL	Repl. by CHEN 07

${ }^{1}$ Belle Collab. quotes $A_{K_{S}} K_{S} K_{S}$ which is equal to $-C_{K_{S}} K_{S} K_{S}$.
$S_{K_{\boldsymbol{S}}} K_{\boldsymbol{S}} K_{\boldsymbol{S}}\left(B^{0} \Rightarrow K_{\boldsymbol{S}} K_{\boldsymbol{S}} K_{\boldsymbol{S}}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 5} \mathbf{0 . 6} \text { OUR AVERAGE Error includes ID }} \frac{\text { DECN }}{\text { COMMENT }}$
$\mathbf{- 0 . 5} \pm \mathbf{0 . 6}$ OUR AVERAGE Error includes scale factor of 3.0.
$-0.94_{-0.21}^{+0.24} \pm 0.06 \quad$ LEES \quad 121 BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.30 \pm 0.32 \pm 0.08 \quad$ CHEN $07 \mathrm{BELL} e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - .
$-0.71 \pm 0.24 \pm 0.04$ AUBERT 07AT BABR Repl. by LEES 12।
$-0.71_{-0.32}^{+0.38} \pm 0.04$ AUBERT,B 05 BABR Repl. by AUBERT 07AT $1.26 \pm 0.68 \pm 0.20$ SUMISAWA 05 BELL Repl. by CHEN 07.
$C_{K_{S}^{0} \pi^{0} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{0 . 3 6} \pm \mathbf{0 . 3 3} \pm \mathbf{0 . 0 4} \quad 1$ AUBERT 08 BA BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -

$0.20 \pm 0.20 \pm 0.06$	2,3 USHIRODA	06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$-1.0 \pm 0.5 \pm 0.2$	${ }^{1}$ AUBERT,B	05P	BABR	Repl. by AUBERT 08BA
$-0.03 \pm 0.34 \pm 0.11$	3 USHIRODA	05	BELL	Repl. by USHIRODA 06
${ }^{1}$ Requires $1.1<M_{K_{S}^{0}} \pi^{0}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.				
${ }^{2} \text { Requires } M_{K_{S}^{0} \pi^{0}}<1.8 \mathrm{GeV} / \mathrm{c}^{2} \text {. }$				
${ }^{3}$ Reports $A_{K_{S}^{0}} \pi^{0} \gamma$, which	is $-C_{K_{S}^{0} \pi^{0}} \gamma^{\text {. }}$			

Meson Particle Listings
B^{0}
$S_{K_{S}^{0} \pi^{0} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 7 8} \pm \mathbf{0 . 5 9} \pm \mathbf{0 . 0 9}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 08BA }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

1 AUBERT 08BA BABR $e^{+} e^{-} \rightarrow r(4 S$

- - We do not use the following data for averages, fits, limits, etc. - -

$-0.10 \pm 0.31 \pm 0.07$	2 USHIRODA	06	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$0.9 \pm 1.0 \pm 0.2$	${ }^{1}$ AUBERT,B	05P	BABR	Repl. by AUBERT 08BA
$-0.58_{-0.38}^{+0.46} \pm 0.11$	USHIRODA	05	BELL	Repl. by USHIRODA 06
${ }^{1}$ Requires $1.1<M_{K_{S}^{0} \pi^{0}}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.				
${ }^{2}$ Requires $M_{K_{S}^{0} \pi^{0}}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.				
$C_{K_{S}^{0} \pi^{+} \pi^{-} \gamma^{\prime}}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \gamma\right)$				

VALUE DOCUMENTID TECN COMMENT
$\mathbf{- 0 . 3 9} \pm \mathbf{0 . 2 0} \mathbf{= 0 . 0 2} \mathbf{0 . 0 3} \quad 1$ DEL-AMO-SA.. 16 BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{c}^{2}, 0.6 \mathrm{GeV} / \mathrm{c}^{2}<m_{\pi^{+} \pi^{-}}<0.9 \mathrm{GeV} / \mathrm{c}^{2}, m_{K \pi}<$ $0.845 \mathrm{GeV} / \mathrm{c}^{2}$ or $m_{K \pi}>0.945 \mathrm{GeV} / \mathrm{c}^{2}$.
$S_{K_{S}^{0} \pi^{0} \pi^{-} \gamma}\left(B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \gamma\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 1 4} \pm \mathbf{0 . 2 5} \pm \mathbf{0 . 0 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..16 }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Requires $M K \pi \pi<1.8 \mathrm{GeV} / \mathrm{c}^{2}, 0.6 \mathrm{GeV} / \mathrm{c}^{2}<m_{\pi^{+}} \pi^{-}<0.9 \mathrm{GeV} / \mathrm{c}^{2}, m_{K \pi}<$
$0.845 \mathrm{GeV} / \mathrm{c}^{2}$ or $m_{K \pi}>0.945 \mathrm{GeV} / \mathrm{c}^{2}$ $0.845 \mathrm{GeV} / \mathrm{c}^{2}$ or $m_{K \pi}>0.945 \mathrm{GeV} / \mathrm{c}^{2}$.
$C_{K^{*}(892)^{0}{ }_{\gamma}}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.04 ± 0.16 OUR AVERAGE	Error includes scale factor of 1.2.		
$-0.14 \pm 0.16 \pm 0.03$	${ }^{1}$ AUBERT	08BA BABR	$e^{+} e^{-}$
$0.20 \pm 0.24 \pm 0.05$	1,2 USHIRODA	06 BELL	$e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -			
$-0.40 \pm 0.23 \pm 0.03$	AUBERT, B	05P BABR	Repl. by
$-0.57 \pm 0.32 \pm 0.09$	${ }^{3}$ AUBERT, B	$04 z$ BABR	Repl. by
${ }^{1}$ Requires $0.8<M_{K_{S}^{0}} \pi^{0}<1.0 \mathrm{GeV} / \mathrm{c}^{2}$.			
${ }^{2}$ Reports value of A which is equal to $-C$.			
${ }^{3}$ Based on a total signal of 105 ± 14 events with $K^{*}(892)^{0} \rightarrow K_{S}^{0} \pi^{0}$ only.			
$S_{K^{*}(892)^{0} \gamma_{\gamma}}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT

-0.15 ± 0.22 OUR AVERAGE

$-0.03 \pm 0.29 \pm 0.03$	1 AUBERT	08BA BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.32+0.36$			
-0.33			

- - We do not use the following data for averages, fits, limits, etc. - - -

$S\left(B^{0} \rightarrow K_{S}^{0} \rho^{0} \gamma\right)$
-0.04 ± 0.23 OUR AVERAGE
$-0.18 \pm 0.32_{-0.05}^{+0.06}$
$0.11 \pm 0.33^{+0.05}$
DOCUMENT ID TECN COMMENT

08F BELL $e^{+} e^{\rightarrow} r(4 S)$
Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{c}^{2}, 0.6 \mathrm{GeV} / \mathrm{c}^{2}<m_{\pi^{+} \pi^{-}}<0.9 \mathrm{GeV} / \mathrm{c}^{2}, m_{K \pi}<$
$0.845 \mathrm{GeV} / \mathrm{c}^{2}$ or $m_{K \pi}>0.945 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Requires $M_{K \pi \pi}<1.8 \mathrm{GeV} / \mathrm{c}^{2}$.
$\underset{\text { VALUE }}{C\left(B^{0} \rightarrow \rho^{0} \gamma\right)}$
$\begin{array}{llll}\boldsymbol{C}\left(B^{0} \rightarrow \boldsymbol{\rho} \boldsymbol{\gamma}\right) \\ \mathbf{0 . 4 4} \pm \mathbf{0 . 4 9} \pm \mathbf{0 . 1 4} & \frac{\text { DOCUMENT ID }}{1} \quad \frac{\text { TECN }}{\text { USHIRODA } 08} \frac{\text { COMMENT }}{\text { BELL }} & e^{+} e^{-} \rightarrow \gamma(4 S)\end{array}$
${ }^{1}$ Reports value of A which is equal to $-C$.

$S\left(B^{0} \rightarrow \rho^{0} \gamma\right)$				
VALUE	DOCUMENT ID		TECN	N COMMENT
$-0.83 \pm 0.65 \pm 0.18$	USHIRODA	08	8 BELL	$\mathrm{L} e^{+} e^{-} \rightarrow \gamma(4 S)$
$C_{\pi \pi}\left(B^{0} \rightarrow \pi^{+} \pi^{=}\right)$				
$C_{\pi \pi}$ is defined as $\left(1-\|\lambda\|^{2}\right) /\left(1+\|\lambda\|^{2}\right)$, where the quantity $\lambda=q / p \bar{A}_{f} / A_{f}$ is a phase convention independent observable quantity for the final state f. For details, see the review on " $C P$ Violation" in the Reviews section.				
VALUE	DOCUMENT ID		TECN CO	COMMENT
-0.32 ± 0.04 OUR AVERAGE				
$-0.34 \pm 0.06 \pm 0.01$	AAIJ	180 L	LHCB p	$p p$ at $7,8 \mathrm{TeV}$
$-0.38 \pm 0.15 \pm 0.02$	AAIJ	13 BO	LHCB p	$p p$ at 7 TeV
$-0.33 \pm 0.06 \pm 0.03$	1 DALSENO	13 B	BELL e^{+}	$e^{+} e^{-} \rightarrow r(4 S)$
$-0.25 \pm 0.08 \pm 0.02$	LEES	13D B	BABR e	$e^{+} e^{-} \rightarrow \gamma(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$-0.21 \pm 0.09 \pm 0.02$	AUBERT	07af B	BABR R	Repl. by LEES 13D
$-0.55 \pm 0.08 \pm 0.05$	${ }^{1}$ ISHINO	07	BELL R	Repl. by DALSENO 13
$-0.56 \pm 0.12 \pm 0.06$	${ }^{1} \mathrm{ABE}$	05D B	BELL R	Repl. by ISHINO 07
$-0.09 \pm 0.15 \pm 0.04$	AUBERT,BE	05	BABR R	Repl. by AUBERT 07af
$-0.58 \pm 0.15 \pm 0.07$	${ }^{1} \mathrm{ABE}$	04E	BELL R	Repl. by ABE 05D
$-0.77 \pm 0.27 \pm 0.08$	${ }^{1} \mathrm{ABE}$	03G B	BELL R	Repl. by ABE 04E.
$-0.94{ }_{-0.25}^{+0.31} \pm 0.09$	${ }^{1} \mathrm{ABE}$	02M B	BELL R	Repl. by ABE 03G
$-0.25_{-0.47}^{+0.45} \pm 0.14$	2 AUBERT	02D B	BABR R	Repl. by AUBERT 02Q
$-0.30 \pm 0.25 \pm 0.04$	${ }^{3}$ AUBERT	02Q B	BABR R	Repl. by AUBERT,BE 05
${ }^{1}$ Paper reports $A_{\pi \pi}$ which equals to $-C_{\pi \pi}$.				
${ }^{2}$ Corresponds to 90% confidence range $-1.0<C_{\pi \pi}<0.47$.				
${ }^{3}$ Corresponds to 90% confidence range $-0.72<C_{\pi \pi}<0.12$.				

VALUE
$=0.65 \pm 0.04$ OUR AVERAGE
$-0.63 \pm 0.05 \pm 0.01$
$-0.64 \pm 0.08 \pm 0.03 \quad 1$ AAIJ 13 BOLHCB $p p$ at 7 TeV
$-0.68 \pm 0.10 \pm 0.03 \quad$ LEES 13D BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • - -
$-0.60 \pm 0.11 \pm 0.03$ AUBERT 07AF BABR Repl. by LEES 13D
$-0.61 \pm 0.10 \pm 0.04 \quad$ ISHINO 07 BELL Repl. by DALSENO 13
$-0.67 \pm 0.16 \pm 0.06 \quad 2 \mathrm{ABE} \quad$ 05D BELL Repl. by ISHINO 07
$-0.30 \pm 0.17 \pm 0.03 \quad$ AUBERT,BE 05 BABR Repl. by AUBERT 07AF
$-1.00 \pm 0.21 \pm 0.07 \quad 3 \mathrm{ABE} \quad 04 \mathrm{E}$ BELL Repl. by ABE 05D
$-1.23 \pm 0.41_{-0.07}^{+0.08} \quad \mathrm{ABE} \quad$ 03G BELL Repl. by ABE 04E.
$-1.21_{-0.27}^{+0.38+0.16} \quad$ ABE $\quad 02 \mathrm{M}$ BELL Repl. by ABE 03G
$0.03_{-0.56}^{+0.52} \pm 0.11 \quad 4$ AUBERT 02D BABR Repl. by AUBERT 02Q
$0.02 \pm 0.34 \pm 0.05 \quad 5$ AUBERT 02Q BABR Repl. by AUBERT,BE 05
${ }^{1}$ An isospin analysis using other BELLE measurements, disfavors the region of $23.8^{\circ}<$ $\phi_{2}<66.8^{\circ}$ at 68% CL.
${ }^{2}$ Rule out the $C P$-conserving case, $C_{\pi \pi}=S_{\pi \pi}=0$, at the 5.4 sigma level.
${ }^{3}$ Rule out the $C P$-conserving case, $C_{\pi \pi}=S_{\pi \pi}=0$, at the 5.2 sigma level.
${ }^{4}$ Corresponds to 90% confidence range $-0.89<S_{\pi \pi}<0.85$.
${ }^{5}$ Corresponds to 90% confidence range $-0.54<S_{\pi \pi}<0.58$.

$C_{\pi^{0} \pi^{0}}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
－0．33 ± 0.22 OUR AVERAGE			
$-0.14 \pm 0.36 \pm 0.10$	1 JULIUS	17 BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$-0.43 \pm 0.26 \pm 0.05$	LeES	13D BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－			
$-0.49 \pm 0.35 \pm 0.05$	AUBERT	07bC BABR R	Repl．by LEES 13D
$-0.12 \pm 0.56 \pm 0.06$	${ }^{2}$ AUBERT	05L BABR	Repl．by AUBERT 07bC
$-0.44{ }_{-0.53}^{+0.52} \pm 0.17$	${ }^{1} \mathrm{CHAO}$	05 BELL	Repl．by JULIUS 17
${ }^{1}$ BELLE Collab．quotes $A_{\pi^{0}} \pi^{0}$ which is equal to $-C_{\pi^{0} \pi^{0}}$ ． ${ }^{2}$ Corresponds to a $90 \% \mathrm{CL}$ interval of $-0.88<A_{C P}<0.64$ ．			
$C_{\rho \pi}\left(B^{0} \Rightarrow \rho^{+} \pi^{-}\right)$			
value	DOCUMENT ID	TECN	COMMENT
－0．03 ± 0.07 OUR AVERAGE Error includes scale factor of 1．2．			
$0.016 \pm 0.059 \pm 0.036$	${ }^{1}$ LEES	13」 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$\begin{array}{ll}-0.13 \pm 0.09 \pm 0.05 \quad 1 \text { KUSAKA } 07 \mathrm{BELL} e^{+} e^{-} \rightarrow & r(4 S)\end{array}$			
－－We do not use the following data for averages，fits，limits，etc．－－•			
$0.15 \pm 0.09 \pm 0.05$	AUBERT	07AA BABR	Repl．by LEES 13」
$0.25 \pm 0.17{ }_{-0.06}^{+0.02}$	WANG	05 BELL	Repl．by KUSAKA 07
$0.36 \pm 0.18 \pm 0.04$	AUBERT	03t BABR R	Repl．by AUBERT 07AA
${ }^{1}$ Uses time－dependent Dalitz plot analysis of $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays．			
$S_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$			
$\frac{\text { VALUE }}{0.05} \pm 0.07$ OUR AVERAGE \qquad TECN COMMENT			
$0.053 \pm 0.081 \pm 0.034$	${ }_{1}^{1}$ LEES	13」 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.06 \pm 0.13 \pm 0.05$	${ }^{1}$ KUSAKA	07 BELL e^{+}	$e^{+} e^{-} \rightarrow{ }^{(4 S)}$
－－We do not use the following data for averages，fits，limits，etc．－－			
$-0.03 \pm 0.11 \pm 0.04$	AUBERT	07AA BABR	Repl．by LEES 13」
$-0.28 \pm 0.23{ }_{-0.08}^{+0.10}$	WANG	05 BELL	Repl．by KUSAKA 07
$0.19 \pm 0.24 \pm 0.03$	AUBERT	03t BABR	Repl．by AUBERT 07AA
${ }^{1}$ Uses time－dependent Dalitz plot analysis of $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays．			
$\Delta C_{\rho \pi}\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)$			
$\Delta C_{\rho \pi}$ describes the asymmetry between the rates Γ			
$\left.\rho^{-} \pi^{+}\right)$and $\Gamma\left(B^{0} \rightarrow \rho^{-} \pi^{+}\right)+\Gamma\left(\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}\right)$.			
value	DOCUMENT ID	TECN	COMMENT
0.27 ± 0.06 OUR AVERAGE			
$0.234 \pm 0.061 \pm 0.048$	${ }^{1}$ LEES	13」 BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.36 \pm 0.10 \pm 0.05$	${ }^{1}$ KUSAKA	07 BELL ${ }^{+}$	$e^{+} e^{-} \rightarrow \gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.39 \pm 0.09 \pm 0.09$	AUBERT	07AA BABR	Repl．by LEES 13」
$0.38 \pm 0.18{ }_{-0.04}^{+0.02}$	WANG	05 BELL	Repl．by KUSAKA 07
$0.28{ }_{-0.19}^{+0.18} \pm 0.04$	AUBERT	03T BABR	Repl．by AUBERT 07AA
${ }^{1}$ Uses time－dependent Dalitz plot analysis of $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays．			
$\Delta S_{\rho \pi}$ is related to the strong phase difference between the amplitudes contributin to $B^{0} \rightarrow \rho^{+} \pi^{-}$．			
$\qquad$$\qquad$ TECN COMMENT			
$0.054 \pm 0.082 \pm 0.039$	${ }^{1}$ LEES	13J BABR	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$-0.08 \pm 0.13 \pm 0.05$	${ }^{1}$ KUSAKA	07 BELL e	$e^{+} e^{-} \rightarrow \gamma(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－．			
$-0.01 \pm 0.14 \pm 0.06$	AUBERT	07AA BABR R	Repl．by LEES 13J
$-0.30 \pm 0.24 \pm 0.09$	WANG	05 BELL	Repl．by KUSAKA 07
$0.15 \pm 0.25 \pm 0.03$ AUBERT 03T BABR Repl．by AUBERT 07AA			
${ }^{1}$ Uses time－dependent Dalitz plot analysis of $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays．			
$C_{\rho^{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)$			
VALUE $0.27 \pm \mathbf{0 . 2 4}$ OUR AVERAGE	DOCUMENT ID TECN		COMMENT
$0.19 \pm 0.23 \pm 0.15$	${ }^{1}$ LEES	13」 BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.49 \pm 0.36 \pm 0.28$	1，2 KUSAKA	07 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－．			
$-0.10 \pm 0.40 \pm 0.53$	AUBERT	07AA BABR	Repl．by LEES 13」
$0.53_{-0.84}^{+0.67}+0.10$	2 DRAGIC	06 BELL	Repl．by KUSAKA 07
${ }^{1}$ Uses time－dependent Dalitz plot analysis of $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays． ${ }^{2}$ Quotes $A_{\rho^{0} \pi^{0}}$ which is equal to $-C_{\rho^{0} \pi^{0}}$ ．			
$S_{\rho^{0} \pi^{0}}\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)$			
$\underline{\text { VALUE }}$－0．23 ± 0.34 OUR AVERAGE	DOCUMENT ID TECN		COMMENT
			－0．23 ± 0.34 OUR AVERAGE
$-0.37 \pm 0.34 \pm 0.20$	${ }^{1}$ LEES	13）BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.17 \pm 0.57 \pm 0.35$	1 KUSAKA	07 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.04 \pm 0.44 \pm 0.18$	AUBERT	07AA BABR	Repl．by LEES 13」
${ }^{1}$ Uses time－dependent Dalitz	plot analysis of	${ }^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	0 decays．

Meson Particle Listings
B^{0}

${ }^{1}$ Analyzes joint data sample of Belle and BaBar using Dalitz plot analysis of $D \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$; the second error combines experimental systematic uncertainty and the Dalitz plot model uncertainty.
${ }_{2}^{2}$ A model-independent measurement uses the binned Dalitz plot technique.
${ }^{3}$ AUBERT 07BH evaluates the likelihoods for the positive and negative solutions assuming $\sin \left(2 \beta_{e f f}\right)=0.678$. It quotes $\mathrm{L}_{+} /\left(\mathrm{L}_{+}+\mathrm{L}_{-}\right)=0.86$ corresponding to a likelihood ratio of $\mathrm{L}_{+} / \mathrm{L}_{-}=6.14$ in favor of the positive solution.
${ }^{4}$ KROKOVNY 06 evaluates the likelihoods for the positive and negative solutions assuming $\sin \left(2 \beta_{\text {eff }}\right)=0.689$. It quotes $\mathrm{L}_{+} /\left(\mathrm{L}_{+}+\mathrm{L}_{-}\right)=0.983$ corresponding to a likelihood ratio of $L_{+} / L_{-}=57.8$ in favor of the positive solution.
$\left(\mathbf{S}_{+}+\mathbf{S}_{-}\right) / 2\left(\boldsymbol{B}^{0} \rightarrow D^{*-} \boldsymbol{\pi}^{+}\right)$
$\mathrm{S}_{ \pm}=-\frac{2 \operatorname{Im}\left(\lambda_{ \pm}\right)}{1+\left|\lambda_{ \pm}\right|^{2}}$ where λ_{+}and λ_{-}are defined in the $C_{\pi \pi}$ datablock above for $B^{0} \rightarrow D^{*-} \pi^{+}$and $\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$.

DOCUMENT ID - TECN COMMENT
$-\mathbf{0 . 0 3 9} \pm \mathbf{0 . 0 1 1}$ OUR AVERAGE

$-0.046 \pm 0.013 \pm 0.015$	1	BAHINIPATI	11	BELL	$e^{+} e^{-} \rightarrow$
$-0.040 \pm 0.023 \pm 0.010$	2	AUBERT	$06 Y$	BABR	$e^{+} e^{-} \rightarrow$

$-0.040 \pm 0.023 \pm 0.010 \quad{ }^{2}$ AUBERT $\quad 06 Y$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.034 \pm 0.014 \pm 0.009$
\bullet AUBERT \quad We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$-0.039 \pm 0.020 \pm 0.013 \quad 3$ RONGA 06 BELL Repl. by BAHINIPATI 11
$-0.030 \pm 0.028 \pm 0.018 \quad 1$ GERSHON 05 BELL Repl. by RONGA 06
$-0.068 \pm 0.038 \pm 0.020 \quad 2$ AUBERT 04 V BABR Repl. by AUBERT $06 Y$
$-0.063 \pm 0.024 \pm 0.014 \quad 1$ AUBERT $\quad 04 \mathrm{w}$ BABR Repl. by AUBERT 05z $0.060 \pm 0.040 \pm 0.019 \quad 2$ SARANGI 04 BELL Repl. by RONGA 06
${ }^{1}$ Uses partially reconstructed $B^{0} \rightarrow D^{* \pm} \pi^{\mp}$ decays.
${ }^{2}$ Uses fully reconstructed $B^{0} \rightarrow D^{* \pm} \pi^{\mp}$ decays.
${ }^{3}$ Combines the results from fully reconstructed and partially reconstructed $D^{*} \pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.
$\left(S_{-}-S_{+}\right) / 2\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)$

$\left(\mathrm{S}_{-}-\mathrm{S}_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 2 2} \pm \mathbf{0 . 0 2 1} \text { OUR AVERAGE DOCUMENT ID TECN COMMENT }}$
$-0.033 \pm 0.042 \pm 0.012 \quad 1$ AUBERT $06 Y$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.019 \pm 0.021 \pm 0.012 \quad 2$ RONGA $06 \mathrm{BELL} e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -
$0.025 \pm 0.068 \pm 0.033 \quad 1$ AUBERT 04 V BABR Repl. by AUBERT 06Y $-0.025 \pm 0.037 \pm 0.018 \quad 1$ SARANGI 04 BELL Repl. by RONGA 06
${ }^{1}$ Uses fully reconstructed $B^{0} \rightarrow D^{ \pm} \pi^{\mp}$ decays.
${ }^{2}$ Combines the results from fully reconstructed and partially reconstructed $D \pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.
$\mathbf{S}_{+}\left(\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{D}^{-} \boldsymbol{\pi}^{+}\right)$

VALUE

$\mathbf{0 . 0 5 8} \pm \mathbf{0 . 0 2 0} \pm \mathbf{0 . 0 1 1}$

${ }^{1}$ Measured in the simultaneous analysis of $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$decays. AAIJ 18 z reports a
\quad Statistical (systematic) correlation of $0.6(-0.41)$ with the measured value of $\mathrm{S}_{-}\left(B^{0} \rightarrow\right.$
$\left.D^{+} \pi^{-}\right)$.
$S_{-}\left(B^{0} \rightarrow D^{+} \pi^{-}\right)$
$\frac{V A L U E}{\mathbf{0 . 0 3 8} \pm \mathbf{0 . 0 2 0} \pm \mathbf{0 . 0 0 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{18 \mathrm{Z}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
 statistical (systematic) correlation of $0.6(-0.41)$ with the measured value of $S_{+}\left(B^{0} \rightarrow\right.$ $D^{-} \pi^{+}$).
$\left(\mathrm{S}_{+}+\mathrm{S}_{-}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)$

value	DOCUMENT ID		TECN	COMMENT	
-0.024 $\pm 0.031 \pm 0.009$	1 AUBERT	06Y	BABR	$e^{+} e^{-}$	$r(4 S)$
${ }^{1}$ Uses fully reconstru	$D^{-} \rho^{+}$decays.				

$\left(\mathrm{S}_{-}-\mathrm{S}_{+}\right) / 2\left(B^{0} \rightarrow D^{-} \rho^{+}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 9 8} \pm \mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 1 8}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{\text { COMMENT }}{}$
${ }^{1}$ Uses fully reconstructed $B^{0} \rightarrow D^{-} \rho^{+}$decays.
$C_{\eta_{c} K_{S}^{0}}\left(B^{0} \rightarrow \eta_{C} K_{S}^{0}\right)$
$\frac{V A L U E}{0.080 \pm 0.124 \pm 0.029}$

DOCUMENT ID	TECN	COMMENT
AUBERT	BABR	$e^{+} e^{-} \rightarrow r(4 S)$

$S_{\eta_{c} K_{S}^{0}}\left(B^{0} \rightarrow \eta_{c} K_{S}^{0}\right)$
$0.925 \pm 0.160 \pm 0.057$
$\frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 09 \mathrm{k}} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
$C_{c \boldsymbol{c} K^{(*) 0}}\left(B^{0} \rightarrow c \overline{\boldsymbol{c}} K^{(*) 0}\right)$
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE (units 10^{-2})	N DOCUMENTID	TECN	COMMENT	
0.5土 1.7 OUR EVALUATION				
0.0土 1.4 OUR				
-1.7 ± 2.9	1,2 AAIJ	17BN LHCB	$p p$ at $7,8 \mathrm{TeV}$	
$-0.6 \pm 1.6 \pm 1.2$	${ }^{3}$ ADACHI	12A BELL	$e^{+} e^{-} \rightarrow r(4 S)$	
$-29 \begin{aligned} & +53 \\ & -44\end{aligned}$	${ }^{4}$ AUBERT	09au BABR	$e^{+} e^{-} \rightarrow r(4 S)$	
$2.4 \pm 2.0 \pm 1.6$	${ }^{5}$ AUBERT	09k BABR	$e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - -

$-4 \pm 7 \pm 5$	${ }^{6}$ SAHOO	08	BELL	Repl. by ADACHI 12A
$4.9 \pm 2.3 \pm 1.8$	${ }^{5}$ AUBERT	07AY	BABR	Repl. by AUBERT 09k
$-1.8 \pm 2.1 \pm 1.4$	${ }^{7}$ CHEN	07	BELL	Repl. by ADACHI 12A
$-0.7 \pm 4.1 \pm 3.3$	${ }^{8} \mathrm{ABE}$	05B	BELL	Repl. by CHEN 07
$5.1 \pm 3.2 \pm 1.4$	${ }^{9}$ AUBERT	05F	BABR	Repl. by AUBERT 07AY
$5.1 \pm 5.1 \pm 2.6$	10 ABE	02z	BELL	Repl. by ABE 05B
$5.3 \pm 5.4 \pm 3.2$	11 AUBERT	02P	BABR	Repl. by AUBERT 05F

${ }^{1}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ with $J / \psi \rightarrow \mu^{+} \mu^{-}, J / \psi \rightarrow$ $e^{+} e^{-}$and $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$
${ }^{2}$ AAIJ 17BN provides the correlation coefficient $\rho=0.42$ between the uncertainties of $S_{B^{0} \rightarrow c \bar{c} K^{(*) 0}}\left(B^{0} \rightarrow c \bar{c} K^{(*) 0}\right)$ and $C_{c \bar{c} K^{(*) 0}}\left(B^{0} \rightarrow c \bar{c} K^{(*) 0}\right)$ measurements.
${ }^{3}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}, B^{0} \rightarrow J / \psi K_{L}^{0}$, and $B^{0} \rightarrow$ $\chi_{C 1}(1 P) K_{S}^{0}$ decays.
${ }^{4}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent 5 solutions is used.
${ }^{5}$ Measurement based on $B^{0} \rightarrow c \bar{C} K^{(*) 0}$ decays.
${ }^{6}$ Reports value of A of $B^{0} \rightarrow \psi(2 S) K^{0}$ which is equal to $-C$.
${ }^{7}$ Reports value of A of $B^{0} \rightarrow J / \psi K^{0}$ which is equal to $-C$.
${ }^{8}$ Measurement based on $152 \times 10^{6} B \bar{B}$ pairs.
${ }^{9}$ Measurement based on $227 \times 10^{6} B \bar{B}$ pairs.
10 Measured with both $\eta_{f}= \pm 1$ samples.
${ }^{11}$ Measured with the high purity of $\eta_{f}=-1$ samples.

$\sin (2 \beta)$

For a discussion of $C P$ violation, see the review on " $C P$ Violation" in the Reviews section. $\sin (2 \beta)$ is a measure of the $C P$-violating amplitude in the $B_{d}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
VALUE DOCUMENT ID _ TECN COMMENT
0.695 ± 0.019 OUR EVALUATION
$\mathbf{0 . 6 9 8} \mathbf{\pm 0 . 0 2 7}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
$0.760 \pm 0.034 \quad 1,2 \mathrm{AAIJ} \quad 17 \mathrm{BN}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.667 \pm 0.023 \pm 0.012 \quad{ }^{3} \mathrm{ADACHI} \quad 12 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.57 \pm 0.58 \pm 0.06 \quad 4$ SATO 12 BELL $e^{+} e^{-} \rightarrow r(5 S)$
$0.69 \pm 0.52 \pm 0.08 \quad{ }^{5}$ AUBERT \quad 09AU BABR $e^{+} e^{-} \rightarrow r(4 S)$

$0.687 \pm 0.028 \pm 0.012$		
1.56	± 0.42	± 0.21
0.79	+0.41 +0.44	
0.84	+0.82 +1.04	± 0.16
3.2	+1.8 -2.0	± 0.5

- - We do not use the following data for averages, fits, limits, etc. - - -

$0.72 \pm 0.09 \pm 0.03$	11 SAHOO	08	BELL	Repl. by ADACHI 12A
$0.714 \pm 0.032 \pm 0.018$	${ }^{6}$ AUBERT	07AY	BABR	Repl. by AUBERT 09k
$0.642 \pm 0.031 \pm 0.017$	CHEN	07	BELL	Repl. by ADACHI 12A
$0.728 \pm 0.056 \pm 0.023$	12 ABE	05B	BELL	Repl. by CHEN 07
$0.722 \pm 0.040 \pm 0.023$	13 AUBERT	05F	BABR	Repl. by AUBERT 07AY
$0.99 \pm 0.14 \pm 0.06$	14 ABE	02 U	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.719 \pm 0.074 \pm 0.035$	15 ABE	02 z	BELL	Repl. by ABE 05B
$0.59 \pm 0.14 \pm 0.05$	16 AUBERT	02N	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.741 \pm 0.067 \pm 0.034$	17 AUBERT	02P	BABR	Repl. by AUBERT 05F
$0.58 \begin{array}{cc} +0.32 & +0.09 \\ -0.34 & -0.10 \end{array}$	ABASHIAN	01	BELL	Repl. by ABE 01G
$0.99 \pm 0.14 \pm 0.06$	18 ABE	01 G	BELL	Repl. by ABE $02 z$
$0.34 \pm 0.20 \pm 0.05$	AUBERT	01	BABR	Repl. by AUBERT 01B
$0.59 \pm 0.14 \pm 0.05$	18 AUBERT	01B	BABR	Repl. by AUBERT 02p
$1.8 \pm 1.1 \pm 0.3$	19 ABE	98 U	CDF	Repl. by AFFOLDER 00c
${ }^{1}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ with $J / \psi \rightarrow \mu^{+} \mu^{-}, J / \psi$				

${ }^{2}$ AAIJ 17BN provides the correlation coefficient $\rho=0.42$ between the uncertainties of $\sin (2 \beta)$ and $\cos (2 \beta)$ measurements.
${ }^{3}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}, B^{0} \rightarrow J / \psi K_{L}^{0}$, and $B^{0} \rightarrow$ $\chi_{C 1}(1 P) K_{S}^{0}$ decays.
${ }^{4}$ SATO 12 uses $121 \mathrm{fb}^{-1}$ data collected on $Y(5 S)$ resonance. Uses the " $B-\pi$ tagging" where $B \pi^{+}$and $B \pi^{-}$tagged $J / \psi K_{S}^{0}$ events are compared.
${ }^{5}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent 6 solutions.
${ }^{6}$ Measurement based on $B^{0} \rightarrow c \bar{C} K^{(*) 0}$ decays.
7 Measurement in which the J / ψ decays to hadrons or to muons that do not satisfy the 8 standard identification criteria.
${ }^{8}$ AFFOLDER 00 C uses about $400 B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$ events. The production flavor of B^{0} was determined using three tagging algorithms: a same-side tag, a jet-charge tag, and a soft-lepton tag.
${ }^{9}$ BARATE 00Q uses 23 candidates for $B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$ decays. A combination of jet-charge, vertex-charge, and same-side tagging techniques were used to determine the B^{0} production flavor.
${ }^{10}$ ACKERSTAFF $98 z$ uses 24 candidates for $B_{d}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$ decay. A combination of jet-charge and vertex-charge techniques were used to tag the B_{d}^{0} production flavor.
${ }^{11}$ Based on $B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ decays.
${ }^{12}$ Measurement based on $152 \times 10^{6} B \bar{B}$ pairs.
13 Measurement based on $227 \times 10^{6} B \bar{B}$ pairs.
${ }^{14} \mathrm{ABE} 02 \mathrm{U}$ result is based on the same analysis and data sample reported in ABE 01G.
15 ABE $02 z$ result is based on $85 \times 10^{6} B \bar{B}$ pairs.
${ }^{16}$ AUBERT 02 N result based on the same analysis and data sample reported in AUBERT 01b.
${ }^{17}$ AUBERT 02P result is based on $88 \times 10^{6} B \bar{B}$ pairs.
${ }^{18}$ First observation of $C P$ violation in B^{0} meson system.
${ }^{19}$ ABE 98 uses $198 \pm 17 B_{d}^{0} \rightarrow J / \psi(1 S) K^{0}$ events. The production flavor of B^{0} was determined using the same side tagging technique.

$C_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
0.5士 2.0 OUR EVALUATION

- 0.5士 1.6 OUR AVERAGE
-1.7 ± 2.9
1,2 AAIJ
12A BELL $e^{+} e^{-} \rightarrow \gamma(4 S$
$-10.4 \pm 5.5_{-4.7}^{+2.7} \quad 4,5 \mathrm{ADACHI} \quad 12 \mathrm{~A}$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$-1.9 \pm 2.6_{-1.7}^{+4.1} \quad 4,6 \mathrm{ADACHI} \quad 12 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$8.9 \pm 7.6 \pm 2.0 \quad 5$ AUBERT $\quad 09 \mathrm{k} \mathrm{BABR} e^{+} e^{-} \rightarrow r(4 S)$
$1.6 \pm 2.3 \pm 1.8 \quad$ AUBERT 09 k BABR $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$-1.4 \pm 3.0 \quad{ }^{7} \mathrm{AAIJ} \quad 17 \mathrm{BN}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$-5 \pm 10 \pm 1 \quad 8^{8} \mathrm{AAIJ} \quad 17 \mathrm{BN}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$-3.8 \pm 3.2 \pm 0.5 \quad 9$ AAIJ $\quad 15 \mathrm{~N}$ LHCB Repl. by AAIJ 17BN
$3 \pm 9 \pm 1 \quad 10 \mathrm{AAIJ} \quad 13 \mathrm{~K}$ LHCB Repl. by AAIJ 15 N
$-4 \pm 7 \pm 5 \quad 4,5$ SAHOO $\quad 08$ BELL Repl. by ADACHI 12A
$-1.8 \pm 2.1 \pm 1.4 \quad{ }^{4}$ CHEN 07 BELL Repl. by ADACHI 12A
${ }^{1}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ with $J / \psi \rightarrow \mu^{+} \mu^{-}, J / \psi \rightarrow$ $e^{+} e^{-}$and $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$
${ }^{2}$ AAIJ 17BN provides the correlation coefficient $\rho=0.42$ between the uncertainties of $S_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ and $C_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ measure3 ments. B^{0}
${ }^{4}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.
${ }^{4}$ The paper reports A, which is equal to $-C$.
${ }^{5}$ Uses $B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ decays.
${ }^{6}$ Uses $B^{0} \rightarrow J / \psi K_{L}^{0}$ decays.
${ }^{7}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}$ with $J / \psi \rightarrow \mu^{+} \mu^{-}$and $J / \psi \rightarrow e^{+} e^{-}$.
${ }^{8}$ Measurement based on $B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ with $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$.
${ }^{9}$ AAIJ 15 N uses 41,560 flavor-tagged $B_{d} \rightarrow J / \psi K_{S}^{0}$ events from $3 \mathrm{fb}^{-1}$ of integrated luminosity. Provides the correlation coefficient $\rho=0.483$ between the statistical uncertainties of and measurements.
${ }^{10}$ AAIJ 13 K uses 8200 flavor-tagged $B_{d} \rightarrow J / \psi K_{S}^{0}$ events from $1 \mathrm{fb}^{-1}$ of integrated luminosity. Provides the correlation coefficient $\rho=0.42$ between the statistical uncertainties of $S_{J / \psi(\mathrm{nS}) K^{0}}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ and $C_{J / \psi(\mathrm{nS})} K^{0}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ measurements.

$S_{J / \psi(\mathrm{ns}) K^{0}}\left(B^{0} \rightarrow \mathrm{~J} / \psi(\mathrm{nS}) K^{0}\right)$

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
$\frac{V A L U E}{0.701 \pm 0.017}$ OUR EVALUATION
$\mathbf{0 . 6 9 8} \pm \mathbf{0 . 0 2 4}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. $0.760 \pm 0.034 \quad 1,2 \mathrm{AAIJ} \quad 17 \mathrm{BN}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.670 \pm 0.029 \pm 0.013 \quad{ }^{3} \mathrm{ADACHI} \quad 12 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.738 \pm 0.079 \pm 0.036 \quad 4 \mathrm{ADACHI}$ 12A BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.642 \pm 0.047 \pm 0.021 \quad{ }^{5} \mathrm{ADACHI} \quad 12 \mathrm{~A}$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.57 \pm 0.58 \pm 0.06 \quad{ }^{6}$ SATO $\quad 12 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(5 S)$
$0.897 \pm 0.100 \pm 0.036 \quad{ }^{4}$ AUBERT 09 k BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.666 \pm 0.031 \pm 0.013 \quad$ AUBERT $09 \mathrm{~K} \mathrm{BABR} e^{+} e^{-} \rightarrow r(4 S)$
$0.79{ }_{-0.44}^{+0.41} \quad 7$ AFFOLDER 00 C CDF $p \bar{p}$ at 1.8 TeV
$0.84 \underset{-1.04}{+0.82} \pm 0.16 \quad 8_{\text {BARATE }} \quad 00 \mathrm{~A}$ ALEP $e^{+} e^{-} \rightarrow Z$
$3.2 \underset{-2.0}{+1.8} \pm 0.5 \quad{ }^{9}$ ACKERSTAFF 98z OPAL $e^{+} e^{-} \rightarrow z$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.75 \pm 0.04 \quad 10 \mathrm{AAIJ} \quad 17 \mathrm{BN}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.84 \pm 0.10 \pm 0.01 \quad 11$ AAIJ 17 BN LHCB $p p$ at $7,8 \mathrm{TeV}$
$0.731 \pm 0.035 \pm 0.020 \quad 12$ AAIJ 15 N LHCB Repl. by AAIJ 17BN
$0.73 \pm 0.07 \pm 0.04 \quad 13 \mathrm{AAIJ} \quad 13 \mathrm{k}$ LHCB Repl. by AAIJ 15 N
$0.650 \pm 0.029 \pm 0.018 \quad 14 \mathrm{SAHOO} \quad 08$ BELL Repl. by ADACHI 12A
$0.72 \pm 0.09 \pm 0.03 \quad 4$ SAHOO 08 BELL Repl. by ADACHI 12A
$0.642 \pm 0.031 \pm 0.017 \quad$ CHEN 07 BELL Repl. by ADACHI 12A
${ }^{1}$ Measurement based on $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ with $J / \psi \rightarrow \mu^{+} \mu^{-}, J / \psi \rightarrow$ $e^{+} e^{-}$and $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$.
${ }^{2}$ AAIJ 17BN provides the correlation coefficient $\rho=0.42$ between the uncertainties of $S_{J / \psi(\mathrm{nS})} K^{0}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ and $C_{J / \psi(\mathrm{nS})} K^{0}\left(B^{0} \rightarrow J / \psi(\mathrm{nS}) K^{0}\right)$ measure${ }^{3}$ ments $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.
${ }^{4}$ Based on $B^{0} \rightarrow \psi(2 S) K_{S}^{0}$ decays.
${ }^{5}$ Uses $B^{0} \rightarrow J / \psi K_{L}^{0}$ decays.
${ }^{6}$ SATO 12 uses $121 \mathrm{fb}^{-1}$ data collected at $\Upsilon(5 S)$ resonance. Uses the " $B-\pi$ tagging" where $B \pi^{+}$and $B \pi^{-}$tagged $J / \psi K_{S}^{0}$ events are compared.
${ }^{7}$ AFFOLDER $00 C$ uses about $400 B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}$ events. The production flavor of B^{0} was determined using three tagging algorithms: a same-side tag, a jet-charge tag,
and a soft-lepton tag. and a soft-lepton tag.

Meson Particle Listings

B^{0}

$C_{J / \psi K^{* 0}}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 0 2 5} \pm \mathbf{0 . 0 8 3} \pm \mathbf{0 . 0 5 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT 09K }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Based on $B^{0} \rightarrow J / \psi K^{* 0}, K^{* 0} \rightarrow K_{S}^{0} \pi^{0}$.
$S_{J / \psi K^{* 0}}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 6 0 1} \pm \mathbf{0 . 2 3 9} \pm \mathbf{0 . 0 8 7}} \quad 1, \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{09 K}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Based on $B^{0} \rightarrow J / \psi K^{* 0}, K^{* 0} \rightarrow K_{S}^{0} \pi^{0}$.
${ }^{2}$ This $S_{J / \psi K^{* 0}}$ value has been corrected for the dilution of the $\sin (\Delta \mathrm{M} \Delta \mathrm{t})$ coefficient of the $C P$ asymmetry by a factor of $1-R_{\perp}$, which arises from the mixture of $C P$-even and $C P$-odd B decay amplitudes.
$C_{\chi_{C 0} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{C 0} K_{S}^{0}\right)$
VALUE

DOCUMENT ID TECN COMMENT

${ }^{1}$ AUBERT 09AU BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent solutions is used
$S_{\chi_{c 0} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{c 0} K_{S}^{0}\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 6 9} \pm \mathbf{0 . 5 2} \mathbf{0 . 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { AUBERT }} \frac{\text { TECN }}{\text { 09AU }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses Dalitz plot analysis of $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$decays and the first of two equivalent solutions is used
$C_{\chi_{c 1} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{G 1} K_{S}^{0}\right)$
$\frac{V A L U E}{0.06} \pm \mathbf{0 . 0 7}$ OUR AVERAGE
$0.017 \pm 0.083_{-0.046}^{+0.026}$
$0.129 \pm 0.109 \pm 0.025$

$S_{\chi_{c 1} K_{S}^{0}}\left(B^{0} \rightarrow \chi_{c 1} K_{S}^{0}\right)$
 $\frac{V A L U E}{\mathbf{0 . 6 3} \pm \mathbf{0 . 1 0} \text { OUR AVERAGE }}$

$0.640 \pm 0.117 \pm 0.040$
$0.614 \pm 0.160 \pm 0.040$

DOCUMENT ID TECN COMMENT
ADACHI 12A BELL $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$

AUBERT $\quad 09 \mathrm{k}$ BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
DOCUMENT ID TECN COMMENT
ADACHI 12A BELL $e^{+} e^{-} \rightarrow r(4 S)$ AUBERT $\quad 09 \mathrm{k}$ BABR $e^{+} e^{-} \rightarrow \quad \gamma(4 S)$

${ }^{1}$ Measured using the $C P$-violation phase difference $\Delta \phi_{00}$ between the B and \bar{B} decay amplitude.
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right)$
$\frac{V A L U E}{\mathbf{0 . 7 7} \pm \mathbf{0 . 1 1} \mathbf{+ 0 . 0 7}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 07AX BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.55 \pm 0.22 \pm 0.12 \quad 1$ AUBERT 05T BABR Repl. by AUBERT 07AX
${ }^{1}$ Obtained by constraining $C=0$.
$\sin \left(2 \beta_{\text {eff }}\right)\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)$
$\frac{V A L U E}{\mathbf{0 . 8 0} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 0 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADACHI } 18} \frac{\text { TECN }}{\text { COMMENT }} \frac{e^{+} e^{-} \rightarrow \gamma(4 S)}{\mid}$
- - We do not use the following data for averages, fits, limits, etc. - - .
$0.43 \pm 0.27 \pm 0.08 \quad 2$ VOROBYEV 16 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.29 \pm 0.34 \pm 0.06 \quad$ AUBERT 07BH BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.78 \pm 0.44 \pm 0.22 \quad$ KROKOVNY 06 BELL Repl. by VOROBYEV 16
${ }^{1}$ Analyzes joint data sample of Belle and BaBar using Dalitz plot analysis of $D \rightarrow$
$K_{S}^{0} \pi^{+} \pi^{-}$; the second error combines experimental systematic uncertainty and the
Dalitz plot model uncertainty.
${ }^{2}$ A model-independent measurement uses the binned Dalitz plot technique.
$\beta_{\mathrm{eff}}\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right)$
$\frac{V A L U E\left({ }^{\circ}\right)}{\mathbf{2 2 . 5} \pm \mathbf{4 . 4} \pm \mathbf{1 . 3}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{ADACHI}} \frac{18}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
- - We do not use the following data for averages, fits, limits, etc. - -
$11.7 \pm 7.8 \pm 2.1 \quad 2$ VOROBYEV 16 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Analyzes joint data sample of Belle and BaBar using Dalitz plot analysis of $D \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}$; the second error combines experimental systematic uncertainty and the Dalitz plot model uncertainty.
${ }^{2}$ A model-independent measurement uses the binned Dalitz plot technique.

$2 \beta_{\text {eff }}\left(B^{0} \rightarrow J / \psi \rho^{0}\right)$

VALUE $\left({ }^{\circ}\right)$ DOCUMENT ID TECN COMMENT
$|\lambda|\left(B^{0} \rightarrow\left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{\left.D^{(}\right)} h^{0}\right)$
$\frac{\text { VALUE }}{\mathbf{1 . 0 1} \mathbf{\pm 0 . 0 8} \mathbf{\pm 0 . 0 2}} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { TECN }}{\text { 07BH }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$
$|\sin (2 \beta+\gamma)|$
$\beta\left(\phi_{1}\right)$ and $\gamma\left(\phi_{3}\right)$ are angles of CKM unitarity triangle, see the review on "CP Violation" in the Reviews section.

>0.77	68	${ }^{2}$ AAIJ		LHCB	at
>0.13	95	${ }^{3}$ RONGA		BEL	$e^{+} e^{-}$
>0.07	95	${ }^{3}$ RONGA	06	BELL	$e^{+} e^{-}$
>0.35	90	${ }^{4}$ AUBERT		BABR	$e^{+} e^{-}$
>0.69	68	${ }^{5}$ AUBERT		BABR	e^{-}
>0.58	95	${ }^{6}$ AUBERT		BABR	epl. b
${ }^{1}$ Uses fully reconstructed $B^{0} \rightarrow D^{(*) \pm} \pi^{\mp}$ and $D^{ \pm} \rho \mp$ decays and some theoretical assumptions. ${ }^{2}$ Uses a time dependent CP violation measurement in $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$decays with external input and some theoretical assumptions. ${ }^{3}$ Combines the results from fully reconstructed and partially reconstructed $D^{(*)} \pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated. ${ }^{4}$ Uses partially reconstructed $B^{0} \rightarrow D^{* \pm} \pi^{\mp}$ decays and some theoretical assumptions. ${ }^{5}$ Uses fully reconstructed $B^{0} \rightarrow D^{(*)} \pm \pi^{\mp}$ decays and some theoretical assumptions, such as the $\mathrm{SU}(3)$ symmetry relation. ${ }^{6}$ Combining this measurement with the results from AUBERT 04 V for fully reconstructed $B^{0} \rightarrow D^{(*)} \pm \pi^{\mp}$ and some theoretical assumptions, such as the $\operatorname{SU}(3)$ symmetry relation.					

$2 \boldsymbol{\beta}+\gamma$
$\frac{V A L U E\left({ }^{\circ}\right)}{\mathbf{8 3} \pm \mathbf{5 3} \pm \mathbf{2 0}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { AUBERT }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Used a time-dependent Dalitz-plot analysis of $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$assuming the ratio of the $b \rightarrow u$ and $b \rightarrow c$ decay amplitudes to be 0.3.
$\boldsymbol{\alpha}$
For angle $\alpha\left(\phi_{2}\right)$ of the CKM unitarity triangle, see the review on "CP violation" in the reviews section.
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV).
Value $\left({ }^{\circ}\right)$ \qquad TECN COMMENT

84.9 ± 4.5 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - -

93.7 ± 10.6	1 VANHOEFER	16	BELL	$e^{+} e^{-} \rightarrow r_{(4 S)}$
84.9 ± 13.5	1 Vanhoefer	14	BELL	Repl. by Vanhoefer 16
$79 \pm 7 \pm 11$	${ }^{2}$ AUBERT	10D	BABR	$e^{+} e^{-} \rightarrow r_{(4 S)}$
$92.4 \pm \begin{gathered}6.0 \\ -6.5\end{gathered}$	${ }^{1}$ AUBERT	09 G	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
78.6 ± 7.3	${ }^{3}$ AUBERT	070	BABR	$e^{+} e^{-} \rightarrow{ }_{\text {l }}(4 S)$
88 ± 17	${ }^{4}$ SOMOV	06	BELL	Repl. by Vanhoefer 14
100 ± 13	${ }^{5}$ AUBERT, B	05C	BABR	Repl. by AUBERT 09G
$102{ }_{-12}^{+16} \pm 14$	${ }^{6}$ AUBERT,B	04R	BABR	Repl. by AUBERT, B 05C

${ }^{1}$ Based on an isospin analysis of the $B \rightarrow \rho \rho$ system.
${ }^{2}$ Obtained using the time dependent analysis of $B^{0} \rightarrow a_{1}(1260)^{ \pm} \pi^{\mp}$ and branching fraction measurements of $B \rightarrow a_{1}(1260) K$ and $B \rightarrow K_{1} \pi$. Uses SU(3) flavor relations.
${ }^{3}$ The angle $\alpha_{\text {eff }}$ is obtained using the measured $C P$ parameters of $B^{0} \rightarrow a_{1}(1260)^{ \pm} \pi^{\mp}$ and choosing one of the four solutions that is compatible with the result of SM-based 4 fits.
${ }^{4}$ Obtained using isospin relation and selecting a solution closest to the CKM best fit average; the 90% CL allowed interval is $59^{\circ}<\phi_{2}$ ($\equiv \alpha$) < 115°.
${ }^{5}$ Obtained using isospin relation and selecting a solution closest to the CKM best fit average; $90 \% \mathrm{CL}$ allowed interval is $79^{\circ}<\alpha<123^{\circ}$.
${ }^{6}$ Obtained from the measured $C P$ parameters of the longitudinal polarization by selecting the solution closest to the CKM best fit central value of $\alpha=95^{\circ}-98^{\circ}$

$C P$ VIOLATION PARAMETERS IN $B^{0} \rightarrow D^{0} K^{* 0}$ DECAY

The parameters $r_{B^{0}}$ and $\delta_{B^{0}}$ are the magnitude ratio and strong phase difference between the amplitudes of $\mathrm{A}\left(B^{0} \rightarrow D^{0} K^{* 0}\right)$ and $\mathrm{A}\left(B^{0} \rightarrow\right.$ $\bar{D}^{0} K^{* 0}$). The measured observables and are defined as $x_{ \pm}=r_{B^{0}}$ $\cos \left(\delta_{B^{0}} \pm \gamma\right)$ and $y_{ \pm}=r_{B^{0}} \sin \left(\delta_{B^{0}} \pm \gamma\right)$ where γ is the CKM
angle γ. "OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). The CKM angle γ is listed in the B^{+}section for "CP VIOLATION PARAMETERS IN $B^{+} \rightarrow D K^{+}$AND SIMILAR DECAYS."
$\boldsymbol{x}_{+}\left(B^{0} \Rightarrow D K^{* 0}\right)$
VALUE

$x_{-}\left(B^{0} \rightarrow D K^{* 0}\right)$
$\frac{-0.16 \pm 0.14 ~ O U R ~ A V E R A G E ~}{-0.10}$
DOCUMENT ID TECN COMMENT

$-0.02 \pm 0.13 \pm 0.14$	1 AAIJ	16 S LHCB $p p$ at $7,8 \mathrm{TeV}$
$-0.31 \pm 0.20 \pm 0.04$	AAIJ	$16 z$ LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.15 \pm 0.14 \pm 0.03 \quad 2$ AAIJ 16AA LHCB Repl. by AAIJ $16 z$
${ }^{1}$ Uses Dalitz plot of $B^{0} \rightarrow D K^{+} \pi^{-}$with $D \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$, or $K^{+} \pi^{-}$.
${ }^{2}$ Uses Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D K^{*}(892)^{0}$ modes.
$y_{+}\left(B^{0} \rightarrow D K^{* 0}\right)$
$\frac{V A L U E}{-0.68} \pm 0.22$ OUR AVERAGE
DOCUMENTID TECN COMMENT
$-0.47 \pm 0.28 \pm 0.22$
${ }^{1}$ AAIJ $\quad 16 \mathrm{~S}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$-0.81 \pm 0.28 \pm 0.06 \quad$ AAIJ $16 z$ LHCB $p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. • •
$-0.65_{-0.23}^{+0.24} \pm 0.08 \quad 2$ AAIJ 16AA LHCB Repl. by AAIJ 16 Z
${ }^{1}$ Uses Dalitz plof of $B^{0} \rightarrow D K^{+} \pi^{-}$with $D \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$, or $K^{+} \pi^{-}$.
${ }^{2}$ Uses Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D K^{*}(892)^{0}$ modes.
$y_{=}\left(B^{0} \rightarrow D K^{* 0}\right)$
$\frac{V A L U E}{\mathbf{0 . 2 0} \pm 0.25 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$-0.35 \pm 0.26 \pm 0.41 \quad 1$ AAIJ 16 S LHCB $p p$ at $7,8 \mathrm{TeV}$ $0.31 \pm 0.21 \pm 0.05 \quad$ AAIJ $16 z$ LHCB $p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - - $0.25 \pm 0.15 \pm 0.06 \quad 2$ AAIJ 16AA LHCB Repl. by AAIJ $16 z$ ${ }^{1}$ Uses Dalitz plof of $B^{0} \rightarrow D K^{+} \pi^{-}$with $D \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$, or $K^{+} \pi^{-}$. ${ }^{2}$ Uses Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D K^{*}(892)^{0}$ modes.
$r_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)$
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV).
VALUE DOCUMENTID TECN COMMENT
0.220 ± 0.041 OUR EVALUATION
- - We do not use the following data for averages, fits, limits, etc. - -

0.39 ± 0.13	1 AAIJ	16 AA LHCB	Repl. by AAIJ 16 Z
0.56 ± 0.17	2 AAIJ	$16 z$ LHCB $p p$ at $7,8 \mathrm{TeV}$	

${ }^{1}$ Uses Dalitz plot analysis of $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays coming from $B^{0} \rightarrow D K^{*}(892)^{0}$
${ }_{2}$ modes. Measurement is performed with $K^{+} \pi^{-}$masses within 50 MeV of the $K^{* 0}$ mass and ${ }^{2}$ Measurement is performed with $K^{+} \pi^{-}$masses within 50 MeV of the $K^{* 0}$ mass and
an absolute value of the cosine of the $K^{* 0}$ helicity angle greater than 0.4 . Angle γ is required to satisfy $0<\gamma<180$ degrees.
$\delta_{B^{0}}\left(B^{0} \rightarrow D K^{* 0}\right)$
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). VALUE $\left({ }^{\circ}\right)$ DOCUMENTID TECN COMMENT

$194{ }_{-22}^{+30}$ OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - - -

T and CPT VIOLATION PARAMETERS

Measured values of the $T_{-}, C P$-, and $C P T$-asymmetry parameters, defined as the differences in $S_{\alpha, \beta}^{ \pm}$and $C_{\alpha, \beta}^{ \pm}$between symmetry-transformed transitions. The indices $\alpha=\ell^{+}, \ell^{-}$and $\beta=K_{S}^{0}, K_{L}^{0}$ stand for reconstructed the flavor final state and the $C P$ final states from $\gamma(4 S)$ decay. The sign \pm indicates whether the decay to the flavor final state α occurs before or after the decay to the $C P$ final state.

Alternatively, violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing. Results are expressed in terms of the standard model extension parameter Δa, which describes the difference between the couplings of the valence quarks within B^{0} meson with the Lorentz-violating fields.

$\Delta S_{T}^{+}\left(S_{\ell^{-}, K_{S}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
- $1.37 \pm 0.14 \pm 0.06$	LEES		BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta S_{T}^{-}\left(S_{\ell^{-}, K_{S}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{-}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$1.17 \pm 0.18 \pm 0.11$	LEES	12w	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta C_{T}^{+}\left(C_{\ell^{-}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.10 \pm 0.14 \pm 0.08$	LEES	12W	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta C_{T}^{-}\left(C_{\ell^{-}, K_{S}^{0}}^{+}-C_{\ell^{+}, K_{s}^{\oplus}}^{-}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.04 \pm 0.14 \pm 0.08$	LEES	12w	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta S_{C P}^{+}\left(S_{\ell^{-}, K_{S}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$-1.30 \pm 0.11 \pm 0.07$	LEES	12W	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta S_{C P}^{-}\left(S_{\boldsymbol{\ell}^{-}, K_{S}^{0}}^{-}=S_{\boldsymbol{\ell}^{+}, K_{\boldsymbol{S}}^{0}}^{-}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$1.33 \pm 0.12 \pm 0.06$	LEES	12w	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta C_{C P}^{+}\left(C_{\ell^{-}, K_{S}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.07 \pm 0.09 \pm 0.03$	LEES	12w	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta C_{C P}^{-}\left(C_{\ell^{-}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{-}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.08 \pm 0.10 \pm 0.04$	LEES	12W	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$\Delta S_{C P T}^{+}\left(S_{\ell^{+}, K_{S}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}\right)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.16 \pm 0.21 \pm 0.09$	LEES	12w	BABR	$e^{+} e^{-} \rightarrow$	$r(4 S)$

Meson Particle Listings
B^{0}

$\Delta S_{C P T}^{-}\left(S_{\ell^{+}, \kappa_{s}^{0}}^{+}-S_{\ell^{+}, \kappa_{s}^{0}}^{-}\right)$	
-0.03 $\pm 0.13 \pm 0.06$	

$\Delta C_{C P T}^{+}\left(C_{\ell^{+}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}\right)$

$\Delta C_{C P T}^{-}\left(C_{\ell^{+}, K_{S}^{0}}^{+}=C_{\ell^{+}, K_{S}^{0}}^{-}\right)$
$\frac{\text { VALUE }}{\mathbf{0 . 0 3} \pm \mathbf{0 . 1 2} \mathbf{0 . 0 8}} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} 12 \mathrm{~T} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
$\Delta a_{\|}$CPT parameter in B^{0} mixing

VALUE ($10^{-15} \mathrm{GeV}$)	DOCUMENT ID		TECN	COMMENT
-0.10 $\pm 0.82 \pm 0.54$	${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.				

Δa_{\perp} CPT parameter in B^{0} mixing

VALUE ($10^{-13} \mathrm{GeV}$)	DOCUMENT ID		TECN	COMMENT
-0.20 $\pm 0.22 \pm 0.04$	${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.				

Δa_{X} CPT parameter in B^{0} mixing

$\operatorname{VALUE}\left(10^{-15} \mathrm{GeV}\right)$	DOCUMENT ID		TECN	COMMENT
+1.97 $\pm 1.30 \pm 0.29$	${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.				

Δ_{y} CPT parameter in B^{0} mixing

VALUE ($10^{-15} \mathrm{GeV}$)	DOCUMENT ID		TECN	COMMENT
+0.44 $\pm 1.26 \pm 0.29$	1 AAIJ	16E	LHCB	$p p$ at 7, 8 TeV
${ }^{1}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays.				

$B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}$ FORM FACTORS

R_{1} (form factor ratio $\left.\sim V / A_{1}\right)$
$\frac{\text { VALUE }}{1.239 \pm 0.029 \text { OUR AVERAGE }}$

$1.229 \pm 0.028 \pm 0.009$	${ }^{1}$ WAHEED	19	BELL	$e^{+} e^{-}$	$r(4 S)$
$1.56 \pm 0.07 \pm 0.15$	AUBERT	09A	BABR	$e^{+} e^{-}$	$\rightarrow r(4 S)$
$1.18 \pm 0.30 \pm 0.12$	DUBOSCQ	96	CLE2	$e^{+} e^{-}$	$\rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.401 \pm 0.034 \pm 0.018$	${ }^{1}$ DUNGEL	10	BELL	Repl. by	b WAHEED 19
$1.429 \pm 0.061 \pm 0.044$	AUBERT	08R	BABR	Repl. by	by AUBERT 09a
$1.396 \pm 0.060 \pm 0.044$	AUBERT,B	$06 z$	BABR	Repl. by	b AUBERT 08R
${ }^{1}$ Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events ($\ell=e$ or μ).					

R_{2} (form factor ratio $\sim A_{2} / A_{1}$)
$\frac{\text { VALUE }}{\mathbf{0 . 8 4} \pm \mathbf{0 . 0 4} \text { OUR AVERAGE }} \quad$ Error includes scale factor of 1.8
$0.852 \pm 0.021 \pm 0.006 \quad 1$ WAHEED 19 BELL $e^{+} e^{-} \rightarrow r(4 S)$

0.66	± 0.05	± 0.09	AUBERT	09A	BABR
0.71	$e^{+} e^{-} \rightarrow r(4 S)$				
0.71	± 0.22	± 0.07	DUBOSCQ	96	CLE2

$0.71 \pm 0.22 \pm 0.07 \quad$ DUBOSCQ $96 \quad$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • •
$\begin{array}{rrlll}0.864 \pm 0.024 \pm 0.008 & 1 & \text { DUNGEL } & 10 & \text { BELL }\end{array}$ Repl. by WAHEED 19 $0.885 \pm 0.040 \pm 0.026$ AUBERT,B $06 z$ BABR Repl. by AUBERT 08R
${ }^{1}$ Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events $(\ell=e$ or μ).

$\rho_{A_{1}}^{2}$ (form factor slope)			
VALUE	DOCUMENT ID	TECN	COMMENT
1.12 ± 0.04 OUR AVERAGE Error includes scale factor of 1.5.			
$1.106 \pm 0.031 \pm 0.007$	1 WAHEED	19 BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$1.22 \pm 0.02 \pm 0.07$	AUBERT	09A BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.91 \pm 0.15 \pm 0.06$	DUBOSCQ	96 CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -			
$1.214 \pm 0.034 \pm 0.009$	${ }^{1}$ DUNGEL	10 BELL	Repl. by WAHEED 19
$1.191 \pm 0.048 \pm 0.028$	AUBERT	08R BABR	Repl. by AUBERT 09a
$1.145 \pm 0.059 \pm 0.046$	AUBERT,B	062 BABR	Repl. by AUBERT 08r
${ }^{1}$ Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events ($\ell=e$ or μ).			

PARTIAL BRANCHING FRACTIONS IN $B^{0} \rightarrow K^{(*) 0} \ell^{+} \ell^{-}$
$\mathrm{B}\left(\mathrm{B}^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\left(0.0009<\mathrm{q}^{2}<1.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
$\mathbf{3 . 1}=\mathbf{0} \mathbf{0} \mathbf{0 . 9}=\mathbf{0}=\mathbf{0 . 3} \pm \mathbf{0 . 2} \quad 1 \mathrm{AAIJ} \quad 13 \cup$ LHCB $p p$ at 7 TeV
${ }^{1}$ The last uncertainty is due to uncertainties of $\mathrm{B}\left(B^{0} \rightarrow J / \psi K^{* 0}\right)$ and $\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right)$ branching fraction measurements.

$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(0.1<\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
$1.24{ }_{-0.27}^{+0.23}$ OUR AVERAGE	Error includes scale factor of 1.6.	
$1.14 \pm 0.11_{-0.15}^{+0.11}$	AAIJ $\quad 13 \mathrm{Y}$ LHCB	$p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$1.80 \pm 0.36 \pm 0.11$	Aaltonen 11al CDF	$p \bar{p}$ at 1.96 TeV

AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. • •
$0.48_{-0.12}^{+0.14} \pm 0.04 \quad{ }^{1}$ CHATRCHYAN 13BL CMS $\quad p p$ at 7 TeV
$1.16 \pm 0.23 \pm 0.11 \quad$ AAIJ $12 U$ LHCB Repl. by AAIJ $13 Y$
${ }^{1}$ CHATRCHYAN 13 BL uses, for this bin, $1.0<\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{0.76 \pm 0.07 \text { OUR AVERAGE }}$
$0.759 \pm 0.115 \pm 0.046 \quad$ KHACHATRY...16D CMS $p p$ at 8 TeV
$0.69 \pm 0.07 \pm 0.09 \quad$ AAIJ $13 Y$ LHCB $p p$ at $7 \mathrm{TeV}, k^{* 0} \mu^{+} \mu^{-}$
$0.87 \pm 0.16 \pm 0.07 \quad$ CHATRCHYAN 13BL CMS $p p$ at 7 TeV
$0.84 \pm 0.28 \pm 0.06 \quad$ AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - -
$0.78 \pm 0.21 \pm 0.05 \quad$ AAIJ 12U LHCB Repl. by AAIJ $13 y$
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(4.3<\mathrm{q}^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
OUR AVERAGE
$2.15 \pm 0.18_{-0.28}^{+0.22} \quad$ AAIJ $13 Y$ LHCB $p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$1.62 \pm 0.31 \pm 0.18 \quad$ CHATRCHYAN 13BL CMS $p p$ at 7 TeV
$1.73 \pm 0.43 \pm 0.15 \quad$ AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - -
$3.02 \pm 0.35 \pm 0.22$ AAIJ $12 U$ LHCB Repl. by AAIJ $13 Y$
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<\mathbf{1 2 . 8 6} \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{1.49 \pm \mathbf{0 . 1 5} \text { OUR AVERAGE }} \quad \frac{\text { DOCUMENT ID }}{\text { Error }}$ includes scale factor $\frac{\text { TECN }}{\text { of } 1.3}$. COMMENT See the ideogram below.
$1.72 \pm 0.11 \pm 0.14 \quad$ KHACHATRY...16D CMS $p p$ at 8 TeV
$1.19 \pm 0.11_{-0.17}^{+0.14} \quad$ AAIJ $13 Y$ LHCB $p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$1.50 \pm 0.25 \pm 0.25 \quad$ CHATRCHYAN $13 B L$ CMS $\quad p p$ at 7 TeV
$1.77 \pm 0.36 \pm 0.12 \quad$ AALTONEN 11 AI CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - •
$1.52 \pm 0.25 \pm 0.19 \quad$ AAIJ $12 U$ LHCB Repl. by AAIJ $13 Y$
WEIGHTED AVERAGE
1.49 ± 0.15 (Error scaled by 1.3)

HACHATRY... 16D CMS $\quad \chi$
$13 Y$ LHCB 2.8 AALTONEN 11 Al CDF $\frac{0.6}{5.1}$
(Confidence Level 5.1 3.5

$$
\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\left(\text { units } 10^{-7}\right)
$$

$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(14.18<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
$\frac{1.09 \pm \mathbf{0 . 1 0} \text { OUR AVERAGE }}{\mathbf{1 . 0}} \frac{\text { Error }}{\text { includes scale factor }} \frac{T E C N}{\text { of } 1.1}$
$1.22 \pm 0.11 \pm 0.09 \quad$ KHACHATRY...16D CMS $p p$ at 8 TeV
$1.02 \pm 0.11_{-0.15}^{+0.11} \quad$ AAIJ $13 Y$ LHCB $p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$0.84_{-0.15}^{+0.16} \pm 0.09 \quad$ CHATRCHYAN 13BL CMS $p p$ at 7 TeV
$1.34 \pm 0.26 \pm 0.08 \quad$ AALTONEN 11 Al CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - • -
$1.15 \pm 0.20 \pm 0.09$
AAIJ
12 U LHCB Repl. by AAIJ 13 Y

$B\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(16.0<q^{\mathbf{2}}<19.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{4}\right)$		
VALUE (units 10-7)	DOCUMENT ID TECN	COMMENT
1.27 ± 0.09 OUR AVERAGE		
$1.26 \pm 0.09 \pm 0.09$	KHACHATRY...16D CMS	$p p$ at 8 TeV
$1.23 \pm 0.12_{-0.18}^{+0.15}$	AAIJ $13 Y$ LHCB p	$p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$1.56 \pm 0.18 \pm 0.15$	CHATRCHYAN 13BL CMS $p p$	$p p$ at 7 TeV
$0.97 \pm 0.26 \pm 0.07$	AALTONEN 11AI CDF	$p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - -		
$1.50 \pm 0.24 \pm 0.15$	AAIJ 12U LHCB R	Repl. by AAIJ $13 Y$
$\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \ell^{+} \ell^{-}\right)\left(15.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
$1.744=0.072 \pm 0.123 \quad \text { AAIJ }+0.076 \text { LHCB } p p \text { at } 7,8 \mathrm{TeV}$		
- - We do not use the following data for averages, fits, limits, etc. - -		
$1.95{ }_{-0.09}^{+0.08}{ }_{-0.13}$	AAIJ 16AO LHCB	Repl. by AAIJ 17Q
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
1.73 ± 0.11 OUR AVERAGE		
$1.68 \pm 0.083 \pm 0.12$	${ }^{1}$ AAIJ 17 Q LHCB	pp at $7,8 \mathrm{TeV}$
1.90 ± 0.20	KHACHATRY...16D CMS	$p p$ at 7, 8 TeV
$1.42 \pm 0.41 \pm 0.12$	AALTONEN 11Al CDF	$p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - - -		
$1.92{ }_{-0.09}^{+0.10} \pm 0.14$	AAIJ 16AO LHCB	Repl. by AAIJ 17Q
$1.70 \pm 0.15{ }_{-0.25}^{+0.20}$	AAIJ $13 Y$ LHCB	Repl. by AAIJ 16AO
$2.20 \pm 0.30 \pm 0.20$	CHATRCHYAN 13bl CMS	Repl. by KHACHATRYAN 16D
$2.10 \pm 0.30 \pm 0.15$	AAIJ 12 U LHCB	Repl. by AAIJ $13 Y$
${ }^{1} \mathrm{AAIJ} 17 \mathrm{Q}$ result is determined for the range $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{4} / \mathrm{c}^{2}$.		
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
$2.60 \pm 0.45 \pm 0.17$	AALTONEN 11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\left(0.045<\mathrm{q}^{\mathbf{2}}<1.1 \mathrm{GeV}{ }^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$		
VALUE	DOCUMENT ID TECN	COMMENT
$0.66 \pm 0.11 \pm 0.03$	AAIJ 17w LHCB	, pp at 7, 8 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\left(1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
$0.69 \pm 0.11 \pm 0.05$	AAIJ 17w LHCB	($p p$ at 7, 8 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(\mathrm{q}^{\mathbf{2}}<2.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT
$0.24{ }_{-0.20}^{+0.22}$ OUR AVERAGE		
$0^{0.21}+0.27$	AAIJ 12AH LHCB	bp at 7 TeV
$0.31 \pm 0.37 \pm 0.02$	AALTONEN 11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$		
VALUE (units 10^{-7})	DOCUMENT ID TECN	COMMENT

$\mathbf{0 . 2 4}{ }_{-0.30}^{\mathbf{+}} \mathbf{0 . 3 5}$ OUR AVERAGE Error includes scale factor of 1.6 .

0.07		
-0.25	AAIJ	12 AH LHCB $p p$ at 7 TeV
$0.93 \pm 0.49 \pm 0.07$	AALTONEN	11 Al CDF

$B\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(4.3<q^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{C}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
1.08 ± 0.27 OUR AVERAGE
$1.23 \pm 0.31 \quad$ AAIJ 12 AH LHCB $p p$ at 7 TeV $0.66 \pm 0.51 \pm 0.05 \quad$ AALTONEN 11 Al CDF $p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{0 . 2 7} \pm \mathbf{0 . 2 7}$ OUR AVERAGE Error includes scale factor of 1.8.

$0.50{ }_{-0.19}^{+0.22}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$-0.03 \pm 0.22 \pm 0.01$	AALTONEN	11AI CDF	$p \bar{p}$ at 1.96 TeV

$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(14.18<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
$\mathbf{0 . 2 9} \mathbf{- 0 . 2 1 5}$ OUR AVERAGE Error includes scale factor of 1.8 .

$0.20_{-0.09}^{+0.13}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$0.73 \pm 0.26 \pm 0.06$	AALTONEN	11 AI CDF	$p \bar{p}$ at 1.96 TeV

$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(\mathrm{q}^{2}>16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
$V A L U E$ (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 3 1}{ }_{=0.12}^{+0.16}$ OUR AVERAGE			
$0.35{ }_{-0.14}^{+0.21}$	AAIJ	12AH LHCB	$p p$ at 7 TeV
$0.21 \pm 0.18 \pm 0.16$	AALTONEN	11AI CDF	$p \bar{p}$ at 1.96 TeV
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(1.0<\mathrm{q}^{\mathbf{2}}<6.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{4}\right)$			
VALUE (units 10 ${ }^{-7}$) DOCUMENT ID - TECN COMMENT			
0.92 ± 0.16 OUR AVERAGE			
$0.916_{-0.157}^{+0.172} \pm 0.004$	AAIJ	14M LHCB	$p p$ at $7,8 \mathrm{TeV}$
$0.98 \pm 0.61 \pm 0.08$	AALTONEN	11al CDF	$p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - • -			
$0.65{ }_{-0.35}^{+0.45}$ AAIJ 12AH LHCB Repl. by AAIJ 14M			
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=(0.928 \pm 0.013 \pm 0.037) \times 10^{-3}$ for normalisation and $\mu^{+} \mu^{-}$as a lepton pair. Measured in $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.			
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT			
$\mathbf{1 . 2 7} \pm \mathbf{0 . 6 2} \pm \mathbf{0 . 1 0}$ AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV			
$\mathrm{B}\left(B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)\left(15.0<\mathrm{q}^{2}<22.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT			
$\mathbf{0 . 6 7}_{-\mathbf{0 . 1 1}}^{\mathbf{+ 0 . 1 1} \pm \mathbf{0 . 0 4}}{ }^{1}$ AAIJ 14 M LHCB $p p$ at $7,8 \mathrm{TeV}$			
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=(0.928 \pm 0.013 \pm 0.037) \times 10^{-3}$ for normalisation and $\mu^{+} \mu^{-}$as a lepton pair.			
$\mathrm{B}\left(B^{\mathbf{0}} \rightarrow K_{0,2}^{*}(1430)^{\mathbf{0}} \mu^{+} \mu^{-}\right)\left(1.10<\mathrm{q}^{\mathbf{2}}<6.00 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)$			
VALUE (units 10^{-8}) DOCUMENT ID CECN COMMENT			
$\mathbf{4 . 0 2} \pm \mathbf{0 . 4 4} \pm \mathbf{0 . 3 1} \quad 1,2 \mathrm{AAIJ} 16 \mathrm{AP}$ LHCB $p p$ at $7,8 \mathrm{TeV}$			
${ }^{1}$ Measured the differential branching fraction and angular moments of the decay $B^{0} \rightarrow$ $K^{+} \pi^{-} \mu^{+} \mu^{-}$in the $K^{+} \pi^{-}$invariant mass range $1330<\mathrm{m}\left(K^{+} \pi^{-}\right)<1530 \mathrm{MeV} / \mathrm{c}^{2}$. ${ }^{2}$ The reported value is converted from the measured $\mathrm{d} B / \mathrm{d} q^{2}=(0.82 \pm 0.09 \pm 0.063) \times$ $10^{-8}\left(\mathrm{GeV}^{2} / \mathrm{c}^{4}\right)^{-1}$ by multiplying by the $\Delta q^{2}=4.9 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ range.			
$\mathrm{F}_{H}\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)\left(1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
F_{H} is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.			
VALUE	DOCUMENT ID		COMMENT
0.78 $\pm 0.46 \pm 0.09$	AAIJ	140 LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.			
$\mathrm{F}_{H}\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<22.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
$0.34 \pm 0.25 \pm 0.03$	${ }^{1}$ AAIJ	140 LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 140 reports 68% C.L half of the width of interva	rval, which	code as mi	point with uncertainty

PRODUCTION ASYMMETRIES

$\mathrm{A}_{\mathrm{P}}\left(B^{0}\right)$
$\mathrm{A}_{P}\left(B^{0}\right)=\left[\sigma\left(\bar{B}^{0}\right)-\sigma\left(B^{0}\right)\right] /\left[\sigma\left(\bar{B}^{0}\right)+\sigma\left(B^{0}\right)\right]$
VALUE (units 10^{-2}) DOCUMENTID TECN COMMENT
$\mathbf{- 0 . 3} \mathbf{0 . 6}$ OUR AVERAGE Error includes scale factor of 1.7. See the ideogram below.

$0.44 \pm 0.88 \pm 0.11$	1 AAIJ	$17 \mathrm{BF} \mathrm{LHCB} p p$ at 7 TeV
$-1.40 \pm 0.55 \pm 0.10$	1 AAIJ	17 BF LHCB pp at 8 TeV

$-1.40 \pm 0.55 \pm 0.10$	1 AAIJ	17BF LHCB $p p$ at 8 TeV
$0.25 \pm 0.48 \pm 0.05$	2 AABOUD	16 G ATLS $p p$ at $7,8 \mathrm{TeV}$

16G ATLS $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. • • •
$-0.35 \pm 0.76 \pm 0.28 \quad 3 \mathrm{AAIJ} \quad 14 \mathrm{BP}$ LHCB Repl. by AAIJ $17 \mathrm{BF}, p p$
${ }^{1}$ AAIJ 17BF uses $B^{0} \rightarrow J / \psi K^{* 0}$ decays with B^{0} transverse momenta p_{T} and rapidities
y in the region of $0<p_{T}<30 \mathrm{GeV} / \mathrm{c}$ and $2.1<\mathrm{y}<4.5$.
${ }^{2}$ Based on time-dependent analysis of $B^{0} \rightarrow J / \psi K^{* 0}$ decay in kinematic range $p_{T}>$ $10 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<2.5$.
${ }^{3}$ Based on time-dependent analysis of $B^{0} \rightarrow J / \psi K^{* 0}$ and $B^{0} \rightarrow D^{-} \pi^{+}$in kinematic range $4<p_{T}<30 \mathrm{GeV} / \mathrm{c}$ and $2.5<\eta<4.5$.

Meson Particle Listings
B^{0}

$A\left(B^{0}+\bar{B}^{0}\right)$ in $K_{S}^{0} K^{\mp} \pi^{ \pm}$
$A\left(B^{0}+\bar{B}^{0}\right)=\left[n\left(K_{S}^{0} K^{-} \pi^{+}\right)-n\left(K_{S}^{0} K^{+} \pi^{-}\right)\right] /\left[n\left(K_{S}^{0} K^{-} \pi^{+}\right)+n\left(K_{S}^{0} K^{+} \pi^{-}\right)\right]$

aAboud

B^{0} REFERENCES

098
11801
M. Aaboud et al.
M. Aabij et

AAl

KRONENBIT...		PR D86 071103	B. Kronenbitter et al.	(BELLE Collab.)	AUBERT	08N	PRL 100021801	B. Aubert et al.	(BABAR Collab.)
LEES	12AA	PR D86 092004	J.P. Lees et al.	(BABAR Collab.)	Also		PR D79 092002	B. Aubert et al.	(BABAR Collab.)
LeES	12AF	PR D86 112006	J.P. Lees et al.	(BABAR Collab.)	AUBERT	08P	PR D77 032007	B. Aubert et al.	(BABAR Collab.)
Lees	12B	PR D85 052003	J.P. Lees et al.	(BABAR Collab.)	Aubert	08Q	PRL 100151802	B. Aubert et al.	(BABAR Collab.)
LeES	12D	PRL 109101802	J.P. Lees et al.	(BABAR Collab.)	Aubert	08R	PR D77 032002	B. Aubert et al.	(BABAR Collab.)
Also		PR D88 072012	J.P. Lees et al.	(BABAR Collab.)	AUBERT	08W	PRL 101082001	B. Aubert et al.	(BABAR Collab.)
LeES	121	PR D85 054023	J.P. Lees et al.	(BABAR Collab.)	AUBERT	08 Y	PR D77 111101	B. Aubert et al.	(BABAR Collab.)
LeEs	12 K	PR D85 072005	J.P. Lees et al.	(BABAR Collab.)	CHEN	08 C	PRL 100251801	J.-H. Chen et al.	(belle Collab.)
LEES	${ }^{120}$	PR D85 112010	J.P. Lees et al.	(BABAR Collab.)	CHIANG	08	PR D78 111102	C.C. Chiang et al.	(BELLE Collab.)
LeES	12 T	PR D86 051105	J.P. Lees et al.	(BABAR Collab.)	CHOI	08	PRL 100142001	S.-K. Choi et al.	(belle Collab.)
LEES	12W	PRL 109211801	J.P. Lees et al.	(BABAR Collab.)	GOLDENZWE...	. 08	PRL 101231801	P. Goldenzweig et al.	(BELLE Collab.)
NEGISHI	12	PR D86 011101	K. Negishi et al.	(BELLE Collab.)	KIM	08	PL B669 287	H.O. Kim et al.	(BELLE Collab.)
PDG	12	PR D86 010001	J. Beringer et al.	(PDG Collab.)	KUMAR	08	PR D78 091104	R. Kumar et al.	(BELLE Collab.)
ROHRKEN	12	PR D85 091106	M. Rohrken et al.	(BELLE Collab.)	KUSAKA	08	PR D77 072001	A. Kusaka et al.	(BELLE Collab.)
SATO	12	PRL 108171801	Y. Sato et al.	(BELLE Collab.)	LEE	08A	PR D77 071101	S.E. Lee et al.	(BELLE Collab.)
AAIJ	118	PL B699 330	R. Aaij et al.	(LLHCb Collab.)	,	08F	PRL 101251601	J. Li et al.	(BELLE Collab.)
AAIJ	11E	PR D84 092001	R. Aaij et al.	(LHCb Collab.)	LIN	08	NAT 452332	S.-W. Lin et al.	(BELLE Collab.)
Also		PR D85 039904 (errat.)	R. Aaij et al.	(LHCb Collab.)	LIU	081	PR D78 011106	Y. Liu et al.	(BELLE Collab.)
AAIJ	11 F	PRL 107211801	R. Aaij et al.	(LHCb Collab.)	LIVENTSEV	08	PR D77 091503	D. Liventsev et al.	(belle Collab.)
AALTONEN	11	PRL 106121804	T. Altonen et al.	(CDF Collab.)	MIZUK	08	PR D78 072004	R. Mizuk et al.	(BELLE Collab.)
AALTONEN	11AG	PRL 107191801	T. Altonen et al.	(CDF Collab.)	NAKAHAMA	08	PRL 100121601	Y. Nakahama et al.	(BELLE Collab.)
Also		PRL 107239903 (errat.)	T. Altonen et a l.	(CDF Collab.)	PDG	08	PL B667 1	C. Amsler et al.	(PDG Collab.)
abltonen	11AI	PRL 107201802	T. Aaltonen et al.	(CDF Collab.)	SAHOO	08	PR D77 091103	H. Sahoo et al.	(BELLE Collab.)
AALTONEN	11L	PRL 106161801	T. Altonen et al.	(CDF Collab.)	TANIGUCHI	08	PRL 101111801	N. Taniguchi et al.	(BELLE Collab.)
AALTONEN	${ }^{11 N}$	PRL 106181802	T. Altonen et al.	(CDF Collab.)	UCHIDA	08	PR D77 051101	Y. Uchida et al.	(BELLE Collab.)
abazov	110	PR D84 052007	V.m. Abazov et al.	(D0 Collab.)	USHIRODA	08	PRL 100021602	Y. Ushiroda et al.	(beLLe Collab.)
AUSHEV	11	PR D83 051102	T. Aushev et al.	(BELLE Collab.)	WEI	08A	PR D78 011101	J.-T. Wei et al.	(BELLE Collab.)
BAHINPATI	11	PR D84 021101	S. Bahinipati et al.	(BELLE Collab.)	ABAZOV	075	PRL 99142001	V.M. Abazov et al.	(D0 Collab.)
BHARDWAJ	11	PRL 107091803	V. Bhardwaj et al.	(BELLE Collab.)	ABULENCIA	07A	PRL 98122001	A. Abulencia et al.	(FNAL CDF Collab.)
CHATRCHYAN	${ }_{11}^{11}$	PRL 107191802	S. Chatrchyan et al.	(CMS Collab.)	ADAM	07	PRL 99041802	N.E. Adam et al.	(CLEO Collab.)
CHOI	11	PR D84 052004	S.-K. Choi et al.	(BELLE Collab.)	Also		PR D76 012007	D.M. Asner et al.	(CLEO Collab.)
DEL-AMO-SA...	11A	PR D83 032006	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07A	PRL 98031801	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	11B	PR D83 032004	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07 AA	PR D76 012004	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	. 11 C	PR D83 032007	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07AC	PR D76 031101	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	.11F	PR D83 052011	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07AD	PR D76 031102	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	.11K	PR D83 091101	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07AE	PR D76 031103	B. Aubert et al.	(BABAR Collab.)
HA	11	PR D83 071101	H. Ha et al.	(BELLE Collab.)	AUBERT	${ }^{07 A F}$	PRL 99021603	B. Aubert et al.	(BABAR Collab.)
LEES	11	PR D83 112010	J.P. Lees et al.	(BABAR Collab.)	AUBERT	07AG	PRL 99051801	B. Aubert et al.	(BABAR Collab.)
LEES	11A	PR D84 012001	J.P. Lees et al.	(BABAR Collab.)	AUBERT	07 Al	PRL 99071801	B. Aubert et al.	(BABAR Collab.)
LEES	${ }_{11 F}$	PR D84 071102	J.P. Lees et al.	(BABAR Collab.)	AUBERT	07AJ	PRL 99081801	B. Aubert et al	(BABAR Collab.)
LEES	11 M	PR D84 112007	J.P. Lees et al.	(BABAR Collab.)	AUBERT	074 N	PR D76 051101	B. Aubert et al.	(BABAR Collab.)
Also		PR D87 039901 (errat.)	J.P. Lees et al.	(BABAR Collab.)	AUBERT	07AO	PR D76 051103	B. Aubert et al.	(BABAR Collab.)
SAHOO	11A	PR D84 071101	H. Sahoo et al.	(BELLE Collab.)	AUBERT	$074 Q$	PR D76 071101	B. Aubert et al.	(BABAR Collab.)
AUBERT	10	PRL 104011802	B. Aubert et al.	(BABAR Collab.)	AUBERT	07AS	PR D76 071104	B. Aubert et al.	(BABAR Collab.)
AUBERT	10D	PR D81 052009	B. Aubert et al.	(BABAR Collab.)	AUBERT	07AT	PR D76 091101	B. Aubert et al.	(BABAR Collab.)
AUBERT	10 H	PR D82 031102	B. Aubert et al.	(BABAR Collab.)	AUBERT	07 AV	PR D76 092004	B. Aubert et al.	(BABAR Collab.)
AUSHEV	10	PR D81 031103	T. Aushev et al.	(BELLE Collab.)	AUBERT	07 AX	PRL 99161802	B. Aubert et al.	(BABAR Collab.)
CHIANG	10	PR D81 071101	C.-C. Chiang et al .	(BELLE Collab.)	AUBERT	${ }^{07 A Y}$	PRL 99171803	B. Aubert et al.	(BABAR Collab.)
DAS	10	PR D82 051103	A. Das et al.	(BELLE Collab.)	AUBERT	07B	PR D75 012008	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	10A	PR D82 011502	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	078 C	PR D76 091102	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	10B	PR D82 011101	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07BF	PR D76 052007	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	10E	PR D82 031101	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07BH	PRL 99231802	B. Aubert et al.	(BABAR Collab.)
DEL-AMO-SA...	10Q	PR D82 112002	P. del Amo Sanchez et al.	(BABAR Collab.)	AUBERT	07 Bl	PRL 99241803	B. Aubert et al.	(BABAR Collab.)
DUNGEL	10	PR D82 112007	W. Dungel et al.	(BELLE Collab.)	AUBERT	${ }^{0780}$	PR D76 111102	B. Aubert et al.	(BABAR Collab.)
FUJIKAWA	10A	PR D81 011101	m. Fujikawa et al.	(BELLE Collab.)	AUBERT	07D	PRL 98051801	B. Aubert et al.	(BABAR Collab.)
HYUN	10	PRL 105091801	H.J. Hyun et al.	(BELLE Collab.)	AUBERT	07E	PRL 98051802	B. Aubert et al.	(babar Collab.)
${ }^{\text {JOSHI }}$	10	PR D81031101	N.J. Joshi et al.	(BELLE Collab.)	AUBERT	07 F	PRL 98051803	B. Aubert et al.	(BABAR Collab.)
nakahama	10	PR D82 073011	Y. Nakahama et al.	(BELLE Collab.)	AUBERT	076	PRL 98111801	B. Aubert et al.	(BABAR Collab.)
WEDD	10	PR D81 111104	R. Wedd et al.	(BELLE Collab.)	AUBERT	07 H	PR D75 031101	B. Aubert et al.	(BABAR Collab.)
AALTONEN	${ }^{098}$	PR D79 011104	T. Aaltonen et al.	(CDF Collab.)	AUBERT	07J	PRL 98091801	B. Aubert et al.	(BABAR Collab.)
AALTONEN	09C	PRL 103031801	T. Altonen et al.	(CDF Collab.)	AUBERT	07K	PRL 98081801	B. Aubert et al.	(BABAR Collab.)
AALTONEN	09E	PR D79 032001	T. Aaltonen et al.	(CDF Collab.)	AUBERT	07 L	PRL 98151802	B. Aubert et al.	(BABAR Collab.)
AALTONEN AbAZOV	${ }^{\text {09P }}$	PRL 102201801 PRL 10203001	T. Aaltonen et al.	(CDF Collab.)	AUBERT AUBERT	07 N 070	PR D75 072002 PRL 98181803	B. Aubert et al.	(BABAR Collab.)
AUBERT	09	PR D79 011102	B. Aubert et al.	(BABAR Collab.)	AUBERT	$07 Q$	PR D75 051102	B. Aubert et al.	(babar Collab.)
AUBERT	09A	PR D79 012002	B. Aubert et al.	(BABAR Collab.)	AUBERT	07R	PRL 98211804	B. Aubert et al.	(babar collab.)
AUBERT	09AA	PR D79 112001	B. Aubert et al.	(BABAR Collab.)	Also		PRL 100 189903E	B. Aubert et al.	(BABAR Collab.)
AUBERT	09AC	PR D79 112009	B. Aubert et al.	(BABAR Collab.)	Also		PRL 100 199905E	B. Aubert et al.	(BABAR Collab.)
AUBERT	09AD	PR D80 011101	B. Aubert et al.	(BABAR Collab.)	AUBERT	07 Y	PR D75 111102	B. Aubert et al.	(BABAR Collab.)
AUBERT	09AE	PR D80 031102	B. Aubert et al.	(BABAR Collab.)	CHANG	07A	PRL 98131803	M.-C. Chang et al	(BELLE Collab.)
AUBERT	09AF	PR D80 051101	B. Aubert et al.	(BABAR Collab.)	CHANG	07B	PR D75 071104	P. Chang et al.	(BELLE Collab.)
AUBERT	09AG	PR D80 051105	B. Aubert et al.	(BABAR Collab.)	CHAO	07	PR D76 091103	Y. Chao et al.	(BELLE Collab.)
AUBERT	09AL	PR D80 092007	B. Aubert et al.	(BABAR Collab.)	CHEN	07	PRL 98031802	K.-F. Chen et al.	(BELLE Collab.)
AUBERT	09AO	PRL 103211802	B. Aubert et al.	(BABAR Collab.)	CHEN	07D	PRL 99221802	K.-F. Chen et al.	(BELLE Collab.)
AUBERT	09 AU	PR D80 112001	B. Aubert et al.	(BABAR Collab.)	DALSENO	07	PR D76 072004	J. Dalseno et al.	(BELLE Collab.)
AUBERT AUBERT	${ }^{\text {09AV }}$	PR D80 112002 PRL 10213001	B. Aubert et al. B. Aubert et $a l$	(${ }_{\text {(BABAR Collab.) }}^{(\text {BABAR Collab.) }}$	FRATINA GARMASH	07 07	PRL 98221802	S. Fratina et al. A. Garmash et al.	(BELLE Collab.)
aubert	09C	PR D79 032002	B. Aubert et al.	(babar Collab.)	hokule	07	PL B648 139	T. Hokuue et al.	(BELLE Coliab.)
AUBERT	096	PRL 102141802	B. Aubert et al.	(BABAR Collab.)	ISHINO	07	PRL 98211801	H. Ishino et al.	(belle Colab.)
AUBERT	О9н	PR D79 052005	B. Aubert et al.	(BABAR Collab.)	KUSAKA	07	PRL 98221602	A. Kusaka et al.	(belle Collab.)
AUBERT	091	PR D79 052003	B. Aubert et al.	(BABAR Collab.)	Also KUZMIN			A. Kusaka et al.	(BELLE Collab.)
AUBERT AUBERT	09K	PR D79 072009 PR D79 092002	B. Aubert et al.	(${ }^{\text {(BABAR Collab.) }}$ (BABAR Collab.)	${ }_{\text {LIN }}^{\text {KUZMIN }}$	07 07	PR D76 012006 PRL 98181804	A. Kuzmin et al. S.-W. Lin et al.	(BELLE Collab.)
AUBERT	09T	PRL 102091803	B. Aubert et al.	(BABAR Collab.)	LIN	07A	PRL 99121601	S.-W. Lin et al.	(belle Colab.)
		EPAPS Document No.	E-PRLTAO-102-060910	(BABAR Collab.)	MATYJA	07	PRL 99191807	A. Matyja et al.	(BELLE Collab.)
AUBERT	09 Y	PRL 103051803	B. Aubert et al.	(BABAR Collab.)	MEDVEDEVA	07	PR D76 051102	T. Medvedeva et al.	(BELLE Collab.)
CHANG	09	PR D79 052006	Y.-W. Chang et al.	(BELLE Collab.)	PARK	07	PR D75 011101	K.S. Park et al .	(BELLE Collab.)
DALSENO	09	PR D79 072004	J. Dalseno et al.	(beLLE Collab.)	SCHUEMANN	07	PR D75 0922002	J. Schuemann et al.	(beLLe Collab.)
KYEONG MIZUK	09	PR D80 051103	S.-H. Kyeong et al.	(BELLE Collab.)	Somov	07	PR D76 011104	A. Somov et al.	(BELLE Collab.)
MIZUK	09 09	PR D80 031104 PR D80 111104	R. Mizuk et al.	(BELLE Collab.) (BELLE Collab.)	TSAI URQUIJO	07 07	PR D75 111101 PR D75 032001	Y.-T. Tsai et al. P. Urquijo et al.	(BELLE Collab.)
WEI	09A	PRL 103171801	J.-T. Wei et al.	(BELLE Collab.)	WANG	078	PR D75 092005	C.H. Wang et al.	(BELLE Collab.)
Also		EPAPS Supplement EPAP	APS_-appendix.pdf	(BELLE Collab.)	WANG	07 C	PR D76 052004	M.-Z. Wang et al.	(BELLE Collab.)
ADACHI	08	PR D77 091101	1. Adachi et al.	(BELLE Collab.)	${ }^{\text {XIE }}$	07	PR D75 017101		(BELLE Collab.)
AUBERT AUBERT	${ }^{08}{ }_{0} 8 \mathrm{AB}$	PR 078012006 PR 077071102	B. Aubert et al.	(BABAR Collab.)	ZUPANC ABAZOV	07	PR D75 091102	A. Zupanc et al. V.M. Abazov et al.	(BELLE Collab.)
AUBERT	08AD	PR D77 091104	B. Aubert et al.	(BABAR Collab.)	AbAZOV	06 W	PR D74 112002	V.M. Abazov et al.	(Do Collab.)
AUBERT	08AF	PR D78 011103	B. Aubert et al.	(BABAR Collab.)	AbuLENCIA,A	06D	PRL 97211802	A. Abulencia et al.	(CDF Collab.)
AUBERT	08AG	PR D78 011104	B. Aubert et al.	(babar Collab.)	ACOSTA	06	PRL 96202001	D. Acosta et al.	(CDF Collab.)
AUBERT	08AH	PR D78 011107	B. Aubert et al.	(BABAR Collab.)	AUBERT	${ }_{06}^{06}$			(BABAR Collab.)
AUBERT AUBERT	${ }_{0}^{08 A J}$		B. Aubert et al. B. Aubert et $a l$	(BABAR Collab.)	AUBERT AUBERT	06A	PRL 96011803	B. Aubert et al	(BABAR Collab.) (BABAR Collab.)
AUBERT	08AQ	PR D78 052005	B. Aubert et al.	(babar Collab.)	Aubert	$06 G$	PR D73 012004	B. Aubert et al.	(babar Collab.)
AUBERT	08AU	PRL 101021801	B. Aubert et al.	(BABAR Collab.)	AUBERT	061	PR D73 031101	B. Aubert et al	(BABAR Collab.)
AUBERT AUBERT	${ }^{08 \mathrm{ALV}}$	PRL 101081801 PR D77 011102	B. Aubert et al.	(BABAR Collab.)	AUBERT AUBERT	$06 L$ $06 N$		B. Aubert et al.	(BABAR Collab.)
AUBERT AUBERT	${ }_{08 B}^{08 B}$	PR D77 011102 PR D78 071102	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	AUBERT AUBERT	${ }_{0}^{065}$	PR D74 031103 PRL 96241802	B. Aubert et al	(BABAR Collab.)
AUBERT	08BB	PR D78 071104	B. Aubert et al.	(BABAR Collab.)	AUBERT	$06 T$	PRL 96251802	B. Aubert et al.	(babar Collab.)
AUBERT	08BC	PR D78 072007	B. Aubert et al.	(BABAR Collab.)	AUBERT	06 V	PRL 97051802	B. Aubert et al.	(BABAR Collab.)
AUBERT	${ }^{08 B D}$	PR D78 091101	B. Aubert et al.	(BABAR Collab.)	AUBERT	${ }^{06 \mathrm{~W}}$	PR D73 0771102	B. Aubert et al	(BABAR Collab.)
AUBERT AUBERT	08BG 08 BH		B. Aubert et al.	(BABAR Collab.)	AUBERT AUBERT	06 X 06 Y	PR D73 071103 PR D73 111101	B. Aubert et al	(BABAR Collab.)
AUBERT	08BK	PRL 101201801	B. Aubert et al.	(BABAR Collab.)	AUBERT, B	06 A	PR D73 112004	B. Aubert et al ${ }^{\text {al }}$	(BABAR Collab.)
AUBERT	08 BL	PRL 101261802	B. Aubert et al.	(BABAR Collab.)	AUBERT, B	06B	PR D74 011101	B. Aubert et al.	(BABAR Collab.)
AUBERT	08BN	PR D78 112003	B. Aubert et al.	(BABAR Collab.)	AUBERT, ${ }^{\text {a }}$	06 C	PR D74 011102	B. Aubert et al.	(BABAR Collab.)
AUBERT	${ }^{08 C}$	PR D77 011104	B. Aubert et al.	(BABAR Collab.)	AUBERT, B	${ }^{06 E}$	PR D74 011106	B. Aubert et al	(BABAR Collab.)
AUBERT AUBERT	${ }^{\text {O }}$ 08E	PR D77 012003 PRL 100051803	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	AUBERT, AUBERT,B	${ }_{06 \mathrm{H}}^{06 \mathrm{H}}$	PRL 97201801 PRL 97201802	B. Aubert et al.	${ }_{\text {(}}\left(\right.$ BABABAR Collab.) ${ }^{\text {(BABAR Collab.) }}$
AUBERT	086	PRL 100171803	B. Aubert et al.	(BABAR Collab.)	AUBERT, ${ }^{\text {B }}$	06 J	PR D73 092001	B. Aubert et al.	(BABAR Collab.)
AUBERT	08H	PR D77 031110	B. Aubert et al.	(BABAR Collab.)	AUBERT, ${ }^{\text {a }}$	06 K	PRL 97211801	B. Aubert et al.	(BABAR Collab.)
AUBERT	081	PRL 100081801	B. Aubert et al.	(BABAR Collab.)	AUBERT,B AUBERT,B	$\begin{aligned} & 06 \mathrm{~L} \\ & 06 \mathrm{M} \end{aligned}$	$\begin{array}{lll} \text { PR } & \text { D74 } & 031101 \\ \text { PR } & \text { D74 } & 031102 \end{array}$	B. Aubert et al. B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)

Meson Particle Listings
B^{0}

AUBERT,B	060	PR D74 031104	B. Aubert et al.	(BABAR Collab.)	AUBERT, B	04W	PRL 93231804	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06P	PR D74 031105	B. Aubert et al.	(BABAR Collab.)	AUBERT, B	04X	PRL 93181806	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06Q	PR D74 091101	B. Aubert et al.	(BABAR Collab.)	AUBERT,B	042	PRL 93201801	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06R	PR D74 032005	B. Aubert et al.	(babar collab.)	AUBERT,BE	04	PR D70 111102	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	065	PR D74 051101	B. Aubert et al.	(BABAR Collab.)	AUBERT,BE	04A	PR D70 112006	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06 T	PR D74 051102	B. Aubert et al.	(BABAR Collab.)	AUBERT,BE	04B	PR D70 091106	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06 V	PR D74 051106	B. Aubert et al.	(BABAR Collab.)	AUSHEV	04	PRL 93201802	T. Aushev et al.	(BELLE Collab.)
AUBERT,B	06 Y	PR D74 091105	B. Aubert et al.	(BABAR Collab.)	BORNHEIM	04	PRL 93241802	A. Bornheim et al.	(CLEO Collab.)
AUBERT,B	062	PR D74 092004	B. Aubert et al.	(BABAR Collab.)	CHANG	04	PL B599 148	P. Chang et al.	(BELLE Collab.)
AUBERT,BE	06C	PRL 97171805	B. Aubert et al.	(BABAR Collab.)	CHAO	04	PR D69 111102	Y. Chao et al.	(BELLE Collab.)
AUBERT, BE	06H	PRL 97261803	B. Aubert et al.	(BABAR Collab.)	CHAO	04B	PRL 93191802	Y. Chao et al.	(BELLE Collab.)
AUBERT,BE	06J	PR D74 111102	B. Aubert et al.	(BABAR Collab.)	DRAGIC	04	PRL 93131802	J. Dragic	(BELLE Collab.)
AUBERT,BE	06N	PR D74 072008	B. Aubert et al.	(BABAR Collab.)	DRUTSKOY	04	PRL 92051801	A. Drutskoy et al.	(beLLe Collab.)
BLYTH	06	PR D74 092002	S. Blyth et al.	(BELLE Collab.)	garmash	04	PR D69 012001	A. Garmash et al.	(BELLE Collab.)
CHISTOV	06A	PR D74 111105	R. Chistov et al.	(BELLE Collab.)	KATAOKA	04	PRL 93261801	S.U. Kataoka et al.	(BELLE Collab.)
DRAGIC	06	PR D73 111105	J. Dragic et al.	(BELLE Collab.)	MAJUMDER	04	PR D70 111103	G. Majumder et al.	(beLLE Collab.)
GABYSHEV	06	PRL 97202003	N. Gabyshev et al.	(BELLE Collab.)	NAKAO	04	PR D69 112001	M. Nakao et al.	(BELLE Collab.)
GOKHROO	06	PRL 97162002	G. Gokhroo et al.	(BELLE Collab.)	SARANGI	04	PRL 93031802	T.R. Sarangi et al.	(BELLE Collab.)
JEN	06	PR D74 111101	C.-M. Jen et al.	(BELLE Collab.)	wang	04	PRL 92131801	M.Z. Wang et al.	(BELLE Collab.)
KROKOVNY	06	PRL 97081801	P. Krokovny et al.	(BELLE Collab.)	WANG	04 A	PR D70 012001	C.H. Wang et al.	(BELLE Collab.)
MOHAPATRA	06	PRL 96221601	D. Mohapatra et al.	(BELLE Collab.)	ABDALLAH	03 B	EPJ C28 155	J. Abdallah et al.	(DELPHI Collab.)
nakano	06	PR D73 112002	E. Nakano et al.	(BELLE Collab.)	ABE	03B	PR D67 032003	K. Abe et al.	(BELLE Collab.)
RONGA	06	PR D73 092003	F.J. Ronga et al.	(BELLE Collab.)	ABE	03 C	PR D67 031102	K. Abe et al.	(BELLE Collab.)
SCHUEMANN	06	PRL 97061802	J. Schuemann et al.	(BELLE Collab.)	ABE	${ }^{03 G}$	PR D68 012001	K. Abe et al.	(BELLE Collab.)
somov	06	PRL 96171801	A. Somov et al.	(BELLE Collab.)	ABE	03H	PRL 91261602	K. Abe et al.	(BELLE Collab.)
SONI	06	PL B634 155	N. Soni et al.	(BELLE Collab.)	ADAM	03	PR D67 032001	N.E. Adam et al.	(CLEO Collab.)
USHIRODA	06	PR D74 111104	Y. Ushiroda et al.	(BELLE Collab.)	ATHAR	03	PR D68 072003	S.B. Athar et al.	(CLEO Collab.)
VILLA	06	PR D73 051107	S. Villa et al.	(BELLE Collab.)	AUBERT	03B	PRL 90091801	B. Aubert et al.	(BABAR Collab.)
ABAZOV	05B	PRL 94042001	V.M. Abazov et al.	(D0 Collab.)	AUBERT	03 C	PR D67 072002	B. Aubert et al.	(BABAR Collab.)
ABAZOV	05C	PRL 94102001	V.M. Abazov et al.	(Do Collab.)	AUBERT	03 D	PRL 90181803	B. Aubert et al.	(BABAR Collab.)
abazov	05D	PRL 94182001	V.M. Abazov et al.	(Do Collab.)	AUBERT	${ }^{03 E}$	PRL 90181801	B. Aubert et al.	(BABAR Collab.)
abazov	05W	PRL 95171801	V.m. Abazov et al.	(Do Collab.)	AUBERT	03H	PR D67 091101	B. Aubert et al.	(BABAR Collab.)
${ }_{\text {ABE }}$	05A	PRL 94221805	K. Abe et al.	(BELLE Collab.)	AUBERT	031	PR D67 092003	B. Aubert et al.	(BABAR Collab.)
ABE	05B	PR D71 072003	K. Abe et al.	(BELLE Collab.)	AUBERT	03J	PRL 90221801	B. Aubert et al.	(BABAR Collab.)
Also		PR D71 079903 (errat.)	K. Abe et al.	(BELLE Collab.)	AUBERT	${ }^{03 \mathrm{~K}}$	PRL 90231801	B. Aubert et al.	(BABAR Collab.)
ABE	05 D	PRL 95101801	K. Abe et al.	(BELLE Collab.)	AUBERT	${ }^{03 L}$	PRL 91021801	B. Aubert et al.	(BABAR Collab.)
ABE	05 G	PRL 95231802	K. Abe et al.	(BELLE Collab.)	AUBERT	03N	PRL 91061802	B. Aubert et al.	(BABAR Collab.)
ACOSTA	05	PRL 94101803	D. Acosta et al.	(CDF Collab.)	AUBERT	030	PRL 91071801	B. Aubert et al.	(BABAR Collab.)
AUBERT	05	PRL 94011801	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 Q	PRL 91131801	B. Aubert et al.	(BABAR Collab.)
AUBERT	05B	PR D71 031501	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 S	PRL 91241801	B. Aubert et al.	(BABAR Collab.)
AUBERT	05E	PR D71 051502	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 T	PRL 91201802	B. Aubert et al.	(BABAR Collab.)
AUBERT	05 F	PRL 94161803	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 O	PRL 91221802	B. Aubert et al.	(BABAR Collab.)
AUBERT	051	PRL 94131801	B. Aubert et al.	(BABAR Collab.)	AUBERT	${ }^{03 \mathrm{~V}}$	PRL 91171802	B. Aubert et al.	(BABAR Collab.)
AUBERT	05J	PRL 94141801	B. Aubert et al.	(BABAR Collab.)	AUBERT	03W	PRL 91161801	B. Aubert et al.	(BABAR Collab.)
AUBERT	05K	PRL 94171801	B. Aubert et al.	(BABAR Collab.)	AUBERT	03 X	PR D68 092001	B. Aubert et al.	(BABAR Collab.)
AUBERT	05L	PRL 94181802	B. Aubert et al.	(BABAR Collab.)	BORNHEIM	03	PR D68 052002	A. Bornheim et al.	(CLEO Collab.)
AUBERT	05M	PRL 94191802	B. Aubert et al.	(BABAR Collab.)	CHANG	03	PR D68 111101	M.-C. Chang et al.	(BELLE Collab.)
AUBERT	050	PR D71 031103	B. Aubert et al.	(BABAR Collab.)	CHEN	03B	PRL 91201801	K.-F. Chen et al.	(BELLE Collab.)
AUBERT AUBERT	05P	PR D71 032005 PR D71 091102	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	CSORNA EISENSTEIN	$\begin{aligned} & 03 \\ & 03 \end{aligned}$	PR D67 112002 PR D68 017101	S.E. Csorna et al. B.I. Eisenstein et al.	(CLEO Collab.) (CLEO Collab.)
AUBERT	05 U	PR D71 091103	B. Aubert et al.	(BABAR Collab.)	FANG	03	PRL 90071801	F. Fang et al.	(BELLE Collab.)
AUBERT	05V	PR D71 091104	B. Aubert et al.	(BABAR Collab.)	GABYSHEV	03	PRL 90121802	N. Gabyshev et al.	(BELLE Collab.)
AUBERT	05W	PRL 94221803	B. Aubert et al.	(BABAR Collab.)	HASTINGS	03	PR D67 052004	N.C. Hastings et al.	(BELLE Collab.)
AUBERT	05Y	PR D71 111102	B. Aubert et al.	(BABAR Collab.)	ISHIKAWA	03	PRL 91261601	A. Ishikawa et al.	(beLLe Collab.)
AUBERT	05 C	PR D71 112003	B. Aubert et al.	(BABAR Collab.)	KROKOVNY	03	PRL 90141802	${ }^{\text {P. }}$ Prokovny et al.	(BELLE Collab.)
AUBERT,B AUBERT,B	${ }^{05}$	PRL 95011801	B. Aubert et al.	${ }^{\text {(BABAR Collab.) }}$ (BABAR Collab.)	${ }_{\text {KROKOVNY }}^{\text {Lee }}$	${ }_{03}^{038}$	PRL 91262002 PRL 91261801	P. Krokovny et al. S. S. Lee et al.	(BELLE Collab.)
AUBERT,B	05K	PRL 95131803	B. Aubert et al.	(babar collab.)	Satpathy	03	PL B553 159	A. Satpathy et al.	(beLle Collab.)
AUBERT,B	050	PR D72 051102	B. Aubert et al.	(BABAR Collab.)	wang	03	PRL 90201802	M.-Z. Wang et al.	(beLle Collab.)
AUBERT,B	05P	PR D72 051103	B. Aubert et al.	(BABAR Collab.)	ZHENG	03	PR D67 092004	Y. Zheng et al.	(beLLE Collab.)
AUBERT, B	05Q	PR D72 051106	B. Aubert et al.	(BABAR Collab.)	ABE	02	PRL 88021801	K. Abe et al.	(beLLe Collab.)
AUBERT, B	05 Z	PRL 95131802	B. Aubert et al.	(BABAR Collab.)	ABE	02 E	PL B526 258	K. Abe et al.	(BELLE Collab.)
AUBERT,BE	05	PRL 95151803	B. Aubert et al.	(BABAR Collab.)	ABE	02F	PL B526 247	K. Abe et al.	(BELLE Collab.)
AUBERT,BE	05A	PRL 95151804	B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$	${ }^{02 \mathrm{H}}$	PRL 88171801	K. Abe et al.	(BELLE Collab.)
AUBERT,BE	-05B	PRL 95171802 PR D72 091103	俍 ${ }^{\text {B. Aubert et al. }}$ B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$ ABE	${ }_{0} 02 \mathrm{~K}$	PRL 88052002 PRL 88181803	K. Abe et al. K. Abe et al.	(BELLE Collab.)
AUBERT,BE	05E	PRL 95221801	B. Aubert et al.	(BABAR Collab.)	ABE	02M	PRL 89071801	K. Abe et al.	(beLLE Collab.)
AUBERT, BE	05 F	PR D72 111101	B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$	02 N	PL B538 11	K. Abe et al.	(BELLE Collab.)
CHANG	05	PR D71 072007	M.-C. Chang et al.	(BELLE Collab.)	ABE	020	PR D65 091103	K. Abe et al.	(beLLe Collab.)
CHANG	05A	PR D71 091106	P. Chang et al.	(BELLE Collab.)	ABE	02 Q	PRL 89122001	K. Abe et al.	(beLLE Collab.)
CHAO	05	PRL 94181803	Y. Chao et al.	(BELLE Collab.)	${ }^{\text {ABE }}$	02 U	PR D66 032007	K. Abe et al.	(BELLE Collab.)
CHAO	05A	PR D71 031502	Y. Chao et al.	(BELLE Collab.)	ABE	02W	PRL 89151802	K. Abe et al.	(BELLE Collab.)
CHEN	05A	PRL 94221804	K.-F. Chen et al.	(BELLE Collab.)	ABE	02 Z	PR D66 071102	K. Abe et al.	(BELLE Collab.)
CHEN	05B	PR D72 012004	K.-F. Chen et al.	(BELLE Collab.)	ACOSTA	02 C	PR D65 0922009	D. Acosta et al.	(CDF Collab.)
DRUTSKOY	05	PRL 94061802	A. Drutskoy et al.	(BELLE Collab.)	ACOSTA	02 G	PR D66 112002	D. Acosta et al.	(CDF Collab.)
GERSHON	05	PL B624 11	T. Gershon et al.	(beLle Collab.)	AFFOLDER	02 B	PRL 88071801	T. Affolder et al.	(CDF Collab.)
${ }_{\text {ITO }}^{\text {ITOHENTSEV }}$	05	PRL 95091601	R. Iton et al.	(beLLe Collab.)	AHMED	${ }^{02 \mathrm{~B}}$	PR D66 031101		(CLEOO Collab.)
LIVENTSEV MAJUMDER	05 05	PR D72 051109 PRL 95041803	D. Liventsev et al. G. Majumder et a al.	(BELLE Collab.)	ASNER AUBERT	02 02	PR D65 031103 PR D65 032001	D.M. Asner et al. B. Aubert et al.	((CLEO Collab.)
MIYAKE	05	PL B618 34	H. Miyake et al.	(belle Collab.)	AUBERT	02 C	PRL 88101805	B. Aubert et al.	(babar Collab.)
MOHAPATRA	05	PR D72 011101	D. Mohapatra et al.	(BELLE COIlab.)	AUBERT	02D	PR D65 051502	B. Aubert et al.	(BABAR Collab.)
NISHIDA	05	PL B610 23	S. Nishida et al.	(BELLE Collab.)	AUBERT	${ }^{02 \mathrm{E}}$	PR D65 051101	B. Aubert et al.	(BABAR Collab.)
${ }_{\text {OKA }}^{\text {ORAE }}$	05	PL B614 27	T. Okabe et al.	(BELLE Collab.)	AUBERT	${ }^{02 H}$	PRL 89011802 (errat)	B. Aubert et al.	(BABAR Collab.)
SChumann	-05	PR D72 0111103	${ }_{\text {J. }}$ J.K. Schumann et al.	(FNAL Hypere (bele Collab.)	AUBERT	021	PRLL 88221802 (erra.)	B. Aubert et al.	(BABAR Collab.)
SUMISAWA	05	PRL 95061801	K. Sumisawa et al.	(BELLE Collab.)	AUBERT	02J	PRL 88221803	B. Aubert et al.	(BABAR Collab.)
USHIRODA	05	PRL 94231601	Y. Ushiroda et al.	(BELLE Collab.)	AUBERT	02 K	PRL 88231801	B. Aubert et al.	(BABAR Collab.)
WANG	${ }_{05}^{05}$	PRL 94121801	C.C. Wang et al.	(BELLE Collab.)	AUBERT	02 L 02 M	PRL 88241801	B. Aubert et al.	(BABAR Collab.)
XIE	05	PR D72 051105	Q.L. Xie et al.	(BELLE Collab.)	AUBERT	02 N	PR D66 032003	B. Aubert et al.	(BABAR Collab.)
Yang	05	PRL 94111802	H. Yang et al.	(BELLE Collab.)	AUBERT	02 P	PRL 89201802	B. Aubert et al.	(BABAR Collab.)
ZHANG	05B	PR D71 091107	L.M. Zhang et al.	(BELLE Collab.)	AUBERT	02Q	PRL 89281802	B. Aubert et al.	(BABAR Collab.)
AbDALLAH	04D	EPJ C33 213	J. Abdallah et al.	(DELPHI Collab.)	BRIERE	02	PRL 89081803		(CLEO Collab.)
${ }_{\text {ABE }}^{\text {ABDALLAH }}$	04E	EPJ C33 307	J. Abdallah et al. K. Abe et al.	(DELPHI Collab.)	CASEY CHEN	${ }_{02 \mathrm{~B}}^{02}$	PR D66 092002 PL B546 196	B.C.C.K. Casey et al. K.-F. Chen et al.	(BELLE Collab.)
AUBERT	04A	PR D69 011102	B. Aubert et al.	(BABAR Collab.)	COAN	02	PRL 88062001	T.E. Coan et al.	(CLEO Collab.)
AUBERT	04B	PR D69 032004	B. Aubert et al.	(BABAR Collab.)	$\stackrel{\text { Also }}{ }$		PRL 88069902 (errat.)	T.E. Coan et al.	(CLEO Collab.)
AUBERT AUBERT	04 C	PRL 92111801	B. Aubert et al.	(BABAR Collab.)	DRUTSKOY	02	PL B542 171	A. Drutskoy et al.	(BELLE Collab.)
AUBERT AUBERT	04 G 04	PR D69 031102	B. Aubert et al.	(BABAR Collab.)	DYTMAN	02	PR D66 091101 PRL 89 251801	S.A. Dytman et al.	(CLEO Collab.)
AUBERT	${ }^{04 \mathrm{M}}$	PRL 92018002		(BABAR Collab.)	EEWARDS	02	PRL 895018002	E.W. Edwards et al.	(CLEO Collab.)
AUBERT	04R	PR D69 052001	B. Aubert et al.	(babar Collab.)	gabyshev	02	PR D66 091102	N. Gabyshev et al.	(BELLE Collab.)
AUBERT	04 U	PR D69 091503	B. Aubert et al.	(BABAR Collab.)	GODANG	02	PRL 88021802	R. Godang et al.	((CLEO Collab.)
AUBERT AUBERT	04 V 04 W	PRL 92251801 PRL 92251802	B. Aubert et al. B. Aubert et al.	(BABAR Collab.)	${ }_{\text {GORDON }}^{\text {GARA }}$	02 02	PL B542 183 PRL 89251803	A. Gordon et al. K. Hara et al.	(BELLE Collab.)
AUBEERT	${ }_{04}^{04}$	PRL 9304041801		(BABAR Collab.)	KROARA	${ }_{0}^{02}$	PRL 89 251803		(BELLE Collab.)
AUBERT	047	PRL 93051802	B. Aubert et al.	(BABAR Collab.)	MAHAPATRA	02	PRL 88101803	R. Mahapatra et al.	(CLEO Collab.)
AUBERT, B	04B	PR D70 011101	B. Aubert et al.	(BABAR Collab.)	NISHIDA	02	PRL 89231801	S. Nishida et al.	(BELLE Collab.)
AUBERT, B	04 C	PR D70 012007	B. Aubert et al.	(BABAR Collab.)	TOMURA	02	PL B542 207	T. Tomura et al.	(BELLE Collab.)
	04D	PRL 92181801 PR D70 032006	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)	${ }_{\text {ABE }}^{\text {ABASHIAN }}$	${ }_{01}^{01}$	PRL 862509 PRL 863228	A. Abashian et $a l$. K. Abe et al.	(BELLE Collab.)
AUBERT,B	04 G	PRL 93071801	B. Aubert et al.	(babar collab.)	ABE	01 G	PRL 87091802	K. Abe et al.	(beLle Collab.)
AUBERT,B	04H	PRL 93081801	B. Aubert et al.	(BABAR Collab.)	ABE	01H	PRL 87101801	K. Abe et al.	(beLLe Collab.)
AUBERT,B	04J	PRL 93091802	B. Aubert et al.	(BABAR Collab.)	ABE	011	PRL 87111801	K. Abe et al.	(BELLE Collab.)
AUBERT,B	04K	PRL 93131801	B. Aubert et al.	(BABAR Collab.)	${ }^{\text {ABE }}$	01 K	PR D64 071101	K. Abe et al.	(BELLE Collab.)
AUBERT, ${ }^{\text {AUBERT,B }}$ (04 M 040	PRL 93131805 PR D70 091103	B. Aubert ${ }^{\text {B. Al }}$ al.	${ }^{\text {(BABAR Collab.) }}$ (BABAR Collab.)	${ }_{\text {ABE }}^{\text {ABE }}$	${ }^{01 \mathrm{~L}}$	PRL 87161601	K. Abe et al. K. Abe et al.	(BELLE Collab.)
AUBERT,B	04R	PRL 93231801	B. Aubert et al.	(BABAR Collab.)	Abreu	01H	PL B510 55	P. Abreu et al.	(DELPHI Collab.)
AUBERT,B	04S	PRL 93181801	B. Aubert et al.	(BABAR Collab.)	ALEXANDER	01 B	PR D64 092001	J.P. Alexander et al.	(CLEO Collab.)
AUBERT, ${ }^{\text {A }}$	04 T	PR D70 091104	B. Aubert et al.	(BABAR Collab.)	$\underset{\text { ANDERSON }}{\text { AMMAR }}$	${ }_{01}^{01 B}$	PRL 87271801 PRL 862732	R. Ammar et al.	(CLEO Collab.)
AUBERT, ${ }^{\text {a }}$	04 V	PRL 93181805	B. Aubert et al.	(babar Collab.)	ANDERSON	01 B	PRL 87181803	S. Anderson et al	(CLEO Collab.)

$B^{ \pm} / B^{0}$ ADMIXTURE

Γ_{138}	$\pi e^{ \pm} \mu^{\mp}$	$L F$	$<$	9.2	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
Γ_{138}	$\rho e^{ \pm} \mu^{\mp}$	$L F$	$<$	3.2	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{140}	$K e^{ \pm} \mu^{\mp}$	$L F$	$<$	3.8	$\times 10^{-8}$	$\mathrm{CL}=90 \%$
Γ_{141}	$K^{*}(892) e^{ \pm} \mu^{\mp}$	$L F$	$<$	5.1	$\times 10^{-7}$	$\mathrm{CL}=90 \%$

[a] These values are model dependent.
[b] An ℓ indicates an e or a μ mode, not a sum over these modes.
[c] Here "anything" means at least one particle observed.
[d] This is a $\mathrm{B}\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}\right)$ value.
[e] $D^{* *}$ stands for the sum of the $D\left(1^{1} P_{1}\right), D\left(1^{3} P_{0}\right), D\left(1^{3} P_{1}\right), D\left(1^{3} P_{2}\right)$, $D\left(2{ }^{1} S_{0}\right)$, and $D\left(2^{1} S_{1}\right)$ resonances.
[f] The value is for the sum of the charge states or particle/antiparticle states indicated.
$[g] D^{(*)} \bar{D}^{(*)}$ stands for the sum of $D^{*} \bar{D}^{*}, D^{*} \bar{D}, D \bar{D}^{*}$, and $D \bar{D}$.
[h] X (3915) denotes a near-threshold enhancement in the $\omega J / \psi$ mass spectrum.
[i] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{ \pm} / B^{0}$ ADMIXTURE BRANCHING RATIOS

$\Gamma\left(\ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
Γ_{3} / Γ
These branching fraction values are model dependent.
"OUR EVALUATION" assumes lepton universality and is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
VALUE (\%)
$\frac{\operatorname{VALUE}(\%)}{10.86 \pm 0.16 \text { OUR EVALUATION }}$
DOCUMENTID TECN COMMENT
Error includes scale factor of 1.3. See the ideogram below.

| $10.34 \pm 0.04 \pm 0.26$ | 1 | LEES | 17B | BABR |
| :---: | :--- | :--- | :--- | :--- |$e^{+} e^{-} \rightarrow r(4 S)$

$9.7 \pm 0.5 \pm 0.4 \quad{ }^{4}$ ALBRECHT $\quad 93 \mathrm{H}$ ARG $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$9.96 \pm 0.19 \pm 0.325$ AUBERT,B 06Y BABR Repl. by LEES 17B
$10.85 \pm 0.21 \pm 0.36 \quad{ }^{6}$ OKABE 05 BELL Repl. by URQUIJO 07
$10.83 \pm 0.16 \pm 0.06 \quad 7$ AUBERT $04 \times$ BABR Repl. by AUBERT,B $06 Y$
$10.36 \pm 0.06 \pm 0.23 \quad{ }^{8}$ AUBERT, $B \quad$ 04A BABR $e^{+} e^{-} \rightarrow r(4 S)$
$10.87 \pm 0.18 \pm 0.30 \quad 9$ AUBERT 03 BABR Repl. by AUBERT 04x
$10.90 \pm 0.12 \pm 0.49$
$10.49 \pm 0.17 \pm 0.43 \quad 11$ BARISH $\quad 12$ 96B CLE2 \quad Repl. by MAHMOOD 04
10 ABE $\quad 02 \mathrm{Y}$ BELL Repl. by OKABE 05
$\begin{array}{lllll}10.0 \pm 0.24 & \pm .56 & 13 \\ 10.0 & \pm 0.4 & \pm 0.3 & 14 & \text { YANAGISAWA 91 } \\ & \text { CSB2 } & e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$10.3 \pm 0.6 \pm 0.2 \quad 14$ ALBRECHT 90 H ARG Direct e at $r(4 S)$
$10.0 \pm 0.6 \pm 0.2 \quad 15$ ALBRECHT 90 H ARG Direct μ at $\gamma(4 S)$
16 WACHS 89 CBAL Direct e at $\gamma(4 S)$
$12.0 \pm 0.7 \pm 0.5 \quad$ CHEN $\quad 84 \quad$ CLEO \quad Direct e at $r(4 S)$
$\begin{array}{lllll}10.8 \pm 0.6 \pm 1.0 & \text { CHEN } & 84 & \text { CLEO } & \text { Direct } \mu \text { at } r(4 S) \\ 11.2 & \pm 0.9 \pm 1.0 & \text { LEVMAN } & 84 & \text { CUSB }\end{array}$
$11.2 \pm 0.9 \pm 1.0 \quad 17$ LEVMAN 84 CUSB Direct μ at $\gamma(4 S)$
$13.2 \pm 0.8 \pm 1.4$
1 LEES 17B measurement is obtained from semileptonic decays to electrons. The result is
${ }^{1}$ LEES 17B measurement is obtained from semileptonic decays to electrons. The result is averaged over $B^{ \pm}$and B^{0} mesons, assuming lepton universality.
${ }^{2}$ URQUIJO 07 report a measurement of $(10.07 \pm 0.18 \pm 0.21) \%$ for the partial branching fraction of $B \rightarrow e \nu_{e} X_{c}$ decay with electron energy above 0.6 GeV . We converted the fraction of $B \rightarrow e \nu_{e} X_{c}$ decay with elect
result to $B \rightarrow e \nu_{e} X$ branching fraction.
${ }^{3}$ Uses charge and angular correlations in $\gamma(4 S)$ events with a high-momentum lepton and an additional electron.
${ }^{4}$ ALBRECHT 93 H analysis performed using tagged semileptonic decays of the B. This technique is almost model independent for the lepton branching ratio.
5 The measurements are obtained for charged and neutral B mesons partial rates of semiIeptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{c}$ in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of $1.0 \mathrm{GeV}: \mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.e^{+} \nu_{e} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.074 \pm 0.041 \pm 0.026$.
${ }^{6}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above $0.6 \mathrm{GeV} / \mathrm{c}$ in the B rest frame, and their ratio of $\mathrm{B}\left(B^{+} \rightarrow e^{+}{ }_{\nu_{e}} X\right) / \mathrm{B}\left(B^{0} \rightarrow e^{+} \nu_{e} X\right)=1.08 \pm 0.05 \pm 0.02$.
${ }^{7}$ The semileptonic branching ratio, $\left|V_{c b}\right|$ and other heavy-quark parameters are determined from a simultaneous fit to moments of the hadronic-mass and lepton-energy dis8 tribution.
8 Uses the high-momentum lepton tag method and requires the electron energy above 0.6
${ }^{9}$ Uses the high-momentum lepton tag method. They also report $\left|V_{C b}\right|=0.0423 \pm$ 0.0007 (exp) ± 0.0020 (theo.).

10 Uses the high-momentum lepton tag method. ABE 02Y also reports $\left|V_{c b}\right|=0.0408 \pm$ 0.0010 (exp) ± 0.0025 (theo.). The second error is due to uncertainties of theoretical inputs.
11 BARISH 96B analysis performed using tagged semileptonic decays of the B. This technique is almost model independent for the lepton branching ratio.
12 HENDERSON 92 measurement employs e and μ. The systematic error contains 0.004 in quadrature from model dependence. The authors average a variation of the Isgur, Scora,

Grinstein, and Wise model with that of the Altarelli-Cabibbo-Corbo-Maiani-Martinelli model for semileptonic decays to correct the acceptance.
13 YANAGISAWA 91 also measures an average semileptonic branching ratio at the $r(5 S)$ of $9.6-10.5 \%$ depending on assumptions about the relative production of different B meson species.
14 ALBRECHT 90 H uses the model of ALTARELLI 82 to correct over all lepton momenta. 0.099 ± 0.006 is obtained using ISGUR 89B.
15 ALBRECHT 90 uses the model of ALTARELLI 82 to correct over all lepton momenta. 0.097 ± 0.006 is obtained using ISGUR 89B.
${ }^{16}$ Using data above $p(e)=2.4 \mathrm{GeV}$, WACHS 89 determine $\sigma(B \rightarrow e \nu \mathrm{up}) / \sigma(B \rightarrow$ $e \nu$ charm) <0.065 at 90% CL.
${ }^{17}$ Ratio $\sigma(b \rightarrow e \nu$ up $) / \sigma(b \rightarrow e \nu$ charm $)<0.055$ at $\mathrm{CL}=90 \%$.

$\begin{array}{cc}\Gamma\left(D^{-} \ell^{+} \nu_{\boldsymbol{\ell}} \text { anything }\right) \\ \ell=e \text { or } \mu . & \Gamma_{\mathbf{4}} / \boldsymbol{\ell}_{\mathbf{3}}\end{array}$

$\boldsymbol{\Gamma}\left(\overline{\boldsymbol{D}} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right.$ anything $)$

$V A L U E$

$\mathbf{0 . 2 2 3} \pm \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 0 9}$$\frac{\Gamma_{\mathbf{6}} / \boldsymbol{\Gamma}_{\mathbf{3}}}{\text { DOCUMENT ID }}$
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side.

$\Gamma\left(D^{*-} \ell^{+} \nu_{\boldsymbol{\ell}}\right.$ anything $) / \Gamma_{\text {total }}$	Γ_{7} / Γ	
VALUE (units 10^{-2})	DOCUMENT ID TECN	COMMENT
$0.67 \pm 0.08 \pm 0.10$	ABDALLAH 04D DLPH $e^{+} e^{-} \rightarrow z^{0}$	
data for averages, fits, limits, etc. $\bullet \bullet \bullet$		
$0.6 \pm 0.3 \pm 0.1$	${ }^{1}$ BARISH 95 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$	
${ }^{1}$ BARISH 95 use $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.91 \pm 0.08 \pm 0.17) \%$ and $\mathrm{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)$ $=(68.1 \pm 1.0 \pm 1.3) \%$.		
$\Gamma\left(D^{* 0} \ell^{+} \nu_{\ell}\right.$ a aything $) / \Gamma_{\text {total }}$		Γ_{8} / Γ

$$
\Gamma\left(\bar{D}^{* *} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }} \quad \Gamma_{10} / \Gamma
$$

$D^{* *}$ stands for the sum of the $D\left(1^{1} P_{1}\right), D\left(1^{3} P_{0}\right), D\left(1^{3} P_{1}\right), D\left(1^{3} P_{2}\right), D\left(2^{1} S_{0}\right)$, and $D\left(2^{1} S_{1}\right)$ resonances. $\quad \ell=e$ or μ, not sum over e and μ modes.
$\frac{V A L U E}{\mathbf{0 . 0 2 7} \pm \mathbf{0 . 0 0 5} \pm \mathbf{0 . 0 0 5}} \frac{C L \%}{63} \quad \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { ALBRECHT } 93} \frac{\text { TECN }}{\text { ARG }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$

- - We do not use the following data for averages, fits, limits, etc. - -
$<0.028 \quad 2$ BARISH 95 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALBRECHT 93 assumes the GISW model to correct for unseen modes. Using the BHKT model, the result becomes $0.023 \pm 0.006 \pm 0.004$. Assumes $\mathrm{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=$ $68.1 \%, \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=3.65 \%, \mathrm{~B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}\right)=7.5 \%$. We have taken their average e and μ value.
${ }^{2}$ BARISH 95 use $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.91 \pm 0.08 \pm 0.17) \%$, assume all nonresonant channels are zero, and use GISW model for relative abundances of $D^{* *}$ states.

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

$\Gamma\left(D^{*-} \pi^{+} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{16} / \Gamma$

| $\frac{V A L U E\left(\text { units } 10^{-3}\right)}{}$ | |
| :--- | :---: | :--- |
| $\mathbf{1 0 . 0} \pm \mathbf{2 . 7} \pm \mathbf{2 . 1}$
 1 BUSKULIC 95B reports $f_{B}$$\times \mathrm{B}\left(B \rightarrow \bar{D}^{*}(2010)^{-} \pi^{+}+\ell^{+} \nu_{\ell}\right.$ anything $)=(3.7 \pm 1.0 \pm$ | |

${ }^{1}$ BUSKULIC 95B reports $f_{B} \times \mathrm{B}\left(B \rightarrow \bar{D}^{*}(2010)^{-} \pi^{+} \ell^{+} \nu_{\ell}\right.$ anything $)=(3.7 \pm 1.0 \pm$ $0.7) 10^{-3}$ ．Above value assumes $f_{B}=0.37 \pm 0.03$ ．

1 Measurement used electrons and muons as leptons

${ }^{1}$ Measurement used electrons and muons as leptons．
$\Gamma\left(D_{\boldsymbol{s}}^{-} \ell^{+} \nu_{\boldsymbol{\ell}}\right.$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 9}} / \Gamma$
 ${ }^{1}$ ALBRECHT 93E reports <0.012 from a measurement of $\left[\Gamma\left(B \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.\right.$ anything $) /$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.027$ ，which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$ ．

$\Gamma\left(D_{s}^{-} \ell^{+} \nu_{\ell} K^{+}\right.$anything $) / \Gamma_{\text {total }}$				TECN		Γ_{20} / Γ
VALUE	CL\％	DOCUMENT ID			COMMENT	
＜5 $\times 10^{-3}$	90	1 ALBRECHT	93E	ARG	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(x_{c} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Averaging Group（HFLAV） and are described at https：／／hflav．web．cern．ch／．The averaging／rescaling procedure takes into account correlations between the measurements．
$\frac{\operatorname{VALUE}(\%)}{10.65 \pm 0.16 \text { OUR EVALUATION }}$
DOCUMENT ID \qquad TECN COMMENT

10.29 ± 0.19 OUR AVERAGE

$10.18 \pm 0.03 \pm 0.24 \quad{ }^{1}$ LEES \quad 17B BABR $e^{+} e^{-} \rightarrow r(4 S)$
$10.44 \pm 0.19 \pm 0.22 \quad{ }^{2}$ URQUIJO 07 BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－
$10.64 \pm 0.17 \pm 0.06 \quad 3$ AUBERT $\quad 10 \mathrm{~A}$ BABR Repl．by LEES 17B
$10.61 \pm 0.16 \pm 0.06 \quad{ }^{4}$ AUBERT 04x BABR Repl．by AUBERT 10A
${ }^{1}$ The measurement is obtained from semileptonic decays to electrons $B \rightarrow X e \nu$ ，and using a theoretical model（GAMBINO 07，GAMBINO 11）to predict the contribution from $B \rightarrow X_{u} e \nu$ ．The result is averaged over $B^{ \pm}$and B^{0} mesons，assuming lepton universality．
${ }^{2}$ Measured the independent B^{+}and B^{0} partial branching fractions with electron energy above 0.4 GeV ．
${ }^{3}$ Obtained from a combined fit to the moments of observed spectra in inclusive $B \rightarrow$ $x_{C} \ell^{+} \nu_{\ell}$ decay．
${ }^{4}$ The semileptonic branching ratio，$\left|V_{c b}\right|$ and other heavy－quark parameters are deter－ mined from a simultaneous fit to moments of the hadronic－mass and lepton－energy dis－ tribution．
$\Gamma\left(x_{u} \ell^{+} \nu_{\ell}\right) / \Gamma_{\text {total }}$
「23／「
＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Averaging Group（HFLAV） and are described at https：／／hflav．web．cern．ch／．The averaging／rescaling procedure takes into account correlations between the measurements．
VALUE（units 10^{-3} ）
DOCUMENTID TECN COMMENT
2.13 ± 0.30 OUR EVALUATION
$1.665 \pm 0.087_{-0.094}^{+0.103} \quad 1$ LEES $\quad 17 B$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.01 \pm 0.15 \pm 0.25 \quad 2$ LEES $\quad 12 \mathrm{R}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.53 \pm 0.24 \pm 0.24 \quad 3$ AUBERT，B $\quad 05 \mathrm{x}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$2.80 \pm 0.52 \pm 0.41 \quad 4$ LIMOSANI $05 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma(4 S)$
$1.77 \pm 0.29 \pm 0.38 \quad{ }^{5}$ BORNHEIM 02 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－
$1.963 \pm 0.173 \pm 0.159 \quad{ }^{6}$ URQUIJO 10 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$1.18 \pm 0.09 \pm 0.07 \quad 7$ AUBERT 08AS BABR Repl．by LEES 12R
$2.27 \pm 0.26 \underset{-0.33}{+0.37} \quad 8$ AUBERT $\quad 06 \mathrm{H}$ BABR Repl．by LEES 17B
$2.24 \pm 0.27 \pm 0.47 \quad 9,10$ AUBERT 04I BABR Repl．by AUBERT，B 05x
${ }^{1}$ Obtained from the partial rate $\Delta B=\left(1.554 \pm 0.082_{-0.086}^{+0.095}\right) \times 10^{-3}$ for the electron momentum interval of $0.8-2.7 \mathrm{GeV} / \mathrm{c}$ based on GGOU1 method $\left(X_{C} \ell \nu, m_{C}\right.$ constraint fit of SF parameters）．
${ }^{2}$ Measures several partial branching fractions in different phase space regions．The most precise result on the full branching fraction is obtained in the region for lepton momentum in B rest frame $\mathrm{p}_{\ell}^{*}>1 \mathrm{GeV} / \mathrm{c}$ ，where the measured partial branching fraction is $\Delta \mathrm{B}$ $=(1.80 \pm 0.13 \pm 0.15) \times 10^{-3}$ ．The acceptance in that region is reported in a private communication by the Authors to be 0.894 ．The corresponding $\left|\mathrm{V}_{u b}\right|$ from the BLNP method is $(4.28 \pm 0.15 \pm 0.18 \pm 0.19) \times 10^{-3}$ ，where the last uncertainty comes from theoretical prediction．
${ }^{3}$ Determined from the partial rate $\Delta B=(4.41 \pm 0.42 \pm 0.42) \times 10^{-4}$ measured for electron energy $>2 \mathrm{GeV}$ and hadronic mass squared $<3.5 \mathrm{GeV}^{2}$ ，and calculated acceptance 0.174 in that region．The $V_{u b}$ is measured as $\left(4.41 \pm 0.30_{-0.47}^{+0.65} \pm 0.28\right) \times 10^{-3}$ ．
${ }^{4}$ Uses electrons in the momentum interval $1.9-2.6 \mathrm{GeV} / \mathrm{c}$ in the center－of－mass frame． The $V_{u b}$ is found to be $\left(5.08 \pm 0.47_{-0.48}^{+0.49}\right) \times 10^{-3}$ ．
${ }^{5}$ BORNHEIM 02 uses the observed yield of leptons from semileptonic B decays in the end－point momentum interval $2.2-2.6 \mathrm{GeV} / \mathrm{c}$ with recent $\mathrm{CLEO}-2$ data on $B \rightarrow X_{s} \gamma$ ． The $V_{u b}$ is found to be $(4.08 \pm 0.34 \pm 0.53) \times 10^{-3}$ ．
${ }^{6}$ Uses a multivariate analysis method and requires lepton momentum in the B rest frame， $\mathrm{p}_{l}^{* B}>1.0 \mathrm{GeV} / \mathrm{c}$
${ }^{7}$ Measures several partial branching fractions in different phase space regions．The most precise result is obtained in the region for hadronic mass $\mathrm{M}_{X}<1.55 \mathrm{GeV} / \mathrm{c}^{2}$ ，and is $\Delta \mathrm{B}=(1.18 \pm 0.09 \pm 0.07) \times 10^{-3}$ ．The corresponding $\left|V_{u b}\right|$ from the BLNP method
is $(4.27 \pm 0.16 \pm 0.13 \pm 0.30) \times 10^{-3}$ ，where the last uncertainty comes from the theoretical prediction of the partial rate in the given phase－space region．
8 Obtained from the partial rate $\Delta \mathrm{B}=(0.572 \pm 0.041 \pm 0.065) \times 10^{-3}$ for the electron momentum interval of $2.0-2.6 \mathrm{GeV} / \mathrm{c}$ based on BLNP method．
${ }^{9}$ Used BaBar measurement of Semileptonic branching fraction $\mathrm{B}\left(B \rightarrow X \ell \nu_{\ell}\right)=(10.87 \pm$ $0.18 \pm 0.30) \%$ to convert the ratio of rates to branching fraction．
10 The third error includes the systematics and theoretical errors summed in quadrature．

$\Gamma\left(X_{u} \ell^{+} \nu_{\ell}\right) / \Gamma\left(\ell^{+} \nu_{\ell}\right.$ anything $)$

Γ_{23} / Γ_{3}
ℓ denotes e or μ ，not the sum． momentum intervals．
VALUE（units 10^{-2} ）CL\％EVTS
$2.06 \pm 0.25 \pm 0.42$
DOCUMENT ID \qquad TECN COMMENT
${ }^{1}$ AUBERT 04 BABR $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－

	107		2 ALBRECHT	94C	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
			3 BARTELT	93B	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
		77	${ }^{4}$ ALBRECHT	91C	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
		41	${ }^{5}$ ALBRECHT	90	ARG	$e^{+} e^{-} \rightarrow$	$r(4 S)$
		76	${ }^{6}$ FULTON	90	CLEO	$e^{+} e^{-}$	$r(4 S)$
<4.0	90		7 BEHRENDS	87	CLEO	$e^{+} e^{-}$	$r(4 S)$
<4.0	90		CHEN	84	CLEO	Direct e a	$r(4 S)$
<5.5	90		KLOPFEN．．．	83B	CUSB	Direct e a	$r(4 S)$

${ }^{1}$ The third error includes the systematics and theoretical errors summed in quadrature．
${ }^{2}$ ALBRECHT 94c find $\Gamma(b \rightarrow c) / \Gamma(b \rightarrow$ all $)=0.99 \pm 0.02 \pm 0.04$ ．
${ }^{3}$ BARTELT 93B（CLEO II）measures an excess of $107 \pm 15 \pm 11$ leptons in the lepton momentum interval $2.3-2.6 \mathrm{GeV} / c$ which is attributed to $b \rightarrow u \ell \nu_{\ell}$ ．This corresponds to a model－dependent partial branching ratio $\Delta \mathrm{B}_{u b}$ between $(1.15 \pm 0.16 \pm 0.15) \times 10^{-4}$ ， as evaluated using the KS model（KOERNER 88），and（ $1.54 \pm 0.22 \pm 0.20$ ）$\times 10^{-4}$ using the ACCMM model（ARTUSO 93）．The corresponding values of $\left|V_{u b}\right| /\left|V_{c b}\right|$ are 0.056 ± 0.006 and 0.076 ± 0.008 ，respectively．
${ }^{4}$ ALBRECHT 91c result supersedes ALBRECHT 90．Two events are fully reconstructed providing evidence for the $b \rightarrow u$ transition．Using the model of ALTARELLI 82，they obtain $\left|V_{u b} / V_{c b}\right|=0.11 \pm 0.012$ from 77 leptons in the $2.3-2.6 \mathrm{GeV}$ momentum range．
${ }^{5}$ ALBRECHT 90 observes 41 ± 10 excess e and μ（lepton）events in the momentum interval $p=2.3-2.6 \mathrm{GeV}$ signaling the presence of the $b \rightarrow u$ transition．The events correspond to a model－dependent measurement of $\left|V_{u b} / V_{c b}\right|=0.10 \pm 0.01$ ．
${ }^{6}$ FULTON 90 observe 76 ± 20 excess e and μ（lepton）events in the momentum interval $p=2.4-2.6 \mathrm{GeV}$ signaling the presence of the $b \rightarrow u$ transition．The average branching ratio，$(1.8 \pm 0.4 \pm 0.3) \times 10^{-4}$ ，corresponds to a model－dependent measurement of approximately $\left|V_{u b} / V_{c b}\right|=0.1$ using $\mathrm{B}(b \rightarrow c \ell \nu)=10.2 \pm 0.2 \pm 0.7 \%$ ．
7 The quoted possible limits range from 0.018 to 0.04 for the ratio，depending on which model or momentum range is chosen．We select the most conservative limit they have calculated．This corresponds to a limit on $\left|V_{u b}\right| /\left|V_{c b}\right|<0.20$ ．While the endpoint technique employed is more robust than their previous results in CHEN 84，these results do not provide a numerical improvement in the limit．
$\Gamma\left(K^{+} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma\left(\ell^{+} \nu_{\ell}\right.$ anything $) \quad \Gamma_{24} / \Gamma_{3}$
I（ $K^{+} \ell^{+} \nu_{\boldsymbol{\ell}}$ anything $) / \Gamma\left(\ell^{+} \nu_{\ell}\right.$
VALUE
$\frac{V A L U E}{0.58} \pm \mathbf{0 . 0 5}$ OUR AVERAGE DOCUMENTID TECN COMMENT

$\Gamma\left(K^{-} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma\left(\ell^{+} \nu_{\ell}\right.$ anything $) \quad \Gamma_{25} / \Gamma_{\mathbf{3}}$
ℓ denotes e or μ, not the sum.
VALUE DOCUMENTID TECN COMMENT
0.092 ± 0.035 OUR AVERAGE
$0.086 \pm 0.011 \pm 0.044 \quad$ ALBRECHT 94 C ARG $e^{+} e^{-} \rightarrow r(4 S)$
$0.10 \pm 0.05 \pm 0.02 \quad 1$ ALAM $\quad 87 \mathrm{~B}$ CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALAM 87B measurement relies on lepton-kaon correlations.
$\Gamma\left(K^{0} / \overline{K^{0}} \ell^{+} \nu_{\boldsymbol{\ell}}\right.$ anything $) / \Gamma\left(\ell^{+} \nu_{\boldsymbol{\ell}}\right.$ anything $)$
Γ_{26} / Γ_{3}
ℓ denotes e or μ ，not the sum．
$\frac{V A L U E}{0.42} \pm 0.05$ OUR AVERAGE
$0.452 \pm 0.038 \pm 0.056 \quad 1$ ALBRECHT 94C ARG $e^{+} e^{-} \rightarrow r(4 S)$
$0.39 \pm 0.06 \pm 0.04 \quad 2$ ALAM 87B CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALBRECHT 94c assume a K^{0} / \bar{K}^{0} multiplicity twice that of K_{S}^{0} ．
${ }^{2}$ ALAM 87B measurement relies on lepton－kaon correlations．

$\Gamma\left(\bar{D} \tau^{+} \nu_{\tau}\right) / \Gamma\left(\bar{D} \ell^{+} \nu_{\ell}\right)$

$\Gamma_{27 / \Gamma_{6}}$
＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Averaging Group（HFLAV） and are described at https：／／hflav．web．cern．ch／．The averaging／rescaling procedure takes into account correlations between the measurements．

VALUE（units 10^{-2} ）
DOCUMENT ID \qquad TECN COMMENT
40.7 土 4．6 OUR EVALUATION
41 ± 5 OUR AVERAGE
$37.5 \pm 6.4 \pm 2.6 \quad 1,2$ HUSCHLE $\quad 15$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$44.0 \pm 5.8 \pm 4.2 \quad 1,2$ LEES \quad 12D BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－
$4.16 \pm 11.7 \pm 5.2 \quad 1$ AUBERT 08N BABR Repl．by LEES 12D
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{2}$ Uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and e^{+}or μ^{+}as ℓ^{+}．Obtained from simultaneous fit to $\mathrm{B}+$ and B 0 assuming isospin symmetry．
$\Gamma\left(D^{*} \tau^{+} \nu_{\tau}\right) / \Gamma\left(D^{*} \ell^{+} \nu_{\ell}\right)$
Γ_{28} / Γ_{9} ＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Averaging Group（HFLAV） and are described at https：／／hflav．web．cern．ch／．The averaging／rescaling procedure takes into account correlations between the measurements．
$\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{3 0 . 4} \pm \mathbf{1 . 5} \text { OUR EVALUATION DOCUMENT ID }}$ TECN COMMENT
30．7 $\pm \mathbf{2 . 1}$ OUR AVERAGE
$27.0 \pm 3.5_{-2.5}^{+2.8} \quad 1$ HIROSE $\quad 17$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$29.3 \pm 3.8 \pm 1.5 \quad 2$ HUSCHLE 15 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$33.2 \pm 2.4 \pm 1.8 \quad{ }^{2}$ LEES 12D BABR $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－
$29.7 \pm 5.6 \pm 1.8 \quad 3$ AUBERT 08N BABR Repl．by LEES 12D
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{2}$ Uses $\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$ and $\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$ and e^{+}or μ^{+}as ℓ^{+}．Obtained from simultaneous fit to $\mathrm{B}+$ and B 0 assuming isospin symmetry．Uses a fully reconstructed B meson as a tag on the recoil side．
${ }^{3}$ Uses a fully reconstructed B meson as a tag on the recoil side．The results are normalized to the B^{+}decay rate．
$\left\langle n_{c}\right\rangle$
VALUE DOCUMENT ID＿TECN COMMENT
$\mathbf{1 . 1 0 \pm 0 . 0 5} \quad 1$ GIBBONS 97B CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.98 \pm 0.16 \pm 0.12 \quad 2$ ALAM $\quad 87 \mathrm{~B}$ CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ GIBBONS 97B from charm counting using $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi\right)=0.036 \pm 0.009$ and $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)=0.044 \pm 0.006$ ．
${ }^{2}$ From the difference between K^{-}and K^{+}widths．ALAM 87B measurement relies on epton－kaon correlations．It does not consider the possibility of $B \bar{B}$ mixing．We have thus removed it from the average．
$\Gamma\left(D^{ \pm}\right.$anything $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 9}} / \boldsymbol{\Gamma}^{2}$ $\frac{V A L U E}{\mathbf{0 . 2 3 1} \pm \mathbf{0 . 0 1 2} \text { OUR AVERAGE }}$
$0.230 \pm 0.012 \pm 0.004 \quad 1$ GIBBONS $\quad 97$ B CLE2 $\quad e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.241 \pm 0.037 \pm 0.004 \quad 2$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$0.223 \pm 0.051 \pm 0.004 \quad 3$ ALBRECHT 91 H ARG $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．• • •
$0.203 \pm 0.048 \pm 0.003 \quad 20 \mathrm{k} \quad{ }^{4}$ BORTOLETTO 87 CLEO Sup．by BORTOLETTO 92 ${ }^{1}$ GIBBONS 97B reports $\left[\Gamma\left(B \rightarrow D^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=$ $0.0216 \pm 0.0008 \pm 0.00082$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ BORTOLETTO 92 reports $\left[\Gamma\left(B \rightarrow D^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=$ $0.0226 \pm 0.0030 \pm 0.0018$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ ALBRECHT 91H reports $\left[\Gamma\left(B \rightarrow D^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=$ $0.0209 \pm 0.0027 \pm 0.0040$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{4}$ BORTOLETTO 87 reports $\left[\Gamma\left(B \rightarrow D^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]$ $=0.019 \pm 0.004 \pm 0.002$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(D^{0} / D^{0}\right.$ anything $) / \Gamma_{\text {toat }}$
「30／「
$\frac{\text { VALUE }}{\mathbf{0 . 6 1 5} \pm \mathbf{0 . 0 2 9} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { Error includes scale factor of }} \frac{\text { COMMENT }}{1.3 \text { ．See the ideogram below．}}$
$0.635 \pm 0.024 \pm 0.005 \quad 1$ GIBBONS $\quad 97 B$ CLE2 $e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.590 \pm 0.047 \pm 0.005 \quad 2$ BORTOLETTO92 CLEO $e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.491 \pm 0.074 \pm 0.004 \quad 3$ ALBRECHT 91 H ARG $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.532 \pm 0.065 \pm 0.004 \quad 21 \mathrm{k} \quad{ }_{5}^{4}$ BORTOLETTO87 CLEO $\quad e^{+} e^{-} \rightarrow r(4 S)$
$0.608 \pm 0.183 \pm 0.005 \quad 5$ GREEN 83 CLEO Repl．by BORTOLETTO 87 ${ }^{1}$ GIBBONS 97B reports $\left[\Gamma\left(B \rightarrow D^{0} / \bar{D}^{0}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]=$ $0.0251 \pm 0.0006 \pm 0.00075$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=$ $(3.950 \pm 0.031) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ BORTOLETTO 92 reports［ $\Gamma\left(B \rightarrow D^{0} / \bar{D}^{0}\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]$ $=0.0233 \pm 0.0012 \pm 0.0014$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=$ $(3.950 \pm 0.031) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ ALBRECHT 91H reports $\left[\Gamma\left(B \rightarrow D^{0} / \bar{D}^{0}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]$ $=0.0194 \pm 0.0015 \pm 0.0025$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=$ $(3.950 \pm 0.031) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{4}$ BORTOLETTO 87 reports $\left[\Gamma\left(B \rightarrow D^{0} / \bar{D}^{0}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]$ $=0.0210 \pm 0.0015 \pm 0.0021$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=$ $(3.950 \pm 0.031) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{5}$ GREEN 83 reports $\left[\Gamma\left(B \rightarrow D^{0} / \bar{D}^{0}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]=0.024 \pm$ 0.006 ± 0.004 which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.950 \pm 0.031) \times$

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

$\Gamma\left(D_{s}^{ \pm}\right.$anything $) / \Gamma_{\text {total }}^{\text {VALUE }}$
EVTS
DOCUMENT ID
TECN COMMENT
S33

$0.089 \pm 0.010 \pm 0.008$
$0.087 \pm 0.005 \pm 0.008$
$0.065 \pm 0.011 \pm 0.006$
$0.068 \pm 0.010 \pm 0.006 \quad 257$
$0.085 \pm 0.022 \pm 0.008$

- - We do not use the following

| $0.094 \pm 0.007 \pm 0.008$ | 6 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GIBAUT | 96 | CLE2 | Repl. by ARTUSO 05 | |
| $0.094 \pm 0.024 \pm 0.008$ | 7 ALBRECHT | 87 H | ARG | $e^{+} e^{-} \rightarrow r(4 S)$ |

${ }^{1}$ ARTUSO 05B reports $0.0905 \pm 0.0025 \pm 0.0140$ from a measurement of $[\Gamma(B \rightarrow$ $D_{S}^{ \pm}$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.4 \pm 0.5) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AUBERT 02 G reports $\left[\Gamma\left(B \rightarrow D_{s}^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]=0.00393 \pm$ 0.00007 ± 0.00021 which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ALBRECHT 92 G reports $\left[\Gamma\left(B \rightarrow D_{s}^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]=$ $0.00292 \pm 0.00039 \pm 0.00031$ which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)$ $=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ BORTOLETTO 90 reports $\left[\Gamma\left(B \rightarrow D_{s}^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]=$ 0.00306 ± 0.00047 which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5} \mathrm{HAAS} 86$ reports $\left[\Gamma\left(B \rightarrow D_{S}^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=0.0038 \pm 0.0010$ which we divide by our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $64 \pm 22 \%$ decays are 2 -body.
${ }^{6}$ GIBAUT 96 reports $0.1211 \pm 0.0039 \pm 0.0088$ from a measurement of $[\Gamma(B \rightarrow$ $D_{s}^{ \pm}$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.035$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
7^{7} ALBRECHT 87 H reports $\left[\Gamma\left(B \rightarrow D_{S}^{ \pm}\right.\right.$anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=0.0042 \pm$ 0.0009 ± 0.0006 which we divide by our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $46 \pm 16 \%$ of $B \rightarrow D_{S}$ X decays are 2-body. Superseded by ALBRECHT 92 G .

$0.063 \pm 0.009 \pm 0.006$
DOCUMENT ID TECN COMMENT
$\Gamma 34 / \Gamma$
${ }^{1}$ AUBERT 02 G reports $\left[\Gamma\left(B \rightarrow D_{S}^{* \pm}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]=0.00284 \pm$ 0.00029 ± 0.00025 which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times$ 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\begin{array}{lll}\Gamma\left(D_{\boldsymbol{s}}^{* \pm} \bar{D}^{(*)}\right) / \Gamma\left(D_{\mathbf{s}}^{* \pm} \text { anything }\right) & \Gamma_{35} / \Gamma_{34} \\ \text { VALLUE } \text { Sum over modes }\end{array}$ $\mathbf{0 . 5 3 3} \pm \mathbf{0 . 0 3 7} \pm \mathbf{0 . 0 3 7} \quad$ AUBERT $02 \mathrm{GABR} e^{+} e^{-} \rightarrow r(4 S)$

$\Gamma\left(\bar{D} D_{\text {s0 }}(2317)\right) / \Gamma_{\text {total }}$				$\Gamma 36 / \Gamma$
Value	DOCUMENT ID	TECN	COMMENT	
seen	${ }^{1}$ KROKOVNY 03B	BEL	$e^{+} e^{-}$	

${ }^{1}$ The product branching ratio for $\mathrm{B}\left(B \rightarrow \bar{D} D_{S 0}(2317)^{+}\right) \times \mathrm{B}\left(D_{S 0}(2317)^{+} \rightarrow D_{S} \pi^{0}\right)$ is measured to be $\left(8.5_{-1.9}^{+2.1} \pm 2.6\right) \times 10^{-4}$.
$\Gamma\left(\bar{D} D_{s J}(2457)\right) / \Gamma_{\text {total }}$

| VALUE | | |
| :--- | :--- | :--- | :--- |
| seen | $\frac{\text { DOCUMENT ID }}{\text { KROKOVNY }} 0$ 03B | $\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$ |

${ }^{1}$ The product branching ratio for $\mathrm{B}\left(B \rightarrow \bar{D} D_{s J}(2457)^{+}\right) \times \mathrm{B}\left(D_{s J}(2457)^{+} \rightarrow\right.$ $\left.D_{S}^{*+} \pi^{0}, D_{s}^{+} \gamma\right)$ are measured to be $\left(17.8_{-3.9}^{+4.5} \pm 5.3\right) \times 10^{-4}$ and $\left(6.7_{-1.2}^{+1.3} \pm 2.0\right) \times$ 10^{-4}, respectively.

${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.

${ }^{1}$ COAN 98 uses $D-\ell$ correlation.
$\Gamma\left(D_{s}{ }_{s}^{(*)} \bar{D}^{(*)}\right) / \Gamma\left(D_{s}^{ \pm}\right.$anything $)$ $\frac{V A L U E}{0.469} \pm 0.017$ OUR AVERAGE
$0.464 \pm 0.013 \pm 0.015$ $0.56{ }_{-0.15}^{+0.21}{ }_{-0.08}^{+0.09}$ $0.457 \pm 0.019 \pm 0.037$ $0.58 \pm 0.07 \pm 0.09$ 0.56 ± 0.10
$\Gamma_{40} / \Gamma_{33}$
DOCUMENTID TECN COMMENT

| AUBERT | 02G | BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | :--- | :--- | :--- |
| ${ }^{1}$ BARATE | $98 Q$ | ALEP | $e^{+} e^{-} \rightarrow z$ |
| GIBAUT | 96 | CLE2 | $e^{+} e^{-} \rightarrow r(4 S)$ |
| ALBRECHT | $92 G$ | ARG | $e^{+} e^{-} \rightarrow r(4 S)$ | ALBRECHT 92 G ARG $e^{+} e^{-} \rightarrow r(4 S)$ BORTOLETTO90 CLEO $e^{+} e^{-} \rightarrow r(4 S)$

${ }^{1}$ BARATE $98 Q$ measures $\mathrm{B}\left(B \rightarrow D_{S}(*) \bar{D}^{(*)}\right)=0.056_{-0.015}^{+0.021}{ }_{-0.008}^{+0.009}{ }_{-0.011}^{0.019}$, where the third error results from the uncertainty on the different D branching ratios and is dominated by the uncertainty on $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)$. We divide $\mathrm{B}\left(B \rightarrow D_{S}{ }^{(*)} \bar{D}^{(*)}\right)$ by our best value of $\mathrm{B}\left(B \rightarrow D_{S}\right.$ anything $)=0.1 \pm 0.025$.

$\Gamma\left(D_{s}{ }^{(*) \pm} \bar{D}^{(*)} X\left(n \pi^{ \pm}\right)\right) / \Gamma_{\text {total }}$				$\Gamma_{44 / \Gamma}$
value	DOCUMENT ID	TECN	COMMENT	

${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{*}(\mathbf{2 0 1 0}) \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{}$
$\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 3}}$

${ }^{1}$ LESIAK 92 set a limit on the inclusive process $\mathrm{B}(b \rightarrow s \gamma)<2.8 \times 10^{-3}$ at $90 \% \mathrm{CL}$ for the range of masses of $892-2045 \mathrm{MeV}$, independent of assumptions about s-quark hadronization.
$\Gamma\left(D_{s}^{+} \pi^{-}, D_{s}^{*+} \pi^{-}, D_{s}^{+} \rho^{-}, D_{s}^{*+} \rho^{-}, D_{s}^{+} \pi^{0}, D_{s}^{*+} \pi^{0}, D_{s}^{+} \eta, D_{s}^{*+} \eta, D_{s}^{+} \rho^{0}\right.$,
 $\frac{<4 \times 10^{-4}}{90} \quad 1 \frac{1}{\text { ALEXANDER 93B }} \frac{1}{\text { CLE2 }} \frac{}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ ALEXANDER 93B reports $<4.8 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B \rightarrow D_{S}^{+} \pi^{-}\right.\right.$, $D_{S}^{*+} \pi^{-}, D_{s}^{+} \rho^{-}, D_{S}^{*+} \rho^{-}, D_{S}^{+} \pi^{0}, D_{S}^{*+} \pi^{0}, D_{S}^{+} \eta, D_{S}^{*+} \eta, D_{S}^{+} \rho^{0}, D_{S}^{*+} \rho^{0}$, $\left.\left.D_{s}^{+} \omega, D_{s}^{*+} \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.037$, which we rescale to our best value $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.5 \times 10^{-2}$. This branching ratio limit provides a model-dependent upper limit $\left|V_{u b}\right| /\left|V_{c b}\right|<0.16$ at $C L=90 \%$.
$\Gamma\left(D_{\text {s1 }}\left(D_{536}\right)^{+}\right.$anything $) / \Gamma_{\text {total }}$
$D_{S 1}(2536)^{+}$is the narrow P-wave D_{S}^{+}meson with $J^{P}=1^{+}$

$\Gamma(J / \psi(1 S)$ anything $) / \Gamma_{\text {total }}$
Γ_{48} / Γ
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{1.094 \pm \mathbf{0 . 0 3 2} \text { OUR AVERAGE }}$
$1.057 \pm 0.012 \pm 0.040$
DOCUMENT ID TECN COMMENT
Error includes scale factor of 1.1.
$1.121 \pm 0.013 \pm 0.042$
1 AUBERT 03F BABR $e^{+} e^{-} \rightarrow r(4 S)$
$1.121 \pm 0.013 \pm 0.042 \quad$ ANDERSON 02 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
$1.29 \pm 0.45 \pm 0.01 \quad 27 \quad 2$ MASCHMANN $90 \quad$ CBAL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$\begin{array}{lrll}1.24 \pm 0.27 \pm 0.01 & 120 & 3 \text { ALBRECHT } \quad 87 \mathrm{D} \text { ARG } e^{+} e^{-} \rightarrow r(4 S) \\ 1.35 & 52 & 4 \text { ALAM }\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - - -

1.12	± 0.06	± 0.01	1489	${ }^{5}$ BALEST	95 B CLE2	$e^{+} e^{-} \rightarrow r(4 S)$	
1.4	+0.6	7	${ }^{6}$ ALBRECHT	85 H	ARG	$e^{+} e^{-} \rightarrow r(4 S)$	
1.1	± 0.21	± 0.23	46	${ }^{7}$ HAAS	85	CLEO	Repl. by ALAM 86

$\pm 0.21 \pm 0.23 \quad 46 \quad 7$ HAAS 85 CLEO Repl. by ALAM 86
${ }^{1}$ AUBERT 03F also reports the momentum distribution and helicity of $J / \psi \rightarrow \ell^{+} \ell^{-}$in the $\gamma(4 S)$ center-of-mass frame.
${ }^{2}$ MASCHMANN 90 reports $(1.12 \pm 0.33 \pm 0.25) \times 10^{-2}$ from a measurement of $[\Gamma(B \rightarrow$ $J / \psi(1 S)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$ $=0.069 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm$ $0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ALBRECHT 87D reports $(1.07 \pm 0.16 \pm 0.22) \times 10^{-2}$ from a measurement of $[\Gamma(B \rightarrow$ $J / \psi(1 S)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$ $=0.069 \pm 0.009$, which we rescale to our best value $\mathrm{B}\left(\mathrm{J} / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.971 \pm$
$0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ALBRECHT 87D find the branching ratio for J / ψ not from $\psi(2 S)$ to be 0.0081 ± 0.0023.
${ }^{4}$ ALAM 86 reports $(1.09 \pm 0.16 \pm 0.21) \times 10^{-2}$ from a measurement of $[\Gamma(B \rightarrow$ $J / \psi(1 S)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]$assuming $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.\mu^{+} \mu^{-}\right)=0.074 \pm 0.012$, which we rescale to our best value $\mathrm{B}\left(\mathrm{J} / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=$ $(5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ BALEST 95B reports $(1.12 \pm 0.04 \pm 0.06) \times 10^{-2}$ from a measurement of $[\Gamma(B \rightarrow$ $J / \psi(1 S)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)$ $=0.0599 \pm 0.0025$, which we rescale to our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error
is the systematic error from using our best value. They measure $J / \psi(1 S) \rightarrow e^{+} e^{-}$ and $\mu^{+} \mu^{-}$and use PDG 1994 values for the branching fractions. The rescaling is the
6 same for either mode so we use $e^{+} e^{-}$. $\mathrm{a} \mathrm{CL}=90 \%$ limit of 0.007 for $B \rightarrow J / \psi(1 S)+\mathrm{X}$ where $m_{X}<1 \mathrm{GeV}$.
${ }^{7}$ Dimuon and dielectron events used
$\Gamma(J / \psi(1 S)$ (direct) anything $) / \Gamma_{\text {total }}$
$\Gamma_{49 / \Gamma}$
VALUE DOCUMENT ID TECN COMMENT
$0.0078 \pm \mathbf{0 . 0 0 0 4}$ OUR AVERAGE Error includes scale factor of 1.1
$0.00740 \pm 0.00023 \pm 0.00043 \quad 1$ AUBERT O3F BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.00813 \pm 0.00017 \pm 0.00037 \quad{ }^{2}$ ANDERSON 02 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -
$0.0080 \pm 0.0008 \quad 3^{3}$ BALEST $\quad 95$ B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT 03F also reports the helicity of $J / \psi \rightarrow \ell^{+} \ell^{-}$produced directly in B decay.
${ }^{2}$ Also reports the measurement of $J / \psi \rightarrow \ell^{+} \ell^{-}$polarization produced directly from B decay.
3^{3} BALEST 95B assume PDG 1994 values for sub mode branching ratios. $J / \psi(1 S)$ mesons are reconstructed in $J / \psi(1 S) \rightarrow e^{+} e^{-}$and $J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}$. The $B \rightarrow J / \psi(1 S) X$ branching ratio contains $J / \psi(1 S)$ mesons directly from B decays and also from feeddown branching ratio conains
through $\psi(2 S) \rightarrow J / \psi(1 S), \chi_{C 1}(1 P) \rightarrow J / \psi(1 S)$, or $\chi_{C 2}(1 P) \rightarrow J / \psi(1 S)$. Using through $\psi(2 S$) \rightarrow mive
the measured inclusive rates, BALEST $95 B$ corrects for the feeddown and finds the $B \rightarrow$ $J / \psi(1 S)$ (direct) \times branching ratio.
$\Gamma(\psi(2 S)$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{50} / \Gamma^{\text {DOCUMENT }}$

0.00307 ± 0.00021 OUR AVERAG

$0.00297 \pm 0.00020 \pm 0.00020$ $0.00316 \pm 0.00014+0.00028$ ${ }^{1}$ ANDERSON 02 CLE2 $\quad e^{+} e^{-} \rightarrow \Upsilon(4 S)$

- - We do not use the following data for averages, fits, limits, etc. ${ }^{8}$. -
$0.0034 \pm 0.0004 \pm 0.0003 \quad 240 \quad{ }^{2}$ BALEST $\quad 95 \mathrm{~B}$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Also reports the measurement of $\psi(2 S) \rightarrow \ell^{+} \ell^{-}$polarization produced directly from B decay.
${ }^{2}$ BALEST 95B assume PDG 1994 values for sub mode branching ratios. They find $\mathrm{B}(B \rightarrow$ $\left.\psi(2 S) \mathrm{X}, \psi(2 S) \rightarrow \ell^{+} \ell^{-}\right)=0.30 \pm 0.05 \pm 0.04$ and $\mathrm{B}(B \rightarrow \psi(2 S) \mathrm{X}, \psi(2 S) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=0.37 \pm 0.05 \pm 0.05$. Weighted average is quoted for $\mathrm{B}(B \rightarrow \psi(2 S) \mathrm{X})$.
$\Gamma\left(\chi_{c 1}(1 P)\right.$ anything $) / \Gamma_{\text {total }}$
$\Gamma_{51 / \Gamma}$

3.55 ± 0.27 (Error scaled by 1.3)

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

${ }^{2}$ ABE 02L uses PDG 01 values for $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)$and $\mathrm{B}\left(\chi_{c 1, c 2} \rightarrow\right.$ $J / \psi(1 S) \gamma)$.
${ }^{3}$ CHEN 01 reports $0.00414 \pm 0.00031 \pm 0.00040$ from a measurement of $\left[\Gamma\left(B \rightarrow \chi_{C 1}(1 P)\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=0.273 \pm 0.016$, which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{4}$ BALEST 95B assume $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow J / \psi(1 S) \gamma\right)=(27.3 \pm 1.6) \times 10^{-2}$, the PDG 1994 value. Fit to ψ-photon invariant mass distribution allows for a $\chi_{C 1}(1 P)$ and a $\chi_{c 2}(1 P)$ component.
${ }^{5}$ ALBRECHT 92E assumes no $\chi_{C 2}(1 P)$ production.
$\Gamma\left(\chi_{\boldsymbol{C 1}}(1 P)(\right.$ direct $)$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{52} / \Gamma$

3.08 ± 0.19 OUR AVERAGE

$3.03 \pm 0.05 \pm 0.24 \quad 1_{\text {BHARDWAJ }} 16$ BELL $e^{+} e^{-} \rightarrow r(4 S)$
$3.41 \pm 0.35 \pm 0.42 \quad$ AUBERT O3F BABR $e^{+} e^{-} \rightarrow r(4 S)$
$3.1 \pm 0.4 \pm 0.1 \quad{ }^{2}$ CHEN 01 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lllll}3.32 \pm 0.22 \pm 0.34 & { }^{3} \text { ABE } & 02 L & \text { BELL } & \text { Repl. by BHARDWAJ } 16 \\ 3.7 & \pm 0.7 & { }^{4} \text { BALEST } & 95 B & \text { CLE2 }\end{array}$ Repl. by CHEN 01 $3.7 \pm 0.7 \quad{ }^{4}$ BALEST $\quad 95$ B CLE2 Repl. by CHEN 01
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ CHEN 01 reports $0.00383 \pm 0.00031 \pm 0.00040$ from a measurement of $[\Gamma(B \rightarrow$ $\chi_{C 1}(1 P)($ direct $)$ anything) $\left./ \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \quad \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=0.273 \pm 0.016$, which we rescale to our best value $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{3}$ ABE 02L uses PDG 01 values for $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)$and $\mathrm{B}\left(\chi_{c 1, c 2} \rightarrow J / \psi(1 S) \gamma\right)$.
${ }^{4}$ BALEST 95B assume PDG 1994 values. $J / \psi(1 S)$ mesons are reconstructed in the $e^{+} e^{-}$ and $\mu^{+} \mu^{-}$modes. The $B \rightarrow \chi_{C 1}(1 P) X$ branching ratio contains $\chi_{C 1}(1 P)$ mesons directly from B decays and also from feeddown through $\psi(2 S) \rightarrow \chi_{C 1}(1 P) \gamma$. Using the measured inclusive rates, BALEST 95B corrects for the feeddown and finds the $B \rightarrow$ $\chi_{C 1}(1 P)$ (direct) \times branching ratio.
$\Gamma\left(\chi_{c 2}(1 P)\right.$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{53} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 0 . 0} \pm 1.7 \text { OUR AVERAGE }} \frac{\text { CL\% }}{\text { RAGCUMENT ID }} \quad \frac{\text { TECN }}{\text { Error includes scale factor of 1.6. }} \frac{\text { COMMENT }}{\text { See the ideogram below. }}$ $9.8 \pm 0.6 \pm 1.0 \quad{ }^{1}$ BHARDWAJ 16 BELL $e^{+} e^{-} \rightarrow r(4 S)$ $21.0 \pm 4.5 \pm 3.1 \quad$ AUBERT \quad 03F BABR $e^{+} e^{-} \rightarrow r(4 S)$ $7.0 \pm 3.5 \pm 0.2 \quad 2$ CHEN 01 CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - .

| $18.0_{-2.8}^{+2.3} \pm 2.6$ | ${ }^{3} \mathrm{ABE}$ | 02L BELL | Repl. by BHARDWAJ 16 |
| :---: | :---: | :---: | :---: | :---: | $<38 \quad 90 \quad{ }^{4}$ BALEST $\quad 95$ B CLE2 \quad Repl. by CHEN 01 ${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.

${ }^{2}$ CHEN 01 reports $(9.8 \pm 4.8 \pm 1.5) \times 10^{-4}$ from a measurement of $[\Gamma(B \rightarrow$ $\chi_{c 2}(1 P)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{c 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{c 2}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=0.135 \pm 0.011$, which we rescale to our best value $\mathrm{B}\left(\chi_{c 2}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(19.0 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{3}$ ABE 02L uses PDG 01 values for $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)$and $\mathrm{B}\left(\chi_{c 1, c 2} \rightarrow J / \psi(1 S) \gamma\right)$.
${ }^{4}$ BALEST 95B assume $\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow J / \psi(1 S) \gamma\right)=(13.5 \pm 1.1) \times 10^{-2}$, the PDG 1994 value. $J / \psi(1 S)$ mesons are reconstructed in the $e^{+} e^{-}$and $\mu^{+} \mu^{-}$modes, and PDG 1994 branching fractions are used. If interpreted as signal, the 35 ± 13 events correspond to $\mathrm{B}\left(B \rightarrow \chi_{C 2}(1 P) \mathrm{X}\right)=(0.25 \pm 0.10 \pm 0.03) \times 10^{-2}$.

$$
\Gamma\left(\chi_{C 2}(1 P) \text { anything }\right) / \Gamma_{\text {total }}
$$

$\Gamma\left(\eta_{c}(1 S)\right.$ anything $) / \Gamma_{\text {total }}$						$\Gamma_{55} / \overline{ }$
VALUE	$\underline{C L \%}$	DOCUMEN		TECN	COMMENT	
<0.009	90	${ }^{1}$ BALEST	95B	CLE2	$e^{+} e^{-} \rightarrow$	

$\Gamma(K X(3915), X \rightarrow \omega J / \psi) / \Gamma_{\text {total }} \quad \Gamma_{59} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{7 . 1} \pm \mathbf{1 . 3} \pm \mathbf{3 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { CHOI }} \frac{05}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1} \mathrm{CHOI} 05$ reports the observation of a near-threshold enhancement in the $\omega \mathrm{J} / \psi$ mass spectrum in exclusive $B \rightarrow K \omega J / \psi$. The new state, denoted as $X(3915)$, is measured to have a mass of $3943 \pm 11 \pm 13 \mathrm{GeV} / \mathrm{c}^{2}$ and a width $\Gamma=87 \pm 22 \pm 26 \mathrm{MeV}$.
$\Gamma\left(K^{ \pm}\right.$anything $) / \Gamma_{\text {total }}$
$\frac{V A L U E}{0.789 \pm 0.025 \text { OUR AVERAGE }}$
$\begin{array}{ll}0.82 \pm 0.01 \pm 0.05 & \text { ALBRECHT } \quad 94 \mathrm{C} \text { ARG } \quad e^{+} e^{-} \rightarrow r(4 S)\end{array}$
$0.775 \pm 0.015 \pm 0.025 \quad 1$ ALBRECHT 931 ARG $e^{+} e^{-} \rightarrow r(4 S)$
$0.85 \pm 0.07 \pm 0.09 \quad$ ALAM 87B CLEO $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • - -
seen $\quad{ }^{2}$ BRODY 82 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
seen ${ }^{3}$ GIANNINI 82 CUSB $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ALBRECHT 93I value is not independent of the sum of $B \rightarrow K^{+}$anything and $B \rightarrow$ K^{-}anything ALBRECHT 94C values.
${ }^{2}$ Assuming $\Upsilon(4 S) \rightarrow B \bar{B}$, a total of $3.38 \pm 0.34 \pm 0.68$ kaons per $\Upsilon(4 S)$ decay is found (the second error is systematic). In the context of the standard B-decay model, this
leads to a value for (b-quark $\rightarrow c$-quark) $/(b$-quark \rightarrow all) of $1.09 \pm 0.33 \pm 0.13$.
${ }^{3}$ GIANNINI 82 at CESR-CUSB observed $1.58 \pm 0.35 K^{0}$ per hadronic event much higher than 0.82 ± 0.10 below threshold. Consistent with predominant $b \rightarrow c \mathrm{X}$ decay.

$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+}\right.$anything $) / \boldsymbol{\Gamma}_{\text {total }}$
$\underline{V A L U E}$
DOCUMENT ID
TECN COMMENT

$0.620 \pm 0.013 \pm 0.038$	2	ALBRECHT	94C ARG	$e^{+} e^{-} \rightarrow r(4 S)$
$0.66 \pm 0.05 \pm 0.07$	2	ALAM	87B CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

$1_{\text {Measurement relies on lepton-kaon correlations. It is for the weak decay vertex and does }}$ not include mixing of the neutral B meson. Mixing effects were corrected for by assuming a mixing parameter r of (18.1 $\pm 4.3) \%$.
${ }^{2}$ Measurement relies on lepton-kaon correlations. It includes production through mixing of the neutral B meson.
$\Gamma\left(K^{-}\right.$anything $) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 3} \mathbf{0 . 0 4}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ALBRECHT 94C }} \frac{\text { TECN }}{\text { ARG COMMENT }} \frac{e^{+} e^{-} \rightarrow \gamma(4 S)}{}$

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \quad r(4 S)$
$0.165 \pm 0.011 \pm 0.036 \quad 2$ ALBRECHT 94C ARG $e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.19 \pm 0.05 \pm 0.02 \quad 2$ ALAM $\quad 87 \mathrm{~B}$ CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$1_{\text {Measurement relies on lepton-kaon correlations. It is for the weak decay vertex and does }}$ not include mixing of the neutral B meson. Mixing effects were corrected for by assuming a mixing parameter r of $(18.1 \pm 4.3) \%$.
${ }^{2}$ Measurement relies on lepton-kaon correlations. It includes production through mixing of the neutral B meson.

$\Gamma\left(K_{2}^{*}(1430) \gamma\right) / \Gamma_{\text {total }}$				Γ_{69} / Γ
$\underline{V A L U E ~(u n i t s ~ 10 ~}{ }^{-5}$)	DOCUMENT ID	TECN	COMMENT	
$1.6{ }_{-0.53}^{+0.59} \pm 0.13$	${ }^{1}$ COAN	CLE2	$e^{+} e^{-} \rightarrow$	

- - We do not use the following data for averages, fits, limits, etc. - - -
$<83 \quad$ ALBRECHT 98 H ARG $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ COAN 00 obtains a fitted signal yield of $15.9_{-5.2}^{+5.7}$ events. A search for contamination by
$K^{*}(1410)$ yielded a rate consistent with 0 ; the central value assumes no contamination.

$\Gamma\left(K_{2}(1770) \gamma\right) / \Gamma_{\text {total }}$

Γ_{70} / Γ
$\frac{\text { VALUE }}{<\mathbf{1 . 2} \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { LESIAK }}{} \frac{92}{\text { CBAL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
$1_{\text {LESIAK }} 92$ set a limit on the inclusive process $\mathrm{B}(b \rightarrow s \gamma)<2.8 \times 10^{-3}$ at $90 \% \mathrm{CL}$ for the range of masses of $892-2045 \mathrm{MeV}$, independent of assumptions about s-quark hadronization.

$\Gamma\left(K_{4}^{*}(2045) \gamma\right) / \Gamma_{\text {total }}$VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	Γ_{72} / Γ	
$<1.0 \times 10^{\mathbf{- 3}}$	90	1 LESIAK	92		CBAL	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ LESIAK 92 set a limit on the inclusive process $\mathrm{B}(b \rightarrow s \gamma)<2.8 \times 10^{-3}$ at $90 \% \mathrm{CL}$ for the range of masses of $892-2045 \mathrm{MeV}$, independent of assumptions about s-quark hadronization.
$\Gamma\left(K \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$ $\frac{\text { VALUE }}{(\mathbf{8 . 3} \mathbf{+ 0 . 9} \pm \mathbf{0 . 7}) \times \mathbf{1 0}^{\mathbf{- 5}}} \quad \frac{\text { DOCUMENT ID }}{1 \text { RICHICHI } 00} \frac{\text { TECN }}{\mathrm{CLE} 2} \frac{e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)}{}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.

$\Gamma(K \eta) / \Gamma_{\text {total }}$					Γ_{75} / Γ
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
$<5.2 \times 10^{-6} 90$	${ }^{1} \mathrm{RICHICHI}$	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.					
$\Gamma\left(K^{*}(892) \eta\right) / \Gamma_{\text {total }}$			Γ_{76} / Γ		
VALUE	DOCUMENT ID		TECN	COMMENT	
$(1.80-0.43 \pm 0.49) \times 10^{-5}$	1 RICHICHI	00	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$
${ }^{1}$ Assumes equal production	+ and B^{0} at th	$r(4$			

${ }^{1}$ Assumes equal production of charged and neutral B meson pairs and isospin symmetry.
$\Gamma(\bar{b} \rightarrow \boldsymbol{J} \gamma) / \Gamma_{\text {total }}$
$\Gamma_{78 / \Gamma}$
DOCUMENT ID TECN COMMENT
$3.49 \pm \mathbf{0 . 1 9}$ OUR AVERAGE

$\mathbf{3 . 4 9} \pm \mathbf{0 . 1 9}$ OUR AVERAGE					
$3.75 \pm 0.18 \pm 0.35$	1,2 SAITO	15	BELL	$e^{+} e^{-} \rightarrow$	$r(4 S)$
$3.52 \pm 0.20 \pm 0.51$	1,3	LEES	12U	BABR	$e^{+} e^{-} \rightarrow$
$3.32 \pm 0.16 \pm 0.31$	1,4	LEES	12V	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$3.47 \pm 0.15 \pm 0.40$	1,5	LIMOSANI	09	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
$3.90 \pm 0.91 \pm 0.64$	1,6	AUBERT	080	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$3.29 \pm 0.44 \pm 0.29$	1,7	CHEN	01C	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$2.30 \pm 0.08 \pm 0.30 \quad{ }^{8}$ DEL-AMO-SA..10M BABR $e^{+} e^{-} \rightarrow r(4 S)$
$4.3 \pm 0.3 \pm 0.7 \quad{ }^{9}$ AUBERT $\quad 09 \mathrm{U}$ BABR Repl. by DEL-AMO-SANCHEZ 10 M $3.92 \pm 0.31 \pm 0.47$ 1,10 AUBERT,BE 06B BABR Repl. by LEES 12V
$3.49 \pm 0.20^{+0.59} \quad 1,11$ AUBERT,B 05 R BABR Repl. by LEES 12 U
$3.50 \pm 0.32 \pm 0.31 \quad 1,12$ KOPPENBURG 04 BELL Repl. by LIMOSANI 09
$3.36 \pm 0.53_{-0}^{+0.65} \quad 13 \mathrm{ABE} \quad 01 \mathrm{~F}$ BELL Repl. by SAITO 15
$2.32 \pm 0.57 \pm 0.35$ ALAM 95 CLE2 Repl. by CHEN 01C
${ }^{1}$ We extrapolate the measured value to $E_{\gamma}>1.6 \mathrm{GeV}$ using the method of BUCHMUELLER 06 (average of three theoretical models).
${ }^{2}$ SAITO 15 measured $(3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$ using a sum-of-exclusive approach in which 38 of the hadronic final states with $m_{X_{S}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$ are reconstructed. The cut of minimum photon energy is $E_{\gamma}>1.9 \mathrm{GeV}$.
${ }^{3}$ Reports $(3.29 \pm 0.19 \pm 0.48) \times 10^{-4}$ for $E_{\gamma}>1.9 \mathrm{GeV}$.
${ }^{4}$ Reports $(3.21 \pm 0.15 \pm 0.29 \pm 0.08) \times 10^{-4}$ for $1.8<E_{\gamma}<2.8 \mathrm{GeV}$, where the last systematic uncertainty is for model dependency. Results with other cutoffs are also reported.
${ }^{5}$ The measurement reported is $(3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$ for $E_{\gamma}>1.7 \mathrm{GeV}$.
${ }^{6}$ Uses a fully reconstructed B meson as a tag on the recoil side. The measurement reported is $(3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$ for $E_{\gamma}>1.9 \mathrm{GeV}$.
7 The measurement reported is $\left(3.21 \pm 0.43_{-0.29}^{+0.32}\right) \times 10^{-4}$ for $E_{\gamma}>2.0 \mathrm{GeV}$.
${ }^{8}$ Measured using sums of seven exclusive final states $B \rightarrow X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range $0.5-2.0 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{9}$ Measured using sums of seven exclusive final states $B \rightarrow X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range $0.6-1.8 \mathrm{GeV} / \mathrm{c}^{2}$.
10 The measurement reported is $(3.67 \pm 0.29 \pm 0.45) \times 10^{-4}$ for $E_{\gamma}>1.9 \mathrm{GeV}$.
11 The measurement reported is $\left(3.27 \pm 0.18_{-0.42}^{+0.55}\right) \times 10^{-4}$ for $E_{\gamma}>1.9 \mathrm{GeV}$.
12 The measurement reported is $(3.55 \pm 0.32 \pm 0.32) \times 10^{-4}$ for $E_{\gamma}>1.8 \mathrm{GeV}$.
13 ABE 01 F reports their systematic errors $\left(\pm 0.42_{-0.54}^{+0.50}\right) \times 10^{-4}$, where the second error is due to the theoretical uncertainty. We combine them in quadrature.
 nonstrange (strange) charmless hadronic system in mass range $0.6-1.8 \mathrm{GeV} / \mathrm{c}^{2}$.

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

－－We do not use the following data for averages，fits，limits，etc．－－－

$1.69 \pm 0.29{ }_{-0.6}^{+0.3}$		2 NISHIMUR	10	BELL	$e^{+} e^{-}$	
＜4．4	90	${ }^{3}$ BROWDER	98	2	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ Uses $B \rightarrow \eta X_{S}$ with $0.4<m_{X_{S}}<2.6 \mathrm{GeV} / \mathrm{c}^{2}$ ． ${ }^{2}$ Uses $B \rightarrow \eta X_{S}$ with $1.8<m_{X_{S}}<2.6 \mathrm{GeV} / \mathrm{c}^{2}$ ． ${ }^{3}$ BROWDER 98 search for high momentum $B \rightarrow \eta X_{s}$ between 2.1 and $2.7 \mathrm{GeV} /$						

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}^{\prime}\right.$ anything $) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE（units $\left.10^{-4}\right)$
42 ± 0.9 DOCUMENT ID $\quad \Gamma_{\mathbf{8 2}} / \boldsymbol{\Gamma}$ TECN COMMENT

| $\mathbf{4 . 2} \pm \mathbf{0 . 9}$ OUR AVERAGE | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3.9 \pm 0.8 \pm 0.9$ | 1 AUBERT，B | 04 F | BABR | $e^{+} e^{-} \rightarrow r(4 S)$ |

$4.6 \pm 1.1 \pm 0.6 \quad 2$ BONVICINI 03 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－－－
$6.2 \pm 1.6_{-2.0}^{+1.3} \quad{ }^{3}$ BROWDER $\quad 98$ CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AUBERT，B 04F reports branching ratio $B \rightarrow \eta^{\prime} X_{S}$ for high momentum η^{\prime} between 2.0 and $2.7 \mathrm{GeV} / c$ in the $r(4 S)$ center－of－mass frame．X_{S} represents a recoil system consisting of a kaon and zero to four pions．
${ }^{2}$ BONVICINI 03 observed a signal of 61.2 ± 13.9 events in $B \rightarrow \eta^{\prime} X_{n c}$ production for high momentum η^{\prime} between 2.0 and $2.7 \mathrm{GeV} / c$ in the $\gamma(4 S)$ center－of－mass frame．The $X_{n c}$ denotes＂charmless＂hadronic states recoiling against η^{\prime} ．The second error combines systematic and background subtraction uncertainties in quadrature．
${ }^{3}$ BROWDER 98 observed a signal of 39.0 ± 11.6 events in high momentum $B \rightarrow \eta^{\prime} X_{S}$ production between 2.0 and $2.7 \mathrm{GeV} / c$ ．The branching fraction is based on the inter－ pretation of $b \rightarrow s g$ ，where the last error includes additional uncertainties due to the color－suppressed $b \rightarrow$ backgrounds．
$\Gamma\left(\kappa^{+}\right.$gluon（charmless）$) / \Gamma_{\text {total }} \quad \Gamma_{83} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<\mathbf{1 . 8 7}} \quad \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { DEL－AMO－SA．．．} 11} \frac{\text { COMMENT }}{\operatorname{BABR}} \frac{e^{+} e^{-} \rightarrow r(4 S)}{}$ ${ }^{1} B \rightarrow K^{+} X$ with $m_{X}<1.69 \mathrm{GeV} / \mathrm{c}^{2}$.

$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{1 . 9 5} \mathbf{+ 0 . 5 1} \mathbf{0} \mathbf{0 . 5 0}} \quad \frac{\text { DOCUMENT ID }}{1 \text { DEL－AMO－SA．．} 11} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1} B \rightarrow K^{0} X$ with $m_{X}<1.69 \mathrm{GeV} / \mathrm{c}^{2}$ ．
$\Gamma(\rho \gamma) / \Gamma_{\text {total }} \quad \Gamma_{85} / \Gamma$
VALUE（units 10^{-6} ）CL\％DOCUMENT ID TECN COMMENT $\mathbf{1 . 3 9} \mathbf{\pm 0 . 2 5}$ OUR AVERAGE Error includes scale factor of 1．2．

$1.73_{-0.32}^{+0.34} \pm 0.17$	1,2	AUBERT	08BH BABR	$e^{+} e^{-} \rightarrow$
$1.21_{-0.22}^{+0.24} \pm 0.12$	1,2	TANIGUCHI	08	BELL
$e^{+} e^{-} \rightarrow$	$r(4 S)$			

－－We do not use the following data for averages，fits，limits，etc．－－－ $1.36_{-0.27}^{+0.29} \pm 0.10 \quad 1,3$ AUBERT 07L BABR Repl．by AUBERT 08BH $<1.9 \quad 90 \quad 1,3$ AUBERT 04C BABR Repl．by AUBERT 07L
$\begin{array}{lll}<14 & 90 & 1,4 \\ \text { COAN } & 00 & \text { CLE2 } \\ e^{+} & e^{-} \rightarrow r(4 S)\end{array}$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$ ．
${ }^{2}$ Assumes $\Gamma(B \rightarrow \rho \gamma)=\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)=2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)$ and uses lifetime ratio of ${ }^{\tau} B_{B^{+}} / \tau_{B^{0}}=1.071 \pm 0.009$.
${ }^{3}$ Assumes $\Gamma(B \rightarrow \rho \gamma)=\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)=2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)$ and uses lifetime ratio of ${ }^{\tau} B^{+} / \tau^{2} B^{0}=1.083 \pm 0.017$.
${ }^{4}$ COAN 00 reports $\mathrm{B}(B \rightarrow \rho \gamma) / \mathrm{B}\left(B \rightarrow K^{*}(892) \gamma\right)<0.32$ at $90 \% \mathrm{CL}$ and scaled by the central value of $\mathrm{B}\left(B \rightarrow K^{*}(892) \gamma\right)=(4.24 \pm 0.54 \pm 0.32) \times 10^{-5}$

$\Gamma(\rho \gamma) / \Gamma\left(K^{*}(892) \gamma\right)$ VALUE（units 10^{-2} ）			COMMENT	$\Gamma_{85} / \Gamma_{66}$
$3.02=0.60+0.26$	TANIGUCHI	08 BELL	$e^{+} e^{-} \rightarrow$	$\gamma(4 S)$
$\Gamma(\rho / \omega \gamma) / \Gamma_{\text {total }}$				Γ_{86} / Γ
VALUE（units 10^{-6} ）$C L \%$	DOCUMENTID TECN		COMMENT	
$\mathbf{1 . 3 0} \pm \mathbf{0 . 2 3}$ OUR AVERAGE Error includes scale factor of 1．2．				
$1.63{ }_{-0.28}^{+0.30} \pm 0.16$	1，2，3 AUBERT	08BH BABR $e^{+} e^{-} \rightarrow$		$\gamma(4 S)$
$1.14 \pm 0.20_{-0.12}^{+0.10}$	1，3 TANIGUCHI	08 BELL	$e^{+} e^{-} \rightarrow \gamma$	$r(4 S)$

－－We do not use the following data for averages，fits，limits，etc．．．．

 $2.84 \pm 0.50 \pm 0.27$
${ }^{1}$ TANIGUCHI 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．－．－
＜3．5 90 MOHAPATRA 05 BELL Repl．by TANIGUCHI 08
${ }^{1}$ Also reports $\left|V_{t d} / V_{t s}\right|=0.195_{-0.019}^{+0.020} \pm 0.015$

$\Gamma\left(\pi^{\text {者 }}\right.$ anything $) / \Gamma_{\text {total }}$	Γ_{87} / Γ		
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{3 . 5 8 5} \pm \mathbf{0 . 0 2 5} \pm \mathbf{0 . 0 7 0}$	${ }^{1}$ ALBRECHT 931 ARG $e^{+} e^{-} \rightarrow r(4 S)$		
${ }^{1}$ ALBRECHT 93 excludes π 0.025 ± 0.080	from K_{S}^{0} and Λ decays	If ir	luded，they find 4.
$\Gamma\left(\pi^{0}\right.$ anything $) / \Gamma_{\text {total }}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$2.35 \pm 0.02 \pm 0.11$	${ }^{1} \mathrm{ABE}$	BELL	$e^{+} e \rightarrow r(4 S)$
${ }^{1}$ From fully inclusive π^{0} yie	h no corrections from decays of K_{S}^{0} or other particles．		
$\Gamma(\eta$ anything $) / \Gamma_{\text {total }}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.176 \pm 0.011 \pm 0.012$	KUBOTA 96	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$\Gamma\left(\rho^{0}\right.$ anything $) / \Gamma_{\text {total }}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.208 \pm 0.042 \pm 0.032$	ALBRECHT 94」	ARG	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$\Gamma(\omega$ anything $) / \Gamma_{\text {total }}$			
VALUE CL\％	DOCUMENT ID	TECN	COMMENT
<0.81	ALBRECHT 94」	ARG	$e^{+} e^{-} \rightarrow r(4 S)$

$\Gamma(\phi$ anything $) / \Gamma_{\text {total }}$ VALUE $\mathbf{0 . 0 3 4 3} \pm \mathbf{0 . 0 0 1 2}$ OUR AVERAGE

$0.0353 \pm 0.0005 \pm 0.0030$ $0.0341 \pm 0.0006 \pm 0.0012$

HUANG	07	CLEO	$e^{+} e^{-} \rightarrow$
AUBERT	04S	BABR	$e^{+} e^{-} \rightarrow$
ALBRECHT	$94 \mathrm{~S})$		
ARBR	$e^{+} e^{-} \rightarrow$	$r(4 S)$	

Γ_{92} / Γ

AUBERT
BORTOLETTO86 CLEO $e^{+} e^{-} \rightarrow r(4 S)$

$\Gamma\left(\Lambda_{c}^{+} / \bar{\Lambda}_{c}^{-}\right.$anything $) / \Gamma_{\text {total }}$		Г96／Г		
VALUE（\％）CL\％	DOCUMENT ID	TECN	OMMENT	
$3.59 \pm 0.32 \underset{-0.18}{+0.19}$	${ }^{1}$ AUBERT	BABR	$e^{-} \rightarrow$	
－－We do not use the following data for averages，fits，limits，etc．－－				
$6.4 \pm 0.8 \pm 0.8$	${ }^{2}$ CRAWFORD	LE	，	
14 ± 9	${ }^{3}$ ALBRECHT	ARG	e^{-}	
<11.2	4 ALAM	CLE	e^{-}	
${ }^{1}$ AUBERT 07 C reports 0.04 $\Lambda_{C}^{+} / \bar{\Lambda}_{C}^{-}$anything）$\left./ \Gamma_{\text {total }}\right]$ $=(5.0 \pm 1.3) \times 10^{-2}$ ，wh $(6.28 \pm 0.32) \times 10^{-2}$ ．Our the systematic error from usi	$\begin{gathered} \pm 0.003 \pm 0.0 \\ {\left[\mathrm { B } \left(\Lambda_{C}^{+} \rightarrow p K\right.\right.} \end{gathered}$ we rescale to t error is their ex our best value．		asurement $\mathrm{g}\left(\Lambda_{C}^{+}\right.$ $\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.$ and our	
${ }^{2}$ CRAWFORD 92 result derived from lepton baryon correlations．Assumes all charmed baryons in B^{0} and $B^{ \pm}$decay are Λ_{C} ．				
${ }^{3}$ ALBRECHT 88E measured $\mathrm{B}\left(B \rightarrow \Lambda_{C}^{+} \mathrm{X}\right) \cdot \mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(0.30 \pm 0.12 \pm 0.06) \%$ and used $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(2.2 \pm 1.0) \%$ from ABRAMS 80 to obtain above number．				
${ }^{4}$ Assuming all baryons result from charmed baryons，ALAM 86 conclude the branching fraction is $7.4 \pm 2.9 \%$ ．The limit given above is model independent．				
$\Gamma\left(\Lambda_{C}^{+}\right.$anything $) / \Gamma\left(\bar{\Lambda}_{C}^{-}\right.$any				

value	DOCUMENT ID	TECN	COMMENT
$0.19 \pm 0.13 \pm 0.04$	${ }^{1}$ AMMAR 97	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ AMMAR 97 uses a high－momentum lepton tag $\left(P_{\ell}>1.4 \mathrm{GeV} / c^{2}\right)$ ．
$\Gamma\left(\bar{\lambda}_{c}^{-} \mu^{+}\right.$anything $) / \Gamma\left(\pi_{c}^{-}\right.$anything $) \quad \Gamma_{101} / \Gamma_{98}$
$\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{- 2 . 0} \mathbf{2 . 0} \mathbf{2} .9} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{12}{\text { BABCN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
 $\begin{array}{lllll}\text { VALUE } \\ <\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 2}} & \frac{C L \%}{} & \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { LEES }} \frac{\text { COMMENT }}{\text { BABR }} \frac{12}{e^{+} e^{-} \rightarrow r(4 S)}\end{array}$ $1_{\text {LEES }} 12$ quotes also the measurement $\Gamma\left(B \rightarrow \bar{\Lambda}_{C}^{-} \ell^{+}\right.$anything $) / \Gamma(B \rightarrow$ $\Lambda_{C}^{+} / \bar{\Lambda}_{C}^{-}$anything $)=(1.2 \pm 0.7 \pm 0.4) \times 10^{-2}$.

VALUE	CL\％	DOCUMENT ID	TECN	COMMENT
＜0．05	90	1 BONVICINI 98	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$

$\Gamma\left(\Lambda_{c}^{-} e^{+}\right.$anything $) / \Gamma\left(\Lambda_{c}^{-}\right.$anything $) \quad \Gamma_{100} / \Gamma_{98}$
$\frac{V A L U E \text {（units } 10^{-2} \text { ）}}{\mathbf{2 . 5} \mathbf{1 . 1} \pm \mathbf{0 . 6}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{12}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow \gamma(4 S)}{}$
${ }^{1}$ Uses the full reconstruction of the recoiling B in a hadronic decay as a tag．
$\Gamma\left(\lambda_{c}^{-} \ell^{+}\right.$anything $) / \Gamma\left(\lambda_{c}^{-}\right.$anything $) \quad \Gamma 99 / \Gamma_{98}$ $\frac{V A L U E}{<\mathbf{3 . 5} \times \mathbf{1 0}^{\mathbf{- 2}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{12}{\text { TECN }} \frac{\text { COMMENT }}{} \frac{12}{e^{+} e^{-} \rightarrow r(4 S)}$ ${ }^{1}$ LEES 12 quotes also the measurement $\Gamma\left(B \rightarrow \bar{\Lambda}_{C}^{-} \ell^{+}\right.$anything $) / \Gamma\left(B \rightarrow \bar{\Lambda}_{C}^{-}\right.$anything $)$ $=(1.7 \pm 1.0 \pm 0.6) \times 10^{-2}$ ．

$\Gamma\left(\bar{\Lambda}_{c}^{-} p e^{+} \nu_{e}\right) / \Gamma\left(\bar{\Lambda}_{c}^{-} p\right.$ anything $)$							$\Gamma_{103} / \Gamma_{102}$
Value	CL\％		DOCUMENT ID		TECN	COMMENT	
＜0．04	90	${ }^{1}$	BONVICINI	98	CLE2	$e^{+} e^{-} \rightarrow$	$r(4 S)$

${ }^{1}$ BONVICINI 98 uses the electron with momentum above $0.6 \mathrm{GeV} / c$ ．

$\Gamma\left(\right.$ 三 $_{c}^{+}$, 三 $_{c}^{+} \rightarrow$ E$\left.^{-} \pi^{+} \pi^{+}\right) / \Gamma_{\text {total }}$					Γ_{109} / Γ
VALUE（units 10^{-3} ）	DOCUMEN		TECN	COMMENT	
$0.453 \pm 0.096 \pm 0.085$	${ }^{1}$ BARISH	97	CLE2	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ BARISH 97 find $125 \pm 28 \Xi_{c}^{+}$events．

${ }^{1}$ ALBRECHT 89 K include direct and nondirect protons．
${ }^{2}$ ALAM 83B reported their result as $>0.036 \pm 0.006 \pm 0.009$ ．Data are consistent with equal yields of p and \bar{p} ．Using assumed yields below cut， $\mathrm{B}(B \rightarrow p+\mathrm{X})=0.03$ not including protons from Λ decays．

$\frac{V A L U E}{0.055} \pm \mathbf{0 . 0 0 5}$ OUR AVERAGE

${ }^{1}$ ALBRECHT 89 K subtract contribution of Λ decay from the inclusive proton yield．
$\Gamma\left(\bar{p} e^{+} \nu_{e}\right.$ anything $) / \Gamma_{\text {total }}$
VALUE CL\％
DOCUMENT ID TECN COMMENT $\quad \Gamma_{112} / \boldsymbol{\Gamma}^{\prime}$
$<\mathbf{5 . 9 \times 1 0 ^ { \mathbf { - 4 } } \quad 9 0 \quad 1 \text { ADAM 03B CLE2 } e ^ { + } e ^ { - } \rightarrow \quad \Upsilon (4 S) ~}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$<16 \times 10^{-4} \quad 90 \quad$ ALBRECHT 90 H ARG $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{1}$ Based on $V-A$ model．
$\Gamma(\Lambda / \bar{\pi}$ anything $) / \Gamma_{\text {total }}$
$\frac{V A L U E}{0.040 \pm \mathbf{0 . 0 0 5} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { ERA }}$
$0.038 \pm 0.004 \pm 0.006 \quad 2998$
DOCUMENT ID TECN COMMENT
$\Gamma_{113 / \Gamma}$

CRAWFORD 92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
$0.042 \pm 0.005 \pm 0.006 \quad 943$ ALBRECHT 89 k ARG $e^{+} e^{-} \rightarrow r(4 S)$
－－We do not use the following data for averages，fits，limits，etc．•－－
$0.022 \pm 0.003 \pm 0.0022 \quad 1$ ACKERSTAFF 97N OPAL $e^{+} e^{-} \rightarrow \boldsymbol{Z}$
$>0.011 \quad 2$ ALAM 83B CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ ACKERSTAFF 97 N assumes $\mathrm{B}(b \rightarrow B)=0.868 \pm 0.041$ ，i．e．，an admixture of $B^{0}, B^{ \pm}$， and B_{S} ．
${ }^{2}$ ALAM 83B reported their result as $>0.022 \pm 0.007 \pm 0.004$ ．Values are for $(\mathrm{B}(\Lambda \mathrm{X})+\mathrm{B}(\bar{\Lambda} \mathrm{X})) / 2$ ．Data are consistent with equal yields of p and \bar{p} ．Using assumed yields below cut， $\mathrm{B}(B \rightarrow \Lambda \mathrm{X})=0.03$ ．
$\Gamma(\Lambda$ anything $) / \Gamma(\pi$ anything）
$\Gamma_{114} / \Gamma_{115}$
$\frac{\text { VALUE }}{\mathbf{0 . 4 3} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 7}} \quad 1 \begin{aligned} & \text { DOCUMENT ID } \\ & \text { AMMAR } \quad 97 \\ & \frac{\text { TECN }}{\text { CLE2 }} \\ & \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}\end{aligned}$ ${ }^{1}$ AMMAR 97 uses a high－momentum lepton tag $\left(P_{\ell}>1.4 \mathrm{GeV} / c^{2}\right)$ ．
$\Gamma($ 三－$/ \overline{\text { E }}+$ anything $) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 2 7} \pm \mathbf{0 . 0 0 0 6} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { AGE }}$
$0.0027 \pm 0.0005 \pm 0.0004 \quad 147$
0.0028 ± 0.0014

DOCUMENT ID TECN COMMENT
$\Gamma_{116 / \Gamma}$

CRAWFORD 92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$ ALBRECHT 89 K ARG $e^{+} e^{-} \rightarrow r(4 S)$

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

Γ (baryons anything) $/ \Gamma_{\text {total }}$			Γ_{117} / Γ
VALUE	DOCUMENT ID TECN	COMMENT	
$\mathbf{0 . 0 6 8} \pm \mathbf{0 . 0 0 5} \pm \mathbf{0 . 0 0 3}$- - We do not use the follo	${ }^{1}$ ALBRECHT 920 ARG $e^{+} e^{-} \rightarrow \Upsilon(4 S)$		
	data for averages, fits, lim		
0.076 ± 0.014	2 ALBRECHT 89k ARG $e^{+} e$		
${ }^{1}$ ALBRECHT 920 result is fro lations, and various lepton-ba ALBRECHT 89k.	simultaneous analysis of p and on and lepton-baryon-antibary	yields, $p \bar{p}$ correlatio	
${ }^{2}$ ALBRECHT 89 K obtain this direct protons and (4.2 ± 0 (5.5 ± 1.6)\% for neutron p baryons, they divide by 2 to	sult by adding their their meas $\pm 0.6) \%$ for inclusive 1 prod uction and add it in also. Si tain $(7.6 \pm 1.4) \%$.	rements (5 tion. The each B	

VALUE CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$<0.13 \quad 90 \quad{ }^{1}$ CRAWFORD 92 CLEO $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ CRAWFORD 92 value is not independent of their $\Gamma(\Lambda \bar{\Lambda}$ anything $) / \Gamma_{\text {total }}$ value.
$\Gamma\left(s e^{\#} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{121} / \Gamma$
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{6.7}$ CL\% DOCUMENT ID COMMENT 6.7 ± 1.7 OUR AVERAGE Error includes scale factor of 2.0 .

$7.69+0.77$				
+0.82				
-0.71	1	LEES	14D BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$4.04 \pm 1.30_{-0.83}^{+0.87}$	2	IWASAKI	05	BELL

- - We do not use the following data for averages, fits, limits, etc. - -

6.0 ± 1.7	± 1.3		2 AUBERT,B	041	BABR	Repl. by LEES 14D
5.0 ± 2.3	+1.3		2 KANEKO	03	BELL	Repl. by IWASAKI 05
57		90	GLENN	98	CLEO	$e^{+} e^{-} \rightarrow r(4 S)$

| <57 | 90 | GLENN | 98 | CLEO | $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| <50000 | 90 | BEBEK | 81 | CLEO | $e^{+} e^{-} \rightarrow r(4 S)$ |

${ }^{1}$ Measured from sum of exclusive modes through $K^{+}, K^{+} \pi^{0}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, $K^{+} \pi^{-} \pi^{+}, K_{S}^{0}, K_{S}^{0} \pi^{0}, K_{S}^{0} \pi^{+}, K_{S}^{0} \pi^{+} \pi^{0}$, and $K_{S}^{0} \pi+\pi^{-}$corrected for unob2 served modes.
$2 \begin{aligned} & \text { served mires } M_{\ell^{+} \ell^{-}}>0.2 \mathrm{GeV} / c^{2} \text {. }\end{aligned}$
$\Gamma\left(s \mu^{+} \boldsymbol{\mu}^{-}\right) / \Gamma_{\text {total }}$
Γ_{122} / Γ
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
VALUE (units 10^{-6}) CL\% DOCUMENTID TECN COMMENT 4.3 ± 1.0 OUR AVERAGE

$4.41_{-1.17}^{+1.31+0.50}$	1	LEES	14D BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$4.13 \pm 1.05_{-0.81}^{+0.85}$	2	IWASAKI	05	BELL

$\Gamma\left(K e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{4.4 \pm \mathbf{0 . 6} \text { OUR AVERAGE }}$

| $3.9_{-0.8}^{+0.9} \pm 0.2$ | 1 | AUBERT |
| :--- | :--- | :--- |\quad 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • -

$3.3_{-0.8}^{+0.9} \pm 0.2$		1 AUBERT,B	06」	BABR	Repl. by AUBERT 09T
$7.4_{-1.6}^{+1.8} \pm 0.5$		1 AUBERT	03u	BABR	Repl. by AUBERT,B 06J
$4.8{ }_{-1.3}^{+1.5} \pm 0.3$		1,2 ISHIKAWA	03	BELL	Repl. by WEI 09a
<13	90	ABE	02	BELL	Repl. by ISHIKAWA 03

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
2 The second error is a total of systematic uncertainties including model dependence.

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.				
VALUE (units 10^{-7}) CL\%	DOCUMENT ID	TECN	COMMENT	
11.9 ± 2.0 OUR AVERAGE	Error includes scale factor of 1.2.			
${ }^{9.9}{ }_{-2.1}^{+2.3} \pm 0.6$	${ }^{1}$ AUBERT	09T BABR	$+e^{-}$	$r(4 S)$
$13.9+2.3{ }_{-2.0}^{+2.2}$	1 WEI	09A BELL	$e^{+} e^{-}$	$r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -

| $9.7_{-2.7}^{+3.0} \pm 1.4$ | | 1 AUBERT,B | $06 J$ | BABR |
| ---: | :---: | :--- | :--- | :--- | Repl. by AUBERT 09T 0

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $\gamma(4 S)$. The second error is a total of systematic uncertainties including model dependence.
$\Gamma\left(K \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{129 / \Gamma}$
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
VALUE (units 10^{-7})
4.4 ± 0.4 OUR AVERAGE
DOCUMENTID TECN COMMENT
$4.2 \pm 0.4 \pm 0.2 \quad$ AALTONEN 11 Al CDF $p \bar{p}$ at 1.96 TeV
$4.1_{-1.2}^{+1.3} \pm 0.2 \quad 1$ AUBERT 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
$5.0 \pm 0.6 \pm 0.3 \quad 1$ WEI 09A BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - . .
$3.5_{-1.1}^{+1.3} \pm 0.3 \quad 1$ AUBERT,B 06 J BABR Repl. by AUBERT 09T
$4.5_{-1.9}^{+2.3} \pm 0.4 \quad 1$ AUBERT $03 \cup$ BABR Repl. by AUBERT,B 06J
$4.8_{-1.1}^{+1.2} \pm 0.4 \quad 1,2$ ISHIKAWA 03 BELL Repl. by WEI 09A
9.9 ABE ${ }_{-3.2}^{+4.0+1.3} 02$ BELL Repl. by ISHIKAWA 03
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$.
${ }^{2}$ The second error is a total of systematic uncertainties including model dependence.
$\Gamma\left(K \mu^{+} \mu^{-}\right) / \Gamma\left(K e^{+} e^{-}\right)$
$\frac{V A L U E}{1.01 \pm 0.15 ~ O U R ~ A V E R A G E}$
$1.00{ }_{-0.25}^{+0.31} \pm 0.07$
$0.96+0.34 \pm 0.05$
$1.03 \pm 0.19 \pm 0.06$

DOCUMENT ID TECN COMMENT
$\Gamma_{129} / \Gamma_{127}$
${ }^{1}$ LEES $\quad 12 \mathrm{~S}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
AUBERT 09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
WEI
data for averages, fits, limits, etc. - - •
$1.06 \pm 0.48 \pm 0.08 \quad$ AUBERT,B 06」 BABR Repl. by AUBERT 09T ${ }^{1}$ Measured in the union of $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. LEES 12S reports also individual measurements $\Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right) / \Gamma\left(B \rightarrow K e^{+} e^{-}\right)$ $=0.74_{-0.31}^{+0.40} \pm 0.06$ for $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right) / \Gamma(B \rightarrow$ $\left.K e^{+} e^{-}\right)=1.43_{-0.44}^{+0.65} \pm 0.12$ for $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\Gamma\left(K^{*}(892) \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
Γ_{130} / Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{1 0 . 6} \pm \mathbf{0 . 9} \text { OUR AVER }} \frac{C L \%}{\text { AGE }}$
$\mathbf{1 0 . 6} \pm 0.9$ OUR AVERAGE
$10.1 \pm 1.0 \pm 0.5$
$13.5_{-3.3}^{+3.5} \pm 1.0$
$11.0_{-1.4}^{+1.6} \pm 0.8$
DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - . .

$8.8_{-3.0}^{+3.5} \pm 1.2$	1	AUBERT,B	$06 J$	BABR
$12.7_{-6.1}^{+7.6} \pm 1.6$	1	Repl. by AUBERT 09T		
$11.7_{-3.1}^{+3.6} \pm 1.0$		2 ISHIKAWA	03	BELL
<31		ABE Repl. by WEI 09A	02	BELL
		Repl. by ISHIKAWA 03		

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $r(4 S)$.
${ }^{2}$ Assumes equal production of B^{0} and B^{+}at $\Upsilon(4 S)$. The second error is a total of systematic uncertainties including model dependence.

0.98 ± 0.15 OUR AVERAGE
$1.13_{-0.26}^{+0.34} \pm 0.10$
$1.37{ }_{-0.40}^{+0.53} \pm 0.09$
$0.83 \pm 0.17 \pm 0.08$

${ }^{1}$ LEES
 AUBERT

WEI

12 S BABR $e^{+} e^{-} \rightarrow r(4 S)$
09T BABR $e^{+} e^{-} \rightarrow r(4 S)$
09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.91 \pm 0.45 \pm 0.06 \quad$ AUBERT,B 06J BABR Repl. by AUBERT 09T ${ }^{1}$ Measured in the union of $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ LEES 12 s reports also individual measurements $\Gamma\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right) / \Gamma(B \rightarrow$ $\left.K^{*}(892) e^{+} e^{-}\right)=1.06_{-0.33}^{+0.48} \pm 0.08$ for $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\Gamma(B \rightarrow$ $\left.K^{*}(892) \mu^{+} \mu^{-}\right) / \Gamma\left(B \rightarrow K^{*}(892) e^{+} e^{-}\right)=1.18_{-0.37}^{+0.55} \pm 0.11$ for $q^{2}>10.11$ $\mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\Gamma\left(K \ell^{+} \ell^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{131 / \Gamma}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	CL\%	DOCUMENT ID		TECN	COMMENT
4.8 ± 0.4 OUR AVERAGE					
$4.7 \pm 0.6 \pm 0.2$		LEES	12 S	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$4.8{ }_{-0.4}^{+0.5} \pm 0.3$		WEI	09A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.9 \pm 0.7 \pm 0.2$		${ }_{1}^{1}$ AUBERT	09T	BABR	Repl. by LEES 12 s
$3.4 \pm 0.7 \pm 0.2$		${ }^{1}$ AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$6.5{ }_{-1.3}^{+1.4} \pm 0.4$		2 AUBERT	03 u	BABR	Repl. by AUBERT,B 06J
$4.8{ }_{-0.9}^{+1.0} \pm 0.3$		${ }^{3}$ ISHIKAWA	03	BELL	Repl. by WEI 09a
$7.5_{-2.1}^{+2.5} \pm 0.6$		${ }^{4}$ ABE	02	BELL	Repl. by ISHIKAWA 03
<5.1	90	${ }^{1}$ AUBERT	02L	BABR	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
<17	90	5 ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Assumes all four $B \rightarrow K \ell^{+} \ell^{-}$modes having equal partial widths in the fit.
${ }^{3}$ Assumes equal production rate for charge and neutral B meson pairs, isospin invariance, lepton universality for $B \rightarrow K \ell^{+} \ell^{-}$, and $\mathrm{B}\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right)=1.33$. The second error is total systematic uncertainties including model dependence.
${ }^{4}$ Assumes lepton universality.
5^{5} The result is for di-lepton masses above 0.5 GeV .
$\left.\Gamma\left(\boldsymbol{K}^{*}(892)\right)^{+} \boldsymbol{\ell}^{-}\right) / \Gamma_{\text {total }}$
Γ_{132} / Γ
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
VALUE (units 10^{-7}) CL\% DOCUMENT ID TECN COMMENT

10.5 $\mathbf{\pm 1 . 0}$ OUR AVERAGE

$10.2_{-1.3}^{+1.4} \pm 0.5 \quad$ LEES \quad 12S BABR $e^{+} e^{-} \rightarrow r(4 S)$
$10.7_{-1.0}^{+1.1} \pm 0.9$
WEI 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$11.1{ }_{-1.8}^{+1.9} \pm 0.7$		${ }^{1}$ AUBERT	09T	BABR	Repl. by LEES 12 s
$7.8_{-1.7}^{+1.9} \pm 1.1$		1 AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$8.8{ }_{-2.9}^{+3.3} \pm 1.0$		2 AUBERT	03U	BABR	Repl. by AUBERT,B 06J
$11.5{ }_{-2.4}^{+2.6} \pm 0.8$		3 ISHIKAWA	03	BELL	Repl. by WEI 09A
<31	90	1,4 AUBERT	02L	BABR	Repl. by AUBERT 03u
<33	90	${ }^{5}$ ANDERSON	01B	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$

${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
${ }^{2}$ Assumes the partial width ratio of electron and muon modes to be $\Gamma(B \rightarrow$ $\left.K^{*}(892) e^{+} e^{-}\right) / \Gamma\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right)=1.33$.
${ }^{3}$ Assumes equal production rate for charge and neutral B meson pairs, isospin invariance, lepton universality for $B \rightarrow K \ell^{+} \ell^{-}$, and $\mathrm{B}\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right)=1.33$. The second error is total systematic uncertainties including model dependence.
${ }^{4}$ For averaging $K^{*}(892) \mu^{+} \mu^{-}$and $K^{*}(892) e^{+} e^{-}$modes, AUBERT 02L assumed $\mathrm{B}\left(B \rightarrow K^{*}(892) e^{+} e^{-}\right) / \mathrm{B}\left(B \rightarrow K^{*}(892) \mu^{+} \mu^{-}\right)=1.2$.
${ }^{5}$ The result is for di-lepton masses above 0.5 GeV .

$\Gamma(K \nu \bar{\nu}) / \Gamma_{\text {total }}$

$\Gamma_{133 / \Gamma}$
$\underline{V A L U E}$ Test for $\Delta B=1$ weak neutral current.
$<1.6 \times 10^{\mathbf{- 5}} \quad 90 \quad 1$ GRYGIER $17 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$<1.7 \times 10^{-5}$	90	1,2 LEES 13।	R $e^{+} e^{-} \rightarrow \gamma(4 S)$
$<1.4 \times 10^{-5}$	90	1 DEL-AMO-SA..10Q	BABR Repl. by LEES 13।
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.			
${ }^{2}$ Also reported a limit $<3.2 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic B-tag evnets.			

hadronic B-tag evnets.

Meson Particle Listings

$B^{ \pm} / B^{0}$ ADMIXTURE

$\Gamma\left(K \boldsymbol{e}^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{140} / \Gamma$

CP VIOLATION

$A_{C P}$ is defined as

$$
\begin{array}{l}\left.\frac{B(\bar{B}}{B(\bar{B}} \rightarrow \bar{f}\right)-B(B \rightarrow f)+B(B \rightarrow f)\end{array}
$$

the $C P$-violation charge asymmetry of inclusive $B^{ \pm}$and B^{0} decay.

$A_{C P}\left(B \rightarrow K^{*}(892) \gamma\right)$

$\frac{\text { VALUE }}{\mathbf{- 0 . 0 0 3} \pm \mathbf{0 . 0 1 1} \text { OUR AVERAGE }}$ DOCUMENT ID TECN COMMENT

$A_{C P}(B \Rightarrow s \gamma)$		TECN	COMMEN	
$\frac{\text { VALUE }}{\mathbf{0 . 0 1 5} \mathbf{\pm} \mathbf{0 . 0 1 1 ~ O U R ~ A V E R A G E ~}}$ (${ }^{\text {DOCUMENT }}$				
$0.0144 \pm 0.0128 \pm 0.0011$	1 WATANUKI2 LEES	19 BELL	$e^{+} e^{-}$	
$0.017 \pm 0.019 \pm 0.010$		14 k BABR	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -				
$-0.011 \pm 0.030 \pm 0.014$	${ }^{3}$ AUBERT	08BJ BABR	Repl.	
$0.025 \pm 0.050 \pm 0.015$	${ }_{5}^{4}$ AUBERT,B	04E BABR	Repl.	
$0.002 \pm 0.050 \pm 0.030$		04 BELL	Repl.	
${ }^{1}$ Using a sum-of-exclusive technique with $m_{X_{S}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.				
${ }^{2}$ Measured with 16 exclusively reconstructed $B \rightarrow X_{S} \gamma$ decays with $0.6<m_{X_{S}}<2.0$ $\mathrm{GeV} / \mathrm{c}^{2}$ (ten charged and six neutral self-tagging B modes).				
${ }^{3}$ Uses a sum of exclusively reconstructed $B \rightarrow X_{S}$ decay modes, with X_{S} mass between 0.6 and $2.8 \mathrm{GeV} / \mathrm{c}^{2}$.				
${ }^{4}$ Corresponds to $-0.06<A_{C P}<0.11$ at $90 \% \mathrm{CL}$.				
${ }^{5}$ This measurement is performed inclusively for recoil mass X_{S} less than 2.1 GeV , which corresponds to $-0.093<A_{C P}<0.096$ at $90 \% \mathrm{CL}$.				

$A_{C P}(B \rightarrow(s+d) \gamma)$ $\frac{\text { VALUE }}{0.010 \pm 0.031 \text { OUR AVERAGE }}$
$0.022 \pm 0.039 \pm 0.009$
$0.057 \pm 0.060 \pm 0.018$
$-0.10 \pm 0.18 \pm 0.05$
$-0.110 \pm 0.115 \pm 0.017$
$-0.079+0.108 \pm 0.022$
${ }^{1}$ Assumes equal production of B^{+}and B^{0} at the $\Upsilon(4 S)$. Uses an opposite side lepton tag. Requires center-of-mass frame $E_{\gamma}>2.1 \mathrm{GeV}$.
${ }^{2}$ Uses a fully reconstructed B meson as a tag on the recoil side. Requires $E_{\gamma}>2.2 \mathrm{GeV}$.
${ }^{3}$ Corresponds to $-0.27<\boldsymbol{A}_{C P}<0.10$ at 90% CL.
$\boldsymbol{A}_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)$
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 0 4} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 0 1} \quad 1$ LEES \quad 14D BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-0.22 \pm 0.26 \pm 0.02 \quad 2$ AUBERT,B 04I BABR Repl. by LEES 14D
${ }^{1}$ Measured from sum of exclusive modes through $K^{+}, K^{+} \pi^{0}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, $K^{+} \pi^{-} \pi^{+}, K_{S}^{0} \pi^{+}$, and $K_{S}^{0} \pi^{+} \pi^{0}$.
${ }^{2}$ The final state flavor is determined by the kaon and pion charges where modes with X_{S} $=K_{S}^{0}, K_{S}^{0} \pi^{0}$ or $K_{S}^{0} \pi^{+} \pi^{-}$are not used.

$$
\begin{aligned}
& A_{C P}\left(B \Rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right) \\
& \frac{\text { VALUE }}{\mathbf{- 0 . 0 6} \pm \mathbf{0 . 2 2} \pm \mathbf{0 . 0 1}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \text { Measured from sum of exclusive modes through } K^{+}, K^{+} \pi^{0}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0} \text {, } \\
& K^{+} \pi^{-} \pi^{+}, K_{S}^{0} \pi^{+} \text {, and } K_{S}^{0} \pi^{+} \pi^{0} \text {. } \\
& A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(10.1<q^{2}<12.9 \text { or } q^{2}>14.2 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right) \\
& \mathbf{0 . 1 9}_{-\mathbf{0 . 1 7}}^{\mathbf{0} .18} \mathbf{0 . 0 1} \quad 1 \text { LEES } \quad 14 \mathrm{D} \text { BABR } e^{+} e^{-} \rightarrow r(4 S) \\
& { }^{1} \text { Measured from sum of exclusive modes through } K^{+}, K^{+} \pi^{0}, K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0} \text {, } \\
& K^{+} \pi^{-} \pi^{+}, K_{S}^{0} \pi^{+} \text {, and } K_{S}^{0} \pi+(p i-)^{0} \text {. }
\end{aligned}
$$

$\boldsymbol{A}_{C P}\left(B \rightarrow K^{*} e^{+} e^{-}\right)$
VALUE
$-0.18 \pm 0.15 \pm 0.01$
DOCUMENT ID TECN COMMENT
$\boldsymbol{A}_{C P}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$
$\frac{V A L U E}{-0.03 \pm 0.13 \pm 0.02}$
$A_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$
$\frac{\text { VALUE }}{-0.04 \pm 0.07 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT

$0.03 \pm 0.13 \pm 0.01$	1	LEES	12 S BABR $e^{+} e^{-} \rightarrow r(4 S)$
$+0.01_{-0.15}^{+0.16} \pm 0.01$	AUBERT	09T BABR $e^{+} e^{-} \rightarrow r(4 S)$	
$-0.10 \pm 0.10 \pm 0.01$	WEI	09A BELI $e^{+} e^{-} \rightarrow r(4 S)$	

$-0.10 \pm 0.10 \pm 0.01 \quad$ WEI 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$ ${ }^{1}$ Measured in the union of $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. LEES 12 s reports also individual measurements $A_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=-0.13_{-0.19}^{+0.18} \pm$ 0.01 for $0.10<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ and $A_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=0.16_{-0.19}^{+0.18} \pm 0.01$ for $\mathrm{q}^{2}>10.11 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\underset{C P}{A_{C P}}(B \rightarrow \eta$ anything $)$

| VALUE | DOCUMENT ID | |
| :--- | :--- | :--- | :--- |
| $\mathbf{- 0 . 1 3 \pm} \mathbf{0 . 0 4} \mathbf{- 0 . 0 3}$ | TECN | COMMENT |
| NISHIMURA 10 | BELL | $e^{+} e^{-} \rightarrow r(4 S)$ | ${ }^{1}$ Uses $B \rightarrow \eta X_{S}$ with $0.4<m_{X_{S}}<2.6 \mathrm{GeV} / c^{2}$.

$\Delta A_{C P}\left(X_{s} \gamma\right)=A_{C P}\left(B^{ \pm} \rightarrow X_{s} \gamma\right)-A_{C P}\left(B^{0} \rightarrow X_{s} \gamma\right)$
This is the isospin difference of the $C P$ asymmetries.
$\frac{V A L U E}{\mathbf{0 . 0 4 1} \mathbf{0 . 0 2 3} \text { OUR AVERAGE DOCUMENTID }}$ TECN COMMENT
$0.0369 \pm 0.0265 \pm 0.0076 \quad 1$ WATANUKI 19 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.050 \pm 0.039 \pm 0.015 \quad{ }^{2}$ LEES $\quad 14 \mathrm{~K} \mathrm{BABR} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Using a sum-of-exclusive technique with $m_{X_{S}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
${ }^{2}$ Measured with 16 exclusively reconstructed $B \rightarrow X_{S} \gamma$ decays with $0.6<m_{X_{s}}<2.0$ $\mathrm{GeV} / \mathrm{c}^{2}$ (ten charged and six neutral self-tagging B modes).
$\bar{A}_{C P}\left(B \rightarrow X_{s} \gamma\right)=\left(A_{C P}\left(B^{+} \rightarrow X_{s} \gamma\right)+A_{C P}\left(B^{0} \rightarrow X_{s} \gamma\right)\right) / 2$
$\frac{\text { VALUE }}{\mathbf{0 . 0 0 9 1} \pm \mathbf{0 . 0 1 2 1} \pm \mathbf{0 . 0 0 1 3}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { WATANUKI } 19} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Using a sum-of-exclusive technique with $m_{X_{s}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
$\Delta_{C P}\left(B \rightarrow K^{*} \gamma\right)=A_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right)-A_{C P}\left(B^{\mathbf{0}} \rightarrow K^{* 0} \gamma\right)$ This is the isospin difference of the $C P$ asymmetries.
$\frac{\text { VALUE }}{\mathbf{0 . 0 2 4} \pm \mathbf{0 . 0 2 8} \pm \mathbf{0 . 0 0 5}} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$
$0.024 \pm \mathbf{0 . 0 2 8} \pm \mathbf{0 . 0 0 5} \quad{ }^{1}$ HORIGUCHI 17 BELL $e^{+} e^{-} \rightarrow \gamma(4 S)$ ${ }^{1}$ Uses $\mathrm{B}\left(r(4 S) \rightarrow B^{+} B^{-}\right)=(51.4 \pm 0.6) \%$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.6 \pm 0.6) \%$.

POLARIZATION IN B DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel $(\|)$ or perpendicular (\perp) to each other with the parameters $\Gamma_{L} / \Gamma, \Gamma_{\perp} / \Gamma$, and the relative phases $\phi_{\|}$and ϕ_{\perp}. See the definitions in the note on "Polarization in B Decays" review in the B^{0} Particle Listings.

${ }^{1}$ Results with different q^{2} cuts are also reported.

$0.34_{-0.07}^{+0.08}$ OUR AVERAGE

$0.37_{-0.09-0.03}^{+0.10+0.04}$	AAIJ	13 Y	LHCB	$p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$0.30 \pm 0.16 \pm 0.02$	AALTONEN	121	CDF	$p \bar{p}$ at 1.96 TeV
$0.29{ }_{-0.18}^{+0.21} \pm 0.02$	WEI	09A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.60{ }_{-0.28}^{+0.00} \pm 0.19$	${ }^{1}$ CHATRCHYAN 13 BL CMS			$p p$ at 7 TeV
$0.00{ }_{-0.00}^{+0.13} \pm 0.02$	AAIJ	12 U	LHCB	Repl. by AAIJ $13 Y$
$0.53-0.34 \pm 0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 12I
${ }^{1}$ CHATRCHYAN	,		2.0 G	$2 / c^{4}$.

$\mathrm{F}_{L}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$		
VALUE	DOCUMENT ID	TECN COMMENT
0.77 ± 0.05 OUR AVERAGE		
$0.876_{-0.097}^{+0.109} \pm 0.017$	${ }^{1}$ AAIJ 16B	LHCB $p p$ at 7, 8 TeV
$0.80 \pm 0.08 \pm 0.06$	KHACHATRY...16D	CMS pp at 8 TeV
$0.74{ }_{-0.09}^{+0.10}{ }_{-0.02}^{+0.02}$	AAIJ 13Y	LHCB $p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$0.65 \pm 0.17 \pm 0.03$	CHATRCHYAN 13BL	CMS $p p$ at 7 TeV
$0.37{ }_{-0.24}^{+0.25} \pm 0.10$	AALTONEN 121	CDF $p \bar{p}$ at 1.96 TeV
$0.71 \pm 0.24 \pm 0.05$	WEI 09A	BELL $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - -		
$0.77 \pm 0.15 \pm 0.03$	AAIJ 12u	LHCB Repl. by AAIJ 13 Y
$0.40{ }_{-0.33}^{+0.32} \pm 0.08$	AALTONEN 11L	CDF Repl. by AALTONEN 121
${ }^{1}$ Measured in $2.5<\mathrm{q}^{2}<4.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.		

$\mathrm{F}_{L}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(4.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$				
VALUE	DOCU		TECN	COMMENT
$0.611{ }_{-0.053}^{+0.052} \pm 0.017$	AAIJ	16B	LHCB	

$\mathrm{F}_{L}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(6.0<\mathrm{q}^{2}<8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\mathbf{0 . 5 7 9} \pm \mathbf{0 . 0 4 6} \pm \mathbf{0 . 0 1 5} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{16 \mathrm{~B}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7.8 \mathrm{TeV}}$

$B^{ \pm} / B^{0}$ ADMIXTURE

${ }^{2}$ Measured by combining B^{0} and B^{+}with e and μ as leptons. Results are also provided
separately for B^{0} and B^{+}.

$\mathrm{F}_{L}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE DOCUMENTID IECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.477_{-0.24}^{+0.23} \pm 0.03 \quad$ AALTONEN 11 L CDF Repl. by AALTONEN 12।
$P_{\tau}\left(B \rightarrow D^{*} \tau^{+} \nu_{\tau}\right)$
Measures difference in decay widths with positive and negative τ^{+}helicities normalized to the sum of those decay widths.

VALUE	DOCUMEN	TECN	COMMENT
$-0.38 \pm 0.51{ }_{-0.16}^{+0.21}$	${ }^{1}$ HIROSE	BELL	$e^{+} e^{-} \rightarrow$

[^126]
$\mathbf{0 . 5 7}_{\mathbf{- 0 . 0 9}}^{\mathbf{+ 0 . 1 0}}$ OUR AVERAGE Error includes scale factor of 1.2.

0.49				
-0.15				
-0.15				
$0.77 \pm 0.14 \pm 0.05$	LEES	12S	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.46_{-0.12}^{+0.14} \pm 0.03$	AALTONEN	11 A I CDF	$p \bar{p}$ at 1.96 TeV	
	WEI	09A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.58 \pm 0.19 \pm 0.04$
AALTONEN 11L CDF Repl. by AALTONEN 11AI

$\mathrm{B}\left(B \rightarrow K \ell^{+} \ell^{-}\right)\left(4.3<\mathrm{q}^{2}<8.68 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{4}\right)$				
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.00 ± 0.11 OUR AVERAGE				
$0.94{ }_{-0.19}^{+0.20} \pm 0.02$	${ }^{1}$ LEES	12S	BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$1.05 \pm 0.17 \pm 0.07$	AALTONEN	11 Al	CDF	$p \bar{p}$ at 1.96 TeV
$1.00_{-0.18}^{+0.19} \pm 0.06$	WEI	09A	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.93 \pm 0.25 \pm 0.06$ AALTONEN 11L CDF Repl. by AALTONEN 11AI
${ }^{1}$ The value reported here from LEES 12 s refers to $4.3<\mathrm{q}^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
$\mathrm{B}\left(B \rightarrow K \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
$\mathbf{0 . 5 7} \pm \mathbf{0 . 1 1}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

$0.90_{-0.19}^{+0.20} \pm 0.04$	1	12 S BABR	$e^{+} e^{-} \rightarrow r(4 S)$
$0.48 \pm 0.10 \pm 0.03$	AALTONEN	11 AI CDF $\quad p \bar{p}$ at 1.96 TeV	
$0.55_{-0.14}^{+0.16} \pm 0.03$	WEI	09A BELL $e^{+} e^{-} \rightarrow r(4 S)$	

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.72 \pm 0.17 \pm 0.05$ AALTONEN 11 L CDF Repl. by AALTONEN 11AI
${ }^{1}$ The value reported here from LEES 12 s refers to $10.11<\mathrm{q}^{2}<12.89 \mathrm{GeV}^{2} / \mathrm{c}^{2}$.

$B\left(B \rightarrow K \ell^{+} \ell^{-}\right)\left(14.18<q^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{0.49 \pm 0.07 \text { OUR AVERAGE }}$

| $0.49_{-0.14}^{+0.15} \pm 0.02$ | 1 LEES | 12 S BABR $e^{+} e^{-} \rightarrow r(4 S)$ |
| :--- | :--- | :--- | :--- |
| $0.52 \pm 0.09 \pm 0.03$ | AALTONEN | 11 AI CDF $p \bar{p}$ at 1.96 TeV |
| $0.38_{-0.12}^{+0.19} \pm 0.02$ | WEI | 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$ |

$0.38_{-0.12}^{+0.19} \pm 0.02 \quad$ WEI 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.38 \pm 0.12 \pm 0.03$ AALTONEN 11 L CDF Repl. by AALTONEN 11AI
${ }^{1}$ The value reported here from LEES 12 s refers to $14.21<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{2}$.
$B\left(B \rightarrow K \ell^{+} \ell^{-}\right)\left(16.0<q^{2} \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT
$\mathbf{0 . 5 2} \pm \mathbf{0 . 1 6}$ OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below.
$0.67_{-0.21}^{+0.23} \pm 0.05 \quad$ LEES $\quad 12 \mathrm{~S}$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
$0.38 \pm 0.09 \pm 0.02 \quad$ AALTONEN 11 AI CDF $p \bar{p}$ at 1.96 TeV
$0.98_{-0.18}^{+0.20} \pm 0.06 \quad$ WEI 09A BELL $e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.35 \pm 0.13 \pm 0.02$ AALTONEN 11L CDF Repl. by AALTONEN 11AI

$\mathrm{A}_{F B B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(1.1<\mathrm{q}^{2}<2.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
Value	DOCUMENT ID	TECN	COMMENT
$-0.191+0.068 \pm 0.012$	AAIJ 16B	LHCB	$p p$ at 7, 8 TeV
$\mathrm{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
=0.14 $\pm \mathbf{0 . 0 5}$ OUR AVERAGE			
$-0.118_{-0.090}^{+0.082} \pm 0.007$	1 AAIJ 16B	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-0.12{ }_{-0.17}^{+0.15} \pm 0.05$	KHACHATRY...16D	CMS	$p p$ at 8 TeV
$-0.20 \pm 0.08 \pm 0.01$	AAIJ 13 Y	LHCB	$p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$-0.07 \pm 0.20 \pm 0.02$	CHATRCHYAN 13BL	CMS	$p p$ at 7 TeV
$0.29{ }_{-0.35}^{+0.32} \pm 0.15$	AALTONEN 12\|	CDF	$p \bar{p}$ at 1.96 TeV
$0.11{ }_{-0.36}^{+0.31} \pm 0.07$	WEI 09A B	BELL	$e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. • • -

$\mathrm{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE DOCUMENT ID TECN COMMENT
$=\mathbf{0 . 0 8} \mathbf{- 0 . 2 0}_{\mathbf{0} .21}^{\mathbf{0}} \mathbf{\mathbf { 0 . 0 5 }} \quad$ AALTONEN 12 । CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - - -

$$
0.21_{-0.33}^{+0.31} \pm 0.05 \quad \text { AALTONEN } 11 \mathrm{~L} \quad \text { CDF Repl. by AALTONEN 12। }
$$

- - We do not use the following data for averages, fits, limits, etc. - - •

${ }^{3}$ Uses $K^{*} \rightarrow K^{-} \pi^{+}, K^{-} \pi^{0}, K_{S}^{0} \pi^{-}$in the range $\mathrm{M}(K \pi)<1.1 \mathrm{GeV} / \mathrm{c}^{2}$. Uncertainty is statistical only.
$\mathrm{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(4.3<\mathrm{q}^{2}<8.6 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE DOCUMENTID TECN COMMENT
$\mathbf{0 . 1 3}_{-\mathbf{0 . 0 5}}^{\mathbf{+ 0 . 0 6}}$ OUR AVERAGE Error includes scale factor of 1.1.

$0.16_{-0.05}^{+0.06} \pm 0.01$	AAIJ		LHCB	$p p$ at $7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}$
$-0.01 \pm 0.11 \pm 0.03$	CHATRCHYAN	13 BL	CMS	$p p$ at 7 TeV
$0.01 \pm 0.20 \pm 0.09$	AALTONEN	121	CDF	$p \bar{p}$ at 1.96 TeV
$0.45{ }_{-0.21}^{+0.15} \pm 0.15$	WEI	09A	BELL	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - • -				
$0.27{ }_{-0.08}^{+0.06} \pm 0.02$	AAIJ	12 U	LHCB	Repl. by AAIJ $13 Y$
$-0.06{ }_{-0.28}^{+0.30} \pm 0.05$	AALTONEN	11L	CDF	Repl. by AALTONEN 12ı

- - We do not use the following data for averages, fits, limits, etc. • • •

0.27	+0.11 -0.13	± 0.02	AAIJ	12U	LHCB	Repl. by AAIJ $13 Y$
0.66	$\begin{array}{r} +0.23 \\ -0.20 \end{array}$	± 0.07	AALTONEN	11L	CDF	Repl. by AALTONEN 12ı

1^{1} Measured in $11.0<\mathrm{q}^{2}<12.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.

$$
\mathrm{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)
$$

$\mathrm{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\left(14.18<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

VALUE	DOCUMENT ID
$\mathbf{0 . 4 3} \mathbf{+ 0 . 0 5}$ OUR AVERAGE	Crror includes scale factor of 1.6 . See the ideogram below.

$$
0.39_{-0.06}^{+0.04} \pm 0.01 \quad \text { KHACHATRY...16D CMS } p p \text { at } 8 \mathrm{TeV}
$$

$$
0.51_{-0.05}^{+0.07} \pm 0.02 \quad \text { AAIJ } \quad 13 Y \text { LHCB } p p \text { at } 7 \mathrm{TeV}, K^{* 0} \mu^{+} \mu^{-}
$$

$$
0.29 \pm 0.09 \pm 0.05 \quad \text { CHATRCHYAN 13BL CMS } \quad p p \text { at } 7 \mathrm{TeV}
$$

$$
0.44_{-0.21}^{+0.18} \pm 0.10 \quad \text { AALTONEN } \quad 12 \mathrm{I} \quad \mathrm{CDF} \quad p \bar{p} \text { at } 1.96 \mathrm{TeV}
$$

$$
0.70_{-0.22}^{+0.16} \pm 0.10 \quad \text { WEI } \quad \text { 09A BELL } e^{+} e^{-} \rightarrow r(4 S)
$$

- - We do not use the following data for averages, fits, limits, etc. • - -

0.47				
-0.08				
$0.42 \pm 0.16 \pm 0.09$	AAIJ	12 U	LHCB	Repl. by AAIJ $13 Y$
	AALTONEN	11 L	CDF	Repl. by AALTONEN 12I

${ }^{1}$ Results with different q^{2} cuts are also reported.

ISOSPIN ASYMMETRY

Δ_{0-} is defined as

$$
\frac{\Gamma\left(\bar{B}^{0} \rightarrow f_{d}\right)-\Gamma\left(B^{-} \rightarrow f_{u}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow f_{d}\right)+\Gamma\left(B^{-} \rightarrow f_{u}\right)},
$$

the isospin asymmetry of inclusive neutral and charged B decay.
$\Delta_{0-}\left(B\left(B \rightarrow X_{s} \gamma\right)\right)$
$\frac{V A L U E}{-0.005} \pm 0.020$ OUR AVERAGE
$-0.0048 \pm 0.0149 \pm 0.0150 \quad 1$ WATANUKI 19 BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
$-0.006 \pm 0.058 \pm 0.026 \quad$ AUBERT,B \quad 05R BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Using a sum-of-exclusive technique with $m_{X_{S}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}$.
$\Delta_{0-}\left(\mathrm{B}\left(B \rightarrow X_{s+d} \gamma\right)\right)$
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 6} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 0 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad 080} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ Uses a fully reconstructed B meson as a tag on the recoil side. The result is for $E_{\gamma}>$ 2.2 GeV .
$\boldsymbol{\Delta}_{\mathbf{0 +}}\left(B \rightarrow K^{*}(892) \gamma\right)$
Δ_{0+} describes the isospin asymmetry between $\Gamma\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)$ and $\Gamma\left(B^{+} \rightarrow\right.$ $\left.K^{*}(892)^{+} \gamma\right)$.
$\frac{\text { VALUE }}{0.063 \pm 0.017 \text { OUR AVERAGE }}$
$0.062 \pm 0.015 \pm 0.013 \quad 1$ HORIGUCHI 17 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$0.066 \pm 0.021 \pm 0.022 \quad{ }^{2}$ AUBERT 09 AO BABR $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - .
$0.050 \pm 0.045 \pm 0.037 \quad{ }^{3}$ AUBERT,BE 04A BABR Repl. by AUBERT 09AO $0.012 \pm 0.044 \pm 0.026 \quad$ NAKAO 04 BELL Repl. by HORIGUCHI 17
${ }^{1}$ Uses $\mathrm{B}\left(Y(4 S) \rightarrow B^{+} B^{-}\right)=(51.4 \pm 0.6) \%$ and $\mathrm{B}\left(r(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=(48.6 \pm 0.6) \%$.
${ }^{2}$ Uses the production ratio of charged and neutral B from $r(4 S)$ decays and the lifetime ratio $\tau_{B^{+}} / \tau_{B^{0}}=1.071 \pm 0.009$. The $90 \% \mathrm{CL}$ interval is $0.017<\Delta_{0+}<0.116$
${ }^{3}$ Uses the production ratio of charged and neutral B from $\gamma(4 S)$ decays $\mathrm{R}^{+/ 0}=1.006 \pm$ 0.048 and the lifetime ratio of $\tau_{B^{+}} / \tau_{B^{0}}=1.083 \pm 0.017$. The $90 \% \mathrm{CL}$ interval is $-0.046<\Delta_{0+}<0.146$.
$\Delta_{\rho \gamma}=\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right) /\left(2 \cdot \Gamma\left(B^{0} \Rightarrow \rho^{0} \gamma\right)\right)=1$
$\frac{\text { VALUE }}{-0.46 \pm 0.17 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT
$-0.43_{-0.22}^{+0.25} \pm 0.10$
$-0.48_{-0.19}^{+0.21+0.08}$
AUBERT 08BHBABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
TANIGUCHI 08 BELL $e^{+} e^{-} \rightarrow r(4 S)$
$\Delta_{0-}\left(B\left(B \rightarrow K \ell^{+} \ell^{-}\right)\right)$
$\frac{V A L U E}{\mathbf{- 0 . 1 3} \pm \mathbf{0 . 0 6} \text { OUR AVERAGE }}$ Error $\frac{\text { DOCUMENT ID }}{\text { includes scale factor } \frac{\text { TECN }}{\text { of 1.1. }} \text { COMMENT }}$

$-0.10_{-0.09}^{+0.08} \pm 0.02$	1 AAIJ	14 M LHCB $p p$ at $7,8 \mathrm{TeV}$
$-0.09_{-0.08}^{+0.08} \pm 0.02$	$2^{\text {AAIJ }}$	14 M LHCB $p p$ at $7,8 \mathrm{TeV}$
$-0.58_{-0.37}^{+0.29} \pm 0.02$	${ }^{3}$ LEES	12 S BABR $e^{+} e^{-} \rightarrow r(4 S)$
$-0.31_{-0.14}^{+0.17} \pm 0.08$	4 WEI	09A BELL $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - -

$-0.35_{-0.27}^{+0.23}$	5 AAIJ	12AH LHCB Repl. by AAIJ 14 M
$-1.43+0.56$		

$1.4{ }_{-0.85}^{ \pm 0.05} \quad 6,7$ AUBERT 09T BABR Repl. by LEES 12 S
${ }^{1}$ For $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ using $\mu^{+} \mu^{-}$as a lepton pair and assuming isospin symmetry for the $B \rightarrow J / \psi(1 S) K$. Measurements in other q^{2} bins are also reported.
${ }^{2}$ For $15.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ using $\mu^{+} \mu^{-}$as a lepton pair and assuming isospin symmetry for the $B \rightarrow J / \psi(1 S) K$. Measurements in other q^{2} bins are also reported.
${ }^{3}$ For $0.10<q^{2}<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}$. Measurements in other q^{2} bins are also reported.
${ }^{4}$ For $\mathrm{q}^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
${ }^{5}$ For $1<\mathrm{q}^{2}<6 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
${ }^{6}$ For $0.1<m_{\ell^{+} \ell^{-}}^{2}<7.02 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
${ }^{7}$ Assumes equal production of B^{+}and B^{0} at the $\gamma(4 S)$.
$\Delta_{0-}\left(B\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)\right)$
VALUE DOCUMENT ID TECN COMMENT
$\mathbf{- 0 . 0 3}=\mathbf{0} \mathbf{+ 0 . 0 7}$ OUR AVERAGE Error includes scale factor of 1.2.

$B \rightarrow X_{c} \ell \nu$ HADRONIC MASS MOMENTS

$\left\langle M_{X}^{2}-\bar{M}_{D}^{2}\right\rangle$ (First Moments)
$\frac{\operatorname{VALUE}\left(\mathrm{GeV}^{2}\right)}{\mathbf{0 . 3 6}+0.08}$ DOCUMENT ID TECN COMMENT
$\overline{\mathbf{0 . 3 6} \mathbf{\pm 0 . 0 8} \text { OUR AVERAGE Error includes scale factor of 1.8. }}$
$0.467 \pm 0.038 \pm 0.068 \quad 1$ ACOSTA 05 F CDF $p \bar{p}$ at 1.96 TeV
$0.293 \pm 0.012 \pm 0.058 \quad{ }^{2}$ CSORNA 04 CLE2 $e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - .
$0.251 \pm 0.023 \pm 0.062 \quad{ }^{3}$ CRONIN-HEN..01B CLE2 $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Moments are measured with a minimum lepton momentum of $0.7 \mathrm{GeV} / \mathrm{c}$ in the B rest frame;
${ }^{2}$ Uses minimum lepton energy of 1.5 GeV and also reports moments with $\mathrm{E}_{\ell}>1.0 \mathrm{GeV}$.
${ }^{3}$ The leptons are required to have $P_{\ell}>1.5 \mathrm{GeV} / c$.
$\left\langle M_{X}^{2}\right\rangle$ (First Moments)
$\frac{V A L U E\left(\mathrm{GeV}^{2}\right)}{4.156 \pm \mathbf{0 . 0 2 9} \text { OUR AVERAGE }}$
$4.18 \pm 0.04 \pm 0.03$
${ }^{1}$ The leptons are required to have $E_{\ell}>1.5 \mathrm{GeV} / c$.
$\left\langle\left(M_{X}^{2}-\bar{M}_{X}^{2}\right)^{2}\right\rangle$ (Second Moments)

VALUE (GeV^{4})	DOCUMENT ID	TECN	COMMENT
0.55 ± 0.08 OUR AVERAGE			
$0.515 \pm 0.061 \pm 0.064$	1 SCHWANDA 07	BELL	$e^{+} e^{-} \rightarrow \gamma(4 S)$
$0.629 \pm 0.031 \pm 0.143$	2 CSORNA 04	CLE2	$e^{+} e^{-} \rightarrow r(4 S)$
- - We do not use the following data for averages, fits, limits, etc. - . -			
$1.05 \pm 0.26 \pm 0.13$	${ }^{3}$ ACOSTA 05 F	CDF	$p \bar{p}$ at 1.96 TeV
$0.576 \pm 0.048 \pm 0.168$	${ }^{1}$ CRONIN-HEN..01B	CLE2	$e^{+} e^{-} \rightarrow \gamma(4 S)$
${ }^{1}$ The leptons are required to have $E_{\ell}>1.5 \mathrm{GeV} / c$.			
${ }^{2}$ Uses minimum lepton energ ${ }^{3}$ Moments are measured with frame;	f 1.5 GeV and also repo minimum lepton mome	nts mom	ents with $E_{\ell}>1.0$ $0.7 \mathrm{GeV} / \mathrm{c}$ in the

$\left\langle\left(M_{X}^{2}-\overline{M_{D}^{2}}\right)^{2}\right\rangle$ (Second Moments)

$\frac{\operatorname{VALUE}\left(\mathrm{GeV}^{4}\right)}{\mathbf{0 . 6 3 9} \pm \mathbf{0 . 0 5 6} \pm \mathbf{0 . 1 7 8}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CRONIN-HEN..01B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
${ }^{1}$ The leptons are required to have $E_{\ell}>1.5 \mathrm{GeV} / c$.

Meson Particle Listings
$B^{ \pm} / B^{0}$ ADMIXTURE

- . - We do not use the following data for averages, fits, limits, etc. - . -
$3.28 \pm 0.40 \pm 0.43 \quad 3$ AUBERT,BE 06B BABR Repl. by LEES 12 V ${ }^{1}$ LEES 12 u uses $E_{\gamma}>1.897 \mathrm{GeV}$ to calculate the moments; the moments are used to calculate the HQET parameters $m_{b}=4.579_{-0.029}^{+0.032} \mathrm{GeV} / c^{2}$ and $\mu_{\pi}^{2}=0.257_{-0.039}^{+0.034} \mathrm{GeV}^{2}$ in the shape function model. The same HQET parameters are also determined in the kinetic model.
${ }^{2}$ Results for different E_{γ} threshold values are also measured.
${ }^{3}$ The result is for $E_{\gamma}>1.9 \mathrm{GeV}$.
${ }^{4}$ Uses a fully reconstructed B meson as a tag on the recoil side.
$\xrightarrow[B^{ \pm} / B^{0} \text { ADMIXTURE REFERENCES }]{ }$

AAIJ	19AD	PR D100 031102	R. Aaij et al.	(LHCb Collab.)
WATANUKI	19	PR D99 032012	S. Watanuki et al.	(BELLE Collab.)
GRYGIER	17	PR D96 091101	J. Grygier et al.	(BELLE Collab.)
HIROSE	17	PRL 118211801	S. Hirose et al.	(BELLE Collab.)
Also		PR D97 012004	S. Hirose et al.	(BELLE Collab.)
HORIGUCHI	17	PRL 119191802	T. Horiguchi et al.	(BELLE Collab.)
LEES	17B	PR D95 072001	J.P. Lees et al.	(BABAR Collab.)
AAIJ	16B	JHEP 1602104	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj et al.	(BELLE Collab.)
KHACHATRY.	16D	PL B753 424	V. Khachatryan et al.	(CMS Collab.)
LeES	16	PRL 116041801	J.P. Lees et al.	(BABAR Collab.)
LEES	16C	PR D93 052015	J.P. Lees et al.	(BABAR Collab.)
SATO	16	PR D93 032008	Y. Sato et al.	(BELLE Collab.)
Also		PR D93 059901 (errat.)	Y. Sato et al.	(BELLE Collab.)
HUSCHLE	15	PR D92 072014	M. Huschle et al.	(BELLE Collab.)
PESANTEZ	15	PRL 114151601	L. Pesantez et al.	(BELLE Collab.)
SAITO	15	PR D91 052004	T. Saito et al.	(BELLE Collab.)
AAIJ	14AF	PRL 113141801	R. Aaij et al.	(LHCb Collab.)
AAIJ	14M	JHEP 1406133	R. Aaij et al.	(LHCb Collab.)
LeES	14D	PRL 112211802	J.P. Lees et al.	(BABAR Collab.)
LEES	14K	PR D90 092001	J.P. Lees et al.	(BABAR Collab.)
AAIJ	13H	JHEP 1302105	R. Aaij et al.	(LHCb Collab.)
AAIJ	13 Y	JHEP 1308131	R. Aaij et al.	(LHCb Collab.)
CHATRCHYAN	13BL	PL B727 77	S. Chatrchyan et al.	(CMS Collab.)
LEES	131	PR D87 112005	J.P. Lees et al.	(BABAR Collab.)
LEES	13M	PR D88 032012	J.P. Lees et al.	(BABAR Collab.)
AAIJ	12 AH	JHEP 1207133	R. Aaij et al.	(LHCb Collab.)
AAIJ	12 U	PRL 108181806	R. Aaij et al.	(LHCb Collab.)
AALTONEN	121	PRL 108081807	T. Aaltonen et al.	(CDF Collab.)
LEES	12	PR D85 011102	J.P. Lees et al.	(BABAR Collab.)
LEES	12D	PRL 109101802	J.P. Lees et al.	(BABAR Collab.)
Also		PR D88 072012	J.P. Lees et al.	(BABAR Collab.)
LEES	12R	PR D86 032004	J.P. Lees et al.	(BABAR Collab.)
LEES	12S	PR D86 032012	J.P. Lees et al.	(BABAR Collab.)
LEES	12 U	PR D86 052012	J.P. Lees et al.	(BABAR Collab.)
LEES	12 V	PRL 109191801	J.P. Lees	(BABAR Collab.)
Also		PR D86 112008	J.P. Lees et al.	(BABAR Collab.)
AALTONEN	11A ${ }^{\text {I }}$	PRL 107201802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11L	PRL 106161801	T. Aaltonen et al.	(CDF Collab.)
DEL-AMO-SA...	11	PR D83 031103	P. del Amo Sanchez et al.	(BABAR Collab.)
GAMBINO	11	JHEP 1109055	P. Gambino	(LCGT)
AUBERT	10	PRL 104011802	B. Aubert et al.	(BABAR Collab.)
AUBERT	10A	PR D81 032003	B. Aubert et al.	(BABAR Collab.)
AUSHEV	10	PR D81 031103	T. Aushev et al.	(BELLE Collab.)
DEL-AMO-SA...	10M	PR D82 051101	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA...	10Q	PR D82 112002	P. del Amo Sanchez et al.	(BABAR Collab.)
NISHIMURA	10	PRL 105191803	K. Nishimura et al.	(BELLE Collab.)
URQUIJO	10	PRL 104021801	P. Urquijo et al.	(BELLE Collab.)
AUBERT	09AO	PRL 103211802	B. Aubert et al.	(BABAR Collab.)
AUBERT	09 N	PR D79 031102	B. Aubert et al.	(BABAR Collab.)
AUBERT	097	PRL 102091803	B. Aubert et al.	(BABAR Collab.)
Also		EPAPS Document No.	E-PRLTAO-102-060910	(BABAR Collab.)
AUBERT	094	PRL 102161803	B. Aubert et al.	(BABAR Collab.)
LIMOSANI	09	PRL 103241801	A. Limosani et al.	(BELLE Collab.)
WEI	09A	PRL 103171801	J.-T. Wei et al.	(BELLE Collab.)
Also		EPAPS Supplement EPAP	PS_a ppendix.pdf	(BELLE Collab.)
AUBERT	08AS	PRL 100171802	B. Aubert et al.	(BABAR Collab.)
AUBERT	08BC	PR D78 072007	B. Aubert et al.	(BABAR Collab.)
AUBERT	08BH	PR D78 112001	B. Aubert et al.	(BABAR Collab.)
AUBERT	08BJ	PRL 101171804	B. Aubert et al.	(BABAR Collab.)
AUBERT	08N	PRL 100021801	B. Aubert et al.	(BABAR Collab.)
Also		PR D79 092002	B. Aubert et al.	(BABAR Collab.)
AUBERT	080	PR D77 051103	B. Aubert et al.	(BABAR Collab.)
SCHWANDA	08	PR D78 032016	C. Schwanda et al.	(BELLE Collab.)
TANIGUCHI	08	PRL 101111801	N. Taniguchi et al.	(BELLE Collab.)
WEI	08A	PR D78 011101	J.-T. Wei et al.	(BELLE Collab.)
AUBERT	07AG	PRL 99051801	B. Aubert et al.	(BABAR Collab.)
AUBERT	07C	PR D75 012003	B. Aubert et al.	(BABAR Collab.)
AUBERT	07E	PRL 98051802	B. Aubert et al.	(BABAR Collab.)
AUBERT	07L	PRL 98151802	B. Aubert et al.	(BABAR Collab.)
GAMBINO	07	JHEP 0710058	P. Gambino et al.	
HUANG	07	PR D75 012002	G.S. Huang et al.	(CLEO Collab.)
SCHWANDA	07	PR D75 032005	C. Schwanda et al.	(BELLE Collab.)
URQUIJO	07	PR D75 032001	P. Urquijo et al.	(BELLE Collab.)
AUBERT	06 H	PR D73 012006	B. Aubert et al.	(BABAR Collab.)
AUBERT, B	06 J	PR D73 092001	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06Y	PR D74 091105	B. Aubert et al.	(BABAR Collab.)
AUBERT,BE	06B	PRL 97171803	B. Aubert et al.	(BABAR Collab.)
BUCHMUEL...	06	PR D73 073008	O.L. Buchmueller, H.U. Flacher	(RHBL)
GOKHROO	06	PRL 97162002	G. Gokhroo et al.	(BELLE Collab.)
ISHIKAWA	06	PRL 96251801	A. Ishikawa et al.	(BELLE Collab.)
MOHAPATRA	06	PRL 96221601	D. Mohapatra et al.	(BELLE Collab.)
ABAZOV	050	PRL 95171803	V.M. Abazov et al.	(D0 Collab.)
ACOSTA	05F	PR D71 051103	D. Acosta et al.	(CDF Collab.)
ARTUSO	05B	PRL 95261801	M. Artuso et al.	(CLEO Collab.)
AUBERT	05	PRL 94011801	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	05M	PRL 95142003	B. Aubert et al.	(BABAR Collab.)
AUBERT, B	05R	PR D72 052004	B. Aubert et al.	(BABAR Collab.)
AUBERT, ${ }^{\text {a }}$	05X	PRL 95111801	B. Aubert et al.	(BABAR Collab.)
Also		PRL 97019903 (errat.)	B. Aubert et al.	(BABAR Collab.)
CHOI	05	PRL 94182002	S.-K. Choi et al.	(BELLE Collab.)
IWASAKI	05	PR D72 092005	M. Iwasaki et al.	(BELLE Collab.)
LIMOSANI	05	PL B621 28	A. Limosani et al.	(BELLE Collab.)
MOHAPATRA	05	PR D72 011101	D. Mohapatra et al.	(BELLE Collab.)
NISHIDA	05	PL B610 23	S. Nishida et al.	(BELLE Collab.)
OKABE	05	PL B614 27	T. Okabe et al.	(BELLE Collab.)
ABDALLAH	04D	EPJ C33 213	J. Abdallah et al.	(DELPHI Collab.)
AUBERT	04C	PRL 92111801	B. Aubert et al.	(BABAR Collab.)
AUBERT	041	PRL 92071802	B. Aubert et al.	(BABAR Collab.)
AUBERT	04S	PR D69 052005	B. Aubert et al.	(BABAR Collab.)
AUBERT	04X	PRL 93011803	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04	PR D69 111103	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04A	PR D69 111104	B. Aubert et al.	(BABAR Collab.)

Meson Particle Listings

$B^{ \pm} / B^{0} / B_{s}^{0} / b$－baryon ADMIXTURE

${ }^{18}$ BUSKULIC 92F uses the lepton impact parameter distribution for data from the 1991
${ }^{19}{ }^{\text {rund }}$ BUSKULIC 92 G use $J / \psi(1 S)$ tags to measure the average b lifetime．This is comparable to other methods only if the $J / \psi(1 S)$ branching fractions of the different b－flavored
${ }^{20} \begin{aligned} & \text { hadrons are in the same ratio．} \\ & \text { Using } Z \rightarrow e^{+} X \text { or } \mu^{+} X, A D E V A \\ & 91 H\end{aligned}$ of B hadrons from the impact parameter distribution of the lepton．
${ }^{21}$ Using $Z \rightarrow J / \psi(1 S) X, J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}$，ALEXANDER 91 G determined the average lifetime for an admixture of B hadrons from the decay point of the $J / \psi(1 S)$ ．
${ }^{22}$ Using $Z \rightarrow e \mathrm{X}$ or $\mu \mathrm{X}$ ，DECAMP 91c determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton．
${ }^{23}$ HAGEMANN 90 uses electrons and muons in an impact parameter analysis．
${ }^{24}$ LYONS 90 combine the results of the B lifetime measurements of ONG 89 ，BRAUN－ SCHWEIG 89B，KLEM 88，and ASH 87，and JADE data by private communication． They use statistical techniques which include variation of the error with the mean life， and possible correlations between the systematic errors．This result is not independent of the measured results used in our average．
${ }^{25}$ We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error．
${ }^{26}$ Statistical and systematic errors were combined by BROM 87 ．

CHARGED b－HADRON ADMIXTURE MEAN LIFE

NEUTRAL b－HADRON ADMIXTURE MEAN LIFE

$\frac{\text { VALUE }\left(10^{-12} \mathrm{~s}\right)}{\mathbf{1 . 5 8} \pm \mathbf{0 . 1 1 \pm 0 . 0 9}}$	$\frac{\text { DOCUMENT ID }}{\text { ADAM }} \quad 95$
${ }^{1}$ ADAM 95 data analyzed using vertex－charge technique to tag b－hadron charge．	

MEAN LIFE RATIO $\tau_{\text {charged } b=\text { hadron }} / \tau_{\text {neutral } b=\text { hadron }}$

VALUE

$1.09 \pm 0.11 \pm 0.08$
 TECN COMMENT
${ }^{1}$ ADAM 95 data analyzed using vertex－charge technique to tag b－hadron charge．

$\left|\Delta \tau_{\boldsymbol{b}}\right| / \tau_{\boldsymbol{b}, \bar{b}}$

${ }^{\tau} b, \bar{b}$ and $\left|\Delta \tau_{b}\right|$ are the mean life average and difference between b and \bar{b} hadrons．
$\frac{\text { VALUE }}{\mathbf{- 0 . 0 0 1} \pm \mathbf{0 . 0 1 2} \pm \mathbf{0 . 0 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABBIENDI 99」 }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow Z}$

Data analyzed using both the jet charge and the charge of secondary vertex in the
opposite hemisphere．

\bar{b} PRODUCTION FRACTIONS AND DECAY MODES

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\gamma(4 S)$ ．Only the highest energy results （LHC，LEP，Tevatron，$S p \bar{p} \mathrm{~S}$ ）are used in the branching fraction averages． In the following，we assume that the production fractions are the same at the LHC，LEP，and at the Tevatron

For inclusive branching fractions，e．g．，$B \rightarrow D^{ \pm}$anything，the values usually are multiplicities，not branching fractions．They can be greater than one．
The modes below are listed for a \bar{b} initial state．b modes are their charge conjugates．Reactions indicate the weak decay vertex and do not include mixing．

Scale factor／
Mode
Fraction $\left(\Gamma_{i} / \Gamma\right)$ Confidence level

PRODUCTION FRACTIONS

The production fractions for weakly decaying b－hadrons at high energy have been calculated from the best values of mean lives，mixing parame－ ters，and branching fractions in this edition by the Heavy Flavor Averaging Group（HFLAV）as described in the note＂$B^{0}-\bar{B}^{0}$ Mixing＂in the B^{0} Particle Listings．We no longer provide world averages of the b－hadron production fractions，where results from LEP，Tevatron and LHC are av－ eraged together；indeed the available data（from CDF and LHCb）shows that the fractions depend on the kinematics（in particular the p_{T} ）of the produced b hadron．Hence we would like to list the fractions in Z de－ cays instead，which are well－defined physics observables．The production fractions in $p \bar{p}$ collisions at the Tevatron are also listed at the end of the section．Values assume

$$
\begin{aligned}
& \mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right) \\
& \mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)+\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)+\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)+\mathrm{B}(b \rightarrow b \text {-baryon })=100 \%
\end{aligned}
$$

The correlation coefficients between production fractions are also re－ ported：
$\operatorname{cor}\left(B_{S}^{0}, b\right.$－baryon $)=0.064$

$$
\begin{aligned}
& \operatorname{cor}\left(B_{S}^{0}, B^{ \pm}=B^{0}\right)=-0.633 \\
& \operatorname{cor}\left(b \text {-baryon, } B^{ \pm}=B^{0}\right)=-0.813
\end{aligned}
$$

The notation for production fractions varies in the literature $\left(f_{d}, d_{B^{0}}\right.$ ， $f\left(b \rightarrow \bar{B}^{0}\right), \operatorname{Br}\left(b \rightarrow \bar{B}^{0}\right)$ ）．We use our own branching fraction notation here， $\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)$ ．

Note these production fractions are b－hadronization fractions，not the con－ ventional branching fractions of b－quark to a B－hadron，which may have considerable dependence on the initial and final state kinematic and pro－ duction environment．

Charmed meson and baryon modes

B^{+}	$(40.8 \pm 0.7) \%$
B^{0}	$(40.8 \pm 0.7) \%$
B_{S}^{0}	$(10.0 \pm 0.8) \%$
B_{c}^{+}	
b－baryon	$(8.4 \pm 1.1) \%$

$(40.8 \pm 0.7) \%$
（ 40.8 ± 0.7 ）\％
$(10.0 \pm 0.8) \%$
$(8.4 \pm 1.1) \%$

DECAY MODES

Semileptonic and leptonic modes

（ 23.1 ± 1.5 ）\％
［a］$(10.69 \pm 0.22) \%$
（ 10.86 ± 0.35 ）\％
$(10.95+0.29) \%$
a］$(2.2 \pm 0.4) \% \quad \mathrm{~S}=1.9$
$4.9 \pm 1.9) \times 10^{-3}$
$(2.6 \pm 1.6) \times 10$
（ $1.07 \pm 0.27) \%$
$(2.3 \pm 1.6) \times 10^{-3}$
［a］$\quad(2.75 \pm 0.19) \%$
$\left(\begin{array}{ll}6 & \pm\end{array}\right) \times 10^{-4}$
$(4.8 \pm 1.0) \times 10^{-3}$
b］$(2.6 \pm 0.9) \times 10^{-3}$
$[a, b] \quad(7.0 \pm 2.3) \times 10^{-3}$
$<1.4 \times 10^{-3} \mathrm{CL}=90 \%$
$\left(4.2 \pm{ }_{1.8}^{1.5}\right) \times 10^{-3}$
$(1.6 \pm 0.8) \times 10^{-3}$
a］$(1.7 \pm 0.5) \times 10^{-3}$
（ 2.41 ± 0.23 ）\％
$\left(\begin{array}{ll}9 & \pm 4\end{array}\right) \times 10^{-3}$
$(1.6 \pm 0.4) \%$
\bar{D}^{0} anything
$D^{0} D_{s}^{ \pm}$anything
（ 58.7 ± 2.8 ）\％
［c］$(9.1 \pm 2.0) \%$
［c］$(4.0 \pm 2.3) \%$
［c］$(5.1 \pm 1.8) \%$
［c］$(2.7 \pm 1.6) \%$
$[c]<9 \times 10^{-3} \quad \mathrm{CL}=90 \%$
（ 22.7 ± 1.6 ）\％
$(17.3 \pm 2.0) \%$
$(5.0 \pm 1.5) \%$
［c］$(3.3 \pm 1.3) \%$
［c］$(3.0 \pm 0.9) \%$
［c］$(2.5 \pm 1.2) \%$
［c］（ 1.2 ± 0.4 ）\％
$\left(\begin{array}{lll}10 & { }_{-10}\end{array}\right) \%$

Γ_{45}	$D_{2}^{*}(2460)^{0}$ anything	（ $4.7 \pm 2.7) \%$	
Γ_{46}	D_{s}^{-}anything	$(14.7 \pm 2.1) \%$	
Γ_{47}	D_{s}^{+}anything	$(10.1 \pm 3.1) \%$	
Γ_{48}	Λ_{C}^{+}anything	$(7.7 \pm 1.1) \%$	
Γ_{49}	\bar{c} / c anything	［d］（116．2 $\pm 3.2) \%$	
Charmonium modes			
Γ_{50}	$J / \psi(1 S)$ anything	（ 1.16 ± 0.10 ）\％	
Γ_{51}	$\psi(2 S)$ anything	（ $2.86 \pm 0.28) \times 10^{-3}$	
Γ_{52}	$\chi_{c 0}(1 P)$ anything	（ 1.5 ± 0.6 ）\％	
「53	$\chi_{C 1}(1 P)$ anything	$(1.4 \pm 0.4) \%$	
Γ_{54}	$\chi_{c 2}(1 P)$ anything	$(6.2 \pm 2.9) \times 10^{-3}$	
Γ_{55}	$\chi_{c}(2 P)$ anything，$\chi_{c} \rightarrow \phi \phi$	$<2.8 \times 10^{-7}$	$\mathrm{CL}=95 \%$
「56	$\eta_{C}(1 S)$ anything	$(4.5 \pm 1.9) \%$	
Γ_{57}	$\eta_{C}(2 S)$ anything，$\eta_{C} \rightarrow \phi \phi$	$(3.2 \pm 1.7) \times 10^{-6}$	
Γ_{58}	$\begin{aligned} & \chi_{C 1}(3872) \text { anything, } \chi_{C 1} \rightarrow \\ & \end{aligned}$	$<4.5 \times 10^{-7}$	$\mathrm{CL}=95 \%$
Γ_{59}	$X(3915)$ anything，$X \rightarrow \phi \phi$	$<3.1 \times 10^{-7}$	$\mathrm{CL}=95 \%$

Γ_{67}	p / \bar{p} anything	$(13.1 \pm 1.1) \%$
Γ_{68}	$\Lambda / \bar{\Lambda}$ anything	$(5.9 \pm 0.6) \%$
Γ_{69}	b－baryon anything	$(10.2 \pm 2.8) \%$
Γ_{70}^{0}	$\bar{\Lambda}_{b}^{0}$ anything	
Γ_{71}	Ξ_{b}^{+}anything	

$\boldsymbol{\Delta} \boldsymbol{B}=\mathbf{1}$ weak neutral current（B1）modes					
Γ_{75}	$e^{+} e^{-}$anything				
Γ_{76}	$\mu^{+} \mu^{-}$anything				
Γ_{77}	$\nu \bar{\nu}$ anything	$B 1$	<3.2	$\times 10^{-4}$	$\mathrm{CL}=90 \%$

［a］An ℓ indicates an e or a μ mode，not a sum over these modes．
$[b] D_{j}$ represents an unresolved mixture of pseudoscalar and tensor $D^{* *}(P-$ wave）states．
［c］The value is for the sum of the charge states or particle／antiparticle states indicated．
［d］Inclusive branching fractions have a multiplicity definition and can be greater than 100% ．

$B^{ \pm} / B^{0} / B_{s}^{0} / b$－baryon ADMIXTURE BRANCHING RATIOS

$\Gamma\left(B^{+}\right) / \Gamma_{\text {total }}$
Γ_{1} / Γ
OUR EVALUATION＂is an average from Z decay obtained by the Heavy Flavor Averaging Group（HFLAV）as described at https：／／hflav．web．cern．ch／．
$\frac{\text { VALUE }}{0.408} \pm 0.007$ OUR EVALUATION
$\mathbf{0 . 4 0 9 9} \pm \mathbf{0} .0082 \pm \mathbf{0} \mathbf{0 1 1 1} \quad 1$ ABDALLAH 03 K DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ The analysis is based on a neural network，to estimate the charge of the weakly－decaying b hadron by distinguishing its decay products from particles produced at the primary vertex．
$\Gamma\left(B^{+}\right) / \Gamma\left(B^{0}\right)$
VALUE
$1.054 \pm 0.018{ }_{-0.074}^{+0.062}$

DOCUMENT ID TECN COMMENT
AALTONEN 08N CDF $p \bar{p}$ at 1.96 TeV
Γ_{1} / Γ_{2}
$\Gamma\left(B_{s}^{0}\right) /\left[\Gamma_{\text {OUR }}\left(B^{+}\right)+\Gamma\left(B^{0}\right)\right]$
$\Gamma_{3} /\left(\Gamma_{1}+\Gamma_{2}\right)$ Averaging Group（HFLAV）as described at https：／／hflav．web．cern．ch／．
$\frac{V A L U E}{0.1230} \pm 0.0115$ OUR EVALUATION
－．We do not use the following data for averages，fits，limits，etc．－．．
$0.122 \pm 0.006 \quad 1$ AAIJ $\quad 19 \mathrm{ADLHCB}$ pp at 13 TeV
$0.134 \pm 0.004{ }_{-0}^{+0.011} \quad{ }^{2}$ AAIJ \quad 12」 LHCB $p p$ at 7 TeV
$0.1265 \pm 0.0085 \pm 0.0131 \quad{ }^{3}$ AAIJ 11F LHCB $p p$ at 7 TeV
$0.128{ }_{-0.010}^{+0.011} \pm 0.011 \quad{ }^{4}$ AALTONEN 08 N CDF $p \bar{p}$ at 1.96 TeV
$0.213 \pm 0.068 \quad{ }^{5}$ AFFOLDER 00 E CDF $p \bar{p}$ at 1.8 TeV
$0.21 \pm 0.036{ }_{-0.030}^{+0.038} \quad{ }^{6} \mathrm{ABE} \quad$ 99P CDF $\quad \bar{p} p$ at 1.8 TeV
${ }^{1}$ AAIJ 19AD measured the average value using b－hadron semileptonic decays and assuming isospin symmetry for b－hadron p_{T} of 4 and 25 GeV and η of 2 and 5 ．
${ }^{2}$ AAIJ 12 J measured this value using b－hadron semileptonic decays and assuming isospin symmetry．
${ }^{3}$ AAIJ 11F measured $f_{s} / f_{d}=0.253 \pm 0.017 \pm 0.017 \pm 0.020$ ，where the errors are statistical，systematic，and theoretical．We divide their value by 2 ．Our second error combines systematic and theoretical uncertainties．
${ }^{4}$ AALTONEN 08N reports $\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\left[\Gamma\left(\bar{b} \rightarrow B^{+}\right)+\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow\right.\right.$ $\left.\left.\phi \pi^{+}\right)\right]=\left(5.76 \pm 0.18_{-0.42}^{+0.45}\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{5}$ AFFOLDER 00 E uses several electron－charm final states in $b \rightarrow c e^{-} \mathrm{X}$ ．
${ }^{6}$ ABE 99P uses the numbers of $K^{*}(892)^{0}, K^{*}(892)^{+}$，and $\phi(1020)$ events produced in association with the double semileptonic decays $b \rightarrow c \mu^{-} \mathrm{X}$ with $c \rightarrow s \mu^{+} \mathrm{X}$ ．
$\Gamma\left(B_{s}^{0}\right) / \Gamma\left(B^{0}\right)$
＂OUR EVALUATION＂has been provided by the Heavy Flavor Averaging Group （HFLAV，https：／／hflav．web．cern．ch／）．
$\frac{\text { VALUE }}{\mathbf{0 . 2 4 6} \pm \mathbf{0 . 0 2 3} \text { OUR EVALUATION DOCUMENT ID TECN COMMENT }}$

$0.239 \pm \mathbf{0 . 0 1 6}$ OUR AVERAGE

$0.240 \pm 0.004 \pm 0.020 \quad 15 \mathrm{Cm}$ ATLS $p p$ at 7 TeV
$0.238 \pm 0.004 \pm 0.015 \pm 0.021 \quad{ }^{2} \mathrm{AAIJ} \quad 13 \mathrm{P}$ LHCB $p p$ at 7 TeV
${ }^{1}$ The measurement is derived from the observed $B_{S}^{0} \rightarrow J / \psi \phi$ and $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ yields and a recent theory prediction of $\mathrm{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right) / \mathrm{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)$ ．The second uncertainty combines in quadrature systematic and theoretical uncertainties．
${ }^{2}$ AAIJ 13P studies also separately the $p_{T}(B)$ and $\eta(B)$ dependency of $\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma(\bar{b} \rightarrow$ $\left.B^{0}\right)$ ，finding $f_{S} / f_{d}\left(p_{T}\right)=(0.256 \pm 0.020)+(-2.0 \pm 0.6) 10^{-3} / \mathrm{GeV} / \mathrm{c}\left(p_{T}-\left\langle p_{T}\right\rangle\right)$ and $f_{S} / f_{d}(\eta)=(0.256 \pm 0.020)+(0.005 \pm 0.006)(\eta-\langle\eta\rangle)$ ，where $\left\langle p_{\boldsymbol{T}}\right\rangle=10.4 \mathrm{GeV} / \mathrm{c}$ and $\langle\eta\rangle=3.28$ ．
$\Gamma\left(B_{c}^{+}\right) /\left[\Gamma\left(B^{+}\right)+\Gamma\left(B^{\mathbf{0}}\right)\right]$
3.7 ± 0.6 OUR AVERAGE
$3.63 \pm 0.08 \pm 0.87$
$3.78 \pm 0.04 \pm 0.90$
DOCUMENT ID \qquad TECN COMMENT

1^{1} AAIJ	19aI LHCB	$p p$ at 7 TeV
${ }^{1}$ AAIJ	19 AI LHCB	$p p$ at 13 TeV

${ }^{1}$ Measured using B_{C}^{+}semileptonic decays．
$\Gamma($ b－baryon $) /\left[\Gamma\left(B^{+}\right)+\Gamma\left(B^{0}\right)\right]$
$\Gamma_{5} /\left(\Gamma_{1}+\Gamma_{2}\right)$
＂OUR EVALUATION＂is an average from Z decay obtained by the Heavy Flavor Averaging Group（HFLAV）as described at https：／／hflav．web．cern．ch／．
VALUE
ALUE 103 ± 0.015 OUR EVALUATION
DOCUMENT ID \qquad TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－
$0.259 \pm 0.018 \quad 1$ AAIJ 19AD LHCB pp at 13 TeV
$0.305 \pm 0.010 \pm 0.081 \quad 2$ AAIJ 12 J LHCB $p p$ at 7 TeV
$0.31 \pm 0.11{ }_{-0.08}^{+0.12} \quad{ }^{3}$ AALTONEN 09 E CDF $p \bar{p}$ at 1.8 TeV
$0.22 \underset{-0.07}{+0.08} \pm 0.01 \quad{ }^{4}$ AALTONEN 08 N CDF $p \bar{p}$ at 1.96 TeV
$0.118 \pm 0.042 \quad 3,5$ AFFOLDER 00 E CDF $p \bar{p}$ at 1.8 TeV
${ }^{1}$ AAIJ 19AD measured the average value for Λ_{b}^{0} using semileptonic decays and assuming
isospin symmetry for b－hadron p_{T} of 4 and 25 GeV and η of 2 and 5 ．
${ }^{2}$ AAIJ 12」 measured the ratio to be $(0.404 \pm 0.017 \pm 0.027 \pm 0.105) \times[1-(0.031 \pm$ $0.004 \pm 0.003) \times \mathrm{P}_{T}$ ］using b－hadron semileptonic decays where the P_{T} is the momentum of charmed hadron－muon pair in $\mathrm{GeV} / \mathrm{c}$ ．We quote their weighted average value where the second error combines systematic and the error on $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)$．
${ }^{3}$ AALTONEN 09e errata to the measurement reported in AFFOLDER 00e using the p_{T} spectra from fully reconstructed B^{0} and Λ_{b} decays．
${ }^{4}$ AALTONEN 08N reports $\left[\Gamma(\bar{b} \rightarrow b\right.$－baryon $\left.) /\left[\Gamma\left(\bar{b} \rightarrow B^{+}\right)+\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]\right] \times\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.\right.$ $\left.\left.p K^{-} \pi^{+}\right)\right]=\left(14.1 \pm 0.6_{-4.4}^{+5.3}\right) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\wedge_{C}^{+} \rightarrow\right.$ $\left.p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{5}$ AFFOLDER 00 E uses several electron－charm final states in $b \rightarrow c e^{-} \mathrm{X}$ ．

$\Gamma\left(\ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
Γ_{7} / Γ
"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry "Note on the Z boson" in the Z Particle Listings.
$\frac{V A L U E}{0.1069 \pm 0.0022 \text { OUR EVALUATION }}$

0.1064 ± 0.0016 OUR AVERAGE

$0.1070 \pm 0.0010 \pm 0.0035$	${ }^{1}$ HEISTER	02G	ALEP	$e^{+} e^{-} \rightarrow Z$
$0.1070 \pm 0.0008_{-0.0049}^{+0.0037}$	${ }^{2}$ ABREU	01L	DLPH	$e^{+} e^{-} \rightarrow Z$
$0.1083 \pm 0.0010_{-0.0024}^{+0.0028}$	3 ABBIENDI	00E	OPAL	$e^{+} e^{-} \rightarrow Z$
$0.1016 \pm 0.0013 \pm 0.0030$	${ }^{4}$ ACCIARRI	00	L3	$e^{+} e^{-} \rightarrow Z$
$0.1085 \pm 0.0012 \pm 0.0047$	5,6 ACCIARRI	96C	L3	$e^{+} e^{-} \rightarrow Z$

$0.1085 \pm 0.0012 \pm 0.0047 \quad 5,6$ ACCIARRI 96C L3 $\quad e^{+} e^{-} \rightarrow Z$

- - We do not use the following data for averages, fits, limits, etc. - - -
$\begin{array}{lll}0.1106 \pm 0.0039 \pm 0.0022 & \text { ABREU } & 95 \mathrm{D} \text { DLPH } e^{+} e^{-} \rightarrow Z \\ 0.114 \pm 0.003 \pm 0.004 & 9_{\text {BUSKULIC }} & 94 \mathrm{G} \text { ALEP } e^{+} e^{-} \rightarrow Z \\ 0.100 \pm 0.007 \pm 0.007 & 9 \text { ABREU } & 93 \mathrm{C} \text { DLPH } e^{+} e^{-} \rightarrow Z\end{array}$
$0.105 \pm 0.006 \pm 0.005 \quad 10$ AKERS 93B OPAL Repl. by ABBI-
${ }^{1}$ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.
${ }^{2}$ The experimental systematic and model uncertainties are combined in quadrature.
${ }^{3}$ ABBIENDI OOE result is determined by comparing the distribution of several kinematic variables of Ieptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.
$4{ }_{\text {ACCIARRI }}^{\text {error. }} 00$ result obtained from a combined fit of $R_{b}=\Gamma(Z \rightarrow b \bar{b}) / \Gamma(Z \rightarrow$ hadrons $)$ and $\mathrm{B}(b \rightarrow \ell \nu \mathrm{X})$, using double-tagging method.
${ }^{5}$ ACCIARRI 96 C result obtained by a fit to the single lepton spectrum
${ }^{6}$ Assumes Standard Model value for R_{B}.
${ }^{7}$ ABREU 95D give systematic errors ± 0.0019 (model) and $0.0012\left(R_{C}\right)$. We combine these in quadrature.
${ }^{8}$ BUSKULIC 94 g uses e and μ events. This value is from a global fit to the lepton p and p_{T} (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high p_{T}, but the lower p_{T} portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error.
${ }^{9}$ ABREU 93C event count includes $e e$ events. Combining $e e, \mu \mu$, and $e \mu$ events, they 0 obtain $0.100 \pm 0.007 \pm 0.007$.
10 AKERS 93B analysis performed using single and dilepton events.
$\underset{\text { VALUE }}{\Gamma\left(e^{+} \nu_{e} \text { anything }\right) / \Gamma_{\text {total }}}$
$\frac{V A L U E}{\mathbf{0 . 1 0 8 6} \pm \mathbf{0 . 0 0 3 5} \text { OUR AVERAGE }}$

$\mathbf{0 . 1 0 8 6} \pm \mathbf{0 . 0 0 3 5}$ OUR AVERA $0.1078 \pm 0.0008+0.0050$

$0.1089 \pm 0.0020 \pm 0.0051$
1 ABBIENDI O0E OPAL $e^{+} e^{-} \rightarrow Z$
$0.107 \pm 0.015 \pm 0.007 \quad 260 \quad 4$ ABREU $\quad 93 \mathrm{C}$ DLPH $e^{+} e^{-} \rightarrow Z$
$0.138 \pm 0.032 \pm 0.008 \quad{ }^{5}$ ADEVA 91C L3 $e^{+} e^{-} \rightarrow \boldsymbol{Z}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.086 \pm 0.027 \pm 0.008 \quad{ }^{6} \mathrm{ABE} \quad 93 \mathrm{E}$ VNS $E_{\mathrm{Cm}}^{e e}=58 \mathrm{GeV}$
$0.109 \underset{-0.013}{+0.014} \pm 0.0055 \quad 2719 \quad 7$ AKERS 93B OPAL Repl. by ABBI-
$0.111 \pm 0.028 \pm 0.026 \quad$ BEHREND 90D CELL $\quad E_{\mathrm{Cm}}^{e \mathrm{ENDD}=43 \mathrm{GeV}}$
$0.150 \pm 0.011 \pm 0.022 \quad$ BEHREND 90 D CELL $E_{\mathrm{Cm}}^{e \mathrm{e}}=35 \mathrm{GeV}$
$0.112 \pm 0.009 \pm 0.011 \quad$ ONG $88 \quad$ MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$0.149 \underset{-0.019}{+0.022} \quad$ PAL
$0.110 \pm 0.018 \pm 0.010 \quad$ AIHARA $85 \quad$ TPC $\quad E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$
$0.111 \pm 0.034 \pm 0.040 \quad$ ALTHOFF $84 」$ TASS $E_{\mathrm{Cm}}^{e e}=34.6 \mathrm{GeV}$
0.146 ± 0.028
$0.116 \pm 0.021 \pm 0.017 \quad$ NELSON 83 MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

[^127]$\Gamma\left(\mu^{+} \nu_{\mu}\right.$ anything $) / \Gamma_{\text {total }}$
VALUE EVTS $0.1095{ }_{=}^{+0.0029}$ OUR AVERAGE
$0.1096 \pm 0.0008+0.0034$
$\pm 0.0008^{+0.0034} \quad 1$ ABBIENDI
$0.1082 \pm 0.0015 \pm 0.0059 \quad 2,3$ ACCIARRI
$0.110 \pm 0.012 \pm 0.007 \quad 656 \quad{ }^{4}$ ABREU
$0.113 \pm 0.012 \pm 0.006 \quad 5$ ADEVA

- - We do not use the following d
$0.122 \pm 0.006 \pm 0.007 \quad 3$ UENO
$0.101 \underset{-0.009}{+0.010} \pm 0.0055 \quad 4248 \quad 6$ AKERS
$0.104 \pm 0.023 \pm 0.016$
$0.148 \pm 0.010 \pm 0.016$
$0.118 \pm 0.012 \pm 0.010$
$0.117 \pm 0.016 \pm 0.015$
$0.114 \pm 0.018 \pm 0.025$
$0.117 \pm 0.028 \pm 0.010$
$0.105 \pm 0.015 \pm 0.013$
$0.155 \underset{-0.029}{+0.054}$
$\underline{\text { DOCUMENT ID }}$ TECN COMMENT $\quad \Gamma_{\mathbf{9}} / \boldsymbol{\Gamma}$
${ }^{1}$ ABBIENDI 00 E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural variables of leptonic events in a lifetime tagged $Z \rightarrow b b$ sample using artificial neural
network techniques. The first error is statistic; the second error is the total systematic network techniques. The first error is statistic; the second error is the total systematic 2 error.
${ }^{2}$ ACCIARRI 96C result obtained by a fit to the single lepton spectrum.
${ }^{3}$ Assumes Standard Model value for R_{B}.
${ }^{4}$ ABREU 93C event count includes $\mu \mu$ events. Combining $e e, \mu \mu$, and $e \mu$ events, they obtain $0.100 \pm 0.007 \pm 0.007$
${ }^{5}$ ADEVA 91C measure the average $\mathrm{B}(b \rightarrow e \mathrm{X})$ branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm$ 0.006 . Constraining the initial number of b quarks by the Standard Model prediction $(378 \pm 3 \mathrm{MeV})$ for the decay of the Z into $b \bar{b}$, the muon result gives $0.123 \pm 0.003 \pm 0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b \bar{b}$ width itself, this muon result gives $394 \pm 9 \pm 22 \mathrm{MeV}$ and combined with the electron result gives $385 \pm 7 \pm 22 \mathrm{MeV}$.
${ }^{6}$ AKERS 93B analysis performed using single and dilepton events.
$\Gamma\left(D^{-} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{0.022} \pm \mathbf{0 . 0 0 4}$ OUR AVERAGE
$0.0272 \pm 0.0028 \pm 0.0018 \quad 1$ ABREU
$0.0194 \pm 0.0025 \pm 0.0003 \quad 2$ ABREU \quad 00R DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0019 \pm 0.0016 \pm 0.0018$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.
${ }^{2}$ AKERS 95Q reports $\left[\Gamma\left(\bar{b} \rightarrow D^{-} \ell^{+} \nu_{\ell}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]=$ $(1.82 \pm 0.20 \pm 0.12) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=$ $(9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right.$ anything $) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\mathbf{0 . 0 0 4 9} \pm \mathbf{0 . 0 0 1 8} \pm \mathbf{0 . 0 0 0 7}}$$\frac{\text { DOCUMENT ID }}{\text { ABREU }} \frac{\boldsymbol{\Gamma}_{\mathbf{1 1}} / \boldsymbol{\Gamma}}{}$

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{\pi}^{-} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right.$ anything $) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\text { DOCUMENT ID }} \quad \boldsymbol{\Gamma}_{\mathbf{1 2}} / \boldsymbol{\Gamma}$
TECN
COMMENT

$\mathbf{0 . 0 0 2 6} \pm \mathbf{0 . 0 0 1 5} \pm \mathbf{0 . 0 0 0 4} \quad$ ABREU $00 \mathrm{R} \frac{\text { DLPH }}{\frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow z}}$
$\Gamma\left(\bar{D}^{0} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$ DOCUMENT ID TECN COMMENT Γ_{13} / Γ VALUE 0.0679 ± 0.0034 OUR AVERAGE
$0.0704 \pm 0.0040 \pm 0.0017$
1 ABREU 00R DLPH $e^{+} e^{-} \rightarrow Z$
$0.0638 \pm 0.0056 \pm 0.0005 \quad 2$ AKERS 95Q OPAL $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ ABREU OOR reports their experiment's uncertainties $\pm 0.0034 \pm 0.0036 \pm 0.0017$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.
${ }^{2}$ AKERS 95Q reports $\left[\Gamma\left(\bar{b} \rightarrow \bar{D}^{0} \ell^{+} \nu_{\ell}\right.\right.$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]=$ $(2.52 \pm 0.14 \pm 0.17) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=$ $(3.950 \pm 0.031) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma_{\text {VALUE }}^{\Gamma} \bar{D}^{0} \pi^{-} \ell^{+} \nu_{\ell}$ anything $) / \Gamma_{\text {total }}$			TECN		Γ_{14} / Γ
	DOCUMENT ID			COMMENT	
$0.0107 \pm 0.0025 \pm 0.0011$	ABREU	00R	DLPH	$e^{+} e^{-} \rightarrow$	
$\Gamma\left(\bar{D}^{0} \pi^{+} \ell^{+} \nu_{\ell} \text { anything }\right) / \Gamma_{\text {total }}$ VALUE	DOCUMENT ID		TECN	COMMENT	Γ_{15} / Γ

$\Gamma\left(\right.$ charmless $\left.\ell \bar{\nu}_{\ell}\right) / \Gamma_{\text {total }}$ "OUR EVALUATION" is an average of the data listed below performed by the LEP
Heavy Flavour Steering Group. The averaging procedure takes into account correlations between the measurements.
$\frac{V A L U E}{0.00171} \pm 0.00052$ OUR EVALUATION
0.0017 ± 0.0004 OUR AVERAGE

${ }^{1}$ Obtained from the best fit of the MC simulated events to the data based on the $b \rightarrow$ $X_{u} \ell \nu$ neutral network output distributions
${ }^{2}$ ABREU 00D result obtained from a fit to the numbers of decays in $b \rightarrow u$ enriched and depleted samples and their lepton spectra, and assuming $\left|V_{c b}\right|=0.0384 \pm 0.0033$ and $\tau_{b}=1.564 \pm 0.014 \mathrm{ps}$.
${ }^{3}$ Uses lifetime tagged $b \bar{b}$ sample.
${ }^{4}$ ACCIARRI 98 k assumes $R_{b}=0.2174 \pm 0.0009$ at Z decay.
$\Gamma\left(\tau^{+} \nu_{\tau}\right.$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 5}} / \Gamma$
VALUE (units 10^{-2}) EVTS
DOCUMENT ID TECN COMMENT
$2.78 \pm 0.18 \pm 0.51$
$2.43 \pm 0.20 \pm 0.25$
$2.19 \pm 0.24 \pm 0.39$
$1.7 \pm 0.5 \pm 1.1$
$2.4 \pm 0.7 \pm 0.8 \quad 1032 \quad 6$ ACCIARRI 96C L3 $\quad e^{+} e^{-} \rightarrow$ Z

- - We do not use the following data for averages, fits, limits, etc. $e^{+} e^{-} \rightarrow$
$2.75 \pm 0.30 \pm 0.37 \quad 405 \quad 7$ BUSKULIC 95 ALEP Repl. by BARATE 01E $4.08 \pm 0.76 \pm 0.62$ BUSKULIC 93B ALEP Repl. by BUSKULIC 95
${ }^{1}$ ABBIENDI $01 Q$ uses a missing energy technique.
${ }^{2}$ The energy-flow and b-tagging algorithms were used.
${ }^{3}$ Uses the missing energy in $Z \rightarrow b \bar{b}$ decays without identifying leptons.
${ }^{4}$ ACCIARRI 96C result obtained from missing energy spectrum.
${ }^{5}$ Assumes Standard Model value for R_{B}.
${ }_{7}^{6}$ This is a direct result using tagged $b \frac{B}{b}$ events at the Z, but species are not separated.
7 BUSKULIC 95 uses missing-energy technique.

${ }^{1}$ The energy-flow and b-tagging algorithms were used.
$\Gamma\left(\bar{b} \rightarrow \bar{c} \rightarrow \ell^{-} \bar{\nu}_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
Γ_{27} / Γ "OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.
value
0.0802 ± 0.0019 OUR EVALUATION
0.0817 ± 0.0020 OUR AVERAGE

| $0.0818 \pm 0.0015_{-0.0026}^{+0.0024}$ | 1 HEISTER | 02G ALEP $e^{+} e^{-} \rightarrow z$ |
| :--- | :--- | :--- | :--- |
| $0.0798 \pm 0.0022_{-0.0029}^{+0.0025}$ | 2 ABREU | 01 L DLPH $e^{+} e^{-} \rightarrow z$ |
| $0.0840 \pm 0.0016_{-0.0036}^{+0.0039}$ | 3^{2} ABBIENDI | 00 E OPAL $e^{+} e^{-} \rightarrow z$ |

- - We do not use the following data for averages, fits, limits, etc. - -
$0.0770 \pm 0.0097 \pm 0.0046 \quad 4$ ABREU 95D DLPH $e^{+} e^{-} \rightarrow Z$
$0.082 \pm 0.003 \pm 0.012 \quad{ }^{5}$ BUSKULIC 94G ALEP $e^{+} e^{-} \rightarrow Z$
$0.077 \pm 0.004 \pm 0.007 \quad{ }^{6}$ AKERS $\quad 93 \mathrm{~B}$ OPAL Repl. by ABBI
${ }^{1}$ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.
2 The experimental systematic and model uncertainties are combined in quadrature
${ }^{3}$ ABBIENDI OOE result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.
${ }^{4}$ ABREU 95D give systematic errors ± 0.0033 (model) and $0.0032\left(R_{C}\right)$. We combine these in quadrature. This result is from the same global fit as their $\Gamma\left(\bar{b} \rightarrow \ell^{+} \nu_{\ell} \mathrm{X}\right)$
${ }_{5}{ }^{\text {data. }}$ BUSKULIC 94 G uses e and μ events. This value is from the same global fit as their $\Gamma\left(\bar{b} \rightarrow \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$ data.
${ }^{6}$ AKERS 93B analysis performed using single and dilepton events.
$\boldsymbol{\Gamma}\left(\boldsymbol{c} \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\nu}\right.$ anything $) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE DOCUMENT ID_IECN COMMENT $\quad \boldsymbol{\Gamma}_{\mathbf{2 8}} / \boldsymbol{\Gamma}$

VALUE	DOCUMEN	TECN	COMMENT
$0.0161 \pm 0.0020=0.0034$	1 ABREU	DLPH	$e^{+} e^{-} \rightarrow Z$

${ }^{1}$ The experimental systematic and model uncertainties are combined in quadrature.

${ }^{1}$ BUSKULIC $96 Y$ reports $0.605 \pm 0.024 \pm 0.016$ from a measurement of $[\Gamma(\bar{b} \rightarrow$ \bar{D}^{0} anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=0.0383$, which we rescale to our best value $\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.950 \pm 0.031) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(D^{0} D_{s}^{ \pm}\right.$anything $) / \Gamma_{\text {total }}$				Γ_{30} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.091+0.020+0.034$	${ }^{1}$ BARATE	ALEP	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.
$\Gamma\left(D^{\mp} D_{s}^{ \pm}\right.$anything $) / \Gamma_{\text {total }}$

「31/「
${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.
$\left[\Gamma\left(D^{0} D_{s}^{ \pm}\right.\right.$anything $)+\Gamma\left(D^{\mp} D_{\mathbf{s}}^{ \pm}\right.$anything $\left.)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{\mathbf{3 0}}+\Gamma_{\mathbf{3 1}}\right) / \Gamma$
VALUE DOCUMENT ID — TECN COMMENT

1 The systematic error includes the uncertainties due to the charm branching ratios.

$\mathbf{0 . 0 5 1} \mathbf{+ 0 . 0 1 6 + \mathbf { 0 . 0 1 2 }} \quad 1$ BARATE $\quad 98 Q$ ALEP $\frac{e^{+} e^{-} \rightarrow z}{}$
${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{0} \boldsymbol{D}^{ \pm}\right.$anything $) / \boldsymbol{\Gamma}_{\text {total }}$
$V A L U E$
DOCUMENT ID
$\mathbf{0 . 0 2 7} \underset{\mathbf{- 0 . 0 1 3}}{\mathbf{+ 0}} \mathbf{- 0 . 0 1 0} \mathbf{0 . 0 1 0} \quad 1$ BARATE $\quad 98 Q$ ALEP $e^{+} e^{-} \rightarrow \boldsymbol{Z}$
${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.
$\left[\Gamma\left(D^{0} D^{0}\right.\right.$ anything $)+\Gamma\left(D^{0} D^{ \pm}\right.$anything $\left.\left.)\right] / \Gamma_{\text {total }}^{\text {DOCUMENT ID }} \underset{\text { TECN }}{ } \underset{\text { COMMENT }}{ }\left(\Gamma_{\mathbf{3 2}}+\Gamma_{\mathbf{3 3}}\right) / \Gamma^{2}\right)$
$\mathbf{0 . 0 7 8}=\mathbf{+ 0 . 0 2 0 + 0 . 0 1 8} \quad 1$ BARATE \quad 98Q ALEP $\quad e^{+} e^{-} \rightarrow z$

1 The systematic error includes the uncertainties due to the charm branching ratios.

$\Gamma\left(D^{ \pm} D^{\mp}\right.$ anything $) / \Gamma_{\text {total }}$			$\Gamma_{34 / \Gamma}$		
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
<0.009 90	BARATE	98Q	ALEP	$e^{+} e^{-} \rightarrow Z$	
$\left[\Gamma\left(D^{0}\right.\right.$ anything $)+\Gamma\left(D^{+}\right.$anything $\left.)\right] / \Gamma_{\text {total }}$			$\left(\Gamma_{35}+\Gamma_{36}\right) / \Gamma$		
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.093 \pm 0.017 \pm 0.014$	1 ABDALLAH	03E	DLPH	$e^{+} e^{-} \rightarrow Z$	
${ }^{1}$ The second error is the tota used in the measurement.	ystematic unce	ainties	includ	ng the branchin	fractions
$\Gamma\left(D^{-}\right.$anything $) / \Gamma_{\text {total }}$					$\Gamma 37 / \Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
$\mathbf{0 . 2 2 7} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 0 4}$	${ }^{1}$ BUSKULIC	96Y	ALEP	$e^{+} e^{-} \rightarrow Z$	

${ }^{1}$ BUSKULIC $96 Y$ reports $0.234 \pm 0.013 \pm 0.010$ from a measurement of $[\Gamma(\bar{b} \rightarrow$ D^{-}anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=0.091$, which we rescale to our best value $\mathrm{B}\left(D^{+} \rightarrow K^{-} 2 \pi^{+}\right)=(9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\begin{aligned} & \Gamma\left(D^{*}(2010)^{+} \text {anything }\right) / \Gamma_{\text {total }} \\ & V A L U E \end{aligned}$		TECN	COMMENT	Γ_{38} / Γ
$\mathbf{0 . 1 7 3} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 1 2} \quad 1{ }^{1}$ ACKERSTAFF 98E OPAL $e^{+} e^{-}$				
${ }^{1}$ Uses lepton tags to select $Z \rightarrow b \bar{b}$ events.				
$\Gamma\left(D_{1}(2420){ }^{0}\right.$ anything $) / \Gamma_{\text {total }}$		Γ_{39} / Γ		
VALUE	DOCUMENT ID	TECN COMMENT		
$\mathbf{0 . 0 5 0} \pm 0.014 \pm 0.006$	1 ACKERSTAFF 97W OPAL ${ }^{+} e^{-} \rightarrow z$			
${ }^{1}$ ACKERSTAFF 97 w assumes $\Gamma_{b \bar{b}} / \Gamma_{\text {hadrons }}=0.216$ at Z decay	$\underset{B\left(D_{2}^{*}(2460)^{0} \rightarrow\right.}{ }$	$\left.D^{*+} \pi^{-}\right)=0.21 \pm 0.04 \text { and }$		
$\Gamma\left(D^{*}(2010)^{\mp} D_{s}^{ \pm}\right.$anything $) / \Gamma_{\text {t }}$	total	Γ_{40} / Γ		
VALUE	DOCUMENT ID	TECN COMMENT		
$0.033_{-0.009}^{+0.010}{ }_{-0.009}^{0.012}$	${ }^{1}$ BARATE $98 Q$	ALEP $e^{+} e^{-} \rightarrow Z$		
${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.				
$\Gamma\left(D^{0} D^{*}(2010)^{ \pm}\right.$anything) $/ \Gamma_{\text {to }}$		Γ_{41} / Γ		
Value	DOCUMENT ID	TECN COMMENT		
$0.0300_{-0.008}^{+0.009}+0.007$	${ }^{1}$ BARATE 98 Q	ALEP	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.

${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.

$\mathbf{0 . 0 1 2} \mathbf{+ 0 . 0 0 3} \mathbf{0} \mathbf{0 . 0 0 4} \quad{ }^{1}$ BARATE $\quad 98 Q$ ALEP $e^{+} e^{-} \rightarrow z$
${ }^{1}$ The systematic error includes the uncertainties due to the charm branching ratios.
$\Gamma\left(\bar{D} D_{\text {anything }}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{0.10 \pm 0.032}+0.0 .095$ \qquad
${ }^{1}$ ABBIEND
04 TECN COMMENT
$\Gamma_{44 / \Gamma}$
${ }^{1}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

$\Gamma\left(D_{\mathbf{2}}^{*}(2460)^{0}\right.$ anything $) / \Gamma_{\text {total }}$			$\Gamma_{45} /{ }^{\text {/ }}$
VALUE	DOCUMENT ID	TECN COMMENT	

$\mathbf{0 . 0 4 7} \pm \mathbf{0 . 0 2 4} \pm \mathbf{0 . 0 1 3} \quad 1$ ACKERSTAFF 97W OPAL $e^{+} e^{-} \rightarrow z$
${ }^{1}$ ACKERSTAFF 97 W assumes $\mathrm{B}\left(D_{2}^{*}(2460)^{0} \rightarrow D^{*+} \pi^{-}\right)=0.21 \pm 0.04$ and ${ }^{\prime} b \bar{b} / \Gamma_{\text {hadrons }}=0.216$ at Z decay.
$\Gamma\left(D_{s}^{-}\right.$anything $) / \Gamma_{\text {total }}$

$0.147 \pm 0.017 \pm 0.013$

DOCUMENT ID TECN COMMENT
Γ_{46} / Γ
${ }^{1}$ BUSKULIC $96 Y$ reports $0.183 \pm 0.019 \pm 0.009$ from a measurement of $[\Gamma(\bar{b} \rightarrow$ D_{s}^{-}anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)\right]$assuming $\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=0.036$, which we rescale to our best value $\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)=(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s}^{+}\right.$anything $) / \Gamma_{\text {total }}$

$0.101 \pm 0.010 \pm 0.029$

${ }^{1}$ The second error is the total of systematic uncertainties including the branching fractions used in the measurement.
$\boldsymbol{\Gamma}\left(\boldsymbol{b} \rightarrow \boldsymbol{\Lambda}_{\boldsymbol{c}}^{+}\right.$anything $) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\mathbf{0 . 0 7 7} \pm \mathbf{0 . 0 1 1} \pm \mathbf{0 . 0 0 4}}$$\quad 1 \frac{\text { DOCUMENT ID }}{\text { BUSKULIC }} \quad 96 \mathrm{Y} \frac{\text { TECN }}{\mathrm{ALEP}} \frac{\boldsymbol{\Gamma}_{\mathbf{4 8}} / \boldsymbol{\Gamma}}{e^{+} e^{-} \rightarrow}$
${ }^{1}$ BUSKULIC 96 Y reports $0.110 \pm 0.014 \pm 0.006$ from a measurement of $[\Gamma(b \rightarrow$ Λ_{C}^{+}anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]$assuming $\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=0.044$, which we rescale to our best value $\mathrm{B}\left(\Lambda^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\tau / c$ anything $) / \Gamma_{\text {total }}$
$\Gamma_{49 / \Gamma}$
$\frac{V A L 15}{1.162 \pm 0.032 \text { OUR AVERAGE }}$
$1.12 \begin{array}{r}+0.11 \\ -0.10\end{array}$
DOCUMENT ID TECN COMMENT
$1.166 \pm 0.031 \pm 0.080$
${ }^{1}$ ABBIENDI 04I OPAL $e^{+} e^{-} \rightarrow Z$

3 ABREU 98D DLPH $e^{+} e^{-} \rightarrow Z$
$1.230 \pm 0.036 \pm 0.065 \quad{ }^{4}$ BUSKULIC 96Y ALEP $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Measurement performed using an inclusive identification of B mesons and the D candidates.
${ }_{3}^{2}$ Evaluated via summation of exclusive and inclusive channels.
${ }^{3}$ ABREU 98D results are extracted from a fit to the b-tagging probability distribution based on the impact parameter.
${ }^{4}$ BUSKULIC 96Y assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons, and PDG 96 branching ratios for charm decays. This is sum of their inclusive $\bar{D}^{0}, D^{-}, \bar{D}_{S}$, and Λ_{C} branching ratios, corrected to include inclusive $\bar{\Xi}_{C}$ and charmonium.
$\Gamma(J / \psi(1 S)$ anything $) / \Gamma_{\text {total }} \quad \Gamma_{50} / \Gamma$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { CL\% }}$ EVTS DOCUMENT ID TECN COMMENT
1.16 ± 0.10 OUR AVERAGE
$1.12 \pm 0.12 \pm 0.10 \quad 1$ ABREU 94P DLPH $e^{+} e^{-} \rightarrow Z$
$1.16 \pm 0.16 \pm 0.14 \quad 121 \quad 2$ ADRIANI 93」 L3 $\quad e^{+} e^{-} \rightarrow Z$
$1.21 \pm 0.13 \pm 0.08 \quad$ BUSKULIC 92G ALEP $e^{+} e^{-} \rightarrow Z$

- - We do not use the following data for averages, fits, limits, etc. - - -

$1.3 \pm 0.2 \pm 0.2$		3 ADRIANI	92	L3	$e^{+} e^{-} \rightarrow Z$
<4.9	90	MATTEUZZI	83	MRK2	$E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

${ }^{1}$ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $J / \psi(1 S) \rightarrow$
$e^{+} e^{-}$and $\mu^{+} \mu^{-}$channels. Assumes $\Gamma(Z \rightarrow b \bar{b}) / \Gamma_{\text {hadron }}=0.22$.
${ }^{2}$ ADRIANI 93J is an inclusive measurement from b decays at the Z. Uses $J / \psi(1 S) \rightarrow$ $\mu^{+} \mu^{-}$and $J / \psi(1 S) \rightarrow e^{+} e^{-}$channels.
${ }^{3}$ ADRIANI 92 measurement is an inclusive result for $\mathrm{B}(Z \rightarrow J / \psi(1 S) \mathrm{X})=(4.1 \pm 0.7 \pm$ $0.3) \times 10^{-3}$ which is used to extract the b-hadron contribution to $J / \psi(1 S)$ production.
$\Gamma(\psi(2 S)$ anything $) / \Gamma_{\text {total }}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$0.0048 \pm 0.0022 \pm 0.0010 \quad 1$ ABREU 94P DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $\psi(2 S) \rightarrow$ $J / \psi(1 S) \pi^{+} \pi^{-}, J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}$channels. Assumes $\Gamma(Z \rightarrow b \bar{b}) / \Gamma_{\text {hadron }}=0.22$.
$\Gamma(\psi(2 S)$ anything $) / \Gamma(J / \psi(1 S)$ anything $) \quad \Gamma_{51} / \Gamma_{50}$
$\frac{V A L U E}{0.245+0.013 ~ O U R ~ A V E R A G E ~ D O C U M E N T ~ I D ~ T E C N ~ C O M M E N T ~}$

0.245 ± 0.013 OUR AVERAGE

$0.240 \pm 0.015 \pm 0.005 \quad 1,2 \mathrm{AAIJ} \quad$ 12BDLHCB $p p$ at 7 TeV
$0.257 \pm 0.015 \pm 0.019 \quad 3,4$ CHATRCHYAN 12AK CMS $\quad p p$ at 7 TeV
${ }^{1}$ AAIJ 12 BD reports $0.235 \pm 0.005 \pm 0.015$ from a measurement of $[\Gamma(\bar{b} \rightarrow$ $\psi(2 S)$ anything $) / \Gamma(\bar{b} \rightarrow J / \psi(1 S)$ anything $)] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right] /[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.e^{+} e^{-}\right)\right]$assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.93 \pm 0.06) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)$ $=(7.72 \pm 0.17) \times 10^{-3}$, which we rescale to our best values $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)$ $=(5.961 \pm 0.033) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=(7.93 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

${ }^{3}$ CHATRCHYAN 12 AK really reports $\Gamma_{51} / \Gamma=(3.08 \pm 0.12 \pm 0.13 \pm 0.42) \times 10^{-3}$ assuming PDG 10 value of $\Gamma_{50} / \Gamma=(1.16 \pm 0.10) \times 10^{-2}$ which we present as a ratio of $\Gamma_{51} / \Gamma_{50}$ $=(26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$.
${ }^{4}$ CHATRCHYAN 12AK reports $(26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$ from a measurement of $[\Gamma(\bar{b} \rightarrow \psi(2 S)$ anything $) / \Gamma(\bar{b} \rightarrow J / \psi(1 S)$ anything $)] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)\right]$ $/\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]$assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(7.7 \pm 0.8) \times$ $10^{-3}, \mathrm{~B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.93 \pm 0.06) \times 10^{-2}$, which we rescale to our best values $\mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(8.0 \pm 0.6) \times 10^{-3}, \mathrm{~B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)$ $=(5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma\left(\chi_{c 0}(1 P)\right.$ anything $) / \Gamma\left(\eta_{c}(1 S)\right.$ anything $)$				$\Gamma_{52} / \Gamma_{56}$
VALUE	DOCUMENT ID	TECN	COMMENT	

$\mathbf{0 . 3 3} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 0 5} 1 \mathbf{A A I J} 17 \mathrm{BB}$ LHCB $\frac{1}{} 1$
${ }^{1} \mathrm{AAIJ} 17 \mathrm{BB}$ reports $\left[\Gamma\left(\bar{b} \rightarrow \quad \chi_{C 0}(1 P)\right.\right.$ anything $) / \Gamma\left(\bar{b} \rightarrow \quad \eta_{C}(1 S)\right.$ anything $\left.)\right] /$ $\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)\right] \times\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \phi \phi\right)\right]=0.147 \pm 0.023 \pm 0.011$ which we multiply or divide by our best values $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)=(1.77 \pm 0.19) \times 10^{-3}, \mathrm{~B}\left(\chi_{C 0}(1 P) \rightarrow\right.$ $\phi \phi)=(8.0 \pm 0.7) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma\left(\chi_{c 1}(1 P)\right.$ anything $) / \Gamma_{\text {total }}$					Γ_{53} / Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMEN	
0.014 ± 0.004 OUR AVERAGE					
$0.0112_{-0.0050}^{+0.0057} \pm 0.0003$		94P DLPH $e^{+} e^{-} \rightarrow Z$			
$0.019 \pm 0.007 \pm 0.001 \quad 19$		2 ADRIANI 93」 L3 $e^{+} e^{-} \rightarrow Z$			
${ }^{1}$ ABREU 94P reports $0.014 \pm 0.006{ }_{-0.002}^{+0.004}$ from a measurement of［ $\Gamma(\bar{b}$					
$\chi_{C 1}(1 P)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=0.273 \pm 0.016$ ，which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$					
$\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．Assumes no $\chi_{C 2}(1 P)$ and $\Gamma(Z \rightarrow b \bar{b}) / \Gamma_{\text {hadron }}=0.22$ ．					
${ }^{2}$ ADRIANI 93J reports $0.024 \pm 0.009 \pm 0.002$ from a measurement of $[\Gamma(\bar{b} \rightarrow$					
$\chi_{C 1}(1 P)$ anything $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=0.273 \pm 0.016$ ，which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$					
$\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．					

$\Gamma\left(\chi_{c 1}(1 P)\right.$ anything $) / \Gamma\left(\eta_{c}(1 S)\right.$ anything $)$
$\Gamma_{53} / \Gamma_{56}$
$\frac{\text { VALUE }}{\mathbf{0 . 3 1} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 0 5}} 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ 17BB }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 17 BB reports $\left[\Gamma\left(\bar{b} \rightarrow \quad \chi_{C 1}(1 P)\right.\right.$ anything $) / \Gamma\left(\bar{b} \rightarrow \quad \eta_{C}(1 S)\right.$ anything $\left.)\right] /$ $\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \phi \phi\right)\right]=0.073 \pm 0.016 \pm 0.006$ which we multiply or divide by our best values $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)=(1.77 \pm 0.19) \times 10^{-3}, \mathrm{~B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\phi \phi)=(4.2 \pm 0.5) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
$\underset{\text { VALUE }}{\Gamma\left(\chi_{c 2}(1 P) \text { anything }\right) / \Gamma\left(\chi_{c 0}(1 P) \text { anything }\right)} \underset{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT $\quad \Gamma_{54} / \Gamma_{52}$
$\frac{\text { VALUE }}{\mathbf{0 . 4 2} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{17 \mathrm{BB}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 17BB reports $\left[\Gamma\left(\bar{b} \rightarrow \quad \chi_{C 2}(1 P)\right.\right.$ anything $) / \Gamma\left(\bar{b} \rightarrow \quad \chi_{C 0}(1 P)\right.$ anything $\left.)\right] /$ $\left[\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \phi \phi\right)\right] \times\left[\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow \phi \phi\right)\right]=0.56 \pm 0.10 \pm 0.01$ which we multiply or divide by our best values $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \phi \phi\right)=(8.0 \pm 0.7) \times 10^{-4}, \mathrm{~B}\left(\chi_{C 2}(1 P) \rightarrow\right.$ $\phi \phi)=(1.06 \pm 0.09) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
 $\frac{V \text { VALUE }}{\mathbf{0 . 1 3 5} \pm \mathbf{0 . 0 2 3} \pm \mathbf{0 . 0 1 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TEBB }}{\text { TECN }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{17}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 17 BB reports $\left[\Gamma\left(\bar{b} \rightarrow \chi_{C 2}(1 P)\right.\right.$ anything $) / \Gamma\left(\bar{b} \rightarrow \quad \eta_{C}(1 S)\right.$ anything $\left.)\right] /$ $\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)\right] \times\left[\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow \phi \phi\right)\right]=0.081 \pm 0.013 \pm 0.005$ which we multiply or divide by our best values $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)=(1.77 \pm 0.19) \times 10^{-3}, \mathrm{~B}\left(\chi_{C 2}(1 P) \rightarrow\right.$ $\phi \phi)=(1.06 \pm 0.09) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
$\Gamma\left(\chi_{c}(2 P)\right.$ anything，$\left.\chi_{c} \rightarrow \phi \phi\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2 . 8} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{\text { CL\％}}{95} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 17BB }}{\text { TECN }} \frac{\text { LHCB }}{\text { COMMENT }}$
$\Gamma\left(\eta_{c}(2 S)\right.$ anything，$\left.\eta_{c} \rightarrow \phi \phi\right) / \Gamma\left(\eta_{\boldsymbol{c}}(1 S)\right.$ anything $) \quad \Gamma_{57} / \Gamma_{56}$ VALUE（units 10^{-5} ）DOCUMENT ID TECN COMMENT
$\mathbf{7 . 1} \pm \mathbf{2 . 1} \pm \mathbf{0 . 8} \quad 1$ AAIJ 17bB LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 17BB reports $\left[\Gamma\left(\bar{b} \rightarrow \quad \eta_{C}(2 S)\right.\right.$ anything，$\left.\eta_{C} \rightarrow \phi \phi\right) / \Gamma\left(\bar{b} \rightarrow \quad \eta_{C}(1 S)\right.$ anything $\left.)\right]$ $/\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)\right]=0.040 \pm 0.011 \pm 0.004$ which we multiply by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow \phi \phi\right)=(1.77 \pm 0.19) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma(X(3915) a$	$x \rightarrow$	$\Gamma_{\text {total }}$			Γ_{59} / Γ
VALUE	CL\％	DOCUMENT ID	TECN	COMmENT	
$<3.1 \times 10^{-7}$	95	AAI		$p p$ at 7， 8	

$\Gamma($ charged anything $) / \Gamma_{\text {total }}$			「72／「
value	DOCUMENT ID	TECN COMMENT	

$4.97 \pm 0.03 \pm 0.06 \quad 1$ ABREU 98H DLPH $e^{+} e^{-} \rightarrow Z$
－－We do not use the following data for averages，fits，limits，etc．－－
$5.84 \pm 0.04 \pm 0.38$ ABREU 95C DLPH Repl．by ABREU 98H
${ }^{1}$ ABREU 98 H measurement excludes the contribution from K^{0} and Λ decay．

$\Gamma\left(\right.$ hadron $^{+}$hadron $\left.^{-}\right) / \Gamma_{\text {total }}$				Γ_{73} / Γ
VALUE（units 10^{-5} ）	DOCUMENT ID	TECN	COMMENT	
$1.7{ }_{-0.7}^{+1.0} \pm 0.2$	BUSKULIC	ALEP	$e^{+} e^{-} \rightarrow$	

[^128]Meson Particle Listings
$B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon ADMIXTURE

Γ (charmless) $/ \Gamma_{\text {total }}$					$\Gamma_{74 / 5}$
$0.007 \pm 0.021{ }^{1}{ }^{1}$ ABREU $980 \mathrm{DLPH} e^{+} e^{-}$		$1{ }^{\text {ABREU }} \quad 980$ DLPH $e^{+} e^{-}$			
${ }^{1}$ ABREU 98D results are extracted from a fit to the b-tagging probability distribution based on the impact parameter. The expected hidden charm contribution of 0.026 ± 0.004 has been subtracted.					
$\Gamma\left(\mu^{+} \mu^{-}\right.$- anything $) / \Gamma_{\text {teotal }}$,					
VALUE					
<0.02	95	althoff	846 TASS	$E_{\text {eme }}^{\text {em }}$ = 34.5	
<0.007	95	adeva	83 MRKJ	Eeme ${ }_{\text {em }}^{\text {em }}$	
0.007	95	BAR	838	emm	

${ }^{1}$ Both ABBOTT 98B and GLENN 98 claim that the efficiency quoted in ALBAJAR 91C was overestimated by a large factor.
$\left[\Gamma\left(e_{\text {Tees tor }}^{+} e^{-}\right.\right.$anything $)+\Gamma\left(\mu^{+} \mu^{-} \mu^{-}\right.$anything $\left.)\right] / /_{\text {total }} \quad\left(\Gamma_{75}+\Gamma_{76}\right) / \Gamma$
VALUE Test for $\Delta B=1$ weak neutral CuOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
<0.00890 MATTEUZZI 83 MRK2 $E_{\mathrm{Cm}}^{e e}=29 \mathrm{GeV}$

χ_{b} AT HIGH ENERGY

For a discussion of $B-\bar{B}$ mixing, see the note on " $B^{0}-\bar{B}^{0}$ Mixing" in the B^{0} Particle Listings.
χ_{b} is the average $B-\bar{B}$ mixing parameter at high-energy $\chi_{b}=f_{d}^{\prime} \chi_{d}+$
$f_{s}^{\prime} \chi_{s}$ where f_{d}^{\prime} and f_{s}^{\prime} are the fractions of B^{0} and B_{s}^{0} hadrons in an unbiased sample of semileptonic b-hadron decays.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.

PRODUCTION ASYMMETRIES			
$A_{C}^{\text {b }}$ b			
$A_{C}^{b \bar{b}}=[\mathrm{N}(\Delta \mathrm{y}>0)-\mathrm{N}(\Delta \mathrm{y}<0)] /[\mathrm{N}(\Delta \mathrm{y}>0)+\mathrm{N}(\Delta \mathrm{y}<0)] \text { with } \Delta \mathrm{y}=\left\|\mathrm{y}_{b}\right\|-\left\|\mathrm{y}_{\bar{b}}\right\|$ where $y_{b / \bar{b}}$ is rapidity of b or \bar{b} quarks.			
VALUE (units 10^{-2}	DOCU	TECN	COMMENT
Average is meaningless.			
$0.4 \pm 0.4 \pm 0.3$	${ }^{1}$ AAIJ	14AS LHCB	$p p$ at 7 TeV
$2.0 \pm 0.9 \pm 0.6$	${ }^{2}$ AAIJ	14AS LHCB	$p p$ at 7 TeV
$1.6 \pm 1.7 \pm 0.6$	${ }^{3}$ AAIJ	14AS LHCB	$p p$ at 7 TeV
1_{1} Measured for $40<\mathrm{M}(b \bar{b})<75 \mathrm{GeV} / \mathrm{c}^{2}$. ${ }^{2}$ Measured for $75<\mathrm{M}(b \bar{b})<105 \mathrm{GeV} / \mathrm{c}^{2}$. ${ }^{3}$ Measured for $M(b \bar{b})>105 \mathrm{GeV} / \mathrm{c}^{2}$.			

$B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon ADMIXTURE REFERENCES

BUSKULIC	93B	PL B298 479	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	930	PL B314 459	D. Buskulic et al.	(ALEPH Collab.)
ABREU	92	ZPHY C53 567	P. Abreu et al.	(DELPHI Collab.)
ACTON	92	PL B274 513	D.P. Acton et al.	(OPAL Collab.)
ACTON	92 C	PL B276 379	D.P. Acton et al.	(OPAL Collab.)
ADEVA	92C	PL B288 395	B. Adeva et al.	(L3 Collab.)
ADRIANI	92	PL B288 412	O. Adriani et al.	(L3 Collab.)
BUSKULIC	92B	PL B284 177	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	92 F	PL B295 174	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	92 G	PL B295 396	D. Buskulic et al.	(ALEPH Collab.)
ABE	91 G	PRL 673351	F. Abe et al.	(CDF Collab.)
ADEVA	91 C	PL B261 177	B. Adeva et al.	(L3 Collab.)
ADEVA	91H	PL B270 111	B. Adeva et al.	(L3 Collab.)
ALBAJAR	91 C	PL B262 163	C. Albajar et al.	(UA1 Collab.)
ALBAJAR	91D	PL B262 171	C. Albajar et al.	(UA1 Collab.)
ALEXANDER	91G	PL B266 485	G. Alexander et al.	(OPAL Collab.)
DECAMP	91	PL B258 236	D. Decamp et al.	(ALEPH Collab.)
DECAMP	91 C	PL B257 492	D. Decamp et al.	(ALEPH Collab.)
ADEVA	90P	PL B252 703	B. Adeva et al.	(L3 Collab.)
BEHREND	90D	ZPHY C47 333	H.J. Behrend et al.	(Cello Collab.)
HAGEMANN	90	ZPHY C48 401	J. Hagemann et al.	(JADE Collab.)
LYONS	90	PR D41 982	L. Lyons, A.J. Martin, D.H. Saxon	(OXF, BRIS+)
WEIR	90	PL B240 289	A.J. Weir et al.	(Mark II Collab.)
BRAUNSCH...	89B	ZPHY C44 1	R. Braunschweig et al.	(TASSO Collab.)
ONG	89	PRL 621236	R.A. Ong et al.	(Mark II Collab.)
BAND	88	PL B200 221	H.R. Band et al.	(MAC Collab.)
KLEM	88	PR D37 41	D.E. Klem et al.	(DELCO Collab.)
ONG	88	PRL 602587	R.A. Ong et al.	(Mark II Collab.)
ALBAJAR	87C	PL B186 247	C. Albajar et al.	(UA1 Collab.)
ASH	87	PRL 58640	W.W. Ash et al.	(MAC Collab.)
BARTEL	87	ZPHY C33 339	W. Bartel et al.	(JADE Collab.)
BROM	87	PL B195 301	J.M. Brom et al.	(HRS Collab.)
PAL	86	PR D33 2708	T. Pal et al.	(DELCO Collab.)
AIHARA	85	ZPHY C27 39	H. Aihara et al.	(TPC Collab.)
BARTEL	85」	PL 163B 277	W. Bartel et al.	(JADE Collab.)
SCHAAD	85	PL 160B 188	T. Schaad et al.	(Mark II Collab.)
ALTHOFF	84G	ZPHY C22 219	M. Althoff et al.	(TASSO Collab.)
ALTHOFF	84」	PL 146B 443	M. Althoff et al.	(TASSO Collab.)
KOOP	84	PRL 52970	D.E. Koop et al.	(DELCO Collab.)
ADEVA	83	PRL 50799	B. Adeva et al.	(Mark-J Collab.)
ADEVA	83B	PRL 51443	B. Adeva et al.	(Mark-J Collab.)
BARTEL	83B	PL 132B 241	W. Bartel et al.	(JADE Collab.)
FERNANDEZ	83D	PRL 502054	E. Fernandez et al.	(MAC Collab.)
MATTEUZZI	83	PL 129B 141	C. Matteuzzi et al.	(Mark II Collab.)
NELSON	83	PRL 501542	M.E. Nelson et al.	(Mark II Collab.)

$V_{c b}$ and $V_{u b}$ CKM Matrix Elements

OMITTED FROM SUMMARY TABLE
See the related review(s):
Semileptonic B Hadron Decays, Determination of $\mathrm{V}_{c b}$ and $V_{u b}$

$V_{c b}$ MEASUREMENTS

For the discussion of $V_{c b}$ measurements, which is not repeated here, see the review on "Determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$."

The CKM matrix element $\left|V_{c b}\right|$ can be determined by studying the rate of the semileptonic decay $B \rightarrow D^{(*)} \ell \nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega)$) provided by Heavy Quark Effective Theory (HQET), the $\left|V_{c b}\right| \times F(\omega)$ and $\rho^{2}\left(a^{2}\right)$ can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, $F(1)$ is the form factor at zero recoil ($\omega=1$) and ρ^{2} is the slope, sometimes denoted as a^{2}. Using the theoretical input of $F(1)$, a value of $\left|V_{c b}\right|$ can be obtained.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.
$\left|V_{c b}\right| \times F(1)\left(\right.$ from $\left.B^{0} \Rightarrow D^{*-} \ell^{+} \nu\right)$
$\mathbf{0 . 0 3 5 6 1} \pm \mathbf{0 . 0 0 0 4 3}$ OUR EVALUATION with $\rho^{2}=1.205 \pm 0.026$ and a correlation 0.338 . The fitted χ^{2} is 30.2 for 23 degrees of freedom.
$0.0355 \pm \mathbf{0 . 0 0 0 8}$ OUR AVERAGE Error includes scale factor of 1.7. See the ideogram below.
$0.03483 \pm 0.00015 \pm 0.00056$
$0.0359 \pm 0.0002 \pm 0.0012$
$0.0392 \pm 0.0018 \pm 0.0023$
$0.0431 \pm 0.0013 \pm 0.0018$
$0.0355 \pm 0.0014+0.0023$
$0.0371 \pm 0.0010 \pm 0.0020$
${ }^{1}$ WAHEED
$19 \mathrm{BELL} e^{+} e^{-} \rightarrow \Upsilon(4 S)$
2 AUBERT
${ }^{3}$ ABDALLAH
${ }^{4}$ ADAM
09A BABR $e^{+} e^{-} \rightarrow \gamma(4 S)$
04D DLPH $e^{+} e^{-} \rightarrow z^{0}$
03 CLE2 $e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{5}$ ABREU 01 H DLPH $e^{+} e^{-} \rightarrow Z$
${ }^{6}$ ABBIENDI $\quad 00 Q$ OPAL $e^{+} e^{-} \rightarrow Z$
$0.0319 \pm 0.0018 \pm 0.0019 \quad{ }^{7}$ BUSKULIC 97 ALEP $e^{+} e^{-} \rightarrow Z$
$0.0346 \pm 0.0002 \pm 0.0010 \quad{ }^{8}$ DUNGEL $10 \quad$ BELL Rep. by WAHEED 19 $0.0359 \pm 0.0006 \pm 0.0014 \quad 9$ AUBERT 08AT BABR Repl. by AUBERT 09A $0.0344 \pm 0.0003 \pm 0.0011 \quad 10$ AUBERT \quad 08R BABR Repl. by AUBERT 09A $0.0355 \pm 0.0003 \pm 0.0016 \quad 11$ AUBERT \quad 05E BABR Repl. by AUBERT 08R $0.0377 \pm 0.0011 \pm 0.0019 \quad 12$ ABDALLAH 04D DLPH $e^{+} e^{-} \rightarrow z^{0}$ 02F BELL Repl. by DUNGEL 10
$0.0431 \pm 0.0013 \pm 0.0018$
$0.0328 \pm 0.0019 \pm 0.0022$ $0.0350 \pm 0.0019 \pm 0.0023$ $0.0351 \pm 0.0019 \pm 0.0020$ $0.0314 \pm 0.0023 \pm 0.0025$
${ }^{4}$ BRIERE 02 CLE2 $e^{+} e^{-} \rightarrow \quad \Upsilon(4 S)$ ACKERSTAFF 97G OPAL Repl. by ABBIENDI 00Q
15 ABREU 96P DLPH Repl. by ABREU 01H
16 BARISH 95 CLE2 Repl. by ADAM 03 BUSKULIC 95 N ALEP Repl. by BUSKULIC 97
${ }^{1}$ Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events $\left(\ell=e\right.$ or μ) and $\eta_{E W}=1.0066$.
${ }^{2}$ Obtained from a global fit to $B \rightarrow D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^{0} \ell$ and $D^{+} \ell$ final states and $\rho^{2}=1.22 \pm 0.02 \pm 0.07$.
${ }^{3}$ Measurement using fully reconstructed D^{*} sample with a $\rho^{2}=1.32 \pm 0.15 \pm 0.33$.
${ }^{4}$ Average of the $B^{0} \rightarrow D^{*}(2010)^{-} \ell^{+} \nu$ and $\left.B^{+} \rightarrow \bar{D}^{*}(2007)\right) \ell^{+} \nu$ modes with $\rho^{2}=$ $1.61 \pm 0.09 \pm 0.21$ and $f_{+-}=0.521 \pm 0.012$
${ }^{5}$ ABREU 01 H measured using about 5000 partial reconstructed D^{*} sample with a $\rho^{2}=1.34 \pm 0.14_{-0.22}^{+0.24}$.
${ }^{6}$ ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{* \pm}$ samples with a $\rho^{2}=1.21 \pm 0.12 \pm 0.20$. The statistical and systematic correlations between $\left|V_{c b}\right| \times F(1)$ and ρ^{2} are 0.90 and 0.54 respectively.
${ }^{7}$ BUSKULIC 97: measured using exclusively reconstructed $D^{* \pm}$ with a $a^{2}=0.31 \pm 0.17 \pm$ 0.08 . The statistical correlation is 0.92 .
${ }^{8}$ Uses fully reconstructed $D^{*-} \ell^{+} \nu$ events $(\ell=e$ or μ).
${ }^{9}$ Measured using the dependence of $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ decay differential rate and the form factor description by CAPRINI 98 with $\rho^{2}=1.16 \pm 0.06 \pm 0.08$.
${ }^{10}$ Measured using fully reconstructed D^{*} sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^{2}=1.191 \pm 0.048 \pm 0.028, R_{1}(1)=1.429 \pm$ 0.061 ± 0.044, and $R_{2}(1)=0.827 \pm 0.038 \pm 0.022$.
11 Measurement using fully reconstructed D^{*} sample with a $\rho^{2}=1.29 \pm 0.03 \pm 0.27$.
${ }^{12}$ Combines with previous partial reconstructed D^{*} measurement with a $\rho^{2}=1.39 \pm 0.10 \pm$
$13 \begin{aligned} & 0.33 \text {. } \\ & \text { Measured using exclusive } B^{0} \rightarrow D^{*}(892)^{-} e^{+} \nu \text { decays with } \rho^{2}=1.35 \pm 0.17 \pm 0.19\end{aligned}$ and a correlation of 0.91 .
14 BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
${ }^{15}$ ABREU 96P: measured using both inclusively and exclusively reconstructed $D^{* \pm}$ samples.
${ }^{16}$ BARISH 95: measured using both exclusive reconstructed $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{* 0} \ell^{+} \nu$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm$ 0.0008 , where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

$\left|V_{c b}\right| \times G(1)\left(\right.$ from $\left.B \rightarrow D^{-} \ell^{+} \nu\right)$
VALUE DOCUMENT ID _ TECN COMMENT
$\mathbf{0 . 0 4 1 5 7} \pm \mathbf{0 . 0 0 1 0 0}$ OUR EVALUATION with $\rho^{2}=1.128 \pm 0.033$ and a correlation 0.751 .
The fitted χ^{2} is 4.7 for 8 degrees of freedom.
0.0422 ± 0.0010 OUR AVERAGE

${ }^{1}$ Obtained from a fit to the combined partially reconstructed $B \rightarrow \bar{D} \ell \nu_{\ell}$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted $\rho^{2}=$ 1.09 ± 0.05.
${ }^{2}$ Obtained from a fit to the combined $B \rightarrow \bar{D} \ell^{+} \nu_{\ell}$ sample in which a hadronic decay of the second B meson is fully reconstructed and $\rho^{2}=1.20 \pm 0.09 \pm 0.04$.
${ }^{3}$ Obtained from a global fit to $B \rightarrow D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^{0} \ell$ and $D^{+} \ell$ final states and $\rho^{2}=1.20 \pm 0.04 \pm 0.07$.
${ }^{4}$ BARTELT 99: measured using both exclusive reconstructed $B^{0} \rightarrow D^{-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{0} \ell^{+} \nu$ samples.
${ }^{5}$ BUSKULIC 97: measured using exclusively reconstructed $D^{ \pm}$with a $a^{2}=-0.05 \pm 0.53 \pm$ 0.38 . The statistical correlation is 0.99 .
${ }^{6}$ Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^{0} \rightarrow D^{-} \ell^{+} \nu$ decay.
7 ATHANAS 97: measured using both exclusive reconstructed $B^{0} \rightarrow D^{-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{0} \ell^{+} \nu$ samples with a $\rho^{2}=0.59 \pm 0.22 \pm 0.12_{-0}^{+0.59}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048_{-0.0012}^{+0.0053}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. is systematic, and the third is the unce
We combine the last two in quadrature.

$v_{u b}$ MEASUREMENTS

For the discussion of $V_{u b}$ measurements, which is not repeated here, see the review on "Determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$."
The CKM matrix element $\left|V_{u b}\right|$ can be determined by studying the rate of the charmless semileptonic decay $b \rightarrow u \ell \nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

$V_{c b}$ and $V_{u b}$ CKM Matrix Elements REFERENCES

WAHEED	19	PR D100 052007	E. Waheed et al.	(BELLE Collab.)
glattauer	16	PR D93 032006	R. Glattauer et al.	(BELLE Collab.)
AUBERT	10	PRL 104011802	B. Aubert et al.	(BABAR Collab.)
DUNGEL	10	PR D82 112007	W. Dungel et al.	(BELLE Collab.)
AUBERT	09A	PR D79 012002	B. Aubert et al.	(BABAR Collab.)
AUBERT	08AT	PRL 100231803	B. Aubert et al.	(BABAR Collab.)
AUBERT	08R	PR D77 032002	B. Aubert et al.	(BABAR Collab.)
AUBERT	05E	PR D71 051502	B. Aubert et al.	(BABAR Collab.)
ABDALLAH	04D	EPJ C33 213	J. Abdallah et al.	(DELPHI Collab.)
ADAM	03	PR D67 032001	N.E. Adam et al.	(CLEO Collab.)
ABE	02E	PL B526 258	K. Abe et al.	(BELLE Collab.)
ABE	02 F	PL B526 247	K. Abe et al.	(BELLE Collab.)
BRIERE	02	PRL 89081803	R . Briere et al.	(CLEO Collab.)
ABREU	01H	PL B510 55	P. Abreu et al.	(DELPHI Collab.)
ABBIENDI	00Q	PL B482 15	G. Abbiendi et al.	(OPAL Collab.)
BARTELT	99	PRL 823746	J. Bartelt et al.	(CLEO Collab.)
CAPRINI	98	NP B530 153	I. Caprini, L. Lellouch, M. Neubert	(BCIP, CERN)
ACKERSTAFF	97G	PL B395 128	K. Ackerstaff et al.	(OPAL Collab.)
ATHANAS	97	PRL 792208	M. Athanas et al.	(CLEO Collab.)
BUSKULIC	97	PL B395 373	D. Buskulic et al.	(ALEPH Collab.)
ABREU	96 P	ZPHY C71 539	P. Abreu et al.	(DELPHI Collab.)
BARISH	95	PR D51 1014	B.C. Barish et al.	(CLEO Collab.)
BUSKULIC	95 N	PL B359 236	D. Buskulic et al.	(ALEPH Collab.)

B* MASS

From mass difference below and the average of our B masses $\left(m_{B^{ \pm}}+m_{B^{0}}\right) / 2$.

VALUE (MeV)	DOCUMENT ID	
5324.70 ± 0.21 OUR FIT		
$\boldsymbol{m}_{B^{*}}-\boldsymbol{m}_{\boldsymbol{B}}$		
VALUE (MeV) EVTS	DOCUMENT ID TECN	COMMENT
45.21 ± 0.21 OUR FIT		
45.42 $\pm \mathbf{0 . 2 6}$ OUR AVERAGE Includes data from the datablock that follows this one.		
$46.2 \pm 0.3 \pm 0.8$	${ }^{1}$ ACKERSTAFF 97M OPAL $e^{+} e^{-} \rightarrow Z$	
$45.3 \pm 0.35 \pm 0.87 \quad 4227$	${ }^{1}$ BUSKULIC 96D ALEP	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$
$45.5 \pm 0.3 \pm 0.8$	1 ABREU 95R DLPH	$E_{\mathrm{Cm}}^{e} \mathrm{e}=88-94 \mathrm{GeV}$
$46.3 \pm 1.9 \quad 1378$	${ }^{1}$ ACCIARRI 95B L3	$E_{\mathrm{cm}}^{e e}=88-94 \mathrm{GeV}$
$46.4 \pm 0.3 \pm 0.8$	2 AKERIB 91 CLE2	$e^{+} e^{-} \rightarrow \gamma \mathrm{X}$
45.6 ± 0.8	2 WU 91	$e^{+} e^{-} \rightarrow \gamma \mathrm{X}, \gamma \ell \mathrm{X}$
45.4 ± 1.0	${ }^{3}$ LEE-FRANZINI 90 CSB2	$e^{+} e^{-} \rightarrow \gamma(5 S)$
- - We do not use the following data for averages, fits, limits, etc. • -		
$52 \pm 2 \pm 41400$	${ }^{4}$ HAN	$e^{+} e^{-} \rightarrow \gamma e \mathrm{X}$
${ }_{2} u, d, s$ flavor averaged.		
2 These papers report E_{γ} in the B^{*} center of mass. The $m_{B^{*}}-m_{B}$ is		
$E_{\mathrm{cm}}=10.61-10.7 \mathrm{GeV}$. Admixture of B^{0} and B^{+}mesons, but not B_{S}.		
0.2 MeV for an admixture of B^{0}, B^{+}, and B_{S}, and use the shape of the photon line separate the above value.		
${ }^{4} \mathrm{HAN} 85$ is for $E_{\mathrm{cm}}=10.6-11.2 \mathrm{GeV}$, giving an admixture of B^{0}, B^{+}, and B_{S}.		
$\boldsymbol{m}_{B^{*+}}-\boldsymbol{m}_{B^{+}}$		
VALUE (MeV)	DOCUMENT ID TECN COMMENT	
The data in this block is included in the average printed for a previous datablock.		
45.37 ± 0.21 OUR FIT		
$45.01 \pm 0.30 \pm 0.23$	${ }^{5}$ AAIJ 130 LHCB	
${ }^{5}$ Obtained the mass difference between $B^{*+} K^{-}$and $B^{+} K^{-}$from $B_{s 2}^{*}(5840)^{0}$ decay		
$\left\|\left(\boldsymbol{m}_{B^{*+}}=\boldsymbol{m}_{B^{+}}\right)-\left(\boldsymbol{m}_{B^{* 0}}=\boldsymbol{m}_{B^{0}}\right)\right\|$		
$\underline{V A L U E ~(M e V) ~ C L \% ~}$	DOCUMENT ID TECN	COMMENT
<6 95	ABREU 95R DLPH	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$

See key on page 999

$B_{1}(5721)^{+}$WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
31 ± 6 OUR AVERAGE Error includes scale factor of 1.1.				
$29.1 \pm 3.6 \pm 4.3$	8K	AAIJ	15AB LHCB	$p p$ at 7, 8 TeV
$49 \begin{aligned} & +12 \\ & -10\end{aligned}$		AALTONEN	141 CDF	$p \bar{p}$ at 1.96 TeV

$B_{1}(5721)^{+}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B^{* 0} \pi^{+}$	seen

$B_{1}(5721)^{+}$BRANCHING RATIOS						
$\Gamma\left(B^{* 0} \pi^{+}\right) / \Gamma_{\text {total }}$	EVTS	DOCUMENT ID		TECN	comuent	$\Gamma_{1 / \Gamma}$
	8 K		15AB			
seen	8K	AALTONEN	141	CDF	$p p$ at $7,8 \mathrm{TeV}$ $p \overline{\mathrm{p}}$ at 1.96 TeV	

$B_{1}(5721)^{+}$REFERENCES

AAIJ	15AB	JHEP 1504024	R. Aaij et al.	(LHCb Collab.)
AALTONEN	141	PR D90 012013	T. Aaltonen et al.	(CDF Collab.)

$B_{1}(5721)^{0}$ WIDTH

$\frac{V A L U E(\mathrm{MeV})}{\mathbf{2 7 . 5} \pm \mathbf{3 . 4} \text { OUR AVERAGE Error includes scale factor of }} \frac{\text { EVTS }}{\frac{\text { DOCUMENT ID }}{\text { 1.1. }} \text { COMMENT }}$
$30.1 \pm 1.5 \pm 3.5 \quad 35 \mathrm{k} \quad$ AAIJ $\quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$23 \pm 3 \pm 4 \quad$ AALTONEN 14 । CDF $p \bar{p}$ at 1.96 TeV
$B_{1}(5721)^{0}$ DECAY MODES

| Mode | Fraction $\left(\Gamma_{i} / \Gamma\right)$ | |
| :--- | :--- | :--- | :--- | :--- |
| $\Gamma_{1} \quad B^{*+} \pi^{-}$ | seen | |

$B_{1}(5721)^{0}$ REFERENCES

AAIJ	15AB	JHEP 1504024	R. Aaij et al.	(LHCb Collab.)
AALTONEN	141	PR D90 012013	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	09D	PRL 102102003	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	07T	PRL 99172001	V.M. Abazov et al.	(D0 Collab.)
B^{*}			$I\left(J^{P}\right)$ I, J, P	tion.

OMITTED FROM SUMMARY TABLE
also known as $B^{* *}$
Quantum numbers shown are quark-model predictions. Signal can be interpreted as stemming from several narrow and broad resonances.
$B_{J}^{*}(5732)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
5698土 8 OUR AVERAGE Error includes scale factor of 1.2.					
5710 ± 20		${ }^{1}$ AFFOLDER	01F	CDF	$p \bar{p}$ at 1.8 TeV
$5695{ }_{-19}^{+17}$		2 BARATE	98L	ALEP	$e^{+} e^{-} \rightarrow Z$
$5704 \pm 4 \pm 10$	1944	${ }^{3}$ BUSKULIC	96D	ALEP	$E_{\mathrm{Cm}}^{e e}=88-94 \mathrm{GeV}$
$5732 \pm 5 \pm 20$	2157	ABREU	95B	DLPH	$E_{\mathrm{Cm}}^{e \ell e}=88-94 \mathrm{GeV}$
5681 ± 11	1738	AKERS	95E	OPAL	$E_{\mathrm{Cm}}^{e \ell e}=88-94 \mathrm{GeV}$

Meson Particle Listings
$B_{j}^{*}(5732), B_{2}^{*}(5747)^{+}, B_{2}^{*}(5747)^{0}$

- - We do not use the following data for averages, fits, limits, etc. - . .

5713士 $2{ }^{4}$ ACCIARRI 99N L3 $e^{+} e^{-} \rightarrow$ Z
${ }^{1}$ AFFOLDER 01F uses the reconstructed B meson through semileptonic decay channels. The fraction of light B mesons that are produced at $L=1 B^{* *}$ states is measured to be $0.28 \pm 0.06 \pm 0.03$.
${ }^{2}$ BARATE 98L uses fully reconstructed B mesons to search for $B^{* *}$ production in the $B \pi^{ \pm}$system. In the framework of heavy quark symmetry (HQS), they also measured the mass of B_{2}^{*} to be $5739_{-11-4}^{+8+6} \mathrm{MeV} / c^{2}$ and the relative production rate of $\mathrm{B}(b \rightarrow$ $\left.B_{2}^{*} \rightarrow B^{(*)} \pi\right) / \mathrm{B}\left(b \rightarrow B_{u, d}\right)=\left(31 \pm 9_{-5}^{+6}\right) \%$.
${ }^{3}$ Using $m_{B \pi}-m_{B}=424 \pm 4 \pm 10 \mathrm{MeV}$.
${ }^{4}$ ACCIARRI 99 N uses inclusive reconstructed B mesons to search for $B^{* *}$ production in the $B^{(*)} \pi^{ \pm}$system. In the framework of HQET, they measured the mass of B_{1}^{*} and B_{2}^{*} to be $5670 \pm 10 \pm 13 \mathrm{MeV}$ and $5768 \pm 5 \pm 6$ with the $\mathrm{B}\left(b \rightarrow B^{* *}\right)=(32 \pm 3 \pm 6) \times 10^{-2}$. They also reported the evidence for the existence of an excited B-meson state or mixture of states in the region 5.9-6.0 GeV.

$B_{J}^{*}(5732)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
128 ± 18 OUR AVERAGE					
145 ± 28	2157	ABREU	95B	DLPH	$E_{\mathrm{Cm}}^{e} \mathrm{e}=88-94 \mathrm{GeV}$
116 ± 24	1738	AKERS	95E	OPAL	$E_{\mathrm{Cm}}^{e \mathrm{e}}=88-94 \mathrm{GeV}$

$B_{j}^{*}(5732)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$B^{*} \pi+B \pi$	seen
Γ_{2}	$B^{*} \pi(\mathrm{X})$	$[a](85 \pm 29) \%$

[a] X refers to decay modes with or without additional accompanying decay particles.

$B_{J}^{*}(5732)$ BRANCHING RATIOS

X refers to decay modes with or without additional accompanying decay particles.

$\Gamma\left(B^{*} \pi(X)\right) / \Gamma_{\text {total }}$ VALUE	DOCUMENT ID		TECN	COMMENT	Γ_{2} / Γ
$0.85{ }_{-0.27}^{+0.26} \pm 0.12$	ABBIENDI	02E	OPAL	$e^{+} e^{-} \rightarrow Z$	

$B_{J}^{*}(5732)$ REFERENCES				
ABBIENDI	02 E	EPJ C23 437	G. Abbiendi et al.	(OPAL Collab.)
AFFOLDER	01 F	PR D64 072002	T. Affolder et al.	(CDF Collab.)
ACCIARRI	99 N	PL B465 323	M. Acciarri et al.	(L3 Collab.)
BARATE	98L	PL B425 215	R. Barate et al.	(ALEPH Collab.)
BUSKULIC	96D	ZPHY C69 393	D. Buskulic et al.	(ALEPH Collab.)
ABREU	95B	PL B345 598	P. Abreu et al.	(DELPHI Collab.)
AKERS	95E	ZPHY C66 19	R. Akers et al.	(OPAL Collab.)
$B_{2}^{*}(5747)^{+}$			$I\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)$ I, J, P need confirmation.	
Quantum numbers shown are quark-model predictions.				

$B_{2}^{*}(5747)^{+}$MASS
OUR FIT uses $m_{B^{0}}$ and $m_{B_{2}^{*+}}-m_{B^{0}}$ to determine $m_{B_{2}^{*}(5747)^{+}}$.
VALUE (MeV)
$\frac{\text { VALUE }(\mathrm{MeV})}{5737.2 \pm 0.7 \text { OUR FIT }}$
DOCUMENTID

$\operatorname{VALUE}(\mathrm{MeV})$
$\frac{\text { VALUE (MeV) }}{457.5 \pm 0.7 \text { OUR FITT }}$
457.5 ± 0.7 OUR AVERAGE
$457.62 \pm 0.72 \pm 0.40 \quad 4 \mathrm{~K}$
$457.3 \pm 1.3{ }_{-0.9}^{+0.3}$
${ }^{1}$ AAIJ 15AB reports

$$
m_{B_{2}^{*+}}-m_{B^{0}}
$$

DOCUMENT ID TECN COMMENT

${ }^{1}$ AAIJ	15 AB LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{2}$ AALTONEN	14 I CDF	$p \bar{p}$ at 1.96 TeV

${ }^{2}$ AALTONEN 14 I CDF $p \bar{p}$ at 1.96 TeV
the π^{+}mass. The mass
$2_{\text {AALTONEN } 14 । ~ r e p o r t s ~} m_{B_{2}^{*}(5747)^{+}}$event. $m_{B^{0}}-m_{\pi^{+}}=317.7 \pm 1.2_{-0.9}^{+0.3} \mathrm{MeV}$ which we adjusted by the π^{+}mass.

$B_{2}^{*}(5747)^{+}$WIDTH

$\frac{V A L U E(M e V)}{20 \pm 5}$ OUR AVERAGE Error includes scale factor of $\frac{\text { EVTS }}{\frac{\text { DECN }}{2.2} \text { COMMENT }}$
$23.6 \pm 2.0 \pm 2.1 \quad 4 \mathrm{~K} \quad$ AAIJ $\quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$

11 | +4 | +3 | |
| ---: | ---: | ---: |
| -3 | -4 | AALTONEN 141 |
| CDF | | |

$B_{2}^{*}(5747)^{+}$DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B^{0} \pi^{+}$	seen
Γ_{2}	$B^{* 0} \pi^{+}$	seen

$B_{2}^{*}(5747)^{+}$BRANCHING RATIOS

$B_{2}^{*}(5747)^{0}$	$I\left(J^{P}\right)=\frac{1}{2}\left(2^{+}\right)$
I, J, P need confirmation.	

Quantum numbers shown are quark-model predictions.

$B_{2}^{*}(5747)^{0}$ MASS

OUR FIT uses $m_{B^{+}}, m_{B_{1}^{0}}-m_{B^{+}}$, and $m_{B_{2}^{* 0}}-m_{B_{1}^{0}}$ to determine $m_{B_{2}^{*}(5747)^{0}}$. The -0.659 correlation between statistical uncertainties of $m_{B_{1}^{0}}-m_{B^{+}}$and $m_{B_{2}^{* 0}}-m_{B_{1}^{0}}$ measurements reported by ABAZOV $07 T$ is taken into account.
$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{5 7 3 9 . 5} \pm \mathbf{0 . 7} \text { OUR FIT } \quad \text { Error includes scale factor of } 1.4 .}$

$B_{2}^{*}(5747)^{0}$ WIDTH

$B_{2}^{*}(5747)^{0}$ WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	- TECN	COMMENT
24.2 ± 1.7 OUR AVERAGE				
$24.5 \pm 1.0 \pm 1.5$	17K	AAIJ	15AB LHCB	$p p$ at $7,8 \mathrm{TeV}$
$22 \begin{array}{r}+3 \\ -2\end{array}$		AALTONEN	14 l CDF	$p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - - .				
$22.7{ }_{-3.2}^{+3.8}{ }_{-10.2}$		AALTONEN	09D CDF	Repl. by AALTONEN 141
$B_{\mathbf{2}}^{*}(5747)^{0}$ DECAY MODES				
Mode	Fraction (Γ_{i} / Γ)			
$\Gamma_{1} B^{+} \pi^{-}$		seen		
$\Gamma_{2} B^{*+} \pi^{-}$		seen		

$B_{2}^{*}(5747)^{0}$ DECAY MODES

$B_{2}^{*}(5747)^{0}$ WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	- TECN	COMMENT
24.2 ± 1.7 OUR AVERAGE				
$24.5 \pm 1.0 \pm 1.5$	17K	AAIJ	15 AB LHCB	$p p$ at 7, 8 TeV
$22 \begin{aligned} & +3 \\ & -2 \\ & -\end{aligned}$		AALTONEN	14 l CDF	$p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - - .				
$22.7_{-3.2}^{+3.8}+3.2$		AALTONEN	09D CDF	Repl. by AALTONEN 141
$B_{2}^{*}(5747)^{0}$ DECAY MODES				
Mode	Fraction (Γ_{i} / Γ)			
$\Gamma_{1} \quad B^{+} \pi^{-}$		seen		
$\Gamma_{2} B^{*+} \pi^{-}$		seen		

See key on page 999
$B_{2}^{*}(5747)^{0}$ BRANCHING RATIOS

$\Gamma\left(B^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{1} / Γ
value	EVTS	DOCUMENT ID	TECN	COMMENT	
seen	17K	AAIJ	15AB LHCB	$p p$ at $7,8 \mathrm{TeV}$	
seen		Aaltonen	09D CDF	$p \bar{p}$ at 1.96 TeV	
seen		ABAZOV	07T D0	$p \bar{p}$ at 1.96 TeV	
$\Gamma\left(B^{*+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{2} / Γ
value	EVTS	DOCUMENT ID	TECN	COMMENT	
seen	17K	AAIJ	15AB LHCB	$p p$ at 7, 8 TeV	
seen		AALTONEN	09D CDF	$p \bar{p}$ at 1.96 TeV	
seen		ABAZOV	07T D0	$p \bar{p}$ at 1.96 TeV	
$\Gamma\left(B^{*+} \pi^{-}\right) / \Gamma\left(B^{+} \pi^{-}\right)$					Γ_{2} / Γ_{1}
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.82 $\mathbf{0} 0.28$ OUR AVERAGE					
$0.71 \pm 0.14 \pm 0.30$	17K	AAIJ	15ab LHCB	$p p$ at 7, 8 TeV	
$1.10 \pm 0.42 \pm 0.31$		${ }^{1}$ ABAZOV	07T D0	$p \bar{p}$ at 1.96 TeV	
${ }^{1}$ Converted from measured ratio of $\mathrm{R}=\mathrm{B}\left(B_{2}^{* 0} \rightarrow B^{*+} \pi^{-}\right) / \mathrm{B}\left(B_{2}^{* 0} \rightarrow \mathrm{~B}^{(*)+} \pi^{-}\right)$ $=0.475 \pm 0.095 \pm 0.069$.					

$B_{2}^{*}(5747)^{0}$ REFERENCES

AAIJ	15 AB	Jhep 1504024	R. Aaij et al.	(LHCD Collab.)
AALTONEN	141	PR D90 012013	T. Aaltonen et al.	(CDF Collab.)
abltonen	09D	PRL 102102003	T. Alltonen et a d.	(CDF Collab.)
abazov	07T	PRL 99172001	V.m. Abazov et al.	(Do Collab.)

$B_{J}(5840)^{-}$
$I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$
l, J, P need confirmation.

OMITTED FROM SUMMARY TABLE
Quantum numbers shown are quark-model predictions.

$B_{J}(5840)^{+}$MASS

OUR FIT uses $m_{B^{0}}$ and $m_{B_{J}(5840)^{+}}{ }^{-} m_{B^{0}}$ to determine $m_{B_{J}(5840)^{+}}$
VALUE (MeV) \qquad DOCUMENT ID \qquad
5851 ± 19 OUR FIT

$\boldsymbol{m}_{B_{J}(5840)^{+}}-\boldsymbol{m}_{B^{0}}$				
VaLUE (MeV)	EVTS	DOCUMENT ID		COMMENT
571 ± 19 OUR FIT				
571 $\pm 13 \pm 14$	7 k	AAIJ	LHCB	p at 7, 8 T
- - We do not use the following data for averages, fits, limits, etc. - .				
$595 \pm 26 \pm 14$	7 k	2 AAIJ 15AB LHCB pp at 7, 8 TeV		
${ }^{1}$ AAIJ 15 AB reports $\left[m_{B_{J}^{+}}-m_{B^{0}}\right.$] $-m_{\pi^{+}}=431 \pm 13 \pm 14 \mathrm{MeV}$ which we adjust by the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses two relativistic Breit-Wigner functions in the fit for mass difference.				
${ }^{2}$ AAIJ 15AB reports $\left[m_{B_{J}^{+}}-m_{B^{0}}\right.$] $-m_{\pi^{+}}=455 \pm 26 \pm 14 \mathrm{MeV}$ which we adjust by the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses three relativistic Breit-Wigner functions in the fit for mass difference.				
$m_{B_{\jmath}(5840)^{+}}-m_{B^{* 0}}$				
$V \operatorname{VALUE}(\mathrm{MeV})$ EVTS DOCUMENT ID TECN COMMENT				
- - We do not use the following data for averages, fits, limits, etc. - -				
$565 \pm 15 \pm 14 \quad 7 \mathrm{k}{ }^{1}$ AAIJ 15AB LHCB $p p$ at $7,8 \mathrm{TeV}$				
${ }^{1}$ AAIJ ${ }^{15} \mathrm{AB}$ reports $\left[m_{B_{j}^{+}}-m_{B^{0}}\right]-\left(m_{B^{*+}}-m_{B^{+}}\right)-m_{\pi^{+}}=425 \pm 15 \pm 14$				
MeV which we adjust by the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^{J},\left(m_{B^{* 0}}-m_{B^{0}}\right)$ $=\left(m_{B^{*+}}-m_{B^{+}}\right)=45.01 \pm 0.30 \pm 0.23 \mathrm{MeV}$, and uses three relativistic Breit-Wigner functions in the fit for mass difference.				

$B_{J}(5840)^{+}$WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{224 \pm 24} \frac{\text { EVTS }}{7 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { TAIJ TECN }} \frac{\text { COMMENT }}{\text { Con }}$

- - We do not use the following data for averages, fits, limits, etc. - •

$215 \pm 27 \pm 80$	7 k	${ }^{2} \mathrm{AAIJ}$	$15 \mathrm{AB} \mathrm{LHCB} p p$ at $7,8 \mathrm{TeV}$
$229 \pm 27 \pm 80$	7 k	${ }^{3} \mathrm{AAIJ}$	$15 \mathrm{AB} \mathrm{LHCB} p p$ at $7,8 \mathrm{TeV}$

${ }^{1}$ Assuming $P=(-1)^{J}$ and using two relativistic Breit-Wigner functions in the fit for mass difference.
${ }^{2}$ Assuming $P=(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for mass difference.
${ }^{3}$ Assuming $P=-(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for
mass difference. mass difference.
$B_{J}(5840)^{+}$DECAY MODES

Mode	Fraction ($\Gamma_{i} / \overline{\text { r }}$)				
$\Gamma_{1} \quad B^{* 0} \pi^{+}$	seen				
$\Gamma_{2} \quad B^{0} \pi^{+}$	possibly seen				
$\left.\boldsymbol{B J}_{\boldsymbol{J}} \mathbf{5 8 4 0}\right)^{+}$BRANCHING RATIOS					
$\Gamma\left(B^{* 0} \pi^{+}\right) / \Gamma_{\text {total }}$					Γ_{1} / Γ
VALUE	EVTS	DOCUMENT ID	- TECN	COMMENT	
seen	7k	AAIJ	15ab LHCB	$p p$ at $7,8 \mathrm{TeV}$	
$\Gamma\left(B^{\mathbf{0}} \pi^{+}\right) / \Gamma_{\text {total }}$					Γ_{2} / Γ
VALUE	EVTS	DOCUMENT ID	- TECN	COMMENT	
possibly seen	7k	${ }^{1}$ AAIJ	15AB LHCB	$p p$ at $7,8 \mathrm{TeV}$	
${ }^{1}$ A $B \pi$ decay is forbidden from a $P=-(-1)^{J}$ parent, whereas $B^{*} \pi$ is allowed.					

$B_{J}(5840)^{+}$REFERENCES

AAIJ 15AB JHEP 1504024 R. Aaij et al. (LHCb Collab.)
$B_{J}(5840)^{0}$
$I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)$
I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE
Quantum numbers shown are quark-model predictions.
$B_{J}(5840)^{0}$ MASS
OUR FIT uses $m_{B^{+}}$and $m_{B_{J}(5840)^{0}}-m_{B^{+}}$to determine $m_{B_{J}(5840)^{0}}$.
Value (MeV) UR FIT

DOCUMENT ID
5863 ± 9 OUR FIT

$B_{J}(5840)^{0}$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{1 2 7} \pm \mathbf{1 7} \pm \mathbf{3 4}} \frac{\text { EVTS }}{12 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{1 \mathrm{AAIJ}} \frac{\text { TECN }}{\text { 15AB }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{\text { pp at } 7,8 \mathrm{TeV}}{}$

- - We do not use the following data for averages, fits, limits, etc. - . -

$107 \pm 20 \pm 34$	12 k	${ }^{2}$ AAIJ	15 AB LHCB $p p$ at $7,8 \mathrm{TeV}$
$119 \pm 17 \pm 34$	12 k	${ }^{3}$ AAIJ	15 AB LHCB

${ }^{1}$ Assuming $P=(-1)^{J}$ and using two relativistic Breit-Wigner functions in the fit for mass 2 difference.
${ }^{2}$ Assuming $P=(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for
3 mass difference.
${ }^{3}$ Assuming $P=-(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{J}(5840)^{0}$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B^{*+} \pi^{-}$	seen
Γ_{2}	$B^{+} \pi^{-}$	possibly seen

Meson Particle Listings
$B_{J}(5840)^{0}, B_{J}(5970)^{+}, B_{J}(5970)^{0}$

$B_{J}(5970)^{+}$MASS

 OUR FIT uses $m_{B^{0}}$ and $m_{B_{J}(5970)^{+}}-m_{B^{0}}$ to determine $m_{B_{J}(5970)^{+}}$ $\frac{\text { VALUE (MeV) }}{5964 \pm 5 \text { OUR FIT }} \quad$ DOCUMENT ID$m_{B_{J}(5970)^{+}}-m_{B^{0}}$
VALUE (MEV) DOCUMENTID TECN COMMENT

685 ± 5 OUR FIT

EVTS

685 ± 5 OUR AVERAGE

$685.3 \pm 4.1 \pm 2.5 \quad 2 \mathrm{~K} \quad 1$ AAIJ $\quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$ $681 \pm 5 \pm 12 \quad 1.4 \mathrm{k} \quad{ }^{2}$ AALTONEN 141 CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$686.8 \pm 4.5 \pm 2.5 \quad 2 \mathrm{~K} \quad{ }^{3}$ AAIJ $\quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1} \mathrm{AAIJ} 15 \mathrm{AB}$ reports $\left[m_{B_{J}^{+}}-m_{B^{0}}\right]-m_{\pi^{+}}=545.8 \pm 4.1 \pm 2.5 \mathrm{MeV}$ which we adjust by the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses two relativistic Breit-Wigner functions in the fit for mass difference.
${ }^{2}$ AALTONEN 14। reports $m_{B_{\lambda}(5970)^{+}}-m_{B^{0}}-m_{\pi^{+}}=541 \pm 5 \pm 12 \mathrm{MeV}$ which we adjusted by the π^{+}mass.
${ }^{3}$ AAIJ 15 AB reports $\left[m_{B_{j}^{+}}-m_{B^{0}}\right]-m_{\pi^{+}}=547 \pm 5 \pm 3 \mathrm{MeV}$ which we adjust by
the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$$
m_{B_{J}(5970)^{+}}-m_{B^{* 0}}
$$

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$686.0 \pm 4.0 \pm 2.5 \quad 2 \mathrm{k} \quad{ }^{1}$ AAIJ $\quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 15 AB reports $\left[m_{B_{J}^{+}}-m_{B^{0}}\right]-\left(m_{B^{*+}}-m_{B^{+}}\right)-m_{\pi^{+}}=547 \pm 4 \pm 3 \mathrm{MeV}$ which we adjust by the π^{+}mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^{J},\left(m_{B^{* 0}}-m_{B^{0}}\right)=\left(m_{B^{*+}}-\right.$ $\left.m_{B^{+}}\right)=45.01 \pm 0.30 \pm 0.23 \mathrm{MeV}$, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{J}(5970)^{+}$WIDTH

VALUE (MeV) EVTS
 62 ± 20 OUR AVERAGE

$63 \pm 15 \pm 17 \quad 2 \mathrm{~K}$
$60{ }_{-20}^{+30} \pm 40 \quad 1.4 \mathrm{k}$
DOCUMENT ID TECN COMMENT
1 AAIJ 15AB LHCB $p p$ at $7,8 \mathrm{TeV}$

AALTONEN 141 CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - . -

$61 \pm 14 \pm 17$	2 K	${ }^{2}$ AAIJ	15AB LHCB $p p$ at $7,8 \mathrm{TeV}$
$61 \pm 15 \pm 17$	2 K	${ }^{3}$ AAIJ	15 AB LHCB $p p$ at $7,8 \mathrm{TeV}$

${ }^{1}$ Assuming $P=(-1)^{J}$ and using two relativistic Breit-Wigner functions in the fit for mass difference.
${ }^{2}$ Assuming $P=(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for
mass difference. Assuming $P=-(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{J}(5970)^{+}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$B^{0} \pi^{+}$	possibly seen
Γ_{2}	$B^{* 0} \pi^{+}$	seen

$\frac{V A L U E(M e V)}{81 \pm 12}$ EVTS DOCUMENT ID TECN COMMENT
81 ± 12 OUR AVERAGE
$82 \pm 8 \pm 9 \quad 10 \mathrm{~K} \quad{ }^{1} \mathrm{AAIJ} \quad 15 \mathrm{AB}$ LHCB $p p$ at $7,8 \mathrm{TeV}$ $70_{-20}^{+30} \pm 30 \quad 2.6 \mathrm{k} \quad$ AALTONEN 14 । CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - . -
$56 \pm 7 \pm 9 \quad 10 \mathrm{~K} \quad{ }_{3}^{2} \mathrm{AAIJ} \quad 15 \mathrm{ABLHCB} \quad p \mathrm{at} 7,8 \mathrm{TeV}$
$82 \pm 10 \pm 9 \quad 10 \mathrm{~K}{ }^{3}$ AAIJ 15АВ LHCB pp at 7, 8 TeV
${ }^{1}$ Assuming $P=(-1)^{J}$ and using two relativistic Breit-Wigner functions in the fit for mass difference.
$2{ }^{\text {Afssuming }} P=(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for
${ }^{3}$ mass difference. $-(-1)^{J}$ and using three relativistic Breit-Wigner functions in the fit for mass difference.
$B_{J}(5970)^{0}$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B^{+} \pi^{-}$	possibly seen
Γ_{2}	$B^{*+} \pi^{-}$	seen

	$B_{J}(5970)^{0}$ BRANCHING RATIOS						$B_{J}(5970){ }^{0}$ REFERENCES				
$\begin{aligned} & \Gamma\left(B^{+} \pi^{-}\right) / \Gamma_{\text {total }} \\ & V A L U E \end{aligned}$	EVTS	DOCUMENT ID		TECN	COMMENT	Γ_{1} / Γ	AAIJ AALTONEN		JHEP 1504024 PR D90 012013	R. Aaij et al. T. Aaltonen et al.	$\begin{gathered} \text { (LHCb Collab.) } \\ (\text { CDF Collab.) } \end{gathered}$
possibly seen	10K	1 AAIJ	15AB	LHCB	$p p$ at 7, 8						
possibly seen	2.6k	AALTONEN		CDF	$p \bar{p}$ at 1.96						
${ }^{1}$ A $B \pi$ decay is forbidden from a $P=-(-1)^{J}$ parent, whereas $B^{*} \pi$ is allowed.											
$\Gamma\left(B^{*+} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{2} / Γ					
Value	EVTS	DOCUMENT ID	-	TECN	COMMENT						
seen	10K	AAIJ	15AB	LHCB	$p p$ at 7, 8						
seen	2.6k	AALTONEN	141	CDF	$p \bar{p}$ at 1.96						

BOTTOM, STRANGE MESONS ($B= \pm 1, S=\mp 1$)
 $B_{s}^{0}=s \bar{b}, \bar{B}_{s}^{0}=\bar{s} b, \quad$ similarly for $B_{s}^{* \prime s}$

$$
I\left(J^{P}\right)=0\left(0^{-}\right)
$$

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

B_{s}^{0} MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
5366.88土 0.14 OUR FIT				
5366.84 ± 0.15 OUR AVERAGE				
$5366.85 \pm 0.19 \pm 0.13$		${ }^{1}$ AAIJ	19 L LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$5366.83 \pm 0.25 \pm 0.27$		${ }^{2}$ AAIJ	18AC LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$5367.08 \pm 0.38 \pm 0.15$	128	${ }^{3}$ AAII	16 U LHCB	$p p$ at 7, 8 TeV
$5366.90 \pm 0.28 \pm 0.23$		${ }^{4}$ AAIJ	12E LHCB	$p p$ at 7 TeV
$5364.4 \pm 1.3 \pm 0.7$		Louvot	09 BELL	$e^{+} e^{-} \rightarrow r(5 S)$
$5366.01 \pm 0.73 \pm 0.33$		${ }^{5}$ ACOSTA	06 CDF	$p \bar{p}$ at 1.96 TeV
$5369.9 \pm 2.3 \pm 1.3$	32	${ }^{6}$ ABE	96B CDF	$p \bar{p}$ at 1.8 TeV
$5374 \pm 16 \pm 2$	3	ABREU	94D DLPH	$e^{+} e^{-} \rightarrow Z$
$5359 \pm 19 \pm 7$	1	${ }^{6}$ AKERS	94J OPAL	$e^{+} e^{-} \rightarrow Z$
$5368.6 \pm 5.6 \pm 1.5$	2	BUSKULIC	93 GLLEP	$e^{+} e^{-} \rightarrow Z$
- - We do not use the following data for averages, fits, limits, etc. • - • $5370 \pm 1 \pm 3$ DRUTSKOY 07A BELL Repl. by LOUVOT 09				
5370 ± 40	6	7 AKERS	94J OPAL	$e^{+} e^{-} \rightarrow$ Z
$5383.3 \pm 4.5 \pm 5.0$	14	ABE	93 F CDF	Repl. by ABE 96B
${ }^{1}$ Uses $B_{S}^{0} \rightarrow J / \psi p \bar{p}$ decays.				
${ }^{2}$ Uses $B_{S} \rightarrow \chi_{C 1} K^{+} K^{-}$mode.				
${ }^{3}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}, \phi \rightarrow K^{+} K^{-}$decays, and observes 128 ± 13 events of B_{S}^{0} $J / \psi \phi \phi$.				
${ }^{4}$ Uses $B_{S}^{0} \rightarrow J / \psi \phi$ fully reconstructed decays.				
${ }^{5}$ Uses exclusively rec ${ }^{6}$ From the decay B_{S}	$\rightarrow \mathrm{structed}$	inal states cont ϕ.	ing a $J / \psi \rightarrow$	$\mu^{+} \mu^{-}$decays.
${ }^{7}$ From the decay $B_{S} \rightarrow D_{S}^{-} \pi^{+}$.				

$m_{B_{s}^{0}}-m_{B}$

m_{B} is the average of our B masses $\left(m_{B^{ \pm}}+m_{B^{0}}\right) / 2$.

(ev)	MENT ID	ECN	OMMENT
87.38 ± 0.16 OUR FIT			
87.42 ± 0.24 OUR AVERAGE			
$87.60 \pm 0.44 \pm 0.09$	${ }^{1}$ AAIJ	LHCB	$p p$ at $7,8 \mathrm{TeV}$
$87.42 \pm 0.30 \pm 0.09$	${ }^{2}$ AAIJ $\quad 12 \mathrm{E}$	LHC	
$86.64 \pm 0.80 \pm 0.08$	${ }^{3}$ ACOSTA 06	CDF	1.96
- - We use the following data for averages but not for fits.			
$89.7 \pm 2.7 \pm 1.2 \quad$ ABE 96B CDF $p \bar{p}$ at 1.8 TeV - - We do not use the following data for averages, fits, limits, etc. - - -			
80 to 13068 LEE-FRANZINI90 CSB2 $e^{+} e^{-} \rightarrow \gamma_{(5 S)}$			
${ }^{1}$ The reported result is $m_{B_{s}^{0}}-m_{B^{0}}=87.45 \pm 0.44 \pm 0.09 \mathrm{MeV}$. We convert it to the mass difference with respect to the average of $\left(m_{B^{ \pm}}+m_{B^{0}}\right) / 2$. Uses the mode $B_{S}^{0} \rightarrow$ $\psi(2 S) K^{-} \pi^{+}$.			
${ }^{2}$ The reported result is $m_{B_{S}^{0}}-m_{B^{+}}=87.52 \pm 0.30 \pm 0.12 \mathrm{MeV}$. We convert it to the mass difference with respect to the average of $\left(m_{B^{ \pm}}+m_{B^{0}}\right) / 2$.			
${ }^{3}$ The reported result is $m_{B_{s}^{0}}-m_{B^{0}}=86.38 \pm 0.90 \pm 0.06 \mathrm{MeV}$. We convert it to the mass difference with respect to the average of $\left(m_{B^{ \pm}}+m_{B^{0}}\right) / 2$.			

$$
m_{B_{s H}^{0}}-m_{B_{s L}^{0}}
$$

See the $B_{s}^{0}-\bar{B}_{s}^{0}$ MIXING section near the end of these B_{s}^{0} Listings.

B_{s}^{0} MEAN LIFE

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/). It is derived from the average of ${ }^{\circ}{ }_{B S}^{0}$.
$\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)$
EVTS
DOCUMENT ID TECN COMMENT
1.515 ± 0.004 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - . -
$1.518 \pm 0.041 \pm 0.027 \quad{ }^{1}$ AALTONEN 11 AP CDF $\quad p \bar{p}$ at 1.96 TeV

1.398	$8 \pm \pm 0.044{ }_{-0.025}^{+0.028}$		${ }^{2}$ ABAZOV		D0	$p \bar{p}$ at 1.96 TeV
	${ }_{-0.13}^{+0.14} \pm 0.03$		${ }^{3}$ Abreu		DLPH	$e^{+} e^{-} \rightarrow$ Z
	${ }_{-0.15}^{+0.16} \pm 0.07$		${ }^{4}$ ABREU,P		DLPH	$e^{+} e^{-} \rightarrow z$
	$\pm 0.09{ }_{-0.05}^{+0.06}$		${ }^{5}$ ABE	99D	CDF	$p \bar{p}$ at 1.8 TeV
1.72	${ }_{-0.19}^{+0.20}{ }_{-0.17}^{+0.18}$		${ }^{6}$ ACKERSTAFF	98F	OPAL	$e^{+} e^{-} \rightarrow$ Z
	${ }_{-0.15}^{+0.16} \pm 0.04$		${ }^{5}$ ACKERSTAFF	986	OPAL	$e^{+} e^{-} \rightarrow$
1.47	$\pm 0.14 \pm 0.08$		${ }^{4}$ BARATE	98 C	ALEP	$e e^{+} \rightarrow Z$
1.51	± 0.11		${ }^{7}$ barate	98 C	ALEP	$e^{+} e^{-} \rightarrow$ Z
	${ }_{-0.26}^{+0.29}{ }_{-0.07}^{+0.08}$		${ }^{5}$ Abreu	96F	DLPH	Repl. by ABREU 00Y
	${ }_{-0.31}^{+0.34} \pm 0.12$		${ }^{4}$ ABREU	96F	DLPH	Repl. by AbREU 00Y
1.76	$\pm 0.20{ }_{-0.10}^{+0.15}$		8 Abreu	96F	DLPH	Repl. by ABREU 00Y
1.60	$\pm 0.26{ }_{-0.15}^{+0.13}$		${ }^{9}$ AbREU	96F	DLPH	Repl. by ABREU,P 00 G
1.67	± 0.14		${ }^{10}$ Abreu	96F	DLPH	$e^{+} e^{-} \rightarrow$
1.61	${ }_{-0.29}^{+0.30}{ }_{-0.16}^{+0.18}$	90	${ }^{4}$ BUSKULIC	96E	ALEP	Repl. by BARATE 98C
1.54	${ }_{-0.13}^{+0.14} \pm 0.04$		${ }^{5}$ BUSKULIC	96 M	ALEP	$+e^{-} \rightarrow$ Z
1.42	${ }_{-0.23}^{+0.27} \pm 0.11$	76	${ }^{5}$ ABE	95R	CDF	Repl. by ABE 99D
1.74	${ }_{-0.69}^{+1.08} \pm 0.07$	8	${ }^{11} \mathrm{ABE}$	95R	CDF	Sup. by ABE 96N
1.54	${ }_{-0.21}^{+0.25} \pm 0.06$	79	${ }^{5}$ AKERS	95 G	OPAL	Repl. by ACKERSTAFF 98G
1.59	${ }_{-0.15}^{+0.17} \pm 0.03$	134	${ }^{5}$ BUSKULIC	950	ALEP	Sup. by BUSKULIC 96m
0.96	± 0.37	41	12 Abreu	94E	DLPH	Sup. by ABREU 96F
1.92	${ }_{-0.35}^{+0.45} \pm 0.04$	31	${ }^{5}$ BUSKULIC	94 C	ALEP	Sup. by BUSKULIC 950
1.13	${ }_{-0.26}^{+0.35} \pm 0.09$	22	${ }^{5}$ ACTON		OPAL	Sup. by AKERS 956
${ }^{1}$ AALTONEN 11AP combines the fully reconstrcuted $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$decays and partially reconstructed $B_{s}^{0} \rightarrow D_{S} X$ decays. ${ }^{2}$ Measured using $D_{S} \mu^{+}$vertices. ${ }^{3}$ Uses $D_{s}^{-} \ell^{+}$, and $\phi \ell^{+}$vertices. ${ }^{4}$ Measured using D_{S} hadron vertices. ${ }^{5}$ Measured using $D_{s}^{-} \ell^{+}$vertices. ${ }^{6}$ ACKERSTAFF 98 F use fully reconstructed $D_{S}^{-} \rightarrow \phi \pi^{-}$and $D_{S}^{-} \rightarrow K^{* 0} K^{-}$in the inclusive B_{S}^{0} decay. ${ }^{7}$ Combined results from $D_{S}^{-} \ell^{+}$and D_{S} hadron. ${ }^{8}$ Measured using $\phi \ell$ vertices. ${ }^{9}$ Measured using inclusive D_{S} vertices. ${ }^{10}$ Combined result for the four ABREU 96F methods. ${ }^{11}$ Exclusive reconstruction of $B_{S} \rightarrow \psi \phi$. ${ }^{12}$ ABREU 94E uses the flight-distance distribution of D_{S} vertices, ϕ-lepton vertices, and $D_{S} \mu$ vertices.						

$\Gamma_{B_{s}^{0}}$

"OUR EVALUATION" is an average performed by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) as described in our "Review on $B-\bar{B}$ Mixing" in the B^{0} section of these Listings. It includes the measurements of $\Gamma_{B_{s}^{0}}$ and $\Delta \Gamma_{B_{s}^{0}}$ listed in this section, as well as constraints from effective lifetimes with pure $C P$ modes and flavor-specific modes.

- - We do not use the following data for averages, fits, limits, etc. - - -

$0.650 \pm 0.006 \pm 0.004$	${ }^{1}$ AAIJ	17V	LHCB	Repl. by AAIJ 19Q
$0.6603 \pm 0.0027 \pm 0.0015$	${ }^{4}$ AAIJ	151	LHCB	Repl. by AAIJ 19Q
$0.677 \pm 0.007 \pm 0.004$	${ }^{2}$ AAD	14 U	ATLS	Repl. by AAD 16AP
$0.661 \pm 0.004 \pm 0.006$	${ }^{5}$ AAIJ	13AR	LHCB	Repl. by AAIJ 15।
$0.677 \pm 0.007 \pm 0.004$	${ }^{2}$ AAD	12CV	ATLS	Repl. by AAD 14U
$0.657 \pm 0.009 \pm 0.008$	${ }^{2}$ AAIJ	12D	LHCB	Repl. by AAIJ 13AR
$0.654 \pm 0.011 \pm 0.005$	2,6 AALTONEN	12D	CDF	Repl. by AALTONEN 12AJ
$0.672 \pm 0.027 \pm 0.013$	2 ABAZOV	09E	D0	Repl. by ABAZOV 08AM
$0.658 \pm 0.017 \pm 0.009$	2,7 AALTONEN	08J	CDF	Repl. by AALTONEN 12D
$0.658 \pm 0.022 \pm 0.004$	${ }^{2}$ ABAZOV	08AM		Repl. by ABAZOV 12D
$0.658 \pm 0.035{ }_{-0.004}^{+0.0130}$	2,7 ABAZOV	07	D0	Repl. by ABAZOV 09E
$0.714{ }_{-0.008}^{+0.007} \pm 0.010$	2,7 ACOSTA	05	CDF	Repl. by AALTONEN 08J

```
\({ }^{1}\) Measured using time-dependent angular analysis of \(B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}\)in the region
\(\mathrm{m}(K K)>1.05 \mathrm{GeV}\).
\({ }^{2}\) Measured using a time-dependent angular analysis of \(B_{s}^{0} \rightarrow J / \psi \phi\) decays.
\({ }^{3}\) Measured using a time-dependent angular analysis of \(B_{S}^{0} \rightarrow \psi(2 S) \phi\) decays
\({ }^{4}\) Measured using a time-dependent angular analysis of \(B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}\)decays.
\({ }^{5}\) Measured using a combined time-dependent angular analysis of \(B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}\)and
    \(B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}\)decays.
\({ }^{6}\) Assuming CPV phase \(\phi_{S}=-0.04\).
\({ }^{7}\) Assuming CPV phase \(\phi_{S}=0\).
```


$\Delta \Gamma_{B_{s}^{0}}$

"OUR EVALUATION" is an average performed by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) as described in our "Review on $B-\bar{B}$ Mixing" in the B^{0} section of these Listings. It includes the measurements of $\Gamma_{B_{s}^{0}}$ and $\Delta \Gamma_{B_{s}^{0}}$ listed in this section, as well as constraints from effective lifetimes with pure $C P$ modes and flavor-specific modes.

${ }^{7}$ Uses the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays and assuming $C P$ violating angle $\beta_{s}\left(B^{0} \rightarrow J / \psi \phi\right)=0.02$.
${ }^{8}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ and $B_{s}^{0} \rightarrow J / \psi \phi$.
${ }^{9}$ Measured using the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays and assuming $C P$-violating phase $\phi_{s}=0$.
${ }^{10}$ Obtaines $90 \% \mathrm{CL}$ interval $-0.06<\Delta \mathrm{\Gamma}_{s}<0.30$.
${ }^{11}$ ABAZOV 07 reports $0.17 \pm 0.09 \pm 0.02$ with $C P$-violating phase ϕ_{s} as a free parameter.
${ }^{12}$ Combines D^{0} measurements of time-dependent angular distributions in $B_{S}^{0} \rightarrow J / \psi \phi$ and charge asymmetry in semileptonic decays. There is a 4 -fold ambiguity in the solution.

$$
\Delta \Gamma_{B_{s}^{0}} / \Gamma_{B_{s}^{0}}
$$

$\Gamma_{B_{S}^{0}}$ and $\Delta \Gamma_{B_{S}^{0}}$ are the decay rate average and difference between two B_{S}^{0} $C P$ eigenstates (light - heavy).
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/). It is derived from the averages of $\Gamma_{B_{S}^{0}}$ and $\Delta \Gamma_{B_{S}^{0}}$ (and their correlation).

$0.129 \pm \mathbf{0 . 0 0 6}$ OUR EVALUAT OOCUMENT ID
 \qquad TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$B_{s H}^{0}$ MEAN LIFE

$B_{s H}^{0}$ is the heavy mass state of two $B_{S}^{0} C P$ eigenstates.
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/). It is derived from the averages of $\Gamma_{B_{s}^{0}}$ and $\Delta \Gamma_{B_{s}^{0}}$ (and their correlation).
$\frac{\text { VALUE }\left(10^{-12} \mathrm{~s}\right)}{\mathbf{1 . 6 2 0} \mathbf{\pm 0 . 0 0 7} \text { OUR EVALUATION }} \frac{\text { DOCUMENT ID }}{\text { TECN COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. • - •
$1.677 \pm 0.034 \pm 0.011$
$2.04 \pm 0.44 \pm 0.05$
$1.70 \pm 0.14 \pm 0.05$
$1.75 \pm 0.12 \pm 0.07$
$1.652 \pm 0.024 \pm 0.024$
$1.700 \pm 0.040 \pm 0.026$
$1.70 \underset{-0.11}{+0.12} \pm 0.03$
$1.613_{-0.113}^{+0.123}$
$1.58{ }_{-0.42}^{+0.39}{ }_{-0.02}^{+0.01}$
$2.07{ }_{-0.46}^{+0.58} \pm 0.03$

1 SIRUNYAN	18BY CMS	$p p$ at 8 TeV
2 AAIJ	17AI LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
${ }^{3}$ ABAZOV	16C D0	$p \bar{p}$ at 1.96 TeV
${ }^{4}$ AAIJ	13AB LHCB	$p p$ at 7 TeV
${ }^{5}$ AAIJ	13AR LHCB	$p p$ at 7 TeV
${ }^{6}$ AAIJ	12AN LHCB	$p p$ at 7 TeV
${ }^{7}$ AALTONEN	12D CDF	$p \bar{p}$ at 1.96 TeV
${ }^{6}$ AALTONEN	11AB CDF	$p \bar{p}$ at 1.96 TeV
${ }^{\text {8,9 }}$ AALTONEN	08 J CDF	Repl. by AALTONEN 12D
${ }^{9}$ ABAZOV	05 w D0	Repl. by ABAZOV 08AM
${ }^{9}$ ACOSTA	05	CDF

${ }^{1}$ Measured using $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays with $0.9240<\mathrm{m}(\pi \pi)<1.0204 \mathrm{GeV}$, which is dominated by the $f_{0}(980)$ resonance, making it a $C P$-odd state.
${ }^{2}$ Measured using $B_{S} \rightarrow \mu^{+} \mu^{-}$decays which, in the Standard Model, correspond to $B_{s H}^{0}$ decays. Assumes $-2 \operatorname{Re}(\lambda) /\left(1+|\lambda|^{2}\right)=1$.
${ }^{3}$ Measured using $J / \psi \pi^{+} \pi^{-}$mode with $0.880<m(\pi \pi)<1.080 \mathrm{GeV} / \mathrm{c}^{2}$, which is mostly $J / \psi f(0)(980)$ mode, a pure $C P$-odd final state.
${ }^{4}$ Measured using a pure $C P$-odd final state $J / \psi K_{S}^{0}$ with the assumption that contributions from penguin diagrams are small.
${ }^{5}$ Measured using $B_{S} \rightarrow J / \psi \pi^{+} \pi^{-}$decays which, in the limit of $\phi_{S}=0$ and $|\lambda|=1$, correspond to $B_{s H}^{0}$ decays.
${ }^{6}$ Measured using a pure $C P$-odd final state $J / \psi f_{0}(980)$
${ }^{7}$ Uses the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays assuming $C P$-violating angle $\beta_{S}\left(B^{0} \rightarrow J / \psi \phi\right)=0.02$.
${ }^{8}$ Obtained from $\Delta \Gamma_{s}$ and Γ_{s} fit with a correlation of 0.6.
${ }^{9}$ Measured using the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.

$B_{s L}^{0}$ MEAN LIFE

$$
B_{s L}^{0} \text { is the light mass state of two } B_{S}^{0} C P \text { eigenstates. }
$$

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/). It is derived from the averages of $\Gamma_{B_{s}^{0}}$ and $\Delta \Gamma_{B_{s}^{0}}$ (and their correlation).

$\operatorname{VaLUE}\left(10^{-12} \mathrm{~s}\right)$			
1.423 ± 0.005 OUR EVALUATION			
- - We do not use the following data for averages, fits, limits, etc. - -			
1.40 ± 0.02	${ }^{1}$ SIRUNYAN	18 By CMS	$p p$ at 8 TeV
$1.479 \pm 0.034 \pm 0.011$	${ }^{2}$ AAIJ	16aL LHCB	t 7, 8 TeV
$1.379 \pm 0.026 \pm 0.017$	${ }^{3}$ AAIJ	14 F LHCB	$p p$ at $7,8 \mathrm{TeV}$
$1.407 \pm 0.016 \pm 0.007$	${ }^{4}$ AAIJ	14R LHCB	$p p$ at 7 TeV
$1.440 \pm 0.096 \pm 0.009$	${ }^{4}$ AAIJ	12 LHCB	Repl. by AAIJ 14R
$1.455 \pm 0.046 \pm 0.006$	${ }^{4}$ AAIJ	12R LHCB	Repl. by AAIJ 14R
	${ }^{5}$ AALTONEN	12D CDF	$p \bar{p}$ at 1.96 TeV
$1.437{ }_{-0.047}^{+0.054}$	6,7 AALTONEN	08J CDF	Repl. by AALTONEN 12D
$1.24{ }_{-0.11}^{+0.14}{ }_{-0.02}^{+0.01}$	${ }^{7}$ ABAZOV	05w Do	Repl. by ABAZOV 08am
$1.05{ }_{-0.13}^{+0.16} \pm 0.02$	${ }^{7}$ ACOSTA	05 CDF	Repl. by AALTONEN 08」
$1.27 \pm 0.33 \pm 0.08$	${ }^{8}$ barate	00k ALEP	- \rightarrow
${ }^{1}$ Measured using results in SIRUNYAN 18BY for the heavy B_{S}^{0} lifetime obtained from $B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays and the average effective $B_{s}^{0} \rightarrow J / \psi \phi$ lifetime, and magnitude squared of the $C P$-odd amplitude $\left\|A_{\perp}\right\|^{2}=0.250 \pm 0.006$. The uncertainty includes all statistical and systematic contributions. ${ }^{2}$ Measured using $B_{s}^{0} \rightarrow \mathrm{~J} / \psi \eta$ decays.			
${ }^{3}$ Measured using $B_{S}^{0} \rightarrow D_{S}^{-} D_{S}^{+}$. The effective lifetime is translated into a decay width of $\Gamma_{L}=0.725 \pm 0.014 \pm 0.009 \mathrm{ps}^{-1}$.			
${ }^{5}$ Uses the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays and assuming $C P$ violating angle $\beta_{S}\left(B^{0} \rightarrow J / \psi \phi\right)=0.02$.			
${ }^{6}$ Obtained from $\Delta \Gamma_{s}$ and Γ_{s} fit with a correlation of 0.6.			
${ }^{8}$ Uses $\phi \phi$ correlations from $B_{S}^{0} \rightarrow D_{s}^{(*)+} D_{S}^{(*)-}$.			

B_{s}^{0} MEAN LIFE (Flavor specific)

$\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)$	DOCUMENT ID	TECN	COMMENT
1.527 ± 0.011 OUR EVALUATION			
1.526 ± 0.015 OUR AVERAGE E	Error includes scale factor of 1.3. See the ideogram below.		
$1.547 \pm 0.013 \pm 0.011$	${ }^{1}$ AAIJ	17 AN LHCB	$p p$ at $7,8 \mathrm{TeV}$
$1.479 \pm 0.010 \pm 0.021$	${ }^{2}$ ABAZOV	15A D0	$p \bar{p}$ at 1.96 TeV
$1.535 \pm 0.015 \pm 0.014$	${ }^{3}$ AAIJ	14ax LHCB	$p p$ at 7 TeV
$1.52 \pm 0.15 \pm 0.01$	${ }^{4}$ AAIJ	14 F LHCB	$p p$ at 7, 8 TeV
$1.60 \pm 0.06 \pm 0.01$	${ }^{5}$ AAIJ	14R LHCB	$p p$ at 7 TeV
$1.518 \pm 0.041 \pm 0.027$	${ }^{6}$ AALTONEN	11AP CDF	$p \bar{p}$ at 1.96 TeV
$1.42{ }_{-0.13}^{+0.14} \pm 0.03$	${ }^{7}$ Abreu	$00 Y$ DLPH	$e^{+} e^{-} \rightarrow$ Z
$1.36 \pm 0.09{ }_{-0.05}^{+0.06}$	${ }^{8} \mathrm{ABE}$	99D CDF	$p \bar{p}$ at 1.8 TeV
$1.50{ }_{-0.15}^{+0.16} \pm 0.04$	${ }^{8}$ ACKERSTAFF	98 G OPAL	$e^{+} e^{-} \rightarrow$ z
$1.54{ }_{-0.13}^{+0.14} \pm 0.04$	${ }^{8}$ BUSKULIC	M ALEP	$e^{+} e^{-} \rightarrow Z$
- - We do not use the following data for averages, fits, limits, etc. - -			
$1.398 \pm 0.044{ }_{-0.025}^{+0.028}$	${ }^{9}$ ABAZOV	06v Do	Repl. by ABAZOV 15A
${ }^{1}$ AAIJ 17an value was measured using $B_{S}^{0} \rightarrow D_{S}^{(*)-}{ }_{\mu}{ }^{+} \nu_{\mu}$ decays relative to $B^{0} \rightarrow$ $D^{(*)-} \mu^{+} \nu_{\mu}$ decays.			
${ }^{2}$ Measured using $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu} X$ decays.			
${ }^{3}$ Measured using the $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decays.			
${ }^{4}$ Measured using $B_{S}^{0} \rightarrow D^{+} D_{S}^{-}$.			

${ }^{5}$ Measured using $B_{S}^{0} \rightarrow \pi^{+} K^{-}$decays.
${ }^{6}$ AALTONEN 11AP Combines the fully reconstrcuted $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$decays and partially reconstructed $B_{S}^{0} \rightarrow D_{S} X$ decays.
${ }^{7}$ Uses $D_{S}^{-} \ell^{+}$, and $\phi \ell^{+}$vertices.
${ }^{8}$ Measured using $D_{s}^{-} \ell^{+}$vertices.
${ }^{9}$ Measured using $D_{s}^{-} \mu^{+}$vertices.

B_{s}^{0} MEAN LIFE $\left(B_{S} \rightarrow J / \psi \phi\right)$

$\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)$	DOCUMENT ID	TECN	COMMENT
1.480 ± 0.007 OUR EVALUATION			
1.480 ± 0.007 OUR AVERAGE			
$1.481 \pm 0.007 \pm 0.005$	${ }^{1}$ SIRUNYAN	18BY CMS	$p p$ at 8 TeV
$1.480 \pm 0.011 \pm 0.005$	${ }^{1}$ AAIJ	14E LHCB	$p p$ at 7 TeV
$1.444{ }_{-0.090}^{+0.098} \pm 0.020$	${ }^{1}$ ABAZOV	05B D0	$p \bar{p}$ at 1.96 TeV
$1.34{ }_{-0.19}^{+0.23} \pm 0.05$	${ }^{2}$ ABE	98B CDF	$p \bar{p}$ at 1.8 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -

$\Gamma_{B_{s}^{0}}-\Gamma_{B^{0}}$
$\frac{\text { VALUE }\left(10^{12} \mathrm{~s}^{-1}\right)}{\mathbf{- 0 . 0 0 4 1} \pm \mathbf{0 . 0 0 2 4} \pm \mathbf{0 . 0 0 1 5}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \quad 19 \mathrm{AAIJ}$
$\mathbf{1}_{\text {Measured using time-dependent angular analysis of } B_{s}^{0} \rightarrow J / \psi K^{+} K^{-} \text {decays. }} \quad$ THCB $\frac{\text { COMMENT }}{\text { pp at } 13 \mathrm{TeV}}$
$\Gamma_{B_{s H}^{0}}-\Gamma_{B^{0}}$
$\frac{\operatorname{VALUE}\left(10^{12} \mathrm{~s}^{-1}\right)}{\mathbf{- 0 . 0 5} \pm \mathbf{0 . 0 0 4} \pm \mathbf{0 . 0 0 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} 19$ AF $\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8,13 \mathrm{TeV}}$
${ }^{1}$ Measured in $B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.

B_{s}^{0} DECAY MODES

These branching fractions all scale with $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)$.
The branching fraction $\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)$ is not a pure measurement since the measured product branching fraction $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right) \times$ $\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)$ was used to determine $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$, as described in the note on " $B^{0}-\bar{B}^{0}$ Mixing"
For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction（ $\left.\Gamma_{i} / \Gamma\right) \quad$ Co	Scale factor／ Confidence Ievel	Γ_{60} Γ_{61}	$\begin{aligned} & J / \psi(1 S) f_{2}(1270), \quad f_{2} \rightarrow \\ & \pi^{+} \pi^{-} \\ & J / \psi(1 S) f_{2}(1270)_{0}, \quad f_{2} \rightarrow \end{aligned}$	$(1.1 \pm 0.4) \times 10^{-6}$ $(7.5 \pm 1.8) \times 10^{-7}$		
Γ_{1}	D_{s}^{-}anything	（93 ± 25 ）\％		Γ_{62}	$J / \psi(1 S) f_{2}(1270){ }_{\\|}, f_{2} \rightarrow$	$(1.09 \pm 0.34) \times 10^{-6}$		
Γ_{2}	$\ell \nu_{\ell} X$	$(9.6 \pm 0.8) \%$			$\pi^{+} \pi^{-}$			
Γ	$e^{+} \nu X^{-}$	$(9.1 \pm 0.8) \%$		Γ_{63}	$J / \psi(1 S) f_{2}(1270)_{\perp}, f_{2} \rightarrow$	$(1.3 \pm 0.8) \times 10^{-6}$		
Γ_{4}	$\mu^{+} \nu X^{-}$	$(10.2 \pm 1.0) \%$			$\pi^{+} \pi^{-}$			
Γ_{5}	$D_{s}^{-} \ell^{+} \nu_{\ell}$ anything	［a］（ $8.1 \pm 1.3) \%$		Γ_{64}	$J / \psi(1 S) f_{0}(1370), f_{0} \rightarrow$	$\left(4.5{ }_{-}^{+} 0.7\right.$（ ${ }^{\text {a }}$ ）$\times 10^{-5}$		
Γ_{6}	$D_{s}^{*-} \ell^{+} \nu_{\ell}$ anything	$(5.4 \pm 1.1) \%$			$\pi^{+} \pi^{-}$			
Γ_{7}	$D_{s 1}^{s}(2536)^{-} \mu^{+} \nu_{\mu}, \quad D_{s 1}^{-} \rightarrow$	$(2.7 \pm 0.7) \times 10^{-3}$		Γ_{65}	$J / \psi(1 S) f_{0}(1500), \quad f_{0} \rightarrow$	$(2.11-0.40) \times 10^{-5}$		
Γ_{8}	$\begin{aligned} & D_{s 1}(2536)^{-} \\ & \bar{D}^{0} K^{+} \end{aligned} X \mu^{+} \nu, \quad D_{s 1}^{-} \rightarrow$	$(4.4 \pm 1.3) \times 10^{-3}$		Γ_{66}	$\begin{gathered} J / \psi(1 S) f_{2}^{\prime}(1525)_{0}, \quad f_{2}^{\prime} \rightarrow \\ \pi^{+} \pi^{-} \end{gathered}$	$(1.07 \pm 0.24) \times 10^{-6}$		
Γ_{9}	$\begin{aligned} & D_{s 2}(2573)^{-}-X \mu^{+} \nu, \quad D_{s 2}^{-} \rightarrow \\ & \bar{D}^{0} K^{+} \end{aligned}$	$(2.7 \pm 1.0) \times 10^{-3}$		Γ_{67}	$J / \psi(1 S) f_{2}^{\prime}(1525)_{\\|}, \quad f_{2}^{\prime} \rightarrow$	$(1.3-0.9) \times 10^{-7}$		
Γ_{10}	$D_{s}^{-} \pi^{+}$	$(3.00 \pm 0.23) \times 10^{-3}$		Γ_{68}	$J / \psi(1 S) f_{2}^{\prime}(1525) \perp, f_{2}^{\prime} \rightarrow$	$\left(\begin{array}{lll}5 & \pm 4\end{array}\right) \times 10^{-7}$		
Γ_{11}	$D_{s}^{-} \rho^{+}$	$(6.9 \pm 1.4) \times 10^{-3}$			$\pi^{+} \pi^{-}$			
Γ_{12}	$D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}$	$(6.1 \pm 1.0) \times 10^{-3}$		Γ_{69}	$J / \psi(1 S) f_{0}(1790), f_{0} \rightarrow$	$\left(5.0{ }_{-1.1}^{+11.0}\right) \times 10^{-6}$		
Γ_{13}	$\begin{aligned} & D_{s 1}(2536)^{-} \pi^{+}, \quad D_{s 1}^{-} \rightarrow \\ & D_{s}^{-} \pi^{+} \pi^{-} \end{aligned}$	$(2.5 \pm 0.8) \times 10^{-5}$		Γ_{70}	$\pi^{+} \pi^{-}$ $J / \psi(1 S) \pi^{+} \pi^{-}$（nonresonant）	$\left(1.8 \pm{ }_{-}^{+1.4}\right) \times 10^{-5}$		
Γ_{14}	$D_{s}^{\mp} K^{ \pm}{ }^{s}$	$(2.27 \pm 0.19) \times 10^{-4}$		Γ_{71}	$J / \psi(1 S) \bar{K}^{0} \pi^{+} \pi^{-}$	$<4.4 \times 10^{-5}$	$\mathrm{CL}=90 \%$	
Γ_{15}	$D_{s}^{-} K^{+} \pi^{+} \pi^{-}$	$(3.2 \pm 0.6) \times 10^{-4}$		Γ_{72}	$J / \psi(1 S) K^{+} K^{-}$	$(7.9 \pm 0.7) \times 10^{-4}$		
Γ_{16}	$D_{s}^{+} D_{s}^{-}$	$(4.4 \pm 0.5) \times 10^{-3}$		Γ_{73}	$J / \psi(1 S) K^{0} K^{-} \pi^{+}+$c．c．	$(9.2 \pm 1.3) \times 10^{-4}$		
Γ_{17}	$D_{s}^{-} D^{+}$	$(2.8 \pm 0.5) \times 10^{-4}$		Γ_{75}	$J / \psi(1 S) K^{0} K^{+} K^{-}$	$<1.2 \times 10^{-5}$	$\mathrm{CL}=90 \%$	
Γ_{18}	$D^{+} D^{-}$	$(2.2 \pm 0.6) \times 10^{-4}$			$f_{2}^{\prime}(1525)$	$0.6) \times 10^{-4}$		
Γ_{19}	$D^{0} \bar{D}^{0}$	$(1.9 \pm 0.5) \times 10^{-4}$		「77	$J / \psi(1 S)$	$\begin{array}{r} (3.6 \pm 0.4) \times 10^{-6} \\ <\quad 7.3 \\ \times 10^{-6} \end{array}$		
$\Gamma 20$	$D_{S}^{*-} \pi^{+}$	$(2.0 \pm 0.5) \times 10^{-3}$		「77	$J / \psi(1 S) \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$(7.8 \pm 1.0) \times 10^{-5}$	CL＝90\％	
Γ_{21}	$D_{s}^{* \mp} K^{ \pm}$	$(1.33 \pm 0.35) \times 10^{-4}$		Γ_{79}	$J / \psi(1 S) f_{1}(1285)$	$(7.2 \pm 1.4) \times 10^{-5}$		
Γ_{22}	$D_{s}^{*-} \rho^{+}$	$(9.6 \pm 2.1) \times 10^{-3}$		Γ_{80}	$\psi(2 S) \eta$	$(3.3 \pm 0.9) \times 10^{-4}$		
$\Gamma 23$	$D_{s}^{*+} D_{s}^{-}+D_{s}^{*-} D_{s}^{+}$	（ 1.39 ± 0.17 ）\％		Γ_{81}	$\psi(2 S) \eta^{\prime}$	$(1.29 \pm 0.35) \times 10^{-4}$		
Γ_{24}	$D_{s}^{*+} D_{s}^{*-}$	（ 1.44 ± 0.21 ）\％	$\mathrm{S}=1.1$	Γ_{82}	$\psi(2 S) \pi^{+} \pi^{-}$	$(7.1 \pm 1.3) \times 10^{-5}$		
Γ_{25}	$D_{s}^{(*)+} D_{s}^{(*)-}$	$(4.5 \pm 1.4) \%$		Γ_{83}	$\psi(2 S) \phi$	$(5.4 \pm 0.6) \times 10^{-4}$		
Γ_{26}	$\bar{D}^{*}{ }^{\text {d }} \bar{K}^{0}{ }^{\text {d }}$	$(2.8 \pm 1.1) \times 10^{-4}$		Γ_{84}	$\psi(2 S) K^{-} \pi^{+}$	$(3.1 \pm 0.4) \times 10^{-5}$		
$\Gamma 27$	$\bar{D}^{0} \bar{K}^{0}$	$(4.3 \pm 0.9) \times 10^{-4}$		「85	$\psi(2 S) \bar{K}^{*}(892)^{0}$	$(3.3 \pm 0.5) \times 10^{-5}$		
$\Gamma 28$	$\bar{D}^{0} K^{-} \pi^{+}$	$(1.04 \pm 0.13) \times 10^{-3}$		「86	$\chi_{c 1}{ }^{\text {b }}$	$(2.04 \pm 0.30) \times 10^{-4}$		
$\Gamma 29$	$\bar{D}^{0} \bar{K}^{*}(892)^{0}$	$(4.4 \pm 0.6) \times 10^{-4}$		Γ_{87}	$\chi_{c 1} K^{+} K^{-}$			
$\Gamma 30$	$\bar{D}^{0} \bar{K}^{*}(1410)$	$(3.9 \pm 3.5) \times 10^{-4}$		Γ^{88}	$\chi_{c 2} K^{+} K^{-}$			
Γ_{31}	$\bar{D}^{0} \bar{K}_{0}^{*}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		「89	$\pi^{+} \pi^{-}$	$(7.0 \pm 1.0) \times 10^{-7}$		
Γ_{32}	$\bar{D}^{0} \bar{K}_{2}^{*}(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		「90	$\pi^{0} \pi^{0}$	$<2.1 \quad \times 10^{-4}$	CL=90\%	
Γ_{33}	$\bar{D}^{0} \bar{K}^{*}(1680)$	$<7.8 \times 10^{-5}$	－CL＝90\％	「91		$\begin{array}{ll}<1.0 & \times 10^{-3} \\ <1.5 & \times 10^{-3}\end{array}$	$\mathrm{CL}=90 \%$	
「34	$\bar{D}^{0} \bar{K}_{0}^{*}(1950)$	$<1.1 \times 10^{-4}$	－4 CL＝90\％	「92	$\rho^{0} \rho^{0}$	$\begin{array}{ll}<1.5 & \\ < & 3.20\end{array}$	CL＝90\％ CL	
Γ_{35}	$\bar{D}^{0} \bar{K}_{3}^{*}(1780)$	$<2.6 \times 10^{-5}$	－ $\mathrm{CL}=90 \%$	Γ_{94}	$\eta^{\prime} \eta^{\prime}$	$(3.3 \pm 0.7) \times 10^{-5}$		
「36	$\bar{D}^{0} \bar{K}_{4}^{*}(2045)$	$<3.1 \times 10^{-5}$	$5 \mathrm{CL}=90 \%$	「95	$\eta^{\prime} \phi$	$<8.2 \times 10^{-7}$	$\mathrm{CL}=90 \%$	
「37	$\bar{D}^{0} K^{-} \pi^{+}$（non－resonant）	$(2.1 \pm 0.8) \times 10^{-4}$		Γ_{96}	$\phi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}$	$(1.12 \pm 0.21) \times 10^{-6}$		
「38	$\underset{s \frac{D_{2}}{*}(2573)^{-} \pi^{+}, \quad D_{s 2}^{*}}{D^{-}} \rightarrow$	$(2.6 \pm 0.4) \times 10^{-4}$		${ }^{97}$	$\underset{\substack{\phi f_{2}(1270), ~ \\ \pi^{+} \pi^{-}}}{ } f_{2}(1270) \rightarrow$	$(6.1 \pm 1.8) \times 10^{-7}$		
Γ_{39}	$D_{S 1}^{*}(2700)^{-} \pi^{+}, \quad D_{S 1}^{*} \rightarrow$	$(1.6 \pm 0.8) \times 10^{-5}$		Γ_{98}	$\phi \rho^{0}$	$(2.7 \pm 0.8) \times 10^{-7}$		
	${ }^{*} \bar{D}^{0} K^{-}{ }^{-}{ }^{*}$			Γ_{99}	$\phi \pi^{+} \pi^{-}$	$(3.5 \pm 0.5) \times 10^{-6}$		
Γ_{40}	$D_{S 1}^{*}(2860)^{-} \pi^{+}, \quad D_{S 1}^{*} \rightarrow$	$\left(\begin{array}{lll}5 & \pm 4\end{array}\right) \times 10^{-5}$		Γ_{100}	$\phi \phi$	$(1.87 \pm 0.15) \times 10^{-5}$		
	${ }^{*} \bar{D}^{0} K^{-}{ }^{-}{ }^{*}$			Γ_{101}	$\phi \phi \phi$	$(2.2 \pm 0.7) \times 10^{-6}$		
Γ_{41}	$D_{S 3}^{*}(2860)^{-} \pi^{+}, \quad D_{S 3}^{*} \rightarrow$	$(2.2 \pm 0.6) \times 10^{-5}$		Γ_{102}	$\pi^{+} K^{-}$	$(5.8 \pm 0.7) \times 10^{-6}$		
	$\bar{D}^{0} K^{+} \bar{D}^{0} K^{-}$			Γ_{103}	$K^{+} K^{-}$	$(2.66 \pm 0.22) \times 10^{-5}$		
Γ_{42}	$\bar{D}^{0} K^{+} K^{-}$	$(5.5 \pm 0.8) \times 10^{-5}$ $\times 10^{-6}$		Γ_{104}	$K^{0} \bar{K}^{0}$	$(2.0 \pm 0.6) \times 10^{-5}$		
Γ_{43}	$\bar{D}^{0} f_{0}(980)$	$<3.1 \times 10^{-6}$	6 CL＝90\％	Γ_{105}	$K^{0} \pi^{+} \pi^{-}$	$(9.5 \pm 2.1) \times 10^{-6}$		
Γ_{44}	$\bar{D}^{0} \phi$	$(3.0 \pm 0.5) \times 10^{-5}$		Γ_{106}	$K^{0} K^{ \pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$		
Γ_{45}	$\bar{D}^{* 0} \phi{ }^{*}+$	$(3.7 \pm 0.6) \times 10^{-5}$		Γ_{107}	$K^{*}(892){ }^{-} \pi^{+}$	$(2.9 \pm 1.1) \times 10^{-6}$		
Γ_{46}	$D^{* \mp} \pi^{ \pm}$	$<6.1 \times 10^{-6}$	6 CL＝90\％	Γ_{108}	$K^{*}(892)^{ \pm} K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$		
Γ_{47}	$\eta_{C}{ }^{\phi}$	$(5.0 \pm 0.9) \times 10^{-4}$		Γ_{109}	$K_{0}^{*}(1430)^{ \pm} K^{\mp}$	$(3.1 \pm 2.5) \times 10^{-5}$		
Γ_{48}	$\eta_{c} \pi^{+} \pi^{-}$	$(1.8 \pm 0.7) \times 10^{-4}$		Γ_{110}	$K_{2}^{*}(1430)^{ \pm} K^{\mp}$	$(1.0 \pm 1.7) \times 10^{-5}$		
Γ_{49}	$J / \psi(1 S) \phi$	$(1.08 \pm 0.08) \times 10^{-3}$		「110	$K^{*}(892)^{0} \bar{K}^{0}+$ c．c．	$(2.0 \pm 0.6) \times 10^{-5}$		
Γ_{50}	$J / \psi(1 S) \phi \phi$	$\left(1.24{ }_{-}^{+0.17} 0.19\right) \times 10^{-5}$		Γ_{112}	$K_{0}^{*}(1430) \bar{K}^{0}+$ c．c．	$(3.3 \pm 1.0) \times 10^{-5}$		
Γ_{51}	$J / \psi(1 S) \pi^{0}$	$<1.2 \times 10^{-3}$	－3 CL＝90\％	Γ_{113}	$K_{2}^{*}(1430){ }^{0} \bar{K}^{0}+$ c．c．	$(1.7 \pm 2.2) \times 10^{-5}$		
Γ_{52}	$J / \psi(1 S) \eta$	$(4.0 \pm 0.7) \times 10^{-4}$	－ $\mathrm{S}=1.4$	Γ_{114}	$K_{S}^{0} \bar{K}^{*}(892)^{0}+$ c．c．	$(1.6 \pm 0.4) \times 10^{-5}$		
Γ_{53}	$J / \psi(1 S) K_{S}^{0}$	$(1.88 \pm 0.15) \times 10^{-5}$		Γ_{115}	$K^{0} K^{+} K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$		
Γ_{54}	$J / \psi(1 S) \bar{K}^{*}(892)^{0}$	$(4.1 \pm 0.4) \times 10^{-5}$		Γ_{116}	$\bar{K}^{*}(892)^{0} \rho^{0}$	$<7.67 \times 10^{-4}$	$\mathrm{CL}=90 \%$	
Γ_{55}	$J / \psi(1 S) \eta^{\prime}$	$(3.3 \pm 0.4) \times 10^{-4}$		Γ_{117}	$\bar{K}^{*}(892)^{0} K^{*}(892)^{0}$	$(1.11 \pm 0.27) \times 10^{-5}$		
Γ_{56}	$J / \psi(1 S) \pi^{+} \pi^{-}$	$(2.09 \pm 0.23) \times 10^{-4}$	$4 \quad \mathrm{~S}=1.3$	Γ_{118}	$K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}$			
Γ_{57}	$J / \psi(1 S) f_{0}(500), \quad f_{0} \rightarrow$	$<4 \times 10^{-6}$	$6 \quad \mathrm{CL}=90 \%$	Γ_{119}	$K_{2}^{*}(1430)^{0}{ }^{\frac{2}{*}}(892)^{0}$			
「58	$\pi^{+} \pi^{-}$ $J / \psi(1 S) \rho, \rho \rightarrow \pi^{+} \pi^{-}$	$<4 \times 10^{-6}$	$6 \mathrm{CL}=90 \%$	Γ_{120}	$K_{2}^{*}(1430)^{0} \bar{K}_{2}^{*}(1430)^{0}$			
Γ_{59}	$J / \psi(1 S) f_{0}(980), f_{0} \rightarrow$	$(1.28 \pm 0.18) \times 10^{-4}$	－4 $\begin{aligned} \text { SL } & \text { S }\end{aligned}$	Γ_{121}	$\phi K^{*}(892)^{0}$	$(1.14 \pm 0.30) \times 10^{-6}$		
	$\pi^{+} \pi^{-}$	$(1.28 \pm 0.18) \times 10^{-2}$		Γ_{122}	$p \bar{p}$	$<1.5 \times 10^{-8}$	$\mathrm{CL}=90 \%$	

Meson Particle Listings

Γ_{123}	$p \bar{p} K^{+} K^{-}$	$(4.5 \pm 0.5) \times 10^{-6}$	
Γ_{124}	$p \bar{p} K^{+} \pi^{-}$	$(1.39 \pm 0.26) \times 10^{-6}$	
Γ_{125}	$p \bar{p} \pi^{+} \pi^{-}$	$(4.3 \pm 2.0) \times 10^{-7}$	
$\Gamma_{126} p \bar{\Lambda} K^{-}+c . c$.	$(5.5 \pm 1.0) \times 10^{-6}$		
$\Gamma_{127} \Lambda_{c}^{-} \Lambda \pi^{+}$	$(3.6 \pm 1.6) \times 10^{-4}$		
$\Gamma_{128} \Lambda_{c}^{-} \Lambda_{c}^{+}$	<8.0	$\times 10^{-5}$	$C L=95 \%$

Lepton Family number ($L F$) violating modes or $\Delta B=1$ weak neutral current ($B 1$) modes

Γ_{129}	$\gamma \gamma$	B1	< 3.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{130}	$\phi \gamma$	B1	(3.4	$\times 10^{-5}$	
Γ_{131}	$\mu^{+} \mu^{-}$	B1	(3.0	$\times 10^{-9}$	
Γ_{132}	$e^{+} e^{-}$	B1	< 2.8	$\times 10^{-7}$	CL=90\%
Γ_{133}	$\tau^{+} \tau^{-}$	B1	< 6.8	$\times 10^{-3}$	$\mathrm{CL}=95 \%$
Γ_{134}	$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	< 2.5	$\times 10^{-9}$	CL=95\%
Γ_{135}	$\begin{gathered} S P, S \rightarrow \mu^{+} \mu^{-}, \\ P \rightarrow \mu^{+} \mu^{-} \end{gathered}$	B1	[b] < 2.2	$\times 10^{-9}$	$\mathrm{CL}=95 \%$
Γ_{136}	$\phi(1020) \mu^{+} \mu^{-}$	B1	(8.2	$\times 10^{-7}$	
Γ_{137}	$\bar{K}^{*}(892)^{0} \mu^{+} \mu^{-}$		(2.9	$\times 10^{-8}$	
Γ_{138}	$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$	B1	(8.4	$\times 10^{-8}$	
Γ_{139}	$\phi \nu \bar{\nu}$	B1	< 5.4	$\times 10^{-3}$	CL=90\%
Γ_{140}	$e^{ \pm} \mu^{\mp}$	LF	$[c]<5.4$	$\times 10^{-9}$	CL=90\%
Γ_{141}	$\mu^{ \pm} \tau^{\mp}$		< 4.2	$\times 10^{-5}$	CL=95\%

[a] Not a pure measurement. See note at head of B_{s}^{0} Decay Modes.
[b] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of $2.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$, respectively.
[c] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 12 branching ratios uses 20 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^{2}=26.7$ for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the branching fractions, $x_{i} \equiv$ $\Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

x_{12}	28					
x_{14}	92	26				
x_{49}	0	0	0			
x_{56}	0	0	0	72		
x_{59}	0	0	0	57	67	
x_{100}	0	0	0	29	21	17
	x_{10}	x_{12}	x_{14}	x_{49}	x_{56}	x_{59}

$\Gamma\left(D_{s}^{-}\right.$anything $) / \Gamma_{\text {total }}$					
		MENT		位	
$\mathbf{0 . 9 3} \pm 0.25$ OUR AVERAGE					
0.91 ± 0.18		DRUTSKOY	07 B	$e^{+} e^{-} \rightarrow$	
$0.81 \pm 0.24 \pm 0.22$		${ }^{2}$ buSkulic	96E ALE	e^{-}	
$1.56 \pm 0.58 \pm 0.44$	147	${ }^{3}$ ACTON	92 N OP		
${ }^{1}$ The extraction of this result takes into account the correlation between the measurements of $\mathrm{B}\left(r(5 S) \rightarrow D_{S} X\right)$ and $\mathrm{B}\left(r(5 S) \rightarrow D^{0} X\right)$.					
${ }^{2}$ BUSKULIC 96E separate $c \bar{c}$ and $b \bar{b}$ sources of D_{s}^{+}mesons using a lifetime tag, subtract generic $\bar{b} \rightarrow W^{+} \rightarrow D_{s}^{+}$events, and obtain $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right) \times \mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-}\right.$anything $)$					
$=0.088 \pm 0.020 \pm 0.020$ assuming $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)=(3.5 \pm 0.4) \times 10^{-2}$ and PDG 1994 values for the relative partial widths to other D_{S} channels. We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)$ and $\mathrm{B}\left(D_{S} \rightarrow\right.$ $\phi \pi$).					
${ }^{3}$ ACTON 92 N assume that excess of $147 \pm 48 D_{S}^{0}$ events over that expected from B^{0}, B^{+}, and $c \bar{c}$ is all from B_{S}^{0} decay. The product branching fraction is measured to be$\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right) \mathrm{B}\left(B_{S}^{0} \rightarrow D_{S}^{-} \text {anything }\right) \times \mathrm{B}\left(D_{S}^{-} \rightarrow \phi \pi^{-}\right)=(5.9 \pm 1.9 \pm 1.1) \times 10^{-3} .$					
We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)$ $=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$ and $\mathrm{B}\left(D_{s} \rightarrow \phi \pi\right)$.					

$\Gamma\left(\ell \nu_{\ell} X\right) / \Gamma_{\text {total }}$					Γ_{2} / Γ
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
9.6 ± 0.8 OUR AVERAGE					
$9.6 \pm 0.4 \pm 0.7$	1 OSWALD	13	BELL	$e^{+} e^{-} \rightarrow$	$r(5 s)$
$9.5{ }_{-2.0}^{+2.5}{ }_{-1.9}^{+1.1}$	${ }^{2}$ LeES	12A	BABR	$e^{+} e^{-}$	

${ }^{1}$ The measurement corresponds to the average of the electron and muon branching frac2 tions.
${ }^{2}$ The measurement corresponds to a branching fraction where the lepton originates from bottom decay and is the average between the electron and muon branching fractions. LEES 12A uses the correlation of the production of ϕ mesons in association with a lepton in $e^{+} e^{-}$data taken at center-of-mass energies between 10.54 and 11.2 GeV .

$\Gamma\left(e^{+} \nu X^{-}\right) / \Gamma_{\text {total }}$ $\operatorname{VALUE}\left(\right.$ units 10^{-2})	DOCUMENT ID			MMEN	$\Gamma 3 / \Gamma$
$9.1 \pm 0.5 \pm 0.6$	OSWALD	13	$\frac{\text { TECN }}{\text { BELL }}$	$e^{+} e^{-}$	$r(5 S)$
$\Gamma\left(\mu^{+} \nu X^{-}\right) / \Gamma_{\text {total }}$					
VALUE (units 10^{-2})	DOCUMENT		TECN	COMMEN	
$10.2 \pm 0.6 \pm 0.8$	OSWALD	13	BELL	$e^{+} e^{-}$	$r(5 S)$

$\Gamma\left(\boldsymbol{D}_{\left.\boldsymbol{s}_{\text {The values and averages }}^{-} \boldsymbol{\ell}^{+} \boldsymbol{\nu}_{\boldsymbol{\ell}} \text { anything }\right) / \Gamma_{\text {total }} .}^{\text {and }}\right.$ The values and averages in this section serve only to show what values result if one assumes our $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
8.1土1.3 OUR AVERAGE						
$8.2 \pm 0.2 \pm 1.5$		${ }^{1}$ OSWALD	15	BELL	$e^{+} e^{-}$	$r(5 S)$
$7.6 \pm 1.2 \pm 2.1$	134	${ }^{2}$ BUSKULIC	950	ALEP	$e^{+} e^{-}$	z
$10.7 \pm 4.3 \pm 2.9$		${ }^{3}$ ABREU	92 m	DLPH	$e^{+} e^{-}$	
$10.3 \pm 3.6 \pm 2.8$	18	${ }^{4}$ ACTON	92N	OPAL	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - .						
$13 \pm 4 \pm 4$	27	${ }^{5}$ BUSKULIC	92E	ALEP	$e^{+} e^{-}$	z

${ }^{1}$ Obtains $B_{S} \rightarrow D_{S} X e \nu$, and $D_{S} X \mu \nu$ separately, then combines them by assuming systematic uncertainties are fully correlated, except for the one on lepton identification. The third uncertainty adds in quadrature systematic uncertainties from external sources (number of B_{S} events, and $D_{S}^{(*)}$ branching fractions). OSWALD 15 also measures the cross-section $\sigma\left(e^{+} e^{-} \rightarrow B_{S}^{(*)} \bar{B}_{s}^{(*)}\right)=53.8 \pm 1.4 \pm 5.3 \mathrm{pb}$ at $\sqrt{s}=10.86 \mathrm{GeV}$.
${ }^{2}$ BUSKULIC 950 use $D_{S} \ell$ correlations. The measured product branching ratio is $\mathrm{B}(\bar{b} \rightarrow$ $\left.B_{S}\right) \times \mathrm{B}\left(B_{S} \rightarrow D_{S}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)=\left(0.82 \pm 0.09{ }_{-0.14}^{+0.13}\right) \%$ assuming $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)$ $=(3.5 \pm 0.4) \times 10^{-2}$ and PDG 1994 values for the relative partial widths to the six other D_{S} channels used in this analysis. Combined with results from $\gamma(4 S)$ experiments this can be used to extract $\mathrm{B}\left(\bar{b} \rightarrow B_{S}\right)=\left(11.0 \pm 1.2_{-2.6}^{+2.5}\right) \%$. We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)$.
${ }^{3}$ ABREU 92M measured muons only and obtained product branching ratio $\mathrm{B}(Z \rightarrow$ bor $\bar{b}) \times \mathrm{B}\left(\bar{b} \rightarrow B_{S}\right) \times \mathrm{B}\left(B_{S} \rightarrow D_{S} \mu^{+} \nu_{\mu}\right.$ anything $) \times \mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)=(18 \pm 8) \times 10^{-5}$. We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{s} \rightarrow \phi \pi\right)$ $=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$ and $\mathrm{B}\left(D_{s} \rightarrow \phi \pi\right)$. We use $\mathrm{B}(Z \rightarrow$ bor $\bar{b})=2 \mathrm{~B}(Z \rightarrow b \bar{b})=$ $2 \times(0.2212 \pm 0.0019)$.
${ }^{4}$ ACTON 92N is measured using $D_{S} \rightarrow \phi \pi^{+}$and $K^{*}(892)^{0} K^{+}$events. The product branching fraction measured is measured to be $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right) \mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)$ $\times \mathrm{B}\left(D_{S}^{-} \rightarrow \phi \pi^{-}\right)=(3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$. We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)$.
${ }^{5}$ BUSKULIC 92E is measured using $D_{S} \rightarrow \phi \pi^{+}$and $K^{*}(892)^{0} K^{+}$events. They use $2.7 \pm 0.7 \%$ for the $\phi \pi^{+}$branching fraction. The average product branching fraction is measured to be $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right) \mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu_{\ell}\right.$ anything $)=0.020 \pm 0.0055_{-0.006}^{+0.005}$. We evaluate using our current values $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)=0.107 \pm 0.014$ and $\mathrm{B}\left(D_{s} \rightarrow \phi \pi\right)$ $=0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $\mathrm{B}\left(\bar{b} \rightarrow B_{s}^{0}\right)$ and $\mathrm{B}\left(D_{S} \rightarrow \phi \pi\right)$. Superseded by BUSKULIC 950 .

$\Gamma\left(D_{s}^{*-} \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$				$\Gamma /{ }_{6}$
VALUE (units 10^{-2})	DOCUMENT ID	cN	COMMENT	

${ }^{1}$ Obtains $B_{S} \rightarrow D_{S}^{*} X e \nu$, and $D_{S}^{*} X \mu \nu$ separately, then combines them by assuming systematic uncertainties are fully correlated, except for the one on lepton identification. The third uncertainty adds in quadrature systematic uncertainties from external sources (number of B_{S} events, and $D_{s}^{(*)}$ branching fractions). OSWALD 15 also measures the cross-section $\sigma\left(e^{+} e^{-} \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=53.8 \pm 1.4 \pm 5.3 \mathrm{pb}$ at $\sqrt{s}=10.86 \mathrm{GeV}$.

VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$0.61 \pm 0.14 \pm 0.05 \quad 1$ AAIJ 11 A LHCB $p p$ at 7 TeV
${ }^{1}$ Not independent of other AAIJ 11A measurements.
$\Gamma\left(D_{s}^{-} \pi^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{10} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{3.00+0.23 \text { OUR FIT }}$ DOCUMENT ID TECN COMMENT 3.00 ± 0.23 OUR FIT 2.99 ± 0.24 OUR AVERAGE

$$
\begin{array}{llll}
2.95 \pm 0.05_{-0.28}^{+0.25} & 1 \text { AAIJ } & \text { 12AG LHCB } p p \text { at } 7 \mathrm{TeV} \\
3.6 \pm 0.5 \pm 0.5 & 2 \text { LOUVOT } & 09 \mathrm{BELL} & e^{+} e^{-} \rightarrow r(5 S) \\
2.8 \pm 0.6 \pm 0.1 & 3 \text { ABULENCIA } & 07 C \text { CDF } & p \bar{p} \text { at } 1.96 \mathrm{TeV}
\end{array}
$$

- - We do not use the following data for averages, fits, limits, etc. - • -

$$
6.8 \pm 2.2 \pm 1.6 \quad \text { DRUTSKOY 07A BELL Repl. by LOUVOT } 09
$$

$$
\begin{array}{cccccc}
6.8 & \pm 2.2 & 1.6 & 4 \text { ABULENCIA } & 06 J & \text { CDF } \\
3.3 & \pm 1.1 \pm 0.2 & 5
\end{array}
$$

$$
<130 \quad 6 \quad{ }^{5} \text { AKERS } \quad 94 J \text { OPAL } e^{+} e^{-} \rightarrow z
$$

$$
\begin{array}{lll}
\text { seen } & 1 & \text { BUSKULIC } \quad 93 G \text { ALEP } e^{+} e^{-} \rightarrow Z
\end{array}
$$

${ }^{1}$ AAIJ 12 AG reports $\left(2.95 \pm 0.05 \pm 0.17_{-0.22}^{+0.18}\right) \times 10^{-3}$ where the last uncertainty comes from the semileptonic f_{S} / f_{d} measurement. We combined the systematics in quadrature. ${ }^{2}$ LOUVOT 09 reports $\left(3.67_{-0.33-0.645}^{+0.35}+0.65\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $\left.\left.D_{S}^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)\right]$ assuming $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)$ $=(19.5 \pm 2.6) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)$ $=(20.1 \pm 3.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABULENCIA 07 C reports $\left[\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]=1.13 \pm$ 0.08 ± 0.23 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.52 \pm 0.13) \times$ 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ ABULENCIA 06J reports $\left[\Gamma\left(B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]=1.32 \pm$ 0.18 ± 0.38 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.52 \pm 0.13) \times$ 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ AKERS 94」 sees ≤ 6 events and measures the limit on the product branching fraction $f\left(\bar{b} \rightarrow B_{S}^{0}\right) \cdot \mathrm{B}\left(B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}\right)<1.3 \%$ at $\mathrm{CL}=90 \%$. We divide by our current value $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=0.105$.
$\Gamma\left(D_{s}^{-} \rho^{+}\right) / \Gamma\left(D_{s}^{-} \pi^{+}\right)$
$\Gamma_{11} / \Gamma_{10}$
$\frac{V A L U E}{2.3 \pm 0.4 \pm 0.2}$
$\frac{\text { DOCUMENT ID }}{\text { LOUVOT } 10} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(5 S)}$ DOCCIMENT ID TECN COMMENT ${ }^{1}$ ABULENCIA 07C CDF $\quad p \bar{p}$ at 1.96 TeV
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\text { 6.1 } \mathbf{1} \mathbf{1 . 0} \text { OUR FIT }}$
$6.3 \pm 1.5 \pm 0.7$ ${ }^{1}$ ABULENCIA 07 C reports $\left[\Gamma\left(B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} \pi^{+} \pi^{+} \pi^{-}\right)\right]=1.05 \pm 0.10 \pm 0.22$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.D^{-} \pi^{+} \pi^{+} \pi^{-}\right)=(6.0 \pm 0.7) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(D_{s}^{-} \pi^{+}\right)$
$\Gamma_{12} / \Gamma_{10}$
$\frac{\text { VALUE }}{2.05 \pm 0.34 \text { OUR FIT }}$
$2.01 \pm 0.37 \pm 0.20$
DOCUMENT ID
TECN COMMENT
$\Gamma\left(D_{s 1}(2536)^{-} \pi^{+}, D_{s 1}^{-} \rightarrow D_{s}^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}\right) \quad \Gamma_{13} / \Gamma_{12}$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT $\overline{4.0 \pm \mathbf{1 . 0} \pm \mathbf{0 . 4} \quad \overline{\mathrm{AAIJ}} 12 \mathrm{AX}} \overline{\mathrm{LHCB}} \overline{p p}$ at 7 TeV
$\Gamma\left(D_{s}^{\mp} K^{ \pm}\right) / \Gamma_{\text {total }}$
Γ_{14} / Γ
$\frac{V A L U E\left(\text { unit } 10^{-4}\right)}{2.27 \pm 0.19 \text { OUR FIT }}$
$2.3 \mathbf{- 1 . 0}_{\mathbf{1} .0}^{\mathbf{1}} \mathbf{+ 0 . 3} \quad{ }_{-0.3}$ LOUVOT $\quad 09 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(5 S)$
${ }^{1}$ LOUVOT 09 reports $(2.4-1.0 \pm 0.42) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $\left.\left.D_{s}^{\mp} K^{ \pm}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(10860) \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\right]$ assuming $\mathrm{B}\left(r(10860) \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)$ $=(19.5 \pm 2.6) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)$ $=(20.1 \pm 3.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s}^{\mp} K^{ \pm}\right) / \Gamma\left(D_{s}^{-} \pi^{+}\right)$ $\Gamma_{14} / \Gamma_{10}$
VALUE (units 10^{-2})
7.55 ± 0.24 OUR FIT
7.55 ± 0.24 OUR AVERAGE
$7.52 \pm 0.15 \pm 0.19$
AAIJ 15AC LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following AALTONEN 09AQ CDF $p \bar{p}$ at 1.96 TeV
$6.46 \pm 0.43 \pm 0.25 \quad$ AAIJ 12AG LHCB Repl. by AAIJ 15AC

$\Gamma\left(D_{s}^{+} D_{s}^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{16 / \Gamma}$
$\frac{V A L U E \text { (units } 10^{-3} \text {) }}{4.4 \pm 0.5 \text { OUR AVERAGE }}$
$4.0 \pm 0.2 \pm 0.5$
$5.8_{-0.9}^{+1.1} \pm 1.3 \quad 2$ ESEN 13 BELL $e^{+} e^{-} \rightarrow r(5 S)$
$5.4 \pm 0.8 \pm 0.8 \quad{ }^{3}$ AALTONEN 12 C CDF $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. • -
$10.3+3.2+2.50 \quad 10$ BELL Repl. by ESEN 13
$10.4_{-3.2}^{+3.5} \pm 1.1 \quad 5$ AALTONEN 08F CDF Repl. by AALTONEN 12C $<67 \quad 90$ DRUTSKOY 07A BELL Repl. by ESEN 10
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$.
${ }^{2}$ Use $\gamma(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ decays assuming $\mathrm{B}\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right)=(17.1 \pm 3.0) \%$ and $\Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(87.0 \pm 1.7) \%$
${ }^{3}$ AALTONEN 12C reports $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right)=0.183 \pm$ 0.021 ± 0.017. We multiply this result by our best value of $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm$ $0.8) \times 10^{-3}$ and divide by our best value of f_{S} / f_{d}, where $1 / 2 f_{S} / f_{d}=0.1230 \pm 0.0115$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.
${ }^{4}$ Uses $\gamma(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ assuming $B\left(\gamma(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(r(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(90.1+4.0) \%$.
${ }^{5}$ AALTONEN 08F reports $\left[\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right]=$ $1.44{ }_{-0.44}^{+0.48}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(D_{s}^{-} D^{+}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$\mathbf{2 . 8} \pm \mathbf{0 . 4} \pm \mathbf{0 . 3} \quad 1$ AAIJ 14 AA LHCB $p p$ at 7 TeV

- - We do not use the following data for averages, fits, limits, etc. - -
$3.6 \pm 0.6 \pm 0.5 \quad 2$ AAIJ 13AP LHCB Repl. by AAIJ 14AA
${ }^{1}$ AAIJ 14AA reports $\left[\Gamma\left(B_{s}^{0} \rightarrow D_{S}^{-} D^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right]=0.038 \pm 0.004 \pm$ 0.003 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value..
${ }^{2}$ Uses $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$.

$\Gamma\left(D^{+} D^{-}\right) / \Gamma_{\text {total }}$				Γ_{18} / Γ
VALUE (units 10-4)	DOCUMENT ID TECN		COMMENT	
$2.2 \pm 0.4 \pm 0.4$	${ }^{1}$ AAIJ 13AP LHCB		$p p$ at 7 TeV	
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\text { 1.7) } \times 10^{-3}$	$11 \pm 0 .$	$-4 \text { and } \mathrm{B}(B$	$\left.\rightarrow \bar{D}^{0} D_{s}^{+}\right)$	$(10.1 \pm$
$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }}$				Γ_{19} / Γ

Γ_{19} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 9} \pm \mathbf{0 . 3} \pm \mathbf{0 . 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\frac{\text { 13AP }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \mathrm{TeV}} \text { (B) }}$
${ }^{1}$ Uses $\mathrm{B}\left(B^{0} \rightarrow D^{-} D^{+}\right)=(2.11 \pm 0.31) \times 10^{-4}$ and $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D_{S}^{+}\right)=(10.1 \pm$ $1.7) \times 10^{-3}$.
$\Gamma\left(D_{s}^{*-} \pi^{+}\right) / \Gamma\left(D_{s}^{-} \pi^{+}\right)$
$\frac{V A L U E}{\mathbf{0 . 6 5} \mathbf{+ 0 . 1 5} \pm \mathbf{0 . 0 7}}$

Meson Particle Listings
$\Gamma\left(D_{s}^{* \mp} K^{ \pm}\right) / \Gamma\left(D_{s}^{*-} \pi^{+}\right)$
$0.068 \pm 0.005{ }_{-0.002}^{+0.003}$
$\Gamma\left(D_{s}^{*-} \rho^{+}\right) / \Gamma\left(D_{s}^{-} \pi^{+}\right)$
$3.2 \pm 0.6 \pm 0.3$
$\Gamma\left(D_{s}^{*-} \rho^{+}\right) / \Gamma\left(D_{s}^{-} \rho^{+}\right)$
VALUE
解
$1.4 \pm 0.3 \pm 0.1 \quad{ }^{1}$ LOUVOT 10 BELL $e^{+} e^{-} \rightarrow r(5 S)$
${ }^{1}$ Not independent of other LOUVOT 10 measurements.
$\left[\Gamma\left(D_{s}^{*+} D_{s}^{-}\right)+\Gamma\left(D_{s}^{*-} D_{s}^{+}\right)\right] / \Gamma_{\text {total }} \quad \Gamma_{23} / \Gamma$

13.9 ± 1.7 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
$13.6 \pm 1.0 \pm 1.4$	${ }^{1}$ AAIJ	16P	LHCB	$p p$ at 7 TeV
$17.6{ }_{-2.2}^{+2.3} \pm 4.0$	${ }^{2}$ ESEN	13	BELL	$e^{+} e^{-} \rightarrow \gamma(5 S)$
$12.5 \pm 1.7 \pm 1.8$	${ }^{3}$ AALTONEN	12C	CDF	$p \bar{p}$ at 1.96 TeV

- We do not use the following data for averages, fits limits, etc.
- - We do not use the following data for averages, fits, limits, etc. • •

$27.5_{-7.1}^{+8.3} \pm 6.9$		${ }^{4}$ ESEN	10	BELL	Repl. by ESEN 13
<121	90	DRUTSKOY	07 A	BELL	Repl. by ESEN 10

${ }^{2}$ Use $r(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ decays assuming $\mathrm{B}\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right)=(17.1 \pm 3.0) \%$ and $\Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(87.0 \pm 1.7) \%$.
${ }^{3}$ AALTONEN 12C reports $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{*+} D_{s}^{-}+D_{s}^{*-} D_{s}^{+}\right) / \mathrm{B}\left(B^{0} \rightarrow\right.\right.$ $\left.\left.D^{-} D_{S}^{+}\right)\right)=0.424 \pm 0.046 \pm 0.035$. We multiply this result by our best value of $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$ and divide by our best value of f_{s} / f_{d}, where $1 / 2 f_{S} / f_{d}=0.1230 \pm 0.0115$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.
${ }^{4}$ Uses $\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ assuming $B\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$

$\Gamma\left(D_{s}^{*+} D_{s}^{*-}\right) / \Gamma_{\text {total }}$				Γ_{24} / Γ
VALUE (units 10^{-3}) $C L \%$	DOCUMENT ID		TECN	COMMENT
14.4 \pm 2.1 OUR AVERAGE	Error includes scale factor of 1.1.			
$12.7 \pm 1.3 \pm 1.4$	1 AAIJ	16P	LHCB	$p p$ at 7 TeV
$19.8-3.3+5.2$	2 ESEN	13	BELL	$e^{+} e^{-} \rightarrow \gamma(5 S)$
$19.2 \pm 2.9 \pm 2.7$	${ }^{3}$ AALTONEN	12C	CDF	$p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. • • •
$30.8_{-10.4}^{+12.2+8.5} \quad{ }^{4}$ ESEN $\quad 10 \quad$ BELL Repl. by ESEN 13
$<257 \quad 90$ DRUTSKOY 07A BELL Repl. by ESEN 10
${ }^{1}$ AAIJ 16P reports $\left[\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{*+} D_{s}^{*-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right]=1.76 \pm 0.11 \pm$ 0.14 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Use $r(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ decays assuming $\mathrm{B}\left(r(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right)=(17.1 \pm 3.0) \%$ and $\Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(r(5 S) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(87.0 \pm 1.7) \%$.
${ }^{3}$ AALTONEN 12C reports $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{s}^{0} \rightarrow D_{S}^{*+} D_{S}^{*-}\right) / \mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right)=0.654 \pm$ 0.072 ± 0.065. We multiply this result by our best value of $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm$ $0.8) \times 10^{-3}$ and divide by our best value of f_{S} / f_{d}, where $1 / 2 f_{S} / f_{d}=0.1230 \pm 0.0115$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.
${ }^{4}$ Uses $r(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ assuming $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(90.1-4.0) \%$

$\begin{equation*} \Gamma\left(D_{S_{2}}^{(*)+} D_{s}^{(*)-}\right) / \Gamma_{\text {total }} \tag{25} \end{equation*}$ "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.				
VALUE (\%) CL\%	DOCUMENT ID		TECN	COMMENT
4.5 ± 1.4 OUR EVALUATION				
$3.4 \pm \mathbf{0 . 4}$ OUR AVERAGE				
$3.07 \pm 0.22 \pm 0.33$	${ }^{1}$ AAIJ	16P	LHCB	$p p$ at 7 TeV
$4.32+0.42+1.04$	2 ESEN		BELL	$e^{+} e^{-} \rightarrow r(5 S)$
$3.7 \pm 0.4 \pm 0.5$	${ }^{3}$ AALTONEN	12C	CDF	$p \bar{p}$ at 1.96 TeV
$3.5 \pm 1.0 \pm 1.1$	${ }^{4}$ ABAZOV		D0	$p \bar{p}$ at 1.96 TeV
$14 \pm 6 \pm 3$	5,6 BARATE		ALEP	$e^{+} e^{-} \rightarrow Z$

$6.85+1.30 \pm 1.80 \times 10$ BELL Repl. by ESEN 13 $3.9 \begin{array}{r}+1.9 \\ +1.6 \\ +1.5\end{array}{ }^{1}$ ABAZOV 07Y D0 Repl. by ABAZOV 09, $<0.218 \quad 90 \quad$ BARATE 98Q ALEP $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ AAIJ 16P reports $\left[\Gamma\left(B_{S}^{0} \rightarrow D_{S}^{(*)+} D_{S}^{(*)-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)\right]=4.24 \pm$ 0.14 ± 0.27 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)=(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Use $\gamma(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ decays assuming $\mathrm{B}\left(\Upsilon(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right)=(17.1 \pm 3.0) \%$ and $\Gamma\left(r(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(5 S) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(87.0 \pm 1.7) \%$.
${ }^{3}$ AALTONEN 12 C reports $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right) / \mathrm{B}\left(B^{0} \rightarrow D^{-} D_{s}^{+}\right)\right)=$ $1.261 \pm 0.095 \pm 0.112$. We multiply this result by our best value of $\mathrm{B}\left(B^{0} \rightarrow D^{-} D_{S}^{+}\right)$ $=(7.2 \pm 0.8) \times 10^{-3}$ and divide by our best value of f_{s} / f_{d}, where $1 / 2 f_{s} / f_{d}=0.1230 \pm$ 0.0115. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values
${ }^{4}$ Uses the final states where $D_{s}^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{-} \rightarrow \phi \mu^{-} \bar{\nu}_{\mu}$.
${ }^{5}$ Reports $\mathrm{B}\left(B_{S}^{0}\right.$ (short) $\left.\rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=(0.23 \pm 0.10 \pm 0.05) \cdot\left[0.17 / \mathrm{B}\left(D_{s} \rightarrow \phi \chi\right)\right]^{2}$ assuming $\mathrm{B}\left(B_{S}^{0} \rightarrow B_{S}^{0}\right.$ (short $\left.)\right)=50 \%$. We use our best value of $\mathrm{B}\left(D_{S} \rightarrow \phi \chi\right)=$ $15.7 \pm 1.0 \%$ to obtain the quoted result.
${ }^{6}$ Uses $\phi \phi$ correlations from B_{S}^{0} (short) $\rightarrow D_{S}^{(*)+} D_{S}^{(*)-}$.
7 Sum of exclusive $B_{S} \rightarrow D_{S}^{+} D_{S}^{-}, B_{S} \rightarrow D_{S}^{* \pm} D_{S}^{\mp}$ and $B_{S} \rightarrow D_{S}^{*+} D_{S}^{*-}$.
${ }^{8}$ Uses $r(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ assuming $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$.

- We do not use the following data for averages, fits, limits, etc. - -
$\Gamma\left(\bar{D}^{* 0} \bar{K}^{0}\right) / \Gamma_{\text {total }}$
${ }^{1}$ Measured and normalized to the $B_{S}^{0} \rightarrow \bar{D}^{* 0} K_{S}^{0}$ decay with $f_{S} / f_{d}=0.259 \pm 0.015$. Signal significance is 4.4 standard deviations.
$\Gamma\left(\bar{D}^{0} \overline{\boldsymbol{K}}^{0}\right) / \Gamma_{\text {total }} \quad$ DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2 7}} / \boldsymbol{\Gamma}$
VALUE (units 10^{-4}) DOCUMENT ID \quad TECN COMMENT
$\mathbf{4 . 3} \pm \mathbf{0 . 5} \pm \mathbf{0 . 7}$
${ }^{1}$ Measured and normalized to the $B^{0} \rightarrow \bar{D}^{0} K_{S}^{0}$ decay with $f_{S} / f_{d}=0.259 \pm 0.015$.

$\Gamma\left(D^{0} K^{-} \pi^{+}\right) / \Gamma_{\text {total }}$		Γ_{28} / Γ
VaLUE (units 10-4)	Cument id	

$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{1 0 . 4} \mathbf{1 . 1} \mathbf{1} \mathbf{0 . 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ 13AQ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \mathrm{TeV}}$
${ }^{1}$ AAIJ 13AQ reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)\right]=1.18 \pm$ 0.05 ± 0.12 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=(8.8 \pm 0.5) \times$ 10^{-4}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{D}^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{29} / \Gamma$

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
4.4 ± 0.6 OUR AVERAGE			
$4.29 \pm 0.09 \pm 0.65$	${ }^{1}$ AAIJ	14BH LHCB	$p p$ at $7,8 \mathrm{TeV}$
$4.7+1.2+0.3$	2 AAIJ	11D LHCB	TeV

$4.7 \pm 1.2 \pm 0.3 \quad 2$ AAIJ 11D LHCB $p p$ at 7 TeV

- - We do not use the following data for averages, fits, limits, etc. - -
$3.5 \pm 0.4 \pm 0.4$
${ }^{3}$ AAIJ
13BX LHCB Repl. by AAIJ 14BH
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.
${ }^{2}$ AAIJ 11D reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{D}^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \rho^{0}\right)\right]=1.48 \pm 0.34 \pm$ 0.19 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \rho^{0}\right)=(3.21 \pm 0.21) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ AAIJ 13BX reports $\left[\Gamma\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{*}(892)^{0}\right)\right]=$ $7.8 \pm 0.7 \pm 0.3 \pm 0.6$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{*}(892)^{0}\right)=$ $(4.5 \pm 0.6) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{D}^{0} \bar{K}^{*}(1410)\right) / \Gamma_{\text {total }} \quad \Gamma_{30} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\text { DOCUMENT ID }}$ $38.6 \pm \mathbf{1 1 . 4} \pm \mathbf{3 3 . 3} 114 \mathrm{AAIJ} 1$
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.

$\Gamma\left(\bar{D}^{0} \bar{K}_{0}^{*}(1430)\right) / \Gamma_{\text {total }}$				Γ_{31} / Γ
VALUE (units 10^{-5})	DOCUMENT ID TECN		COMMENT	
$30.0 \pm 2.4 \pm 6.8$	${ }^{1}$ AAIJ	14BH LHCB	$p p$ at 7, 8	
${ }^{1}$ Uses Dalitz plot analysi $K_{0}^{*}(1430)$ part of LASS	$\rightarrow \bar{D}^{0} K^{-}$ rization.	decays.	sponds	sonant

$\Gamma\left(\bar{D}^{0} \bar{K}_{2}^{*}(1430)\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT $\boldsymbol{\Gamma}_{\mathbf{3 2}} / \boldsymbol{\Gamma}$
$\overline{11.1 \pm 1.8 \pm 3.8} 1 \frac{14 \mathrm{BH}}{\mathrm{AAIJ}} \overline{\mathrm{LHCB}} \frac{p p \text { at } 7,8 \mathrm{TeV}}{}$
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.

$\Gamma\left(\bar{D}^{0} \bar{K}_{4}^{*}(2045)\right) / /_{\text {total }}$			$\Gamma_{36} /{ }^{\text {r }}$
(mits $\left.10^{-5}\right)$	POCUMENT ID $\frac{\text { TECN }}{}$	COMMENT	
<3.1 90	1 AAIJ 14BH LHCB	pp at 7, 8 TeV	
${ }^{1}$ Uses Dalit plot analysis of	${ }_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.		
$\Gamma\left(\bar{D}^{0} K^{-} \pi^{+}\right.$(non-resonant) $) / \Gamma_{\text {total }}$			
value minis 10^{-5})	DOCUMENT ID	Comment	
${ }^{ \pm 3.8 \pm 7.3}$	${ }^{1}$ AAIJ ${ }^{148 \mathrm{HLHCB}}$	pat $7,8 \mathrm{TeV}$	

${ }^{1}$ Uses Dalitz plot analysis of $B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays. Corresponds to the non-resonant part of the LASS parametrization.

$\Gamma\left(D_{s 2}^{*}(2573)^{-} \pi^{+}, D_{s 2}^{*} \rightarrow \bar{D}^{0} K^{-}\right) / \Gamma_{\text {total }}$			Γ_{38} / Γ
VALUE (units 10^{-5}) DOCUMENT ID	TECN	COMMENT	
$25.7 \pm 0.7 \pm 4.0$	14BH LHCB	$p p$ at 7, 8 TeV	
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.			
$\Gamma\left(D_{s 1}^{*}(2700)^{-} \pi^{+}, D_{s 1}^{*} \Rightarrow \bar{D}^{0} K^{-}\right) / \Gamma_{\text {total }}$			Γ_{39} / Γ
VALUE (units 10-5) DOCUMENT ID	TECN	COMMENT	
$\mathbf{1 . 6} \pm 0.4 \pm 0.71{ }^{1} \mathrm{AAIJ}$	14вн LHCB	$p p$ at 7, 8 TeV	
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.			
$\Gamma\left(D_{\text {s1 }}^{*}(2860)^{-} \pi^{+}, D_{\text {s }}^{*} \rightarrow \bar{D}^{0} K^{-}\right) / \Gamma_{\text {total }}$			Γ_{40} / Γ
VALUE (units 10^{-5}) DOCUMENT ID	TECN	COMMENT	
$5.0 \pm 1.2 \pm 3.4{ }^{1} \mathrm{AAIJ}$	148 L LHCB	$p p$ at 7, 8 TeV	
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$decays.			
$\Gamma\left(D_{s 3}^{*}(\mathbf{2 8 6 0})^{-} \pi^{+}, D_{s 3}^{*} \rightarrow \bar{D}^{0} K^{-}\right) / \Gamma_{\text {total }}$			Γ_{41} / Γ
VALUE (units 10^{-5}) DOCUMENT ID	TECN	COMMENT	
$2.2 \pm 0.1 \pm 0.6{ }^{1} \mathrm{AAIJ}$	148 L LHCB	$p p$ at $7,8 \mathrm{TeV}$	
${ }^{1}$ Uses Dalitz plot analysis of $B_{S}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$	decays.		

$\Gamma\left(\bar{D}^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}$
Γ_{42} / Γ
VALUE (units 10-5)
$\mathbf{5 . 5} \pm \mathbf{0 . 7} \pm \mathbf{0 . 5} \quad 1$ AAIJ 18 AZ LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - -
$5.3 \pm 2.0 \pm 0.5 \quad 2,3$ AAIJ 12AMLHCB Repl. by AAIJ 18AZ
${ }^{1}$ AAIJ 18AZ reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right)\right]=0.930 \pm$ 0.089 ± 0.069 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right)=(5.9 \pm 0.5) \times$ 10^{-5}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AAIJ 12AM reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right)\right]=0.90 \pm$ 0.27 ± 0.20 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}\right)=(5.9 \pm 0.5) \times$ 10^{-5}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Uses $\mathrm{B}\left(b \rightarrow B_{s}^{0}\right) / \mathrm{B}\left(b \rightarrow B^{0}\right)=0.267_{-0.020}^{+0.023}$ measured by the same authors.

)/Г($\left.D^{0} \bar{K}^{*}(892)^{0}\right)$
$\Gamma_{44} / \Gamma_{29}$
- - We do not use the following data for averages, fits, limits, etc. • - -
$0.069 \pm 0.013 \pm 0.007$ AAIJ 13BX LHCB Repl. by AAIJ 18AY
$\Gamma\left(\overline{D^{0}} \phi\right) / \Gamma_{\text {total }}$
$\frac{\text { DOCUMENT ID }}{\text { AECN }} \frac{\Gamma_{44} / \Gamma}{\text { COMMENT }}$
$\mathbf{3 . 0} \pm \mathbf{0 . 4} \pm \mathbf{0 . 2} \quad 1{ }^{1} \mathrm{AAIJ} \quad 18 \mathrm{AY}$ LHCB $p p$ at 7 and 8 TeV ${ }^{1}$ AAIJ 18 AY reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{D}^{0} \phi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)\right]=(3.4 \pm 0.4 \pm 0.3) \times$ 10^{-2} which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=(8.8 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{D}^{* 0} \phi\right) / \Gamma_{\text {total }}$	45/Г			
VALUE (units 10-5)	DOCUMENT ID TECN		COMMENT	
$3.7 \pm 0.6 \pm 0.2$	1 AAIJ	18AY LHCB $p p$ at 7 and 8 TeV	$p p$ at 7 and 8 TeV	
${ }^{1}$ AAIJ 18AY reports $\left[\Gamma\left(B_{s}^{0} \rightarrow \bar{D}^{* 0} \phi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)\right]=(4.2 \pm 0.5 \pm$				
$0.4) \times 10^{-2}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=(8.8 \pm 0.5) \times$ 10^{-4}. Our first error is their experiment's error and our second error is the systematic				

$\Gamma\left(D^{* \mp} \pi^{ \pm}\right) / \Gamma_{\text {total }}$					Γ_{46} / Γ
VALUE	$\underline{C L} \%$	DOCUMENT ID	TECN	COMMENT	
$<6.1 \times 10^{-6}$	90	${ }^{1}$ AAIJ	13aL LHCB	$p p$ at 7 TeV	

${ }^{1}$ Uses $\mathrm{f}_{s} / \mathrm{f}_{d}=0.256 \pm 0.020$ and $\mathrm{B}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)=(2.76 \pm 0.13) \times 10^{-3}$.

${ }^{1}$ The last uncertainty includes the limited knowledge of the external branching fractions where the η_{C} is reconstructed in the $p \bar{p}, K^{+} K^{-} \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, and $K^{+} K^{-} K^{+} K^{-}$decays and $\phi(1020) \rightarrow K^{+} K^{-}$.
$\Gamma\left(\eta_{c} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{48} / Γ
$\operatorname{VALUE}\left(\right.$ units $\left.10^{-4}\right)$
DOCUMENT ID TECN COMMENT
$\mathbf{1 . 7 6 \pm 0 . 5 9 \pm 0 . 3 1} 1 \overline{\mathrm{AAIJ}} \overline{\mathrm{LHCB}} \overline{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ The last uncertainty includes the limited knowledge of the external branching fractions where the η_{C} is reconstructed in the $p \bar{p}, K^{+} K^{-} \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, and $K^{+} K^{-} K^{+} K^{-}$decays. The significance of the signal, including systematic uncertainties, is 4.6 standard deviations
$\Gamma(J / \psi(1 S) \phi) / \Gamma_{\text {total }}$
$\Gamma_{49 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 0 8} \pm \mathbf{0 . 0 8} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT 1.10 ± 0.09 OUR AVERAGE

| $1.050 \pm 0.013 \pm 0.104$ | 1 | AAIJ |
| :--- | :--- | :--- |\quad 13AN LHCB $p p$ at 7 TeV

$1.25 \pm 0.07 \pm 0.23 \quad 2$ THORNE $\quad 13 \mathrm{BELL} e^{+} e^{-} \rightarrow r(5 S)$
$1.5 \pm 0.5 \pm 0.1 \quad 3 \mathrm{ABE} \quad 96 \mathrm{Q}$ CDF $p \bar{p}$

- - We do not use the following data for averages, fits, limits, etc. - -
$<6 \quad 1 \quad{ }_{5}^{4}$ AKERS 94」 OPAL $e^{+} e^{-} \rightarrow Z$ $\begin{array}{lrllll}\text { seen } & 14 & 5 \mathrm{ABE} & 93 \mathrm{~F} & \mathrm{CDF} & p \bar{p} \text { at } 1.8 \mathrm{TeV} \\ \text { seen } & 1 & 6 \mathrm{ACTON} & 92 \mathrm{~N} & \text { OPAL } & \text { Sup. by AKERS } 94\end{array}$
${ }^{1}$ Uses $\mathrm{f}_{s} / \mathrm{f}_{d}=0.256 \pm 0.020$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(10.18 \pm 0.42) \times 10^{-4}$.
${ }^{2}$ Uses $\mathrm{f}_{s}=(17.2 \pm 3.0) \%$ as the fraction of $r(5 S)$ decaying to $B_{S}^{(*)} \bar{B}_{S}^{(*)}$.
${ }^{3} \mathrm{ABE} 96 \mathrm{Q}$ reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\left[\Gamma\left(\bar{b} \rightarrow B^{+}\right)+\Gamma(\bar{b} \rightarrow\right.\right.$ $\left.\left.\left.B^{0}\right)\right]\right]=(0.185 \pm 0.055 \pm 0.020) \times 10^{-3}$ which we divide by our best value $\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /$ $\left[\Gamma\left(\bar{b} \rightarrow B^{+}\right)+\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.1230 \pm 0.0115$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ AKERS 94J sees one event and measures the limit on the product branching fraction $f\left(\bar{b} \rightarrow B_{S}^{0}\right) \cdot \mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)<7 \times 10^{-4}$ at $\mathrm{CL}=90 \%$. We divide by $\mathrm{B}(\bar{b} \rightarrow$ $\left.B_{S}^{0}\right)=0.112$.
${ }^{5}$ ABE 93F measured using $J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$
${ }^{6}$ In ACTON 92 N a limit on the product branching fraction is measured to be $f\left(\bar{b} \rightarrow B_{S}^{0}\right) \cdot \mathrm{B}\left(B_{s}^{0} \rightarrow J / \psi(1 S) \phi\right) \leq 0.22 \times 10^{-2}$.
$\Gamma(J / \psi(1 S) \phi \phi) / \Gamma(J / \psi(1 S) \phi)$
$\Gamma_{50} / \Gamma_{49}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT

| $\mathbf{1 . 1 5 \pm \mathbf { 0 . 1 2 } \mathbf { - 0 . 0 5 }} \mathbf{0 . 0 9}$ | 128 | ${ }^{1} \mathrm{AAIJ}$ | 16 U LHCB $p p$ at $7,8 \mathrm{TeV}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 Uses $J / \psi \rightarrow$ | $\mu^{+} \mu^{-}, \phi \rightarrow$ | $K^{+} K^{-}$decays, and observes 128 ± 13 events of $B_{S}^{0} \rightarrow$ | |
| $J / \psi \phi \phi$. | | | |

$\Gamma\left(J / \psi(1 S) \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{<1.2 \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ACCIARRI } 97 C} \frac{\text { TECN }}{\text { L3 }}$
Γ_{51} / Γ
${ }^{1}$ ACCIARRI 97C assumes B^{0} production fraction $(39.5 \pm 4.0 \%)$ and $B_{S}(12.0 \pm 3.0 \%)$.
$\Gamma(J / \psi(1 S) \eta) / \Gamma_{\text {total }} \quad \Gamma_{52} / \Gamma$

$\begin{array}{llcc}\mathbf{4 . 0} \mathbf{\pm 0 . 7} & \text { OUR AVERAGE } & \text { Error includes scale factor of } 1.4 . \\ 3.6 & { }_{-0}^{+0.5} \underset{-0.2}{+0.3} & 1_{\text {AAIJ }} & 13 \mathrm{~A} \text { LHCB } \quad p p \text { at } 7 \mathrm{TeV}\end{array}$
$5.10 \pm 0.50_{-0.83}^{+1.17} \quad 2 \mathrm{LI} \quad 12 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<38 \quad 90 \quad{ }^{3}$ ACCIARRI 97C L3
${ }^{1}$ AAIJ 13A reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \eta\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)\right]=$ $14.0 \pm 1.2_{-1.5-1.0}^{+1.1}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)=$ $\left(2.55_{-0.16}^{+0.18}\right) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Observed for the first time with significances over 10σ. The second error are total systematic uncertainties including the error on $\mathrm{N}\left(B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)$.
${ }^{3}$ ACCIARRI 97C assumes B^{0} production fraction (39.5 $\pm 4.0 \%$) and $B_{S}(12.0 \pm 3.0 \%)$.

Meson Particle Listings
B_{s}^{0}

$\Gamma\left(J / \psi(1 S) K_{S}^{0}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-5})
1.88 ± 0.15 OUR AVERAGE
$1.87 \pm 0.14 \pm 0.06 \quad{ }^{1}$ AAIJ 15AL LHCB $p p$ at $7,8 \mathrm{TeV}$
$1.9 \pm 0.4 \pm 0.2 \quad{ }^{2}$ AALTONEN 11 A CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.98 \pm 0.16 \pm 0.20 \quad 3$ AAIJ 13 AB LHCB Repl. by AAIJ 15AL $1.98 \pm 0.25 \pm 0.20 \quad 4$ AAIJ 120 LHCB Repl. by AAIJ 13AB ${ }^{1}$ AAIJ 15 AL reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right)\right]=(4.31 \pm$ $0.17 \pm 0.12 \pm 0.25) \times 10^{-2}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right)$ $=(4.34 \pm 0.15) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AALTONEN 11A reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)\right] /[\mathrm{B}(\bar{b} \rightarrow$ $\left.\left.B^{0}\right)\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right)\right]=(1.09 \pm 0.19 \pm 0.11) \times 10^{-2}$ which we multiply or divide by our best values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=(10.0 \pm 0.8) \times 10^{-2}, \mathrm{~B}\left(\bar{b} \rightarrow B^{0}\right)=$ $(40.8 \pm 0.7) \times 10^{-2}, \mathrm{~B}\left(B^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right)=1 / 2 \times \mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=1 / 2$ $\times(8.68 \pm 0.30) \times 10^{-4}$. Our firs t error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{3}$ AAIJ 13AB reports $(1.97 \pm 0.14 \pm 0.07 \pm 0.15 \pm 0.08) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right) / \Gamma_{\text {total }}\right] /\left[B\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma(\bar{b} \rightarrow\right.$ $\left.\left.B^{0}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=(8.98 \pm 0.35) \times 10^{-4}, \Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma(\bar{b} \rightarrow$ $\left.B^{0}\right)=0.256 \pm 0.020$, which we rescale to our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=$ $(8.68 \pm 0.30) \times 10^{-4}, \Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$. Our first error is their experiment's error and our second error is the systematic error from using our best 4 values.
${ }^{4}$ AAIJ 120 reports $(1.83 \pm 0.21 \pm 0.10 \pm 0.14 \pm 0.07) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) K_{S}^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma(\bar{b} \rightarrow\right.$ $\left.\left.B^{0}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=(8.71 \pm 0.32) \times 10^{-4}, \Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma(\bar{b} \rightarrow$ $\left.B^{0}\right)=0.267_{-0.02}^{+0.021}$, which we rescale to our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{0}\right)=$ $(8.68 \pm 0.30) \times 10^{-4}, \Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
$\Gamma\left(J / \psi(1 S) \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{54} / \Gamma^{2}$
VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT
4.14 $\pm \mathbf{0 . 1 8} \pm \mathbf{0 . 3 5} \quad{ }^{1}$ AAIJ 15AV LHCB $p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - . -
$4.4{ }_{-0.4}^{+0.5} \pm 0.8 \quad{ }^{2}$ AAIJ 12AP LHCB Repl. by AAIJ 15AV
$9 \quad \pm 4 \pm 1 \quad{ }^{3}$ AALTONEN 11A CDF $p \bar{p}$ at 1.96 TeV
${ }^{1}$ AAIJ 15AV result combines two measurements with different normalizing modes of $B^{0} \rightarrow$ $J / \psi K^{*}(892)^{0}$ and $B_{S}^{0} \rightarrow J / \psi \phi$.
${ }^{2}$ AAIJ 12AP reports $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi(1 S) \bar{K}^{*}(892)^{0}\right) / \mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=$ $\left(3.43_{-0.36}^{+0.34} \pm 0.50\right) \times 10^{-2}$ and $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.29 \pm 0.05 \pm$ $0.13) \times 10^{-3}$ after correcting for the contribution from $K \pi S$-wave beneath the K^{*} peak.
${ }^{3}$ AALTONEN 11A reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)\right] /$ $\left[\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right]=0.0168 \pm 0.0024 \pm 0.0068$ which we multiply or divide by our best values $\mathrm{B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=(10.0 \pm 0.8) \times 10^{-2}, \mathrm{~B}\left(\bar{b} \rightarrow B^{0}\right)$ $=(40.8 \pm 0.7) \times 10^{-2}, \mathrm{~B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
$\Gamma\left(J / \psi(1 S) \eta^{\prime}\right) / \Gamma_{\text {total }}$
Γ_{55} / Γ
$\operatorname{VALUE}\left(\right.$ units $\left.10^{-4}\right)$
3.3 ± 0.4 OUR AVERAGE
$3.2{ }_{-0.5}^{+0.4} \pm 0.2$
DOCUMENT ID TECN COMMENT
3.71 ± 0.61
-0.60 ${ }_{-0}^{0.85} \mathbf{L I} \quad 12 \quad$ BELL $\quad e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ AAIJ 13A reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \eta^{\prime}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)\right]=$ $12.7 \pm 1.1_{-1.3}^{+0.5}{ }_{-0.9}^{1.0}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) \rho^{0}\right)=$ $\left(2.55_{-0.16}^{+0.18}\right) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Observed for the first time with significances over 10σ. The second error are total systematic uncertainties including the error on $N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)$.
$\Gamma\left(J / \psi(1 S) \eta^{\prime}\right) / \Gamma(J / \psi(1 S) \eta)$
$\Gamma_{55} / \Gamma_{52}$
$\frac{\text { VALUE }}{0.87} \pm 0.06$ OUR AVERAGE
$0.902 \pm 0.072 \pm 0.045$

$0.73 \pm 0.14 \pm 0.02 \quad{ }^{2}$ LI $\quad 12 \mathrm{BELL} e^{+} e^{-} \rightarrow r(4 S)$
${ }^{1}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}, \eta^{\prime} \rightarrow \rho^{0} \gamma$, and $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decays.
${ }^{2}$ Strongly correlated with measurements of $\Gamma(J / \psi(1 S) \eta) / \Gamma$ and $\Gamma\left(J / \psi(1 S) \eta^{\prime}\right) / \Gamma$ reported in the same reference.

${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.

$\Gamma\left(J / \psi(1 S) \rho, \rho \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$			$\Gamma_{58} / \Gamma_{56}$	
VaLUE $C L L \%$	DOCUMENT ID - TECN		COMMENT	
<0.017 90	1 AAIJ	14BR LHCB	$p p$ at 7, 8	
${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.				
$\Gamma\left(J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$				$\Gamma_{59} / \Gamma_{56}$
			COMMENT	

$0.61+0.06$ OUR FIT Error includes scale factor of 2.1.
$\mathbf{0 . 7 0 3} \pm \mathbf{0 . 0 1 5}{ }_{=0.051}^{\mathbf{0} .004} \quad 1$ AAIJ $\quad 14 \mathrm{BR}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.

$\Gamma\left(J / \psi(1 S) f_{2}\right.$	π^{-}	$\pi^{+} \pi^{-}$)		$\Gamma_{61} / \Gamma_{56}$
VALUE (\%)	DOCU	TECN	COMMENT	
$0.36 \pm 0.07 \pm 0.03$	${ }^{1}$ AAIJ	LHCB	$p p$ at 7, 8	

${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.

${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.
$\Gamma\left(J / \psi(1 S) f_{2}(1270)_{\perp}, f_{2} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{63} / \Gamma_{56}$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 6 3} \pm \mathbf{0 . 3 4} \mathbf{+ 0 . 1 6}} \quad \frac{\text { DOCUMENT ID }}{1 \text { AAIJ }} \frac{\text { TECN }}{\text { 14BR LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.

$\Gamma\left(J / \psi(1 S) f_{0}(1500), f_{0} \rightarrow\right.$			$\Gamma_{65} / \Gamma_{56}$
Value	DOCU	COMMENT	
$0.101 \pm 0.008{ }^{+0.011}$	AAIJ	p	

${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.
$\Gamma\left(J / \psi(1 S) f_{2}^{\prime}(1525)_{0}, f_{2}^{\prime} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{66} / \Gamma_{56}$
$\frac{\text { VALUE }(\%)}{\text { DOCUMENT ID }}$ TECN
${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.
$\Gamma\left(J / \psi(1 S) f_{2}^{\prime}(1525)_{\|}, f_{2}^{\prime} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{67} / \Gamma_{56}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 0 6}+\mathbf{0 . 1 3} \pm \mathbf{0 . 0 1}} \quad \frac{\text { DOCUMENT ID }}{1}$ AAIJ TECN \quad 14BR LHCB $\frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.

$\Gamma\left(J / \psi(1 S) f_{2}^{\prime}(1525)_{\perp}, f_{2}^{\prime} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$				$\Gamma_{68} / \Gamma_{56}$
VALUE (\%)	DOCUM	TECN	COMMENT	
$0.26 \pm 0.18{ }_{-0.04}^{+0.06}$	${ }^{1}$ AAIJ	14BR LHCB	$p p$ at 7, 8	

${ }^{1}$ Reported first of two solutions using the full Dalitz analysis.
$\Gamma\left(J / \psi(1 S) f_{0}(1790), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{69} / \Gamma_{56}$ VALUE DOCUMENT ID TECN COMMENT

$\Gamma\left(J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma(J / \psi(1 S) \phi)$
IECN COMMENT
$\Gamma_{59} / \Gamma_{49}$
$0.119{ }_{-0.014}^{+0.013}$ OUR FIT Error includes scale factor of 2.4 .
$\mathbf{0 . 1 1 1}{ }^{\mathbf{+}} \mathbf{0} \mathbf{0 . 0 2 0}$ OUR AVERAGE Error includes scale factor of 2.5. See the ideogram below.
$0.069 \pm 0.012 \pm 0.001 \quad 1$ KHACHATRY...16Q CMS $\quad p p$ at 7 TeV
$0.1400_{-0.013}^{+0.026} \pm 0.002 \quad 2,3 \mathrm{AAIJ} \quad 12 \mathrm{AO} \mathrm{LHCB} p p$ at 7 TeV
$0.135 \pm 0.036 \pm 0.001 \quad 4$ ABAZOV 12 C D0 $p \bar{p}$ at 1.96 TeV
$0.126 \pm 0.012 \pm 0.001 \quad 5$ AALTONEN $11 \mathrm{ABCDF} \quad p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.124_{-0.023}^{+0.026} \pm 0.001 \quad{ }^{6}$ AAIJ 11 LHCB Repl. by AAIJ 12AO
${ }^{1}$ KHACHATRYAN $16 Q$ reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $J / \psi(1 S) \phi)] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.140 \pm 0.008 \pm 0.023$ which we multiply by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
${ }^{2}$ value. 12 AO reports $\left(13.9 \pm 0.6_{-1.2}^{+2.5}\right) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]$ assuming $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Measured in Dalitz plot like analysis of $B_{S} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.
${ }^{4}$ ABAZOV 12 C reports [$\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)$] $/\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.275 \pm 0.041 \pm 0.061$ which we multiply by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ AALTONEN 11AB reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) f_{0}(980), \quad f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $J / \psi(1 S) \phi)] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.257 \pm 0.020 \pm 0.014$ which we multiply by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
${ }^{6}$ value. 11 reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] /$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.252_{-0.032}^{+0.046}+0.027$ which we multiply by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(J / \psi(1 S) f_{0}(1370), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6 4}} / \Gamma$ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -
$0.34_{-0.14}^{+0.11+0.054}+1 \mathbf{L I} \quad 11 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(5 S)$
${ }^{1}$ The second error includes both the detector systematic and the uncertainty in the number of produced $Y(5 S) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}$ pairs.
$\Gamma\left(J / \psi(1 S) f_{0}(1370), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma(J / \psi(1 S) \phi)$
$\Gamma_{66} / \Gamma_{49}$

VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
$4.22+-3.76 \pm 0.05$	1,2 AAIJ	12AO LHCB	$p p$ at 7 TeV

${ }^{1} \mathrm{AAIJ} 12 \mathrm{AO}$ reports $\left(4.19 \pm 0.53_{-3.7}^{+0.12}\right) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{0}(1370), f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]$ assuming $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured in Dalitz plot like analysis of $B_{S} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.
$\Gamma\left(J / \psi(1 S) f_{2}(1270), f_{2} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma(J / \psi(1 S) \phi) \quad \Gamma_{60} / \Gamma_{49}$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$9.9{ }_{-3.6}^{\mathbf{3 . 4}} \pm \mathbf{0 . 1} \quad 1,2 \mathrm{AAIJ} \quad 12 \mathrm{AO}$ LHCB $p p$ at 7 TeV
${ }^{1}$ AAIJ 12AO reports $\left(0.098 \pm 0.033_{-0.015}^{+0.006}\right) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B_{s}^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{2}(1270), f_{2} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]$ assuming $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\phi(1020) \rightarrow \kappa^{+} \kappa^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's ${ }_{2}$ error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured in Dalitz plot like analysis of $B_{S} \rightarrow J / \psi \pi^{+} \pi^{-}$decays for the f_{2} helicity state $\lambda=0$.

| $\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}(\right.$nonresonant $) / \Gamma(J / \psi(1 S) \phi)$ | $\Gamma_{70} / \Gamma_{49}$ |
| :--- | :--- | :--- | :--- |
| VALUE (unit 10 $\left.0^{-2}\right)$ | |

${ }^{1}$ AAIJ 12AO reports $\left(1.66 \pm 0.31_{-0.08}^{+0.96}\right) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(B_{s}^{0} \rightarrow\right.\right.$ $J / \psi(1 S) \pi^{+} \pi^{-}($nonresonant $\left.) / / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] /\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} \kappa^{-}\right)\right]$assuming $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Measured in Dalitz plot like analysis of $B_{S} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.

$\Gamma(J / \psi(1 S) \bar{K}$	$) / \Gamma_{\text {total }}$				Γ_{71} / Γ
VALUE	c1\%	DOCUMENT ID		COMMENT	
$<4.4 \times 10^{-5}$	90	AAIJ	LHCB	$p p$ at 7 TeV	

${ }^{1}$ Measured with $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi K_{S}^{0} \pi^{+} \pi^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0} \pi^{+} \pi^{-}\right)$using PDG 12 values for the involved branching fractions.
$\Gamma\left(J / \psi(1 S) K^{+} K^{-}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{7.9 \pm 0.7 \text { OUR AVERAGE }}$
$7.70 \pm 0.08 \pm 0.72 \quad 13 \mathrm{AN}$ LHCB $p p$ at 7 TeV
$10.1 \pm 0.9 \pm 2.1 \quad 2$ THORNE 13 BELL $e^{+} e^{-} \rightarrow r(5 S)$
${ }^{1}$ Uses $\mathrm{f}_{s} / \mathrm{f}_{d}=0.256 \pm 0.020$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(10.18 \pm 0.42) \times 10^{-4}$.
${ }^{2}$ Uses $\mathrm{f}_{s}=(17.2 \pm 3.0) \%$ as the fraction of $\gamma(5 S)$ decaying to $B_{s}^{(*)} \bar{B}_{s}^{(*)}$.

$\Gamma\left(J / \psi(1 S) K^{0} K^{-} \pi^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$		
	Cument	COMMENT
$9.2 \pm 1.0 \pm 0.9 \quad 1 \frac{1}{\text { AAIJ }}$		
${ }^{1}$ AAIJ 14L reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) K^{0} K^{-} \pi^{+}+\right.\right.$c.c. $\left.) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) K^{0} \pi^{+} \pi^{-}\right)\right]=2.12 \pm 0.15 \pm 0.18$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$		
$\left.J / \psi(1 S) K^{0} \pi^{+} \pi^{-}\right)=(4.3 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. This is an observation of $B_{S}^{0} \rightarrow J / \psi K_{S}^{0} K^{ \pm} \pi^{\mp}$ with more than 10 standard deviations.		

$\frac{\text { VALUE }}{<12 \times 10^{-6}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{14 \mathrm{AAIJ}}{\text { LECN }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { TeV }}$
${ }^{1}$ Measured with $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi K_{S}^{0} K^{+} K^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0} \pi^{+} \pi^{-}\right)$using PDG 12 values for the involved branching fractions.
$\Gamma\left(J / \psi(1 S) f_{2}^{\prime}(1525)\right) / \Gamma(J / \psi(1 S) \phi)$
$\Gamma_{75} / \Gamma_{49}$

$21 \pm 7 \pm 1 \quad 2,3 \mathrm{ABAZOV}$ 12AF D0 $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$27 \pm 4 \pm 1 \quad{ }^{4}$ AAIJ 12 S LHCB Repl. by AAIJ 13AN
${ }^{1}$ Uses $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)=(44.4 \pm 1.1) \%$.
${ }^{2}$ ABAZOV 12AF reports $\left[\Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) f_{2}^{\prime}(1525)\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] \times$ $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right) / \mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=0.19 \pm 0.05 \pm 0.04$ which we divide and multiply by our best values $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)=\frac{1}{2}(87.6 \pm 2.2) \times 10^{-2}$, $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{3}$ ABAZOV 12AF fits the invariant masses of the $K^{+} K^{-}$pair in the range $1.35<$ $\mathrm{M}\left(K^{+} K^{-}\right)<2 \mathrm{GeV}$.
${ }^{4}$ AAIJ 12 S reports $\left[(26.4 \pm 2.7 \pm 2.4) \times 10^{-2}\right.$ from a measurement of $\Gamma\left(B_{S}^{0} \rightarrow\right.$ $\left.\left.J / \psi(1 S) f_{2}^{\prime}(1525)\right) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] \times \mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right) / \mathrm{B}(\phi(1020) \rightarrow$ $\left.K^{+} K^{-}\right)$assuming $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K^{+} K^{-}\right)=(44.4 \pm 1.1) \times 10^{-2}, \mathrm{~B}(\phi(1020) \rightarrow$ $\left.K^{+} K^{-}\right)=(48.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best values $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow\right.$ $\left.K^{+} K^{-}\right)=\frac{1}{2}(87.6 \pm 2.2) \times 10^{-2}, \mathrm{~B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

Meson Particle Listings

${ }^{1}$ Assuming lepton universality for dimuon decay modes of J / ψ and $\psi(2 S)$ mesons, the
ratio $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$
$\left.e^{+} e^{-}\right)=7.69+0.19$ was used. $\left.e^{+} e^{-}\right)=7.69 \pm 0.19$ was used.
$\Gamma\left(\psi(2 S) \eta^{\prime}\right) / \Gamma\left(J / \psi(1 S) \eta^{\prime}\right)$
$\Gamma_{81} / \Gamma_{55}$
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{38.7 \pm 9.0 \pm \mathbf{1 . 6}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ 15D }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Uses $J / \psi \rightarrow \mu^{+} \mu^{-}, \eta^{\prime} \rightarrow \rho^{0} \gamma$, and $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decays.
$\Gamma(J / \psi(1 S) p \bar{p}) / \Gamma_{\text {total }} \quad \Gamma_{76} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{\mathbf{3 . 5 8} \pm \mathbf{0 . 1 9} \pm \mathbf{0 . 3 9}} \quad \frac{C L \%}{1} \frac{\text { DOCUMENT ID }}{\text { AAIJ } \quad 19 \mathrm{U}} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8,13 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$\begin{array}{lcccc}<4.8 & 90 & { }^{2} \text { AAIJ } \quad 13 z & \text { LHCB } & \text { Repl. by AAIJ 2019U } \\ { }^{1} \text { Measured relative to } B_{S}^{0} \rightarrow J / \psi \phi \text { assuming } B\left(B_{S}^{0} \rightarrow J / \psi \phi\right)=(10.5 \pm 0.13 \pm 0.64) \times \\ 10^{-4} \text { and taking into account small } K^{+} K^{-} S \text {-wave contribution. }\end{array}$
${ }^{2} U \operatorname{ses} \mathrm{~B}\left(B_{S}^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(1.98 \pm 0.20) \times 10^{-4}$.

${ }^{1}$ Branching fractions of normalization modes $B_{S}^{0} \rightarrow J / \psi \gamma X$ taken from PDG 14. Uses $f_{s} / f_{d}=0.259 \pm 0.015$.
$\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{78} / \Gamma_{56}$ - DOCUMENT ID TECN COMMENT
${ }^{1}$ Excludes contributions from $\psi(2 S)$ and $\chi_{C 1}(3872)$ decaying to $J / \psi(1 S) \pi^{+} \pi^{-}$.
$\Gamma\left(J / \psi(1 S) f_{1}(1285)\right) / \Gamma_{\text {total }} \quad \Gamma_{79} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{\mathbf{7 . 2} \pm \mathbf{1 . 3} \pm \mathbf{0 . 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{14 \mathrm{Y}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 14Y reports $\left(7.14 \pm 0.99_{-0.91}^{+0.83} \pm 0.41\right) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(B_{s}^{0} \rightarrow\right.\right.$ $\left.\left.J / \psi(1 S) f_{1}(1285)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)\right]$assuming $\mathrm{B}\left(f_{1}(1285) \rightarrow\right.$ $\left.2 \pi^{+} 2 \pi^{-}\right)=0.11_{-0.006}^{+0.007}$, which we rescale to our best value $\mathrm{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$ $=(10.9 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\psi(2 S) \phi) / \Gamma_{\text {total }}$

Γ_{83} / Γ
VALUE (units 10^{-4}) EVTS DOCUMENTID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
seen $1 \quad$ BUSKULIC 93G ALEP $e^{+} e^{-} \rightarrow Z$
$\Gamma(\psi(2 S) \phi) / \Gamma(J / \psi(1 S) \phi)$

$\frac{\text { VALUE }}{0.503 \pm 0.034 \text { OUR AVERAGE }}$

$0.500 \pm 0.034 \pm 0.011$
$0.53 \pm 0.10 \pm 0.09$
1,2 AAIJ
OCUMENT ID TECN COMMENT
$\Gamma_{83} / \Gamma_{49}$
$0.52 \pm 0.13 \pm 0.07$ ABAZOV 09Y D0 $\quad p \bar{p}$ at 1.96 TeV ABULENCIA 06 N CDF $p \bar{p}$ at 1.96 TeV
${ }^{1}$ AAIJ 12L reports $0.489 \pm 0.026 \pm 0.021 \pm 0.012$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $\left.\psi(2 S) \phi) / \Gamma\left(B_{S}^{0} \rightarrow J / \psi(1 S) \phi\right)\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)\right] /\left[\mathrm{B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)\right]$ assuming $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=(5.94 \pm 0.06) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=$ $(7.72 \pm 0.17) \times 10^{-3}$, which we rescale to our best values $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=$ $(5.971 \pm 0.032) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=(7.93 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ Assumes $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$ $\left.e^{+} e^{-}\right)=7.69 \pm 0.19$.
$\Gamma\left(\psi(2 S) K^{-} \pi^{+}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{3.12 \pm 0.30 \pm 0.21}$
Γ_{84} / Γ^{2}
${ }^{1}$ AAIJ 150 reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \psi(2 S) K^{-} \pi^{+}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \psi(2 S) K^{+} \pi^{-}\right)\right]=$ $(5.38 \pm 0.36 \pm 0.22 \pm 0.31) \times 10^{-2}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.\psi(2 S) K^{+} \pi^{-}\right)=(5.8 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\psi(2 S) \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
DOCUMENT ID TECN COMMENT
${ }^{1}$ AAIJ $\quad 15 \mathrm{U}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 15 u reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \psi(2 S) \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \psi(2 S) K^{*}(892)^{0}\right)\right]$ $=(5.58 \pm 0.57 \pm 0.40 \pm 0.32) \times 10^{-2}$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.\psi(2 S) K^{*}(892)^{0}\right)=(5.9 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$				32/ Γ_{56}
Value docum				
$0.34 \pm 0.04 \pm 0.03$	${ }^{1}$ AAIJ	13AA LHC	p at 7 Te	
${ }^{1}$ Assuming lepton universality for dimuon decay modes of J / ψ and $\psi(2 S)$ mesons, the ratio $\mathrm{B}\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{B}\left(\mathrm{J} / \psi \rightarrow e^{+} e^{-}\right) / \mathrm{B}(\psi(2 S) \rightarrow$ $\left.e^{+} e^{-}\right)=7.69 \pm 0.19$ was used.				

$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{8 9}} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-7}\right)}{7} \quad$ CL\% \quad DOCUMENT ID \quad TECN COMMENT 7.0 ± 1.0 OUR AVERAGE $7.3 \pm 0.9 \pm 0.7 \quad 1$ AAIJ $\quad 17 \mathrm{G}$ LHCB $p p$ at 7 and 8 TeV $6.4 \pm 1.8 \pm 0.6 \quad{ }^{2}$ AALTONEN 12 L CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - •

| | | | 3 AAIJ | 12AR LHCB |
| :--- | :--- | :--- | :--- | :--- | Repl. by AAIJ 17G

${ }^{1}$ AAIJ 17 G reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\right.$ $\left.\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=(9.15 \pm 0.71 \pm 0.83) \times 10^{-3}$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm 0.05) \times 10^{-5}, \Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=$ 0.246 ± 0.023. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ AALTONEN 12L reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right] \times[\Gamma(\bar{b} \rightarrow$ $\left.\left.B_{S}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.008 \pm 0.002 \pm 0.001$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm 0.05) \times 10^{-5}, \Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{3}$ AAIJ 12AR reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\right.$ $\left.\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.050_{-0.009}^{+0.011} \pm 0.004$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=(5.12 \pm 0.19) \times 10^{-6}, \Gamma\left(\bar{b} \rightarrow B_{s}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{4}$ Uses $r(10860) \rightarrow B_{s}^{*} \bar{B}_{S}^{*}$ and assumes $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{s}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{s}^{*} \bar{B}_{s}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$.
${ }^{5}$ Obtains this result from $\left(f_{s} / f_{d}\right) \cdot \mathrm{B}\left(B_{s} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=0.007 \pm$ 0.004 ± 0.005, assuming $f_{s} / f_{d}=0.276 \pm 0.034$ and $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.4 \pm$ $0.6) \times 10^{-6}$.
${ }^{6}$ ABULENCIA,A 06D obtains this from $\mathrm{B}\left(B_{S} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{B}\left(B_{S} \rightarrow K^{+} K^{-}\right)<0.05$ at $90 \% \mathrm{CL}$, assuming $\mathrm{B}\left(B_{S} \rightarrow K^{+} K^{-}\right)=(33 \pm 6 \pm 7) \times 10^{-6}$.
${ }^{7} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{8}$ BUSKULIC 96 V assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons.

$\Gamma\left(\pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$	$\underline{C L} \%$	DOCUMENT ID		TECN	COMMENT	Г90/Г
<2.1 $\times 10^{-4}$	90	${ }^{1}$ ACCIARRI	95 H	L3	$e^{+} e^{-}$	
${ }^{1}$ ACCIARRI 95	es f_{B}	39.5 ± 4.0 an		$12.0 \pm$		

$\Gamma(\eta \eta) / \Gamma_{\text {total }}$	$\underline{C L}$	DOCUMENT ID		TECN	COMMENT	「92/Г
VALUE						
$<1.5 \times 10^{-3}$	90	$1{ }^{1}$ ACCIARRI	95 H	L3	$e^{+} e^{-} \rightarrow$	
${ }^{1}$ ACCIARRI	es f_{B}	$39.5 \pm 4.0 \mathrm{a}$.0\%.	

$\Gamma\left(\phi \pi^{+} \pi^{-}\right) / /_{\text {total }}$			Г99/Г
Vaut minis io	Document io	TECN COMMENT	

${ }^{1}$ Inclusive decays in mass range $400<\mathrm{m}\left(\pi^{+} \pi^{-}\right)<1600 \mathrm{MeV} / \mathrm{c}^{2}$.
$\Gamma\left(\phi \rho^{0}\right) / /_{\text {total }} \quad \Gamma_{98} / \Gamma^{2}$ $\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{2 . 7} \pm \mathbf{0 . 7} \pm \mathbf{0 . 3}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$ - - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$ $<6170 \quad 90 \quad{ }^{2} \mathrm{ABE} \quad 00 \mathrm{C}$ SLD $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ Signal evidence is 4 standard deviations.
${ }^{2} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
$\Gamma\left(\phi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{96} / \Gamma$

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
1.12 $\pm 0.16 \pm 0.14$	1 AAIJ	17A	LHCB	$p p$ at 7, 8 TeV

${ }^{1}$ Signal is observed with 8 standard deviations significance.
$\Gamma\left(\phi f_{2}(1270), f_{2}(1270) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{97} / \Gamma$ VALUE (units 10^{-6}) DOCUMENT ID \quad TECN COMMENT $\mathbf{0 . 6 1} \pm \mathbf{0 . 1 3}_{-\mathbf{0}}^{\mathbf{+ 0 . 0 8}} \quad 1 \mathrm{AAIJ} \quad 17 \mathrm{~A}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Signal is observed with 5 standard deviations significance.
$\Gamma(\phi \phi) / \Gamma_{\text {total }} \quad \Gamma_{100} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{18.7 \pm 15 \text { OUR FIT }}$ CL\% DOCUMENT ID TECN COMMENT
18.7士1.5 OUR FIT
$\mathbf{1 8 . 5} \pm \mathbf{1 . 4} \pm \mathbf{1 . 0} \quad 1$ AAIJ 15 AS LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{1}$ AAIJ 15AS reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \phi \phi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)\right]=1.84 \pm 0.05 \pm 0.13$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)=(1.00 \pm 0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
${ }^{2}$ Uses $\mathrm{B}\left(B^{0} \rightarrow J / \psi \phi\right)=(1.38 \pm 0.49) \times 10^{-3}$ and production cross-section ratio of $\sigma\left(B_{S}\right) / \sigma\left(B^{0}\right)=0.26 \pm 0.04$.
${ }^{3} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
$\Gamma(\phi \phi) / \Gamma(J / \psi(1 S) \phi)$
VALUE (units 10^{-2})
$\mathbf{1 . 7 3} \pm \mathbf{0 . 1 6}$ OUR FIT
$\mathbf{1 . 7 8} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 2 0}$
DOCUMENT ID TECN COMMENT
$\Gamma_{100} / \Gamma_{49}$

AALTONEN 11ANCDF $p \bar{p}$ at 1.96 TeV
$\Gamma(\phi \phi \phi) / \Gamma(\phi \phi) \quad \Gamma_{101} / \Gamma_{100}$
$\mathbf{0 . 1 1 7} \pm \mathbf{0 . 0 3 0} \pm \mathbf{0 . 0 1 5}$

$$
\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 17 \mathrm{TBB} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}
$$

$\Gamma\left(\pi^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{102 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{5.8}$ CL\% 5.8 ± 0.7 OUR AVERAGE
$5.9 \pm 0.7 \pm 0.6$
$5.7 \pm 1.0 \pm 0.5$
DOCUMENT ID TECN COMMENT

2 AALTONEN 09C CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - . -

< 26	90	3 PENG	10	BELL	$e^{+} e^{-} \rightarrow r(5 S)$
< 5.6	90	${ }^{4}$ ABULENCIA,A	06D	CDF	Repl. by AALTONEN 09C
<261	90	${ }^{5}$ ABE	00C	SLD	$e^{+} e^{-} \rightarrow Z$
<210	90	${ }^{6}$ BUSKULIC	96 V	ALEP	$e^{+} e^{-} \rightarrow Z$
<260	90	7 AKERS	94L	OPAL	$e^{+} e^{-} \rightarrow Z$

${ }^{1}$ AAIJ 12AR reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\right.$ $\left.\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.074 \pm 0.006 \pm 0.006$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm 0.05) \times 10^{-5}, \Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$.

Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ AALTONEN 09C reports $\left[\Gamma\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right] \times[\mathrm{B}(\bar{b} \rightarrow$ $\left.\left.B_{S}^{0}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)\right]=0.071 \pm 0.010 \pm 0.007$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm 0.05) \times 10^{-5}, \mathrm{~B}\left(\bar{b} \rightarrow B_{S}^{0}\right)=(10.0 \pm 0.8) \times 10^{-2}$, $B\left(\bar{b} \rightarrow B^{0}\right)=(40.8 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{3}$ Uses $\gamma(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ and assumes $\mathrm{B}\left(\gamma(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$.
${ }^{4}$ ABULENCIA,A 06D obtains this from $\left(f_{S} / f_{d}\right)\left(\mathrm{B}\left(B_{S} \rightarrow \pi^{+} K^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right)$ <0.08 at $90 \% \mathrm{CL}$, assuming $f_{S} / f_{d}=0.260 \pm 0.039$ and $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(18.9 \pm$ $0.7) \times 10^{-6}$.
${ }^{5} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{6}$ BUSKULIC 96 V assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons.
${ }^{7}$ Assumes $\mathrm{B}(Z \rightarrow b \bar{b})=0.217$ and $B_{d}^{0}\left(B_{S}^{0}\right)$ fraction 39.5% (12\%).
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{103} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{26.6 \pm \text { 2.2 OUR AVERAGE }}$

$25.2 \pm 1.7 \pm 2.4$	1 AAIJ	12AR LHCB $p p$ at 7 TeV	
$27.6 \pm 2.3 \pm 2.7$	2 AALTONEN	11 N CDF	$p \bar{p}$ at 1.96 TeV
$38+10 ~$	3	3 PENG	$10 \quad$ BELL

$38-9 \quad \pm 7 \quad 3$ PENG 10 BELL $e^{+} e^{-} \rightarrow r(5 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<310 \quad 90 \quad$ DRUTSKOY 07A BELL $e^{+} e^{-} \rightarrow r(5 S)$
$33 \pm 6 \pm 7 \quad 4$ ABULENCIA,A 06D CDF Repl. by AALTONEN 11 N
$\begin{array}{llllll}<283 & 90 & 5 \mathrm{ABE} & 00 \mathrm{C} \text { SLD } & e^{+} e^{-} \rightarrow Z \\ <59 & 90 & 6 \text { BUSKUUIC } & 96 \mathrm{~V} & \text { ALEP } & e^{+} e^{-} \rightarrow z\end{array}$
$\begin{array}{lll}<59 & 90 & { }^{6} \text { BUSKULIC } \\ 7 & 96 \mathrm{~V} \text { ALEP } e^{+} e^{-} \rightarrow Z\end{array}$
${ }^{1}$ AAIJ 12AR reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right] \times\left[\Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) /\right.$ $\left.\Gamma\left(\bar{b} \rightarrow B^{0}\right)\right]=0.316 \pm 0.009 \pm 0.019$ which we multiply or divide by our best values $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm 0.05) \times 10^{-5}, \Gamma\left(\bar{b} \rightarrow B_{S}^{0}\right) / \Gamma\left(\bar{b} \rightarrow B^{0}\right)=0.246 \pm 0.023$.
Our first error is their experiment's error and our second error is the systematic error from using our best values.
${ }^{2}$ AALTONEN 11 N reports $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right)=0.347 \pm$ 0.020 ± 0.021. We multiply this result by our best value of $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(1.96 \pm$ $0.05) \times 10^{-5}$ and divide by our best value of f_{s} / f_{d}, where $1 / 2 f_{s} / f_{d}=0.1230 \pm 0.0115$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.
${ }^{3}$ Uses $r(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}$ and assumes $\mathrm{B}\left(r(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$.
${ }^{4}$ ABULENCIA,A 06D obtains this from $\left(f_{s} / f_{d}\right)\left(\mathrm{B}\left(B_{S} \rightarrow K^{+} K^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right)$ $=0.46 \pm 0.08 \pm 0.07$, assuming $f_{s} / f_{d}=0.260 \pm 0.039$ and $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=$ $(18.9 \pm 0.7) \times 10^{-6}$.
${ }^{5} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
${ }^{6}$ BUSKULIC 96 V assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons.
${ }^{7}$ Assumes $\mathrm{B}(Z \rightarrow b \bar{b})=0.217$ and $B_{d}^{0}\left(B_{S}^{0}\right)$ fraction 39.5% (12\%).
$\Gamma\left(K^{0} \bar{K}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{104} / \Gamma$ $\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 9 6} \mathbf{+ 0 . 5 8} \pm \mathbf{0 . 1 0 \pm 0 . 2 0}} \frac{C L \%}{1 \text { PAL }} \frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(5 S)}$ - - We do not use the following data for averages, fits, limits, etc. - - .
<6.6 $90 \quad 2$ PENG 10 BELL Repl. by PAL 16
${ }^{1}$ Observed in $B_{S}^{0} \rightarrow K_{S}^{0} K_{S}^{0}$ with significance of 5.1σ. The last uncertainty is due to the uncertainty of the total number of $B_{S}^{0} \bar{B}_{S}^{0}$ pairs.
${ }^{2}$ Uses $\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{s}^{*}$ and assumes $\mathrm{B}\left(\Upsilon(10860) \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)=(19.3 \pm 2.9) \%$ and $\Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \Gamma\left(\Upsilon(10860) \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=\left(90.1_{-4.0}^{+3.8}\right) \%$.
 error from using our best value.

Meson Particle Listings
B_{s}^{0}

$\Gamma\left(K^{0} K^{ \pm} \boldsymbol{\pi}^{\mp}\right) / \Gamma_{\text {total }}$

$\Gamma_{106 / \Gamma}$
VALUE (units 10^{-5})
DOCUMENT ID TECN COMMENT
$\mathbf{8 . 4} \pm \mathbf{0 . 8} \pm \mathbf{0 . 3} \quad 1,2 \mathrm{AAIJ} \quad 17 \mathrm{BP}$ LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$7.4 \pm 0.9 \pm 0.3 \quad{ }^{3} \mathrm{AAIJ} \quad$ 13BP LHCB Repl. by AAIJ 17BP
${ }^{1}$ AAIJ 17BP reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)\right]=1.70 \pm$ 0.07 ± 0.15 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=(4.97 \pm 0.18) \times$ 10^{-5}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Used $f_{S} / f_{d}=0.259 \pm 0.015$.
${ }^{3}$ AAIJ 13BP reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)\right]=1.48 \pm$ 0.12 ± 0.14 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=(4.97 \pm 0.18) \times$ 10^{-5}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{108} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 8 6} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 4 5}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{19 \mathrm{~K}}{\text { TECN }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - -
$1.12 \pm 0.21_{-0.06}^{+0.07} \quad 3,4 \mathrm{AAIJ} \quad$ 14BM LHCB Repl. by AAIJ 19 K
${ }^{1}$ AAIJ 19 K reports $(18.6 \pm 1.2 \pm 0.8 \pm 4.0 \pm 2.0) \times 10^{-6}$ as the measured value. We have combined in quadrature all systematic uncertainties into a single one.
${ }^{2}$ Measured in Dalitz plot analysis of $B_{S}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.
${ }^{3}$ AAIJ 14BM reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{*}(892)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{+} \pi^{-}\right)\right]=$ $1.49 \pm 0.22 \pm 0.18$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{+} \pi^{-}\right)=$ $(7.5 \pm 0.4) \times 10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ Uses $\mathrm{f}_{s} / \mathrm{f}_{d}=0.259 \pm 0.015$.
$\Gamma\left(K_{0}^{*}(1430)^{ \pm} \kappa^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{109} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{3 . 1 3} \pm \mathbf{0 . 2 3} \pm \mathbf{2 . 5 3}} 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{19 \mathrm{~K}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Pp at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 19 K reports $(31.3 \pm 2.3 \pm 0.7 \pm 25.1 \pm 3.3) \times 10^{-6}$ as the measured value. We
have combined in quadrature all systematic uncertainties into a single one.
${ }^{2}$ Measured in Dalitz plot analysis of $B_{S}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.
$\Gamma\left(\boldsymbol{K}_{2}^{*}(\mathbf{1 4 3 0})^{ \pm} \boldsymbol{K}^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{110} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 0 3} \pm \mathbf{0 . 2 5} \pm \mathbf{1 . 6 4}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{19 \mathrm{~K}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at 7, } 8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 19 K reports $(10.3 \pm 2.5 \pm 1.1 \pm 16.3 \pm 1.1) \times 10^{-6}$ as the measured value. We have combined in quadrature all systematic uncertainties into a single one.
${ }^{2}$ Measured in Dalitz plot analysis of $B_{S}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{0}+\right.$ c.c. $) / / /_{\text {total }}$
$\Gamma_{111 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 9 8} \mathbf{\pm 0 . 2 8} \mathbf{\pm 0 . 5 0}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{19 \mathrm{~K}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { Lp at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 19 K reports $(19.8 \pm 2.8 \pm 1.2 \pm 4.4 \pm 2.1) \times 10^{-6}$ as the measured value. We have combined in quadrature all systematic uncertainties into a single one.
${ }^{2}$ Measured in Dalitz plot analysis of $B_{S}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.

$\Gamma\left(\kappa_{0}^{*}(1430) \bar{K}^{0}+\right.$ c.c. $) / /_{\text {total }}$			$\Gamma_{112 / \Gamma}$
value (unitis 10^{-5})	DOCCUENT 10	TECN COMMENT	

${ }^{1}$ AAIJ 19 K reports $(33.0 \pm 2.5 \pm 0.9 \pm 9.1 \pm 3.5) \times 10^{-6}$ as the measured value. We have combined in quadrature all systematic uncertainties into a single one.
${ }^{2}$ Measured in Dalitz plot analysis of $B_{S}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.

$\Gamma\left(K_{S}^{0} \bar{K}^{*}(892)^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$				Γ_{114} / Γ
VALUE (units 10-6)	DOCUMENT ID	TECN	COMMENT	
16.4 $\pm 3.4 \pm 2.3$	1 AAIJ 16	LHCB	$p p$ at 7 TeV	
${ }^{1}$ Measured relative to $B^{0} \rightarrow$ $(4.96 \pm 0.2) \times 10^{-5}$	$K_{S}^{0} \pi^{+} \pi^{-}$using the	ue of	$\mathrm{B}\left(B^{0} \rightarrow K^{\mathrm{C}}\right.$	$\left.\pi^{-}\right)=$

$\Gamma\left(K^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{115} / \Gamma$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{1 2 . 9} \pm 6.5 \pm \mathbf{0 . 5}} \frac{C L \%}{1,2,3} \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 17BP }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{\text { at } 7,8 \mathrm{TeV}}{}$

- - We do not use the following data for averages, fits, limits, etc. - • -
<34 $90 \quad{ }^{4}$ AAIJ 13BP LHCB Repl. by AAIJ 17BP
${ }^{1}$ AAIJ 17BP reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)\right]=0.026 \pm$
0.011 ± 0.007 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=(4.97 \pm$ $0.18) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ AAIJ 17BP also set the limit range $4-25 \times 10^{-7}$ at $90 \% \mathrm{CL}$ using the world average value $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=(4.96 \pm 0.20) \times 10^{-5}$.
${ }^{3}$ Used $f_{S} / f_{d}=0.259 \pm 0.015$.
${ }^{4}$ AAIJ 13BP reports $\left[\Gamma\left(B_{S}^{0} \rightarrow K^{0} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)\right]<0.068$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)=4.97 \times 10^{-5}$.
 ${ }^{1} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
$\Gamma\left(\bar{K}^{*}(892)^{0} K^{*}(892)^{0}\right) / /_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 1 1 \pm 0 . 2 6 \pm 0 . 0 6}} \frac{C L \%}{1} \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 15AF LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - • -
$2.81 \pm 0.46 \pm 0.56 \quad 2$ AAIJ $\quad 12 \mathrm{~F}$ LHCB Repl. by AAIJ 15AF
$<168.1 \quad 90 \quad{ }^{3} \mathrm{ABE} \quad 00 \mathrm{C}$ SLD $e^{+} e^{-} \rightarrow Z$ ${ }^{1}$ AAIJ 15AF reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \bar{K}^{*}(892)^{0} K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)\right]$ $=1.11 \pm 0.22 \pm 0.12 \pm 0.06$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)$ $=(1.00 \pm 0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Uses $B^{0} \rightarrow J / \psi K^{* 0}$ for normalization and assumes $\mathrm{B}\left(B^{0} \rightarrow J / \psi K^{* 0}\right) \mathrm{B}(J / \psi \rightarrow$ $\left.\mu^{+} \mu^{-}\right) \mathrm{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)=(1.33 \pm 0.06) \times 10^{-3}$ and $f_{s} / f_{d}=0.253 \pm 0.031$. The second quoted error is total uncertainty including the error of 0.34 on f_{S} / f_{d}.
${ }^{3} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{s}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
$\Gamma\left(\phi K^{*}(892)^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{121 / \Gamma}$
VALUE (units 10^{-6}) CL\%
DOCUMENT ID TECN COMMENT $\mathbf{1 . 1 4 \pm 0 . 2 9 \pm \mathbf { 0 . 0 6 }} 1 \overline{\mathrm{AAIJ}} 13 \mathrm{BW}$ LHCB $\overline{p p \text { at } 7 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - - $<1013 \quad 90 \quad 2 \mathrm{ABE} \quad 00 \mathrm{C}$ SLD $e^{+} e^{-} \rightarrow Z$ ${ }^{1}$ AAIJ 13BW reports $\left[\Gamma\left(B_{S}^{0} \rightarrow \phi K^{*}(892)^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)\right]=0.113 \pm$ 0.024 ± 0.016 which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \phi\right)=(1.00 \pm$ $0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2} \mathrm{ABE} 00 \mathrm{C}$ assumes $\mathrm{B}(Z \rightarrow b \bar{b})=(21.7 \pm 0.1) \%$ and the B fractions $f_{B^{0}}=f_{B^{+}}=$ $\left(39.7_{-2.2}^{+1.8}\right) \%$ and $f_{B_{S}}=\left(10.5_{-2.2}^{+1.8}\right) \%$.
$\Gamma(\rho \bar{p}) / \Gamma_{\text {total }}$
Γ_{122} / Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-8}) CL\% DOCUMENTID TECN COMMENT $\begin{array}{cccc}< & 1.5 & 90 & 17 \mathrm{AAIJ} \\ \bullet \bullet & \text { LHCB do not use the following data for averages, fits, limits, etc. } \bullet \bullet .\end{array}$ $2.84_{-1.68-0.18}^{+2.03+0.85} \quad 2$ AAIJ $\quad 13 \mathrm{BQ}$ LHCB Repl. by AAIJ 17BJ $<5900 \quad 90 \quad{ }^{3}$ BUSKULIC 96 V ALEP $e^{+} e^{-} \rightarrow Z$ ${ }^{1}$ Uses normalization mode $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.6 \pm 0.5) \times 10^{-6}$ and B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{s}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.259 \pm 0.015$.
${ }^{2}$ Uses normalization mode $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.55 \pm 0.54) \times 10^{-6}$ and B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.256 \pm 0.020$.
${ }^{3}$ BUSKULIC 96 v assumes PDG 96 production fractions for B^{0}, B^{+}, B_{S}, b baryons.
$\Gamma\left(\rho \bar{\rho} K^{+} K^{-}\right) / /_{\text {total }}$
$\Gamma_{123 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{4 . 5} \mathbf{\pm 0 . 4} \mathbf{\pm 0 . 2}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { 17BD }} \frac{\text { LHCB }}{\text { Pp at 7, } 8 \mathrm{TeV}}$ ${ }^{1}$ AAIJ 17BD reports $\left[\Gamma\left(B_{S}^{0} \rightarrow p \bar{p} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right] /$ $[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})] /\left[\mathrm{B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)\right]=1.67 \pm 0.12 \pm 0.11$ which we multiply by our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}, \mathrm{~B}(J / \psi(1 S) \rightarrow$ $p \bar{p})=(2.121 \pm 0.029) \times 10^{-3}, \mathrm{~B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)=(99.901 \pm 0.009) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Reported value assumes $f_{s} / f_{d}=0.259 \pm 0.015$.
2 The branching ratio is given for $m_{p \bar{p}}<2.85 \mathrm{GeV}$.

$\Gamma\left(p \bar{\rho} K^{+} \pi^{-}\right) / \Gamma_{\text {to }}$	$\Gamma_{124 / \Gamma}$		
VALUE (units 10-7)	DOCUMENT ID TECN COMME		
${ }^{13.9 \pm 2.5 \pm 0.5}{ }^{\text {AAIJ }} 178 \mathrm{~B}$ reports $\left[\Gamma\left(B_{S}^{0} \rightarrow p \bar{\rho} K^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right] /$			
$[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})] /\left[\mathrm{B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)\right]=0.52 \pm 0.08 \pm 0.05$ which we multiply by our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}, \mathrm{~B}(J / \psi(1 S) \rightarrow$			
$p \bar{\rho})=(2.121 \pm 0.029) \times 10^{-3}, \mathrm{~B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)=(99.901 \pm 0.009) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Reported value assumes $f_{s} / f_{d}=0.259 \pm 0.015$.			

$\Gamma\left(\rho \bar{\rho} \kappa^{+} \pi^{-}\right) / \Gamma\left(\rho \bar{p} K^{+} K^{-}\right)$

$\Gamma_{124} / \Gamma_{123}$
$\frac{V A L U E}{\mathbf{0 . 3 1} \pm \mathbf{0 . 0 5} \pm \mathbf{0 . 0 2}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { LBD }} \frac{\text { LHCB }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Reports $\mathrm{B}\left(B_{s}^{0} \rightarrow p \bar{p} K^{+} \pi^{-}\right) / \mathrm{B}\left(B^{0} \rightarrow p \bar{p} K^{+} \pi^{-}\right)=0.22 \pm 0.04 \pm 0.02 \pm 0.01$, where the third error is due to f_{S} / f_{d}.
${ }^{2}$ The ratio is given for $m_{p \bar{p}}<2.85 \mathrm{GeV}$ and assuming $f_{S} / f_{d}=0.259 \pm 0.015$.
$\Gamma\left(\rho \overline{\mathrm{p}} \pi^{+} \pi^{-}\right) / /_{\text {total }}$
$\Gamma_{125 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{4 . 3} \pm \mathbf{2 . 0} \pm \mathbf{0 . 2}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 17BD }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 17BD reports $\left[\Gamma\left(B_{S}^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right] /$ $[\mathrm{B}(J / \psi(1 S) \rightarrow p \bar{p})] /\left[\mathrm{B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)\right]=0.16 \pm 0.07 \pm 0.02$ which we multiply by our best values $\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}, \mathrm{~B}(J / \psi(1 S) \rightarrow$ $p \bar{p})=(2.121 \pm 0.029) \times 10^{-3}, \mathrm{~B}\left(K^{*}(892) \rightarrow(K \pi)^{ \pm}\right)=(99.901 \pm 0.009) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Reported value assumes $f_{s} / f_{d}=0.259 \pm 0.015$.
${ }^{2}$ The branching ratio is given for $m_{p \bar{p}}<2.85 \mathrm{GeV}$.
$\Gamma\left(p \bar{\Lambda} K^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\Gamma_{126 / \Gamma}$
VALUE (units 10^{-6}) DOCUMENT ID CIECN COMMENT
$5.5 \pm \mathbf{0 . 6} \pm \mathbf{0 . 8} 1,2 \mathrm{AAIJ} \quad 17 \mathrm{AL}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ AAIJ 17 AL reports $(5.46 \pm 0.61 \pm 0.82) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow\right.\right.$ $p \bar{\Lambda} K^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow p \bar{\Lambda} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(B^{0} \rightarrow p \bar{\Lambda} \pi^{-}\right)=(3.14 \pm$ $0.29) \times 10^{-6}$.
${ }^{2}$ AAIJ 17AL value represents the sum of $B_{S}^{0} \rightarrow p \bar{\Lambda} K^{-}$and $B_{S}^{0} \rightarrow \bar{p} \wedge K^{+}$and assumes the fraction $\mathrm{f}_{s} / \mathrm{f}_{d}=0.259 \pm 0.015$.
$\begin{array}{ll}\Gamma\left(\Lambda_{c}^{-} \Lambda \pi^{+}\right) / \Gamma_{\text {total }} \\ \text { VALUE (nuis } 10^{-4}\end{array} \quad \Gamma_{127} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{3 . 6} \pm \mathbf{1 . 1} \pm \mathbf{1 . 2}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { SOLOVIEVA } 13} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(4 S)}$
1 The second error is the total systematic uncertainty including the Λ_{C} absolute branching fractions and the normalizion number of B_{S} events.

$\Gamma(\gamma \gamma) / \Gamma_{\text {Test foral }}^{\text {tor }} \Delta B=1$ weak neutral current.				
Test for $\triangle B=1$ weak neutral current.VALUE (units 10^{-6})DOCUMENTID				
<3.1	90	1 DUTTA	15 BELL	$e^{+} e^{-} \rightarrow r(5 S)$
- - We do not use the following data for averages, fits, limits, etc. - • -				
<8.7	90	2 WICHT	08A BELL	Repl. by DUTTA 15
<53	90	DRUTSKOY	07A BELL	Repl. by WICHT 08A
<148	90	${ }^{3}$ ACCIARRI	951 L3	$e^{+} e^{-} \rightarrow$ Z
${ }^{1}$ Assumes the fraction of $B_{S}^{(*)} \bar{B}_{S}^{(*)}$ in $b \bar{b}$ events is $f_{S}=(17.2 \pm 3.0) \%$.				
${ }^{2}$ Assumes $\gamma(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}=\left(19.5{ }_{-2.3}^{+3.0}\right) \%$.				
${ }^{3}$ ACCIARRI 95ı assumes $f_{B^{0}}=39.5 \pm 4.0$ and $f_{B_{s}}=(12.0 \pm 3.0) \%$.				

$\Gamma(\phi \gamma) / \Gamma_{\text {total }}$ (Γ_{130} / Γ						
VALUE (units 10^{-6})	CL\%	DOCUMENT ID		TECN	COMMENT	
34 ± 4 OUR AVERAGE						
$36 \pm 5 \pm 7$		${ }^{1}$ DUTTA	15		BELL	$e^{+} e^{-} \rightarrow \gamma(5 S)$
$33.8 \pm 3.4 \pm 2.0$		2 AAIJ	13	LHCB	$p p$ at 7 TeV	
- - We do not use the following data for averages, fits, limits, etc. - -						
39 ± 5		${ }^{3}$ AAIJ	12AE	LHCB	Repl. by AAIJ 13	
57		4 WICHT	08A	BELL	Repl. by DUTTA 15	
<390	90	DRUTSKOY	07A	BELL	$e^{+} e^{-} \rightarrow \Upsilon(5 S)$	
<120	90	ACOSTA	02G	CDF	$p \bar{p}$ at 1.8 TeV	
<700	90	${ }^{5}$ ADAM	96D	DLPH	$e^{+} e^{-} \rightarrow Z$	

${ }^{1}$ Assumes the fraction of $B_{S}^{(*)} \bar{B}_{S}^{(*)}$ in $b \bar{b}$ events is $f_{S}=(17.2 \pm 3.0) \%$. The systematic uncertainty from f_{S} is 0.6×10^{-5}.
${ }^{2}$ AAIJ 13 reports $\left[\Gamma\left(B_{s}^{0} \rightarrow \phi \gamma\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)\right]=0.81 \pm 0.04 \pm 0.07$ which we multiply by our best value $\mathrm{B}\left(B^{0} \rightarrow K^{*}(892)^{0} \gamma\right)=(4.18 \pm 0.25) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Measures $\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right) / \mathrm{B}\left(B_{S} \rightarrow \phi \gamma\right)=1.12 \pm 0.08(\text { stat })_{-0.04}^{+0.06}(\text { sys })_{-0.08}^{+0.09}\left(f_{S} / f_{d}\right)$
and uses current world-average value of $\mathrm{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)=(4.33 \pm 0.15) \times 10^{-5}$.
${ }^{4}$ Assumes $r(5 S) \rightarrow B_{S}^{*} \bar{B}_{S}^{*}=\left(19.5_{-2.3}^{+3.0}\right) \%$.
${ }^{5}$ ADAM 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{S}}=0.12$.
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{131 / \Gamma}$
Test for $\Delta B=1$ weak neutral current.
VALUE (units 10^{-9}) CL\% DOCUMENT ID TECN COMMENT 3.0 ± 0.4 OUR AVERAGE
$2.8_{-0.7}^{+0.8}$
${ }^{1}$ AABOUD 19 L ATLS $p p$ at $7,8,13 \mathrm{TeV}$ AAIJ

17AI LHCB $p p$ at $7,8,13 \mathrm{TeV}$
$3.0 \pm 0.6_{-0.2}^{+0.3}$ 2 AALTONEN 13 F CDF $p \bar{p}$ at 1.96 TeV
$13 \begin{aligned} & \quad+9 \\ & -7\end{aligned}$
$3.0_{-0.9}^{+1.0}$
${ }^{3}$ CHATRCHYAN 13 AW CMS $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - - -

${ }_{0.9}{ }_{-0.8}^{+1.1}$		${ }^{4}$ AABOUD	16L	ATLS	$p p$ at $7,8 \mathrm{TeV}$, Repl. by AABOUD 19L
$2.8{ }_{-0.6}^{+0.7}$		5 KHACHATRY...	. 15 BE	LHC	$p p$ at $7,8 \mathrm{TeV}$
$3.2+1.4+0.5$		6 AAIJ	13B	LHCB	Repl. by AAIJ 13BA
$2.9{ }_{-1.0}^{+1.1+0.3}$		7 AAIJ	13BA	LHCB	Repl. by KHACHATRYAN 15be
<12	90	${ }^{8}$ ABAZOV	13C	D0	$p \bar{p}$ at 1.96 TeV
<19	90	${ }^{9}$ AAD	12AE	ATLS	$p p$ at 7 TeV
<12	90	10 AAIJ	12A	LHCB	Repl. by AAIJ 12w
<3.8	90	11 AAIJ	12W	LHCB	Repl. by AAIJ 13B
< 6.4	90	12 CHATRCHYAN	12 A	CMS	$p p$ at 7 TeV
<43	90	13 AAIJ	11B	LHCB	Repl. by AAIJ 12A
<35	90	14 AALTONEN	11AG	CDF	$p \bar{p}$ at 1.96 TeV
<16	90	15 CHATRCHYAN	11 T	CMS	Repl. by CHATRCHYAN 12A
<42	90	16 ABAZOV	10s	D0	$p \bar{p}$ at 1.96 TeV

1 Uses normalization mode $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.010 \pm 0.029) \times 10^{-3}$ and B production ratio $\mathrm{f}\left(b \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(b \rightarrow B^{0}\right)=0.256 \pm 0.013$.
${ }^{2}$ Uses normalization mode $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(10.22 \pm 0.35) \times 10^{-4}$ and B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.28 \pm 0.04$.
${ }^{3}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.256 \pm 0.020$ and $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.0 \pm 0.2) \times 10^{-5}$ for normalization.
4 This value corresponds to an upper limit of $<3.0 \times 10^{-9}$ at 95% C.L. It uses $f_{S} / f_{d}=$ 0.24 ± 0.02.
${ }^{5}$ Determined from the joint fit to CMS and LHCb data. Uncertainty includes both statistical and systematic component.
${ }^{6}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.256 \pm 0.020$ and two normalization modes: $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$ and $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.K^{+} \pi^{-}\right)=(1.94 \pm 0.06) \times 10^{-5}$.
${ }^{7}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.259 \pm 0.015$ and normalization modes $B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}$and $B^{0} \rightarrow K^{+} \pi^{-}$.
${ }^{8}$ Uses normalization mode $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$ and B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.263 \pm 0.017$.
${ }^{9}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)=3.75 \pm 0.29$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow\right.$ $\left.\mu^{+} \mu^{-} K^{+}\right)=(6.0 \pm 0.2) \times 10^{-5}$.
${ }^{10}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.267_{-0.020}^{+0.021}$ and three normalization modes $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}, \mathrm{~B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)$ $=(1.94 \pm 0.06) \times 10^{-5}$, and $\mathrm{B}\left(B_{S}^{0} \rightarrow J / \psi \phi \rightarrow \mu^{+} \mu^{-} K^{+} K^{-}\right)=(3.4 \pm 0.9) \times 10^{-5}$.
11 Uses B production ratio $f\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.267_{-0.020}^{+0.021}$ and three normalization modes of $B^{+} \rightarrow J / \psi K^{+}, B^{0} \rightarrow K^{+} \pi^{-}$, and $B_{S}^{0} \rightarrow J / \psi \phi$.
12 Uses $f_{S} / f_{u}=0.267 \pm 0.021$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)=(6.0 \pm 0.2) \times 10^{-5}$.
${ }^{13}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)=3.71 \pm 0.47$ and three normalization
modes.
${ }^{\text {m }}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{s}^{0}\right)=3.55 \pm 0.47$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow\right.$ $\left.\mu^{+} \mu^{-} K^{+}\right)=(6.01 \pm 0.21) \times 10^{-5}$.
15 Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)=3.55 \pm 0.42$ and $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow\right.$ $\left.\mu^{+} \mu^{-} K^{+}\right)=(6.0 \pm 0.2) \times 10^{-5}$.
${ }^{16}$ Uses B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B^{+}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right)=3.86 \pm 0.59$, and the number of $B^{+} \rightarrow J / \psi K^{+}$decays.
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{132} / \Gamma$ Test for $\Delta B=1$ weak neutral current.

VALUE	$\frac{C L \%}{<\mathbf{2 . 8} \times \mathbf{1 0}^{\mathbf{- 7}}}$	$\frac{\text { DOCUMENT ID }}{}$		

AALTONEN 09p CDF $\rho \bar{\rho}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$<5.4 \times 10^{-5} \quad 90 \quad 1$ ACCIARRI 97B L3 $e^{+} e^{-} \rightarrow Z$
${ }^{1}$ ACCIARRI 97B assume PDG 96 production fractions for B^{+}, B^{0}, B_{S}, and Λ_{b}.

$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$ VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	Γ_{133} / Γ
$<6.8 \times 10^{-3}$	95	${ }^{1}$ AAIJ	17AJ	LHCB	$p p$ at 7, 8	

${ }^{1}$ Assuming no contribution from $B^{0} \rightarrow \tau^{+} \tau^{-}$.

Meson Particle Listings
B_{s}^{0}

$\Gamma\left(S P, S \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}, \boldsymbol{P} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 3 5}} / \boldsymbol{\Gamma}$ $2.5 \mathrm{GeV} / \mathrm{C}^{2}$ and $214.3 \mathrm{MeV} / \mathrm{c}^{2}$, respectively.

VALUE	CL\%	DOCU	TECN	COMMENT
$<2.2 \times 10^{-9}$	95	AAIJ	17N LHCB	$p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$<1.2 \times 10^{-8}$	90	${ }^{1}$ AAIJ	13AW LHCB	Repl. by AAIJ 17N
${ }^{1}$ Also reports a limit of $<1.6 \times 10^{-8}$ at 95% CL.				

$\Gamma\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$

Γ_{138} / Γ
$\frac{\text { VALUE (units } 10^{-8} \text {) }}{\mathbf{8 . 4} \pm \mathbf{1 . 6} \mathbf{0 . 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} 15 \mathrm{~s} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 15 S reports $(8.6 \pm 1.5 \pm 0.7 \pm 0.7) \times 10^{-8}$ from a measurement of $\left[\Gamma\left(B_{S}^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi(1 S) K^{*}(892)^{0}\right)\right]$ assuming $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi(1 S) K^{*}(892)^{0}\right)=(1.3 \pm 0.1) \times 10^{-3}$, which we rescale to our best value $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi(1 S) K^{*}(892)^{0}\right)=(1.27 \pm 0.05) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\phi \nu \bar{\nabla}) / \Gamma_{\text {total }} \quad \Gamma_{139} / \Gamma$

VALUE	CL\%	DOCUMENT ID	TECN	COMMENT
$<5.4 \times 10^{\mathbf{- 3}}$	90	${ }^{1}$ ADAM	96D DLPH	$e^{+} e^{-} \rightarrow Z$
${ }^{1}$ ADAM 96D	$B_{B^{0}}=$	$=0.39$ and f_{B}	$=0.12$.	

$\Gamma\left(\mathrm{e}^{ \pm} \mu^{\mp}\right) / \Gamma_{\text {total }}$

$\Gamma_{140 / \Gamma}$
Test of lepton family number conservation

VALUE	CL\%	DOCUMENT ID	TECN	COMMENT
$<5.4 \times 10^{-9}$	90	${ }^{1}$ AAIJ	18T LHCB	$p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$<1.1 \times 10^{-8}$	90	2 AAIJ	13bm LHCB	Repl. by AAIJ 18T
$<2.0 \times 10^{-7}$	90	AALTONEN	09p CDF	$p \bar{p}$ at 1.96 TeV
$<6.1 \times 10^{-6}$	90	ABE	98 V CDF	Repl. by AALTONEN 09p
$<4.1 \times 10^{-5}$	90	${ }^{3}$ ACCIARRI	97B L3	$e^{+} e^{-} \rightarrow Z$

${ }^{2}$ Uses normalization mode $\mathrm{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.4 \pm 0.6) \times 10^{-6}$ and B production ratio $\mathrm{f}\left(\bar{b} \rightarrow B_{S}^{0}\right) / \mathrm{f}\left(\bar{b} \rightarrow B_{d}^{0}\right)=0.256 \pm 0.020$.
${ }^{3}$ ACCIARRI 97B assume PDG 96 production fractions for B^{+}, B^{0}, B_{s}, and Λ_{b}.

POLARIZATION IN B_{s}^{0} DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L), or both are transverse and parallel $(\|)$, or perpendicular (\perp) to each other with the parameters $\Gamma_{L} / \Gamma, \Gamma_{\perp} / \Gamma$, and the relative phases $\phi_{\|}$and ϕ_{\perp}. In decays involving two tensor mesons, the transverse polarization states are described by parameters $\Gamma_{\| 1}, \Gamma_{\| 2}, \Gamma_{\perp 1}, \Gamma_{\perp 2}$ and their relative phases $\phi_{\| 1}, \phi_{\| 2}, \phi_{\perp 1}, \phi_{\perp 2}$. See also the review on "Polarization in B Decays."
Γ_{L} / Γ in $B_{s}^{0} \rightarrow D_{s}^{*} \rho^{+}$
VALUE DOCUMENT ID TECN COMMENT $\mathbf{1 . 0 5} \mathbf{- 0 . 1 0} \mathbf{+ 0 . 0 8} \mathbf{- 0 . 0 3} \quad$ LOUVOT 10 BELL $e^{+} e^{-} \rightarrow r(5 S)$
Γ_{L} / Γ in $B_{s}^{0} \rightarrow J / \psi(1 S) \phi$
$\frac{\text { VALUE }}{\mathbf{0 . 5 1 9 9} \pm \mathbf{0 . 0 0 3 5} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale }} \frac{\text { TECN }}{\text { factor }}$ COMMENT
Error includes scale factor of 1.1 .
$0.522+0.003+0.0071$ 19Q LHCB $p p$ at 13 TeV
KHACHATRY.. 16 S CMS $p p$ at 8 TeV
$0.524 \pm 0.013 \pm 0.015 \quad 2$ AALTONEN 12D CDF $p \bar{p}$ at 1.96 TeV
$0.558 \underset{-0.019}{+0.017} \quad 2,3$ ABAZOV 12D D0 $p \bar{p}$ at 1.96 TeV
$0.61 \pm 0.14 \pm 0.02 \quad{ }^{4}$ AFFOLDER 00 N CDF $p \bar{p}$ at 1.8 TeV
$0.56 \pm 0.21 \begin{array}{cc}+0.02\end{array} \quad$ ABE $95 z$ CDF $p \bar{p}$ at 1.8 TeV

- - We do not use the following data for averages, fits, limits, etc. - -
$0.5241 \pm 0.0034 \pm 0.0067 \quad$ AAIJ 15 LHCB Repl by AAIJ 190
$0.529 \pm 0.006 \pm 0.012 \quad 1$ AAD $\quad 14 U$ ATLS \quad Repl. by AAD 16AP
$0.539 \pm 0.014 \pm 0.016 \quad 2$ AAD \quad 12CV ATLS Repl. by AAD 14U
$0.555 \pm 0.027 \pm 0.006 \quad{ }^{5}$ ABAZOV 09E D0 Repl. by ABAZOV 12D $0.531 \pm 0.020 \pm 0.007 \quad 2$ AALTONEN 08」 CDF Repl. by AALTONEN 12D $0.62 \pm 0.06 \pm 0.01 \quad$ ACOSTA 05 CDF Repl. by AALTONEN 08J
${ }^{1}$ Measured using the flavor tagged, time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{2}$ Measured using the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{3}$ The error includes both statistical and systematic uncertainties.
${ }^{4}$ AFFOLDER 00 N measurements are based on $40 B_{S}^{0}$ candidates obtained from a data
sample of $89 \mathrm{pb}^{-1}$. The P-wave fraction is found to be $0.23 \pm 0.19 \pm 0.04$.
${ }^{5}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ and $B_{S}^{0} \rightarrow J / \psi \phi$.
Γ_{L} / Γ in $B_{s}^{0} \rightarrow D_{s}^{*+} D_{s}^{*-}$
$\frac{\text { VALUE }}{}$ SOCUMENT ID $\quad \boldsymbol{s}$ TECN COMMENT
$\mathbf{0 . 0 6} \mathbf{- 0 . 1 7} \pm \mathbf{0 . 0 3} \quad$ ESEN $\quad 13$ BELL $e^{+} e^{-} \rightarrow r(5 S)$
$\Gamma_{\| /} / \Gamma$ in $B_{s}^{0} \rightarrow J / \psi(1 S) \phi$
0.228 ± 0.007 OUR AVERAGE
$0.227 \pm 0.004 \pm 0.006 \quad 1$ AAD 16 AP ATLS $p p$ at $7,8 \mathrm{TeV}$ $0.231 \pm 0.014 \pm 0.015 \quad 2$ AALTONEN 12D CDF $p \bar{p}$ at 1.96 TeV $0.231_{-0.030}^{+0.024} \quad 2,3 \mathrm{ABAZOV}$ 12D D0 $p \bar{p}$ at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - • •
$0.220 \pm 0.008 \pm 0.009 \quad 1$ AAD $14 \cup$ ATLS Repl. by AAD 16AP
$0.224 \pm 0.010 \pm 0.009 \quad 2 \mathrm{AAD} \quad$ 12CV ATLS Repl. by AAD 14 u
$0.244 \pm 0.032 \pm 0.014 \quad{ }^{4}$ ABAZOV 09E D0 Repl. by ABAZOV 12D
$0.230 \pm 0.029 \pm 0.011 \quad 2$ AALTONEN 08」 CDF Repl. by AALTONEN 12D
$0.260 \pm 0.084 \pm 0.013 \quad$ ACOSTA 05 CDF Repl. by AALTONEN 08J
${ }^{1}$ Measured using a tagged, time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{2}$ Measured using the time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{3}$ The error includes both statistical and systematic uncertainties.
${ }^{4}$ Measured the angular and lifetime parameters for the time-dependent angular untagged
decays $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ and $B_{S}^{0} \rightarrow J / \psi \phi$.
Γ_{\perp} / Γ in $B_{s}^{0} \Rightarrow J / \psi(1 S) \phi$
$\frac{V A L U E}{0.245} \pm 0.004$ OUR AVERAGE
$0.2456 \pm 0.0040 \pm 0.0019 \quad$ AAIJ 19Q LHCB $p p$ at 13 TeV $0.243 \pm 0.008 \pm 0.012 \quad$ KHACHATRY...16S CMS $p p$ at 8 TeV
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.2504 \pm 0.0049 \pm 0.0036$ AAIJ 15ı LHCB Repl. by AAIJ 19Q
$\phi_{\|}$in $B_{s}^{0} \rightarrow J / \psi(1 S) \phi$
$\frac{}{3.10 \pm 0.06 ~ O U R ~ A V E R A G E}$
DOCUMENT ID TECN COMMENT
$3.06_{-0.07}^{+0.08} \pm 0.04$
AAIJ 19Q LHCB $p p$ at 13 TeV
AAD 16AP ATLS $p p$ at $7,8 \mathrm{TeV}$
KHACHATRY... 16 S CMS $p p$ at 8 TeV
${ }^{1}$ ABAZOV 12D D0 $p \bar{p}$ at 1.96 TeV
$3.48_{-0.09}^{+0.07} \pm 0.68$
data for averages, fits, limits, etc. - - •
$3.26_{-0.17-0.07}^{+0.10+0.06} \quad$ AAIJ $151 \quad$ LHCB Repl. by AAIJ 19Q
$2.72_{-0.27}^{+1.12} \pm 0.26$ ABAZOV 09E D0 Repl. by ABAZOV 12D
1 The error includes both statistical and systematic uncertainties.
ϕ_{\perp} in $B_{s}^{0} \rightarrow J / \psi(1 S) \phi$

VALUE (rad)	DOCUMENT ID	TECN COMMENT
2.9 ± 0.4 OUR AVERAGE Error includes scale factor of 2.7. See the ide		
$2.64 \pm 0.13 \pm 0.10$	AAIJ 19Q	LHCB $p p$ at 13 TeV
$4.15 \pm 0.32 \pm 0.16$	${ }^{1}$ AAD 16AP	ATLS $p p$ at $7,8 \mathrm{TeV}$
$2.98 \pm 0.36 \pm 0.66$	KHACHATRY...16S	CMS $p p$ at 8 TeV
- - We do not use the following data for averages, fits, limits, etc. - -		
$3.08{ }_{-0.15}^{+0.14} \pm 0.06$	AAIJ 151	LHCB Repl. by AAIJ 19Q
$3.89 \pm 0.47 \pm 0.11$	${ }^{1}$ AAD $14 \cup$	ATLS Repl. by AAD 16AP
${ }^{1}$ Measured using a tagged, time-dependent angular analysis of $B_{s}^{0} \rightarrow J / \psi \phi$ decays.		

2.9 ± 0.4 (Error scaled by 2.7)

ϕ_{\perp} in $B_{S}^{0} \rightarrow J / \psi(1 S) \phi(\mathrm{rad})$
Γ_{\perp} / Γ in $B_{s}^{0} \rightarrow \psi(2 S) \phi$

VALUE	DOCUMENT ID TECN COMMENT
$0.264{ }_{-0.023}^{+0.024} \pm 0.002$	${ }^{1}$ AAIJ 16ak LhCB $p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured using time-d	angular analysis of $B_{S}^{0} \rightarrow \psi(2 S) \phi$ decays.

$\phi_{\|}$in $B_{s}^{0} \rightarrow \psi(2 S) \phi$

$0.497 \pm 0.025 \pm \mathbf{0 . 0 2 5} \quad$ AAIJ 15AV LHCB pp at 7, 8 TeV

- - We do not use the following data for averages, fits, limits, etc. - - •
$0.50 \pm 0.08 \pm 0.02 \quad 1$ AAIJ 12AP LHCB Repl. by AAIJ 15AV
${ }^{1}$ The non-resonant $K \pi$ background contributions are subtracted. Also reports an S-wave amplitude $\left|\mathrm{A}_{S}\right|^{2}=0.07_{-0.07}^{+0.15}$
$\Gamma_{\|} / \Gamma$ for $B_{s}^{0} \rightarrow J / \psi(1 S) \bar{K}^{*}(892)^{0}$ Parallel polarization fraction, equals to $1-f_{L}-f_{\perp}$ using notation of "Polarization in B decays" review.
VALUE \quad DOCUMENTID TECN COMMENT
$\mathbf{0 . 1 7 9} \pm \mathbf{0 . 0 2 7} \pm \mathbf{0 . 0 1 3} \quad$ AAIJ 15 AV LHCB $p p$ at $7,8 \mathrm{TeV}$
- - We do not use the following data for averages, fits, limits, etc. • •
$0.19{ }_{-0.08}^{+0.10} \pm 0.02 \quad 1$ AAIJ 12AP LHCB Repl. by AAIJ 15AV
${ }^{1}$ The non-resonant $K \pi$ background contributions are subtracted. Also reports an S-wave amplitude $\left|\mathrm{A}_{S}\right|^{2}=0.07_{-0.07}^{+0.15}$.
$\Gamma_{\|} / \Gamma$ of $K^{*}(892)^{0}$ in $B_{s}^{0} \rightarrow \psi(2 S) \bar{K}^{*}(892)^{0}$
VALUE \quad DOCUMENT ID $\frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{0 . 5 2 4} \pm \mathbf{0 . 0 5 6} \pm \mathbf{0 . 0 2 9} \quad$ AAIJ 15 U LHCB $p p$ at $7,8 \mathrm{TeV}$
Γ_{L} / Γ in $B_{s}^{0} \rightarrow \phi \phi$
$0.378 \pm \mathbf{0 . 0 1 3}$ OUR AVERAGE
$0.381 \pm 0.007 \pm 0.012$
- - We do not use the following
$0.364 \pm 0.012 \pm 0.009$
$0.365 \pm 0.022 \pm 0.012$
$0.365 \pm 0.022 \pm 0.012$
$\boldsymbol{\Gamma}_{\perp} / \boldsymbol{\Gamma}$ in $\boldsymbol{B}_{\boldsymbol{s}}^{\mathbf{0}} \rightarrow \boldsymbol{\phi} \boldsymbol{\phi}$
r_{\perp} / F in $B_{s}^{0} \rightarrow \phi \phi$
0.292 ± 0.009 OUR AVERAGE
$0.290 \pm 0.008 \pm 0.005$
$0.365 \pm 0.044 \pm 0.027$
AALTONEN 11AN CDF $p \bar{p}$ at 1.96 TeV

$0.305 \pm 0.013 \pm 0.005$	AAIJ	14AE LHCB Repl. by AAIJ 19AP
AAIJ	12 P LHCB	Repl. by AAIJ 14AE

${ }^{1}$ Note: in the summary of AAIJ 19AP the systematic uncertainty is 0.007 . We take the systematic uncertainty as given in Table 5 in the paper.
$\phi_{\|}$in $B_{s}^{0} \rightarrow \phi \phi$
$\frac{V A L U E(\mathrm{rad})}{\mathbf{2 5 6} \text { OUR AVERAGE DOCUMENT ID TECN COMMENT }}$
$\begin{array}{llll}\overline{2.56} \pm \mathbf{0 . 0 6} \text { OUR AVERAGE } & & & \\ 2.559 \pm 0.045 \pm 0.033 & \text { AAIJ } & \text { 19AP LHCB } & p p \text { at } 7,8 \text { and } 13 \mathrm{TeV}\end{array}$
$2.71{ }_{-0.36}^{+0.31} \pm 0.22 \quad 1$ AALTONEN 11 AN CDF $p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.54 \pm 0.07 \pm 0.09 \quad{ }_{3}^{2}$ AAIJ \quad 14AE LHCB Repl. by AAIJ 19AP
$2.57 \pm 0.15 \pm 0.06 \quad 3$ AAIJ 12P LHCB Repl. by AAIJ 14AE
${ }^{1}$ AALTONEN 11AN quotes $\cos \phi_{\|}=-0.91_{-0.13}^{+0.15} \pm 0.09$ which we convert to $\phi_{\|}$taking the smaller solution.
${ }^{2}$ AAIJ 14AE reports measurement of ϕ_{\perp} and $\phi_{\perp}-\phi_{\|}$, which we convert into $\phi_{\|}$. Statistical uncertainty includes correlation between measured parameters, while systematic
uncertainties are assumed uncorrelated.
$3^{\text {AAIJ 12P quotes } \cos \phi_{\|}}=-0.844 \pm 0.068 \pm 0.029$ which we convert to $\phi_{\|}$, taking the smaller solution.
ϕ_{\perp} in $B_{s}^{0} \rightarrow \phi \phi$
$\frac{\text { VALUE (rad) }}{\mathbf{2 . 8 1 8} \mathbf{\pm 0 . 1 7 8} \mathbf{\pm 0 . 0 7 3}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 19AP }}{\text { TECN }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{10}{\text { pp } 7,8 \text { and } 13 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. • •
$2.67 \pm 0.23 \pm 0.07$ AAIJ 14AE LHCB Repl. by AAIJ 19AP
Γ_{L} / Γ in $B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$
$\frac{\text { VALUE }}{\mathbf{0 . 2 4 0} \pm \mathbf{0 . 0 3 1} \mathbf{0 . 0 2 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. • • -

$0.208 \pm 0.032 \pm 0.046$	2 AAIJ	18S LHCB Repl. by AAIJ 19L	
$0.201 \pm 0.057 \pm 0.040$	3 AAIJ	15AF LHCB Repl. by AAIJ 18S	
$0.31 \pm 0.12 \pm 0.04$	AAIJ	12F LHCB	Repl. by AAIJ 15AF

1 Untagged and time-integrated analysis within 150 MeV of the $K^{* 0}$ mass.
${ }^{2}$ Measured in angular analysis, which takes into account S-, P - and D-wave. contributions.
${ }^{3}$ Measured in angular analysis, which takes into account S-wave contributions.
Γ_{\perp} / Γ in $B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$

$\Gamma_{\|} / \Gamma$ in $B_{s}^{0} \rightarrow K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$
$\frac{V A L U E}{\mathbf{0 . 2 9 7} \pm \mathbf{0 . 0 2 9} \pm \mathbf{0 . 0 4 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{18 \mathrm{~S}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$0.215 \pm 0.046 \pm 0.015$ AAIJ 15AF LHCB Repl. by AAIJ 18 S
${ }^{1}$ Measured in angular analysis, which takes into account S-, P - and D-wave. contributions.
$\Phi_{\|}$in $B_{s}^{0} \rightarrow K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$
$\frac{V A L U E}{\mathbf{2 . 4 0} \mathbf{0 . 1 1} \pm \mathbf{0 . 3 3}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. • -

$5.31 \pm 0.24 \pm 0.14$	AAIJ	15AF LHCB	Repl. by AAIJ 185

Φ_{\perp} in $B_{s}^{0} \rightarrow K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$

$V A L U E$ (rad)	DOCUMENT ID		TECN	$p p$ at $7,8 \mathrm{TeV}$
$\mathbf{2 . 6 2} \pm \mathbf{0 . 2 6} \pm 0.64$	1 AAIJ	18 S		
${ }^{1}$ Measured in angular analysis,	ch tak	count	S-, P-	D-wave. cont
Γ_{L} / Γ in $B_{s}^{0} \Rightarrow \phi \bar{K}^{* 0}$				
VALUE	DOCU		TECN	COMMENT
$0.51 \pm 0.15 \pm 0.07$	AAIJ	13BW	LHCB	$p p$ at 7 TeV

Meson Particle Listings
B_{s}^{0}

$\Gamma_{\\| \\|} / \Gamma$ in $B_{s}^{0} \rightarrow \phi \bar{K}^{* 0}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.21 \pm 0.11 \pm 0.02$	AAIJ 13BW	LHCB	$p p$ at 7 TeV
$\phi_{\\|}$in $B_{s}^{\mathbf{0}} \rightarrow \phi \bar{K}^{\mathbf{* 0}}$			
$V A L U E(\mathrm{rad})$	DOCUMENT ID	TECN	COMMENT
$1.75 \pm 0.53 \pm 0.29$	1 AAIJ 13BW	LHCB	$p p$ at 7 TeV
${ }^{1}$ Measures $\cos \left(\phi_{\\|}\right)=-0.18 \pm 0.52 \pm 0.29$ ，which we convert to $\phi_{\\|}$by taking the smaller solution．			
Γ_{L} / Γ in $B_{s}^{0} \rightarrow \bar{D}^{* 0} \phi$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.73 \pm 0.15 \pm 0.04$	AAIJ 18AY	LHCB	$p p$ at 7 and 8 TeV
Γ_{L} / Γ in $B_{s}^{0} \rightarrow K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 9 1 1} \pm 0.020 \pm 0.165$	${ }^{1}$ AAIJ 18 S	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in angular analysis，which takes into account S－，P－and D－wave．contributions．			
$\Gamma_{\\|} / \Gamma$ in $B_{s}^{0} \rightarrow K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 0 1 2} \pm 0.008 \pm 0.053$	${ }^{1}$ AAIJ 18S	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in angular analysis，which takes into account S－，P－and D－wave．contributions．			
Γ_{L} / Γ in $B_{s}^{0} \rightarrow K_{2}^{*}(1430)^{0} \bar{K}^{*}(892)^{0}$			
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 6 2} \pm 0.16 \pm 0.25$	${ }^{1}$ AAIJ 18S	LHCB	$p p$ at $7,8 \mathrm{TeV}$

$\Gamma_{\|} / \Gamma$ in $B_{s}^{0} \rightarrow K_{2}^{*}(1430)^{0} \bar{K}^{*}(892)^{0}$
$\frac{V A L U E}{\mathbf{0 . 2 4} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 1 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{18 \mathrm{~S}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Measured in angular analysis，which takes into account S－，P－and D－wave．contributions．

$\mathrm{F}_{L}\left(B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}\right)\left(11.0<\mathrm{q}^{2}<12.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.29 \pm 0.11 \pm 0.04$	AAIJ	15AQ LHCB	$p p$ at $7,8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.33-0.14{ }_{-0.12}^{+0.06}$	${ }^{1}$ AAIJ	13x LHCB	Repl．by AAIJ 15AQ
${ }^{1}$ Measured in $10.09<\mathrm{q}^{2}<12.90 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ ．			
$\mathrm{F}_{L}\left(B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<17.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.34{ }_{-0.17}^{+0.18} \pm 0.07$	${ }^{1}$ AAIJ	13x LHCB	Repl．by AAIJ 15AQ
${ }^{1}$ Measured in $14.18<\mathrm{q}^{2}<16 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ ．			
$\mathrm{F}_{L}\left(B_{s}^{0} \Rightarrow \phi \mu^{+} \mu^{-}\right)\left(17.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 4 0}=\mathbf{0 . 1 3} \pm \mathbf{0 . 0 2}$ AAIJ 15AQ LHCB pp at 7，8 TeV			
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.16_{-0.10}^{+0.17} \pm 0.07$	${ }^{1}$ AAIJ	13 x LHCB	Repl．by AAIJ 15AQ
${ }^{1}$ Measured in $16.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ ．			
$\mathrm{F}_{L}\left(B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}\right)\left(1.00<\mathrm{q}^{2}<6.00 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$0.63{ }_{-0.09}^{+0.09} \pm 0.03$	AAIJ	15AQ LHCB	$p p$ at $7,8 \mathrm{TeV}$
－－We do not use the following data for averages，fits，limits，etc．－－			
$0.56{ }_{-0.16}^{+0.17} \pm 0.09$	AAIJ	13x LHCB	Repl．by AAIJ 15AQ

$B_{s}^{0}-\bar{B} B_{s}^{0}$ MIXING

For a discussion of $B_{S}^{0}-\bar{B}_{S}^{0}$ mixing see the note on＂$B^{0}-\bar{B}^{0}$ Mixing＂in the B^{0} Particle Listings above．
χ_{S} is a measure of the time－integrated $B_{S}^{0}-\bar{B}_{S}^{0}$ mixing probability that produced $B_{S}^{0}\left(\bar{B}_{S}^{0}\right)$ decays as a $\bar{B}_{S}^{0}\left(B_{S}^{0}\right)$ ．Mixing violates $\Delta B \neq 2$ rule．

$$
\begin{aligned}
& \chi_{S}=\frac{x_{s}^{2}}{2\left(1+x_{s}^{2}\right)} \\
& x_{S}=\frac{\Delta m_{B_{s}^{0}}^{0}}{\Gamma_{B_{s}^{0}}}=\left(m_{B_{s H}^{0}}-m_{B_{s L}^{0}}\right) \tau_{B_{s}^{0}},
\end{aligned}
$$

where H, L stand for heavy and light states of two $B_{S}^{0} C P$ eigenstates and

$$
\tau_{B_{S}^{0}}^{0}=\frac{1}{0.5\left(\Gamma_{B_{S H}^{0}}^{0}+\Gamma_{B_{S L}^{0}}\right)}
$$

$\Delta m_{B_{s}^{0}}=m_{B_{S H}^{0}}-m_{B_{s L}^{0}}$
$\Delta m_{B_{s}^{0}}$ is a measure of 2π times the $B_{S}^{0}-\bar{B}_{S}^{0}$ oscillation frequency in time－dependent mixing experiments．
＂OUR EVALUATION＂is provided by the Heavy Flavor Averaging Group（HFLAV， https：／／hflav．web．cern．ch／）by taking into account correlations between measure－ ments．

VALUE $\left(10^{12} \hbar \mathrm{~s}^{-1}\right)$ CL\％DOCUMENTID TECN COMMENT

17.749 ± 0.020 OUR EVALUATION

17.756 ± 0.021 OUR AVERAGE

$17.703 \pm 0.059 \pm 0.018$	${ }^{1}$ AAIJ	19Q	LHCB	$p p$ at 13 TeV
$17.768 \pm 0.023 \pm 0.006$	${ }^{2}$ AAIJ	13BI	LHCB	$p p$ at 7 TeV
$17.93 \pm 0.22 \pm 0.15$	3 AAIJ	13CF	LHCB	$p p$ at 7 TeV
$17.63 \pm 0.11 \pm 0.02$	${ }^{4}$ AAIJ	121	LHCB	$p p$ at 7 TeV
$17.77 \pm 0.10 \pm 0.07$	${ }^{5}$ ABULENCIA，A	06G	CDF	$p \bar{p}$ at 1.96 TeV
－－We do not use the following data for averages，fits，limits，etc．－－				
$17.711_{-0.057}^{+0.055} \pm 0.011$	${ }^{1}$ AAIJ	15	LHCB	Repl．by AAIJ 19Q
17－21 90	${ }^{6}$ ABAZOV	06B	D0	$p \bar{p}$ at 1．96 TeV
$17.31{ }_{-0.18}^{+0.33} \pm 0.07$	7 ABULENCIA	06Q	CDF	Repl．by ABULEN－ CIA，A 06G
$>8.0 \quad 95$	${ }^{8}$ ABDALLAH	04」	DLPH	$e^{+} e^{-} \rightarrow Z^{0}$
$>4.9 \quad 95$	${ }^{9}$ ABDALLAH	04」	DLPH	$e^{+} e^{-} \rightarrow Z^{0}$
$>8.5 \quad 95$	10 ABDALLAH	04」	DLPH	$e^{+} e^{-} \rightarrow Z^{0}$
>5.0 95	11 ABDALLAH	03B	DLPH	$e^{+} e^{-} \rightarrow Z$
	12 ABE	03	SLD	$e^{+} e^{-} \rightarrow Z$
$>10.9 \quad 95$	13 HEISTER	03E	ALEP	$e^{+} e^{-} \rightarrow Z$
>5.3 95	14 ABE	02V	SLD	$e^{+} e^{-} \rightarrow Z$
>1.0 95	15 ABBIENDI	01D	OPAL	$e^{+} e^{-} \rightarrow Z$
>7.4	16 ABREU	00Y	DLPH	Repl．by ABDALLAH 04」
$>4.0 \quad 95$	17 ABREU，P	00G	DLPH	$e^{+} e^{-} \rightarrow Z$

>5.2	95	18 ABBIENDI	99S	OPAL	$e^{+} e^{-} \rightarrow Z$
<96	95	19 ABE	99D	CDF	$p \bar{p}$ at 1.8 TeV
>5.8	95	${ }^{20}$ ABE	991	CDF	$p \bar{p}$ at 1.8 TeV
>9.6	95	21 BARATE	99.	ALEP	$e^{+} e^{-} \rightarrow Z$
>7.9	95	22 BARATE	98C	ALEP	Repl. by BARATE 99」
>3.1	95	23 ACKERSTAFF	97U	OPAL	Repl. by ABBIENDI 99s
>2.2	95	24 ACKERSTAFF	97v	OPAL	Repl. by ABBIENDI 99S
>6.5	95	25 ADAM	97	DLPH	Repl. by ABREU $00 Y$
>6.6	95	26 BUSKULIC	96m	ALEP	Repl. by BARATE 98C
>2.2	95	24 AKERS	95 J	OPAL	Sup. by ACKERSTAFF 97V
>5.7	95	27 BUSKULIC	95J	ALEP	$e^{+} e^{-} \rightarrow Z$
> 1.8	95	24 BUSKULIC	94B	ALEP	$e^{+} e^{-} \rightarrow Z$

${ }^{1}$ Measured using time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.
${ }^{2}$ Measured using $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decays.
${ }^{3}$ Measured using $B_{S}^{0} \rightarrow D_{S}^{-} \mu^{+} \nu_{\mu} X$ decays.
${ }^{4}$ Measured using $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$and $D_{S}^{-} \pi^{+} \pi^{-} \pi^{+}$decays.
${ }^{5}$ Significance of oscillation signal is 5.4σ. Also reports $\left|v_{t d} / v_{t s}\right|=0.2060 \pm$ $0.0007{ }_{-0.0060}^{+0.0081}$.
${ }^{6} \mathrm{~A}$ likelihood scan over the oscillation frequency, Δm_{s}, gives a most probable value of $19 \mathrm{ps}^{-1}$ and a range of $17<\Delta m_{s}<21$ (ps ${ }^{-1}$) at 90% C.L. assuming Gaussian uncer-
tainties. Also excludes $\Delta m_{s}<14.8 \mathrm{ps}^{-1}$ at 95% C.L
${ }^{7}$ Significance of oscillation signal is 0.2%. Also reported the value $\left|v_{t d} / v_{t s}\right|=$ $0.208{ }_{-0.002}^{+0.001}{ }_{-0.006}^{+0.008}$.
${ }^{8}$ Uses leptons emitted with large momentum transverse to a jet and improved techniques ${ }_{9}$ for vertexing and flavor-tagging.
${ }^{9}$ Updates of D_{S}-lepton analysis.
${ }^{11}$ Combined results from all Delphi analyses.
${ }^{11}$ Events with a high transverse momentum lepton were removed and an inclusively reconstructed vertex was required.
12 ABE 03 uses the novel "charge dipole" technique to reconstruct separate secondary and tertiary vertices originating from the $B \rightarrow D$ decay chain. The analysis excludes $\Delta m_{s}<4.9 \mathrm{ps}^{-1}$ and $7.9<\Delta m_{s}<10.3 \mathrm{ps}^{-1}$.
${ }^{13}$ Three analyses based on complementary event selections: (1) fully-reconstructed hadronic decays; (2) semileptonic decays with D_{S} exclusively reconstructed; (3) inclusive semileptonic decays.
${ }^{14} \mathrm{ABE} 02 \mathrm{~V}$ uses exclusively reconstructed D_{s}^{-}mesons and excludes $\Delta m_{s}<1.4 \mathrm{ps}^{-1}$ and $2.4<\Delta m_{s}<5.3 \mathrm{ps}^{-1}$ at $95 \% \mathrm{CL}$.
${ }^{15}$ Uses fully or partially reconstructed $D_{S} \ell$ vertices and a mixing tag as a flavor tagging
${ }^{16}$ Replaced by ABDALLAH 04A. Uses $D_{s}^{-} \ell^{+}$, and $\phi \ell^{+}$vertices, and a multi-variable discriminant as a flavor tagging.
17 Uses inclusive D_{S} vertices and fully reconstructed B_{S} decays and a multi-variable discriminant as a flavor tagging.
${ }^{18}$ Uses $\ell-Q_{\text {hem }}$ and $\ell-\ell$.
${ }^{19} \mathrm{ABE} 99 \mathrm{D}$ assumes $\tau_{B_{s}^{0}}^{0}=1.55 \pm 0.05 \mathrm{ps}$ and $\Delta \Gamma / \Delta m=(5.6 \pm 2.6) \times 10^{-3}$
${ }^{20}$ ABE 99J uses $\phi \ell-\ell$ correlation.
${ }^{21}$ BARATE 99」 uses combination of an inclusive lepton and D_{S}^{-}-based analyses.
${ }^{22}$ BARATE 98 C combines results from $D_{S} h-\ell / Q_{\text {hem }}, D_{S} h-K$ in the same side, $D_{S} \ell-$ ${ }^{\ell / Q_{h e m}}$ and $D_{S} \ell-K$ in the same side.
${ }^{23}$ Uses $\ell-Q_{\text {hem }}$.
${ }_{25}^{24}$ Uses $\ell-\ell$.
${ }^{25}$ ADAM 97 combines results from $D_{S} \ell-Q_{\text {hem }}, \ell-Q_{\text {hem }}$, and $\ell-\ell$.
${ }^{26}$ BUSKULIC 96 m uses D_{S} lepton correlations and lepton, kaon, and jet charge tags.
${ }^{27}$ BUSKULIC 95J uses ℓ-Q $Q_{\text {hem. }}$. They find $\Delta m_{s}>5.6$ [$\left.>6.1\right]$ for $f_{s}=10 \%$ [12\%]. We interpolate to our central value $f_{S}=10.5 \%$.

$x_{s}=\underset{\text { This }}{\Delta m_{s}^{0}}{ }_{B_{s}^{0}}$
 derived by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) from the results on $\Delta m_{B_{s}^{0}}$ and "OUR EVALUATION" of the B_{S}^{0} mean lifetime.

26.89 ± 0.07 OUR EVALUATION
χ_{s}
This is a $B_{s}^{0}-\bar{B}_{s}^{0}$ integrated mixing parameter derived from x_{s} above and OUR EVALUATION of $\Delta \Gamma_{B_{S}^{0}} / \Gamma_{B_{s}^{0}}^{0 .}$
VALUE
$\frac{V A L U E}{0.499312 \pm 0.000004} \mathbf{O U R ~ E V A L U A T I O N}$

$C P$ VIOLATION PARAMETERS in B_{s}^{0}

$\operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\mid \epsilon_{B_{s}^{0}}{ }^{2}\right)$
 $C P$ impurity in B_{S}^{0} system.

"OUR EVALUATION" is an average obtained by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) and described at https://hflav.web.cern.ch/. It is the result of a fit to B_{d} and $B_{S} C P$ asymmetries, which includes the B_{S} measurements listed below and the B_{d} measurements listed in the B_{d} section, and takes into account correlations between those measurements.

$\frac{\text { VALUE (unit } 10^{-3} \text {) }}{-0.15 \pm 0.70 \text { OUR EVALUATION }}$

DOCUMENTID TECN COMMENT
0.0 ± 1.1 OUR AVERAGE
$0.98 \pm 0.65 \pm 0.5$
-2.15 ± 1.85
${ }^{1}$ AAIJ $16 \mathrm{LHCB} p p$ at $7,8 \mathrm{TeV}$
$-2.8 \pm 1.9 \pm 0.4 \quad \begin{array}{llll} & { }^{2} \text { ABAZOV } & 14 & \text { D0 }\end{array} \quad p \bar{p}$ at 1.96 TV

- - We do not use the following data for averages, fits, limits, etc. - . -

$-0.15 \pm 1.25 \pm 0.90$	${ }^{4}$ AAIJ	14D	LHCB	Repl. by AAIJ 16G
-4.5 ± 2.7	${ }^{5}$ AbAZOV	110	D0	Repl. by ABAZOV 14
$-0.4 \pm 2.3 \pm 0.4$	${ }^{6}$ AbAZov	10 E	D0	Repl. by AbAzov 13
-3.6 ± 1.9	${ }^{7}$ AbAZOV	10 H	D0	Repl. by AbAzov 110
$6.1 \pm 4.8 \pm 0.9$	${ }^{8}$ ABAZOV	07A	D0	Repl. by Abazov 10E

${ }^{1}$ AAIJ $16 G$ reports a measurement of time-integrated flavor-specific asymmetry in $B_{S}^{0} \rightarrow$ $\mu^{+} D_{S}^{-} X$ decays, $A_{S L}^{S}=(0.39 \pm 0.26 \pm 0.20) \%$, which is approximately equal to $4 \times$ $\operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left|\epsilon_{B_{s}^{0}}\right|^{2}\right)$.
${ }^{2}$ ABAZOV 14 uses the dimuon charge asymmetry with different impact parameters from which it reports $A_{S L}^{s}=(-0.86 \pm 0.74) \times 10^{-2}$.
${ }^{3}$ ABAZOV 13 reports a measurement of time-integrated flavor-specific asymmetry in mixed semileptonic $B_{S}^{0} \rightarrow \mu^{+} D_{s}^{-} X$ decays $A_{S L}^{S}=(-1.12 \pm 0.74 \pm 0.17) \%$ which is approximately equal to $4 \times \operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left|\epsilon_{B_{s}^{0}}\right|^{2}\right)$.
${ }^{4}$ AAIJ 14D reports a measurement of time-integrated flavor-specific asymmetry in $B_{S}^{0} \rightarrow$ $\mu^{+} D_{S}^{-} X$ decays, $A_{S L}^{S}=(-0.06 \pm 0.50 \pm 0.36) \%$, which is approximately equal to4 $\times \operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left|\epsilon_{B_{s}^{0}}\right|^{2}\right)$.
${ }^{5}$ ABAZOV 11 U uses the dimuon charge asymmetry with different impact parameters from which it reports $A_{S L}^{S}=(-18.1 \pm 10.6) \times 10^{-3}$.
${ }^{6}$ ABAZOV 10E reports a measurement of flavor-specific asymmetry in $B_{(s)}^{0} \rightarrow \mu^{+} D_{(s)}^{*-} X$ decays with a decay-time analysis including initial-state flavor tagging, $\boldsymbol{A}_{S L}^{s}=(-1.7 \pm$ $\left.9.1_{-1.5}^{+1.4}\right) \times 10^{-3}$ which is approximately equal to $4 \times \operatorname{Re}\left(\epsilon_{B_{s}^{0}}\right) /\left(1+\left|\epsilon_{B_{s}^{0}}\right|^{2}\right)$.
${ }^{7}$ ABAZOV 10 H reports a measurement of like-sign dimuon charge asymmetry of $A_{S L}^{s}=$ $(-9.57 \pm 2.51 \pm 1.46) \times 10^{-3}$ in semileptonic b-hadron decays. Using the measured production ratio of B_{d}^{0} and B_{S}^{0}, and the asymmetry of $B_{d}^{0} A_{S L}^{S}=(-4.7 \pm 4.6) \times 10^{-3}$ measured from B-factories, they obtain the asymmetry for B_{S}^{0}.
${ }^{8}$ The first direct measurement of the time integrated flavor untagged charge asymmetry in semileptonic B_{S}^{0} decays is reported as $2 \times A_{S L}^{s}$ (untagged) $=A_{S L}^{s}=(2.45 \pm 1.93 \pm$ $0.35) \times 10^{-2}$.

$\frac{V A L U E}{0.14 \pm 0.11 \pm 0.03}$

TECN COMMENT
$S_{K K}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)$
$\frac{V A L U E}{0.30 \pm 0.12 \pm 0.04}$
$\mathbf{r}_{B}\left(B_{s}^{0} \Rightarrow D_{s}^{\mp} K^{ \pm}\right)$
r_{B} and δ_{B} are the amplitude ratio and relative strong phase between the amplitudes of $A\left(B_{S}^{0} \rightarrow D_{S}^{+} K^{-}\right)$and $A\left(B_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)$,

VALUE	DOCUMENT ID		TECN	COMMENT
$\begin{gathered} 0.37_{-0.09}^{+0.10} \end{gathered}$	1 AAIJ	18U	LHCB	$p p$ at 7, 8 TeV

- - We do not use the following data for averages, fits, limits, etc. - - .
$0.53_{-0.16}^{+0.17} \quad 2$ AAIJ $\quad 14 \mathrm{BF}$ LHCB Repl. by AAIJ 18 U
${ }^{1}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ -0.030 ± 0.033 from HFLAV.
${ }^{2}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ $0.01 \pm 0.07 \pm 0.0$ from AAIJ 13AR. At 68% CL.

Meson Particle Listings

- - We do not use the following data for averages, fits, limits, etc. - -
$3_{-20}^{+19} \quad 2$ AAIJ 14BF LHCB Repl. by AAIJ 18 U
${ }^{1}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ 0.030 ± 0.033 from HFLAV. The value is modulo 180°.
${ }^{2}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{ \pm}$decays, constraining $-2 \beta_{S}$ by the measurement of $\phi_{S}=$ $0.01 \pm 0.07 \pm{ }^{5} .0$ from AAIJ 13AR. The value is modulo 180° at $68 \% \mathrm{CL}$.

CP Violation phase $\boldsymbol{\beta}_{\boldsymbol{s}}$

$-2 \beta_{s}$ is the weak phase difference between B_{s}^{0} mixing amplitude and the $B_{S}^{0} \rightarrow J / \psi \phi$ decay amplitude driven by the $b \rightarrow c \bar{c} S$ transition (such as $B_{S} \rightarrow J / \psi \phi, J / \psi K^{+} K^{-}$, $J / \psi \pi^{+} \pi^{-}$, and $\left.D_{S}^{+} D_{S}^{-}\right)$. The Standard Model value of β_{s} is $\arg \left(-\frac{V_{t s} V_{t b}^{*}}{V_{c s} V_{c b}^{*}}\right)$ if penguin contributions are neglected.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/) and are described at https://hflav.web.cern.ch/. The averaging/scaling procedure takes into account correlation between the measurements.

VALUE ($10^{-2} \mathrm{rad}$)	DOCUMENT ID		COMMENT
2.55 ± 1.15 OUR EVALUATION			
$2.6 \pm$ 1.4 OUR AVERAGE			
$-0.1 \pm 2.2 \pm 0.6$	${ }^{1}$ AAIJ	19af LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$4.15 \pm 2.05 \pm 0.30$	${ }^{2}$ AAIJ	19Q LHCB	$p p$ at 13 TeV
$11.9 \pm 10.7 \pm 3.4$	${ }^{3}$ AAIJ	17V LHCB	$p p$ at $7,8 \mathrm{TeV}$
$4.5 \pm 3.9 \pm 2.1$	${ }^{4}$ AAD	16AP ATLS	$p p$ at $7,8 \mathrm{TeV}$
$-11.5{ }_{-14.5}^{+14} \pm 1$	${ }^{5}$ AAIJ	16ak LHCB	$p p$ at $7,8 \mathrm{TeV}$
$3.75 \pm 4.85 \pm 1.55$	${ }^{6}$ KHACHATRY.	. 16 S CMS	$p p$ at 8 TeV
$-1 \pm 9 \pm 1$	${ }^{7}$ AAIJ	14AY LHCB	$p p$ at $7,8 \mathrm{TeV}$
	8 AALTONEN	12A」 CDF	$p \bar{p}$ at 1.96 TeV
$\begin{array}{ll}28 & +18 \\ -19\end{array}$	${ }^{9}$ ABAZOV	12D D0	$p \bar{p}$ at 1.96 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -

$3.7 \pm 5.8 \pm 1.4$	10,11 AAIJ	19AP LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$5.0 \pm 6.5 \pm 7.0$	12 AAIJ	18S LHCB	$p p$ at $7,8 \mathrm{TeV}$
$2.9 \pm 2.5 \pm 0.3$	13 AAIJ	15। LHCB	Repl. by AAIJ 19Q
$6 \quad \pm 8$	14,15 AAIJ	15K LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-6 \pm 13 \pm 3$	16 AAD	14U ATLS	Repl. by AAD 16AP
$8.5 \pm 7.5 \pm 1.5$	17 AAIJ	14AE LHCB	Repl. by AAIJ 19AP
$-3.5 \pm 3.4 \pm 0.4$	18 AAIJ	14S LHCB	Repl. by AAIJ 19aF
$-0.5 \pm 3.5 \pm 0.5$	${ }^{19}$ AAIJ	13ar LHCB	Repl. by AAIJ 151
	20 AAIJ	13AY LHCB	$p p$ at 7 TeV
$-11.0 \pm 20.5 \pm 5.0$	21 AAD	12CV ATLS	Repl. by AAD 140
$22 \pm 22 \pm 1$	22 AAIJ	12B LHCB	Repl. by AAIJ 12Q
$-8 \pm 9 \pm 3$	23 AAIJ	12D LHCB	Repl. by AAIJ 13AR
$0.95-8.70+0.15$	24 AAIJ	12Q LHCB	Repl. by AAIJ 13AR
	${ }^{25}$ AALTONEN	12D CDF	Repl. by AALTONEN 12A.
	26 AALTONEN	08G CDF	Repl. by AALTONEN 12D
$28 \quad \begin{array}{ll}+12 & +4 \\ -15 & \\ -1\end{array}$	9,27 ABAZOV	08am D0	Repl. by ABAZOV 12D
$39.5 \pm 28.0{ }_{-7.0}^{+0.5}$	28,29 ABAZOV	07 D0	Repl. by ABAZOV 07N
$35 \begin{array}{ll}+20 \\ -24\end{array}$	29,30 ABAZOV	07N D0	Repl. by ABAZOV 08am

${ }^{1} \mathrm{AAIJ}$ 19AF reports $\phi_{S}=-2 \beta_{S}=0.002 \pm 0.044 \pm 0.012 \mathrm{rad}$. and $|\lambda|=0.949 \pm 0.036 \pm$ 0.019 , when direct ${ }^{S} P$ violation is allowed. Measured using a time-dependent fit to $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays, which is sensitive to $\phi_{S}(s \bar{S} s)$, not $\phi_{S}(c \bar{C} s)$.
${ }^{2}$ AAIJ 19Q reports $\phi_{S}=-2 \beta_{S}=-0.083 \pm 0.041 \pm 0.006$ rad. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.
${ }^{3}$ Measured using time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$in the region $\mathrm{m}(K K)>1.05 \mathrm{GeV}$
${ }^{4} \mathrm{AAD} 16 \mathrm{AP}$ reports $\phi_{s}=-2 \beta_{S}=-0.090 \pm 0.078 \pm 0.041 \mathrm{rad}$. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{5}$ AAIJ 16 AK reports $\phi_{S}=-2 \beta_{S}=0.233_{-0.28}^{+0.29} \pm 0.02 \mathrm{rad}$. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow \psi(2 S) \phi$ decays.
6 KHACHATRYAN 16 S reports $\phi_{S}=-2 \beta_{S}=-0.075 \pm 0.097 \pm 0.031$ rad. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{7}$ AAIJ 14AY reports $\phi_{S}=-2 \beta_{S}=0.02 \pm 0.17 \pm 0.02$ rad. in a time-dependent fit to $B_{S}^{0} \rightarrow D_{S}^{+} D_{S}^{-}$, while allowing $C P$ violation in decay.
${ }^{8}$ AALTONEN 12A」 reports $-\pi / 2<\beta_{S}<-1.51$ or $-0.06<\beta_{S}<0.30$, or $1.26<\beta_{S}<$ $\pi / 2 \mathrm{rad}$. at $68 \% \mathrm{CL}$. Measured using the time-dependent angular analysis of $B_{S}^{0} \rightarrow$ $J / \psi \phi$ decays.
${ }^{9} \mathrm{ABAZOV}$ 12D reports $\phi_{S}=-2 \beta_{S}=-0.55_{-0.36}^{+0.38} \mathrm{rad}$. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays. A single error includes both statistical and systematic uncertainties.
${ }^{10} \mathrm{AAIJ} 19 \mathrm{AP}$ reports $\phi_{S}^{S \bar{S} S}=-0.073 \pm 0.115 \pm 0.027 \mathrm{rad}$ and $|\lambda|=0.99 \pm 0.05 \pm 0.01$. Measured using a time-dependent fit to $B_{S}^{0} \rightarrow \phi \phi$ decays, assuming independence of the helicity of the $\phi \phi$ decay.
${ }^{11}$ AAIJ 19AP reports also polarisation-dependent results assuming that the longitudinal weak phase is CP-conserving and that there is no direct CP violation, giving $\phi_{s, \|}=$ $0.014 \pm 0.055 \pm 0.011 \mathrm{rad}$ and $\phi_{s, \perp}=0.044 \pm 0.059 \pm 0.019 \mathrm{rad}$.
${ }^{12}$ AAIJ 18 S reports $\phi_{S}=-2 \beta_{S}=-0.10 \pm 0.13 \pm 0.14 \mathrm{rad}$ measured in $B_{S}^{0} \rightarrow$ $\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$in the region $0.75<\mathrm{m}\left(K^{ \pm} \pi^{\mp}\right)<1.6 \mathrm{GeV}$. This is a $b \rightarrow d \bar{d} s$ transition with a decay amplitude phase different from that of $b \rightarrow c \bar{c} s$ transition.
13 AAIJ 15 l reports $\phi_{S}=-2 \beta_{S}=-0.058 \pm 0.049 \pm 0.006 \mathrm{rad}$. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays. It also combines this result with that of AAIJ 14 S and quotes $\phi_{S}=-2 \beta_{S}=-0.010 \pm 0.039 \mathrm{rad}$.
14 AAIJ 15 K reports $-2 \beta_{S}=-0.12_{-0.16}^{+0.14} \mathrm{rad}$. The value was obtained by measuring time-dependent $C P$ asymmetry in $B_{S}^{0} \rightarrow K^{+} K^{-}$and using a U-spin relation between $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$.
${ }^{15}$ Results are also presented using additional inputs on $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.
${ }^{16} \mathrm{AAD} 14 \mathrm{U}$ reports $\phi_{S}=-2 \beta_{S}=0.12 \pm 0.25 \pm 0.05 \mathrm{rad}$. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
17 AAIJ 14AE value measured in $B_{s}^{0} \rightarrow \phi \phi$ decays. This is a $b \rightarrow s \bar{s} s$ transition with a decay amplitude phase different from that of $b \rightarrow c \bar{C} s$ transition. Also reports $\phi_{S}=$ $-0.17 \pm 0.15 \pm 0.03 \mathrm{rad}$.
18 AAIJ 14 S reports $\phi_{S}=-2 \beta_{S}=0.070 \pm 0.068 \pm 0.008 \mathrm{rad}$. and $|\lambda|=0.89 \pm 0.05 \pm 0.01$, when direct $C P$ violation is allowed. Measured using a time-dependent fit to $B_{S}^{0} \rightarrow$ $J / \psi \pi^{+} \pi^{-}$decays.
${ }^{19}$ AAIJ 13AR reports $\phi_{S}=-2 \beta_{S}=0.01 \pm 0.07 \pm 0.01$ rad. obtained from combined fit to $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$and $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$data sets. Also reports separate results of $\phi_{S}=0.07 \pm 0.09 \pm 0.01 \mathrm{rad}$. from $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays and $\phi_{S}=$ $-0.14_{-0.16}^{+0.17} \pm 0.01 \mathrm{rad}$. from $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.
${ }^{20}$ AAIJ 13AY uses $B_{S}^{0} \rightarrow \phi \phi$ mode, and reports the 68% CL interval of $\phi_{S}=-2 \beta_{S}$ as [-2.46, -0.76$]$ rad.
${ }^{21} \mathrm{AAD} 12 \mathrm{CV}$ reports $\phi_{s}=-2 \beta_{S}=0.22 \pm 0.41 \pm 0.10$ rad. that was measured using a time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{22}$ Reports $\phi_{S}=-2 \beta_{S}=-0.44 \pm 0.44 \pm 0.02$ rad. that was measured using a timedependent fit to $B_{S}^{0} \rightarrow J / \psi f_{0}(980)$ decays.
${ }^{23}$ Reports $\phi_{S}=-2 \beta_{S}=0.15 \pm 0.18 \pm 0.06$ rad. that was measured using a timedependent angular analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{24}$ Reports $\phi_{S}=-2 \beta_{S}=-0.019_{-0.174}^{+0.173}+0.004$ rad. which was measured using a timedependent fit to $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays, with the $\pi^{+} \pi^{-}$mass within 775-1550 MeV . Searches for, but finds no evidence, for direct $C P$ violation in $B_{S}^{0} \rightarrow J / \psi \pi \pi$ decays.
${ }^{25}$ Reports $0.02<\phi_{S}<0.52$ or $1.08<\phi_{S}<1.55 \mathrm{rad}$. at 68% C.L. confidence regions in the two-dimensional space of ϕ_{S} and $\Delta \Gamma_{B_{s}^{0}}$ from $B_{s}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{26}$ Reports $0.32<2 \beta_{S}<2.82$ rad. at 68% C.L. and confidence regions in the twodimensional space of $2 \beta_{S}$ and $\Delta \Gamma$ from the first measurement of $B_{S}^{0} \rightarrow J / \psi \phi$ decays using flavor tagging. The probability of a deviation from SM prediction as large as the level of observed data is 15%.
27 Reports $\phi_{s}=-2 \beta_{s}$ and obtains $90 \% \mathrm{CL}$ interval $-0.03<\beta_{s}<0.60 \mathrm{rad}$.
28 The first direct measurement of the $C P$-violating mixing phase is reported from the time-dependent analysis of flavor untagged $B_{S}^{0} \rightarrow J / \psi \phi$ decays.
${ }^{29}$ Reports ϕ_{S} which equals to $-2 \beta_{S}$.
${ }^{30}$ Combines D0 collaboration measurements of time-dependent angular distributions in $B_{S}^{0} \rightarrow J / \psi \phi$ and charge asymmetry in semileptonic decays. There is a 4 -fold ambiguity in the solution.
$|\lambda|\left(B_{s}^{0} \rightarrow J / \psi(1 S) \phi\right)$

$1.012 \pm 0.016 \pm 0.006$

DOCUMENT ID
DOCUMENT ID TECN COMMENT
$\mathbf{1 . 0 1 2} \pm \mathbf{0 . 0 1 6} \pm \mathbf{0 . 0 0 6} \quad \mathrm{AAIJ} 19 \mathrm{Q}$ LHCB pp at 13 TeV
$0.964 \pm 0.019 \pm 0.007$ AAIJ 15I LHCB Repl. by AAIJ 19Q
${ }^{|\lambda|} \mid$
0.999 ± 0.017 OUR AVERAGE
DOCUMENT ID TECN COMMENT
$0.99 \pm 0.05 \pm 0.01$
$1.035 \pm 0.034 \pm 0.089$
1 AAIJ 19ap LHCB $p p$ at $7,8,13 \mathrm{TeV}$
$0.994 \pm 0.018 \quad 18 \mathrm{~S}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$1.045_{-0.050}^{+0.069} \pm 0.007 \quad 4$ AAIJ 16 AK LHCB pp at $7,8 \mathrm{TeV}$
$0.91{ }_{-0.15}^{+0.18} \pm 0.02$
${ }^{5}$ AAIJ
14AY LHCB $p p$ at $7,8 \mathrm{TeV}$

- - We do not use the following data for averages, fits, limits, etc. - -

$0.949 \pm 0.036 \pm 0.019$	6		
AAIJ	19AF LHCB	$p p$ at $7,8,13 \mathrm{TeV}$	\mid
$1.04 \pm 0.07 \pm 0.03$	7 AAIJ	14 AE LHCB	Repl. by AAIJ 19AP

${ }^{1}$ Measured in $B_{S}^{0} \rightarrow \phi \phi$ decays.
${ }^{2}$ Measured in $B_{S}^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$in the region $0.75<\mathrm{m}\left(K^{ \pm} \pi^{\mp}\right)<1.6 \mathrm{GeV}$.
${ }^{3}$ Measured using time-dependent angular analysis of $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$in the region $\mathrm{m}(K K)>1.05 \mathrm{GeV}$.
${ }^{4}$ Measured using time-dependent angular analysis of $B_{S}^{0} \rightarrow \psi(2 S) \phi$ decays.
${ }^{5}$ Measured in $B_{S}^{0} \rightarrow D_{S}^{+} D_{S}^{-}$decays.
${ }^{6}$ Measured using time-dependent analysis of $B_{S}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$decays.
${ }^{7}$ Measured in $B_{S}^{0} \rightarrow \phi \phi$ decays.

$\mathrm{S}, \boldsymbol{C P}$ violation parameter
 $$
\mathrm{S}=-2 \operatorname{lm}(\lambda) /\left(1+|\lambda|^{2}\right)
$$

VALUE	DOCUMENT ID	TECN	COMMENT
0.17 ± 0.06 OUR AVERAGE			
$0.18 \pm 0.06 \pm 0.02$	${ }^{1}$ AAIJ	180 LHCB	$p p$ at $7,8 \mathrm{TeV}$
$-0.08 \pm 0.40 \pm 0.08$	2 AAIJ	15AL LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Measured in $B_{s}^{0} \rightarrow K^{+} K^{-}$decays.			
${ }^{2}$ Measured in $B_{S}^{0} \rightarrow J / \psi K_{S}^{0}$	ecays.		

$\underset{\substack{\text { VALUE }}}{\boldsymbol{A}_{\boldsymbol{C}}^{\boldsymbol{L}}\left(B_{S} \Rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)}$
$-0.048 \pm 0.057 \pm 0.020$
$\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 15 \mathrm{AV} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
$A_{C P}^{\|}\left(B_{\mathrm{S}} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)$
$\frac{V A L U E}{0.171 \pm 0.152 \pm 0.028}$
$A_{\bar{C} P}^{\perp}\left(B_{s} \rightarrow J / \psi \bar{K}^{*}(892)^{0}\right)$
$\frac{\text { VALUE }}{-0.049 \pm 0.096 \pm 0.025}$
DOCUMENT ID TECN COMMENT
AAIJ 15AV LHCB $p p$ at $7,8 \mathrm{TeV}$
$\boldsymbol{A}_{C P}\left(B_{s} \Rightarrow \pi^{+} K^{-}\right)$
$A_{C P}$ is defined as

$$
\frac{B\left(\bar{B}_{s}^{0} \rightarrow f\right)-B\left(B_{s}^{0} \rightarrow \bar{f}\right)}{B\left(\bar{B}_{s}^{0} \rightarrow f\right)+B\left(B_{s}^{0} \rightarrow \bar{f}\right)},
$$

the $C P$-violation asymmetry of exclusive B_{S}^{0} and \bar{B}_{S}^{0} decay.

$\boldsymbol{A}^{\boldsymbol{\Delta}}\left(B_{\mathbf{s}} \rightarrow \phi \gamma\right)$
$A^{\Delta}\left(B_{S} \rightarrow \phi \gamma\right)$ is the multiplicative coefficient of the $\sinh (\Delta \Gamma \mathrm{t} / 2)$ term in the $B_{S} \rightarrow$ $\phi \gamma$ decay rate time dependence.

VALUE	DOCUMENT ID	
$\mathbf{- 0 . 6 7} \mathbf{+ 0 . 3 7} \pm \mathbf{0 . 1 7}$	1 TECN	COMMENT
AAIJ	19AE LHCB	$p p$ at $7,8 \mathrm{TeV}$

- . We do not use the following data for averages, fits, limits, etc. - .
$-0.98{ }_{-0.52}^{+0.46}+{ }_{-0.20}^{+0.23} \quad{ }^{2}$ AAIJ 17B LHCB Repl. by AAIJ 19AE
${ }^{1}$ Measured in flavor tagged time dependent analysis, using tagged and un-tagged events. This result updates AAIJ 17B with better selection efficiency and other analysis improvements.
${ }^{2}$ Measured in time dependent analysis without initial flavor tagging

CPT VIOLATION PARAMETERS

In the B_{S}^{0} mixing, propagating mass eigenstates can be written as

$$
\left|B_{s L}\right\rangle \propto \mathrm{p} \sqrt{1-\xi}\left|B_{s}^{0}\right\rangle+\mathrm{q} \sqrt{1+\xi}\left|\bar{B}_{s}^{0}\right\rangle
$$

$$
\left|B_{s H}\right\rangle \propto \mathrm{p} \sqrt{1+\xi}\left|B_{s}^{0}\right\rangle-\mathrm{q} \sqrt{1-\xi}\left|\bar{B}_{s}^{0}\right\rangle
$$

where parameter ξ controls $C P T$ violation. If ξ is zero, then $C P T$ is conserved. The parameter ξ can be written as

$$
\xi=\frac{2\left(M_{11}-M_{22}\right)-i\left(\Gamma_{11}-\Gamma_{22}\right)}{-2 \Delta m_{s}+i \Delta \Gamma_{s}} \approx \frac{-2 \beta^{\mu} \Delta a_{\mu}}{2 \Delta m_{s}-i \Delta \Gamma_{s}},
$$

where $M_{i i}, \Gamma_{i i}, \Delta m_{S}$, and $\Delta \Gamma_{S}$ are parameters of Hamiltonian governing B_{S} oscillations, β^{μ} is the B_{s}^{0} meson velocity and Δa_{μ} characterizes Lorentz-invariance violation.
Δa_{\perp}

VALUE ($10^{-12} \mathrm{GeV}$)	CL\%	DOCUMENT		TECN	COMMENT
-0.47 $\pm 0.39 \pm 0.08$		${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
< 1.2	95	2 ABAZOV	15L	D0	$p \bar{p}$ at 1.96 TeV
${ }^{1}$ Uses $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.					
${ }^{2}$ Measured in semileptonic $B_{S}^{0} \rightarrow D_{S}^{-} \mu^{+} X$ decays. Also extracts limit on time and					

$\Delta a_{\|}$

$\frac{\text { VALUE }\left(10^{-14} \mathrm{GeV}\right)}{\mathbf{- 0 . 8 9} \pm \mathbf{1 . 4 1} \pm \mathbf{0 . 3 6}}$	1	
${ }^{1}$ Uses $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.		

Δa_{x}

Δa_{Y}

VALUE $\left(10^{-14} \mathrm{GeV}\right)$	DOCUMENT ID		$\frac{\text { TECN }}{\text { LHCB }}$	COMMENT
-3.83 $\pm 2.09 \pm 0.71$	${ }^{1} \mathrm{AAIJ}$	16E		$p p$ at 7, 8 TeV
${ }^{1}$ Uses $B_{S}^{0} \rightarrow J / \psi K+K^{-}$decays.				
$\operatorname{Re}(\xi)$				
VALUE	DOCUMENT ID		TECN	COMMENT
-0.022 $\pm 0.033 \pm 0.003$	${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.				
$\operatorname{Im}(\xi)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$\mathbf{0 . 0 0 4} \pm 0.011 \pm 0.002$	${ }^{1}$ AAIJ	16E	LHCB	$p p$ at $7,8 \mathrm{TeV}$
${ }^{1}$ Uses $B_{S}^{0} \rightarrow J / \psi K^{+} K^{-}$decays.				

PARTIAL BRANCHING FRACTIONS IN $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$
$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(0.1<\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{1 . 1 4} \pm \mathbf{0 . 1 6} \text { OUR AVERAGE }}$ DOCUMENT ID TECN COMMENT
$1.11 \underset{-0.13}{+0.14} \pm 0.09 \quad 1$ AAIJ $\quad 15 \mathrm{AQ}$ LHCB $p p$ at $7,8 \mathrm{TeV}$
$2.78 \pm 0.95 \pm 0.89 \quad$ AALTONEN 11AI CDF $p \bar{p}$ at 1.96 TeV - - We do not use the following data for averages, fits, limits, etc. - • -
$0.897_{-0.186}^{+0.207} \pm 0.097 \quad{ }^{1}$ AAIJ $13 x$ LHCB Repl. by AAIJ 15AQ
${ }^{1}$ Measured in $B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-}$decays.
$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(2.0<\mathrm{q}^{2}<5.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
VALUE (units 10^{-7}) DOCUMENT ID \quad TECN COMMENT
$0.77 \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 0 6} \quad 1 \mathrm{AAIJ} \quad 15 \mathrm{AQ} \mathrm{LHCB}$ ppat $7,8 \mathrm{TeV}$

$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(5.0<\mathrm{q}^{2}<8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{0 . 9 6 \pm 0 . 1 3} \pm \mathbf{0 . 0 8}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$1.38-0.23 \pm 0.14 \quad 1,2$ AAIJ $13 x$ LHCB Repl. by AAIJ 15AQ
$1.34 \pm 0.83 \pm 0.43 \quad 2$ AALTONEN 11 Al CDF $p \bar{p}$ at 1.96 TeV
${ }^{1}$ Measured in $B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-}$decays.
${ }^{2}$ Measured in $4.3<\mathrm{q}^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.
$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(11.0<\mathrm{q}^{2}<12.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{0 . 7 1 \pm 0 . 1 0 \pm 0 . 0 6}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 15AQ }} \frac{\text { COMCB }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}$
- - We do not use the following data for averages, fits, limits, etc. - -

1.18		
$2.98 \pm 0.21 \pm 0.14$	1,2 AAIJ	13x LHCB
2.95 ± 0.95	2 AALTONEN	11 AI CDF
$1_{\text {Measured in } B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-} \text {decays. }}$		
${ }^{2}$ Measured in $10.9<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.		
$\mathbf{B}\left(\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{\phi} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}\right)\left(\mathbf{1 5 . 0}<\mathbf{q}^{\mathbf{2}}<\mathbf{1 7 . 0} \mathbf{G e V}^{\mathbf{2}} / \mathbf{c}^{\mathbf{4}}\right)$		

$\begin{array}{ll}\text { VALUE (units } 10^{-7} \text {) } \\ \mathbf{0 . 9 0} \mathbf{\pm 0 . 1 1} \mathbf{\pm 0 . 0 7} & 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 15AQ }}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}} \\ \bullet \bullet \text { We do not use the following data for averages, fits, limits, etc. } \bullet \bullet\end{array}$

$0.760-0.169 \pm 0.087$	1,2		
AAIJ	$13 \times$	LHCB	Repl. by AAIJ 15AQ
$1.86 \pm 0.66 \pm 0.59$	2	AALTONEN	11 Al CDF
1 Measured in $B_{S}^{0} \rightarrow$	$p \bar{p}$ at 1.96 TeV		
${ }^{+} \mu^{-}$decays.			
${ }^{2}$ Measured in $14.18<\mathrm{q}^{2}<16 \mathrm{GeV}^{2} / \mathrm{c}^{4}$.			

$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(17.0<\mathrm{q}^{2}<19.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

$\begin{array}{lcc}1.06_{-0.21}^{+0.23} \pm 0.12 & 1,2 \text { AAIJ } & 13 x \text { LHCB } \\ 2.32 \pm 0.76 \pm 0.74 & 2 \text { AALTONEN } & 11 \mathrm{Al} \text { CD } \\ 1 \text { Measured in } B_{S}^{0} \rightarrow & \phi \mu^{+} \mu^{-} \text {decays. } & \\ 2 \text { Measured in } 16<\mathrm{q}^{2}<19 \mathrm{GeV}^{2} / \mathrm{c}^{4} . & \\ \mathbf{B}\left(\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{\phi} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}\right)\left(\mathbf{1 . 0}<\mathbf{q}^{\mathbf{2}}<\mathbf{6 . 0} \mathrm{GeV}^{2} / \mathbf{c}^{\mathbf{4}}\right)\end{array}$

$\mathrm{B}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)\left(0.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{\mathbf{3 . 3 0} \pm \mathbf{1 . 0 9} \pm \mathbf{1 . 0 5}} \quad \frac{\text { DOCUMENT ID }}{\text { AALTONEN 11AI }} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}}$

PRODUCTION ASYMMETRIES

$A_{P}\left(B_{s}^{0}\right)$
$\mathrm{A}_{P}\left(B_{s}^{0}\right)=\left[\sigma\left(\bar{B}_{s}^{0}\right)-\sigma\left(B_{s}^{0}\right)\right] /\left[\sigma\left(\bar{B}_{s}^{0}\right)+\sigma\left(B_{s}^{0}\right)\right]$

VALUE (units 10^{-2})	TE	COMMENT
1.2 ± 1.6 OUR AVERAGE		
$-0.65 \pm 2.88 \pm 0.59$	1 AAIJ 17BF LHCB	p at 7 TeV
$1.98 \pm 1.90 \pm 0.59$	1 AAIJ 17bF LHCB	p at 8 TeV
- We do not use the following data for averages, fits, limits, etc. - -		
$1.09 \pm 2.61 \pm 0.66$	${ }^{2}$ AAIJ 14BP LHCB	Repl. by AAIJ 17BF, pp at 7 TeV
Based on time-dependent analysis of $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$in kinematic range $2<p_{T}<30$ $\mathrm{GeV} / \mathrm{c}$ and $2.1<\eta<4.5$.		
${ }^{2}$ Based on time-dependent $\mathrm{GeV} / \mathrm{c}$ and $2.5<\eta<4.5$	is of $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$in kine	$\text { c range } 4<p_{T}<30$

B_{s}^{0} REFERENCES

AABOUD	19L	JHEP 1904098
AAIJ	19AE	PRL 123081802
AAIJ	19AF	PL B797 134789
AAIJ	19AK	PRL 123211801
AAIJ	19AP	JHEP 1912155
AAIJ	19K	JHEP 1906114
AAIJ	19L	JHEP 1907032
AAIJ	19Q	EPJ C79 706
AAIJ	194	PRL 122191804
AAIJ	18AB	JHEP 1807020
AAIJ	18AC	JHEP 1808191
AAIJ	18AY	PR D98 071103
AAIJ	18AZ	PR D98 072006
AAIJ	180	PR D98 032004
AAIJ	18 S	JHEP 1803140
AAIJ	18 T	JHEP 1803078
AAIJ	18 U	JHEP 1803059

M. Aaboud et al.
R. Aaije et al.
R. Aaij et al.
R. Aaije et al.
R. Aaijet al.
R. Aaij et al.
R. Aaii et al.
R. Aaijet al.
R. Aaij et al.
R. Aaiij et al.
R. Aaijet al.
R. Aaij et al.
R. Aaije et al.
R. Aaijet al.
R. Aaij et al.
R. Aaije et al.
R. Aaij et al.

C	
LHCb C	
LHCb C	
LHCb C	
LHCb	Colla
LHCb	Col
LHCb	
LHC	
LHCb C	Collab
LHCb	Collab
LHC	Colla
(LHCb C	

SIRUNYAN

 AAlJ18BY EPJ C78 457 17A PR D95 012006 17AI PRL 118191801 17AJ PRL 118251802 17AL PRL 119041802 17B PRL 1191021801 17BA JHEP 1705158 17BB EPJ C77 609 17BD PR D96 051103
17BF PL P9774 139 $\begin{array}{llll}\text { 17BF } & \text { PL } & \text { B774 } & 139 \\ \text { 17BJ } & \text { PRL } 119 & 232001\end{array}$ 17BJ PRL 119232001
17BP JHEP 1711027 17BP JHEP 17110812 $\begin{array}{llll}17 N & \text { JHEP } & 1703 & 001 \\ 170 & \text { JHEP } & 1707 & 021 \\ 17 \mathrm{~V} & \text { JHEP } & 1708 & 037\end{array}$ $\begin{array}{lll}17 \mathrm{~V} & \text { JHEP } 1707021 \\ 161\end{array}$ 16 L EPJ C76 513 $\begin{array}{llll}\text { 16AP JHEP } 1608 & 147 \\ 16 & \text { JHEP } 1601012\end{array}$ 16AK PL B762 253 $\begin{array}{lll}\text { 16AL } & \text { PL } & \text { B762 } \\ \text { 16C } & \text { PRL } & 1164 \\ 16180\end{array}$ $\begin{array}{llll}\text { 16E } & \text { PRL } 116241601 \\ \text { 16G } & \text { PRL } 117061803\end{array}$ GP PR D93 092008 JHEP 1603040 16C PR D94 01200 PL B757 97 PRL 116161801

 $\begin{array}{lll}\text { 15AG JHEP } & 1508 & 005 \\ \text { 15AL JHEP } & 1506131\end{array}$ 15AQ JHEP 1509179 15AS JHEP 1510053 15AV JHEP 1511082 15D JHEP 1501024 151 PRL 11404180 50 PRL 11505180 I PL B773 46 15A \quad PRL 114062001 15L PRL 11516160 ${ }_{15 B E}^{15}$ NAT 522011101
14 E JHEP 1404114
$\begin{array}{ll}14 F & \text { PRL } 112 \\ 1411802 \\ 14 \mathrm{~L} & \text { JHEP } 1407140\end{array}$
$\begin{array}{ll}\text { 14L } & \text { JHEP } 1407140 \\ 14 R & \text { PL B736 } 446\end{array}$
$\begin{array}{ll}\text { PL B736 } & 446 \\ \text { PL B736 } & 186\end{array}$
14 PRL 112091802
PRL 11324200
$\begin{array}{lll}14 & \text { PR D89 } 012002 \\ 4 & \text { CP C38 } & 070001\end{array}$
3 NP B867 1
3A NP B867 54
13AA NP B871 403
3AB NP B873 275
13AC NP B874 663
13AL PR D87 071101
13AN PR D87 072004
13AP PR D87 092007
13AQ PR D87 112009
13AR PR D87 112010
13AR PR D87 112010
13AX PRL 110211801
13AY PRL 110241802
3B PRL 110021801
13BA PRL 111101805
13BI NJP 15053021
3BO PHEP 1310183
13BP JHEP 1310183
$\begin{array}{llll}\text { 3BP } & \text { HEP } 1310 & 143 \\ \text { 13BQ JHEP } & 130 & 005\end{array}$
$\begin{array}{ll}13 B Q \\ \text { 13BW JHEP } 131000 \\ 13110 & 092\end{array}$
3BX PL B727 403
13CF EPJ C73 2655

AALTONEN
AALTONEN
ABAZOV
ABAZOV
ABAZOV
CHATRCHYAN
ESEN

Meson Particle Listings
$B_{s}^{*}, X(5568)^{ \pm}, B_{s 1}(5830)^{0}$

$X(5568)^{ \pm}$
 $I\left(J^{P}\right)=?\left(?^{?}\right)$

OMITTED FROM SUMMARY TABLE
Seen as a peak in the $B_{S} \pi^{ \pm}$mass spectrum with a significance of more than 3σ by ABAZOV 16E and ABAZOV 18A in inclusive $p \bar{p}$ collisions at 1.96 TeV . Not seen by AAIJ 16AI, AABOUD 18L, AALTONEN 18A, and SIRUNYAN 18J. Needs confirmation.

$X(5568){ }^{ \pm}$MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$5566.9_{-3.1-1.2}^{+3.2+0.6}$		${ }^{1}$ ABAZOV		$p \bar{p} \rightarrow B_{S}^{0} \pi^{ \pm} X$
- - We do not use the following data for averages, fits, limits, etc. - -				
$5567.8 \pm 2.9_{-1.9}^{+0.9}$		${ }^{2}$ ABAZOV		$p \bar{p} \rightarrow B_{S}^{0} \pi^{ \pm} X$
${ }^{1}$ From the combined analysis of $B_{S}^{0} \rightarrow J / \psi \phi$ and $B_{s}^{0} \rightarrow D_{s}^{ \pm} \mu^{\mp} X$ decays.				
${ }^{2}$ Assumes $X(5568)^{ \pm} \rightarrow B_{S} \pi^{ \pm}$decay. If $X(5568)^{ \pm} \rightarrow B_{S}^{*} \pi^{ \pm}$decay is assum mass shifts upward by 49 MeV .				
$X(5568){ }^{ \pm}$WIDTH				
$18.6+6.9+3.5$	EVTS	DOCUMENT ID TECN		COMMENT
	278	${ }^{1}$ ABAZOV 18A D0 $\quad p \bar{p} \rightarrow B_{S} \pi^{ \pm} X$		
- - We do not use the following data for averages, fits, limits, etc. - -				
$21.9 \pm 6.4{ }_{-2.5}^{+5.0}$		ABAZOV		$p \bar{p} \rightarrow B_{S} \pi^{ \pm} X$
${ }^{1}$ From the comb	alysi	${ }_{S}^{0} \rightarrow J / \psi \phi$ an	$\rightarrow D_{s}$	$\mp x$ decays.

$X(5568)^{ \pm}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B_{S} \pi^{ \pm}$	seen

- . We do not use the following data for averages, fits, limits, etc. - . -

not seen	${ }^{3}$ AABOUD	18 L	ATLS	$p p \rightarrow B_{\delta}^{0} \pi^{ \pm} x$
not seen	${ }^{\text {AALTONEN }}$	18 A	CDF	$p \bar{p} \rightarrow B_{\delta}^{0} \pi^{ \pm} x$
not seen	${ }^{5}$ SIRUNYAN	18 J CMS	$p p \rightarrow B_{\delta}^{0} \pi^{ \pm} x$	
not seen	${ }^{6}$ AAIJ	16 AI	LHCB	$p p \rightarrow B_{S}^{0} \pi^{ \pm} x$

${ }^{1}$ With B_{S} mesons reconstructed in decays to $D_{S}^{ \pm} \mu^{\mp} X$.
${ }^{2}$ Seen in $p \bar{p}$ collisions at 1.96 TeV at a rate of $(8.6 \pm 1.9 \pm 1.4) \%$ relative to inclusive B_{S} production in the kinematic region $10<p_{T}\left(B_{S}\right)<30 \mathrm{GeV} / \mathrm{c}$, with B_{S} mesons reconstructed in decays to $J / \psi \phi$. An alternative possibility, $X(5568)^{ \pm} \rightarrow B_{S}^{*} \pi^{ \pm}$with a missing γ, could not be ruled out.
${ }^{3}$ Not seen in $24.4 \mathrm{fb}^{-1}$ of $p p$ collision data at $\sqrt{s}=7$ and 8 TeV with B_{S} mesons reconstructed in decays to $J / \psi \phi$. An upper limit on the production rate times branching fraction for $X(5568)^{ \pm} \rightarrow B_{S} \pi^{ \pm}$relative to inclusive B_{S} production is less than 1.5% at $p_{T}\left(B_{S}\right)>10 \mathrm{GeV} / \mathrm{c}$ and less than 1.6% at $p_{T}\left(B_{S}\right)>15 \mathrm{GeV} / \mathrm{c}$ at $95 \% \mathrm{CL}$.
${ }^{4}$ Not seen in $9.6 \mathrm{fb}^{-1}$ of $p \bar{p}$ collision data at $\sqrt{s}=1.96 \mathrm{TeV}$ with B_{s} mesons reconstructed in decays to $J / \psi \phi$. An upper limit on the production rate times branching fraction for $X(5568)^{ \pm} \rightarrow B_{S} \pi^{ \pm}$relative to inclusive B_{S} production is less than 6.7% at $95 \% \mathrm{CL}$.
${ }^{5}$ Not seen in $19.7 \mathrm{fb}^{-1}$ of $p p$ collisions data at $\sqrt{s}=8 \mathrm{TeV}$ with B_{S} mesons reconstructed in decays to $J / \psi \phi$. An upper limit on the production rate times branching fraction for $X(5568)^{ \pm} \rightarrow B_{S} \pi^{ \pm}$relative to inclusive B_{S} production is less than 1.1% at $p_{T}\left(B_{S}\right)$ $>10 \mathrm{GeV} / \mathrm{c}$ and less than 1.0% at $p_{T}\left(B_{S}\right)>15 \mathrm{GeV} / \mathrm{c}$ at $95 \% \mathrm{CL}$.
${ }^{6}$ Not seen in $3 \mathrm{fb}^{-1}$ of $p p$ collision data at $\sqrt{s}=7$ and 8 TeV in a scan over the $X(5568)$ mass and width, with B_{S} mesons reconstructed in decays to $D_{S}^{-} \pi^{+}$or $J / \psi \phi$. An upper limit on the production rate times branching fraction for $X(5568)^{ \pm} \rightarrow B_{S} \pi^{ \pm}$relative to inclusive B_{S} production is less than 2.1% at $p_{T}\left(B_{S}\right)>10 \mathrm{GeV} / \mathrm{c}$ at $90 \% \mathrm{CL}$.
$X(5568)^{ \pm}$REFERENCES

AABOUD	18L	PRL 120 202007	M. Aaboud et al.	(ATLAS Collab.)
AALTONEN	18A	PRL 120 202006	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	18A	PR D97 092004	V.M. Abazov et al.	(D0 Collab.)
SIRUNYAN	18J	PRL 120 202005	A.M. Sirunyan et al.	(CMS Collab.)
AAIJ	16AI	PRL 117 152003	R. Aaij et al.	(LHCb Collab.)
ABAZOV	16E	PRL 117 022003	V.M. Abazov et al.	(D0 Collab.)

$B_{s 1}(5830)^{0}$
Quantum numbers shown are quark-model predictions.
$I\left(J^{P}\right)=0\left(1^{+}\right)$
I, J, P need confirmation.

$B_{s 1}(5830)^{0}$ MASS

$L U E(\mathrm{MeV})$	DOCUMENT ID	TECN	COMMENT
5828.70 ± 0.20 OUR FIT			
5828.65 ± 0.24 OUR AVERAGE			
$5828.78 \pm 0.09 \pm 0.29$	SIRUNYAN	18DF CMS	$p p$ at 8 TeV
$5828.40 \pm 0.04 \pm 0.41$	${ }^{1}$ AAIJ	130 LHCB	$p p$ at 7 TeV
- - We do not use the following data for averages, fits, limits, etc. - -			
5829.4 ± 0.7	${ }^{2}$ AALTONEN	08k CDF	Repl. by AALTONEN 141
${ }^{1}$ Uses $B_{S 1}(5830){ }^{0} \rightarrow B^{*+} K^{-}$decay.			
${ }^{2}$ Uses two-body decays into K^{-}and B^{+}mesons reconstructed as $B^{+} \rightarrow J / \psi K^{+}$ $J / \psi \rightarrow \mu^{+} \mu^{-}$or $B^{+} \rightarrow \bar{D}^{0} \pi^{+}, \bar{D}^{0} \rightarrow K^{+} \pi^{-}$.			
$\boldsymbol{m}_{B_{s 1}^{0}}-\boldsymbol{m}_{\boldsymbol{B}^{*+}}$			
VALUE (MeV)	DOCUMENT	TECN	COMMENT
504.00 ± 0.17 OUR FIT			
$504.03 \pm 0.12 \pm 0.15$ ${ }^{1}$ AALTONEN 141 CDF $p \bar{p}$ at 1.96 TeV - . We do not use the following data for averages, fits, limits, etc. - -			
$504.41 \pm 0.21 \pm 0.14$	${ }^{2}$ AALTONEN	08K CDF	Repl. by AALTONEN 141
${ }^{1}$ AALTONEN 14। reports $m_{B_{s 1}(5830)^{0}}-m_{B^{*+}}-m_{K^{-}}=10.35 \pm 0.12 \pm 0.15 \mathrm{MeV}$ which we adjusted by the K^{-}mass.			
${ }^{2}$ Uses two-body decays into K^{-}and B^{+}mesons reconstructed as $B^{+} \rightarrow J / \psi K^{+}$, $J / \psi \rightarrow \mu^{+} \mu^{-}$or $B^{+} \rightarrow \bar{D}^{0} \pi^{+}, \bar{D}^{0} \rightarrow K^{+} \pi^{-}$.			

$B_{s 1}(5830)^{0}$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{0 . 5} \pm \mathbf{0 . 3} \mathbf{0 . 3}} \quad \frac{\text { DOCUMENT ID }}{\text { AALTONEN } \quad 141} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}}$

$B_{51}(5830)^{0}$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$B^{*+} K^{-}$	seen
Γ_{2}	$B^{* 0} K_{S}^{0}$	

$B_{s 1}(5830)^{0}$ BRANCHING RATIOS

$\boldsymbol{\Gamma}\left(\boldsymbol{B}^{*+} \boldsymbol{K}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }}{\text { seen }} \quad \frac{\text { DOCUMENT ID }}{\text { AALTONEN } 08 \mathrm{~K}} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}} \quad \boldsymbol{\Gamma}_{\mathbf{1}} / \boldsymbol{\Gamma}$

seen	AALTONEN	08K CD	96	
$\Gamma\left(B^{* 0} K_{S}^{0}\right) / \Gamma\left(B^{*+} K^{-}\right)$				Γ_{2} / Γ_{1}
VALUE	DOCUMENT ID TECN COMMENT			
$0.49 \pm 0.12 \pm 0.07$	${ }^{1}$ SIRUNYAN 18DF CMS $p p$ at 8 TeV			
${ }^{1}$ With the branching fractions $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.026 \pm 0.031) \times 10^{-3}$ and $\mathrm{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi K^{* 0}\right)=(1.28 \pm 0.05) \times 10^{-3}$.				

$B_{s 1}(5830)^{0}$ REFERENCES

SIRUNYAN	18DF	EPJ C78 939	A.M. Sirunyan et al.	(CMS Collab.)
AALTONEN	141	PR D90 012013	T. Aaltonyen et al.	(CDF Collab.)
AAIJ	130	PRL 110 151803	R. Aaij et al.	(LHCD Collab.)
AALTONEN	$08 K$	PRL 100 082001	T. Aaltonen et al.	(CDF Collab.)

Meson Particle Listings

BOTTOM，CHARMED MESONS
 （ $B=C= \pm 1$ ）
 $B_{c}^{+}=c \bar{b}, B_{c}^{-}=\bar{c} b, \quad$ similarly for $B_{c}^{* ' s}$

$B_{c}^{+} \quad$| $I\left(J^{P}\right)=0\left(0^{-}\right)$ |
| :--- |
| I, J, P need confirmation． | Quantum numbers shown are quark－model predictions．

B_{c}^{+}MASS

B_{c}^{+}MEAN LIFE

＂OUR EVALUATION＂is an average using rescaled values of the data listed below．The average and rescaling were performed by the Heavy Flavor Av－ eraging Group（HFLAV）and are described at https：／／hflav．web．cern．ch／． The averaging／rescaling procedure takes into account correlations between the measurements．

$$
B_{c}^{+} \text {DECAY MODES } \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)
$$

B_{C}^{-}modes are charge conjugates of the modes below．

Mode
Fraction $\left(\Gamma_{i} / \Gamma\right)$
Confidence level

The following quantities are not pure branching ratios；rather the fraction

 $\Gamma_{i} / \Gamma \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)$ ．$\Gamma_{1} J / \psi(1 S) \ell^{+} \nu_{\ell}$ anything
$(8.1 \pm 1.2) \times 10^{-5}$
$\Gamma_{2} J / \psi(1 S) \mu^{+} \nu_{\mu}$
$\Gamma_{3} J / \psi(1 S) \tau^{+} \nu_{\tau}$
$J / \psi(1 S) \pi^{+}$
seen

$J / \psi(1 S) K^{+}$

$J / \psi(1 S) \pi^{+} \pi^{+} \pi^{-}$
$J / \psi(1 S) a_{1}(1260)$
seen
<1.2
$\times 10^{-3}$

Γ_{8}	$J / \psi(1 S) K^{+} K^{-} \pi^{+}$	seen		
Γ_{9}	$J / \psi(1 S) \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	seen		
Γ_{10}	$\psi(2 S) \pi^{+}$	seen		
Γ_{11}	$J / \psi(1 S) D^{0} K^{+}$	seen		
Γ_{12}	$J / \psi(1 S) D^{*}(2007)^{0} K^{+}$	seen		
Γ_{13}	$J / \psi(1 S) D^{*}(2010)^{+} K^{* 0}$	seen		
Γ_{14}	$J / \psi(1 S) D^{+} K^{* 0}$	seen		
Γ_{15}	$J / \psi(1 S) D_{s}^{+}$	seen		
Γ_{16}	$J / \psi(1 S) D_{s}^{*+}$	seen		
Γ_{17}	$J / \psi(1 S) p \bar{p} \pi^{+}$	seen		
Γ_{18}	$\chi_{c}^{0} \pi^{+}$	$\left(2.4{ }_{-0.8}^{+0.9}\right) \times 10^{-5}$		
Γ_{19}	$p \bar{p} \pi^{+}$	not seen		
Γ_{20}	$D^{0} K^{+}$	$\left(3.8{ }_{-1.1}^{+1.2}\right) \times 10^{-7}$		
Γ_{21}	$D^{0} \pi^{+}$	＜ 1.6	$\times 10^{-7}$	95\％
$\Gamma 22$	$D^{* 0} \pi^{+}$	<4	$\times 10^{-7}$	95\％
$\Gamma 23$	$D^{* 0} K^{+}$	<4	$\times 10^{-7}$	95\％
$\Gamma 24$	$D_{s}^{+} \bar{D}^{0}$	＜ 1.4	$\times 10^{-7}$	90\％
Γ_{25}	$D_{s}^{+} D^{0}$	＜ 6	$\times 10^{-8}$	90\％
$\Gamma 26$	$D^{+} \bar{D}^{0}$	＜ 3.0	$\times 10^{-6}$	90\％
$\Gamma 27$	$D^{+} D^{0}$	＜ 1.9	$\times 10^{-6}$	90\％
$\Gamma 28$	$D_{s}^{*+} \bar{D}^{0}$			
Γ_{29}	$D_{s}^{+} \bar{D}^{*}(2007)^{0}$			
Γ_{30}	$D_{s}^{*+} D^{0}$			
$\Gamma 31$	$D_{s}^{+} D^{*}(2007)^{0}$			
Γ_{32}	$D^{*}(2010)^{+} \bar{D}^{0}$	<6.2	$\times 10^{-3}$	90\％
「33	$\begin{gathered} D^{*}(2010)^{+} \bar{D}^{0}, \quad D^{*+} \rightarrow \\ D^{+} \pi^{0} / \gamma \end{gathered}$			
「34	$D^{+} \bar{D}^{*}(2007)^{0}$			
「35 「36	$\begin{aligned} & D^{*}(2010)^{+} D^{0}, \quad D^{*+} \rightarrow D^{+} \pi^{0} / \gamma \\ & D^{+} D^{*}(2007)^{0} \end{aligned}$			
Γ_{37}	$D_{s}^{*+} \bar{D}^{*}(2007)^{0}$	＜ 1.7	$\times 10^{-6}$	90\％
$\Gamma 38$	$D_{s}^{*+} D^{*}(2007)^{0}$	＜ 3.1	$\times 10^{-6}$	90\％
Γ_{39}	$D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0}$	＜ 1.0	$\times 10^{-4}$	90\％
Γ_{40}	$D^{*}(2010)^{+} D^{*}(2007)^{0}$	＜ 2.0	$\times 10^{-5}$	90\％
Γ_{41}	$D^{+} K^{* 0}$	<0.20	$\times 10^{-6}$	90\％
Γ_{42}	$D^{+} \bar{K}^{* 0}$	<0.16	$\times 10^{-6}$	90\％
Γ_{43}	$D_{s}^{+} K^{* 0}$	<0.28	$\times 10^{-6}$	90\％
Γ_{44}	$D_{s}^{+} \bar{K}^{* 0}$	<0.4	$\times 10^{-6}$	90\％
Γ_{45}	$D_{s}^{+} \phi$	<0.32	$\times 10^{-6}$	90\％
Γ_{46}	$K^{+} K^{0}$	<4.6	$\times 10^{-7}$	90\％
Γ_{47}	$B_{s}^{0} \pi^{+} / \mathrm{B}\left(\bar{b} \rightarrow B_{s}\right)$	$\left(2.37_{-0.35}^{+0.37}\right) \times 10^{-3}$		

B_{c}^{+}BRANCHING RATIOS						
$\Gamma\left(J / \psi(1 S) \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)$						$\Gamma_{1} / \Gamma \times B$
VALUE（units 10^{-5} ）	CL\％	DOCUMENT ID		TECN	COMmENT	
8.1 ± 1.2 OUR		Error includes scale	factor	of 1．3．		
$8.7 \pm 1.0 \pm 0.3$		1，2 Aaltonen	16A	CDF	$p \bar{p}$ at 1.96	
$5.2+2.4$		${ }^{3} \mathrm{ABE}$		CDF	$p \bar{p} 1.8 \mathrm{TeV}$	

－－We do not use the following data for averages，fits，limits，etc．• • •

<16	90	4 ACKERSTAFF	980	OPAL	$e^{+} e^{-} \rightarrow z$
<19	90	5 ABREU	97E DLPH	$e^{+} e^{-} \rightarrow z$	
<12	90	6 BARATE	97 H	ALEP	$e^{+} e^{-} \rightarrow z$

${ }^{1}$ AALTONEN 16A reports $\left[\Gamma\left(B_{C}^{+} \rightarrow J / \psi(1 S) \ell^{+} \nu_{\ell}\right.\right.$ anything $\left.) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /$ $\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]=0.211 \pm 0.012_{-0.020}^{+0.021}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=(40.8 \pm 0.7) \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=$ $(1.006 \pm 0.027) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values
2^{2} AALTONEN 16A also measures the cross－section $\sigma\left(B_{C}\right) \times \mathrm{B}\left(B_{C} \rightarrow J / \psi \mu \nu_{\mu}\right)=0.60 \pm$ 0.09 nb and estimates the total cross－section $\sigma\left(B_{C}\right)$ to be in the range 25 ± 4 to 52 ± 8 nb for $p_{T}\left(B_{C}\right)>6 \mathrm{GeV} / \mathrm{c}$ and $\left|\mathrm{y}\left(B_{C}\right)\right|<1$ ．
${ }^{3} \mathrm{ABE} 98 \mathrm{M}$ result is derived from the measurement of $\left[\sigma\left(B_{C}\right) \times \mathrm{B}\left(B_{C} \rightarrow J / \psi(1 S) \ell \nu_{\ell}\right)\right] /$ $\left[\sigma\left(B^{+}\right) \times \mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]=0.132{ }_{-0.037}^{+0.041}($ stat $) \pm 0.031$（sys）${ }_{-0.020}^{+0.032}$（lifetime） by using PDG 98 values of $\mathrm{B}\left(b \rightarrow B^{+}\right)$and $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)$．
${ }^{4}$ ACKERSTAFF 980 reports $\mathrm{B}\left(Z \rightarrow B_{C} \mathrm{X}\right) / \mathrm{B}(Z \rightarrow q q) \times \mathrm{B}\left(B_{C} \rightarrow J / \psi(1 S) \ell \nu_{\ell}\right)<$ 6.95×10^{-5} at $90 \% \mathrm{CL}$ ．We rescale to our PDG 98 values of $\mathrm{B}(Z \rightarrow b \bar{b})$ ．
${ }^{5}$ ABREU 97E value listed is for an assumed $\tau_{B_{C}}=0.4 \mathrm{ps}$ and improves to 1.6×10^{-4} for ${ }^{\tau_{B}}=1.4 \mathrm{ps}$.
${ }^{6}$ BARATE 97H reports $\mathrm{B}\left(Z \rightarrow B_{C} \mathrm{X}\right) / \mathrm{B}(Z \rightarrow q q) \cdot \mathrm{B}\left(B_{C} \rightarrow J / \psi(1 S) \ell \nu_{\ell}\right)<5.2 \times 10^{-5}$ at $90 \% \mathrm{CL}$ ．We rescale to our PDG 96 values of $\mathrm{B}(Z \rightarrow b \bar{b})$ ． $\mathrm{A} B_{C}^{+} \rightarrow J / \psi(1 S) \mu^{+} \nu_{\mu}$ candidate event is found，compared to all the known background sources 2×10^{-3} ， which gives $m_{B_{C}}=5.96_{-0.19}^{+0.25} \mathrm{GeV}$ and $\tau_{B_{C}}=1.77 \pm 0.17 \mathrm{ps}$ ．

Meson Particle Listings
B_{c}^{+}

$\Gamma\left(D^{+} \bar{D}^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)$				$\Gamma_{26} / \Gamma \times B$
	$\underline{c L \%}$	Document id	TECN COMMENT	
<3.0 $\times 10^{\mathbf{- 6}}$	90	${ }^{18 \mathrm{P}}$ LHCB $p p$ at $7,8 \mathrm{TeV}$		
$\left[\mathrm { B } \left(B^{+}\right.\right.$		$\left.+\bar{D}^{0}\right) / \Gamma_{\text {tota }}$ -2 which we ${ }^{+}$) $=3.8 \times$	$\left.\left(\bar{b} \rightarrow B_{c}\right)\right] /[\underline{b}$ y by our best va	$\begin{gathered} \left.\left.B^{+}\right)\right] / \\ \bar{b} \rightarrow B^{+} \end{gathered}$

$\Gamma\left(D^{+} D^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)$
$\Gamma_{27} / \Gamma \times B$

| $<\mathbf{V A L U E}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| $<\mathbf{1 . 9 \times 1 0 ^ { - 6 }}$ | $\frac{C L \%}{9}$ | $1 \frac{\text { DOCUMENT ID }}{\mathrm{AAIJ}}$ | $\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$ | ${ }^{1}$ AAIJ 18P reports $\left[\Gamma\left(B_{C}^{+} \rightarrow D^{+} D^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right] /$ $\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<1.2 \times 10^{-2}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)$ $=40.8 \times 10^{-2}, B\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.

$\left[\Gamma\left(D_{s}^{*+} \overline{D^{0}}\right)+\Gamma\left(D_{s}^{+} \bar{D}^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times B\left(\bar{b} \rightarrow B_{c}\right) \quad\left(\Gamma_{28}+\Gamma_{29}\right) / \Gamma \times B$ $\frac{V A L U E}{<4 \times 10^{\mathbf{- 7}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{18 \mathrm{P}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$ ${ }^{1}$ AAIJ 18P reports $\left[\left[\left(B_{c}^{+} \rightarrow D_{s}^{*+} \bar{D}^{0}\right)+\Gamma\left(B_{c}^{+} \rightarrow D_{s}^{+} \bar{D}^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times \mathbf{B}(\bar{b} \rightarrow\right.$ $\left.\left.B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<2.8 \times 10^{-3}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.
$\left[\Gamma\left(D_{s}^{*+} D^{0}\right)+\Gamma\left(D_{s}^{+} D^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times B\left(b \rightarrow B_{c}\right) \quad\left(\Gamma_{30}+\Gamma_{31}\right) / \Gamma \times B$
 ${ }^{1}$ AAIJ 18P reports $\left[\left[\Gamma\left(B_{C}^{+} \rightarrow D_{S}^{*+} D^{0}\right)+\Gamma\left(B_{C}^{+} \rightarrow D_{S}^{+} D^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times \mathrm{B}(\bar{b} \rightarrow\right.$ $\left.\left.B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<3.0 \times 10^{-3}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.

$\Gamma\left(D^{*}(2010)+\bar{D}^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)$					$\Gamma_{32} / \Gamma \times B$
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<6.2 $\times 10^{-3}$	90	${ }^{1}$ BARATE	ALE	$e^{+} e^{-}$	Z
${ }^{1}$ BARATE 98Q reports $\mathrm{B}\left(Z \rightarrow B_{C} \mathrm{X}\right) \times \mathrm{B}\left(B_{C} \rightarrow D^{*}(2010)+\bar{D}^{0}\right)<1.9 \times 10^{-3}$ at $90 \% \mathrm{CL}$. We rescale to our PDG 98 values of $\mathrm{B}(Z \rightarrow b \bar{b})$.					

$\left[\Gamma\left(D^{*}(2010)+\bar{D}^{0}, D^{*+} \rightarrow D^{+} \pi^{0} / \gamma\right)+\Gamma\left(D^{+} \bar{D}^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times \mathrm{B}(\bar{b} \rightarrow$ B_{c})
$\left(\Gamma_{33}+\Gamma_{34}\right) / \Gamma \times B$

c)		DOCUMENT ID			(${ }_{\text {coser }}$
CALUE ${ }^{\text {c }}$	CL\%			TECN	COMMENT
<9 $\times 10^{-6}$	90	${ }^{1}$ AAIJ	18P	LHCB	$p p$ at $7,8 \mathrm{TeV}$

$\left[\Gamma\left(D^{*}(2010)^{+} D^{0}, D^{*+} \rightarrow D^{+} \pi^{0} / \gamma\right)+\Gamma\left(D^{+} D^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times \mathrm{B}(\bar{b} \rightarrow$
B_{c})
$\left(\Gamma_{35}+\Gamma_{36}\right) / \Gamma \times B$
$\frac{V A L U E}{<\mathbf{3 . 4} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L}{90}$
${ }_{1}^{\frac{\text { DOCUMENT ID }}{\text { AAIJ }} 18 \mathrm{P}} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$
${ }^{1}$ AAIJ 18 P reports $\left[\left[\Gamma\left(B_{C}^{+} \rightarrow D^{*}(2010)^{+} D^{0}, \quad D^{*+} \rightarrow D^{+} \pi^{0} / \gamma\right)+\Gamma\left(B_{C}^{+} \rightarrow\right.\right.\right.$ $\left.\left.\left.D^{+} D^{*}(2007)^{0}\right)\right] / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]$ $<2.2 \times 10^{-2}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=40.8 \times 10^{-2}$, $\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.
$\Gamma\left(D_{s}^{*+} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times B\left(\bar{b} \rightarrow B_{c}\right) \quad \Gamma_{37} / \Gamma \times B$ $\frac{V A L U E}{<1.7 \times 10^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{AAIJ}} \frac{18 \mathrm{P}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}$ ${ }^{1}$ AAIJ 18P reports $\left[\Gamma\left(B_{C}^{+} \rightarrow D_{s}^{*+} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right]$ $/\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<1.1 \times 10^{-2}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)$ $40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.
$\Gamma\left(D_{s}^{*+} D^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times B\left(\bar{b} \rightarrow B_{c}\right)$
$\frac{\text { VALUE }}{<\mathbf{3} .1 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { LHCB }} \frac{\text { CD }}{}$ ${ }^{1}$ AAIJ 18P reports $\left[\Gamma\left(B_{C}^{+} \rightarrow D_{S}^{*+} D^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right]$ $/\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<2.0 \times 10^{-2}$ which we multiply by our best values $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)$ $=40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.
$\Gamma\left(D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times B\left(\bar{b} \rightarrow B_{c}\right)$
$\Gamma_{39} / \Gamma \times B$
VALUE $-\frac{C L \%}{90}$ DOCUMENT ID TECN COMMENT ${ }^{1}$ AAIJ 18P reports $\left[\Gamma\left(B_{C}^{+} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /[\mathrm{B}(\bar{b} \rightarrow$ $\left.\left.B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<6.5 \times 10^{-1}$ which we multiply by our best values $\mathrm{B}(\bar{b} \rightarrow$ $\left.B^{+}\right)=40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$
$\Gamma\left(D^{*}(2010)^{+} D^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times B\left(\bar{b} \rightarrow B_{c}\right)$
$\Gamma_{40} / \Gamma \times B$ VALUE CLO DOCUMENT ID TECN COMMENT $\begin{array}{lccc}<\mathbf{2 . 0} \times \mathbf{1 0}^{-\mathbf{5}} & 90 & { }^{1} \mathrm{AAIJ} & 18 \mathrm{P} \quad \text { LHCB } \quad p p \text { at } 7,8 \mathrm{TeV} \\ { }^{1} \text { AAIJ 18P reports }\left[\Gamma\left(B_{C}^{+} \rightarrow\right.\right. & \left.\left.D^{*}(2010)^{+} D^{*}(2007)^{0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /[\mathrm{B}(\bar{b} \rightarrow\end{array}$ $\left.\left.B^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)\right]<1.3 \times 10^{-1}$ which we multiply by our best values $\mathrm{B}(\bar{b} \rightarrow$ $\left.B^{+}\right)=40.8 \times 10^{-2}, \mathrm{~B}\left(B^{+} \rightarrow \bar{D}^{0} D^{+}\right)=3.8 \times 10^{-4}$.
$\Gamma\left(D^{+} K^{* 0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{c}\right)$
$\Gamma_{41} / \Gamma \times B$
$\frac{\text { VALUE }}{\text { CL\% }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT
${ }^{1}$ AAIJ 13R reports $\left[\Gamma\left(B_{C}^{+} \rightarrow D^{+} K^{* 0}\right) / \Gamma_{\text {total }} \times \mathrm{B}\left(\bar{b} \rightarrow B_{C}\right)\right] /\left[\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)\right]<$ 0.5×10^{-6} which we multiply by our best value $\mathrm{B}\left(\bar{b} \rightarrow B^{+}\right)=40.8 \times 10^{-2}$.

POLARIZATION IN B_{c}^{+}DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel $(\|)$ or perpendicular (\perp) to each other with the parameters $\Gamma_{L} / \Gamma, \Gamma_{\perp} / \Gamma$, and the relative phases $\phi_{\|}$and ϕ_{\perp}. See the definitions in the note on "Polarization in B Decays" review in the B^{0} Particle Listings.
Γ_{L} / Γ in $B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}$

VALUE	T ID TECN		COMMENT
$\mathbf{0 . 5 4 \pm 0 . 1 5 ~ O U R ~ A V E R A G E ~}$			
0.62 ± 0.24	${ }^{1}$ AAD	16H ATLS	$p p$ at 7, 8 TeV
0.48 ± 0.20	${ }^{2}$ AAIJ	13AS LHCB	$p p$ at 7, 8 TeV
${ }^{1}$ AAD 16H measures $1-\Gamma_{L} / \Gamma=0.38 \pm 0.24$. ${ }^{2}$ AAIJ 13AS measures $1-\Gamma_{L} / \Gamma=0.52 \pm 0.20$			
$\mathrm{A}_{P}\left(B_{c}^{+}\right)$			
$\mathrm{A}_{P}\left(B_{C}^{+}\right)=\left[\sigma\left(B_{C}^{-}\right)-\sigma\left(B_{C}^{+}\right)\right] /\left[\sigma\left(B_{C}^{-}\right)+\sigma\left(B_{C}^{+}\right)\right]$			
VALUE (units 10 ${ }^{-2}$)	DOCU	TECN	COMMENT
-1.0 ± 1.0 OUR AVERAGE			
$-2.5 \pm 2.1 \pm 0.5$	${ }^{1}$ AAIJ	19al LHCB	$p p$ at 7 TeV
$-0.5 \pm 1.1 \pm 0.4$	${ }^{1}$ AAIJ	19AI LHCB	$p p$ at 13 TeV
${ }^{1}$ Measured using B_{C}^{+}semileptonic decays.			

B_{c}^{+}REFERENCES

$B_{c}(2 S)^{ \pm} \quad \quad \quad\left(J^{P}\right)=0\left(0^{-}\right)$

OMITTED FROM SUMMARY TABLE
Quantum numbers neither measured nor confirmed.

$B_{c}(2 S)^{ \pm}$MASS

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{6 8 7 1 . 6} \mathbf{1 . 1} \text { OUR AVERAGE }} \frac{\text { EVTS }}{}$

$6872.1 \pm 1.3 \pm 0.8$	24	$1,2 \mathrm{AAIJ}$	19Y	LHCB	$p p$ at $7,8,13 \mathrm{TeV}$
$6871.0 \pm 1.4 \pm 0.8$	51	3,4 SIRUNYAN	19M	CMS	$p p$ at 13 TeV

- - We do not use the following data for averages, fits, limits, etc. - - -

not seen		5 AAIJ	18AL LHCB $p p$ at 8 TeV
6842 ± 4	± 5	$5,7 \mathrm{AAD}$	14AQ ATLS $p p$ at $7,8 \mathrm{TeV}$

${ }^{1}$ AAIJ 19 Y observed $B_{C}(2 S)^{+}$in the decay mode $B_{C}(2 S)^{+} \rightarrow B_{C}^{+} \pi^{+} \pi^{-}\left(B_{C}^{+} \rightarrow\right.$
$J / \psi \pi^{+}$) with 2.2 (3.2) global (local) standard deviations significance.
${ }^{2}$ AAIJ 19Y reports mass difference measurement of $M\left(B_{C}(2 S)^{+}\right)-M\left(B_{C}^{+}\right)=597.2 \pm$ $1.3 \pm 0.1 \mathrm{MeV}$. We have adjusted this measurement with our best value of $\mathrm{M}\left(B_{C}^{+}\right)$ $=6274.9 \pm 0.8 \mathrm{MeV}$. The first uncertainty of the $\mathrm{M}\left(B_{C}(2 S)^{+}\right)$value is a total of uncertainties reported by the experiment and the second one comes from our best value of $M\left(B_{C}^{+}\right)$.
${ }^{3}$ SIRUNYAN 19m observed $B_{C}(2 S)^{+}$in the decay mode $B_{C}(2 S)^{+} \rightarrow B_{C}^{+} \pi^{+} \pi^{-}\left(B_{C}^{+} \rightarrow\right.$ $J / \psi \pi^{+}$) with 6.5 standard deviations significance.
${ }^{4}$ SIRUNYAN 19 M reports mass difference measurement of $\mathrm{M}\left(B_{C}(2 S)^{+}\right)-\mathrm{M}\left(B_{C}^{+}\right)=$ $596.1 \pm 1.2 \pm 0.8 \mathrm{MeV}$. We have adjusted this measurement with our best value of $\mathrm{M}\left(B_{C}^{+}\right)=6274.9 \pm 0.8 \mathrm{MeV}$. The first uncertainty of the $\mathrm{M}\left(B_{C}(2 S)^{+}\right)$value is a total of uncertainties reported by the experiment and the second one comes from our best value of $\mathrm{M}\left(B_{C}^{+}\right)$.
${ }^{5}$ AAIJ 18AL reports an upper limit on the ratio of production cross sections for $\left[\sigma\left(B_{C}(2 S)^{+}\right) / \sigma\left(B_{C}^{+}\right)\right] \cdot \mathrm{B}\left(B_{C}(2 S)^{+} \rightarrow B_{C}^{+} \pi^{+} \pi^{-}\right)<0.04-0.09$ at $95 \% \mathrm{CL}$ for the mass value reported by AAD 14AQ.
${ }^{6}$ Observed in the decay mode $B_{C}(2 S)^{+} \rightarrow B_{C}^{+} \pi^{+} \pi^{-}\left(B_{C}^{+} \rightarrow J / \psi \pi^{+}\right)$with 5.2 standard deviations significance.
${ }^{7}$ Might be the $B_{C}^{*}(2 S)$.
$B_{c}(2 S)^{ \pm}$DECAY MODES

$B_{c}(2 S)^{ \pm}$REFERENCES

AAIJ	19Y	PRL 122 232001	R. Aaij et al.	(LHCD Collab.)
SIRUNYAN	19M	PRL 122 132001	A.M. Sirunyan et al.	(CMS Collab.)
AAIJ	18AL JHEP 1801 138	R. Aaij et al.	(LHCD Collab.)	
AAD	14AQ PRL 113 212004	G. Aad et al.		

See the related review(s):
Spectroscopy of Mesons Containing Two Heavy Quarks

$c \bar{c}$ MESONS
 (including possibly non- $q \bar{q}$ states)

$\begin{array}{cccccccc}J^{P C}= & 0^{-+} & 1^{--} & 1^{+-} & 0^{++} & 1^{++} & 2^{++} & 2^{--}\end{array} 3^{-e^{--}}$
The level scheme of meson states containing a minimal quark content of $c \bar{c}$. The name of a state is determined
by its quantum numbers $I^{G} J^{P C}$ (see the review "Naming Scheme for Hadrons"). States with unestablished quantum numbers are called X and are drawn according to our best estimate of their likely $J^{P C}$. States included in the Summary Tables are shown with solid lines; selected states not in the Summary Tables, but with assigned quantum numbers, are shown with dotted lines. The arrows indicate the most dominant hadronic transitions. Single photon transitions, including $\psi(n S) \rightarrow \gamma \eta_{c}(m S), \psi(n S) \rightarrow \gamma \chi_{c J}(1 P)$, and $\chi_{c J}(1 P) \rightarrow \gamma J / \psi$, are omitted for clarity. For orientation, the location of the thresholds related to a pair of ground state open charm mesons is indicated in the figure.

$2988.3 \pm 3.3 \quad$ ARMSTRONG 95F E760 $\quad \bar{p} p \rightarrow \gamma \gamma$
$2974.4 \pm 1.9 \quad 14,22$ BISELLO $91 \quad$ DM2 $\quad J / \psi \rightarrow \eta_{C} \gamma$
$2969 \pm 4 \pm 4$
$80 \quad 14 \mathrm{BAI}$
14 BAI
2982.6 ± 2.7
2980.2 ± 1.6
$2984 \pm 2.3 \pm 4.0$
14,22 BALTRUSAIT... 86 MRK3 $\mathrm{J} / \psi \rightarrow \eta_{C} \gamma$
14 GAISER 86 CBAL $\quad J / \psi \rightarrow \gamma \mathrm{X}, \psi(2 S) \rightarrow$
14,23 BALTRUSAIT... 84 MRK3 $J / \psi \rightarrow 2 \phi \gamma$
2976 ± 8
1824 HIMEL \quad 80B MRK2 $e^{+} e^{-}$
24 PARTRIDGE 80B CBAL $e^{+} e^{-}$
${ }^{1}$ AAIJ 17AD report $m_{J / \psi}-m_{\eta_{C}(1 S)}=110.2 \pm 0.5 \pm 0.9 \mathrm{MeV}$. We use the current value $m_{J / \psi}=3096.900 \pm 0.006 \mathrm{MeV}$ to obtain the quoted mass.
${ }^{2}$ From a fit of the $\phi \phi$ invariant mass with the mass and width of $\eta_{C}(1 S)$ as free parameters.
${ }^{3}$ AAIJ 15BI reports $m_{J / \psi}-m_{\eta_{C}}(1 S)=114.7 \pm 1.5 \pm 0.1 \mathrm{MeV}$ from a sample of $\eta_{C}(1 S)$ and J / ψ produced in b-hadron decays. We have used current value of $m_{J / \psi}=$ $3096.900 \pm 0.006 \mathrm{MeV}$ to arrive at the quoted $m_{\eta_{C}}(1 S)$ result.
${ }^{4}$ Taking into account an asymmetric photon lineshape.
${ }^{5}$ With floating width.
${ }_{7}^{6}$ Ignoring possible interference with the non-resonant 0^{-}amplitude.
${ }^{7}$ Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays.
${ }^{8}$ From a simultaneous fit to six decay modes of the η_{C}.
${ }^{9}$ Accounts for interference with non-resonant continuum.
10 Taking into account interference with the non-resonant $J^{P}=0^{-}$amplitude.
${ }^{11}$ From a fit of the J / ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.
12 Using mass of $\psi(2 S)=3686.00 \mathrm{MeV}$.
${ }^{13}$ Not independent from the measurements reported by LEES 10.
14 MITCHELL 09 observes a significant asymmetry in the lineshapes of $\psi(2 S) \rightarrow \gamma \eta_{C}$
and $J / \psi \rightarrow \gamma \eta_{C}$ transitions. If ignored, this asymmetry could lead to significant bias
whenever the mass and width are measured in $\psi(2 S)$ or J / ψ radiative decays.
${ }^{15}$ From the fit of the kaon momentum spectrum. Systematic errors not evaluated.
16 Superseded by LEES 10.
${ }^{17}$ From a simultaneous fit of five decay modes of the η_{C}.
18 Superseded by VINOKUROVA 11.
${ }^{19}$ Weighted average of the $\psi(2 S)$ and $J / \psi(1 S)$ samples. Using an η_{C} width of 13.2 MeV .
${ }^{20}$ Average of several decay modes. Using an η_{C} width of 13.2 MeV .
21 Superseded by ASNER 04.
${ }^{22}$ Average of several decay modes.
${ }^{23} \eta_{C} \rightarrow \phi \phi$.
${ }^{24}$ Mass adjusted by us to correspond to $J / \psi(1 S)$ mass $=3097 \mathrm{MeV}$.

$31.4 \pm 3.5 \pm 2.0$	6.4k	1 AAIJ	17BB	LHCB	$\begin{array}{r} p p \rightarrow b \bar{b} X \rightarrow \\ 2\left(K^{+} K^{-}\right) X \end{array}$
$27.2 \pm 3.1+5.4$		2 ANASHIN	14	KEDR	$J / \psi \rightarrow \gamma \eta_{C}$
$25.2 \pm 2.6 \pm 2.4$	4.5k	3,4 LEES	14E	BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \pi^{0}$
$34.8 \pm 3.1 \pm 4.0$	900	3,4,5 LEES	14 E	BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \eta$
$32.0 \pm 1.2 \pm 1.0$		6,7 ABLIKIM	12F	BES3	$\psi(2 S) \rightarrow \gamma \eta_{C}$
$36.4 \pm 3.2 \pm 1.7$	832	3 ABLIKIM	12N	BES3	$\psi(2 S) \rightarrow \pi^{0} \gamma$ hadrons
$37.8 \pm 5.8 \pm 3.1$	486	ZHANG	12A	BELL	$e^{+} e_{e^{+}}^{-} e^{-} \eta^{\prime} \pi^{+} \pi^{-}$
$36.2 \pm 2.8 \pm 3.0$	11k	DEL-AMO-SA.. 1	11M	BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
$35.1 \pm 3.1+1.0$	920	7 VINOKUROVA	11	BELL	$B^{ \pm} \rightarrow K^{ \pm}\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$
$31.7 \pm 1.2 \pm 0.8$	14k	${ }^{8}$ LEES	10	BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \overrightarrow{e^{+}} e^{-} K_{S}^{0} K^{ \pm} \\ & \pi \end{aligned}$
$36.3-3.7 \pm 4.4$	0.9k	AUBERT	08AB	BABR	$\begin{gathered} B \rightarrow \eta_{C}(1 S) K^{(*)} \\ K \bar{K} \pi K^{(*)} \end{gathered}$
$28.1 \pm 3.2 \pm 2.2$	7.5k	UEHARA	08	BELL	$\gamma \gamma \rightarrow \eta_{C} \rightarrow$ hadrons
$48 \pm 8 \pm 5$	195	WU	06	BELL	$B^{+} \rightarrow p \bar{p} K^{+}$
$40 \pm 19 \pm 5$	20	WU	06	BELL	$B^{+} \rightarrow \Lambda \bar{\Lambda} K^{+}$
$24.8 \pm 3.4 \pm 3.5$	592	ASNER	04	CLEO	$\gamma \gamma \rightarrow \eta_{C} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$20.4-7.7 \pm 2.0$	190	AMBROGIANI 0	03	E835	$\bar{p} p \rightarrow \eta_{C} \rightarrow \gamma \gamma$
$23.9+12.6$		ARMSTRONG	95F	E760	$\bar{p} p \rightarrow \gamma \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -					
$32.1 \pm 1.1 \pm 1.3$	12k	${ }^{9}$ DEL-AMO-SA.. 1	11M	BABR	$\gamma \gamma \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$34.3 \pm 2.3 \pm 0.9$	2.5k	10 AUBERT	04D	BABR	$\gamma \gamma \rightarrow \eta_{C}(1 S) \rightarrow K \bar{K} \pi$
$17.0 \pm 3.7 \pm 7.4$		11 BAI	03	BES	$J / \psi \rightarrow \gamma \eta_{C}$
$29 \pm 8 \pm 6$	180	12 FANG	03	BELL	$B \rightarrow \eta_{C} K$
$11.0 \pm 8.1 \pm 4.1$		13 BAI	00F	BES	$\begin{gathered} J / \psi \rightarrow \gamma \eta_{C} \text { and } \psi(2 S) \rightarrow \\ \gamma \eta_{C} \end{gathered}$
$27.0 \pm 5.8 \pm 1.4$		14 BRANDENB...	00B	CLE2	$\gamma \gamma \rightarrow \eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}$
$7.0{ }_{-}^{+7.5}$	12	BAGLIN	87B	SPEC	$\bar{p} p \rightarrow \gamma \gamma$
$\begin{array}{r}10.1 \\ -33.0 \\ \hline 8.2\end{array}$	23	15 BALTRUSAIT...	. 86	MRK3	$J / \psi \rightarrow \gamma p \bar{p}$
11.5 ± 4.5		GAISER	86	CBAL	$J / \psi \rightarrow \gamma \mathrm{X}, \psi(2 S) \rightarrow \gamma \mathrm{X}$
< 40 90\% CL	18	HIMEL	80B	MRK2	$e^{+} e^{-}$
< 20 90\% CL		PARTRIDGE	80B	CBAL	$e^{+} e^{-}$

${ }^{1}$ From a fit of the $\phi \phi$ invariant mass with the mass and width of $\eta_{C}(1 S)$ as free parameters.
${ }^{2}$ Taking into account an asymmetric photon lineshape.
${ }^{3}$ With floating mass.
${ }^{4}$ Ignoring possible interference with the non-resonant 0^{-}amplitude.
${ }^{5}$ Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays.
${ }^{6}$ From a simultaneous fit to six decay modes of the η_{C}.
${ }^{7}$ Accounts for interference with non-resonant continuum.
${ }^{8}$ Taking into account interference with the non-resonant $J^{P}=0^{-}$amplitude
${ }^{9}$ Not independent from the measurements reported by LEES 10.
10 Superseded by LEES 10.
${ }^{11}$ From a simultaneous fit of five decay modes of the η_{C}.
${ }^{12}$ Superseded by VINOKUROVA 11.
${ }^{13}$ From a fit to the 4-prong invariant mass in $\psi(2 S) \rightarrow \gamma \eta_{C}$ and $J / \psi(1 S) \rightarrow \gamma \eta_{C}$ decays.
14 Superseded by ASNER 04.
15 Positive and negative errors correspond to 90% confidence level.
$\eta_{c}(15)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
	Decays involving hadronic resonances		
		$(4.1 \pm 1.7) \%$	
Γ_{1}	$\eta^{\prime}(958) \pi \pi$	$(1.8 \pm 0.5) \%$	
Γ_{2}	$\rho \rho$	$(2.0 \pm 0.7) \%$	
Γ_{3}	$K^{*}(892)^{0} K^{-} \pi^{+}+$c.c.	$(7.0 \pm 1.3) \times 10^{-3}$	
Γ_{4}	$K^{*}(892) \bar{K}^{*}(892)$	$(1.1 \pm 0.5) \%$	
Γ_{5}	$K^{*}(892)^{0} \bar{K}^{*}(892)^{0} \pi^{+} \pi^{-}$	$(2.9 \pm 1.4) \times 10^{-3}$	
Γ_{6}	$\phi K^{+} K^{-}$	$(1.77 \pm 0.19) \times 10^{-3}$	
Γ_{7}	$\phi \phi$	<4	$\times 10^{-3}$
Γ_{8}	$\phi 2\left(\pi^{+} \pi^{-}\right)$	<2	$\%$
Γ_{9}	$a_{0}(980) \pi$	<2	9

$\eta_{c}(1 S)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
32.0 ± 0.7 OUR FIT				
32.1 ± 0.8 OUR	ERAGE	Error includes sca	factor of 1.1.	
$33.8 \pm 1.6 \pm 4.1$	1705	ABLIKIM	19aV BES3	$J / \psi \rightarrow \gamma \omega \omega$
$30.8 \pm 2.3 \pm 2.9$	2673	XU	18 BELL	$\begin{gathered} e^{+} e_{e^{+}}^{-} e^{-} \eta^{\prime} \pi^{+} \pi^{-} \end{gathered}$
$34.0 \pm 1.9 \pm 1.3$	11K	AAIJ	17AD LHCB	$p p \rightarrow B^{+} X \rightarrow p \bar{p} K^{+} X$

Meson Particle Listings
$\eta_{c}(1 S)$

Γ_{20}	$a_{0}(980) \pi$	seen	$\Gamma 31$	$K^{+} K^{-} \pi^{+} \pi^{-}$	0.220	± 0.034
Γ_{21}	$a_{0}(1320) \pi$	seen	Γ^{35}	$2\left(K^{+} K^{-}\right)$	0.047	± 0.010
$\Gamma 22$	$a_{0}(1450) \pi$	seen	$\Gamma 38$	$2\left(\pi^{+} \pi^{-}\right)$	0.31	± 0.04
$\Gamma 23$	$a_{0}(1950) \pi$	seen	Γ_{41}	$p \bar{p}$	0.046	± 0.005
$\Gamma 24$	$K_{0}^{*}(1430) \bar{K}$	seen	Γ_{43}	$1 \overline{1}$	0.034	± 0.008
Γ_{25}	$K_{2}^{*}(1430) \bar{K}$	seen	Γ_{49}	$\gamma \gamma$	0.0050	± 0.00034
Γ_{26}	$K_{0}^{*}(1950) \bar{K}$	seen				

$\eta_{c}(1 S)$ PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$
$\frac{V A L U E(\mathrm{keV})}{\mathbf{5 . 0 6 \pm} \mathbf{0 . 3 4} \text { OUR FIT }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT 49

1 Asumig the is no inter
${ }^{1}$ Assuming there is no interference with the non-resonant background.
${ }^{2}$ Calculated by us using $\Gamma\left(\eta_{C} \rightarrow K \bar{K} \pi\right) \times \Gamma\left(\eta_{C} \rightarrow \gamma \gamma\right) / \Gamma=0.44 \pm 0.05 \mathrm{keV}$ from PDG 06 and $\mathrm{B}\left(\eta_{C} \rightarrow K \bar{K} \pi\right)=(8.5 \pm 1.8) \%$ from AUBERT 06E.
${ }^{3}$ Systematic errors not evaluated.
${ }^{4}$ Normalized to $\mathrm{B}\left(\eta_{C} \rightarrow p \bar{p}\right)=(1.3 \pm 0.4) \times 10^{-3}$.
${ }^{5}$ Normalized to $\mathrm{B}\left(\eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}\right)$.
${ }^{6}$ Average of $K_{S}^{0} K^{ \pm} \pi^{\mp}, \pi^{+} \pi^{-} K^{+} K^{-}$, and $2\left(K^{+} K^{-}\right)$decay modes.
${ }^{7}$ Normalized to the sum of $\mathrm{B}\left(\eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}\right), \mathrm{B}\left(\eta_{C} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right)$, and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $2 \pi^{+} 2 \pi^{-}$).
${ }^{8}$ Superseded by ASNER 04
${ }^{9}$ Normalized to the sum of 9 branching ratios.
10 Normalized to the sum of $\mathrm{B}\left(\eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}\right), \quad \mathrm{B}\left(\eta_{C} \rightarrow \phi \phi\right), \quad \mathrm{B}\left(\eta_{C} \rightarrow\right.$ $\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$, and $\mathrm{B}\left(\eta_{C} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$.
11 Superseded by ACCIARRI 99T.
${ }^{12}$ Normalized to the sum of $\mathrm{B}\left(\eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}\right), \mathrm{B}\left(\eta_{C} \rightarrow 2 K^{+} 2 K^{-}\right), \mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K^{+} K^{-} \pi^{+} \pi^{-}$), and $\mathrm{B}\left(\eta_{C} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$.
13 Re-evaluated by AIHARA 88D.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$. The fit constrains the x_{i} whose labels appear in this array to sum to one.

$$
\begin{array}{r|rrrrrrrrrr}
x_{7} & 15 & & & & & & & & & \\
x_{15} & 3 & 5 & & & & & & & & \\
x_{27} & 17 & 33 & 6 & & & & & & & \\
x_{28} & 7 & 15 & 3 & 45 & & & & & & \\
x_{31} & 9 & 17 & 3 & 19 & 9 & & & & & \\
x_{35} & 7 & 12 & 2 & 20 & 9 & 8 & & & & \\
x_{38} & 11 & 21 & 4 & 24 & 11 & 13 & 9 & & & \\
x_{41} & 10 & 19 & 3 & 25 & 11 & 11 & 9 & 14 & & \\
x_{43} & 2 & 4 & 1 & 6 & 3 & 3 & 2 & 3 & 23 & \\
x_{49} & -26 & -49 & -9 & -56 & -25 & -30 & -22 & -37 & -36 & -8 \\
\Gamma & -1 & -2 & 0 & -3 & -1 & -2 & -1 & -2 & 6 & 1 \\
& x_{4} & x_{7} & x_{15} & x_{27} & x_{28} & x_{31} & x_{35} & x_{38} & x_{41} & x_{43}
\end{array}
$$

$$
\Gamma \quad \frac{-29}{x_{49}}
$$

Mode		Rate (MeV)	
Γ_{4}	$K^{*}(892) \bar{K}^{*}(892)$	0.22	± 0.04
Γ_{7}	$\phi \phi$	0.057	± 0.006
Γ_{15}	$f_{2}(1270) f_{2}(1270)$	0.31	± 0.08
Γ_{27}	$K \bar{K} \pi$	2.33	± 0.13
Γ_{28}	$K \bar{K} \eta$	0.43	± 0.05

$\eta_{c}(1 S) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$
$\Gamma\left(\eta^{\prime}(958) \pi \pi\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{1} \Gamma_{49} / \Gamma$ $\frac{V A L U E(\mathrm{eV})}{\mathbf{9 8 . 1} \mathbf{3 . 9} \pm \mathbf{1 1 . 7}} \frac{\text { EVTS }}{2673} \quad \frac{\text { DOCUMENT ID }}{\mathrm{XU}} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow} e^{+} e^{-} \eta^{\prime} \pi^{+} \pi^{-}$ - - We do not use the following data for averages, fits, limits, etc. - - -$75.8_{-6.2}^{+6.3} \pm 8.4 \quad 486 \quad 1$ ZHANG $\quad 12 \mathrm{~A}$ BELL $\begin{gathered}e^{+} e^{-} \rightarrow{ }^{+}{ }^{+} \eta^{\prime} \pi^{+} \pi^{-}\end{gathered}$
${ }^{1}$ Superseded by XU 18 .
$\boldsymbol{\Gamma}(\boldsymbol{\rho} \boldsymbol{\rho}) \times \boldsymbol{\Gamma}(\boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$
$V A A L U E(\mathrm{eV}) \quad$ DOCUMENT ID \quad TECN \quad COMMENT $\boldsymbol{\Gamma}_{\mathbf{2}} \boldsymbol{\Gamma}_{\mathbf{4 9}} / \boldsymbol{\Gamma}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<39	90	<1556	UEHARA	08	BELL	$\gamma \gamma \rightarrow 2$	$2\left(\pi^{+} \pi^{-}\right)$
$\Gamma\left(K^{*}(892) \bar{K}^{*}(892)\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					TECN		$\Gamma_{4} \Gamma_{49} / \Gamma$
VALUE (eV)		EVTS	DOCUMENT ID			COMMENT	
36 ± 6 OUR FIT							
32.4 \pm 4.2 \pm 5.8		882 ± 115	UEHARA	08	BELL	$\gamma \gamma \rightarrow \pi^{+}$	${ }^{+} \pi^{-} K^{+} K^{-}$

$\Gamma(\phi \phi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					$\Gamma_{7} \Gamma_{49} / \Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
9.0 ± 0.8 OUR FIT					
$\mathbf{7 . 7 5} \pm 0.66 \pm 0.62$	386 ± 31	${ }^{1}$ LIU	12B BELL	$\gamma \gamma \rightarrow 2(K$	$\left.K^{+} K^{-}\right)$
- - We do not use the following data for averages, fits, limits, etc. - .					
$6.8 \pm 1.2 \pm 1.3$	132 ± 23	UEHARA	08 BEL	$\gamma \gamma \rightarrow 2($	+ K^{-})
${ }^{1}$ Supersedes UEHARA 08. Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$.					

${ }^{1}$ From the corrected and unfolded mass spectrum．
${ }^{2}$ Calculated by us from the value reported in ASNER 04 that assumes $\mathrm{B}\left(\eta_{C} \rightarrow K \bar{K} \pi\right)$ $=5.5 \pm 1.7 \%$
${ }^{3}$ We have multiplied $K^{ \pm} K_{S}^{0} \pi^{\mp}$ measurement by 3 to obtain $K \bar{K} \pi$
${ }^{4}$ Calculated by us from the value reported in ABDALLAH 03」，which uses $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $\left.K_{S}^{0} K^{ \pm}{ }_{\pi}^{\mp}\right)=(1.5 \pm 0.4) \%$ ．
${ }^{5}$ Not independent from the measurements reported by LEES 10.
${ }^{6}$ Superseded by ASNER 04.
$\Gamma\left(\kappa^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \pi^{-}\right) \times \Gamma(\gamma \gamma) / /_{\text {total }}$
$\Gamma_{31} \Gamma_{49} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\begin{array}{llll}35 & \pm & 5 & \text { OUR FIT } \\ 27 & \pm & 6 & \text { OUR AVERAGE }\end{array}$
$25.7 \pm \quad 3.2 \pm 4.9 \quad 2019 \pm 248 \quad$ UEHARA 08 BELL $\gamma \gamma \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$
$280 \pm 100 \pm 60 \quad 42 \quad 1$ ABDALLAH $\quad 03 J$ DLPH $\gamma \gamma \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$
$170 \pm 80 \pm 20 \quad 13.9 \pm 6.6 \quad$ ALBRECHT 94 H ARG $\gamma \gamma \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$
${ }^{1}$ Calculated by us from the value reported in ABDALLAH 03」，which uses $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $\left.\pi^{+} \pi^{-} K^{+} K^{-}\right)=(2.0 \pm 0.7) \%$.
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{32} \Gamma_{49} / \Gamma$
VALUE（keV）EVTS DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.190 \pm 0.006 \pm 0.028 \quad 11 \mathrm{k} \quad 1$ DEL－AMO－SA．．11M BABR $\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
1 Not independent from other measurements reported in DEL－AMO－SANCHEZ 11M．

$\Gamma\left(2\left(K^{+} K^{-}\right)\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$				$\Gamma_{35} \Gamma_{49} / \Gamma$
VALUE（eV）	EVTS	DOCUMENT ID	TECN	COMMENT
7.4 ± 1.5 OUR FIT				
5．8土 1．9 OUR AVERAGE				
$5.6 \pm 1.1 \pm 1.6$	216 ± 42	UEHARA	08 BELL	$\gamma \gamma \rightarrow 2\left(K^{+} K^{-}\right)$
$350 \pm 90 \pm 60$	46	${ }^{1}$ ABDALLAH	03」 DLPH	$\gamma \gamma \rightarrow 2\left(K^{+} K^{-}\right)$
$231 \pm 90 \pm 23$	9.1 ± 3.3	2 ALBRECHT	94H ARG	$\gamma \gamma \rightarrow 2\left(K^{+} K^{-}\right)$
${ }^{1}$ Calculated by us from the value reported in ABDALLAH 03」，which uses $\mathrm{B}\left(\eta_{C} \rightarrow\right)$ $2\left(K^{+} K^{-}\right)=(2.1 \pm 1.2) \%$ ．				
2 Includes all topological modes except $\eta_{C} \rightarrow \phi \phi$ ．				

$\eta_{c}(1 S)$ BRANCHING RATIOS
HADRONIC DECAYS

$\Gamma\left(\eta^{\prime}(958) \pi \pi\right) / \Gamma_{\text {total }}$					$\Gamma 1 / \Gamma$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.041 ± 0.017	14	${ }^{1}$ BALTRUSAIT．．． 86	MRK3	$J / \psi \rightarrow \eta_{C} \gamma$	
${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．					
$\Gamma(\rho \rho) / \Gamma_{\text {total }}$（ $\Gamma_{\mathbf{2}} / \Gamma$					
VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID	TECN	COMMENT	
18 ± 5 OUR AVERAGE					
$12.6 \pm 3.8 \pm 5.1$	72	${ }^{1}$ ABLIKIM 05 L BES2 $\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$			
$26.0 \pm 2.4 \pm 8.8$	113	${ }^{1}$ BISELLO 91	DM2	$J / \psi \rightarrow \gamma \rho^{0} \rho^{0}$	
$23.6 \pm 10.6 \pm 8.2$	32	${ }^{1}$ BISELLO 91	DM2	$J / \psi \rightarrow \gamma \rho^{+} \rho^{-}$	
－－We do not use the following data for averages，fits，limits，etc．－－					
$<1490 \quad 1$ BALTRUSAIT．． 86 MRK3 $J / \psi \rightarrow \eta_{C} \gamma$		${ }^{1}$ BALTRUSAIT．． 86 MRK3 $J / \psi \rightarrow \eta_{C} \gamma$			
${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	

$\frac{V A L U E}{\mathbf{0 . 0 2} \pm \mathbf{0 . 0 0 7}} \frac{\text { EVTS }}{63} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { BALTRUSAIT．．．} 86} \frac{\text { TECN }}{\text { MRK3 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \eta_{C} \gamma}$
${ }^{1}$ BALTRUSAITIS 86 has an error according to Partridge．
${ }^{2}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．
$\Gamma\left(\boldsymbol{K}^{*}(892) \bar{K}^{*}(892)\right) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{7 0 1 3} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT
70 ± 13 OUR FIT
91 ± 26 OUR AVERAGE

$108 \pm 25 \pm 44$	60	1	ABLIKIM	05 L	BES2
	$J / \psi \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$				
$82 \pm 28 \pm 27$	14	1 BISELLO	91	DM2 $e^{+} e^{-} \rightarrow \gamma K^{+} K^{-} \pi^{+} \pi^{-}$	
90 ± 50	9	${ }^{1}$ BALTRUSAIT．．86	MRK3 $J / \psi \rightarrow \eta_{C} \gamma$		

${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma 5 / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\mathbf{1 1 3} \mathbf{1 4 7} \mathbf{\pm} \mathbf{2 4}} \frac{\text { EVTS }}{45} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { COMMENT }}{\text { BES2 }} \frac{\text { C／}}{\mathrm{J} / \psi \rightarrow K^{* 0} \bar{K}^{* 0} \pi^{+} \pi^{-} \gamma}$ ${ }^{1}$ ABLIKIM 06A reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K^{*}(892)^{0} \bar{K}^{*}(892)^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=(1.91 \pm 0.64 \pm 0.48) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=(1.7 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma\left(\phi K^{+} K^{-}\right) / \Gamma_{\text {total }}$					
VALUE（units 10^{-3} ）	EVTS	DOCUMENT	TECN	COMMENT	
$2.9{ }_{-0.8}^{+0.9} \pm 1.1$	$14.1{ }_{-3.7}^{+4.4}$	1 HUANG	03 BELL	$B^{+} \rightarrow(\phi$	K^{+}
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$ ．					

Meson Particle Listings
$\eta_{c}(1 S)$

$\Gamma(\phi \phi) / \Gamma(K \bar{K} \pi)$
$\frac{\text { VALUE }}{0.0243 \pm 0.0025 \text { OUR FIT }}$ EVTS
$0.044{ }_{-0.010}^{+0.012}$ OUR AVERAGE
$\begin{array}{llllllll}0.055 & \pm 0.014 & \pm 0.005 & & \text { AUBERT,B } & 04 \mathrm{~B} & \mathrm{BABR} & B^{ \pm} \rightarrow\end{array} K^{ \pm} \eta_{C}$
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $\kappa \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$.
$\Gamma(\phi \phi) / \Gamma(\rho \bar{p})$
Γ_{7} / Γ_{41}
$\frac{V A L U E}{\mathbf{1 . 7 9} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 3 2}} \frac{\text { EVTS }}{6.4 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{1 \mathrm{AAIJ}} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { CBB }}{\text { LHCB }} \frac{170 \rightarrow b \bar{b} X \rightarrow 2\left(K^{+} K^{-}\right) X}{}$
${ }^{1}$ Using inputs from AAIJ 15AS and AAIJ 15BI and $\Gamma(b \rightarrow J / \psi(1 S)$ anything $\left.)\right) / \Gamma_{\text {total }}=$ $(1.16 \pm 0.10) \%$ and $\Gamma(J / \psi(1 S) \rightarrow p \bar{p}) / \Gamma_{\text {total }}=(2.120 \pm 0.029) \times 10^{-3}$ from PDG 16.
$\Gamma\left(\phi 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<40} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TBLIKIM }}{\text { O6A }} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{J / \psi \rightarrow \phi 2\left(\pi^{+} \pi^{-}\right) \gamma}$ ${ }^{1}$ ABLIKIM 06A reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \phi 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]$ $<0.603 \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=1.7 \times$ 10^{-2}.

$\Gamma\left(a_{0}(980) \pi\right) / \Gamma_{\text {total }}$					Γ_{9} / Γ
VALUE	CL\%	DOCUMENT ID	TECN	COMMENT	
<0.02	90	1,2 BALTRUSAIT.. 86	MRK3	$J / \psi \rightarrow \eta_{C} \gamma$	
${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$. ${ }^{2}$ We are assuming $\mathrm{B}\left(\mathrm{a}_{0}(980) \rightarrow \eta \pi\right)>0.5$.					

$\Gamma\left(a_{2}(1320) \pi\right) / \Gamma_{\text {total }}$

${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$.

$\Gamma\left(f_{2}(1270) \eta\right) / \Gamma_{\text {total }}$				Γ_{12} / Γ		
VALUE		CL\%	DOCUMENT ID	TECN	COMMENT	
<0.011		90	${ }^{1}$ BALTRUSAIT.. 86	MRK3 $\mathrm{J} / \psi \rightarrow \eta_{C} \gamma$		
${ }^{1}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$.						
$\Gamma(\omega \omega) / \Gamma_{\text {total }}$			DOCUMENT ID	TECN	Γ_{13} / Γ	
VALUE (units 10 ${ }^{-3}$)		EVTS			COMMENT	
$2.9 \pm 0.5 \pm 0.6$		1705	${ }^{1}$ ABLIKIM 19AV	BES3	$J / \psi \rightarrow \gamma \omega \omega$	
- - We do not use the following data for averages, fits, limits, etc. - -						
<6.3	90		${ }^{2}$ ABLIKIM 05L	BES2	$\mathrm{J} / \psi \rightarrow 2\left(\pi^{+}\right.$	$\left.\pi^{0}\right) \gamma$
<6.3	90		${ }^{2}$ BISELLO 91	DM2	$J / \psi \rightarrow \gamma \omega \omega$	
<3.1	90		2 BALTRUSAIT... 86	MRK3	$J / \psi \rightarrow \eta_{C} \gamma$	

${ }^{1}$ ABLIKIM 19 AV reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \omega \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=$ $(4.90 \pm 0.17 \pm 0.77) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)$ $=(1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.,

$\Gamma\left(\phi K^{+} K^{-}\right) / \Gamma(K \bar{K} \pi)$		DOCUMENT ID		TECN	Γ_{6} / Γ_{27}		
VALUE	EVTS			COMMENT			
$0.052+0.016 \pm 0.014$	7	1 HUANG	03		BELL	$B^{ \pm} \rightarrow$	
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$.							

$\Gamma(K \bar{K} \eta) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 8}} / \Gamma$ $\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{1 . 3 6} \mathbf{\pm 0 . 1 5 ~ O U R}} \frac{C L \%}{\text { FIT }}$ EVTS DOCUMENT ID TECN COMMENT
$1.0 \pm 0.5 \pm \mathbf{0 . 2} \quad 7 \quad 1,2$ ABLIKIM $\quad 12 \mathrm{~N}$ BES3 $\quad \psi(2 S) \rightarrow \pi^{0} \gamma \eta K^{+} K^{-}$
－－We do not use the following data for averages，fits，limits，etc．• •
$<3.1 \quad 90 \quad{ }^{3}$ BALTRUSAIT．．． 86 MRK3 $J / \psi \rightarrow \eta_{C} \gamma$
${ }^{1}$ ABLIKIM 12 N quotes $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{C}\right) \cdot \mathrm{B}\left(h_{C} \rightarrow \gamma \eta_{C}\right) \cdot \mathrm{B}\left(\eta_{C} \rightarrow K^{+} K^{-} \eta\right)=$ $(2.11 \pm 1.01 \pm 0.32) \times 10^{-6}$ which we multiply by 2 to account for isospin symmetry． ${ }^{2}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K \bar{K} \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right)\right] \times$ $\left[\mathrm{B}\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=(4.22 \pm 2.02 \pm 0.64) \times 10^{-6}$ which we divide by our best values $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right)=(8.6 \pm 1.3) \times 10^{-4}, \mathrm{~B}\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right)=$ $(51 \pm 6) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
3 The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．

$\boldsymbol{\Gamma}(K \boldsymbol{K} \boldsymbol{\eta}) / \Gamma(K \boldsymbol{K} \boldsymbol{\pi})$
VALUE
$\Gamma\left(\eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{29} / Γ
VALUE（units 10^{-2} ）EVTS

DOCUMENT ID TECN COMMENT
$\mathbf{1 . 7} \pm \mathbf{0 . 4} \pm \mathbf{0 . 1} \frac{1}{33} \stackrel{12 \mathrm{~N}}{\text { ABLIKIM BES3 }} \underset{\psi(2 S) \rightarrow \pi^{0} \gamma \eta \pi^{+} \pi^{-}}{ }$
－－．We do not use the following data for averages，fits，limits，etc．－•－
$5.4 \pm 2.0 \quad 75 \quad 2$ BALTRUSAIT．． $86 \quad$ MRK3 $\mathrm{J} / \psi \rightarrow \eta_{C} \gamma$
$3.7 \pm 1.3 \pm 2.0 \quad 18 \quad 2$ PARTRIDGE 80 B CBAL $\mathrm{J} / \psi \rightarrow \eta \pi^{+} \pi^{-} \gamma$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(7.22 \pm 1.47 \pm 1.11) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．
$\Gamma\left(\boldsymbol{\eta} \mathbf{2}\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$
「30／「
VALUE（units 10^{-2} ）EVTS DOCUMENT ID TECN COMMENT
$4.4 \pm \mathbf{1 . 2} \pm \mathbf{0 . 4} \quad 39 \quad 1$ ABLIKIM $12 \mathrm{~N} \quad$ BES3 $\xlongequal[\psi(2 S) \rightarrow \pi^{0} \gamma \eta 2\left(\pi^{+} \pi^{-}\right)]{\psi}$ ${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \eta 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(19.17 \pm 3.77 \pm 3.72) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \pi^{+} \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMMENT
6．9土 1．0 OUR FIT
11．2坠 1.9 OUR AVERAGE
$9.7 \pm 2.2 \pm 0.9 \quad 38 \quad 1$ ABLIKIM $\quad 12 \mathrm{~N}$ BES3 $\psi(2 S) \rightarrow \pi^{0}{ }_{\gamma} K^{+} K^{-} \pi^{+} \pi^{-}$ $12 \pm 4 \quad 0.4 \mathrm{k} \quad{ }^{2}$ BAI $\quad 04$ BES $J / \psi \rightarrow \gamma K^{+} K^{-} \pi^{+} \pi^{-}$
$21 \pm 7 \quad 110 \quad{ }^{2}$ BALTRUSAIT．．． 86 MRK3 $\mathrm{J} / \psi \rightarrow \eta_{C} \gamma$
$14 \underset{-9}{+22} \quad 3$ HIMEL 80B MRK2 $\psi(2 S) \rightarrow \eta_{C} \gamma$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow\right.\right.$ $\left.\left.\gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(4.16 \pm 0.76 \pm 0.59) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\psi(2 S) \rightarrow$ $\left.\pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
2 The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．
${ }^{3}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0028 \pm 0.0006$ ．
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma(К \bar{K} \pi) \quad \Gamma_{\mathbf{3 2}} / \Gamma_{\mathbf{2 7}}$ $\frac{V A L U E}{\mathbf{0 . 4 7 7} \pm \mathbf{0 . 0 1 7} \pm \mathbf{0 . 0 7 0}} \frac{\text { EVTS }}{11 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DEL－AMO－SA．．11M }} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}}$ ${ }^{1}$ We have multiplied the value of $\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$ reported in DEL－ AMO－SANCHEZ 11 M by a factor $1 / 3$ to obtain $\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma(K \bar{K} \pi)$ ．Not independent from other measurements reported in DEL－AMO－SANCHEZ 11M．
$\Gamma\left(K^{0} K^{-} \pi^{+} \pi^{-} \pi^{+}+\right.$c．c．$) / \Gamma_{\text {total }}$
$\Gamma 33 / \Gamma$
VALUE（units 10^{-2} ）EVTS DOCUMENT ID TECN COMMENT
$\overline{\mathbf{5 . 6} \pm \mathbf{1 . 4} \pm \mathbf{0 . 5}} \frac{43}{1,2} \overline{\text { ABLIKIM }} 12 \mathrm{~N}$ BES3 $\underset{\psi(2 S) \rightarrow \pi^{0} \gamma K_{S}^{0} K^{\mp} \pi^{\mp} 2 \pi^{ \pm}}{ }$ ${ }^{1}$ ABLIKIM 12 N quotes $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{C}\right) \cdot \mathrm{B}\left(h_{C} \rightarrow \gamma \eta_{C}\right) \cdot \mathrm{B}\left(\eta_{C} \rightarrow K_{S}^{0} K^{-} \pi^{-} 2 \pi^{+}\right)$ $=(12.01 \pm 2.22 \pm 2.04) \times 10^{-6}$ which we multiply by 2 to take c．c．into account． ${ }^{2}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K^{0} K^{-} \pi^{+} \pi^{-} \pi^{+}+\right.\right.$c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow\right.\right.$ $\left.\left.\gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(24.02 \pm 4.44 \pm 4.08) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\psi(2 S) \rightarrow$ $\left.\pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} 2\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)\right) / \Gamma_{\text {total }}$
「34／「
VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMMENT
7．5 $\mathbf{7 2 . 4 \text { OUR AVERAGE }}$
$\begin{array}{lccccc}8 & \pm 4 \quad \pm 1 & 10 & 1 \\ \text { ABLIKIM } & 12 N \text { BES } & \psi(2 S) \rightarrow \pi^{0} K^{+}+K^{-} 2\left(\pi^{+} \pi^{-}\right)\end{array}$
$7.2 \pm 2.4 \pm 1.5 \quad 100 \quad 2$ ABLIKIM $\quad 06 \mathrm{~A}$ BES2 $\mathrm{J} / \psi \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right) \gamma$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow\right.\right.$ $\left.\left.\gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(3.60 \pm 1.71 \pm 0.64) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\psi(2 S) \rightarrow$ $\left.\pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 06A reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.\left.\gamma \eta_{C}(1 S)\right)\right]=(1.21 \pm 0.32 \pm 0.24) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.\gamma \eta_{C}(1 S)\right)=(1.7 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(2\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right)\right) / /_{\text {total }}$
Γ 「35／「
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{1.46+0.30 \text { EUR }}$ EIT TECUMENT ID COMMENT
1．46土 0．30 OUR FIT $\quad 1$ ABLIKIM 12 N BES $3 \quad \psi(2 S) \rightarrow \pi^{0} 2\left(K^{+} K^{-}\right)$ －－We do not use the following data for averages，fits，limits，etc．－－－ $1.4 \underset{-0.4}{+0.5} \pm 0.614 .5_{-3.0}^{+4.6} \quad 2$ HUANG $\quad 03 \mathrm{BELL} \quad B^{+} \rightarrow 2\left(K^{+} K^{-}\right) K^{+}$ $21 \pm 10 \pm 6 \quad 3$ ALBRECHT 94H ARG $\quad \gamma \gamma \rightarrow K^{+} K^{-} K^{+} K^{-}$ ${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow 2\left(K^{+} K^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(0.94 \pm 0.37 \pm 0.14) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$ ．
${ }^{3}$ Normalized to the sum of $\mathrm{B}\left(\eta_{C} \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}\right), \quad \mathrm{B}\left(\eta_{C} \rightarrow \phi \phi\right), \quad \mathrm{B}\left(\eta_{C} \rightarrow\right.$ $\left.K^{+} K^{-} \pi^{+} \pi^{-}\right)$，and $\mathrm{B}\left(\eta_{C} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$．
$\Gamma\left(2\left(K^{+} \kappa^{-}\right)\right) / \Gamma(\kappa \bar{K} \pi)$
$\frac{V A L U E}{0.020 \pm 0.004 \text { OUR FIT }}$
0.024 ± 0.007 OUR AVERAGE
$0.023 \pm 0.007 \pm 0.006$
$\begin{array}{lllll}0.026 & { }_{-0.007}^{+0.009} \pm 0.007 & 15 \quad{ }^{1} \text { HUANG } & 03 & \text { BELL }\end{array} B^{ \pm} \rightarrow K^{ \pm}\left(2 K^{+} 2 K^{-}\right)$
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.122_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$ ．

Meson Particle Listings
$\eta_{c}(1 S)$

$\left.\Gamma_{\text {VALUE }} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$					「36／「
	CL\％	DOCUMENT ID	TECN	COMment	
＜5 $\times 10^{-4}$	90	ABLIKIM	BES3	$\psi(2 S)$	

${ }^{1}$ ABLIKIM 17AJ reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]$ $<1.6 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}(1 S)\right)=3.4 \times 10^{-3}$ ．
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-2} ）EVTS DOCUMENT ID TECN COMMENT
4．7 $\pm \mathbf{0 . 9 \pm 0 . 4} 118 \quad{ }^{1}$ ABLIKIM 12 N BES3 $\psi(2 S) \rightarrow \pi^{0} \gamma \pi^{+} \pi^{-} 2 \pi^{0}$ ${ }^{1}$ ABLIKIM 12N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(20.31 \pm 2.20 \pm 3.33) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{38} / \Gamma$
VALUE（units 10－2）EVTS
0.97 ± 0.12 OUR FIT
1.35 ± 0.21 OUR AVERAGE
$1.74 \pm 0.32 \pm 0.15 \quad 100 \quad 1$ ABLIKIM \quad 12N BES3 $\quad \psi(2 S) \rightarrow \pi^{0} \gamma 2\left(\pi^{+} \pi^{-}\right)$
$\begin{array}{lrllll}1.0 \pm 0.5 & 542 \pm 75 & { }^{2} \mathrm{BAI} & 04 & \text { BES } & J / \psi \rightarrow \gamma 2\left(\pi^{+} \pi^{-}\right)\end{array}$
$1.05 \pm 0.17 \pm 0.34 \quad 137 \quad{ }^{2}$ BISELLO $\quad 91$ DM2 $J / \psi \rightarrow \gamma 2 \pi^{+} 2 \pi^{-}$
$1.3 \pm 0.6 \quad 25 \quad 2$ BALTRUSAIT．． 86 MRK3 $J / \psi \rightarrow \eta_{C} \gamma$
$2.0 \begin{gathered}+1.5 \\ +1.0\end{gathered} \quad 3$ HIMEL \quad 80B MRK2 $\psi(2 S) \rightarrow \eta_{C} \gamma$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(7.51 \pm 0.85 \pm 1.11) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．
${ }^{3}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0028 \pm 0.0006$ ．
$\Gamma\left(2\left(\pi^{+} \pi^{-} \pi^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{39} / \Gamma$
VALUE（units 10^{-2} ）EVTS
16．1 ± 2.0 OUR AVERAGE
$15.3 \pm 1.8 \pm 1.8 \quad 333 \quad$ ABLIKIM 19AP BES3 $\quad h_{C} \rightarrow \gamma \eta_{C}$ ， $17.4 \pm 2.9 \pm 1.5 \quad 175 \quad 1$ ABLIKIM $\quad 12 \mathrm{~N}$ BES3 $\quad \psi(2 S) \rightarrow \pi^{0} \gamma 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ ${ }^{1}$ ABLIKIM 12N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(75.13 \pm 7.42 \pm 9.99) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$
Γ_{40} / Γ
VALUE（units 10^{-3} ）$\frac{E V T S}{}$
$20 \pm 5 \pm 2 \quad 51 \quad 1$ ABLIKIM $\quad 12 \mathrm{~N}$ BES3 $\psi(2 S) \rightarrow \pi^{0} \gamma 3\left(\pi^{+} \pi^{-}\right)$ $15.4 \pm 3.4 \pm 3.3 \quad 479 \quad 2$ ABLIKIM 06 A BES2 $\quad J / \psi \rightarrow 3\left(\pi^{+} \pi^{-}\right) \gamma$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow 3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(8.82 \pm 1.57 \pm 1.59) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 06A reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow 3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=$ $(2.59 \pm 0.32 \pm 0.47) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)$ $=(1.7 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \Gamma_{41} / \Gamma$
VALUE（units 10^{-4} ）
14．5 ± 1.4 OUR FIT
12．7士 $\mathbf{2 . 0}$ OUR AVERAGE
$12.0 \pm 2.6 \pm 1.5 \quad 34$
$\begin{array}{llrll}12.5 & 34 & \text { ABLIKIM } & 19 \text { APBES3 } & h_{C} \rightarrow \gamma \eta_{C} \\ 15 \pm 5 \pm 1 & 15 & 1 \text { ABLIKIM } & 12 \mathrm{~N} \text { BES3 } & \psi(2 S) \rightarrow \pi^{0} \gamma p \bar{p}\end{array}$
$\begin{array}{rrrllll}15 & \pm 6 & 213 \pm 33 & 2 & \text { BAI } & 04 & \text { BES } \\ 10 & \pm & J / \psi \rightarrow \gamma p \bar{p} \\ 18 & 18 & { }^{2} \text { BISELLO } & 91 & \text { DM2 } & J / \psi \rightarrow \gamma p \bar{p}\end{array}$
$\begin{array}{lllllll}10 & \pm & \pm 4 & 18 & { }^{2} \text { BISELLO } & 91 & \text { DM2 } \\ 11 & \pm 6 & & J 3 & { }^{2} \text { BALTRUSAIT．．} 86 & \text { MRK3 } & J / \psi \rightarrow \eta_{C} \gamma\end{array}$
$29 \begin{array}{r}+29 \\ -15\end{array} \quad 3$ HIMEL 80B MRK2 $\psi(2 S) \rightarrow \eta_{C} \gamma$
－－We do not use the following data for averages，fits，limits，etc．－•－
$13.4_{-}^{+} 1.1_{2}^{1.8} \pm 1.1 \quad 4 \mathrm{WU} \quad 06 \mathrm{BELL} \quad B^{+} \rightarrow p \bar{p} K^{+}$
${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times\right.$ $\left.\Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(0.65 \pm 0.19 \pm 0.10) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}=$ $(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．Where relevant，the error in this branching ratio is treated as a common systematic in computing averages．
${ }^{3}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0028 \pm 0.0006$ ．
${ }^{4} \mathrm{WU} 06$ reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow p \bar{p}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)\right]=\left(1.42 \pm 0.11_{-0.20}^{+0.16}\right) \times$ 10^{-6} which we divide by our best value $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \eta_{C} K^{+}\right)=(1.06 \pm 0.09) \times 10^{-3}$ ． Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma(\rho \bar{p}) / \Gamma(\kappa \bar{K} \pi)$

$\mathbf{0 . 0 2 1} \pm \mathbf{\pm 0 . 0 0 2} \underset{\mathbf{- 0 . 0 0 6}}{\mathbf{+ 0 . 0 0 4}} 195 \quad 1 \mathrm{WU} \quad 06 \mathrm{BELL} \quad B^{ \pm} \rightarrow K^{ \pm} p \bar{p}$
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$.
$\Gamma(\rho \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\phi \phi) / \Gamma_{\text {total }}$
VALUE（units 10^{-5} ）DOCUMENT ID TECN COMMENT
0.26 ± 0.04 OUR FIT
$4.0 \pm \mathbf{3 . 2} \quad$ BAGLIN $89 \quad \mathrm{SPEC} \quad \bar{p} p \rightarrow K^{+} K^{-} K^{+} K^{-}$
$\Gamma\left(p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{42} / \Gamma$
$\frac{\text { VALUE（units } 10^{-2} \text { ）}}{\mathbf{0 . 3 6} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{14} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM } 12 \mathrm{~N}} \frac{\text { COMMENT }}{\text { BES3 }} \frac{\text { T } 2 S) \rightarrow \pi^{0} \gamma p \bar{p} \pi^{0}}{\psi(2 S)}$ ${ }^{1}$ ABLIKIM 12 N reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) /\right.$ $\left.\Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) / \Gamma_{\text {total }}\right]=(1.53 \pm 0.49 \pm 0.23) \times 10^{-6}$ which we divide by our best value $\Gamma\left(h_{C}(1 P) \rightarrow \gamma \eta_{C}(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right) /$ $\Gamma_{\text {total }}=(4.3 \pm 0.4) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma(\Lambda \pi) / \Gamma_{\text {total }}$
Γ_{43} / Γ
$\frac{V A L U E \text {（units } 10^{-4} \text { ）}}{10.7 \text { CL\％}} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT 10.7 ± 2.4 OUR FIT $11.8 \pm 2.3 \pm 2.5$
${ }^{1}$ ABLIKIM 12B BES3
－－We do not use the following data for averages，fits，limits，etc．－－－

$8.9-2.5 \pm 0.7$		20	2 WU	06	BELL	$B^{+} \rightarrow \Lambda \bar{\Lambda} K^{+}$
＜20	90		${ }^{3}$ BISELLO	91	DM2	$e^{+} e^{-} \rightarrow \gamma \wedge \bar{\Lambda}$

${ }^{1}$ ABLIKIM 12 B reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \Lambda \bar{\Lambda}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=$ $(0.198 \pm 0.021 \pm 0.032) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(J / \psi(1 S) \rightarrow$ $\left.\gamma \eta_{C}(1 S)\right)=(1.7 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2} \mathrm{WU} 06$ reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \quad \Lambda \bar{\Lambda}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \quad \eta_{C} K^{+}\right)\right]=$ $\left(0.95_{-0.22}^{+0.25}+0.08\right) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=$ $(1.06 \pm 0.09) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
3 The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$ ．
$\Gamma(\Lambda \bar{\Lambda}) / \Gamma(p \bar{p})$
$\Gamma_{43} / \Gamma_{41}$ $\frac{\text { VALUE }}{\mathbf{0 . 7 3} \mathbf{0 . 1 6} \text { OUR FIT }}$ DOCUMENT ID TECN COMMENT $\mathbf{0 . 6 7}_{-0.16}^{\mathbf{+ 0 . 1 9}} \mathbf{\pm 0 . 1 2} \quad 1 \mathrm{WU} \quad 06 \mathrm{BELL} \quad B^{+} \rightarrow p \bar{p} K^{+}, \wedge \bar{\Lambda} K^{+}$
${ }^{1}$ Not independent from other $\eta_{C} \rightarrow \Lambda \bar{\Lambda}, p \bar{p}$ branching ratios reported by WU 06 ．
$\Gamma\left(\boldsymbol{K}^{+} \overline{\mathrm{p}} \Lambda+\right.$ c．c．$) / \Gamma_{\text {total }}$
Γ_{44} / Γ
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{+ 0 . 3 5}} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT
$\mathbf{2 . 5 6}=\mathbf{0 . 3 5} \mathbf{0 . 3} \mathbf{0 . 2 1} \quad 157 \quad 1 \mathbf{L U} \quad 19 \quad \mathrm{BELL} \quad B^{+} \rightarrow \bar{p} \wedge K^{+} K^{+}$
${ }^{1}$ LU 19 reports $\left(2.83_{-0.34}^{+0.36} \pm 0.35\right) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)\right]$assuming $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=$ $(9.6 \pm 1.1) \times 10^{-4}$ ，which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=$ $(1.06 \pm 0.09) \times 10^{-3}$ ．Our first error is their experiment＇s error and our second er－ ror is the systematic error from using our best value．

$\Gamma\left(\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}$
Γ_{46} / Γ
$\frac{V A L U E\left(\text { units } 10^{-3} \text { ）}\right.}{\mathbf{2 . 1} \pm \mathbf{0 . 3} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{112} \quad 1 \frac{\text { DOCUMENT ID }}{13 \mathrm{ABLIKIM} \quad 13 \mathrm{C}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \gamma p \bar{p} \pi^{0} \pi^{0}}$ ${ }^{1}$ ABLIKIM $13 C$ reports $\left[\Gamma\left(\eta_{C}(1 S) \rightarrow \Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)\right]=$ $(3.60 \pm 0.48 \pm 0.31) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)$ $=(1.7 \pm 0.4) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

RADIATIVE DECAYS

$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
Γ_{49} / Γ
$\frac{V A L U E \text { (units } 10^{-4} \text {) }}{1.58 \pm \mathbf{E 0 . 1 1 ~ O U R ~ F I T}}$
\% EVTS
DOCUMENT ID TECN COMMENT
$1.9{ }_{-0.6}^{\mathbf{0} .7}$ OUR AVERAGE

$\Gamma(\gamma \gamma) / \Gamma(\kappa \bar{K} \pi)$
$\Gamma_{49} / \Gamma_{27}$
$\frac{\left.\text { VALUE (Unitis } 10^{-3}\right)}{2.17 \text { (} 0.23 \text { OUR FIT }}$ EVTS
DOCUMENT ID TECN COMMENT
$3.2{ }_{-1.0}^{+1.3}{ }_{-0.6}^{+0.8} \quad 13 \quad 1$ WICHT $\quad 08$ BELL $\quad B^{ \pm} \rightarrow K^{ \pm} \gamma \gamma$
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow \eta_{C} K^{+}\right)=\left(1.25 \pm 0.12_{-0.12}^{+0.10}\right) \times 10^{-3}$ from FANG 03 and $\mathrm{B}\left(\eta_{C} \rightarrow\right.$ $K \bar{K} \pi)=(5.5 \pm 1.7) \times 10^{-2}$.
$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{41} / \Gamma \times \Gamma_{49} / \Gamma$
$\frac{V A L U E ~\left(\text { units } 10^{-6}\right)}{0.230 \pm 0.022 \text { OUR FIT }}$
DOCUMENT ID TECN COMMENT
$0.26 \pm \mathbf{0 . 0 5}$ OUR AVERAGE Error includes scale factor of 1.4.

$0.224_{-0.037}^{+0.038} \pm 0.020$	190	AMBROGIANI 03	E835	$\bar{p} p \rightarrow \eta_{C} \rightarrow \gamma \gamma$	
$0.336_{-0.070}^{+0.080}$		ARMSTRONG 95F	E760	$\bar{p} p \rightarrow \gamma \gamma$	
0.68-0.42	12	BAGLIN	87B	SPEC	$\bar{p} p \rightarrow \gamma \gamma$

Meson Particle Listings
$J / \psi(1 S)$

$J / \psi(1 S)$ WIDTH
VALUE（keV）EVTS DOCUMENT ID TECN COMMENT

92．9 ± 2.8	OUR AVERAGE Error includes scale factor of 1．1．				
96.1 ± 3.2	13k	${ }^{1}$ ADAMS	06A	CLEO	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
84.4 ± 8.9		BAI	95B	BES	$e^{+} e^{-}$
91 ± 11	± 6	2 ARMSTRONG	93B	E760	$\bar{p} p \rightarrow e^{+} e^{-}$
85.5 ± 6.1		${ }^{3}$ HSUEH	92	RVUE	See γ mini－review

－－We do not use the following data for averages，fits，limits，etc．－－－

$J / \psi(1 S)$ DECAY MODES

	Mode	Fraction（ $\Gamma_{i} / \Gamma^{\prime}$ ）	Scale factor／ Confidence Ievel
Γ_{1}	hadrons	(87.7 ± 0.5)	
Γ_{2}	virtual $\gamma \rightarrow$ hadrons	(13.50 ± 0.30)	
Γ_{3}	$g \mathrm{~g} g$	(64.1 ± 1.0)	）$\%$
Γ_{4}	$\gamma g g$	(8.8 ± 1.1)	
Γ_{5}	$e^{+} e^{-}$	（ 5．971 $\pm 0.032)$	
Γ_{6}	$e^{+} e^{-} \gamma$	［a］（ 8.8 ± 1.4 ）	$) \times 10^{-3}$
Γ_{7}	$\mu^{+} \mu^{-}$	（ 5.961 ± 0.033 ）	
Decays involving hadronic resonances			
Γ_{8}	$\rho \pi$	(1.69 ± 0.15)	）\％ $\mathrm{S}=2.4$
Γ_{9}	$\rho^{0} \pi^{0}$	(5.6 ± 0.7)	$) \times 10^{-3}$
Γ_{10}	$\rho(770)^{\mp} K^{ \pm} K_{S}^{0}$	(1.9 ± 0.4)	$) \times 10^{-3}$
Γ_{11}	$\rho(1450) \pi$		
Γ_{12}	$\rho(1450) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	(2.3 ± 0.7)	）$\times 10^{-3}$
Γ_{13}	$\rho(1450)^{ \pm} \pi^{\mp} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	(3.5 ± 0.6)	）$\times 10^{-4}$
Γ_{14}	$\rho(1450)^{0} \pi^{0} \rightarrow K^{+} K^{-} \pi^{0}$	(2.7 ± 0.6)	）$\times 10^{-4}$
Γ_{15}	$\begin{gathered} \rho(1450) \eta^{\prime}(958) \rightarrow \\ \pi^{+} \pi^{-} \eta^{\prime}(958) \end{gathered}$	(3.3 ± 0.7)	$) \times 10^{-6}$
Γ_{16}	$\rho(1700) \pi$		
Γ_{17}	$\rho(1700) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	(1.7 ± 1.1)	$) \times 10^{-4}$
Γ_{18}	$\rho(2150) \pi$		
Γ_{19}	$\rho(2150) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$\left(\begin{array}{ll}8 & \pm 40\end{array}\right)$	$) \times 10^{-6}$
Γ_{20}	$\rho_{3}(1690) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$		
Γ_{21}	$a_{2}(1320) \rho$	(1.09 ± 0.22)	）\％
Γ_{22}	$\omega \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	(8.5 ± 3.4)	$) \times 10^{-3}$

Γ_{23}	$\omega \pi^{+} \pi^{-} \pi^{0}$		（ 4.0	± 0.7	）$\times 10^{-3}$	
Γ_{24}	$\omega \pi^{+} \pi^{-}$		（ 7.2	± 1.0	）$\times 10^{-3}$	
Γ_{25}	$\omega f_{2}(1270)$		（ 4.3	± 0.6	）$\times 10^{-3}$	
Γ_{26}	$K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$		（ 2.3	± 0.6	）$\times 10^{-4}$	
Γ_{27}	$K^{*}(892)^{ \pm} K^{*}(892)^{\mp}$		（ 1.00	＋ 0.22 +0.40	$) \times 10^{-3}$	
Γ_{28}	$K^{*}(892)^{ \pm} K^{*}(700)^{\mp}$		（ 1.1	＋ +0.0 -0.6	）$\times 10^{-3}$	
「29	$K_{S}^{0} \pi^{-} K^{*}(892)^{+}+$c．c．		（ 2.0	± 0.5	）$\times 10^{-3}$	
「30	$\begin{gathered} K_{S}^{0} \pi^{-} K^{*}(892)^{+}+\text {c.c. } \rightarrow \\ K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-} \end{gathered}$		（ 6.7	± 2.2	$) \times 10^{-4}$	
Γ_{31}	$K_{S}^{0} K^{*}(892)^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$		（ 6.3	＋ 0.6 -0.5	）$\times 10^{-6}$	
Γ_{32}	$\begin{aligned} & K_{2}^{*}(1430)^{+} K^{-}+\text {c.c. } \rightarrow \\ & K^{+} K^{-} \pi^{0} \end{aligned}$		（ 2.69	＋ 0.25 +0.19	$) \times 10^{-4}$	
Γ_{33}	$\begin{aligned} & K_{2}^{*}(1980)^{+} K^{-}+\text {c.c. } \rightarrow \\ & K^{+} K^{-} \pi^{0} \end{aligned}$		（ 1.10	（ +0.60 -0.14	$) \times 10^{-5}$	
Γ_{34}	$\begin{aligned} & K_{4}^{*}(2045)^{+} K^{-}+\text {c.c. } \rightarrow \\ & K^{+} K^{-} \pi^{0} \end{aligned}$		（ 6.2	＋ 2.9 -1.6	$) \times 10^{-6}$	
「35	$\eta K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$		（ 1.15	± 0.26	）$\times 10^{-3}$	
Γ^{56}	$\eta^{\prime} K^{* \pm} K^{\mp}$		（ 1.48	± 0.13	）$\times 10^{-3}$	
「37	$\eta^{\prime} K^{* 0} \bar{K}^{0}+$ c．c．		（ 1.66	± 0.21	）$\times 10^{-3}$	
「38	$\eta^{\prime} h_{1}(1415) \rightarrow \eta^{\prime} K^{*} \bar{K}+$ c．c．		（ 2.16	± 0.31	）$\times 10^{-4}$	
「39	$\eta^{\prime} h_{1}(1415) \rightarrow \eta^{\prime} K^{* \pm} K^{\mp}$		（ 1.51	± 0.23	）$\times 10^{-4}$	
Γ_{40}	$K^{*}(1410) \bar{K}+c . c$.					
Γ_{41}	$\begin{gathered} K^{*}(1410) \bar{K}+\mathrm{c} . \mathrm{c} \\ K^{ \pm} K^{\mp} \pi^{0} \end{gathered} \rightarrow$			± 4	）$\times 10^{-5}$	
Γ_{42}	$\begin{gathered} K^{*}(1410) \bar{K}+\text { c.c. } \rightarrow \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{gathered}$			± 6	）$\times 10^{-5}$	
Γ_{43}	$K_{2}^{*}(1430) \bar{K}+$ c．c．					
Γ_{44}	$K_{2}^{*}(1430) \bar{K}+$ c．c．${ }^{ \pm} K^{\mp} \pi^{0}$		（ 1.0	± 0.5	$) \times 10^{-4}$	
Γ_{45}	$\begin{gathered} K^{ \pm} K^{\mp} \pi^{0} \\ K_{2}^{*}(1430){ }_{K}^{K}+\text { c.c. } \rightarrow \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{gathered}$		（ 4.0	± 1.0	$) \times 10^{-4}$	
Γ_{46}	$K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}+$ c．c．		（ 4.66	± 0.31	）$\times 10^{-3}$	
Γ_{47}	$K^{*}(892)^{+} K_{2}^{*}(1430)^{-}+$c．c．		（ 3.4	± 2.9	$) \times 10^{-3}$	
Γ_{48}	$\begin{gathered} K^{*}(892)^{+} K_{2}^{*}(1430)^{-}+\text {c.c. } \rightarrow \\ K^{*}(892)^{+} K_{S}^{0} \pi^{-}+\text {c.c. } \end{gathered}$			± 4	）$\times 10^{-4}$	
Γ_{49}	$\begin{gathered} K^{*}(892)^{0} \bar{K}_{2}(1770)^{0}+\text { c.c. } \rightarrow \\ K^{*}(892)^{0} K^{-} \pi^{+}+\text {c.c. } \end{gathered}$		（ 6.9	± 0.9	）$\times 10^{-4}$	
Γ_{50}	$\omega K^{*}(892) \bar{K}+$ c．c．		（ 6.1	± 0.9	$) \times 10^{-3}$	
Γ_{51}	$\bar{K} K^{*}(892)+c . c$.					
Γ_{52}	$\begin{gathered} \bar{K} K^{*}(892)+\text { c.c.c. } \rightarrow \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{gathered}$		（ 5.0	± 0.5	$) \times 10^{-3}$	
Γ_{53}	$K^{+} K^{*}(892)^{-}+$c．c．		$(6.0$	+0.8 +1.0	$) \times 10^{-3}$	$\mathrm{S}=2.9$
Γ_{54}	$\begin{aligned} & K^{+} K^{*}(892)^{-}+\text {c.c. } \rightarrow \\ & K^{+} K^{-} \pi^{0} \end{aligned}$		（ 2.69	（ 0.13 +0.20	）$\times 10^{-3}$	
Γ_{55}	$\begin{aligned} & K^{+} K^{*}(892)^{-}+\text {c.c. } \rightarrow \\ & K^{0} K^{ \pm} \pi^{\mp}+\text { c.c. } \end{aligned}$		（ 3.0	± 0.4	）$\times 10^{-3}$	
Γ_{56}	$K^{0} \bar{K}^{*}(892)^{0}+$ c．c．		（ 4.2	± 0.4	）$\times 10^{-3}$	
Γ_{57}	$\begin{gathered} K^{0} K^{*}(892)^{0}+\text { c.c. } \rightarrow \\ K^{0} K^{ \pm} \pi^{\mp}+\text { c.c. } \end{gathered}$		（ 3.2	± 0.4	）$\times 10^{-3}$	
Γ_{58}	$K_{1}(1400)^{ \pm} K^{\mp}$		（ 3.8	± 1.4	）$\times 10^{-3}$	
Γ_{59}	$\bar{K}^{*}(892){ }^{0} K^{+} \pi^{-}+$c．c．			± 1.6	）$\times 10^{-3}$	
Γ_{60}	$K^{*}(892)^{ \pm} K^{\mp} \pi^{0}$		（ 4.1	± 1.3	）$\times 10^{-3}$	
Γ_{61}	$K^{*}(892){ }^{0} K_{S}^{0} \pi^{0}$		$(6$	± 4	）$\times 10^{-4}$	
Γ_{62}	$\omega \pi^{0} \pi^{0}$		（ 3.4	± 0.8	）$\times 10^{-3}$	
Γ_{66}	$\omega \pi^{0} \eta$		（ 3.4	± 1.7	）$\times 10^{-4}$	
Γ_{64}	$b_{1}(1235)^{ \pm} \pi^{\mp}$	［b］	（ 3.0	± 0.5	）$\times 10^{-3}$	
Γ_{65}	$\omega K^{ \pm} K_{S}^{0} \pi^{\mp}$	［b］	（ 3.4	± 0.5	）$\times 10^{-3}$	
Γ_{66}	$b_{1}(1235)^{0} \pi^{0}$		（ 2.3	± 0.6	）$\times 10^{-3}$	
Γ_{67}	$\eta K^{ \pm} K_{S}^{0} \pi^{\mp}$	［b］	（ 2.2	± 0.4	）$\times 10^{-3}$	
Γ_{68}	$\phi K^{*}(892) \bar{K}+$ c．c．		（ 2.18	± 0.23	）$\times 10^{-3}$	
Γ_{69}	$\omega K \bar{K}$		（ 1.9	± 0.4	）$\times 10^{-3}$	
Γ_{70}	$\omega f_{0}(1710) \rightarrow \omega K \bar{K}$		（ 4.8	± 1.1	）$\times 10^{-4}$	
Γ_{71}	$\phi 2\left(\pi^{+} \pi^{-}\right)$		（ 1.60	± 0.32	）$\times 10^{-3}$	
Γ_{72}	$\Delta(1232)^{++} \bar{p} \pi^{-}$		（ 1.6	± 0.5	）$\times 10^{-3}$	
Γ_{73}	$\omega \eta$		（ 1.74	± 0.20	）$\times 10^{-3}$	$\mathrm{S}=1.6$
Γ_{74}	$\omega \eta^{\prime} \pi^{+} \pi^{-}$		（ 1.12	± 0.13	）$\times 10^{-3}$	
Γ_{75}	$\phi K \bar{K}$		（ 1.77	± 0.16	）$\times 10^{-3}$	$\mathrm{S}=1.3$
Γ_{76}	$\phi K_{S}^{0} K_{S}^{0}$		（ 5.9	± 1.5	）$\times 10^{-4}$	
Γ_{77}	$\phi f_{0}(1710) \rightarrow \phi K \bar{K}$		（ 3.6	± 0.6	）$\times 10^{-4}$	
Γ_{78}	$\phi K^{+} K^{-}$		（ 8.3	± 1.2	）$\times 10^{-4}$	
Γ_{79}	$\phi f_{2}(1270)$		（ 3.2	± 0.6	）$\times 10^{-4}$	

$\Gamma_{134} \Theta(1540) \bar{\Theta}(1540) \rightarrow$
$\Gamma_{135} \Theta(1540) K^{-} \bar{n} \rightarrow K_{S}^{0} p K^{-} \bar{n}$
$\Gamma_{136} \quad \Theta(1540) K_{S}^{0} \bar{p} \rightarrow K_{S}^{0} \bar{p} K^{+} n$
$\Gamma_{137} \bar{\Theta}(1540) K^{+} n \rightarrow K_{S}^{0} \bar{p} K^{+} n$
$\Gamma_{138} \bar{\Theta}(1540) K_{S}^{0} p \rightarrow K_{S}^{0} p K^{-} \bar{n}$

Decays into stable hadrons

Γ_{139}	$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$
Γ_{140}	$3\left(\pi^{+} \pi^{-}\right) \pi^{0}$
Γ_{141}	$\pi^{+} \pi^{-} \pi^{0}$
Γ_{142}	$\pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}$
Γ_{143}	$\rho^{ \pm} \pi^{\mp} \pi^{0} \pi^{0}$
Γ_{144}	$\rho^{+} \rho^{-} \pi^{0}$
Γ_{145}	$\pi^{+} \pi^{-} \pi^{0} K^{+} K^{-}$
Γ_{146}	$4\left(\pi^{+} \pi^{-}\right) \pi^{0}$
Γ_{147}	$\pi^{+} \pi^{-} K^{+} K^{-}$

(3.73 ± 0.32) \% S=1.4
$(2.9 \pm 0.6) \%$
$=1.6$
$(2.71 \pm 0.29) \%$
$(1.41 \pm 0.22) \%$
$(6.0 \pm 1.1) \times 10^{-3}$
$(1.20 \pm 0.30) \%$
$(9.0 \pm 3.0) \times 10^{-3}$
$(6.84 \pm 0.32) \times 10^{-3}$
$J / \psi(1 S)$

$\Gamma\left(\mu^{+} \mu^{-}\right)$					Γ_{7}
VALUE (keV)					

$J / \psi(1 S) \Gamma(i) \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$

This combination of a partial width with the partial width into $e^{+} e^{-}$ and with the total width is obtained from the integrated cross section into channel $I_{\text {in }}$ in the $e^{+} e^{-}$annihilation.

${ }^{1}$ From the cross sections of $e^{+} e^{-} \rightarrow e^{+} e^{-}$and $e^{+} e^{-} \rightarrow$ hadrons near the $J / \psi(1 S)$ ${ }_{2}$ peak.
${ }^{2}$ Data redundant with branching ratios or partial widths above.

$\Gamma\left(\mu^{+} \mu^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$				$\Gamma_{7} \Gamma_{5} / \Gamma$	
$\operatorname{VALUE}(\mathrm{eV})$	EVTS	DOCUMENT		TECN	COMMENT
333 ± 4 OUR AVERAGE					
$333.4 \pm 2.5 \pm 4.4$		ABLIKIM	16Q	BES3	$3.773 e^{+} e$
$331.8 \pm 5.2 \pm 6.3$		ANASHIN	10	KEDR	$3.097 e^{+} e^{-}$
$338.4 \pm 5.8 \pm 7.1$	13k	ADAMS	06A	CLEO	$e^{+} e^{-} \rightarrow$
$330.1 \pm 7.7 \pm 7.3$	7.8k	AUBERT	04	BABR	$e^{+} e^{-} \rightarrow$
- - We do not use the following data for averages, fits, limits, etc. - -					
510 ± 90		DASP	75	DASP	$e^{+} e^{-}$
380 ± 50		${ }^{1}$ ESPOSITO	75B	FRAM	$e^{+} e^{-}$

${ }^{1}$ Data redundant with branching ratios or partial widths above.
$\left.\boldsymbol{\Gamma (\boldsymbol { \rho } (\mathbf { 7 7 0 }) \mp} \boldsymbol{K}^{\mathbf{\pm}} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{\mathbf{-}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E(\mathrm{eV})}{\mathbf{1 0 . 4} \pm \mathbf{1 . 0} \pm \mathbf{1 . 9}} \frac{130}{\text { DOCUMENT ID }}$

$\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }\left(10^{-2} \mathrm{keV}\right)}{\mathbf{2 . 2} \pm \mathbf{0 . 3} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{170} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \quad \boldsymbol{\Gamma}_{\mathbf{2 3}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$
06D

$\Gamma\left(\boldsymbol{\omega} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \times \Gamma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \Gamma_{\mathbf{2 4}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}^{2}$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{5 3 . 6} \mathbf{+ 5 . 0} \mathbf{0 . 4}} \frac{\text { EVTS }}{788} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TUBERT }}{\text { TECN }} \frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma}$
${ }^{1}$ AUBERT 07AU reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \omega \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=47.8 \pm 3.1 \pm 3.2 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\omega \pi^{0} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{62} \Gamma_{5} / \Gamma$ $\frac{V A L U E(\mathrm{eV})}{\mathbf{2 7 . 8} \pm \mathbf{3 . 5} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{398} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TEES }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{18 \mathrm{E}}{10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \pi^{0} \gamma}$ ${ }^{1}$ LEES 18 e reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \omega \pi^{0} \pi^{0}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=24.8 \pm 1.8 \pm 2.5 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{26} \mathrm{r}_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\overline{\mathbf{1 . 2 8} \pm \mathbf{0 . 3 4} \pm \mathbf{0 . 0 7}} \overline{47 \pm 12} \quad 1 \overline{\text { LEES }} \quad$ 12F $\overline{\text { BABR }} \overline{10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.28 \pm 0.40 \pm 0.1125 \pm 8^{1,2}$ AUBERT 07AK BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$
${ }^{1}$ Dividing by $(2 / 3)^{2}$ to take twice into account that $\mathrm{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)=2 / 3 \mathrm{~B}\left(K^{* 0} \rightarrow\right.$ $K \pi$).
${ }^{2}$ Superseded by LEES 12 F.

$\Gamma\left(K^{*}(892)^{ \pm} K^{*}(892)^{\mp}\right)$		$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$		TECN		$\Gamma_{27} \Gamma_{5} / \Gamma$
VALUE (eV)	EVTS	DOCUM			COMMENT	
$0.80 \pm 0.48 \pm 0.32$	1 ± 5	${ }^{1}$ LEES	14H	BABR	$\begin{array}{r} e^{+} \\ \pi^{-}+ \\ \pi^{-} \end{array}$	

${ }^{1}$ Dividing by $(1 / 4)^{2}$ to take twice into account $\mathrm{B}\left(K^{*}(892) \rightarrow K_{S}^{0} \pi\right)=1 / 4$.
$\Gamma\left(K_{S}^{0} \pi^{-} K^{*}(892)^{+}+\right.$c.c. $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{29} \Gamma_{5} / \Gamma$
 $14.8 \pm 4.8 \pm 1.2 \quad$ LEES $\quad 14 \mathrm{HABR} e^{+}{ }_{\pi}^{e} \underset{\pi^{-}}{\rightarrow} K_{S}^{0} K_{S}^{0} \gamma$
${ }^{1}$ Dividing by $1 / 2$ to take into account $\mathrm{B}\left(K^{*}(892)^{ \pm} \rightarrow K^{ \pm} \pi^{\mp}\right)=1 / 2$.
${ }^{2}$ Dividing by $1 / 4$ to take into account $\mathrm{B}\left(K^{*}(892) \rightarrow K_{S}^{0} \pi\right)=1 / 4$.
$\Gamma\left(K_{S}^{0} \pi^{-} K^{*}(892)^{+}+\right.$c.c. $\left.\rightarrow K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{30} \Gamma_{5} / \Gamma$ VALUE (eV) EVTS DOCUMENTID TECN COMMENT
$\pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0} \gamma$
$\Gamma\left(K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}+\right.$ c.c. $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 6}} \Gamma_{5} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{2 5 . 8} \pm \mathbf{1 . 4} \pm \mathbf{0 . 6} \quad 710 \quad 1,2,3$ LEES $\quad 12 \mathrm{~F}$ BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$ - - We do not use the following data for averages, fits, limits, etc. - -
$33 \pm 4 \pm 1 \quad 317 \quad 2,4$ AUBERT 07 AK BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$ $1_{\text {LEES }} 12 \mathrm{~F}$ reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}+\right.\right.$ c.c. $) \times \Gamma(J / \psi(1 S) \rightarrow$ $\left.\left.e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)\right]=12.89 \pm 0.54 \pm 0.41 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
${ }^{2}$ value.
${ }^{3}$ The $K_{2}^{*}(1430)$ cannot be distinguished from the $K_{0}^{*}(1430)$.
${ }^{4}$ Superseded by LEES 12F. AUBERT 07AK reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}+\right.\right.$ c.c. $\left.) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)\right]=16.4 \pm 1.1 \pm 1.4$ eV which we divide by our best value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\boldsymbol{K}^{*}(892)^{+} K_{2}^{*}(1430)\right)^{-}+$c.c. $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{47} \Gamma_{5} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 8 . 6} \pm \mathbf{1 6 . 1} \pm \mathbf{0 . 4} \quad 8 \pm 8 \quad 1,2$ LEES $\quad 14 \mathrm{H} \quad$ BABR $\quad \begin{aligned} & e^{+} e^{-} \rightarrow{ }_{\pi}^{-} K_{S}^{0} K_{S}^{0} \gamma\end{aligned}$
${ }^{1}$ Dividing by $(1 / 4)^{2}$ to take into account $\mathrm{B}\left(K^{*}(892) \rightarrow K_{S}^{0} \pi\right)=1 / 4$ and $\mathrm{B}\left(K^{*}(1430) \rightarrow\right.$ $\left.K_{S}^{0} \pi\right)=1 / 4 \mathrm{~B}\left(K^{*}(1430) \rightarrow K \pi\right)$.
${ }^{2}$ LEES 14 H reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow K^{*}(892)^{+} K_{2}^{*}(1430)^{-}+\right.\right.$c.c. $) \times \Gamma(J / \psi(1 S) \rightarrow$ $\left.\left.e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)\right]=9.28 \pm 8.0 \pm 0.32 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\kappa^{*}(892)^{+} \kappa_{2}^{*}(1430)^{-}+\right.$c.c. $\rightarrow \kappa^{*}(892)^{+} \kappa_{S}^{0} \pi^{-}+$c.c. $) \times \Gamma\left(e^{+} e^{-}\right) /$
$\Gamma_{\text {total }}$

$2.32 \pm 2.00 \pm 0.08 \quad 8 \pm$
$1 \frac{\text { DOCUMENT ID }}{14 \mathrm{TECN}} \frac{\text { COMMENT }}{+e^{-}}$
${ }_{\pi^{+}}^{e^{-}}{ }^{-} K_{S}^{0} K_{S}^{0} \gamma$
${ }^{1}$ Dividing by $1 / 4$ to take into account $\mathrm{B}\left(K^{*}(892) \rightarrow K_{S}^{0} \pi\right)=1 / 4$.
$\Gamma\left(K^{*}(892)^{0} \bar{K}_{2}(1770)^{0}+\right.$ c.c. $\rightarrow K^{*}(892)^{0} K^{-} \pi^{+}+$c.c. $) \times \Gamma\left(e^{+} e^{-}\right) /$ $\Gamma_{\text {total }}$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{3 . 8} \pm \mathbf{0 . 4} \pm \mathbf{0 . 3} 110 \pm 14 \quad 1$ AUBERT 07AK BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$
${ }^{1}$ Dividing by $2 / 3$ to take into account that $\mathrm{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)=2 / 3$.

$\Gamma\left(K^{+} K^{*}\right.$ (892)	$\times \Gamma($				$\Gamma_{53} \Gamma_{5} / \Gamma$
VALUE (eV)	DOCUMEN		TECN	COMMENT	
$29.0 \pm 1.7 \pm 1.3$	AUBERT	08S	BABR	$10.6 e^{+} e^{-}$	*(892) ${ }^{-} \gamma$

$\Gamma\left(K^{+} K^{*}(892)^{-}+\right.$c.c. $\left.\rightarrow K^{+} K^{-} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{54} \Gamma_{5} / \Gamma$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{1 0 . 9 6} \pm \mathbf{0 . 8 5} \pm \mathbf{0 . 7 0}} \frac{\text { EVTS }}{155} \quad \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{\text { 08S }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \gamma}{}$
$\Gamma\left(K^{+} K^{*}(892)^{-}+\right.$c.c. $\left.\rightarrow K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{54} / \Gamma$
$\frac{\left.V A L U E \text { (units } 10^{-3}\right)}{\mathbf{2 . 6 9 \pm 0 . 0 1} \mathbf{+ 0 . 1 3}} \frac{\text { EVTS }}{183 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { TECN }}{\text { 19AQ BES }} \frac{\text { COMMENT }}{J / K^{+} \rightarrow K^{-} \pi^{0}}$

Meson Particle Listings
$J / \psi(1 S)$
 $\frac{V A L U E(\mathrm{eV})}{42.6 \pm 4.8 \pm 7.2} \frac{\operatorname{EVTS}}{99} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 17D }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{0} \gamma}{}$
${ }^{1}$ Dividing by $1 / 6$ to account for $\mathrm{B}\left(K^{*}(892)^{0} \rightarrow K_{S}^{0} \pi^{0}\right)=1 / 6$.

$\Gamma\left(K^{*}(892)^{ \pm} K^{\mp} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{60} \Gamma_{5} / \Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN C	MMENT	
$\mathbf{2 2 . 8} \pm \mathbf{2 . 8} \pm 6.8$	80	1 LEES	BABR e	$e^{-} \rightarrow K_{S}^{0}$	$\pi^{\mp} \pi^{0} \gamma$
${ }^{1}$ Dividing by $1 / 4$ to account for $\mathrm{B}\left(K^{*}(892)^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}\right)=1 / 4$.					
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	
$2.69 \pm 0.04{ }_{-0.19}^{+0.25}$	183k	ABLIKIM	19AQ BES	$J / \psi \rightarrow K$	π^{0}
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.1 \pm 0.1 \pm 0.6$	183k	ABLIKIM	19aQ BES	$J / \psi \rightarrow K$	$K^{-} \pi^{0}$

$\left(K_{4}^{*}(\mathbf{2 0 4 5})^{+}\right.$	C.	$\boldsymbol{\pi}^{\mathbf{0}}$)			Γ_{34} / Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT	TECN	COMMENT	
$6.2 \pm 0.7{ }_{-1.4}^{+2.8}$	183k	ABLIKIM	19AQ BES	$J / \psi \rightarrow$	

$\Gamma\left(\kappa^{*}(892)^{0} K_{S}^{0} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{61} \Gamma_{5} / \Gamma$ $\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{3 . 6 0} \pm \mathbf{0 . 7 5} \mathbf{2 . 2 5}} \frac{\text { EVTS }}{34} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 17D }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{K^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{0} \gamma}{e^{+}}$
${ }^{1}$ Dividing by $2 / 3$ to account for $\mathrm{B}\left(K^{*}(892)^{0} \rightarrow K^{+} \pi^{-}\right)=2 / 3$.

$\Gamma\left(\eta K^{ \pm} K_{S}^{0} \pi^{\mp}\right)$	$\Gamma(e$	$/ \Gamma_{\text {tot }}$				$\Gamma_{67} \Gamma_{5} / \Gamma$
$\operatorname{VALUE}(\mathrm{eV})$	EVTS	DOCUM		TECN	COMMENT	
$7.3 \pm 1.4 \pm 0.4$	44	LEES	17D	BABR	$e^{+} e^{-} \rightarrow$	$\pi^{0} \gamma$

$\Gamma(\omega K \bar{K}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{69} \Gamma_{5} / \Gamma$

${ }^{1}$ AUBERT 07AU reports $\left[\Gamma(J / \psi(1 S) \rightarrow \omega K \bar{K}) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=3.3 \pm 1.3 \pm 1.2 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\phi 2\left(\pi^{+} \pi^{-}\right)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{71} \Gamma_{5} / \Gamma$
$\frac{\operatorname{VALUE}\left(10^{-2} \mathrm{keV}\right)}{\mathbf{0 . 9 5} \pm \mathbf{0 . 1 9} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{35} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT 06D }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow \phi 2\left(\pi^{+} \pi^{-}\right) \gamma}$ ${ }^{1}$ AUBERT 06D reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi 2\left(\pi^{+} \pi^{-}\right)\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=(0.47 \pm 0.09 \pm 0.03) \times 10^{-2} \mathrm{keV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\mathbf{3 . 2 5} \pm \mathbf{0 . 8 4} \pm \mathbf{0 . 0 3} \quad 29 \quad 1$ LEES $\quad 14 \mathrm{H}$ BABR $e^{+} e^{-} \rightarrow K_{S}^{0} K_{S}^{0} K^{+} K^{-} \gamma$
${ }^{1}$ LEES 14 H reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi K_{S}^{0} K_{S}^{0}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=1.6 \pm 0.4 \pm 0.1 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\phi K^{+} K^{-}\right) \times$	e^{-}					$\Gamma_{78} \Gamma_{5} / \Gamma$
VALUE (ev)	EVTS	DOCU		TECN	COMMENT	
$4.59 \pm 0.62 \pm 0.05$	163	${ }^{1}$ LEES	12F	BABR	e	

${ }^{1}$ LEES 12 reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi K^{+} K^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=2.26 \pm 0.26 \pm 0.16 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\mathbf{1 . 7 9} \pm \mathbf{0 . 3 2}{ }_{-0.06}^{\mathbf{0} .02} \quad 61{ }^{1,2,3}$ LEES \quad 12F BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$

- - We do not use the following data for averages, fits, limits, etc. - -
$4.08 \pm 0.733_{-0.14}^{+0.04} \quad 44 \quad 2,4$ AUBERT \quad 07AK BABR $\quad 10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$
${ }^{1}$ LEES 12F reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{2}(1270)\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=1.51 \pm 0.25 \pm 0.10 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$.
${ }^{3}$ Using $\pi^{+} \pi^{-}$invariant mass between 1.1 and 1.5 GeV . May include other sources such as $f_{0}(1370)$.
${ }^{4}$ Superseded by LEES 12F. AUBERT 07AK reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{2}(1270)\right) \times\right.$ $\left.\Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=3.44 \pm 0.55 \pm 0.28 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} K^{-} \boldsymbol{f}_{\mathbf{2}}^{\prime}(1525)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{83} \Gamma_{5} / \Gamma$
$\frac{V A L U E(\mathrm{eV})}{\mathbf{5 . 8} \pm \mathbf{1 . 9} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{16} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{14 \mathrm{H}}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{k^{+} e^{-} \rightarrow K_{S}^{0} K_{S}^{0} K^{+} K^{-} \gamma}{}$
${ }^{1}$ Dividing by $1 / 4$ to take into account $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K_{S}^{0} K_{S}^{0}\right)=1 / 4 \mathrm{~B}\left(f_{2}^{\prime}(1525) \rightarrow\right.$ $K \bar{K}$.
${ }^{2}$ LEES 14H reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow K^{+} K^{-} f_{2}^{\prime}(1525)\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)\right]=5.12 \pm 1.68 \pm 0.20 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=(87.6 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
 ${ }^{1}$ Dividing by $1 / 4$ to take into account $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K_{S}^{0} K_{S}^{0}\right)=1 / 4 \mathrm{~B}\left(f_{2}^{\prime}(1525) \rightarrow\right.$ $K \bar{K})$ and using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$.
${ }^{2}$ LEES 14 H reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{2}^{\prime}(1525)\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)\right]=7.2 \pm 2.8 \pm 0.3 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=(87.6 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\phi \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{85} \Gamma_{5} / \Gamma$
$\frac{V A L U E(\mathrm{eV})}{4.47 \pm 0.35}$ OUR AVERAGE $\frac{\text { EVTS }}{}$
$\begin{array}{lrllll}4.45 \pm 0.49 \pm 0.05 & 181 & 1 & \text { LEES } & \text { 12F BABR } & 10.6 e^{+} e^{-} \rightarrow \\ K^{+} K^{-} \pi^{+} \\ \pi^{-}\end{array}$
$4.50 \pm 0.48 \pm 0.05 \quad 254 \pm 23 \quad 2$ SHEN 09 BELL $\begin{gathered}10.6 e^{+} e^{-} \overrightarrow{+} \\ K^{+} K^{-} \pi^{+} \pi^{-}\end{gathered}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$5.3 \pm 0.7 \pm 0.1 \quad 103 \quad{ }^{3}$ AUBERT,BE 06D BABR $\begin{gathered}10.6 e^{+} e^{-} \rightarrow \\ K^{+} K^{-} \pi^{+} \pi^{-} \gamma\end{gathered}$
${ }^{1}$ LEES 12 F reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=2.19 \pm 0.23 \pm 0.07 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ SHEN 09 reports $4.50 \pm 0.41 \pm 0.26 \mathrm{eV}$ from a measurement of $[\Gamma(J / \psi(1 S) \rightarrow$ $\left.\left.\phi \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]$assuming $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.6) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Superseded by LEES 12F. AUBERT,BE 06D reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi \pi^{+} \pi^{-}\right) \times\right.$ $\left.\Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=2.61 \pm 0.30 \pm 0.18$ eV which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\begin{aligned} & \boldsymbol{\Gamma}\left(\phi \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \frac{V A L U E(\mathrm{eV})}{\mathbf{2 . 7 6 \pm 0 . 5 7} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{45}\end{aligned} \frac{\text { DOCUMENT ID }}{1} \mathrm{LEES} \quad \boldsymbol{\Gamma}_{\mathbf{8 6}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$3.13 \pm 0.88 \pm 0.03 \quad 23 \quad{ }^{2}$ AUBERT,BE 06D BABR $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \gamma$ ${ }^{1}$ LEES 12 reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi \pi^{0} \pi^{0}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=1.36 \pm 0.27 \pm 0.07 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Superseded by LEES 12F. AUBERT,BE 06D reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi \pi^{0} \pi^{0}\right) \times\right.$ $\left.\Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=1.54 \pm 0.40 \pm 0.16$ eV which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\phi \eta) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
 $6.1 \pm \mathbf{2 . 7} \pm \mathbf{0 . 4} \quad 1$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \phi \eta \gamma$ ${ }^{1}$ AUBERT 07AU quotes $\Gamma_{e e}^{J / \psi} \cdot \mathrm{B}(J / \psi \rightarrow \phi \eta) \cdot \mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right) \cdot \mathrm{B}(\eta \rightarrow 3 \pi)=$ $0.84 \pm 0.37 \pm 0.05 \mathrm{eV}$.
$\Gamma\left(\phi f_{0}(980) \rightarrow \phi \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{97} \Gamma_{5} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
1.44 ± 0.19 OUR AVERAGE
$1.40 \pm 0.25 \pm 0.0257 \pm 9 \quad 1$ LEES $\quad 12 F \quad$ BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$ $1.48 \pm 0.27 \pm 0.0960 \pm 11 \quad 2$ SHEN $\quad 09 \quad$ BELL $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - - -
$1.02 \pm 0.24 \pm 0.01 \quad 20 \pm 5 \quad 3$ AUBERT 07AK BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \gamma$ ${ }^{1}$ LEES 12 F reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{0}(980) \rightarrow \phi \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.69 \pm 0.11 \pm 0.05 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Multiplied by $2 / 3$ to take into account the $\phi \pi^{+} \pi^{-}$mode only. Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)$ $=(49.2 \pm 0.6) \%$.
${ }^{3}$ Superseded by LEES 12F. AUBERT 07AK reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{0}(980) \rightarrow\right.\right.$ $\left.\left.\phi \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.50 \pm 0.11 \pm$ 0.04 eV which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\phi f_{0}(980) \rightarrow \phi \pi^{0} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / /_{\text {totoal }}$
「98 ${ }_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$98{ }^{5} / \Gamma$
 - - We do not use the following data for averages, fits, limits, etc. - - -
$0.95 \pm 0.40 \pm 0.01 \quad 7.0 \pm 2.8 \quad 2$ AUBERT \quad 07AK BABR $\quad 10.6 e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} K^{+} K^{-} \gamma$ $1_{\text {LEES }} 12 \mathrm{~F}$ reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{0}(980) \rightarrow \phi \pi^{0} \pi^{0}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.48 \pm 0.12 \pm 0.05 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ${ }^{2}$ Superseded by LEES 12 F . AUBERT 07AK reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \phi f_{0}(980) \rightarrow\right.\right.$ $\left.\left.\phi \pi^{0} \pi^{0}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.47 \pm 0.19 \pm$ 0.05 eV which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\eta \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{109} \Gamma_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID
2.3 ± 0.4 OUR AVERAGE
$2.34 \pm 0.43 \pm 0.16 \quad 49 \quad$ LEES $\quad 18$ BABR $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-} \gamma$
$2.23 \pm 0.97 \pm 0.03 \quad 9 \quad 1$ AUBERT \quad 07AU BABR $10.6 e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-} \gamma$ ${ }^{1}$ AUBERT 07AU reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \eta \pi^{+} \pi^{-}\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=0.51 \pm 0.22 \pm 0.03 \mathrm{eV}$ which we divide by our best value $\mathrm{B}(\eta \rightarrow$ $\left.\pi^{+} \pi^{-} \pi^{0}\right)=(22.92 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K_{S}^{0} \pi^{-} K_{2}^{*}(1430)^{+}+\right.$c.c. $) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{118} \Gamma_{5} / \Gamma$
 π^{+}
π^{-}
$K_{S}^{0}$$K_{S}^{0} \gamma$
${ }^{1}$ Dividing by $1 / 4$ to take into account $\mathrm{B}\left(K^{*}(1430) \rightarrow K_{S}^{0} \pi\right)=1 / 4 \mathrm{~B}\left(K^{*}(1430) \rightarrow\right.$ $K \pi$).
${ }^{2}$ LEES 14 н reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow K_{S}^{0} \pi^{-} K_{2}^{*}(1430)^{+}+\right.\right.$c.c. $) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) /$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)\right]=10.0 \pm 4.8 \pm 0.8 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)=(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma\left(\pi^{+} \pi^{-} \pi^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\eta}\right)$	$\Gamma\left(e^{+}\right.$	$\Gamma_{\text {total }}$				$\Gamma_{167} \Gamma_{5} / \Gamma$
$\operatorname{VALUE}(\mathrm{eV})$	EVTS	DOCUN		TECN	COMMENT	
$\mathbf{1 2 . 8} \pm 1.8 \pm \mathbf{2 . 0}$	203	LEES	18E	BABR	$\begin{gathered} 10.6 e^{+} \\ \pi^{+} \\ \pi \end{gathered}$	$\overrightarrow{0_{\pi}^{0}}{ }_{\eta \gamma}$

$\Gamma\left(\omega \pi^{0} \eta\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$

$1_{\text {LEES }} 18 \mathrm{E}$ reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \omega \pi^{0} \eta\right) \times \Gamma\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=1.7 \pm 0.8 \pm 0.3 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\rho^{ \pm} \pi^{\mp} \pi^{0} \eta\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$						$\Gamma_{168} \Gamma_{5} / \Gamma$
VALUE (eV)	EVTS	DOCU		TECN	COMMENT	
$10.5 \pm 4.1 \pm 1.6$	168	LEES	18E	BABR	$\begin{gathered} 10.6 e^{+} e \\ \pi^{+}{ }_{\pi} \end{gathered}$	$\overrightarrow{0_{\pi}}{ }_{\eta \gamma}$

$\Gamma(p \bar{p}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{169} \Gamma_{\mathbf{5}} / \Gamma$

| $11.3 \pm 0.4 \pm 0.3$ | 821 | 1 | LEES | 130 BABR $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $12.9 \pm 0.4 \pm 0.4$ | 918 | 2 LEES | 13Y BABR $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ | |
| 9.7 ± 1.7 | | 3 ARMSTRONG 93B E760 $\bar{p} p \rightarrow e^{+} e^{-}$ | | |

- . We do not use the following data for averages, fits, limits, etc. • •
$12.0 \pm 0.6 \pm 0.5 \quad 438 \quad 4$ AUBERT 06B BABR $e^{+} e^{-} \rightarrow p \bar{p} \gamma$
${ }^{1}$ ISR photon reconstructed in the detector
${ }^{2}$ ISR photon undetected
${ }^{3}$ Using $\Gamma_{\text {total }}=85.5_{-5.8}^{+6.1} \mathrm{MeV}$
${ }^{4}$ Superseded by LEES 130
WEIGHTED AVERAGE
11.9 ± 0.6 (Error scaled by 1.8)

$\Gamma(\rho \bar{p}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}(\mathrm{eV})$
$\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{0} \boldsymbol{\Sigma}^{\mathbf{0}}\right) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{6 . 4} \pm \mathbf{1 . 2} \pm \mathbf{0 . 6}} \underset{\text { AUCUMENT ID }}{\text { AUBERT }} \frac{\Gamma_{\mathbf{1 8 2}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}}{\text { 07BD }} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0} \gamma}$

$\Gamma\left(2\left(\pi^{+} \pi^{-}\right) K^{+}\right.$	$\times \Gamma$	-)/ $\Gamma_{\text {tota }}$				$\Gamma_{183} \Gamma_{5} / \Gamma$
$\operatorname{VALUE}\left(10^{-2} \mathrm{keV}\right)$	EVTS	DOCUMENT		TECN	COMMENT	
$\mathbf{2 . 7 5} \pm 0.23 \pm 0.17$	205	AUBERT	06D	BABR	$10.6 e^{+} e^{-}$	

$\Gamma(\Lambda \bar{\Lambda}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
VALUE (eV) $10.7 \pm 0.9 \pm 0.7$
$\frac{\text { DOCUMENT ID }}{\text { AUBERT } \quad \text { 07BD }} \frac{\text { TECN }}{\text { BABR }} \frac{\Gamma_{\mathbf{1 8 9}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}}{10.6 e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda} \gamma}$
$\Gamma\left(2\left(K^{+} K^{-}\right)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{192} \Gamma_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{4 . 0 0 \pm 0 . 3 3 \pm \mathbf { 0 . 2 9 }} \overline{287 \pm 24} \quad \frac{12 F}{\text { LEES }} \frac{12}{\text { BABR }} \frac{10.6 e^{+} e^{-} \rightarrow 2\left(K^{+} K^{-}\right) \gamma}{}$

- - We do not use the following data for averages, fits, limits, etc. - -
$4.11 \pm 0.39 \pm 0.30 \quad 156 \pm 15 \quad 1$ AUBERT \quad 07AK BABR $\quad 10.6 e^{+} e^{-} \rightarrow 2\left(K^{+} K^{-}\right) \gamma$ $4.0 \pm 0.7 \pm 0.6 \quad 38 \quad{ }^{2}$ AUBERT 05D BABR $10.6 e^{+} e^{-} \rightarrow 2\left(K^{+} K^{-}\right) \gamma$
${ }^{1}$ Superseded by LEES 12 F .
2 Superseded by AUBERT 07AK.
$\Gamma\left(K^{+} K^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{194} \Gamma_{5} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$1.78 \pm 0.11 \pm 0.05 \quad 462 \quad 1$ LEES $\quad 15 \mathrm{~J} \quad \mathrm{BABR} e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
$1.94 \pm 0.11 \pm 0.05 \quad 462 \quad 2$ LEES $\quad 15 \mathrm{~J}$ BABR $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
$1.42 \pm 0.23 \pm 0.08 \quad 51 \quad{ }^{3}$ LEES $\quad 13 Q$ BABR $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
${ }^{1} \sin \phi>0$.
${ }^{2} \sin \phi<0$.
${ }^{3}$ Interference with non-resonant $K^{+} K^{-}$production not taken into account.

$J / \psi(1 S)$ BRANCHING RATIOS

For the first four branching ratios, see also the partial widths, and (partial widths) $\times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$ above.

Γ (hadrons) $/ \Gamma_{\text {total }}$				Γ_{1} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT	

0.877 ± 0.005 OUR AVERAGE

0.878 ± 0.005
0.86 ± 0.02

$\Gamma($ virtual $\gamma \rightarrow$ hadrons $) / \Gamma_{\text {total }}$
VALUE
DOCUMENT ID_ TECN COMMENT

$\overline{\mathbf{0 . 1 3 5} \pm \mathbf{0 . 0 0 3}} 1,2 \frac{24}{\text { RETH }} \frac{04}{e^{+} e^{-}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$0.17 \pm 0.02 \quad{ }^{1}$ BOYARSKI 75 MRK1 $e^{+} e^{-}$
${ }^{1}$ Included in Γ (hadrons) $/ \Gamma_{\text {total }}$
${ }^{2}$ Using $\mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=(5.90 \pm 0.09) \%$ from RPP-2002 and $\mathrm{R}=2.28 \pm 0.04$ determined by a fit to data from BAI 00 and BAI 02C.
$\boldsymbol{\Gamma}(\boldsymbol{g} \boldsymbol{g} \boldsymbol{g}) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{6 4 . 1} \pm \mathbf{1 . 0}} \frac{\text { EVTS }}{6 \mathrm{M}} \quad \frac{\text { DOCUMENT ID }}{\text { BESSON }} \frac{08}{\text { BECN }} \frac{\text { TES }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \pi^{+} \pi^{-}+\text {hadrons }}$
${ }^{1}$ Calculated using the value $\Gamma(\gamma g g) / \Gamma(g g g)=0.137 \pm 0.001 \pm 0.016 \pm 0.004$ from BESSON 08 and the PDG 08 values of $\mathbf{B}\left(\ell^{+} \ell^{-}\right)$, $\mathbf{B}($ virtual $\gamma \rightarrow$ hadrons $)$, and $\mathbf{B}\left(\gamma \eta_{C}\right)$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma g g) / \Gamma_{\text {total }}$ measurement of BESSON 08.
$\Gamma(\gamma \boldsymbol{g} \boldsymbol{g}) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{8 . 7 9 \pm 1 . 0 5}} \frac{\text { EVTS }}{200 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { BESSON }} \frac{08}{\text { TECN }} \frac{\text { CLEO }}{\text { COMMENT }} \frac{(2 S) \rightarrow \pi^{+} \pi^{-} \gamma+\text { hadrons }}{\psi(2 S)}$
${ }^{1}$ Calculated using the value $\Gamma(\gamma g g) / \Gamma(g g g)=0.137 \pm 0.001 \pm 0.016 \pm 0.004$ from BESSON 08 and the value of $\Gamma(g g g) / \Gamma_{\text {total }}$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(g g g) / \Gamma_{\text {total }}$ measurement of BESSON 08.
$\Gamma(\gamma g g) / \Gamma(g g g)$
Γ_{4} / Γ_{3}
VALUE (units 10^{-2}) EVTS
$\frac{\text { DOCUMENT ID }}{\text { BESSON } 08} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi}$
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-2}) EVTS
5.971 ± 0.032 OUR AVERAGE
$5.983 \pm 0.007 \pm 0.037 \quad 720 \mathrm{k}$
$5.945 \pm 0.067 \pm 0.042 \quad 15 \mathrm{k}$
$5.90 \pm 0.05 \pm 0.10$
6.09 ± 0.33
$5.92 \pm 0.15 \pm 0.20$
6.9 ± 0.9
$\Gamma\left(e^{+} e^{-} \gamma\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-3})

$8.8 \pm 1.3 \pm 0.4$

${ }^{1}$ For $E_{\gamma}>100 \mathrm{MeV}$

and $\Gamma\left(\mu^{+} \mu^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$.

HADRONIC DECAYS

$\Gamma(\rho \pi) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$					$\Gamma_{8} / \Gamma_{141}$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.142 \pm 0.011 \pm 0.026$	20 K	1 LEES	17C BABR	$J / \psi \rightarrow \pi$	π^{0}
- - We do not use the following data for averages, fits, limits, etc. - .					
1.331 ± 0.033	20K	2 LEES	17C BABR	$J / \psi \rightarrow$	π^{0}
${ }^{1}$ From a Dalitz plot analysis in an isobar model. ${ }^{2}$ From a Dalitz plot analysis in a Veneziano model.					

$\Gamma\left(\rho^{0} \pi^{0}\right) / \Gamma(\rho \pi)$		DOCUMENT ID		Γ_{9} / Γ_{8}		
VALUE				TECN	COMMENT	
$0.328 \pm 0.005 \pm 0.027$		COFFMAN	88	MRK3 $e^{+} e^{-}$		
- - We do not use the following data for averages, fits, limits, etc. - -						
0.35 ± 0.08		ALEXANDER	78	PLUT $e^{+} e^{-}$		
0.32 ± 0.08		BRANDELIK	78B	DASP $e^{+} e^{-}$		
0.39 ± 0.11		BARTEL	76	CNTR $e^{+} e^{-}$		
0.37 ± 0.09		JEAN-MARIE	76	MRK1 $e^{+} e^{-}$		
$\Gamma\left(\rho(1450) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$				$\Gamma_{12} / \Gamma_{141}$		
VALUE (\%)	EVTS	DOCUMENT ID		TECN	COMMENT	
$10.9 \pm 1.7 \pm 2.7$	20K	${ }^{1}$ LEES	17C	BABR $\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$		
- - We do not use	follow	data for average	, fits,	limits,	etc. - - -	
0.80 ± 0.27	20K	${ }^{2}$ LEES	17C	BABR $J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$		
${ }^{1}$ From a Dalitz plot analysis in an isobar model.						
${ }^{2}$ From a Dalitz plot analysis in a Veneziano model.						
$\Gamma\left(\rho(1450)^{ \pm} \pi^{\mp} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$				TECN	$\Gamma_{13} / \Gamma_{157}$	
VALUE (\%)	EVTS	DOCUMENT ID			COMMENT	
$6.3 \pm 0.8 \pm 0.6$	4K	1 LEES	17C	BABR	$J / \psi \rightarrow K$	$K^{ \pm} \pi^{\mp}$

${ }^{1}$ From a Dalitz plot analysis in an isobar model.

${ }^{1}$ From a Dalitz plot analysis in an isobar model.

$\Gamma\left(\rho(1450) \eta^{\prime}(958) \rightarrow \pi^{+} \pi^{-} \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$					Γ_{15} / Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT ID	TECN	COMMENT	
$3.28 \pm 0.55 \pm 0.44$	119	ABLIKIM			

${ }^{1}$ From a partial wave analysis of the decay $J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$.
$\Gamma\left(\rho(1700) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \quad \Gamma_{17} / \Gamma_{141}$ $\frac{V A L U E \text { (units } 10^{-3} \text {) }}{\mathbf{8} \pm \mathbf{2} \pm \mathbf{5}} \frac{\text { EVTS }}{20 \mathrm{~K}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { LEES }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}}$ - - We do not use the following data for averages, fits, limits, etc. - •
$22 \pm 6 \quad 20 \mathrm{~K} \quad 2$ LEES \quad 17C BABR $J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ From a Dalitz plot analysis in an isobar model.
${ }^{2}$ From a Dalitz plot analysis in a Veneziano model.
$\Gamma\left(\rho(2150) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \quad \Gamma_{19} / \Gamma_{141}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{4 \pm 1 \pm 20} \frac{\text { EVTS }}{20 \mathrm{~K}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{1 / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$600 \pm 250 \quad 20 \mathrm{~K} \quad 2$ LEES 17 C BABR $\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ From a Dalitz plot analysis in an isobar model.
${ }^{2}$ From a Dalitz plot analysis in a Veneziano model.
$\Gamma\left(\rho_{3}(1690) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) \quad \Gamma_{20} / \Gamma_{141}$ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

$\Gamma\left(a_{2}(1320) \rho\right) / /_{\text {total }}$
VALUE (units 10^{-3}) EVTS
10.9 ± 2.2 OUR AVERAGE
$\begin{array}{cr}11.7 \pm 0.7 \pm 2.5 & 7584 \\ 8.4 \pm 4.5 & 36\end{array}$
$\Gamma\left(\omega \pi^{+} \pi^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E \text { (units } 10^{-4} \text {) }}{\mathbf{8 5} \pm \mathbf{3 4}} \frac{E V T S}{140}$
$\Gamma\left(\boldsymbol{\omega} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{72+1.0} \frac{\text { EVTS }}{\text { (}}$
7.2 \pm 1.0 OUR AVERAGE
$\begin{array}{lr}7.0 \pm 1.6 & 18058 \\ 7.8 \pm 1.6 & 215 \\ 6.8 \pm 1.9 & 348\end{array}$
DOCUMENT ID TECN COMMENT $\Gamma_{\mathbf{2 1}} / \Gamma$
DOCUMENT ID TECN COMMENT
$\begin{array}{llll}\text { AUGUSTIN } & 89 & \text { DM2 } & J / \psi \rightarrow \rho^{0} \rho^{ \pm} \pi^{\mp} \\ \text { VANNUCCI } & 77 & \text { MRK1 } & e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}\end{array}$
「22/「
$\frac{\text { DOCUMENT ID }}{\text { VANNUCCI } 77} \frac{\text { TECN }}{\text { MRK1 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow 3\left(\pi^{+} \pi^{-}\right) \pi^{0}}$

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma\left(\omega f_{2}(1270)\right) / \Gamma_{\text {total }}{ }^{\text {a }}$（ ${ }_{25} / \Gamma$			「25／「		
VALUE（units 10^{-3} ）	TS	Document id	TECN	comment	
4．3 ± 0.6 OUR AVERAGE					
$4.3 \pm 0.2 \pm 0.6 \quad 5860$					
4.0 ± 1.6 70 BURMESTER 77D PLUT					
－．－We do not use the following data for averages，fits，limits，etc．－．－ $1.9 \pm 0.8 \quad 81$ VANNUCCI 77 MRK1 $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}$					
$\Gamma\left(K^{*}(892)^{0} \overline{\boldsymbol{K}}^{*}(892)^{0}\right) / \Gamma_{\text {total }}{ }^{\text {a }}$（ ${ }_{26} / \Gamma$					
－－We do not use the following data for averages，fits，limits，etc．－．．					
$<5 \quad 90 \quad$ VANNUCCI 77 MRK1 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$					
$\Gamma\left(K^{*}(892)^{ \pm} \boldsymbol{K}^{*}(892)^{\mp}\right) / \Gamma_{\text {total }}{ }^{\text {a }}$（ ${ }_{27} / \Gamma$					
VALUE（units 10－3）EVTS DOCUMENT					
$1.00 \pm 0.19{ }_{-0.32}^{+0.11} \quad 323 \quad$ ABLKIM ${ }^{\text {a }}$（10E BES2 $\quad J / \psi \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp} \pi^{0}$					
$\Gamma\left(K^{*}(892)^{ \pm} K^{*}(700)^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{28} / \Gamma$					
VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMMENT					
$\Gamma\left(\eta K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$					
VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMment					
$1.15 \pm 0.13 \pm 0.22 \quad 209$ ABLIKIM 10C BES2 $\quad J / \psi \rightarrow \eta K^{+} \pi^{-} \kappa^{-} \pi^{+}$					
$\Gamma\left(K^{*}(1410) \bar{K}+\mathrm{c} . \mathrm{c} \rightarrow K^{ \pm} K^{\mp} \pi^{0}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{41} / \Gamma_{156}$					
VALUE（\％）EVTS DOCUMENT ID TECN					
$2.3 \pm \mathbf{1 . 1} \pm 0.7 \quad 2 K \quad{ }^{1}$ LEES $\quad 17 C$ BABR $J / \psi \rightarrow K^{+} K^{-} \pi^{0}$ ${ }^{1}$ From a Dalitz plot analysis in an isobar model．					
$\Gamma\left(K^{*}(1410) \bar{K}+\text { c.c. } \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right) \quad \Gamma_{42} / \Gamma_{157}$					
VALUE（\％）EVTS DOCUMENT ID TECN COMMENT					
$\mathbf{1 . 5 \pm 0 . 5 \pm 0 . 9} \quad 4 K \quad{ }^{1}$ LEES $\quad 17 C$ BABR $J / \psi \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ ${ }^{1}$ From a Dalitz plot analysis in an isobar model．					
$\Gamma\left(K_{2}^{*}(1430) \bar{K}+\right.$ c．c．$\left.\rightarrow K^{ \pm} K^{\mp} \pi^{0}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{44} / \Gamma_{156}$					
VALUE（\％）EVTS DOCUMENT ID TECN COMM					
$\begin{array}{llll}\mathbf{3 . 5 \pm 1 . 3 \pm 0 . 9} & 2 K & 17 \\ \text { LEES } & 17 C & \text { BABR } \\ J / \psi \rightarrow K^{+} K^{-} \pi^{0}\end{array}$ ${ }^{1}$ From a Dalitz plot analysis in an isobar model．					
$\Gamma\left(K_{2}^{*}(1430) \bar{K}+\right.$ c．c．$\left.\Rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right) \quad \Gamma_{45} / \Gamma_{157}$					
${ }^{1}$ From a Dalitz plot analysis in an isobar model．					
$\Gamma\left(K^{*}(892){ }^{0} \bar{K}_{2}^{*}\right.$	30）${ }^{0}+$	）$/ \Gamma_{\text {total }}$			Γ_{46} / Γ

VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－
$6.7 \pm 2.6 \quad 40 \quad$ VANNUCCI 77 MRK1 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$
$\Gamma\left(\omega K^{*}(892) \bar{K}+\right.$ c．c．$) / \Gamma_{\text {total }}$
Γ_{50} / Γ
$\frac{V A L U E \text {（units } 10^{-4} \text { ）}}{61 \pm \mathbf{~ O U R ~ A V E R A G E ~}} \frac{E V T S}{}$
$62.0 \pm 6.8 \pm 10.6 \quad 899 \pm 98$
$65.3 \pm 10.2 \pm 13.5 \quad 176+28$
$53 \pm 14 \pm 14 \quad 530 \pm 140 \quad$ BECKER $\quad 87$ MRK3 $e^{+} e^{-} \rightarrow$ hadrons

$\Gamma\left(\bar{K} K^{*}(892)+\right.$ c．c．$\left.\rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$						$\Gamma_{52} / \Gamma_{157}$
VALUE（\％）	EVTS	DOCUM		TECN	COMMENT	
$\mathbf{9 0 . 5} \pm 0.9 \pm \mathbf{3 . 8}$	4K	1 LEES	17C	BABR	$J / \psi \rightarrow$	$K^{ \pm} \pi^{\mp}$

1 From a Dalitz plot analysis in an isobar model．
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{*}(\mathbf{8 9 2})^{-}+\mathbf{C . C .}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE（units $\left.10^{-3}\right)$

$6.0 \pm \mathbf{0 . 8}$ OUR AVERAGE Error includes scale factor of 2．9．See the ideogram below．

$8.07 \pm 0.04_{-0.61}^{+0.38} \quad 183 \mathrm{k} \quad$ ABLIKIM $\quad 19 \mathrm{AQBES} \quad J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
$4.57 \pm 0.17 \pm 0.70 \quad 2285 \quad$ JOUSSET 90 DM2 $J / \psi \rightarrow$ hadrons
$5.26 \pm 0.13 \pm 0.53 \quad$ COFFMAN 88 MRK3 $J / \psi \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}$ ， $K^{+} K^{-} \pi^{0}$
－－We do not use the following data for averages，fits，limits，etc．－．

2.6 ± 0.6	24	FRANKLIN	83	MRK2	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
3.2 ± 0.6	48	VANNUCCI	77	MRK1	$J / \psi \rightarrow K^{ \pm} K_{S}^{0} \pi^{\mp}$
4.1	± 1.2	39	BRAUNSCH．．． 76	DASP $J / \psi \rightarrow K^{ \pm} X$	

$\Gamma\left(\omega K^{ \pm} K_{S}^{0} \pi^{\mp}\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-4} ）EVTS
$34 \quad \pm 5$ OUR AVERAGE
$37.7 \pm 0.8 \pm 5.8 \quad 1972 \pm 41$
$29.5 \pm 1.4 \pm 7.0 \quad 879 \pm 41$

$\Gamma\left(b_{1}(1235)^{0} \pi^{0}\right) / \Gamma_{\text {total }}$

$\frac{V A L U E \text {（units } 10^{-4} \text { ）}}{\mathbf{2 3} \pm \mathbf{3} \pm \mathbf{5}} \frac{E V T S}{229}$
$\Gamma\left(\eta \boldsymbol{K}^{ \pm} \boldsymbol{K}_{\boldsymbol{S}}^{0} \pi^{\mp}\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-4} ）EVTS
$21.8 \pm 2.2 \pm 3.4 \quad 232 \pm 23$
$\Gamma\left(\eta^{\prime} K^{* 0} K^{0}+\right.$ c．c．$) / \Gamma_{\text {total }}$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{1 . 6 6} \pm \mathbf{0 . 0 3} \pm \mathbf{0 . 2 1}}$
${ }^{1}$ From $\eta^{\prime} K_{S}^{0} K^{ \pm} \pi^{\mp}$ ．

$\Gamma\left(K^{+} K^{*}(892)^{-}+\right.$c．c．$\left.\rightarrow K^{+} K^{-} \pi^{0}\right) / \Gamma\left(K^{+} K^{-} \pi^{0}\right) \quad \Gamma_{54} / \Gamma_{156}$ $\frac{V A L U E(\%)}{\mathbf{9 2 . 4} \pm \mathbf{1 . 5} \pm \mathbf{3 . 4}} \frac{\text { EVTS }}{2 \mathrm{~K}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { LEES COMMENT }} \frac{\text { 17C }}{\text { BABR }} \frac{\mathrm{J} / \psi \rightarrow K^{+} K^{-} \pi^{0}}{}$
${ }^{1}$ From a Dalitz plot analysis in an isobar model．

$\Gamma\left(K^{0} \bar{K}^{*}(892)^{0}+\right.$ c．c．$) / \Gamma_{\text {total }}$						「56／「
VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID		TECN	COMMENT	
4.2 ± 0.4 OUR AVERAGE						
$3.96 \pm 0.15 \pm 0.60$	1192	JOUSSET	90	DM2	$J / \psi \rightarrow$ ha	
$4.33 \pm 0.12 \pm 0.45$		COFFMAN	88	MRK3	$J / \psi \rightarrow$	

－－We do not use the following data for averages，fits，limits，etc．• •－
$2.7 \pm 0.6 \quad 45 \quad$ VANNUCCI $77 \quad$ MRK1 $J / \psi \rightarrow K^{ \pm} K_{S}^{0} \pi \mp$
$\Gamma\left(K_{1}(1400)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{58} / \Gamma$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{3 . 8} \pm \mathbf{0 . 8} \pm \mathbf{1 . 2}} \quad \frac{\text { DOCUMENT ID }}{1 \frac{\text { BAI }}{\text { TECN }}} \frac{\text { COMMENT }}{e^{+} e^{-}}$
${ }^{1}$ Assuming $\mathrm{B}\left(K_{1}(1400) \rightarrow K^{*} \pi\right)=0.94 \pm 0.06$
$\Gamma\left(\bar{K}^{*}(892)^{0} K^{+} \pi^{-}+\right.$c．c．$) / \Gamma_{\text {total }} \quad \Gamma_{59} / \Gamma^{2}$
－－We do not use the following data for averages，fits，limits，etc．－－－
seen $\quad{ }^{1}$ ABLIKIM 06 C BES2 $\quad J / \psi \rightarrow \bar{K}^{*}(892)^{0} K^{+} \pi^{-}$
${ }^{1}$ A $K_{0}^{*}(700)$ is observed by ABLIKIM 06 C in the $K^{+} \pi^{-}$mass spectrum of the $\bar{K}^{*}(892)^{0} K^{+} \pi^{-}$final state against the $\bar{K}^{*}(892)$ ．A corresponding branching fraction of the $J / \psi(1 S)$ is not presented．
$\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$

$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{3 . 4} \pm \mathbf{0 . 3} \pm \mathbf{0 . 7}} \frac{\text { EVTS }}{509} \quad$| DOCUMENT ID |
| :--- |
| AUGUSTIN 89 |$\frac{T E C N}{\text { DM2 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} 3 \pi^{0}}$

$\Gamma\left(b_{1}(1235)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-4} ）EVTS
30 ± 5 OUR AVERAGE
DOCUMENT ID $\Gamma_{\mathbf{6 4}} / \Gamma$
AUGUSTIN 89 DM2 $J / \psi \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}$ BURMESTER 77D PLUT $e^{+} e^{-}$
DOCUMENTID TECN COMMENT $\Gamma_{\mathbf{6 5}} / \Gamma$
ABLIKIM 08E BES2 $\quad e^{+} e^{-} \rightarrow J / \psi$ BECKER $\quad 87$ MRK3 $e^{+} e^{-} \rightarrow$ hadrons
$\Gamma_{66 / \Gamma}$
DOCUMENT ID TECN COMMENT

DOCUMENT ID	
ABLIKIM	08E
TECN	
BES2	$\Gamma_{\mathbf{6 7}} / \boldsymbol{\Gamma}$
$e^{+} e^{-} \rightarrow J / \psi$	

$\Gamma 37 / \Gamma$

		$\Gamma 37 / \Gamma$
DOCUMENT ID	TECN	COMMENT
${ }^{1}$ ABLIKIM	18AB BES3	$J / \psi \rightarrow \eta^{\prime} K^{*} \bar{K}$

$\Gamma\left(\phi 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$			
VALUE（units 10－4）	DOCUMENT ID	TECN	COMMENT
$16.0 \pm 1.0 \pm 3.0$	FALVARD 88	DM2	$J / \psi \rightarrow$ hadrons
VALUE（units 10^{-3} ）EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{1 . 5 8} \pm 0.23 \pm 0.40332$	EATON 84	MRK2	$e^{+} e^{-}$
$\Gamma(\omega \eta) / \Gamma_{\text {total }}$			Γ_{73} / Γ
VALUE（units 10^{-3} ）EVTS	DOCUMENT ID	TECN	COMMENT
1.74 ± 0.20 OUR AVERAGE	Error includes scale factor	of 1．6．	See the ideogram below．
2.352 ± 0.273 5k	${ }^{1}$ ABLIKIM 06F	BES2	$J / \psi \rightarrow \omega \eta$
$1.44 \pm 0.40 \pm 0.14 \quad 13$	2 AUBERT 06D	BABR	$10.6 e^{+} e^{-} \rightarrow \omega \eta \gamma$
$1.43 \pm 0.10 \pm 0.21 \quad 378$	JOUSSET 90	DM2	$J / \psi \rightarrow$ hadrons
$1.71 \pm 0.08 \pm 0.20$	COFFMAN 88	MRK3	$e^{+} e^{-} \rightarrow 3 \pi \eta$
$\begin{aligned} & { }^{1} \text { Using } \mathrm{B}(\eta \rightarrow 2 \gamma)=(39.43 \pm 0.26) \%, \mathrm{~B}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=22.6 \pm 0.4 \%, \mathrm{~B}(\eta \rightarrow \\ & \left.\pi^{+} \pi^{-} \gamma\right)=4.68 \pm 0.11 \% \text {, and } \mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.1 \pm 0.7) \% . \\ & { }^{2} \text { Using } \Gamma\left(J / \psi \rightarrow e^{+} e^{-}\right)=5.52 \pm 0.14 \pm 0.04 \mathrm{keV} . \end{aligned}$			

$\Gamma(\phi K \bar{K}) / \Gamma_{\text {total }}$（ $\Gamma_{\mathbf{7 5}} / \Gamma^{\prime}$					
VALUE（units 10^{-4} ）	EVTS	DOCUMENT ID		TECN	COMMENT
17．7土 1．6 OUR AVERAGE Error includes scale factor of 1．3．See the ideogram below．					
$16.6 \pm 1.9 \pm 1.2$	163 ± 19	LEES	12F	BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & 2\left(K^{+} K^{-}\right) \gamma \end{aligned}$
$21.4 \pm 0.4 \pm 2.2$		ABLIKIM	05	BES2	$J / \psi \rightarrow \phi \pi^{+} \pi^{-}$
$48 \begin{aligned} & +20 \\ & -16\end{aligned}$	$9.0 \begin{aligned} & +3.7 \\ & -3.0\end{aligned}$	1，2 HUANG	03	BELL	$B^{+} \rightarrow\left(\phi K^{+} K^{-}\right) K^{+}$
$14.6 \pm 0.8 \pm 2.1$		3 FALVARD	88	DM2	$J / \psi \rightarrow$ hadrons
18 ± 8	14	FELDMAN	77	MRK1	$e^{+} e^{-}$

${ }^{1}$ We have multiplied $K^{+} K^{-}$measurement by 2 to obtain $K \bar{K}$ ．
${ }^{2}$ Using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.01 \pm 0.05) \times 10^{-3}$.
${ }^{3}$ Addition of $\phi K^{+} K^{-}$and $\phi K^{0} \bar{K}^{0}$ branching ratios．

${ }^{1}$ Including interference with $f_{2}^{\prime}(1525)$ ．
${ }^{2}$ Includes unknown branching fraction $f_{0}(1710) \rightarrow K \bar{K}$ ．
$\Gamma\left(\phi f_{2}(1270)\right) / \Gamma_{\text {total }}$
「79／Г VALUE（units 10^{-3} ）CL\％DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－

<0.45	90	FALVARD	88	DM2	$J / \psi \rightarrow$ hadrons
<0.37	90	VANNUCCI	77	MRK1	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$

$\Gamma\left(\Delta(1232)^{++} \bar{\Delta}(1232)^{--}\right) / \Gamma_{\text {total }}$					Γ_{80} / Γ		
VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID			TECN COMMENT		
$1.10 \pm 0.09 \pm 0.28$	233	EATON		84	MRK	$e^{+} e^{-}$	
$\Gamma(\Sigma(1385)=\bar{\Sigma}(138$	）${ }^{+}$（or	c．c．）$/ \Gamma_{\text {total }}$			Γ_{81} / Γ		
VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID		TECN	COMMENT		
1.16 ± 0.05 OUR AVERAGE							
$1.096 \pm 0.012 \pm 0.071$	43 K	ABLIKIM	16L	BES3		$\rightarrow \Sigma(1385)$	$\bar{\Sigma}(1385){ }^{+}$
$1.258 \pm 0.014 \pm 0.078$	53k	ABLIKIM	16L	BES3		$\rightarrow \Sigma(1385)$	$+\bar{\Sigma}(1385)^{-}$
$1.23 \pm 0.07 \pm 0.30$	0．8k	ABLIKIM	12P	BES2		$\rightarrow \Sigma(1385)$	$-\bar{\Sigma}(1385)^{+}$
$1.50 \pm 0.08 \pm 0.38$	1k	ABLIKIM	12P	BES2		$\rightarrow \Sigma(1385)$	$\bar{\Sigma}(1385)^{-}$
$1.00 \pm 0.04 \pm 0.21$	0．6k	HENRARD	87	DM2		$-\rightarrow \Sigma^{*-}$	
$1.19 \pm 0.04 \pm 0.25$	0．7k	HENRARD	87	DM2	e^{+}	$-\rightarrow \Sigma^{*+}$	
$0.86 \pm 0.18 \pm 0.22$	56	EATON	84	MRK2	e^{+}	$-\rightarrow \Sigma^{*-}$	
$1.03 \pm 0.24 \pm 0.25$	68	EATON	84	MRK2	e^{+}	$-\rightarrow \Sigma^{*+}$	

$\Gamma\left(\phi f_{\mathbf{2}}^{\prime}(1525)\right) / \Gamma_{\text {total }} \quad \Gamma_{84} / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
8 羔4 OUR AVERAGE Error includes scale factor of 2.7

$12.3 \pm 0.6 \pm 2.0$		1,2 FALVARD	88	DM2 $\quad J / \psi$	\rightarrow hadrons
4.8 ± 1.8	46	1	GIDAL	81	MRK2
	J / ψ	$\rightarrow K^{+} K^{-} K^{+} K^{-}$			

${ }^{1}$ Re－evaluated using $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=0.713$
${ }^{2}$ Including interference with $f_{0}(1710)$ ．

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma\left(\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$
$\Gamma_{94} / \Gamma_{141}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{8} \pm \mathbf{3} \pm \mathbf{2}} \frac{\text { EVTS }}{20 \mathrm{~K}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TEES }}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}}$
${ }^{1}$ From a Dalitz plot analysis in an isobar model and significance 4.9σ.
$\Gamma\left(\phi \boldsymbol{\eta}^{\prime}(\mathbf{9 5 8})\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{4 . 6} \pm \mathbf{0 . 5} \text { OUR AVERAGE }} \frac{C L \%}{\text { EVTS }} \quad \Gamma \mathbf{~ D O C U M E N T ~ I D ~}$
Error includes scale factor of 2.2 . See the ideogram below.
$4.6 \pm \mathbf{0 . 5}$ OUR AVERAGE Error includes scale factor of 2.2 . See the ideogram below.
$5.10 \pm 0.03 \pm 0.32 \quad 31 \mathrm{k} \quad$ ABLIKIM $\quad 16 \mathrm{M}$ BES3 $\quad e^{+} e^{-} \rightarrow J / \psi \rightarrow$ hadrons
$5.46 \pm 0.31 \pm 0.56 \quad$ ABLIKIM 05 B BES2 $e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow$ hadrons
$4.1 \pm 0.3 \pm 0.8 \quad 167 \quad$ JOUSSET 90 DM2 $J / \psi \rightarrow$ hadrons $3.08 \pm 0.34 \pm 0.36 \quad$ COFFMAN 88 MRK3 $e^{+} e^{-} \rightarrow K^{+} K^{-} \eta^{\prime}$

- - We do not use the following data for averages, fits, limits, etc. - - •
$<13 \quad 90 \quad$ VANNUCCI 77 MRK1 $e^{+} e^{-}$

$\Gamma\left(\phi \eta^{\prime}(958)\right) / \Gamma_{\text {total }}\left(\right.$ units $\left.10^{-4}\right)$

$\Gamma(\eta \rho) / \Gamma_{\text {total }}$				
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
0.193 ± 0.023 OUR AVERAGE				
$0.194 \pm 0.017 \pm 0.029$	299	JOUSSET	90 DM2	$J / \psi \rightarrow$ hadrons
$0.193 \pm 0.013 \pm 0.029$		COFFMAN	88 MRK3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \eta$
$\Gamma\left(\boldsymbol{\omega} \boldsymbol{\eta}^{\prime}(958)\right) / \Gamma_{\text {total }}$ (9) $\Gamma_{111} / \Gamma^{\prime}$				
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
1.89 ± 0.18 OUR AVERAGE				
$2.08 \pm 0.30 \pm 0.14$	137	${ }^{1}$ ABLIKIM	17AK BES3	$J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$
2.26 ± 0.43	218	${ }^{2}$ ABLIKIM	06F BES2	$J / \psi \rightarrow \omega \eta^{\prime}$
$1.8{ }_{-0.8}^{+1.0} \pm 0.3$	6	JOUSSET	90 DM2	$J / \psi \rightarrow$ hadrons
$1.66 \pm 0.17 \pm 0.19$		COFFMAN	88 MRK3	$e^{+} e^{-} \rightarrow 3 \pi \eta^{\prime}$
${ }^{1}$ From a partial wave analysis of the decay $J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$. ${ }^{2}$ Using $\mathrm{B}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right)=(44.3 \pm 1.5) \%, \mathrm{~B}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma\right)=29.5 \pm 1.0 \%, \mathrm{~B}(\eta \rightarrow$ $2 \gamma)=39.43 \pm 0.26 \%$, and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.1 \pm 0.7) \%$.				

$\Gamma\left(\omega f_{0}(980)\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 . 4 1} \pm \mathbf{0 . 2 7} \pm \mathbf{0 . 4 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUGUSTIN } 89} \frac{\text { TECN }}{\text { DM2 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}}$ ${ }^{1}$ Assuming $\mathrm{B}\left(f_{0}(980) \rightarrow \pi \pi\right)=0.78$.
$\Gamma\left(\rho \eta^{\prime}(958)\right) / \Gamma_{\text {total }} \quad \Gamma_{113} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{8 . 1} \pm \mathbf{0 . 8} \text { OUR AVERAGE }} \frac{E V T S}{} \frac{\text { DOCUMENT ID }}{\text { Error }} \frac{\text { TECN }}{\text { includes scale factor of 1.6. }}$
$7.90 \pm 0.19 \pm 0.49 \quad 3476 \quad 1$ ABLIKIM \quad 17AK BES3 $\quad J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$
$8.3 \pm 3.0 \pm 1.2 \quad 19 \quad$ JOUSSET $90 \quad$ DM2 $J / \psi \rightarrow$ hadrons $11.4 \pm 1.4 \pm 1.6 \quad$ COFFMAN 88 MRK3 $J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$
${ }^{1}$ From a partial wave analysis of the decay $J / \psi \rightarrow \pi^{+} \pi^{-} \eta^{\prime}$.

$\Gamma\left(a_{2}(1320)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}$				Γ_{114} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$<43 \times 10^{-4} 90$	BRAUNSCH... 76	DASP	$e^{+} e^{-}$	
$\Gamma\left(K \bar{K}_{2}^{*}(1430)+\right.$ c.c. $) / \Gamma_{\text {total }}$				Γ_{115} / Γ
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
$<40 \times 10^{\mathbf{- 4}} 90$	VANNUCCI 77	MRK1	$e^{+} e^{-} \rightarrow$	$\bar{K}_{2}^{* 0}$

$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$<66 \times 10^{-4} \quad$ BRAUNSCH... 76 DASP $e^{+} e^{-} \rightarrow K^{ \pm} \bar{K}_{2}^{* 干}$

$\Gamma\left(K_{1}(1270)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}$						Γ_{116} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<3.0 \times 10^{\mathbf{- 3}}$	90	${ }^{1} \mathrm{BAI}$	99C	BES	$e^{+} e^{-}$	
${ }^{1}$ Assuming	\rightarrow	$=0.42$				

$\Gamma\left(K_{1}(1270) K_{S}^{0} \Rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$				Γ_{117} / Γ
VALUE (units 10 ${ }^{-7}$)	DOCUMENT ID	TECN	COMMENT	
$8.54=1.07+2.35$	ABLIKIM	BES3	$J / \psi \rightarrow \gamma$	

$\Gamma\left(K_{2}^{*}(1430)^{0} \bar{K}_{2}^{*}(1430)^{0}\right) / \Gamma_{\text {total }}$						Γ_{119} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
$<29 \times 10^{-4}$	90	VANNUCCI	77	MRK1	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(\phi \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{120 / \Gamma}$
The two different fit values of ABLIKIM 15 K below have the same statistical significance of 6.4σ and cannot be distinguished at this moment

VALUE (units 10^{-6})	CL\%	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.94 \pm 0.16 \pm 0.16$		0.8k	${ }^{1}$ ABLIKIM	15K	BES3	$e^{+} e^{-}$	$J / \psi \rightarrow$
$0.124 \pm 0.033 \pm 0.030$		35 ± 9	${ }^{2}$ ABLIKIM	15K	BES3	$e^{+}{ }^{K^{+}}$	$\gamma \gamma$ $J / \psi \rightarrow$
- - We do not use the following data for averages, fits, limits, etc. - -							
<6.4	90		${ }^{3}$ ABLIKIM	05B	BES2	\rightarrow	$J / \psi \rightarrow$
<6.8	90		COFFMAN	88	MRK3	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ Corresponding to one of the two fit solutions with $\delta=(-95.9 \pm 1.5)^{\circ}$ for the phase
angle between the resonant $J / \psi \rightarrow \phi \pi^{0}$ and non-phi $J / \psi \rightarrow K^{+} K^{-} \pi^{0}$ contributions.
${ }^{2}$ Corresponding to one of the two fit solutions with $\delta=(-152.1 \pm 7.7)^{\circ}$ for the phase
angle between the resonant $J / \psi \rightarrow \phi \pi^{0}$ and non-phi $J / \psi \rightarrow K^{+} K^{-} \pi^{0}$ contributions.
${ }^{3}$ Superseded by ABLIKIM 15 K .
$\Gamma\left(\phi \eta(1405) \rightarrow \phi \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{121 / \Gamma}$

- - We do not use the following data for averages, fits, limits, etc.
$<17 \quad 90 \quad 2$ FALVARD 88 DM2 $\mathrm{J} / \psi \rightarrow$ hadron
${ }^{1}$ With 3.6σ significance.
2 Includes unknown branching fraction $\eta(1405) \rightarrow \eta \pi \pi$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{f}_{\mathbf{2}}^{\prime}(\mathbf{1 5 2 5})\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<\mathbf{2} .2 \times \mathbf{1 0}^{-\mathbf{4}}} \frac{C L \%}{90}$$\quad 1 \frac{\text { DOCUMENT ID }}{\text { VANNUCCI }} \quad 77 \frac{\text { TECN }}{\text { MRK1 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} K^{+} K^{-}}$ - - We do not use the following data for averages, fits, limits, etc. • • -
$<2.8 \times 10^{-4} \quad 90 \quad{ }^{1}$ FALVARD $\quad 88 \quad$ DM2 $\quad \mathrm{J} / \psi \rightarrow$ hadrons
${ }^{1}$ Re-evaluated assuming $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=0.713$.
$\Gamma(\omega X(1835) \rightarrow \omega p \bar{p}) / \Gamma_{\text {total }}$
$\Gamma_{123 / \Gamma}$
$\begin{array}{llll}\text { VALUE } \\ <\mathbf{3 . 9 \times 1 \mathbf { 1 0 } ^ { \mathbf { - 6 } }} \frac{C L \%}{95} & \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{13 \mathrm{P}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{J / \psi \rightarrow \gamma \pi^{0} p \bar{p}}\end{array}$
$\Gamma\left(\omega X(1835), X \rightarrow \eta^{\prime} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{124} / \Gamma$
$\frac{V A L U E}{<6.2 \times 10^{-5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{19 \mathrm{AC}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \omega \eta^{\prime} \pi^{+} \pi^{-}}$
${ }^{1}$ Using the decays $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$. |
$\Gamma(\phi X(1835) \rightarrow \phi p \bar{p}) / \Gamma_{\text {total }}$
$\Gamma_{125 / \Gamma}$
$\frac{V A L U E}{<\mathbf{2} . \mathbf{1} \times \mathbf{1 0}^{\mathbf{- 7}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} 16 \mathrm{~K} \quad \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{J / \psi \rightarrow p \bar{p} K_{S}^{0} K_{L}^{0},}$ $p \bar{p} K^{+} K^{-}$
${ }^{1}$ Upper limit applies to any $p \bar{p}$ mass enhancement near threshold.

$\Gamma\left(\phi X(1835) \Rightarrow \phi \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$				TECN	COMMENT	Γ_{126} / Γ
VALUE	CL\%	DOCUMENT				
$<2.8 \times 10^{-4}$	90	ABLIKIM	15H	BES3	$e^{+} e^{-} \rightarrow$	$\eta \pi^{+} \pi^{-}$
$\Gamma\left(\phi X(1870) \Rightarrow \phi \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{127} / Γ
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<6.13 \times 10^{-5}$	90	ABLIKIM	15H	BES3	$e^{+} e^{-}$	$\eta \pi^{+} \pi$

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma\left(3\left(\pi^{+} \pi^{-}\right) \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	COMMENT	Γ_{140} / Γ
Value	EVTS					
0.029 ± 0.006 OUR AVERAGE						
0.028 ± 0.009	11	FRANKLIN	83	MRK2	$e^{+} e^{-}$	hadrons
0.029 ± 0.007	181	JEAN-MARIE	76	MRK1	$e^{+} e^{-}$	

$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{141} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{21.0 \pm \mathbf{0 . 8} \text { OUR AVERAGE }} \xlongequal{\frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of }} \frac{\text { TECN }}{\text { COMMENT }} \text { 1.6. See the ideogram below. }}$

$21.37 \pm 0.04{ }_{-0.62}^{+0.64}$	1.8 M	1,2 ABLIKIM	12 H BES	$e^{-} \rightarrow \mathrm{J} / \psi$
$23.0 \pm 2.0 \pm 0.4$	256	3 AUBERT	07AU BABR	$6 e^{+} e^{-}$
$21.84 \pm 0.05 \pm 2.01$	220k	${ }^{1,4} \mathrm{BAI}$	04H BES	
$20.91 \pm 0.21 \pm 1.16$		${ }^{4,5} \mathrm{BAI}$	04H BES	
15 ± 2	168	FRANKLIN	83 MRK2	e
${ }^{1}$ From $\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events directly.				
${ }^{2}$ The quoted systematic error includes a contribution of 1.23% (added in quadrature) from the uncertainty on the number of J / ψ events.				
${ }^{3}$ AUBERT 07AU reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\Gamma(\psi(2 S) \rightarrow$				
$\left.\left.J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]=(18.6 \pm 1.2 \pm 1.1) \times 10^{-3} \mathrm{keV}$ which				
we divide by our best value $\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) /$ $\Gamma_{\text {total }}=0.808 \pm 0.013 \mathrm{keV}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.				
${ }^{4}$ Mostly $\rho \pi$, see also $\rho \pi$ subsection.				
${ }^{5}$ Obtained comparing the rates for $\pi^{+} \pi^{-} \pi^{0}$ and $\mu^{+} \mu^{-}$, using J / ψ events produced via				

$\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$ and with $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=5.88 \pm 0.10 \%$.

$\Gamma_{145 / \Gamma}$

$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{K}^{+} \boldsymbol{K}^{\boldsymbol{-}}\right) / \boldsymbol{\Gamma}_{\text {total }}$		
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{1 . 2} \pm \mathbf{0 . 3}} \frac{\text { EVTS }}{309}$	$\frac{\text { DOCUMENT ID }}{\text { VANNUCCI } 77} \frac{\text { TECN }}{\text { MRK1 } 1} \frac{\text { COMMENT }}{e^{+} e^{-}}$	

$\boldsymbol{\Gamma}\left(\mathbf{4}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{9 0} \pm \mathbf{3 0}} \frac{\text { EVTS }}{13}$$\frac{\text { DOCUMENT ID }}{\text { JEAN-MARIE } 76} \frac{\text { TECN }}{\text { MRK1 }} \frac{\text { COMMENT }}{e^{+} e^{-}}$
$\Gamma\left(\pi^{+} \pi^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{147} / \Gamma$

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$7.2 \pm 2.3 \quad 205 \quad$ VANNUCCI 77 MRK1 $e^{+} e^{-}$

$\boldsymbol{\Gamma}(\boldsymbol{K} \overline{\boldsymbol{K}} \boldsymbol{\pi}) / \boldsymbol{\Gamma}_{\text {total }}$ VALUE (units $\left.10^{-4}\right)$	DOCUMENT ID		TECN	COMMENT Γ_{155} / Γ
61 ± 10 OUR AVERAGE				
55.2 ± 12.0 25	FRANKLIN	83	MRK2	$e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0}$
$78.0 \pm 21.0 \quad 126$	VANNUCCI	77	MRK1	$e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$VALUE (units $\left.10^{-3}\right)$DOCUMENT ID				Γ_{156} / Γ
			TECN	COMMENT
$\mathbf{2 . 8 8} \pm 0.01 \pm 0.12 \quad 183 \mathrm{k}$	ABLIKIM	19AQ	BES	$J / \psi \rightarrow K^{+} K^{-} \pi^{0}$
$\Gamma\left(K^{+} K^{=} \pi^{\mathbf{0}}\right) / \Gamma\left(\pi^{+} \pi^{-} \boldsymbol{\pi}^{\mathbf{0}}\right)$				$\Gamma_{156} / \Gamma_{141}$
VALUE (\%) EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{1 2 . 0} \pm \mathbf{0 . 3} \pm \mathbf{0 . 9} \quad 23 \mathrm{~K}$	LEES	17C	BABR	$J / \psi \rightarrow h^{+} h^{-} \pi^{0}$
$\Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$				$\Gamma_{157} / \Gamma_{141}$
$\operatorname{VALUE~(\%)~EVTS~}$	DOCUMENT ID		TECN	COMMENT
$\mathbf{2 6 . 5} \pm 0.5 \pm 2.1$	LEES	17C	BABR	$J / \psi \rightarrow h^{0} h^{+} h^{-}$

$\Gamma\left(p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}$						Γ_{170} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.19 $\mathbf{\pm 0 . 0 8}$ OUR AVERAGE Error includes scale factor of 1.1.						
$1.33 \pm 0.02 \pm 0.11$	11k	ABLIKIM	09B	BES2	$e^{+} e^{-}$	
$1.13 \pm 0.09 \pm 0.09$	685	EATON	84	MRK2	$e^{+} e^{-}$	
1.4 ± 0.4		BRANDELIK	79C	DASP	$e^{+} e^{-}$	
1.00 ± 0.15	109	PERUZZI	78	MRK1	$e^{+} e^{-}$	

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma(\Lambda \bar{\Lambda}) / \Gamma_{\text {total }}$							Γ_{189} / Γ
VALUE (units 10^{-3})		EVTS	DOCUMENT ID		TECN	COMMENT	
1.89 圭0.09	OUR A	RAGE	Error includes scale	factor	of 2.8 .	See the ideogram	m below.
1.943 ± 0.003	± 0.033	441k	ABLIKIM	17L	BES3	$e^{+} e^{-}$	
2.03 ± 0.03	± 0.15	8887	ABLIKIM	06	BES2	$J / \psi \rightarrow \Lambda \bar{\Lambda}$	
$2.0 \begin{aligned} & +0.5 \\ & -0.4\end{aligned}$	± 0.1	46	${ }^{1} \mathrm{WU}$	06	BELL	$B^{+} \rightarrow \wedge \bar{\Lambda} K^{+}$	
1.08 ± 0.06	± 0.24	631	BAI	98G	BES	$e^{+} e^{-}$	
1.38 ± 0.05	± 0.20	1847	PALLIN	87	DM2	$e^{+} e^{-}$	
1.58 ± 0.08	± 0.19	365	EATON	84	MRK2	$e^{+} e^{-}$	
2.6 ± 1.6		5	BESCH	81	BONA	$e^{+} e^{-}$	
1.1 ± 0.2		196	PERUZZI	78	MRK1	$e^{+} e^{-}$	
1^{1} WU 06 $\left(2.00_{-0.2}^{+0.3}\right.$	$\begin{aligned} & \text { reports } \\ & .34 \pm 0.3 \\ & .29 \pm 0 \end{aligned}$	$\begin{aligned} & (J / \psi(1 \\ & \times 10^{-6} \end{aligned}$	$) \rightarrow \Lambda \bar{\Lambda}) / \Gamma_{\text {tot }}$ which we divide by	$\text {] } \times$ our be	$\left[\mathrm { B } \left(B^{+}\right.\right.$ st value	$\begin{gathered} \rightarrow \quad J / \psi(1 S) \\ \mathrm{B}\left(B^{+} \rightarrow J / \psi(\right. \end{gathered}$	$\left.\left.{ }^{+}\right)\right]=$ S) K^{+}

$=(1.006 \pm 0.027) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{0 . 8 3} \mathbf{\pm 0 . 0 7}$ OUR AVERAGE Error includes scale factor of 1.2.				
$0.770 \pm 0.051 \pm 0.083$	335	${ }^{1}$ ABLIKIM	07H BES2	$e^{+} e^{-} \rightarrow \bar{\Lambda} \Sigma^{+} \pi^{-}$
$0.747 \pm 0.056 \pm 0.076$	254	${ }^{1}$ ABLIKIM	07H BES2	$e^{+} e^{-} \rightarrow \Lambda \bar{\Sigma}^{-} \pi^{+}$
$0.90 \pm 0.06 \pm 0.16$	225 ± 15	HENRARD	87 DM2	$e^{+} e^{-} \rightarrow \bar{\Lambda} \Sigma^{+} \pi^{-}$
$1.11 \pm 0.06 \pm 0.20$	342 ± 18	HENRARD	87 DM2	$e^{+} e^{-} \rightarrow \Lambda \bar{\Sigma}^{-} \pi^{+}$
$1.53 \pm 0.17 \pm 0.38$	135	EATON	84 MRK2	$e^{+} e^{-} \rightarrow \bar{\Lambda} \Sigma^{+} \pi^{-}$
$1.38 \pm 0.21 \pm 0.35$	118	EATON	84 MRK2	$e^{+} e^{-} \rightarrow \Lambda \bar{\Sigma}^{-} \pi^{+}$

$\Gamma\left(p K^{-} \bar{\Lambda}+c . c.\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-3}) EVTS

$\mathbf{0 . 8 7} \pm \mathbf{0 . 1 1}$ OUR AVERAGE					
$0.85_{-0.15}^{+0.17} \pm 0.02$	45	${ }^{1}$ LU	19	BELL	$B^{+} \rightarrow \bar{p} \wedge K^{+} K^{+}$
$0.89 \pm 0.07 \pm 0.14$	307	EATON	84	MRK2	$e^{+} e^{-}$

$0.89 \pm 0.07 \pm 0.14 \quad 307 \quad$ EATON $\quad 84 \quad$ MRK2 $e^{+} e^{-}$
${ }^{1}$ LU 19 reports $(8.32+1.63 \pm 0.49) \times 10^{-4}$ from a measurement of $[\Gamma(J / \psi(1 S) \rightarrow$ $p K^{-} \bar{\Lambda}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)\right]$assuming $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)$ $=(1.026 \pm 0.031) \times 10^{-3}$, which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)$ $=(1.006 \pm 0.027) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(2\left(K^{+} K^{-}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{192} / \Gamma$
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$1.4_{-0.4}^{+0.5} \pm 0.2 \quad 11.0_{-3.5}^{+4.3} \quad 1$ HUANG 03 BELL $B^{+} \rightarrow 2\left(K^{+} K^{-}\right) K^{+}$ $0.7 \pm 0.3 \quad$ VANNUCCI 77 MRK1 $e^{+} e^{-}$
${ }^{1}$ Using $\mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=(1.01 \pm 0.05) \times 10^{-3}$.

$\Gamma\left(p K^{-} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}$					$\Gamma_{193} /{ }^{\text {/ }}$
VaLUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMment	
$0.29 \pm 0.06 \pm 0.05$	90	EATON			

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{194} / \Gamma^{2}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 8 6} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 1 9}} \frac{\text { EVTS }}{1 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{1}$ METREVELI $12 \quad \frac{\text { TECN }}{\frac{\text { COMMENT }}{\psi(2 S) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}}}$

- - We do not use the following data for averages, fits, limits, etc. - -
$2.39 \pm 0.24 \pm 0.22107 \quad{ }^{2}$ BALTRUSAIT..85D MRK3 $e^{+} e^{-}$
$2.2 \pm 0.9 \quad 6 \quad{ }^{2}$ BRANDELIK 79C DASP $e^{+} e^{-}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Interference with non-resonant $K^{+} K^{-}$production not taken into account.
$\Gamma\left(\kappa_{S}^{0} K_{L}^{0}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
195土0.11 OUR AVERAGE Error includes scale factor of 2.4 See the idogram
$1.93 \pm 0.01 \pm 0.05110 \mathrm{~K} \quad$ ABLIKIM \quad 17AH BES3 $\quad J / \psi \rightarrow K_{S}^{0} K_{L}^{0} \rightarrow \pi^{+} \pi^{-}$ $2.62 \pm 0.15 \pm 0.14 \quad 0.3 \mathrm{k} \quad 1$ METREVELI $12 \quad \psi(2 S) \rightarrow \pi^{+} \pi^{-} K_{S}^{0} K_{L}^{0}$ $1.82 \pm 0.04 \pm 0.13 \quad 2.1 \mathrm{k} \quad{ }^{2}$ BAI \quad 04A BES2 $\quad J / \psi \rightarrow K_{S}^{0} K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \chi$
- - We do not use the following data for averages, fits, limits, etc. - - -
$1.18 \pm 0.12 \pm 0.18 \quad$ JOUSSET $90 \quad$ DM2 $\quad J / \psi \rightarrow$ hadrons
$1.01 \pm 0.16 \pm 0.09 \quad 74 \quad$ BALTRUSAIT...85D MRK3 $e^{+} e^{-}$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Using $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=0.6868 \pm 0.0027$.

$\Gamma(\Lambda \bar{\Sigma}+$ C.c. $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 0 1}} / \Gamma$

VALUE (units 10^{-5})	CL\% EVTS	DOCUMENT ID	TECN	COMMENT
$\mathbf{2 . 8 3} \pm 0.23$ OUR AVERAGE				
$2.74 \pm 0.24 \pm 0.22$	234 ± 21	${ }^{1}$ ABLI	12B BES3	$J / \psi \rightarrow \Lambda \bar{\Sigma}^{0}$
$2.92 \pm 0.22 \pm 0.24$	308 ± 24	${ }^{2}$ AB	12	$J / \psi \rightarrow \bar{\Lambda} \Sigma^{0}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<18	90	2 HENRARD	87	DM2	$J / \psi \rightarrow \bar{\Lambda} \Sigma^{0}$
<15	PERUZZI	78	MRK1	$e^{+} e^{-} \rightarrow \Lambda X$	

${ }^{1}$ ABLIKIM 12B quotes $\mathrm{B}\left(J / \psi \rightarrow \Lambda \bar{\Sigma}^{0}\right)$ which we multiply by 2 .
${ }^{2}$ ABLIKIM 12B and HENRARD 87 quote results for $\mathrm{B}\left(J / \psi \rightarrow \bar{\Lambda} \Sigma^{0}\right)$ which we multiply by 2 .

$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$					Γ_{202} / Γ
VALUE	$\underline{C L} \%$	DOCUMENT ID	TECN	COMMENT	
$<1.4 \times 10^{-8}$	95	1 ABLIKIM	17AH BES3	$J / \psi \rightarrow K$	${ }_{S}^{0} \rightarrow$

- - We do not use the following data for averages, fits, limits, etc. ${ }^{\pi} \bullet \pi^{\pi}$
$<1 \times 10^{-6}$
951 BAI 04D BES $e^{+} e^{-}$
$<5.2 \times 10^{-6} \quad 90 \quad 1$ BALTRUSAIT..85C MRK3 $e^{+} e^{-}$
${ }^{1}$ Forbidden by $C P$.
—— radiative decays
$\Gamma(3 \gamma) / \Gamma_{\text {total }} \quad \Gamma_{203} / \Gamma^{2}$ $\frac{\left.\text { VALUE (units } 10^{-6}\right)}{\mathbf{1 1 . 6 \pm 2} \text { 2.2 OUR }} \frac{C L \%}{\text { AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ 11.6土2.2 OUR AVERAGE
$11.3 \pm 1.8 \pm 2.0 \quad 113 \pm 18 \quad$ ABLIKIM $\quad 13$ I \quad BES3 $\quad \psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$ $12 \pm 3 \pm 2 \quad 24.2_{-6.0}^{+7.2} \quad$ ADAMS 08 CLEO $\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<55 \quad 90 \quad$ PARTRIDGE $80 \mathrm{CBAL} e^{+} e^{-}$

$\Gamma(4 \gamma) / \Gamma_{\text {total }}$	CL\%	DOCUMENT ID		TECN	COMMENT $\quad \Gamma_{\mathbf{2 0 4}} / \boldsymbol{\Gamma}$
VALUE					
$<9 \times 10^{-6}$	90	ADAMS	08	CLEO	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$
$\Gamma(5 \gamma) / \Gamma_{\text {total }}$					Γ_{205} / Γ
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT
$<15 \times 10^{-6}$	90	ADAMS	08	CLEO	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$
$\Gamma\left(\gamma \pi^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \Gamma_{\text {total }}$					Γ_{206} / Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT
1.15 ± 0.05		${ }^{1}$ ABLIKIM	15A	BES3	$J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$

1 The uncertainty is systematic as statistical is netligible.

$\Gamma\left(\gamma \eta_{c}(1 S) \rightarrow 3 \gamma\right) / \Gamma_{\text {total }}$
Γ_{212} / Γ
VALUE (units 10^{-6}) EVTS
DOCUMENT ID TECN COMMENT
3.8 $\mathbf{- 1 . 3}$ 1.0 OUR AVERAGE Error includes scale factor of 1.1.

$4.5 \pm 1.2 \pm 0.6$	33 ± 9	ABLIKIM	13।	BES3	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$
$1.2_{-1.1}^{+2.7} \pm 0.3$	$1.2_{-1.1}^{+2.8}$	ADAMS	08	CLEO	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$

$\Gamma\left(\gamma \pi^{+} \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}$				Γ_{213} / Γ
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	
$8.3 \pm 0.2 \pm 3.1$	${ }^{1}$ BALTRUSAIT...86B	MRK3	$J / \psi \rightarrow 4 \pi \gamma$	Γ_{214} / Γ
${ }^{1} 4 \pi$ mass less than 2.0 GeV .				
$\Gamma(\gamma \boldsymbol{\eta} \pi \boldsymbol{\pi}) / \Gamma_{\text {total }}$				
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	
6.1 ± 1.0 OUR AVERAGE				
$5.85 \pm 0.3 \pm 1.05$	${ }^{1}$ EDWARDS 83B	CBAL	$J / \psi \rightarrow \eta \pi^{+} \pi$	
$7.8 \pm 1.2 \pm 2.4$	1 EDWARDS 83B	CBAL	$J / \psi \rightarrow \eta 2 \pi^{0}$	
${ }^{1}$ Broad enhancement at 1700				

$\Gamma\left(\gamma \eta_{\mathbf{2}}(1870) \rightarrow \gamma \boldsymbol{\eta} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{215} / Γ
VALUE (units 10^{-4})	DOCL		TECN	COMMENT	
$6.2 \pm 2.2 \pm 0.9$	BAI	99	BES	$J / \psi \rightarrow$	

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma(\gamma \eta(1405 / 1475) \rightarrow \gamma K \bar{K} \pi) / \Gamma_{\text {total }}$			Γ_{216} / Γ		
VALUE (units 10^{-3})	DOCUMENT ID		TECN COMMENT		
2.8 ± 0.6 OUR AVERAGE	Error includes scale factor of 1.6. See the ideogram below.				
$1.66 \pm 0.1 \pm 0.58$	1,2 BAI	00D	BES	$J / \psi \rightarrow \gamma$	$\gamma K^{ \pm} K_{S}^{0} \pi^{\mp}$
$3.8 \pm 0.3 \pm 0.6$	${ }^{3}$ AUGUSTIN	90	DM2	$J / \psi \rightarrow \gamma$	$\gamma K \bar{K} \pi$
$4.0 \pm 0.7 \pm 1.0$	${ }^{3}$ EDWARDS	82E	Cbal	$J / \psi \rightarrow K$	$K^{+} K^{-} \pi^{0} \gamma$
4.3 ± 1.7	${ }^{3,4}$ SCHARRE	80	MRK2	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - -					
$1.78 \pm 0.21 \pm 0.33$	$3,5,6$ AUGUSTIN	92	DM2	$\mathrm{J} / \psi \rightarrow \gamma$	$\gamma K \bar{K} \pi$
$0.83 \pm 0.13 \pm 0.18$	3,7,8 AUGUSTIN	92	DM2	$J / \psi \rightarrow \gamma$	$\gamma K \bar{K} \pi$
$0.6{ }_{-0.16}^{+0.17}+0.0 .15$	${ }^{3,6,9}$ BAI			$J / \psi \rightarrow \gamma$	$\gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$
$1.03{ }_{-0.18}^{+0.21}{ }_{-0.19}^{+0.26}$	3,8,10 BAI		MRK3	$J / \psi \rightarrow \gamma$	$\gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$

1 Interference with the $J / \psi(1 S)$ radiative transition to the broad $K \bar{K} \pi$ pseudoscalar state around 1800 is $(0.15 \pm 0.01 \pm 0.05) \times 10^{-3}$
${ }^{2}$ Interference with $J / \psi \rightarrow \gamma f_{1}(1420)$ is $(-0.03 \pm 0.01 \pm 0.01) \times 10^{-3}$
${ }^{3}$ Includes unknown branching fraction $\eta(1405) \rightarrow K \bar{K} \pi$.
${ }^{4}$ Corrected for spin-zero hypothesis for $\eta(1405)$.
${ }^{5}$ From fit to the $a_{0}(980) \pi 0^{-}+$partial wave.
${ }^{6} a_{0}(980) \pi$ mode.
${ }^{7}$ From fit to the $K^{*}(892) K 0^{-+}$partial wave.
${ }^{8} K^{*} K$ mode.
${ }^{9}$ From $a_{0}(980) \pi$ final state.
${ }^{10}$ From $K^{*}(890) K$ final state.

$\Gamma\left(\gamma \eta(1405 / 1475) \rightarrow \gamma \gamma \rho^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{217} / \Gamma$

LUE (units 10^{-4})	DOCUMENT ID TECN includes scale factor of 1.8.			COMMENT
0.78 ± 0.20 OUR AVERAGE				
$1.07 \pm 0.17 \pm 0.11$	${ }^{1} \mathrm{BAI}$	04」	BES2	$J / \psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$
$0.64 \pm 0.12 \pm 0.07$	${ }^{1}$ COFFMAN	90	MRK3	$J / \psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$

${ }^{1}$ Includes unknown branching fraction $\eta(1405) \rightarrow \gamma \rho^{0}$.

2 includes unknown branching fraction to $\eta \pi^{+} \pi^{-}$

$\Gamma\left(\gamma \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$					Γ_{225} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	
5.25 ± 0.07 OUR AVERAGE Error includes SC					

$5.27 \pm 0.03 \pm 0.05$	36 k	ABLIKIM	19T BES	$J / \psi \rightarrow \gamma \eta^{\prime}$	
$5.43 \pm 0.23 \pm 0.09$	5.0 k	1 ABLIKIM	180	BES3	$\psi(2 S) \rightarrow \pi^{+} \pi^{-} \gamma \gamma \gamma$

$4.77 \pm 0.22 \pm 0.06 \quad 2$ ABLIKIM $\quad 11$ BES3 $J / \psi \rightarrow \eta^{\prime} \gamma$
$5.24 \pm 0.12 \pm 0.11 \quad$ PEDLAR $\quad 09$ CLE3 $J / \psi \rightarrow \eta^{\prime} \gamma$
$5.55 \pm 0.44 \quad 35 \mathrm{k} \quad$ ABLIKIM 06E BES2 $J / \psi \rightarrow \eta^{\prime} \gamma$

- - We do not use the following data for averages, fits, limits, etc. • - -

$\Gamma\left(\gamma f_{2}(1270) f_{2}(\mathbf{1 2 7 0})\right) / \Gamma_{\text {total }}$
Γ_{227} / Γ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{9.5 \pm \mathbf{0 . 7} \pm \mathbf{1 . 6}} \frac{\text { EVTS }}{646 \pm 45} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } \quad 04 \mathrm{M}} \frac{\text { TECN }}{\text { BES }} \frac{\text { COMMENT }}{J / \psi \rightarrow \gamma 2 \pi^{+} 2 \pi^{-}}$ $\Gamma\left(\gamma f_{2}(1270) f_{2}(1270)(\right.$ non resonant $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{228} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{8 . 2} \pm \mathbf{0 . 8} \pm \mathbf{1 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { TECN }}{\text { BES }} \frac{\text { COMMENT }}{J / \psi \rightarrow \gamma 2 \pi^{+} 2 \pi^{-}}$
${ }^{1}$ Subtracting contribution from intermediate $\eta_{C}(1 S)$ decays.

$\Gamma(\gamma \omega \omega) / \Gamma_{\text {total }}$			
VALUE (units 10^{-3}) EVTS	S DOCUMENT ID	TECN	COMMENT
1.61 ± 0.33 OUR AVERAGE			
$6.0 \pm 4.8 \pm 1.8$	ABLIKIM 08A	BES2	$J / \psi \rightarrow \gamma \omega \pi^{+} \pi^{-}$
$1.41 \pm 0.2 \pm 0.42 \quad 120 \pm 17$	7 BISELLO 87	SPEC	$e^{+} e^{-}$, hadrons γ
$1.76 \pm 0.09 \pm 0.45$	BALTRUSAIT...85C	MRK3	$e^{+} e^{-} \rightarrow$ hadrons γ
$\Gamma\left(\gamma \eta(1405 / 1475) \rightarrow \gamma \rho^{0} \rho^{0}\right) / \Gamma_{\text {total }}$			
VALUE (units 10 ${ }^{-3}$)	DOCUMENT ID	TECN	COMMENT
1.7 ± 0.4 OUR AVERAGE Error includes scale factor of 1.3.			
2.1 ± 0.4	BUGG 95	MRK3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
1.36 ± 0.38	1,2 BISELLO 89B	DM2	$J / \psi \rightarrow 4 \pi \gamma$
1 Estimated by us from vario ${ }^{2}$ Includes unknown branchin	ing fraction to $\rho^{0} \rho^{0}$.		

$\boldsymbol{\Gamma}\left(\gamma \boldsymbol{f}_{\mathbf{2}}(\mathbf{1 2 7 0})\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{1 . 6 4} \pm \mathbf{0 . 1 2} \text { OUR AVERAGE }} \frac{E V T S}{} \quad \boldsymbol{\Gamma}_{\mathbf{2 3 3}} / \boldsymbol{\Gamma}$
Error includes scale factor of 1.3 . See the ideogram below.
$\mathbf{1 . 6 4} \mathbf{\pm 0 . 1 2}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

$2.07 \pm 0.16_{-0.07}^{+0.02}$	2.4k	1,2 DOBBS	15		$J / \psi \rightarrow \gamma \pi \pi$
$1.63 \pm 0.26_{-0.06}^{+0.02}$		3 ABLIKIM	06V	BES2	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
$1.42 \pm 0.21{ }_{-0.05}^{+0.01}$		${ }^{4}$ ABLIKIM	06v	BES2	$e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$
$1.33 \pm 0.05 \pm 0.20$		${ }^{5}$ AUGUSTIN	87	DM2	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
$1.36 \pm 0.09 \pm 0.23$		${ }^{5}$ BALTRUSAIT..	. 87	MRK3	$J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$
$1.48 \pm 0.25 \pm 0.30$	178	EDWARDS	82B	CBAL	$e^{+} e^{-} \rightarrow 2 \pi^{0} \gamma$
2.0 ± 0.7	35	ALEXANDER	78	PLUT	$e^{+} e^{-}$
1.2 ± 0.6	30	${ }^{6}$ BRANDELIK	78B	DASP	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$

${ }^{1}$ Using CLEO-C data but not authored by the CLEO Collaboration.
${ }^{2}$ DOBBS 15 reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma f_{2}(1270)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=$ $(1.744 \pm 0.052 \pm 0.122) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)$ $=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 06V reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma f_{2}(1270)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=$ $(1.371 \pm 0.010 \pm 0.222) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)$ $=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ ABLIKIM 06 V reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma f_{2}(1270)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)\right]=$ $(1.200 \pm 0.027 \pm 0.174) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\mathrm{f}_{2}(1270) \rightarrow \pi \pi\right)$ $=\left(84.2_{-0.9}^{+2.9}\right) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ Estimated using $\mathrm{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)=0.843 \pm 0.012$. The errors do not contain the uncertainty in the $f_{2}(1270)$ decay.
${ }^{6}$ Restated by us to take account of spread of E1, M2, E3 transitions.

$$
\Gamma\left(\gamma f_{2}(1270)\right) / \Gamma_{\text {total }}\left(\text { units } 10^{-3}\right)
$$

$\Gamma\left(\gamma f_{0}(1370) \rightarrow \gamma K \bar{K}\right) / \Gamma_{\text {total }}$				Γ_{235} / Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	COMMENT	

${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
$\Gamma\left(\gamma f_{0}(1370) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{236} / \Gamma$

$\Gamma\left(\gamma f_{0}(1500) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$							Γ_{237} / Γ
VALUE (units 10^{-5})			DOCUMENT ID TECN		COMMENT		
$1.59 \pm 0.16{ }_{-0.56}^{+0.18}$			ABLIKIM	18AA BES3	J/	$\rightarrow \gamma K_{S}^{0} K^{0}$	
$\Gamma\left(\gamma f_{0}(1710) \Rightarrow\right.$	K)/						$\Gamma_{238} /{ }^{\text {/ }}$
VALUE (units 10^{-4})	CL\%	EVTS	DOC	ID	TECN	COMMENT	

$\mathbf{9 . 5} \pm \mathbf{0}_{\mathbf{0}}^{\mathbf{1} .5}$ OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

$\begin{array}{ll} 8.00_{-}^{+} & 0.12+1.24 \\ 0.08-0.40 \end{array}$		${ }^{1}$ ABLIKIm	18 AA	BES3	J / ψ	$\gamma K_{S}^{0} K_{S}^{0}$
$11.76 \pm \quad 0.54 \pm 0.94$	1.2k	${ }^{2}$ DobbS	15		J / ψ	$\gamma K \bar{K}$
$9.62 \pm 029{ }^{+3.51}$		${ }^{3}$ BAI	03 G	BES	J / ψ	$\gamma K \bar{K}$
$5.0 \pm 0.8{ }_{-0.4}^{+1.8}$		1,4 BAI	96C	BES	J / ψ	$\gamma K^{+} K^{-}$
$9.2 \pm 1.4 \pm 1.4$		${ }^{1}$ AUGUSTIN	88	DM2	J / ψ	$\gamma K^{+} K^{-}$
$10.4 \pm 1.2 \pm 1.6$		${ }^{1}$ AUGUSTIN	88	DM2	$J / \psi \rightarrow$	$\gamma K_{S}^{0} K_{S}^{0}$
$9.6 \pm 1.2 \pm 1.8$		${ }^{1}$ baltrusal	. 87	MRK3	J/ ψ	γK^{+}

- - We do not use the following data for averages, fits, limits, etc. - -

${ }^{1}$ Includes unknown branching fraction to $K^{+} K^{-}$or $K_{S}^{0} K_{S}^{0}$. We have multiplied $K^{+} K^{-}$ measurement by 2 , and $K_{S}^{0} K_{S}^{0}$ by 4 to obtain $K \bar{K}$ result.
${ }^{2}$ Using CLEO-c data but not authored by the CLEO Collaboration.

Meson Particle Listings
$J / \psi(1 S)$

```
\({ }^{3}\) Includes unknown branching ratio to \(K^{+} K^{-}\)or \(K_{S}^{0} K_{S}^{0}\).
\({ }^{4}\) Assuming \(J^{P}=2^{+}\)for \(f_{0}(1710)\).
\({ }^{5}\) Assuming \(J^{P}=0^{+}\)for \(f_{0}(1710)\).
\({ }^{6}\) Includes unknown branching fraction to \(\rho^{0} \rho^{0}\).
7 Includes unknown branching fraction to \(\pi^{+} \pi^{-}\)
\({ }^{8}\) Includes unknown branching fraction to \(\eta \eta\).
```


$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma \pi \pi\right) / \Gamma_{\text {total }}$

06v BES2 $e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - -
$2.5 \pm 1.6 \pm 0.8 \quad$ BAI $\quad 98 \mathrm{H}$ BES $J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
2 Including unknown branching fraction to $\pi \pi$.

$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma \eta \eta\right) / \Gamma_{\text {total }} \quad \Gamma_{241} / \Gamma$

VALUE (units 10^{-4})	EVTS	DOCUMENT		TECN	COMMENT
$2.35 \pm 0.13+1.24$	5.5k	${ }^{1}$ ABLIKIM	13N	BES3	$J / \psi \rightarrow \gamma \eta \eta$

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.

$\Gamma\left(\gamma f_{1}(1285)\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-3}) 0.61 ± 0.08 OUR AVERAGE
$0.69 \pm 0.16 \pm 0.20$
$0.61 \pm 0.04 \pm 0.21$
$0.45+0.09$
$0.625 \pm 0.063 \pm 0.103$
$0.70 \pm 0.08 \pm 0.16$

DOCUMENT ID
${ }^{1} \mathrm{BAI} \quad$ 04」 BES2 $\quad J / \psi \rightarrow \gamma \gamma \rho^{0}$

2 BAI \quad| | 00 DES | J / ψ |
| :--- | :--- | :--- |
| B | $\rightarrow \gamma \gamma \rho$ | |
| | $\rightarrow \gamma K^{ \pm} K_{S}^{0}$ | |

${ }^{3} \mathrm{BAI} \quad 99 \quad \mathrm{BES} \quad J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$
$\begin{array}{lll}4 \text { BOLTON } & 92 & \text { MRK3 } J / \psi \rightarrow \gamma f_{1}(1285) \\ 5_{\text {BOLTON }} & 92 \text { B MRK3 } & J / \psi \rightarrow \gamma \eta \pi^{+}\end{array}$
${ }^{1}$ Assuming $\mathrm{B}\left(f_{1}(1285) \rightarrow \rho^{0} \gamma\right)=0.055 \pm 0.013$.
${ }^{2}$ Assuming $\Gamma\left(f_{1}(1285) \rightarrow K \bar{K} \pi\right) / \Gamma_{\text {total }}=0.090 \pm 0.004$.
${ }^{3}$ Assuming $\Gamma\left(f_{1}(1285) \rightarrow \eta \pi \pi\right) / \Gamma_{\text {total }}=0.5 \pm 0.18$.
${ }^{4}$ Obtained summing the sequential decay channels
$\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi \pi \pi \pi\right)=(1.44 \pm 0.39 \pm 0.27) \times 10^{-4} ;$
$\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow a_{0}(980) \pi, a_{0}(980) \rightarrow \eta \pi\right)=(3.90 \pm 0.42 \pm 0.87) \times$
10^{-4};
$\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow a_{0}(980) \pi, a_{0}(980) \rightarrow K \bar{K}\right)=(0.66 \pm 0.26 \pm$
$0.29) \times 10^{-4}$;
$\mathrm{B}\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \gamma \rho^{0}\right)=(0.25 \pm 0.07 \pm 0.03) \times 10^{-4}$.
${ }^{5}$ Using $\mathrm{B}\left(f_{1}(1285) \rightarrow a_{0}(980) \pi\right)=0.37$, and including unknown branching ratio for $\mathrm{a}_{0}(980) \rightarrow \eta \pi$.

$\Gamma\left(\gamma f_{1}(1510) \rightarrow \gamma \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$					Γ_{245} / Γ
VALUE (units 10^{-4})	DOCU		TECN	COMMENT	
$4.5 \pm 1.0 \pm 0.7$	BAI	99	BES	J / ψ	

$\Gamma\left(\gamma f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 4 6}} / \Gamma$
VALUE (units 10^{-4}) CL\% EVTS DOCUMENT ID TECN COMMENT
$5.7 \mathbf{+ 0 . 8}$ = OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

- We do not use the following data for averages, fits, limits, etc. • -
$<3.4 \quad 90 \quad 4 \quad 4$ BRANDELIK 79 DASP $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$
$<2.3 \quad 90 \quad 3 \quad$ ALEXANDER 78 PLUT $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ DOBBS 15 reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)\right]=$ $(7.09 \pm 0.46 \pm 0.67) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)$
$=(87.6 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Using $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=0.888$.
${ }^{4}$ Assuming isotropic production and decay of the $f_{2}^{\prime}(1525)$ and isospin.

$\Gamma\left(\gamma f_{2}^{\prime}(1525) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{247 / \Gamma}$

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.

$$
\begin{aligned}
& 8.1 \pm 0.9 \pm 0.2 \quad 750 \quad 1,2 \text { DOBBS } \quad 15 \quad J / \psi \rightarrow \gamma K \bar{K} \\
& 3.85 \pm 0.17_{-0.73}^{+1.91} \quad{ }^{3} \mathrm{BAI} \quad 03 \mathrm{G} \text { BES } \quad J / \psi \rightarrow \gamma K \bar{K} \\
& 3.6 \pm 0.4 \begin{array}{c}
+0.4 \\
+1.4
\end{array} \quad 3 \mathrm{BAI} \quad 96 \mathrm{C} \text { BES } J / \psi \rightarrow \gamma K^{+} K^{-} \\
& 5.6 \pm 1.4 \pm 0.9 \quad{ }^{3} \text { AUGUSTIN } \quad 88 \quad \text { DM2 } \quad J / \psi \rightarrow \gamma K^{+} K^{-} \\
& 4.5 \pm 0.4 \pm 0.9 \quad{ }^{3} \text { AUGUSTIN } 88 \quad \text { DM2 } \quad J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0} \\
& 6.8 \pm 1.6 \pm 1.4 \quad{ }^{3} \text { BALTRUSAIT.. } 87 \text { MRK3 } \mathrm{J} / \psi \rightarrow \gamma K^{+} K^{-}
\end{aligned}
$$

$\Gamma\left(\gamma f_{2}(1640) \rightarrow \gamma \omega \omega\right) / \Gamma_{\text {total }}$						Γ_{249} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.28 \pm 0.05 \pm 0.17$	141	ABLIKIM	06H	BES	$J / \psi \rightarrow \gamma$	
$\Gamma\left(\gamma f_{2}(1910) \rightarrow \gamma \omega \omega\right) / \Gamma_{\text {total }}$						Γ_{250} / Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.20 \pm 0.04 \pm 0.13$	151	ABLIKIM	06H	BES	$J / \psi \rightarrow \gamma$	
$\Gamma\left(\gamma f_{0}(1750) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$						Γ_{251} / Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
$1.11 \pm 0.06 \pm 0.19$		ABLIKIM	18AA	BES3	$J / \psi \rightarrow \gamma$	
$\Gamma\left(\gamma f_{0}(1800) \rightarrow\right.$) $\Gamma_{\text {to }}$					
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.5 ± 0.6 OUR AVERAGE						
$2.00 \pm 0.08{ }_{-1.64}^{+1.38}$	1.3k	ABLIKIM	13J	BES3	$J / \psi \rightarrow \gamma$	
$2.61 \pm 0.27 \pm 0.65$	95	ABLIKIM	06J	BES2	$J / \psi \rightarrow \gamma$	

$\Gamma\left(\gamma f_{\mathbf{2}}(1810) \Rightarrow\right.$	$/ \Gamma_{\text {tot }}$				Γ_{253} / Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT		COMMENT	
$\begin{array}{r} 5.40 \pm 0.60+3.42 \\ -0.67-2.35 \end{array}$	5.5k	${ }^{1}$ ABLIKIM		$J / \psi \rightarrow \gamma \eta \eta$	

${ }^{1} \begin{aligned} & \text { From partial wave analysis including all possible combinations of } 0^{++}, 2^{++} \\ & \text {resonances. }\end{aligned}$
$\Gamma\left(\gamma \boldsymbol{f}_{\mathbf{2}}(\mathbf{1 9 5 0}) \rightarrow \gamma \boldsymbol{K}^{*}(\mathbf{8 9 2}) \bar{K}^{*}(\mathbf{8 9 2})\right) / \Gamma_{\text {total }}++$
$\Gamma_{\mathbf{2 5 4}} / \Gamma$

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
$0.7 \pm 0.1 \pm 0.2$	BAI		

$\Gamma\left(\gamma K^{*}(892) \bar{K}^{*}(892)\right) / /_{\text {total }}$
$\Gamma_{255 / \Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{4.0 \pm \mathbf{0 . 3} \pm 1.3} \frac{\text { EVTS }}{320} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{BAI}} \frac{\text { TECN }}{\mathrm{BES}} \frac{\text { COMMENT }}{\mathrm{J} / \psi \rightarrow \gamma K^{+} K^{0} \pi^{+} \pi^{-}}$ ${ }^{1}$ Summed over all charges.
$\Gamma(\gamma \phi \phi) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 5 6}} / \Gamma$

4.0 \pm 1.2 OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below.
$7.5 \pm 0.6 \pm 1.2$

$3.4 \pm 0.8 \pm 0.6 \quad 33 \pm 7 \quad 1$| 1 | BISELLO | 90 | DM 2 |
| :--- | :--- | :--- | :--- |
| | $J / \psi \rightarrow \gamma K^{+} K^{-} K_{S}^{0} K_{L}^{0}$ | | |

$1_{\phi \phi}$ mass less than $2.9 \mathrm{GeV}, \eta_{C}$ excluded.

$\Gamma(\gamma p \bar{p}) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{0 . 3 8} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 0 7}} \frac{C L \%}{49} \quad \frac{\text { EVTS }}{\text { EACUMENT ID }} \frac{\text { TECN }}{\text { MRK2 }} \frac{\text { COMMENT }}{e^{+} e^{-}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$\underline{\text { VALUE (units } 10^{-4} \text {) }}$ EVTS
DOCUMENT ID TECN COMMENT

$3.14_{-0.19}^{+0.50}$ OUR AVERAGE

2.7				
± 0.6	± 0.6	2	BAI	90 B
2.4	MRK3	$J / \psi \rightarrow \gamma K^{+} K^{-} K_{S}^{0} K_{L}^{0}$		

${ }^{1}$ From a partial wave analysis of $J / \psi \rightarrow \gamma \phi \phi$ that also finds significant signals for for $\eta(2100), 0^{-+}$phase space, $f_{0}(2100), f_{2}(2010), f_{2}(2300), f_{2}(2340)$, and a previously unseen 0^{-+}state $X(2500)\left(\mathrm{M}=2470_{-19-23}^{+15} \mathrm{MeV}, \Gamma=230_{-35-33}^{+64}+56 \mathrm{MeV}\right)$.
${ }^{2}$ Includes unknown branching fraction to $\phi \phi$.
${ }^{3}$ Estimated by us from various fits.
${ }^{4}$ Includes unknown branching fraction to $\rho^{0} \rho^{0}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\gamma} \boldsymbol{\eta}(\mathbf{1 7 6 0}) \rightarrow \boldsymbol{\gamma} \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\rho}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{0 . 1 3 \pm 0 . 0 9}}$
$1,2 \frac{\text { DOCUMENT ID }}{\text { BISELLO }} \quad$ 89B
$\frac{\text { TECN }}{\text { DM2 }} \frac{\text { COMMENT }}{J / \psi \rightarrow 4 \pi \gamma}$
${ }^{1}$ Estimated by us from various fits.
${ }^{2}$ Includes unknown branching fraction to $\rho^{0} \rho^{0}$.

$\Gamma(\gamma \boldsymbol{\eta} \mathbf{(1 7 6 0)}) \Rightarrow$	$/ \Gamma_{\text {to }}$				Γ_{260} / Γ
VALUE (units 10 ${ }^{-3}$)	EVTS	DOCUMENT	TECN	COMMENT	
$1.98 \pm 0.08 \pm 0.32$	1045	ABLIKIM	BES	$J / \psi \rightarrow$	

$\Gamma(\gamma \eta(1760) \rightarrow \gamma \gamma \gamma) / \Gamma_{\text {total }}$						Γ_{261} / Γ
VALUE	CL\%	DOCUMENT		TECN	COMMENT	
$<4.80 \times 10^{-6}$	90	ABLIKIM	180	BES3	$\psi(2 S) \rightarrow$	

$\Gamma\left(\gamma X(1835) \rightarrow \gamma \pi^{+} \pi^{-} \eta^{\prime}\right) / \Gamma_{\text {total }} \quad \Gamma_{262} / \Gamma$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{2 . 7 7}_{-\mathbf{0 . 4 0}}^{\mathbf{+ 0 . 3 4}}$ OUR AVERAGE Error includes scale factor of 1.1 .

$3.93 \pm 0.38{ }_{-0.84}^{+0.31}$		1 ABLIKIM		BES3	$J / \psi \rightarrow \gamma \pi^{+}$
$2.87 \pm 0.09{ }_{-0.52}^{+0.49}$	4265	${ }^{2}$ ABLIKIM		BES3	$J / \psi \rightarrow \gamma \pi$
$2.2 \pm 0.4 \pm 0.4$	264	ABLIKIM		BES2	$J / \psi \rightarrow \gamma \pi$
${ }^{1}$ From a fit of the measured $\pi^{+} \pi^{-} \eta^{\prime}$ lineshape that accounts for the abrupt distortion observed at the $p \bar{p}$ threshold with a Flatte formula in addition to known backgrounds and contributors, as well as an ad hoc Breit-Wigner ($\mathrm{M} \approx 1919 \mathrm{MeV}$; $\Gamma \approx 51 \mathrm{MeV}$) that is required for a good fit. Another explanation for the distortion provided by ABLIKIM 16J is that a second resonance near 1870 MeV interferes with the $X(1835)$; fits to this possibility yield product branching fraction values compatible with that shown within the respective systematic uncertainties.					
${ }^{2}$ From a fit of the $\pi^{+} \pi^{-} \eta^{\prime}$ mass distribution to a combination of $\gamma f_{1}(1510), \gamma X(1835)$, and two unconfirmed states $\gamma X(2120)$, and $\gamma X(2370)$, for $M(p \bar{p})<2.8 \mathrm{GeV}$, and accounting for backgrounds from non- η^{\prime} events and $J / \psi \rightarrow \pi^{0} \pi^{+} \pi^{-} \eta^{\prime}$.					
$\Gamma(\gamma X(1835) \rightarrow \gamma p \bar{p}) / \Gamma_{\text {total }}$					
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{0 . 7 7}_{-0.09}^{\mathbf{+ 0 . 1 5}}$ OUR AVERAGE					
$0.90{ }_{-0.11}^{+0.04+0.27}$		1 ABLIKIM		BES3	$J / \psi \rightarrow \gamma p \bar{p}$
$1.14{ }_{-0.30-0.43}^{+0.42}$	231	2 ALEXANDER	10	CLEO	$J / \psi \rightarrow \gamma p \bar{p}$
$0.70 \pm 0.04{ }_{-0.08}^{+0.19}$		BAI	03F	BES2	$J / \psi \rightarrow \gamma p \bar{p}$
${ }^{1}$ From the fit including final state interaction effects in isospin $0 S$-wave according to SIBIRTSEV 05A.					

$\Gamma\left(\gamma X(1835) \rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta\right) / \Gamma_{\text {total }}$					Γ_{264} / Γ
VALUE (units 10^{-5})	DOCUMENT		TECN	COMMENT	
$3.31+0.33+1.96$	ABLIKIM	15T	BES3	$J / \psi \rightarrow \gamma$	$K_{S}^{0} \eta$

$\Gamma(\gamma X(1835) \Rightarrow \gamma \gamma \phi(1020)) / \Gamma_{\text {total }}$
$\Gamma_{265 / \Gamma}$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - •

$1.77 \pm 0.35 \pm 0.25$	305	1	ABLIKIM	$18 ।$	BES3	$J / \psi \rightarrow \gamma \gamma \phi(1020)$
$8.09 \pm 1.99 \pm 1.36$	1.3 k	${ }^{2}$ ABLIKIM	$18 ।$	BES3	$J / \psi \rightarrow \gamma \gamma \phi(1020)$	

${ }^{1}$ Constructive interference between the $X(1835)$ and $\eta(1405) / \eta(1475)$ is assumed in a fit to the $\gamma \phi$ invariant mass.
2 Destructive interference between the $X(1835)$ and $\eta(1405) / \eta(1475)$ is assumed in a fit to the $\gamma \phi$ invariant mass.

Meson Particle Listings
$J / \psi(1 S)$

$\Gamma\left(\gamma \pi^{0}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-5}) EVTS 3.56 ± 0.17 OUR AVERAGE
$3.59 \pm 0.20 \pm 0.03 \quad 1.6 \mathrm{k}$
$3.63 \pm 0.36 \pm 0.13$
$3.13+0.65$
06E BES2 $J / \psi \rightarrow \pi^{0} \gamma$

7.3 ± 4.7	10	BLOOM	83	CBAL
e^{+}	e			

${ }^{1}$ ABLIKIM 180 reports $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\pi^{0} \rightarrow 2 \gamma\right)\right]=(3.57 \pm$ $0.12 \pm 0.16) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(J / \psi(1 S) \rightarrow \gamma \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\pi^{0} \rightarrow\right.\right.$ $2 \gamma)] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=$ $(34.49 \pm 0.30) \times 10^{-2}$, which we rescale to our best values $\mathrm{B}\left(\pi^{0} \rightarrow 2 \gamma\right)=(98.823 \pm$ $0.034) \times 10^{-2}, \mathrm{~B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(34.68 \pm 0.30) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our is their exp

$\Gamma\left(\gamma f_{0}(\mathbf{2 2 0 0}) \rightarrow \gamma K \bar{K}\right) / \Gamma_{\text {total }}$					Γ_{275} / Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		COMMENT	
$5.86 \pm 0.49 \pm 1.20$	490	1 DOBBS	$15 \mathrm{~J} / \psi-$	$\gamma K \bar{K}$	
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.					
$\Gamma\left(\gamma f_{0}(2200) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$					Γ_{276} / Γ
VALUE (units 10^{-4})		DOCUMENT ID	TECN	COMMENT	
$\begin{aligned} & 2.72 \pm 0.08+0.17 \\ & -0.06-0.47 \end{aligned}$		ABLIKIM	18AA BES3	$J / \psi \rightarrow \gamma$	

$\Gamma\left(\gamma f_{J}(2220)\right) / \Gamma_{\text {total }}$				Γ_{277} / Γ	
VALUE (units 10^{-5})	CL\%	EVTS	DOCUMENT ID	TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -					
>300			1 BAI 96B	BES	$e^{+} e^{-} \rightarrow \gamma \bar{p} p, K \bar{K}$
>250	99.9		${ }^{2}$ HASAN 96	SPEC	$\bar{p} p \rightarrow \pi^{+} \pi^{-}$
<2.3	95		3 AUGUSTIN 88	DM2	$J / \psi \rightarrow \gamma K^{+} K^{-}$
<1.6	95		3 AUGUSTIN 88	DM2	$J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$
$12.4{ }_{-5.2}^{+6.4} \pm 2.8$		23	${ }^{3}$ BALTRUSAIT...86D	MRK3	$J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$
$8.4{ }_{-2.8}^{+3.4} \pm 1.6$		93	3^{3} BALTRUSAIT...86D	MRK3	$J / \psi \rightarrow \gamma K^{+} K^{-}$

1 Using BARNES 93.
${ }^{2}$ Using BAI 96B.
${ }^{3}$ Includes unknown branching fraction to $K^{+} K^{-}$or $K_{S}^{0} K_{S}^{0}$.

${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ For $\Gamma=20 / 50 \mathrm{MeV}$, the $90 \% \mathrm{CL}$ upper limits for $K^{+} K^{-}$and $K_{S}^{0} K_{S}^{0}$ are 1.7/3.1 $\times 10^{-5}$ and $1.2 / 2.0 \times 10^{-5}$, respectively.
${ }^{3}$ For spin 2 and helicity 0 ; other combinations lead to more stringent upper limits.

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.
$\Gamma\left(\gamma f_{2}(2340) \rightarrow \gamma K_{s}^{0} K_{s}^{0}\right) / /_{\text {total }} \quad \Gamma_{283} / \Gamma$

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
$\begin{aligned} & 5.54+0.34+3.82 \\ & -0.40-1.49 \end{aligned}$	ABLIKIM	BES3	$J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$

$\Gamma\left(\gamma f_{0}(1500) \rightarrow \gamma \pi \pi\right) / \Gamma_{\text {total }} \quad \Gamma_{284} / \Gamma$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
1.09 ± 0.24 OUR AVERAGE
$1.21 \pm 0.29 \pm 0.24 \quad 174$
$1.00 \pm 0.03 \pm 0.45 \quad 2$ ABLIKIM $\quad 06 \mathrm{~V}$ BES2 $\begin{aligned} & \mathrm{e} / \psi \rightarrow \gamma \pi \pi \\ & e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{+} \pi^{-}\end{aligned}$
$1.02 \pm 0.09 \pm 0.45 \quad 2$ ABLIKIM 06 V BES2 $e^{+} e^{-} \rightarrow J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$

- - We do not use the following data for averages, fits, limits, etc. - • •
$5.7 \pm 0.8 \quad 3,4$ BUGG $\quad 95$ MRK3 $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Including unknown branching fraction to $\pi \pi$.
${ }^{3}$ Including unknown branching ratio for $f_{0}(1500) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$.
${ }^{4}$ Assuming that $f_{0}(1500)$ decays only to two S-wave dipions.

$\Gamma\left(\gamma f_{0}(1500) \Rightarrow\right.$	/ $\Gamma_{\text {to }}$					Γ_{285} / Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT		TECN	COMMENT	
$1.65 \pm 0.31=0.26+0.51$	5.5k	${ }^{1}$ ABLIKIM	13N	BES3	$J / \psi \rightarrow \gamma \eta \eta$	

${ }^{1}$ From partial wave analysis including all possible combinations of $0^{++}, 2^{++}$, and 4^{++} resonances.
$\Gamma(\gamma A \rightarrow \gamma$ invisible $) / \Gamma_{\text {tota }}$
Γ_{286} / Γ
(narrow state \boldsymbol{A} with $\boldsymbol{m}_{A}<960 \mathrm{MeV}$)

$\frac{V A L U E}{<6.3 \times 10^{-6}}$	$\frac{C L \%}{9}$	$\frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{}$	
$\frac{\text { INSLER }}{\text { COMMENT }}$			
$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$			

${ }^{1}$ The limit varies with mass m_{A} of a narrow state A and is 4.3×10^{-6} for $m_{A}=0 \mathrm{MeV}$, reaches its largest value of 6.3×10^{-6} at $m_{A}=500 \mathrm{MeV}$, and is 3.6×10^{-6} at $m_{A}=$ 960 MeV .
$\Gamma\left(\gamma A^{0} \rightarrow \gamma \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$
Γ_{287} / Γ
(narrow state A^{0} with $0.2 \mathrm{GeV}<m_{A^{0}}<3 \mathrm{GeV}$)
VALUE CL\% DOCUMENT ID \quad TECN COMMENT
$<0.5 \times 10^{-5} \quad 90 \quad{ }^{1}$ ABLIKIM $\quad 16 \mathrm{E}$ BES3 $\mathrm{J} / \psi \rightarrow \gamma \mu^{+} \mu^{-}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$<2.1 \times 10^{-5} \quad 90 \quad 2$ ABLIKIM $\quad 12$ BES3 $J / \psi \rightarrow \gamma \mu^{+} \mu^{-}$
${ }^{1}$ For a narrow scalar or pseudoscalar, A^{0}, with a mass in the range $0.212-3 \mathrm{GeV}$. The measured 90% CL limit as a function of $m_{A^{0}}$ is in the range $(2.8-495.3) \times 10^{-8}$.
${ }^{2}$ For a narrow scalar or pseudoscalar, A^{0}, with a mass in the range $0.21-3.00 \mathrm{GeV}$. The measured 90% CL limit as a function of $m_{A^{0}}$ ranges from 4×10^{-7} to 2.1×10^{-5}.

$\Gamma\left(\phi e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{293} / Γ
 1 Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi\right)=(34.49 \pm$?
$0.30) \%$.
- WEAK DECAYS
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{-} \boldsymbol{e}^{+} \boldsymbol{\nu}_{\boldsymbol{e}}+\mathbf{c . c}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{}<\mathbf{1 . 2 \times 1 0 ^ { - \mathbf { 5 } }}$

$\Gamma\left(\overline{D^{0}} e^{+} e^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$		DOCUMENT ID	TECN		$\Gamma_{295} /{ }^{\text {/ }}$
VALUE	CL\%			COMMENT	
$<8.5 \times 10^{-8}$	90	1 ABLIKIM	BES3	$e^{+} e^{-} \rightarrow$	

$<1.1 \times 10^{-5} \quad 90 \quad$ ABLIKIM 06 M BES2 $e^{+} e^{-} \rightarrow J / \psi$
${ }^{1}$ Using D^{0} decays to $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}$, and $K^{-} \pi^{+} \pi^{+} \pi^{-}$.
$\Gamma\left(D_{s}^{-} e^{+} \nu_{e}+\right.$ C.c. $) / \Gamma_{\text {total }}$
$\frac{V A L U E}{} \frac{C L \%}{\text { DOCUMENT ID }}$ TECN COMMENT \quad 296/厂

- We do not use the following data for averages, fits, limits, etc. - .
$\begin{array}{llllll}<3.6 \times 10^{-5} & 90 & 1 \\ \text { ABLIKIM } & 06 \mathrm{M} & \text { BES2 } & e^{+} e^{-} \rightarrow J / \psi\end{array}$
1 Using $\mathrm{B}\left(D_{S}^{-} \rightarrow \phi \pi^{-}\right)=4.4 \pm 0.5 \%$.

$\Gamma\left(D_{s}^{*-} e^{+} \nu_{e}+\right.$ c.c. $) / \Gamma_{\text {total }}$				Γ_{297} / Γ	
VALUE	DOCUMENT ID		TECN	COMMENT	
$<1.8 \times 10^{-6} \quad 90$	ABLIKIM	14R	BES3	$e^{+} e^{-} \rightarrow J / \psi$	
$\Gamma\left(D^{-} \pi^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$					Γ_{298} / Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$<7.5 \times 10^{-5} \quad 90$	ABLIKIM	08J	BES2	$e^{+} e^{-} \rightarrow J / \psi$	
$\Gamma\left(\bar{D}^{0} \bar{K}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$					Γ_{299} / Γ
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
$<1.7 \times 10^{-4} 90$	ABLIKIM	08J	BES2	$e^{+} e^{-} \rightarrow J / \psi$	
$\Gamma\left(\bar{D}^{0} \bar{K}^{* 0}+\right.$ c.c. $) / \Gamma_{\text {total }}$					Γ_{300} / Γ
VALUE CL\%	DOCUMENT ID		TECN	COMMENT	
$<2.5 \times 10^{\mathbf{- 6}} 9$	ABLIKIM	14K	BES3	$e^{+} e^{-} \rightarrow J / \psi$	

$J / \psi(1 S)$ REFERENCES

ABLIKIM	20	PR D101 012004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19A	PR D99 012006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AB	PR D99 052010	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AC	PR D99 071101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AF	PR D99 072006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AN	PR D99 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AQ	PR D100 032004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19H	PR D99 012013	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19N	PR D99 032006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19Q	PL B791 375	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19 T	PRL 122142002	M. Ablikim et al.	(BESIII Collab.)
LU	19	PR D99 032003	P.-C. Lu et al.	(BELLE Collab.)
ABLIKIM	18AA	PR D98 072003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18AB	PR D98 072005	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	18D	PRL 121022001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	181	PR D97 051101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	180	PR D97 072014	M. Ablikim et al.	(BESIII Collab.)
ANASHIN	18A	JHEP 1805119	V.V. Anashin et al.	(KEDR Collab.)
LEES	18	PR D97 052007	J.P. Lees et al.	(BABAR Collab.)
LEES	18E	PR D98 112015	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	17AF	PR D96 111101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17AH	PR D96 112001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17AK	PR D96 112012	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 E	PL B770 217	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17L	PR D95 052003	M. Ablikim et al.	(BESIII Collab.)
LEES	17A	PR D95 052001	J.P. Lees et al.	(BABAR Collab.)
LEES	17 C	PR D95 072007	J.P. Lees et al.	(BABAR Collab.)
LEES	17D	PR D95 092005	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	16E	PR D93 052005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16J	PRL 117042002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16 K	PR D93 052010	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16L	PR D93 072003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16M	PR D93 072008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16 N	PR D93 112011	M. Ablikim	(BESIII Collab.)
ABLIKIM	16P	PR D94 072005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16Q	PL B761 98	M. Ablikim et al.	(BESIII Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)

Meson Particle Listings

$J / \psi(1 S)$, Branching Ratios of ψ 's and χ 's

S. Navas (U. of Granada), and C. Patrignani (Bologna Univ., INFN)

Since 2002, the treatment of the branching ratios of the $\psi(2 S)$ and $\chi_{c 0,1,2}$ has undergone an important restructuring.

When measuring a branching ratio experimentally, it is not always possible to normalize the number of events observed in the corresponding decay mode to the total number of particles produced. Therefore, the experimenters sometimes report the number of observed decays with respect to another decay mode of the same or another particle in the relevant decay chain. This is actually equivalent to measuring combinations of branching actions of several decay modes. collaborations use some previously reported measurements of
the required branching ratios. However, the values are frequently taken from the Review of Particle Physics (RPP), which in turn uses the branching ratio reported by the experiment in the following edition, giving rise either to correlations or to plain vicious circles, as discussed in more detail in earlier editions of this review $[1,2]$.

The way to avoid these dependencies and correlations is to extract the branching ratios through a fit that uses the truly measured combinations of branching fractions and partial widths. This fit, in fact, should involve decays from the four concerned particles, $\psi(2 S), \chi_{c 0}, \chi_{c 1}$, and $\chi_{c 2}$, and occasionally some combinations of branching ratios of more than one of them. This is what is done since the 2002 edition [3].

The PDG policy is to quote the results of the collaborations in a manner as close as possible to what appears in their original publications. However, in order to avoid the problems mentioned above, we had in some cases to work out the values originally measured, using the number of events and detection efficiencies given by the collaborations, or rescaling back the published results. The information was sometimes spread over several articles, and some articles referred to papers still unpublished, which in turn contained the relevant numbers in footnotes.

Even though the experimental collaborations are entitled to extract whatever branching ratios they consider appropriate by using other published results, we would like to encourage them to also quote explicitly in their articles the actual quantities measured, so that they can be used directly in averages and fits of different experimental determinations.

To inform the reader how we computed some of the values used in this edition of RPP, we use footnotes to indicate the branching ratios actually given by the experiments and the quantities they use to derive them from the true combination of branching ratios actually measured.

None of the branching ratios of the $\chi_{c 0,1,2}$ are measured independently of the $\psi(2 S)$ radiative decays. We tried to identify those branching ratios which can be correlated in a non-trivial way, and although we cannot preclude the existence of other cases, we are confident that the most relevant correlations have already been removed. Nevertheless, correlations in the errors of different quantities measured by the same experiment have not been taken into account.

Fit information

This is an overall fit to 4 total widths, 1 partial width, 26 combinations of partial widths, 24 branching ratios, and 108 combinations of branching ratios. Of the latter 62 involve decays of more than one particle.

The overall fit uses 248 measurements to determine 49 parameters and has a χ^{2} of 378.1 for 199 degrees of freedom.

The relatively high χ^{2} of the fit, 1.9 per d.o.f., can be traced back to a few specific discrepancies in the data. No scaling factors to fit uncertainties have been applied.

In the listing we provide the inter-particle correlation coefficients $\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)$, in percent, from the fit to the corresponding parameter x_{i}.

References

1. Y.F. Gu and X.H. Li, Phys. Lett. B449, 361 (1999).
2. C. Patrignani, Phys. Rev. D64, 034017 (2001).
3. Particle Data Group, K.Hagiwara et al., Phys. Rev. D68, 010001 (2002).

$\chi_{c 0}(1 P)$		$I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$			
		$\chi_{c 0}(1 P)$ MAS			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3414.71 ± 0.30 OUR AVERAGE					
$3413.0 \pm 1.9 \pm 0.6$	933	${ }^{1}$ AAIJ	17BB	LHCB	$\begin{aligned} & p p \rightarrow b \bar{b} X \rightarrow \\ & 2\left(K^{+} K^{-}\right) X \end{aligned}$
$3414.2 \pm 0.5 \pm 2.3$	5.4k	UEHARA		BELL	$\gamma \gamma \rightarrow \chi_{C 0} \rightarrow$ hadrons
$3406 \pm 7 \pm 6$	230	${ }^{2}$ ABE	07	BELL	$e^{+} e^{-} \rightarrow J / \psi(c \bar{C})$
$3414.21 \pm 0.39 \pm 0.27$		ABLIKIM	05G	BES2	$\psi(2 S) \rightarrow \gamma \chi_{C 0}$
$3414.7 \pm 0.7 \pm 0.2$		3 ANDREOTTI	03	E835	$\bar{p} p \rightarrow \chi_{C 0} \rightarrow \pi^{0} \pi^{0}$
$3415.5 \pm 0.4 \pm 0.4$	392	4 BAGNASCO	02	E835	$\bar{p} p \rightarrow \chi_{C 0} \rightarrow J / \psi \gamma$
$3417.4 \pm 1.8 \pm 0.2$		3 AMBROGIANI	99B	E835	$\bar{p} p \rightarrow e^{+} e^{-} \gamma$
$3414.1 \pm 0.6 \pm 0.8$		BAI		BES	$\psi(2 S) \rightarrow \gamma \mathrm{X}$
$3417.8 \pm 0.4 \pm 4$		${ }^{3}$ GAISER		CBAL	$\psi(2 S) \rightarrow \gamma X$
$3416 \pm 3 \pm 4$		5 TANENBAUM	78	MRK1	$e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
3414.6 ± 1.1	266	UEHARA		BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
3416.5 ± 3.0		EISENSTEIN		CLE2	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{c 0}$
3422 ± 10		${ }_{5}^{5}$ BARTEL		CNTR	$e^{+} e^{-} \rightarrow J / \psi 2 \gamma$
3415 ± 9		${ }^{5}$ BIDDICK		CNTR	$e^{+} e^{-} \rightarrow \gamma \mathrm{X}$

${ }^{1}$ From a fit of the $\phi \phi$ invariant mass with the width of $\chi_{C 0}(1 P)$ fixed to the PDG 16
2 From a fit of the J / ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.
${ }^{3}$ Using mass of $\psi(2 S)=3686.0 \mathrm{MeV}$.
${ }^{4}$ Recalculated by ANDREOTTI 05A, using the value of $\psi(2 S)$ mass from AULCHENKO 03.
${ }^{5}$ Mass value shifted by us by amount appropriate for $\psi(2 S)$ mass $=3686 \mathrm{MeV}$ and $J / \psi(1 S)$ mass $=3097 \mathrm{MeV}$.

$\chi_{c 0}(1 P)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
10.8 ± 0.6 OUR FIT					
$\mathbf{1 0 . 5} \pm \mathbf{0 . 8}$ OUR AVERAGE Error includes scale factor of 1.1.					
$10.6 \pm 1.9 \pm 2.6$	5.4k	UEHARA	08	BELL	$\gamma \gamma \rightarrow \chi_{C 0} \rightarrow$ hadrons
$12.6{ }_{-1.6}^{+1.5}+1.1$		ABLIKIM	05G	BES2	$\psi(2 S) \rightarrow \gamma \chi_{C 0}$
$8.6{ }_{-1.3}^{+1.7} \pm 0.1$		ANDREOTTI	03	E835	$\bar{p} p \rightarrow \chi_{C 0} \rightarrow \pi^{0} \pi^{0}$
9.7 ± 1.0	392	1 BAGNASCO	02	E835	$\bar{p} p \rightarrow \chi_{C 0} \rightarrow J / \psi \gamma$
$16.6{ }_{-3.7}^{+5.2} \pm 0.1$		AMBROGIANI	99B	E835	$\bar{p} p \rightarrow e^{+} e^{-} \gamma$
$14.3 \pm 2.0 \pm 3.0$		BAI	981	BES	$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
$13.5 \pm 3.3 \pm 4.2$		GAISER	86	CBAL	$\psi(2 S) \rightarrow \gamma \mathrm{X}, \gamma \pi^{0} \pi^{0}$
- - We do not use the following data for averages, fits, limits, etc. - • -					
13.2 ± 2.1	266	UEHARA	13	BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
${ }^{1}$ Recalculated by ANDREOTTI 05A.					

$\chi_{c 0}(1 P)$ DECAY MODES
Scale factor/
Mode
Fraction $\left(\Gamma_{i} / \Gamma\right)$
Confidence level

Hadronic decays

$2\left(\pi^{+} \pi^{-}\right)$	$(2.34 \pm 0.18) \%$
$\quad \rho^{0} \pi^{+} \pi^{-}$	$(9.1 \pm 2.9) \times 10^{-3}$
$\rho^{0} \rho^{0}$	
$f_{0}(980) f_{0}(980)$	$(6.6 \pm 2.1) \times 10^{-4}$
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	$(3.3 \pm 0.4) \%$
$\rho^{+} \pi^{-} \pi^{0}+$ c.c.	$(2.9 \pm 0.4) \%$
$4 \pi^{0}$	$(3.3 \pm 0.4) \times 10^{-3}$
$\pi^{+} \pi^{-} K^{+} K^{-}$	$(1.81 \pm 0.14) \%$
$K_{0}^{*}(1430)^{0} \bar{K}_{0}^{*}(1430)^{0} \rightarrow$	$\left(9.8{ }_{-2.8}^{+4.0) \times 10^{-4}}\right.$
$\pi^{+} \pi^{-} K^{+} K^{-}$	

$(2.34 \pm 0.18) \%$
$(9.1 \pm 2.9) \times 10^{-3}$
$\times 10^{-4}$
$(3.3 \pm 0.4) \%$
$(3.3 \pm 0.4) \times 10^{-3}$
$(1.81 \pm 0.14) \%$
$\left(9.8{ }_{-2.8}^{+4.0}\right) \times 10^{-4}$
$\pi^{+} \pi^{-} K^{+} K^{-}$

Meson Particle Listings
$\chi_{c 0}(1 P)$

$\Gamma(\omega \phi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
${ }^{40}{ }^{5}{ }^{53} /{ }^{2}$

$<0.34 \quad 90 \quad 1$ LIU 12 B BELL $\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
${ }^{1}$ Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$ and $\mathrm{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.2 \pm 0.7) \%$.
$\Gamma\left(\kappa^{+} \boldsymbol{K}^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{42} \Gamma_{93} / \Gamma$

VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT
13.4 ± 1.0 OUR FIT				
$14.3 \pm 1.6 \pm 2.3$	153 ± 17	NAKAZAWA 05	BELL	$10.6 e^{+}$

$\Gamma\left(K_{S}^{0} K_{S}^{0}\right)$	total				$\Gamma_{43} \Gamma_{93} / \Gamma^{\prime}$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	

| $7.00 \pm 0.65 \pm 0.71$ | 134 ± 12 | CHEN | 07B BELL $e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 0}$ |
| :---: | :---: | :---: | :---: | ${ }^{1}$ Supersedes CHEN 07B.

$\Gamma\left(K^{+} K^{-} K^{+} K^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{51} \Gamma_{93} / \Gamma$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{6.2 \pm 0.7 \text { OUR FIT }}$
EVTS
DOCUMENT ID - TECN COMMENT
$\begin{array}{ll}7.9 \pm 1.3 \pm 1.1 & 215 \pm 36 \quad \text { UEHARA } \quad 08 \text { BELL } \gamma \gamma \rightarrow \chi_{C 0} \rightarrow 2\left(K^{+} K^{-}\right)\end{array}$
$\Gamma(\phi \phi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
${ }_{56}{ }^{93} /{ }^{2}$
VALUE (eV) EVTS
DOCUMENT ID TECN COMMENT
${ }^{56}{ }^{23} /{ }^{2}$
1.76 ± 0.18 OUR FIT
$\mathbf{1 . 7 2} \pm \mathbf{0 . 3 3} \pm \mathbf{0 . 1 4} \quad 56 \pm 11 \quad 1$ LIU \quad 12B BELL $\gamma \gamma \rightarrow 2\left(K^{+} K^{-}\right)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.3 \pm 0.9 \pm 0.4 \quad 23.6 \pm 9.6 \quad$ UEHARA 08 BELL $\quad \gamma \gamma \rightarrow \chi_{C 0} \rightarrow 2\left(K^{+} K^{-}\right)$ ${ }^{1}$ Supersedes UEHARA 08 . Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(48.9 \pm 0.5) \%$.

Meson Particle Listings

$\chi_{c 0}(1 P)$

$\Gamma\left(K_{1}(1270)^{+} K^{-}+\right.$c.c. $\left.\rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$				
(its 10^{-3}				
$6.3 \pm 1.9 \pm 0.1$				
${ }^{1}$ ABLIKIM $05 Q$ reports ($\left.6.66 \pm 1.31-1.51\right) \times 10^{+3}$ from a measurement of [$\Gamma\left(\chi_{C 0}\left(1{ }^{(1 P)}\right.\right.$				
$K_{1}(1270)^{+} \kappa^{-}+$c.c. $\left.\left.\rightarrow \pi^{+} \pi^{-} \kappa^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The measurement assumes $\mathrm{B}\left(K_{1}(1270) \rightarrow K \rho(770)\right)=42 \pm 6 \%$.				
$\Gamma\left(K_{1}(1400)^{+} K^{-}+\text {c.c. } \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$				
$\begin{array}{lllll}<2.7 & 90 & 1 \\ \text { ABLLKIM } & \text { 05Q BES2 } & \psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} \kappa^{+} \kappa^{-}\end{array}$ ${ }^{1}$ ABLIKIM 05Q reports $<2.85 \times 10^{-3}$ from a measurement of $\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.$ $K_{1}(1400)^{+} \kappa^{-}+$c.c. $\left.\left.\rightarrow \pi^{+} \pi^{-} \kappa^{+} \kappa^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$. The measurement assumes $\mathrm{B}\left(K_{1}(1400) \rightarrow K^{*}(892) \pi\right)=94 \pm 6 \%$.				

$\Gamma\left(f_{0}(980) f_{0}(980)\right) / \Gamma_{\text {total }}$

$\Gamma_{13 / \Gamma}$
 is identified via decay to $\pi^{+} \pi^{-}$while the other via $K^{+} K^{-}$decay.
$\Gamma\left(f_{0}(980) f_{0}(2200)\right) / \Gamma_{\text {total }}$
$\Gamma_{14 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{7 . 9} \mathbf{+ 2 . 5} \mathbf{2 . 0} \mathbf{0 . 2}} \frac{\text { EVTS }}{77} \quad \frac{\text { DOCUMENT ID }}{{ }^{1} \text { ABLIKIM }}$ 05Q $\frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}}$
${ }^{1}$ ABLIKIM $05 Q$ reports $\left(8.42 \pm 1.42_{-2.29}^{+1.65}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(980) f_{0}(2200)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The f_{0} mesons are identified via $f_{0}(980) \rightarrow \pi^{+} \pi^{-}$and $f_{0}(2200) \rightarrow K^{+} K^{-}$decays.
$\Gamma\left(f_{0}(1370) f_{0}(1370)\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<\mathbf{2 . 7}} \frac{\text { CL\% }}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \quad$ 05Q $\frac{\text { TECN }}{\text { BES2 } 2} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}}$ ${ }^{1}$ ABLIKIM 05 Q reports $<2.9 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(1370) f_{0}(1370)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$. One of the $f_{0}(1370)$ mesons is identified via decay to $\pi^{+} \pi^{-}$ while the other via $K^{+} K^{-}$decay. Both branching fractions for these f_{0} decays are implicitly included in the quoted result.
$\Gamma\left(f_{0}(1370) f_{0}(1500)\right) / \Gamma_{\text {total }}$
Γ_{16} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{1 . 7}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { TECN }}{\text { BES } 25} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}}$ ${ }^{1}$ ABLIKIM 05Q reports $<1.8 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(1370) f_{0}(1500)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$. The f_{0} mesons are identified via $f_{0}(1370) \rightarrow \pi^{+} \pi^{-}$and $f_{0}(1500) \rightarrow K^{+} K^{-}$decays. Both branching fractions for these f_{0} decays are implicitly included in the quoted result.
$\Gamma\left(f_{0}(\mathbf{1 3 7 0}) f_{0}(\mathbf{1 7 1 0})\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 7}} / \Gamma$

${ }^{1}$ ABLIKIM 05Q reports $\left(7.12 \pm 1.85_{-1.68}^{+3.28}\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(1370) f_{0}(1710)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The f_{0} mesons are identified via $f_{0}(1370) \rightarrow \pi^{+} \pi^{-}$and $f_{0}(1710) \rightarrow K^{+} K^{-}$decays. Both branching fractions
for these f_{0} decays are implicitly included in the quoted result. for these f_{0} decays are implicitly included in the quoted result.

[^129]$\Gamma\left(f_{0}(1500) f_{0}(1500)\right) / \Gamma_{\text {total }} \quad \Gamma_{19} / \Gamma$
 ${ }^{1}$ ABLIKIM 05Q reports $<0.55 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(1500) f_{0}(1500)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$. One of the $f_{0}(1500)$ is identified via decay to $\pi^{+} \pi^{-}$while the other via $K^{+} K^{-}$decay. Both branching fractions for these f_{0} decays are implicitly included in the quoted result.

$\Gamma\left(f_{0}(1500) f_{0}(1710)\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-4})	CL\%	DOCUMENT	TECN	COMMENT
<0.7	90	${ }^{1}$ ABLIKIM	BES2	

$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 1}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{8 . 6 1 \pm 0 . 1 3} \pm \mathbf{0 . 9 4}} \frac{\text { EVTS }}{9.0 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM } \quad 13 \mathrm{~B}} \frac{\text { COMMENT }}{\text { BES3 }} \frac{e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 0}}{}$
${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 0} \gamma\right)=(9.68 \pm 0.31) \%$.
$\Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{22} / \Gamma$
VALUE (units 10^{-3}) EVTS \quad DOCUMENT ID \quad TECN COMMENT
4.22 $\pm \mathbf{0 . 1 0} \pm \mathbf{0 . 4 3} \quad 2.7 \mathrm{k} \quad 1$ ABLIKIM $\quad 13 \mathrm{~B}$ BES3 $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 0} \gamma\right)=(9.68 \pm 0.31) \%$.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{2 3}} / \boldsymbol{\Gamma}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 5 6} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{213.5} \quad 1 \frac{\text { DOCUMENT ID }}{1 \mathrm{HE}} \frac{\text { TECN }}{\text { O8B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.59 \pm 0.05 \pm 0.08 \pm 0.03 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$
$\Gamma_{24 / \Gamma}$
$\frac{\text { VALUE (\%) }}{\mathbf{2 . 4 9} \pm \mathbf{0 . 3 3} \pm \mathbf{0 . 0 5}} \frac{\text { EVTS }}{401.7} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { COB }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $2.64 \pm 0.15 \pm 0.31 \pm 0.14 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\boldsymbol{\Gamma}\left(\boldsymbol{\rho}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{\mathbf{0}}+\mathbf{c . c}\right) / \boldsymbol{\Gamma}_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{2 5}} / \boldsymbol{\Gamma}$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 2 1} \pm \mathbf{0 . 2 1} \mathbf{0 . 0 2}} \frac{\text { EVTS }}{179.7} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { 08B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $1.28 \pm 0.16 \pm 0.15 \pm 0.07 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\rho^{+} K^{-} K^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892) K^{+} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{\mathbf{0}} \pi^{\mathbf{0}}+\right.$ c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 6}} / \Gamma$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 4 6} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{64.1} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { O8B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ $1^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.49 \pm 0.10 \pm 0.07 \pm 0.03 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{-} K^{+} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\kappa_{S}^{0} \kappa_{5}^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{27} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{5.7 \pm \mathbf{1 . 0} \pm \mathbf{0 . 1}} \frac{E V T S}{152 \pm 14} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } \quad 050} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 0}}$ ${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 0}(1 P)\right)\right]=(0.558 \pm 0.051 \pm 0.089) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

| |
| :--- | :--- | :--- | :--- |

0.353 ± 0.025 OUR FIT

－－We do not use the following data for averages，fits，limits，etc．－－
$0.26 \pm 0.09 \underset{-0.02}{+0.03} \quad{ }^{1}$ ANDREOTTI 05C E835 $\bar{p} p \rightarrow 2$ mesons
$0.24 \pm 0.10 \pm 0.08 \quad{ }^{1}$ BAI 03C BES $\psi(2 S) \rightarrow 5 \gamma$
${ }^{1}$ We have multiplied $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{\eta}^{\prime}\right) / \boldsymbol{\Gamma}_{\text {total }}$ ． $\boldsymbol{\Gamma}_{\mathbf{3 7}} / \boldsymbol{\Gamma}$
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{\mathbf{9 . 1} \pm \mathbf{1 . 1} \mathbf{1} \mathbf{0 . 2}} \frac{C L \%}{85} \quad \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 17 \mathrm{AI}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta^{\prime} \eta}$
－－We do not use the following data for averages，fits，limits，etc．－－－

| <24 | 90 | 35 ± 13 | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| <50 | ASNER | 09 | CLEO | $\psi(2 S) \rightarrow \gamma \eta^{\prime} \eta$ |

${ }^{1}$ ABLIKIM 17AI reports $(8.92 \pm 0.84 \pm 0.65) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\eta \eta^{\prime}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.99 \pm$ $0.27) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
2 ASNER 09 reports $<0.25 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{c 0}(1 P) \rightarrow \eta \eta^{\prime}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times$ 10^{-2} ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$
${ }^{3}$ Superseded by ASNER 09．ADAMS 07 reports $<0.5 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \eta \eta^{\prime}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$ ．
$\Gamma\left(\eta^{\prime} \eta^{\prime}\right) / \Gamma_{\text {total }} \quad \Gamma_{38} / \Gamma$ $\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{2 1 7}+\mathbf{0 1 2} \text { OUR AVERA }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$ TECN COMMENT $\begin{array}{llllll}\mathbf{2 . 1 7} \pm \mathbf{0 . 1 2} \text { OUR AVERAGE } & & \\ 2.23 \pm 0.13 \pm 0.05 & 2.5 \mathrm{k} & 1 \\ \text { ABLIKIM } & \text { 17AI BES } 3 & \psi(2 S) \rightarrow \gamma \eta^{\prime} \eta^{\prime}\end{array}$ $2.00 \pm 0.21 \pm 0.04 \quad 0.4 \mathrm{k} \quad{ }^{2}$ ASNER 09 CLEO $\psi(2 S) \rightarrow \gamma \eta^{\prime} \eta^{\prime}$
－－We do not use the following data for averages，fits，limits，etc．－－
$1.60 \pm 0.41 \pm 0.03 \quad 23 \quad 3$ ADAMS 07 CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ ABLIKIM 17AI reports $(2.19 \pm 0.03 \pm 0.14) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\eta^{\prime} \eta^{\prime}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.99 \pm$ $0.27) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ASNER 09 reports $(2.12 \pm 0.13 \pm 0.21) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\eta^{\prime} \eta^{\prime}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm$ $0.11 \pm 0.46) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=$ $(9.79 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ Superseded by ASNER 09．ADAMS 07 reports $(1.7 \pm 0.4 \pm 0.2) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \eta^{\prime} \eta^{\prime}\right) / \Gamma_{\text {totala }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assum－ ing $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=0.0922 \pm 0.0011 \pm 0.0046$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma(\omega \omega) / \Gamma_{\text {total }}$
「39／Г
$\frac{\left.\text { VALUE（units } 10^{-3}\right)}{0.97 \pm 0.11 ~ O U R ~ A V E R A G E ~ D O C U M E N T ~ I D ~ T E C N ~ C O M M E N T ~}$
0.97 ± 0.11 OUR AVERAGE
$0.93 \pm 0.11 \pm 0.02 \quad 991 \quad{ }^{1}$ ABLIKIM $\quad 11 \mathrm{~K}$ BES3 $\quad \psi(2 S) \rightarrow \gamma$ hadrons
$2.16 \pm 0.66 \pm 0.04 \quad 38.1 \pm 9.6 \quad{ }^{2}$ ABLIKIM \quad 05N BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow \gamma 6 \pi$ ${ }^{1}$ ABLIKIM 11 K reports $(0.95 \pm 0.03 \pm 0.11) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\omega \omega) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}{ }^{(1 P)}\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.62 \pm$ $0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 05 N reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \omega \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(0.212 \pm 0.053 \pm 0.037) \times 10^{-3}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma(\omega \phi) / \Gamma_{\text {total }}$
Γ_{40} / Γ
$\frac{\left.\text { VALUE（units } 10^{-4}\right)}{\mathbf{1 . 4 1} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{486} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM 19」 }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{(2 S) \rightarrow \gamma \text { hadrons }}{\psi(2 S)}$ －－We do not use the following data for averages，fits，limits，etc．－－－
$1.18 \pm 0.22 \pm 0.02 \quad 76 \quad{ }^{2,3}$ ABLIKIM $\quad 11 \mathrm{~K}$ BES3 $\psi(2 S) \rightarrow \gamma$ hadrons ${ }^{1}$ ABLIKIM 19」 reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \omega \phi\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(13.83 \pm 0.70 \pm 1.01) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 11 K reports $(1.2 \pm 0.1 \pm 0.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\omega \phi) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.62 \pm$ $0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value
$3{ }^{3}$ Superseded by ABLIKIM 19J．
$\Gamma\left(\omega K^{+} K^{-}\right) / \Gamma_{\text {total }}$
Γ_{41} / Γ
VALUE（units 10^{-3} ）EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 . 9 4} \mathbf{\pm 0 . 0 6} \pm \mathbf{0 . 2 0} \quad 1.4 \mathrm{k} \quad{ }^{1}$ ABLIKIM $\quad 13$ B BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C O}$
${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 0} \gamma\right)=(9.68 \pm 0.31) \%$ ．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$
Γ_{42} / Γ
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{6.05 \pm 0.31 \text { OUR FIT }}$
$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$
Γ_{43} / Γ
VALUE（units 10^{-3} ）
DOCUMENT ID
$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma(\pi \pi)$
$\frac{V A L U E}{0.371} \pm 0.023$ OUR FIT
$\mathbf{0 . 3 7 1} \pm \mathbf{0 . 0 2 3}$ OUR FIT DOCUMENT ID TECN COMMENT
$\Gamma_{43} / \Gamma_{32}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.31 \pm 0.05 \pm 0.05 \quad 1,2$ CHEN \quad 07B BELL $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 0}$
${ }^{1}$ Using $\Gamma(\pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$ from the $\pi^{+} \pi^{-}$measurement of NAKAZAWA 05 rescaled by $3 / 2$ to convert to $\pi \pi$ ．
${ }^{2}$ Not independent from other measurements．
 $\frac{\text { VALUE }}{\mathbf{0 . 5 2} \pm \mathbf{0 . 0 4} \text { OUR FIT }}$ DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
$0.49 \pm 0.07 \pm 0.08 \quad 1,2 \mathrm{CHEN} \quad$ 07B BELL $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 0}$
${ }^{1}$ Using $\Gamma\left(K^{+} K^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$ from NAKAZAWA 05.
${ }^{2}$ Not independent from other measurements．

Meson Particle Listings
$\chi_{c 0}(1 P)$

| $\Gamma\left(\pi^{+} \pi^{-} \eta\right) / \Gamma_{\text {total }}$ |
| :--- | :--- | :--- |
| $\frac{\text { VALUE }}{}$ units $\left.10^{-3}\right)$ |

$\Gamma\left(\pi^{+} \pi^{-} \eta^{\prime}\right) / \Gamma_{\text {total }}$
Γ_{45} / Γ
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{0 . 4}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ATHAR }} \frac{07}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ ${ }^{1}$ ATHAR 07 reports $<0.38 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \pi^{+} \pi^{-} \eta^{\prime}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm$ $0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ 9.79×10^{-2}.
$\Gamma\left(\bar{K}^{0} K^{+} \pi^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$
Γ_{46} / Γ
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{0 . 0 9}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ATHAR }} \frac{07}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$

- - We do not use the following data for averages, fits, limits, etc. - - -

<0.7	90	$2,3 \mathrm{ABLIKIM}$	06 R	BES2	$\psi(2 S) \rightarrow \gamma \chi_{C 0}$
<0.7	90	$3,4 \mathrm{BAI}$	99 B	BES	$\psi(2 S) \rightarrow \gamma \chi_{C 0}$

${ }^{1}$ ATHAR 07 reports $<0.10 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \bar{K}^{0} K^{+} \pi^{-}+\right.\right.$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm$ $0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C O}(1 P)\right)=$ 9.79×10^{-2}.
${ }^{2}$ ABLIKIM 06 R reports $<0.70 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\bar{K}^{0} K^{+} \pi^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$.
${ }^{3}$ We have multiplied the $K_{S}^{0} K^{+} \pi^{-}$measurement by a factor of 2 to convert to $K^{0} K^{+} \pi^{-}$.
${ }^{4} \begin{aligned} & \text { Rescaled by us using } \mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C O}\right)=(9.4 \pm 0.4) \% \text { and } \mathrm{B}(\psi(2 S) \rightarrow+~\end{aligned}$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.6 \pm 0.5) \%$.
$\Gamma\left(K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{47} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{0 . 0 6}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ATHAR }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{07}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ ${ }^{1}$ ATHAR 07 reports $<0.06 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow K^{+} K^{-} \pi^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm$ $0.46) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$.
$\Gamma\left(\kappa^{+} \boldsymbol{K}^{-} \boldsymbol{\eta}\right) / \Gamma_{\text {total }}$
Γ_{48} / Γ
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{<\mathbf{0 . 2 3}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ATHAR }} \frac{07}{\text { CLECN }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ ${ }^{1}$ ATHAR 07 reports $<0.24 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow K^{+} K^{-} \eta\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm$ $0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ 9.79×10^{-2}.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{s}^{0} \kappa_{s}^{0}\right) / \Gamma_{\text {total }}$
Γ_{49} / Γ
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
49/F
$\overline{\mathbf{1 . 4 1} \pm \mathbf{0 . 4 7} \pm \mathbf{0 . 0 3}} \overline{16.8 \pm 4.8} \quad 1 \overline{\text { ABLIKIM } \quad 050} \overline{\text { BES2 }} \quad \psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow K^{+} K^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 0}(1 P)\right)\right]=(0.138 \pm 0.039 \pm 0.025) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
 ${ }^{1}$ Using $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(69.20 \pm 0.05) \%$. ABLIKIM 19AA reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=(5.64 \pm 0.33 \pm 0.37) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value..
$\Gamma\left(K^{+} K^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$
Γ_{51} / Γ
VALUE (units 10^{-3})
DOCUMENT ID
2.82 ± 0.29 OUR FIT

${ }^{1}$ ABLIKIM 20 B reports $(8.41 \pm 0.74 \pm 0.62) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\phi \phi \eta) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$.
$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$
Γ_{58} / Γ
VALUE (units 10^{-4})
$\Gamma\left(p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{59} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{0.70 \pm \mathbf{0 . 0 7} \text { OUR AVERAGE }}$
DOCUMENT ID $\frac{\text { TECN }}{\text { includes scale factor of }}$
$0.73 \pm 0.06 \pm 0.01 \quad 10 \quad$ CLE3 $\psi(2 S) \rightarrow \gamma p \bar{p} X$

${ }^{1}$ ONYISI 10 reports $(7.76 \pm 0.37 \pm 0.51 \pm 0.39) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2 ATHAR 07 reports $(0.59 \pm 0.10 \pm 0.08) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\rho \bar{p} \eta) / \Gamma_{\text {total }}$
DOCUMENT ID TECN COMMENT
$0.35+0.04$ OUR AVERAGE
0.35 ± 0.04 OUR
$\begin{array}{ll}0.37 \pm 0.11 \pm 0.01 & 2 \text { ATHAR }\end{array} \quad 07 \quad$ CLEO $\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$
${ }^{1}$ ONYISI 10 reports $(3.73 \pm 0.38 \pm 0.28 \pm 0.19) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow p \bar{p} \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
2 ATHAR 07 reports $(0.39 \pm 0.11 \pm 0.04) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.p \bar{p} \eta) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm$ $0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

${ }^{1}$ ONYISI 10 reports $(5.57 \pm 0.48 \pm 0.42 \pm 0.14) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{c 0}(1 P) \rightarrow p \bar{p} \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

${ }^{1}$ HE 08B reports $0.11 \pm 0.02 \pm 0.02 \pm 0.01 \%$ from a measurement of $\Gamma \Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.$ $\left.\left.p \overline{\mathcal{P}} \pi^{0} \pi^{0}\right) / r_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(p \bar{p} K^{+} K^{-}(\right.$non-resonant $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{65} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{1 . 2 2} \pm \mathbf{0 . 2 6} \pm \mathbf{0 . 0 2}} \frac{\text { EVTS }}{48 \pm 8} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM 11F }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{\psi(2 S) \rightarrow \gamma \bar{p} K^{+} K^{-}}{\psi}$ ${ }^{1}$ ABLIKIM 11 F reports $(1.24 \pm 0.20 \pm 0.18) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $p \bar{p} K^{+} K^{-}($non-resonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.62 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

| $\boldsymbol{\Gamma}\left(\boldsymbol{n} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$ | |
| :--- | :--- | :--- |
| VALUE (units $\left.10^{-4}\right)$ | $\Gamma_{\mathbf{6 7}} / \boldsymbol{\Gamma}$ |

$\frac{V A L U E \text { (units } 10^{-4} \text {) }}{\mathbf{1 2 . 7} \pm 1.1 \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}$

$12.9 \pm 1.1 \pm 0.3$	5150	1	ABLIKIM	12」	BES3
$11.2 \pm 3.1 \pm 0.2$		2 ABLIKIM	061	BES2	$\psi(2 S) \rightarrow \gamma p \bar{n} \pi^{-}$

${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(1.26 \pm 0.02 \pm 0.11) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ ABLIKIM 061 reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(1.10 \pm 0.24 \pm 0.18) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{p} n \pi^{+}\right) / /_{\text {total }}$

Γ_{68} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 3 . 7} \pm \mathbf{1 . 2} \pm \mathbf{0 . 3}} \frac{\text { EVTS }}{5808} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TBLIKIM }}{\text { ABLIM }} \frac{\text { 12J }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \bar{p} n \pi^{+}}$ ${ }^{1}$ ABLIKIM 12J reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \bar{p} n \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(1.34 \pm 0.03 \pm 0.11) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\boldsymbol{\Gamma}\left(\boldsymbol{p} \overline{\boldsymbol{n}} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 3 . 4} \pm \mathbf{2 . 0} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{2480}$$\frac{\text { DOCUMENT ID }}{\text { ABIIKIM }} \frac{\boldsymbol{\Gamma}_{\mathbf{6 9}} / \boldsymbol{\Gamma}}{\text { TECN }} \frac{\text { COMMENT }}{}$ ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{c_{0}}(1 P) \rightarrow p \bar{n} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c_{0}}(1 P)\right)\right]=$ $(2.29 \pm 0.08 \pm 0.18) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\begin{aligned} & \boldsymbol{\Gamma}\left(\overline{\boldsymbol{p}} \boldsymbol{n} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ & \frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{2 2 . 1} \pm \mathbf{1 . 8} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{2757}\end{aligned} \frac{1}{1} \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \quad \boldsymbol{\Gamma}_{\mathbf{7 0}} / \boldsymbol{\Gamma}$ ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \bar{p} n \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(2.16 \pm 0.07 \pm 0.16) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings

$\chi_{c 0}(1 P)$

$\Gamma(\Lambda(1520) \bar{\Lambda}(1520)) / \Gamma_{\text {total }}$			Γ_{79} / Γ		
VALUE (units 10^{-4})	EVTS	DOCUMENT	TECN	COMMENT	
$\mathbf{3 . 1} \pm \mathbf{1 . 2} \pm 0.1$	28 ± 10	${ }^{1}$ ABLIKIM	BES3	$\psi(2 S) \rightarrow$	
${ }^{1}$ ABLIKIM 11F reports $(3.18 \pm 1.11 \pm 0.53) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \Lambda(1520) \bar{\Lambda}(1520)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.62 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.					

$\Gamma\left(\Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}$
Γ_{80} / Γ
VALUE (units 10^{-4}) EVTS
4.68 ± 0.32 OUR AVERAGE
$4.82 \pm 0.34 \pm 0.10 \quad 1046 \quad 1$ ABLIKIM $\quad 18 \mathrm{~V}$ BES3 $\psi(2 S) \rightarrow \gamma \Sigma^{0} \bar{\Sigma}^{0}$ $4.2 \pm 0.7 \pm 0.1 \quad 78 \pm 10 \quad 2$ NAIK 08 CLEO $\psi(2 S) \rightarrow \gamma \Sigma^{0} \Sigma^{0}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$4.7 \pm 0.5 \pm 0.1 \quad 243 \quad 3,4$ ABLIKIM $\quad 13 \mathrm{H}$ BES3 $\psi(2 S) \rightarrow \gamma \Sigma^{0} \bar{\Sigma}^{0}$
${ }^{1}$ ABLIKIM 18 V reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(4.72 \pm 0.18 \pm 0.28) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ NAIK 08 reports $(4.41 \pm 0.56 \pm 0.47) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma^{0} \Sigma^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 13 H reports $(4.78 \pm 0.34 \pm 0.39) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.62 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right)=$ $(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
4 Superseded by ABLIKIM 18 v
$\Gamma\left(\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}$
Γ_{82} / Γ

$5.10 \pm 0.35 \pm 0.10 \quad 747 \quad 1$ ABLIKIM $\quad 18 \mathrm{~V}$ BES3 $\psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{\Sigma}^{-}$
$3.1 \pm 0.7 \pm 0.1 \quad 39 \pm 7 \quad 2$ NAIK 08 CLEO $\psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{\Sigma}^{-}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$4.5 \pm 0.5 \pm 0.1 \quad 148 \quad 3,4$ ABLIKIM $\quad 13 \mathrm{H}$ BES3 $\quad \psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{\Sigma}^{-}$ ${ }^{1}$ ABLIKIM 18 V reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]=$ $(4.99 \pm 0.24 \pm 0.24) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ NAIK 08 reports $(3.25 \pm 0.57 \pm 0.43) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 13 H reports $(4.54 \pm 0.42 \pm 0.30) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.62 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ Superseded by ABLIKIM 18 V
$\Gamma\left(\Sigma(1385)^{+} \bar{\Sigma}(1385)^{-}\right) / \Gamma_{\text {total }}$
Гвз/Г VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 6 . 2} \mathbf{\pm 5 . 8} \pm \mathbf{0 . 3} \quad 27 \quad 1$ ABLIKIM 12 I BES3 $\psi(2 S) \rightarrow \gamma \wedge \bar{\Lambda} \pi^{+} \pi^{-}$ ${ }^{1}$ ABLIKIM 12 I reports $(16.4 \pm 5.7 \pm 1.6) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma(1385)^{+} \bar{\Sigma}(1385)^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.68 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\Sigma(1385)^{-} \bar{\Sigma}(1385)^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{84} / \Gamma$ $\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{2 3 . 2} \pm 6.5 \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{33} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TBLIKIM } \quad 121}{\text { BESN }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Lambda \bar{\Lambda} \pi^{+} \pi^{-}}$ ${ }^{1}$ ABLIKIM 12| reports $(23.5 \pm 6.2 \pm 2.3) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma(1385)^{-} \bar{\Sigma}(1385)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.68 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{-} \Lambda \bar{\Xi}^{+}+\right.$c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{85} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 9 4 \pm 0 . 3 5 \pm 0 . 0 4}} \frac{\text { EVTS }}{57} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } \quad 15 ı} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K^{-} \Lambda_{\bar{\prime}}++ \text { c.C. }}$ ${ }^{1}$ ABLIKIM 15 reports $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow K^{-} \Lambda \bar{\equiv}++\right.\right.$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 0}(1 P)\right)\right]=(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$ which we divide by our best value $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\Xi^{0} \bar{\Xi}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{86} / \Gamma^{2}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{3 . 1} \pm \mathbf{0 . 8} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{23.3 \pm 4.9} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { NAIK }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{08}{\psi(2 S) \rightarrow \gamma \equiv 0 \bar{\equiv}}$ $1^{\text {NAIK }} 08$ reports $(3.34 \pm 0.70 \pm 0.48) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\equiv^{0} \bar{\Xi}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\overline{-}^{-} \bar{\Xi}^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{87} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{4 . 8} \mathbf{0 . 7} \mathbf{0 . 1}} \frac{C L \%}{95 \pm 11} \quad \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { NAIK }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \equiv+\bar{\equiv}-}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$<10.3 \quad 90 \quad 2$ ABLIKIM 06 D BES2 $\psi(2 S) \rightarrow \chi_{C 0} \gamma$
${ }^{1}$ NAIK 08 reports $(5.14 \pm 0.60 \pm 0.47) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.\Xi^{-} \bar{\equiv}+\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=$ $(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ $=(9.79 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 0} \gamma\right)=(9.2 \pm 0.5) \%$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{0} \eta\right) / \Gamma_{\text {total }}$
$\Gamma_{58} / \Gamma \times \Gamma_{33} / \Gamma$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{<0.4} \quad \frac{\text { DOCUMENT ID }}{\text { ANDREOTTI 05C }} \frac{\text { TECN }}{\text { E835 }} \frac{\text { COMMENT }}{\bar{p} p \rightarrow \pi^{0} \eta}$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma\left(\pi^{0} \eta^{\prime}\right) / \Gamma_{\text {tota }}$			$\Gamma_{58} / \Gamma \times \Gamma_{34} / \Gamma$
VALUE (units 10 ${ }^{-7}$)	DOCUMENT ID	TECN	COMMENT
<2.5	ANDREOTTI 05C	E835	$\bar{p} p \rightarrow \pi^{0} \eta$
$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\eta \eta) / \Gamma_{\text {total }}$			$\Gamma_{58} / \Gamma \times \Gamma_{36} / \Gamma$
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
6.7 ± 0.5 OUR FIT			
$4.0 \pm 1.2_{-0.3}^{+0.5}$	ANDREOTTI 05c	E835	$\bar{p} p \rightarrow \eta \eta$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma\left(\eta \eta^{\prime}\right) / \Gamma_{\text {total }} \quad \Gamma_{58} / \Gamma \times \Gamma_{37} / \Gamma$ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - -
$2.1_{-1.5}^{+2.3} \quad$ ANDREOTTI 05C E835 $\bar{p} p \rightarrow \pi^{0} \eta$
RADIATIVE DECAYS
$\Gamma(\gamma J / \psi(1 S)) / \Gamma_{\text {total }} \quad{ }_{89} / \Gamma$
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT 1.40 ± 0.05 OUR FIT

DOCUMENT ID
TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -

$0.25 \pm 0.16 \pm 2.15$	12 k	1 ABLIKIM	17 U BES3 $2.0 \pm e^{+} \rightarrow \gamma X$ 2.2 2
		ADAM	05 A CLEO $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 0}$

${ }^{1}$ Not independent from $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)$ and the product $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right) \times \mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right)$ also measured in ABLIKIM 17 U .
${ }^{2}$ Uses $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow \gamma \gamma J / \psi\right)$ from ADAM 05A and $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)$ from ATHAR 04.
$\Gamma\left(\gamma \rho^{0}\right) / \Gamma_{\text {total }}$
Г $90 / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{~})} \frac{C L \%}{90} \frac{\text { EVTS }}{1.2 \pm 4.5} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { BENNETT } \quad 08 \mathrm{~A}}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \gamma \rho^{0}}$ - - We do not use the following data for averages, fits, limits, etc. - - $<10 \quad 90 \quad 6 \pm 12 \quad 2$ ABLIKIM $\quad 11 \mathrm{E}$ BES3 $\psi(2 S) \rightarrow \gamma \gamma \rho^{0}$
${ }^{1}$ BENNETT 08A reports $<9.6 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \gamma \rho^{0}\right) /\right.$
$\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.2 \pm 0.4) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$.
${ }^{2}$ ABLIKIM 11 E reports $<10.5 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow \gamma \rho^{0}\right)\right.$ / $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.62 \pm 0.31) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$.

$\chi_{c 0}(1 P)$

```
\(\Gamma\left(\chi_{c 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(\mathbf{2 S}) \rightarrow\)
\(J / \psi(1 S)\) anything \()\)
\(\Gamma_{89} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{9}^{\psi(2 S)}=\Gamma_{89} / \Gamma \times \Gamma_{153}^{\psi(2 S)} /\left(\Gamma_{11}^{\psi(2 S)}+\Gamma_{12}^{\psi(2 S)}+\Gamma_{13}^{\psi(2 S)}+\right.\)
\(\Gamma_{89} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{9}^{\psi(2 S)}\)
    \(\left.0.343 \Gamma_{154}^{\psi(2 S)}+0.190 \Gamma_{155}^{\psi(2 S)}\right)\)
```

$\frac{\text { VALUE (units } 10^{-2} \text {) }}{0.224+0.009 \text { OUR FIT }}$ EVTS DOCUMENTID COMMENT
$\overline{0.224} \pm 0.009$ OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - - •
$0.201 \pm 0.011 \pm 0.021 \quad 560 \quad 1$ MENDEZ $\quad 08 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0}$ $0.31 \pm 0.02 \pm 0.03 \quad 172$ ADAM 05 A CLEO Repl. by MENDEZ 08 1 Not independent from other measurements of MENDEZ 08.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \gamma \mathrm{J} / \psi(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{89} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{0.397 \pm 0.015 \text { OUR FIT }}$ EVTS
$\mathbf{0 . 3 5 8} \pm \mathbf{0 . 0 2 0} \pm \mathbf{0 . 0 3 7} \quad 560 \quad$ MENDEZ 08 CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
- - We do not use the following data for averages, fits, limits, etc. - -
$0.55 \pm 0.04 \pm 0.06 \quad 172 \quad{ }^{1}$ ADAM \quad 05A CLEO Repl. by MENDEZ 08
1 Not independent from other values reported by ADAM 05A.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{93} / \Gamma \times \Gamma_{153}^{\psi(25)} / \Gamma^{\psi(2 S)}$
VALUE (units 10^{-5}) EVTS
DOCUMENT ID TECN COMMENT
2.00 ± 0.08 OUR FIT
$1.95 \pm \mathbf{0 . 0 9}$ OUR AVERA
$1.93 \pm 0.08 \pm 0.05 \quad 3.5 \mathrm{k} \quad$ ABLIKIM \quad 17AE BES3 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow 3 \gamma$ $2.17 \pm 0.32 \pm 0.10 \quad 0.2 \mathrm{k} \quad$ ECKLUND $\quad 08 \mathrm{~A}$ CLEO $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow 3 \gamma$ $3.7 \pm 1.8 \pm 1.0 \quad$ LEE $85 \mathrm{CBAL} \psi(2 S) \rightarrow \gamma \chi_{C 0}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$2.17 \pm 0.17 \pm 0.12 \quad 0.8 \mathrm{k} \quad 1$ ABLIKIM $\quad 12 \mathrm{~A}$ BES3 $\psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow 3 \gamma$
${ }^{1}$ Superseded by ABLIKIM 17AE.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \pi \pi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{32} / \Gamma \times \Gamma_{153}^{\psi(25)} / \Gamma^{4(25)}$

8.34 ± 0.29 OUR FIT
8.80 ± 0.34 OUR AVERAGE
$9.11 \pm 0.08 \pm 0.65 \quad 17 \mathrm{k} \quad 1$ ABLIKIM $\quad 10 \mathrm{~A}$ BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 0}$
$8.81 \pm 0.11 \pm 0.43 \quad 8.9 \mathrm{k} \quad 2$ ASNER $\quad 09 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
$8.13 \pm 0.19 \pm 0.89 \quad 2.8 \mathrm{k} \quad{ }^{3}$ ASNER $\quad 09$ CLEO $\psi(2 S) \rightarrow \gamma \pi^{0} \pi^{0}$
${ }^{1}$ Calculated by us. ABLIKIM 10A reports $\mathrm{B}\left(\chi_{C 0} \rightarrow \pi^{0} \pi^{0}\right)=(3.23 \pm 0.03 \pm 0.23 \pm$ $0.14) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.4 \pm 0.4) \%$. We have multiplied the $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
${ }^{2}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-}\right)=(6.37 \pm 0.08 \pm 0.31 \pm$ $0.32) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.22 \pm 0.11 \pm 0.46) \%$. We have multiplied the $\pi^{+} \pi^{-}$measurement by $3 / 2$ to obtain $\pi \pi$.
${ }^{3}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 0} \rightarrow \pi^{0} \pi^{0}\right)=(2.94 \pm 0.07 \pm 0.32 \pm 0.15) \times$ 10^{-3} using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.22 \pm 0.11 \pm 0.46) \%$. We have multiplied the $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \pi \pi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.\mathrm{J} / \psi(1 S) \pi^{+} \pi^{-}\right)$
VALUE (units 10^{-4}) EVT
24.0 ± 0.8 OUR FIT
20.7 \pm 1.7 OUR AVERAGE
$23.9 \pm 2.7 \pm 4.1 \quad 97 \pm 11 \quad{ }^{1} \mathrm{BAI} \quad$ 03C BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow \gamma \pi^{0} \pi^{0}$
$20.2 \pm 1.1 \pm 1.5 \quad 720 \pm 32 \quad{ }^{2}$ BAI \quad 98। BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0} \rightarrow \gamma \pi^{+} \pi^{-}$
${ }^{1}$ We have multiplied $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
${ }^{2}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 0} \rightarrow \pi^{+} \pi^{-}\right)$reported in BAI 98 is derived using $\mathrm{B}\left(\psi^{\prime} \rightarrow \gamma \chi_{C 0}\right)=(9.3 \pm 0.8) \%$ and $\mathrm{B}\left(\psi^{\prime} \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D]. We have multiplied $\pi^{+} \pi^{-}$measurement by $3 / 2$ to obtain $\pi \pi$.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \eta \eta\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$

$$
\Gamma_{36} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma \psi(2 S)
$$

VALUE (units 10^{-4}) EVTS
DOCUMENT ID \qquad TECN COMMENT
2.95 ± 0.18 OUR FIT
3.12 ± 0.19 OUR AVERAGE
$3.23 \pm 0.09 \pm 0.23 \quad 2132 \quad 1$ ABLIKIM \quad 10A BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 0}$ $2.93 \pm 0.12 \pm 0.29 \quad 0.9 \mathrm{k} \quad 2$ ASNER 09 CLEO $\psi(2 S) \rightarrow \gamma \eta \eta$

- - We do not use the following data for averages, fits, limits, etc. - - -
$2.86 \pm 0.46 \pm 0.37 \quad 48 \quad 3$ ADAMS $\quad 07$ CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ Calculated by us. ABLIKIM 10A reports $\mathrm{B}\left(\chi_{C 0} \rightarrow \eta \eta\right)=(3.44 \pm 0.10 \pm 0.24 \pm 0.13) \times$ 10^{-3} using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.4 \pm 0.4) \%$.
${ }^{2}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 0} \rightarrow \eta \eta\right)=(3.18 \pm 0.13 \pm 0.31 \pm 0.16) \times 10^{-3}$ using $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.22 \pm 0.11 \pm 0.46) \%$.
${ }^{3}$ Superseded by ASNER 09. Calculated by us. The value of $\mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \eta \eta\right)$ reported by ADAMS 07 was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \%$ (ATHAR 04).
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \eta \eta\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
VALUE (units 10^{-3})
0.85 ± 0.05 OUR FIT $0.578 \pm 0.241 \pm 0.158$
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{42} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE (units 10-4)
5.92 ± 0.28 OUR FIT
$\begin{array}{lll}5.92 \pm \mathbf{0 . 2 8} \mathbf{O U R} \mathbf{F I T} & \\ \mathbf{5 . 9 7} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 3 2} & 8.1 \mathrm{k} \quad 1 \text { ASNER } \quad 09 \quad \text { CLEO } \psi(2 S) \rightarrow \gamma K^{+} K^{-}, ~\end{array}$
${ }^{1}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 0} \rightarrow K^{+} K^{-}\right)=(6.47 \pm 0.08 \pm 0.35 \pm$ $0.32) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.22 \pm 0.11 \pm 0.46) \%$.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{42} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{1.71 \pm 0.08 \text { OUR FIT }} \xrightarrow{\text { EVTS }}$
1.71 ± 0.08 OUR FIT
DOCUMENT ID TECN COMMENT
$\mathbf{1 . 6 3} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 1 5} \quad 774 \pm 38 \quad{ }^{1} \mathrm{BAI} \quad$ 98I BES $\quad \psi(2 S) \rightarrow \gamma K^{+} K^{-}$
${ }^{1}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 0} \rightarrow K^{+} K^{-}\right)$reported by BAI 98 I is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.3 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{43} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE (units 10^{-4}) EVTS
DOCUMENT ID
TECN COMMENT
3.10 ± 0.16 OUR FIT
$\mathbf{3 . 1 8} \pm \mathbf{0 . 1 7}$ OUR AVERAGE
$\begin{array}{lrclll}3.22 \pm 0.07 \pm 0.17 & 2.1 \mathrm{k} & { }^{1} \text { ASNER } & 09 & \text { CLEO } & \psi(2 S) \rightarrow \gamma K_{S}^{0} K_{S}^{0} \\ 3.02 \pm 0.19 \pm 0.33 & 322 & \text { ABLIKIM } & 050 & \text { BES2 } & \psi(2 S) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\end{array}$
${ }^{1}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 0} \rightarrow K_{S}^{0} K_{S}^{0}\right)=(3.49 \pm 0.08 \pm 0.18 \pm$ $0.17) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.22 \pm 0.11 \pm 0.46) \%$.
$\Gamma\left(\chi_{\boldsymbol{c} 0}(1 P) \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(\mathbf{2 S}) \rightarrow \gamma \chi_{\boldsymbol{c} 0}(1 P)\right) / \Gamma(\psi(\mathbf{2 S}) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{43} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
$\begin{array}{llll}\mathbf{8 . 9} \pm \mathbf{0 . 5} \text { OUR FIT } & & & \\ 5.6 \pm \mathbf{0 . 8} \pm \mathbf{1 . 3} & { }^{1} \mathrm{BAI} & 99 \mathrm{~B} \text { BES } & \psi(2 S) \rightarrow \gamma K_{S}^{0} K_{S}^{0}\end{array}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$ reported by BAI 99B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.3 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{1} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT
6.6 ± 0.5 OUR FIT
6.9 $\mathbf{\pm 2 . 4}$ OUR AVERAGE Error includes scale factor of 3.8
$4.4 \pm 0.1 \pm 0.9 \quad 1$ BAI $\quad 99 \mathrm{~B}$ BES $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
$9.3 \pm 0.9 \quad 2$ TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$reported in BAI 99B is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}\right)=(9.3 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
2 The value $\mathrm{B}\left(\psi(1 S) \rightarrow \gamma \chi_{C 0}\right) \times \mathrm{B}\left(\chi_{C 0} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$reported in TANENBAUM 78 is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(4.6 \pm 0.7) \%$. Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{8} / \Gamma \times \Gamma_{153}^{\psi(25)} / \Gamma^{\psi(25)}$

VALUE (units 10^{-3})
1.78 ± 0.14 OUR FIT
$1.64 \pm 0.05 \pm 0.2$
\qquad
ABLIKIM $\quad 05 \mathrm{Q}$ BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 0}$
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(\mathbf{2 S}) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma(\psi(\mathbf{2 S}) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{8} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-3}) DOCUMENT ID _ TECN COMMENT
5.1 ± 0.4 OUR FIT
5.8 ± 1.6 OUR AVERAGE Error includes scale factor of 2.3 .
$4.22 \pm 0.20 \pm 0.97 \quad$ BAI 99B BES $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
$7.4 \pm 1.0 \quad 1$ TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 0}$
${ }^{1}$ The reported value is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi\right) \times \mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=$ $(4.6 \pm 0.7) \%$. Calculated by us using $\mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
$\Gamma\left(\chi_{c 0}(1 P) \Rightarrow K^{+} K^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \Rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{51} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
$\begin{array}{lllll}\overline{2.76} \pm \mathbf{0 . 2 8} \text { OUR FIT } & & & \\ \mathbf{3 . 2 0} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 4 1} & 278 & { }^{\text {ABLIKIM }} \quad 06 \mathrm{~T} & \text { BES2 } & \psi(2 S) \rightarrow \gamma 2 K^{+} 2 K^{-}\end{array}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C O} \rightarrow 2 K^{+} 2 K^{-}\right)$reported by ABLIKIM 06T was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C O}(1 P)\right)=(9.2 \pm 0.4) \%$.

${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 0} \rightarrow \phi \phi\right)$ reported by BAI 99 B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.3 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 0}(1 P) \rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{81} / \Gamma \times \Gamma_{153}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{\mathbf{3 . 4 5} \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 1 9}} \frac{\text { EVTS }}{493} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM } 19 \mathrm{BB}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{p} K_{S}^{0}+\text { c.c. }}$. ${ }^{1}$ Calculated by us. ABLIKIM 19 BB reports $\mathrm{B}\left(\chi_{C}^{0} \rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+\right.$ c.c. $)=(3.52 \pm 0.19 \pm$ $0.21) \times 10^{-4}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C}^{0}\right)=(9.79 \pm 0.20) \%$ and other branching fractions from PDG 18.

$\chi_{c 0}(1 P)$ REFERENCES				
ABLIKIM	20B	PR D101 012012	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19AA	PR D99 052008	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19AU	PR D100 052010	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19BB	PR D100 092006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19J	PR D99 012015	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	197	PR D99 051101	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	18 V	PR D97 052011	M. Ablikim et al.	(BESIII Collab.)
PDG	18	PR D98 030001	M. Tanabashi et al.	(PDG Collab.)
AAIJ	17BB	EPJ C77 609	R. Aaij et al.	(LLHCb Collab.)
ABLIKIM	17 AE	PR D96 092007	M. Ablikim et al.	(BESIIII Collab.)
Ablikim	17 Al	PR D96 112006	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	171	PRL 118221802	M. Ablikim et al.	(BESIIII Collab.)
Ablikim	17N	PR D95 072004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 U	PR D96 032001	M. Ablikim et al.	(BESIIII Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
ABLIKIM	151	PR D91 092006	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	15M	PR D91 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15N	PR D91 112018	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	${ }^{13 B}$	PR D87 012002	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	${ }^{13 D}$	PR D87 012007	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	13H	PR D87 032007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	${ }^{13 V}$	PR D88 112001	M. Ablikim et al.	(BESIIII Collab.)
UEHARA	13	PTEP 2013123 CO	S. Uehara et a l.	(BELLE Collab.)
ABLIKIM	12A	PR D85 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	121	PR D86 052004	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	${ }^{12 J}$	PR D86 052011	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	120	PRL 109172002	M. Ablikim et al.	(BESIIIC Collab.)
LIU	12 B	PRL 108232001	Z.Q. Liu et al.	(BELLE Collab.)
ABLIKIM	11A	PR D83 012006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	11 E	PR D83 112005	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	11 F	PR D83 112009	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	11 K	PRL 107092001	M. Ablikim et al.	(BESIIII Collab.)
DEL-AMO-SA...	11 M	PR D84 012004	P. del Amo Sanchez et al.	(BABAR Collab.)
ABLIIIM	10A	PR D81 052005	M. Ablikim et al.	(BESIIII Collab.)
ONYYSI	10	PR D82 011103	P.U.E. Onyisi et al.	(CLEO Collab.)
UEHARA	10A	PR D82 114031	S. Uehara et al.	(BELLE Collab.)
ASNER	09	PR D79 072007	D.M. Asner et al.	(CLEO Collab.)
UEHARA	09	PR D79 052009	S. Uehara et al.	(BELLE Collab.)
BENNETT	08A	PRL 101151801	J.V. Bennett et al.	(CLEO Collab.)
ECKLUND	08A	PR D78 091501	K.M. Ecklund et al.	(CLEO Collab.)
HE	08B	PR D78 092004	Q. He et al.	(CLEO Collab.)
mendez	08	PR D78 011102	H. Mendez et al.	(CLEO Collab.)
NAIK	08	PR D78 031101	P. Naik et al.	(CLEO Collab.)
UEHARA	08	EPJ C53 1	S. Uehara et al.	(BELLE Collab.)
WICHT	08	PL B662 323	J. Wicht et al.	(BELLE Collab.)
ABE	07	PRL 98082001	K. Abe et al.	(BELLE Collab.)
ADAMS	07	PR D75 071101	G.S. Adams et al.	(CLEO Collab.)
ATHAR	07	PR D75 032002	S.B. Athar et al.	(CLEO Collab.)
CHEN	07B	PL B651 15	W.T. Chen etal.	(BELLE Collab.)
ABLIKIM	06D	PR D73 052006	M. Ablikim et al.	(BES Collab.)
ABLIKIM	061	PR D74 012004	M. Ablikim et al.	(BES Collab.)
ABLIIIM	06R	PR D74 072001	M. Ablikim et al.	(BES Collab.)
ABLIKIM	069	PL B642 197	M. Ablikim et al.	(BES Collab.)
ABLIKIM	056	PR D71 092002	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05 N	PL B630 7	M. Ablikim et al.	(BES Collab.)
ABLIKIM	050	PL B630 21	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05Q	PR D72 092002	M. Ablikim et al.	(BES Collab.)
ADAM	05A	PRL 94232002	N.E. Adam et al.	(CLEO Collab.)

$\chi_{c 1}(1 P)$ MASS
3 VALUE (MeV) DOCUMENT ID TECN COMMENT
$3510.67 \pm \mathbf{0 . 0 5}$ OUR AVERAGE Error includes scale factor of 1.2 .
$3508.4 \pm 1.9 \pm 0.7 \quad 460 \quad 1$ AAIJ 17 BB LHCB $p p \rightarrow b \bar{b} X \rightarrow$
$3510.71 \pm 0.04 \pm 0.09 \quad 4.8 \mathrm{k} \quad 2 \mathrm{AAIJ} \quad 17 \mathrm{BI}$ LHCB $\chi_{C 1} \rightarrow \mathrm{~J} / \psi \mu^{+} \mu$ $3510.30 \pm 0.14 \pm 0.16 \quad$ ABLIKIM 05 G BES2 $\psi(2 S) \rightarrow \gamma \chi_{C 1}$
$3510.719 \pm 0.051 \pm 0.019 \quad$ ANDREOTTI 05A E835 $p \bar{p} \rightarrow e^{+} e^{-} \gamma$
$3509.4 \pm 0.9 \quad$ BAI 99B BES $\psi(2 S) \rightarrow \gamma \mathrm{X}$
$3510.60 \pm 0.087 \pm 0.019 \quad 513 \quad$ 3 ARMSTRONG $92 \quad$ E760 $\quad \bar{p} p \rightarrow e^{+} e^{-} \gamma$
$3511.3 \pm 0.4 \pm 0.4 \quad 30 \quad$ BAGLIN \quad 86B SPEC $\bar{p} p \rightarrow e^{+} e^{-}$X
$\begin{array}{llllllll}3512.3 & \pm 0.3 & \pm 4.0 & & { }^{4} \text { GAISER } & 86 & \text { CBAL } & \psi(2 S) \rightarrow \gamma \mathrm{X} \\ 3507.4 & \pm 1.7 & & 91 & { }^{5} \text { LEMOIGNE } & 82 & \text { GOLI } & 185 \pi^{-} \mathrm{Be} \rightarrow\end{array}$
$3510.4 \pm 0.6 \quad$ OREGLIA 82 CBAL $\quad e^{+} e^{\gamma \mu^{+}} \rightarrow \mathrm{\mu}{ }^{-} \mathrm{A}$
$\begin{array}{llrllll}3510.1 & \pm 1.1 & 254 & { }^{6} \text { HIMEL } & 80 & \text { MRK2 } & e^{+} e^{-} \rightarrow J / \psi 2 \gamma \\ 3509 & \pm 11 & 21 & \text { BRANDELIK } & 79 \text { B DASP } & e^{+} e^{-} \rightarrow & \end{array}$

| 3507 | ± 3 | | 6 BARTEL | 78B CNTR | $e^{+} e^{-} \rightarrow J / \psi 2 \gamma$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3505.0 | ± 4 | ± 4 | 6,7 TANENBAUM 78 | MRK1 | $e^{+} e^{-}$ |

$3513 \pm 7 \quad 367 \quad{ }^{6}$ BIDDICK 77 CNTR $\psi(2 S) \rightarrow \gamma \mathrm{X}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$3500 \pm 10 \quad 40 \quad$ TANENBAUM 75 MRK1 Hadrons γ
${ }^{1}$ From a fit of the $\phi \phi$ invariant mass with the width of $\chi_{C 1}(1 P)$ fixed to the PDG 16 2 value.
${ }^{2}$ AAIJ 17BI reports also $\mathrm{m}\left(\chi_{C 2}\right)-\mathrm{m}\left(\chi_{C 1}\right)=45.39 \pm 0.07 \pm 0.03 \mathrm{MeV}$.
${ }^{3}$ Recalculated by ANDREOTTI 05A, using the value of $\psi(2 S)$ mass from AULCHENKO 03.
${ }^{4}$ Using mass of $\psi(2 S)=3686.0 \mathrm{MeV}$.
${ }^{5} \mathrm{~J} / \psi(1 \mathrm{~S})$ mass constrained to 3097 MeV .
${ }^{6}$ Mass value shifted by us by amount appropriate for $\psi(2 S)$ mass $=3686 \mathrm{MeV}$ and $J / \psi(1 S)$ mass $=3097 \mathrm{MeV}$.
${ }^{7}$ From a simultaneous fit to radiative and hadronic decay channels.

$\chi_{c 1}(1 P)$ WIDTH						
VALUE (MeV)	CL\%	EVTS	DOCUMENT ID		TECN	COMMEN
0.84 ± 0.04 OUR FIT						
0.88 ± 0.05 OUR AVERAGE						
$1.39{ }_{-0.38}^{+0.40}{ }_{-0.0 .26}^{+0.77}$			ABLIKIM	05G	BES2	$\psi(2 S)$
$0.876 \pm 0.045 \pm 0.026$			ANDREOTTI	05A	E835	$p \bar{p} \rightarrow$
$0.87 \pm 0.11 \pm 0.08$		513	${ }^{1}$ ARMSTRONG		E760	$\bar{p} p \rightarrow$
- - We do not use the following data for averages, fits, limits, etc. - .						
<1.3	95		BAGLIN	86B	SPEC	$\bar{p} p \rightarrow$
<3.8	90		GAISER	86	CBAL	$\psi(2 S)$
${ }^{1}$ Recalculated by ANDREOTTI 05A.						

$\chi_{c 1}(1 P)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level		
Hadronic decays				
Γ_{1}	$3\left(\pi^{+} \pi^{-}\right)$	$\left(\begin{array}{lll}5.8 \pm 1.4) \times 10^{-3} & \mathrm{~S}=1.2 \\ \Gamma_{2} & 2\left(\pi^{+} \pi^{-}\right) & (7.6 \pm 2.6) \times 10^{-3}\end{array}\right.$		
Γ_{3}	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	$(1.19 \pm 0.15) \%$		

Meson Particle Listings
$\chi_{c 1}(1 P)$

$\Gamma\left(\rho^{+} \pi^{-} \pi^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$
Γ_{4} / Γ
$\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 4 5} \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{712.3} \quad 1,2 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { 08B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$
${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $1.56 \pm 0.13 \pm 0.22 \pm 0.10 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\rho^{+} \pi^{-} \pi^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Calculated by us. We have added the values from HE 08B for $\rho^{+} \pi^{-} \pi^{0}$ and $\rho^{-} \pi^{+} \pi^{0}$ decays assuming uncorrelated statistical and fully correlated systematic uncertainties.
$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{5} / \Gamma$
VALUE (units 10^{-3}) DOCUMENT ID \quad TECN COMMENT
$3.9 \pm \mathbf{3 . 5} \quad 1$ TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ Estimated using $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=0.087$. The errors do not contain the uncertainty in the $\psi(2 S)$ decay.
$\Gamma\left(4 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{6} / \Gamma^{2}$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{5 . 4} \pm \mathbf{0 . 8} \pm \mathbf{0 . 1} \quad 608 \quad 1$ ABLIKIM $\quad 11 \mathrm{~A}$ BES3 $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ ABLIKIM 11A reports $(0.57 \pm 0.03 \pm 0.08) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.4 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.2 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\pi^{+} \pi^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{7} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{4.5 \pm \mathbf{1 . 0} \text { OUR EVALUATION }}$ Treating systematic error $\frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { COMMENT }}{\text { COM }}$
$\begin{array}{lllll}4.2 \pm 0.4 \pm 0.9 & 1 & \text { BAI } & 99 \mathrm{~B} & \text { BES } \psi(2 S) \\ 7.3 \pm 3.0 \pm 0.4 & 1 & \rightarrow \gamma \chi_{C 1} \\ \text { TANENBAUM } & 78 & \text { MRK1 } & \psi(2 S) & \rightarrow \gamma \chi_{C 1}\end{array}$
${ }^{1}$ Rescaled by us using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)=(8.8 \pm 0.4) \%$ and $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.6 \pm 0.5) \%$.
$\Gamma\left(K^{+} \boldsymbol{K}^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
Γ_{8} / Γ
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 1 2 \pm 0 . 2 7} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{45.1} \quad \frac{\text { DOCUMENT ID }}{1 \mathrm{HE}} \frac{\text { TECN }}{\text { 08B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$
${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $(0.12 \pm 0.02 \pm 0.02 \pm 0.01) \times 10^{-2}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)$ $=(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 1 . 4 6} \pm \mathbf{0 . 1 2} \pm \mathbf{1 . 2 9} \quad 12 \mathrm{k} \quad 1$ ABLIKIM $\quad 13 \mathrm{~B}$ BES3 $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}$ ${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathbf{B}\left(\psi(2 S) \rightarrow \chi_{C 1} \gamma\right)=(9.2 \pm 0.4) \%$.
$\Gamma\left(K_{s}^{0} \boldsymbol{K}^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right) / /_{\text {total }}$
Γ_{10} / Γ
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{4}$ EVTS DOCUMENT ID TECN COMMENT
$\mathbf{7 . 5 2} \pm \mathbf{0 . 1 1} \mathbf{0 . 7 9} \quad 5.1 \mathrm{k} \quad 1$ ABLIKIM $\quad 13 \mathrm{~B}$ BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}$ ${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 1} \gamma\right)=(9.2 \pm 0.4) \%$.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{\pi}^{-} \overline{\boldsymbol{K}}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}+{\text { c.c. } .) / \Gamma_{\text {total }}}_{\text {EVALS }} \quad \Gamma_{\mathbf{1 1}} / \Gamma\right.$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 8 6} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 0 2}} \frac{\text { EVTS }}{141.3} \quad \frac{\text { DOCUMENT ID }}{1 \mathrm{HE}} \frac{\text { TECN }}{\text { 08B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.92 \pm 0.09 \pm 0.11 \pm 0.06 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\rho^{-} \boldsymbol{K}^{+} \bar{K}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$
Γ_{12} / Γ
$\frac{\operatorname{VALUE~(\%)~}}{\mathbf{0 . 5 0 \pm 0 . 1 2} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{141.3} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\mathrm{HE}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$
${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.54 \pm 0.11 \pm 0.07 \pm 0.03 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\rho^{-} K^{+} \bar{K}^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{0} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+\right.$ c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{13} / \Gamma$ $\frac{\operatorname{VALUE}(\%)}{\mathbf{0 . 2 3} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 0 1}} \frac{\operatorname{EVTS}}{141.3} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { 08B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.25 \pm 0.06 \pm 0.03 \pm 0.02 \%$ from a measurement of $\left[\Gamma\left(\chi_{c 1}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{0} \bar{K}^{0} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} K^{-} \boldsymbol{\eta} \pi^{0}\right) / \Gamma_{\text {total }}$
$\Gamma_{14 / \Gamma}$
$\mathbf{0 . 1 1 2 \pm \mathbf { 0 . 0 3 4 } \pm \mathbf { 0 . 0 0 3 }} \frac{141.3}{1} \frac{1}{\mathrm{HE}} \frac{\text { 08B }}{\mathrm{CLEO}} \frac{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}{}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.12 \pm 0.03 \pm 0.02 \pm 0.01 \%$ from a measurement of $\left[\Gamma\left(\chi_{c 1}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \eta \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ $(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{15} / \Gamma$
 ${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \pi \pi^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 1}(1 P)\right)\right]=(0.67 \pm 0.26 \pm 0.11) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \eta\right) / \Gamma_{\text {total }}$
Γ_{16} / Γ
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{3.2 \pm \mathbf{1 . 0} \pm \mathbf{0 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ATHAR } \quad 07} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ ${ }^{1}$ ATHAR 07 reports $(0.34 \pm 0.10 \pm 0.04) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$
$0.0907 \pm 0.0011 \pm 0.0054$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{0 . 9 8} \pm \mathbf{0 . 3 7} \pm \mathbf{0 . 0 2}} \frac{\text { EVTS }}{22} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } \quad 06 \mathrm{R}} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 1}}$
${ }^{1}$ ABLIKIM 06R reports $(1.1 \pm 0.4 \pm 0.1) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{0} \bar{K}^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892)+K^{-}+\right.$c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{19} / \Gamma$ $\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{1 . 4 3} \mathbf{\pm 0 . 6 5} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{27} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } \quad 06 \mathrm{R}} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 1}}$ ${ }^{1}$ ABLIKIM 06R reports $(1.6 \pm 0.7 \pm 0.2) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{+} K^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
 $\frac{V A L U E}{<\mathbf{8} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { COMMENT }}{\text { O6R }} \frac{\text { BES2 }}{\psi(2 S) \rightarrow \gamma \chi_{C 1}}$ ${ }^{1}$ ABLIKIM 06 R reports $<0.9 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K_{J}^{*}(1430)^{0} \bar{K}^{0}+$ c.c. $\rightarrow K_{S}^{0} K^{+} \pi^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$

$\frac{V A L U E}{<2.1 \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{\text { TECN }} \frac{06 \mathrm{R}}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 1}}$
${ }^{1}$ ABLIKIM 06 R reports $<2.4 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K_{J}^{*}(1430)^{+} K^{-}+$c.c. $\rightarrow K_{S}^{0} K^{+} \pi^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\begin{aligned} & \left.\text { VALUE (units } 10^{-3}\right)\end{aligned} \mathbf{1 . 8 1 \pm \mathbf { 0 . 2 4 } \pm \mathbf { 0 . 0 4 }} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ATHAR }} \frac{\boldsymbol{\Gamma}_{\mathbf{2 2}} / \boldsymbol{\Gamma}}{\text { TECN }} \frac{\text { CLEO }}{\text { COMMENT }}$
$\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$ $1.81 \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 0 4} \quad 1$ ATHAR $\quad 07 \quad$ CLEO $\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$
${ }^{1}$ ATHAR 07 reports $(1.95 \pm 0.16 \pm 0.23) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{c 1}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$ $0.0907 \pm 0.0011 \pm 0.0054$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings

$\chi_{c 1}(1 P)$

$\Gamma\left(\eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$		CUMENT ID		TECN	COMMENT	Γ_{23} / Γ
Value（unit 10^{-3} ）	EVTS					
4.62 ± 0.23 OUR AVERAGE						
$4.58 \pm 0.23 \pm 0.11$		${ }^{1,2}$ АвLIкім	17K	BES3	$\psi(2 S)$	
$4.7 \pm 0.5 \pm 0.1$		${ }^{3}$ Athar	07	Cleo	$\psi(2 S) \rightarrow$	h^{-}
$5.3 \pm 0.9 \pm 0.1$	2	${ }^{4}$ ABLIKIM	06R	BES2	$\psi(2 S) \rightarrow$	

${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17K reports $(4.67 \pm 0.03 \pm 0.23 \pm 0.16) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$
$\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ ATHAR 07 reports $(5.0 \pm 0.3 \pm 0.5) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$ $0.0907 \pm 0.0011 \pm 0.0054$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$
$=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{4}$ ABLIKIM 06R reports $(5.9 \pm 0.7 \pm 0.8) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ $(8.7 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$ $(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(a_{0}(980)^{+} \pi^{-}+\right.$c．c．$\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{24} / \Gamma$ $\frac{\left.\text { VALUE（units } 10^{-3}\right)}{3.2 \pm 0.4 \text { OUR AVERAGE EVTS }} \frac{\text { DOCUMENT ID }}{\text { EVCludes scale factor of } 2.2 \text { TECN }}$ COMMENT 3.2 ± 0.4 OUR AVERAGE Error includes scale factor of 2．2．
$3.33 \pm 0.19 \pm 0.08 \quad 1,2 \mathrm{ABLIKIM} \quad 17 \mathrm{~K}$ BES3 $\quad \psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}$ $1.79 \pm 0.63 \pm 0.04 \quad 58 \quad{ }^{3}$ ABLIKIM \quad 06R BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17K reports $(3.40 \pm 0.03 \pm 0.19 \pm 0.11) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow a_{0}(980)^{+} \pi^{-}+\right.\right.$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value． ${ }^{3}$ ABLIKIM 06R reports $(2.0 \pm 0.5 \pm 0.5) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $a_{0}(980)^{+} \pi^{-}+$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(a_{2}(1320)^{+} \pi^{-}+\right.$c．c．$\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{25} / \Gamma$ $\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{0 . 1 7 6} \pm \mathbf{0 . 0 2 3} \pm \mathbf{0 . 0 0 4}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{17 \mathrm{~K}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}$ ${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17 K reports $(0.18 \pm 0.01 \pm 0.02 \pm 0.01) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{c 1}(1 P) \rightarrow a_{2}(1320)^{+} \pi^{-}+\right.\right.$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\mathrm{a}_{\mathbf{2}}(\mathbf{1 7 0 0})^{+} \pi^{-}+\right.$c．c．$\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 6}} / \Gamma$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{\mathbf{4 . 6} \mathbf{0 . 7} \pm \mathbf{0 . 1}} \quad \frac{\text { DOCUMENT ID }}{1,2} \frac{\text { ABLIKIM 17K }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}{\psi(2 S)}$
${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17K reports $(4.7 \pm 0.4 \pm 0.6 \pm 0.2) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow a_{2}(1700)^{+} \pi^{-}+\right.\right.$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(f_{\mathbf{2}}(\mathbf{1 2 7 0}) \boldsymbol{\eta} \rightarrow \boldsymbol{\eta} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{2 7}} / \Gamma$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{3 . 5} \pm \mathbf{0 . 6} \pm \mathbf{0 . 1}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM 17K }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}$
${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17K reports $(0.36 \pm 0.01 \pm 0.06 \pm 0.01) \times 10^{-3}$ from a measurement of $\left[\boldsymbol{\Gamma}\left(\chi_{C 1}(1 P) \rightarrow f_{2}(1270) \eta \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(f_{4}(2050) \eta \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{28} / \Gamma$
$\frac{\left.\text { VALUE（units } 10^{-5}\right)}{\mathbf{2 . 5} \pm \mathbf{0 . 9} \mathbf{0 . 1}} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM 17K }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}$
${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17K reports $(2.6 \pm 0.4 \pm 0.8 \pm 0.1) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow f_{4}(2050) \eta \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

${ }^{1}$ From an amplitude analysis using an isobar model．

${ }^{2}$ ABLIKIM 17 K reports $<4.6 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\pi_{1}(1400)^{+} \pi^{-}+$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
 $\begin{array}{llll}\frac{V A L U E ~}{<1.5 \times 10^{-5}} & \frac{C L \%}{90} & 1,2 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{17 \mathrm{~K}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}\end{array}$
${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17 K reports $<1.5 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\pi_{1}(1600)^{+} \pi^{-}+$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
 $\frac{V A L U E}{<8 \times 10^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{17 \mathrm{~K}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}}$ ${ }^{1}$ From an amplitude analysis using an isobar model．
${ }^{2}$ ABLIKIM 17 K reports $<8 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\pi_{1}(2015)^{+} \pi^{-}+$c．c．$\left.\left.\rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\Gamma\left(f_{2}(1270) \eta\right) / \Gamma_{\text {total }}$
「32／「
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{0.67 \pm 0.11 ~ O U R ~ A V E R A G E ~} \frac{E V T S}{}$
$\begin{array}{lllll}\mathbf{0 . 6 7} \pm \mathbf{0 . 1 1} \text { OUR AVERAGE } & & & \\ 0.63 \pm 0.11 \pm 0.02 & 1,2 & \text { ABLIKIM } & 17 \mathrm{~K} \text { BES } 3 & \psi(2 S) \rightarrow \gamma \eta \pi^{+} \pi^{-}\end{array}$
$2.7 \pm 0.8 \pm 0.1 \quad 53 \quad{ }^{3}$ ABLIKIM \quad 06R BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ ABLIKIM 17 K reports $(6.4 \pm 1.1) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{2}(1270) \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.55 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }_{3}^{2}$ From an amplitude analysis using an isobar model．
${ }^{3}$ ABLIKIM $06 R$ reports $(3.0 \pm 0.7 \pm 0.5) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{2}(1270) \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ $(8.7 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ $(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\pi^{+} \pi^{-} \boldsymbol{\eta}^{\prime}\right) / \Gamma_{\text {total }}$
VALUE（units $\left.10^{-3}\right)$
DOCUMENT ID TECN COMMENT $\frac{\left.\text { VALUE（units } 10^{-3}\right)}{\mathbf{2 . 2} \pm \mathbf{0 . 4} \mathbf{0 . 1}} \quad \frac{\text { DOCUMENT ID }}{\text { ATHAR } 07} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ ${ }^{1}$ ATHAR 07 reports $(2.4 \pm 0.4 \pm 0.3) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\pi^{+} \pi^{-} \eta^{\prime}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$ $0.0907 \pm 0.0011 \pm 0.0054$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\eta}^{\prime}(958)\right) / \Gamma_{\text {total }} \quad \Gamma_{34} / \Gamma$ $\frac{\text { VALUE（unit } 10^{-4} \text { ）}}{\mathbf{8 . 7 5} \pm \mathbf{0 . 8 7}} \frac{\text { EVTS }}{310} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM } 14 」} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K^{+} K^{-} \eta^{\prime}(958)}$ ${ }^{1}$ Derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}\right)=(9.2 \pm 0.4) \%$ ．Uncertainty includes both statistical and systematic contributions combined in quadrature．

$\Gamma\left(K_{0}^{*}(1430)+K^{-}+\right.$c．c．$) / \Gamma_{\text {total }}$				Γ_{35} / Γ
VALUE（units 10 0^{-4} ）	DOCUMENT ID	TECN	COMMENT	
$6.41 \pm 0.57_{-2.71}^{+2.09}$	${ }^{1}$ ABLIKIM	14」 BES3	$\psi(2 S) \rightarrow$	（958）
${ }^{1}$ Normalized to	$K^{+} K^{-} \eta^{\prime}(958)$	ranching f		

$\Gamma\left(f_{0}(1710) \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$				$\Gamma 37 / \Gamma$
VaLUE（units 10－4）	DOCUMENT ID	TECN	COMMENT	
$0.71 \pm 0.22{ }_{-0.48}^{+0.68}$	${ }^{1}$ ABLIKIM	BES3	$\psi(2 S) \rightarrow$	$\eta^{\prime}(958)$

${ }^{1}$ Normalized to $\mathrm{B}\left(\chi_{C 1} \rightarrow K^{+} K^{-} \eta^{\prime}(958)\right)$ branching fraction．

$\Gamma\left(f_{\mathbf{2}}^{\prime}(1525) \eta^{\prime}(958)\right) / \Gamma_{\text {total }}$				「38／Г
VALUE（units 10－4）	DOCUMENT ID	TECN	COMMENT	
$0.92 \pm 0.23_{-0.51}^{+0.55}$	${ }^{1}$ ABLIKIM	14」 BES3	$\psi(2 S) \rightarrow$	（958）
${ }^{1}$ Normalized to	$K^{-} \eta^{\prime}(958)$	hing		

$\Gamma\left(\omega K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{50} / \Gamma$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{0 . 7 8} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 8}} \frac{\text { EVTS }}{628} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM 13B }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \alpha_{c 1}}$

Meson Particle Listings

$\chi_{c 1}(1 P)$

$\begin{aligned} & \Gamma\left(p \bar{p} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }} \\ & \text { valye } \end{aligned}$

${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $<0.05 \times 10^{-2}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow p \bar{p} \pi^{0} \pi^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \quad \gamma \chi_{C 1}(1 P)\right)=(9.07 \pm$ $0.11 \pm 0.54) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ 9.75×10^{-2} ．
$\Gamma\left(p \bar{p} K^{+} K^{-}(\right.$non－resonant $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{61} / \Gamma$ $\frac{\text { VALUE（units } 10^{-4} \text { ）}}{1.27+0.22+0.03} \frac{\text { EVTS }}{82+9} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { CES }}{\psi(2 S) \rightarrow \gamma D \bar{D} K^{+} K^{-}}$ ${ }^{1}$ ABLIKIM 11F reports $(1.35 \pm 0.15 \pm 0.19) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $p \bar{p} K^{+} K^{-}($non－resonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(p \bar{\rho} K_{s}^{0} K_{s}^{0}\right) / /_{\text {total }}$
Γ_{62} / Γ $\frac{\text { VALUE（units } 10^{-4} \text { ）}}{<4.5} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { 06D }}{} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 1}}$ ${ }^{1}$ Using $\mathbf{B}\left(\psi(2 S) \rightarrow \chi_{C 1} \gamma\right)(9.1 \pm 0.6) \%$ ．

$\Gamma\left(\rho \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}$

${ }^{1}{ }^{\text {ABLIKIM }} 12 \mathrm{r}$ reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]=$ $(0.37 \pm 0.02 \pm 0.04) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
 ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \bar{p} n \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\left({ }^{1 P}\right)\right)\right]=$ $(0.38 \pm 0.02 \pm 0.04) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma\left(\rho \bar{n} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$

Γ_{65} / Γ
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{1 0 . 3} \mathbf{1 . 1} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{1082} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM 12」 }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{\text {（2S）} \rightarrow \gamma p \bar{n} \pi^{-} \pi^{0}}{\psi(2 S)}$ ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow p \bar{n} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]=\right.$ $(1.00 \pm 0.05 \pm 0.10) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma\left(\bar{p} n \pi^{+} \pi^{0}\right) / \Gamma_{\text {tot }}$					
VALUE（units 10 ${ }^{-4}$ ）	EVTS	DOCUMENT	TECN	COMMEN	
10．1 $\pm 1.1 \pm 0.2$	1261	ABLIKIM	12」 BES3	（2S）	
${ }^{1}$ ABLIKIM 12\lrcorner reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \bar{p} n \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]=$ $(0.98 \pm 0.05 \pm 0.10) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．					

 $\frac{\text { VALUE }}{\left\langle 1.3 \times \mathbf{1 0}^{\mathbf{- 4}}\right.} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{121}{\text { ABLIKIM }} \frac{\text { TECN }}{\text { BES } 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Sigma(1385)^{+} \bar{\Lambda} \pi^{-}}$ ${ }^{1}$ ABLIKIM 121 reports $<14 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\Sigma(1385)^{+} \bar{\Lambda} \pi^{-}+$c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$
$\Gamma(\Sigma(1385))^{-} \bar{\Lambda}^{+}+$c．c．$) / \Gamma_{\text {total }}$
VALUE（units 10^{-5} ）CL\％DOCUMENT ID TECN COMMENT
＜13 $90 \quad 1 \overline{\text { ABLIKIM } \quad 121} \overline{\text { BES3 }} \xlongequal[\psi(2 S) \rightarrow \gamma \Sigma(1385)^{-} \bar{\Lambda} \pi^{+}]{ }$
${ }^{1}$ ABLIKIM 12 reports $<14 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\Sigma(1385)^{-} \bar{\Lambda} \pi^{+}+$c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\Gamma\left(\boldsymbol{K}^{+} \bar{p} \Lambda+c . c.\right) / \Gamma_{\text {total }}$
Γ_{72} / Γ
$\frac{\left.\text { VALUE（units } 10^{-4}\right)}{4.2 \pm \mathbf{0 . 4} \text { OUR AVERAGE ERTS }} \frac{\text { EVTS }}{} \frac{\text { DOCUMENT ID }}{}$

$9.0_{-2.3}^{+2.7} \pm 0.6$	24	${ }^{1}$ LU	19	BELL	$B^{+} \rightarrow \bar{p} \wedge K^{+} K^{+}$
$4.2 \pm 0.4 \pm 0.1$	3 k	${ }^{2,3}$ ABLIKIM	13D	BES3	$\psi(2 S) \rightarrow \gamma \Lambda \bar{p} K^{+}$
$3.1 \pm 0.9 \pm 0.1$		${ }^{4}$ ATHAR	07	CLEO	$\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$

${ }^{1}$ LU 19 reports $\left(9.15_{-2.25}^{+2.63} \pm 0.86\right) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c．c．.$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right)\right]$assuming $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right)$ $=(4.79 \pm 0.23) \times 10^{-4}$ ，which we rescale to our best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(1 P) K^{+}\right)$ $=(4.85 \pm 0.33) \times 10^{-4}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 13D reports $(4.5 \pm 0.2 \pm 0.4) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.2 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=$ $(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{3}$ Using $\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=63.9 \%$ ．
${ }^{4}$ ATHAR 07 reports $(3.3 \pm 0.9 \pm 0.4) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c．c．.$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\left({ }^{1} P\right)\right)=$ $(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(K^{*}(892)+\bar{\rho} \Lambda+\right.$ c．c．$) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{7 3}} / \Gamma$ $\frac{\left.\text { VALUE（units } 10^{-4}\right)}{4.9 \pm 0.7 \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{328} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM 19AU BES3 }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\psi(2 S) \rightarrow \gamma K^{*+} \bar{p} 1}{}$ ${ }^{1}$ ABLIKIM 19 AU reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow K^{*}(892)^{+} \bar{p} \Lambda+\right.\right.$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 1}(1 P)\right)\right]=(4.8 \pm 0.5 \pm 0.4) \times 10^{-5}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(K^{+} \bar{\rho} \Lambda(1520)+\right.$ c．c．$) / \Gamma_{\text {total }} \quad \Gamma_{74} / \Gamma$
$\frac{\left.\text { VALUE（units } 10^{-4}\right)}{\mathbf{1 . 7 1} \mathbf{+ 0 . 4 4} \mathbf{+ 0 . 0 4}} \frac{\text { EVTS }}{48+10} \quad \frac{\text { DOCUMENT ID }}{1 \frac{\text { ABLIKIM }}{11 \mathrm{~F}} \frac{\text { TECN }}{\text { BES } 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{p} K+K^{-}} .}$
$\mathbf{1 . 7 1 \pm 0 . 4 4} \pm \mathbf{0 . 0 4} \quad 48 \pm 10 \quad 11 \mathrm{~F}$ BES3 $\psi(2 S) \rightarrow \gamma p \bar{p} K^{+} K^{-}$
${ }^{1}$ ABLIKIM 11 F reports $(1.81 \pm 0.38 \pm 0.28) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda(1520)+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma(\Lambda(1520) \bar{\Lambda}(1520)) / \Gamma_{\text {total }}$						Γ_{75} / Γ
VALUE	CL\％	DOCUMENT		TECN	COMMENT	
$<9 \times 10^{-5}$	90	${ }^{1}$ ABLIKIM	11F	BES3	$\psi(2 S) \rightarrow$	

$\Gamma\left(\Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{\mathbf{4 . 2} \pm \mathbf{0 . 6} \pm \mathbf{0 . 1}} \frac{C L \%}{103} \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 18 \mathrm{~V}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Sigma^{0} \bar{\Sigma}^{0}}$

- - We do not use the following data for averages, fits, limits, etc. - . -				
$<6 \quad 90$	${ }^{2}$ ABLIKIM	13H BES3	$\psi(2 S) \rightarrow$	$\Sigma^{0} \bar{\Sigma}^{0}$
$\begin{array}{lll}<4 & 90 & 3.8 \pm 2.5\end{array}$	${ }^{3}$ NAIK	08 CLEO	$\psi(2 S) \rightarrow$	$\gamma \Sigma^{0} \bar{\Sigma}^{0}$
${ }^{1}$ ABLIKIM 18 V reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]=$ $(0.41 \pm 0.05 \pm 0.03) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$				
${ }^{2}$ ABLIKIM 13H reports $<0.62 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \Sigma^{0} \Sigma^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.				
${ }^{3}$ NAIK 08 reports $<0.44 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \Sigma^{0} \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.				
$\Gamma\left(\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}$	Γ_{78} / Γ			
VALUE (units $\left.10^{-5}\right) \underline{C L \%}$ EVTS	DOCuMENT ID	TECN	COMMENT	
$\mathbf{3 . 6 \pm 0 . 6 \pm 0 . 1} \quad 59{ }^{1}$ ABLIKIM $18 V$ BES3 $\psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{\Sigma}^{-}$ - . - We do not use the following data for averages, fits, limits, etc. - - -				
<8 90	${ }^{2}$ ABLIKIM	13H bes3	$\psi(2 S) \rightarrow$	$\Sigma^{+} \bar{\Sigma}^{-}$
$<6 \quad 90 \quad 4.3 \pm 2.3$	${ }^{3}$ NAIK	08 CLEO	$\psi(2 S) \rightarrow$	$\gamma \Sigma^{+} \bar{\Sigma}^{-}$

${ }^{2}$ ABLIKIM 13 r reports $<0.87 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \Sigma^{+} \bar{\Sigma}^{-}\right)\right]$
$\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=(9.2 \pm 0.4) \times$ 10^{-2}, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$
${ }^{3}$ NAIK 08 reports $<0.65 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \Sigma^{+} \bar{\Sigma}^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.07 \pm$ $0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ 9.75×10^{-2}.

$\Gamma\left(\Sigma(1385)^{+} \bar{\Sigma}(1385)^{-}\right) / \Gamma_{\text {total }}$

Γ_{79} / Γ
 ${ }^{1}$ ABLIKIM 121 reports $<10 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma(1385)^{+} \bar{\Sigma}(1385)^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 1}(1 P)\right)=9.75 \times 10^{-2}$.
 $\frac{V A L U E}{<\mathbf{5} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{121}{} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \wedge \bar{\Lambda} \pi^{+} \pi^{-}}$ ${ }^{1}$ ABLIKIM 121 reports $<5.7 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma(1385)^{-} \bar{\Sigma}(1385)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\Gamma\left(\boldsymbol{K}^{-} \Lambda \bar{\Xi}^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$
Γ_{81} / Γ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$1.35 \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 0 3} \quad 49 \quad 1$ ABLIKIM $\quad 151 \quad$ BES3 $\psi(2 S) \rightarrow \gamma K^{-} \Lambda \bar{\Xi}++$ c.c. ${ }^{1}$ ABLIKIM 15 I reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow K^{-} \Lambda \bar{\Xi}^{+}+\right.\right.$c.c. $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 1}(1 P)\right)\right]=(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right)=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{E}^{0} \bar{E}^{0}\right) / \Gamma_{\text {total }}$
Γ_{82} / Γ
$\frac{\text { VALUE }}{<6 \times 10^{-5}} \frac{\text { CL\% }}{90} \frac{\text { EVTS }}{1.7 \pm 2.4} \quad 1 \frac{\text { DOCUMENT ID }}{1}$ NAIK $\quad 08 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \equiv^{0} \equiv 0}$ ${ }^{1}$ NAIK 08 reports $<0.60 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \bar{\Xi}^{0} \bar{\Xi}^{0}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\Gamma\left(\right.$ 三 $\left.^{-} \bar{E}^{+}\right) / \Gamma_{\text {total }}$
Γ_{83} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{0 . 8 0} \pm \mathbf{0 . 2 1} \pm \mathbf{0 . 0 2}} \frac{C L \%}{16.4 \pm 4.3} \quad 1 \frac{\text { DOCUMENT ID }}{\text { NAIK }} \frac{\text { EVTS }}{\text { TECN }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{}{\psi(2 S) \rightarrow \gamma \Xi^{+} \bar{\Xi}^{-}}$ - - We do not use the following data for averages, fits, limits, etc. - $<3.4 \quad 90 \quad{ }^{2}$ ABLIKIM \quad 06D BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 1}$ ${ }^{1}$ NAIK 08 reports $(0.86 \pm 0.22 \pm 0.08) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\equiv^{-} \bar{\Xi}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=$ $(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using B $\left(\psi(2 S) \rightarrow \chi_{C 1} \gamma\right)(9.1 \pm 0.6) \%$.
$\left[\Gamma\left(\pi^{+} \pi^{-}\right)+\Gamma\left(K^{+} K^{-}\right)\right] / \Gamma_{\text {total }}$
Γ_{84} / Γ
$\frac{V A L U E}{<\mathbf{2 1} \times \mathbf{1 0}^{\mathbf{- 4}}} \frac{\text { CL\% }}{\frac{\text { DOCUMENT ID }}{\text { FELDMAN }} 77} \frac{\text { TECN }}{\text { MRK1 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma}$

- - We do not use the following data for averages, fits, limits, etc. • •
$<38 \times 10^{-4} \quad 90 \quad{ }^{1}$ BRANDELIK 79B DASP $\psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=0.087$. The errors do not contain the uncertainty in the $\psi(2 S)$ decay.
$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{<6 \times 10^{-5}}$ $<6 \times 10^{\mathbf{- 5}} \quad 90 \quad 1 \quad 1 \begin{aligned} & \text { ABLIKIM } \quad 050 \\ & \text { BES2 } \\ & \psi(2 S) \rightarrow \chi_{C 1} \gamma\end{aligned}$ ${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ $<0.6 \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}_{\boldsymbol{c}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{<3.2 \times 10^{-3}}$
$\frac{C L \%}{90}$$\frac{1,2}{\text { DOCUMENT ID }}$ ABLIKIM $\quad 13$ B $\frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}}$ - - We do not use the following data for averages, fits, limits, etc. - • •
$<4.4 \times 10^{-3} \quad 90 \quad{ }^{1,3}$ ABLIKIM \quad 13B BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 1} \gamma\right)=(9.2 \pm 0.4) \%$.
${ }^{2}$ Using the $\eta_{C} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays.
${ }^{3}$ Using the $\eta_{C} \rightarrow K^{+} K^{-} \pi^{0}$ decays.

RADIATIVE DECAYS

$\Gamma(\gamma J / \psi(1 S)) / \Gamma_{\text {total }}$
DOCUMENT ID TECN COMMENT
343 210 OUR $\frac{\text { EVTS }}{T}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$34.75 \pm 0.11 \pm 1.70 \quad 1.9 \mathrm{M} \quad{ }^{1}$ ABLIKIM $\quad 17 \mathrm{U}$ BES3 $e^{+} e^{-} \rightarrow \gamma X$
$37.9 \pm 0.8 \pm 2.1 \quad 2$ ADAM $\quad 05 \mathrm{~A}$ CLEO $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ Not independent from $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ and the product $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 1}(1 P)\right) \times \mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)$ also measured in ABLIKIM 17 U .
${ }^{2}$ Uses $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1} \rightarrow \gamma \gamma J / \psi\right)$ from ADAM 05A and $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)$ from ATHAR 04.
$\Gamma\left(\gamma \rho^{0}\right) / \Gamma_{\text {total }}$
Г88/Г
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT
$\begin{array}{llllll}216 \pm 17 \\ 215 \pm 22 \pm 5 & 432 \pm 25 & { }^{1} \text { ABLIKIM AVERAGE } & 11 \mathrm{E} & \text { BES3 } & \psi(2 S) \rightarrow \gamma \gamma \rho^{0}\end{array}$
$217 \pm 24 \pm 5 \quad 186 \pm 15 \quad{ }^{2}$ BENNETT 08A CLEO $\psi(2 S) \rightarrow \gamma \gamma \rho^{0}$
${ }^{1}$ ABLIKIM 11 E reports $(228 \pm 13 \pm 22) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\gamma \rho^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.2 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$
$0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ BENNETT 08A reports $(243 \pm 19 \pm 22) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.\gamma \rho^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\gamma \omega) / \Gamma_{\text {total }} \quad \Gamma_{89} / \Gamma^{2}$ VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT $\begin{array}{lllll}\text { 68 } \pm \text { 8 OUR AVERAGE } \\ 66 \pm 9 \pm 2\end{array} \quad 136 \pm 14 \quad{ }^{1}$ ABLIKIM $\quad 11 \mathrm{E}$ BES $3 \quad \psi(2 S) \rightarrow \gamma \gamma \omega$ $\begin{array}{rrrrr}136 \pm 14 & \text { ABLIKIM } & \text { 11E BES3 } & \psi(2 S) \rightarrow \gamma \gamma \omega \\ 74 \pm 17 \pm 2 & 39 \pm 7 & { }^{2} \text { BENNETT } & \text { 08A CLEO } & \psi(2 S) \rightarrow \gamma \gamma \omega\end{array}$
${ }^{1}$ ABLIKIM 11 E reports $(69.7 \pm 7.2 \pm 6.6) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\gamma \omega) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.2 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ BENNETT 08A reports $(83 \pm 15 \pm 12) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\gamma \omega) / \Gamma_{\text {totala }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value

$\Gamma(\gamma \phi) / \Gamma_{\text {total }}$

Г $90 / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-6}\right)}{\mathbf{2 4} \pm \mathbf{5} \pm \mathbf{1}} \frac{C L \%}{43 \pm 9} \quad \frac{\text { EVTS }}{\frac{\text { DOCUMENT ID }}{\text { ABLIKIM 11E }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \gamma \phi}, ~(2)}$ - . We do not use the following data for averages, fits, limits, etc. - . -
$<23 \quad 90 \quad 5.2 \pm 3.1 \quad{ }^{2}$ BENNETT 08A CLEO $\quad \psi(2 S) \rightarrow \gamma \gamma \phi$
${ }^{1}$ ABLIKIM 11 E reports $(25.8 \pm 5.2 \pm 2.3) \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\gamma \phi) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.2 \pm$ $0.4) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ BENNETT 08A reports $<26 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow \gamma \phi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=9.75 \times 10^{-2}$.
$\Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{91} / \Gamma$ $\frac{\text { VALUE }}{<6.3 \times 10^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 17 \text { AE }} \frac{\text { TECN }}{\text { BES } 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \chi_{C 1} \rightarrow 3 \gamma}$ - • We do not use the following data for averages, fits, limits, etc. • • •
$<3.5 \times 10^{-5} \quad 90 \quad$ ECKLUND 08A CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 1} \rightarrow 3 \gamma$ $<150 \times 10^{-5} \quad 90 \quad 1$ YAMADA 77 DASP $e^{+} e^{-} \rightarrow 3 \gamma$
${ }^{1}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=0.087$. The errors do not contain the uncertainty in the $\psi(2 S)$ decay.

Meson Particle Listings

$\chi_{c 1}(1 P)$

$\Gamma\left(e^{+} e^{-} J / \psi(1 S)\right) / \Gamma_{\text {total }}$					Г92/Г
ALUE (units 10-3)	EVTS	DOCUMENT ID		COMMENT	
- - We do not use the following data for averages, fits, limits, etc. - -					
$3.65 \pm 0.23 \pm 0.09$	1.9k $\quad 1,2$ ABLIKIM		171 BES3 $\psi(2 S) \rightarrow \gamma e^{+} e^{-J / \psi}$		
${ }^{1}$ ABLIKIM 17 I reports $(3.73 \pm 0.09 \pm 0.25) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 1}(1 P) \rightarrow\right.\right.$ $\left.\left.e^{+} e^{-} J / \psi(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.55 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)$ $=(9.75 \pm 0.24) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ${ }^{2}$ Not independent from other measurements reported by ABLIKIM 171					

- - We do not use the following data for averages, fits, limits, etc. - $5.70 \pm 0.04 \pm 0.15 \quad 24.9 \mathrm{k} \quad 1$ MENDEZ $\quad 08 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \chi_{C 1}$ $5.77 \pm 0.10 \pm 0.12 \quad 3.7 \mathrm{k} \quad$ ADAM 05A CLEO Repl. by MENDEZ 08
${ }^{1}$ Not independent from other measurements of MENDEZ 08.
$\Gamma\left(\chi_{c 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{87} / \Gamma \times \Gamma_{154}^{(2 S)} / \Gamma_{11}^{\psi(2 S)}$ $\frac{\text { VALUE (units } 10^{-2} \text {) EVTS DOCUMENT ID TECN COMMENT }}{\text { CIT }}$ 9.63 ± 0.17 OUR FIT
10.15 ± 0.28 OUR AVERAGE

$10.17 \pm 0.07 \pm 0.27$	24.9 k	MENDEZ	08	CLEO	$\psi(2 S) \rightarrow \gamma \chi_{C 1}$
$12.6 \pm 0.3 \pm 3.8$	3 k	1 ABLIKIM	04 B	BES	$\psi(2 S) \rightarrow J / \psi X$

- - We do not use the following data for averages, fits, limits, etc. - •
$10.24 \pm 0.17 \pm 0.23 \quad 3.7 \mathrm{k} \quad 3$ ADAM 05 A CLEO Repl. by MENDEZ 08
${ }^{1}$ From a fit to the J / ψ recoil mass spectra.
${ }^{2}$ The value for $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right) \times \mathbf{B}\left(\chi_{C 1} \rightarrow \gamma J / \psi(1 S)\right)$ quoted in HIMEL 80 is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(33 \pm 3) \%$ and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)$
$=0.138 \pm 0.018$. Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
${ }^{3}$ Not independent from other values reported by ADAM 05A.
$\Gamma\left(\chi_{c 1}(1 P) \rightarrow \bar{K}^{0} K^{+} \pi^{-}+c . c.\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{17} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT

6.8 ± 0.5 OUR FIT

7.2 ± 0.6 OUR AVERAGE
$7.3 \pm 0.5 \pm 0.5 \quad 1$ ATHAR $\quad 07$ CLEO $\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{+} \pi^{-}$ $7.0 \pm 0.5 \pm 0.9 \quad 2$ ABLIKIM $\quad 06 \mathrm{R}$ BES2 $\psi(2 S) \rightarrow \gamma \chi_{C 1}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{c 1} \rightarrow K^{0} K^{+} \pi^{-}+\right.$c.c. $)$reported by ATHAR 07 was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.07 \pm 0.11 \pm 0.54) \%$.
${ }^{2}$ Calculated by us. ABLIKIM 06R reports $\mathrm{B}\left(\chi_{c 1} \rightarrow K_{S}^{0} K^{+} \pi^{-}\right)=(4.0 \pm 0.3 \pm 0.5) \times$ 10^{-3}. We use $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)=(8.7 \pm 0.4) \times 10^{-2}$.
$\Gamma\left(\chi_{c 1}(1 P) \rightarrow \bar{K}^{0} K^{+} \pi^{-}+\right.$c.c. $) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right) /$
$\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{17} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$

VALUE (units 10 ${ }^{-4}$)	DOCUMENT ID		TECN	COMMENT	
19.6 ± 1.6 OUR FIT					
$13.2 \pm 2.4 \pm 3.2$	${ }^{1} \mathrm{BAI}$	99 B	BES	$\psi(2 S) \rightarrow$	

${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 1} \rightarrow K_{S}^{0} K^{+} \pi^{-}\right)$reported by BAI 99 B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm$ 2.6) \% [BAI 98D]
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{3.34 \pm 0.06 \text { OUR FIT }}$ EVTS
DOCUMENT ID
$\Gamma_{87} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$3.24 \pm \mathbf{0 . 1 6}$ OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below

$3.518 \pm 0.010 \pm 0.120$	143k	${ }^{1}$ ABLIKIM	17N	BES3	$\psi(2 S) \rightarrow \gamma \gamma J / \psi$
$3.442 \pm 0.010 \pm 0.132$	1.9M	ABLIKIM	17U	BES3	$e^{+} e^{-} \rightarrow \gamma X$
$2.81 \pm 0.05 \pm 0.23$	13k	BAI	041	BES2	$\psi(2 S) \rightarrow J / \psi \gamma \gamma$
$2.56 \pm 0.12 \pm 0.20$		GAISER	86	CBAL	$\psi(2 S) \rightarrow \gamma \mathrm{X}$
2.78 ± 0.30		${ }^{2}$ OREGLIA	82	CBAL	$\psi(2 S) \rightarrow \gamma \chi_{C 1}$
2.2 ± 0.5		${ }^{3}$ BRANDELIK	79B	DASP	$\psi(2 S) \rightarrow \gamma \chi_{c 1}$
2.9 ± 0.5		${ }^{3}$ BARTEL	78B	CNTR	$\psi(2 S) \rightarrow \gamma \chi_{c 1}$
5.0 ± 1.5		${ }^{4}$ BIDDICK	77	CNTR	$e^{+} e^{-} \rightarrow \gamma \mathrm{X}$
2.8 ± 0.9		2 WHITAKER	76	MRK1	$e^{+} e^{-}$

- . We do not use the following data for averages, fits, limits, etc • .
$\begin{array}{lrllll}3.377 & \pm 0.009 \pm 0.183 & 142 \mathrm{k} & { }^{5} \text { ABLIKIM } & \text { 120 BES3 } & \psi(2 S) \rightarrow \gamma \chi_{C 1} \\ 3.56 \pm 0.03 \pm 0.12 & 24.9 \mathrm{k} & { }^{6} \text { MENDEZ } & 08 & \text { CLEO } & \psi(2 S) \rightarrow \gamma \chi_{C 1}\end{array}$ $3.44 \pm 0.06 \pm 0.13 \quad 3.7 \mathrm{k} \quad 7$ ADAM $\quad 05 \mathrm{~A}$ CLEO \quad Repl. by MENDEZ 08 ${ }^{1}$ Uses $\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right)=(5.971 \pm 0.032) \%$ and $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm$ 0.033)\%.
${ }^{2}$ Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
${ }^{3}$ Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=0.0588 \pm 0.0010$.
${ }^{4}$ Assumes isotropic gamma distribution.
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{0.53 \pm 0.11} \frac{E V T S}{}$
DOCUMENT ID \qquad TECN C
$\mathbf{0 . 6 1} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 0 8} \quad 54 \quad{ }^{1}$ ABLIKIM $\quad 06 \mathrm{~T}$ BES2 $\quad \psi(2 S) \rightarrow \gamma K^{+} K^{+} K^{-} K^{-}$ ${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{c 1} \rightarrow 2 K^{+} 2 K^{-}\right)$reported by ABLIKIM 06T was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.8) \%$.
$\Gamma\left(\chi_{c 1}(1 P) \rightarrow K^{+} K^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right) /$
$\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{44} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT
$\begin{array}{ll}1.52 \pm 0.31 \text { OUR FIT } & \\ 1.13 \pm 0.40 \pm 0.29 & 1 \text { BAI 99B BES } \quad \psi(2 S) \rightarrow \gamma K^{+} K^{+} K^{-} K^{-}\end{array}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 1} \rightarrow 2 K^{+} 2 K^{-}\right)$reported by BAI 99 B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(8.7 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm$ 2.6)\% [BAI 98D].
$\Gamma\left(\chi_{c 1}(1 P) \rightarrow p \bar{p}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 P)\right) / /_{\text {total }}$
$\Gamma_{54} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{7 . 4 1 \pm 0 . 3 5 ~ O U R ~ F I T ~ E V T S ~}}$ DOCUMENT ID TECN COMMENT 154 .
$7.8 \pm \mathbf{0 . 6}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
$7.9 \pm 0.4 \pm 0.3 \quad 453 \quad$ ABLIKIM $13 V$ BES3 $\psi(2 S) \rightarrow \gamma p \bar{p}$ $8.2 \pm 0.7 \pm 0.4 \quad 141 \pm 13 \quad 1$ NAIK $08 \quad$ CLEO $\psi(2 S) \rightarrow \gamma p \bar{p}$ $4.8{ }_{-1.3}^{+1.4} \pm 0.6 \quad 18.2_{-4.9}^{+5.5} \quad$ BAI $\quad 04 \mathrm{~F}$ BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P) \rightarrow \gamma \bar{p} p$
${ }^{1}$ Calculated by us. NAIK 08 reports $\mathrm{B}\left(\chi_{C 1} \rightarrow p \bar{p}\right)=(9.0 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)=(9.07 \pm 0.11 \pm 0.54) \%$.
WEIGHTED AVERAGE
7.8 ± 0.6 (Error scaled by 1.4)
 sarily the same as our 'best' values,
obtained from a least-squares constrained fit utilizing measurements of other (related)
quantities as additional information. quantities as additional information

$\Gamma\left(\chi_{c 1}(1 P) \Rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+c . c.\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \Rightarrow \gamma \chi_{c 1}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{77} / \Gamma \times \Gamma_{154}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 . 4 9} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 7}} \frac{\text { EVTS }}{258} \quad \frac{\text { DOCUMENT ID }}{1 \frac{T E C N}{\text { ABLIKIM }} \frac{\text { 19BB }}{\text { BES } 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Sigma^{+} \bar{p} K_{S}^{0}+\text { c.c. }}}$ ${ }^{1}$ Calculated by us. ABLIKIM 19BB reports $\mathrm{B}\left(\chi_{C 1} \rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+\right.$ c.c. $)=(1.53 \pm 0.10 \pm$ $0.08) \times 10^{-4}$ using $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)=(9.75 \pm 0.24) \%$ and other branching fractions
from PDG 18 . from PDG 18.

MULTIPOLE AMPLITUDES IN $\chi_{c 1}(1 P) \Rightarrow \gamma \mathrm{J} / \psi(1 S)$
$a_{2}=M 2 / \sqrt{E 1^{2}+M 2^{2}}$ Magnetic quadrupole fractional transition amplitude VALUE (units 10^{-2}) EVTS $\frac{\text { VALUE (units } 10 \text {) }}{\mathbf{- 6 . 7} \pm \mathbf{0 . 9} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { Error includes scale factor of }} \frac{\text { COMMENT }}{2.6 \text {. See the ideogram below. }}$ $-7.40 \pm 0.33 \pm 0.34 \quad 164 \mathrm{k} \quad 1$ ABLIKIM $\quad 17 \mathrm{~N}$ BES3 $\quad \psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$ $-6.26 \pm 0.63 \pm 0.24 \quad 39 \mathrm{k} \quad$ ARTUSO $09 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$ $0.2 \pm 3.2 \pm 0.4 \quad 2090 \quad$ AMBROGIANI 02 E835 $p \bar{p} \rightarrow \chi_{C 1} \rightarrow J / \psi \gamma$ $-0.2 \underset{-2.0}{+0.8} \quad 921 \quad$ OREGLIA $\quad 82 \quad$ CBAL $\quad \psi(2 S) \rightarrow \chi_{C 1} \gamma \rightarrow J / \psi \gamma \gamma$

[^130]
$$
a_{2}=M 2 / \sqrt{E 1^{2}+M 2^{2}}\left(\text { units } 10^{-2}\right)
$$

MULTIPOLE AMPLITUDES IN $\psi(2 S) \rightarrow \gamma \chi_{c 1}$ (1S) RADIATIVE DECAY

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT						
2.5 ± 0.4 OUR AVERAGE						
$2.29 \pm 0.39 \pm 0.27$	164k	${ }^{1}$ ABLIKIM	17N	BES3	$\psi(2 S)$	$\gamma \gamma \ell^{+} \ell^{-}$
$2.76 \pm 0.73 \pm 0.23$	39k	ARTUSO	09	CLEO	$\psi(2 S)$	$\gamma \gamma \ell^{+} \ell^{-}$
7.7 ± 5.0	921	OREGLIA	82	CBAL	$\psi(2 S)$	$\gamma \gamma \ell^{+} \ell^{-}$
${ }^{1}$ Correlated with a_{2} with correlation coefficient $\rho_{a_{2} b_{2}}=0.133$.						

MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS $\psi(2 S) \rightarrow \gamma \chi_{c 1}(1 S)$ and $\chi_{c 1} \rightarrow \gamma J / \psi(1 S)$
 values from ARTUSO 09 .

$\chi_{c 1}(1 P)$ REFERENCES				
ABLIKIM	20B	PR D101 012012	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AA	PR D99 052008	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19AU	PR D100 052010	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19BB	PR D100 092006	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19」	PR D99 012015	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	197	PR D99 051101	M. Ablikim et al.	(BESIIII Collab.)
Lu	19	PR D99 032003	P.-C. Lu et al.	(BELLE Collab.)
ABLIKIM	18D	PRL 121022001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18 V	PR D97 052011	M. Ablikim et al.	(BESIII Collab.)
PDG	18	PR D98 030001	M. Tanabashi et al.	(PDG Collab.)
AAIJ	17BB	EPJ C77 609	R. Aaij et al.	(LHCb Collab.)
AAlJ	17 BI	PRL 119221801	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	17AE	PR D96 092007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	171	PRL 118221802	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	17 K	PR D95 032002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 N	PR D95 072004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 U	PR D96 032001	M. Ablikim et al.	(BESIII Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
ABLIKIM	151	PR D91 092006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15M	PR D91 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	14 J	PR D89 074030	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13B	PR D87 012002	M. Ablikim et al.	(BESIIII Collab.)
ABLIIIM	13D	PR D87 012007	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	13H	PR D87 032007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13 V	PR D88 112001	M. Ablikim et al.	(BESIII Collab.)
ABLIIIM	121	PR D86 052004	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	${ }^{12 J}$	PR D86 052011	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	120	PRL 109172002	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	11A	PR D83 012006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	11D	PR D83 032003	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	${ }_{111}^{115}$	PR D83 112005	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	11 F	PR D83 112009	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	11 K	PRL 107092001	M. Ablikim et al.	(BESIII Collab.)
ONYYSI	10	PR D82 011103	P.U.E. Onyisi et al.	(CLEO Collab.)
ARTUSO	09	PR D80 112003	M. Artuso et al.	(CLEOO Collab.)
BENNETT	08 A	PRL 101151801	J.V. Bennett et al.	(CLEO Collab.)
ECKLUND	08 A	PR D78 091501	K.M. Ecklund et al.	(CLEO Collab.)
HE	08B	PR D78 092004	Q. He et al.	(CLEO Collab.)
mendez	08	PR D78 011102	H. Mendez etal.	(CLEOO Collab.)
NAIK	08	PR D78 031101	P. Naik et al.	(CLEOO Collab.)
ATHAR	07	PR D75 032002	S.B. Athar et al.	(CLEOC Collab.)
ABLIKIM	06D	PR D73 052006	M. Ablikim et al.	(BES Collab.)
ABLIKIM	${ }^{06 R}$	PR D74 072001	M. Ablikim et al.	(BES Collab.)
ABLIKIM	${ }^{06 T}$	PL B642 197	M. Ablikim et al.	(BES Collab.)
ABLIKIM	${ }^{05 G}$	PR D71 092002	M. Ablikim et al.	(BES Collab.)
ABLIKIM	050	PL B630 21	M. Ablikim et al.	(BES Collab.)
ADAM	${ }^{054}$	PRL 94232002	N.E. Adam et al.	(CLEO Collab.)
ANDREOTTI	05 A	NP B717 34	M. Andreotti et al.	(FNAL E835 Collab.)
ABLIKIM	04B	PR D70 012003	M. Ablikim et al.	(BES Collab.)
ABLIKIM	04H	PR D70 092003	M. Ablikim et al.	(BES Collab.)
ATHAR	04	PR D70 112002	S.B. Athar et al.	(CLEO Collab.)
BAI	04 F	PR D69 092001	J.Z. Bai et al.	(BES Collab.)

$\chi_{c 1}(1 P), h_{c}(1 P)$

BAI	041	PR D70 012006	J.Z. Bai et al.	(BES Collab.)
AULCHENKO	03	PL B573 63	V.M. Aulchenko et al.	(KEDR Collab.)
BAI	03E	PR D67 112001	J.Z. Bai et al.	(BES Collab.)
AMBROGIANI	02	PR D65 052002	M. Ambrogiani et al.	(FNAL E835 Collab.)
BAI	99B	PR D60 072001	J.Z. Bai et al.	(BES Collab.)
BAI	98 D	PR D58 092006	J.Z. Bai et al.	(BES Collab.)
BAI	981	PRL 813091	J.Z. Bai et al.	(BES Collab.)
ARMSTRONG	92	NP B373 35	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
Also		PRL 681468	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
BAGLIN	86B	PL B172 455	C. Baglin (LAPP, CERN,	GENO, LYON, OSLO+)
GAISER	86	PR D34 711	J. Gaiser et al.	(Crystal Ball Collab.)
LEMOIGNE	82	PL 113B 509	Y. Lemoigne et al.	(SACL, LOIC, SHMP+)
OREGLIA	82	PR D25 2259	M.J. Oreglia et al.	(SLAC, CIT, HARV+)
Also		Private Comm.	M.J. Oreglia	(EFI)
HIMEL	80	PRL 44920	T. Himel et al.	(LBL, SLAC)
Also		Private Comm.	G. Trilling	(LBL, UCB)
BRANDELIK	79B	NP B160 426	R. Brandelik et al.	(DASP Collab.)
BARTEL	78B	PL 79B 492	W. Bartel et al.	(DESY, HEIDP)
TANENBAUM	78	PR D17 1731	W.M. Tanenbaum et al.	(SLAC, LBL)
Also		Private Comm.	G. Trilling	(LBL, UCB)
BIDDICK	77	PRL 381324	C.J. Biddick et al.	(UCSD, UMD, PAVI+)
FELDMAN	77	PRPL 33C 285	G.J. Feldman, M.L. Perl	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69	S. Yamada	(DASP Collab.)
WHITAKER	76	PRL 371596	J.S. Whitaker et al.	(SLAC, LBL)
TANENBAUM	75	PRL 351323	W.M. Tanenbaum et al.	(LBL, SLAC)
$h_{c}(1 P)$		$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{+-}\right)$		
Quantum numbers are quark model prediction, $C=-$ established by $\eta_{C} \gamma$ decay.				

$h_{c}(1 P)$ MASS					
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
3525.38 ± 0.11 OUR AVERAGE					
$3525.31 \pm 0.11 \pm 0.14$	832	${ }^{1}$ ABLIKIM	12N BES3	$\psi(2 S)$	$\rightarrow \pi^{0} \gamma$
$3525.40 \pm 0.13 \pm 0.18$	3679	ABLIKIM	10B BES3	$\psi(2 S)$	$\rightarrow \pi^{0}$
$3525.20 \pm 0.18 \pm 0.12$	1282	2 DOBBS	08A CLE	$\psi(2 S) \rightarrow$	$\rightarrow \pi^{0} \eta_{C}$
$3525.8 \pm 0.2 \pm 0.2$	13	ANDREOTTI	05b E835	$\bar{p} p \rightarrow \eta$	${ }_{C} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - - -					
3525.6 ± 0.5	${ }^{92}+23$	ADAMS	09 CLEO	$\psi(2 S) \rightarrow$	$\rightarrow 2\left(\pi^{+}\right.$
$3524.4 \pm 0.6 \pm 0.4$	168 ± 40	${ }^{3}$ ROSNER	05 CLEO	$\psi(2 S)$	$\rightarrow \pi^{0} \eta$
3527 ± 8	42	ANTONIAZZI	94 E705	$\begin{array}{r} 300 \pi^{ \pm} \\ J / \psi \pi^{\prime} \end{array}$	$\begin{aligned} & p \mathrm{Li} \rightarrow \\ & \mathrm{r}^{0} \mathrm{X} \end{aligned}$
$3526.28 \pm 0.18 \pm 0.19$	59	${ }^{4}$ ARMSTRONG	92D E760	$\bar{p} p \rightarrow J$	$J / \psi \pi^{0}$
$3525.4 \pm 0.8 \pm 0.4$	5	BAGLIN	86 SPEC	$\bar{p} p \rightarrow J$	J/ ψ X
${ }^{1}$ With floating width.					
${ }^{2}$ Combination of exclusive and inclusive analyses for the reaction $\psi(2 S) \rightarrow \pi^{0} h_{C} \rightarrow$					
${ }^{4}$ Mass central value and systematic error recalculated by us according to Eq. (16) in ARMSTRONG 93B, using the value for the $\psi(2 S)$ mass from AULCHENKO 03.					

$h_{C}(\mathbf{1} \boldsymbol{P})$ WIDTH

VALUE (MeV)	CL\%	EVTS	DOCUMENT ID	TECN	COMMENT
$0.70 \pm 0.28 \pm 0.22$		832	1 ABLIKIM 12 N	BES3	$\psi(2 S) \rightarrow \pi^{0} \gamma$ hadrons
- - We do not use the following data for averages, fits, limits, etc. - .					
< 1.44	90	3679	2 ABLIKIM 10B	BES3	$\psi(2 S) \rightarrow \pi^{0} \gamma \eta_{C}$
<1		13	ANDREOTTI 05B	E835	$\bar{p} p \rightarrow \eta_{C} \gamma$
<1.1	90	59	ARMSTRONG 92D	E760	$\bar{p} p \rightarrow J / \psi \pi^{0}$
${ }^{1}$ With floating mass.					

$h_{c}(1 P)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level	
Γ_{1}	$J / \psi(1 S) \pi^{0}$			
Γ_{2}	$J / \psi(1 S) \pi \pi$	<2.3	$\times 10^{-3}$	90%
Γ_{3}	$J / \psi(1 S) \pi^{+} \pi^{-}$	<1.5	$\times 10^{-4}$	90%
Γ_{4}	$p \bar{p}$	$(2.9 \pm 0.6) \times 10^{-3}$		
Γ_{5}	$p \bar{p} \pi^{+} \pi^{-}$	$(1.6 \pm 0.5) \times 10^{-3}$		
Γ_{6}	$\pi^{+} \pi^{-} \pi^{0}$	$(8.1 \pm 1.8) \times 10^{-3}$		
Γ_{7}	$2 \pi^{+} 2 \pi^{-} \pi^{0}$	<9	$\times 10^{-3}$	90%
Γ_{8}	$3 \pi^{+} 3 \pi^{-} \pi^{0}$	<6	$\times 10^{-4}$	90%
Γ_{9}	$K^{+} K^{-} \pi^{+} \pi^{-}$	nadiative decays		
		$(4.7 \pm 2.1) \times 10^{-4}$		
Γ_{10}	$\gamma \eta$	$(1.5 \pm 0.4) \times 10^{-3}$		
Γ_{11}	$\gamma \eta^{\prime}(958)$	$(51$	$\pm 6) \%$	
Γ_{12}	$\gamma \eta_{C}(1 S)$			

$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{4.3 \pm 0.4 \text { OUR AVERA }} \frac{\text { EVTS }}{}$
4.3 ± 0.4 OUR AVERAGE
$\begin{array}{llllll}1079 & \text { ABLIKIM } & \text { 10B } & \text { BES3 } & \psi(2 S) \rightarrow \pi^{0} \gamma X \\ 4.16 \pm 0.30 \pm 0.37 & 1430 & 2 \text { DOBBS } & \text { 08A } & \text { CLEO } & \psi(2 S) \rightarrow \pi^{0} \gamma \eta_{C}\end{array}$
${ }^{1}$ Not independent of other branching fractions in ABLIKIM 10B.
2 Not independent of other branching fractions in DOBBS 08A.

$h_{c}(1 P)$ REFERENCES				
ABLIKIM	19AG	PR D99 072008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18M	PR D97 052008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	161	PRL 116251802	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13 V	PR D88 112001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	12 N	PR D86 092009	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	10B	PRL 104132002	M. Ablikim et al.	(BESIII Collab.)
ADAMS	09	PR D80 051106	G.S. Adams et al.	(CLEO Collab.)
DOBBS	08A	PRL 101182003	S. Dobbs et al.	(CLEO Collab.)
ANDREOTTI	05B	PR D72 032001	M. Andreotti et al.	(FNAL E835 Collab.)
ROSNER	05	PRL 95102003	J.L. Rosner et al.	(CLEO Collab.)
AULCHENKO	03	PL B573 63	V.M. Aulchenko et al.	(KEDR Collab.)
ANTONIAZZI	94	PR D50 4258	L. Antoniazzi et al.	(E705 Collab.)
ARMSTRONG	93B	PR D47 772	T.A. Armstrong et al.	(FNAL E760 Collab.)
ARMSTRONG	92D	PRL 692337	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
BAGLIN	86	PL B171 135	C. Baglin et al.	(LAPP, CERN, TORI, STRB+)

$\chi_{c 2}(1 P) \quad \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$
See the Review on " $\psi(2 S)$ and χ_{C} branching ratios" before the $\chi_{c 0}(1 P)$ Listings.

$\chi_{c 2}(1 P)$ MASS

VALUE (MeV)

$3556.17 \pm \mathbf{0 . 0 7}$ OUR AVERAGE
$3557.3 \pm 1.7 \pm 0.7$
$3556.10 \pm 0.06 \pm 0.11 \quad 4.0$
$3555.3 \pm 0.6 \pm 2.2 \quad 2.5$
$3555.70 \pm 0.59 \pm 0.39$
$3556.173 \pm 0.123 \pm 0.020$
3559.9 ± 2.9
3556.4 ± 0.7
$3556.22 \pm 0.131 \pm 0.020 \quad 585$ $3556.9 \pm 0.4 \pm 0.5$

DOCUMENT ID TECN

COMMENT

${ }^{1}$ AAIJ	17BB	LHCB	$\begin{array}{r} p p \rightarrow b \bar{b} X \rightarrow \\ 2\left(K^{+} K^{-}\right) X \end{array}$
2 AAIJ	17BI	LHCB	$\chi_{c 2} \rightarrow J / \psi \mu^{+} \mu^{-}$
UEHARA	08	BELL	$\gamma \gamma \rightarrow$ hadrons
ABLIKIM	05G	BES2	$\psi(2 S) \rightarrow \gamma \chi_{C 2}$
ANDREOTTI	05A	E835	$p \bar{p} \rightarrow e^{+} e^{-} \gamma$
EISENSTEIN	01	CLE2	$e^{+}+e^{-}+e^{-} \chi_{c 2}$
BAI	99B	BES	$\psi(2 S) \rightarrow \gamma \mathrm{X}$
3 ARMSTRONG	92	E760	$\bar{p} p \rightarrow e^{+} e^{-} \gamma$
BAGLIN	86B	SPEC	$\bar{p} p \rightarrow e^{+} e^{-} \mathrm{X}$

$\chi_{c 2}(1 P)$ WIDTH

$\operatorname{VALUE}(\mathrm{MeV})$ EVTS	DOCUMENT ID	TECN	COMMENT
1.97 ± 0.09 OUR FIT			
2.00 ± 0.11 OUR AVERAGE			
$2.10 \pm 0.20 \pm 0.02 \quad$ 4.0k	AAIJ	17BI LHCB	$\chi_{C 2} \rightarrow \mathrm{~J} / \psi \mu^{+} \mu^{-}$
$1.915 \pm 0.188 \pm 0.013$	ANDREOTTI	05A E835	$p \bar{p} \rightarrow e^{+} e^{-} \gamma$
$1.96 \pm 0.17 \pm 0.07 \quad 585$	${ }^{1}$ ARMSTRONG	92 E760	$\bar{p} p \rightarrow e^{+} e^{-} \gamma$
$2.6 \begin{array}{ll}\text { +1.4 } \\ -1.0\end{array}$	BAGLIN	86B SPEC	$\bar{p} p \rightarrow e^{+} e^{-} \mathrm{X}$
2.82.	2 GAISER	86 CBAL	$\psi(2 S) \rightarrow \gamma \mathrm{X}$
${ }^{1}$ Recalculated by ANDREOTTI 05A.			

$\chi_{c 2}(1 P)$ DECAY MODES
Mode
Fraction $\left(\Gamma_{i} / \Gamma\right)$
Confidence level

Hadronic decays

$\Gamma_{1} \quad 2\left(\pi^{+} \pi^{-}\right)$
(1.02 ± 0.09) \%
$\rho \rho$
$\pi^{+}{ }^{-} \pi^{-} \pi^{0} \pi^{0}$
(1.83 ± 0.23) \%
$\rho^{+} \pi^{-} \pi^{0}+$ с.c.
(2.19 ± 0.34) \%
$4 \pi^{0}$
$(1.11 \pm 0.15) \times 10^{-3}$
$(2.1 \pm 0.4) \times 10^{-3}$
$K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c.c.
(1.38 ± 0.20) \%
$\rho^{-} K^{+}+\bar{K}^{0}+$ с.c.
$(4.1 \pm 1.2) \times 10^{-3}$
$K^{*}(892)^{0} K^{-} \pi^{+} \rightarrow$
$K^{-} \pi^{+} K^{0} \pi^{0}+$ C.C.
$K^{*}(892)^{0} K^{0} \pi^{0} \rightarrow$
$(3.8 \pm 0.9) \times 10^{-3}$
$K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ с.с
$K^{*}(892)^{-} K^{+} \pi^{0} \rightarrow$
$(3.7 \pm 0.8) \times 10^{-3}$
$K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ с.с
$K^{*}(892)+\bar{K}^{0} \pi^{-} \rightarrow$
$(2.9 \pm 0.8) \times 10^{-3}$
$K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ С.С
$(1.3 \pm 0.4) \times 10^{-3}$
$(8.4 \pm 0.9) \times 10^{-3}$
(1.17 ± 0.13) \%
$(7.3 \pm 0.8) \times 10^{-3}$
$(2.1 \pm 1.1) \times 10^{-3}$
$(2.3 \pm 0.4) \times 10^{-3}$
$(8.6 \pm 1.8) \times 10^{-3}$
$(1.06 \pm 0.09) \times 10^{-3}$
$(5.3 \pm 0.6) \times 10^{-4}$
$(8.4 \pm 1.0) \times 10^{-4}$
$(7.3 \pm 0.9) \times 10^{-4}$
$(9.6 \pm 2.7) \times 10^{-6}$
$(2.23 \pm 0.09) \times 10^{-3}$
$(3.7 \pm 1.6) \times 10^{-3}$
$(2.0 \pm 0.4) \times 10^{-5}$
$\left(\begin{array}{ll}6 & \pm 4\end{array}\right) \times 10^{-6}$
$(4.8 \pm 1.3) \times 10^{-4}$
$(5.0 \pm 1.8) \times 10^{-4}$
$(5.4 \pm 0.4) \times 10^{-4}$
$(1.01 \pm 0.06) \times 10^{-3}$
$(5.2 \pm 0.4) \times 10^{-4}$
$(1.44 \pm 0.21) \times 10^{-4}$

Meson Particle Listings
$\chi_{c 2}(1 P)$

Γ_{35}	$K^{*}(892)^{0} \bar{K}^{0}+$ c．c．	$(1.24 \pm 0.27) \times 10^{-4}$	
Γ_{36}	$K_{2}^{*}(1430)^{ \pm} K^{\mp}$	$(1.48 \pm 0.12) \times 10^{-3}$	
Γ_{37}	$K_{2}^{*}(1430){ }^{0} \bar{K}^{0}+$ c．c．	$(1.24 \pm 0.17) \times 10^{-3}$	
Γ_{38}	$K_{3}^{*}(1780)^{ \pm} K^{\mp}$	$(5.2 \pm 0.8) \times 10^{-4}$	
Γ_{39}	$K_{3}^{*}(1780){ }^{0} \bar{K}^{0}+$ c．c．	$(5.6 \pm 2.1) \times 10^{-4}$	
Γ_{40}	$\mathrm{a}_{2}(1320)^{0} \pi^{0}$	$(1.29 \pm 0.34) \times 10^{-3}$	
Γ_{41}	$\mathrm{a}_{2}(1320)^{ \pm} \pi^{\mp}$	$(1.8 \pm 0.6) \times 10^{-3}$	
Γ_{42}	$\overline{K^{0}} K^{+} \pi^{-}+$c．c．	$(1.28 \pm 0.18) \times 10^{-3}$	
Γ_{43}	$K^{+} K^{-} \pi^{0}$	$(3.0 \pm 0.8) \times 10^{-4}$	
Γ_{44}	$K^{+} K^{-} \eta$	$<3.2 \times 10^{-4}$	90\％
Γ_{45}	$K^{+} K^{-} \eta^{\prime}(958)$	$(1.94 \pm 0.34) \times 10^{-4}$	
Γ_{46}	$\eta \eta^{\prime}$	$(2.2 \pm 0.5) \times 10^{-5}$	
Γ_{47}	$\eta^{\prime} \eta^{\prime}$	$(4.6 \pm 0.6) \times 10^{-5}$	
Γ_{48}	$\pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0}$	$(2.2 \pm 0.5) \times 10^{-3}$	
Γ_{49}	$K^{+} K^{-} K_{S}^{0} K_{S}^{0}$	$<4 \times 10^{-4}$	90\％
Γ_{50}	$K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$	$(1.13 \pm 0.18) \times 10^{-4}$	
Γ_{51}	$K^{+} K^{-} K^{+} K^{-}$	$(1.65 \pm 0.20) \times 10^{-3}$	
Γ_{52}	$K^{+} K^{-} \phi$	$(1.42 \pm 0.29) \times 10^{-3}$	
Γ_{53}	$\bar{K}^{0} K^{+} \pi^{-} \phi+$ c．c．	$(4.8 \pm 0.7) \times 10^{-3}$	
Γ_{54}	$K^{+} K^{-} \pi^{0} \phi$	$(2.7 \pm 0.5) \times 10^{-3}$	
Γ_{55}	$\phi \pi^{+} \pi^{-} \pi^{0}$	$(9.3 \pm 1.2) \times 10^{-4}$	
Γ_{56}	$p \bar{p}$	$(7.33 \pm 0.33) \times 10^{-5}$	
Γ_{57}	$p \bar{p} \pi^{0}$	$(4.7 \pm 0.4) \times 10^{-4}$	
Γ_{58}	$p \bar{p} \eta$	$(1.74 \pm 0.25) \times 10^{-4}$	
Γ_{59}	$p \bar{p} \omega$	$(3.6 \pm 0.4) \times 10^{-4}$	
Γ_{60}	$p \bar{p} \phi$	$(2.8 \pm 0.9) \times 10^{-5}$	
Γ_{61}	$p \bar{p} \pi^{+} \pi^{-}$	$(1.32 \pm 0.34) \times 10^{-3}$	
Γ_{62}	$p \bar{p} \pi^{0} \pi^{0}$	$(7.8 \pm 2.3) \times 10^{-4}$	
Γ_{63}	$p \bar{p} K^{+} K^{-}$（non－resonant）	$(1.91 \pm 0.32) \times 10^{-4}$	
Γ_{64}	$p \bar{p} K_{S}^{0} K_{S}^{0}$	$<7.9 \times 10^{-4}$	90\％
Γ_{65}	$p \bar{n} \pi^{-}$	$(8.5 \pm 0.9) \times 10^{-4}$	
Γ_{66}	$\bar{p} n \pi^{+}$	$(8.9 \pm 0.8) \times 10^{-4}$	
Γ_{67}	$\overline{\bar{n}} \pi^{-} \pi^{0}$	$(2.17 \pm 0.18) \times 10^{-3}$	
Γ_{68}	$\bar{p} n \pi^{+} \pi^{0}$	$(2.11 \pm 0.18) \times 10^{-3}$	
Γ_{69}	＾N̄	$(1.84 \pm 0.15) \times 10^{-4}$	
Γ_{70}	$\wedge \bar{\Lambda} \pi^{+} \pi^{-}$	$(1.25 \pm 0.15) \times 10^{-3}$	
Γ_{71}	$\wedge \bar{\Lambda} \pi^{+} \pi^{-}$（non－resonant）	$(6.6 \pm 1.5) \times 10^{-4}$	
Γ_{72}	$\Sigma(1385)^{+} \bar{\Lambda} \pi^{-}+$c．c．	$<4 \times 10^{-4}$	90\％
Γ_{73}	$\Sigma(1385)^{-} \bar{\Lambda} \pi^{+}+$c．c．	$<6 \times 10^{-4}$	90\％
Γ_{74}	$K^{+} \bar{p} \Lambda+$ c．c．	$(7.8 \pm 0.5) \times 10^{-4}$	
Γ_{75}	$K^{*}(892)+\bar{p} \Lambda+$ c．c．	$(8.2 \pm 1.1) \times 10^{-4}$	
Γ_{76}	$K^{+} \bar{p} \wedge(1520)+$ c．c．	$(2.8 \pm 0.7) \times 10^{-4}$	
Γ_{77}	$\Lambda(1520) \bar{\Lambda}(1520)$	$(4.6 \pm 1.5) \times 10^{-4}$	
Γ_{78}	$\Sigma^{0} \bar{\Sigma}^{0}$	$(3.7 \pm 0.6) \times 10^{-5}$	
Γ_{79}	$\Sigma^{+} \bar{p} K_{S}^{0}+$ c．c．	$(8.2 \pm 0.9) \times 10^{-5}$	
Γ_{80}	$\Sigma^{+} \bar{\Sigma}^{-}$	$(3.4 \pm 0.7) \times 10^{-5}$	
Γ_{81}	$\Sigma(1385)^{+} \bar{\Sigma}(1385)^{-}$	$<1.6 \times 10^{-4}$	90\％
Γ_{82}	$\Sigma(1385)^{-\bar{\Sigma}}(1385)^{+}$	$<8 \times 10^{-5}$	90\％
Γ_{83}	K^{-}人 $\bar{\Xi}^{+}+$c．c．	$(1.76 \pm 0.32) \times 10^{-4}$	
Γ_{84}	三 0 三	$<1.0 \times 10^{-4}$	90\％
Γ_{85}	三－${ }^{+}+$	$(1.42 \pm 0.32) \times 10^{-4}$	
Γ_{86}	$J / \psi(1 S) \pi^{+} \pi^{-} \pi^{0}$	<1.5 \％	90\％
Γ_{87}	$\pi^{0} \eta_{c}$	$<3.2 \times 10^{-3}$	90\％
Γ_{88}	$\eta_{C}(1 S) \pi^{+} \pi^{-}$	$<5.4 \times 10^{-3}$	90\％
Radiative decays			
Γ_{89}	$\gamma J / \psi(1 S)$	$(19.0 \pm 0.5) \%$	
Γ_{90}	$\gamma \rho^{0}$	$<1.9 \times 10^{-5}$	90\％
Γ_{91}	$\gamma \omega$	$<6 \times 10^{-6}$	90\％
Γ_{92}	$\gamma \phi$	$<7 \times 10^{-6}$	90\％
Γ_{93}	$\gamma \gamma$	$(2.85 \pm 0.10) \times 10^{-4}$	
Γ_{94}	$e^{+} e^{-} J / \psi(1 S)$	$(2.15 \pm 0.14) \times 10^{-3}$	
Γ_{95}	$\mu^{+} \mu^{-} J / \psi(1 S)$	$(2.02 \pm 0.33) \times 10^{-4}$	

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{C 1}(1 P), \chi_{C 0}(1 P), \chi_{C 2}(1 P)$ ，and $\psi(2 S)$ with 4 total widths，a partial width， 25 combinations of partial widths obtained from integrated cross section，and 84 branching ratios uses 248 measurements to determine 49 parameters．The overall fit has a $\chi^{2}=378.1$ for 199 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$ ，in percent，from the fit to parameters p_{i} ，including the branching fractions，$x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$ ．

x_{14}	7									
x_{17}	2	21								
χ_{18}	4	3	1							
x_{20}	7	5	1	3						
\times_{25}	7	6	1	4	10					
χ_{26}	18	2	0	1	1	1				
x_{31}	3	3	1	2	5	12	1			
x_{32}	5	4	1	3	7	15	1	8		
x_{33}	5	4	1	2	6	13	1	7	8	
x_{42}	2	2	0	1	3	7	0	3	4	4
x_{51}	4	3	1	2	4	7	1	4	5	4
x_{56}	10	9	2	5	9	11	2	5	8	7
x_{69}	3	3	1	2	5	13	1	7	8	7
χ_{89}	12	10	2	6	15	34	2	18	22	18
χ_{93}	－6	－4	－1	－2	2	20	－2	12	12	10
Γ	－23	－19	－4	－11	－19	－25	－5	－12	－18	－15
	x_{1}	x_{14}	x_{17}	${ }_{18}$	χ_{20}	χ_{25}	χ_{26}	x_{31}	x_{32}	x_{33}
x_{51}	2									
χ_{56}	4	5								
x_{69}	4	4	6							
χ_{89}	10	11	4	18						
χ_{93}	5	4	18	12	34					
Γ	－8	－11	－45	－12	－46	－43				
	χ_{42}	χ_{51}	χ_{56}	x_{69}	χ_{89}	χ_{93}				
			$\chi_{C 2}$	P）PA	TIAL	WIDT	HS			
			${ }_{2}(1 P$	$\Gamma(i) \Gamma$	$y / \psi(1 S$	$S)(\Gamma$	-(total)			
$\Gamma(p \bar{p})$	$\Gamma(\gamma$	$\psi(1 S$	$/ \Gamma_{\text {to }}$							／$/$
VALUE				DOCL	IENT ID		TECN	COMMEN		
27．5士	OUR F									
27．5土	OUR A	ERAG								
$27.0 \pm$	1.1			${ }^{1}$ AND	EOTTI	05A	E835	$p \bar{p} \rightarrow$	${ }^{-} \gamma$	
$27.7 \pm$	2.0			2 ARM	TRONG	92	E760	$\bar{p} p \rightarrow$	$e^{-\gamma}$	
$36 \pm$				${ }^{1}$ BAG	N	86B	SPEC	$\bar{p} p \rightarrow$	e^{-X}	
${ }^{1}$ Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=0.0593 \pm 0.0010$ ． ${ }^{2}$ Recalculated by ANDREOTTI 05A．										

$\frac{\operatorname{VALUE}(\mathrm{eV})}{\text { EVTS DOCUMENT ID }}$ TECN COMMENT
107士 5 OUR FIT
117 ± 10 OUR AVERAGE

$111 \pm 12 \pm 9$	147 ± 15	${ }^{1}$ DOBBS	06	CLE3	$\begin{gathered} 10.4 e^{+} e^{-} \rightarrow \\ e^{+} e^{-} \chi_{c} \end{gathered}$
114土 11 ± 9	136 ± 13.3	1，2 ABE	02T	BELL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 2}$
$139 \pm 55 \pm 21$		1，3 ACCIARRI	99E	L3	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{c 2}$
$242 \pm 65 \pm 51$		1，4 ACKER．．，K．．．	98	OPAL	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 2}$
$150 \pm 42 \pm 36$		1，5 DOMINICK	94	CLE2	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{c 2}$
$470 \pm 240 \pm 120$		1，6 BAUER	93	TPC	$e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{c 2}$

${ }^{1}$ Calculated by us using $\mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.1187 \pm 0.0008$ ．
${ }^{2}$ All systematic errors added in quadrature．
${ }^{3}$ The value for $\Gamma\left(\chi_{C 2} \rightarrow \gamma \gamma\right)$ reported in ACCIARRI 99E is derived using $\mathrm{B}\left(\chi_{C 2} \rightarrow\right.$ $\gamma J / \psi(1 S)) \times \mathbf{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.0162 \pm 0.0014$.
${ }^{4}$ The value for $\Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right)$ reported in ACKERSTAFF， K 98 is derived using $\mathrm{B}\left(\chi_{C 2} \rightarrow\right.$ $\left.{ }_{5} J / \psi(1 S)\right)=0.135 \pm 0.011$ and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1203 \pm 0.0038$ ．
${ }^{5}$ The value for $\Gamma\left(\chi_{C 2} \rightarrow \gamma \gamma\right)$ reported in DOMINICK 94 is derived using $\mathrm{B}\left(\chi_{c 2} \rightarrow\right.$ $\gamma J / \psi(1 S))=0.135 \pm 0.011, \mathrm{~B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=0.0627 \pm 0.0020$ ，and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=0.0597 \pm 0.0025$ ．
${ }^{6}$ The value for $\Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right)$ reported in BAUER 93 is derived using $\mathrm{B}\left(\chi_{c 2} \rightarrow\right.$ $\gamma J / \psi(1 S))=0.135 \pm 0.011, \mathrm{~B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=0.0627 \pm 0.0020$ ，and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=0.0597 \pm 0.0025$ ．

$\Gamma\left(K^{+} K^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					$\Gamma_{32} \Gamma_{93} / \Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
0.56 ± 0.04 OUR FIT					
$0.44 \pm 0.11 \pm 0.07$	33 ± 8	NAKAZAWA	BELL	$\begin{gathered} 10.6 e^{+} e \\ e^{+} e^{-} \end{gathered}$	

$\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) \times \Gamma(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }} \quad \Gamma_{\mathbf{3 3}} \Gamma_{\mathbf{9 3}} / \Gamma^{2}$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{0 . 2 9 4} \pm \mathbf{0 . 0 2 5} \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT
0.294 ± 0.025 OUR FIT
$\mathbf{0 . 2 7}{ }_{-0.06}^{\mathbf{+ 0}} \mathbf{0 . 0 7} \mathbf{0 . 0 3} \quad 53 \quad{ }^{1}$ UEHARA $\quad 13 \mathrm{BELL} \quad \gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$
• • We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$0.31 \pm 0.05 \pm 0.03 \quad 38 \pm 7 \quad$ CHEN $\quad 07 \mathrm{~B}$ BELL $\quad e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 2}$ 1 Supersedes CHEN 07B.

$\Gamma\left(K^{+} K^{=} K^{+} K^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{51} \Gamma_{93} /{ }^{5}$ $\operatorname{VALUE}(\mathrm{eV}) \quad E V T$ DOCUMENT ID TECN COMMENT 0.93 ± 0.11 OUR FIT
$\mathbf{1 . 1 0} \pm \mathbf{0 . 2 1} \pm \mathbf{0 . 1 5} \quad 126 \pm 2$
UEHARA 08 BELL $\quad \gamma \gamma \rightarrow \chi_{C 2} \rightarrow 2\left(K^{+} K^{-}\right)$

Meson Particle Listings
$\chi_{c 2}(1 P)$

$\Gamma\left(K^{*}(892){ }^{0} \bar{K}^{0} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+\right.$ c．c．$) / \Gamma_{\text {to }}$				／	
$0.38 \pm 0.09 \pm 0.01$			TECN		
	63.0	${ }^{1} \mathrm{HE} \quad 08 \mathrm{BE}$ CLEO $e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}$			
${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.39 \pm 0.07 \pm 0.05 \pm 0.03 \%$ from a measurement of $\left[\Gamma\left(\chi_{c 2}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{0} \bar{K}^{0} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assum－ ing $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．					
$\Gamma\left(K^{*}(892)^{-} K^{+} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+\text { c.c. }\right) / \Gamma_{\text {total }}$$\text { VALUE }(\%) \text { EVTS DOCUMENT ID TEC }$				／	
$0.37 \pm 0.08 \pm 0.01$	51.1	О8в CLEO $e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}$			
${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.38 \pm 0.07 \pm 0.04 \pm 0.03 \%$ from a measurement of $\left[\Gamma\left(\chi_{c 2}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{-} K^{+} \pi^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ as suming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．					

${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.30 \pm 0.07 \pm 0.04 \pm 0.02 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{+} \bar{K}^{0} \pi^{-} \rightarrow K^{+} \pi^{-} \bar{K}^{0} \pi^{0}+$ c．c．$\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ as－ suming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$ ，which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma\left(K^{+} K^{-} \eta \pi^{0}\right) / \Gamma_{\text {total }}$

$\Gamma_{13 / \Gamma}$
VALUE（\％）EVTS
$\mathbf{0 . 1 2 7} \pm \mathbf{0 . 0 4 4} \pm \mathbf{0 . 0 0 3} \quad 22.9 \quad 1 \mathrm{HE} \quad 08 \mathrm{~B} \quad \overline{\mathrm{CLEO}} \xlongequal[e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}]{ }$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.13 \pm 0.04 \pm 0.02 \pm 0.01 \%$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \eta \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．

$\Gamma\left(\kappa^{+} \boldsymbol{K}^{-} \pi^{+} \pi^{-}\right) / /_{\text {total }}$		$\Gamma_{14 / \Gamma}$
8．440．9 OUR FIT	Document io	
$\Gamma\left(\kappa^{+} \kappa^{-} \pi^{+} \pi^{-} \pi^{0}\right) / /_{\text {toalal }}$		／

VALUE（units 10^{-3} ）	EVTS	DOCUMENT		TECN	COMMENT	
11．69 $\pm 0.13 \pm 1.31$	11k	1 ABLIKIM	13B	BES3		

$\Gamma\left(\kappa_{S}^{0} \boldsymbol{K}^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right) /{ }_{\text {total }}$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{\mathbf{7 . 3 0} \pm \mathbf{0 . 1 1 \pm 0 . 7 5}} \frac{\text { EVTS }}{4.5 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{13 \mathrm{~B}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 2}}$
${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 2} \gamma\right)=(8.72 \pm 0.34) \%$

$\Gamma\left(K^{+} \bar{K}^{*}(892)^{0} \pi^{-}+\right.$c．c．$) / \Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-}\right)$		$\Gamma_{17} / \Gamma_{14}$
VALUE	TECN COMment	
0.25 ± 0.13 OUR FIT		
0.25 ± 0.13 TANENBAUM 78	MRK1 $\psi(2 S) \rightarrow$	
$\Gamma\left(K^{+} \bar{K}^{*}(892)^{0} \pi^{-}+\right.$c．c．$) / \Gamma_{\text {total }}$		Γ_{17} / Γ
21 ± 11 OUR FIT		
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }}$		$\Gamma_{18} /{ }^{\text {r }}$
2.3 ± 0.4 OUR FIT		
$\Gamma\left(3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$		$\Gamma_{19} /{ }^{1}$

VALUE（units 10^{-3} ）

 8.6 ± 1.8 OUR EVALUATION 8.6 ± 1.8 OUR AVERAGE| $8.6 \pm 0.9 \pm 1.6$ | 1 BAI |
| :--- | :---: |
| $8.7 \pm 5.9 \pm 0.4$ | 1 TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$ |
| ${ }^{1}$ Rescaled by us using $\quad \mathrm{B}\left(\psi(2 S) \rightarrow \quad \gamma \chi_{C 2}\right)=(8.3 \pm 0.4) \%$ and $\mathrm{B}(\psi(2 S) \rightarrow$ | |
| $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.6 \pm 0.5) \%$. | Multiplied by a factor of 2 to convert from | $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.6 \pm 0.5) \%$ ．Multiplied by a factor of 2 to convert from $K_{S}^{0} K^{+} \pi^{-}$to $K^{0} K^{+} \pi^{-}$decay．

$\Gamma(\phi \phi) / \Gamma_{\text {total }}$
VALUE（units 10^{-3} ）
1.06 ± 0.09 OUR FIT

DOCUMENT ID
DOCUMENT ID TECN COMMENT
reating systematic error as correlated
${ }^{1}$ BAI $\quad 99$ B BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2}$
TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$

COMTX
$\Gamma(\phi \phi \eta) / \Gamma_{\text {total }}$
Γ_{21} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{5 . 3} \pm \mathbf{0 . 5} \pm \mathbf{0 . 4}} \frac{\text { EVTS }}{143.6} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM } \quad \text { 20B }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{(2 S) \rightarrow \gamma \phi \phi \eta}{\psi(2 S)}$
${ }^{1}$ ABLIKIM 20B reports $(5.33 \pm 0.52 \pm 0.39) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\phi \phi \eta) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm$ $0.20) \times 10^{-2}$ ．
$\Gamma(\omega \omega) / \Gamma_{\text {total }} \quad \Gamma_{22} / \Gamma$ VALUE（units 10^{-3} ）EVTS
0.84 ± 0.10 OUR AVERAGE
$0.82 \pm 0.10 \pm 0.02 \quad 762 \quad 1$ ABLIKIM $\quad 11 \mathrm{~K}$ BES3 $\quad \psi(2 S) \rightarrow \gamma$ hadrons $1.73 \pm 0.57 \pm 0.04 \quad 27.7 \pm 7.4 \quad{ }^{2}$ ABLIKIM \quad 05N BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2} \rightarrow \gamma 6 \pi$ ${ }^{1}$ ABLIKIM 11 K reports $(8.9 \pm 0.3 \pm 1.1) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\omega \omega) / \Gamma_{\text {total }}\right] \times\left[\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm$ $0.35) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=(9.52 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 05 N reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \omega \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=$ $(0.165 \pm 0.044 \pm 0.032) \times 10^{-3}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
$\Gamma\left(\omega K^{+} K^{-}\right) / \Gamma_{\text {total }}$
「23／「
VALUE（units 10^{-3} ）EVTS
DOCUMENT ID TECN COMMENT
$\overline{\mathbf{0 . 7 3} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 8}} 512 \quad 1$ ABLIKIM 13 B BES3 $\overline{e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 2}}$ ${ }^{1}$ Using $1.06 \times 10^{8} \psi(2 S)$ mesons and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 2} \gamma\right)=(8.72 \pm 0.34) \%$ ．
$\Gamma(\omega \phi) / \Gamma_{\text {total }} \quad \Gamma_{24} / \Gamma$
$\frac{\left.\text { VALUE（units } 10^{-6}\right)}{\mathbf{9 . 6} \pm \mathbf{2 . 7} \pm \mathbf{0 . 2}} \frac{C L \%}{33} \quad \frac{\text { EVTS }}{1} \frac{\text { DOCUMENT ID }}{\text { ABLIKIM 19」 }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \text { hadrons }}$
－－We do not use the following data for averages，fits，limits，etc．－－－
$<18 \quad 90 \quad 2,3$ ABLIKIM $\quad 11 \mathrm{~K}$ BES3 $\quad \psi(2 S) \rightarrow \gamma$ hadrons
${ }^{1}$ ABLIKIM 19」 reports $\left[\Gamma\left(\chi_{c 2}\left({ }^{1 P)} \rightarrow \omega \phi\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=\right.$ $(0.91 \pm 0.23 \pm 0.12) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 11 K reports $<2 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \omega \phi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$ ， which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$ ．
${ }^{3}$ Superseded by ABLIKIM 19J．
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right.$（non－resonant）$) / \Gamma_{\text {total }} \quad \Gamma_{27} / \Gamma$
$\frac{\left.\text { VALUE（unit } 10^{-5}\right)}{\mathbf{2 . 0 1} \pm \mathbf{0 . 4 2} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{64} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TBLIKIM 17AG BES }}{\text { AB }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} \pi^{0}}$
$2.01 \pm 0.42 \pm 0.04$
${ }^{1}$ ABLIKIM 17AG reports $(2.1 \pm 0.4 \pm 0.2) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\pi^{+} \pi^{-} \pi^{0}($ non－resonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value
$\Gamma\left(\rho(770)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{28} / \Gamma$
$\frac{\text { VALUE（units } 10^{-5} \text { ）}}{\mathbf{0 . 6 1} \pm \mathbf{0 . 3 8} \pm \mathbf{0 . 0 1}} \frac{\text { EVTS }}{15} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM } 17 \mathrm{AG}}{\frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-} \pi^{0}}}$ ${ }^{1}$ ABLIKIM 17 AG reports $(0.64 \pm 0.39 \pm 0.07) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \rho(770)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value
$\Gamma\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\eta}\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE（units } 10^{-3}\right)}{\mathbf{0 . 4 8} \pm \mathbf{0 . 1 3} \pm \mathbf{0 . 0 1}} \quad \frac{C L \%}{\text { DOCUMENT ID }}$
1 $\frac{\text { TECN }}{\text { ATHAR }} \frac{07}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$ －．We do not use the following data for averages，fits，limits，etc．－． $<1.4 \quad 90 \quad{ }^{2}$ ABLIKIM $\quad 06 R$ BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2}$ ${ }^{1}$ ATHAR 07 reports $(0.49 \pm 0.12 \pm 0.06) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.\pi^{+} \pi^{-} \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．
${ }^{2}$ ABLIKIM 06R reports $<1.7 \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \pi^{+} \pi^{-} \eta\right) /\right.$ $\left.\Gamma_{\text {tota }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=(8.1 \pm 0.4) \times$ 10^{-2} ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=9.52 \times 10^{-2}$

$\Gamma(\eta \eta) / \Gamma_{\text {total }}$
$\frac{V \operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{\mathbf{5 . 4} \pm \mathbf{0 . 4} \text { OUR FIT }}$
$\Gamma\left(K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{32} / \Gamma$
VALUE (units 10^{-3})
DOCUMENT ID
1.01 ± 0.06 OUR FIT
$\Gamma\left(K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{33} / \Gamma$
VALUE (units 10^{-3})
DOCUMENT ID
$\Gamma\left(K_{s}^{0} K_{s}^{0}\right) / \Gamma(\pi \pi)$
VALUE
0.235 ± 0.019 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - -
$0.27 \pm 0.07 \pm 0.04 \quad 1,2$ CHEN $\quad 07 \mathrm{~B}$ BELL $e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{C 2}$
1 Using $\Gamma(\pi \pi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$ from the $\pi^{+} \pi^{-}$measurement of NAKAZAWA 05 rescaled
by $3 / 2$ to convert to $\pi \pi$.
2 Not independent from other measurements.

2 Not independent from other measurements.

| $\boldsymbol{\Gamma}\left(\boldsymbol{K}_{\mathbf{S}}^{\mathbf{0}} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}\right) / \Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right)$ |
| :--- | :--- |
| VALUE |

$\frac{V A L U E}{0.52 \pm 0.05 \text { OUR FIT }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.70 \pm 0.21 \pm 0.12 \quad 1,2 \mathrm{CHEN} \quad 07 \mathrm{~B}$ BELL $e^{+} e^{-} \rightarrow e^{+} e^{-} \chi_{c 2}$
${ }^{1}$ Using $\Gamma\left(K^{+} K^{-}\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$ from NAKAZAWA 05.
2 Not independent from other measurements.
$\Gamma\left(\boldsymbol{K}^{*}(\mathbf{8 9 2})^{ \pm} \boldsymbol{K}^{\mp}\right) / \Gamma_{\text {total }}$
$\Gamma\left(\boldsymbol{K}^{*}(892)^{ \pm} \boldsymbol{K}^{\mp}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE(units $\left.10^{-4}\right)$
DOCUMENT ID
TECN COMMENT
Г $\mathbf{3 4} / \boldsymbol{\Gamma}$
$\mathbf{1 . 4 4} \pm \mathbf{0 . 2 1} \pm \mathbf{0 . 0 3} \quad{ }^{1}$ ABLIKIM $\quad 17 \mathrm{AG}$ BES3 $\psi(2 S) \rightarrow \gamma K \bar{K} \pi$
- - We do not use the following data for averages, fits, limits, etc. - - -

$1.72 \pm 0.26 \pm 0.04$	2	ABLIKIM	17AG BES3
$1.34+0.27+0.03$	3 ABLIKIM	$\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{0}$	
	17AG BES3	$\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \mp$	

$\gamma K_{S}^{0} K^{ \pm} \pi^{+}$
${ }^{1}$ ABLIKIM 17 AG reports $(1.5 \pm 0.1 \pm 0.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{*}(892)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ ABLIKIM 17AG reports $(1.8 \pm 0.2 \pm 0.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{*}(892)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 17AG reports $(1.4 \pm 0.2 \pm 0.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{*}(892)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\begin{array}{ll}\boldsymbol{\Gamma}\left(\boldsymbol{K}^{*}(\mathbf{8 9 2})^{\mathbf{0}} \overline{\boldsymbol{K}}^{\mathbf{0}}+\mathbf{c . c}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ \left.\text { VALUE (units } 10^{-4}\right)\end{array} \boldsymbol{\Gamma}_{\mathbf{3 5}} / \boldsymbol{\Gamma}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 2 4} \pm \mathbf{0 . 2 7} \pm \mathbf{0 . 0 3}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { COMMENT }}{\text { 17AG BES3 }} \frac{\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}}{}$ ${ }^{1}$ ABLIKIM 17AG reports $(1.3 \pm 0.2 \pm 0.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K^{*}(892)^{0} \bar{K}^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K_{2}^{*}(\mathbf{1 4 3 0})^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}$
「36/「
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{14.8+12+0.3} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$17.4 \pm 1.6 \pm 0.4 \quad{ }^{2}$ ABLIKIM \quad 17AG BES3 $\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{0}$
$13.0 \pm 1.5 \pm 0.3 \quad{ }^{3}$ ABLIKIM $\quad 17 \mathrm{AG}$ BES3 $\quad \psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi \mp$
${ }^{1}$ ABLIKIM 17AG reports $(15.5 \pm 0.6 \pm 1.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{2}^{*}(1430)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ ABLIKIM 17 AG reports $(18.2 \pm 0.8 \pm 1.6) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{2}^{*}(1430)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 17AG reports $(13.6 \pm 0.8 \pm 1.4) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{2}^{*}(1430)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K_{2}^{*}(1430)^{0} \bar{K}^{0}+c . c.\right) / \Gamma_{\text {total }}$
Γ_{37} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 2 . 4} \pm \mathbf{1 . 7} \pm \mathbf{0 . 3}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM }} \frac{\text { TECN }}{\text { 17AG BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}}$
${ }^{1}$ ABLIKIM 17AG reports $(13.0 \pm 1.0 \pm 1.5) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K_{2}^{*}(1430)^{0} \bar{K}^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K_{3}^{*}(1780)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 8}} / \Gamma$ VALUE (units 10^{-4}) $\quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$ $5.2 \pm \mathbf{0 . 8} \pm \mathbf{0 . 1} \quad{ }^{1}$ ABLIKIM \quad 17AG BES3 $\quad \psi(2 S) \rightarrow \gamma K \bar{K} \pi$ - - We do not use the following data for averages, fits, limits, etc. - • •
$5.1 \pm 1.0 \pm 0.1 \quad{ }^{2}$ ABLIKIM 17 AG BES3 $\quad \psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{0}$ $5.6 \pm 1.8 \pm 0.1 \quad 3$ ABLIKIM $\quad 17 \mathrm{AG}$ BES3 $\quad \psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}$ ${ }^{1}$ ABLIKIM 17AG reports $(5.4 \pm 0.5 \pm 0.7) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{3}^{*}(1780)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2 ABLIKIM 17AG reports $(5.3 \pm 0.5 \pm 0.9) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{3}^{*}(1780)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABLIKIM 17AG reports $(5.9 \pm 1.1 \pm 1.5) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K_{3}^{*}(1780)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K_{3}^{*}(1780)^{0} K^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$
Г39/Г
$\frac{V A L U E\left(\text { units } 10^{-4} \text {) }\right.}{\mathbf{5 . 6} \pm \mathbf{2 . 1} \pm \mathbf{0 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM } \quad 17 \mathrm{AG}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}}$ ${ }^{1}$ ABLIKIM 17AG reports $(5.9 \pm 1.6 \pm 1.5) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K_{3}^{*}(1780)^{0} \bar{K}^{0}+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(a_{2}(1320)^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
Γ_{40} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4} \text {) }\right.}{\mathbf{1 2 . 9 \pm 3 . 4} \pm \mathbf{0 . 3}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM 17AG BES3 }} \frac{\text { TECN }}{\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{0}}$
${ }^{1}$ ABLIKIM 17AG reports $(13.5 \pm 1.6 \pm 3.2) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.\mathrm{a}_{2}(1320)^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)$ $=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(a_{2}(1320)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}$
Γ_{41} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{1 7 . 6} \pm \mathbf{6 . 1} \pm \mathbf{0 . 4}} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM }} \frac{\text { 17AG BES3 }}{\text { TECN }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi \mp}$ ${ }^{1}$ ABLIKIM 17AG reports $(18.4 \pm 3.3 \pm 5.5) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.a_{2}(1320)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$
$=(9.11 \pm 0.31) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)$
$=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} K^{-} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-3} \text {) }}{\mathbf{0 . 3 0} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 1}} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ATHAR } \quad 07} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}}$
1 ATHAR 07 reports $(0.31 \pm 0.07 \pm 0.04) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{c 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings
$\chi_{c 2}(1 P)$

0.47 ± 0.04 OUR AVERAGE

$0.47 \pm 0.04 \pm 0.01 \quad 10$ CLE3 $\psi(2 S) \rightarrow \gamma p \bar{p} X$ $0.43 \pm 0.09 \pm 0.01 \quad 2$ ATHAR 07 CLEO $\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$
${ }^{1}$ ONYISI 10 reports $(4.83 \pm 0.25 \pm 0.35 \pm 0.31) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2^{2} ATHAR 07 reports $(0.44 \pm 0.08 \pm 0.05) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.p \bar{p} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\rho \bar{p} \eta) / \Gamma_{\text {total }}$
VALUE (units 10^{-3} DOCUMENT ID TECN COMMENT
$\mathbf{0 . 1 7 4 \pm 0 . 0 2 5}$ OUR AVERAGE
$\begin{array}{lllll}0.172 \pm 0.026 \pm 0.004 & 1 \\ \text { ONYISI } & 10 & \text { CLE3 } & \psi(2 S) \rightarrow \gamma p \bar{p} X \\ 0.186 \pm 0.070 \pm 0.004 & 2 \text { ATHAR } & 07 & \text { CLEO } & \psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}\end{array}$ ${ }^{1}$ ONYISI 10 reports $(1.76 \pm 0.23 \pm 0.14 \pm 0.11) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{p} \eta\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
2 ATHAR 07 reports $(0.19 \pm 0.07 \pm 0.02) \times 10^{-3}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.p \bar{p} \eta) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.33 \pm$ $0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p \bar{p} \omega) / \Gamma_{\text {total }}$	Γ_{59} / Γ	
VALUE (units 10^{-3})	DOCUMENT ID TECN	COMMENT
$0.36 \pm 0.04 \pm 0.01$	${ }^{1}$ ONYISI 10 CLE3	$\psi(2 S) \rightarrow \gamma p \bar{p} X$
${ }^{1}$ ONYISI 10 reports $(3.68 \pm 0.35 \pm 0.26 \pm 0.24) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{p} \omega\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$		
$\begin{aligned} & \left.\gamma \chi_{C 2}(1 P)\right)= \\ & \text { second error is } \end{aligned}$	10^{-2}. Our first error is their error from using our best value	xperiment's error and our

$\Gamma(p \bar{p} \phi) / \Gamma_{\text {total }} \quad \Gamma_{60} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\mathbf{2 . 8} \pm \mathbf{0 . 9} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{24 \pm 7} \quad \frac{\text { DOCUMENT ID }}{1 \frac{\text { ABLIKIM }}{11 \mathrm{~F}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{p} K^{+} K^{-}}}$ ${ }^{1}$ ABLIKIM 11 F reports $(3.04 \pm 0.85 \pm 0.43) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.p \bar{p} \phi) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm$ $0.35) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm$ $0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} \boldsymbol{K}^{-} K_{S}^{0} K_{s}^{0}\right) / \Gamma_{\text {total }}$

${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K^{+} K^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 2}(1 P)\right)\right]<3.5 \times 10^{-5}$ which we divide by our best value $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=9.52 \times 10^{-2}$.
$\Gamma\left(K_{S}^{0} K_{S}^{0} K_{s}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{50} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 1 3} \mathbf{\pm 0 . 1 8} \mathbf{\pm 0 . 0 2}} \frac{\text { EVTS }}{68} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM }} \frac{\text { 19AA }}{} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma 4 K_{S}^{0}}$ ${ }^{1}$ Using $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(69.20 \pm 0.05) \%$. ABLIKIM 19AA reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=(10.8 \pm 1.5 \pm 0.8) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error
from using our best value.. from using our best value..
Γ_{49} / Γ
Γ_{48} / Γ
$\Gamma\left(\pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0}\right) / /_{\text {total }}$
DOCUMENT ID TECN COMMENT
$\overline{\mathbf{2 . 1 7} \pm \mathbf{0 . 5 4} \pm \mathbf{0 . 0 5}} \sqrt{57 \pm 11} \quad 1$ ABLIKIM $\quad 050$ BES2 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
${ }^{1}$ ABLIKIM 050 reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 2}(1 P)\right)\right]=(0.207 \pm 0.039 \pm 0.033) \times 10^{-3}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / /_{\text {total }}$
Γ_{51} / Γ

VALUE (units 10^{-3})
DOCUMENT ID
1.65 ± 0.20 OUR FIT

$\Gamma\left(p \bar{p} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$

 $0.078 \pm 0.023 \pm 0.002 \quad{ }_{29.2}^{1} \mathrm{HE} \quad$ 08B $\quad \underset{\text { CLEO }}{e^{+} e^{-} \rightarrow \gamma h^{+} h^{-} h^{0} h^{0}}$ ${ }^{1} \mathrm{HE} 08 \mathrm{~B}$ reports $0.08 \pm 0.02 \pm 0.01 \pm 0.01 \%$ from a measurement of $\left\lceil\Gamma\left(\chi_{C 2}\left({ }^{(1 P)}\right) \rightarrow\right.\right.$ $\left.\left.p \bar{\rho} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\left({ }^{(P)}\right)\right]\right.$ assuming $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\left({ }^{(P)}\right)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\rho \bar{p} K^{+} K^{-}(\right.$non-resonant $\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{63} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{1 . 9 1} \pm \mathbf{0 . 3 2} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{131 \pm 12} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{11 \mathrm{~F}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{p} K^{+} K^{-}}$ ${ }^{1}$ ABLIKIM 11 F reports $(2.08 \pm 0.19 \pm 0.30) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $p \bar{p} K^{+} K^{-}($non-resonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{65} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\text { EVTS }}$ $\frac{8.5 \pm 0.9}{}$ OUR AVERAGE

$8.4 \pm 1.0 \pm 0.2$	3309	1	ABLIKIM	12 J	BES3
$10.2 \pm 3.4 \pm 0.2$		2 ABLIKIM	061	BES2	$\psi(2 S) \rightarrow \gamma p \bar{n} \pi^{-}$
10.					

${ }^{1}$ ABLIKIM 12J reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=$ $(0.80 \pm 0.02 \pm 0.09) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ ABLIKIM 061 reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{n} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)\right]=$ $(0.97 \pm 0.20 \pm 0.26) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\bar{p} n \pi^{+}\right) / \Gamma_{\text {total }} \Gamma_{66} / \Gamma^{2}$
 ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \bar{p} n \pi^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=$ $(0.85 \pm 0.02 \pm 0.07) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\boldsymbol{\Gamma}\left(\boldsymbol{p} \overline{\boldsymbol{n}} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{2 1 . 7} \pm \mathbf{1 . 7} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{2128}$$\frac{\text { DOCUMENT ID }}{1 \frac{\text { ABLIKIM }}{12 \mathrm{~J}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{n} \pi^{-} \pi^{0}}}$ ${ }^{1}$ ABLIKIM 12 J reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow p \bar{n} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]=$ $(2.07 \pm 0.06 \pm 0.15) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\bar{p} n \pi^{+} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{68} / Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	

$\Gamma(\Lambda \bar{\Lambda}) / \Gamma_{\text {total }}$
Г $69 / \Gamma$

VALUE (units 10^{-4})
1.84 ± 0.15 OUR FIT

DOCUMENT ID
$\boldsymbol{\Gamma}\left(\boldsymbol{\Lambda} \bar{\Lambda} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\mathbf{1 2 5} \pm \mathbf{1 5} \pm \mathbf{3}} \frac{C L \%}{371}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<350 \quad 90 \quad 2$ ABLIKIM $\quad 06 \mathrm{D}$ BES2 $\quad \psi(2 S) \rightarrow \chi_{c 2} \gamma$
${ }^{1}$ ABLIKIM 121 reports $(137.0 \pm 7.6 \pm 15.7) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.\Lambda \bar{\Lambda} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=$ $(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 2} \gamma\right)=(9.3 \pm 0.6) \%$.
 $\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{6 6 \pm 1 5} \pm \mathbf{1}} \frac{\text { EVTS }}{36} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM }} 12$ TECN $\frac{\text { COMMENT }}{\text { BES3 }} \frac{\text { T } 2 S) \rightarrow \gamma \wedge \bar{\Lambda} \pi^{+} \pi^{-}}{}$ ${ }^{1}$ ABLIKIM 12I reports $(71.8 \pm 14.5 \pm 8.2) \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\Lambda \bar{\Lambda} \pi^{+} \pi^{-}($non-resonant $\left.\left.)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
$\Gamma\left(\Sigma(1385)+\bar{\lambda}^{-}+\right.$c.c..$\left.)\right) / \Gamma_{\text {total }} \quad \Gamma_{72} / \Gamma$
 ${ }^{1}$ ABLIKIM 121 reports $<42 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\Sigma(1385)^{+} \bar{\Lambda} \pi^{-}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma\left(\boldsymbol{\Sigma}(\mathbf{1 3 8 5})^{-} \bar{\Lambda} \pi^{+}+\mathbf{c . c}\right) / \Gamma_{\text {total }}$
「73/「
 ${ }^{1}$ ABLIKIM 121 reports $<61 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\Sigma(1385)^{-} \bar{\Lambda} \pi^{+}+$c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma\left(\boldsymbol{K}^{+} \bar{p} \boldsymbol{\Lambda}+\right.$ c.c. $) / /_{\text {total }}$
$\Gamma_{74 / \Gamma}$
VALUE (units 10^{-4}) EVTS
7.8 ± 0.5 OUR AVERAGE
$\begin{array}{lcccc}7.7 \pm 0.5 \pm 0.2 & 5 \mathrm{k} \quad 1,2 \text { ABLIKIM } \quad \text { 13D BES3 } \psi(2 S) \rightarrow \gamma \wedge \bar{p} K^{+}\end{array}$
$8.3 \pm 1.6 \pm 0.2 \quad 3$ ATHAR 07 CLEO $\psi(2 S) \rightarrow \gamma h^{+} h^{-} h^{0}$
${ }^{1}$ ABLIKIM 13D reports $(8.4 \pm 0.3 \pm 0.6) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using $B\left(\Lambda \rightarrow p \pi^{-}\right)=63.9 \%$
${ }^{3}$ ATHAR 07 reports $(8.5 \pm 1.4 \pm 1.0) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \Lambda+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{*}(892)^{+} \bar{\rho} \Lambda+\right.$ c.c. $) / \Gamma_{\text {total }}$
$\Gamma_{75 / \Gamma}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{8 . 2} \pm \mathbf{1 . 1} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{476} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { 19AU }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K^{*+} \bar{p} \Lambda}$
${ }^{1}$ ABLIKIM 19 AU reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K^{*}(892)^{+} \bar{p} \wedge+\right.\right.$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\left.\gamma \chi_{C 2}(1 P)\right)\right]=(7.8 \pm 0.9 \pm 0.6) \times 10^{-5}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\boldsymbol{K}^{+} \bar{p} \Lambda(1520)+\right.$ c.c. $) / \Gamma_{\text {total }}$
Γ_{76} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{2 . 8} \pm \mathbf{0 . 7} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{79 \pm 13} \quad 1 \frac{\text { DOCUMENT ID }}{19 \mathrm{ABLIKIM} \quad 11 \mathrm{~F}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{p} K^{+} K^{-}}$ ${ }^{1}$ ABLIKIM 11F reports $(3.06 \pm 0.50 \pm 0.54) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $K^{+} \bar{p} \wedge(1520)+$ c.c. $\left.) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $\mathbf{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{c 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(\Lambda(1520) \bar{\Lambda}(1520)) / \Gamma_{\text {total }}$
Γ_{77} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{4 . 6} \mathbf{1 . 4} \mathbf{1} \mathbf{0 . 1}} \frac{\text { EVTS }}{29 \pm 7} \quad \frac{\text { DOCUMENT ID }}{1 \frac{\text { ABLIKIM }}{11 \mathrm{~F}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma p \bar{p} K^{+} K^{-}}}$ ${ }^{1}$ ABLIKIM 11 F reports $(5.05 \pm 1.29 \pm 0.93) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{c 2}(1 P) \rightarrow \Lambda(1520) \bar{\Lambda}(1520)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Meson Particle Listings
$\chi_{c 2}(1 P)$

$\Gamma\left(\Sigma(1385)^{-} \bar{\Sigma}(1385)^{+}\right) / \Gamma_{\text {total }}$

 ${ }^{1}$ ABLIKIM 121 reports $<8.5 \times 10^{-5}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.\Sigma(1385)^{-} \bar{\Sigma}(1385)^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma\left(K^{-} \Lambda \bar{E}^{+}+\right.$c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{83} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 . 7 6} \mathbf{0 . 3 2} \mathbf{0 . 0 4}} \frac{\text { EVTS }}{51} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM } \quad 151} \frac{\text { COMMENT }}{\text { BES }} \frac{}{\psi(2 S) \rightarrow \gamma K^{-} \Lambda \bar{\Xi}^{+}+\text {c.c. }}$ ${ }^{1}$ ABLIKIM 15 l reports $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow K^{-} \Lambda \overline{\left.\left.\bar{E}^{+}+\text {c.c. }\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\psi(2 S) \rightarrow}\right.\right.$ $\left.\left.\gamma \chi_{C 2}(1 P)\right)\right]=(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$ which we divide by our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 2}(1 P)\right)=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

${ }^{1}$ NAIK 08 reports $<1.06 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \Xi^{0} \Xi^{0}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(9.33 \pm 0.14 \pm 0.61) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma\left(\bar{\Xi}^{-} \bar{\Xi}^{+}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{8 5}} / \Gamma$ $\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 . 4 2} \pm \mathbf{0 . 3 1} \pm \mathbf{0 . 0 3}} \frac{C L \%}{29 \pm 5} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { EVAIK }}{29} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \Xi^{+} \bar{\Xi}^{-}}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$<3.7 \quad 90 \quad{ }^{2}$ ABLIKIM \quad 06D BES2 $\quad \psi(2 S) \rightarrow \chi_{C 2} \gamma$
${ }^{1}$ NAIK 08 reports $(1.45 \pm 0.30 \pm 0.15) \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow\right.\right.$ $\left.\left.\equiv^{-} \bar{\Xi}^{+}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=$ $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ $=(9.52 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using B $\left(\psi(2 S) \rightarrow \chi_{C 2} \gamma\right)=(9.3 \pm 0.6) \%$.

${ }^{1}$ We divided the reported limit by 2 to take into account the $K_{L}^{0} K^{+} \pi^{-}$mode.

RADIATIVE DECAYS

$\Gamma(\gamma J / \psi(\mathbf{1 S})) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{19.0 \pm \mathbf{0 . 5} \text { OUR FIT }} \quad$ EVTS
DOCUMENT ID

- - We do not use the following data for averages, fits, limits, etc. - -
$18.64 \pm 0.08 \pm 1.69 \quad 1.0 \mathrm{M} \quad 1$ ABLIKIM $\quad 17 \mathrm{U}$ BES3 $e^{+} e^{-} \rightarrow \gamma X$
$19.9 \pm 0.5 \pm 1.2 \quad 2$ ADAM $\quad 05 \mathrm{~A}$ CLEO $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 2}$
${ }^{1}$ Not independent from $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)$ and the product $\mathrm{B}(\psi(2 S) \rightarrow$
$\left.\gamma \chi_{C 2}(1 P)\right) \times \mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right)$ also measured in ABLIKIM 17 U .
${ }^{2} \operatorname{Uses} \mathrm{~B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2} \rightarrow \gamma \gamma J / \psi\right)$ from ADAM 05A and $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)$ from ATHAR 04.
$\Gamma\left(\gamma \rho^{0}\right) / \Gamma_{\text {total }}$
Γ_{90} / Γ
$\frac{\operatorname{VALUE} \text { (units } 10^{-6} \text {) }}{<19} \frac{C L \%}{90} \frac{\text { EVTS }}{13 \pm 11} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM } 11 \mathrm{E}} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \gamma \rho^{0}}$ - - We do not use the following data for averages, fits, limits, etc. • - -
$<40 \quad 90 \quad 17.2 \pm 6.8 \quad 2$ BENNETT $\quad 08 \mathrm{~A}$ CLEO $\psi(2 S) \rightarrow \gamma \gamma \rho^{0}$
${ }^{1}$ ABLIKIM 11 E reports $<20.8 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{\chi_{2}}(1 P) \rightarrow \gamma \rho^{0}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)\right]$ assuming $\left.\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)\right)=(8.74 \pm 0.35) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
${ }^{2}$ BENNETT 08A reports $<50 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \gamma \rho^{0}\right) /\right.$
$\left.\Gamma_{\text {totala }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.1 \pm 0.4) \times$
10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma(\gamma \omega) / \Gamma_{\text {total }}$
「91/Г
VALUE (units 10^{-6}) CL\% EVTS DOCUMENT ID TECN COMMENT
 $<6 \quad 90 \quad 0.0 \pm 1.8 \quad{ }^{2}$ BENNETT $\quad 08 \mathrm{~A} \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \gamma \omega$ ${ }^{1}$ ABLIKIM 11E reports $<6.1 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \gamma \omega\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
${ }^{2}$ BENNETT 08A reports $<7.0 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma \omega\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=(8.1 \pm 0.4) \times$ 10^{-2}, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma(\gamma \phi) / \Gamma_{\text {total }}$
「92/Г
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{T}} \frac{\text { CL\% }}{90} \frac{\text { EVTS }}{5 \pm 5} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM 11E }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \gamma \phi}$
- - We do not use the following data for averages, fits, limits, etc. - -
$<11 \quad 90 \quad 1.3 \pm 2.5 \quad 2$ BENNETT $\quad 08 \mathrm{~A} \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \gamma \phi$
${ }^{1}$ ABLIKIM 11E reports $<8.1 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \gamma \phi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
${ }^{2}$ BENNETT 08A reports $<13 \times 10^{-6}$ from a measurement of $\left[\Gamma\left(\chi_{C 2}(1 P) \rightarrow \gamma \phi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right)=(8.1 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=9.52 \times 10^{-2}$.
$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
Г93/Г
$\frac{V A L U E ~\left(\text { units } 10^{-4}\right)}{285 \pm 0.10 \text { OUR FIT }}$
2.85 ± 0.10 OUR FIT

$\chi_{c 2}(1 P)$ CROSS-PARTICLE BRANCHING RATIOS

$\Gamma\left(\chi_{c 2}(1 P) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{14} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-3})
2.31 ± 0.26 OUR FIT
2.5 ± 0.9 OUR AVERAGE Error includes scale factor of 2.3.
$\begin{array}{lllll}1.90 \pm 0.14 \pm 0.44 & \text { BAI } & \text { 99B BES } & \psi(2 S) & \rightarrow \gamma \chi_{C 2} \\ 3.8 \pm 0.67 & 1 & \text { TANENBAUM } 78 & \text { MRK1 } & \psi(2 S)\end{array}>\gamma \chi_{C 2}$
${ }^{1}$ The reported value is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi\right) \times \mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=$
$(4.6 \pm 0.7) \%$. Calculated by us using $\mathrm{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow K^{*}(892)^{0} \bar{K}^{*}(892)^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) /$
$\Gamma_{\text {total }}$
$\Gamma_{18} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VaLUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
2.1 ± 0.4 OUR FI
ABLIKIM $\quad 04 \mathrm{H}$ BES2 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2}$
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow p \bar{P}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
$\Gamma_{56} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-5})
2.01 ± 0.09 OUR FIT
2.01 ± 0.09
1.4 ± 1.1
DOCUMENT ID
TECN
COMMENT
981 BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2} \rightarrow \gamma \bar{p} p$
Calculated by us. The value for $\mathrm{B}\left(\chi_{c 2} \rightarrow p \bar{p}\right)$ reported in BAI 98 । is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow p \bar{P}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{56} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{6.98 \pm 0.32 \text { OUR FIT }}$

7.1 ± 0.5 OUR AVERAGE Error includes scale factor of 1.2.
$7.3 \pm 0.4 \pm 0.3 \quad 405 \quad$ ABLIKIM $\quad 13 \vee$ BES3 $\psi(2 S) \rightarrow \gamma p \bar{p}$
$7.2 \pm 0.7 \pm 0.4 \quad 121 \pm 12 \quad 1$ NAIK $\quad 08$ CLEO $\psi(2 S) \rightarrow \gamma p \bar{p}$
$4.4 \underset{-1.4}{+1.6} \pm 0.6 \quad 14.3_{-4.7}^{+5.2} \quad$ BAI $\quad 04 \mathrm{~F}$ BES $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P) \rightarrow \gamma \bar{p} p$ ${ }^{1}$ Calculated by us. NAIK 08 reports $\mathrm{B}\left(\chi_{C 2} \rightarrow p \bar{p}\right)=(7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ using $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(9.33 \pm 0.14 \pm 0.61) \%$.

${ }^{1} \mathrm{BAI} 03 \mathrm{E}$ reports $\left[\mathrm{B}\left(\chi_{C 2} \rightarrow \Lambda \bar{\Lambda}\right) \mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right) / \mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)\right] \times$ $\left[\mathrm{B}^{2}\left(\Lambda \rightarrow \pi^{-} p\right) / \mathrm{B}(J / \psi \rightarrow p \bar{p})\right]=\left(1.33_{-0.55}^{+0.59} \pm 0.25\right) \%$. We calculate from this measurement the presented value using $\mathrm{B}\left(\Lambda \rightarrow \pi^{-} p\right)=(63.9 \pm 0.5) \%$ and $\mathrm{B}(J / \psi \rightarrow$ $p \bar{p})=(2.17 \pm 0.07) \times 10^{-3}$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \pi \pi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{25} / \Gamma \times \Gamma_{155}^{\psi(25)} / \Gamma^{\psi(25)}$
VALUE (units 10^{-4}) EVTS
DOCUMENT ID TECN TECN COMMENT
2.12 $\mathbf{\pm} 0.08$ OUR FIT
2.17 ± 0.09 OUR AVERAGE
$2.19 \pm 0.05 \pm 0.15 \quad 4.5 \mathrm{k} \quad 1$ ABLIKIM $\quad 10 \mathrm{~A}$ BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \gamma \chi_{C 2}$ $2.23 \pm 0.06 \pm 0.10 \quad 2.5 \mathrm{k} \quad 2$ ASNER $\quad 09 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
${ }^{1}$ Calculated by us. ABLIKIM 10A reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \pi^{0} \pi^{0}\right)=(0.88 \pm 0.02 \pm 0.06 \pm$ $0.04) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(8.3 \pm 0.4) \%$. We have multiplied the $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
${ }^{2}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \pi^{+} \pi^{-}\right)=(1.59 \pm 0.04 \pm 0.07 \pm$ $0.10) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(9.33 \pm 0.14 \pm 0.61) \%$. We have multiplied the $\pi^{+} \pi^{-}$measurement by $3 / 2$ to obtain $\pi \pi$.
${ }^{3}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \pi^{0} \pi^{0}\right)=(0.68 \pm 0.03 \pm 0.07 \pm 0.04) \times$ 10^{-3} using $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(9.33 \pm 0.14 \pm 0.61) \%$. We have multiplied the $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \pi \pi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$ $\Gamma_{25} / \Gamma \times \Gamma_{155}^{\psi(25)} / \Gamma_{11}^{\psi(25)}$
$\frac{\text { VALLE (Unis } 10^{-3} \text {) }}{\text { O }}$ EVTS DOCUMENT ID TECN COMMENT
$\overline{0.612} \pm 0.023$ OUR FIT
0.54 ± 0.06 OUR AVERAGE
$0.66 \pm 0.18 \pm 0.37 \quad 21 \pm 6 \quad{ }^{1} \mathrm{BAI} \quad$ 03C BES $\quad \psi(2 S) \rightarrow \gamma \pi^{0} \pi^{0}$
$0.54 \pm 0.05 \pm 0.04 \quad 185 \pm 16 \quad{ }^{2}$ BAI \quad 98I BES $\quad \psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}$
${ }^{1}$ We have multiplied $\pi^{0} \pi^{0}$ measurement by 3 to obtain $\pi \pi$.
${ }^{2}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 2} \rightarrow \pi^{+} \pi^{-}\right)$reported by BAI 981 is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$
[BAI 98D]. We have multiplied $\pi^{+} \pi^{-}$measurement by $3 / 2$ to obtain $\pi \pi$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \eta \eta\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{31} / \Gamma \times \Gamma_{155}^{\psi(25)} / \Gamma^{\psi(25)}$
VALUE (units 10^{-4}) CL\% EVTS
DOCUMENT ID TECN COMMENT
0.52 ± 0.04 OUR FIT
0.52 ± 0.04 OUR AVERAGE

$0.54 \pm 0.03 \pm 0.04$	386	${ }^{1}$ ABLIKIM	10A BES3	$e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$	
			$\gamma \chi_{C 2}$		
$0.47 \pm 0.05 \pm 0.05$	156	ASNER	09	CLEO	$\psi(2 S) \rightarrow \gamma \eta \eta$

- - We do not use the following data for averages, fits, limits, etc. - -

Meson ParticleListings
$\chi_{c 2}(1 P)$

$\Gamma\left(\chi_{c 2}(1 P) \rightarrow K^{+} K^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$	
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$	$\Gamma_{32} / \Gamma^{\times} \times{ }_{155}^{4(2 S)} / \Gamma_{11}^{\psi(2 S)}$
UEECHITS 10)	
$0.190 \pm 0.034 \pm 0.019$	${ }^{1}$ BAI $\quad 981$ BES $\quad \psi(2 S) \rightarrow$
${ }^{1}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 2} \rightarrow \kappa^{+} \kappa^{-}\right)$reported by BAA 98 is derived using 	
$\Gamma\left(\chi_{\text {c2 }}(1 P) \rightarrow K_{S}^{0} \kappa_{S}^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right) / \Gamma_{\text {to }}$	
	OCOMENT ID
5.0 ± 0.4 OUR FIT	
$4.9 \pm 0.3 \pm 0.3$	
$\pm \pm 0.76 \pm 0.63$ ABLIK1M 050 BES2	
${ }^{1}$ Calculated by us. ASNER 09 reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \kappa_{S}^{0} \kappa_{S}^{0}\right)=(0.53 \pm 0.03 \pm 0.03 \pm$ $0.03) \times 10^{-3} u \operatorname{sing} \mathrm{~B}\left(\psi(2 S) \rightarrow \gamma \chi_{(2)}\right)=(9.33 \pm 0.14 \pm 0.61) \%$.	
$\frac{\text { VAAEC MIS } 105}{14.4+1.1 \text { OUR FIT }}$	

${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 2} \rightarrow K_{S}^{0} K_{S}^{0}\right)$ reported by BAI 99B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \bar{K}^{0} K^{+} \pi^{-}+c . c.\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{42} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{1.22 \pm 0.17 \text { OUR FIT }} \xlongequal{\text { EVTS }}$
1.22 ± 0.17 OUR FIT
1.15 ± 0.18 OUR AVERAGE
$\begin{array}{llllll}1.21 \pm 0.19 \pm 0.09 & 37 & { }^{1} \text { ATHAR } & 07 & \text { CLEO } & \psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp} \\ 0.97 \pm 0.32 \pm 0.13 & 28 & { }^{2} \text { ABLIKIM } & 06 R & \text { BES2 } & \psi(2 S) \rightarrow \gamma K_{S}^{0} K^{ \pm} \pi^{\mp}\end{array}$
${ }^{1}$ Calculated by us. ATHAR 07 reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \bar{K}^{0} K^{+} \pi^{-}+\right.$c.c. $)=(1.3 \pm 0.2 \pm$ $0.1 \pm 0.1) \times 10^{-3}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(9.33 \pm 0.14 \pm 0.61) \%$.
${ }^{2}$ Calculated by us. ABLIKIM 06 r reports $\mathrm{B}\left(\chi_{C 2} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)=(0.6 \pm 0.2 \pm 0.1) \times$ 10^{-3} using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(8.1 \pm 0.6) \%$. We have multiplied by 2 to obtain $\bar{K}^{0} K^{+} \pi^{-}+$c.c. from $K_{S}^{0} K^{ \pm} \pi^{\mp}$
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow 2\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT
2.79 ± 0.26 OUR FIT
DOCUMENT ID TECN COMMENT
$3.1 \pm$ 1.0 OUR AVERAGE Error includes scale factor of 2.5 .
$2.3 \pm 0.1 \pm 0.5 \quad 1 \mathrm{BAI} \quad 99 \mathrm{~B}$ BES $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
$4.3 \pm 0.6 \quad 2$ TANENBAUM 78 MRK1 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
${ }^{1}$ Calculated by us. The value for $\mathrm{B}\left(\chi_{C 2} \rightarrow 2 \pi^{+} 2 \pi^{-}\right)$reported in BAI 99B is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
2 The value for $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right) \times \mathbf{B}\left(\chi_{C 2} \rightarrow 2 \pi^{+} \pi^{-}\right)$reported in TANENBAUM 78 is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \mathrm{B}\left(J / \psi(1 S) \ell^{+} \ell^{-}\right)=(4.6 \pm 0.7) \%$. Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \kappa^{+} \kappa^{-} \kappa^{+} \kappa^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{51} / \Gamma \times \Gamma_{155}^{\psi(25)} / \Gamma^{\psi(2 S)}$

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.57 ± 0.19 OUR FIT						
$1.76 \pm 0.16 \pm 0.24$	160	${ }^{1}$ ABLIKIM	06T	BES2	$\psi(2 S) \rightarrow$	$\gamma 2 K^{+} 2 K^{-}$

$$
\begin{aligned}
& { }^{1} \text { Calculated by us. The value of } \mathrm{B}\left(\chi_{C 2} \rightarrow 2 K^{+} 2 K^{-}\right) \text {reported by ABLIKIM 06T was } \\
& \text { derived using } \mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.1 \pm 0.4) \% \text {. }
\end{aligned}
$$

$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \kappa^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) /$
$\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)$
VALUE (units 10^{-4}) DOCUMENT ID TECN
$\Gamma_{51} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
4.5 ± 0.5 OUR FIT
$\mathbf{3 . 6} \pm \mathbf{0 . 6} \pm \mathbf{0 . 6} \quad{ }^{1} \mathrm{BAI} \quad 99 \mathrm{~B}$ BES $\psi(2 S) \rightarrow \gamma 2 K^{+} 2 K^{-}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 2} \rightarrow 2 K^{+} 2 K^{-}\right)$reported by BAI 99 B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm$ 2.6)\% [BAI 98D].
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \phi \phi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$
$\Gamma_{20} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 . 0 1} \pm \mathbf{0 . 0 8}$ OUR FIT
$\mathbf{0 . 9 8} \pm \mathbf{0 . 1 3}$ OUR AVERAGE Error includes scale factor of 1.3.
$0.94 \pm 0.03 \pm 0.10 \quad 849 \quad 1$ ABLIKIM $\quad 11 \mathrm{~K}$ BES3 $\psi(2 S) \rightarrow \gamma$ hadrons $1.38 \pm 0.24 \pm 0.23 \quad 41 \quad 2$ ABLIKIM 06 T BES2 $\psi(2 S) \rightarrow \gamma 2 K^{+} 2 K^{-}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{c 2} \rightarrow \phi \phi\right)$ reported by ABLIKIM 11 K was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.74 \pm 0.35) \%$.
${ }^{2}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 2} \rightarrow \phi \phi\right)$ reported by ABLIKIM 06T was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(8.1 \pm 0.4) \%$.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \phi \phi\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$
$\left.J / \psi(1 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{20} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma_{11}^{\psi(2 S)}$
VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
2.92 ± 0.24 OUR FIT
$4.8 \pm 1.3 \pm 1.3$
${ }^{1}$ BAI
99B BES
$\psi(2 S) \rightarrow \gamma 2 K^{+} 2 K^{-}$
${ }^{1}$ Calculated by us. The value of $\mathrm{B}\left(\chi_{C 2} \rightarrow \phi \phi\right)$ reported by BAI 99 B was derived using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right)=(7.8 \pm 0.8) \%$ and $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \%$ [BAI 98D].
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+c . c.\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{79} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT
$\overline{\mathbf{7 . 8 5} \pm \mathbf{0 . 7 7} \pm \mathbf{0 . 4 4}} \quad 129 \quad 1 \overline{\text { ABLIKIM }} \quad 19 \mathrm{BB}$ BES3 $\quad \overline{\psi(2 S) \rightarrow \gamma \Sigma+\bar{p} K_{S}^{0}+\text { c.c. }}$
${ }^{1}$ Calculated by us. ABLIKIM 19BB reports $\mathrm{B}\left(\chi_{C 2} \rightarrow \Sigma^{+} \bar{p} K_{S}^{0}+\right.$ c.c. $)=(8.25 \pm 0.83 \pm$ $0.49) \times 10^{-5}$ using $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=(9.52 \pm 0.20) \%$ and other branching fractions from PDG 18.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{89} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{1.81 \pm 0.04 \text { OUR FIT }}$ EVTS DOCUMENT ID TECN COMMENT
1.69 ± 0.16 OUR AVERAGE
Error includes scale factor of 3.4. See the ideogram below
$1.793+\quad$ ABLIKIM 17 N BES3 $\psi(2 S) \rightarrow \gamma \gamma J / \psi$
$1.793 \pm 0.008 \pm 0.163 \quad 1.0 \mathrm{M} \quad$ ABLIKIM $\quad 17 \mathrm{U}$ BES3 $e^{+} e^{-} \rightarrow \gamma \boldsymbol{X}$
$1.62 \pm 0.04 \pm 0.12 \quad$ 5.8k BAI $\quad 04$ BES2 $\quad \psi(2 S) \rightarrow J / \psi \gamma \gamma$
$0.99 \pm 0.10 \pm 0.08 \quad$ GAISER 86 CBAL $\psi(2 S) \rightarrow \gamma X$
$1.47 \pm 0.17 \quad 2$ OREGLIA $82 \quad$ CBAL $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
$1.8 \pm 0.5 \quad{ }^{3}$ BRANDELIK 79 B DASP $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
$1.2 \pm 0.2 \quad{ }^{3}$ BARTEL $\quad 78$ B CNTR $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
$2.2 \pm 1.2 \quad{ }^{4}$ BIDDICK $\quad 77$ CNTR $e^{+} e^{-} \rightarrow \gamma \mathrm{X}$
$1.2 \pm 0.7 \quad 2$ WHITAKER 76 MRK1 $e^{+} e^{-}$

- - We do not use the following data for averages, fits, limits, etc. - -
$1.874 \pm 0.007 \pm 0.102 \quad 76 \mathrm{k} \quad{ }^{5}$ ABLIKIM $\quad 120$ BES3 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
$\begin{array}{lllll}1.95 \pm 0.02 \pm 0.07 & 12.4 \mathrm{k} \quad{ }^{6} \text { MENDEZ } & 08 \quad \text { CLEO } \quad \psi(2 S) \rightarrow \gamma \chi_{c 2}\end{array}$
$1.85 \pm 0.04 \pm 0.07 \quad 1.9 \mathrm{k} \quad 7$ ADAM \quad 05A CLEO Repl. by MENDEZ 08
${ }^{1}$ Uses $\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right)=(5.971 \pm 0.032) \%$ and $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm$ 0.033) \%.
${ }^{2}$ Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
${ }^{3}$ Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=0.0588 \pm 0.0010$.
${ }^{4}$ Assumes isotropic gamma distribution.
${ }^{5}$ Superseded by ABLIKIM 17 N .
${ }^{6}$ Not independent from other measurements of MENDEZ 08
${ }^{7}$ Not independent from other values reported by ADAM 05A.
 10^{-2})
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma(\psi(2 S) \rightarrow$

$\Gamma_{89} / \Gamma \times \Gamma_{155}^{\psi(2 S)} / \Gamma_{9}^{\psi(2 S)}=\Gamma_{89} / \Gamma \times \Gamma_{155}^{\psi(2 S)} /\left(\Gamma_{11}^{\psi(2 S)}+\Gamma_{12}^{\psi(2 S)}+\Gamma_{13}^{\psi(2 S)}+\right.$

$$
\left.0.343 \Gamma_{154}^{\psi(2 S)}+0.190 \Gamma_{155}^{\psi(2 S)}\right)
$$

$\frac{\text { VALUE (units } 10^{-2} \text {) }}{2.95+0.06 ~ \text { OUR FIT }}$ DOCUMENT ID TECN COMMENT

2.95 ± 0.06 OUR FIT

- - We do not use the following data for averages, fits, limits, etc. - - -
$3.12 \pm 0.03 \pm 0.09 \quad 12.4 \mathrm{k} \quad 1$ MENDEZ 08 CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 2}$ $3.11 \pm 0.07 \pm 0.07 \quad 1.9 \mathrm{k} \quad$ ADAM 05 A CLEO Repl. by MENDEZ 08 ${ }^{1}$ Not independent from other measurements of MENDEZ 08.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma J / \psi(\mathbf{1 S})\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(\mathbf{1 P})\right) / \Gamma(\psi(\mathbf{2 S}) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)$
VALUE (units 10^{-2}) EVTS
5.22 ± 0.11 OUR FIT
5.53 ± 0.17 OUR AVERAGE
$5.56 \pm 0.05 \pm 0.16 \quad 12.4 \mathrm{k} \quad$ MENDEZ 08 CLEO $\psi(2 S) \rightarrow \gamma \chi_{C 2}$ $6.0 \pm 2.8 \quad 1.3 \mathrm{k} \quad 1 \mathrm{ABLIKIM} \quad$ 04B BES $\quad \psi(2 S) \rightarrow J / \psi X$ $3.9 \pm 1.2 \quad 2$ HIMEL $\quad 80$ MRK2 $\psi(2 S) \rightarrow \gamma \chi_{C 2}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$5.52 \pm 0.13 \pm 0.13 \quad 1.9 \mathrm{k} \quad{ }^{3}$ ADAM 05 A CLEO Repl. by MENDEZ 08
${ }^{1}$ From a fit to the J / ψ recoil mass spectra.
${ }^{2}$ The value for $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right) \times \mathrm{B}\left(\chi_{c 2} \rightarrow \gamma J / \psi(1 S)\right)$ reported in HIMEL 80 is derived using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(33 \pm 3) \%$ and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)$
$=0.138 \pm 0.018$. Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(0.1181 \pm 0.0020)$.
3^{3} Not independent from other values reported by ADAM 05A.
$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)\right) / \Gamma_{\text {total }}$ $\Gamma_{93} / \Gamma \times \Gamma_{155}^{\psi(25)} / \Gamma^{\psi(25)}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{2 . 7 1} \pm \mathbf{0 . 0 8} \text { OUR FIT }} \longrightarrow$
$\mathbf{2 . 8 2} \pm \mathbf{0 . 1 0}$ OUR AVERAGE
$2.83+0.08+0.06$
$\begin{array}{lrl}2.68 \pm 0.28 \pm 0.15 & 0.3 \mathrm{k} & \text { ABLIKIM } \\ \text { ECKLUND }\end{array}$ $7.0 \pm 2.1 \pm 2.0 \quad$ LEE $85 \mathrm{CBAL} \quad \psi(2 S) \rightarrow \gamma \chi_{C 2}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$2.81 \pm 0.17 \pm 0.15 \quad 1.1 \mathrm{k} \quad{ }^{2}$ ABLIKIM $\quad 12 \mathrm{~A}$ BES3 $\quad \psi(2 S) \rightarrow \gamma \chi_{C 2} \rightarrow 3 \gamma$ ${ }^{1}$ ABLIKIM 17AE measures the ratio of two-photon partial widths for the helicity $\lambda=0$ and helicity $\lambda=2$ components to be $f_{0 / 2}=\Gamma_{\gamma \gamma}^{\lambda=0} / \Gamma_{\gamma \gamma}^{\lambda=2}=0.000 \pm 0.006 \pm 0.012$.
${ }^{2}$ ABLIKIM 12A measures the ratio of two-photon partial widths for the helicity $\lambda=0$ and helicity $\lambda=2$ components to be $f_{0 / 2}=\Gamma_{\gamma \gamma}^{\lambda=0} / \Gamma_{\gamma \gamma}^{\lambda=2}=0.00 \pm 0.02 \pm 0.02$. Superseded by ABLIKIM 17aE.

$\Gamma\left(\chi_{c 2}(1 P) \rightarrow \gamma \gamma\right) / \Gamma\left(\chi_{c 0}(1 P) \rightarrow \gamma \gamma\right)$				$\Gamma_{93} / \Gamma_{93}^{\chi_{C 0}}(1 P)$	
ValUE	EVTS	DOCUMENT	TECN	COMME	
$\mathbf{0 . 2 9 2} \pm 0.028$ OUR AVERAGE					
$0.295 \pm 0.014 \pm 0.028$	8k	${ }^{1}$ ABLIKIM	17aE BES3	$\psi(2 S)$	$\gamma \chi_{c J} \rightarrow 3 \gamma$
$0.278 \pm 0.050 \pm 0.036$	0.5k	${ }^{1}$ ECKLUND	08A CLEO	$\psi(2 S)$	$\gamma \chi_{c J} \rightarrow 3 \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -					
$0.271 \pm 0.029 \pm 0.030$	1.9 k	,2 ABLIKIM	12A BES3	$\psi(2 S)$	$\gamma \chi_{c J} \rightarrow 3 \gamma$
${ }^{1}$ Not independent from the values of $\Gamma\left(\chi_{C 0}, \chi_{C 2}\right)$ and $\mathrm{B}\left(\psi(2 S) \rightarrow \chi_{C 0}, \chi_{C 2}\right)$. ${ }^{2}$ Superseded by ABLIKIM 17AE.					

MULTIPOLE AMPLITUDES IN $\chi_{c 2}(1 P) \rightarrow \gamma J / \psi(1 S)$ RADIATIVE DECAY
$a_{2}=M 2 / \sqrt{E 1^{2}+M 2^{2}+E 3^{2}}$ Magnetic quadrupole fractional transition amplitude
$\frac{\text { VALUE (units } 10^{-2} \text {) }}{-11.0 \pm 1.0 \text { OUR AVERAGE }}$ EVTS TECUMENT ID COMMENT

$\frac{-11.0 \pm 1.0 ~ O U R ~ A V E R A G E}{}$

$-12.0 \pm 1.3 \pm 0.4 \quad 89 \mathrm{k} \quad 1$ ABLIKIM $\quad 17 \mathrm{~N}$ BES3 $\quad \psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
$-9.3 \pm 1.6 \pm 0.3 \quad 19.8 \mathrm{k} \quad 2$ ARTUSO 09 CLEO $\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
$-9.3 \pm 4.1 \pm 0.6 \quad 5.9 \mathrm{k} \quad{ }^{3}$ AMBROGIANI $02 \quad$ E835 $\quad p \bar{p} \rightarrow \chi_{C 2} \rightarrow J / \psi \gamma$
$-14 \pm 6 \quad 1.9 \mathrm{k} \quad 3$ ARMSTRONG 93E E760 $\quad p \bar{p} \rightarrow \chi_{C 2} \rightarrow J / \psi \gamma$
$-33.3_{-29.2}^{+11.6} \quad 441 \quad 3$ OREGLIA $\quad 82 \quad$ CBAL $\quad \psi(2 S) \rightarrow \chi_{C 1} \gamma \rightarrow J / \psi \gamma \gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$-7.9 \pm 1.9 \pm 0.3 \quad 19.8 \mathrm{k} \quad{ }^{4}$ ARTUSO $\quad 09 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
${ }^{1}$ Correlated with a_{3}, b_{2}, and b_{3} with correlation coefficients $\rho_{a_{2}} a_{3}=0.733, \rho_{a_{2}} b_{2}=$ -0.605 , and $\rho_{a_{2} b_{3}}=-0.095$.
${ }^{2}$ From a fit with floating M2 amplitudes a_{2} and b_{2}, and fixed E3 amplitudes $a_{3}=b_{3}=0$.
${ }^{3}$ Assuming $a_{3}=0$.
${ }^{4}$ From a fit with floating M2 and E3 amplitudes a_{2}, b_{2}, and a_{3}, and b_{3}.
$a_{3}=E 3 / \sqrt{E 1^{2}+M 2^{2}+E 3^{2}}$ Electric octupole fractional transition ampli-
tude

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMment
$\mathbf{- 0 . 3} \pm \mathbf{1 . 0}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideog				
$-1.3 \pm 0.9 \pm 0.4$	89k	${ }^{1}$ ABLIKIM	17N BES3	$\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
$1.7 \pm 1.4 \pm 0.3$	19.8k	${ }^{2}$ ARTUSO	09 CLEO	$\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell$
$2.0{ }_{-4.4}^{+5.5} \pm 0.9$	5908	AMBROGIANI	02 E835	$p \bar{p} \rightarrow \chi_{C 2} \rightarrow J / \psi \gamma$
$0{ }_{-5}^{+6}$	1904	ARMSTRONG	93E E760	$p \bar{p} \rightarrow \chi_{C 2} \rightarrow J / \psi \gamma$
${ }^{1}$ Correlated with a_{2}, b_{2}, and b_{3} with correlation coefficients $\rho_{a_{2}} a_{3}=0.733, \rho_{a_{3} b_{2}}=$ -0.422 , and $\rho_{a_{3}} b_{3}=-0.024$.				
${ }^{2}$ From a fit	ting M	E3 amplitudes	2, b_{2}, and a_{3}	and b_{3}.

WEIGHTED AVERAGE

$a_{3}=E 3 / \sqrt{E 1^{2}+M 2^{2}+E 3^{2}}$ Electric octupole fractional transition amplitude (units 10^{-2})

MULTIPOLE AMPLITUDES IN $\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P)$ RADIATIVE DECAY
$b_{2}=M 2 / \sqrt{E 1^{2}+M 2^{2}+E 3^{2}}$ Magnetic quadrupole fractional transition amplitude

VALUE (units 10^{-2})	EVTS	DOCUMENT ID TECN COMMENT		
1.9 ± 0.9 OUR	ERAG	Error includes scale factor of 1.4. See the ideogram below.		
$1.7 \pm 0.8 \pm 0.2$	89k	${ }^{1}$ ABLIKIM	17N BES3	$\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
$4.6 \pm 1.0 \pm 1.3$	13.8k	${ }^{2}$ ABLIKIM	111 BES3	$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}, \gamma K^{+} K^{-}$
$0.2 \pm 1.5 \pm 0.4$	19.8k	${ }^{3}$ ARTUSO	09 CLEO	$\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
$-5.1_{-3.6}^{+5.4}$	721	${ }^{2}$ ABLIKIM	04ı BES2	$\psi(2 S) \rightarrow \gamma \pi^{+} \pi^{-}, \gamma K^{+} K^{-}$
$13.2{ }_{-7.5}^{+9.8}$	441	${ }^{4}$ OREGLIA	82 CBAL	$\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$

- - We do not use the following data for averages, fits, limits, etc. • •
$1.0 \pm 1.3 \pm 0.3 \quad 19.8 \mathrm{k} \quad 4$ ARTUSO 09 CLEO $\psi(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
${ }^{1}$ Correlated with a_{2}, a_{3}, and b_{3} with correlation coefficients $\rho_{a_{2} b_{2}}=-0.605, \rho_{a_{3} b_{2}}=$ -0.422 , and $\rho_{b_{2} b_{3}}=0.384$.
${ }^{2}$ From a fit with floating $M 2$ and $E 3$ amplitudes b_{2} and b_{3}.
${ }^{3}$ From a fit with floating M2 and E3 amplitudes a_{2}, b_{2}, and a_{3}, and b_{3}.
${ }^{4}$ From a fit with floating M2 amplitudes a_{2} and b_{2}, and fixed $E 3$ amplitudes $a_{3}=b_{3}=0$.
 amplitude (units 10^{-2})

Meson Particle Listings
$\chi_{c 2}(1 P), \eta_{c}(2 S)$
$b_{3}=E 3 / \sqrt{E 1^{2}+M 2^{2}+E 3^{2}}$ Electric octupole fractional transition ampli- tude

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMME
$=1.0 \pm 0.6$ OUR AVERAGE				
$-1.4 \pm 0.7 \pm 0.4$	89k	${ }^{1}$ ABLIKIM	17N BES3	$\psi(2 S)$
$1.5 \pm 0.8 \pm 1.8$	13.8k	${ }^{2}$ ABLIKIM	11। BES3	$\psi(2 S)$
$-0.8 \pm 1.2 \pm 0.2$	19.8k	ARTUSO	09 CLEO	$\psi(2 S)$
$-2.7_{-2.9}^{+4.3}$	721	2 ABLIKIM	04। BES	(2S)
${ }^{1}$ Correlated with a_{2}, a_{3}, and b_{2} with correlation coefficients $\rho_{a_{2} b_{3}}=-0.095$, -0.024 , and $\rho_{b_{2} b_{3}}=0.384$. ${ }^{2}$ From a fit with floating M2 and E3 amplitudes b_{2} and b_{3}.				
MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS$\psi(2 S) \rightarrow \gamma \chi_{c 2}(1 P) \text { and } \chi_{c 2} \rightarrow \gamma J / \psi(1 S)$				

b_{2} / a_{2} Magnetic quadrupole transition amplitude ratio

VALUE (units 10^{-2})	EVTS	DOCUMENT		TECN	COMMENT	
$\begin{aligned} & =11+14 \\ & -15 \end{aligned}$	19.8k	1 ARTUSO	09	CLEO	(2S)	γ
${ }^{1}$ Statistical and systematic errors combined. From a fit with floating M2 amplitudes a_{2} and b_{2}, and fixed $E 3$ amplitudes $a_{3}=b_{3}=0$. Not independent of values for $a_{2}\left(\chi_{C 2}(1 P)\right)$ and $b_{2}\left(\chi_{C 2}(1 P)\right)$ from ARTUSO 09.						

ABLIKIM ABLIKIM
ABLIKIM ABLIKIM
ABLIKIM ABLIKIM ABLIIKIM
ABLIKIM ABLIKIM
PDG PDG
AAII AAIJ
AAIJ
ABIKIM ABLIKIM
ABLIKIM ABLIKIM
ABLIKIM
ABLIKIM ABLIKIM
ABLIKIM ABLIKIM ABLIKIM
PDG PDG
ABLIKIM ABLIKIM
ABLIKIM ABLIKIM
ABLIIIM
ABLIKIM ABLIKIM ABLIKIM
ABLIKIM
ABLIKIM
UEHARA
ABLIKIM
ABLIIIM
ABLIKIM
ABLIIIM
ABLIKIM
LEES
LIU
ABLIKIM
ABLIKIM
ABLIIMIM
ABLIKIM
DEL-AMO-SA
ONYISI
UEHARA
ARTUSO
ASNER
UEHARA
BENNETT
ECKLUND
HE
MENDEZ
MENDEZ
NAIK
俋
UEHARA
ADAMS
ATHAR
ATHAR
CHEN
ABLKIM
ABLIKIM
ABLIKIM
ABLIKIM
ABLIKIM
ABLIKIM
ABLIKIM
ABLIKIM
DOBBS
ABLIKIM
ABLIKIM
ABLIKIM
ADAM
ANDREOTTI
NAKLIKIM
ABLIIKIM
ATHAR
ATHA
BAI
BAI
AULCHENKO
BAI
ABE
AMBROGIAN
EISENSTEIN
AMBROGIANI
ACCIARRI
BAI
ACKER.,.K...
BAI
BAI
DOMINICK
$\chi_{c 2}(1 P)$ REFERENCES

ARMSTRONG	93	PRL 702988	T.A. Armstrong et al.

$\eta_{c}(2 S)$

$$
\left.{ }^{G} G_{(} J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

Quantum numbers are quark model predictions.

$\eta_{c}(2 S)$ MASS

$\frac{\text { VALUE }(\mathrm{MeV})}{\text { EVTS }}$ DOCUMENT ID TECN COMMENT
3637.5 \pm 1.1 OUR AVERAGE Error includes scale factor of 1.2 .

$3635.1 \pm 3.7 \pm 2.9$	106	XU	18 BELL	$\begin{aligned} & e^{+} e^{-}{ }_{e^{+}} e^{-} \eta^{\prime} \pi^{+} \pi^{-} \end{aligned}$
$3633.6 \pm 1.7 \pm 0.6$	106	${ }^{1}$ AAIJ	17ADLHCB	$p p \rightarrow B^{+} X \rightarrow p \bar{p} K^{+} X$
$3636.4 \pm 4.1 \pm 0.7$	365	2 AAIJ	17BBLHCB	$\begin{array}{r} p p \rightarrow b \bar{b} X \rightarrow \\ 2\left(K^{+} K^{-}\right) X \end{array}$
$3637.0 \pm 5.7 \pm 3.4$	178	3,4 LEES	14E BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \pi^{0}$
$3635.1 \pm 5.8 \pm 2.1$	47	,5 LEES	14E BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \eta$
$3646.9 \pm 1.6 \pm 3.6$	57 ± 17	ABLIKIM	13k BES3	$\begin{aligned} & \psi(2 S) \rightarrow \\ & \quad \gamma K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-} \end{aligned}$
$3637.6 \pm 2.9 \pm 1.6$	127 ± 18	${ }^{6}$ ABLIKIM	12G BES3	$\begin{gathered} \psi(2 S) \rightarrow \gamma K^{0} K \pi \\ K K \pi^{0} \end{gathered}$
$3638.5 \pm 1.5 \pm 0.8$	624	3 DEL-AMO-SA..	.11m BABR	$\gamma \gamma \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$3640.5 \pm 3.2 \pm 2.5$	1201	3 DEL-AMO-SA..	.11m BABR	$\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
$\begin{aligned} & 3636.1+3.9+0.7 \\ & -4.2-2.0 \end{aligned}$	128	7 VINOKUROVA	11 BELL	$B^{ \pm} \rightarrow K^{ \pm}\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$
$3626 \pm 5 \pm 6$	311	${ }^{8} \mathrm{ABE}$	07 BELL	$e^{+} e^{-} \rightarrow J / \psi(c \bar{C})$
$3645.0 \pm 5.5{ }_{-7.8}^{+4.9}$	121 ± 27	AUBERT	05C BABR	$e^{+} e^{-} \rightarrow J / \psi c \bar{C}$
$3642.9 \pm 3.1 \pm 1.5$	61	ASNER	04 CLEO	$\gamma \gamma \rightarrow \eta_{C} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$

- - We do not use the following data for averages, fits, limits, etc. - • -

3639 ± 7	98 ± 52	${ }^{9}$ AUBERT	06E BABR $B^{ \pm} \rightarrow K^{ \pm} X_{c} \bar{c}$
$3630.8 \pm 3.4 \pm 1.0$	112 ± 24	10 AUBERT	04D BABR $\gamma \gamma \rightarrow \eta_{C}(2 S) \rightarrow K \bar{K} \pi$
$3654 \pm 6 \pm 8$	39 ± 11	11 CHOI	02 BELL $B \rightarrow K K_{S} K^{-} \pi^{+}$
3594 ± 5		12 EDWARDS	82C CBAL $e^{+} e^{-} \rightarrow \gamma$ X

${ }^{1}$ AAIJ 17AD report $m_{\psi(2 S)}-m_{\eta_{C}(2 S)}=52.5 \pm 1.7 \pm 0.6 \mathrm{MeV}$. We use the current value $m_{\psi(2 S)}=3686.097 \pm 0.025 \mathrm{MeV}$ to obtain the quoted mass.
${ }^{2}$ From a fit of the $\phi \phi$ invariant mass with the width of $\eta_{C}(2 S)$ fixed to the PDG 16 value.
${ }^{3}$ Ignoring possible interference with continuum
${ }^{4}$ With a width fixed to 11.3 MeV .
${ }^{5}$ With a width fixed to 11.3 MeV . Using both $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays.
${ }^{6}$ From a simultaneous fit to $K_{S}^{0} K^{ \pm} \pi^{\mp}$ and $K^{+} K^{-} \pi^{0}$ decay modes.
${ }^{7}$ Accounts for interference with non-resonant continuum.
${ }^{8}$ From a fit of the J / ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G
${ }^{9}$ From the fit of the kaon momentum spectrum. Systematic errors not evaluated.
10 Superseded by DEL-AMO-SANCHEZ 11M.
11 Superseded by VINOKUROVA 11.
12 Assuming mass of $\psi(2 S)=3686 \mathrm{MeV}$.

$\eta_{c}(2 S)$ WIDTH

VALUE (MeV)	$\underline{C L \%}$ EVTS	DOCUMENT ID	TECN	COMMENT
11.3 - 3.2 OUR AVERAGE				
$9.9 \pm 4.8 \pm 2.9$	57 ± 17	ABLIKIM	13k BES3	$\begin{aligned} & \psi(2 S) \rightarrow \\ & \quad \gamma K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+}{ }_{\pi}^{-} \end{aligned}$
$16.9 \pm 6.4 \pm 4.8$	127 ± 18	13 ABLIKIM	12 GBES 3	$\begin{gathered} \psi(2 S) \rightarrow \gamma K^{0} K \pi \\ K K \pi^{0} \end{gathered}$
$13.4 \pm 4.6 \pm 3.2$	624	14 DEL-AMO-SA	11m BABR	$\gamma \gamma \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
$6.6{ }_{-}^{+} 5.1-0.6$	128	15 VINOKUROV	11 BELL	$B^{ \pm} \overrightarrow{K^{ \pm}}\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$
$6.3 \pm 12.4 \pm 4.0$	61	ASNER	04 CLEO	$\begin{array}{r} \gamma \gamma \rightarrow \eta_{C} \rightarrow \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{array}$

- - We do not use the following data for averages, fits, limits, etc. - -

| <23 | 90 | 98 ± 52 | 16 AUBERT | 06E BABR $B^{ \pm} \rightarrow K^{ \pm} \chi_{c} \bar{c}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 22 ± 14 | | 121 ± 27 | AUBERT | 05c BABR $e^{+} e^{-} \rightarrow J / \psi c \bar{c}$ |
| $17.0 \pm 8.3 \pm 2.5$ | 112 ± 24 | 17 AUBERT | 04D BABR $\gamma \gamma \rightarrow \eta_{C}(2 S) \rightarrow$ | |
| | | | | |
| | | | | |

<55	90	$\begin{array}{ll}39 \pm 11 & 18 \mathrm{CHOI} \\ & 19 \text { EDWARDS }\end{array}$					
<8.0	95						
${ }^{13}$ From a simultaneous fit to $K_{S}^{0} K^{ \pm} \pi^{\mp}$ and $K^{+} K^{-} \pi^{0}$ decay modes. ${ }^{14}$ Ignoring possible interference with continuum. ${ }^{15}$ Accounts for interference with non-resonant continuum. ${ }^{16}$ From the fit of the kaon momentum spectrum. Systematic errors not evaluated. 17 Superseded by DEL-AMO-SANCHEZ 11m. ${ }^{18}$ For a mass value of $3654 \pm 6 \mathrm{MeV}$. Superseded by VINOKUROVA 11. ${ }^{19}$ For a mass value of $3594 \pm 5 \mathrm{MeV}$							

$\eta_{c}(2 S)$ DECAY MODES

	Mode	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	Confidence level
Γ_{1}	hadrons	not seen	
Γ_{2}	$K \bar{K} \pi$	(1.9 ± 1.2) \%	
Γ_{3}	$K \bar{K} \eta$	$\left(\begin{array}{ll}5 & \pm\end{array}\right) \times 10^{-3}$	
Γ_{4}	$2 \pi^{+} 2 \pi^{-}$	not seen	
Γ_{5}	$\rho^{0} \rho^{0}$	not seen	
Γ_{6}	$3 \pi^{+} 3 \pi^{-}$	not seen	
Γ_{7}	$K^{+} K^{-} \pi^{+} \pi^{-}$	not seen	
Γ_{8}	$K^{* 0} \bar{K}^{* 0}$	not seen	
Γ_{9}	$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	(1.4 ± 1.0) \%	
Γ_{10}	$K^{+} K^{-} 2 \pi^{+} 2 \pi^{-}$	not seen	
Γ_{11}	$K_{S}^{0} K^{-} 2 \pi^{+} \pi^{-}+$c.c.	seen	
Γ_{12}	$2 K^{+} 2 K^{-}$	not seen	
Γ_{13}	$\phi \phi$	not seen	
Γ_{14}	$p \bar{p}$	seen	
Γ_{15}	$p \bar{p} \pi^{+} \pi^{-}$	seen	
Γ_{16}	$\gamma \gamma$	$(1.9 \pm 1.3) \times 10^{-4}$	
Γ_{17}	$\gamma J / \psi(1 S)$	<1.4 \%	90\%
Γ_{18}	$\pi^{+} \pi^{-} \eta$	not seen	
Γ_{19}	$\pi^{+} \pi^{-} \eta^{\prime}$	not seen	
Γ_{20}	$\pi^{+} \pi^{-} \eta_{C}(1 S)$	<25 \%	90\%
$\eta_{c}(2 S)$ PARTIAL WIDTHS			

$\Gamma(\gamma \gamma)$
VALUE (keV)

${ }^{20}$ Assuming that the branching fraction into $\eta^{\prime} \pi^{+} \pi^{-}$is the same as for $\eta_{C}(1 S)$.
${ }^{21}$ They measure $\Gamma\left(\eta_{C}(2 S) \gamma \gamma\right) \mathrm{B}\left(\eta_{C}(2 S) \rightarrow K \bar{K} \pi\right)=(0.18 \pm 0.05 \pm 0.02) \Gamma\left(\eta_{C}(1 S) \gamma \gamma\right)$ $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K \bar{K} \pi\right)$. The value for $\Gamma\left(\eta_{C}(2 S) \rightarrow \gamma \gamma\right)$ is derived assuming that the branching fractions for $\eta_{C}(2 S)$ and $\eta_{C}(1 S)$ decays to $K_{S} K \pi$ are equal and using $\Gamma\left(\eta_{C}(1 S) \rightarrow \gamma \gamma\right)=7.4 \pm 0.4 \pm 2.3 \mathrm{keV}$.
 ${ }^{22}$ Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.

$\begin{aligned} & \Gamma\left(\pi^{+} \pi^{-} \eta_{\boldsymbol{C}}(\mathbf{1 S})\right) \\ & V \operatorname{VALUE(\mathrm {eV})} \end{aligned}$	$\times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$		TECN	$\Gamma_{20} \Gamma_{16} / \Gamma$	
	CL\%	DOCUMENT ID		COMMENT	
<133	90	LEES	12AE BABR	$\begin{gathered} e^{+} e^{-} \rightarrow \\ e^{+} e^{-} \pi \end{gathered}$	
$\eta_{c}(2 S) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma^{2}($ total $)$					
$\Gamma(p \bar{p}) / \Gamma_{\text {total }} \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					\times
VALUE (units 10^{-8})		DOCUMENT	ID	N COMME	

$\frac{\text { VALUE (units } 10^{-8} \text {) }}{<\mathbf{5 . 6}} \frac{C L \%}{90^{24}, 25,26} \frac{\text { DOCUMENT ID }}{\text { AMBROGIANI } 01} \frac{\text { TECN }}{\text { E835 }} \frac{\text { COMMENT }}{\bar{p} p \rightarrow \gamma \gamma}$
$<5.6 \quad 90^{24,25,26}$ AMBROGIANI $01 \quad$ E835 $\quad \bar{p} p \rightarrow \gamma \gamma$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<8.0 \quad 90^{24,25,27}$ AMBROGIANI 01 E835 $\quad \bar{p} p \rightarrow \gamma \gamma$
$<12.0 \quad 90 \quad 25,27$ AMBROGIANI 01 E835 $\quad \bar{p} p \rightarrow \gamma \gamma$
${ }^{24}$ Including the measurements of ARMSTRONG 95F in the AMBROGIANI 01 analysis.
${ }^{25}$ For a total width $\Gamma=5 \mathrm{MeV}$.
${ }^{26}$ For the resonance mass region $3589-3599 \mathrm{MeV} / \mathrm{c}^{2}$.
${ }^{27}$ For the resonance mass region $3575-3660 \mathrm{MeV} / \mathrm{c}^{2}$.

$\eta_{c}(2 S)$ BRANCHING RATIOS

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma(\boldsymbol{K} \bar{K} \pi)$
Γ_{9} / Γ_{2}
$\frac{V A L U E}{\mathbf{0 . 7 3} \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 1 7}} \frac{\text { EVTS }}{1201} \quad 32 \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA...11M }} \frac{\text { TECN }}{\mathrm{BABR}} \frac{\text { COMMENT }}{\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}}$
${ }^{32}$ We have multiplied the value of $\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$ reported in DEL-AMO-SANCHEZ 11 M by a factor $1 / 3$ to obtain $\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma(K \bar{K} \pi)$. Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.

$\Gamma\left(K^{* 0} \bar{K}^{* 0}\right) / \Gamma_{\text {total }}$	DOCUMENT ID		TECN	COMMENT	Γ_{8} / Γ		
VALUE							
not seen	ABLIKIM			BES3	$\psi(2 S) \rightarrow$	$\gamma K^{+} K^{-}$	${ }^{+}{ }^{-}$
$\Gamma\left(K_{S}^{0} K^{-} \mathbf{2} \pi^{+} \pi^{-}+\right.$	$/ \Gamma_{\text {total }}$					Γ_{11} / Γ	
VALUE EVTS	DOCUMENT ID		TECN	COMMENT			
seen $\quad 57 \pm 17$	ABLIKIM	13k B	BES3	$\psi(2 S) \rightarrow$	$K_{S}^{0} K^{ \pm} \pi^{\mp}$	$\pi^{+} \pi^{-}$	

$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
CL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$<4 \times 10^{-4} \quad 90 \quad 35 \mathrm{WICHT} \quad 08 \quad \mathrm{BELL} \quad B^{ \pm} \rightarrow K^{ \pm} \gamma \gamma$
not seen \quad AMBROGIANI $01 \quad$ E835 $\quad \bar{p} p \rightarrow \gamma \gamma$
$<0.01 \quad$ LEE $90 \quad 85 \mathrm{CBAL} \psi^{\prime} \rightarrow$ photons
${ }^{35}$ WICHT 08 reports $\left[\Gamma\left(\eta_{C}(2 S) \rightarrow \gamma \gamma\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \eta_{C}(2 S) K^{+}\right)\right]<0.18 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \eta_{C}(2 S) K^{+}\right)=4.4 \times 10^{-4}$.

${ }^{36}$ We divided the reported limit by 3 to take into account isospin relations.

$\eta_{c}(2 S)$ CROSS-PARTICLE BRANCHING RATIOS

$\Gamma\left(\eta_{c}(2 S) \Rightarrow K \bar{K} \eta\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \Rightarrow \gamma \eta_{c}(2 S)\right) / \Gamma_{\text {total }}$ $\Gamma_{3} / \Gamma \times \Gamma_{157}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
VALUE CL\% DOCUMENT ID - TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$<11.8 \times 10^{-6} \quad 90 \quad 37$ CRONIN-HEN.. $10 \quad$ CLEO $\quad \psi(2 S) \rightarrow \gamma K^{+} K^{-}{ }_{\eta}$
${ }^{37}$ CRONIN-HENNESSY 10 reports a limit of $<5.9 \times 10^{-6}$ for the decay $\eta_{C}(2 S) \rightarrow$ $K^{+} K^{-} \eta$ which we multiply by 2 account for isospin symmetry. It assumes $\Gamma\left(\eta_{C}(2 S)\right)$ $=14 \mathrm{MeV}$. It also gives the analytic dependence of limits on width.
$\Gamma\left(\eta_{c}(2 S) \rightarrow 2 \pi^{+} 2 \pi^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right) / \Gamma_{\text {total }}$ $\Gamma_{4} / \Gamma \times \Gamma_{157}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$

$\frac{\text { VALUE }}{<\mathbf{1 3 . 2} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 39 \frac{\text { DOCUMENT ID }}{\text { CRONIN-HEN. } 10} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-}}$
${ }^{39}$ Assuming $\Gamma\left(\eta_{C}(2 S)\right)=14 \mathrm{MeV}$. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.
$\Gamma\left(\eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right) / \Gamma_{\text {total }}$ $\Gamma_{7} / \Gamma \times \Gamma_{157}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{\text { VALUE }}{<9.6 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 40 \frac{\text { DOCUMENT ID }}{\text { CRONIN-HEN.. } 10} \quad \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{+} \pi^{-}}$
${ }^{40}$ Assuming $\Gamma\left(\eta_{C}(2 S)\right)=14 \mathrm{MeV}$. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.
$\Gamma\left(\eta_{c}(2 S) \rightarrow K^{* 0} \bar{K}^{* 0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right) / \Gamma_{\text {total }}$

$$
\Gamma_{8} / \Gamma \times \Gamma_{157}^{\psi(2 S)} / \Gamma^{\psi(2 S)}
$$

$\frac{\text { VALUE }}{<\mathbf{1 9 . 6 \times 1 0 ^ { \mathbf { - 7 } }} \frac{\text { CL\% }}{90}} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{11 \mathrm{H}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{+} \pi^{-}}$
$\Gamma\left(\eta_{c}(2 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \times \Gamma\left(\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right) / \Gamma_{\text {total }}$ $\Gamma_{9} / \Gamma \times \Gamma_{157}^{\psi(2 S)} / \Gamma^{\psi(2 S)}$
$\frac{V A L U E}{<43.0 \times 10^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 41 \frac{\text { DOCUMENT ID }}{\text { CRONIN-HEN.. } 10} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow}$
$\gamma K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
${ }^{41}$ Assuming $\Gamma\left(\eta_{C}(2 S)\right)=14 \mathrm{MeV}$. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.

$\boldsymbol{\eta}_{\boldsymbol{C}}(2 S)$ REFERENCES				
CHILIKIN	19	PR D100 012001	K. Chilikin et al.	(BELLE Collab.)
XU	18	PR D98 072001	Q.N. Xu_{u} et al.	(BELLE Collab.)
AAIJ	17AD	PL B769 305	R. Aaij et al.	(LHCb Collab.)
AAlJ	17 BB	EPJ C77 609	R. Aaij et al.	(LHCD Collab.)
ABLIKIM	17 N	PR D95 072004	M. Ablikim et al.	(BESIII Collab.)
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
LEES	14E	PR D89 112004	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	13K	PR D87 052005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13 V	PR D88 112001	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	12G	PRL 109042003	M. Ablikim et al.	(BESIII Collab.)
LEES	12AE	PR D86 092005	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	11H	PR D84 091102	M. Ablikim et al.	(BESIII Collab.)
DEL-AMO-SA...	11M	PR D84 012004	P. del Amo Sanchez et al.	(BABAR Collab.)
VINOKUROVA	11	PL B706 139	A. Vinokurova et al.	(BELLE Collab.)
CRONIN-HEN...		PR D81 052002	D. Cronin-Hennessey et al.	(CLEO Collab.)
AUBERT	08AB	PR D78 012006	B. Aubert et al.	(BABAR Collab.)
UEHARA	08	EPJ C53 1	S. Uehara et al.	(BELLE Collab.)
WICHT	08	PL B662 323	J. Wicht et al.	(BELLE Collab.)
ABE	07	PRL 98082001	K. Abe et al.	(BELLE Collab.)
AUBERT	${ }^{065}$	PRL 96052002	B. Aubert et al.	(BABAR Collab.)
AUBERT	05C	PR D72 031101	B. Aubert et al.	(BABAR Collab.)
ABE	04 G	PR D70 071102	K. Abe et al.	(BELLE Collab.)
ASNER	04	PRL 92142001	D.M. Asner et al.	(CLEO Collab.)
AUBERT	04D	PRL 92142002	B. Aubert et al.	(BABAR Collab.)
ABE,K	02	PRL 89142001	K. Abe et al.	(BELLE Collab.)
CHOI	02	PRL 89102001	S.-K. Choi et al.	(BELLE Collab.)
AMBROGIANI	01	PR D64 052003	M. Ambrogiani et al.	(FNAL E833 Collab.)
ABREU	980	PL B441 479	P. Abreu et al.	(DELPHI Collab.)
ARMSTRONG	95F	PR D52 4839	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
LEE	85	SLAC 282	R.A. Lee	(SLAC)
EDWARDS	82 C	PRL 4870	C. Edwards et al.	(CIT, HARV, PRIN+)

$\psi(2 S)$ WIDTH

VALUE (keV) DOCUMENT ID				TECN	COMMENT
286 ± 16 OUR AVERAGE					
$358 \pm 88 \pm 4$		ABLIKIM	08B	BES2	$e^{+} e^{-} \rightarrow$
$290 \pm 25 \pm 4$	2.7k	ANDREOTTI	07	E835	$p \bar{p} \rightarrow e$
$331 \pm 58 \pm 2$		ABLIKIM	06L	BES2	$e^{+} e^{-}$
264 ± 27		${ }^{1} \mathrm{BAI}$	02B	BES2	$e^{+} e^{-}$
$287 \pm 37 \pm 16$		${ }^{2}$ ARMSTRONG	93в	E760	$\bar{p} p \rightarrow$
${ }^{1}$ From a simultaneous fit to the hadronic and $\mu^{+} \mu^{-}$cross section, assuming $\Gamma=\Gamma_{h}+$ $\Gamma_{e}+\Gamma_{\mu}+\Gamma_{\tau}$ and lepton universality. Does not include vacuum polarization correction. ${ }^{2}$ The initial-state radiation correction reevaluated by ANDREOTTI 07 in its Ref. [4].					

$\psi(2 S)$ DECAY MODES			
	Mode	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	Scale factor/ Confidence level
Γ_{1}	hadrons	$(97.85 \pm 0.13) \%$	
Γ_{2}	virtual $\gamma \rightarrow$ hadrons	(1.73 ± 0.14) \%	$\mathrm{S}=1.5$
$\Gamma 3$	$g \mathrm{~g} g$	$(10.6 \pm 1.6) \%$	
Γ_{4}	$\gamma \mathrm{g} g$	(1.03 ± 0.29) \%	
Γ_{5}	light hadrons	$(15.4 \pm 1.5) \%$	
Γ_{6}	$e^{+} e^{-}$	$(7.93 \pm 0.17) \times$	10^{-3}
Γ_{7}	$\mu^{+} \mu^{-}$	$(8.0 \pm 0.6) \times$	10-3
Γ_{8}	$\tau^{+} \tau^{-}$	$(3.1 \pm 0.4) \times$	0^{-3}
Decays into $J / \psi(1 S)$ and anything			
Γ_{9}	$J / \psi(1 S)$ anything	(61.4 $\pm 0.6) \%$	
Γ_{10}	$J / \psi(1 S)$ neutrals	(25.38 $\pm 0.32) \%$	
Γ_{11}	$J / \psi(1 S) \pi^{+} \pi^{-}$	(34.68 ± 0.30) \%	
Γ_{12}	$J / \psi(1 S) \pi^{0} \pi^{0}$	$(18.24 \pm 0.31) \%$	
Γ_{13}	$J / \psi(1 S) \eta$	(3.37 ± 0.05) \%	
Γ_{14}	$J / \psi(1 S) \pi^{0}$	$(1.268 \pm 0.032) \times$	0^{-3}

Meson Particle Listings
$\psi(2 S)$

a] For a narrow resonance in the range $2.2<M(X)<2.8 \mathrm{GeV}$.

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{c 1}(1 P), \chi_{c 0}(1 P), \chi_{c 2}(1 P)$, and $\psi(2 S)$ with 4 total widths, a partial width, 25 combinations of partial widths obtained from integrated cross section, and 84 branching ratios uses 248 measurements to determine 49 parameters. The overall fit has a $\chi^{2}=378.1$ for 199 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$, in percent, from the fit to parameters p_{i}, including the branching fractions, $x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$.

x_{7}	3									
x_{8}	1	0								
x_{11}	29	11	2							
x_{12}	28	6	1	48						
x_{13}	13	4	1	36	15					
x_{21}	0	0	0	4	3	2				
x_{153}	1	0	0	2	1	1	0			
x_{154}	1	0	0	2	1	1	0	0		
x_{155}	1	0	0	3	1	1	0	0	0	
Γ	-81	-4	-1	-38	-34	-16	-7	-1	-1	-1
	x_{6}	x_{7}	x_{8}	x_{11}	x_{12}	x_{13}	x_{21}	x_{153}	x_{154}	x_{155}

$\psi(2 S)$ PARTIAL WIDTHS
Γ (hadrons)

VALUE (keV)	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -				
258 ± 26	BAI	02B	BES2	${ }^{+} e^{-}$
224 ± 56	LUTH	75	MRK1	$e^{+} e^{-}$

$\Gamma\left(e^{+} e^{-}\right)$
$\frac{\operatorname{VALUE}(\mathrm{keV})}{2.0}$ DOCUMENT ID TECN COMMENT 6
$\begin{array}{ll}2.33 \pm 0.04 & \text { OUR FIT } \\ 2.29 \pm 0.06 & \text { OUR AVERAGE }\end{array}$

2.29 ± 0.06	OUR AVERAGE			
2.23	± 0.10	± 0.02	1	ABLIKIM
		15V	BES3	$4.0-4.4 e^{+} e^{-} \rightarrow$
$2.338 \pm 0.037 \pm 0.096$	ABLIKIM	08B	BES2	$e^{+} e^{-} \rightarrow$ hadrons
$2.330 \pm 0.036 \pm 0.110$	ABLIKIM	06L	BES2	$e^{+} e^{-} \rightarrow$ hadrons
2.44	± 0.21	BAI	02B	BES2
2.14	$e^{+} e^{-}$			
2.21	ALEXANDER	89	RVUE	See r mini-review

ALEX

$2.279 \pm 0.015 \pm 0.042$	${ }^{3}$ ANASHIN	18	KEDR	${ }^{+} e^{-}$
$2.282 \pm 0.015 \pm 0.042$	${ }^{4}$ ANASHIN	18	KEDR	$+e^{-}$
2.0 ± 0.3	BRANDELIK	79 C	DASP	$e^{+} e^{-}$
2.1 ± 0.3	${ }^{5}$ LUTH	75	MRK1	$e^{+} e$

${ }^{1}$ ABLIKIM 15 V reports $2.213 \pm 0.018 \pm 0.099 \mathrm{keV}$ from a measurement of $[\Gamma(\psi(2 S) \rightarrow$ $\left.\left.e^{+} e^{-}\right)\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]$assuming $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=$ $(34.95 \pm 0.45) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)$ $=(34.68 \pm 0.30) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ From a simultaneous fit to $e^{+} e^{-}, \mu^{+} \mu^{-}$, and hadronic channel, assuming $\Gamma_{e}=\Gamma_{\mu}=$ $\Gamma_{\tau} / 0.38847$.
${ }^{3}$ Combining $\Gamma_{e+e^{-}} \cdot \mathrm{B}\left(\mu^{+} \mu^{-}\right)$from ANASHIN 18 with $\Gamma_{e^{+} e^{-}} \cdot \mathrm{B}$ (hadrons) from ANASHIN 12 and assuming lepton universality.
${ }^{4}$ From the sum of $\Gamma_{e^{+}} e^{-} \cdot \mathrm{B}$ (hadrons) from ANASHIN $12, \Gamma_{e^{+}} e^{-} \cdot \mathrm{B}\left(e^{+} e^{-}\right)$and $\Gamma_{e^{+}} e^{-}$. $\mathrm{B}\left(\mu^{+} \mu^{-}\right)$from ANASHIN 18, and $\Gamma_{e^{+}} e^{-} \cdot \mathrm{B}\left(\tau^{+} \tau^{-}\right)$from ANASHIN 07.
${ }^{5}$ From a simultaneous fit to $e^{+} e^{-}, \mu^{+} \mu^{-}$, and hadronic channels assuming $\Gamma\left(e^{+} e^{-}\right)$ $=\Gamma\left(\mu^{+} \mu^{-}\right)$.

This combination of a partial width with the partial width into $e^{+} e^{-}$ and with the total width is obtained from the integrated cross section into channel(i) in the $e^{+} e^{-}$annihilation. We list only data that have not been used to determine the partial width $\Gamma(i)$ or the branching ratio $\Gamma(i) /$ total.

$\Gamma\left(\tau^{+} \tau^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •
$9.0 \pm 2.6 \quad 79 \quad 1$ ANASHIN 07 KEDR $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \tau^{+} \tau^{-}$
${ }^{1}$ Using $\psi(2 S)$ total width of $337 \pm 13 \mathrm{keV}$. Systematic errors not evaluated.
$\Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{11} \Gamma_{6} / \Gamma$
$\frac{V A L U E(\mathrm{keV})}{0.808 \pm 0.013 \text { OUR FIT EVTS DOCUMENT ID TECN COMMENT }}$
0.808 ± 0.013 OUR FIT
$\mathbf{0 . 8 3 7} \mathbf{\pm 0 . 0 2 5}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. $0.837 \pm 0.028 \pm 0.005 \quad 1$ LEES $\quad 12 \mathrm{E}$ BABR $10.6 e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-} \gamma$ $0.852 \pm 0.010 \pm 0.02619 .5 \mathrm{k} \quad$ ADAM $06 \quad$ CLEO $3.773 e^{+} e^{-} \rightarrow \gamma \psi(2 S)$ $0.68 \pm 0.09 \quad{ }^{2} \mathrm{BAI} \quad 98 \mathrm{BES} e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.88 \pm 0.08 \pm 0.03 \quad 256 \quad 3$ AUBERT 07AU BABR $10.6 e^{+} e^{-} \rightarrow J / \psi \pi^{+} \pi^{-} \gamma$
$0.755 \pm 0.048 \pm 0.004 \quad 544 \quad{ }^{4}$ AUBERT 05D BABR $10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-} \gamma$
${ }^{1}$ LEES 12E reports $\left[\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]=(49.9 \pm 1.3 \pm 1.0) \times 10^{-3} \mathrm{keV}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ The value of $\Gamma\left(e^{+} e^{-}\right)$quoted in BAI 98 E is derived using $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(32.4 \pm 2.6) \times 10^{-2}$ and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1203 \pm 0.0038$. Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.
${ }^{3}$ AUBERT 07AU reports $\left[\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=0.0186 \pm 0.0012 \pm 0.0011 \mathrm{keV}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(2.10 \pm 0.08) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best 4 value.
${ }^{4}$ AUBERT 05D reports $\left[\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]=0.0450 \pm 0.0018 \pm 0.0022 \mathrm{keV}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. experiment's error and our
Superseded by LEES 12E.

 $0.48 \pm 0.09 \pm 0.02 \quad 142 \quad 1$ LEES \quad 18E BABR $10.6 e^{+} e^{-} \vec{J} / \psi \pi^{0} \pi_{\gamma}$
$1_{\text {LEES }} 18 \mathrm{E}$ reports $\left[\Gamma\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{0} \pi^{0}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(J / \psi(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=0.0101 \pm 0.0015 \pm 0.0011 \mathrm{keV}$ which we divide by our best value $\mathrm{B}\left(J / \psi(1 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(2.10 \pm 0.08) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(J / \psi(1 S) \eta) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{13} \Gamma_{6} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\overline{78.6 \pm 1.6 \text { OUR FIT }}$
87 ± 9 OUR AVERAGE

$88 \pm 6 \pm 7 \quad 291 \pm 24 \quad$ ADAM $\quad 06 \quad$ CLEO $3.773 e^{+} e^{-} \rightarrow \gamma \psi(2 S)$ ${ }^{1}$ AUBERT 07AU quotes $\Gamma_{e e}^{\psi(2 S)} \cdot \mathrm{B}(\psi(2 S) \rightarrow J / \psi \eta) \cdot \mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) \cdot \mathrm{B}(\eta \rightarrow$ $\left.\pi^{+} \pi^{-} \pi^{0}\right)=1.11 \pm 0.33 \pm 0.07 \mathrm{eV}$.
$\Gamma\left(J / \psi(1 S) \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{14} \Gamma_{6} / \Gamma$

$\frac{\operatorname{VALUE}(\mathrm{eV})}{<\mathbf{0 . 7}} \frac{C L \%}{90} \frac{\text { EVTS }}{8} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 17A }}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \pi^{0} \gamma}$

$\left.{ }_{S}^{0} K_{L}^{0} \eta\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{123} \Gamma_{6} / \Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	

$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{3 . 1 4} \pm \mathbf{1 . 0 8} \pm \mathbf{0 . 1 6}} \frac{\text { EVTS }}{16} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0} \eta \gamma}$

$\Gamma\left(\phi f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right)$	$) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$			$\Gamma_{127} \Gamma_{6} / \Gamma$
VALUE (eV)	EVTS DOCUMENT ID	TECN	COMMENT	

$\frac{\text { VALUE }(\mathrm{eV})}{\mathbf{0 . 3 4 5} \pm \mathbf{0 . 1 2 8} \pm \mathbf{0 . 0 0 4}} \frac{\text { EVTS }}{12} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 12F }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{10.6 e^{+} e^{-} \rightarrow{ }^{-}}{}$

- - We do not use the following data for averages, fits, limits, etc. • - -
$0.345 \pm 0.168 \pm 0.004 \quad 6 \pm 3 \quad 2$ AUBERT \quad 07AK BABR $10.6 e^{+} e^{-} \pi^{-}{ }_{\pi}^{+} K^{-} \gamma$
${ }^{1}$ LEES 12 F reports $\left[\Gamma\left(\psi(2 S) \rightarrow \phi f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.17 \pm 0.06 \pm 0.02 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Superseded by LEES 12F. AUBERT 07AK reports $\left[\Gamma\left(\psi(2 S) \rightarrow \phi f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) \times\right.$ $\left.\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.17 \pm 0.08 \pm 0.02 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(2\left(K^{+} K^{-}\right)\right) \times \Gamma\left(e^{+} e^{-}\right) / /_{\text {total }}$
$\Gamma_{128} \Gamma_{6} / \Gamma$ $\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{0 . 2 2} \pm \mathbf{0 . 1 0} \mathbf{0 . 0 2}} \frac{\text { EVTS }}{13} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 12F }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{\begin{array}{c}10.6 e^{+} e^{-} \rightarrow K^{+} \\ K^{+} K^{-} K^{+} K^{-} \gamma\end{array}}{}$
$\Gamma\left(\phi \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{126} \Gamma_{6} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{0 . 5 5 \pm 0 . 1 9 \pm \mathbf { 0 . 0 1 }} 19 \quad 1$ LEES $\quad 12 \mathrm{FABR} \quad 10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - - •
$0.57 \pm 0.23 \pm 0.01 \quad 10 \quad 2$ AUBERT,BE 06D BABR $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \gamma$ $1_{\text {LEES }} 12 \mathrm{~F}$ reports $\left[\Gamma\left(\psi(2 S) \rightarrow \phi \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.27 \pm 0.09 \pm 0.02 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Superseded by LEES 12F. AUBERT,BE 06D reports $\left[\Gamma\left(\psi(2 S) \rightarrow \phi \pi^{+} \pi^{-}\right) \times\right.$ $\left.\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)\right]=0.28 \pm 0.11 \pm 0.02 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\phi(1020) \rightarrow K^{+} K^{-}\right)=(49.2 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(2\left(\pi^{+} \pi^{-}\right) \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{17} \Gamma_{6} / \Gamma$
VALUE (eV)	EVTS	DOCUMENT	TECN	COMMENT	
$29.7 \pm 2.2 \pm 1.8$	410	AUBERT	07aU BABR	$10.6 e^{+} e^{-}$	$2\left(\pi^{+} \pi^{-}\right) \pi^{0} \gamma$
$\Gamma\left(\pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					
VALUE (eV)	EVTS	DOCUME	TECN	COMMENT	
$12.4 \pm 1.8 \pm 1.2$	177	LEES	18E BABR	$10.6 e^{+} e^{-}$	$\rightarrow \pi^{+} \pi^{-} 3 \pi^{0} \gamma$

${ }^{1}$ AUBERT 07AU reports $\left[\Gamma\left(\psi(2 S) \rightarrow \omega \pi^{+} \pi^{-}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times$ $\left[\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)\right]=2.69 \pm 0.73 \pm 0.16 \mathrm{eV}$ which we divide by our best value $\mathrm{B}\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(\omega \pi^{0} \pi^{0}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{80} \Gamma_{6} / \Gamma$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{\mathbf{2 . 5 8} \pm \mathbf{0 . 8 2} \pm \mathbf{0 . 0 2}} \frac{\text { EVTS }}{33} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 18E }}{\text { TECN }} \frac{\text { COMMENT }}{\text { BABR }} \frac{10.6 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} 3 \pi^{0} \gamma}{}$ ${ }^{1}$ LEES 18 E reports $\left[\Gamma\left(\psi(2 S) \rightarrow \omega \pi^{0} \pi^{0}\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\omega(782) \rightarrow$ $\left.\left.\pi^{+} \pi^{-} \pi^{0}\right)\right]=2.3 \pm 0.7 \pm 0.2 \mathrm{eV}$ which we divide by our best value $\mathrm{B}(\omega(782) \rightarrow$ $\left.\pi^{+} \pi^{-} \pi^{0}\right)=(89.3 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value
$\Gamma\left(2\left(\pi^{+} \pi^{-}\right) \eta\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{73} \Gamma_{6} / \Gamma$
$\frac{V A L U E(\mathrm{eV})}{2.9110}$ EVTS DOCUMENT ID TECN COMMENT

AUBERT 07au reports $\left[\Gamma\left(\psi(2 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \eta\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {tol }}\right] \times$ $[\mathrm{B}(\eta \rightarrow 2 \gamma)]=1.13 \pm 0.55 \pm 0.08 \mathrm{eV}$ which we divide by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma)=$ $(39.41 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(K^{+} K^{-} \pi^{+} \pi^{-} \eta\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{86} \Gamma_{6} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
$\overline{3.04 \pm 1.79 \pm \mathbf{0 . 0 2} 7} \quad 1$ AUBERT 07AU BABR $10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \eta \gamma$
${ }^{1}$ AUBERT 07AU reports $\left[\Gamma\left(\psi(2 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \eta\right) \times \Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) / \Gamma_{\text {total }}\right]$ $\times[\mathrm{B}(\eta \rightarrow 2 \gamma)]=1.2 \pm 0.7 \pm 0.1 \mathrm{eV}$ which we divide by our best value $\mathrm{B}(\eta \rightarrow 2 \gamma) \stackrel{ }{=}$ $(39.41 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(K^{+} K^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{113} \Gamma_{6} / \Gamma$
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.147 \pm 0.035 \pm 0.005 \quad 66 \quad 1$ LEES \quad 15」 BABR $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$
$\begin{array}{llll}0.197 \pm 0.035 \pm 0.005 & 66 & 2 \text { LEES } & \text { 15」 BABR } e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma \\ 0.35 \pm 0.14 \pm 0.03 & 11 & 3 \text { LEES } & \text { 13Q BABR } e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma\end{array}$
${ }^{1} \sin \phi>0$.
$2 \sin \phi<0$.
${ }^{3}$ Interference with non-resonant $K^{+} K^{-}$production not taken into account.

$\psi(2 S)$ BRANCHING RATIOS

Γ (hadrons) $/ \Gamma_{\text {total }}$		TECN		$\Gamma 1 / \Gamma$
VALUE	DOCUMENT ID		COMMENT	
$\overline{0.9785} \pm 0.0013$ OUR AVERAGE				
0.9779 ± 0.0015	${ }^{1} \mathrm{BAI} \quad 02 \mathrm{~B}$	BES2	$e^{+} e^{-}$	
0.981 ± 0.003	1^{1} LUTH 75	MRK1	$e^{+} e^{-}$	
${ }^{1}$ Includes cascade decay into $J / \psi(1 S)$.				
$\Gamma($ virtual $\gamma \rightarrow$ hadrons $) / \Gamma_{\text {total }}$				$\Gamma 2 / \Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT	
$\mathbf{0 . 0 1 7 3} \pm \mathbf{0 . 0 0 1 4}$ OUR AVERAGE Error includes scale factor of 1.5.				
0.0166 ± 0.0010	1,2 SETH 04	RVUE	$e^{+} e^{-}$	
0.0199 ± 0.0019	1 BAI 02B	BES2	$e^{+} e^{-}$	
- - We do not use the followin	ng data for averages, fits,	limits	-	
0.029 ± 0.004	1 LUTH 75	MRK1	$e^{+} e^{-}$	
1 Included in Γ (hadrons) $/ \Gamma_{\text {total }}$.				
${ }^{2}$ Using $\mathbf{B}\left(\psi(2 S) \rightarrow \ell^{+} \ell^{-}\right)=(0.73 \pm 0.04) \%$ from RPP-2002 and $\mathbf{R}=2.28 \pm 0.04$ determined by a fit to data from BAI 00 and BAI 02C.				

$\Gamma(\boldsymbol{g} \boldsymbol{g} \boldsymbol{g}) / \Gamma_{\text {total }}$						
VALUE (units 10^{-2})	EVTS	DOCUME		TECN	COMMENT	
10.58 土 $^{\text {1 }}$.62	2.9 M	${ }^{1}$ LIBBY	09	CLEO	$\psi(2 S)$	
${ }^{1}$ Calculated using $\Gamma(\gamma g g) / \Gamma(g g g)=0.097 \pm 0.026 \pm 0.016$ from LIBBY 09, B $\psi(2 S) \rightarrow$ $X J / \psi)$ relative and absolute branching fractions from MENDEZ 08, $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \eta_{C}\right)$ from MITCHELL 09, and $\mathrm{B}\left(\psi(2 S) \rightarrow\right.$ virtual $\gamma \rightarrow$ hadrons), $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c J}\right)$, and						
$\mathbf{B}\left(\psi(2 S) \rightarrow \ell^{+} \ell^{-}\right)$from PDG 08. The statistical error is negligible and the systematic error is largely uncorrelated with that of $\Gamma(\gamma g g) / \Gamma_{\text {total }}$ LIBBY 09 measurement.						

$\boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{g}) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{1.025 \pm \mathbf{0 . 2 8 8}} \frac{\text { EVTS }}{200 \mathrm{k}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { LIBBY }}{\text { LIECN }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{09}{\psi(2 S) \rightarrow \gamma+\text { hadrons }}$
${ }^{1}$ Calculated using $\Gamma(\gamma g g) / \Gamma(g g g)=0.097 \pm 0.026 \pm 0.016$ from LIBBY 09. The statistical error is negligible and the systematic error is largely uncorrelated with that of $\Gamma(g g g) / \Gamma_{\text {total }}$ LIBBY 09 measurement.
$\Gamma(\gamma g g) / \Gamma(g g g)$
Γ_{4} / Γ_{3}
$\frac{\left.\text { VALUE (units } 10^{-2}\right)}{9.7 \pm \mathbf{2 . 6} \pm \mathbf{1 . 6}} \frac{\text { EVTS }}{2.9 \mathrm{M}} \quad \frac{\text { DOCUMENT ID }}{\text { LIBBY } 09} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow(\gamma+) \text { hadrons }}$
Γ (light hadrons) $/ \Gamma_{\text {total }}$
$\frac{\text { VALUE }}{\mathbf{0 . 1 5 4} \pm \mathbf{0 . 0 1 5}} \quad 1 \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { MENDEZ }} \frac{08}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(2 S)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.169 \pm 0.026 \quad 2$ ADAM \quad 05A CLEO $e^{+} e^{-} \rightarrow \psi(2 S)$
${ }^{1}$ Uses $\mathrm{B}(\psi(2 S) \rightarrow J / \psi X)$ from MENDEZ 08 and other branching fractions from PDG 07.
${ }^{2}$ Uses $\mathrm{B}(J / \psi X)$ from ADAM 05A, $\mathrm{B}\left(\chi_{c J} \gamma\right), \mathrm{B}\left(\eta_{c} \gamma\right)$ from ATHAR 04 and $\mathrm{B}\left(\ell^{+} \ell^{-}\right)$ from PDG 04. Superseded by MENDEZ 08 .
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
Γ_{6} / Γ
VALUE (units 10^{-4})
DOCUMENT ID TECN COMMENT
79.3士 1.7 OUR FIT
- - We do not use the following data for averages, fits, limits, etc. - -
$88 \pm 13 \quad 1$ FELDMAN 77 RVUE $e^{+} e^{-}$
${ }^{1}$ From an overall fit assuming equal partial widths for $e^{+} e^{-}$and $\mu^{+} \mu^{-}$. For a measurement of the ratio see the entry $\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma\left(e^{+} e^{-}\right)$below. Includes LUTH 75, HILGER 75, BURMESTER 77.
VALUE (units 10^{-4})
DOCUMENT ID
$\frac{1.00 \pm 0.08 \text { OUR FIT }}{}$
DOCUMENT ID TECN COMMENT
-
- - We do not use the following data for averages, fits, limits, etc. - - -
$0.89 \pm 0.16 \quad$ BOYARSKI 75C MRK1 $e^{+} e^{-}$

$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$				
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
31 ± 4 OUR FIT				
$30.8 \pm 2.1 \pm 3.8$	${ }^{1}$ ABLIKIM	BES	$e^{+} e^{-}$	

${ }^{1}$ Computed using PDG 02 value of $\mathrm{B}(\psi(2 S) \rightarrow$ hadrons $)=0.9810 \pm 0.0030$ to estimate the total number of $\psi(2 S)$ events.

$\Gamma\left(e^{+} e^{-}\right) / \Gamma(J / \psi(1 S)$ anything $)$
$\Gamma_{6} / \Gamma_{9}=\Gamma_{6} /\left(\Gamma_{11}+\Gamma_{12}+\Gamma_{13}+0.343 \Gamma_{154}+0.190 \Gamma_{155}\right)$
VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT
1.291 $\mathbf{\pm} \mathbf{0 . 0 2 6 ~ O U R ~ F I T ~}$
$1.28 \pm \mathbf{0 . 0 4}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
$1.22 \pm 0.02 \pm 0.05 \quad 5097 \pm 73 \quad 1$ ANDREOTTI 05 E835 $\quad p \bar{p} \rightarrow \psi(2 S) \rightarrow$
$1.28 \pm 0.03 \pm 0.02 \quad 1$ AMBROGIANI 00A E835 $\quad p \bar{p} \rightarrow e^{+} e^{-}(2 S)$
$1.44 \pm 0.08 \pm 0.02 \quad 1$ ARMSTRONG $97 \quad$ E760 $\quad \bar{p} p \rightarrow \psi(2 S)$
${ }^{1}$ Using $\mathrm{B}\left(J / \psi(1 S) \rightarrow e^{+} e^{-}\right)=0.0593 \pm 0.0010$.

$\mathbf{0 . 3 4 8} \pm \mathbf{0 . 0 0 5}$ OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
$0.3498 \pm 0.0002 \pm 0.0045 \quad 20 \mathrm{M} \quad$ ABLIKIM $\quad 13 \mathrm{R}$ BES3 $\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}$ $0.3504 \pm 0.0007 \pm 0.0077565 \mathrm{k} \quad$ MENDEZ 08 CLEO $\psi(2 S) \rightarrow \ell^{+} \ell^{-} \pi^{+} \pi^{-}$
$0.323 \pm 0.014 \quad$ BAI 02B BES2 $e^{+} e^{-}$
$0.32 \pm 0.04 \quad$ ABRAMS 75B MRK1 $e^{+} e^{-} \rightarrow J / \psi \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.3354 \pm 0.0014 \pm 0.0110 \quad 60 \mathrm{k} \quad{ }^{1}$ ADAM $\quad 05 \mathrm{~A}$ CLEO Repl. by MENDEZ 08
${ }^{1}$ Not independent from other values reported by ADAM 05A.
WEIGHTED AVERAGE
0.348 ± 0.005 (Error scaled by 1.3)

$\Gamma\left(e^{+} e^{-}\right) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$

$\frac{V A L U E}{0.0230 \pm 0.0017 \text { OUR FIT }}$
0.0228 ± 0.0018 OUR AVERAGE

$0.0230 \pm 0.0020 \pm 0.0012$	1	AAIJ	$16 Y$ LHCB $\Lambda_{b}^{0} \rightarrow \psi(2 S) X$
$0.0216 \pm 0.0026 \pm 0.0014$	2 AUBERT	02B BABR $e^{+} e^{-}$	
$0.0327 \pm 0.0077 \pm 0.0072$	2 GRIBUSHIN	96	FMPS $515 \pi^{-} \mathrm{Be} \rightarrow 2 \mu X$

${ }^{1}$ Using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm 0.033) \times 10^{-2}$.
${ }^{2}$ Using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.88 \pm 0.10) \times 10^{-2}$.

Meson Particle Listings
$\psi(2 S)$

$\Gamma\left(J / \psi(1 S) \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{V A L U E}{}$
$\mathbf{0 . 1 8 2 4} \pm \mathbf{0 . 0 0 3 1 ~ O U R ~ F I T}$

- - We do not use the following data for averages, fits, limits, etc. - • -

$0.1769 \pm 0.0008 \pm 0.0053$	61 k	1 MENDEZ	08	CLEO	$\psi(2 S) \rightarrow$
$0.1652 \pm 0.0014 \pm 0.0058$	13.4 k	2 ADAM	$\ell^{+} \ell^{-} 2 \pi^{0}$		
1	05A	CLEO	Repl. by MENDEZ 08		

$\frac{V A L U E}{0.0549+0.0008}$ OUR FIT EVTS DOCUMENT ID — TECN COMMENT

$0.058 \pm \mathbf{0 . 0 0 7}$ OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
$0.050 \pm 0.006 \pm 0.003 \quad 298 \pm 20 \quad$ ANDREOTTI 05 E835 $\psi(2 S) \rightarrow J / \psi X$ $0.072 \pm 0.009 \quad$ AMBROGIANI 00A E835 $p \bar{p} \rightarrow \psi(2 S)$ $0.061 \pm 0.015 \quad$ ARMSTRONG 97 E760 $\bar{p} p \rightarrow \psi(2 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.0549 \pm 0.0006 \pm 0.0009 \quad 18.4 \mathrm{k} \quad 1$ MENDEZ 08 CLEO $\psi(2 S) \rightarrow \ell^{+} \ell^{-} \eta$ $0.0546 \pm 0.0010 \pm 0.00072 .8 \mathrm{k}$ ADAM 05A CLEO Repl. by MENDEZ 08
${ }^{1}$ Not independent from other measurements of MENDEZ 08.

$\Gamma(J / \psi(1 S) \eta) / \Gamma\left(J / \psi(1 S) \pi^{+} \pi^{-}\right)$					$\Gamma_{13} / \Gamma_{11}$		
$\frac{V A L U E}{\mathbf{0 . 0 9 7 2} \pm \mathbf{0 . 0 0 1 4 ~ O U R ~ F I T}} \stackrel{\text { EVTS }}{\text { DOCUMENT ID }} \text { TECN COMMENT }$							
0.0979 \pm 0.0018 OUR AVERAGE							
$0.0979 \pm 0.0010 \pm 0.0015$	18.4 k	MENDEZ	08	CLEO	$\psi(2 S)$	$\ell^{+} \ell^{-} \eta$	
$0.098 \pm 0.005 \pm 0.010$	2k	${ }^{1}$ ABLIKIM	04B	BES	$\psi(2 S) \rightarrow$	$J / \psi X$	
0.091 ± 0.021		${ }^{2}$ HIMEL	80	MRK2	$e^{+} e^{-}$	$\psi(2 S) X$	
- - We do not use the following data for averages, fits, limits, etc. - -							
$0.0968 \pm 0.0019 \pm 0.0013$	2.8 k	${ }^{3}$ ADAM	05A	CLEO	Repl. by	MENDEZ 08	
$0.095 \pm 0.007 \pm 0.007$		${ }^{4}$ ANDREOTTI		E835	$\psi(2 S) \rightarrow$	$J / \psi X$	
${ }^{1}$ From a fit to the J / ψ recoil mass spectra.							
${ }^{2}$ The value for $\mathrm{B}(\psi(2 S) \rightarrow J / \psi(1 s) \eta$) reported in HIMEL 80 is derived using $\mathrm{B}(\psi(2 \mathrm{~S})) \rightarrow$							
$\left.\left.J / \psi(1 S) \pi^{+} \pi^{-}\right)=(33 \pm 3)\right) \%$ and $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.138 \pm 0.018$. Calculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(0.1181 \pm 0.0020)$.							
${ }^{3}$ Not independent from other values reported by ADAM 05A.							
${ }^{4}$ Not independent from other values reported by ANDREOTTI 05.							
$\Gamma\left(J / \psi(1 S) \pi^{0}\right) / \Gamma_{\text {total }}$							
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT		
12.68 ± 0.32 OUR AVERAGE							
$12.6 \pm 0.2 \pm 0.3$	4.1 k	ABLIKIM	12M	BES3	$+{ }^{-}$	$\ell^{+} \ell^{-} 2 \gamma$	
$13.3 \pm 0.8 \pm 0.3$	530	MENDEZ	08	CLEO	$\psi(2 S) \rightarrow$	$\ell^{+} \ell^{-} 2 \gamma$	
$14.3 \pm 1.4 \pm 1.2$	280	BAI		BES2	$\psi(2 S) \rightarrow$	$J / \psi \gamma \gamma$	
14 ± 6	7	HIMEL	80	MRK2	$e^{+} e^{-}$		
$\pm 2 \pm 1$	23	${ }^{1}$ OREGLIA		CBAL	$\psi(2 S) \rightarrow$	$J / \psi 2 \gamma$	
- - We do not use the following data for averages, fits, limits, etc. - -							
$13 \pm 1 \pm 1$	88	ADAM		CLEO	Repl. by M	MENDEZ 08	
${ }^{1}$ Recalculated by us using $\mathrm{B}\left(J / \psi(1 S) \rightarrow \ell^{+} \ell^{-}\right)=0.1181 \pm 0.0020$.							

$\Gamma\left(\rho a_{2}(1320)\right) / \Gamma_{\text {total }}$
Γ_{18} / Γ
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{2 . 5 5} \pm \mathbf{0 . 7 3} \pm \mathbf{0 . 4 7}} \frac{C L \%}{112 \pm 31} \quad \frac{\text { EVTS }}{\text { BAI } \quad \text { 04C }} \frac{\text { DOCUMENT ID }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}}$ - - We do not use the following data for averages, fits, limits, etc. • •

<2.3	90	BAI	98」 BES		$e^{+} e^{-}$	Γ_{21} / Γ		
$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	COMMENT			
VALUE (units 10^{-4})	EVTS							
2.94 ± 0.08 OUR FIT								
3.02 ± 0.08 OUR AVERAGE								
$3.05 \pm 0.02 \pm 0.12$	19k	ABLIKIM	18 T		BES3	$e^{+} e^{-}$	$\psi(2 S)$	$\rightarrow p \bar{p}$
$3.08 \pm 0.05 \pm 0.18$	4.5k	${ }^{1}$ DOBBS	14		$e^{+} e^{-} \rightarrow$	$\psi(2 S)$	$\rightarrow p \bar{p}$	
$3.36 \pm 0.09 \pm 0.25$	1.6k	ABLIKIM		BES	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$	$\rightarrow p \bar{p}$	
$2.87 \pm 0.12 \pm 0.15$	557	PEDLAR	05	CLEO	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$	$\rightarrow p \bar{p}$	
1.4 ± 0.8	4	BRANDELIK		DASP	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$	$\rightarrow p \bar{p}$	
2.3 ± 0.7		FELDMAN		MRK1	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$	$\rightarrow p \bar{p}$	

$\Gamma\left(\Lambda \bar{\Lambda} \pi^{0}\right) / \Gamma_{\text {total }}$					Γ_{24} / Γ
VALUE (units 10^{-5})	CL\%	DOCUMENT	TECN	COMMENT	
< 0.29	90	${ }^{1}$ ABLIKIM	13F BES3	$\psi(2 S)$	$\pi \quad \gamma \gamma$
\bullet - We do not use the following data for averages, fits, limits, etc. - -					
<12	90	${ }^{2}$ ABLIKIM	07H BES2	$e^{+} e^{-}$	
${ }^{1}$ Using $\mathrm{B}\left(\Lambda \rightarrow \pi^{-} p\right)=63.9 \%$ and $\mathrm{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)=98.8 \%$.					
${ }^{2}$ Using $\mathrm{B}\left(\Lambda \rightarrow \pi^{-} p\right)=63.9 \%$ and $\mathrm{B}(\eta \rightarrow \gamma \gamma)=39.4 \%$.					

Meson Particle Listings
$\psi(2 S)$

$\Gamma\left(\Lambda \overline{\boldsymbol{\Sigma}}^{+} \pi^{-}+\mathbf{c}\right.$	total			$\Gamma 31 / \Gamma$	
VALUE（units 10^{-4} ）	EVTS	DOCUMENT ID		TECN	COMMENT
$1.40 \pm 0.03 \pm 0.13$	2.8 k	ABLIKIM	13w	BES3	$\psi(2 S) \rightarrow$ hadrons
$\Gamma\left(\Lambda \bar{\Sigma}^{-} \pi^{+}+\mathbf{c}\right.$					
VALUE（units 10^{-4} ）	EVTS	DOCUMENT ID		TECN	COMMENT
$1.54 \pm 0.04 \pm 0.13$	2.8 k	ABLIKIM	13w	BES3	$\psi(2 S) \rightarrow$ hadrons
$\Gamma\left(\Lambda \bar{\Sigma}^{0}\right) / \Gamma_{\text {total }}$					
VALUE（units 10^{-5} ）	EVTS	DOCUMENT ID		COMM	
$1.23 \pm 0.23 \pm 0.08$	30	${ }^{1}$ DOBBS	17	$e^{+} e$	$\rightarrow \psi(2 S) \rightarrow$ had

${ }^{1}$ Using CLEO－c data but not authored by the CLEO Collaboration．

$\Gamma\left(\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{35} / \Gamma$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{2}$ EVTS DOCUMENT ID＿TECN COMMENT
$2.31 \pm 0.06 \pm 0.10 \quad 1.9 \mathrm{k} \quad 1$ DOBBS $\quad 17 \quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons $2.57 \pm 0.44 \pm 0.68 \quad 35 \quad$ PEDLAR $\quad 05$ CLEO $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons －－We do not use the following data for averages，fits，limits，etc．－－－
$2.51 \pm 0.15 \pm 0.16 \quad 281 \quad 1,2$ DOBBS $\quad 14 \quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
${ }^{1}$ Using CLEO－c data but not authored by the CLEO Collaboration．
2 Superseded by DOBBS 17.
$\Gamma\left(\Sigma^{0} \Sigma^{0}\right) / \Gamma_{\text {total }}$
Γ［36／Г
VALUE（units 10^{-4} ）EVTS DOCUMENT ID TECN COMMENT
$\mathbf{2 . 3 5} \pm \mathbf{0 . 0 9}$ OUR AVERAGE Error includes scale factor of 1.1 ．

01 BES $e^{+} e \rightarrow \psi(2 S) \rightarrow$ hadrons
${ }^{1}$ Using CLEO－c data but not authored by the CLEO Collaboration．
${ }^{2}$ Superseded by DOBBS 17.
${ }^{3}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.310 \pm 0.028$ ．

$\Gamma\left(\boldsymbol{\Sigma}(1385)+\overline{\boldsymbol{\Sigma}}(\mathbf{1 3 8 5})^{-}\right) / \Gamma_{\text {total }}$				TECN	Γ_{37} / Γ		
VALUE（units 10^{-5} ）	EVTS	DOCUMEN			COMMENT		
8．5 ± 0.7 OUR AVERAGE							
$8.4 \pm 0.5 \pm 0.5$	1．5k	ABLIKIM	16L	BES3	$\psi(2 S)$	$\Sigma(1385)$	$+\bar{\Sigma}(1385)^{-}$
$11 \pm 3 \pm 3$	14	${ }^{1} \mathrm{BAI}$	01	BES	$e^{+} e^{-}$	$\psi(2 S)$	\rightarrow hadrons

$\Gamma\left(\right.$ 三－$^{\text {E }}+$ $) / \Gamma_{\text {total }}$
Γ_{40} / Γ
VALUE（units 10^{-4} ）CL\％EVTS DOCUMENT ID TECN COMMENT
$\mathbf{2 . 8 7} \pm \mathbf{0 . 1 1}$ OUR AVERAGE Error includes scale factor of 1．1．
$3.03 \pm 0.05 \pm 0.14 \quad 3.6 \mathrm{k} \quad 1$ DOBBS $\quad 17 \quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons $2.78 \pm 0.05 \pm 0.14 \quad 5 \mathrm{k} \quad$ ABLIKIM $\quad 16 \mathrm{~L}$ BES3 $\quad \psi(2 S) \rightarrow \bar{E}^{-} \overline{\bar{E}+}$
$3.03 \pm 0.40 \pm 0.32 \quad 67 \quad$ ABLIKIM 07 C BES $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons $2.38 \pm 0.30 \pm 0.21 \quad 63 \quad$ PEDLAR 05 CLEO $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
－－We do not use the following data for averages，fits，limits，etc．－－．

（Eロ）／total DOCUMENT ID TECN COMMENT
2．3 $\pm \mathbf{0 . 4}$ OUR AVERAGE Error includes scale factor of 4．2．
$2.73 \pm 0.03 \pm 0.13 \quad 11 \mathrm{k} \quad$ ABLIKIM $\quad 17 \mathrm{E} \quad$ BES3 $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
$1.97 \pm 0.06 \pm 0.11 \quad 1.2 \mathrm{k} \quad 1$ DOBBS $\quad 17 \quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
$2.75 \pm 0.64 \pm 0.61 \quad 19 \quad$ PEDLAR 05 CLEO $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
－－We do not use the following data for averages，fits，limits，etc．－－－
$2.02 \pm 0.19 \pm 0.15 \quad 112 \quad 1,2$ DOBBS $\quad 14 \quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$ hadrons
${ }^{1}$ Using CLEO－C data but not authored by the CLEO Collaboration．
${ }^{2}$ Superseded by DOBBS 17.
 $\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\mathbf{5 . 2} \pm \mathbf{0 . 3} \mathbf{+ 3 . 2}} \frac{C L \%}{527} \frac{\text { EVTS }}{1 \text { ABLIKIM }} \frac{\text { DOCUMENT ID }}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \eta p \bar{p}}$
－－We do not use the following data for averages，fits，limits，etc．－－－

<32	90	PEDLAR	05	CLEO	$e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$
<8.1	90	2	BAI	01	BES
$e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$					
hadrons					

${ }^{1}$ With $N(1535)$ decaying to $p \eta$ ．
${ }^{2}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.310 \pm 0.028$ ．

$\Gamma(\text {（ } 1530)^{-}$三（1530）$\left.{ }^{+}\right) / \Gamma_{\text {total }}$					Γ_{44} / Γ
VALUE（units 10^{-5} ）	EVTS	DOCUMENT ID	TECN	COMMENT	
$11.45 \pm 0.40 \pm 0.59$	5k	ABLIKIM	19AT BES3	$\begin{aligned} & e^{+} e^{-} \rightarrow \\ & \text { hadrons } \end{aligned}$	5)

$\Gamma\left(\overline{\text { (1690) }}{ }^{-\bar{\Xi}^{+}} \rightarrow K^{-} \Lambda \bar{\Xi}^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$				TECN	Γ_{46} / Γ	
VALUE (units 10-6)	EVTS	DOCUMENT ID			COMMENT	
$5.21 \pm 1.48 \pm 0.57$	74	ABLIKIM	151	BES3	$\begin{gathered} e^{+} e^{-} \vec{~} \\ K^{-} \\ \Lambda \bar{B} \end{gathered}$	$\begin{aligned} & \psi(2 S) \rightarrow \\ & ++ \text { c.c. } \end{aligned}$
$\Gamma\left(\overline{\text { (1820) }}{ }^{-} \bar{\Xi}^{+} \rightarrow K^{-} \Lambda \bar{\Xi}^{+}+\right.$c.c. $) / \Gamma_{\text {total }}$					COMment Γ_{47} / Γ	
VALUE (units 10-6)	EVTS	DOCUMENT ID		TECN		
$12.03 \pm 2.94 \pm 1.22$	136	ABLIKIM	151	BES3	$\begin{gathered} e^{+} e^{-} \vec{~} \\ K^{-} \boldsymbol{\Lambda} \bar{\equiv} \end{gathered}$	$\begin{aligned} & \psi(2 S) \rightarrow \\ & ++ \text { c.c. } \end{aligned}$
$\Gamma\left(K^{-} \boldsymbol{\Sigma}^{0} \overline{\bar{E}}++\right.$ c.c. $) / \Gamma_{\text {total }}$					Γ_{48} / Γ	
VALUE (units 10 ${ }^{-5}$)	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.67 \pm 0.33 \pm 0.28$	142	ABLIKIM	151	BES3	$\begin{array}{r} \begin{array}{c} e^{+} e^{-} \overrightarrow{\Sigma^{0}} \\ K^{-}++ \text {c.c. } \end{array} \end{array}$	
$\Gamma\left(\Omega^{-} \bar{\Omega}^{+}\right) / \Gamma_{\text {total }}$					$\Gamma_{49 / \Gamma}$	
VALUE (units 10-4)	CL\% EVTS	DOCUMENT ID		TECN	COMMENT	
$0.52 \pm 0.03 \pm 0.03$	326	${ }^{1}$ DOBBS	17		$\underset{\text { hadrons }}{e^{+}} \underset{\text { en }}{-} \psi(2 S) \rightarrow$	
- - We do not use the following data for averages, fits, limits, etc. - . .						
$0.47 \pm 0.09 \pm 0.05$	27	1,2 DOBBS	14		$\underset{\text { hadrons }}{e^{+}} \underset{\text { en }}{-} \psi(2 S) \rightarrow$	
<1.5	90	ABLIKIM	12Q	BES2	$\underset{\substack{e^{+} \\ \text {hadrons }}}{\rightarrow} \psi(2 S) \rightarrow$	
<1.6	90	PEDLAR	05	CLEO	$\underset{\text { hadrons }}{+}{ }^{-} \psi(2 S) \rightarrow$	
<0.73	90	3^{3} BAI	01	BES		

${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration
${ }^{2}$ Superseded by DOBBS 17.
${ }^{3}$ Estimated using $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.310 \pm 0.028$.
$\Gamma\left(\pi^{0} p \bar{p}\right) / \Gamma_{\text {total }} \quad \Gamma_{50} / \Gamma$
VALUE (units 10^{-4}) EVTS
1.53 ± 0.07 OUR AVERAGE

$1.65 \pm 0.03 \pm 0.15$	4.5 k	ABLIKIM	13A	BES3	$\psi(2 S) \rightarrow p \bar{p} \pi^{0}$	
$1.54 \pm 0.06 \pm 0.06$	948	ALEXANDER	10	CLEO	$\psi(2 S) \rightarrow \pi^{0} p \bar{p}$	
$1.32 \pm 0.10 \pm 0.15$	256	1	ABLIKIM	05E	BES2	$e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow p \bar{p} \gamma \gamma$
1.4 ± 0.5	9	FRANKLIN	83	MRK2	$e^{+} e^{-}$	

$\Gamma\left(N(940) \bar{p}+\right.$ c.c. $\left.\rightarrow \pi^{0} p \bar{p}\right) / \Gamma_{\text {total }}$					Γ_{51} / Γ
VALUE (units 10^{-5})	EVTS	DOCument	TECN	COMMENT	
$6.42 \pm 0.20{ }_{-1.28}^{+1.78}$	1.9k	${ }^{1}$ ABLIKIM	13A BES3	$\psi(2 S) \rightarrow$	
${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.					
$\Gamma\left(N(1440) \bar{p}+\right.$ c.c. $\left.\rightarrow \pi^{0} p \bar{p}\right) / \Gamma_{\text {total }}$					Γ_{52} / Γ
VALUE (units 10 ${ }^{-5}$)	EVTS	DOCUMENT	TECN	COMMENT	

$\frac{\operatorname{VALUE}\left(\text { units } 10^{-5}\right)}{\mathbf{7 . 3} \mathbf{I - 1 . 5}_{\mathbf{1 . 7}} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{}$
$3.58 \pm 0.25{ }_{-0.84}^{+1.59} \quad 1.1 \mathrm{k} \quad{ }^{1}$ ABLIKIM \quad 13A BES3 $\quad \psi(2 S) \rightarrow p \bar{p} \pi^{0}$ $8.1 \pm 0.7 \pm 0.3 \quad 474 \quad{ }^{2}$ ALEXANDER 10 CLEO $\psi(2 S) \rightarrow \pi^{0} p \bar{p}$
${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.
${ }^{2}$ From a fit of the $p \bar{p}$ and $p \pi^{0}$ mass distributions to a combination of $N(1440) \bar{p}$, $\pi^{0} f_{0}(2100)$, and two other broad, unestablished resonances.
$\Gamma\left(N(1520) \bar{p}+\right.$ c.c. $\left.\rightarrow \pi^{0} p \bar{p}\right) / \Gamma_{\text {total }} \quad \Gamma_{53} / \Gamma$
VALUE (units 10^{-5}) EVTS DOCUMENTID TECN COMMENT
$\mathbf{0 . 6 4} \pm \mathbf{0 . 0 5}{ }_{-0.17}^{\mathbf{0} .22} \quad 0.2 \mathrm{k} \quad 1$ ABLIKIM $\quad 13 \mathrm{~A}$ BES $3 \quad \psi(2 S) \rightarrow p \bar{p} \pi^{0}$
${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.

$\Gamma\left(N(1535) \bar{p}+\right.$ c.c. $\left.\rightarrow \pi^{0} p \bar{p}\right) / \Gamma_{\text {total }}$					Γ_{54} / Γ
VALUE (units 10-5)	EVTS	DOCUMENT ID	TECN	COMMENT	

$\mathbf{2 . 4 7} \pm \mathbf{0 . 2 8} \mathbf{- 0}_{\mathbf{0}}^{\mathbf{+ 0 . 9 7}} \quad 0.7 \mathrm{k} \quad{ }^{1}$ ABLIKIM \quad 13A BES3 $\quad \psi(2 S) \rightarrow p \bar{p} \pi^{0}$
${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.

$\Gamma\left(N(1650) \bar{p}+\right.$ c.c. $\left.\rightarrow \pi^{0} p \bar{p}\right) / \Gamma_{\text {total }}$					Γ_{55} / Γ
VALUE (units 10-5)	EVTS	DOCUMENT ID	TECN	COMMENT	
$3.76 \pm 0.28{ }_{-1.66}^{+1.37}$	1.1 k	${ }^{1}$ ABLIKIM	BES3	$\psi(2 S) \rightarrow$	

${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.
$\Gamma\left(\boldsymbol{N}(\mathbf{1 7 2 0}) \bar{p}+\mathbf{c . c .} \Rightarrow \boldsymbol{\pi}^{\mathbf{0}} p \bar{p}\right) / \Gamma_{\text {total }}$
$\Gamma_{\mathbf{5 6}} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-5}\right)}{\mathbf{1 . 7 9} \mathbf{0 . 1 0} \mathbf{0 . 0 . 2 4}} \frac{\text { EVTS }}{0.51} \quad \frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM 13A }} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow p \bar{p} \pi^{0}}$

[^131]Meson Particle Listings
$\psi(2 S)$

$\Gamma\left(\pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$					Γ_{82} / Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	

$8.1 \pm 1.3 \pm 0.3$	133	LEES	12F	BABR	$10.6 e^{+} e^{-} \rightarrow$
$\pi^{+} \pi^{-} K^{+} K^{-} \gamma$					
$7.1 \pm 0.3 \pm 0.4$	817.2	BRIERE	05	CLEO	$e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow$
					$K^{+} K^{-} \pi^{+} \pi^{-}$

1 TANENBAUM 78 MRK1 $e^{+}{K^{+}}^{+} K^{-} \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$11.0 \pm 1.9 \pm 0.2 \quad 25 \quad$ AUBERT \quad 07AK BABR $\quad 10.6 e^{+} \pi^{+} e^{-} K^{+} \overrightarrow{+} K^{-} \gamma$
${ }^{1}$ Assuming entirely strong decay.
${ }^{2}$ Superseded by LEES 12F. AUBERT 07AK reports [$\left.\Gamma\left(\psi(2 S) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right]$ $\times\left[\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)\right]=(2.56 \pm 0.42 \pm 0.16) \times 10^{-3} \mathrm{keV}$ which we divide by our best value $\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=2.33 \pm 0.04 \mathrm{keV}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.2土0.6 OUR AVERAGE Error includes scale factor of 1.4.						
$2.0 \pm 0.2 \pm 0.4$	285.5	BRIERE	05	CLEO	$e^{+} e^{-}$	
					2 (π^{+}	
4.2 ± 1.5		TANENBAUM		MRK1	$e^{+} e^{-}$	

See key on page 999

Meson Particle Listings
$\psi(2 S)$

$\Gamma\left(\rho(2150) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$				$\Gamma_{116 / \Gamma}$
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
$1.94 \pm 0.25{ }_{-0.34}^{+1.15}$	${ }^{1}$ ABLIKIM		$\psi(2 S) \rightarrow$	${ }^{-} \pi^{0}$
${ }^{1}$ From a PW a				

$\Gamma\left(\rho(770) \pi \Rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{117} / \Gamma$ VALUE (units 10^{-4}) CL\% EVTS OOCUMENT ID TECN COMMENT $\mathbf{0 . 3 2} \mathbf{\pm 0 . 1 2}$ OUR AVERAGE Error includes scale factor of 1.8 .

$$
0.24_{-0.07}^{+0.08} \pm 0.02 \quad 22 \quad \text { ADAM } \quad 05 \mathrm{CLEO} \quad e^{+} e^{-} \rightarrow \psi(2 S)
$$

- - We do not use the following data for averages, fits, limits, etc. - •
<0.83

${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. Using $\psi(3770) \rightarrow \pi^{+} \pi^{-}$for continuum subtraction.
$\Gamma\left(K_{1}(1400)^{ \pm} K^{\mp}\right) / /_{\text {total }}$
$\Gamma_{119 / \Gamma}$

VALUE (units $\left.10^{-4}\right)$	$\frac{C L \%}{<3.1}$	$\frac{\text { DOCUMENT ID }}{\text { BAI }}$	$\frac{\text { TECN }}{} \frac{\text { COMMENT }}{e^{+} e^{-}}$

${ }^{1}$ Assuming $\mathrm{B}\left(K_{1}(1400) \rightarrow K^{*} \pi\right)=0.94 \pm 0.06$

$\Gamma\left(K_{2}^{*}(1430)^{ \pm} K\right.$) $/ /_{\text {total }}$			$\Gamma_{120 / 5}$
ValUE (unisis 0^{-5})	EVTS	DOCUMENT ID	TECN COMMENT	
7.12 $\pm 0.62+0.61$	± 22	Авцккм	BES3 $e^{+} e^{-}$	

$\Gamma\left(K^{+} K^{-} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}$					Γ_{121} / Γ
VALUE (units 10^{-5}) $C L \%$	EVTS	DOCUMENT ID	TECN	COMMENT	
$4.07 \pm 0.16 \pm 0.26$	0.9k	ABLIKIM	12L BES3	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$
- - We do not use the following data for averages, fits, limits, etc. - . -					
<8.9 90	1	FRANKLIN	83 MRK2	$+e^{-} \rightarrow$	adrons
$\Gamma\left(K^{+} K^{*}(892)^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$					Γ_{124} / Γ
VALUE (units 10^{-5}) CL\%	EVTS	DOCUMENT ID TECN		COMMENT	
$2.9 \pm \mathbf{0 . 4}$ OUR AVERAGE Error includes scale factor of 1.2.					
$3.18 \pm 0.30_{-0.31}^{+0.26}$	0.2k	ABLIKIM	12L BES3	$e^{+} e^{-}$	$\psi(2 S)$
$2.9{ }_{-1.7}^{+1.3} \pm 0.4$	9.6 ± 4.2	ABLIKIM	051 BES2	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$
$1.3{ }_{-0.7}^{+1.0} \pm 0.3$	7	ADAM	05 CLEO	$e^{+} e^{-} \rightarrow$	$\psi(2 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<5.4 \quad 90 \quad$ FRANKLIN 83 MRK2 $e^{+} e^{-} \rightarrow$ hadrons

$\Gamma\left(\phi f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{127} / \Gamma$ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT $\overline{\mathbf{0 . 7 5} \pm \mathbf{0 . 3 3} \text { OUR AVERAGE Error includes scale factor of 1.6. }}$ $1.5 \pm 0.5 \pm 0.1 \quad 12 \pm 4 \quad$ LEES $\quad 12 \mathrm{~F}$ BABR $10.6 e^{+} e^{-}{ }_{\pi}^{+} \pi^{+} K^{+} K^{-}$ $0.6 \pm 0.2 \pm 0.1 \quad 18.4 \pm 6.4 \quad{ }^{1} \mathrm{BAI} \quad 03 \mathrm{~B}$ BES $\quad \psi(2 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$1.46 \pm 0.71 \pm 0.02 \quad 6 \pm 3 \quad 2,3$ AUBERT \quad 07AK BABR $\begin{array}{r}10.6 e^{+} e^{-} \pi^{+} K^{+} K^{-} \gamma\end{array}$
${ }^{1}$ Normalized to $\mathbf{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.305 \pm 0.016$.
${ }^{2}$ Superseded by LEES 12F. AUBERT 07AK reports [$\left[\left(\psi(2 S) \rightarrow \phi f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) /\right.$ $\left.\Gamma_{\text {total }}\right] \times\left[\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)\right]=(0.34 \pm 0.16 \pm 0.04) \times 10^{-3} \mathrm{keV}$ which we divide by our best value $\Gamma\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)=2.33 \pm 0.04 \mathrm{keV}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ Using $\mathrm{B}\left(\phi \rightarrow K^{+} K^{-}\right)=(49.3 \pm 0.6) \%$.

$\Gamma\left(\mathbf{2}\left(\mathbf{K}^{+} \mathbf{K}^{-}\right)\right) / \Gamma_{\text {total }}$					
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.63 ± 0.13 OUR AVERAGE					
$0.9 \pm 0.4 \pm 0.1$	13	LEES	12F	BABR	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & 2\left(K^{+} K^{-}\right) \gamma \end{aligned}$
$0.6 \pm 0.1 \pm 0.1$	59.2	BRIERE	05	CLEO	$\begin{gathered} e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \\ 2\left(K^{+} K^{-}\right) \end{gathered}$

Meson Particle Listings
$\psi(2 S)$

$\mathbf{2 . 7 3}_{-\mathbf{0 . 2}}^{\mathbf{+ 0 . 2 9}}$ OUR AVERAGE Error includes scale factor of 1.8.

$\Gamma\left(\gamma f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }}$
$\Gamma_{163 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{3.3 \pm 0.8 \pm 0.1} \frac{\text { EVTS }}{136} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { DOBBS }} 15 \frac{15}{\psi(2 S) \rightarrow \gamma K \bar{K}}$
${ }^{1}$ DOBBS 15 reports $\left[\Gamma\left(\psi(2 S) \rightarrow \gamma f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)\right]=(2.9 \pm$
$0.6 \pm 0.3) \times 10^{-5}$ which we divide by our best value $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=(87.6 \pm$
2.2) $\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using CLEO-C data but not authored by the CLEO Collaboration.
$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma \pi \pi\right) / \Gamma_{\text {total }}$
VALUE (units 10^{-5}) EVTS
3.5 ± 0.6 OUR AVERAGE
$3.6 \pm 0.4 \pm 0.5 \quad 290$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Normalized to $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.305 \pm 0.016$.
$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma K \bar{K}\right) / \Gamma_{\text {total }}$

$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{6.6} \frac{C L \%}{\text { EVTS }}$
DOCUMENT ID TECN COMMENT
6.6 ± 0.7 OUR AVERAGE
$6.7 \pm 0.6 \pm 0.6 \quad 375 \quad 1$ DOBBS $15 \quad \psi(2 S) \rightarrow \gamma K \bar{K}$ $6.04 \pm 0.90 \pm 1.32 \quad 39.6 \pm 5.9 \quad 2,3 \mathrm{BAI} \quad 03 \mathrm{BES} \quad \begin{aligned} \psi(2 S) & \rightarrow \gamma K K \\ \psi(2 S) & \rightarrow \gamma K^{+} K^{-}\end{aligned}$ - - We do not use the following data for averages, fits, limits, etc. - - $<15.6 \quad 90 \quad 6.8 \pm 3.1 \quad 2,3 \mathrm{BAI} \quad$ 03C BES $\quad \psi(2 S) \rightarrow \gamma K_{S}^{0} K_{S}^{0}$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Includes unknown branching fractions to $K^{+} K^{-}$or $K_{S}^{0} K_{S}^{0}$. We have multiplied the $K^{+} K^{-}$result by a factor of 2 and the $K_{S}^{0} K_{S}^{0}$ result by a factor of 4 to obtain the $K \bar{K}$
$3 \begin{aligned} & \text { result. } \\ & \text { Normalized to } \mathrm{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.305 \pm 0.016 .\end{aligned}$
$\Gamma\left(\gamma f_{0}(2100) \Rightarrow \gamma \pi \pi\right) / \Gamma_{\text {total }}$
$\Gamma_{167 / \Gamma}$
$\frac{V A L U E \text { (units } 10^{-6} \text {) }}{\mathbf{4 . 8} \pm \mathbf{0 . 5} \pm \mathbf{0 . 9}} \frac{\text { EVTS }}{373} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DOBBS } \quad 15} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma \pi \pi}$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{\mathbf{3 . 2} \mathbf{\pm 0 . 6} \mathbf{\pm 0 . 8}} \frac{\text { EVTS }}{207} \quad 1 \frac{\text { DOCUMENT ID }}{\text { DOBBS }} \frac{15}{\psi(2 S) \rightarrow \gamma K \bar{K}}$
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma\left(\gamma f_{J}(\mathbf{2 2 2 0}) \rightarrow \gamma \pi \pi\right) / \Gamma_{\text {total }}$					Γ_{169} / Γ
VALUE	CL\%	DOCUMEN		COMMEN	
$<5.8 \times 10^{-6}$	90	1,2 DOBBS	15	$\psi(2 S) \rightarrow \gamma \pi \pi$	
${ }^{1}$ Using CLEO-c data but not authored by the CLEO Collaboration.					
${ }^{2}$ For $\Gamma=20 / 50 \mathrm{MeV}$, the $90 \% \mathrm{CL}$ upper limits for $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$ are 3.2/4.3 $\times 10^{-6}$ and $2.6 / 4.0 \times 10^{-6}$, respectively.					

$\Gamma(\gamma \eta) / \Gamma_{\text {total }}$

$\boldsymbol{\Gamma}\left(\boldsymbol{\gamma} \boldsymbol{\eta} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{8 . 7 1 \pm 1 . 2 5} \pm \mathbf{1 . 6 4}} \frac{\text { EVTS }}{418} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \quad \boldsymbol{\Gamma}_{\mathbf{1 7 3}} / \boldsymbol{\Gamma}$
18

$\Gamma(\gamma \eta(1405) \rightarrow \gamma K \bar{K} \pi) / \Gamma_{\text {total }} \quad \Gamma_{175 / \Gamma}$ $\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<0.9} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { 06R }}{} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{+} \pi^{-}+\text {c.C. }}$ - - We do not use the following data for averages, fits, limits, etc. • •

<1.3	90	ABLIKIM	$06 R$	BES2	$\psi(2 S) \rightarrow \gamma K^{+} K^{-} \pi^{0}$
<1.2	90	1	SCHARRE	80	MRK1

$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<1.4} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{\text { 06R }}{\text { BES2 }} \frac{\text { TECN }}{\text { BOMMENT }} \frac{\text { COS } \rightarrow \gamma K^{+} K^{-} \pi^{0}}{\psi(2 S)}$

- - We do not use the following data for averages, fits, limits, etc. - -
$<1.5 \quad 90 \quad$ ABLIKIM 06 R BES2 $\psi(2 S) \rightarrow \gamma K_{S}^{0} K^{+} \pi^{-}+$c.c.

$\Gamma\left(\gamma \eta(1475) \rightarrow \eta \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						Γ_{180} / Γ
VALUE (units 10^{-4})	CL\%	DOCUMENT		TECN	COMMENT	
<0.88	90	ABLIKIM	06R	BES2	$\psi(2 S) \rightarrow$	${ }^{+}{ }^{-}$

$\Gamma\left(\gamma K^{* 0} \bar{K}^{* 0}\right) / \Gamma_{\text {total }}$						Γ_{183} / Γ
VALUE (units 10-5)	EVTS	DOCUMENT		TECN	COMMENT	
$24.0 \pm 4.5 \pm 5.0$	41	ABLIKIM	07D	BES2	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(\gamma K_{S}^{0} K^{+} \pi^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$					Γ_{184} / Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT	

$\Gamma\left(\gamma K^{+} K^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{185} / \Gamma$
$\frac{\text { VALUE (units } 10^{-5} \text {) }}{\mathbf{1 9 . 1} \pm \mathbf{2 . 7} \pm \mathbf{4 . 3}} \frac{\text { EVTS }}{132} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 07 \mathrm{D}} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(2 S)}$
$\Gamma(\gamma p \bar{p}) / \Gamma_{\text {total }} \quad \Gamma_{186} / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{3.9 \pm \mathbf{0 . 5} \text { OUR AVERAGE Error includes Scale factor of } \frac{\text { EVCN }}{\text { DOCUMENT ID }} \text { COMMENT }}$

$4.18 \pm 0.26 \pm 0.18$	348	${ }^{1}$ ALEXANDER	10	CLEO	$\psi(2 S) \rightarrow \gamma p \bar{p}$
$2.9 \pm 0.4 \pm 0.4$	142	ABLIKIM	07D	BES2	$e^{+} e^{-} \rightarrow \psi(2 S)$

${ }^{1}$ From a fit of the $p \bar{p}$ mass distribution to a combination of $\gamma f_{2}(1950), \gamma f_{2}(2150)$, and $\gamma p \bar{p}$ phase space, for $M(p \bar{p}<2.85 \mathrm{GeV}$, and accounting for backgrounds from $\psi(2 S) \rightarrow$ $\pi^{0} p \bar{p}$ and continuum.
$\Gamma\left(\gamma f_{2}(1950) \rightarrow \gamma \rho \bar{p}\right) / /_{\text {total }}$
Γ_{187} / Γ

VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT
$1.2 \pm 0.2 \pm 0.1$	111	${ }^{1}$ ALEXANDER 10	CLEO	$\psi(2 S) \rightarrow \gamma p \bar{p}$

${ }^{1}$ From a fit of the $p \bar{p}$ mass distribution to a combination of $\gamma f_{2}(1950), \gamma f_{2}(2150)$, and $\gamma p \bar{p}$ phase space, for $M(p \bar{p}<2.85 \mathrm{GeV}$, and accounting for backgrounds from $\psi(2 S) \rightarrow$ $\pi^{0} p \bar{p}$ and continuum.

$\Gamma\left(\gamma f_{2}(\mathbf{2 1 5 0}) \rightarrow \gamma p \bar{p}\right) / \Gamma_{\text {total }}$					Γ_{188} / Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMEN	
$\mathbf{0 . 7 2} \pm 0.18 \pm 0.03$	73	${ }^{1}$ ALEXANDER 10	CLEO	$\psi(2 S)$	
${ }^{1}$ From a fit of $\gamma p \bar{p}$ phase spa $\pi^{0} p \bar{p}$ and con	$M \text { mass }$	ribution to a combin 2.85 GeV , and accoun	on of g for	$\varepsilon_{2}(1950),$ ckground	50), and $\psi(2 S) \rightarrow$

$\boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{X}(\mathbf{1 8 3 5}) \rightarrow \boldsymbol{\gamma} \overline{\boldsymbol{p}}) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-6}\right)}{} \frac{C L \%}{\text { DOCUMENT ID }} \quad \frac{\text { TECN }}{\text { COMMENT }}$
$\mathbf{1 8 9} / \boldsymbol{\Gamma}$

$4.57 \pm 0.36=\mathbf{4 . 2 6} \quad$ ABLIKIM \quad 12D BES3 $\quad J / \psi \rightarrow \gamma p \bar{p}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$<1.6 \quad 90 \quad$ ALEXANDER 10 CLEO $\psi(2 S) \rightarrow \gamma p \bar{p}$
$<5.4 \quad 90 \quad$ ABLIKIM 07D BES $\psi(2 S) \rightarrow \gamma p \bar{p}$

Meson Particle Listings
$\psi(2 S)$

$\Gamma\left(e^{+} e^{-} \chi_{c 0}(1 P)\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (unit } 10^{-4}\right)}{10.6 \pm 2.4 \pm 0.4} \frac{\text { EVTS }}{48} \quad \frac{\text { DOCUMENT ID }}{1} \frac{171}{\text { ABLIKIM }} \frac{\text { TECN }}{\text { BES } 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow e^{+} e^{-} \gamma \mathrm{J} / \psi}$ ${ }^{1}$ ABLIKIM 17 I reports $(11.7 \pm 2.5 \pm 1.0) \times 10^{-4}$ from a measurement of $[\Gamma(\psi(2 S) \rightarrow$ $\left.\left.e^{+} e^{-} \chi_{c 0}\left({ }^{1 P}\right)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{c 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{c 0}\left({ }^{1 P}\right) \rightarrow\right.$ $\gamma J / \psi(1 S))=(1.27 \pm 0.06) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\chi_{c 0}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(1.40 \pm 0.05) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(e^{+} e^{-} \chi_{c 1}(1 P)\right) / \Gamma_{\text {total }}$
Γ_{198} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{8 . 5} \pm \mathbf{0 . 6} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{873} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{171}{} \frac{\text { TECN }}{\operatorname{BES} 3} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow e^{+} e^{-} \gamma J / \psi}$ ${ }^{1}$ ABLIKIM 17 I reports $(8.6 \pm 0.3 \pm 0.6) \times 10^{-4}$ from a measurement of $[\Gamma(\psi(2 S) \rightarrow$ $\left.\left.e^{+} e^{-} \chi_{C 1}(1 P)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(33.9 \pm 1.2) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(34.3 \pm 1.0) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\begin{array}{lll}\boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \chi_{\boldsymbol{c 2}}(\mathbf{1 P})\right) / \boldsymbol{\Gamma}_{\text {total }} \\ \left.\text { VALUE (units } 10^{-4}\right) & \boldsymbol{\Gamma}_{\mathbf{1 9 9}} / \boldsymbol{\Gamma}\end{array}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{\mathbf{7 . 0} \pm \mathbf{0 . 7} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{227} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{171}{\text { BES3 }} \frac{\text { COMMENT }}{\psi(2 S) \rightarrow e^{+} e^{-\gamma} \mathrm{J} / \psi}$ ${ }^{1}$ ABLIKIM 171 reports $(6.9 \pm 0.5 \pm 0.6) \times 10^{-4}$ from a measurement of $[\Gamma(\psi(2 S) \rightarrow$ $\left.\left.e^{+} e^{-} \chi_{C 2}(1 P)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right)\right]$ assuming $\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(19.2 \pm 0.7) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(\chi_{C 2}(1 P) \rightarrow\right.$ $\gamma J / \psi(1 S))=(19.0 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$9.4 \pm 1.9 \pm \mathbf{0 . 6} \quad 48 \quad 1$ ABLIKIM 171 BES3 $\psi(2 S) \rightarrow e^{+} e^{-} \gamma J / \psi$
${ }^{1} U \operatorname{ses} \mathrm{~B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right) \times \mathrm{B}\left(\chi_{C 0}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(15.8 \pm 0.3 \pm 0.6) \times 10^{-4}$ from ABLIKIM 17 N and accounts for common systematic errors.

$\mathbf{8 . 3} \mathbf{1} \mathbf{0 . 3} \pm \mathbf{0 . 4}$
1 Uses $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right) \times \mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(351.8 \pm 1.0 \pm 12.0) \times$ 10^{-4} from ABLIKIM 17 N and accounts for common systematic errors.

$\Gamma\left(e^{+} e^{-} \chi_{c 2}(1 P)\right) / \Gamma\left(\gamma \chi_{c 2}(1 P)\right)$			$\Gamma_{199} / \Gamma_{155}$			
VALUE (units $\left.10^{-3}\right)$ EVTS	Document id	TECN	$\xrightarrow{\text { COMMENT }}$ (2S) $\rightarrow e^{+} e^{-} \gamma J / \psi$			
6.6 $\mathbf{0} 0.5 \pm 0.4$ 227	$1{ }_{1} \frac{171}{\text { AbLIKIM }} 171$					
${ }^{1} \operatorname{Uses} \mathrm{~B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}(1 P)\right) \times \mathbf{B}\left(\chi_{C 2}(1 P) \rightarrow \gamma J / \psi(1 S)\right)=(199.6 \pm 0.8 \pm 7.0) \times$ 10^{-4} from ABLIKIM 17 N and accounts for common systematic errors.						
WEAK DECAYS -						
$\Gamma\left(D^{0} e^{+} e^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$			COMMENT $\Gamma^{200} /{ }^{\text {r }}$			
VALUE \qquad \underline{c} L	DOCUMENT ID TECN					
$\begin{array}{lccr} <1.4 \times \mathbf{1 0}^{\mathbf{- 7}} & 90 \quad{ }^{1} \text { ABLIKIM } & { }^{17 \text { AF F BES3 }} & e^{+} e^{-} \rightarrow \psi(2 S) \\ { }^{1} \text { Using } D^{0} \text { decays to } K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0} \text {, and } K^{-} \pi^{+} \pi^{+} \pi^{-} . \end{array}$						
- OTHER DECAYS -						
Γ (invisible)/ $/ \Gamma\left(e^{+} e^{-}\right)$ VALUE cL\%	DOCUMENT ID	TECN	$\Gamma_{201 / \Gamma_{6}}$			
<2.0 90	LeES	131 BABR	$B \rightarrow K^{(}$	$)_{\psi(2 S)}$		

$\psi(2 S)$ CROSS-PARTICLE BRANCHING RATIOS

For measurements involving $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{c J}(1 P)\right) \times \mathrm{B}\left(\chi_{c J}(1 P) \rightarrow X\right)$ see the corresponding entries in the $\chi_{c J}(1 P)$ sections.

MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS

 $\psi(2 S) \rightarrow \gamma \chi_{c J}(1 P)$ and $\chi_{c J} \rightarrow \gamma J / \psi(1 S)$
${ }^{1}$ Statistical and systematic errors combined.
${ }^{2}$ Statistical and systematic errors combined. Using values from fits with floating M2
amplitudes $a_{2}\left(\chi_{c 1}\right), a_{2}\left(\chi_{c 2}\right), b_{2}\left(\chi_{c 1}\right), b_{2}\left(\chi_{c 2}\right)$ and fixed $E 3$ amplitudes of $a_{3}\left(\chi_{C 2}\right)$ $=b_{3}\left(\chi_{C 2}\right)=0$. Not independent of values for $a_{2}\left(\chi_{C 1}(1 P)\right)$ and $a_{2}\left(\chi_{C 2}(1 P)\right)$ from
ARTUSO 09.
$b_{2}\left(\chi_{c 2}\right) / b_{2}\left(\chi_{c 1}\right)$ Magnetic quadrupole transition amplitude ratio

$\operatorname{VALUE~(units~} 10^{-2}$)	EVTS	DOCUMENT ID		TECN	COMMENT	
60 ± 31 OUR AVERAGE						
74 ± 40	253k	${ }^{1}$ ABLIKIM	17N	BES3	$\psi(2 S) \rightarrow$	$\gamma \gamma \ell^{+} \ell^{-}$
${ }^{37}+{ }_{-47}^{+53}$	59k	${ }^{2}$ ARTUSO	09	CLEO	$\psi(2 S)$	$\gamma \gamma \ell^{+} \ell^{-}$

${ }^{1}$ Statistical and systematic errors combined. Derived from the reported measurement of $b_{2}\left(\chi_{C 1}\right) / b_{2}\left(\chi_{C 2}\right)=1.35 \pm 0.72$.
${ }^{2}$ Statistical and systematic errors combined. Using values from fits with floating M2 amplitudes $a_{2}\left(\chi_{c 1}\right), a_{2}\left(\chi_{c 2}\right), b_{2}\left(\chi_{C 1}\right), b_{2}\left(\chi_{C 2}\right)$ and fixed $E 3$ amplitudes of $a_{3}\left(\chi_{C 2}\right)$ $=b_{3}\left(\chi_{c 2}\right)=0$. Not independent of values for $b_{2}\left(\chi_{C 1}(1 P)\right)$ and $b_{2}\left(\chi_{C 2}(1 P)\right)$ from ARTUSO 09 .

$\psi(2 S)$ REFERENCES				
ABLIKIM	19 AO	PR D99 112010	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AT	PR D100 051101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AU	PR D100 052010	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19BA	PR D100 092003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	191	PR D99 012014	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	19 N	PR D99 032006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18 Q	PR D97 091102	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	18 T	PR D98 032006	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	182	PL B783 452	M. Ablikim et al.	(BESIII Collab.)
ANASHIN	18	PL B781 174	V.V. Anashin et al.	(KEDR Collab.)
LEES	18 E	PR D98 112015	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	17 AF	PR D96 111101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17AJ	PR D96 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17AK	PR D96 112012	M. Ablikim et al.	(BESIII Collab.)
AbLIKIM	17 E	PL B770 217	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	171	PRL 118221802	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17L	PR D95 052003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17N	PR D95 072004	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	174	PR D96 032001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	$17 \times$	PR D96 052003	M. Ablikim et al.	(BESIII Collab.)
DOBBS	17	PR D96 092004	S. Dobbs et al.	(NWES, WAYN)
LEES	17A	PR D95 052001	J.P. Lees et al.	(BABAR Collab.)
AAIJ	$16 Y$	JHEP 1605132	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	16 L	PR D93 072003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	151	PR D91 092006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15 V	PL B749 414	M. Ablikim et al.	(BESIII Collab.)
ANASHIN	15	PL B749 50	V.V. Anashin et al.	(KEDR Collab.)
DOBBS	15	PR D91 052006	S. Dobbs et al.	(NWES)
LEES	$15 J$	PR D92 072008	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	146	PR D89 112006	M. Ablikim et al.	(BESIIII Collab.)
DOBBS	14	PL B739 90	S. Dobbs et al.	(NWES, WAYN)
ABLIKIM	13A	PRL 110022001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13D	PR D87 012007	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	13F	PR D87 052007	M. Ablikim et al.	(BESIIII Collab.)
ABLIKIM	13M	PR D87 092006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13R	PR D88 032007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	135	PR D88 032010	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13 W	PR D88 112007	M. Ablikim et al.	(BESIIII Collab.)
LeES	131	PR D87 112005	J.P. Lees et al.	(BABAR Collab.)
LEES	130	PR D87 092005	J.P. Lees et al.	(BABAR Collab.)
LeES	$13 Q$	PR D88 032013	J.P. Lees et al.	(babar Collab.)
LEES	${ }^{13 Y}$	PR D88 072009	J.P. Lees et al.	(babar Collab.)
AAIJ	12 H	EPJ C72 1972	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	12 D	PRL 108112003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	12 G	PRL 109042003	M. Ablikim et al.	(BESIII Collab.)

Meson Particle Listings

$\boldsymbol{\psi (\mathbf { 3 7 7 0 })}$ DECAY MODES
In addition to the dominant decay mode to $D \bar{D}, \psi(3770)$ was found
to decay into the final states containing the $J / \psi($ BAI 05，ADAM 06）．
ADAMS 06 and HUANG 06A searched for various decay modes with light
hadrons and found a statistically significant signal for the decay to $\phi \eta$ only
（ADAMS 06）．

Mode		Fraction（ $\Gamma_{i} / \Gamma^{\text {）}}$		Scale factor／ Confidence level
Γ_{1}	$D \bar{D}$		$\left.{ }_{-9}^{+8}\right) \%$	$\mathrm{S}=2.0$
Γ_{2}	$D^{0} \bar{D}^{0}$		$\left.{ }_{-5}^{+4}\right) \%$	$\mathrm{S}=2.0$
Γ_{3}	$D^{+} D^{-}$		$\pm 4 \quad \%$	$\mathrm{S}=2.0$
Γ_{4}	$J / \psi \pi^{+} \pi^{-}$	（ 1.93	$\pm 0.28) \times 10^{-3}$	
Γ_{5}	$J / \psi \pi^{0} \pi^{0}$	（ 8.0	$\pm 3.0) \times 10^{-4}$	
Γ_{6}	$J / \psi \eta$	（9	$\pm 4) \times 10^{-4}$	
Γ_{7}	$J / \psi \pi^{0}$	＜ 2.8	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{8}	$e^{+} e^{-}$	（ 9.6	$\pm 0.7) \times 10^{-6}$	$\mathrm{S}=1.3$
Decays to light hadrons				
Γ_{9}	$b_{1}(1235) \pi$	<1.4	$\times 10^{-5}$	CL＝90\％
Γ_{10}	$\phi \eta^{\prime}$	<7	$\times 10^{-4}$	CL＝90\％
Γ_{11}	$\omega \eta^{\prime}$	<4	$\times 10^{-4}$	CL＝90\％
Γ_{12}	$\rho^{0} \eta^{\prime}$	＜ 6	$\times 10^{-4}$	CL＝90\％
Γ_{13}	$\phi \eta$	（ 3.1	$\pm 0.7) \times 10^{-4}$	
Γ_{14}	$\omega \eta$	＜ 1.4	$\times 10^{-5}$	CL＝90\％
Γ_{15}	$\rho^{0} \eta$	<5	$\times 10^{-4}$	CL＝90\％
Γ_{16}	$\phi \pi^{0}$	<3	$\times 10^{-5}$	CL＝90\％
Γ_{17}	$\omega \pi^{0}$	<6	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{18}	$\pi^{+} \pi^{-} \pi^{0}$	<5	$\times 10^{-6}$	CL＝90\％
Γ_{19}	$\rho \pi$	<5	$\times 10^{-6}$	CL＝90\％
Γ_{20}	$K^{+} K^{-}$			
Γ_{21}	$K^{*}(892)^{+} K^{-}+$c．c．	＜ 1.4	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{22}	$K^{*}(892){ }^{0} \bar{K}^{0}+$ c．c．	＜ 1.2	$\times 10^{-3}$	CL＝90\％
Γ_{23}	$K_{S}^{0} K_{L}^{0}$	＜ 1.2	$\times 10^{-5}$	CL＝90\％
Γ_{24}	2（ $\pi^{+} \pi^{-}$）	＜ 1.12	2×10^{-3}	CL＝90\％
Γ_{25}	$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	＜ 1.06	．$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{26}	$2\left(\pi^{+} \pi^{-} \pi^{0}\right)$	<5.85	\％	CL＝90\％
Γ_{27}	$\omega \pi^{+} \pi^{-}$	＜ 6.0	$\times 10^{-4}$	CL＝90\％
Γ_{28}	$3\left(\pi^{+} \pi^{-}\right)$	＜ 9.1	$\times 10^{-3}$	CL＝90\％
Γ_{29}	$3\left(\pi^{+} \pi^{-}\right) \pi^{0}$	＜ 1.37	\％	CL＝90\％
「30	$3\left(\pi^{+} \pi^{-}\right) 2 \pi^{0}$	＜ 11.74	\％	CL＝90\％
Γ_{31}	$\eta \pi^{+} \pi^{-}$	＜ 1.24	$\times 10^{-3}$	CL＝90\％
$\Gamma 32$	$\pi^{+} \pi^{-} 2 \pi^{0}$	<8.9	$\times 10^{-3}$	CL＝90\％
$\Gamma 33$	$\rho^{0} \pi^{+} \pi^{-}$	<6.9	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
「34	$\eta 3 \pi$	＜ 1.34	$\times 10^{-3}$	CL＝90\％
Γ_{35}	$\eta 2\left(\pi^{+} \pi^{-}\right)$	<2.43	\％	CL＝90\％
$\Gamma 36$	$\eta \rho^{0} \pi^{+} \pi^{-}$	＜ 1.45	\％	CL＝90\％
Γ_{37}	$\eta^{\prime} 3 \pi$	＜ 2.44	$\times 10^{-3}$	CL＝90\％
「38	$K^{+} K^{-} \pi^{+} \pi^{-}$	＜ 9.0	$\times 10^{-4}$	CL＝90\％
Γ^{39}	$\phi \pi^{+} \pi^{-}$	<4.1	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{40}	$K^{+} K^{-} 2 \pi^{0}$	<4.2	$\times 10^{-3}$	CL＝90\％
Γ_{41}	$4\left(\pi^{+} \pi^{-}\right)$	＜ 1.67	\％	CL＝90\％
Γ_{42}	$4\left(\pi^{+} \pi^{-}\right) \pi^{0}$	<3.06	\％	CL＝90\％
Γ_{43}	$\phi f_{0}(980)$	<4.5	$\times 10^{-4}$	CL＝90\％
Γ_{44}	$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	<2.36	$\times 10^{-3}$	CL＝90\％
Γ_{45}	$K^{+} K^{-} \rho^{0} \pi^{0}$	<8	$\times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{46}	$K^{+} K^{-} \rho^{+} \pi^{-}$	<1.46	\％	CL＝90\％
Γ_{47}	$\omega K^{+} K^{-}$	<3.4	$\times 10^{-4}$	CL＝90\％
Γ_{48}	$\phi \pi^{+} \pi^{-} \pi^{0}$	＜ 3.8	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{49}	$K^{* 0} K^{-} \pi^{+} \pi^{0}+$ c．c．	＜ 1.62	\％	CL＝90\％
Γ_{50}	$K^{*+} K^{-} \pi^{+} \pi^{-}+$c．c．	<3.23	\％	CL＝90\％
Γ_{51}	$K^{+} K^{-} \pi^{+} \pi^{-} 2 \pi^{0}$	<2.67	\％	CL＝90\％
Γ_{52}	$K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$	＜ 1.03	\％	CL＝90\％
Γ_{53}	$K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	＜ 3.60	\％	CL＝90\％
Γ_{54}	$\eta K^{+} K^{-}$	<4.1	$\times 10^{-4}$	CL＝90\％
Γ_{55}	$\eta K^{+} K^{-} \pi^{+} \pi^{-}$	＜ 1.24	\％	CL＝90\％
Γ_{56}	$\rho^{0} K^{+} K^{-}$	<5.0	$\times 10^{-3}$	$\mathrm{CL}=90 \%$

Γ_{57}	$2\left(K^{+} K^{-}\right)$	＜ 6.0	$\times 10^{-4}$	CL＝90\％
Γ_{58}	$\phi K^{+} K^{-}$	＜ 7.5	$\times 10^{-4}$	CL＝90\％
Γ_{59}	$2\left(K^{+} K^{-}\right) \pi^{0}$	<2.9	$\times 10^{-4}$	CL＝90\％
Γ_{60}	$2\left(K^{+} K^{-}\right) \pi^{+} \pi^{-}$	＜ 3.2	$\times 10^{-3}$	CL＝90\％
Γ_{61}	$K_{S}^{0} K^{-} \pi^{+}$	＜ 3.2	$\times 10^{-3}$	CL＝90\％
Γ_{62}	$K_{S}^{0} K^{-} \pi^{+} \pi^{0}$	＜ 1.33	\％	CL＝90\％
Γ_{63}	$K_{S}^{0} K^{-} \rho^{+}$	＜ 6.6	$\times 10^{-3}$	CL＝90\％
Γ_{64}	$K_{S}^{0} K^{-} 2 \pi^{+} \pi^{-}$	＜ 8.7	$\times 10^{-3}$	CL＝90\％
Γ_{65}	$K_{S}^{0} K^{-} \pi^{+} \rho^{0}$	＜ 1.6	\％	CL＝90\％
Γ_{66}	$K_{S}^{0} K^{-} \pi^{+} \eta$	＜ 1.3	\％	CL＝90\％
Γ_{67}	$K_{S}^{0} K^{-} 2 \pi^{+} \pi^{-} \pi^{0}$	＜ 4.18	\％	CL＝90\％
Γ_{68}	$K_{S}^{0} K^{-} 2 \pi^{+} \pi^{-} \eta$	＜ 4.8	\％	CL＝90\％
Γ_{69}	$K_{S}^{0} K^{-} \pi^{+} 2\left(\pi^{+} \pi^{-}\right)$	＜ 1.22	\％	CL＝90\％
Γ_{70}	$K_{S}^{0} K^{-} \pi^{+} 2 \pi^{0}$	＜ 2.65	\％	CL＝90\％
Γ_{71}	$K_{S}^{0} K^{-} K^{+} K^{-} \pi^{+}$	＜ 4.9	$\times 10^{-3}$	CL＝90\％
Γ_{72}	$K_{S}^{0} K^{-} K^{+} K^{-} \pi^{+} \pi^{0}$	＜ 3.0	\％	CL＝90\％
Γ_{73}	$K_{S}^{0} K^{-} K^{+} K^{-} \pi^{+} \eta$	＜ 2.2	\％	CL＝90\％
Γ_{74}	$K^{* 0} K^{-} \pi^{+}+$c．c．	＜ 9.7	$\times 10^{-3}$	CL＝90\％
Γ_{75}	$p \bar{p}$			
Γ_{76}	$p \bar{p} \pi^{0}$	＜ 4	$\times 10^{-5}$	CL＝90\％
Γ_{77}	$p \bar{p} \pi^{+} \pi^{-}$	＜ 5.8	$\times 10^{-4}$	CL＝90\％
Γ_{78}	$1 \overline{1}$	＜ 1.2	$\times 10^{-4}$	CL＝90\％
Γ_{79}	$p \bar{p} \pi^{+} \pi^{-} \pi^{0}$	＜ 1.85	$\times 10^{-3}$	CL＝90\％
Γ_{80}	$\omega \underline{p} \bar{p}$	＜ 2.9	$\times 10^{-4}$	CL＝90\％
Γ_{81}	$\wedge \bar{\wedge} \pi^{0}$	＜ 7	$\times 10^{-5}$	CL＝90\％
Γ_{82}	$p \bar{p} 2\left(\pi^{+} \pi^{-}\right)$	＜ 2.6	$\times 10^{-3}$	CL＝90\％
Γ_{83}	$\eta p \bar{p}$	＜ 5.4	$\times 10^{-4}$	CL＝90\％
Γ_{84}	$\eta p \bar{p} \pi^{+} \pi^{-}$	＜ 3.3	$\times 10^{-3}$	CL＝90\％
Γ_{85}	$\rho^{0} p \bar{p}$	＜ 1.7	$\times 10^{-3}$	CL＝90\％
Γ_{86}	$p \bar{p} K^{+} K^{-}$	＜ 3.2	$\times 10^{-4}$	CL＝90\％
Γ_{87}	$\eta p \bar{p} K^{+} K^{-}$	＜ 6.9	$\times 10^{-3}$	CL＝90\％
Γ_{88}	$\pi^{0} p \bar{p} K^{+} K^{-}$	＜ 1.2	$\times 10^{-3}$	CL＝90\％
「89	$\phi p \bar{p}$	<1.3	$\times 10^{-4}$	CL＝90\％
Γ_{90}	$\wedge \overline{1} \pi^{+} \pi^{-}$	＜ 2.5	$\times 10^{-4}$	CL＝90\％
Γ_{91}	$\wedge \bar{p} K^{+}$	＜ 2.8	$\times 10^{-4}$	CL＝90\％
「92	$\wedge \bar{p} K^{+} \pi^{+} \pi^{-}$	＜ 6.3	$\times 10^{-4}$	CL＝90\％
「93	$\wedge \overline{1} \eta \overline{ }$	＜ 1.9	$\times 10^{-4}$	CL＝90\％
Γ_{94}	$\Sigma^{+} \bar{\Sigma}^{-}$	＜ 1.0	$\times 10^{-4}$	CL＝90\％
「95	$\Sigma^{0} \underline{\Sigma}^{0}$	＜ 4	$\times 10^{-5}$	CL＝90\％
Γ_{96}	三＋${ }^{-}$	＜ 1.5	$\times 10^{-4}$	CL＝90\％
Γ_{97}	$\Xi^{0}{ }^{0}$	＜ 1.4	$\times 10^{-4}$	CL＝90\％
Radiative decays				
Γ_{98}	$\gamma \chi_{c 2}$	＜ 6.4	$\times 10^{-4}$	CL＝90\％
「99	$\gamma \chi_{c 1}$	（ $2.49 \pm$	$\times 10^{-3}$	
Γ_{100}	$\gamma \chi_{c 0}$	（ $6.9 \pm$	）$\times 10^{-3}$	
Γ_{101}	$\gamma \eta_{c}$	<7	$\times 10^{-4}$	CL＝90\％
Γ_{102}	$\gamma \eta_{c}(2 S)$	＜ 9	$\times 10^{-4}$	CL＝90\％
Γ_{103}	$\gamma \eta^{\prime}$	＜ 1.8	$\times 10^{-4}$	CL＝90\％
Γ_{104}		＜ 1.5	$\times 10^{-4}$	CL＝90\％
Γ_{105}	$\gamma \pi^{0}$	＜ 2	$\times 10^{-4}$	CL＝90\％

CONSTRAINED FIT INFORMATION

An overall fit to the total width，a partial width，and 3 branching ratios uses 23 measurements and one constraint to determine 5 parameters．The overall fit has a $\chi^{2}=20.1$ for 19 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients $\left\langle\delta p_{i} \delta p_{j}\right\rangle /\left(\delta p_{i} \cdot \delta p_{j}\right)$ ，in percent，from the fit to parameters p_{i} ，including the branch－ ing fractions，$x_{i} \equiv \Gamma_{i} / \Gamma_{\text {total }}$ ．The fit constrains the x_{i} whose labels appear in this array to sum to one．

Mode		Rate (MeV)	Scale factor
Γ_{2}	$D^{0} \bar{D}^{0}$	14.0 ± 1.4	1.8
Γ_{3}	$D^{+} D^{-}$	11.2 ± 1.1	1.7
Γ_{8}	$e^{+} e^{-}$	$(2.62 \pm 0.18) \times 10^{-4}$	1.4

$\psi(3770)$ BRANCHING RATIOS

$\Gamma(D \bar{D}) / \Gamma_{\text {total }}$
$\Gamma_{1} / \Gamma=\left(\Gamma_{2}+\Gamma_{3}\right) / \Gamma$
$0.93{ }_{-0.09}^{\mathbf{0}} \mathbf{0 . 0 8}$ OUR FIT Error includes scale factor of 2.0.
$\mathbf{0 . 9 3} \underset{\mathbf{- 0 . 0 9}}{\mathbf{+ 0 . 0 8}}$ OUR AVERAGE Error includes scale factor of 2.1.

$0.849 \pm 0.056 \pm 0.018$		${ }^{1}$ ABLIKIM	08 B	BES2
$e^{+} e^{-} \rightarrow$ non- $D \bar{D}$				
$1.033 \pm 0.014_{-0.066}^{+0.048}$	$1.427 M$	${ }^{2}$ BESSON	06	CLEO
$e^{+} e^{-} \rightarrow$ hadrons				

- - We do not use the following data for averages, fits, limits, etc. - - -

$\Gamma\left(D^{0} D^{0}\right) / \Gamma_{\text {total }}$ DOCUMENT ID TECN COMMENT $\quad \Gamma_{2} / \Gamma$
$0.52 \mathbf{+ 0 . 0 4}$ OUR FIT Error includes scale factor of 2.0.
- - We do not use the following data for averages, fits, limits, etc. - - -

$0.467 \pm 0.047 \pm 0.023$	ABLIKIM	06L BES2	$e^{+} e^{-}$	$D^{0} \bar{D}^{0}$
$0.499 \pm 0.013 \pm 0.038$	${ }^{1}$ ABLIKIM	06N BES2	$e^{+} e^{-}$	$D^{0} \bar{D}^{0}$
${ }^{1}$ From a measurem resonance paramet	$e^{-} \rightarrow D \bar{D}$ by ABLIKIM	$\sqrt{s}=3773$		$\text { the } \psi$

$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{+} \boldsymbol{D}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\text { DOCUMENT ID }}$ TECN COMMENT
$\mathbf{3} / \boldsymbol{\Gamma}$

$\mathbf{0 . 4 1} \mathbf{\pm 0 . 0 4}$ OUR FIT Error includes scale factor of 2.0.

- - We do not use the following data for averages, fits, limits, etc. - - -
$0.369 \pm 0.037 \pm 0.028 \quad$ ABLIKIM $\quad 06 \mathrm{~L}$ BES2 $\quad e^{+} e^{-} \rightarrow D^{+} D^{-}$
$0.357 \pm 0.011 \pm 0.034 \quad{ }^{1}$ ABLIKIM $\quad 06 \mathrm{~N}$ BES2 $e^{+} e^{-} \rightarrow D^{+} D^{-}$
${ }^{1}$ From a measurement of $\sigma\left(e^{+} e^{-} \rightarrow D \bar{D}\right)$ at $\sqrt{s}=3773 \mathrm{MeV}$, using the $\psi(3770)$ resonance parameters measured by ABLIKIM 06L.
$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma\left(D^{+} D^{-}\right)$
$\frac{V A L U E}{1.253 \pm 0.016 \text { OUR FIT }} \stackrel{\text { EVTS }}{ }$
1.253 ± 0.016 OUR AVERAGE
$1.252 \pm 0.009 \pm 0.013 \quad 5.3 \mathrm{M}$
$1.39 \pm 0.31 \pm 0.12$
$1.78 \pm 0.33 \pm 0.24$
$1.27+0.12+0.08$

$\Gamma\left(J / \psi \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\frac{\left.\text { VALUE (units } 10^{-3}\right)}{1.93 \pm 0.28 ~ O U R ~ A V E R A G E ~ E V T S ~} \quad$ DOCUMENT ID

| $\mathbf{1 . 9 3} \pm \mathbf{0 . 2 8}$ OUR AVERAGE | | | | | |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| $1.89 \pm 0.20 \pm 0.20$ | 231 ± 33 | ADAM | 06 | CLEO | $e^{+} e^{-} \rightarrow \psi(3770)$ |
| $3.4 \pm 1.4 \pm 0.9$ | 17.8 ± 4.8 | BAI | 05 | BES2 | $e^{+} e^{-} \rightarrow \psi(3770)$ |

$\Gamma\left(J / \psi \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	Γ_{5} / Γ	
$0.080 \pm 0.025 \pm 0.016$	39 ± 14	ADAM	06	CLEO	$e^{+} e^{-}$	$\psi(3770)$
$\Gamma(J / \psi \eta) / \Gamma_{\text {total }}$		DOCUMENT ID			COMMENT $\boldsymbol{\Gamma}_{\mathbf{6} / \boldsymbol{\Gamma}}$	
VALUE (units 10^{-5})	EVTS			TECN		
$87 \pm 33 \pm 22$	22 ± 10	ADAM	06	CLEO	$e^{+} e^{-}$	$\psi(3770)$
$\Gamma\left(J / \psi \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID			COMMENT $\Gamma_{\mathbf{7} / \boldsymbol{\Gamma}}$	
VALUE (units 10^{-5}) CL\%	EVTS			TECN		
<28 90	<10	ADAM	06	CLEO	$e^{+} e^{-} \rightarrow$	$\psi(3770)$
$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$		DOCUMENT ID				Γ_{8} / Γ
VALUE (units 10^{-5})				TECN	COMMENT	
0.96 ± 0.07 OUR FIT	Error incl	scale fact	1.3.		$e^{+} e^{-}$	
1.3 ± 0.2		RAPIDIS 77		LGW		

—— DECAYS TO LIGHT HADRONS

$\Gamma\left(b_{1}(1235) \pi\right) / \Gamma_{\text {total }}$						
VALUE (units 10^{-5})	CL\%	DOCUMEN		TECN	COMMENT	
<1.4	90	${ }^{1}$ ADAMS	06	CLEO	$e^{+} e^{-}$	
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.						

$\Gamma\left(\phi \boldsymbol{\eta}^{\prime}\right) / \Gamma_{\text {total }}$ ($\Gamma_{\mathbf{1 0}} / \Gamma^{\text {a }}$						
VALUE (units 10^{-4})	CL\%	DOCUMEN		TECN	COMMEN	
<7	90	${ }^{1}$ ADAMS	06	CLEO	$e^{+} e^{-}$	
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.						

$\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{\eta}^{\prime}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<4}$
90

${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.

$\Gamma\left(\rho^{0} \eta^{\prime}\right) / \Gamma_{\text {total }}$					Γ_{12} / Γ	
VALUE (units 10^{-4})	CL\%	DOCUMENT ID		TECN	COMMENT	
<6	90	${ }^{1}$ ADAMS	06	CLEO	$e^{+} e^{-}$	
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.						

$\Gamma(\phi \eta) / \Gamma_{\text {total }}$
Γ_{13} / Γ
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{3 . 1} \pm \mathbf{0 . 6} \mathbf{0 . 3}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { ADAMS }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{3.773 e^{+} e^{-} \rightarrow \phi \eta}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<19 \quad 90 \quad 2$ ABLIKIM \quad 07B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interfer-
ence, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\boldsymbol{\Gamma}\left(\boldsymbol{\phi} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-5}\right)}{}$
$<\mathbf{3}$$\frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADAMS }} \quad 06 \quad \frac{T E C N}{C L E O} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$

$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$
- • We do not use the following data for averages, fits, limits, etc. • •
$\sim 10^{-5} \quad 1$ DRUZHININ 15 RVUE $e^{+} e^{-} \rightarrow \psi(3770)$ ${ }^{1}$ DRUZHININ 15 uses BABAR and CLEO data takitaking into account interference of the processes $e^{+} e^{-} \rightarrow K^{+} K^{-}$and $e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0}$.
$\Gamma\left(K^{*}(892)^{+} K^{-}+\right.$c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{21} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-5}\right)}{<\mathbf{1} .4} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADAMS }} 06 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.
$\Gamma\left(K^{*}(892)^{0} \bar{K}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }} \quad \Gamma_{22} / \Gamma$ $\frac{\left.\text { VALUE (units } 10^{-3}\right)}{<\mathbf{1 . 2}} \frac{\text { CL\% }}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ADAMS }} 06 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Comparing cross sections at $\sqrt{s}=3.773 \mathrm{GeV}$ and $\sqrt{s}=3.671 \mathrm{GeV}$, neglecting interference, and using $\sigma(\psi(3770) \rightarrow D \bar{D})=6.39 \pm 0.20 \mathrm{nb}$.

$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\text { CL\% }} \frac{\text { DOCUMENT ID }}{\text { CIL }}$
$<11.2 \quad 90 \quad 1$ HUANG 06A CLEO $\quad e^{+} e^{-} \rightarrow \psi(3770)$
- - We do not use the following data for averages, fits, limits, etc. - •
$<48 \quad 90 \quad{ }^{2}$ ABLIKIM \quad 07B BES2 $\quad e^{+} e^{-} \rightarrow \psi(3770)$ ${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(2\left(\pi^{+} \pi^{-}\right) \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{25} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<\mathbf{1 0 . 6}} \frac{\text { CL\% }}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { HUANG 06A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$ - . We do not use the following data for averages, fits, limits, etc. - . -
<62 $90 \quad{ }^{2}$ ABLIKIM 07B BES2 $\quad e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\mathbf{2}\left(\pi^{+} \pi^{-} \pi^{0}\right)\right) / \Gamma_{\text {total }}$
Γ_{26} / Γ
VALUE (units 10 ${ }^{-3}$) CL\% EVTS
$\begin{array}{llll}<58.5 & 90 & 305 & \\ \text { ABLIKIM } & 08 N & \\ e^{+} e^{-} \rightarrow \psi(3770)\end{array}$
$\Gamma\left(\omega \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
Γ_{27} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{6 . 0}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1}$ HUANG $\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow}$
fi CLEO $\rightarrow \psi(3770)$
not use the following data for averages, fits, limits, etc. - • -
$<55 \quad 90 \quad{ }^{2}$ ABLIKIM $\quad 071$ BES2 $3.77 e^{+} e^{-}$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\Gamma\left(3\left(\pi^{+} \pi^{-}\right)\right) / \Gamma_{\text {total }}$					Γ_{28} / Γ
VALUE (units 10^{-4})	CL\%	DOCUMENT	TECN	COMMENT	
<91	90	${ }^{1}$ ABLIKIM	07B BES2	$e^{+} e^{-}$	
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.					

$\boldsymbol{\Gamma}\left(3\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<137} \frac{C L \%}{90}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\Gamma\left(\pi^{+} \pi^{=} 2 \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID		TECN	COMMENT	Γ_{32} / Γ	
VALUE (units 10-3) ${ }^{-3 L \%}$	EVTS						
<8.9 90	218	ABLIKIM	08N		BES2	$e^{+} e^{-}$	$\psi(3770)$
$\Gamma\left(\rho^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						$\Gamma 33 / \Gamma$	
VALUE (units 10^{-3})	CL\%	DOCUMENT ID		TECN	COMMEN		
<6.9	90	${ }^{1}$ ABLIKIM	07F	BES2	$e^{+} e^{-}$	$\psi(3770)$	

${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \mathbf{2}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<\mathbf{2 4 3}} \frac{C L \%}{90}$$\frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{<1.45} \frac{C L \%}{90}$$\frac{\text { DOCUMENT ID }}{1 \text { ABLIKIM 10D }} \frac{\text { TECN }}{\text { BES2 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\eta^{\prime} 3 \pi\right) / \Gamma_{\text {total }}$
$\Gamma 37 / \Gamma$
$\begin{array}{lllll}\text { VALUE (units } 10^{-4} \text {) } & \frac{C L \%}{90} & \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{} & \\ \mathbf{N}^{+} e^{-} \rightarrow \psi(3770)\end{array}$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 8}} / \Gamma$

VALUE (units 10 ${ }^{-4}$)	CL\%	DOCUMENT ID	TECN	COMMENT
	90			

- - We do not use the following data for averages, fits, limits, etc. • - -
$<48 \quad 90 \quad 2$ ABLIKIM 07B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\Gamma\left(4\left(\pi^{+} \pi^{-}\right) \pi^{0}\right) / \Gamma_{\text {total }}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\phi f_{0}(980)\right) / \Gamma_{\text {total }}$
Γ_{43} / Γ
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<4.5} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TUANG 06A }}{\text { TECN }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{\text { Cen }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
$\boldsymbol{\Gamma}\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (units $\left.10^{-4}\right)$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<23.6} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{\text { CIN }}{e^{+} e^{-} \rightarrow \psi(3770)}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<111 \quad 90 \quad 2$ ABLIKIM 07 B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$ ${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}\right) / \Gamma_{\text {total }}$
Γ_{45} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{8}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{071}{\text { BES2 }} \frac{\text { COMMENT }}{3.77 e^{+} e^{-}}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\boldsymbol{K}^{+} \boldsymbol{K}^{-} \rho^{+} \boldsymbol{\pi}^{-}\right) / \Gamma_{\text {total }}$

VALUE (units 10^{-4})	CL\%	DOCUMENT ID	TECN	COMMENT
<146	90		BES2	$3.77 e^{+} e^{-}$

${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\omega \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$
Γ_{47} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{3.4} \frac{\text { CL\% }}{\text { DOCUMENT ID }}$ TECN
$<3.4 \quad 90 \quad 1$ HUANG 06A CLEO $e^{+} e^{-} \rightarrow \psi(3770)$

- - We do not use the following data for averages, fits, limits, etc. • •
$<66 \quad 90 \quad{ }^{2}$ ABLIKIM $\quad 071$ BES2 $3.77 e^{+} e^{-}$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\phi \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{4 8}} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{\text { CL\% }} \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { COMMENT }}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(K^{* 0} K^{-} \pi^{+} \pi^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$
Γ_{49} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{1 6 2}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{071}{\text { TECN }} \frac{\text { COMMENT }}{3.77 e^{+} e^{-}}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(K^{*+} K^{-} \pi^{+} \pi^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{3 2 3}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABIIKIM }} \frac{\text { TECN }}{\text { COMMENT }}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

VALUE (units 10^{-3}) CL\% EVTS	DOCUMENT ID		TECN	COMMENT	
<26.7 9024	ABLIKIM	08N	BES2	$e^{+} e^{-}$	$\psi(3770)$
VALUE (units 10^{-3}) Clo	DOCUMENT ID		TECN	COMMENT	
<10.3 90	ABLIKIM	07F	BES2	$e^{+} e^{-}$	$\psi(3770)$

${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
 and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\eta K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{54} / \Gamma$ $\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<4.1} \frac{C L \%}{90} \quad 1 \begin{array}{lll}1 & \frac{\text { DOCUMENT ID }}{\text { HUANG }} \quad \frac{\text { TECN }}{\text { 06A }} & \frac{\text { COMMENT }}{\text { CLEO }} \\ e^{+} e^{-} \rightarrow \psi(3770)\end{array}$ - - We do not use the following data for averages, fits, limits, etc. - - -
$<31 \quad 90 \quad 2$ ABLIKIM 10D BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
2 Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\begin{array}{llll}\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{-}}\right) / \boldsymbol{\Gamma}_{\text {total }} \\ \left.\text { VALUE (units } 10^{-2}\right) & C L \%\end{array} \quad \boldsymbol{\Gamma}_{\mathbf{5 5}} / \boldsymbol{\Gamma}$ $\frac{V A L U E\left(\text { units } 10^{-2}\right)}{<1.24} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABLIKIM }}{10 \mathrm{DECN}} \frac{\text { COMMENT }}{\text { BES2 }} \frac{}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\Gamma\left(\phi K^{+} K^{-}\right) / \Gamma_{\text {total }}$					Γ_{58} / Γ
VALUE (units 10-4)	CL\%	DOCUMENT ID	TECN	COMMENT	

VALUE (units 10^{-4})	$\underline{C L}$	DOCUMENT ID	TECN	COMMENT
< 7.5	90		CLEO	

- - We do not use the following data for averages, fits, limits, etc. • • -
$<24 \quad 90 \quad 2$ ABLIKIM 07 B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(2\left(K^{+} K^{-}\right) \pi^{0}\right) / \Gamma_{\text {total }}$
「59/Г
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{<} 2.9} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { HUANG }} \frac{\text { TECN }}{\text { O6A }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
- - We do not use the following data for averages, fits, limits, etc. - - -
$<46 \quad 90 \quad 2$ ABLIKIM $\quad 07 \mathrm{~B}$ BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(2\left(K^{+} K^{-}\right) \boldsymbol{\pi}^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6 0}} / \Gamma$
$\frac{\left.\text { VALUE (units } 10^{-3}\right)}{<3.2} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { CBLIKIM }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { (3770) }}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

Meson Particle Listings
$\psi(3770)$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$
 ${ }^{75} / \Gamma$
 VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT

not seen		${ }^{1}$ AAIJ	17AD LHCB	$p p \rightarrow$	$B^{+} X \rightarrow$
7.1 $-\quad 8.6$	684	${ }^{2}$ ABLIKIM	14L BES3	$e^{+} e^{-}$	$\rightarrow \psi(3770)$
310 ± 30	684	${ }^{3}$ ABLIKIM	14L BES3	e^{+}	$\rightarrow \psi(3770)$
${ }^{1}$ AAIJ 17AD reports $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \psi(3770) K^{+} \rightarrow p \bar{p} K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)$ <0.09 (0.10) at 90% (95\%) CL.					
2 Solution I of two equivalent solutions in a fit with a resonance interfering with continuum.					

$\Gamma\left(p \overline{\bar{p}} \pi^{0}\right) / /_{\text {total }}$

Γ_{76} / Γ
VALUE (units 10^{-4})
OCUMENT ID
TECN COMMENT
$\psi(3770)$

- - We do not use the following data for averages, fits, limits, etc. - - -

59	${ }_{-2}^{+3} \pm 5$		1,3 ABLIKIM	140	BES3	$e^{+} e^{-}$
<12		90	${ }^{4}$ ABLIKIM	07B	BES2	$e^{+} e^{-}$

${ }^{1}$ Calculated by the authors using $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770) \rightarrow\right.$ hadrons $)=6.36 \pm 0.08_{-0.30}^{+0.41}$ 2 nb from BESSON 10.
2 Solution I of two equivalent solutions in a fit with a resonance interfering with continuum.
${ }^{3}$ Solution II of two equivalent solutions in a fit with a resonance interfering with continuum.
${ }^{4}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(p \bar{p} \pi^{+} \pi^{-}\right) / \Gamma_{\text {tota }}$
Γ_{77} / Γ
$\begin{array}{llll}\text { VALUE (units } 10^{-4} \text {) } & \frac{\text { CL\% }}{<\mathbf{5 . 8}} & \begin{array}{l}\text { DOCUMENT ID } \\ 90\end{array} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{} & \\ e^{+} e^{-} \rightarrow \psi(3770)\end{array}$

- - We do not use the following data for averages, fits, limits, etc. - • -
$<16 \quad 90 \quad 2$ ABLIKIM 07B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\boldsymbol{\Gamma}(\Lambda \bar{\Lambda}) / \boldsymbol{\Gamma}_{\text {total }}$ (DOCUMENT ID $\Gamma_{\mathbf{7 8}} / \boldsymbol{\Gamma}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{<1.2} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{\text { COA }}{e^{+} e^{-} \rightarrow \psi(3770)}$ - We do not use the following data for averages, fits, limits, $\quad \psi(3770$ $<4 \quad 90 \quad 2$ ABLIKIM $\quad 07 \mathrm{~F}$ BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
$\Gamma\left(\rho \bar{p} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{79} / \Gamma^{\text {TECCN }}$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{<18.5} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1 \text { HUANG }} \frac{\text { 06A }}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$ - - We do not use the following data for averages, fits, limits, etc. • - -

$$
<73 \quad 90 \quad 2 \text { ABLIKIM } \quad 07 \mathrm{~B} \text { BES2 } \quad e^{+} e^{-} \rightarrow \psi(3770)
$$

${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.

$\Gamma(\eta p \bar{p}) / \Gamma_{\text {total }}$					Γ_{83} / Γ
VALUE (units 10^{-4})	CL\%	DOCUMENT ID		COMMENT	
< 5.4	90	1 HUANG	06A CLEO	$e^{+} e^{-}$	$\psi(3770)$
- - We do not use the following data for averages, fits, limits, etc. • - -					
<11	90	${ }^{2}$ ABLIKIM	10D BES2	e	$\psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.					
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.					

$\Gamma\left(\rho^{0} p \bar{p}\right) / \Gamma_{\text {total }}$						-85/Г
VALUE (units 10^{-3})	CL\%	DOCUMENT		TECN	COMMENT	
<1.7	90	${ }^{1}$ ABLIKIM	07F	BES2	$e^{+} e^{-}$	
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.						

$\Gamma\left(p \bar{p} K^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}$
Γ_{86} / Γ
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{3 . 2}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<11 \quad 90 \quad 2$ ABLIKIM 07B BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{t o t}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance.
${ }^{2}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$.
 (

| $\boldsymbol{\Gamma}\left(\boldsymbol{\eta} \boldsymbol{p} \overline{\boldsymbol{p}} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VALUE（units $\left.10^{-3}\right)$ |

$\boldsymbol{\Gamma}\left(\boldsymbol{\Lambda} \overline{\boldsymbol{\Lambda}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$ LI\％TOCUMENT ID TECN COMMENT $\quad \Gamma \mathbf{9 0} / \boldsymbol{\Gamma}$

$\bullet \bullet$ • We do not use the following data for averages，fits，limits，etc．$\bullet \bullet \bullet$			
<4.7	90	${ }^{2}$ ABLIKIM	$13 Q$
BES3	$e^{+} e^{-} \rightarrow$	$\psi(3770)$	

$<39 \quad 90 \quad 3$ ABLIKIM 07F BES2 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Using $\sigma_{t o t}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance．
${ }_{3}^{2}$ Assuming that interference effects between resonance and continuum can be neglected．
${ }^{3}$ Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{o b s}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.15 \pm 0.38 \mathrm{nb}$ ．

$\Gamma\left(\Lambda \bar{p} K^{+}\right) / \Gamma_{\text {total }}$					Γ_{91} / Γ
VALUE（units 10^{-4} ）	CL\％	DOCUMEN	TECN	COMMENT	
＜2．8	90	1 HUANG	06A CLEO	$e^{+} e^{-} \rightarrow$	$\psi(3770)$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance．					
$\Gamma\left(\Lambda \bar{p} K^{+} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$ 行 $\Gamma_{92} / \Gamma^{\prime}$					

$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{<6.3} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { HUANG }} \frac{\text { COMMENT }}{\text { 06A }} \frac{\text { CLEO }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Using $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=7.9 \pm 0.6 \mathrm{nb}$ at the resonance．
$\Gamma(\Lambda \bar{\lambda} \eta) / \Gamma_{\text {total }}$
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{<\mathbf{1} .9} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected．

$\Gamma\left(\Sigma^{+} \bar{\Sigma}^{-}\right) / \Gamma_{\text {total }}$

Г $94 / \Gamma$
$\frac{V A L U E\left(\text { units } 10^{-4}\right)}{<\mathbf{1 . 0}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{\text { COMMENT }}{\text { BES3 }} \frac{\text { 13Q }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected．
$\Gamma\left(\Sigma^{0} \Sigma^{0}\right) / \Gamma_{\text {total }}$
Γ_{95} / Γ
$\frac{\text { VALUE（units } 10^{-4} \text { ）}}{<\mathbf{0 . 4}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{13 Q}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \psi(3770)}$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected．
$\Gamma\left(\right.$ 三 ${ }^{+}$三 $\left.^{-}\right) / \Gamma_{\text {total }}$
Г $96 / \Gamma$

VALUE（units 10^{-4} ）	CL\％	DOCUMENT		TECN	COMMENT
＜1．5	90	${ }^{1}$ ABLIKIM	13Q	BES3	$e^{+} e^{-} \rightarrow \psi(3770)$

${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected．

VALUE（units 10^{-4} ）	CL\％	DOCUMENT ID	TECN	COMMENT

$<1.4 \quad 90 \quad 1$ ABLIKIM 13Q BES3 $e^{+} e^{-} \rightarrow \psi(3770)$
${ }^{1}$ Assuming that interference effects between resonance and continuum can be neglected．

${ }^{1}$ This limit is equivalent to $(0.25 \pm 0.21 \pm 0.18) \times 10^{-3}$ branching fraction value．
${ }^{2}$ Uses $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 2}\right)=9.22 \pm 0.11 \pm 0.46 \%$ from ATHAR $04, \psi(2 S)$ mass and width from PDG 04，and $\Gamma_{e e}(\psi(2 S))=2.54 \pm 0.03 \pm 0.11 \mathrm{keV}$ from ADAM 06.
${ }^{3}$ Using $\Gamma_{e e}(\psi(2 S))=(2.54 \pm 0.03 \pm 0.11) \mathrm{keV}$ from ADAM 06 and taking $\sigma\left(e^{+} e^{-} \rightarrow\right.$ $D \bar{D})$ from HE 05 for $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right)$

$\Gamma\left(\gamma \chi_{c 1}\right) / \Gamma_{\text {total }}$（ $\Gamma_{99} / \Gamma^{\prime}$					
VALUE（units 10^{-3} ）	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{2 . 4 9} \pm \mathbf{0 . 2 3}$ OUR AVERAGE					
$1.98 \pm 0.78 \pm 0.05$	202	${ }^{1}$ ABLIKIM	16B	BES3	$\begin{gathered} e^{+} e^{-} \rightarrow \psi(3770) \rightarrow \\ \gamma+\text { hadrons } \end{gathered}$
$2.48 \pm 0.15 \pm 0.23$	0．6k	ABLIKIM	15」	BES3	$\begin{gathered} e^{+} e^{-} \rightarrow \psi(3770) \rightarrow \\ \gamma \gamma J / \psi \end{gathered}$
$2.4 \pm 0.8 \pm 0.2$		2 ABLIKIM	14H	BES3	$\begin{gathered} e^{+} e^{-} \rightarrow \psi(3770) \rightarrow \\ K_{S}^{0} K^{ \pm} \pi^{\mp} \end{gathered}$
$2.9 \pm 0.5 \pm 0.4$		${ }^{3}$ BRIERE	06	CLEO	$\begin{gathered} e^{+} e^{-} \rightarrow \psi(3770) \rightarrow \\ \gamma+\text { hadrons }, \\ \gamma \gamma J / \psi \end{gathered}$

－－We do not use the following data for averages，fits，limits，etc．－－－

$3.9 \pm 1.4 \pm 0.6$	54	${ }^{4}$ BRIERE	$06 \quad$ CLEO	$e^{+} e^{-} \rightarrow \psi(3770) \rightarrow$
$\gamma+$ hadrons				
$2.8 \pm 0.5 \pm 0.4$	53	${ }^{5}$ COAN	$06 A \quad$ CLEO	$e^{+} e^{-} \rightarrow \psi(3770) \rightarrow$
$\gamma \gamma J / \psi$				

${ }^{1}$ ABLIKIM 16B reports $(1.94 \pm 0.42 \pm 0.64) \times 10^{-3}$ from a measurement of $[\Gamma(\psi(3770) \rightarrow$ $\left.\left.\gamma \chi_{C 1}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.55 \pm$ $0.31) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}(1 P)\right)=(9.75 \pm$ $0.24) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value
${ }^{2}$ ABLIKIM 14 H reports $\left[\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{C 1}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)\right]$ $=(8.51 \pm 2.39 \pm 1.42) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow\right.$ $\left.K_{S}^{0} K^{ \pm} \pi^{\mp}\right)=0.00349 \pm 0.00029$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value．We have calculated the best value of $\mathrm{B}\left(\chi_{c 1}(1 P) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$ as $1 / 2$ of $\mathrm{B}\left(\chi_{C 1}(1 P) \rightarrow \bar{K}^{0} K^{+} \pi^{-}+\right.$c．c．$)$ $=(7.0 \pm 0.6) \times 10^{-3}$ ．
${ }^{3}$ Averages the two measurements from COAN 06A and BRIERE 06.
${ }^{4}$ Uses $\mathbf{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 1}\right)=9.07 \pm 0.11 \pm 0.54 \%$ from ATHAR 04，$\psi(2 S)$ mass and width from PDG 04，and $\Gamma_{e e}(\psi(2 S))=2.54 \pm 0.03 \pm 0.11 \mathrm{keV}$ from ADAM 06.
${ }^{5}$ Using $\Gamma_{e e}(\psi(2 S))=(2.54 \pm 0.03 \pm 0.11) \mathrm{keV}$ from ADAM 06 and taking $\sigma\left(e^{+} e^{-} \rightarrow\right.$ $D \bar{D})$ from HE 05 for $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right)$ ．
$\boldsymbol{\Gamma}\left(\boldsymbol{\gamma} \chi_{\boldsymbol{c} \mathbf{1}}\right) / \Gamma\left(\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{-}}\right)$
$\underline{\text { VALUE }}$ EVTS DOCUMENT ID \quad TECN COMMENT $\quad \Gamma_{\mathbf{9 9}} / \boldsymbol{\Gamma}_{\mathbf{4}}$
$\mathbf{1 . 4 9 \pm \mathbf { 0 . 3 1 } \pm \mathbf { 0 . 2 6 }} \overline{53 \pm 10} \quad 1 \overline{\text { COAN }} \quad$ 06A CLEO $\quad \xlongequal{e^{+} \underset{\gamma \gamma / \psi}{-} \rightarrow(3770) \rightarrow}$
${ }^{1}$ Using $\mathbf{B}\left(\psi(3770) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(1.89 \pm 0.20 \pm 0.20) \times 10^{-3}$ from ADAM 06.
$\Gamma\left(\gamma \chi_{c 0}\right) / \Gamma_{\text {total }} \quad \Gamma_{100} / \Gamma$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{6.9 \text { DOCUMENT ID }}$ EVTS TECN COMMENT

6．9 ± 0.6 OUR AVERAGE

$6.7 \pm 0.7 \pm 0.1 \quad 2.2 \mathrm{~K}$
$7.3 \pm 0.7 \pm 0.6 \quad 274$
${ }^{1}$ ABLIKIM $\quad 16 \mathrm{~B}$ BES3 $\quad e^{+} e^{-} \rightarrow \psi(3770) \rightarrow$ BRIERE $\gamma+$ hadrons
－－We do not use the following data for averages，fits，limits，etc．－－－
$<44 \quad 90 \quad 2 \mathrm{COAN} \quad$ 06A CLEO $\underset{\gamma \gamma \mathrm{J} / \psi}{e^{+} \underset{\gamma}{-} \rightarrow} \psi(3770) \rightarrow$
${ }^{1}$ ABLIKIM 16B reports $(6.88 \pm 0.28 \pm 0.67) \times 10^{-3}$ from a measurement of $[\Gamma(\psi(3770) \rightarrow$ $\left.\left.\gamma \chi_{C 0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.99 \pm$ $0.27) \times 10^{-2}$ ，which we rescale to our best value $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)=(9.79 \pm$ $0.20) \times 10^{-2}$ ．Our first error is their experiment＇s error and our second error is the systematic error from using our best value
${ }^{2}$ Using $\Gamma_{e e}(\psi(2 S))=(2.54 \pm 0.03 \pm 0.11) \mathrm{keV}$ from ADAM 06 and taking $\sigma\left(e^{+} e^{-} \rightarrow\right.$ $D \bar{D})$ from HE 05 for $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right)$ ．

$\Gamma\left(\gamma \chi_{c 0}\right) / \Gamma\left(\gamma \chi_{c 2}\right)$			$\Gamma_{100} / \Gamma_{98}$		
Value	CL\％	DOCUMENT ID		COMMENT	
－－We do not use the following data for averages，fits，limits，etc．－－					
>8	90	${ }^{1}$ BRIERE		$e^{+} e^{-}$	（3770）
${ }^{1}$ Not independent of other results in BRIERE 06.					
$\Gamma\left(\gamma \chi_{c 0}\right) / \Gamma\left(\gamma \chi_{c 1}\right)$			$\Gamma_{100} / \Gamma_{99}$		
VALUE		DOCUMENT ID	TECN COMMENT		
－－We do not use the following data for averages，fits，limits，etc．－－－					
2.5 ± 0.6		1 BRIERE	$\text { CLEO } e^{+} e^{-} \rightarrow \psi(3770)$		
${ }^{1}$ Not independent of other results in BRIERE 06.					
$\Gamma\left(\gamma \eta_{c}\right) / \Gamma_{\text {total }}$			Γ_{101} / Γ		
VALUE	CL\％	DOCUMENT ID	TECN		
$<\mathbf{7 \times 1 0}{ }^{-4}$	90	${ }^{1}$ ABLIKIM	BES3		
${ }^{1}$ ABLIKIM 14 H reports $\left[\Gamma\left(\psi(3770) \rightarrow \gamma \eta_{C}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)\right]$ $<16 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)=2.43 \times 10^{-2}$ ．					
We have calculated the best value of $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$ as $1 / 3$ of $\mathrm{B}\left(\eta_{C}(1 S) \rightarrow\right.$ $K \bar{K} \pi)=7.3 \times 10^{-2}$ ．					

Meson Particle Listings
$\psi(3770), \psi_{2}(3823), \psi_{3}(3842)$

$\psi(3770)$ REFERENCES

$\psi_{2}(3823)$ MASS

$\frac{V A L U E ~(M e V)}{E V T S}$
 $3822.2 \pm$ 1.2 OUR AVERAGE

$3821.7 \pm 1.3 \pm 0.7 \quad 19 \pm 5$
$3823.1 \pm 1.8 \pm 0.7 \quad 33 \pm 10$
$3823.1 \pm 1.8 \pm 0.7 \quad 33 \pm 10 \quad 2$ BHARDWA 15 S BES3 $e \quad \pi \quad \pi \quad \chi_{C 1}$
${ }^{1}$ From a simultaneous unbinned maximum likelihood fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \chi_{c 1} \gamma$ data (the $\pi^{+} \pi^{-}$recoil mass) taken at \sqrt{s} values of $4.23,4.26,4.36,4.42$, and 4.60 GeV to simulated events including both $\psi(2 S) \rightarrow \chi_{C 1} \gamma$ and $\psi_{2}(3823) \rightarrow \chi_{C 1} \gamma$ together, with floating mass scale offset for $\psi(2 S)$, floating $\psi_{2}(3823)$ mass, and zero ψ_{2} (3823) width, resulting in a significance of 5.9σ when including systematic uncertainties.
${ }^{2}$ From a simultaneous fit to $B^{ \pm} \rightarrow\left(\chi_{C 1} \gamma\right) K^{ \pm}$and $B^{0} \rightarrow\left(\chi_{C 1} \gamma\right) K_{S}^{0}$ with significance 4.0σ including systematics. Corrected for the measured $\psi(2 S)$ mass using $B \rightarrow$ $\psi(2 S) K \rightarrow\left(\gamma \chi_{C 1}\right) K$ decays.

$\psi_{2}(3823)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\chi_{c 1} \gamma$	seen
Γ_{2}	$\chi_{c 2} \gamma$	not seen

$\psi_{2}(3823)$ BRANCHING RATIOS

${ }^{1}$ From a simultaneous unbinned maximum likelihood fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \chi_{C 2} \gamma$ data (the $\pi^{+} \pi^{-}$recoil mass) taken at \sqrt{s} values of $4.23,4.26,4.36,4.42$, and 4.60 GeV to simulated events including both $\psi(2 S) \rightarrow \chi_{c 2} \gamma$ and $\psi_{2}(3823) \rightarrow \chi_{c 2} \gamma$ together, with floating mass scale offset for $\psi(2 S), \psi_{2}(3823)$ mass floating (fixed to that above), and zero $\psi_{2}(3823)$ width.
${ }^{2}$ Reported $\mathrm{B}\left(B^{ \pm} \rightarrow \psi_{2}(3823) K^{ \pm}\right) \times \mathrm{B}\left(\psi_{2}(3823) \rightarrow \gamma \chi_{C 2}\right)<3.6 \times 10^{-6}$ at 90%
$\Gamma\left(\chi_{c 2} \gamma\right) / \Gamma\left(\chi_{c 1} \gamma\right)$
Γ_{2} / Γ_{1}
$\frac{V A L U E}{<\mathbf{0 . 4 1}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 13} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{B^{+} \rightarrow \chi_{c 1 / c 2} \gamma K^{+}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$<0.42 \quad 90 \quad{ }^{1}$ ABLIKIM $\quad 15 \mathrm{~s}$ BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \chi_{C 1} \gamma$ ${ }^{1}$ From a simultaneous unbinned maximum likelihood fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \chi_{c 1(2)} \gamma$ data (the $\pi^{+} \pi^{-}$recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2 S) \rightarrow \chi_{c 1(2)} \gamma$ and $\psi_{2}(3823) \rightarrow \chi_{c 1(2)} \gamma$ together, with floating mass scale offset for $\psi(2 S), \psi_{2}(3823)$ mass floating (fixed to that above), and zero ψ_{2} (3823) width.

$\psi_{2}(3823)$ REFERENCES

J^{P} has not been measured, 3^{-}is the quark model prediction.

OMITTED FROM SUMMARY TABLE
The assignment $J^{P}=0^{+}$is preferred over 2^{+}by 2.5 sigma.
Observed by CHILIKIN 17 using full amplitude analysis of the process $e^{+} e^{-} \rightarrow J / \psi D \bar{D}$, where $D=D^{0}, D^{+}$.

$$
\chi_{c 1}(3872) \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left({ }_{(1++}+\right)
$$

also known as $X(3872)$
This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the review on non- $q \bar{q}$ states.

First observed by CHOI 03 in $B \rightarrow K \pi^{+} \pi^{-} J / \psi(1 S)$ decays as a narrow peak in the invariant mass distribution of the $\pi^{+} \pi^{-} J / \psi(1 S)$ final state. Isovector hypothesis excluded by AUBERT 05B and CHOI 11.

AAIJ 13Q perform a full five-dimensional amplitude analysis of the angular correlations between the decay products in $B^{+} \rightarrow$ $\chi_{C 1}(3872) K^{+}$decays, where $\chi_{C 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$and $J / \psi \rightarrow$ $\mu^{+} \mu^{-}$, which unambiguously gives the $J^{P C}=1^{++}$assignment under the assumption that the $\pi^{+} \pi^{-}$and J / ψ are in an S-wave. AAIJ 15AO extend this analysis with more data to limit D-wave contributions to $<4 \%$ at $95 \% \mathrm{CL}$.

See the review on "Spectroscopy of Mesons Containing Two Heavy Quarks."

$\chi_{c 1}(3872)$ MASS FROM $J / \psi X$ MODE

VALUE (MeV)
EVTS 3871.69 ± 0.17 OUR AVERAGE
$3871.9 \pm 0.7 \pm 0.2 \quad 20 \pm 5$
\qquad ABLIKIM 14 BES3 $e^{+} e^{-} \rightarrow J / \psi \pi^{+} \pi^{-} \gamma$ 12 LhCB $p p \rightarrow J / \psi \pi^{+} \pi^{-} X$ $3873 \quad+1.8 \pm 1.3 \quad 27 \pm 8 \quad{ }^{2}$ DEL-AMO-SA.10B BABR $B \rightarrow \omega J / \psi K$ $3871.61 \pm 0.16 \pm 0.19 \quad 6 \mathrm{k} \quad 2,3$ AALTONEN 09AU CDF2 $\quad p \bar{p} \rightarrow J / \psi \pi^{+} \pi^{-} X$ $3871.4 \pm 0.6 \pm 0.1 \quad$ 93.4 AUBERT 08Y BABR $B^{+} \rightarrow K^{+} J / \psi \pi^{+} \pi^{-}$ $3868.7 \pm 1.5 \pm 0.4 \quad 9.4 \quad$ AUBERT $08 Y$ BABR $B^{0} \rightarrow K_{S}^{0} J / \psi \pi^{+} \pi^{-}$ $3871.8 \pm 3.1 \pm 3.0 \quad 522 \quad{ }^{2,4}$ ABAZOV 04F DO $\quad p \bar{p} \rightarrow J / \psi \pi^{+} \pi^{-} x$ - - We do not use the following data for averages, fits, limits, etc. - - -
$3873.3 \pm 1.1 \pm 1.0 \quad 45 \quad{ }^{5}$ ABLIKIM $\quad 19 \mathrm{~V}$ BES $\quad e^{+} e^{-} \rightarrow \gamma \omega \mathrm{J} / \psi$ $3860.0 \pm 10.4 \quad 13.6 \quad 2,6$ AGHASYAN 18A COMP $\gamma^{*} N \rightarrow X \pi^{ \pm} N^{\prime}$ $3868.6 \pm 1.2 \pm 0.2 \quad 8 \quad{ }^{7}$ AUBERT 06 BABR $B^{0} \rightarrow K_{S}^{0} J / \psi \pi^{+} \pi^{-}$ $3871.3 \pm 0.6 \pm 0.1 \quad 61 \quad{ }^{7}$ AUBERT $\quad 06$ BABR $B^{-} \rightarrow K^{-} J / \psi \pi^{+} \pi^{-}$ $3873.4 \pm 1.4 \quad 25 \quad{ }^{8}$ AUBERT \quad 05R BABR $B^{+} \rightarrow K^{+} J / \psi \pi^{+} \pi^{-}$ $3871.3 \pm 0.7 \pm 0.4 \quad 730 \quad{ }^{2,9}$ ACOSTA $04 \quad$ CDF2 $\quad p \bar{p} \rightarrow J / \psi \pi^{+} \pi^{-} \chi$ $3872.0 \pm 0.6 \pm 0.5 \quad 36 \quad 10 \mathrm{CHOI} \quad 03$ BELL $B \rightarrow K \pi^{+} \pi^{-} J / \psi$

${ }^{1}$ The mass difference for the $\chi_{C 1}(3872)$ produced in B^{+}and B^{0} decays is $(-0.71 \pm$
$0.96 \pm 0.19) \mathrm{MeV}$.
${ }_{3}^{2}$ Width consistent with detector resolution.
${ }^{3}$ A possible equal mixture of two states with a mass difference greater than $3.6 \mathrm{MeV} / \mathrm{c}^{2}$
4 is excluded at 95% CL.
${ }^{4}$ Calculated from the corresponding $m_{\chi_{C 1}(3872)}-m_{J / \psi}$ using $m_{J / \psi}=3096.916 \mathrm{MeV}$.
${ }^{5}$ Fit with fixed width and including two resonances, $X(3915)$ and $X(3960)$.
${ }_{7}^{6}$ Could be a different state.
${ }^{7}$ Calculated from the corresponding $m_{\chi_{C 1}(3872)}-m_{\psi(2 S)}$ using $m_{\psi(2 S)}=3686.093$
MeV . Superseded by AUBERT 08 Y .
${ }^{8}$ Calculated from the corresponding $m_{\chi_{c 1}(3872)}-m_{\psi(2 S)}$ using $m_{\psi(2 S)}=$ 3685.96 MeV . Superseded by AUBERT 06 .
${ }^{9}$ Superseded by AALTONEN 09Au.
${ }^{10}$ Superseded by CHOI 11 .
${ }^{11}$ A lower mass value can be due to an incorrect momentum scale for soft pions.

$\chi_{c 1}$ (3872) MASS FROM $\bar{D}^{* 0} D^{0}$ MODE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • •

- - We do not use the following data for averages, fits, limits, etc. - • -
$187.4 \pm 1.4 \quad 25 \quad 1$ AUBERT $\quad 05 \mathrm{R}$ BABR $B^{+} \rightarrow K^{+} J / \psi \pi^{+} \pi^{-}$
${ }^{1}$ Superseded by AUBERT 06.
$\chi_{c 1}$ (3872) WIDTH
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{<1.2} \frac{C L \%}{90} \xrightarrow{\text { EVTS }} \quad \frac{\text { DOCUMENT ID }}{\text { CHOI }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{B \rightarrow K \pi^{+} \pi^{-} J / \psi}$
- - We do not use the following data for averages, fits, limits, etc. - - -

<2.4	90		ABLIKIM	14	BES3	$e^{+} e^{-} \rightarrow J / \psi \pi^{+} \pi^{-} \gamma$
<3.3	90		AUBERT	08Y	BABR	$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \psi \mathrm{\pi}^{+} \pi^{-}$
<4.1	90	69	AUBERT	06	BABR	$B \rightarrow K \pi^{+} \pi^{-} J / \psi$
<2.3	90	36	${ }^{1} \mathrm{CHOI}$	03	BELL	$B \rightarrow K \pi^{+} \pi^{-} J / \psi$
${ }^{1}$ Superseded by CHOI 11.						

$\chi_{c 1}(3872)$ WIDTH FROM $\bar{D}^{* 0} D^{0}$ MODE				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -				
$\begin{aligned} & 3.9_{-1.4}^{+2.8+0.2}+1.1 \end{aligned}$	50	${ }^{1}$ AUSHEV	10 BEL	$B \rightarrow \bar{D}^{* 0} D^{0} K$
$3.0{ }_{-1.4}^{+1.9} \pm 0.9$	33 ± 6	AUBERT	08B BABR	$B \rightarrow \bar{D}^{* 0} D^{0}$
${ }^{1}$ With a measured value of $\mathrm{B}\left(B \rightarrow \chi_{C 1}(3872) K\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow D^{* 0} \bar{D}^{0}\right)=$ $(0.80 \pm 0.20 \pm 0.10) \times 10^{-4}$, assumed to be equal for both charged and neutral modes.				

$\chi_{c 1}(3872)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$\pi^{+} \pi^{-} J / \psi(1 S)$	$>3.2 \%$
Γ_{3}	$\rho^{0} J / \psi(1 S)$	
Γ_{4}	$\omega J / \psi(1 S)$	$>2.3 \%$
Γ_{5}	$D^{0} \bar{D}^{0} \pi^{0}$	$>40 \%$
Γ_{6}	$\bar{D}^{* 0} D^{0}$	$>30 \%$
Γ_{7}	$\gamma \gamma$	
Γ_{8}	$D^{0} \bar{D}^{0}$	
Γ_{9}	$D^{+} D^{-}$	
Γ_{10}	$\gamma \chi_{c 1}$	
Γ_{11}	$\gamma \chi_{c 2}$	
Γ_{12}	$\pi^{0} \chi_{c 2}$	
Γ_{13}	$\pi^{0} \chi_{c 1}$	
Γ_{14}	$\pi^{0} \chi_{c 0}$	
Γ_{15}	$\gamma J / \psi$	
Γ_{16}	$\gamma \psi(2 S)$	
Γ_{17}	$\pi^{+} \pi^{-} \eta_{C}(1 S)$	not seen
Γ_{18}	$\pi^{+} \pi^{-} \chi_{c 1}$	not seen
Γ_{19}	$p \bar{p}$	not seen
Γ_{20}	$\eta J / \psi$	C-violating decays

$\chi_{c 1}(3872)$ PARTIAL WIDTHS

$\Gamma\left(e^{+} e^{-}\right)$

VALUE (eV)	CL\%	IENT	EC	M
- - We do not use the following data for averages, fits, limits, etc. - -				
<4.3	90	ABLIKIM	15V BES3	4.0-4.4 e
<280	90	2 YUAN	04 RVU	$e^{+} e^{-} \rightarrow$
${ }^{1}$ ABLIKIM 15 V reports this limit from the measurement of $\Gamma\left(\chi_{C 1}(3872) \rightarrow\right.$ $\left.\pi^{+} \pi^{-} J / \psi(1 S)\right) \times \Gamma\left(\chi_{C 1}(3872) \rightarrow e^{+} e^{-}\right) / \Gamma \quad<0.13 \mathrm{eV}$ using $\Gamma\left(\chi_{C 1}(3872) \rightarrow\right.$ $\left.\pi^{+} \pi^{-} J / \psi(1 S)\right) / \Gamma=3 \%$.				
${ }^{2}$ Using BAI 98E data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \ell^{+} \ell^{-}$. Assuming that $\Gamma\left(\pi^{+} \pi^{-} J / \psi\right)$ of $\chi_{C 1}(3872)$ is the same as that of $\psi(2 S)(85.4 \mathrm{keV})$.				

$\chi_{C 1}(3872) \Gamma\left(\right.$ i) $\Gamma\left(e^{+} e^{-}\right) / \Gamma$ (total)

$\Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}^{\text {DOCUMENT ID }} \quad \Gamma_{2} \Gamma_{1} / \Gamma$
$\frac{\operatorname{VALUE}(\mathrm{eV})}{<\mathbf{0 . 1 3}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 15 \mathrm{~V}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{4.0-4.4 e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi}$

- - We do not use the following data for averages, fits, limits, etc. • -

<6.2	90	1,2	AUBERT	05D BABR	$10.6 e^{+} e^{-} \rightarrow$
$K^{+} K^{-} \pi^{+} \pi^{-} \gamma$					
<8.3	90	2 DOBBS	05	CLE3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$
<10	90	$3_{\text {YUAN }}$	04	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$

${ }^{1}$ Using $\mathrm{B}\left(\chi_{C 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \cdot \mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) \cdot \Gamma\left(\chi_{C 1}(3872) \rightarrow e^{+} e^{-}\right)$ $<0.37 \mathrm{eV}$ from AUBERT 05D and $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=0.0588 \pm 0.0010$ from the PDG 04.
${ }^{2}$ Assuming $\chi_{C 1}(3872)$ has $J^{P C}=1^{--}$
${ }^{3}$ Using BAI 98E data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \ell^{+} \ell^{-}$. From theoretical calculation of the production cross section and using $\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.88 \pm 0.10) \%$.

$\chi_{c 1}(3872) \Gamma($ i $) \Gamma(\gamma \gamma) / \Gamma($ total $)$

$\Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }} \quad \Gamma_{2} \Gamma_{7} / \Gamma$
VALUE (eV) CLL\% DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • - •
$<12.9 \quad 90 \quad 1$ DOBBS 05 CLE3 $\quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi \gamma$ ${ }^{1}$ Assuming $\chi_{C 1}(3872)$ has positive C parity and spin 0 .
$\Gamma(\omega J / \psi(15)) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{4} \Gamma_{7} / \Gamma$
VALUE (eV) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
$<1.7 \quad 90 \quad 1$ LEES 12AD BABR $e^{+} e^{-} \rightarrow e^{+} e^{-} \omega J / \psi$
${ }^{1}$ Assuming $\chi_{C 1}(3872)$ has spin 2.

$\begin{aligned} & \Gamma\left(\pi^{+} \pi^{-} \eta_{\boldsymbol{C}}(\mathbf{1 S})\right) \\ & V \operatorname{VALUE(\mathrm {eV})} \end{aligned}$	$\times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$				$\Gamma_{17} \Gamma_{7} / \Gamma$
	$\underline{C L \%}$	DOCU	TECN	COMMENT	
<11.1	90	LEES	12AE BABR	$e^{+} e^{-} e^{+}$	

$\chi_{c 1}(3872)$ BRANCHING RATIOS

${ }^{1}$ AUBERT 08 Y reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\chi_{C 1}(3872) K^{+}\right)\right]=(8.4 \pm 1.5 \pm 0.7) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.
${ }^{2} \mathrm{BALA} 15$ reports $\mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right) \times \mathrm{B}\left(B^{0} \rightarrow \chi_{C 1}(3872) K^{+} \pi^{-}\right)$ $=(7.9 \pm 1.3 \pm 0.4) \times 10^{-6}$ and $\mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right) \times \mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\chi_{C 1}(3872) K^{0} \pi^{+}\right)=(10.6 \pm 3.0 \pm 0.9) \times 10^{-6}$.
${ }^{3}$ Superseded by AUBERT 08Y. AUBERT 05R reports [$\Gamma\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi(1 S)\right) /$
$\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right]=(1.28 \pm 0.41) \times 10^{-5}$ which we divide by our
best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.
${ }^{4} \mathrm{CHOI} 03$ reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow\right.\right.$ $\left.\left.\chi_{C 1}(3872) K^{+}\right)\right] /\left[\mathrm{B}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)\right] /\left[\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]=$ $0.063 \pm 0.012 \pm 0.007$ which we multiply or divide by our best values $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}, \mathrm{~B}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)=(6.19 \pm 0.22) \times 10^{-4}$, $\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(34.68 \pm 0.30) \times 10^{-2}$.

$\Gamma(\omega J / \psi(1 S)) / \Gamma_{\text {total }}$			4/ $/$		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
>0.023	21 ± 7	${ }^{1}$ DEL-AMO-S	BAB	$B^{+} \rightarrow \omega$	
${ }^{1}$ DEL-AMO-SANCHEZ 10B reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \omega J / \psi(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow\right.\right.$					
$\left.\left.\chi_{C 1}(3872) K^{+}\right)\right]=(6 \pm 2 \pm 1) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow\right.$					
$\left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$. DEL-AMO-SANCHEZ 10 B also reports $\mathrm{B}\left(B^{0} \rightarrow\right.$					
$\left.\chi_{C 1}(3872) K^{0}\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow J / \psi \omega\right)=(6 \pm 3 \pm 1) \times 10^{-6}$					

$\Gamma(\omega J / \psi(1 S)) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$
Γ_{4} / Γ_{2}
$\frac{V A L U E}{\mathbf{1 . 1} \pm \mathbf{0 . 4} \text { OUR AVERAGE Error includes scale factor of } 1.7 .} \frac{\text { TECN }}{\text { COMMENT }}$

$1.6_{-0.3}^{+0.4} \pm 0.2$	1 ABLIKIM	19 V	BES	$e^{+} e^{-} \rightarrow \gamma \omega J / \psi$
0.8 ± 0.3	2	DEL-AMO-SA..10B	BABR	$B \rightarrow \omega J / \psi K$

${ }^{1}$ Fit with fixed width and including two
${ }^{2}$ Statistical and systematic errors added in quadrature. Uses the values of $\mathrm{B}(B \rightarrow$
$\left.\chi_{C 1}(3872) K\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)$reported in AUBERT 08Y, taking into account the common systematics.

$\Gamma\left(D^{0} \bar{D}^{0} \pi^{0}\right) / \Gamma_{\text {total }}$		DOCUMENT ID			Γ_{5} / Γ
VALUE	EVTS		TECN	COMMENT	
>0.4	17 ± 5	${ }^{1}$ GOKHROO	06 BELL	$B^{+} \rightarrow D^{0}$	
${ }^{1}$ GOKHROO 06 reports		${ }_{1}(3872) \rightarrow$	$\left.D^{0} \bar{D}^{0} \pi^{0}\right)$	$\left.\Gamma_{\text {total }}\right] \times$	
$\left.\left.\chi_{C 1}(3872) K^{+}\right)\right]=\left(1.02 \pm 0.31_{-0.29}^{+0.21}\right) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.					

VALUE			
seen	$1 \frac{\text { DOCUMENT ID }}{\text { GOKHROO }} 06$	06	TECN
BELL	$\frac{\text { COMMENT }}{B \rightarrow D^{0} \bar{D}^{0} \pi^{0} K}$		

- - We do not use the following data for averages, fits, limits, etc. - - -
seen AUSHEV 10 BELL $B \rightarrow D^{0} \bar{D}^{0} \pi^{0} K$
${ }^{1}$ May not necessarily be the same state as that observed in the $J / \psi \pi^{+} \pi^{-}$mode. Supersedes CHISTOV 04.

$\begin{aligned} & \Gamma\left(\bar{D}^{* 0} D^{0}\right) / \Gamma_{\text {total }} \\ & \text { VALUE } \end{aligned}$		DOCUMENT ID		TECN	COMMENT	Γ_{6} / Γ
	EVTS					
>0.30	41_{-8}^{+9}	${ }^{1}$ AUSHEV	10	BELL	$B^{+} \rightarrow D^{\text {d }}$	

$>0.6 \quad 27 \pm 6 \quad{ }^{2}$ AUBERT 08 BABR $B^{+} \rightarrow \bar{D}^{* 0} D^{0} K^{+}$ ${ }^{1}$ AUSHEV 10 reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \bar{D}^{* 0} D^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right]$ $=(0.77 \pm 0.16 \pm 0.10) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.
${ }^{2}$ AUBERT 08 B reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \bar{D}^{* 0} D^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right]$ $=(1.67 \pm 0.36 \pm 0.47) \times 10^{-4}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow\right.$ $\left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.
$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$
Γ_{8} / Γ_{2}
VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - - -
not seen CHISTOV 04 BELL $B \rightarrow K D^{0} \bar{D}^{0}$

$\Gamma\left(D^{+} D^{-}\right) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$	
VALUE	DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -	
not seen CHISTOV 04 BELL $B \rightarrow K D^{+} D^{-}$	
$\Gamma\left(\gamma \chi_{c 1}\right) / \Gamma\left(\pi^{+} \pi^{=} J / \psi(1 S)\right) \Gamma_{10} / \Gamma_{2}$	
VALUE DOCUMENT ID CL\% TECN COMMENT	
not seen ${ }^{1}$ BHARDWAJ 13 BELL $B^{+} \rightarrow \chi_{c 1} \gamma K^{+}$	
<0.89 CHOI $90 \quad 03 \mathrm{BELL} \quad B \rightarrow K \pi^{+} \pi^{-} J / \psi$	
${ }^{1}$ Reported $\mathrm{B}\left(B^{ \pm} \rightarrow \chi_{C 1}(3872) K^{ \pm}\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \gamma \chi_{C 1}\right)<1.9 \times 10^{-6}$ at 90% CL.	
$\Gamma\left(\gamma \chi_{c 2}\right) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$	
VALUE DOCUMENT ID TECN COMMENT	
- - We do not use the following data for averages, fits, limits, etc. not seen ${ }^{1}$ BHARDWAJ 13 BELL $\quad B^{ \pm} \rightarrow \chi_{c 2} \gamma K^{ \pm}$ ${ }^{1}$ Reported $\mathrm{B}\left(B^{ \pm} \rightarrow \chi_{C 1}(3872) K^{ \pm}\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \gamma \chi_{C 2}\right)<6.7 \times 10^{-6}$ at 90% CL.	
$\Gamma(\gamma J / \psi) / \Gamma_{\text {total }}$$\Gamma_{15} / \Gamma$	
VALUE EVTS DOCUMENT ID TECN COMMENT	
$>7 \times 10^{\mathbf{- 3}} \quad{ }^{1}$ BHARDWAJ 11 BELL $B^{ \pm} \rightarrow \gamma J / \psi K^{ \pm}$ - - We do not use the following data for averages, fits, limits, etc.	
>0.011 20 2 AUBERT 09B BABR $B^{+} \rightarrow \gamma J / \psi K^{+}$ >0.013 19 3 AUBERT,BE 06 M BABR $B^{+} \rightarrow \gamma J / \psi K^{+}$	
$\begin{aligned} & { }^{1} \text { BHARDWAJ } 11 \text { reports }\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \gamma J / \psi\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right] \\ & =\left(1.78_{-0.44}^{+0.48} \pm 0.12\right) \times 10^{-6} \text { which we divide by our best value } \mathrm{B}\left(B^{+} \rightarrow\right. \\ & \left.\chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4} . \end{aligned}$	
$\begin{aligned} & { }^{2} \text { AUBERT 09B reports }\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \gamma J / \psi\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right] \\ & =(2.8 \pm 0.8 \pm 0.1) \times 10^{-6} \text { which we divide by our best value } \mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right) \\ & <2.6 \times 10^{-4} . \end{aligned}$	
${ }^{3}$ Superseded by AUBERT 09B. AUBERT,BE 06m reports [$\left.\Gamma\left(\chi_{C 1}(3872) \rightarrow \gamma J / \psi\right) / \Gamma_{\text {total }}\right]$ $\times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)\right]=(3.3 \pm 1.0 \pm 0.3) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)<2.6 \times 10^{-4}$.	

$\Gamma(\gamma \psi(2 S)) / \Gamma_{\text {total }}$

VALUE	EVTS	DOCUMEN	TECN	COMMENT
seen	36 ± 9	${ }^{1}$ AAIJ	14AH LHCB	$B^{+} \rightarrow \gamma \psi(2 S) K^{+}$
>0.04	25 ± 7	2 AUBERT	09B BABR	$B^{+} \rightarrow \gamma \psi(2 S) K^{+}$

- - We do not use the following data for averages, fits, limits, etc. - - -
not seen $\quad 3$ BHARDWAJ 11 BELL $B^{+} \rightarrow \gamma \psi(2 S) K^{+}$
${ }^{1}$ From 36.4 ± 9.0 events of $\chi_{C 1}(3872) \rightarrow J / \psi \gamma$ decays with a statistical significance of
${ }^{2}$ AUBERT 09B reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \gamma \psi(2 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{c 1}(3872) K^{+}\right)\right]$ $=(9.5 \pm 2.7 \pm 0.6) \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right)$ $<2.6 \times 10^{-4}$
${ }^{3}$ BHARDWAJ 11 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} \chi_{C 1}(3872)\right) \times \mathrm{B}\left(\chi_{C 1} \rightarrow \gamma \psi(2 S)\right)<3.45 \times 10^{-6}$ at $90 \% \mathrm{CL}$.

$\begin{array}{ccccc}<2.1 & 90 & \text { BHARDWAJ } 11 & \text { BELL } & B^{+} \rightarrow \gamma \psi(2 S)\end{array} K^{+}$
${ }^{1}$ From 36.4 ± 9.0 events of $\chi_{C 1}(3872) \rightarrow J / \psi \gamma$ decays with a statistical significance of 4.4 σ.
$\boldsymbol{\Gamma}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \chi_{\boldsymbol{c 1}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\text { not seen }}$$\frac{\text { DOCUMENT ID }}{\text { BHARDWAJ } 16} \frac{\text { TECN }}{\text { BELL }} \frac{\Gamma_{\mathbf{1 8}} / \boldsymbol{\Gamma}}{B^{+} \rightarrow \pi^{+} \pi^{-} \chi_{C 1} K^{+}}$ ${ }^{1}$ BHARDWAJ 16 quotes $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}\right) \cdot \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} \chi_{C 1}\right)<$ 1.5×10^{-6} at 90% CL.
$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$

$\Gamma(p \bar{p}) / \Gamma_{\text {total }}$				19/I
VALUE	DOCUMENT ID TECN		COMMENT	
not seen	${ }^{1}$ AAIJ	17AD LHCB	$p p \rightarrow B^{+} X \rightarrow p \bar{p} K^{+} X$	
$\begin{gathered} { }^{1} \text { AAIJ } 17 \mathrm{AD} \\ <2.0(2.5) \end{gathered}$	$\begin{aligned} & \chi_{C 1}(3872) K^{+} \\ & \%(95 \%) \mathrm{CL} . \end{aligned}$	$\left.p \bar{p} K^{+}\right) / l$	$\left(B^{+} \rightarrow J\right)$	$\left.p \bar{p} K^{+}\right)$

$\left.\underset{\text { VALUE }}{\Gamma(p \bar{p}) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right.}\right) \underset{\text { DL\% }}{\text { DOCUMENT ID }} \quad \Gamma_{\mathbf{1 9}} / \boldsymbol{\Gamma}_{\mathbf{2}}$
 ${ }^{1}$ AAIJ 13 s reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow p \bar{p}\right) / \Gamma\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi(1 S)\right)\right] \times$ $\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}, \quad \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)\right]<1.7 \times 10^{-8}$ which we divide by our best value $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)=8.6 \times 10^{-6}$.
$\Gamma\left(\pi^{0} \chi_{c 0}\right) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$
Γ_{14} / Γ_{2} $\frac{\text { VALUE }}{<\mathbf{1 9}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} \frac{19 \mathrm{U}}{} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma \chi_{C 1}(3872)}$

$\Gamma\left(\pi^{0} \chi_{c 2}\right) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right)$				Γ_{12} / Γ_{2}		
Value	CL\%	DOCUMEN		TECN	COMMENT	
<1.1	90	ABLIKIM	19	BES3	$e^{+} e^{-} \rightarrow$	$\gamma \chi_{C 1}(3872)$

$\Gamma(\eta J / \psi) / \Gamma\left(\pi^{+} \pi^{-} J / \psi(1 S)\right) \quad \Gamma_{20} / \Gamma_{2}$
 - We do not use the following data for averages, fits, limits, etc. - -
$<0.6 \quad 90 \quad$ AUBERT $04 Y$ BABR $B \rightarrow K \eta J / \psi$
$1_{\text {IWASHITA }} 14$ reports $\left[\Gamma\left(\chi_{C 1}(3872) \rightarrow \eta J / \psi\right) / \Gamma\left(\chi_{C 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi(1 S)\right)\right] \times$
$\left[\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)\right]<3.8 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(3872) K^{+}, \chi_{C 1} \rightarrow J / \psi \pi^{+} \pi^{-}\right)=8.6 \times 10^{-6}$.
${ }^{2}$ IWASHITA 14 also scans the $\eta J / \psi$ mass range $3.8-4.75 \mathrm{GeV}$ and sets upper limits for $\mathrm{B}\left(B^{ \pm} \rightarrow \chi_{C 1}(3872) K^{ \pm}\right) \times \mathrm{B}\left(\chi_{C 1}(3872) \rightarrow \eta J / \psi\right)$ in 5 MeV intervals.

$\chi_{c 1}(3872)$ REFERENCES				
ABLIKIM	194	PRL 122202001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19 V	PRL 122232002	M. Ablikim et al.	(BESIII Collab.)
BHARDWA」	19	PR D99 111101	V. Bhardwaj et al.	(BELLE Collab.)
AGHASYAN	18A	PL B783 334	M. Aghasyan et al.	(COMPASS Collab.)
AAIJ	17AD	PL B769 305	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj et al.	(BELLE Collab.)
AAIJ	15AO	PR D92 011102	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	15 V	PL B749 414	M. Ablikim et al.	(BESIII Collab.)
BALA	15	PR D91 051101	A. Bala et al.	(BELLE Collab.)
AAIJ	14 AH	NP B886 665	R. Aaij et al.	(LHCb Collab.)
ABLIKIM	14	PRL 112092001	M. Ablikim et al.	(BESIIII Collab.)
IWASHITA	14	PTEP 2014043 CO	T. Iwashita et al.	(BELLE Collab.)
AAIJ	13Q	PRL 110222001	R. Aaij et al.	(LHCb Collab.) JP
AAIJ	135	EPJ C73 2462	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	13	PRL 111032001	V. Bhardwaj et al.	(BELLE Collab.)
AAIJ	12H	EPJ C72 1972	R. Aaij et al.	(LHCb Collab.)
LEES	12 AD	PR D86 072002	J.P. Lees et al.	(BABAR Collab.)
LEES	12AE	PR D86 092005	J.P. Lees et al.	(BABAR Collab.)
BHARDWAJ	11	PRL 107091803	V. Bhardwaj et al.	(BELLE Collab.)
CHOI	11	PR D84 052004	S.-K. Choi et al.	(BELLE Collab.)
AUSHEV	10	PR D81 031103	T. Aushev et al.	(BELLE Collab.)
DEL-AMO-SA...	10B	PR D82 011101	P. del Amo Sanchez et al.	(BABAR Collab.)
AALTONEN	09AU	PRL 103152001	T. Aaltonen et al.	(CDF Collab.)
AUBERT	09B	PRL 102132001	B. Aubert et al.	(BABAR Collab.)
AUBERT	08B	PR D77 011102	B. Aubert et al.	(BABAR Collab.)
AUBERT	08Y	PR D77 111101	B. Aubert et al.	(BABAR Collab.)
AUBERT	06	PR D73 011101	B. Aubert et al.	(BABAR Collab.)
AUBERT,BE	06M	PR D74 071101	B. Aubert et al.	(BABAR Collab.)
GOKHROO	06	PRL 97162002	G. Gokhroo et al.	(BELLE Collab.)
AUBERT	05B	PR D71 031501	B. Aubert et al.	(BABAR Collab.)
AUBERT	05D	PR D71 052001	B. Aubert et al.	(BABAR Collab.)
AUBERT	05R	PR D71 071103	B. Aubert et al.	(BABAR Collab.)
DOBBS	05	PRL 94032004	S. Dobbs et al.	(CLEO Collab.)
ABAZOV	04F	PRL 93162002	V.M. Abazov et al.	(D0 Collab.)
ACOSTA	04	PRL 93072001	D. Acosta et al.	(CDF Collab.)
AUBERT	04Y	PRL 93041801	B. Aubert et al.	(BABAR Collab.)
CHISTOV	04	PRL 93051803	R. Chistov et al.	(BELLE Collab.)
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)
YUAN	04	PL B579 74	C.Z. Yuan et al.	
CHOI	03	PRL 91262001	S.-K. Choi et al.	(BELLE Collab.)
BAI	98 E	PR D57 3854	J.Z. Bai et al.	(BES Collab.)
ANTONIAZZI	94	PR D50 4258	L. Antoniazzi et al.	(E705 Collab.)

$Z_{c}(3900)$

$$
\iota^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
$$

was X (3900)
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non $-q \bar{q}$ states.

Charged $Z_{C}(3900)$ seen as a peak in the invariant mass distribution of the $J / \psi \pi^{ \pm}$system by BES III (ABLIKIM 13T) in $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} J / \psi$ at c.m. energy of 4.26 GeV and by radiative return from $e^{+} e^{-}$collisions at \sqrt{s} from 9.46 to 10.86 GeV at Belle (LIU 13B). Partial wave analysis of ABLIKIM 17J determines $J^{P}=1^{+}$with more than 7σ significance. Neutral $Z_{C}(3900)$ seen in the $J / \psi \pi^{0}$ invariant mass distribution in $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$ at c.m. energies of $4.23,4.26$, and 4.36 GeV by BES III (ABLIKIM 15U) and at 4.17 GeV by XIAO 13A. Peaks in $\left(D \bar{D}^{*}\right)^{0, \pm}$ reported by BES III (ABLIKIM 14A, ABLIKIM 15AB) are assumed to be related.

Meson Particle Listings
$Z_{c}(3900)$

$Z_{C}(3900)$ MASS						
VALUE (MeV)	EVTS	DOCUMENT	D	TECN	CHG	COMMENT
$\mathbf{3 8 8 8 . 4} \pm \mathbf{2 . 5}$ OUR	VERAGE	Error includes	scale	factor	1.7.	See the ideogram below.
3902.6-5.2-3.3		${ }^{1}$ ABAZOV	19	D0		$\begin{array}{r} 1.96 \mathrm{TeV} p \bar{p} \rightarrow \\ J / \psi \pi^{+} \pi^{-} X \end{array}$
$3895.0 \pm 5.2 \pm 2.0$	502	2 ABAZOV	18B	D0		$\begin{aligned} & 1.96 \mathrm{TeV} p \bar{p} \rightarrow \\ & J / \psi \pi^{+} \pi^{-}{ }^{-x} \end{aligned}$
$3885.7{ }_{-5.7}^{+4.3} \pm 8.4$		${ }^{3}$ ABLIKIM		BES3	0	$e^{+} e^{-} \rightarrow \pi^{0}\left(D \bar{D}^{*}\right)^{0}$
$3881.7 \pm 1.6 \pm 1.6$	1.2k	${ }^{3}$ ABLIKIM	15AC	BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}$
$3894.8 \pm 2.3 \pm 3.2$	356	${ }^{3}$ ABLIKIM		BES3	0	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$
$3883.9 \pm 1.5 \pm 4.2$	1.2k	${ }^{3}$ ABLIKIM		BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}$
$3899.0 \pm 3.6 \pm 4.9$	307	${ }^{3}$ ABLIKIM		BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$
$3894.5 \pm 6.6 \pm 4.5$	159	${ }^{3}$ LIU		BELL	\pm	$e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
$3886 \pm 4 \pm 2$	81	3,4 XIAO	13A		\pm	$\begin{aligned} & 4.17 e^{+} e^{-} \rightarrow \\ & \pi^{+} \pi^{-} J / \psi \end{aligned}$
$3904 \pm 9 \pm 5$	25	$3,4 \times$ IAO	13A		0	$\begin{gathered} 4.17 e^{+} e^{-} \rightarrow \\ \pi^{0} \pi^{0} J / \psi \end{gathered}$

- - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$
$3881.2 \pm 4.2 \pm 52.7 \quad 6 \mathrm{k} \quad 5$ ABLIKIM $\quad 17 \mathrm{~J}$ BES3 $\pm \quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$
${ }^{1}$ Measured in weak decays of b-flavored hadrons (nonprompt).
${ }^{2}$ The signal of the $Z_{C}(3900)$ is correlated with a parent $J / \psi \pi^{+} \pi^{-}$system in the invariant mass range $4.2-4.7 \mathrm{GeV}$.
${ }^{3}$ Neglecting interference between the $Z_{C}(3900)$ and non-resonant continuum.
${ }^{4}$ For $M^{2}\left(\pi^{+} \pi^{-}\right)<0.65 \mathrm{GeV}^{2}$. Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{5}$ Pole mass obtained from a fit to a Flatte-like formula.

$Z_{C}(3900)$ WIDTH						
VALUE (MeV)	EVTS	DOCUMENT		TECN	$\underline{C H G}$	COMMENT
28.3 \pm 2.5 OUR AVERAGE						
$32 \begin{aligned} & +28 \\ & -21\end{aligned}+26$		${ }^{1}$ ABAZOV	19	D0		$\begin{aligned} & 1.96 \mathrm{TeV} p \bar{p} \rightarrow \\ & \pi^{+} \pi^{-} J / \psi X \text { (non- } \\ & \text { prompt) } \end{aligned}$
$51.8 \pm 4.6 \pm 36.0$	6 k	2 ABLIKIM	17J	BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$
$35 \begin{aligned} & +11 \\ & -12\end{aligned}$		3 ABLIKIM	15AB	BES3	0	$e^{+} e^{-} \rightarrow \pi^{0}\left(D \bar{D}^{*}\right)^{0}$
$26.6 \pm 2.0 \pm 2.1$	1248	${ }^{3}$ ABLIKIM	15AC	BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}$
$29.6 \pm 8.2 \pm 8.2$	356	${ }^{3}$ ABLIKIM	15 U	BES3	0	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$
$24.8 \pm 3.3 \pm 11.0$	1212	${ }^{3}$ ABLIKIM	14A	BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}$
$46 \pm 10 \pm 20$	307	${ }^{3}$ ABLIKIM	13T	BES3	\pm	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$
$63 \pm 24 \pm 26$	159	${ }^{3}$ LIU	13B	BELL	\pm	$e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
$37 \pm 4 \pm 8$	81	3,4 XIAO	13A		\pm	$\begin{aligned} & 4.17 e^{+} e^{-} \rightarrow \\ & \pi^{+} \pi^{-} J / \psi \end{aligned}$

${ }^{1}$ Measured in weak decays of b-flavored hadrons (nonprompt).
${ }_{3}^{2}$ Pole width obtained from a fit to a Flatte-like formula.
${ }^{3}$ Neglecting interference between the $Z_{C}(3900)$ and non-resonant continuum.
${ }^{4}$ For $M^{2}\left(\pi^{+} \pi^{-}\right)<0.65 \mathrm{GeV}^{2}$. Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.

$z_{c}(3900)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$J / \psi \pi$	seen
Γ_{2}	$h_{C} \pi^{ \pm}$	not seen
Γ_{3}	$\eta_{C} \pi^{+} \pi^{-}$	not seen
Γ_{4}	$\eta_{C}(1 S) \rho(770)^{ \pm}$	
Γ_{5}	$\left(D \bar{D}^{*}\right)^{ \pm}$	seen

Γ_{6}	$D^{0} D^{*-}+$ с.с.	seen					
Γ_{7}	$D^{-} D^{* 0}+$ C.C.	seen					
Γ_{8}	$\omega \pi^{ \pm}$	not seen					
Γ_{9}	$J / \psi \eta$	not seen					
Γ_{10}	$D^{+} D^{*-}+$ с.с	seen					
Γ_{11}	$D^{0} \bar{D}^{* 0}+$ c.c	seen					
$Z_{c}(3900)$ BRANCHING RATIOS							
$\Gamma(J / \psi \pi) / \Gamma_{\text {total }}$ (Γ_{1} / Γ							
VALUE	- CL\% EVTS	DOCUMENT		TECN	CHG	COMMENT	
seen	356	ABLIKIM	15 U	BES3	0	$e^{+} e^{-} \rightarrow$	$\pi^{0} \pi^{0} \mathrm{~J} / \psi$
seen	307	ABLIKIM		BES3	\pm	$e^{+} e^{-} \rightarrow$	$\pi^{+} \pi^{-} J / \psi$
seen	25	${ }^{1}$ XIAO	13A		0	$\begin{gathered} 4.17 e^{+}{ }^{+} \epsilon \\ \pi^{0} \pi^{0} \end{gathered}$	$\overrightarrow{J / \psi}$

- - We do not use the following data for averages, fits, limits, etc. - -

not seen	2 ABAZOV 19 Do	$1.96 \mathrm{TeV} p \bar{p} \rightarrow$ $\pi^{+} \pi^{-} J / \psi X$ (prompt)

not seen $90 \quad 3 \mathrm{ADOLPH} \quad 15 \mathrm{D}$ COMP $\pm \gamma N \rightarrow J / \psi \pi^{ \pm} N$
${ }^{1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
${ }^{2}$ Upper limit for the prompt production is set: $\mathrm{N}_{\text {prompt }} / \mathrm{N}_{\text {nonprompt }}<0.70, \mathrm{CL}=95 \%$.
${ }^{3}$ ADOLPH 15D measure $\mathrm{B}\left(Z_{C}(3900)^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right) \sigma\left(\gamma N \rightarrow Z_{C}(3900)^{ \pm} N\right) / \sigma(\gamma N \rightarrow$ $J / \psi N)<3.7 \times 10^{-3}$ at 90% CL.
$\boldsymbol{\Gamma}\left(\boldsymbol{h}_{\boldsymbol{c}} \boldsymbol{\pi}^{\mathbf{\pm}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }}{\text { not seen }} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} 13 \times$
$\frac{\text { TECN }}{\text { BES3 }} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow h_{C} \pi^{+} \pi^{-}}$
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}_{\boldsymbol{c}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
Vot seen $\frac{1}{1 \text { VOCUMENT ID }}$ VINOKUROVA 15 $\quad \frac{\text { TECN }}{\text { BELL }} \frac{\text { CHG }}{0} \frac{\boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}}{B^{+} \rightarrow K^{+} \eta_{C} \pi^{+} \pi^{-}}$
${ }^{1}$ VINOKUROVA 15 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} Z_{C}(3900)^{0}\right) \times \mathrm{B}\left(X \rightarrow \eta_{C} \pi^{+} \pi^{-}\right)<4.7 \times$ 10^{-5} at 90% CL.
$\Gamma\left(\left(D^{*}\right)^{ \pm}\right) / \Gamma(J / \psi \pi)$
Γ_{5} / Γ_{1}
$\frac{\text { VALUE }}{\mathbf{6 . 2} \pm \mathbf{1 . 1} \pm \mathbf{2 . 7}} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ABLIKIM }} \frac{14 \mathrm{~A}}{\operatorname{BES} 3} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}}$
${ }^{1}$ Assuming the same origin of the $\left(D \bar{D}^{*}\right)^{ \pm}$and $\pi^{ \pm} J / \psi$ decay modes.

$\Gamma\left(\boldsymbol{\omega} \pi^{ \pm}\right) / \Gamma_{\text {total }}$					Γ_{8} / Γ
ValUe	DOCUMENT ID	TECN	CHG	COMMENT	
not seen	ABLIKIM 15R	BES3	\pm	$e^{+} e^{-}$	

$\Gamma\left(D^{0} \bar{D}^{* 0}+c . c\right) / \Gamma_{\text {total }}$	Doc	TECN	${ }^{\text {che }}$		//5
seen	АвІкім	154 B BES3	0	$e^{+} e^{-} \rightarrow$	$\pi^{0}\left(D^{*}\right)^{0}$
			$\Gamma_{10} / \Gamma_{11}$		
			$\stackrel{C H G}{ }$		
$\pm 0.18 \pm 0.12$	АвLІкıм	15AB BES3		$e^{+} e^{-} \rightarrow$	($\mathrm{D} \overline{\mathrm{D}}$

$Z_{C}(3900)$ REFERENCES				
ABAZOV	19	PR D100 012005	V.M. Abazov et al.	(D0 Collab.)
ABLIKIM	19BC	PR D100 111102	M. Ablikim et al.	(BESIII Collab.)
ABAZOV	18B	PR D98 052010	V.M. Abazov et al.	(Do Collab.)
ABLIKIM	17J	PRL 119072001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15AB	PRL 115222002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15AC	PR D92 092006	M. Ablikim et al.	(BESIII Collab.) JP
ABLIKIM	15Q	PR D92 012008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15R	PR D92 032009	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15 U	PRL 115112003	M. Ablikim et al.	(BESIII Collab.)
ADOLPH	15D	PL B742 330	C. Adolph et al.	(COMPASS Collab.)
VINOKUROVA	15	JHEP 1506132	A. Vinokurova et al.	(BELLE Collab.)
Also		JHEP 1702088 (errat.)	A. Vinokurava et al.	(BELLE Collab.)
ABLIKIM	14A	PRL 112022001	M. Ablikim et al.	(BESIII Collab.) JP
ABLIKIM	13 T	PRL 110252001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13X	PRL 111242001	M. Ablikim et al.	(BESIII Collab.)
LIU	13B	PRL 110252002	Z.Q. Liu et al.	(BELLE Collab.)
XIAO	13A	PL B727 366	T. Xiao et al.	(NWES)

X (3915)

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0 \text { or } 2^{++}\right)
$$

was $\chi_{c 0}(3915)$
The experimental analysis prefers $J^{P C}=0^{++}$. However, a reanalysis presented in ZHOU 15C shows that if helicity-2 dominance assumption is abandoned and a sizable helicity-0 component is allowed, a $J^{P C}=2^{++}$assignment is possible.

$X(3915)$ MASS

VALUE (MeV) EVTS
3918.4土 1.9 OUR AVERAGE
$3919.4 \pm 2.2 \pm 1.659 \pm 10$
$3919.1+3.4 \pm 2.0$
$3915 \pm 3 \pm 249 \pm 15$

- - We do not use the following data for averages, fits, limits, etc. - . -

$3926.4 \pm 2.2 \pm 1.2$	2 ABLIKIM	19 V BES	$e^{+} e^{-} \rightarrow \gamma \omega \mathrm{J} / \psi$
$3914.6{ }_{-}^{+} 3.8 \pm 2.0$	${ }^{1}$ AUBERT	08w BABR	Superseded by DEL- AMO-SANCHEZ 10B
${ }^{1} \omega J / \psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance. ${ }^{2}$ Could also be $X(3940)$. Significance 3.1σ. Fit with additional resonance at 3963.7 ± 5.7 MeV , significance 3.4σ.			

X(3915) WIDTH

$\operatorname{VALUE}(\mathrm{MeV})$	VTS	DOCUMENT ID TECN COMMENT		
20 ± 5 OUR	RAGE	Error includes scale factor of 1.1.		
$13 \pm 6 \pm 3$	59	LEES	12Ad BABR	$e^{+} e^{-} \rightarrow e^{+} e^{-} \omega J$
$31{ }_{-8}^{+10} \pm 5$		DEL-AMO-SA..10B BABR $B \rightarrow \omega J / \psi K$		
$17 \pm 10 \pm 3$	49	Uehara	10 BELL	$10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \omega \mathrm{J} / \psi$
$87 \pm 22 \pm 26$	58	${ }^{3} \mathrm{CHOI}$	05 BELL	$B \rightarrow \omega J / \psi K$
- - We do not use the following data for averages, fits, limits, etc. - -				
$3.8 \pm 7.5 \pm 2.6$		${ }^{4}$ ABLIKIM	19V BES	$e^{+} e^{-} \rightarrow \gamma \omega \mathrm{J} / \psi$
$34 \underset{-8}{+12} \pm 5$		${ }^{3}$ AUBERT	08w BABR	Superseded by DEL-AMOSANCHEZ 10B
${ }^{3} \omega J / \psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance.				
${ }^{4}$ Could also be $X(3940)$. Significance 3.1σ. Fit with additional resonance at 3963.7 ± 5.7 MeV , significance 3.4σ.				

$X(3915)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\omega J / \psi$	seen
Γ_{2}	$\bar{D}^{* 0} D^{0}$	
Γ_{3}	$\pi^{+} \pi^{-} \eta_{C}(1 S)$	not seen
Γ_{4}	$\eta_{C} \eta^{0}$	not seen
Γ_{5}	$\eta_{C} \pi^{0}$	not seen
Γ_{6}	$K \bar{K}$	not seen
Γ_{7}	$\gamma \gamma$	seen
Γ_{8}	$\pi^{0} \chi_{C 1}$	

$\boldsymbol{X}(3915) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma($ total $)$

$\Gamma(\omega J / \psi) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$
$\Gamma_{1} \Gamma_{7} / \Gamma$ $\frac{\operatorname{VALUE~(eV)}}{54 \pm 9 \text { OUR AVERAGE }}$

DOCUMENT ID TECN COMMENT五
$52 \pm 10 \pm 3 \quad 59 \pm 10 \quad 5$ LEES \quad 12ADBABR $e^{+} e^{-} \rightarrow e^{+} e^{-} \omega J / \psi$ $61 \pm 17 \pm 8 \quad 49 \pm 15 \quad{ }^{5}$ UEHARA $\quad 10$ BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \omega J / \psi$ - - We do not use the following data for averages, fits, limits, etc. - - $18 \pm 5 \pm 2 \quad 49 \pm 15 \quad 6$ UEHARA $\quad 10$ BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} \omega J / \psi$ ${ }^{5}$ For $J^{P}=0^{+}$
${ }^{6}$ For $J^{P}=2^{+}$, ${ }^{6}$ For $J P=2^{+}$, helicity- 2

$\Gamma(K \bar{K}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$						$\Gamma_{6} \Gamma_{7} / \Gamma$
VALUE (eV)	CL\%	DOCUMENT		TECN	COMMENT	
<1.96	90	UEHARA	13	BELL	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$	

X (3915) BRANCHING RATIOS

$\Gamma(\omega J / \psi) / \Gamma_{\text {total }}$			
VALUE	DOCUMENT ID	TECN	COMMENT
seen	7 DEL-AMO-SA..10B	BABR	$B \rightarrow \omega J / \psi K$
seen	8 CHOI	BELL	$B \rightarrow \omega J / \psi K$

${ }^{7}$ DEL-AMO-SANCHEZ 10B reports $\mathrm{B}\left(B^{ \pm} \rightarrow X(3915) K^{ \pm}\right) \times \mathrm{B}(X(3915) \rightarrow J / \psi \omega)$ $=\left(3.0_{-0.6-0.3}^{+0.7}+0.5\right) \times 10^{-5}$ and $\mathrm{B}\left(B^{0} \rightarrow X(3915) K^{0}\right) \times \mathrm{B}(X(3915) \rightarrow J / \psi \omega)=$ $(2.1 \pm 0.9 \pm 0.3) \times 10^{-5}$.
${ }^{8}$ CHOI 05 reports $\mathrm{B}(B \rightarrow \dot{X}(3915) K) \times \mathrm{B}(X(3915) \rightarrow J / \psi \omega)=(7.1 \pm 1.3 \pm 3.1) \times 10^{-5}$.

${ }^{9}$ By combining the upper limit $\mathrm{B}(B \rightarrow X(3915) K) \times \mathrm{B}\left(X(3915) \rightarrow D^{* 0} \bar{D}^{0}\right)<0.67 \times$ 10^{-4} from AUSHEV 10 with the average of CHOI 05 and AUBERT 08w measurements $\mathrm{B}(B \rightarrow X(3915) K) \times \mathrm{B}(X(3915) \rightarrow \omega J / \psi)=(0.51 \pm 0.11) \times 10^{-4}$.
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}_{\boldsymbol{c}} \boldsymbol{\eta}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$V A L U E$
DOCUMENT ID
TECN
COMMENT
$B_{\mathbf{4}}+\boldsymbol{\Gamma}$
not seen $\quad 10$ VINOKUROVA 15 BELL $B^{+} \rightarrow K^{+} \eta_{C} \eta$
${ }^{10}$ VINOKUROVA 15 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} X(3915)^{0}\right) \times \mathrm{B}\left(X \rightarrow \eta_{C} \eta\right)<3.3 \times 10^{-5}$ at $90 \% \mathrm{CL}$.

${ }^{11}$ VINOKUROVA 15 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} X(3915)^{0}\right) \times \mathrm{B}\left(X \rightarrow \eta_{C} \pi^{0}\right)<1.8 \times 10^{-5}$ at $90 \% \mathrm{CL}$

$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$					Γ_{7} / Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
seen	59 ± 10	LEES	BABR	$e^{+} e^{-} \rightarrow$	
een		UEHARA	BELL	$10.6 \mathrm{e}^{+}$	

see
$\Gamma\left(\boldsymbol{\pi}^{\mathbf{0}} \chi_{\boldsymbol{c} \mathbf{1}}\right) / \boldsymbol{\Gamma}_{\text {total }}$ DVCUMENT ID_TECN COMMENT $\Gamma_{\mathbf{8}} / \boldsymbol{\Gamma}^{\text {DOCUMEN }}$
$\frac{\text { VALUE }}{\bullet \bullet} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { COT use the following }}$ data for averages, fits, limits, etc. • •
not seen $\quad 42 \pm 14 \quad 12$ BHARDWAJ 19 BELL $\quad B^{ \pm} \rightarrow \chi_{c 1} \pi^{0} K^{ \pm}$ ${ }^{12}$ BHARDWAJ 19 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} X(3915)\right) \times \mathrm{B}\left(X(3915) \rightarrow \chi_{c 1} \pi^{0}\right)<3.8 \times 10^{-5}$ at $90 \% \mathrm{CL}$. A signal significance 2.3 standard deviations.
$X(3915)$ REFERENCES

Meson Particle Listings

$\chi_{c 2}(3930), X(3940)$

$\chi_{C 2}(3930)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\gamma \gamma$	seen
Γ_{2}	$K \bar{K} \pi$	
Γ_{3}	$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	
Γ_{4}	$D \bar{D}$	seen
Γ_{5}	$D^{+} D^{-}$	seen
Γ_{6}	$D^{0} \bar{D}^{0}$	seen
Γ_{7}	$\pi^{+} \pi^{-} \eta_{C}(1 S)$	not seen
Γ_{8}	$K \bar{K}$	not seen

 $\frac{\operatorname{VALUE}(\mathrm{eV})}{<\mathbf{3 . 4}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { DEL-AMO-SA..11M }} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}}$

$\Gamma(D \bar{D}) \times \Gamma(\gamma \gamma) / \Gamma_{\text {total }}$

 $\frac{V A L U E(\mathrm{keV})}{\mathbf{0 . 2 1} \mathbf{0 . 0 4} \text { OUR AVERAGE }}$ $\overline{\mathbf{0 . 2 1} \pm 0.04 \text { OUR AVERAGE }}$ $0.24 \pm 0.05 \pm 0.04 \quad 76 \pm 17 \quad$ AUBERT \quad 10G BABR $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} D \bar{D}$ $0.18 \pm 0.05 \pm 0.03 \quad 64 \quad 3$ UEHARA 06 BELL $10.6 e^{+} e^{-} \rightarrow e^{+} e^{-} D \bar{D}$${ }^{3}$ Assuming $\mathrm{B}\left(D^{+} D^{-}\right)=0.89 \mathrm{~B}\left(D^{0} \bar{D}^{0}\right)$.

$\chi_{C 2}(3930)$ BRANCHING RATIOS
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{+} \boldsymbol{D}^{-}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{D}^{\mathbf{0}} \overline{\boldsymbol{D}}^{\mathbf{0}}\right)$

$\frac{V A L U E}{\mathbf{0 . 7 4} \pm \mathbf{0 . 4 3} \pm \mathbf{0 . 1 6}} \frac{\text { EVTS }}{64}$$\quad$| DOCUMENT ID |
| :--- |
| UEHARA |

$\chi_{c 2}(3930)$ REFERENCES

$X(3940)$ DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	
Γ_{1}	$D \bar{D}^{*}+$ c.c.	seen
Γ_{2}	$D \bar{D}^{2}$	not seen
Γ_{3}	$J / \psi \omega$	not seen

$X(3940)$ BRANCHING RATIOS

- - We do not use the following data for averages, fits, limits, etc. - - -
$>0.45 \quad 90 \quad 25 \quad 1,2 \mathrm{ABE} \quad 07 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow J / \psi X$
${ }^{1}$ For X (3940) decaying to final states with more than two tracks.
${ }^{2}$ PAKHLOV 08 finds that the inclusive peak near $3940 \mathrm{MeV} / \mathrm{c}^{2}$ may consist of several states.
$\Gamma(D \bar{D}) / \Gamma_{\text {total }}$ C1\% Γ_{2} / Γ
$\frac{\text { VALUE }}{\text { CL\% }} \frac{\text { DOCUMENT ID }}{\text { TECN }}$ COMMENT
• • We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$\begin{array}{llllll}<0.41 & 90 & 1,2 & \mathrm{ABE} & 07 & \mathrm{BELL}\end{array} e^{+} e^{-} \rightarrow \mathrm{J} / \psi X$
${ }^{1}$ For X (3940) decaying to final states with more than two tracks.
${ }^{2}$ PAKHLOV 08 finds that the inclusive peak near $3940 \mathrm{MeV} / \mathrm{c}^{2}$ may consist of several states.
$\boldsymbol{\Gamma}(\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\omega}) / \boldsymbol{\Gamma}_{\text {total }}$ CL\% DOCUMENT ID TECN COMMENT $\quad \boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}^{\text {VALUE }}$
VALUE CL\% DOCUMENT ID — TECN COMMENT
$\begin{array}{lccccc}\text { • - We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \bullet \\ <0.26 & 90 & 1,2 & \mathrm{ABE} & 07 & \mathrm{BELL} \\ e^{+} e^{-} \rightarrow & J / \psi X\end{array}$
${ }^{1}$ For X (3940) decaying to final states with more than two tracks.
2 PAKHLOV 08 finds that the inclusive peak near $3940 \mathrm{MeV} / \mathrm{c}^{2}$ may consist of several states.

$\boldsymbol{X (3 9 4 0)}$) REFERENCES				
PAKHLOV	08	PRL 100 202001	P. Pakhlov et al.	
PBE KRL 98082001 K. Abe et al.	(BELLE Collab.) (BELLE Collab.)			

$X(4020)^{ \pm}$DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$h_{C}(1 P) \pi$	seen
Γ_{2}	$D^{*} \bar{D}^{*}$	seen
Γ_{3}	$D \bar{D}^{*}+$ c.c.	not seen
Γ_{4}	$\eta_{C} \pi^{+} \pi^{-}$	not seen
Γ_{5}	$\eta_{C}(1 S) \rho(770)^{ \pm}$	
Γ_{6}	$J / \psi(1 S) \pi^{ \pm}$	not seen

$X(4020)^{ \pm}$BRANCHING RATIOS
$\boldsymbol{\Gamma}\left(\boldsymbol{h}_{\boldsymbol{c}}(\mathbf{1 P}) \pi\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE
$\boldsymbol{\Gamma}\left(\boldsymbol{D}^{*} \bar{D}^{*}\right) / \Gamma_{\text {total }}$
VALUE
${ }^{1}$ Neglecting interference between the $X(4020)$ and non-resonant continuum.
$\boldsymbol{\Gamma}\left(\boldsymbol{D} \overline{\boldsymbol{D}}^{*}+\boldsymbol{c} . \boldsymbol{c}.\right) / \boldsymbol{\Gamma}_{\text {total }}$
not seen $\frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 15 \mathrm{AC}} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { CHG }}{ \pm} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp}}$
$\boldsymbol{\Gamma}\left(\boldsymbol{\eta}_{\boldsymbol{c}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }}{\text { not seen }} \quad \underset{1}{\text { DOCUMENT ID }}$ VINOKUROVA 15 $\frac{\text { TECN }}{\text { BELL }} \frac{\Gamma_{\mathbf{4}} / \boldsymbol{\Gamma}}{B^{+} \rightarrow K^{+} \eta_{C} \pi^{+} \pi^{-}}$
${ }^{1}$ VINOKUROVA 15 reports $\mathrm{B}\left(B^{+} \rightarrow K^{+} X(4020)^{0}\right) \times \mathrm{B}\left(X \rightarrow \eta_{C} \pi^{+} \pi^{-}\right)<1.6 \times$ 10^{-5} at $90 \% \mathrm{CL}$.
 ${ }^{1}$ Using $e^{+} e^{-} \rightarrow \pi^{\mp}\left(Z_{C}(4020)^{ \pm} \rightarrow h_{C}(1 P) \pi^{ \pm}\right)$cross section at 4.23, 4.26 and 4.36
GeV from ABLIKIM $13 x$.

$\Gamma\left(J / \psi(1 S) \pi^{ \pm \pm}\right) / \Gamma_{\text {total }}$	DOCUMENT ID		TECN	COMMENT	Γ_{6} / Γ	
not seen	${ }^{1}$ ABLIKIM	17」		BES3	$e^{+} e^{-} \rightarrow$	- J/ ψ
${ }^{1}$ From Partial Wave Ana	ming $J^{P}=1$					

$X(4020) \pm$ REFERENCES				
ABLIKIM	19BC	PR D100 111102	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17J	PRL 119072001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15AA	PRL 115182002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15AC	PR D92 092006	M. Ablikim et al.	(BESIII Collab.)
VINOKUROVA	15	JHEP 1506132	A. Vinokurova et al.	(BELLE Collab.)
Also		JHEP 1702088 (errat.)	A. Vinokurava et al.	(BELLE Collab.)
ABLIKIM	14 B	PRL 112132001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	14 P	PRL 113212002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13X	PRL 111242001	M. Ablikim et al.	(BESIII Collab.)

$\psi(4040) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
$\boldsymbol{\psi}(\mathbf{4 0 4 0})$ MASS

VALUE (MeV)	DOCUMENT ID TECN		COMMENT		
4039 ± 1 OUR ESTIMATE					
4039.6土 4.3			${ }^{1}$ ABLIKIM	08D BES	\rightarrow hadrons
- - We do not use the following data for averages, fits, limits, etc. - -					
4034 ± 6	${ }^{2} \mathrm{MO}$	10 RVU	$e^{+} e^{-} \rightarrow$ hadrons		
4037 ± 2	${ }^{3}$ SETH	05A RVUE	$e^{-} \rightarrow$ hadrons		
4040 ± 1	${ }^{4}$ SETH	05A RVUE	$e^{+} e^{-} \rightarrow$ hadrons		
4040 ± 10	BRANDELIK	78C DASP	$+{ }^{-}$		
${ }^{1}$ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(130 \pm 46)^{\circ}$.					
${ }^{2}$ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects.					
${ }^{3}$ From a fit to Crystal Ball (OSTERHELD 86) data.					
${ }^{4}$ From a fit to BES (BAI 02C) data.					

$\psi(4040)$ WIDTH
$\frac{V A L U E(\mathrm{MeV})}{\mathbf{8 0} \mathbf{\pm 1 0} \text { OUR ESTIMATE }}$
84.5 ± 12.3
DOCUMENT ID
TECN
COMMENT
${ }^{5}$ ABLIKIM 08D BES2 $e^{+} e^{-} \rightarrow$ hadrons

- - We do not use the following data for averages, fits, limits, etc. - - -
$87 \pm 11 \quad{ }^{6} \mathrm{MO} \quad 10$ RVUE $e^{+} e^{-} \rightarrow$ hadrons
$85 \pm 10 \quad 7$ SETH 05A RVUE $e^{+} e^{-} \rightarrow$ hadrons
$\pm 6 \quad 8$ SETH 05A RVUE $e^{+} e^{-} \rightarrow$ hadrons
$52 \pm 10 \quad$ BRANDELIK 78 C DASP $e^{+} e^{-}$
${ }^{5}$ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(130 \pm 46)^{\circ}$.
${ }^{6}$ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects
${ }^{7}$ From a fit to Crystal Ball (OSTERHELD 86) data
${ }^{8}$ From a fit to BES (BAI 02C) data.

Meson Particle Listings
$\psi(4040)$

－－We do not use the following data for averages，fits，limits，etc．－－－
$<2 \quad 90 \quad$ COAN 06 CLEO $3.97-4.06 e^{+} e^{-} \rightarrow$ hadrons
${ }^{22}$ ABLIKIM 12 K measure $\sigma\left(e^{+} e^{-} \rightarrow J / \psi \pi^{0}\right)<1.6 \mathrm{pb}$ ．They assume the $\eta J / \psi$ fully originates from $\psi(4040)$ decays．
$\Gamma\left(J / \psi \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{<\mathbf{2}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { COAN }} 06 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{3.97-4.06 e^{+} e^{-} \rightarrow \text { hadrons }}$
$\Gamma\left(\chi_{c 1} \gamma\right) \Gamma_{\text {total }} \quad \Gamma_{22} / \Gamma$

VALUE（units 10^{-3} ）CL\％DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．•－－
$<11 \quad 90 \quad$ COAN 06 CLEO $3.97-4.06 e^{+} e^{-} \rightarrow$ hadrons
$\Gamma\left(\chi_{c 2} \gamma\right) / \Gamma_{\text {total }}$
VALUE（units 10^{-3} ）CL\％DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－
$<17 \quad 90 \quad$ COAN 06 CLEO 3．97－4．06 $e^{+} e^{-} \rightarrow$ hadrons
$\Gamma\left(\chi_{c 1} \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{24} / \Gamma$
$\frac{\text { VALUE（units } 10^{-3} \text { ）}}{<\mathbf{1 1}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { COAN }} 06 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{3.97-4.06 e^{+} e^{-} \rightarrow \text { hadrons }}$
$\boldsymbol{\Gamma}\left(\boldsymbol{\chi} \boldsymbol{c} \mathbf{2}^{\pi^{+}} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\left.V A L U E \text {（units } 10^{-3}\right)}{20} \frac{C L \%}{\text { DOCUMENT ID }}$
＜32 $\frac{1}{90}$ COAN 06 CLEO $\frac{1}{3.97-4.06 e^{+} e^{-} \rightarrow \text { hadrons }}$
$\Gamma\left(h_{c}(1 P) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
「26／Г
$\frac{\operatorname{VALUE~(units~} 10^{-3} \text { ）}}{\mathbf{< 3}} \frac{C L \%}{90} \quad 23 \frac{\text { DOCUMENT ID }}{\text { PEDLAR } 11} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow h_{C}(1 P) \pi^{+} \pi^{-}}$
${ }^{23}$ From several values of \sqrt{s} near the peak of the $\psi(4040)$ ，PEDLAR 11 measures $\sigma\left(e^{+} e^{-} \rightarrow h_{C}(1 P) \pi^{+} \pi^{-}\right)=1.0 \pm 8.0 \pm 5.4 \pm 0.2 \mathrm{pb}$ ，where the errors are statistical， systematic，and due to uncertainty in $\mathrm{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{C}(1 P)\right)$ ，respectively．

$X(4050)^{ \pm}$

${ }_{1}\left(J^{P C}\right)=1^{-}\left(?^{?+}\right)$
I，G，C need confirmation．
OMITTED FROM SUMMARY TABLE
Properties incompatible with a $q \bar{q}$ structure（exotic state）．See the review on non $-q \bar{q}$ states．

Observed by MIZUK 08 in the $\pi^{+} \chi_{C 1}(1 P)$ invariant mass distribu－ tion in $\bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$ decays．Not seen by LEES 12B in this same mode after accounting for $K \pi$ resonant mass and angular structure．

$x(4050)^{ \pm}$MASS

VALUE（MeV）
DOCUMENT ID TECN COMMENT
${ }^{1}$ MIZUK 08 BELL $\quad \bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$
$4051 \pm 14 \pm 20$

[^132]Meson Particle Listings
$X(4050)^{ \pm}, X(4055)^{ \pm}, X(4100)^{ \pm}$

$X(4050)^{ \pm}$WIDTH

VALUE (MeV)	DOCUMENT ID	TECN COMMENT
$82_{-17}^{+21}+47$	${ }^{1}$ MIZUK 08	BELL $\quad \bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$
${ }^{1}$ From a Dalitz plot analysis with two Breit-Wigner amplitudes.		

$X(4050)^{ \pm}$DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{+} \chi_{c 1}(1 P)$	seen
Γ_{2}	$\pi^{ \pm} \psi(3770)$	not seen

$X(4050)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(\pi^{ \pm} \psi(3770)\right) / \Gamma_{\text {total }}$				Γ_{2} / Γ
VALUE	DOCUMENT ID TECN		COMMENT	
not seen	1 ABLIKIM	19AR BES3	$e^{+} e^{-}$	$D \bar{D}$
${ }^{1}$ From a measurement	$\rightarrow \pi^{+} \pi^{-}$D) between	$\sqrt{s}=4.08$	

$X(4050)^{ \pm}$REFERENCES

ABLIKIM	19AR PR D100 032005	M. Ablikim et al. LEES	12B PR D85 052003
MIZUK	P8	PR D78 072004	(BESIII Collab.) R. Mizuk et al.

$X(4055)^{ \pm}$
 $I^{G}\left(J^{P C}\right)=1^{+}\left(?^{?-}\right)$
 I, G, C need confirmation.

OMITTED FROM SUMMARY TABLE
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non- $q \bar{q}$ states.

Needs confirmation. Seen by WANG 15A in the $\psi(2 S) \pi^{+}$invariant mass distribution in $\psi(4360) \rightarrow \psi(2 S) \pi^{+} \pi^{-}$decay.

$X(4055)^{ \pm}$MASS

VALUE (MeV)

$4054 \pm 3 \pm 1$
\qquad
DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

4039.3 ± 6.0	2 ABLIKIM	18 K	BES3	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \psi(2 S)$
4032.1 ± 2.4	3 ABLIKIM	17 V	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$

${ }^{1}$ Statistical significance of 3.5σ.
${ }^{2}$ Statistical error only, with significance of 5.9σ (from a fit with a $19 \% \mathrm{CL}$). Identified as
the same structure observed in ABLIKIM $17 \vee$ in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ decays.
${ }^{3}$ Statistical error only, with significance of 9.2σ. From an unbinned maximum likelihood fit of the $\pi^{+} \pi^{-} \psi(2 S)$ Dalitz plot from data collected at $\sqrt{s}=4.416 \mathrm{GeV}$ for a $J^{C}=$
1^{+}state. The fit does not match the detailed structure of the data, having a C.L. of only 8%.

$x(4055)^{ \pm}$WIDTH

- - We do not use the following data for averages, fits, limits, etc. - -
$31.9 \pm 14.8 \quad{ }^{2}$ ABLIKIM $\quad 18 \mathrm{~K}$ BES3 $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \psi(2 S)$
$26.1 \pm 5.3 \quad 17 \mathrm{~V}$ BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
1 Statistical significance of 3.5σ.
2 Statistical error only, with significance of 5.9σ (from a fit with a $19 \% \mathrm{CL}$). Identified as
the same structure observed in ABLIKIM 17 V in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ decays.
3 Statistical error only, with significance of 9.2σ. From an unbinned maximum likelihood
fit of the $\pi^{+} \pi^{-} \psi(2 S)$ Dalitz plot from data collected at $\sqrt{s}=4.416 \mathrm{GeV}$ for a $J C=$
1^{+}state. The fit does not match the detailed structure of the data, having a C.L. of
only 8%.

$X(4055)^{ \pm}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{+} \psi(2 S)$	seen
Γ_{2}	$\pi^{ \pm} \psi(3770)$	not seen

$X(4055)^{ \pm}$BRANCHING RATIOS

$X(4055)^{ \pm}$REFERENCES

ABLIKIM	19AR	PR D100 032005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18K	PR D97 052001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 V	PR D96 032004	M. Abikim et al.	(BESIII Collab.)
AIso		PR D99 019903 (errat.)	M. Ablikim et al.	(BESIII Collab.)
WANG	15A.	PR D91 112007	X. Wang et al.	

OMITTED FROM SUMMARY TABLE
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non $-q \bar{q}$ states.

Reported by AAIJ 18AN in the $\eta_{C}(1 S) \pi^{-}$invariant mass distribution in $B^{0} \rightarrow \eta_{C}(1 S) K^{+} \pi^{-}$decays with a significance of $3.4 \sigma . J^{P}=$ 0^{+}or 1^{-}assignment consistent with data.

$X(4100)^{ \pm}$MASS			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
$4096 \pm 20 \pm 18$	AAIJ	18an LHCB	$B^{0} \rightarrow \eta_{C}(1 S) K^{+} \pi^{-}$
$X(4100){ }^{ \pm}$WIDTH			
VALUE (MeV)	DOCUMENT ID TECN		COMMENT
$152 \pm 58_{-35}^{+60}$	AAIJ	18an LHCB	$B^{0} \rightarrow \eta_{C}(1 S) K^{+} \pi^{-}$

$X(4100)^{ \pm}$DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\eta_{C}(1 S) \pi^{-}$	seen
Γ_{2}	$\pi^{ \pm} \psi(3770)$	not seen

$X(4100)^{ \pm}$BRANCHING RATIOS

$\Gamma\left(\eta_{c}(1 S) \pi^{-}\right) / \Gamma_{\text {total }}$	Γ_{1} / Γ	
VALUE	DOCUMENT ID TECN	COMMENT
seen	${ }^{1}$ AAIJ 18an LHCB	$B^{0} \rightarrow \eta_{C}(1 S) K^{+} \pi^{-}$
${ }^{1}$ AAIJ $18 a n$ quotes a $\left.1.1_{-1.1}^{+1.2}\right) \%$ from an	$\text { for } B^{0} \rightarrow X(4100)^{-} K^{+} \rightarrow$ analysis.	$\eta_{C}(1 S) \pi^{-} K^{+} \text {of }(3.3 \pm$

$\begin{aligned} & \Gamma\left(\pi^{ \pm} \psi(3770)\right) / \Gamma_{\text {total }} \\ & \text { VALUE } \end{aligned}$	$\Gamma 2 / \Gamma$			
	DOCUMENT ID	TECN	COMMENT	
not seen	${ }^{1}$ ABLIKIM	19ar beS3	+ e^{-}	
${ }^{1}$ From a measurement	$\rightarrow \pi^{+} \pi^{-}$	between	$\sqrt{s}=4.08$	

$X(4100)^{ \pm}$REFERENCES

ABLIKIM	19AR PR D100 03005 AAIJ	M. Ablikim et al. R. Aadij et al.	(RESIII Collab.) (LHCb Collab.)

```
\chi}\mp@subsup{c}{c1}{}(4140
was \(X(4140)\)
This state shows properties different from a conventional \(q \bar{q}\) state. A candidate for an exotic structure. See the review on non \(-q \bar{q}\) states.
Seen by AALTONEN 09Ah, ABAZOV 14A, CHATRCHYAN 14M, AAIJ 17C in \(B^{+} \rightarrow \chi_{C 1} K^{+}, \chi_{C 1} \rightarrow J / \psi \phi\), and by ABAZOV 15 M separately in both prompt ( \(4.7 \sigma\) ) and non-prompt ( \(5.6 \sigma\) ) production in \(p \bar{p} \rightarrow J / \psi \phi+\) anything. Not seen by SHEN 10 in \(\gamma \gamma \rightarrow\) \(J / \psi \phi\) and ABLIKIM 15 in \(e^{+} e^{-} \rightarrow \gamma J / \psi \phi\) at \(\sqrt{s}=4.23,4.26\), 4.36 GeV .
```


$\chi_{c 1}(4140)$ MASS

```
\(\frac{\text { VALUE }(\mathrm{MeV})}{\text { EVTS }} \quad\) DOCUMENT ID TECN COMMENT
\(4146.8 \pm 2.4\) OUR AVERAGE
\(4146.5 \pm 4.5_{-2.8}^{+4.6} 4289\)
includes scale factor of 1.1
\(4143.4_{-3.0}^{+2.9} \pm 0.6 \quad 19 \quad{ }^{2}\) AALTONEN 17 CDF \(B^{+} \rightarrow J / \psi \phi K^{+}\)
\(4152.5 \pm 1.7_{-5.4}^{+6.2} \quad 616 \quad{ }^{3}\) ABAZOV \(\quad 15 \mathrm{M}\) D0 \(\quad p \bar{p} \rightarrow J / \psi \phi+\) anything
\(4159.0 \pm 4.3 \pm 6.6 \quad 52 \quad{ }^{4}\) ABAZOV \(14 \mathrm{~A} \quad\) DO \(\quad B^{+} \rightarrow J / \psi \phi K^{+}\)
\(4148.0 \pm 2.4 \pm 6.3 \quad 0.3 \mathrm{k} \quad{ }^{5}\) CHATRCHYAN 14M CMS \(\quad B^{+} \rightarrow J / \psi \phi K^{+}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(4143.0 \pm 2.9 \pm 1.2 \quad 14 \quad 6,7\) AALTONEN 09Ан CDF \(\quad B^{+} \rightarrow J / \psi \phi K^{+}\)
\({ }^{1}\) From an amplitude analysis of the decay \(B^{+} \rightarrow J / \psi \phi K^{+}\)with a significance of \(8.4 \sigma\).
\({ }^{2}\) Statistical significance of more than \(5 \sigma\).
\({ }^{3}\) Statistical significance of more than \(6 \sigma\).
\({ }^{4}\) Statistical significance of \(3.1 \sigma\).
\({ }^{5}\) From a fit assuming an \(S\)-wave relativistic Breit-Wigner shape above a three-body phase-
space non-resonant component with statistical significance of more than \(5 \sigma\).
\({ }_{7}\) Statistical significance of \(3.8 \sigma\).
\({ }^{7}\) Superseded by AALTONEN 17.
```


$\chi_{c 1}(4140)$ WIDTH

VALUE (MeV) \qquad EVTS \qquad T ECN COMMENT $\mathbf{2 2} \mathbf{\pm} \mathbf{8}$ OUR AVERAGE Error includes scale factor of 1.3 . See the ideogram below.

$83 \pm 21{ }_{-14}^{+21}$	4289	${ }^{1}$ AAIJ	17C LHCB	$B^{+} \rightarrow J / \psi \phi K^{+}$
$15.3_{-6.1}^{+10.4} \pm 2.5$	19	${ }^{2}$ AALTONEN	17 CDF	$B^{+} \rightarrow J / \psi \phi K^{+}$
$16.3 \pm 5.6 \pm 11.4$	616	${ }^{3}$ ABAZOV	15m Do	$p \bar{p} \rightarrow J / \psi \phi+$ anything
$20 \pm 13{ }_{-}^{+3}$	52	${ }^{4}$ abazov	14A D0	$B^{+} \rightarrow J / \psi \phi K^{+}$
$28{ }^{+15} \pm 19$	0.3 k	${ }^{5}$ CHATRCH	4M CMS	$B^{+} \rightarrow \mathrm{J} / \psi \phi K^{+}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$11.7_{-}^{+}{ }_{5.0}^{8.3} \pm 3.7 \quad 14 \quad 6,7$ AALTONEN \quad 09Ан CDF $\quad B^{+} \rightarrow J / \psi \phi K^{+}$

[^133]
$\chi_{C 1}(4140)$ DECAY MODES

$\chi_{c 1}(4140)$ BRANCHING RATIOS

${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of 8.4σ.
${ }^{2}$ Statistical significance of more than 6σ.
${ }^{3}$ ABAZOV 14A reports $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(4140) K^{+} \rightarrow J / \psi \phi K^{+}\right) / \mathrm{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)$ $=(19 \pm 7 \pm 4) \%$ with 3.1σ signficance.
${ }^{4}$ From a fit assuming an S-wave relativistic Breit-Wigner shape above a three-body phase-
space non-resonant component with statistical significance of more than 5σ.
${ }^{5}$ Statistical significance of 3.8σ.
${ }^{6}$ Reported $\sigma\left(e^{+} e^{-} \rightarrow \gamma \chi_{c 1}(4140)\right) \cdot \mathbf{B}\left(\chi_{c 1}(4140) \rightarrow J / \psi \phi\right)<0.35,0.28$, and 0.33 pb at $4.23,4.26$, and 4.36 GeV , respectively, at $90 \% \mathrm{CL}$.
${ }^{7}$ Reported $\mathrm{B}\left(B^{+} \rightarrow \chi_{C 1}(4140) K^{+}\right) \cdot \mathrm{B}\left(\chi_{C 1}(4140) \rightarrow J / \psi \phi\right) / \mathrm{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)<$ 0.07 at 90% CL.
$\boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$

VALUE \quad| DOCUMENT ID |
| :--- |
| not seen |

$\chi_{c 1}(4140)$ REFERENCES

AAIJ	17C	PRL 118022003	R. Aaij et al.	(LHCb Collab.) JP
Also		PR D95 012002	R. Aaij et al.	(LHCb Collab.)
AALTONEN	17	MPL A32 1750139	T. Altonen et al.	(CDF Collab.)
ABAZOV	15M	PRL 115232001	V.M. Abazov et al.	(D0 Collab.)
ABLIKIM	15	PR D91 032002	M. Ablikim et al.	(BESIII Collab.)
ABAZOV	14A	PR D89 012004	V.M. Abazov et al.	(D0 Collab.)
Chatrchyan	14M	PL B734 261	S. Chatrchyan et al.	(CMS Collab.)
AAIJ	12AA	PR D85 091103	R. Aaij et al.	(LHCb Collab.)
SHEN	10	PRL 104112004	C.P. Shen et al.	(BELLE Collab.)
AALTONEN	09AH	PRL 102242002	T. Aaltonen et al.	(CDF Collab.)
$\psi(41$	()		${ }^{G}\left(J^{P C}\right.$	

$\psi(4160)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
4191 ± 5 OUR AVERAGE			
$4191+9$	AAIJ	13BC LHCB	$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$
4191.7 ± 6.5	${ }^{1}$ ABLIKIM	08D BES2	$e^{+} e^{-} \rightarrow$ hadrons
- - We do not use the following data for averages, fits, limits, etc. - -			
4193 ± 7	2 MO	10 RVUE	$e^{+} e^{-} \rightarrow$ hadrons
4151 ± 4	3 SETH	05A RVUE	$e^{+} e^{-} \rightarrow$ hadrons
4155 ± 5	${ }^{4}$ SETH	05A RVUE	$e^{+} e^{-} \rightarrow$ hadrons
4159 ± 20	BRANDELIK	78C DASP	$e^{+} e^{-}$

${ }^{1}$ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances. region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040)$
Phase angle fixed in the fit to $\delta=(293 \pm 57)^{\circ}$.
${ }^{2}$ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy $3.8-4.8 \mathrm{GeV}$ covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects.
${ }^{3}$ From a fit to Crystal Ball (OSTERHELD 86) data.
${ }^{4}$ From a fit to BES (BAI 02C) data.

Meson Particle Listings
$\psi(4160)$

$\psi(4160)$ DECAY MODES

Due to the complexity of the $c \bar{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$		Confidence level
Γ_{1}	$e^{+} e^{-}$	$(6.9 \pm 3.3) \times 10^{-6}$		
Γ_{2}	$\mu^{+} \mu^{-}$	seen		
$\Gamma 3$	$D \bar{D}$	seen		
Γ_{4}	$D^{0} \bar{D}^{0}$	seen		
Γ_{5}	$D^{+} D^{-}$	seen		
Γ_{6}	$D^{*} \bar{D}+$ c.c.	seen		
Γ_{7}	$D^{*}(2007)^{0} \bar{D}^{0}+$ c.c.	seen		
Γ_{8}	$D^{*}(2010)^{+} D^{-}+$c.c.	seen		
Γ_{9}	$D^{*} \bar{D}^{*}$	seen		
Γ_{10}	$D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}$	seen		
Γ_{11}	$D^{*}(2010)^{+} D^{*}(2010)^{-}$	seen		
Γ_{12}	$\begin{gathered} D^{0} D^{-} \pi^{+}+\text {c.c. }(\text { excl. } \\ D^{*}(2007)^{0} \bar{D}^{0}+\text { c.c., } \\ \left.D^{*}(2010)^{+} D^{-}+\text {c.c. }\right) \end{gathered}$	not seen		
Γ_{13}	$D \bar{D}^{*} \pi+$ c.c. (excl. $\left.D^{*} \bar{D}^{*}\right)$	seen		
Γ_{14}	$\begin{aligned} & D^{0} D^{*-} \pi^{+}+\text {c.c. }(\text { excl. } \\ & \left.D^{*}(2010)^{+} D^{*}(2010)^{-}\right) \end{aligned}$	not seen		
Γ_{15}	$D_{s}^{+} D_{s}^{-}$	not seen		
Γ_{16}	$D_{s}^{*+} D_{s}^{-}+$c.c.	seen		
Γ_{17}	$J / \psi \pi^{+} \pi^{-}$	<3	$\times 10^{-3}$	90\%
Γ_{18}	$J / \psi \pi^{0} \pi^{0}$	<3	$\times 10^{-3}$	90\%
Γ_{19}	$J / \psi K^{+} K^{-}$	<2	$\times 10^{-3}$	90\%
Γ_{20}	$J / \psi \eta$	<8	$\times 10^{-3}$	90\%
$\Gamma 21$	$J / \psi \pi^{0}$	<1	$\times 10^{-3}$	90\%
Γ_{22}	$J / \psi \eta^{\prime}$	<5	$\times 10^{-3}$	90\%
$\Gamma 23$	$J / \psi \pi^{+} \pi^{-} \pi^{0}$	<1	$\times 10^{-3}$	90\%
Γ_{24}	$\psi(2 S) \pi^{+} \pi^{-}$	<4	$\times 10^{-3}$	90\%
Γ_{25}	$\chi_{c 1} \gamma$	<5	$\times 10^{-3}$	90\%
Γ_{26}	$\chi_{c 2} \gamma$	< 1.3	\%	90\%
Γ_{27}	$\chi_{c 1} \pi^{+} \pi^{-} \pi^{0}$	<2	$\times 10^{-3}$	90\%
Γ_{28}	$\chi_{c 2} \pi^{+} \pi^{-} \pi^{0}$	<8	$\times 10^{-3}$	90\%
Γ_{29}	$h_{C}(1 P) \pi^{+} \pi^{-}$	<5	$\times 10^{-3}$	90\%
Γ_{30}	$h_{C}(1 P) \pi^{0} \pi^{0}$	<2	$\times 10^{-3}$	90\%
Γ_{31}	$h_{c}(1 P) \eta$	<2	$\times 10^{-3}$	90\%
$\Gamma 32$	$h_{C}(1 P) \pi^{0}$	<4	$\times 10^{-4}$	90\%
Γ_{33}	$\phi \pi^{+} \pi^{-}$	<2	$\times 10^{-3}$	90\%
$\Gamma 34$	$\gamma \chi_{c 1}(3872) \rightarrow \gamma J / \psi \pi^{+} \pi^{-}$	< 6.8	$\times 10^{-5}$	90\%
Γ_{35}	$\gamma X(3915) \rightarrow \gamma J / \psi \pi^{+} \pi^{-}$	<1.36	$\times 10^{-4}$	90\%
Γ_{36}	$\gamma X(3930) \rightarrow \gamma J / \psi \pi^{+} \pi^{-}$	< 1.18	$\times 10^{-4}$	90\%
Γ_{37}	$\gamma X(3940) \rightarrow \gamma J / \psi \pi^{+} \pi^{-}$	<1.47	$\times 10^{-4}$	90\%
Γ_{38}	$\gamma \chi_{c 1}(3872) \rightarrow \gamma \gamma J / \psi$	<1.05	$\times 10^{-4}$	90\%
$\Gamma 39$	$\gamma X(3915) \rightarrow \gamma \gamma J / \psi$	<1.26	$\times 10^{-4}$	90\%
Γ_{40}	$\gamma X(3930) \rightarrow \gamma \gamma J / \psi$	< 8.8	$\times 10^{-5}$	90\%
Γ_{41}	$\gamma X(3940) \rightarrow \gamma \gamma J / \psi$	<1.79	$\times 10^{-4}$	90\%
Γ_{42}	$K^{+} K^{-}$			
Γ_{43}	$K_{S}^{0} K^{ \pm} \pi^{\mp}$			

$\psi(4160)$ PARTIAL WIDTHS

$\psi(4160) \Gamma(\mathrm{i}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$

${ }^{1}$ Solution I of the fit including the $\psi(4160)$ with mass $4191 \pm 5 \mathrm{MeV}$ and width 70 ± 10 MeV from PDG 16 and the $\psi(4230)$ with mass $4219.6 \pm 3.3 \pm 5.1 \mathrm{MeV}$ and width $56.0 \pm 3.6 \pm 6.9 \mathrm{MeV}$ from GAO 17.
${ }^{2}$ Solution II of the fit including the $\psi(4160)$ with mass $4191 \pm 5 \mathrm{MeV}$ and width 70 ± 10 MeV from PDG 16 and the $\psi(4230)$ with mass $4219.6 \pm 3.3 \pm 5.1 \mathrm{MeV}$ and width $56.0 \pm 3.6 \pm 6.9 \mathrm{MeV}$ from GAO 17.

$\psi(4160) \Gamma(i) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma^{2}$ (total)	
$\Gamma(J / \psi \eta) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$	$\Gamma_{20} / \Gamma \times \Gamma_{\mathbf{1}} / \Gamma$

VALUE (units 10^{-8}) DOCUMENT ID TECN COMMENT

• \bullet We do not use the following data for averages, fits, limits, etc.	• \bullet	
$2.8 \pm 0.9 \pm 0.9$	WANG	13B BELL $e^{+} e^{-} \rightarrow J / \psi \eta \gamma$
$12.8 \pm 1.7 \pm 2.0$		WANG

2 WANG 13B BELL $e^{+} e^{-} \rightarrow J / \psi \eta \gamma$
${ }^{1}$ Solution I of two equivalent solutions in a fit using two interfering resonances. Mass and width fixed at 4153 MeV and 103 MeV , respectively.
${ }^{2}$ Solution II of two equivalent solutions in a fit using two interfering resonances. Mass and width fixed at 4153 MeV and 103 MeV , respectively.

$\psi(4160)$ BRANCHING RATIOS

$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }}$		Γ_{4} / Γ				
value	DOCUMENT ID	TECN COMMENT				
seen	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-}$	$D^{0} \bar{D}^{0}$		
seen	PAKHLOVA 08	BELL	$e^{+} e^{-}$	$\rightarrow D^{0} \bar{D}^{0} \gamma$		
- - We do not use the following data for averages, fits, limits, etc. - -						
not seen	AUBERT 09	$\operatorname{BABR} e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \gamma$				
$\Gamma\left(D^{+} D^{-}\right) / \Gamma_{\text {total }}$		Γ_{5} / Γ				
VALUE	DOCUMENT ID	TECN	COMMENT			
seen	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-} \rightarrow D^{+} D^{-}$$e^{+} e^{-} \rightarrow D^{+} D^{-} \gamma$			
seen	PAKHLOVA 08	BELL				
- - We do not use	data for averages, fits,	limits,				
not seen	AUBERT 09m	BABR $e^{+} e^{-} \rightarrow D^{+} D^{-} \gamma$				
$\Gamma\left(D^{*}(2007)^{0} \bar{D}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$		TECN	Γ_{7} / Γ			
VALUE	DOCUMENT ID		COMMENT			
seen	AUBERT 09M	BABR	$e^{+} e^{-}-$	$D^{* 0} \bar{D}^{0} \gamma$		
seen	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-}$	$\rightarrow D^{* 0} \bar{D}^{0}$		
$\Gamma\left(D^{*}(2010)+D^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$		TECN	Γ_{8} / Γ			
VALUE	DOCUMENT ID		COMMENT			
seen	${ }^{1}$ ZHUKOVA 18	BELL	$e^{+} e^{-} \rightarrow D^{*+} D^{-} \gamma$			
seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow D^{*+} D^{-} \gamma$			
seen	CRONIN-HEN.. 09	CLEO $e^{+} e^{-} \rightarrow D^{*+} D^{-}$				
- - We do not use the following data for averages, fits, limits, etc. - . -						
seen	PAKHLOVA 07	BELL $e^{+} e^{-} \rightarrow D^{*+} D^{-} \gamma$				
1 Supersedes PAKHLOVA 07.						
$\Gamma\left(D^{*} \bar{D}+\right.$ c.c. $\left.^{\prime}\right) / \Gamma$		TECN	Γ_{6} / Γ_{9}			
VALUE	DOCUMENT ID		COMMENT			
$0.34 \pm 0.14 \pm 0.05$	AUBERT 09m	BABR	$e^{+} e^{-}$	$\gamma D^{(*)} \bar{D}^{(*)}$		
$\Gamma\left(D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}\right) / \Gamma_{\text {total }}$		Γ_{10} / Γ				
VALUE	DOCUMENT ID	TECN	COMMENT			
seen	CRONIN-HEN.. 09	$\begin{aligned} & \text { BABR } e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{* 0} \gamma \\ & \text { CLEO } e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{* 0} \end{aligned}$				
seen						
$\Gamma\left(D^{*}(2010)+D^{*}(2010)^{-}\right) / \Gamma_{\text {total }}$		Γ_{11} / Γ				
VALUE	DOCUMENT ID	TECN	COMMENT			
seen	1 ZHUKOVA 18	BELL BABR	$e^{+} e^{-} \rightarrow D^{*+} D^{*-} \gamma$			
seen	AUBERT 09m					
seen	CRONIN-HEN.. 09	$\text { CLEO } e^{+} e^{-} \rightarrow D^{*+} D^{*-}$				
- - We do not use the following data for averages, fits, limits, etc. - • •	data for averages, fits, limits, etc. - - -					
seen	PAKHLOVA 07	BELL $e^{+} e^{-} \rightarrow D^{*+} D^{*-} \gamma$				
1 Supersedes PAKHLOVA 07.						
$\Gamma\left(D^{0} D^{-} \pi^{+}+\right.$c.c	207) ${ }^{0} \bar{D}^{0}+$ c.c., D^{*}	(2010	$+D^{-}+$	c.)) /		

```
\(\psi(4160), X(4160), Z_{c}(4200), \psi(4230)\)
```


$\psi(4160)$ REFERENCES			
ABLIKIM 20A	PR D101 012008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM 19AE	PR D99 072005	M. Ablikim et al.	(BESIII Collab.)
ZHUKOVA 18	PR D97 012002	V. Zhukova et al.	(BELLE Collab.)
ABLIKIM 17R	PR D96 012001	M. Ablikim et al.	(BESIII Collab.)
GAO 17	PR D95 092007	X.Y. Gao, C.P. Shen, C.Z. Yuan	
PDG 16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
ABLIKIM 15L	PR D91 112005	M. Ablikim et al.	(BESIII Collab.)
DRUZHININ 15	PR D92 054024	V.P. Druzhinin	(NOVO)
HAN 15	PR D92 012011	Y.L. Han et al.	(BELLE Collab.)
AAIJ 13BC	PRL 111112003	R. Aaij et al.	(LHCb Collab.)
WANG 13B	PR D87 051101	X.L. Wang et al.	(BELLE Collab.)
XIAO 13	PR D87 057501	T. Xiao et al.	(NWES, WAYN)
PAKHLOVA 11	PR D83 011101	G. Pakhlova et al.	(BELLE Collab.)
PEDLAR 11	PRL 107041803	T. Pedlar et al.	(CLEO Collab.)
DEL-AMO-SA... 10 N	PR D82 052004	P. del Amo Sanchez et al.	(BABAR Collab.)
MO 10	PR D82 077501	X.H. Mo, C.Z. Yuan, P. Wang	g (BHEP)
AUBERT 09M	PR D79 092001	B. Aubert et al.	(BABAR Collab.)
CRONIN-HEN... 09	PR D80 072001	D. Cronin-Hennessy et al.	(CLEO Collab.)
PAKHLOVA 09	PR D80 091101	G. Pakhlova et al.	(BELLE Collab.)
ABLIKIM 08D	PL B660 315	M. Ablikim et al.	(BES Collab.)
PAKHLOVA 08	PR D77 011103	G. Pakhlova et al.	(BELLE Collab.)
PAKHLOVA 08A	PRL 100062001	G. Pakhlova et al.	(BELLE Collab.)
PAKHLOVA 07	PRL 98092001	G. Pakhlova et al.	(BELLE Collab.)
COAN 06	PRL 96162003	T.E. Coan et al.	(CLEO Collab.)
SETH 05A	PR D72 017501	K.K. Seth	
BAI 02C	PRL 88101802	J.Z. Bai et al.	(BES Collab.)
BAI 00	PRL 84594	J.Z. Bai et al.	(BES Collab.)
OSTERHELD 86	SLAC-PUB-4160	A. Osterheld et al. (S	(SLAC Crystal Ball Collab.)
BRANDELIK 78C	PL 76B 361	R. Brandelik et al.	(DASP Collab.)
$X(4160)$	$I^{G}\left(J^{P C}\right)=? ?(? ? ?)$		

OMITTED FROM SUMMARY TABLE
Seen by PAKHLOV 08 in $e^{+} e^{-} \rightarrow J / \psi X, X \rightarrow D^{*} \bar{D}^{*}$

	$\boldsymbol{X (4 1 6 0)}$ MASS	
$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{4 1 5 6} \mathbf{+ 2 5} \pm \mathbf{2 0}}$	$\frac{\text { DOCUMENT ID }}{24}$	$\frac{\text { TECN }}{\text { PAKHLOV }} \frac{\text { COMMENT }}{}$

$\psi(4230)$ WIDTH
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{20 \text { to } \mathbf{1 0 0} \text { OUR ESTIMATE }}$
44 ± 9 OUR AVERAGE Error includes scale factor of 3.3. See the ideogram below.
$28.2 \pm 3.9 \pm 1.6 \quad 1$ ABLIKIM $\quad 19 \mathrm{AI}$ BES3 $e^{+} e^{-} \rightarrow \omega \chi_{C 0}$ $77.0 \pm 6.8 \pm 6.3 \quad$ ABLIKIM 19 R BES3 $e^{+} e^{-} \rightarrow \pi^{+}{ }_{D}^{0} D^{*-}+$

115 | +38 |
| ---: |
| -26 |$\pm 12 \quad{ }^{2}$ ABLIKIM $\quad 19 \mathrm{~V}$ BES3 $e^{+} e^{-} \rightarrow \gamma \chi_{c 1}(3872)$

$44.1 \pm 4.3 \pm 2.0 \quad 3$ ABLIKIM $\quad 17 \mathrm{~B}$ BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$
$66.0_{-8.3}^{+12.3} \pm 0.4 \quad$ ABLIKIM $\quad 17 \mathrm{G}$ BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{C}$
$80.1 \pm 24.6 \pm 2.9 \quad{ }^{4}$ ABLIKIM 17 V BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$

- - We do not use the following data for averages, fits, limits, etc. • •
$38 \pm 12 \pm 2 \quad 180 \quad 5$ ABLIKIM 15 C BES3 $e^{+} e^{-} \rightarrow \omega \chi_{c 0}$
WEIGHTED AVERAGE
44 ± 9 (Error scaled by 3.3)

ψ (4230) WIDTH (MeV)
${ }^{1}$ From a fit of the measured cross section from $\sqrt{s}=4.178-4.278 \mathrm{GeV}$. Supersedes ABLIKIM 15C.
${ }^{2}$ Simultaneous fit to $\chi_{C 1} \rightarrow \omega J / \psi$ and $\chi_{C 1} \rightarrow \pi^{+} \pi^{-} J / \psi$.
${ }^{3}$ From a three-resonance fit.
${ }^{4}$ From a fit to the cross section for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \ell^{+} \ell^{-}$obtained
from 16 center-of-mass energies between 4.008 and 4.600 GeV and comprising $5.1 \mathrm{fb}{ }^{-1}$.
${ }^{5}$ From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21-4.42 \mathrm{GeV}$ to a
phase-space modified Breit-Wigner function, using the decays $\chi_{C 0} \rightarrow \pi^{+} \pi^{-}, \chi_{C 0} \rightarrow$
$K^{+} K^{-}$, and $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$.

$\psi(4230)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$\omega \chi_{c 0}$	seen
Γ_{3}	$\pi^{+} \pi^{-} h_{C}$	seen
Γ_{4}	$\pi^{+} \pi^{-} J / \psi$	seen
Γ_{5}	$\pi^{+} \pi^{-} \psi(2 S)$	seen
Γ_{6}	$\pi^{+} D^{0} D^{*-}+$ c.c.	seen
Γ_{7}	$\Xi^{-} \bar{\Xi}^{+}$	
Γ_{8}	$\gamma \chi_{c 1}(3872)$	seen

$\psi(4230) \Gamma(\mathrm{i}) \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$
 $2.5 \pm \mathbf{0 . 2} \mathbf{\pm 0 . 3} 1 \overline{\text { ABLIKIM }} 19 \mathrm{AI} \overline{\mathrm{BES} 3} \overline{e^{+} e^{-} \rightarrow \omega \chi_{C 0}}$ | - • We do not use the following data for averages, fits, limits, etc. • • •
$2.7 \pm 0.5 \pm 0.4 \quad 180 \quad{ }^{2}$ ABLIKIM 15 C BES3 $e^{+} e^{-} \rightarrow \omega \chi_{C 0}$
${ }^{1}$ From a fit of the measured cross section from $\sqrt{s}=4.178-4.278 \mathrm{GeV}$. Supersedes ABLIKIM 15C.
${ }^{2}$ From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21-4.42 \mathrm{GeV}$ to a phase-space modified Breit-Wigner function, using the decays $\chi_{C 0} \rightarrow \pi^{+} \pi^{-}, \chi_{C 0} \rightarrow$ $K^{+} K^{-}$, and $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
$\Gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{5} \Gamma_{1} / \Gamma$
VALUE (eV) DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • •

1.6 ± 1.3	1	ABLIKIM	19 K	BES3 $\quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
1.8 ± 1.4	${ }^{2}$ ABLIKIM	19 K	BES3 $\quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$	
${ }^{1}$ Solution I of two equivalent solutions in a fit using two interfering resonances.				
${ }^{2}$ Solution II of two equivalent solutions in a fit using two interfering resonances.				

$\Gamma\left(\right.$ 三 $\left.^{=} \bar{E}^{+}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$						$\Gamma_{7} \Gamma_{1} / \Gamma$
VALUE (eV)	CL\%	DOCUMENT		TECN	COMMENT	
$<3.3 \times 10^{-4}$	90	ABLIKIM	20C	BES3	$e^{+} e^{-} \rightarrow$	$\overline{\text { + }}$

$\psi(4230)$ BRANCHING RATIOS

Meson Particle Listings
$\psi(4230), R_{c 0}(4240), X(4250)^{ \pm}, \psi(4260)$

	$\psi(4230)$ References			
АеıLKM				EESSIII
АвіLIKM				
				(BES)
${ }_{\text {ABLIKM }}^{\text {ABLIM }}$				BESII
$R_{c 0}(4240)$			${ }^{G}\left(J^{P C}\right)=1^{+}\left(0^{---}\right)$	

OMITTED FROM SUMMARY TABLE
was $X(4240)^{ \pm}$
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non- $q \bar{q}$ states.

Spin and parity assigment $J^{P}=0^{-}$is favored over $1^{-}, 2^{-}$, and
2^{+}by 8σ and over 1^{+}by 1σ, according to the four-dimensional amplitude analysis of AAIJ 14AG.

$R_{\text {co }}(4240)$ MASS			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
$4239 \pm 18 \pm 45$	${ }^{1}$ AAIJ	14AG LHCB	$B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$

${ }^{1}$ From a 4-dimensional analysis when a second, lower mass resonance is allowed in the
$Z_{C}(4430)$ fit, with significance 6σ including systematic variations.

$R_{\text {co }}(4240)$ WIDTH

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{2 2 0 \pm 4 \mathbf { 4 7 } _ { - \mathbf { 7 4 } } ^ { \mathbf { + 1 0 8 } }}} \quad \frac{\text { DOCUMENT ID }}{1 \text { AAIJ }} \frac{\text { TECN }}{\text { 14AG LHCB }} \frac{B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)}{}$
${ }^{1}$ From a 4-dimensional analysis when a second, lower mass resonance is allowed in the Z_{C} (4430) fit, with significance 6σ including systematic variations.

$R_{c 0}(4240)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$\pi^{-} \psi(2 S)$	seen

$R_{c 0}(4240)$ BRANCHING RATIOS

$\Gamma\left(\pi^{-} \psi(2 S)\right) / \Gamma_{\text {total }}$VALUE	DOCUMENT ID TECN		Γ_{1} / Γ	
			COMMENT	
seen	${ }^{1}$ AAIJ	14AG LHCB $B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$		
${ }^{1}$ From a 4-dimensional analysis when a second, lower mass resonance is allowed in the $Z_{C}(4430)$ fit. No partial branching fraction quoted.				

$R_{c 0}(4240)$ REFERENCES

${ }^{G}\left(J^{P C}\right)=1^{-}\left(?^{?+}\right)$
I, G, C need confirmation.
OMITTED FROM SUMMARY TABLE
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non- $q \bar{q}$ states.
Observed by MIZUK 08 in the $\pi^{+} \chi_{C 1}(1 P)$ invariant mass distribution in $\bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{c 1}(1 P)$ decays. Not seen by LEES 12B in this same mode after accounting for $K \pi$ resonant mass and angular structure.

$X(4250)^{ \pm}$MASS

VALUE (MeV)	DOCUMENT		TECN	COMMENT
$4248+29-180$	${ }^{1} \mathrm{MIZUK}$	08	BELL	$\bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$

[^134]
$X(4250)^{ \pm}$WIDTH

VALUE(MeV)

DOCUMENT ID TECN COMMENT

${ }^{1}$ MIZUK $\quad 08$ BELL $\quad \bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$
${ }^{1}$ From a Dalitz plot analysis with two Breit-Wigner amplitudes.

$X(4250)^{ \pm}$DECAY MODES

	Mode	Fraction ($\Gamma_{i} / \Gamma^{\text {r }}$)		
Γ_{1}	$\pi^{+} \chi_{c 1}(1 P)$	seen		
$X(4250){ }^{ \pm}$BRANCHING RATIOS				
$\Gamma\left(\pi^{+} \chi_{c 1}(1 P)\right) / \Gamma_{\text {total }}$ VALUE		Γ_{1} / Γ		
seen $\quad 1$ MIZUK $08 \quad$ BELL $\quad \bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{C 1}(1 P)$ - - We do not use the following data for averages, fits, limits, etc. - - -				
	en	12B BABR $B \rightarrow K \pi \chi_{C 1}(1 P)$		
${ }^{1}$ With a product branching fraction measurement of $\mathrm{B}\left(\bar{B}^{0} \rightarrow K^{-} X(4250)^{+}\right) \times$$\mathrm{B}\left(X(4250)^{+} \rightarrow \pi^{+} \chi_{C 1}(1 P)\right)=\left(4.0_{-0.9}^{+2.3+19.7}{ }_{0}^{+1}\right) \times 10^{-5} .$				
${ }^{2}$ With a product branching fraction limit of $\mathrm{B}\left(\bar{B}^{0} \rightarrow X(4250)^{+} K^{-}\right) \times \mathrm{B}\left(X(4250)^{+} \rightarrow\right.$ $\left.\chi_{C 1} \pi^{+}\right)<4.0 \times 10^{-5}$ at $90 \% \mathrm{CL}$.				

$X(4250)^{ \pm}$REFERENCES

LeEs	12B	PR D85 052003	J.P. Lees et al.	(babar Collab.)
MIZUK	08	PR D78 072004	R. Mizuk et al.	(belle Collab.)

$\psi(4260) \quad I_{(}^{G}\left(J^{P C}\right)=0^{-\left(1^{--}\right)}$
OMITTED FROM SUMMARY TABLE
also known as $Y(4260)$; was $X(4260)$
The state $\psi(4260)$ received its mass label from a Breit-Wigner (BW) fit to the $J / \psi \pi \pi$ data listed below. The symmetric BW placed the mass unavoidably into the center of the distribution. The most recent measurement in the 4260 MeV mass range in the same channel (ABLIKIM 17B), however, revealed that the distribution is asymmetric and that the state has a much lower mass consistent with the entry for particle $\psi(4230)$. Thus, in this edition we merged the measurement of ABLIKIM 17B with the $\psi(4230)$ node and labeled the older measurements of this node as not used. For details see the review on "Spectroscopy of mesons containing two heavy quarks."

$\psi(4260)$ MASS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -
$4209.1 \pm 6.8 \pm 7.0 \quad 1$ ZHANG \quad 17B RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
$4223.3 \pm 1.6 \pm 2.5 \quad 2$ ZHANG \quad 17C RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ or $\psi(2 S)$ $4258.6 \pm 8.3 \pm 12.1 \quad 3$ LIU $\quad 13 \mathrm{~B}$ BELL $e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$ $4245 \pm 5 \pm 4 \quad 4$ LEES \quad 12AC BABR $10.58 e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
$4247 \pm 12 \begin{array}{cc}+17 \\ -32\end{array} \quad 3,5$ YUAN $\quad 07$ BELL $10.58 e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
$4284 \begin{aligned} & +17 \\ & -16\end{aligned} \pm 413.6 \quad \mathrm{HE}$
06B CLEO $\quad 9.4-10.6 e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
$4259 \pm 8 \pm{ }_{6}^{2} 125 \quad{ }^{6}$ AUBERT,B $\quad 05$ BABR $10.58 e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi$
${ }^{1}$ From a three-resonance fit.
2 From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $e^{+} e^{-} \rightarrow$
$\pi^{+} \pi^{-} \psi(2 S)$ data.
${ }_{4}^{3}$ From a two-resonance fit.
${ }_{5}^{4}$ From a single-resonance fit. Supersedes AUBERT,B 05 .
${ }^{5}$ Superseded by LIU 13B.
${ }^{6}$ From a single-resonance fit. Two interfering resonances are not excluded. Superseded by LEES 12AC.

$\psi(4260)$ WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

$\Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					
Value (ev)	CL\%	DOCUMENT ID		TECN	COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -					
<4.3	90	${ }^{1}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \vec{~} \\ & \psi(2 S) \pi^{+} \pi^{-} \gamma \end{aligned}$
$7.4+2.1$		${ }^{2}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \\ & \quad \psi(2 S) \pi^{+} \pi^{-} \gamma \end{aligned}$

${ }^{1}$ For constructive interference with the $\psi(4360)$ in a combined fit of AUBERT 07 s and WANG 07D data with three resonances. ${ }^{2}$ For destructive interference with the $\psi(4360)$ in a combined fit of AUBERT 07s and WANG 07D data with three resonances.					
$\Gamma\left(\phi \pi^{+} \pi^{-}\right.$ $\operatorname{VALUE}(\mathrm{eV})$	$\times \Gamma($ $C L \%$) $/ \Gamma_{\text {total }}$ DOCUMENT ID		COMMENT	
<0.4	90	AUBERT,BE	BABR	$10.6 e^{+}$	
$\Gamma\left(\phi f_{0}(98\right.$ VALUE (eV)	$\begin{gathered} \rightarrow \phi \pi \\ C L \% \\ \hline \end{gathered}$	$\times \Gamma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right.$ DOCUMENT ID	otal TECN	COMMENT	
<0.28	90	AUBERT	BABR	$10.6 e^{+}$	
${ }^{1}$ AUBER $\left.e^{+} e^{-}\right)$ value B	$\begin{aligned} & 7 \mathrm{AK} \mathrm{r} \\ & \mathrm{tal}] \\ & 020) \end{aligned}$	$\begin{aligned} & \text { ts }[\Gamma(\psi(4260) \\ & (\phi(1020) \rightarrow K \\ & \left.K^{+} K^{-}\right)=49.2 \end{aligned}$	$\begin{aligned} & (980) \\ & <0 . \end{aligned}$	$\phi \pi^{+}$ eV which	

- - We do not use the following data for averages, fits, limits, etc. • • •
$2.04 \pm 0.19 \pm 0.09 \quad{ }^{1}$ ABLIKIM \quad 19AE BES3 $e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ $0.0027 \pm 0.0023 \pm 0.0001 \quad{ }^{2}$ ABLIKIM \quad 19AE BES3 $\quad e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ <0.5 at 90% CL AUBERT 08S BABR $10.6 K_{S}^{+} K^{+} e^{-} \vec{\mp}{ }_{\gamma}$
${ }^{1}$ Solution I of the fit including the $\psi(4160)$ with mass $4191 \pm 5 \mathrm{MeV}$ and width 70 ± 10 MeV from PDG 16 and the $\psi(4230)$ with mass $4219.6 \pm 3.3 \pm 5.1 \mathrm{MeV}$ and width $56.0 \pm 3.6 \pm 6.9 \mathrm{MeV}$ from GAO 17
2 Solution II of the fit including the $\psi(4160)$ with mass $4191 \pm 5 \mathrm{MeV}$ and width 70 ± 10 MeV from PDG 16 and the $\psi(4230)$ with mass $4219.6 \pm 3.3 \pm 5.1 \mathrm{MeV}$ and width $56.0 \pm 3.6 \pm 6.9 \mathrm{MeV}$ from GAO 17

$\boldsymbol{\psi}(\mathbf{4 2 6 0})$ BRANCHING RATIOS
$\Gamma\left(J / \psi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$
Γ_{3} / Γ_{2}

$\frac{\Gamma\left(J / \psi \boldsymbol{\eta} \pi^{0}\right) / \Gamma_{\text {total }}}{\frac{\text { VALUE }}{\text { not seen }} \quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM }} 15 Q} \frac{\text { TECN }}{\text { BES3 }} \frac{\text { COMMENT }}{4.0-4.6 e^{+} e^{-} \rightarrow J / \psi \eta \pi^{0}}$
$\Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$
$\Gamma_{14 / \Gamma_{2}}$
VALUE $\frac{\text { DOCUMENT ID }}{\text { • • We do not use the following data for averages, fits, limits, etc. • • • }}$
$(0.11 \pm 0.03 \pm 0.03)$ to ($0.55 \pm \quad 1$ ZHANG $\quad 17 \mathrm{C}$ RVUE $\left.e^{+} e^{-} \overrightarrow{(2 S}\right) \pi^{+} \pi^{-J / \psi}$ 0.18 ± 0.19)
${ }^{1}$ From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} \psi(2 S)$ data.

$\Gamma\left(h_{c}(1 P) \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$					Γ_{19} / Γ_{2}
value	CL\%	DOCUMENT	TECN	COMMENT	
<1.0	90	1 PEDLAR	CLEO	$e^{+} e^{-} \rightarrow$) π

${ }^{1}$ At $\sqrt{s}=4260 \mathrm{MeV}$, PEDLAR 11 measures $\sigma\left(e^{+} e^{-} \rightarrow h_{C}(1 P) \pi^{+} \pi^{-}\right)=32 \pm 17 \pm 6 \pm$ 6 pb , where the errors are statistical, systematic, and due to uncertainty in $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\pi^{0} h_{C}(1 P)\right)$, respectively.

- - We do not use the following data for averages, fits, limits, etc. - • •
$<4.0 \quad$ CRONIN-HEN.. 09 CLEO $e^{+} e^{-}$
${ }^{-}$Using $4259 \pm 10 \mathrm{MeV}$ for the mass and $88 \pm 24 \mathrm{MeV}$ for the width of $\psi(4260)$.

$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }}$				Γ_{23} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
not seen	CRONIN-HEN..D9	CLEO	$e^{+} e^{-} \rightarrow$	$D^{0} \bar{D}^{0}$
- - We do not us	data for averages, fits,	limits,	etc.	
not seen	AUBERT 09M	BAB	$e^{+} e^{-} \rightarrow$	$D^{0} \bar{D}^{0} \gamma$
not seen	PAKHLOVA 08	BELL	$e^{+} e^{-} \rightarrow$	$D^{0} \bar{D}^{0} \gamma$

- - We do not use the following data for averages, fits, limits, etc. - • •

<45 90	CRONIN-HEN. 09	CLEO	$e^{+} e^{-}$	
$\Gamma\left(D^{*}(2007)^{0} \bar{D}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$		Γ_{26} / Γ		
VALUE	DOCUMENT ID	TECN COMMENT		
not seen	CRONIN-HEN.. 09	CLEO $e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0}$		
- - We do not use the following data for averages, fits, limits, etc. - -				
not seen	AUBERT 09m	BABR $e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0} \gamma$		
$\Gamma\left(D^{*}(2010)+D^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$		TECN	Γ_{27} / Γ	
VALUE	DOCUMENT ID		COMMENT	
not seen	CRONIN-HEN. 09	CLEO	$e^{+} e^{-} \rightarrow$	$D^{*+} D^{-}$
not seen	PAKHLOVA 07	BELL	$e^{+} e^{-}$	$D^{*+} D^{-} \gamma$
- - We do not use the following	ta for averages, fits,	limits	tc. - -	
not seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow$	$D^{*+} D^{-} \gamma$

$\Gamma\left(D^{0} D^{*}(\mathbf{2 0 1 0})^{-} \pi^{+}+\right.$c.c. $) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right) \quad \Gamma_{35} / \Gamma_{2}$

| VALUE | $\frac{C L \%}{90}$ | DOCUMENT ID |
| :--- | :--- | :--- | :--- |
| 9 | PAKHLOVA 09 | $\frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}}{}$ |

$\Gamma\left(D^{0} D^{*}(2010)^{-} \pi^{+}+\right.$c.c. $) / \Gamma_{\text {total }} \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{35} / \Gamma \times \Gamma_{1} / \Gamma$
$\frac{\text { VALUE }}{<\mathbf{0 . 4 2 \times 1 \mathbf { 1 0 } ^ { - 6 }}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { PAKHLOVA } 09} \frac{\text { COMMENT }}{\text { BELL }} \frac{e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}}{}$
${ }^{1}$ Using $4263{ }_{-9}^{+8} \mathrm{MeV}$ for the mass of $\psi(4260)$.

$\underline{\Gamma}_{\text {VALUE }}\left(D^{*} \bar{D}^{*} \pi\right) / \Gamma_{\text {total }}$	DOCUMENT ID	TECN	COMMENT	Γ_{37} / Γ
not seen	CRONIN-HEN. 09	CLEO	$e^{+} e^{-}$	$D^{*} \bar{D}^{*} \pi$
$\Gamma\left(D^{*} \bar{D}^{*} \pi\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$				Γ_{37} / Γ_{2}
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
<8.2 90	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-}$	

See key on page 999

$\begin{array}{lllll}\bullet \bullet \text { We do not use the following data for averages, fits, limits, etc. } & \bullet & & \\ \text { not seen } & \text { PAKHLOVA } & 11 & \text { BELL } & e^{+} \\ e^{-} \rightarrow & D_{s}^{+} & D_{s}^{-} \gamma\end{array}$

$\Gamma\left(D_{s}^{+} D_{s}^{-}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$				Γ_{38} / Γ_{2}
VALUE CL\%	DOCUMENT ID	TECN	COMMENT	
<0.7 95	DEL-AMO-SA..10n	BABR	$10.6 e^{+} e^{-}$	
- We do not use the follow	ata for averages, fits,	limits,	etc. -	
<1.3 90	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-}$	
$\Gamma\left(D_{s}^{*+} D_{s}^{-}+\right.$C.c. $) / \Gamma_{\text {total }}$				Γ_{39} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
not seen	DEL-AMO-SA.. 10 N	BABR	$e^{+} e^{-} \rightarrow$	$D_{s}^{-} \gamma$
not seen	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(D_{s}^{*+} D_{s}^{-}+\right.$c.c. $) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$			TECN		Γ_{39} / Γ_{2}
VALUE	CL\%	DOCUMENT ID		COMMENT	
< 0.8	90	CRONIN-HEN.. 09	CLEO	$e^{+} e^{-}$	
- - We do not use the following data for averages, fits, limits, etc. - - -					
<44	95	DEL-AMO-SA.. 10 N	BABR	$10.6 e^{+} e^{-}$	

$\boldsymbol{\Gamma}\left(\boldsymbol{D}_{\boldsymbol{s}}^{*+} \boldsymbol{D}_{\boldsymbol{s}}^{*-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{\text { VALUE }}{\text { not seen }} \quad \frac{\text { DOCUMENT ID }}{\text { CRONIN-HEN.. } 09} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow D_{S}^{*+} \boldsymbol{D}_{S}^{*-}}$ - - We do not use the following data for averages, fits, limits, etc. • • -

not seen	PAKHLOVA 11	BELL	$e^{+} e^{-} \rightarrow D_{S}^{*+} D_{S}^{*-} \gamma$	
not seen	DEL-AMO-SA..10N	BABR	$e^{+} e^{-} \rightarrow$	$D_{S}^{*+} D_{S}^{*-} \gamma$

$\Gamma\left(\boldsymbol{D}_{\boldsymbol{s}}^{*+} \boldsymbol{D}_{\boldsymbol{s}}^{*-}\right) / \Gamma\left(\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\pi}^{+} \pi^{-}\right) \quad \boldsymbol{\Gamma}_{\mathbf{4 0}} / \boldsymbol{\Gamma}_{\mathbf{2}}$
$\frac{\text { VALUE }}{<9.5} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { CRONIN-HEN..D9 }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMEN }}{e^{+} e^{-}}$

- - We do not use the following data for averages, fits, limits, etc. - - -
<30 95 DEL-AMO-SA..10N BABR $10.6 e^{+} e^{-}$

$\boldsymbol{\Gamma}(\boldsymbol{p} \overline{\boldsymbol{p}}) / \boldsymbol{\Gamma}\left(\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)$
$\frac{\text { VALUE }}{}$
$\mathbf{0 . 1 3}$

${ }^{1}$ Using $4259 \pm 10 \mathrm{MeV}$ for the mass and $88 \pm 24 \mathrm{MeV}$ for the width of $\psi(4260)$.

$\Gamma\left(p \bar{p} \pi^{0}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$					Γ_{42} / Γ_{2}	
VALUE	CL\%	DOCUMEN		TECN	COMMENT	
<2 $\times 10^{-4}$	90	ABLIKIM	17F	BES3	$\begin{aligned} & e^{+} e^{-} \rightarrow \\ & \quad \text { hadrons } \end{aligned}$	$\psi(4260) \rightarrow$

$\Gamma\left(\eta_{c}(1 S) \gamma\right) / \Gamma_{\text {total }}$
Γ_{48} / Γ
$\frac{\text { VALUE }}{\text { possibly seen }} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 17 \mathrm{~W}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma \eta_{C}(1 S)}$
${ }^{1}$ Significance ranges from 4.2σ to as low as 1.5σ for a flat component plus $\psi(4260)$ spectrum. Needs confirmation.
$\boldsymbol{\Gamma}\left(\boldsymbol{\chi}_{\mathbf{c 1}} \mathbf{(3 8 7 2)} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E}{\text { seen }} \frac{\text { EVTS }}{20 \pm 5}$$\quad \frac{\text { DOCUMENT ID }}{\text { ABLIKIM } 14} \frac{\text { TECN }}{\text { BES } 3} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow J / \psi \pi^{+} \pi^{-} \gamma}$

ABLIKIM	20A	PR D101 012008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	20 C	PRL 124032002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19	PR D99 012003	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AE	PR D99 072005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AR	PR D100 032005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18N	PR D97 071101	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17B	PRL 118092001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 F	PL B771 45	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17W	PR D96 051101	M. Ablikim et al.	(BESIII Collab.)
GAO	17	PR D95 092007	X.Y. Gao, C.P. Shen, C.Z. Yuan	
ZHANG	17B	PR D96 054008	J. Zhang, J. Zhang	
ZHANG	17 C	EPJ C77 727	J. Zhang, L. Yuan	
PDG	16	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
ABLIKIM	15Q	PR D92 012008	M. Ablikim et al.	(BESIII Collab.)
HAN	15	PR D92 012011	Y.L. Han et al.	(BELLE Collab.)
ABLIKIM	14	PRL 112092001	M. Ablikim et al.	(BESIII Collab.)
SHEN	14	PR D89 072015	C.P. Shen et al.	(BELLE Collab.)

Meson Particle Listings

$X(4350), \psi(4360)$

$X(4350)$ WIDTH					
VALUE (MeV)	EVTS	DOCUM		TECN	COMMENT
$13-18 \pm 4$	$8.8{ }_{-3.2}^{+4.2}$	1 SHEN	10	BELL	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \\ & e^{+} e^{-} J / \psi \phi \end{aligned}$
${ }^{1}$ Statistical significance of 3.2σ.					

$X(4350)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$J / \psi \phi$	seen
Γ_{2}	$\gamma \gamma$	seen

$X(4350) \Gamma(\mathrm{i}) \Gamma(\gamma \gamma) / \Gamma$ (total)

$\operatorname{VALUE}(\mathrm{eV})$	EVT	DOCUM		TECN	COMMENT
$6.7_{-2.4}^{+3.2} \pm 1.1$	$8.8{ }_{-3.2}^{+4.2}$	1 SHEN	10	BELL	$\begin{aligned} & 10.6 e^{+} e^{-} \rightarrow \overrightarrow{e^{+}} e^{-} J / \psi \phi \end{aligned}$

- - We do not use the following data for averages, fits, limits, etc. • • -

| $1.5_{-0.6}^{+0.7} \pm 0.3$ | $8.8_{-3.2}^{+4.2}$ |
| ---: | ---: | ---: | ---: | ---: |$\quad 2$ SHEN $\quad 10 \quad$ BELL | $10.6 e^{+} e^{-} \rightarrow$ |
| ---: |
| $e^{+} e^{-} J / \psi \phi$ |

${ }^{1}$ For $J^{P}=0^{+}$. Statistical significance of 3.2σ.
${ }^{2}$ For $J^{P}=2^{+}$. Statistical significance of 3.2σ.

$X(4350)$ BRANCHING RATIOS

$\Gamma(J / \psi \phi) / \Gamma_{\text {total }}$

${ }^{1}$ Statistical significance of 3.2σ.

$\Gamma(\gamma \gamma) / \Gamma_{\text {total }}$ VALUE	DOCUM		TECN	COMMENT	Γ_{2} / Γ
seen	1 SHEN	10	BELL	$\begin{gathered} 10.6 e^{+} e^{-} \rightarrow \overrightarrow{e^{+}} e^{-} J / \psi \phi \end{gathered}$	
${ }^{1}$ Statistical significance of 3.2σ.					

$X(4350)$ REFERENCES

SHEN $10 \quad$ PRL $104112004 \quad$ C.P. Shen et al. (BELLE Collab.)

$\psi(4360)$

$$
I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

also known as $Y(4360)$; was $X(4360)$
This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the review on non- $q \bar{q}$ states.

Seen in radiative return from $e^{+} e^{-}$collisions at $\sqrt{s}=9.54-10.58$ GeV by AUBERT 07s, WANG 07D, and LEES 14F. See also the review on "Spectroscopy of mesons containing two heavy quarks."

$\psi(4360)$ MASS

Value (MeV)	EVTS	DOCUMENT	ID	COMMENT
4368 ± 13 OUR AVERAGE Error includes scale factor of 3.7. Se		Error includes scale factor of 3.7. See		
$4320.0 \pm 10.4 \pm 7.0$		${ }^{1}$ ABLIKIM	17b BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$
$4383.8 \pm 4.2 \pm 0.8$		${ }^{2}$ ABLIKIM	17v BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
$4347 \pm 6 \pm 3$	279	${ }^{3}$ WANG	15A BELL	$\begin{gathered} 10.58 e^{+} e^{-} \overrightarrow{\gamma \pi^{+}} \pi^{-} \psi(2 S) \end{gathered}$
$4340 \pm 16 \pm 9$	37	${ }^{4}$ LEES	14F BABR	$\begin{gathered} 10.58 e^{+} e^{-} \vec{~} \\ \gamma \pi^{+} \pi^{-} \psi(2 S) \end{gathered}$
- - We do not use the following data for averages, fits, limits, etc. - -				
$4383.7 \pm 2.9 \pm 6.2$		${ }^{5}$ ZHANG	17b RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
$4386.4 \pm 2.1 \pm 6.4$		6 ZHANG	17C RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ or $\psi(2 S)$
$4355{ }_{-10}^{+}{ }^{9} \pm 9$	74	${ }^{7}$ LIU	08H RVUE	$\underset{\gamma \pi^{+} \pi^{-}}{10.58 e^{+} e^{-}} \overrightarrow{(2 S)}$
4324 ± 24		${ }^{8}$ AUBERT	075 BABR	$\begin{gathered} 10.58 e^{+} e^{-} \vec{~} \\ \gamma \pi^{+} \pi^{-} \psi(2 S) \end{gathered}$
$4361 \pm 9 \pm 9$	47	${ }^{4}$ WANG	07D BELL	$\begin{gathered} 10.58 e^{+} e^{-} \\ \gamma \pi^{+} \pi^{-} \end{gathered} \overrightarrow{\psi(2 S)}$

[^135]${ }^{2}$ From a fit to the cross section for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \ell^{+} \ell^{-}$obtained from 16 center-of-mass energies between 4.008 and 4.600 GeV and comprising $5.1 \mathrm{fb}{ }^{-1}$.
${ }^{3}$ From a two-resonance fit. Supersedes WANG 07D.
${ }_{5}^{4}$ From a two-resonance fit.
${ }^{5}$ From a three-resonance fit
${ }^{6}$ From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ and $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} \psi(2 S)$ data.
${ }^{7}$ From a combined fit of AUBERT 07s and WANG 07D data with two resonances.
${ }^{8}$ From a single-resonance fit. Systematic errors not estimated.

$\psi(4360)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT		TECN	COMMENT
96 ± 7 OUR AVERAGE					
$101.4-19.7 \pm 10.2$		${ }^{1}$ ABLIKIM	17B	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$
$84.2 \pm 12.5 \pm 2.1$		${ }^{2}$ ABLIKIM	17V	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
$103 \pm 9 \pm 5$	279	${ }^{3}$ WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \\ & \pi^{+}+ \\ & \pi^{-} \psi(2 S) \end{aligned}$
$94 \pm 32 \pm 13$	37	${ }^{4}$ LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \vec{\gamma} \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$

- - We do not use the following data for averages, fits, limits, etc. - -

$\psi(4360)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$J / \psi \pi^{+} \pi^{-}$	seen
Γ_{3}	$\psi(2 S) \pi^{+} \pi^{-}$	possibly seen
Γ_{4}	$\psi_{2}(3823) \pi^{+} \pi^{-}$	
Γ_{5}	$J / \psi \eta$	
Γ_{6}	$D^{0} D^{*-} \pi^{+}$	possibly seen
Γ_{7}	$D_{1}(2420) \bar{D}+$ c.c.	
Γ_{8}	$\chi_{c 1} \gamma$	
Γ_{9}	$\chi_{c 2} \gamma$	

$\psi(4360) \Gamma(\mathrm{i}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$
$\Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{3} \Gamma_{1} / \Gamma$

7.3 ± 2.8		${ }^{1}$ ABLIKIM	19K	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
11.0 ± 3.8		${ }^{2}$ ABLIKIM	19K	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
$9.2 \pm 0.6 \pm 0.6$	279	${ }^{3}$ WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \vec{\gamma} \overrightarrow{+} \pi^{-} \psi(2 S) \end{aligned}$
$10.9 \pm 0.6 \pm 0.7$	279	4 WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$6.0 \pm 1.0 \pm 0.5$	37	1 LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{\gamma \pi^{+}} \pi^{-} \psi(2 S) \end{aligned}$
$7.2 \pm 1.0 \pm 0.6$	37	${ }^{2}$ LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$11.1_{-1.2}^{+1.3}$	74	${ }^{5}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$

See key on page 999

12.3 ± 1.2	74	${ }^{6}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{e^{+}} \overrightarrow{\pi^{-}} \psi(2 S) \end{aligned}$
$10.4 \pm 1.7 \pm 1.5$	47	1 WANG	07D	BELL	$\begin{gathered} 10.58 e^{+} e^{-} \overrightarrow{ } \rightarrow \pi^{-} \psi(2 S) \end{gathered}$
$11.8 \pm 1.8 \pm 1.4$	47	2 WANG	07D	BELL	$\begin{gathered} 10.58 e^{+} e^{-} \overrightarrow{ } \\ \gamma \pi^{+} \pi^{-} \psi(2 S) \end{gathered}$

1 Solution I of two equivalent solutions in a fit using two interfering resonances.
${ }^{2}$ Solution II of two equivalent solutions in a fit using two interfering resonances.
${ }^{3}$ Solution I of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.
4 Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.
5 Solution I in a combined fit of AUBERT 07s and WANG 07D data with two resonances.
6 Solution II in a combined fit of AUBERT 07s and WANG 07D data with two resonances.
$\boldsymbol{\Gamma}(\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\eta}) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (eV) $\boldsymbol{\Gamma}_{\mathbf{5} \boldsymbol{\Gamma}_{\mathbf{1}} / \boldsymbol{\Gamma}}$
-• We do not use the following data for averages, fits, limits, etc. • • $\frac{\text { COMMENT }}{}$

$\Gamma\left(\chi_{c 2} \gamma\right)$	$\times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$			TECN		$\Gamma_{9} \Gamma_{1} / \Gamma$
VALUE (eV)	CL\%	DOCU			COMMENT	
<1.9	90	${ }^{1}$ HAN	15	BELL	$10.58 e^{+}$	$\rightarrow \chi_{C 2}{ }^{\gamma}$

${ }^{1}$ Using $\mathrm{B}(\eta \rightarrow \gamma \gamma)=(39.41 \pm 0.21) \%$.

$\psi(4360)$ BRANCHING RATIOS						
$\Gamma\left(D^{0} D^{*-} \pi^{+}\right) / \Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) \quad \Gamma_{6} / \Gamma_{3}$						
VALUE	CL\%	DOCUMENT ID		TECN	COMMENT	
<8	90	PAKHLOVA	09	BELL	$\begin{array}{r} e^{+} e^{-} \rightarrow \\ D^{0} D^{*-} \end{array}$	$\text { 360) } \rightarrow$

${ }^{1}$ From a fit to the cross section for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \ell^{+} \ell^{-}$obtained
from 16 center-of-mass energies between 4.008 and 4.600 GeV and comprising $5.1 \mathrm{fb}^{-1}$.
$\Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right) / \Gamma\left(J / \psi \pi^{+} \pi^{-}\right)$
Γ_{3} / Γ_{2}
VALUE DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. • • -
$(0.81 \pm 0.12 \pm 0.13)$ to $\left(42 \pm \quad{ }^{1}\right.$ ZHANG $\quad 17 \mathrm{C}$ RVUE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ $15 \pm 15) \quad$ or $\psi(2 S)$
${ }^{1}$ From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} \psi(2 S)$ data.

$\Gamma\left(\psi_{2}(3823) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$						$\Gamma_{4 / \Gamma}$
VALUE	EVTS	DOCUMENT		TECN	COMMENT	
possibly seen	19	1 ABLIKIM	15s	BES3	$e^{-} \rightarrow$	

${ }^{1}$ From a fit of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}$ (3823), $\psi_{2}(3823) \rightarrow \chi_{c 1} \gamma$ cross sections taken at \sqrt{s} values of $4.23,4.26,4.36,4.42$, and 4.60 GeV to the $\psi(4360)$ line shape.

$\psi(\mathbf{4 3 6 0})$ REFERENCES

ABLIKIM	19AR	PR D100 032005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19K	PR D99 019903 (errat.)	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17B	PRL 118092001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17 V	PR D96 032004	M. Ablikim et al.	(BESIII Collab.)
Also		PR D99 019903 (errat.)	M. Ablikim et al.	(BESIII Collab.)
ZHANG	17B	PR D96 054008	J. Zhang, J. Zhang	
ZHANG	17C	EPJ C77 727	J. Zhang, L. Yuan	
ABLIKIM	15 S	PRL 115011803	M. Ablikim et al.	(BESIII Collab.)
HAN	15	PR D92 012011	Y.L. Han et al.	(BELLE Collab.)
WANG	15A	PR D91 112007	X.L. Wang et al.	(BELLE Collab.)
LEES	14F	PR D89 111103	J.P. Lees et al.	(BABAR Collab.)
WANG	13B	PR D87 051101	X.L. Wang et al.	(BELLE Collab.)
PAKHLOVA	09	PR D80 091101	G. Pakhlova et al.	(BELLE Collab.)
LIU	08H	PR D78 014032	Z.Q. Liu, X.S. Qin, C.Z. Yuan	
AUBERT	07S	PRL 98212001	B. Aubert et al.	(BABAR Collab.)
WANG	07D	PRL 99142002	X.L. Wang et al.	(BELLE Collab.)

$\psi(4390) \quad$| $I{ }^{G}(J P C)=0^{-}\left(1^{--}\right)$ |
| :--- |
| I needs confirmation. |

OMITTED FROM SUMMARY TABLE was $X(4390)$

This state shows properties different from a conventional $q \bar{q}$ state.
A candidate for an exotic structure. See the review on non- $q \bar{q}$ states.

$\psi(4415)$ MASS

\qquad TECN 4421 ± 4 OUR ESTIMATE			COMMENT
			4421 ± 4 OUR ESTIMATE
4415.1 7.9	${ }^{1}$ ABLIKIM	08D BES2	$e^{+} e^{-}$
- - We do not use the following data for averages, fits, limits, etc. - -			
4412 ± 15	2 MO	10 RVUE	$e^{+} e^{-}$
4411 ± 7	3 PAKHLOVA	08A BELL	$10.6 e^{+}$
4425 ± 6	${ }^{4}$ SETH	05A RVUE	$e^{+} e^{-}$
4429 ± 9	5 SETH	05A RVUE	$e^{+} e^{-}$
4417 ± 10	BRANDELIK	78C DASP	${ }^{+} e^{-}$
4414 ± 7	SIEGRIST	76 MRK1	$e^{+} e^{-}$
${ }^{1}$ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(234 \pm 88)^{\circ}$.			
${ }^{2}$ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects.			
${ }^{3}$ Systematic uncertainties not estimated.			
${ }^{4}$ From a fit to Crystal Ball (OSTERHELD 86) data.			
${ }^{5}$ From a fit to BES (BAI 02C) data.			

$\psi(4415)$ WIDTH
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{62 \pm 20 \text { OUR ESTIMATE }}$

Meson Particle Listings
$\psi(4415)$
33 ± 10
${ }^{6}$ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7-5.0 GeV covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances.
Phase angle fixed in the fit to $\delta=(234 \pm 88)^{\circ}$.
Phase angle fixed in the fit to $\delta=(234 \pm 88)^{\circ}$
7 Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects.
${ }^{8}$ Systematic uncertainties not estimated.
${ }^{9}$ From a fit to Crystal Ball (OSTERHELD 86) data.
${ }^{10}$ From a fit to BES (BAI 02C) data.

$\psi(4415)$ DECAY MODES

Due to the complexity of the $c \bar{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

	Mode		raction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
Γ_{1}	$D \bar{D}$		seen	
Γ_{2}	$D^{0} \bar{D}^{0}$		seen	
Γ_{3}	$D^{+} D^{-}$		seen	
Γ_{4}	$D^{*} \bar{D}+$ c.c.		seen	
Γ_{5}	$D^{*}(2007)^{0} \bar{D}^{0}+$ c.c.		seen	
Γ_{6}	$D^{*}(2010)^{+} D^{-}+$c.c.		seen	
Γ_{7}	$D^{*} \bar{D}^{*}$		seen	
Γ_{8}	$D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}+$ c.c.		seen	
Γ_{9}	$D^{*}(2010)^{+} D^{*}(2010)^{-}+$c.c.		seen	
Γ_{10}	$\begin{aligned} & D^{0} D^{-} \pi^{+}\left(\text {excl. } D^{*}(2007)^{0} \bar{D}^{0}\right. \\ & \quad+\text { c.c., } D^{*}(2010)^{+} D^{-}+\text {с.с. } \end{aligned}$		< 2.3 \%	90\%
Γ_{11}	$D \bar{D}_{2}^{*}(2460) \rightarrow D^{0} D^{-} \pi^{+}+$c.c.		(10 $\pm 4)$	
Γ_{12}	$D^{0} D^{*-} \pi^{+}+$c.c.		< 11 \%	90\%
Γ_{13}	$D_{1}(2420) \bar{D}+$ c.c.		possibly seen	
Γ_{14}	$D_{s}^{+} D_{s}^{-}$		not seen	
Γ_{15}	$\omega \chi_{c 2}$		possibly seen	
Γ_{16}	$D_{s}^{*+} D_{s}^{-}+$c.c.		seen	
Γ_{17}	$D_{s}^{*+} D_{s}^{*-}$		not seen	
Γ_{18}	$\psi_{2}(3823) \pi^{+} \pi^{-}$		possibly seen	
Γ_{19}	$\psi(3770) \pi^{+} \pi^{-}$		possibly seen	
Γ_{20}	$J / \psi \eta$		<6	90\%
Γ_{21}	$\chi_{c 1} \gamma$		<8	90\%
Γ_{22}	$\chi_{c 2} \gamma$		$<4 \times$	90\%
Γ_{23}	$e^{+} e^{-}$		$(9.4 \pm 3.2) \times$	

$\psi(4415)$ PARTIAL WIDTHS
$\Gamma\left(e^{+} e^{-}\right)$
VALUE (keV)
0.58 ± 0.07 OUR ESTIMATE
$\mathbf{0 . 3 5} \mathbf{0 . 1 2} \quad 11$ ABLIKIM 08D BES2 $e^{+} e^{-} \rightarrow$ hadrons

- - We do not use the following data for averages, fits, limits, etc. • • -

0.4 to 0.8	12 MO	10	RVUE $e^{+} e^{-} \rightarrow$ hadrons
0.72 ± 0.11	13 SETH	05A RVUE $e^{+} e^{-} \rightarrow$ hadrons	
0.64 ± 0.23	14 SETH	05A RVUE $e^{+} e^{-} \rightarrow$ hadrons	
0.49 ± 0.13	BRANDELIK	78 C DASP $e^{+} e^{-}$	
0.44 ± 0.14	SIEGRIST	76	MRK1 $e^{+} e^{-}$

11 Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region $3.7-5.0 \mathrm{GeV}$ covering the $\psi(3770), \psi(4040), \psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(234 \pm 88)^{\circ}$.
12 Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy $3.8-4.8 \mathrm{GeV}$ covering the $\psi(4040), \psi(4160)$ and $\psi(4415)$ resonances and including interference effects. Four sets of solutions are obtained with the same fit quality, mass and total width, but with different $e^{+} e^{-}$partial widths. We quote only the range of values.
${ }^{13}$ From a fit to Crystal Ball (OSTERHELD 86) data
14 From a fit to BES (BAI 02C) data.

$\psi(4415) \Gamma(\mathrm{i}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$								
$\Gamma(J / \psi \eta) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$ VALUE (eV) CL\%		DOCUMENT ID		TECN	COMMENT	$\Gamma_{20} \Gamma_{23} / \Gamma$		
<3.6	90			WANG	13B	BELL	$e^{+} e^{-} \rightarrow$	$J / \psi \eta \gamma$
$\Gamma\left(\chi_{c 1} \gamma\right)$	$\times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$					$\Gamma_{21} \Gamma_{23} / \Gamma$		
VALUE (eV)	- CL\%	DOCUM		TECN	COMMENT			
<0.47	90	HAN	15	BELL	$10.58 e^{+} e$	${ }^{\rightarrow} \chi_{C 1} \gamma$		

$\boldsymbol{\Gamma}\left(\boldsymbol{\chi}_{\mathbf{C 2}} \gamma\right) \times \boldsymbol{\Gamma}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
$\frac{V A L U E(\mathrm{eV})}{} \frac{C L \%}{90}$
$<\mathbf{2 . 3}$
$16 \mathrm{Using} \mathrm{B}(\eta \rightarrow \gamma \gamma)=(39.41 \pm 0.21) \%$.

$\psi(4415)$ BRANCHING RATIOS

$\Gamma\left(D^{0} \bar{D}^{0}\right) / \Gamma_{\text {total }}$	Γ_{2} / Γ		
VALUE	DOCUMENT ID	TECN	COMMENT
seen	PAKHLOVA 08	BELL	$e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -			
not seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow D^{0} \bar{D}^{0} \gamma$
$\Gamma\left(D^{+} D^{-}\right) / \Gamma_{\text {total }}$		$\Gamma 3 / \Gamma$	
VALUE	DOCUMENT ID	TECN	COMMENT
seen	PAKHLOVA 08data for averages, fits,	BELL $e^{+} e^{-} \rightarrow D^{+} D^{-} \gamma$ limits, etc. • • •	
- - We do not use the following			
not seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow D^{+} D^{-} \gamma$
$\Gamma(D \bar{D}) / \Gamma\left(D^{*} \bar{D}^{*}\right)$			Γ_{1} / Γ_{7}
VALUE	DOCUMENT ID	TECN	COMMENT
$0.14 \pm 0.12 \pm 0.03$	AUBERT 09M	BABR	$e^{+} e^{-} \rightarrow \gamma D^{(*)} \bar{D}^{(*)}$
$\Gamma\left(D^{*}(2007)^{0} \bar{D}^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$			Γ_{5} / Γ
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0} \gamma$

$\Gamma\left(D^{*}(2010)+D^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$		$\Gamma 6 / \Gamma$		
VALUE	DOCUMENT ID	TECN	COMMENT	
seen	17 ZHUKOVA 18	BELL	$e^{+} e^{-} \rightarrow$	$D^{*+} D^{-} \gamma$
seen	AUBERT 09m	BABR	$e^{+} e^{-} \rightarrow$	$D^{*+} D^{-} \gamma$
- - We do not use the following data for averages, fits, limits, etc. - -				
seen	PAKHLOVA 07	BELL	$e^{+} e^{-} \rightarrow D^{*+} D^{-} \gamma$	
17 Supersedes PAKHLOVA 07.				
$\Gamma\left(D^{*} \bar{D}+\right.$ c.c. $) / \Gamma\left(D^{*} \bar{D}^{*}\right)$		TECN	COMMENT	Γ_{4} / Γ_{7}
VALUE	DOCUMENT ID			
$0.17 \pm 0.25 \pm 0.03$	AUBERT 09m	BABR	$e^{+} e^{-}$	$\gamma D^{(*)} \bar{D}^{(*)}$
$\Gamma\left(D^{*}(2007)^{0} \bar{D}^{*}(2007)^{0}+\right.$ c.c. $) / \Gamma_{\text {total }}$		TECN	COMMENT	
VALUE	DOCUMENT ID			
seen	AUBERT 09m	BABR	$e^{+} e^{-}$	$D^{* 0} \bar{D}$

$\frac{\text { VALUE (units } 10^{-2} \text {) }}{\mathbf{1 0 . 5} \mathbf{2 . 4} \mathbf{2 . 8}} \quad 19 \frac{\text { DOCUMENT ID }}{\text { PAKHLOVA }} \quad$ 08A $\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{10.6 e^{+} e^{-} \rightarrow D^{0} D^{-} \pi^{+} \gamma}$
${ }^{19}$ Using $4421 \pm 4 \mathrm{MeV}$ for the mass and $62 \pm 20 \mathrm{MeV}$ for the width of $\psi(4415)$.
$\Gamma\left(D^{0} D^{-} \pi^{+}\left(\right.\right.$excl. $D^{*}(2007)^{0} \bar{D}^{0}+$ c.c., $D^{*}(2010)^{+} D^{-}+$c.c. $) /$

<0.22 $\quad \frac{90}{90} \quad 20$ PAKHLOVA 08 A BELL $\xrightarrow[10.6 e^{+} e^{-} \rightarrow D^{0} D^{-} \pi^{+} \gamma]{ }$
${ }^{20}$ Using $4421 \pm 4 \mathrm{MeV}$ for the mass and $62 \pm 20 \mathrm{MeV}$ for the width of $\psi(4415)$.

$\frac{\text { VALUE }}{<\mathbf{0 . 9 9 \times 1 \mathbf { 1 0 } ^ { \mathbf { - 6 } }} \frac{C L \%}{90} \quad 21 \frac{\text { DOCUMENT ID }}{\text { PAKHLOVA } 09} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}}}$ ${ }^{21}$ Using $4421 \pm 4 \mathrm{MeV}$ for the mass of $\psi(4415)$.

$\Gamma\left(D_{s}^{*+} D_{s}^{-}+\right.$c.c. $) / \Gamma_{\text {total }}$	Γ_{16} / Γ			
VALUE	DOCUMENT ID	TECN	COMMENT	
seen	PAKHLOVA 11	$\mathrm{BELL} \quad e^{+} e^{-} \rightarrow D_{S}^{*+} D_{S}^{-} \gamma$		
seen	DEL-AMO-SA..10N	BABR	$e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{-}$	
$\Gamma\left(D_{s}^{*+} D_{s}^{*=}\right) / \Gamma_{\text {total }}$			Γ_{17} / Γ	
VALUE	DOCUMENT ID	TECN	COMMENT	
not seen	PAKHLOVA 11		$e^{+} e^{-} \rightarrow$	
not seen	DEL-AMO-SA.. 10 N	BABR	$e^{+} e^{-}$	
$\Gamma\left(\psi(3770) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$		TECN	19/Г	
VALUE	DOCUMENT ID		COMMENT	
possibly seen	23 ABLIKIM	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} D$	
${ }^{23}$ Observe $e^{+} e^{-} \rightarrow \pi^{+}$ establish if continuum or	$\psi(3770) \text { at } \sqrt{s}=4.26,$ nant.	4.36 , and 4.42 GeV but cannot		
$\begin{aligned} & \Gamma\left(\psi_{\mathbf{2}}(3823) \pi^{+} \pi^{-}\right) / \Gamma_{\text {tota }} \\ & \text { VALUE } \end{aligned}$	DOCUMENT ID	TECN	Γ_{18} / Γ	
possibly seen 19	24 ABLIKIM	BES3	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \chi_{C 1} \gamma$	
${ }^{24}$ From a fit of $e^{+} e^{-} \rightarrow$ \sqrt{s} values of $4.23,4.26$,	$\begin{aligned} & \pi^{-} \psi_{2}(3823), \psi_{2}(3823) \\ & , 4.42 \text {, and } 4.60 \mathrm{GeV} \text { to } \end{aligned}$	$\begin{aligned} & \rightarrow \chi_{C 1} \\ & \text { the } \psi(42 \end{aligned}$	γ cross se 15) line s	

$\psi(4415)$ REFERENCES				
ABLIKIM	19AR	PR D100 032005	M. Ablikim et al.	(BESIII Collab.)
ZHUKOVA	18	PR D97 012002	V. Zhukova et al.	(BELLE Collab.)
ABLIKIM	16A	PR D93 011102	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15 S	PRL 115011803	M. Ablikim et al.	(BESIII Collab.)
HAN	15	PR D92 012011	Y.L. Han et al.	(BELLE Collab.)
WANG	13B	PR D87 051101	X.L. Wang et al.	(BELLE Collab.)
PAKHLOVA	11	PR D83 011101	G. Pakhlova et al.	(BELLE Collab.)
DEL-AMO-SA..	10N	PR D82 052004	P. del Amo Sanchez et al.	(BABAR Collab.)
MO	10	PR D82 077501	X.H. Mo, C.Z. Yuan, P. Wang	g (BHEP)
AUBERT	09M	PR D79 092001	B. Aubert et al.	(BABAR Collab.)
PAKHLOVA	09	PR D80 091101	G. Pakhlova et al.	(BELLE Collab.)
ABLIKIM	08D	PL B660 315	M. Ablikim et al.	(BES Collab.)
PAKHLOVA	08	PR D77 011103	G. Pakhlova et al.	(BELLE Collab.)
PAKHLOVA	08A	PRL 100062001	G. Pakhlova et al.	(BELLE Collab.)
PAKHLOVA	07	PRL 98092001	G. Pakhlova et al.	(BELLE Collab.)
SETH	05A	PR D72 017501	K.K. Seth	
BAI	02C	PRL 88101802	J.Z. Bai et al.	(BES Collab.)
BAI	00	PRL 84594	J.Z. Bai et al.	(BES Collab.)
OSTERHELD	86	SLAC-PUB-4160		(SLAC Crystal Ball Collab.)
BRANDELIK	78C	PL 76B 361	R. Brandelik et al.	(DASP Collab.)
SIEGRIST	76	PRL 36700	J.L. Siegrist et al.	(LBL, SLAC)

$$
\begin{aligned}
& I_{(}^{G}(J C)=1^{+}\left(1^{+-}\right) \\
& G, C \text { need confirmation. }
\end{aligned}
$$

was $X(4430)^{ \pm}$
Properties incompatible with a $q \bar{q}$ structure (exotic state). See the review on non $-q \bar{q}$ states.

First seen by CHOI 08 in $B \rightarrow K \pi^{+} \psi(2 S)$ decays, confirmed by AAIJ 14AG, and confirmed in a model-independent way by AAIJ 15BH. Also seen by CHILIKIN 14 in $B \rightarrow K^{+} \pi J / \psi$ decays. J^{P} was determined by CHILIKIN 13 and AAIJ 14AG.

$Z_{C}(4430)$ MASS

VALUE (MeV)
DOCUMENT ID TECN COMMENT
$4478{ }_{-18}^{+15}$ OUR AVERAGE

$4475 \pm 7_{-25}^{+15}$	1 AAIJ	14 AG LHCB	$B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$
$4485 \pm 22+28$	${ }_{-11}^{+}$CHILIKIN	$13 \quad$ BELL	$B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$

- - We do not use the following data for averages, fits, limits, etc. - - -
$4443_{-12}^{+15}{ }_{-13}^{19} \quad{ }^{2}$ MIZUK $\quad 09 \quad$ BELL $\quad B \rightarrow K \pi^{+} \psi(2 S)$
$4433 \pm 4 \pm 2 \quad{ }^{3} \mathrm{CHOI} \quad 08$ BELL $B \rightarrow K \pi^{+} \psi(2 S)$

1 From a four-dimensional amplitude analysis.
2 From a Dalitz plot analysis. Superseded by CHILIKIN 13 .
3 Superseded by MIZUK 09 and CHILIKIN 13.

$Z_{c}(4430)$ WIDTH

181 ± 31 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT
$172 \pm 13_{-34}^{+37}$	${ }^{1}$ AAIJ	14ag LHCB	$B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$
$200{ }_{-46}^{+41+36}$	${ }^{1}$ CHILIKIN	13 BELL	$B^{0} \rightarrow K^{+} \pi^{-} \psi(2 S)$

- - We do not use the following data for averages, fits, limits, etc. - . -

| 107_{-43-56}^{+86+74} | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 45_{-13-13}^{+18+30} | ${ }^{2}$ MIZUK | 09 | BELL | $B \rightarrow K \pi^{+} \psi(2 S)$ |
| ${ }^{3} \mathrm{CHOI}$ | 08 | BELL | $B \rightarrow K \pi^{+} \psi(2 S)$ | |

${ }^{1}$ From a four-dimensional amplitude analysis.
${ }_{3}^{2}$ From a Dalitz plot analysis. Superseded by CHILIKIN 13
${ }^{3}$ Superseded by MIZUK 09 and CHILIKIN 13.

$Z_{c}(4430)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \boldsymbol{\Gamma}\right)$
Γ_{1}	$\pi^{+} \psi(2 S)$	seen
Γ_{2}	$\pi^{+} J / \psi$	seen

$Z_{c}(4430)$ BRANCHING RATIOS

not seen	3 AUBERT	09AA BABR	$B \rightarrow K \pi^{+} \psi(2 S)$
seen	4 MIZUK	09 BELL $B \rightarrow K \pi^{+} \psi(2 S)$	

${ }^{1}$ From a four-dimensional amplitude analysis. No product of branching fractions quoted.
2 From a four-dimensional amplitude analysis. Measured a product of branching fractions $\mathrm{B}\left(B^{0} \rightarrow Z_{C}(4430)^{-} \kappa^{+}\right) \times \mathrm{B}\left(Z_{C}(4430)^{-} \rightarrow \psi(2 S) \pi^{-}\right)=\left(6.0_{-2.0-1.4}^{+1.7+2.5}\right) \times 10^{-5}$.
${ }^{3}$ AUBERT 09AA quotes $\mathrm{B}\left(B^{+} \rightarrow \bar{K}^{0} Z_{c}(4430)^{+}\right) \times \mathrm{B}\left(Z_{C}(4430)^{+} \rightarrow \pi^{+} \psi(2 S)\right)<$
4.7×10^{-5} and $\mathrm{B}\left(\bar{B}^{0} \rightarrow K^{-} Z_{C}(4430)^{+}\right) \times \mathrm{B}\left(Z_{C}(4430)^{+} \rightarrow \pi^{+} \psi(2 S)\right)<3.1 \times 10^{-5}$ at $95 \% \mathrm{CL}$
${ }^{4}$ Measured a product of branching fractions $\mathrm{B}\left(\bar{B}^{0} \rightarrow K^{-} Z_{C}(4430)^{+}\right) \times$ $\mathrm{B}\left(Z_{C}(4430)^{+} \rightarrow \pi^{+} \psi(2 S)\right)=\left(3.2_{-0.9}^{+1.8+1.6}\right) \times 10^{-5}$. Superseded by CHILIKIN 13.

$Z_{\boldsymbol{c}}(\mathbf{4 4 3 0})$ REFERENCES

AAIJ		PRL 122152002	R. Aaij et al.	(LHCb	
AAIJ	15BH	PR D92 112009	R. Aaij et al.	(LHCb	
AAIJ	14AG	PRL 112222002	R. Aaij et al.	(LHCb	
CHILIKIN	14	PR D90 112009	K. Chilikin et al.	(BELLE	
CHILIKIN	13	PR D88 074026	K. Chilikin et al.	(BELLE	
AUBERT	09AA	PR D79 112001	B. Aubert et al.	(BABAR	
MIZUK	09	PR D80 031104	R. Mizuk et al.	(BELLE	
CHOI	08	PRL 100142001	S.-K. Choi et al.	(BELLE	
$\chi_{c 0}(4500)$			$I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$		

OMITTED FROM SUMMARY TABLE
was $X(4500)$
This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the review on non- $q \bar{q}$ states.

Seen by AAIJ 17C in $B^{+} \rightarrow \chi_{C 0} K^{+}, \chi_{C 0} \rightarrow J / \psi \phi$ using an amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance (accounting for systematic uncertainties) of 6.1σ.

Meson Particle Listings

$\chi_{c o}(4500), \psi(4660)$

	$\chi_{C 0}(4500)$ BRANCHING RATIOS				
$\Gamma(J / \psi \phi) / \Gamma_{\text {total }}$	EVTS	DOCUMENT		COMment	Γ_{1} / Γ
seen	4289	${ }^{1}$ AAIJ	LHCB	$B^{+} \rightarrow J$	
${ }^{1}$ From an amp	nalysis	decay B^{+}	¢ K^{+}	th a signific	

$\chi_{c 0}(4500)$ REFERENCES

also known as $Y(4660)$; was $X(4660)$
This state shows properties different from a conventional $q \bar{q}$ state.
A candidate for an exotic structure. See the review on non $q \bar{q}$ states.
Seen in radiative return from $e^{+} e^{-}$collisions at $\sqrt{s}=9.54-10.58$ GeV by WANG 07D. Also obtained in a combined fit of WANG 07D, AUBERT 07S, and LEES 14F. See also the review on "Spectroscopy of mesons containing two heavy quarks."

$\psi(4660)$ MASS

$\psi(4660)$ MASS				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
4633 ± 7 OUR	VERA	E Error includes sca	fact	of 1.4. See the ideogram below.
$4625.9+6.0{ }_{-}^{+6.2} \pm 0.4$	89	$1 \mathrm{JIA} \quad 19 \mathrm{~A}$	BELL	$e^{+} e^{-} \rightarrow \gamma D_{S}^{+} D_{S 1}(2536)^{-}$
$4652 \pm 10 \pm 11$	279	2 WANG 15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \vec{\gamma} \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$4669 \pm 21 \pm 3$	37	${ }^{3}$ LEES $\quad 14 \mathrm{~F}$	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$4634 \pm 8 \pm 5$	142	4 PAKHLOVA 08B	BELL	$e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \Lambda_{c}^{-}$

- . We do not use the following data for averages, fits, limits, etc. - .

$4652.5 \pm 3.4 \pm 1.1$		${ }^{5}$ DAI	17	RVUE	$e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \Lambda_{c}^{-}$
4645.2土 9.5 ${ }^{\text {¢ }}$.0		${ }^{6}$ ZHANG	17B	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}{ }^{\text {c }}$ (2S)
$4646.4 \pm 9.7 \pm 4.8$		7 ZHANG	17C	RVUE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ or $\psi(2 S)$
$4661 \pm 9 \pm 6$	44	${ }^{8}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \overrightarrow{ } \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$4664 \pm 11 \pm 5$	44	WANG	07D	BELL	$10.58 e^{+} e^{-} \rightarrow$

${ }^{1}$ From a fit of a Breit-Wigner convolved with a Gaussian.
${ }^{2}$ From a two-resonance fit. Supersedes WANG 07D.
${ }^{3}$ From a two-resonance fit.
${ }^{4}$ The $\pi^{+} \pi^{-} \psi(2 S)$ and $\Lambda_{C}^{+} \Lambda_{c}^{-}$states are not necessarily the same.
${ }^{5}$ The pole parameters are extracted from the speed plot.
${ }_{7}^{6}$ From a three-resonance fit.
${ }^{7}$ From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $e^{+} e^{-} \rightarrow$
$\pi^{+} \pi^{-} \psi(2 S)$ data.
${ }^{8}$ From a combined fit of AUBERT 07S and WANG 07D data with two resonances.

$\psi(4660)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	not seen
Γ_{2}	$\psi(2 S) \pi^{+} \pi^{-}$	seen
Γ_{3}	$J / \psi \eta$	not seen
Γ_{4}	$D^{0} D^{*-} \pi^{+}$	not seen
Γ_{5}	$\chi_{c 1} \gamma$	not seen
Γ_{6}	$\chi_{c 2} \gamma$	not seen
Γ_{7}	$\Lambda_{c}^{+} \Lambda_{c}^{-}$	seen
Γ_{8}	$D_{s}^{+} D_{s 1}(2536)^{-}$	seen

$\psi(4660) \Gamma(\mathrm{i}) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma($ total $)$

$\left.\boldsymbol{\Gamma}(\boldsymbol{\psi} \mathbf{(2 S}) \boldsymbol{\pi}^{+} \pi^{-}\right) \times \Gamma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}$
VALUE (eV)

- - We do not use the following data for averages, fits, limits, etc. • •

$2.0 \pm 0.3 \pm 0.2$	279	1 WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{e^{+}} \overrightarrow{\pi^{-}} \psi(2 S) \end{aligned}$
$8.1 \pm 1.1 \pm 1.0$	279	2 WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \quad \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$2.7 \pm 1.3 \pm 0.5$	37	${ }^{3}$ LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \quad \overrightarrow{\pi^{+}} \pi^{-} \psi(2 S) \end{aligned}$
$7.5 \pm 1.7 \pm 0.7$	37	${ }^{4}$ LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \quad \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$\begin{array}{r} 2.2_{-0.6}^{+0.7} \end{array}$	44	${ }^{5}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \rightarrow \vec{\gamma} \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
5.9 ± 1.6	44	${ }^{6}$ LIU	08H	RVUE	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \\ & \gamma \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$3.0 \pm 0.9 \pm 0.3$	44	${ }^{3}$ WANG	07D	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \vec{\gamma} \pi^{+} \pi^{-} \psi(2 S) \end{aligned}$
$7.6 \pm 1.8 \pm 0.8$	44	${ }^{4}$ WANG	07D	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{ } \quad \overrightarrow{\pi^{+}} \pi^{-} \psi(2 S) \end{aligned}$

${ }^{1}$ Solution I of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D
2 Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.
${ }^{3}$ Solution I of two equivalent solutions in a fit using two interfering resonances.
4 Solution II of two equivalent solutions in a fit using two interfering resonances.
${ }^{5}$ Solution I in a combined fit of AUBERT 07S and WANG 07D data with two resonances.
${ }^{6}$ Solution II in a combined fit of AUBERT 07S and WANG 07D data with two resonances.
$\Gamma(J / \psi \eta) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{3} \Gamma_{1} / \Gamma$
VALUE (eV) CL\% DOCUMENT ID TECN COMMENT
• - We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$
$\begin{aligned} & \text { • } \\ & <0.94\end{aligned} \quad$ WANG $\quad 13 \mathrm{~B}$ BELL $e^{+} e^{-} \rightarrow J / \psi \eta \gamma$

${ }^{1}$ Using $\mathbf{B}(\eta \rightarrow \gamma \gamma)=(39.41 \pm 0.21) \%$.
$\Gamma\left(D_{s}^{+} D_{s 1}(\mathbf{2 5 3 6})^{-}\right) \times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{8} \Gamma_{1} / \Gamma$

VALUE (eV)	EVTS	DOC		TECN	COMMENT
$14.3_{-2.6}^{+2.8} \pm 1.5$	89	1 JIA	19A	BELL	$\begin{aligned} & e^{+} e^{-} \rightarrow \\ & \quad \gamma D_{s}^{+} D_{s 1}(2536)^{-} \end{aligned}$

${ }^{1}$ Using $D_{S 1}(2536)^{-} \rightarrow \bar{D}^{* 0} K^{-}$.

1 From a fit of a Breit-Wigner convolved with a Gaussian.
2 From a two-resonance fit. Supersedes WANG 07D.
3 From a two-resonance fit.
4 The $\pi^{+} \pi^{-} \psi(2 S)$ and $\Lambda_{C}^{+} \Lambda_{C}^{-}$states are not necessarily the same.
${ }^{5}$ The pole parameters are extracted from the speed plot.
6 From a three-resonance fit.
${ }^{6}$ From a combined fit of BELLE, BABAR and BES3 $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $e^{+} e^{-}$
$\pi^{+} \pi^{-} \psi(2 S)$ data.
${ }^{8}$ From a combined fit of AUBERT 07s and WANG 07D data with two resonances.
I

$\psi(4660)$ WIDTH
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{64 \pm 9 \text { OUR AVERAGE }}$
DOCUMENT ID TECN COMMENT

49.8	+13.9	. ± 4.0	89	1 JIA	19A	BELL	$e^{+} e^{-} \rightarrow \gamma D_{s}^{+} D_{S 1}(2536)^{-}$
68	± 11	± 5	279	${ }^{2}$ WANG	15A	BELL	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{e^{+}} \overrightarrow{\gamma \pi^{+}} \pi^{-} \psi(2 S) \end{aligned}$
104	± 48	± 10	37	${ }^{3}$ LEES	14F	BABR	$\begin{aligned} & 10.58 e^{+} e^{-} \overrightarrow{\gamma \pi^{+}} \pi^{-} \psi(2 S) \end{aligned}$
92	+40 -24	$\begin{array}{r} +10 \\ +21 \end{array}$	142	4 PAKHLOVA	08B	BELL	$e^{+} e^{-} \rightarrow \Lambda_{C}^{+} \Lambda_{c}^{-}$

$\psi(4660)$ BRANCHING RATIOS

$\Gamma\left(D^{0} D^{*-} \pi^{+}\right) / \Gamma\left(\psi(2 S) \pi^{+} \pi^{-}\right)$					Γ_{4} / Γ_{2}
value	c ${ }^{\text {\% }}$	DOCUMENT ID	TECN	COMMENT	
<10	90	PAKHLOVA		$e^{+} e^{-} \rightarrow$	${ }^{*-} \pi$

 $\frac{\text { VALUE }}{<\mathbf{0 . 3 7 \times 1 0 ^ { - 6 }}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { PAKHLOVA }}{\text { PAKCN }} 09$ COMMENT $\frac{\text { BELL }}{e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}}$ ${ }^{1}$ Using $4664 \pm 11 \pm 5 \mathrm{MeV}$ for the mass of $\psi(4660)$.

$\overline{\mathbf{0 . 6 8} \mathbf{+ 0 . 1 6 + 0 . 2 9}} \mathbf{0 . 0 . 3 0} \quad 142 \quad 1$ PAKHLOVA $\quad 08 \mathrm{~B} \quad \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \Lambda_{C}^{+} \Lambda_{C}^{-}$
${ }^{1}$ The $\pi^{+} \pi^{-} \psi(2 S)$ and $\Lambda_{C}^{+} \Lambda_{C}^{-}$states are not necessarily the same.

OMITTED FROM SUMMARY TABLE
was $X(4700)$
This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the review on non $-q \bar{q}$ states.
Seen by AAIJ $17 C$ in $B^{+} \rightarrow \chi_{C 0} K^{+}, \chi_{C 0} \rightarrow J / \psi \phi$ using an amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance (accounting for systematic uncertainties) of 5.6σ.

$\chi_{c 0}(4700)$ MASS

Bottomonium

$b \bar{b}$ MESONS
 (including possibly non $-q \bar{q}$ states)

The level scheme of meson states containing a minimal quark content of $b \bar{b}$. The name of a state is determined by its quantum numbers $I^{G} J^{P C}$ (see the review "Naming Scheme for Hadrons"). States included in the Summary Tables are shown with solid lines; those requiring confirmation are shown with dotted lines. The arrows indicate the most dominant hadronic transitions. Single photon transitions, including $\Upsilon(n S) \rightarrow \gamma \eta_{b}(m S)$, $\Upsilon(n S) \rightarrow \gamma \chi_{b J}(m P)$, and $\chi_{b J}(n P) \rightarrow \gamma \Upsilon(m S)$, are omitted for clarity. For orientation, the location of the thresholds related to a pair of ground state open bottom mesons is indicated in the figure.

WIDTH DETERMINATIONS OF THE Υ STATES

As is the case for the $J / \psi(1 S)$ and $\psi(2 S)$, the full widths of the $b \bar{b}$ states $\Upsilon(1 S), \Upsilon(2 S)$, and $\Upsilon(3 S)$ are not directly measurable, since they are much narrower than the energy resolution of the $e^{+} e^{-}$storage rings where these states are produced. The common indirect method to determine Γ starts from

$$
\begin{equation*}
\Gamma=\Gamma_{\ell \ell} / B_{\ell \ell}, \tag{1}
\end{equation*}
$$

where $\Gamma_{\ell \ell}$ is one leptonic partial width and $B_{\ell \ell}$ is the corresponding branching fraction $(\ell=e, \mu$, or $\tau)$. One then assumes $e-\mu-\tau$ universality and uses

$$
\Gamma_{\ell \ell}=\Gamma_{e e}
$$

$$
\begin{equation*}
B_{\ell \ell}=\text { average of } B_{e e}, B_{\mu \mu}, \text { and } B_{\tau \tau} \tag{2}
\end{equation*}
$$

The electronic partial width $\Gamma_{e e}$ is also not directly measurable at $e^{+} e^{-}$storage rings, only in the combination $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$, where $\Gamma_{\text {had }}$ is the hadronic partial width and

$$
\begin{equation*}
\Gamma_{\mathrm{had}}+3 \Gamma_{e e}=\Gamma \tag{3}
\end{equation*}
$$

This combination is obtained experimentally from the energyintegrated hadronic cross section

$$
\int \sigma\left(e^{+} e^{-} \rightarrow \Upsilon \rightarrow \text { hadrons }\right) d E
$$

resonance

$$
\begin{equation*}
=\frac{6 \pi^{2}}{M^{2}} \frac{\Gamma_{e e} \Gamma_{\mathrm{had}}}{\Gamma} C_{r}=\frac{6 \pi^{2}}{M^{2}} \frac{\Gamma_{e e}^{(0)} \Gamma_{\mathrm{had}}}{\Gamma} C_{r}^{(0)}, \tag{4}
\end{equation*}
$$

where M is the Υ mass, and C_{r} and $C_{r}^{(0)}$ are radiative correction factors. C_{r} is used for obtaining $\Gamma_{e e}$ as defined in Eq. (1), and contains corrections from all orders of QED for describing $(b \bar{b}) \rightarrow e^{+} e^{-}$. The lowest order QED value $\Gamma_{e e}^{(0)}$, relevant for comparison with potential-model calculations, is defined by the lowest order QED graph (Born term) alone, and is about 7\% lower than $\Gamma_{e e}$.

The Listings give experimental results on $B_{e e}, B_{\mu \mu}, B_{\tau \tau}$, and $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$. The entries of the last quantity have been re-evaluated consistently using the correction procedure of KURAEV 85 [1]. The partial width $\Gamma_{e e}$ is obtained from the average values for $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$ and $B_{\ell \ell}$ using

$$
\begin{equation*}
\Gamma_{e e}=\frac{\Gamma_{e e} \Gamma_{\mathrm{had}}}{\Gamma\left(1-3 B_{\ell \ell}\right)} \tag{5}
\end{equation*}
$$

The total width Γ is then obtained from Eq．（1）．We do not list $\Gamma_{e e}$ and Γ values of individual experiments．The $\Gamma_{e e}$ values in the Meson Summary Table are also those defined in Eq．（1）．

References

1．E．A．Kuraev，V．S．Fadin，Sov．J．Nucl．Phys．41， 466 （1985）．
$\eta_{b}(1 S) \quad{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$

Quantum numbers shown are quark－model predictions．Observed in radiative decay of the $\Upsilon(3 S)$ ，therefore $C=+$ ．

$\eta_{b}(1 S)$ MASS

VALUE（Me）		EVTS	DOCUMENT ID	TECN	COMMENT
9398．7土 2．0 OUR AVERAGE			Error includes scale factor of 1．5．See the ideogram below．		
9394．8 ${ }_{-}^{+}$	$2.7+4.5$ $3.1-2.7$	29K	FULSOM	18 BELL	$\gamma(2 S) \rightarrow \gamma X$
$9400.7 \pm$	1.7 ± 1.6	33．1k	TAMPONI	15 BELL	$e^{+} e^{-} \rightarrow \gamma \eta+$ hadrons
9402．4土	1.5 ± 1.8	34k	1 MIZUK	12 BELL	$e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-}+$ hadrons
9391．8士	6.6 ± 2.0	2．3k	2 BONVICINI	10 CLEO	$\gamma(3 S) \rightarrow \gamma X$
9394．2 ${ }_{-}^{+}$	$4.8{ }^{4.9} \pm 2.0$	13k	2 AUBERT	09AQ BABR	$\gamma(2 S) \rightarrow \gamma X$
9388．9 ${ }_{-}^{+}$	3.1 2.3	19k	2 AUBERT	08V BABR	$\gamma(3 S) \rightarrow \gamma X$

－－We do not use the following data for averages，fits，limits，etc．－－

| $9393.2 \pm 3.4 \pm 2.3$ | 10 | 2,3 | DOBBS | 12 |
| :--- | ---: | ---: | :--- | :--- |$\quad r(2 S) \rightarrow \gamma$ hadrons

${ }^{1}$ With floating width．Not independent of the corresponding mass difference measurement．
${ }^{2}$ Assuming $\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}$ ．Not independent of the corresponding γ energy or mass difference measurements．
3 Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration．

$\boldsymbol{m}_{\boldsymbol{r}(\mathbf{1 S})}=\boldsymbol{m}_{\boldsymbol{\eta}_{\boldsymbol{b}}}$

$57.9 \pm 1.5 \pm 1.8 \quad 34 \mathrm{k} \quad 1$ MIZUK $12 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-}$
$68.5 \pm 6.6 \pm 2.0 \quad 2.3 \pm 0.5 \mathrm{k} \quad{ }^{2}$ BONVICINI $\quad 10 \quad$ CLEO $\quad r(3 S) \rightarrow \gamma X$
$66.1_{-4.9}^{+4.8} \pm 2.0 \quad 13 \pm 5 \mathrm{k} \quad 2$ AUBERT 09AQ BABR $r(2 S) \rightarrow \gamma X$
$71.4_{-3.1}^{+2.3} \pm 2.7 \quad 19 \pm 3 \mathrm{k} \quad{ }^{2}$ AUBERT $\quad 08 \mathrm{~V}$ BABR $\gamma(3 S) \rightarrow \gamma X$
－－We do not use the following data for averages，fits，limits，etc．－－
$67.1 \pm 3.4 \pm 2.3$
$10_{-4}^{+5} \quad 2,3$ DOBBS
12
$\gamma(2 S) \rightarrow \gamma$ hadrons
${ }^{1}$ With floating width．Not independent of the corresponding mass measurement．
${ }^{2}$ Assuming $\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}$ ．Not independent of the corresponding γ energy or mass
measurements．
3 Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration．

γ ENERGY IN $r(3 S)$ DECAY

VALUE（MeV）	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{9 2 0 . 6} \mathbf{- 3 . 2}_{\mathbf{2} .8}$ OUR AVERAGE					
$918.6 \pm 6.0 \pm 1.9$	$2.3 \pm 0.5 \mathrm{k}$	${ }^{1}$ BONVICINI	10	CLEO	$r(3 S) \rightarrow \gamma X$
$921.2{ }_{-2.8}^{+2.1} \pm 2.4$	$19 \pm 3 \mathrm{k}$	${ }^{1}$ AUBERT	08 V	BABR	$r(3 S) \rightarrow \gamma X$
${ }^{1}$ Assuming $\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}$ ．Not independent of the corresponding mass or mass difference measurements．					

γ ENERGY IN $r(2 S)$ DECAY

VALUE（MeV）	EVTS	DOCUMENT ID	TECN	COMMENT
$609.3{ }_{-4.5}^{+4.6} \pm 1.9$	$13 \pm 5 \mathrm{k}$	1 AUBERT	AB	

${ }^{1}$ Assuming $\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}$ ．Not independent of the corresponding mass or mass difference measurements．

$\eta_{b}(1 S)$ WIDTH

VALUE (MeV) EVTS DOCUMENTID TECN COMMENT
$10 \begin{aligned} & \mathbf{+ 5} \\ & \mathbf{- 4}\end{aligned}$ OUR AVERAGE

$8{ }_{-5}^{+6} \pm 5$		33．1k	1 TAMPONI		BELL e^{+}	$\rightarrow \gamma \eta+$ hadrons
$10.8_{-3.7-2.0}^{+4.0+4.5}$		34k	1 MIZUK	12	BELL e^{+}	$\rightarrow \gamma \pi^{+} \pi^{-}+$
1 With floating mass．						
$\eta_{b}(15)$ DECAY MODES						
Mode					tion $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
Γ_{1}	hadrons				en	
Γ_{2}	$3 h^{+} 3 h^{-}$				ot seen	
$\Gamma 3$	$2 h^{+} 2 h^{-}$				ot seen	
Γ_{4}	$4 h^{+} 4 h^{-}$				ot seen	
Γ_{5}	$\gamma \gamma$				ot seen	
Γ_{6}	$\mu^{+} \mu^{-}$				$\times 10^{-3}$	90\％
Γ_{7}	$\tau^{+} \tau^{-}$			＜8		90\％

$\eta_{b}(1 S) \Gamma(i) \Gamma(\gamma \gamma) / \Gamma($ total $)$

－• We do not use the following data for averages，fits，limits，etc．• •

<470	95	ABDALLAH	06	DLPH	$161-209 e^{+} e^{-}$
<132	95	HEISTER	02D ALEP	$181-209 e^{+} e^{-}$	
$\boldsymbol{\Gamma}\left(\mathbf{2 ~}^{+} \mathbf{2}^{\boldsymbol{-}}\right) \times \boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{\gamma}) / \boldsymbol{\Gamma}_{\text {total }}$				$\boldsymbol{\Gamma}_{\mathbf{3}} \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}$	

VALUE (eV) CL\％DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •

<190	95	ABDALLAH	06	DLPH	$161-209 e^{+} e^{-}$
<48	95	HEISTER	$02 D$	ALEP	$181-209 e^{+} e^{-}$

Meson Particle Listings
$\eta_{b}(1 S), r(1 S)$

$r(1 S)$ MASS

$r(1 S)$ WIDTH

$\frac{\text { VALUE (keV) }}{54.02 \pm 1.25 \text { OUR EVALUATION }}$ SOCUMENT ID
States"
see the Note on "Width Determinations of the r

$r(1 S)$ DECAY MODES				
Mode		Fraction ($\Gamma_{i} / \Gamma^{\prime}$)	Scale factor Confidence leve	
Γ_{1}	$\tau^{+} \tau^{-}$	(2.60 ± 0.10		
Γ_{2}	$e^{+} e^{-}$	(2.38 ± 0.11		
Γ_{3}	$\mu^{+} \mu^{-}$	(2.48 ± 0.05		
Hadronic decays				
Γ_{4}	$g g g$	$(81.7 \pm 0.7$		
Γ_{5}	rgg	(2.2 ± 0.6		
Γ_{6}	$\eta^{\prime}(958)$ anything	(2.94 ± 0.24		
Γ_{7}	$J / \psi(1 S)$ anything	$(5.4 \pm 0.4$) $\times 10^{-4}$	$\mathrm{S}=1.4$
Γ_{8}	$J / \psi(1 S) \eta_{C}$	<2.2	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{9}	$J / \psi(1 S) \chi_{c 0}$	< 3.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{10}	$J / \psi(1 S) \chi_{c 1}$	$(3.9 \pm 1.2$) $\times 10^{-6}$	
Γ_{11}	$J / \psi(1 S) \chi_{c 2}$	< 1.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{12}	$J / \psi(1 S) \eta_{C}(2 S)$	< 2.2	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{13}	$J / \psi(1 S) \times(3940)$	< 5.4	$\times 10^{-6}$	CL=90\%
Γ_{14}	$J / \psi(1 S) X(4160)$	< 5.4	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{15}	$X(4350)$ anything, $X \rightarrow$	< 8.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$

Γ_{16}	$\begin{aligned} & Z_{C}(3900)^{ \pm} \text {anything, } Z_{C} \rightarrow \\ & J / \psi(1 S) \pi^{ \pm} \end{aligned}$	<1.3	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{17}	$\begin{aligned} & Z_{C}(4200)^{ \pm} \text {anything, } Z_{C} \rightarrow \\ & J / \psi(1 S) \pi^{ \pm} \end{aligned}$	< 6.0	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{18}	$\begin{aligned} & Z_{C}(4430)^{ \pm} \text {anything, } \quad Z_{C} \rightarrow \\ & J / \psi(1 S) \pi^{ \pm} \end{aligned}$	<4.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{19}	$X_{c s}^{ \pm}$anything, $X \rightarrow J / \psi K^{ \pm}$	<5.7	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{20}	$\begin{aligned} & \chi_{c 1}(3872) \text { anything, } \chi_{c 1} \rightarrow \\ & J / \psi(1 S) \pi^{+} \pi^{-} \end{aligned}$	<9.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{21}	$\begin{aligned} & \psi(4260) \text { anything, } \\ & J / \psi(1 S) \pi^{+} \pi^{-} \end{aligned}$	<3.8	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{22}	$\begin{gathered} \psi(4260) \text { anything, } \psi \rightarrow \\ J / \psi(1 S) K^{+} K^{-} \end{gathered}$	<7.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{23}	$\begin{aligned} & \chi_{c 1}(4140) \text { anything, } \chi_{c 1} \rightarrow \\ & J / \psi(1 S) \phi \end{aligned}$	<5.2	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma 24$	$\chi_{c 0}$ anything	<4	$\times 10^{-3}$	$\mathrm{CL}=90 \%$
Γ_{25}	$\chi_{c 1}$ anything	(1.90	$\pm 0.35) \times 10^{-4}$	
Γ_{26}	$\chi_{c 1}(1 P) X_{\text {tetra }}$	< 3.78	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma 27$	$\chi_{c 2}$ anything	(2.8	$\pm 0.8) \times 10^{-4}$	
Γ_{28}	$\psi(2 S)$ anything	(1.23	$\pm 0.20) \times 10^{-4}$	
Γ_{29}	$\psi(2 S) \eta_{C}$	< 3.6	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma 30$	$\psi(2 S) \chi_{c 0}$	<6.5	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
Γ_{31}	$\psi(2 S) \chi_{c 1}$	<4.5	$\times 10^{-6}$	CL=90\%
Γ_{32}	$\psi(2 S) \chi_{c 2}$	<2.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma 33$	$\psi(2 S) \eta_{c}(2 S)$	<3.2	$\times 10^{-6}$	CL=90\%
$\Gamma 34$	$\psi(2 S) X(3940)$	<2.9	$\times 10^{-6}$	CL=90\%
$\Gamma 35$	$\psi(2 S) X(4160)$	<2.9	$\times 10^{-6}$	CL=90\%
$\Gamma 36$	$\begin{aligned} & \psi(4260) \text { anything, } \psi \rightarrow \\ & \psi(2 S) \pi^{+} \pi^{-} \end{aligned}$	< 7.9	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{37}	$\begin{aligned} & \psi(4360) \text { anything, } \psi \rightarrow \\ & \psi(2 S) \pi^{+} \pi^{-} \end{aligned}$	<5.2	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{38}	$\begin{aligned} & \psi(4660) \text { anything, } \psi \rightarrow \\ & \psi(2 S) \pi^{+} \pi^{-} \end{aligned}$	<2.2	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{39}	$\begin{aligned} & X(4050)^{ \pm} \text {anything, } X \rightarrow \\ & \psi(2 S) \pi^{ \pm} \end{aligned}$	<8.8	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{40}	$\begin{aligned} & Z_{C}(4430)^{ \pm} \text {anything, } Z_{C} \rightarrow \\ & \psi(2 S) \pi^{ \pm} \end{aligned}$	<6.7	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{41}	$Z_{C}(4200)^{+} Z_{C}(4200)^{-}$	<2.23	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{42}	$Z_{C}(3900)^{ \pm} Z_{C}(4200)^{\mp}$	<8.1	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma 43$	$Z_{C}(3900){ }^{+} Z_{c}(3900)^{-}$	< 1.8	$\times 10^{-6}$	CL=90\%
$\Gamma 44$	$X(4050)^{+} X(4050)^{-}$	< 1.58	$\times 10^{-5}$	CL=90\%
Γ_{45}	$X(4250)^{+} X(4250)^{-}$	< 2.66	$\times 10^{-5}$	CL=90\%
Γ_{46}	$X(4050)^{ \pm} X(4250)^{\mp}$	< 4.42	$\times 10^{-5}$	CL=90\%
$\Gamma 47$	$Z_{C}(4430)^{+} Z_{C}(4430)^{-}$	< 2.03	$\times 10^{-5}$	CL=90\%
Γ_{48}	$X(4055)^{ \pm} X(4055)^{\mp}$	<2.33	$\times 10^{-5}$	CL=90\%
Γ_{49}	$X(4055)^{ \pm} Z_{C}(4430)^{\mp}$	<4.55	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
$\Gamma 50$	$\rho \pi$	< 3.68	$\times 10^{-6}$	CL=90\%
Γ_{51}	$\omega \pi^{0}$	< 3.90	$\times 10^{-6}$	CL=90\%
Γ_{52}	$\pi^{+} \pi^{-}$	<5	$\times 10^{-4}$	CL=90\%
Γ_{53}	$K^{+} K^{-}$	<5	$\times 10^{-4}$	CL=90\%
$\Gamma 54$	$p \bar{p}$	< 5	$\times 10^{-4}$	CL=90\%
Γ_{55}	$\pi^{+} \pi^{-} \pi^{0}$	(2.1	$\pm 0.8) \times 10^{-6}$	
Γ_{56}	$\phi K^{+} K^{-}$	(2.4	$\pm 0.5) \times 10^{-6}$	
Γ_{57}	$\omega \pi^{+} \pi^{-}$	(4.5	$\pm 1.0) \times 10^{-6}$	
Γ_{58}	$K^{*}(892)^{0} K^{-} \pi^{+}+$c.c.	(4.4	$\pm 0.8) \times 10^{-6}$	
Γ_{59}	$\phi f_{2}^{\prime}(1525)$	< 1.63	$\times 10^{-6}$	CL=90\%
Γ_{60}	$\omega f_{2}(1270)$	<1.79	$\times 10^{-6}$	CL=90\%
Γ_{61}	$\rho(770) a_{2}(1320)$	<2.24	$\times 10^{-6}$	CL=90\%
Γ_{62}	$K^{*}(892)^{0} \bar{K}_{2}^{*}(1430)^{0}+$ c.c.	(3.0	$\pm 0.8) \times 10^{-6}$	
Γ_{63}	$K_{1}(1270)^{ \pm} K^{\mp}$	<2.41	$\times 10^{-6}$	CL=90\%
Γ_{64}	$K_{1}(1400)^{ \pm} K^{\mp}$	(1.0	$\pm 0.4) \times 10^{-6}$	
Γ_{65}	$b_{1}(1235)^{ \pm} \pi^{\mp}$	< 1.25	$\times 10^{-6}$	CL=90\%
Γ_{66}	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	(1.28	$\pm 0.30) \times 10^{-5}$	
Γ_{67}	$K_{S}^{0} K^{+} \pi^{-}+$c.c.	(1.6	$\pm 0.4) \times 10^{-6}$	
Γ_{68}	$K^{*}(892)^{0} \bar{K}^{0}+$ c.c.	(2.9	$\pm 0.9) \times 10^{-6}$	
Γ_{69}	$K^{*}(892)^{-} K^{+}+$c.c.	< 1.11	$\times 10^{-6}$	CL=90\%
Γ_{70}	$f_{1}(1285)$ anything	(4.6	$\pm 3.1) \times 10^{-3}$	
Γ_{71}	$D^{*}(2010)^{ \pm}$anything	(2.52	± 0.20) \%	
Γ_{72}	$f_{1}(1285) X_{\text {tetra }}$	< 6.24	$\times 10^{-5}$	CL=90\%
Γ_{73}	${ }^{2} H$ anything	(2.85	$\pm 0.25) \times 10^{-5}$	
Γ_{74}	Sum of 100 exclusive modes	(1.200	$\pm 0.017) \%$	
Radiative decays				
Γ_{75}	$\gamma \pi^{+} \pi^{-}$	$(6.3$	$\pm 1.8) \times 10^{-5}$	
Γ_{76}	$\gamma \pi^{0} \pi^{0}$	(1.7	$\pm 0.7) \times 10^{-5}$	
Γ_{77}	$\gamma \pi \pi$ (S-wave)	(4.6	$\pm 0.7) \times 10^{-5}$	

Γ_{78}	$\gamma \pi^{0} \eta$
Γ_{79}	$\gamma K^{+} K^{-}$
Γ_{80}	$\gamma p \bar{p}$
Γ_{81}	$\gamma 2 h^{+} 2 h^{-}$
Γ_{82}	$\gamma 3 h^{+} 3 h^{-}$
Γ_{83}	$\gamma 4 h^{+} 4 h^{-}$
Γ_{84}	$\gamma \pi^{+} \pi^{-} K^{+} K^{-}$
Γ_{85}	$\gamma 2 \pi^{+} 2 \pi^{-}$
Γ_{86}	$\gamma 3 \pi^{+} 3 \pi^{-}$
Γ_{87}	$\gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}$
Γ_{88}	$\gamma \pi^{+} \pi^{-} p \bar{p}$
Γ_{89}	$\gamma 2 \pi^{+} 2 \pi^{-} p \bar{p}$
Γ_{90}	$\gamma 2 K^{+} 2 K^{-}$
Γ_{91}	$\gamma \eta^{\prime}(958)$
Γ_{92}	$\gamma \eta$
Γ_{93}	$\gamma f_{0}(980)$
Γ_{94}	$\gamma f_{2}^{\prime}(1525)$
Γ_{95}	$\gamma f_{2}(1270)$
Γ_{96}	$\gamma \eta(1405)$
Γ_{97}	$\gamma f_{0}(1500)$
Γ_{98}	$\gamma f_{0}(1500) \rightarrow \gamma K^{+} K^{-}$
Γ_{99}	$\gamma f_{0}(1710)$
Γ_{100}	$\gamma f_{0}(1710) \rightarrow \gamma K^{+} K^{-}$
Γ_{101}	$\gamma f_{0}(1710) \rightarrow \gamma \pi^{+} \pi^{-}$
Γ_{102}	$\gamma f_{0}(1710) \rightarrow \gamma \pi^{0} \pi^{0}$
Γ_{103}	$\gamma f_{0}(1710) \rightarrow \gamma \eta \eta$
Γ_{104}	$\gamma f_{4}(2050)$
Γ_{105}	$\gamma f_{0}(2200) \rightarrow \gamma K^{+} K^{-}$
Γ_{106}	$\gamma f_{J}(2220) \rightarrow \gamma K^{+} K^{-}$
Γ_{107}	$\gamma f_{J}(2220) \rightarrow \gamma \pi^{+} \pi^{-}$
Γ_{108}	$\gamma f_{J}(2220) \rightarrow \gamma p \bar{p}$
Γ_{109}	$\gamma \eta(2225) \rightarrow \gamma \phi \phi$
Γ_{110}	$\gamma \eta_{c}(1 S)$
Γ_{111}	$\gamma \chi_{c 0}$
Γ_{112}	$\gamma \chi_{c 1}$
Γ_{113}	$\gamma \chi_{c 2}$
Γ_{114}	$\gamma \chi_{c 1}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$
Γ_{115}	$\gamma \chi_{c 1}(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0} J / \psi$
Γ_{116}	$\gamma X(3915) \rightarrow \omega J / \psi$
Γ_{117}	$\gamma \chi_{c 1}(4140) \rightarrow \phi J / \psi$
Γ_{118}	γX
Γ_{119}	$\gamma X \bar{X}\left(m_{X}<3.1 \mathrm{GeV}\right)$
Γ_{120}	$\gamma X \bar{X}\left(m_{X}<4.5 \mathrm{GeV}\right)$
Γ_{121}	$\gamma X \rightarrow \gamma+\geq 4$ prongs
Γ_{122}	$\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$
Γ_{123}	$\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}$
Γ_{124}	$\gamma a_{1}^{0} \rightarrow \gamma g g$
Γ_{125}	$\gamma a_{1}^{0} \rightarrow \gamma s \bar{s}$

$<2.4 \times 10^{-6}$	CL=90\%	$1.23 \pm 0.02 \pm 0.05$	1 JAKUBOWSKI 88	CBAL $e^{+} e^{-} \rightarrow$ hadrons
[a] $(1.14 \pm 0.13) \times 10^{-5}$		$1.37 \pm 0.06 \pm 0.09$	${ }^{2}$ GILES 84 B	CLEO $e^{+} e^{-} \rightarrow$ hadrons
$[b]<6 \times 10^{-6}$	CL=90\%	$1.23 \pm 0.08 \pm 0.04$	${ }^{2}$ ALBRECHT 82	DASP $e^{+} e^{-} \rightarrow$ hadrons
$(7.0 \pm 1.5) \times 10^{-4}$		$1.13 \pm 0.07 \pm 0.11$	2 NICZYPORUK 82	LENA $e^{+} e^{-} \rightarrow$ hadrons
$\binom{5.4}{$ 2.0}$\times 10^{-4}$		1.09 ± 0.25	${ }^{2}$ BOCK 80	CNTR $e^{+} e^{-} \rightarrow$ hadrons
$\left(\begin{array}{ll}7.4 & \pm 3.5\end{array}\right) \times 10^{-4}$		1.35 ± 0.14	${ }^{3}$ BERGER 79	PLUT $e^{+} e^{-} \rightarrow$ hadrons
$(2.9 \pm 0.9) \times 10^{-4}$		${ }^{1}$ Radiative corrections evaluated following KURAEV 85. ${ }^{2}$ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85. ${ }^{3}$ Radiative corrections reevaluated by ALEXANDER 89 using $\mathrm{B}(\mu \mu)=0.026$.		
$\left.\begin{array}{l}\left(\begin{array}{lll}2.5 & \pm 0.9\end{array}\right) \times 10^{-4} \\ (2.5 \\ \hline 1.2\end{array}\right) \times 10^{-4}$				

$r(1 S)$ PARTIAL WIDTHS

$\Gamma\left(e^{+} e^{-}\right)$
Γ_{2}
VALUE (kev)
1.340 ± 0.018 OUR EVALUATION

$\boldsymbol{r}(15)$ BRANCHING RATIOS

${ }^{1}$ BESSON 07 reports $\left[\Gamma\left(\Upsilon(1 S) \rightarrow \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]=1.02 \pm$ 0.02 ± 0.05 which we multiply by our best value $\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \times$
10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ Using $\mathrm{B}(\Upsilon(1 S) \rightarrow e e)=\mathrm{B}(\Upsilon(1 S) \rightarrow \mu \mu)=0.0256$; not used for width evaluations.

$\Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}$						
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.38 ± 0.11 OUR AVERAGE						
$2.29 \pm 0.08 \pm 0.11$		ALEXANDER	98	CLE2	$r(2 S) \rightarrow$	$+e^{-}$
$2.42 \pm 0.14 \pm 0.14$	307	ALBRECHT	87	ARG	$r(2 S) \rightarrow$	${ }^{+} e^{-}$
$2.8 \pm 0.3 \pm 0.2$	826	BESSON	84	CLEO	$r(2 S) \rightarrow$	${ }^{+} e^{-}$
5.1 ± 3.0		BERGER	80c	PLUT	$e^{+} e^{-} \rightarrow$	

$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}$					$\Gamma 3 / \Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.0248 ± 0.0005 OUR AVERAGE					
$0.0249 \pm 0.0002 \pm 0.0007$	345k	ADAMS	05	CLEO	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.0249 \pm 0.0008 \pm 0.0013$		ALEXANDER	98	CLE2	$r(2 S) \rightarrow$
					$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$
$0.0212 \pm 0.0020 \pm 0.0010$		${ }^{1}$ BARU	92	MD1	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.0231 \pm 0.0012 \pm 0.0010$		1 KOBEL	92	CBAL	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.0252 \pm 0.0007 \pm 0.0007$		CHEN	89B	CLEO	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.0261 \pm 0.0009 \pm 0.0011$		KAARSBERG	89	CSB2	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.0230 \pm 0.0025 \pm 0.0013$	86	ALBRECHT	87	ARG	$r(2 S) \rightarrow$
					$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$
$0.029 \pm 0.003 \pm 0.002$	864	BESSON	84	CLEO	$\gamma(2 S) \rightarrow$
					$\pi^{+} \pi^{-} \mu^{+} \mu^{-}$
$0.027 \pm 0.003 \pm 0.003$		ANDREWS	83	CLEO	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.032 \pm 0.013 \pm 0.003$		ALBRECHT	82	DASP	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.038 \pm 0.015 \pm 0.002$		NICZYPORUK	82	LENA	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$0.014{ }_{-0.014}^{+0.034}$		BOCK	80	CNTR	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
0.022 ± 0.020		BERGER	79	PLUT	$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

${ }^{1}$ Taking into account interference between the resonance and continuum.

$\boldsymbol{\Gamma}(\boldsymbol{g} \boldsymbol{g} \boldsymbol{g}) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{8 1 . 7} \pm \mathbf{0 . 7}} \frac{E V T S}{20 M} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BESSON }} \quad 06 \mathrm{~A}$
$\frac{T E C N}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(1 S) \rightarrow \text { hadrons }}$
${ }^{1}$ Calculated using the value $\Gamma(\gamma g g) / \Gamma(g g g)=(2.70 \pm 0.01 \pm 0.13 \pm 0.24) \%$ from BESSON 06A and PDG 08 values of $\mathrm{B}\left(\mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%$ and $\mathrm{R}_{\text {hadrons }}=$ 3.51. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma g g) / \Gamma_{\text {total }}$ measurement of BESSON 06A.

VALUE (units 10^{-2})	EVTS	DOCUMENT	TECN	COMMENT	
$\mathbf{2 . 2 0} \pm \mathbf{0 . 6 0}$	400k	1 BESSON	06A CLEO	$r(1 S)$	drons
${ }^{1}$ Calculated using BESSON 06A values of $\Gamma(\gamma g g) / \Gamma(g g g)=(2.70 \pm 0.01 \pm 0.13 \pm 0.24) \%$ and $\Gamma(g g g) / \Gamma_{\text {total }}$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(g g g) / \Gamma_{\text {total }}$ measurement of BESSON 06A.					

Meson Particle Listings
$\gamma(1 S)$

Meson Particle Listings
$r(1 S)$

$\Gamma\left(\gamma \pi^{0} \eta\right) / \Gamma_{\text {total }}$						Γ_{78} / Γ
VALUE (units 10^{-6})	CL\%	DOCUMENT		TECN	COMMENT	
<2.4	90	1 BESSON	07A	CLEO	$e^{+} e^{-} \rightarrow$	

${ }^{1}$ BESSON 07A obtained this limit for $0.7<m_{\pi^{0} \eta}<3 \mathrm{GeV}$.

- - We do not use the following data for averages, fits, limits, etc. - -

<14	90	3 FULTON	90B	CLEO	$\gamma(1 S) \rightarrow$	$\gamma K^{+} K^{-}$
<19.4	90	${ }^{3}$ ALBRECHT	89	ARG	$\gamma(1 S) \rightarrow$	$\gamma K^{+} K^{-}$

${ }^{1}$ Using $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=0.887 \pm 0.022$ and $\mathrm{B}\left(K^{0} \bar{K}^{0}\right)=1 / 2 \mathrm{~B}(K \bar{K})$.
${ }^{2}$ BESSON 11 reports $(4.0 \pm 1.3 \pm 0.6) \times 10^{-5}$ from a measurement of $[\Gamma(\gamma(1 S) \rightarrow$ $\left.\left.\gamma f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)\right]$ assuming $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=(88.8 \pm$ $3.1) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=(87.6 \pm$ 2.2) $\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The result also assumes $\mathrm{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$ $=(69.20 \pm 0.05) \%$ and $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=4 \mathrm{~B}\left(f_{2}^{\prime}(1525) \rightarrow K_{S}^{0} K_{S}^{0}\right)$.
${ }^{3}$ Assuming $\mathrm{B}\left(f_{2}^{\prime}(1525) \rightarrow K \bar{K}\right)=0.71$.

- - We do not use the following data for averages, fits, limits, etc. - - .

$\Gamma\left(\gamma f_{0}(1500)\right) / \Gamma_{\text {total }}$			$\Gamma 97 / \Gamma$
VALUE (units 10-5) $\frac{\text { cl } \%}{}$	DOCUMENT ID	TECN COMMENT	

- - We do not use the following data for averages, fits, limits, etc. - - -

$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{102} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{1 . 4}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BESSON } \quad 07 \mathrm{~A}} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow r(1 S) \rightarrow \gamma \pi^{0} \pi^{0}}$
$\Gamma\left(\gamma f_{0}(1710) \rightarrow \gamma \eta \eta\right) / \Gamma_{\text {total }} \quad \Gamma_{103} / \Gamma$
$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<\mathbf{1 . 8}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { BESSON }} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{\text { CLEO }} \frac{\text { COM }}{e^{+} e^{-} \rightarrow \gamma(1 S) \rightarrow \gamma \eta \eta}$

$\Gamma\left(\gamma f_{\mathbf{4}}(\mathbf{2 0 5 0})\right) / \Gamma_{\text {total }}$						Γ_{104} / Γ
VALUE (units 10^{-5})	CL\%	DOCUMEN		TECN	COMMENT	
<5.3	90	${ }^{1}$ ATHAR	06	CLE3	$r(1 S) \rightarrow$	
${ }^{1}$ Assuming $\mathrm{B}\left(f_{4}(2050) \rightarrow \pi \pi\right)=0.17$.						

$\Gamma\left(\gamma f_{0}(\mathbf{2 2 0 0}) \rightarrow \gamma K^{+} K^{-}\right) / \Gamma_{\text {total }}$						Γ_{105} / Γ
VALUE	CL\%	DOCUM		TECN	COMMENT	
<0.0002	90	BARU	89	MD1	$r(1 S) \rightarrow$	+ K^{-}

$\Gamma\left(\gamma f_{J}(2220) \rightarrow \gamma K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{106} / \Gamma$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{<\mathbf{8}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ATHAR }} 0 . \frac{\text { TECN }}{\text { CLE3 }} \frac{\text { COMMENT }}{\gamma(1 S) \rightarrow \gamma K^{+} K^{-}}$

- - We do not use the following data for averages, fits, limits, etc. • - -

<160	90	MASEK	02	CLEO	$r(1 S) \rightarrow \gamma K^{+} K^{-}$
<150	90	FULTON	$90 B$	CLEO	$r(1 S) \rightarrow \gamma K^{+} K^{-}$
<290	90	ALBRECHT	89	ARG	$r(1 S) \rightarrow \gamma K^{+} K^{-}$
<2000	90	BARU	89	MD1	$r(1 S) \rightarrow \gamma K^{+} K^{-}$

$\Gamma\left(\gamma f_{J}(2220) \rightarrow \gamma \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}$
$\Gamma_{107 / \Gamma}$
$\frac{\text { VALUE (units } 10^{-7} \text {) }}{<\mathbf{6}} \frac{\text { CL\% }}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ATHAR }} 06 \frac{\text { TECN }}{\text { CLE3 }} \frac{\text { COMMENT }}{\gamma(1 S) \rightarrow \gamma \pi^{+} \pi^{-}}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$<120 \quad 90 \quad$ MASEK $02 \quad$ CLEO $\quad r(1 S) \rightarrow \gamma \pi^{+} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. • • -
$<160 \quad 90 \quad$ MASEK 02 CLEO $r(1 S) \rightarrow \gamma p \bar{p}$

$$
\left(201<\mathrm{M}\left(\mu^{+} \mu^{-}\right)<3565 \mathrm{MeV}\right)
$$

$\frac{\text { VALUE (units } 10^{-6} \text {) }}{<9} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { LOVE }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}}$

${ }^{1}$ For a narrow scalar or pseudoscalar a_{1}^{0} with $201<\mathrm{M}\left(\mu^{+} \mu^{-}\right)<3565 \mathrm{MeV}$, excluding
J / ψ. Measured $90 \% \mathrm{CL}$ limits as a function of $\mathrm{M}\left(\mu^{+} \mu^{-}\right)$range from $1-9 \times 10^{-6}$.
${ }^{2}$ For a narrow scalar or pseudoscalar a_{1}^{0} with mass in the range $212-9200 \mathrm{MeV}$, excluding
J / ψ and $\psi(2 S)$. Measured $90 \% \mathrm{CL}$ limits as a function of $m_{a_{1}^{0}}$ range from $0.28-9.7 \times$
10^{-6}.

$\Gamma\left(\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}$					$\Gamma 123 / \Gamma$
$\left(2 m_{\tau}<\mathrm{M}\left(\tau^{+} \tau^{-}\right)<9.2 \mathrm{GeV}\right)$					
VALUE (units 10^{-6})	CL\%	DOCUN	TECN	COMMENT	
<130	90	1 LEES	BABR	$r(2 S) \rightarrow$	

Meson Particle Listings
$r(1 S), \chi_{b 0}(1 P)$

- - We do not use the following data for averages, fits, limits, etc. - . -
$<50 \quad 90 \quad{ }^{2}$ LOVE $\quad 08 \quad$ CLEO $\quad e^{+} e^{-} \rightarrow \gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}$
${ }^{1}$ For a narrow scalar a_{1}^{0} with $2 m_{\tau}<\mathrm{M}\left(a_{1}^{0}\right)<9.2 \mathrm{GeV}$, which result in a $90 \% \mathrm{CL}$ upper limits of 0.9×10^{-5} at $\mathrm{M}\left(a_{1}^{0}\right)=2 m_{\tau}, \approx 1.5 \times 10^{-5}$ at $\mathrm{M}\left(a_{1}^{0}\right)=7.5 \mathrm{GeV}$, and 13×10^{-5} at $\mathrm{M}\left(a_{1}^{0}\right)=9.2 \mathrm{GeV}$.
${ }^{2}$ For a narrow scalar or pseudoscalar a_{1}^{0} with $2 m_{\tau}<M\left(a_{1}^{0}\right)<7.5 \mathrm{GeV}$, which result in a $90 \% \mathrm{CL}$ limits ranging from 1×10^{-5} at $\mathrm{M}\left(a_{1}^{0}\right)=2 m_{\tau}$ to 5×10^{-5} at $\mathrm{M}\left(a_{1}^{0}\right)=7.5 \mathrm{GeV}$.

$\begin{gathered} \Gamma\left(\gamma \boldsymbol{a}_{1}^{\mathbf{0}} \rightarrow \boldsymbol{\gamma} \boldsymbol{g} \boldsymbol{g}\right) / \Gamma_{\text {total }} \\ (0.5 \mathrm{GeV}<m<9.0 \mathrm{GeV}) \end{gathered}$						Γ_{124} / Γ
VALUE	CL\%	DOCUM		TECN	COMMENT	
$<1 \times 10^{-2}$	90	1 LEES	13L	BABR	$r(1 S) \rightarrow$	

${ }^{1}$ For a narrow, $C P$-odd pseudoscalar a_{1}^{0} searched for in 26 hadronic decay modes with invariant mass $0.5 \mathrm{GeV}<m_{X}<9.0 \mathrm{GeV}$. Measured $90 \% \mathrm{CL}$ limit as a function of m_{X} range from 10^{-6} to 10^{-2}.
$\Gamma\left(\gamma a_{1}^{0} \rightarrow \boldsymbol{\gamma} \boldsymbol{s} \overline{\boldsymbol{s}}\right) / \Gamma_{\text {total }}$
$(0.5 \mathrm{GeV}<m<9.0 \mathrm{GeV})$
$\Gamma_{125 / \Gamma}$

${ }^{1}$ For a narrow, $C P$-odd pseudoscalar a_{1}^{0} searched for in 14 hadronic decay modes with invariant mass $1.5 \mathrm{GeV}<m_{X}<9.0 \mathrm{GeV}$. Measured $90 \% \mathrm{CL}$ limit as a function of m_{X} range from 10^{-5} to 10^{-3}

$\Gamma\left(\boldsymbol{\mu}^{ \pm} \boldsymbol{\tau}^{\mp}\right) / \Gamma_{\text {total }}$						Γ_{126} / Γ
VALUE (units 10^{-6})	CL\%	DOCUN		TECN	COMMENT	
<6.0	95	LOVE		CLEO	$e^{+} e^{-} \rightarrow$	

$\Gamma($ invisible $) / \Gamma_{\text {total }}$
$\Gamma_{127 / \Gamma}$

$\boldsymbol{r}(1 \mathrm{~S})$ REFERENCES

Observed in radiative decay of the $r(2 S)$, therefore $C=+$. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore $P=+$.

γ ENERGY IN $\Upsilon(2 S)$ DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
162.5 ± 0.4 OUR AVERAGE					
$162.56 \pm 0.19 \pm 0.42$	ARTUSO	05	CLEO	$r(2 S)$	
$162.0 \pm 0.8 \pm 1.2$	EDWARDS	99	CLE2	$r(2 S)$	$\gamma \chi(1 P)$
$162.1 \pm 0.5 \pm 1.4$	ALBRECHT	85 E	ARG	$r(2 S)$	conv. $\gamma \mathrm{X}$
$163.8 \pm 1.6 \pm 2.7$	NERNST	85	CBAL	$r(2 S)$	$\gamma \mathrm{X}$
$158.0 \pm 7 \pm 1$	HAAS	84	CLEO	$r(2 S)$	conv. $\gamma \mathrm{X}$
- - We do not use the following data for averages, fits, limits, etc. - - -					
$149.4 \pm 0.7 \pm 5.0$	KLOPFEN...	83	CUSB	$r(2 S)$	

$\chi_{b 0}(1 P)$ DECAY MODES

	Mode	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$		Confidence level
Γ_{1}	$\gamma \Upsilon(1 S)$	(1.94 ± 0.27) \%		
Γ_{2}	$D^{0} X$	< 10.4	\%	90\%
Γ	$\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}$	< 1.6	$\times 10^{-4}$	4 90\%
Γ_{4}	$2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}$	< 5	$\times 10^{-5}$	590%
Γ_{5}	$2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}$	<5	$\times 10^{-4}$	490%
Γ_{6}	$2 \pi^{+} 2 \pi^{-} 2 \pi^{0}$	<2.1	$\times 10^{-4}$	4 90\%
Γ_{7}	$2 \pi^{+} 2 \pi^{-} K^{+} K^{-}$	(1.1 ± 0.6)	$\times 10^{-4}$	
Γ_{8}	$2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}$	< 2.7	$\times 10^{-4}$	4 90\%
Γ_{9}	$2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}$	<5	$\times 10^{-4}$	4 90\%
Γ_{10}	$3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}$	< 1.6	$\times 10^{-4}$	490%
Γ_{11}	$3 \pi^{+} 3 \pi^{-}$	< 8	$\times 10^{-5}$	5 90\%
Γ_{12}	$3 \pi^{+} 3 \pi^{-} 2 \pi^{0}$	< 6	$\times 10^{-4}$	4 90\%
Γ_{13}	$3 \pi^{+} 3 \pi^{-} K^{+} K^{-}$	(2.4 ± 1.2)	$\times 10^{-4}$	
Γ_{14}	$3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}$	< 1.0	$\times 10^{-3}$	3 90\%
Γ_{15}	$4 \pi^{+} 4 \pi^{-}$	<8	$\times 10^{-5}$	590%
Γ_{16}	$4 \pi^{+} 4 \pi^{-} 2 \pi^{0}$	<2.1	$\times 10^{-3}$	3 90\%
Γ_{17}	$J / \psi J / \psi$	< 7	$\times 10^{-5}$	590%
Γ_{18}	$J / \psi \psi(2 S)$	<1.2	$\times 10^{-4}$	4 90\%
Γ_{19}	$\psi(2 S) \psi(2 S)$	<3.1	$\times 10^{-5}$	590%
Γ_{20}	$J / \psi(1 S)$ anything	<2.3	$\times 10^{-3}$	$3 \quad 90 \%$

$\chi_{b 0}(1 P)$ BRANCHING RATIOS

$\Gamma(\gamma \Gamma(1 S)) / \Gamma_{\text {total }}$						Γ_{1} / Γ
Value (\%)	CL\% EVTS	DOCUMENT ID		TECN	COMMENT	
1.94 ± 0.27 OUR	AVERAGE					
$2.07 \pm 0.24 \pm 0.21$		1,2 LEES	14M	BABR	$r(2 S) \rightarrow$	$\gamma \gamma \mu^{+} \mu^{-}$
$1.76 \pm 0.30 \pm 0.18$	87	3,4 KORNICER	11	CLEO	$e^{+} e^{-} \rightarrow$	$\gamma \gamma \ell^{+} \ell^{-}$

$\Gamma\left(\pi^{+} \pi^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3}} / \Gamma^{2}$

VALUE (units $\left.10^{-4}\right)$		
$<\mathbf{1 . 6}$	$\frac{C L \%}{90}$	$8 \frac{\text { DOCUMENT ID }}{\text { ASNER }}$
08A		
TECN		
CLEO		$\frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}}$

$\Gamma\left(2 \pi^{+} \pi^{-} \kappa^{-} \kappa_{S}^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{0 . 5}} \frac{C L \%}{90} \quad 9 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad$ 08A $\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}}$ ${ }^{9}$ ASNER 08A reports $\left[\Gamma\left(\chi_{D 0}(1 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow$ $\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<2 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)$ $=3.8 \times 10^{-2}$
$\Gamma\left(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{5} / \Gamma$
$\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{<}} \frac{C L \%}{90} \quad 10 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{08 \mathrm{~A}}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} 2 \pi^{0}}$ ${ }^{10}$ ASNER 08A reports $\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow$ $\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<18 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)$ $=3.8 \times 10^{-2}$.
$\Gamma\left(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}$
$\frac{\text { VALUE }\left(\text { units } 10^{-4} \text {) }\right.}{<\mathbf{2 . 1}} \frac{C L \%}{90} \quad 11 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{} \frac{\text { TEMMENT }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}}$ 11 ASNER 08A reports $\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]$ $<8 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=3.8 \times 10^{-2}$. $\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}$ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT
$\mathbf{1 . 1} \pm \mathbf{0 . 6} \pm \mathbf{0 . 1} \quad 7 \quad 12$ ASNER $\quad 08 \mathrm{~A}$ CLEO $\xrightarrow[\gamma(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}]{ }$ ${ }^{12}$ ASNER 08A reports $\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow$ $\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]=(4 \pm 2 \pm 1) \times 10^{-6}$ which we divide by our best value $\mathrm{B}(\gamma(2 S) \rightarrow$ $\left.\gamma \chi_{b 0}(1 P)\right)=(3.8 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{8} / \Gamma$ $\frac{\text { VALUE (units } 10^{-4} \text {) }}{<\mathbf{2} .7} \frac{C L \%}{90} 13 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \xrightarrow{\Upsilon(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}}$ ${ }^{13}$ ASNER 08A reports $\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow$ $\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<10 \times 10^{-6}$ which we divide by our best value $\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)$ $=3.8 \times 10^{-2}$.

```
\Gamma(2\pi+}2\mp@subsup{\pi}{}{=}\mp@subsup{K}{}{+}\mp@subsup{K}{}{=}\mathbf{2}\mp@subsup{\pi}{}{0})/\mp@subsup{\Gamma}{\mathrm{ total }}{
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<\mathbf{5}} \frac{C L \%}{90} 14 \frac{\text { DOCUMENT ID }}{\text { ASNER } \quad 08 \mathrm{~A}} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}}\) 14 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<20 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\) \(=3.8 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{10} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<1.6} \frac{C L \%}{90} 15 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{r(2 S) \rightarrow \gamma 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}}{r()^{0}}\) \({ }^{15}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{\text {b0 }}(1 P) \rightarrow 3 \pi^{+} 2 \pi^{-} \kappa^{-} \kappa_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<6 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}\left({ }^{(1 P)}\right)\right.\) \(=3.8 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{11} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<0.8} \frac{C L \%}{90} \quad 16 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { O8A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{}{\gamma(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-}}\) \({ }^{16}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) \(<3 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=3.8 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{12} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<6} \frac{C L \%}{90} \quad 17 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{}{\gamma(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}}\) 17 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) \(<22 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=3.8 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{=} K^{+} K^{-}\right) / \Gamma_{\text {total }}\)
\(\frac{V A L U E \text { (units } 10^{-4} \text { ) }}{2.4 \pm 1.2 \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{9} \quad 18 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{\Gamma(2 S) \rightarrow \gamma 3 \pi+3 \pi^{-} K^{+} K^{-}}{\gamma(2)}\)
18 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]=(9 \pm 4 \pm 2) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 0}(1 P)\right)=(3.8 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value
\(\Gamma\left(3 \pi^{+} 3 \pi^{=} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{14 / \Gamma}\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<10} \frac{C L \%}{90} 19 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { 08A }}{\text { TECN }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{}{\gamma(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}}\) 19 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(1 P)\right)\right]<37 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\) \(=3.8 \times 10^{-2}\).
\(\Gamma\left(4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\frac{V \operatorname{VALUE}\left(\text { units } 10^{-4} \text { ) }\right.}{<0.8} \frac{C L \%}{90} \quad 20 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { 08A }}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 4 \pi^{+} 4 \pi^{-}}\) 20 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) \(<3 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=3.8 \times 10^{-2}\).
\(\Gamma\left(4 \pi^{+} 4 \pi^{-2} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{16} / \Gamma\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VALUE (units \(10^{-4}\) ) & CL\% & DOCUMENT & & TECN & COMMENT & \\
\hline <21 & 90 & 21 ASNER & 08A & CLEO & \(r(2 S) \rightarrow\) & \(\gamma 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\) \\
\hline
\end{tabular} 21 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) \(<77 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=3.8 \times 10^{-2}\).

\(\Gamma(\psi(2 S) \psi(2 S)) / \Gamma_{\text {total }}\)
\(\Gamma_{19 / \Gamma}\)
\(\frac{\text { VALUE (units } 10^{-5} \text { ) }}{<3.1} \frac{C L \%}{90} \quad 24 \frac{\text { DOCUMENT ID }}{\text { SHEN }} \frac{12}{\text { TECN }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma \psi X}\)
24 SHEN 12 reports \(<3.1 \times 10^{-5}\) from a measurement of \(\left[\Gamma\left(\chi_{b 0}(1 P) \rightarrow \psi(2 S) \psi(2 S)\right) /\right.\)
\(\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) assuming \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=(3.8 \pm 0.4) \times\)
\(10^{-2}\).
\(\Gamma(J / \psi(1 S)\) anything \() / \Gamma_{\text {total }}\)
\(\begin{array}{lllll}\text { DOCUMENT ID } \\ \text { JIA } & \text { 17A } & & \\ \text { TECN } & & \Gamma_{\mathbf{2 0}} / \boldsymbol{\Gamma} \\ \text { BELL }\end{array}\)
\(\frac{\text { VALUE }}{\boldsymbol{< 2 . 3} \times \mathbf{1 0}^{\mathbf{- 3}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { JIA }} \frac{\text { 17A }}{} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { hadrons }}\)

VALUE CL\% DOCUMENT ID TECN COMMENT
\(<1.7 \times 10^{\mathbf{- 3}} \quad 90 \quad 25\) LEES \(\quad 11 \mathrm{~J}\) BABR \(r(2 S) \rightarrow x \gamma\)
\({ }^{25}\) LEES 11」 quotes a central value of \(\Gamma\left(\chi_{b 0}(1 P) \rightarrow \gamma r(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 0}(1 P)\right) / \Gamma_{\text {total }}=\left(8.3 \pm 5.6_{-2.6}^{+3.7}\right) \times 10^{-4}\) and derives a \(90 \% \mathrm{CL}\) upper limit of \(\Gamma(\gamma \Upsilon(1 S)) / \Gamma_{\text {total }}<4.6 \%\) using \(\mathrm{B}\left(\Upsilon(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=(3.8 \pm 0.4) \%\).

\section*{Meson Particle Listings}
\(\chi_{b 0}(1 P), \chi_{b 1}(1 P)\)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(\chi_{\text {D0 }}(1 P)\) REFERENCES} \\
\hline  &  &  &  \\
\hline \(\chi_{b 1}(1\) & & \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
{ }^{G} G_{\left(J^{P C}\right)}=0^{+}\left(1^{++}\right)
\] \\
\(J\) needs confirmation.
\end{tabular}} \\
\hline
\end{tabular}

Observed in radiative decay of the \(\Upsilon(2 S)\), therefore \(C=+\). Branching ratio requires E1 transition, M1 is strongly disfavored, therefore \(P=+. J=1\) from SKWARNICKI 87.

\section*{\(\chi_{b 1}(1 P)\) MASS}

VALUE (MeV)
DOCUMENT ID
\(\overline{\mathbf{9 8 9 2 . 7 8} \pm \mathbf{0 . 2 6} \pm \mathbf{0 . 3 1} \text { OUR EVALUATION From average }} \gamma\) energy below, using \(\gamma(2 S)\) mass \(=10023.26 \pm 0.31 \mathrm{MeV}\)

\section*{\(\gamma\) ENERGYIN \(\boldsymbol{r}(2 S)\) DECAY}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{\[
\frac{T E C N}{\text { of } 1.3 .}
\]} & COMMENT \\
\hline 129.63 \(\pm\) 0.33 OUR AVERAGE & Error includes sca & factor & & See the ideogram below. \\
\hline \(129.58 \pm 0.09 \pm 0.29\) & ARTUSO & 05 & CLEO & \(\gamma(2 S) \rightarrow \gamma X\) \\
\hline \(128.8 \pm 0.4 \pm 0.6\) & EDWARDS & 99 & CLE2 & \(\gamma(2 S) \rightarrow \gamma \chi(1 P)\) \\
\hline \(131.7 \pm 0.9 \pm 1.3\) & WALK & 86 & CBAL & \(\gamma(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\) \\
\hline \(131.7 \pm 0.3 \pm 1.1\) & ALBRECHT & 85 E & ARG & \(\gamma(2 S) \rightarrow\) conv. \(\gamma \mathrm{X}\) \\
\hline \(130.6 \pm 0.8 \pm 2.4\) & NERNST & 85 & CBAL & \(\gamma(2 S) \rightarrow \gamma \mathrm{X}\) \\
\hline \(129 \pm 0.8 \pm 1\) & HAAS & 84 & CLEO & \(\gamma(2 S) \rightarrow\) conv. \(\gamma \mathrm{X}\) \\
\hline \(128.1 \pm 0.4 \pm 3.0\) & KLOPFEN... & 83 & CUSB & \(\gamma(2 S) \rightarrow \gamma \mathrm{X}\) \\
\hline \(130.6 \pm 3.0\) & PAUSS & 83 & CUSB & \(\gamma(2 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\) \\
\hline
\end{tabular}

\(\chi_{b 1}(1 P)\) DECAY MODES
\begin{tabular}{|c|c|c|c|c|}
\hline & Mode & Fraction ( \(\Gamma_{i} / \Gamma\) ) & & Confidence level \\
\hline \(\Gamma_{1}\) & \(\gamma \gamma(1 S)\) & \((35.2 \pm 2.0)\) & & \\
\hline \(\Gamma_{2}\) & \(D^{0} X\) & \((12.6 \pm 2.2)\) & & \\
\hline \(\Gamma 3\) & \(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\) & \((2.0 \pm 0.6)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{4}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\) & \((1.3 \pm 0.5)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{5}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\) & \(<6\) & \(\times 10^{-4}\) & 90\% \\
\hline \(\Gamma_{6}\) & \(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\) & \((8.0 \pm 2.5)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{7}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\) & \((1.5 \pm 0.5)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{8}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\) & \((3.5 \pm 1.2)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{9}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\) & \((8.6 \pm 3.2)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{10}\) & \(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\) & \((9.3 \pm 3.3)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{11}\) & \(3 \pi^{+} 3 \pi^{-}\) & \((1.9 \pm 0.6)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{12}\) & \(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\) & \((1.7 \pm 0.5)\) & \(\times 10^{-3}\) & \\
\hline \(\Gamma_{13}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\) & \((2.6 \pm 0.8)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{14}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\) & \((7.5 \pm 2.6)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{15}\) & \(4 \pi^{+} 4 \pi^{-}\) & \((2.6 \pm 0.9)\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{16}\) & \(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\) & \((1.4 \pm 0.6)\) & \(\times 10^{-3}\) & \\
\hline \(\Gamma_{17}\) & \(\omega\) anything & \((4.9 \pm 1.4)\) & & \\
\hline \(\Gamma_{18}\) & \(\omega X_{\text {tetra }}\) & \(<4.44\) & \(\times 10^{-4}\) & 90\% \\
\hline \(\Gamma_{19}\) & \(J / \psi J / \psi\) & \(<2.7\) & \(\times 10^{-5}\) & 90\% \\
\hline \(\Gamma_{20}\) & \(J / \psi \psi(2 S)\) & \(<1.7\) & \(\times 10^{-5}\) & 90\% \\
\hline \(\Gamma_{21}\) & \(\psi(2 S) \psi(2 S)\) & \(<6\) & \(\times 10^{-5}\) & 90\% \\
\hline \(\Gamma_{22}\) & \(J / \psi(1 S)\) anything & \(<1.1\) & \(\times 10^{-3}\) & 90\% \\
\hline \(\Gamma_{23}\) & \(J / \psi(1 S) X_{\text {tetra }}\) & \(<2.27\) & \(\times 10^{-4}\) & 90\% \\
\hline
\end{tabular}

\section*{\(\chi_{b 1}(1 P)\) BRANCHING RATIOS}
\begin{tabular}{llll}
\(\Gamma(\gamma \boldsymbol{\gamma}(1 S)) / \Gamma_{\text {total }}\) \\
VALUE \\
EVVTS \\
DOCUMENT ID \\
\hline
\end{tabular}
\(\frac{V A L U E}{\mathbf{0 . 3 5 2} \pm \mathbf{0 . 0 2 0} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}\) TECN COMMENT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
0.356_{-0.022}^{+0.016} \pm 0.019
\] & 964k & 1 FULSOM & 18 & BELL & \(r(2 S) \rightarrow\) & \(\gamma X\) \\
\hline \(0.364 \pm 0.017 \pm 0.019\) & & 2,3,4 LEES & 14M & BABR & \(r(2 S) \rightarrow\) & \(\gamma \gamma \mu^{+} \mu^{-}\) \\
\hline \(0.331 \pm 0.018 \pm 0.017\) & 3222 & 4,5 KORNICER & 11 & CLEO & \(e^{+} e^{-} \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline \(0.350 \pm 0.023 \pm 0.018\) & 13k & \({ }^{6}\) LEES & 11」 & BABR & \(\gamma(2 S) \rightarrow\) & X \(\gamma\) \\
\hline \(0.34 \pm 0.07 \pm 0.02\) & 53 & 4,7,8 WALK & 86 & CBAL & \(r(2 S) \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline \(0.47 \pm 0.18\) & & KLOPFEN... & 83 & CUSB & \(\gamma(2 S) \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline
\end{tabular}
\({ }^{1}\) FULSOM 18 reports \(\left[\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]=\) \(\left(2.45 \pm 0.02_{-0.15}^{+0.11}\right) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\)
\(=(6.9 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{2}\) LEES 14 M quotes \(\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma r(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right) / \Gamma_{\text {total }}\) \(=(2.51 \pm 0.12) \%\) combining the results from samples of \(\gamma(2 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with and without converted photons.
\(3^{3}\) LEES 14 M reports \(\left[\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]=\) \((2.51 \pm 0.12) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)=\) \((6.9 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{4}\) Assuming \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%\).
\({ }^{5}\) KORNICER 11 reports \(\left[\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]\) \(=(22.8 \pm 0.4 \pm 1.2) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\)
\(=(6.9 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{6}\) LEES 11 J reports \(\left[\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]=\) \((24.1 \pm 0.6 \pm 1.5) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\) \(=(6.9 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{7}\) WALK 86 quotes \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right) \times \mathrm{B}\left(\chi_{b 1}(1 P) \rightarrow \gamma r(1 S)\right) \times \mathrm{B}(r(1 S) \rightarrow\) \(\left.\ell^{+} \ell^{-}\right)=(5.8 \pm 0.9 \pm 0.7) \%\).
\({ }^{8}\) WALK 86 reports \(\left[\Gamma\left(\chi_{b 1}(1 P) \rightarrow \gamma \Upsilon(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Upsilon(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]=\) \((23.4 \pm 3.63 \pm 2.82) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\) \(=(6.9 \pm 0.4) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.



Meson Particle Listings
\(\chi_{b 1}(1 P), h_{b}(1 P), \chi_{b 2}(1 P)\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\(\chi_{b 2}(1 P)\) BRANCHING RATIOS} \\
\hline \[
\Gamma(\gamma \Gamma(1 S)) / \Gamma_{\text {total }}
\] & EVTS & DOCUMENT ID & & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline \multicolumn{7}{|l|}{\(\mathbf{0 . 1 8 0} \pm 0.010\) OUR AVERAGE} \\
\hline \(0.164{ }_{-0.010}^{+0.009} \pm 0.008\) & 503k & \({ }^{1}\) FULSOM & & BELL & \(r(2 S) \rightarrow\) & \(\gamma X\) \\
\hline \(0.185 \pm 0.008 \pm 0.009\) & & 2,3,4 LEES & & BABR & \(r(2 S) \rightarrow\) & \(\gamma \gamma \mu^{+} \mu^{-}\) \\
\hline \(0.186 \pm 0.011 \pm 0.009\) & 1770 & 4,5 KORNICER & 11 & CLEO & \(e^{+} e^{-} \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline \(0.194-0.017 \pm 0.009\) & 8 k & \({ }^{6}\) LEES & & BABR & \(r(2 S) \rightarrow\) & \\
\hline \(0.25 \pm 0.06 \pm 0.01\) & 35 & 4,7,8 WALK & & CBAL & \(r(2 S) \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline \(0.20 \pm 0.05\) & & KLOPFEN... & 83 & CuSB & \(r(2 S) \rightarrow\) & \(\gamma \gamma \ell^{+} \ell^{-}\) \\
\hline
\end{tabular}
\({ }^{1}\) FULSOM 18 reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]=\) \((1.17 \pm 0.01+0.07) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{2}\) LEES 14M quotes \(\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \Gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\) \(=(1.32 \pm 0.06) \%\) combining the results from samples of \(\gamma(2 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with and without converted photons.
\({ }^{3}\) LEES 14M reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]=\) \((1.32 \pm 0.06) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)=\) \((7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{4}\) Assuming \(\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%\).
 \((1.33 \pm 0.04 \pm 0.07) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{6}\) LEES 11J reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]=\) \(\left(13.9 \pm 0.5_{-1.1}^{+0.9}\right) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{7}\) WALK 86 quotes \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right) \times \mathrm{B}\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) \times \mathrm{B}(\gamma(1 S) \rightarrow\) \(\left.\ell^{+} \ell^{-}\right)=(4.4 \pm 0.9 \pm 0.5) \%\).
\({ }^{8}\) WALK 86 reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]=\) \((17.7 \pm 3.6 \pm 2.0) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.

\section*{\(\Gamma\left(D^{0} x\right) / \Gamma_{\text {total }}\)}

VALUE CL\% DOCUMENT ID TECN COMMENT \(\quad \mathrm{T}_{2} / \Gamma\) \(<7.9 \times \mathbf{1 0}^{\mathbf{- 2}} \quad 90 \quad 1,2\) BRIERE 08 CLEO \(r(2 S) \rightarrow \gamma D^{0} x\)
\({ }^{1}\) For \(p_{D^{0}}>2.5 \mathrm{GeV} / \mathrm{c}\).
\({ }^{2}\) The authors also present their result as \((5.4 \pm 1.9 \pm 0.5) \times 10^{-2}\).
\(\Gamma\left(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3}} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{0 . 8 4} \pm \mathbf{0 . 5 0} \mathbf{0 . 0 4}} \frac{\text { EVTS }}{8} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { O8A }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}}\)
\({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{D 2}(1 P)\right)\right]=(6 \pm 3 \pm 2) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our
second error is the systematic error from using our best value. second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{1 . 0}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{D 2}(1 P)\right)\right]<7 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=7.15 \times 10^{-2}\).
\(\Gamma\left(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{5} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{5 . 3} \pm \mathbf{2 . 4} \pm \mathbf{0 . 3}} \frac{\text { EVTS }}{11} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { 08A }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} 2 \pi^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]=(38 \pm 14 \pm 10) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{6} / \Gamma\) \(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{3 . 5} \pm \mathbf{1 . 4} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{19} \quad \frac{\text { DOCUMENT ID }}{1}\) ASNER 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(=(25 \pm 8 \pm 6) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)=\) \((7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{7} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{1 . 1} \pm \mathbf{0 . 4} \mathbf{0 0 . 1}} \frac{\text { EVTS }}{14} \quad \frac{\text { DOCUMENT ID }}{1}\) ASNER 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]=(8 \pm 2 \pm 2) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
「8/Г
VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{2 . 1} \pm \mathbf{0 . 9} \pm \mathbf{0 . 1} \quad 13 \quad 1\) ASNER 08A CLEO \(\xrightarrow[r(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}]{ }\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]=(15 \pm 5 \pm 4) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{9} / \Gamma\) VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{3 . 9 \pm 1 . 8 \pm \mathbf { 0 . 2 }} 11 \quad 1\) ASNER 08A CLEO \(\xlongequal[r(2 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}]{ }\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]=(28 \pm 11 \pm 7) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{10} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<5} \frac{C L \%}{90} \frac{\text { DOCUMENT ID }}{1} \operatorname{ASNER} \quad\) 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]<36 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=7.15 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{11} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{0 . 7 0} \pm \mathbf{0 . 3 1} \pm \mathbf{0 . 0 3}} \frac{\text { EVTS }}{9} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ASNER 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-}}{r(25)}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(=(5 \pm 2 \pm 1) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)=\) \((7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}-2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{12} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{1 0 . 2} \mathbf{3} \mathbf{3 . 6} \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{34} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ASNER 08A }}{\text { TECN }} \frac{\text { CLEMMENT }}{r(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(=(73 \pm 16 \pm 20) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{13 / \Gamma}\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<0.8} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad\) 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma^{( }\left(\chi_{D 2}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]<6 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=7.15 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{14 / \Gamma}\)
VALUE(units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\frac{\text { UALUE }}{\mathbf{3 . 6} \mathbf{1 . 5} \pm \mathbf{0 . 2}} \frac{14}{14} \quad \frac{\text { O8A }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(2 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(1 P)\right)\right]=(26 \pm 8 \pm 7) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(2 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(1 P)\right)=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{15 / \Gamma}\)
\(\frac{\left.\text { VALUE (unit } 10^{-4}\right)}{\mathbf{0 . 8 4} \pm \mathbf{0 . 4 0} \pm \mathbf{0 . 0 4}} \frac{\text { EVTS }}{7} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { ASNER 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{(2 S) \rightarrow \gamma 4 \pi^{+}+4 \pi^{-}}{r(25)}\) \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(=(6 \pm 2 \pm 2) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)=\) \((7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{16 / \Gamma}\)
VALUE (units \(10^{-4}\) ) EVTS
 \({ }^{1}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(=(132 \pm 31 \pm 40) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\) \(=(7.15 \pm 0.35) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\chi_{b 2}(1 P), \eta_{b}(2 S), r(2 S)\)

\(\Gamma(\psi(2 S) \psi(2 S)) / \Gamma_{\text {total }}\)

\({ }^{1}\) SHEN 12 reports \(<1.6 \times 10^{-5}\) from a measurement of \(\left[\Gamma\left(\chi_{b 2}(1 P) \rightarrow \psi(2 S) \psi(2 S)\right) /\right.\) \(\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{\text {b2 }}(1 P)\right)\right]\) assuming \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{\text {b2 }}\left({ }^{1 P}\right)\right)=(7.15 \pm\) \(0.35) \times 10^{-2}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Gamma(J / \psi(1 S)\) anyt & total & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & & & \(\Gamma_{20} / \Gamma\) \\
\hline VALUE (unit \(10^{-3}\) ) & EvTs & & & \multicolumn{3}{|l|}{TECN COMMENT} \\
\hline \(1.50 \pm 0.34 \pm 0.22\) & 462 & JIA & 17A & BELL & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \multicolumn{7}{|c|}{\(\chi_{b 2}(1 P)\) Cross-Particle Branching Ratios} \\
\hline \multicolumn{7}{|l|}{\(\Gamma\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(2 S) \rightarrow \gamma \chi_{\text {b2 }}(1 P)\right) / \Gamma_{\text {total }}\)} \\
\hline \multicolumn{7}{|r|}{\(\Gamma_{1} / \Gamma \times \Gamma_{60}^{r(2 S)} / \Gamma^{r(2 S)}\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\chi_{\text {b2 }}(1 P)\) REFERENCES} \\
\hline fulsom & & PRL 121232001 & B.G. Fulsom et al. & (BELLE Colab.) \\
\hline \({ }_{\text {AIA }}\) AII & \({ }_{14 \mathrm{CbG}}^{17 \mathrm{~A}}\) & PR D96 112002 & S. Jia et ald &  \\
\hline & \({ }_{14 \mathrm{M}}^{14 \mathrm{BG}}\) & PR P90 112010 & 1.f. A. Lees et at. & (BABAR Collin) \\
\hline SHEN & 12 & PR D85 0711102 & C.P. Shen et al. & (BELLE Co \\
\hline RNIC & 11 & PR D83 0544003 & M. Kornicer et al. & \(\mathrm{Co}_{0}\) \\
\hline ES & \({ }^{11} \mathrm{~J}\) & PR D84 072002 & & Co \\
\hline  & \({ }^{088}\) & PR D78091103 & D.M. Asser et al & (CLEO Colab.) \\
\hline  & \({ }_{0} 08\) & PRL 94032001 & M. Artuso et al & (CLLEO Collab.) \\
\hline & & PR D59 032003 & Edevards et & (CLEO Coll \\
\hline SKWARNICKI & \({ }_{86}^{87}\) & PRL 58 972) & T. Skwernicki et al & (Crystal Ball Colab.) \\
\hline ALBRECHT & \({ }_{85}{ }^{8}\) & PL 16083311 & H. Albrecht et \(2 l\) & charcui co \\
\hline & ¢ & PRL 542195 & R. Nernst \(e t\) al & 根 \\
\hline HAAS & \({ }^{84}\) & PRL 52799 & J. Haas et al. & 0 Co \\
\hline KLOPFEN.. & & PRL 51160 & C. Klopfenstein et & CUSB Coil \\
\hline Pauss & \({ }_{8}\) & PL 1308439 & F. Pauss et al. & (MPIM, Colu, CORN, LSU+) \\
\hline
\end{tabular}

\section*{\(\eta_{b}(2 S)\)}
\[
{ }^{G}{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
\]

OMITTED FROM SUMMARY TABLE
Quantum numbers shown are quark-model predictions.

- - We do not use the following data for averages, fits, limits, etc. - -
\(9974.6 \pm 2.3 \pm 2.1 \quad 11 \pm 4^{2,3,4}\) DOBBS \(\quad 12 \quad \gamma(2 S) \rightarrow \gamma\) hadrons
\({ }^{1}\) Assuming \(\Gamma_{\eta_{b}}(2 S)=4.9 \mathrm{MeV}\). Not independent of the corresponding mass difference
2 measurement. (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of \((157.8 \pm 3.6) \times 10^{6} \gamma(2 S)\) decays or about 17 times larger and find no evidence for a signal. Their \(90 \%\) C.L. upper limit on the branching fraction \(\mathrm{B}\left(\Upsilon(2 S) \rightarrow \eta_{b}(2 S) \gamma\right) \times \sum_{i} \mathrm{~B}\left(\eta_{b}(2 S) \rightarrow X_{i}\right)\) \(<4.9 \times 10^{-6}\), summed over the exclusive hadronic final states \(X_{i}\), is an order of magnitude smaller than that reported by DOBBS 12.
\({ }^{3}\) Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
\({ }^{4}\) Assuming \(\Gamma_{\eta_{b}(2 S)}=5 \mathrm{MeV}\). Not independent of the corresponding mass difference measurement.

\section*{\(m_{r(2 S)}-m_{\boldsymbol{\eta}_{b}(\mathbf{2 S})}\)}

\(\eta_{b}(2 S)\) WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \(\underline{C L \%}\) & DOCUME & TECN & COMMENT \\
\hline <24 & 90 & MIZUK & 12 BELL & \(e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-}\)hadrons \\
\hline & & \multicolumn{3}{|l|}{\(\eta_{b}(2 S)\) DECAY MODES} \\
\hline \multicolumn{2}{|l|}{Mode} & \multicolumn{3}{|c|}{Fraction ( \(\Gamma_{i} / \overline{\text { r }}\) )} \\
\hline \(\Gamma_{1}\) hadrons & & & seen & \\
\hline
\end{tabular}

\section*{\(\eta_{b}(2 S)\) BRANCHING RATIOS}
 - - We do not use the following data for averages, fits, limits, etc. - - seen \(\quad 9,10\) DOBBS \(12 \quad \gamma(2 S) \rightarrow \gamma\) hadrons
\({ }^{9}\) SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of \((157.8 \pm 3.6) \times 10^{6} \Upsilon(2 S)\) decays or about 17 times larger and find no evidence for a signal. Their \(90 \%\) C.L. upper limit on the branching fraction \(\mathrm{B}\left(r(2 S) \rightarrow \eta_{b}(2 S) \gamma\right) \times \sum_{i} \mathrm{~B}\left(\eta_{b}(2 S) \rightarrow x_{i}\right)\) \(<4.9 \times 10^{-6}\), summed over the exclusive hadronic final states \(X_{i}\), is an order of magnitude smaller than that reported by DOBBS 12.
10 Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
\(\eta_{b}(2 S)\) REFERENCES



Meson Particle Listings
\(r(2 S)\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\boldsymbol{r}(1 S) \pi^{0} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}\)} & \multicolumn{3}{|r|}{\(\Gamma_{2} / \Gamma\)} \\
\hline VALUE (units \(10^{-2}\) ) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{TECN} & \multicolumn{2}{|l|}{COMMENT} \\
\hline \multicolumn{6}{|l|}{\(8.6 \pm\) 0.4 OUR AVERAGE} & \\
\hline \(8.43 \pm 0.16 \pm 0.42\) & 38k & \({ }^{1}\) BHARI & 09 & CLEO & \(e^{+} e^{-}\) & \(\pi^{0} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \(9.2 \pm 0.6 \pm 0.8\) & 275 & \({ }^{2}\) ALEXANDER & 98 & CLE2 & \(e^{+} e^{-}\) & \(\pi^{0} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \(9.5 \pm 1.9 \pm 1.9\) & 25 & ALBRECHT & 87 & ARG & \(e^{+} e^{-}\) & \(\pi^{0} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \(8.0 \pm 1.5\) & & GELPHMAN & 85 & CBAL & \(e^{+} e^{-}\) & \(\pi^{0} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \(10.3 \pm 2.3\) & & FONSECA & 84 & CUSB & \(e^{+} e^{-}\) & \(\pi^{0} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \multicolumn{7}{|l|}{\({ }^{1}\) Authors assume \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow e^{+} e^{-}\right)+\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=4.96 \%\).} \\
\hline \multicolumn{7}{|l|}{\({ }^{2}\) Using \(\mathrm{B}\left(r(1 S) \rightarrow e^{+} e^{-}\right)=(2.52 \pm 0.17) \%\) and \(\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm\) \(0.07) \%\).} \\
\hline
\end{tabular}


> • • We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\) \(0.462 \pm 0.037\) 1 BHARI \(09 \quad\) CLEO \(\quad e^{+} e^{-} \rightarrow r(2 S)\)
\({ }^{1}\) Not independent of other values reported by BHARI 09.



\(\boldsymbol{\Gamma}\left(\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)\)
\(\frac{V A L U E}{\mathbf{1 . 0 4} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 5}} \frac{\text { EVTS }}{22 \mathrm{k}}\)\(\quad\)\begin{tabular}{l} 
DOCUMENT ID \\
BESSON 07 \\
CLEO \\
\(e^{+} e^{-} \rightarrow r(2 S)\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(\Gamma\left(\Gamma(1 S) \pi^{0}\right) / \Gamma_{\text {total }}\)} \\
\hline VALUE (units \(10^{-5}\) ) & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<4\) & 90 & 1 TAMPONI & 13 & BELL & \(e^{+} e^{-}\) & \(\gamma(1 S) \pi^{0}\) \\
\hline \(<18\) & 90 & \({ }^{2} \mathrm{HE}\) & 08A & CLEO & \(e^{+} e^{-}\) & \(\ell^{+} \ell^{-} \gamma \gamma\) \\
\hline \(<110\) & 90 & ALEXANDER & 98 & CLE2 & \(e^{+} e^{-} \rightarrow\) & \(\ell^{+} \ell^{-} \gamma \gamma\) \\
\hline \(<800\) & 90 & LURZ & 87 & CBAL & \(e^{+} e^{-} \rightarrow\) & \(\ell^{+} \ell^{-} \gamma \gamma\) \\
\hline
\end{tabular}
\({ }^{1}\) TAMPONI 13 reports \(\left[\Gamma\left(r(2 S) \rightarrow \gamma(1 S) \pi^{0}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(r(2 S) \rightarrow r(1 S) \pi^{+} \pi^{-}\right)\right]\) \(<2.3 \times 10^{-4}\) which we multiply by our best value \(\mathrm{B}\left(\Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}\right)=\) \(17.85 \times 10^{-2}\)
\({ }^{2}\) Authors assume \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow e^{+} e^{-}\right)+\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=4.96 \%\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Upsilon(1 S) \pi^{0}\right) / \Gamma\left(\Gamma(1 S) \pi^{+} \pi^{=}\right)\)} & \(\Gamma_{6} / \Gamma_{1}\) \\
\hline VALUE (units 10 \(0^{-4}\) ) & CL\% & DOCUMENT & TECN & COMMENT & \\
\hline <2.3 & 90 & TAMPONI & BELL & \(e^{+} e^{-}\) & \\
\hline
\end{tabular}
\(\Gamma(\Gamma(1 S) \eta) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{2.9+0.4 \text { OUR FIT }} \frac{C L \%}{\text { Error }}\) DOCUMENT ID TECN COMMENT
\(2.9 \pm \mathbf{0 . 4}\) OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below.
\begin{tabular}{lrllll}
\(2.39 \pm 0.31 \pm 0.14\) & 112 & 1 \\
LEES & 11L & BABR & \(r(2 S) \rightarrow \ell^{+} \ell^{-} \eta\) \\
2.1 & +0.7 & & 0.3 & 14 & \({ }^{2} \mathrm{HE}\)
\end{tabular}
- - We use the following data for averages but not for fits. - - -
\(3.55 \pm 0.32 \pm 0.05 \quad 241 \quad 3\) TAMPONI 13 BELL \(e^{+} e^{-} \rightarrow \quad \Upsilon(1 S) \eta\)
- - We do not use the following data for averages, fits, limits, etc. - . -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline <9 & 90 & 1,4 AUBERT & 08BP & BABR & \(e^{+} e^{-}\) & \(\rightarrow \gamma \pi^{+} \pi^{-} \pi^{0} \ell^{+} \ell^{-}\) \\
\hline \(<28\) & 90 & ALEXANDER9 & 98 & CLE2 & \(e^{+} e^{-}\) & \(\rightarrow \ell^{+} \ell^{-} \eta\) \\
\hline \(<50\) & 90 & ALBRECHT 8 & 87 & ARG & \(e^{+} e^{-}\) & \(\rightarrow \pi^{+} \pi^{-} \ell^{+} \ell^{-} \mathrm{MM}\) \\
\hline \(<70\) & 90 & LURZ 8 & 87 & CBAL & \(e^{+} e^{-}\) & \(\rightarrow \ell^{+} \ell^{-}\left(\gamma \gamma, 3 \pi^{0}\right)\) \\
\hline < 100 & 90 & BESSON 8 & 84 & CLEO & \(e^{+} e^{-}\) & \(\rightarrow \pi^{+} \pi^{-} \ell^{+} \ell^{-} \mathrm{MM}\) \\
\hline \(<20\) & 90 & FONSECA & 84 & CUSB & \(e^{+} e^{-}\) & \\
\hline
\end{tabular}

\section*{WEIGHTED AVERAGE}
\(2.9 \pm 0.4\) (Error scaled by 1.9) \(\quad \downarrow\) Values above of weighted average, error,
 quantities as additional information.

\footnotetext{
1 Taking into account interference between the resonance and continuum
\({ }^{2}\) Re-evaluated using \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=0.026\).
}
\({ }^{2}\) Authors assume \(\mathrm{B}\left(r(1 S) \rightarrow e^{+} e^{-}\right)+\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)=4.96 \%\).
\({ }^{3}\) TAMPONI 13 reports \(\left[\Gamma(\gamma(2 S) \rightarrow \gamma(1 S) \eta) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\gamma(2 S) \rightarrow r(1 S) \pi^{+} \pi^{-}\right)\right]\) \(=(1.99 \pm 0.14 \pm 0.11) \times 10^{-3}\) which we multiply by our best value \(\mathrm{B}(r(2 S) \rightarrow\) \(\left.\gamma(1 S) \pi^{+} \pi^{-}\right)=(17.85 \pm 0.26) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{4}\) Using \(\Gamma_{e e}(r(2 S))=0.612 \pm 0.011 \mathrm{keV}\).
\(\left.\Gamma(\boldsymbol{r}(1 S) \eta) / \Gamma(\boldsymbol{( 1 S}) \pi^{+} \pi^{-}\right)\)
\(\Gamma_{7} / \Gamma_{1}\)
VALUE (units \(10^{-3}\) ) CL\% EVTS DOCUMENT ID TECN COMMENT
\(1.64 \pm 0.25\) OUR FIT Error includes scale factor of 2.0 .
\(\mathbf{1 . 9 9} \pm \mathbf{0 . 1 4} \mathbf{0} \mathbf{0 . 1 1} \quad 241\) TAMPONI 13 BELL \(e^{+} e^{-} \rightarrow \gamma(1 S) \eta\)
- . We do not use the following data for averages, fits, limits, etc. • . -
\(\begin{array}{lll}1.35 \pm 0.17 \pm 0.08 & 1 \\ \text { LEES } & \text { 11L BABR } & r(2 S) \rightarrow\left(\pi^{+} \pi^{-}\right)(\gamma \gamma) \mu^{+} \mu^{-}\end{array}\) \(<5.2 \quad 90 \quad{ }^{2}\) AUBERT 08BP BABR \(e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-}\left(\pi^{0}\right) \ell^{+} \ell^{-}\)
\({ }^{1}\) Not independent of other values reported by LEES 11L.
\({ }^{2}\) Not independent of other values reported by AUBERT 08BP.

\(\Gamma_{6} / \Gamma_{7}\)
VALUE \(\quad \frac{\text { DOCUMENT ID }}{\text { • } \text { We do not use the }} \frac{\text { CLE }}{\text { following data for averages, fits, }} \frac{\text { limits, etc. } \bullet \bullet}{\text { COMMENT }}\)

\(\Gamma\left(J / \psi(1 S) \chi_{c 0}\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE }}{<\mathbf{3 . 4} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{\text { CL\% }}{90}\)
\(\Gamma\left(J / \psi(1 S) \chi_{C 1}\right) / \Gamma_{\text {total }}\)

\(\Gamma\left(J / \psi(1 S) \chi_{c 2}\right) / \Gamma_{\text {total }}\)
\(\frac{V A L U E}{<\mathbf{2 . 0} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90}\)
\(\Gamma\left(J / \psi(1 S) \eta_{c}(2 S)\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE }}{<\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90}\)
\(\Gamma(J / \psi(1 S) X(3940)) / \Gamma_{\text {total }}\) \(\frac{\text { VALUE }}{<\mathbf{2 . 0} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90}\)
\(\Gamma(J / \psi(1 S) X(4160)) / \Gamma_{\text {total }}\)
\(\frac{V A L U E}{<2.0 \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90}\)
\(\Gamma\left(\chi_{c 1}\right.\) anything \() / \Gamma_{\text {total }}\)
VALUE (units \(10^{-4}\) ) EVTS
\(2.24 \pm 0.44 \pm 0.20 \quad 376\)
\(\Gamma\left(\chi_{c 1}(1 P)^{0} X_{t e t r a}\right) / \Gamma_{\text {total }}\)

\({ }^{1}\) For a tetraquark state \(X_{\text {tetra }}\), with mass in the range \(1.16-2.46 \mathrm{GeV}\) and width in the range \(0-0.3 \mathrm{GeV}\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(X_{\text {tetra }}\) mass and width range from \(4.4 \times 10^{-6}\) to \(36.7 \times 10^{-6}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\chi_{c 2}\right.\) anything \() / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\(\Gamma_{18} / \Gamma\)} \\
\hline VALUE (units \(10^{-4}\) ) & & & & COMMEN & \\
\hline \(2.28 \pm 0.73 \pm 0.34\) & JIA & 17 & BELL & \(r(2 S)\) & \(\gamma J / \psi(1 S)\) \\
\hline \(\Gamma\left(\psi(2 S) \eta_{\epsilon}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{19} / \Gamma\) \\
\hline VALUE CLL\% & DOCUMENT ID & & TECN & COMMEN & \\
\hline \(<5.1 \times 10^{\mathbf{- 6}} \quad 90\) & YANG & 14 & BELL & \(e^{+} e^{-}\) & \(\psi(2 S) X\) \\
\hline \(\Gamma\left(\psi(2 S) \chi_{c 0}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{20} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMEN & \\
\hline \(<4.7 \times 10^{\mathbf{- 6}} \quad 90\) & YANG & 14 & BELL & \(e^{+} e^{-}\) & \(\psi(2 S) X\) \\
\hline \(\Gamma\left(\psi(2 S) \chi_{c 1}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{21} / \Gamma\) \\
\hline VALUE CLL\% & DOCUMENT ID & & TECN & COMMEN & \\
\hline \(<\mathbf{2 . 5 \times 1 0}{ }^{\mathbf{- 6}} 90\) & YANG & 14 & BELL & \(e^{+} e^{-}\) & \(\psi(2 S) X\) \\
\hline
\end{tabular}

\(\mathbf{2 . 7 8}_{-0.26}^{+\mathbf{0} .30}\) OUR AVERAGE Error includes scale factor of 1.2.
\begin{tabular}{llll}
\(2.64 \pm 0.11\) & +0.26 & LEES & 14G BABR \(e^{+} e^{-} \rightarrow \overline{{ }^{2} H} X\) \\
\(3.37 \pm 0.50 \pm 0.25\) & 58 & ASNER & 07 \\
& CLEO \(e^{+} e^{-} \rightarrow{ }^{2} H\)
\end{tabular}
\(\Gamma(g g g) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\mathbf{5 8 . 8} \pm \mathbf{1 . 2}} \frac{\text { EVTS }}{6 \mathrm{M}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BESSON } \quad 06 \mathrm{~A}} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \text { hadrons }}\)
\({ }^{1}\) Calculated using the value \(\Gamma(\gamma g g) / \Gamma(g g g)=(3.18 \pm 0.04 \pm 0.22 \pm 0.41) \%\) from BESSON 06A and PDG 08 values of \(\mathrm{B}\left(\pi^{+} \pi^{-} \Upsilon(1 S)\right)=(18.1 \pm 0.4) \%\), \(\mathrm{B}\left(\pi^{0} \pi^{0} \gamma(1 S)\right)\) \(=(8.6 \pm 0.4) \%, \mathrm{~B}\left(\mu^{+} \mu^{-}\right)=(1.93 \pm 0.17) \%\), and \(\mathrm{R}_{\text {hadrons }}=3.51\). The statistical error is negligible and the systematic error is partially correlated with that of \(\Gamma(\gamma g g) / \Gamma_{\text {total }}\) measurement of BESSON 06A.

Meson Particle Listings
\(r(2 S)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\underset{\left.\text { VALUE (unit } 10^{-2}\right)}{\Gamma(\boldsymbol{g g})}\)} & \multirow[b]{2}{*}{EvTS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {COMMENT }} \quad \Gamma_{38} / \Gamma_{37}\)}} \\
\hline & & & & & & \\
\hline \(3.18 \pm 0.04 \pm 0.47\) & \({ }_{6}\) & besson & 06A & CLEO & \(r(2 S) \rightarrow\) & +) hadrons \\
\hline \(\Gamma\left(\phi K^{+} K^{-}\right) / \Gamma_{\text {total }}\) & & & & & & Г39/Г \\
\hline VaLUE (units 10 \(0^{-6}\) ) & EvTS & document id & & TECN & COMMENT & \\
\hline \(1.58 \pm 0.33 \pm 0.18\) & 58 & SHEN & 12A & BELL & \(r(1 S) \rightarrow\) & \(2\left(K^{+} K^{-}\right)\) \\
\hline \(\Gamma\left(\omega \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{40} / \Gamma\) \\
\hline VaLUE (units \(10^{-6}\) ) & \(\underline{\text { cl\% }}\) & DOCUMENT ID & & & comment & \\
\hline <2.58 & 90 & SHEN & 12A & bell & \(r(1 S) \rightarrow\) & \(2\left(\pi^{+} \pi^{-}\right) \pi^{0}\) \\
\hline \(\left(K^{*}(892){ }^{0} K^{-} \pi^{+}\right.\) & & & & & & \\
\hline
\end{tabular} \(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{\mathbf{2 . 3 2} \pm \mathbf{0 . 4 0} \pm \mathbf{0 . 5 4}} \frac{\text { EVTS }}{135} \quad \frac{\text { DOCUMENT ID }}{\text { SHEN }} \frac{\text { TECN }}{\text { 12A }} \frac{\text { COMMENT }}{\text { BELL }} \frac{r(1 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}}{}\) \(\Gamma\left(\phi f_{2}^{\prime}(1525)\right) / \Gamma_{\text {total }}\) \(\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<\mathbf{1 . 3 3}} \frac{C L \%}{90}\)
\(\Gamma\left(\boldsymbol{\omega} \boldsymbol{f}_{\mathbf{2}}(\mathbf{1 2 7 0})\right) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\begin{aligned} & \operatorname{VALUE}(\text { units 10 } \\ & <0.57\end{aligned}\) \(\Gamma\left(\rho(770) a_{2}(1320)\right) / \Gamma_{\text {total }}\) \(\frac{\mathrm{VALUE}\left(\text { units } 10^{-6}\right)}{<0.88} \frac{\mathrm{CL} \%}{90}\)

\(\overline{1.53 \pm 0.52 \pm 0.19} \quad{ }_{32} \quad\) SHEN 12A \(\frac{1}{\text { BELL }} \xlongequal[r(1 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}]{ }\)
\(\Gamma\left(K_{1}(\mathbf{1 2 7 0})^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\) \(\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\langle 3.22} \frac{C L \%}{90}\) \(\Gamma\left(K_{1}(1400)^{ \pm} K^{\mp}\right) / \Gamma_{\text {total }}\) \(\frac{\operatorname{VALUE} \text { (units } 10^{-6} \text { ) }}{<0.83} \frac{C L \%}{90}\) \(\Gamma\left(b_{1}(1235)^{ \pm} \pi^{\mp}\right) / \Gamma_{\text {total }}\) \(\frac{V A L U E\left(\text { units } 10^{-6}\right)}{<\mathbf{0 . 4 0}} \frac{C L \%}{90}\) \(\Gamma(\rho \pi) / \Gamma_{\text {total }}\)
\begin{tabular}{ll}
\(\operatorname{VALUE}\left(\right.\) units \(\left.10^{-6}\right)\) & \(\frac{C L \%}{<\mathbf{1 . 1 6}}\)
\end{tabular}
\(\Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{<\mathbf{0} .80} \frac{C L \%}{90}\)
\begin{tabular}{ll}
\(\boldsymbol{\Gamma}\left(\boldsymbol{\omega} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}\) \\
\(\frac{V A L U E\left(\text { units } 10^{-6}\right)}{}\) & \\
\(<\mathbf{1 . 6 3}\) & \(C L \%\) \\
90
\end{tabular}
\(\Gamma\left(\pi^{+} \pi^{-} \pi^{0} \pi^{0}\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-6}\) ) EVTS
\(13.0 \pm 1.9 \pm 2.1 \quad 261 \pm 37\)
\(\Gamma\left(K_{S}^{0} K^{+} \pi^{-}+\right.\)c.c. \() / \Gamma_{\text {total }}\)
\begin{tabular}{llll} 
DOCUMENT ID & & \\
\hline SHEN & 12A & \(\Gamma_{\mathbf{4 6}} / \Gamma\) \\
BELL & \\
\(r(1 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\)
\end{tabular}
\(\Gamma_{47} / \Gamma\)
\(\frac{\text { DOCUMENT ID }}{\text { SHEN }}\) 12A \(\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{r(1 S) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}}\)
\(\Gamma_{48} / \Gamma\) \(\frac{\text { DOCUMENT ID }}{\text { SHEN }} 12 \mathrm{~A}\) 12A \(\frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{r(1 S) \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}}\)

Г49/Г DOCUMENT ID TECN COMMENT SHEN \(\quad 13 \begin{aligned} & \text { BELL } \\ & r(2 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\end{aligned}\) \(\begin{array}{ll}\text { DOCUMENT ID } \\ \text { SHEN } 13 & \\ \text { TECN } \\ \text { BELL } & \Gamma_{\mathbf{5 0}} / \boldsymbol{\Gamma} \\ \gamma(2 S) \rightarrow \pi^{+} \pi^{-} \pi^{0}\end{array}\) \(\frac{\text { DOCUMENT ID }}{\text { SHEN }} 13 \frac{\text { TECN }}{\text { BELL }} \frac{\Gamma_{\mathbf{5 1}} / \boldsymbol{\Gamma}}{\gamma(2 S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}}\) \(\Gamma_{52} / \Gamma\) DOCUMENT ID TECN COMMENT \(\Gamma_{\mathbf{5 3}} / \Gamma\) \(\mathbf{1 . 1 4} \pm \mathbf{0 . 3 0} \pm \mathbf{0 . 1 3} \quad 40 \pm 10 \quad\) SHEN \(\quad 13\) BELL \(r(2 S) \rightarrow K_{S}^{0} K^{-} \pi^{+}\) \(\begin{array}{lclll}\text { - - } & \text { We do not use the following data for averages, fits, limits, etc. • • • } \\ <3.2 & 90 & { }^{1} \text { DOBBS } & 12 \mathrm{~A} & r(2 S)\end{array} \rightarrow K_{S}^{0} K^{-} \pi^{+}\)
\({ }^{1}\) Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
\(\Gamma\left(\boldsymbol{K}^{*}(892)^{0} \overline{\boldsymbol{K}}^{0}+\right.\) c.c. \() / \Gamma_{\text {total }}\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-6}\right)}{<4.22} \frac{C L \%}{90}\)
\(\frac{\text { DOCUMENT ID }}{\text { SHEN }} 13 \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow K_{S}^{0} K^{-} \pi^{+}}\)
\(\Gamma\left(K^{*}(892)^{-} K^{+}+\right.\)c.c. \() / \Gamma_{\text {total }}\)
\begin{tabular}{lll} 
DOCUMENT ID \\
SHEN & 13 & \\
BELL & \(\Gamma_{\mathbf{5 5}} / \boldsymbol{\Gamma}\) \\
\(r(2 S) \rightarrow K_{S}^{0} K^{-} \pi^{+}\)
\end{tabular}
\(\Gamma\left(f_{1}(\mathbf{1 2 8 5})\right.\) anything \() / \Gamma_{\text {total }}\)
VALUE (units \(10^{-3}\) ) EVTS
\(\frac{\text { DOCUMENT ID }}{\text { JIA }} \frac{17 \mathrm{~A}}{} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { hadrons }}\)
\(\Gamma_{56} / \Gamma\)

\({ }^{1}\) For a tetraquark state \(X_{\text {tetra }}\), with mass in the range \(1.16-2.46 \mathrm{GeV}\) and width in the range \(0-0.3 \mathrm{GeV}\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(X_{\text {tetra }}\) mass and width range from \(7.8 \times 10^{-6}\) to \(64.7 \times 10^{-6}\).

\({ }^{1}\) DOBBS 12A presents individual exclusive branching fractions or upper limits for 100 modes of four to ten pions, kaons, or protons.
\({ }^{2}\) Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
\(\Gamma\left(\gamma \chi_{b 1}(1 P)\right) / \Gamma_{\text {tota }}\)
EVTS
\(\frac{\text { VALUE }}{0.069 \mathbf{0 . 0 0 4} \text { OUR AVERAGE }} \frac{\text { EVTS }}{\text { OR }}\)
\(0.0693 \pm 0.0012 \pm 0.0041 \quad 407 \mathrm{k}\)
\(0.069 \pm 0.005 \pm 0.009\)
\(0.091 \pm 0.018 \pm 0.022\)
\(0.065 \pm 0.007 \pm 0.012\)
\(0.080 \pm 0.017 \pm 0.016\)
\(0.059 \pm 0.014\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{59} / \Gamma\)} \\
\hline & & & & \\
\hline ARTUSO & 05 & CLEO & \(e^{+} e^{-} \rightarrow\) & \\
\hline EDWARDS & 99 & CLE2 & \(r(2 S) \rightarrow\) & \(\gamma \chi(1 P)\) \\
\hline ALBRECHT & 85E & ARG & \(e^{+} e^{-} \rightarrow\) & \(\gamma\) conv. X \\
\hline NERNST & 85 & CBAL & \(e^{+} e^{-} \rightarrow\) & \\
\hline HAAS & 84 & CLEO & \(e^{+} e^{-} \rightarrow\) & \(\gamma\) conv. X \\
\hline KLOPFEN... & 83 & CUSB & \(e^{+} e^{-} \rightarrow\) & \\
\hline
\end{tabular}
\(\Gamma\left(\gamma \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\) \(\frac{V A L U E}{0.0715} \pm \mathbf{0 . 0 0 3 5}\) OUR AVERAGE
\(0.0724 \pm 0.0011 \pm 0.0040 \quad 410 \mathrm{k}\) \(0.074 \pm 0.005 \pm 0.008\) \(0.098 \pm 0.021 \pm 0.024\) \(0.058 \pm 0.007 \pm 0.010\)
\(0.102 \pm 0.018 \pm 0.021\)
\(0.061 \pm 0.014\)
DOCUMENT ID TECN COMMENT \(\quad \Gamma_{\mathbf{6 0}} / \boldsymbol{\Gamma}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\gamma_{\text {b }}(1 P)\right) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \(\Gamma_{61} / \Gamma\) \\
\hline VALUE EVTS & DOCUMENT ID & & & & \\
\hline \multicolumn{6}{|l|}{\(0.038 \pm 0.004\) OUR AVERAGE} \\
\hline \(0.0375 \pm 0.0012 \pm 0.0047\) 198k & ARTUSO & 05 & CLEO & ( & \\
\hline \(0.034 \pm 0.005 \pm 0.006\) & EDWARDS & 99 & CLE2 & \(r(2 S)\) & \(\gamma \chi(1 P)\) \\
\hline \(0.064 \pm 0.014 \pm 0.016\) & ALBRECHT & 85E & ARG & \(e^{+} e^{-}\) & \(\gamma\) conv. X \\
\hline \(0.036 \pm 0.008 \pm 0.009\) & NERNST & 85 & CBAL & \(+e^{-}\) & \\
\hline \(0.044 \pm 0.023 \pm 0.009\) & HAAS & 84 & CLEO & \(e^{+} e^{-} \rightarrow\) & \(\gamma\) conv. X \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - • -} \\
\hline \(0.035 \pm 0.014\) & KLOPFEN... & 83 & CUSB & \(e^{+} e^{-} \rightarrow\) & \\
\hline
\end{tabular}
\(\Gamma\left(\gamma_{6}(1710)\right) / \Gamma_{\text {total }}\)
\begin{tabular}{llll} 
ARTUSO & 05 & CLEO & \(e^{+} e^{-} \rightarrow \gamma X\) \\
EDWARDS & 99 & CLE2 & \(\gamma(2 S) \rightarrow \gamma \chi(1 P)\) \\
ALBRECHT & 85 E & ARG & \(e^{+} e^{-} \rightarrow \gamma\) Conv. X \\
NERNST & 85 & CBAL & \(e^{+} e^{-} \rightarrow \gamma \mathrm{X}\) \\
HAAS & 84 & CLEO & \(e^{+} e^{-} \rightarrow \gamma\) Conv. X \\
KLOPFEN... & 83 & CUSB & \(e^{+} e^{-} \rightarrow \gamma \mathrm{X}\)
\end{tabular}
\(\frac{\text { VALUE (units } 10^{-5} \text { ) }}{\text { ) CL\% }} \frac{\text { DOCUMENT ID }}{90} \frac{\text { TECN }}{1} \frac{\text { COMMENT }}{\text { 62/I }}\)
\(<59 \quad 90 \quad{ }^{1}\) ALBRECHT 89 ARG \(\quad \gamma(2 S) \rightarrow \gamma K^{+} K^{-}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\[
<5.9 \quad 90 \quad 2 \text { ALBRECHT } 89 \quad \text { ARG } \quad \gamma(2 S) \rightarrow \gamma \pi^{+} \pi^{-}
\]
\({ }^{1}\) Re-evaluated assuming \(\mathrm{B}\left(f_{0}(1710) \rightarrow K^{+} K^{-}\right)=0.19\).
\({ }^{2}\) Includes unknown branching ratio of \(f_{0}(1710) \rightarrow \pi^{+} \pi^{-}\).

\(\Gamma\left(\gamma f_{J}(2220)\right) / \Gamma_{\text {total }} \quad \Gamma_{65} / \Gamma\)
VALUE (units \(10^{-5}\) ) CL\% DOCUMENT ID LECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
\(<6.8 \quad 90 \quad 1\) ALBRECHT 89 ARG \(\gamma(2 S) \rightarrow \gamma K^{+} K^{-}\)
\({ }^{1}\) Includes unknown branching ratio of \(f_{J}(2220) \rightarrow K^{+} K^{-}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Gamma\left(\gamma \eta_{c}(1 S)\right) / \Gamma_{\text {total }}\) & \multirow[b]{2}{*}{CL\%} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{66} / \Gamma\)} \\
\hline VALUE & & & & & & \\
\hline \(<2.7 \times 10^{-5}\) & 90 & WANG & 11B & BELL & \(\gamma(2 S) \rightarrow \gamma X\) & \\
\hline \(\Gamma\left(\gamma \chi_{c 0}\right) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{67} / \Gamma\) \\
\hline VALUE & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<1.0 \times 10^{-4}\) & 90 & WANG & 11B & BELL & \(\gamma(2 S) \rightarrow \gamma X\) & \\
\hline \(\Gamma\left(\gamma \chi_{c 1}\right) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{68} / \Gamma\) \\
\hline VALUE & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<3.6 \times 10^{-6}\) & 90 & WANG & 11B & BELL & \(\gamma(2 S) \rightarrow \gamma \boldsymbol{}\) & \\
\hline
\end{tabular}

\(5.5{ }_{-0.9}^{\mathbf{1} .1}\) OUR AVERAGE Error includes scale factor of 1.2.
\(\begin{array}{rrrlll}6.1+0.6+0.9 & 29 \mathrm{k} & \text { FULSOM } & 18 \quad \text { BELL } & r(2 S) \rightarrow \gamma X \\ 3.9 \pm 1.1_{-0.9}^{+1.1} & 13 \pm 5 \mathrm{k} & { }^{1} \text { AUBERT } & \text { 09AQ BABR } & \gamma(2 S) \rightarrow \gamma X\end{array}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llllll}
\(<21\) & 90 & LEES & \(11 」\) & BABR & \(r(2 S) \rightarrow X \gamma\) \\
\(<8.4\) & 90 & 1 & BONVICINI & 10 & CLEO \\
\(<5.1\) & 90 & 2 & ARTUSO & 05 & CLEO \\
\hline\(+e^{+} \rightarrow \gamma X\)
\end{tabular}
\({ }^{1}\) Assuming \(\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}\).
\({ }^{2}\) Superseded by BONVICINI 10.
\(\Gamma\left(\gamma \eta_{b}(1 S) \rightarrow \gamma\right.\) Sum of 26 exclusive modes \() / \Gamma_{\text {total }} \quad \Gamma_{76} / \Gamma\) \(\frac{V A L U E}{<\mathbf{3 . 7} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { SANDILYA } 13} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma \text { hadrons }}\) \(\Gamma\left(\gamma \boldsymbol{X}_{\boldsymbol{b} \boldsymbol{b}} \rightarrow \gamma\right.\) Sum of 26 exclusive modes \() / \Gamma_{\text {total }} \quad \Gamma_{77} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{<4.9} \frac{C L \%}{90} \frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { SANDILYA } 13} \frac{\text { COMMENT }}{\gamma(2 S) \rightarrow \gamma \text { hadrons }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(46.2_{-14.2}^{+29.7} \pm 10.6 \quad 10 \quad 1\) DOBBS \(\quad 12 \quad \gamma(2 S) \rightarrow \gamma\) hadrons
\({ }^{1}\) Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
\(\Gamma(\gamma X \rightarrow \gamma+\geq 4\) prongs \() / \Gamma_{\text {total }}\)
\(\Gamma_{78} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\text { CL\% }}\) DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\)
\(<1.95 \quad 95 \quad\) ROSNER 07A CLEO \(e^{+} e^{-} \rightarrow \gamma X\)
\(\Gamma\left(\boldsymbol{\gamma} \boldsymbol{A}^{\mathbf{0}} \rightarrow \boldsymbol{\gamma}\right.\) hadrons \() / \Gamma_{\text {total }}\)
\(\left(0.3 \mathrm{GeV}<m_{A^{0}}<7 \mathrm{GeV}\right)\)
「79/Г
\(\frac{V A L U E}{<\mathbf{8} \times \mathbf{1 0}^{\mathbf{- 5}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENTID }}{1} \frac{\text { TEES }}{} \frac{\text { TECN }}{} \frac{\text { COMMENT }}{(11 \mathrm{HABR}} \frac{\gamma \text { hadrons }}{r(2 S) \rightarrow \gamma}\)
\({ }^{1}\) For a narrow scalar or pseudoscalar \(A^{0}\), excluding known resonances, with mass in the range \(0.3-7 \mathrm{GeV}\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(m_{A^{0}}\) range from \(1 \times 10^{-6}\) to \(8 \times 10^{-5}\).
\(\Gamma\left(\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{80} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{<\mathbf{8 8 . 3}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \frac{09 z}{} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}}\) \({ }^{1}\) For a narrow scalar or pseudoscalar \(a_{1}^{0}\) with mass in the range \(212-9300 \mathrm{MeV}\), excluding \(J / \psi\) and \(\psi(2 S)\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(m_{a_{1}^{0}}\) range from \(0.26-8.3 \times\) \(10^{-6}\).

LEPTON FAMILY NUMBER (LF) VIOLATING MODES
\(\Gamma\left(e^{ \pm} \boldsymbol{\tau}^{\mp}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{8 1}} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{\mathbf{< 3 . 2}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{10 \mathrm{~B}}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow e^{ \pm} \tau^{\mp}}\)
\(\Gamma\left(\mu^{ \pm} \tau^{\mp}\right) / /_{\text {total }}\)
VALUE (units \(10^{-6}\) ) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • -
\(<14.4 \quad\) LOVE 08A CLEO \(e^{+} e^{-} \rightarrow \mu^{ \pm} \tau^{\mp}\)
\(\boldsymbol{r}(2 S)\) Cross-Particle Branching Ratios
\(\mathrm{B}\left(\boldsymbol{r}(2 S) \rightarrow \pi^{+} \pi^{-}\right) \times \mathrm{B}(r(3 S) \rightarrow r(2 S) X)\)
\begin{tabular}{l}
\(\frac{\text { VALUE (units } 10^{-2}}{\mathbf{1 . 7 8} \mathbf{0 . 0 2} \pm \mathbf{0 . 1 1}} \frac{\text { EVTS }}{906 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }}\) 11C \\
\hline
\end{tabular}
\(\boldsymbol{r}(2 S)\) REFERENCES


\section*{\(r_{2}(1 D)\)}
\({ }_{1} G_{\left(J^{P C}\right)}=0^{-\left(2^{--}\right)}\)
was \(\Upsilon(1 D)\)
First observed by BONVICINI 04 in the decay to \(\gamma \gamma \Upsilon(1 S)\) and confirmed by DEL-AMO-SANCHEZ 10R in the decay to \(\pi^{+} \pi^{-} \gamma_{(1 S)}\). Data consistent with \(J^{P}=2^{-}\). The states with \(J=1\) and 3 also possibly seen, but need confirmation.

\section*{\(r_{2}(1 D)\) MASS}

VALUE \((\mathrm{MeV})\) EVTS DOCUMENT ID TECN COMMENT
\(10163.7 \pm 1.4\) OUR AVERAGE
\(10164.5 \pm 0.8 \pm 0.5\) Error includes scale factor of 1.7 .
DEL-AMO-SA..10R BABR \(r(3 S) \rightarrow \gamma \gamma \pi^{+} \pi-\ell^{+} \ell^{-}\) BONVICINI 04 CLE3 \(r(3 S) \rightarrow 4 \gamma \ell^{+} \ell^{-}\)

\section*{\(r_{2}(1 D)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\gamma \gamma \Upsilon(1 S)\) & seen \\
\(\Gamma_{2}\) & \(\gamma \chi_{b J}(1 P)\) & seen \\
\(\Gamma_{3}\) & \(\eta \Upsilon(1 S)\) & not seen \\
\(\Gamma_{4}\) & \(\pi^{+} \pi^{-} \gamma(1 S)\) & \((6.6 \pm 1.6) \times 10^{-3}\) \\
\hline
\end{tabular}

Meson Particle Listings
\(\gamma_{2}(1 D), \chi_{\text {bo }}(2 P)\)
\(r_{2}(1 D)\) BRANCHING RATIOS

\(r_{2}(1 D)\) REFERENCES
\begin{tabular}{|c|c|c|c|}
\hline DEL-AMO-SA... 10R BONVICINI 04 & PR D82 111102 PR D70 032001 & \begin{tabular}{l}
P. del Amo Sanchez et al. \\
G. Bonvicini et al.
\end{tabular} & \[
\begin{aligned}
& \text { (BABAR Collab.). } \\
& \text { (CLEO Collab.) }
\end{aligned}
\] \\
\hline \(\chi_{b 0}(2 P)\) & & \begin{tabular}{l}
\[
I^{G}\left(J^{P C}\right)=
\] \\
\(J\) needs con
\end{tabular} & \\
\hline
\end{tabular}

Observed in radiative decay of the \(\Upsilon(3 S)\), therefore \(C=+\). Branching ratio requires E 1 transition, M 1 is strongly disfavored, therefore \(P=+\).

\section*{\(\chi_{b 0}(2 P)\) MASS}

VALUE (MEV)
DOCUMENT ID
\(\mathbf{1 0 2 3 2 . 5} \pm \mathbf{0 . 4} \pm \mathbf{0 . 5}\) OUR EVALUATION From \(\gamma\) energy below, using \(\Upsilon(3 S)\) mass \(=\) \(10355.2 \pm 0.5 \mathrm{MeV}\)
\(m_{\chi_{b 1}(2 P)}-m_{\chi_{b 0}(2 P)}\)
\begin{tabular}{lll}
\(\frac{\text { VALUE }(\mathrm{MeV})}{23.8} \mathbf{1 . 7}\) & \(\frac{\text { DOCUMENT ID }}{}\) & \\
\hline LEES & 14 M & TECN \\
BABR & \(\frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}}\) \\
\hline
\end{tabular}
\(\boldsymbol{\gamma}\) ENERGY IN \(\boldsymbol{r}(3 S)\) DECAY
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
\(121.9 \pm 0.4\) OUR EVALUATION Treating systematic errors as correlated
\(122.2 \mathbf{\pm 0 . 5}\) OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below
\begin{tabular}{lrrrll}
\(121.55 \pm 0.16 \pm 0.46\) & & ARTUSO & 05 & CLEO & \(\gamma(3 S) \rightarrow \gamma X\) \\
\(123.0 \pm 0.8\) & 4959 & 1 HEINTZ & 92 & CSB2 & \(e^{+} e^{-} \rightarrow \gamma X\) \\
\(124.6 \pm 1.4\) & 17 & 2 HEINTZ & 92 & CSB2 & \(e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\) \\
122.3 & \(\pm 0.3 \pm 0.6\) & 9903 & MORRISON & 91 & CLE2 \\
\(e^{+} e^{-} \rightarrow \gamma X\)
\end{tabular}

\footnotetext{
\({ }^{1}\) A systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes NARAIN 91.
\({ }^{2} \mathrm{~A}\) systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes HEINTZ 91.
}

\(\chi_{b 0}(2 P)\) DECAY MODES
\begin{tabular}{llcl} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) & Confidence level \\
\hline\(\Gamma_{1}\) & \(\gamma \Upsilon(2 S)\) & \((1.38 \pm 0.30) \%\) & \\
\(\Gamma_{2}\) & \(\gamma \gamma(1 S)\) & \((3.8 \pm 1.7) \times 10^{-3}\) & \\
\(\Gamma_{3}\) & \(D^{0} X\) & \(<8.2\) & \(\%\) \\
\(\Gamma_{4}\) & \(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\) & \(<3.4\) & \(\times 10^{-5}\) \\
\(\Gamma_{5}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\) & \(<5\) & \(\times 10^{-5}\) \\
\(\Gamma_{6}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\) & \(<2.2\) & \(\times 10^{-4}\) \\
\(\Gamma_{7}\) & \(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\) & \(<2.4\) & \(\times 10^{-4}\) \\
\(\Gamma_{8}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\) & \(<1.5\) & \(\times 10^{-4}\) \\
\(\Gamma_{9}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\) & \(<2.2\) & \(\times 10^{-4}\) \\
\(\Gamma_{10}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\) & \(<1.1\) & \(\times 10^{-3}\) \\
\(\Gamma_{11}\) & \(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\) & \(<7\) & \(\times 10^{-4}\) \\
\(\Gamma_{12}\) & \(3 \pi^{+} 3 \pi^{-}\) & \(<7\) & \(90 \%\) \\
\(\Gamma_{13}\) & \(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\) & \(<1.2\) & \(\times 10^{-5}\) \\
\(\Gamma_{14}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\) & \(<1.5\) & \(\times 10^{-3}\) \\
\(\Gamma_{15}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\) & \(<7\) & \(90 \%\) \\
\(\Gamma_{16}\) & \(4 \pi^{+} 4 \pi^{-}\) & \(<1.7\) & \(\times 10^{-4}\) \\
\(\Gamma_{17}\) & \(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\) & \(<6\) & \(\times 10^{-4}\) \\
\hline
\end{tabular}

\section*{\(\chi_{b 0}(2 P)\) BRANCHING RATIOS}


- - We do not use the following data for averages, fits, limits, etc. - - -
\(\begin{array}{llll}<1.2 & 90 & 12 & \text { LEES }\end{array} 11 \mathrm{~J}\) BABR \(r(3 S) \rightarrow X_{\gamma}\)
\(<2.5 \quad 90 \quad 13\) CRAWFORD 92 B CLE2 \(\quad e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\({ }^{8}\) LEES 14 M quotes \(\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}\) \(=(2.1 \pm 1.0) \times 10^{-4}\) combining the results from \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)samples with and without photon conversions.
\({ }^{9}\) Assuming \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%\).
\({ }^{10}\) LEES 14 M reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right]=\) \((2.1 \pm 1.0) \times 10^{-4}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=\) \((5.9 \pm 0.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{11}\) Recalculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) \times \mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow\right.\) \(\gamma \Upsilon(1 S))=(0.05 \pm 0.04 \pm 0.01) \%\) using \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.05) \%\). Supersedes HEINTZ 91
\({ }^{12}\) LEES 11」 quotes a central value of \(\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}=\left(3.9 \pm 2.2_{-0.6}^{+1.2}\right) \times 10^{-4}\).
\({ }^{13}\) Using \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.07) \%, \mathrm{~B}(\Upsilon(3 S) \rightarrow \gamma \gamma \gamma(1 S)) \times 2 \mathrm{~B}(\Upsilon(1 S) \rightarrow\) \(\left.\mu^{+} \mu^{-}\right)<0.63 \times 10^{-4}\), and \(\mathrm{B}\left(\Upsilon(3 S) \rightarrow \chi_{b 0}(2 P) \gamma\right)=0.049\).

\(\Gamma\left(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{4} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<0.34} \frac{C L \%}{90} \quad 16 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { 08A }}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}}\) \({ }^{16}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(2 P)\right)\right]<2 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\) \(=5.9 \times 10^{-2}\)

\(\frac{\left.\text { VALUE (unit } 10^{-4}\right)}{<11} \frac{C L \%}{90} 22 \frac{\text { DOCUMENT ID }}{\text { ASNER } \quad \text { 08A }} \frac{\text { TECN }}{\text { LLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}}\) \({ }^{22}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} \kappa^{+} \kappa^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(2 P)\right)\right]<63 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\) \(=5.9 \times 10^{-2}\).
 \(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{7}} \frac{C L \%}{90}{ }_{23} \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}}\) \({ }^{23}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(2 P)\right)\right]<39 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\) \(=5.9 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{12} / \Gamma\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<0.7} \frac{C L \%}{90} \quad 24 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-}}\) \({ }^{24}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{D 0}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{D 0}(2 P)\right)\right]\) \(<4 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=5.9 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{13} / \Gamma\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{1 2}} \frac{C L \%}{90} \quad 25 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}}\) \({ }^{25}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right]\) \(<72 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=5.9 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma_{\text {total }}\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{1 . 5}} \frac{C L \%}{90} \quad 26 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}}\)
\({ }^{26}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{D 0}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(2 P)\right)\right]<9 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{D 0}(2 P)\right)\) \(=5.9 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{15} / \Gamma\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<\mathbf{<}} \frac{C L \%}{90} \frac{\text { CO }}{27} \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}}\)
\({ }^{27}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 0}(2 P)\right)\right]<43 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\) \(=5.9 \times 10^{-2}\).
 \({ }^{28}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 0}(2 P) \rightarrow 4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right]\) \(<10 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=5.9 \times 10^{-2}\). \(\Gamma\left(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\) \(\Gamma_{17} / \Gamma\) \(\frac{\operatorname{VALUE}\left(\text { units } 10^{-4}\right)}{<6} \frac{C L \%}{90} \quad 29 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad\) 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}}\) \({ }^{29}\) ASNER 08A reports \(\left[\mathrm{\Gamma}\left(\chi_{b 0}(2 P) \rightarrow 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right]\) \(<38 \times 10^{-6}\) which we divide by our best value \(\mathbf{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{D 0}(2 P)\right)=5.9 \times 10^{-2}\).
\(\Gamma\left(\chi_{b 0}(2 P) \Rightarrow \gamma r(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(3 S) \Rightarrow \gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}\) \(\Gamma_{2} / \Gamma \times \Gamma_{22}^{r(3 S)} / \Gamma^{r(3 S)}\)
\(\frac{V A L U E\left(\text { units } 10^{-4} \text { ) }\right.}{<8.2} \frac{C L \%}{90} \quad 30 \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 11J }}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow X \gamma}\)
\({ }^{30}\) LEES 11」 quotes a central value of \(\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}=\left(3.9 \pm 2.2_{-0.6}^{+1.2}\right) \times 10^{-4}\) and derives a \(90 \%\) CL upper limit of \(\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(1 S)\right)<1.2 \%\) using \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=(5.9 \pm 0.6) \%\).
\(\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma r(1 S)\right) \times \mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) \times \mathrm{B}\left(r(1 S) \rightarrow \ell^{+} \ell^{-}\right)\) \(\frac{V A L U E\left(\text { units } 10^{-5}\right)}{\text { DOCUMENT ID }}\) TECN COMMENT
\(1.4 \pm 0.9\) OUR AVERAGE
1
\begin{tabular}{llll}
\(1.7_{-1.4-1.2}^{+1.5+0.1}\) & 31 LEES & 14 M & BABR \\
\(1.3 \pm 1.0 \pm 0.3\) & 32 HEINTZ & 92 & CSB2 \\
\hline
\end{tabular}
\({ }^{31}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with one converted photon.
\({ }^{32}\) Calculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) \times \mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow\right.\) \(\gamma \gamma(1 S))=(0.05 \pm 0.04 \pm 0.01) \%\) using \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.05) \%\).
\(\left[\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma r(1 S)\right) \times \mathrm{B}\left(\boldsymbol{r}(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right] /\left[\mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\right.\) \(\left.\gamma \boldsymbol{r}(1 S)) \times \mathrm{B}\left(\boldsymbol{\gamma}(3 S) \Rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\)
\(\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 7 1 \pm 0 . 8 0}} \quad 33 \frac{\text { DOCUMENT ID }}{\text { LEES }} \quad 14 \mathrm{M} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}}\)
\({ }^{33}\) From a sample of \(r(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)without converted photons.
\(\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma r(2 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\Gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}\)
\(\Gamma_{1} / \Gamma \times \Gamma_{22}^{r(3 S)} / \Gamma^{r(3 S)}\)
\(\frac{\left.\text { VALUE (units } 10^{-3}\right)}{<1.6} \frac{C L \%}{90} \quad 34 \frac{\text { DOCUMENT ID }}{\text { LEES }} \quad 11 \mathrm{~J} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow x_{\gamma}}\)
\({ }^{34}\) LEES 11」 quotes a central value of \(\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \gamma(2 S)\right) / \Gamma_{\text {total }} \times \Gamma(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 0}(2 P)\right) / \Gamma_{\text {total }}=\left(-0.3 \pm 0.2_{-0.4}^{+0.5}\right) \%\) and derives a \(90 \% \mathrm{CL}\) upper limit of \(\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma r(2 S)\right)<2.8 \%\) using \(\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)=(5.9 \pm 0.6) \%\).
\(\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma r(2 S)\right) \times \mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) \times \mathrm{B}\left(r(2 S) \rightarrow \ell^{+} \ell^{-}\right)\) VALUE (units \(10^{-5}\) ) DOCUMENT ID TECN COMMENT \(4.4 \pm 1.6\) OUR AVERAGE
\(6.6_{-4.0}^{+4.9+2.0} \quad{ }_{-0.3}{ }^{35}\) LEES \(\quad 14 \mathrm{M}\) BABR \(r(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)
\(4.0 \pm 1.7 \pm 0.3 \quad 36 \mathrm{HEINTZ} \quad 92\) CSB2 \(r(3 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\)
\({ }^{35}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with one converted photon.
\({ }^{36}\) Calculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right) \times \mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow\right.\) \(\gamma \gamma(2 S))=(0.28 \pm 0.12 \pm 0.03) \%\) using \(\mathrm{B}\left(\gamma(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(1.44 \pm 0.10) \%\).
\(\left[\mathrm{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma r(2 S)\right) \times \mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 0}(2 P)\right)\right] /\left[\mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\right.\) \(\left.\gamma r(2 S)) \times \mathrm{B}\left(\boldsymbol{r}(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\)
\(\frac{\operatorname{VALUE}(\%)}{\mathbf{3 . 3 1} \pm \mathbf{0} .56} \quad 37 \frac{\text { DOCUMENT ID }}{\text { LEES }} 14 \mathrm{M} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}}\)
\({ }^{37}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)without converted photons.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\chi_{\text {bo }}(2 P)\) REFERENCES} \\
\hline Lees & 14 M & PR D90 112010 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LeEs & 11J & PR D84 072002 & J.P. Lees et al. & (BABAR Collab.) \\
\hline ASNER & 08A & PR D78 091103 & D.M. Asner et al. & (CLEO Collab.) \\
\hline BRIERE & 08 & PR D78 092007 & R.A. Briere et al. & (CLEO Collab.) \\
\hline ARTUSO & 05 & PRL 94032001 & M. Artuso et al. & (CLEO Collab.) \\
\hline CRAWFORD & 92B & PL B294 139 & G. Crawford et al. & (CLEO Collab.) \\
\hline HEINTZ & 92 & PR D46 1928 & U. Heintz et al. & (CUSB \| Collab.) \\
\hline HEINTZ & 91 & PRL 661563 & U. Heintz et al. & (CUSB Collab.) \\
\hline morrison & 91 & PRL 671696 & R.J. Morrison et al. & (CLEO Collab.) \\
\hline NARAIN & 91 & PRL 663113 & M. Narain et al. & (CUSB Collab.) \\
\hline
\end{tabular}
\(\chi_{b 1}(2 P)\)
\({ }^{G}\left(J^{P C}\right)=0^{+}\left(1^{+}+\right)\)
\(J\) needs confirmation.

Observed in radiative decay of the \(r(3 S)\), therefore \(C=+\). Branching ratio requires E1 transition, M1 is strongly disfavored, therefore \(P=+\).

Meson Particle Listings
\(\chi_{b 1}(2 P)\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(\chi_{b 1}(2 P)\) MASS \\
\(\operatorname{VALUE}(\mathrm{MeV})\) \\
\hline DOCUMENT ID \\
\hline
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(\mathbf{1 0 2 5 5 . 4 6} \pm \mathbf{0 . 2 2} \pm \mathbf{0 . 5 0}\) OUR EVALUATION From \(\gamma\) energy below, using \(\gamma(3 S)\) mass \(=\) \(10355.2 \pm 0.5 \mathrm{MeV}\)} \\
\hline \multicolumn{2}{|r|}{\(m_{\chi_{b 1}(2 P)}-m_{\chi_{b 0}(2 P)}\)} \\
\hline VALUE (MeV) & DOCUMENT ID TECN COMMENT \\
\hline \(23.5 \pm 0.7 \pm 0.7\) & 1 HEINTZ 92 CSB2 \(e^{+} e^{-} \rightarrow \gamma \mathrm{X}, \ell^{+} \ell^{-} \gamma \gamma\) \\
\hline \({ }^{1}\) From the average photon NARAIN 91. & energy for inclusive and exclusive events. Supersedes \\
\hline
\end{tabular}

\section*{\(\gamma\) ENERGY IN \(\boldsymbol{\gamma}(3 S)\) DECAY}

VALUE \((\mathrm{MeV})\) EVTS DOCUMENT ID TECN COMMENT

\(\mathbf{9 9 . 5 3} \pm \mathbf{0 . 2 3}\) OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
\(99.15 \pm 0.07 \pm 0.25 \quad\) ARTUSO \(05 \quad\) CLEO \(\quad r(3 S) \rightarrow \gamma X\)
\(99 \pm 1 \quad 169 \quad\) CRAWFORD 92 B CLE2 \(e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\(100.1 \pm 0.4 \quad 11147 \quad 2\) HEINTZ \(\quad 92 \quad\) CSB2 \(\quad e^{+} e^{-} \rightarrow \gamma\) X
\(100.2 \pm 0.5 \quad 223 \quad 3\) HEINTZ \(\quad 92 \quad\) CSB2 \(\quad e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\(99.5 \pm 0.1 \pm 0.5 \quad 25759 \quad\) MORRISON 91 CLE2 \(e^{+} e^{-} \rightarrow \gamma \mathrm{X}\)
\({ }^{2}\) A systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes 3 NARAIN 91.
\({ }^{3}\) A systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes HEINTZ 91.

\begin{tabular}{|c|c|c|}
\hline & & MODES \\
\hline & Mode & Fraction ( \(\Gamma_{i} / \Gamma\) ) \\
\hline \(\Gamma_{1}\) & \(\omega \Upsilon(1 S)\) & \((1.63-0.34) \%\) \\
\hline \(\Gamma_{2}\) & \(\gamma \gamma(2 S)\) & \((18.1 \pm 1.9) \%\) \\
\hline \(\Gamma_{3}\) & \(\gamma \gamma(1 S)\) & ( \(9.9 \pm 1.0\) ) \% \\
\hline \(\Gamma_{4}\) & \(\pi \pi \chi_{b 1}(1 P)\) & \((9.1 \pm 1.3) \times 10^{-3}\) \\
\hline \(\Gamma_{5}\) & \(D^{0} \times\) & \((8.8 \pm 1.7) \%\) \\
\hline \(\Gamma_{6}\) & \(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\) & \((3.1 \pm 1.0) \times 10^{-4}\) \\
\hline \(\Gamma_{7}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\) & \((1.1 \pm 0.5) \times 10^{-4}\) \\
\hline \(\Gamma_{8}\) & \(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\) & \((7.7 \pm 3.2) \times 10^{-4}\) \\
\hline \(\Gamma_{9}\) & \(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\) & \((5.9 \pm 2.0) \times 10^{-4}\) \\
\hline \(\Gamma_{10}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\) & \(\left(\begin{array}{ll}10 & \pm 4\end{array}\right) \times 10^{-5}\) \\
\hline \(\Gamma_{11}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\) & \((5.5 \pm 1.8) \times 10^{-4}\) \\
\hline \(\Gamma_{12}\) & \(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\) & \(\left(\begin{array}{ll}10 & \pm 4\end{array}\right) \times 10^{-4}\) \\
\hline \(\Gamma_{13}\) & \(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\) & \((6.7 \pm 2.6) \times 10^{-4}\) \\
\hline \(\Gamma_{14}\) & \(3 \pi^{+} 3 \pi^{-}\) & \((1.2 \pm 0.4) \times 10^{-4}\) \\
\hline \(\Gamma_{15}\) & \(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\) & \((1.2 \pm 0.4) \times 10^{-3}\) \\
\hline \(\Gamma_{16}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\) & \((2.0 \pm 0.8) \times 10^{-4}\) \\
\hline \(\Gamma_{17}\) & \(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\) & \((6.1 \pm 2.2) \times 10^{-4}\) \\
\hline \(\Gamma_{18}\) & \(4 \pi^{+} 4 \pi^{-}\) & \((1.7 \pm 0.6) \times 10^{-4}\) \\
\hline \(\Gamma_{19}\) & \(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\) & \((1.9 \pm 0.7) \times 10^{-3}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\chi_{b 1}(2 P)\) BRANCHING RATIOS} \\
\hline \multicolumn{6}{|l|}{\(\Gamma(\omega \boldsymbol{T}(1 S)) / \Gamma_{\text {total }} \quad \Gamma_{1} / \Gamma\)} \\
\hline VALUE (units \(10^{-2}\) ) & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline \[
1.63=0.31=0.15
\] & \(32.6{ }_{-6.1}^{+6.9}\) & \({ }^{4}\) CRONIN-HEN.. 04 & CLE3 & \(r(3 S) \rightarrow\) & \(\gamma \omega r(1 S)\) \\
\hline \[
\begin{aligned}
& { }^{4} \text { Using } \mathrm{B}(\Upsilon(3 S) \\
& \mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu\right.
\end{aligned}
\] & \[
\begin{aligned}
& \gamma \chi_{b 1}(2 P \\
& )=2(2.48
\end{aligned}
\] & \[
\begin{aligned}
& P)=(11.3 \pm 0.6) \\
& 48 \pm 0.06) \% .
\end{aligned}
\] & and & \[
(1 S) \rightarrow
\] & \[
\left.\ell^{+} \ell^{-}\right)=2
\] \\
\hline
\end{tabular}
\(\Gamma(\gamma r(2 S)) / \Gamma_{\text {total }}\)

\section*{\(\frac{\text { VALUE }}{0.181 \pm 0.019 \text { OUR AVERAGE }}\)}
\(0.190 \pm 0.018 \pm 0.017 \quad 4.3 \mathrm{k}\)

\(0.132 \pm 0.018 \pm 0.012 \quad 5,10\) HEINTZ 92 CSB2 \(\quad e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\({ }^{5}\) Assuming \(\mathrm{B}\left(\gamma(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(1.93 \pm 0.17) \%\).
\({ }^{6}\) LEES 14M quotes \(\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(2 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) / \Gamma_{\text {total }}\) \(=(2.66 \pm 0.22) \%\) combining the results from \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)samples with and without photon conversions.
\({ }^{7}\) LEES 14 M reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(2 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]=\) \((2.66 \pm 0.22) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)=\) \((12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{8}\) LEES 11」 reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma r(2 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]=\) \((2.4 \pm 0.1 \pm 0.2) \times 10^{-2}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\) \(=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{9}\) CRAWFORD 92B quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(2 S)\right) \times 2\) \(\mathrm{B}\left(r(2 S) \rightarrow \ell^{+} \ell^{-}\right)=(10.23 \pm 1.20 \pm 1.26) 10^{-4}\).
\({ }^{10}\) Recalculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\) \(\gamma \gamma(2 S))=(2.29 \pm 0.23 \pm 0.21) \%\) using \(\mathrm{B}\left(\gamma(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(1.44 \pm 0.10) \%\). Supersedes HEINTZ 91.
 \(\frac{V A L U E}{0.099 \pm 0.010 ~ O U R ~ A V E R A G E}\)
\(0.107 \pm 0.006 \pm 0.010 \quad 11,12,13\) LEES \(\quad 14 \mathrm{M}\) BABR \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)
\(0.098 \pm 0.005 \pm 0.009 \quad 15 \mathrm{k} \quad 14\) LEES \(\quad 11 \mathrm{~J}\) BABR \(r(3 S) \rightarrow X_{\gamma}\)
\(0.103 \pm 0.023 \pm 0.009 \quad 11,15\) CRAWFORD \(\quad 92 \mathrm{~B}\) CLE2 \(\quad e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\(\begin{array}{llll}0.075 \pm 0.010 \pm 0.007 & 11,16 \text { HEINTZ } & 92 & \text { CSB2 }\end{array} e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\)
\({ }^{11}\) Assuming \(\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%\).
\({ }^{12}\) LEES 14 M quotes \(\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma r(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) / \Gamma_{\text {total }}\) \(=(13.48 \pm 0.72) \times 10^{-3}\) combining the results from samples of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\) with and without converted photons.
\({ }^{13}\) LEES 14 M reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]=\) \((13.48 \pm 0.72) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)=\) \((12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{14}\) LEES 11」 reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]=\) (12.4 \(\pm 0.3 \pm 0.6) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\) \(=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{15}\) CRAWFORD 92B quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \gamma(1 S)\right) \times 2\) \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(6.47 \pm 1.12 \pm 0.82) 10^{-4}\).
\({ }^{16}\) Recalculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\) \(\gamma r(1 S))=(0.91 \pm 0.11 \pm 0.06) \%\) using \(\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.05) \%\). Supersedes HEINTZ 91.
 \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{3 . 1} \pm \mathbf{1 . 0} \pm \mathbf{0 . 3}} \frac{\text { EVTS }}{30} \quad 20 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}}\) \({ }^{20}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(39 \pm 8 \pm 9) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} \pi^{-} K^{-} K_{\boldsymbol{S}}^{\mathbf{0}}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{7} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 . 1} \pm \mathbf{0 . 5} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{10} \quad 21 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}}\)
\({ }^{21}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(14 \pm 5 \pm 3) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)} & \(8 / \Gamma\) \\
\hline VALUE (units \(10^{-4}\) ) EVTS & \multicolumn{3}{|l|}{DOCUMENT ID TECN COMMENT} & \\
\hline \(\mathbf{7 . 7} \pm \mathbf{3 . 1} \pm \mathbf{0 . 7}\) & 22 ASNER & 08A CLEO & & \\
\hline \multicolumn{5}{|l|}{\({ }^{22}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\)} \\
\hline \multicolumn{5}{|l|}{\(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(97 \pm 30 \pm 26) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\)} \\
\hline \multicolumn{5}{|l|}{\(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.} \\
\hline
\end{tabular}

\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{10} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{1 . 0} \mathbf{\pm 0 . 4} \mathbf{\pm 0 . 1}} \frac{\text { EVTS }}{12} \quad 24 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\text { CLEO }} \frac{}{\gamma(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}}\) \({ }^{24}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(12 \pm 4 \pm 3) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{11} / \Gamma\) VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
 \({ }^{25}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(69 \pm 13 \pm 17) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{9 . 6 \pm 3 . 5} \pm \mathbf{0 . 9} 27 \quad 26\) ASNER 28 CLEO \(\xrightarrow[r(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}]{ }\) \({ }^{26}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(121 \pm 29 \pm 33) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} \mathbf{2} \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{6 . 7 \pm 2 . 5 \pm \mathbf { 0 . 6 }} 17 \quad 27 \overline{\text { ASNER }} \overline{\text { CLEO }} \quad \underset{\gamma}{ }(3 S) \rightarrow \gamma 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\)
\({ }^{27}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(85 \pm 23 \pm 22) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{14 / \Gamma}\)

\({ }^{28}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\) \(=(15 \pm 4 \pm 3) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)=\) \((12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{15} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{1 2} \pm \mathbf{4} \pm \mathbf{1}} \frac{\text { EVTS }}{44} \quad 29 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}}\) \({ }^{29}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\) \(=(150 \pm 30 \pm 40) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\) \(=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{16} /{ }^{2}\) \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{2 . 0} \pm \mathbf{0 . 7} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{16} \quad 30 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { O8A }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+}+3 \pi^{-} K^{+} K^{-}}\) \({ }^{30}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(25 \pm 7 \pm 6) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(\overline{\mathbf{6 . 1} \pm \mathbf{2 . 1} \pm \mathbf{0 . 6}} \quad 35 \overline{\text { ASNER }} \overline{\text { CLEO }} \overline{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}}\)
\({ }^{31}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 1}(2 P)\right)\right]=(77 \pm 17 \pm 21) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{18} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{\mathbf{1 . 7} \pm \mathbf{0 . 6} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{16} \quad 32 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { 08A }}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 4 \pi^{+} 4 \pi^{-}}\)
\({ }^{32}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 4 \pi^{+} 4 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\) \(=(22 \pm 6 \pm 5) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)=\) \((12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{19} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{19 \pm \mathbf{7} \pm \mathbf{2}} \frac{\text { EVTS }}{41} \quad 33 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{08 \mathrm{~A}}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}}\) \({ }^{33}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 1}(2 P) \rightarrow 4 \pi^{+} 4 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\right]\) \(=(241 \pm 47 \pm 72) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right)\) \(=(12.6 \pm 1.2) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\chi_{b 1}(2 P)\) Cross-Particle Branching Ratios
\(\Gamma\left(\chi_{b 1}(2 P) \rightarrow \gamma r(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(r(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) / \Gamma_{\text {total }}\)
\(\Gamma_{3} / \Gamma \times \Gamma_{21}^{r(3 S)} / \Gamma r(3 S)\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{\mathbf{1 2 . 4} \pm \mathbf{0 . 3} \pm \mathbf{0 . 6}} \frac{\text { EVTS }}{15 \mathrm{k}} \quad \frac{\text { DOCUMENT ID }}{\text { LEES }} \frac{\text { 11」 }}{} \frac{\text { TECN }}{\operatorname{BABR}} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow x_{\gamma}}\)
\(\mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(1 S)\right) \times \mathrm{B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)\) VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT \(2.9 \pm \mathbf{0 . 4}\) OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below. \(3.522_{-0.27}^{+0.28}{ }_{-0.18}^{0.17} \quad 34\) LEES \(\quad 14 \mathrm{M}\) BABR \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\) \(3.24 \pm 0.56 \pm 0.41 \quad 58 \quad 35\) CRAWFORD \(\quad 92 \mathrm{~B} \quad\) CLE2 \(\quad r(3 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\) \(2.34 \pm 0.28 \pm 0.15 \quad{ }^{36}\) HEINTZ 92 CSB2 \(r(3 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\)
\({ }^{34}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with one converted photon.
\({ }^{35}\) CRAWFORD \({ }^{92 \mathrm{~B}}\) quotes \(2 \times \mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b J}(2 P)\right) \mathrm{B}\left(\chi_{b J}(2 P) \rightarrow \gamma r(\mathrm{nS})\right)\) \(\mathrm{B}\left(\Upsilon(\mathrm{nS}) \rightarrow \ell^{+} \ell^{-}\right)\).
\({ }^{36}\) Calculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\) \(\gamma \gamma(1 S))=(0.91 \pm 0.11 \pm 0.06) \%\) using \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.05) \%\).

\(\mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(1 S)\right) \times \mathrm{B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)\) (units \(10^{-4}\) )


39 HEINTZ 92 CSB2 \(\quad \gamma(3 S) \rightarrow \gamma \gamma \ell^{+} \ell^{-}\)
\({ }^{37}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)with one converted photon.
\({ }^{38}\) CRAWFORD 92B quotes \(2 \times \mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b J}(2 P)\right) \mathrm{B}\left(\chi_{b J}(2 P) \rightarrow \gamma r(\mathrm{nS})\right)\) \(\mathrm{B}\left(r(\mathrm{nS}) \rightarrow \ell^{+} \ell^{-}\right)\).
\({ }^{39}\) Calculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(2 P)\right) \times \mathrm{B}\left(\chi_{b 1}(2 P) \rightarrow\right.\) \(\gamma \gamma(2 S))=(2.29 \pm 0.23 \pm 0.21) \% \operatorname{usingB}\left(\gamma(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(1.44 \pm 0.10) \%\).

Meson Particle Listings
\(\chi_{b 1}(2 P), h_{b}(2 P), \chi_{b 2}(2 P)\)


OMITTED FROM SUMMARY TABLE
Quantum numbers are quark model predictions.

\(\boldsymbol{h}_{\boldsymbol{b}}(2 \boldsymbol{P})\) BRANCHING RATIOS



\section*{\(\gamma\) ENERGY IN \(r(3 S)\) DECAY}

VALUE \((\mathrm{MeV})\) EVTS DOCUMENT ID TECN COMMENT \(86.19 \pm 0.22\) OUR EVALUATION \(86.19 \pm 0.22\) OUR EVALUATIO
\(\mathbf{8 6 . 4 0} \pm \mathbf{0 . 1 8}\) OUR AVERAGE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(86.04 \pm 0.06 \pm 0.27\) & & ARTUSO & 05 & CLEO & \(r(3 S) \rightarrow\) & \\
\hline \(86 \pm 1\) & 101 & CRAWFORD & 92B & CLE2 & \(e^{+} e^{-} \rightarrow\) & \(\ell^{+} \ell^{-} \gamma \gamma\) \\
\hline \(86.7 \pm 0.4\) & 10319 & \({ }^{3}\) HEINTZ & 92 & CSB2 & \(e^{+} e^{-}\) & \(\gamma \mathrm{X}\) \\
\hline \(86.9 \pm 0.4\) & 157 & \({ }^{4}\) HEINTZ & 92 & CSB2 & \(e^{+} e^{-}\) & \(\ell^{+} \ell^{-} \gamma \gamma\) \\
\hline \(86.4 \pm 0.1 \pm 0.4\) & 30741 & MORRISON & 91 & CLE2 & \(e^{+} e^{-} \rightarrow\) & \(\gamma \mathrm{X}\) \\
\hline
\end{tabular}
\({ }^{3}\) A systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes NARAIN 91.
\({ }^{4}\) A systematic uncertainty on the energy scale of \(0.9 \%\) not included. Supersedes HEINTZ 91.
\(\chi_{b 2}(2 P)\) DECAY MODES


\section*{\(\chi_{b 2}(2 P)\) BRANCHING RATIOS}
\(\Gamma(\omega r(1 S)) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-2}\) ) EVTS EVTS

DOCUMENT ID \(\qquad\) TECN COMMENT \(\mathbf{1 . 1 0} \mathbf{- 0 . 3 2} \mathbf{+ 0 . 0 . 1 1} \quad 20.1_{-5.1}^{+5.8}{ }^{5}\) CRONIN-HEN.. \(04 \quad\) CLE3 \(\quad r(3 S) \rightarrow \gamma \omega r(1 S)\)
\({ }^{5}\) Using \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)=(11.4 \pm 0.8) \%\) and \(\mathrm{B}\left(\gamma(1 S) \rightarrow \ell^{+} \ell^{-}\right)=2\) \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=2(2.48 \pm 0.06) \%\).
 Supersedes HEINTZ 91.
\(\Gamma(\gamma \boldsymbol{\gamma}(1 S)) / \Gamma_{\text {total }} \Gamma_{\mathbf{3}} / \Gamma\) \(\frac{\text { VALUE }}{0.066 \pm 0.008 \text { OUR AVERAG }}\)
\(0.061 \pm 0.004 \pm 0.007\)
\(070 \quad 14 \mathrm{M}\) BABR \(\quad \gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu\)
\(0.077+0.018 \quad 11 \mathrm{k} \quad 13,16\) LEES \(\quad 11 \mathrm{JABR} \quad r(3 S) \rightarrow X \gamma\)
\(\begin{array}{lll}0.061 \pm 0.009 \pm 0.007 & 13,17 \text { HEINTZ } & 92 \quad \text { CSB2 } \\ e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma\end{array}\)
\({ }^{12}\) LEES 14 M quotes \(\Gamma\left(\chi_{b 2}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }} \times \Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right) / \Gamma_{\text {total }}\) \(=(8.03 \pm 0.50) \times 10^{-3}\) combining the results from samples of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\) with and without converted photons.
\({ }^{13}\) Assuming \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \%\).
\({ }^{14}\) LEES 14 M reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\right]=\) \((8.03 \pm 0.50) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)=\) \((13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{15}\) LEES 11」 reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow \gamma \gamma(1 S)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\right]=\) \((9.2 \pm 0.3 \pm 0.4) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\) \(=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{16}\) CRAWFORD 92B quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right) \times \mathrm{B}\left(\chi_{b 2}(2 P) \rightarrow \gamma \gamma(1 S)\right) \times 2\) \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(5.03 \pm 0.94 \pm 0.63) 10^{-4}\).
17 Recalculated by us. HEINTZ 92 quotes \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right) \times \mathrm{B}\left(\chi_{b 2}(2 P) \rightarrow\right.\) \(\gamma \gamma(1 S))=(0.77 \pm 0.11 \pm 0.05) \%\) using \(\mathrm{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.57 \pm 0.05) \%\). Supersedes HEINTZ 91.
\(\Gamma\left(\pi \pi \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-3}\) ) EVTS DOCUMENT ID TECN COMMENT \(4 / \boldsymbol{\Gamma}\)
\(\overline{5.1 \pm 0.9}\) OUR AVERAGE
\(4.9 \pm 0.7 \pm 0.6 \quad 17 \mathrm{k} \quad 18\) LEES \(\quad 11 \mathrm{C}\) BABR \(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \boldsymbol{X}\) \(6.0 \pm 1.6 \pm 1.4 \quad{ }^{19}\) CAWLFIELD 06 CLE3 \(r(3 S) \rightarrow 2(\gamma \pi \ell)\)
\({ }^{18}(0.64 \pm 0.05 \pm 0.08) \times 10^{-3}\). We derive the value assuming \(\mathrm{B}\left(r(3 S) \rightarrow \chi_{b 2}(2 P) X\right)\) \(=\mathrm{B}\left(\gamma(3 S) \rightarrow \chi_{b 2}(2 P) \gamma\right)=(13.1 \pm 1.6) \times 10^{-2}\).
\({ }^{19}\) CAWLFIELD 06 quote \(\Gamma\left(\chi_{b}(2 P) \rightarrow \pi \pi \chi_{b}(1 P)\right)=0.83 \pm 0.22 \pm 0.08 \pm 0.19 \mathrm{keV}\) assuming I-spin conservation, no \(D\)-wave contribution, \(\Gamma\left(\chi_{b 1}(2 P)\right)=96 \pm 16 \mathrm{keV}\), and \(\Gamma\left(\chi_{b 2}(2 P)\right)=138 \pm 19 \mathrm{keV}\).
\(\Gamma\left(D^{0} x\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE }}{\left\langle\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{2}}\right.} \frac{\text { CL\% }}{90}{ }^{20,21} \frac{\text { DOCUMENT ID }}{\text { BRIERE }} 08 \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma D^{0} X}\)
\({ }^{20}\) For \(p_{D^{0}}>2.5 \mathrm{GeV} / \mathrm{c}\).
21 The authors also present their result as \((0.2 \pm 1.4 \pm 0.1) \times 10^{-2}\).
\(\Gamma\left(\pi^{+} \pi^{-} K^{+} K^{-} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6}} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<\mathbf{1 . 1}} \frac{C L \%}{90} \quad 22 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { 08A }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}}\) \({ }^{22}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow \pi^{+} \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(2 P)\right)\right]<14 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\) \(=13.1 \times 10^{-2}\).
\(\Gamma\left(2 \pi^{+} \pi^{-} K^{=} K_{S}^{0}\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{<\mathbf{0 . 9}} \frac{\text { CL\% }}{90} \quad 23 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad\) 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}}\)
\({ }^{23}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 2 \pi^{+} \pi^{-} K^{-} K_{S}^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(2 P)\right)\right]<12 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\) \(=13.1 \times 10^{-2}\).
\(\Gamma\left(2 \pi^{+} \pi^{-} K^{-} \boldsymbol{K}_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{8} / \Gamma\)
\(\frac{\left.\text { VALUE ( Unit } 10^{-4}\right)}{<7} \frac{\text { CL\% }}{90} \quad 24 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad\) 08A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 2 \pi^{+} \pi^{-} \kappa^{-} 2 \pi^{0}}\)
\({ }^{24}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 2 \pi^{+} \pi^{-} \kappa^{-} \kappa_{S}^{0} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{D_{2}}(2 P)\right)\right]<87 \times 10^{-6}\) which we divide by our best value \(\mathbf{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{D_{2}}(2 P)\right)\) \(=13.1 \times 10^{-2}\).
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma 9 / \Gamma\)
\(\frac{\left.\text { VALUE ( Unit } 10^{-4}\right)}{3.9 \pm 1.6 \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{23} \quad 25\) DOCUMENT ID \(\quad\) OSA \(\quad \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}}\)
\({ }^{25}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\right]\) \(=(51 \pm 16 \pm 13) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\) \(=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} \kappa^{-}\right) / /_{\text {total }} \quad \Gamma_{10} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{0 . 9} \pm \mathbf{0 . 4} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{11} \quad 26 \frac{\text { DOCUMENT ID }}{\text { ASNER 08A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} \kappa^{+} K^{-}}\) \({ }^{26}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} \kappa^{+} \kappa^{-}\right) / \Gamma_{\text {totala }}\right] \times[\mathrm{B}(r(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{\text {D2 }_{2}}(2 P)\right)\right]=(12 \pm 4 \pm 3) \times 10^{-6}\) which we divide by our best value \(\mathbf{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b_{2}}(2 P)\right)=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{11} / \Gamma\)
\(\frac{\left.\text { VALLE (unit } 10^{-4}\right)}{2.4 \pm 1.0 \pm 0.3} \frac{\text { EVTS }}{16} \frac{\text { DDCUMENT ID }}{27} \frac{\text { OSCN }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} \kappa^{+} \kappa^{-} \pi^{0}}\)
\({ }^{27}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{D 2}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} \kappa^{+} \kappa^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(2 P)\right)\right]=(32 \pm 11 \pm 8) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b_{2}}(2 P)\right)=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
VALUE (units \(10^{-4}\) ) EVTS DOCUMENT ID TECN COMMENT
\(4.7 \pm \mathbf{2 . 2 \pm 0 . 6} \quad 14 \quad 28\) ASNER \(\quad\) 08A \(\xlongequal{\text { CLEO }} \xlongequal[r(3 S) \rightarrow \gamma 2 \pi^{+} 2 \pi^{-} K^{+} K^{-} 2 \pi^{0}]{ }\)
\({ }^{28}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 2 \pi^{+} 2 \pi^{-} \kappa^{+} \kappa^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{D_{2}}(2 P)\right)\right]=(62 \pm 23 \pm 17) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b_{2}}(2 P)\right)=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value
\(\Gamma\left(3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{13} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{<4} \frac{C L \%}{90}{ }_{29} \frac{\text { DOCUMENT ID }}{\text { ASNER }} \quad\) O8A \(\frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 3 \pi^{+} 2 \pi^{-} K^{-} K_{S}^{0} \pi^{0}}\)
\({ }^{29}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{\text {b2 }}(2 P) \rightarrow 3 \pi^{+} 2 \pi^{-} \kappa^{-} \kappa_{S}^{0} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{D_{2}}(2 P)\right)\right]<58 \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{D_{2}}(2 P)\right)\) \(=13.1 \times 10^{-2}\).
\(\Gamma\left(3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{14 / \Gamma}\)
\(\frac{V A L U E\left(\text { units } 10^{-4}\right)}{\mathbf{0 . 9} \pm \mathbf{0 . 4} \pm \mathbf{0 . 1}} \frac{\text { EVTS }}{14} \quad 30 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-}}\)
\({ }^{30}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\right]\) \(=(12 \pm 4 \pm 3) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)=\) \((13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{15 / \Gamma}\)
\(\frac{V A L U E \text { (units } 10^{-4} \text { ) }}{\mathbf{1 2} \pm \mathbf{4} \pm \mathbf{1}} \frac{\text { EVTS }}{45} \quad 31 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma 3 \pi^{+}+3 \pi^{-} 2 \pi^{0}}\) 31 ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} 2 \pi^{0}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\right]\) \(=(159 \pm 33 \pm 43) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(2 P)\right)\) \(=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{16} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-4}\right)}{\mathbf{1 . 4} \pm \mathbf{0 . 7} \pm \mathbf{0 . 2}} \frac{\text { EVTS }}{12} \quad 32 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { TECN }}{\text { CLA }} \frac{\text { COMMENT }}{\Upsilon(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}}\)
\({ }^{32}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{D 2}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(2 P)\right)\right]=(19 \pm 7 \pm 5) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(2 P)\right)=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{17} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-4} \text { ) }}{4.2 \pm 1.7 \pm \mathbf{0 . 5}} \frac{\text { EVTS }}{16} 33 \frac{\text { DOCUMENT ID }}{\text { ASNER }} \frac{\text { 08A }}{} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \gamma 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}}\)
\({ }^{33}\) ASNER 08A reports \(\left[\Gamma\left(\chi_{b 2}(2 P) \rightarrow 3 \pi^{+} 3 \pi^{-} K^{+} K^{-} \pi^{0}\right) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\left.\gamma \chi_{b 2}(2 P)\right)\right]=(55 \pm 16 \pm 15) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}(\gamma(3 S) \rightarrow\) \(\left.\gamma \chi_{b 2}(2 P)\right)=(13.1 \pm 1.6) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value

Meson Particle Listings
\(\chi_{b 2}(2 P), r(3 S)\)
\begin{tabular}{llll}
\hline\(\Gamma\left(4 \pi^{+}+4 \pi^{-}\right) / \Gamma_{\text {total }}\) \\
\(\frac{V A L U E}{}\) (unit \(\left.10^{-4}\right)\)
\end{tabular}

\({ }^{39}\) From a sample of \(\gamma(3 S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}\)events without converted photons.
\(\mathrm{B}\left(\chi_{b_{2}}(2 P) \Rightarrow \gamma r(2 S)\right) \times \mathrm{B}\left(r(3 S) \Rightarrow \gamma \chi_{b 2}(2 P)\right) \times \mathrm{B}\left(r(2 S) \Rightarrow \ell^{+} \ell^{-}\right)\)
\(\frac{V A L U E\left(\text { units } 10^{-4}\right)}{274 \pm 0.29 \text { OUR AVERA }} \frac{\text { EVTS }}{\text { GE }}\)
DOCUMENT ID TECN COMMENT

\(\chi_{b 2}(2 P)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline AAIJ & 14BG & JHEP 1410088 & R. Aaij et al. & (LHCb Collab.) \\
\hline LEES & 14M & PR D90 112010 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11 C & PR D84 011104 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11J & PR D84 072002 & J.P. Lees et al. & (BABAR Collab.) \\
\hline ASNER & 08A & PR D78 091103 & D.M. Asner et al. & (CLEO Collab.) \\
\hline BRIERE & 08 & PR D78 092007 & R.A. Briere et al. & (CLEO Collab.) \\
\hline CAWLFIELD & 06 & PR D73 012003 & C. Cawlfield et al. & (CLEO Collab.) \\
\hline ARTUSO & 05 & PRL 94032001 & M. Artuso et al. & (CLEO Collab.) \\
\hline CRONIN-HEN... & 04 & PRL 92222002 & D. Cronin-Hennessy et al. & (CLEO Collab.) \\
\hline CRAWFORD & 92B & PL B294 139 & G. Crawford et al. & (CLEO Collab.) \\
\hline HEINTZ & 92 & PR D46 1928 & U. Heintz et al. & (CUSB II Collab.) \\
\hline HEINTZ & 91 & PRL 661563 & U. Heintz et al. & (CUSB Collab.) \\
\hline MORRISON & 91 & PRL 671696 & R.J. Morrison et al. & (CLEO Collab.) \\
\hline NARAIN & 91 & PRL 663113 & M. Narain et al. & (CUSB Collab.) \\
\hline
\end{tabular}
\(r(3 S) \quad \quad I^{G( }\left(J^{P C}\right)=0^{-\left(1^{--}\right)}\)
\begin{tabular}{lll}
\hline \(\boldsymbol{r}(3 S)\) \\
\hline
\end{tabular}

\section*{\(r(3 S)\) DECAY MODES}
\begin{tabular}{|c|c|c|c|}
\hline & Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right) \quad\) Co & Scale factor/ Confidence level \\
\hline \(\Gamma_{1}\) & \(\gamma(2 S)\) anything & \((10.6 \pm 0.8) \%\) & \\
\hline \(\Gamma_{2}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) & ( 2.82 \(\pm 0.18\) ) \% & \(\mathrm{S}=1.6\) \\
\hline \(\Gamma 3\) & \(\gamma(2 S) \pi^{0} \pi^{0}\) & ( \(1.85 \pm 0.14\) ) \% & \\
\hline \(\Gamma_{4}\) & \(\gamma(2 S) \gamma \gamma\) & \((5.0 \pm 0.7) \%\) & \\
\hline \(\Gamma_{5}\) & \(\gamma(2 S) \pi^{0}\) & \(<5.1 \times 10^{-4}\) & -4 CL=90\% \\
\hline \(\Gamma_{6}\) & \(\gamma(1 S) \pi^{+} \pi^{-}\) & ( \(4.37 \pm 0.08) \%\) & \\
\hline \(\Gamma_{7}\) & \(\gamma(1 S) \pi^{0} \pi^{0}\) & ( \(2.20 \pm 0.13\) ) \% & \\
\hline \(\Gamma_{8}\) & \(\gamma(1 S) \eta\) & \(<1 \times 10^{-4}\) & -4 CL=90\% \\
\hline \(\Gamma_{9}\) & \(\gamma(1 S) \pi^{0}\) & \(<7 \times 10^{-5}\) & -5 CL=90\% \\
\hline \(\Gamma{ }_{10}\) & \(h_{b}(1 P) \pi^{0}\) & \(<1.2 \times 10^{-3}\) & -3 CL=90\% \\
\hline \(\Gamma \Gamma_{11}\) & \(h_{b}(1 P) \pi^{0} \rightarrow \gamma \eta_{b}(1 S) \pi^{0}\) & \((4.3 \pm 1.4) \times 10^{-4}\) & \\
\hline \(\Gamma_{12}\) & \(h_{b}(1 P) \pi^{+} \pi^{-}\) & \(<1.2 \times 10^{-4}\) & -4 CL=90\% \\
\hline \(\Gamma_{13}\) & \(\tau^{+} \tau^{-}\) & ( \(2.29 \pm 0.30) \%\) & \\
\hline \(\Gamma_{14}\) & \(\mu^{+} \mu^{-}\) & ( 2.18土 0.21) \% & \(\mathrm{S}=2.1\) \\
\hline \(\Gamma_{15}\) & \(e^{+} e^{-}\) & ( \(2.18 \pm 0.20\) ) \% & \\
\hline \(\Gamma 16\) & hadrons & (93 \(\pm 12\) ) \% & \\
\hline \(\Gamma_{17}\) & \(g g g\) & (35.7 \(\pm 2.6) \%\) & \\
\hline \(\Gamma_{18}\) & \(\gamma g g\) & \((9.7 \pm 1.8) \times 10^{-3}\) & \\
\hline \(\Gamma_{19}\) & \({ }^{2} H\) anything & ( \(2.33 \pm 0.33) \times 10^{-5}\) & \\
\hline
\end{tabular}
\begin{tabular}{llcll}
\multicolumn{5}{c}{ Radiative decays } \\
\(\Gamma_{20}\) & \(\gamma \chi_{b 2}(2 P)\) & \((13.1 \pm 1.6) \%\) & \(\mathrm{~S}=3.4\) \\
\(\Gamma_{21}\) & \(\gamma \chi_{b 1}(2 P)\) & \((12.6 \pm 1.2) \%\) & \(\mathrm{~S}=2.4\) \\
\(\Gamma_{22}\) & \(\gamma \chi_{b 0}(2 P)\) & \((5.9 \pm 0.6) \%\) & \(\mathrm{~S}=1.4\) \\
\(\Gamma_{23}\) & \(\gamma \chi_{b 2}(1 P)\) & \((10.0 \pm 1.0) \times 10^{-3}\) & \(\mathrm{~S}=1.7\) \\
\(\Gamma_{24}\) & \(\gamma \chi_{b 1}(1 P)\) & \((9 \pm \pm) \times 10^{-4}\) & \(\mathrm{~S}=1.8\) \\
\(\Gamma_{25}\) & \(\gamma \chi_{b 0}(1 P)\) & \((2.7 \pm 0.4) \times 10^{-3}\) & \\
\(\Gamma_{26}\) & \(\gamma \eta_{b}(2 S)\) & \(<6.2\) & \(\times 10^{-4}\) & \(\mathrm{CL}=90 \%\) \\
\(\Gamma_{27}\) & \(\gamma \eta_{b}(1 S)\) & \((5.1 \pm 0.7) \times 10^{-4}\) & \\
\(\Gamma_{28}\) & \(\gamma A^{0} \rightarrow \gamma\) hadrons & \(<8\) & \(\times 10^{-5}\) & \(\mathrm{CL}=90 \%\) \\
\(\Gamma_{29}\) & \(\gamma X \rightarrow \gamma+\geq 4\) prongs & {\([a]<2.2\)} & \(\times 10^{-4}\) & \(\mathrm{CL}=95 \%\) \\
\(\Gamma_{30}\) & \(\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}\) & \(<5.5\) & \(\times 10^{-6}\) & \(\mathrm{CL}=90 \%\) \\
\(\Gamma_{31}\) & \(\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}\) & {\([b]<1.6\)} & \(\times 10^{-4}\) & \(\mathrm{CL}=90 \%\)
\end{tabular}

Lepton Family number (LF) violating modes
\begin{tabular}{llllll}
\(\Gamma_{32}\) & \(e^{ \pm} \tau^{\mp}\) & \(L F\) & \(<4.2\) & \(\times 10^{-6}\) & \(C L=90 \%\) \\
\(\Gamma_{33}\) & \(\mu^{ \pm} \tau^{\mp}\) & \(L F\) & \(<3.1\) & \(\times 10^{-6}\) & \(C L=90 \%\)
\end{tabular}
[a] \(1.5 \mathrm{GeV}<m_{X}<5.0 \mathrm{GeV}\)
[b] For \(m_{\tau^{+} \tau^{-}}\)in the ranges 4.03-9.52 and \(9.61-10.10 \mathrm{GeV}\).

\section*{\(r(3 S) \Gamma\left(\right.\) i) \(\Gamma\left(e^{+} e^{-}\right) / \Gamma(\) total \()\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\) (hadrons) \(\times \Gamma\left(e^{+} e^{-}\right) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\(\Gamma_{16} \Gamma_{15} / \Gamma\)} \\
\hline VALUE (keV) & DOCUMENT & & & COMMENT & \\
\hline \multicolumn{6}{|l|}{\(\overline{0.414} \pm 0.007\) OUR AVERAGE} \\
\hline \(0.413 \pm 0.004 \pm 0.006\) & ROSNER & 06 & CLEO & \(10.4 e^{+} e\) & hadrons \\
\hline \(0.45 \pm 0.03 \pm 0.03\) & \({ }^{4}\) GILES & 84B & CLEO & \(e^{+} e^{-}\) & \\
\hline \multicolumn{6}{|l|}{\({ }^{4}\) Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.} \\
\hline
\end{tabular}


\section*{\(r(3 S)\) PARTIAL WIDTHS}
\(\Gamma\left(e^{+} e^{-}\right)\)
\(\frac{\text { VALUE (keV) }}{0.443 \pm 0.008 \text { OUR EVALUATION }}\)
DOCument id





Meson Particle Listings
\(r(3 S)\)

\(\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{13} / \Gamma\)

\({ }^{37}\) BESSON 07 reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\gamma(3 S) \rightarrow \mu^{+} \mu^{-}\right)\right]=1.05 \pm\) \(0.08 \pm 0.05\) which we multiply by our best value \(\mathrm{B}\left(\gamma(3 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.18 \pm 0.21) \times\) \(10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma\left(\mu^{+} \mu^{-}\right)\)} & \multicolumn{3}{|r|}{\(\Gamma_{13} / \Gamma_{14}\)} \\
\hline value & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline \(1.05 \pm 0.08 \pm 0.05\) & 15k & BESSON 07 & CLEO & \(e^{+} e^{-} \rightarrow\) & \(r(3 S)\) \\
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TECN COMMENT \({ }^{\text {14/ }}\) Г}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(\overline{\mathbf{0 . 0 2 1 8} \pm \mathbf{0 . 0 0 2 1} \text { OUR AVERAGE Error includes scale factor of } 2.1 \text {. See the ideogram }}\) below.}} \\
\hline & & & & & \\
\hline \(0.0239 \pm 0.0007 \pm 0.0010\) & 81k & ADAMS & 05 C & CLEO \(e^{+}\) & \(\rightarrow \mu^{+} \mu^{-}\) \\
\hline \(0.0202 \pm 0.0019 \pm 0.0033\) & & CHEN & & CLEO \(e^{+}\) & \(\rightarrow \mu^{+} \mu^{-}\) \\
\hline \(0.0173 \pm 0.0015 \pm 0.001\) & & KAARSBERG & 89 C & CSB2 \(e^{+} e\) & \({ }^{-} \mu^{+} \mu^{-}\) \\
\hline \(0.033 \pm 0.013 \pm 0.007\) & 1096 & ANDREWS & & CLEO \(e^{+} e\) & \({ }^{-} \rightarrow \mu^{+} \mu^{-}\) \\
\hline
\end{tabular}

\(\Gamma(g g g) / \Gamma_{\text {total }} \quad \Gamma_{17} / \Gamma\)
\(\frac{V A L U E\left(\text { units } 10^{-2} \text { ) }\right.}{\mathbf{3 5 . 7} \pm \mathbf{2 . 6}} \frac{E V T S}{3 M} \quad 38 \frac{\text { DOCUMENT ID }}{\text { BESSON } \quad \text { 06A }} \frac{\text { TECN }}{\text { CLEO }} \frac{\text { COMMENT }}{r(3 S) \rightarrow \text { hadrons }}\)
\({ }^{38}\) Calculated using BESSON 06A value of \(\Gamma(\gamma g g) / \Gamma(g g g)=(2.72 \pm 0.06 \pm 0.32 \pm 0.37) \%\) and the PDG 08 values of \(\mathrm{B}(\Upsilon(2 S)+\) anything \()=(10.6 \pm 0.8) \%, \mathrm{~B}\left(\pi^{+} \pi^{-} \Upsilon(1 S)\right)=\) \((4.40 \pm 0.10) \%, \mathrm{~B}\left(\pi^{0} \pi^{0} \gamma(1 S)\right)=(2.20 \pm 0.13) \%, \mathrm{~B}\left(\gamma \chi_{b 2}(2 P)\right)=(13.1 \pm 1.6) \%\), \(\mathrm{B}\left(\gamma \chi_{b 1}(2 P)\right)=(12.6 \pm 1.2) \%, \mathrm{~B}\left(\gamma \chi_{b 0}(2 P)\right)=(5.9 \pm 0.6) \%, \mathrm{~B}\left(\gamma \chi_{b 0}(1 P)\right)=\) \((0.30 \pm 0.11) \%, \mathrm{~B}\left(\mu^{+} \mu^{-}\right)=(2.18 \pm 0.21) \%\), and \(\mathrm{R}_{\text {hadrons }}=3.51\). The statistical error is negligible and the systematic error is partially correlated with \(\Gamma(\gamma g g) / \Gamma_{\text {total }}\) BESSON 06A value
\(\boldsymbol{\Gamma}(\boldsymbol{\gamma} \boldsymbol{g} \boldsymbol{g}) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{0 . 9 7} \pm \mathbf{0 . 1 8}} \frac{E V T S}{60 \mathrm{k}} \quad 39 \frac{\text { DOCUMENT ID }}{\text { BESSON }} \quad\) 06A
\(\frac{T E C N}{C L E O} \frac{\text { COMMENT }}{\gamma(3 S) \rightarrow \gamma+\text { hadrons }}\)

\footnotetext{
\({ }^{39}\) Calculated using BESSON 06A values of \(\Gamma(\gamma g g) / \Gamma(g g g)=(2.72 \pm 0.06 \pm 0.32 \pm 0.37) \%\) and \(\Gamma(g g g) / \Gamma_{\text {total }}\). The statistical error is negligible and the systematic error is partially
} correlated with \(\Gamma(g g g) / \Gamma_{\text {total }}\) BESSON 06A value.

\(\Gamma\left(\gamma \chi_{b 1}(2 P)\right) / \Gamma_{\text {total }}\) \(\Gamma_{21} / \Gamma\) \(\frac{\text { VALUE }}{0.126}+0.012\) EVTS DOCUMENT ID AVERAGE TECN COMMENT \(0.126 \pm 0.012\) OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.
\begin{tabular}{lccccc}
\(0.1454 \pm 0.0018 \pm 0.0073\) & 537 k & ARTUSO & 05 & CLEO & \(e^{+} e^{-} \rightarrow \gamma \boldsymbol{X}\) \\
\(0.115 \pm 0.005\) & \(\pm 0.005\) & 11147 & 41 HEINTZ & 92 & CSB2 \\
\(e^{+} e^{-} \rightarrow \gamma \mathrm{X}\) \\
\(0.105{ }_{-0.002}^{+0.003} \pm 0.013\) & 25759 & MORRISON & 91 & CLE2 & \(e^{+} e^{-} \rightarrow \gamma \mathbf{X}\)
\end{tabular}

41 Supersedes NARAIN 91.



See key on page 999

\(\Gamma\left(\gamma \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\)
 \(\frac{10.0 \pm 1.0 \text { OUR }}{\mathbf{A V E R A G E}}\) Error \(\frac{1.7}{}\)
\(8.0 \pm 1.3 \pm 0.4 \quad 126 \quad 43,44\) KORNICER 11 CLEO \(e^{+} e^{-} \rightarrow \gamma \gamma \ell^{+} \ell^{-}\) \(10.5 \pm 0.3_{-0.6}^{+0.7} \quad 9.7 \mathrm{k} \quad\) LEES \(\quad 11 \mathrm{~J}\) BABR \(\quad r(3 S) \rightarrow X \gamma\)
- - We do not use the following data for averages, fits, limits, etc. • •
\(<19 \quad 90 \quad 45\) ASNER 08A CLEO \(r(3 S) \rightarrow \gamma+\) hadrons seen \(\quad 46\) HEINTZ 92 CSB2 \(e^{+} e^{-} \rightarrow \gamma \gamma \ell^{+} \ell^{-}\)
\({ }^{43}\) Assuming \(\mathrm{B}\left(r(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(2.48 \pm 0.05) \%\).
44 KORNICER 11 reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{b 2}(1 P) \rightarrow \gamma \gamma(1 S)\right)\right]\) \(=(1.435 \pm 0.162 \pm 0.169) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}\left(\chi_{b 2}(1 P) \rightarrow\right.\) \(\gamma \gamma(1 S))=(18.0 \pm 1.0) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{45}\) ASNER 08A reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 2}(1 P)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)\right]\) \(<27.1 \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 2}(1 P)\right)=\) \(7.15 \times 10^{-2}\).
\({ }^{46}\) HEINTZ 92, while unable to distinguish between different \(J\) states, measures \(\sum_{J} \mathrm{~B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b J}\right) \times \mathrm{B}\left(\chi_{b J} \rightarrow \gamma \gamma(1 S)\right)=(1.7 \pm 0.4 \pm 0.6) \times 10^{-3}\) for \(J\) \(=0,1,2\) using inclusive \(\gamma(1 S)\) decays and \(\left(1.2_{-0.3}^{+0.4} \pm 0.09\right) \times 10^{-3}\) for \(J=1,2\) using \(r(1 S) \rightarrow \ell^{+} \ell^{-}\).
\(\Gamma\left(\gamma \chi_{b 1}(1 P)\right) / \Gamma_{\text {total }} \quad \Gamma_{24 / \Gamma}\) \(\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{0 . 9} \pm \mathbf{0 . 5} \text { OUR AVERAGE }} \frac{C L \%}{\text { EVTS }} \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 1.8 \text { COMMENT }}\) \(\begin{array}{llll}\mathbf{0 . 9} \pm \mathbf{0 . 5} \text { OUR AVERAGE } & \text { Error includes scale factor of } 1.8 . \\ 1.5 \pm 0.4 \pm 0.1 & 50 & 47,48 \text { KORNICER } 11 \quad \text { CLEO } & e^{+} e^{-} \rightarrow \gamma \gamma \ell^{+} \ell^{-}\end{array}\) \(\begin{array}{lll}0.5 \pm 0.3_{-0.1}^{+0.2} & \text { LEES } & 11 \mathrm{~J} \\ \text { BABR } & r(3 S) \rightarrow x \gamma\end{array}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{ccccc}
\(<1.7\) & 90 & 49 ASNER 08A CLEO & \(r(3 S) \rightarrow \gamma+\) hadrons
\end{tabular} seen \(\quad 50\) HEINTZ 92 CSB2 \(e^{+} e^{-} \rightarrow \gamma \gamma \ell^{+} \ell^{-}\)
\({ }^{47}\) Assuming \(\mathrm{B}\left(r(1 S) \rightarrow \ell^{+} \ell^{-}\right)=(2.48 \pm 0.05) \%\).
48 KORNICER 11 reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(1 P)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right)\right]=\) \((5.38 \pm 1.20 \pm 0.95) \times 10^{-4}\) which we divide by our best value \(\mathrm{B}\left(\chi_{b 1}(1 P) \rightarrow \gamma \gamma(1 S)\right)\) \(=(35.2 \pm 2.0) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{49}\) ASNER 08A reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 1}(1 P)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)\right]<\) \(2.5 \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 1}(1 P)\right)=6.9 \times 10^{-2}\).
\({ }^{50}\) HEINTZ 92, while unable to distinguish between different \(J\) states, measures \(\sum_{J} \mathrm{~B}\left(\Upsilon(3 S) \rightarrow \gamma \chi_{b J}\right) \times \mathrm{B}\left(\chi_{b J} \rightarrow \gamma \Upsilon(1 S)\right)=(1.7 \pm 0.4 \pm 0.6) \times 10^{-3}\) for \(J\) \(=0,1,2\) using inclusive \(r(1 S)\) decays and \(\left(1.2{ }_{-0.3}^{+0.4} \pm 0.09\right) \times 10^{-3}\) for \(J=1,2\) using \(r(1 S) \rightarrow \ell^{+} \ell^{-}\).
\(\Gamma\left(\gamma \chi_{b 0}(1 P)\right) / \Gamma_{\text {total }} \quad \Gamma_{25} / \Gamma\)
VALUE (units \(10^{-2}\) ) \(C L \%\) EVTS

\section*{DOCUMENT ID} TECN COMMENT \(0.27 \pm 0.04\) OUR AVERAGE \(0.27 \pm 0.04 \pm 0.02 \quad\) 2.3k LEES \(\quad\) 11J BABR \(r(3 S) \rightarrow X \gamma\) \(0.30 \pm 0.04 \pm 0.10 \quad 8.7 \mathrm{k} \quad\) ARTUSO 05 CLEO \(e^{+} e^{-} \rightarrow \gamma X\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(<0.8 \quad 90 \quad 51\) ASNER 08A CLEO \(r(3 S) \rightarrow \gamma+\) hadrons \({ }^{51}\) ASNER 08A reports \(\left[\Gamma\left(\gamma(3 S) \rightarrow \gamma \chi_{b 0}(1 P)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)\right]\) \(<21.9 \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\gamma(2 S) \rightarrow \gamma \chi_{b 0}(1 P)\right)=\) \(3.8 \times 10^{-2}\).

- - We do not use the following data for averages, fits, limits, etc. - • -
\(<19\) LEES 90 11」 BABR \(r(3 S) \rightarrow x \gamma\)

- \(19 \pm 3 \mathrm{k} \quad 52\) AUBERT 09AQ BABR \(\gamma(3 S) \rightarrow \gamma X\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{lrrrrr}
\(<8.5\) & 90 & LEES & 11」 BABR & \(r(3 S) \rightarrow x \gamma\) \\
\(4.8 \pm 0.5 \pm 1.2\) & & \(19 \pm 3 \mathrm{k}\) & 52,53 AUBERT & 08 v & BABR \\
\(<4.3\) & 90 & 54 ARTUSO & 05 & CLEO & \(e^{+} e^{-} \rightarrow \gamma X\)
\end{tabular}
\({ }^{52}\) Assuming \(\Gamma_{\eta_{b}(1 S)}=10 \mathrm{MeV}\).
53 Systematic error re-evaluated by AUBERT 09AQ.
54 Superseded by BONVICINI 10.

\(\Gamma\left(\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{3 0}} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{<5.5} \frac{C L \%}{90} \quad 56 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \quad 09 \mathrm{z} \frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}}\)
\({ }^{56}\) For a narrow scalar or pseudoscalar \(a_{1}^{0}\) with mass in the range \(212-9300 \mathrm{MeV}\), excluding \(J / \psi\) and \(\psi(2 S)\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(m_{a_{1}^{0}}\) range from 0.27-5.5× \(10^{-6}\).
\(\Gamma\left(\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{31} / \Gamma\)
\(\frac{\text { VALUE }}{<1.6 \times 10^{-4}} \frac{90}{90} \quad 57 \frac{\text { DOCUMENT ID }}{\text { AUBERT }} \quad\) 09P \(\frac{\text { TECN }}{\text { BABR }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}}\)
\({ }^{57}\) For a narrow scalar or pseudoscalar \(a_{1}^{0}\) with \(\mathrm{M}\left(\tau^{+} \tau^{-}\right)\)in the ranges 4.03-9.52 and \(9.61-10.10 \mathrm{GeV}\). Measured \(90 \% \mathrm{CL}\) limits as a function of \(\mathrm{M}\left(\tau^{+} \tau^{-}\right)\)range from \(1.5-16 \times 10^{-5}\).

\(r(3 S)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline LEES & 14G & PR D89 111102 & J.P. Lees et al. & (BABAR Collab.) \\
\hline GE & 11 & PR D84 032008 & J.Y. Ge et al. & (CLEO Collab.) \\
\hline KORNICER & 11 & PR D83 054003 & M. Kornicer et al. & (CLEO Collab.) \\
\hline LEES & 11C & PR D84 011104 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11H & PRL 107221803 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11J & PR D84 072002 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11 K & PR D84 091101 & J.P. Lees et al. & (BABAR Collab.) \\
\hline LEES & 11L & PR D84 092003 & J.P. Lees et al. & (BABAR Collab.) \\
\hline BONVICINI & 10 & PR D81 031104 & G. Bonvicini et al. & (CLEO Collab.) \\
\hline LEES & 10B & PRL 104151802 & J.P. Lees et al. & (BABAR Collab.) \\
\hline AUBERT & 09AQ & PRL 103161801 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT & 09P & PRL 103181801 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT & 092 & PRL 103081803 & B. Aubert et al. & (BABAR Collab.) \\
\hline BHARI & 09 & PR D79 011103 & S.R. Bhari et al. & (CLEO Collab.) \\
\hline ASNER & 08A & PR D78 091103 & D.M. Asner et al. & (CLEO Collab.) \\
\hline AUBERT & 08BP & PR D78 112002 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT & 08 V & PRL 101071801 & B. Aubert et al. & (BABAR Collab.) \\
\hline HE & 08A & PRL 101192001 & Q. He et al. & (CLEO Collab.) \\
\hline LOVE & 08A & PRL 101201601 & W. Love et al. & (CLEO Collab.) \\
\hline PDG & 08 & PL B667 1 & C. Amsler et al. & (PDG Collab.) \\
\hline BESSON & 07 & PRL 98052002 & D. Besson et al. & (CLEO Collab.) \\
\hline ROSNER & 07A & PR D76 117102 & J.L. Rosner et al. & (CLEO Collab.) \\
\hline BESSON & 06A & PR D74 012003 & D. Besson et al. & (CLEO Collab.) \\
\hline ROSNER & 06 & PRL 96092003 & J.L. Rosner et al. & (CLEO Collab.) \\
\hline ADAMS & 05 & PRL 94012001 & G.S. Adams et al. & (CLEO Collab.) \\
\hline
\end{tabular}

Meson Particle Listings
\(\Upsilon(3 S), \chi_{b 1}(3 P), \chi_{b 2}(3 P), \Upsilon(4 S)\)
\begin{tabular}{|c|c|c|c|c|}
\hline ARTUSO & 05 & PRL 94032001 & M. Artuso et al. & (CLEO Collab.) \\
\hline ARTAMONOV & 00 & PL B474 427 & A.S. Artamonov et al. & \\
\hline BUTLER & 94B & PR D49 40 & F. Butler et al. & (CLEO Collab.) \\
\hline WU & 93 & PL B301 307 & Q.W. Wu et al. & (CUSB Collab.) \\
\hline HEINTZ & 92 & PR D46 1928 & U. Heintz et al. & (CUSB II Collab.) \\
\hline BROCK & 91 & PR D43 1448 & I.C. Brock et al. & (CLEO Collab.) \\
\hline HEINTZ & 91 & PRL 661563 & U. Heintz et al. & (CUSB Collab.) \\
\hline MORRISON & 91 & PRL 671696 & R.J. Morrison et al. & (CLEO Collab.) \\
\hline NaRAIN & 91 & PRL 663113 & M. Narain et al. & (CUSB Collab.) \\
\hline CHEN & 89B & PR D39 3528 & W.Y. Chen et al. & (CLEO Collab.) \\
\hline KAARSBERG & 89 & PRL 622077 & T.M. Kaarsberg et al. & (CUSB Collab.) \\
\hline BUCHMUEL... Editors: A & & HE \(e^{+} e^{-}\)Phys and P. Soeding, & W. Buchmueller, S. Cooper ntific, Singapore & (HANN, DESY, MIT) \\
\hline COHEN & 87 & RMP 591121 & E.R. Cohen, B.N. Taylor & (RISC, NBS) \\
\hline BARU & 86B & ZPHY C32 622 & S.E. Baru et al. & (NOVO) \\
\hline KURAEV & 85 & SJNP 41466 Translated from & E.A. Kuraev, V.S. Fadin 733. & (NOVO) \\
\hline ARTAMONOV & 84 & PL 137 B 272 & A.S. Artamonov et al. & (NOVO) \\
\hline GILES & 84B & PR D29 1285 & R. Giles et al. & (CLEO Collab.) \\
\hline ANDREWS & 83 & PRL 50807 & D.E. Andrews et al. & (CLEO Collab.) \\
\hline GREEN & 82 & PRL 49617 & J. Green et al. & (CLEO Collab.) \\
\hline MAGERAS & 82 & PL 118B 453 & G. Mageras et al. & (COLU, CORN, LSU+) \\
\hline \multicolumn{3}{|l|}{\(\chi_{b 1}(3 P)\)} & \multicolumn{2}{|l|}{\({ }^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)\)} \\
\hline \multicolumn{5}{|c|}{Needs confirmation.} \\
\hline \multicolumn{5}{|r|}{Observed in the radiative decay to \(\gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), therefore \(C=+\). \(J\) needs confirmation.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\chi_{b 1}(3 P)\) MASS} \\
\hline VALUE (MeV) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline 10513.42土 0.41 \({ }^{\text {a }} \mathbf{0} 5\) & & SIRUNYAN & CMS & \(p p \rightarrow \gamma\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(10515.7 \pm 2.2+1.5\) & 169 & 2 AAIJ & 14BG LHCB & \(p p \rightarrow\) & \(\gamma \mu^{+} \mu^{-} X\) \\
\hline \(10512.1 \pm 2.1 \pm 0.9\) & 351 & 3 AAIJ & 14bG LHCB & \(p p \rightarrow\) & \(\gamma \mu^{+} \mu^{-} X\) \\
\hline \(10511.3 \pm 1.7 \pm 2.5\) & 182 & \({ }^{4}\) AAIJ & 14bı LHCB & \(p p \rightarrow\) & \(\gamma \mu^{+} \mu^{-} X\) \\
\hline \(10530 \pm 5 \pm 9\) & & \({ }^{5}\) AAD & 12A ATLS & \(p p \rightarrow\) & \(\gamma \mu^{+} \mu^{-} X\) \\
\hline \(10551 \pm 14 \pm 17\) & & \({ }^{5}\) ABAZOV & 12Q Do & \(p \bar{p} \rightarrow\) & \(\gamma \mu^{+} \mu^{-} X\) \\
\hline
\end{tabular}

1 Systematic error includes an additional 0.5 MeV for the uncertainty on the \(\Upsilon(3 S)\) mass. Also measures \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.60 \pm 0.64 \pm 0.17 \mathrm{MeV}\). A total of 372 \(\chi_{b 1}(3 P)\) and \(\chi_{b 2}(3 P)\) events was observed.
\({ }^{2}\) From \(\chi_{b 1}(3 P) \rightarrow r(1 \mathrm{~S}, 2 \mathrm{~S}) \gamma\) transitions assuming \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.5 \pm\) 1.5 MeV and allowing for \(\pm 30 \%\) variation in the \(\chi_{b 2}(3 P)\) production rate relative to that of \(\chi_{b 1}(3 P)\).
\({ }^{3}\) The mass of the \(\chi_{b 1}(3 P)\) state obtained by combining the results of AAIJ 14 BG with that of AAIJ 14BI. The first uncertainty is experimental and the second attributable to the unknown mass splitting, assumed to be \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.5 \pm 1.5 \mathrm{MeV}\).
\({ }^{4}\) From \(\chi_{b 1}(3 P) \rightarrow r(3 S) \gamma\) transition assuming \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.5 \pm 1.5\) MeV.
\({ }^{5}\) The mass barycenter of the merged lineshapes from the \(J=1\) and 2 states.
\(\chi_{b 1}(3 P)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\gamma(1 S) \gamma\) & seen \\
\(\Gamma_{2}\) & \(\gamma(2 S) \gamma\) & seen \\
\(\Gamma_{3}\) & \(\gamma(3 S) \gamma\) & seen \\
\hline
\end{tabular}
\(\chi_{b 1}(3 P)\) BRANCHING RATIOS

\({ }^{1}\) From \(\chi_{b 1}(3 P) \rightarrow r(1 \mathrm{~S}, 2 \mathrm{~S}) \gamma\) transitions assuming \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.5 \pm 1.5\) MeV and allowing for \(\pm 30 \%\) variation in the \(\chi_{b 2}(3 P)\) production rate relative to that of \(\chi_{b 1}(3 P)\).
\(\Gamma(r(2 S) \gamma) / \Gamma_{\text {total }}\)
VALUE \(\frac{\text { EVTS }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }} \quad \boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}\) seen \(169 \quad 1 \mathrm{AAIJ} \quad 14 \mathrm{BG}\) LHCB \(p p \rightarrow \gamma \mu^{+} \mu^{-} X\)
- - We do not use the following data for averages, fits, limits, etc. - - -
seen AAD 12A ATLS \(p p \rightarrow \gamma \mu^{+} \mu^{-} \boldsymbol{X}\)
\({ }^{1}\) From \(\chi_{b 1}(3 P) \rightarrow r(1 \mathrm{~S}, 2 \mathrm{~S}) \gamma\) transitions assuming \(m_{\chi_{b 2}(3 P)}-m_{\chi_{b 1}(3 P)}=10.5 \pm 1.5\) MeV and allowing for \(\pm 30 \%\) variation in the \(\chi_{b 2}(3 P)\) production rate relative to that of \(\chi_{b 1}(3 P)\).
\(\Gamma(r(3 S) \gamma) / \Gamma_{\text {total }}\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\chi_{b 1}(3 P)\) REFERENCES} \\
\hline Sirunyan & & PRL 121092002 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AAIJ & & JHEP 1410088 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAlJ & & EPJ C74 3092 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAD & & PRL 108152001 & G. Aad et al. & (ATLAS Collab.) \\
\hline ABAZov & \({ }_{12 Q}\) & PR D86 031103 & V.M. Abazov et al. & (Do Collab.) \\
\hline \multicolumn{2}{|l|}{\(\chi_{b 2}(3 P)\)} & \multicolumn{3}{|c|}{\({ }_{\prime}{ }^{( }\left(J^{P C}\right)=0^{+}\left(2^{++}\right)\)} \\
\hline \multicolumn{5}{|c|}{Needs confirmation.} \\
\hline \multicolumn{5}{|r|}{Observed in the radiative decay to \(\gamma(3 S)\), therefore \(C=+. J\) needs confirmation.} \\
\hline
\end{tabular}


\section*{\(r(4 S)\) MASS}
\(\frac{V A L U E(\mathrm{MeV})}{10579.4 \pm 1.2 \text { OUR AVERAGE }}\)
\(10579.3 \pm 0.4 \pm 1.2\)
DOCUMENT ID
TECN COMMENT
\(e^{-} \rightarrow\) hadrons
- - We do not use the following data for averages, fits, limits, etc. • • •
\(10577.4 \pm 1.0 \quad 2\) LOVELOCK 85 CUSB \(e^{+} e^{-} \rightarrow\) hadrons
\({ }^{1}\) Reanalysis of BESSON 85.
\({ }^{2}\) No systematic error given.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \multicolumn{6}{|l|}{20.5 \(\pm\) 2.5 OUR AVERAGE} \\
\hline \(20.7 \pm 1.6 \pm 2.5\) & AUBERT & 05Q & BABR & \(e^{+} e^{-}\) & hadrons \\
\hline \(20 \pm 2 \pm 4\) & BESSON & 85 & CLEO & \({ }^{+} e^{-}\) & hadrons \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(25 \pm 2.5\) & LOVELOCK & 85 & CUSB & \(e^{+} e^{-}\) & hadrons \\
\hline
\end{tabular}

\section*{\(r(4 S)\) DECAY MODES}
\begin{tabular}{lcccr}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) & Confidence level \\
\hline\(\Gamma_{1}\) & \(B \bar{B}\) & \(>96\) & \(\%\) & \(95 \%\) \\
\(\Gamma_{2}\) & \(B^{+} B^{-}\) & \((51.4 \pm 0.6) \%\) & \\
\(\Gamma_{3}\) & \(D_{S}^{+}\) & anything + c.c. & \((17.8 \pm 2.6) \%\) & \\
\(\Gamma_{4}\) & \(B^{0} \bar{B}^{0}\) & \((48.6 \pm 0.6) \%\) & \\
\(\Gamma_{5}\) & \(J / \psi K_{S}^{0}+\left(J / \psi, \eta_{C}\right) K_{S}^{0}\) & \(<4\) & \(\times 10^{-7}\) & \(90 \%\) \\
\(\Gamma_{6}\) & non \(B \bar{B}\) & \(<4\) & \(\%\) & \(95 \%\) \\
\(\Gamma_{7}\) & \(e^{+} e^{-}\) & \((1.57 \pm 0.08) \times 10^{-5}\) & \\
\(\Gamma_{8}\) & \(\rho^{+} \rho^{-}\) & \(<5.7\) & \(\times 10^{-6}\) & \(90 \%\) \\
\(\Gamma_{9}\) & \(K^{*}(892)^{0} \bar{K}^{0}\) & \(<2.0\) & \(\times 10^{-6}\) & \(90 \%\) \\
\(\Gamma_{10}\) & \(J / \psi(1 S)\) anything & \(<1.9\) & \(\times 10^{-4}\) & \(95 \%\)
\end{tabular}
\begin{tabular}{lc}
\hline & \\
\(\Gamma_{11}\) & \(D^{*+}\) anything + c.c. \\
\(\Gamma_{12}\) & \(\phi\) anything \\
\(\Gamma_{13}\) & \(\phi \eta\) \\
\(\Gamma_{14}\) & \(\phi \eta^{\prime}\) \\
\(\Gamma_{15}\) & \(\rho \eta\) \\
\(\Gamma_{16}\) & \(\rho \eta^{\prime}\) \\
\(\Gamma_{17}\) & \(r(1 S)\) anything \\
\(\Gamma_{18}\) & \(r(1 S) \pi^{+} \pi^{-}\) \\
\(\Gamma_{19}\) & \(\gamma(1 S) \eta\) \\
\(\Gamma_{20}\) & \(\gamma\left(1 S\left(\eta^{\prime}\right)\right.\) \\
\(\Gamma_{21}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) \\
\(\Gamma_{22}\) & \(h_{b}(1 P) \pi^{+} \pi^{-}\) \\
\(\Gamma_{23}\) & \(\frac{h_{b}(1 P) \eta}{{ }^{2} H}\)\begin{tabular}{l} 
anything
\end{tabular} \\
\(\Gamma_{24}\) &
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(<7.4\) & \% \\
\hline \multicolumn{2}{|l|}{( \(7.1 \pm 0.6\) ) \%} \\
\hline < 1.8 & \(\times 10^{-6}\) \\
\hline \(<4.3\) & \(\times 10^{-6}\) \\
\hline < 1.3 & \(\times 10^{-6}\) \\
\hline < 2.5 & \(\times 10^{-6}\) \\
\hline \(<4\) & \(\times 10^{-3}\) \\
\hline \multicolumn{2}{|l|}{\((8.2 \pm 0.4) \times 10^{-5}\)} \\
\hline \multicolumn{2}{|l|}{\((1.81 \pm 0.18) \times 10^{-4}\)} \\
\hline \multicolumn{2}{|l|}{\((3.4 \pm 0.9) \times 10^{-5}\)} \\
\hline \multicolumn{2}{|l|}{\((8.2 \pm 0.8) \times 10^{-5}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { not seen } \\
& (2.18 \pm 0.21) \times 10^{-3}
\end{aligned}
\]}} \\
\hline & \\
\hline < 1.3 & \(\times 10^{-5}\) \\
\hline
\end{tabular}

\section*{\(r(4 S)\) PARTIAL WIDTHS}


\(\Gamma\left(e^{+} e^{-}\right)(\mathrm{keV})\)

\section*{\(r(4 S)\) BRANCHING RATIOS}
\(B \bar{B}\) DECAYS
The ratio of branching fraction to charged and neutral B mesons is often derived assuming isospin invariance in the decays, and relies on the knowledge of the \(B^{+} / B^{0}\) lifetime ratio. "OUR EVALUATION" is obtained based on averages of rescaled data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account the common dependence of the measurement on the value of the lifetime ratio.
\begin{tabular}{|c|c|}
\hline \(\Gamma\left(B^{+} B^{-}\right) / \Gamma_{\text {total }}\) & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID \\
\hline \(0.514 \pm 0.006\) OUR EVALUATION & Assuming \(\mathrm{B}(\Upsilon(4 S) \rightarrow B \bar{B})=1\) \\
\hline \(\Gamma\left(D_{s}^{+}\right.\)anything \(\left.+c . c.\right) / \Gamma_{\text {total }}\) VALUE & DOCUMENT ID TECN COMMENT \\
\hline \(\mathbf{0 . 1 7 8} \pm \mathbf{0 . 0 2 1} \pm 0.016\) & \({ }^{1}\) ARTUSO 05b CLE3 \(e^{+} e^{-} \rightarrow D_{X} X\) \\
\hline \({ }^{1}\) ARTUSO 05B reports [ \(\Gamma(\gamma(4 S)\) \(=(8.0 \pm 0.2 \pm 0.9) \times 10^{-3}\) \((4.5 \pm 0.4) \times 10^{-2}\). Our first the systematic error from using & \begin{tabular}{l}
\[
\left.\left.\rightarrow D_{S}^{+} \text {anything }+ \text { c.c. }\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(D_{S}^{+} \rightarrow \phi \pi^{+}\right)\right]
\] \\
which we divide by our best value \(\mathrm{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=\) error is their experiment's error and our second error is our best value.
\end{tabular} \\
\hline
\end{tabular}

Meson Particle Listings
\(\Upsilon(4 S), Z_{b}(10610)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\rho \eta) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{15 / \Gamma}\) \\
\hline VaLUE (units \(10^{-6}\) ) & cl\% & 1 Dociment io & IECN & Comuen & \\
\hline \(<1.3\) & 90 & \({ }^{1}\) belous & bell & \(e^{+} e^{-}\) & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline \(\Gamma\left(r(1 S) \pi^{+} \pi^{-}\right) / /_{\text {total }}\) & & \(\Gamma_{18} /{ }^{\text {r }}\) \\
\hline \(\frac{0.2}{}\) +0.4 OUR AVER & DOCCMENT ID TECN COMMENT & \\
\hline & & \\
\hline \(\pm 0.5 \pm 0.4\) & Guido 17 bel & \\
\hline \(8.5 \pm 1.3 \pm 0.2 \quad 113 \pm 16\) & 1 sokolovog BeLl & \\
\hline \(8.00 \pm 0.64 \pm 0.27\) 430 & \({ }^{2}\) AUBERT 088p BABR \({ }^{\text {r }}\) (4S ) & \\
\hline \multicolumn{3}{|l|}{\(\cdots \cdots\) We do not use the following data for averges, fits, linits, etc. \({ }^{\text {a }}\). .} \\
\hline \(17.8 \pm 4.0 \pm 0.3\) & 3,4 sokotovor bell & \\
\hline \# 0.2 & \({ }^{5}\) AUBERT OGR BABR \(e^{+}\) & \\
\hline 12 90 & GLenn 99 CLE2 \(e^{+}\) & \\
\hline
\end{tabular}
\({ }^{1}\) SOKOLOV 09 reports \(\left[\Gamma\left(r(4 S) \rightarrow \quad \Upsilon(1 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(r(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]\) \(=(0.211 \pm 0.030 \pm 0.014) \times 10^{-5}\) which we divide by our best value \(\mathrm{B}(\gamma(1 S) \rightarrow\) \(\left.\mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{2}\) Using \(\mathrm{B}\left(\gamma(1 S) \rightarrow e^{+} e^{-}\right)=(2.38 \pm 0.11) \%\) and \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm\) 0.05 )\%
\({ }^{3}\) SOKOLOV 07 reports [ \(\left[\left(\gamma(4 S) \rightarrow \gamma(1 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]\) \(=(4.42 \pm 0.81 \pm 0.56) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)\) \(=(2.48 \pm 0.05) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{4}\) According to the authors, systematic errors were underestimated
\({ }^{5}\) Superseded by AUBERT 08bP. AUBERT 06R reports \(\left[\Gamma\left(r(4 S) \rightarrow \quad r(1 S) \pi^{+} \pi^{-}\right) /\right.\) \(\left.\Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)\right]=(2.23 \pm 0.25 \pm 0.27) \times 10^{-6}\) which we divide by our best value \(\mathrm{B}\left(\gamma(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(2.48 \pm 0.05) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.

\section*{\(\Gamma(r(1 S) \eta) / \Gamma_{\text {total }}\)}
\(\Gamma_{19} / \Gamma\)

\(\Gamma(\gamma(1 S) \eta) / \Gamma\left(\Gamma(1 S) \pi^{+} \pi^{-}\right)\)
\(\Gamma_{19} / \Gamma_{18}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(2.41 \pm 0.40 \pm 0.12 \quad 56 \quad 1\) AUBERT \(\quad\) 08BP BABR \(\quad r(4 S) \rightarrow \pi^{+} \pi^{-}\left(\pi^{0}\right) \ell^{+} \ell^{-}\)
1 Not independent of other values reported by AUBERT 08BP.
\(\Gamma\left(r(2 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{21} / \Gamma\)
VALUE (units \(10^{-5}\) ) CL\% EVTS

\section*{8.2 \(\pm 0.8\) OUR AVERAGE}
\(7.9 \pm 1.0 \pm 0.4 \quad 181 \quad\) GUIDO 17 BELL \(\quad \Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\) \(8.6 \pm 1.1 \pm 0.7 \quad 220 \quad 1\) AUBERT \(\quad\) 08BP BABR \(\quad \Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \ell^{+} \ell^{-}\)
- - We do not use the following data for averages, fits, limits, etc. - - -


\({ }^{1}\) From the upper limit on the ratio of \(\sigma\left(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\right)\)at the \(\gamma(4 S)\) to that at the \(\Upsilon(5 S)\) of 0.27 .

\({ }^{1}\) Using \(\mathrm{B}(\eta \rightarrow 2 \gamma)=(39.41 \pm 0.20) \%\).

\(r(4 S)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline GUIDO & 18 & PRL 121062001 & E. Guido et al. & (BELLE Collab.) \\
\hline GUIDO & 17 & PR D96 052005 & E. Guido et al. & (BELLE Collab.) \\
\hline TAMPONI & 15 & PRL 115142001 & U. Tamponi et al. & (BELLE Collab.) \\
\hline SHEN & 13A & PR D88 052019 & C.P. Shen et al. & (BELLE Collab.) \\
\hline ADACHI & 12 & PRL 108032001 & I. Adachi et al. & (BELLE Collab.) \\
\hline BELOUS & 09 & PL B681 400 & K. Belous et al. & (BELLE Collab.) \\
\hline SOKOLOV & 09 & PR D79 051103 & A. Sokolov et al. & (BELLE Collab.) \\
\hline AUBERT & 08BO & PR D78 071103 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT & 08BP & PR D78 112002 & B. Aubert et al. & (BABAR Collab.) \\
\hline PDG & 08 & PL B667 1 & C. Amsler et al. & (PDG Collab.) \\
\hline ASNER & 07 & PR D75 012009 & D.M. Asner et al. & (CLEO Collab.) \\
\hline HUANG & 07 & PR D75 012002 & G.S. Huang et al. & (CLEO Collab.) \\
\hline SOKOLOV & 07 & PR D75 071103 & A. Sokolov et al. & (BELLE Collab.) \\
\hline TAJIMA & 07A & PRL 99211601 & O. Tajima et al. & (BELLE Collab.) \\
\hline AUBERT & 06R & PRL 96232001 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT,BE & 06F & PR D74 111103 & B. Aubert et al. & (BABAR Collab.) \\
\hline ARTUSO & 05B & PRL 95261801 & M. Artuso et al. & (CLEO Collab.) \\
\hline AUBERT & 05Q & PR D72 032005 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT,B & 05H & PRL 95042001 & B. Aubert et al. & (BABAR Collab.) \\
\hline AUBERT & 04F & PR D69 071101 & B.Aubert et al. & \\
\hline HASTINGS & 03 & PR D67 052004 & N.C. Hastings et al. & (BELLE Collab.) \\
\hline ABE & 02D & PRL 88052001 & K. Abe et al. & (BELLE Collab.) \\
\hline ATHAR & 02 & PR D66 052003 & S.B. Athar et al. & (CLEO Collab.) \\
\hline AUBERT & 02 & PR D65 032001 & B. Aubert et al. & (BABAR Collab.) \\
\hline ALEXANDER & 01 & PRL 862737 & J.P. Alexander et al. & (CLEO Collab.) \\
\hline AUBERT & 01 C & PRL 87162002 & B. Aubert et al. & (BABAR Collab.) \\
\hline GLENN & 99 & PR D59 052003 & S. Glenn et al. & \\
\hline BARISH & 96B & PRL 761570 & B.C. Barish et al. & (CLEO Collab.) \\
\hline ALBRECHT & 95E & ZPHY C65 619 & H. Albrecht et al. & (ARGUS Collab.) \\
\hline BARISH & 95 & PR D51 1014 & B.C. Barish et al. & (CLEO Collab.) \\
\hline ALEXANDER & 90 C & PRL 642226 & J. Alexander et al. & (CLEO Collab.) \\
\hline BEBEK & 87 & PR D36 1289 & C. Bebek et al. & (CLEO Collab.) \\
\hline BESSON & 85 & PRL 54381 & D. Besson et al. & (CLEO Collab.) \\
\hline LOVELOCK & 85 & PRL 54377 & D.M.J. Lovelock et al. & (CUSB Collab.) \\
\hline LEYAOUANC & 77 & PL B71 397 & A. Le Yaouanc et al. & (ORSAY) \\
\hline \[
Z_{b}(1
\] & 6 & & \multicolumn{2}{|l|}{\[
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
\]} \\
\hline
\end{tabular}
was \(X(10610)\)
Properties incompatible with a \(q \bar{q}\) structure (exotic state). See the review on non- \(q \bar{q}\) states.

Observed by BONDAR 12 in \(\Upsilon(5 S)\) decays to \(\Upsilon(\mathrm{nS}) \pi^{+} \pi^{-}\)( \(\mathrm{n}=\) \(1,2,3)\) and \(h_{b}(\mathrm{mP}) \pi^{+} \pi^{-}(\mathrm{m}=1,2) . J^{P}=1^{+}\)is favored from angular analyses.

\section*{\(Z_{b}(10610)^{ \pm}\)MASS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \(10607.2 \pm 2.0\) & \({ }^{1}\) BONDAR & 12 & BELL & \(e^{+} e\) & adrons \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(10608.5 \pm 3.4{ }_{-1.4}^{+3.7}\) & 2 GARMASH & 15 & BELL & \(e^{+} e^{-}\) & \(r(1 S) \pi^{+} \pi^{-}\) \\
\hline \(10608.1 \pm 1.2{ }_{-0.2}^{+1.5}\) & 2 GARMASH & 15 & BELL & \(e^{+} e^{-}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) \\
\hline \(10607.4 \pm 1.5_{-0.2}^{+0.8}\) & 2 GARMASH & 15 & BELL & \(e^{+} e^{-}\) & \(\gamma(3 S) \pi^{+} \pi^{-}\) \\
\hline \(10611 \pm 4 \pm 3\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-}\) & \(\gamma(1 S) \pi^{+} \pi^{-}\) \\
\hline \(10609 \pm 2 \pm 3\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) \\
\hline \(10608 \pm 2 \pm 3\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-}\) & \(\gamma(3 S) \pi^{+} \pi^{-}\) \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
\hline 10605 & \(\pm 2\) & +3 & \({ }_{-1}^{3}\) & \({ }^{3}\) BONDAR & 12 & BELL \\
\(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\) \\
10599 & \({ }_{-3}^{+6}{ }_{-4}^{+5}\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)
\end{tabular}
\({ }^{1}\) Average of the BONDAR 12 measurements in separate channels.
\({ }^{2}\) Correlated with the corresponding result from BONDAR 12.
\({ }^{3}\) Superseded by the average measurement of BONDAR 12.
\(Z_{b}(\mathbf{1 0 6 1 0})^{0}\) MASS
VALUE (MeV)
DOCUMENT ID TECN COMMENT
\({ }^{1}\) KROKOVNY 13 BELL \(\xrightarrow[r(2 S) / r(3 S) \pi^{0} \pi 0]{e^{+}}\)
\({ }^{1}\) From a simultaneous fit to the KROKOVNY 13 Dalitz analysis of \(e^{+} e^{-} \rightarrow\) \(r(2 S) / \gamma(3 S) \pi^{0} \pi^{0}\) decays with fixed width \(\Gamma\left(Z_{b}(10610)^{0}\right)=18.4 \mathrm{MeV}\).

\section*{\(Z_{b}(10610)^{ \pm}\)WIDTH}

VALUE (MeV)
1 BONDAR 12 BELL \(e^{+} e^{-} \rightarrow\) hadrons
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{llllll}
\(18.5 \pm 5.3_{-2.3}^{+6.1}\) & \({ }^{2}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(1 S) \pi^{+} \pi^{-}\) \\
\(20.8 \pm 2.5_{-2.1}^{+0.3}\) & \({ }^{2}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\(18.7 \pm 3.4_{-1.3}^{+2.5}\) & \({ }^{2}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\(22.3 \pm 7.7_{-4.0}^{+3.0}\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(1 S) \pi^{+} \pi^{-}\) \\
\(24.2 \pm 3.1_{-3.0}^{+2.0}\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\(17.6 \pm 3.0 \pm 3.0\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\(11.4_{-3.9+1.2}^{+2.5}\) & \({ }^{3}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\) \\
13 & \({ }_{-8}^{+10}+9\) & \({ }_{-7}^{+9}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)
\end{tabular}
\({ }^{1}\) Average of the BONDAR 12 measurements in separate channels.
\({ }_{3}^{2}\) Correlated with the corresponding result from BONDAR 12
\({ }^{3}\) Superseded by the average measurement of BONDAR 12.

\section*{\(Z_{b}(10610)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Upsilon(1 S) \pi^{+}\) & \(\left(5.4_{-1.5}^{+1.9}\right) \times 10^{-3}\) \\
\(\Gamma_{2}\) & \(\Upsilon(1 S) \pi^{0}\) & not seen \\
\(\Gamma_{3}\) & \(\Upsilon(2 S) \pi^{+}\) & \(\left(3.6_{-0.8}^{+1.1}\right) \%\) \\
\(\Gamma_{4}\) & \(\Upsilon(2 S) \pi^{0}\) & seen \\
\(\Gamma_{5}\) & \(\Upsilon(3 S) \pi^{+}\) & \(\left(2.1_{-0.6}^{+0.8}\right) \%\) \\
\(\Gamma_{6}\) & \(\Upsilon(3 S) \pi^{0}\) & seen \\
\(\Gamma_{7}\) & \(h_{b}(1 P) \pi^{+}\) & \(\left(3.5_{-0.9}^{+1.2}\right) \%\) \\
\(\Gamma_{8}\) & \(h_{b}(2 P) \pi^{+}\) & \(\left(4.7_{-1.3}^{+1.7}\right) \%\) \\
\(\Gamma_{9}\) & \(B^{+} \bar{B}^{0}\) & not seen \\
\(\Gamma_{10}\) & \(B^{+} \bar{B}^{* 0}+B^{*+} \bar{B}^{0}\) & \(\left(85.6_{-2.9}^{+2.1}\right) \%\)
\end{tabular}

\section*{\(Z_{b}(10610)\) BRANCHING RATIOS}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(r(1 S) \pi^{0}\right) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & & & \multirow[t]{2}{*}{\(\Gamma_{2} / \Gamma\)} \\
\hline value & & & TECN & COMMENT & \\
\hline not seen & KROKOVNY & 13 & BELL & \(e^{+} e^{-} \rightarrow\) & \(\gamma(1 S) \pi^{0} \pi^{0}\) \\
\hline \(\Gamma\left(\Gamma(2 S) \pi^{+}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\text { VALUE (units } 10^{-2} \text { ) }
\] & DOCUMENT ID & TECN & COMMENT & \\
\hline \[
3.62+0.76+0.79
\] & \({ }^{1}\) GARMASH & & & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline seen & GARMASH & BELL & \(e^{+} e^{-}\) & \\
\hline seen & BONDAR & BELL & \(e^{+} e^{-}\) & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Assuming the \(Z_{b}(10610)\) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}\), and using the results from BONDAR 12 and MIZUK 16.} \\
\hline
\end{tabular}

- - We do not use the following data for averages, fits, limits, etc. • •
seen \(\quad\) GARMASH 15 BELL \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\)
seen BONDAR 12 BELL \(e^{+} e^{-} \rightarrow \Upsilon(3 S) \pi^{+} \pi^{-}\)
\({ }^{1}\) Assuming the \(Z_{b}(10610)\) decay width is saturated by the channels \(\pi^{+} r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}\), and using the results from BONDAR 12 and MIZUK 16.

\({ }^{1}\) Assuming the \(Z_{b}(10610)\) decay width is saturated by the channels \(\pi^{+} r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}\), and using the results from BONDAR 12 and MIZUK 16.
\({ }^{2}\) Using \(e^{+} e^{-}\)energies near the \(\Upsilon(11020)\).
\({ }^{3}\) Using \(e^{+} e^{-}\)energies near the \(r(10860)\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(h_{b}(2 P) \pi^{+}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE (units \(10^{-2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \[
4.67=1.24+1.18
\] & \({ }^{1}\) GARMASH & 16 & BELL & \[
\begin{gathered}
e^{+} e^{-} \\
\pi^{-}
\end{gathered}
\] & \\
\hline - & data for & & & & \\
\hline possibly seen & 2 MIZUK & 16 & BELL & \(e^{+} e^{-}\) & \(\pi^{-}\) \\
\hline seen & 3 BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow\) & \(\pi^{+} \pi^{-}\) \\
\hline
\end{tabular}
\({ }^{1}\) Assuming the \(Z_{b}(10610)\) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\),
\(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}\), and using the results from BONDAR 12 and MIZUK 16.
\({ }^{2}\) Using \(e^{+} e^{-}\)energies near the \(\gamma(11020)\).
\({ }^{3}\) Using \(e^{+} e^{-}\)energies near the \(r(10860)\).
\(\boldsymbol{\Gamma}\left(\boldsymbol{B}^{+}{\left.\overline{B^{0}}\right) / \Gamma_{\text {total }}}_{\text {VALUE }}^{\text {not seen }} \quad \begin{array}{l}\text { DOCUMENT ID } \\ \text { GARMASH } 16\end{array} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \pi^{-} B^{+} \bar{B}^{0}}\right.\)
\(\left[\Gamma\left(B^{+} \bar{B}^{* 0}\right)+\Gamma\left(B^{*+} \bar{B}^{0}\right)\right] / \Gamma_{\text {total }} \quad \Gamma_{10} / \Gamma\)
\(\frac{V A L U E\left(\text { units } 10^{-2}\right)}{\mathbf{8 5 . 6}+\mathbf{1 . 5 + \mathbf { 1 } . 5}} \frac{\text { EVTS }}{357} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { TECN }}{\text { GARMASH } 16} \frac{\text { COMMENT }}{\text { BELL }} e^{+e^{-} \rightarrow \pi^{-} B^{+} \bar{B}^{* 0}}\),
\({ }^{1}\) Assuming the \(Z_{b}\) (10610) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+B^{*+} \bar{B}^{0}\), and using the results from BONDAR 12 and MIZUK 16. Using the mass and width of the \(Z_{b}(10610)\) from BONDAR 12.
\(\left[\Gamma\left(B^{+} \bar{B}^{* 0}\right)+\Gamma\left(B^{*+} \bar{B}^{0}\right)\right] /\left[\Gamma\left(r(1 S) \pi^{+}\right)+\Gamma\left(r(2 S) \pi^{+}\right)+\right.\)
\(\left.\Gamma\left(\Gamma(3 S) \pi^{+}\right)+\Gamma\left(h_{b}(1 P) \pi^{+}\right)+\Gamma\left(h_{b}(2 P) \pi^{+}\right)\right] \quad \Gamma_{10} /\left(\Gamma_{1}+\Gamma_{3}+\Gamma_{5}+\Gamma_{7}+\Gamma_{8}\right)\) VALUE (units \(10^{-2}\) ) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -\(5.93_{-0.69-0.73}^{+0.99+1.01} \quad 357 \quad 1\) GARMASH 16 BELL \(e^{+} e^{-} \overrightarrow{-}^{-} \pi^{-} \pi^{-} B^{+} \bar{B}^{* 0}\),
\({ }^{1}\) Combined with the results of BONDAR 12 and MIZUK 16. Not independent from \(Z_{b}(10610)\) branching fractions to \(\pi^{+} r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}), \pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{+} \bar{B}^{* 0}+\) \(\bar{B}^{0} B^{*+}\).
\begin{tabular}{llllll}
\hline \multicolumn{5}{c}{\(\boldsymbol{Z}_{\boldsymbol{b}}(\mathbf{1 0 6 1 0})\) REFERENCES } \\
& \multicolumn{5}{c}{} \\
GARMASH & 16 & PRL 116 212001 & A. Garmash et al. & (BELLE Collab.) \\
MIZUK & 16 & PRL 117 142001 & R. Mizuk et al. & (BELLE Collab.) \\
GARMASH & 15 & PR D91 072003 & A. Garmash et al. & (BELLE Collab.) \\
KROKOVNY & 13 & PR D88 052016 & P. Krokovny et al. & (BELLE Collab.) \\
BONDAR & 12 & PRL 108 122001 & A. Bondar et al. & (BELLE Collab.) \\
\hline
\end{tabular}

Meson Particle Listings

\section*{\(Z_{b}(10650)\)}
\[
{ }^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
\]
\(I, G, C\) need confirmation.
was \(X(10650)^{ \pm}\)
Properties incompatible with a \(q \bar{q}\) structure (exotic state). See the review on non- \(q \bar{q}\) states.

Observed by BONDAR 12 in \(\gamma(5 S)\) decays to \(\Upsilon(\mathrm{nS}) \pi^{+} \pi^{-}(\mathrm{n}=\) \(1,2,3)\) and \(h_{b}(\mathrm{mP}) \pi^{+} \pi^{-}(\mathrm{m}=1,2)\). \(J^{P}=1^{+}\)is favored from angular analyses.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(Z_{b}(10650)\) MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \(10652.2 \pm 1.5\) & \({ }^{1}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow\) hadrons \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(10656.7 \pm 5.0_{-3.1}^{+1.1}\) & \({ }^{2}\) GARMASH & 15 BELL & \(e^{+} e^{-} \rightarrow r_{(1 S)} \pi^{+} \pi^{-}\) \\
\hline \(10650.7 \pm 1.5_{-0.2}^{+0.5}\) & \({ }^{2}\) GARMASH & 15 BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\hline \(10651.2 \pm 1.0_{-0.3}^{+0.4}\) & \({ }^{2}\) GARMASH & 15 BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\hline \(10657 \pm 6 \pm 3\) & \({ }^{3}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow r_{(1 S)} \pi^{+} \pi^{-}\) \\
\hline \(10651 \pm 2 \pm 3\) & \({ }^{3}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\hline \(10652 \pm 1 \pm 2\) & \({ }^{3}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\hline \(10654 \pm 3{ }_{-2}^{+1}\) & \({ }^{3}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\) \\
\hline \(10651 \begin{array}{llll} & +2 & +3 \\ -3\end{array}\) & \({ }^{3}\) BONDAR & 12 BELL & \(e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\) \\
\hline
\end{tabular}
\({ }^{1}\) Average of the BONDAR 12 measurements in separate channels
\({ }^{2}\) Correlated with the corresponding result from BONDAR 12
\({ }^{3}\) Superseded by the average measurement of BONDAR 12.

\section*{\(Z_{b}(10650)\) WIDTH}

VALUE (MeV)

\section*{\(11.5 \pm 2.2\)}
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{rlllll}
\(12.1+11.3+2.7\) & \({ }_{-}^{5}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(1 S) \pi^{+} \pi^{-}\) \\
\(14.2 \pm 3.7_{-}^{+0.9}\) & \({ }^{5}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\(9.3 \pm 2.2_{-}^{+0.5}\) & \({ }^{5}\) GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\(16.3 \pm 9.8_{-}^{+6.0}\) & \({ }^{6}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(1 S) \pi^{+} \pi^{-}\) \\
\(13.3 \pm 3.3_{-}^{+4.0}\) & \({ }^{6}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(2 S) \pi^{+} \pi^{-}\) \\
\(8.4 \pm 2.0 \pm 2.0\) & \({ }^{6}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
\(20.9 \pm 4.4+2.1\) & \({ }^{6}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\) \\
\(19 \pm 7+11\) & \({ }^{6}\) BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)
\end{tabular}
\({ }^{4}\) Average of the BONDAR 12 measurements in separate channels.
\({ }^{5}\) Correlated with the corresponding result from BONDAR 12.
\({ }^{6}\) Superseded by the average measurement of BONDAR 12.

\section*{\(\mathbf{Z}_{\boldsymbol{b}}(10650)^{+}\)DECAY MODES}
\(Z_{b}(10650)^{-}\)decay modes are charge conjugates of the modes below.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Upsilon(1 S) \pi^{+}\) & \(\left(1.7_{-0.6}^{+0.8}\right) \times 10^{-3}\) \\
\(\Gamma_{2}\) & \(\Upsilon(2 S) \pi^{+}\) & \(\left(1.4_{-0.4}^{+0.6}\right) \%\) \\
\(\Gamma_{3}\) & \(\Upsilon(3 S) \pi^{+}\) & \(\left(1.6_{-0.5}^{+0.7}\right) \%\) \\
\(\Gamma_{4}\) & \(h_{b}(1 P) \pi^{+}\) & \(\left(8.4_{-2.4}^{+2.9}\right) \%\) \\
\(\Gamma_{5}\) & \(h_{b}(2 P) \pi^{+}\) & \((15 \pm 4) \%\) \\
\(\Gamma_{6}\) & \(B^{+} \bar{B}^{0}\) & not seen \\
\(\Gamma_{7}\) & \(B^{+} \bar{B}^{* 0}+B^{*+} \bar{B}^{0}\) & not seen \\
\(\Gamma_{8}\) & \(B^{*+} \bar{B}^{* 0}\) & \(\left(74{ }_{-6}^{+4}\right) \%\)
\end{tabular}

\section*{\(Z_{b}(10650)\) BRANCHING RATIOS}
\(\Gamma\left(r(1 S) \pi^{+}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{1} / \Gamma\)
\(\frac{\mathrm{VALLE}\left(\text { unit } 10^{-3}\right)}{7^{+0.7}+0.3}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline seen & GARMASH & 15 & & \(e^{+} e^{-}\) & \(r(1 S) \pi^{+} \pi^{-}\) \\
\hline seen & BONDAR & 12 & & \(e^{+} e^{-}\) & \(r(1 S) \pi^{+} \pi^{-}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{7}\) Assuming the \(Z_{b}(10650)\) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\), and using the results from BONDAR 12 and MIZUK 16 .} \\
\hline
\end{tabular}

- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llllll} 
seen & GARMASH & 15 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\) \\
seen & BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow r(3 S) \pi^{+} \pi^{-}\)
\end{tabular}
\({ }^{9}\) Assuming the \(Z_{b}(10650)\) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\),
\(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\), and using the results from BONDAR 12 and MIZUK 16 .
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma\left(h_{b}(1 P) \pi^{+}\right) / \Gamma_{\text {total }}\) & & & & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE (units \(10^{-2}\) ) & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}
\(\mathbf{8 . 4 1} \mathbf{+ 2 . 1 2 - 1 . 4 9} \mathbf{+ 2} \quad 10\) GARMASH \(\quad 16\) BELL \(e^{+} e^{-} \rightarrow \pi^{-} B^{*+} \bar{B}^{* 0}\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{lllllll} 
seen & 11 MIZUK & 16 & BELL & \(e^{+} e^{-} \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\) \\
seen & 12 BONDAR & 12 & BELL & \(e^{+} e^{-} \rightarrow\) & \(h_{b}(1 P) \pi^{+} \pi^{-}\)
\end{tabular}
\({ }^{10}\) Assuming the \(Z_{b}(10650)\) decay width is saturated by the channels \(\pi^{+} r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\), and using the results from BONDAR 12 and MIZUK 16.
\({ }^{11}\) Using \(e^{+} e^{-}\)energies near the \(\gamma(11020)\).
\({ }^{12}\) Using \(e^{+} e^{-}\)energies near the \(\gamma(10860)\).
\begin{tabular}{l}
\(\boldsymbol{\Gamma}\left(\boldsymbol{h}_{\boldsymbol{b}} \mathbf{( 2 \boldsymbol { P } ) \boldsymbol { \pi } ^ { + } ) / \boldsymbol { \Gamma } _ { \text { total } }} \begin{array}{l}\left.V A L U E \text { (units } 10^{-2}\right)\end{array} \quad \boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}\right.\) \\
\hline DOCUMENT ID TECN COMMENT
\end{tabular}
\(\mathbf{1 4 . 7}_{-2.8}^{\boldsymbol{+ 3 . 2} \mathbf{+ 2 . 8}} \quad 13\) GARMASH \(\quad 16\) BELL \(e^{+} e^{-} \rightarrow \pi^{-} B^{*+} \bar{B}^{* 0}\)
\(\bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\)
possibly seen
14 MIZUK 16 BELL \(\quad e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)
seen \(\quad 15\) BONDAR 12 BELL \(e^{+} e^{-} \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)
\({ }^{13}\) Assuming the \(Z_{b}(10650)\) decay width is saturated by the channels \(\pi^{+} r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\),
\(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\), and using the results from BONDAR 12 and MIZUK 16.
\({ }^{14}\) Using \(e^{+} e^{-}\)energies near the \(r(11020)\).
\({ }^{15}\) Using \(e^{+} e^{-}\)energies near the \(r(10860)\).

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(B^{*+} \bar{B}^{* 0}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} \\
\hline VALUE (units \(10^{-2}\) ) & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline \[
73.7+3.4+2.7
\] & 161 & GARMASH & BELL & \(e^{+} e^{-}\) & \(\bar{B}^{* 0}\) \\
\hline
\end{tabular}
\({ }^{16}\) Assuming the \(Z_{b}(10650)\) decay width is saturated by the channels \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})\), \(\pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\), and using the results from BONDAR 12 and MIZUK 16. Using the mass and width of the \(Z_{b}(10650)\) from BONDAR 12.
\(\Gamma\left(B^{*+} \bar{B}^{* 0}\right) /\left[\Gamma\left(r(1 S) \pi^{+}\right)+\Gamma\left(r(2 S) \pi^{+}\right)+\Gamma\left(r(3 S) \pi^{+}\right)+\right.\) \(\left.\Gamma\left(h_{b}(\mathbf{1 P}) \pi^{+}\right)+\Gamma\left(h_{b}(2 P) \pi^{+}\right)\right]\)
\(\Gamma_{8} /\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}\right)\) VALUE (units \(10^{-2}\) ) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(2.80_{-0.40-0.36}^{+0.69}+0.54 \quad 161 \quad 17\) GARMASH \(\quad 16 \quad\) BELL \(\quad e^{+} e^{-} \rightarrow \pi^{-} B^{*+} \bar{B}^{* 0}\)
17 Combined with the results of BONDAR 12 and MIZUK 16. Not independent from \(Z_{b}(10650)\) branching fractions to \(\pi^{+} \gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}), \pi^{+} h_{b}(1 \mathrm{P}, 2 \mathrm{P})\), and \(B^{*+} \bar{B}^{* 0}\)
\(Z_{b}(\mathbf{1 0 6 5 0})\) REFERENCES
\begin{tabular}{lllll} 
GARMASH & 16 & PRL 116 212001 & A. Garmash et al. & (BELLE Collab.) \\
MIZUK & 16 & PRL 117 142001 & R. Mizuk et al. & (BELLE Collab.) \\
GARMASH & 15 & PR D91 072003 & A. Garmash et al. & (BELLE Collab.) \\
BONDAR & 12 & PRL 108 122001 & A. Bondar et al. & (BELLE Collab.) \\
\hline
\end{tabular}

\section*{r(10753)}
\[
I^{G}\left(J^{P C}\right)=?^{?}\left(1^{--}\right)
\]

OMITTED FROM SUMMARY TABLE A candidate for \(\Upsilon(3 D)\) state or an exotic structure.

Seen by MIZUK 19 in \(e^{+} e^{-} \rightarrow \Upsilon(\mathrm{nS}) \pi^{+} \pi^{-} \quad(\mathrm{n}=1,2,3)\) with a significance of \(5.2 \sigma\).

\section*{\(r(10753)\) MASS}

\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy
points within \(\sqrt{s}=10.63-11.02 \mathrm{GeV}\), including the initial-state radiation at \(r(10860)\).
\(r(10753)\) WIDTH
\begin{tabular}{|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \[
35.5+17.6+3.9
\] & 1 MIZUK 19 & BELL & \(e^{+} e^{-} \rightarrow\) \\
\hline
\end{tabular}
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.63-11.02 \mathrm{GeV}\), including the initial-state radiation at \(Y(10860)\).
\(r(10753)\) DECAY MODES
\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Mode } \\
\hline\(\Gamma_{1}\) & \(\Upsilon(1 S) \pi^{+} \pi^{-}\) \\
\(\Gamma_{2}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) \\
\(\Gamma_{3}\) & \(\gamma(3 S) \pi^{+} \pi^{-}\) \\
\(\Gamma_{4}\) & \(e^{+} e^{-}\)
\end{tabular}

- - We do not use the following data for averages, fits, limits, etc. - -
\(10881.8_{-}^{+}{ }_{1.1}^{1.0} \pm 1.2 \quad 3,4\) SANTEL \(\quad 16\) BELL \(\quad e^{+} e^{-} \rightarrow\) hadrons
\(10891.1 \pm 3.2_{-2.0}^{+1.2} \quad 5,6\) SANTEL \(\quad 16\) BELL \(e^{+} e^{-} \rightarrow r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\)
\(10879 \pm 3 \quad 7,8 \mathrm{CHEN} \quad 10\) BELL \(e^{+} e^{-} \rightarrow\) hadrons
\(10888.4_{-}^{+}{ }_{2.7}^{2.7} \pm 1.2 \quad{ }^{9} \mathrm{CHEN} \quad 10 \quad \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \Upsilon(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\)
\(10876 \pm 2 \quad 7\) AUBERT \(29 E\) BABR \(e^{+} e^{-} \rightarrow\) hadrons
\(10869 \pm 2\) AUBERT 09E BABR \(e^{+} e^{-} \rightarrow\) hadrons
\(10868 \pm 6 \pm 5 \quad 11\) BESSON \(\quad 85\) CLEO \(e^{+} e^{-} \rightarrow\) hadrons
\(10845 \pm 20 \quad 12\) LOVELOCK 85 CUSB \(e^{+} e^{-} \rightarrow\) hadrons
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\Upsilon(10860)\).
\({ }^{2}\) From a simultaneous fit to the \(h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}, n=1,2\) cross sections at 22 energy points within \(\sqrt{s}=10.77-11.02 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of \(\gamma(10860)\) and \(\gamma(11020)\), a single relative phase, a single relative amplitude, and two overall normalization factors, one for each \(n\) ). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
\({ }^{3}\) From a fit to the total hadronic cross sections measured at 60 energy points within \(\sqrt{s}\) \(=10.82-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with \(1 / \sqrt{s}\) dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of \(\gamma(10860)\) and \(\gamma(11020)\), one relative phase, and one decoherence coefficient).
\({ }^{4}\) Not including uncertain and potentially large systematic errors due to assumed continuum amplitude \(1 / \sqrt{s}\) dependence and related interference contributions.
\({ }^{5}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 25energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of \(\Upsilon(10860)\) and \(\Upsilon(11020)\), a single universal relativephase, and three decoherence coefficients, one for each \(n\) ). Continuum contributions weremeasured (and therefore fixed) to be zero.
\({ }^{6}\) Superseded by MIZUK 19.
7 In a model where a flat non-resonant \(b \bar{b}\)-continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties
8 The parameters of the \(\Upsilon(11020)\) are fixed to those in AUBERT 09E.
\({ }^{9}\) In a model where a flat nonresonant \(r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\)continuum interferes with a single Breit-Wigner resonance.
\({ }^{10}\) In a model where a non-resonant \(b \bar{b}\)-continuum represented by a threshold function at \(\sqrt{s}=2 m_{B}\) is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 09E results. Systematic uncertainties not estimated.
\({ }^{11}\) Assuming four Gaussians with radiative tails and a single step in \(R\).
\({ }^{12}\) In a coupled-channel model with three resonances and a smooth step in \(R\).
\(r(10860)\) WIDTH
\(\frac{V A L U E(\mathrm{MeV})}{37 \pm 4 \text { OUR AVERAGE }}\)
OCUMENT ID
TECN COMMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(36.6 \pm 3.5+0.5\) & \({ }^{1}\) MIZUK & 19 & BELL & \(e^{+} e^{-}\) & \(r(\mathrm{nS}) \pi^{+} \pi^{-}\) \\
\hline  & 2 MIZUK & 16 & BELL & \(e^{+} e^{-}\) & \(h_{b}(1 \mathrm{P}, 2 \mathrm{P}) \pi^{+} \pi^{-}\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(48.5+1.9+2.0\) & 3,4 SANTEL & 16 & BELL & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \(53.7-5.1+1.3\) & 5,6 SANTEL & 16 & BELL & \(e^{+} e^{-} \rightarrow\) & \(\gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\) \\
\hline \(46+9\) & 7,8 CHEN & 10 & BELL & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \(30.7{ }_{-}^{+} 8.3 \pm 3.1\) & \({ }^{9}\) CHEN & 10 & BELL & \(e^{+} e^{-}\) & \(r(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\) \\
\hline \(43 \pm 4\) & \({ }^{7}\) AUBERT & 09E & BABR & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \(74 \pm 4\) & 10 AUBERT & 09E & BABR & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \(112 \pm 17 \pm 23\) & 11 BESSON & 85 & CLEO & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline \(110 \pm 15\) & 12 LOVELOCK & 85 & CUSB & \(e^{+} e^{-} \rightarrow\) & hadrons \\
\hline
\end{tabular}
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
\({ }^{2}\) From a simultaneous fit to the \(h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}, n=1,2\) cross sections at 22 energy points within \(\sqrt{s}=10.77-11.02 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of \(\gamma(10860)\) and \(\gamma(11020)\), a single relative phase, a single relative amplitude, and two overall normalization factors, one for each \(n\) ). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
\({ }^{3}\) From a fit to the total hadronic cross sections measured at 60 energy points within \(\sqrt{s}\) \(=10.82-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with \(1 / \sqrt{s}\) dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of \(\gamma(10860)\) and \(\gamma(11020)\), one relative phase, and one decoherence coefficient).
\({ }^{4}\) Not including uncertain and potentially large systematic errors due to assumed continuum amplitude \(1 / \sqrt{s}\) dependence and related interference contributions.
\({ }^{5}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 25energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of \(\gamma(10860)\) and \(\gamma(11020)\), a single universal relativephase, and three decoherence coefficients, one for each \(n\) ). Continuum contributions weremeasured (and therefore fixed) to be zero.
\({ }^{6}\) Superseded by MIZUK 19.
7 In a model where a flat non-resonant \(b \bar{b}\)-continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties
8 not estimated.
\({ }^{9}\) In a model where a flat nonresonant \(\gamma(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \pi^{+} \pi^{-}\)continuum interferes with a single Breit-Wigner resonance.
10 In a model where a non-resonant \(b \bar{b}\)-continuum represented by a threshold function at \(\sqrt{s}=2 m_{B}\) is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 09E results. Systematic uncertainties resonances.
\({ }^{1}\) Assuming four Gaussians with radiative tails and a single step in \(R\).
12 In a coupled-channel model with three resonances and a smooth step in \(R\).

\section*{\(r(10860)\) DECAY MODES}
\begin{tabular}{|c|c|c|c|c|}
\hline & Mode & Fraction ( \(\Gamma_{i} / \Gamma^{\prime}\) ) & & Confidence level \\
\hline \(\Gamma_{1}\) & \(B \bar{B} X\) & \(\left(76.2 \begin{array}{l}+2.7 \\ -4.0\end{array}\right.\) & & \\
\hline \(\Gamma_{2}\) & \(B \bar{B}\) & ( \(5.5 \pm 1.0\) & & \\
\hline \(\Gamma 3\) & \(B \bar{B}^{*}+\) c.c. & ( \(13.7 \pm 1.6\) & & \\
\hline \(\Gamma_{4}\) & \(B^{*} \bar{B}^{*}\) & \((38.1 \pm 3.4\) & & \\
\hline \(\Gamma_{5}\) & \(B \bar{B}^{(*)} \pi\) & < 19.7 & \% & 90\% \\
\hline \(\Gamma_{6}\) & \(B \bar{B} \pi\) & \((0.0 \pm 1.2\) & & \\
\hline \(\Gamma_{7}\) & \(B^{*} \bar{B} \pi+B \bar{B}^{*} \pi\) & \((7.3 \pm 2.3\) & & \\
\hline \(\Gamma_{8}\) & \(B^{*} \bar{B}^{*} \pi\) & \((1.0 \pm 1.4\) & & \\
\hline \(\Gamma_{9}\) & \(B \bar{B} \pi \pi\) & \(<8.9\) & \% & 90\% \\
\hline \(\Gamma_{10}\) & \(B_{s}^{(*)} \bar{B}_{s}^{(*)}\) & \((20.1 \pm 3.1\) & & \\
\hline \(\Gamma_{11}\) & \(B_{S} \overline{\underline{B}}_{S}\) & \(\left(\begin{array}{ll}5 & \pm 5\end{array}\right)\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{12}\) & \(B_{S} \bar{B}_{s}^{*}+\) c.c. & ( \(1.35 \pm 0.32)\) & & \\
\hline \(\Gamma_{13}\) & \(B_{s}^{*} \bar{B}_{s}^{*}\) & \((17.6 \pm 2.7\) & & \\
\hline \(\Gamma_{14}\) & no open-bottom & \(\left(3.8{ }_{-0.5}^{+5.0}\right.\) & & \\
\hline \(\Gamma_{15}\) & \(e^{+} e^{-}\) & ( \(8.3 \pm 2.1\) & ) \(\times 10^{-6}\) & \\
\hline \(\Gamma_{16}\) & \(K^{*}(892)^{0} \bar{K}^{0}\) & \(<1.0\) & \(\times 10^{-5}\) & -5 90\% \\
\hline \(\Gamma_{17}\) & \(\gamma(1 S) \pi^{+} \pi^{-}\) & \((5.3 \pm 0.6\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{18}\) & \(\gamma(2 S) \pi^{+} \pi^{-}\) & \((7.8 \pm 1.3\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{19}\) & \(\gamma(3 S) \pi^{+} \pi^{-}\) & \(\left(4.8{ }_{-1.7}^{+1.9}\right.\) & \() \times 10^{-3}\) & \\
\hline \(\Gamma 20\) & \(\Upsilon(1 S) K^{+} K^{-}\) & \((6.1 \pm 1.8\) & ) \(\times 10^{-4}\) & \\
\hline \(\Gamma_{21}\) & \(\eta \Upsilon_{J}(1 D)\) & \((4.8 \pm 1.1\) & \() \times 10^{-3}\) & \\
\hline \(\Gamma_{22}\) & \(h_{b}(1 P) \pi^{+} \pi^{-}\) & \(\left(3.5{ }_{-1.3}^{+1.0}\right.\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma 23\) & \(h_{b}(2 P) \pi^{+} \pi^{-}\) & \(\left(5.7{ }_{-2.1}^{+1.7}\right.\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma 24\) & \(\chi_{b J}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & ( \(2.5 \pm 2.3\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{25}\) & \(\chi_{b 0}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & \(<6.3\) & \(\times 10^{-3}\) & -3 90\% \\
\hline \(\Gamma_{26}\) & \(\chi_{b 0}(1 P) \omega\) & \(<3.9\) & \(\times 10^{-3}\) & -3 90\% \\
\hline \(\Gamma_{27}\) & \(\chi_{b 0}(1 P)\left(\pi^{+} \pi^{-} \pi^{0}\right)_{\text {non }-\omega}\) & < 4.8 & \(\times 10^{-3}\) & -3 90\% \\
\hline \(\Gamma_{28}\) & \(\chi_{b 1}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & ( \(1.85 \pm 0.33\) ) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{29}\) & \(\chi_{b 1}(1 P) \omega\) & ( \(1.57 \pm 0.30)\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{30}\) & \(\chi_{b 1}(1 P)\left(\pi^{+} \pi^{-} \pi^{0}\right)_{\text {non }-\omega}\) & \((5.2 \pm 1.9\) & \() \times 10^{-4}\) & \\
\hline \(\Gamma_{31}\) & \(\chi_{b 2}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & ( \(1.17 \pm 0.30)\) & ) \(\times 10^{-3}\) & \\
\hline \(\Gamma_{32}\) & \(\chi_{b 2}(1 P) \omega\) & \((6.0 \pm 2.7\) & ) \(\times 10^{-4}\) & \\
\hline \(\Gamma 33\) & \(\chi_{b 2}(1 P)\left(\pi^{+} \pi^{-} \pi^{0}\right)_{\text {non }-\omega}\) & \(\left(\begin{array}{ll}6 & \pm 4\end{array}\right.\) & \() \times 10^{-4}\) & \\
\hline \(\Gamma_{34}\) & \(\gamma X_{b} \rightarrow \gamma \gamma(1 S) \omega\) & < 3.8 & \(\times 10^{-5}\) & -5 90\% \\
\hline
\end{tabular}

\section*{Inclusive Decays.}

These decay modes are submodes of one or more of the decay modes above.
\begin{tabular}{|c|c|c|}
\hline \(\Gamma_{35}\) & \(\phi\) anything & \(\left({ }^{13.8}{ }_{-1.7}^{+2.4}\right) \%\) \\
\hline \(\Gamma_{36}\) & \(D^{0}\) anything + c.c. & (108 \(\pm 8\) ) \% \\
\hline \(\Gamma_{37}\) & \(D_{S}\) anything + c.c. & ( \(46 \pm 6\) ) \% \\
\hline \(\Gamma 38\) & \(J / \psi\) anything & ( \(2.06 \pm 0.21\) ) \% \\
\hline \(\Gamma 39\) & \(B^{0}\) anything + c.c. & ( \(77 \pm 8\) ) \% \\
\hline \(\Gamma_{40}\) & \(B^{+}\)anything + c.c. & ( \(72 \pm 6\) ) \% \\
\hline
\end{tabular}

\section*{\(r(10860)\) PARTIAL WIDTHS}
\(\Gamma\left(e^{+} e^{-}\right)\)

- - We do not use the following data for averages, fits, limits, etc. - - -
\(1.09 \pm 0.34 \quad 1,2\) MIZUK \(19 \quad\) BELL \(\quad e^{+} e^{-} \rightarrow \gamma(\mathrm{nS}) \pi^{+} \pi^{-}\)【
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
2 Reported as the range \(0.75-1.43 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.
\(\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(r(2 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{15} \Gamma_{18} / \Gamma\)
VALUE (eV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(2.58 \pm 1.22 \quad 1,2\) MIZUK \(19 \quad \mathrm{BELL} \quad e^{+} e^{-} \rightarrow \gamma(\mathrm{nS}) \pi^{+} \pi^{-}\)
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
\({ }^{2}\) Reported as the range \(1.35-3.80 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

- - We do not use the following data for averages, fits, limits, etc. - - -
\(\begin{array}{llll} \\ 0.73 \pm 0.30 & 1,2 & \text { MIZUK } & 19 \\ \text { BELL } & e^{+} e^{-} \rightarrow & r(\mathrm{nS}) \pi^{+} \pi^{-}\end{array}\)
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
2 Reported as the range \(0.43-1.03 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

\section*{\(\boldsymbol{\tau}(\mathbf{1 0 8 6 0})\) BRANCHING RATIOS}
"OUR EVALUATION" is obtained based on averages of rescaled data listed below. The averages and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/.

\({ }^{2}\) Using measurements or limits from AQUINES 06.


\(0.264+{ }_{-0.045}^{0.052}\) OUR EVALUATION

\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\text { EVTS }}\)
DOCUMENT ID TECN COMMENT
\begin{tabular}{llllll}
\(87.8 \pm 1.5\) & & & & & \\
\(87.0 \pm 1.7\) & & 1,2 & ESEN & BELL & \(B_{S}^{0} \rightarrow\) \\
\(90.5 \pm 3.2 \pm 0.1\) & 227 & \(2,3 \mathrm{LI}\) & 12 & BELL & \(B_{S}^{0} \rightarrow\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -

\({ }^{1}\) Supersedes LOUVOT 09.
\({ }^{2}\) With \(N\left(B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)=(7.11 \pm 1.30) \times 10^{6}\).
\({ }^{3}\) The ratios \(N\left(B_{s}^{*} \bar{B}_{s}^{*}\right) / N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\) and \(N\left(B_{s}^{*} \bar{B}_{s}^{0}\right) / N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\) are measured with a correlation coefficient of -0.72 .
\({ }^{4}\) From a measurement of \(\sigma\left(e^{+} e^{-} \rightarrow B_{S}^{*} \bar{B}_{S}^{*}\right) / \sigma\left(e^{+} e^{-} \rightarrow B_{S}^{(*)} \bar{B}_{S}^{(*)}\right)\) at \(\sqrt{s}=10.86\) GeV .
\(\Gamma\left(B_{s} \bar{B}_{s}\right) / \Gamma\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\)
VALUE (units \(10^{-2}\) )
\(2.6_{-2.5}^{+2.6}\)

\(\Gamma\left(B_{s} \bar{B}_{s}\right) / \Gamma\left(B_{s}^{*} \bar{B}_{s}^{*}\right)\)
\(\frac{V A L U E}{<\mathbf{0 . 1 6}} \frac{C L \%}{90}\)
\(\Gamma_{11} / \Gamma_{13}\)
\(\Gamma\left(B_{s} \bar{B}_{s}^{*}+c . c.\right) / \Gamma\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right) \quad \Gamma_{12} / \Gamma_{10}=\Gamma_{12} /\left(\Gamma_{11}+\Gamma_{12}+\Gamma_{13}\right)\) \(\frac{V A L U E \text { (units } 10^{-2} \text { ) }}{6.7 \pm \mathbf{1 . 2} \text { OUR AVERAGE }}\)

DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(7.3_{-3.0}^{+3.3} \pm 0.1 \quad\) LOUVOT 09 BELL \(10.86 e^{+} e^{-} \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\)
\({ }^{1}\) Supersedes LOUVOT 09.
\({ }^{2}\) With \(N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)=(7.11 \pm 1.30) \times 10^{6}\).
\({ }^{3}\) The ratios \(N\left(B_{s}^{*} \bar{B}_{s}^{*}\right) / N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\) and \(N\left(B_{s}^{*} \bar{B}_{s}^{0}\right) / N\left(B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)\) are measured with a correlation coefficient of \({ }_{-0.72}\).
\(\boldsymbol{\Gamma}\left(\boldsymbol{B}_{\mathbf{s}} \overline{\boldsymbol{B}}_{\boldsymbol{s}}^{*}+\mathbf{c . c .}\right) / \Gamma\left(\boldsymbol{B}_{\boldsymbol{s}}^{*} \overline{\boldsymbol{B}}_{\boldsymbol{s}}^{*}\right)\)
VALUE
\(\frac{C L \%}{}\)
\(\square\) DOCUMENT ID TECN COMMENT \(\Gamma_{12} / \Gamma_{13}\)
\(\Gamma(\) no open-bottom \() / \Gamma_{\text {total }}\) \(\frac{\text { VALUE }}{0.038{ }^{+0.051} \text { OUR EVALUATION }}\)
\(\qquad\)
DOCUMENT ID
\(\Gamma_{14 / \Gamma}\)
\(\Gamma\left(K^{*}(892)^{0} \bar{K}^{0}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{16} / \Gamma\)


\(\Gamma\left(\Upsilon(1 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }} \quad \Gamma_{17} / \Gamma\)
\(\frac{\left.\text { VALUE (units } 10^{-3}\right)}{\mathbf{5 . 3} \pm \mathbf{0 . 3} \mathbf{0 . 5}} \frac{\text { EVTS }}{325} \quad \frac{\text { DOCUMENT ID }}{\text { CHEN } \quad 08} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{10.87 e^{+} e^{-} \rightarrow r(1 S) \pi^{+} \pi^{-}}\)
\({ }^{1}\) Assuming that the observed events are solely due to the \(\gamma(5 S)\) resonance.


\({ }^{1}\) Assuming that the observed events are solely due to the \(\gamma(5 S)\) resonance.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Upsilon(1 S) K^{+} K^{-}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{20} / \Gamma\) \\
\hline VALUE (units 10-4) & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular} \(\mathbf{6 . 1} \mathbf{I N}_{1.4}^{\mathbf{1} .6} \mathbf{1 . 0} \quad 20 \quad{ }^{1}\) CHEN \(\quad 08 \quad\) BELL \(\quad 10.87 e^{+} e^{-} \rightarrow r(1 S) K^{+} K^{-}\)
\({ }^{1}\) Assuming that the observed events are solely due to the \(\Upsilon(5 S)\) resonance.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(h_{b}(1 P) \pi^{+} \pi^{-}\right) / \Gamma\left(h_{b}(2 P) \pi^{+} \pi^{-}\right)\)} & \multirow[b]{2}{*}{TECN} & & \multirow[t]{2}{*}{\(\Gamma_{22} / \Gamma_{23}\)} \\
\hline VALUE & DOCUME & & & COMMENT & \\
\hline \(0.616 \pm 0.052 \pm 0.017\) & MIZUK & 16 & BELL & \(e^{+} e^{-} \rightarrow\) & ) \(\pi^{+} \pi^{-}\) \\
\hline
\end{tabular}
\(\Gamma\left(\chi_{b J}(1 P) \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }} \quad \Gamma_{24} / \Gamma\)
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{\mathbf{2 . 5} \pm \mathbf{0 . 6} \pm \mathbf{2 . 2}} \quad \frac{\text { DOCUMENT ID }}{\text { YIN }} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { hadrons }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\chi_{b 0}(1 P) \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{25} / \Gamma\) \\
\hline VALUE & CL\% & DOCU & TECN & COMMENT & \\
\hline \(<6.3 \times 10^{-3}\) & 90 & HE & BELL & \(r(5 S) \rightarrow\) & \(\gamma(1 S)\) \\
\hline
\end{tabular}
\({ }^{1}\) Assuming that all the \(b \bar{b}\) events are from \(\gamma(5 S)\) resonance decays and using \(\sigma\left(e^{+} e^{-} \rightarrow\right.\) \(b \bar{b})=0.340 \pm 0.016 \mathrm{nb}\) from ESEN 13. Correlated with other results from HE 14.
\(\Gamma\left(\chi_{b 0}(1 P) \omega\right) / \Gamma_{\text {total }}\)
\(\Gamma_{26} / \Gamma\)
\(\frac{V A L U E}{<3.9 \times 10^{-3}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{HE}} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{r(5 S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma \gamma(13)}\)
\({ }^{1}\) Assuming that all the \(b \bar{b}\) events are from \(\gamma(5 S)\) resonance decays and using \(\sigma\left(e^{+} e^{-} \rightarrow\right.\)
\[
b \bar{b})=0.340 \pm 0.016 \mathrm{nb} \text { from ESEN 13. Correlated with other results from HE } 14 .
\]
\(b \bar{b})=0.340 \pm 0.016 \mathrm{nb}\) from ESEN 13. Correlated with other results from HE 14.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\chi_{b 0}(1 P)\left(\pi^{+} \pi^{-} \pi^{0}\right)_{\text {non= }}\right) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \(\Gamma_{27} / \Gamma\) \\
\hline VALUE & CL\% & DOC & & & & \\
\hline \(<4.8 \times 10^{-3}\) & 90 & \({ }^{1} \mathrm{HE}\) & 14 & BELL & \(r(5 S) \rightarrow\) & \(r(1 S)\) \\
\hline \({ }^{1}\) Assuming t
\[
b \bar{b})=0.34
\] & II the
\[
0.016
\] & \begin{tabular}{l}
vents \\
from
\end{tabular} & & \begin{tabular}{l}
resona \\
ted with
\end{tabular} & decays a other res & \[
\begin{aligned}
& +e^{-} \rightarrow \\
& 14 .
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\Gamma\left(\chi_{b 1}(1 P) \pi^{+} \pi^{=} \pi^{\mathbf{0}}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{28} / \Gamma\)} \\
\hline VALUE (units \(10^{-3}\) ) & EVTS & DOC & & TECN & COMMENT & \\
\hline \(1.85 \pm 0.23 \pm 0.23\) & 80 & \({ }^{1} \mathrm{HE}\) & 14 & BELL & \(\gamma(5 S)\) & \\
\hline
\end{tabular}
\({ }^{1}\) Assuming that all the \(b \bar{b}\) events are from \(\gamma(5 S)\) resonance decays and using \(\sigma\left(e^{+} e^{-} \rightarrow\right.\) \(b \bar{b})=0.340 \pm 0.016 \mathrm{nb}\) from ESEN 13. Correlated with other results from HE 14.

Meson Particle Listings
\(\Upsilon(10860), ~ \Upsilon(11020)\)

\({ }^{6}\) Superseded by MIZUK 19
解 not estimated

\section*{\(r(11020)\) WIDTH}
Value (mev) DOCument id TECN COMMENT

\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
\({ }^{2}\) From a simultaneous fit to the \(h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}, n=1,2\) cross sections at 22 energy points within \(\sqrt{s}=10.77-11.02 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of \(\gamma(10860)\) and \(\gamma(11020)\), a single relative phase, a single relative amplitude, and two overall normalization factors, one for each \(n\) ). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
dominated by possible interference with a small nonresonant continuum amplitude.
\({ }^{3}\) From a fit to the total hadronic cross sections measured at 60 energy points within \(\sqrt{s}\) \(=10.82-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with \(1 / \sqrt{s}\) dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of \(\gamma(10860)\) and \(\gamma(11020)\), one relative phase, and one decoherence coefficient).
4 Not including uncertain and potentially large systematic errors due to assumed continuum amplitude \(1 / \sqrt{s}\) dependence and related interference contributions
\({ }^{5}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 25energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\) to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeam plitudes for each of \(\gamma(10860)\) and \(\Upsilon(11020)\), a single universal relativephase, and three decoherence coefficients, one for each \(n\) ). Continuum contributions weremeasured (and therefore fixed) to be zero.
\({ }^{6}\) Superseded by MIZUK 19.
7 In a model where a flat non-resonant \(b \bar{b}\)-continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
\(r(11020)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(e^{+} e^{-}\) & \(\left(5.4_{-2.1}^{+1.9}\right) \times 10^{-6}\) \\
\(\Gamma_{2}\) & \(\Upsilon(1 S) \pi^{+} \pi^{-}\) & \\
\(\Gamma_{3}\) & \(\Upsilon(2 S) \pi^{+} \pi^{-}\) & \\
\(\Gamma_{4}\) & \(\Upsilon(3 S) \pi^{+} \pi^{-}\) & \\
\(\Gamma_{5}\) & \(\chi_{b J}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & \((9 \quad+9\) \\
\(\Gamma_{6}\) & \(\chi_{b 1}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & seen \\
\(\Gamma_{7}\) & \(\chi_{b 2}(1 P) \pi^{+} \pi^{-} \pi^{0}\) & seen \\
\hline
\end{tabular}
\(r(11020)\) PARTIAL WIDTHS
\(\Gamma\left(e^{+} e^{-}\right)\)

\section*{\(0.130 \pm 0.030\) OUR AVERAGE}
\(0.095 \pm 0.03 \pm 0.035\)
\(0.156 \pm 0.040\)

\(\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\Gamma(1 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\)
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.46 \pm 0.08 \quad 1,2\) MIZUK \(\quad 19 \quad\) BELL \(\quad e^{+} e^{-} \rightarrow \gamma(\mathrm{nS}) \pi^{+} \pi^{-}\)
\({ }^{1}\) From a simultaneous fit to the \(r(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy
points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
\({ }^{2}\) Reported as the range \(0.38-0.54 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.
\(\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\Gamma(2 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{1} \Gamma_{3} / \Gamma\)
VALUE (eV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.65 \pm 0.52 \quad 1,2\) MIZUK 19 BELL \(e^{+} e^{-} \rightarrow \gamma(\mathrm{nS}) \pi^{+} \pi^{-}\)
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\Upsilon(10860)\).
\({ }^{2}\) Reported as the range \(0.13-1.16 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.
\(\Gamma\left(e^{+} e^{-}\right) \times \Gamma\left(\Gamma(3 S) \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{1} \Gamma_{4} / \Gamma\)
VALUE (eV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.33 \pm 0.16\)
1,2 MIZUK
19 BE
\(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}\)
\({ }^{1}\) From a simultaneous fit to the \(\gamma(\mathrm{nS}) \pi^{+} \pi^{-}, n=1,2,3\), cross sections at 28 energy points within \(\sqrt{s}=10.6-11.05 \mathrm{GeV}\), including the initial-state radiation at \(\gamma(10860)\).
\({ }^{2}\) Reported as the range \(0.17-0.49 \mathrm{eV}\) obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma_{\underline{V A L U E}}^{\boldsymbol{\Gamma}\left(\chi_{b 1}(1 P) \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma_{\text {total }}}\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma / \Gamma\)} \\
\hline & & & & & \\
\hline seen & YIN & 18 & BELL & \(e^{+} e^{-} \rightarrow\) & \\
\hline
\end{tabular}
\(\boldsymbol{\Gamma}\left(\chi_{\boldsymbol{b} \mathbf{2}}(\mathbf{1 P}) \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E}{}\)
seen \(\frac{\text { DOCUMENT ID }}{\text { YIN }} \quad \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { hadrons }} \boldsymbol{\Gamma}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\chi_{b 2}(1 P) \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma\left(\chi_{b 1}(1 P) \pi^{+} \pi^{-} \pi^{0}\right)\)} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\(\Gamma_{7 /} / \Gamma_{6}\)} \\
\hline VALUE & DOCU & & & COMMENT & \\
\hline \(0.4 \pm 0.2\) & YIN & 18 & BELL & \(e^{+} e^{-} \rightarrow\) & \\
\hline
\end{tabular}
\(r(11020)\) REFERENCES
\begin{tabular}{lllll} 
MIZUK & 19 & JHEP 1910 220 & R. Mizuk et al. & (BELLE Collab.) \\
YIN & 18 & PR D98 091102 & J.H. Yin et al. & (BELLE Collab.) \\
MIZUK & 16 & PRL 117 142001 & R. Mizuk et al. & (BELLE Collab.) \\
SANTEL & 16 & PR D93 011101 & D. Santel et al. & (BELLE Collab.) \\
AUBERT & \(09 E\) & PRL 102 012001 & B. Aubert et al. & (BABAR Collab.) \\
BESSON & 85 & PRL 54 381 & D. Besson et al. & (CLEO Collab.) \\
LOVELOCK & 85 & PRL 54377 & D.M.J. Lovelock et al. & (CUSB Collab.) \\
\hline
\end{tabular}

Meson Particle Listings


DOUBLY-CHARMED BARYONS \((C=+2)\)
\(\Xi_{c c}^{++}\) ..... 1996
BOTTOM (BEAUTY) BARYONS ( \(B=-1\) )
\(\Lambda_{b}^{0}\) ..... 1997
\(\Lambda_{b}(5912)^{0}\) ..... 2005
\(\Lambda_{b}(5920)^{0}\) ..... 2005
\(\Lambda_{b}(6146)^{0}\) ..... 2005
\(\Lambda_{b}(6152)^{0}\) ..... 2005
\(\Sigma_{b}\) ..... 2006
\(\Sigma_{b}(6097)^{+}\) ..... 2007
\(\Sigma_{b}(6097)\) ..... 2007
\(\Sigma_{b}^{*}\) ..... 2006
\(\Xi_{b}^{0}, \Xi_{b}^{-}\) ..... 2007
\(\Xi_{b}^{\prime}(5935)^{-}\) ..... 2009
\(\Xi_{b}(5945)^{0}\) ..... 2010
\(\Xi_{b}(5955)\) ..... 2010
\(\Xi_{b}(6227)\) ..... 2010
\(\Omega_{b}^{-}\) ..... 2011
\(b\)-baryon ADMIXTURE \(\left(\Lambda_{b}, \Xi_{b}, \Omega_{b}\right)\) ..... 2011
EXOTIC BARYONS
\(P_{c}(4312)^{+}\) ..... 2014
\(P_{c}(4440)^{+}\) ..... 2014
\(P_{c}(4380)^{+}\) ..... 2014
\(P_{c}(4457)^{+}\)was \(P_{c}(4450)\) ..... 2014
Notes in the Listings
\(\Sigma(1670)\) region ..... 1938
Radiative hyperon decays ..... 1960
\(\Xi\) resonances ..... 1964
Related Reviews in Volume 1
79. Baryon decay parameters ..... 868
80. \(N\) and \(\Delta\) resonances (rev.) ..... 869
81. Baryon magnetic moments ..... 874
82. \(\Lambda\) and \(\Sigma\) resonances (rev.) ..... 875
83. Pole structure of the \(\Lambda(1405)\) region (rev.) ..... 878
84. Charmed baryons (rev.) ..... 879
85. Pentaquarks (rev.) ..... 881
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(N\) BARYONS
\[
\begin{gathered}
(S=0, I=1 / 2) \\
p, N^{+}=u u d ; \quad n, N^{0}=u d d
\end{gathered}
\]} \\
\hline \multicolumn{2}{|r|}{\(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)\)Status:} \\
\hline \multicolumn{2}{|r|}{\(p\) MASS (atomic mass units u)} \\
\hline \multicolumn{2}{|l|}{The mass is known much more precisely in \(u\) (atomic mass units) than in MeV . See the next data block.} \\
\hline \multicolumn{2}{|l|}{VALUE (u) DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{2}{|l|}{\(\overline{\mathbf{1 . 0 0 7 2 7 6 4 6 6 6 2 ~} \mathbf{\pm 0 . 0 0 0 0 0 0 0 0 0 9}}\) OUR AVERAGE Error includes scale factor of 3.1.} \\
\hline \(1.007276466583 \pm 0.000000000032\) & 1 HEISSE 17 SPEC Penning trap \\
\hline \(1.007276466879 \pm 0.000000000091\) & MOHR 16 RVUE 2014 CODATA value \\
\hline \multicolumn{2}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1.007276466812 \pm 0.000000000090\) & MOHR 12 RVUE 2010 CODATA value \\
\hline \(1.00727646677 \pm 0.00000000010\) & MOHR 08 RVUE 2006 CODATA value \\
\hline \(1.00727646688 \pm 0.00000000013\) & MOHR 05 RVUE 2002 CODATA value \\
\hline \(1.00727646688 \pm 0.00000000013\) & MOHR 99 RVUE 1998 CODATA value \\
\hline \(1.007276470 \pm 0.000000012\) & COHEN 87 RVUE 1986 CODATA value \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) The statistical and systematic errors are 15 and 29 in the last two places of the value. The value disagrees with the MOHR 16 value by over 3 standard deviations.} \\
\hline
\end{tabular}

\section*{p MASS (MeV)}

The mass is known much more precisely in \(u\) (atomic mass units) than in MeV . The conversion from \(u\) to \(\mathrm{MeV}, 1 \mathrm{u}=931.4940054(57) \mathrm{MeV} / \mathrm{c}^{2}\) (MOHR 16, the 2014 CODATA value), involves the relatively poorly known electronic charge.

\section*{VALUE (MeV) 938.272}
- - We do not use the following
\begin{tabular}{llllll}
938.272046 & \(\pm 0.000021\) & MOHR & 12 & RVUE & 2010 CODATA value \\
938.272013 & \(\pm 0.000023\) & MOHR & 08 & RVUE & 2006 CODATA value \\
938.272029 & \(\pm 0.000080\) & MOHR & 05 & RVUE & 2002 CODATA value \\
938.271998 & \(\pm 0.000038\) & MOHR & 99 & RVUE & 1998 CODATA value \\
938.27231 & \(\pm 0.00028\) & COHEN & 87 & RVUE & 1986 CODATA value \\
938.2796 & \(\pm 0.0027\) & COHEN & 73 & RVUE & 1973 CODATA value
\end{tabular}

\section*{\(\left|m_{p}-m_{\bar{p}}\right| / m_{p}\)}

A test of CPT invariance. Note that the comparison of the \(\bar{p}\) and \(p\) charge-to-mass ratio, given in the next data block, is much better determined.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(<7 \times 10^{-10}\) & 90 & \({ }^{1}\) HORI & 11 & SPEC & \(\bar{p} e^{-} \mathrm{He}\) atom \\
\hline - We do no & foll & g data for & & , limits, & etc. - \\
\hline \(<2 \times 10^{-9}\) & 90 & \({ }^{1}\) HORI & 06 & SPEC & \(\bar{p} e^{-} \mathrm{He}\) atom \\
\hline \(<1.0 \times 10^{-8}\) & 90 & 1 HORI & 03 & SPEC & \(\bar{p} e^{-4} \mathrm{He}, \bar{p} e^{-{ }^{3} \mathrm{He}}\) \\
\hline \(<6 \times 10^{-8}\) & 90 & 1 HORI & 01 & SPEC & \(\bar{p} e^{-} \mathrm{He}\) atom \\
\hline \(<5 \times 10^{-7}\) & & 2 TORII & 99 & SPEC & \(\bar{p} e^{-} \mathrm{He}\) atom \\
\hline
\end{tabular}
\({ }^{1}\) HORI 01, HORI 03, HORI 06, and HORI 11 use the more-precisely-known constraint on the \(\bar{p}\) charge-to-mass ratio of GABRIELSE 99 (see below) to get their results. Their results are not independent of the HORI 01, HORI 03, HORI 06, and HORI 11 values for \(\left|q_{p}+q_{\bar{p}}\right| / e\), below.
\({ }^{2}\) TORII 99 uses the more-precisely-known constraint on the \(\bar{p}\) charge-to-mass ratio of GABRIELSE 95 (see below) to get this result. This is not independent of the TORII 99 value for \(\left|q_{p}+q_{\bar{p}}\right| / e\), below.

\section*{\(\bar{p} / p\) CHARGE-TO-MASS RATIO, \(\left|\frac{q_{\bar{p}}}{m_{\bar{p}}}\right| /\left(\frac{q_{p}}{m_{p}}\right)\)}

A test of CPT invariance. Listed here are measurements involving the inertial masses. For a discussion of what may be inferred about the ratio of \(\bar{p}\) and \(p\) gravitational masses, see ERICSON 90; they obtain an upper bound of \(10^{-6}-10^{-7}\) for violation of the equivalence principle for \(\bar{p}\) 's.
\begin{tabular}{|c|c|c|c|c|}
\hline LUE & OCUMENT & & ECN & OMMENT \\
\hline \(1.000000000001 \pm 0.000000000069\) & ULMER & & TRAP & Penning trap \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(0.99999999991 \pm 0.0000000009\) & GABRIELSE & & RA & , \\
\hline \(1.0000000015 \pm 0.0000000011\) & GABRIELS & 95 & TRA & Penning tr \\
\hline \(1.000000023 \pm 0.000000042\) & 2 GABRIELSE & 90 & TRAP & , \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Equation (2) of GABRIELSE 95 should read \(M(\bar{p}) / M(p)=0.9999999985\) (11) (G. Gabrielse, private communication).} \\
\hline \multicolumn{5}{|l|}{\({ }^{2}\) GABRIELSE 90 also measures \(m_{\bar{p}} / m_{e^{-}}=1836.152660 \pm 0.000083\) and \(m_{p} / m_{e}\) \(=1836.152680 \pm 0.000088\). Both are completely consistent with the 1986 CODATA (COHEN 87) value for \(m_{p} / m_{e^{-}}\)of \(1836.152701 \pm 0.000037\).} \\
\hline
\end{tabular}

\section*{\(\left(\left.\frac{q_{p}}{m_{\&}} \right\rvert\, \frac{q_{p}}{m_{P}}\right) / \frac{q_{p}}{m_{P}}\)}

A test of CPT invariance. Taken from the \(\bar{p} / p\) charge-to-mass ratio, above.
VALUE DOCUMENT ID
\((0.1 \pm 6.9) \times 10^{-11}\) OUR EVALUATION

\section*{\(\left|q_{p}+q_{\bar{p}}\right| e\)}

A test of \(C P T\) invariance. Note that the comparison of the \(\bar{p}\) and \(p\) charge-to-mass ratios given above is much better determined. See also a similar test involving the electron.

\({ }^{1}\) HORI 01, HORI 03, HORI 06, and HORI 11 use the more-precisely-known constraint on the \(\bar{p}\) charge-to-mass ratio of GABRIELSE 99 (see above) to get their results. Their results are not independent of the HORI 01, HORI 03, HORI 06, and HORI 11 values for \(\left|m_{p}-m_{\bar{p}}\right| / m_{p}\), above.
2 TORII 99 uses the more-precisely-known constraint on the \(\bar{p}\) charge-to-mass ratio of GABRIELSE 95 (see above) to get this result. This is not independent of the TORII 99 value for \(\left|m_{p}-m_{\bar{p}}\right| / m_{p}\), above.
\({ }^{3}\) HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ratios.

\section*{\(\left|q_{p}+q_{e}\right| / e\)}

See BRESSI 11 for a summary of experiments on the neutrality of matter. See also " \(n\) CHARGE" in the neutron Listings.
\begin{tabular}{|c|c|c|c|}
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & COMMENT \\
\hline \(<1 \times 10^{-21}\) & 1 BRESSI & 11 & Neutrality of \(\mathrm{SF}_{6}\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<3.2 \times 10^{-20}\) & 2 SENGUP & 00 & binary pulsar \\
\hline \(<0.8 \times 10^{-21}\) & MARINE & 84 & Magnetic levitation \\
\hline \(<1.0 \times 10^{-21}\) & \({ }^{1}\) DYLLA & 73 & Neutrality of \(\mathrm{SF}_{6}\) \\
\hline
\end{tabular}
\({ }^{1}\) BRESSI 11 uses the method of DYLLA 73 but finds serious errors in that experiment that greatly reduce its accuracy. The BRESSI 11 limit assumes that \(n \rightarrow p e^{-} \nu_{e}\) conserves charge. Thus the limit applies equally to the charge of the neutron
2 SENGUPTA 00 uses the difference between the observed rate of of rotational energy loss by the binary pulsar PSR B1913+16 and the rate predicted by general relativity to set this limit. See the paper for assumptions.

\section*{p MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\operatorname{VALUE}\left(\mu_{N}\right)\)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{\(2.79284734462 \pm 0.00000000082\)} & SCHNEIDER & 17 & TRAP & Double Penning trap \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 2.7928473508 & \(\pm 0.0000000085\) & MOHR & 16 & RVUE & 2014 CODATA value \\
\hline 2.792847356 & \(\pm 0.000000023\) & MOHR & 12 & RVUE & 2010 CODATA value \\
\hline 2.792847356 & \(\pm 0.000000023\) & MOHR & 08 & RVUE & 2006 CODATA value \\
\hline 2.792847351 & \(\pm 0.000000028\) & MOHR & 05 & RVUE & 2002 CODATA value \\
\hline 2.792847337 & \(\pm 0.000000029\) & MOHR & 99 & RVUE & 1998 CODATA value \\
\hline 2.792847386 & \(\pm 0.000000063\) & COHEN & 87 & RVUE & 1986 CODATA value \\
\hline
\end{tabular}

\section*{\(\bar{p}\) MAGNETIC MOMENT}

A few early results have been omitted.
\(\frac{\operatorname{VALUE}\left(\mu_{N}\right)}{-\mathbf{2 . 7 9 2 8 4 7 3 4 4 1} \pm \mathbf{0 . 0 0 0 0 0 0 0 0 4 2}}\)
\(\frac{\text { DOCUMENT ID }}{\text { SMORRA } \quad 17} \frac{\text { TECN }}{\text { TRAP }} \frac{\text { COMMENT }}{\begin{array}{c}\text { Hot/cold } \bar{p} \text { frequencies, } \\ \text { Penning traps }\end{array}}\)
- - We do not use the following data for averages, fits, limits, etc. • - -
\begin{tabular}{llllll}
-2.7928465 & \(\pm 0.0000023\) & NAGAHAMA 17 & TRAP & Single \(\bar{p}\), Penning trap \\
-2.792845 & \(\pm 0.000012\) & DISCIACCA & 13 & TRAP & Single \(\bar{p}\), Penning trap \\
-2.7862 & \(\pm 0.0083\) & PASK & 09 & CNTR & \(\bar{p}\) He + hyperfine structure \\
-2.8005 & \(\pm 0.0090\) & KREISSL & 88 & CNTR & \(\bar{p}\) \\
\(-208 \mathrm{~Pb} 11 \rightarrow 10\) X-ray \\
-2.817 & \(\pm 0.048\) & ROBERTS & 78 & CNTR & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\left(\mu_{p}+\mu_{\bar{p}}\right) / \mu_{p}\)} \\
\hline \multicolumn{5}{|c|}{A test of CPT invariance.} \\
\hline VALUE (units \(10^{-6}\) ) & \multicolumn{2}{|l|}{DOCUMENTID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(0.002 \pm 0.004\) & SMORRA & 17 & TRAP & \[
\begin{aligned}
& \text { Hot/cold } \\
& \text { Penning }
\end{aligned}
\] \\
\hline - - We do not & ata for avera & , fits & limits, & tc. - - \\
\hline \(0.3 \pm 0.8\) & NAGAHAM & 17 & TRAP & Single \(\bar{p}\), \\
\hline \(0 \pm 5\) & DISCIACCA & 13 & TRAP & Single \(\bar{p}\), \\
\hline
\end{tabular}

\section*{p ELECTRIC DIPOLE MOMENT}

A nonzero value is forbidden by both \(T\) invariance and \(P\) invariance.
\begin{tabular}{|c|c|c|}
\hline VALUE ( \(10^{-23} \mathrm{ecm}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline 0.021 & \({ }^{1}\) SAHO & \({ }^{199}\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline < & \multicolumn{2}{|l|}{0.54} & 1 DMITRIEV & 03 & & Theory plus \({ }^{199} \mathrm{Hg}\) atom EDM \\
\hline - & 3.7 & \(\pm \quad 6.3\) & CHO & 89 & NMR & TI F molecules \\
\hline \(<\) & 400 & & DZUBA & 85 & THEO & Uses \({ }^{129}\) Xe moment \\
\hline & 130 & \(\pm 200\) & 2 WILKENING & 84 & & \\
\hline & 900 & \(\pm 1400\) & 3 WILKENING & 84 & & \\
\hline & 700 & \(\pm 900\) & HARRISON & 69 & MBR & Molecular beam \\
\hline
\end{tabular}
\({ }^{1}\) SAHOO 17 and DMITRIEV 03 are not direct measurements of the proton electric dipole moment. They use theory to calculate this limit from the limit on the electric dipole moment of the \({ }^{199} \mathrm{Hg}\) atom.
\({ }^{2}\) This WILKENING 84 value includes a finite-size effect and a magnetic effect.
\({ }^{3}\) This WILKENING 84 value is more cautious than the other and excludes the finite-size effect, which relies on uncertain nuclear integrals.

\section*{\(p\) ELECTRIC POLARIZABILITY \(\alpha_{p}\)}

For a very complete review of the "polarizability of the nucleon and Compton scattering," see SCHUMACHER 05. His recommended values for the proton are \(\alpha_{p}=(12.0 \pm 0.6) \times 10^{-4} \mathrm{fm}^{3}\) and \(\beta_{p}=(1.9 \mp 0.6) \times 10^{-4}\) \(\mathrm{fm}^{3}\), almost exactly our averages.

VALUE \(\left(10^{-4} \mathrm{fm}^{3}\right)\)
\(11.2 \mathbf{\pm} \mathbf{0 . 4}\) OUR AVERAGE
\(10.65 \pm 0.35 \pm 0.36\)
\(12.1 \pm 1.1 \pm 0.5\)
MCGOVERN
1 BEANE
\({ }^{2}\) BLANPIED
\(\pm 0.5 \pm 1.3\)
3 OLMOSDEL... TECN COMMENT

RVUE global average
\(12.5 \pm 0.6 \pm 0.9 \quad\) MACGIBBON 95 CNTR \(\gamma p\) Compton scattering
\(9.8 \pm 0.4 \pm 1.1 \quad\) HALLIN 93 CNTR \(\gamma p\) Compton scattering
\(10.62_{-1.19}^{+1.25+1.07} \quad\) ZIEGER \(\quad 92\) CNTR \(\gamma p\) Compton scattering
\(10.9 \pm 2.2 \pm 1.3 \quad{ }^{6}\) FEDERSPIEL \(91 \quad\) CNTR \(\gamma p\) Compton scattering
\({ }^{1}\) BEANE 03 uses effective field theory and low-energy \(\gamma p\) and \(\gamma d\) Compton-scattering data. It also gets for the isoscalar polarizabilities (see the erratum) \(\alpha_{N}=(13.0 \pm\) \(\left.1.9_{-1.5}^{+3.9}\right) \times 10^{-4} \mathrm{fm}^{3}\) and \(\beta_{N}=\left(-1.8 \pm 1.9_{-0.9}^{+2.1}\right) \times 10^{-4} \mathrm{fm}^{3}\).
\({ }^{2}\) BLANPIED 01 gives \(\alpha_{p}+\beta_{p}\) and \(\alpha_{p}-\beta_{p}\). The separate \(\alpha_{p}\) and \(\beta_{p}\) are provided to us by \(A\). Sandorfi. The first error above is statistics plus systematics; the second is from the model.
\({ }^{3}\) This OLMOSDELEON 01 result uses the TAPS data alone, and does not use the (reevaluated) sum-rule constraint that \(\alpha+\beta=(13.8 \pm 0.4) \times 10^{-4} \mathrm{fm}^{3}\). See the paper for a discussion.
4 MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion.
\({ }^{5}\) BARANOV 01 combines the results of 10 experiments from 1958 through 1995 to get a global average that takes into account both systematic and model errors and does not use the theoretical constraint on the sum \(\alpha_{p}+\beta_{p}\)
\({ }^{6}\) FEDERSPIEL 91 obtains for the (static) electric polarizability \(\alpha_{p}\), defined in terms of the induced electric dipole moment by \(\mathbf{D}=4 \pi \epsilon_{0} \alpha_{p} \mathbf{E}\), the value \((7.0 \pm 2.2 \pm 1.3) \times 10^{-4} \mathrm{fm}^{3}\).

\section*{\(p\) MAGNETIC POLARIZABILITY \(\beta_{\boldsymbol{p}}\)}

The electric and magnetic polarizabilities are subject to a dispersion sumrule constraint \(\bar{\alpha}+\bar{\beta}=(14.2 \pm 0.5) \times 10^{-4} \mathrm{fm}^{3}\). Errors here are anticorrelated with those on \(\bar{\alpha}_{p}\) due to this constraint.

\section*{VALUE \(\left(10^{-4} \mathrm{fm}^{3}\right)\) DOCUMENT ID TECN COMMENT}
\(\overline{2.5} \mathbf{\pm 0 . 4}\) OUR AVERAGE Error includes scale factor of 1.2.
\(3.15 \pm 0.35 \pm 0.36 \quad\) MCGOVERN 13 RVUE \(\chi\) EFT + Compton scattering
\(3.4 \pm 1.1 \pm 0.1\)
\(1.43 \pm 0.98_{-0.98}^{+0.52}\)
\({ }^{1}\) BEANE \(03 \quad\) EFT \(+\gamma p\)
\({ }^{2}\) BLANPIED 01 LEGS \(p(\vec{\gamma}, \gamma), p\left(\vec{\gamma}, \pi^{0}\right), p\left(\vec{\gamma}, \pi^{+}\right)\)
\(1.2 \pm 0.7 \pm 0.5\)
\({ }^{3}\) OLMOSDEL... 01 CNTR \(\gamma p\) Compton scattering
\(2.1 \pm 0.8 \pm 0.5\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\(2.3 \pm 0.9 \pm 0.7 \quad 5\) BARANOV 01 RVUE Global average
\(1.7 \pm 0.6 \pm 0.9 \quad\) MACGIBBON 95 CNTR \(\gamma p\) Compton scattering
\(4.4 \pm 0.4 \pm 1.1 \quad\) HALLIN \(\quad 93\) CNTR \(\gamma p\) Compton scattering
3.58 \({ }_{-1.25-1.07}^{+1.19+1.03} \quad\) ZIEGER 92 CNTR \(\gamma p\) Compton scattering
\(3.3 \pm 2.2 \pm 1.3 \quad\) FEDERSPIEL 91 CNTR \(\gamma p\) Compton scattering
\({ }^{1}\) BEANE 03 uses effective field theory and low-energy \(\gamma p\) and \(\gamma d\) Compton-scattering data. It also gets for the isoscalar polarizabilities (see the erratum) \(\alpha_{N}=(13.0 \pm\) \(\left.1.9_{-1.5}^{+3.9}\right) \times 10^{-4} \mathrm{fm}^{3}\) and \(\beta_{N}=\left(-1.8 \pm 1.9_{-0.9}^{+2.1}\right) \times 10^{-4} \mathrm{fm}^{3}\).
\({ }^{2}\) BLANPIED 01 gives \(\alpha_{p}+\beta_{p}\) and \(\alpha_{p}-\beta_{p}\). The separate \(\alpha_{p}\) and \(\beta_{p}\) are provided to us by A. Sandorfi. The first error above is statistics plus systematics; the second is from the model.
3 This OLMOSDELEON 01 result uses the TAPS data alone, and does not use the (reevaluated) sum-rule constraint that \(\alpha+\beta=(13.8 \pm 0.4) \times 10^{-4} \mathrm{fm}^{3}\). See the paper for
4 a discussion. 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own
experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion.
\({ }^{5}\) BARANOV 01 combines the results of 10 experiments from 1958 through 1995 to get a global average that takes into account both systematic and model errors and does not use the theoretical constraint on the sum \(\alpha_{p}+\beta_{p}\).

\section*{\(p\) CHARGE RADIUS}

This is the rms electric charge radius, \(\sqrt{\left\langle r_{E}^{2}\right\rangle}\).
There are three kinds of measurements of the proton radius: via transitions in atomic hydrogen; via electron scattering off hydrogen; and via muonic hydrogen Lamb shift. Most measurements of the radius of the proton involve electron-proton interactions, the most recent of which is the electron scattering measurement \(r_{p}=0.831(14) \mathrm{fm}\) (XIONG 19), and the atomic-hydrogen value, \(r_{p}=0.833(10) \mathrm{fm}\) (BEZGINOV 19). These agree well with another recent atomic-hydrogen value \(r_{p}=0.8335(95) \mathrm{fm}\) (BEYER 17), and with the best measurement using muonic hydrogen \(r_{p}\) \(=0.84087(39) \mathrm{fm}(\) ANTOGNINI 13) , that is far more precise.

The MOHR 16 value ( 2014 CODATA), obtained from the electronic results available at the time, was \(0.8751(61) \mathrm{fm}\). This differs by 5.6 standard deviations from the muonic hydrogen value, leading to the so-called proton charge radius puzzle. See our 2018 edition (Physical Review D98 030001 (2018)) for a further discussion of interpretations of this puzzle. However, reflecting the new electronic measurements, the 2018 CODATA recommended value is \(0.8414(19) \mathrm{fm}\), and the puzzle appears to be resolved.

See our 2014 edition (Chinese Physics C38 070001 (2014)) for values published before 2003.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{VALUE (fm)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{7}{|l|}{\(0.8409 \pm 0.0004\) OUR AVERAGE} \\
\hline 0.833 & \(\pm 0.010\) & & \({ }^{1}\) BEZGGINOV & 19 & LASR & 2S-2P transition in H \\
\hline 0.831 & \(\pm 0.007\) & \(\pm 0.012\) & \({ }^{2}\) XIONG & 19 & SPEC & \(e p \rightarrow e p\) form factor \\
\hline 0.84087 & \(7 \pm 0.00026\) & \(\pm 0.00029\) & ANTOGNINI & 13 & LASR & \(\mu p\)-atom Lamb shift \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.877 & \(\pm 0.013\) & & \({ }^{3}\) FLEURBAEY & 18 & LASR & 1S-3S transition in H \\
\hline 0.8335 & \(\pm 0.0095\) & & \({ }^{4}\) BEYER & 17 & LASR & 2S-4P transition in H \\
\hline 0.8751 & \(\pm 0.0061\) & & MOHR & 16 & RVUE & 2014 CODATA value \\
\hline 0.895 & \(\pm 0.014\) & \(\pm 0.014\) & \({ }^{5}\) LEE & 15 & SPEC & Just 2010 Mainz data \\
\hline 0.916 & \(\pm 0.024\) & & LEE & 15 & SPEC & World data, no Mainz \\
\hline 0.8775 & \(\pm 0.0051\) & & MOHR & 12 & RVUE & 2010 CODATA, ep data \\
\hline 0.875 & \(\pm 0.008\) & \(\pm 0.006\) & ZHAN & 11 & SPEC & Recoil polarimetry \\
\hline 0.879 & \(\pm 0.005\) & \(\pm 0.006\) & BERNAUER & 10 & SPEC & \(e p \rightarrow e p\) form factor \\
\hline 0.912 & \(\pm 0.009\) & \(\pm 0.007\) & BORISYUK & 10 & & reanalyzes old ep data \\
\hline 0.871 & \(\pm 0.009\) & \(\pm 0.003\) & HILL & 10 & & z-expansion reanalysis \\
\hline 0.84184 & \(\pm 0.00036\) & \(\pm 0.00056\) & POHL & 10 & LASR & See ANTOGNINI 13 \\
\hline 0.8768 & \(\pm 0.0069\) & & MOHR & 08 & RVUE & 2006 CODATA value \\
\hline 0.844 & \[
\begin{array}{r}
+0.008 \\
-0.004
\end{array}
\] & & BELUSHKIN & 07 & & Dispersion analysis \\
\hline 0.897 & \(\pm 0.018\) & & BLUNDEN & 05 & & SICK \(03+2 \gamma\) correction \\
\hline 0.8750 & \(\pm 0.0068\) & & MOHR & 05 & RVUE & 2002 CODATA value \\
\hline 0.895 & \(\pm 0.010\) & \(\pm 0.013\) & SICK & 03 & & \(e p \rightarrow e p\) reanalysis \\
\hline
\end{tabular}
\({ }^{1}\) BEZGINOV 19 measures the \(2 S_{1 / 2}\) to \(2 P_{1 / 2}\) transition frequency in atomic hydrogen
using the frequency-offset separated oscillatory field (FOSOF) technique. The result
agrees well with the muonic hydrogen Lamb shift value.
2 The XIONG 19 value from ep ep scattering and supports the muonic hydrogen Lamb 3 shift value.
3 FLEURBAEY 18 measures the 1S-3S transition frequency in hydrogen and in combination with the \(1 \mathrm{~S}-2 \mathrm{~S}\) transition frequency deduces the proton radius and the Rydberg constant.
\({ }^{4}\) The BEYER 17 result is 3.3 combined standard deviations below the MOHR 16 (2014 CODATA) value. The experiment measures the \(2 \mathrm{~S}-4 \mathrm{P}\) transition in hydrogen and gets the proton radius and the Rydberg constant.
\({ }^{5}\) Authors also provide values for combinations of all available data.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(p\) MAGNETIC RADIUS} \\
\hline \multicolumn{6}{|l|}{This is the rms magnetic radius, \(\sqrt{\left\langle r_{M}^{2}\right\rangle}\).} \\
\hline VALUE (fm) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \[
0.851 \pm 0.026
\] & \[
1 \overline{\mathrm{LEE}}
\] & 15 &  & Combinat Mainz & \\
\hline - - We do not use & lowing data for & ver & , fit & mits, etc. & \\
\hline \(0.87 \pm 0.02\) & EPSTEIN & 14 & & Using ep, & \\
\hline \(0.867 \pm 0.009 \pm 0.018\) & ZHAN & 11 & SPEC & Recoil pola & \\
\hline \(0.777 \pm 0.013 \pm 0.010\) & BERNAUER & 10 & SPEC & \(e p \rightarrow e p\) & \\
\hline \(0.876 \pm 0.010 \pm 0.016\) & BORISYUK & 10 & & Reanalyze & \\
\hline \(0.854 \pm 0.005\) & BELUSHKIN & 07 & & Dispersion & \\
\hline \({ }^{1}\) In a consistent re only ( \(0.776+-0.0\) \(0.035) \mathrm{fm}\). The discrepancies and & LEE 2015 ext 017) fm and fo value is a simple wn correlations & the com nd & ues se orld da nation ould be & arately for without the two, onsidered & \\
\hline
\end{tabular}

\section*{p MEAN LIFE}

A test of baryon conservation. See the " \(p\) Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton ( \(p\) ) or ( \(n\) ). See also the \(3 \nu\) modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { LIMIT } \\
& \text { (years) }
\end{aligned}
\] & PARTICLE & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \(>3.6 \times 10^{29}\) & p & 90 & 1 ANDERSON & 19A & SNO+ & \(p \rightarrow\) invisible \\
\hline \(>5.8 \times 10^{29}\) & \(n\) & 90 & 2 ARAKI & 06 & KLND & \(n \rightarrow\) invisible \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline \(>2.5 \times 10^{29}\) & \(n\) & 90 & \({ }^{1}\) ANDERSON & 19A & SNO+ & \(n \rightarrow\) invisible \\
\hline \(>2.1 \times 10^{29}\) & \(p\) & 90 & \({ }_{1}^{1}\) AHMED & 04 & SNO & \(p \rightarrow\) invisible \\
\hline \(>1.9 \times 10^{29}\) & \(n\) & 90 & 1 AHMED & 04 & SNO & \(n \rightarrow\) invisible \\
\hline \(>1.8 \times 10^{25}\) & \(n\) & 90 & \({ }^{3} \mathrm{BACK}\) & 03 & BORX & \\
\hline \(>1.1 \times 10^{26}\) & \(p\) & 90 & \({ }^{3} \mathrm{BACK}\) & 03 & BORX & \\
\hline \(>3.5 \times 10^{28}\) & \(p\) & 90 & 4 ZDESENKO & 03 & & \(p \rightarrow\) invisible \\
\hline \(>1 \times 10^{28}\) & \(p\) & 90 & \({ }^{5}\) AHMAD & 02 & SNO & \(p \rightarrow\) invisible \\
\hline \(>4 \times 10^{23}\) & \(p\) & 95 & TRETYAK & 01 & & \(d \rightarrow n+\) ? \\
\hline \(>1.9 \times 10^{24}\) & \(p\) & 90 & \({ }^{6}\) BERNABEI & 00B & DAMA & \\
\hline \(>1.6 \times 10^{25}\) & \(p, n\) & & 7,8 EVANS & 77 & & \\
\hline \(>3 \times 10^{23}\) & \(p\) & & \({ }^{8}\) DIX & 70 & CNTR & \\
\hline \(>3 \times 10^{23}\) & \(p, n\) & & 8,9 FLEROV & 58 & & \\
\hline
\end{tabular}
\({ }^{1}\) AHMED 04 and ANDERSON 19A look for \(\gamma\) rays from the de-excitation of a residual \({ }^{15} \mathrm{O}^{*}\) or \({ }^{15} \mathrm{~N}^{*}\) following the disappearance of a neutron or proton in \({ }^{16} \mathrm{O}\).
\({ }^{2}\) ARAKI 06 looks for signs of de-excitation of the residual nucleus after disappearance of 3 a neutron from the \(s\) shell of \({ }^{12} \mathrm{C}\).
\({ }^{3}\) BACK 03 looks for decays of unstable nuclides left after \(N\) decays of parent \({ }^{12} \mathrm{C},{ }^{13} \mathrm{C}\),
\({ }^{16}\) O nuclei. These are "invisible channel" limits.
\({ }^{4}\) ZDESENKO 03 gets this limit on proton disappearance in deuterium by analyzing SNO data in AHMAD 02.
\({ }^{5}\) AHMAD 02 (see its footnote 7) looks for neutrons left behind after the disappearance of the proton in deuterons.
\({ }^{6}\) BERNABEI 00B looks for the decay of a \(\frac{128}{53}\) I nucleus following the disappearance of a proton in the otherwise-stable \({ }_{54}^{129}\) Xe nucleus.
\({ }^{7}\) EVANS 77 looks for the daughter nuclide \({ }^{129}\) Xe from possible \({ }^{130}\) Te decays in ancient Te ore samples.
\({ }^{8}\) This mean-life limit has been obtained from a half-life limit by dividing the latter by \(\ln (2)\) \(=0.693\)
\({ }^{9}\) FLEROV 58 looks for the spontaneous fission of a \({ }^{232}\) Th nucleus after the disappearance of one of its nucleons.

\section*{\(\bar{p}\) MEAN LIFE}

Of the two astrophysical limits here, that of GEER 00D involves considerably more refinements in its modeling. The other limits come from direct observations of stored antiprotons. See also " \(\bar{p}\) Partial Mean Lives" after " \(p\) Partial Mean Lives," below, for exclusive-mode limits. The best (lifetime/branching fraction) limit there is \(7 \times 10^{5}\) years, for \(\bar{p} \rightarrow e^{-\gamma}\). We advance only the exclusive-mode limits to our Summary Tables.

LIMIT
(years)
CL\% EVTS DOCUMENT ID TECN COMMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(>5.0\) & & 90 & & SELLNER & 17 & TRAP & Penning trap \\
\hline \(>8\) & \(\times 10^{5}\) & 90 & & \({ }^{1}\) GEER & 00D & & \(\bar{p} / p\) ratio, cosmic rays \\
\hline \(>0.28\) & & & & GABRIELSE & 90 & TRAP & Penning trap \\
\hline \(>0.08\) & & 90 & 1 & BELL & 79 & CNTR & Storage ring \\
\hline \(>1\) & \(\times 10^{7}\) & & & GOLDEN & 79 & SPEC & \(\bar{p} / p\) ratio, cosmic rays \\
\hline \(>3.7\) & \(\times 10^{-3}\) & & & BREGMAN & 78 & CNTR & Storage ring \\
\hline
\end{tabular}
\({ }^{1}\) GEER 00D uses agreement between a model of galactic \(\bar{p}\) production and propagation and the observed \(\bar{p} / p\) cosmic-ray spectrum to set this limit.

\section*{\(p\) DECAY MODES}

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. D50, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on \(\tau / \mathrm{B}_{i}\), where \(\tau\) is the total mean life and \(B_{i}\) is the branching fraction for the mode in question. For \(N\) decays, \(p\) and \(n\) indicate proton and neutron partial lifetimes.
\begin{tabular}{|c|c|c|c|}
\hline & Mode & Partial mean life ( \(10^{30}\) years) & \\
\hline \multicolumn{4}{|c|}{Antilepton + meson} \\
\hline \(\tau_{1}\) & \(N \rightarrow e^{+} \pi\) & > \(5300(n),>16000(p)\) & 90\% \\
\hline \(\tau_{2}\) & \(N \rightarrow \mu^{+} \pi\) & \(>3500\) (n), > 7700 (p) & 90\% \\
\hline \(\tau_{3}\) & \(N \rightarrow \nu \pi\) & \(>1100\) (n), > 390 (p) & 90\% \\
\hline \(\tau_{4}\) & \(p \rightarrow e^{+} \eta\) & > 10000 & 90\% \\
\hline \(\tau_{5}\) & \(p \rightarrow \mu^{+} \eta\) & \(>4700\) & 90\% \\
\hline \(\tau_{6}\) & \(n \rightarrow \nu \eta\) & \(>158\) & 90\% \\
\hline \(\tau_{7}\) & \(N \rightarrow e^{+} \rho\) & \(>217\) (n), > 720 (p) & 90\% \\
\hline \(\tau_{8}\) & \(N \rightarrow \mu^{+} \rho\) & \(>228(n),>570(p)\) & 90\% \\
\hline \(\tau_{9}\) & \(N \rightarrow \nu \rho\) & \(>19(n),>162(p)\) & 90\% \\
\hline \(\tau_{10}\) & \(p \rightarrow e^{+} \omega\) & \(>1600\) & 90\% \\
\hline \(\tau_{11}\) & \(p \rightarrow \mu^{+} \omega\) & \(>2800\) & 90\% \\
\hline \(\tau_{12}\) & \(n \rightarrow \nu \omega\) & \(>108\) & 90\% \\
\hline \(\tau_{13}\) & \(N \rightarrow e^{+} K\) & \(>17(n),>1000(p)\) & 90\% \\
\hline \(\tau_{14}\) & \(p \rightarrow e^{+} K_{S}^{0}\) & & \\
\hline \(\tau_{15}\) & \(p \rightarrow e^{+} K_{L}^{0}\) & & \\
\hline \(\tau_{16}\) & \(N \rightarrow \mu^{+} K\) & > \(26(n),>1600(p)\) & 90\% \\
\hline \(\tau_{17}\) & \(p \rightarrow \mu^{+} K_{S}^{0}\) & & \\
\hline \(\tau_{18}\) & \(p \rightarrow \mu^{+} K_{L}^{0}\) & & \\
\hline \(\tau_{19}\) & \(N \rightarrow \nu K\) & \(>86(n),>5900(p)\) & 90\% \\
\hline \(\tau_{20}\) & \(n \rightarrow \nu K_{S}^{0}\) & \(>260\) & 90\% \\
\hline \(\tau_{21}\) & \(p \rightarrow e^{+} K^{*}(892)^{0}\) & \(>84\) & 90\% \\
\hline \(\tau_{22}\) & \(N \rightarrow \nu K^{*}(892)\) & \(>78(n),>51(p)\) & 90\% \\
\hline \multicolumn{4}{|c|}{Antilepton + mesons} \\
\hline \(\tau_{23}\) & \(p \rightarrow e^{+} \pi^{+} \pi^{-}\) & \(>82\) & 90\% \\
\hline \(\tau_{24}\) & \(p \rightarrow e^{+} \pi^{0} \pi^{0}\) & \(>147\) & 90\% \\
\hline \(\tau_{25}\) & \(n \rightarrow e^{+} \pi^{-} \pi^{0}\) & \(>52\) & 90\% \\
\hline \(\tau_{26}\) & \(p \rightarrow \mu^{+} \pi^{+} \pi^{-}\) & \(>133\) & 90\% \\
\hline \(\tau_{27}\) & \(p \rightarrow \mu^{+} \pi^{0} \pi^{0}\) & \(>101\) & 90\% \\
\hline \(\tau_{28}\) & \(n \rightarrow \mu^{+} \pi^{-} \pi^{0}\) & \(>74\) & 90\% \\
\hline \(\tau_{29}\) & \(n \rightarrow e^{+} K^{0} \pi^{-}\) & \(>18\) & 90\% \\
\hline \multicolumn{4}{|c|}{Lepton + meson} \\
\hline \(\tau_{30}\) & \(n \rightarrow e^{-} \pi^{+}\) & \(>65\) & 90\% \\
\hline \(\tau_{31}\) & \(n \rightarrow \mu^{-} \pi^{+}\) & \(>49\) & 90\% \\
\hline \(\tau_{32}\) & \(n \rightarrow e^{-} \rho^{+}\) & \(>62\) & 90\% \\
\hline \(\tau_{33}\) & \(n \rightarrow \mu^{-} \rho^{+}\) & \(>7\) & 90\% \\
\hline \(\tau_{34}\) & \(n \rightarrow e^{-} K^{+}\) & \(>32\) & 90\% \\
\hline \(\tau_{35}\) & \(n \rightarrow \mu^{-} K^{+}\) & \(>57\) & 90\% \\
\hline \multicolumn{4}{|c|}{Lepton + mesons} \\
\hline \(\tau_{36}\) & \(p \rightarrow e^{-} \pi^{+} \pi^{+}\) & \(>30\) & 90\% \\
\hline \(\tau_{37}\) & \(n \rightarrow e^{-} \pi^{+} \pi^{0}\) & \(>29\) & 90\% \\
\hline \(\tau_{38}\) & \(p \rightarrow \mu^{-} \pi^{+} \pi^{+}\) & \(>17\) & 90\% \\
\hline \(\tau_{39}\) & \(n \rightarrow \mu^{-} \pi^{+} \pi^{0}\) & \(>34\) & 90\% \\
\hline \(\tau_{40}\) & \(p \rightarrow e^{-} \pi^{+} K^{+}\) & \(>75\) & 90\% \\
\hline \(\tau_{41}\) & \(p \rightarrow \mu^{-} \pi^{+} K^{+}\) & \(>245\) & 90\% \\
\hline \multicolumn{4}{|c|}{Antilepton + photon(s)} \\
\hline \(\tau_{42}\) & \(p \rightarrow e^{+} \gamma\) & \(>670\) & 90\% \\
\hline \(\tau_{43}\) & \(p \rightarrow \mu^{+} \gamma\) & \(>478\) & 90\% \\
\hline \(\tau_{44}\) & \(n \rightarrow \nu \gamma\) & \(>550\) & 90\% \\
\hline \(\tau_{45}\) & \(p \rightarrow e^{+} \gamma \gamma\) & \(>100\) & 90\% \\
\hline \(\tau_{46}\) & \(n \rightarrow \nu \gamma \gamma\) & > 219 & 90\% \\
\hline \multicolumn{4}{|c|}{Antilepton + single massless} \\
\hline \(\tau_{47}\) & \(p \rightarrow e^{+} X\) & \(>790\) & 90\% \\
\hline \(\tau_{48}\) & \(p \rightarrow \mu^{+} X\) & \(>410\) & 90\% \\
\hline \multicolumn{4}{|c|}{Three (or more) leptons} \\
\hline \(\tau_{49}\) & \(p \rightarrow e^{+} e^{+} e^{-}\) & \(>793\) & 90\% \\
\hline \(\tau_{50}\) & \(p \rightarrow e^{+} \mu^{+} \mu^{-}\) & > 359 & 90\% \\
\hline \(\tau_{51}\) & \(p \rightarrow e^{+} \nu \nu\) & > 170 & 90\% \\
\hline \(\tau_{52}\) & \(n \rightarrow e^{+} e^{-} \nu\) & \(>257\) & 90\% \\
\hline \(\tau_{53}\) & \(n \rightarrow \mu^{+} e^{-} \nu\) & \(>83\) & 90\% \\
\hline \(\tau_{54}\) & \(n \rightarrow \mu^{+} \mu^{-} \nu\) & \(>79\) & 90\% \\
\hline \(\tau_{55}\) & \(p \rightarrow \mu^{+} e^{+} e^{-}\) & > 529 & 90\% \\
\hline \(\tau_{56}\) & \(p \rightarrow \mu^{+} \mu^{+} \mu^{-}\) & > 675 & 90\% \\
\hline
\end{tabular}

Baryon Particle Listings
p
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\tau_{57}\) & \(p \rightarrow \mu^{+} \nu \nu\) & \(>220\) & 90\% & > & 250 & \(p\) & 90 & 0 & 0.3 & HAINES & 86 & IMB \\
\hline \(\tau_{58}\) & \(p \rightarrow e^{-} \mu^{+} \mu^{+}\) & \(>6\) & 90\% & > & 31 & \(n\) & 90 & 8 & 9 & HAINES & 86 & IMB \\
\hline \(\tau_{59}\) & \(n \rightarrow 3 \nu\) & > \(5 \times 10^{-4}\) & 90\% & > & 64 & \(p\) & 90 & 0 & <0.4 & ARISAKA & 85 & KAMI \\
\hline \multirow[t]{3}{*}{\(\tau_{6}\)} & \(n \rightarrow 5 \nu\) & & & > & 26 & \(n\) & 90 & 0 & <0.7 & ARISAKA & 85 & KAMI \\
\hline & \(n \rightarrow 5\) & & & > & 82 & \(p\) (free) & 90 & 0 & 0.2 & BLEWITT & 85 & IMB \\
\hline & \multicolumn{3}{|c|}{Inclusive modes} & > & 250 & \(p\) & 90 & 0 & 0.2 & BLEWITT & 85 & IMB \\
\hline \(\tau_{61}\) & \(N \rightarrow e^{+}\)anything & \(>0.6(n, p)\) & 90\% & \(>\) & 25 & \(n\) & 90 & 4 & 4 & PARK & 85 & \\
\hline \(\tau_{62}\) & \(N \rightarrow \mu^{+}\)anything & \(>12(n, p)\) & 90\% & > & 15 & \({ }_{p, n}{ }^{\text {n }}\) & 90
90 & 1 & & \({ }_{2}{ }^{\text {BATTISTONI }}\) & 84
83 & NUSX \\
\hline \(\tau_{63}\) & \(N \rightarrow \nu\) anything & & & > & 0.5
0.5 & \(p\) & 90
90 & 1 & 0.3
0.3 & \({ }^{2}\) BARARTELT & 83
83 & SOUD \\
\hline \(\tau_{64}\) & \(N \rightarrow e^{+} \pi^{0}\) anything & \(>0.6(n, p)\) & 90\% & \(>\) & 5.8 & \(p\) & 90 & 2 & & \({ }^{3}\) KRISHNA... & 82 & KOLR \\
\hline \(\tau_{65}\) & \(N \rightarrow 2\) bodies, \(\nu\)-free & & & > & 5.8 & \(n\) & 90 & 2 & & 3 KRISHNA... & 82 & KOLR \\
\hline & & & & > & 0.1 & \(n\) & 90 & & & \({ }^{4}\) GURR & 67 & CNTR \\
\hline
\end{tabular}
\(\Delta B=2\) dinucleon modes
The following are lifetime limits per iron nucleus.
\begin{tabular}{lll}
\(\tau_{66}\) & \(p p \rightarrow \pi^{+} \pi^{+}\) & \(>72.2\) \\
\(\tau_{67}\) & \(p n \rightarrow \pi^{+} \pi^{0}\) & \(>170\) \\
\(\tau_{68}\) & \(n n \rightarrow \pi^{+} \pi^{-}\) & \(>0.7\) \\
\(\tau_{69}\) & \(n n \rightarrow \pi^{0} \pi^{0}\) & \(>404\) \\
\(\tau_{70}\) & \(p p \rightarrow K^{+} K^{+}\) & \(>170\) \\
\(\tau_{71}\) & \(p p \rightarrow e^{+} e^{+}\) & \(>5.8\) \\
\(\tau_{72}\) & \(p p \rightarrow e^{+} \mu^{+}\) & \(>3.6\) \\
\(\tau_{73}\) & \(p p \rightarrow \mu^{+} \mu^{+}\) & \(>1.7\) \\
\(\tau_{74}\) & \(p n \rightarrow e^{+} \bar{\nu}\) & \(>260\) \\
\(\tau_{75}\) & \(p n \rightarrow \mu^{+} \bar{\nu}\) & \(>200\) \\
\(\tau_{76}\) & \(p n \rightarrow \tau^{+} \bar{\nu}_{\tau}\) & \(>29\) \\
\(\tau_{77}\) & \(n n \rightarrow \nu_{e} \bar{\nu}_{e}\) & \(>1.4\) \\
\(\tau_{78}\) & \(n n \rightarrow \nu_{\mu} \bar{\nu}_{\mu}\) & \(>1.4\) \\
\(\tau_{79}\) & \(p n \rightarrow\) invisible & \(>2.1 \times 10^{-5}\) \\
\(\tau_{80}\) & \(p p \rightarrow\) invisible & \(>5 \times 10^{-5}\)
\end{tabular}

\(\bar{p}\) DECAY MODES
\begin{tabular}{lllr} 
& Mode & \begin{tabular}{l} 
Partial mean life \\
(years)
\end{tabular} & Confidence level \\
\hline\(\tau_{81}\) & \(\bar{p} \rightarrow e^{-} \gamma\) & \(>7 \times 10^{5}\) & \(90 \%\) \\
\(\tau_{82}\) & \(\bar{p} \rightarrow \mu^{-} \gamma\) & \(>5 \times 10^{4}\) & \(90 \%\) \\
\(\tau_{83}\) & \(\bar{p} \rightarrow e^{-} \pi^{0}\) & \(>4 \times 10^{5}\) & \(90 \%\) \\
\(\tau_{84}\) & \(\bar{p} \rightarrow \mu^{-} \pi^{0}\) & \(>5 \times 10^{4}\) & \(90 \%\) \\
\(\tau_{85}\) & \(\bar{p} \rightarrow e^{-} \eta\) & \(>2 \times 10^{4}\) & \(90 \%\) \\
\(\tau_{86}\) & \(\bar{p} \rightarrow \mu^{-} \eta\) & \(>8 \times 10^{3}\) & \(90 \%\) \\
\(\tau_{87}\) & \(\bar{p} \rightarrow e^{-} K_{S}^{0}\) & \(>900\) & \(90 \%\) \\
\(\tau_{88}\) & \(\bar{p} \rightarrow \mu^{-} K_{S}^{0}\) & \(>4 \times 10^{3}\) & \(90 \%\) \\
\(\tau_{89}\) & \(\bar{p} \rightarrow e^{-} K_{L}^{0}\) & \(>9 \times 10^{3}\) & \(90 \%\) \\
\(\tau_{90}\) & \(\bar{p} \rightarrow \mu^{-} K_{L}^{0}\) & \(>7 \times 10^{3}\) & \(90 \%\) \\
\(\tau_{91}\) & \(\bar{p} \rightarrow e^{-} \gamma \gamma\) & \(>2 \times 10^{4}\) & \(90 \%\) \\
\(\tau_{92}\) & \(\bar{p} \rightarrow \mu^{-} \gamma \gamma\) & \(>2 \times 10^{4}\) & \(90 \%\) \\
\(\tau_{93}\) & \(\bar{p} \rightarrow e^{-} \omega\) & \(>200\) & \(90 \%\) \\
\hline
\end{tabular}

\section*{p PARTIAL MEAN LIVES}

The "partial mean life" limits tabulated here are the limits on \(\tau / \mathrm{B}_{\boldsymbol{i}}\), where \(\tau\) is the total mean life for the proton and \(\mathrm{B}_{\boldsymbol{i}}\) is the branching fraction for the mode in question.

Decaying particle: \(p=\) proton, \(n=\) bound neutron. The same event may appear under more than one partial decay mode. Background estimates may be accurate to a factor of two.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\tau\left(N \rightarrow e^{+} \pi\right)\)} & \(\tau_{1}\) \\
\hline \[
\begin{aligned}
& \text { LIMIIT } \\
& \underline{\left(10^{30}\right.} \text { years) } \\
& \hline
\end{aligned}
\] & PARTICLE & CL\% & EVTS BKGD EST & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN \\
\hline \(>16000\) & p & 90 & 00.61 & ABE & 17 & SKAM \\
\hline \(>5300\) & n & 90 & 00.41 & ABE & 17D & SKAM \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline > 2000 & \(n\) & 90 & \(0 \quad 0.27\) & NISHINO & 12 & SKAM \\
\hline \(>8200\) & p & 90 & 00.3 & NISHINO & 09 & SKAM \\
\hline \(>540\) & p & 90 & 00.2 & MCGREW & 99 & IMB3 \\
\hline \(>158\) & \(n\) & 90 & 35 & MCGREW & 99 & IMB3 \\
\hline \(>1600\) & \(p\) & 90 & 00.1 & SHIOZAWA & 98 & SKAM \\
\hline \(>70\) & \(p\) & 90 & 00.5 & BERGER & 91 & FREJ \\
\hline \(>70\) & \(n\) & 90 & \(0 \leq 0.1\) & BERGER & 91 & FREJ \\
\hline \(>550\) & \(p\) & 90 & 00.7 & 1 BECKER-SZ... & 90 & IMB3 \\
\hline \(>260\) & \(p\) & 90 & \(0<0.04\) & HIRATA & 89C & KAMI \\
\hline \(>130\) & \(n\) & 90 & \(0<0.2\) & HIRATA & 89C & KAMI \\
\hline \(>310\) & p & 90 & 00.6 & SEIDEL & 88 & IMB \\
\hline \(>100\) & \(n\) & 90 & 01.6 & SEIDEL & 88 & IMB \\
\hline \(>\quad 1.3\) & \(n\) & 90 & 0 & BARTELT & 87 & SOUD \\
\hline \(>\quad 1.3\) & \(p\) & 90 & 0 & BARTELT & 87 & SOUD \\
\hline
\end{tabular}

1 This BECKER-SZENDY 90 result includes data from SEIDEL 88.
2 Limit based on zero events.
\({ }^{3}\) We have calculated \(90 \%\) CL limit from 1 confined event.
\({ }^{4}\) We have converted half-life to \(90 \%\) CL mean life.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(\tau\left(N \rightarrow \mu^{+} \pi\right)\)} & \multirow[b]{2}{*}{TECN} \\
\hline \[
\begin{aligned}
& \text { LIMIT } \\
& \left(10^{30} \text { years }\right) \\
& \hline
\end{aligned}
\] & PARTICLE & CL\% & EVTS & BKGD EST & \multicolumn{2}{|l|}{DOCUMENT ID} & \\
\hline \(>7700\) & \(p\) & 90 & 2 & 0.87 & ABE & 17 & SKAM \\
\hline >3500 & \(n\) & 90 & 1 & 0.77 & ABE & 17D & SKAM \\
\hline \multicolumn{8}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>1000\) & \(n\) & 90 & 1 & 0.43 & NISHINO & 12 & SKAM \\
\hline \(>6600\) & \(p\) & 90 & 0 & 0.3 & NISHINO & 09 & SKAM \\
\hline \(>473\) & \(p\) & 90 & 0 & 0.6 & MCGREW & 99 & IMB3 \\
\hline \(>90\) & \(n\) & 90 & 1 & 1.9 & MCGREW & 99 & IMB3 \\
\hline \(>81\) & \(p\) & 90 & 0 & 0.2 & BERGER & 91 & FREJ \\
\hline \(>35\) & \(n\) & 90 & 1 & 1.0 & BERGER & 91 & FREJ \\
\hline \(>230\) & \(p\) & 90 & 0 & <0.07 & HIRATA & 89C & KAMI \\
\hline \(>100\) & \(n\) & 90 & 0 & <0.2 & HIRATA & 89C & KAMI \\
\hline \(>270\) & \(p\) & 90 & 0 & 0.5 & SEIDEL & 88 & IMB \\
\hline \(>63\) & \(n\) & 90 & 0 & 0.5 & SEIDEL & 88 & IMB \\
\hline \(>76\) & \(p\) & 90 & 2 & 1 & HAINES & 86 & IMB \\
\hline \(>23\) & \(n\) & 90 & 8 & 7 & HAINES & 86 & IMB \\
\hline \(>46\) & \(p\) & 90 & 0 & <0.7 & ARISAKA & 85 & KAMI \\
\hline \(>20\) & \(n\) & 90 & 0 & <0.4 & ARISAKA & 85 & KAMI \\
\hline \(>59\) & \(p\) (free) & 90 & 0 & 0.2 & BLEWITT & 85 & IMB \\
\hline \(>100\) & \(p\) & 90 & 1 & 0.4 & BLEWITT & 85 & IMB \\
\hline \(>38\) & \(n\) & 90 & 1 & 4 & PARK & 85 & IMB \\
\hline \(>10\) & \(p, n\) & 90 & 0 & & BATTISTONI & 84 & NUSX \\
\hline \(>1.3\) & \(p, n\) & 90 & 0 & & ALEKSEEV & 81 & BAKS \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\boldsymbol{\tau}(\boldsymbol{N} \rightarrow \boldsymbol{\nu})\) \\
\\
\hline\(I M I T\)
\end{tabular} \(\boldsymbol{\tau}_{\mathbf{3}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\left(10^{30}\right. \text { years }
\] & PARTICLE & \(\underline{C L} \%\) & EVTS & BKGD EST & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN \\
\hline \(>390\) & p & 90 & 52.8 & & ABE & 14E & SKAM \\
\hline \(>1100\) & \(n\) & 90 & 19.1 & & ABE & 14 E & SKAM \\
\hline \multicolumn{8}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>16\) & \(p\) & 90 & 6 & 6.7 & WALL & 00B & SOU2 \\
\hline \(>39\) & \(n\) & 90 & 4 & 3.8 & WALL & 00B & SOU2 \\
\hline \(>10\) & \(p\) & 90 & 15 & 20.3 & MCGREW & 99 & IMB3 \\
\hline \(>112\) & \(n\) & 90 & 6 & 6.6 & MCGREW & 99 & IMB3 \\
\hline \(>13\) & \(n\) & 90 & 1 & 1.2 & BERGER & 89 & FREJ \\
\hline \(>10\) & \(p\) & 90 & 11 & 14 & BERGER & 89 & FREJ \\
\hline \(>25\) & \(p\) & 90 & 32 & 32.8 & \({ }^{1}\) HIRATA & 89C & KAMI \\
\hline \(>100\) & \(n\) & 90 & 1 & 3 & HIRATA & 89C & KAMI \\
\hline \(>6\) & \(n\) & 90 & 73 & 60 & HAINES & 86 & IMB \\
\hline \(>2\) & \(p\) & 90 & 16 & 13 & KAJITA & 86 & KAMI \\
\hline \(>40\) & \(n\) & 90 & 0 & 1 & KAJITA & 86 & KAMI \\
\hline \(>7\) & \(n\) & 90 & 28 & 19 & PARK & 85 & IMB \\
\hline \(>7\) & \(n\) & 90 & 0 & & BATTISTONI & 84 & NUSX \\
\hline \(>2\) & \(p\) & 90 & \(\leq 3\) & & BATTISTONI & 84 & NUSX \\
\hline \(>5.8\) & \(p\) & 90 & 1 & & 2 KRISHNA... & 82 & KOLR \\
\hline \(>0.3\) & \(p\) & 90 & 2 & & \({ }^{3}\) CHERRY & 81 & HOME \\
\hline \(>0.1\) & \(p\) & 90 & & & 4 GURR & 67 & CNTR \\
\hline
\end{tabular}
\({ }^{1}\) In estimating the background, this HIRATA 89C limit (as opposed to the later limits of WALL 00B and MCGREW 99) does not take into account present understanding that the flux of \(\nu_{\mu}\) originating in the upper atmosphere is depleted. Doing so would reduce
the background and thus also would reduce the limit here.
\({ }^{2}\) We have calculated \(90 \%\) CL limit from 1 confined event
\({ }^{3}\) We have converted 2 possible events to \(90 \%\) CL limit.
\({ }^{4}\) We have converted half-life to \(90 \%\) CL mean life.
\(\tau\left(p \Rightarrow e^{+} \eta\right)\)
\(\frac{\left(10^{30} \text { years }\right)}{>10000} \frac{\text { PARTICLE }}{\boldsymbol{p}} \frac{C L \%}{\mathbf{9 0}} \frac{\text { EVTS }}{\mathbf{0}} \frac{\text { BKGD EST }}{\mathbf{0 . 7 8}} \quad\) DOCUMENT ID \(\quad \frac{\text { ABE }}{\text { ABE }} \frac{\text { TECN }}{\text { SKAM }}\)
- - We do not use the following data for averages, fits, limits, etc. • • •
\begin{tabular}{lrlllllll}
\(>\) & 4200 & \(p\) & 90 & 0 & 0.44 & NISHINO & 12 & SKAM \\
\(>\) & 81 & \(p\) & 90 & 1 & 1.7 & WALL & 00 B & SOU2 \\
\(>\) & 313 & \(p\) & 90 & 0 & 0.2 & MCGREW & 99 & IMB3 \\
\(>\) & 44 & \(p\) & 90 & 0 & 0.1 & BERGER & 91 & FREJ \\
\(>\) & 140 & \(p\) & 90 & 0 & \(<0.04\) & HIRATA & 89 C & KAMI \\
\(>\) & 100 & \(p\) & 90 & 0 & 0.6 & SEIDEL & 88 & IMB
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline > & 200 & \(p\) & 90 & 5 & 3.3 & HAINES & 86 & IMB \\
\hline > & 64 & \(p\) & 90 & 0 & <0.8 & ARISAKA & 85 & KAMI \\
\hline > & 64 & \(p\) (free) & 90 & 5 & 6.5 & BLEWITT & 85 & IMB \\
\hline > & 200 & \(p\) & 90 & 5 & 4.7 & BLEWITT & 85 & IMB \\
\hline > & 1.2 & \(p\) & 90 & 2 & & \({ }^{1}\) CHERRY & 81 & HOME \\
\hline
\end{tabular}
\({ }^{1}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\boldsymbol{\tau}\left(\boldsymbol{p} \rightarrow \mu^{+} \boldsymbol{\eta}\right)\)
 - - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(>1300\) & \(p\) & 90 & 2 & 0.49 & NISHINO & 12 & SKAM \\
\hline \(>89\) & \(p\) & 90 & 0 & 1.6 & WALL & 00B & SOU2 \\
\hline \(>126\) & \(p\) & 90 & 3 & 2.8 & MCGREW & 99 & IMB3 \\
\hline \(>26\) & \(p\) & 90 & 1 & 0.8 & BERGER & 91 & FREJ \\
\hline \(>69\) & \(p\) & 90 & 1 & <0.08 & HIRATA & 89C & KAMI \\
\hline \(>1.3\) & \(p\) & 90 & 0 & 0.7 & PHILLIPS & 89 & HPW \\
\hline \(>34\) & \(p\) & 90 & 1 & 1.5 & SEIDEL & 88 & IMB \\
\hline \(>46\) & \(p\) & 90 & 7 & 6 & HAINES & 86 & IMB \\
\hline \(>26\) & \(p\) & 90 & 1 & <0.8 & ARISAKA & 85 & KAMI \\
\hline \(>17\) & \(p\) (free) & 90 & 6 & 6 & BLEWITT & 85 & IMB \\
\hline \(>46\) & \(p\) & 90 & 7 & 8 & BLEWITT & 85 & IMB \\
\hline
\end{tabular}
\(\boldsymbol{\tau}(\boldsymbol{n} \Rightarrow \nu \boldsymbol{\eta})\)

- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llllllll}
\(>\) & 71 & \(n\) & 90 & 2 & 3.7 & WALL & 00B SOU2 \\
\(>29\) & \(n\) & 90 & 0 & 0.9 & BERGER & 89 & FREJ \\
\(>54\) & \(n\) & 90 & 2 & 0.9 & HIRATA & 89 C & KAMI \\
\(>16\) & \(n\) & 90 & 3 & 2.1 & SEIDEL & 88 & IMB \\
\(>25\) & \(n\) & 90 & 7 & 6 & HAINES & 86 & IMB \\
\(>30\) & \(n\) & 90 & 0 & 0.4 & KAJITA & 86 & KAMI \\
\(>18\) & \(n\) & 90 & 4 & 3 & PARK & 85 & IMB \\
\(>\) & 0.6 & \(n\) & 90 & 2 & & 1 CHERRY & 81 \\
HOME
\end{tabular}
\({ }^{1}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\tau\left(N \rightarrow e^{+} \rho\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { LIMIT } \\
& \left(10^{30} \text { years }\right) \\
& \hline
\end{aligned}
\] & PARTICLE & CL\% & EVTS & BKGD EST & DOCUMENT ID & & TECN \\
\hline >720 & p & 90 & 2 & 0.64 & ABE & 17D & SKAM \\
\hline >217 & \(n\) & 90 & 4 & 4.8 & MCGREW & 99 & IMB3 \\
\hline \multicolumn{8}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>30\) & \(n\) & 90 & 4 & 0.87 & ABE & 17D & SKAM \\
\hline \(>710\) & \(p\) & 90 & 0 & 0.35 & NISHINO & 12 & SKAM \\
\hline \(>70\) & \(n\) & 90 & 1 & 0.38 & NISHINO & 12 & SKAM \\
\hline \(>29\) & \(p\) & 90 & 0 & 2.2 & BERGER & 91 & FREJ \\
\hline \(>41\) & \(n\) & 90 & 0 & 1.4 & BERGER & 91 & FREJ \\
\hline \(>75\) & \(p\) & 90 & 2 & 2.7 & HIRATA & 89C & KAMI \\
\hline \(>58\) & \(n\) & 90 & 0 & 1.9 & HIRATA & 89C & KAMI \\
\hline \(>38\) & \(n\) & 90 & 2 & 4.1 & SEIDEL & 88 & IMB \\
\hline \(>1.2\) & \(p\) & 90 & 0 & & BARTELT & 87 & SOUD \\
\hline \(>1.5\) & \(n\) & 90 & 0 & & BARTELT & 87 & SOUD \\
\hline \(>17\) & \(p\) & 90 & 7 & 7 & HAINES & 86 & IMB \\
\hline \(>14\) & \(n\) & 90 & 9 & 4 & HAINES & 86 & IMB \\
\hline \(>12\) & \(p\) & 90 & 0 & <1.2 & ARISAKA & 85 & KAMI \\
\hline \(>6\) & \(n\) & 90 & 2 & <1 & ARISAKA & 85 & KAMI \\
\hline \(>6.7\) & \(p\) (free) & 90 & 6 & 6 & BLEWITT & 85 & IMB \\
\hline \(>17\) & \(p\) & 90 & 7 & 7 & BLEWITT & 85 & IMB \\
\hline \(>12\) & \(n\) & 90 & 4 & 2 & PARK & 85 & IMB \\
\hline \(>0.6\) & \(n\) & 90 & 1 & 0.3 & \({ }^{1}\) BARTELT & 83 & SOUD \\
\hline \(>0.5\) & \(p\) & 90 & 1 & 0.3 & 1 BARTELT & 83 & SOUD \\
\hline \(>9.8\) & \(p\) & 90 & 1 & & \({ }^{2}\) KRISHNA... & 82 & KOLR \\
\hline \(>0.8\) & \(p\) & 90 & 2 & & \({ }^{3}\) CHERRY & 81 & HOME \\
\hline
\end{tabular}

1 Limit based on zero events.
2 We have calculated \(90 \%\) CL limit from 0 confined events.
\({ }^{3}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\tau\left(\boldsymbol{N} \rightarrow \mu^{+} \rho\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { LIMIT } \\
& \left(10^{30} \text { years }\right) \\
& \hline
\end{aligned}
\] & PARTICLE & CL\% & EVTS & BKGD EST & DOCUMENT & & TECN \\
\hline \(>570\) & p & 90 & 1 & 1.30 & ABE & 17D & SKAM \\
\hline >228 & \(n\) & 90 & 3 & 9.5 & MCGREW & 99 & IMB3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(>60\) & \(n\) & 90 & 1 & 0.96 & ABE & 17D & SKAM \\
\hline \(>160\) & \(p\) & 90 & 1 & 0.42 & NISHINO & 12 & SKAM \\
\hline > 36 & \(n\) & 90 & 0 & 0.29 & NISHINO & 12 & SKAM \\
\hline \(>12\) & \(p\) & 90 & 0 & 0.5 & BERGER & 91 & FREJ \\
\hline \(>22\) & \(n\) & 90 & 0 & 1.1 & BERGER & 91 & FREJ \\
\hline \(>110\) & \(p\) & 90 & 0 & 1.7 & HIRATA & 89C & KAMI \\
\hline \(>23\) & \(n\) & 90 & 1 & 1.8 & HIRATA & 89C & KAMI \\
\hline \(>4.3\) & \(p\) & 90 & 0 & 0.7 & PHILLIPS & 89 & HPW \\
\hline \(>30\) & \(p\) & 90 & 0 & 0.5 & SEIDEL & 88 & IMB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(>11\) & \(n\) & 90 & 1 & 1.1 & SEIDEL & 88 & IMB \\
\hline \(>16\) & \(p\) & 90 & 4 & 4.5 & HAINES & 86 & IMB \\
\hline \(>7\) & \(n\) & 90 & 6 & 5 & HAINES & 86 & IMB \\
\hline \(>12\) & \(p\) & 90 & 0 & \(<0.7\) & ARISAKA & 85 & KAMI \\
\hline \(>5\) & \(n\) & 90 & 1 & \(<1.2\) & ARISAKA & 85 & KAMI \\
\hline \(>5.5\) & \(p\) (free) & 90 & 4 & 5 & BLEWITT & 85 & IMB \\
\hline \(>16\) & \(p\) & 90 & 4 & 5 & BLEWITT & 85 & IMB \\
\hline \(>9\) & \(n\) & 90 & 1 & 2 & PARK & 85 & IMB \\
\hline \multicolumn{8}{|l|}{\(\boldsymbol{\tau} \boldsymbol{N} \rightarrow \boldsymbol{\nu} \boldsymbol{\rho}) \quad \boldsymbol{\tau}_{9}\)} \\
\hline \[
\begin{aligned}
& \text { LIMIT } \\
& \left(10^{30} \text { years }\right) \\
& \hline
\end{aligned}
\] & PARTICLE & CL\% & EVTS & BKGD EST & DOCUMENT & & TECN \\
\hline \(>162\) & p & 90 & 18 & 21.7 & MCGREW & 99 & IMB3 \\
\hline \(>19\) & \(n\) & 90 & 0 & 0.5 & SEIDEL & 88 & IMB \\
\hline \multicolumn{8}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>9\) & \(n\) & 90 & 4 & 2.4 & BERGER & 89 & FREJ \\
\hline \(>24\) & \(p\) & 90 & 0 & 0.9 & BERGER & 89 & FREJ \\
\hline \(>27\) & \(p\) & 90 & 5 & 1.5 & HIRATA & 89C & KAMI \\
\hline \(>13\) & \(n\) & 90 & 4 & 3.6 & HIRATA & 89C & KAMI \\
\hline \(>13\) & \(p\) & 90 & 1 & 1.1 & SEIDEL & 88 & IMB \\
\hline \(>8\) & \(p\) & 90 & 6 & 5 & HAINES & 86 & IMB \\
\hline \(>2\) & \(n\) & 90 & 15 & 10 & HAINES & 86 & IMB \\
\hline \(>11\) & \(p\) & 90 & 2 & 1 & KAJITA & 86 & KAMI \\
\hline \(>4\) & \(n\) & 90 & 2 & 2 & KAJITA & 86 & KAMI \\
\hline \(>4.1\) & \(p\) (free) & 90 & 6 & 7 & BLEWITT & 85 & IMB \\
\hline \(>8.4\) & \(p\) & 90 & 6 & 5 & BLEWITT & 85 & IMB \\
\hline \(>2\) & \(n\) & 90 & 7 & 3 & PARK & 85 & IMB \\
\hline \(>0.9\) & \(p\) & 90 & 2 & & \({ }^{1}\) CHERRY & 81 & HOME \\
\hline \(>0.6\) & \(n\) & 90 & 2 & & \({ }^{1}\) CHERRY & 81 & HOME \\
\hline
\end{tabular}
\({ }^{1}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\tau\left(p \rightarrow e^{+} \omega\right)\)

\({ }_{2}\) Limit based on zero events.
\({ }_{3}^{2}\) We have calculated \(90 \%\) CL limit from 0 confined events.
\({ }^{3}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\boldsymbol{\tau}\left(\boldsymbol{p} \Rightarrow \mu^{+} \omega\right)\)
LIMIT
\(\left(10^{30}\right.\) years \()\)
PARTICLE

- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{lllrllll}
\(>\) & 780 & \(p\) & 90 & 0 & 0.48 & & NISHINO \\
\(>\) & 117 & \(p\) & 90 & 11 & 12.1 & MCGREW & 99 \\
\(>\) & SKAM \\
\(>\) & 11 & \(p\) & 90 & 0 & 1.0 & IMB3 \\
\(>\) & 57 & \(p\) & 90 & 2 & 1.9 & BERGER & 91 \\
FREJ \\
\(>\) & 4.4 & \(p\) & 90 & 0 & 0.7 & HIRATA & 89 C
\end{tabular} KAMI
\(\boldsymbol{\tau}(\boldsymbol{n} \rightarrow \nu \omega)\)
\(\tau_{12}\)

\(\frac{\text { DOCUMENT ID }}{\text { MCGREW } 99} \frac{\text { TECN }}{\text { IMB3 }}\)
- - We do not use the following data for averages, fits, limits, etc. - - .
\begin{tabular}{llllllll}
\(>\) & \(n\) & \(n\) & 90 & 1 & 0.7 & BERGER & 89 \\
\(>\) & FREJ \\
\(>\) & \(n\) & 90 & 3 & 2.7 & HIRATA & 89 C & KAMI \\
\(>\) & \(n\) & 90 & 2 & 1.3 & SEIDEL & 88 & IMB \\
\(>12\) & \(n\) & 90 & 6 & 6 & HAINES & 86 & IMB \\
\(>18\) & \(n\) & 90 & 2 & 2 & KAJITA & 86 & KAMI \\
\(>16\) & \(n\) & 90 & 1 & 2 & PARK & 85 & IMB \\
\(>2.0\) & \(n\) & 90 & 2 & 1 CHERRY & 81 & HOME
\end{tabular}
\({ }^{1}\) We have converted 2 possible events to \(90 \%\) CL limit.
\(\tau\left(N \rightarrow e^{+} K\right)\)


Baryon Particle Listings



Baryon Particle Listings

\(\underline{\text { LIMIT }}\) (1030 years) PARTICLE CL\% EVTS BKGD EST _ DOCUMENT ID
\(\tau\left(p p \rightarrow \pi^{+} \pi^{+}\right)\)
\(\tau_{66}\)

\(\tau_{67}\)

\section*{LMMIT}
\(\frac{\left(10^{30} \text { years }\right)}{>\mathbf{1 7 0}} \frac{C L \%}{\mathbf{9 0}} \frac{\text { EVTS }}{\text { LITM }}\) BKGD EST \(\quad \frac{\text { DOCUMENT ID }}{\text { GUSTAFSON } 15} \frac{\text { TECN }}{\text { SKAM }} \frac{\text { COMMENT }}{\text { per oxygen nucleus }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(\begin{array}{lllll}> & 2.0 & 90 & 0 & 0.31\end{array} \quad\) BERGER \(\quad 91 \mathrm{~B}\) FREJ per iron nucleus


\section*{\(\bar{p}\) PARTIAL MEAN LIVES}

The "partial mean life" limits tabulated here are the limits on \(\bar{\tau} / \mathrm{B}_{i}\), where \(\bar{\tau}\) is the total mean life for the antiproton and \(\mathrm{B}_{\boldsymbol{i}}\) is the branching fraction for the mode in question.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\tau\left(\bar{p} \rightarrow e^{-\gamma}\right)\)} & \multirow[t]{2}{*}{\(\tau_{81}\)} \\
\hline VALUE (years) & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(>7 \times 10^{5}\) & 90 & GEER & 00 & APEX & \(8.9 \mathrm{GeV} / c \bar{p}\) beam & \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline >1848 & 95 & GEER & 94 & CALO & \(8.9 \mathrm{GeV} / c \bar{p}\) beam & \\
\hline \multicolumn{6}{|l|}{\(\tau\left(\bar{p} \rightarrow \mu^{-} \gamma\right)\)} & \(\tau_{82}\) \\
\hline VALUE (years) & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(>5 \times 10^{4}\) & 90 & GEER & 00 & APEX & \(8.9 \mathrm{GeV} / \mathrm{c} \bar{p}\) beam & \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>5.0 \times 10^{4}\) & 90 & HU & 98B & APEX & 8.9 GeV/c \(\bar{p}\) beam & \\
\hline \multicolumn{6}{|l|}{\(\tau\left(\bar{p} \rightarrow e^{-} \pi^{0}\right)\)} & \multirow[t]{2}{*}{\(\tau_{83}\)} \\
\hline VALUE (years) & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(>4 \times 10^{5}\) & 90 & GEER & 00 & APEX & \(8.9 \mathrm{GeV} / \mathrm{c} \bar{p}\) beam & \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>554\) & 95 & GEER & 94 & CALO & \(8.9 \mathrm{GeV} / c \bar{p}\) beam & \\
\hline \(\boldsymbol{\tau}\left(\overline{\boldsymbol{p}} \Rightarrow \mu^{-} \boldsymbol{\pi}^{\mathbf{0}}\right)\) & & & & & & \(\tau_{84}\) \\
\hline VALUE (years) & CL\% & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(>4.8 \times 10^{4} \quad 90 \quad \mathrm{HU} \quad 98 \mathrm{~B}\) APEX \(8.9 \mathrm{GeV} / c \bar{p}\) beam
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{\tau}\left(\bar{p} \Rightarrow e^{-} \boldsymbol{\eta}\right)\) & & & & & \(\tau_{85}\) \\
\hline VALUE (years) & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}
\(>\mathbf{2} \times \mathbf{1 0}^{\mathbf{4}} \quad 90 \quad\) GEER 00 APEX \(8.9 \mathrm{GeV} / c \bar{p}\) beam
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{lllllll}
\(>171\) & 95 & GEER & 94 & CALO & \(8.9 \mathrm{GeV} / c \bar{p}\) beam & \\
\(\boldsymbol{\tau}\left(\overline{\boldsymbol{p}} \Rightarrow \boldsymbol{\mu}^{-} \boldsymbol{\eta}\right)\) & & & & & \(\boldsymbol{T}_{\mathbf{8 6}}\) \\
VALUE (years) & \(C L \%\) & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}
\(\frac{\text { VALUE (years) }}{>8 \times 10^{\mathbf{3}}} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { GEER }} \frac{\text { TECN }}{\text { APEX }} \frac{\text { COMMENT }}{8.9 \mathrm{GeV} / c \bar{p} \text { beam }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{lllll}
\(>7.9 \times 10^{3}\) & 90 & HU & 98 B & APEX \\
\(\boldsymbol{\tau}\left(\overline{\boldsymbol{p}} \rightarrow \boldsymbol{e}^{-} \boldsymbol{K}_{\mathbf{S}}^{\mathbf{0}}\right)\) & & \(8.9 \mathrm{GeV} / c \bar{p}\) beam & \\
& & & & \(\boldsymbol{\tau}_{\mathbf{8 7}}\)
\end{tabular}
\(\frac{\text { VALUE (years) }}{>900} \frac{C L \%}{90} \quad \frac{\text { DOCUMENT ID }}{\text { GEER }} \frac{\text { TECN }}{\text { APEX }} \frac{\text { COMMENT }}{8.9 \mathrm{GeV} / c \bar{p} \text { beam }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{lll}
\(>\) & 99 & 95
\end{tabular}
\(\tau\left(\bar{p} \rightarrow \mu^{-} K_{S}^{0}\right)\)
\(\frac{\text { VALUE (years) }}{>4 \times 10^{\mathbf{3}}} \frac{\text { CL\% }}{90}\) DOCUMENT ID \(\quad\) TECN COMMENT
- - W
\(>4.3 \times 10^{3} \quad 90 \quad \mathrm{HU} \quad 98 \mathrm{~B}\) APEX \(8.9 \mathrm{GeV} / c \bar{p}\) beam
\(\tau\left(n n \rightarrow \nu_{\mu} \boldsymbol{\nu}_{\mu}\right)\) mode.
\({ }_{\left(10^{30} \text { years }\right)}^{\text {LIMIT }}\) CL\% EVTS BKGD EST
\(>1.4\) (CL=90\%) OUR LIMIT
DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - •
\(>0.00000690 \quad 44.4 \quad\) BERGER 91B FREJ \(\tau\) per iron nucleus

Baryon Particle Listings
\(p, n\)

• - We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\)
\(>2.3 \times 10^{4}\)
90 \(\quad \mathrm{HU} \quad 98 \mathrm{~B}\) APEX \(8.9 \mathrm{GeV} / c \bar{p}\) beam

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{p REFERENCES} \\
\hline ANDERSON & 19A & PR D99 032008 & M. Anderson et al. & (SNO+ Collab.) \\
\hline BEZGINOV & 19 & SCI 3651007 & N. Bezginov et al. & (YORKC, TNTO) \\
\hline XIONG & 19 & NAT 575147 & W. Xiong et al. & (PRad Collab.) \\
\hline FLEURBAEY & 18 & PRL 120183001 & H. Fleurbaey et al. & (SORB) \\
\hline PDG & 18 & PR D98 030001 & M. Tanabashi et al. & (PDG Collab.) \\
\hline ABE & 17 & PR D95 012004 & K. Abe et al. & (Super-Kamiokande Collab.) \\
\hline ABE & 17D & PR D96 012003 & K. Abe et al. & (Super-Kamiokande Collab.) \\
\hline BEYER & 17 & SCI 35879 & A. Beyer et al. & (MPQG Collab.) \\
\hline HEISSE & 17 & PRL 119033001 & F. Heisse et al. (M & (MPIH, GSI, MANZ, RIKEN) \\
\hline NAGAHAMA & 17 & NATC 814084 & H. Nagahama et al. & (RIKEN, TOKY, CERN+) \\
\hline SAHOO & 17 & PR D95 013002 & B.K. Sahoo & (AHMEB) \\
\hline SCHNEIDER & 17 & SCI 3581081 & G. Schneider et al. & (MANZ, RIKEN, +) \\
\hline SELLNER & 17 & NJP 19083023 & S. Sellner et al. & (RIKEN, MPIK, +) \\
\hline SmORRA & 17 & NAT 550371 & C. Smorra et al. & (RIKEN, CERN, +) \\
\hline MOHR & 16 & RMP 88035009 & P.J. Mohr, D.B. Newell, B.N. & N. Taylor (NIST) \\
\hline ASAKURA & 15 & PR D92 052006 & K. Asakura et al. & (KamLAND Collab.) \\
\hline GUSTAFSON & 15 & PR D91 072009 & J. Gustafson et al. & (Super-Kamiokande Collab.) \\
\hline LEE & 15 & PR D92 013013 & G. Lee, J.R. Arrington, R.J. & Hill (ANL, EFI+) \\
\hline TAKHISTOV & 15 & PRL 115121803 & V. Takhistov et al. & (Super-Kamiokande Collab.) \\
\hline ULMER & 15 & NAT 524196 & S. Ulmer et al. & (RIKEN, CERN, MPIH, +) \\
\hline ABE & 14E & PRL 113121802 & K. Abe et al. & (Super-Kamiokande Collab.) \\
\hline ABE & 14G & PR D90 072005 & K. Abe et al. & (Super-Kamiokande Collab.) \\
\hline BRYMAN & 14 & PL B733 190 & D. Bryman & (BRCO) \\
\hline EPSTEIN & 14 & PR D90 074027 & Z. Epstein, G. Paz, J. Roy & (UMD, WAYN) \\
\hline LITOS & 14 & PRL 112131803 & M. Litos et al. & (Super-Kamiokande Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline TAKHISTOV & 14 & PRL 113101801 & V. Takhistov et al. & (Super-Kamiokande Collab.) \\
\hline ANTOGNINI & 13 & SCI 339417 & A. Antognini et al. & (MPIM, ETH, UPMC+) \\
\hline DISCIACCA & 13 & PRL 110130801 & J. Disciacca et al. & (ATRAP Collab.) \\
\hline MCGOVERN & 13 & EPJ A49 12 & J.A. McGovern, D.R. Phillips, & s, H.W. Griesshammer \\
\hline MOHR & 12 & RMP 841527 & P.J. Mohr, B.N. Taylor, D.B. & (NIST) \\
\hline NISHINO & 12 & PR D85 112001 & H. Nishino et al. & (Super-Kamiokande Collab.) \\
\hline REGIS & 12 & PR D86 012006 & C. Regis et al. & (Super-Kamiokande Collab.) \\
\hline BRESSI & 11 & PR A83 052101 & G. Bressi et al. (LEG & (EGN, PAVII, PADO, TRST+) \\
\hline HORI & 11 & NAT 475484 & M. Hori et al. & (MPIG, TOKY, BUDA, +) \\
\hline ZHAN & 11 & PL B705 59 & X. Zhan et al. & (JLAB-Hall A Collab.) \\
\hline BERNAUER & 10 & PRL 105242001 & J.C. Bernauer et al. & (MAMI A1 Collab.) \\
\hline Also & & PR C90 015206 & J.C. Bernauer et al. & (MAMI A1 Collab.) \\
\hline BORISYUK & 10 & NP A843 59 & D. Borisyuk & (KIEV) \\
\hline HILL & 10 & PR D82 113005 & R.J. Hill, G. Paz & (CHIC) \\
\hline POHL & 10 & NAT 466213 & R. Pohl et al. & (MPIQ, ENSP, COIM, +) \\
\hline NISHINO & 09 & PRL 102141801 & H. Nishino et al. & (Super-Kamiokande Collab.) \\
\hline PASK & 09 & PL B678 55 & T. Pask et al. (Stefan M & Meyer Inst., Vienna, TOKY+) \\
\hline MOHR & 08 & RMP 80633 & P.J. Mohr, B.N. Taylor, D.B. & (NIST) \\
\hline BELUSHKIN & 07 & PR C75 035202 & M.A. Belushkin, H.W. Hammer & er, U.-G. Meissner (BONN+) \\
\hline ARAKI & 06 & PRL 96101802 & T. Araki et al. & (KamLAND Collab.) \\
\hline HORI & 06 & PRL 96243401 & M. Hori et al. & (CERN, TOKYO+) \\
\hline BLUNDEN & 05 & PR C72 057601 & P.G. Blunden, I. Sick & (MANI, BASL) \\
\hline KOBAYASHI & 05 & PR D72 052007 & K. Kobayashi et al. & (Super-Kamiokande Collab.) \\
\hline MOHR & 05 & RMP 771 & P.J. Mohr, B.N. Taylor & (NIST) \\
\hline SCHUMACHER & 05 & PPNP 55567 & M . Schumacher & (GOET) \\
\hline AHMED & 04 & PRL 92102004 & S.N. Ahmed et al. & (SNO Collab.) \\
\hline TRETYAK & 04 & \begin{tabular}{l}
JETPL 79106 \\
Translated from ZETFP
\end{tabular} & V.I. Tretyak, V.Yu. Denisov, 79136. & , Yu.G. Zdesenko (KIEV) \\
\hline BACK & 03 & PL B563 23 & H.O. Back et al. & (Borexino Collab.) \\
\hline BEANE & 03 & PL B567 200 & S.R. Beane et al. & \\
\hline Also & & PL B607 320 (errat.) & S.R. Beane et al. & \\
\hline DMITRIEV & 03 & PRL 91212303 & V.F. Dmitriev, R.A. Senkov & (NOVO) \\
\hline HORI & 03 & PRL 91123401 & M. Hori et al. & (CERN ASACUSA Collab.) \\
\hline SICK & 03 & PL B576 62 & I. Sick & (BASL) \\
\hline ZDESENKO & 03 & PL B553 135 & Yu.G. Zdesenko, V.I. Tretyak & k (KIEV) \\
\hline AHMAD & 02 & PRL 89011301 & Q.R. Ahmad et al. & (SNO Collab.) \\
\hline BARANOV & 01 & PPN 32376 & P.S. Baranov et al. & \\
\hline BLANPIED & 01 & Translated from
PR C64 & G. Blanpied et al. & (BNL LEGS Collab.) \\
\hline HORI & 01 & PRL 87093401 & M. Hori et al. & (CERN ASACUSA Collab.) \\
\hline OLMOSDEL... & 01 & EPJ A10 207 & V. Olmos de Leon et al. & (MAMI TAPS Collab.) \\
\hline TRETYAK & 01 & PL B505 59 & V.I. Tretyak, Yu.G. Zdesenko & (KIEV) \\
\hline BERNABEI & 00B & PL B493 12 & R. Bernabei et al. & (Gran Sasso DAMA Collab.) \\
\hline GEER & 00 & PRL 84590 & S. Geer et al. & (FNAL APEX Collab.) \\
\hline Also & & PR D62 052004 & S. Geer et al. & (FNAL APEX Collab.) \\
\hline Also & & PRL 853546 (errat.) & S. Geer et al. & (FNAL APEX Collab.) \\
\hline GEER & 00D & APJ 532648 & S.H. Geer, D.C. Kennedy & \\
\hline SENGUPTA & 00 & PL B484 275 & S. Sengupta & \\
\hline WALL & 00 & PR D61 072004 & D. Wall et al. & (Soudan-2 Collab.) \\
\hline WALL & 00 B & PR D62 092003 & D. Wall et al. & (Soudan-2 Collab.) \\
\hline GABRIELSE & 99 & PRL 823198 & G. Gabrielse et al. & \\
\hline HAYATO & 99 & PRL 831529 & Y. Hayato et al. & (Super-Kamiokande Collab.) \\
\hline MCGREW & 99 & PR D59 052004 & C. McGrew et al. & (IMB-3 Collab.) \\
\hline
\end{tabular}


We have omitted some results that have been superseded by later experiments. See our earlier editions.

Anyone interested in the neutron should look at these two review articles: D. Dubbers and M.G. Schmidt, "The neutron and its role in cosmology and particle physics," Reviews of Modern Physics 83 1111 (2011); and F.E. Wietfeldt and G.L. Greene, "The neutron lifetime," Reviews of Modern Physics 831173 (2011)

\section*{\(n\) MASS (atomic mass units u)}

The mass is known much more precisely in \(u\) (atomic mass units) than in MeV . See the next data block.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (u) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(1.00866491588 \pm 0.00000000049\) & MOHR & 16 & R & 4 CODATA value \\
\hline - We do not use the follo & \multicolumn{4}{|l|}{for averages, fits, limits, etc. - -} \\
\hline \(1.00866491600 \pm 0.00000000043\) & MOHR & 12 & RVUE & 2010 CODATA value \\
\hline \(1.00866491597 \pm 0.00000000043\) & MOHR & 08 & RVUE & 2006 CODATA value \\
\hline \(1.00866491560 \pm 0.00000000055\) & MOHR & 05 & RVUE & 2002 CODATA value \\
\hline \(1.00866491578 \pm 0.00000000055\) & MOHR & 99 & RVUE & 1998 CODATA value \\
\hline \(1.008665904 \pm 0.000000014\) & COHEN & 87 & RVUE & 1986 CODATA value \\
\hline
\end{tabular}

\section*{\(n\) MASS (MeV)}

The mass is known much more precisely in \(u\) (atomic mass units) than in MeV . The conversion from \(u\) to \(\mathrm{MeV}, 1 \mathrm{u}=931.4940054(57)\) ) \(\mathrm{MeV} / c^{2}\) (MOHR 16, the 2014 CODATA value), involves the relatively poorly known electronic charge.
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{9 3 9 . 5 6 5 4 1 3 3} \mathbf{\pm} \mathbf{0 . 0 0 0 0 0 5 8}} \quad \frac{\text { DOCUMENT ID }}{\text { MOHR }} 16 \frac{\text { TECN }}{\text { RVUE }} \frac{\text { COMMENT }}{2014 \text { CODATA value }}\)
939.5654133 \(\mathbf{\pm} \mathbf{0 . 0 0 0 0 0 5 8} 16\) RVUE 2014 CODATA valu - - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{llclll}
939.565379 & \(\pm 0.000021\) & MOHR & 12 & RVUE & 2010 CODATA value \\
939.565346 & \(\pm 0.000023\) & MOHR & 08 & RVUE & 2006 CODATA value \\
939.565360 & \(\pm 0.000081\) & MOHR & 05 & RVUE & 2002 CODATA value \\
939.565331 & \(\pm 0.000037\) & 1 KESSLER & 99 & SPEC & \(n p \rightarrow d \gamma\) \\
939.565330 & \(\pm 0.000038\) & MOHR & 99 & RVUE & 1998 CODATA value \\
939.56565 & \(\pm 0.00028\) & 2,3 DIFILIPPO & 94 & TRAP & Penning trap \\
939.56563 & \(\pm 0.00028\) & COHEN & 87 & RVUE & 1986 CODATA value \\
939.56564 & \(\pm 0.00028\) & 3,4 GREENE & 86 & SPEC & \(n p \rightarrow d \gamma\) \\
939.5731 & \(\pm 0.0027\) & 3 & COHEN & 73 & RVUE \\
& & & & &
\end{tabular}


\section*{\(n\) MEAN LIFE}

Limits on lifetimes for bound neutrons are given in the section "p PARTIAL MEAN LIVES."

We average seven of the best eight measurements, those made with ultracold neutrons (UCN's). If we include the one in-beam measurement with a comparable error (YUE 13), we get \(879.6 \pm 0.8 \mathrm{~s}\), where the scale factor is now 2.0.

For a recent discussion of the long-standing disagreement between inbeam and UCN results, see CZARNECKI 18 (Physical Review Letters 120 202002 (2018)). For a full review of all matters concerning the neutron lifetime until about 2010, see WIETFELDT 11, F.E. Wietfeldt and G.L. Greene, "The neutron lifetime," Reviews of Modern Physics \(\mathbf{8 3} 1173\) (2011).

VALUE (s)
879.4 \(\pm\) 0.6 OUR AVERAGE
\(878.3 \pm 1.6 \pm 1.0\) \(877.7 \pm 0.7_{-}^{+} 0.4 \quad 1\) PATTIE 18 CNTR UCN asym. magnetic trap \(881.5 \pm 0.7 \pm 0.6\) \(880.2 \pm 1.2\)
\(882.5 \pm 1.4 \pm 1.5\)
\(880.7 \pm 1.3 \pm 1.2\)
\(878.5 \pm 0.7 \pm 0.3\) - - We do not use the following data for averages, \(887.7 \pm 1.2 \pm 1.9\)
\({ }^{4}\) YUE 13 \({ }^{5}\) ARZUMANOV 12 NICO 05 DEWEY 03 BYRNE 96 CNTR Penning trap \({ }^{6}\) MAMPE 93 CNTR UCN material bottle 7 NESVIZHEV... 92 CNTR UCN material bottle ALFIMENKOV 90 CNTR See NESVIZHEVSKII 92 BYRNE 90 CNTR See BYRNE 96 KOSSAKOW... 89 TPC Pulsed beam
DOCUMENT ID TECN COMMENT
Error includes scale factor of 1.6. See the ideogram below. SEREBROV 18 CNTR UCN gravitational trap \({ }^{2}\) ARZUMANOV 15 CNTR UCN double bottle 3 STEYERL 12 CNTR UCN material bottle PICHLMAIER 10 CNTR UCN material bottle CNTR UCN gravitational trap \(881.6 \pm 0.8 \pm 1.9\) \(886.3 \pm 1.2 \pm 3.2\) \(886.8 \pm 1.2 \pm 3.2\) \(885.4 \pm 0.9 \pm 0.4\) \(889.2 \pm 3.0 \pm 3.8\) \(882.6 \pm 2.7\)
\(888.4 \pm 3.1 \pm 1.1\) \(888.4 \pm 2.9\) \(893.6 \pm 3.8 \pm 3.7\) \(878 \pm 27 \pm 14\)

ARZUMANOV 00 CNTR See ARZUMANOV 12
its, limits, etc. • • •
CNTR In-beam \(n\), trapped \(p\) CNTR See ARZUMANOV 15 CNTR See YUE 13 CNTR See NICO 05 CNTR See ARZUMANOV 12 \(\begin{array}{ll}\text { CNTR } & \text { UCN material bottle } \\ \text { CNTR } & \text { See NESVIZHEVSKII } 92\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline 887 & \(6 \pm 3.0\) & MAMPE 89 & CNTR & See STEYERL 12 \\
\hline & \(\pm 10\) & PAUL 89 & CNTR & Magnetic storage ring \\
\hline & \(\pm 10 \pm 19\) & LAST 88 & SPEC & Pulsed beam \\
\hline & \(\pm 9\) & SPIVAK 88 & CNTR & Beam \\
\hline & \(\pm 13\) & KOSVINTSEV 86 & CNTR & UCN material bottle \\
\hline & \(\pm 18\) & \({ }^{8}\) BYRNE 80 & CNTR & \\
\hline & \(\pm 95\) & KOSVINTSEV 80 & CNTR & \\
\hline & \(\pm 8\) & BONDAREN... 78 & CNTR & See SPIVAK 88 \\
\hline & \(\pm 14\) & CHRISTENSEN72 & CNTR & \\
\hline \multicolumn{5}{|r|}{\({ }^{1}\) PATTIE 18 uses a new technique, with a semi-toroidal magneto-gravitational asymmetric trap and a novel in situ \(n\)-detector.} \\
\hline \multicolumn{5}{|r|}{\({ }^{2}\) ARZUMANOV 15 is a reanalysis of their 2008-2010 dataset, with improved systematic corrections of of ARZUMANOV 00 and ARZUMANOV 12.} \\
\hline \multicolumn{5}{|r|}{\({ }^{3}\) STEYERL 12 is a detailed reanalysis of neutron storage loss corrections to the raw data of MAMPE 89, and it replaces that value.} \\
\hline \multicolumn{5}{|r|}{\({ }^{4}\) YUE 13 differs from NICO 05 in that a different and better method was used to measure the neutron density in the fiducial volume. This shifted the lifetime by +1.4 seconds and reduced the previously largest source of systematic uncertainty by a factor of five.} \\
\hline \multicolumn{5}{|r|}{\({ }^{5}\) ARZUMANOV 12 reanalyzes its systematic corrections in ARZUMANOV 00 and obtains this corrected value.} \\
\hline \multicolumn{5}{|r|}{used by MAMPE 93. The response, BONDARENKO 96, denies the validity of the criticisms.} \\
\hline \multicolumn{5}{|r|}{7 The NESVIZHEVSKII 92 measurement has been withdrawn by A. Serebrov.} \\
\hline \multicolumn{5}{|r|}{\({ }^{8}\) The BYRNE 80 measurement has been withdrawn (J. Byrne, private communication, 1990).} \\
\hline
\end{tabular}


\section*{\(n\) MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings.
\(\frac{\operatorname{VALUE}\left(\mu_{N}\right)}{\mathbf{- 1 . 9 1 3 0 4 2 7 3} \mathbf{\pm 0 . 0 0 0 0 0 0 4 5}} \quad \frac{\text { DOCUMENT ID }}{\text { MOHR }} \frac{16}{\text { TECN }} \frac{\text { COMMENT }}{2014 \text { CODATA value }}\)
- - We do not use the following data for averages, fits, limits, etc. - - .
\(-1.91304272 \pm 0.00000045\) MOHR 12 RVUE 2010 CODATA value \(-1.91304273 \pm 0.00000045\) MOHR 08 RVUE 2006 CODATA value \(-1.91304273 \pm 0.00000045 \quad\) MOHR 05 RVUE 2002 CODATA value \(-1.91304272 \pm 0.00000045\) MOHR 99 RVUE 1998 CODATA value \(-1.91304275 \pm 0.00000045\) COHEN 87 RVUE 1986 CODATA value 00048 1 GREENE 82 MRS
\({ }^{1}\) GREENE 82 measures the moment to be \((1.04187564 \pm 0.00000026) \times 10^{-3}\) Bohr magnetons. The value above is obtained by multiplying this by \(m_{p} / m_{e}=1836.152701 \pm\) 0.000037 (the 1986 CODATA value from COHEN 87)

\section*{n ELECTRIC DIPOLE MOMENT}

A nonzero value is forbidden by both \(T\) invariance and \(P\) invariance. A number of early results have been omitted. See RAMSEY 90, GOLUB 94, and LAMOREAUX 09 for reviews.

The results are upper limits on \(\left|d_{n}\right|\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-25} \mathrm{ecm}\right)\) & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline < 0.18 & 90 & \({ }^{1} \mathrm{ABEL}\) & 20 & MRS & UCN \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<0.22\) & 95 & 2 SAHOO & 17 & & \({ }^{199} \mathrm{Hg}\) atom EDM + theory \\
\hline \(<0.16\) & 95 & GRANER & 16 & MRS & \({ }^{199} \mathrm{Hg}\) atom EDM + theory \\
\hline \(<0.30\) & 90 & \multicolumn{2}{|l|}{3 PENDLEBURY 15} & MRS & Superseded by ABEL 20 \\
\hline \(<0.55\) & 90 & SEREBROV & 15 & MRS & UCN's, \(\mathrm{h} \nu=2 \mu_{n} \mathrm{~B} \pm 2 d_{n} \mathrm{E}\) \\
\hline \(<0.55\) & 90 & \({ }^{4}\) SEREBROV & 14 & MRS & See SEREBROV 15 \\
\hline \(<0.29\) & 90 & 5 BAKER & 06 & MRS & See PENDLEBURY 15 \\
\hline \(<0.63\) & 90 & \({ }^{6}\) HARRIS & 99 & MRS & \(d=(-0.1 \pm 0.36) \times 10^{-25}\) \\
\hline
\end{tabular}

Baryon Particle Listings

\section*{\(n\)}
\begin{tabular}{llllll}
\hline\(<0.97\) & 90 & & \\
\(<1.2\) & ALTAREV & 96 & MRS & See SEREBROV 14 \\
\(<1.1\) & 95 & ALTAREV & 92 & MRS & See ALTAREV 96 \\
\(<1.2\) & 95 & SMITH & 90 & MRS & See HARRIS 99 \\
\(<2.6\) & 95 & ALTAREV & 86 & MRS & \(d=(-1.4 \pm 0.6) \times 10^{-25}\) \\
\(0.3 \pm 4.8\) & & PENDLEBURY 84 & MRS & Ultracold neutrons \\
\(<6\) & 90 & ALTAREV & 81 & MRS & \(d=(2.1 \pm 2.4) \times 10^{-25}\) \\
\(<16\) & 90 & ALTAREV & 79 & MRS & \(d=(4.0 \pm 7.5) \times 10^{-25}\)
\end{tabular}
\({ }^{1}\) ABEL 20 reports \(d=(0.0 \pm 1.1 \pm 0.2) \times 10^{-26} \mathrm{ecm}\) value corresponding to the listed limit.
\({ }^{2}\) SAHOO 17 develops theory to calculate this limit from the measured limit by GRANER 16 of the \({ }^{199} \mathrm{Hg}\) atom EDM.
\({ }^{3}\) PENDLEBURY 15 reports \(d=(-0.21 \pm 1.82) \times 10^{-26} \mathrm{ecm}\) value corresponding to the listed limit.
4 SEREBROV 14 includes the data of ALTAREV 96
5 LAMOREAUX 07 faults BAKER 06 for not including in the estimate of systematic error LA effect due to the Earth's rotation. BAKER 07 replies (1) that the effect was included an effect due to the Earth's rotation. BAKER 07 replies (1) that the effect was included
implicitly in the analysis and (2) that further analysis confirms that the BAKER 06 limit implicitly in the analysis and (2) that f
is correct as is. See also SILENKO 07 .
6 is correct as is. See also SILENKO 07 . results of these two experiments has been criticized by LAMOREAUX 00.

\section*{\(n\) MEAN-SQUARE CHARGE RADIUS}

The mean-square charge radius of the neutron, \(\left\langle r_{n}^{2}\right\rangle\), is related to the neutron-electron scattering length \(b_{n e}\) by \(\left\langle r_{n}^{2}\right\rangle=3\left(m_{e} a_{0} / m_{n}\right) b_{n e}\), where \(m_{e}\) and \(m_{n}\) are the masses of the electron and neutron, and \(a_{0}\) is the Bohr radius. Numerically, \(\left\langle r_{n}^{2}\right\rangle=86.34 b_{n e}\), if we use \(a_{0}\) for a nucleus with infinite mass.

\(n\) MAGNETIC RADIUS
This is the rms magnetic radius, \(\sqrt{\left\langle r_{M}^{2}\right\rangle}\). VALUE (fm)
\(0.864+0.009\) OUR AVERAGE
\(0.89 \pm 0.03\)
\(0.862{ }_{-0.008}^{+0.009}\)
DOCUMENT ID COMMENT

EPSTEIN 14 Using ep, en, \(\pi \pi\) data
BELUSHKIN 07 Dispersion analysis

\section*{\(n\) ELECTRIC POLARIZABILITY \(\alpha_{n}\)}

Following is the electric polarizability \(\alpha_{n}\) defined in terms of the induced electric dipole moment by \(\mathbf{D}=4 \pi \epsilon_{0} \alpha_{n} \mathbf{E}\). For a review, see SCHMIEDMAYER 89.
For very complete reviews of the polarizability of the nucleon and Compton scattering, see SCHUMACHER 05 and GRIESSHAMMER 12.


\section*{\(\boldsymbol{n}\) MAGNETIC POLARIZABILITY \(\boldsymbol{\beta}_{\boldsymbol{n}}\)}
\begin{tabular}{|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-4} \mathrm{fm}^{3}\right)\) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{\(3.7 \pm 1.2\) OUR AVERAGE} \\
\hline \(3.65 \pm 1.25 \pm 0.8\) & MYERS & CNTR & \(\gamma d \rightarrow \gamma d\) \\
\hline \(2.7 \pm 1.8{ }_{-1.6}^{+1.3}\) & 1 KOSSERT & CNTR & \(d \rightarrow \gamma\) \\
\hline \(6.5 \pm 2.4 \pm 3.0\) & 2 LUNDI & & \(d \rightarrow \gamma\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1.6 & 3 KOLB & CNT & \(\gamma d \rightarrow \gamma n p\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) KOSSERT 03 gets \(\alpha_{n}-\beta_{n}=\left(9.8 \pm 3.6_{-1.1}^{+2.1} \pm 2.2\right) \times 10^{-4} \mathrm{fm}^{3}\), and uses \(\alpha_{n}+\beta_{n}\) \(=(15.2 \pm 0.5) \times 10^{-4} \mathrm{fm}^{3}\) from LEVCHUK 00. Thus the errors on \(\alpha_{n}\) and \(\beta_{n}\) are anti-correlated.} \\
\hline \multicolumn{4}{|l|}{\({ }^{2}\) LUNDIN 03 measures \(\alpha_{N}-\beta_{N}=(6.4 \pm 2.4) \times 10^{-4} \mathrm{fm}^{3}\) and uses accurate values for \(\alpha_{p}\) and \(\alpha_{p}\) and a precise sum-rule result for \(\alpha_{n}+\beta_{n}\). The second error is a model uncertainty, and errors on \(\alpha_{n}\) and \(\beta_{n}\) are anticorrelated.} \\
\hline \multicolumn{4}{|l|}{\({ }^{3}\) KOLB 00 obtains this value with an upper limit of \(7.6 \times 10^{-4} \mathrm{fm}^{3}\) but no lower limit from this experiment alone. Combined with results of ROSE 90, the \(1-\sigma\) range is \((1.2-7.6) \times\) \(10^{-4} \mathrm{fm}^{3}\).} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{n}\) CHARGE}

See also " \(\left|q_{p}+q_{e}\right| / e\) " in the proton Listings.
\begin{tabular}{|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-21} e\right)\) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{- 0.2土 0.8 OUR AVERAGE} \\
\hline - \(0.1 \pm 1.1\) & \multicolumn{2}{|l|}{\[
{ }^{1} \text { BRESSI } \quad 11
\]} & \multirow[t]{2}{*}{Neutrality of \(\mathrm{SF}_{6}\) Cold \(n\) deflection} \\
\hline \(-0.4 \pm 1.1\) & \multicolumn{2}{|l|}{\({ }^{2}\) BAUMANN 88} & \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-15 \pm 22\) & \multicolumn{3}{|l|}{\({ }^{3}\) GAEHLER 82 CNTR Cold \(n\) deflection} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
\({ }^{1}\) As a limit, this BRESSI 11 value is \(<1 \times 10^{-21} e\). \\
\({ }^{2}\) The BAUMANN 88 error \(\pm 1.1\) gives the \(68 \%\) CL limits about the the value -0.4 . \\
\({ }^{3}\) The GAEHLER 82 error \(\pm 22\) gives the \(90 \%\) CL limits about the the value -15 .
\end{tabular}} \\
\hline
\end{tabular}

\section*{LIMIT ON \(n \bar{n}\) OSCILLATIONS}

\section*{Mean Time for \(\boldsymbol{n} \overline{\bar{n}}\) Transition in Vacuum}

A test of \(\Delta \mathrm{B}=2\) baryon number nonconservation. MOHAPATRA 80 and MOHAPATRA 89 discuss the theoretical motivations for looking for \(n \bar{n}\) oscillations. DOVER 83 and DOVER 85 give phenomenological analyses. The best limits come from looking for the decay of neutrons bound in nuclei. However, these analyses require modeldependent corrections for nuclear effects. See KABIR 83, DOVER 89, ALBERICO 91, and GAL 00 for discussions. Direct searches for \(n \rightarrow \bar{n}\) transitions using reactor neutrons are cleaner but give somewhat poorer limits. We include limits for both free and bound neutrons in the Summary Table. See MOHAPATRA 09 and PHILLIPS 16 for recent reviews.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (s) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \(>2.7 \times 10^{8}\) & 90 & ABE & 15C & CNTR & \(n\) bound in oxygen \\
\hline \(>8.6 \times 10^{7}\) & 90 & BALDO-... & 94 & CNTR & Reactor (free) neutrons \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - .
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(>1.37 \times 10^{8}\) & 90 & 1 AHARMIM & 17 & SNO & \(n\) bound in deuteron \\
\hline \(>1.3 \times 10^{8}\) & 90 & CHUNG & 02B & SOU2 & \(n\) bound in iron \\
\hline \(>1 \times 10^{7}\) & 90 & BALDO-... & 90 & CNTR & See BALDO-CEOLIN 94 \\
\hline \(>1.2 \times 10^{8}\) & 90 & BERGER & 90 & FREJ & \(n\) bound in iron \\
\hline \(>4.9 \times 10^{5}\) & 90 & BRESSI & 90 & CNTR & Reactor neutrons \\
\hline \(>4.7 \times 10^{5}\) & 90 & BRESSI & 89 & CNTR & See BRESSI 90 \\
\hline \(>1.2 \times 10^{8}\) & 90 & TAKITA & 86 & CNTR & \(n\) bound in oxygen \\
\hline \(>1 \times 10^{6}\) & 90 & FIDECARO & 85 & CNTR & Reactor neutrons \\
\hline \(>8.8 \times 10^{7}\) & 90 & PARK & 85B & CNTR & \\
\hline \(>3 \times 10^{7}\) & & BATTISTONI & 84 & NUSX & \\
\hline \(>0.27-1.1 \times 10^{8}\) & & JONES & 84 & CNTR & \\
\hline \(>2 \times 10^{7}\) & & CHERRY & 83 & CNTR & \\
\hline
\end{tabular}

\section*{LIMIT ON \(n n^{\prime}\) OSCILLATIONS}

Lee and Yang (LEE 56) proposed the existence of mirror world in an attempt to restore global parity symmetry. A possible candidate for dark matter. Limits depend on assumptions about fields \(B\) and \(B^{\prime}\). See the papers for details. See BEREZHIANI 18 for a recent discussion.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (s) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline >448 & 90 & SEREBROV & 09A & CNTR & Assumes \(B^{\prime}<100 \mathrm{nT}\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline \(>17\) & 95 & 1 BEREZHIANI & 18 & CNTR & UCN, scan of \(B\) field \\
\hline \(>12\) & 95 & 2 ALTAREV & 09A & CNTR & UCN, scan \(0 \leq B \leq 12.5 \mu \mathrm{~T}\) \\
\hline \(>414\) & 90 & SEREBROV & 08 & CNTR & UCN, \(B\) field on \& off \\
\hline >103 & 95 & BAN & 07 & CNTR & UCN, \(B\) field on \& off \\
\hline
\end{tabular}
\({ }^{1}\) The \(B\) field was set to \((0.09,0.12,0.21)\) G. Limits on oscillation time are valid for any mirror field \(B^{\prime}\) in \((0.08-0.17) \mathrm{G}\), and for aligned fields \(B\) and \(B^{\prime}\). For larger values of \(B^{\prime}\), the limits are significantly reduced.
\({ }^{2}\) Losses of neutrons due to oscillations to mirror neutrons would be maximal when the magnetic fields \(B\) and \(B^{\prime}\) in the two worlds were equal. Hence the scan over \(B\) by ALTAREV 09A: the limit applies for any \(B^{\prime}\) over the given range. At \(B^{\prime}=0\), the limit is \(141 \mathrm{~s}(95 \% \mathrm{CL})\).

\section*{\(n\) DECAY MODES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Mode & & Fraction ( \(\Gamma_{i} / \Gamma^{\prime}\) ) & & Confidence level \\
\hline \(\Gamma_{1}\) & \(p e^{-} \bar{\nu}_{e}\) & & 100 & \% & \\
\hline \(\Gamma_{2}\) & \(p e^{-} \bar{\nu}_{e} \gamma\) & & [a] ( 9.2 \(\pm 0.7)\) & \(\times 10^{-3}\) & \\
\hline \(\Gamma_{3}\) & hydrogen-atom \(\bar{\nu}_{e}\) & & \(<2.7\) & \(\times 10^{-3}\) & 95\% \\
\hline \multicolumn{6}{|c|}{Charge conservation ( \(Q\) ) violating mode} \\
\hline \(\Gamma_{4}\) & \(p \nu_{e} \bar{\nu}_{e}\) & \(Q\) & \(<8\) & \(\times 10^{-27}\) & 7 68\% \\
\hline \multicolumn{6}{|c|}{Baryon number violating decay} \\
\hline \(\Gamma_{5}\) & \(e^{+} e^{-}\)invisible & & & & \\
\hline
\end{tabular}
[a] This limit is for \(\gamma\) energies between 0.4 and 782 keV .
n BRANCHING RATIOS
\(\Gamma\left(p e^{-} \bar{\nu}_{e} \gamma\right) / \Gamma_{\text {total }} \quad \Gamma_{2} / \Gamma\) \(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{\mathbf{9 . 1 7} \pm \mathbf{0 . 2 4} \pm \mathbf{0 . 6 4}} \frac{C L \%}{1} \quad \frac{\text { DOCUMENT ID }}{\text { BALES }} \frac{16}{} \frac{\text { TECN }}{\text { RDK2 }} \frac{\text { COMMENT }}{\text { Two different set-ups }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{ccccl}
\(3.09 \pm 0.11 \pm 0.30\) & & 2 COOPER & 10 & CNTR \\
\(3.13 \pm 0.11 \pm 0.33\) & & NICO & 06 & CNTR \\
\hline 6.9 & 90 & 3 BECK See COOPER 16 \\
\(<\) & 02 & CNTR & \(\gamma, p, e^{-}\)coincidence
\end{tabular}
\({ }^{1}\) BALES 16 gets a branching fraction of \((5.82 \pm 0.23 \pm 0.62) \times 10^{-3}\) for a photon energy range 0.4 to 14.0 keV , and with a different detector array, \((3.35 \pm 0.05 \pm 0.15) \times 10^{-3}\) for 14.1 to 782 keV . Our result above is the sum; the error on the sum is completely dominated by the error on the lower range.
\({ }^{2}\) This COOPER 10 result is for \(\gamma\) energies between 15 and 340 keV .
\({ }^{3}\) This BECK 02 limit is for \(\gamma\) energies between 35 and 100 keV .
\(\Gamma\left(\right.\) hydrogen-atom \(\left.\overline{\boldsymbol{\nu}}_{\mathbf{e}}\right) / \Gamma_{\text {total }} \quad \boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}\)

- - We do not use the following data for averages, fits, limits, etc. - - •
\(<3 \times 10^{-2} \quad 95 \quad 2\) GREEN 90 RVUE
\({ }^{1}\) CZARNECKI 18 limit from an analysis of experimental discrepancies on the neutron lifetime and axial coupling applies as well to other possible exotic neutron decays.
\({ }^{2}\) GREEN 90 infers that \(\tau\) (hydrogen-atom \(\bar{\nu}_{e}\) ) \(>3 \times 10^{4} \mathrm{~s}\) by comparing neutron lifetime measurements made in storage experiments with those made in \(\beta\)-decay experiments. However, the result depends sensitively on the lifetime measurements, and does not of course take into account more recent measurements of same.

\section*{\(\Gamma\left(\rho \nu_{e} \bar{\nu}_{e}\right) / \Gamma_{\text {total }}\)}

Forbidden by charge conservation.
VALUE CLL DOCUMENTID TECN COMMENT
\(<8 \times \mathbf{1 0}^{\mathbf{- 2 7}} \quad 68 \quad 1\) NORMAN 96 RVUE \({ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}\) neutrals
- - We do not use the following data for averages, fits, limits, etc. • -
\begin{tabular}{llllll}
\(<9.7 \times 10^{-18}\) & 90 & ROY & 83 & CNTR \({ }^{113} \mathrm{Cd} \rightarrow 113 m\) Inneut. \\
\(<7.9 \times 10^{-21}\) & & VAIDYA & 83 & CNTR \({ }^{87} \mathrm{Rb} \rightarrow 87 m\) Srneut. \\
\(<9 \times 10^{-24}\) & 90 & BARABANOV 80 & CNTR \({ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{GeX}\) \\
\(<3 \times 10^{-19}\) & & NORMAN & 79 & CNTR \({ }^{87} \mathrm{Rb} \rightarrow 87 m\) Srneut.
\end{tabular}
\({ }^{1}\) NORMAN 96 gets this limit by attributing SAGE and GALLEX counting rates to the charge-nonconserving transition \({ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}+\) neutrals rather than to solar-neutrino reactions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\Gamma\left(e^{+} e^{- \text {invisible }) / \Gamma_{\text {total }}} \quad \Gamma_{5} / \Gamma\right.\)} \\
\hline VALUE & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline <0.01 & 90 & 1 KLOPF & 19 & CNTR & re-interpretation of MUND 13 \\
\hline \(<1 \times 10^{-4}\) & 90 & \({ }^{2}\) SUN & 18 & SPEC & Ultracold \(n\), polarized \\
\hline
\end{tabular}
\(1^{\text {KLOPF }} 19\) value is for baryon number violating decay of neutron to electrons plus an invisible state, \(\chi\). The limit is valid for \(\mathrm{KE}\left(e^{+} e^{-}\right)\)range between 32 keV and 664 keV , strengthening to few \(\times 10^{-4}\) above approximately 100 keV .
2 SUN 18 value is for baryon number violating decay of neutron to electrons plus an invisible state, \(\chi\). The limit is valid for \(644 \mathrm{keV}>\mathrm{KE}\left(e^{+} e^{-}\right)>100 \mathrm{keV}\). Assuming this decay \(\chi e e\) is the only allowed \(\chi\) decay channel, a 0.01 BR is ruled out for \(644 \mathrm{keV}>\mathrm{E}\left(e^{+} e^{-}\right)\) \(>100 \mathrm{keV}\) at over \(5 \sigma\).

See the related review(s):
Baryon Decay Parameters

\section*{\(n \rightarrow p e^{-} \bar{\nu}_{e}\) DECAY PARAMETERS}

See the above "Note on Baryon Decay Parameters." For discussions of recent results, see the references cited at the beginning of the section on the neutron mean life. For discussions of the values of the weak coupling constants \(g_{A}\) and \(g_{V}\) obtained using the neutron lifetime and asymmetry parameter \(A\), comparisons with other methods of obtaining these constants, and implications for particle physics and for astrophysics, see DUBBERS 91 and WOOLCOCK 91. For tests of the \(V-A\) theory of neutron decay, see EROZOLIMSKII 91b, MOSTOVOI 96, NICO 05, SEVERIJNS 06, and ABELE 08.

\section*{\(\lambda \underline{\underline{\underline{\underline{\underline{E}}}}} g_{A} / g_{v}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{VALUE} & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{\(-1.2756 \pm \mathbf{0 . 0 0 1 3}\) OUR AVERAGE Error includes scale factor of 2.6. See the ideogram below.} \\
\hline \(-1.27641\) & \(\pm 0.00045 \pm 0.00033\) & 1 MAERKISCH & 19 & SPEC & pulsed cold \(n\), polarized \\
\hline -1.2772 & \(\pm 0.0020\) & \({ }^{2}\) BROWN & 18 & UCNA & Ultracold \(n\), polarized \\
\hline -1.284 & \(\pm 0.014\) & \({ }^{3}\) DARIUS & 17 & SPEC & Cold \(n\), unpolarized \\
\hline -1.2748 & \(\pm 0.0008{ }_{-0.0011}^{+0.0010}\) & 4 MUND & 13 & SPEC & Cold \(n\), polarized \\
\hline -1.275 & \(\pm 0.006 \pm 0.015\) & SCHUMANN & 08 & CNTR & Cold \(n\), polarized \\
\hline -1.2686 & \(\pm 0.0046 \pm 0.0007\) & 5 MOSTOVOI & 01 & CNTR & \(A\) and \(B \times\) polarizations \\
\hline -1.266 & \(\pm 0.004\) & LIAUD & 97 & TPC & Cold \(n\), polarized, \(A\) \\
\hline -1.2594 & \(\pm 0.0038\) & 6 YEROZLIM... & 97 & CNTR & Cold \(n\), polarized, \(A\) \\
\hline -1.262 & \(\pm 0.005\) & BOPP & 86 & SPEC & Cold \(n\), polarized, \(A\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{2}{|l|}{-1.2755 \(\pm 0.0030\)} & \multicolumn{2}{|l|}{7 MENDENHALL13} & UCNA & See BROWN 18 \\
\hline \multicolumn{2}{|l|}{\(-1.27590 \pm 0.00239{ }_{-0.00377}^{+0.00331}\)} & \({ }^{8}\) PLASTER & 12 & UCNA & See MENDENHALL 13 \\
\hline \multicolumn{2}{|l|}{\[
-1.27590_{-0.00445}^{+0.00409}
\]} & LIU & & UCNA & See PLASTER 12 \\
\hline -1.2739 & \(\pm 0.0019\) & \({ }^{9}\) ABELE & 02 & SPEC & See MUND 13 \\
\hline -1.274 & \(\pm 0.003\) & ABELE & 97D & SPEC & Cold \(n\), polarized, \(A\) \\
\hline -1.266 & \(\pm 0.004\) & SCHRECK... & 95 & TPC & See LIAUD 97 \\
\hline -1.2544 & \(\pm 0.0036\) & EROZOLIM... & 91 & CNTR & See YEROZOLIMSKY 97 \\
\hline -1.226 & \(\pm 0.042\) & MOSTOVOY & 83 & RVUE & \\
\hline -1.261 & \(\pm 0.012\) & EROZOLIM... & 79 & CNTR & Cold \(n\), polarized, \(A\) \\
\hline -1.259 & \(\pm 0.017\) & 10 STRATOWA & 78 & CNTR & \(p\) recoil spectrum, a \\
\hline -1.263 & \(\pm 0.015\) & EROZOLIM... & 77 & CNTR & See EROZOLIMSKII 79 \\
\hline -1.250 & \(\pm 0.036\) & 10 DOBROZE. & 75 & CNTR & See STRATOWA 78 \\
\hline -1.258 & \(\pm 0.015\) & 11 KROHN & 75 & CNTR & Cold \(n\), polarized, \(A\) \\
\hline -1.263 & \(\pm 0.016\) & 12 KROPF & 74 & RVUE & \(n\) decay alone \\
\hline -1.250 & \(\pm 0.009\) & 12 KROPF & 74 & RVUE & \(n\) decay + nuclear ft \\
\hline
\end{tabular}
\({ }^{1}\) MAERKISCH 19 gets \(A=-0.11985 \pm 0.00017 \pm 0.00012\).
\({ }^{2}\) BROWN 18 gets \(A=-0.12054 \pm 0.00044 \pm 0.00068\) and \(\lambda=-1.2783 \pm 0.0022\). We quote the combined values that include the earlier UCNA measurements (MENDENHALL 13).
\({ }^{3}\) DARIUS 17 calculates this value from the measurement of the a parameter (see below).
\({ }^{4}\) This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and ABELE 97D).
\({ }^{5}\) MOSTOVOI 01 measures the two \(P\)-odd correlations \(A\) and \(B\), or rather \(S A\) and \(S B\), where \(S\) is the \(n\) polarization, in free neutron decay.
\({ }^{6}\) YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.

\section*{Baryon Particle Listings}

\section*{\(n\)}
\({ }^{7}\) MENDENHALL 13 gets \(A=-0.11954 \pm 0.00055 \pm 0.00098\) and \(\lambda=-1.2756 \pm\)
0.0030 . We quote the nearly identical values that include the earlier UCNA measurement
(PLASTER 12), with a correction to that result.
\({ }^{8}\) This PLASTER 12 value is identical with that given in LIU 10 , but the experiment is now described in detail.
\({ }^{9}\) This is the combined result of ABELE 02 and ABELE 97D.
\({ }^{10}\) These experiments measure the absolute value of \(g_{A} / g_{V}\) only.
11 KROHN 75 includes events of CHRISTENSEN 70.
\({ }^{12}\) KROPF 74 reviews all data through 1972.


\section*{\(e^{-}\)ASYMMETRY PARAMETER A}

This is the neutron-spin electron-momentum correlation coefficient. Unless otherwise noted, the values are corrected for radiative effects and weak magnetism. In the Standard Model, \(A\) is related to \(\lambda \equiv g_{A} / g_{V}\) by \(A=-2 \lambda(\lambda+1) /\left(1+3 \lambda^{2}\right)\); this assumes that \(g_{A}\) and \(g_{V}\) are real.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{VALUE DOCUMENT ID TECN COMM} \\
\hline \multicolumn{5}{|l|}{\(\mathbf{- 0 . 1 1 9 5 8} \pm \mathbf{0 . 0 0 0 2 1}\) OUR AVERAGE Error includes scale factor of 1.2.} \\
\hline \(-0.11985 \pm 0.00017 \pm 0.00012\) & 1 MAERKISCH & 19 & SPEC & pulsed cold \(n\), polarized \\
\hline \(-0.12015 \pm 0.00034 \pm 0.00063\) & \({ }^{2}\) BROWN & 18 & UCNA & Ultracold \(n\), polarized \\
\hline \(-0.11926 \pm 0.00031_{-0.00042}^{+0.0036}\) & \({ }^{3}\) MUND & 13 & SPEC & Cold n, polarized \\
\hline \(-0.1160 \pm 0.0009 \pm 0.0012\) & LIAUD & 97 & TPC & Cold \(n\), polarized \\
\hline \(-0.1135 \pm 0.0014\) & \({ }^{4}\) YEROZLIM... & 97 & CNTR & Cold \(n\), polarized \\
\hline \(-0.1146 \pm 0.0019\) & BOPP & 86 & SPEC & Cold \(n\), polarized \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.11952 \pm 0.00110\) & \({ }^{5}\) MENDENHAL & & UCNA & See BROWN 18 \\
\hline \[
-0.11966 \pm 0.00089{ }_{-0.00140}^{+0.00123}
\] & \({ }^{6}\) PLASTER & 12 & UCNA & See MENDENHALL 13 \\
\hline \(-0.11966 \pm 0.00089{ }_{-0.00140}^{+0.00123}\) & LIU & 10 & UCNA & See PLASTER 12 \\
\hline \(-0.1138 \pm 0.0046 \pm 0.0021\) & Pattie & 09 & SPEC & Ultracold \(n\), polarized \\
\hline \(-0.1189 \pm 0.0007\) & \(7^{7}\) ABELE & 02 & SPEC & See MUND 13 \\
\hline \(-0.1168 \pm 0.0017\) & \({ }^{8}\) mostovol & 01 & CNTR & Inferred \\
\hline \(-0.1189 \pm 0.0012\) & ABELE & 97D & SPEC & Cold \(n\), polarized \\
\hline \(-0.1160 \pm 0.0009 \pm 0.0011\) & SCHRECK... & 95 & TPC & See LIAUD 97 \\
\hline \(-0.1116 \pm 0.0014\) & EROZOLIM... & 91 & CNTR & See YEROZOLIMSKY 97 \\
\hline -0.114 \(\pm 0.005\) & \({ }^{9}\) EROZOLIM... & 79 & CNTR & Cold \(n\), polarized \\
\hline \(-0.113 \pm 0.006\) & \({ }^{9} \mathrm{KROHN}\) & 75 & CNTR & Cold \(n\), polarized \\
\hline
\end{tabular}
\({ }^{1}\) MAERKISCH 19 further derive a value for the CKM-element \(\left|V_{u d}\right|=0.97351 \pm 0.00060\), using \(\tau_{n}=879.7(8)\) sec and the relation from CZARNECKI 18.
\({ }^{2}\) BROWN 18 gets \(A=-0.12054 \pm 0.00044 \pm 0.00068\) and \(\lambda=-1.2783 \pm 0.0022\). We quote the combined values that include the earlier UCNA measurements (MENDENHALL 13).
\({ }^{3}\) This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and ABELE 97D), with a correction to those results.
\({ }_{5}^{4}\) YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.
\({ }^{5}\) MENDENHALL 13 gets \(A=-0.11954 \pm 0.00055 \pm 0.00098\) and \(\lambda=-1.2756 \pm\) 0.0030 . We quote the nearly identical values that include the earlier UCNA measurement (PLASTER 12), with a correction to that result.
\({ }^{6}\) This PLASTER 12 value is identical with that given in LIU 10, but the experiment is
7 Thw described in detail.
\({ }^{8}\) MOSTOVOI 01 calculates this from its measurement of \(\lambda=g_{A} / g_{V}\) above.
\({ }^{9}\) These results are not corrected for radiative effects and weak magnetism, but the corrections are small compared to the errors.

\section*{\(\bar{\nu}_{\boldsymbol{e}}\) ASYMMETRY PARAMETER B}

This is the neutron-spin antineutrino-momentum correlation coefficient. In the Standard Model, \(B\) is related to \(\lambda \equiv g_{A} / g_{V}\) by \(B=2 \lambda(\lambda-1) /\left(1+3 \lambda^{2}\right)\); this assumes that \(g_{A}\) and \(g_{V}\) are real.

VALUE
\(\mathbf{0 . 9 8 0 7} \pm \mathbf{0 . 0 0 3 0}\) OUR AVERAGE
\(0.9802 \pm 0.0034 \pm 0.0036\)
\(0.967 \pm 0.006 \pm 0.010\) \(0.9801 \pm 0.0046\)

DOCUMENT ID \(\qquad\) TECN COMMENT

SCHUMANN 07 CNTR Cold \(n\), polarized KREUZ 05 CNTR Cold \(n\), polarized SEREBROV 98 CNTR Cold \(n\), polarized
\begin{tabular}{|c|c|c|}
\hline \(0.9894 \pm 0.0083\) & KUZNETSOV 95 & CNTR Cold \(n\), polarized \\
\hline \(1.00 \pm 0.05\) & CHRISTENSEN70 & CNTR Cold \(n\), polarized \\
\hline \(0.995 \pm 0.034\) & EROZOLIM... 70C & CNTR Cold \(n\), polarized \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.9876 \pm 0.0004\) & \({ }^{1}\) MOSTOVOI 01 & CNTR Inferred \\
\hline \({ }^{1}\) mostovoi & \(m\) its measureme & \(\lambda=g_{A} / g_{V}\) above. \\
\hline
\end{tabular}

\section*{PROTON ASYMMETRY PARAMETER C}

Describes the correlation between the neutron spin and the proton momentum. In the Standard Model, \(C\) is related to \(\lambda \equiv g_{A} / g_{V}\) by \(C=-x_{C}(A+B)=x_{C} 4 \lambda /(1+\) \(3 \lambda^{2}\) ), where \(x_{C}=0.27484\) is a kinematic factor; this assumes that \(g_{A}\) and \(g_{V}\) are real.
\(\frac{\text { VALUE }^{\text {real. }}}{\mathbf{- 0 . 2 3 7 7} \pm \mathbf{0 . 0 0 1 0} \pm \mathbf{0 . 0 0 2 4}} \quad \frac{\text { DOCUMENT ID }}{\text { SCHUMANN } 08} \frac{\text { TECN }}{\text { CNTR }} \frac{\text { COMMENT }}{\text { Cold } n \text {, polarized }}\)

\section*{\(e-\bar{\nu}_{e}\) ANGULAR CORRELATION COEFFICIENT a}

For a review of past experiments and plans for future measurements of the a parameter, see WIETFELDT 05. In the Standard Model, \(a\) is related to \(\lambda \equiv g_{A} / g_{V}\) by \(a=(1\) \(\left.-\lambda^{2}\right) /\left(1+3 \lambda^{2}\right)\); this assumes that \(g_{A}\) and \(g_{V}\) are real.
VALUE \(\mathbf{0 . 1 0 5 9} \mathbf{+ 0 . 0 0 2 8}\) OUR AVERAGE DOCUMENT ID TECN COMMENT
\(0.1090 \pm 0.0030 \pm 0.0028\)
\(-0.1090 \pm 0.0030 \pm 0.0028 \quad 1\) DARIUS 17 SPEC Cold \(n\), unpolarized
\(-0.1054 \pm 0.0055 \quad\) BYRNE 02 SPEC Proton recoil spectrum
\(\begin{array}{lllll}-0.1017 \pm 0.0051 & \text { STRATOWA } & 78 & \text { CNTR } & \text { Proton recoil spectrum } \\ -0.091 \pm 0.039 & \text { GRIGOREV } & 68 & \text { SPEC } & \text { Proton recoil spectrum }\end{array}\)
- - We do not use the following data for averages, fits, limits, etc. - - •
\(-0.1045 \pm 0.0014 \quad 2\) MOSTOVOI 01 CNTR Inferred
\({ }^{1}\) DARIUS 17 exploits a "wishbone" correlation, where the \(p\) time of flight is correlated with the momentum of the electron in delayed coincidence.
\({ }^{2}\) MOSTOVOI 01 calculates this from its measurement of \(\lambda=g_{A} / g_{V}\) above.
\(\phi_{A V}\), PHASE OF \(\boldsymbol{g}_{A}\) RELATIVE TO \(\boldsymbol{g} \boldsymbol{v}\)
Time reversal invariance requires this to be 0 or \(180^{\circ}\). This is related to \(D\) given in the next data block and \(\lambda \equiv g_{A} / g_{V}\) by \(\sin \left(\phi_{A V}\right) \equiv D\left(1+3 \lambda^{2}\right) / 2|\lambda|\); this assumes that \(g_{A}\) and \(g_{V}\) are real.
\(\frac{V A L U E\left({ }^{\circ}\right)}{180.017 \pm 0.026 \text { OUR AVERAGE }} \frac{C L \%}{}\)
\(180.04=08 \quad\) CHUPP \(\quad 12\) CNTR Cold \(n\), polarized \(>91 \%\)
- LISING 00 CNTR Polarized > 93\%
180.013 保
\(179.71 \pm 0.39 \quad\) EROZOLIM... 78 CNTR Cold \(n\), polarized
\(180.35 \pm 0.43 \quad\) EROZOLIM... 74 CNTR Cold \(n\), polarized
\(181.1 \pm 1.3 \quad 1\) KROPF \(74 \quad\) RVUE \(n\) decay
\(180.14 \pm 0.22 \quad\) STEINBERG 74 CNTR Cold \(n\), polarized
\({ }^{1}\) KROPF 74 reviews all data through 1972.

\section*{TRIPLE CORRELATION COEFFICIENT D}

These are measurements of the component of \(n\) spin perpendicular to the decay plane in \(\beta\) decay. Should be zero if \(T\) invariance is not violated.
VALUE (units \(10^{-4}\) )
DOCUMENT ID TECN COMMENT
- \(1.2 \pm 2.0\) OUR AVERAGE
\(-0.94 \pm 1.89 \pm 0.97\)
\(-2.8 \pm 6.4 \pm 3.0\)
CHUPP
12 CNTR Cold \(n\), polarized > 91\%
\(2.8 \pm 6.4 \pm 3.0 \quad\) SOLDNER 04 CNTR Cold \(n\), polarized
\(-6 \quad \pm 12 \quad \pm 5 \quad\) LISING 00 CNTR Polarized \(>93 \%\)
- - We do not use the following data for averages, fits, limits, etc. - - -
- 0.96土 \(1.89 \pm 1.01 \quad\) MUMM 11 CNTR See CHUPP 12
\(+22 \pm 30 \quad\) EROZOLIM... 78 CNTR Cold n, polarized
\(-27 \pm 50 \quad 1\) EROZOLIM... 74 CNTR Cold \(n\), polarized
\(-11 \pm 17 \quad\) STEINBERG 74 CNTR Cold \(n\), polarized
\({ }^{1}\) EROZOLIMSKII 78 says asymmetric proton losses and nonuniform beam polarization may give a systematic error up to \(30 \times 10^{-4}\), thus increasing the EROZOLIMSKII 74 error to \(50 \times 10^{-4}\). STEINBERG 74 and STEINBERG 76 estimate these systematic errors to be insignificant in their experiment.

\section*{TRIPLE CORRELATION COEFFICIENT \(\boldsymbol{R}\)}

Another test of time-reversal invariance. \(R\) measures the polarization of the electron in the direction perpendicular to the plane defined by the neutron spin and the electron momentum. \(R=0\) for T invariance
VALUE \(\quad\) DOCUMENTID \(\quad\) TECN COMMENT
\(\mathbf{+ 0 . 0 0 4} \pm \mathbf{0 . 0 1 2} \pm \mathbf{0 . 0 0 5} \quad 1\) KOZELA \(12 \quad\) CNTR Mott polarimeter
- - We do not use the following data for averages, fits, limits, etc. - - -
\(+0.008 \pm 0.015 \pm 0.005\)
KOZELA
09 CNTR See KOZELA 12
\(1^{\text {KOZELA }} 12\) also measures the polarization of the electron along the direction of the neutron spin. This is nonzero in the Standard Model; the correlation coefficient is \(N=\) \(+0.067 \pm 0.011 \pm 0.004\)

\section*{n REFERENCES}

We have omitted some papers that have been superseded by later experiments. See our earlier editions.
C. Abel et al.
M. Klopf et al.
B. Maerkisch et al.
Z. Berezhiani et al.
M.A.-P. Brown et al
M.A.-P. Brown et al.
A. Czarnecki, W.J. Marciano, A. Si (nEDM Collab.)
(PERKEO II Collab.)
(TUM, ILL, +)
AQUI, INFN I ILG
(AQUI, INFN, ILLG+
(UCNA Collab.)


Baryon Particle Listings
\(N(1440)\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1360 & HUNT & 19 & DPWA & Multichannel \\
\hline 1355 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 1386 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1370 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1363 \pm 11\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1359 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1383 & VRANA & 00 & DPWA & Multichannel \\
\hline 1385 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2×IMAGINARY PART} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{160 to 190 ( \(\approx 175\) ) OUR ESTIMATE} \\
\hline \(189 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(180 \pm 4 \pm 5\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(180 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 186 & HUNT & 19 & DPWA & Multichannel \\
\hline 215 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 277 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline 190土 7 & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(151 \pm 13\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 162 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 316 & VRANA & 00 & DPWA & Multichannel \\
\hline 164 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(N(1440)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{46 to 54 ( \(\approx 50\) ) OUR ESTIMATE} \\
\hline \(49 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(50 \pm 1 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(52 \pm 5\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 62 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 126 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(48 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 44 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 38 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 40 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
PHASE \(\theta\)
VALUE \(\left(^{\circ}\right.\) DOCUMENT ID TECN COMMENT
\(=100\) to \(=\mathbf{8 0}(\approx=\mathbf{9 0})\) OUR ESTIMATE
\begin{tabular}{lclll}
\(\mathbf{- 1 0 0} \mathbf{t 0} \mathbf{- 8 0} \mathbf{( \approx = 9 0 )} \mathbf{( \approx \mathbf { 9 0 }} \mathbf{\text { OUR ESTMATE }}\) & & & \\
\(-82 \pm 5\) & SOKHOYAN & \(15 A\) & DPWA Multichannel \\
\(-88 \pm 1 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(-100 \pm 35\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}
- . We do not use the following data for averages, fits, limits, etc.
\begin{tabular}{llll}
-98 & ROENCHEN & 15A DPWA Multichannel \\
-60 & SHKLYAR & 13 DPWA Multichannel \\
\(-78 \pm 4\) & ANISOVICH & 12A DPWA Multichannel \\
-88 & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
-98 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
& 1 Fit to the amplitudes of HOEHLER 79. & &
\end{tabular}

\section*{\(\mathbf{N ( 1 4 4 0 )}\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(1440) \rightarrow N \boldsymbol{\eta}\)
\begin{tabular}{|c|c|c|c|c|}
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.078 & -27 & ROENCHEN & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1440) \rightarrow \Delta \pi, P\)-wave} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.27 \pm 0.02\) & \(38 \pm 5\) & SOKHOYAN & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.27 \pm 0.02\) & \(40 \pm 5\) & ANISOVICH & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1440) \rightarrow \Lambda K\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.016 & 145 & ROENCHEN & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1440) \rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline
\end{tabular} MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT - - We do not use the following data for averages, fits, limits, etc. • - -
0.027113 ROENCHEN 15A DPWA Multichannel

\(N(1440)\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{250 to 450 ( \(\approx 350\) ) OUR ESTIMATE} \\
\hline \(257 \pm 11\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(360 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(605 \pm 90\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(284 \pm 18\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(340 \pm 70\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(135 \pm 10\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(365 \pm 35\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(248 \pm 5\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(437 \pm 141\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(668 \pm 41\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(490 \pm 120\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(N(1440)\) DECAY MODES
The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(55-75 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(<1 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \(17-50 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi, P\)-wave & \(6-27 \%\) \\
\(\Gamma_{5}\) & \(N \sigma\) & \(11-23 \%\) \\
\(\Gamma_{6}\) & \(p \gamma\), helicity=1/2 & \(0.035-0.048 \%\) \\
\(\Gamma_{7}\) & \(n \gamma\), helicity=1/2 & \(0.02-0.04 \%\) \\
\hline
\end{tabular}
\(\boldsymbol{N}(1440)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{55 to 75 ( \(\approx 65\) ) OUR ESTIMATE} \\
\hline \(59 \pm 2\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(63 \pm 2\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(56 \pm 2\) & 1 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(78.7 \pm 1.6\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(68 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(51 \pm 5\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(62 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(64.8 \pm 0.9\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(62 \pm 4\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(57 \pm 1\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(72 \pm 5\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \boldsymbol{\eta}) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}

DOCUMENTID TECN COMMENT
\(0 \pm 1 \quad\) VRANA 00 DPWA Multichanne


\section*{\(\boldsymbol{N}(1520)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)


\section*{\(N(1440)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|}
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline SHKLYAR & 16 & PR C93 045206 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (C & CBELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (R) & (RBI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 13B & EPJ A49 67 & A.V. Anisovich et al. & \\
\hline SHKLYAR & 13 & PR C87 015201 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline CHEN & 12A & PR C86 015206 & W. Chen et al. (DUKE, & , GWU, MSST, ITEP+) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline WORKMAN & 12A & PR C86 015202 & R. Workman et al. & (GWU) \\
\hline BATINIC & 10 & PR C82 038203 & M. Batinic et al. & (ZAGR) \\
\hline DRECHSEL & 07 & EPJ A34 69 & D. Drechsel, S.S. Kamalov, L. Tiator & or (MAINZ, JINR) \\
\hline DUGGER & 07 & PR C76 025211 & M. Dugger et al. & (JLab CLAS Collab.) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline PENNER & 02C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline
\end{tabular}

\section*{PHASE \(\theta\)}

PHASE \(\boldsymbol{\theta}\)
\(\frac{V A L U E\left({ }^{\circ}\right)}{\mathbf{= 1 5} \text { to }=\mathbf{5}(\approx=\mathbf{1 0}) \text { OUR ESTIMATE }} \begin{aligned} & \text { DOCUMENT ID }\end{aligned}\)
\begin{tabular}{lccl}
\(-14 \pm 3\) & SOKHOYAN & 15A & DPWA Multichannel \\
\(-15 \pm 1 \pm 1\) & 1 & SVARC & 14 \\
\(-12 \pm 5\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\) \\
-6 & ROENCHEN & 15A & DPWA Multichannel \\
-35 & SHKLYAR & 13 & DPWA Multichannel \\
\(-14 \pm 3\) & ANISOVICH & \(12 A\) & DPWA Multichannel \\
-7 & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi N \eta\) \\
-5 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
-8 & HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\) \\
\(\quad 1\) Fit to the amplitudes of HOEHLER 79. & & \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1520)\)


\section*{\(N(1520)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(1520) \rightarrow p \gamma\), helicity \(-1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(55-65 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(0.07-0.09 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \(25-35 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi\) & \(22-34 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, S\)-wave & \(15-23 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi, D\)-wave & \(7-11 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.023 \pm 0.004\) & \(-6 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.024{ }_{-0.003}^{+0.008}\) & \(-17{ }_{-}^{+16}\) & ROENCHEN & 14 & DPWA & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -0.031 & -17 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}


Baryon Particle Listings

\section*{\(N(1535)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \boldsymbol{\pi} \Rightarrow \boldsymbol{N}(1535) \Rightarrow N \boldsymbol{\eta}\)



\section*{N(1535) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{125 to 175 ( \(\approx\) 150) OUR ESTIMATE} \\
\hline \(147 \pm 5\) & \({ }^{6}\) HUNT 19 & DPWA Multichannel \\
\hline \(163 \pm 25\) & KASHEVAROV 17 & DPWA \(\gamma p \rightarrow \eta p, \eta^{\prime} p\) \\
\hline \(120 \pm 10\) & SOKHOYAN 15A & DPWA Multichannel \\
\hline \(131 \pm 12\) & 6 SHKLYAR 13 & DPWA Multichannel \\
\hline \(188.4 \pm 3.8\) & \({ }^{6}\) ARNDT 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(240 \pm 80\) & CUTKOSKY 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \(120 \pm 20\) & HOEHLER 79 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(128 \pm 14\) & ANISOVICH 12A & DPWA Multichannel \\
\hline \(141 \pm 4\) & 6 SHRESTHA 12A & DPWA Multichannel \\
\hline \(182 \pm 25\) & BATINIC 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(129 \pm 8\) & PENNER 02C & DPWA Multichannel \\
\hline \(95 \pm 25\) & BAI 01B & BES \(\quad J / \psi \rightarrow p \bar{p} \eta\) \\
\hline \(143 \pm 18\) & THOMPSON 01 & CLAS \(\gamma^{*} p \rightarrow p \eta\) \\
\hline \(112 \pm 19\) & VRANA 00 & DPWA Multichannel \\
\hline \(154 \pm 20\) & ARMSTRONG 99b & DPWA \(\gamma^{*} p \rightarrow p \eta\) \\
\hline \multicolumn{3}{|l|}{\({ }^{6}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1535)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(32-52 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(30-55 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \(3-14 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, D\)-wave & \(1-4 \%\) \\
\(\Gamma_{6}\) & \(N \rho\) & \\
\(\Gamma_{7}\) & \(N \rho, S=1 / 2\) & \\
\(\Gamma_{8}\) & \(N \rho, S=3 / 2, D\)-wave & \\
\(\Gamma_{9}\) & \(N \sigma\) & \(2-10 \%\) \\
\(\Gamma_{10}\) & \(N(1440) \pi\) & \(5-12 \%\) \\
\(\Gamma_{11}\) & \(p \gamma\), helicity=1/2 & \(0.15-0.30 \%\) \\
\(\Gamma_{12}\) & \(n \gamma\), helicity=1/2 & \(0.01-0.25 \%\) \\
\hline
\end{tabular}

\section*{\(N(1535)\) BRANCHING RATIOS}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \multicolumn{5}{|l|}{30 to 55 ( \(\approx 42\) ) OUR ESTIMATE} \\
\hline \(43 \pm 3\) & 8 HUNT 19 & DPWA & Multichannel & \\
\hline \(41 \pm 4\) & 9 KASHEVAROV 17 & DPWA & \(\gamma p \rightarrow \eta p, \eta^{\prime} p\) & \\
\hline \(58 \pm 4\) & 8 SHKLYAR 13 & DPWA & Multichannel & \\
\hline \(33 \pm 5\) & ANISOVICH 12A & DPWA & Multichannel & \\
\hline \(53 \pm 1\) & PENNER 02C & DPWA & Multichannel & \\
\hline \(51 \pm 5\) & VRANA 00 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(41 \pm 2\) & 8 SHRESTHA 12A & DPWA & Multichannel & \\
\hline \(50 \pm 7\) & BATINIC 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \multicolumn{5}{|l|}{\({ }^{8}\) Statistical error only.} \\
\hline \({ }^{9}\) Assuming \(\mathrm{A}_{1}\) & 1/2. & & & \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\boldsymbol{\Gamma}(\boldsymbol{N} \boldsymbol{\eta}) / \boldsymbol{\Gamma}(\boldsymbol{N} \boldsymbol{\pi})\) \\
VALUE \(\quad\) DOCUMENT ID_TECN COMMENT \(\quad \Gamma_{\mathbf{2}} / \boldsymbol{\Gamma}_{\mathbf{1}}\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.95 \pm 0.03\) AZNAURYAN 09 CLAS \(\pi, \eta\) electroproduction
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 5 / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<1.1\) & 10 HUNT & 19 & DPWA & Multichannel & \\
\hline \(2.5 \pm 1.5\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2.5 \pm 1.5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(1.8 \pm 0.8\) & 10 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(1 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}

10 Statistical error only.
VRANA 00


\begin{tabular}{lllll}
\(0.114 \pm 0.008\) & \(10 \pm 5\) & ANISOVICH & 15A & DPWA Multichannel \\
0.106 & 5.2 & ROENCHEN & 15A & DPWA Multichannel \\
\(0.114 \pm 0.008\) & \(10 \pm 5\) & SOKHOYAN & 15A & DPWA Multichannel
\end{tabular}
\[
\begin{aligned}
& { }^{15} \text { T-Matrix amplitude } \\
& \boldsymbol{N ( 1 5 3 5 )} \Rightarrow n \gamma, \text { helicity-1/2 amplitude } A_{1 / 2}
\end{aligned}
\]
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{-\mathbf{0 . 0 8 8} \pm \mathbf{0 . 0 0 4}} \frac{\text { PHASE } \mathrm{C})}{\mathbf{5} \pm \mathbf{4}} \quad \frac{\text { DOCUMENT ID }}{\text { ANISOVICH 17D }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(-0.095 \pm 0.006 \quad 8 \pm 5 \quad\) ANISOVICH 15A DPWA Multichannel

\section*{\(N(1535)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(N(1535) \Rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(A_{1 / 2}\)
\(\frac{\text { VALUE }\left(\mathrm{GeV}^{-1 / 2}\right)}{\mathbf{0 . 0 9 0} \text { to } \mathbf{0 . 1 2 0} \mathbf{( \approx \mathbf { 0 . 1 0 5 ) } \text { OUR ESTIMATE }} \frac{\text { DOCUMENT ID }}{\text { TECN }} \text { COMMENT }}\)
\begin{tabular}{llll}
\(0.107 \pm 0.003\) & 16 HUNT & 19 & DPWA Multichannel \\
\(0.101 \pm 0.007\) & SOKHOYAN & \(15 A\) & DPWA Multichannel \\
\(0.091 \pm 0.004\) & 16 SHKLYAR & 13 & DPWA Multichannel \\
\(0.128 \pm 0.004\) & 16 WORKMAN & 12A & DPWA \(\gamma N \rightarrow N \pi\) \\
\(0.091 \pm 0.002\) & 16 DUGGER & 07 & DPWA \(\gamma N \rightarrow \pi N\)
\end{tabular}
- . We do not use the following data for averages, fits, limits, etc. - •
\begin{tabular}{lrll}
\(0.105 \pm 0.010\) & ANISOVICH & 12A DPWA Multichannel \\
\(0.059 \pm 0.003\) & 16 SHRESTHA & 12A DPWA Multichannel \\
0.066 & DRECHSEL & 07 & DPWA \(\gamma N \rightarrow \pi N\) \\
0.090 & PENNER & 02D DPWA Multichannel
\end{tabular}
\({ }^{16}\) Statistical error only.
\(N(1535) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.095 to -0.055 ( \(\approx-\mathbf{0 . 0 7 5}\) ) OUR ESTIMATE} \\
\hline \(-0.055 \pm 0.006\) & 17 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.093 \pm 0.011\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \(-0.058 \pm 0.006\) & 17 CHEN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(-0.049 \pm 0.003\) & 17 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.051 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline -0.024 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{17 Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1535) \rightarrow N \gamma\), ratio \(A_{1 / 2}^{n} / A_{1 / 2}^{p}\)} \\
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & DOCUMENT ID & & TECN & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.84 \pm 0.15\) & MUKHOPAD & 95B & IPWA & \\
\hline
\end{tabular}

\section*{\(N(1535)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{lllll} 
HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
ANISOVICH & 17D & PR C95 035211 & A.V. Anisovich et al. & \\
KASHEVAROV & 17 & PRL 118 212001 & V.L. Kashevarov et al. & (A2/MAMI Collab.) \\
ANISOVICH & 15A & EPJ A51 72 & A.V. Anisovich et al. & \\
ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & (CBELSA/TAPS Collab.) \\
SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. &
\end{tabular}

REAL PART
VALUE \((\mathrm{MeV})\)
\(\frac{\text { VALUE (MeV) }}{\mathbf{1 6 4 0} \text { to } \mathbf{1 6 7 0}(\approx \mathbf{1 6 5 5 )} \text { OUR ESTIMATE }} \frac{\text { DOCUMENT ID }}{}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1640 to 1670 ( \(\approx 1655\) ) OUR ESTIMATE} \\
\hline \(1658 \pm 10\) & ANISOVICH & 17A & DPWA & Multichannel \\
\hline \(1660 \pm 5\) & \({ }^{1}\) ANISOVICH & 17A & L+P & \(\gamma p, \pi^{-} p \rightarrow K \Lambda\) \\
\hline \(1660 \pm 3.5 \pm 1\) & \({ }^{2}\) SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(1640 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1656 & HUNT & 19 & DPWA & Multichannel \\
\hline 1672 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(1652 \pm 7\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline 1650 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1647 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1646 \pm 8\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1648 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1663 & VRANA & 00 & DPWA & Multichannel \\
\hline 1670 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Statistical error only. \\
\({ }^{2}\) Fit to the amplitudes of HOEHLER 79.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 170 ( \(\approx 135)\) OUR ESTIMATE} \\
\hline \(102 \pm 8\) & ANISOVICH & 17A & DPWA & Multichannel \\
\hline \(59 \pm 16\) & \({ }^{1}\) ANISOVICH & 17A & L+P & \(\gamma p, \pi^{-} p \rightarrow K \Lambda\) \\
\hline \(167 \pm 8 \pm 2\) & 2 SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(150 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 130 & HUNT & 19 & DPWA & Multichannel \\
\hline 137 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(102 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline 89 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(103 \pm 8\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(204 \pm 17\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 80 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 240 & VRANA & 00 & DPWA & Multichannel \\
\hline 163 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Statistical error only. \\
\({ }^{2}\) Fit to the amplitudes of HOEHLER 79.
\end{tabular}} \\
\hline
\end{tabular}

\section*{\(N(1650)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{25 to 55 ( \(\approx\) 45) OUR ESTIMATE} \\
\hline \(27 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(47 \pm 3 \pm 1\) & 1 SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(60 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 37 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 19 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(24 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 100 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 14 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 39 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1650)\)

PHASE \(\theta\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \multicolumn{5}{|l|}{-80 to -50 ( \(\sim-70)\) OUR ESTIMATE} \\
\hline \(-60 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-47 \pm 3 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-75 \pm 25\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -59 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline -46 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(-75 \pm 12\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline -65 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline -69 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline -37 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(N(1650)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).
Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow N \eta\)
\begin{tabular}{|c|c|c|c|c|}
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.29 \pm 0.03\) & \(134 \pm 10\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.21 & 48 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow \Lambda K\)} \\
\hline modulus & PHASE (\%) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.26 \pm 0.10\) & \(110 \pm 20\) & ANISOVICH & 17A DPWA & Multichannel \\
\hline \(0.10 \pm 0.10\) & \(95 \pm 33\) & \({ }^{1}\) ANISOVICH & 17A L+P & \(\gamma p, \pi^{-} p \rightarrow K \wedge\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averag} \\
\hline 0.20 & -54 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \(0.23 \pm 0.09\) & \(85 \pm 9\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \({ }^{1}\) Statist & or only. & & & \\
\hline
\end{tabular}

\section*{Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow \Sigma K\)}

MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.026-74\) ROENCHEN 15A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow \Delta \pi, D\)-wave
MODULUS PHASE \((\rho)\) DOCUMENT ID TECN COMMENT \(0.19 \pm 0.06 \quad-30 \pm 20 \quad\) SOKHOYAN 15A DPWA Multichannel - - We do not use the following data for averages, fits, limits, etc. - • -
\(0.23 \pm 0.04 \quad-30 \pm 20 \quad\) ANISOVICH 12A DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow \mathbf{N} \boldsymbol{\sigma}\)} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.20 \pm 0.15\) & undefined & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1650) \rightarrow N(1440) \pi\)} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.30 \pm 0.17\) & undefined & SOKHOYAN & DPWA & Multichannel \\
\hline
\end{tabular}
\(N(1650)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1635 to 1665 ( \(\approx 1650\) ) OUR ESTIMATE} \\
\hline \(1657 \pm 6\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(1666 \pm 3\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1634 \pm 5\) & KASHEVAROV & & DPWA & \(\gamma p \rightarrow \eta p, \eta^{\prime} p\) \\
\hline \(1654 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1665 \pm 2\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1634.7 \pm 1.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1650 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1670 \pm 8\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1651 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1664 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1652 \pm 9\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(1665 \pm 2\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(1647 \pm 20\) & BAI & 01B & BES & \(J / \psi \rightarrow p \bar{p} \eta\) \\
\hline \(1689 \pm 12\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1650)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 150 ( \(\approx 125\) ) OUR ESTIMATE} \\
\hline \(154 \pm 28\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(133 \pm 7\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(128 \pm 16\) & KASHEVAROV & & DPWA & \(\gamma p \rightarrow \eta p, \eta^{\prime} p\) \\
\hline \(102 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(147 \pm 14\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(115.4 \pm 2.8\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(150 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(180 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}

\(N(1650)\) DECAY MODES
The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(50-70 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(15-35 \%\) \\
\(\Gamma_{3}\) & \(\Lambda K\) & \(5-15 \%\) \\
\(\Gamma_{4}\) & \(N \pi \pi\) & \(8-36 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi, D\)-wave & \(6-18 \%\) \\
\(\Gamma_{7}\) & \(N \rho\) & \\
\(\Gamma_{8}\) & \(N \rho, S=1 / 2\) & \\
\(\Gamma_{9}\) & \(N \rho, S=3 / 2, D\)-wave & \\
\(\Gamma_{10}\) & \(N \sigma\) & \(2-18 \%\) \\
\(\Gamma_{11}\) & \(N(1440) \pi\) & \(6-26 \%\) \\
\(\Gamma_{12}\) & \(p \gamma\), helicity=1/2 & \(0.04-0.20 \%\) \\
\(\Gamma_{13}\) & \(n \gamma\), helicity=1/2 & \(0.003-0.17 \%\) \\
\hline
\end{tabular}
\(N(1650)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{50 to 70 ( \(\approx\) 60) OUR ESTIMATE} \\
\hline \(64 \pm 4\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(51 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(74 \pm 3\) & 1 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(65 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(61 \pm 4\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(51 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(57 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(79 \pm 6\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline 100 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(65 \pm 4\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(74 \pm 2\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & & & \(\Gamma 2 / \Gamma\) \\
\hline \multirow[t]{2}{*}{\(\frac{\operatorname{VALUE}(\%)}{15 \text { to } 35(\approx 25)}\)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline & \multicolumn{5}{|c|}{15 to 35 ( \(\sim 25\) ) OUR ESTIMATE} \\
\hline \(0.8 \pm 0.6\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(28 \pm 11\) & \multicolumn{2}{|l|}{2 KASHEVAROV 17} & DPWA & \(\gamma p \rightarrow \eta p, \eta^{\prime} p\) & \\
\hline \(<3\) & SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(18 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(21 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(13 \pm 5\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(1.0 \pm 0.6\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(6 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical err & & & & & \\
\hline \({ }^{2}\) Assuming \(\mathrm{A}_{1}\) & 1/2. & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma 3 / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & & & \\
\hline \multicolumn{6}{|l|}{5 to 15 ( \(\approx 10\) ) OUR ESTIMATE} \\
\hline \(3.5 \pm 0.2\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(10 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(4 \pm 1\) & \({ }^{1}\) SHKLYAR & 05 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(8 \pm 1\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(2.7 \pm 0.4\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \pi \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma 4 / \Gamma\) \\
\hline Value & DOCUMENT ID & & TECN & COMMENT & \\
\hline 0.12 \(\pm 0.02\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 6\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(<0.2\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(12 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(19 \pm 9\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(7 \pm 2\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(2 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \rho, S \equiv 1 / 2) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \[
1.8 \pm 1.7
\] & \multirow[t]{2}{*}{1 HUNT} & 19 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline \(\Gamma(N \rho, S \equiv 3 / 2, D\)-wave \() / \Gamma_{\text {total }}\) & & & & & \multirow[t]{2}{*}{Г9/Г} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(15 \pm 3\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \sigma) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{10} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(12 \pm 4\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(10 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multirow[t]{2}{*}{\(\begin{aligned} &<1 \\ & 1 \pm 1\end{aligned}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
1 SHRESTHA \\
VRANA
\end{tabular}} & \multirow[t]{2}{*}{12A
00} & \multirow[t]{2}{*}{DPWA DPWA} & \multirow[t]{2}{*}{Multichannel Multichannel} & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N(1440) \pi) / \Gamma_{\text {total }}\)} & & & \(\Gamma_{11} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(2 \pm 1\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(16 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& <1 \\
& 3 \pm 1 \\
& { }^{1} \text { Statistical error only. }
\end{aligned}
\]} & \multirow[t]{2}{*}{1 SHRESTHA VRANA} & 12A & DPWA & Multichannel & \\
\hline & & 00 & DPWA & Multichannel & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
• - We do not use the following data for averages, fits, limits, etc. • • \\
\(0.011 \pm 0.002\) & 1 SHRESTHA & 12A DPWA Multichannel \\
0.009 & DRECHSEL & 07 \\
-0.011 & PENNER & 02D
\end{tabular}

\section*{\(N(1650)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).

\(N(1650)\) PHOTON DECAY AMPLITUDES AT THE POLE
\(N(1650) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE \({ }^{\rho}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.032 \pm 0.006\) & \(7 \pm 7\) & ANISOVICH & 17D & DPWA & Multichannel \\
\hline \({ }^{0.023}{ }_{-0.008}^{+0.003}\) & \(6_{-15}^{+28}\) & ROENCHEN & 14 & DPWA & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.032 \pm 0.007\) & \(-2 \pm 11\) & ANISOVICH & 15A & DPWA & Multichannel \\
\hline 0.059 & -14 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(0.032 \pm 0.006\) & \(-2 \pm 11\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(N(1650) \Rightarrow n \gamma\), helicity-1/2 amplitude \(A_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE \({ }^{\rho}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.016 \pm 0.004\) & \(-28 \pm 10\) & ANISOVICH & 17D DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(0.019 \pm 0.006\) & \(0 \pm 15\) & ANISOVICH & 15A DPWA & Multichannel \\
\hline
\end{tabular}
\(N(1650)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(1650) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\(\frac{\operatorname{VALUE}\left(\mathrm{GeV}^{-1 / 2}\right)}{\text { DOCUMENT ID }}\) TECN COMMENT
\(\mathbf{0 . 0 3 5}\) to \(\mathbf{0 . 0 5 5} \mathbf{( \approx \mathbf { 0 . 0 4 5 } ) \text { OUR ESTIMATE }}\)
\(0.0605 \pm 0.0077\)
GOLOVATCH 19 DPWA \(\gamma p \rightarrow \pi^{+} \pi^{-} p\)

\(N(1650) \rightarrow n \gamma\), helicity- \(1 / 2\) amplitude \(A_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(\mathbf{- 0 . 0 4 0}\) to 0.030 ( \(\approx \mathbf{- 0 . 0 1 0 )}\) OUR ESTIMATE} \\
\hline \(0.001 \pm 0.006\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(0.025 \pm 0.020\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \(-0.040 \pm 0.010\) & 1 CHEN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline
\end{tabular}

Baryon Particle Listings
\begin{tabular}{|c|c|c|c|}
\hline 24 & ROENCHEN & 15A & DPWA Multichannel \\
\hline 20 & SHKLYAR & 13 & DPWA Multichannel \\
\hline \(28 \pm 1\) & ANISOVICH & 12A & DPWA Multichannel \\
\hline 25 & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 27 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 23 & HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}

PHASE \(\theta\)
VALUE \(\left({ }^{\circ}\right)\) DOCUMENT ID TECN COMMENT
-30 to -20 ( \(\approx-25\) ) OUR ESTIMATE
\begin{tabular}{lccl}
\(-24 \pm 4\) & SOKHOYAN & 15 A & DPWA Multichannel \\
\(-25 \pm 2\) & 1 SVARC & 14 & \(\mathrm{~L}+\mathrm{P} \pi N \rightarrow \pi N\) \\
\(-30 \pm 10\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\) \\
-22 & ROENCHEN & 15 A & DPWA Multichannel \\
-49 & SHKLYAR & 13 & DPWA Multichannel \\
\(-26 \pm 4\) & ANISOVICH & 12 A & DPWA Multichannel \\
-16 & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
-21 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
-22 & HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\) \\
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79. & &
\end{tabular}

\section*{\(N(1675)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(1675) \rightarrow \Delta \pi, D\)-wave
\(\frac{\text { MODULUS }}{0.33 \pm 0.04} \frac{\text { PHASE }()}{90 \pm 15} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichanne }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.33 \pm 0.05 \quad 82 \pm 10 \quad\) ANISOVICH 12A DPWA Multichannel
Normalized residue in \(N \pi \Rightarrow N(1675) \Rightarrow N \boldsymbol{\eta}\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
0.044 ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1675) \rightarrow \Lambda K\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.001 \quad 100\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1675) \rightarrow \Sigma K\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
0.031 ROENCHEN 15A DPWA Multichanne
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1675) \rightarrow \mathbf{N} \boldsymbol{\sigma}\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.13 \pm 0.03\) & \(125 \pm 20\) & SOKHOYAN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.15 \pm 0.04\) & \(132 \pm 18\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(N(1675)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1665 to 1680 ( \(\approx 1675\) ) OUR ESTIMATE} \\
\hline \(1669 \pm 2\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1663 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1666 \pm 2\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1674.1 \pm 0.2\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1675 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1679 \pm 8\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1664 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1679 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1679 \pm 9\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(1685 \pm 4\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(1675)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{130 to 160 ( \(\approx 145\) ) OUR ESTIMATE} \\
\hline \(161 \pm 8\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(146 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(148 \pm 1\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(146.5 \pm 1.0\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(160 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(120 \pm 15\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\begin{tabular}{lcccl} 
- • We do not use the following data for averages, fits, limits, etc. • • • \\
152 & \(\pm 7\) & ANISOVICH & 12A & DPWA Multichannel \\
145 & \(\pm 4\) & 1 SHRESTHA & 12A & DPWA Multichannel \\
152 & \(\pm 8\) & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
131 & \(\pm 10\) & VRANA & 00 & DPWA Multichannel
\end{tabular}
\({ }^{1}\) Statistical error only.

\section*{\(N(1675)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(38-42 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(<1 \%\) \\
\(\Gamma_{3}\) & \(\Lambda K\) & \\
\(\Gamma_{4}\) & \(N \pi \pi\) & \(25-45 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi, D\)-wave & \(23-37 \%\) \\
\(\Gamma_{7}\) & \(N \rho\) & \\
\(\Gamma_{8}\) & \(N \rho, S=1 / 2\) & \\
\(\Gamma_{9}\) & \(N \rho, S=3 / 2, D\)-wave & \\
\(\Gamma_{10}\) & \(N \sigma\) & \(0-7 \%\) \\
\(\Gamma_{11}\) & \(p \gamma\) & \(0-0.02 \%\) \\
\(\Gamma_{12}\) & \(p \gamma\), helicity=1/2 & \(0-0.01 \%\) \\
\(\Gamma_{13}\) & \(p \gamma\), helicity=3/2 & \(0-0.15 \%\) \\
\(\Gamma_{14}\) & \(n \gamma\) & \(0-0.05 \%\) \\
\(\Gamma_{15}\) & \(n \gamma\), helicity=1/2 & \(0-0.10 \%\) \\
\(\Gamma_{16}\) & \(n \gamma\), helicity=3/2 & \\
\hline
\end{tabular}
\(N(1675)\) BRANCHING RATIOS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\Lambda K) / \Gamma_{\text {total }}\) & & & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{\(\Gamma 3 / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & & COMMENT & \\
\hline <0.04 & \multirow[t]{2}{*}{\({ }^{1}\) HUNT} & \multirow[t]{2}{*}{19} & \(\frac{\text { TECN }}{\text { DPWA }}\) & \multirow[t]{2}{*}{Multichannel} & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 6 / \Gamma\)} \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(58.3 \pm 0.2\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(30 \pm 7\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(33 \pm 8\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(46 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(63 \pm 2\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \rho, S=1 / 2) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<0.2\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}

- - We do not use the following data for averages, fits, limits, etc. - • -
0.051 ROENCHEN 15A DPWA Multichannel

\section*{\(N(1675)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(N(1675) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(N(1675) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE ( \(\left.\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.015 to 0.030 ( \(\approx \mathbf{0 . 0 2 2 )}\) ) OUR ESTIMATE} \\
\hline \(0.005 \pm 0.002\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(0.027 \pm 0.006\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.021 \pm 0.001\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(0.016 \pm 0.001\) & \({ }^{1}\) WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \(0.021 \pm 0.001\) & \({ }^{1}\) DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.025 \pm 0.007\) & ANISOVICH & 12A & DPWA & Multichanne \\
\hline \(0.020 \pm 0.001\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.022 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1675) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline
\end{tabular}


\section*{\(N(1680)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
\begin{tabular}{lcllll}
\hline \(\mathbf{1 6 6 5}\) to \(\mathbf{1 6 8 0}(\approx \mathbf{1 6 7 5 )}\) OUR ESTIMATE & & & \\
\(1678 \pm 5\) & SOKHOYAN & 15 A & DPWA Multichannel \\
\(1674 \pm 2 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\)
\end{tabular}
\(1667 \pm 5 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. - • •
\begin{tabular}{llll}
1668 & HUNT & 19 & DPWA Multichannel \\
1669 & ROENCHEN & 15A & DPWA Multichannel \\
1660 & SHKLYAR & 13 & DPWA Multichannel \\
\(1676 \pm 6\) & ANISOVICH & 12A & DPWA Multichannel \\
\(1666 \pm 8\) & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
1674 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1667 & VRANA & 00 & DPWA Multichannel \\
1673 & HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{- 2 \times I M A G I N A R Y ~ P A R T ~}\)
VALUE \((\mathrm{MeV})\) & \multicolumn{3}{|c|}{-2xIMAGINARY PART} & COMMENT \\
\hline \multicolumn{5}{|l|}{110 to 135 ( \(\mathbf{\approx 1 2 0 )}\) ) OUR ESTIMATE} \\
\hline \(113 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(129 \pm 3 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(110 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 118 & HUNT & 19 & DPWA & Multichannel \\
\hline 100 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 98 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(113 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(135 \pm 6\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 115 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 122 & VRANA & 00 & DPWA & Multichannel \\
\hline 135 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{N(1680) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{35 to 45 ( \(\approx 40\) ) OUR ESTIMATE} \\
\hline \(45 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(44 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(34 \pm 2\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 34 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 33 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(43 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 44 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 42 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 44 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\(N(1675) \rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(=0.095\) to \(=0.075\) ( \(\approx=0.085\) ) OUR ESTIMATE} \\
\hline \(-0.031 \pm 0.005\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.088 \pm 0.010\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \(-0.080 \pm 0.005\) & \({ }^{1}\) CHEN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.068 \pm 0.004\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.084 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1680)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \multicolumn{5}{|l|}{-20 to 10 ( \(\approx-5\) ) OUR ESTIMATE} \\
\hline \(5 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-16 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-25 \pm 5\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -19 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline -32 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(-2 \pm 10\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline -19 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline - 4 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline -17 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{N(1680) INELASTIC POLE RESIDUE \\ The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).}

Normalized residue in \(N \pi \Rightarrow N(1680) \Rightarrow \Delta \pi, P\)-wave


Normalized residue in \(N \pi \Rightarrow N(1680) \Rightarrow N \boldsymbol{\eta}\)
MODULUS PHASE ( ) DOCUMENT ID _ TECN COMMENT


\section*{\(\boldsymbol{N}(1680)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline 115 to 130 ( \(\approx 120\) ) & ATE & & & \\
\hline \(118 \pm 20\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(123 \pm 3\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(119 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(115 \pm 1\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(128.0 \pm 1.1\) & 1 ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(120 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(128 \pm 8\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(118 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(126 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(142 \pm 7\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(128 \pm 9\) & VRANA & 00 & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(N(1680)\) DECAY MODES
The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(60-70 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(<1 \%\) \\
\(\Gamma_{3}\) & \(\Lambda K\) & \\
\(\Gamma_{4}\) & \(N \pi \pi\) & \(20-40 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi\) & \(11-23 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi, P\)-wave & \(4-10 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi, F\)-wave & \(1-13 \%\) \\
\(\Gamma_{8}\) & \(N \rho\) & \\
\(\Gamma_{9}\) & \(N \rho, S=3 / 2, P\)-wave & \\
\(\Gamma_{10}\) & \(N \rho, S=3 / 2, F\)-wave & \\
\(\Gamma_{11}\) & \(N \sigma\) & \(9-19 \%\) \\
\(\Gamma_{12}\) & \(p \gamma\) & \(0.21-0.32 \%\) \\
\(\Gamma_{13}\) & \(p \gamma\), helicity=1/2 & \(0.001-0.011 \%\) \\
\(\Gamma_{14}\) & \(p \gamma\), helicity=3/2 & \(0.20-0.32 \%\) \\
\(\Gamma_{15}\) & \(n \gamma\) & \(0.021-0.046 \%\) \\
\(\Gamma_{16}\) & \(n \gamma\), helicity=1/2 & \(0.004-0.029 \%\) \\
\(\Gamma_{17}\) & \(n \gamma\), helicity=3/2 & \(0.01-0.024 \%\) \\
\hline
\end{tabular}

\section*{\(N(1680)\) BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{60 to 70 ( \(\approx\) 65) OUR ESTIMATE} \\
\hline \(68.0 \pm 0.1\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(62 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(68 \pm 1\) & 1 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(70.1 \pm 0.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(62 \pm 5\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(65 \pm 2\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(64 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(68.0 \pm 0.5\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(67 \pm 3\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(69 \pm 2\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & \(\Gamma 2 / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.09 \pm 0.02\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline <1 & SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \({ }^{0.15}{ }_{-0.10}^{+0.35}\) & TIATOR & 99 & DPWA & \(\gamma p \rightarrow p \eta\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1.0 \pm 0.3\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(0.4 \pm 0.2\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline <1 & THOMA & 08 & DPWA & Multichannel & \\
\hline \(0 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\Gamma_{3} / \Gamma \\
\Gamma_{4} / \Gamma
\end{gathered}
\]} \\
\hline \(\Gamma(N \pi \pi) / \Gamma_{\text {total }}\) & & & & & \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline 0.24 \(\pm 0.04\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{6} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(13 \pm 1\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(7 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(5 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(10.5 \pm 0.9\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(14 \pm 3\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Delta(1232) \pi, F\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma 7 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<0.3\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(10 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline
\end{tabular}


\section*{\(N(1680)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(1680) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE \(\left.{ }^{( }\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.013 \pm 0.003\) & \(-20 \pm 17\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.013_{-0.005}^{+0.002}\) & \(-42_{-18}^{+}\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • •
-0.022
-28
ROENCHEN 15A DPWA Multichannel
\(N(1680) \rightarrow p \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.135 \pm 0.005\) & \(1 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.126{ }_{-0.002}^{+0.001}\) & \(-7_{-2}^{+3}\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.102-11\) ROENCHEN 15A DPWA Multichannel

\section*{\(N(1680)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(N(1680) \Rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(=0.018\) to \(=\mathbf{0 . 0 0 5}(\approx=\mathbf{0 . 0 1 0}\) ) OUR ESTIMATE} \\
\hline \(-0.0278 \pm 0.0036\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(-0.026 \pm 0.004\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.015 \pm 0.002\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.003 \pm 0.001\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(-0.007 \pm 0.002\) & \({ }^{1}\) WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \(-0.017 \pm 0.001\) & \({ }^{1}\) DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline \(-0.013 \pm 0.003\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.017 \pm 0.001\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.025 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(N(1680) \rightarrow p \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)
\(\frac{\text { VALUE }\left(\mathrm{GeV}^{-1 / 2}\right)}{\mathbf{0 . 1 3 0} \text { to } \mathbf{0 . 1 4 0} \mathbf{\approx \mathbf { 0 . 1 3 5 } ) \text { OUR ESTIMATE }} \frac{\text { DOCUMENT ID }}{\text { COMMENT }} \text { TECN }}\)

\subsection*{0.130 to 0.140 ( \(\approx 0.135\) ) OUR ESTIMATE}
\begin{tabular}{lcll}
\(0.128 \pm 0.011\) & GOLOVATCH & 19 & DPWA \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\(0.112 \pm 0.005\) & 1 HUNT & 19 & DPWA Multichannel \\
\(0.136 \pm 0.005\) & SOKHOYAN & 15A & DPWA Multichannel \\
\(0.116 \pm 0.001\) & 1 SHKLYAR & 13 DPWA Multichannel \\
\(0.140 \pm 0.002\) & 1 WORKMAN & 12A & DPWA \(\gamma N \rightarrow N \pi\) \\
\(0.134 \pm 0.002\) & 1 & DUGGER & 07 \\
\(\bullet \bullet \bullet\) DPWA \(\gamma N \rightarrow \pi N\) \\
\(0.135 \pm 0.006\) & & ANISOVICH & 12A DPWA Multichannel \\
\(0.136 \pm 0.001\) & 1 SHRESTHA & 12A DPWA Multichannel \\
0.134 & DRECHSEL & 07 & DPWA \(\gamma N \rightarrow \pi N\) \\
1 Statistical error only. & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(N(1680) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.020 to 0.040 ( \(\approx \mathbf{0 . 0 3 0}\) ) OUR ESTIMATE} \\
\hline \(0.005 \pm 0.004\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(0.034 \pm 0.006\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \(0.026 \pm 0.004\) & \({ }^{1}\) CHEN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.029 \pm 0.002\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.028 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1680) \rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)} \\
\hline \multicolumn{5}{|l|}{VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{-0.050 to -0.025 ( \(\sim-\mathbf{0 . 0 3 5}\) ) OUR ESTIMATE} \\
\hline \(-0.061 \pm 0.004\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.044 \pm 0.009\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \(-0.029 \pm 0.002\) & \({ }^{1}\) CHEN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.059 \pm 0.002\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.038 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1680)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982). For very early references, see Reviews of Modern Physics 37633 (1965).


Baryon Particle Listings
\(N(1700)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(N(1700)\) ELASTIC POLE RESIDUE} \\
\hline \multicolumn{5}{|l|}{MODULUS \(|\boldsymbol{r}|\)} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{5 to 50 ( \(\approx 10\) ) OUR ESTIMATE} \\
\hline \(60 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(7 \pm 1 \pm 1\) & 1 SVARC & & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(6 \pm 3\) & CUTKOSKY & & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(50 \pm 40\) & ANISOVICH & & DPWA & Multichannel \\
\hline 7 & BATINIC & & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 5 & HOEHLER & & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline VALUE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-120 to 0 ( \(\approx\) - 90) OUR ESTIMATE} \\
\hline \(-115 \pm 30\) & SOKHOYAN & & DPWA & Multichannel \\
\hline \(-113 \pm 4 \pm 2\) & 1 SVARC & & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(0 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(-100 \pm 40\) & ANISOVICH & & DPWA & Multichannel \\
\hline - 34 & BATINIC & & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\mathbf{N ( 1 7 0 0 )}\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(1700) \rightarrow \Delta \pi, S\)-wave
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.33 \pm 0.10\) & \(-70 \pm 25\) & SOKHOYAN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data} \\
\hline \(0.34 \pm 0.21\) & \(-60 \pm 40\) & \multicolumn{2}{|l|}{ANISOVICH 12A DPWA} & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1700) \rightarrow \Delta \pi\), D-wave} \\
\hline modulus & PHASE ( ) & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & COMMENT \\
\hline \(0.10 \pm 0.06\) & \(75 \pm 30\) & \multicolumn{2}{|l|}{SOKHOYAN 15A DPWA} & Multichannel \\
\hline - - We & use the for & for averages, fits, & , limits, et & \\
\hline \(0.08 \pm 0.06\) & \(90 \pm 35\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\begin{array}{l}\text { Normalized residue in } \boldsymbol{N} \boldsymbol{\pi} \rightarrow \\
\text { MODULUS }\end{array}\) \\
\begin{tabular}{ll}
\(\boldsymbol{N}(\mathbf{1 7 0 0}) \rightarrow \boldsymbol{N} \boldsymbol{\sigma}\) \\
\hline
\end{tabular} \(\begin{array}{l}\left.\text { PHASE }{ }^{\circ}\right)\end{array}\) \\
\hline DOCUMENT ID
\end{tabular} \(0.13 \pm 0.08 \quad-100 \pm 35 \quad\) SOKHOYAN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1700) \rightarrow N(1440) \pi\)
MODULUS \(\quad\) PHASE \(\rho\) ) DOCUMENT ID
\(\overline{0.13 \pm 0.05} 40 \pm 35\) SOKHOYAN 15A DPWA Multichannel

Normalized residue in \(N \pi \Rightarrow N(1700) \Rightarrow N(1520) \pi, P\)-wave
\begin{tabular}{llll}
\(\frac{\text { MODULUS }}{0.07 \pm 0.03}\) & \(\frac{\text { PHASE } \rho}{160 \pm 45} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN }} 15 \mathrm{~A}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(N(1700)\) BREIT-WIGNER MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1650 to 1800 ( \(\approx 1720\) ) OUR ESTIMATE} \\
\hline \(1653 \pm 5\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1800 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1675 \pm 25\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1731 \pm 15\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1790 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1665 \pm 3\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1817 \pm 22\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(1736 \pm 33\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(1700)\) BREIT-WIGNER WIDTH}


\section*{\(N(1700)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(7-17 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & seen \\
\(\Gamma_{3}\) & \(N \omega\) & \(10-34 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & \\
\(\Gamma_{5}\) & \(N \pi \pi\) & \(60-90 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi\) & \(55-85 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\), S-wave & \(50-80 \%\) \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi, D\)-wave & \(4-14 \%\) \\
\(\Gamma_{9}\) & \(N(1440) \pi\) & \(3-11 \%\) \\
\(\Gamma_{10}\) & \(N(1520) \pi\) & \(<4 \%\) \\
\(\Gamma_{11}\) & \(N \rho, S=3 / 2, S\)-wave & \(32-44 \%\) \\
\(\Gamma_{12}\) & \(N \sigma\) & \(2-14 \%\) \\
\(\Gamma_{13}\) & \(p \gamma\) & \(0.01-0.05 \%\) \\
\(\Gamma_{14}\) & \(p \gamma\), helicity=1/2 & \(0.0-0.024 \%\) \\
\(\Gamma_{15}\) & \(p \gamma\), helicity=3/2 & \(0.002-0.026 \%\) \\
\(\Gamma_{16}\) & \(n \gamma\) & \(0.01-0.13 \%\) \\
\(\Gamma_{17}\) & \(n \gamma\), helicity=1/2 & \(0.0-0.09 \%\) \\
\(\Gamma_{18}\) & \(n \gamma\), helicity=3/2 & \(0.01-0.05 \%\) \\
\hline
\end{tabular}

\section*{\(N(1700)\) BRANCHING RATIOS}

- - We do not use the following data for averages fits
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(14 \pm 5\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(10 \pm 5\) & THOMA & 08 & DPWA & Multichannel & \\
\hline \(0 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N \omega) / \Gamma_{\text {total }}\) & & & & & \(\Gamma 3 / \Gamma\) \\
\hline value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(22 \pm 12\) & DENISENKO & 16 & DPWA & Multichannel & \\
\hline \(\Gamma(\Lambda K) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(1.3 \pm 0.7\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Delta(1232) \pi, S\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{7} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(11 \pm 8\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(65 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(72 \pm 23\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(31 \pm 9\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(11 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma 8 / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(13 \pm 5\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(9 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline <10 & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(3 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(79 \pm 56\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(N(1440) \pi) / \Gamma_{\text {total }}\) & & & & & Г9/Г \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(7 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline
\end{tabular}



Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(N(1710)\) POLE POSITION}

REAL PART
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1680 to 1720 ( \(\approx 1700\) ) OUR ESTIMATE} \\
\hline \(1690 \pm 15\) & ANISOVICH & 17A & DPWA & Multichannel \\
\hline \(1697 \pm 23\) & \({ }^{1}\) ANISOVICH & 17A & L+P & \(\gamma p, \pi^{-} p \rightarrow K \wedge\) \\
\hline \(1770 \pm 5 \pm 2\) & \({ }^{2}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(1690 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1615 & HUNT & 19 & DPWA & Multichannel \\
\hline 1651 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(1690 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1690 \pm 15\) & GUTZ & 14 & DPWA & Multichannel \\
\hline 1670 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1687 \pm 17\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1711 \pm 15\) & \({ }^{3}\) Batinic & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1679 & VRANA & 00 & DPWA & Multichannel \\
\hline 1690 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline 1698 & CUTKOSKY & 90 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\({ }^{2}\) Fit to the amplitudes of HOEHLER 79.
\({ }^{3}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.
- \(2 \times\) IMAGINARY PART
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{8 0} \text { to } \mathbf{1 6 0} \mathbf{( \boldsymbol { 1 2 0 } )} \text { OUR ESTIMATE }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(155 \pm 25\) & ANISOVICH & 17A & DPWA & Multichannel \\
\hline \(84 \pm 34\) & \({ }^{1}\) ANISOVICH & 17A & L+P & \(\gamma p, \pi^{-} p \rightarrow K \wedge\) \\
\hline \(98 \pm 8 \pm 5\) & \({ }^{2}\) SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(80 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 169 & HUNT & 19 & DPWA & Multichannel \\
\hline 121 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(170 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(170 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline 159 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(200 \pm 25\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(174 \pm 16\) & 3 BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 132 & VRANA & 00 & DPWA & Multichannel \\
\hline 200 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline 88 & CUTKOSKY & 90 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\({ }^{2}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{\({ }^{3}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.} \\
\hline
\end{tabular}
\(\boldsymbol{N}(1710)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{4 to 10 ( \(\approx 7\) ) OUR ESTIMATE} \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(5 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(8 \pm 2\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 3.2 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(6 \pm 3\) & GUTZ & 14 & DPWA & Multichannel \\
\hline 11 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(6 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 24 & 2 BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 15 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline 9 & CUTKOSKY & 90 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \({ }^{2}\) BATINIC 10 finds evidence for phase of the pole residue very si & a second \(P_{11}\) similar to the par & ate mete & with all p se giv & parameters except here. \\
\hline
\end{tabular}
\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all paramet
phase of the pole residue very similar to the parameters we give here.
PHASE \(\theta\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{VALUE ( \({ }^{(120}\)} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{120 to 260 ( \(\approx 190\) ) OUR ESTIMATE} \\
\hline \(130 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-104 \pm 7 \pm 3\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(175 \pm 35\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - .} \\
\hline 55 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(120 \pm 45\) & GUTZ & 14 & DPWA & Multichannel \\
\hline 9 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(120 \pm 70\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 20 & 2 BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline -167 & CUTKOSKY & 90 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}

DOCUMENT ID
ANISOVICH 17A DPWA Multichanne
ANISOVICH 17A L+P \(\quad \gamma p, \pi \quad p \rightarrow K \Lambda\)
\(\pi N \rightarrow \pi N\)
data for averages, fits, limits, etc. • • •
ROENCHEN 19-DPWA Multichanne
15A DPWA Multichanne
GUTZ 14 DPWA Multichannel
SHKLYAR 13 DPWA Multichannel
ANISOVICH 12 A DPWA Multichanne
VRANA 00
\(\begin{array}{lll}\text { VRANA } & 00 & \text { DPWA Multichanne } \\ \text { HOEHLER } & 93 & \text { SPED } \pi N \rightarrow \pi N\end{array}\)
CUTKOSKY 90 IPWA \(\pi N \rightarrow \pi N\)
\({ }^{1}\) Statistical error only.
\({ }^{3}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.
\begin{tabular}{llllr} 
HUNT & 19 & PR C99 055205 & \begin{tabular}{l} 
B.C. Hunt, D.M. Manley \\
DENISENKO
\end{tabular} 16 & PL B755 97
\end{tabular}


\section*{\(N(1700)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).



Baryon Particle Listings
\(N(1710)\)
\({ }^{1}\) Fit to the amplitudes of HOEEHLER 79 .
\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the
phase of the pole residue very similar to the parameters we give here. phase of the pole residue very similar to the parameters we give here.

\section*{\(N(1710)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).

\section*{Normalized residue in \(N \pi \Rightarrow N(1710) \Rightarrow N \boldsymbol{\eta}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & E & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.12 \pm 0.04\) & \(0 \pm 45\) & ANISOVICH & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- - We do not use the following data for averages, fits, limits, etc. - - • \\
\(0.16-180 \quad\) ROENCHEN 15A DPWA Multichannel
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

Normalized residue in \(N \pi \rightarrow N(1710) \rightarrow \Lambda K\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.16 \pm 0.05\) & \(-160 \pm 25\) & ANISOVICH & 17A & DPWA & Multichannel \\
\hline \(0.12+0.24\) & \(-119 \pm 83\) & 1 ANISOVICH & 17A & \(L+P\) & \(\gamma p, \pi^{-} p \rightarrow K \wedge\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{lllll}
0.12 & -32 & ROENCHEN & 15A & DPWA Multichannel \\
\(0.17 \pm 0.06\) & \(-110 \pm 20\) & ANISOVICH & 12A & DPWA Multichannel \\
1 Statistical error only. & & &
\end{tabular}

\section*{Normalized residue in \(N \pi \Rightarrow N(1710) \Rightarrow \Sigma K\)}

MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -\(0.004-43\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1710) \rightarrow N(1535) \pi\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline modulus & PHASE ( ) & Cum & & TECN & COMMENT \\
\hline \(0.10 \pm 0.04\) & \(140 \pm 40\) & GUTZ & 14 & DPWA & Multichannel \\
\hline
\end{tabular}
\(N(1710)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1680 to 1740 ( \(\approx \mathbf{1 7 1 0}\) ) OUR ESTIMATE} \\
\hline \(1648 \pm 16\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1715 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1737 \pm 17\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1700 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1723 \pm 9\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1715 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1710 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1662 \pm 7\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1729 \pm 16\) & \({ }^{2}\) BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(1752 \pm 3\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(1699 \pm 65\) & VRANA & 00 & DPWA & Multichanne| \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.} \\
\hline
\end{tabular}

\section*{N(1710) BREIT-WIGNER WIDTH}
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{8 0} \text { to } \mathbf{2 0 0}(\approx \mathbf{1 4 0}) \text { OUR ESTIMATE }}\)
\begin{tabular}{|c|c|c|c|}
\hline \(195 \pm 46\) & \({ }^{1}\) HUNT & 19 & DPWA Multichannel \\
\hline \(175 \pm 15\) & SOKHOYAN & 15A & DPWA Multichannel \\
\hline \(368 \pm 120\) & 1 SHKLYAR & 13 & DPWA Multichannel \\
\hline \(93 \pm 30\) & CUTKOSKY & 90 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \(90 \pm 30\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \(120 \pm 15\) & HOEHLER & 79 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(175 \pm 15\) & GUTZ & 14 & DPWA Multichannel \\
\hline \(200 \pm 18\) & ANISOVICH & 12A & DPWA Multichannel \\
\hline \(116 \pm 17\) & 1 SHRESTHA & 12A & DPWA Multichannel \\
\hline \(180 \pm 17\) & 2 BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(386 \pm 59\) & PENNER & 02C & DPWA Multichannel \\
\hline \(143 \pm 100\) & VRANA & 00 & DPWA Multichannel \\
\hline \multicolumn{4}{|l|}{\({ }_{1}^{1}\) Statistical error only.} \\
\hline \multicolumn{4}{|l|}{\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.} \\
\hline
\end{tabular}

\section*{\(N(1710)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(5-20 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(10-50 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(1-5 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & \(5-25 \%\)
\end{tabular}
\begin{tabular}{lll}
\(\Gamma_{5}\) & \(\sum K\) & seen \\
\(\Gamma_{6}\) & \(N \pi \pi\) & seen \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi, P\)-wave & \(3-9 \%\) \\
\(\Gamma_{9}\) & \(N(1535) \pi\) & \(9-21 \%\) \\
\(\Gamma_{10}\) & \(N \rho\) & \\
\(\Gamma_{11}\) & \(N \rho, S=1 / 2, P\)-wave & \(11-23 \%\) \\
\(\Gamma_{12}\) & \(N \sigma\) & \\
\(\Gamma_{13}\) & \(p \gamma\), helicity \(=1 / 2\) & \(0.002-0.08 \%\) \\
\(\Gamma_{14}\) & \(n \gamma\), helicity \(=1 / 2\) & \(0.0-0.02 \%\)
\end{tabular}
\(N(1710)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\Gamma(N \pi) / \Gamma_{\text {total }}
\] & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline \(\operatorname{VALUE}(\%)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{5 to 20 ( \(\approx 10\) ) OUR ESTIMATE} \\
\hline \(12 \pm 6\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(5 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(2 \pm 2\) & \({ }^{1}\) SHKLYAR & 13 & PWA & Multichannel & \\
\hline \(20 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(12 \pm 4\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(5 \pm 3\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(5 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(15 \pm 4\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(22 \pm 24\) & \({ }^{2}\) BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(14 \pm 8\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(27 \pm 13\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & & & & & \(\Gamma 2 / \Gamma\) \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{10 to 50 ( \(\approx 30\) ) OUR ESTIMATE} \\
\hline \(17 \pm 8\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(45 \pm 4\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(17 \pm 10\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(11 \pm 7\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(6 \pm 8\) & \({ }^{2}\) BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(36 \pm 11\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(6 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\({ }^{2}\) BATINIC 10 finds evidence for a second \(P_{11}\) state with all parameters except for the phase of the pole residue very similar to the parameters we give here.
\(\Gamma(N \omega) / \Gamma_{\text {total }}\)


1
- - We do not use the following data for averages, fits, limits, etc. - -
\(13 \pm 2\) PENNER 02C DPWA Multichannel
\({ }^{1}\) Statistical error only.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\) VALUE (\%)} & & & & & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{5 to 25 ( \(\approx 15\) ) OUR ESTIMATE} \\
\hline \(1.8 \pm 1.5\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(23 \pm 7\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(5 \pm 3\) & SHKLYAR & 05 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(8 \pm 4\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(5 \pm 2\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(10 \pm 10\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Sigma K) / \Gamma_{\text {total }}\) & & & & & \(\Gamma 5 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}
VALUE (\%) \(\frac{\text { DOCUMENT ID }}{\text { TECN }} \frac{\text { COMMENT }}{\text { Tits }}\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\(7 \pm 7 \quad\) PENNER 02C DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(28 \pm 9\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(6 \pm 3\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(39 \pm 8\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}


\section*{\(N(1710)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(1710) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.028_{-0}^{+0.009}} \quad \frac{\text { PHASE } \rho)}{103_{-6}^{+20}} \quad\) DOCUMENT ID \(\quad\) TECN \(\frac{\text { COMMENT }}{\text { ROENCHEN } 14} \frac{\text { DPWA }}{}\)
- - We do not use the following data for averages, fits, limits, etc. - • -
0.020 ROENCHEN 15A DPWA Multichannel

\section*{\(N(1710)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(N(1710) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \(\left.\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.014 \pm 0.008\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.050 \pm 0.010\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.050 \pm 0.001\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline \(0.05 \pm 0.01\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(0.052 \pm 0.015\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.008 \pm 0.003\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.044 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1710) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.0053 \pm 0.0003\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.040 \pm 0.020\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.017 \pm 0.003\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.024 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1710)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{For early references, see Physics Letters 111B 1 (1982).} \\
\hline hunt & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ANISOVICH & 17A & PRL 119062004 & A.V. Anisovich et al. & \\
\hline denisenko & 16 & PL B755 97 & I. Denisenko et al. & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CB & (CBELSA/TAPS Collab.) \\
\hline GUTZ & 14 & EPJ A50 74 & E. Gutz et al. (CB & (CBELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline Roenchen & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RB & RBI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 13B & EPJ A49 67 & A.V. Anisovich et al. & \\
\hline SHKLYAR & 13 & PR C87 015201 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline BATINIC & 10 & PR C82 038203 & M. Batinic et al. & (ZAGR) \\
\hline SHKLYAR & 05 & PR C72 015210 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline PENNER & 02 C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & ee (PITT, ANL) \\
\hline HoEhLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 90 & PR D42 235 & R.E. Cutkosky, S. Wang & (CMU) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline hoehler & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}
\[
N(1720) 3 / 2^{+} \quad /\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}+\right) \text { Status: } * * * *
\]

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

REAL PART
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1660 to 1690 ( \(\approx 1675\) ) OUR ESTIMATE} \\
\hline \(1670 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1677 \pm 4 \pm 1\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(1680 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1654 & HUNT & 19 & DPWA & Multichannel \\
\hline 1710 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 1670 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1660 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1691 \pm 23\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1666 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1692 & VRANA & 00 & DPWA & Multichannel \\
\hline 1686 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{\(\underline{-2 \times I M A G I N A R Y ~ P A R T ~}\)} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{150 to 400 ( \(\approx 250\) ) OUR ESTIMATE} \\
\hline \(430 \pm 100\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(184 \pm 8 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(120 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 100 & HUNT & 19 & DPWA & Multichannel \\
\hline 219 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 118 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(450 \pm 100\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(233 \pm 23\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 355 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 94 & VRANA & 00 & DPWA & Multichannel \\
\hline 187 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(1720)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{10 to 25 ( \(\approx 15\) ) OUR ESTIMATE} \\
\hline \(26 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(13 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(8 \pm 2\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 4.2 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 12 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(22 \pm 8\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 20 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 25 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 15 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\boldsymbol{\theta}\)} \\
\hline VALUE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline
\end{tabular}


\section*{- 160 to - 100 ( \(\approx \mathbf{- 1 3 0 )}\) OUR ESTIMATE}
\begin{tabular}{|c|c|c|c|c|}
\hline \(-100 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-115 \pm 3 \pm 2\) & 1 SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(-160 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline - 47 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline - 45 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(-115 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline -109 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline - 94 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \({ }^{1}\) Fit to the & LER 79. & & & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(1720)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).

\section*{Normalized residue in \(N \pi \Rightarrow N(1720) \Rightarrow N \eta\)}
MODULUS PHASE (O) DOCUMENT ID TECN COMMENT
\(0.03 \pm 0.02 \quad\) ANISOVICH 12A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|}
\hline 0.007 & 106 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(1720) \rightarrow \Lambda K\)} \\
\hline MODULUS & PHASE ( \({ }^{(1)}\) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.06 \pm 0.04\) & \(-150 \pm 45\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.011 & \(-70\) & ROENCHEN & 15A DPWA & Multichannel \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1720)\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{N(1720) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{150 to \(\mathbf{4 0 0}\) ( \(\approx \mathbf{2 5 0}\) ) OUR ESTIMATE} \\
\hline \(116 \pm 27\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(229 \pm 22\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(420 \pm 80\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline 152土 2 & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(210 \pm 22\) & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 125 \(\pm 70\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(190 \pm 30\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(420 \pm 100\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(200 \pm 20\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(244 \pm 28\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(237 \pm 73\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(121 \pm 39\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1720)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(8-14 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(1-5 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(12-40 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & \(4-5 \%\) \\
\(\Gamma_{5}\) & \(N \pi \pi\) & \(50-90 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi\) & \(47-89 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi, P\)-wave & \(47-77 \%\) \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi, F\)-wave & \(<12 \%\) \\
\(\Gamma_{9}\) & \(N \rho\) & \\
\(\Gamma_{10}\) & \(N \rho, S=1 / 2, P\)-wave & \(1-2 \%\) \\
\(\Gamma_{11}\) & \(N \sigma\) & \(2-14 \%\)
\end{tabular}
\begin{tabular}{lll}
\(\Gamma_{12}\) & \(N(1440) \pi\) & \(<2 \%\) \\
\(\Gamma_{13}\) & \(N(1520) \pi, S\)-wave & \(1-5 \%\) \\
\(\Gamma_{14}\) & \(p \gamma\) & \(0.05-0.25 \%\) \\
\(\Gamma_{15}\) & \(p \gamma\), helicity \(=1 / 2\) & \(0.05-0.15 \%\) \\
\(\Gamma_{16}\) & \(p \gamma\), helicity \(=3 / 2\) & \(0.002-0.16 \%\) \\
\(\Gamma_{17}\) & \(n \gamma\) & \(0.0-0.016 \%\) \\
\(\Gamma_{18}\) & \(n \gamma\), helicity \(=1 / 2\) & \(0.0-0.01 \%\) \\
\(\Gamma_{19}\) & \(n \gamma\), helicity=3/2 & \(0.0-0.015 \%\)
\end{tabular}

\section*{\(N(1720)\) BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\) VALUE (\%)} & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{8 to 14 ( \(\approx 11)\) OUR ESTIMATE} \\
\hline \(18 \pm 2\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(11 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(17 \pm 2\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(9.4 \pm 0.5\) & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(10 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(14 \pm 3\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(10 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(13.6 \pm 0.6\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(18 \pm 3\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(17 \pm 2\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(5 \pm 5\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical err & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(N \boldsymbol{\eta}) / \Gamma_{\text {total }}\) & & & & & \(\Gamma 2 / \Gamma\) \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{1 to 5 ( \(\sim 3\) ) OUR ESTIMATE} \\
\hline \(3.8 \pm 0.5\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline < 1 & SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \(3 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<1\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(0 \pm 1\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(10 \pm 7\) & THOMA & 08 & DPWA & Multichannel & \\
\hline \(0.2 \pm 0.2\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(4 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(\boldsymbol{\Gamma}(\boldsymbol{N} \boldsymbol{\omega}) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E(\%)}{}\)
\(26 \pm 14\)\(\quad \frac{\Gamma_{\mathbf{3}} / \boldsymbol{\Gamma}}{\text { DOCUMENT ID }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline Value (\%) & DOCUMENT & & TECN & COMMENT & \\
\hline \(16 \pm 3\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(4.3 \pm 0.4\) & SHKLYAR & 05 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2.8 \pm 0.4\) & \({ }^{1}\) SHRESTH & 12A & DPWA & Multichannel & \\
\hline \(12 \pm 9\) & THOMA & 08 & DPWA & Multichannel & \\
\hline \(9 \pm 3\) & PENNER & 02C & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(\boldsymbol{\Gamma ( \boldsymbol { N } \boldsymbol { \pi } \boldsymbol { \pi } ) / \boldsymbol { \Gamma } _ { \text { total } }}\)\begin{tabular}{l} 
VALUE \\
\(0.84 \pm 0.16\)
\end{tabular}\(\quad \frac{\text { DOCUMENT ID }}{\text { GOLOVATCH } 19} \frac{\boldsymbol{\Gamma}_{\mathbf{5}} / \boldsymbol{\Gamma}}{\text { DECN }} \frac{\text { COMMENT }}{\gamma p \rightarrow \pi^{+} \pi^{-} p}\)



\(N(1720)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(1720) \rightarrow p \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.080 to 0.120 ( \(\approx 0.100\) ) OUR ESTIMATE} \\
\hline \(0.0809 \pm 0.0115\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(0.068 \pm 0.004\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.115 \pm 0.045\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.065 \pm 0.002\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(0.095 \pm 0.002\) & WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.110 \pm 0.045\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.057 \pm 0.003\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.073 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(0.097 \pm 0.003\) & DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline -0.053 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(N(1720) \rightarrow p \gamma\), helicity- \(3 / 2\) amplitude \(A_{3 / 2}\)

\(N(1720) \rightarrow n \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)


\section*{\(N(1720)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{|c|c|c|c|c|}
\hline GOLOVATCH & 19 & PL B788 371 & E. Golovatch et al. & (CLAS Collab.) \\
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline DENISENKO & 16 & PL B755 97 & I. Denisenko et al. & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CB & (CBELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (R & RBI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 13B & EPJ A49 67 & A.V. Anisovich et al. & \\
\hline SHKLYAR & 13 & PR C87 015201 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline WORKMAN & 12A & PR C86 015202 & R. Workman et al. & (GWU) \\
\hline BATINIC & 10 & PR C82 038203 & M. Batinic et al. & (ZAGR) \\
\hline THOMA & 08 & PL B659 87 & U. Thoma et al. & (CB-ELSA Collab.) \\
\hline DRECHSEL & 07 & EPJ A34 69 & D. Drechsel, S.S. Kamalov, L. Tiator & r (MAINZ, JINR) \\
\hline DUGGER & 07 & PR C76 025211 & M. Dugger et al. & (JLab CLAS Collab.) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline SHKLYAR & 05 & PR C72 015210 & V. Shklyar, H. Lenske, U. Mosel & (GIES) \\
\hline PENNER & 02C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & ee (PITT, ANL) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT \(12-1\) & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline \multicolumn{3}{|l|}{\(N(1860) 5 / 2^{+}\)} & \multicolumn{2}{|l|}{\(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}^{+}\right)\)Status: \(* *\)} \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
Before the 2012 Review, all the evidence for a \(J^{P}=5 / 2^{+}\)state with a mass above 1800 MeV was filed under a two-star \(N(2000)\). There is now some evidence from ANISOVICH 12A for two \(5 / 2^{+}\)states in this region, so we have split the older data (according to mass) between two two-star \(5 / 2^{+}\)states, an \(N(1860)\) and an \(N(2000)\).

\section*{\(N(1860)\) POLE POSITION}

REAL PART
VALUE (MeV)
DOCUMENT ID TECN COMMENT
\(1834 \pm 19 \pm 6\)
ANISOVICH 12A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llll}
1871 & HUNT & 19 & DPWA Multichannel \\
1807 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
-2×IMAGINARY PART \\
VALUE (MeV)
\end{tabular} & DOCUMENT ID & TECN COMMENT \\
\hline \(122 \pm 34 \pm 7\) & 2 SVARC 14 & \(\mathrm{L}+\mathrm{P} \quad \pi N \rightarrow \pi N\) \\
\hline 250 +150 & ANISOVICH 12A & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 337 & HUNT 19 & DPWA Multichannel \\
\hline 109 & ARNDT 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{3}{|l|}{\({ }^{2}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{3}{|c|}{N(1860) ELASTIC POLE RESIDUE} \\
\hline \multicolumn{3}{|l|}{MODULUS \(|\boldsymbol{r}|\)} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \(4 \pm 1 \pm 1\) & 3 SVARC 14 & \(\mathrm{L}+\mathrm{P} \quad \pi N \rightarrow \pi N\) \\
\hline \(50 \pm 20\) & ANISOVICH 12A & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 60 & ARNDT 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \({ }^{3} \mathrm{Fit}\) to the amplitudes of H & ER 79 & \\
\hline
\end{tabular}

\section*{PHASE \(\boldsymbol{\theta}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-39 \pm 18 \pm 9\) & \multicolumn{2}{|l|}{4 SVARC 14} & \multicolumn{2}{|l|}{\(\mathrm{L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)} \\
\hline \(-80 \pm 40\) & \multicolumn{2}{|l|}{ANISOVICH 12A} & \multicolumn{2}{|l|}{DPWA Multichannel} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -67 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{4}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\boldsymbol{N}(1860)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(1928 \pm 21\) & \({ }^{5}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1860 \begin{aligned} & +120 \\ & -60\end{aligned}\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1882 \pm 10\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1900 \pm 7\) & 5 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 1817.7 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1860), N(1875)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\({ }^{5}\) Statistical error only.} \\
\hline \multicolumn{5}{|c|}{N(1860) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(376 \pm 58\) & \({ }^{6}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(270 \begin{array}{r}+140 \\ -50\end{array}\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(95 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(219 \pm 23\) & \({ }^{6}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline 117.6 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{6}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1860)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(4-20 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(2-6 \%\) \\
\(\Gamma_{3}\) & \(\Lambda K\) & \\
\(\Gamma_{4}\) & \(N \pi \pi\) & \\
\(\Gamma_{5}\) & \(\Delta \pi\) & \\
\(\Gamma_{6}\) & \(\Delta \pi, P\)-wave & \\
\(\Gamma_{7}\) & \(\Delta \pi, F\)-wave & \\
\(\Gamma_{8}\) & \(N \rho\) & \\
\(\Gamma_{9}\) & \(N \rho, S=3 / 2, P\)-wave & \\
\(\Gamma_{10}\) & \(N \rho, S=3 / 2, F\)-wave & \\
\(\Gamma_{11}\) & \(N \sigma\) & seen \\
\(\Gamma_{12}\) & \(p \gamma\) & seen \\
\(\Gamma_{13}\) & \(p \gamma\), helicity=1/2 & \(0.0017-0.062 \%\) \\
\(\Gamma_{14}\) & \(p \gamma\), helicity=3/2 & \(0.0003-0.019 \%\) \\
\(\Gamma_{15}\) & \(n \gamma\) & \(0.0014-0.043 \%\) \\
\(\Gamma_{16}\) & \(n \gamma\), helicity=1/2 & \\
\(\Gamma_{17}\) & \(n \gamma\), helicity=3/2 & \\
\hline
\end{tabular}
\(N(1860)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 1 / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(8.0 \pm 0.1\) & 7 HUNT & 19 & DPWA & Multichannel & \\
\hline \(20 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(4 \pm 2\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(17 \pm 1\) & 7 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline 12.7 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \multicolumn{6}{|l|}{7 Statistical error only.} \\
\hline
\end{tabular}
\(\Gamma(N \eta) / \Gamma_{\text {total }}\)
\(\underline{V A L U E(\%)}\)
\(8 \frac{\text { DOCUMENT ID }}{} \frac{\text { TECN }}{\text { HUNT COMMENT }} \quad \boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(4 \pm 2 \quad 8\) SHRESTHA 12A DPWA Multichannel
\({ }^{8}\) Statistical error only.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\Gamma(\Lambda K) / \Gamma_{\text {total }}
\] \\
VALUE (\%)
\end{tabular} & DOCUME & & & COMMENT & \(\Gamma_{3} / \Gamma\) \\
\hline \(<0.01\) & \({ }^{9}\) HUNT & 19 & \(\frac{\text { TECN }}{\text { DPWA }}\) & Multichannel & \\
\hline \({ }^{9}\) Statistical error only. & & & & & \\
\hline \(\Gamma(\Delta \pi, P\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma 6 / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(10 \pm 6\) & 10 HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{10 Statistical error only.} \\
\hline \(\Gamma(\Delta \pi, F\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{7} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(27 \pm 11\) & 11 HUNT & 19 & DPWA & Multichannel & \\
\hline 11 Statistical error only. & & & & & \\
\hline
\end{tabular}

\(\Gamma(N \sigma) / \Gamma_{\text {total }}\)
\(\Gamma_{11} / \Gamma\)
\(\frac{\operatorname{VALUE}(\%)}{51+10} \quad 14 \frac{\text { DOCUMENT ID }}{\text { HUNT }} \frac{19}{} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
. We not use the following data for
- - We do not use the following data for averages, fits, limits, etc. - - •
\(41 \pm 6 \quad 14\) SHRESTHA 12A DPWA Multichannel
\({ }^{14}\) Statistical error only.
\(N(1860)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(1860) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)

\(N(1860) \rightarrow p \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)
\begin{tabular}{|c|c|c|}
\hline VALUE & DOCUMENT ID & TECN COMMENT \\
\hline \(-0.032 \pm 0.034\) & 16 HUNT 19 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.029 \pm 0.004\) & 16 SHRESTHA 12A & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{16 Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(N(1860) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{\mathbf{1 / 2}}\)} \\
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.021 \pm 0.029\) & 17 HUNT 19 & DPWA Multichannel \\
\hline \(0.021 \pm 0.013\) & ANISOVICH 13B & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.010 \pm 0.005\) & 17 SHRESTHA 12A & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{17 Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(N(1860) \Rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.070 \pm 0.035\) & 18 HUNT 19 & DPWA Multichannel \\
\hline \(0.034 \pm 0.017\) & ANISOVICH 13B & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.009 \pm 0.005\) & 18 SHRESTHA 12A & DPWA Multichannel \\
\hline 18 Statistical error only. & & \\
\hline
\end{tabular}


\section*{\(N(1875)\) POLE POSITION}

REAL PART
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{1 8 5 0} \text { to } \mathbf{1 9 5 0}(\approx \mathbf{1 9 0 0}) \text { OUR ESTIMATE } \frac{\text { DOCUMENT ID }}{\text { TECN }} \text { COMMENT }}\)

\(1880 \pm 100 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\) (lower \(m\) )
- - We do not use the following data for averages, fits, limits, etc. • -
\begin{tabular}{|c|c|c|c|c|}
\hline 1993 & HUNT & 19 & DPWA & Multichannel \\
\hline 1810 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1860 \pm 25\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1957 \pm 49\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1824 & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- \(2 \times 1\) MAGINARY PART} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 220 ( \(\approx 160\) ) OUR ESTIMATE} \\
\hline \(200 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(160 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) (lower m) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • - .} \\
\hline 319 & HUNT & 19 & DPWA & Multichannel \\
\hline 98 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(200 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(467 \pm 106\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 614 & VRANA & 00 & DPWA & Multichannel \\
\hline
\end{tabular}


\section*{N(1875) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1875) \rightarrow \Lambda K\)} \\
\hline MODULUS & PHASE ( \({ }^{(1)}\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.015 \pm 0.005\) & & ANISOVICH & 12A & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \boldsymbol{N ( 1 8 7 5 )} \rightarrow \boldsymbol{\Sigma} K\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.04 \pm 0.02\) & & ANISOVICH & DPWA & Multichannel \\
\hline
\end{tabular}

Normalized residue in \(N \pi \rightarrow N(1875) \rightarrow N \sigma\)
\(\frac{\text { MODULUS }}{0.09 \pm 0.03} \frac{\left.\text { PHASE }{ }^{\circ}\right)}{-175+45} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN } 15 \mathrm{~A}} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.08 \pm 0.03-170 \pm 65 \quad\) ANISOVICH 12A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow N(1875) \rightarrow \Delta(1232) \pi\), S-wave
MODULUS PHASE ( \({ }^{\circ}\) _ DOCUMENT ID TECN COMMENT
\(\overline{0.05 \pm 0.03}\) undefined SOKHOYAN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1875) \rightarrow \Delta(1232) \pi\), \(D\)-wave
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.04 \pm 0.02\) & undefined & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \Rightarrow N(1875) \Rightarrow N(1440) \pi\)} \\
\hline & \[
\text { PHASE ( })
\] & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.03 \pm 0.02\) & undefined & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(N(1875)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( MeV ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1850 to 1920 ( \(\approx 1875\) ) OUR ESTIMATE} \\
\hline 2005士 12 & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1875 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1934 \pm 10\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(1880 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1880 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1951 \pm 27\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(2048 \pm 65\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 1946土 1 & PENNER & 02C & DPWA & Multichannel \\
\hline 1895 & MART & 00 & DPWA & \(\gamma p \rightarrow \wedge K^{+}\) \\
\hline \(2003 \pm 18\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1875)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{120 to 250 ( \(\sim 200\) ) OUR ESTIMATE} \\
\hline \(321 \pm 21\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(200 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(857 \pm 100\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(180 \pm 60\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) (lower m) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(200 \pm 25\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(500 \pm 45\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(529 \pm 128\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(859 \pm 7\) & PENNER & 02C & DPWA & Multichannel \\
\hline 372 & MART & 00 & DPWA & \(\gamma p \rightarrow \Lambda K^{+}\) \\
\hline \(1070 \pm 858\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline
\end{tabular}
\(N(1875)\) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(3-11 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(<1 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(15-25 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & seen \\
\(\Gamma_{5}\) & \(\Sigma K\) & seen \\
\(\Gamma_{6}\) & \(N \pi \pi\) & \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\) & \(10-35 \%\) \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi, S\)-wave & \(7-21 \%\) \\
\(\Gamma_{9}\) & \(\Delta(1232) \pi, D\)-wave & \(2-12 \%\) \\
\(\Gamma_{10}\) & \(N \rho, S=3 / 2, S\)-wave & seen \\
\(\Gamma_{11}\) & \(\Lambda K^{*}(892)\) & \\
\(\Gamma_{12}\) & \(N \sigma\) & \(30-60 \%\) \\
\(\Gamma_{13}\) & \(N(1440) \pi\) & \(2-8 \%\) \\
\(\Gamma_{14}\) & \(N(1520) \pi\) & \(<2 \%\) \\
\(\Gamma_{15}\) & \(p \gamma\) & \(0.001-0.025 \%\) \\
\(\Gamma_{16}\) & \(p \gamma\), helicity=1/2 & \(0.001-0.021 \%\) \\
\(\Gamma_{17}\) & \(p \gamma\), helicity=3/2 & \(<0.003 \%\) \\
\(\Gamma_{18}\) & \(n \gamma\) & \(<0.040 \%\) \\
\(\Gamma_{19}\) & \(n \gamma\), helicity=1/2 & \(<0.007 \%\) \\
\(\Gamma_{20}\) & \(n \gamma\), helicity=3/2 & \(<0.033 \%\) \\
\hline
\end{tabular}
\(\boldsymbol{N}(1875)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\Gamma(N \pi) / \Gamma_{\text {total }}
\]} & & & \multicolumn{2}{|r|}{\(\Gamma 1 / \Gamma\)} \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{3 to 11 ( \(\approx 7\) ) OUR ESTIMATE} \\
\hline \(7.5 \pm 0.1\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(4 \pm 2\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(11 \pm 1\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(10 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) (lower m) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(3 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(7 \pm 2\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(17 \pm 7\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(12 \pm 2\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(13 \pm 3\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 2 / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT & & TECN & COMMENT & \\
\hline \(3.3 \pm 0.8\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline <1 & SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(8 \pm 3\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(7 \pm 2\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(0 \pm 2\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \omega) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{3} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(13 \pm 7\) & DENISENKO & 16 & DPWA & Multichannel & \\
\hline \(20 \pm 5\) & 1 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(21 \pm 7\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, S\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline < 2 & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(14 \pm 7\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(87 \pm 3\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(40 \pm 10\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(1875), N(1880)\)


\section*{N(1880) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(N(1875) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.010 to \(0.025(\approx-0.005)\) OUR ESTIMATE} \\
\hline \(-0.093 \pm 0.009\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.007 \pm 0.004\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.026 \pm 0.001\) & 1 SHKLYAR & 13 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.009 \pm 0.005\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.043 \pm 0.022\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.010 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\begin{tabular}{lll}
1 HUNT & 19 & DPWA Multichanne \\
1 SHKLYAR & 13 & DPWA Multichannel \\
ANISOVICH & \(12 A\) & DPWA Multichannel
\end{tabular}
\begin{tabular}{lcll}
\(0.011 \pm 0.001\) & 1 SHKLYAR & 13 & DPWA Multichannel \\
\(0.018 \pm 0.010\) & ANISOVICH & 12 A & DPWA Multichannel
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. \(-\bullet\)
\begin{tabular}{llll}
\(0.007 \pm 0.008\) & & SHRESTHA & 12A DPWA Multichannel \\
0.012 & PENNER & 02D DPWA Multichannel
\end{tabular}
\({ }^{1}\) Statistical error only.

\section*{\(N(1875) \rightarrow p \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)}

\section*{\(N(1875) \Rightarrow n \gamma\), helicity-1/2 amplitude \(A_{1 / 2}\)}


PHASE \(\theta\)
VALUE \(\left({ }^{\circ}\right)\) DOCUMENT ID TECN COMMENT
\(70 \pm 60 \quad\) SOKHOYAN 15A DPWA Multichanne
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llll}
\(70 \pm 60\) & GUTZ & 14 & DPWA Multichannel \\
\(80 \pm 65\) & ANISOVICH & 12A & DPWA Multichannel
\end{tabular}

\section*{N(1880) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow N \eta\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline modulus & PHASE ( ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.11 \pm 0.07\) & \(-75 \pm 55\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow \Lambda K\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.05 \pm 0.02\) & \(27 \pm 30\) & ANISOVICH & 17A & DPWA & \(\gamma p, \pi^{-} p \rightarrow K \Lambda\) \\
\hline
\end{tabular}


Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow \Sigma K\)
Modulus

PHASE ( O ) DOCUMENT ID TECN CO COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
\(0.11 \pm 0.06 \quad 95 \pm 40 \quad\) ANISOVICH 12A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow \Delta \pi, P\)-wave
\(\frac{\text { MODULUS }}{0.14 \pm 0.08} \frac{\text { PHASE }()}{-150 \pm 55} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.20 \pm 0.08 \quad-150 \pm 50 \quad\) ANISOVICH 12A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow N(1535) \pi\)
\(\frac{\text { MODULUS }}{0.09 \pm 0.05} \frac{\text { PHASE ( })}{130 \pm 60} \quad \frac{\text { DOCUMENT ID }}{\text { GUTZ }} 14 \quad \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)

Normalized residue in \(N \pi \Rightarrow N(1880) \Rightarrow N a_{0}(980)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.04 \pm 0.03\) & \(40 \pm 65\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1880) \rightarrow N \sigma\)} \\
\hline MODULUS & PHASE (\%) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.10 \pm 0.05\) & \(-140 \pm 55\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(N(1880)\) BREIT-WIGNER MASS}


\section*{\(N(1880)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{200 to 400 ( \(\approx \mathbf{3 0 0}\) ) OUR ESTIMATE} \\
\hline \(500 \pm 77\) & \({ }^{5}\) HUNT & 19 DPWA & Multichannel \\
\hline \(230 \pm 50\) & SOKHOYAN & 15A DPWA & Multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(230 \pm 50\) & GUTZ & 14 DPWA & Multichannel \\
\hline \(235 \pm 65\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \(485 \pm 142\) & 5 SHRESTHA & 12A DPWA & Multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{5}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1880)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(3-9 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(5-55 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(12-28 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & \(12-28 \%\) \\
\(\Gamma_{5}\) & \(\Sigma K\) & \(10-24 \%\) \\
\(\Gamma_{6}\) & \(N \pi \pi\) & \(30-80 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\) & \(18-42 \%\) \\
\(\Gamma_{8}\) & \(N \rho, S=1 / 2\) & \\
\(\Gamma_{9}\) & \(N \sigma\) & \(10-40 \%\) \\
\(\Gamma_{10}\) & \(N(1535) \pi\) & \(4-12 \%\) \\
\(\Gamma_{11}\) & \(N a_{0}(980)\) & \(1-5 \%\) \\
\(\Gamma_{12}\) & \(\Lambda K^{*}(892)\) & \(0.5-1 \%\) \\
\(\Gamma_{13}\) & \(p \gamma\), helicity=1/2 & seen \\
\(\Gamma_{14}\) & \(n \gamma\), helicity=1/2 & \(0.002-0.63 \%\) \\
\hline
\end{tabular}

\section*{\(N(1880)\) BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(25 \pm 6\) & \({ }^{6}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(6 \pm 3\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(5 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(15 \pm 5\) & 6 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{6}\) Statistical error only.} \\
\hline
\end{tabular}

MoDULUS for averages, fits, limits, etc. • • • nnel

- - We do not use the following data for averages, fits, limits, etc. - - -
\({ }^{3}\) Statistical error only.



Baryon Particle Listings
\(N(1900)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(N(1900)\) ELASTIC POLE RESIDUE} \\
\hline \multicolumn{5}{|l|}{MODULUS \(|r|\)} \\
\hline Value (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2 to 6 ( \(\approx 4)\) OUR ESTIMATE} \\
\hline \(4 \pm 2\) & SOKHOYAN & 15A & DPWA & Multichanne| \\
\hline \(4 \pm 1 \pm 1\) & 1 SVARC & & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(4 \pm 2\) & GUTZ & 14 & DPWA & Multichanne| \\
\hline 10 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(3 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \begin{tabular}{l}
PHASE \(\boldsymbol{\theta}\) \\
value ( \({ }^{\circ}\) )
\end{tabular} & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-50 to 10 ( \(\approx=20\) ) OUR ESTIMATE} \\
\hline \(-10 \pm 40\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-29 \pm 15 \pm 2\) & \({ }^{1}\) SVARC & & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-10 \pm 40\) & GUTZ & 14 & DPWA & Multichanne| \\
\hline -64 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(10 \pm 35\) & ANISOVICH & 12A & DPWA & Multichanne| \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(N(1900)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \Rightarrow N(1900) \Rightarrow N \boldsymbol{\eta}\)
\(\frac{\text { MODULUS }}{0.05 \pm 0.02} \frac{\text { PHASE }(\rho)}{70 \pm 60} \quad \frac{\text { DOCUMENT ID }}{\text { ANISOVICH 12A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichant }}\)

Normalized residue in \(N \pi \Rightarrow N(1900) \Rightarrow \Lambda K\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(0.03 \pm 0.02 \quad 90 \pm 40 \quad\) ANISOVICH 17A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.07 \pm 0.03 \quad 135 \pm 25 \quad\) ANISOVICH 12A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow N(1900) \rightarrow \Sigma K\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE (\%) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.04 \pm 0.02\) & \(110 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1900) \rightarrow N(1535) \pi\)} \\
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.04 \pm 0.01\) & \(170 \pm 30\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1900) \rightarrow \Delta(1232) \pi, P\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.07 \pm 0.04\) & \(-65 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1900) \rightarrow \Delta(1232) \pi\), F-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.10 \pm 0.05\) & \(80 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1900) \rightarrow N(1520) \pi\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.07 \pm 0.04\) & \(-105 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(\mathbf{N \pi} \Rightarrow \mathbf{N}(1900) \Rightarrow N \boldsymbol{\sigma}\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.03 \pm 0.02\) & \(-110 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(N(1900)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1890 to 1950 ( \(\approx 1920\) ) OUR ESTIMATE} \\
\hline \(1911 \pm 6\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1910 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1998 \pm 3\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline \(1910 \pm 30\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1905 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1900 \pm 8\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1951 \pm 53\) & PENNER & 02C & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
!

\section*{\(N(1900)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 320 ( \(\approx 200\) ) OUR ESTIMATE} \\
\hline \(292 \pm 16\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(270 \pm 50\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(359 \pm 10\) & \({ }^{1}\) SHKLYAR & 13 & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{lcl} 
• • We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\) \\
\(270 \pm 50\) & GUTZ & 14 \\
\(250+120\) & DNISOVICH & 12A
\end{tabular} DPWA Multichannel
\(N(1900)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(1-20 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(2-14 \%\) \\
\(\Gamma_{3}\) & \(N \eta^{\prime}\) & \(4-8 \%\) \\
\(\Gamma_{4}\) & \(N \omega\) & \(7-13 \%\) \\
\(\Gamma_{5}\) & \(\Lambda K\) & \(2-20 \%\) \\
\(\Gamma_{6}\) & \(\sum K\) & \(3-7 \%\) \\
\(\Gamma_{7}\) & \(N \pi \pi\) & \(40-80 \%\) \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi\) & \(30-70 \%\) \\
\(\Gamma_{9}\) & \(\Delta(1232) \pi, P\)-wave & \(9-25 \%\) \\
\(\Gamma_{10}\) & \(\Delta(1232) \pi, F\)-wave & \(21-45 \%\) \\
\(\Gamma_{11}\) & \(N \rho\) & \\
\(\Gamma_{12}\) & \(N \rho, S=1 / 2\) & \\
\(\Gamma_{13}\) & \(\Lambda K^{*}(892)\) & \(1-7 \%\) \\
\(\Gamma_{14}\) & \(N \sigma\) & \(7-23 \%\) \\
\(\Gamma_{15}\) & \(N(1520) \pi\) & \(4-10 \%\) \\
\(\Gamma_{16}\) & \(N(1535) \pi\) & \(0.001-0.025 \%\) \\
\(\Gamma_{17}\) & \(p \gamma\) & \(0.001-0.021 \%\) \\
\(\Gamma_{18}\) & \(p \gamma\), helicity=1/2 & \(<0.003 \%\) \\
\(\Gamma_{19}\) & \(p \gamma\), helicity=3/2 & \(<0.040 \%\) \\
\(\Gamma_{20}\) & \(n \gamma\) & \(<0.007 \%\) \\
\(\Gamma_{21}\) & \(n \gamma\), helicity=1/2 & \(<0.033 \%\) \\
\(\Gamma_{22}\) & \(n \gamma\), helicity=3/2 & \\
\hline
\end{tabular}
\(\boldsymbol{N}(1900)\) BRANCHING RATIOS

\(\boldsymbol{\Gamma}\left(\boldsymbol{N} \boldsymbol{\eta}^{\prime}\right) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E}{0.06 \pm 0.02}\)\(\quad\)\begin{tabular}{l} 
DOCUMENT ID \\
ANISOVICH 17C
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \omega) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(15 \pm 8\) & DENISENKO & 16 & DPWA & Multichannel & \\
\hline \(10 \pm 3\) & 1 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(39 \pm 9\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{5} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(13.7 \pm 0.3\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(16 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(2.4 \pm 0.3\) & 1 SHKLYAR & 05 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(14 \pm 5\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline 5 to 15 & NIKONOV & 08 & DPWA & Multichannel & \\
\hline \(0.1 \pm 0.1\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}



OMITTED FROM SUMMARY TABLE
Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(N(1990)\) POLE POSITION}

REAL PART

\(N(1900) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.094 \pm 0.007\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.067 \pm 0.030\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline < 0.001 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.067 \pm 0.030\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-0.065 \pm 0.030\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.004 \pm 0.006\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.031 & PENNER & 02D & DPWA & Multichannel \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(N(1900) \Rightarrow n \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)

MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(0.013-82\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(1990) \rightarrow \Lambda K\)
MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - •
\(0.022-111\) ROENCHEN 15A DPWA Multichannel

Baryon Particle Listings
\(N(1990), N(2000)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(1990) \rightarrow \Sigma K\)} \\
\hline \multicolumn{2}{|l|}{MODULUS PHASE ( \()^{\text {) }}\)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.005 & 24 & ROENCHE & , 1 & 5 A DPWA & A Multichannel \\
\hline \multicolumn{6}{|c|}{N(1990) BREIT-WIGNER MASS} \\
\hline VALUE (MeV) & & DOCUMENT ID & & TECN C & COMMENT \\
\hline \multicolumn{6}{|l|}{1950 to 2100 ( \(\approx \mathbf{2 0 2 0 )}\) OUR ESTIMATE} \\
\hline \(2028 \pm 19\) & & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(2060 \pm 65\) & & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1970 \pm 50\) & & CUTKOSKY & 80 & IPWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \(2005 \pm 150\) & & HOEHLER & 79 & IPWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1990 \pm 45\) & & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(2311 \pm 16\) & & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{N(1990) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 400 ( \(\approx \mathbf{3 0 0}\) ) OUR ESTIMATE} \\
\hline \(490 \pm 110\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(240 \pm 50\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(350 \pm 120\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(350 \pm 100\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(203 \pm 161\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(205 \pm 72\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(1990)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(2-6 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \\
\(\Gamma_{3}\) & \(\Lambda K\) & \(0.01-0.12 \%\) \\
\(\Gamma_{4}\) & \(p \gamma\) & \(0.003-0.042 \%\) \\
\(\Gamma_{5}\) & \(p \gamma\), helicity \(=1 / 2\) & \(0.009-0.075 \%\) \\
\(\Gamma_{6}\) & \(p \gamma\), helicity=3/2 & \(0.01-0.16 \%\) \\
\(\Gamma_{7}\) & \(n \gamma\) & \(0.003-0.066 \%\) \\
\(\Gamma_{8}\) & \(n \gamma\), helicity=1/2 & \(0.003-0.098 \%\) \\
\(\Gamma_{9}\) & \(n \gamma\), helicity=3/2 & \\
\hline
\end{tabular}


\section*{\(N(1990)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(\mathbf{1 9 9 0}) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{\mathbf{1 / 2}}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.010_{-0.00}^{+0.011}} \quad \frac{\text { PHASE ()) }}{-103_{-155}^{+108}} \quad\) ROCUMENT ID \(\quad \frac{\text { TECN }}{\text { ROENCHEN } 14}\)\begin{tabular}{l} 
DPWA
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
0.02967 ROENCHEN 15A DPWA Multichannel
\(N(1990) \rightarrow p \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.053_{-0.028}^{+0.023}\) & \(36_{-}^{+17}\) & ROENCHEN & DPWA & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{- - We do not use the following data for averages, fits, limits, etc. - • -}} \\
\hline & & & & \\
\hline
\end{tabular}
\(N(1990)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(1990) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.006 \pm 0.003\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.040 \pm 0.012\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1990) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.055 \pm 0.008\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.057 \pm 0.012\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1990) \Rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / \mathbf{2}}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.027 \pm 0.024\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.045 \pm 0.020\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(N(1990) \rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.051 \pm 0.020\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.052 \pm 0.027\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(N(1990)\) REFERENCES
For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{|c|c|c|c|c|}
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline ANISOVICH & 13B & EPJ A49 67 & A.V. Anisovich et al. & \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & (PITT, ANL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline \multicolumn{3}{|l|}{\[
N(2000) 5 / 2^{+}
\]} & \multicolumn{2}{|l|}{\(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{5}{2}+\right)\) Status: **} \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
Before the 2012 Review, all the evidence for a \(J^{P}=5 / 2^{+}\)state with a mass above 1800 MeV was filed under a two-star \(N(2000)\). There is now some evidence from ANISOVICH 12A for two \(5 / 2^{+}\)states in this region, so we have split the older data (according to mass) between two two-star \(5 / 2^{+}\)states, an \(N(1860)\) and an \(N(2000)\).

\section*{\(N(2000)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
\(2030 \pm 40 \quad\) SOKHOYAN 15A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. • • •
1900 SHKLYAR 13 DPWA Multichannel
\(2030 \pm 110\) ANISOVICH 12A DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
-2×IMAGINARY PART \\
VALUE (MeV)
\end{tabular} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(380 \pm 60\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline - - We do not use the follo & data for averag & fits, & limits, & etc. - - - \\
\hline 123 & SHKLYAR & 13 & DPWA & Multichannel \\
\hline \(480 \pm 100\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline
\end{tabular}
\(\boldsymbol{N}(\mathbf{2 0 0 0})\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)

\section*{VALUE (MeV)}
\(18 \pm 8\)
DOCUMENT ID TECN COMMENT
SOKHOYAN 15A DPWA Multichanne
- - We do not use the following data for averages, fits, limits, etc. - • -
\begin{tabular}{llll}
11 & SHKLYAR & 13 & DPWA Multichannel \\
\(35_{-15}^{+80}\) & ANISOVICH & 12A & DPWA Multichannel
\end{tabular}


\section*{\(\boldsymbol{N}(\mathbf{2 0 0 0})\) BREIT-WIGNER WIDTH}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(N(2000)\) BRANCHING RATIOS} \\
\hline \multirow[t]{2}{*}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)
VALUE (\%)} & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{6 to 10 ( \(\approx 8\) ) OUR ESTIMATE} \\
\hline \(8 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichanne| & \\
\hline & 3 SHKLYAR & & & Multichannel & \\
\hline \multicolumn{6}{|l|}{- . We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{6}{|l|}{\({ }^{3}\) Statistical error only.} \\
\hline \(\Gamma(N \eta) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(2 \pm 2\) & \({ }^{4}\) SHKLYAR & & DPWA & Multichanne| & \\
\hline \({ }^{4}\) Statistical error only. & & & & & \\
\hline
\end{tabular}
\(\Gamma(N \omega) / \Gamma_{\text {total }}\)
\(\frac{V A L U E(\%)}{} 18 \pm 8\)
\(1 \pm 1\)
\({ }^{5}\) Statistical error only.
\(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\)
\(\frac{V A L U E(\%)}{22 \pm 10}\)
\(\Gamma(\Delta(1232) \pi, F\)-wave \() / \Gamma_{\text {total }}\)
\(\frac{V A L U E(\%)}{34 \pm 15}\)
\(\Gamma\left(\Lambda K^{*}(892)\right) / \Gamma_{\text {total }}\)
\(\frac{V A L U E}{0.022 \pm 0.010}\)
\(\Gamma(N \sigma) / \Gamma_{\text {total }}\)
\(\frac{V A L L E(\%)}{10 \pm 5}\)
\(\Gamma(N(1520) \pi, D\)-wave \() / \Gamma_{\text {total }}\)
\(\frac{V A L U E(\%)}{21 \pm 10}\)
\(\Gamma(N(1680) \pi, P\)-wave \() / \Gamma_{\text {total }}\)
\(\frac{V A L U E(\%)}{16 \pm 9}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \(\Gamma 3 / \Gamma\) \\
\hline & & & & \\
\hline DENISENKO & 16 & DPWA & Multichannel & \\
\hline 5 SHKLYAR & 13 & DPWA & Multichannel & \\
\hline
\end{tabular}
\(\frac{\text { DOCUMENT ID }}{} \frac{\text { TECN }}{\text { COMMENT }} \quad\)\begin{tabular}{l} 
\\
\hline \(\mathbf{6} / \Gamma\) \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { SOKHOYAN } 15 \mathrm{~A} \text { DPWA Multichannel } & \\ & \Gamma_{\mathbf{7}} / \Gamma\end{array}\)
\(\frac{\text { DOCUMENT ID }}{}\)
\begin{tabular}{llll} 
DOCUMENT ID \\
ANISOVICH & 17 B & TECN \\
DPWA & \(\Gamma_{\mathbf{8}} / \boldsymbol{\Gamma}\) \\
COMMENT & \\
\hline
\end{tabular}
DOCUMENT ID TECN COMMENT \(\boldsymbol{\Gamma} \mathbf{9} / \boldsymbol{\Gamma}\)

SOKHOYAN 15A DPWA Multichannel
\begin{tabular}{llll} 
DOCUMENT ID \\
SOKHOYAN 15 A & \\
TECN \\
DPWA & \(\Gamma_{\mathbf{1 0}} / \boldsymbol{\Gamma}\) \\
COMMENT & \\
Multichannel &
\end{tabular}


\section*{\(N(2000)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(2000) \Rightarrow p \gamma\), helicity-1/2 amplitude \(A_{1 / 2}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.033 \pm 0.010} \frac{\left.\text { PHASE }{ }^{\circ}\right)}{15+25} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN } 15 \mathrm{~A}} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
\(0.033 \pm 0.010 \quad 15 \pm 25 \quad\) SOKHOYAN 15A DPWA Multichannel
\(N(2000) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.045 \pm 0.008} \frac{\text { PHASE } \mathrm{C})}{-140 \pm 25} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
\(N(2000)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(2000) \rightarrow p \gamma\), helicity-1/2 amplitude \(A_{1 / 2}\)

\(N(2000) \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / \mathbf{2}}\)


Statistical error only.
\(N(2000) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\(\frac{\text { VALUE }\left(\mathrm{GeV}^{-1 / 2}\right)}{-0.018+0.012} \quad \frac{\text { DOCUMENT ID }}{\text { ANISOVICH 13B }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
\(N(\mathbf{2 0 0 0}) \Rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / \mathbf{2}}\)


OMITTED FROM SUMMARY TABLE

\section*{\(N(2040)\) MASS}
VALUE (MeV)
\(2040+3 \pm 25\)
\(2068 \pm 3_{-40}^{+15}\)
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -
\(2244 \pm 30 \quad 1,2\) HUNT 19 DPWA Multichannel

Baryon Particle Listings
\(N(2040), N(2060)\)


\section*{\(N(2060)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
2020 to \(\mathbf{2 1 3 0}\) ( \(\approx \mathbf{2 0 7 0 )}\) OUR ESTIMATE


\section*{\(N(\mathbf{2 0 6 0})\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{15 to 30 ( \(\approx 20\) ) OUR ESTIMATE} \\
\hline \(25 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(19 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(20 \pm 10\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(19 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 26 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \(\operatorname{VALUE}\left({ }^{\circ}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-130 to -90 ( \(\sim\) - 110) OUR ESTIMATE} \\
\hline \(-130 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline - \(94 \pm 5 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline - \(90 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-125 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline - 71 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\mathbf{N ( 2 0 6 0 )}\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).



\section*{N(2060) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{300 to 450 ( \(\approx\) 400) OUR ESTIMATE} \\
\hline \(499 \pm 70\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(420 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(400 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(310 \pm 50\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(375 \pm 25\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(307 \pm 112\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(481 \pm 17\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(N(2060)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(7-12 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(2-6 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(1-7 \%\) \\
\(\Gamma_{4}\) & \(\Lambda K\) & seen \\
\(\Gamma_{5}\) & \(\Sigma K\) & \(1-5 \%\) \\
\(\Gamma_{6}\) & \(N \pi \pi\) & \(7-19 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{8}\) & \(\Delta(1232) \pi, D\)-wave & \(4-10 \%\) \\
\(\Gamma_{9}\) & \(N \rho\) & \\
\(\Gamma_{10}\) & \(N \rho, S=1 / 2, P\)-wave & seen \\
\(\Gamma_{11}\) & \(N \rho, S=3 / 2, D\)-wave & \\
\(\Gamma_{12}\) & \(\Lambda K^{*}(892)\) & \(0.3-1.3 \%\) \\
\(\Gamma_{13}\) & \(N \sigma\) & \(3-9 \%\) \\
\(\Gamma_{14}\) & \(N(1440) \pi\) & \(4-14 \%\) \\
\(\Gamma_{15}\) & \(N(1520) \pi, P\)-wave & \(9-21 \%\) \\
\(\Gamma_{16}\) & \(N(1680) \pi, S\)-wave & \(8-22 \%\) \\
\(\Gamma_{17}\) & \(p \gamma\) & \(0.03-0.19 \%\) \\
\(\Gamma_{18}\) & \(p \gamma\), helicity=1/2 & \(0.02-0.08 \%\) \\
\(\Gamma_{19}\) & \(p \gamma\), helicity=3/2 & \(0.01-0.10 \%\) \\
\(\Gamma_{20}\) & \(n \gamma\) & \(0.003-0.07 \%\) \\
\(\Gamma_{21}\) & \(n \gamma\), helicity=1/2 & \(0.001-0.02 \%\) \\
\(\Gamma_{22}\) & \(n \gamma\), helicity=3/2 & \(0.002-0.05 \%\) \\
\hline
\end{tabular}


REAL PART
2050 to 2150 ( \(\approx 2100\) ) OUR ESTIMATE

Baryon Particle Listings
\(N(2100)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\boldsymbol{N}(\mathbf{2 1 0 0 ) ~ E L A S T I C ~ P O L E ~ R E S I D U E ~}\)} \\
\hline \multicolumn{5}{|l|}{MODULUS \(|\boldsymbol{r}|\)} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{15 to 30 ( \(\approx 20\) ) OUR ESTIMATE} \\
\hline \(23 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(30 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(14 \pm 7\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 33 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

PHASE \(\theta\)
PHASE \(\boldsymbol{\theta}\)
\(\frac{\text { VALUE }\left({ }^{\circ}\right)}{-100 \text { to } \mathbf{- 6 0}(\boldsymbol{\sim}-\mathbf{8 0}) \text { OUR ESTENT ID }}\) TECN COMMENT
-100 to \(\mathbf{- 6 0}(\approx-80)\) OUR ESTIMATE
\begin{tabular}{lclll}
\(-70 \pm 25\) & SOKHOYAN & 15A & DPWA Multichannel \\
\(-92 \pm 3 \pm 2\) & 1 SVARC & 14 & \(\mathrm{~L}+\mathrm{P}\) & \(\pi N \rightarrow \pi N\) \\
\(35 \pm 25\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - • -
- \(59 \quad\) BATINIC 10 DPWA \(\pi N \rightarrow N \pi, N \eta\)
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{N(2100) INELASTIC POLE RESIDUE}

Normalized residue in \(N \pi \Rightarrow N(2100) \Rightarrow \Delta(1232) \pi\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.11 \pm 0.05\) & \(20 \pm 60\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(\mathbf{2 1 0 0}) \rightarrow \mathbf{N} \boldsymbol{\sigma}\)} \\
\hline modulus & PHASE (\%) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.18 \pm 0.06\) & \(125 \pm 25\) & SOKHOYAN & 15A & DPW & Multichan \\
\hline
\end{tabular}

Normalized residue in \(N \pi \Rightarrow N(2100) \Rightarrow N(1535) \pi\)
\(\frac{\frac{\text { MODULUS }}{0.22 \pm 0.06} \frac{\text { PHASE }()}{-40 \pm 25} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}}{\boldsymbol{N ( \mathbf { 2 1 0 0 } )}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2050 to 2150 ( \(\approx \mathbf{2 1 0 0 ) ~ O U R ~ E S T I M A T E ~}\)} \\
\hline \(2221 \pm 92\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(2115 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(2125 \pm 75\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(2050 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2157 \pm 42\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(2068 \pm 3_{-40}^{+15}\) & ABLIKIM & 06K & BES2 & \(J / \psi \rightarrow\left(p \pi^{-}\right) \bar{n}\) \\
\hline \(2084 \pm 93\) & VRANA & 00 & DPWA & Multichanne| \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline
\end{tabular}
\(\boldsymbol{N}(\mathbf{2 1 0 0})\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 320 ( \(\approx 260\) ) OUR ESTIMATE} \\
\hline \(545 \pm 170\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(290 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(260 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(200 \pm 30\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(355 \pm 88\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(165 \pm 14 \pm 40\) & ABLIKIM & 06K & BES2 & \(J / \psi \rightarrow\left(p \pi^{-}\right) \bar{n}\) \\
\hline \(1077 \pm 643\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{8 to 18 ( \(\sim 12\) ) OUR ESTIMATE} \\
\hline \(21 \pm 11\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(16 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(12 \pm 3\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(10 \pm 4\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(16 \pm 5\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(2 \pm 5\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N \eta) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 2 / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} & \\
\hline < 4.7 & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline \(83 \pm 5\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) & \\
\hline \(61 \pm 61\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\boldsymbol{N} \boldsymbol{\eta}^{\prime}\right) / \Gamma_{\text {total }}\)} & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.08 \pm 0.03\) & ANISOVICH & 17C & DPWA & Multichannel & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N \omega) / \Gamma_{\text {total }}\)} & & & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(15 \pm 10\) & DENISENKO & 16 & DPWA & Multichannel & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\Lambda K) / \Gamma_{\text {total }}\)} & & & \multirow[t]{2}{*}{\(\Gamma_{5} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline < 1.0 & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline - - We do not & data for average & , fits & limits, & etc. - • & \\
\hline \(21 \pm 20\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\) & & & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & TECN COMMENT & \\
\hline \(<7.5\) & 1 HUNT 19 & DPWA Multichannel & \\
\hline \(10 \pm 4\) & SOKHOYAN 15A & DPWA Multichannel & \\
\hline - - We do not use the following & data for averages, fits, & limits, etc. - - - & \\
\hline \(2 \pm 1\) & VRANA 00 & DPWA Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma(N \rho, S \equiv 1 / 2, P\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{10} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & TECN COMMENT & \\
\hline \(52 \pm 19\) & 1 HUNT 19 & DPWA Multichannel & \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(4 \pm 1\) & VRANA 00 & DPWA Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Lambda K^{*}(892)\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{11} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.07 \pm 0.04\) & ANISOVICH & 17B & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\boldsymbol{N \sigma}) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{12} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline <35 & 1 HUNT & 19 & \multicolumn{3}{|l|}{DPWA Multichannel} \\
\hline \(20 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(10 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(\Gamma_{13} / \Gamma\)
\(\boldsymbol{\Gamma}(\boldsymbol{N}(\mathbf{1 5 3 5}) \boldsymbol{\pi}) / \boldsymbol{\Gamma}_{\text {total }}\)
\begin{tabular}{l} 
VALUE (\%)
\end{tabular} \(30 \pm 4\)\(\frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\Gamma_{\mathbf{1 3}} / \boldsymbol{\Gamma}}{\text { COMMENT }}\)

\section*{\(N(2100)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(2100) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.011 \pm 0.004} \frac{\text { PHASE } \rho)}{65 \pm 30} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)

\section*{\(N(2100)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(N(2100) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2)}\right.\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.032 \pm 0.014\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.010 \pm 0.004\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\(N(2100)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline HUNT & 19 & PR C99 055205 & \multicolumn{2}{|l|}{B.C. Hunt, D.M. Manley} \\
\hline ANISOVICH & 17B & PL B771 142 & \multicolumn{2}{|l|}{A.V. Anisovich et al.} \\
\hline ANISOVICH & 17C & PL B772 247 & \multicolumn{2}{|l|}{A.V. Anisovich et al.} \\
\hline DENISENKO & 16 & PL B755 97 & I. Denisenko et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CBELS & A/TAPS Collab.) \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RBI Z & greb, UNI Tuzla) \\
\hline BATINIC & 10 & PR C82 038203 & M. Batinic et al. & (ZAGR) \\
\hline ABLIKIM & 06K & PRL 97062001 & M. Ablikim et al. & (BES II Collab.) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & (PITT, ANL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}
\(N(2120) 3 / 2^{-} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}-\right)\) Status: \(* * *\)
Before the 2012 Review, all the evidence for a \(J^{P}=3 / 2^{-}\)state with a mass above 1800 MeV was filed under a two-star \(N(2080)\). There is now evidence from ANISOVICH 12A for two 3/2 \({ }^{-}\)states in this region, so we have split the older data (according to mass) between a three-star \(N(1875)\) and a two-star \(N(2120)\).

\section*{\(N(2120)\) POLE POSITION}

REAL PART

\(\boldsymbol{N}(\mathbf{2 1 2 0})\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{1 0} \text { to } \mathbf{3 0}(\approx \mathbf{2 0}) \text { OUR ESTIMATE }}\)
DOCUMENT ID TECN COMMENT
SOKHOYAN 15A DPWA Multichannel
SVARC \(\quad 14 \quad \mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)
CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\) (higher \(m\) )
\(13 \pm 1 \pm 1\)
\(30 \pm 20\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{lll}
\(11 \pm 6\) & GUTZ & 14 \\
\(13 \pm 3\) & ANISOVICH & DPWA Multichannel
\end{tabular}

PHASE \(\theta\)
\(\frac{\text { VALUE }\left({ }^{\circ}\right)}{\text { DOCUMENT ID }}\) TE TECN COMMENT
-40 to \(20(\approx-10)\) OUR ESTIMATE
\begin{tabular}{clll}
\(-30 \pm 20\) & SOKHOYAN & 15A DPWA Multichannel \\
\(-2 \pm 4 \pm 9\) & SVARC & 14 & L+P \(\pi N \rightarrow \pi N\) \\
\(0 \pm 100\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) (higher \(m\) )
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • •
\(-30 \pm 20\) GUTZ 14 DPWA Multichannel
\(-20 \pm 10 \quad\) ANISOVICH 12A DPWA Multichannel

\section*{\(\boldsymbol{N}(\mathbf{2 1 2 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(\mathbf{2 1 2 0}) \rightarrow \Lambda K\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT & & TECN & COMMENT \\
\hline \(0.03 \pm 0.01\) & \(100 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow N(2120) \rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE ( \()\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.02 \pm 0.015\) & \(-50 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline
\end{tabular}

\(\boldsymbol{N}(2120)\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{260 to 360 ( \(\approx 300\) ) OUR ESTIMATE} \\
\hline \(503 \pm 62\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(340 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(300 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) (higher \(m\) ) \\
\hline \(265 \pm 40\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(340 \pm 35\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(330 \pm 45\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(N(2120)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(5-15 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \\
\(\Gamma_{3}\) & \(N \eta^{\prime}\) & \(2-6 \%\) \\
\(\Gamma_{4}\) & \(N \omega\) & \(4-20 \%\) \\
\(\Gamma_{5}\) & \(\Lambda K\) & \\
\(\Gamma_{6}\) & \(N \pi \pi\) & \(50-95 \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi\) & \(40-90 \%\) \\
\(\Gamma_{8}\) & \(\quad \Delta(1232) \pi, S\)-wave & \(30-70 \%\) \\
\(\Gamma_{9}\) & \(\Delta(1232) \pi, D\)-wave & \(8-32 \%\) \\
\(\Gamma_{10}\) & \(N \rho\) & \\
\(\Gamma_{11}\) & \(N \rho, S=3 / 2, S\)-wave & \\
\(\Gamma_{12}\) & \(\Lambda K^{*}(892)\) & \(<0.2 \%\) \\
\(\Gamma_{13}\) & \(N \sigma\) & \(7-15 \%\) \\
\(\Gamma_{14}\) & \(N(1535) \pi\) & \(7-23 \%\) \\
\(\Gamma_{15}\) & \(p \gamma\) & \(0.16-2.1 \%\) \\
\(\Gamma_{16}\) & \(p \gamma\), helicity=1/2 & \(0.07-0.80 \%\) \\
\(\Gamma_{17}\) & \(p \gamma\), helicity=3/2 & \(0.09-1.3 \%\) \\
\(\Gamma_{18}\) & \(n \gamma\) & \(0.04-0.72 \%\) \\
\(\Gamma_{19}\) & \(n \gamma\), helicity=1/2 & \(0.04-0.60 \%\) \\
\(\Gamma_{20}\) & \(n \gamma\), helicity=3/2 & \(0.001-0.12 \%\)
\end{tabular}
\(\boldsymbol{N}(2120)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(N \pi) / \Gamma_{\text {total }}\) & & & \multicolumn{2}{|r|}{\(\Gamma 1 / \Gamma\)} \\
\hline Value (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{5 to 15 ( \(\approx 10)\) OUR ESTIMATE} \\
\hline \(19 \pm 2\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(5 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(14 \pm 7\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) (higher \(m\) ) \\
\hline \(6 \pm 2\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(5 \pm 3\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(6 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(2120), N(2190)\)

\(N(2120)\) PHOTON DECAY AMPLITUDES AT THE POLE
\(N(2120) \Rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( ) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{\[
\frac{T E C N}{\text { DPWA }}
\]} & \multirow[t]{2}{*}{\(\frac{\text { COMMENT }}{\text { Multichannel }}\)} \\
\hline \(0.130 \pm 0.045\) & \(-40 \pm 25\) & SOKHOYAN & 15A & & \\
\hline \multicolumn{6}{|l|}{\(N(2120) \Rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / \mathbf{2}}\)} \\
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \()\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.160 \pm 0.060\) & \(-30 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

N(2120) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(N(2120) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(A_{1 / 2}\)
\begin{tabular}{|c|c|c|}
\hline \(\operatorname{VALUE}\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.047 \pm 0.009\) & 1 HUNT 19 & DPWA Multichannel \\
\hline \(0.130 \pm 0.050\) & SOKHOYAN 15A & DPWA Multichanne \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.130 \pm 0.050\) & GUTZ 14 & DPWA Multichanne \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(N(2120) \Rightarrow p \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.001 \pm 0.007\) & 1 HUNT 19 & DPWA Multichannel \\
\hline \(0.160 \pm 0.065\) & SOKHOYAN 15A & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.160 \pm 0.065\) & GUTZ 14 & DPWA Multichanne \\
\hline \({ }^{1}\) Statistical error only. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(N(2120) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.020 \pm 0.013\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.110 \pm 0.045\) & ANISOVICH & 13в & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical err & & & & \\
\hline
\end{tabular}
\(N(2120) \rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV \({ }^{-1 / 2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(-0.00 \pm 0.02\) & \(1{ }^{\text {HUNT }}\) & 19 & DPWA & Multichannel \\
\hline \(0.040 \pm 0.030\) & ANISOVICH & 13в & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

REAL PART

\section*{\(N(2190)\) POLE POSITION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{REAL PART} \\
\hline \multicolumn{5}{|l|}{2050 to 2150 ( \(\approx 2100\) ) OUR ESTIMATE} \\
\hline \(2150 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline 2079土 4土9 & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(2100 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 2162 & HUNT & 19 & DPWA & Multichannel \\
\hline 2074 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(2150 \pm 25\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(2063 \pm 32\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 2070 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 2107 & VRANA & 00 & DPWA & Multichannel \\
\hline 2042 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline -2×IMAGINARY PART VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{300 to 500 ( \(\approx\) 400) OUR ESTIMATE} \\
\hline \(325 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(509 \pm 7 \pm 16\) & \(1{ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(400 \pm 160\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 407 & HUNT & 19 & DPWA & Multichannel \\
\hline 327 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(330 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(330 \pm 101\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline 520 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 380 & VRANA & 00 & DPWA & Multichannel \\
\hline 482 & HoEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(2190)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\(\frac{\text { VALUE (MeV) }}{\mathbf{2 5} \text { to } \mathbf{7 0} \text { ( } \approx \mathbf{5 0 )} \text { OUR ESTIMATE }}\)
\begin{tabular}{lclll}
\(30 \pm 4\) & SOKHOYAN & 15A DPWA Multichannel \\
\(54 \pm 1 \pm 3\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(25 \pm 10\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}
\begin{tabular}{llll}
35 & ROENCHEN & 15A DPWA Multichannel \\
\(30 \pm 5\) & ANISOVICH & 12A DPWA Multichannel \\
34 & BATINIC & 10 & DPWA \(\pi N \rightarrow N \pi, N \eta\) \\
72 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
45 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\) \\
\multicolumn{1}{l}{ 1Fit to the amplitudes of HOEHLER 79.} & &
\end{tabular}

1 Fit to the amplitudes of HOEHLER 79.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
PHASE \(\theta\) \\
VALUE \(\left(^{\circ}\right)\)
\end{tabular} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-30 to \(30(\approx 0)\) OUR ESTIMATE} \\
\hline \(28 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-18 \pm 1 \pm 3\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-30 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -40 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(30 \pm 10\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline -19 & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline -32 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{N}(\mathbf{2 1 9 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(2190) \rightarrow \Lambda K\)
MODULUS \(\frac{\text { PHASE }() \text { DOCUMENT ID }}{20 \text { TECN COMMENT }}\) \(0.03 \pm 0.01 \quad 20 \pm 15 \quad\) ANISOVICH 12A DPWA Multichannel - - We do not use the following data for averages, fits, limits, etc. - - -
\(0.005-51\) ROENCHEN 15A DPWA Multichannel

\section*{Normalized residue in \(N \pi \rightarrow \mathbf{N}(\mathbf{2 1 9 0}) \Rightarrow \Sigma K\)}

MODULUS PHASE \(\rho\) ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.013-69\) ROENCHEN 15A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow N(\mathbf{2 1 9 0}) \rightarrow N \boldsymbol{\eta}\)
MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -
0.016129 ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(2190) \rightarrow \Delta(1232) \pi, D\)-wave
\(\frac{\text { MODULUS }}{0.27 \pm 0.04} \frac{\text { DOCUMENT ID }}{\text { SOL }}\) (165 \(\frac{\text { TECN }}{\text { COMMENT }}\)
\(0.27 \pm 0.04 \quad-165 \pm 20 \quad\) SOKHOYAN 15A DPWA Multichanne
Normalized residue in \(N \pi \rightarrow N(\mathbf{2 1 9 0}) \rightarrow N \sigma\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.13 \pm 0.05\) & \(50 \pm 15\) & \multicolumn{2}{|l|}{SOKHOYAN 15A} & A DPWA & A Multichannel \\
\hline \multicolumn{6}{|c|}{N(2190) BREIT-WIGNER MASS} \\
\hline \multicolumn{2}{|l|}{VALUE (MeV)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN CO & COMMENT \\
\hline \multicolumn{6}{|l|}{2140 to 2220 ( \(\approx \mathbf{2 1 8 0}\) ) OUR ESTIMATE} \\
\hline \(2222 \pm 15\) & & \({ }^{1}\) HUNT & 19 D & DPWA M & Multichannel \\
\hline \(2205 \pm 18\) & & SOKHOYAN & 15A D & DPWA M & Multichannel \\
\hline \(2152.4 \pm 1.4\) & & 1 ARNDT & 06 D & DPWA \(\pi\) & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(2200 \pm 70\) & & CUTKOSKY & 80 IP & PWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \(2140 \pm 12\) & & HOEHLER & 79 IP & PWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2180 \pm 20\) & & ANISOVICH & 12A D & DPWA M & Multichannel \\
\hline \(2150 \pm 26\) & & 1 SHRESTHA & 12A D & DPWA M & Multichannel \\
\hline \(2125 \pm 61\) & & BATINIC & 10 D & DPWA \(\pi\) & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(2168 \pm 18\) & & VRANA & 00 D & DPWA M & Multichannel \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Statistical error only.} & & & & \\
\hline
\end{tabular}
\(\boldsymbol{N}(\mathbf{2 1 9 0})\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}(\mathrm{MeV})\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{300 to 500 ( \(\approx\) 400) OUR ESTIMATE} \\
\hline \(442 \pm 40\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(355 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(484 \pm 13\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(500 \pm 150\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(390 \pm 30\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(335 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(500 \pm 74\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(381 \pm 160\) & BATINIC & 10 & DPWA & \(\pi N \rightarrow N \pi, N \eta\) \\
\hline \(453 \pm 101\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(N(2190)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(10-20 \%\) \\
\(\Gamma_{2}\) & \(N \eta\) & \(1-3 \%\) \\
\(\Gamma_{3}\) & \(N \omega\) & \(8-20 \%\)
\end{tabular}
\begin{tabular}{lll}
\(\Gamma_{4}\) & \(\Lambda K\) & \\
\(\Gamma_{5}\) & \(N \pi \pi\) & \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{7}\) & \(\Delta(1232) \pi, D\)-wave & \(19-31 \%\) \\
\(\Gamma_{8}\) & \(N \rho\) & \\
\(\Gamma_{9}\) & \(N \rho, S=3 / 2, D\)-wave & seen \\
\(\Gamma_{10}\) & \(\Lambda K^{*}(892)\) & \(0.2-0.8 \%\) \\
\(\Gamma_{11}\) & \(N \sigma\) & \(3-9 \%\) \\
\(\Gamma_{12}\) & \(p \gamma\) & \(0.014-0.077 \%\) \\
\(\Gamma_{13}\) & \(p \gamma\), helicity \(=1 / 2\) & \\
\(\Gamma_{14} \quad p \gamma\), helicity \(=3 / 2\) & \(<0.04 \%\) \\
\(\Gamma_{15}\) & \(n \gamma\) & \\
\(\Gamma_{16}\) & \(n \gamma\), helicity \(=1 / 2\) & \(<0.03 \%\) \\
\(\Gamma_{17}\) & \(n \gamma\), helicity=3/2 & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \rho, S=3 / 2, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{Г9/Г} \\
\hline VALUE (\%) & DOCUMEN & & TECN & COMMENT & \\
\hline \(<11\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(29 \pm 28\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Lambda K^{*}(892)\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{10} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.005 \pm 0.003\) & ANISOVICH & 17B & DPWA & Multichannel & \\
\hline \(\Gamma(N \sigma) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{11} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline
\end{tabular}

\section*{\(N(2190)\) PHOTON DECAY AMPLITUDES AT THE POLE}

\section*{\(N(2190) \rightarrow p \gamma\), helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2)}\) & PHASE () & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.068 \pm 0.005\) & \(-170 \pm 12\) & SOKHOYAN & 15A & DPWA & \multirow[t]{2}{*}{Multichannel} \\
\hline \({ }_{-0.083}+0.007\) & \(-11+2\) & ROENCHEN & 14 & DPWA & \\
\hline - - We do not us & the following & for averages, fits, & , limit & s, etc. & \\
\hline -0.041 & -21 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

Baryon Particle Listings
\(N(2190), N(2220)\)

\(N(2190) \rightarrow p \gamma\), ratio of helicity amplitudes \(A_{\mathbf{3} / \mathbf{2}} / A_{\mathbf{1 / 2}}\)
VALUE DOCUMENTID _ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(-0.17 \pm 0.15 \quad\) WILLIAMS 09 IPWA \(\gamma p \rightarrow p \omega\)
\(N(2190) \rightarrow n \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2)}\right.\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.01 \pm 0.02\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.015 \pm 0.013\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(N(\mathbf{2 1 9 0}) \rightarrow n \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.023 \pm 0.022\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.034 \pm 0.022\) & ANISOVICH & 13B & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\section*{\(N(2190)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|}
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ANISOVICH & 17B & PL B771 142 & A.V. Anisovich et al. & \\
\hline DENISENKO & 16 & PL B755 97 & I. Denisenko et al. & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CBEL & EELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN
Also & 14 & EPJ A50 101 EPJ A51 63 (errat.) & D. Roenchen et al. D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RB & BI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 13B & EPJ A49 67 & A.V. Anisovich et al. & \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline BATINIC & 10 & PR C82 038203 & M. Batinic et al. & (ZAGR) \\
\hline WILLIAMS & 09 & PR C80 065209 & M. Williams et al. & (JLab CLAS Collab.) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & (PITT, ANL) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}
\(N(2220) 9 / 2^{+} \quad /\left(J^{P}\right)=\frac{1}{2}\left(\frac{(2)}{2}\right)\) Status: \(* * * *\)

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{N(2220) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT 2130 to 2200 ( \(\approx 2170\) ) OUR ESTIMATE
\begin{tabular}{lllll}
\(2127 \pm 3 \pm 24\) & 1 & & & \\
\(2150 \pm 35\) & AVARC & 14 & \(\mathrm{~L}+\mathrm{P}\) & \(\pi N \rightarrow \pi N\) \\
\(2160 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2171 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 2199 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 2135 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{360 to 480 ( \(\approx \mathbf{4 0 0}\) ) OUR ESTIMATE} \\
\hline \(380 \pm 7 \pm 22\) & \multicolumn{2}{|l|}{1 SVARC 14} & \multicolumn{2}{|l|}{\(\mathrm{L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)} \\
\hline \(440 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(480 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limi} \\
\hline 593 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 372 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 400 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|c|}{\(\boldsymbol{N}(2220)\) ELASTIC POLE RESIDUE} \\
\hline \multicolumn{5}{|l|}{MODULUS \(|\boldsymbol{r}|\)} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{35 to 60 ( \(\approx\) 45) OUR ESTIMATE} \\
\hline \(38 \pm 1 \pm 5\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(60 \pm 12\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(45 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline 62 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 33 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 40 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{\[
\text { PHASE } \theta
\]} \\
\hline \multicolumn{5}{|l|}{-60 to -30 ( \(\sim\) - 50) OUR ESTIMATE} \\
\hline \(-52 \pm 1 \pm 14\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-58 \pm 12\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-45 \pm 25\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline -59 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline -33 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline -50 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} & & & \\
\hline
\end{tabular}

\section*{N(2220) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(2220) \rightarrow N \boldsymbol{\eta}\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.004-101\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \Rightarrow N(2220) \Rightarrow \Lambda K\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.007 & 62 & ROENCHEN & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow N(\mathbf{2 2 2 0}) \rightarrow \Sigma K\)} \\
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline
\end{tabular}

MODULUS PHASE ()
- - We do not use the following data for averages, fits, limits, etc. - • -
0.009 - 128 ROENCHEN 15A DPWA Multichannel

\section*{\(N(2220)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\boldsymbol{N}(2220)\) BREIT-WIGNER MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2200 to 2300 ( \(\approx \mathbf{2 2 5 0}\) ) OUR ESTIMATE} \\
\hline \(2316.3 \pm 2.9\) & 1 ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(2230 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(2205 \pm 10\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\section*{\(N(2220)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{N(2220) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{350 to 500 ( \(\approx\) 400) OUR ESTIMATE} \\
\hline \(633 \pm 17\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(500 \pm 150\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(365 \pm 30\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}


\section*{\(\boldsymbol{N}(\mathbf{2 2 2 0})\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(N(2220) \rightarrow p \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
MODULUS \(\left(\mathrm{GeV}^{-1 / 2}\right)\) PHASE ( \()\)

DOCUMENT ID TECN COMMENT \(-0.233_{-0.044}^{+0.084}\)
\(-47+10\) ROENCHEN 14 DPWA
- - We do not use the following data for averages, fits, limits, etc. - - 0.135114 ROENCHEN 15A DPWA Multichannel
\(\boldsymbol{N ( 2 2 2 0 )} \rightarrow p \gamma\), helicity-3/2 amplitude \(\mathbf{A}_{\mathbf{3} / \mathbf{2}}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{0.162_{-0.038}^{+0.041}} \quad \frac{\text { PHASE } \rho)}{-27_{-13}^{+26}} \quad\) ROCUMENT ID \(\quad\) TECN \(\frac{\text { ROENCHEN } 14}{\text { DPWA }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.082-41\) ROENCHEN 15A DPWA Multichannel

\section*{\(N(2220)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(N(2250)\) POLE POSITION}

REAL PART
VALUE (MeV)
2150 to 2250 ( \(\approx \mathbf{2 2 0 0}\) ) OUR ESTIMATE
\begin{tabular}{lccl}
\(2157 \pm 3 \pm 14\) & 1 & SVARC & 14 \\
\(2195 \pm 45\) & LNISOVICH & \(12 A\) & DPWA Multichannel \\
\(2150 \pm 50\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\) \\
2127 & HUNT & 19 & DPWA Multichannel \\
2062 & ROENCHEN & \(15 A\) & DPWA Multichannel \\
2217 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
2187 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{\(-2 \times\) IMAGINARY PART}

350 to 500 ( \(\approx \mathbf{4 2 0}\) ) OUR ESTIMATE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{350 to \(\mathbf{5 0 0}\) ( \(\approx \mathbf{4 2 0}\) ) OUR ESTIMATE} \\
\hline \(412 \pm 7 \pm 44\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(470 \pm 50\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline
\end{tabular}
\(360 \pm 100 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. • - -

\section*{\(\boldsymbol{N}(2250)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)


\section*{N(2250) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow N(2250) \rightarrow N \eta\)
MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
0.017 ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow N(2250) \rightarrow \Lambda K\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT


\section*{\(N(2250)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{VaLUE (MeV) DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{300 to 600 ( \(\approx 500\) ) OUR ESTIMATE} \\
\hline \(343 \pm 51\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(520 \pm 50\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(628 \pm 28\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(480 \pm 120\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(300 \pm 40\) & HoEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|c|}{\(N(2250) ~ D E C A Y ~ M O D E S ~\)} \\
\hline \multicolumn{5}{|r|}{The following branching fractions are our estimates, not fits or averages.} \\
\hline \multicolumn{2}{|l|}{Mode} & \multicolumn{3}{|l|}{Fraction ( \(\Gamma_{i} / \Gamma^{\text {r }}\) )} \\
\hline \(\Gamma_{1} \quad N \pi\) & & \multicolumn{3}{|l|}{0.05 to \(0.15(\approx 0.10)\)} \\
\hline \multicolumn{5}{|l|}{\(\Gamma_{2} \quad N \eta\)} \\
\hline \multicolumn{5}{|l|}{\(\Gamma_{3} \wedge K\)} \\
\hline
\end{tabular}
\begin{tabular}{llll}
262 & HUNT & 19 & DPWA Multichannel \\
403 & ROENCHEN & 15 A DPWA Multichannel \\
431 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
388 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\) \\
1 Fit to the amplitudes of HOEHLER 79. & &
\end{tabular}

Baryon Particle Listings
\(N(2250), N(2300), N(2570), N(2600), N(2700)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(N(2250)\) BRANCHING RATIOS} \\
\hline \[
\begin{aligned}
& \Gamma(N \pi) / \Gamma_{\text {total }} \\
& \underset{\sim}{\text { VALUE }(\%)}
\end{aligned}
\] & DOCUMENT ID & & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline \multicolumn{6}{|l|}{\(\frac{5}{5}\) to 15 ( \(\approx 10\) ) OUR ESTIMATE} \\
\hline \(8.5 \pm 0.4\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(12 \pm 4\) & anisovich & 12A & DPWA & Multichannel & \\
\hline \(8.9 \pm 0.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(10 \pm 2\) & CUTKOSKY & & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(10 \pm 2\) & HoEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline \(\Gamma(N \eta) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & Comment & \\
\hline <5 & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline \(\Gamma(\Lambda K) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(2.0 \pm 0.6\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}

\(N(2600)\) DECAY MODES
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (Gev \({ }^{-1 / 2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.0006 \pm 0.0037\) & 1 HUNT & 19 & DPWA & Multichanne| \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(N(2250)\) REFERENCES} \\
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et \(\mathrm{al}^{\text {d }}\) & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. & (RBI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}
\(N(2300) 1 / 2^{+} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)\)Status: \(* *\)

OMITTED FROM SUMMARY TABLE

\section*{\(N(2300)\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2300+30-109\) & ABLIKIM & & BES3 & \(\psi(2 S) \rightarrow p \bar{p} \pi^{0}\) \\
\hline & \multicolumn{2}{|l|}{\(N(2300)\) WIDTH} & & \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(340 \pm 30_{-}^{+110}\) & ABLIKIM & 13A & BES3 & \(\psi(2 S) \rightarrow p \bar{p} \pi^{0}\) \\
\hline
\end{tabular}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(3-8 \%\) \\
\hline
\end{tabular}


\begin{tabular}{c}
\(\Delta\) BARYONS \\
\((\mathbf{S}=\mathbf{0}, \boldsymbol{I}=3 / 2)\) \\
\(\Delta^{++}=u u u, \quad \Delta^{+}=u u d, \quad \Delta^{0}=u d d, \quad \Delta^{-}=d d d\) \\
\hline
\end{tabular}


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1232)\) POLE POSITIONS}

REAL PART, MIXED CHARGES
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{1 2 0 9} \text { to } \mathbf{1 2 1 1}(\approx \mathbf{1 2 1 0}) \text { OUR ESTIMATE }} \frac{\text { DOCUMENT ID }}{\text { TECN }}\) COMMENT
\begin{tabular}{lcll}
\(1211 \pm 1 \quad \pm 1\) & 1 SVARC & 14 & \(\mathrm{~L}+\mathrm{P} \pi N \rightarrow \pi N\) \\
\(1210.5 \pm 1.0\) & ANISOVICH & 12 A & DPWA Multichannel \\
\(1210 \pm 1\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\) \\
1212.4 & HUNT & 19 & DPWA Multichannel \\
1218 & ROENCHEN & \(15 A\) & DPWA Multichannel \\
\(1211 \pm 1\) & ANISOVICH & 10 & DPWA Multichannel \\
1211 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1210 & ARNDT & 04 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1209 & 2 HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
\({ }^{2}\) See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of \(N\) and \(\Delta\) resonances as determined from Argand diagrams of \(\pi N\) elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

\section*{- \(2 \times\) IMAGINARY PART, MIXED CHARGES}
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{9 8} \text { to } \mathbf{1 0 2 ( \approx 1 0 0 )} \text { OUR ESTIMATE }}\)
DOCUMENT ID TECN COMMENT
1 SVARC \(14 \quad \mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\) CUTKOSKY 20 DPWA Multichanne
\(99 \pm 2\)
80 IPWA \(\pi N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. • - •
\begin{tabular}{rlll}
96.8 & HUNT & 19 & DPWA Multichannel \\
92 & ROENCHEN & 15 A & DPWA Multichannel \\
100 & \(\pm 2\) & ANISOVICH & 10 \\
DPWA Multichannel \\
99 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
100 & ARNDT & 04 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
100 & 2 HOEHLER & 93 & ARGD \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
\({ }^{2}\) See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of \(N\) and \(\Delta\) resonances as determined from Argand diagrams of \(\pi N\) elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

REAL PART, \(\boldsymbol{\Delta}\) (1232) \({ }^{++}\)
VALUE \((\mathrm{MeV})\) DOCUMENT ID COMMENT
- - We do not use the following d
\(1212.50 \pm 0.2\)
ata for averages, fits, fils, etc. • • •
- \(2 \times\) IMAGINARY PART, \(\Delta(\mathbf{1 2 3 2})^{++}\)

VALUE (MeV) DOCUMENT ID COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - \(97.37 \pm 0.42\) BERNICHA 96 Fit to PEDRONI 78

REAL PART, \(\boldsymbol{\Delta}(\mathbf{1 2 3 2})^{+}\)
VALUE \((\mathrm{MeV})\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(1211 \pm 1\) to \(1212 \pm 1 \quad\) HANSTEIN 96 DPWA \(\gamma N \rightarrow \pi N\) \(1206.9 \pm 0.9\) to \(1210.5 \pm 1.8 \quad\) MIROSHNIC... 79 Fit photoproduction
\(-2 \times\) IMAGINARY PART, \(\Delta(\mathbf{1 2 3 2})^{+}\)
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(102 \pm 2\) to \(99 \pm 2 \quad 1\) HANSTEIN 96 DPWA \(\gamma N \rightarrow \pi N\) \(111.2 \pm 2.0\) to \(116.6 \pm 2.2\) MIROSHNIC... 79 Fit photoproduction
\({ }^{1}\) The second (lower) value of HANSTEIN 96 here goes with the second (higher) value of the real part in the preceding data block.
REAL PART, \(\boldsymbol{\Delta}(\mathbf{1 2 3 2})^{0}\)
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & COMMENT \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- - We do not use the following data for averages, fits, limits, etc. - - \(1213.20 \pm 0.66\) \\
BERNICHA \\
96 Fit to PEDRONI 7
\end{tabular}}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{- \(2 \times\) IMAGINARY PART, \(\boldsymbol{\Delta}(\mathbf{1 2 3 2})^{0}\)} \\
\hline VALUE (MeV) & DOCUMENT ID & COMMENT \\
\hline
\end{tabular}

\section*{\(\Delta(1232)\) ELASTIC POLE RESIDUES}

ABSOLUTE VALUE, MIXED CHARGES


\section*{\(\Delta\) (1232) BREIT-WIGNER MASSES}

MIXED CHARGES


\section*{\(\Delta(1232)^{+}\)MASS}
VALUE (MeV) DOCUMENT ID COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(1234.9 \pm 1.4\) MIROSHNIC... 79 Fit photoproduction
\(\Delta(1232)^{0}\) MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1231.3 \pm 0.6\) & BREITSCHOP & & CNTR & Using new CHEX data \\
\hline \(1233.40 \pm 0.22\) & GRIDNEV & 06 & DPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1234.35 \pm 0.75\) & BERNICHA & 96 & & Fit to PEDRONI 78 \\
\hline \(1233.1 \pm 0.3\) & ABAEV & 95 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1233.6 \pm 0.5\) & KOCH & 80 B & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1233.8 \pm 0.2\) & PEDRONI & 78 & & \(\pi N \rightarrow \pi N 70-370 \mathrm{MeV}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\boldsymbol{m}_{\Delta^{0}}=\boldsymbol{m}_{\Delta^{++}}\)} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2.86 \pm 0.30\) & GRIDNEV & 06 & DPW & \(\pi N \rightarrow \pi N\) \\
\hline \(2.25 \pm 0.68\) & BERNICHA & 96 & & Fit to PEDRONI 78 \\
\hline \(2.6 \pm 0.4\) & ABAEV & 95 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(2.7 \pm 0.3\) & 1 PEDRONI & 78 & & See the masses \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Using \(\pi^{ \pm} d\) as well, PEDRONI 78 determine \(\left(\mathrm{M}^{-}-\mathrm{M}^{++}\right)+\left(\mathrm{M}^{0}-\mathrm{M}^{+}\right) / 3=\) \(4.6 \pm 0.2 \mathrm{MeV}\).} \\
\hline
\end{tabular}

\(\Delta^{0}-\Delta^{++}\)WIDTH DIFFERENCE

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\Delta\) (1232) BRANCHING RATIOS} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{0.994 OUR ESTIMATE} \\
\hline \(0.9939 \pm 0.0001\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline 1.00 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline 1.0 & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline 1.0 & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.994 & SHRESTHA & 12A & DPWA & Multichannel & \\
\hline 1.0 & ANISOVICH & 10 & DPWA & Multichannel & \\
\hline 1.000 & ARNDT & 04 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline 1.00 & PENNER & 02c & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma\left(p e^{+} e^{-}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{5} / \Gamma\) \\
\hline VALUE (units \(10^{-5}\) ) & \multicolumn{4}{|l|}{DOCUMENT ID} & \\
\hline \multicolumn{6}{|l|}{\(\mathbf{4 . 1 9} \pm \mathbf{0 . 3 4} \pm \mathbf{0 . 6 2} 1\) ADAMCZEW... 17} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The systematic uncertainty includes the model dependence.} \\
\hline
\end{tabular}

\section*{\(\Delta(1232)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(\Delta(1232) \rightarrow N \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \[
-0.114_{-0.003}^{+0.010}
\] & \(-9+4\) & ROENCHEN 14 & DPWA & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. -} \\
\hline -0.117 & -6.6 & ROENCHEN 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(\Delta(1232) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)
\(\frac{\text { MODULUS }\left(\mathrm{GeV}^{-1 / 2}\right)}{-0.229_{-0.004}^{+0.003}} \frac{3_{-0.4}^{+0.3}}{} \quad \frac{\text { PHASE }()}{\text { ROCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(-0.226 \quad 2.8 \quad\) ROENCHEN 15A DPWA Multichannel

\section*{\(\Delta(1232)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}

Papers on \(\gamma N\) amplitudes predating 1981 may be found in our 2006 edition, Journal of Physics G33 1 (2006).
\(\Delta(1232) \rightarrow N \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(=0.142\) to \(=0.129(\approx=0.135)\) OUR ESTIMATE} \\
\hline \(-0.146 \pm 0.002\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.131 \pm 0.004\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.139 \pm 0.002\) & 1 WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \(-0.139 \pm 0.004\) & \({ }^{1}\) DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.137 \pm 0.005\) & AHRENS & 04A & DPWA & \(\vec{\gamma} \vec{p} \rightarrow N \pi\) \\
\hline \(-0.1357 \pm 0.0013 \pm 0.0037\) & BLANPIED & 01 & LEGS & \(\gamma p \rightarrow p \gamma, p \pi^{0}, n \pi^{+}\) \\
\hline \(-0.131 \pm 0.001\) & 1 BECK & 00 & IPWA & \(\vec{\gamma} p \rightarrow p \pi^{0}, n \pi^{+}\) \\
\hline \(-0.140 \pm 0.005\) & KAMALOV & 99 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.1294 \pm 0.0013\) & HANSTEIN & 98 & IPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.1278 \pm 0.0012\) & DAVIDSON & 97 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.137 \pm 0.001\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(-0.136 \pm 0.005\) & ANISOVICH & 10 & DPWA & Multichannel \\
\hline -0.140 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.129 \pm 0.001\) & ARNDT & 02 & DPWA & \(\gamma p \rightarrow N \pi\) \\
\hline -0.128 & PENNER & 02D & DPWA & Multichannel \\
\hline -0.1312 & HANSTEIN & 98 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(\boldsymbol{\Delta} \mathbf{( 1 2 3 2 )} \Rightarrow N \gamma\), helicity-3/2 amplitude \(A_{\mathbf{3 / 2}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.262 to -0.248 ( \(\approx-\mathbf{0 . 2 5 5}\) ) OUR ESTIMATE} \\
\hline \(-0.250 \pm 0.002\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.254 \pm 0.005\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.262 \pm 0.003\) & WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \(-0.258 \pm 0.005\) & DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.256 \pm 0.003\) & AHRENS & 04A & DPWA & \(\vec{\gamma} \vec{p} \rightarrow N \pi\) \\
\hline \(-0.2669 \pm 0.0016 \pm 0.0078\) & BLANPIED & 01 & LEGS & \(\gamma p \rightarrow p \gamma, p \pi^{0}, n \pi^{+}\) \\
\hline \(-0.251 \pm 0.001\) & BECK & 00 & IPWA & \(\vec{\gamma} p \rightarrow p \pi^{0}, n \pi^{+}\) \\
\hline \(-0.258 \pm 0.006\) & KAMALOV & 99 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.2466 \pm 0.0013\) & HANSTEIN & 98 & IPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.2524 \pm 0.0013\) & DAVIDSON & 97 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.251 \pm 0.001\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(-0.267 \pm 0.008\) & ANISOVICH & 10 & DPWA & Multichannel \\
\hline -0.265 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.243 \pm 0.001\) & ARNDT & 02 & DPWA & \(\gamma p \rightarrow N \pi\) \\
\hline -0.247 & PENNER & 02D & DPWA & Multichannel \\
\hline -0.2522 & HANSTEIN & 98 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
\(\Delta(1232) \Rightarrow N \gamma, E_{2} / M_{1}\) ratio
\(\frac{\text { VALUE }}{\mathbf{- 0 . 0 3 0}}\) to \(\mathbf{- 0 . 0 2 0 ( \approx \mathbf { 0 . 0 2 5 } )}\) OUR ESTIMATE
\(-0.0274 \pm 0.0003 \pm 0.0030 \quad\) AHRENS \(\quad\) 04A DPWA \(\vec{\gamma} \vec{p} \rightarrow N \pi\)
\(-0.020 \pm 0.002 \quad\) ARNDT 02 DPWA \(\gamma p \rightarrow N \pi\)
\(-0.0307 \pm 0.0026 \pm 0.0024 \quad\) BLANPIED \(01 \quad\) LEGS \(\gamma p \rightarrow p \gamma, p \pi^{0}, n \pi^{+}\)
\(-0.016 \pm 0.004 \pm 0.002 \quad\) GALLER 01 DPWA \(\gamma p \rightarrow \gamma p\)
\(-0.025 \pm 0.001 \pm 0.002 \quad\) BECK \(\quad 00\) IPWA \(\vec{\gamma} p \rightarrow p \pi^{0}, n \pi^{+}\)
\(-0.0233 \pm 0.0017 \quad\) HANSTEIN 98 IPWA \(\gamma N \rightarrow \pi N\)
\(-0.015 \pm 0.005 \quad{ }^{1}\) ARNDT 97 IPWA \(\gamma N \rightarrow \pi N\)
\(-0.0319 \pm 0.0024 \quad\) DAVIDSON 97 DPWA \(\gamma N \rightarrow \pi N\)
- - We do not use the following data for
\(-0.022 \quad\) DRECHSEL 07 DPWA \(\gamma N \rightarrow \pi N\)
-0.026 PENNER 02D DPWA Multichannel
\(-0.0254 \pm 0.0010 \quad\) HANSTEIN 98 DPWA \(\gamma N \rightarrow \pi N\)
\(-0.025 \pm 0.002 \pm 0.002 \quad\) BECK 97 IPWA \(\gamma N \rightarrow \pi N\)
\(-0.030 \pm 0.003 \pm 0.002 \quad\) BLANPIED 97 DPWA \(\gamma N \rightarrow \pi N, \gamma N\)
\({ }^{1}\) This ARNDT 97 value is very sensitive to the database being fitted. The result is from a fit to the full pion photoproduction database, apart from the BLANPIED 97 cross-section measurements.

Baryon Particle Listings
\(\Delta(1232), \Delta(1600)\)

\(\Delta(1232) \rightarrow N \gamma\), phase of \(E_{2} / M_{1}\) ratio at pole
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-122 \pm 5\) & ARNDT & 97 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline -127.2 & HANSTEIN & 96 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline
\end{tabular}

\section*{\(\Delta(1232)\) MAGNETIC MOMENTS}

\section*{\(\Delta(\mathbf{1 2 3 2})^{++}\)MAGNETIC MOMENT}

The values are extracted from UCLA and SIN data on \(\pi^{+} p\) bremsstrahlung using a variety of different theoretical approximations and methods. Our estimate is only a rough guess of the range we expect the moment to lie within.
\(\operatorname{VALUE}\left(\mu_{N}\right)\) DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - •
\begin{tabular}{llll}
\(6.14 \pm 0.51\) & LOPEZCAST...01 & DPWA \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) \\
\(4.52 \pm 0.50 \pm 0.45\) & BOSSHARD & 91 & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (SIN data) \\
3.7 to 4.2 & LIN & 91 B & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (from UCLA data) \\
4.6 to 4.9 & LIN & 91 B & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (from SIN data) \\
5.6 to 7.5 & WITTMAN & 88 & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (from UCLA data) \\
6.9 to 9.8 & HELLER & 87 & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (from UCLA data) \\
4.7 to 6.7 & NEFKENS & 78 & \(\pi^{+} p \rightarrow \pi^{+} p \gamma\) (UCLA data)
\end{tabular}

\section*{\(\boldsymbol{\Delta} \mathbf{( 1 2 3 2}^{+}{ }^{+}\)MAGNETIC MOMENT}


\section*{\(\Delta(1232)\) REFERENCES}



Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1600)\) POLE POSITION}

REAL PART
VALUE (MeV) \(\quad\) DOCUMENT ID TECN COMMENT
\begin{tabular}{lccll}
\hline \(\mathbf{1 4 6 0}\) to \(\mathbf{1 5 6 0}\) ( \(\boldsymbol{\sim 1 5 1 0 ) ~ O U R ~ E S T I M A T E ~}\) & & & \\
\(1515 \pm 20\) & SOKHOYAN & \(15 A\) & DPWA Multichannel \\
\(1469 \pm 10 \pm 5\) & 1 SVARC & 14 & \(\mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\) \\
\(1550 \pm 40\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet\) • We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\) \\
1619 & HUNT & 19 & DPWA Multichannel \\
1552 & ROENCHEN & \(15 A\) & DPWA Multichannel \\
\(1498 \pm 25\) & ANISOVICH & \(12 A\) & DPWA Multichannel \\
1457 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1599 & VRANA & 00 & DPWA Multichannel \\
1550 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{\(-2 \times I M A G I N A R Y\) PART}
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{2 0 0} \text { to } \mathbf{3 4 0} \mathbf{( \approx 2 7 0 )} \text { OUR ESTIMATE DOCUMENT ID TECN COMMENT }}\)

\section*{200 to 340 ( \(\approx 270\) ) OUR ESTIMATE}
\begin{tabular}{|c|c|c|c|c|}
\hline \(250 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(314 \pm 18 \pm 8\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(200 \pm 60\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline 295 & HUNT & 19 & DPWA & Multichannel \\
\hline 350 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(230 \pm 50\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 400 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 312 & VRANA & 00 & DPWA & Multichannel \\
\hline
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{\(\Delta(1600)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{10 to 40 ( \(\approx 25\) ) OUR ESTIMATE} \\
\hline \(13 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(38 \pm 2 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(17 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 23 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(11 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 44 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \(\operatorname{VALUE}\left({ }^{\circ}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{150 to 210 ( \(\approx 180\) ) OUR ESTIMATE} \\
\hline \(-155 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(173 \pm 5 \pm 5\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-150 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline -155 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(-160 \pm 33\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline +147 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(1600)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta(1600) \rightarrow \Delta \pi, P\)-wave
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE (0) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.15 \pm 0.04\) & \(30 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 0.31 & 31 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(0.14 \pm 0.10\) & \(154 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \Rightarrow \Delta(1600) \Rightarrow \Delta \pi, F\)-wave} \\
\hline MODULUS & PHASE ( \(\left.{ }^{( }\right)\) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{\(0.010 \pm 0.005\)} & SOKHOYAN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.013 & 29 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \(0.010 \pm 0.005\) & & ANISOVICH & 12A DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1600) \rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE ( \()\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.13 & -5.6 & \multicolumn{2}{|l|}{ROENCHEN} & 5 A DPWA & A Multichannel \\
\hline \multicolumn{6}{|c|}{\(\Delta\) (1600) BREIT-WIGNER MASS} \\
\hline \multicolumn{2}{|l|}{VALUE (MeV)} & DOCUMENT ID & & \(\underline{T E C N}\) & COMMENT \\
\hline \multicolumn{6}{|l|}{1500 to 1640 ( \(\approx 1570\) ) OUR ESTIMATE} \\
\hline \(1664 \pm 16\) & & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1520 \pm 20\) & & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1600 \pm 50\) & & CUTKOSKY & 80 & IPWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \(1522 \pm 13\) & & HOEHLER & 79 & IPWA \(\pi\) & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1510 \pm 20\) & & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 1626土 8 & & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1667 \pm 1\) & & PENNER & 02C & DPWA & Multichannel \\
\hline \multicolumn{2}{|l|}{\(1687 \pm 44\)} & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Statistical error only.} & & & & \\
\hline
\end{tabular}

\section*{\(\Delta(1600)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 300 ( \(\approx 250\) ) OUR ESTIMATE} \\
\hline \(322 \pm 46\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(235 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(300 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(220 \pm 40\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(220 \pm 45\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(225 \pm 18\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(397 \pm 10\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(493 \pm 75\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1600)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(8-24 \%\) \\
\(\Gamma_{2}\) & \(N \pi \pi\) & \(75-90 \%\) \\
\(\Gamma_{3}\) & \(\Delta(1232) \pi\) & \(73-83 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi, P\)-wave & \(72-82 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, F\)-wave & \(<2 \%\) \\
\(\Gamma_{6}\) & \(N(1440) \pi\) & \\
\(\Gamma_{7}\) & \(N(1440) \pi, P\)-wave & \(15-25 \%\) \\
\(\Gamma_{8}\) & \(N \gamma\) & \(0.001-0.035 \%\) \\
\(\Gamma_{9}\) & \(N \gamma\), helicity=1/2 & \(0.0-0.02 \%\) \\
\(\Gamma_{10}\) & \(N \gamma\), helicity=3/2 & \(0.001-0.015 \%\) \\
\hline
\end{tabular}
\(\Delta(1600)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{8 to 24 ( \(\approx 16\) ) OUR ESTIMATE} \\
\hline \(10.7 \pm 1.9\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(14 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(18 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(21 \pm 6\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(12 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(8 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(13 \pm 1\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(28 \pm 5\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & & & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(64 \pm 6\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(77 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline \(78 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(70 \pm 3\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(59 \pm 10\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Delta(1232) \pi, F\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{5} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline <2 & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline
\end{tabular}


\section*{\(\Delta(1600)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{|c|c|c|c|c|}
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \multirow[b]{3}{*}{(CBELSA/TAPS Collab.)
(PDG Collab.)} \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CBELS & \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \multirow[b]{3}{*}{(RBI Zagreb, UNI Tuzla)
(BONN, PNPI)} \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RBI Z & \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline PENNER & 02C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline VRaNA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & (PITT, ANL) \\
\hline ARNDT & 96 & PR C53 430 & R.A. Arndt, I.I. Strakovsky, R.L. Workman & n (VPI) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT \(12-1\) & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline \[
\Delta(1
\] & & \(1 / 2^{-}\) & \(I\left(J^{P}\right)=\frac{3}{2}\left(\frac{1}{2}^{-}\right)\)Statu & : **** \\
\hline
\end{tabular}

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1620)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
1590 to \(\mathbf{1 6 1 0}\) ( \(\approx \mathbf{1 6 0 0 ) ~ O U R ~ E S T I M A T E ~}\)
\begin{tabular}{lclll}
\(1597 \pm 5\) & SOKHOYAN & 15A & DPWA Multichannel \\
\(1603 \pm 7 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(1600 \pm 15\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1577 & HUNT & 19 & DPWA & Multichannel \\
\hline 1600 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 1597士 4 & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 1595 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1607 & VRANA & 00 & DPWA & Multichannel \\
\hline 1608 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline \multicolumn{5}{|l|}{100 to 140 ( \(\approx \mathbf{1 2 0}\) ) OUR ESTIMATE} \\
\hline \(134 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(114 \pm 12 \pm 4\) & 1 SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(120 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 101 & HUNT & 19 & DPWA & Multichannel \\
\hline 65 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(130 \pm 9\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 135 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 148 & VRANA & 00 & DPWA & Multichannel \\
\hline 116 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\Delta(1620)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)


\section*{\(\Delta(\mathbf{1 6 2 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta \mathbf{( 1 6 2 0 )} \rightarrow \Delta \pi, D\)-wave
MODULUS \(\quad\) PHASE \((\rho)\) DOCUMENT ID \(0.42 \pm 0.06 \quad-90 \pm 20 \quad\) SOKHOYAN 15A DPWA Multichannel - - We do not use the following data for averages, fits, limits, etc. - - -
0.57 ROENCHEN 15A DPWA Multichannel
\(0.38 \pm 0.09 \quad-85 \pm 30 \quad\) ANISOVICH 12A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1620) \rightarrow \Sigma K\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(0.22-105\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(\mathbf{1 6 2 0}) \rightarrow N(1440) \pi\)
\begin{tabular}{llll}
\(\frac{\text { MODULUS }}{0.10 \pm 0.06}\) & \(\frac{\text { PHASE }()}{-65 \pm 30} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\) \\
\hline
\end{tabular}
\(\boldsymbol{\Delta}\) (1620) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1590 to 1630 ( \(\approx 1610\) ) OUR ESTIMATE} \\
\hline \(1635 \pm 8\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(1589 \pm 3\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1595 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1615.2 \pm 0.4\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1620 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1610 \pm 7\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\begin{tabular}{llll} 
- - We do not use the following data for averages, fits, limits, etc. • • • \\
\(1600 \pm 8\) & ANISOVICH & 12A & DPWA Multichannel \\
\(1600 \pm 1\) & 1 SHRESTHA & 12A & DPWA Multichannel \\
\(1612 \pm 2\) & PENNER & 02C & DPWA Multichannel \\
1617 & \(\pm 15\) & VRANA & 00 \\
\hline & DPWA Multichannel
\end{tabular}

\section*{\(\Delta(1620)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{110 to 150 ( \(\approx 130\) ) OUR ESTIMATE} \\
\hline \(144 \pm 16\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(107 \pm 7\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(135 \pm 9\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(146.9 \pm 1.9\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(140 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(139 \pm 18\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(130 \pm 11\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(112 \pm 2\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(202 \pm 7\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(143 \pm 42\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1620)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(25-35 \%\) \\
\(\Gamma_{2}\) & \(N \pi \pi\) & \(55-80 \%\) \\
\(\Gamma_{3}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi, D\)-wave & \(52-72 \%\) \\
\(\Gamma_{5}\) & \(N \rho\) & \\
\(\Gamma_{6}\) & \(N \rho, S=1 / 2, S\)-wave & seen \\
\(\Gamma_{7}\) & \(N \rho, S=3 / 2, D\)-wave & seen \\
\(\Gamma_{8}\) & \(N(1440) \pi\) & \(3-9 \%\) \\
\(\Gamma_{9}\) & \(N \gamma\), helicity=1/2 & \(0.03-0.10 \%\) \\
\hline
\end{tabular}
\(\Delta(1620)\) BRANCHING RATIOS

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma(N \rho, S=3 / 2, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{7} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<0.04\) & 1 HUNT 19 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2 \pm 1\) & VRANA 00 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{4}{|l|}{\(\Gamma(N(1440) \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<0.02\) & 1 HUNT 19 & DPWA & Multichannel & \\
\hline \(6 \pm 3\) & SOKHOYAN 15A & DPWA & Multichannel & \\
\hline - - We do not use the following & data for averages, fits, & limits, & tc. - - & \\
\hline \(9 \pm 1\) & 1 SHRESTHA 12A & DPWA & Multichannel & \\
\hline \(0 \pm 1\) & VRANA 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{\(\Delta\) (1620) PHOTON DECAY AMPLITUDES AT THE POLE} \\
\hline \multicolumn{6}{|l|}{\(\Delta(\mathbf{1 6 2 0}) \rightarrow \boldsymbol{N} \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \(\left.{ }^{( }\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.054 \pm 0.007\) & \(-6 \pm 7\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.028_{-0.002}^{+0.006}\) & \(-166{ }_{-4}^{+1}\) & ROENCHEN & & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
0.01426 ROENCHEN 15A DPWA Multichannel
\(\Delta(1620)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(\mathbf{1 6 2 0}) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.030 to 0.060 ( \(\approx 0.050\) ) OUR ESTIMATE} \\
\hline \(0.029 \pm 0.0062\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(0.0124 \pm 0.0007\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.055 \pm 0.007\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.029 \pm 0.003\) & 1 WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \(0.050 \pm 0.002\) & \({ }^{1}\) DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.052 \pm 0.005\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.003 \pm 0.003\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.066 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline -0.050 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1620)\) REFERENCES}

For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{|c|c|c|c|c|}
\hline GOLOVATCH & 19 & PL B788 371 & E. Golovatch et al. & (CLAS Collab.) \\
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CB & (CBELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RB & RBI Zagreb, UNI Tuzla) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline WORKMAN & 12A & PR C86 015202 & R. Workman et al. & (GWU) \\
\hline DRECHSEL & 07 & EPJ A34 69 & D. Drechsel, S.S. Kamalov, L. Tiator & or (MAINZ, JINR) \\
\hline DUGGER & 07 & PR C76 025211 & M. Dugger et al. & (JLab CLAS Collab.) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline PENNER & 02C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & ee (PITT, ANL) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1700)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT
DOCUMENT ID TECN COMMENT

\section*{1640 to 1690 ( \(\approx 1665\) ) OUR ESTIMATE}
\begin{tabular}{lclll}
\(1685 \pm 10\) & SOKHOYAN & \(15 A\) & DPWA Multichannel \\
\(1643 \pm 6 \pm 3\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(1675 \pm 25\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}

1 SVARC \(14 \quad \mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)
CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1693 & HUNT & 19 & DPWA & Multichannel \\
\hline 1677 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(1685 \pm 10\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1680 \pm 10\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 1632 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1726 & VRANA & 00 & DPWA & Multichannel \\
\hline 1651 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline \multicolumn{5}{|l|}{200 to 300 ( \(\approx 250\) ) OUR ESTIMATE} \\
\hline \(300 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(217 \pm 10 \pm 8\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(220 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 213 & HUNT & 19 & DPWA & Multichannel \\
\hline 305 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(300 \pm 15\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(305 \pm 15\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 253 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 118 & VRANA & 00 & DPWA & Multichannel \\
\hline 159 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(\mathbf{1 7 0 0})\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)


1 Fit to the amplitudes of HOEHLER 79.

\section*{PHASE \(\theta\)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
PHASE \(\theta\) \\
\(\operatorname{VALUE}\left({ }^{\circ}\right)\) \\
DOCUMENT ID
\end{tabular}} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-40 to 0 ( \(\approx-20)\) OUR ESTIMATE} \\
\hline \(-1 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-30 \pm 4 \pm 3\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline -40 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(-20 \pm 25\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-7.3\) & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(-1 \pm 10\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-3 \pm 15\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(\mathbf{1 7 0 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \boldsymbol{\pi} \rightarrow \boldsymbol{\Delta} \mathbf{( 1 7 0 0 )} \rightarrow \boldsymbol{\Delta r}\)} \\
\hline \multicolumn{2}{|l|}{MODULUS PHASE ( \()\)} & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & COMMENT \\
\hline \(0.12 \pm 0.02\) & \(-60 \pm 12\) & GUTZ & 14 DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.12 \pm 0.03\) & \(-60 \pm 15\) & ANISO & 12A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1700) \rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE (e) & DOCUM & TECN & COMMENT \\
\hline
\end{tabular}
\(0.011-147\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1700) \rightarrow N(1535) \pi\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE (\%) & DOCUME & & TECN & COMMENT \\
\hline \(0.035 \pm 0.015\) & \(-75 \pm 30\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1700) \Rightarrow \Delta(1232) \pi, S\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUME & & TECN & COMMENT \\
\hline
\end{tabular}
\(\frac{\text { MODULUS }}{0.25 \pm 0.12} \frac{\text { PHASE ( })}{135 \pm 45} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
0.39151 ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1700) \rightarrow \Delta(1232) \pi, D\)-wave
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
\(0.12 \pm 0.06-160 \pm 30 \quad\) SOKHOYAN 15A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. • • -
0.054166 ROENCHEN 15A DPWA Multichannel

Baryon Particle Listings

Normalized residue in \(N \pi \rightarrow \Delta(1700) \rightarrow N(1520) \pi, P\)-wave
\begin{tabular}{llll}
\(\frac{\text { MODULUS }}{0.10 \pm 0.03}\) & \(\frac{\text { PHASE } \rho \text { ) }}{-10 \pm 20} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN }} 15 \mathrm{~A}\) & \\
\hline
\end{tabular}

\section*{\(\Delta(1700)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1690 to 1730 ( \(\approx 1710\) ) OUR ESTIMATE} \\
\hline \(1704 \pm 8\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(1720 \pm 5\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1715 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1695.0 \pm 1.3\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1710 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1680 \pm 70\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1715 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1715 \begin{aligned} & +30 \\ & -15\end{aligned}\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1691 \pm 4\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1678 \pm 1\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(1732 \pm 23\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Delta(1700)\) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{220 to 380 ( \(\sim 300\) ) OUR ESTIMATE} \\
\hline \(295 \pm 35\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(226 \pm 14\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(300 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(375.5 \pm 7.0\) & \(1{ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(280 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(230 \pm 80\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(300 \pm 25\) & GUTZ & 14 & DPWA & Multichannel \\
\hline 310 & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(248 \pm 9\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(606 \pm 15\) & PENNER & 02C & DPWA & Multichannel \\
\hline \(119 \pm 70\) & VRANA & 00 & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\section*{\(\Delta(1700)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(10-20 \%\) \\
\(\Gamma_{2}\) & \(N \pi \pi\) & \(10-55 \%\) \\
\(\Gamma_{3}\) & \(\Delta(1232) \pi\) & \(10-50 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi, S\)-wave & \(5-35 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, D\)-wave & \(4-16 \%\) \\
\(\Gamma_{6}\) & \(N \rho\) & \\
\(\Gamma_{7}\) & \(N \rho, S=3 / 2, S\)-wave & seen \\
\(\Gamma_{8}\) & \(N(1520) \pi, P\)-wave & \(1-5 \%\) \\
\(\Gamma_{9}\) & \(N(1535) \pi\) & \(0.5-1.5 \%\) \\
\(\Gamma_{10}\) & \(\Delta(1232) \eta\) & \(3-7 \%\) \\
\(\Gamma_{11}\) & \(N \gamma\) & \(0.22-0.60 \%\) \\
\(\Gamma_{12}\) & \(N \gamma\), helicity \(=1 / 2\) & \(0.12-0.30 \%\) \\
\(\Gamma_{13}\) & \(N \gamma\), helicity=3/2 & \(0.10-0.30 \%\) \\
\hline
\end{tabular}
\(\Delta(1700)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(N \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline 10 to 20 OUR ESTIMATE & & & & & \\
\hline \(15 \pm 2\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichanne| & \\
\hline \(22 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(15.6 \pm 0.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(12 \pm 3\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(20 \pm 3\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline - - We do not use the follo & data for average & , fits, & limits, & tc. - • & \\
\hline \(22 \pm 4\) & GUTZ & 14 & DPWA & Multichanne| & \\
\hline \(22 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(14 \pm 1\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichanne| & \\
\hline \(14 \pm 1\) & PENNER & 02C & DPWA & Multichanne| & \\
\hline \(5 \pm 1\) & VRANA & 00 & DPWA & Multichanne| & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline \(\Gamma(N \pi \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.89 \pm 0.11\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, S\) wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(49 \pm 5\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(20 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \({ }_{20}+25\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(54 \pm 3\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(90 \pm 2\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma 5 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(7.6 \pm 0.3\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(10 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(12 \begin{array}{r}+14 \\ -7\end{array}\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(1 \pm 1\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(4 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N \rho, S=3 / 2, S\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{7} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(27 \pm 5\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(30 \pm 3\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(1 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N(1520) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(3 \pm 2\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N(1535) \pi) / \Gamma_{\text {total }}\)} & 「9/Г \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(1.0 \pm 0.5\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(4 \pm 2\) & HORN & 08A & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \eta) / \Gamma_{\text {total }}\)} & \(\Gamma_{10} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(5 \pm 2\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(5 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\boldsymbol{N}(1535) \pi) / \Gamma(\boldsymbol{\Delta}(\mathbf{1 2 3 2}) \eta)\)} & \(\Gamma_{9} / \Gamma_{10}\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.67 & KASHEVARO & 09 & CBAL & \(\gamma p \rightarrow p \pi^{0} \eta\) & \\
\hline
\end{tabular}

\section*{\(\Delta(\mathbf{1 7 0 0})\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(\Delta(1700) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\text {( }}\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.175 \pm 0.020\) & \(50 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.109 \pm 0.010\) & \(-21+12\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0.123 & 1.1 & ROENCHEN & 15A DPWA Multichannel \\
\hline
\end{tabular}
\(\Delta(1700) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / \mathbf{2}}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.180 \pm 0.020\) & \(45 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.111_{-0.006}^{+0.027}\) & \(12_{-11}^{+}\) & ROENCHEN & 14 & DPWA & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(\qquad\) 22 \\
ROENCHEN \\
15A \\
DPWA Multichannel
\end{tabular}}} \\
\hline & & & & & \\
\hline
\end{tabular}
\(\Delta(\mathbf{1 7 0 0})\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(\mathbf{1 7 0 0}) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) DOCUMENT ID TECN COMMENT 0.100 to \(0.160(\approx 0.130)\) OUR ESTIMATE
\begin{tabular}{llll}
\(0.0872 \pm 0.0189\) & GOLOVATCH & 19 & DPWA \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\(0.156 \pm 0.017\) & 1 HUNT & 19 & DPWA Multichannel \\
\(0.165 \pm 0.020\) & SOKHOYAN & 15A DPWA Multichannel \\
\(0.132 \pm 0.005\) & 1 DUGGER & 13 & DPWA \(\gamma N \rightarrow \pi N\) \\
\(0.105 \pm 0.005\) & 1 WORKMAN & 12A & DPWA \(\gamma N \rightarrow \pi N\)
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{llll}
0.165 & \(\pm 0.020\) & GUTZ & 14 \\
\(0.160 \pm 0.020\) & ANISOVICH & 12A DPWA Multichannel \\
\(0.058 \pm 0.010\) & 1 SHRESTHA & 12A DPWA Multichannel \\
0.226 & DRECHSEL & 07 & DPWA \(\gamma N \rightarrow \pi N\) \\
\(0.125 \pm 0.003\) & DUGGER & 07 & DPWA \(\gamma N \rightarrow \pi N\) \\
0.096 & PENNER & 02D &
\end{tabular} \({ }^{1}\) Statistical error only.
\(\Delta(1700) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.090 to 0.170 ( \(\approx \mathbf{0 . 1 3 0}\) ) OUR ESTIMATE} \\
\hline \(0.0872 \pm 0.0164\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(0.0125 \pm 0.0016\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.170 \pm 0.025\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.108 \pm 0.005\) & 1 DUGGER & 13 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(0.092 \pm 0.004\) & \({ }^{1}\) WORKMAN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline \(0.170 \pm 0.025\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(0.165 \pm 0.025\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.097 \pm 0.008\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.210 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(0.105 \pm 0.003\) & DUGGER & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline 0.154 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1700)\) REFERENCES
For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{|c|c|c|c|c|}
\hline GOLOVATCH & 19 & PL B788 371 & E. Golovatch et al. & \multirow[t]{2}{*}{(CLAS Collab.)} \\
\hline HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
\hline ROENCHEN & 15A & EPJ A51 70 & D. Roenchen et al. & \\
\hline SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. (CB & (CBELSA/TAPS Collab.) \\
\hline GUTZ & 14 & EPJ A50 74 & E. Gutz et al. (CB & (CBELSA/TAPS Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & \multirow[t]{2}{*}{(PDG Collab.)} \\
\hline ROENCHEN & 14 & EPJ A50 101 & D. Roenchen et al. & \\
\hline Also & & EPJ A51 63 (errat.) & D. Roenchen et al. & \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. (RB & (RBI Zagreb, UNI Tuzla) \\
\hline DUGGER & 13 & PR C88 065203 & M. Dugger et al. & (JLab CLAS Collab.) \\
\hline ANISOVICH & 12A & EPJ A48 15 & A.V. Anisovich et al. & (BONN, PNPI) \\
\hline SHRESTHA & 12A & PR C86 055203 & M. Shrestha, D.M. Manley & (KSU) \\
\hline WORKMAN & 12A & PR C86 015202 & R. Workman et al. & (GWU) \\
\hline KASHEVAROV & 09 & EPJ A42 141 & V.L. Kashevarov et al. (MAM & AMI Crystal Ball/TAPS) \\
\hline HORN & 08A & EPJ A38 173 & I. Horn et al. & (CB-ELSA Collab.) \\
\hline Also & & PRL 101202002 & I. Horn et al. & (CB-ELSA Collab.) \\
\hline DRECHSEL & 07 & EPJ A34 69 & D. Drechsel, S.S. Kamalov, L. Tiator & r (MAINZ, JINR) \\
\hline DUGGER & 07 & PR C76 025211 & M. Dugger et al. & (JLab CLAS Collab.) \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & (GWU) \\
\hline PENNER & 02C & PR C66 055211 & G. Penner, U. Mosel & (GIES) \\
\hline PENNER & 02D & PR C66 055212 & G. Penner, U. Mosel & (GIES) \\
\hline VRANA & 00 & PRPL 328181 & T.P. Vrana, S.A. Dytman, T.-S.H. Lee & ee (PITT, ANL) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & (CMU, LBL) IJP \\
\hline HOEHLER & 79 & PDAT 12-1 & G. Hohler et al. & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
\hline
\end{tabular}
\(\Delta(1750) 1 / 2^{+}\)
\(I\left(J^{P}\right)=\frac{3}{2}\left(\frac{1}{2}^{+}\right)\)Status: *

OMITTED FROM SUMMARY TABLE

\section*{\(\Delta(1750)\) POLE POSITION}

REAL PART
REAL PAR
- . We DOCUMENT ID TECN COMMENT
1748 ARNDT \(\quad 04\) DPWA \(\pi N \rightarrow \pi N, \eta N\)

\section*{\(-2 \times\) IMAGINARY PART}

VALUE (MeV)
- We DOCUMENT ID _TECN COMMENT
\(524 \quad\) ARNDT 04 DPWA \(\pi N \rightarrow \pi N, \eta N\)
\(\Delta(\mathbf{1 7 5 0})\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
VALUE (MeV) DOCUMENT ID _ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(48 \quad\) ARNDT 04 DPWA \(\pi N \rightarrow \pi N, \eta N\)

PHASE \(\theta\)
VALUE ( \({ }^{\circ}\) )
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(158 \quad\) ARNDT 04 DPWA \(\pi N \rightarrow \pi N, \eta N\)

\section*{\(\Delta(1750)\) BREIT-WIGNER MASS}

VALUE (MeV) DOCUMENT ID TECN COMMENT
\begin{tabular}{cccc} 
• • We do not use the following data for averages, fits, limits, etc. & PENNER & 02C & DPWA Multichannel \\
\(643 \pm 17\) & VRANA & 00 & DPWA Multichannel \\
\(70 \pm 50\) & & & \\
\hline
\end{tabular}
\(\Delta(1750)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & seen \\
\(\Gamma_{2}\) & \(N \pi \pi\) & \\
\(\Gamma_{3}\) & \(N(1440) \pi\) & seen \\
\(\Gamma_{4}\) & \(\Sigma K\) & seen \\
\hline
\end{tabular}
\(\Delta(1750)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(\boldsymbol{N} \boldsymbol{\pi}) / \boldsymbol{\Gamma}_{\text {total }}{ }_{\text {l }} \mathrm{VALUE}(\%)\)} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID TECN}} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1 \pm 1\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(6 \pm 9\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(N(1440) \pi) / \Gamma_{\text {total }}\)} & \(\Gamma 3 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(83 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Sigma K) / \Gamma_{\text {total }}\)} & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}

VALUE (\%) DOCUMENTID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • • -
\(0.1 \pm 0.1 \quad\) PENNER 02C DPWA Multichannel

\section*{\(\Delta(1750)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}

Papers on \(\gamma N\) amplitudes predating 1981 may be found in our 2006 edition, Journal of Physics G33 1 (2006).
\(\Delta(1750) \rightarrow N \gamma\), helicity \(-1 / 2\) amplitude \(A_{1 / 2}\)
VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
0.053

PENNER 02D DPWA Multichannel

\section*{\(\Delta(1750)\) REFERENCES}


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1900)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT 1830 to 1900 ( \(\approx 1865\) ) OUR ESTIMATE
\begin{tabular}{lclll}
\(1845 \pm 20\) & SOKHOYAN & 15 A & DPWA Multichannel \\
\(1865 \pm 35 \pm 19\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(1870 \pm 40\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}
- We do not use the following data for averages, fits, limits, \(\rightarrow \pi N\)
\begin{tabular}{llll}
1957 & HUNT & 19 & DPWA Multichannel \\
\(1845 \pm 20\) & GUTZ & 14 & DPWA Multichannel \\
\(1845 \pm 25\) & ANISOVICH & \(12 A\) & DPWA Multichannel \\
1795 & VRANA & 00 & DPWA Multichannel \\
1780 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

Baryon Particle Listings
\(\Delta(1900)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{-2×IMAGINARY PART} \\
\hline \multicolumn{5}{|l|}{180 to 300 ( \(\approx 240\) ) OUR ESTIMATE} \\
\hline \(295 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(187 \pm 50 \pm 19\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(180 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 447 & HUNT & 19 & DPWA & Multichanne \\
\hline \(295 \pm 35\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(300 \pm 45\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 58 & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\Delta(1900)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{8} \text { to } \mathbf{1 4} \text { ( } \approx 11 \text { ) OUR ESTIMATE }}\)
DOCUMENT ID TECN COMMENT
\begin{tabular}{lclll}
\(\mathbf{8}\) to \(\mathbf{1 4}\) ( \(\approx 11\) ) OUR ESTIMATE & & \\
\(11 \pm 2\) & SOKHOYAN & 15 A & DPWA Multichannel \\
\(11 \pm 4 \pm 2\) & 1 SVARC & 14 & \(\mathrm{~L}+\mathrm{P}\) & \(\pi N \rightarrow \pi N\) \\
\(10 \pm 3\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\) \\
\(11 \pm 2\) & GUTZ & 14 & DPWA Multichannel \\
\(10 \pm 3\) & ANISOVICH & 12 A & DPWA Multichannel \\
\multicolumn{1}{l}{ Fit to the amplitudes of HOEHLER 79.} & &
\end{tabular}

PHASE \(\theta\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-115 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(20 \pm 27 \pm 19\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(+20 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline \(-115 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-125 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(\mathbf{1 9 0 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \Rightarrow \Delta(1900) \Rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE ( ) & DOCUMENT & TECN & COMMENT \\
\hline \(0.07 \pm 0.02\) & \(-50 \pm 30\) & ANISOVICH & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1900) \rightarrow \Delta \pi, D\)-wave} \\
\hline \multicolumn{2}{|l|}{\[
\text { MODULUS } \quad \text { PHASE ( })
\]} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.18 \pm 0.10\) & \(105 \pm 25\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0^{0.12}+0.08\) & \(110 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1900) \rightarrow \Delta(1232) \eta\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.013 \pm 0.006\) & undefined & GUTZ & 14 & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \boldsymbol{\pi} \Rightarrow \Delta(1900) \Rightarrow N(1440) \pi\)} \\
\hline MODULUS & PHASE ( \()^{\text {) }}\) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.11 \pm 0.06\) & \(115 \pm 30\) & SOKHOYAN & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Normalized & ue in & 00) \(\rightarrow\) & & & \\
\hline MODULUS & PHASE (\%) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.06 \pm 0.03\) & undefined & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(\Delta(1900)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1840 to 1920 ( \(\approx 1860\) ) OUR ESTIMATE} \\
\hline \(1989 \pm 22\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1840 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1890 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1908 \pm 30\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline \(1840 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1840 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1868 \pm 12\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1802 \pm 87\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1900)\) BREIT-WIGNER WIDTH}

\begin{tabular}{cccl} 
- • - We do not use the following data for averages, fits, limits, etc. • • • \\
\(295 \pm 30\) & GUTZ & 14 & DPWA Multichannel \\
\(300 \pm 45\) & ANISOVICH & \(12 A\) & DPWA Multichannel \\
\(234 \pm 27\) & SHRESTHA & 12A & DPWA Multichannel \\
\(48 \pm 45\) & VRANA & 00 & DPWA Multichannel
\end{tabular}
\({ }^{1}\) Statistical error only.

\section*{\(\Delta(1900)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(4-12 \%\) \\
\(\Gamma_{2}\) & \(\sum K\) & seen \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \(45-85 \%\) \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi\) & \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, D\)-wave & \(30-70 \%\) \\
\(\Gamma_{6}\) & \(N \rho\) & \\
\(\Gamma_{7}\) & \(N \rho, S=1 / 2, S\)-wave & \(8-16 \%\) \\
\(\Gamma_{8}\) & \(N \rho, S=3 / 2, D\)-wave & \(18-28 \%\) \\
\(\Gamma_{9}\) & \(N(1440) \pi\) & \(8-32 \%\) \\
\(\Gamma_{10}\) & \(N(1520) \pi\) & \(2-10 \%\) \\
\(\Gamma_{11}\) & \(\Delta(1232) \eta\) & \(0-2 \%\) \\
\(\Gamma_{12}\) & \(N \gamma\), helicity=1/2 & \(0.06-0.43 \%\) \\
\hline
\end{tabular}
\(\Delta(1900)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline \multicolumn{3}{|l|}{VALUE (\%) DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{4 to 12 ( \(\approx 8\) ) OUR ESTIMATE} \\
\hline \(3.7 \pm 0.8\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(7 \pm 2\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(10 \pm 3\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(8 \pm 4\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(7 \pm 2\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(7 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(8 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(33 \pm 10\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical err & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma 5 / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(42 \pm 8\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(50 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \({ }^{15}+50\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(56 \pm 6\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(28 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline
\end{tabular}
\({ }^{1}\) Statistical error only.
VRANA 00 DPWA Multichannel
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(N \rho, S=1 / 2, S\)-wave \() / \Gamma_{\text {total }}\) & & & \(\Gamma 7 / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & TECN COMMENT & \\
\hline \(23 \pm 12\) & 1 HUNT 19 & DPWA Multichannel & \\
\hline - - We do not use the following & ata for averages, fits, & limits, etc. - - - & \\
\hline \(12 \pm 4\) & \({ }^{1}\) SHRESTHA 12A & DPWA Multichannel & \\
\hline \(30 \pm 2\) & VRANA 00 & DPWA Multichannel & \\
\hline 1 Statistical error only. & & & \\
\hline
\end{tabular}
(N \(\boldsymbol{N}, S=3 / 2, D\)-wave) \(/ \Gamma_{\text {total }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\Gamma(\Delta(1232) \eta) / \Gamma_{\text {total }}
\] \\
VALUE (\%)
\end{tabular} & \multicolumn{2}{|l|}{document id} & \multicolumn{2}{|l|}{TECN COMmen} & \(\Gamma_{11} / \Gamma\) \\
\hline \(1 \pm 1\) & GUTZ & 14 & DPWA & Multicha & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{\(\Delta(1900)\) PHOTON DECAY AMPLITUDES AT THE POLE} \\
\hline \multicolumn{6}{|l|}{\(\boldsymbol{\Delta ( 1 9 0 0 ) ~} \rightarrow\) N , helicity- \(\mathbf{1 / 2}\) amplitude \(\mathrm{A}_{1 / 2}\)} \\
\hline MODULUS (GeV-1/2) & PHASE \((1)\) & DoCument id & & TECN & Comment \\
\hline \(0.064 \pm 0.015\) & \(60 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(\Delta(1900)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(\mathbf{1 9 0 0}) \rightarrow N \gamma\), helicity- \(\mathbf{1} / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.212 \pm 0.029\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.065 \pm 0.015\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline \(0.057 \pm 0.014\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-0.082 \pm 0.009\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1900)\) REFERENCES}


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1905)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID \(\quad\) TECN COMMENT 1770 to 1830 ( \(\approx 1800\) ) OUR ESTIMATE

\section*{\(1800 \pm 6\)}

SOKHOYAN 15A DPWA Multichannel
\(1752 \pm 3 \pm 2 \quad 1\) SVARC \(14 \quad \mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)
\(1830 \pm 40 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{llll|}
1819 & HUNT & 19 & DPWA Multichannel \\
1795 & ROENCHEN & 15A & DPWA Multichannel
\end{tabular}
\begin{tabular}{llll}
\(1800 \pm 6\) & GUTZ & 14 & DPWA Multichannel \\
\(1805 \pm 10\) & ANISOVICH & 12 A & DPWA Multichannel \\
1819 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1793 & VRANA & 00 & DPWA Multichannel
\end{tabular}
\(1829 \quad\) HOEHLER 93 SPED \(\pi N \rightarrow \pi N\)
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79
\(-2 \times I M A G I N A R Y\) PART
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{260 to 340 ( \(\approx 300\) ) OUR ESTIMATE} \\
\hline \(290 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(346 \pm 6 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(280 \pm 60\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 253 & HUNT & 19 & DPWA & Multichannel \\
\hline 247 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(290 \pm 15\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(300 \pm 15\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 247 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 302 & VRANA & 00 & DPWA & Multichannel \\
\hline 303 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\Delta(1905)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)

\begin{tabular}{|c|c|c|c|c|}
\hline 5.3 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(19 \pm 2\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(20 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 15 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 25 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \multicolumn{5}{|l|}{-120 to -30 ( \(\approx\) - 50) OUR ESTIMATE} \\
\hline - \(45 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-114 \pm 1 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline - \(50 \pm 20\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline - 89 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline - \(45 \pm 4\) & GUTZ & 14 & DPWA & Multichannel \\
\hline - \(44 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline - 30 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(1905)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta(1905) \rightarrow \Delta \pi, P\)-wave
\(\frac{\text { MODULUS }}{0.19+0.07} \frac{\text { PHASE }(\rho)}{10+30} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { COMMENT }}\) \(0.19 \pm 0.07 \quad 10 \pm 30 \quad\) SOKHOYAN 15A DPWA Multichannel - - We do not use the following data for averages, fits, limits, etc. - - -
\(0.0870 \quad 72\) ROENCHEN 15A DPWA Multichannel
\(0.25 \pm 0.06 \quad 0 \pm 15 \quad\) ANISOVICH 12A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1905) \rightarrow \Delta \pi, F\)-wave
MODULUS \(\frac{\text { PHASE }\left({ }^{\circ}\right)}{\bullet \bullet \text { We do not use the following data for averages, fits, limits, etc. }} \frac{\text { DOMMENT }}{\bullet \bullet}\)
0.00964 ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1905) \rightarrow \Sigma K\)
MODULUS PHASE ( \({ }^{\circ}\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.001-155\) ROENCHEN 15A DPWA Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1905) \rightarrow N(1535) \pi\)
\(\frac{\text { MODULUS }}{0.025 \pm 0.010} \frac{\text { PHASE }(\rho)}{130 \pm 35} \quad \frac{\text { DOCUMENT ID }}{\text { GUTZ }} \frac{14}{\text { TECN }} \frac{\text { DPWA }}{\text { COMMENT }}\) Multichannel

Normalized residue in \(N \pi \rightarrow \Delta(1905) \rightarrow \Delta(1232) \eta\)
\(\frac{\text { MODULUS }}{0.07 \pm 0.02} \frac{\text { PHASE }\left({ }^{\circ}\right)}{40 \pm 20} \quad \frac{\text { DOCUMENT ID }}{\text { GUTZ }} 14 \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
\(\Delta(1905)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1855 to 1910 ( \(\approx 1880\) ) OUR ESTIMATE} \\
\hline \(1883 \pm 19\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(1866 \pm 9\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(1856 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1857.8 \pm 1.6\) & 1 ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1910 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1905 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(1856 \pm 6\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1861 \pm 6\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1818 \pm 8\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1873 \pm 77\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1905)\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{270 to \(\mathbf{4 0 0}\) ( \(\approx \mathbf{3 3 0}\) ) OUR ESTIMATE} \\
\hline \(327 \pm 69\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(289 \pm 20\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(325 \pm 15\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(320.6 \pm 8.6\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(400 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(260 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(325 \pm 15\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(335 \pm 18\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(278 \pm 18\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(461 \pm 111\) & VRANA & 00 & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

Baryon Particle Listings
\(\Delta(1905), \Delta(1910)\)


\section*{\(\Delta\) (1905) PHOTON DECAY AMPLITUDES AT THE POLE}
\(\Delta(1905) \rightarrow N \gamma\), helicity \(-1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
MODULUS \(\left(\mathrm{GeV}^{-1 / 2}\right.\) ) PHASE () DOCUMENT ID TECN COMMENT
\begin{tabular}{llllll}
\hline \(0.025 \pm 0.005\) & \(-28 \pm 12\) & & & & \\
\hline
\end{tabular}
\(0.053 \quad 89\) ROENCHEN 15A DPWA Multichannel
\(\Delta(1905) \rightarrow N \gamma\), helicity-3/2 amplitude \(A_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.050 \pm 0.004\) & \(5 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.072 \pm 0.016\) & \(113_{-}^{+13}\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • -
\(-0.030 \quad 80\) ROENCHEN 15A DPWA Multichannel
\(\Delta(1905)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(1905) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.017 to 0.027 ( \(\approx 0.022\) ) OUR ESTIMATE} \\
\hline \(0.019 \pm 0.0076\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(0.077 \pm 0.010\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.025 \pm 0.005\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0.020 \pm 0.002\) & \({ }^{1}\) DUGGER & 13 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(0.019 \pm 0.002\) & \({ }^{1}\) WORKMAN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.025 \pm 0.005\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(0.025 \pm 0.004\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.066 \pm 0.018\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline 0.018 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Delta(1905) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE ( \(\left.\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.055 to -0.035 ( \(\approx \mathbf{- 0 . 0 4 5}\) ) OUR ESTIMATE} \\
\hline \(-0.0432 \pm 0.0173\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(-0.053 \pm 0.029\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.050 \pm 0.005\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.049 \pm 0.005\) & \({ }^{1}\) DUGGER & 13 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \(-0.038 \pm 0.004\) & WORKMAN & 12A & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline \(-0.050 \pm 0.005\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-0.049 \pm 0.004\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.223 \pm 0.029\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.028 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1905)\) REFERENCES
For early references, see Physics Letters 111B 1 (1982).


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(1910)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
1830 to 1890 ( \(\approx 1860\) ) OUR ESTIMATE
\begin{tabular}{lclll}
\(1840 \pm 40\) & SOKHOYAN & 15A DPWA Multichannel \\
\(1896 \pm 11\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\(1880 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1801 & HUNT & 19 & DPWA & Multichannel \\
\hline 1799 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(1840 \pm 40\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1850 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 1771 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 1880 & VRANA & 00 & DPWA & Multichannel \\
\hline 1874 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 400 ( \(\approx \mathbf{3 0 0}\) ) OUR ESTIMATE} \\
\hline \(370 \pm 60\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(302 \pm 22\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(200 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 224 & HUNT & 19 & DPWA & Multichannel \\
\hline 648 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(370 \pm 60\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(350 \pm 45\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 479 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 496 & VRANA & 00 & DPWA & Multichannel \\
\hline 283 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\Delta(1910)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
\(\frac{V A L U E(\mathrm{MeV})}{20 \text { to } \mathbf{3 0} \text { ( } \approx 25 \text { ) OUR ESTIMATE }}\)
\(25 \pm 6\)
\(29 \pm 2\)
\(20 \pm 4\)
- - We do not use the following
- - We do not use the following data for averages, fits, limits, etc \(\quad \pi N\)
\begin{tabular}{llll}
90 & ROENCHEN & \(15 A\) & DPWA Multichannel \\
\(25 \pm 6\) & GUTZ & 14 & DPWA Multichannel \\
\(24 \pm 6\) & ANISOVICH & 12A & DPWA Multichannel \\
45 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
38 & HOEHLER & 93 & SPED \(\pi N \rightarrow \pi N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{PHASE \(\theta\)}
PHASE \(\boldsymbol{\theta}\)
VALUE \(\left({ }^{\circ}\right)\)
DOCUMENT ID TECN COMMENT
-180 to \(=\mathbf{8 0}(\approx=\mathbf{1 3 0})\) OUR ESTIMATE
\begin{tabular}{lclll}
\(-155 \pm 30\) & SOKHOYAN & 15A & DPWA Multichannel \\
\(-83 \pm 4 \pm 1\) & 1 SVARC & 14 & L+P \(\pi N \rightarrow \pi N\) \\
\(-90 \pm 30\) & CUTKOSKY & 80 & IPWA \(\pi N \rightarrow \pi N\)
\end{tabular}

CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
\begin{tabular}{llll}
-83 & ROENCHEN & \(15 A\) & DPWA Multichannel \\
\(-155 \pm 30\) & GUTZ & 14 & DPWA Multichannel \\
\(-145 \pm 30\) & ANISOVICH & \(12 A\) & DPWA Multichannel \\
+172 & ARNDT & 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
1 Fit to the amplitudes of HOEHLER 79. & &
\end{tabular}

\section*{\(\Delta(\mathbf{1 9 1 0})\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta(\mathbf{1 9 1 0}) \rightarrow \Sigma K\)
м \(\qquad\) DOCUMENT ID TECN COMMENT \(\overline{0.07 \pm 0.02} \quad \overline{\text { ANISOVICH 12A DPWA Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - • •
\(0.019-123\) ROENCHEN 15A DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \Rightarrow \Delta(1910) \Rightarrow \Delta \pi, P\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(0.24 \pm 0.10 \quad 85 \pm 35\) SOKHOYAN 15A DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.58 & 131 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(0.16 \pm 0.09\) & \(95 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1910) \rightarrow \Delta(1232) \eta\)} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.11 \pm 0.04\) & \(-150 \pm 50\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1910) \rightarrow N(1440) \pi\)} \\
\hline MODULUS & PHASE ( \({ }^{(170}\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.06 \pm 0.03\) & \(170 \pm 45\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}
\(\Delta(1910)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1850 to 1950 ( \(\approx 1900\) ) OUR ESTIMATE} \\
\hline \(1846 \pm 18\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(1845 \pm 40\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(2067.9 \pm 1.7\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1910 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(1888 \pm 20\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1845 \pm 40\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1860 \pm 40\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(1934 \pm 5\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1995 \pm 12\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1910)\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 400 ( \(\approx 300\) ) OUR ESTIMATE} \\
\hline \(260 \pm 57\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(360 \pm 60\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(543 \pm 10\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(225 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(280 \pm 50\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(360 \pm 60\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(350 \pm 55\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(211 \pm 11\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(713 \pm 465\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1910)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(15-30 \%\) \\
\(\Gamma_{2}\) & \(\Sigma K\) & \(4-14 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi\) & \(34-66 \%\) \\
\(\Gamma_{5}\) & \(N(1440) \pi\) & \(3-9 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \eta\) & \(5-13 \%\) \\
\(\Gamma_{7}\) & \(N \gamma\), helicity=1/2 & \(0.0-0.02 \%\) \\
\hline
\end{tabular}
\(\Delta(1910)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\[
\Gamma(N \pi) / \Gamma_{\text {total }}
\]} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{15 to \(30(\approx 20)\) OUR ESTIMATE} \\
\hline \(13 \pm 3\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(12 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(23.9 \pm 0.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(19 \pm 3\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(24 \pm 6\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(12 \pm 3\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(12 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(17 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(29 \pm 21\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\Sigma K) / \Gamma_{\text {total }}\)} & & & \(\Gamma 2 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(9 \pm 5\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\Delta(1232) \pi) / \Gamma_{\text {total }}\)} & & & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(50 \pm 16\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline \(60 \pm 28\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N(1440) \pi) / \Gamma_{\text {total }}\)} & & & \(\Gamma_{5} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(33 \pm 12\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(47 \pm 6\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline 56土 7 & VRANA & 00 & DPWA & Multichannel & \\
\hline \({ }^{1}\) Statistical error only. & & & & & \\
\hline
\end{tabular}

Baryon Particle Listings
\(\Delta(1910), \Delta(1920)\)


\section*{\(\Delta(1910)\) REFERENCES}


\section*{\(\Delta(1920)\) POLE POSITION}

\section*{REAL PART}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1850 to 1950 ( \(\approx 1900\) ) OUR ESTIMATE} \\
\hline \(1875 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(1906 \pm 10 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(1900 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 1910 & HUNT & 19 & DPWA & Multichannel \\
\hline 1715 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(1875 \pm 30\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(1890 \pm 30\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 1880 & VRANA & 00 & DPWA & Multichannel \\
\hline 1900 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{-2xIMAGINARY PART} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to \(\mathbf{4 0 0} \mathbf{( \sim 3 0 0 )}\) OUR ESTIMATE} \\
\hline \(300 \pm 40\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(310 \pm 20 \pm 11\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(300 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 472 & HUNT & 19 & DPWA & Multichannel \\
\hline 882 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(300 \pm 40\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(300 \pm 60\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline 120 & VRANA & 00 & DPWA & Multichanne| \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(\mathbf{1 9 2 0})\) ELASTIC POLE RESIDUE}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{MODULUS \(|\boldsymbol{r}|\)} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{8 to 24 ( \(\approx 16)\) OUR ESTIMATE} \\
\hline \(16 \pm 6\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(26 \pm 3 \pm 2\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(24 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 38 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(16 \pm 6\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(17 \pm 8\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline VALUE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-150 to -50 ( \(\sim\) - 100) OUR ESTIMATE} \\
\hline - 50 25 & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-130 \pm 5 \pm 3\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-150 \pm 30\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • - •} \\
\hline 146 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline - \(50 \pm 25\) & GUTZ & 14 & DPWA & Multichannel \\
\hline - \(40 \pm 20\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(1920)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \boldsymbol{\pi} \rightarrow \boldsymbol{\Delta} \mathbf{( 1 9 2 0 )} \rightarrow \boldsymbol{\Delta r}\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.15 \pm 0.04\) & \(70 \pm 20\) & GUTZ & 14 & DPWA & Multichannel \\
\hline - - We do & t use the fors & for av & S, & its, etc & - - - \\
\hline \(0.17 \pm 0.08\) & \(70 \pm 20\) & ANISO & 12A & DPWA & Multichannel \\
\hline
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l} 
Normalized residue in \(\boldsymbol{N} \boldsymbol{\pi}\)
\end{tabular} \(\boldsymbol{\Delta} \mathbf{( 1 9 2 0 )} \Rightarrow \boldsymbol{\Sigma} \boldsymbol{K}\) \\
\(\frac{\text { MODULUS }}{0.09 \pm 0.03}\) & \(\frac{\text { PHASE } \rho)}{80 \pm 40}\) & \(\frac{\text { DOCUMENT ID }}{\text { ANISOVICH 12A }}\)
\end{tabular}
- - We do not use the following data
0.17 ROENCHEN 15A DPWA Multichannel
\begin{tabular}{l} 
Normalized residue in \(\boldsymbol{N} \boldsymbol{\pi} \rightarrow \boldsymbol{\Delta}(\mathbf{1 9 2 0}) \rightarrow \boldsymbol{\Delta} \boldsymbol{\pi}\), P-wave \\
MODULUS \\
\hline PHASE \((\circ)\)
\end{tabular}
\(\frac{\text { MODULUS }}{0.20 \pm 0.08} \frac{\text { PHASE }}{-105 \pm 25} \quad \frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. • - •
\begin{tabular}{lllll}
0.069 & 131 & ROENCHEN & 15A & DPWA Multichannel \\
\(0.20 \pm 0.12\) & \(-120 \pm 30\) & ANISOVICH & 12A & DPWA Multichannel
\end{tabular}
Normalized residue in \(\boldsymbol{N} \boldsymbol{\pi} \rightarrow \boldsymbol{\Delta}(\mathbf{1 9 2 0 )} \rightarrow \boldsymbol{\Delta} \boldsymbol{\pi}, \boldsymbol{F}\)-wave
MODULUS \(\quad\) PHASE \((\bigcirc)\)
\(\overline{0.37 \pm 0.10} \quad\) SOKHOYAN 15A DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. • - -
\(0.013-115\) ROENCHEN 15A DPWA Multichannel
\(0.28 \pm 0.07 \quad-95 \pm 35 \quad\) ANISOVICH 12A DPWA Multichannel

Normalized residue in \(N \pi \Rightarrow \Delta(1920) \Rightarrow N(1535) \pi\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \()\) & DOCUME & & TECN & COMMENT \\
\hline \(0.03 \pm 0.02\) & \(35 \pm 45\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \boldsymbol{\pi} \Rightarrow \Delta(1920) \Rightarrow N a_{0}(980)\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUME & & TECN & COMMENT \\
\hline \(0.03 \pm 0.02\) & \(-85 \pm 45\) & GUTZ & 14 & DPWA & Multichannel \\
\hline Normalize & idue in \(\mathbf{N}\) & 920) & 44 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS & PHASE ( \()\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.04 \pm 0.03\) & undefined & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline Normalize & idue in \(N\) & 920) \(\rightarrow\) N & 520 & \(\pi, S-\) & rave \\
\hline
\end{tabular}


\section*{\(\Delta(1920)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1870 to 1970 ( \(\approx 1920\) ) OUR ESTIMATE} \\
\hline 1976土 49 & HUNT & 19 & DPWA & Multichannel \\
\hline \(1880 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(2146 \pm 32\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(1920 \pm 80\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline 1868土 10 & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}


\section*{\(\Delta(1920)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(5-20 \%\) \\
\(\Gamma_{2}\) & \(\Sigma K\) & \(2-6 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi\) & \(50-90 \%\) \\
\(\Gamma_{5}\) & \(\Delta(1232) \pi, P\)-wave & \(8-28 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \pi, F\)-wave & \(44-72 \%\) \\
\(\Gamma_{7}\) & \(N(1440) \pi, P\)-wave & \(<4 \%\) \\
\(\Gamma_{8}\) & \(N(1520) \pi, S\)-wave & \(<5 \%\) \\
\(\Gamma_{9}\) & \(N(1535) \pi\) & \(<2 \%\) \\
\(\Gamma_{10}\) & \(N a_{0}(980)\) & seen \\
\(\Gamma_{11}\) & \(\Delta(1232) \eta\) & \(5-17 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\Delta\) (1920) BRANCHING RATIOS} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & & & \\
\hline \multicolumn{6}{|l|}{5 to 20 ( \(\approx 12\) ) OUR ESTIMATE} \\
\hline \(10.5 \pm 3.0\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(8 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(20 \pm 5\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(14 \pm 4\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(8 \pm 4\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(8 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(16 \pm 4\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(15 \pm 1\) & PENNER & 02C & DPWA & Multichannel & \\
\hline \(5 \pm 4\) & VRANA & 00 & DPWA & Multichanne & \\
\hline 1 Statistical error & & & & & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Gamma}(\boldsymbol{\Sigma} K) / \boldsymbol{\Gamma}_{\text {total }}\)
VALUE (\%) \(\quad\) DOCUMENT ID \(\quad\) TECN COMMENT \(\quad \boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}\) \(4 \pm 2\) \\ ANISOVICH 12A DPWA Multichannel}
- - We do not use the following data for averages, fits, limits, etc. • • -
\(2.1 \pm 0.3\) PENNER 02C DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{5} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline < 1.6 & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(18 \pm 10\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(22 \pm 12\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(7 \pm 5\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(41 \pm 3\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \(\Gamma(\Delta(1232) \pi, F\)-wave \() / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{6} / \Gamma\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
VALUE (\%) \\
\(58 \pm 14\) & \(\frac{\text { DOCUMENT ID }}{\text { SOKHOYAN 15A }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\text { Multichannel }}\) \\
- - We do not use the following data for averages, fits, limits, etc. • •
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(45 \pm 20\) ANISOVICH 12A DPWA Multichannel
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma(N(1440) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{7} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(77 \pm 9\) & 1 HUNT 19 & DPWA & Multichannel & \\
\hline < 4 & SOKHOYAN 15A & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline <20 & 1 SHRESTHA 12A & DPWA & Multichannel & \\
\hline \(53 \pm 8\) & VRANA 00 & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{4}{|l|}{\(\Gamma(N(1520) \pi, S\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{8} / \Gamma\) \\
\hline value (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline <5 & SOKHOYAN 15A & DPWA & Multichannel & \\
\hline \multicolumn{4}{|l|}{\(\Gamma(N(1535) \pi) / \Gamma_{\text {total }}\)} & \(\Gamma 9 / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<2\) & GUTZ 14 & DPWA & Multichannel & \\
\hline \multicolumn{4}{|l|}{\(\Gamma\left(N a_{0}(980)\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{10} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline \(4 \pm 2\) & HORN 08A & DPWA & Multichannel & \\
\hline \multicolumn{4}{|l|}{\(\Gamma(\Delta(1232) \eta) / \Gamma_{\text {total }}\)} & \(\Gamma_{11} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(11 \pm 6\) & GUTZ 14 & DPWA & Multichannel & \\
\hline - - We do not use the following & data for averages, fits, & limits, & tc. - • & \\
\hline \(15 \pm 8\) & ANISOVICH 12A & DPWA & Multichannel & \\
\hline
\end{tabular}

\section*{\(\Delta(1920)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(\Delta(\mathbf{1 9 2 0}) \Rightarrow N \gamma\), helicity- \(\mathbf{1} / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE \({ }^{\circ}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.110 \pm 0.030\) & \(-50 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(0^{0.190}+0.050\) & \(-160{ }_{-11}^{+24}\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(-0.192 \quad 46\) ROENCHEN 15A DPWA Multichannel
\(\Delta(1920) \rightarrow N \gamma\), helicity- \(3 / 2\) amplitude \(\mathrm{A}_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.100 \pm 0.040\) & \(0 \pm 20\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.398{ }_{-0.067}^{+0.070}\) & \(-110_{-5}^{+4}\) & ROENCHEN & 14 & DPWA & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
0.52267 ROENCHEN 15A DPWA Multichannel
\(\Delta(1920)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(1920) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.028 \pm 0.010\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.110 \pm 0.030\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, I} \\
\hline \(0.110 \pm 0.030\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \({ }^{0.130}+0.030\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.051 \pm 0.010\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.007 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{1 Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\Delta(1920) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline VALUE ( \(\mathrm{GeV}^{-1 / 2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.043 \pm 0.014\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.105 \pm 0.035\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.105 \pm 0.035\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \[
-0.115_{-0.050}^{+0.025}
\] & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(0.017 \pm 0.015\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.001 & PENNER & 02D & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1920)\) REFERENCES
For early references, see Physics Letters 111B 1 (1982).
\begin{tabular}{llllr} 
HUNT & 19 & PR C99 055205 & B.C. Hunt, D.M. Manley & \\
ROENCHEN & \(15 A\) & EPJ A51 70 & D. Roenchen et al. & \\
SOKHOYAN & 15A & EPJ A51 95 & V. Sokhoyan et al. & (CBELSA/TAPS Collab.) \\
GUTZ & 14 & EPJ A50 74 & E. Gutz et al. & (CBELSA/TAPS Collab.) \\
PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.)
\end{tabular}


\section*{\(\Delta(1930)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{8 to 20 ( \(\sim 14\) ) OUR ESTIMATE} \\
\hline \(9 \pm 1 \pm 1\) & 1 SVARC & 14 & \(L+P\) & \(\pi N \rightarrow \pi N\) \\
\hline \(18 \pm 6\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 34 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline 7 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 20 & HOEHLER & 93 & SPED & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

PHASE \(\theta\)
VALUE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- 40 to - 10 ( \(\approx\) - 30) OUR ESTIMATE
\(\begin{array}{lllll}-37 \pm 3 \pm 7 & 1 & \text { SVARC } & 14 & \mathrm{~L}+\mathrm{P} \\ -20 \pm 40 & \text { CUTKOSKY } & 80 & \text { IPWA } & \pi N \rightarrow \pi N \\ - & & \pi N\end{array}\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{lll}
-155 & ROENCHEN & 15 A DPWA Multichannel \\
-12 & ARNDT & 06 \\
DPWA \(\pi N \rightarrow \pi N, \eta N\)
\end{tabular}
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.

\section*{\(\Delta(1930)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta(1930) \rightarrow \Sigma K\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.043-0.5\) ROENCHEN 15A DPWA Multichannel
Normalized residue in \(N \pi \rightarrow \Delta(1930) \rightarrow \Delta \pi, D\)-wave
MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT

\footnotetext{
- - We do not use the following data for averages, fits, limits, etc. - • -
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1930) \rightarrow \Delta \pi, G\) wave} \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.009121 & ROENCHEN & 15A DPWA Multichannel \\
\hline \multicolumn{3}{|c|}{\(\Delta(1930)\) BREIT-WIGNER MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{1900 to 2000 ( \(\approx 1950\) ) OUR ESTIMATE} \\
\hline \(1988 \pm 32\) & 1 HUNT 19 & DPWA Multichannel \\
\hline \(2233 \pm 53\) & \({ }^{1}\) ARNDT 06 & DPWA \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(1940 \pm 30\) & CUTKOSKY 80 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \(1901 \pm 15\) & HOEHLER 79 & IPWA \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1930 \pm 12\) & \({ }^{1}\) SHRESTHA 12A & A DPWA Multichannel \\
\hline \(1932 \pm 100\) & VRANA 00 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta\) (1930) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{200 to 400 ( \(\approx 300\) ) OUR ESTIMATE} \\
\hline \(500 \pm 160\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(773 \pm 187\) & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(320 \pm 60\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(195 \pm 60\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(235 \pm 39\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \(316 \pm 237\) & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1930)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(5-15 \%\) \\
\(\Gamma_{2}\) & \(N \gamma\) & \(0.0-0.01 \%\) \\
\(\Gamma_{3}\) & \(N \gamma\), helicity \(=1 / 2\) & \(0.0-0.005 \%\) \\
\(\Gamma_{4}\) & \(N \gamma\), helicity \(=3 / 2\) & \(0.0-0.004 \%\) \\
\hline
\end{tabular}

\section*{\(\Delta(1930)\) BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \(\Gamma_{1} / \Gamma\) \\
\hline Value (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{5 to 15 ( \(\approx 10\) ) OUR ESTIMATE} \\
\hline \(9.5 \pm 0.1\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel & \\
\hline \(8.1 \pm 1.2\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(14 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(4 \pm 3\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(7.9 \pm 0.4\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(9 \pm 8\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}
\(\Delta(1930)\) PHOTON DECAY AMPLITUDES AT THE POLE
\(\Delta(1930) \rightarrow N \gamma\), helicity- \(\mathbf{1} / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
MODULUS \(\left(\mathrm{GeV}^{-1 / 2}\right)\) PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT \(0.130_{-0.096}^{+0.073} \quad-50_{-26}^{+77} \quad\) ROENCHEN 14 DPWA
- - We do not use the following data for averages, fits, limits, etc. - • -
\(-0.270 \quad 33\) ROENCHEN 15A DPWA Multichannel
\(\Delta(1930) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(-0.056{ }_{-0.151}^{+0.003}\) & \(168{ }_{-76}^{+72}\) & ROENCHEN & 14 DPWA & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. -} \\
\hline 0.153 & 81 & ROENCHEN & 15A DPWA & Multichannel \\
\hline
\end{tabular}
\(\Delta(1930)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES
\(\Delta(1930) \rightarrow N \gamma\), helicity- \(1 / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \(\left.\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.043 \pm 0.008\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.007 \pm 0.010\) & \({ }^{1}\) ARNDT & 96 & IPWA & \(\gamma N \rightarrow \pi N\) \\
\hline
\end{tabular}
\(-0.007 \pm 0.010 \quad 1\) ARNDT 96 IPWA \(\gamma N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.011 \pm 0.003 \quad 1\) SHRESTHA 12A DPWA Multichannel
\({ }^{1}\) Statistical error only.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Delta} \mathbf{( 1 9 3 0 )} \rightarrow \boldsymbol{N} \boldsymbol{\gamma}\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.020 \pm 0.017\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(0.005 \pm 0.010\) & 1 ARNDT & 96 & IPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.002 \pm 0.002\) & 1 SHREST & 12 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1930)\) REFERENCES}


\section*{\(\Delta(1940)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{4 to 10 ( \(\approx 7\) ) OUR ESTIMATE} \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(9 \pm 1 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(8 \pm 3\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(4 \pm 3\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(4 \pm 4\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{5}{|l|}{PHASE \(\theta\)} \\
\hline \multicolumn{5}{|l|}{150 to 250 ( \(\approx \mathbf{2 0 0}\) ) OUR ESTIMATE} \\
\hline - \(90 \pm 35\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(140 \pm 7 \pm 7\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(135 \pm 45\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline - \(50 \pm 35\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}


Baryon Particle Listings
\(\Delta(1940), \Delta(1950)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(\Delta(1232) \pi, D\)-wave \() / \Gamma_{\text {total }}\) VALUE (\%)} & \multirow[b]{2}{*}{DOCUMENT ID} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TECN COMMENT \(\quad \Gamma_{\mathbf{5} / \boldsymbol{\Gamma}}\)}} & \multicolumn{5}{|c|}{\(\Delta\) (1950) POLE POSITION} \\
\hline & & & & & REAL PART & & & & \\
\hline \(<6.3\) & 1 HUNT
\[
19
\] & DPWA & Multichannel & & VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(12 \pm 7\) & SOKHOYAN 15A & DPWA & Multichannel & & 1870 to 1890 & MATE & & & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} & 1888土 4 & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline & & & & & \(1877 \pm 2 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline & & & & \(\Gamma_{7} / \Gamma\) & \(1890 \pm 15\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline VALUE (\%) & \multicolumn{4}{|l|}{DOCUMENT ID TECN COMMENT} & \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(80 \pm 5\) & 1 HUNT 19 & DPWA & Multichannel & & 1871 & HUNT & 19 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\({ }^{1}\) Statistical error only.}} & 1874 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline & & & & & 1888土 4 & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{4}{|l|}{\(\Gamma(N(1535) \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} & \(1890 \pm 4\) & ANISOVICH & & DPWA & Multichannel \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & & \[
1876
\] & ARNDT & & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(8 \pm 6\) & GUTZ 14 & \multicolumn{3}{|l|}{DPWA Multichannel} & 1910 & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • •} & 1878 & HOEHLER & & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \(2 \pm 1\) & HORN 08A & DPWA & Multichannel & & \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline \multicolumn{4}{|l|}{\(\Gamma\left(N a_{0}(980)\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{Г9/Г} & \multicolumn{3}{|l|}{\(=\mathbf{2 \times I M A G I N A R Y ~ P A R T ~}\)
VALUE \((\mathrm{MeV})\)} & TECN & COMMENT \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & & \multicolumn{5}{|l|}{220 to 260 ( \(\approx 240\) ) OUR ESTIMATE} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} & \(245 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(2 \pm 1\) & HORN 08A & \multirow[t]{2}{*}{DPWA} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Multichannel}} & \(223 \pm 4 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline & & & & & \(260 \pm 40\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{4}{|l|}{\(\Gamma(\Delta(1232) \eta) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{10} / \Gamma\)} & \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT & & 206 & HUNT & 19 & DPWA & Multichannel \\
\hline \multirow[t]{2}{*}{\[
10 \pm 6
\]} & GUTZ 14 & & \multicolumn{2}{|l|}{} & 239 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline & & \multicolumn{3}{|l|}{DPWA Multichannel} & \(245 \pm 8\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\[
4 \pm 2 \quad \text { HORN } \quad \text { 08A DPWA Multichannel }
\]} & \(243 \pm 8\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(4 \pm 2\) & HORN 08A & DPWA & Multichannel & & 227 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline & & & & & 230 & VRANA & 00 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\(\Delta\) (1940) PHOTON DECAY AMPLITUDES AT THE POLE} & 230 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Delta} \mathbf{( 1 9 4 0 )} \rightarrow \boldsymbol{N} \boldsymbol{\gamma}\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)} & \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) ELASTIC POLE RESIDUE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{(1)}\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline 0.170 \({ }_{-0.100}^{+0.120}\) & \(-10 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{6}{|l|}{\(\boldsymbol{\Delta} \mathbf{( 1 9 4 0 )} \boldsymbol{\rightarrow} \boldsymbol{N} \boldsymbol{\gamma}\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3 / 2}}\)} \\
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(0.150 \pm 0.080\) & \(-10 \pm 30\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(\Delta(1940)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(\Delta(1940) \Rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.1614 \pm 0.0031\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.170{ }_{-0.080}^{+0.110}\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.170{ }_{-0.080}^{+0.110}\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Delta} \mathbf{( 1 9 4 0 )} \rightarrow \boldsymbol{N} \boldsymbol{\gamma}\), helicity-3/2 amplitude \(\mathrm{A}_{\mathbf{3} / \mathbf{2}}\)} \\
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.209 \pm 0.023\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(0.150 \pm 0.080\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(0.150 \pm 0.080\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(\Delta(1940)\) REFERENCES


\footnotetext{
Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).
}

\section*{PHASE \(\boldsymbol{\theta}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left({ }^{\circ}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-40 to -24 ( \(\sim\) - 32) OUR ESTIMATE} \\
\hline \(-24 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-39 \pm 1 \pm 1\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(-33 \pm 8\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -33 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline \(-24 \pm 3\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-24 \pm 3\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline -31 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline -32 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1950) \rightarrow \Sigma K\)} \\
\hline MODULUS & PHASE ( \({ }^{(1)}\) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.05 \pm 0.01\) & \(-65 \pm 25\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.031 & -87 & \multicolumn{2}{|l|}{ROENCHEN 15A DPWA} & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1950) \rightarrow \Delta \pi, F\)-wave} \\
\hline \multicolumn{2}{|l|}{MODULUS PHASE ( \({ }^{(1)}\)} & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.12 \pm 0.04\) & undefined & SOKHOYAN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.54 & 131 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \(0.12 \pm 0.04\) & \(12 \pm 10\) & ANISOVICH & 12A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \Rightarrow \Delta \mathbf{( 1 9 5 0 )} \Rightarrow \Delta \pi, H\)-wave} \\
\hline modulus & PHASE (\%) & DOCUMENT ID & TECN & COMMENT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(1950) \rightarrow \Delta(1232) \eta\)} \\
\hline \(0.035 \pm 0.005 \quad 90 \pm 25\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \multicolumn{5}{|c|}{\(\Delta\) (1950) BREIT-WIGNER MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN CO & OMMENT \\
\hline \multicolumn{5}{|l|}{1915 to 1950 ( \(\approx 1930\) ) OUR ESTIMATE} \\
\hline \(1943 \pm 18\) & GOLOVATCH & 19 & DPWA \(\gamma \rho\) & \(p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(1913 \pm 4\) & \({ }^{1}\) HUNT & & DPWA M & ultichanne| \\
\hline \(1917 \pm 4\) & ANISOVICH & & DPWA M & uultichanne| \\
\hline \(1921.3 \pm 0.2\) & \({ }^{1}\) ARNDT & & DPWA \(\pi\) & \(N \rightarrow \pi N, \eta N\) \\
\hline \(1950 \pm 15\) & CUTKOSKY & & PWA \(\pi\) & \(N \rightarrow \pi N\) \\
\hline \(1913 \pm 8\) & HOEHLER & 79 & PWA \(\pi\) & \(N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(1917 \pm 4\) & SOKHOYAN & & DPWA M & Multichanne| \\
\hline \(1917 \pm 4\) & GUTZ & & DPWA M & uultichanne| \\
\hline \(1915 \pm 6\) & ANISOVICH & & DPWA M & uultichanne| \\
\hline \(1918 \pm 1\) & 1 SHRESTHA & & DPWA M & uultichanne| \\
\hline \(1936 \pm 5\) & VRANA & & DPWA M & Multichanne| \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\operatorname{VALUE}(\mathrm{MeV})\) DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{235 to 335 ( \(\approx 285\) ) OUR ESTIMATE} \\
\hline \(230 \pm 88\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(241 \pm 10\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichanne| \\
\hline \(251 \pm 8\) & ANISOVICH & 17 & DPWA & Multichannel \\
\hline \(271.1 \pm 1.1\) & \({ }^{1}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(340 \pm 50\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(224 \pm 10\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(251 \pm 8\) & SOKHOYAN & 15A & DPWA & Multichanne| \\
\hline \(251 \pm 8\) & GUTZ & 14 & DPWA & Multichanne \\
\hline \(246 \pm 10\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(259 \pm 4\) & 1 SHRESTHA & 12A & DPWA & Multichanne| \\
\hline \(245 \pm 12\) & VRANA & 00 & DPWA & Multichanne \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \pi\) & \(35-45 \%\) \\
\(\Gamma_{2}\) & \(\Sigma K\) & \(0.3-0.5 \%\) \\
\(\Gamma_{3}\) & \(N \pi \pi\) & \\
\(\Gamma_{4}\) & \(\Delta(1232) \pi, F\)-wave & \(1-9 \%\) \\
\(\Gamma_{5}\) & \(N(1680) \pi, P\)-wave & \(3-9 \%\) \\
\(\Gamma_{6}\) & \(\Delta(1232) \eta\) & \(<0.6 \%\) \\
\hline
\end{tabular}
\(\Delta(1950)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \pi) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{35 to 45 ( \(\approx 40\) ) OUR ESTIMATE} \\
\hline \(38 \pm 2\) & 1 HUNT & 19 & DPWA & Multichannel & \\
\hline \(46 \pm 2\) & ANISOVICH & 17 & DPWA & Multichannel & \\
\hline \(47.1 \pm 0.1\) & 1 ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) & \\
\hline \(39 \pm 4\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(38 \pm 2\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.046 \pm 0.002\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(46 \pm 2\) & GUTZ & 14 & DPWA & Multichannel & \\
\hline \(45 \pm 2\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(45.6 \pm 0.4\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \(44 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{3}{|l|}{\(\Gamma(N \pi \pi) / \Gamma_{\text {total }}\)} & & & \(\Gamma 3 / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.57 \pm 0.20\) & \multicolumn{2}{|l|}{GOLOVATCH 19} & \multicolumn{2}{|l|}{DPWA \(\gamma p \rightarrow \pi^{+} \pi^{-} p\)} & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\Sigma K) / \Gamma_{\text {total }}\)} & & & \(\Gamma 2 / \Gamma\) \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.6 \pm 0.2\) & ANISOVICH & 17 & DPWA & Multichannel & \\
\hline - - We do not us & data for average & fits, & limits, & etc. & \\
\hline \(0.4 \pm 0.1\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \pi, F\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(5 \pm 3\) & ANISOVICH & 17 & DPWA & Multichannel & \\
\hline \(8 \pm 1\) & 1 SHRESTHA & 12A & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(5 \pm 4\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \(2.8 \pm 1.4\) & ANISOVICH & 12A & DPWA & Multichannel & \\
\hline \(36 \pm 1\) & VRANA & 00 & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(6 \pm 3\) & SOKHOYAN & 15A & DPWA & Multichannel & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Delta(1232) \eta) / \Gamma_{\text {total }}\)} & \(\Gamma_{6} / \Gamma\) \\
\hline VALUE (\%) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.3 \pm 0.3\) & ANISOVICH & 17 & DPWA & Multichannel & \\
\hline - - We do not use the following & data for average & , fits, & limits, & c. - - - & \\
\hline <1 & GUTZ & 14 & DPWA & Multichannel & \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) PHOTON DECAY AMPLITUDES AT THE POLE}
\(\Delta(1950) \rightarrow N \gamma\), helicity- \(\mathbf{1} / 2\) amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE ( ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.067 \pm 0.004\) & \(-10 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.071 \pm 0.004\) & \(-14_{-4}^{+2}\) & ROENCHEN & 14 & DPWA & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{- \(\begin{aligned} & \text { - We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ & -0.068 \\ & -19 \\ & \text { ROENCHEN } \\ & \text { 15A DPWA Multichannel }\end{aligned}\)}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\(\Delta(1950) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)} \\
\hline MODULUS ( \(\mathrm{GeV}^{-1 / 2}\) ) & PHASE \({ }^{\circ}\) ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(-0.095 \pm 0.004\) & \(-10 \pm 5\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.089{ }_{-0.008}^{+0.008}\) & \(-10_{-1}^{+3}\) & ROENCHEN & 14 & DPWA & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -0.084 & -19 & ROENCHEN & 15A & DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(\Delta(1950)\) BREIT-WIGNER PHOTON DECAY AMPLITUDES}
\(\Delta(1950) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(\mathbf{- 0 . 0 7 5}\) to -0.065 ( \(\approx \mathbf{- 0 . 0 7 0}\) ) OUR ESTIMATE} \\
\hline \(-0.0698 \pm 0.0141\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(-0.047 \pm 0.002\) & \({ }^{1}\) HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.067 \pm 0.005\) & ANISOVICH & 17 & DPWA & Multichannel \\
\hline \(-0.083 \pm 0.004\) & WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.067 \pm 0.005\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.067 \pm 0.005\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-0.071 \pm 0.004\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.065 \pm 0.001\) & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.094 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}
\(\Delta(1950) \rightarrow N \gamma\), helicity-3/2 amplitude \(\mathrm{A}_{3 / 2}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE \(\left(\mathrm{GeV}^{-1 / 2}\right)\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(=0.100\) to \(=0.080\) ( \(\approx=\mathbf{0 . 0 9 0}\) ) OUR ESTIMATE} \\
\hline \(-0.1181 \pm 0.0193\) & GOLOVATCH & 19 & DPWA & \(\gamma p \rightarrow \pi^{+} \pi^{-} p\) \\
\hline \(-0.074 \pm 0.002\) & 1 HUNT & 19 & DPWA & Multichannel \\
\hline \(-0.094 \pm 0.004\) & ANISOVICH & 17 & DPWA & Multichannel \\
\hline \(-0.096 \pm 0.004\) & WORKMAN & 12A & DPWA & \(\gamma N \rightarrow N \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline -0.094 \(\pm 0.004\) & SOKHOYAN & 15A & DPWA & Multichannel \\
\hline \(-0.094 \pm 0.004\) & GUTZ & 14 & DPWA & Multichannel \\
\hline \(-0.094 \pm 0.005\) & ANISOVICH & 12A & DPWA & Multichannel \\
\hline \(-0.083 \pm 0.001\) & \({ }^{1}\) SHRESTHA & 12A & DPWA & Multichannel \\
\hline -0.121 & DRECHSEL & 07 & DPWA & \(\gamma N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

(2000) ELASTIC POLE RESIDUE

MODULUS \(|r|\)


PHASE \(\theta\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE ( \({ }^{\circ}\) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(110 \pm 1 \pm 3\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(150 \pm 90\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}

\section*{\(\Delta(2000)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\frac{\text { VALUE (MeV) }}{2015 \pm 24}\)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline & 1 SHRESTHA & 12A & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\(2200 \pm 125\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(1724 \pm 61\) & VRANA & 00 & DPWA & Multichannel \\
\hline \(1752 \pm 32\) & MANLEY & 92 & IPWA & \(\pi N \rightarrow \pi N \& N \pi \pi\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline
\end{tabular}

\section*{\(\Delta(2000)\) BREIT-WIGNER WIDTH}

\(\Delta\) (2000) BRANCHING RATIOS


\section*{\(\boldsymbol{\Delta}\) (2000) REFERENCES}


\section*{\(\Delta(\mathbf{2 1 5 0})\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE (MeV) }}{2140 \pm 80}\)
\(\frac{\text { DOCUMENT ID }}{\frac{\text { TECN }}{}} \frac{\text { TECN }}{\text { CUTKOSKY }} \quad 80 \quad\) IPWA \(\frac{\text { COMMENT }}{\pi N \rightarrow \pi N}\)
\(=2 \times I M A G I N A R Y\) PART
\(\frac{V A L U E(\mathrm{MeV})}{200 \pm 80}\)

\section*{\(\Delta(\mathbf{2 1 5 0})\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
\(\frac{\text { VALUE }}{7 \pm 2}\)
PHASE \(\theta\)
VALUE \(\left({ }^{\circ}\right)\)
\begin{tabular}{llll}
\(\frac{\text { DOCUMENT ID }}{\text { CUTKOSKY } 80}\) & & TECN \\
IPWA & \(\frac{\text { COMMENT }}{\pi N \rightarrow \pi N}\) \\
\(\frac{\text { DOCUMENT ID }}{\text { CUTKOSKY } 80}\) & \(\frac{\text { TECN }}{\text { IPWA }}\) & \\
\(\pi N \rightarrow \pi N\)
\end{tabular}


Normalized residue in \(N \pi \rightarrow \Delta(2200) \rightarrow \Delta \pi\), \(G\)-wave
\begin{tabular}{|c|c|c|c|c|}
\hline modulus & PHASE ( \({ }^{\text {) }}\) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.022 & -151 & ROENCHEN & 15A DPWA & Multichannel \\
\hline
\end{tabular}

Baryon Particle Listings
\(\Delta(2300), \Delta(2350), \Delta(2390)\)

\section*{\(\left.\Delta(2300) 9 / 2^{+} \quad \quad \mu^{P}\right)=\frac{3}{2}\left(\frac{9^{2}}{}{ }^{+}\right)\)Status: \(* *\) \\ OMITTED FROM SUMMARY TABLE}
\(\Delta(\mathbf{2 3 0 0})\) POLE POSITION
REAL PART
VALUE (MEV)
\(2370 \pm 80\)
\(\frac{-2 \times \text { IMAGINARY PART }}{\frac{\text { VALUE }(\mathrm{MeV})}{}}\)
\begin{tabular}{llll}
\(\frac{\text { DOCUMENT ID }}{\text { CUTKOSKY }} 80\) & & \(\frac{\text { TECN }}{\text { IPWA }}\) & \(\frac{\text { COMMENT }}{\pi N \rightarrow \pi N}\) \\
\(\frac{\text { DOCUMENT ID }}{\pi N}\) & \\
CUTKOSKY 80 & \(\frac{\text { TECN }}{\text { IPWA }}\) & \(\frac{\text { COMMENT }}{\pi N \rightarrow \pi N}\)
\end{tabular}
\(\Delta(2300)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
VALUE (MeV)
\(10 \pm 4\)
PHASE \(\boldsymbol{\theta}\)
\(\operatorname{VALUE}\left({ }^{\circ}\right)\)
\(-20 \pm 30\) \(\frac{\text { DOCUMENT ID }}{\text { CUTKOSKY }} \frac{\text { TECN }}{\text { IPWA }} \frac{\text { COMMENT }}{\pi N \rightarrow \pi}\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)

DOCUMENT ID TECN COMMENT
\(\Delta(2300)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2400 \pm 125\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(2217 \pm 80\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|c|}{\(\Delta\) (2300) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(425 \pm 150\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(300 \pm 100\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}

\section*{\(\Delta(2300)\) DECAY MODES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mode & \multicolumn{5}{|c|}{Fraction ( \(\Gamma_{i} / \Gamma^{\text {r }}\) )} \\
\hline \(\Gamma_{1} \quad N \pi\) & \multicolumn{5}{|c|}{1-8 \%} \\
\hline \multicolumn{6}{|c|}{\(\Delta\) (2300) BRANCHING RATIOS} \\
\hline \[
\Gamma(N \pi) / \Gamma_{\text {total }}
\]
\[
\underline{\operatorname{VALUE}(\%)}
\] & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline \(6 \pm 2\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline \(3 \pm 2\) & HOEHLER & & IPWA & \(\pi N \rightarrow \pi N\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\(\Delta(2300)\) REFERENCES} \\
\hline  & R.E. Cutkosky et al.
R.E. Cutkosky et at \(G\). Hohler et al. R. Koch &  \\
\hline \(\Delta(2350) 5 / 2^{-}\) & \(I\left(J^{P}\right)=\) & * \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
\(\Delta(2350)\) POLE POSITION
REAL PART
VALUE (MeV)
\(\frac{\text { DOCUMENT ID }}{\text { CUTKOSKY }} \frac{\text { TECN }}{\text { IPWA }} \frac{\text { COMMENT }}{\pi N \rightarrow \pi}\)
- - We do not use the following data for averages, fits, limits, etc. • •

2427 VRANA 00 DPWA Multichannel
\(-2 \times I M A G I N A R Y\) PART
VALUE (MeV)

DOCUMENT ID TECN COMMENT
\(400 \pm 150 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
- • - We do not use the following data for averages, fits, limits, etc. • • •
\(458 \quad\) VRANA 00 DPWA Multichannel

\section*{\(\Delta(2350)\) ELASTIC POLE RESIDUE}

MODULUS \(|r|\)
VALUE (MeV)
\(15 \pm 8\)


PHASE \(\theta\)
\(\frac{\text { VALUE }\left(^{\circ}\right)}{-70 \pm 70} \quad \frac{\text { DOCUMENT ID }}{\text { CUTKOSKY } 80} \frac{\text { TECN }}{\text { IPWA }} \frac{\text { COMMENT }}{\pi N \rightarrow \pi N}\)
\(\Delta(2350)\) BREIT-WIGNER MASS

\(\Delta(2350)\) DECAY MODES

\(\boldsymbol{\Delta}(2350)\) REFERENCES

\(\Delta(2390)\) POLE POSITION
REAL PART
\(\frac{\text { VALUE }(\mathrm{MeV})}{2223 \pm 15 \pm 19}\)
\(2350 \pm 100\)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
-2×IMAGINARY PART \\
VALUE (MeV)
\end{tabular} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(431 \pm 26 \pm 7\) & \({ }^{1}\) SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(260 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\(\Delta(2390)\) ELASTIC POLE RESIDUE
MODULUS \(|r|\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(26 \pm 2 \pm 1\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(12 \pm 6\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \begin{tabular}{l}
PHASE \(\theta\) \\
VALUE ( \({ }^{\circ}\) )
\end{tabular} & DOCUMENT ID & & TECN & COMMENT \\
\hline \[
\begin{aligned}
& -160 \pm 5 \pm 11 \\
& -90 \pm 60
\end{aligned}
\] & \begin{tabular}{l}
\({ }^{1}\) SVARC \\
CUTKOSKY
\end{tabular} & \[
\begin{aligned}
& 14 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& \text { L+P } \\
& \text { IPWA }
\end{aligned}
\] & \[
\begin{aligned}
& \pi N \rightarrow \pi N \\
& \pi N \rightarrow \pi N
\end{aligned}
\] \\
\hline
\end{tabular}
\(\boldsymbol{\Delta} \mathbf{( 2 3 9 0})\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2350 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(2425 \pm 60\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\(\boldsymbol{\Delta} \mathbf{( 2 3 9 0})\) BREIT-WIGNER WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(300 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(300 \pm 80\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}


\section*{\(\boldsymbol{\Delta} \mathbf{( 2 4 0 0 )}\) INELASTIC POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \pi \rightarrow \Delta(\mathbf{2 4 0 0}) \rightarrow \Sigma K\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(\mathbf{2 4 0 0}) \rightarrow \Delta \pi, G\) wave} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.18 & - 110 & ROENCHEN & 15A DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \pi \rightarrow \Delta(2400) \rightarrow \Delta \pi\), I-wave} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.012 & -1.0 & ROENCHEN & 15A DPWA & Multichannel \\
\hline
\end{tabular}

\section*{\(\Delta(2400)\) BREIT-WIGNER MASS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{3}{|l|}{TECN COMMENT} \\
\hline \(2643 \pm 141\) & \({ }^{1}\) ARNDT & & DPWA & \(\pi N \rightarrow \pi\) & \(\pi N, \eta N\) \\
\hline \(2300 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi\) & \(\pi N\) \\
\hline \(2468 \pm 50\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi\) & \(\pi N\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Statistical error only.} \\
\hline \multicolumn{6}{|c|}{\(\boldsymbol{\Delta} \mathbf{( 2 4 0 0 ) ~ B R E I T - W I G N E R ~ W I D T H ~}\)} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \(895 \pm 432\) & \({ }^{2}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi\) & \(\pi N, \eta N\) \\
\hline \(330 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi\) & \(\pi N\) \\
\hline \(480 \pm 100\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi\) & \(\pi N\) \\
\hline \({ }^{2}\) Statistical error only. & & & & & \\
\hline \multicolumn{6}{|c|}{\(\Delta(2400)\) DECAY MODES} \\
\hline Mode & \multicolumn{5}{|c|}{Fraction ( \(\Gamma_{i} / \Gamma^{\text {r }}\) )} \\
\hline \(\Gamma_{1} \quad N \pi\) & \multicolumn{3}{|c|}{3-9 \%} & & \\
\hline \multicolumn{6}{|c|}{\(\Delta\) (2400) BRANCHING RATIOS} \\
\hline \(\Gamma(N \pi) / \Gamma_{\text {total }}\) & & & & & \\
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{3}{|l|}{TECN COMMENT} \\
\hline \(6.4 \pm 2.2\) & \({ }^{3}\) ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi\) & \(\pi N, \eta N\) \\
\hline \(5 \pm 2\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi\) & \(\pi N\) \\
\hline \(6 \pm 3\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi\) & \\
\hline \({ }^{3}\) Statistical error only. & & & & & \\
\hline
\end{tabular}
\(\Delta(2400)\) PHOTON DECAY AMPLITUDES AT THE POLE
\(\Delta(2400) \rightarrow N \gamma\), helicity-1/2 amplitude \(\mathrm{A}_{1 / 2}\)


Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

\section*{\(\Delta(2420)\) POLE POSITION}

REAL PART
VALUE(MeV) DOCUMENT ID TECN COMMENT
\begin{tabular}{lllll}
\hline \(\mathbf{2 3 0 0}\) to \(2500(\approx 2400)\) OUR ESTIMATE & & & \\
\(2454 \pm 4 \pm 11\) & \({ }^{2}\) SVARC & 14 & \(\mathrm{~L}+\mathrm{P} \quad \pi N \rightarrow \pi N\)
\end{tabular}
\(2360 \pm 100 \quad\) CUTKOSKY 80 IPWA \(\pi N \rightarrow \pi N\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\(2529 \quad\) ARNDT 06 DPWA \(\pi N \rightarrow \pi N, \eta N\)
2300 HOEHLER 93 ARGD \(\pi N \rightarrow \pi N\)
\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(=2 \times 1\) MAGINARY PART} \\
\hline VALUE ( MeV ) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{350 to 550 ( \(\approx 450\) ) OUR ESTIMATE} \\
\hline \(462 \pm 8 \pm 50\) & 1 SVARC & 14 & L+P & \(\pi N \rightarrow \pi N\) \\
\hline \(420 \pm 100\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 621 & ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline 620 & HOEHLER & 93 & ARGD & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Fit to the amplitudes of HOEHLER 79.} \\
\hline
\end{tabular}
\(\Delta(2420), \Delta(2750), \Delta(2950), \Delta(\sim 3000)\)


\section*{\(\Delta(2420)\) BREIT-WIGNER WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{300 to 700 ( \(\sim 500\) ) OUR ESTIMATE} \\
\hline \(692 \pm 47\) & 1 ARNDT & 06 & DPWA & \(\pi N \rightarrow \pi N, \eta N\) \\
\hline \(450 \pm 150\) & CUTKOSKY & 80 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \(340 \pm 28\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \({ }^{1}\) Statistical error only. & & & & \\
\hline
\end{tabular}

\section*{\(\Delta(2420)\) DECAY MODES}

The following branching fractions are our estimates, not fits or averages.


\section*{\(\Delta(2420)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(PDG Collab.) \\
(RBI Zagreb, UNI Tuzla)
\end{tabular}}} \\
\hline SVARC & 14 & PR C89 045205 & A. Svarc et al. & & \\
\hline ARNDT & 06 & PR C74 045205 & R.A. Arndt et al. & & (GWU) \\
\hline HOEHLER & 93 & \(\pi N\) Newsletter 91 & G. Hohler & & (KARL) \\
\hline CUTKOSKY & 80 & Toronto Conf. 19 & R.E. Cutkosky et al. & & (CMU, LBL) IJP \\
\hline Also & & PR D20 2839 & R.E. Cutkosky et al. & & (CMU, LBL) \\
\hline HOEHLER & 79 & PDAT \(12-1\) & G. Hohler et al. & & (KARLT) IJP \\
\hline Also & & Toronto Conf. 3 & R. Koch & & (KARLT) IJP \\
\hline \multicolumn{3}{|l|}{\[
\Delta(2750) 13 / 2^{-}
\]} & \multicolumn{3}{|l|}{\(I\left(J^{P}\right)=\frac{3}{2}\left(\frac{13}{2}^{-}\right)\)Status: **} \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
\(\Delta(2750)\) BREIT-WIGNER MASS
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2794 \pm 80\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline \multicolumn{5}{|c|}{\(\Delta\) (2750) BREIT-WIGNER WIDTH} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(350 \pm 100\) & HOEHLER & 79 & IPWA & \(\pi N \rightarrow \pi N\) \\
\hline
\end{tabular}
\(\Delta(2750)\) DECAY MODES


\section*{\(\Delta(\sim 3000\) Region) \\ Partial-Wave Analyses}

OMITTED FROM SUMMARY TABLE
We list here miscellaneous high-mass candidates for isospin-3/2 resonances found in partial-wave analyses.
Our 1982 edition also had a \(\Delta(2850)\) and a \(\Delta(3230)\). The evidence for them was deduced from total cross-section and \(180^{\circ}\) elastic crosssection measurements. The \(\Delta(2850)\) has been resolved into the \(\Delta(2750) I_{3,13}\) and \(\Delta(2950) K_{3,15}\). The \(\Delta(3230)\) is perhaps related to the \(K_{3,13}\) of HENDRY 78 and to the \(L_{3,17}\) of KOCH 80 .

\section*{\(\Delta(\sim 3000)\) BREIT-WIGNER MASS}

\(\Delta(\sim 3000)\) BREIT-WIGNER WIDTH



\section*{\(\Delta(\sim 3000)\) FOOTNOTES}
\({ }^{1}\) In addition, KOCH 80 reports some evidence for an \(S_{31} \Delta(2700)\) and a \(P_{33} \Delta(2800)\). \(\Delta(\sim 3000)\) REFERENCES
\begin{tabular}{lllll} 
KOCH & 80 & Toronto Conf. 3 & R. Koch & (KARLT) IJP \\
HENDRY & 78 & PRL 41 222 & A.W. Hendry & (IND, LBL) IJP \\
Also & & ANP 136 1 & A.W. Hendry & (IND)
\end{tabular}

\(I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)\)Status: \(* * * *\)
We have omitted some results that have been superseded by later experiments. See our earlier editions.

\section*{1 MASS}

The fit uses \(\Lambda, \Sigma^{+}, \Sigma^{0}, \Sigma^{-}\)mass and mass-difference measurements.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(1115.683 \pm 0.006\) OUR FIT} \\
\hline \multicolumn{6}{|l|}{1115.683 \(\pm 0.006\) OUR AVERAGE} \\
\hline \(1115.678 \pm 0.006 \pm 0.006\) & 20k & HARTOUNI & 94 & SPEC & \(27.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1115.690 \pm 0.008 \pm 0.006\) & 18k & \({ }^{1}\) HARTOUNI & 94 & SPEC & pp \(27.5 \mathrm{GeV} / c\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1115.59 \pm 0.08\) & 935 & HYMAN & 72 & HEBC & \\
\hline \(1115.39 \pm 0.12\) & 195 & MAYEUR & 67 & EMUL & \\
\hline \(1115.6 \pm 0.4\) & & LONDON & 66 & HBC & \\
\hline \(1115.65 \pm 0.07\) & 488 & \({ }^{2}\) SCHMIDT & 65 & HBC & \\
\hline \(1115.44 \pm 0.12\) & & \({ }^{3}\) BHOWMIK & 63 & RVUE & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) We assume CPT invariance: this is the \(\bar{\Lambda}\) mass as measured by HARTOUNI 94 . See below for the fractional mass difference, testing CPT.} \\
\hline \multicolumn{6}{|l|}{\({ }^{2}\) The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and \(K^{ \pm}\) and \(\pi^{ \pm}\)masses. P. Schmidt, private communication (1974).} \\
\hline \multicolumn{6}{|l|}{\({ }^{3}\) The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the \(\pi^{ \pm}\)mass (note added Reviews of Modern Physics 391 (1967)).} \\
\hline
\end{tabular}
\[
\left(m_{\Lambda}-m_{\Lambda}\right) / m_{\Lambda}
\]

A test of \(C P T\) invariance.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (units \(10^{-5}\) ) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline - \(0.1 \pm 1.1\) & ERAG & \multicolumn{4}{|l|}{Error includes scale factor of 1.6.} \\
\hline \(+1.3 \pm 1.2\) & 31 k & \({ }^{1}\) RYBICKI & 96 & NA32 & \(\pi^{-} \mathrm{Cu}, 230 \mathrm{GeV}\) \\
\hline - \(1.08 \pm 0.90\) & & hartouni & 94 & SPEC & pp \(27.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(4.5 \pm 5.4\) & & CHIEN & 66 & HBC & \(6.9 \mathrm{GeV} / \mathrm{c} \bar{p} p\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -26 \(\pm 13\) & & BADIER & 67 & HBC & \(2.4 \mathrm{GeV} / c \bar{p} p\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) RYBICKI 96 is an analysis of old ACCMOR (NA32) data.} \\
\hline
\end{tabular}

\section*{\(\wedge\) MEAN LIFE}

Measurements with an error \(\geq 0.1 \times 10^{-10} \mathrm{~s}\) have been omitted altogether, and only the latest high-statistics measurements are used for the average.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2.632 \pm 0.020\) & RAGE & \multicolumn{3}{|l|}{Error includes scale factor of 1.6.} & See the ideogram below. \\
\hline \(2.69 \pm 0.03\) & 53k & ZECH & 77 & SPEC & Neutral hyperon beam \\
\hline \(2.611 \pm 0.020\) & 34k & CLAYTON & 75 & HBC & \(0.96-1.4 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(2.626 \pm 0.020\) & 36k & POULARD & 73 & HBC & \(0.4-2.3 \mathrm{GeV} / \subset^{-}{ }^{-} p\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline \(2.69 \pm 0.05\) & 6582 & ALTHOFF & 73B & OSPK & \(\pi^{+} n \rightarrow \wedge K^{+}\) \\
\hline \(2.54 \pm 0.04\) & 4572 & BALTAY & 71B & HBC & \(K^{-} p\) at rest \\
\hline \(2.535 \pm 0.035\) & 8342 & GRIMM & 68 & HBC & \\
\hline \(2.47 \pm 0.08\) & 2600 & HEPP & 68 & HBC & \\
\hline \(2.35 \pm 0.09\) & 916 & BURAN & 66 & HLBC & \\
\hline \[
\begin{aligned}
& 2.452_{-0.054}^{+0.056}
\end{aligned}
\] & 2213 & ENGELMANN & 66 & HBC & \\
\hline \(2.59 \pm 0.09\) & 794 & HUBBARD & 64 & HBC & \\
\hline \(2.59 \pm 0.07\) & 1378 & SCHWARTZ & 64 & HBC & \\
\hline \(2.36 \pm 0.06\) & 2239 & BLOCK & 63 & HEBC & \\
\hline
\end{tabular}


See the related review(s):
Baryon Magnetic Moments

\section*{\(\wedge\) MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" above. Measurements with an error \(\geq 0.15 \mu_{N}\) have been omitted.
\begin{tabular}{|c|c|c|c|}
\hline VALUE ( \(\mu_{N}\) ) & EVTS & DOCUMENT ID & TECN COMMENT \\
\hline -0.613 \(\pm 0.004\) & OUR AVERAGE & & \\
\hline \(-0.606 \pm 0.015\) & 200k & COX 81 & SPEC \\
\hline \(-0.6138 \pm 0.0047\) & 3M & SCHACHIN... 78 & SPEC \\
\hline \(-0.59 \pm 0.07\) & 350k & HELLER 77 & SPEC \\
\hline \(-0.57 \pm 0.05\) & 1.2 M & BUNCE 76 & SPEC \\
\hline \(-0.66 \pm 0.07\) & 1300 & DAHL-JENSEN 71 & EMUL 200 kG field \\
\hline
\end{tabular}

\section*{\(\wedge\) ELECTRIC DIPOLE MOMENT}

A nonzero value is forbidden by both \(T\) invariance and \(P\) invariance.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-16} \mathrm{ecm}\right)\) & \(\underline{C L \%}\) & DOCUMENT ID & & TECN \\
\hline \(<1.5\) & 95 & 1 PONDROM & 81 & SPEC \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<100\) & 95 & 2 BARONI & 71 & EMUL \\
\hline \(<500\) & 95 & GIBSON & 66 & EMUL \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) PONDROM 81 measures \((-3.0 \pm 7.4) \times 10^{-17} \mathrm{e}-\mathrm{cm}\). \({ }^{2}\) BARONI 71 measures \((-5.9 \pm 2.9) \times 10^{-15} e-\mathrm{cm}\).} \\
\hline
\end{tabular}

BARONI 71 measures \((-5.9 \pm 2.9) \times 10^{-15} e-\mathrm{cm}\).
\begin{tabular}{llc}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(p \pi^{-}\) & \((63.9 \pm 0.5) \%\) \\
\(\Gamma_{2}\) & \(n \pi^{0}\) & \((35.8 \pm 0.5) \%\) \\
\(\Gamma_{3}\) & \(n \gamma\) & \((1.75 \pm 0.15) \times 10^{-3}\) \\
\(\Gamma_{4}\) & \(p \pi^{-} \gamma\) & {\([a]\)} \\
\(\Gamma_{5}\) & \(p e^{-} \bar{\nu}_{e}\) & \((8.4 \pm 1.4) \times 10^{-4}\) \\
\(\Gamma_{6}\) & \(p \mu^{-} \bar{\nu}_{\mu}\) & \((8.32 \pm 0.14) \times 10^{-4}\) \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Lepton ( \(L\) ) and/or Baryon (B) number violating decay modes} \\
\hline \(\Gamma_{7}\) & \(\pi^{+} e^{-}\) & L, B & \(<\) & 6 & \(\times 10^{-7}\) & 90\% \\
\hline \(\Gamma_{8}\) & \(\pi^{+} \mu^{-}\) & L, B & \(<\) & 6 & \(\times 10^{-7}\) & 90\% \\
\hline \(\Gamma_{9}\) & \(\pi^{-} e^{+}\) & L, B & \(<\) & 4 & \(\times 10^{-7}\) & 90\% \\
\hline \(\Gamma_{10}\) & \(\pi^{-} \mu^{+}\) & L, B & \(<\) & 6 & \(\times 10^{-7}\) & 90\% \\
\hline \(\Gamma_{11}\) & \(K^{+} e^{-}\) & L, B & < & 2 & \(\times 10^{-6}\) & 90\% \\
\hline \(\Gamma_{12}\) & \(K^{+} \mu^{-}\) & L, B & < & 3 & \(\times 10^{-6}\) & 90\% \\
\hline \(\Gamma_{13}\) & \(K^{-} e^{+}\) & \(L, B\) & \(<\) & 2 & \(\times 10^{-6}\) & 90\% \\
\hline \(\Gamma_{14}\) & \(K^{-} \mu^{+}\) & L, B & \(<\) & 3 & \(\times 10^{-6}\) & 90\% \\
\hline \(\Gamma_{15}\) & \(K_{S}^{0} \nu\) & \(L, B\) & \(<\) & 2 & \(\times 10^{-5}\) & 90\% \\
\hline \(\Gamma_{16}\) & \(\bar{p} \pi^{+}\) & B & & & \(\times 10^{-7}\) & 90\% \\
\hline
\end{tabular}
[a] See the Listings below for the pion momentum range used in this mea surement.

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 5 branching ratios uses 20 measurements and one constraint to determine 5 parameters. The overall fit has a \(\chi^{2}=\) 10.5 for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.
\begin{tabular}{l|rrrr}
\(x_{2}\) & -100 & & & \\
\(x_{3}\) & -2 & -1 & & \\
\(x_{5}\) & 46 & -46 & -1 & \\
\(x_{6}\) & 0 & 0 & 0 & 0 \\
\cline { 2 - 5 } & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{5}\) \\
\hline
\end{tabular}
\(\wedge\) BRANCHING RATIOS

- - We do not use the following data for averages, fits, limits, etc. - - -
\(1.32 \pm 0.15 \quad 218 \quad{ }^{1}\) LINDQUIST 71 OSPK See LINDQUIST 77
\({ }^{1}\) Changed by us from \(\Gamma\left(p e^{-} \bar{\nu}_{e}\right) / \Gamma(N \pi)\) assuming the authors used \(\Gamma(\Lambda \rightarrow\) \(\left.p \pi^{-}\right) / \Gamma(\) total \()=2 / 3\).
\({ }^{2}\) Changed by us from \(\Gamma\left(p e^{-} \bar{\nu}_{e}\right) / \Gamma(N \pi)\) because \(\Gamma\left(p e^{-} \nu\right) / \Gamma\left(p \pi^{-}\right)\)is the directly measured quantity.
\(\Gamma\left(p \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma(N \pi)\)
\(\Gamma_{6} /\left(\Gamma_{1}+\Gamma_{2}\right)\)
VALUE (units \(10^{-4}\) ) EVTS
\(1.57 \pm 0.35\) OUR FIT
\(1.57 \pm 0.35\) OUR AVERAGE
\begin{tabular}{rrr}
1.4 & \(\pm 0.5\) & 14 \\
\(2.4 \pm 0.8\) & 9 \\
\(1.3 \pm 0.7\) & 3 \\
\(1.5 \pm 1.2\) & 2
\end{tabular}

DOCUMENT ID TECN COMMENT
\begin{tabular}{llll} 
BAGGETT & 72B & HBC & \(K^{-} p\) at rest \\
CANTER & 71 B & HBC & \(K^{-} p\) at rest \\
LIND & 64 & RVUE
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\pi^{+} e^{-}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{7} / \Gamma\)} \\
\hline VALUE & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<6 \times 10^{-7}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+}\)^ & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\pi^{+} \mu^{-}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<6 \times 10^{-7}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline \({ }^{1}\) Uses \(\mathrm{B}(\Lambda \rightarrow p\) & \(=(63.9\) & 0.5)\% for normalizat & \(n\) mod & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\pi^{-} e^{+}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{Г9/Г} \\
\hline VALUE & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<4 \times 10^{-7}\) & 90 & \({ }^{1}\) MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\pi^{-} \mu^{+}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{10} / \Gamma\) \\
\hline Value & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<6 \times 10^{-7}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline
\end{tabular}
\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(K^{+} e^{-}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma\) \\
\hline VALUE & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<2 \times 10^{-6}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline \({ }^{1}\) Uses \(\mathrm{B}(\Lambda \rightarrow p \pi\) & \(=(63\) & 0.5)\% for normalizat & n mod & & \\
\hline
\end{tabular}

\(<3 \times 10^{-6} \quad 90 \quad 1\) MCCRACKEN 15 CLAS \(\gamma p \rightarrow K^{+} \Lambda\)
\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\boldsymbol{\Gamma}\left(\boldsymbol{K}^{-} \boldsymbol{e}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}{ }_{\text {VALUE }}\)} & & & & & \(\Gamma_{13} / \Gamma\) \\
\hline & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<2 \times 10^{-6}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+}\)^ & \\
\hline
\end{tabular}
\({ }^{1}\) Uses \(B\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\boldsymbol{K}^{-} \boldsymbol{\mu}^{+}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{14} / \Gamma\) \\
\hline VALUE & CL\% & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<3 \times 10^{-6}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline \({ }^{1}\) Uses \(\mathrm{B}(\Lambda \rightarrow p \pi\) & \(=(63\) & 0.5)\% for normaliza & n mod & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\overline{\mathrm{p}} \pi^{+}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{16} / \Gamma\)} \\
\hline VALUE & \(\underline{C L}\) & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<9 \times 10^{-7}\) & 90 & 1 MCCRACKEN 15 & CLAS & \(\gamma p \rightarrow K^{+} \Lambda\) & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda \rightarrow p \pi^{-}\right)=(63.9 \pm 0.5) \%\) for normalization mode.} & \\
\hline
\end{tabular}

\section*{1 DECAY PARAMETERS}

See the "Note on Baryon Decay Parameters" in the neutron Listings. Some early results have been omitted.

\section*{\(\alpha_{-}\)FOR \(\Lambda \rightarrow p \pi^{-}\)}

VALUE EVTS DOCUMENT ID TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - • -

\section*{Baryon Particle Listings}

\section*{\(\Lambda\), \(\Lambda\) 's and \(\Sigma\) 's,}

\({ }^{1}\) Determined using the latest BES-III value on the asymmetry parameter \(\alpha=0.750 \pm\) 0.010 .
\(\Delta \Phi=\Phi_{E}-\Phi_{M}\) in \(\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}\)

\({ }^{1}\) Relative phase between GE and GM, determined using the latest BES-III value on the asymmetry parameter \(\alpha=0.750 \pm 0.010\).

\section*{\(g_{A} / g_{V} \operatorname{FOR} \Lambda \rightarrow \operatorname{pe}^{-} \bar{\nu}_{e}\)}

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. The measurements all assume that the form factor \(g_{2}=0\). See also the footnote on DWORKIN 90 .


\section*{1 REFERENCES}

We have omitted some papers that have been superseded by later experiments. See our earlier editions.
\begin{tabular}{|c|c|c|c|c|}
\hline ABLIKIM & 19BF & PRL 123122003 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 19BJ & NATP 15631 & M. Ablikim et al. & (BESIII Collab.) \\
\hline IRELAND & 19 & PRL 123182301 & D.G. Ireland et al. & (GLAS, GWU, JULI+) \\
\hline MCCRACKEN & 15 & PR D92 072002 & M.E. McCracken et al. & (JLab CLAS Collab.) \\
\hline ABLIKIM & 10 & PR D81 012003 & M. Ablikim et al. & (BES Collab.) \\
\hline BARNES & 96 & PR C54 1877 & P.D. Barnes et al. & (CERN PS-185 Collab.) \\
\hline RYBICKI & 96 & APP B27 2155 & K. Rybicki & \\
\hline HARTOUNI & 94 & PRL 721322 & E.P. Hartouni et al. & (BNL E766 Collab.) \\
\hline Also & & PRL 722821 (erratum) & E.P. Hartouni et al. & (BNL E766 Collab.) \\
\hline LARSON & 93 & PR D47 799 & K.D. Larson et al. & (BNL-811 Collab.) \\
\hline NOBLE & 92 & PRL 69414 & A.J. Noble et al. & (BIRM, BOST, BRCO+) \\
\hline DWORKIN & 90 & PR D41 780 & J. Dworkin et al. & (MICH, WISC, RUTG+) \\
\hline TIXIER & 88 & PL B212 523 & M.H. Tixier et al. & (DM2 Collab.) \\
\hline BARNES & 87 & PL B199 147 & P.D. Barnes et al. & (CMU, SACL, LANL+) \\
\hline BIAGI & 86 & ZPHY C30 201 & S.F. Biagi et al. & (BRIS, CERN, GEVA+) \\
\hline CHAUVAT & 85 & PL 163B 273 & P. Chauvat et al. & (CERN, CLER, UCLA+) \\
\hline BOURQUIN & 83 & ZPHY C21 1 & M.H. Bourquin et al. & (BRIS, GEVA, HEIDP+) \\
\hline COX & 81 & PRL 46877 & P.T. Cox et al. & (MICH, WISC, RUTG, MINN+) \\
\hline PONDROM & 81 & PR D23 814 & L. Pondrom et al. & (WISC, MICH, RUTG+) \\
\hline WISE & 81 & PL 98B 123 & J.E. Wise et al. & (MASA, BNL) \\
\hline WISE & 80 & PL 91B 165 & J.E. Wise et al. & (MASA, BNL) \\
\hline SCHACHIN... & 78 & PRL 411348 & L. Schachinger et al. & (MICH, RUTG, WISC) \\
\hline
\end{tabular}
\(\Lambda(1405) 1 / 2^{-} \quad \quad\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)\)Status: \(* * * *\)
In the 1998 Note on the \(\Lambda(1405)\) in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the \(N-\bar{K}\) threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of \(S\)-wave coupling; the other below threshold hyperon, the \(\Sigma(1385)\), has no such threshold distortion because its \(N-\bar{K}\) coupling is \(P\)-wave. For \(\Lambda(1405)\) this asymmetry is the sole direct evidence that \(J^{P}=1 / 2^{-}\)."
A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed \(J^{P}=1 / 2^{-}\)spin-parity assignment of the \(1(1405)\). The experiment produced the \(\Lambda(1405)\) spin-polarized in the photoproduction process \(\gamma p \rightarrow\) \(K^{+} \Lambda(1405)\) and measured the decay of the \(\Lambda(1405)\) (polarized) \(\rightarrow\) \(\Sigma^{+}(\)polarized \() \pi^{-}\). The observed isotropic decay of \(\Lambda(1405)\) is consistent with spin \(J=1 / 2\). The polarization transfer to the \(\Sigma^{+}\)(polarized) direction revealed negative parity, and thus established \(J^{P}=1 / 2^{-}\).
See the related review(s):
Pole Structure of the \(\Lambda(1405)\) Region

\section*{^(1405) POLE POSITION}

\section*{REAL PART}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
REAL PART \\
VALUE (MeV)
\end{tabular} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits,} & limits, \\
\hline \(1429+8\) & \({ }^{1} \mathrm{MAI}\) & 15 & DPWA \\
\hline \(1434 \pm 2\) & \({ }^{2} \mathrm{MAI}\) & 15 & DPWA \\
\hline \(1421+3\) & GUO & 13 & DPWA \\
\hline \(1424{ }_{-23}^{+7}\) & IKEDA & 12 & DPWA \\
\hline \begin{tabular}{l}
\({ }_{2}^{1}\) Solution number 4. \\
\({ }^{2}\) Solution number 2.
\end{tabular} & & & \\
\hline -2×IMAGINARY PART VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline \(24+4\) & \({ }^{1} \mathrm{MAI}\) & 15 & DPWA \\
\hline \(20 \pm 4\) & \({ }^{2} \mathrm{MAI}\) & 15 & DPWA \\
\hline \(38{ }_{-10}^{+16}\) & GUO & 13 & DPWA \\
\hline \(52_{-28}^{+6}\) & IKEDA & 12 & DPWA \\
\hline \begin{tabular}{l}
\({ }^{1}\) Solution number 4. \\
2 Solution number 2.
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{\(\Lambda(1405)\) MASS}

\section*{PRODUCTION EXPERIMENTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{1405.1 \({ }_{-}^{+1.3}\) 1.0 OUR AVERAGE} \\
\hline \(1405 \begin{array}{r}+11 \\ -9\end{array}\) & & \multicolumn{2}{|l|}{HASSANVAND 13} & SPEC & \(p p \rightarrow p \wedge(1405) K^{+}\) \\
\hline \(1405 \pm 1.4\) & & ESMAILI & 10 & RVUE & \({ }^{4} \mathrm{He} \mathrm{K}{ }^{-} \rightarrow \Sigma^{ \pm} \pi^{\mp} X\) at rest \\
\hline \(1406.5 \pm 4.0\) & & 1 DALITZ & 91 & & M-matrix fit \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1391 & \(\pm 1\) & 700 & 1 HEMINGWAY & 85 & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(\sim 1405\) & & 400 & 2 THOMAS & 73 & HBC & \(\pi^{-} p 1.69 \mathrm{GeV} / \mathrm{c}\) \\
\hline 1405 & & 120 & BARBARO- & 68B & DBC & \(K^{-}\)d 2.1-2.7 GeV/c \\
\hline 1400 & \(\pm 5\) & 67 & BIRMINGHAM & 66 & HBC & \(K^{-}\)p \(3.5 \mathrm{GeV} / c\) \\
\hline 1382 & \(\pm 8\) & & ENGLER & 65 & HDBC & \(\pi^{-} p, \pi^{+} d 1.68 \mathrm{GeV} / c\) \\
\hline 1400 & \(\pm 24\) & & MUSGRAVE & 65 & HBC & \(\bar{p} p{ }^{3-4 ~ G e V} / c\) \\
\hline 1410 & & & ALEXANDER & 62 & HBC & \(\pi^{-} p 2.1 \mathrm{GeV} / c\) \\
\hline 1405 & & & ALSTON & 62 & HBC & \(K^{-}\)p 1.2-0.5 GeV/c \\
\hline 1405 & & & ALSTON & 61B & HBC & \(K^{-}\)p \(1.15 \mathrm{GeV} / \mathrm{c}\) \\
\hline
\end{tabular}
\({ }^{1}\) DALITZ 91 fits the HEMINGWAY 85 data.
\({ }^{2}\) THOMAS 73 data is fit by CHAO 73 (see next section).
EXTRAPOLATIONS BELOW N \(\bar{K}\) THRESHOLD
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, COMMENT
\begin{tabular}{|c|c|c|c|c|}
\hline 1407.56 or 1407.50 & 1 KIMURA & 00 & & potential model \\
\hline 1411 & 2 MARTIN & 81 & & K-matrix fit \\
\hline 1406 & \({ }^{3} \mathrm{CHAO}\) & 73 & DPWA & 0-range fit (sol. B) \\
\hline 1421 & MARTIN & 70 & RVUE & Constant K-matrix \\
\hline \(1416 \pm 4\) & MARTIN & 69 & HBC & Constant K-matrix \\
\hline \(1403 \pm 3\) & KIM & 67 & HBC & K-matrix fit \\
\hline \(1407.5 \pm 1.2\) & 4 KITTEL & 66 & HBC & \(0-\mathrm{effective-range} \mathrm{fit}\) \\
\hline \(1410.7 \pm 1.0\) & KIM & 65 & HBC & 0 -effective-range fit \\
\hline \(1409.6 \pm 1.7\) & 4 SAKITT & 65 & HBC & 0-effective-range fit \\
\hline
\end{tabular}
\({ }^{1}\) The KIMURA 00 values are from fits A and B from a coupled-channel potential model using low-energy \(\bar{K} N\) and \(\Sigma \pi\) data, kaonic-hydrogen x-ray measurements, and our \(\Lambda(1405)\) mass and width. The results bear mainly on the nature of the \(\Lambda(1405)\) : three-quark state or \(K N\) bound state.
2 The MARTIN 81 fit includes the \(K^{ \pm} p\) forward scattering amplitudes and the dispersion relations they must satisfy.
\({ }^{3}\) See also the accompanying paper of THOMAS 73
\({ }^{4}\) Data of SAKITT 65 are used in the fit by KITTEL 66.

\section*{^(1405) WIDTH}

PRODUCTION EXPERIMENTS


1 The KIMURA 00 values are from fits A and B from a coupled-channel potential model using low-energy \(\bar{K} N\) and \(\Sigma \pi\) data, kaonic-hydrogen x-ray measurements, and our \(\Lambda(1405)\) mass and width. The results bear mainly on the nature of the \(\Lambda(1405)\) : three-quark state or \(\bar{K} N\) bound state.
2 The MARTIN 81 fit includes the \(K^{ \pm} p\) forward scattering amplitudes and the dispersion relations they must satisfy.
\({ }^{3}\) An asymmetric shape, with \(\Gamma / 2=41 \mathrm{MeV}\) below resonance, 14 MeV above.
\({ }^{4}\) See also the accompanying paper of THOMAS 73.
\({ }^{5}\) Data of SAKITT 65 are used in the fit by KITTEL 66.

\section*{^(1405) DECAY MODES}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Sigma \pi\) & \(100 \%\) \\
\(\Gamma_{2}\) & \(\Lambda \gamma\) & \\
\(\Gamma_{3}\) & \(\Sigma^{0} \gamma\) & \\
\(\Gamma_{4}\) & \(N \bar{K}\) & \\
\hline
\end{tabular}
^(1405) PARTIAL WIDTHS
\(\Gamma(\Lambda \boldsymbol{\gamma})\)
\[
\text { VALUE }(\mathrm{keV}) \quad \text { DOCUMENT ID COMMENT }
\]
- - We do not use the following data for averages, fits, limits, etc. - - -
\(27 \pm 8 \quad\) BURKHARDT 91 Isobar model fit
\(\Gamma\left(\Sigma^{0} \gamma\right)\)
F( \(2 \gamma\) )
DOCUMENT ID COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • • \(10 \pm 4\) or \(23 \pm 7\) BURKHARDT 91 Isobar model fit

\section*{^(1405) BRANCHING RATIOS}
\(\Gamma(N \bar{K}) / \Gamma(\Sigma \pi)\)
CL\% DOCUMENT ID TECN COMMENT
\(\cdots \frac{\text { DOCUMENT ID }}{} \frac{\text { CL\% }}{\text { • We de not use the }} \frac{\text { Collowing data for averages, fits, limits, etc. • • }}{\text { • }}\)
\(<3 \quad 95 \quad\) HEMINGWAY \(85 \mathrm{HBC} \quad K^{-} p 4.2 \mathrm{GeV} / \mathrm{C}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{^(1405) REFERENCES} \\
\hline \({ }_{\substack{\text { Mal } \\ \text { Mobra }}}^{\text {chen }}\) &  &  &  \\
\hline  &  &  & \\
\hline MEEDA \({ }^{\text {Abo }}\) &  & M. Mestar. & (munt, riken \\
\hline \({ }_{\text {Esmalu }}^{\text {Kimbea }}\) &  &  & zaki (RIKEN, \\
\hline Poter &  & C. Caso et al.
H. Burkhardt, J. Lowe & nott, Mong cilin \\
\hline  & come & R.H. Dalitz, A.
R.J. Hemingway &  \\
\hline \({ }_{\text {chen }}^{\text {chatin }}\) & No &  & (shel, cmu, \\
\hline  &  & D.W. Thomas et al. &  \\
\hline MAABEO &  &  &  \\
\hline  &  &  & \\
\hline  &  &  & 4, Glas, toic, oxed \\
\hline  & \({ }_{\text {PRRL }}^{\text {PRL } 12} 1222^{24}\) &  & (CMus enill \({ }^{\text {coul }}\) \\
\hline  &  &  & (BIRM, CERN, EPOL+) \\
\hline \(\xrightarrow{\text { Salemanemer }}\) &  & cis & ) \\
\hline Alston \({ }_{\text {Alsion }}\) &  & M.tri Alston el & \\
\hline \multicolumn{4}{|c|}{OTHER RELATED PAPERS -} \\
\hline \(\underset{\substack{\text { masakk } \\ \text { fak }}}{\text { a }}\) &  &  &  \\
\hline & anp &  & \\
\hline  &  &  & \\
\hline Batry & NC 11.20255 &  & RAL, HERR) \\
\hline \({ }^{\text {Lowe }}\) & \({ }^{\text {nct } 12024167}\) & Lowe & \\
\hline Sitebl & PR \(\operatorname{ca3} 2221\) & P.B. Siegel w. wisie & \\
\hline (ck & \({ }_{\text {Pr1 }}^{\text {Pr } 517172}\) &  & (trku) \\
\hline cictick &  &  & (TyTo) \\
\hline  &  &  &  \\
\hline BURKHARDT 85 & Np \(\frac{440}{} 635\) & H. Burberatt . J. Lowe, A.S. R & \(1{ }^{\text {do }}\) \\
\hline ¢ DAEEW &  &  & \({ }_{\text {ctum }}\) \\
\hline maler & &  & \\
\hline & & & \\
\hline \({ }_{\text {Ver }}^{\text {Valit }}\) &  &  & \begin{tabular}{c} 
CREN \\
OXTP \\
\hline
\end{tabular} \\
\hline Daltri & \({ }^{\text {Prem }}\) 20 & R.f. Diltu , .G. Mciriney & (0xftr) \\
\hline mar &  & (entisict & (1)H) \\
\hline &  & & \\
\hline  &  &  & \\
\hline \(\substack{\text { Dobsion } \\ \text { RALASKK }}\) & &  & \\
\hline & & & \\
\hline \(\xrightarrow{\text { Clat }}\) MAM &  &  & Ross (DurH Loid \\
\hline  & & & \\
\hline  &  &  & \\
\hline
\end{tabular}
\(\left.\Lambda(1520) 3 / 2^{-} \quad / J^{P}\right)=0\left(\frac{3}{2}\right)\) Status: \(* * * *\)
Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel resonance.

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters 111B 1 (1982).

Production and formation experiments agree quite well, so they are listed together here.

\section*{^(1520) POLE POSITION}

\section*{REAL PART}
VALUE (MeV) DOCUMENT ID _TECN COMMENT

1517 to 1518 ( \(\approx 1517.5\) ) OUR ESTIMATE
\(1517.5 \pm 0.4\) OUR AVERAGE
\(1517.5 \pm 0.4 \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
\(1517{ }_{-4}^{+4}\)
\({ }^{1}\) KAMANO 15 DPWA \(\bar{K} N\) multichanne
- - We do not use the following data for averages, fits, limits, etc. - . -

\footnotetext{
1518 ZHANG 13A DPWA \(\bar{K} N\) multichannel
\(1518.8 \quad\) QIANG 10 SPEC \(e p \rightarrow e^{\prime} K^{+} X\) (fit to \(X\) )
\({ }^{1}\) From the preferred solution A in KAMANO 15.
}
\begin{tabular}{|c|c|c|}
\hline \(-2 \times I M A G I N A R Y\) PART VALUE (MEV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{14 to 18 ( \(\approx 16\) ) OUR ESTIMATE} \\
\hline \multicolumn{3}{|l|}{15.3土 0.9 OUR AVERAGE} \\
\hline \(15.3 \pm 0.9\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(15{ }_{-8}^{+10}\) & \({ }^{1}\) KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 16 & ZHANG 13A & DPWA \(\bar{K} N\) multichannel \\
\hline 17.2 & QIANG 10 & SPEC \(e p \rightarrow e^{\prime} K^{+} X(\) fit to \(X)\) \\
\hline \({ }^{1}\) From the preferred solution & A A in KAMANO 15. & \\
\hline
\end{tabular}

\section*{\(\Lambda(1520)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).


\section*{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1520) \rightarrow \Sigma \pi\)}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Value (MeV)} & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{7}{|l|}{1518 to 1520 ( \(\sim 1519\) ) OUR ESTIMATE} \\
\hline 1519.42 & \(\pm 0.19\) OUR & AVERA & Error includes s & cale fa & actor of 1 & 1.1. \\
\hline 1518.5 & \(\pm 0.5\) & & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1519.6 & \(\pm 0.5\) & & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline 1520.4 & \(\pm 0.6 \pm 1.5\) & & QIANG & 10 & SPEC & \(e p \rightarrow e^{\prime} K^{+} X\) (fit to \(X\) ) \\
\hline 1517.3 & \(\pm 1.5\) & 300 & BARBER & 80D & SPEC & \(\gamma p \rightarrow \Lambda(1520) K^{+}\) \\
\hline 1517.8 & \(\pm 1.2\) & 5k & BARLAG & 79 & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline 1520.0 & \(\pm 0.5\) & & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline 1519.7 & \(\pm 0.3\) & 4k & CAMERON & 77 & HBC & \(K^{-} p 0.96-1.36 \mathrm{GeV} / \mathrm{c}\) \\
\hline 1519 & \(\pm 1\) & & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1519.4 & \(\pm 0.3\) & 2000 & CORDEN & 75 & DBC & \(K^{-} d\) 1.4-1.8 GeV/c \\
\hline
\end{tabular}

\section*{\(\Lambda(1520)\) WIDTH}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MEV) & EVTS & DOCUMENT ID & & TECN & COMment \\
\hline \multicolumn{6}{|l|}{15 to 17 ( \(\approx 16\) ) OUR ESTIMATE} \\
\hline \multicolumn{6}{|l|}{\(15.73 \pm 0.26\) OUR AVERAGE} \\
\hline \(15.7 \pm 1.0\) & & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(17 \pm 1\) & & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(18.6 \pm 1.9 \pm 1.0\) & & QIANG & 10 & SPEC & \(e p \rightarrow e^{\prime} K^{+} X\) (fit to \(X\) ) \\
\hline \(16.3 \pm 3.3\) & 300 & BARBER & 80D & SPEC & \(\gamma p \rightarrow \Lambda(1520) K^{+}\) \\
\hline \(16 \pm 1\) & & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(14 \pm 3\) & 677 & \({ }^{1}\) BARLAG & 79 & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline \(15.4 \pm 0.5\) & & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(16.3 \pm 0.5\) & 4 k & CAMERON & 77 & HBC & \(K^{-} p^{0.96-1.36 ~ G e V / c}\) \\
\hline \(15.0 \pm 0.5\) & & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(15.5 \pm 1.6\) & 2000 & CORDEN & 75 & DBC & \(K^{-} d_{1.4-1.8 ~ G e V / c}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the best-resolution sample of \(\Lambda \pi \pi\) events only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{^(1520) DECAY MODES} \\
\hline & Mode & Fraction ( \(\Gamma_{i} / \Gamma^{\text {r }}\) ) \\
\hline \(\Gamma_{1}\) & \(N \bar{K}\) & (45 \(\pm 1\) ) \% \\
\hline \(\Gamma_{2}\) & \(\Sigma \pi\) & \((42 \pm 1) \%\) \\
\hline \(\Gamma_{3}\) & \(\wedge \pi \pi\) & (10 \(\pm 1\) ) \% \\
\hline \(\Gamma_{4}\) & \(\Sigma(1385) \pi, S\)-wave & \\
\hline \(\Gamma_{5}\) & \(\Sigma(1385) \pi\), \(D\)-wave & \\
\hline \(\Gamma_{6}\) & \(\Sigma(1385) \pi\) & \\
\hline \(\Gamma_{7}\) & \(\Sigma(1385) \pi(\rightarrow \wedge \pi \pi)\) & \\
\hline \(\Gamma_{8}\) & \(\Lambda(\pi \pi)_{S \text {-wave }}\) & \\
\hline \(\Gamma_{9}\) & \(\sum \pi \pi\) & ( \(0.9 \pm 0.1\) ) \% \\
\hline \(\Gamma_{10}\) & \(\wedge \gamma\) & ( \(0.85 \pm 0.15) \%\) \\
\hline \(\Gamma_{11}\) & \(\Sigma^{0} \gamma\) & \\
\hline
\end{tabular}
\(\Lambda(1520)\) BRANCHING RATIOS
See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & COMMENT \\
\hline \multicolumn{4}{|l|}{0.45 to 0.47 OUR ESTIMATE} \\
\hline \(0.45 \pm 0.01\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.47 \pm 0.04\) & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.47 \pm 0.02\) & GOPAL 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(0.45 \pm 0.03\) & ALSTON-... 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(0.448 \pm 0.014\) & CORDEN 75 & DBC & \(K^{-} d 1.4-1.8 \mathrm{GeV} / c\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.43 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.47 \pm 0.01\) & GOPAL 77 & DPWA & See GOPAL 80 \\
\hline 0.42 & MAST 76 & HBC & \(K^{-} p \rightarrow \bar{K}^{0} n\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\)} & & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{0.42 to 0.46 OUR ESTIMATE} \\
\hline \(0.43 \pm 0.01\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.47 \pm 0.05\) & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.426 \pm 0.014\) & CORDEN 75 & DBC & \(K^{-} \boldsymbol{d} 1.4-1.8 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(0.418 \pm 0.017\) & BARBARO-... 69b & HBC & \(K^{-} p 0.28-0.45 \mathrm{GeV} / c\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.446 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline 0.46 & KIM 71 & DPWA & K-matrix analysis \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Sigma \pi) / \Gamma(N \bar{K})\)} & & \(\Gamma_{2} / \Gamma_{1}\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{0.9 to 1.0 OUR ESTIMATE} \\
\hline \(0.98 \pm 0.03\) & \({ }^{1}\) GOPAL 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.82 \pm 0.08\) & BURKHARDT 69 & HBC & \(K^{-}\)p \(0.8-1.2 \mathrm{GeV} / c\) \\
\hline \(1.06 \pm 0.14\) & SCHEUER 68 & DBC & \(K^{-}\)N \(3 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(0.96 \pm 0.20\) & DAHL 67 & HBC & \(\pi^{-} p\) 1.6-4 GeV/c \\
\hline \(0.73 \pm 0.11\) & DAUBER 67 & HBC & \(K^{-}\)p \(2 \mathrm{GeV} / c\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline \(1.06 \pm 0.12\) & BERTHON 74 & HBC & Quasi-2-body \(\sigma\) \\
\hline \(1.72 \pm 0.78\) & MUSGRAVE 65 & HBC & \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) The \(\bar{K} N \rightarrow \Sigma \pi\) amplitude at resonance is \(+0.46 \pm 0.01\).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(\Lambda \pi \pi) / \Gamma_{\text {total }}\) & & & & \(\Gamma 3 / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{0.09 to 0.11 OUR ESTIMATE} \\
\hline \(0.091 \pm 0.006\) & CORDEN & 75 & DBC & \(K^{-} d^{1} 1.4-1.8 \mathrm{GeV} / c\) \\
\hline \(0.11 \pm 0.01\) & 1 MAST & 73B & IPWA & \(K^{-} p \rightarrow \Lambda \pi \pi\) \\
\hline \({ }^{1}\) Assumes \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}=0\) & \(\pm 0.02\). & & & \\
\hline
\end{tabular}
\(\Gamma(\Lambda \pi \pi) / \Gamma(N \bar{K})\)
0.18 to 0.22 OUR ESTIMATE
\(0.22 \pm 0.03\)
\(0.19 \pm 0.04\)
\(\begin{array}{llll}\text { DAHL } & 68 & \text { DBC } & K^{-} N 3 \mathrm{GeV} / c \\ & 67 & \text { HBC } & \pi^{-} p 1.6-4 \mathrm{GeV} / c\end{array}\)
\(0.21 \pm 0.18 \quad\) DAUBER \(67 \mathrm{HBC} \quad K^{-} p 2 \mathrm{GeV} / c\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{lllll}
\(0.27 \pm 0.13\) & BERTHON & 74 & HBC & Quasi-2-body \(\sigma\) \\
0.2 & KIM & 71 & DPWA K-matrix analysis
\end{tabular}
\(\Gamma(\Sigma \pi) / \Gamma(\Lambda \pi \pi)\)
3.4 to 4.4 OUR ESTIMATE
\(3.9 \pm 1.0\)
\(3.3 \pm 1.1\)
\(4.5 \pm 1.0\)

KIM 71 DPWA K-matrix analysis
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{DOCUMENT ID} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} \\
\hline & & \\
\hline UHLIG 67 & HBC & \(K^{-}\)p \(0.9-1.0 \mathrm{GeV} / C\) \\
\hline BIRMINGHAM 66 & HBC & \(K^{-}\)p \(3.5 \mathrm{GeV} / c\) \\
\hline ARMENTEROS65C & HBC & \\
\hline
\end{tabular}
\(\Gamma(\Sigma(1385) \pi, S\)-wave \() / \Gamma_{\text {total }}\)
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(0.121 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.

\(\Gamma(\boldsymbol{\Sigma}(1385) \pi(\rightarrow \Lambda \pi \pi)) / \Gamma(\Lambda \pi \pi)\)
\(\Gamma_{7} / \Gamma_{3}\)
The \(\Lambda \pi \pi\) mode is largely due to \(\Sigma(1385) \pi\). Only the values of \((\Sigma(1385) \pi) /(\Lambda 2 \pi)\) given by MAST 73B and CORDEN 75 are based on real 3-body partial-wave analyses. The discrepancy between the two results is essentially due to the different hypotheses made concerning the shape of the \((\pi \pi)_{S \text {-wave }}\) state.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & CL\% & DOCUMEN & & TECN & COMMENT \\
\hline \(0.58 \pm 0.22\) & & CORDEN & 75 & DBC & K d 1.4-1.8 \\
\hline \(0.82 \pm 0.10\) & & \({ }^{1}\) MAST & 73B & IPWA & \(K^{-} p \rightarrow \Lambda \pi \pi\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline \(<0.44\) & 90 & WIELAND & 11 & SPHR & \(\gamma p \rightarrow K^{+} \Lambda(1520)\) \\
\hline \(0.39 \pm 0.10\) & & \({ }^{2} \mathrm{~B}\) & 71 & HBC & \(K^{-} p \rightarrow(\Lambda \pi \pi) \pi\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Both \(\Sigma(1385) \pi D S_{03}\) and \(\Sigma(\pi \pi) D P_{03}\) contribute.} \\
\hline \multicolumn{6}{|l|}{\({ }^{2}\) The central bin (1514-1524 MeV) gives \(0.74 \pm 0.10\); other bins are lower by 2-to standard deviations.} \\
\hline
\end{tabular}

\(\Gamma(\Sigma \pi \pi) / \Gamma_{\text {total }}\)
0.007 to 0.011 OUR ESTIMATE
\(0.007 \pm 0.002\)
\(\begin{array}{llll}0.0085 \pm 0.0006 & \text { BARBARO-... } & \text { 69B } & \text { HBC } \\ 0.010 & K^{-} p \rightarrow 0.28-0.45 \mathrm{GeV} / c\end{array}\)
    \({ }^{1}\) Much of the \(\Sigma \pi \pi\) decay proceeds via \(\Sigma(1385) \pi\).
    \({ }^{2}\) Assumes \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}=0.46\).
\(\Gamma(\Lambda \gamma) / \Gamma_{\text {total }}\)

\begin{tabular}{lr}
\(10.7 \pm 2.9_{-0.4}^{+1.5}\) & 32 \\
\(10.2 \pm 2.1 \pm 1.5\) & 290 \\
\(8.0 \pm 1.4\) & 238 \\
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}_{\text {total }}\) & \\
VALUE & \\
\hline \(\mathbf{0 . 0 2 \pm \mathbf { 0 . 0 0 3 5 }}\)
\end{tabular}

DOCUMENT ID TECN COMMENT
TAYLOR \(\quad 05\) CLAS \(\quad \gamma p \rightarrow K^{+} \Lambda \gamma\)
ANTIPOV 04A SPNX \(p N(\mathrm{C}) \rightarrow \Lambda(1520) K^{+} N(\mathrm{C})\) MAST 68B HBC Using \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}=0.45\)
\(\mathbf{0 . 0 2} \pm \mathbf{0 . 0 0 3 5} \quad 1 \frac{1}{\text { MAST }} \quad 68 \mathrm{~B} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { Not measured; see note }}{}\)
\({ }^{1}\) Calculated from \(\Gamma(\Lambda \gamma) / \Gamma_{\text {total }}\), assuming SU(3). Needed to constrain the sum of all the branching ratios to be unity.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Lambda(1520)\) REFERENCES} \\
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
\hline ZHANG & 13A & PR C88 035205 & H. Zhang et al. & (KSU) \\
\hline WIELAND & 11 & EPJ A47 47 & F. Wieland et al. & (ELSA SAPHIR Collab.) \\
\hline QIANG & 10 & PL B694 123 & Y. Qiang et al. & (DUKE, JEFF, PNPI, GWU+) \\
\hline TAYLOR & 05 & PR C71 054609 & S. Taylor et al. & (JLab CLAS Collab.) \\
\hline Also & & PR C72 039902 (errat.) & S. Taylor et al. & (JLab CLAS Collab.) \\
\hline ANTIPOV & 04A & PL B604 22 & Yu.M. Antipov et al. & (IHEP SPHINX Collab.) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline BARBER & 80D & ZPHY C7 17 & D.P. Barber et al. & (DARE, LANC, SHEF) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline BARLAG & 79 & NP B149 220 & S.J.M. Barlag et al. & (AMST, CERN, NIJM+) \\
\hline ALSTON-... & 78 & PR D18 182 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline Also & & PRL 381007 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline CAMERON & 77 & NP B131 399 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline MAST & 76 & PR D14 13 & T.S. Mast et al. & (LBL) \\
\hline CORDEN & 75 & NP B84 306 & M.J. Corden et al. & (BIRM) \\
\hline BERTHON & 74 & NC 21A 146 & A. Berthon et al. & (CDEF, RHEL, SACL+) \\
\hline MAST & 73 & PR D7 3212 & T.S. Mast et al. & (LBL) IJP \\
\hline MAST & 73B & PR D7 5 & T.S. Mast et al. & (LBL) IJP \\
\hline CHAN & 72 & PRL 28256 & S.B. Chan et al. & (MASA, YALE) \\
\hline BURKHARDT & 71 & NP B27 64 & E. Burkhardt et al. & (HEID, CERN, SACL) \\
\hline KIM & 71 & PRL 27356 & J.K. Kim & (HARV) IJP \\
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Hyperon Resonances, 1970 ( \({ }^{\text {a }}\)}} \\
\hline & & & & \\
\hline BARBARO-... & 69B & Lund Conf. 352 & A. Barbaro-Galtieri et al. & (LRL) \\
\hline Also & & Duke Conf. 95 & R.D. Tripp & (LRL) \\
\hline \multicolumn{5}{|l|}{Hyperon Resonances 1970 (Lem)} \\
\hline BURKHARDT & 69 & NP B14 106 & E. Burkhardt et al. & (HEID, EFI, CERN+) \\
\hline MAST & 68B & PRL 211715 & T.S. Mast et al. & (LRL) \\
\hline SCHEUER & 68 & NP B8 503 & J.C. Scheuer et al. & (SABRE Collab.) \\
\hline DAHL & 67 & PR 1631377 & O.I. Dahl et al. & (LRL) \\
\hline DAUBER & 67 & PL 24B 525 & P.M. Dauber et al. & (UCLA) \\
\hline
\end{tabular}


\section*{\(\Lambda(1600)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1600) \rightarrow N \bar{K}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\frac{\text { MODULUS }}{0.36 \pm 0.07}
\]} & PHASE \({ }^{\text {¢ }}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline & -63 \(\pm 10\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{- - We do not use the following data for averages, fits, limits, etc. - • • \(0.105-80 \quad 1\) KAMANO 15 DPWA Multichannel}} \\
\hline & & & & \\
\hline \({ }^{1}\) From th & rred sol & AMANO 15. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1600) \Rightarrow \Sigma \pi\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.39 \pm 0.08\) & \(148 \pm 10\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.232 & 108 & 1 KAMANO 15 & DPWA & Multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1600) \rightarrow N \bar{K}^{*}(892), S \equiv 1 / 2, P\)-wave} \\
\hline MODULUS & PHASE ( \()^{\text {) }}\) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.02 \pm 0.01\) & \(126 \pm 45\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1600) \Rightarrow N \bar{K}^{*}(892), S=3 / 2, P\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{(135}\) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.02 \pm 0.01\) & -135 \(\pm 45\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\section*{\(\Lambda(1600)\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Value (MeV) DoCument id} & TECN & COMMENT \\
\hline 1570 to 163 & ATE & & & \\
\hline 1605土 & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1592 \pm 10\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(1568 \pm 20\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1703 \pm 100\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1573 \pm 25\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1596土 6 & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(1620 \pm 10\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
- • We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\)
\begin{tabular}{llll}
1572 or 1617 & 1 MARTIN & 77 & DPWA \(\bar{K} N\) multichannel \\
\(1646 \pm 7\) & 2 & CARROLL & 76
\end{tabular} DPWA Isospin- 0 total \(\sigma\)
1570 \(\quad\) KIM \(\quad 71 \quad\) DPWA K-matrix analysis

\section*{\(\Lambda(1600)\) WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{150 to 250 ( \(\approx 200\) ) OUR ESTIMATE} \\
\hline \(245 \pm 15\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(150 \pm 28\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(116 \pm 20\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(593 \pm 200\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(147 \pm 50\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(175 \pm 20\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(60 \pm 10\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 247 or 271 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 20 & \({ }^{2}\) CARROLL & 76 & DPWA & Isospin-0 total \(\sigma\) \\
\hline 50 & KIM & 71 & DPWA & K-matrix analysis \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{2}\) A total cross-section bump with \((J+1 / 2) \Gamma_{\text {el }} / \Gamma_{\text {total }}=0.04\).} \\
\hline
\end{tabular}
^(1600) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \(15-30 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \(10-60 \%\) \\
\(\Gamma_{3}\) & \(\Lambda \sigma\) & \((19 \pm 4) \%\) \\
\(\Gamma_{4}\) & \(\Sigma(1385) \pi\) & \((9 \pm 4) \%\) \\
\hline
\end{tabular}

\section*{^(1600) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\) & & \multicolumn{2}{|c|}{\(\Gamma / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{0.14 to 0.28 OUR ESTIMATE} \\
\hline \(0.29 \pm 0.06\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.14 \pm 0.04\) & ZHANG 13A & DPWA & Multichannel \\
\hline \(0.23 \pm 0.04\) & GOPAL 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(0.14 \pm 0.05\) & ALSTON-... 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(0.25 \pm 0.15\) & LANGBEIN 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - • •} \\
\hline 0.064 & \[
\begin{equation*}
{ }^{1} \text { KAMANO } \tag{15}
\end{equation*}
\] & DPWA & Multichannel \\
\hline \(0.24 \pm 0.04\) & GOPAL 77 & DPWA & See GOPAL 80 \\
\hline 0.30 or 0.29 & 2 MARTIN 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\)} & \multicolumn{2}{|c|}{\(\Gamma_{2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(0.37 \pm 0.07\) \\
SARANTSEV 19 DPWA KN multichannel \\
- - We do not use the following data for averages, fits, limits, etc.
\end{tabular}}} \\
\hline & & & \\
\hline 0.851 & \({ }^{1}\) KAMANO 15 & DPWA & Multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Lambda \sigma) / \Gamma_{\text {total }}\)} & \multicolumn{2}{|c|}{\(\Gamma 3 / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.19 \pm 0.04\) & SARANTSEV 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Sigma(1385) \pi) / \Gamma_{\text {total }}\)} & \multicolumn{2}{|c|}{\(\Gamma 4 / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.09 \pm 0.04\) & SARANTSEV 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{2}{|l|}{- - We do not use the following data for averages, fits,} & \multicolumn{2}{|l|}{limits, etc. - - -} \\
\hline 0.085 & 1 KAMANO 15 & DPWA & Multichannel \\
\hline \({ }^{1}\) From the preferred solution & KAMANO 15. & & \\
\hline
\end{tabular}


\(\Lambda(1670)\) POLE POSITIONS

\section*{REAL PART}


\section*{\(\Lambda(1670)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).

Normalized residue in \(N \bar{K} \Rightarrow \Lambda(\mathbf{1 6 7 0}) \Rightarrow \Sigma \pi\)
\begin{tabular}{|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.19 \pm 0.06\) & \(145 \pm 14\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - .} \\
\hline 0.327 & 125 & 1 KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \({ }^{1}\) From the & erred solu & AMANO 15. & \\
\hline
\end{tabular}


\section*{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1670) \rightarrow \equiv K\)}
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 2} \pm \mathbf{0 . 0 2}} \frac{\operatorname{PHASE}\left({ }^{\circ}\right)}{\mathbf{1 0 0} \pm \mathbf{2 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Normalized residue in \(N \bar{K} \rightarrow \Lambda(1670) \rightarrow \Lambda \omega, S \equiv 1 / 2, S\)-wave
\begin{tabular}{|c|c|c|c|}
\hline MODULUS & PHASE (\%) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.09 \pm 0.04\) & \(\mathbf{- 6 0} \pm \mathbf{3 5}\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1670) \rightarrow \Lambda \omega, S=3 / 2, D\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.05 \pm 0.04\) & & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(\Lambda \eta) / \Gamma_{\text {total }}\) & & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
•• We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\) \\
0.373 & KAMANO & 15 \\
\(0.30 \pm 0.08\) & ABAEV & 96
\end{tabular} \begin{tabular}{l} 
DPWA Multichannel \\
\(K^{-} p \rightarrow \Lambda \eta\)
\end{tabular}

\begin{tabular}{ll}
\(\boldsymbol{\Gamma}(\boldsymbol{\Lambda} \boldsymbol{\sigma}) / \boldsymbol{\Gamma}_{\text {total }}\) \\
\(V\) VALUE \\
\(\mathbf{0 . 2 0} \mathbf{0 . 0 8}\) & \(\frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\Gamma_{\mathbf{7}} / \boldsymbol{\Gamma}}{\bar{K} N \text { multichannel }}\)
\end{tabular}
\begin{tabular}{lll}
\(\Gamma\left(N \bar{K}^{*}(892), S=1 / 2, S\right.\)-wave \() / \Gamma_{\text {total }}^{\text {VALUE }}\) \\
DOCUMENT ID \\
TECN \\
COMMENT & \(\Gamma_{5} / \Gamma\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • -
not seen 1 KAMANO 15 DPWA Multichannel
\({ }^{1}\) Not seen in the preferred solution A in KAMANO 15.


\(\Lambda(1670)\) REFERENCES
\begin{tabular}{llllr} 
SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
ZHANG & 13A & PR C88 035205 & H. Zhang et al. & (KSU) \\
GARCIA-REC... 03 & PR D67 076009 & C. Garcia-Recio et al. & (GRAN, VALE) \\
MANLEY & 02 & PRL 88 012002 & D.M. Manley et al. & (BNL Crystal Ball Collab.)
\end{tabular}


\section*{^(1690) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{p o l e} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1690) \rightarrow N \bar{K}\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 2 4} \pm \mathbf{0 . 0 5}} \frac{\text { PHASE }()}{\mathbf{- 2 8} \pm \mathbf{5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
0.251315 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1690) \rightarrow \Sigma \pi\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(\mathbf{0 . 3 5} \mathbf{\pm 0 . 0 7} \quad \mathbf{1 7 5} \pm \mathbf{6} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel - - We do not use the following data for averages, fits, limits, etc. - -
\(0.315-173 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1690) \Rightarrow \Lambda \eta\)
\(\frac{\text { MODULUS }}{\text { PHASE }()}\) DOCUMENT ID \(\quad\) TECN \(\frac{\text { COMMENT }}{\bar{K} N \text { DARANTSEV }}\) \(0.05 \quad \mathbf{0 . 0 2} \quad \mathbf{8 8} \quad \overline{\text { SARANTSEV } 19} \overline{\text { DPWA }} \bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{cccc}
0.00567 & 81 & 1 & KAMANO \\
\({ }^{1}\) From the preferred solution A in KAMANO 15. & &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1690) \rightarrow \Sigma(1385) \pi\), S-wave} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.11 \pm 0.06\) & \(\mathbf{1 7 0} \pm \mathbf{7 0}\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.134 & 168 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}


\section*{＾（1690）WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE（MeV） & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{60 to 80 （ \(\approx 70\) ）OUR ESTIMATE} \\
\hline \(75 \pm 5\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichanne \\
\hline \(54 \pm 5\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(67.2 \pm 5.6\) & KOISO & & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(61 \pm 5\) & GOPAL & & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(64 \pm 10\) & ALSTON－．．． & & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(82 \pm 8\) & HEPP & 76B & DPWA & \(K^{-N} \rightarrow \Sigma \pi\) \\
\hline \(60 \pm 4\) & KANE & & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(60 \pm 5\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 62 or 62 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 38 & CARROLL & 76 & DPWA & Isospin－0 total \(\sigma\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T－matrix pole and from a Breit－Wigner fit． Another \(D_{03} \wedge\) at 1966 MeV is also suggested by MARTIN 77，but is very uncertain．} \\
\hline
\end{tabular}

\section*{＾（1690）DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \(20-30 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \(20-40 \%\) \\
\(\Gamma_{3}\) & \(\Lambda \sigma\) & \((5.0 \pm 2.0) \%\) \\
\(\Gamma_{4}\) & \(\Lambda \pi \pi\) & \(\sim 25 \%\) \\
\(\Gamma_{5}\) & \(\Sigma \pi \pi\) & \(\sim 20 \%\) \\
\(\Gamma_{6}\) & \(\Lambda \eta\) & \\
\(\Gamma_{7}\) & \(\Sigma(1385) \pi, S\)－wave & \((9 \pm 5) \%\) \\
\(\Gamma_{8}\) & \(\Sigma(1385) \pi, D\)－wave & \((3.0 \pm 2.0) \%\) \\
\(\Gamma_{9}\) & \(N \bar{K}^{*}(892), S=1 / 2, D\)－wave & \\
\(\Gamma_{10}\) & \(N \bar{K}^{*}(892), S=3 / 2, S\)－wave & \\
\(\Gamma\) & \(N \bar{K}^{*}(892), S=3 / 2, D\)－wave & \\
\hline
\end{tabular}

\section*{＾（1690）BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma_{\text {VALUE }}(N \bar{K}) / \Gamma_{\text {total }}\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{COMMENT}} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{0.20 to 0．28 OUR ESTIMATE O} \\
\hline \(0.23 \pm 0.05\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.25 \pm 0.04\) & zHANG & 13A & DPWA & \(\bar{K} N\) multichar & \\
\hline \(0.23 \pm 0.03\) & GOPAL & 80 & DPWA & K \(N \rightarrow K N\) & \\
\hline \(0.22 \pm 0.03\) & ALSTON－．．． & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－．－} \\
\hline 0.239 & 1 kamano & 15 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.24 \pm 0.03\) & GOPAL & 77 & DPWA & See GOPAL 80 & \\
\hline 0.28 or 0.26 & \({ }^{2}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
\({ }^{1}\) From the preferred solution A in KAMANO 15. \\
\({ }^{2}\) The two MARTIN 77 values are from a T－matrix pole and from a Breit－Wigner fit Another \(D_{03} \wedge\) at 1966 MeV is also suggested by MARTIN 77，but is very uncertain．
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\) & & & \(\Gamma_{2} / \Gamma\) \\
\hline & DOCUMENT ID & TECN COMMENT & \\
\hline \(0.50 \pm 0.10\) & Sarantsev & WA \(\bar{K} N\) multichanne & \\
\hline －．－We do not use the following & data for averages，fits， & limits，etc．－ & \\
\hline 0.387 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel & \\
\hline \({ }^{1}\) From the preferred solution A in & in kamano 15. & & \\
\hline \(\Gamma(\Lambda \eta) / \Gamma_{\text {total }}\) & & & 「6／Г \\
\hline value & dCument io & TECN COMment & \\
\hline \(\sim 0.01\) & SARANTSEV & DPWA \(\bar{K} N\) multichann & \\
\hline －－We do not use the following & data for averages，fits & limits，etc． & \\
\hline not seen & \({ }^{1}\) Kamano 15 & DPWA Multichannel & \\
\hline \({ }^{1}\) From the preferred solution A in & in kamano 15. & & \\
\hline \(\Gamma(\Lambda \sigma) / \Gamma_{\text {total }}\) & & & 「3／「 \\
\hline value & document & IECN COMMENT & \\
\hline \(0.05 \pm 0.02\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel & \\
\hline \(\Gamma(\Sigma(1385) \pi, S\)－wave \() / \Gamma_{\text {total }}\) & & & \(\Gamma_{7 /} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & tecn comment & \\
\hline ．\(\pm 0.05\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel & \\
\hline －－－We do not use the following & data for averages，fits & limits，etc． & \\
\hline 0.062 & \({ }^{1}\) kamano & DPWA \(\bar{K} N\) multichannel & \\
\hline \({ }^{1}\) From the preferred solution A is & in kamano 15. & & \\
\hline \(\Gamma(\Sigma(1385) \pi, D\)－wave \() / \Gamma_{\text {total }}\) & & & \(\Gamma_{8} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN COMment & \\
\hline \(0.03 \pm 0.02\) & SARANTSEV & DPWA \(\bar{K} N\) multichannel & \\
\hline －－We do not use the following & data for averages，fits & s，etc． & \\
\hline 0.308 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel & \\
\hline \({ }^{1}\) From the preferred solution A in & in kamano 15. & & \\
\hline \(\Gamma\left(N \bar{K}^{*}(892), S=1 / 2, D\right.\)－wave & ）\(/ \Gamma_{\text {total }}\) & & 「9／Г \\
\hline Value & DOCUMENT ID & TECN COMMENT & \\
\hline －．We do not use the following & data for averages，fits， & limits，etc． & \\
\hline not seen & 1 SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel & \\
\hline not seen & \({ }^{1}\) KAMANO 15 & DPWA \(\bar{K} N\) multichannel & \\
\hline \({ }^{1}\) From the preferred solution A i & in kamano 15. & & \\
\hline \(\Gamma\left(N \bar{K}^{*}(892), S=3 / 2, S\right.\)－wave \()\) & \(/ \Gamma_{\text {total }}\) & & \(\Gamma_{10} / \Gamma\) \\
\hline Value & DOCUMENT ID & TECN COMment & \\
\hline －－We do not use the following & data for averages，fits， & limits，etc．－－ & \\
\hline 0.003 & kamano 15 & DPWA Multichanne & \\
\hline \(\Gamma\left(N \bar{K}^{*}(892), S=3 / 2, D\right.\)－wave & ）\(/ \Gamma_{\text {total }}\) & & \(\Gamma_{11} / \Gamma\) \\
\hline Value & DOCUMENT ID & TECN COMment & \\
\hline
\end{tabular}
－－We do not use the following data for averages，fits，limits，etc．－•－ not seen \({ }^{1}\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15 ．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma, \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1690) \rightarrow \Sigma \pi\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TECN \({ }_{\text {COMMENT }}\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)}} \\
\hline & DOCUMENT & & & & \\
\hline \(-0.27 \pm 0.03\) & zhang & 13A & DPWA & Multichan & \\
\hline \(-0.34 \pm 0.02\) & koiso & 85 & DPWA & \(\kappa^{-} p \rightarrow\) & \\
\hline \(-0.25 \pm 0.03\) & gopal & 77 & DPWA & \(\bar{K} N\) multi & Iichann \\
\hline \(-0.29 \pm 0.03\) & HEPP & 76B & DPWA & \(K^{-N} \rightarrow\) & \\
\hline \(-0.28 \pm 0.03\) & London & 75 & HLBC & \(K^{-} p \rightarrow\) & \(\Sigma^{0} \pi^{0}\) \\
\hline \(-0.28 \pm 0.02\) & kane & 74 & DPWA & \(\kappa^{-} p \rightarrow\) & \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline -0.30 or－0．28 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multi & tichannel \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T－matrix pole and from a Breit－Wigner fit． Another \(D_{03} \wedge\) at 1966 MeV is also suggested by MARTIN 77，but is very uncertain．} \\
\hline
\end{tabular}
\[
\frac{\text { VALUE }}{\bullet \bullet \text { We do not use the following data for averages, fits, limits, etc. }} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}
\]
\[
0.25 \pm 0.02 \quad{ }^{1} \text { BARTLEY } \quad 68 \quad \mathrm{HDBC} K^{-} p \rightarrow \Lambda \pi \pi
\]
\({ }^{1}\) BARTLEY 68 uses only cross－section data．The enhancement is not seen by PRE－ VOST 71.



\(\Lambda(1710)\) BRANCHING RATIOS
 \(0.43 \pm 0.04\)


\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\Gamma\left(N \bar{K}^{*}(892), S=1 / 2\right) / \Gamma_{\text {total }}
\] & docmen & & & & \(\Gamma_{5} / \Gamma\) \\
\hline \(0.05 \pm 0.04\) & zhang & 13A & \(\frac{\text { TECN }}{\text { DPWA }}\) & \(\frac{\text { COMMENT }}{\text { Multichannel }}\) & \\
\hline \multicolumn{5}{|l|}{\(\Gamma\left(N \bar{K}^{*}(892), S=3 / 2, P\right.\)-wave \() / \Gamma_{\text {total }}\)} & \(\Gamma_{6} / \Gamma\) \\
\hline value & DOCUMEN & & TECN & COMment & \\
\hline \(0.10 \pm 0.08\) & ZHANG & 13A & DPWA & Multichannel & \\
\hline
\end{tabular}
\(\Lambda(1710)\) REFERENCES
\begin{tabular}{lllll} 
ZHANG & 13A & PR C88 035205 & H. Zhang et al. \\
\hline
\end{tabular}


\section*{^(1800) POLE POSITION}

REAL PART
VALUE (MeV)
DOCUMENT ID TECN COMMENT
1809音9 SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. • - -

1729 ZHANG 13A DPWA Multichannel
\(\frac{\mathbf{- 2 \times I M A G I N A R Y ~ P A R T}}{\frac{V A L U E(\mathrm{MeV})}{\mathbf{2 0 5} \pm \mathbf{1 6}}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
SARANTSEV 19 DPWA \(K N\) multi
\(\bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet\)
198 ZHANG 13A DPWA Multichannel

\section*{^(1800) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1800) \rightarrow N \bar{K}\)


\section*{A(1800) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline Value (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1750 to 1850 ( \(\sim 1800\) ) OUR ESTIMATE} \\
\hline \(1811 \pm 10\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1783 \pm 19\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1841 \pm 10\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1725 \pm 20\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1830 \pm 20\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1845 \pm 10\) & MANLEY & 02 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1825 \pm 20\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1767 or 1842 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1780 & KIM & 71 & DPWA & K -matrix a nalysis \\
\hline \(1872 \pm 10\) & BRICMAN & 70B & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \multicolumn{5}{|c|}{\(\Lambda(1800)\) WIDTH} \\
\hline Value ( MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{150 to 250 ( \(\approx 200\) ) OUR ESTIMATE} \\
\hline \(209 \pm 18\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(256 \pm 35\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(228 \pm 20\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(185 \pm 20\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(70 \pm 15\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\(\boldsymbol{\Lambda ( 1 8 0 0 )}\) BRANCHING RATIOS
See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Lambda(1800) \rightarrow \Sigma \pi
\]} & \multicolumn{3}{|r|}{\(\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMEN & & TECN & COMMENT & \\
\hline \(-0.07 \pm 0.02\) & ZHANG & 13A & DPWA & Multichan & \\
\hline \(-0.08 \pm 0.05\) & GOPAL & 77 & DPWA & \(\bar{K} N\) mult & channel \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -0.74 or -0.43 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) mult & channel \\
\hline 0.24 & KIM & 71 & DPWA & K-matrix & analysis \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Lambda(1800) \rightarrow \Sigma(1385) \pi
\]} & \multicolumn{3}{|r|}{\(\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(-0.09 \pm 0.05\) & ZHANG & 13A & DPWA & Multichan & nel \\
\hline \(+0.056 \pm 0.028\) & \({ }^{2}\) CAMERON & 78 & DPWA & \(K^{-} p \rightarrow\) & \(\Sigma(1385) \pi\) \\
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1800) \rightarrow N \overline{K^{*}}(892)\),} & =1/2 & S-wave & \(\left(\Gamma_{1} \Gamma_{7}\right)^{1 / 2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(-0.13 \pm 0.02\) & ZHANG & 13A & DPWA & Multichan & \\
\hline \(-0.17 \pm 0.03\) & \({ }^{2}\) CAMERON & & DPWA & \(K^{-} p \rightarrow\) & \(N \bar{K}^{*}\) \\
\hline
\end{tabular}


\section*{^(1800) FOOTNOTES}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\({ }^{2}\) The published sign has been changed to be in accord with the baryon-first convention.

\section*{^(1800) REFERENCES}

\(\Lambda(1810)\) POLE POSITION
REAL PART
VALUE (MeV) DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\)
1773士 7 SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\(2097_{-1}^{+40} \quad 1\) KAMANO 15 DPWA Multichannel
1780 ZHANG 13A DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15. Solution B reports \(M=1841{ }_{-4}^{+3} \mathrm{MeV}\).
- \(2 \times\) IMAGINARY PART
\(\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{3 8} \pm \mathbf{1 4}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - • •
\begin{tabular}{cccc}
\(166{ }_{-12}^{+64}\) & 1 KAMANO & 15 & DPWA Multichannel \\
64 & ZHANG & \(13 A\) & DPWA Multichannel \\
1 From the preferred solution A in KAMANO & 15. Solution B Reports \(\Gamma=62_{-4}^{+6} \mathrm{MeV}\).
\end{tabular}

\section*{^(1810) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow N \bar{K}\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 1 8} \pm \mathbf{0 . 0 0 8}} \frac{\text { PHASE }(\rho)}{\mathbf{6 5} \mathbf{2 6}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
\(0.018 \pm \mathbf{0 . 0 0 8} 65 \pm \mathbf{2 6} \quad\) SARANTSEV 19 DPWA \(K N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.205-63 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow \Sigma \pi\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(\mathbf{0 . 0 4 5} \pm \mathbf{0 . 0 2 0} \mathbf{- 1 4 3} \pm \mathbf{2 4} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel - - We do not use the following data for averages, fits, limits, etc. - - •
0.03252915 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1810) \Rightarrow \Lambda \eta\)
MODULUS PHASE \((\rho)\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.155165 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow \Lambda \sigma\)
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT \(\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 2 0} \quad \mathbf{3 0} \pm \mathbf{1 6} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel

Normalized residue in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow \equiv K\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.0937-64 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow \Sigma(1385) \pi\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 8} \pm \mathbf{0 . 0 3}} \frac{\text { PHASE }(\rho)}{\mathbf{- 5 0} \pm \mathbf{3 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.244-10 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\(\Lambda(1810)\) WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{50 to 170 ( \(\approx 110\) ) OUR ESTIMATE} \\
\hline \(39 \pm 15\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(174 \pm 50\) & ZHANG 13A & DPWA Multichannel \\
\hline \(164 \pm 20\) & GOPAL 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(90 \pm 20\) & CAMERON 78B & DPWA \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline \(46 \pm 20\) & PREVOST 74 & DPWA \(K^{-} N \rightarrow \Sigma(1385) \pi\) \\
\hline \(120 \pm 10\) & LANGBEIN 72 & IPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(166 \pm 20\) & GOPAL 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 535 or 585 & 1 MARTIN 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 28 & CARROLL 76 & DPWA Isospin-0 total \(\sigma\) \\
\hline 35 & KIM 71 & DPWA K-matrix analysis \\
\hline 30 & ARMENTEROS70 & HBC \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline 70 & ARMENTEROS70 & HBC \(\bar{K} N \rightarrow \Sigma \pi\) \\
\hline 22 & BARBARO-... 70 & HBC \(\bar{K} N \rightarrow \Sigma \pi\) \\
\hline 300 & BAILEY 69 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline 147 & ARMENTEROS68B & HBC \\
\hline
\end{tabular}

\section*{^(1810) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.05 to 0.35 \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \((16 \quad \pm 5) \%\) \\
\(\Gamma_{3}\) & \(\Lambda \eta\) & \\
\(\Gamma_{4}\) & \(\equiv K\) & \((40 \quad \pm 15) \%\) \\
\(\Gamma_{5}\) & \(\Sigma(1385) \pi\) & \(30-60 \%\) \\
\(\Gamma_{6}\) & \(N \bar{K}^{*}(892)\) & \\
\(\Gamma_{7}\) & \(N \bar{K}^{*}(892), S=1 / 2, P\)-wave & \\
\(\Gamma_{8}\) & \(N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \\
\hline
\end{tabular}

\section*{^(1810) BRANCHING RATIOS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline 0.05 to 0.35 OUR ESTIMATE & & & & & \\
\hline \(0.025 \pm 0.013\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.19 \pm 0.08\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.24 \pm 0.04\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline \(0.36 \pm 0.05\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel & \\
\hline
\end{tabular}

\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma(\Sigma(1385) \pi) / \Gamma_{\text {total }}\)} & \(\Gamma 5 / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.40 \pm 0.15\) & SARANTSEV 19 & \multicolumn{3}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • - -} \\
\hline 0.600 & 1 KAMANO 15 & DPW & Multichannel & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma\left(N \bar{K}^{*}(892), S=1 / 2, P\right.\)-wave \() / \Gamma_{\text {total }}\)} & \multicolumn{3}{|r|}{\(\Gamma_{7} / \Gamma\)} \\
\hline
\end{tabular}
- • We do not use the following data for averages, fits, limits, etc. • • •
\(0.003 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow \Sigma \pi\)} & \multicolumn{2}{|r|}{\[
\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{T E C N}{\text { COMMENT }}\)}} \\
\hline \(-0.08 \pm 0.05\) & ZHANG & 13A & DPWA & \\
\hline \(-0.24 \pm 0.04\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline - We do not u & data for ave & fits & limits, & tc. \\
\hline +0.25 or +0.23 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline < 0.01 & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline 0.17 & KIM & 71 & DPWA & K-matrix analysis \\
\hline +0.20 & 2 ARMENTE & & DPWA & \(\bar{K} N \rightarrow \Sigma \pi\) \\
\hline \(-0.13 \pm 0.03\) & BARBARO & & DPWA & \(\bar{K} N \rightarrow \Sigma \pi\) \\
\hline
\end{tabular}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\({ }^{2}\) The published sign has been changed to be in accord with the baryon-first convention.

\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1810) \Rightarrow N \bar{K}^{*}(892), S=1 / 2, P\)-wave \(\left(\Gamma_{1} \Gamma_{7}\right)^{1 / 2} / \Gamma\)
\(\frac{V A L U E}{-0.14+0.03} \quad 1 \frac{\text { DOCUMENT ID }}{1 \text { CAMERON 78B }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{K^{-} p \rightarrow \bar{K}^{*}}\)
\({ }^{1}\) The published sign has been changed to be in accord with the baryon-first convention.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1810) \rightarrow N \bar{K}^{*}(892), S=3 / 2, P_{\text {-wave }}\left(\Gamma_{1} \Gamma_{8}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(+0.38 \pm 0.06\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(+0.35 \pm 0.06\) & CAMERON & & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline
\end{tabular}

\section*{\(\Lambda(1810)\) REFERENCES}
\begin{tabular}{|c|c|c|}
\hline SARANTSEV & 19 & EPJ A55 180 \\
\hline KAMANO & 15 & PR C92 025205 \\
\hline ZHANG & 13A & PR C88 035205 \\
\hline GOPAL & 80 & Toronto Conf. 159 \\
\hline CAMERON & 78B & NP B146 327 \\
\hline GOPAL & 77 & NP B119 362 \\
\hline MARTIN & 77 & NP B127 349 \\
\hline Also & & NP B126 266 \\
\hline Also & & NP B126 285 \\
\hline
\end{tabular}


\section*{^(1820) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1820) \rightarrow N \bar{K}\)} \\
\hline \multicolumn{2}{|l|}{MODULUS PHASE \((0)\)} & DOCUMENT ID & TECN & COMMENT \\
\hline \multirow[t]{2}{*}{\(0.60 \pm \mathbf{0 . 1 2}\)} & -22 \(\pm 5\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline & \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.558 & -13 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1820) \rightarrow \Sigma \pi\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.34 \pm 0.07\) & \(174 \pm 5\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.357 & 168 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \({ }^{1}\) From the & ferred solu & Mand 15. & & \\
\hline
\end{tabular}


\footnotetext{
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1820) \rightarrow \Sigma(1385) \pi, F\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 1} \pm \mathbf{0 . 0 4}} \frac{\text { PHASE }\left({ }^{\circ}\right)}{\mathbf{5} \pm \mathbf{4 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- • We do not use the following data for averages, fits, limits, etc. • • •
\(0.201 \quad 151 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
}

\(\Lambda(1820)\) WIDTH
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{70 to 90 ( \(\approx \mathbf{8 0}\) ) OUR ESTIMATE} \\
\hline \(80 \pm 8\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(89 \pm 2\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(77 \pm 5\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(72 \pm 5\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(87 \pm 3\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 82 & DECLAIS & 77 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(81 \pm 5\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 76 or 76 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit} \\
\hline
\end{tabular}
\(\Lambda(1820)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \(55-65 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \(8-14 \%\) \\
\(\Gamma_{3}\) & \(\Sigma(1385) \pi\) & \(5-10 \%\) \\
\(\Gamma_{4}\) & \(\Sigma(1385) \pi, P\)-wave & \\
\(\Gamma_{5}\) & \(\Sigma(1385) \pi, F\)-wave & \((2.0 \pm 1.0) \%\) \\
\(\Gamma_{6}\) & \(\Lambda \eta\) & \\
\(\Gamma_{7}\) & \(\equiv K\) & \\
\(\Gamma_{8}\) & \(\Sigma \pi \pi\) & \\
\(\Gamma_{9}\) & \(N \overline{K^{*}}(892), S=1 / 2, F\)-wave & \\
\(\Gamma_{10}\) & \(N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \((3.0 \pm 1.0) \%\) \\
\(\Gamma_{11}\) & \(N \bar{K}^{*}(892), S=3 / 2, F\)-wave & \\
\hline
\end{tabular}

\section*{^(1820) BRANCHING RATIOS}

Errors quoted do not include uncertainties in the parametrizations used in the partial-wave analyses and are thus too small. See also "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\)
\(\frac{V A L U E}{0.55}\) to 0.65 OUR ESTIMATE
\(0.58 \pm 0.12\)
\(0.54 \pm 0.01\)
\(0.58 \pm 0.02\)
\(0.60 \pm 0.03\)


\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\Lambda \eta) / \Gamma_{\text {total }}\) & & & \(\Gamma_{6} / \overline{ }\) \\
\hline VALUE & document id & TECN COMMENT & \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 0.001 & 1 kamano & DPWA Multichannel & \\
\hline \({ }^{1}\) From the pre & in kamano 15. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\equiv K) / \Gamma_{\text {total }}\) & dociuent in & & \(\Gamma_{7 / \Gamma}\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline not seen & kamano & DPWA Multichannel & \\
\hline \({ }^{1}\) From the pre & kamano 15. & & \\
\hline
\end{tabular}
 - • We do not use the following data for averages, fits, limits, etc. - • not seen \(\quad{ }^{1}\) KAMANO \(\quad 15\) DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{1} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1820) \rightarrow \Sigma \pi\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TECN \({ }_{\text {COMMENT }}\left(\Gamma_{1} \Gamma_{2}\right.\)}} \\
\hline \(-0.28 \pm 0.01\) & ZHANG & 134 & & Multichan & \\
\hline \({ }_{-0.28 \pm 0.03}\) & GOPAL & 77 & DPWA & \(\bar{K} N\) mult & tichannel \\
\hline \(-0.28 \pm 0.01\) & kane & 74 & DPWA & \(K^{-} p \rightarrow\) & \\
\hline - We do not use the follo & data for av & , fits, & limits, & etc. - & \\
\hline -0.25 or -0.25 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) mult & tichannel \\
\hline
\end{tabular}



\section*{\(\Lambda(1830)\) POLE POSITION}

REAL PART
VALUE (MEV) DOCUMENT ID TECN COMMENT
\(\frac{1800}{}\) to \(\mathbf{1 8 6 0}\) ( \(\approx \mathbf{1 8 3 0 )}\) OUR ESTIMATE
\(1819.5 \pm 3.0\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel |
\(1899 \begin{array}{r}+35 \\ -37\end{array} \quad 1\) KAMANO 15 DPWA Multichannel
- - We do not use the following data for averages, fits, limits, etc. • •
\begin{tabular}{lllll}
1766 & +37 & 2 & KAMANO & 15 \\
1809 & ZHANG & \(13 A\) & DPWA Multichannel Multichannel
\end{tabular}
\({ }^{1}\) The preferred solution A in KAMANO 15 reports two poles. This entry is from the preferred solution A.
2 From the preferred solution A in KAMANO 15. Not seen in solution B.
\(-2 \times I M A G I N A R Y\) PART

- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{lcll}
\(212 \pm 94\) & 2 KAMANO & 15 & DPWA Multichannel \\
109 & ZHANG & \(13 A\) & DPWA Multichannel
\end{tabular}
\({ }^{1}\) The preferred solution A in KAMANO 15 reports two poles. This entry is from the
\({ }^{2}\) preferred solution A.

\section*{^(1830) POLE RESIDUES}

Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1830) \Rightarrow N \bar{K}\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 1 0}} \frac{\text { PHASE }()}{\mathbf{2 0} \pm \mathbf{1 4}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\) - - We do not use the following data for averages, fits, limits, etc. - -\(0.00502-80 \quad 1\) KAMANO 15 DPWA Multichannel \({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1830) \rightarrow \Sigma \pi\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 5} \mathbf{\pm 0 . 0 3}} \frac{\text { PHASE }()}{\mathbf{1 8 0} \pm \mathbf{1 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.00581 \quad 179 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1830) \Rightarrow \Lambda \eta\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.00941-65 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.



\section*{^(1890) POLE POSITION}

REAL PART


\section*{^(1890) POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(K N \rightarrow \Lambda(1890) \Rightarrow K N\)} \\
\hline MODULUS & PHASE (0) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.30 \pm 0.06\) & \(0 \pm 10\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline 0.241 & -23 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Normalized residue in } N \bar{K} \rightarrow \Lambda(1890) \rightarrow \Sigma \pi \\
& \frac{M O D U L U S}{\mathbf{0 . 1 4} \pm \mathbf{0 . 0 5}} \frac{\text { PHASE }\left({ }^{\circ}\right)}{\mathbf{1 4 8} \pm \mathbf{1 2}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }} \\
& \text { - - We do not use the following data for averages, fits, limits, etc. - - - } \\
& 0.101 \quad 104 \quad 1 \text { KAMANO } 15 \text { DPWA } \bar{K} N \text { multichannel } \\
& { }^{1} \text { From the preferred solution A in KAMANO } 15 .
\end{aligned}
\]

Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow \Lambda \eta\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.0485-54 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow \equiv K\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 6 5} \pm \mathbf{0 . 0 2 0}} \frac{\text { PHASE }()}{\mathbf{1 6 0} \pm \mathbf{3 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - • -
\(0.0562-85 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \Rightarrow \Lambda(1890) \Rightarrow \Sigma(1385) \pi, P\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 1} \mathbf{\pm 0 . 0 5}} \frac{\text { PHASE }()}{\mathbf{- 1 6 0} \mathbf{\pm} \mathbf{4 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
-. We do not use the following data for averages fits, limits, etc.
\(0.295-40 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow \Sigma(1385) \pi, F\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 0} \pm \mathbf{0 . 0 4}} \frac{\text { PHASE }()}{\mathbf{1 0} \pm \mathbf{5 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
0.06412715 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow N \bar{K}^{*}(892), S \equiv \mathbf{1 / 2}, P\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 3} \pm \mathbf{0 . 0 3}} \stackrel{\left.\text { DHASE }{ }^{\circ}\right)}{\text { SARUMENT ID }} \frac{\text { TECN }}{\text { SARANTSEV } 19} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.188-160 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow N \bar{K}^{*}(892), S=3 / 2, P\)-wave} \\
\hline MODULUS & PHASE ( \({ }^{(180)}\) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.05 \pm 0.03\) & \(\mathbf{1 8 0} \pm 40\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 0.209 & 15 & 1 KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow N \bar{K}^{*}(892), S=3 / 2, F\)-wave} \\
\hline MODULUS & PHASE ( \(\left.{ }^{( }\right)\) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.0141 & 129 & 1 KAMANO 15 & DPWA Multichannel \\
\hline
\end{tabular}

Normalized residue in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow \Lambda \omega, S \equiv 1 / 2, P\)-wave
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.24 \pm 0.06\) & \(\mathbf{1 5} \pm 20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{2}{|l|}{Normalized residue in \(\boldsymbol{N} \overline{\boldsymbol{K}} \rightarrow\)} & \(\Lambda(1890) \rightarrow \Lambda \omega\), & 3/2 & \(P\)-wave \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.15 \pm 0.08\) & -165 \(\pm 20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\section*{A(1890) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1870 to 1910 ( \(\approx \mathbf{1 8 9 0}\) ) OUR ESTIMATE} \\
\hline \(1873 \pm 5\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1900 \pm 5\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1897 \pm 5\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1908 \pm 10\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1894 \pm 10\) & HEMINGWAY & 75 & DPWA & \(K^{-} p \rightarrow \bar{K} N\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline \(1900 \pm 5\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1856 or 1868 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1900 & 2 NAKKASYAN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{2}\) Found in one of two best solutions.} \\
\hline
\end{tabular}

\section*{\(\Lambda\) (1890) WIDTH}

VALUE (MeV)
80 to 160 ( \(\approx 120\) ) OUR ESTIMATE
\begin{tabular}{rlll} 
& & \\
\(103 \pm 10\) & SARANTSEV & 19 & DPWA \(\bar{K} N\) multichannel \\
\(161 \pm 15\) & ZHANG & \(13 A\) & DPWA \(\bar{K} N\) multichannel \\
\(74 \pm 10\) & GOPAL & 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\(119 \pm 20\) & ALSTON-... & 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\(107 \pm 10\) & HEMINGWAY & 75 & DPWA \(K^{-} p \rightarrow \bar{K} N\)
\end{tabular}


\section*{^(1890) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\)
Resonances.
See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\)
Resonances.



\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{\Gamma}_{\text {VALUE }}^{\boldsymbol{\Sigma}(\boldsymbol{\Sigma}(1385) \pi, P \text {-wave }) / \Gamma_{\text {total }}}\)} & \multirow[b]{2}{*}{DOCUMENT ID} & \multirow[b]{2}{*}{TECN COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{6} / \Gamma\)} \\
\hline & & & \\
\hline \(0.06 \pm 0.03\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichanne & \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline 0.453 & 1 KAMANO 15 & DPWA \(\bar{K} N\) multichannel & \\
\hline \({ }^{1}\) From the preferred solution A & KAMANO 15. & & \\
\hline
\end{tabular}

\section*{\(\Lambda(1890)\) DECAY MODES} \((N \bar{K}) / \Gamma_{\text {total }}\) 0.24 to 0.36 OUR ESTIMATE
\(0.30 \pm 0.06\)
\(0.34 \pm 0.05\) GOPAL 80 DPWA \(\bar{K} N \rightarrow \bar{K} N\) HEMINGWAY 75 DPWA \(K^{-} p \rightarrow \bar{K} N\)
- - We do not use the following data for averages, fits, limits, etc. • • •
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{l} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Lambda(1890) \rightarrow \Lambda \omega
\]} & \multicolumn{3}{|r|}{\[
\left(\Gamma_{1} \Gamma_{13}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMEN & \\
\hline seen & BACCARI & 77 & IPWA & \(K^{-} p \rightarrow\) & \(\wedge \omega\) \\
\hline 0.032 & 1 NAKKASYAN & 75 & DPWA & \(K^{-} p \rightarrow\) & \(\wedge \omega\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Found in one of two best solutions.} \\
\hline
\end{tabular}
\(\Lambda(1890)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{^(1890) REFERENCES} \\
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
\hline ZHANG & 13A & PR C88 035205 & H. Zhang et al. & (KSU) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline ALSTON-... & 78 & PR D18 182 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline Also & & PRL 381007 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline CAMERON & 78 & NP B143 189 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline CAMERON & 78B & NP B146 327 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline BACCARI & 77 & NC 41A 96 & B. Baccari et al. & (SACL, CDEF) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline MARTIN & 77 & NP B127 349 & B.R. Martin, M.K. Pidcock, & R.G. Moorhouse (LOUC + ) IJP \\
\hline Also & & NP B126 266 & B.R. Martin, M.K. Pidcock & (LOUC) \\
\hline Also & & NP B126 285 & B.R. Martin, M.K. Pidcock & (LOUC) IJP \\
\hline HEMINGWAY & 75 & NP B91 12 & R.J. Hemingway et al. & (CERN, HEIDH, MPIM) IJP \\
\hline NAKKASYAN & 75 & NP B93 85 & A. Nakkasyan & (CERN) IJP \\
\hline LANGBEIN & 72 & NP B47 477 & W. Langbein, F. Wagner & (MPIM) IJP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(1890) \rightarrow N \overline{K^{*}}(892), S=1 / 2\)} & \(\left(\Gamma_{1} \Gamma^{\prime}\right.\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(-0.17 \pm 0.05\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multi & channel \\
\hline \(-0.07 \pm 0.03\) & 1,2 CAMERON & 78B & DPWA & \(K^{-} p \rightarrow\) & \(N \bar{K}^{*}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Upper limits on the \(P_{3}\) and \(F_{3}\) waves are each 0.03.} \\
\hline \multicolumn{6}{|l|}{\({ }^{2}\) The published sign has been changed to be in accord with the baryon-first convention.} \\
\hline
\end{tabular}
\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \Rightarrow \Lambda(1890) \Rightarrow N \bar{K}^{*}(892), S=3 / 2, F\)-wave


- - We do not use the following data for averages, fits, limits, etc. • • •
\(0.001 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.

\begin{tabular}{|c|c|c|c|}
\hline \(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \Rightarrow\) & ) \(\Rightarrow \Sigma(1385) \pi\) & \(P\)-wave & \(\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN COMMENT & \\
\hline \(<0.03\) & CAMERON 78 & DPWA \(K^{-} p \rightarrow\) & \(\Sigma(1385) \pi\) \\
\hline
\end{tabular}

\(-0.31 \pm 0.04 \quad\) ZHANG 13A DPWA \(\bar{K} N\) multichannel
\(-0.126 \pm 0.055 \quad 1\) CAMERON 78 DPWA \(K^{-} p \rightarrow \Sigma(1385) \pi\)
\({ }^{1}\) The published sign has been changed to be in accord with the baryon-first convention.

^(2000) BRANCHING RATIOS
See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\Gamma(N \bar{K}) / \Gamma_{\text {total }}
\] VALUE} & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline & DOCUMEN & & TECN & COMMENT & \\
\hline \(0.27 \pm 0.06\) & ZHANG & 13A & DPWA & Multichannel & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2000) \rightarrow \Sigma \pi\)} & \multirow[b]{2}{*}{TECN} & & \multirow[t]{2}{*}{\[
\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMEN & & & COMMENT & \\
\hline \(-0.07 \pm 0.03\) & ZHANG & 13A & DPWA & Multichan & \\
\hline
\end{tabular}

\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2000) \rightarrow N \bar{K}^{*}(892), S=1 / 2, S\)-wave \(\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma\) \(\frac{V A L U E}{-0.12 \pm 0.03} \quad 1 \frac{\text { DOCUMENT ID }}{\text { CAMERON 78B }} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{K^{-} p \rightarrow N \bar{K}^{*}}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Lambda(2000) \rightarrow N \bar{K}^{*}(892), S=3 / 2, D \text {-wave }\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(+0.34 \pm 0.05\) & ZHANG & 13A & DPWA & Multichan & \\
\hline \(+0.09 \pm 0.03\) & CAMERON & & DPWA & \(K^{-} p \rightarrow\) & \(N \bar{K}^{*}\) \\
\hline
\end{tabular}

\section*{\(\Lambda(2000)\) REFERENCES}


OMITTED FROM SUMMARY TABLE

\section*{^(2050) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline Value (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{\[
\frac{\text { TECN }}{\text { DPWA }}
\]} & \multirow[t]{2}{*}{\(\frac{\text { COMMENT }}{\text { Multichannel }}\)} \\
\hline 2056圭22 & ZHANG & 13A & & \\
\hline & \multicolumn{2}{|l|}{^(2050) WIDTH} & & \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(493 \pm 61\) & ZHANG & 13A & DPWA & Multichanne| \\
\hline
\end{tabular}
^(2050) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{} & Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \((19 \pm 4) \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \((6.0 \pm 3.0) \%\) \\
\(\Gamma_{3}\) & \(\Sigma^{*}(1385) \pi, S\)-wave & \((8 \pm 6) \%\) \\
\(\Gamma_{4}\) & \(\Sigma^{*}(1385) \pi, D\)-wave & \((4.0 \pm 3.0) \%\) \\
\(\Gamma_{5}\) & \(N \bar{K}^{*}(892), S=1 / 2\) & \((23 \pm 7) \%\) \\
\hline
\end{tabular}

\section*{^(2050) BRANCHING RATIOS}


OMITTED FROM SUMMARY TABLE

\section*{\(\Lambda(2070)\) POLE POSITION}

\section*{REAL PART}
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{}\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\frac{-2 \times I M A G I N A R Y ~ P A R T}{} \frac{\text { VALUE (MeV) }}{360 \pm 45}
\]} \\
\hline \\
\hline
\end{tabular}
\(\frac{\text { DOCUMENT ID }}{\text { SARANTSEV }} 19\)
TECN
DPWA
\(\frac{\text { DOCUMENT ID }}{\bar{K} N \text { multichannel }}\)
SARANTSEV
19
^(2070) POLE RESIDUES
Normalized residue in \(N \bar{K} \Rightarrow \Lambda(2070) \Rightarrow N \bar{K}\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 5} \pm \mathbf{0 . 0 5}} \frac{\text { PHASE }()}{\mathbf{- 3 7} \pm \mathbf{1 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Normalized residue in \(N \bar{K} \rightarrow \Lambda(2070) \rightarrow \Sigma \pi\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 0} \pm \mathbf{0 . 0 3}} \frac{\text { PHASE }(\rho)}{\mathbf{- 4 7} \pm \mathbf{8}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Normalized residue in \(N \bar{K} \rightarrow\)
\(\qquad\)}} & \multicolumn{3}{|l|}{\(\Lambda(2070) \rightarrow \Lambda \omega, S=1 / 2, P\)-wave} \\
\hline & & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.10 \pm 0.04\) & \(150 \pm 17\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Normaliz & due in & \(\Lambda(2070) \rightarrow \Lambda \omega\), & 3/2 & -wave \\
\hline modulus & PHASE ( ) & DOCUMENT ID & TECN & COMMENT \\
\hline 0.08 \(\pm 0.04\) & \(20 \pm 30\) & SARANTSEV 19 & DPWA & \(\overline{\mathrm{K}} \mathrm{N}\) multichan \\
\hline
\end{tabular}

Normalized residue in \(N \bar{K} \rightarrow \Lambda(2070) \rightarrow \Lambda \omega, \mathrm{S}=3 / 2, F\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 4} \pm \mathbf{0 . 0 2}} \frac{\text { PHASE }(\rho)}{\mathbf{- 1 7 5} \pm \mathbf{3 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Normalized residue in \(N \bar{K} \rightarrow \Lambda(2070) \rightarrow \boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi, P\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 2} \pm \mathbf{0 . 0 7}} \frac{\text { PHASE }(\rho)}{-\mathbf{1 6 0} \pm \mathbf{5 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Normalized residue in \(N \bar{K} \rightarrow \Lambda(2070) \rightarrow \Sigma(1385) \pi, F\)-wave
MODULUS PHASE \((\rho)\) DOCUMENT ID TECN COMMENT \(\overline{0.07 \pm 0.04} \frac{-\mathbf{1 4 5} \pm \mathbf{5 0}}{\text { SARANTSEV } 19} \frac{\mathrm{DPWA}}{\bar{K} N \text { multichannel }}\)


Baryon Particle Listings
＾（2080），\(\Lambda(2085)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{＾（2080）BRANCHING RATIOS} \\
\hline \[
\Gamma(N \bar{K}) / \Gamma_{\text {total }}
\] & DOCUMENT ID & & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline \(0.11 \pm 0.03\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\[
\Gamma(\Sigma \pi) / \Gamma_{\text {total }}
\]} & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline & DOCUMENT ID & & tecn & commen & \\
\hline \(0.05 \pm 0.02\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\[
\Gamma(\equiv K) / \Gamma_{\text {total }}
\]} & & & & & \(\Gamma_{3} /{ }^{\text {／}}\) \\
\hline & Document id & & TECN & COMME & \\
\hline 0．04 \(\pm 0.01\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\(\Gamma(\Lambda \omega, S=1 / 2, D\)－wave \() / \Gamma_{\text {total }}\)} & & & & & \(\Gamma_{4} / \Gamma\) \\
\hline & DOCUMENT ID & & TECN & COMMENT & \\
\hline 0．04 \(\pm 0.02\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\(\Gamma_{\text {VALUE }}(\Lambda \omega, S=3 / 2, D\)－wave \() / \Gamma_{\text {total }}\)} & & & & & 「5／「 \\
\hline & DOCUMENT ID & & IECN & COMMEN & \\
\hline \(0.08 \pm 0.03\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\(\Gamma_{\text {VALLE }}(\underline{1385)} \pi, D\)－wave \() / \Gamma_{\text {total }}\)} & & & & & \(\Gamma_{6} / \overline{ }\) \\
\hline & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.15 \pm 0.05\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\(\Gamma_{\text {VALUE }}(\Sigma(1385) \pi, G\) wave \() / \Gamma_{\text {total }}\)} & & & & & \(\Gamma_{7} /{ }^{\text {／}}\) \\
\hline & document id & & TECN & COMmen & \\
\hline \(0.03 \pm 0.02\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{\(\Gamma\) V（NALUE \(\bar{K}^{*}\)（892）， \(\mathrm{S}=1 / 2, D\)－wave \()\)} & \(/ \Gamma_{\text {total }}\) & & & & \(\Gamma_{8} / \Gamma\) \\
\hline & DOCUMENT ID & & TECN & comment & \\
\hline \(0.17 \pm 0.09\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multirow[t]{2}{*}{} & \(/ \Gamma_{\text {total }}\) & & & & 「9／「 \\
\hline & Document io & & TECN & comment & \\
\hline \(0.25 \pm 0.16\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \multicolumn{6}{|c|}{＾（2080）REFERENCES} \\
\hline SARANTSEV 19 EPJ A55 180 & \multicolumn{2}{|l|}{A．v．Sarantev et al．} & & \multicolumn{2}{|c|}{（BONN，PNPI）} \\
\hline ＾（2085） \(7 / 2^{+}\) & & \()=\) & \(0\left(\frac{7}{2}+\right)\) & Status： & \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
was \(\Lambda(2020)\)
In LITCHFIELD 71，need for the state rests solely on a possibly inconsistent polarization measurement at \(1.784 \mathrm{GeV} / c\) ．HEMING－ WAY 75 does not require this state．GOPAL 77 does not need it in either \(N \bar{K}\) or \(\Sigma \pi\) ．With new \(K^{-} n\) angular distributions included， DECLAIS 77 sees it．However，this and other new data are included in GOPAL 80 and the state is not required．BACCARI 77 weakly supports it．

\section*{＾（2085）POLE POSITION}

REAL PART
VALUE DOCUMENT ID COMMENT
－• We do not use the following data for averages，fits，limits，etc．• • •
\(1757 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15．Solution B reports \(M=2041+80\) MeV．
\(-2 \times\) IMAGINARY PART
VALUE DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－
\(146 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15．Solution B reports \(\mathrm{M}=2388_{-}^{+114} \mathrm{MeV}\) ．

\section*{＾（2085）POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\) ．
Normalized residue in \(N \bar{K} \rightarrow \Lambda(2085) \rightarrow N \bar{K}\)
MODULUS PHASE（ \({ }^{\circ}\)＿DOCUMENT ID＿TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．• •－
\(0.000145-77 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|}
\hline Normalized residue in \(N \bar{K} \rightarrow\) modulus PHASE（） & \[
\begin{gathered}
\Lambda(\mathbf{2 0 8 5}) \rightarrow \boldsymbol{\Sigma} \boldsymbol{\pi} \boldsymbol{\operatorname { D O C U M E N T } \text { ID }}
\end{gathered}
\] & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline 0.0112120 & 1 KAMANO 15 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{3}{|l|}{Normalized residue in \(\Lambda \bar{K} \rightarrow \Lambda(2085) \rightarrow \Lambda \eta\)} \\
\hline \multicolumn{3}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(0.000786-100\) & 1 KAMANO 15 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Normalized residue in \(N \bar{K} \rightarrow \Lambda(2085) \rightarrow \Sigma(1385) \pi, F\)－wave \\
MODULUS PHASE（ DOCUMENT ID TECN COMMENT
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline 0.00451 －82 & \({ }^{1}\) Kamano 15 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{3}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Lambda(2085) \rightarrow \boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi, H\) wave} \\
\hline \multicolumn{3}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－－} \\
\hline 0.0000298 － 128 & 1 KAMANO 15 & DPWA Multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline & ＾（2085）MASS & \\
\hline VALUE（MeV） & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{～ 2020 OUR ESTIMATE} \\
\hline \(2043 \pm 22\) & ZHANG 13A & DPWA Multichannel \\
\hline 2140 & BACCARI 77 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 2117 & DECLAIS 77 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(2100 \pm 30\) & LITCHFIELD 71 & DPWA \(K^{-} p \rightarrow \bar{K} N\) \\
\hline \(2020 \pm 20\) & BARBARO－．．． 70 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{3}{|c|}{\(\Lambda\)（2085）WIDTH} \\
\hline VALUE（MeV） & DOCUMENT ID & TECN COMmENT \\
\hline \(200 \pm 75\) & ZHANG 13A & DPWA Multichannel \\
\hline 128 & BACCARI 77 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 167 & DECLAIS 77 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(120 \pm 30\) & LITCHFIELD 71 & DPWA \(K^{-} p \rightarrow \bar{K} N\) \\
\hline \(160 \pm 30\) & BARBARO－．．． 70 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline
\end{tabular}
＾（2085）DECAY MODES
\begin{tabular}{|c|c|c|}
\hline & Mode & Fraction（ \(\Gamma_{i} / \Gamma^{\text {）}}\) \\
\hline \(\Gamma_{1}\) & \(N \bar{K}\) & \\
\hline \(\Gamma\) & \(\Sigma \pi\) & \\
\hline \(\Gamma 3\) & \(\wedge \eta\) & \\
\hline \(\Gamma_{4}\) & \(\Sigma(1385) \pi, F\)－wave & \\
\hline \(\Gamma_{5}\) & \(\Sigma(1385) \pi, H\)－wave & \\
\hline \(\Gamma_{6}\) & \(N \bar{K}^{*}\)（892），\(S=1 / 2, F\)－wave & \\
\hline \(\Gamma_{7}\) & \(N \bar{K}^{*}\)（892），\(S=3 / 2, F\)－wave & \\
\hline 「8 & \(N \bar{K}^{*}(892), S=3 / 2, H\)－wave & \\
\hline \(\Gamma_{9}\) & \(\wedge \omega\) & \\
\hline \(\Gamma_{10}\) & \(N \bar{K}^{*}(892), S=1 / 2\) & \((30 \pm 9) \%\) \\
\hline
\end{tabular}

\section*{＾（2085）BRANCHING RATIOS}

See＂Sign conventions for resonance couplings＂in the Note on \(\Lambda\) and \(\Sigma\) Resonances．

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\Lambda \eta) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENTID TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \multicolumn{6}{|l|}{0.0021 KAMANO 15 DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENT ID - TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{6}{|l|}{0.1051515 DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{6}{|l|}{not seen 1 KAMANO 15 DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \multicolumn{6}{|l|}{not seen 1 KAMANO 15 DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENTID IECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \multicolumn{6}{|l|}{\(0.001{ }^{1}\) KAMANO 15 DPWA Multichannel} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{VALUE DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - •} \\
\hline not seen & 1 KAMANO & \[
15
\] & DPWA & Multichannel & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{6}{|l|}{\(\Gamma\left(N \bar{K}{ }^{*}(892), S=1 / 2\right) / \Gamma_{\text {total }}{ }^{\text {a }}\) ( \(\Gamma_{10} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.30 \pm 0.09\) & ZHANG & 13A & DPWA & Multichanne & \\
\hline \multicolumn{6}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2085) \rightarrow \Sigma \pi\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(+0.02 \pm 0.01\) & ZHANG & 13A & DPWA & Multichannel & \\
\hline \(-0.15 \pm 0.02\) & BARBARO-.. & 70 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) & \\
\hline \multicolumn{6}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2085) \rightarrow \Lambda \omega \quad\left(\Gamma_{1} \Gamma_{g}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(<0.05\) & BACCARI & 77 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) & \\
\hline
\end{tabular}


Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition Physics Letters 111B 1 (1982).
This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and in invariant-mass distributions around 2100 MeV used to be listed in a separate entry immediately following. It may be found in our 1986 edition Physics Letters 170B 1 (1986).

\section*{^(2100) POLE POSITION}

REAL PART
VALUE (MeV)
\(2040 \pm 14\)
DOCUMENT ID TECN COMMENT
- . We do not use the following data for averages, fits, limits, etc. • •

2023 ZHANG 13A DPWA Multichannel
-2×IMAGINARY PART
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{2 1 5} \pm \mathbf{2 9}}\)
- - We do not use the following data for averages, fits, limits, etc.

239 ZHANG 13A DPWA Multichanne

\section*{^(2100) POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{p o l e} / 2\).
\[
\text { Normalized residue in } N \bar{K} \rightarrow \Lambda(2100) \rightarrow N \bar{K}
\]

\(\Lambda(2100)\) WIDTH


\section*{^(2100) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\)
\(\Gamma_{1} / \Gamma\)
VALUE DOCUMENT ID TECN COMMENT
\begin{tabular}{llll|}
\hline \(\mathbf{0 . 2 5}\) to \(\mathbf{0 . 3 5} \mathbf{( \approx \mathbf { 0 . 3 0 } )} \mathbf{O U R ~ E S T I M A T E}\) & & \\
\(0.24 \pm 0.05\) & SARANTSEV & 19 & DPWA \(\bar{K} N\) multichannel \\
\(0.23 \pm 0.01\) & ZHANG & \(13 A\) & DPWA Multichannel \\
\(0.34 \pm 0.03\) & GOPAL & 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\(0.24 \pm 0.06\) & DEBELLEFON 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\(0.31 \pm 0.03\) & HEMINGWAY & 75 & DPWA \(K^{-} p \rightarrow \bar{K} N\) \\
- - We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\)
\end{tabular}

Baryon Particle Listings
^(2100), \(\Lambda(2110)\)


\section*{^(2110) POLE RESIDUE}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).

\section*{Normalized residue in \(N \bar{K} \Rightarrow \Lambda(2110) \Rightarrow N \bar{K}\)}


\section*{^(2110) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2050 to 2130 ( \(\approx \mathbf{2 0 9 0}\) ) OUR ESTIMATE} \\
\hline \(2086 \pm 12\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(2036 \pm 13\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(2092 \pm 25\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(2125 \pm 25\) & CAMERON & 78B & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline \(2106 \pm 50\) & DEBELLEFON & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(2140 \pm 20\) & DEBELLEFON & 77 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(2100 \pm 50\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(2112 \pm 7\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 2137 & BACCARI & 77 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 2103 & \({ }^{1}\) NAKKASYAN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline
\end{tabular}
\(\Lambda(2110)\) WIDTH
VALUE (MeV)
DOCUMENT ID
TECN COMMENT
200 to 300 ( \(\approx \mathbf{2 5 0}\) ) OUR ESTIMATE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The NAKKASYAN 75 values are from the two best solutions found. Each has the \(\Lambda(2100)\) and one additional resonance ( \(P_{3}\) or \(F_{5}\) ).} \\
\hline \multicolumn{5}{|l|}{\({ }_{3}^{2}\) Note that the three for BACCARI 77 entries are for three different waves.} \\
\hline \multicolumn{5}{|l|}{\({ }^{3}\) The published sign has been changed to be in accord with the baryon-first convention. The upper limit on the \(G_{3}\) wave is 0.03 .} \\
\hline \multicolumn{5}{|c|}{^(2100) REFERENCES} \\
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline ZHANG & 13A & PR C88 035205 & H. Zhang et al. & (KSU) \\
\hline PDG & 86 & PL 170B 1 & M. Aguilar-Benitez et al. & (CERN, CIT+) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline CAMERON & 78B & NP B146 327 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline DEBELLEFON & 78 & NC 42A 403 & A. de Bellefon et al. & (CDEF, SACL) IJP \\
\hline BACCARI & 77 & NC 41A 96 & B. Baccari et al. & (SACL, CDEF) IJP \\
\hline DECLAIS & 77 & CERN 77-16 & Y. Declais et al. & (CAEN, CERN) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline HEMINGWAY & 75 & NP B91 12 & R.J. Hemingway et al. & (CERN, HEIDH, MPIM) IJP \\
\hline NAKKASYAN & 75 & NP B93 85 & A. Nakkasyan & (CERN) IJP \\
\hline KANE & 74 & LBL-2452 & D.F. Kane & (LBL) IJP \\
\hline RADER & 73 & NC 16A 178 & R.K. Rader et al. & (SACL, HEID, CERN+) \\
\hline LITCHFIELD & 71 & NP B30 125 & P.J. Litchfield et al. & (RHEL, CDEF, SACL) IJP \\
\hline MULLER & 69B & Thesis UCRL 19372 & R.A. Muller & (LRL) \\
\hline TRIPP & 67 & NP B3 10 & R.D. Tripp et al. & (LRL, SLAC, CERN+) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(274 \pm 25\) & SARANTSEV & 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(400 \pm 38\) & ZHANG & 13A & DPWA \(\bar{K} N\) multichannel \\
\hline \(245 \pm 25\) & GOPAL & 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(160 \pm 30\) & CAMERON & 78B & DPWA \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline \(251 \pm 50\) & DEBELLEFON & 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(140 \pm 20\) & DEBELLEFON & 77 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(200 \pm 50\) & GOPAL & 77 & DPWA \(\bar{K} N\) multichannel \\
\hline \(190 \pm 30\) & KANE & 74 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 132 & BACCARI & 77 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 391 & 1 NAKKASYAN & 75 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline & \multicolumn{2}{c}{\(\Lambda(\mathbf{2 1 1 0})\) DECAY MODES } \\
& & \\
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \(5-25 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \(10-40 \%\) \\
\(\Gamma_{3}\) & \(\Lambda \omega\) & seen \\
\(\Gamma_{4}\) & \(\Lambda \omega, S=1 / 2, P\)-wave & \\
\(\Gamma_{5}\) & \(\Lambda \omega, S=3 / 2, P\)-wave & \((5.0 \pm 2.0) \%\) \\
\(\Gamma_{6}\) & \(\Lambda \omega, S=3 / 2, F\)-wave & \\
\(\Gamma_{7}\) & \(\equiv K\) & \\
\(\Gamma_{8}\) & \(\Sigma(1385) \pi\) & seen \\
\(\Gamma_{9}\) & \(\Sigma(1385) \pi, P\)-wave & \\
\(\Gamma_{10}\) & \(N \bar{K}^{*}(892)\) & \(10-60 \%\) \\
\(\Gamma_{11}\) & \(N \bar{K}^{*}(892), S=1 / 2\) & \\
\(\Gamma_{12}\) & \(N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \\
\hline
\end{tabular}

\section*{\(\Lambda(2110)\) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\) & & & & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline 0.05 to 0.25 OUR ESTIMATE & & & & \\
\hline \(0.020 \pm 0.005\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.083 \pm 0.005\) & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.07 \pm 0.03\) & GOPAL 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline \(0.27 \pm 0.06\) & 2 DEBELLEFON 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline - - We do not use the following & data for averages, fits, & limits, & etc. \(\bullet\) & \\
\hline \(0.07 \pm 0.03\) & GOPAL 77 & DPWA & See GOPAL 80 & \\
\hline \(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\) & & & & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.88 \pm 0.20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(\Gamma(\Lambda \omega, S=1 / 2, P\)-wave \() / \Gamma_{\text {total }}\) & & & & 「4/Г \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(<0.01\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(\Gamma(\Lambda \omega, S=3 / 2, P\)-wave \() / \Gamma_{\text {total }}\) & & & & \(\Gamma_{5} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.05 \pm 0.02\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline
\end{tabular}
\(\boldsymbol{\Gamma ( \Lambda \omega , S \equiv \mathbf { 3 } / \mathbf { 2 } , \boldsymbol { F } \text { -wave } ) / \boldsymbol { \Gamma } _ { \text { total } }}\)\begin{tabular}{l} 
VALUE \\
\(<0.01\)
\end{tabular}\(\frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\boldsymbol{\Gamma}_{\mathbf{6}} / \boldsymbol{\Gamma}}{\text { DPWCN }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma\left(\right.\) 三K)/ \(\Gamma_{\text {total }}\) & & & \multicolumn{2}{|c|}{\(\Gamma 7 / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(\sim 0\) & SARANTSEV & 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2110) \rightarrow \Sigma \pi\)} & \multicolumn{2}{|c|}{\(\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(+0.04 \pm 0.01\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(+0.14 \pm 0.01\) & DEBELLEFON 7 & 77 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(+0.20 \pm 0.03\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(+0.10 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Lambda(2110) \Rightarrow \Lambda \omega\)} & \multicolumn{2}{|c|}{\(\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(<0.05\) & BACCARI & 77 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 0.112 & 1 NAKKASYAN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow\) & \(\Lambda(2110) \rightarrow \Sigma(1385) \pi\), & \(P\)-wave & \(\left(\Gamma_{1} \Gamma_{9}\right)^{1 / 2} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(+0.04 \pm 0.01\) & ZHANG 13A & DPWA & Multichannel \\
\hline \(+0.071 \pm 0.025\) & \({ }^{3}\) CAMERON 78 & DPWA & \(K^{-} p \rightarrow \Sigma(1385) \pi\) \\
\hline \[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow
\] & \(\Lambda(2110) \rightarrow N \overline{K^{*}}\) (892), & \[
S=1 / 2
\] & \[
\left(\Gamma_{1} \Gamma_{11}\right)^{1 / 2} / \Gamma
\] \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(-0.09 \pm 0.01\) & ZHANG 13A & DPWA & Multichannel \\
\hline \(-0.17 \pm 0.04\) & \({ }^{4}\) CAMERON 78B & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline
\end{tabular}


\section*{Baryon Particle Listings}

\section*{^(2325), ^(2350), \(\Lambda(2585)\) Bumps}
\begin{tabular}{|c|c|}
\hline ^(2350) 9/2 \({ }^{+}\) & \(I\left(J^{P}\right)=0\left(\frac{9}{2}+\right.\) Status: \(* *\) \\
\hline \multicolumn{2}{|l|}{DAUM 68 favors \(J^{P}=7 / 2^{-}\)or \(9 / 2^{+}\). BRICMAN 70 favors \(9 / 2^{+}\). LASINSKI 71 suggests three states in this region using a Pomeron + resonances model. There are now also three formation experiments from the College de France-Saclay group, DEBELLEFON 77 , BACCARI 77 , and DEBELLEFON 78 , which find \(9 / 2^{+}\)in energy dependent partial-wave analyses of \(\bar{K} N \rightarrow \Sigma \pi, \Lambda \omega\), and \(N \bar{K}\).} \\
\hline
\end{tabular}

\section*{^(2350) MASS}
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{2340 to 2370 ( \(\approx \mathbf{2 3 5 0}\) ) OUR ESTIMATE} \\
\hline \(2370 \pm 50\) & DEBELLEFON 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(2365 \pm 20\) & DEBELLEFON 77 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(2358 \pm 6\) & BRICMAN 70 & CNTR Total, charge exchange \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • - -} \\
\hline 2372 & BACCARI 77 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline \(2344 \pm 15\) & COOL 70 & CNTR \(K^{-} p, K^{-} d\) total \\
\hline \(2360 \pm 20\) & LU 70 & CNTR \(\gamma p \rightarrow K^{+} Y^{*}\) \\
\hline \(2340 \pm 7\) & BUGG 68 & CNTR \(K^{-} p, K^{-} d\) total \\
\hline
\end{tabular}
\(\Lambda(2350)\) WIDTH
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{100 to 250 ( \(\approx 150\) ) OUR ESTIMATE} \\
\hline \(204 \pm 50\) & DEBELLEFON 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(110 \pm 20\) & DEBELLEFON 77 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(324 \pm 30\) & BRICMAN 70 & CNTR Total, charge exchange \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 257 & BACCARI 77 & DPWA \(K^{-} p \rightarrow \Lambda \omega\) \\
\hline 190 & COOL 70 & CNTR \(K^{-} p, K^{-} d\) total \\
\hline 55 & LU 70 & CNTR \(\gamma p \rightarrow K^{+} Y^{*}\) \\
\hline \(140 \pm 20\) & BUGG 68 & CNTR \(K^{-} p, K^{-} d\) total \\
\hline
\end{tabular}
^(2350) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \(\sim 12 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \(\sim 10 \%\) \\
\(\Gamma_{3}\) & \(\Lambda \omega\) & \\
\hline
\end{tabular}
^(2350) BRANCHING RATIOS
See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.


\section*{\(\Lambda(2350)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DEBELLEFON & 78 & NC 42A 403 & A. de Bellefon et al. & & (CDEF, SACL) IJP \\
\hline BACCARI & 77 & NC 41A 96 & B. Baccari et al. & & (SACL, CDEF) IJP \\
\hline DEBELLEFON & 77 & NC 37A 175 & A. de Bellefon et al. & & (CDEF, SACL) IJP \\
\hline LASINSKI & 71 & NP B29 125 & T.A. Lasinski & & (EFI) IJP \\
\hline BRICMAN & 70 & PL 31B 152 & C. Bricman et al. & (CERN, & CAEN, SACL) \\
\hline COOL & 70 & PR D1 1887 & R.L. Cool et al. & & (BNL)। \\
\hline Also & & PRL 161228 & R.L. Cool et al. & & (BNL)। \\
\hline LU & 70 & PR D2 1846 & D.C. Lu et al. & & (YALE) \\
\hline BUGG & 68 & PR 1681466 & D.V. Bugg et al. & (RHEL, & BIRM, CAVE) I \\
\hline DAUM & 68 & NP B7 19 & C. Daum et al. & & (CERN) JP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\wedge(2585) \mathrm{Bu}\) & \multicolumn{3}{|r|}{\(I\left(J^{P}\right)=0\left(?^{?}\right)\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Status: **}} \\
\hline \multicolumn{4}{|l|}{OMITTED FROM SUMMARY TABLE} & & \\
\hline \multicolumn{6}{|c|}{\[
\begin{aligned}
& \Lambda(2585) \text { MASS } \\
& \text { (BUMPS) }
\end{aligned}
\]} \\
\hline \(V A L U E(\mathrm{MeV})\) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{₹ 2585 OUR ESTIMATE} \\
\hline \(2585 \pm 45\) & ABRAMS & 70 & CNTR & \(K^{-} p, K\) & \(d\) total \\
\hline \(2530 \pm 25\) & LU & 70 & CNTR & \(\gamma p \rightarrow K\) & \\
\hline
\end{tabular}
\(\Lambda\) (2585) WIDTH
(BUMPS)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline 300 & ABRAMS & 70 & CNTR & \(K^{-} p, K^{-} d\) total \\
\hline 150 & LU & 70 & CNTR & \(\gamma p \rightarrow K^{+} Y^{*}\) \\
\hline
\end{tabular}
^(2585) DECAY MODES (BUMPS)
\begin{tabular}{lllll}
\multicolumn{3}{c}{ Mode } \\
\hline
\end{tabular}
^(2585) FOOTNOTES (BUMPS)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{^(2585) REFERENCES (BUMPS)} \\
\hline ABRAMS & 70 & PR D1 1917 & R.J. Abrams et al. & (BNL)। \\
\hline Also & & PRL 161228 & R.L. Cool et al. & (BNL) । \\
\hline BRICMAN & 70 & PL 31B 152 & C. Bricman et al. & (CERN, CAEN, SACL) \\
\hline LU & 70 & PR D2 1846 & D.C. Lu et al. & (YALE) \\
\hline
\end{tabular}

\(\Sigma^{+}\)
\(\prime\left(J^{P}\right)=1\left(\frac{1}{2}+\right)\) Status: \(* * * *\)
We have omitted some results that have been superseded by later experiments. See our earlier editions.

\section*{\(\Sigma^{+}\)MASS}

The fit uses \(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\), and \(\Lambda\) mass and mass-difference measurements.
VALUE (MeV) EVTS DOCUMENTID TECN COMMENT
\(\mathbf{1 1 8 9 . 3 7} \pm \mathbf{0 . 0 7}\) OUR FIT Error includes scale factor of 2.2
\(\mathbf{1 1 8 9 . 3 7} \pm \mathbf{0 . 0 6}\) OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below.
\begin{tabular}{lrlrll}
\(1189.33 \pm 0.04\) & 607 & 1 BOHM & 72 & EMUL & \\
\(1189.16 \pm 0.12\) & & HYMAN & 67 & HEBC & \\
\(1189.61 \pm 0.08\) & 4205 & SCHMIDT & 65 & HBC & See note with 1 mass \\
\(1189.48 \pm 0.22\) & 58 & BHOWMIK & 64 & EMUL & \\
\(1189.38 \pm 0.15\) & 144 & \({ }^{2}\) BARKAS & 63 & EMUL &
\end{tabular}
\({ }^{1}\) BOHM 72 is updated with our \(1973 K^{-}, \pi^{-}\), and \(\pi^{0}\) masses (Reviews of Modern Physics 45 S1 (1973)).
2 These masses have been raised 30 keV to take into account a 46 keV increase in the proton mass and a 21 keV decrease in the \(\pi^{0}\) mass (note added 1967 edition, Reviews of Modern Physics 391 (1967)).

\(\Sigma^{+}\)MEAN LIFE
Measurements with fewer than 1000 events have been omitted.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(\mathbf{0 . 8 0 1 8} \pm \mathbf{0 . 0 0 2 6}\) OUR AVERAGE} \\
\hline \(0.8038 \pm 0.0040 \pm 0.0014\) & & BARBOSA 00 & E761 & hyperons, 375 GeV \\
\hline \(0.8043 \pm 0.0080 \pm 0.0014\) & & \({ }^{1}\) BARBOSA 00 & E761 & hyperons, 375 GeV \\
\hline \(0.798 \pm 0.005\) & 30k & MARRAFFINO 80 & HBC & \[
\begin{gathered}
K^{-} p 0.42-0.5 \\
\mathrm{GeV} / c
\end{gathered}
\] \\
\hline \(0.807 \pm 0.013\) & 5719 & CONFORTO 76 & HBC & \(K^{-} p 1-1.4 \mathrm{GeV} / c\) \\
\hline \(0.795 \pm 0.010\) & 20k & EISELE 70 & HBC & \(K^{-} p\) at rest \\
\hline \(0.803 \pm 0.008\) & 10664 & BARLOUTAUD69 & HBC & \[
\begin{gathered}
K_{-}^{-} p 0.4-1.2 \\
\mathrm{GeV} / \mathrm{c}
\end{gathered}
\] \\
\hline \(0.83 \pm 0.032\) & 1300 & \({ }^{2}\) CHANG 66 & HBC & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) This is a measurement of the \(\bar{\Sigma}-\) lifetime. Here we assume \(C P T\) invariance; see below for the fractional \(\Sigma^{+}-\bar{\Sigma}^{-}\)lifetime difference obtained by BARBOSA 00.} \\
\hline
\end{tabular}
\[
\left(\tau_{\boldsymbol{\Sigma}^{+}}-\tau_{\overline{\boldsymbol{\Sigma}}^{-}}\right) / \tau_{\boldsymbol{\Sigma}^{+}}
\]

A test of \(C P T\) invariance.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \((-6 \pm 12) \times 10^{-4}\) & BARBOSA & 00 & E761 & hyperons, 375 GeV \\
\hline
\end{tabular}

\section*{\(\Sigma^{+}\)MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings. Measurements with an error \(\geq 0.1 \mu_{N}\) have been omitted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value ( \(\mu_{\text {N }}\) ) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(2.458 \pm 0.010\) OUR AV below. & \[
\overline{\mathrm{Er}}
\] & udes scale fact & & 1. See & the ideogram \\
\hline \(2.4613 \pm 0.0034 \pm 0.0040\) & 250k & MORELOS & 93 & SPEC & \(p \mathrm{Cu} 800 \mathrm{GeV}\) \\
\hline \(2.428 \pm 0.036 \pm 0.007\) & 12k & \({ }^{1}\) MORELOS & 93 & SPEC & \(p \mathrm{Cu} 800 \mathrm{GeV}\) \\
\hline \(2.479 \pm 0.012 \pm 0.022\) & 137k & WILKINSON & 87 & SPEC & \(p \mathrm{Be} 400 \mathrm{GeV}\) \\
\hline \(2.4040 \pm 0.0198\) & 44k & 2 ANKENBRA... & 83 & CNTR & \(p \mathrm{Cu} 400 \mathrm{GeV}\) \\
\hline
\end{tabular}
\({ }^{1}\) We assume CPT invariance: this is (minus) the \(\bar{\Sigma}^{-}\)magnetic moment as measured by MORELOS 93. See below for the moment difference testing CPT
2 ANKENBRANDT 83 gives the value \(2.38 \pm 0.02 \mu N\). MORELOS 93 uses the same hyperon magnet and channel and claims to determine the field integral better, leading to the revised value given here.

\begin{tabular}{|c|c|c|c|}
\hline & \(\Sigma++\mu_{\bar{\Sigma}}-\) & & \\
\hline A tes & & & \\
\hline VALUE & DOCUMENT & TECN & COMMENT \\
\hline \(0.014 \pm 0.015\) & 1 MORELOS & SPEC & \(p \mathrm{Cu} 800 \mathrm{GeV}\) \\
\hline \({ }^{1}\) This is our magnetic & \begin{tabular}{l}
the MORELOS \\
The statistic
\end{tabular} & surem
\[
\text { n } \mu_{\bar{\Sigma}}
\] & ts of the \(\Sigma^{+}\) dominates the \\
\hline
\end{tabular}

\section*{\(\Sigma^{+}\)DECAY MODES}
\begin{tabular}{llc} 
& Mode & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(p \pi^{0}\) & \((51.57 \pm 0.30) \%\) \\
\(\Gamma_{2}\) & \(n \pi^{+}\) & \((48.31 \pm 0.30) \%\) \\
\(\Gamma_{3}\) & \(p \gamma\) & \((1.23 \pm 0.05) \times 10^{-3}\) \\
\(\Gamma_{4}\) & \(n \pi^{+} \gamma\) & {\([a]\)} \\
\(\Gamma_{5}\) & \(\Lambda e^{+} \nu_{e}\) & \((4.5 \pm 0.5) \times 10^{-4}\) \\
& & \((2.0 \pm 0.5) \times 10^{-5}\)
\end{tabular}

\section*{\(\Delta S=\Delta Q(S Q)\) violating modes or} \(\Delta S=1\) weak neutral current (S1) modes
\begin{tabular}{llllll}
\(\Gamma_{6}\) & \(n e^{+} \nu_{e}\) & \(S Q\) & \(<5\) & \(\times 10^{-6}\) & \(90 \%\) \\
\(\Gamma_{7}\) & \(n \mu^{+} \nu_{\mu}\) & \(S Q\) & \(<3.0\) & \(\times 10^{-5}\) & \(90 \%\) \\
\(\Gamma_{8}\) & \(p e^{+} e^{-}\) & \(S 1\) & \(<7\) & \(\times 10^{-6}\) & \\
\(\Gamma_{9}\) & \(p \mu^{+} \mu^{-}\) & \(S 1\) & & \(\left(2.4{ }_{-1.3}^{+1.7}\right) \times 10^{-8}\) &
\end{tabular}
[a] See the Listings below for the pion momentum range used in this measurement.

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 2 branching ratios uses 14 measurements and one constraint to determine 3 parameters. The overall fit has a \(\chi^{2}=\) 7.7 for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.
\begin{tabular}{l|rr}
\(x_{2}\) & -100 & \\
\(x_{3}\) & 12 & -14 \\
\cline { 2 - 3 } & \(x_{1}\) & \(x_{2}\)
\end{tabular}

Baryon Particle Listings
\(\Sigma^{+}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Sigma^{+}\)BRANCHING RATIOS} \\
\hline \multicolumn{3}{|l|}{\(\Gamma\left(n \pi^{+}\right) / \Gamma(N \pi)\)} & & \(\Gamma_{2} /\left(\Gamma_{1}+\Gamma_{2}\right)\) \\
\hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(0.4836 \pm 0.0030\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{\(0.4836 \pm 0.0030\) OUR AVERAGE} \\
\hline \(0.4828 \pm 0.0036\) & 10k & 1 MARRAFFINO 80 & HBC & \(K^{-} p 0.42-0.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(0.488 \pm 0.008\) & 1861 & NOWAK 78 & HBC & \\
\hline \(0.484 \pm 0.015\) & 537 & TOVEE 71 & EMUL & \\
\hline \(0.488 \pm 0.010\) & 1331 & BARLOUTAUD 69 & HBC & \(K^{-} p 0.4-1.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(0.46 \pm 0.02\) & 534 & CHANG 66 & HBC & \\
\hline \(0.490 \pm 0.024\) & 308 & HUMPHREY 62 & HBC & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) MARRAFFINO 80 actually gives \(\Gamma\left(p \pi^{0}\right) / \Gamma(\) total \()=0.5172 \pm 0.0036\).} \\
\hline \(\Gamma(p \gamma) / \Gamma\left(p \pi^{0}\right)\) & & & & \(\Gamma_{3} / \Gamma_{1}\) \\
\hline VALUE (units \(10^{-3}\) ) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(2.38 \pm 0.10\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{\(2.38 \pm 0.10\) OUR AVERAGE} \\
\hline \(2.32 \pm 0.11 \pm 0.10\) & 32k & TIMM 95 & E761 & \(\Sigma+375 \mathrm{GeV}\) \\
\hline \(2.81 \pm 0.39{ }_{-0.43}^{+0.21}\) & 408 & HESSEY 89 & CNTR & \[
\underset{\text { rest }}{K^{-} p \rightarrow \Sigma^{+} \pi^{-} \text {at }}
\] \\
\hline \(2.52 \pm 0.28\) & 190 & 1 KOBAYASHI 87 & CNTR & \(\pi^{+} p \rightarrow \Sigma^{+} K^{+}\) \\
\hline \(2.46{ }_{-0.35}^{+0.30}\) & 155 & BIAGI 85 & CNTR & CERN hyperon beam \\
\hline \(2.11 \pm 0.38\) & 46 & MANZ 80 & HBC & \(K^{-} p \rightarrow \Sigma^{+} \pi^{-}\) \\
\hline \(2.1 \pm 0.3\) & 45 & ANG 69B & HBC & \(K^{-} p\) at rest \\
\hline \(2.76 \pm 0.51\) & 31 & GERSHWIN 69B & HBC & \(K^{-} p \rightarrow \Sigma^{+} \pi^{-}\) \\
\hline \(3.7 \pm 0.8\) & 24 & BAZIN 65 & HBC & \(K^{-} p\) at rest \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) KOBAYASHI 87 actually gives \(\Gamma(p \gamma) / \Gamma(\) total \()=(1.30 \pm 0.15) \times 10^{-3}\).} \\
\hline
\end{tabular}
\(\Gamma\left(n \pi^{+} \gamma\right) / \Gamma\left(n \pi^{+}\right)\)
\(\Gamma_{4} / \Gamma_{2}\)
The \(\pi^{+}\)momentum cuts differ, so we do not average the results but simply use the latest value in the Summary Table.
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{\mathbf{0 . 9 3} \pm \mathbf{0 . 1 0}} \frac{\text { EVTS }}{180}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\Gamma\left(\Lambda e^{+} \nu_{e}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{5} / \Gamma\)} \\
\hline VALUE (units \(10^{-5}\) ) & EVTS & DOCUMENT & & TECN & COMMENT & \\
\hline \multicolumn{7}{|l|}{2.0 \(\pm 0.5\) OUR AVERAGE} \\
\hline \(1.6 \pm 0.7\) & 5 & BALTAY & 69 & HBC & \(K^{-} p\) at rest & \\
\hline \(2.9 \pm 1.0\) & 10 & EISELE & 69 & HBC & \(K^{-} p\) at rest & \\
\hline \(2.0 \pm 0.8\) & 6 & BARASH & 67 & HBC & \(K^{-} p\) at rest & \\
\hline
\end{tabular}
\(\Gamma\left(n e^{+} \nu_{e}\right) / \Gamma\left(n \pi^{+}\right)\)
\(\Gamma_{6} / \Gamma_{2}\)
Test of \(\Delta S=\Delta Q\) rule. Experiments with an effective denominator less than 100,000 have been omitted
EFFECTIVE DENOM. EVTS DOCUMENTID TECN COMMENT
< \(\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{- 5}}\) OUR LIMIT Our 90\% CL limit \(=(2.3\) events) \(/\) (effective denominator sum). [Number of events increased to 2.3 for a \(90 \%\) confidence level.]
\(111000 \quad 0 \quad{ }^{1}\) EBENHOH \(74 \mathrm{HBC} \quad K^{-} p\) at rest
\(105000 \quad 0 \quad 1\) SECHI-ZORN \(73 \mathrm{HBC} \quad K^{-} p\) at rest
\({ }^{1}\) Effective denominator calculated by us.
\begin{tabular}{cc}
\(\Gamma\left(n \mu^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right) / \Gamma\left(n \pi^{+}\right)\) & \(\Gamma_{\mathbf{7}} / \Gamma_{\mathbf{2}}\) \\
Test of \(\Delta S=\Delta Q\) rule. &
\end{tabular} Test of \(\Delta S=\Delta Q\) rule.
EFFECTIVE DENOM. EVTS DOCUMENTID TECN
< \(\mathbf{6 . 2} \times \mathbf{1 0}^{\mathbf{- 5}}\) OUR LIMIT Our \(90 \%\) CL limit \(=(6.7\) events) \(/(\) effective denominator sum). [Number of events increased to 6.7 for a \(90 \%\) confidence level.]
\begin{tabular}{rllll}
33800 & 0 & BAGGETT & 69 B & HBC \\
62000 & 2 & 1 & EISELE & 69 B \\
HBC \\
10150 & 0 & 2 COURANT & 64 & HBC \\
1710 & 0 & 2 NAUENBERG & 64 & HBC \\
120 & 1 & GALTIERI & 62 & EMUL
\end{tabular}
\({ }^{1}\) Effective denominator calculated by us.
2 Effective denominator taken from EISELE 67


\(\mathbf{2 . 4} \mathbf{- 1 . 7}\) OUR AVERAGE
\begin{tabular}{lrllll}
\(2.2_{-0.8-1.1}^{+0.9}+1.5\) & 10.2 & \(1_{\text {AAIJ }}\) & 18 E & LHCB \(\quad p p\) at \(7,8 \mathrm{TeV}\) \\
\(8.6_{-5.4}^{+6.6} \pm 5.5\) & 3 & \({ }^{2}\) PARK & 05 & HYCP \(p \mathrm{Cu}, 800 \mathrm{GeV}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\alpha_{\gamma}\) FOR \(\Sigma^{+} \rightarrow p \gamma\)} \\
\hline VALUE & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{-0.76 \(\pm 0.08\) OUR AVERAGE} \\
\hline \(-0.720 \pm 0.086 \pm 0.045\) & 35k & 1 FOUCHER & 92 & SPEC & \(\Sigma+375 \mathrm{GeV}\) \\
\hline \(-0.86 \pm 0.13 \pm 0.04\) & 190 & KOBAYASHI & 87 & CNTR & \(\pi^{+} p \rightarrow \Sigma^{+} K^{+}\) \\
\hline \({ }_{-0.53}{ }^{+0.38}{ }_{-0.36}\) & 46 & MANZ & 80 & HBC & \(K^{-} p \rightarrow \Sigma^{+} \pi^{-}\) \\
\hline \(-1.03\)\begin{tabular}{l} 
+ \\
\hline
\end{tabular} & 61 & GERSHWIN & 69B & HBC & \(K^{-} p \rightarrow \Sigma^{+} \pi^{-}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) See TIMM 95 for a detailed description of the analysis.} \\
\hline
\end{tabular}

\section*{\(\Sigma^{+}\)REFERENCES}

We have omitted some papers that have been superseded by later experiments. See our earlier editions.


COURANT 63 and ALFF 65, using \(\Sigma^{0} \rightarrow \wedge e^{+} e^{-}\)decays (Dalitz decays), determined the \(\Sigma^{0}\) parity to be positive, given that \(J=1 / 2\) and that certain very reasonable assumptions about form factors are true. The results of experiments involving the Primakoff effect, from which the \(\Sigma^{0}\) mean life and \(\Sigma^{0} \rightarrow \Lambda\) transition magnetic moment come (see below), strongly support \(J=1 / 2\).

\section*{\(\Sigma^{0}\) MASS}

The fit uses \(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\), and \(\Lambda\) mass and mass-difference measurements.

\section*{VALUE (MeV) \\ 1192.642 \(\pm 0.024\) OUR FIT}
\(\qquad\) TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -
\(1192.65 \pm 0.020 \pm 0.014 \quad 3327 \quad 1\) WANG \(\quad 97 \quad\) SPEC \(\quad \Sigma^{0} \rightarrow \Lambda \gamma \rightarrow\)
\(\left(p \pi^{-}\right)\left(e^{+} e^{-}\right)\)
\({ }^{1}\) This WANG 97 result is redundant with the \(\Sigma^{0}-\Lambda\) mass-difference measurement below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(m_{\Sigma^{-}}-m_{\Sigma^{0}}\)} \\
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(4.86 \pm 0.08\) OUR AVERAGE Error includes scale factor of 1.2.}} \\
\hline & & & & & \\
\hline \(4.87 \pm 0.12\) & 37 & DOSCH & 65 & HBC & \multirow{3}{*}{See note with 1 mass} \\
\hline \(5.01 \pm 0.12\) & 12 & SCHMIDT & 65 & HBC & \\
\hline \(4.75 \pm 0.1\) & 18 & BURNSTEIN & 64 & HBC & \\
\hline \multicolumn{6}{|c|}{\(m_{\Sigma^{0}}-m_{\text {A }}\)} \\
\hline Value (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(76.959 \pm 0.023\) OUR FIT} \\
\hline \(76.966 \pm 0.020 \pm 0.013\) & 3327 & WANG & 97 & SPEC & \(\Sigma^{0} \rightarrow \Lambda \gamma \rightarrow\) \\
\hline & & & & & \(\left(p \pi^{-}\right)\left(e^{+} e^{-}\right)\) \\
\hline & \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} & \[
50
\] \\
\hline \(76.23 \pm 0.55\) & 109 & COLAS & & HLBC & \(\Sigma \rightarrow \Lambda \gamma\) \\
\hline \(76.63 \pm 0.28\) & 208 & SCHMIDT & 65 & HBC & See note with \(\Lambda\) mass \\
\hline
\end{tabular}

\section*{\(\Sigma^{0}\) MEAN LIFE}

These lifetimes are deduced from measurements of the cross sections for the Primakoff process \(\Lambda \rightarrow \Sigma^{0}\) in nuclear Coulomb fields. An alternative expression of the same information is the \(\Sigma^{0}-\Lambda\) transition magnetic moment given in the following section. The relation is \(\left(\mu_{\Sigma \Lambda} / \mu_{N}\right)^{2} \tau=\) \(1.92951 \times 10^{-19} \mathrm{~s}\) (see DEVLIN 86).


\section*{\(\left|\mu\left(\Sigma^{0} \rightarrow \Lambda\right)\right|\) TRANSITION MAGNETIC MOMENT}

See the note in the \(\Sigma^{0}\) mean-life section above. Also, see the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings.

[a] A theoretical value using QED.



We have omitted some results that have been superseded by later experiments. See our earlier editions.

\section*{\(\boldsymbol{\Sigma}^{-}\)MASS}

The fit uses \(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\), and \(\Lambda\) mass and mass-difference measurements.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(m_{\Sigma^{-}}-m_{\Sigma^{+}}\)} \\
\hline VALUE (MeV) & EVTS & DOCUMEN & & TECN \\
\hline \multicolumn{5}{|l|}{\(\mathbf{8 . 0 8 \pm 0 . 0 8}\) OUR FIT Error includes scale factor of 1.9.} \\
\hline \multicolumn{5}{|l|}{\(8.09 \pm 0.16\) OUR AVERAGE} \\
\hline \(7.91 \pm 0.23\) & 86 & BOHM & 72 & EMUL \\
\hline \(8.25 \pm 0.25\) & 2500 & DOSCH & 65 & HBC \\
\hline \(8.25 \pm 0.40\) & 87 & BARKAS & 63 & EMUL \\
\hline
\end{tabular}
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{8 1 . 7 6 6} \mathbf{\pm 0 . 0 3 0}\) OUR FIT Error includes scale factor of 1.2.
\(81.69 \pm 0.07\) OUR AVERAGE
\begin{tabular}{lrlrll}
81.64 & \(\pm 0.09\) & 2279 & HEPP & 68 & HBC \\
81.80 & \(\pm 0.13\) & 85 & SCHMIDT & 65 & HBC \\
SCe note with 1 mass \\
81.70 & \(\pm 0.19\) & & BURNSTEIN & 64 & HBC
\end{tabular}

\section*{\(\Sigma^{-}\)MEAN LIFE}

Measurements with an error \(\geq 0.2 \times 10^{-10}\) s have been omitted.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & ) EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{\(\mathbf{1 . 4 7 9} \mathbf{\pm 0 1 1}\) OUR AVERAGE} & Error includes scale factor & of 1.3. & See the ideogram below. \\
\hline \(1.480 \pm 0.014\) & 16k & MARRAFFINO 80 & HBC & \(K^{-} p 0.42-0.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1.49 \pm 0.03\) & 8437 & CONFORTO 76 & HBC & \(K^{-} p\) 1-1.4 GeV/c \\
\hline \(1.463 \pm 0.039\) & 2400 & ROBERTSON 72 & HBC & \(K^{-} p 0.25 \mathrm{GeV} / c\) \\
\hline \(1.42 \pm 0.05\) & 1383 & BAKKER 71 & DBC & \(K^{-} N \rightarrow \Sigma^{-} \pi \pi\) \\
\hline \(1.41{ }_{-0.08}^{+0.09}\) & & TOVEE 71 & EMUL & \\
\hline \(1.485 \pm 0.022\) & 100k & EISELE 70 & HBC & \(K^{-} p\) at rest \\
\hline \(1.472 \pm 0.016\) & 10k & BARLOUTAUD 69 & HBC & \(K^{-} p 0.4-1.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1.38 \pm 0.07\) & 506 & WHITESIDE 68 & HBC & \(K^{-} p\) at rest \\
\hline \(1.666 \pm 0.075\) & 3267 & \({ }^{2}\) CHANG 66 & HBC & \(K^{-} p\) at rest \\
\hline \(1.58 \pm 0.06\) & 1208 & HUMPHREY 62 & HBC & \(K^{-} p\) at rest \\
\hline \({ }^{2}\) We have i & increased the & G 66 error of 0.02 & our & 70 edition, Reviews \\
\hline
\end{tabular}

Modern Physics 4287 (1970).


\section*{\(\Sigma^{-}\)MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings. Measurements with an error \(\geq 0.3 \mu_{N}\) have been omitted.


\section*{\(\Sigma^{-}\)CHARGE RADIUS}
\(\frac{\operatorname{VALUE}(\mathrm{fm})}{\mathbf{0 . 7 8 0} \pm \mathbf{0 . 0 8 0} \pm \mathbf{0 . 0 6 0}} \quad 3 \frac{\text { DOCUMENT ID }}{\text { ESCHRICH } \quad 01} \frac{\text { TECN }}{\operatorname{SELX}} \frac{\text { COMMENT }}{\Sigma^{-} e \rightarrow \Sigma^{-} e}\)
\({ }^{3}\) ESCHRICH 01 actually gives \(\left\langle r^{2}\right\rangle=(0.61 \pm 0.12 \pm 0.09) \mathrm{fm}^{2}\).

\section*{\(\Sigma^{-}\)DECAY MODES}
\begin{tabular}{llc}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(n \pi^{-}\) & \((99.848 \pm 0.005) \%\) \\
\(\Gamma_{2}\) & \(n \pi^{-} \gamma\) & {\([a](4.6 \pm 0.6) \times 10^{-4}\)} \\
\(\Gamma_{3}\) & \(n e^{-} \bar{\nu}_{e}\) & \((1.017 \pm 0.034) \times 10^{-3}\) \\
\(\Gamma_{4}\) & \(n \mu^{-} \bar{\nu}_{\mu}\) & \((4.5 \pm 0.4) \times 10^{-4}\) \\
\(\Gamma_{5}\) & \(\Lambda e^{-} \bar{\nu}_{e}\) & \((5.73 \pm 0.27) \times 10^{-5}\)
\end{tabular}
[a] See the Listings below for the pion momentum range used in this measurement.

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 3 branching ratios uses 16 measurements and one constraint to determine 4 parameters. The overall fit has a \(\chi^{2}=\) 8.7 for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.
\begin{tabular}{r|rrr}
\(x_{3}\) \\
\(x_{4}\) \\
\(x_{5}\) & \begin{tabular}{rrr}
-64 \\
-77 \\
-5
\end{tabular} & 0 & \\
\cline { 2 - 4 } & \(x_{1}\) & \(x_{3}\) & \(x_{4}\)
\end{tabular}

\section*{\(\Sigma^{-}\)BRANCHING RATIOS}
\(\Gamma\left(n \pi^{-} \gamma\right) / \Gamma\left(n \pi^{-}\right)\)
\(\Gamma_{2} / \Gamma_{1}\)
The \(\pi^{+}\)momentum cuts differ, so we do not average the results but simply use the latest value for the Summary Table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline VALUE (units \(10^{-3}\) ) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{3}{|l|}{COMMENT} \\
\hline 0.46 \(\pm 0.06\) & 292 & \multicolumn{2}{|l|}{EBENHOH 73} & HBC & \multicolumn{3}{|l|}{\(\pi^{+}<150 \mathrm{MeV} / \mathrm{C}\)} \\
\hline - We do not & follo & ata for avera & fits & limit & & & \\
\hline \(0.10 \pm 0.02\) & 23 & ANG & 69B & HBC & \(\pi\) & < 110 & \(\mathrm{MeV} / \mathrm{c}\) \\
\hline \(\sim 1.1\) & & BAZIN & 65B & HBC & & < 166 & MeV/c \\
\hline
\end{tabular}


\section*{\(\Sigma^{-}\)DECAY PARAMETERS}

See the "Note on Baryon Decay Parameters" in the neutron Listings. Older, outdated results have been omitted.

\section*{\(\alpha_{-}\)FOR \(\Sigma^{=} \Rightarrow n \pi^{-}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{-0.068 \(\pm 0.008\) OUR AVERAGE} \\
\hline \(-0.062 \pm 0.024\) & 28k & HANSL & 78 & HBC & \(K^{-} p \rightarrow \Sigma^{-} \pi^{+}\) \\
\hline \(-0.067 \pm 0.011\) & 60k & BOGERT & 70 & HBC & \(K^{-} p 0.4 \mathrm{GeV} / c\) \\
\hline \(-0.071 \pm 0.012\) & 51k & BANGERTER & 69 & HBC & \(K^{-} p 0.4 \mathrm{GeV} / c\) \\
\hline \multicolumn{4}{|l|}{\(\phi\) ANGLE FOR \(\Sigma^{-} \rightarrow n \pi^{-}\)} & \multicolumn{2}{|r|}{\((\tan \phi=\beta / \gamma)\)} \\
\hline \(\operatorname{VALUE}\left({ }^{\circ}\right)\) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{10土15 OUR AVERAGE} \\
\hline \(+5 \pm 23\) & 1092 & \({ }^{6}\) BERLEY & 70B & HBC & \(n\) rescattering \\
\hline \(14 \pm 19\) & 1385 & BANGERTER & 69B & HBC & \(K^{-} p 0.4 \mathrm{GeV} / c\) \\
\hline \multicolumn{6}{|l|}{\({ }^{6}\) BERLEY 70B changed from -5 to \(+5^{\circ}\) to agree with our sign convention.} \\
\hline
\end{tabular}
\(g_{A} / g_{V}\) FOR \(\boldsymbol{\Sigma}^{-} \rightarrow n e^{-\bar{\nu}_{e}}\)
Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. What is actually listed is \(\mid g_{1} / f_{1}-\) \(0.237 g_{2} / f_{1} \mid\). This reduces to \(g_{A} / g_{V} \equiv g_{1}(0) / f_{1}(0)\) on making the usual assumption that \(g_{2}=0\). See also the note on HSUEH 88.

\section*{\(\mathbf{0 . 3 4 0} \pm \mathbf{0 . 0 1 7}\) OUR AVERAGE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(+0.327 \pm 0.007 \pm 0.019\) & 50k & \({ }^{7}\) HSUEH & 88 & SPEC & \(\Sigma^{-} 250 \mathrm{GeV}\) \\
\hline \(+0.34 \pm 0.05\) & 4456 & \({ }^{8}\) BOURQUIN & 83C & SPEC & SPS hyperon beam \\
\hline \(0.385 \pm 0.037\) & 3507 & \({ }^{9}\) TANENBAUM & 74 & ASPK & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(0.29 \pm 0.07\) & 25k & HSUEH & 85 & SPEC & See HSUEH 88 \\
\hline \(0.17+0.07\) & 519 & DECAMP & 77 & ELEC & Hyperon beam \\
\hline
\end{tabular}

7 The sign is, with our conventions, unambiguously positive. The value assumes, as usual, that \(g_{2}=0\). If \(g_{2}\) is included in the fit, than (with our sign convention) \(g_{2}=-0.56 \pm\) 0.37 , with a corresponding reduction of \(g_{A} / g_{V}\) to \(+0.20 \pm 0.08\).
\({ }^{8}\) BOURQUIN 83C favors the positive sign by at least 2.6 standard deviations.
\({ }^{9}\) TANENBAUM 74 gives \(0.435 \pm 0.035\), assuming no \(q^{2}\) dependence in \(g_{A}\) and \(g_{V}\). The listed result allows \(q^{2}\) dependence, and is taken from HSUEH 88.
\(f_{\mathbf{2}}(0) / f_{\mathbf{1}}(0)\) FOR \(\boldsymbol{\Sigma}^{-} \Rightarrow n \boldsymbol{e}^{-} \boldsymbol{\nu}_{\boldsymbol{e}}\)
The signs have been changed to be in accord with our conventions, given in the "Note on Baryon Decay Parameters" in the neutron Listings.
\(\frac{V A L U E}{\mathbf{0 . 9 7} \pm \mathbf{0 . 1 4} \text { OUR AVERAGE }}\)
\(+0.96 \pm 0.07 \pm 0.13\)
\(+1.02 \pm 0.34\)

DOCUMENTID TECN COMMENT
HSUEH 88 SPEC \(\Sigma^{-} 250 \mathrm{GeV}\)
BOURQUIN 83C SPEC SPS hyperon beam

TRIPLE CORRELATION COEFFICIENT \(D\) for \(\boldsymbol{\Sigma}^{-} \rightarrow \boldsymbol{n} \boldsymbol{e}^{-\boldsymbol{\nu}_{\boldsymbol{e}}}\)
The coefficient \(D\) of the term \(D \mathbf{P} \cdot\left(\hat{\boldsymbol{p}}_{e} \times \hat{\mathbf{p}}_{\nu}\right)\) in the \(\Sigma^{-} \rightarrow n e^{-} \bar{\nu}\) decay angular distribution. A nonzero value would indicate a violation of time-reversal invariance.
\(\frac{V A L U E}{\mathbf{0 . 1 1} \pm \mathbf{0 . 1 0}} \frac{\text { EVTS }}{50 \mathrm{k}} \quad \frac{\text { DOCUMENTID }}{\text { HSUEH } 88} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{\Sigma^{-} 250 \mathrm{GeV}}\)
\(g v / g_{A}\) FOR \(\Sigma^{-} \rightarrow \Lambda e^{-\bar{\nu}_{e}}\)
For the sign convention, see the "Note on Baryon Decay Parameters" in the neutron Listings. The value is predicted to be zero by conserved vector current theory. The values averaged assume CVC-SU(3) weak magnetism term
 below
\(-0.034 \pm 0.080 \quad 1620 \quad 10\) BOURQUIN 82 SPEC SPS hyperon beam
\begin{tabular}{lrlll}
-0.29 & \(\pm 0.29\) & 114 & THOMPSON 80 & ASPK \\
-0.17 & \(\pm 0.35\) & 55 & TANENBAUM 75 BNL & SPEC \\
BNL hyperon beam
\end{tabular}
\(\pm 0.35 \quad 55\) TANENBAUM 75B SPEC BNL hyperon beam
\(0.45 \pm 0.20 \quad 186\) 10,11 FRANZINI 72 HBC
10 The sign has been changed to agree with our convention.
11 The FRANZINI 72 value includes the events of earlier papers.

\(\boldsymbol{g}_{W M} / g_{A}\) FOR \(\boldsymbol{\Sigma}^{-} \rightarrow \Lambda e^{-} \bar{\nu}_{e}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(2.4 \pm 1.7\) OUR AVERAGE} \\
\hline \(1.75 \pm 3.5\) & 114 & THOMPSON & 80 & ASPK & BNL hyperon beam \\
\hline \(3.5 \pm 4.5\) & 55 & TANENBAUM & 75B & SPEC & BNL hyperon beam \\
\hline \(2.4 \pm 2.1\) & 186 & FRANZINI & 72 & HBC & \\
\hline
\end{tabular}

\section*{\(\Sigma^{-}\)REFERENCES}

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline BARLOUTAUD & 69 & NP B14 153 & R. Barloutaud et al. & (SACL, CERN, HEID) & 1382 & \(\pm 1\) & 3740 & \({ }^{3}\) BERTHON & 74 & HBC & \(K^{-} p\) 1263-1843 MeV/c \\
\hline EISELE & 69 & ZPHY 2211 & F. Eisele et al. & (HEID) & 1390 & \(\pm 6\) & 46 & AGUILAR-... & 70B & HBC & \(K^{-} p \rightarrow \Sigma \pi\) 's \(4 \mathrm{GeV} / c\) \\
\hline BIERMAN
HEPP & 68
68 & PRL 201459
ZPHY 21471 & E. Bierman et al. & (PRIN) & 1383 & \(\pm 8\) & 62 & 4 BIRMINGHAM & 66 & HBC & \(K^{-}\)p \(3.5 \mathrm{GeV} / c\) \\
\hline WHITESIDE & 68 & NC 54A 537 & H. Whiteside, J. Gollub & (OBER) & 1378 & \(\pm 5\) & 135 & LONDON & 66 & HBC & \(K^{-} p 2.24 \mathrm{GeV} / c\) \\
\hline BARASH & 67
66 & PRL 19181
PR 1511081 & N. Barash et al.
C.Y. Chang & (UMD) & 1384.3 & \(\pm 1.9\) & 250 & 4 SMITH & 65 & HBC & \(K^{-}\)p \(1.8 \mathrm{GeV} / c\) \\
\hline BAZIN & 65B & PR 140 B1358 & M. Bazin et al. & (PRIN, RUTG, COLU) & 1382.6 & \(\pm 2.1\) & 250 & \({ }^{4}\) SMITH & 65 & HBC & \(K^{-} p 1.95 \mathrm{GeV} / c\) \\
\hline \[
\begin{aligned}
& \text { DOSCH } \\
& \hline
\end{aligned}
\] & 65 & PL 14239
PR 1511081 & H.C. Dosch et al. & \begin{tabular}{l}
(HEID) \\
(COLU)
\end{tabular} & 1375.0 & \(\pm 3.9\) & 170 & COOPER & 64 & HBC & \(K^{-}\)p \(1.45 \mathrm{GeV} / \mathrm{c}\) \\
\hline SCHMIDT & 65 & PR 140 B1328 & P. Schmidt & (COLU) & 1376.0 & \(\pm 3.9\) & 154 & \({ }^{4}\) ELY & 61 & HLBC & \(K^{-}\)p \(1.11 \mathrm{GeV} / c\) \\
\hline BURNSTEIN & 64 & PRL 1366 & R.A. Burnstein et al. & (UMD) & & & & & & & \\
\hline
\end{tabular}


Discovered by ALSTON 60. Early measurements of the mass and width for combined charge states have been omitted. They may be found in our 1984 edition Reviews of Modern Physics 56 S1 (1984).

We average only the most significant determinations. We do not average results from inclusive experiments with large backgrounds or results which are not accompanied by some discussion of experimental resolution. Nevertheless systematic differences between experiments remain. (See the ideograms in the Listings below.) These differences could arise from interference effects that change with production mechanism and/or beam momentum. They can also be accounted for in part by differences in the parametrizations employed. (See BORENSTEIN 74 for a discussion on this point.) Thus BORENSTEIN 74 uses a Breit-Wigner with energyindependent width, since a \(P\)-wave was found to give unsatisfactory fits. CAMERON 78 uses the same form. On the other hand HOLMGREN 77 obtains a good fit to their \(\Lambda \pi\) spectrum with a \(P\)-wave Breit-Wigner, but includes the partial width for the \(\Sigma \pi\) decay mode in the parametrization. AGUILAR-BENITEZ 81D gives masses and widths for five different Breit-Wigner shapes. The results vary considerably. Only the best-fit \(S\)-wave results are given here.

\section*{\(\Sigma(1385)\) POLE POSITIONS}
\(\boldsymbol{\Sigma}(1385)^{+}\)REAL PART


\section*{\(\Sigma(1385)^{0}\) MASS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(1383.7 \pm 1.0\) & ERAGE & \multicolumn{4}{|l|}{Error includes scale factor of 1.4. See the ideogram below.} \\
\hline \(1384.1 \pm 0.8\) & 5722 & AGUILAR-. & 81D & HBC & \(K^{-} p \rightarrow \Lambda 3 \pi 4.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1380 \pm 2\) & 3100 & \({ }^{5}\) BORENSTEIN & 74 & HBC & \[
\begin{gathered}
K^{-} p \rightarrow 13 \pi 2.18 \\
\mathrm{GeV} / c
\end{gathered}
\] \\
\hline \(1385.1 \pm 2.5\) & 240 & 4 THOMAS & 73 & HBC & \(\pi^{-} p \rightarrow \Lambda \pi^{0} K^{0}\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • - -
\(1389 \pm 3 \quad 500 \quad{ }^{6}\) BAUBILLIER 79B HBC \(K^{-} p 8.25 \mathrm{GeV} / C\)

\(\Sigma(1385)^{-}\)MASS
\(\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{1 3 8 7 . 2} \mathbf{0 . 5} \text { OUR AVERAGE }}\)

\section*{\(1388.3 \pm 1.7\)} \(1384.9620 \quad\) AGUILAR-... 81D HBC \(\quad K^{-} p \rightarrow \Lambda \pi \pi 4.2 \mathrm{GeV} / c\) AGUILAR-... 81D HBC \(\quad K^{-} p \rightarrow 1346 \pi 4.2 \mathrm{GeV} / c\) \(1387.6 \pm 0.3 \quad 9720 \quad\) CAMERON \(78 \mathrm{HBC} K^{-} p 0.96-1.36 \mathrm{GeV} /\) \(1383 \pm 2 \quad 2303 \quad\) BORENSTEIN \(74 \quad \mathrm{HBC} \quad K^{-} p 2.18 \mathrm{GeV} / \mathrm{C}\) \(\begin{array}{lrclll}1390.7 \pm 1.2 & 1900 & \text { HABIBI } & 73 & \text { HBC } & K^{-} p \rightarrow \Lambda \pi \pi \\ 1387.1 \pm 1.9 & 630 & 4 \text { THOMAS } & 73 & \text { HBC } & \pi^{-} p \rightarrow \Lambda \pi^{-} K^{+}\end{array}\) \(1387.1 \pm 1.9 \quad 630 \quad 4\) THOMAS 73 HBC \(\pi^{-} p \rightarrow \Lambda \pi^{-} K^{+}\) \(1390.7 \pm 2.0 \quad 370 \quad\) SIEGEL \(67 \mathrm{HBC} \quad K^{-} p 2.1 \mathrm{GeV} / c\) \(1384 \pm 1 \quad 1380 \quad\) ARMENTEROS65B HBC \(K^{-} p 0.9-1.2 \mathrm{GeV} / c\) \(1385.3 \pm 1.9 \quad 1086{ }^{4}\) HUWE \(64 \mathrm{HBC} \quad K^{-} p 1.15-1.30 \mathrm{GeV} / c\)
- - We do not use the following data for averages, fits, limits, etc. - . .

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(m_{\boldsymbol{\Sigma}(1385)}=-m_{\boldsymbol{\Sigma}(1385)+}\)} \\
\hline VALUE (MeV) & CL\% & DOCUMENT & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline - 2 to +6 & 95 & \({ }_{7}\) BORENS & & HBC & \(K^{-} p 2.18 \mathrm{GeV} / c\) \\
\hline \(7.2 \pm 1.4\) & & \({ }_{7}^{7} \mathrm{HABIBI}\) & 73 & HBC & \(K^{-} p \rightarrow \Lambda \pi \pi\) \\
\hline \(6.3 \pm 2.0\) & & \({ }^{7}\) SIEGEL & 67 & HBC & \(K^{-}\)p \(2.1 \mathrm{GeV} / c\) \\
\hline \(11 \pm 9\) & & 7 LONDON & 66 & HBC & \(K^{-} p 2.24 \mathrm{GeV} / c\) \\
\hline \(9 \pm 6\) & & LONDON & 66 & HBC & \(13 \pi\) events \\
\hline \(2.0 \pm 1.5\) & & \({ }_{7}\) ARMENT & S65 & HBC & \(K^{-}\)p \(0.9-1.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(7.2 \pm 2.1\) & & 7 SMITH & 65 & HBC & \(K^{-} p 1.8 \mathrm{GeV} / c\) \\
\hline \(17.2 \pm 2.0\) & & \({ }^{7}\) SMITH & 65 & HBC & \(K^{-} p 1.95 \mathrm{GeV} / c\) \\
\hline \(17 \pm 7\) & & \({ }^{7}\) COOPER & 64 & HBC & \(K^{-} p 1.45 \mathrm{GeV} / c\) \\
\hline \(4.3 \pm 2.2\) & & \({ }_{7}\) HUWE & 64 & HBC & \(K^{-} p 1.22 \mathrm{GeV} / c\) \\
\hline \(0.0 \pm 4.2\) & & 7 ELY & 61 & HLBC & \(K^{-} p 1.11 \mathrm{GeV} / c\) \\
\hline
\end{tabular}
\(\boldsymbol{m}_{\boldsymbol{\Sigma}(1385)^{0}}-\boldsymbol{m}_{\boldsymbol{\Sigma}(\mathbf{1 3 8 5})^{+}}\)
VALUE (MeV)
- We Co DOCUMENT ID \(\frac{\text { TE }}{\text { COCN }}\) COMMENT
\(\begin{array}{lclll}\bullet \bullet \text { • We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \bullet \\ -4 \text { to }+4 & 95 & 7 \text { BORENSTEIN } 74 & \text { HBC } & K^{-} p 2.18 \mathrm{GeV} / \mathrm{C}\end{array}\)

\section*{\(m_{\Sigma(1385)^{-}}-m_{\Sigma(1385)^{0}}\)}

VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(2.0 \pm 2.4\)
7 THOMAS 73 HBC \(\quad \pi^{-} p \rightarrow \Lambda \pi^{-} K^{+}\)

\section*{\(\Sigma(1385)\) WIDTHS}
\(\Sigma(1385)^{+}\)WIDTH \(\frac{\text { VALUE (MeV) }}{36.0 \pm 0.7 \text { OUR AVE }}\) \(40.2 \pm 2.1_{-2.8}^{+1.2}\)
\(37.2 \pm 2.0\)
\(35.1 \pm 1.7\)
\(37.5 \pm 2.0\)
\(35.5 \pm 1.9\)
\(34.0 \pm 1.6\)
\(38.3 \pm 3.2\)
\(32.5 \pm 6.0\)
\(32.0 \pm 4.7 \quad 750\)

DOCUMENT ID TECN COMMENT

AGAKISHIEV 12 SPEC \(p p \rightarrow \sum_{\mathrm{GV}}(1385)^{+} K^{+} n\),
BAUBILLIER \(84 \mathrm{HBC} \quad K^{-} p 8.25 \mathrm{GeV} / c\)
AGUILAR-... 81D HBC \(K^{-} p \rightarrow \Lambda \pi \pi 4.2 \mathrm{GeV} / \mathrm{C}\)
AGUILAR-... 81D HBC \(K^{-} p \rightarrow \Lambda 3 \pi 4.2 \mathrm{GeV} / \mathrm{C}\)
CAMERON 78 HBC \(K^{-} p 0.96-1.36 \mathrm{GeV} / c\)
8 BORENSTEIN 74 HBC \(K^{-} p 2.18 \mathrm{GeV} / c\)
\({ }^{9}\) HABIBI 73 HBC \(\quad K^{-} p \rightarrow \Lambda \pi \pi\)
AGUILAR-... 72B HBC \(K^{-} p \rightarrow \Lambda \pi\) 's
\({ }^{9}\) SIEGEL 67 HBC \(K^{-} p 2.1 \mathrm{GeV} / c\)
\({ }^{9}\) ARMENTEROS65B HBC \(K^{-} p 0.95-1.20 \mathrm{GeV} / c\)
\({ }^{9}\) HUWE 64 HBC \(K^{-} p 1.15-1.30 \mathrm{GeV} / c\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(40 \pm 3\) & 600 & BAKER & 80 & HYBR & \(\pi^{+} p 7 \mathrm{GeV} / c\) \\
\hline \(37 \pm 2\) & 750 & BAKER & 80 & HYBR & \(K^{-} p 7 \mathrm{GeV} / c\) \\
\hline \(37 \pm 2\) & 7k & \({ }^{1}\) BAUBILLIER & 79B & HBC & \(K^{-} p 8.25 \mathrm{GeV} / c\) \\
\hline \(30 \pm 4\) & 2k & CAUTIS & 79 & HYBR & \(\pi^{+} p / K^{-} p 11.5 \mathrm{GeV}\) \\
\hline \(30 \pm 6\) & 100 & 1 SUGAHARA & 79B & HBC & \(\pi^{-} p 6 \mathrm{GeV} / c\) \\
\hline \(43 \pm 5\) & 22k & 1,2 BARREIRO & 77B & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline \(34 \pm 2\) & 2594 & HOLMGREN & 77 & HBC & \begin{tabular}{l}
See AGUILAR- \\
BENITEZ 81D
\end{tabular} \\
\hline \(40.0 \pm 3.2\) & & \({ }^{1}\) BARDADIN-... & 75 & HBC & \(K^{-}\)- \(14.3 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(48 \pm 3\) & 3740 & \({ }^{3}\) BERTHON & 74 & HBC & \(K^{-} p\) 1263-1843 MeV/c \\
\hline \(33 \pm 20\) & 46 & 9 AGUILAR-... & 70B & HBC & \(K^{-} p \rightarrow \Sigma \pi\) 's \(4 \mathrm{GeV} / c\) \\
\hline \(25 \pm 32\) & 62 & 9 BIRMINGHAM & 66 & HBC & \(K^{-}\)p \(3.5 \mathrm{GeV} / c\) \\
\hline \(30.3 \pm 7.5\) & 250 & 9 SMITH & 65 & HBC & \(K^{-}\)p \(1.8 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(33.1 \pm 8.3\) & 250 & 9 SMITH & 65 & HBC & \(K^{-} p 1.95 \mathrm{GeV} / c\) \\
\hline \(51 \pm 16\) & 170 & \({ }^{9}\) COOPER & 64 & HBC & \(K^{-}\)- \(1.45 \mathrm{GeV} / c\) \\
\hline \(48 \pm 16\) & 154 & \({ }^{9}\) ELY & 61 & HLBC & \(K^{-}\)p \(1.11 \mathrm{GeV} / \mathrm{c}\) \\
\hline
\end{tabular}

\section*{\(\Sigma(1385)^{0}\) WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(36 \pm 5\) OUR AVERAGE} \\
\hline \(34.8 \pm 5.6\) & 5722 & AGUILAR-... 81D & HBC & \(K^{-} p \rightarrow \Lambda 3 \pi 4.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(39.3 \pm 10.2\) & 240 & 9 THOMAS 73 & HBC & \(\pi^{-} p \rightarrow \Lambda \pi^{0} K^{0}\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(53 \pm 8\) & 3100 & 10 BORENSTEIN 74 & HBC & \[
K_{\mathrm{GeV} / c}^{-p} \rightarrow^{13 \pi 2.18}
\] \\
\hline \(30 \pm 9\) & 106 & CURTIS 63 & OSPK & \(\pi^{-} p 1.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Sigma} \mathbf{1 3 8 5}^{-}{ }^{\text {- WIDTH }}\)} \\
\hline VALUE (MeV) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{\(39.4 \pm\) 2.1 OUR AVERAGE} & Error includes scale factor & of 1.7. & See the ideogram below. \\
\hline \(38.4 \pm 10.7\) & 620 & AGUILAR-... 81D & HBC & \(K^{-} p \rightarrow \Lambda \pi \pi 4.2 \mathrm{GeV} / c\) \\
\hline \(34.6 \pm 4.2\) & 3346 & AGUILAR-... 81D & HBC & \(K^{-} p \rightarrow \Lambda 3 \pi 4.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(39.2 \pm 1.7\) & 9720 & CAMERON 78 & HBC & \(K^{-} p 0.96-1.36 \mathrm{GeV} / c\) \\
\hline \(35 \pm 3\) & 2303 & 8 BORENSTEIN 74 & HBC & \(K^{-}\)p \(2.18 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(51.9 \pm 4.8\) & 1900 & \({ }^{9}\) HABIBI 73 & HBC & \(K^{-} p \rightarrow \Lambda \pi \pi\) \\
\hline \(48.2 \pm 7.7\) & 630 & 9 THOMAS 73 & HBC & \(\pi^{-} p \rightarrow \Lambda \pi^{-} K^{0}\) \\
\hline \(31.0 \pm 6.5\) & 370 & 9 SIEGEL 67 & HBC & \(K^{-}\)p \(2.1 \mathrm{GeV} / c\) \\
\hline \(38.0 \pm 4.1\) & 1382 & 9 ARMENTEROS65B & HBC & \(K^{-}\)p \(0.95-1.20 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(62 \pm 7\) & 1086 & HUWE 64 & HBC & \(K^{-}\)p 1.15-1.30 GeV/c \\
\hline
\end{tabular} HUWE \(64 \mathrm{HBC} K \quad p 1.15-1.30 \mathrm{GeV} / c\)
- - We do not use the following data for averages, fits, limits, etc. - • -
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(44 \pm 4\) & 4.5 k & \({ }^{1}\) BAUBILLIER & 79B & HBC & \(K^{-}\)p \(8.25 \mathrm{GeV} / c\) \\
\hline \(58 \pm 4\) & 150 & 1 SUGAHARA & 79B & HBC & \(\pi^{-} p 6 \mathrm{GeV} / c\) \\
\hline \(45 \pm 5\) & 12k & 1,2 BARREIRO & 77B & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline \(35 \pm 10\) & 193 & HOLMGREN & 77 & HBC & See AGUILARBENITEZ 81D \\
\hline \(47 \pm 6\) & & 1 BARDADIN- & 75 & HBC & \(K^{-}\)p \(14.3 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(40 \pm 3\) & 3060 & \({ }^{3}\) BERTHON & 74 & HBC & \(K^{-}\)p 1263-1843 MeV/c \\
\hline \(29.2 \pm 10.6\) & 120 & 9 SMITH & 65 & HBC & \(K^{-}\)p \(1.80 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(17.1 \pm 8.9\) & 58 & 9 SMITH & 65 & HBC & \(K^{-}\)p \(1.95 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(88 \pm 24\) & 200 & 9 COOPER & 64 & HBC & \(K^{-}\)p \(1.45 \mathrm{GeV} / \mathrm{c}\) \\
\hline 40 & & DAHL & 61 & DBC & \(K^{-} d 0.45 \mathrm{GeV} / c\) \\
\hline \(66 \pm 18\) & 224 & \({ }^{9} \mathrm{ELY}\) & 61 & HLBC & \(K^{-}\)p \(1.11 \mathrm{GeV} / c\) \\
\hline
\end{tabular}


Baryon Particle Listings
\(\Sigma(1385), \Sigma(1580)\)



OMITTED FROM SUMMARY TABLE
Seen in the isospin- \(1 \bar{K} N\) cross section at BNL (LI 73, CARROLL 76) and in a partial-wave analysis of \(K^{-} p \rightarrow \Lambda \pi^{0}\) for c.m. energies \(1560-1600 \mathrm{MeV}\) by LITCHFIELD 74. LITCHFIELD 74 finds \(J^{P}=\) \(3 / 2^{-}\). Not seen by ENGLER 78, CAMERON 78C, OLMSTED 04, nor by PRAKHOV 04.
Neither ZHANG 13A nor SARANTSEV 19 see any evidence for this state.

\section*{\(\Sigma(1580)\) POLE POSITION}

REAL PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(1607_{-11}^{+13} \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution \(A\) in KAMANO 15. Solution \(B\) reports \(M=1492+4 \mathrm{MeV}\).
-2×IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • - -
\(253 \begin{gathered}+30 \\ -18\end{gathered}\)
2 KAMANO 15 DPWA Multichanne
\({ }^{2}\) From the preferred solution \(A\) in KAMANO 15. Solution \(B\) reports \(M=138{ }_{-14}^{+}{ }^{8} \mathrm{MeV}\).

\section*{\(\Sigma(1580)\) POLE RESIDUES}

The "normalized residue" is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1580) \rightarrow N \bar{K}\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.00778 \quad 51 \quad 3\) KAMANO 15 DPWA Multichannel
\({ }^{3}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma \pi\)
MODULUS PHASE ( \({ }^{\circ}\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.0625 \quad-6 \quad 4\) KAMANO 15 DPWA Multichannel
\({ }^{4}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1580) \rightarrow \Lambda \pi\)} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{5}{|l|}{0.059156 5 KAMANO 15 DPWA Multichannel} \\
\hline \multicolumn{5}{|l|}{\({ }^{5}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma(1385) \pi\), S-wave} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(0.0368-18 \quad 6\) KAMANO 15 DPWA Multichannel \({ }^{6}\) From the preferred solution A in KAMANO 15.}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma(1385) \pi, D\)-wave} \\
\hline \multicolumn{5}{|l|}{MODULUS PHASE () DOCUMENT ID (ECN COMMENT} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
- - We do not use the following data for averages, fits, limits, etc. - - - \\
\(0.0103 \quad 123 \quad 7\) KAMANO 15 DPWA Multichannel \\
\({ }^{7}\) From the preferred solution A in KAMANO 15.
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{\(\Sigma(1580)\) MASS} \\
\hline VALUE (MeV) & & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{※1580 OUR ESTIMATE} \\
\hline \(1583 \pm 4\) & & \({ }^{8}\) CARROLL & DPWA & Isospin-1 total \(\sigma\) \\
\hline \(1582 \pm 4\) & & \({ }^{9}\) LITCHFIELD & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{5}{|l|}{\({ }^{8}\) CARROLL 76 sees a total-cross-section bump with \((J+1 / 2) \Gamma_{\text {el }} / \Gamma_{\text {total }}=0.06\)} \\
\hline \multicolumn{5}{|l|}{\({ }^{9}\) The main effect observed by LITCHFIELD 74 is in the \(\Lambda \pi\) final state; the \(\bar{K} N\) and \(\Sigma \pi\) couplings are estimated from a multichannel fit including total-cross-section data of LI 73.} \\
\hline
\end{tabular}

\section*{\(\Sigma(1580)\) WIDTH}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\frac{\operatorname{VALUE}(\mathrm{MeV})}{15}
\]} & \multicolumn{2}{|l|}{MEN} & \multicolumn{4}{|l|}{TECN COMMENT} \\
\hline & \multicolumn{2}{|l|}{10 CARROLL} & \multicolumn{4}{|l|}{DPWA Isospin-1 total \(\sigma\)} \\
\hline \multicolumn{7}{|l|}{\(11 \pm 4{ }^{11}\) LITCHFIELD 74 DPWA \(K^{-} p\)} \\
\hline \multicolumn{7}{|l|}{\({ }^{10}\) CARROLL 76 sees a total-cross-section bump with \((J+1 / 2) \Gamma_{\mathrm{el}} / \Gamma_{\text {total }}=0.06\).} \\
\hline \multicolumn{7}{|l|}{\({ }^{11}\) The main effect observed by LITCHFIELD 74 is in the \(\Lambda \pi\) final state; the \(\bar{K} N\) and \(\Sigma \pi\) couplings are estimated from a multichannel fit including total-cross-section data of LI 73.} \\
\hline
\end{tabular}

\section*{\(\Sigma(1580)\) DECAY MODES}
\begin{tabular}{ll}
\multicolumn{2}{l}{} \\
& Mode \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) \\
\(\Gamma_{2}\) & \(\Lambda \pi\) \\
\(\Gamma_{3}\) & \(\Sigma \pi\) \\
\(\Gamma_{4}\) & \(\Sigma(1385) \pi, S\)-wave \\
\(\Gamma_{5}\) & \(\Sigma(1385) \pi, D\)-wave \\
\(\Gamma_{6}\) & \(N \bar{K}^{*}(892), S=1 / 2, D\)-wave \\
\(\Gamma_{7}\) & \(N \bar{K}^{*}(892), S=3 / 2, S\)-wave \\
\(\Gamma_{8}\) & \(N \bar{K}^{*}(892), S=3 / 2, D\)-wave \\
\hline & \(\boldsymbol{\Sigma}(\mathbf{1 5 8 0})\) BRANCHING RATIOS
\end{tabular}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{l}
\(\boldsymbol{\Gamma}(\boldsymbol{N} \bar{K}) / \boldsymbol{\Gamma}_{\text {total }}\) \\
VALUE \\
DOCUMENT ID \\
TECN COMMENT \\
\hline \(\mathbf{1} / \boldsymbol{\Gamma}\)
\end{tabular}
\(\frac{\text { VALUE }}{+0.03 \pm 0.01} \quad 12 \frac{\text { DOCUMENT ID }}{\text { LITCHFIELD } 74} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - • -

\section*{\(0.003 \quad 13\) KAMANO 15 DPWA Multichannel}
\({ }^{12}\) The main effect observed by LITCHFIELD 74 is in the \(\Lambda \pi\) final state; the \(\bar{K} N\) and \(\Sigma \pi\) couplings are estimated from a multichannel fit including total-cross-section data of LI 73.
\({ }^{13}\) From the preferred solution A in KAMANO 15.
\(\Gamma(\Lambda \pi) / \Gamma_{\text {total }} \quad \Gamma_{2} / \Gamma\) VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.490 \quad 14\) KAMANO 15 DPWA Multichannel
\({ }^{14}\) From the preferred solution A in KAMANO 15.
\(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\)
VALUE DOCUMENT ID TECN COMMENT

\footnotetext{
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.387 \quad 15\) KAMANO 15 DPWA Multichannel
\({ }^{15}\) From the preferred solution A in KAMANO 15.
}


OMITTED FROM SUMMARY TABLE
The \(S_{11}\) state at 1697 MeV reported by VANHORN 75 is tentatively listed under the \(\Sigma(1750)\). CARROLL 76 sees two bumps in the isospin- 1 total cross section near this mass. GAO 12 sees no evidence for this resonance.

Production experiments are listed separately in the next entry.

\section*{\(\boldsymbol{\Sigma}(1620)\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE (MeV) }}{1680 \pm 8} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
1501 ZHANG 13A DPWA \(\bar{K} N\) multichannel
- \(2 \times\) IMAGINARY PART
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{3 9} \pm \mathbf{1 1}}\)

DOCUMENT ID TECN COMMENT
SARANTSEV 19 DPWA
- - We do not use the following data for averages, fits, limits, etc. - • •

171 ZHANG 13A DPWA \(\bar{K} N\) multichannel

\section*{Baryon Particle Listings}
\(\Sigma(1620), \Sigma(1660)\)


\section*{\(\Sigma(1660)\) POLE POSITION}

REAL PART
VALUE (MeV)
DOCUMENT ID TECN COMMENT
1585 \(\pm 20\)
SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - - -
\(1547{ }_{-}^{+111} \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution \(A\) in KAMANO 15. Solution B reports \(\mathrm{M}=1457{ }_{-1}^{+5} \mathrm{MeV}\).
-2xIMAGINARY PART
\(\frac{\text { VALUE (MeV) }}{\mathbf{2 9 0} \mathbf{+ 1 4 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\) I
- - We do not use the following data for averages, fits, limits, etc. - - -
\(183+86{ }_{-1}^{86} \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15. Solution B reports \(\Gamma=78{ }_{-8}^{+2} \mathrm{MeV}\).
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.10 to 0.60 \\
\(\Gamma_{2}\) & \(\Lambda \pi\) & \((9.0 \pm 3.0) \%\) \\
\(\Gamma_{3}\) & \(\Sigma \pi\) & \(\left(\begin{array}{ll}17 \quad \pm 5) \% \\
\Gamma_{4} & \equiv K \\
\Gamma_{5} & \Lambda(1520) \pi\end{array}\right.\) \\
\(\Gamma_{6}\) & \(\Sigma(1385) \pi\) & \((10 \quad \pm 5) \%\) \\
\hline
\end{tabular}
\(\Sigma(1620)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\)
VALUE} & & & & & \(\Gamma_{1} / \Gamma\) \\
\hline & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \multicolumn{6}{|l|}{0.10 to 0.60 OUR ESTIMATE} \\
\hline \(0.11 \pm 0.03\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multic & \\
\hline \(0.59 \pm 0.10\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multic & \\
\hline \(0.22 \pm 0.02\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multic & \\
\hline 0.05 & KIM & 71 & DPWA & K-matrix a & \\
\hline
\end{tabular}

\section*{\(\Sigma(1660)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 6 0}) \rightarrow N \bar{K}\)


Normalized residue in \(N \bar{K} \Rightarrow \Sigma(\mathbf{1 6 6 0}) \Rightarrow \Lambda \pi\)
\begin{tabular}{llll} 
MODULUS \\
\(\mathbf{0 . 1 6}\) & \(\mathbf{0 0 . 0 5}\) & \(\frac{\left.\text { PHASE }{ }^{\circ}\right)}{\mathbf{0} \pm \mathbf{2 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - . -
\(0.0614-84 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma ( 1 6 6 0 )} \rightarrow \boldsymbol{\Sigma} \sigma\)
\begin{tabular}{llll}
\(\frac{\text { MODULUS }}{\mathbf{0 . 1 4} \pm \mathbf{0 . 0 6}} \frac{\text { PHASE }\left({ }^{\circ}\right)}{\mathbf{- 1 5 0} \pm \mathbf{3 0}}\) & & \(\frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\) \\
Normalized residue in \(\boldsymbol{N} \overline{\boldsymbol{K}} \rightarrow\) & \(\boldsymbol{\Sigma ( 1 6 6 0 ) \rightarrow \boldsymbol { \Sigma ( 1 3 8 5 ) } \boldsymbol { \pi }}\)
\end{tabular}
MODULUS PHASE ( \({ }^{\circ}\) ) DOCUMENT ID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. \(\bullet\) • •
0.0513
\({ }^{1}\) From the preferred solution A in KAMANO 15.

Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 6 0}) \rightarrow \Lambda(1405) \pi\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.06 \pm 0.03\) & -90 \(\pm \mathbf{2 5}\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 6 0}) \rightarrow \Lambda(1520) \pi\)} \\
\hline MODULUS & PHASE ( ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.04 \pm 0.02\) & \(5 \pm 20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\section*{\(\Sigma(1660)\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{VALUE (MeV) DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1640 to 1680 ( \(\approx 1660\) ) OUR ESTIMATE} \\
\hline \(1665 \pm 20\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1633 \pm 3\) & GAO & 12 & DPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1665.1 \pm 11.2\) & \({ }^{1}\) KOISO & 85 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(1670 \pm 10\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1679 \pm 10\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1668 \pm 25\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1670 \pm 20\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(1676 \pm 15\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1565 or 1597 & \({ }^{2}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1660 \pm 30\) & \({ }^{3}\) BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1671 \pm 2\) & \({ }^{4}\) PONTE & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\({ }^{1}\) The evidence of KOISO 85 is weak. \\
\({ }_{3}^{2}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \\
\({ }^{3}\) From solution 1 of BAILLON 75; not present in solution 2. \\
\({ }^{4}\) From solution 2 of PONTE 75; not present in solution 1.
\end{tabular}} \\
\hline
\end{tabular}

\section*{\(\Sigma(1660)\) WIDTH}
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{100 to 300 ( \(\approx \mathbf{2 0 0}\) ) OUR ESTIMATE} \\
\hline \(300 \begin{array}{r}+140 \\ -40\end{array}\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(121 \pm 4\) & GAO 12 & DPWA \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(81.5 \pm 22.2\) & 1 KOISO 85 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(152 \pm 20\) & GOPAL 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(38 \pm 10\) & ALSTON-... 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(230 \begin{array}{r}+165 \\ -60\end{array}\) & VANHORN 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(250 \pm 110\) & KANE 74 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(120 \pm 20\) & GOPAL 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 202 or 217 & 2 MARTIN 77 & DPWA \(\bar{K} N\) multichannel \\
\hline \(80 \pm 40\) & \({ }^{3}\) BAILLON 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(81 \pm 10\) & 4 PONTE 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
\({ }_{2}\) The evidence of KOISO 85 is weak. \\
2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \\
\({ }^{3}\) From solution 1 of BAILLON 75; not present in solution 2. \\
\({ }^{4}\) From solution 2 of PONTE 75; not present in solution 1.
\end{tabular}} \\
\hline
\end{tabular}

\section*{\(\Sigma(1660)\) DECAY MODES}
\begin{tabular}{|c|c|c|}
\hline & Mode & Fraction ( \(\Gamma_{i} / \Gamma\) ) \\
\hline \(\Gamma_{1}\) & \(N \bar{K}\) & 0.05 to \(0.15(\approx 010)\) \\
\hline \(\Gamma_{2}\) & \(\wedge \pi\) & (35 \(\pm 12\) ) \% \\
\hline \(\Gamma 3\) & \(\Sigma \pi\) & (37 \(\pm 10\) ) \% \\
\hline \(\Gamma_{4}\) & \(\Sigma \sigma\) & (20 \(\pm 8\) ) \% \\
\hline \(\Gamma_{5}\) & \(\Sigma(1385) \pi\) & \\
\hline \(\Gamma_{6}\) & \(\Lambda(1405) \pi\) & \((4.0 \pm 2.0) \%\) \\
\hline \(\Gamma_{7}\) & \(\Lambda(1520) \pi\) & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (1660) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\) & & \multicolumn{2}{|c|}{\(\Gamma 1 / \Gamma\)} \\
\hline \multicolumn{2}{|l|}{VALUE DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{0.05 to 0.15 ( \(\sim \mathbf{0 1 0}\) ) OUR ESTIMATE} \\
\hline \(0.07 \pm 0.03\) & SARANTSEV 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \(0.12 \pm 0.03\) & GOPAL 80 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N \rightarrow \bar{K} N\)} \\
\hline \(0.10 \pm 0.05\) & ALSTON-... 78 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N \rightarrow \bar{K} N\)} \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, I} \\
\hline 0.005 & 1 KAMANO 15 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline <0.04 & GOPAL 77 & \multicolumn{2}{|l|}{DPWA See GOPAL 80} \\
\hline 0.27 or 0.29 & 2 MARTIN 77 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{4}{|l|}{2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit} \\
\hline \(\Gamma(\Lambda \pi) / \Gamma_{\text {total }}\) & & \multicolumn{2}{|c|}{\(\Gamma_{2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(0.35 \pm 0.12\) & SARANTSEV 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline - - We do not & data for averages, fits & limits & C. • • \\
\hline 0.128 & 1 KAMANO 15 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\) & & \multicolumn{2}{|c|}{\(\Gamma 3 / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & \multicolumn{2}{|l|}{TECN COMMENT} \\
\hline \(0.37 \pm 0.10\) & SARANTSEV 19 & \multicolumn{2}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline - - We do not & data for averages, fit & limits & . \\
\hline 0.865 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\Sigma \sigma) / \Gamma_{\text {total }}\) & & & \multicolumn{3}{|r|}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.20 \pm 0.08\) & SARANTSEV & 19 & \multicolumn{3}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \(\Gamma(\Sigma(1385) \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma 5 / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 0.001 & \multicolumn{2}{|l|}{\[
{ }^{1} \text { KAMANO } \quad 15
\]} & \multirow[t]{2}{*}{DPWA} & \multirow[t]{2}{*}{Multichannel} & \\
\hline \({ }^{1}\) From the preferred & KAMANO 15. & & & & \\
\hline \(\Gamma(\Lambda(1405) \pi) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multicolumn{3}{|r|}{\(\Gamma 6 / \Gamma\)} \\
\hline VALUE & & & TECN & COMMENT & \\
\hline \(0.04 \pm 0.02\) & SARANTSEV & 19 & DPWA & \multicolumn{2}{|l|}{\(\bar{K} N\) multichannel} \\
\hline \(\Gamma(\Lambda(1520) \pi) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\(\Gamma_{7} / \Gamma\)} \\
\hline VALUE & & & & COMMENT & \\
\hline <0.01 & \multicolumn{2}{|l|}{SARANTSEV 19} & \multicolumn{3}{|l|}{DPWA \(\bar{K} N\) multichannel} \\
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1660) \rightarrow \Lambda \pi\)} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|l|}{\(\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & & \multicolumn{2}{|l|}{COMMENT} \\
\hline \[
-0.064{ }_{-0.003}^{+0.005}
\] & GAO & 12 & DPWA & \(\bar{K} N \rightarrow \Lambda \pi\) & \\
\hline < 0.04 & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.12{ }_{-0.04}^{+0.12}\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - .
\begin{tabular}{llll}
-0.10 or -0.11 & 1 MARTIN & 77 & DPWA \(\bar{K} N\) multichannel \\
\(-0.04 \pm 0.02\) & 2 BAILLON & 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\)
\end{tabular}
\begin{tabular}{llll}
\(-0.04 \pm 0.02\) & 2 & BAILLON & 75 \\
\(+0.16 \pm 0.01\) & 3 IPWA \(\bar{K} N \rightarrow \Lambda \pi\) \\
+ & & 75 & DPWWA \(K^{-} p \rightarrow \Lambda \pi^{0}\)
\end{tabular}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\({ }^{2}\) From solution 1 of BAILLON 75; not present in solution 2.
\({ }^{3}\) From solution 2 of PONTE 75; not present in solution 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{\rho} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1660) \rightarrow \Sigma \pi
\]} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\[
\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma
\]} \\
\hline Value & DOCUME & & & COMMENT & \\
\hline \(-0.13 \pm 0.04\) & 1 KOISO & 85 & DPWA & \(K^{-} p \rightarrow\) & \\
\hline \(-0.16 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) mult & ichannel \\
\hline \(-0.11 \pm 0.01\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow\) & \\
\hline
\end{tabular}


\section*{\(\Sigma(1660)\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|}
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
\hline GAO & 12 & PR C86 025201 & P. Gao, J. Shi, B.S. Zou & (BHEP, BEIJT) \\
\hline Also & & NP A867 41 & P. Gao, B.S. Zou, A. Sibirtsev & (BHEP, BEIJT+) \\
\hline KOISO & 85 & NP A433 619 & H. Koiso et al. & (TOKY, MASA) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline ALSTON-... & 78 & PR D18 182 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline Also & & PRL 381007 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline MARTIN & 77 & NP B127 349 & B.R. Martin, M.K. Pidcock, R.G. & Moorhouse (LOUC+) IJP \\
\hline Also & & NP B126 266 & B.R. Martin, M.K. Pidcock & (LOUC) \\
\hline Also & & NP B126 285 & B.R. Martin, M.K. Pidcock & (LOUC) IJP \\
\hline HEPP & 76B & PL 65B 487 & V. Hepp et al. & (CERN, HEIDH, MPIM) IJP \\
\hline BAILLON & 75 & NP B94 39 & P.H. Baillon, P.J. Litchfield & (CERN, RHEL) IJP \\
\hline PONTE & 75 & PR D12 2597 & R.A. Ponte et al. & (MASA, TENN, UCR) IJP \\
\hline VANHORN & 75 & NP B87 145 & A.J. van Horn & (LBL) IJP \\
\hline Also & & NP B87 157 & A.J. van Horn & (LBL) IJP \\
\hline KANE & 74 & LBL-2452 & D.F. Kane & (LBL) IJP \\
\hline
\end{tabular}

\section*{THE \(\Sigma(1670)\) REGION}

Production experiments: The measured \(\Sigma \pi / \Sigma \pi \pi\) branching ratio for the \(\Sigma(1670)\) produced in the reaction \(K^{-} p \rightarrow \pi^{-} \Sigma(1670)^{+}\)is strongly dependent on momentum transfer. This was first discovered by EBERHARD 69 [1], who suggested that there exist two \(\Sigma\) resonances with the same mass and quantum numbers: one with a large \(\Sigma \pi \pi\) (mainly \(\Lambda(1405) \pi\) ) branching fraction produced peripherally, and the other with a large \(\Sigma \pi\) branching fraction produced at larger angles. The experimental results have been confirmed by AGUILAR-BENITEZ 70 [2], APSELL 74 [3], ESTES 74 [4], and TIMMERMANS 76 [5]. If, in fact, there are two resonances, the most likely quantum numbers for both the \(\Sigma \pi\) and the \(\Lambda(1405) \pi\) states are \(D_{13}\). There is also possibly a third \(\Sigma\) in this region, the \(\Sigma(1690)\) in the Listings, the main evidence for which is a large \(\Lambda \pi / \Sigma \pi\) branching ratio. These topics have been reviewed by EBERHARD 73 [6] and by MILLER 70 [7].

Formation experiments: Two states are also observed near this mass in formation experiments. One of these, the \(\Sigma(1670) D_{13}\), has the same quantum numbers as those observed in production and has a large \(\Sigma \pi / \Sigma \pi \pi\) branching ratio; it may well be the \(\Sigma(1670)\) produced at larger angles (see TIMMERMANS 76 [5]). The other state, the \(\Sigma(1660) P_{11}\), has different quantum numbers, its \(\Sigma \pi / \Sigma \pi \pi\) branching ratio is unknown, and its relation to the produced \(\Sigma(1670)\) states is obscure.

\section*{References}
1. P.H. Eberhard et al., Phys. Rev. Lett. 22, 200 (1969).
2. M. Aguilar-Benitez, et al., Phys. Rev. Lett. 25, 58 (1970).
3. S.P. Apsell, et al., Phys. Rev. D10, 1419 (1974).
4. R.D. Estes, Thesis LBL-3827 (1974).
5. J.J.M. Timmermans, et al., Nucl. Phys. B112, 77 (1976).
6. P.H. Eberhard, Purdue Conf. 247 (1973).
7. D.H. Miller, Duke Conf. 229 (1970).

\(\Sigma(1670) 3 / 2^{-}\)
\(I\left(J^{P}\right)=1\left(\frac{3}{2}-\right)\) Status: \(* * * *\)
For most results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B 1 (1982).

Results from production experiments are listed separately in the next entry.

\section*{\(\Sigma(1670)\) POLE POSITION}

REAL PART
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline
\end{tabular} 1655 to 1675 ( \(\approx 1662\) ) OUR ESTIMATE


\section*{\(\boldsymbol{\Sigma}(1670)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1670) \rightarrow N \bar{K}\)} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
MODULUS \\
PHASE \(\qquad\) DOCUMENT ID
\end{tabular}} & TECN & COMMENT \\
\hline \(0.10 \pm 0.02\) & \(\mathbf{- 3 1} \pm \mathbf{1 2}\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.129 & -20 & 1 KAMANO & 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

\section*{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1670) \rightarrow \Sigma \pi\)}
\(\frac{\text { MODULUS }}{\mathbf{0 . 2 5} \pm \mathbf{0 . 0 5}} \frac{\text { PHASE }()}{\mathbf{- 2 5} \pm \mathbf{1 0}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. • • •
\(0.249-21 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1670) \rightarrow \Lambda \pi\)
\begin{tabular}{|c|c|c|c|c|}
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.09 \pm 0.03\) & -52 \(\pm 12\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.0818 & -7 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{5}{|l|}{} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.02 \pm 0.01\) & \(160 \pm 20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 7 0}) \rightarrow \boldsymbol{\Sigma} \boldsymbol{\sigma}\)} \\
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.08 \pm 0.03\) & -25 \(\pm 15\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}

Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 7 0}) \rightarrow \boldsymbol{\Sigma}(1385) \pi\), \(S\)-wave
MODULUS PHASE (O) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.228167 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 7 0}) \rightarrow \boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi\), \(D\)-wave
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(0.0915 \quad 141 \quad\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 6 7 0}) \rightarrow \Lambda(1405) \pi\)} \\
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.03 \pm 0.02\) & \(160 \pm 15\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline Normalized & esidue in & \(\Sigma(1670) \rightarrow \Lambda(15\) & O) \(\pi\), & -wave \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.04 \pm 0.02\) & \(120 \pm 20\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Normalized residue in \(N \bar{K} \rightarrow\) MODULUS PHASE () & \[
\begin{aligned}
& \Sigma(\mathbf{1 6 7 0}) \rightarrow \Lambda(1520) \pi, F \text {-wave } \\
& \underline{\text { DOCUMENT ID }} \text { TECN COMMENT }
\end{aligned}
\] \\
\hline \(0.01 \pm 0.01\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) MODULUS PHASE ( ) & \[
\begin{aligned}
& \boldsymbol{\Sigma}(\mathbf{1 6 7 0}) \rightarrow \boldsymbol{\Delta} \overline{\boldsymbol{K}}, \text { S-wave } \\
& \text { DOCUMENT ID } \text { TECN COMMENT }
\end{aligned}
\] \\
\hline \(0.01 \pm 0.01\) & SARANTSEV 19 DPWA \(\overline{\bar{K} N \text { multichannel }}\) \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) Value & \[
\begin{aligned}
& \boldsymbol{\Sigma}\left(\mathbf{1 6 7 0 )} \rightarrow N \bar{K}^{*}(892), S=3 / 2, S\right. \text {-wave } \\
& \text { DOCUMENT ID } \sim \text { TECN COMMENT }
\end{aligned}
\] \\
\hline 0.05+-0.03@50+-60 & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) modulus PHASE () & \[
\begin{aligned}
& \boldsymbol{\Sigma}\left(\mathbf{1 6 7 0 )} \rightarrow \boldsymbol{N} \bar{K}^{*}(892), S=3 / 2, D\right. \text {-wave } \\
& \text { DOCUMENT ID } \xrightarrow{\text { TECN }} \text { COMMENT }
\end{aligned}
\] \\
\hline \(0.01 \pm 0.01\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline \begin{tabular}{l}
Normalized residue in \(N \bar{K} \rightarrow\) MODULUS \\
PHASE ( \({ }^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& \Sigma(\mathbf{1 6 7 0}) \rightarrow N \bar{K}^{*}(\mathbf{8 9 2}), S=1 / \mathbf{2}, \mathrm{D} \text {-wave } \\
& \text { DOCUMENT ID TECN COMMENT }
\end{aligned}
\] \\
\hline \(0.03 \pm 0.02\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline & \(\Sigma(1670)\) MASS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1665 to 1685 ( \(\approx 1675\) ) OUR ESTIMATE} \\
\hline \(1665 \pm 3\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1678 \pm 2\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1673 \pm 1\) & GAO & 12 & DPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1665.1 \pm 4.1\) & KOISO & 85 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(1682 \pm 5\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1679 \pm 10\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1670 \pm 5\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1670 \pm 6\) & HEPP & 76B & DPWA & \(K^{-} N \rightarrow \Sigma \pi\) \\
\hline \(1685 \pm 20\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1659+12\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1670 \pm 2\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 1667 or 1668 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1650 & DEBELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1671 \pm 3\) & PONTE & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) (sol. 1) \\
\hline \(1655 \pm 2\) & PONTE & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) (sol. 2) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}(1670)\) WIDTH}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{40 to 100 ( \(\approx 70\) ) OUR ESTIMATE} \\
\hline \(54 \pm 6\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(55 \pm 4\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(52+5\) & GAO & 12 & DPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(65.0 \pm 7.3\) & KOISO & 85 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \(79 \pm 10\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(56 \pm 20\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(50 \pm 5\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(56 \pm 3\) & HEPP & 76B & DPWA & \(K^{-N} \rightarrow \Sigma \pi\) \\
\hline \(85 \pm 25\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(32 \pm 11\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(79 \pm 6\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • • •} \\
\hline 46 or 46 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 80 & DEBELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(44 \pm 11\) & PONTE & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) (sol. 1) \\
\hline \(76 \pm 5\) & PONTE & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) (sol. 2) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.} \\
\hline
\end{tabular}

\section*{\(\Sigma(1670)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.06 to 0.12 \\
\(\Gamma_{2}\) & \(\Lambda \pi\) & \(5-15 \%\) \\
\(\Gamma_{3}\) & \(\Sigma \pi\) & \(30-60 \%\) \\
\(\Gamma_{4}\) & \(\Lambda \pi \pi\) & \\
\(\Gamma_{5}\) & \(\Sigma \pi \pi\) & \\
\(\Gamma_{6}\) & \(\Sigma \sigma\) & \((7.0 \pm 3.0) \%\) \\
\(\Gamma_{7}\) & \(\Sigma(1385) \pi\) & \\
\(\Gamma_{8}\) & \(\Sigma(1385) \pi, S\)-wave & \\
\(\Gamma_{9}\) & \(\Sigma(1385) \pi, S\)-wave & \\
\(\Gamma_{10}\) & \(\Sigma(1385) \pi, D\)-wave & \\
\(\Gamma_{11}\) & \(N \overline{K^{*}}(892), S=1 / 2, D\)-wave & \\
\(\Gamma_{12}\) & \(N \bar{K}^{*}(892), S=3 / 2, S\)-wave & \\
\(\Gamma_{13}\) & \(N \bar{K}^{*}(892), S=3 / 2, D\)-wave &
\end{tabular}



\section*{\(\Sigma(1750) 1 / 2^{-}\)}

For most results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B 1 (1982).

There is evidence for this state in many partial-wave analyses, but with wide variations in the mass, width, and couplings. The latest analyses indicated significant couplings to \(N \bar{K}\) and \(\Lambda \pi\), as well as to \(\Sigma \eta\) whose threshold is at 1746 MeV (JONES 74).

\section*{\(\Sigma(1750)\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE (MeV) }}{\mathbf{1 6 8 9} \pm \mathbf{1 1}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\) |
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|}
\hline \(1704-3\) & 1 KAMANO & 15 DPWA \(\bar{K} N\) multichannel \\
\hline 1708 & ZHANG & 13A DPWA \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\(-2 \times\) IMAGINARY PART
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\(206 \pm 18\) \\
SARANTSEV 19
\end{tabular}} & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(86 \pm 14\) & 1 KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline 158 & ZHANG 13A & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15. Solution B Reports two poles with \(\Gamma=\) \(376_{-}^{+12}\) and \(172_{-4}^{+4} \mathrm{MeV}\).} \\
\hline
\end{tabular}

\section*{\(\Sigma(1750)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow N \bar{K}\)


Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 7 5 0}) \rightarrow \boldsymbol{\Sigma} \pi\)
\(\frac{M O D U L U S}{\mathbf{0 . 2 7} \pm \mathbf{0 . 0 5}} \frac{\text { PHASE }(\mathbb{0})}{\mathbf{1 0 0} \pm \mathbf{1 8}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
0.19213715 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Sigma \eta\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 5} \pm \mathbf{0 . 0 3}} \frac{\text { PHASE }()}{\text { SARUMENT ID }} \frac{\text { TECN }}{\text { SARANTSEV } 19} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(\mathbf{1 7 5 0}) \rightarrow \Lambda \pi\)
\(\frac{\text { MODULUS }}{\mathbf{0 . 2 6} \pm \mathbf{0 . 0 6}} \frac{\text { PHASE }()}{\mathbf{1 1 5} \pm \mathbf{1 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - • •
0.20716915 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \equiv K\)
\begin{tabular}{|c|c|}
\hline MODULUS PHASE () & DOCUMENT ID TECN COMMENT \\
\hline \(0.02 \pm 0.02\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) MODULUS PHASE ( \()\) & \[
\begin{aligned}
& \boldsymbol{\Sigma ( 1 7 5 0 )} \rightarrow \boldsymbol{\Sigma ( 1 3 8 5 ) \pi , ~ D} \text {-wave } \\
& \underline{\text { DOCUMENT ID }} \text { TECN COMMENT }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(0.04 \pm 0.03\) \\
- - We do not use the following
\end{tabular} & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel data for averages, fits, limits, etc. - - • \\
\hline \begin{tabular}{l}
\(0.0536 \quad 73\) \\
\({ }^{1}\) From the preferred solution A in
\end{tabular} & \({ }^{1}\) KAMANO 15 DPWA \(\bar{K} N\) multichannel KAMANO 15. \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) MODULUS PHASE () & \[
\begin{aligned}
& \boldsymbol{\Sigma ( 1 7 5 0 )} \rightarrow \Lambda(\mathbf{1 5 2 0}) \pi \\
& \underline{\text { DOCUMENT ID }} \text { TECN COMMENT }
\end{aligned}
\] \\
\hline 0.15 \(\pm 0.07 \quad-25 \pm 40\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) modulus PHASE () & \[
\begin{aligned}
& \boldsymbol{\Sigma ( 1 7 5 0 )} \rightarrow \boldsymbol{N} \bar{K}^{*}(\mathbf{8 9 2}), S=\mathbf{1 / 2}, S \text {-wave } \\
& \text { DOCUMENT ID } \text { TECN COMMENT }
\end{aligned}
\] \\
\hline \(0.05 \pm 0.03-100 \pm 35\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
\hline ZHANG & 13A & PR C88 035205 & \(\mathrm{H} . \mathrm{Zhang}\) et al. & (KSU) \\
\hline GAO & 12 & PR C86 025201 & P. Gao, J. Shi, B.S. Zou & (BHEP, BEIJT) \\
\hline Also & & NP A867 41 & P. Gao, B.S. Zou, A. Sibirtsev & (BHEP, BEIJT+) \\
\hline KOISO & 85 & NP A433 619 & H. Koiso et al. & (TOKY, MASA) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline ALSTON-... & 78 & PR D18 182 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline Also & & PRL 381007 & M. Alston-Garnjost et al. & (LBL, MTHO+) IJP \\
\hline MORRIS & 78 & PR D17 55 & W.A. Morris et al. & (FSU) IJP \\
\hline CAMERON & 77 & NP B131 399 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline MARTIN & 77 & NP B127 349 & B.R. Martin, M.K. Pidcock, R.G. & Moorhouse (LOUC+) IJP \\
\hline Also & & NP B126 266 & B.R. Martin, M.K. Pidcock & (LOUC) \\
\hline Also & & NP B126 285 & B.R. Martin, M.K. Pidcock & (LOUC) IJP \\
\hline DEBELLEFON & 76 & NP B109 129 & A. de Bellefon, A. Berthon & (CDEF) IJP \\
\hline HEPP & 76B & PL 65B 487 & \(\checkmark\). Hepp et al. & (CERN, HEIDH, MPIM) IJP \\
\hline BAILLON & 75 & NP B94 39 & P.H. Baillon, P.J. Litchfield & (CERN, RHEL) IJP \\
\hline PONTE & 75 & PR D12 2597 & R.A. Ponte et al. & (MASA, TENN, UCR) IJP \\
\hline VANHORN & 75 & NP B87 145 & A.J. van Horn & (LBL) IJP \\
\hline Also & & NP B87 157 & A.J. van Horn & (LBL) IJP \\
\hline DEVENISH & 74 B & NP B81 330 & R.C.E. Devenish, C.D. Froggatt, B & B.R. Martin (DESY+) \\
\hline KANE & 74 & LBL-2452 & D.F. Kane & (LBL) IJP \\
\hline PREVOST & 74 & NP B69 246 & J. Prevost et al. & (SACL, CERN, HEID) \\
\hline BRUCKER Hyperon & \[
\begin{aligned}
& 70 \\
& \text { Resonan }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Duke Conf. } 155 \\
& \text { ices, } 1970
\end{aligned}
\] & E.B. Brucker et al. & (FSU) I \\
\hline BERLEY & 69 & PL 30B 430 & D. Berley et al. & (BNL) \\
\hline ARMENTEROS & 68E & PL 28B 521 & R. Armenteros et al. & (CERN, HEID, SACL) I \\
\hline SIMS & 68 & PRL 211413 & W.H. Sims et al. & (FSU, TUFTS, BRAN) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\(\Sigma(1750)\) MASS} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{1700 to 1800 ( \(\approx \mathbf{1 7 5 0}\) ) OUR ESTIMATE} \\
\hline \(1692 \pm 11\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1739 \pm 8\) & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1756 \pm 10\) & GOPAL 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1770 \pm 10\) & ALSTON-... 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(1770 \pm 15\) & GOPAL 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline 1800 or 1813 & 1 MARTIN 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1715 \pm 10\) & \({ }^{2}\) CARROLL 76 & DPWA & Isospin-1 total \(\sigma\) \\
\hline 1730 & DEBELLEFON 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1780 \pm 30\) & BAILLON 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(1700 \pm 30\) & BAILLON 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline \(1697+20\) & VANHORN 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1785 \pm 12\) & CHU 74 & DBC & Fits \(\sigma\left(K^{-} n \rightarrow \Sigma^{-} \eta\right)\) \\
\hline \(1760 \pm 5\) & 3 JONES 74 & HBC & Fits \(\sigma\left(K^{-} p \rightarrow \Sigma^{0} \eta\right)\) \\
\hline \(1739 \pm 10\) & PREVOST 74 & DPWA & \(K^{-} N \rightarrow \Sigma(1385) \pi\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{2}\) A total cross-section bump with \((J+1 / 2) \Gamma_{\text {el }} / \Gamma_{\text {total }}=0.30\).} \\
\hline \multicolumn{4}{|l|}{\({ }^{3}\) An S-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Gamma(\Lambda \pi) / \Gamma_{\text {total }}\)} & & \(\Gamma_{2} / \overline{ }\) \\
\hline & document id & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{\(0.14 \pm 0.05\) SARANTSEV 19 DPWA \(\bar{K} N\) multichann} \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline 0.435 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{2}{|l|}{\(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\)} & \(\Gamma_{3} /{ }^{\text {I }}\) \\
\hline Value & document id & \multirow[t]{2}{*}{\(\frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)} \\
\hline \(0.16 \pm 0.04\) & SARANTSEV 19 & \\
\hline \multicolumn{3}{|l|}{- . We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline 0.373 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multirow[t]{2}{*}{\(\Gamma(\Lambda(1520) \pi) / \Gamma_{\text {total }}\)} & & \multirow[t]{2}{*}{TECN COMMENT \(\Gamma_{6} / \Gamma^{\text {a }}\)} \\
\hline & DOCuMENT ID & \\
\hline \(0.02 \pm 0.01\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multirow[t]{2}{*}{\(\Gamma(\Sigma(1385) \pi, D\)-wave \() / \Gamma_{\text {total }}\)} & & \(\Gamma_{5} / \overline{ }\) \\
\hline & DOCUMENT ID & TECN COMment \\
\hline <0.01 & SARANTSEV 19 &  \\
\hline \multicolumn{2}{|l|}{- . We do not use the following data for averages, fits,} & limits, etc. - - \\
\hline 0.024 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} & \\
\hline \multirow[t]{2}{*}{} & & \(\Gamma_{7} / \Gamma\) \\
\hline & DOCUMENT ID & TECN COMMENT \\
\hline \(\sim 0\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(0.08 \pm 0.04\) & zHang 13A & DPWA \(\bar{K} N\) multichannel \\
\hline - - We do not use the following & data for averages, fits, & limits, etc. - - \\
\hline 0.004 & \({ }^{1}\) Kamano 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \({ }^{1}\) From the preferred solution & in kamano 15. & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - • -
\begin{tabular}{|c|c|c|c|}
\hline \(60 \pm 10\) & GOPAL & 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 117 or 119 & 1 MARTIN & 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 10 & \({ }^{2}\) CARROLL & 76 & DPWA Isospin-1 total \(\sigma\) \\
\hline 110 & DEBELLEFON & 76 & IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(140 \pm 30\) & BAILLON & 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(160 \pm 50\) & BAILLON & 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline \(66{ }_{-12}^{+14}\) & VANHORN & 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(89 \pm 33\) & CHU & 74 & DBC Fits \(\sigma\left(K^{-} n \rightarrow \Sigma^{-} \eta\right)\) \\
\hline \(92 \pm 7\) & 3 JONES & 74 & HBC Fits \(\sigma\left(K^{-} p \rightarrow \Sigma^{0} \eta\right)\) \\
\hline \(108 \pm 20\) & PREVOST & 74 & DPWA \(K^{-} N \rightarrow \Sigma(1385) \pi\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{2}\) A total cross-section bump with \((J+1 / 2) \Gamma_{\mathrm{el}} / \Gamma_{\text {total }}=0.30\). \\
\({ }^{3}\) An S-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{llc}
\hline & \multicolumn{2}{c}{\(\boldsymbol{\Sigma}(\mathbf{1 7 5 0 )}\) DECAY MODES } \\
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.06 to 0.12 \\
\(\Gamma_{2}\) & \(\Lambda \pi\) & \((14 \quad \pm 5) \%\) \\
\(\Gamma_{3}\) & \(\Sigma \pi\) & \((16 \quad \pm 4) \%\) \\
\(\Gamma_{4}\) & \(\Sigma \eta\) & \(15-55 \%\) \\
\(\Gamma_{5}\) & \(\Sigma(1385) \pi, D\)-wave & \(<1\)
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (1750) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(N \bar{K}) / \Gamma_{\text {total }}\)} & \(\Gamma_{1} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{0.06 to 0.12 OUR ESTIMATE} \\
\hline \(0.46 \pm 0.09\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(0.09 \pm 0.07\) & ZHANG & 13A & DPWA & Multichannel & \\
\hline \(0.14 \pm 0.03\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline \(0.33 \pm 0.05\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 0.154 & 1 KAMANO & 15 & DPWA & Multichannel & \\
\hline \(0.15 \pm 0.03\) & GOPAL & 77 & DPWA & See GOPAL 80 & \\
\hline 0.06 or 0.05 & 2 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\({ }^{2}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
}
\(\mathbf{1 0 0}\) to \(\mathbf{2 0 0}\) ( \(\approx \mathbf{1 5 0 )}\) OUR ESTIMATE
\(208 \pm 18\)
\begin{tabular}{|c|c|c|c|}
\hline \(208 \pm 18\) & SARANTSEV & 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(182 \pm 60\) & ZHANG & 13A & DPWA \(\bar{K} N\) multichannel \\
\hline \(64 \pm 10\) & GOPAL & 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(161 \pm 20\) & ALSTON-. & 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(60 \pm 10\) & GOPAL & 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 117 or 119 & 1 MARTIN & 77 & DPWA \(\bar{K} N\) multichannel \\
\hline 10 & \({ }^{2}\) CARROLL & 76 & DPWA Isospin-1 total \(\sigma\) \\
\hline 110 & DEBELLEFON & 76 & IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(140 \pm 30\) & BAILLON & 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(160 \pm 50\) & BAILLON & 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline \(66{ }_{-12}^{+14}\) & VANHORN & 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(89 \pm 33\) & CHU & 74 & DBC Fits \(\sigma\left(K^{-} n \rightarrow \Sigma^{-} \eta\right)\) \\
\hline \(92 \pm 7\) & 3 JONES & 74 & HBC Fits \(\sigma\left(K^{-} p \rightarrow \Sigma^{0} \eta\right)\) \\
\hline \(108 \pm 20\) & PREVOST & 74 & DPWA \(K^{-} N \rightarrow \Sigma(1385) \pi\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • •
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\(\boldsymbol{\Gamma}\left(\boldsymbol{N} \bar{K}^{*}(\mathbf{8 9 2}), \boldsymbol{S = 3 / 2}, \boldsymbol{D}\right.\)-wave \() / \boldsymbol{\Gamma}_{\text {total }}\)
VALUE
DOCUMENT ID
- • We do not use the following data for averages, fits, limits, etc. • • -
\(0.01 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Lambda \pi\)} & \multicolumn{2}{|r|}{\(\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(+0.10 \pm 0.04\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(0.04 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -0.10 or -0.09 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline -0.12 & DEBELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(-0.12 \pm 0.02\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(-0.13 \pm 0.03\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline \(-0.13 \pm 0.04\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(-0.120 \pm 0.077\) & DEVENISH & 74B & & Fixed- \(t\) dispersion rel. \\
\hline
\end{tabular}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Sigma \pi\)} & \multicolumn{2}{|r|}{\[
\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(+0.17 \pm 0.07\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(-0.09 \pm 0.05\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits,} \\
\hline +0.06 or +0.06 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(0.13 \pm 0.02\) & LANGBEIN & 72 & IPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{\rho} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Sigma \eta
\]} & \multicolumn{2}{|r|}{\(\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.23 \pm 0.01\) & JONES & 74 HBC & Fits \(\sigma\left(K^{-}\right.\) & \(\left.p \rightarrow \Sigma^{0} \eta\right)\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline seen & CLINE & 69 DBC & Threshold & bump \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) An S-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.} \\
\hline \multicolumn{5}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \Rightarrow \Sigma(1750) \Rightarrow \Sigma(1385) \pi, D \text {-wave } \quad\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma
\]} \\
\hline & & & COMMENT & \\
\hline \(+0.17 \pm 0.07\) & ZHANG & 13A DPWA & Multichan & nel \\
\hline \(+0.18 \pm 0.15\) & PREVOST & 74 DPWA & \(K^{-} N \rightarrow\) & \(\Sigma(1385) \pi\) \\
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Lambda(1520) \pi \quad\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.032 \pm 0.021\) & CAMERON & 77 DPWA & \(P\)-wave de & ecay \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{I} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Sigma \eta
\]} & \multicolumn{2}{|r|}{\(\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & \multicolumn{2}{|l|}{COMMENT} \\
\hline \(0.23 \pm 0.01\) & 1 JONES & \multicolumn{3}{|l|}{HBC Fits \(\sigma\left(K^{-} p \rightarrow \Sigma^{0} \eta\right)\)} \\
\hline \multicolumn{5}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline seen & CLINE & \multicolumn{3}{|l|}{DBC Threshold bump} \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) An S-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.} \\
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \Rightarrow \Sigma(1385) \pi, D\)-wave \(\quad\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{4}{|l|}{DOCUMENT ID TECN COMMENT} \\
\hline \(+0.17 \pm 0.07\) & ZHANG & \multicolumn{3}{|l|}{DPWA Multichannel} \\
\hline \(+0.18 \pm 0.15\) & PREVOST & \multicolumn{3}{|l|}{DPWA \(K^{-} N \rightarrow \Sigma(1385) \pi\)} \\
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Lambda(1520) \pi \quad\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{4}{|l|}{DOCUMENTID TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.032 \pm 0.021\) & CAMERON & 77 DPWA & \(P\)-wave dec & cay \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{I} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Sigma \eta
\]} & \multicolumn{2}{|r|}{\(\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & \multicolumn{2}{|l|}{COMMENT} \\
\hline \(0.23 \pm 0.01\) & 1 JONES & \multicolumn{3}{|l|}{HBC Fits \(\sigma\left(K^{-} p \rightarrow \Sigma^{0} \eta\right)\)} \\
\hline \multicolumn{5}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. • -} \\
\hline seen & CLINE & \multicolumn{3}{|l|}{DBC Threshold bump} \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) An S-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.} \\
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \Rightarrow \Sigma(1385) \pi, D\)-wave \(\quad\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{4}{|l|}{DOCUMENT ID TECN COMMENT} \\
\hline \(+0.17 \pm 0.07\) & ZHANG & \multicolumn{3}{|l|}{DPWA Multichannel} \\
\hline \(+0.18 \pm 0.15\) & PREVOST & \multicolumn{3}{|l|}{DPWA \(K^{-} N \rightarrow \Sigma(1385) \pi\)} \\
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1750) \rightarrow \Lambda(1520) \pi \quad\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{4}{|l|}{DOCUMENTID TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.032 \pm 0.021\) & CAMERON & 77 DPWA & \(P\)-wave dec & cay \\
\hline
\end{tabular}


\(0.032 \pm 0.021 \quad\) CAMERON 77 DPWA \(P\)-wave decay


\section*{\(\Sigma(1775)\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE }(\mathrm{MeV})}{1760 \text { to } \mathbf{1 7 9 0}(\approx \mathbf{1 7 7 0}) \text { OUR ESTIMMENT ID }}\) TECN COMMENT 1760 to \(\mathbf{1 7 8 0} \mathbf{( \approx 1 7 7 0 )}\) OUR ESTIMATE


\section*{\(\Sigma(1775)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1775) \rightarrow N \bar{K}\)} \\
\hline MODULUS & PHASE ( ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.44 \pm 0.09\) & \(-17 \pm 10\) & SARANTSEV 19 & DPW & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.371 & -32 & 1 KAMANO 15 & DPW & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1775) \rightarrow \Sigma \pi\)} \\
\hline modulus & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN COMMENT \\
\hline \(0.13 \pm 0.03\) & \(10 \pm 12\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.115 & -24 & 1 KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Normalized residue in \(\boldsymbol{N} \bar{K} \Rightarrow \Sigma(1775) \Rightarrow \Lambda \pi\)} \\
\hline MODULUS & PHASE ( \({ }^{\circ}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.47 \pm 0.10\) & \(130 \pm 15\) & SARANTSEV 19 & DPW & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 0.325 & 157 & 1 KAMANO 15 & DPW & \(\bar{K} N\) multichannel \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}

\section*{Normalized residue in \(N \bar{K} \Rightarrow \Sigma(1775) \Rightarrow \Sigma(1385) \pi\), \(D\)-wave}
MODULUS PHASE ( ) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.391 \quad 137 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.

\begin{tabular}{ll} 
& \\
\hline\(\Gamma_{10}\) & \(\Delta(1232) \bar{K}, D\)-wave \\
\(\Gamma_{11}\) & \(N \bar{K}^{*}(892), S=1 / 2\) \\
\(\Gamma_{12}\) & \(N \bar{K}^{*}(892), S=1 / 2, D\)-wave \\
\(\Gamma_{13}\) & \(N \bar{K}^{*}(892), S=3 / 2, D\)-wave \\
\(\Gamma_{14}\) & \(N \bar{K}^{*}(892), S=3 / 2, G\)-wave \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (1775) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances. Also, the errors quoted do not include uncertainties due to the parametrization used in the partial-wave analyses and are thus too small.
\(\boldsymbol{\Gamma}(\boldsymbol{N} \bar{K}) / \boldsymbol{\Gamma}_{\text {total }}\)
\(V A L U E\)
\begin{tabular}{l}
\(\boldsymbol{\Gamma}(\boldsymbol{\Lambda} \boldsymbol{\pi}) / \boldsymbol{\Gamma}(\boldsymbol{N} \bar{K})\) \\
VALUE \\
DOCUMENT ID \\
TECN COMMENT
\end{tabular} \(\boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}_{\mathbf{1}}\)
\(0.33 \pm 0.05 \quad\) UHLIG \(67 \mathrm{HBC} \quad K^{-} p 0.9 \mathrm{GeV} / c\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\)} & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.035 \pm 0.010\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline 0.042 & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Sigma(1385) \pi) / \Gamma(N \bar{K})\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.25 \pm 0.09\) & UHLIG 67 & HBC & \(K^{-} p 0.9 \mathrm{GeV} / c\) & \\
\hline
\end{tabular}
\(\Gamma(\Sigma(1385) \pi, D\)-wave \() / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{6}} / \Gamma\)
VALUE - We do not use the following data for averages, fits, limits, etc. • • \(\frac{\text { DOCUMENT ID }}{\text { COMMENT }}\)
\(0.309 \quad{ }^{1}\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{l}
\(\boldsymbol{\Gamma}(\boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi, G\) wave \() / \Gamma_{\text {total }}\) \\
VALUE \\
DOCUMENT ID \\
\hline TECN COMMENT
\end{tabular} \(\boldsymbol{\Gamma}_{\mathbf{7}} / \boldsymbol{\Gamma}\)

not seen 1 KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Lambda(1520) \pi, P\)-wave \() / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{8} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.02 \pm 0.01\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel & \\
\hline \(\Gamma(\Lambda(1520) \pi, P\)-wave \() / \Gamma(N \bar{K})\) & & & & & \(\Gamma_{8} / \Gamma_{1}\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.28 \pm 0.05\) & UHLIG & 67 & HBC & \(K^{-} p 0.9 \mathrm{GeV} / c\) & \\
\hline \(\Gamma(\Sigma \pi \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{9} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
1 ARMENTEROS68C HDBC \(K^{-} N \rightarrow \Sigma \pi \pi\)
\(1^{12}\) For about \(3 / 4\) of this, the \(\Sigma \pi\) system has \(I=0\) and is almost entirely \(\Lambda(1520)\). For the
rest, the \(\Sigma \pi\) has \(I=1\), which is about what is expected from the known \(\Sigma(1775) \rightarrow\)
\(\Sigma(1385) \pi\) rate, as seen in \(\Lambda \pi \pi\).
\(\Gamma\left(\boldsymbol{N} \bar{K}^{*}(\mathbf{8 9 2}), S=\mathbf{1 / 2}, \boldsymbol{D}\right.\)-wave \() / \Gamma_{\text {total }} \quad \Gamma_{\mathbf{1 2}} / \Gamma\)
- • We do not use the following data for averages, fits, limits, etc. • • •
not seen \(\quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\(\Gamma\left(N \bar{K}^{*}(892), S=3 / 2, D\right.\)-wave \() / \Gamma_{\text {total }} \quad \Gamma_{13} / \Gamma\)
VALUE DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • -
\(0.003 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\(\Gamma\left(N \overline{K^{*}}(892), S=3 / 2, G\right.\)-wave \() / \Gamma_{\text {total }}\)

VALUE DOCUMENT ID TECN COMMENT
\(\qquad\)
- - We do not use the following data for averages, fits, limits, etc. • • -
not seen \(\quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \Rightarrow \Sigma(1775) \Rightarrow \Lambda \pi
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\text { TECN }^{\text {COMMENT }}\left(\boldsymbol{\Gamma}_{\mathbf{1}} \Gamma_{\mathbf{2}}\right)^{1 / 2} / \Gamma
\]}} \\
\hline VALUE & DOCUMENT & & & \\
\hline \(-0.31 \pm 0.01\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(-0.28 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(-0.25 \pm 0.02\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(-0.28{ }_{-0.05}^{+0.04}\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(-0.259 \pm 0.048\) & DEVENISH & 74B & & Fixed-t dispersion \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - • -
-0.29 or \(-0.28 \quad 1\) MARTIN 77 DPWA \(\bar{K} N\) multichannel \(-0.30 \quad\) DEBELLEFON 76 IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\)
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{t}
\] & 5) \(\rightarrow \Sigma\) & & & \(\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma\) \\
\hline Value & DOCUMEN & TECN & COMMENT & \\
\hline \(0.08 \pm 0.01\) & ZHANG & DP & Multichan & \\
\hline
\end{tabular}
\(+0.13 \pm 0.02 \quad\) GOPAL 77 DPWA \(\bar{K} N\) multichannel
\(0.09 \pm 0.01 \quad\) KANE 74 DPWA \(K^{-} p \rightarrow \Sigma \pi\)
- - We do not use the following data for averages, fits, limits, etc. - - •
+0.08 or \(+0.08 \quad 1\) MARTIN 77 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1775) \Rightarrow \Sigma(1385) \pi, D\)-wave} & \[
\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma
\] \\
\hline VALUE & DOCUMENT ID & & TECN & COMMEN & \\
\hline \(-0.12 \pm 0.01\) & ZHANG & 13A & DPWA & Multich & \\
\hline \(-0.184 \pm 0.011\) & \({ }^{1}\) CAMERON & & DPWA & \(K^{-} p\) & \(\Sigma(1385) \pi\) \\
\hline \(+0.20 \pm 0.02\) & PREVOST & & DPWA & \(K^{-} N\) & \(\Sigma(1385) \pi\) \\
\hline \multicolumn{6}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline \(0.32 \pm 0.06\) & SIMS & 68 & DBC & \(K^{-} N\) & \(\wedge \pi \pi\) \\
\hline \(0.24 \pm 0.03\) & ARMENTER & 67c & HBC & \(K^{-} p\) & \(\wedge \pi \pi\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The CAMERON 78 upper limit on \(G\)-wave decay is 0.03 .} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1775) \rightarrow \Lambda(1520) \pi, P\)-wave \(\quad\left(\Gamma_{1} \Gamma_{8}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(-0.06 \pm 0.01\) & ZHANG & 13A & DPWA & Multichan & nnel \\
\hline \(-0.305 \pm 0.010\) & \({ }^{1}\) CAMERON & 77 & DPWA & \(K^{-} p \rightarrow\) & \(\Lambda(1520) \pi^{0}\) \\
\hline \(0.31 \pm 0.02\) & BARLETTA & 72 & DPWA & \(K^{-} p \rightarrow\) & \(\Lambda(1520) \pi^{0}\) \\
\hline \(0.27 \pm 0.03\) & ARMENTERO & 65C & HBC & \(K^{-} p \rightarrow\) & \(\Lambda(1520) \pi^{0}\) \\
\hline
\end{tabular}

1 This rate combines \(P\)-wave- and \(F\)-wave decays. The CAMERON 77 results for the
separate \(P\)-wave- and \(F\)-wave decays are \(-0.303 \pm 0.010\) and \(-0.037 \pm 0.014\). The published signs have been changed here to be in accord with the baryon-first convention.

 \(+0.04 \pm 0.01 \quad\) ZHANG 13A DPWA Multichannel
\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1775) \rightarrow N \bar{K}^{*}(892), S=3 / 2, D\)-wave
\(\frac{\text { VALUE }}{+0.04 \pm 0.01} \quad \frac{\text { DOCUMENT ID }}{\text { ZHANG }}{ }^{13 \mathrm{~A}} \frac{\text { TECN }}{\text { DPWA }} \frac{}{} \frac{\text { COMMENT }}{\text { Multichannel }}\left(\Gamma_{1} \Gamma_{13}\right)^{1 / 2} / \Gamma\)
\(\Sigma(1775)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & \multicolumn{2}{|l|}{} \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & \multicolumn{2}{|r|}{\begin{tabular}{l}
(BONN, PNPI) \\
(ANL, OSAK)
\end{tabular}} \\
\hline ZHANG & 13A & PR C88 035205 & H. Zhang et al. & & (KSU) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, & IT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & & (RHEL) IJP \\
\hline ALSTON-... & 78 & PR D18 182 & M. Alston-Garnjost et al. & & , MTHO+) IJP \\
\hline Also & & PRL 381007 & M. Alston-Garnjost et al. & & , MTHO+) IJP \\
\hline CAMERON & 78 & NP B143 189 & W. Cameron et al. & & HEL, LOIC) IJP \\
\hline CAMERON & 77 & NP B131 399 & W. Cameron et al. & & HEL, LOIC) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & & OIC, RHEL) IJP \\
\hline MARTIN & 77 & NP B127 349 & B.R. Martin, M.K. Pidcock, & R.G. Moorhouse & (LOUC+) IJP \\
\hline Also & & NP B126 266 & B.R. Martin, M.K. Pidcock & & (LOUC) \\
\hline Also & & NP B126 285 & B.R. Martin, M.K. Pidcock & & (LOUC) IJP \\
\hline DEBELLEFON & 76 & NP B109 129 & A. de Bellefon, A. Berthon & & (CDEF) IJP \\
\hline BAILLON & 75 & NP B94 39 & P.H. Baillon, P.J. Litchfield & & RN, RHEL) IJP \\
\hline
\end{tabular}


\section*{\(\Sigma(1780)\) DECAY MODES}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & \((2.0 \pm 1.0) \%\) \\
\(\Gamma_{2}\) & \(\Lambda \pi\) & \((70 \pm 17) \%\) \\
\(\Gamma_{3}\) & \(\Sigma \pi\) & \((12 \pm 6) \%\) \\
\hline
\end{tabular}
\(\boldsymbol{\Sigma}\) (1780) BRANCHING RATIOS


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\Sigma \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & DOCUMEN & & TECN & COMMENT & \\
\hline \(0.12 \pm 0.06\) & ZHANG & 13A & DPWA & Multichannel & \\
\hline
\end{tabular}


OMITTED FROM SUMMARY TABLE
A \(P_{11}\) resonance is suggested by several partial-wave analyses, but with wide variations in the mass and other parameters. We list here all claims which lie well above the \(P_{11} \Sigma(1770)\).

\section*{\(\Sigma(1880)\) POLE POSITION}

REAL PART
VALUE (MeV)
DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •

1776
ZHANG 13A DPWA Multichannel
\(-2 \times\) IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • •
\(270 \quad\) ZHANG 13 A DPWA Multichannel

\section*{\(\Sigma(1880)\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1820 to 1940 ( \(\approx \mathbf{1 8 8 0}\) ) OUR ESTIMATE} \\
\hline \(1821 \pm 17\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(1826 \pm 20\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1870 \pm 10\) & CAMERON & 78B & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline 1847 or 1863 & \({ }^{1}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1960 \pm 30\) & \({ }^{2}\) BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1985 \pm 50\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline 1898 & 3 LEA & 73 & DPWA & Multichannel K-matrix \\
\hline \(\sim 1850\) & ARMENTEROS & & IPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1950 \pm 50\) & BARBARO-... & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline \(1920 \pm 30\) & LITCHFIELD & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline 1850 & BAILEY & 69 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1882 \pm 40\) & SMART & 68 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline \multicolumn{5}{|c|}{\(\Sigma(1880)\) WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 300 ( \(\approx 200\) ) OUR ESTIMATE} \\
\hline \(300 \pm 59\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(86 \pm 15\) & GOPAL & 80 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(80 \pm 10\) & CAMERON & 78B & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline 216 or 220 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(260 \pm 40\) & 2 BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(220 \pm 140\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline 222 & \({ }^{3}\) LEA & 73 & DPWA & Multichannel K-matrix \\
\hline \(\sim 30\) & ARMENTEROS & & IPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(200 \pm 50\) & BARBARO-... & 70 & DPWA & \(K^{-N} \rightarrow \Lambda \pi\) \\
\hline \(170 \pm 40\) & LITCHFIELD & 70 & DPWA & \(K^{-N} \rightarrow \Lambda \pi\) \\
\hline 200 & BAILEY & 69 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(222 \pm 150\) & SMART & 68 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline
\end{tabular}
\(\Sigma(1880)\) DECAY MODES
\begin{tabular}{lll}
\multicolumn{1}{l}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.10 to \(0.30(\approx 0.20)\) \\
\(\Gamma_{2}\) & \(\Lambda \pi\) & \\
\(\Gamma_{3}\) & \(\Sigma \pi\) & \((2.0 \pm 1.0) \%\) \\
\(\Gamma_{4}\) & \(\Lambda(1520) \pi, D\)-wave & \\
\(\Gamma_{5}\) & \(N \bar{K}^{*}(892), S=1 / 2, P\)-wave & \\
\(\Gamma_{6}\) & \(N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \(\left(\begin{array}{ll}39 & \pm 8\end{array}\right) \%\) \\
\(\Gamma_{7}\) & \(\Delta(1232) \bar{K}, P\)-wave & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}(1880)\) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{l} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1880) \rightarrow \Lambda \pi
\]} & \multicolumn{2}{|r|}{\[
\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline -0.24 or -0.24 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(-0.12 \pm 0.02\) & 2 BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \({ }_{+0.05}^{+0.07}{ }_{-0.02}\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(-0.169 \pm 0.119\) & DEVENISH & 74B & & Fixed-t dispersion rel. \\
\hline -0.30 & \({ }^{3}\) LEA & 73 & DPWA & Multichannel K-matrix \\
\hline \(-0.09 \pm 0.04\) & BARBARO-... & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline \(-0.14 \pm 0.03\) & LITCHFIELD & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline \(-0.11 \pm 0.03\) & SMART & 68 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1880) \rightarrow \Sigma \pi\)} & \multirow[t]{2}{*}{\(\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT & & TECN & COMMENT & \\
\hline +0.30 or +0.29 & 1 MARTIN & 77 & DPWA & \(\bar{K} N\) multic & channel \\
\hline not seen & \({ }^{3}\) LEA & 73 & DPW & ultichan & K-matrix \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\Lambda(1520) \pi, D\)-wave \() / \Gamma_{\text {total }}\) & & \multicolumn{2}{|c|}{\(\Gamma_{4} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.02 \pm 0.01\) & ZHANG 13A & DPWA & Multichannel \\
\hline \multicolumn{4}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(1880) \rightarrow N \bar{K}^{*}(892), S \equiv 1 / 2, P\)-wave \(\left(\Gamma_{1} \Gamma_{5}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{3}{|l|}{DOCUMENT ID TECN COMMENT} \\
\hline \(-0.05 \pm 0.03\) & \multicolumn{3}{|l|}{\({ }^{4}\) CAMERON 78B DPWA \(K^{-} p \rightarrow N \bar{K}^{*}\)} \\
\hline \multicolumn{4}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \Rightarrow \Sigma(1880) \Rightarrow N \bar{K}^{*}(892), S=3 / 2, P\)-wave \(\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{3}{|l|}{DOCUMENTID TECN COMMENT} \\
\hline \(+0.11 \pm 0.03\) & \multicolumn{3}{|l|}{CAMERON 78B DPWA \(K^{-} p \rightarrow N \bar{K}^{*}\)} \\
\hline \(\Gamma(\Delta(1232) \bar{K}, P\)-wave \() / \Gamma_{\text {total }}\) & \multicolumn{3}{|c|}{\(\Gamma_{7} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.39 \pm 0.08\) & ZHANG 13A & DPWA & Multichannel \\
\hline \multicolumn{4}{|c|}{\(\boldsymbol{\Sigma}\) (1880) FOOTNOTES} \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{2}\) From solution 1 of BAILLON 75 ; not present in solution 2.} \\
\hline \multicolumn{4}{|l|}{\({ }^{3}\) Only unconstrained states from table 1 of LEA 73 are listed.} \\
\hline \({ }^{4}\) The published sign has been ch & nged to be in accord & with the & baryon-first con \\
\hline
\end{tabular}

\section*{\(\Sigma(1880)\) REFERENCES}


OMITTED FROM SUMMARY TABLE

\section*{\(\Sigma(1900)\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE }}{1936 \pm 10}\)
\(\underset{\text { VALUE }}{-2 \times \text { IMAGINARY PART }}\)
\(\frac{\text { VALUE }}{150 \pm 25}\)
\[
\begin{aligned}
& \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }} \\
& \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}
\end{aligned}
\]
(1900) POLE RESIDUES

The normalized residue is the residue divided by \(\Gamma_{p o l e} / 2\).
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1900) \rightarrow N \bar{K}\)



\section*{\(\Sigma(1900)\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(N \bar{K}\) & 0.40 to \(0.70(\approx 0.55)\) \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & 0.10 to \(0.40(\approx 0.25)\) \\
\(\Gamma_{3}\) & \(\Sigma \eta\) & \((1.0 \pm 1.0) \%\) \\
\(\Gamma_{4}\) & \(\Lambda \pi\) & \((6.0 \pm 2.0) \%\) \\
\(\Gamma_{5}\) & \(\equiv K\) & \((3.0 \pm 2.0) \%\) \\
\(\Gamma_{6}\) & \(\Sigma(1385) \pi\) & \((7.0 \pm 3.0) \%\) \\
\(\Gamma_{7}\) & \(\Lambda(1520) \pi\) & \\
\(\Gamma_{8}\) & \(\Delta \bar{K}\) & \((2.5 \pm 1.0) \%\) \\
\(\Gamma_{9}\) & \(N \overline{K^{*}(892), S=1 / 2, S \text {-wave }}\) & \((7.0 \pm 3.0) \%\) \\
\(\Gamma_{10}\) & \(N \bar{K}^{*}(892), S=3 / 2, D\)-wave & \\
\hline
\end{tabular}
\(\Sigma(1900)\) BRANCHING RATIOS


\section*{Baryon Particle Listings}
\(\Sigma(1900), \Sigma(1910)\)


\section*{\(\Sigma(1910)\) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{p o l e} / 2\).




\section*{\(\boldsymbol{\Sigma}(1910)\) FOOTNOTES}
\({ }^{1}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
\({ }_{3}^{2}\) The published sign has been changed to be in accord with the baryon-first convention.
\({ }^{3}\) Upper limits on the \(D_{1}\) and \(D_{3}\) waves are each 0.03 .

> \(\Sigma\) (1915) \(5 / 2^{+}\)
> \(I\left(J^{P}\right)=1\left(\frac{5}{2}^{+}\right)\)Status: \(* * * *\)
> Discovered by COOL 66. For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B 1 (1982).

> This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and invariant-mass distributions in this region used to be listed in in a separate entry immediately following. They may be found in our 1986 edition Physics Letters 170B 1 (1986).

\section*{\(\Sigma(1915)\) POLE POSITION}

REAL PART
\begin{tabular}{|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{1885 to 1915 ( \(\approx\) 1900) OUR ESTIMATE} \\
\hline \(1908 \pm 7\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1890{ }_{-2}^{+3}\) & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1897 & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \multicolumn{4}{|l|}{-2xIMAGINARY PART} \\
\hline \multicolumn{4}{|l|}{90 to 110 ( \(\approx 100\) ) OUR ESTIMATE} \\
\hline \(98 \pm 12\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(97^{+}+6\) & 1 KAMANO 15 & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 133 & ZHANG 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (1915) POLE RESIDUES}

The normalized residue is the residue divided by \(\Gamma_{\text {pole }} / 2\).

\section*{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow N \bar{K}\)}
\(\frac{M O D U L U S}{\mathbf{0 . 0 8} \mathbf{0 . 0 2}} \frac{\text { PHASE }()}{\mathbf{- 3 3} \mathbf{1 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

\(\begin{array}{lcccc}\text { •• We do not use the following data for averages, fits, limits, etc. } \quad 1 \text { •• } \\ 0.0391 & -15 & 1 \text { KAMANO } & 15 & \text { DPWA } \bar{K} N \text { multichannel }\end{array}\)
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Sigma \pi\)
MODULUS \(\frac{\text { PHASE ( })}{190}\) DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\)
\(0.09 \pm \mathbf{0 . 0 2} \quad \mathbf{1 8 0} \pm \mathbf{1 2} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.157157 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Lambda \pi\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(\overline{\mathbf{0 . 0 7} \pm \mathbf{0 . 0 2}} \mathbf{- 1 7 0 \pm \mathbf { 2 0 }} \quad \overline{\text { SARANTSEV } 19} \overline{\text { DPWA }} \bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - - •
\(0.0757166 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \boldsymbol{\Sigma}(1915) \rightarrow \equiv K\)
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT \(0.02 \pm \mathbf{0 . 0 1} \quad \mathbf{- 6 5} \pm \mathbf{3 5} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel - - We do not use the following data for averages, fits, limits, etc. • • -
\(0.002-88 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1915) \rightarrow \Sigma(1385) \pi\), \(\boldsymbol{P}\)-wave
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(\mathbf{0 . 0 2} \mathbf{\pm 0 . 0 2} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.0724161 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Lambda(1915) \rightarrow \Sigma(1385) \pi, F\)-wave
MODULUS PHASE ( \()\) DOCUMENT ID TECN COMMENT
\(\mathbf{0 . 0 5} \mathbf{\pm 0 . 0 3} \mathbf{- 3 0} \pm \mathbf{5 0} \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- . We do not use the following data for averages, fits, limits, etc. • •
\(0.0162-163 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Lambda(1520) \pi, D\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 8} \mathbf{\pm 0 . 0 2}} \frac{\operatorname{PHASE}(\mathcal{0})}{\mathbf{- 1 0 5} \mathbf{\mathbf { 5 0 }}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)

Baryon Particle Listings
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Delta \bar{K}, P\)-wave}} & \multicolumn{3}{|r|}{\(\Sigma(1915)\) DECAY MODES} \\
\hline & & & & \\
\hline 0.12 \(\pm 0.03-10 \pm 20\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel & & Mode & Fraction ( \(\Gamma_{i} / \Gamma^{\text {) }}\) \\
\hline \multicolumn{2}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Delta \bar{K}, F\)-wave} & \(\Gamma_{1}\) & \(N \bar{K}\) & 0.05 to 0.15 \\
\hline MODULUS PHASE ( ) & DOCUMENT ID TECN COMMENT & \(\Gamma_{2}\) & \(\wedge \pi\) & ( \(6.0 \pm 2.0\) ) \% \\
\hline 0.07 \(\pm 0.02-35 \pm 25\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel & \(\Gamma 3\) & \(\Sigma \pi\) & \((10.0 \pm 2.0) \%\) \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Lambda(1520) \pi, G\) wave}} & \(\Gamma_{4}\) & 三K & \\
\hline & & \(\Gamma_{5}\) & \(\Sigma(1385) \pi\), \(P\)-wave & ( \(2.0 \pm 2.0\) ) \% \\
\hline MODULUS - PHASE ( ) & DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\) & \(\Gamma_{6}\) & \(\Sigma(1385) \pi\), \(F\)-wave & ( \(4.0 \pm 2.0\) ) \% \\
\hline \(0.01 \pm 0.01\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel & \(\Gamma_{7}\) & \(\Sigma(1385) \pi\) & <5\% \\
\hline \multicolumn{2}{|l|}{Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow N \bar{K}^{*}\) (892), \(S=1 / 2, F\)-wave} & \(\Gamma_{8}\) & \(\Sigma(1385) \pi, P\)-wave & \\
\hline MODULUS PHASE ( \()\) & DOCUMENT ID TECN COMMENT & \(\Gamma 9\) & \(\Sigma(1385) \pi\), \(F\)-wave & \\
\hline \(0.07 \pm 0.04-60 \pm 45\) & SARANTSEV 19 DPWA \(\bar{K} N\) multichannel & \(\Gamma_{10}\) & \(\Lambda(1520) \pi, D\)-wave & ( \(8.0 \pm 2.0\) ) \% \\
\hline \multicolumn{2}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} & \(\Gamma_{11}\) & ^(1520) \(\pi\), G-wave & \\
\hline \multirow[t]{2}{*}{0.00476} & \({ }^{1}\) KAMANO 15 DPWA \(\bar{K} N\) multichannel & \(\Gamma_{12}\) & \(N \bar{K}^{*}(892), S=1 / 2, F\)-wave & ( \(5.0 \pm 3.0) \%\) \\
\hline & & \(\Gamma_{13}\) & \(N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \\
\hline \({ }^{1}\) From the preferred solution \(A\) in & KAMANO 15. & \(\Gamma_{14}\) & \(N \bar{K}^{*}(892), S=3 / 2, F\)-wave & ( \(5.0 \pm 2.0\) ) \% \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) & \(\Sigma(1915) \rightarrow N \bar{K}^{*}(892), S=3 / 2, P\)-wave & \(\Gamma_{15}\) & \(\Delta \bar{K}, ~ P\)-wave & (16 \(\pm 5\) ) \% \\
\hline MODULUS PHASE ( ) & DOCUMENT ID TECN COMMENT & \(\Gamma_{16}\) & \(\Delta \bar{K}, F\)-wave & \((5.0 \pm 3.0) \%\) \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (1915) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
Normalized residue in \(N \bar{K} \rightarrow \Sigma(1915) \rightarrow N \bar{K}^{*}\) (892), \(S=3 / 2, F\)-wave
\(\frac{\text { MODULUS }}{\mathbf{0 . 0 7} \quad \pm \mathbf{0 . 0 3}} \frac{\text { PHASE } \rho)}{-\mathbf{4 0} \pm \mathbf{4 5}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.00031416 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.

\section*{\(\Sigma(1915)\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{1900 to 1935 ( \(\approx\) 1915) OUR ESTIMATE} \\
\hline 1918 \(\pm 6\) & SARANTSEV & 19 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1920 \pm 7\) & ZHANG & 13A & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1937 \pm 20\) & ALSTON-... & 78 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(1894 \pm 5\) & \({ }^{1}\) CORDEN & 77C & & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline 1909土 5 & \({ }^{1}\) CORDEN & 77c & & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline \(1920 \pm 10\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1920 \pm 30\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(1914 \pm 10\) & HEMINGWAY & 75 & DPWA & \(K^{-} p \rightarrow \bar{K} N\) \\
\hline \(1920 \pm 15\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(1920 \pm 5\) & KANE & 74 & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{5}{|l|}{- We do not use the following data for averages, fits, limits, etc. - .} \\
\hline not seen & DECLAIS & 77 & DPWA & \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline 1925 or 1933 & \({ }^{2}\) MARTIN & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(1900 \pm 4\) & \({ }^{3}\) CORDEN & 76 & DPWA & \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline 1915 & DEBELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The two entries for CORDEN 77C are from two different acceptable solutions. \({ }^{2}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{3}\) Preferred solution 3; see CORDEN 76 for other possibilities.} \\
\hline
\end{tabular}
\(\boldsymbol{\Sigma}\) (1915) WIDTH
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{80 to 160 ( \(\approx \mathbf{1 2 0}\) ) OUR ESTIMATE} \\
\hline \(102 \pm 12\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(149 \pm 17\) & ZHANG 13A & DPWA Multichannel \\
\hline \(161 \pm 20\) & ALSTON-... 78 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\hline \(107 \pm 14\) & \({ }^{1}\) CORDEN 77C & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline \(85 \pm 13\) & \({ }^{1}\) CORDEN 77C & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline \(130 \pm 10\) & GOPAL 77 & DPWA \(\bar{K} N\) multichannel \\
\hline \(70 \pm 20\) & BAILLON 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(85 \pm 15\) & HEMINGWAY 75 & DPWA \(K^{-} p \rightarrow \bar{K} N\) \\
\hline \(102 \pm 18\) & VANHORN 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(162 \pm 25\) & KANE 74 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline 171 or 173 & 2 MARTIN 77 & DPWA \(\bar{K} N\) multichannel \\
\hline \(75 \pm 14\) & \({ }^{3}\) CORDEN 76 & DPWA \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline 60 & DEBELLEFON 76 & IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) The two entries for CORDEN 77c are from two different acceptable solutions. \({ }^{2}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. \({ }^{3}\) Preferred solution 3; see CORDEN 76 for other possibilities.} \\
\hline
\end{tabular}

\begin{tabular}{ll}
\(\Gamma(\Lambda \pi) / \Gamma_{\text {total }}\) \\
\(\frac{\text { VALUE }}{} \pm \mathbf{0 . 0 2}\) & DOCUMENT ID \\
SARANTSEV 19 & TECN \\
DPWA & \(\frac{\text { COMMENT }}{\bar{K} N \text { multichannel }} \quad \Gamma_{\mathbf{2}} / \boldsymbol{\Gamma}\)
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - . -
\(0.127 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.


\(\Gamma(\boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi, P\)-wave \() / \Gamma_{\text {total }} \quad \Gamma_{5} / \Gamma\)
\(\frac{\text { VALUE }}{\mathbf{0 . 0 2} \mathbf{0 . 0 2}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\text { TECN }}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.112 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\(\boldsymbol{\Gamma}(\boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \boldsymbol{\pi}, \boldsymbol{F}\)-wave \() / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E}{\mathbf{0 . 0 4} \pm \mathbf{0 . 0 2}} \quad \frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{T E C N}{\text { DPWA }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\)
\(0.04 \pm 0.02 \quad\) SARANTSEV 19 DPWA \(\bar{K} N\) multichannel
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.004 \quad 1\) KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\(\Gamma(\Lambda(1520) \pi, D\)-wave \() / \Gamma_{\text {total }}\)
\(\frac{\text { DOCUMENT ID }}{\text { SARANTSEV } 19} \frac{\Gamma_{\mathbf{1 0}} / \boldsymbol{\Gamma}}{\text { DECN }} \frac{\text { COMMENT }}{\bar{K} N \text { multichannel }}\) |

VALUE DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\)
- • We do not use the following data for averages, fits, limits, etc. • • -
\(0.042 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma\left(N \overline{K^{*}}{ }^{(8)}\right.\) & / \({ }_{\text {total }}\) & & & \(\Gamma_{14} / \Gamma\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.05 \pm 0.02\) & SARANTSEV 19 & DPWA & K \(N\) multic & \\
\hline
\end{tabular}
- • We do not use the following data for averages, fits, limits, etc. • • •
not seen 1 KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.


\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Lambda \pi
\]} & \[
\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma
\] \\
\hline VALUE & DOCUMENT ID & TECN COMMENT \\
\hline \(-0.09 \pm 0.03\) & GOPAL 77 & DPWA \(\bar{K} N\) multichannel \\
\hline \(-0.10 \pm 0.01\) & \({ }^{1}\) CORDEN 76 & DPWA \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline \(-0.06 \pm 0.02\) & BAILLON 75 & IPWA \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(-0.09 \pm 0.02\) & VANHORN 75 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(-0.087 \pm 0.056\) & DEVENISH 74B & Fixed-t dispersion re \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline -0.09 or -0.09 & 2 MARTIN 77 & DPWA \(\bar{K} N\) multichannel \\
\hline -0.10 & DEBELLEFON 76 & IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) Preferred solution 3; see CORDEN 76 for other possibilities.} \\
\hline \({ }^{2}\) The two MAR & from a T-matrix pol & and from a Breit-Wigner fit. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Sigma \pi
\]} & \multicolumn{3}{|r|}{\[
\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(-0.14 \pm 0.01\) & ZHANG & 13A & DPWA & Multichan & nnel \\
\hline \(-0.17 \pm 0.01\) & \({ }^{1}\) CORDEN & 77C & & \(K^{-} n \rightarrow\) & \(\Sigma \pi\) \\
\hline \(-0.15 \pm 0.02\) & \({ }^{1}\) CORDEN & 77C & & \(K^{-} n-\) & \(\Sigma \pi\) \\
\hline \(-0.19 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) mult & tichannel \\
\hline \(-0.16 \pm 0.03\) & KANE & 74 & DPWA & \(K^{-} p\) & \(\Sigma \pi\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. • • •} \\
\hline -0.05 or -0.05 & \({ }^{2}\) MARTIN & 77 & DPWA & \(\bar{K} N\) mult & tichannel \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The two entries for CORDEN 77C are from two different acceptable solutions. \({ }^{2}\) The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\[
\left(\Gamma_{l} \Gamma_{f}\right)^{\frac{1}{2}} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Sigma(1385) \pi, P \text {-wave }
\]}} & \(\left(\Gamma_{1} \Gamma_{8}\right)\) \\
\hline & & & & & \\
\hline \(<0.01\) & CAMERON & 78 & DPW & \(K^{-} p\) & \(\Sigma(1385)\) \\
\hline \multicolumn{5}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(1915) \rightarrow \Sigma(1385) \pi, F \text {-wave }
\]} & \[
\left(\Gamma_{1} \Gamma_{9}\right.
\] \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(+0.06 \pm 0.02\) & ZHANG & 13A & DPWA & Multichan & nnel \\
\hline \(+0.039 \pm 0.009\) & \({ }^{1}\) CAMERON & & DPWA & \(K^{-} p \rightarrow\) & \(\Sigma(1385)\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The published sign has been changed to be in accord with the baryon-first convention.} \\
\hline
\end{tabular}
\(\Sigma(2010), \Sigma(2030)\)


\section*{\(\Sigma(2030)\) POLE POSITION}

REAL PART
\(\frac{\text { VALUE }(\mathrm{MeV})}{\text { DOCUMENT ID }}\) TECN COMMENT 2010 to 2030 ( \(\approx 2020\) ) OUR ESTIMATE
\begin{tabular}{|c|c|c|}
\hline \(2014 \pm 6\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline 2025 \({ }_{-}^{+10}\) & 1 KAmANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline 1993 & ZHANG 13A & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline \begin{tabular}{l}
\(-2 \times\) IMAGINARY PART \\
\(\operatorname{VALUE}(\mathrm{MeV})\)
\end{tabular} & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{130 to 190 ( \(\sim 160\) ) OUR ESTIMATE} \\
\hline \(172 \pm 12\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \(130{ }_{-24}^{+}\) & \({ }^{1}\) KAMANO 15 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - •} \\
\hline 176 & ZHANG 13A & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{3}{|l|}{\({ }^{1}\) From the preferred solution A in KAMANO 15.} \\
\hline
\end{tabular}


\begin{tabular}{l}
\(\boldsymbol{\Gamma}(\boldsymbol{\Sigma}(\mathbf{1 3 8 5}) \pi, \boldsymbol{H}\)－wave \() / \boldsymbol{\Gamma}_{\text {total }}\) \\
VALUE \\
DOCUMENT ID \\
\hline TECN COMMENT
\end{tabular} \(\boldsymbol{\Gamma}_{\mathbf{8}} / \boldsymbol{\Gamma}\)
－－We do not use the following data for averages，fits，limits，etc．－－－
\(0.003 \quad 1\) KAMANO 15 DPWA Multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(\Delta(1232) \bar{K}, F\)－wave \() / \Gamma_{\text {total }}\) & & & & \(\Gamma_{13} / \Gamma\) \\
\hline value & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.15 \pm 0.05\) & SARANTSEV 19 & DPWA & \(\bar{K} N\) multic & \\
\hline
\end{tabular}

\(\Gamma\left(N \bar{K}^{*}(892), S=3 / 2, H\right.\) wave \() / \Gamma_{\text {total }}\)
\(\Gamma_{18} / \Gamma\)
VALUE DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
not seen 1 KAMANO 15 DPWA \(\bar{K} N\) multichannel
\({ }^{1}\) From the preferred solution A in KAMANO 15.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(2030) \rightarrow \Lambda \pi
\]} & \multicolumn{2}{|r|}{\(\left(\Gamma_{1} \Gamma_{2}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & DOCUMENT & & TECN & COMMENT \\
\hline \(+0.15 \pm 0.01\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(+0.18 \pm 0.02\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(+0.20 \pm 0.01\) & \({ }^{1}\) CORDEN & 76 & DPWA & \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline \(+0.18 \pm 0.02\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) \\
\hline \(+0.20 \pm 0.01\) & VANHORN & 75 & DPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(+0.195 \pm 0.053\) & DEVENISH & 74B & & Fixed－\(t\) dispersion rel． \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline 0.20 & \multicolumn{4}{|l|}{DEBELLEFON 76 IPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\)} \\
\hline 1 Preferred s & EN 76 for o & ossib & ies． & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\left(\Gamma_{i} \Gamma_{f}\right)^{\mathbf{1 / 2}} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(2030) \rightarrow \Sigma \pi\)} & \multicolumn{2}{|r|}{\[
\left(\Gamma_{1} \Gamma_{3}\right)^{1 / 2} / \Gamma
\]} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.08 \pm 0.01\) & ZHANG & 13A & \multicolumn{2}{|l|}{DPWA Multichannel} \\
\hline \(-0.09 \pm 0.01\) & \({ }^{1}\) CORDEN & 77c & & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline \(-0.06 \pm 0.01\) & \({ }^{1}\) CORDEN & 77C & & \(K^{-} n \rightarrow \Sigma \pi\) \\
\hline \(-0.15 \pm 0.03\) & GOPAL & 77 & DPWA & \(\bar{K} N\) multichannel \\
\hline \(-0.10 \pm 0.01\) & KANE & & DPWA & \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline －－We do & data for ave & ，fits， & limits， & tc．－ \\
\hline \(-0.085 \pm 0.02\) & 2 GOYAL & 77 & DPWA & \(K^{-} N \rightarrow \Sigma \pi\) \\
\hline \({ }^{1}\) The two e 2 This coupl & 77C are from unnormaliz & differe & nt accep & table solutions． \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\left(\Gamma_{l} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }} \text { in } N \bar{K} \rightarrow \Sigma(2030) \rightarrow \equiv K
\]} & \multirow[b]{2}{*}{TECN} & & \[
\left(\Gamma_{1} \Gamma_{4}\right)^{1 / 2} / \Gamma
\] \\
\hline VALUE & DOCUMENT & & & COMMENT & \\
\hline 0.023 & MULLER & 69B & DPWA & \(K^{-} p \rightarrow\) & 三K \\
\hline \(<0.05\) & BURGUN & 68 & DPWA & \(K^{-} p \rightarrow\) & 三K \\
\hline \(<0.05\) & TRIPP & 67 & RVUE & \(K^{-} p \rightarrow\) & ミK \\
\hline
\end{tabular}
\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(2030) \rightarrow \Sigma(1385) \pi, F\)－wave \(\quad\left(\Gamma_{1} \Gamma_{6}\right)^{1 / 2} / \Gamma\)

\(+0.153 \pm 0.026 \quad{ }^{1}\) CAMERON 78 DPWA \(K^{-} p \rightarrow \Sigma(1385) \pi\)
\({ }^{1}\) The published sign has been changed to be in accord with the baryon－first convention．


\({ }^{1}\) The published sign has been changed to be in accord with the baryon－first convention．
\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(2030) \rightarrow \Delta(1232) \bar{K}, F\)－wave \(\quad\left(\Gamma_{1} \Gamma_{13}\right)^{1 / 2} / \Gamma\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline \(+0.12 \pm 0.02\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(0.16 \pm 0.03\) & LITCHFIELD & 74C & DPWA & \(K^{-} p \rightarrow \Delta(1232) \bar{K}\) \\
\hline
\end{tabular}

LITCHFIELD 74C DPWA \(K \quad p \rightarrow \Delta(1232) K\)
－－We do not use the following data for averages，fits，limits，etc．• •－
\(0.17 \pm 0.03 \quad{ }^{1}\) CORDEN \(\quad 75 \mathrm{~B}\) DBC \(K^{-} n \rightarrow N \bar{K} \pi^{-}\)
\({ }^{1}\) An upper limit．

\(\overline{0.00 \pm 0.02} \quad\) LITCHFIELD 74 C DPWA \(K^{-} p \rightarrow \Delta(1232) \bar{K}\)
\(\left(\Gamma_{i} \Gamma_{f}\right)^{1 / 2} / \Gamma_{\text {total }}\) in \(N \bar{K} \rightarrow \Sigma(2030) \rightarrow N \bar{K}^{*}(892), S=1 / 2, F\)－wave
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|r|}{\(\left(\Gamma_{1} \Gamma_{16}\right)^{1 / 2} / \Gamma\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(+0.06 \pm 0.02\) & ZHANG & 13A & DPWA & Multichannel \\
\hline \(+0.06 \pm 0.03\) & \({ }^{1}\) CAMERON & 78B & DPWA & \(K^{-} p \rightarrow N \bar{K}^{*}\) \\
\hline \(-0.02 \pm 0.01\) & CORDEN & 77B & & \(K^{-} d \rightarrow N N \bar{K}^{*}\) \\
\hline 1 The publi & ged to be & ord & with th & baryon－first conve \\
\hline
\end{tabular}

\(\boldsymbol{\Sigma}\) (2030) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline SARANTSEV & 19 & EPJ A55 180 & A.V. Sarantsev et al. & (BONN, PNPI) \\
\hline KAMANO & 15 & PR C92 025205 & H. Kamano et al. & (ANL, OSAK) \\
\hline ZHANG & 13A & PR C88 035205 & H. Zhang et al. & (KSU) \\
\hline PDG & 84 & RMP 56 S1 & C.G. Wohl et al. & (LBL, CIT, CERN) \\
\hline PDG & 82 & PL 111B 1 & M. Roos et al. & (HELS, CIT, CERN) \\
\hline GOPAL & 80 & Toronto Conf. 159 & G.P. Gopal & (RHEL) IJP \\
\hline CAMERON & 78 & NP B143 189 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline CAMERON & 78B & NP B146 327 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline CAMERON & 77 & NP B131 399 & W. Cameron et al. & (RHEL, LOIC) IJP \\
\hline CORDEN & 77B & NP B121 365 & M.J. Corden et al. & (BIRM) IJP \\
\hline CORDEN & 77C & NP B125 61 & M.J. Corden et al. & (BIRM) IJP \\
\hline DECLAIS & 77 & CERN 77-16 & Y. Declais et al. & (CAEN, CERN) IJP \\
\hline GOPAL & 77 & NP B119 362 & G.P. Gopal et al. & (LOIC, RHEL) IJP \\
\hline GOYAL & 77 & PR D16 2746 & D.P. Goyal, A.V. Sodhi & (DELH) IJP \\
\hline CORDEN & 76 & NP B104 382 & M.J. Corden et al. & (BIRM) IJP \\
\hline DEBELLEFON & 76 & NP B109 129 & A. de Bellefon, A. Berthon & (CDEF) IJP \\
\hline BAILLON & 75 & NP B94 39 & P.H. Baillon, P.J. Litchfield & (CERN, RHEL) IJP \\
\hline CORDEN & 75B & NP B92 365 & M.J. Corden et al. & (BIRM) IJP \\
\hline HEMINGWAY & 75 & NP B91 12 & R.J. Hemingway et al. & (CERN, HEIDH, MPIM) IJP \\
\hline VANHORN & 75 & NP B87 145 & A.J. van Horn & (LBL) IJP \\
\hline Also & & NP B87 157 & A.J. van Horn & (LBL) IJP \\
\hline DEVENISH & 74B & NP B81 330 & R.C.E. Devenish, C.D. Froggatt, & B.R. Martin (DESY+) \\
\hline KANE & 74 & LBL-2452 & D.F. Kane & (LBL) IJP \\
\hline LITCHFIELD & 74B & NP B74 19 & P.J. Litchfield et al. & (CERN, HEIDH) IJP \\
\hline LITCHFIELD & 74 C & NP B74 39 & P.J. Litchfield et al. & (CERN, HEIDH) IJP \\
\hline LITCHFIELD & 74D & NP B74 12 & P.J. Litchfield et al. & (CERN, HEIDH) IJP \\
\hline MULLER & 69B & Thesis UCRL 19372 & R.A. Muller & (LRL) \\
\hline BURGUN & 68 & NP B8 447 & G. Burgun et al. & (SACL, CDEF, RHEL) \\
\hline TRIPP & 67 & NP B3 10 & R.D. Tripp et al. & (LRL, SLAC, CERN+) \\
\hline COOL & 66 & PRL 161228 & R.L. Cool et al. & (BNL) \\
\hline WOHL & 66 & PRL 17107 & C.G. Wohl, F.T. Solmitz, M.L. S & Stevenson (LRL) IJP \\
\hline
\end{tabular}
\(\Sigma(2070) 5 / 2^{+} \quad /\left(J^{P}\right)=1\left(\frac{1}{2}+\right)\) Status *
OMITTED FROM SUMMARY TABLE
This state suggested by BERTHON 70B finds support in GOPAL 80 with new \(K^{-} p\) polarization and \(K^{-} n\) angular distributions. The very broad state seen in KANE 72 is not required in the later (KANE 74) analysis of \(\bar{K} N \rightarrow \Sigma \pi\).

\section*{\(\Sigma(2070)\) MASS}

VALUE (MeV)
2020 to 2100 ( \(\approx \mathbf{2 0 6 0 )}\) OUR ESTIMATE
\begin{tabular}{lccc}
\(2051 \pm 25\) & GOPAL & 80 & DPWA \(\bar{K} N \rightarrow \bar{K} N\) \\
\(2070 \pm 10\) & BERTHON & 70 B & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\(\bullet \bullet \bullet\) We do not use the following data for averages, fits, limits, etc. \(\bullet \bullet \bullet\) \\
2057 & KANE & 72 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline
\end{tabular}
\(\Sigma(2070)\) WIDTH

\begin{tabular}{lll}
\hline & \(\Sigma(2070)\) DECAY MODES \\
& & \\
\hline\(\Gamma_{1}\) & \(N\) ode & \\
\(\Gamma_{2}\) & \(\Sigma \pi\) & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (2070) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.
\(\boldsymbol{\Gamma}(\boldsymbol{N} \overline{\boldsymbol{K}}) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{\text { VALUE }}{0.08+0.03} \quad \frac{\text { DOCUMENT ID }}{\text { GOPAL }} \frac{\text { TECN }}{\text { DPWA }} \frac{\boldsymbol{\Gamma}_{\mathbf{1}} / \boldsymbol{\Gamma}}{\bar{K} N \rightarrow \bar{K} N}\).

\(\Sigma(2070)\) REFERENCES


OMITTED FROM SUMMARY TABLE
Suggested by some but not all partial-wave analyses across this region.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Sigma(2080)\) MASS} \\
\hline Value (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2060 to 2120 ( \(\approx 2090\) ) OUR ESTIMATE} \\
\hline \(2091 \pm 7\) & \({ }^{1}\) CORDEN & 76 & DPWA & \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline 2070 to 2120 & DEBELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(2120 \pm 40\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(2140 \pm 40\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline 2082土 4 & COX & 70 & DPWA & See CORDEN 76 \\
\hline \(2070 \pm 30\) & LITCHFIELD & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline \multicolumn{5}{|c|}{\(\boldsymbol{\Sigma}\) (2080) WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{100 to 240 ( \(\approx 170\) ) OUR ESTIMATE} \\
\hline \(186 \pm 48\) & \({ }^{1}\) CORDEN & 76 & DPWA & \(K^{-} n \rightarrow \Lambda \pi^{-}\) \\
\hline 100 & DEbELLEFON & 76 & IPWA & \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \(240 \pm 50\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 1) \\
\hline \(200 \pm 50\) & BAILLON & 75 & IPWA & \(\bar{K} N \rightarrow \Lambda \pi\) (sol. 2) \\
\hline \(87 \pm 20\) & COX & 70 & DPWA & See CORDEN 76 \\
\hline \(250 \pm 40\) & LITCHFIELD & 70 & DPWA & \(K^{-} N \rightarrow \Lambda \pi\) \\
\hline & 080) DECAY M & O & & \\
\hline \multicolumn{5}{|l|}{Mode} \\
\hline \multicolumn{5}{|l|}{\[
\Gamma_{1} \quad N \bar{K}
\]} \\
\hline \[
\Gamma_{2} \quad \Lambda \pi
\] & & & & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Sigma}\) (2080) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.


\section*{\(\boldsymbol{\Sigma}(2080)\) FOOTNOTES}
\({ }^{1}\) Preferred solution 3; see CORDEN 76 for other possibilities, including a \(D_{15}\) at this mass.
\begin{tabular}{|c|c|c|c|c|}
\hline CORDEN & 76 & NP B104 382 & M.J. Corden et al. & (BIRM) IJP \\
\hline DEBELLEFON & 76 & NP B109 129 & A. de Bellefon, A. Berthon & (CDEF) IJP \\
\hline Also & & NP B90 1 & A. de Bellefon et al. & (CDEF, SACL) IJP \\
\hline BAILLON & 75 & NP B94 39 & P.H. Baillon, P.J. Litchfield & (CERN, RHEL) IJP \\
\hline COX & 70 & NP B19 61 & G.F. Cox et al. & (BIRM, EDIN, GLAS, LOIC) IJP \\
\hline LITCHFIELD & 70 & NP B22 269 & P.J. Litchfield & (RHEL) IJP \\
\hline
\end{tabular}
\(\sum(2100) 7 / 2^{-} \quad I\left(J^{P}\right)=1\left(\frac{7}{2}^{-}\right)\)Status: \(*\)

\section*{OMITTED FROM SUMMARY TABLE \\ \(\Sigma(2100)\) POLE POSITION}

\section*{REAL PART}
\(\frac{\text { VALUE (MeV) }}{2093 \pm 16}\)
\begin{tabular}{l}
\(=2 \times\) IMAGINARY PART \\
\(V A A L U E(\mathrm{MeV})\) \\
\hline
\end{tabular}
\(\frac{\operatorname{VALUE(MeV)}}{210 \pm 35}\)

\section*{\(\Sigma(2100)\) BRANCHING RATIOS}

See "Sign conventions for resonance couplings" in the Note on \(\Lambda\) and \(\Sigma\) Resonances.


OMITTED FROM SUMMARY TABLE

\section*{\(\boldsymbol{\Sigma}\) (2160) POLE POSITION}

REAL PART
\(\frac{V A L U E(\mathrm{MeV})}{2158 \pm 25}\)
-2xIMAGINARY PART
VALUE (MeV)
\(300 \pm\)\begin{tabular}{c}
+300 \\
\\
\hline
\end{tabular}


DOCUMENT ID TECN COMMENT
SARANTSEV 19 DPWA \(\bar{K} N\) multichannel

\section*{\(\Sigma(2160)\) POLE RESIDUES}
\begin{tabular}{|c|c|c|}
\hline Normalized residue in \(N \bar{K} \rightarrow\) MODULUS PHASE ( \(\rho\) ) & \[
\underset{\text { VOCUMENT ID }}{\boldsymbol{\Sigma}(\mathbf{2 1 6 0}) \rightarrow \mathbf{K}}
\] & TECN COMMENT \\
\hline 0.29 \(\pm 0.08 \quad-20 \pm 35\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline Normalized residue in \(N \bar{K} \rightarrow\) modulus PHASE () & \[
\underset{\text { DOCUMENT ID }}{\boldsymbol{\Sigma}(\mathbf{2 1 6 0})} \rightarrow \boldsymbol{\Sigma} \boldsymbol{\pi}
\] & TECN COMMENT \\
\hline \(0.14 \pm 0.04-5 \pm 35\) & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\operatorname{VALUE}(\mathrm{MeV}) \quad\) -} & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{2}{|l|}{\(260 \pm 40\) S} & SARANTSEV 19 & DPWA \(\bar{K} N\) multichannel \\
\hline \multicolumn{2}{|l|}{\(70 \pm 30\) B} & BARBARO-... 70 & DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}\) \\
\hline \multicolumn{2}{|l|}{\(135 \pm 30\) B} & BARBARO-... 70 & DPWA \(K^{-} p \rightarrow \Sigma \pi\) \\
\hline \multicolumn{4}{|c|}{\(\Sigma(2100)\) DECAY MODES} \\
\hline \multicolumn{2}{|r|}{Mode} & \multicolumn{2}{|r|}{Fraction ( \(\Gamma_{i} / \Gamma^{\text {) }}\)} \\
\hline \multicolumn{2}{|l|}{\(\Gamma_{1} \quad N \bar{K}\)} & \multicolumn{2}{|r|}{( \(8.0 \pm 2.0\) ) \%} \\
\hline \(\Gamma_{2}\) & \(\wedge \pi\) & \multicolumn{2}{|r|}{( \(1.5 \pm 1.0) \%\)} \\
\hline \(\Gamma_{3}\) & \(\Sigma \pi\) & \multicolumn{2}{|r|}{( \(2.0 \pm 1.0\) ) \%} \\
\hline \multicolumn{4}{|l|}{\(\Gamma_{4} \quad \equiv K\)} \\
\hline \(\Gamma_{5}\) & \(\Sigma(1385) \pi\), \(D\)-wave & \multicolumn{2}{|r|}{\((12 \pm 6) \%\)} \\
\hline \(\Gamma_{6}\) & \(\Sigma(1385) \pi, G\) wave & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline \(\Gamma_{7}\) & \(\Lambda(1520) \pi, F\)-wave & & \\
\hline \multirow[t]{2}{*}{\(\Gamma_{8}\)} & ^(1520) \(\pi\), H-wave & \multirow[t]{2}{*}{} & \\
\hline & \(N \bar{K}^{*}(892), S=3 / 2, D\)-wave & & \(\pm 3.0) \%\) \\
\hline \(\Gamma_{10}\) & \(\Delta \bar{K}\), G-wave & ( 1.0 & \(\pm 1.0) \%\) \\
\hline
\end{tabular}

\begin{tabular}{lllll}
\begin{tabular}{llll} 
SARANTSEV \\
ZHANG
\end{tabular} & \begin{tabular}{lll} 
19 \\
13A
\end{tabular} & \begin{tabular}{l} 
EPJ A55 180 \\
PR C88 035205
\end{tabular} & \begin{tabular}{l} 
A.V. Sarantsev et al. \\
H. Zhang et al.
\end{tabular} & (BONN, PNPI) \\
(KSU)
\end{tabular}


See key on page 999
Baryon Particle Listings
\(\Sigma(2250), \Sigma(2455)\) Bumps, \(\Sigma(2620)\) Bumps, \(\Sigma(3000)\) Bumps

\(\overline{-0.16 \pm 0.03} \quad\) VANHORN 75 DPWA \(K^{-} p \rightarrow \Lambda \pi^{0}, F_{5}\)
- . We do not use the following data for averages, fits, limits, etc. wave .
\(+0.11 \quad\) DEBELLEFON 76 IPWA \(D_{5}\) wave
\(\begin{array}{ll}-0.10 & \text { DEBELLEFON } 76 \\ -0.18 & \text { BARBARO-... } 70 \\ & \\ & \end{array}\)

\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline \(+0.06 \pm 0.02\) & DEBELLEFON 77 & DPWA & \(D_{5}\) wave & \\
\hline \(-0.03 \pm 0.02\) & DEBELLEFON 77 & DPWA & \(G_{9}\) wave & \\
\hline +0.07 & BARBARO-... 70 & DPWA & \(K^{-} p \rightarrow\) & \(\Sigma \pi, G_{g}\) wave \\
\hline
\end{tabular}
\(\Gamma(N \bar{K}) / \Gamma(\Sigma \pi)\)
BARBARO-... 70 DPWA \(K^{-} p \rightarrow \Sigma \pi, G_{9}\) wave

VALUE DOCUMENT ID_TECN COMMENT T T
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{llllll}
\(<0.18\) & BARNES & 69 & HBC & 1 standard dev. limit \\
\(\boldsymbol{\Gamma}(\boldsymbol{\Lambda} \boldsymbol{\pi}) / \boldsymbol{\Gamma}(\boldsymbol{\Sigma} \boldsymbol{\pi})\) & & & \\
VALUE & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}

\(<0.18 \quad\) BARNES 69 HBC 1 standard dev. limit

\(\boldsymbol{\Sigma}(2250)\) REFERENCES


OMITTED FROM SUMMARY TABLE
There is also some slight evidence for \(Y^{*}\) states in this mass region from the reaction \(\gamma p \rightarrow K^{+} X\) - see GREENBERG 68.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\boldsymbol{\Sigma}\) (2455) MASS} \\
\hline \(\operatorname{VaLUE}(\mathrm{MeV})\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{₹ 2455 OUR ESTIMATE} \\
\hline \(2455 \pm 10\) & ABRAMS & 70 & CNTR & \(K^{-} p, K^{-} d\) total \\
\hline \(2455 \pm 7\) & BUGG & 68 & CNTR & \(K^{-} p, K^{-} d\) total \\
\hline \multicolumn{5}{|c|}{\(\boldsymbol{\Sigma}\) (2455) WIDTH} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline 140 & ABRAMS & 70 & CNTR & \(K^{-} p, K^{-} d\) total \\
\hline \(100 \pm 20\) & BUGG & 68 & CNTR & \\
\hline
\end{tabular}
\(\Sigma(2455)\) DECAY MODES
\begin{tabular}{ll} 
& Mode \\
\hline\(\Gamma_{1} \quad N \bar{K}\)
\end{tabular}
\(\boldsymbol{\Sigma}\) (2455) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\left(J+\frac{1}{2}\right) \times \Gamma(N \bar{K}) / \Gamma_{\text {total }}
\] & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \(\quad \Gamma_{1} / \boldsymbol{\Gamma}\) \\
\hline 0.39 & ABRAMS & 70 & CNTR & \(K^{-} p, K^{-} d\) total \\
\hline \(0.05 \pm 0.05\) & \({ }^{1}\) BRICMAN & 70 & CNTR & Total, charge exchange \\
\hline 0.3 & BUGG & 68 & CNTR & \\
\hline
\end{tabular}

\section*{\(\Sigma(2455)\) FOOTNOTES}
\({ }^{1}\) Fit of total cross section given by BRICMAN 70 is poor in this region.
\(\boldsymbol{\Sigma}(\mathbf{2 6 2 0})\) DECAY MODES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Mode} \\
\hline \multicolumn{8}{|l|}{\(\Gamma_{1} N \bar{K}\)} \\
\hline \multicolumn{8}{|c|}{\(\Sigma(2620)\) BRANCHING RATIOS} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
\left(J+\frac{1}{2}\right) \times \Gamma(N \bar{K}) / \Gamma_{\text {total }}
\] \\
VALUE
\end{tabular}} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline 0.32 & & & ABRAMS & 70 & CNTR & \multicolumn{2}{|l|}{\(K^{-} p, K^{-} d\) total} \\
\hline \(0.36 \pm 0.1\) & & & BRICMAN & 70 & CNTR & Total, charge & exchange \\
\hline \multicolumn{8}{|c|}{\(\Sigma(2620)\) REFERENCES} \\
\hline \multirow[t]{4}{*}{DIBIANCA ABRAMS Also BRICMAN} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{lll}
75 & NP & B98 \\
137 \\
70 & PR D1 1917 \\
& PRL 19 678 \\
70 & PL 31 B & 152
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
F.A. Dibianca, R.J. \\
R.J. Abrams et al. \\
R.J. Abrams et al. \\
C. Bricman et al.
\end{tabular}}} & \multirow[t]{4}{*}{Endorf} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{3}{|l|}{\(\sum(3000)\) Bumps} & \multicolumn{3}{|r|}{\[
I\left(J^{P}\right)=1\left(?^{?}\right)
\]} & Status: & \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE
Seen as an enhancement in \(\Lambda \pi\) and \(\bar{K} N\) invariant mass spectra and in the missing mass of neutrals recoiling against a \(K^{0}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{\(\Sigma(3000)\) MASS} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \(\underline{C H G}\) & COMMENT \\
\hline \multicolumn{6}{|l|}{₹ 3000 OUR ESTIMATE} \\
\hline 3000 & EHRLICH & 66 & HBC & 0 & \(\pi^{-} p 7.91 \mathrm{GeV} / c\) \\
\hline
\end{tabular}
\(\Sigma(3000)\) DECAY MODES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Mode} \\
\hline \multicolumn{5}{|l|}{\(\Gamma_{1} N \bar{K}\)} \\
\hline \(\Gamma_{2}\) & \multicolumn{4}{|c|}{\(\wedge \pi\)} \\
\hline \multicolumn{5}{|c|}{\(\boldsymbol{\Sigma}\) (3000) REFERENCES} \\
\hline EHRLICH & 66 & PR 1521194 & R. Ehrlich, W. Selove, H. Yuta & (PENN) । \\
\hline
\end{tabular}

Baryon Particle Listings
\(\Sigma\) (3170) Bumps

\section*{\(\Sigma(3170)\) Bumps \(\left.\quad I^{( } J^{P}\right)=1\left(?^{?}\right) \quad\) Status: \(*\)}

OMITTED FROM SUMMARY TABLE
Seen by AMIRZADEH 79 as a narrow 6.5 -standard-deviation enhancement in the reaction \(K^{-} p \rightarrow Y^{*+} \pi^{-}\)using data from independent high statistics bubble chamber experiments at 8.25 and \(6.5 \mathrm{GeV} / c\). The dominant decay modes are multibody, multistrange final states and the production is via isospin- \(3 / 2\) baryon exchange. Isospin 1 is favored.

Not seen in a \(K^{-} p\) experiment in LASS at \(11 \mathrm{GeV} / c\) (ASTON 85B).

\section*{\(\Sigma(3170)\) MASS}
(PRODUCTION EXPERIMENTS)

\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{<20} \frac{\text { EVTS }}{35} \quad \frac{\text { DOCUMENT ID }}{\text { AMIRZADEH } 79} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { COMMENT }}{K^{-} p \rightarrow Y^{*+} \pi^{-}}\)
\(\Sigma(3170)\) DECAY MODES (PRODUCTION EXPERIMENTS)
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda K \bar{K} \pi\) 's & seen \\
\(\Gamma_{2}\) & \(\Sigma K \bar{K} \pi\) 's & seen \\
\(\Gamma_{3}\) & \(\equiv K \pi\) 's & seen \\
\hline
\end{tabular}
\(\Sigma(3170)\) BRANCHING RATIOS
(PRODUCTION EXPERIMENTS)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma(\Lambda K \bar{K} \pi\) 's \() / \Gamma_{\text {total }}\) & DOCUMENT ID & & \multicolumn{2}{|l|}{TECN COMMENT \(\Gamma_{\mathbf{1} / \boldsymbol{\Gamma}}\)} \\
\hline seen & AMIRZADEH & 79 & HBC & \(K^{-} p \rightarrow Y^{*+} \pi^{-}\) \\
\hline \begin{tabular}{l}
\[
\Gamma(\Sigma K \bar{K} \pi \text { 's }) / \Gamma_{\text {total }}
\] \\
Value
\end{tabular} & DOCUMENT ID & & TECN & COMMENT \\
\hline seen & AMIRZADEH & 79 & HBC & \(K^{-} p \rightarrow Y^{*+} \pi^{-}\) \\
\hline \(\Gamma\left(\equiv K \pi\right.\) 's \(/ \Gamma_{\text {total }}\) & & & & \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT \\
\hline seen & AMIRZADEH & 79 & HBC & \(K^{-} p \rightarrow Y^{*+} \pi^{-}\) \\
\hline
\end{tabular}
\(\Sigma(3170)\) FOOTNOTES (PRODUCTION EXPERIMENTS)
\({ }^{1}\) Observed width consistent with experimental resolution.
\(\Sigma(3170)\) REFERENCES
(PRODUCTION EXPERIMENTS)


\(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)\)Status: \(* * * *\)
The parity has not actually been measured, but + is of course expected.

\section*{\(\Xi^{0}\) MASS}

The fit uses the \(\bar{\Xi}^{0}, \Xi^{-}\), and \(\bar{\Xi}^{+}\)masses and the \(\bar{\Xi}^{-}-\bar{\Xi}^{0}\) mass difference. It assumes that the \(\bar{\Xi}^{-}\)and \(\bar{\Xi}^{+}\)masses are the same.

VALUE (MeV)

\section*{\(1314.86 \pm 0.20\) OUR FIT}
\(1314.82 \pm 0.06 \pm 0.20 \quad 3120\)

DOCUMENTID TECN COMMENT
\begin{tabular}{lrlrl}
1315.2 & \(\pm 0.92\) & 49 & WILQUET & 72 \\
HLBC \\
1313.4 & \(\pm 1.8\) & 1 & PALMER & 68 \\
\hline
\end{tabular}
\[
m_{\Xi^{-}}=m_{\underline{\Xi}}
\]

The fit uses the \(\Xi^{0}, \Xi^{-}\), and \(\bar{\Xi}^{+}\)masses and the \(\Xi^{-}-\Xi^{0}\) mass difference. It assumes that the \(\Xi^{-}\)and \(\bar{\Xi}^{+}\)masses are the same.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENTID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(6.85 \pm 0.21\) OUR FIT} \\
\hline \(6.3 \pm 0.7\) OUR AVERAGE & \multicolumn{5}{|l|}{OUR AVERAGE} \\
\hline \(6.9 \pm 2.2\) & 29 & LONDON & 66 & HBC & \\
\hline \(6.1 \pm 0.9\) & 88 & PJERROU & \(65 B\) & HBC & \\
\hline \(6.8 \pm 1.6\) & 23 & Jauneau & 63 & FBC & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(6.1 \pm 1.6\) & 45 & CARMONY & 64B & HBC & See PJERROU 65b \\
\hline
\end{tabular}

\section*{\(\equiv^{0}\) MEAN LIFE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(2.90 \pm 0.09\) OUR AVERAGE} \\
\hline \(2.83 \pm 0.16\) & 6300 & \({ }^{1} \mathrm{ZECH}\) & 77 & SPEC & Neutral hyperon beam \\
\hline \(2.88{ }_{-0.19}^{+0.21}\) & 652 & BALTAY & 74 & HBC & \(1.75 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(2.90{ }_{-0.27}^{+0.32}\) & 157 & 2 MAYEUR & 72 & HLBC & \(2.1 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{-}\) \\
\hline \(3.07{ }_{-0.20}^{+0.22}\) & 340 & DAUBER & 69 & HBC & \\
\hline \(3.0 \pm 0.5\) & 80 & PJERROU & & HBC & \\
\hline \(2.5{ }_{-0.3}^{+0.4}\) & 101 & HUBBARD & 64 & HBC & \\
\hline \(3.9 \begin{array}{r}+1.4 \\ -0.8\end{array}\) & 24 & JAUNEAU & 63 & FBC & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(3.5{ }_{-0.8}^{+1.0}\) & 45 & CARMONY & 64B & HBC & See PJERROU 65B \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The ZECH 77 result is \(\tau_{\equiv 0}=\left[2.77-\left(\tau \Lambda^{-2.69)}\right] \times 10^{-10} \mathrm{~s}\right.\), in which we use \(\tau_{\Lambda}=\) \(2.63 \times 10^{-10} \mathrm{~S}\).} \\
\hline
\end{tabular}

\section*{\(\Xi^{0}\) MAGNETIC MOMENT}

See the "Note on Baryon Magnetic Moments" in the \(\Lambda\) Listings.
\(\operatorname{VALUE}\left(\mu_{N}\right)\)

EVTS
\(-1.250 \pm 0.014\) OUR AVERAGE
\(-1.253 \pm 0.014 \quad 270 \mathrm{k}\)
\(-1.20 \pm 0.06 \quad 42 \mathrm{k}\)
DOCUMENT ID TECN
\begin{tabular}{lll} 
COX & 81 & SPEC \\
BUNCE & 79 & SPEC
\end{tabular}
\(\equiv^{0}\) DECAY MODES
\begin{tabular}{llc} 
& Mode & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right) \quad\) Confidence level \\
\hline\(\Gamma_{1}\) & \(\Lambda \pi^{0}\) & \((99.524 \pm 0.012) \%\) \\
\(\Gamma_{2}\) & \(\Lambda \gamma\) & \((1.17 \pm 0.07) \times 10^{-3}\) \\
\(\Gamma_{3}\) & \(\Lambda e^{+} e^{-}\) & \((7.6 \pm 0.6) \times 10^{-6}\) \\
\(\Gamma_{4}\) & \(\Sigma^{0} \gamma\) & \((3.33 \pm 0.10) \times 10^{-3}\) \\
\(\Gamma_{5}\) & \(\Sigma^{+} e^{-} \bar{\nu}_{e}\) & \((2.52 \pm 0.08) \times 10^{-4}\) \\
\(\Gamma_{6}\) & \(\Sigma^{+} \mu^{-} \bar{\nu}_{\mu}\) & \((2.33 \pm 0.35) \times 10^{-6}\)
\end{tabular}
\(\Delta S=\Delta Q(S Q)\) violating modes or \(\Delta S=2\) forbidden (S2) modes
\begin{tabular}{llllll}
\(\Gamma_{7}\) & \(\Sigma^{-} e^{+} \nu_{e}\) & \(S Q\) & \(<9\) & \(\times 10^{-4}\) & \(90 \%\) \\
\(\Gamma_{8}\) & \(\Sigma^{-} \mu^{+} \nu_{\mu}\) & \(S Q\) & \(<9\) & \(\times 10^{-4}\) & \(90 \%\) \\
\(\Gamma_{9}\) & \(p \pi^{-}\) & \(S 2\) & \(<8\) & \(\times 10^{-6}\) & \(90 \%\) \\
\(\Gamma_{10}\) & \(p e^{-} \bar{\nu}_{e}\) & \(S 2\) & \(<1.3\) & \(\times 10^{-3}\) & \\
\(\Gamma_{11}\) & \(p \mu^{-} \bar{\nu}_{\mu}\) & \(S 2\) & \(<1.3\) & \(\times 10^{-3}\) & \\
\hline
\end{tabular}

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 5 branching ratios uses 11 measurements and one constraint to determine 5 parameters. The overall fit has a \(\chi^{2}=\) 7.5 for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.

\(\equiv^{0}\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(\Lambda \gamma) / \Gamma\left(\Lambda \pi^{0}\right)\) & & & \\
\hline VALUE (units \(10^{-3}\) ) & EVTS & DOCUMENT ID & TECN \\
\hline
\end{tabular}
\(\frac{\mathrm{VALUE}}{1.17 \pm 0.07 \text { OUR FIT }} \xrightarrow{\text { EVTS }}\)
\(\mathbf{1 . 1 7} \pm \mathbf{0 . 0 7}\) OUR AVERAGE
\(\begin{array}{lrllll} & & & & \\ 1.17 \pm 0.05 & & & 0.06 & 672 & { }^{3} \mathrm{LAI} \\ & 31 & { }^{4} \text { FANTI } & 00 & \text { NA48 } & p \mathrm{Be}, 450 \mathrm{GeV} \\ 1.91 \pm 0.34 \pm 0.19 & 31 & \text { NA48 } & p \mathrm{Be}, 450 \mathrm{GeV}\end{array}\)
\(\begin{array}{lrrrll}1.91 \pm 0.34 \pm 0.19 & 31 & { }^{4} \text { FANTI } & 00 & \text { NA48 } & p \mathrm{Be}, 450 \mathrm{GeV} \\ 1.06 \pm 0.12 \pm 0.11 & 116 & \text { JAMES } & 90 & \text { SPEC } & \text { FNAL hyperons }\end{array}\)
\({ }^{3}\) LAI 04A used our 2002 value of \(99.5 \%\) for the \(\equiv^{0} \rightarrow \Lambda \pi^{0}\) branching fraction to get \(\Gamma\left(\equiv^{0} \rightarrow \Lambda \gamma\right) / \Gamma_{\text {total }}=(1.16 \pm 0.05 \pm 0.06) \times 10^{-3}\). We adjust slightly to go back to what was directly measured.
\({ }^{4}\) FANTI 00 used our 1998 value of \(99.5 \%\) for the \(\Xi^{0} \rightarrow \Lambda \pi^{0}\) branching fraction to get \(\Gamma\left(\Xi^{0} \rightarrow \Lambda \gamma\right) / \Gamma_{\text {total }}=(1.90 \pm 0.34 \pm 0.19) \times 10^{-3}\). We adjust slightly to go back to what was directly measured
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Lambda} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{7 . 6} \pm \mathbf{0 . 4} \pm \mathbf{0 . 5}} \frac{E V T S}{397 \pm 21}\)\(\quad 5 \frac{\text { DOCUMENT ID }}{\text { BATLEY }} \frac{\boldsymbol{\Gamma}_{\mathbf{3}} / \boldsymbol{\Gamma}}{}\)
\({ }^{5}\) This BATLEY 07 C result is consistent with internal bremsstrahlung.
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{\mathbf{0}} \boldsymbol{\gamma}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\Lambda} \boldsymbol{\pi}^{\mathbf{0}}\right)\)
VALUE (units \(\left.10^{-3}\right)\)\(\quad\) EVTS DOCUMENT ID TECN COMMENT \(\quad \boldsymbol{\Gamma}_{\mathbf{4}} / \boldsymbol{\Gamma}_{\mathbf{1}}\)
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{\mathbf{3 . 3 5} \pm \mathbf{0 . 1 0 ~ O U R ~ F I T ~}}\) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{3 . 3 5} \pm \mathbf{0 . 1 0}\) OUR AVERAGE
\begin{tabular}{lrccll}
\(3.34 \pm 0.05 \pm 0.09\) & 4045 & ALAVI-HARATIO1C & KTEV & \(p\) nucleus, 800 GeV \\
\(3.16 \pm 0.76 \pm 0.32\) & 17 & \({ }^{6}\) FANTI & 00 & NA48 & \(p\) Be, 450 GeV \\
\(3.56 \pm 0.42 \pm 0.10\) & 85 & TEIGE & 89 & SPEC & FNAL hyperons
\end{tabular}
\({ }^{6}\) FANTI 00 used our 1998 value of \(99.5 \%\) for the \(\bar{E}^{0} \rightarrow \Lambda \pi^{0}\) branching fraction to get \(\Gamma\left(\Xi^{0} \rightarrow \Sigma^{0} \gamma\right) / \Gamma_{\text {total }}=(3.14 \pm 0.76 \pm 0.32) \times 10^{-3}\). We adjust slightly to go back to what was directly measured.


VALUE (units \(10^{-4}\) ) EVTS
\(2.52 \pm 0.08\) OUR FIT
\(\begin{array}{lrclll}2.51 \pm 0.03 \pm 0.09 & 6101 & \text { BATLEY } & 07 & \text { NA48 } & p \mathrm{Be}, 400 \mathrm{GeV} \\ 2.55 \pm 0.14 \pm 0.10 & 419 & 7 \text { BATLEY } & 07 & \text { NA48 } & p \mathrm{Be}, 400 \mathrm{GeV} \\ 2.71 \pm 0.22 \pm 0.31 & 176 & \text { AFFOLDER } & 99 & \text { KTEV } & p \text { nucleus, } 800 \mathrm{GeV}\end{array}\)
7 This BATLEY 07 result is for \(\bar{\Xi}^{0} \rightarrow \bar{\Sigma}^{-} e^{+} \nu_{e}\) events.
\(\Gamma\left(\Sigma^{+} \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma_{\text {total }}\)
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{2 \text { EVITS }}\) DOCUMENT ID COMMENT
\(2.3 \pm 0.4\) OUR FIT
\(\mathbf{2 . 1 7} \pm \mathbf{0 . 3 2} \pm \mathbf{0 . 1 7} \quad 66 \quad{ }^{8}\) BATLEY 13 NA48 \(p \mathrm{Be}, 400 \mathrm{GeV}\)
\({ }^{8}\) BATLEY 13 used \(\bar{\Xi}^{0} \rightarrow \Sigma^{+} e^{-} \bar{\nu}_{e}\) decay as a normalization mode and its branching fraction value of \((2.51 \pm 0.03 \pm 0.09) \times 10^{-4}\) from BATLEY 07.
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{+} \boldsymbol{\mu}^{=} \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{+} \boldsymbol{e}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{e}}\right)\)
\(\underline{\text { VALUE }} \mathrm{EVTS}\) DOCUMENT ID LECN COMMENT \(\quad \boldsymbol{\Gamma}_{\mathbf{6}} / \boldsymbol{\Gamma}_{\mathbf{5}}\)
-0.0015 OUR \(\frac{E V T}{}\)
\(0.018 \pm \mathbf{+ 0 . 0 0 7} \mathbf{0 . 0 . 0 0 2} \quad 9 \quad\) ABOUZAID 05 KTEV \(p\) nucleus 800 GeV
\begin{tabular}{lll}
\hline\(\Gamma\left(\Sigma^{-} e^{+} \nu_{e}\right) / \Gamma\left(\Lambda \pi^{0}\right)\) \\
Test of \(\triangle S=\Delta Q\) rule. \\
VALUE (nnits \(\left.10^{-3}\right)\) & \(\Gamma_{\mathbf{7}} / \Gamma_{1}\) \\
\end{tabular}
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{<\mathbf{0 . 9}} \frac{C L \%}{90} \frac{\text { EVTS }}{0} \quad \frac{\text { DOCUMENT ID }}{\text { YEH }} \frac{74}{\text { HBC }} \frac{\text { TECN }}{\text { COMMENT }}\) Effective denom. \(=2500\)
- - We do not use the following data for averages, fits, limits, etc. • -
\(<1.5\) DAUBER 69 HBC
\(<6 \quad\) HUBBARD 66 HBC
\(\begin{array}{ll}\Gamma\left(\Sigma^{-} \mu^{+} \nu_{\mu}\right) / \Gamma\left(\Lambda \pi^{0}\right) & \Gamma_{8} / \Gamma_{1} \\ \text { Test of } \Delta S=\Delta Q \text { rule. }\end{array}\)
- Test of \(\Delta S-\Delta Q\) rule.
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{<\mathbf{0} .9} \frac{C L \%}{90} \frac{\text { EVTS }}{0} \quad \frac{\text { DOCUMENT ID }}{\text { YEH }} \frac{74}{\text { HBC }} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { Effective denom. }=2500}{}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{llll}
\(<1.5\) & DAUBER & 69 & HBC \\
\(<6\) & HUBBARD & 66 & HBC
\end{tabular}
\(\begin{array}{ll}\Gamma\left(p \pi^{-}\right) / \Gamma\left(\Lambda \pi^{\mathbf{0}}\right) & \Gamma \mathbf{9} / \Gamma_{\mathbf{1}} \\ \Delta S=2 \text {. Forbidden in first-order weak interaction. } & \end{array}\)

- - We do not use the following data for averages, fits, limits, etc. - • -
\begin{tabular}{lllllll}
\(<36\) & 90 & & GEWENIGER & 75 & SPEC & \\
\(<1800\) & 90 & 0 & YEH & 74 & HBC & Effective denom. \(=1300\) \\
\(<900\) & & & DAUBER & 69 & HBC & \\
\(<5000\) & & & HUBBARD & 66 & HBC &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(\Gamma\left(p e^{-} \bar{\nu}_{e}\right) / \Gamma\left(\boldsymbol{\Lambda} \pi^{\mathbf{0}}\right)\)} & \multirow[t]{2}{*}{\(\Gamma_{10} / \Gamma_{1}\)} \\
\hline \multicolumn{7}{|l|}{\(\Delta S=2\). Forbidden in first-order weak interaction.} & \\
\hline \(<1.3\) & & & DAUBER & 69 & HBC & & \\
\hline \multicolumn{8}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline <3.4 & 90 & 0 & YEH & 74 & HBC & Effective & . \(=670\) \\
\hline <6 & & & HUBBARD & 66 & HBC & & \\
\hline
\end{tabular}


\section*{\(\equiv^{0}\) DECAY PARAMETERS}

See the "Note on Baryon Decay Parameters" in the neutron Listings.
\(\alpha\left(\bar{I}^{0}\right) \alpha_{-}(\Lambda)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{This is a product of the \(\Xi^{0} \rightarrow \Lambda \pi^{0}\) and \(\Lambda \rightarrow p \pi^{-}\)asymmetries.} \\
\hline VALUE & EVTS & DOCUMENT & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{-0.261 \(\pm 0.006\) OUR AVERAGE} \\
\hline \(-0.276 \pm 0.001 \pm 0.035\) & 4M & BATLEY & 10B & NA48 & p Be, 400 GeV \\
\hline \(-0.260 \pm 0.004 \pm 0.005\) & 300k & HANDLER & 82 & SPEC & FNAL hyperons \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(-0.317 \pm 0.027\) & 6075 & BUNCE & 78 & SPEC & FNAL hyperons \\
\hline \(-0.35 \pm 0.06\) & 505 & BALTAY & 74 & HBC & \(K^{-}\)p \(1.75 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(-0.28 \pm 0.06\) & 739 & DAUBER & 69 & HBC & \(K^{-}\)p 1.7-2.6 GeV/c \\
\hline
\end{tabular}
\(\alpha\) FOR \(\mathbf{E}^{\mathbf{0}} \Rightarrow \boldsymbol{\Lambda} \boldsymbol{\pi}^{\mathbf{0}}\)
The above average, \(\alpha\left(\bar{\Xi}^{0}\right) \alpha_{-}(\Lambda)=-0.261 \pm 0.006\), divided by our current average
\(\alpha_{-}(\Lambda)=0.732 \pm 0.014\), gives the following value for \(\alpha\left(\Xi^{0}\right)\) :
\(\frac{\text { VALUE }}{-0.356 \pm 0.011 \text { OUR EVALUATION }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\boldsymbol{\phi}\) ANGLE FOR \(\mathbf{\#}^{\mathbf{0}} \Rightarrow \boldsymbol{\Lambda} \boldsymbol{\pi}^{\mathbf{0}}\)} & \multicolumn{2}{|r|}{\((\tan \phi=\beta / \gamma)\)} \\
\hline VALUE \(\left({ }^{\circ}\right)\) & EVTS & DOCUMENT & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(21 \pm 12\) OUR AVERAGE} \\
\hline \(16 \pm 17\) & 652 & BALTAY & 74 & HBC & \(1.75 \mathrm{GeV} /{ }^{\text {c }} K^{-} p\) \\
\hline \(38 \pm 19\) & 739 & \({ }^{9}\) DAUBER & 69 & HBC & \\
\hline \(-8 \pm 30\) & 146 & 10 BERGE & 66 & HBC & \\
\hline \multicolumn{6}{|l|}{\({ }^{9}\) DAUBER 69 uses \(\alpha_{\Lambda}=0.647 \pm 0.020\).} \\
\hline \multicolumn{6}{|l|}{\({ }^{10}\) The errors have been multiplied by 1.2 due to approximations used for the \(\equiv\) polarization; see DAUBER 69 for a discussion.} \\
\hline
\end{tabular}

\section*{RADIATIVE HYPERON DECAYS}

Revised July 2011 by J.D. Jackson (LBNL).
The weak radiative decays of spin- \(1 / 2\) hyperons, \(B_{i} \rightarrow B_{f} \gamma\), yield information about matrix elements (form factors) similar to that gained from weak hadronic decays. For a polarized spin- \(1 / 2\) hyperon decaying radiatively via a \(\Delta Q=0, \Delta S=1\)
transition, the angular distribution of the direction \(\hat{\mathbf{p}}\) of the final spin- \(1 / 2\) baryon in the hyperon rest frame is
\[
\begin{equation*}
\frac{d N}{d \Omega}=\frac{N}{4 \pi}\left(1+\alpha_{\gamma} \mathbf{P}_{i} \cdot \hat{\mathbf{p}}\right) \tag{1}
\end{equation*}
\]

Here \(\mathbf{P}_{i}\) is the polarization of the decaying hyperon, and \(\alpha_{\gamma}\) is the asymmetry parameter. In terms of the form factors \(F_{1}\left(q^{2}\right)\), \(F_{2}\left(q^{2}\right)\), and \(G\left(q^{2}\right)\) of the effective hadronic weak electromagnetic vertex,
\[
F_{1}\left(q^{2}\right) \gamma_{\lambda}+i F_{2}\left(q^{2}\right) \sigma_{\lambda \mu} q^{\mu}+G\left(q^{2}\right) \gamma_{\lambda} \gamma_{5}
\]
\(\alpha_{\gamma}\) is
\[
\begin{equation*}
\alpha_{\gamma}=\frac{2 \operatorname{Re}\left[G(0) F_{M}^{*}(0)\right]}{|G(0)|^{2}+\left|F_{M}(0)\right|^{2}}, \tag{2}
\end{equation*}
\]
where \(F_{M}=\left(m_{i}-m_{f}\right)\left[F_{2}-F_{1} /\left(m_{i}+m_{f}\right)\right]\). If the decaying hyperon is unpolarized, the decay baryon has a longitudinal polarization given by \(P_{f}=-\alpha_{\gamma}[1]\).

The angular distribution for the weak hadronic decay, \(B_{i} \rightarrow B_{f} \pi\), has the same form as Eq. (1), but of course with a different asymmetry parameter, \(\alpha_{\pi}\). Now, however, if the decaying hyperon is unpolarized, the decay baryon has a longitudinal polarization given by \(P_{f}=+\alpha_{\pi}[2,3]\). The difference of sign is because the spins of the pion and photon are different.
\(\boldsymbol{\Xi}^{\mathbf{0}} \rightarrow \boldsymbol{\Lambda} \boldsymbol{\gamma}\) decay-The radiative decay \(\Xi^{0} \rightarrow \Lambda \gamma\) of an unpolarized \(\Xi^{0}\) uses the hadronic decay \(\Lambda \rightarrow p \pi^{-}\)as the analyzer. As noted above, the longitudinal polarization of the \(\Lambda\) will be \(P_{\Lambda}=-\alpha_{\Xi \Lambda \gamma}\). Let \(\alpha_{-}\)be the \(\Lambda \rightarrow p \pi^{-}\)asymmetry parameter and \(\theta_{\Lambda p}\) be the angle, as seen in the \(\Lambda\) rest frame, between the \(\Lambda\) line of flight and the proton momentum. Then the hadronic version of Eq. (1) applied to the \(\Lambda \rightarrow p \pi^{-}\)decay gives
\[
\begin{equation*}
\frac{d N}{d \cos \theta_{\Lambda p}}=\frac{N}{2}\left(1-\alpha_{\Xi \Lambda \gamma} \alpha_{-} \cos \theta_{\Lambda p}\right) \tag{3}
\end{equation*}
\]
for the angular distribution of the proton in the \(\Lambda\) frame. Our current value, from the CERN NA48/1 experiment [4], is \(\alpha_{\Xi \Lambda \gamma}=-0.704 \pm 0.019 \pm 0.064\).
\(\boldsymbol{\Xi}^{\mathbf{0}} \rightarrow \Sigma^{0} \gamma\) decay-The asymmetry parameter here, \(\alpha_{\Xi \Sigma \gamma}\), is measured by following the decay chain \(\Xi^{0} \rightarrow \Sigma^{0} \gamma, \Sigma^{0} \rightarrow\) \(\Lambda \gamma, \Lambda \rightarrow p \pi^{-}\). Again, for an unpolarized \(\Xi^{0}\), the longitudinal polarization of the \(\Sigma^{0}\) will be \(P_{\Sigma}=-\alpha_{\Xi \Sigma \gamma}\). In the \(\Sigma^{0} \rightarrow\) \(\Lambda \gamma\) decay, a parity-conserving magnetic-dipole transition, the polarization of the \(\Sigma^{0}\) is transferred to the \(\Lambda\), as may be seen as follows. Let \(\theta_{\Sigma \Lambda}\) be the angle seen in the \(\Sigma^{0}\) rest frame between the \(\Sigma^{0}\) line of flight and the \(\Lambda\) momentum. For \(\Sigma^{0}\) helicity \(+1 / 2\), the probability amplitudes for positive and negative spin states of the \(\Sigma^{0}\) along the \(\Lambda\) momentum are \(\cos \left(\theta_{\Sigma \Lambda} / 2\right)\) and \(\sin \left(\theta_{\Sigma \Lambda} / 2\right)\). Then the amplitude for a negative helicity photon and a negative helicity \(\Lambda\) is \(\cos \left(\theta_{\Sigma \Lambda} / 2\right)\), while the amplitude for positive helicities for the photon and \(\Lambda\) is \(\sin \left(\theta_{\Sigma \Lambda} / 2\right)\). For \(\Sigma^{0}\) helicity \(-1 / 2\), the amplitudes are interchanged. If the \(\Sigma^{0}\) has longitudinal polarization \(P_{\Sigma}\), the probabilities for \(\Lambda\) helicities \(\pm 1 / 2\) are therefore
\[
\begin{equation*}
p( \pm 1 / 2)=\frac{1}{2}\left(1 \mp P_{\Sigma}\right) \cos ^{2}\left(\theta_{\Sigma \Lambda} / 2\right)+\frac{1}{2}\left(1 \pm P_{\Sigma}\right) \sin ^{2}\left(\theta_{\Sigma \Lambda} / 2\right), \tag{4}
\end{equation*}
\]
and the longitudinal polarization of the \(\Lambda\) is
\[
\begin{equation*}
P_{\Lambda}=-P_{\Sigma} \cos \theta_{\Sigma \Lambda}=+\alpha_{\Xi \Sigma \gamma} \cos \theta_{\Sigma \Lambda} . \tag{5}
\end{equation*}
\]

Using Eq．（1）for the \(\Lambda \rightarrow p \pi^{-}\)decay again，we get for the joint angular distribution of the \(\Sigma^{0} \rightarrow \Lambda \gamma, \Lambda \rightarrow p \pi^{-}\)chain，
\[
\begin{equation*}
\frac{d^{2} N}{d \cos \theta_{\Sigma \Lambda} d \cos \theta_{\Lambda p}}=\frac{N}{4}\left(1+\alpha_{\Xi \Sigma \gamma} \cos \theta_{\Sigma \Lambda} \alpha_{-} \cos \theta_{\Lambda p}\right) . \tag{6}
\end{equation*}
\]

Our current average for \(\alpha_{\Xi \Sigma \gamma}\) is \(-0.69 \pm 0.06[4,5]\) ．

\section*{References}

1．R．E．Behrends，Phys．Rev．111， 1691 （1958）；see Eq．（7）or （8）．
2．In ancient times，the signs of the asymmetry term in the angular distributions of radiative and hadronic decays of polarized hyperons were sometimes opposite．For roughly 50 years，however，the overwhelming convention has been to make them the same．The aim，not always achieved，is to remove ambiguities．
3．For the definition of \(\alpha_{\pi}\) ，see the note on＂Baryon Decay Parameters＂in the Neutron Listings．
4．J．R．Batley et al．，Phys．Lett．B693， 241 （2010）．
5．A．Alavi－Harati et al．，Phys．Rev．Lett．86， 3239 （2001）．

\section*{\(\alpha\) FOR \(\equiv^{0} \Rightarrow \boldsymbol{\wedge} \gamma\)}

See the note above on＂Radiative Hyperon Decays．＂
VALUE \(\frac{\text { EVTS }}{\text { DOCUMENTID TECN COMMENT }}\)
\(\mathbf{- 0 . 7 0 4} \pm \mathbf{0 . 0 1 9} \pm \mathbf{0 . 0 6 4} \quad 52 \mathrm{k} \quad 11\) BATLEY 10 B NA48 \(p \mathrm{Be}, 400 \mathrm{GeV}\)
－－We do not use the following data for averages，fits，limits，etc．－－
\(-0.78 \pm 0.18 \pm 0.06 \quad 672 \quad\) LAI 04A NA48 See BATLEY 10B
\(-0.43 \pm 0.44 \quad 87 \quad 12\) JAMES \(90 \quad\) SPEC FNAL hyperons
\({ }^{11}\) BATLEY 10 B also measured the \(\overline{\bar{\equiv}} 0 \rightarrow \bar{\Lambda} \gamma\) asymmetry to be \(-0.798 \pm 0.064\)（no Systematic error given）with 4769 events．
12 The sign has been changed；see the erratum，JAMES 02.
 if the mechanism is internal bremsstrahlung．
\(\alpha\) FOR \(\overline{=0} \Rightarrow \boldsymbol{\Sigma}^{\mathbf{0}} \boldsymbol{\gamma}\)
See the note above on＂Radiative Hyperon Decays．＂

－－We do not use the following data for averages，fits，limits，etc．－•－
\(+0.20 \pm 0.32 \pm 0.05 \quad 85 \quad 15\) TEIGE 89 SPEC FNAL hyperons
\({ }^{14}\) BATLEY 10B also measured the \(\bar{\equiv} 0 \rightarrow \bar{\Sigma}^{0} \gamma\) asymmetry to be \(-0.786 \pm 0.104\)（no systematic error given）with 1404 events．
\({ }^{15}\) This result has been withdrawn，due to an error．See the erratum，TEIGE 02.
\(g_{1}(0) / f_{1}(0)\) FOR \(\equiv^{0} \rightarrow \Sigma^{+} e^{-} \bar{\nu}_{e}\)
\(\frac{V A L U E}{122} \pm 0.05\) OUR AVERAGE DOCUMENT ID \(\frac{E V T S}{\text { TECN }}\) COMMENT
\(1.21 \pm 0.05\)
BATLEY 13 NA48 \(p \mathrm{Be}, 400 \mathrm{GeV}\)
\(1.32 \underset{-0.17}{+0.21} \pm 0.05 \quad 487 \quad 16\) ALAVI－HARATI01। KTEV \(p\) nucleus， 800 GeV
－－We do not use the following data for averages，fits，limits，etc．－－－
\(1.20 \pm 0.04 \pm 0.03 \quad 6520 \quad 17\) BATLEY 07 NA48 See BATLEY 13
\({ }^{16}\) ALAVI－HARATI 01। assumes here that the second－class current is zero and that the weak－magnetism term takes its exact \(\operatorname{SU}(3)\) value．
17 This BATLEY 07 result uses our 2006 value of \(V_{u s}\) from semileptonic kaon decays as input．
\(\left.g_{2}(0) / f_{1}(0)\right)\) FOR \(=0 \rightarrow \Sigma^{+} e^{-\bar{\nu}_{e}}\)
VALUE EVTS DOCUMENT ID TECN COMMENT
\(=\mathbf{1 . 7}_{\mathbf{- 2 . 0}}^{\mathbf{2} .1} \mathbf{\pm 0 . 5} \quad 487 \quad 18\) ALAVI－HARATI01। KTEV \(p\) nucleus， 800 GeV
18 ALAVI－HARATI 01। thus assumes that \(g_{2}=0\) in calculating \(g_{1} / f_{1}\) ，above．


The parity has not actually been measured，but + is of course ex－ pected．

We have omitted some results that have been superseded by later experiments．See our earlier editions．

\section*{ミ－MASS}

The fit uses the \(\overline{ }^{-}, \overline{\bar{\Xi}}+\) ，and \(\bar{\Xi}^{0}\) masses and the \(\bar{\Xi}-\overline{\bar{E}}+\) mass difference． It assumes that the \(\bar{\Xi}^{-}\)and \(\overline{\bar{\Xi}}+\) masses are the same．

\({ }^{1}\) GOLDWASSER 70 uses \(m_{\Lambda}=1115.58 \mathrm{MeV}\) ．
\({ }^{2}\) These masses have been increased 0.09 MeV because the \(\Lambda\) mass increased．

\section*{E＋MASS}

The fit uses the \(\bar{\Xi}^{-}, \overline{\overline{ }+}\) ，and \(\bar{E}^{0}\) masses and the \(\bar{\Xi}^{-}-\overline{\bar{E}}+\) mass difference．It assumes that the \(\bar{\Xi}^{-}\)and \(\overline{\bar{\Xi}}+\) masses are the same．
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{1 3 2 1 . 7 1} \pm \mathbf{0 . 0 7} \text { OUR FIT }}\)
\(\mathbf{1 3 2 1 . 7 3} \pm \mathbf{0 . 0 8} \pm 0.05 \quad 2256 \pm 63\)
DOCUMENT ID TECN COMMENT
ABDALLAH 06E DLPH from \(Z\) decays
－－We do not use the following data for averages，fits，limits，etc．－－
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(1321.6 \pm 0.8\) & 35 & VOTRUBA & 72 & HBC & \(10 \mathrm{GeV} / \mathrm{c}^{+}{ }^{+} p\) \\
\hline \(1321.2 \pm 0.4\) & 34 & STONE & 70 & HBC & \\
\hline \(1320.69 \pm 0.93\) & 5 & CHIEN & 66 & HBC & \(6.9 \mathrm{GeV} / c \bar{p} p\) \\
\hline
\end{tabular}

A test of CPT invariance．
\(\frac{\text { VALUE }}{\mathbf{( - 2 . 5} \pm \mathbf{8 . 7}) \times \mathbf{1 0}^{\mathbf{- 5}}} \quad \frac{\text { DOCUMENT ID }}{\text { ABDALLAH } \quad \text { 06E }} \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{\text { from } \boldsymbol{Z} \text { decays }}\)

\section*{Baryon Particle Listings}

\section*{三－}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{三－MEAN LIFE} \\
\hline \multicolumn{6}{|l|}{Measurements with an error \(>0.2 \times 10^{-10} \mathrm{~s}\) or with systematic errors not included have been omitted．} \\
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(1.639 \pm 0.015\) OUR AVERAGE} \\
\hline \(1.65 \pm 0.07 \pm 0.12\) & \(2478 \pm 68\) & ABDALLAH & 06E & DLPH & from \(Z\) decays \\
\hline \(1.652 \pm 0.051\) & 32k & BOURQUIN & 84 & SPEC & Hyperon beam \\
\hline \(1.665 \pm 0.065\) & 41k & BOURQUIN & 79 & SPEC & Hyperon beam \\
\hline \(1.609 \pm 0.028\) & 4286 & HEMINGWAY & 78 & HBC & \(4.2 \mathrm{GeV} / \mathrm{c}^{-}\)－\(p\) \\
\hline \(1.67 \pm 0.08\) & & DIBIANCA & 75 & DBC & \(4.9 \mathrm{GeV} / \mathrm{ck} \mathrm{K}^{-}\)d \\
\hline \(1.63 \pm 0.03\) & 4303 & BALTAY & 74 & HBC & \(1.75 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(1.73{ }_{-0.07}^{+0.08}\) & 680 & MAYEUR & 72 & HLBC & \(2.1 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{-}\) \\
\hline \(1.61 \pm 0.04\) & 2610 & DAUBER & 69 & HBC & \\
\hline \(1.80 \pm 0.16\) & 299 & LONDON & 66 & HBC & \\
\hline \(1.70 \pm 0.12\) & 246 & PJERROU & 65B & HBC & \\
\hline \(1.69 \pm 0.07\) & 794 & HUBBARD & 64 & HBC & \\
\hline \(1.86{ }_{-0.14}^{+0.15}\) & 517 & JAUNEAU & 63 D & FBC & \\
\hline
\end{tabular}

\section*{三＋MEAN LIFE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \(1.70 \pm 0.08 \pm 0.12\) & \(2256 \pm 63\) & ABDALLAH & 06E & DLPH & from \(Z\) decays \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－．} \\
\hline \[
1.55_{-0.20}^{+0.35}
\] & 35 & \({ }^{3}\) Votruba & 72 & HBC & \(10 \mathrm{GeV} / \mathrm{c} K^{+} p\) \\
\hline \(1.6 \pm 0.3\) & 34 & Stone & 70 & HBC & \\
\hline \(1.9{ }_{-0.5}^{+0.7}\) & 12 & \({ }^{3}\) SHEN & 67 & HBC & \\
\hline \(1.51 \pm 0.55\) & 5 & \({ }^{3}\) CHIEN & 66 & HBC & \(6.9 \mathrm{GeV} / c \bar{p} p\) \\
\hline \multicolumn{6}{|l|}{\({ }^{3}\) The error is statistical only．} \\
\hline
\end{tabular}
\begin{tabular}{l}
（ \(\left.\tau_{\mathbf{E}^{-}}-\tau_{\overline{\underline{E}}^{+}}\right) / \tau_{\Xi^{-}}\) \\
A test of \(C P T\) invariance． \\
\(\frac{\text { VALUE }}{-\mathbf{0 . 0 1} \pm \mathbf{0 . 0 7}} \quad \frac{\text { DOCUMENT ID }}{\text { ABDALLAH } \quad \text { 06E }} \frac{\text { TECN }}{\text { DLPH }} \frac{\text { COMMENT }}{\text { from } Z \text { decays }}\) \\
\hline
\end{tabular}

E－MAGNETIC MOMENT
See the＂Note on Baryon Magnetic Moments＂in the \(\Lambda\) Listings．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{value}\left(\mu_{N}\right)\) & EVTS & DOCUMENT & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{－0．6507 \(\pm 0.0025\) OUR AVERAGE} \\
\hline \(-0.6505 \pm 0.0025\) & 4.36 M & DURYEA & 92 & SPEC & \(800 \mathrm{GeV} p\) Be \\
\hline \(-0.661 \pm 0.036 \pm 0.036\) & 44k & TROST & 89 & SPEC & \(\Xi^{-} \sim 250 \mathrm{GeV}\) \\
\hline \(-0.69 \pm 0.04\) & 218k & RAMEIKA & 84 & SPEC & \(400 \mathrm{GeV} p \mathrm{Be}\) \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(-0.674 \pm 0.021 \pm 0.020\) & 122k & HO & 90 & SPEC & See \\
\hline \(-2.1 \pm 0.8\) & 2436 & COOL & 74 & OSPK & \begin{tabular}{l}
DURYEA 92 \\
\(1.8 \mathrm{GeV} / c K^{-} p\)
\end{tabular} \\
\hline －0．1 \(\pm 2.1\) & 2724 & BINGHAM & 70в & OSPK & \(1.8 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{-} p\) \\
\hline
\end{tabular}

\section*{E＋MAGNETIC MOMENT}

See the＂Note on Baryon Magnetic Moments＂in the 1 Listings．
\begin{tabular}{lllll}
\(\frac{\operatorname{VALUE}\left(\mu_{N}\right)}{+\mathbf{0 . 6 5 7} \pm \mathbf{0 . 0 2 8} \pm \mathbf{0 . 0 2 0}}\) & \(\frac{\text { EVTS }}{70 \mathrm{k}}\) & \(\frac{\text { DOCUMENT ID }}{\mathrm{HO}}\) & & \\
\hline
\end{tabular}
\[
\left(\mu_{\Xi^{-}}+\mu_{\bar{\Xi}^{+}}\right) /\left|\mu_{\Xi^{-}}\right|
\]

A test of \(C P T\) invariance．We calculate this from the \(\Xi^{-}\)and \(\bar{\equiv}+\) mag－ netic moments above．
\(\frac{\frac{\text { VALUE }}{+0.01 \pm 0.05 \text { OUR EVALUATION }} \frac{\text { DOCUMENT ID }}{}}{}\)
\begin{tabular}{llcl} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) & Confidence level \\
\hline\(\Gamma_{1}\) & \(\Lambda \pi^{-}\) & \((99.887 \pm 0.035) \%\) & \\
\(\Gamma_{2}\) & \(\Sigma^{-} \gamma\) & \((1.27 \pm 0.23) \times 10^{-4}\) & \\
\(\Gamma_{3}\) & \(\Lambda e^{-} \bar{\nu}_{e}\) & \((5.63 \pm 0.31) \times 10^{-4}\) & \\
\(\Gamma_{4}\) & \(\Lambda \mu^{-} \bar{\nu}_{\mu}\) & \(\left.\left(3.5{ }^{+3.5}\right)\right) \times 10^{-4}\) & \\
\(\Gamma_{5}\) & \(\Sigma^{0} e^{-} \bar{\nu}_{e}\) & \((8.7 \pm 1.7) \times 10^{-5}\) & \\
\(\Gamma_{6}\) & \(\Sigma^{0} \mu^{-} \bar{\nu}_{\mu}\) & \(<8\) & \(\times 10^{-4}\) \\
\(\Gamma_{7}\) & \(\bar{J}^{0} e^{-} \bar{\nu}_{e}\) & \(<2.3\) & \(90 \%\) \\
& & &
\end{tabular}
\begin{tabular}{llrlll}
\multicolumn{6}{c}{} \\
\(\Gamma_{8}\) & \(n \pi^{-}\) & \(\Delta \mathbf{S}=\mathbf{2}\) forbidden（S2）modes \\
\(\Gamma_{9}\) & \(n e^{-} \bar{\nu}_{e}\) & \(S 2\) & \(<1.9\) & \(\times 10^{-5}\) & \(90 \%\) \\
\(\Gamma_{10}\) & \(n \mu^{-} \bar{\nu}_{\mu}\) & \(S 2\) & \(<3.2\) & \(\times 10^{-3}\) & \(90 \%\) \\
\(\Gamma_{11}\) & \(p \pi^{-} \pi^{-}\) & \(S 2\) & \(<1.5\) & \(\%\) & \(90 \%\) \\
\(\Gamma_{12}\) & \(p \pi^{-} e^{-} \bar{\nu}_{e}\) & \(S 2\) & \(<4\) & \(\times 10^{-4}\) & \(90 \%\) \\
\(\Gamma_{13}\) & \(p \pi^{-} \mu^{-} \bar{\nu}_{\mu}\) & \(S 2\) & \(<4\) & \(\times 10^{-4}\) & \(90 \%\) \\
\(\Gamma_{14}\) & \(p \mu^{-} \mu^{-}\) & \(S 2\) & \(<4\) & \(\times 10^{-4}\) & \(90 \%\) \\
\hline
\end{tabular}

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 5 parameters．The overall fit has a \(\chi^{2}=\) 1.0 for 1 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\) ，in percent，from the fit to the branching fractions，\(x_{i} \equiv\)
\(\Gamma_{i} / \Gamma_{\text {total }}\) ．The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one．


\section*{\(0.35{ }_{-0.22}^{+0.35}\) OUR FIT}
\(\mathbf{0 . 3 5} \pm \mathbf{0 . 3 5} 1 \quad\) YEH 74 HBC Effective denom．\(=2859\)
\begin{tabular}{l}
－－We do not use the following data for averages，fits，limits，etc．－－－ \\
\(<2.3\) \\
\hline 00
\end{tabular} \(0 \quad\) THOMPSON 80 ASPK Effective denom．\(=1017\)
\begin{tabular}{lllllll}
\(<2.3\) & 90 & 0 & THOMPSON & 80 & ASPK & Effective denom．\(=1017\) \\
\(<1.3\) & & & DAUBER & 69 & HBC
\end{tabular}
\(<12 \quad\) BERGE 66 HBC
\begin{tabular}{lll}
\(\Gamma\left(\boldsymbol{\Sigma}^{\mathbf{0}} e^{-} \bar{\nu}_{\boldsymbol{e}}\right) / \Gamma\left(\Lambda \pi^{-}\right)\) \\
VALUE（units 10 \(\left.10^{-3}\right)\) & \(\Gamma_{\mathbf{5}} / \Gamma_{\mathbf{1}}\) \\
DOCUMENT ID
\end{tabular}
\(0.007 \pm 0.017\) OUR FTT EVTS
DOCUMENT ID TECN COMMENT
\(0.087 \pm 0.017 \quad 154\) BOURQUIN 83 SPEC SPS hyperon beam
\(\left[\Gamma\left(\Lambda e^{-} \bar{\nu}_{e}\right)+\Gamma\left(\Sigma^{0} e^{-} \bar{\nu}_{e}\right)\right] / \Gamma\left(\Lambda \pi^{-}\right) \quad\left(\Gamma_{3}+\Gamma_{5}\right) / \Gamma_{1}\)
VALUE（units \(10^{-3}\) ）DOCUMENT ID LEVTS TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－
\(0.651 \pm 0.031 \quad 3011 \quad{ }^{5}\) BOURQUIN 83 SPEC SPS hyperon beam
\(0.68 \pm 0.22 \quad 17 \quad 6\) DUCLOS \(\quad 71 \quad\) OSPK
\({ }^{5}\) See the separate BOURQUIN 83 values for \(\Gamma\left(\Lambda e^{-} \bar{\nu}_{e}\right) / \Gamma\left(\Lambda \pi^{-}\right)\)and \(\Gamma\left(\Sigma^{0} e^{-} \bar{\nu}_{e}\right) /\) \(\Gamma\left(\Lambda \pi^{-}\right)\)above．
\({ }^{6}\) DUCLOS 71 cannot distinguish \(\Sigma^{0}\)＇s from \(\Lambda\)＇s．The Cabibbo theory predicts the \(\Sigma^{0}\) rate is about a factor 6 smaller than the \(\Lambda\) rate．



\section*{ミ－DECAY PARAMETERS}

See the＂Note on Baryon Decay Parameters＂in the neutron Listings．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\left.\boldsymbol{\alpha ( E -}{ }^{-}\right) \alpha_{-}(\Lambda)\)} \\
\hline VALUE & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & CN & COMMENT \\
\hline \[
-0.294 \pm 0.005 \text { OUR }
\] below． & RAGE & Error includes scale & fact & of 1.7 & See the ideogram \\
\hline \(-0.2963 \pm 0.0042\) & 189k & LUK & 00 & E756 & p \(\mathrm{Be}, 800 \mathrm{GeV}\) \\
\hline \(-0.2894 \pm 0.0073\) & 63k & \({ }^{8}\) LUK & 00 & E756 & \(p \mathrm{Be}, 800 \mathrm{GeV}\) \\
\hline \(-0.303 \pm 0.004 \pm 0.004\) & 192k & RAMEIKA & 86 & SPEC & \(400 \mathrm{GeV} p \mathrm{Be}\) \\
\hline \(-0.257 \pm 0.020\) & 11k & ASTON & 85B & LASS & \(11 \mathrm{GeV} / \mathrm{C}^{K^{-} p}\) \\
\hline \(-0.260 \pm 0.017\) & 21k & BENSINGER & 85 & MPS & \(5 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(-0.299 \pm 0.007\) & 150k & BIAGI & 82 & SPEC & SPS hyperon beam \\
\hline \(-0.315 \pm 0.026\) & 9046 & CLELAND & 80C & ASPK & BNL hyperon beam \\
\hline \(-0.239 \pm 0.021\) & 6599 & HEMINGWAY & 78 & HBC & \(4.2 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-}\) \\
\hline \(-0.243 \pm 0.025\) & 4303 & BALTAY & 74 & HBC & \(1.75 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(-0.252 \pm 0.032\) & 2436 & COOL & 74 & OSPK & \(1.8 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(-0.253 \pm 0.028\) & 2781 & DAUBER & 69 & HBC & \\
\hline
\end{tabular}
\({ }^{8}\) This LUK 00 value is for \(\alpha\left(\overline{\bar{E}}{ }^{+}\right) \alpha_{+}(\bar{\Lambda})\) ．We assume \(C P\) conservation here by including it in the average for \(\alpha\left(\Xi^{-}\right) \alpha_{-}(\Lambda)\) ．But see the second data block below for the \(C P\) test．

\(\alpha\) FOR 三 \(^{-} \rightarrow \Lambda \pi^{-}\)
The above average，\(\alpha\left(\bar{\Xi}^{-}\right) \alpha_{-}(\Lambda)=-0.294 \pm 0.005\) ，divided by our current average \(\alpha_{-}(\Lambda)=0.732 \pm 0.014\) ，gives the following value for \(\alpha\left(\Xi^{-}\right)\)：
\(\frac{V A L U E}{-0.401 \pm 0.010 ~ O U R ~ E V A L U A T I O N ~}\)
DOCUMENT ID
\(\left[\alpha\left(E^{-}\right) \alpha_{-}(\Lambda)-\alpha\left(\bar{E}^{+}\right) \alpha_{+}(\bar{\Lambda})\right]\)
\(\left[\alpha\left(\bar{\Xi}^{-}\right) \alpha_{-}(\Lambda)+\alpha\left(\overline{\bar{B}}^{+}\right) \alpha_{+}(\bar{\Lambda})\right]\)
This is zero if \(C P\) is conserved．The \(\alpha\)＇s are the decay－asymmetry parameters for \(\bar{\Xi}^{-} \rightarrow \Lambda \pi^{-}\)and \(\Lambda \rightarrow p \pi^{-}\)and for \(\overline{\bar{E}}+\bar{\Lambda} \pi^{+}\)and \(\bar{\Lambda} \rightarrow \bar{p} \pi^{+}\)．
VALUE（units \(10^{-4}\) ）EVTS DOCUMENTID TECN COMMENT
\(\mathbf{0 . 0 \pm 5 . 1 \pm 4 . 4} 158 \mathrm{M} \quad\) HOLMSTROM 04 HYCP \(p \mathrm{Cu}, 800 \mathrm{GeV}\)
－－We do not use the following data for averages，fits，limits，etc．－• •
\(+120 \pm 140\) 252k LUK 00 E756 p Be， 800 GeV
\(\phi\) ANGLE FOR \(\Xi^{-} \rightarrow \Lambda \pi^{-}\)
\(\frac{\operatorname{VALUE}\left({ }^{( }\right)}{-2.1 \pm 0.8}\) OUR AVERAGE
\(=2.1\) 土 0．8 OUR AVERAGE
\(-2.39 \pm 0.64 \pm 0.64 \quad 144 \mathrm{M}\)
\(-1.61 \pm 2.66 \pm 0.37 \quad 1.35 \mathrm{M}\)
DOCUMENT ID \(\qquad\) TECN
\((\tan \phi=\beta / \gamma)\)
\({ }^{9}\) HUANG 04 HYCP \(p \mathrm{Cu}, 800 \mathrm{GeV}\) \(5 \pm 10 \quad 11 \mathrm{k}\) ASTON 85B LASS \(K^{-} p\)
\(14.7 \pm 16.0 \quad 21 \mathrm{k} \quad 11\) BENSINGER \(85 \mathrm{MPS} \quad 5 \mathrm{GeV} / c K^{-} p\)
\(11 \pm 9 \quad 4303 \quad\) BALTAY \(74 \mathrm{HBC} \quad 1.75 \mathrm{GeV} / \mathrm{C} K^{-} p\)
\(\begin{array}{rllllll}5 & \pm 16 & 2436 & \text { COOL } & 74 & \text { OSPK } & 1.8 \mathrm{GeV} / \mathrm{C}^{-} p\end{array}\)
\(-14 \quad \pm 11 \quad 2781 \quad\) DAUBER \(\quad 69 \quad\) HBC \(\quad\) Uses \(\alpha_{\Lambda}=0.647 \pm 0.020\)
－－We do not use the following data for averages，fits，limits，etc．－－－
\(-26 \quad \pm 30 \quad 2724 \quad\) BINGHAM 70B OSPK
\(\begin{array}{rlrlll}0 & \pm 20.4 & 364 & 12 \text { LONDON } & 66 & \text { HBC }\end{array} \quad\) Using \(\alpha \Lambda=0.62\)
\({ }^{9}\) From this result and \(\alpha_{\equiv}\) ，HUANG 04 gets \(\beta \equiv=-0.037 \pm 0.011 \pm 0.010\) and \(\gamma_{\equiv}=\)
\(0.888 \pm 0.0004 \pm 0.006\) ．And the strong \(\mathrm{p}-\mathrm{s}\) phase difference for \(\Lambda \pi^{-}\)scattering is
\((4.6 \pm 1.4 \pm 1.2)^{\circ}\) ．
 and \(\gamma_{\equiv}=0.889 \pm 0.001 \pm 0.007\) ．And the strong \(p-s\) phase difference for \(\Lambda \pi^{-}\)scattering is \((3 . \overline{17} \pm 5.28 \pm 0.73)^{\circ}\) ．
11 BENSINGER 85 used \(\alpha_{\Lambda}=0.642 \pm 0.013\) ．
12 The errors have been multiplied by 1.2 due to approximations used for the \(\equiv\) polarization； see DAUBER 69 for a discussion．

\(\frac{V A L U E}{\mathbf{- 0 . 2 5} \pm \mathbf{0 . 0 5}} \frac{\text { EVTS }}{1992} \quad 13 \frac{\text { DOCUMENT ID }}{\text { BOURQUIN } 83} \frac{\text { TECN }}{\text { SPEC }} \frac{\text { COMMENT }}{\text { SPS hyperon beam }}\)
\({ }^{13}\) BOURQUIN 83 assumes that \(g_{2}=0\) ．Also，the sign has been changed to agree with our conventions，given in the＂Note on Baryon Decay Parameters＂in the neutron Listings．

\section*{ミ－REFERENCES}

We have omitted some papers that have been superseded by later experi－ ments．See our earlier editions．
\begin{tabular}{l} 
ABDALLAH \\
RAJARAM \\
HOLMSTROM \\
HUANG \\
CHAKRAVO．．． \\
LUK \\
DUBBS \\
DURYEA \\
LITTENBERG \\
HO \\
\multicolumn{1}{c}{ AlsO } \\
TROST \\
BIAGI \\
RAMEIKA \\
ASTON \\
BENSINGER
\end{tabular}
\begin{tabular}{ll} 
06E & PL B639 179 \\
05 & PRL 94 181801 \\
04 & PRL 93 262001 \\
04 & PRL 93 011802 \\
03 & PRL 91 031601 \\
00 & PRL 85 4860 \\
94 & PRL 72 808 \\
92 & PRL 68 768 \\
92B & PR D46 892 \\
90 & PRL 65 1713 \\
& PR D44 3402 \\
89 & PR D40 1703 \\
87B & ZPHY C35 143 \\
86 & PR D33 3172 \\
85B & PR D32 2270
\end{tabular}
J．Abdallah et al．
D．Rajaram et al．
T．Holmstrom et al．
M．Huang et al．
A．Chakravorty et al．
K．B．Luk et al．
T．Dubbs et al．
J．Du ryea et al．
L．S．Littenberg，R．E．Shrock
P．M．Ho et al．
P．M．Ho et al．
L．H．Trost et al．
S．F．Biagi et al．
R．Rameika et al．
D．Aston et al．
J．R．Bensinger et al．
 status of the \(\Xi\) resonances. Not much is known about \(\Xi\) resonances. This is because (1) they can only be produced as a part of a final state, and so the analysis is more complicated than if direct formation were possible, (2) the production cross sections are small (typically a few \(\mu \mathrm{b}\) ), and (3) the final states are topologically complicated and difficult to study with electronic techniques. Thus early information about \(\Xi\) resonances came entirely from bubble chamber experiments, where the numbers of events are small, and only in the 1980's did electronic experiments make any significant contributions. However, nothing of significance on \(\Xi\) resonances has been added since our 1988 edition.

For a detailed earlier review, see Meadows [1].
Table 1. The status of the \(\Xi\) resonances. Only those with an overall status of \(* * *\) or \(* * * *\) are included in the Baryon Summary Table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Particle} & \multirow[b]{2}{*}{\(J^{P}\)} & \multirow[b]{2}{*}{Overall status} & \multicolumn{6}{|c|}{Status as seen in -} \\
\hline & & & \(\Xi \pi\) & \(\Lambda K\) & \(\Sigma K\) & \(\Xi(1530) \pi\) & Other & channels \\
\hline \(\Xi(1318)\) & ) \(1 / 2+\) & **** & & & & & Decay & weakly \\
\hline \(\Xi(1530)\) & ) \(3 / 2+\) & **** & **** & & & & & \\
\hline \(\Xi(1620)\) & & * & * & & & & & \\
\hline \(\Xi(1690)\) & & *** & & *** & ** & & & \\
\hline \(\Xi(1820)\) & ) \(3 / 2-\) & *** & ** & *** & ** & ** & & \\
\hline \(\Xi(1950)\) & & *** & ** & ** & & * & & \\
\hline \(\Xi(2030)\) & & *** & & ** & *** & & & \\
\hline \(\Xi(2120)\) & & * & & * & & & & \\
\hline \(\Xi(2250)\) & & ** & & & & & 3 -body & y decays \\
\hline \(\Xi(2370)\) & & ** & & & & & 3 -body & \(y\) decays \\
\hline \(\Xi(2500)\) & & * & & * & * & & 3 -body & y decays \\
\hline \multicolumn{9}{|l|}{**** Existence is certain, and properties are at least fairly well explored.} \\
\hline *** & \multicolumn{8}{|l|}{Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.} \\
\hline ** E & \multicolumn{8}{|l|}{Evidence of existence is only fair.} \\
\hline * E & \multicolumn{8}{|l|}{Evidence of existence is poor.} \\
\hline
\end{tabular}

\section*{Reference}
1. B.T. Meadows, in Proceedings of the \(I V^{\text {th }}\) International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 283.

See key on page 999
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{三（1530）\({ }^{-}\)MASS} \\
\hline VALUE（MeV）EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(1535.0 \pm 0.6\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{1535．2 \(\mathbf{1 0 . 8}^{\mathbf{8}}\) OUR AVERAGE} \\
\hline \(1534.5 \pm 1.2\) & DEBELLEFON & 75B & HBC & \(K^{-} p \rightarrow \overline{-}^{-} \bar{K} \pi\) \\
\hline \(1535.3 \pm 2.0\) & ROSS & 73B & HBC & \(K^{-} p \rightarrow\) 三 \(\bar{K} \pi(\pi)\) \\
\hline \(1536.2 \pm 1.6\) & KIRSCH & 72 & HBC & \(K^{-}\)p \(2.87 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1535.7 \pm 3.238\) & LONDON & 66 & HBC & \(K^{-}\)p \(2.24 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(1540 \pm 3\) & BERTHON & 74 & HBC & Quasi－2－body \(\sigma\) \\
\hline \(1534.7 \pm 1.1\) & BALTAY & 72 & HBC & \(K^{-}\)p \(1.75 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{5}{|c|}{\(m_{\underline{\underline{(1530}}}{ }^{-}-m_{\underline{\underline{\underline{\prime}}} \mathbf{( 1 5 3 0 )}}\)} \\
\hline VALUE（MeV） & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(3.2 \pm 0.6\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{2．9 \(\pm 0.9\) OUR AVERAGE} \\
\hline \(2.7 \pm 1.0\) & BALTAY & 72 & HBC & \(K^{-}\)p \(1.75 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(2.0 \pm 3.2\) & MERRILL & 66 & HBC & \(K^{-}\)p 1．7－2．7 GeV／c \\
\hline \(5.7 \pm 3.0\) & PJERROU & 65B & HBC & \(K^{-}\)p 1．8－1．95 GeV／c \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－．} \\
\hline \(3.9 \pm 1.8\) & 2 KIRSCH & 72 & HBC & \(K^{-}\)p \(2.87 \mathrm{GeV} / c\) \\
\hline \(7 \pm 4\) & 2 LONDON & 66 & HBC & \(K^{-}\)p \(2.24 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{5}{|c|}{三（1530）WIDTHS} \\
\hline \multicolumn{5}{|l|}{三（1530）\({ }^{0}\) WIDTH} \\
\hline VALUE（MeV）EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{9．1 \(\pm 0.5\) OUR AVERAGE} \\
\hline \(9.5 \pm 1.2\) & DEBELLEFON & 75B & HBC & \(K^{-} p \rightarrow \overline{-}^{-} \bar{K} \pi\) \\
\hline \(9.1 \pm 2.4\) & ROSS & 73B & HBC & \(K^{-} p \rightarrow \equiv \bar{K} \pi(\pi)\) \\
\hline \(11 \pm 2\) & BADIER & 72 & HBC & \(K^{-}\)p \(3.95 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(9.0 \pm 0.7\) & BALTAY & 72 & HBC & \(K^{-}\)p \(1.75 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(8.4 \pm 1.4\) & BORENSTEIN & 72 & HBC & 三－\(\pi^{+}\) \\
\hline \(11.0 \pm 1.8\) & KIRSCH & 72 & HBC & \(\overline{-}^{-} \pi^{+}\) \\
\hline \(7 \pm 7\) & BERGE & 66 & HBC & \(K^{-}\)p 1．5－1．7 GeV／c \\
\hline \(8.5 \pm 3.5\) & LONDON & 66 & HBC & \(K^{-}\)p \(2.24 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(7 \pm 2\) & SCHLEIN & 63B & HBC & \(K^{-} p 1.8,1.95 \mathrm{GeV} / c\) \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－．－} \\
\hline \(12.8 \pm 1.02700\) & \({ }^{1}\) BAUBILLIER & 81B & HBC & \(K^{-}\)p \(8.25 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(19 \pm 6\) & \({ }^{3}\) SIXEL & 79 & HBC & \(K^{-}\)p \(10 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(14 \pm 5\) & \({ }^{3}\) SIXEL & 79 & HBC & \(K^{-} p 16 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{5}{|l|}{三（1530）\({ }^{-}\)WIDTH} \\
\hline VALUE（MeV） & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{9．9 \(=1.7\) 1．9 OUR AVERAGE} \\
\hline \(9.6 \pm 2.8\) & DEBELLEFON & 75B & HBC & \(K^{-} p \rightarrow \Xi^{-} \bar{K} \pi\) \\
\hline \(8.3 \pm 3.6\) & ROSS & 73B & HBC & \(K^{-} p \rightarrow\) 三 \(\bar{K} \pi(\pi)\) \\
\hline \(7.8{ }_{-7.8}^{+3.5}\) & BALTAY & 72 & HBC & \(K^{-}\)p \(1.75 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(16.2 \pm 4.6\) & KIRSCH & 72 & HBC & 三－\(\pi^{0}\) ，\(\equiv^{0} \pi^{-}\) \\
\hline
\end{tabular}


OMITTED FROM SUMMARY TABLE
What little evidence there is consists of weak signals in the \(\bar{\equiv} \pi\) channel．A number of other experiments（e．g．，BORENSTEIN 72 and HASSALL 81）have looked for but not seen any effect．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{三（1620）MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{₹ 1620 OUR ESTIMATE} \\
\hline \(1624 \pm 3\) & 31 & BRIEFEL & 77 & HBC & \(K^{-} p 2.87 \mathrm{GeV} / c\) \\
\hline \(1633 \pm 12\) & 34 & DEBELLEFON & & HBC & \(K^{-} p \rightarrow \Xi^{-} \bar{K} \pi\) \\
\hline \(1606 \pm 6\) & 29 & ROSS & 72 & HBC & \(K^{-}\)p 3．1－3．7 GeV／c \\
\hline \multicolumn{6}{|c|}{三（1620）WIDTH} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline 22.5 & 31 & \({ }^{1}\) BRIEFEL & 77 & HBC & \(K^{-} p 2.87 \mathrm{GeV} / c\) \\
\hline \(40 \pm 15\) & 34 & DEBELLEFON & 75B & HBC & \(K^{-} p \rightarrow \Xi^{-} \bar{K} \pi\) \\
\hline \(21 \pm 7\) & 29 & ROSS & 72 & HBC & \[
\begin{aligned}
& K^{-} p \rightarrow \\
& \quad \equiv{ }^{-}{ }^{*}+K^{* 0}(892)
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{E（1620）DECAY MODES}


三（1620）FOOTNOTES
\({ }^{1}\) The fit is insensitive to values between 15 and 30 MeV ．


AUBERT 08AK，in a study of \(\Lambda_{c}^{+} \rightarrow \bar{E}^{-} \pi^{+} K^{+}\)，finds some evi－ dence that the \(\equiv(1690)\) has \(J^{P}=1 / 2^{-}\)．

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged \(\Sigma \bar{K}\) mass spectra in \(K^{-} p \rightarrow(\Sigma \bar{K}) K \pi\) at 4.2 \(\mathrm{GeV} / c\) ．The data from the \(\Sigma \bar{K}\) channels alone cannot distinguish between a resonance and a large scattering length．Weaker evidence at the same mass is seen in the corresponding \(\Lambda \bar{K}\) channels，and a coupled－channel analysis yields results consistent with a new \(\overline{\text { E．}}\)
BIAGI 81 sees an enhancement at 1700 MeV in the diffractively produced \(\Lambda K^{-}\)system．A peak is also observed in the \(\Lambda \bar{K}^{0}\) mass spectrum at 1660 MeV that is consistent with a 1720 MeV resonance decaying to \(\Sigma^{0} \bar{K}^{0}\) ，with the \(\gamma\) from the \(\Sigma^{0}\) decay not detected．


\section*{\(\equiv(1690)\) MASSES}

MIXED CHARGES
DOCUMENT ID
\(1690 \pm 10\) OUR ESTIMATE This is only an educated guess；the error given is larger than the error on the average of the published values．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{三（1690）\({ }^{0}\) MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \(1686 \pm 4\) & 1400 & ADAMOVICH & 98 & WA89 & \[
\begin{gathered}
\Sigma^{-} \text {nucleus, } 345 \\
\mathrm{GeV} / \mathrm{c}
\end{gathered}
\] \\
\hline \(1699 \pm 5\) & 175 & \({ }^{1}\) DIONISI & 78 & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline \(1684 \pm 5\) & 183 & 2 DIONISI & 78 & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline \multicolumn{6}{|l|}{三（1690）\({ }^{-}\)MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \(1691.1 \pm 1.9 \pm 2.0\) & 104 & BIAGI & 87 & SPEC & \(\Xi^{-} \mathrm{Be} 116 \mathrm{GeV}\) \\
\hline \(1700 \pm 10\) & 150 & \({ }^{3}\) BIAGI & 81 & SPEC & 三－H 100， 135 GeV \\
\hline \(1694 \pm 6\) & 45 & 4 DIONISI & 78 & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline
\end{tabular}

\section*{E（1690）WIDTHS}

MIXED CHARGES
\begin{tabular}{l} 
VALUE（MeV） \\
\(\angle 30\) OUR ESTIMATE \\
\hline\((1690)^{0}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 三（1690）\({ }^{0}\) WIDTH Value（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(10 \pm 6\) & 1400 & ADAMOVICH & 98 & WA89 & \[
\begin{gathered}
\Sigma^{-} \text {nucleus, } 345 \\
\mathrm{GeV} / c
\end{gathered}
\] \\
\hline \(44 \pm 23\) & 175 & \({ }^{1}\) DIONISI & 78 & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline \(20 \pm 4\) & 183 & 2 DIONISI & 78 & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline \multicolumn{6}{|l|}{三（1690）\({ }^{-}\)WIDTH} \\
\hline \(\underline{V A L U E ~(M e V) ~ C L \% ~}\) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline ＜ 8 90 & 104 & BIAGI & 87 & SPEC & \(\Xi^{-} \mathrm{Be} 116 \mathrm{GeV}\) \\
\hline \(47 \pm 14\) & 150 & \({ }^{3} \mathrm{BIAGI}\) & 81 & SPEC & 三－H 100， 135 GeV \\
\hline \(26 \pm 6\) & 45 & \({ }^{4}\) DIONISI & 78 & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline
\end{tabular}

\section*{E（1690）DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda \bar{K}\) & seen \\
\(\Gamma_{2}\) & \(\Sigma \bar{K}\) & seen \\
\(\Gamma_{3}\) & 三 \(\pi\) & seen \\
\(\Gamma_{4}\) & \(\bar{\Xi}^{-} \pi^{+} \pi^{0}\) & \\
\(\Gamma_{5}\) & \(\bar{\Xi}^{-} \pi^{+} \pi^{-}\) & possibly seen \\
\(\Gamma_{6}\) & \(\overline{\text { 三 }}(1530) \pi\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{E（1690）BRANCHING RATIOS} \\
\hline \[
\Gamma(\Lambda \bar{K}) / \Gamma_{\text {total }}
\] & \multicolumn{2}{|l|}{document id} & TECN & \multicolumn{2}{|l|}{CHG COMMENT} & \(\Gamma_{1} / \overline{ }\) \\
\hline seen 104 & BIAGI & 87 & SPEC & － & 三－Be 116 & eV \\
\hline \(\Gamma(\Sigma \bar{K}) / \Gamma(\Lambda \bar{K})\) & & & & & & \(\Gamma_{2} / \Gamma_{1}\) \\
\hline VALUE EVETS & DOCUMENT ID & & TECN & \(\underline{C H G}\) & COMMENT & \\
\hline \(0.75 \pm 0.39\)－ 75 & ABE & 02 C & BELL & & \(e^{+} e^{-} \approx\) & \(r(4)^{\prime}\) \\
\hline \(2.7 \pm 0.9\) & DIONISI & 78 & HBC & 0 & \(K^{-} p 4.2\) & GeV／c \\
\hline \(3.1 \pm 1.4\) & dionisl & 78 & нвС & － & \(K^{-} \mathrm{p} 4.2\) & GeV／c \\
\hline \(\Gamma(\equiv \pi) / \Gamma(\Sigma \bar{K})\) & & & & & & \(\Gamma_{3} / \Gamma_{2}\) \\
\hline VALUE & DOCUMENT ID & & TEC & \(\underline{C H G}\) & COMMEN & \\
\hline ＜0．09 & DIONISI & 78 & HBC & 0 & \(K^{-} 4.2\) & Gev／c \\
\hline \(\Gamma(\equiv \pi) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{3} / \overline{ }\) \\
\hline value & DOCUMENT ID & & TECN & соми & ENT & \\
\hline seen & ADAMOVICH & 98 & WA89 & \[
\overline{\Sigma^{-}}
\] & \[
\text { ucleus, } 345
\]
\[
\mathrm{V} / \mathrm{c}
\] & \\
\hline \(\Gamma\left(\Xi^{-} \pi^{+} \pi^{0}\right) / \Gamma(\Sigma \bar{K})\) & & & & & & \(\Gamma_{4} / \Gamma_{2}\) \\
\hline VALUE & DOCUMENT ID & & TECN & \(\underline{C H G}\) & comment & \\
\hline ＜0．04 & DIONISI & 78 & HBC & 0 & \(K^{-}{ }^{-1} 2\) & Gev／c \\
\hline \(\Gamma\left(\bar{E}^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{5} / \overline{ }\) \\
\hline VALUE EVTS & DOCUMENT id & & TECN & CHG & Comment & \\
\hline possibly seen & BIAGI & 87 & SPEC & & \(\equiv-\) Be 116 & GeV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\Gamma\left(\bar{\Xi}_{V A L E}^{-} \pi^{+} \pi^{-}\right) / \Gamma(\Sigma \bar{K})
\] & \multicolumn{2}{|l|}{DOCuMENT ID} & \multirow[b]{2}{*}{\[
\frac{\text { TECN }}{\text { HBC }}
\]} & & \multicolumn{2}{|r|}{\(\Gamma_{5} / \Gamma_{2}\)} \\
\hline \(<0.03\) & DIONISI & 78 & & & \(K^{-}\)－ 4.2 & GeV／c \\
\hline \[
\underset{\text { VALUE }}{\Gamma(\equiv(1530) \pi) / \Gamma(\Sigma \bar{K})}
\] & DOCUMEN & & TECN & CHG & COMMENT & \(\Gamma_{6} / \Gamma_{2}\) \\
\hline \(<0.06\) & DIONISI & 78 & HBC & － & \(K^{-}{ }^{-1.2}\) & \(2 \mathrm{GeV} / \mathrm{c}\) \\
\hline
\end{tabular}

\section*{三（1690）FOOTNOTES}
\({ }^{1}\) From a fit to the \(\Sigma^{+} K^{-}\)spectrum．
\({ }^{2}\) From a coupled－channel analysis of the \(\Sigma^{+} K^{-}\)and \(\Lambda \bar{K}^{0}\) spectra．
\({ }^{3}\) A fit to the inclusive spectrum from \(\Xi^{-} N \rightarrow \wedge K^{-} \mathrm{X}\) ．
\({ }^{4}\) From a coupled－channel analysis of the \(\Sigma^{0} K^{-}\)and \(\Lambda K^{-}\)spectra．
三（1690）REFERENCES


\section*{三（1820）MASS}

We only average the measurements that appear to us to be most significant and best determined．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \multicolumn{7}{|l|}{\(1823 \pm 5\) OUR ESTIMATE} \\
\hline \multicolumn{7}{|l|}{1823．5 \(\pm\) 1．4 OUR AVERAGE} \\
\hline \(1825.5 \pm 4.7 \pm 4.7\) & 288 & ABLIKIM & 20C & BES3 & － & \[
\begin{aligned}
& e^{+} e_{\overline{-}}^{(1820)^{-}}-\bar{\Xi}+ \\
& \hline
\end{aligned}
\] \\
\hline \(1819.4 \pm 3.1 \pm 2.0\) & 280 & \({ }^{1}\) BIAGI & 87 & SPEC & 0 & \(\Xi^{-} \mathrm{Be} \rightarrow\left(\wedge K^{-}\right) \mathrm{X}\) \\
\hline \(1826 \pm 3 \pm 1\) & 54 & BIAGI & 87C & SPEC & 0 & 三－ \(\mathrm{Be} \rightarrow\left(\Lambda \bar{K}^{0}\right) \mathrm{X}\) \\
\hline \(1822 \pm 6\) & & JENKINS & 83 & MPS & － & \(K^{-} p \rightarrow K^{+}(\mathrm{MM})\) \\
\hline \(1830 \pm 6\) & 300 & BIAGI & 81 & SPEC & － & SPS hyperon beam \\
\hline \(1823 \pm 2\) & 130 & GAY & 76C & HBC & － & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline \multicolumn{7}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(1817 \pm 3\) & & ADAMOVICH & 99B & WA89 & & \(\Sigma^{-}\)nucleus， 345 GeV \\
\hline \(1797 \pm 19\) & 74 & BRIEFEL & 77 & HBC & 0 & \(K^{-}\)p \(2.87 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1829 \pm 9\) & 68 & BRIEFEL & 77 & HBC & －0 & 三（1530）\(\pi\) \\
\hline \(1860 \pm 14\) & 39 & BRIEFEL & 77 & HBC & － & \(\Sigma^{-} \bar{K}^{0}\) \\
\hline \(1870 \pm 9\) & 44 & BRIEFEL & 77 & HBC & 0 & \(\wedge \bar{K}^{0}\) \\
\hline \(1813 \pm 4\) & 57 & BRIEFEL & 77 & HBC & － & ヘK \\
\hline \(1807 \pm 27\) & & DIBIANCA & 75 & DBC & －0 & 三 \(\pi \pi\) ， \＃\(^{*} \pi\) \\
\hline \(1762 \pm 8\) & 28 & \({ }^{2}\) BADIER & 72 & HBC & －0 & 三 \(\pi\) ，三 \(\pi \pi, Y K\) \\
\hline \(1838 \pm 5\) & 38 & \({ }^{2}\) BADIER & 72 & HBC & －0 & 三 \(\pi\) ，三 \(\pi \pi, Y \mathrm{~K}\) \\
\hline \(1830 \pm 10\) & 25 & \({ }^{3}\) CRENNELL & 70B & DBC & －0 & \(3.6,3.9 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1826 \pm 12\) & & \({ }^{4}\) CRENNELL & 70B & DBC & －0 & \(3.6,3.9 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(1830 \pm 10\) & 40 & ALITTI & 69 & HBC & － & 1，\(\Sigma \bar{K}\) \\
\hline \(1814 \pm 4\) & 30 & BADIER & 65 & HBC & 0 & \(\wedge \bar{K}^{0}\) \\
\hline \(1817 \pm 7\) & 29 & SMITH & 65C & HBC & －0 & \(\Lambda \bar{K}^{0}, \Lambda K^{-}\) \\
\hline 1770 & & HALSTEINSLI & D63 & FBC & －0 & \(K^{-}\)freon \(3.5 \mathrm{GeV} / \mathrm{C}\) \\
\hline
\end{tabular}

\section*{E（1820）WIDTH}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(24 \begin{array}{r}+15 \\ -10\end{array}\) OUR & OUR ESTIMATE & & & & & \\
\hline \(24 \pm 5\) OUR & AVERAGE & Error includes & ale fa & ctor of & ．3．S & the ideogram below． \\
\hline \(17.0 \pm 15.0 \pm 7.9\) & 288 & ABLIKIM & 20C & BES3 & & \[
\begin{aligned}
& e^{+} e_{\bar{E}}^{(1820)}-\bar{\Xi}+ \\
& \hline
\end{aligned}
\] \\
\hline \(24.6 \pm 5.3\) & 280 & \({ }^{1} \mathrm{BIAGI}\) & 87 & SPEC & 0 & \(\Xi^{-} \mathrm{Be} \rightarrow\left(\wedge \mathrm{K}^{-}\right) \mathrm{X}\) \\
\hline \(12 \pm 14 \pm 1.7\) & 54 & BIAGI & 87C & SPEC & 0 & \(\Xi^{-} \mathrm{Be} \rightarrow\left(\Lambda \bar{K}^{0}\right) \mathrm{X}\) \\
\hline \(72 \pm 20\) & 300 & BIAGI & 81 & SPEC & － & SPS hyperon beam \\
\hline \(21 \pm 7\) & 130 & GAY & 76C & HBC & － & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline
\end{tabular}
－－We do not use the following data for averages，fits，limits，etc．－－－
\begin{tabular}{llllllll}
23 & \(\pm 13\) & & ADAMOVICH & 99 B & WA89 & & \(\Sigma^{-}\)nucleus， 345 GeV \\
99 & \(\pm 57\) & 74 & BRIEFEL & 77 & HBC & 0 & \(K^{-} p 2.87 \mathrm{GeV} / \mathrm{c}\) \\
52 & \(\pm 34\) & 68 & BRIEFEL & 77 & HBC & -0 & \(\equiv(1530) \pi\) \\
72 & \(\pm 17\) & 39 & BRIEFEL & 77 & HBC & - & \(\Sigma^{-} \bar{K}^{0}\) \\
44 & \(\pm 11\) & 44 & BRIEFEL & 77 & HBC & 0 & \(\Lambda \bar{K}^{0}\) \\
26 & \(\pm 11\) & 57 & BRIEFEL & 77 & HBC & - & \(\Lambda K^{-}\) \\
85 & \(\pm 58\) & & DIBIANCA & 75 & DBC & -0 & \(\equiv \pi \pi, \Xi^{*} \pi\) \\
51 & \(\pm 13\) & & BADIER & 72 & HBC & -0 & Lower mass
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 58 & \(\pm 13\) & 2 BADIER & 72 & HBC & －0 & Higher mass \\
\hline 103 & \[
\begin{array}{r}
+38 \\
-24
\end{array}
\] & \({ }^{3}\) CRENNELL & 70B & DBC & －0 & \(3.6,3.9 \mathrm{GeV} / \mathrm{c}\) \\
\hline 48 & \[
\begin{array}{r}
+36 \\
-19
\end{array}
\] & \({ }^{4}\) CRENNELL & 70B & DBC & －0 & \(3.6,3.9 \mathrm{GeV} / \mathrm{c}\) \\
\hline 55 & \[
\begin{array}{r}
+40 \\
-20
\end{array}
\] & ALITTI & 69 & HBC & － & ＾，\(\Sigma \bar{K}\) \\
\hline & \(\pm 4\) & BADIER & 65 & HBC & 0 & \(\wedge \bar{K}^{0}\) \\
\hline & \(\pm 7\) & SMITH & 65B & HBC & －0 & \(\Lambda \bar{K}\) \\
\hline ＜80 & & HALSTEINS & & FBC & －0 & \(K^{-}\)freon \(3.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline
\end{tabular}


三（1820）DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda \bar{K}\) & large \\
\(\Gamma_{2}\) & \(\Sigma \bar{K}\) & small \\
\(\Gamma_{3}\) & \(\equiv \pi\) & small \\
\(\Gamma_{4}\) & \(\equiv(1530) \pi\) & small \\
\(\Gamma_{5}\) & \(\equiv \pi \pi(\operatorname{not} \equiv(1530) \pi)\) & \\
\hline
\end{tabular}

三（1820）BRANCHING RATIOS
The dominant modes seem to be \(\Lambda \bar{K}\) and（perhaps）\(\equiv(1530) \pi\) ，but the branching fractions are very poorly determined．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\Gamma(\Lambda \bar{K}) / \Gamma_{\text {total }}\)（ \(\Gamma_{1} / \Gamma\)} \\
\hline VALUE & DOCUMENT ID & & TECN & CHG & COMMENT \\
\hline \multicolumn{6}{|l|}{\(\mathbf{0 . 2 5} \pm 0.05\) OUR AVERAGE} \\
\hline \(0.24 \pm 0.05\) & ANISOVICH & 12A & DPWA & & Multichannel \\
\hline \(0.30 \pm 0.15\) & ALITTI & 69 & HBC & － & \(K^{-}\)p 3．9－5 GeV／c \\
\hline \(\Gamma(三 \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(0.10 \pm 0.10\) & ALITTI & 69 & HBC & － & \(K^{-}\)p 3．9－5 GeV／c \\
\hline \(\Gamma(三 \pi) / \Gamma(\Lambda \bar{K})\) & & & & & \(\Gamma_{3} / \Gamma_{1}\) \\
\hline VALUE CL\％ & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(<0.36\) & GAY & 76 C & C HBC & － & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline \(0.20 \pm 0.20\) & BADIER & 65 & HBC & 0 & \(K^{-}\)p \(3 \mathrm{GeV} / c\) \\
\hline \(\Gamma(\) 三 \(\pi) / \Gamma(\) 三（1530）\(\pi)\) & & & & & \(\Gamma_{3} / \Gamma_{4}\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(1.5{ }_{-0.4}^{+0.6}\) & APSELL & 70 & HBC & 0 & \(K^{-} p 2.87 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(\Gamma(\Sigma \bar{K}) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(0.30 \pm 0.15\) & ALITTI & 69 & HBC & － & \(K^{-}\)p 3．9－5 GeV／c \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(<0.02\) & TRIPP & 67 & RVUE & \multicolumn{2}{|r|}{Use SMITH 65c} \\
\hline \(\Gamma(\Sigma \bar{K}) / \Gamma(\Lambda \bar{K})\) & & & & & \(\Gamma_{2} / \Gamma_{1}\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(0.24 \pm 0.10\) & GAY & 76 C & HBC & － & \(K^{-}{ }^{-} 4.2 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(\Gamma(三(1530) \pi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{4} / \Gamma\) \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & CHG & COMMENT \\
\hline \(0.30 \pm 0.15\) & ALITTI & 69 & HBC & － & \(K^{-}\)p 3．9－5 GeV／c \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline seen & ASTON & 85B & LASS & & \(K^{-}\)p \(11 \mathrm{GeV} / c\) \\
\hline not seen & \({ }^{5}\) HASSALL & 81 & HBC & & \(K^{-} p 6.5 \mathrm{GeV} / c\) \\
\hline \(<0.25\) & \({ }^{6}\) DAUBER & 69 & HBC & & \(K^{-}\)p \(2.7 \mathrm{GeV} / c\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma(三(1530) \pi) / \Gamma(\Lambda \bar{K})\) & & & \(\Gamma_{4} / \Gamma_{1}\) \\
\hline VALUE & DOCUMENT ID & TECN CHG & COMMENT \\
\hline \multicolumn{4}{|l|}{\(\mathbf{0 . 3 8} \mathbf{\pm 0 . 2 7}\) OUR AVERAGE Error includes scale factor of 2．3．} \\
\hline \(1.0 \pm 0.3\) & GAY 76C & HBC & \(K^{-}\)p \(4.2 \mathrm{GeV} / c\) \\
\hline \(0.26 \pm 0.13\) & SMITH 65C & HBC -0 & \(K^{-}\)p 2．45－2．7 GeV／c \\
\hline \multicolumn{2}{|l|}{\(\Gamma(三 \pi \pi(\) not \(三(1530) \pi)) / \Gamma(\Lambda \bar{K})\)} & & \(\Gamma_{5} / \Gamma_{1}\) \\
\hline VALUE & DOCUMENT ID & TECN CHG & COMMENT \\
\hline \(0.30 \pm 0.20\) & BIAGI 87 & SPEC－ & 三－Be 116 GeV \\
\hline －－We do not use the f & owing data for average & s，fits，limits， & － \\
\hline \(<0.14\) & 7 BADIER 65 & HBC 0 & 1 st ．dev．limit \\
\hline \(>0.1\) & SMITH 65C & HBC -0 & \(K^{-}\)p \(2.45-2.7 \mathrm{GeV} / \mathrm{c}\) \\
\hline
\end{tabular}
\(\Gamma(\) 三 \(\pi \pi(\) not \(三(1530) \pi)) / \Gamma(三(1530) \pi)\)
\(\Gamma_{5} / \Gamma_{4}\)
consistent with zero \(\quad \frac{\text { DOCUMENT ID }}{\text { GAY }} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { CHG }}{-} \frac{\text { COMMENT }}{K_{-}^{-}-p 4.2 \mathrm{GeV} / c}\)
－－We do not use the following data for averages，fits，limits，etc．－－－
\(0.3 \pm 0.5 \quad{ }^{8}\) APSELL \(70 \quad \mathrm{HBC} \quad 0 \quad K^{-} p 2.87 \mathrm{GeV} / c\)

\section*{三（1820）FOOTNOTES}
\({ }^{1}\) BIAGI 87 also sees weak signals in the in the \(\bar{\Xi}^{-} \pi^{+} \pi^{-}\)channel at \(1782.6 \pm 1.4 \mathrm{MeV}\) \((\Gamma=6.0 \pm 1.5 \mathrm{MeV})\) and \(1831.9 \pm 2.8 \mathrm{MeV}(\Gamma=9.6 \pm 9.9 \mathrm{MeV})\) ．
\({ }^{2}\) BADIER 72 adds all channels and divides the peak into lower and higher mass regions． The data can also be fitted with a single Breit－Wigner of mass 1800 MeV and width 150 MeV ．
\({ }^{3}\) From a fit to inclusive \(\equiv \pi\) ，\(\Xi \pi \pi\) ，and \(\wedge K^{-}\)spectra．
\({ }^{4}\) From a fit to inclusive \(\equiv \pi\) and \(\equiv \pi \pi\) spectra only．
\({ }^{5}\) Including \(\equiv \pi \pi\) ．
\({ }^{6}\) DAUBER 69 uses in part the same data as SMITH 65C．
\({ }^{7}\) For the decay mode \(\Xi^{-} \pi^{+} \pi^{0}\) only．This limit includes \(\Xi(1530) \pi\) ．
\({ }^{8}\) Or less．Upper limit for the 3－body decay．
三（1820）REFERENCES


We list here everything reported between 1875 and 2000 MeV ．The accumulated evidence for a 三 near 1950 MeV seems strong enough to include a \(\equiv(1950)\) in the main Baryon Table，but not much can be said about its properties．In fact，there may be more than one \(\overline{ }\) near this mass．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{三（1950）MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(1950 \pm 15\) OUR ESTIMATE} \\
\hline \(1955 \pm 6\) & & ADAMOVICH & 99B & WA89 & \(\Sigma^{-}\)nucleus， 345 GeV \\
\hline \(1944 \pm 9\) & 129 & BIAGI & 87 & SPEC & \[
\left.\Xi^{-} \underset{(\Xi-}{\Xi^{-}} \pi^{+}\right) \pi^{-} \times
\] \\
\hline \(1963 \pm 5 \pm 2\) & 63 & BIAGI & 87C & SPEC & \(\Xi^{-} \mathrm{Be} \rightarrow\left(\Lambda \bar{K}^{0}\right) \mathrm{X}\) \\
\hline 1937 \(\pm 7\) & 150 & BIAGI & 81 & SPEC & SPS hyperon beam \\
\hline \(1961 \pm 18\) & 139 & BRIEFEL & 77 & HBC & \[
\begin{gathered}
2.87 K^{-} p \rightarrow \\
\equiv^{-} \pi^{+} \mathrm{X}
\end{gathered}
\] \\
\hline \(1936 \pm 22\) & 44 & BRIEFEL & 77 & HBC & \(2.87 K^{-} p \rightarrow \Xi^{0} \pi^{-} \times\) \\
\hline \(1964 \pm 10\) & 56 & BRIEFEL & 77 & HBC & 三（1530）\(\pi\) \\
\hline \(1900 \pm 12\) & & DIBIANCA & 75 & DBC & 三 \(\pi\) \\
\hline \(1952 \pm 11\) & 25 & ROSS & 73C & & （三 \(\pi)^{-}\) \\
\hline \(1956 \pm 6\) & 29 & BADIER & 72 & HBC & 三 \(\pi\) ，三 \(\pi \pi, Y \mathrm{Y}\) \\
\hline \(1955 \pm 14\) & 21 & GOLDWASSER & & HBC & 三 \(\pi\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(1894 \pm 18\) & 66 & DAUBER & 69 & HBC & 三 \(\pi\) \\
\hline \(1930 \pm 20\) & 27 & ALITTI & 68 & HBC & \(\Xi^{-} \pi^{+}\) \\
\hline \multirow[t]{2}{*}{\(1933 \pm 16\)} & 35 & BADIER & 65 & HBC & \(\Xi^{-} \pi^{+}\) \\
\hline & \multicolumn{4}{|c|}{三（1950）WIDTH} & \\
\hline Value（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{60 \(\pm 20\) OUR ESTIMATE} \\
\hline \(68 \pm 22\) & & ADAMOVICH & 99b & WA89 & \(\Sigma^{-}\)nucleus， 345 GeV \\
\hline \(100 \pm 31\) & 129 & BIAGI & 87 & SPEC & \[
\left.\equiv_{(\equiv-}^{-} \mathrm{Be} \vec{\pi}^{+}\right) \pi^{-} \mathrm{X}
\] \\
\hline \(25 \pm 15 \pm 1.2\) & 63 & BIAGI & 87 C & SPEC & \(\Xi^{-} \mathrm{Be} \rightarrow\left(\wedge \bar{K}^{0}\right) \mathrm{X}\) \\
\hline \(60 \pm 8\) & 150 & BIAGI & 81 & SPEC & SPS hyperon beam \\
\hline \(159 \pm 57\) & 139 & BRIEFEL & 77 & HBC & \[
\begin{aligned}
2.87 k^{-} p \rightarrow \\
=-\pi^{+}
\end{aligned}
\] \\
\hline \(87 \pm 26\) & 44 & BRIEFEL & 77 & HBC & \(2.87 K^{-} p \rightarrow \Xi^{0} \pi^{-} \mathrm{X}\) \\
\hline \(60 \pm 39\) & 56 & BRIEFEL & 77 & HBC & \(\equiv(1530) \pi\) \\
\hline \(63 \pm 78\) & & DIBIANCA & 75 & DBC & \(\equiv \pi\) \\
\hline \(38 \pm 10\) & & Ross & 73C & & \((\equiv \pi)^{-}\) \\
\hline \(35 \pm 11\) & 29 & BADIER & 72 & HBC & \(\equiv \pi, \equiv \pi \pi, Y K\) \\
\hline \(56 \pm 26\) & 21 & GOLDWASSER & & HBC & 三 \(\pi\) \\
\hline \(98 \pm 23\) & 66 & DAUBER & 69 & HBC & \(\equiv \pi\) \\
\hline \(80 \pm 40\) & 27 & ALITTI & 68 & HBC & \(\Xi^{-} \pi^{+}\) \\
\hline \(140 \pm 35\) & 35 & BADIER & 65 & HBC & \(\Xi^{-} \pi^{+}\) \\
\hline
\end{tabular}

\section*{E（1950）DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda \bar{K}\) & seen \\
\(\Gamma_{2}\) & \(\Sigma \bar{K}\) & possibly seen \\
\(\Gamma_{3}\) & \(\equiv \pi\) & seen \\
\(\Gamma_{4}\) & 三 \((1530) \pi\) & \\
\(\Gamma_{5}\) & 三 \(\pi \pi(\) not \(\Xi(1530) \pi)\) & \\
\hline
\end{tabular}

三（1950）BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma(\Sigma \bar{K}) / \Gamma(\Lambda \bar{K})\)} & \multirow[t]{2}{*}{\(\Gamma_{2} / \Gamma_{1}\)} \\
\hline VALUE CL\％EVTS & DOCUMENT & & TECN & COMMENT & \\
\hline \(<2.3\) 90 0 & BIAGI & 87C & SPEC & \(\Xi^{-} \mathrm{Be} 116 \mathrm{GeV}\) & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\Sigma \bar{K}) / \Gamma_{\text {total }}\)} & \(\Gamma_{2} / \Gamma\) \\
\hline VALUE EVTS & DOCUMENT & & TECN & COMMENT & \\
\hline possibly seen 17 & HASSALL & 81 & HBC & \(K^{-}\)p \(6.5 \mathrm{GeV} / c\) & \\
\hline \multicolumn{3}{|l|}{\(\Gamma(\) 三 \(\pi) / \Gamma(\) 三 \((1530) \pi)\)} & & & \(\Gamma_{3} / \Gamma_{4}\) \\
\hline \multicolumn{3}{|l|}{VALUE DOCUMENT ID} & TECN & & \\
\hline \(2.8{ }_{-0.6}^{+0.7}\) & APSELL & 70 & HBC & & \\
\hline \multicolumn{5}{|l|}{\(\Gamma(\) 三 \(\pi \pi(\) not 三 \((1530) \pi)) / \Gamma(\) 三（1530）\(\pi)\)} & \(\Gamma_{5} / \Gamma_{4}\) \\
\hline VALUE & DOCUMENT & & TECN & & \\
\hline \(0.0 \pm 0.3\) & APSELL & 70 & HBC & & \\
\hline
\end{tabular}

三（1950）REFERENCES


The evidence for this state has been much improved by HEMING－ WAY 77，who see an eight standard deviation enhancement in \(\Sigma \bar{K}\) and a weaker coupling to \(\Lambda \bar{K}\) ．ALITTI 68 and HEMINGWAY 77 observe no signals in the \(\equiv \pi \pi\)（or \(\equiv(1530) \pi\) ）channel，in contrast to DIBIANCA 75．The decay \((\Lambda / \Sigma) \bar{K} \pi\) reported by BARTSCH 69 is also not confirmed by HEMINGWAY 77.

A moments analysis of the HEMINGWAY 77 data indicates at a level of three standard deviations that \(J \geq 5 / 2\) ．


三（2030）DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda \bar{K}\) & \(\sim 20 \%\) \\
\(\Gamma_{2}\) & \(\Sigma \bar{K}\) & \(\sim 80 \%\) \\
\(\Gamma_{3}\) & \(\equiv \pi\) & small \\
\(\Gamma_{4}\) & \(\equiv(1530) \pi\) & small \\
\(\Gamma_{5}\) & \(\equiv \pi \pi(\) not \(\bar{K}(1530) \pi)\) & small \\
\(\Gamma_{6}\) & \(\Lambda \bar{K} \pi\) & small \\
\(\Gamma_{7}\) & \(\Sigma \bar{K} \pi\) & small \\
\hline
\end{tabular}

\section*{三（2030）BRANCHING RATIOS}
 \(\frac{\text { VALUE }}{0.22 \pm 0.09} \quad \frac{\text { DOCUMENT ID }}{\text { HEMINGWAY } 77} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { CHG }}{-} \frac{\text { COMMENT }}{K^{-} p 4.2 \mathrm{GeV} / c}\)

\(0.75 \pm 0.20 \quad\) ALITTI \(69 \mathrm{HBC}-\quad\)\begin{tabular}{c}
\(\left.K^{-} \begin{array}{c}p 3.9-5 \\
\mathrm{GeV} / c\end{array}\right)\)
\end{tabular}
\(\Gamma(三(1530) \pi) /[\Gamma(\Lambda \bar{K})+\Gamma(\Sigma \bar{K})+\Gamma(\) 三 \(\pi)+\Gamma(三(1530) \pi)]\) \(\Gamma_{4} /\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}\right)\)

\[
[\Gamma(\equiv(1530) \pi)+\Gamma(\equiv \pi \pi(\text { not } \equiv(1530) \pi))] / \Gamma(\Sigma \bar{K}) \quad\left(\Gamma_{4}+\Gamma_{5}\right) / \Gamma_{2}
\]
\[
\begin{array}{llll}
\text { VALUE } & \frac{C L \%}{90} & 1 \frac{\text { DOCUMENT ID }}{\text { HEMINGWAY } 77} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { CHG }}{-} \frac{\text { COMMENT }}{K^{-} p 4.2 \mathrm{GeV} / c}
\end{array}
\]
\[
\Gamma(\Lambda \overline{\bar{K}} \pi) / \Gamma_{\text {total }}
\]
－－We do not use the following data for averages，fits，limits，etc．－－


三（2030）FOOTNOTES
\({ }^{1}\) For the decay mode \(\Xi^{-} \pi^{+} \pi^{-}\)only．
\({ }^{2}\) For the decay mode \(\Sigma^{ \pm} K^{-} \pi^{\mp}\) only．

\section*{三（2030）REFERENCES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline JENKINS & 83 & PRL 51951 & & C．M．Jenkins et al． & \multicolumn{2}{|l|}{（FSU，BRAN，LBL＋）} \\
\hline HEMINGWAY & 77 & PL 68B 197 & & R．J．Hemingway et al．（A & （AMST， & CERN，NIJM＋）IJ \\
\hline Also & & PL 62B 477 & & J．B．Gay et al． & （AMST & ，CERN，NIJM） \\
\hline DIBIANCA & 75 & NP B98 137 & & F．A．Dibianca，R．J．Endorf & & （CMU） \\
\hline ROSS & 73C & Purdue Conf． & 345 & R．T．Ross，J．L．Lloyd，D．Radojicic & & （OXF） \\
\hline ALITTI & 69 & PRL 2279 & & J．Alitti et al． & & （BNL，SYRA）I \\
\hline BARTSCH & 69 & PL 28B 439 & & J．Bartsch et al．（A & （AACH， & BERL，CERN＋） \\
\hline ALITTI & 68 & PRL 21119 & & J．Alitti et al． & & （BNL，SYRA） \\
\hline
\end{tabular}

OMITTED FROM SUMMARY TABLE

\section*{三（2120）MASS}
\begin{tabular}{llllll} 
OMITTED FROM SUMMARY TABLE \\
& 三（2120）MASS \\
& & & \\
\hline
\end{tabular}

E（2120）WIDTH
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(<20\) & 18 & \({ }^{1}\) CHLIAPNIK．．． & 79 & HBC & \(K^{+}{ }^{+} 32 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(25 \pm 12\) & & 2 GAY & 76C & HBC & \(K^{-} p 4.2 \mathrm{GeV} / c\) \\
\hline
\end{tabular}

E（2120）DECAY MODES


\section*{三（2120）FOOTNOTES}
\({ }^{1}\) CHLIAPNIKOV 79 does not uniquely identify the \(K^{+}\)in the（ \(\bar{\Lambda} K^{+}\)） X final state．It also reports bumps with fewer events at 2240，2540，and 2830 MeV ．
\({ }^{2}\) GAY 76C sees a 4－standard deviation signal．However，HEMINGWAY 77，with more events from the same experiment points out that the signal is greatly reduced if a cut is made on the 4 －momentum \(u\) ．This suggests an anomalous production mechanism if the \(\equiv(2120)\) is real．


OMITTED FROM SUMMARY TABLE
The evidence for this state is mixed．BARTSCH 69 sees a bump of not much statistical significance in \(\Lambda \bar{K} \pi, \Sigma \bar{K} \pi\) ，and \(\equiv \pi \pi\) mass spectra．GOLDWASSER 70 sees a narrower bump in \(\equiv \pi \pi\) at a higher mass．Not seen by HASSALL 81 with 45 events \(/ \mu\) b at 6.5 GeV／c．Seen by JENKINS 83．Perhaps seen by BIAGI 87.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ㅍ（2250）MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT & & TECN & \(\underline{C H G}\) & COMMENT \\
\hline \multicolumn{7}{|l|}{₹ 2250 OUR ESTIMATE} \\
\hline \(2189 \pm 7\) & 66 & BIAGI & 87 & SPEC & － & \[
\begin{aligned}
& \left.\Xi^{-} \underset{\times}{(\equiv-} \pi^{-} \pi^{+} \pi^{-}\right)
\end{aligned}
\] \\
\hline \(2214 \pm 5\) & & JENKINS & 83 & MPS & － & \[
\underset{M M}{K^{-} p} \rightarrow K^{+}
\] \\
\hline \(2295 \pm 15\) & 18 & GOLDWASS & & HBC & － & \(K^{-}\)p \(5.5 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(2244 \pm 52\) & 35 & BARTSCH & 69 & HBC & & \(K^{-}\)p \(10 \mathrm{GeV} / \mathrm{c}\) \\
\hline \multicolumn{7}{|c|}{三（2250）WIDTH} \\
\hline VALUE（MeV） & EVTS & DOCUMENT & & TECN & \(\underline{C H G}\) & COMMENT \\
\hline \(46 \pm 27\) & 66 & BIAGI & 87 & SPEC & － &  \\
\hline ＜ 30 & & GOLDWASS & & HBC & － & \(K^{-}\)p \(5.5 \mathrm{GeV} / c\) \\
\hline \(130 \pm 80\) & & BARTSCH & 69 & HBC & & \\
\hline
\end{tabular}

E（2250）DECAY MODES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Mode} \\
\hline \multicolumn{5}{|l|}{\(\Gamma_{1}\) 三 \(\pi \pi\)} \\
\hline \multicolumn{5}{|l|}{\(\Gamma 2 \wedge \bar{K} \pi\)} \\
\hline \multicolumn{5}{|l|}{「3 \(\Sigma \bar{K} \pi\)} \\
\hline \multicolumn{5}{|c|}{三（2250）REFERENCES} \\
\hline BIAGI & 87 & ZPHY C34 15 & S．F．Biagi et al． & （BRIS，CERN，GEVA＋） \\
\hline JENKINS & 83 & PRL 51951 & C．M．Jenkins et al． & （FSU，BRAN，LBL＋） \\
\hline HASSALL & 81 & NP B189 397 & J．K．Hassall et al． & （CAVE，MSU） \\
\hline GOLDWASSER 7 & 70 & PR D1 1960 & E．L．Goldwasser，P．F．Schultz & （ILL） \\
\hline BARTSCH & 69 & PL 28B 439 & J．Bartsch et al． & （AACH，BERL，CERN＋） \\
\hline
\end{tabular}
\begin{tabular}{ll} 
三 \((2370)\) & \(I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right)\) Status：
\end{tabular}\(* *\)
OMITTED FROM SUMMARY TABLE

OMITTED FROM SUMMARY TABLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{三（2370）MASS} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & CHG & COMMENT \\
\hline \multicolumn{7}{|l|}{\(\approx 2370\) OUR ESTIMATE} \\
\hline \(2356 \pm 10\) & & JENKINS & 83 & MPS & － & \(K^{-} p \rightarrow K^{+} \mathrm{MM}\) \\
\hline 2370 & 50 & HASSALL & 81 & HBC & －0 & \(K^{-} p 6.5 \mathrm{GeV} / c\) \\
\hline \(2373 \pm 8\) & 94 & AMIRZADEH & 80 & HBC & －0 & \(K^{-} p 8.25 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(2392 \pm 27\) & & DIBIANCA & 75 & DBC & & \(\equiv 2 \pi\) \\
\hline \multicolumn{7}{|c|}{三（2370）WIDTH} \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & CHG & COMMENT \\
\hline 80 & 50 & HASSALL & 81 & HBC & －0 & \(K^{-} p 6.5 \mathrm{GeV} / c\) \\
\hline \(80 \pm 25\) & 94 & AMIRZADEH & 80 & HBC & －0 & \(K^{-} p 8.25 \mathrm{GeV} / \mathrm{c}\) \\
\hline \(75 \pm 69\) & & DIBIANCA & 75 & DBC & & \(\equiv 2 \pi\) \\
\hline
\end{tabular}

\section*{E（2370）DECAY MODES}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda \bar{K} \pi\) & seen \\
\(\Gamma_{2}\) & \(\sum \bar{K} \pi\) & \\
\(\Gamma_{4}+\Gamma_{6}\). & seen \\
\(\Gamma_{3}\) & \(\Omega^{-} K\) & \\
\(\Gamma_{4}\) & \(\Lambda \bar{K}^{*}(892)\) & \\
\(\Gamma_{5}\) & \(\Sigma \bar{K}^{*}(892)\) & \\
\(\Gamma_{6}\) & \(\Sigma(1385) \bar{K}\) & \\
\hline
\end{tabular}

三（2370）BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Gamma(\Lambda \bar{K} \pi) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multirow[b]{2}{*}{\(\frac{\mathrm{CHG}}{-0}\)} & \multicolumn{2}{|l|}{COMMENT \(\Gamma_{1} / \Gamma\)} \\
\hline seen & AMIRZADEH & 80 & HBC & & \(K^{-}\)p 8.25 & \(\mathrm{eV} / \mathrm{c}\) \\
\hline \(\Gamma(\Sigma \bar{K} \pi) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{2} / \Gamma\) \\
\hline Value & DOCUMENT ID & & TECN & CHG & COMMENT & \\
\hline seen & AMIRZADEH & 80 & HBC & －0 & \(K^{-}\)p 8.25 & ／c \\
\hline
\end{tabular}

\(\left[\Gamma\left(\Lambda \bar{K}^{*}(892)\right)+\Gamma\left(\Sigma \bar{K}^{*}(892)\right)\right] / \Gamma_{\text {total }} \quad\left(\Gamma_{4}+\Gamma_{5}\right) / \Gamma\)
\(\frac{\text { VALUE }}{0.22 \pm 0.13} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KINSON } 80} \frac{\text { TECN }}{\mathrm{HBC}} \frac{\text { CHG }}{-} \frac{\text { COMMENT }}{K^{-} p 8.25 \mathrm{GeV} / \mathrm{c}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\Gamma(\Sigma(1385) \bar{K}) / \Gamma_{\text {total }}
\] & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[b]{2}{*}{\(\frac{\text { TECN }}{\text { HBC }}\)} & \multirow[b]{2}{*}{\[
\underline{C H G}
\]} & & \(\Gamma_{6}\) \\
\hline \(0.12 \pm 0.08\) & \({ }^{1}\) KINSON & 80 & & & \multicolumn{2}{|l|}{\(K^{-} p 8.25 \mathrm{GeV} / \mathrm{c}\)} \\
\hline
\end{tabular}

三（2370）FOOTNOTES
\({ }^{1}\) KINSON 80 is a reanalysis of AMIRZADEH 80 with \(50 \%\) more events．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{三（2370）REFERENCES} \\
\hline Jenkins AMIRZADEH KIIBSANCA & \[
\begin{aligned}
& 83 \\
& 81 \\
& 80 \\
& 80 \\
& 80 \\
& 75
\end{aligned}
\] & \begin{tabular}{l}
PRL 51951 \\
 \begin{tabular}{l} 
Tronto Conf． \\
NP B98 \\
B． \\
\hline 137
\end{tabular}
\end{tabular} &  &  \\
\hline
\end{tabular}


三（2500）DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\bar{\Xi} \pi\) & \\
\(\Gamma_{2}\) & \(\Lambda \bar{K}\) & \\
\(\Gamma_{3}\) & \(\Sigma \bar{K}\) & seen \\
\(\Gamma_{4}\) & \(\equiv \pi \pi\) & \\
\(\Gamma_{5}\) & \(\overline{\bar{\prime}}(1530) \pi\) & seen \\
\(\Gamma_{6}\) & \(\Lambda \bar{K} \pi+\Sigma \bar{K} \pi\) & \\
\hline
\end{tabular}

\section*{三（2500）BRANCHING RATIOS}


\section*{三（2500）REFERENCES}
\begin{tabular}{lllll} 
JENKINS & 83 & PRL 51 951 & \begin{tabular}{l} 
C．M．Jenkins et al．
\end{tabular} & （FSU，BRAN，LBL＋） \\
ALITTI & 69 & PRL 22 79 & （BNL，SYRA）। \\
BARTSCH & 69 & PL 28B 439 & \begin{tabular}{l} 
J．Alitti et al． \\
J．Bartsch et al．
\end{tabular} & （AACH，BERL，CERN＋）
\end{tabular}

\title{
\(\Omega\) BARYONS \\ \((S=-3, I=0)\) \\ \(\Omega^{-}=s s s\)
}

\section*{\(\Omega^{-}\)}
\(I\left(J^{P}\right)=0\left(\frac{3}{2}+\right)\) Status：\(* * * *\)
The unambiguous discovery in both production and decay was by BARNES 64．The quantum numbers follow from the assignment of the particle to the baryon decuplet．DEUTSCHMANN 78 and BAUBILLIER 78 rule out \(J=1 / 2\) and find consistency with \(J=\) \(3 / 2\) ．AUBERT，BE 06 finds from the decay angular distributions of \(\equiv_{c}^{0} \rightarrow \Omega^{-} K^{+}\)and \(\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}\)that \(J=3 / 2\) ；this depends on the spins of the \(\Xi_{c}^{0}\) and \(\Omega_{c}^{0}\) being \(J=1 / 2\) ，their supposed values．
We have omitted some results that have been superseded by later experiments．See our earlier editions．

\section*{\(\Omega^{-}\)MASS}

The fit assumes the \(\Omega^{-}\)and \(\bar{\Omega}^{+}\)masses are the same，and averages them together．
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{1672．45 \(\pm 0.29\) OUR FIT} \\
\hline \multicolumn{6}{|l|}{1672．43 \(\pm 0.32\) OUR AVERAGE} \\
\hline \(1673 \pm 1\) & 100 & HARTOUNI & 85 & SPEC & \(80-280 \mathrm{GeV} K_{L}^{0} \mathrm{C}\) \\
\hline \(1673.0 \pm 0.8\) & 41 & BAUBILLIER & 78 & HBC & \(8.25 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} p\) \\
\hline \(1671.7 \pm 0.6\) & 27 & HEMINGWAY & 78 & HBC & \(4.2 \mathrm{GeV} / c^{-}{ }^{-} p\) \\
\hline \(1673.4 \pm 1.7\) & 4 & 1 DIBIANCA & 75 & DBC & \(4.9 \mathrm{GeV} / \mathrm{c}^{-}{ }^{-} d\) \\
\hline \(1673.3 \pm 1.0\) & 3 & PALMER & 68 & HBC & \(K^{-} p 4.6,5 \mathrm{GeV} / c\) \\
\hline \(1671.8 \pm 0.8\) & 3 & SCHULTZ & 68 & HBC & \(K^{-} p 5.5 \mathrm{GeV} / c\) \\
\hline \(1674.2 \pm 1.6\) & 5 & SCOTTER & 68 & HBC & \(K^{-} p 6 \mathrm{GeV} / c\) \\
\hline \(1672.1 \pm 1.0\) & 1 & 2 FRY & 55 & EMUL & \\
\hline \multicolumn{6}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(1671.43 \pm 0.78\) & 13 & 3 DEUTSCH．．． & 73 & HBC & \(K^{-} p 10 \mathrm{GeV} / c\) \\
\hline \(1671.9 \pm 1.2\) & 6 & 3 SPETH & 69 & HBC & See DEUTSCHMANN 73 \\
\hline \(1673.0 \pm 8.0\) & 1 & ABRAMS & 64 & HBC & \(\rightarrow\) E－\(^{0}\) \\
\hline \(1670.6 \pm 1.0\) & 1 & \({ }^{2}\) FRY & 55B & EMUL & \\
\hline 1615 & 1 & \({ }^{4}\) EISENBERG & 54 & EMUL & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) DIBIANCA 75 gives a mass for each event．We quote the average．} \\
\hline \({ }^{2}\) The FRY 5 assume dec shift the \(K\) for FRY 55 as is known We have ca & \begin{tabular}{l}
RY 55 \\
\(K^{-}\)at \\
and \\
the \\
the \\
the e
\end{tabular} & \begin{tabular}{l}
vents were identifi \\
t．For FRY 55B， resulting \(\Omega^{-}\)ma ecay is approxim rikes the nucleus assuming that the
\end{tabular} & \begin{tabular}{l}
ed as decay \\
ss by \\
tely \\
L．Alv \\
orbi
\end{tabular} & \(\Omega^{-}\)by from an several perpend arez，pr tal \(n\) is & ALVAREZ 73．The masses atomic orbit could Doppler MeV．This shift is negligible cular to its orbital velocity， vate communication 1973）． or larger． \\
\hline \multicolumn{6}{|l|}{\({ }^{3}\) Excluded from the average；the \(\Omega^{-}\)lifetimes measured by the experiments differ signif－ icantly from other measurements．} \\
\hline \multicolumn{6}{|l|}{\({ }^{4}\) The EISENBERG 54 mass was calculated for decay in flight．ALVAREZ 73 has shown that the \(\Omega\) interacted with an Ag nucleus to give \(K^{-} \equiv \mathrm{Ag}\) ．} \\
\hline
\end{tabular}

\section*{\(\bar{\Omega}^{+}\)MASS}

The fit assumes the \(\Omega^{-}\)and \(\bar{\Omega}+\) masses are the same，and averages them together．
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(1672.45 \pm 0.29\) OUR FIT} \\
\hline \(1672.5 \pm 0.7\) & RAGE & & & & \\
\hline \(1672 \pm 1\) & 72 & HARTOUNI & 85 & SPEC & \(80-280 \mathrm{GeV} K_{L}^{0} \mathrm{C}\) \\
\hline \(1673.1 \pm 1.0\) & 1 & FIRESTONE & 71B & HBC & \(12 \mathrm{GeV} / \mathrm{c} K^{+}{ }_{d}\) \\
\hline
\end{tabular}
\[
\left(m_{\Omega^{-}}-m_{\bar{\Omega}^{+}}\right) / m_{\Omega^{-}}
\]

A test of CPT invariance．
\(\frac{\text { VALUE }}{\mathbf{( 1 . 4 4} \pm \mathbf{7 . 9 8}) \times \mathbf{1 0}^{\mathbf{- 5}}} \quad \frac{\text { DOCUMENT ID }}{\text { CHAN }} 98 \frac{\text { TECN }}{\text { E756 }} \frac{\text { COMMENT }}{p \mathrm{Be}, 800 \mathrm{GeV}}\)

\section*{\(\Omega^{-}\)MEAN LIFE}

Measurements with an error \(>0.1 \times 10^{-10} \mathrm{~s}\) have been omitted．The fit assumes the \(\Omega^{-}\)and \(\bar{\Omega}^{+}\)mean lives are the same，and averages them together．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-10} \mathrm{~s}\right)\) & EVTS & \multicolumn{2}{|l|}{DOCUMENTID} & TECN & \multirow[t]{2}{*}{COMMENT} \\
\hline \multicolumn{5}{|l|}{\(0.821 \pm 0.011\) OUR FIT} & \\
\hline \(0.821 \pm 0.011\) OUR AV & RAGE & & & & \\
\hline \(0.817 \pm 0.013 \pm 0.018\) & 6934 & CHAN & 98 & E756 & \(p \mathrm{Be}, 800 \mathrm{GeV}\) \\
\hline \(0.811 \pm 0.037\) & 1096 & LUK & 88 & SPEC & \(p \mathrm{Be} 400 \mathrm{GeV}\) \\
\hline \(0.823 \pm 0.013\) & 12k & BOURQUIN & 84 & SPEC & SPS hyperon beam \\
\hline
\end{tabular}
－－We do not use the following data for averages，fits，limits，etc．－．－
\(0.822 \pm 0.028 \quad 2437\) BOURQUIN 79B SPEC See BOURQUIN 84

\section*{\(\bar{\Omega}+\) MEAN LIFE}

The fit assumes the \(\Omega^{-}\)and \(\bar{\Omega}^{+}\)mean lives are the same，and averages them together．
\begin{tabular}{lllllll}
\(\frac{\text { VALUE }\left(10^{-10} \mathrm{~s}\right)}{\mathbf{0 . 8 2 1} \pm \mathbf{0 . 0 1 1 ~ O U R ~ F I T ~}}\) & EVTS & & DOCUMENT ID & & TECN & COMMENT \\
\begin{tabular}{llllll}
\(\mathbf{0 . 8 2 3} \pm \mathbf{0 . 0 3 1} \pm \mathbf{0 . 0 2 2}\) & 1801
\end{tabular} & CHAN & 98 & E756 & \(p \mathrm{Be}, 800 \mathrm{GeV}\) \\
\hline
\end{tabular}
\(\left(\tau_{\Omega^{-}}-\tau_{\bar{\Omega}^{+}}\right) / \tau_{\Omega^{-}}\)
A test of CPT invariance．Our calculation，from the averages in the pre－ ceding two data blocks．
\(\frac{\text { VALUE }}{0.00 \pm 0.05 \text { OUR ESTIMATE }}\)
\(\Omega^{-}\)MAGNETIC MOMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\operatorname{Value}\left(\mu_{N}\right)\) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMmENT \\
\hline \multicolumn{6}{|l|}{－2．02 \(\pm 0.05\) OUR AVERAGE} \\
\hline \(-2.024 \pm 0.056\) & 235k & WALLACE & 95 & SPEC & \(\Omega^{-300-550 ~ G e V ~}\) \\
\hline \(-1.94 \pm 0.17 \pm 0.14\) & 25k & DIEHL & 91 & SPEC & Spin－transfer production \\
\hline
\end{tabular}

\section*{\(\Omega^{-}\)DECAY MODES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Mode & & Fraction（ \(\Gamma_{i} / \overline{\text { r }}\) ） & & Confidence level \\
\hline \(\Gamma_{1}\) & \(\wedge K^{-}\) & & （67．8 \(\pm 0.7) \%\) & & \\
\hline \(\Gamma_{2}\) & 三 \({ }^{-}{ }^{-}\) & & （23．6 \(\pm 0.7) \%\) & & \\
\hline \(\Gamma 3\) & 三－\(\pi^{0}\) & & （ \(8.6 \pm 0.4\) ）\％ & & \\
\hline \(\Gamma_{4}\) & 三－\(\pi^{+} \pi^{-}\) & & \(\left(3.7_{-0.6}^{+0.7}\right) \times\) & \(\times 10^{-4}\) & \\
\hline \(\Gamma_{5}\) & 三 \((1530)^{0} \pi^{-}\) & & \(<7 \times\) & \(\times 10^{-5}\) & 90\％ \\
\hline \(\Gamma_{6}\) & \({ }^{\prime}{ }^{0} e^{-} \bar{\nu}_{e}\) & & \((5.6 \pm 2.8) \times\) & \(\times 10^{-3}\) & \\
\hline \(\Gamma_{7}\) & \(\Xi^{-} \gamma\) & & ＜ \(4.6 \times\) & \(\times 10^{-4}\) & 90\％ \\
\hline \multicolumn{6}{|c|}{\(\Delta S=2\) forbidden（S2）modes} \\
\hline \(\Gamma_{8}\) & \(\wedge \pi^{-}\) & S2 & ＜ \(2.9 \times\) & \(\times 10^{-6}\) & 90\％ \\
\hline
\end{tabular}

\section*{\(\Omega^{-}\)BRANCHING RATIOS}

The BOURQUIN 84 values（which include results of BOURQUIN 79b，a separate experiment）are much more accurate than any other results，and so the other results have been omitted．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\Lambda K^{-}\right) / \Gamma_{\text {total }}\) & & & & & \multirow[t]{2}{*}{\(\Gamma 1 / \Gamma\)} \\
\hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular} \(\mathbf{0 . 6 7 8} \pm \mathbf{0 . 0 0 7} \quad 14 \mathrm{k} \quad\) BOURQUIN 84 SPEC SPS hyperon beam －－We do not use the following data for averages，fits，limits，etc．－－
\(0.686 \pm 0.013 \quad 1920\) BOURQUIN 79B SPEC See BOURQUIN 84
\(\boldsymbol{\Gamma}\left(\Xi^{\mathbf{0}} \boldsymbol{\pi}^{-}\right) / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{\text { VALUE }}{\mathbf{0 . 2 3 6} \pm \mathbf{0 . 0 0 7}} \frac{\text { EVTS }}{1947} \quad\)\begin{tabular}{l} 
DOCUMENT ID \\
BOURQUIN 84
\end{tabular}\(\frac{\text { TECN }}{\text { SPEC }} \frac{\Gamma_{\mathbf{2}} / \boldsymbol{\Gamma}}{\text { COMMENT }} \quad\) SPS hyperon beam 34 SPEC SPS hyperon beam －－We do not use the following data for averages，fits，limits，etc．－•－
\(0.234 \pm 0.013 \quad 317\) BOURQUIN 79B SPEC See BOURQUIN 84
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\right.\) ミ－\(\left.\pi^{0}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{3} / \Gamma\) \\
\hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline \(0.086 \pm 0.004\) & 759 & BOURQUIN & SPEC & SPS hype & \\
\hline
\end{tabular}
－－We do not use the following data for averages，fits，limits，etc．－－－
\(0.080 \pm 0.008 \quad 145\) BOURQUIN 79B SPEC See BOURQUIN 84
\(\Gamma\left(\right.\) 三\(\left.^{-} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\)
VALUE（units \(10^{-4}\) ）EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{3 . 7 4} \mathbf{- 0 . 5 6} \mathbf{0} \mathbf{0 . 6 7} \quad 100 \quad{ }^{\mathbf{5}}\) KAMAEV 10 HYCP \(p \mathrm{Cu}, 800 \mathrm{GeV}\)
－－We do not use the following data for averages，fits，limits，etc．－－
4.3 \begin{tabular}{l}
－ \\
+3.4
\end{tabular} \(4 \quad\) BOURQUIN \(84 \quad\) SPEC \(\quad\) SPS hyperon beam
\({ }^{5}\) This KAMAEV 10 value uses \(76 \Omega^{-} \rightarrow \Xi^{-} \pi^{+} \pi^{-}\)and \(24 \bar{\Omega}^{+} \rightarrow \bar{\equiv}+\pi^{-} \pi^{+}\)de－ cays．The \(\Omega^{-}\)and \(\bar{\Omega}+\) branching fractions measurements are statistically equal．The errors given combine statistical and systematic contributions．The CP branching－fraction asymmetry，\(\left(\Omega^{-}-\bar{\Omega}^{+}\right) /\)sum，is \(+0.12 \pm 0.20\) ．

Baryon Particle Listings
\(\Omega^{-}, \Omega(2012)^{-}\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Omega(2012)^{-}\)MASS} \\
\hline Value (MeV) & EVTS & DOCUMENT ID & TECN CO & OMMENT \\
\hline \(2012.4 \pm 0.7 \pm 0.6\) & 520 & Yelton & 18A BELL In \(\gamma\) & ), \(r_{(2 S)}, r_{(3 S)}\) \\
\hline \multicolumn{5}{|c|}{\(\Omega(2012)^{-}\)WIDTH} \\
\hline VALUE (MeV) & EVTS & DOCUMENT & - TECN COM & \\
\hline \(6.4{ }_{-2.0}^{+2.5} \pm 1.6\) & 520 & Yelton & 18A BELL In & ), \(r(2 S), r(3 S)\) \\
\hline \multicolumn{5}{|c|}{\(\Omega(2012){ }^{-}\)DECAY MODES} \\
\hline Mode & & & Fraction ( \(\Gamma_{i} / \Gamma^{\prime}\) ) & Confidence level \\
\hline \(\Gamma_{1}\) 三K & & & & \\
\hline \(\Gamma_{2} \quad(三 \pi) K\) & & & & \\
\hline \(\Gamma_{3} \bar{E}^{0} K^{-}\) & \multicolumn{4}{|c|}{DEFINED AS 1} \\
\hline \(\Gamma_{4} \quad \Xi^{-} K^{0}\) & \multicolumn{4}{|c|}{\(0.83 \pm 0.21\)} \\
\hline \(\Gamma_{5} \quad \Xi^{-} \bar{K}^{0}\) & & & & \\
\hline \(\Gamma_{6} \quad \Xi^{0} \pi^{0} K^{-}\) & \multicolumn{3}{|r|}{<0.30} & 90\% \\
\hline \(\Gamma_{7} \quad \Xi^{0} \pi^{-} \bar{K}^{0}\) & \multicolumn{3}{|r|}{\(<0.21\)} & 90\% \\
\hline \(\Gamma_{8} \quad \Xi^{-} \pi^{0} \bar{K}^{0}\) & & & & \\
\hline \(\Gamma_{9} \quad \Xi^{-} \pi^{+} K^{-}\) & \multicolumn{3}{|r|}{\(<0.08\)} & 90\% \\
\hline
\end{tabular}

2(2012)- BRANCHING RATIOS

\(\alpha\left(\Omega^{-}\right) \alpha_{\text {So }}(\Lambda)\) FOR \(\Omega^{-} \Rightarrow \Lambda K^{-}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value & EVTS & \multicolumn{2}{|l|}{UMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(\mathbf{0 . 0 1 1 5} \pm \mathbf{0 . 0 0 1 5}\) OUR AVERAGE} \\
\hline \(0.0133 \pm 0.0033 \pm 0.0052\) & 960k & 7 CHEN & 05 & HYCP & p Cu, 800 GeV \\
\hline \(0.0114 \pm 0.0012 \pm 0.0010\) & 4.5M & \({ }^{7}\) LU & 05A & HYCP & p Cu, 800 GeV \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline -0.018 \(\pm 0.030\) & 6953 & CHAN & 98 & E756 & \(p \mathrm{Be}, 800 \mathrm{GeV}\) \\
\hline \(-0.022 \pm 0.051\) & 1743 & LUK & 88 & SPEC & p Be 400 GeV \\
\hline \(-0.016 \pm 0.018\) & 12k & BOURQUIN & 84 & SPEC & SPS hyperon beam \\
\hline
\end{tabular}

\section*{\(\alpha\) FOR \(\Omega^{-} \rightarrow \boldsymbol{\Lambda K}^{-}\)}

The above average, \(\alpha\left(\Omega^{-}\right) \alpha_{-}(\Lambda)=0.0115 \pm 0.0015\), divided by our current average \(\alpha_{-}(\Lambda)=0.732 \pm 0.014\) gives \(\alpha\left(\Omega^{-}\right):\)
\(\frac{\text { VALUE }}{\mathbf{0 . 0 1 5 7} \pm \mathbf{0 . 0 0 2 1} \text { OUR EVALUATION }}\)


- We do not use the following data for averages, fits, limits, etc. - -
\(+0.017 \pm 0.077 \quad 1823 \quad\) CHAN 98 E756 \(p \mathrm{Be}, 800 \mathrm{GeV}\)
\((\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha})\) in \(\Omega^{-} \rightarrow \Lambda K^{-}, \bar{\Omega}^{+} \rightarrow \bar{\Lambda} K^{+}\)
VALUE Zero if \(C P\) is conserved.
\(\mathbf{- 0 . 0 1 6} \mathbf{\pm 0 . 0 9 2} \mathbf{0 . 0 8 9} \quad 8 \frac{\text { DOCUMENTID }}{\mathrm{LU}} \frac{\text { TECN }}{\mathrm{HYCP}} \frac{\text { COMMENT }}{\mathrm{pCu}, 800 \mathrm{GeV}}\)
\({ }^{8}\) This value uses the results of CHEN 05, LU 05 A, and LU 06.
\(\underset{\text { VFOR }}{ } \Omega^{-} \rightarrow{ }^{-0} \pi^{-}\)


\section*{\(\Omega^{-}\)REFERENCES}

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

\footnotetext{
KAMAEV
AUBERT,BE
LU
CHEN
WHITE
CHAN
WALBUQUU
DIEHL
LUK
HARTOUNI


\begin{tabular}{lr} 
O. Kamaev et al. & (FNAL HyperCP Collab.) \\
B. Aubert et al. & (BABAR Collab.) \\
L.C. Lu et al. & (FNAL HyperCP Collab.) \\
Y.C. Chen et al. & (FNAL HyperCP Collab.) \\
L.C. Lu et al. & (FNAL HyperCP Collab.) \\
C.G. White et al. & (FNAL HyperCP Collab.) \\
A.W. Chan et al. & (FNAL E756 Collab.) \\
N.B. Wallace et al. & (MINN, ARIZ, MICH+) \\
I.F. Albuquerque et al. & (FNAL E761 Collab.) \\
H.T. Dieh let al. & (RUTG, FNAL, MICH+) \\
K.B. Luk et al. & (RUTG, WISC, MICH, MINN) \\
E.P. Hartouni et al. & (COLU, ILL, FNAL)
\end{tabular}
}
\(\frac{\text { VALUE (units } 10^{-6} \text { ) }}{\text { CL\% }}\) DOCUMENT ID \(\quad\) TECN COMMENT
- We do not use the following dat
\begin{tabular}{llllll}
\(<190\) & 90 & BOURQUIN & 84 & SPEC & SPS hyperon beam \\
\(<1300\) & 90 & BOURQUIN & \(79 B\) & SPEC & See BOURQUIN 84
\end{tabular}

\section*{\(\Omega^{-}\)DECAY PARAMETERS}

See key on page 999

\[
\begin{gathered}
\text { CHARMED BARYONS } \\
(\mathbf{C}=+1) \\
\Lambda_{c}^{+}=u d c, \quad \Sigma_{c}^{++}=u u c, \quad \Sigma_{c}^{+}=u d c, \quad \Sigma_{c}^{0}=d d c, \\
\Xi_{c}^{+}=u s c, \quad \exists_{c}^{0}=d s c, \quad \Omega_{c}^{0}=s s c \\
\hline
\end{gathered}
\]

See the related review(s):
Charmed Baryons

\(I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)\)Status: \(* * * *\)
The parity of the \(\Lambda_{c}^{+}\)is defined to be positive (as are the parities of the proton, neutron, and \(\Lambda\) ). The quark content is \(u d c\). Results of an analysis of \(p K^{-} \pi^{+}\)decays (JEZABEK 92) are consistent with \(J\)
\(=1 / 2\). Nobody doubts that the spin is indeed \(1 / 2\).
We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

\section*{\(\Lambda_{c}^{+}\)MASS}

Our value in 2004, \(2284.9 \pm 0.6 \mathrm{MeV}\), was the average of the measurements now filed below as "not used." The BABAR measurement is so much better that we use it alone. Note that it is about 2.6 (old) standard deviations above the 2004 value.

The fit also includes \(\Sigma_{C}-\Lambda_{C}^{+}\)and \(\Lambda_{C}^{*+}-\Lambda_{C}^{+}\)mass-difference measurements, but this doesn't affect the \(\Lambda_{c}^{+}\)mass. The new (in 2006) \(\Lambda_{c}^{+}\)mass simply pushes all those other masses higher.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(2286.46 \pm 0.14\) OUR FIT} \\
\hline \(2286.46 \pm 0.14\) & 4891 & 1 AUBERT, B & & BABR & \(\wedge K_{S}^{0} K^{+}\)and \(\Sigma^{0} K_{S}^{0} K^{+}\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline \(2284.7 \pm 0.6 \pm 0.7\) & 1134 & AVERY & 91 & CLEO & Six modes \\
\hline \(2281.7 \pm 2.7 \pm 2.6\) & 29 & ALVAREZ & 90B & NA14 & \(p K^{-} \pi^{+}\) \\
\hline \(2285.8 \pm 0.6 \pm 1.2\) & 101 & BARLAG & 89 & NA32 & \(p K^{-} \pi^{+}\) \\
\hline \(2284.7 \pm 2.3 \pm 0.5\) & 5 & AGUILAR-... & 88B & LEBC & \(p K^{-} \pi^{+}\) \\
\hline \(2283.1 \pm 1.7 \pm 2.0\) & 628 & ALBRECHT & 88C & ARG & \(p K^{-} \pi^{+}, p \bar{K}^{0}, 13 \pi\) \\
\hline \(2286.2 \pm 1.7 \pm 0.7\) & 97 & ANJOS & 88B & E691 & \(p K^{-} \pi^{+}\) \\
\hline \(2281 \pm 3\) & 2 & JONES & 87 & HBC & \(p K^{-} \pi^{+}\) \\
\hline \(2283 \pm 3\) & 3 & BOSETTI & 82 & HBC & \(p K^{-} \pi^{+}\) \\
\hline \(2290 \pm 3\) & 1 & CALICCHIO & 80 & HYBR & \(p K^{-} \pi^{+}\) \\
\hline
\end{tabular}
\({ }^{1}\) AUBERT,B 05s uses low-Q \(\wedge K_{S}^{0} K^{+}\)and \(\Sigma^{0} K_{S}^{0} K^{+}\)decays to minimize systematic
errors. The error above includes systematic as well as statistical errors. Many cross
checks and adjustments to properties of the BABAR detector, as well as the large number
of clean events, make this by far the best measurement of the \(\Lambda_{C}^{+}\)mass.

\section*{\(\Lambda_{c}^{+}\)MEAN LIFE}

Measurements with an error \(\geq 100 \times 10^{-15}\) s or with fewer than 20 events have been omitted from the Listings.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right)\) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{202.4土 3.1 OUR AVERAGE} & Error includes sca & tor of 1.7. & See the ideogram below. \\
\hline \(203.5 \pm 1.7 \pm 1.4\) & 304k & 1 AAIJ & 19AG LHCB & \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline \(204.6 \pm 3.4 \pm 2.5\) & 8034 & LINK & 02C FOCS & \(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline \(198.1 \pm 7.0 \pm 5.6\) & 1630 & KUSHNIR... & 01 SELX & \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline \(179.6 \pm 6.9 \pm 4.4\) & 4749 & MAHMOOD & 01 CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \(215 \pm 16 \pm 8\) & 1340 & FRABETTI & 93D E687 & \(\gamma \mathrm{Be}, \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline
\end{tabular}
\(215 \pm 16 \pm 8 \quad 1340 \quad\) FRABETTI 93D E687 \(\gamma \mathrm{Be}, \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 180 & \(\pm 30\) & \(\pm 30\) & 29 & ALVAREZ & 90 & NA14 & \(\gamma, \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline 200 & \(\pm 30\) & \(\pm 30\) & 90 & FRABETTI & 90 & E687 & \(\gamma \mathrm{Be}, \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \\
\hline 196 & \[
\begin{array}{r}
+23 \\
-20
\end{array}
\] & & 101 & BARLAG & 89 & NA32 & \(p K^{-} \pi^{+}+\)c.c. \\
\hline 220 & \(\pm 30\) & \(\pm 20\) & 97 & ANJOS & 88B & E691 & \(p K^{-} \pi^{+}+\)c.c. \\
\hline
\end{tabular}
\({ }^{1}\) AAIJ 19AG reports \(\left[\Lambda_{C}^{+}\right.\)MEAN LIFE] / [ \(D^{ \pm}\)MEAN LIFE] \(=0.1956 \pm 0.0010 \pm 0.0013\)
which we multiply by our best value \(D^{ \pm}\)MEAN LIFE \(=(1.040 \pm 0.007) \times 10^{-12} \mathrm{~s}\).
Our first error is their experiment's error and our second error is the systematic error from using our best value.

\(\Lambda_{C}^{+}\)mean life

\section*{\(\Lambda_{c}^{+}\)DECAY MODES}

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction \(\Lambda_{C}^{+} \rightarrow p \bar{K}^{*}(892)^{0}\) seen in \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)has been multiplied up to include \(\bar{K}^{*}(892)^{0} \rightarrow \bar{K}^{0} \pi^{0}\) decays.

Scale factor/
Mode
Fraction \(\left(\Gamma_{i} / \Gamma\right)\)
Confidence level
Hadronic modes with a \(p\) or \(n: S=-1\) final states
\(\Gamma_{1}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma_{1}\) & \(p K_{S}^{0}\) & & ( \(1.59 \pm 0.08\) ) \% & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{2}\) & \(p K^{-} \pi^{+}\) & & ( \(6.28 \pm 0.32) \%\) & \(\mathrm{S}=1.4\) \\
\hline \(\Gamma_{3}\) & \(p \bar{K}^{*}(892)^{0}\) & [a] & ( \(1.96 \pm 0.27) \%\) & \\
\hline \(\Gamma_{4}\) & \(\Delta(1232)^{++} K^{-}\) & & ( \(1.08 \pm 0.25) \%\) & \\
\hline \(\Gamma_{5}\) & \(\Lambda(1520) \pi^{+}\) & [a] & \((2.2 \pm 0.5) \%\) & \\
\hline \(\Gamma_{6}\) & \(p K^{-} \pi^{+}\)nonresonant & & \((3.5 \pm 0.4) \%\) & \\
\hline \(\Gamma_{7}\) & \(p K_{S}^{0} \pi^{0}\) & & ( \(1.97 \pm 0.13\) ) \% & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{8}\) & \(n K_{S}^{0} \pi^{+}\) & & ( \(1.82 \pm 0.25\) ) \% & \\
\hline \(\Gamma_{9}\) & \(p \bar{K}^{0} \eta\) & & \((1.6 \pm 0.4) \%\) & \\
\hline \(\Gamma_{10}\) & \(p K_{S}^{0} \pi^{+} \pi^{-}\) & & ( \(1.60 \pm 0.12\) ) \% & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{11}\) & \(p K^{-} \pi^{+} \pi^{0}\) & & ( \(4.46 \pm 0.30\) ) \% & \(\mathrm{S}=1.5\) \\
\hline \(\Gamma_{12}\) & \(p K^{*}(892)^{-} \pi^{+}\) & [a] & \((1.4 \pm 0.5) \%\) & \\
\hline \(\Gamma_{13}\) & \(p\left(K^{-} \pi^{+}\right)_{\text {nonresonant }} \pi^{0}\) & & \((4.6 \pm 0.8) \%\) & \\
\hline \(\Gamma_{14}\) & \(\Delta(1232) \bar{K}^{*}(892)\) & & seen & \\
\hline \(\Gamma_{15}\) & p \(K^{-} 2 \pi^{+} \pi^{-}\) & & \((1.4 \pm 0.9) \times 10^{-3}\) & \\
\hline
\end{tabular}

Hadronic modes with a \(p: S=0\) final states
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma_{17}\) & \(p \pi^{0}\) & \(<2.7 \times 10^{-4}\) & CL=90\% \\
\hline \(\Gamma_{18}\) & \(p \eta\) & \((1.24 \pm 0.30) \times 10^{-3}\) & \\
\hline \(\Gamma_{19}\) & \(p \omega(782)^{0}\) & \(\left(\begin{array}{lll}9 & \pm\end{array}\right) \times 10^{-4}\) & \\
\hline \(\Gamma_{20}\) & \(p \pi^{+} \pi^{-}\) & \((4.61 \pm 0.28) \times 10^{-3}\) & \\
\hline \(\Gamma_{21}\) & \(p f_{0}(980)\) & [a] \((3.5 \pm 2.3) \times 10^{-3}\) & \\
\hline \(\Gamma_{22}\) & \(p 2 \pi^{+} 2 \pi^{-}\) & \((2.3 \pm 1.4) \times 10^{-3}\) & \\
\hline \(\Gamma_{23}\) & \(p K^{+} K^{-}\) & \((1.06 \pm 0.06) \times 10^{-3}\) & \\
\hline \(\Gamma_{24}\) & p \(\phi\) & [a] \((1.06 \pm 0.14) \times 10^{-3}\) & \\
\hline \(\Gamma_{25}\) & \(p K^{+} K^{-}\)non- \(\phi\) & \((5.3 \pm 1.2) \times 10^{-4}\) & \\
\hline \(\Gamma_{26}\) & \(p \phi \pi^{0}\) & \((10 \pm 4) \times 10^{-5}\) & \\
\hline \(\Gamma_{27}\) & \(p K^{+} K^{-} \pi^{0}\) nonresonant & \(<6.3 \times 10^{-5}\) & CL=90\% \\
\hline \multicolumn{4}{|c|}{Hadronic modes with a hyperon: \(S=-1\) final states} \\
\hline \(\Gamma_{28}\) & \(\wedge \pi^{+}\) & ( \(1.30 \pm 0.07\) ) \% & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{29}\) & \(\wedge \pi^{+} \pi^{0}\) & \((7.1 \pm 0.4) \%\) & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{30}\) & \(\Lambda \rho^{+}\) & \(<6\) \% & CL=95\% \\
\hline \(\Gamma_{31}\) & \(\wedge \pi^{-} 2 \pi^{+}\) & ( 3.64 \(\pm 0.29\) ) \% & \(\mathrm{S}=1.4\) \\
\hline \(\Gamma_{32}\) & \[
\Sigma(1385)^{+} \pi^{+} \pi^{-}, \Sigma^{*+} \rightarrow
\] & \((1.0 \pm 0.5) \%\) & \\
\hline \(\Gamma_{33}\) & \(\Sigma(1385)^{-} 2 \pi^{+}, \Sigma^{*-} \rightarrow \Lambda \pi^{-}\) & \((7.6 \pm 1.4) \times 10^{-3}\) & \\
\hline \(\Gamma_{34}\) & \(\wedge \pi^{+} \rho^{0}\) & \((1.5 \pm 0.6) \%\) & \\
\hline \(\Gamma_{35}\) & \(\Sigma(1385)^{+} \rho^{0}, \Sigma^{*+} \rightarrow \Lambda \pi^{+}\) & \(\binom{5}{\)\hline}\(\times 10^{-3}\) & \\
\hline \(\Gamma^{36}\) & \(\wedge \pi^{-} 2 \pi^{+}\)nonresonant & \(<1.1\) \% & CL=90\% \\
\hline \(\Gamma^{37}\) & \(\wedge \pi^{-} \pi^{0} 2 \pi^{+}\)total & \((2.3 \pm 0.8) \%\) & \\
\hline \(\Gamma^{38}\) & \(\wedge \pi^{+} \eta\) & [a] ( \(1.84 \pm 0.26\) ) \% & \\
\hline \(\Gamma 39\) & \(\Sigma(1385)^{+} \eta\) & [a] \((9.1 \pm 2.0) \times 10^{-3}\) & \\
\hline \(\Gamma_{40}\) & \(\wedge \pi^{+} \omega\) & [a] ( \(1.5 \pm 0.5) \%\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma_{41}\) & \(\wedge \pi^{-} \pi^{0} 2 \pi^{+}\), no \(\eta\) or \(\omega\) & \(<8 \times 10^{-3}\) & CL=90\% \\
\hline \(\Gamma_{42}\) & \(\Lambda K^{+} \bar{K}^{0}\) & \((5.7 \pm 1.1) \times 10^{-3}\) & \(\mathrm{S}=1.9\) \\
\hline \(\Gamma_{43}\) & \(\equiv(1690)^{0} K^{+}, \Xi^{* 0} \rightarrow \Lambda \bar{K}^{0}\) & \((1.6 \pm 0.5) \times 10^{-3}\) & \\
\hline \(\Gamma_{44}\) & \(\Sigma^{0} \pi^{+}\) & ( \(1.29 \pm 0.07\) ) \% & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{45}\) & \(\Sigma^{+} \pi^{0}\) & ( \(1.25 \pm 0.10\) ) \% & \\
\hline \(\Gamma_{46}\) & \(\Sigma^{+} \eta\) & \((4.4 \pm 2.0) \times 10^{-3}\) & \\
\hline \(\Gamma_{47}\) & \(\Sigma^{+} \eta^{\prime}\) & \((1.5 \pm 0.6) \%\) & \\
\hline \(\Gamma_{48}\) & \(\Sigma^{+} \pi^{+} \pi^{-}\) & ( \(4.50 \pm 0.25\) ) \% & \(\mathrm{S}=1.3\) \\
\hline \(\Gamma_{49}\) & \(\Sigma^{+} \rho^{0}\) & \(<1.7\) \% & \(\mathrm{CL}=95 \%\) \\
\hline \(\Gamma_{50}\) & \(\Sigma^{-} 2 \pi^{+}\) & ( \(1.87 \pm 0.18\) ) \% & \\
\hline \(\Gamma_{51}\) & \(\Sigma^{0} \pi^{+} \pi^{0}\) & \((3.5 \pm 0.4) \%\) & \\
\hline \(\Gamma_{52}\) & \(\Sigma^{+} \pi^{0} \pi^{0}\) & ( \(1.55 \pm 0.15\) ) \% & \\
\hline \(\Gamma_{53}\) & \(\Sigma^{0} \pi^{-} 2 \pi^{+}\) & ( \(1.11 \pm 0.30\) ) \% & \\
\hline \(\Gamma_{54}\) & \(\Sigma^{+} \pi^{+} \pi^{-} \pi^{0}\) & - & \\
\hline \(\Gamma_{55}\) & \(\Sigma^{+} \omega\) & [a] ( \(1.70 \pm 0.21\) ) \% & \\
\hline \(\Gamma_{56}\) & \(\Sigma^{-} \pi^{0} 2 \pi^{+}\) & ( \(2.1 \pm 0.4\) ) \% & \\
\hline \(\Gamma_{57}\) & \(\Sigma^{+} K^{+} K^{-}\) & \((3.5 \pm 0.4) \times 10^{-3}\) & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{58}\) & \(\Sigma^{+} \phi\) & [a] \((3.9 \pm 0.6) \times 10^{-3}\) & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{59}\) & \[
\begin{aligned}
& \equiv(1690)^{0} K^{+}, \Xi^{* 0} \rightarrow \\
& \Sigma^{+} K^{-}
\end{aligned}
\] & \((1.02 \pm 0.25) \times 10^{-3}\) & \\
\hline \(\Gamma_{60}\) & \(\Sigma^{+} K^{+} K^{-}\)nonresonant & \(<8 \times 10^{-4}\) & CL=90\% \\
\hline \(\Gamma_{61}\) & \({ }^{0} K^{+}\) & \((5.5 \pm 0.7) \times 10^{-3}\) & \\
\hline \(\Gamma_{62}\) & 三 \(^{-} K^{+} \pi^{+}\) & \((6.2 \pm 0.6) \times 10^{-3}\) & \(\mathrm{S}=1.1\) \\
\hline \(\Gamma_{63}\) & 三(1530) \({ }^{0} K^{+}\) & \((4.3 \pm 0.9) \times 10^{-3}\) & \(\mathrm{S}=1.1\) \\
\hline & Hadronic modes with a hy & eron: \(S=0\) final states & \\
\hline \(\Gamma_{64}\) & \(\wedge K^{+}\) & \((6.1 \pm 1.2) \times 10^{-4}\) & \\
\hline \(\Gamma_{65}\) & \(\wedge K^{+} \pi^{+} \pi^{-}\) & \(<5 \times 10^{-4}\) & CL=90\% \\
\hline \(\Gamma_{66}\) & \(\Sigma^{0} K^{+}\) & \((5.2 \pm 0.8) \times 10^{-4}\) & \\
\hline \(\Gamma_{67}\) & \(\Sigma^{0} K^{+} \pi^{+} \pi^{-}\) & \(<2.6 \times 10^{-4}\) & CL=90\% \\
\hline \(\Gamma_{68}\) & \(\Sigma^{+} K^{+} \pi^{-}\) & \((2.1 \pm 0.6) \times 10^{-3}\) & \\
\hline \(\Gamma_{69}\) & \(\Sigma^{+} K^{*}(892)^{0}\) & [a] \((3.5 \pm 1.0) \times 10^{-3}\) & \\
\hline \(\Gamma_{70}\) & \(\Sigma^{-} K^{+} \pi^{+}\) & \(<1.2 \times 10^{-3}\) & CL=90\% \\
\hline
\end{tabular}

Doubly Cabibbo-suppressed modes
\(\Gamma_{71} p K^{+} \pi^{-}\)
\((1.11 \pm 0.18) \times 10^{-4}\)

\section*{Semileptonic modes}
\(\Gamma_{72} \Lambda e^{+} \nu_{e}\)
\(\Gamma_{73} \Lambda \mu^{+} \nu_{\mu}\)
\((3.6 \pm 0.4) \%\)
( \(3.5 \pm 0.5\) ) \%

\section*{Inclusive modes}
\begin{tabular}{lll} 
& \multicolumn{3}{c}{ Inclusive modes } \\
\(\Gamma_{74}\) & \(e^{+}\)anything & \((3.95 \pm 0.35) \%\) \\
\(\Gamma_{75}\) & \(p\) anything & \((50\) \\
\(\Gamma_{76}\) & \(n\) anything & \((50\) \\
\hline
\end{tabular}\(\left.) \% 16\right) \%\)
\(\Delta C=1\) weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number \((B)\) violating modes
\begin{tabular}{llllll}
\(\Gamma_{79}\) & \(p e^{+} e^{-}\) & \(C 1\) & \(<5.5\) & \(\times 10^{-6}\) & \(C L=90 \%\) \\
\(\Gamma_{80}\) & \(p \mu^{+} \mu^{-}\)non-resonant & \(C 1\) & \(<7.7\) & \(\times 10^{-8}\) & \(C L=90 \%\) \\
\(\Gamma_{81}\) & \(p e^{+} \mu^{-}\) & \(L F\) & \(<9.9\) & \(\times 10^{-6}\) & \(C L=90 \%\) \\
\(\Gamma_{82}\) & \(p e^{-} \mu^{+}\) & \(L F\) & \(<1.9\) & \(\times 10^{-5}\) & \(C L=90 \%\) \\
\(\Gamma_{83}\) & \(\bar{p} 2 e^{+}\) & \(L, B\) & \(<2.7\) & \(\times 10^{-6}\) & \(C L=90 \%\) \\
\(\Gamma_{84}\) & \(\bar{p} 2 \mu^{+}\) & \(L, B\) & \(<9.4\) & \(\times 10^{-6}\) & \(C L=90 \%\) \\
\(\Gamma_{85}\) & \(\bar{p} e^{+} \mu^{+}\) & \(L, B\) & \(<1.6\) & \(\times 10^{-5}\) & \(C L=90 \%\) \\
\(\Gamma_{86}\) & \(\Sigma^{-} \mu^{+} \mu^{+}\) & \(L\) & \(<7.0\) & \(\times 10^{-4}\) & \(C L=90 \%\)
\end{tabular}
[a] This branching fraction includes all the decay modes of the final-state resonance.

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 41 branching ratios uses 62 measurements and one constraint to determine 21 parameters. The overall fit has a \(\chi^{2}=47.4\) for 42 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.


- - We do not use the following data for averages, fits, limits, etc. - . -
\(5.0 \pm 1.3 \quad 2\) PDG \(\quad 02 \quad\) See footnote
\({ }^{1}\) This ZUPANC 14 value is the FIRST-EVER model-independent measurement of a \(\Lambda_{c}^{+}\) branching fraction.
\({ }^{2}\) See the note by P. Burchat, " \(\Lambda_{c}^{+}\)Branching Fractions," in any edition of the Review from 2002 through 2014 for how this value was obtained. It is now obsolete.
\(\Gamma\left(p \bar{K}^{*}(892)^{0}\right) / \Gamma\left(p K^{-} \pi^{+}\right)\)
\(\Gamma_{3} / \Gamma_{2}\)
Unseen decay modes of the \(\bar{K}^{*}(892)^{0}\) are included.


\section*{Baryon Particle Listings}

\section*{\(\Lambda_{c}^{+}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(\Gamma\left(\Delta(1232)^{++} K^{-}\right) / \Gamma\left(p K^{-} \pi^{+}\right)\)} \\
\hline VALUE & EVTS & DOCUMENT ID & & TECN & & COMMENT & \\
\hline \multicolumn{8}{|l|}{\(\mathbf{0 . 1 7} \pm \mathbf{0 . 0 4}\) OUR AVERAGE Error includes scale factor of 1.1.} \\
\hline \(0.18 \pm 0.03 \pm 0.03\) & & 1 AITALA & 00 & E791 & & \(\pi^{-} N, 500\) & \\
\hline \(0.12-0.05{ }_{-0.05}^{+0.05}\) & 14 & BOZEK & 93 & NA32 & & \(\pi^{-} \mathrm{Cu} 230\) & \\
\hline \(0.40 \pm 0.17\) & 17 & BASILE & & CNT & & \(p p \rightarrow \Lambda_{C}^{+}\) & \\
\hline \multicolumn{8}{|l|}{\({ }^{1}\) AITALA 00 makes a coherent 5-dimensional amplitude analysis of \(946 \pm 38 \Lambda_{C}^{+} \rightarrow\) \(p K^{-} \pi^{+}\)decays.} \\
\hline \multicolumn{8}{|l|}{\(\Gamma\left(\Lambda(1520) \pi^{+}\right) / \Gamma\left(p K^{-} \pi^{+}\right) \quad \Gamma_{5} / \Gamma_{2}\)} \\
\hline \multicolumn{8}{|l|}{Unseen decay modes of the \(\Lambda(1520)\) are included.} \\
\hline VALUE & EVTS & DOCUMENTID & & TECN & & COMMENT & \\
\hline \multicolumn{8}{|l|}{\(\mathbf{0 . 3 5} \pm 0.08\) OUR AVERAGE} \\
\hline \(0.34 \pm 0.08 \pm 0.05\) & & 1 AITALA & 00 & E791 & & \(\pi^{-} N, 500\) & \\
\hline \(0.40{ }_{-0.13}^{+0.18} \pm 0.09\) & 12 & BOZEK & 93 & NA32 & & \(\pi^{-} \mathrm{Cu} 230\) & \\
\hline \multicolumn{8}{|l|}{\({ }^{1}\) AITALA 00 makes a coherent 5-dimensional amplitude analysis of \(946 \pm 38 \Lambda_{C}^{+} \rightarrow\) \(p K^{-} \pi^{+}\)decays.} \\
\hline \multicolumn{8}{|l|}{\(\Gamma\left(p K^{-} \pi^{+}\right.\)nonresonant \() / \Gamma\left(p K^{-} \pi^{+}\right)\)} \\
\hline VALUE & EVTS & DOCUMENT ID & & TECN & & COMMENT & \\
\hline \multicolumn{8}{|l|}{\(\mathbf{0 . 5 5} \pm \mathbf{0 . 0 6}\) OUR AVERAGE} \\
\hline \(0.55 \pm 0.06 \pm 0.04\) & & 1 AITALA & 00 & E791 & & \(\pi^{-} N, 500\) & \\
\hline \(0.56{ }_{-0.09}^{+0.07} \pm 0.05\) & 71 & BOZEK & 93 & NA32 & & \(\pi^{-} \mathrm{Cu} 230\) & \\
\hline \multicolumn{8}{|l|}{\({ }^{1}\) AITALA 00 makes a coherent 5-dimensional amplitude analysis of \(946 \pm 38 \Lambda_{C}^{+}\)} \\
\hline
\end{tabular}
\({ }^{1}\) AITALA 00 makes a coherent 5-dimensional amplitude analysis of \(946 \pm 38 \Lambda_{C}^{+} \rightarrow\) \(p K^{-} \pi^{+}\)decays.
 Measurements given as a \(\bar{K}^{0}\) ratio have been divided by 2 to convert to a \(K_{S}^{0}\) ratio.

\(\frac{\boldsymbol{\Gamma}\left(\boldsymbol{n} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}} \boldsymbol{\pi}^{+}\right) / \boldsymbol{\Gamma}_{\text {total }}}{\frac{V A L U E(\%)}{\mathbf{1 . 8 2} \pm \mathbf{0 . 2 3} \pm \mathbf{0 . 1 1}} \frac{\text { EVTS }}{83}} \quad\)\begin{tabular}{l} 
DOCUMENT ID \\
ABLIKIM \\
17 H \\
BES3 \\
\(e^{+} e^{-}\)at 4.6 GeV
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(p f_{0}(980)\right) / \Gamma\left(p K^{-} \pi^{+}\right)\)} & \multirow[t]{2}{*}{\(\Gamma_{21} / \Gamma_{2}\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \(0.055 \pm 0.036\) & BARLAG & 90D & NA32 & \(\pi^{-} 230 \mathrm{GeV}\) & \\
\hline \(\Gamma\left(p 2 \pi^{+} 2 \pi^{-}\right) / \Gamma\left(p K^{-} \pi^{+}\right)\) & & & & & \(\Gamma_{22} / \Gamma_{2}\) \\
\hline VALUE & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(0.036 \pm 0.023\) & BARLAG & 90D & NA32 & \(\pi^{-} 230 \mathrm{GeV}\) & \\
\hline \(\Gamma\left(p K^{+} K^{-}\right) / \Gamma\left(p K^{-} \pi^{+}\right)\) & & & & & \(\Gamma_{23} / \Gamma_{2}\) \\
\hline VALUE (units \(10^{-2}\) ) EVTS & DOCUMENT ID & & TECN & COMMENT & \\
\hline
\end{tabular}
\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\mathbf{1 . 7 0} \pm \mathbf{0 . 0 4} \text { OUR AVERA }} \frac{\text { EVTS }}{\text { GE }}\)

DOCUMENT ID TECN COMMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \(1.70 \pm 0.03 \pm 0.03\) & 3.4 k & AAIJ & 18 V LHCB & \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} X\) \\
\hline \(1.4 \pm 0.2 \pm 0.2\) & 676 & ABE & 02C BELL & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \(3.9 \pm 0.9 \pm 0.7\) & 214 & ALEXANDER & 96C CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(9.6 \pm 2.9 \pm 1.0\) & 30 & FRABETTI & 93H E687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma} 220 \mathrm{GeV}\) \\
\hline \(4.8 \pm 2.7\) & & BARLAG & 90D NA32 & \(\pi^{-} 230 \mathrm{GeV}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(p K^{+} K^{-} \pi^{0}\right.\) nonresonant \() / \Gamma_{\text {total }}\)} & \multirow[b]{2}{*}{TECN} & & \(\Gamma 27 / \Gamma\) \\
\hline VALUE & CL\% & DOCU & & & COMMENT & \\
\hline \(<6.3 \times 10^{-5}\) & 90 & PAL & 17 & BELL & \(e^{+} e^{-} \approx\) & , \(r(5 S)\) \\
\hline
\end{tabular}


\(\frac{V A L U E}{0.716 \pm 0.019}\) OUR FIT EVTS
\(0.720 \pm 0.024\) OUR AVERAGE
\(0.719 \pm 0.003 \pm 0.024 \quad\) 2.7M BERGER 18 BELL \(e^{+} e^{-} \approx r(4 S)\) | - - We do not use the following data for averages, fits, limits, etc. - - \(0.54{ }_{-0.15}^{+0.18} \quad 11 \quad\) BARLAG 92 NA32 \(\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}\)

\section*{Baryon Particle Listings}

\section*{\(\Lambda_{c}^{+}\)}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\Gamma\left(\Sigma^{+} \phi\right) / \Gamma\left(p K^{-} \pi^{-}\right. \\
\text {Unseen decay mo }
\end{array}
\] & & are incli & & & \multicolumn{2}{|r|}{\(\Gamma_{58} / \Gamma_{2}\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { VALUE }}{0.062 \pm 0.009 ~ O U R ~ F I T ~}{ }^{\text {EVTS }}\) DOCUME}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{IECN COMment}} \\
\hline & & & & & & \\
\hline \(0.069 \pm 0.023 \pm 0.016\) & 26 & AVERY & 93 & CLE2 & \multicolumn{2}{|l|}{\(e^{+} e^{-} \approx 10.5 \mathrm{GeV}\)} \\
\hline \multicolumn{4}{|l|}{\[
\Gamma\left(\Sigma^{+} \phi\right) / \Gamma\left(\Sigma^{+} \pi^{+} \pi^{-}\right)
\]} & \multicolumn{3}{|r|}{\(\Gamma_{58} / \Gamma_{48}\)} \\
\hline \multicolumn{4}{|l|}{VALUE} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(0.087 \pm 0.012\) OUR FIT \(0.086 \pm 0.012\) OUR AVERAGE}} \\
\hline & & & & & & \\
\hline \(0.085 \pm 0.012 \pm 0.012\) & 129 & AbE & 02C & BELL & \multicolumn{2}{|l|}{\(e^{+} e^{-} \approx r(4 S)\)} \\
\hline \(0.087 \pm 0.016 \pm 0.006\) & 57 & LINK & 02 G & FOCS & \(\gamma\) nucle & \(\approx 180 \mathrm{GeV}\) \\
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\equiv(1690){ }^{0} K^{+}, \Xi^{* 0} \rightarrow \Sigma^{+} K^{-}\right) / \Gamma\left(\Sigma^{+} \pi^{+} \pi^{-}\right)\)} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|r|}{\(\Gamma_{59} / \Gamma_{48}\)} \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\(\frac{\square}{0.023} \pm 0.005\) OUR AVERAGE}} & & & COMMEN & \\
\hline & & & & & & \\
\hline \(0.023 \pm 0.005 \pm 0.005\) & 75 & ABE & 02 C & BELL & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline \(0.022 \pm 0.006 \pm 0.006\) & 34 & LINK & 02 G & FOCS & \(\gamma\) nucleus & \(\approx 180 \mathrm{GeV}\) \\
\hline
\end{tabular}


\(\left.p K^{-} \pi^{+}\right)=(11.2 \pm 1.3) \mathrm{pb}\), which is the weighted average of measurements from ARGUS (ALBRECHT 96E) and CLEO (AVERY 91).
\({ }^{3}\) ALBRECHT 91G measures \(\sigma\left(e^{+} e^{-} \rightarrow \Lambda_{C}^{+} \mathrm{X}\right) \cdot \mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda_{\mu}+\nu_{\mu}\right)=(3.91 \pm 2.02 \pm\) \(0.90) \mathrm{pb}\).
\(\Gamma\left(\Lambda_{\mu}+\nu_{\mu}\right) / \Gamma\left(\lambda^{+} \nu_{e}\right)\)
\({ }^{73} / \Gamma_{72}\)
- - We do not use the following data for averages fits, limits COMMENT
\(0.96 \pm 0.16 \pm 0.04 \quad 1\) ABLIKIM 17 D BES3 \(e^{+} e^{-}\)at 4.6 GeV
\({ }^{1}\) This is the ratio of the ABLIKIM 17D \(\Lambda \mu^{+} \nu_{e}\) branching fraction and the ABLIKIM 15 Y \(\Lambda e^{+} \nu_{e}\) branching fraction (see above), and so is not an independent measurement.


\section*{\(\Lambda_{c}^{+}\)DECAY PARAMETERS}

See the note on "Baryon Decay Parameters" in the neutron Listings.
\(\alpha\) FOR \(\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.84 \(\pm \mathbf{0 . 0 9}\) OUR AVERAGE} \\
\hline \(-0.80 \pm 0.11 \pm 0.02\) & & ABLIKIM & 19AX BES3 & \(e^{+} e^{-}\)at 4.6 GeV \\
\hline \(-0.78 \pm 0.16 \pm 0.19\) & & LINK & 06A FOCS & \(\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}\) \\
\hline \(-0.94 \pm 0.21 \pm 0.12\) & 414 & \({ }^{1}\) BISHAI & 95 CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \(-0.96 \pm 0.42\) & & ALBRECHT & 92 ARG & \(e^{+} e^{-} \approx 10.4 \mathrm{GeV}\) \\
\hline \(-1.1 \pm 0.4\) & 86 & AVERY & 90B CLEO & \(e^{+} e^{-} \approx 10.6 \mathrm{GeV}\) \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) BISHAI 95 actually gives \(\alpha=-0.94_{-0.06}^{+0.21}+0.12\), chopping the errors at the physical limit -1.0 . However, for \(\alpha \approx-1.0\), some experiments should get unphysical values ( \(\alpha<-1.0\) ), and for averaging with other measurements such values (or errors that extend below -1.0 ) should not be chopped.} \\
\hline \multicolumn{5}{|l|}{\(\alpha \mathrm{FOR} \Lambda_{c}^{+} \rightarrow \Sigma^{+} \boldsymbol{\pi}^{0}\)} \\
\hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{-0.55 \(\pm \mathbf{0 . 1 1}\) OUR AVERAGE} \\
\hline \(-0.57 \pm 0.10 \pm 0.07\) & & ABLIKIM & 19Ax BES3 & \(e^{+} e^{-}\)at 4.6 GeV \\
\hline \(-0.45 \pm 0.31 \pm 0.06\) & 89 & BISHAI & 95 CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline
\end{tabular}
\(\Lambda_{c}^{+}, \Lambda_{c}(2595)^{+}\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
\[
(\alpha+\bar{\alpha}) /(\alpha-\bar{\alpha}) \text { in } \Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}, \bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda} e^{-} \bar{\nu}_{e}
\] \\
This is zero if \(C P\) is conserved.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{VALUE} & DOCUMENT & & TECN & COMMEN & \\
\hline \(0.00 \pm 0.03 \pm 0.02\) & & HINSON & 05 & CLEO & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline \multicolumn{7}{|l|}{\(\boldsymbol{A}_{C P}(\Lambda X)\) in \(\Lambda_{c} \rightarrow \Lambda X, \bar{\Lambda}_{c} \rightarrow \bar{\Lambda} X\)} \\
\hline VALUE (\%) & EVTS & DOCUMENT & & TECN & COMMEN & \\
\hline \({ }_{2.1}+\mathbf{+ 7 . 0}\) ( \(\pm 1.6\) & 700 & ABLIKIM & 18E & BES3 & \(e^{+} e^{-}\)a & 4.6 GeV \\
\hline
\end{tabular}
\(\Delta A_{C P}=A_{C P}\left(\Lambda_{c}^{+} \Rightarrow p K^{+} K^{-}\right)=A_{C P}\left(\Lambda_{C}^{+} \Rightarrow p \pi^{+} \pi^{-}\right)\)
\(\frac{\operatorname{VALUE}(\%)}{0.30+0.91+0.61} \quad 1 \frac{\text { DOCUMENT ID }}{\text { TECN }}\) COMMENT
\(\mathbf{0 . 3 0} \pm \mathbf{0 . 9 1} \pm \mathbf{0 . 6 1} \quad{ }^{1} \mathrm{AAIJ} \quad 18 \mathrm{R}\) LHCB \(p p 7,8 \mathrm{TeV}\)
\({ }^{1}\) AAIJ 18R applies phase-space-dependent weights to the \(\Lambda_{C}^{+} \rightarrow p \pi^{+} \pi^{-}\)sample to align its kinematics with the \(\Lambda_{C}^{+} \rightarrow p K^{+} K^{-}\)sample.

\section*{\(\Lambda_{c}^{+}\)REFERENCES}

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1992 edition (Physical Review D45, 1 June, Part II) or in earlier editions.
\begin{tabular}{|c|c|c|c|c|}
\hline AAIJ & 19AG & PR D100 032001 & R. Aaij et al. & (LHCD Collab.) \\
\hline ABLIKIM & 19AX & PR D100 072004 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 19X & CP C43 083002 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 19Y & PR D99 032010 & M. Ablikim et al. & (BESIII Collab.) \\
\hline AAIJ & 18 N & PR D97 091101 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18R & JHEP 1803182 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18 V & JHEP 1803043 & R. Aaij et al. & (LHCb Collab.) \\
\hline ABLIKIM & 18AF & PRL 121251801 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 18 E & PRL 121062003 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 18 Y & PL B783 200 & M. Ablikim et al. & (BESIII Collab.) \\
\hline BERGER & 18 & PR D98 112006 & M. Berger et al. & (BELLE Collab.) \\
\hline ABLIKIM & 17D & PL B767 42 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 17H & PRL 118112001 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 17Q & PR D95 111102 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 17Y & PL B772 388 & M. Ablikim et al. & (BESIII Collab.) \\
\hline PAL & 17 & PR D96 051102 & B. Pal et al. & (BELLE Collab.) \\
\hline ABLIKIM & 16 & PRL 116052001 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ABLIKIM & 16 U & PRL 117232002 & M. Ablikim et al. & (BESIII Collab.) \\
\hline YANG & 16 & PRL 117011801 & S.B. Yang et al. & (BELLE Collab.) \\
\hline ABLIKIM & 15 Y & PRL 115221805 & M. Ablikim et al. & (BESIII Collab.) \\
\hline ZUPANC & 14 & PRL 113042002 & A. Zupanc et al. & (BELLE Collab.) \\
\hline LEES & 11G & PR D84 072006 & J.P. Lees et al. & (BABAR Collab.) \\
\hline VAZQUEZ-JA... & 08 & PL B666 299 & E. Vazquez-Jauregui et al. & (SELEX Collab.) \\
\hline AUBERT & 07 U & PR D75 052002 & B. Aubert et al. & (BABAR Collab.) \\
\hline LINK & 06A & PL B634 165 & J.M. Link et al. & (FNAL FOCUS Collab.) \\
\hline AUBERT,B & 05S & PR D72 052006 & B. Aubert et al. & (BABAR Collab.) \\
\hline HINSON & 05 & PRL 94191801 & J.W. Hinson et al. & (CLEO Collab.) \\
\hline LINK & 05F & PL B624 22 & J.M. Link et al. & (FNAL FOCUS Collab.) \\
\hline CRONIN-HEN... & & PR D67 012001 & D. Cronin-Hennessy et al. & (CLEO Collab.) \\
\hline KAYIS-TOPAK. & & PL B555 156 & A. Kayis-Topaksu et al. & (CERN CHORUS Collab.) \\
\hline ABE & 02C & PL B524 33 & K. Abe et al. & (KEK BELLE Collab.) \\
\hline LINK & 02C & PRL 88161801 & J.M. Link et al. & (FNAL FOCUS Collab.) \\
\hline LINK & 02G & PL B540 25 & J.M. Link et al. & (FNAL FOCUS Collab.) \\
\hline PDG & 02 & PR D66 010001 & K. Hagiwara et al. & (PDG Collab.) \\
\hline KUSHNIR... & 01 & PRL 865243 & A. Kushnirenko et al. & (FNAL SELEX Collab.) \\
\hline MAHMOOD & 01 & PRL 862232 & A.H. Mahmood et al. & (CLEO Collab.) \\
\hline AITALA & 00 & PL B471 449 & E.M. Aitala et al. & (FNAL E791 Collab.) \\
\hline
\end{tabular}
\[
I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right) \text {Status: } * * *
\]

The \(\Lambda_{C}^{+} \pi^{+} \pi^{-}\)mode is largely, and perhaps entirely, \(\Sigma_{C} \pi\), which is just at threshold; since the \(\Sigma_{C}\) has \(J^{P}=1 / 2^{+}\), the \(J^{P}\) here is almost certainly \(1 / 2^{-}\). This result is in accord with the theoretical expectation that this is the charm counterpart of the strange \(\Lambda(1405)\).

\section*{\(\Lambda_{c}(2595)^{+}\)MASS}

The mass is obtained from the \(\Lambda_{C}(2595)^{+}-\Lambda_{c}^{+}\)mass-difference measurements below.

VALUE (MeV) DOCUMENT ID
\(2592.25 \pm 0.28\) OUR FIT

\section*{\(\Lambda_{c}(2595)^{+}=\Lambda_{c}^{+}\)MASS DIFFERENCE}

VALUE (MeV)
\(305.79 \pm 0.24\) OUR FIT
\(\begin{array}{ll}305.79 \pm 0.24 & \text { OUR FIT } \\ 305.79 \pm 0.14 \pm 0.20\end{array} \quad 3.5 \mathrm{k}\) \(305.6 \pm 0.3 \quad\) \(309.7 \pm 0.9 \pm 0.4 \quad 19 \quad\) BLECHMAN \(\quad\) Threshold shift \(309.2 \pm 0.7 \pm 0.3 \quad 14 \pm 4.5 \quad\) FRABETTI 96 E687 \(\gamma \mathrm{Be}, \bar{E}_{\gamma} \approx 220 \mathrm{GeV}\) \(307.5 \pm 0.4 \pm 1.0 \quad 112 \pm 17 \quad\) EDWARDS 95 CLE2 \(e^{+} e^{-} \approx 10.5 \mathrm{GeV}\)
\({ }^{1}\) BLECHMAN 03 finds that a more sophisticated treatment than a simple Breit-Wigner for the proximity of the threshold of the dominant decay, \(\Sigma_{C}(2455) \pi\), lowers the \(\Lambda_{C}(2595)^{+}-\Lambda_{C}^{+}\)mass difference by 2 or 3 MeV . The analysis of AALTONEN 11 H bears this out.

\section*{\(\Lambda_{c}(2595)^{+}\)WIDTH}
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{2 . 5 9} \pm \mathbf{0 . 3 0} \pm \mathbf{0 . 4 7}} \frac{\operatorname{EVTS}}{3.5 \mathrm{k}} \quad 2 \frac{\text { DOCUMENT ID }}{\text { AALTONEN } 11 \mathrm{H}} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}}\)
- - We do not use the following data for averages, fits, limits, etc. • •
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \({ }^{9}+2.9\) & +1.8
-1.4 & 19 & ALBRECHT & 97 & ARG & \(e^{+} e^{-}\) & 10 GeV \\
\hline 3. & \({ }^{+}{ }_{-1.4}^{+1.4}\) & \[
\begin{array}{r}
+2.0 \\
-1.0
\end{array}
\] & \(112 \pm 17\) & EDWARDS & 95 & CLE2 & \(e^{-}\) & 10.5 GeV \\
\hline
\end{tabular}
\({ }^{2}\) AALTONEN 11 H treats the three charged modes \(\Lambda_{C}(2595)^{+} \rightarrow \Sigma_{C}(2455)^{++} \pi^{-}\), \(\Sigma_{C}(2455)^{+} \pi^{0}, \Sigma_{C}(2455)^{0} \pi^{+}\)separately in terms of a common coupling constant \(h_{2}\) and obtains \(h_{2}^{2}=0.36 \pm 0.08\). From this the width is determined.


\section*{\(\Lambda_{c}(2625)^{+}\)MASS}

The mass is obtained from the \(\Lambda_{C}(2625)^{+}-\Lambda_{C}^{+}\)mass-difference measurements below.
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { EVTS }}\) DOCUMENT ID TECN COMMENT \(\mathbf{2 6 2 8 . 1 1 \pm 0 . 1 9 ~ O U R ~ F I T ~ E r r o r ~ i n c l u d e s ~ s c a l e ~ f a c t o r ~ o f ~ 1 . 1 . ~}\)
- - We do not use the following data for averages, fits, limits, etc. - - • \(2626.6 \pm 0.5 \pm 1.5 \quad 42 \pm 9 \quad\) ALBRECHT \(93 F\) ARG See ALBRECHT 97

\section*{\(\Lambda_{c}(2625)^{+}-\Lambda_{c}^{+}\)MASS DIFFERENCE}

VALUE \((\mathrm{MeV})\) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{3 4 1 . 6 5} \pm \mathbf{0 . 1 3}\) OUR FIT Error includes scale factor of 1.1.
\(341.65 \pm \mathbf{0 . 1 5}\) OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
\begin{tabular}{lrllll}
\(341.65 \pm 0.04 \pm 0.12\) & 6.2 k & AALTONEN & 11 H & CDF & \(p \bar{p}\) at 1.96 TeV \\
\(342.1 \pm 0.5 \pm 0.5\) & 51 & ALBRECHT & 97 & ARG & \(e^{+} e^{-} \approx 10 \mathrm{GeV}\) \\
\(342.2 \pm 0.2 \pm 0.5\) & \(245 \pm 19\) & EDWARDS & 95 & CLE2 & \(e^{+} e^{-} \approx 10.5 \mathrm{GeV}\) \\
\(340.4 \pm 0.6 \pm 0.3\) & \(40 \pm 9\) & FRABETTI & 94 & E 687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=220 \mathrm{GeV}\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\(\Lambda_{C}(\mathbf{2 6 2 5})^{+}\)WIDTH} \\
\hline VALUE (MeV) & CL\% & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline <0.97 & 90 & 6.2k & AALTONEN & 11H & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline <1.9 & 90 & \(245 \pm 19\) & EDWARDS & 95 & CLE2 & \(e^{+} e^{-} \approx 10.5 \mathrm{GeV}\) \\
\hline <3.2 & 90 & & ALBRECHT & & ARG & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline
\end{tabular}

\section*{\(\Lambda_{c}(2625)^{+}\)DECAY MODES}
\(\Lambda_{C}^{+} \pi \pi\) and its submode \(\Sigma(2455) \pi\) are the only strong decays allowed to an excited \(\Lambda_{C}^{+}\)having this mass.
\begin{tabular}{llcc} 
& Mode & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) & Confidence level \\
\hline\(\Gamma_{1}\) & \(\Lambda_{C}^{+} \pi^{+} \pi^{-}\) & \(\approx 67 \%\) & \\
\(\Gamma_{2}\) & \(\Sigma_{C}(2455)^{++} \pi^{-}\) & \(<5\) & \\
\(\Gamma_{3}\) & \(\Sigma_{C}(2455)^{0} \pi^{+}\) & \(<5\) & \(90 \%\) \\
\(\Gamma_{4}\) & \(\Lambda_{C}^{+} \pi^{+} \pi^{-}\)3-body & large & \(90 \%\) \\
\(\Gamma_{5}\) & \(\Lambda_{C}^{+} \pi^{0}\) & {\([a]\) not seen } & \\
\(\Gamma_{6}\) & \(\Lambda_{C}^{+} \gamma\) & not seen &
\end{tabular}
[a] A test that the isospin is indeed 0 , so that the particle is indeed a \(\Lambda_{c}^{+}\).

- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.54 \pm 0.14 \quad 16 \quad\) ALBRECHT 93F ARG \(e^{+} e^{-} \approx \Upsilon(4 S)\)


\section*{\(\Lambda_{c}(2765)^{+}\)MASS}

The mass is obtained from the \(\Lambda_{C}(2765)^{+}-\Lambda_{C}^{+}\)mass-difference measurement below.
```

VALUE (MeV)
DOCUMENTID
2766.6\pm2.4 OUR FIT

```
\[
\Lambda_{c}(2765)^{+}-\Lambda_{c}^{+} \text {MASS DIFFERENCE }
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(480.1 \pm 2.4\) OUR FIT} \\
\hline \(480.1 \pm 2.4\) & \(997{ }_{-129}^{+141}\) & ARTUSO & 01 & CLE2 & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline
\end{tabular}

\(\Lambda_{c}(2860)^{+} \quad \quad\left(J^{P}\right)=0\left(\frac{3}{2}{ }^{+}\right)\)Status: \(* * *\)
\begin{tabular}{|c|c|}
\hline & \(\Lambda_{c}(2860)^{+}\)MASS \\
\hline value mev) & Doçument Io TECN COMMENT \\
\hline  & in \(\wedge_{b}^{0}\) \\
\hline
\end{tabular}
\({ }^{1}\) The third AAIJ 17 S uncertainty comes from modeling the resonant shape of the nearby \(\Lambda_{C}(2880)^{+}\)and the background (non-resonant) amplitudes.
\begin{tabular}{|c|c|}
\hline & \(\Lambda_{c}(2860)^{+}\)WIDTH \\
\hline value (Meev) & \(\xrightarrow[\text { DOCUMENT ID }]{\text { IT }}\) TECN \(\xrightarrow{\text { COMMENT }}\) \\
\hline \(67.6 \pm{ }_{-0.1}^{10.1}+1.4+{ }_{-2.0} 5\) & AAlJ 175 LHCB \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) The third AAIJ 175 uncertainty comes from modeling the resonant shape of the nearby \(\Lambda_{C}(2880)^{+}\)and the background (non-resonant) amplitudes.
}
\(\Lambda_{\epsilon}(2860)^{+}\)DECAY MODES
\begin{tabular}{llll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(D^{0} p\) & seen \\
\hline & \(\Lambda_{\boldsymbol{C}}(\mathbf{2 8 6 0})^{+}\) & \\
\hline
\end{tabular}

\section*{\(\Lambda_{c}(\mathbf{2 8 6 0})^{+}\)REFERENCES}
\begin{tabular}{lllll} 
AAIJ & \(17 S\) & JHEP 1705030 & R. Aaij et al. & (LHCb Collab.) JP
\end{tabular}
\(\Lambda_{C}(2880)^{+}\)
A narrow peak seen in \(\Lambda_{c}^{+} \pi^{+} \pi^{-}\)and in \(p D^{0}\). It is not seen in
\(p D^{+}\), and therefore it is a \(\Lambda_{c}^{+}\)and not a \(\Sigma_{c}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\Lambda_{C}(\mathbf{2 8 8 0})^{+}\)MASS} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(\frac{\operatorname{VALUE~}(\mathrm{MeV})}{2881.63 \pm 0.24 \text { OUR FIT }}\) EVTS DOCUMENT ID TECN COMMENT}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\(2881.62 \pm 0.24\) OUR AVERAGE} \\
\hline \multicolumn{2}{|l|}{\(2881.75 \pm 0.29 \pm 0.07{ }_{-0.20}^{+0.14}\)} & \({ }^{1}\) AAIJ & 175 & LHCB & in \(\Lambda_{b}^{0} \rightarrow D^{0} p \pi^{-}\) \\
\hline \[
2881.9 \pm 0.1 \pm 0.5
\] & 2.8 k & AUBERT & 07 & BABR & in \(p D^{0}\) \\
\hline \[
2881.2 \pm 0.2 \pm 0.4
\] & 690 & mizuk & 07 & BELL & in \(\Sigma_{C}(2455)^{0,++} \pi^{ \pm}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) The third AAIJ 175 uncertainty comes from modeling the resonant shape of the \(\Lambda_{c}(2880)^{+}\)and the background (non-resonant) amplitudes.} \\
\hline
\end{tabular}

\section*{\(\Lambda_{c}(\mathbf{2 8 8 0})^{+}-\Lambda_{c}^{+}\)MASS DIFFERENCE}

\(\Lambda_{c}(2880)^{+}\)DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda_{C}^{+} \pi^{+} \pi^{-}\) & seen \\
\(\Gamma_{2}\) & \(\Sigma_{C}(2455)^{0,++} \pi^{ \pm}\) & seen \\
\(\Gamma_{3}\) & \(\Sigma_{C}(2520)^{0,++} \pi^{ \pm}\) & seen \\
\(\Gamma_{4}\) & \(p D^{0}\) & seen \\
\hline
\end{tabular}

\section*{\(\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 8 8 0})^{+}\)BRANCHING RATIOS}
 \(\begin{array}{lccll}\frac{\text { VALUE }}{\mathbf{0 . 3 9 2} \pm \mathbf{0 . 0 3 1} \text { OUR AVERAGE }} & \text { Error } & \frac{\text { DOCUMENT ID }}{\text { includes SCale factor }} \frac{\text { TECN }}{\text { of } 1.3 .} & \\ 0.404 \pm 0.021 \pm 0.014 & \text { MIZUK } & 07 & \text { BELL } & \text { in } \Sigma_{C}(2455)^{0,++} \pi^{ \pm}\end{array}\) \(\begin{array}{llllll}0.404 \pm 0.021 \pm 0.014 & & \text { MIZUK } & 07 & \text { BELL } & \text { in } \Sigma_{C}(2455)^{0,++} \\ 0.31 \pm 0.06 & \pm 0.03 & 96 & \text { ARTUSO } & 01 & \text { CLE2 }\end{array} e^{+} e^{-} \approx r(4 S)\)
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}_{\boldsymbol{c}}(\mathbf{2 5 2 0})^{\mathbf{0},++} \boldsymbol{\pi}^{ \pm}\right) / \Gamma\left(\boldsymbol{\Lambda}_{\boldsymbol{c}}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\boldsymbol{-}}\right)\)
\(\frac{\text { VALUE }}{\mathbf{0 . 0 9 1} \pm \mathbf{0 . 0 2 5} \pm \mathbf{0 . 0 1 0}} \frac{C L \%}{\text { DOCUMENT ID }}\)
MIZUK
- - We do not use the following data for averages, fits, limits, etc. - -
\(<0.11 \quad 90 \quad\) ARTUSO 01 CLE2 \(e^{+} e^{-} \approx \Upsilon(4 S)\)

See key on page 999
\(\Gamma\left(\Sigma_{c}(2520)^{0,++} \pi^{ \pm}\right) / \Gamma\left(\Sigma_{c}(2455)^{0,++} \pi^{ \pm}\right) \quad \Gamma_{3} / \Gamma_{2}\)
VALUE DOCUMENT ID _ TECN COMMEN
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.225 \pm 0.062 \pm 0.025 \quad{ }^{3}\) MIZUK \(\quad 07 \mathrm{BELL}\) in \(\Sigma_{C}(2455)^{0},++\pi^{ \pm}\)
\({ }^{3}\) This MIZUK 07 ratio is redundant with MIZUK 07 ratios given above.

\(\Lambda_{c}(2940)^{+}\)WIDTH
VALUE (MEV) \(\qquad\) EVTS \(\qquad\) TECN COMMENT

\section*{\(20 \pm 5\) OUR AVERAGE}
\begin{tabular}{lllll}
\(27.7_{-6.0}^{+8.2} \pm 0.9\) \\
-5.2 & & \({ }^{2}\) AAIJ & 175 & LHCB in \(\Lambda_{b}^{0} \rightarrow D^{0} p \pi^{-}\) \\
\(17.5 \pm 5.2 \pm 5.9\) & 2.2 k & AUBERT & 07 & BABR in \(p D^{0}\) \\
\(13{ }_{-5}^{+8} \pm 27\) & 220 & MIZUK & 07 & BELL in \(\Sigma_{C}(2455)^{0,++} \pi^{ \pm}\)
\end{tabular}
\({ }^{2}\) The third AAIJ 17 S uncertainty comes from modeling the resonant shape of the nearby \(\Lambda_{C}(2880)^{+}\)and the background (non-resonant) amplitudes.

\section*{\(\Lambda_{c}(2940)^{+}\)DECAY MODES}
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(p D^{0}\) & seen \\
\(\Gamma_{2}\) & \(\Sigma_{c}(2455)^{0,++} \pi^{ \pm}\) & seen \\
\hline
\end{tabular}


\section*{\(\boldsymbol{\Sigma}_{\boldsymbol{c}}(\mathbf{2 4 5 5})\) MASSES}

The masses are obtained from the mass-difference measurements that follow.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\Sigma_{c}(2455)^{++}\)MASS} \\
\hline VALUE (MeV) & DOCUMENT ID \\
\hline \(2453.97 \pm 0.14\) OUR FIT & \\
\hline \begin{tabular}{l}
\[
\Sigma_{c}(2455)^{+} \text {MASS }
\] \\
VALUE (MeV)
\end{tabular} & DOCUMENT ID \\
\hline \(2452.9 \pm 0.4\) OUR FIT & \\
\hline \[
\begin{aligned}
& \boldsymbol{\Sigma}_{c}(\mathbf{2 4 5 5})^{0} \text { MASS } \\
& \underline{V A L U E(\mathrm{MeV})}
\end{aligned}
\] & DOCUMENT ID \\
\hline \(2453.75 \pm 0.14\) OU & \\
\hline
\end{tabular}

Baryon Particle Listings
\(\Sigma_{c}(2455), \Sigma_{c}(2520)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Sigma_{\epsilon}(2455)\) WIDTHS} \\
\hline \multicolumn{5}{|l|}{\(\Sigma_{c}(\mathbf{2 4 5 5})^{++}\)WIDTH} \\
\hline \multicolumn{5}{|l|}{\(1.89{ }_{-0.18}^{+0.09}\) OUR AVERAGE Error includes scale factor of 1.1.} \\
\hline \(1.84 \pm 0.04{ }_{-0.20}^{+0.07}\) & 36k & LEE & 14 BELL & \(e^{+} e^{-}\)at \(\Upsilon(4 S)\) \\
\hline \(2.34 \pm 0.13 \pm 0.45\) & 13.8k & AALTONEN & 11H CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(2.3 \pm 0.2 \pm 0.3\) & 2 k & ARTUSO & 02 CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \(2.05{ }_{-0.38}^{+0.41} \pm 0.38\) & 1110 & LINK & 02 FOCS & \(\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}\) \\
\hline \multicolumn{5}{|l|}{\(\Sigma_{c}(2455)^{+}\)WIDTH} \\
\hline <4.6 & 90661 & AMMAR & 01 CLE2 & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline \multicolumn{5}{|l|}{\(\Sigma_{c}(2455)^{0}\) WIDTH} \\
\hline \multicolumn{5}{|l|}{\(1.83{ }_{-0.19}^{+0.11}\) OUR AVERAGE Error includes scale factor of 1.2.} \\
\hline \(1.76 \pm 0.04{ }_{-0.21}^{+0.09}\) & 32k & LEE & 14 BELL & \(e^{+} e^{-}\)at \(\Upsilon(4 S)\) \\
\hline \(1.65 \pm 0.11 \pm 0.49\) & 15.9k & AALTONEN & 11H CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(2.6 \pm 0.5 \pm 0.3\) & & AUBERT & 08bn BABR & \(B^{-} \rightarrow \bar{p} \Lambda_{C}^{+} \pi^{-}\) \\
\hline \(2.5 \pm 0.2 \pm 0.3\) & 2 k & ARTUSO & 02 CLE2 & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline \(1.55{ }_{-0.37}^{+0.41} \pm 0.38\) & 913 & LINK & 02 FOCS & \(\gamma \mathrm{A}, \bar{E}_{\gamma} \approx 180 \mathrm{GeV}\) \\
\hline
\end{tabular}

\section*{\(\Sigma_{\epsilon}(2455)\) DECAY MODES}
\(\Lambda_{C}^{+} \pi\) is the only strong decay allowed to a \(\Sigma_{C}\) having this mass.
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda_{c}^{+} \pi\) & \(\approx 100 \%\) \\
\hline
\end{tabular}


> Seen in the \(\Lambda_{C}^{+} \pi^{ \pm}\)mass spectrum. The natural assignment is that this is the \(J^{P}=3 / 2^{+}\)excitation of the \(\Sigma_{C}(2455)\), the charm counterpart of the \(\Sigma(1385)\), but neither \(J\) nor \(P\) has been measured.

\section*{\(\Sigma_{c}(\mathbf{2 5 2 0})\) MASSES}

The masses are obtained from the mass-difference measurements that follow.

\section*{\(\Sigma_{c}(2520)^{++}\)MASS}

VALUE (MeV) DOCUMENT ID TECN COMMENT
\(\mathbf{2 5 1 8 . 4 1}{ }_{-0.19}^{\mathbf{0}} \mathbf{0}\) OUR FIT Error includes scale factor of 1.1.
- - We do not use the following data for averages, fits, limits, etc. - - -
\(2530 \pm 5 \quad \pm 5 \quad 6 \quad{ }^{1}\) AMMOSOV 93 HLBC \(\nu p \rightarrow \mu^{-} \Sigma_{C}(2530)^{++}\)
\({ }^{1}\) AMMOSOV 93 sees a cluster of 6 events and estimates the background to be 1 event.

\section*{\(\Sigma_{c}(2520)+\) MASS}
\begin{tabular}{|c|c|}
\hline VALUE (MeV) & DOCUMENT ID \\
\hline \multicolumn{2}{|l|}{\(2517.5 \pm 2.3\) OUR FIT} \\
\hline \multicolumn{2}{|l|}{\(\boldsymbol{\Sigma}_{\boldsymbol{C}}(2520)^{0}\) MASS} \\
\hline VALUE (MeV) & DOCUMENT ID \\
\hline \(2518.48 \pm 0.20\) OUR & des scale fact \\
\hline
\end{tabular}


\section*{\(\Sigma_{c}(2800)\) MASSES}

The charged ++ and + masses are obtained from the mass-difference measurements that follow. The neutral mass is dominated by the massdifference measurement, but is pulled up somewhat by the less welldetermined but considerably higher direct-mass measurement. It is possible, in fact, that AUBERT 08BN is seeing a different \(\Sigma_{C}\).

\section*{\(\Sigma_{c}(\mathbf{2 8 0 0})^{++}\)MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & \multicolumn{4}{|l|}{DOCUMENT ID} \\
\hline \multicolumn{5}{|l|}{\(2801{ }_{-6}^{+4}\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Sigma}_{C}(2800)+\) MASS} \\
\hline VALUE (MeV) & \multicolumn{4}{|l|}{DOCUMENT ID} \\
\hline \multicolumn{5}{|l|}{\(2792=14\) OUR FIT} \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{\Sigma}_{c}(2800){ }^{0}\) MASS} \\
\hline VALUE (MeV) & \multicolumn{4}{|l|}{DOCUMENT ID TECN COMMENT} \\
\hline \multicolumn{5}{|l|}{\(\mathbf{2 8 0 6}{ }_{-7}^{\mathbf{5}}\) OUR FIT Error includes scale factor of 1.3.} \\
\hline \(2846 \pm 8 \pm 10\) & AUBERT & BR & \(\rightarrow \bar{p} \Lambda^{\prime}\) & \\
\hline \multicolumn{5}{|c|}{\(\Sigma_{c}(2800)\) MASS DIFFERENCES} \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{m}_{\boldsymbol{\Sigma}_{c}(\mathbf{2 8 0 0})^{++}}=\boldsymbol{m}_{\boldsymbol{\Lambda}_{c}^{+}}\)} \\
\hline \(\operatorname{VALUE}(\mathrm{MeV}) \quad\) EVTS & DOCUMENT ID & TECN & COMMEN & \\
\hline \multicolumn{5}{|l|}{\(514{ }_{-6}^{+4}\) OUR FIT} \\
\hline  & MIZUK & & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\boldsymbol{m}_{\boldsymbol{\Sigma}_{c}(\mathbf{2 8 0 0})^{+}}-\boldsymbol{m}_{\boldsymbol{\Lambda}_{\boldsymbol{C}}^{+}}\)} \\
\hline VALUE (MeV) EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline \(505 \pm 14\) OUR FIT & & & & & \\
\hline \(\mathbf{5 0 5 . 4}=\)\begin{tabular}{l} 
5.8 \\
\(4.6-12.4\) \\
2.0 \\
\hline 1540
\end{tabular} & MIZUK & 05 & BELL & \(e^{+} e^{-} \approx\) & \(\gamma(4 S)\) \\
\hline \(\boldsymbol{m}_{\boldsymbol{\Sigma}_{c}(\mathbf{2 8 0 0})^{0}}-\boldsymbol{m}_{\Lambda_{c}^{+}}\) & & & & & \\
\hline VALUE (MeV) EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & \multicolumn{2}{|l|}{COMMENT} \\
\hline
\end{tabular}
\(519 \mathbf{- 7}_{\mathbf{+}}^{\mathbf{5}}\) OUR FIT Error includes scale factor of 1.3 .
\(\mathbf{5 1 5 . 4}{ }_{-\mathbf{3} .1}^{\mathbf{3} \mathbf{3} \mathbf{- 2 . 0}} \quad 2240{ }_{-}^{+1300} \quad\) MIZUK \(\quad 05\) BELL \(\quad e^{+} e^{-} \approx r(4 S)\)

\section*{\(\Sigma_{c}(2800)\) WIDTHS}
\(\boldsymbol{\Sigma}_{\boldsymbol{c}}(\mathbf{2 8 0 0})^{++}\)WIDTH
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \[
75{ }_{-13}^{+18+12}
\] & \(2810{ }_{-}^{+1090}\) & MIZUK & 05 & BELL & \(e^{+} e^{-} \approx \gamma(4 S)\) \\
\hline \multicolumn{6}{|l|}{\(\Sigma_{c}(\mathbf{2 8 0 0})^{+}\)WIDTH} \\
\hline VALUE (MeV) & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline \[
62+37+52
\] & \[
1540{ }_{-1050}^{+1750}
\] & MIZUK & 05 & BELL & \(e^{+} e^{-} \approx \gamma(4 S)\) \\
\hline \begin{tabular}{l}
\[
\Sigma_{c}(2800)^{0}
\] \\
VaLUE (meV)
\end{tabular} & H EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline
\end{tabular}

72 \({ }_{-15}^{+22}\) OUR AVERAGE
\begin{tabular}{|c|c|c|c|c|}
\hline \[
86_{-22}^{+33} \pm 12
\] & & AUBERT & 08bN BABR & \(B^{-} \rightarrow \bar{p} \wedge_{C}^{+} \pi^{-}\) \\
\hline \[
\begin{gathered}
61_{-13}^{+18}+22 \\
-13
\end{gathered}
\] & \(2240 \pm 74300\) & MIZUK & 05 BELL & \(e^{+} e^{-} \approx \gamma(4 S)\) \\
\hline
\end{tabular}
\(\Sigma_{c}(2800)\) DECAY MODES


Neither of \(J\) or \(P\) has actually been measured. Nor have any absolute branching fractions been measured.

\section*{\(\Xi_{c}^{+}\)MASS}

The fit uses the \(\Xi_{c}^{+}\)and \(\Xi_{c}^{0}\) mass and mass-difference measurements.
Value (MeV) \(\qquad\) EVTS

DOCUMENT ID \(\qquad\) TECN COMMENT

\subsection*{2467.94 \# 0.17 OUR FIT}
2467.95士 0.19 OUR AVERAGE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(2467.97 \pm 0.14 \pm 0.17\) & 3.8k & \({ }^{1}\) AAIJ & 142 & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \(2468.00 \pm 0.18 \pm 0.51\) & 5.1k & AALTONEN & 14B & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(2468.1 \pm 0.4 \pm 0.2\) & 4.9k & \({ }^{2}\) LESIAK & 05 & BELL & \(e^{+} e^{-}, r(4 S)\) \\
\hline \(2465.8 \pm 1.9 \pm 2.5\) & 90 & FRABETTI & 98 & E687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=220 \mathrm{GeV}\) \\
\hline \(2467.0 \pm 1.6 \pm 2.0\) & 147 & EDWARDS & 96 & CLE2 & \(e^{+} e^{-} \approx \gamma(4 S)\) \\
\hline \(2465.1 \pm 3.6 \pm 1.9\) & 30 & ALBRECHT & 90F & ARG & \(e^{+} e^{-}\)at \(\gamma(4 S)\) \\
\hline \(2467 \pm 3 \pm 4\) & 23 & ALAM & 89 & CLEO & \(e^{+} e^{-} 10.6 \mathrm{GeV}\) \\
\hline \(2466.5 \pm 2.7 \pm 1.2\) & 5 & BARLAG & 89C & ACCM & \(\pi^{-} \mathrm{Cu} 230 \mathrm{GeV}\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(2464.4 \pm 2.0 \pm 1.4\) & 30 & FRABETTI & 93B & E687 & See FRABETTI 98 \\
\hline \(2459 \pm 5 \pm 30\) & 56 & \({ }^{3}\) COTEUS & 87 & SPEC & \(n \mathrm{~A} \simeq 600 \mathrm{GeV}\) \\
\hline \(2460 \pm 25\) & 82 & BIAGI & 83 & SPEC & \(\Sigma^{-} \mathrm{Be} 135 \mathrm{GeV}\) \\
\hline
\end{tabular}
\({ }^{1}\) AAIJ \(14 z\) systematic error includes in quadrature the 0.14 MeV uncertainty from the \(\mathrm{m}\left(\Lambda_{C}^{+}\right)\)mass value.
2 The systematic error was (wrongly) given the other way round in LESIAK 05; see the
3 erratum. appears to be a discrepancy between the two experiments. BIAGI 83 sees a single peak (stated significance about 6 standard deviations) in the \(\Lambda K^{-} \pi^{+} \pi^{+}\)mass spectrum. COTEUS 87 sees two peaks in the same spectrum, one at the \(\Xi_{c}^{+}\)mass, the other 75
MeV lower. The latter is attributed to \(\equiv_{c}^{+} \rightarrow \Sigma^{0} K^{-} \pi^{+} \pi^{+}{ }^{c} \rightarrow(\Lambda \gamma) K^{-} \pi^{+} \pi^{+}\), with the \(\gamma\) unseen. The combined significance of the double peak is stated to be 5.5

\section*{Baryon Particle Listings}

三 \(_{c}^{+}\)
standard deviations．But the absence of any trace of a lower peak in BIAGI 83 seems to
us to throw into question the interpretation of the lower peak of COTEUS 87 ．

\section*{\(\Xi_{c}^{+}\)MEAN LIFE}


\section*{\(\Xi_{c}^{+}\)DECAY MODES}

Branching fractions marked with a footnote，e．g．［a］，have been corrected for decay modes not observed in the experiments．For example，the sub－ mode fraction \(\Xi_{C}^{+} \rightarrow \Sigma^{+} \bar{K}^{*}(892)^{0}\) seen in \(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\)has been multiplied up to include \(\bar{K}^{*}(892)^{0} \rightarrow \bar{K}^{0} \pi^{0}\) decays．
\begin{tabular}{c} 
Mode \(\quad\) Fraction \(\left(\Gamma_{i} / \Gamma\right) \quad\) Con \\
\hline No absolute branching fractions have been measured． \\
The following are branching ratios relative to \(\Xi^{-} 2 \pi^{+}\).
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Cabibbo－favored（ \(S=-2\) ）decays－relative to \(\mathrm{E}^{-} 2 \pi^{+}\)} \\
\hline \(\Gamma_{1}\) & \(p 2 K_{S}^{0}\) & \multicolumn{5}{|c|}{\(0.087 \pm 0.021\)} \\
\hline \(\Gamma_{2}\) & \(\wedge \bar{K}^{0} \pi^{+}\) & \multicolumn{5}{|c|}{－} \\
\hline \(\Gamma 3\) & \(\Sigma(1385)+\bar{K}^{0}\) & ［a］ & 1.0 & \(\pm 0.5\) & & \\
\hline \(\Gamma_{4}\) & \(\wedge K^{-} 2 \pi^{+}\) & \multicolumn{5}{|c|}{\(0.323 \pm 0.033\)} \\
\hline \(\Gamma_{5}\) & \(\wedge \bar{K}^{*}(892)^{0} \pi^{+}\) & \multicolumn{5}{|l|}{［a］＜ 0.16 90\％} \\
\hline \(\Gamma_{6}\) & \(\Sigma(1385)^{+} K^{-} \pi^{+}\) & \multicolumn{4}{|l|}{［a］＜ 0.23} & 90\％ \\
\hline \(\Gamma_{7}\) & \(\Sigma^{+} K^{-} \pi^{+}\) & & 0.94 & \(\pm 0.10\) & & \\
\hline \(\Gamma_{8}\) & \(\Sigma+\bar{K}^{*}(892){ }^{0}\) & ［a］ & 0.81 & \(\pm 0.15\) & & \\
\hline \(\Gamma_{9}\) & \(\Sigma^{0} K^{-} 2 \pi^{+}\) & & 0.27 & \(\pm 0.12\) & & \\
\hline \(\Gamma_{10}\) & 三 \({ }^{\text {a }}{ }^{+}\) & & 0.55 & \(\pm 0.16\) & & \\
\hline \(\Gamma_{11}\) & 三－ \(2 \pi^{+}\) & \multicolumn{5}{|c|}{DEFINED AS 1} \\
\hline \(\Gamma_{12}\) & 三（1530）\({ }^{0} \pi^{+}\) & \multicolumn{4}{|l|}{［a］＜ 0.10} & 90\％ \\
\hline \(\Gamma_{13}\) & 三（1620）\({ }^{0} \pi^{+}\) & \multicolumn{4}{|c|}{seen} & \\
\hline \(\Gamma_{14}\) & 三（1690）\({ }^{0} \pi^{+}\) & \multicolumn{4}{|c|}{seen} & \\
\hline \(\Gamma_{15}\) & \(\bar{Z}^{0} \pi^{+} \pi^{0}\) & \multicolumn{4}{|c|}{\(2.3 \pm 0.7\)} & \\
\hline \(\Gamma_{16}\) & \(\bar{E}^{0} \pi^{-} 2 \pi^{+}\) & \multicolumn{4}{|c|}{\(1.7 \pm 0.5\)} & \\
\hline \(\Gamma_{17}\) & \(\overline{=}^{0} e^{+} \nu_{e}\) & \multicolumn{2}{|r|}{2.3} & +0.7
-0.8 & & \\
\hline \(\Gamma_{18}\) & \(\Omega^{-} K^{+} \pi^{+}\) & \multicolumn{4}{|c|}{\(0.07 \pm 0.04\)} & \\
\hline \multicolumn{7}{|c|}{Cabibbo－suppressed decays－relative to \(\Xi^{=} 2 \pi^{+}\)} \\
\hline \(\Gamma_{19}\) & \(p K^{-} \pi^{+}\) & \multicolumn{4}{|c|}{\(0.0045 \pm 0.0022\)} & \\
\hline \(\Gamma_{20}\) & \(p \bar{K}^{*}(892)^{0}\) & \multicolumn{4}{|l|}{a］ \(0.0024 \pm 0.0013\)} & \\
\hline \(\Gamma_{21}\) & \(\Sigma^{+} \pi^{+} \pi^{-}\) & \multicolumn{2}{|r|}{0.48} & \(\pm 0.20\) & & \\
\hline \(\Gamma 22\) & \(\Sigma^{-} 2 \pi^{+}\) & \multicolumn{2}{|r|}{0.18} & \(\pm 0.09\) & & \\
\hline \(\Gamma 23\) & \(\Sigma^{+} K^{+} K^{-}\) & \multicolumn{2}{|r|}{0.15} & \(\pm 0.06\) & & \\
\hline \(\Gamma_{24}\) & \(\Sigma^{+} \phi\) & \multicolumn{4}{|l|}{［a］＜ 0.11} & 90\％ \\
\hline \(\Gamma_{25}\) & 三（1690）\({ }^{0} K^{+}, \Xi^{0} \rightarrow \Sigma^{+} K^{-}\) & \multicolumn{3}{|l|}{＜ 0.05} & & 90\％ \\
\hline \(\Gamma_{26}\) & \(p \phi(1020)\) & & （9 & \(\pm 4\) & ）\(\times 10^{-5}\) & \\
\hline
\end{tabular}
［a］This branching fraction includes all the decay modes of the final－state resonance．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(\Xi_{c}^{+}\)BRANCHING RATIOS Cabibbo－favored（ \(S=-2\) ）decays} & \multirow[b]{2}{*}{\(\Gamma_{1} / \Gamma_{11}\)} \\
\hline \[
\Gamma\left(p 2 K_{S}^{0}\right) / \Gamma\left(\equiv^{-} 2 \pi^{+}\right)
\] & docimen & & COMMENT & \\
\hline \(\begin{array}{ll}0.087 \pm 0.016 \pm 0.014 & 168 \pm 27\end{array}\) & LESI & BEL & & \\
\hline
\end{tabular}

\(\Gamma\left(\boldsymbol{\Sigma}+\bar{K}^{*}(892)^{0}\right) / \Gamma\left(\right.\) 三－\(\left.^{2} \pi^{+}\right) \quad \Gamma_{8} / \Gamma_{11}\) Unseen decay modes of the \(\bar{K}^{*}(892)^{0}\) are included．

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\right.\) 三 \(\left.^{0} \pi^{+}\right) / \Gamma\left(\right.\) ミ－ \(\left.2 \pi^{+}\right)\)} & \multicolumn{2}{|r|}{\(\Gamma_{10} / \Gamma_{11}\)} \\
\hline VALUE & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{\(\frac{\text { TECN }}{\text { CLE2 }}\)} & COMMENT \\
\hline \(0.55 \pm 0.13 \pm 0.09\) & 39 & EDWARDS & 96 & & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \begin{tabular}{l}
\[
\Gamma\left(\Xi^{-} 2 \pi^{+}\right) / \Gamma_{\text {total }}
\] \\
VALUE（units \(10^{-2}\) ）
\end{tabular} & EVTS & DOCUMENT ID & & TECN & COMMENT \(\Gamma_{11} / \Gamma\) \\
\hline \(\mathbf{2 . 8 6} \pm \mathbf{1 . 2 1} \pm \mathbf{0 . 3 8}\) & 24 & \({ }^{1} \mathrm{LI}\) & 19C & BELL & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline －－We do not use & follow & data for averag & ，fits & limit & c．－•－ \\
\hline seen & 131 & BERGFELD & 96 & CLE2 & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline seen & 160 & AVERY & 95 & CLE2 & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline seen & 30 & FRABETTI & 93B & E687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=220 \mathrm{GeV}\) \\
\hline seen & 30 & ALBRECHT & 90 F & ARG & \(e^{+} e^{-}\)at \(\gamma(4 S)\) \\
\hline seen & 23 & ALAM & 89 & CLEO & \(e^{+} e^{-} 10.6 \mathrm{GeV}\) \\
\hline
\end{tabular}
\(1_{\text {LI 19C }}\) report a significance of \(6.8 \sigma\) for the observation of this decay mode，observed in \(\bar{E}_{c}^{+}\)from \(\bar{B}^{0} \rightarrow \bar{\Lambda}_{c}^{-} \bar{\Xi}_{c}^{+}\)．

\section*{\(\Gamma\left(\right.\) 三（1530）\(\left.{ }^{0} \pi^{+}\right) / \Gamma\left(\right.\) 三－ \(\left.2 \pi^{+}\right)\)}

Unseen decay modes of the \(\equiv(1530)^{0}\) are included．
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE CL\％ & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(<0.1\) & LINK & 03E & FOCS & \(\gamma\) nucleus， \(\bar{E}_{\gamma} \approx 180 \mathrm{GeV}\) \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(<0.2\) 90 & BERGFELD & 96 & CLE2 & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline \(\Gamma\left(三(1620){ }^{0} \pi^{+}\right) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & & \(\Gamma_{13} / \Gamma\) \\
\hline VALUE & & & TECN & COMMENT \\
\hline seen & SUMIHAMA & 19 & BELL & \(e^{+} e^{-}\)mostly at \(\gamma(4 S)\) \\
\hline \(\Gamma\left(\right.\) 三（1690）\(\left.{ }^{0} \pi^{+}\right) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & & \(\Gamma_{14} / \Gamma\) \\
\hline VALUE & & & TECN & COMMENT \\
\hline seen & SUMIHAMA & 19 & BELL & \(e^{+} e^{-}\)mostly at \(\gamma(4 S)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\Gamma\left(\right.\)（ \(\left.{ }^{-1} \pi^{+}\right) / \Gamma\left(\right.\)（ \(-2 \pi^{+}\)）} & & & & & \(\Gamma_{15} / \Gamma_{11}\) \\
\hline VALUE & EVTS & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(2.34 \pm 0.57 \pm 0.37\) & 81 & EDWARDS & 96 & CLE2 & \(e^{+} e^{-} \approx\) & 4S） \\
\hline
\end{tabular}
\(\boldsymbol{\Gamma ( 三 ( \mathbf { 1 5 3 0 } ) ^ { \mathbf { 0 } } \boldsymbol { \pi } ^ { + } ) / \Gamma ( \overline { - } ^ { \mathbf { 0 } } \boldsymbol { \pi } ^ { + } \boldsymbol { \pi } ^ { \mathbf { 0 } } ) { } _ { \text { DOCUMENT ID } } \quad \boldsymbol { \Gamma } _ { \mathbf { 1 2 } } / \boldsymbol { \Gamma } _ { \mathbf { 1 5 } }}\)
VALUE CL\％DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－• •
\(<0.3 \quad 90\) EDWARDS 96 CLE2 \(e^{+} e^{-} \approx r(4 S)\)

See key on page 999


\(\frac{V A L U E}{\mathbf{0 . 5 4} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 5}} \quad \frac{\text { DOCUMENT ID }}{\text { LINK 01B }} \frac{\text { TECN }}{\text { FOCS }} \frac{\text { COMMENT }}{\gamma \text { nucleus }}\)
\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma\left(\Sigma^{+} \pi^{+} \pi^{-}\right) / \Gamma\left(\Xi^{-} 2 \pi^{+}\right)\) & & & \(\Gamma_{21} / \Gamma_{11}\) \\
\hline VALUE & DOCUMENT ID & TECN & COMMENT \\
\hline 0．48 \(\pm 0.20 \quad 21 \pm 8\) & VAZQUEZ－JA．．． 08 & SELX & \(\Sigma^{-}\)nucleus， 600 GeV \\
\hline \(\Gamma\left(\Sigma^{-} 2 \pi^{+}\right) / \Gamma\left(\Xi^{-} 2 \pi^{+}\right)\) & & & \(\Gamma_{22} / \Gamma_{11}\) \\
\hline VALUE EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline 0．18 \(\pm 0.09 \quad 10 \pm 4\) & VAZQUEZ－JA．．． 08 & SELX & \(\Sigma^{-}\)nucleus， 600 GeV \\
\hline \(\Gamma\left(\Sigma^{+} K^{+} K^{-}\right) / \Gamma\left(\Sigma^{+} K^{-} \pi^{+}\right.\) & & & \(\Gamma_{23} / \Gamma_{7}\) \\
\hline VALUE EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \(\mathbf{0 . 1 6 \pm 0 . 0 6 \pm 0 . 0 1 ~} 17\) & LINK 03E & FOCS & \(\gamma\) nucleus， \(\bar{E}_{\gamma} \approx 180 \mathrm{GeV}\) \\
\hline
\end{tabular}
\(\boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{+} \boldsymbol{\phi}\right) / \boldsymbol{\Gamma}\left(\boldsymbol{\Sigma}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)\)
Unseen decay modes of the \(\phi\) are included．
\(\frac{\text { VALUE }}{<\mathbf{0 . 1 2}}\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\Gamma\left(\equiv(1690){ }^{0} K^{+} \times \mathrm{B}\left(三(1690)^{0} \rightarrow \Sigma^{+} K^{-}\right)\right) / \Gamma\left(\Sigma^{+} K^{-} \pi^{+}\right)\)} & \multirow[t]{2}{*}{\(\Gamma_{25} / \Gamma_{7}\)} \\
\hline value & CL\％ & DOCU & & TECN & COMMENT & \\
\hline ＜0．05 & 90 & LINK & 03E & FOCS & \(\gamma\) nucleus， & （ GeV \\
\hline
\end{tabular}

\section*{三 \({ }_{c}\)} \(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)\)Status：\(* * * *\)

Neither \(J\) or \(P\) has actually been measured．

\section*{\(\Xi_{c}^{0}\) MASS}

The fit uses the \(\Xi_{c}^{0}\) and \(\Xi_{c}^{+}\)mass and mass－difference measurements．

\begin{abstract}
Value（meV）
\end{abstract}
\(\qquad\) EVTS
DOCUMENT ID \(\qquad\) TECN COMMENT
\(2470.90_{-0.29}^{+0.22}\) OUR FIT
\(2470.99 \pm \mathbf{- 0 . 5 0}\) OUR AVERAGE
\begin{tabular}{|c|c|c|c|c|}
\hline \(2470.85 \pm 0.24 \pm 0.55\) & 3．4k & AALTONEN & 14B CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(2471.0 \pm 0.3{ }_{-1.4}^{+0.2}\) & 8.6 k & \({ }^{1}\) LESIAK & 05 BELL & \(e^{+} e^{-}, r(4 S)\) \\
\hline \(2470.0 \pm 2.8 \pm 2.6\) & 85 & FRABETTI & 98b E687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=220 \mathrm{GeV}\) \\
\hline \(2469 \pm 2 \pm 3\) & 9 & HENDERSON & 92B CLEO & \(\Omega^{-} K^{+}\) \\
\hline \(2472.1 \pm 2.7 \pm 1.6\) & 54 & ALBRECHT & 90F ARG & \(e^{+} e^{-}\)at \(\gamma(4 S)\) \\
\hline \(2473.3 \pm 1.9 \pm 1.2\) & 4 & BARLAG & 90 ACCM & \(\pi^{-}\left(K^{-}\right) \mathrm{Cu} 230 \mathrm{GeV}\) \\
\hline \(2472 \pm 3 \pm 4\) & 19 & ALAM & 89 CLEO & \(e^{+} e^{-} 10.6 \mathrm{GeV}\) \\
\hline \multicolumn{5}{|l|}{－－We do not use the following data for averages，fits，limits，etc．－－} \\
\hline \(2462.1 \pm 3.1 \pm 1.4\) & 42 & \(2^{2}\) FRABETTI & 93C E687 & See FRABETTI 98b \\
\hline \(2471 \pm 3 \pm 4\) & 14 & AVERY & 89 CLEO & See ALAM 89 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\({ }^{1}\) The systematic error was（wrongly）given the other way round in LESIAK 05. \({ }^{2}\) The FRABETTI 93C mass is well below the other measurements．}} \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{\(\bar{\Xi}_{\boldsymbol{c}}^{\mathbf{0}}-\bar{\Xi}_{\boldsymbol{c}}^{+}\)MASS DIFFERENCE} \\
\hline Value（meV） & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{2．96 0.22 OUR FIT} \\
\hline \multicolumn{5}{|l|}{\(2.91 \pm 0.26\) OUR AVERAGE} \\
\hline \(2.85 \pm 0.30 \pm 0.04\) & 5．1／3．4k & AALTONEN & 14B CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(2.9 \pm 0.5\) & & LESIAK & 05 BELL & \(e^{+} e^{-}, r(4 S)\) \\
\hline \(7.0 \pm 4.5 \pm 2.2\) & & ALBRECHT & 90 F ARG & \(e^{+} e^{-}\)at \(r(4 S)\) \\
\hline \(6.8 \pm 3.3 \pm 0.5\) & & BARLAG & 90 ACCM & \(\pi^{-}\left(K^{-}\right) \mathrm{Cu} 230 \mathrm{GeV}\) \\
\hline \(5 \pm 4 \pm 1\) & & ALAM & & \[
\begin{gathered}
\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}, \Xi_{c}^{+} \rightarrow \\
\equiv^{-} \rightarrow \pi^{+} \pi^{+}
\end{gathered}
\] \\
\hline
\end{tabular}

\({ }_{c}^{0}\) DECAY MODES
\begin{tabular}{|c|c|c|c|}
\hline & Mode & Fraction（ \(\Gamma_{i} / \Gamma^{\text {）}}\) & Scale factor \\
\hline \multicolumn{4}{|c|}{Cabibbo－favored（ \(\mathbf{S}^{=}=\mathbf{2}\) ）decays} \\
\hline \(\Gamma_{1}\) & \(p K^{-} K^{-} \pi^{+}\) & \((4.8 \pm 1.2) \times 10^{-3}\) & 1.1 \\
\hline \(\Gamma_{2}\) & \(p K^{-} \bar{K}^{*}(892)^{0}\) ， & \((2.0 \pm 0.6) \times 10^{-3}\) & \\
\hline \(\Gamma 3\) & \(p K^{-} K^{-} \pi^{+}\)（no & \((3.0 \pm 0.9) \times 10^{-3}\) & \\
\hline \(\Gamma_{4}\) & \(\wedge K_{S}^{0}\) & \((3.0 \pm 0.8) \times 10^{-3}\) & \\
\hline \(\Gamma_{5}\) & \(\wedge K^{-} \pi^{+}\) & （1．45 \(\pm 0.33) \%\) & 1.1 \\
\hline \(\Gamma_{6}\) & \(\wedge \bar{K}^{0} \pi^{+} \pi^{-}\) & seen & \\
\hline \(\Gamma_{7}\) & \(\wedge K^{-} \pi^{+} \pi^{+} \pi^{-}\) & seen & \\
\hline \(\Gamma_{8}\) & \(\bar{\Xi}^{-} \pi^{+}\) & \((1.43 \pm 0.32) \%\) & 1.1 \\
\hline \(\Gamma_{9}\) & 三－\({ }^{-} \pi^{+} \pi^{+} \pi^{-}\) & \((4.8 \pm 2.3) \%\) & \\
\hline \(\Gamma_{10}\) & \(\Omega^{-} K^{+}\) & \((4.2 \pm 1.0) \times 10^{-3}\) & \\
\hline \(\Gamma_{11}\) & \(\bar{\Xi}^{-} e^{+} \nu_{e}\) & \((1.8 \pm 1.2) \%\) & \\
\hline \multicolumn{4}{|c|}{Cabibbo－suppressed decays} \\
\hline \(\Gamma_{12}\) & \(\Xi^{-} K^{+}\) & \((3.9 \pm 1.2) \times 10^{-4}\) & \\
\hline \(\Gamma_{13}\) & \(\Lambda K^{+} K^{-}(\)no \(\phi)\) & \((4.1 \pm 1.4) \times 10^{-4}\) & \\
\hline \(\Gamma_{14}\) & \(\Lambda \phi\) & \((4.9 \pm 1.5) \times 10^{-4}\) & \\
\hline
\end{tabular}

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 5 branching ratios uses 6 measurements and one constraint to determine 4 parameters．The overall fit has a \(\chi^{2}=\) 1.4 for 3 degrees of freedom．

The following off－diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\) ，in percent，from the fit to the branching fractions，\(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\) ．The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one．
\begin{tabular}{|c|c|c|}
\hline \(x_{5}\) & 68 & \\
\hline \(x_{8}\) & 89 & 76 \\
\hline & \(x_{1}\) & \(x_{5}\) \\
\hline
\end{tabular}

\section*{\(\Xi_{c}^{0}\) BRANCHING RATIOS}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\Xi^{-} \pi^{+}\right) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{8} / \Gamma\) \\
\hline Value（\％） & EVTS & DOCUMENT ID & TECN & COMMENT & \\
\hline
\end{tabular}

\(\Gamma\left(\Xi^{-} \pi^{+}\right) / \Gamma\left(\right.\) 三 \(\left.^{-} \pi^{+} \pi^{+} \pi^{-}\right) \quad \Gamma_{8} / \Gamma_{9}\)
\(\frac{\text { VALUE }}{0.30+0.12+0.05} \quad\) DOCUMENT ID \(\frac{\text { TECN }}{\text { COMMENT }}\) \(0.30 \pm 0.12 \pm 0.05\)
\(\Gamma\left(\Omega^{-} K^{+}\right) / \Gamma\left(\Xi^{-} \pi^{+}\right)\)
VALUE EVTS
\(\mathbf{0 . 2 9 4} \pm \mathbf{0 . 0 1 8} \pm \mathbf{0 . 0 1 6} \quad 650\)
ALBRECHT 90F ARG \(e^{+} e^{-}\)at \(r(4 S)\)
\(\Gamma\left(\Xi^{-} e^{+} \nu_{e}\right) / \Gamma\left(\Xi^{-} \pi^{+}\right)\)
DOCUMENT ID TECN COMMENT \(\quad \boldsymbol{\Gamma}_{\mathbf{1 0}} / \boldsymbol{\Gamma}_{\mathbf{8}}\) AUBERT，B 05M BABR \(e^{+} e^{-} \approx \Upsilon(4 S)\)

VALUE EVTS DOCUMENT ID TECN COMMENT \(\Gamma_{11} / \Gamma_{\mathbf{8}}\) \(1.3 \pm 0.8\) OUR AVERAGE Error includes scale factor of 1.8 ．
\(3.1 \pm 1.0{ }_{-0.5}^{+0.3} \quad 54 \quad\) ALEXANDER 95 B CLE2 \(\quad e^{+} e^{-} \approx \gamma(4 S)\) \(0.96 \pm 0.43 \pm 0.18 \quad 18 \quad{ }^{1}\) ALBRECHT 93B ARG \(e^{+} e^{-} \approx 10.4 \mathrm{GeV}\)
\({ }^{1}\) This ALBRECHT 93B value is the average of the（ \(\equiv^{-} e^{+}\)anything）\(/ \Xi^{-} \pi^{+}\)and （ \(\Xi^{-} \mu^{+}\)anything \() / \Xi^{-} \pi^{+}\)ratios．Here we average it with the \(\Xi^{-} e^{+} \nu_{e} / \Xi^{-} \pi^{+}\)ratio．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma\left(\right.\) ミ \(\left.^{-} K^{+}\right) / \Gamma\left(\right.\) E\(\left.^{-} \pi^{+}\right)\) & & & & & \(\Gamma_{12} / \Gamma_{8}\) \\
\hline VALUE（units 10 \(0^{-2}\) ）EVTS & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(2.75 \pm 0.51 \pm 0.25 \quad 314 \pm 58\) & CHISTOV & 13 & BELL & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline \(\Gamma\left(\wedge K^{+} K^{-}(\right.\)no \(\phi\) ）\() / \Gamma\left(\Xi^{-} \boldsymbol{\pi}^{+}\right)\) & & & & & \(\Gamma_{13} / \Gamma_{8}\) \\
\hline VALUE（units \(\left.10^{-2}\right)\) & DOCUMENT ID & & TECN & COMMENT & \\
\hline \(\mathbf{2 . 8 6} \pm \mathbf{0 . 6 1 \pm 0 . 3 7 - 5 1 0} \pm 110\) & CHISTOV & 13 & BELL & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline \(\Gamma(\Lambda \phi) / \Gamma\left(\Xi^{-} \pi^{+}\right)\) & & & & & \(\Gamma_{14} / \Gamma_{8}\) \\
\hline VALUE（units 10－2）EVTS & DOCUMENT ID & & TECN & COMMENT & \\
\hline 3．43 \(\pm 0.58 \pm 0.32 \quad 316 \pm 54\) & CHISTOV & 13 & BELL & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline
\end{tabular}

\section*{\(\equiv_{c}^{0}\) DECAY PARAMETERS}

See the note on＂Baryon Decay Parameters＂in the neutron Listings．
\(\boldsymbol{\alpha}\) FOR \(\overline{=}_{\boldsymbol{c}}^{\mathbf{0}} \rightarrow\) 三－\(^{-} \boldsymbol{\pi}^{+}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & \multirow[t]{2}{*}{\[
\frac{\text { TECN }}{\text { CLE2 }}
\]} & \\
\hline －0．56 \(\pm 0.39+0.09\) & 138 & CHAN & 01 & & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline \multicolumn{6}{|c|}{\(\bar{c}_{c}^{0}\) REFERENCES} \\
\hline
\end{tabular}


The \(\Xi_{c}^{\prime+}\) and \(\Xi_{c}^{\prime 0}\) presumably complete the \(\operatorname{SU}(3)\) sextet whose other members are the \(\Sigma_{c}^{++}, \Sigma_{c}^{+}, \Sigma_{c}^{0}\) ，and \(\Omega_{c}^{0}\) ：see Fig． 3 in the note on Charmed Baryons．The quantum numbers given above come from this presumption but have not been measured．
```

$\bar{E}_{c}^{\prime+}$ MASS

```

The mass is obtained from the mass－difference measurement that follows．
VALUE（MeV）
\(2578.4 \pm 0.5\) OUR FIT
DOCUMENT ID

\[
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right) \text { Status: } * * *
\]
The \(\Xi_{c}^{\prime 0}\) and \(\Xi_{c}^{\prime+}\) presumably complete the \(\operatorname{SU}(3)\) sextet whose other members are the \(\Sigma_{C}^{+}+\Sigma_{c}^{+}, \Sigma_{c}^{0}\) ，and \(\Omega_{c}^{0}\) ：see Fig． 3 in the note on Charmed Baryons．The quantum numbers given above come from this presumption but have not been measured．

\section*{\(\Xi_{c}^{\prime 0}\) MASS}

The mass is obtained from the mass－difference measurement that follows．


The \(\Xi_{C}^{\prime 0}-\Xi_{C}^{0}\) mass difference is too small for any strong decay to occur．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Mode} & \multicolumn{2}{|c|}{Fraction（ \(\Gamma_{i} / \overline{\text { r }}\) ）} \\
\hline \(\Gamma_{1}\) & \multicolumn{2}{|c|}{\(\Xi^{0}{ }_{c} \gamma\)} & seen & \\
\hline \multicolumn{5}{|c|}{三－\({ }_{c}^{10}\) REFERENCES} \\
\hline YELTON & 16 & PR D94 052011 & J．Yelton et al． & （BELLE Collab．） \\
\hline JESSOP & 99 & PRL 82492 & C．P．Jessop et al． & （CLEO Collab．） \\
\hline
\end{tabular}
二 \(_{c}(2645)\)
The natural assignment is that this is the \(J^{P}=3 / 2^{+}\)excitation
of the \(J_{C}\) in the same \(\operatorname{SU(4)}\) multiplet as the \(\Delta(1232)\) ，but the
quantum numbers have not been measured．

\section*{\(\bar{E}_{c}(2645)\) MASSES}

\section*{\(\bar{E}_{c}(2645)^{+}\)MASS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE（MeV） & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{\(2645.56{ }_{-0.30}^{+0.24}\) OUR FIT} \\
\hline \(2645.6 \pm 0.2 \pm 0.6\) & \(578 \pm 32\) & LESIAK & 08 & BELL & \(e^{+} e^{-} \approx \Upsilon(4 S)\) \\
\hline \(三_{c}(\mathbf{2 6 4 5})^{0}\) MASS & & & & & \\
\hline VALUE（MeV） & EVTS & DOCUMENT ID & & TECN & COMMENT \\
\hline
\end{tabular}
\(\mathbf{2 6 4 6 . 3 8}=\mathbf{- 0 . 2 3}\) OUR FIT Error includes scale factor of 1．1．

\(-0.82 \pm 0.26\) OUR FIT
DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－－－
\begin{tabular}{lllll}
\(-0.85 \pm 0.09 \pm 0.49\) & YELTON & 16 & BELL & 1260 and 975 evts \\
\(-0.1 \pm 0.3 \pm 0.6\) & LESIAK & 08 & BELL \(\approx 600\) evts each
\end{tabular}

\section*{\(\Xi_{c}(2645)\) WIDTHS}
\(\overline{=}_{c}(\mathbf{2 6 4 5})^{+}\)WIDTH

\(\bar{E}_{c}(2645)\) DECAY MODES
\(\Xi_{C} \pi\) is the only strong decay allowed to a \(\Xi_{C}\) resonance having this mass．
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\bar{\Xi}_{c}^{0} \pi^{+}\) & seen \\
\(\Gamma_{2}\) & \(\Xi_{c}^{+} \pi^{-}\) & seen \\
\hline
\end{tabular}
\(\bar{\Xi}_{c}(2645)\) REFERENCES


Seen in \(\Xi_{c}^{\prime} \pi\) decays．The simplest assignment，based on the mass， width，and decay mode，is that this belongs in the same \(\operatorname{SU}(4)\) multiplet as the \(\Lambda(1405)\) and the \(\Lambda_{c}(2595)^{+}\)，but the spin and parity have not been measured．

\section*{\(\bar{E}_{c}(2790)\) MASSES}

The masses are obtained from the mass－difference measurements that fol－ low．
\(\equiv_{c}(2790)+\) MASS
VALUE（MeV）DOCUMENT ID
\(2792.4 \pm 0.5\) OUR FIT
\(\bar{E}_{c}(2790)^{0}\) MASS
\(\frac{V A L U E(M e V)}{2794.1 \pm 0.5 \text { OUR FIT }}\)
\[
\Xi_{c}(2790)-\Xi_{c}^{\prime} \text { MASS DIFFERENCES }
\]
\(\left.\boldsymbol{m}_{\equiv_{c}(\mathbf{2 7 9 0}}\right)^{+}-\boldsymbol{m}_{\bar{E}_{c}^{\prime 0}}\)
\(V \operatorname{VALUE}(\mathrm{MeV}) \quad\) EVTS
DOCUMENT ID TECN COMMENT
\(213.20 \pm 0.22\) OUR FIT
\(213.2 \pm 0.2 \pm 0.1\)
－－We do not use the following
Yelton 16 BELL 2231 and 11,560 evts
211.2 ．
\(m_{E_{\epsilon}(2790)^{0}}-m_{E_{c}^{\prime+}}\)
\(\frac{V A L U E(M e V)}{215.70 \pm 0.22 \text { OUR FIT }} \frac{\text { EVTS }}{}\)
DOCUMENT ID TECN COMMENT
\(215.7 \pm \mathbf{0 . 2} \pm \mathbf{0 . 1} \quad\) YELTON 16 BELL 1241 and 7055 evts
－－We do not use the following data for averages，fits，limits，etc．－．－
\(216.2 \pm 1.3 \pm 1.0 \quad 14 \quad\) CSORNA \(01 \quad\) CLEO \(\quad e^{+} e^{-} \approx r(4 S)\)
\[
\bar{E}_{\epsilon}(2790)^{+}-\bar{E}_{\epsilon}(2790)^{0} \text { MASS DIFFERENCE }
\]

VALUE（MeV） \(\qquad\) DOCUMENT ID TECN COMMENT

\section*{\(-1.7 \pm 0.7\) OUR FIT}
－－We do not use the following data for averages，fits，limits，etc．－－－
\(-3.3 \pm 0.4 \pm 0.5 \quad\) YELTON 16 BELL 2231 and 1241 evts

\section*{\(\equiv_{c}(2790)\) WIDTHS}
\(\equiv_{c}(\mathbf{2 7 9 0})^{+}\)WIDTH
\(\frac{\operatorname{VALUE}(\mathrm{MEV})}{\mathbf{8 . 9} \pm \mathbf{0 . 6} \pm \mathbf{0 . 8}} \frac{C L \%}{2231} \quad \frac{\text { DOCUMENT ID }}{\text { YELTON } 16} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{e^{+} e^{-}, r \text { regions }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|c|}
\hline <15 & 90 & CSORNA & 01 & CLEO & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \multicolumn{6}{|l|}{\(\bar{E}_{c}(2790)^{0}{ }^{\text {WIDTH }}\)} \\
\hline VALUE (MeV) & CL\% EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(10.0 \pm 0.7 \pm 0.8\) & 1241 & YELTON & & BELL & \(e^{+} e^{-}, \Upsilon\) regions \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline <12 & 90 & CSORNA & 01 & CLEO & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline
\end{tabular}
\(\Xi_{c}(2790)\) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Xi^{\prime}{ }_{C} \pi\) & seen \\
\hline
\end{tabular}
\(\Xi_{c}\) (2790) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \multicolumn{2}{|c|}{ENT ID} & TECN & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline seen & yelton & 16 & bell & \(e^{+} e^{-}\), \(r\) & \\
\hline seen & CSORNA & 01 & CLEO & \(e^{+} e^{-} \approx\) & \\
\hline
\end{tabular}
\(\bar{\Xi}_{c}(2790)\) REFERENCES
\begin{tabular}{|c|c|c|c|c|c|}
\hline YELTON CSORNA & 16
01 & \[
\begin{aligned}
& \text { PR D94 } 052011 \\
& \text { PRL } 864243
\end{aligned}
\] & \begin{tabular}{l}
J. Yelton et al. \\
S.E. Csorna et al.
\end{tabular} & & \begin{tabular}{l}
(BELLE Collab.) \\
(CLEO Collab.)
\end{tabular} \\
\hline 三 \(_{c}\) & & & \multicolumn{2}{|l|}{\(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}{ }^{-}\right)\)Status:} & s: \(* * *\) \\
\hline \multicolumn{6}{|r|}{Seen in both \(\Xi_{c}^{\prime} \pi\) and \(\Xi_{c} \pi \pi\) decays. The simplest assignment is that this belongs to the same \(\operatorname{SU}(4)\) multiplet as the \(\Lambda(1520)\) and the \(\Lambda_{c}(2625)\), but the spin and parity have not been measured.} \\
\hline
\end{tabular}

\section*{\(\Xi_{c}\) (2815) MASSES}

The masses are obtained from the mass-difference measurements that follow.
\(\equiv_{c}(2815)+\) MASS
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{2 8 1 6 . 7 4} \mathbf{+ 0 . 2 0} \text { OUR FIT }} \frac{\text { EVTS }}{\text { DOCUMENT ID }}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(2817.0 \pm 1.2{ }_{-0.8}^{+0.7}\) & \(73 \pm 10\) & LESIAK & 08 & BELL & \(e^{+} e^{-} \approx\) & \(r(4 S)\) \\
\hline \multicolumn{7}{|l|}{\(\bar{E}_{c}(2815){ }^{0}\) MASS} \\
\hline VALUE (MeV) & EVTS & DOCUMENT ID & & TECN & COMMENT & \\
\hline \multicolumn{7}{|l|}{\(\mathbf{2 8 2 0 . 2 5}{ }_{-0.31}^{+0.25}\) OUR FIT} \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(2820.4 \pm 1.4{ }_{-1.0}^{+0.9}\) & \(48 \pm 8\) & LESIAK & 08 & BELL & \(e^{+} e^{-} \approx\) & \(\gamma(4 S)\) \\
\hline
\end{tabular}
\(\equiv_{c}(2815)-\equiv_{c}\) MASS DIFFERENCES
\(\boldsymbol{m}_{\overline{\underline{E}}_{c}(\mathbf{2 8 1 5})^{+}}-\boldsymbol{m}_{\bar{E}_{\boldsymbol{c}}^{+}}\)
VALUE (MeV) EVTS
\(\overline{348.80} \pm \mathbf{0 . 1 0 ~ O U R ~ F I T}\)
\(\mathbf{3 4 8 . 8 0} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 6} \quad 941 \quad\) YELTON 16 BELL \(e^{+} e^{-}, \Upsilon\) regions
- - We do not use the following data for averages, fits, limits, etc. • - -
\(348.6 \pm 0.6 \pm 1.0 \quad 20 \quad\) ALEXANDER 99B CLE2 \(e^{+} e^{-} \approx r(4 S)\)
\(m_{\equiv_{c}(2815)^{0}}-m_{=_{c}^{0}}\)
\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{3 4 9} \mathbf{3 5} \pm \mathbf{0 . 1 1 ~ O U R ~ F I T}}\) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{3 4 9 . 3 5} \pm \mathbf{0 . 0 8} \pm \mathbf{0 . 0 7} 1258 \quad\) YELTON \(16 \mathrm{BELL} e^{+} e^{-}, \Upsilon\) regions
- - We do not use the following data for averages, fits, limits, etc. • . -
\(347.2 \pm 0.7 \pm 2.0 \quad 9 \quad\) ALEXANDER 99B CLE2 \(e^{+} e^{-} \approx r(4 S)\)

\section*{\(\Xi_{c}(2815)^{+}-\Xi_{c}(2815)^{0}\) MASS DIFFRRENCE}
\(\boldsymbol{m}_{\Xi_{c}(2815)^{+}}-m_{\bar{E}_{c}(2815)^{0}}\)
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{- 3 . 5 1} \pm \mathbf{0 . 2 6} \text { OUR FIT DOCUMENT ID }}\) TECN COMMENT
\(=3.51 \pm 0.26\) OUR FIT
- - We do not use the following data for averages, fits, limits, etc. - - -
\(-3.47 \pm 0.12 \pm 0.48 \quad\) YELTON 16 BELL 941 and 1258 evts \(-3.4 \pm 1.9 \pm 0.9 \quad\) LESIAK \(\quad 08\) BELL \(73 \& 48\) events

\section*{\(\bar{E}_{c}(2815)\) WIDTHS}
\(\equiv_{c}(\mathbf{2 8 1 5})^{+}\)WIDTH


The \(\bar{\Xi}_{C} \pi \pi\) modes are consistent with being entirely via \(\equiv_{C}(2645) \pi\).
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\bar{\Xi}_{c}^{\prime} \pi\) & seen \\
\(\Gamma_{2}\) & \(\bar{\Xi}_{c}(2645) \pi\) & seen \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \Gamma\left(\Xi_{c}^{\prime} \pi\right) / \Gamma_{\text {total }} \\
& \text { VALUE }
\end{aligned}
\] & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMEN & \(\Gamma_{1} / \Gamma\) \\
\hline seen & Yelton & 16 & bell & \(e^{+} e^{-}, r\) regions & \\
\hline seen & AlEXANDER & 99b & CLE2 & \(e^{+} e^{-} \approx{ }^{(4 S)}\) & \\
\hline \[
\Gamma\left(\Xi_{c}(2645) \pi\right) / \Gamma_{\text {total }}
\] & DOCUMENT ID & & TECN & COMMENT & \(\Gamma_{2} / \Gamma\) \\
\hline seen & Yelton & 16 & bell & \(e^{+} e^{-}, r\) regions & \\
\hline seen & LESIAK & 08 & BELL & \(e^{+} e^{-} \approx r(4 S)\) & \\
\hline
\end{tabular}

\section*{\(\bar{\Xi}_{c}(2815)\) REFERENCES}


OMITTED FROM SUMMARY TABLE
\(\bar{E}_{c}(2930)\) MASSES
\begin{tabular}{|c|c|c|c|c|}
\hline \(E_{c}(2930)^{+}\)MASS & EvTS & \multicolumn{3}{|l|}{DOCUMENT ID TECN COMMENT} \\
\hline \(2942.3 \pm 4.4 \pm 1.5\) & 21 & ᄂ & 180 bELL & \(e^{+} e^{-}\)at \(r^{(4 S)}\) \\
\hline \(\bar{E}_{c}(2930)^{0}\) MASS & EVTS & \multicolumn{3}{|l|}{DOCUMENT TD TECN COMMENT} \\
\hline 2929.7 \({ }_{-5.0}^{2.8}\) OUR AVER & & & & \\
\hline \[
\begin{aligned}
& 292.9 \pm 3.0-0.90 .9 \\
& 291 \pm \pm \pm \pm 5
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& \text { LI } \\
& \text { AUBERT }
\end{aligned}
\] & 18A BEL 08H BABR & \[
e^{+} e^{-} \text {at } r_{(45)}
\] \\
\hline
\end{tabular}

\section*{\(\bar{E}_{c}(2930)^{+}-\Xi_{c}(2930)^{0}\) MASS DIFFERENCE}

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • • •
\(13.4 \pm 5.3_{-12.1}^{+} 1.7 \quad 21 \quad 1 \mathrm{LI} \quad 18 \mathrm{D}\) BELL \(e^{+} e^{-}\)at \(r(4 S)\)

1 This LI 18D value is not independent of the mass measurements.

\section*{\(\equiv_{c}(2930)\) WIDTHS}

\section*{\(\Xi_{c}(2930)^{+}\)WIDTH}


See key on page 999
\(\equiv_{c}(2930)\) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda_{c}^{+} K^{-}\) & seen \\
\(\Gamma_{2}\) & \(\Lambda_{c}^{+} K_{S}^{0}\) & seen \\
\hline
\end{tabular}


\section*{\(\Xi_{c}(2970)\) MASSES}
\(\bar{E}_{c}(2970)^{+}\)MASS
VALUE (MeV) EVTS DOCUMENTID_TECN COMMENT
\(2966.34_{-1.00}^{+0.17}\) OUR FIT
\(2967.1 \pm\) 1.4 OUR AVERAGE Error includes scale factor of 2.0. See the ideogram below.
\(2966.0 \pm 0.8 \pm 0.2 \quad 0.9 \mathrm{k} \quad\) YELTON \(\quad 16 \mathrm{BELL} \quad e^{+} e^{-} \rightarrow r(4 S), r(5 S)\) \(2974.9 \pm 1.5 \pm 2.1 \quad 244 \pm 39 \quad\) KATO 14 BELL \(e^{+} e^{-} \Upsilon(1 S)\) to \(\Upsilon\) \(2969.3 \pm 2.2 \pm 1.7756 \pm 206\) AUBERT 08」 BABR \(e^{+} e^{-} \approx 10.58 \mathrm{GeV}\) \(2967.7 \pm 2.3_{-1.2}^{+1.1} 78 \pm 13 \quad\) LESIAK 08 BELL \(e^{+} e^{-} \approx \gamma(4 S)\)
- - We do not use the following data for averages, fits, limits, etc. • • \(2978.5 \pm 2.1 \pm 2.0 \quad 405 \pm 51\) CHISTOV 06 BELL See KATO 14

\(\bar{\Xi}_{c}(\mathbf{2 9 7 0})^{0}\) MASS
The evidence is statistically weaker for this charge state.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(2970.9{ }_{-0.6}^{+0.4}\) OUR FIT} \\
\hline \multicolumn{2}{|l|}{2970.5 \(\pm\) 1.3 OUR AVERAGE} & \multicolumn{2}{|l|}{Error includes scale factor of 1.9.} & \\
\hline \(2970.8 \pm 0.7 \pm 0.2\) & 1.4 k & YELTON & 16 BELL & \[
\begin{gathered}
e^{+} e^{-} \rightarrow \underset{\text { and continuum }}{ } \quad \Upsilon(5 S)
\end{gathered}
\] \\
\hline \(2972.9 \pm 4.4 \pm 1.6\) & \(67 \pm 44\) & AUBERT & 08J BABR & \(e^{+} e^{-} \approx 10.58 \mathrm{GeV}\) \\
\hline \(2965.7 \pm 2.4_{-1.2}^{+1.1}\) & \(57 \pm 13\) & LESIAK & 08 BELL & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \(2977.1 \pm 8.8 \pm 3.5\) & \(42 \pm 24\) & CHISTOV & 06 BELL & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline
\end{tabular}
\(\bar{\Xi}_{c}(2970)-\Xi_{c}\) MASS DIFFERENCES
\(\boldsymbol{m}_{\bar{E}_{c}(\mathbf{2 9 7 0})^{+}}-\boldsymbol{m}_{\bar{E}_{c}^{+}}\) VALUE (MeV) DOCUMENT ID TECN COMMENT
\(498.40{ }_{-0.90}^{+0.27}\) OUR FIT
\(498.1 \pm 0.8 \pm 0.2 \quad 916 \quad\) YELTON 16 BELL \(e^{+} e^{-}, r\) regions
\(\boldsymbol{m}_{\bar{E}_{c}(\mathbf{2 9 7 0})^{0}}=\boldsymbol{m}_{\bar{E}_{\boldsymbol{c}}}\)
\(\underline{\operatorname{VALUE}(\mathrm{MeV}) \quad \boldsymbol{C}}\) EVTS DOCUMENT ID TECN COMMENT
\(500.0_{-0.6}^{+0.4}\) OUR FIT
\(\mathbf{4 9 9 . 9} \pm \mathbf{0 . 7} \pm \mathbf{0 . 2} \quad 1.4 \mathrm{k} \quad\) YELTON \(\quad 16 \mathrm{BELL} \quad e^{+} e^{-}, r\) regions
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Xi_{c}(2970)^{+}-\Xi_{c}(2970)^{0}\) MASS DIFFERENCE} \\
\hline VALUE (MeV) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-4.6{ }_{-0.6}^{+0.4}\) OUR FIT & & & & \\
\hline \(-4.8 \pm 0.1 \pm 0.5\) & YELTON & 16 & BELL & 916 and 1443 evts \\
\hline
\end{tabular}
\(\equiv_{c}(2970)\) WIDTHS

\section*{\(\equiv_{c}(2970)^{+}\)WIDTH}

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{2 0 . 9} \mathbf{+ \mathbf { 2 . 5 }} \mathbf{\text { 2.5 }}\) OUR AVERAGE Error includes scale factor of 1.2.
\begin{tabular}{|c|c|c|c|c|}
\hline \(28.1 \pm 2.4{ }_{-5.0}^{+1.0}\) & 916 & YELTON & 16 BELL & \(e^{+} e^{-}, \gamma\) regions \\
\hline \(14.8 \pm 2.5 \pm 4.1\) & \(244 \pm 39\) & KATO & 14 BELL & \(e^{+} e^{-} r(1 S)\) to \(\gamma(5 S)\) \\
\hline \(27 \pm 8 \pm 2\) & \(756 \pm 206\) & AUBERT & 08J BABR & \(e^{+} e^{-} \approx 10.58 \mathrm{GeV}\) \\
\hline \(18 \pm 6 \pm 3\) & \(78 \pm 13\) & LESIAK & 08 BELL & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - .} \\
\hline \(43.5 \pm 7.5 \pm 7.0\) & \(405 \pm 51\) & CHISTOV & 06 BELL & See KATO 14 \\
\hline
\end{tabular}

\section*{\(\bar{E}_{c}(2970)^{0}\) WIDTH}
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
\(\mathbf{2 8 . 1} \mathbf{+ \mathbf { 3 . 4 }} \mathbf{4}\) OUR AVERAGE Error includes scale factor of 1.5 . See the ideogram below.


\begin{tabular}{lllllllll}
\hline\(\Xi_{c}(3055)\) \\
\hline
\end{tabular}

\section*{\(\bar{E}_{c}(3055)\) DECAY MODES}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Sigma^{++} K^{-}\) & seen \\
\(\Gamma_{2}\) & \(\Lambda D^{+}\) & seen \\
\hline
\end{tabular}
\(\Xi_{c}(3055)\) BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\Gamma\left(\Lambda D^{+}\right) / \Gamma\left(\Sigma^{++} K^{-}\right)
\] \\
VALUE
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{2} / \Gamma_{1}\)} \\
\hline & & & & & \\
\hline \(5.09 \pm 1.01 \pm 0.76\) & KATO & 16 & BELL & 721 and 103 & \\
\hline
\end{tabular}
\(\bar{E}_{c}(3055)\) REFERENCES



\section*{\(\Xi_{c}(3080)\) BRANCHING RATIOS}
\begin{tabular}{llll}
\(\Gamma\left(\Sigma_{C}(\mathbf{2 4 5 5}) \bar{K}\right) / \Gamma\left(\Lambda_{c}^{+} \bar{K} \pi\right)\) \\
VALUE \\
DOCUMENT ID \\
TECN \\
COMMENT & \(\Gamma_{2} / \Gamma_{1}\)
\end{tabular}

\section*{VALUE \(0.45 \pm 0.06\) OUR AVERAGE}
\(0.45 \pm 0.05 \pm 0.05\)
\begin{tabular}{lll} 
AUBERT & 08」 BABR in \(\Lambda_{C}^{+} K^{-} \pi^{+}\) \\
AUBERT & \(08\lrcorner\) & BABR in \(\Lambda_{C}^{+} K_{S}^{0} \pi^{-}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\Sigma_{c}(\mathbf{2 5 2 0})^{++} K^{-}\right) / \Gamma\left(\Sigma_{c}(2455)^{++} K^{-}\right)\)} & \multirow[b]{2}{*}{TECN} & & \multirow[t]{2}{*}{\(\Gamma_{4} / \Gamma_{3}\)} \\
\hline VALUE & DOCUMEN & & & COMMENT & \\
\hline \(1.07 \pm 0.27 \pm 0.04\) & KATO & 16 & BELL & 234 and 176 evts & \\
\hline \multicolumn{3}{|l|}{\(\left[\Gamma\left(\Sigma_{c}(\mathbf{2 4 5 5 )} \bar{K})+\Gamma\left(\Sigma_{c}(\mathbf{2 5 2 0}) \bar{K}\right)\right] / \Gamma\left(\Lambda_{c}^{+} \bar{K} \pi\right)\right.\)} & & & \(\Gamma_{5} / \Gamma_{1}\) \\
\hline Value & DOCUMEN & & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{\(\underline{0.89} \pm 0.12\) OUR AVERAGE} \\
\hline \(0.95 \pm 0.14 \pm 0.06\) & AUBERT & 08J & BABR & in \(\Lambda_{C}^{+} K^{-} \pi^{+}\) & \\
\hline \(0.78 \pm 0.21 \pm 0.05\) & AUBERT & 08 J & BABR & in \(\Lambda_{C}^{+} K_{S}^{0} \pi^{-}\) & \\
\hline \multirow[t]{2}{*}{\(\Gamma_{\text {VALUE }}\left(1 D^{+}\right) / \Gamma\left(\Sigma_{C}(2455)^{++} K^{-}\right)\)} & & & & & \(\Gamma_{8} / \Gamma_{3}\) \\
\hline & DOCUMEN & & TECN & COMMENT & \\
\hline \(1.29 \pm 0.30 \pm 0.15\) & KATO & 16 & BELL & 186 and 176 evts & \\
\hline
\end{tabular}


OMITTED FROM SUMMARY TABLE
A peak in the \(\Sigma_{C}(2520)^{++} K^{-} \rightarrow \Lambda_{C}^{+} K^{-} \pi^{+}\)mass spectrum with a significance of 3.6 standard deviations. KATO 14 finds no evidence for this state.

See key on page 999
\(\bar{E}_{\epsilon}(3123)\) MASSES
\(\bar{\Xi}_{c}(3123)^{+}\)MASS


\section*{\(\Omega_{c}^{0}\) MASS}
\(\frac{V A L U E(\mathrm{MeV})}{2695.2 \pm 1.7 \text { OUR FIT }} \frac{\text { EVTS }}{\text { Error includes scale factor of } 1.3}\) TECN COMMENT
2695．2土 1．7 OUR FIT Error includes scale factor of 1．3．
2695．2 \({ }^{\boldsymbol{1}}\) 1．8 1．6 OUR AVERAGE Error includes scale factor of 1．3．See the ideogram below．
\(2693.6 \pm 0.3_{-1.5}^{+1.8} \quad 725 \quad\) SOLOVIEVA \(09 \quad\) BELL \(\quad \Omega^{-} \pi^{+}\)in \(e^{+} e^{-} \rightarrow\)
\(2694.6 \pm 2.6 \pm 1.9 \quad 40 \quad{ }^{1}\) CRONIN－HEN．． \(01 \quad\) CLE2 \(\quad e^{+} e^{-} \approx 10.6 \mathrm{GeV}\) \(2699.9 \pm 1.5 \pm 2.5 \quad 42 \quad 2\) FRABETTI 94 H E687 \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=221 \mathrm{GeV}\)
－－We do not use the following data for averages，fits，limits，etc．－－－
\begin{tabular}{lrclll}
\(2705.9 \pm 3.3 \pm 2.0\) & 10 & \({ }^{3}\) FRABETTI & 93 & E687 & \(\gamma \mathrm{Be}, \bar{E}_{\gamma}=221 \mathrm{GeV}\) \\
\(2719.0 \pm 7.0 \pm 2.5\) & 11 & \({ }^{4}\) ALBRECHT & 92 H & ARG & \(e^{+} e^{-} \approx 10.6 \mathrm{GeV}\) \\
\(2740 \pm 20\) & 3 & BIAGI & 85 BPEC & \(\Sigma^{-}\)Be \(135 \mathrm{GeV} / \mathrm{C}\)
\end{tabular}
\({ }^{1}\) CRONIN－HENNESSY 01 sees \(40.4 \pm 9.0\) events in a sum over five channels．
\({ }^{2}\) FRABETTI 94 H claims a signal of \(42.5 \pm 8.8 \Sigma^{+} K^{-} K^{-} \pi^{+}\)events．The background 3 is about 24 events．
\({ }^{3}\) FRABETTI 93 claims a signal of \(10.3 \pm 3.9 \Omega^{-} \pi^{+}\)events above a background of 5.8 4 events．
\(4 \begin{aligned} & \text { events．} \\ & \text { ALBRECHT } 92 \mathrm{H} \text { claims a signal of } 11.5 \pm 4.3 \text { 三 }^{-} K^{-} \pi^{+} \pi^{+} \text {events．The background }\end{aligned}\) is about 5 events．

\(\Omega_{c}^{0}\) MEAN LIFE
\(\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right) \quad\) EVTS
TS
\({ }^{1}\) AAIJ 18 J LHCB \(p K^{-} K^{-} \pi^{+}\)
－－We do not use the following data for averages，fits，limits，etc．• •－
\begin{tabular}{llllll}
\(72 \pm 11 \pm 11\) & 64 & LINK & 03C FOCS & \(\Omega^{-} \pi^{+}, \Xi^{-} K^{-} \pi^{+} \pi^{+}\) \\
\(55_{-11-2}^{+13+18}\) & 86 & ADAMOVICH & 95B WA89 & \(\Omega^{-} \pi^{-} \pi^{+} \pi^{+}, \Xi^{-} K^{-} \pi^{+} \pi^{+}\)
\end{tabular} \(86_{-20}^{+27} \pm 28 \quad 25 \quad\) FRABETTI 95D E687 \(\Sigma^{+} K^{-} K^{-} \pi^{+}\)
\({ }^{1}\) AAIJ 18J，with nearly five times more events that the previous three experiments com－ bined，gets a lifetime that is nearly four times larger than the average of those experi－ ments，\((69 \pm 12) \times 10^{-15} \mathrm{~s}\) ．We go with the larger data sample．
\(\Omega_{c}^{0}\) DECAY MODES
\begin{tabular}{|c|c|c|c|}
\hline & Mode & Fraction（ \(\Gamma_{i} / \Gamma^{\prime}\) ） & Confidence level \\
\hline \multicolumn{4}{|c|}{No absolute branching fractions have been measured． The following are branching ratios relative to \(\Omega^{-} \pi^{+}\)．} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\Gamma_{1} \Omega^{-} \pi^{\text {Cabibbo－favored }(S=-3)}\) decays－relative to \(\Omega^{-} \pi^{+}\)}} \\
\hline & & & \\
\hline \(\Gamma_{2}\) & \(\Omega^{-} \pi^{+} \pi^{0}\) & \(1.80 \pm 0.33\) & \\
\hline \(\Gamma 3\) & \(\Omega^{-} \rho^{+}\) & ＞1．3 & 90\％ \\
\hline \(\Gamma_{4}\) & \(\Omega^{-} \pi^{-} 2 \pi^{+}\) & \(0.31 \pm 0.05\) & \\
\hline \(\Gamma_{5}\) & \(\Omega^{-} e^{+} \nu_{e}\) & \(2.4 \pm 1.2\) & \\
\hline \(\Gamma_{6}\) & \(三^{0} \bar{K}^{0}\) & \(1.64 \pm 0.29\) & \\
\hline \(\Gamma_{7}\) & \({ }{ }^{0} K^{-} \pi^{+}\) & \(1.20 \pm 0.18\) & \\
\hline \(\Gamma_{8}\) & \(\overline{ }^{0} \bar{K}^{* 0}, \bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\) & \(0.68 \pm 0.16\) & \\
\hline \(\Gamma_{9}\) & 三 \({ }^{-} \bar{K}^{0} \pi^{+}\) & \(2.12 \pm 0.28\) & \\
\hline \(\Gamma_{10}\) & 三－\(^{-} K^{-} 2 \pi^{+}\) & \(0.63 \pm 0.09\) & \\
\hline \(\Gamma_{11}\) & \[
\underset{=-\pi^{+}}{(1530)^{0}} K^{-} \pi^{+}, \quad \Xi^{* 0} \rightarrow
\] & \(0.21 \pm 0.06\) & \\
\hline \(\Gamma_{12}\) & 三－\(\overline{\bar{K}}^{* 0} \pi^{+}\) & \(0.34 \pm 0.11\) & \\
\hline \(\Gamma_{13}\) & \(\Sigma^{+} K^{-} K^{-} \pi^{+}\) & ＜0．32 & 90\％ \\
\hline \(\Gamma_{14}\) & \(\wedge \bar{K}^{0} \bar{K}^{0}\) & \(1.72 \pm 0.35\) & \\
\hline
\end{tabular}

\section*{\(\Omega_{c}^{0}\) BRANCHING RATIOS}

A few early but now obsolete measurements have been omitted．See K．A．
Olive，et al．（Particle Data Group），Chinese Physics C38 070001 （2014）．


Baryon Particle Listings
\(\Omega_{c}^{0}, \Omega_{c}(2770)^{0}, \Omega_{c}(3000)^{0}, \Omega_{c}(3050)^{0}, \Omega_{c}(3065)^{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\right.\) 三- \(\left.\bar{K}^{* 0} \pi^{+}\right) / \Gamma\left(\right.\) ミ- \(\left.K^{-} 2 \pi^{+}\right)\)} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{12} / \Gamma_{10}\)} \\
\hline Value & EVTS & DOCUMEN & & & & \\
\hline \(0.55 \pm 0.16\) & 136 & 1 YELTON & 18 & BELL & \(e^{+} e^{-} \rightarrow\) & , +higher \\
\hline
\end{tabular}

1 This submode fraction is evaluated from a background-subtracted signal in a mass plot.
Result ignores interference effects and systematic uncertainties, which YELTON 18 claim are both small.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Sigma^{+} K^{-} K^{-} \pi^{+}\right) / \Gamma\left(\Omega^{-} \pi^{+}\right)\)} & \multirow[b]{2}{*}{TECN} & & \(\Gamma_{13} / \Gamma_{1}\) \\
\hline VALUE & CL\% & EVTS & DOCUMEN & & & COMMENT & \\
\hline \(<0.32\) & 90 & 17 & YELTON & 18 & BELL & \[
\begin{array}{r}
e^{+}+e^{-} \rightarrow \\
+ \text { highe }
\end{array}
\] & \\
\hline
\end{tabular}

\(\mathbf{1 . 7 2} \pm \mathbf{0 . 3 2} \pm \mathbf{0 . 1 4} \quad 95 \quad\) YELTON \(\quad 18\) BELL \(e^{+} e^{-} \rightarrow \Upsilon(4 S)\), +higher
\(\Omega_{c}^{0}\) REFERENCES
\begin{tabular}{|c|c|c|c|c|}
\hline AAIJ & 18J & PRL 121092003 & R. Aaij et al. & (LHCb Collab.) \\
\hline YELTON & 18 & PR D97 032001 & J. Yelton et al. & (BELLE Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline SOLOVIEVA & 09 & PL B672 1 & E. Solovieva et al. & (BELLE Collab.) \\
\hline AUBERT & 07 AH & PRL 99062001 & B. Aubert et al. & (BABAR Collab.) \\
\hline LINK & 03C & PL B561 41 & J.M. Link et al. & (FNAL FOCUS Collab.) \\
\hline AMMAR & 02 & PRL 89171803 & R. Ammar et al. & (CLEO Collab.) \\
\hline CRONIN-HEN... & & PRL 863730 & D. Cronin-Hennessy et al. & (CLEO Collab.) \\
\hline ADAMOVICH & 95B & PL B358 151 & M.I. Adamovich et al. & (CERN WA89 Collab.) \\
\hline FRABETTI & 95D & PL B357 678 & P.L. Frabetti et al. & (FNAL E687 Collab.) \\
\hline FRABETTI & 94 H & PL B338 106 & P.L. Frabetti et al. & (FNAL E687 Collab.) \\
\hline FRABETTI & 93 & PL B300 190 & P.L. Frabetti et al. & (FNAL E687 Collab.) \\
\hline ALBRECHT & 92 H & PL B288 367 & H. Albrecht et al. & (ARGUS Collab.) \\
\hline BIAGI & 85B & ZPHY C28 175 & S.F. Biagi et al. & (CERN WA62 Collab.) \\
\hline
\end{tabular}

\section*{\(\Omega_{c}(2770)^{0}\)}
\[
I\left(J^{P}\right)=0\left(\frac{3}{2}+\right) \text { Status: } * * *
\]

The natural assignment is that this goes with the \(\Sigma_{C}(2520)\) and \(\Xi_{C}(2645)\) to complete the lowest mass \(J^{P}=\frac{3}{2}+\mathrm{SU}(3)\) sextet, part of the \(\operatorname{SU}(4) 20\)-plet that includes the \(\Delta(1232)\). But \(J\) and \(P\) have not been measured.

\section*{\(\Omega_{c}(\mathbf{2 7 7 0})^{0}\) MASS}

The mass is obtained from the mass-difference measurement that follows.
\(\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{2 7 6 5 . 9} \mathbf{2 0} \text { DOCUMENT ID }}\)
\(2765.9 \pm 2.0\) OUR FIT Error includes scale factor of 1.2.

\section*{\(\Omega_{c}(2770)^{0}-\Omega_{c}^{0}\) MASS DIFFERENCE}

VALUE (MeV) \(\qquad\) DOCUMENT ID TECN COMMENT
\(70.7_{-0.9}^{0.8}\) OUR FIT
\(70.7_{-1.0}^{0.8}\) OUR AVERAGE
\begin{tabular}{rrrllll}
\(70.7 \pm 0.9_{-0.9}^{+0.1}\) & \(54 \pm 9\) & SOLOVIEVA & 09 & BELL & \(\Omega_{c}^{0} \gamma\) in \(e^{+} e^{-} \rightarrow r(4 S)\) \\
\(70.8 \pm 1.0 \pm 1.1\) & \(105 \pm 22\) & AUBERT,BE & 061 BABR & \(e^{+} e^{-} \approx r(4 S)\) \\
\hline
\end{tabular}
\(\Omega_{c}(2770)^{0}\) DECAY MODES
The \(\Omega_{C}(2770)^{0}-\Omega_{C}^{0}\) mass difference is too small for any strong decay to occur.
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Omega_{c}^{0} \gamma\) & presumably \(100 \%\) \\
\hline
\end{tabular}


\section*{\(\Omega_{c}(3000)^{0}\) MASS}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (MeV) & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & COMMENT \\
\hline \multicolumn{5}{|l|}{3000.41 \(\mathbf{0 . 2 2}\) OUR AVERAGE} \\
\hline \(3000.7 \pm 1.0 \pm 0.2\) & 38 & YELTON & 18B BELL & \(e^{+} e^{-}\)at \(\gamma(4 S)\) \\
\hline \(3000.4 \pm 0.2 \pm 0.1\) & 1.3k & AAIJ & 17Ан LHCB & \(p p\) at \(7,8,13 \mathrm{TeV}\) \\
\hline
\end{tabular}


See key on page 999
Baryon Particle Listings \(\Omega_{c}(3065)^{0}, \Omega_{c}(3090)^{0}, \Omega_{c}(3120)^{0}\)


Baryon Particle Listings


\(I\left(J^{P}\right)=0\left(\frac{1}{2}+\right)\) Status: \(* * *\)
In the quark model, \(a \Lambda_{b}^{0}\) is an isospin-0 \(u d b\) state. The lowest \(\Lambda_{b}^{0}\) ought to have \(J^{P}=1 / 2^{+}\). None of \(I, J\), or \(P\) have actually been measured.

\section*{\(\Lambda_{b}^{0}\) MASS}

\section*{\(m_{\Lambda_{b}^{0}}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{5619.60土 0.17 OUR AVERAGE} \\
\hline \(5619.62 \pm\) & \(0.16 \pm 0.13\) & & \({ }^{1}\) AAIJ & 17AMLHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \(5619.30 \pm\) & 0.34 & & \({ }^{2}\) AAIJ & 14AA LHCB & \(p p\) at 7 TeV \\
\hline \(5620.15 \pm\) & \(0.31 \pm 0.47\) & & \({ }^{3}\) AALTONEN & 14B CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(5619.7 \pm\) & \(0.7 \pm 1.1\) & & 3 AAD & 13 u ATLS & \(p p\) at 7 TeV \\
\hline \(5621 \pm 4\) & \(4 \pm 3\) & & \({ }^{4}\) ABE & 97B CDF & \(p \bar{p}\) at 1.8 TeV \\
\hline \(5668 \pm 16\) & \(6 \pm 8\) & 4 & \({ }^{5}\) ABREU & 96 N DLPH & \(e^{+} e^{-} \rightarrow Z\) \\
\hline \(5614 \pm 21\) & \(1 \pm 4\) & 4 & \({ }^{5}\) BUSKULIC & 96L ALEP & \(e^{+} e^{-} \rightarrow Z\) \\
\hline \multicolumn{6}{|l|}{\(\bullet\) - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline \(5619.65 \pm\) & \(0.17 \pm 0.17\) & & \({ }^{6}\) AAIJ & 16Y LHCB & Repl. by AAIJ 17AM \\
\hline \(5619.44 \pm\) & \(0.13 \pm 0.38\) & & \({ }^{3}\) AAIJ & 13av LHCB & Repl. by AAIJ 17AM \\
\hline \(5619.19 \pm\) & \(0.70 \pm 0.30\) & & \({ }^{3}\) AAIJ & 12E LHCB & Repl. by AAIJ 13av \\
\hline \(5619.7 \pm 1\) & \(1.2 \pm 1.2\) & & \({ }^{7}\) ACOSTA & 06 CDF & \begin{tabular}{l}
Repl. by AALTO- \\
NEN 14B
\end{tabular} \\
\hline not seen & & & \({ }^{8} \mathrm{ABE}\) & 93B CDF & Repl. by ABE 97B \\
\hline \(5640 \pm 50\) & \(0 \pm 30\) & 16 & \({ }^{9}\) ALBAJAR & 91E UA1 & \(p \bar{p} 630 \mathrm{GeV}\) \\
\hline \(5640 \begin{aligned} & \text { - } 100 \\ & -210\end{aligned}\) & & 52 & BARI & 91 SFM & \(\Lambda_{b}^{0} \rightarrow p D^{0} \pi^{-}\) \\
\hline \begin{tabular}{l}
5650 \\
\hline
\end{tabular} & & 90 & BARI & 91 SFM & \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Uses \(\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}, \Lambda_{b}^{0} \rightarrow \chi_{C 2} p K^{-}, \Lambda_{b}^{0} \rightarrow J / \psi \Lambda, \Lambda_{b}^{0} \rightarrow p \psi(2 S) K^{-}, \Lambda_{b}^{0} \rightarrow\) \(p J / \psi \pi^{+} \pi^{-} K^{-}\), and \(\Lambda_{b}^{0} \rightarrow p J / \psi K^{-}\)decays.} \\
\hline
\end{tabular}
\({ }^{2}\) Uses exclusively reconstructed final states \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} D_{s}^{-}, \Lambda_{c}^{+} D^{-}\)and \(\bar{B}^{0} \rightarrow D^{+} D_{s}^{-}\) decays. The uncertainty includes both statistical and systematic contributions.
\({ }^{3}\) Uses \(\Lambda_{b}^{0} \rightarrow J / \psi \uparrow\) fully reconstructed decays.
\({ }^{4}\) ABE 97 B observed 38 events with a background of \(18 \pm 1.6\) events in the mass range \(5.60-5.65 \mathrm{GeV} / \mathrm{c}^{2}\), a significance of \(>3.4\) standard deviations.
\({ }^{5}\) Uses 4 fully reconstructed \(\wedge_{b}\) events.
\({ }^{6}\) Uses \(\Lambda_{b}^{0} \rightarrow p \psi(2 S) K^{-}, \Lambda_{b}^{0} \rightarrow p J / \psi \pi^{+} \pi^{-} K^{-}\), and \(\Lambda_{b}^{0} \rightarrow p J / \psi K^{-}\)decays.
\({ }^{7}\) Uses exclusively reconstructed final states containing a \(J / \psi \rightarrow \mu^{+} \mu^{-}\)decays.
\({ }^{8}\) ABE 93B states that, based on the signal claimed by ALBAJAR 91E, CDF should have found \(30 \pm 23 \wedge_{b}^{0} \rightarrow J / \psi(1 S) \wedge\) events. Instead, CDF found not more than 2 events.
\({ }^{9}\) ALBAJAR 91E claims \(16 \pm 5\) events above a background of \(9 \pm 1\) events, a significance of about 5 standard deviations.
\(m_{\Lambda_{b}^{0}}-m_{B^{0}}\)
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{3 3 9 . 2} \pm \mathbf{1 . 4} \mathbf{4 . 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { ACOSTA } \quad 06} \frac{\text { TECN }}{\text { CDF }} \frac{\text { COMMENT }}{p \bar{p} \text { at } 1.96 \mathrm{TeV}}\)
\({ }^{1}\) Uses exclusively reconstructed final states containing \(J / \psi \rightarrow \mu^{+} \mu^{-}\)decays.
\(m_{\Lambda_{b}^{0}}-m_{B^{+}}\)
VALUE (MeV)
\(339.72 \pm 0.28\) OUR AVERAGE
\(339.72 \pm 0.24 \pm 0.18\)
DOCUMENT ID TECN COMMENT
\(339.72 \pm 0.24 \pm 0.18\)
\[
1 \text { AAIJ } \quad 14 \mathrm{AA} \text { LHCB } p p \text { at } 7 \mathrm{TeV}
\]
\({ }^{1}\) Uses exclusively reconstructed final states \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} D_{s}^{-}, \Lambda_{c}^{+} D^{-}\)and \(\bar{B}^{0} \rightarrow D^{+} D_{s}^{-}\) decays.
\({ }^{2}\) Uses exclusively reconstructed final states containing \(J / \psi \rightarrow \mu^{+} \mu^{-}\)decays.

\section*{\(\Lambda_{b}^{0}\) MEAN LIFE}
See \(b\)-baryon Admixture section for data on \(b\)-baryon mean life average over species of \(b\)-baryon particles.
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

\section*{\(\frac{\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)}{\mathbf{1 . 4 7 1} \mathbf{\pm 0 . 0 0 9} \text { OUR EVALUATIO }}\)}
\(1.477 \pm 0.027 \pm 0.00\)
TECN
COMMENT
\(\pm 0.00\)
\(1.479+0.009+0\)
\(1.565 \pm 0.035 \pm 0.020\)
\(\mathbf{O N}\)
1 SIRUNYAN
2 AAIJ
18BY CMS
14 E LHCB \(p p\) at 8 TeV
14 E LHCB \(p p\) at 7 TeV
\(\begin{array}{llll}3 \text { AAIJ } & 14 \mathrm{U} & \text { LHCB } & p p \text { at } 7,8 \mathrm{TeV} \\ 2 \text { AALTONEN } & 14 \mathrm{~B} & \mathrm{CDF} & p \bar{p} \text { at } 1.96 \mathrm{TeV}\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(1.449 \pm 0.036 \pm 0.017\) & \({ }^{2}\) AAD & 130 & ATLS & \(p p\) at 7 TeV \\
\hline \(1.503 \pm 0.052 \pm 0.031\) & \({ }^{2}\) CHATRCHYAN & 13 AC & CMS & \(p p\) at 7 TeV \\
\hline \(1.303 \pm 0.075 \pm 0.035\) & \({ }^{2}\) ABAZOV & 12 U & D0 & \(p \bar{p}\) at 1.96 TeV \\
\hline \(1.401 \pm 0.046 \pm 0.035\) & \({ }^{4}\) AALTONEN & 10B & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \(1.27 \pm 0.35 \pm 0.09\) & ABREU & 955 & DLPH & Excess \(p \mu^{-}\), decay lengths \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(1.482 \pm 0.018 \pm 0.012 \quad 5\) AAIJ 13BB LHCB Repl. by AAIJ 14 u \(1.537 \pm 0.045 \pm 0.014 \quad 2\) AALTONEN 11 CDF Repl. by AALTONEN 14B \(1.218_{-0.115}^{+0.130} \pm 0.042 \quad 2 \mathrm{ABAZOV} \quad 07 \mathrm{~S}\) D0 Repl. by ABAZOV 12 u \(1.290{ }_{-0.110-0.091}^{+0.119+0.087} \quad 6\) ABAZOV \(07 U\) D0 \(p \bar{p}\) at 1.96 TeV \(1.593_{-0.078}^{+0.083} \pm 0.033 \quad 2\) ABULENCIA 07 A CDF Repl. by AALTONEN 11 \(1.22 \underset{-0.18}{+0.22} \pm 0.04 \quad 2\) ABAZOV 05C D0 Repl. by ABAZOV 07s \(1.11 \underset{-0.18}{+0.19} \pm 0.05 \quad 7\) ABREU 99w DLPH \(e^{+} e^{-} \rightarrow Z\)
\(1.29 \underset{-0.22}{+0.24} \pm 0.06 \quad 7\) ACKERSTAFF 98G OPAL \(e^{+} e^{-} \rightarrow Z\)
\(1.21 \pm 0.11 \quad{ }^{7}\) BARATE 98 D ALEP \(e^{+} e^{-} \rightarrow Z\)
\(1.32 \pm 0.15 \pm 0.07 \quad 8 \mathrm{ABE} \quad 96 \mathrm{M}\) CDF \(p \bar{p}\) at 1.8 TeV
\(1.19 \underset{-0.18}{+0.01}+0.07\) ABREU 96D DLPH Repl. by ABREU 99w
\(1.14 \underset{-0.19}{+0.22} \pm 0.07 \quad 69\) AKERS \(\quad 95 \mathrm{~K}\) OPAL Repl. by ACKERSTAFF 98G
\(1.02 \underset{-0.18}{+0.23} \pm 0.06 \quad 44\) BUSKULIC 95L ALEP Repl. by BARATE 98D
\({ }^{1}\) Measured using \(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\) decays.
\({ }^{2}\) Measured mean life using fully reconstructed \(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\) decays.
\({ }^{3}\) Used \(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\)decays.
\({ }^{4}\) Measured mean life using fully reconstructed \(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\)decays.
\({ }^{5}\) Measured the lifetime ratio of decays \(\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}\)to \(B^{0} \rightarrow J / \psi \pi^{+} K^{-}\)to be \(0.976 \pm 0.012 \pm 0.006\) with \(\tau_{B^{0}}=1.519 \pm 0.007 \mathrm{ps}\).
\({ }^{6}\) Measured using semileptonic decays \(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \mu \nu X\) and \(\Lambda_{C}^{+} \rightarrow K_{S}^{0} p\).
\({ }^{7}\) Measured using \(\Lambda_{c} \ell^{-}\)and \(\Lambda \ell^{+} \ell^{-}\)
\({ }^{8}\) Excess \(\Lambda_{C} \ell^{-}\), decay lengths.
\(\tau_{\Lambda_{b}^{0}} / \tau_{\pi_{b}^{0}}\)

\(0.940 \pm 0.035 \pm 0.006\) TECN COMMENT
\({ }^{1}\) Measured using \(\Lambda_{b}^{0} \rightarrow J / \psi \wedge\) decays.
\[
\tau_{\Lambda_{b}^{\oplus}} / \tau_{B^{@}} \text { MEAN LIFE RATIO }
\]
\(\tau_{\Lambda_{b}^{0}} / \tau_{B^{0}}\) (direct measurements)
"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by including both \(B^{0}\) and \(B^{+}\)decays.
\(\frac{\text { VALUE }}{\mathbf{0 . 9 6 4} \pm \mathbf{0 . 0 0 7} \text { OUR EVALUATION DOCUMENTID }}\) TECN COMMENT
\(0.964 \pm 0.007\) OUR EVALUATION
\(\mathbf{0 . 9 7 0} \pm \mathbf{0 . 0 0 9}\) OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.
\begin{tabular}{|c|c|c|c|}
\hline \(0.978 \pm 0.018 \pm 0.006\) & \({ }^{1}\) SIRUNYAN & 18BY CMS & \(p p\) at 8 TeV \\
\hline \(0.929 \pm 0.018 \pm 0.004\) & \({ }^{1}\) AAIJ & 14E LHCB & \(p p\) at 7 TeV \\
\hline \(0.974 \pm 0.006 \pm 0.004\) & \({ }^{2}\) AAIJ & \(14 U\) LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \(0.960 \pm 0.025 \pm 0.016\) & \({ }^{3}\) AAD & \(13 U\) ATLS & \(p p\) at 7 TeV \\
\hline \(0.864 \pm 0.052 \pm 0.033\) & 4,5 ABAZOV & 12 U D0 & \(p \bar{p}\) at 1.96 TeV \\
\hline \(1.020 \pm 0.030 \pm 0.008\) & \({ }^{4}\) AALTONEN & 11 CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(0.976 \pm 0.012 \pm 0.006\) & \({ }^{6}\) AAIJ & 13bB LHCB & Repl. by AAIJ 140 \\
\hline \(0.811_{-0.087}^{+0.096} \pm 0.034\) & 4,5 ABAZOV & 07S D0 & Repl. by ABAZOV 12 u \\
\hline \(1.041 \pm 0.057\) & 7 ABULENCIA & 07A CDF & Repl. by AALTONEN 11 \\
\hline \(0.87{ }_{-0.14}^{+0.17} \pm 0.03\) & 7 ABAZOV & 05C D0 & Repl. by ABAZOV 07s \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
WEIGHTED AVERAGE \\
\(0.970 \pm 0.009\) (Error scaled by 1.4)
\end{tabular}} \\
\hline
\end{tabular}
```

${ }^{1}$ Measured using $\Lambda_{b}^{0} \rightarrow J / \psi \Lambda$ and $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ decays.
${ }^{2}$ Used $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$and $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ decays.
${ }^{3}$ Measured with $\Lambda_{b}^{0} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) \Lambda^{0}\left(p \pi^{-}\right)$decays.
${ }^{4}$ Uses fully reconstructed $\Lambda_{b} \rightarrow J / \psi \wedge$ decays.
${ }^{5}$ Uses $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays for denominator
${ }^{6}$ Measures $1 / \tau \Lambda_{b}^{0}-1 / \tau B^{0}$ and uses $\tau_{B^{0}}=1.519 \pm 0.007$ ps to extract lifetime ratio.
${ }^{7}$ Measured mean life ratio using fully reconstructed decays.

```

\section*{\(\Lambda_{b}^{0}\) DECAY MODES}

The branching fractions \(\mathrm{B}\left(b\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \()\) and \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.\) \(\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}\) anything) are not pure measurements because the underlying measured products of these with \(\mathrm{B}(b \rightarrow b\)-baryon) were used to determine \(\mathrm{B}(b \rightarrow \quad b\)-baryon), as described in the note "Production and Decay of \(b\)-Flavored Hadrons."
For inclusive branching fractions, e.g., \(\Lambda_{b} \rightarrow \bar{\Lambda}_{c}\) anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

\begin{tabular}{|c|c|c|c|}
\hline \(\Gamma_{40}\) & \(\Lambda_{c}^{+} \pi^{+} \pi^{-} \ell^{-} \nu_{\ell}\) & ( \(5.6 \pm 3.1\) ) \% & \\
\hline \(\Gamma_{41}\) & \(\Lambda_{c}(2595){ }^{+} \ell^{-} \bar{\nu}_{\ell}\) & \(\left(7.9{ }_{-3.5}^{+4.0}\right) \times 10^{-3}\) & \\
\hline \(\Gamma_{42}\) & \(\Lambda_{C}(2625){ }^{+} \ell^{-} \bar{\nu}_{\ell}\) & \(\left(1.3{ }_{-0.5}^{+0.6}\right) \%\) & \\
\hline \(\Gamma_{43}\)
\(\Gamma_{44}\) & \[
\begin{aligned}
& \Sigma_{c}(2455)^{0} \pi^{+} \ell^{-} \bar{\nu}_{\ell} \\
& \Sigma_{c}(2455)^{++} \pi^{-} \ell^{-} \bar{\nu}_{\ell}
\end{aligned}
\] & & \\
\hline \(\Gamma_{45}\) & \(p h^{-}\) & \([c]<2.3 \times 10^{-5}\) & \(\mathrm{CL}=90 \%\) \\
\hline \(\Gamma_{46}\) & \(p \pi^{-}\) & \((4.5 \pm 0.8) \times 10^{-6}\) & \\
\hline \(\Gamma_{47}\) & \(p K^{-}\) & \((5.4 \pm 1.0) \times 10^{-6}\) & \\
\hline \(\Gamma_{48}\) & \(p D_{s}^{-}\) & \(<4.8 \times 10^{-4}\) & \(\mathrm{CL}=90 \%\) \\
\hline \(\Gamma_{49}\) & \(p \mu^{-} \bar{\nu}_{\mu}\) & \((4.1 \pm 1.0) \times 10^{-4}\) & \\
\hline \(\Gamma_{50}\) & \(\wedge \mu^{+} \mu^{-}\) & \((1.08 \pm 0.28) \times 10^{-6}\) & \\
\hline \(\Gamma_{51}\) & \(p \pi^{-} \mu^{+} \mu^{-}\) & \((6.9 \pm 2.5) \times 10^{-8}\) & \\
\hline \(\Gamma_{52}\) & \(\wedge \gamma\) & \((7.1 \pm 1.7) \times 10^{-6}\) & \\
\hline \(\Gamma_{53}\) & \(\wedge \eta\) & \(\left(\begin{array}{ll}9 & +7\end{array}\right) \times 10^{-6}\) & \\
\hline \(\Gamma_{54}\) & \(\wedge \eta^{\prime}(958)\) & \(<3.1 \times 10^{-6}\) & \(\mathrm{CL}=90 \%\) \\
\hline \(\Gamma_{55}\) & \(\wedge \pi^{+} \pi^{-}\) & \((4.7 \pm 1.9) \times 10^{-6}\) & \\
\hline \(\Gamma_{56}\) & \(\wedge K^{+} \pi^{-}\) & \((5.7 \pm 1.3) \times 10^{-6}\) & \\
\hline \(\Gamma_{57}\) & \(\wedge K^{+} K^{-}\) & \((1.62 \pm 0.23) \times 10^{-5}\) & \\
\hline \(\Gamma_{58}\) & \(\wedge \phi\) & \((9.8 \pm 2.6) \times 10^{-6}\) & \\
\hline \(\Gamma_{59}\) & \(p \pi^{-} \pi^{+} \pi^{-}\) & \((2.11 \pm 0.23) \times 10^{-5}\) & \\
\hline \(\Gamma_{60}\) & \(p K^{-} K^{+} \pi^{-}\) & \((4.1 \pm 0.6) \times 10^{-6}\) & \\
\hline \(\Gamma_{61}\) & \(p K^{-} \pi^{+} \pi^{-}\) & \((5.1 \pm 0.5) \times 10^{-5}\) & \\
\hline \(\Gamma_{62}\) & \(p K^{-} K^{+} K^{-}\) & \((1.27 \pm 0.14) \times 10^{-5}\) & \\
\hline
\end{tabular}
[a] \(P_{c}^{+}\)is a pentaquark-charmonium state.
[b] Not a pure measurement. See note at head of \(\Lambda_{b}^{0}\) Decay Modes.
[c] Here \(h^{-}\)means \(\pi^{-}\)or \(K^{-}\).

\section*{CONSTRAINED FIT INFORMATION}

An overall fit to 10 branching ratios uses 12 measurements and one constraint to determine 7 parameters. The overall fit has a \(\chi^{2}=10.7\) for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients \(\left\langle\delta x_{i} \delta x_{j}\right\rangle /\left(\delta x_{i} \cdot \delta x_{j}\right)\), in percent, from the fit to the branching fractions, \(x_{i} \equiv\) \(\Gamma_{i} / \Gamma_{\text {total }}\). The fit constrains the \(x_{i}\) whose labels appear in this array to sum to one.
\begin{tabular}{l|rrrrr}
\(x_{25}\) & 94 & & & & \\
\(x_{29}\) & 50 & 47 & & & \\
\(x_{39}\) & 14 & 14 & 7 & & \\
\(x_{46}\) & 0 & 0 & 0 & 0 & \\
\(x_{47}\) & 0 & 0 & 0 & 0 & 82 \\
\cline { 3 - 6 } & \(x_{24}\) & \(x_{25}\) & \(x_{29}\) & \(x_{39}\) & \(x_{46}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\Lambda_{b}^{0}\) BRANCHING RATIOS} \\
\hline \multicolumn{6}{|l|}{\(\Gamma\left(J / \psi(1 S) \Lambda \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right) / \Gamma_{\text {total }}\)} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{VALUE (units \(10^{-5}\) ) \(\qquad\) EV EVTS DOCUMENT ID TECN \(\qquad\)}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\(5.8 \pm 0.8\) OUR AVERAGE}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(180 \pm 60 \pm 90 \quad 16 \quad\) ALBAJAR 91 E UA1 \(p \bar{p}\) at 630 GeV \({ }^{1}\) ABAZOV 110 uses \(\mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right) \times \mathrm{B}\left(b \rightarrow B^{0}\right)=(1.74 \pm 0.08) \times 10^{-4}\) to obtain the result. The \(( \pm 0.08) \times 10^{-4}\) uncertainty of this product is listed as the last uncertainty of the measurement, \(( \pm 0.28) \times 10^{-5}\).}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\({ }^{2} \mathrm{ABE} 97 \mathrm{~B}\) reports \(\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right) \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right] /\left[\mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right) \times \mathrm{B}(b \rightarrow\right.\) \(\left.\left.B^{0}\right)\right]=0.27 \pm 0.12 \pm 0.05\). We multiply by our best value \(\mathrm{B}\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right) \times \mathrm{B}(b \rightarrow\)} \\
\hline \multicolumn{6}{|l|}{\(\left.B^{0}\right)=(1.74 \pm 0.08) \times 10^{-4}\). Our first error is their experiment error and our second error is the systematic error from using our best value.} \\
\hline
\end{tabular}
\(\Gamma(\psi(2 S) \Lambda) / \Gamma(J / \psi(1 S) \Lambda)\)
\(0.508 \pm 0.023\) OUR AVERAGE
\(0.513 \pm 0.023 \pm 0.019\)
\(\begin{array}{lll}0.50 \pm 0.03 \pm 0.02 & { }^{2} \text { AAD } & 19 \mathrm{~F} \text { LHCB } p p \text { at } 7,8 \mathrm{TeV}\end{array}\)
\({ }^{1}\) AAIJ 19 F uses \(\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm 0.033) \times 10^{-2}\) and \(\mathrm{B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right)\) \(=(7.93 \pm 0.17) \times 10^{-3}\) from PDG 18 with assumption of lepton universality. AAIJ 19 F reports this result as \(0.513 \pm 0.023 \pm 0.016 \pm 0.011\), where the last uncertainty is the contribution due to the external input of branching fractions used in the analysis
\({ }^{2}\) AAD 15 CH uses \(\mathrm{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.961 \pm 0.033) \times 10^{-2}\) and \(\mathrm{B}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=\) \((7.89 \pm 0.17) \times 10^{-3}\) from PDG 14 with assumption of lepton universality.

\(\mathbf{2 . 6 6 \pm 0 . 2 2} \mathbf{+ 1 . 4 1} \quad 1 \mathrm{AAIJ} \quad 16 \mathrm{~A}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) AAIJ 16 total systematic includes the uncertainties on \(\mathrm{f}\left(P_{C}^{+}\right)\)and \(\mathrm{B}\left(\Lambda_{b} \rightarrow p J / \psi K^{-}\right)\).
\(\Gamma\left(P_{c}(4450)^{+} \boldsymbol{K}^{-}, P_{c} \rightarrow p J / \psi\right) / \Gamma_{\text {total }} \quad \Gamma_{13} / \Gamma\)
\(P_{c}^{+}\)is a pentaquark-charmonium state.
\(\frac{\text { VALUE (units } 10^{-5} \text { ) }}{\mathbf{1 . 3 0} \mathbf{+ 0 . 1 6} \mathbf{+ 0 . 4 2}} \quad \frac{\text { DOCUMENTID }}{1} \frac{\text { TECN }}{\text { COMMENT }}\)
\({ }^{1}\) AAIJ 16 total systematic includes the uncertainties on \(\mathrm{f}\left(P_{c}^{+}\right)\)and \(\mathrm{B}\left(\Lambda_{b} \rightarrow p \mathrm{~J} / \psi K^{-}\right)\).


\footnotetext{
\({ }^{1}\) AAIJ 16 Y reports a measurement of \(0.2070 \pm 0.0076 \pm 0.0046 \pm 0.0037\) where the third uncertainty is due to the knowledge of \(J / \psi\) and \(\psi(2 S)\) branching fractions. We have combined both systematic uncertainties in quadrature.
}
\(\Gamma\left(\chi_{c 1}(3872) \wedge(1520)\right) / \Gamma\left(\chi_{c 1}(3872) p K^{-}\right) \quad \Gamma_{20} / \Gamma_{18}\) VALUE DOCUMENT ID _ TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(0.58 \pm 0.15 \quad\) AAIJ 19AN LHCB \(p p\) at \(7,8,13 \mathrm{TeV}\)
\(\Gamma\left(\chi_{c 1}(3872) p K^{-}, \chi_{c 1}(3872) \Rightarrow J / \psi \pi^{+} \pi^{-}\right) / \Gamma\left(p \psi(2 S) K^{-}\right) \quad \Gamma_{19} / \Gamma_{17}\)
\(\frac{V A L L E\left(\text { units } 10^{-2}\right)}{1.87 \pm 0.39 \pm 0.02} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad 19\) AN \(\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8,13 \mathrm{TeV}}\)
\({ }^{1}\) AAIJ 19AN reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \chi_{C 1}(3872) p K^{-}, \chi_{C 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow\right.\right.\)
\(\left.\left.p \psi(2 S) K^{-}\right)\right] /\left[\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)\right]=(5.4 \pm 1.1 \pm 0.2) \times 10^{-2}\) which we
multiply by our best value \(\mathrm{B}\left(\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}\right)=(34.68 \pm 0.30) \times 10^{-2}\). Our
first error is their experiment's error and our second error is the systematic error from
using our best value.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Г \((p A L U E\)
K} & \multirow[b]{2}{*}{\(\underline{C L} \%\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{COMMENT \(\quad \Gamma_{\mathbf{2 3}} / \boldsymbol{\Gamma}\)}} \\
\hline & & & & & & \\
\hline <3.5 \(\times 10^{-6}\) & 90 & AAIJ & 14 Q & LHCB & \(p p\) at 7 TeV & \\
\hline \(\Gamma\left(\Lambda_{c}^{+} \pi^{-}\right) / \Gamma_{\text {total }}\) & & & & & & \(\Gamma_{24 / \Gamma}\) \\
\hline
\end{tabular}
\(\frac{\text { VALUE (units } 10^{-3} \text { ) }}{4.9 \pm 0.4 \text { OUR FIT EVTS }}\) DOCUMENT ID TECN COMMENT
\(4.9 \pm \mathbf{0 . 4}\) OUR FIT Error includes scale factor of 1.2 .
\(4.9 \mathbf{\pm} \mathbf{0 . 5}\) OUR AVERAGE Error includes scale factor of 1.5 .
\begin{tabular}{|c|c|c|c|c|}
\hline \(4.57{ }_{-0.30}^{+0.31} \pm 0.23\) & \({ }^{1}\) AAIJ & 14। & LHCB & \(p p\) at 7 TeV \\
\hline \(5.97 \pm 0.28 \pm 0.81\) & \({ }^{2}\) AAIJ & 14Q & LHCB & \(p p\) at 7 TeV \\
\hline \(8.8 \pm 2.8 \pm 1.5\) & 3 ABULENCIA & 07B & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • •
seen \(3 \quad\) ABREU 96 N DLPH \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)
seen 4 BUSKULIC \(96 \mathrm{ALEP} \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\),
\(p \bar{K}^{0}, \Lambda \pi^{+} \pi^{+} \pi^{-}\)
\({ }^{1}\) AAIJ 14। reports \(\left(4.30 \pm 0.03_{-0.11}^{+0.12} \pm 0.26 \pm 0.21\right) \times 10^{-3}\) from a measurement of \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right]\)assuming \(\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.68 \pm\) \(0.13) \times 10^{-3}\), which we rescale to our best value \(\mathrm{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)=(2.52 \pm 0.13) \times\) \(10^{-3}\). Our first error is their experiment's error and our second error is the systematic error from using our best value. Uses information on \(f_{\text {baryon }} / f_{d}\) from measurement in semileptonic decays by the same authors.
\({ }^{2}\) Obtained using the branching fraction of \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)decay.
\({ }^{3}\) The result is obtained from ( \(f_{\text {baryon }} / f_{\mathrm{d}}\) ) \(\left(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) / \mathrm{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\right)=\) \(0.82 \pm 0.08 \pm 0.11 \pm 0.22\), assuming \(f_{\text {baryon }} / f_{\mathrm{d}}=0.25 \pm 0.04\) and \(\mathrm{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\) \(=(2.68 \pm 0.13) \times 10^{-3}\).
\(\Gamma\left(\rho D^{0} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\) DOCUMENT ID TECN COMMENT \(\quad \boldsymbol{\Gamma}_{\mathbf{4}} / \boldsymbol{\Gamma}_{\mathbf{2 4}}\) VALUE
\(0.128 \pm 0.007\)
-0.007
\({ }^{1}\) AAIJ \(\quad 14 \mathrm{H}\) LHCB \(p p\) at 7 TeV
\({ }^{1}\) AAIJ 14 H reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow p D^{0} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right)\right] \times\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right] /\) \(\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]=(8.06 \pm 0.23 \pm 0.35) \times 10^{-2}\) which we multiply or divide by our best values \(\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.950 \pm 0.031) \times 10^{-2}, \mathrm{~B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=\)
\((6.28 \pm 0.32) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Lambda_{c}^{+} K^{-}\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{25} / \Gamma\)} \\
\hline VALUE (units \(10^{-4}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{\(3.59 \pm \mathbf{0 . 3 0}\) OUR FIT Error includes scale factor of 1.2.} \\
\hline \(3.55 \pm 0.44 \pm 0.50\) & \({ }^{1}\) AAIJ & & LHCB & \(p p\) at 7 TeV & \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Obtained using the branching fraction of \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)decay.} \\
\hline \multicolumn{5}{|l|}{\(\Gamma\left(\Lambda_{c}^{+} K^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\)} & \(\Gamma_{25} / \Gamma_{24}\) \\
\hline VALUE (units \(10^{-2}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline \multicolumn{6}{|l|}{\(7.31 \pm 0.22\) OUR FIT} \\
\hline \(7.31 \pm 0.16 \pm 0.16\) & AAIJ & 14 H & LHCB & \(p p\) at 7 TeV & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Gamma\left(\Lambda_{c}^{+}\right.\) & \(/ \Gamma_{\text {to }}\) & & & & & \(\Gamma_{26} / \Gamma\) \\
\hline VALUE & EVTS & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT & \\
\hline seen & 1 & ABREU & & DLPH & \[
\begin{gathered}
\Lambda_{c}^{+} \rightarrow p \\
\rho^{0} \pi^{-}
\end{gathered}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\Gamma\left(\Lambda_{c}^{+} D_{s}^{-}\right) / \Gamma_{\text {total }}
\] \\
VALUE (units \(10^{-2}\) )
\end{tabular} & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & COMMENT & \(\Gamma_{28} /{ }^{\text {r }}\) \\
\hline \(1.1 \pm 0.1\) & \({ }^{1}\) AAIJ & 14AA LHCB & \(p p\) at 7 TeV & \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) Uses \(\mathrm{B}\left(\bar{B}^{0} \rightarrow D^{+} D_{s}^{-}\right)=(7.2 \pm 0.8) \times 10^{-3}\) and their measured \(\mathrm{B}\left(\wedge_{b}^{0} \rightarrow\right.\) \(\left.\Lambda_{C}^{+} \pi^{-}\right) / \mathrm{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\)values.} \\
\hline \[
\Gamma\left(\Lambda_{c}^{+} D^{-}\right) / \Gamma\left(\Lambda_{c}^{+} D_{s}^{-}\right)
\] & \multicolumn{3}{|l|}{DOCUMENT ID TECN} & \(\Gamma_{27} / \Gamma_{28}\) \\
\hline \(0.042 \pm 0.003 \pm 0.003\) & AAIJ & 14AA LHCB & \(p p\) at 7 TeV & \\
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}\)} & & \multirow[t]{2}{*}{\(\Gamma_{29} /{ }^{\text {/ }}\)} \\
\hline VALUE (unit 10 \(0^{-3}\) ) EVTS & document id & TECN & comment & \\
\hline \multicolumn{5}{|l|}{7.7 \(\pm 1.1\) OUR FIT Error includes scale factor of 1.1.} \\
\hline \(14.9 \pm 3.2{ }^{3} \mathbf{8} \pm 1.2\) & \({ }^{1}\) abltonen & 12A CDF & \(p \bar{p}\) at 1.96 & \\
\hline
\end{tabular}
- . . We do not use the following data for averages, fits, limits, etc. • • •
seen \(90 \quad\) BARI \(91 \mathrm{SFM} \quad \Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\) \({ }^{1}\) AALTONEN 12A reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right]=\) \(3.04 \pm 0.33_{-0.55}^{+0.70}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)=(4.9 \pm\) \(0.4) \times 10^{-3}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(\Sigma_{c}(2520)^{0} p \bar{p}, \Sigma_{c}(2520)^{0} \Rightarrow \Lambda_{c}^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} p \bar{p} \pi^{-}\right)\)} & & \multirow[t]{2}{*}{\(\Gamma_{36} / \Gamma_{34}\)} \\
\hline VALUE & docu & TECN & COMment & \\
\hline \(0.119 \pm 0.020 \pm 0.014\) & AAIJ & 18awLHCB & \(p p\) at 7 an & 8 Tev \\
\hline \(\Gamma\left(\Lambda K^{0} 2 \pi^{+} 2 \pi^{-}\right) / \Gamma_{\text {total }}\) & & & & \(\Gamma_{37} / \Gamma\) \\
\hline
\end{tabular}

VALUE EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
seen \(4{ }^{1}\) ARENTON 86 FMPS \(\Lambda K_{S}^{0} 2 \pi^{+} 2 \pi^{-}\)
\({ }^{1}\) See the footnote to the ARENTON 86 mass value.
\(\Gamma\left(\boldsymbol{\Lambda}_{\boldsymbol{C}}^{+} \boldsymbol{\ell}_{\text {The values and averages in this section serve only to show what values result if one }}^{\boldsymbol{\nu}} \boldsymbol{\Gamma}_{\mathbf{\boldsymbol { 3 }}} / \boldsymbol{\Gamma}\right.\) The values and averages in this section serve only to show what values result if one
assumes our \(\mathrm{B}(b \rightarrow b\)-baryon). They cannot be thought of as measurements since the assumes our \(\mathrm{B}(b \rightarrow b\)-baryon \()\). They cannot be thought of as measurements since the
underlying product branching fractions were also used to determine \(\mathrm{B}(b \rightarrow b\)-baryon \()\) as described in the note on "Production and Decay of \(b\)-Flavored Hadrons."
VALUE EVTS DOCUMENTID TECN COMMENT

\section*{\(\mathbf{0 . 1 0 9} \pm 0.022\) OUR AVERAGE}
\(0.102 \pm 0.019 \pm 0.013 \quad{ }^{1}\) BARATE 98D ALEP \(e^{+} e^{-} \rightarrow Z\)
\(0.14{ }_{-0.04}^{+0.05} \pm 0.02 \quad 29 \quad 2\) ABREU \(\quad 95 \mathrm{~S}\) DLPH \(e^{+} e^{-} \rightarrow Z\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\(0.090 \pm 0.022 \pm 0.012 \quad 35\) BUSKULIC 95 ALEP Repl. by BARATE 98D \(0.18 \pm 0.07 \pm 0.02 \quad 21 \quad{ }^{4}\) BUSKULIC \(\quad 92 \mathrm{E}\) ALEP \(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\)
\({ }^{1}\) BARATE 98D reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \ell^{-} \bar{\nu}_{\ell}\right.\right.\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]=\) \(0.0086 \pm 0.0007 \pm 0.0014\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using \(\Lambda_{C} \ell^{-}\)and \(\Lambda \ell^{+} \ell^{-}\).

\(\Gamma\left(p \mu^{-} \bar{\nu}_{\mu}\right) / \Gamma\left(\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}\right)\)
\(\Gamma_{49} / \Gamma_{39}\)
\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}\) \(1.0 \pm 0.04 \pm 0.08 \quad{ }^{1}\) AAIJ 15BG LHCB \(p p\) at 8 TeV \({ }^{1}\) This measurement is a ratio of \(\Gamma\left(\Lambda_{b}^{0} \rightarrow p \mu^{-}{ }^{\nu}{ }_{\mu}\right)\left[q^{2}>15 \mathrm{GeV} / \mathrm{c}^{2}\right]\) to \(\Gamma\left(\Lambda_{b}^{0} \rightarrow\right.\) \(\left.\Lambda_{C}^{+} \mu^{-} \bar{\nu}_{\mu}\right)\left[\mathrm{q}^{2}>7 \mathrm{GeV} / \mathrm{c}^{2}\right]\) within a restricted \(\mathrm{q}^{2}\) region. Combined with theoretical calculations of the form factors and the previously measured value of \(\left|V_{c b}\right|\), the first \(\left|V_{u b}\right|=(3.27 \pm 0.15 \pm 0.16 \pm 0.06) \times 10^{-3}\) measurement from the \(\Lambda_{b}\) decay is obtained, consistent with the exclusively measured world averages.
\(\Gamma\left(\Lambda \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{50} / \Gamma\)
VALUE (units \(10^{-7}\) )
\(10.8 \pm 2.8\) OUR AVERAGE
\(9.6 \pm 1.6 \pm 2.5\)
DOCUMENT ID TECN COMMENT
\(17.3 \pm 4.2 \pm 5.5 \quad\) AALTONEN 11 Al CDF \(p \bar{p}\) at 1.96 TeV
\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\). This measurement comes from the sum of the differential rates in \(\mathrm{q}^{2}\) regions excluding those corresponding to \(J / \psi\) and \(\psi(2 S)\) ( \([8.68,10.09]\) and \([12.86,14.18] \mathrm{GeV}^{2} / \mathrm{c}^{4}\) ).
\(\Gamma\left(p \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma_{\text {total }}\)
\(\Gamma_{51} / \Gamma\) VALUE (unit 10 \(1^{-8}\) ) DOCUMENT ID TECN COMMENT \(6.9 \pm 1.9+1 .{ }_{-1} \quad{ }^{1}\) AAIJ \(\quad 17 \mathrm{P}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) Excludes \(J / \psi\) and \(\psi(2 S)\) decays to \(\mu^{+} \mu^{-}\).
\(\Gamma\left(p \pi^{-} \mu^{+} \mu^{-}\right) / \Gamma\left(p \pi^{-} J / \psi, J / \psi \rightarrow \mu^{+} \mu^{-}\right) \quad \Gamma_{51} / \Gamma_{10}\) \(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\mathbf{4 . 4} \mathbf{1 . 2} \mathbf{1} \mathbf{0 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\)
\({ }^{1}\) The \(p \pi^{-} \mu^{+} \mu^{-}\)mode excludes \(J / \psi\) and \(\psi(2 S)\) decays to \(\mu^{+} \mu^{-}\).
\(\Gamma(\Lambda \gamma) / \Gamma_{\text {total }} \quad \Gamma_{52} / \Gamma\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (units \(10^{-6}\) ) & CL\% & DOCU & & TECN & COMMENT \\
\hline \(7.1 \pm 1.5 \pm 0.9\) & & 1 AAIJ & \(19 z\) & LHCB & \(p p\) at 13 TeV \\
\hline
\end{tabular} - - We do not use the following data for averages, fits, limits, etc. - • -
\(\begin{array}{ccc}<1300 & 90 & \text { ACOSTA } \quad 02 \mathrm{G} \text { CDF } \quad p \bar{p} \text { at } 1.8 \mathrm{TeV} \\ { }^{1} \text { AAIJ } 19 Z \text { normalized to } B^{0} \rightarrow & K^{* 0} \gamma \text { and used an integrated luminosity of } 1.7 \mathrm{fb}^{-1} .\end{array}\) \(\Gamma(\Lambda \eta) / \Gamma_{\text {total }} \quad \Gamma_{53} / \Gamma\)
 \({ }^{1}\) AAIJ 15AH reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda \eta\right) / \Gamma_{\text {total }}\right] /\left[B\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)\right]=0.1422_{-0.08}^{+0.11}\) which we multiply by our best value \(\mathrm{B}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)=(6.6 \pm 0.4) \times 10^{-5}\). Our first error is their experiment's error and our second error is the systematic error from using our best value. The single uncertainty quoted with the original measurement combines in quadrature statistical and systematic uncertainties.
\(\Gamma\left(\Lambda \eta^{\prime}(958)\right) / \Gamma_{\text {total }}\)
\(\frac{V A L U E}{<\mathbf{3 . 1} \times \mathbf{1 0}^{\mathbf{- 6}}} \frac{C L \%}{90} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 15AH LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}\) \({ }^{1}\) AAIJ 15AH reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda \eta^{\prime}(958)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)\right]<0.047\) which we multiply by our best value \(\mathrm{B}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)=6.6 \times 10^{-5}\).
\(\Gamma\left(\Lambda \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\)

\section*{VALUE (units \(10^{-4}\) )}
\(\mathbf{9 . 5} \pm \mathbf{3 . 8} \pm \mathbf{0 . 5} 16 \frac{\text { LECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\)
\({ }^{1}\) AAIJ 16 W reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}\right)\right]=\) \((7.3 \pm 1.9 \pm 2.2) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}\right)=\) \((1.30 \pm 0.07) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(\Lambda \kappa^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\) \(\mathbf{1 1 . 6 \pm \mathbf { 2 . 3 } \pm \mathbf { 0 . 6 }} 1 \frac{16 \mathrm{w}}{\mathrm{AAIJ}} \frac{\mathrm{LHCB}}{\frac{1}{p p} \text { at } 7,8 \mathrm{TeV}}\) \({ }^{1}\) AAIJ 16 W reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda K^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}\right)\right]=\) \((8.9 \pm 1.2 \pm 1.3) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}\right)=\) \((1.30 \pm 0.07) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(\Lambda \kappa^{+} \kappa^{-}\right) / \Gamma\left(\Lambda_{\epsilon}^{+} \pi^{-}\right)\)
VALUE (units \(10^{-3}\) ) DOCUMENT ID \(\quad\) TECN COMMENT
\(\mathbf{3 . 2 9} \pm \mathbf{0 . 3 5} \pm \mathbf{0 . 1 7} 1 \overline{\mathrm{AAIJ}} 16 \mathrm{~W} \overline{\mathrm{LHCB}} \overline{p p}\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) AAIJ 16 w reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda K^{+} K^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}\right)\right]=\) \((25.3 \pm 1.9 \pm 1.9) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow \Lambda \pi^{+}\right)=\) \((1.30 \pm 0.07) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(\Lambda \phi) / \Gamma_{\text {total }}\) & & & & & \(\Gamma_{58} / \Gamma\) \\
\hline VALUE (units \(10^{-6}\) ) & DOCU & & TECN & COMMENT & \\
\hline \(9.8 \pm 2.1 \pm{ }_{-1.5}^{1.6}\) & \({ }^{1}\) AAIJ & 16 J & LHCB & \(p p\) at 7, 8 & \\
\hline
\end{tabular} \({ }^{1}\) AAIJ 16J reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda \phi\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(B^{0} \rightarrow K^{0} \phi\right)\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()] /\) \(\left[\mathrm{B}\left(\bar{b} \rightarrow B^{0}\right)\right]=0.275 \pm 0.055 \pm 0.020\) which we multiply or divide by our best values \(\mathrm{B}\left(B^{0} \rightarrow K^{0} \phi\right)=(7.3 \pm 0.7) \times 10^{-6}, \mathrm{~B}(\bar{b} \rightarrow b\)-baryon \()=(8.4 \pm 1.1) \times 10^{-2}, \mathrm{~B}(\bar{b} \rightarrow\) \(\left.B^{0}\right)=(40.8 \pm 0.7) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.
\(\Gamma\left(p \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\)
VALUE (units \(10^{-3}\) ) DOCUMENT ID_TECN COMMENT

\({ }^{1}\) AAIJ \(18 Q\) reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]\) \(=(6.85 \pm 0.19 \pm 0.08 \pm 0.32) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.\) \(\left.p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(p K^{-} K^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right) \quad \Gamma_{60} / \Gamma_{24}\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{\mathbf{0 . 8 3} \pm \mathbf{0 . 1 0} \pm \mathbf{0 . 0 4}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad 18 \mathrm{Q} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\) \({ }^{1}\) AAIJ 18Q reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]\) \(=(1.32 \pm 0.09 \pm 0.09 \pm 0.10) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.\) \(\left.p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(p K^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\)
\(\Gamma_{61} / \Gamma_{24}\)
\(\frac{\operatorname{VALUE}\left(\text { units } 10^{-3}\right)}{\mathbf{1 0 . 3} \mathbf{0 . 5} \pm \mathbf{0 . 5}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LEQ }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{17}{\text { pp } 7,8 \mathrm{TeV}}\) | \({ }^{1}\) AAIJ 18 Q reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]\) \(=(16.4 \pm 0.3 \pm 0.2 \pm 0.7) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow\right.\) \(\left.p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(p K^{-} \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right) / \Gamma\left(\Lambda_{c}^{+} \pi^{-}\right)\)
\(\Gamma_{62} / \Gamma_{24}\)
VALUE (units \(10^{-3}\) ) DOCUMENT ID TECN COMMENT
\(\mathbf{2 . 5 8} \pm \mathbf{0 . 1 5} \mathbf{- 0 . 1 3} \mathbf{0 . 1 4} \quad 1 \mathrm{AAIJ} \quad 18 \mathrm{Q}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) AAIJ 18Q reports \(\left[\Gamma\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} K^{-}\right) / \Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)\right] /\left[\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)\right]\) \(=(4.11 \pm 0.12 \pm 0.06 \pm 0.19) \times 10^{-2}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow\right.\) \(\left.p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.

\section*{PARTIAL BRANCHING FRACTIONS IN \(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\)}
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\(0.71 \pm 0.27\) OUR AVERAGE
DOCUMENT ID TECN COMMENT

\section*{\(0.72+0.24 \pm 0.14\)}
\({ }^{1}\) AAIJ 15AE LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(0.15 \pm 2.01 \pm 0.05 \quad\) AALTONEN 11 Al CDF \(p \bar{p}\) at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. • - -
\(0.56 \pm 0.76 \pm 0.80 \quad 2\) AAIJ 13AJ LHCB Repl. by AAIJ 15AE
\({ }^{1}\) AAIJ 15AE measurement covers \(0.1<\mathrm{q}^{2}<2.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).
\({ }^{2}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).

\section*{\(\Lambda_{b}^{0}\)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(\mathbf{2 . 0}<\mathrm{q}^{\mathbf{2}}<\mathbf{4 . 3} \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)\)} \\
\hline VALUE (units \(10^{-7}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.28{ }^{\mathbf{+}} \mathbf{= 0 . 2 8} \mathbf{0 . 2 1}\) OUR AVERAGE & & & \\
\hline \(0.253-0.276{ }_{-0.207}^{+0} \pm 0.046\) & 1 AAIJ & 15aE LHCB & \(p p\) at 7, 8 TeV \\
\hline \(1.8 \pm 1.7 \pm 0.6\) & AALTONEN & 11al CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\(0.71 \pm 0.60 \pm 0.23 \quad 2\) AAIJ 13AJ LHCB Repl. by AAIJ 15AE
\({ }^{1}\) AAIJ 15 AE measurement covers \(2.0<\mathrm{q}^{2}<4.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).
\({ }^{2}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (units 10-7) & DOCUMENT ID & & TECN & COMMENT \\
\hline \(2.7 \pm 2.5 \pm 0.9\) & AALTONEN & 11Al & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{5}{|l|}{\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(4.0<\mathrm{q}^{\mathbf{2}}<6.0 \mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{\mathbf{4}}\right)\)} \\
\hline VALUE (units \(10^{-7}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.04{ }_{-0.00}^{+0.18} \pm 0.02\) & AAIJ & 15AE & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{5}{|l|}{\(\mathrm{B}\left(\Lambda_{b} \Rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)} \\
\hline VALUE (units \(10^{-7}\) ) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{\(0.47{ }_{-0.27}^{+0.31}\) OUR AVERAGE} \\
\hline \(0.45{ }_{-0.25}^{+0.30} \pm 0.10\) & \({ }^{1}\) AAIJ & 15AE & LHCB & \(p p\) at 7 and 8 TeV \\
\hline \(1.3 \pm 2.1 \pm 0.4\) & AALTONEN & 11 Al & CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \({ }^{1} \mathrm{AAIJ}\) 15AE measurement & \(1.1<\mathrm{q}^{2}<6\). & \(\mathrm{GeV}^{2}\) & & \\
\hline
\end{tabular}
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(6.0<\mathrm{q}^{2}<8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline VALUE (units \(10^{-7}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(0.50 \pm 0.24 \pm 0.10\) & AAIJ & 15AE LHCB & \(p p\) at 7, 8 TeV \\
\hline \multicolumn{4}{|l|}{\(\mathrm{B}\left(\Lambda_{b} \Rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(4.3<\mathrm{q}^{2}<8.68 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)} \\
\hline VALUE (units \(10^{-7}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{4}{|l|}{\(0.5 \pm 0.7\) OUR AVERAGE} \\
\hline \(0.66 \pm 0.74 \pm 0.18\) & \({ }^{1}\) AAIJ & 13A」 LHCB & \(p p\) at 7 TeV \\
\hline \(-0.2 \pm 1.6 \pm 0.1\) & AALTONEN & 11AI CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) Uses \(\mathrm{B}\left(\wedge_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).} \\
\hline
\end{tabular}
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(10.09<\mathrm{q}^{2}<12.86 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\(2.2 \pm 0.6\) OUR AVERAGE
\(2.08-0.39 \pm 0.42+1\) AAIJ 15 AE LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(3.0 \pm 1.5 \pm 1.0 \quad\) AALTONEN 11 Al CDF \(p \bar{p}\) at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. • • •
\(1.55 \pm 0.58 \pm 0.55 \quad 2\) AAIJ 13AJ LHCB Repl. by AAIJ 15AE
\({ }^{1}\) AAIJ 15AE measurement covers \(11.0<\mathrm{q}^{2}<12.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).
\({ }^{2}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(14.18<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\(\frac{\text { VALUE (units } 10^{-7} \text { ) }}{17 \pm 0.5 \text { OUR AVERAGE Error includes SCa ID }}\) TECN COMMENT
\(\mathbf{1 . 7} \mathbf{\pm 0 . 5}\) OUR AVERAGE Error includes scale factor of 1.1.
\(\begin{array}{lll}2.04{ }_{-0.33}^{+0.35} \pm 0.42 & 1 \text { AAIJ } & 15 \mathrm{AE} \text { LHCB } p p \text { at } 7,8 \mathrm{TeV} \\ 1.0+0.7+0.3 & \text { AALTONEN } & 11 \mathrm{Al} \text { CDF }\end{array}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(1.44 \pm 0.44 \pm 0.42 \quad 2\) AAIJ 13AJ LHCB Repl. by AAIJ 15AE
\({ }^{1}\) AAIJ 15AE measurement covers \(15.0<\mathrm{q}^{2}<16.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).
\({ }^{2}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).
\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(16.0<\mathrm{q}^{2} \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
VALUE (units \(10^{-7}\) ) DOCUMENT ID TECN COMMENT
\(7.0 \pm \mathbf{1 . 9} \pm \mathbf{2 . 2} \quad\) AALTONEN 11 Al CDF \(p \bar{p}\) at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - -
\(4.73 \pm 0.77 \pm 1.25 \quad 1,2 \mathrm{AAIJ} \quad\) 13AJ LHCB Repl. by AAIJ 15AE
\({ }^{1}\) Uses \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\right)=(6.2 \pm 1.4) \times 10^{-4}\).
\({ }^{2}\) Requires \(16.00<\mathrm{q}^{2}<20.30 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).
\(\mathrm{B}\left(\Lambda_{b} \Rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(18.0<\mathrm{q}^{2}<20.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline VALUE (units \(10^{-7}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(\mathbf{2 . 4 4} \pm 0.28 \pm 0.50\) & AAIJ & 15AE LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{4}{|l|}{\(\mathrm{B}\left(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\right)\left(15.0<\mathrm{q}^{2}<20.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)\)} \\
\hline VALUE (units \(10^{-7}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(6.00 \pm 0.45 \pm 1.25\) & AAIJ & 15aE LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline
\end{tabular}

\section*{CP VIOLATION}
\(A_{C P}\) is defined as
\[
A_{C P}=\frac{B\left(\Lambda_{b}^{0} \rightarrow f\right)-B\left(\bar{\Lambda}_{b}^{0} \rightarrow \bar{f}\right)}{B\left(\Lambda_{b}^{0} \rightarrow f\right)+B\left(\bar{\Lambda}_{b}^{0} \rightarrow \bar{f}\right)},
\]
the \(C P\)-violation asymmetry of exclusive \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\) decay.

\begin{tabular}{|c|c|c|c|}
\hline \(\boldsymbol{A}_{C P}\left(\Lambda_{b} \rightarrow \Lambda K^{+} K^{-}\right)\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID TECN}} & \multirow[b]{2}{*}{COMMENT} \\
\hline VALUE & & & \\
\hline -0.28 \(\pm 0.10 \pm 0.07\) & 1 AAIJ & 16w LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) Measured relative to \(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\)decay.} \\
\hline \multicolumn{4}{|l|}{\(\Delta \boldsymbol{A}_{\boldsymbol{C P}}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)\)} \\
\hline \multicolumn{4}{|l|}{\(\Delta A_{C P} \equiv A_{C P}\left(p K^{-} \mu^{+} \mu^{-}\right)-A_{C P}\left(p K^{-} J / \psi\right)\)} \\
\hline \(V A L U E\) (units 10-2) & \multicolumn{2}{|l|}{DOCUMENT ID} & COMMENT \\
\hline \(-3.5 \pm 5.0 \pm 0.2\) & AAIJ & 17T LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{4}{|l|}{\(\Delta \boldsymbol{A}_{\boldsymbol{C P}}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)\)} \\
\hline \multicolumn{4}{|l|}{\[
\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)-A_{C P}\left(\Lambda _ { b } ^ { 0 } \rightarrow \left(\Lambda_{C}^{+} \rightarrow p \pi^{-}\right.\right.
\]} \\
\hline \(1.1 \pm 2.5 \pm 0.6\) & \({ }^{1}\) AAIJ & 19AH LHCB & \(p p\) at 7 and 8 T \\
\hline \({ }^{1}\) Full phase space. & & & \\
\hline
\end{tabular}

\(\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow p a_{1}(1260)^{-}\right)\)
\(\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow p a_{1}(1260)^{-}\right)-A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(\Lambda_{C}^{+} \rightarrow p \pi^{-} \pi^{+}\right) \pi^{-}\right) .419\) \(<\mathrm{m}\left(\pi^{+} \pi^{-} \pi^{+}\right)<1500 \mathrm{MeV}\).
VALUE (units \(10^{-2}\) ) DOCUMENTID TECN COMMENT
\(\mathbf{- 1 . 5} \pm 4.2 \pm \mathbf{0 . 6} \quad\) AAIJ 19AH LHCB \(p p\) at 7 and 8 TeV

\section*{\(\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow N(1520)^{0} \rho(770)^{0}\right)\)}
\(\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow N(1520)^{0} \rho(770)^{0}\right)-A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(\Lambda_{C}^{+} \rightarrow p \pi^{-} \pi^{+}\right) \pi^{-}\right)\).
\(1078<\mathrm{m}\left(p \pi^{-}\right)<1800 \mathrm{MeV}\) and \(\mathrm{m}\left(\pi^{+} \pi^{-}\right)<1100 \mathrm{MeV}\).
VALUE (units \(10^{-2}\) )
\(2.0 \pm 4.9 \pm 0.4\)
\(\frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 19AH }}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}\)

\(\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow \Lambda(1520) \phi(1020)\right)\)
\(\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow \Lambda(1520) \phi(1020)\right)-A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) \pi^{-}\right)\).
\(1460<\mathrm{m}\left(p K^{-}\right)<1600 \mathrm{MeV}\) and \(1005<\mathrm{m}\left(\kappa^{+} \kappa^{-}\right)<1040 \mathrm{MeV}\).

\(\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(p K^{-}\right)_{\text {highmass }} \phi(1020)\right)\)
\(\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(\rho K^{-}\right)_{\text {highmass }} \phi(1020)\right)-A_{C P}\left(\Lambda_{b}^{0} \rightarrow\right.\) \(\left.\left(\Lambda_{c} p K^{-} \pi^{+}\right) \pi^{-}\right) . \mathrm{m}\left(p K^{-}\right)>1600 \mathrm{MeV}\) and \(1005<\mathrm{m}\left(K^{+} K^{-}\right)<1040 \mathrm{MeV}\).
\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\mathbf{- 0 . 7} \pm \mathbf{3 . 3} \pm \mathbf{0 . 7}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19AH LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}\)
\({ }^{1}\) Measurement done with \(m\left(p K^{-}\right)>1600 \mathrm{MeV} / \mathrm{c}^{2}\).

\section*{\(\Delta A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(p K^{-} K^{+} K^{-}\right)_{L B M}\right)\)}
\(\Delta A_{C P} \equiv A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(p K^{-} K^{+} \kappa^{-}\right)_{L B M}\right)-A_{C P}\left(\Lambda_{b}^{0} \rightarrow\left(\Lambda_{c}^{+} \rightarrow\right.\right.\) \(\left.p K^{-} \pi^{+}\right) \pi^{-}\)). Two-body low invariant-mass region (LBM): \(\mathrm{m}\left(\rho K^{-}\right)<2000\) MeVand \(\mathrm{m}\left(K^{+} \kappa^{-}\right)<1675 \mathrm{MeV}\).
\begin{tabular}{l}
\(\frac{\text { VALUE (units } 10^{-2} \text { ) }}{\mathbf{2 . 7} \pm \mathbf{2 . 3} \pm \mathbf{0 . 6}} \quad 1\)\begin{tabular}{c} 
DOCUMENT ID \\
\({ }^{1}\) Measurement done with \(m\left(p K^{-}\right)<2000 \mathrm{MeV} / \mathrm{c}^{2}\) and \(m\left(K^{+}+K^{-}\right)<1675 \mathrm{MeV} / \mathrm{c}^{2}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{CP AND \(T\) VIOLATION PARAMETERS}

Measured values of the triple-product asymmetry parameters, odd under time-reversal, are defined as \(A_{c(s)}(\Lambda / \phi)=\left(N_{c(s)}^{+}-N_{c(s)}^{-}\right) /\)(sum) where \(N_{c(s)}^{+}, N_{c(s)}^{-}\)are the number of \(\Lambda\) or \(\phi\) candidates for which the \(\cos (\Phi)\) and \(\sin (\Phi)\) observables are positive and negative, respectively. Angles \(\cos (\Phi)\) and \(\sin (\Phi)\) are defined as in LEITNER 07 .
\(A_{c}(\Lambda)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\boldsymbol{A}_{\boldsymbol{c}}(\Lambda)\)} \\
\hline VALUE & DOCUM & & TECN & COMMENT \\
\hline -0.22 \(\pm 0.12 \pm 0.06\) & AAIJ & 16J & LHCB & \(p p\) at 7, 8 TeV \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{A}_{s}(\Lambda)\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(0.13 \pm 0.12 \pm 0.05\) & AAIJ & 16J & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{A}_{c}(\phi)\)} \\
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(-0.01 \pm 0.12 \pm 0.03\) & AAIJ & 16J & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{5}{|l|}{\(\boldsymbol{A}_{\boldsymbol{s}}(\boldsymbol{\phi})\)} \\
\hline VALUE & DOCUM & & TECN & COMMENT \\
\hline -0.07 \(\pm 0.12 \pm 0.01\) & AAIJ & 16J & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline
\end{tabular}
\(-0.07 \pm 0.12 \pm 0.01\)
AAIJ 16 J LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)\)
Observable calculated as half of the difference between triple products for \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\), which is sensitive to \(C P\) violation.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (\%) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(1.15 \pm 1.45 \pm 0.32\) & \({ }^{1}\) AAIJ & 17H & LHCB & \(p p\) at 7, 8 TeV \\
\hline
\end{tabular}
\({ }^{1}\) Measured over full phase space of the decay.
\(\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)\)
Observable calculated as half of the difference between triple products for \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\), which is sensitive to \(C P\) violation.
\begin{tabular}{|c|c|c|c|}
\hline VALUE (\%) & DOCUMENT ID & TECN & COMMENT \\
\hline -0.81 \(\pm 0.84 \pm 0.31\) & \({ }^{1}\) AAIJ & 18AG LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \({ }^{1}\) Measured over full phase sp & of the decay. & & \\
\hline
\end{tabular}
\(\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} \pi^{-}\right)\)
Observable calculated as half of the difference between triple products for \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\), which is sensitive to \(C P\) violation.

\({ }^{1}\) Measured over full phase space of the decay.
\(a_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} K^{-}\right)\)
Observable calculated as half of the difference between triple products for \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\), which is sensitive to \(C P\) violation.

\(\mathrm{a}_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)\)
\(\frac{\operatorname{VALUE}(\%)}{\mathbf{1 . 2} \mathbf{5 . 0} \pm \mathbf{0 . 7}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at 7, } 8 \mathrm{TeV}}\)

\section*{PVIOLATION PARAMETERS}

Observables calculated as average of the triple products for \(\Lambda_{b}^{0}\) and \(\bar{\Lambda}_{b}^{0}\), which is sensitive to parity violation.
\(\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-}\right)\)

\({ }^{1}\) Measured over full phase space of the decay.
\(\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)\)
\begin{tabular}{lll}
\(\frac{\operatorname{VALUE}(\%)}{-\mathbf{0 . 6 0} \pm \mathbf{0 . 8 4} \pm \mathbf{0 . 3 1}}\) & \(1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad 18 \mathrm{AG}\) & \(\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\) \\
\(1_{\text {Measured over full phase space of the decay. }}\) &
\end{tabular}
\(\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} \pi^{-}\right)\)
\(\frac{\operatorname{VALUE}(\%)}{\mathbf{3 . 6 2} \pm \mathbf{4 . 5 4} \pm \mathbf{0 . 4 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{17 \mathrm{H}}{\text { TECN }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{1}{p p \text { at } 7,8 \mathrm{TeV}}\)
\({ }^{1}\) Measured over full phase space of the decay.
\(\mathrm{a}_{P}\left(\Lambda_{b}^{0} \rightarrow p K^{-} K^{+} K^{-}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline Value (\%) & DOCUMENT ID & TECN & COMMENT \\
\hline \(-1.56 \pm 1.51 \pm 0.32\) & \({ }^{1}\) AAIJ & 18AG LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline
\end{tabular}

Baryon Particle Listings
\(a p\left(\Lambda_{b}^{0} \rightarrow p K^{-} \mu^{+} \mu^{-}\right)\)
\begin{tabular}{lll}
\(\frac{\operatorname{VALUE}(\%)}{-\mathbf{4 . 8} \mathbf{5 . 0} \mathbf{0} \mathbf{0 . 7}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}\) \\
\hline
\end{tabular}

\section*{\(\Lambda_{b}^{0}\) DECAY PARAMETERS}

See the note on "Baryon Decay Parameters" in the neutron Listings.

\(\mathrm{f}_{L}(\mu \mu)\) longitudinal polarization fraction in \(\Lambda_{b} \rightarrow \Lambda^{+} \mu^{-}\)
VALUE DOCUMENT ID — TECN COMMENT
\(\mathbf{0 . 6 1} \mathbf{+ 0 . 1 1} \pm \mathbf{0 . 0 3} \quad 1\) AAIJ \(\quad\) 15AE LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) AAIJ 15AE measurement covers \(15.0<\mathrm{q}^{2}<20.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).

\section*{FORWARD-BACKWARD ASYMMETRIES}

The forward-backward assymmetry is defined as \(\mathrm{A}_{F B}\left(\Lambda_{b}^{0}\right)=[\mathrm{N}(\mathrm{F})-\) \(N(B)] /[N(F)+N(B)]\), where the forward (F) direction corresponds to a particle \(\left(\Lambda_{b}^{0}\right.\) or \(\left.\Lambda_{b}^{-}\right)\)sharing valence quark flavors with a beam particle with the same sign of rapidity.

\(A_{F B}^{\ell h}\) in \(\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}\)
\(\frac{\text { ALLUE }}{\mathbf{0 . 2 5} \pm \mathbf{0 . 0 4} \pm \mathbf{0 . 0 1}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { 18AP }}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8,13 \mathrm{TeV}}\)
\({ }^{1}\) The measurement covers \(15.0<\mathrm{q}^{2}<20.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}\).

\section*{\(\Lambda_{b}^{0}=\bar{\lambda}_{b}^{0}\) Production Asymmetry}
\(A_{P}\left(\Lambda_{b}^{0}\right)=\left[\sigma\left(\Lambda_{b}^{0}\right)-\sigma\left(\bar{\Lambda}_{b}^{0}\right)\right] /\left[\sigma\left(\Lambda_{b}^{0}\right)+\sigma\left(\bar{\Lambda}_{b}^{0}\right)\right]\)
\(A_{P}\left(\wedge_{b}^{0}\right)\)
\begin{tabular}{|c|c|c|}
\hline VALUE (units \(10^{-2}\) ) & DOCUMENT ID TECN & COMMENT \\
\hline \(2.4 \pm 1.6\) OUR AVERAGE & Error includes scale factor of 1.1. & \\
\hline \(-0.11 \pm 2.53 \pm 1.08\) & \({ }^{1}\) AAIJ 17bF LHCB & \(p p\) at 7 TeV \\
\hline \(3.44 \pm 1.61 \pm 0.76\) & \({ }^{1}\) AAIJ 17bF LHCB & \(p p\) at 8 TeV \\
\hline \({ }^{1}\) Indirect determination in from production asymme & matic range \(2<\rho_{T}<30 \mathrm{G}\) of \(B^{+}, B^{0}\) and \(B_{S}^{0}\). & /c and \(2.1<\eta<4.5\) \\
\hline
\end{tabular}

\section*{\(\Lambda_{b}^{0}\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|}
\hline AAIJ & 19AH & EPJ C79 745 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 19 AN & JHEP 1909028 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 19 F & JHEP 1903126 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 192 & PRL 123031801 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18AF & JHEP 1808131 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18AG & JHEP 1808039 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18AO & JHEP 1809145 (errat.) & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18AP & JHEP 1809146 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18AW & PL B784 101 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18 AX & PL B787 124 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 18Q & JHEP 1802098 & R. Aaij et al. & (LHCD Collab.) \\
\hline PDG & 18 & PR D98 030001 & M. Tanabashi et al. & (PDG Collab.) \\
\hline SIRUNYAN & 18BY & EPJ C78 457 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18R & PR D97 072010 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AAIJ & 17 AM & PRL 119062001 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 17BF & PL B774 139 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 17 H & NATP 13391 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 17P & JHEP 1704029 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 17 S & JHEP 1705030 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 17 T & JHEP 1706108 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 16 & JHEP 1601012 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 16A & CP C40 011001 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 16J & PL B759 282 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 16 W & JHEP 1605081 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 16 Y & JHEP 1605132 & R. Aaij et al. & (LHCD Collab.) \\
\hline AAD & 15 CH & PL B751 63 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 15AE & JHEP 1506115 & R. Aaji et al. & (LHCb Collab.) \\
\hline Also & & JHEP 1809145 (errat.) & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 15AH & JHEP 1509006 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 15BG & NATP 11743 & R. Aaij et al. & (LHCb Collab.) \\
\hline ABAZOV & 151 & PR D91 072008 & V.M. Abazov et al. & (D0 Collab.) \\
\hline AAD & 14L & PR D89 092009 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 14AA & PRL 112202001 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 14E & JHEP 1404114 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 14 H & PR D89 032001 & R. Aaij et al. & (LHCD Collab.) \\
\hline AAIJ & 141 & JHEP 1408143 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 14 K & JHEP 1407103 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 14Q & JHEP 1404087 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 14 U & PL B734 122 & R. Aaij et al. & (LHCD Collab.) \\
\hline AALTONEN & 14B & PR D89 072014 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 14 P & PRL 113242001 & T. Aaltonen et al. & (CDF Collab.) \\
\hline PDG & 14 & CP C38 070001 & K. Olive et al. & (PDG Collab.) \\
\hline AAD & 13 U & PR D87 032002 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 13AG & PL B724 27 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 13AJ & PL B725 25 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 13 AV & PRL 110182001 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 13 BB & PRL 111102003 & R. Aaij et al. & (LHCb Collab.) \\
\hline CHATRCHYAN & 13 AC & JHEP 1307163 & S. Chatrchyan et al. & (CMS Collab.) \\
\hline AAIJ & 12 AR & JHEP 1210037 & R. Aaij et al. & (LHCb Collab.) \\
\hline AAIJ & 12 E & PL B708 241 & R. Aaij et al. & (LHCb Collab.) \\
\hline AALTONEN & 12A & PR D85 032003 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 12 U & PR D85 112003 & V.M. Abazov et al. & (D0 Collab.) \\
\hline AAIJ & 11E & PR D84 092001 & R. Aaij et al. & (LHCb Collab.) \\
\hline Also & & PR D85 039904 (errat.) & R. Aaij et al. & (LHCb Collab.) \\
\hline AALTONEN & 11 & PRL 106121804 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 11AI & PRL 107201802 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 11 N & PRL 106181802 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 110 & PR D84 031102 & V.M. Abazov et al. & (D0 Collab.) \\
\hline AALTONEN & 10B & PRL 104102002 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 09 C & PRL 103031801 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 09E & PR D79 032001 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 07S & PRL 99142001 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 07 U & PRL 99182001 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABULENCIA & 07A & PRL 98122001 & A. Abulencia et al. & (FNAL CDF Collab.) \\
\hline ABULENCIA & 07B & PRL 98122002 & A. Abulencia et al. & (FNAL CDF Collab.) \\
\hline LEITNER & 07 & NPBPS 174169 & O. Leitner, Z.J. Ajaltouni & \\
\hline ACOSTA & 06 & PRL 96202001 & D. Acosta et al. & (CDF Collab.) \\
\hline ABAZOV & 05C & PRL 94102001 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ACOSTA & 050 & PR D72 051104 & D. Acosta et al. & (CDF Collab.) \\
\hline ABDALLAH & 04A & PL B585 63 & J. Abdallah et al. & (DELPHI Collab.) \\
\hline ACOSTA & 02G & PR D66 112002 & D. Acosta et al. & (CDF Collab.) \\
\hline ABREU & 99 W & EPJ C10 185 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ACKERSTAFF & 98G & PL B426 161 & K. Ackerstaff et al. & (OPAL Collab.) \\
\hline barate & 98D & EPJ C2 197 & R. Barate et al. & (ALEPH Collab.) \\
\hline ABE & 97 B & PR D55 1142 & F. Abe et al. & (CDF Collab.) \\
\hline ABE & 96M & PRL 771439 & F. Abe et al. & (CDF Collab.) \\
\hline ABREU & 96 D & ZPHY C71 199 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ABREU & 96 N & PL B374 351 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ADAM & 96 D & ZPHY C72 207 & W. Adam et al. & (DELPHI Collab.) \\
\hline BUSKULIC & 96 L & PL B380 442 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline BUSKULIC & 96 V & PL B384 471 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline PDG & 96 & PR D54 1 & R. M. Barnett et al. & (PDG Collab.) \\
\hline ABREU & 95S & ZPHY C68 375 & P. Abreu et al. & (DELPHI Collab.) \\
\hline AKERS & 95 K & PL B353 402 & R. Akers et al. & (OPAL Collab.) \\
\hline BUSKULIC & 95L & PL B357 685 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline ABE & 93B & PR D47 2639 & F. Abe et al. & (CDF Collab.) \\
\hline BUSKULIC & 92 E & PL B294 145 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline ALBAJAR & 91 E & PL B273 540 & C. Albajar et al. & (UA1 Collab.) \\
\hline BARI & 91 & NC 104A 1787 & G. Bari et al. & (CERN R422 Collab.) \\
\hline ARENTON & 86 & NP B274 707 & M.W. Arenton et al. & (ARIZ, NDAM, VAND) \\
\hline BASILE & 81 & LNC 3197 & M. Basile et al. & (CERN R415 Collab.) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline\(\Lambda_{b}(5912)^{0}\) \\
Quantum numbers are based on quark model expectations.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\(\Lambda_{b}(5920){ }^{0}\) MASS} \\
\hline \multicolumn{2}{|l|}{VALUE (MeV)} \\
\hline \multicolumn{2}{|l|}{\(5919.92 \pm \mathbf{0 . 1 9}\) OUR AVERAGE Error includes scale factor of 1.1.} \\
\hline \(5919.4 \pm 0.5 \pm 0.2\) & \({ }^{1,2}\) AALTONEN 13 V CDF \(\quad p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{2}{|l|}{\(5920.00 \pm 0.09 \pm 0.17 \quad 3,4 \mathrm{AAIJ}\) 12AL LHCB pp at 7 TeV} \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Measured in \(\Lambda_{b}(5920)^{0} \rightarrow \Lambda_{b}^{0} \pi^{+} \pi^{-}\)decays with \(17.3_{-4.6}^{+5.3}\) events, with a significance of 3.5 sigma.} \\
\hline \multicolumn{2}{|l|}{\({ }^{2}\) AALTONEN 13 v measures \(m\left(\Lambda_{b}(5920)^{0}\right)-m\left(\Lambda_{b}^{0}\right)-2 m(\pi)=20.68 \pm 0.35 \pm 0.30 \mathrm{MeV}\).} \\
\hline \multicolumn{2}{|l|}{We have adjusted the measurement to our best values of \(m\left(\Lambda_{b}^{0}\right)=5619.60 \pm 0.17 \mathrm{MeV}\) and \(m(\pi)=139.57039 \pm 0.00018 \mathrm{MeV}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.} \\
\hline \multicolumn{2}{|l|}{\({ }^{3}\) Observed in \(\Lambda_{b}(5920)^{0} \rightarrow \Lambda_{b}^{0} \pi^{+} \pi^{-}\)decays with \(52.5 \pm 8.1\) candidates with a significance of 10.2 sigma.} \\
\hline \multicolumn{2}{|l|}{\({ }^{4}\) AAIJ 12AL measures \(m\left(\Lambda_{b}(5920)^{0}\right)-m\left(\Lambda_{b}^{0}\right)=300.40 \pm 0.08 \pm 0.04 \mathrm{MeV}\). We have adjusted the measurement to our best value of \(m\left(\Lambda_{b}^{0}\right)=5619.60 \pm 0.17 \mathrm{MeV}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\Lambda_{b}(5920)^{\circ}\) WIDTH} \\
\hline value (Me) & cl\% & & IECN & comment \\
\hline <0.63 & 90 & AAIJ & 12AL LHCB & pp at 7 TeV \\
\hline
\end{tabular}

\section*{\(\Lambda_{b}(5920)^{0}\) DECAY MODES}
\begin{tabular}{lll}
\multicolumn{4}{c}{ Mode } & Fraction \((\Gamma, / \Gamma)\) \\
\hline\(\Gamma_{1} \Lambda_{b}^{0} \pi^{+} \pi^{-}\) & seen \\
\hline
\end{tabular}
\(\Lambda_{b}(5920)^{0}\) BRANCHING RATIOS

\begin{tabular}{|c|c|c|}
\hline \(\Lambda_{b}(6146)^{0}\) & \(J^{P}=\frac{3}{2}^{+}\) & Status: \(* * *\) \\
\hline \multicolumn{3}{|l|}{Quantum numbers are based on quark model expectations.} \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(\mathbf{6 1 4 6})^{0}\) MASS} \\
\hline \begin{tabular}{l}
\(6146.17 \pm 0.33 \pm 0.27\) \\
\({ }^{1}\) Observed in \(\Lambda_{b}^{0} \pi^{+} \pi^{-}\)mode
\end{tabular} & \({ }^{1}\) AAIJ 19AJ LHCB & \(p p\) at \(7,8,13 \mathrm{TeV}\) \\
\hline \multicolumn{3}{|c|}{\(\boldsymbol{\Lambda}_{\boldsymbol{b}}(\mathbf{6 1 4 6})^{\mathbf{0}}\) WIDTH} \\
\hline VALUE (MeV) & DOCUMENT ID TECN & COMMENT \\
\hline \begin{tabular}{l}
\[
2.9 \pm 1.3 \pm 0.3
\] \\
\({ }^{1}\) Observed in \(\Lambda_{b}^{0} \pi^{+} \pi^{-}\)mode
\end{tabular} & 1 AAIJ 19A」 LHCB & \(p p\) at \(7,8,13 \mathrm{TeV}\) \\
\hline \(\boldsymbol{m}_{\Lambda_{b}(6146)^{0}}=\boldsymbol{m}_{\Lambda_{b}^{0}}\) & DOCUMENT ID TECN & COMMENT \\
\hline \[
526.55 \pm 0.33 \pm 0.10
\] & \({ }^{1}\) AAIJ 19AJ LHCB & \(p p\) at \(7,8,13 \mathrm{TeV}\) \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(6146)^{0}\) DECAY MODES} \\
\hline \multicolumn{3}{|l|}{Mode} \\
\hline \(\Gamma_{1} \quad \Lambda_{b}^{0} \pi^{+} \pi^{-}\) & & \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(\mathbf{6 1 4 6})^{0}\) BRANCHING RATIOS} \\
\hline \(\Gamma\left(\Lambda_{b}^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\) & \multicolumn{2}{|r|}{\(\Gamma_{1}\)} \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(6146){ }^{0}\) REFERENCES} \\
\hline AAIJ 19AJ PRL 123152001 & R. Aaij et al. & (LHCb Collab.) \\
\hline \(\Lambda_{b}(6152)^{0}\) & \(J^{P}=\frac{5}{2}^{+}\) & Status: \(* * *\) \\
\hline \multicolumn{3}{|l|}{Quantum numbers are based on quark model expectations.} \\
\hline \multicolumn{3}{|c|}{\(\boldsymbol{\Lambda}_{b}(6152)^{0}\) MASS} \\
\hline VALUE ( MeV ) & DOCUMENT ID TECN & COMMENT \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\mathbf{6 1 5 2 . 5 1 \pm 0 . 2 6 \pm 0 . 2 7} \quad 19\) AAIJ \(\quad 19 \mathrm{AFCB}\) pp at \(7,8,13 \mathrm{TeV}\)
\({ }^{1}\) Observed in \(\Lambda_{b}^{0} \pi^{+} \pi^{-}\)mode.}} \\
\hline & & \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(6152)^{0}\) WIDTH} \\
\hline \multirow[t]{2}{*}{\(\frac{V A L U E(\mathrm{MeV})}{\mathbf{2 . 1} \pm 0.8 \pm 0.3}\)} & \multirow[t]{2}{*}{\(1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }}\) 19AJ \(\frac{\text { TECN }}{\text { LHCB }}\)} & COMMENT \\
\hline & & \multirow[t]{2}{*}{\(p p\) at \(7,8,13 \mathrm{TeV}\)} \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Observed in \(\Lambda_{b}^{0} \pi^{+} \pi^{-}\)mode.} & \\
\hline \multicolumn{3}{|l|}{\(\boldsymbol{m}_{\Lambda_{b}(6152)^{0}}-\boldsymbol{m}_{\Lambda_{b}^{0}}\)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\mathbf{5 3 2 . 8 9} \pm \mathbf{0 . 2 6} \pm \mathbf{0 . 1 0} 19\) AAIJ 19 AJ LHCB \(p p\) at \(7,8,13 \mathrm{TeV}\)
\({ }^{1}\) Observed in \(\Lambda_{b}^{0} \pi^{+} \pi^{-}\)mode.}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\(\boldsymbol{m}_{\boldsymbol{\Lambda}_{b}(\mathbf{6 1 5 2})^{0}}-\boldsymbol{m}_{\boldsymbol{\Lambda}_{b}(\mathbf{6 1 4 6})^{0}}\)} \\
\hline \(6.34 \pm 0.32 \pm 0.02\) & AAIJ 19A」 LHCB & \(p p\) at \(7,8,13 \mathrm{TeV}\) \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(6152)^{0}\) DECAY MODES} \\
\hline \multicolumn{3}{|l|}{Mode} \\
\hline \multicolumn{3}{|l|}{\(\Gamma_{1} \quad \Lambda_{b}^{0} \pi^{+} \pi^{-}\)} \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(\mathbf{6 1 5 2})^{0}\) BRANCHING RATIOS} \\
\hline \multicolumn{2}{|l|}{\(\Gamma\left(\Lambda_{b}^{0} \pi^{+} \pi^{-}\right) / \Gamma_{\text {total }}\)} & \(\Gamma_{1} / \Gamma\) \\
\hline \multicolumn{3}{|c|}{\(\Lambda_{b}(6152)^{0}\) REFERENCES} \\
\hline AAIJ 19AJ PRL 123152001 & R. Aaij et al. & (LHCD Collab.) \\
\hline
\end{tabular}

\section*{\(\Sigma_{b}\)}
\[
I\left(J^{P}\right)=1\left(\frac{1}{2}^{+}\right) \text {Status: } * * *
\]
\[
1, J, P \text { need confirmation. }
\]

In the quark model \(\Sigma_{b}^{+}, \Sigma_{b}^{0}, \Sigma_{b}^{-}\)are an isotriplet ( \(u u b, u d b, d d b\) ) state. The lowest \(\Sigma_{b}\) ought to have \(J^{P}=1 / 2^{+}\). None of \(I, J\), or \(P\) have actually been measured.

\section*{\(\Sigma_{b}\) MASS}
\(\Sigma_{b}^{+}\)MASS

\(\Sigma_{b}^{-}\)MASS

\begin{tabular}{lllll}
\(5815.64 \pm 0.14 \pm 0.24\) & \({ }^{1}\) AAIJ & 19 A & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\(5815.5{ }_{-0.6}^{+0.6} \pm 1.7\) & \({ }^{2}\) AALTONEN & 12 F & CDF & \(p \bar{p}\) at 1.96 TeV
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - - -
\(5815.2 \pm 1.0 \pm 1.7 \quad 3\) AALTONEN 07 K CDF Repl. by AALTONEN 12F
\({ }^{1}\) Measured using fully reconstructed \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)and \(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\)decays.
\({ }^{2}\) Measured using fully reconstructed \(\wedge_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)and \(\Lambda_{c}^{+} \rightarrow \kappa^{-} \pi^{+}\)decays.
\({ }^{3}\) Observed four \(\Lambda_{b}^{0} \pi^{ \pm}\)resonances in the fully reconstructed decay mode \(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\), where \(\wedge_{c}^{+} \rightarrow p K^{-} \pi^{+}\).
\(m_{\Sigma_{b}^{+}}-m_{\Sigma_{b}^{-}}\)
\(\frac{V A L U E(M e V)}{-5.06 \pm 0.18 ~ O U R ~ A V E R A G E}\)
DOCUMENT ID TECN COMMENT
\(-5.06 \pm \mathbf{0 . 1 8}\) OUR AVERAGE
\(-5.09 \pm 0.18 \pm 0.01\)
\({ }^{1}\) AAIJ 19A LHCB \(p p\) at \(7,8 \mathrm{TeV}\) \({ }^{2}\) AALtonen 12F CDF \(p \bar{p}\) at 1.96 TeV
\({ }^{1}\) Measured using fully reconstructed \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)and \(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\)decays.
\({ }^{2}\) Measured using fully reconstructed \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)and \(\Lambda_{c}^{+} \rightarrow K^{-} \pi^{+}\)decays.

\section*{\(\Sigma_{b}\) WIDTH}
\(\Sigma_{b}^{+}\)WIDTH

\(\Sigma_{b}\) DECAY MODES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mode & \multicolumn{5}{|c|}{Fraction ( \(\Gamma_{i} / \overline{\text { r }}\) )} \\
\hline \(\Gamma_{1} \quad \Lambda_{b}^{0} \pi\) & \multicolumn{5}{|c|}{dominant} \\
\hline \multicolumn{6}{|c|}{\(\Sigma_{\boldsymbol{b}}\) BRANCHING RATIOS} \\
\hline \[
\Gamma\left(\Lambda_{b}^{0} \pi\right) / \Gamma_{\text {total }}
\] VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & \multicolumn{2}{|l|}{} & \(\Gamma_{1} / \Gamma\) \\
\hline dominant & AALTONEN & & CDF & \(p \bar{p}\) at 1.96 TeV & \\
\hline
\end{tabular}

\section*{\(\Sigma_{b}\) REFERENCES}
\begin{tabular}{llllr} 
AAIJ & 19A & PRL 122 012001 & R. Aaij et al. & (LHCb Collab.) \\
AALTONEN & 12F & PR D85 092011 & T. Aaltonen et al. & (CDF Collab.) \\
AALTONEN & 07K & PRL 99 202001 & T. Aaltonen et al. & (CDF Collab.) \\
\hline
\end{tabular}

\section*{\(\sum_{b}^{*}\)}
\(I\left(J^{P}\right)=1\left(\frac{3}{2}^{+}\right)\)Status: \(* * *\) \(l, J, P\) need confirmation.
\(l, J, P\) need confirmation. Quantum numbers shown are quark-model predictions.


\section*{\(\Sigma_{b}^{*}\) WIDTH}

\section*{\(\Sigma_{b}^{*+}\) WIDTH}

\section*{\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{9.4 \pm 0.5}\)}

DOCUMENT ID TECN COMMENT


\(\Sigma_{b}^{*}\) DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\Lambda_{b}^{0} \pi\) & dominant \\
\hline
\end{tabular}

See key on page 999

\(\Sigma_{b}(6097)^{+}\)DECAY MODES

\(\Sigma_{b}(6097)^{+}\)REFERENCES
\begin{tabular}{lccc} 
AAIJ & 19A PRL 122012001 & R. Aaij et al. & (LHCb Collab.) \\
\hline\(\sum_{b}(6097)^{-}\) & \(J^{P}=? ?\) & Status: \(* * *\) \\
\hline
\end{tabular}


\section*{\(\Sigma_{b}(6097)^{-}\)WIDTH}


DOCUMENT ID TECN COMMENT
1 AAIJ 19A LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) Measured using fully reconstructed \(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)and \(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\)decays.

\section*{\(\Sigma_{b}(6097)^{-}\)DECAY MODES}


\section*{\(\Sigma_{b}(6097)^{-}\)REFERENCES}

AAIJ 19A PRL \(122012001 \quad\) R. Aaij et al.
(LHCb Collab.)

\section*{\(\bar{Z}_{b}^{0}, \bar{\Xi}_{b}^{-}\) \\ \(I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right.\) Status: \(* * *\) \(I, J, P\) need confirmation.}

In the quark model, \(\Xi_{b}^{0}\) and \(\Xi_{b}^{-}\)are an isodoublet ( \(u s b, d s b\) ) state; the lowest \(\bar{E}_{b}^{0}\) and \(\Xi_{b}^{-}\)ought to have \(J^{P}=1 / 2^{+}\). None of \(I, J\), or \(P\) have actually been measured.

\section*{\(\bar{\Xi}_{b}\) MASSES}

\(\bar{E}_{b}^{0}\) MASS
\(5791.9 \pm 0.5\) OUR AVERAGE
DOCUMENT ID TECN COMMENT
\begin{tabular}{llll}
\(5794.3 \pm 2.4 \pm 0.7\) & AAIJ & 14 H LHCB \(p p\) at 7 TeV \\
\(5791.80 \pm 0.39 \pm 0.31\) & 1 AAIJ & 14 Z LHCB \(p p\) at \(7,8 \mathrm{TeV}\) \\
\(5788.7 \pm 4.3 \pm 1.4\) & 2 AALTONEN & 14 B CDF \(p \bar{p}\) at 1.96 TeV
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\(5787.8 \pm 5.0 \pm 1.3 \quad{ }^{3}\) AALTONEN 11 X CDF Repl. by AALTONEN 14B
\({ }^{1}\) Uses \(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\)decays. The measurement comes from the
mass difference of \(\Xi_{b}^{0}\) and \(\Lambda_{b}^{0}\).
\({ }^{2}\) Uses \(\equiv_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)decays.
\({ }^{3}\) Measured in \(\equiv_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)with \(25.3_{-5.4}^{+5.6}\) candidates.
\(\boldsymbol{m}_{\mathbf{E}_{\boldsymbol{b}}}-\boldsymbol{m}_{\boldsymbol{A}_{b}^{0}}\)
VALUE (MeV)
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{177.5 \pm 0.5 \text { OUR AVERAGE }}\)
DOCUMENT ID \(\qquad\) CN COMMENT or includes scale factor of 1.6
\(176.217 \mathrm{AAIJ} \quad 17 \mathrm{BE}\) LHCB ppat \(7,8 \mathrm{TeV}\)
13AV LHCB \(p p\) at 7 TeV
\(177.08 \pm 0.47 \pm 0.16 \quad 3 \mathrm{AAIJ} \quad 17 \mathrm{BE}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(178.36 \pm 0.46 \pm 0.16 \quad 4,5 \mathrm{AAIJ} \quad 14 \mathrm{BJ}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) Combination of the original statistically independent measurements of AAIJ 14BE and
AAIJ 17BJ taking into account correlation between systematic uncertainties.
\({ }^{2}\) Reconstructed in \(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\)decays.
\({ }^{3}\) Reconstructed in \(\equiv_{b}^{-} \rightarrow J / \psi \wedge K^{-}\)decays. Reference decays \(\Lambda_{b}^{0} \rightarrow J / \psi \Lambda\) were used.
\({ }^{4}\) Reconstructed in \(\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}, \Xi_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays. Reference \(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\).
\({ }^{5}\) Combined with AAIJ 17BE.

Baryon Particle Listings
三 \(_{b}{ }^{0}\), \({ }_{b}^{-}\)
\(m_{\Xi_{b}^{0}}-m_{\Lambda_{b}^{0}}\)
\(\frac{\text { VALUE (MeV) }}{172.5 \pm 0.4 \text { OUR AVERAGE }}\)
\(174.8 \pm 2.4 \pm 0.5\)
\(172.44 \pm 0.39 \pm 0.17\)
\({ }^{1}\) Uses \(\Xi_{b}^{0} \rightarrow{ }_{c}^{+}{ }_{c}^{1}\) AAIJ \(\quad 142\)
and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\)decays.
\(m_{\Xi_{b}^{-}}=m_{\Xi_{b}^{0}}\)
VALUE (MeV)
\(5.9 \pm 0.6\) OUR AVERAGE
\(5.92 \pm 0.60 \pm 0.23\)
\(3.1 \pm 5.6 \pm 1.3\)
\({ }^{1}\) Reconstructed in \(\Xi_{b}^{-} \rightarrow \bar{E}_{c}^{0} \pi^{-}, \Xi_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays. Uses \(\mathrm{m}\left(\equiv_{b}^{0}\right)-\mathrm{m}\left(\Lambda_{b}^{0}\right)\) \(=172.44 \pm 0.39 \pm 0.17 \mathrm{MeV}\) from AAlJ 14 z .
\({ }^{2}\) Derived from measurements in \(\Xi_{b}^{0} \rightarrow \bar{\Xi}_{c}^{+} \pi^{-}\)and \(\bar{E}_{b}^{-} \rightarrow J / \psi \Xi^{-}\)from AALTONEN 09AP taking correlated systematic uncertainties into account.

\section*{\(\Xi_{b}\) MEAN LIFE}
"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.
\(\bar{\Xi}_{b}^{-}\)MEAN LIFE
\(\frac{\text { VALUE }\left(10^{-12} \mathrm{~s}\right)}{1.572 \pm 0.040 \text { OUR EVALUATION }}\)
\(\mathbf{1 . 5 7} \pm \mathbf{0 . 0 4}\) OUR AVERAGE Error includes scale factor of 1.1
\begin{tabular}{|c|c|c|c|}
\hline \(1.599 \pm 0.041 \pm 0.022\) & \({ }^{1}\) AAIJ & 14BJ LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \(1.55{ }_{-0.09}^{+0.10} \pm 0.03\) & 2 AAIJ & 14 T LHCB & \(p p\) at \(7,8 \mathrm{Te}\) \\
\hline \(1.36 \pm 0.15 \pm 0.02\) & AALTONEN & 14B CDF & \(p \bar{p}\) at 1.96 TeV \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(1.56{ }_{-0.25}^{+0.27} \pm 0.02\) & 3 AALTONEN & 09AP CDF & \begin{tabular}{l}
Repl. by AALTO \\
NEN 14B
\end{tabular} \\
\hline
\end{tabular}
\({ }^{1}\) Reconstructed in \(\bar{\Xi}_{b}^{-} \rightarrow \bar{E}_{c}^{0} \pi^{-}, \bar{E}_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays. Reference \(\Lambda_{b}^{0}\) lifetime \(1.479 \pm 0.009 \pm 0.010 \mathrm{ps}\) from AAIJ 14 u .
\({ }^{2}\) Measured in \(\bar{\Xi}_{b}^{-} \rightarrow J / \psi \Xi^{-}\)decays.
\({ }^{3}\) Measured in \(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\)decays with \(66 \pm 9\) candidates.
\(\equiv_{b}^{0}\) MEAN LIFE
\(\frac{\text { VALUE }\left(10^{-12} \mathrm{~s}\right)}{1.400 \pm 0.000 \text { OUR EVALUATION }}\)
DOCUMENT ID \(\qquad\) TECN COMMENT

\section*{\(1.477 \pm 0.026 \pm 0.019\)}

1 Uses \(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p{ }^{1}\) value of relative lifetime of \(\equiv_{b}^{0}\) to \(\Lambda_{b}^{0}\).

\section*{\(\Xi_{b}\) MEAN LIFE}
\(\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)\)
DOCUMENT ID \(\qquad\) TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - \(1.48{ }_{-0.31}^{+0.40} \pm 0.12 \quad{ }^{1}\) ABDALLAH 05C DLPH \(e^{+} e^{-} \rightarrow z^{0}\) \(1.35{ }_{-0.28-0.17}^{+0.37}+{ }^{2}\) BUSKULIC \(96 T\) ALEP \(e^{+} e^{-} \rightarrow z\) \(1.5{ }_{-0.4}^{+0.7} \pm 0.3 \quad{ }^{3}\) ABREU 95 V DLPH Repl. by ABDALLAH 05c
\({ }^{1}\) Used the decay length of \(\Xi^{-}\)accompanied by a lepton of the same sign.
\({ }^{2}\) Excess \(\Xi^{-} \ell^{-}\), impact parameters.
\({ }^{3}\) Excess \(\Xi^{-} \ell^{-}\), decay lengths.
\(\tau_{\operatorname{mix}}(1 / 2 \pi)\) times the oscillation period
\begin{tabular}{|c|c|c|}
\hline VALUE (s) & DOCUMENT ID TECN & COMMENT \\
\hline \(>13 \times 10^{-12}\) & \({ }^{1}\) AAIJ 17BH LHCB & \(p p\) at 7, 8 TeV \\
\hline \({ }^{1}\) Uses \(\Xi_{b}^{*-}\) & \({ }_{b}^{0} \pi^{-}\), where \(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\) & \(\bar{E}_{C}^{+} \rightarrow p K^{-} \pi^{+}\). \\
\hline
\end{tabular}

\section*{MEAN LIFE RATIOS}
\begin{tabular}{l}
\(\boldsymbol{\tau}_{\bar{E}_{\boldsymbol{b}}^{-}} / \boldsymbol{\tau}_{\boldsymbol{\Lambda}_{\boldsymbol{b}}^{0}}\) mean life ratio \\
\hline\(A L U E\)
\end{tabular}


\footnotetext{
\(\tau_{\Xi_{b}^{-}} / \tau_{\Xi_{b}^{0}}\) mean life ratio
VALUE
\(\mathbf{1 . 0 8 3} \pm \mathbf{0 . 0 3 2} \pm \mathbf{0 . 0 1 6} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\)
\({ }^{1}\) Reconstructed in \(\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}, \Xi_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays. Uses \(\Xi_{b}^{0}\) measurements from AAIJ \(14 z\).
}

\section*{\(\bar{E}_{b}\) DECAY MODES}


VALUE (units \(10^{-4}\) ) DOCUMENT ID_LECN COMMENT \(\quad\) 2/

\section*{\(0.102{ }_{-0.021}^{\mathbf{+ 0}} \mathbf{0 . 0 2 6}\) OUR AVERAGE}
\(0.098_{-0.016}^{+0.023} \pm 0.014 \quad 1\) AALTONEN 09 AP CDF \(p \bar{p}\) at 1.96 TeV
\(0.16 \pm 0.07 \pm 0.02 \quad 2\) ABAZOV 07 K D0 \(p \bar{p}\) at 1.96 TeV
\({ }^{1}\) AALTONEN 09AP reports \(\left[\Gamma\left(\Xi_{b} \rightarrow J / \psi \Xi^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{-}\right)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.\right.\) \(\left.\left.J / \psi(1 S) \Lambda \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right)\right]=0.167_{-0.025}^{+0.037} \pm 0.012\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi(1 S) \Lambda \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right)=(5.8 \pm 0.8) \times 10^{-5}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{2}\) ABAZOV 07 K reports \(\left[\Gamma\left(\bar{\Xi}_{b} \rightarrow J / \psi \Xi^{-} \times \mathrm{B}\left(b \rightarrow \bar{\Xi}_{b}^{-}\right)\right) / \Gamma_{\text {total }}\right] /\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.\right.\) \(\left.\left.J / \psi(1 S) \wedge \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right)\right]=0.28 \pm 0.09_{-0.08}^{+0.09}\) which we multiply by our best value \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi(1 S) \Lambda \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right)=(5.8 \pm 0.8) \times 10^{-5}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Gamma\left(J / \psi \wedge K^{-} \times \mathrm{B}\left(\mathrm{b} \rightarrow\right.\right.\) 三\(\left.\left._{\boldsymbol{b}}^{-}\right)\right) / \Gamma_{\text {total }}\)} & 3/Г \\
\hline VALUE (units \(10^{-6}\) ) & DOCUMENT ID & TECN & COMMENT \\
\hline \(2.45 \pm 0.19 \pm 0.35\) & 1,2 AAIJ & 17BE LHC & \(p p\) at 7 and 8 Te \\
\hline \({ }^{1}\) AAIJ 17 BE re \(J / \psi(1 S) \wedge \times\) our best value error is their ex our best value. & \multicolumn{3}{|l|}{our best value \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow J / \psi(1 S) \Lambda \times \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right)=(5.8 \pm 0.8) \times 10^{-5}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.} \\
\hline \multicolumn{4}{|l|}{\({ }^{2}\) Integrated over the \(b\)-baryon transverse momentum \(p_{T}<25 \mathrm{GeV}\) and rapidity \(2.0<\mathrm{y}\) \(<4.5\).} \\
\hline
\end{tabular}
\(\Gamma\left(p D^{0} K^{-} \times B\left(\bar{b} \rightarrow \Xi_{b}\right)\right) / \Gamma_{\text {total }}\)
\({ }^{1}\) AAIJ 14 H reports \(\left[\Gamma\left(\Xi_{b} \rightarrow p D^{0} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}\right)\right) / \Gamma_{\text {total }}\right] /[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()] /\) \(\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow p D^{0} K^{-}\right)\right]=0.44 \pm 0.09 \pm 0.06\) which we multiply by our best values \(\mathrm{B}(\bar{b} \rightarrow\) \(b\)-baryon \()=(8.4 \pm 1.1) \times 10^{-2}, \mathrm{~B}\left(\Lambda_{b}^{0} \rightarrow p D^{0} K^{-}\right)=(4.6 \pm 0.8) \times 10^{-5}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.

\(\Gamma\left(p K^{-} K^{-} \pi^{+} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{17} / \Gamma\)
 \(\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right] /\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right)\right]=(5.6 \pm 0.6 \pm 0.4 \pm 0.5) \times 10^{-3}\) which we multiply by our best values \(\mathrm{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}, \mathrm{~B}\left(\Lambda_{b}^{0} \rightarrow\right.\) \(\left.\Lambda_{C}^{+} \pi^{-}\right)=(4.9 \pm 0.4) \times 10^{-3}\) ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
\(\Gamma\left(p K^{-} K^{+} K^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right) / \Gamma_{\text {total }}\)
\(\Gamma_{18} / \Gamma\)
\(\frac{V A L U E\left(\text { units } 10^{-6}\right)}{\mathbf{0 . 1 8} \mathbf{\pm 0 . 0 9} \mathbf{\pm 0 . 0 2}} \quad 1,2 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\)
\({ }^{1} \mathrm{AAIJ} 18 \mathrm{Q}\) reports \(\left[\Gamma\left(\bar{\Xi}_{b} \rightarrow p K^{-} K^{+} K^{-} \times \mathrm{B}\left(b \rightarrow \Xi_{b}^{0}\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right) / \Gamma_{\text {total }}\right] /\) \(\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right] /\left[\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right)\right]=(0.57 \pm 0.28 \pm 0.08 \pm 0.10) \times 10^{-3}\) which we multiply by our best values \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\) ， \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)=(4.9 \pm 0.4) \times 10^{-3}\) ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
\({ }^{2}\) AAIJ 18Q sees excess with a significance of \(2.3 \sigma\) ．Using \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{C}^{+} \pi^{-}\right)=(0.430 \pm\) \(0.036) \times 10^{-2}\) and \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.46 \pm 0.24) \times 10^{-2}\) the authors set two sided limit［0．11－0．25］at \(90 \%\) C．L．
 \(\frac{V A L U E}{\mathbf{0 . 3 6} \mathbf{0 . 1 9} \mathbf{0 . 0 2}} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{14 \mathrm{H}}{} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7 \mathrm{TeV}}\) \({ }^{1}\) AAIJ 14 H reports \(\left[\Gamma\left(\Xi_{b} \rightarrow \Lambda_{c}^{+} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Xi_{b}\right)\right) / \Gamma\left(\Xi_{b} \rightarrow p D^{0} K^{-} \times \mathrm{B}(\bar{b} \rightarrow\right.\right.\) \(\left.\left.\left.\Xi_{b}\right)\right)\right] \times\left[\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)\right] /\left[\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right]=0.57 \pm 0.22 \pm 0.21\) which we multiply or divide by our best values \(\mathrm{B}\left(\Lambda_{C}^{+} \rightarrow p K^{-} \pi^{+}\right)=(6.28 \pm 0.32) \times 10^{-2}\) ， \(\mathrm{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=(3.950 \pm 0.031) \times 10^{-2}\) ．Our first error is their experiment＇s error and our second error is the systematic error from using our best values．
\begin{tabular}{|c|c|c|c|c|}
\hline \(\Gamma\left(\Lambda_{b}^{0} \pi^{-} \times \mathrm{B}(b\right.\) & \(\left.\Lambda_{b}^{0}\right)\) & & & 5／「 \\
\hline VALUE（units \(10^{-4}\) ） & DOCUn & TECN & COMMENT & \\
\hline \(5.7 \pm 1.8{ }_{-0.9}^{+0.8}\) & \({ }^{1}\) AAIJ & LHCB & \(p p\) at 7， 8 & \\
\hline
\end{tabular}
\({ }^{1}\) A signal is reported with a significance of 3.2 standard deviations in the decay chain of \(\Xi_{b}^{-} \rightarrow \Lambda_{b}^{0} \pi^{-}, \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\)，and \(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\).

\section*{P AND CP VIOLATION}
\(\mathrm{a}_{P}\left(\mathbf{E}_{\boldsymbol{b}}^{\mathbf{0}} \rightarrow \mathrm{p} K^{-} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\right)\)
Observable calculated as average of the triple products for \(\bar{\Xi}_{b}^{0}\) and \(\bar{\Xi}_{b}^{0}\) ，which is sensitive to parity violation．
\begin{tabular}{|c|c|c|c|}
\hline VALUE（\％） & \multicolumn{2}{|l|}{DOCUMENT ID TECN} & \multirow[t]{2}{*}{\[
\frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}
\]} \\
\hline －3．04 \(\pm 5.19 \pm 0.36\) & \({ }^{1}\) AAIJ & \multirow[t]{2}{*}{18AG LHCB} & \\
\hline \({ }^{1}\) Measured over full phase spa & of the decay． & & \\
\hline \(\mathrm{a}_{C P}\left(\bar{E}_{b}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\right)\) & & & \\
\hline Observable calculated as har which is sensitive to \(C P\) vio VALUE（\％） & of the difference ation． DOCUMENT ID & between trip
\(\qquad\) TECN & \begin{tabular}{l}
products for \(\bar{E}_{b}^{0}\) and \(\bar{E}_{b}^{0}\) ， \\
COMMENT
\end{tabular} \\
\hline \(-3.58 \pm 5.19 \pm 0.36\) & \({ }^{1}\) AAIJ & 18AG LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline
\end{tabular}

\section*{\(\Delta A_{C P}\left(\right.\) ́ab \(\left._{\boldsymbol{0}} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)\)} \(\Delta A_{C P} \equiv A_{C P}\left(\Xi_{b}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}\right)-A_{C P}\left(\Xi_{b}^{0} \rightarrow\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) \pi^{-}\right)\) \(\frac{\left.\text { VALUE（units } 10^{-2}\right)}{-17 \pm 11 \pm 1} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ 19AH }} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}\) \({ }^{1}\) Full phase space．
\(\Delta \boldsymbol{A}_{\boldsymbol{C P}}\left(\right.\) 三 \(\left._{\boldsymbol{b}}^{\mathbf{0}} \rightarrow p K^{-} \boldsymbol{\pi}^{+} \boldsymbol{K}^{-}\right)\) \(\Delta A_{C P} \equiv A_{C P}\left(\Xi_{b}^{0} \rightarrow p K^{-} \pi^{+} K^{-}\right)-A_{C P}\left(\equiv_{b}^{0} \rightarrow\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) \pi^{-}\right)\)
\(\frac{\left.\text { VALUE（units } 10^{-2}\right)}{-6.8 \pm 8.0 \pm 0.8} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad\) 19AH \(\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7 \text { and } 8 \mathrm{TeV}}\)
\({ }^{1}\) Full phase space．
\(\boldsymbol{A}_{P}\left(\bar{\Xi}_{b}\right), \bar{\Xi}_{\boldsymbol{b}}^{-}-\bar{\Xi}_{\boldsymbol{b}}^{+}\)production asymmetry
\(A_{P}\left(\Xi_{b}\right)=\left[\sigma\left(\Xi_{b}^{-}\right)-\sigma\left(\Xi_{b}^{+}\right)\right] /\left[\sigma\left(\bar{\Xi}_{b}^{-}\right)+\sigma\left(\Xi_{b}^{+}\right)\right]\)
\begin{tabular}{|c|c|c|c|}
\hline VALUE（units \(10^{-2}\) ） & \multicolumn{2}{|l|}{DOCUMENTID TEC} & COMMENT \\
\hline －2 \(\pm 4\) OUR AVERAGE & & & \\
\hline \(1.1 \pm 5.6 \pm 1.9\) & 1，2 AAIJ & 19ab LHCB & t 7 and 8 TeV \\
\hline \(-3.9 \pm 4.9 \pm 2.5\) & 1，2 AAIJ & 19 AB LHCB & \(p p\) at 13 TeV \\
\hline
\end{tabular}
\({ }^{1}\) Baryon kinematic range \(p_{T}<20 \mathrm{GeV} / \mathrm{c}\) and \(2<\eta<6\) ．
\({ }^{2}\) Measured using previous measurements of \(\mathrm{A}_{P}\left(\Lambda_{b}\right)\) in AAIJ 17BF．

\section*{\(\bar{\Xi}_{b}\) REFERENCES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline AAIJ & 19 AB & PR D99 052006 & R．Aajj et al． & （LHCb & Collab．） \\
\hline AAIJ & 19AH & EPJ C79 745 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 18AG & JHEP 1808039 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 18 Q & JHEP 1802098 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 17 BE & PL B772 265 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & & PL B774 139 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 17 BH & PRL 119181807 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 17BJ & PRL 119232001 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 17 F & PRL 118071801 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 16 W & JHEP 1605081 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 15BA & PRL 115241801 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 14 AA & PRL 112202001 & R．Aaij et al． & （LLHCb & Collab．） \\
\hline AAIJ & 14BE & NP B888 169 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 14BJ & PRL 113242002 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 14 H & PR D89 032001 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 14 Q & JHEP 1404087 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 14 T & PL B736 154 & R．Aaij et al． & （LHCb & Collab．） \\
\hline AAIJ & 14 U & PL B734 122 & R．Aajj et al． & （LHCb & Collab．） \\
\hline AAIJ & 14 Z & PRL 113032001 & R．Aaij et al． & （LHCb & Collab．） \\
\hline Aaltonen & 14B & PR D89 072014 & T．Aaltonen et al． & （CDF & Collab．） \\
\hline AAIJ & \(13 A V\) & PRL 110182001 & R．Aajj et al． & （LHCb & Collab．） \\
\hline AALTONEN & 11X & PRL 107102001 & T．Aaltonen et al． & & Collab．） \\
\hline AALTONEN & 09AP & PR D80 072003 & T．Aaltonen et al． & （CDF & Collab．） \\
\hline Aaltonen & 07A & PRL 99052002 & T．Aaltonen et al． & （CDF & Collab．） \\
\hline Abazov & 07k & PRL 99052001 & V．M．Abazov et al． & & Collab．） \\
\hline AbdALLAH & 05C & EPJ C44 299 & J．Abdallah et al． & （DELPHI & Collab．） \\
\hline BuSkulic & 96 T & PL B384 449 & D．Buskulic et al． & （ALEPH & Collab．） \\
\hline abreu & 95 V & ZPHY C68 541 & P．Abreu et al． & （DELPHI & Collab．） \\
\hline \multicolumn{3}{|l|}{二 \(^{\prime}(5935)^{-}\)} & \(J^{P}=\frac{1}{2}\) & Status： & ＊＊＊ \\
\hline
\end{tabular}

\section*{\(\Xi_{b}^{\prime}(5935)^{-}\)MASS}

\section*{VALUE（MeV）}

\section*{\(5935.02 \pm 0.02 \pm 0.05\)}

\section*{\(1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} 15 \mathrm{H} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{p p \text { at } 7,8 \mathrm{TeV}}\)} \({ }^{1}\) Not independent of the mass difference measurement below．Observed in \(\equiv_{b}^{0} \pi^{-}\)channel with \(\equiv_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\).
\(\bar{\Xi}_{b}^{\prime}(5935)^{-}, \bar{\Xi}_{b}(5945)^{0}, \bar{\Xi}_{b}(5955)^{-}, \overline{\bar{O}}_{b}(6227)\)
\(m_{\Xi_{b}^{\prime}(5935)^{-}}-m_{\Xi_{b}^{0}}-m_{\pi^{-}}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (MeV) & & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{2}{|l|}{\(3.653 \pm 0.018 \pm 0.006\)} & \multicolumn{2}{|l|}{2 AAIJ} & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{2}\) Observed in \(\equiv_{b}^{0} \pi^{-}\)channel with \(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\).} \\
\hline \multicolumn{6}{|c|}{\(\Xi^{\prime}{ }_{\boldsymbol{D}}(5935)^{-}\)WIDTH} \\
\hline \multicolumn{2}{|l|}{\(\underline{V A L U E}(\mathrm{MeV}) \longrightarrow C L\)} & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline <0.08 & 95 & 3 AAIJ & 15H & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{6}{|l|}{\({ }^{3}\) Observed in \(\bar{E}_{b}^{0} \pi^{-}\)channel with \(\Xi_{b}^{0} \rightarrow \bar{E}_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\).} \\
\hline
\end{tabular}

\section*{\(\Xi_{b}^{\prime}(5935)^{-}\)DECAY MODES}
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\bar{\Xi}_{b}^{0} \pi^{-} \times \mathrm{B}(\bar{b} \rightarrow\) & \((11.8 \pm 1.8) \%\) \\
& \(\left.\bar{\Xi}_{b}^{\prime}(5935)^{-}\right) / \mathrm{B}\left(\bar{b} \rightarrow \bar{E}_{b}^{0}\right)\) & \\
\hline
\end{tabular}
\(\Xi_{b}^{\prime}(5935)^{-}\)BRANCHING RATIOS
 \(\mathbf{0 . 1 1 8} \pm \mathbf{0 . 0 1 7} \pm \mathbf{0 . 0 0 7} \quad 4 \frac{15 \mathrm{H}}{\mathrm{AAIJ}} \mathrm{LHCB} p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{4}\) Observed in \(\bar{E}_{b}^{0} \pi^{-}\)channel with \(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\)and \(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\).

\section*{\(\Xi_{b}^{\prime}(5935)^{-}\)REFERENCES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline AAIJ & 15H & PRL 114062004 & R. Aaij et al. & \multicolumn{2}{|r|}{(LHCb Collab.)} \\
\hline & & & & Status: & \(* * *\) \\
\hline \multicolumn{6}{|c|}{Quantum numbers are based on quark model expectations.} \\
\hline
\end{tabular}

\section*{\(\Xi_{b}(5945)^{0}\) MASS}

Value (MeV)
\(5952.3 \pm 0.6\) OUR AVERAGE
\(5952.3 \pm 0.1 \pm 0.6\)
\(5951.4 \pm 0.8 \pm 0.6 \quad{ }^{2}\) CHATRCHYAN 12s CMS pp at 7 TeV, \(5.3 \mathrm{fb}^{-1}\)
\({ }^{1}\) AAIJ 16AE measures \(m\left(\Xi_{b}(5945)^{0}\right)-m\left(\Xi_{b}^{-}\right)-m\left(\pi^{+}\right)=15.727 \pm 0.068 \pm 0.023 \mathrm{MeV}\).
We have adjusted the measurement to our best values of \(m\left(\bar{\Xi}_{b}^{-}\right)=5797.0 \pm 0.6 \mathrm{MeV}\),
\(m\left(\pi^{+}\right)=139.57039 \pm 0.00018 \mathrm{MeV}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.
\({ }^{2}\) CHATRCHYAN 125 measures \(m\left(\Xi_{b}(5945)^{0}\right)-m\left(\Xi_{b}^{-}\right)-m\left(\pi^{+}\right)=14.84 \pm 0.74 \pm\) 0.28 MeV . We have adjusted the measurement to our best values of \(m\left(\Xi_{b}^{-}\right)=5797.0 \pm\) \(0.6 \mathrm{MeV}, m\left(\pi^{+}\right)=139.57039 \pm 0.00018 \mathrm{MeV}\). Our first error is their experiment's error and our second error is the systematic error from using our best values.

\section*{\(\bar{E}_{b}(5945)^{0}\) WIDTH}

VALUE (MeV) \(\qquad\) DOCUMENT ID TECN COMMENT
\({ }^{3}\) AAIJ 16AE LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(\mathbf{0 . 9 0} \pm \mathbf{0 . 1 6} \pm \mathbf{0 . 0 8}\). We do not use the following data for averages, fits, limits, etc. — -
\(2.1 \pm 1.7 \quad{ }^{4}\) CHATRCHYAN \(12 s\) CMS \(\quad p p\) at \(7 \mathrm{TeV}, 5.3 \mathrm{fb}^{-1}\)
\({ }^{3}\) Measured using \(\Xi_{b}(5945)^{0} \rightarrow \Xi_{b}^{-} \pi^{+}, \Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}, \Xi_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays.
\({ }^{4}\) Systematic uncertainty not evaluated.

\section*{\(\bar{E}_{b}(5945)^{0}\) DECAY MODES}


\section*{\(\Xi_{b}(5945)^{0}\) REFERENCES}


\section*{\(\Xi_{b}(5955)^{-}\)WIDTH}
\begin{tabular}{|c|c|c|c|}
\hline VALUE (MeV) & DOCUM & TECN & COMMENT \\
\hline \(1.65 \pm 0.31 \pm 0.10\) & 1 AAIJ & LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) Observed in \(\Xi_{b}^{0} \pi^{-}\)channel with \(\Xi_{b}^{0} \rightarrow \Xi_{C}^{+} \pi^{-}\)and \(\Xi_{C}^{+} \rightarrow p K^{-} \pi^{+}\).} \\
\hline
\end{tabular}
\(\Xi_{b}(5955)^{-}\)DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(\bar{\Xi}_{b}^{0} \pi^{-} \times \mathrm{B}(\bar{b} \rightarrow\) & \((20.7 \pm 3.5) \%\) \\
& \(\left.\bar{\Xi}_{b}^{*}(5955)^{-}\right) / \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}^{0}\right)\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\bar{E}_{b}(5955)^{-}\)BRANCHING RATIOS} \\
\hline \multicolumn{4}{|l|}{\[
\Gamma\left(\Xi_{b}^{0} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \bar{\Xi}_{b}^{*}(5955)^{-}\right) / \mathrm{B}\left(\bar{b} \rightarrow \bar{E}_{b}^{0}\right)\right) / \Gamma_{\text {total }}
\]} & COMMENT & \(\Gamma_{1} / \Gamma\) \\
\hline \multicolumn{6}{|l|}{\(\mathbf{0 . 2 0 7 \pm 0 . 0 3 2 \pm 0 . 0 1 5 ~}{ }^{\text {a }}\) AAIJ 15H LHCB \(p p\) at 7, 8 TeV} \\
\hline \multicolumn{6}{|l|}{\({ }^{1}\) Observed in \(\Xi_{b}^{0} \pi^{-}\)channel with \(\Xi_{b}^{0} \rightarrow \Xi_{C}^{+} \pi^{-}\)and \(\Xi_{C}^{+} \rightarrow p K^{-} \pi^{+}\).} \\
\hline
\end{tabular}
\(\bar{\Xi}_{b}(5955)^{-}\)REFERENCES


\section*{\(\bar{\Xi}_{b}(6227)\) WIDTH}
\begin{tabular}{lll}
\(\frac{\text { VALUE }(\mathrm{MeV})}{18.1 \pm 5.4} \pm \mathbf{1 . 8}\) & 18 & \(\frac{\text { DOCUMENT ID }}{\text { AAIJ }}\) \\
\({ }^{1}\) Uses \(\Lambda_{b}^{0} K^{-}\)and \(\equiv_{b}^{0} \pi^{-}\)modes. & \\
\hline
\end{tabular}
\(\Xi_{b}(6227)\) DECAY MODES
\begin{tabular}{lllr} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) & Scale factor \\
\hline\(\Gamma_{1}\) & \(\Lambda_{b}^{0} K^{-} \times \mathrm{B}(b \rightarrow\) & \((3.20 \pm 0.35) \times 10^{-3}\) & \\
& \(\left.\bar{\Xi}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\) & & \\
\(\Gamma_{2}\) & \(\bar{\Xi}_{b}^{0} \pi^{-} \times \mathrm{B}(b \rightarrow\) & \((2.8 \pm 1.1) \%\) & 1.8 \\
& \(\left.\bar{\Xi}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \bar{E}_{b}^{0}\right)\) & & \\
\hline
\end{tabular}

\section*{\(\Xi_{b}(6227)\) BRANCHING RATIOS}
\(\Gamma\left(\Lambda_{b}^{0} K^{-} \times \mathrm{B}\left(b \rightarrow \bar{\Xi}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \Lambda_{b}^{0}\right)\right) / \Gamma_{\text {total }} \quad \Gamma_{1} / \Gamma\)
\(\frac{V A L U E\left(\text { units } 10^{-3} \text { ) }\right.}{3.20 \text { DOCUMENT ID }}\) TECN COMMENT
\(3.20 \pm 0.35\) OUR AVERAGE
\(3.0 \pm 0.3 \pm 0.4\)
\(3.4 \pm 0.3 \pm 0.4\)

AAIJ \(\quad 18 \mathrm{H}\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\) AAIJ 18 H LHCB \(p p\) at 13 TeV
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\Gamma\left(\right.\) E \(\left._{b}^{0} \pi^{-} \times \mathrm{B}\left(b \rightarrow \bar{E}_{b}(6227)\right) / \mathrm{B}\left(b \rightarrow \bar{E}_{b}^{0}\right)\right) / \Gamma_{\text {total }}\)} & \multirow[t]{2}{*}{\(\Gamma_{2} / \Gamma\)} \\
\hline VALUE (units \(10^{-3}\) ) & DOCUM & TECN & COMMENT & \\
\hline \multicolumn{5}{|l|}{\(\mathbf{2 8} \pm \mathbf{1 1}\) OUR AVERAGE Error includes scale factor of 1.8.} \\
\hline \(47 \pm 10 \pm 7\) & AAIJ & 18H LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) & \\
\hline \(22 \pm 6 \pm 3\) & AAIJ & 18H LHCB & \(p p\) at 13 TeV & \\
\hline
\end{tabular}

\section*{\(\bar{E}_{b}(6227)\) REFERENCES}
\begin{tabular}{lllll} 
AAIJ & 18H & PRL 121072002 & R. Aaij et al. & (LHCb Collab.)
\end{tabular}
\(I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)\)Status: \(* * *\)
\(I, J, P\) need confirmation.
In the quark model \(\Omega_{b}^{-}\)is ssb ground state. None of its quantum numbers has been measured.

\section*{\(\Omega_{b}^{-}\)MASS}
\(\operatorname{VALUE}(\mathrm{MeV})\)

\section*{6046.1 \(\pm\) 1.7 OUR AVERAGE}
\(6045.1 \pm 32 \pm\)
\(6047.5 \pm 3.8 \pm 0.6\) AAIJ 160 LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\(6046.0 \pm 3\) AALTONEN 14 B CDF \(p \bar{p}\) at 1.96 TeV
- - We do not use the following data for averages, fits, limits, etc. - .

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\boldsymbol{m}_{\Omega_{b}^{-}}-\boldsymbol{m}_{\boldsymbol{\Lambda}_{b}^{0}}\)} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline 426.4 \(\pm 2.2 \pm 0.4\) & AAIJ & 13AV LHCB & \(p p\) at 7 TeV \\
\hline \multicolumn{4}{|l|}{\[
\boldsymbol{m}_{\Omega_{b}^{-}}=\boldsymbol{m}_{\Xi_{b}}
\]} \\
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \(\mathbf{2 4 7 . 3} \pm \mathbf{3 . 2} \pm 0.5\) & \({ }^{1}\) AAIJ & 160 LHCB & \(p p\) at \(7,8 \mathrm{TeV}\) \\
\hline \({ }^{1}\) Uses \(\Omega_{b}^{-} \rightarrow\) decays. & \[
K^{-} K^{-} \pi^{+} \text {and }
\] & \[
-\bar{b} \rightarrow \equiv_{c}^{0}
\] & \[
\Xi_{C}^{0} \rightarrow p K
\] \\
\hline
\end{tabular}

\section*{\(\Omega_{b}\) MEAN LIFE}
"OUR EVALUATION" has been provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/).
\(\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)\) \(\qquad\) - DOCUMENT ID TECN COMMENT
\(1.64 \underset{-0.17}{+0.18}\) OUR EVALUATION

\section*{\(1.65{ }_{-0.16}^{+0.18}\) OUR AVERAGE}
\begin{tabular}{lllll}
\(1.78 \pm 0.26 \pm 0.05 \pm 0.06\) & \({ }^{1}\) AAIJ & 160 LHCB \(p p\) at \(7,8 \mathrm{TeV}\) \\
\(1.54_{-0.21}^{+0.26} \pm 0.05\) & \({ }^{2}\) AAIJ & 14 T LHCB \(p p\) at \(7,8 \mathrm{TeV}\) \\
\(1.66_{-0.40}^{+0.53} \pm 0.02\) & \({ }^{2}\) AALTONEN & 14 B CDF & \(p \bar{p}\) at 1.96 TeV
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\(1.13_{-0.40}^{+0.53} \pm 0.02 \quad{ }^{3}\) AALTONEN 09AP CDF Repl. by AALTONEN 14B
\({ }^{1}\) Measured in \(\Omega_{b}^{-} \rightarrow \Omega_{c}^{0} \pi^{-}, \Omega_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays relative to \(\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}\), \(\Xi_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)decays with reference \(\bar{E}_{b}^{-}\)mean life \(1.599 \pm 0.06\) ps from AAIJ 14B. \({ }^{2}\) Measured in \(\Omega_{b}^{-} \rightarrow J / \psi \Omega^{-}\)decays.
\({ }^{3}\) Observed in \(\Omega_{b}^{-} \rightarrow J / \psi \Omega^{-}\)decays with \(16_{-4}^{+6}\) candidates, a significance of 5.5 sigma from a combined mass-lifetime fit.

\section*{\(\tau\left(\Omega_{b}^{-}\right) / \tau\left(\Xi_{b}^{-}\right)\)mean life ratio}
\(\frac{V A L U E}{\mathbf{1 . 1 1}+\mathbf{0 . 1 6}+\mathbf{0 . 0 3}} \quad 1\) DOCUMENT ID \(\quad\) TECN COMMENT
\(\mathbf{1 . 1 1} \pm \mathbf{0 . 1 6} \pm \mathbf{0 . 0 3} \quad 1 \mathrm{AAIJ} \quad 160\) LHCB \(p p\) at \(7,8 \mathrm{TeV}\)
\({ }^{1}\) Uses \(\Omega_{b}^{-} \rightarrow \Omega_{C}^{0} \pi^{-}, \Omega_{C}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\)and \(\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \pi^{-}, \Xi_{C}^{0} \rightarrow p K^{-} K^{-} \pi^{+}\) decays.

\section*{\(\Omega_{b}^{-}\)DECAY MODES}
\begin{tabular}{llcll} 
Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) & Confidence level \\
\hline\(\Gamma_{1}\) & \(J / \psi \Omega^{-} \times \mathrm{B}\left(b \rightarrow \Omega_{b}\right)\) & \(\left(2.9_{-0.8}^{+1.1}\right) \times 10^{-6}\) & \\
\(\Gamma_{2}\) & \(p K^{-} K^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)\) & \(<2.5\) & \(\times 10^{-9}\) & \(90 \%\) \\
\(\Gamma_{3}\) & \(p \pi^{-} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)\) & \(<1.5\) & \(\times 10^{-8}\) & \(90 \%\) \\
\(\Gamma_{4}\) & \(p K^{-} \pi^{-} \times \mathrm{B}\left(\bar{b} \rightarrow \Omega_{b}\right)\) & \(<7\) & \(\times 10^{-9}\) & \(90 \%\) \\
\hline
\end{tabular}
\(\Omega_{b}^{-}\)BRANCHING RATIOS
\(\Gamma\left(J / \psi \Omega^{-} \times \mathrm{B}\left(b \rightarrow \boldsymbol{\Omega}_{b}\right)\right) / \Gamma_{\text {total }}\)
VALUE (units \(\left.10^{-4}\right)\)\(\underline{\Gamma_{\mathbf{1}} / \Gamma}\) VALUE (units 10 \(0^{-4}\) )

DOCUMENT ID TECN COMMENT  \(\mathbf{0 . 0 2 9}_{-0.008}^{\mathbf{0}} \mathbf{0 . 0 1 1}\) OUR AVERAGE

\(\Omega_{b}^{-}\)REFERENCES
\begin{tabular}{lllll} 
AAIJ & 17F & PRL 118 071801 & R. Aaij et al. & (LHCD Collab.) \\
AAIJ & 16O & PR D93 092007 & R. Aaij et al. & (LHCD Collab.) \\
AAIJ & 14B & PL B728 234 & R. Aaij et al. & (LHCD Collab.) \\
AAIJ & 14T & PL B736 154 & R. Aaij et al. & (LHCD Collab.) \\
AALTONEN & 14B & PR D89 072014 & T. Aaltonen et al. & (CDF Collab.) \\
AAIJ & 13AV & PRL 110 182001 & R. Aaij et al. & (LHCD Collab.) \\
AALTONEN & 09AP & PR D80 072003 & T. Aaltonen et al. & (CDF Collab.) \\
ABAZOV & 08AL & PRL 101232002 & V.M. Abazov et al. & (D0 Collab.) \\
\hline
\end{tabular}

\section*{\(b\)-baryon ADMIXTURE \(\left(\Lambda_{b}, \bar{\Xi}_{b}, \Omega_{b}\right)\)}

\section*{\(b\)-baryon ADMIXTURE MEAN LIFE}

Each measurement of the \(b\)-baryon mean life is an average over an admixture of various \(b\) baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different \(b\)-baryon mean life. More \(b\)-baryon flavor specific channels are not included in the measurement.

VALUE \(\left(10^{-12} \mathrm{~s}\right)\) EVTS DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • •
\(1.218_{-0.115}^{+0.130} \pm 0.042 \quad 1\) ABAZOV 075 D0 Repl. by ABAZOV 12 U \(1.22 \underset{-0.18}{+0.22} \pm 0.04 \quad 1\) ABAZOV 05C D0 Repl. by ABAZOV 07s \(1.16 \pm 0.20 \pm 0.08 \quad 2\) ABREU 99w DLPH \(e^{+} e^{-} \rightarrow Z\) \(1.19 \pm 0.14 \pm 0.07 \quad 3\) ABREU \(\quad 99 \mathrm{~W}\) DLPH \(e^{+} e^{-} \rightarrow Z\)
\(b\)-baryon ADMIXTURE ( \(\Lambda_{b}, \bar{\Xi}_{b}, \Omega_{b}\) )


\section*{\(b\)-baryon ADMIXTURE DECAY MODES \\ ( \(\Lambda_{b},=_{b}, \Omega_{b}\) )}

These branching fractions are actually an average over weakly decaying \(b\) baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the \(b\)-baryon production fraction \(\mathrm{B}(b \rightarrow b\)-baryon \()\).

The branching fractions \(\mathrm{B}\left(b\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \()\) and \(\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.\)
\(\Lambda_{C}^{+} \ell^{-} \bar{\nu}_{\ell}\) anything) are not pure measurements because the underlying measured products of these with \(\mathrm{B}(b \rightarrow b\)-baryon) were used to determine \(\mathrm{B}(b \rightarrow b\)-baryon \()\), as described in the note "Production and Decay of \(b\)-Flavored Hadrons."

For inclusive branching fractions, e.g., \(B \rightarrow D^{ \pm}\)anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(p \mu^{-} \bar{\nu}\) anything & \(\left(5.8_{-}^{+2.0}+2.3\right) \%\) \\
\(\Gamma_{2}\) & \(p \ell \bar{\nu}_{\ell}\) anything & \((5.6 \pm 1.2) \%\) \\
\(\Gamma_{3}\) & \(p\) anything & \((70 \pm 22) \%\) \\
\(\Gamma_{4}\) & \(\Lambda \ell^{-} \bar{\nu}_{\ell}\) anything & \((3.8 \pm 0.6) \%\) \\
\(\Gamma_{5}\) & \(\Lambda \ell^{+} \nu_{\ell}\) anything & \((3.2 \pm 0.8) \%\) \\
\(\Gamma_{6}\) & \(\Lambda\) anything & \((39 \pm 7) \%\) \\
\(\Gamma_{7}\) & \(\Xi^{-} \ell^{-} \bar{\nu}_{\ell}\) anything & \((6.6 \pm 1.6) \times 10^{-3}\) \\
\hline
\end{tabular}
\(b\)-baryon ADMIXTURE ( \(\Lambda_{b}, \Xi_{b}, \Omega_{b}\) ) BRANCHING RATIOS \(\Gamma\left(p \mu^{-} \nu_{\text {anything }}\right) / \Gamma_{\text {total }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (\%) & EVTS & DOCUMENT ID & TECN & COMMENT \\
\hline
\end{tabular}
\(\mathbf{5 . 8} \mathbf{+ \mathbf { 1 } . 9} \pm \mathbf{0 . 8} \quad 125 \quad 11\) ABREU \(\quad 95 \mathrm{~S}\) DLPH \(e^{+} e^{-} \rightarrow Z\)
\({ }^{11}\) ABREU 95s reports \(\left[\Gamma\left(b\right.\right.\)-baryon \(\rightarrow p \mu^{-} \bar{\nu}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.0049 \pm 0.0011_{-0.0011}^{+0.0015}\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\boldsymbol{\Gamma}\left(\boldsymbol{p} \boldsymbol{\ell} \boldsymbol{\nu}_{\boldsymbol{\ell}}\right.\) anything \() / \boldsymbol{\Gamma}_{\text {total }}\)
\(\frac{V A L U E(\%)}{\mathbf{5 . 6} \pm \mathbf{0 . 9} \pm \mathbf{0 . 7}}\) \(12 \frac{\boldsymbol{\Gamma}_{\mathbf{2}} / \boldsymbol{\Gamma}}{}\)
\({ }^{12}\) BARATE 98 V reports [ \(\Gamma\left(b\right.\)-baryon \(\rightarrow p \ell \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=(4.72 \pm 0.66 \pm 0.44) \times 10^{-3}\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()\) \(=(8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(p \ell \bar{\nu}_{\ell}\right.\) anything \() / \Gamma(p a n y t h i n g)\)
\(\Gamma_{2} / \Gamma_{3}\)
\(\frac{\operatorname{VALUE}(\%)}{8.0 \pm 1.2+1.4}\)
DOCUMENT ID BARATE \(98 \mathrm{ALEP} \frac{\text { COMMENT }}{e^{-}}\)
\(\Gamma\left(\Lambda \ell^{-} \bar{\nu}_{\ell}\right.\) anything \() / \Gamma_{\text {total }}\)
\(\Gamma_{4} / \Gamma\) The values and averages in this section serve only to show what values result if one
assumes our \(\mathrm{B}(b \rightarrow b\)-baryon \()\). They cannot be thought of as measurements since the underlying product branching fractions were also used to determine \(\mathrm{B}(b \rightarrow b\)-baryon \()\) as described in the note on "Production and Decay of \(b\)-Flavored Hadrons."
\(\frac{\operatorname{VALUE}(\%)}{\mathbf{3 . 8} \pm \mathbf{0 . 6} \text { OUR AVERA }} \frac{E V T S}{\text { DOCUMENT ID }}\) TECN COMMENT
\(3.9 \pm 0.5 \pm 0.5 \quad 13\) BARATE \(\quad\) 98D ALEP \(e^{+} e^{-} \rightarrow Z\)
\(3.5 \pm 0.4 \pm 0.5 \quad 14\) AKERS \(\quad 96\) OPAL Excess of \(\Lambda \ell^{-}\)over \(\Lambda \ell^{+}\)
\(3.6 \pm 0.9 \pm 0.5 \quad 262 \quad 15\) ABREU 95 s DLPH Excess of \(\Lambda \ell^{-}\)over \(\Lambda \ell^{+}\)
\(7.3 \pm 1.4 \pm 1.0 \quad 290 \quad{ }^{16}\) BUSKULIC 95L ALEP Excess of \(\Lambda \ell^{-}\)over \(\Lambda \ell^{+}\)
- - We do not use the following data for averages, fits, limits, etc. - -
seen \(157 \quad 17\) AKERS 93 OPAL Excess of \(\Lambda \ell^{-}\)over \(\Lambda \ell^{+}\) \(8.3 \pm 2.5 \pm 1.1 \quad 101 \quad 18\) BUSKULIC \(\quad 921\) ALEP Excess of \(\Lambda \ell^{-}\)over \(\Lambda \ell^{+}\)
\({ }^{13}\) BARATE 98D reports [ \(\Gamma\left(b\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.00326 \pm 0.00016 \pm 0.00039\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()\) \(=(8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of \(\Lambda \ell^{-}\), lepton impact parameter.
\({ }^{14}\) AKERS 96 reports \(\left[\Gamma\left(b\right.\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]=\) \(0.00291 \pm 0.00023 \pm 0.00025\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
15 ABREU 95s reports [ \(\left[\left(b\right.\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.0030 \pm 0.0006 \pm 0.0004\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
16 BUSKULIC 95L reports [ \(\Gamma\left(b\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.0061 \pm 0.0006 \pm 0.0010\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
17 AKERS 93 superseded by AKERS 96.
\({ }^{18}\) BUSKULIC 921 reports [ \(\Gamma\left(b\right.\)-baryon \(\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.0070 \pm 0.0010 \pm 0.0018\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

- - We do not use the following data for averages, fits, limits, etc. - - -
\(47 \pm 7 \pm 6\)
19 ABBIENDI 99L reports [ \(\left[(b\right.\)-baryon \(\rightarrow\) ^anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow \quad b\)-baryon \()]\) \(=0.035 \pm 0.0032 \pm 0.0035\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\({ }^{20}\) ABREU 95C reports \(0.28_{-0.12}^{+0.17}\) from a measurement of \([\Gamma(b\)-baryon \(\rightarrow\) ^anything \() /\) \(\left.\Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) assuming \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=0.08 \pm 0.02\), which we rescale to our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=(8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best
21 value.
ACKERSTAFF 97N reports \(\left[\Gamma(b\right.\)-baryon \(\rightarrow\) ^anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.0393 \pm 0.0046 \pm 0.0037\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\(\Gamma\left(\Xi^{-} \ell^{-} \bar{\nu}_{\ell}\right.\) anything \() / \Gamma_{\text {total }} \quad \Gamma_{7} / \Gamma\) \(\frac{V A L U E\left(\text { units } 10^{-3}\right)}{6.6 \pm 1.6 \text { OUR AVERAGE DOCUMENT ID }}\) TECN COMMENT
6.6 \(\pm 1.6\) OUR AVERAGE
\(6.4 \pm 1.6 \pm 0.8\)\({ }^{22}\) BUSKULIC \(96 T\) ALEP Excess \(\Xi^{-} \ell^{-}\)over \(\Xi^{-} \ell^{+}\) \(7.0 \pm 2.8 \pm 0.9 \quad 23\) ABREU 95 V DLPH Excess \(\overline{\Xi^{-}} \ell^{-}\)over \(\overline{\text { ミ }}-\ell^{+}\)
\({ }^{22}\) BUSKULIC 96T reports \(\left[\Gamma\left(b\right.\right.\)-baryon \(\rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b-\) baryon \()]=0.00054 \pm 0.00011 \pm 0.00008\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow\) \(b\)-baryon \()=(8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
23 ABREU 95v reports \(\left[\Gamma\left(b\right.\right.\)-baryon \(\rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell}\) anything \(\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()]\) \(=0.00059 \pm 0.00021 \pm 0.0001\) which we divide by our best value \(\mathrm{B}(\bar{b} \rightarrow b\)-baryon \()=\) \((8.4 \pm 1.1) \times 10^{-2}\). Our first error is their experiment's error and our second error is the systematic error from using our best value.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\boldsymbol{b}\)-baryon ADMIXTURE \(\left(\Lambda_{b}, \bar{\Xi}_{\boldsymbol{b}}, \Omega_{b}\right)\) REFERENCES} \\
\hline ABAZOV & 12 U & PR D85 112003 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 075 & PRL 99142001 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 05C & PRL 94102001 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABBIENDI & 99 L & EPJ C9 1 & G. Abbiendi et al. & (OPAL Collab.) \\
\hline ABREU & 99 W & EPJ C10 185 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ACKERSTAFF & 98G & PL B426 161 & K. Ackerstaff et al. & (OPAL Collab.) \\
\hline BARATE & 98D & EPJ C2 197 & R. Barate et al. & (ALEPH Collab.) \\
\hline BARATE & 98 V & EPJ C5 205 & R. Barate et al. & (ALEPH Collab.) \\
\hline ACKERSTAFF & 97N & ZPHY C74 423 & K. Ackerstaff et al. & (OPAL Collab.) \\
\hline ABE & 96M & PRL 771439 & F. Abe et al. & (CDF Collab.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ABREU & 96D & ZPHY C71 199 & P. Abreu et al. & (DELPHI Collab.) & ABREU & 95 V & ZPHY C68 541 & P. Abreu et al. & (DELPHI Collab.) \\
\hline AKERS & 96 & ZPHY C69 195 & R. Akers et al. & (OPAL Collab.) & BUSKULIC & 95L & PL B357 685 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline BUSKULIC & 96T & PL B384 449 & D. Buskulic et al. & (ALEPH Collab.) & ABREU & 93F & PL B311 379 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ABREU & 95C & PL B347 447 & P. Abreu et al. & (DELPHI Collab.) & AKERS & 93 & PL B316 435 & R. Akers et al. & (OPAL Collab.) \\
\hline ABREU & 95 S & ZPHY C68 375 & P. Abreu et al. & (DELPHI Collab.) & BUSKULIC & 921 & PL B297 449 & D. Buskulic et al. & (ALEPH Collab.) \\
\hline
\end{tabular}

\section*{Baryon Particle Listings}

Pentaquarks, \(P_{c}(4312)^{+}, P_{c}(4380)^{+}, P_{c}(4440)^{+}, P_{c}(4457)^{+}\)


\section*{\(P_{c}(4380)+\) MASS}
\begin{tabular}{c}
\(P_{c}(\mathbf{4 3 8 0})^{+}\)MASS \\
\begin{tabular}{lll} 
VALUE \((\mathrm{MeV})\)
\end{tabular} \\
\hline \(\mathbf{4 3 8 0} \pm \mathbf{8} \pm \mathbf{2 9}\) \\
\hline
\end{tabular}
\(P_{c}(4380)^{+}\)WIDTH
\(\frac{\frac{V A L U E(M e V)}{205 \pm 18 \pm 86} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ } 15 \mathrm{P}} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}}{P_{C}(\mathbf{4 3 8 0})^{+} \text {DECAY MODES }}\)
\(P_{c}(4380)^{+}\)DECAY MODES
\begin{tabular}{lll} 
& Mode & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(J / \psi p\) & seen \\
\hline & \(P_{C}(\mathbf{4 3 0 0})^{+}\) & \\
&
\end{tabular}
\(P_{c}(4380)^{+}\)BRANCHING RATIOS



\section*{\(P_{c}(4457)^{+}\)MASS}
\(\frac{\operatorname{VALUE}(\mathrm{MeV})}{4457.3 \pm 0 . \mathbf{6}_{-1.7}^{+4.1}} \quad \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \frac{\text { TECN }}{\text { 19w }} \frac{\text { COMMENT }}{\text { LHCB }} \frac{p p \text { at } 7,8,13 \mathrm{TeV}}{\text { I }}\)
- - We do not use the following data for averages, fits, limits, etc. - -
\(4449.8 \pm 1.7 \pm 2.5 \quad 1\) AAIJ 15P LHCB Repl. by AAIJ 19w
\({ }^{1}\) Considering \(P_{C}(4440)\) and \(P_{C}(4457)\) as a single resonance.

\section*{\(P_{c}(4457)^{+}\)WIDTH}
\begin{tabular}{|c|c|c|c|}
\hline VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \\
\hline \(6.4 \pm 2.0 \pm 5.7\) & AAIJ & LHCB & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(39 \pm 5 \pm 19\) & \({ }^{1}\) AAIJ & 15P LHCB Repl. by AAIJ 19w \\
\hline
\end{tabular}
\({ }^{1}\) Considering \(P_{C}(4440)\) and \(P_{C}(4457)\) as a single resonance.
\(P_{c}(4457)^{+}\)DECAY MODES
\begin{tabular}{lll}
\multicolumn{2}{c}{ Mode } & Fraction \(\left(\Gamma_{i} / \Gamma\right)\) \\
\hline\(\Gamma_{1}\) & \(J / \psi p\) & seen \\
\hline
\end{tabular}
\(P_{c}(4457)^{+}\)BRANCHING RATIOS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\Gamma(J / \psi p) / \Gamma_{\text {total }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DOCUMENT ID}} & \multirow[b]{2}{*}{TECN} & \multirow[b]{2}{*}{COMMENT} & \multirow[t]{2}{*}{\(\Gamma_{1} / \Gamma\)} \\
\hline & & & & & \\
\hline seen & AAIJ & 19w & LHCB & \(p p\) at 7, 8 & \\
\hline seen & AAIJ & 15P & LHCB & \(p p\) at 7, 8 & \\
\hline
\end{tabular}

\section*{\(\boldsymbol{P}_{\boldsymbol{c}}(\mathbf{4 4 5 7})^{+}\)REFERENCES}
\begin{tabular}{lllll} 
AAlJ & 19W & PRL 122 & 222001 & R. Aaij et al.
\end{tabular} \begin{tabular}{l} 
(LHCb Collab.) \\
AAIJ \\
AAIJ
\end{tabular}
MISCELLANEOUS SEARCHES
Magnetic Monopole Searches ..... 2017
Supersymmetric Particle Searches ..... 2019
Technicolor ..... 2062
Quark and Lepton Compositeness ..... 2063
Extra Dimensions ..... 2067
WIMP and Dark Matter Searches ..... 2073
Other Particle Searches ..... 2085
SEARCHES IN OTHER SECTIONS
Neutral Higgs Bosons, Searches for ..... 1056
Charged Higgs Bosons ( \(H^{ \pm}\)and \(H^{ \pm \pm}\)), Searches for ..... 1065
New Heavy Bosons ..... 1068
Axions \(\left(A^{0}\right)\) and Other Very Light Bosons ..... 1084
Heavy Charged Lepton Searches ..... 1134
Double- \(\beta\) Decay ..... 1145
Heavy Neutral Leptons, Searches for ..... 1168
\(b^{\prime}\) (Fourth Generation) Quark ..... 1197
\(t^{\prime}\) (Fourth Generation) Quark ..... 1199
Free Quark Searches ..... 1201
Related Reviews in Volume 1
86. Extra dimensions (rev.) ..... 889
87. \(W^{\prime}\)-boson searches (rev.) ..... 897
88. \(Z^{\prime}\)-boson searches (rev.) ..... 900
89. Supersymmetry: theory (rev.) ..... 905
90. Supersymmetry: experiment (rev.) ..... 923
91. Axions and other similar particles (rev.) ..... 939
92. Quark and lepton compositeness, searches for (rev.) ..... 953
93. Dynamical electroweak symmetry ..... 958
breaking: implications of the \(H(0)\) (rev.)
94. Grand unified theories (rev.) ..... 971
95. Leptoquarks (rev.) ..... 986
96. Magnetic monopoles (rev.) ..... 989

\title{
SEARCHES \\ not in other sections
}

\section*{Magnetic Monopole Searches}

See the related review(s):
Magnetic Monopoles

- - We do not use the following data for averages, fits, limits, etc. - -
\(<1.3 \mathrm{E}-40200-4000 \quad 1 \quad 13000 \quad p p \quad 19\) AAD \(\quad 20 \mathrm{G}\) ATLS
\(<5.6 \mathrm{E}-40500-4000 \quad 2 \begin{array}{lllll} & 5000 & p p & 19 \text { AAD } & 20 \mathrm{G} \\ & 200-5000 & 2 & 13000 & \text { ATLS }\end{array}\) \(\begin{array}{lllllll}200-5000 & 2 & 13000 & p p & 20 \text { ACHARYA } & 19 \mathrm{~B} & \text { INDU } \\ 200-5000 & 1 & 13000 & p p & 21 \text { ACHARYA } & 18 \mathrm{~A} & \text { INDU }\end{array}\)
\({ }^{1}\) The search was sensitive to monopoles which had stopped in aluminium trapping volumes. Monopoles with spins 0 and \(1 / 2\) were considered; mass-dependent spin \(1 / 2\) monopole limits are quoted here
\({ }^{2}\) AAD 16AB model-independent 95\% CL limits estimated using a fiducial region of ap\({ }_{3}\) proximately constant acceptance. Limits are mass-dependent.
\({ }^{3}\) ACHARYA 16 limits at \(95 \%\) CL estimated using a Drell-Yan-like production mechanism for scalar monopoles.
\({ }^{4}\) AAD 12CS searched for monopoles as highly ionising objects. The cross section limits are based on an assumed Drell Yan-like production process for spin \(1 / 2\) monopoles. The limits are mass- and scenario-dependent
\({ }^{5}\) ABBIENDI 08 assume production of spin \(1 / 2\) monopoles with effective charge \(g \beta(n=1)\), via \(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow M \bar{M}\), so that the cross section is proportional to \(\left(1+\cos ^{2} \theta\right)\). There is no \(z\) information for such highly saturated tracks, so a parabolic track in the jet chamber is projected onto the xy plane. Charge per hit in the chamber produces a clean separation of signal and background.
\({ }^{6}\) ABULENCIA 06 K searches for high-ionizing signals in CDF central outer tracker and time-of-flight detector. For Drell-Yan \(M \bar{M}\) production, the cross section limit implies \(M>360 \mathrm{GeV}\) at \(95 \% \mathrm{CL}\)
AKTAS 05A model-dependent limits as a function of monopole mass shown for arbitrary mass of 60 GeV . Based on search for stopped monopoles in the H1 AI beam pipe.
\({ }^{8}\) AKTAS 05A limits with assumed elastic spin 0 monopole pair production.
\({ }^{9}\) AKTAS 05A limits with assumed inelastic spin \(1 / 2\) monopole pair production.
\({ }^{10}\) KALBFLEISCH 04 reports searches for stopped magnetic monopoles in \(\mathrm{Be}, \mathrm{Al}\), and Pb samples obtained from discarded material from the upgrading of \(D \varnothing\) and CDF. A largeaperture warm-bore cryogenic detector was used. The approach was an extension of the methods of KALBFLEISCH 00. Cross section results moderately model dependent; interpretation as a mass lower limit depends on possibly invalid perturbation expansion.
11 KALBFLEISCH 00 used an induction method to search for stopped monopoles in pieces of the D \(\varnothing\) (FNAL) beryllium beam pipe and in extensions to the drift chamber aluminum support cylinder. Results are model dependent.
12 KALBFLEISCH 00 result is for aluminum
13 KALBFLEISCH 00 result is for beryllium.
\({ }^{14}\) HE 97 used a lead target and barium phosphate glass detectors. Cross-section limits are well below those predicted via the Drell-Yan mechanism.
\({ }^{5}\) This work has also been reinterpreted in the framework of monopole production via the thermal Schwinger process (GOULD 17); this gives rise to lower mass limits.
\({ }^{6}\) Multiphoton events.
17 Cherenkov radiation polarization
18 Re-examines CERN neutrino experiments.
\({ }^{19}\) AAD 20G give limits for Drell-Yan production with spin-0 and spin- \(1 / 2\) monopoles. The above limit is for spin \(=0\) at mass \(=3 \mathrm{TeV}\)
\({ }^{20}\) ACHARYA 19B limits both \(\beta\)-dependent and \(\beta\)-independent on monopoles with spins 0 , \(1 / 2\), and 1 and with magnetic charges ranging from one to five times the Dirac charge in mass ranges between 200 GeV and 5000 GeV .
\({ }^{21}\) ACHARYA 18A provide limits on monopoles with spins \(0,1 / 2\), and 1 and with magnetic charges ranging from two to five times the Dirac charge.

Monopole Production - Other Accelerator Searches
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MASS } \\
& (\mathrm{GeV})
\end{aligned}
\] & \[
\underset{(g)}{C H G}
\] & SPIN & ENERGY
\((\mathrm{GeV})\) & BEAM & DOCUMENT & & TECN \\
\hline > 610 & \(\geq 1\) & 0 & 1800 & \(p \bar{p}\) & \({ }^{1}\) ABBOTT & 98K & D0 \\
\hline > 870 & \(\geq 1\) & 1/2 & 1800 & \(p \bar{p}\) & \({ }^{1}\) ABBOTT & 98K & D0 \\
\hline \(>1580\) & \(\geq 1\) & 1 & 1800 & \(p \bar{p}\) & \({ }^{1}\) ABBOTT & 98 K & D0 \\
\hline \(>510\) & & & 88-94 & \(e^{+} e^{-}\) & \({ }^{2}\) ACCIARRI & 95C & L3 \\
\hline
\end{tabular}
\({ }^{1}\) ABBOTT 98 K search for heavy pointlike Dirac monopoles via central production of a pair of photons with high transverse energies.
\({ }^{2}\) ACCIARRI 95C finds a limit \(\mathrm{B}(Z \rightarrow \gamma \gamma \gamma)<0.8 \times 10^{-5}\) (which is possible via a monopole loop) at \(95 \% \mathrm{CL}\) and sets the mass limit via a cross section model.

\section*{Monopole Flux - Cosmic Ray Searches}
"Caty" in the charge column indicates a search for monopole-catalyzed nucleon decay.


\section*{Searches Particle Listings}

\section*{Magnetic Monopole Searches}



\section*{Supersymmetric Particle Searches}

\author{
ong-lived \(\widetilde{q}\) (Squark) mass limit \\ \(\widetilde{b}\) (Sbottom) mass limit \\ - R-parity conserving \(\widetilde{b}\) (Sbottom) mass limit \\ - R-parity violating \(b\) (Sbottom) mass limit \\ \(\tilde{t}\) (Stop) mass limit \\ - R-parity conserving \(\tilde{t}\) (Stop) mass limit \\ - R-parity violating \(t\) (Stop) mass limit \\ Heavy \(\widetilde{g}\) (Gluino) mass limit \\ - R-parity conserving heavy \(\widetilde{g}\) (Gluino) mass limit \\ - R-parity violating heavy \(\widetilde{g}\) (Gluino) mass limit \\ Long-lived \(\tilde{g}\) (Gluino) mass limit \\ Light \(\mathcal{G}\) (Gravitino) mass limits from collider experiments \\ Supersymmetry miscellaneous results
}

Most of the results shown below, unless stated otherwise, are based on the Minimal Supersymmetric Standard Model (MSSM), as described in the Note on Supersymmetry. Unless otherwise indicated, this includes the assumption of common gaugino and scalar masses at the scale of Grand Unification (GUT), and use of the resulting relations in the spectrum and decay branching ratios. Unless otherwise indicated, it is also assumed that \(R\)-parity \((R)\) is conserved and that:
1) The \(\widetilde{\chi}_{1}^{0}\) is the lighest supersymmetric particle (LSP)
2) \(m_{\widetilde{f}_{L}}=m_{\widetilde{f}_{R}}\), where \(\widetilde{f}_{L, R}\) refer to the scalar partners of leftand right-handed fermions.
Limits involving different assumptions are identified in the Comments or in the Footnotes. We summarize here the notations used in this Chapter to characterize some of the most common deviations from the MSSM (for further details, see the Note on Supersymmetry).

Theories with \(R\)-parity violation \((\not R)\) are characterized by a superpotential of the form: \(\lambda_{i j k} L_{i} L_{j} e_{k}^{c}+\lambda_{i j k}^{\prime} L_{i} Q_{j} d_{k}^{c}+\) \(\lambda^{\prime \prime}{ }_{i j k} u_{i}^{c} d_{j}^{c} d_{k}^{c}\), where \(i, j, k\) are generation indices. The presence of any of these couplings is often identified in the following by the symbols \(L L \bar{E}, L Q \bar{D}\), and \(\overline{U D D}\). Mass limits in the presence of \(\not R\) will often refer to "direct" and "indirect" decays. Direct refers to \(\not R\) decays of the particle in consideration. Indirect refers to cases where \(\not R\) appears in the decays of the LSP. The LSP need not be the \(\widetilde{\chi}_{1}^{0}\).

In several models, most notably in theories with so-called Gauge Mediated Supersymmetry Breaking (GMSB), the gravitino \((\widetilde{G})\) is the LSP. It is usually much lighter than any other massive particle in the spectrum, and \(m_{\widetilde{G}}\) is then neglected in all decay processes involving gravitinos. In these scenarios, particles other than the neutralino are sometimes considered as the next-to-lighest supersymmetric particle (NLSP), and are assumed to decay to their even- \(R\) partner plus \(\widetilde{G}\). If the lifetime is short enough for the decay to take place within the detector, \(\widetilde{G}\) is assumed to be undetected and to give rise to missing energy \((\notin)\) or missing transverse energy \(\left(E_{T}\right)\) signatures.

When needed, specific assumptions on the eigenstate content of \(\widetilde{\chi}^{0}\) and \(\widetilde{\chi}^{ \pm}\)states are indicated, using the notation \(\widetilde{\gamma}\) (photino), \(\widetilde{H}\) (higgsino), \(\widetilde{W}\) (wino), and \(\widetilde{Z}\) (zino) to signal that the limit of pure states was used. The terms gaugino is also used, to generically indicate wino-like charginos and zino-like neutralinos.

In the listings we have made use of the following abbreviations for simplified models employed by the experimental collaborations in supersymmetry searches published in the past year.

WARNING: Experimental lower mass limits determined within simplified models are to be treated with extreme care as they might not be directly applicable to realistic models. This is outlined in detail in the publications and we recommend consulting them before using bounds. For example, branching ratios, typically fixed to specific values in simplified models, can vary substantially in more elaborate models.

\section*{Simplified Models Table}

Tglu1A: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\).
Tglu1B: gluino pair production with \(\tilde{g} \rightarrow q q^{\prime} \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\).
Tglu1C: gluino pair production with a \(2 / 3\) probability of having a \(\tilde{g} \rightarrow q q^{\prime} \tilde{\chi}_{1}^{ \pm}, \quad \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) decay and a \(1 / 3\) probability of having a \(\tilde{g} \rightarrow q q \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow Z^{ \pm} \tilde{\chi}_{1}^{0}\) decay.
Tglu1D: gluino pair production with one gluino decaying to \(q \bar{q}^{\prime} \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm}+\tilde{G}\), and the other gluino decaying to \(q \bar{q} \tilde{\chi}_{1}^{0}\) with
\(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\). \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).
Tglu1E: gluino pair production with \(\tilde{g} \rightarrow q q^{\prime} \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow Z^{ \pm} \tilde{\chi}_{1}^{0}\) where \(m_{\tilde{\chi}_{1}^{ \pm}}=\left(m_{\tilde{g}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2, m_{\tilde{\chi}_{2}^{0}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+\right.\) \(m_{\tilde{\chi}_{1}^{0}} / 2\).
Tglu1F: gluino pair production with \(\tilde{g} \rightarrow q q^{\prime} \tilde{\chi}_{1}^{ \pm}\)or \(\tilde{g} \rightarrow q q \tilde{\chi}_{2}^{0}\) with equal branching ratios, where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate scalar tau lepton or sneutrino to \(\tau \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate scalar tau lepton or sneutrino to \(\tau^{+} \tau^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\); the mass hierarchy is such that \(m_{\chi_{1}^{ \pm}} \sim\) \(m_{\tilde{\chi}_{2}^{0}}=\left(m_{\tilde{g}}+m_{\chi_{1}^{0}}\right) / 2\) and \(m_{\tilde{\tau}, \tilde{\nu}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tglu1G: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2}^{0}\), and \(\tilde{\chi}_{2}^{0}\) decaying through an intermediate slepton or sneutrino to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\) where \(m_{\tilde{\chi}_{2}^{0}}=\left(m_{\tilde{g}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\) and \(m_{\tilde{\ell}, \tilde{\nu}}=\left(m_{\tilde{\chi}_{2}^{0}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tglu1H: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2}^{0}\), and \(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} Z^{0(*)}\).
Tglu1I: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2}^{0}\), and \(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} H\).
Tglu1J: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2}^{0}\), and \(\operatorname{BR}\left(\tilde{\chi}_{2}^{0} \rightarrow\right.\) \(\left.\tilde{\chi}_{1}^{0} Z^{0(*)}\right)=\operatorname{BR}\left(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} H\right)=0.5\).
Tglu1LL gluino pair production where \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) happens with \(1 / 3\) probability and \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{ \pm}\)happens with \(2 / 3\) probability. The \(\tilde{\chi}_{1}^{ \pm}\)is assumed to be few hundreds of MeV heavier than the \(\tilde{\chi}_{1}^{0}\), and decays to \(\tilde{\chi}_{1}^{0}\) via a pion.
Tglu2A: gluino pair production with \(\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}\).
Tglu3A: gluino pair production with \(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\).
Tglu3B: gluino pair production with \(\tilde{g} \rightarrow t \tilde{t}\) where \(\tilde{t}\) decays exclusively to \(t \tilde{\chi}_{1}^{0}\).
Tglu3C: gluino pair production with \(\tilde{g} \rightarrow t \overline{\tilde{t}}\) where \(\tilde{t}\) decays exclusively to \(c \tilde{\chi}_{1}^{0}\).
Tglu3D: gluino pair production with \(\tilde{g} \rightarrow t \bar{b} \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\).
Tglu3E: gluino pair production where the gluino decays \(25 \%\) of the time through \(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}, 25 \%\) of the time through \(\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}\) and \(50 \%\) of the time through \(\tilde{g} \rightarrow t \bar{b} \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\)
Tglu4A: gluino pair production with one gluino decaying to \(q \bar{q}^{\prime} \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm}+\tilde{G}\), and the other gluino decaying to \(q \bar{q} \tilde{\chi}_{1}^{0}\) with \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).
Tglu4B: gluino pair production with gluinos decaying to \(q \bar{q} \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).
Tglu4C: gluino pair production with gluinos decaying to \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{0} \rightarrow Z+\tilde{G}\).
Tglu4D: gluino pair production with \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) where the \(\tilde{\chi}_{1}^{0}\) decays with equal probability to \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\) or to \(\tilde{\chi}_{1}^{0} \rightarrow H+\tilde{G}\).
Tglu4E: gluino pair production with \(\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}\) where the \(\tilde{\chi}_{1}^{0}\) decays with equal probability to \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\) or to \(\tilde{\chi}_{1}^{0} \rightarrow Z+\tilde{G}\).
Tglu4F: gluino pair production with \(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\) where the \(\tilde{\chi}_{1}^{0}\) decays with equal probability to \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\) or to \(\tilde{\chi}_{1}^{0} \rightarrow Z+\tilde{G}\).
Tsqk1: squark pair production with \(\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\).
Tsqk1LL squark pair production where \(\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) and \(\tilde{q} \rightarrow q^{\prime} \tilde{\chi}_{1}^{ \pm}\)each happen with \(50 \%\) probability. The \(\tilde{\chi}_{1}^{ \pm}\)is assumed to be few hundreds of MeV heavier than the \(\tilde{\chi}_{1}^{0}\), and decays to \(\tilde{\chi}_{1}^{0}\) via a pion.
Tsqk2: squark pair production with \(\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow Z+\tilde{\chi}_{1}^{0}\).
Tsqk3: squark pair production with \(\tilde{q} \rightarrow q^{\prime} \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) (like Tglu1B but for squarks)

Tsqk4: squark pair production with squarks decaying to \(q \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).
Tsqk4A: squark pair production with one squark decaying to \(q \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm}+\tilde{G}\), and the other squark decaying to \(q \tilde{\chi}_{1}^{0}\) with \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).
Tsqk4B: squark pair production with squarks decaying to \(q \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\).

Tstop1: stop pair production with \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\).
Tstop1LL stop pair production where \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) and \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)each happen with \(50 \%\) probability. The \(\tilde{\chi}_{1}^{ \pm}\)is assumed to be few hundreds of MeV heavier than the \(\tilde{\chi}_{1}^{0}\), and decays to \(\tilde{\chi}_{1}^{0}\) via a pion.
Tstop2: stop pair production with \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\).
Tstop3: stop pair production with the subsequent four-body decay \(\tilde{t} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0}\) where \(f\) represents a lepton or a quark.
Tstop4: stop pair production with \(\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}\).
Tstop5: stop pair production with \(\tilde{t} \rightarrow b \bar{\nu} \tilde{\tau}\) with \(\tilde{\tau} \rightarrow \tau \tilde{G}\).
Tstop6: stop pair production with \(\tilde{t} \rightarrow t+\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{2}^{0} \rightarrow Z+\tilde{\chi}_{1}^{0}\) or \(H+\tilde{\chi}_{1}^{0}\) each with \(\mathrm{Br}=50 \%\).
Tstop7: stop pair production with \(\tilde{t}_{2} \rightarrow \tilde{t}_{1}+H / Z\), where \(\tilde{t}_{1} \rightarrow t+\tilde{\chi}_{1}^{0}\).
Tstop8: stop pair production with equal probability of the stop decaying via \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) or via \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\).
Tstop9: stop pair production with equal probability of the stop decaying via \(\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}\) or via the four-body decay \(\tilde{t} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0}\) where \(f\) represents a lepton or a quark.
Tstop10: stop pair production with \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm *} \tilde{\chi}_{1}^{0} \rightarrow\) \(\left(f \bar{f}^{\prime}\right)+\tilde{\chi}_{1}^{0}\) with a virtual \(W\)-boson.
Tstop11: stop pair production with \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)with \(\tilde{\chi}_{1}^{ \pm}\)decaying through an intermediate slepton to \(l \nu \tilde{\chi}_{1}^{0}\)
Tstop12: stop pair production with \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\)
Tstop13: stop pair production with \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) where the \(\tilde{\chi}_{1}^{0}\) can decay with equal probability to \(\tilde{\chi}_{1}^{0} \rightarrow \gamma+\tilde{G}\) or to \(\tilde{\chi}_{1}^{0} \rightarrow Z+\tilde{G}\).
Tstop1RPV: stop pair production with \(\tilde{t} \rightarrow \bar{b} \bar{s}\) via RPV coupling \(\lambda_{323}^{\prime \prime}\).
Tstop2RPV: stop pair production with \(\tilde{t} \rightarrow b \ell\), via RPV coupling \(\lambda_{i 33}^{\prime}\)
Tsbot1: sbottom pair production with \(\tilde{b} \rightarrow b \tilde{\chi}_{1}^{0}\).
Tsbot2: sbottom pair production with \(\tilde{b} \rightarrow t \chi_{1}^{-}, \chi_{1}^{-} \rightarrow W^{-} \tilde{\chi}_{1}^{0}\).
Tsbot3: sbottom pair production with \(\tilde{b} \rightarrow b \tilde{\chi}_{2}^{0}\), where one of the \(\tilde{\chi}_{2}^{0} \rightarrow Z^{(*)} \tilde{\chi}_{1}^{0} \rightarrow f \bar{f} \tilde{\chi}_{1}^{0}\) and the other \(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}^{+} \rightarrow \ell^{+} \ell^{-} \tilde{\chi}_{1}^{0}\).
Tsbot4: sbottom pair production with \(\tilde{b} \rightarrow b \tilde{\chi}_{2}^{0}\), with \(\tilde{\chi}_{2}^{0} \rightarrow H \tilde{\chi}_{1}^{0}\)
Tchi1chi1A: electroweak pair and associated production of nearly massdegenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays to \(\tilde{\chi}_{1}^{0}\) plus soft radiation, and where one of the \(\tilde{\chi}_{1}^{0}\) decays to \(\gamma+\tilde{G}\) while the other one decays to \(Z / H+\tilde{G}\) (with equal probability).
Tchi1chi1B: electroweak pair production of charginos \(\tilde{\chi}_{1}^{ \pm}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where the slepton or sneutrino mass is \(5 \%, 25 \%, 50 \%, 75 \%\) and \(95 \%\) of the \(\tilde{\chi}_{1}^{ \pm}\)mass.
Tchi1chi1C: electroweak pair production of charginos \(\tilde{\chi}_{1}^{ \pm}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(m_{\tilde{\ell}, \tilde{\nu}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tchi1chi1D: electroweak associated pair production of charginos \(\tilde{\chi}_{1}^{ \pm}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate scalar tau lepton or sneutrino to \(\tau \nu \tilde{\chi}_{1}^{0}\) and where \(m_{\tilde{\tau}}, m_{\tilde{\nu}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tchi1chi1F: electroweak pair and associated production of nearly massdegenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\) (i.e. \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{0}\) production) where the \(\tilde{\chi}_{1}^{ \pm}\)decays exclusively to \(\tilde{\chi}_{1}^{0}\) plus soft radiation and the \(\tilde{\chi}_{1}^{0}\) decays to \(\gamma / Z+\tilde{G}\).
Tchi1chi1G: electroweak pair production of charginos \(\tilde{\chi}_{1}^{ \pm}\), which are nearly mass-degenerate with neutralinos \(\tilde{\chi}_{1}^{0}\). The \(\tilde{\chi}_{1}^{ \pm}\)decays either to \(W^{ \pm}+\tilde{G}\), or to \(\tilde{\chi}_{1}^{0}\) plus soft radiation. The \(\tilde{\chi}_{1}^{0}\) decays exclusively to \(\gamma+\tilde{G}\).

Tchi1n1A: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays exclusively to \(W^{ \pm}+\tilde{G}\) and \(\tilde{\chi}_{1}^{0}\) decays exclusively to \(\gamma+\tilde{G}\).
Tchi1n2A: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays
through an intermediate slepton or sneutrino to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\).
Tchi1n2B: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate slepton or sneutrino to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\) and where the slepton or sneutrino mass is \(5 \%, 25 \%\), \(50 \%, 75 \%\) and \(95 \%\) of the \(\tilde{\chi}_{1}^{ \pm}\)mass.
Tchi1n2C: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate slepton or sneutrino to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\) and where \(m_{\tilde{\ell}, \tilde{\nu}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tchi1n2D: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate scalar tau lepton or sneutrino to \(\tau \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate scalar tau lepton or sneutrino to \(\tau^{+} \tau^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\) and where \(m_{\tilde{\tau}, \tilde{\nu}}=\left(m_{\tilde{\chi}_{1}^{ \pm}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
Tchinn2E: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm}+\tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow H+\tilde{\chi}_{1}^{0}\).
Tchi1n2F: electroweak associated production of mass-degenerate wino-like charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate \(W^{ \pm *}\) to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate \(Z^{*}\) to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\).
Tchi1n2G: electroweak associated production of Higgsino-like charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), and electroweak associated production of \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{1}^{0}\), where \(m_{\tilde{\chi}_{1}^{ \pm}}=\left(m_{\tilde{\chi}_{2}^{0}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\) and where \(\tilde{\chi}_{1}^{ \pm}\) decays through an intermediate \(W^{ \pm *}\) to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate \(Z^{*}\) to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\).
Tchi1n2H: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays through an intermediate slepton or sneutrino to \(l \nu \tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays through an intermediate scalar tau lepton or sneutrino to \(\tau^{+} \tau^{-} \tilde{\chi}_{1}^{0}\) or \(\nu \bar{\nu} \tilde{\chi}_{1}^{0}\).
Tchi1n2I: electroweak associated production of mass-degenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)decays to \(W^{ \pm}+\tilde{\chi}_{1}^{0}\) and where \(\tilde{\chi}_{2}^{0}\) decays \(50 \%\) of the time to \(Z+\tilde{\chi}_{1}^{0}\) and \(50 \%\) of the time to \(H+\tilde{\chi}_{1}^{0}\).
Tchinn12_GGM: in the framework of General Gauge Mediation (GGM): electroweak pair and associated production of nearly massdegenerate charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}\) (i.e. \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{ \pm}\), \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}\) production) where the \(\tilde{\chi}_{1}^{ \pm}\)decays exclusively to \(W^{ \pm}+\tilde{G}\), the \(\tilde{\chi}_{2}^{0}\) decays to \(Z / H+\tilde{G}\) and the \(\tilde{\chi}_{1}^{0}\) decays to \(\gamma / Z+\tilde{G}\). The branching ratios depend on the composition of the gauge eigenstates of the neutralinos in the GGM scenario.

Tn1n1A: electroweak pair and associated production of nearly massdegenerate Higgsino-like charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{2}^{0}\) decay to \(\tilde{\chi}_{1}^{0}\) plus soft radiation and where both of the \(\tilde{\chi}_{1}^{0}\) decay to \(H+\tilde{G}\).
Tn1n1B: electroweak pair and associated production of nearly massdegenerate Higgsino-like charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{2}^{0}\) decay to \(\tilde{\chi}_{1}^{0}\) plus soft radiation and where the \(\tilde{\chi}_{1}^{0}\) decays \(50 \%\) of the time to \(H+\tilde{G}\) and \(50 \%\) of the time to \(Z+\tilde{G}\).
Tn1n1C: electroweak pair and associated production of nearly massdegenerate Higgsino-like charginos \(\tilde{\chi}_{1}^{ \pm}\)and neutralinos \(\tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0}\), where \(\tilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{2}^{0}\) decay to \(\tilde{\chi}_{1}^{0}\) plus soft radiation and where both of the \(\tilde{\chi}_{1}^{0}\) decay to \(Z+\tilde{G}\).
Tn2n3A: electroweak associated production of mass-degenerate neutralinos \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{3}^{0}\), where \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{3}^{0}\) decay through intermediate sleptons to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) and where the slepton mass is \(5 \%, 25 \%\), \(50 \%, 75 \%\) and \(95 \%\) of the \(\tilde{\chi}_{2}^{0}\) mass.
Tn2n3B: electroweak associated production of mass-degenerate neutralinos \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{3}^{0}\), where \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{3}^{0}\) decay through intermediate sleptons to \(l^{+} l^{-} \tilde{\chi}_{1}^{0}\) and where \(m_{\tilde{\ell}}=\left(m_{\tilde{\chi}_{2}^{0}}+m_{\tilde{\chi}_{1}^{0}}\right) / 2\).
\[
\widetilde{\chi}_{\mathbf{1}}^{0} \text { (Lightest Neutralino) mass limit }
\]
\(\widetilde{\chi}_{1}^{0}\) is often assumed to be the lightest supersymmetric particle (LSP). See
also the \(\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{4}^{0}\) section below.
We have divided the \(\widetilde{\chi}_{1}^{0}\) listings below into five sections:
1) Accelerator limits for stable \(\widetilde{\chi}_{1}^{0}\),
2) Bounds on \(\tilde{\chi}_{1}^{0}\) from dark matter searches,
3) \(\tilde{\chi}_{1}^{0}-p\) elastic cross section (spin-dependent, spin-independent interac-
tions),
4) Other bounds on \(\widetilde{\chi}_{1}^{0}\) from astrophysics and cosmology, and
5) Unstable \(\tilde{\chi}_{1}^{0}\) (Lightest Neutralino) mass limit.

\section*{Accelerator limits for stable \(\tilde{\chi}_{1}^{0}\)}

Unless otherwise stated, results in this section assume spectra, production rates, decay modes, and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of \(\tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}(i \geq 1, j \geq 2), \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\), and (in the case of hadronic collisions) \(\tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0}\) pairs. The mass limits on \(\tilde{\chi}_{1}^{0}\) are either direct, or follow indirectly from the constraints set by the non-observation of \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\) states on the gaugino and higgsino MSSM parameters \(M_{2}\) and \(\mu\). In some cases, information is used from the nonobservation of slepton decays.

Obsolete limits obtained from \(e^{+} e^{-}\)collisions up to \(\sqrt{s}=184 \mathrm{GeV}\) have been removed from this compilation and can be found in the 2000 Edition (The European Physical Journal C15 1 (2000)) of this Review. \(\Delta m=m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\).

VALUE (GeV)
CL\% DOCUMENT ID TECN COMMENT
\begin{tabular}{llll} 
& 95 & \begin{tabular}{l}
1 \\
DREINER \\
2
\end{tabular}\(\quad 09\) \\
ABBIENDI & 04 H
\end{tabular}
\(>42.4\)
\(>42.4\)
\(>39.2\)
\(\begin{array}{ll}>46 & 95 \\ >32.5 & 95\end{array}\)
\(953^{3}\) HEISTER
\({ }^{4}\) ABDALLAH
\({ }^{5}\) ABDALLAH
03M DLPH all \(\tan \beta\), all \(\Delta m\), all \(m_{0}\)
- We do not use the following data for

7 AAD
14 K ATLS
\({ }^{1}\) DREINER 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless \(\chi_{1}^{0}\) is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including \(M_{2}, \mu\) and the slepton and squark masses.
\({ }^{2}\) ABBIENDI 04 H search for charginos and neutralinos in events with acoplanar leptons + jets and multi-jet final states in the 192-209 GeV data, combined with the results on leptonic final states from ABBIENDI 04. The results hold for a scan over the parameter space covering the region \(0<M_{2}<5000 \mathrm{GeV},-1000<\mu<1000 \mathrm{GeV}\) and \(\tan \beta\) from 1 to covering the region \(0<M_{2}<5000 \mathrm{GeV}\),
40. This limit supersedes ABBIENDI 00 H .
\({ }^{3}\) HEISTER 04 data collected up to 209 GeV . Updates earlier analysis of selectrons from HEISTER 02E, includes a new analysis of charginos and neutralinos decaying into stau and uses results on charginos with initial state radiation from HEISTER 02J. The limit is based on the direct search for charginos and neutralinos, the constraints from the slepton search and the Higgs mass limits from HEISTER 02 using a top mass of 175 GeV , interpreted in a framework with universal gaugino and sfermion masses. Assuming the mixing in the stau sector to be negligible, the limit improves to 43.1 GeV . Under the assumption of MSUGRA with unification of the Higgs and sfermion masses, the limit improves to 50 GeV , and reaches 53 GeV for \(A_{0}=0\). These limits include and update the results of BARATE 01.
\({ }^{4}\) ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\). A limit on the mass of \(\tilde{\chi}_{1}^{0}\) is derived from direct searches for neutralinos combined with the chargino search. Neutralinos are searched in the production of \(\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{3}^{0}\), as well as \(\widetilde{\chi}_{2}^{0} \widetilde{\chi}_{3}^{0}\) and \(\widetilde{\chi}_{2}^{0} \widetilde{\chi}_{4}^{0}\) giving rise to cascade decays, and \(\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}\) and \(\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}\), followed by the decay \(\tilde{\chi}_{2}^{0} \rightarrow \widetilde{\tau} \tau\). The results hold for the parameter space defined by values of \(M_{2}<1 \mathrm{TeV},|\mu| \leq 2 \mathrm{TeV}\) with the \(\tilde{\chi}_{1}^{0}\) as LSP. The limit is obtained for \(\tan \beta=1\) and large \(m_{0}\), where \(\tilde{\chi}_{2}^{0} \tilde{\chi}_{4}^{0}\) and chargino pair production are important. If the constraint from Higgs searches is also imposed, the limit improves to 49.0 GeV in the \(m_{h}^{\max }\) scenario with \(m_{t}=174.3 \mathrm{GeV}\). These limits update the results of ABREU 00 J .
\(5^{5}\) ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\). An indirect limit on the mass of \(\tilde{\chi}_{1}^{0}\) is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays and \(\widetilde{\tau} \tau\) final states), for charginos (for all \(\Delta m_{+}\)) and for sleptons, stop and sbottom. The results hold for the full parameter space defined by values of \(M_{2}<1 \mathrm{TeV},|\mu| \leq 2 \mathrm{TeV}\) with the \(\widetilde{\chi}_{1}^{0}\) as LSP. Constraints from the Higgs search in the \(m_{h}^{\max }\) scenario assuming \(m_{t}=174.3 \mathrm{GeV}\) are included. The limit is obtained for \(\tan \beta \geq 5\) when stau mixing leads to mass degeneracy between \(\widetilde{\tau}_{1}\) and \(\widetilde{\chi}_{1}^{0}\) and the limit is based on \(\widetilde{\chi}_{2}^{0}\) production followed by its decay to \(\widetilde{\tau}_{1} \tau\). In the pathological scenario where \(m_{0}\) and \(|\mu|\) are large, so that the \(\tilde{\chi}_{2}^{0}\) production cross section is negligible, and where there is mixing in the stau sector but not in stop nor sbottom, the limit is based on charginos with soft decay products and an ISR photon. The limit then degrades to 39 GeV . See Figs. 40-42 for the dependence of the limit on \(\tan \beta\) and \(m_{\widetilde{\nu}}\). These limits update the results of ABREU 00 w .
\({ }^{6}\) ACCIARRI 00D data collected at \(\sqrt{s}=189 \mathrm{GeV}\). The results hold over the full parameter space defined by \(0.7 \leq \tan \beta \leq 60,0 \leq M_{2} \leq 2 \mathrm{TeV}, m_{0} \leq 500 \mathrm{GeV},|\mu| \leq 2 \mathrm{TeV}\) The minimum mass limit is reached for \(\tan \beta=1\) and large \(m_{0}\). The results of slepton
searches from ACCIARRI 99w are used to help set constraints in the region of small \(m_{0}\). The limit improves to 48 GeV for \(m_{0} \gtrsim 200 \mathrm{GeV}\) and \(\tan \beta \gtrsim 10\). See their Figs. 6-8 for the \(\tan \beta\) and \(m_{0}\) dependence of the limits. Updates ACCIARRI 98F.
\({ }^{7}\) AAD 14 K sets limits on the \(\chi\)-nucleon spin-dependent and spin-independent cross sections out to \(m_{\chi}=10 \mathrm{TeV}\).
——Bounds on \(\widetilde{\chi}_{1}^{0}\) from dark matter searches
These papers generally exclude regions in the \(M_{2}-\mu\) parameter plane assuming that \(\widetilde{\chi}_{1}^{0}\) is the dominant form of dark matter in the galactic halo. These limits are based on the lack of detection in laboratory experiments, telescopes, or by the absence of a signal in underground neutrino detectors. The latter signal is expected if \(\widetilde{\chi}_{1}^{0}\) accumulates in the Sun or the Earth and annihilates into high-energy \(\nu^{\prime}\) s.
VALUE
DOCUMENT ID TECN
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|}
\hline 1 DI-MAURO & 19 & FLAT \\
\hline 2 JOHNSON & 19 & FLAT \\
\hline \(3^{\text {LI }}\) & 19D & FLAT \\
\hline \({ }^{4}\) ABDALLAH & 18 & HESS \\
\hline 5 AHNEN & 18 & MGIC \\
\hline \({ }^{6}\) ALBERT & 18B & HAWC \\
\hline 7 ALBERT & 18C & HAWC \\
\hline \({ }^{8}\) AARTSEN & 17 & ICCB \\
\hline \({ }^{9}\) AARTSEN & 17A & ICCB \\
\hline 10 AARTSEN & 17C & ICCB \\
\hline 11 ALBERT & 17A & ANTR \\
\hline 12 ARCHAMBAU. & & VRTS \\
\hline 13 AARTSEN & 16D & ICCB \\
\hline 14 ABDALLAH & 16A & HESS \\
\hline 15 ADRIAN-MAR. & & ANTR \\
\hline 16 AHNEN & 16 & MGFL \\
\hline 17 AVRORIN & 16 & BAIK \\
\hline 18 CIRELLI & 16 & THEO \\
\hline 18 LEITE & 16 & THEO \\
\hline 19 ABRAMOWSKI & & HESS \\
\hline 20 ACKERMANN & 15 & FLAT \\
\hline 21 ACKERMANN & 15A & FLAT \\
\hline 22 ACKERMANN & 15B & FLAT \\
\hline 23 BUCKLEY & 15 & THEO \\
\hline 24 CHOI & 15 & SKAM \\
\hline 25 ALEKSIC & 14 & MGIC \\
\hline 26 AVRORIN & 14 & BAIK \\
\hline 27 AARTSEN & 13C & ICCB \\
\hline 28 ABRAMOWSKI & & HESS \\
\hline 29 BERGSTROM & 13 & COSM \\
\hline 30 BOLIEV & 13 & BAKS \\
\hline 29 JIN & 13 & ASTR \\
\hline 29 KOPP & 13 & COSM \\
\hline 31 ABBASI & 12 & ICCB \\
\hline 32 ABRAMOWSKI & & HESS \\
\hline 33 ABDO & 10 & FLAT \\
\hline 34 ACKERMANN & 10 & FLAT \\
\hline 35 ACHTERBERG & & AMND \\
\hline 36 ACKERMANN & 06 & AMND \\
\hline 37 DEBOER & 06 & RVUE \\
\hline 38 DESAI & 04 & SKAM \\
\hline 38 AMBROSIO & 99 & MCRO \\
\hline 39 LOSECCO & 95 & RVUE \\
\hline 40 MORI & 93 & KAMI \\
\hline 41 BOTTINO & 92 & Cosm \\
\hline 42 BOTTINO & 91 & RVUE \\
\hline 43 GELMINI & 91 & COSM \\
\hline 44 KAMIONKOW. & & RVUE \\
\hline 45 MORI & 91B & KAMI \\
\hline 46 OLIVE & 88 & COSM \\
\hline
\end{tabular}
none \(4-15 \mathrm{GeV} \quad 46\) OLIVE 88 COSM
\({ }^{1}\) DI-MAURO 19 sets limits on the dark matter annihilation from gamma-ray searches in M31 and M33 galaxies using Fermi LAT data.
2 JOHNSON 19 sets limits on p-wave dark matter annihilations in the galactic center using \({ }_{3}\) Fermi data.
\({ }^{3}\) LI 19D sets limits on dark matter annihilation cross sections searching for line-like signals in the all-sky Fermi data.
\({ }^{4}\) ABDALLAH 18 places constraints on the dark matter annihilation cross section for annihilations into gamma-rays in the Galactic center for masses between 300 GeV to 70 TeV. This updates ABDALLAH 16.
\({ }^{5}\) AHNEN 18 uses observations of the dwarf satellite galaxy Ursa Major II to obtain upper limits on annihilation cross sections for dark matter in various channels for masses between \(60.1-100 \mathrm{TeV}\).
\({ }^{6}\) ALBERT 18B sets limits on the annihilation cross section of dark matter with mass between 1 and 100 TeV from gamma-ray observations of the Andromeda galaxy.
7 ALBERT 18C sets limits on the spin-dependent coupling of dark matter to protons from dark matter annihilation in the Sun.
8 AARTSEN 17 is based on data collected during 327 days of detector livetime with IceCube. They looked for interactions of \(\nu\) 's resulting from neutralino annihilations in IceCube. They looked for interactions of \(\nu\) 's resulting from neutralino annihilations in
the Earth over a background of atmospheric neutrinos and set \(90 \% \mathrm{CL}\) limits on the spin the Earth over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the spin
independent neutralino-proton cross section for neutralino masses in the range 10-10000 independent neutralino-proton cross section for neutralino masses in the range 10-10000
GeV .
\({ }^{9}\) AARTSEN 17A is based on data collected during 532 days of livetime with the IceCube 86 -string detector including the DeepCore sub-array. They looked for interactions of \(\nu\) 's
from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the spin dependent neutralino-proton cross section for neutralino masses in the range \(10-10000 \mathrm{GeV}\). This updates AARTSEN 16 C .
10 AARTSEN 17 C is based on 1005 days of running with the IceCube detector. They set a limit on the annihilation cross section for dark matter with masses between \(10-1000 \mathrm{GeV}\) annihilating in the Galactic center assuming an NFW profile. The limit is of \(1.2 \times 10^{23}\) \(\mathrm{cm}^{3} \mathrm{~s}^{-1}\) in the \(\tau^{+} \tau^{-}\)channel. Supercedes AARTSEN 15E.
11 ALBERT 17A is based on data from the ANTARES neutrino telescope. They looked for interactions of \(\nu\) 's from neutralino annihilations in the Milky Way galaxy over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the muon neutrino flux. They also obtain limits on the thermally averaged cross section for neutralino masses in the range 50 to \(100,000 \mathrm{GeV}\). This updates ADRIAN-MARTINEZ 15.
12 ARCHAMBAULT 17 performs a joint statistical analysis of four dwarf galaxies with VERITAS looking for gamma-ray emission from neutralino annihilation. They set limits on the neutralino annihilation cross section.
13 AARTSEN 16D is based on 329 live days of running with the DeepCore subdetector of the IceCube detector. They set a limit of \(10^{-23} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\) on the annihilation cross section to \(\nu \bar{\nu}\). This updates AARTSEN 15c.
14 ABDALLAH 16A place upper limits on the annihilation cross section with final states in the energy range of 0.1 to 2 TeV . This complements ABRAMOWSKI 13.
15 ADRIAN-MARTINEZ 16 is based on data from the ANTARES neutrino telescope. They looked for interactions of \(\nu\) 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90\% CL limits on the muon neutrino flux. They also obtain limits on the spin dependent and spin independent neutralino-proton cross section for neutralino masses in the range 50 to \(5,000 \mathrm{GeV}\). This updates ADRIAN-MARTINEZ 13.
\({ }^{16}\) AHNEN 16 combines 158 hours of Segue 1 observations with MAGIC with 6 year observations of 15 dwarf satellite galaxies by Fermi-LAT to set limits on annihilation cross sections for dark matter masses between 10 GeV and 100 TeV .
17 AVRORIN 16 is based on 2.76 years with Lake Baikal neutrino telescope. They derive \(90 \%\) upper limits on the annihilation cross section from dark matter annihilations in the Galactic center.
\({ }^{18}\) CIRELLI 16 and LEITE 16 derive bounds on the annihilation cross section from radio observations.
19 ABRAMOWSKI 15 places constraints on the dark matter annihilation cross section for annihilations in the Galactic center for masses between 300 GeV to 10 TeV .
20 ACKERMANN 15 is based on 5.8 years of data with Fermi-LAT and search for monochromatic gamma-rays in the energy range of \(0.2-500 \mathrm{GeV}\) from dark matter annihilations. This updates ACKERMANN 13A.
21 ACKERMANN 15A is based on 50 months of data with Fermi-LAT and search for dark matter annihilation signals in the isotropic gamma-ray background as well as galactic matter annihilation signals in the isotropic gamma-ray backgro
subhalos in the energy range of a few GeV to a few tens of TeV .
\({ }^{22}\) ACKERMANN 15B is based on 6 years of data with Fermi-LAT observations of Milky Way dwarf spheroidal galaxies. Set limits on the annihilation cross section from \(m_{\chi}=\) 2 GeV to 10 TeV . This updates ACKERMANN 14.
\({ }^{23}\) BUCKLEY 15 is based on 5 years of Fermi-LAT data searching for dark matter annihiIation signals from Large Magellanic Cloud.
\({ }^{24}\) CHOI 15 is based on 3903 days of SuperKamiokande data searching for neutrinos produced from dark matter annihilations in the sun. They place constraints on the dark matter-nucleon scattering cross section for dark matter masses between \(4-200 \mathrm{GeV}\).
25 ALEKSIC 14 is based on almost 160 hours of observations of Segue 1 satellite dwarf galaxy using the MAGIC telescopes between 2011 and 2013. Sets limits on the annihilation cross section out to \(m_{\chi}=10 \mathrm{TeV}\).
\({ }^{26}\) AVRORIN 14 is based on almost 2.76 years with Lake Baikal neutrino telescope. They derive \(90 \%\) upper limits on the fluxes of muons and muon neutrinos from dark matter annihilations in the Sun.
27 AARTSEN 13C is based on data collected during 339.8 effective days with the IceCube 59-string detector. They looked for interactions of \(\nu_{\mu}\) 's from neutralino annihilations in nearby galaxies and galaxy clusters. They obtain limits on the neutralino annihilation cross section for neutralino masses in the range \(30-100,000 \mathrm{GeV}\).
28 ABRAMOWSKI 13 place upper limits on the annihilation cross section with \(\gamma \gamma\) final states in the energy range of \(0.5-25 \mathrm{TeV}\).
\({ }^{29}\) BERGSTROM 13, JIN 13, and KOPP 13 derive limits on the mass and annihilation cross section using AMS-02 data. JIN 13 also sets a limit on the lifetime of the dark matter particle.
\({ }^{30}\) BOLIEV 13 is based on data collected during 24.12 years of live time with the Bakson Underground Scintillator Telescope. They looked for interactions of \(\nu_{\mu}\) 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90\% CL limits on the muon flux. They also obtain limits on the spin dependent and spin independent neutralino-proton cross section for neutralino masses in the range \(10-1000 \mathrm{GeV}\).
31 ABBASI 12 is based on data collected during 812 effective days with AMANDA II and 149 days of the IceCube 40 -string detector combined with the data of ABBASI 09B. They looked for interactions of \(\nu_{\mu}\) 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the muon flux. No excess is observed. They also obtain limits on the spin dependent neutralino-proton cross section for neutralino masses in the range \(50-5000 \mathrm{GeV}\).
\({ }^{32}\) ABRAMOWSKI 11 place upper limits on the annihilation cross section with \(\gamma \gamma\) final 33 states.
33 ABDO 10 place upper limits on the annihilation cross section with \(\gamma \gamma\) or \(\mu^{+} \mu^{-}\)final \(34 \begin{gathered}\text { states. }\end{gathered}\)
ACKERMANN 10 place upper limits on the annihilation cross section with \(b \bar{b}\) or \(\mu^{+} \mu^{-}\)
final states. final states.
35 ACHTERBERG 06 is based on data collected during 421.9 effective days with the AMANDA detector. They looked for interactions of \(\nu_{\mu} \mathrm{s}\) from the centre of the Earth over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into \(W^{+} W^{-}\)and \(b \bar{b}\) at the centre of the Earth for MSSM parameters compatible with the relic dark matter density, see their Fig. 7.
36 ACKERMANN 06 is based on data collected during 143.7 days with the AMANDAII detector. They looked for interactions of \(\nu_{\mu}\) s from the Sun over a background of atmospheric neutrinos and set \(90 \%\) CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into \(W^{+} W^{-}\)in the Sun for SUSY model parameters compatible with the relic dark matter density, see their Fig. 3.
37 DEBOER 06 interpret an excess of diffuse Galactic gamma rays observed with the EGRET satellite as originating from \(\pi^{0}\) decays from the annihilation of neutralinos into quark jets. They analyze the corresponding parameter space in a supergravity inspired MSSM
model with radiative electroweak symmetry breaking, see their Fig. 3 for the preferred region in the \(\left(m_{0}, m_{1 / 2}\right)\) plane of a scenario with large \(\tan \beta\).
38 AMBROSIO 99 and DESAI 04 set new neutrino flux limits which can be used to limit the parameter space in supersymmetric models based on neutralino annihilation in the the parameter space
39 LOSECCO 95 reanalyzed the IMB data and places lower limit on \(m_{\widetilde{\chi}_{1}^{0}}\) of 18 GeV if the LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation in the sun producing high-energy neutrinos and the limits on neutrino fluxes from the IMB detector.
40 MORI 93 excludes some region in \(M_{2}-\mu\) parameter space depending on \(\tan \beta\) and lightest scalar Higgs mass for neutralino dark matter \(m_{\widetilde{\chi}^{0}}>m_{W}\), using limits on upgoing muons produced by energetic neutrinos from neutralino annihilation in the Sun and the Earth.
\({ }^{41}\) BOTTINO 92 excludes some region \(M_{2}-\mu\) parameter space assuming that the lightest neutralino is the dark matter, using upgoing muons at Kamiokande, direct searches by Ge detectors, and by LEP experiments. The analysis includes top radiative corrections on Higgs parameters and employs two different hypotheses for nucleon-Higgs coupling. on Higgs parameters and employs two different hypotheses for nucleon-Higgs coupling. Effects of rescaling in the loca
dance are taken into account.
42 BOTTINO 91 excluded a region in \(M_{2}-\mu\) plane using upgoing muon data from Kamioka BOTTINO 91 excluded a region in \(M_{2}-\mu\) plane using upgoing muon data from Kamioka
experiment, assuming that the dark matter surrounding us is composed of neutralinos and that the Higgs boson is not too heavy.
\({ }^{43}\) GELMINI 91 exclude a region in \(M_{2}-\mu\) plane using dark matter searches.
\({ }^{44}\) KAMIONKOWSKI 91 excludes a region in the \(M_{2}-\mu\) plane using IMB limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the sun, assuming that the dark matter is composed of neutralinos and that \(m_{H_{1}^{0}} \lesssim 50 \mathrm{GeV}\). See Fig. 8 in the paper.
\({ }^{45}\) MORI 91B exclude a part of the region in the \(M_{2}-\mu\) plane with \(m_{\widetilde{\chi}_{1}^{0}} \lesssim 80 \mathrm{GeV}\) using a limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the earth, assuming that the dark matter surrounding us is composed of neutralinos and that \(m_{H_{1}^{0}} \lesssim 80 \mathrm{GeV}\).
\({ }^{46}\) OLIVE 88 result assumes that photinos make up the dark matter in the galactic halo. Limit is based on annihilations in the sun and is due to an absence of high energy neutrinos detected in underground experiments. The limit is model dependent.

\section*{\(\tilde{\chi}_{1}^{0}\) - elastic cross section}

Experimental results on the \(\widetilde{\chi}_{1}^{0}-p\) elastic cross section are evaluated at \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\). The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form \(\bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{q} \gamma_{\mu} \gamma^{5} q\) ) and spin-independent interactions ( \(\bar{\chi} \chi \bar{q} q\) ). For calculational details see GRIEST 88b, ELLIS 88D, BARBIERI 89c, DREES 93b, ARNOWITT 96, BERGSTROM 96, and BAER 97 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on "Dark matter" in this "Review of Particle Physics," and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 96).

\section*{Spin-dependent interactions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{VALUE (pb)} & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<4\) & \(\times 10^{-5}\) & 90 & \({ }^{1}\) AMOLE & 19 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<5\) & \(\times 10^{-4}\) & 90 & 2 APRILE & 19A & XE1T & Xe \\
\hline \(<7\) & \(\times 10^{-4}\) & 90 & \({ }^{3}\) XIA & 19A & PNDX & Xe \\
\hline \(<8\) & \(\times 10^{-4}\) & 90 & \({ }^{4}\) AKERIB & 17A & LUX & Xe \\
\hline \(<0.28\) & & 90 & \({ }^{5}\) BATTAT & 17 & DRFT & \(\mathrm{CS}_{2} ; \mathrm{CF}_{4}\) \\
\hline \(<0.027\) & & 90 & \({ }^{6}\) BEHNKE & 17 & PICA & \(\mathrm{C}_{4} \mathrm{~F}_{10}\) \\
\hline < 5 & \(\times 10^{-4}\) & 90 & \({ }^{7}\) AMOLE & 16 & PICO & \(\mathrm{CF}_{3} \mathrm{l}\) \\
\hline \(<6.8\) & \(\times 10^{-3}\) & 90 & \({ }^{8}\) APRILE & 16B & X100 & Xe \\
\hline \(<6.3\) & \(\times 10^{-3}\) & 90 & \({ }^{9}\) FELIZARDO & 14 & SMPL & \(\mathrm{C}_{2} \mathrm{CIF}_{5}\) \\
\hline \(<0.01\) & & 90 & 10 AKIMOV & 12 & ZEP3 & Xe \\
\hline \(<7\) & \(\times 10^{-3}\) & & 11 BEHNKE & 12 & COUP & \(\mathrm{CF}_{3} \mathrm{l}\) \\
\hline \(<8.5\) & \(\times 10^{-3}\) & & 12 FELIZARDO & 12 & SMPL & \(\mathrm{C}_{2} \mathrm{CIF}_{5}\) \\
\hline \(<0.016\) & & 90 & 13 KIM & 12 & KIMS & Csl \\
\hline \(5 \times 10^{-10}\) & to \(10^{-5}\) & 95 & 14 BUCHMUEL... & 11B & THEO & \\
\hline \(<1\) & & 90 & 15 ANGLE & 08A & XE10 & Xe \\
\hline \(<0.055\) & & & 16 BEDNYAKOV & 08 & HDMS & Ge \\
\hline \(<0.33\) & & 90 & 17 BEHNKE & 08 & COUP & \(\mathrm{CF}_{3} \mathrm{l}\) \\
\hline \(<5\) & & & 18 AKERIB & 06 & CDMS & Ge \\
\hline \(<2\) & & & 19 SHIMIZU & 06A & CNTR & \(\mathrm{CaF}_{2}\) \\
\hline \(<0.4\) & & & 20 ALNER & 05 & NAIA & Nal Spin Dep. \\
\hline < 2 & & & 21 BARNABE-HE. & . 05 & PICA & C \\
\hline \(2 \times 10^{-11}\) & to \(1 \times 10^{-4}\) & & 22 ELLIS & 04 & THEO & \(\mu>0\) \\
\hline \(<0.8\) & & & 23 AHMED & 03 & NAIA & Nal Spin Dep. \\
\hline < 40 & & & 24 TAKEDA & 03 & BOLO & NaF Spin Dep. \\
\hline \(<10\) & & & 25 ANGLOHER & 02 & CRES & Saphire \\
\hline \(8 \times 10^{-7}\) t & to \(2 \times 10^{-5}\) & & 26 ELLIS & 01C & THEO & \(\tan \beta \leq 10\) \\
\hline \(<3.8\) & & & 27 BERNABEI & 00D & DAMA & Xe \\
\hline \(<0.8\) & & & SPOONER & 00 & UKDM & NaI \\
\hline \(<4.8\) & & & 28 BELLI & 99C & DAMA & F \\
\hline \(<100\) & & & 29 OOTANI & 99 & BOLO & LiF \\
\hline \(<0.6\) & & & BERNABEI & 98C & DAMA & Xe \\
\hline \(<5\) & & & 28 BERNABEI & 97 & DAMA & F \\
\hline
\end{tabular}

Searches Particle Listings

\section*{Supersymmetric Particle Searches}
\({ }^{1}\) The strongest limit is \(<2.5 \times 10^{-5} \mathrm{pb}\) at \(m_{\chi}=25 \mathrm{GeV}\). This updates AMOLE 17 .
\({ }^{2}\) The strongest limit is \(<2 \times 10^{-4} \mathrm{pb}\) at \(m_{\chi}=30 \mathrm{GeV}\). For scatterings on neutrons, the strongest limit is \(<6.3 \times 10^{-6}\) at \(m_{\chi}=30 \mathrm{GeV}\).
\({ }^{3}\) The strongest limit is \(<4.4 \times 10^{-4} \mathrm{pb}\) at \(m_{\chi}=40 \mathrm{GeV}\). This updates FU 17 .
\({ }^{4}\) The strongest limit is \(5 \times 10^{-4} \mathrm{pb}\) at \(m_{\chi}=35 \mathrm{GeV}\). The limit for scattering on neutrons is \(3 \times 10^{-5} \mathrm{pb}\) at 100 GeV and is \(1.6 \times 10^{-5} \mathrm{pb}\) at 35 GeV . This updates AKERIB 16A. \({ }^{5}\) Directional recoil detector. This updates DAW 12
\({ }^{6}\) This result updates ARCHAMBAULT 12. The strongest limit is 0.013 pb at \(m_{\chi}=20\)
\({ }^{7} \mathrm{GeV}\).
\({ }^{8}\) The strongest limit is \(5.2 \times 10^{-3} \mathrm{pb}\) at 50 GeV . The limit for scattering on neutrons is \(2.8 \times 10^{-4} \mathrm{pb}\) at 100 GeV and the strongest limit is \(2.0 \times 10^{-4} \mathrm{pb}\) at 50 GeV . This updates APRILE 13.
\({ }^{9}\) The strongest limit is 0.0043 pb and occurs at \(m_{\chi}=35 \mathrm{GeV}\). FELIZARDO 14 also presents limits for the scattering on neutrons. At \(m_{\chi}=100 \mathrm{GeV}\), the upper limit is 0.13 pb and the strongest limit is 0.066 pb at \(m_{\chi}=35 \mathrm{GeV}\).
\({ }^{10}\) This result updates LEBEDENKO 09A. The strongest limit is \(8 \times 10^{-3} \mathrm{pb}\) at \(m_{\chi}=50\) GeV . Limit applies to the neutralino neutron elastic cross section.
\({ }^{11}\) The strongest limit is \(6 \times 10^{-3}\) at \(m_{\chi}=60 \mathrm{GeV}\).
\({ }^{12}\) The strongest limit is \(5.7 \times 10^{-3}\) at \(m_{\chi}=35 \mathrm{GeV}\).
\({ }^{13}\) This result updates LEE 07A. The strongest limit is at \(m_{\chi}=80 \mathrm{GeV}\).
\({ }^{14}\) Predictions for the spin-dependent elastic cross section based on a frequentist approach to electroweak observables in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
\({ }^{15}\) The strongest limit is 0.6 pb and occurs at \(m_{\chi}=30 \mathrm{GeV}\). The limit for scattering on neutrons is 0.01 pb at \(m_{\chi}=100 \mathrm{GeV}\), and the strongest limit is 0.0045 pb at \(m_{\chi}=\) 30 GeV .
\({ }^{16}\) Limit applies to neutron elastic cross section.
\({ }^{17}\) The strongest upper limit is 0.25 pb and occurs at \(m_{\chi} \simeq 40 \mathrm{GeV}\).
\({ }^{18}\) The strongest upper limit is 4 pb and occurs at \(m_{\chi} \simeq 60 \mathrm{GeV}\). The limit on the neutron spin-dependent elastic cross section is 0.07 pb . This latter limit is improved in AHMED 09, where a limit of 0.02 pb is obtained at \(m_{\chi}=100 \mathrm{GeV}\). The strongest limit in AHMED 09 is 0.018 pb and occurs at \(m_{\chi}=60 \mathrm{GeV}\).
\({ }^{19}\) The strongest upper limit is 1.2 pb and occurs at \(m_{\chi} \simeq 40 \mathrm{GeV}\). The limit on the neutron spin-dependent cross section is 35 pb .
\({ }^{20}\) The strongest upper limit is 0.35 pb and occurs at \(m_{\chi} \simeq 60 \mathrm{GeV}\).
\({ }^{21}\) The strongest upper limit is 1.2 pb and occurs \(m_{\chi} \simeq 30 \mathrm{GeV}\).
\({ }^{22}\) ELLIS 04 calculates the \(\chi p\) elastic scattering cross section in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses. In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes \(2 \times 10^{-4}\), see ELLIS 03E.
\({ }^{23}\) The strongest upper limit is 0.75 pb and occurs at \(m_{\chi} \approx 70 \mathrm{GeV}\).
\({ }^{24}\) The strongest upper limit is 30 pb and occurs at \(m_{\chi} \approx 20 \mathrm{GeV}\).
\({ }^{25}\) The strongest upper limit is 8 pb and occurs at \(m_{\chi} \simeq 30 \mathrm{GeV}\).
\({ }^{26}\) ELLIS 01c calculates the \(\chi\) - \(p\) elastic scattering cross section in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry. In models with nonuniversal Higgs masses, the upper limit to the cross section is \(6 \times 10^{-4}\).
\({ }^{27}\) The strongest upper limit is 3 pb and occurs at \(m_{\chi} \simeq 60 \mathrm{GeV}\). The limits are for inelastic scattering \(X^{0}+{ }^{129} \mathrm{Xe} \rightarrow X^{0}+{ }^{129} \mathrm{Xe}^{*}(39.58 \mathrm{keV})\).
\({ }^{28}\) The strongest upper limit is 4.4 pb and occurs at \(m_{\chi} \simeq 60 \mathrm{GeV}\).
\({ }^{29}\) The strongest upper limit is about 35 pb and occurs at \(m_{\chi} \simeq 15 \mathrm{GeV}\).

\section*{Spin-independent interactions}
VALUE (pb) CL\%
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(<2.5 \times 10^{-8}\) & 90 & \({ }^{1}\) ABE & 19 & XMAS & Xe \\
\hline \(<3.9 \times 10^{-9}\) & 90 & 2 AJAJ & 19 & DEAP & Ar \\
\hline \(<2 \times 10^{-8}\) & 90 & \({ }^{3}\) AMOLE & 19 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<2.25 \times 10^{-6}\) & 90 & \({ }^{4}\) ADHIKARI & 18 & C100 & Nal \\
\hline \(<1.14 \times 10^{-8}\) & 90 & \({ }^{5}\) AGNES & 18A & DS50 & Ar \\
\hline \(<1.6 \times 10^{-8}\) & 90 & \({ }^{6}\) AGNESE & 18A & CDMS & Ge \\
\hline \(<9 \times 10^{-11}\) & 90 & \({ }^{7}\) APRILE & 18 & XE1T & Xe \\
\hline \(<1.8 \times 10^{-10}\) & 90 & \({ }^{8}\) AKERIB & 17 & LUX & Xe \\
\hline \(<1.4 \times 10^{-10}\) & 90 & \({ }^{9} \mathrm{CUI}\) & 17A & PNDX & Xe \\
\hline \(<1.5 \times 10^{-9}\) & 90 & 10 APRILE & 16B & X100 & Xe \\
\hline \(<1.5 \times 10^{-9}\) & 90 & 11 AKERIB & 14 & LUX & Xe \\
\hline \(10^{-11}-10^{-7}\) & 95 & 12 BUCHMUEL... & 14A & THEO & \\
\hline \(<4.6 \times 10^{-6}\) & 90 & 13 FELIZARDO & 14 & SMPL & \(\mathrm{C}_{2} \mathrm{CIF}_{5}\) \\
\hline \(10^{-11}-10^{-8}\) & 95 & 14 ROSZKOWSK & 14 & THEO & \\
\hline \(<2.2 \times 10^{-6}\) & 90 & 15 AGNESE & 13 & CDMS & Si \\
\hline \(<5 \times 10^{-8}\) & 90 & 16 AKIMOV & 12 & ZEP3 & Xe \\
\hline \(1.6 \times 10^{-6} ; 3.7 \times 10^{-5}\) & & 17 ANGLOHER & 12 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline \(3 \times 10^{-12}\) to \(3 \times 10^{-9}\) & 95 & 18 BECHTLE & 12 & THEO & \\
\hline \(<1.6 \times 10^{-7}\) & & 19 BEHNKE & 12 & COUP & \(\mathrm{CF}_{3} \mathrm{l}\) \\
\hline \(<2.3 \times 10^{-7}\) & 90 & 20 KIM & 12 & KIMS & Csl \\
\hline \(<3.3 \times 10^{-8}\) & 90 & 21 AHMED & 11A & & Ge \\
\hline \(<4.4 \times 10^{-8}\) & 90 & 22 ARMENGAUD & 11 & EDE2 & Ge \\
\hline \(<1 \times 10^{-7}\) & 90 & 23 ANGLE & 08 & XE10 & Xe \\
\hline \(<1 \times 10^{-6}\) & 90 & BENETTI & 08 & WARP & Ar \\
\hline \(<7.5 \times 10^{-7}\) & 90 & 24 ALNER & 07A & ZEP2 & Xe \\
\hline \(<2 \times 10^{-7}\) & & 25 AKERIB & 06A & CDMS & Ge \\
\hline \(<90 \times 10^{-7}\) & & ALNER & 05 & NAIA & Nal Spin Indep. \\
\hline \(<12 \times 10^{-7}\) & & 26 ALNER & 05A & ZEPL & \\
\hline
\end{tabular}

30 In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes \(2 \times 10^{-6}\left(2 \times 10^{-11}\right.\) when constraint from the BNL \(g-2\) experiment are included), see ELLIS 03E. ELLIS 05 display the sensitivity of the elastic scattering cross section to the \(\pi\)-Nucleon \(\Sigma\) term.
31 PIERCE 04A calculates the \(\chi p\) elastic scattering cross section in the framework of models with very heavy scalar masses. See Fig. 2 of the paper.
32 The strongest upper limit is \(1.8 \times 10^{-5} \mathrm{pb}\) and occurs at \(m_{\chi} \approx 80 \mathrm{GeV}\).
\({ }^{33}\) Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 00 most likely value at the \(99.98 \%\) CL. See Fig. 4.
34 BAER 03A calculates the \(\chi p\) elastic scattering cross section in several models including the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
35 The strongest upper limit is \(7 \times 10^{-6} \mathrm{pb}\) and occurs at \(m_{\chi} \simeq 30 \mathrm{GeV}\).
\({ }^{36}\) ABRAMS 02 is incompatible with the DAMA most likely value at the \(99.9 \% \mathrm{CL}\). The strongest upper limit is \(3 \times 10^{-6} \mathrm{pb}\) and occurs at \(m_{\chi} \simeq 30 \mathrm{GeV}\).
\({ }^{37}\) The strongest upper limit is \(2 \times 10^{-5} \mathrm{pb}\) and occurs at \(m_{\chi} \simeq 40 \mathrm{GeV}\).
\({ }^{38}\) The strongest upper limit is \(7 \times 10^{-6} \mathrm{pb}\) and occurs at \(m_{\chi} \simeq 46 \mathrm{GeV}\).
\({ }^{39}\) The strongest upper limit is \(1.8 \times 10^{-5} \mathrm{pb}\) and occurs at \(m_{\chi} \simeq 32 \mathrm{GeV}\)
\({ }^{40}\) BOTTINO 01 calculates the \(\chi\)-p elastic scattering cross section in the framework of the following supersymmetric models: \(N=1\) supergravity with the radiative breaking of the electroweak gauge symmetry, \(N=1\) supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.
\({ }^{41}\) Calculates the \(\chi\)-p elastic scattering cross section in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
\({ }^{42}\) ELLIS 01c calculates the \(\chi\) - \(p\) elastic scattering cross section in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry. ELLIS 02B find a range \(2 \times 10^{-8}-1.5 \times 10^{-7}\) at \(\tan \beta=50\). In models with nonuniversal Higgs masses, the upper limit to the cross section is \(4 \times 10^{-7}\).
\({ }^{43}\) ACCOMANDO 00 calculate the \(\chi-p\) elastic scattering cross section in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 02 updated the limit to \(<9 \times 10^{-8}(\tan \beta<55)\).
44 BERNABEI 00 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at \(4 \sigma\) and are consistent, for a particular model framework quoted there, with \(m_{X^{0}}=44_{-9}^{+12} \mathrm{GeV}\) and a spin-independent \(X^{0}\)-proton cross section of \((5.4 \pm 1.0) \times 10^{-6} \mathrm{pb}\). See also BERNABEI 01 and BERNABEI 00 C .
45 FENG 00 calculate the \(\chi\) - \(p\) elastic scattering cross section in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At \(\tan \beta=50\), the range is \(8 \times 10^{-8}-4 \times 10^{-7}\).

\section*{Other bounds on \(\widetilde{\chi}_{1}^{0}\) from astrophysics and cosmology}

Most of these papers generally exclude regions in the \(M_{2}-\mu\) parameter plane by requiring that the \(\tilde{\chi}_{1}^{0}\) contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds.

\(>6 \mathrm{GeV}\)
\(<600 \mathrm{GeV}\)
none 100 eV - 15 GeV
\begin{tabular}{|c|c|c|c|}
\hline 10 BOTTINO & 03 & COSM & \\
\hline 26 CHATTOPAD... & & COSM & \\
\hline 27 ELLIS & 03 & COSM & \\
\hline 13 ELLIS & 03B & COSM & \\
\hline 26 ELLIS & 03C & COSM & \\
\hline \({ }^{26}\) LAHANAS & 03 & COSM & \\
\hline 28 LAHANAS & 02 & COSM & \\
\hline \({ }^{29}\) BARGER & 01C & COSM & \\
\hline 30 ELLIS & 01B & COSM & \\
\hline 27 BOEHM & 00B & COSM & \\
\hline 31 FENG & 00 & COSM & \\
\hline 32 ELLIS & 98B & COSM & \\
\hline 33 EDSJO & 97 & COSM & Co-annihilation \\
\hline 34 BAER & 96 & COSM & \\
\hline 13 BEREZINSKY & 95 & COSM & \\
\hline 35 FALK & 95 & COSM & \(C P\)-violating phases \\
\hline 36 DREES & 93 & COSM & Minimal supergravity \\
\hline 37 FALK & 93 & COSM & Sfermion mixing \\
\hline 36 KELLEY & 93 & cosm & Minimal supergravity \\
\hline 38 MIZUTA & 93 & cosm & Co-annihilation \\
\hline 39 LOPEZ & 92 & COSM & Minimal supergravity,
\[
m_{0}=A=0
\] \\
\hline 40 MCDONALD & 92 & COSM & \\
\hline 41 GRIEST & 91 & COSM & \\
\hline 42 NOJIRI & 91 & COSM & Minimal supergravity \\
\hline 43 OLIVE & 91 & COSM & \\
\hline 44 ROSZKOWSKI & & COSM & \\
\hline 45 GRIEST & 90 & COSM & \\
\hline 43 OLIVE & 89 & COSM & \\
\hline SREDNICKI & 88 & COSM & \(\widetilde{\gamma} ; m_{\widetilde{f}}=100 \mathrm{GeV}\) \\
\hline ELLIS & 84 & COSM & \(\widetilde{\gamma}\); for \(m_{\tilde{f}}=100 \mathrm{GeV}\) \\
\hline GOLDBERG & 83 & COSM & \(\widetilde{\gamma}\) \\
\hline 46 KRAUSS & 83 & COSM & \(\widetilde{\gamma}\) \\
\hline VYSOTSKII & 83 & COSM & \(\widetilde{\gamma}\) \\
\hline
\end{tabular}
\({ }^{1}\) ELLIS 00 updates ELLIS 98. Uses LEP \(e^{+} e^{-}\)data at \(\sqrt{s}=202\) and 204 GeV to improve bound on neutralino mass to 51 GeV when scalar mass universality is assumed and 46 GeV when Higgs mass universality is relaxed. Limits on \(\tan \beta\) improve to \(>2.7(\mu>0),>2.2\) \((\mu<0)\) when scalar mass universality is assumed and \(>1.9\) (both signs of \(\mu\) ) when Higgs mass universality is relaxed.
\({ }^{2}\) Implications of the LHC result on the Higgs mass and on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
\({ }^{3}\) BUCHMUELLER 14A places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches using the \(20 \mathrm{fb}^{-1} 8 \mathrm{TeV}\) and the \(5 \mathrm{fb}^{-1} 7 \mathrm{TeV}\) 4 LHC and the LUX data.
\({ }^{4}\) ROSZKOWSKI 14 places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using Bayesian statistics and indirect experimental searches using the \(20 \mathrm{fb}^{-1}\) LHC and the LUX data.
\({ }^{5}\) CABRERA 13 and STREGE 13 place constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry with and without non-universal Higgs masses using the \(5.8 \mathrm{fb}^{-1}, \sqrt{s}=7 \mathrm{TeV}\) ATLAS supersymmetry searches and XENON100 results.
\({ }^{6}\) ELLIS 13B place constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry with and without Higgs mass universality. Models with universality below the GUT scale are also , considered.
\({ }^{7}\) BALAZS 12 and STREGE 12 place constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using the \(1 \mathrm{fb}^{-1}\) LHC supersymmetry searches, the \(5 \mathrm{fb}^{-1}\) Higgs mass constraints, both with \(\sqrt{s}=7 \mathrm{TeV}\), and XENON100 results.
\({ }^{8}\) BECHTLE 12 places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, using the \(5 \mathrm{fb}^{-1}\) LHC and XENON100 data.
\({ }^{9}\) BESKIDT 12 places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, the \(5 \mathrm{fb}^{-1} \mathrm{LHC}\) and the XENON100 data.
\({ }^{10}\) BELANGER 04 and BOTTINO 12 (see also BOTTINO 03, BOTTINO 03A and BOTTINO 04) do not assume gaugino or scalar mass unification.
11 FENG 12B places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry and large sfermion masses using the \(1 \mathrm{fb}^{-1} \mathrm{LHC}\) supersymmetry searches, the \(5 \mathrm{fb}^{-1}\) LHC Higgs mass constraints both with \(\sqrt{s}=7 \mathrm{TeV}\), and XENON100 results.
12 BUCHMUELLER 11 places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches and including supersymmetry breaking relations between A and B parameters.
13 Places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry but non-Universal Higgs masses.
\({ }^{14}\) ELLIS 10 places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale.
\({ }^{15}\) BUCHMUELLER 09 places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
\({ }^{16}\) DREINER 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless \(\chi_{1}^{0}\) is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including \(M_{2}, \mu\) and the slepton and squark masses.

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}
\({ }^{17}\) BUCHMUELLER 08 places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
\({ }^{18}\) CALIBBI 07 places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale including the effects of right-handed neutrinos.
\({ }^{19}\) ELLIS 07 places constraints on the SUSY parameter space in the framework of \(N=\) 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality below the GUT scale
\({ }^{20}\) ALLANACH 06 places constraints on the SUSY parameter space in the framework of \(N\) \(=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
21 DE-AUSTRI 06 places constraints on the SUSY parameter space in the framework of \(N\) \(=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
\({ }^{22}\) BALTZ 04 places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
23 Limit assumes a pseudo scalar mass \(<200 \mathrm{GeV}\). For larger pseudo scalar masses, \(m_{\chi}\) \(18(29) \mathrm{GeV}\) for \(\tan \beta=50(10)\). Bounds from WMAP, \((g-2)_{\mu}, b \rightarrow s \gamma\), LEP.
\({ }^{24}\) ELLIS 04B places constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry including Supergravity models with radiative breaking of the electroweak gauge symmetry including
supersymmetry breaking relations between A and B parameters. See also ELLIS 03D.
25 PIERCE 04A places constraints on the SUSY parameter space in the framework of models with very heavy scalar masses.
\({ }^{26}\) BAER 03, CHATTOPADHYAY 03, ELLIS 03C and LAHANAS 03 place constraints on the SUSY parameter space in the framework of \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry based on WMAP results for the cold dark matter density.
27 BOEHM 00B and ELLIS 03 place constraints on the SUSY parameter space in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak framework of minimal \(N=1\) supergravity models with radiative
28 LAHANAS 02 places constraints on the SUSY parameter space in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on the role of pseudo-scalar Higgs exchange.
\({ }^{29}\) BARGER 01C use the cosmic relic density inferred from recent CMB measurements to constrain the parameter space in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
\({ }^{30}\) ELLIS 01B places constraints on the SUSY parameter space in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on models with large \(\tan \beta\).
31 FENG 00 explores cosmologically allowed regions of MSSM parameter space with multiTeV masses.
32 ELLIS 98b assumes a universal scalar mass and radiative supersymmetry breaking with universal gaugino masses. The upper limit to the LSP mass is increased due to the inclusion of \(\chi-\widetilde{\tau}_{R}\) coannihilations.
33 EDSJO 97 included all coannihilation processes between neutralinos and charginos for any neutralino mass and composition.
34 Notes the location of the neutralino \(Z\) resonance and \(h\) resonance annihilation corridors in minimal supergravity models with radiative electroweak breaking
\({ }^{35}\) Mass of the bino (=LSP) is limited to \(m_{\widetilde{B}} \lesssim 350 \mathrm{GeV}\) for \(m_{t}=174 \mathrm{GeV}\).
\({ }^{36}\) DREES 93, KELLEY 93 compute the cosmic relic density of the LSP in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.
37 FALK 93 relax the upper limit to the LSP mass by considering sfermion mixing in the MSSM.
38 MIZUTA 93 include coannihilations to compute the relic density of Higgsino dark matter.
\({ }^{39}\) LOPEZ 92 calculate the relic LSP density in a minimal SUSY GUT model.
\({ }^{40}\) MCDONALD 92 calculate the relic LSP density in the MSSM including exact tree-level annihilation cross sections for all two-body final states.
41 GRIEST 91 improve relic density calculations to account for coannihilations, pole effects, and threshold effects.
42 NOJIRI 91 uses minimal supergravity mass relations between squarks and sleptons to narrow cosmologically allowed parameter space.
43 Mass of the bino (=LSP) is limited to \(m_{\widetilde{B}} \lesssim 350 \mathrm{GeV}\) for \(m_{t} \leq 200 \mathrm{GeV}\). Mass of the higgsino (=LSP) is limited to \(m_{\tilde{H}} \lesssim 1 \mathrm{TeV}\) for \(m_{t} \leq 200 \mathrm{GeV}\).
\({ }^{44}\) ROSZKOWSKI 91 calculates LSP relic density in mixed gaugino/higgsino region.
\({ }^{45}\) Mass of the bino (=LSP) is limited to \(m_{\widetilde{B}} \lesssim 550 \mathrm{GeV}\). Mass of the higgsino (=LSP) is limited to \(m_{\widetilde{H}} \lesssim 3.2 \mathrm{TeV}\).
46 KRAUSS 83 finds \(m_{\widetilde{\gamma}}\) not 30 eV to 2.5 GeV . KRAUSS 83 takes into account the gravitino decay. Find that limits depend strongly on reheated temperature. For example a new allowed region \(m_{\widetilde{\gamma}}=4-20 \mathrm{MeV}\) exists if \(m_{\text {gravitino }}<40 \mathrm{TeV}\). See figure 2.

\section*{- Unstable \(\tilde{\chi}_{1}^{0}\) (Lightest Neutralino) mass limit}

Unless otherwise stated, results in this section assume spectra and production rates as evaluated in the MSSM. Unless otherwise stated, the goldstino or gravitino mass \(m_{\widetilde{G}}\) is assumed to be negligible relative to all other masses. In the following, \(\widetilde{G}\) is assumed to be undetected and to give rise to a missing energy (\#) signature.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \(>525\) & 95 & 1 SIRUNYAN & 19CA CMS & \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}, \mathrm{GMSB}, \mathrm{SPS} 8, c \tau=1 \mathrm{~m}\) \\
\hline \(>290\) & 95 & 2 SIRUNYAN & 19CI CMS & \[
\begin{aligned}
& \geq 1 H(\rightarrow \gamma \gamma)+\text { jets }+E_{T}, \\
& \text { Tn1n1A, GMSB }
\end{aligned}
\] \\
\hline \(>230\) & 95 & 2 SIRUNYAN & 19CI CMS & \[
\begin{aligned}
& \geq 1 H(\rightarrow \gamma \gamma)+\text { jets }+E_{T}, \\
& \text { Tn1n1B }, \mathrm{GMSB}
\end{aligned}
\] \\
\hline \(>930\) & 95 & \({ }^{3}\) SIRUNYAN & 19K CMS & \(\gamma+\) lepton \(+E_{T}\), Tchi1n1A \\
\hline none
\[
\begin{aligned}
& 130-230, \\
& 290-880
\end{aligned}
\] & 95 & \({ }^{4}\) AABOUD & 18CK ATLS & \(2 H(\rightarrow b b)+E_{T}\), Tn1n1A, GMSB \\
\hline >295 & 95 & \({ }^{5}\) AABOUD & 18 z ATLS & \(\geq 4 \ell, \mathrm{GMSB}, \mathrm{Tn} 1 \mathrm{n} 1 \mathrm{C}\) \\
\hline
\end{tabular}
\({ }^{7}\) SIRUNYAN 18AP searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos by combining a number of previous and new searches. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchi1n2E, Tchi1n2F and Tchi1n2l simplified models, see their Figures 7, 8, 9 an 10. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figure \(11,12,13\) and 14.
\({ }^{8}\) SIRUNYAN 18AR searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their 9. Finally,
Figure 10.
\({ }^{9}\) SIRUNY 10 . 180 searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two Higgs bosons, decaying to pairs of \(b\)-quarks, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the T1n1n1A simplified model, see their Figure 9.
10 SIRUNYAN 18X searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and \(E_{T}\). The razor variables ( \(M_{R}\) and \(R^{2}\) ) are used to categorise the events. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model and on the wino mass in the Tchi1n2E simplified model, see their Figure 5. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B simplified models, see their Figure 6.
11 KHACHATRYAN 14L searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of direct pair production of neutralinos with Higgs or \(Z\)-bosons in the decay chain, leading to \(H H, H Z\) and \(Z Z\) final states with missing transverse energy. The decays of 16-20. a Higgs boson to a \(b\)-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the \(Z\) and \(W\) bosons. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of GMSB simplified models where the decays \(\widetilde{\chi}_{1}^{0} \rightarrow\) \(H \tilde{G}\) or \(\tilde{\chi}_{1}^{0} \rightarrow Z \tilde{G}\) take place either \(100 \%\) or \(50 \%\) of the time, see Figs. 16-20.
\({ }^{12}\) AABOUD 19G searched in \(32.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for evidence of neutralinos decaying into a \(Z\)-boson and a gravitino, in events characterized by the presence of dimuon vertices with displacements from the \(p p\) interaction point in the range of 1400 cm . Neutralinos are assumed to be produced in the decay chain of gluinos as in Tglu1A models. No significant excess is observed in the number of vertices relative to the predicted background. In GGM with a gluino mass of 1100 GeV , neutralino masses in the range \(300-1000 \mathrm{GeV}\) are excluded for certain values of \(\mathrm{c} \tau\), see their Figure 7.
13 AAIJ 17 z searched in \(1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and in \(2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing a displaced vertex with one associated high transverse momentum \(\mu\). No excess is observed above the background expected from Standard Model processes. The results are used to set \(95 \%\) C.L. upper limits on the cross section times branching fractions of pair-produced neutralinos decaying nonpromptly into a muon and two quarks. Long-lived particles in a mass range \(23-198 \mathrm{GeV}\) promptly into a muon and two quarks. Long
14 KHACHATRYAN 16 BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 3 or more leptons coming from the electroweak production of wino- or higgsino-like neutralinos, assuming non-zero R-parity-violating leptonic couplings \(\lambda_{122}\), \(\lambda_{123}\), and \(\lambda_{233}\) or semileptonic couplings \(\lambda_{131}^{\prime}, \lambda_{233}^{\prime}, \lambda_{331}^{\prime}\), and \(\lambda_{333}^{\prime}\). No excess over the expected background is observed and limits are derived on the neutralino mass, see the expected back
Figs. 24 and 25.
\({ }^{15}\) AAD 14BH searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing non-pointing photons in a diphoton plus missing transverse energy final state. No excess is observed above the background expected from Standard Model processes. The results are used to set \(95 \%\) C.L. exclusion limits in the contact of gauge-mediated supersymmetric breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in the range from 0.25 ns to about 100 ns into a photon and a gravitino. For limits on the NLSP lifetime versus \(\Lambda\) plane, for the SPS8 model, see their Fig. 7.
\({ }^{16}\) AAD 13AP searched in \(4.8 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing nonpointing photons in a diphoton plus missing transverse energy final state. No excess is observed above the background expected from Standard Model processes. The results are used to set \(95 \%\) C.L. exclusion limits in the context of gauge-mediated supersymmetric used to set \(95 \%\) C.L. exclusion limits in the context of gauge-mediated supersymmetric
breaking models, with the lightest neutralino being the next-to-lightest supersymmetric breaking models, with the lightest neutralino being the next-to-lightest superSymmetric
particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino. particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitin
For limits in the NLSP lifetime versus 1 plane, for the SPS8 model, see their Fig. 8.
\({ }^{17}\) AAD 13Q searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing a high- \(p_{T}\) isolated photon, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such signatures may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. No significant excess above the expected background was found and limits were set on the neutralino mass in a generalized GMSB model (GGM) with a higgsino-like neutralino NLSP, see their Fig. 4. Intermediate neutralino masses between 220 and 380 GeV are excluded at \(95 \%\) C.L, regardless of the squark and gluino masses, purely on the basis of the expected weak production.
\({ }^{18} \mathrm{AAD} 13 \mathrm{R}\) looked in \(4.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing new, heavy particles that decay at a significant distance from their production point into a final state containing a high-momentum muon and charged hadrons. No excess over the expected background is observed and limits are placed on the production cross-section of neutralinos via squarks for various \(m_{\tilde{q}}, m_{\widetilde{\chi}_{1}^{0}}\) in an R-parity violating scenario with
\(\lambda_{211}^{\prime} \neq 0\), as a function of the neutralino lifetime, see their Fig. 6 .
\({ }^{19}\) AALTONEN 131 searched in \(6.3 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events containing \(E_{T}\) and a delayed photon that arrives late in the detector relative to the containing \(E_{T}\) and a delayed photon that arrives late in the detector relative to the
time expected from prompt production. No evidence of delayed photon production is time expect
\({ }^{20}\) CHATRCHYAN 13 AH searched in \(4.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing \(E_{T}\) and a delayed photon that arrives late in the detector relative to the time expected from prompt production. No significant excess above the expected background was found and limits were set on the pair production of \(\tilde{\chi}_{1}^{0}\) depending on the neutralino proper decay length, see Fig. 8. Supersedes CHATRCHYÁN 12BK.
\({ }^{21} \mathrm{AAD}\) 12CP searched in \(4.8 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two photons and large \(E_{T}\) due to \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}\) decays in a GMSB framework. No significant
excess above the expected background was found and limits were set on the neutralino mass in a generalized GMSB model (GGM) with a bino-like neutralino NLSP, see Figs. 6 and 7. The other sparticle masses were decoupled, \(\tan \beta=2\) and \(c \tau_{N L S P}<0.1\) mm . Also, in the framework of the SPS8 model, limits are presented in Fig. 8.
22 AAD 12CT searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing four or more leptons (electrons or muons) and either moderate values of missing transverse momentum or large effective mass. No significant excess is found in the data. Limits are presented in a simplified model of \(R\)-parity violating supersymmetry in which charginos are pair-produced and then decay into a \(W\)-boson and a \(\widetilde{\chi}_{1}^{0}\), which in turn decays through an RPV coupling into two charged leptons ( \(e^{ \pm} e^{\mp}\) or \(\mu^{ \pm} \mu^{\mp}\) ) and a neutrino. In this model, limits are set on the neutralino mass as a function of the chargino mass, see Fig. 3a. Limits are also set in an \(R\)-parity violating mSUGRA model, see Fig. 3b.
\({ }^{23}\) AAD 12 R looked in \(33 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing new, heavy particles that decay at a significant distance from their production point into a final state containing a high-momentum muon and charged hadrons. No excess over the expected background is observed and limits are placed on the production cross-section of neutralinos via squarks for various ( \(m_{\widetilde{q}}, m_{\widetilde{\chi}_{1}^{0}}\) ) in an R-parity violating scenario with
\(\lambda_{211}^{\prime} \neq 0\), as a function of the neutralino lifetime, see their Fig. 8. Superseded by
AAD 13R.
\({ }^{24}\) ABAZOV 12AD looked in \(6.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with a photon, a \(Z\)-boson, and large \(E_{T}\) in the final state. This topology corresponds to a GMSB model where pairs of neutralino NLSPs are either pair produced promptly or from decays of other supersymmetric particles and then decay to either \(Z \widetilde{G}\) or \(\gamma \widetilde{G}\). No from decays of other supersymmetric particles and then decay to excess over the SM expectation is observed and a limit at \(95 \%\) C.L. on the significant excess over the SM expectation is observed and a limit at 95\% C.L. on the
cross section is derived as a function of the effective SUSY breaking scale \(\Lambda\), see Fig. cross section is derived as a function of the effective SUSY breaking scale \(\Lambda\), see Fig.
3. Assuming \(N_{\text {mes }}=2, M_{\text {mes }}=3 \Lambda, \tan \beta=3, \mu=0.75 M_{1}\), and \(C_{\text {grav }}=1\), the model is excluded at \(95 \%\) C.L. for values of \(\Lambda<87 \mathrm{TeV}\).
\({ }^{25}\) CHATRCHYAN 12BK searched in \(2.23 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two photons and large \(E_{T}\) due to \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}\) decays in a GMSB framework. No significant excess above the expected background was found and limits were set on the pair production of \(\widetilde{\chi}_{1}^{0}\) depending on the neutralino lifetime, see Fig. 6.
\({ }^{26}\) CHATRCHYAN 11B looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with an isolated lepton ( \(e\) or \(\mu\) ), a photon and \(E_{T}\) which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is assumed.
27 AALTONEN 10 searched in \(2.6 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for diphoton events with large \(E_{T}\). They may originate from the production of \(\tilde{\chi}^{ \pm}\)in pairs or associated to a \(\widetilde{\chi}_{2}^{0}\), decaying into \(\widetilde{\chi}_{1}^{0}\) which itself decays in GMSB to \(\gamma \widetilde{G}\). There is no excess of events beyond expectation. An upper limit on the cross section is calculated in the GMSB model as a function of the \(\tilde{\chi}_{1}^{0}\) mass and lifetime, see their Fig. 2. A limit is derived on the \(\widetilde{\chi}_{1}^{0}\) mass of 149 GeV for \(\tau \widetilde{\chi}_{1}^{0} \ll 1 \mathrm{~ns}\), which improves the results of previous searches.
28 ABAZOV 10P looked in \(6.3 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with at least two isolated \(\gamma \mathrm{s}\) and large \(E_{T}\). These could be the signature of \(\tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{1}^{ \pm}\) production, decaying to \(\widetilde{\chi}_{1}^{0}\) and finally \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}\) in a GMSB framework. No significant excess over the SM expectation is observed, and a limit at 95\% C.L. on the cross section is derived for \(N_{\text {mes }}=1, \tan \beta=15\) and \(\mu>0\), see their Fig. 2. This allows them to set a limit on the effective SUSY breaking scale \(\Lambda>124 \mathrm{TeV}\), from which the excluded \(\widetilde{\chi}_{1}^{0}\) mass range is obtained.
\({ }^{29}\) ABAZOV 08F looked in \(1.1 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for diphoton events with large \(E_{T}\). They may originate from the production of \(\widetilde{\chi}^{ \pm}\)in pairs or associated to a \(\widetilde{\chi}_{2}^{0}\), decaying to a \(\widetilde{\chi}_{1}^{0}\) which itself decays promptly in GMSB to \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}\). No significant excess was found compared to the background expectation. A limit is derived on the masses of SUSY particles in the GMSB framework for \(M=2 \Lambda, N=1, \tan \beta=\) on the masses of SUSY particles in the GMSB framework for \(M=2 \Lambda, N=1, \tan \beta=\)
15 and \(\mu>0\), see Figure 2. It also excludes \(\Lambda<91.5 \mathrm{TeV}\). Supersedes the results of ABAZOV 05A. Superseded by ABAZOV 10P.
\({ }^{30}\) ABULENCIA 07H searched in \(346 \mathrm{pb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with at least three leptons ( \(e\) or \(\mu\) ) from the decay of \(\widetilde{\chi}_{1}^{0}\) via \(L L \bar{E}\) couplings. The results are consistent with the hypothesis of no signal. Upper limits on the cross-section are extracted and a limit is derived in the framework of mSUGRA on the masses of \(\widetilde{\chi}_{1}^{0}\) and \(\widetilde{\chi}_{1}^{ \pm}\), see e.g. their Fig. 3 and Tab. II.
31 ABBIENDI 06B use \(600 \mathrm{pb}^{-1}\) of data from \(\sqrt{s}=189-209 \mathrm{GeV}\). They look for events with diphotons \(+\not Z\) final states originating from prompt decays of pair-produced neutralinos in a GMSB scenario with \(\widetilde{\chi}_{1}^{0}\) NLSP. Limits on the cross-section are computed as a function of \(m\left(\widetilde{\chi}_{1}^{0}\right)\), see their Fig. 14. The limit on the \(\widetilde{\chi}_{1}^{0}\) mass is for a pure Bino state assuming a prompt decay, with lifetimes up to \(10^{-9}\) s. Supersedes the results of ABBIENDI 04N.
32 ABDALLAH 05B use data from \(\sqrt{s}=180-209 \mathrm{GeV}\). They look for events with single photons \(+\notin\) final states. Limits are computed in the plane \(\left(m(\widetilde{G}), m\left(\tilde{\chi}_{1}^{0}\right)\right)\), shown in their Fig. 9b for a pure Bino state in the GMSB framework and in Fig. 9c for a no-scale supergravity model. Supersedes the results of ABREU \(00 z\).
33 ABDALLAH 05B use data from \(\sqrt{s}=130-209 \mathrm{GeV}\). They look for events with diphotons \(+\#\) final states and single photons not pointing to the vertex, expected in GMSB when the \(\widetilde{\chi}_{1}^{0}\) is the NLSP. Limits are computed in the plane \(\left(m(\widetilde{G}), m\left(\widetilde{\chi}_{1}^{0}\right)\right)\), see their Fig. 10. The lower limit is derived on the \(\widetilde{\chi}_{1}^{0}\) mass for a pure Bino state assuming a prompt decay and \(m_{\widetilde{e}_{R}}=m_{\widetilde{e}_{L}}=2 m_{\widetilde{\chi}_{1}^{0}}\). It improves to 100 GeV for \(m_{\widetilde{e}_{R}}=m_{\widetilde{e}_{L}}=1.1 m_{\widetilde{\chi}_{1}^{0}}\). and the limit in the plane \(\left(\mathrm{m}\left(\tilde{\chi}_{1}^{0}\right), \mathrm{m}\left(\widetilde{e}_{R}\right)\right)\) is shown in Fig. 10b. For long-lived neutralinos, cross-section limits are displayed in their Fig 11. Supersedes the results of ABREU 00z.

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}

\section*{\(\tilde{\chi}_{2}^{0}, \tilde{x}_{3}^{0}, \tilde{\chi}_{4}^{0}\) (Neutralinos) mass limits}

Neutralinos are unknown mixtures of photinos, z-inos, and neutral higgsinos (the supersymmetric partners of photons and of \(Z\) and Higgs bosons). The limits here apply only to \(\tilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}\), and \(\widetilde{\chi}_{4}^{0}\). \(\tilde{\chi}_{1}^{0}\) is the lightest supersymmetric particle (LSP); see \(\tilde{\chi}_{1}^{0}\) Mass Limits. It is not possible to quote rigorous mass limits because they are extremely model dependent; i.e. they depend on branching ratios of various \(\widetilde{\chi}^{0}\) decay modes, on the masses of decay products ( \(\widetilde{e}, \widetilde{\gamma}, \tilde{q}, \widetilde{g}\) ), and on the \(\widetilde{e}\) mass exchanged in \(e^{+} e^{-} \rightarrow \widetilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}\). Limits arise either from direct searches, or from the MSSM constraints set on the gaugino and higgsino mass parameters \(M_{2}\) and \(\mu\) through searches for lighter charginos and neutralinos. Often limits are given as contour plots in the \(m_{\widetilde{\chi}^{0}}-m_{\widetilde{e}}\) plane vs other parameters. When specific assumptions are made, e.g, the neutralino is a pure photino \((\widetilde{\gamma})\), pure \(z\)-ino \((\widetilde{Z})\), or pure neutral higgsino \(\left(\widetilde{H}^{0}\right)\), the neutralinos will be labelled as such.
Limits obtained from \(e^{+} e^{-}\)collisions at energies up to 136 GeV , as well as other limits from different techniques, are now superseded and have not been included in this compilation. They can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. Some later papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

- - We do not use the following data for averages, fits, limits, etc. - none 180-355 \(95 \quad 21\) AAD 14G ATLS
\(\widetilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}\), simplified
model, \(m \widetilde{\chi}_{1}=m, m \widetilde{x}_{1}=\) model, \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}, m_{\widetilde{\chi}_{1}^{0}}=0\) 22 KHACHATRY...14। CMS \(\quad \tilde{\chi}_{2}^{0} \xrightarrow{\mathrm{GeV}}(Z, H) \tilde{\chi}_{1}^{0} \tilde{\ell} \ell\), simplified \(23 \mathrm{AAD} \quad\) 12AS ATLS \(3 \ell^{ \pm}+E_{T}\), pMSSM \({ }^{24} \mathrm{AAD} \quad 12 \mathrm{~T}\) ATLS \(\ell^{ \pm} \ell^{ \pm}+E_{T}, p p \rightarrow \widetilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{2}^{0}\)
\({ }^{1}\) AABOUD 19AU searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and next-to-lightest neutralinos decaying into lightest neutralinos and a \(W\) and a Higgs boson, respectively. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final states with missing transverse momentum are considered in this search. Observations are consistent with the Standard Model expectations, and \(95 \%\) confidence-level limits of up to 680 GeV on the chargino/next-tolightest neutralino masses are set (Tchi1n2E model). See their Figure 14 for an overlay of exclusion contours from all searches.
2 SIRUNYAN 19BU searched for pair production of gauginos via vector boson fusion assuming the gaugino spectrum is compressed, in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13\) TeV . The final states explored included zero leptons plus two jets, one lepton plus two jets, and one hadronic tau plus two jets. A similar bound is obtained in the light slepton limit.
\({ }^{3}\) AABOUD 18AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos as in Tchi1n2D models, in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. Assuming decays via intermediate \(\widetilde{\tau}_{L}\) and \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}\), the observed limits rule out \(\tilde{\chi}_{2}^{0}\) masses up to 760 GeV for a massless \(\widetilde{\chi}_{1}^{0}\). See their Fig. 7 (right). Interpretations are also provided in Fig 8 (bottom) for different assumptions on the ratio between \(m_{\widetilde{\tau}}\) and \(m_{\widetilde{\chi}_{2}^{0}}+m_{\widetilde{\chi}_{1}^{0}}\).
\({ }^{4}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the next-to-lightest neutralino mass up to 1100 GeV for massless \(\tilde{\chi}_{1}^{0}\) in the Tchi1n2C simplified model exploiting the \(3 \ell\) signature, see their Figure 8(c).
\({ }^{5}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the next-to-lightest neutralino mass up to 580 GeV for massless \(\tilde{\chi}_{1}^{0}\) in the Tchi1n2F simplified model exploiting the \(2 \ell+2\) jets and \(3 \ell\) signatures, see their Figure 8(d)
\({ }^{6}\) AABOUD 18 CK searched for events with at least \(3 b\)-jets and large missing transverse energy in two datasets of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) of \(36.1 \mathrm{fb}^{-1}\) and \(24.3 \mathrm{fb}^{-1}\) depending on the trigger requirements. The analyses aimed to reconstruct two Higgs bosons decaying to pairs of \(b\)-quarks. No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the T1n1n1A simplified model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgsino decaying into an higgs boson and a gravitino, see their Figure 15(b).
\({ }^{7}\) AABOUD 18 co searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of mass-degenerate charginos and next-to-lightest neutralinos in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. The search channels are based on recursive jigsaw reconstruction. Limits are set on the next-to-lightest neutralinos mass up to 600 GeV for massless neutralinos in the Tchi1n2F simplified model exploiting the statistical combination of \(2 \ell+2\) jets and \(3 \ell\) channels. Next-to-lightest neutralinos masses below 220 GeV are not excluded due to an excess of events above the SM prediction in the dedicated regions. See their Figure 13(d).
\({ }^{8}\) AABOUD 18R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchi1n2G higgsino models, and \(\tilde{\chi}_{2}^{0}\) masses are excluded up to 145 GeV for \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 2.5 GeV , see their Fig. 10 (top). Results are also interpreted in terms of exclusion bounds on the production cross-sections for the NUHM2 scenario as a function of the universal gaugino mass \(m_{1 / 2}\) and \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\), see their Fig. 12.
\({ }^{9}\) AABOUD 18R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchi1n2F wino models, and \(\widetilde{\chi}_{2}^{0}\) masses are excluded up to 175 GeV for \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}=10 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 2 GeV , see their Fig. 10 (bottom). Results are also interpreted in terms of exclusion bounds on the production cross-sections for the NUHM2 scenario as a function of the universal gaugino mass \(m_{1 / 2}\) and \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}^{0}\), see their Fig. 12.
10 AABOUD 18 u searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the diphoton channel are interpreted in terms of lower limits on the masses of gauginos Tchi1chi1A models, which reach as high as 1.3 TeV. Gaugino masses below 1060 GeV are excluded for any NLSP mass, see their Fig. 10.
11 SIRUNYAN 18AJ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two low-momentum, oppositely charged leptons (electrons or muons) and \(E_{T}\). No excess over the expected background is observed. Limits are derived on the wino mass in the Tchi1n2F simplified model, see their Figure 5. Limits are also set on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tchi1n2G simplified model, see Figure 8 and in the pMSSM, see Figure 7.
\({ }^{12}\) SIRUNYAN 18DP searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos or of chargino pairs in events with a tau lepton pair and significant missing transverse momentum. Both hadronic and leptonic decay modes are considered for the tau lepton. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the Tchi1chi1D and Tchi1n2 simplified models, see their Figures 14 and 15. Also, excluded stau pair production cross sections are shown in Figures 11, 12, and 13.
13 SIRUNYAN 17 AW searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a charged lepton (electron or muon), two jets identified as originating from a \(b\)-quark, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the chargino and the next-to-lightest neutralino in the Tchi1n2E simplified model, see their Figure 6.
14 AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \(E_{T}\), with or without hadronic jets, in 20 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at \(95 \%\) C.L. are set on mass-degenerate \(\widetilde{\chi}_{2}^{0}\) and \(\widetilde{\chi}_{3}^{0}\) masses in the Tn2n3A and Tn2n3B simplified models. See their Fig. 15.
\({ }^{15}\) AAD 15BA searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of charginos and neutralinos decaying to a final state containing a \(W\) boson and a 125 GeV Higgs boson, plus missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with the decays \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow H \tilde{\chi}_{1}^{0}\) having \(100 \%\) branching fraction, see Fig. 8. A combination of the multiple final states for the Higgs decay yields the best limits (Fig. 8d).
\({ }^{16}\) AAD 14 H searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of charginos and neutralinos decaying to a final sate with three leptons and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with decays to the lightest neutralino via either all three generations of leptons, staus only, gauge bosons, or Higgs bosons, see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 8.
17 AAD \(14 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the neutralino mass in an R-parity conserving simplified model where the decay \(\widetilde{\chi}_{2,3}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 10.
\({ }^{18}\) AAD 13 searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for charginos and neutralinos decaying to a final state with three leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 and 3, and in simplified models, see Fig. 4. For the simplified models with intermediate slepton decays, degenerate \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\) masses up to 500 GeV are excluded at \(95 \%\) C.L. for very large mass differences with the \(\tilde{\chi}_{1}^{0}\). Supersedes AAD 12AS.
\({ }^{19}\) CHATRCHYAN 12BJ searched in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos in events with at least two leptons, jets and missing transverse momentum. No significant excesses over the expected SM backgrounds are observed and \(95 \%\) C.L. limits on the production cross section of \(\widetilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{2}^{0}\) pair production were set in a number of simplified models, see Figs. 7 to 12. Most limits are for exactly 3 jets.
\({ }^{20}\) ABREU 00w combines data collected at \(\sqrt{s}=189 \mathrm{GeV}\) with results from lower energies. The mass limit is obtained by constraining the MSSM parameter space with gaugino and sfermion mass universality at the GUT scale, using the results of negative direct searches for neutralinos (including cascade decays and \(\widetilde{\tau} \tau\) final states) from ABREU 01, for charginos from ABREU 00J and ABREU 00T (for all \(\Delta m_{+}\)), and for charged sleptons from ABREU 01B. The results hold for the full parameter space defined by all values of \(M_{2}\) and \(|\mu| \leq 2 \mathrm{TeV}\) with the \(\tilde{\chi}_{1}^{0}\) as LSP.
\({ }^{21}\) AAD 14G searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of chargino-neutralino pairs, decaying to a final sate with two leptons ( \(e\) and \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of chargino and next-tolightest neutralino production, with decays to the lightest neutralino via gauge bosons, see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 10.
22 KHACHATRYAN 141 searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of charginos and neutralinos decaying to a final state with three leptons ( \(e\) or \(\mu\) ) and missing transverse momentum, or with a \(Z\)-boson, dijets and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Figs. 12-16.
\({ }^{23}\) AAD 12AS searched in \(2.06 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for charginos and neutralinos decaying to a final state with three leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 (top), and in simplified models, see Fig. 2 (bottom).
\({ }^{24} \mathrm{AAD}\) 12T looked in \(1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons ( \(e\) or \(\mu\) ). Same-sign dilepton events were separately studied. Additionally, in opposite-sign events, a search was made for an excess of sameflavor over different-flavor lepton pairs. No excess over the expected background is observed and limits are placed on the effective production cross section of opposite-sign dilepton events with \(E_{T}>250 \mathrm{GeV}\) and on same-sign dilepton events with \(E_{T}>\) 100 GeV . The latter limit is interpreted in a simplified electroweak gaugino production model.

\section*{\(\tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{2}^{ \pm}\)(Charginos) mass limits}

Charginos are unknown mixtures of w-inos and charged higgsinos (the supersymmetric partners of \(W\) and Higgs bosons). A lower mass limit for the lightest chargino \(\left(\widetilde{\chi}_{1}^{ \pm}\right)\)of approximately 45 GeV , independent of the field composition and of the decay mode, has been obtained by the LEP experiments from the analysis of the \(Z\) width and decays. These results, as well as other now superseded limits from \(e^{+} e^{-}\)collisions at energies below 136 GeV , and from hadronic collisions, can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

Unless otherwise stated, results in this section assume spectra, production rates, decay modes and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of \(\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}\), \(\widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}\)and (in the case of hadronic collisions) \(\tilde{\chi}_{1}^{+} \widetilde{\chi}_{2}^{0}\) pairs, including the effects of cascade decays. The mass limits on \(\tilde{\chi}_{1}^{ \pm}\)are either direct, or follow indirectly from the constraints set by the non-observation of \(\tilde{\chi}_{2}^{0}\) states on the gaugino and higgsino MSSM parameters \(M_{2}\) and \(\mu\). For generic values of the MSSM parameters, limits from high-energy \(e^{+} e^{-}\)collisions coincide with the highest value of the mass allowed by phase-space, namely \(m_{\widetilde{\chi}_{1}^{ \pm}} \lesssim \sqrt{s} / 2\). The still unpublished combination of the results of the four LEP collaborations from the 2000 run of LEP2 at \(\sqrt{s}\) up to \(\simeq 209 \mathrm{GeV}\) yields a lower mass limit of 103.5 GeV valid for general MSSM models. The limits become however weaker in certain regions of the MSSM parameter space where the detection efficiencies or production cross sections are suppressed. For example, this may happen when: (i) the mass differences \(\Delta m_{+}=m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}\) or \(\Delta m_{\nu}=m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\nu}}\) are very small, and the detection efficiency is reduced; (ii) the electron sneutrino mass is small, and the \(\tilde{\chi}_{1}^{ \pm}\)production rate is suppressed due to a destructive interference between \(s\) and \(t\) channel exchange diagrams. The regions of MSSM parameter space where the following limits are valid are indicated in the comment lines or in the footnotes.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENTID & TECN & COMMENT \\
\hline >1050 & 95 & 1 SIRUNYAN & 20B CMS & \[
\geq \underset{\gamma \widetilde{G}}{1 \gamma}+E_{T}, \text { Tchi1chi1F, } \tilde{\chi}_{1}^{0} \rightarrow
\] \\
\hline > 825 & 95 & \({ }^{1}\) SIRUNYAN & 20B CMS & \[
\begin{aligned}
& \geq 1 \gamma+E_{T}, \text { Tchi1chi1G }, \tilde{\chi}_{1}^{ \pm} \rightarrow \\
& \widetilde{\chi}_{1}^{0}+\text { soft }
\end{aligned}
\] \\
\hline \(>840\) & 95 & 1 SIRUNYAN & 20B CMS & \[
\begin{aligned}
& \geq 1 \gamma+E_{T}, \text { Tchi1n12-GGM, } 120 \\
& \mathrm{GeV}<m_{\tilde{\chi}_{1}^{0}}<720 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 680 & 95 & \({ }^{2}\) AABOUD & 19aU ATL & \(0,1,2\) or more \(\ell, H(\rightarrow \gamma \gamma, b b\), \(\left.W W^{*}, Z Z^{*}, \tau \tau\right)\) (various searches), Tchi1n2E, \(m_{\widetilde{\chi}_{1}^{0}}=0\) GeV \\
\hline \(>112\) & 95 & 3 SIRUNYAN & 19bu CMS & \begin{tabular}{l}
\[
p p \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0}+2 \text { jets, } \tilde{\chi}_{1}^{+} \rightarrow
\] \\
\(\ell^{+} \nu \widetilde{\chi}_{1}^{0}\), heavy sleptons,
\[
\begin{aligned}
& m_{\widetilde{\chi}_{1}^{+}}-m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}, m_{\widetilde{\chi}_{1}^{+}} \\
& =m_{\widetilde{\chi}_{2}^{0}}
\end{aligned}
\]
\end{tabular} \\
\hline \(>215\) & 95 & \({ }^{3}\) SIRUNYAN & 19bu CMS & \[
\begin{aligned}
& p p \rightarrow \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{2}^{0}+2 \text { jets, } \widetilde{\chi}_{1}^{+} \rightarrow \\
& \quad \ell^{+} \nu \widetilde{\chi}_{1}^{0}, \text { heavy sleptons, } \\
& \\
& m_{\widetilde{\chi}_{1}^{+}}-m_{\widetilde{\chi}_{1}^{0}}=30 \mathrm{GeV}, m_{\widetilde{\chi}_{1}^{+}} \\
& \quad=m_{\widetilde{\chi}_{2}^{0}}
\end{aligned}
\] \\
\hline \(>235\) & 95 & \({ }^{4}\) SIRUNYAN & 19CI CMS & \[
\begin{aligned}
& \geq 1 H(\rightarrow \gamma \gamma)+\text { jets }+E_{T}, \\
& \text { Tchi1n2E, } m_{\tilde{\chi}_{1}^{0}}=1 \mathrm{GeV}
\end{aligned}
\] \\
\hline \(>930\) & 95 & \({ }^{5}\) SIRUNYAN & 19k CMS & \(\gamma+\) lepton \(+E_{T}\), Tchinn1A \\
\hline \(>630\) & 95 & \({ }^{6}\) AABOUD & 18AY ATLS & \(2 \tau+E_{T}\), Tchi1chi1D and \(\widetilde{\tau}_{L}\)-only, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline \(>760\) & 95 & 7 AABOUD & 18AY ATLS & \(2 \tau+E_{T}\), Tchi1n2D and \(\tilde{\tau}_{L}\)-only,
\[
m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\] \\
\hline \(>740\) & 95 & \({ }^{8}\) AABOUD & 18BT ATLS & \(2 \ell+E_{T}\), Tchi1chi1C, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1125 & 95 & \({ }^{9}\) AABOUD & 18BT ATLS & \[
2,3 \ell+E_{T}, \text { Tchi1n2C, } m_{\widetilde{\chi}_{1}^{0}}^{1}=0 \mathrm{GeV}
\] \\
\hline \(>580\) & 95 & 10 AABOUD & 18BT ATLS & \(2,3 \ell+E_{T}\), Tchi1n2F, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline \[
\begin{aligned}
& \text { none } \\
& \quad 130-230, \\
& 290-880
\end{aligned}
\] & 95 & 11 AABOUD & 18CK ATLS & \(2 H(\rightarrow b b)+E_{T}\), Tn1n1A, GMSB \\
\hline \[
\begin{aligned}
& \text { none } \\
& 220-600
\end{aligned}
\] & 95 & 12 AABOUD & 18Co ATLS & \(2,3 \ell+E_{T}\), recursive jigsaw, Tchi1n2F, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline > 175 & 95 & 13 AABOUD & 18R ATLS & \[
\begin{gathered}
2 \ell \text { (soft) }+E_{T}, \text { Tchi1n2F, wino, } \\
m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=10 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>145\) & 95 & 14 AABOUD & 18R ATLS & \(2 \ell\) (soft) \(+E_{T}\), Tchi1n2G, higgsino, \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\) \\
\hline >1060 & 95 & 15 AABOUD & 18 U ATLS & \(2 \gamma+E_{T}\), GGM, Tchi1chi1A, any NLSP mass \\
\hline >1400 & 95 & 16 AABOUD & 182 ATLS & \[
\begin{aligned}
& \geq 4 \ell, \mathrm{RPV}, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}>
\end{aligned}
\] \\
\hline >1320 & 95 & 16 AABOUD & 18 Z ATLS & \[
\geq 4 \ell, \mathrm{RPV}, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}>50
\] \\
\hline > 980 & 95 & 16 AABOUD & 18 Z ATLS & \[
\begin{aligned}
& \geq 4 \ell, \mathrm{RPV}, \lambda_{i 33} \neq 0,400 \mathrm{GeV}< \\
& m_{\widetilde{\chi}_{1}^{0}}<700 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 980 & 95 & 17 SIRUNYAN & 18AA CMS & \(\geq 1 \gamma+E_{T}\), GGM, wino-like \(\widetilde{\chi}_{2}^{0} \widetilde{\chi}_{1}^{ \pm}\)pair production, nearly degenerate wino and bino masses \\
\hline > 780 & 95 & 17 SIRUNYAN & 18AA CMS & \(\geq 1 \gamma+E_{T}\), Tchinn1A \\
\hline \(>950\) & 95 & 17 SIRUNYAN & 18AA CMS & \(\geq 1 \gamma+E_{T}\), Tchi1chi1A \\
\hline > 230 & 95 & 18 SIRUNYAN & 18AJ CMS & \[
\begin{aligned}
& 2 \ell \text { (soft) }+E_{T} \text {, Tchi1n2F, wino, } \\
& m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}=20 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}

Searches Particle Listings
Supersymmetric Particle Searches

\({ }^{6}\) AABOUD 18AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos as in Tchi1chi1D models in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. In the Tchilchi1D model, assuming decays via intermediate \(\widetilde{\tau}_{L}\), the observed limits rule out \(\tilde{\chi}_{1}^{ \pm}\)masses up to 630 GeV for a massless \(\tilde{\chi}_{1}^{0}\). See their Fig. 7 (left). Interpretations are also provided in Fig 8 (top) for different assumptions on the ratio between \(m_{\widetilde{\tau}}\) and \(m_{\widetilde{\chi}^{ \pm}}\) \(+m_{\widetilde{\chi}_{1}^{0}}\)
\({ }^{7}\) AABOUD 18AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos as in Tchi1n2D models, in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. Assuming decays via intermediate \(\widetilde{\tau}_{L}\) and \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}\), the observed limits rule out \(\tilde{\chi}_{1}^{ \pm}\)masses up to 760 GeV for a massless \(\tilde{\chi}_{1}^{0}\). See their Fig. 7 (right). Interpretations are also provided in Fig 8 (bottom) for different assumptions on the ratio between \(m_{\widetilde{\tau}}\) and \(m_{\widetilde{\chi}_{1}^{ \pm}}+m_{\widetilde{\chi}_{1}^{0}}\).
\({ }^{8}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets and Iarge missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 750 GeV for massless neutralinos in the Tchi1chi1C simplified model exploiting \(2 \ell+0\) jets signatures, see their Figure 8(a).
\({ }^{9}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 1100 GeV for massless neutralinos in the Tchi1n2C simplified model exploiting \(3 \ell\) signature, see their Figure 8(c).
\({ }^{10}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 580 GeV for massless neutralinos in the Tchi1n2F simplified model exploiting \(2 \ell+2\) jets and \(3 \ell\) signatures, see their Figure 8(d).
11 AABOUD 18CK searched for events with at least \(3 b\)-jets and large missing transverse energy in two datasets of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) of \(36.1 \mathrm{fb}^{-1}\) and \(24.3 \mathrm{fb}^{-1}\) depending on the trigger requirements. The analyses aimed to reconstruct two Higgs bosons decaying to pairs of \(b\)-quarks. No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the T1n1n1A simplified model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgsino decaying into an higgs boson and a gravitino, see their Figure 15(b).
\({ }^{12}\) AABOUD 18 CO searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of mass-degenerate charginos and next-to-lightest neutralinos in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. The search channels are based on recursive jigsaw reconstruction. Limits are set on the chargino mass up to 600 GeV for massless neutralinos in the Tchi1n2F simplified model exploiting the statistical combination of \(2 \ell+2\) jets and \(3 \ell\) channels. Chargino masses below 220 GeV are not excluded due to an excess of events above the SM prediction in the dedicated regions. See their Figure 13(d).
\({ }^{13}\) AABOUD 18R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchi1n2G wino models and \(\widetilde{\chi}_{1}^{ \pm}\)masses are excluded up to 175 GeV for \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=10 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 2 GeV , see their Fig. 10 (bottom).
14 AABOUD 18 R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchi1n2G higgsino models and \(\widetilde{\chi}_{1}^{ \pm}\)masses are excluded up to 145 GeV for \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 2.5 GeV , see their Fig. 10 (top).
\({ }^{15}\) AABOUD 18 u searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the diphoton channel are interpreted in terms of lower limits on the masses of gauginos Tchi1chi1A models, which reach as high as 1.3 TeV. Gaugino masses below 1060 GeV are excluded for any NLSP mass, see their as 1.3 T
Fig. 10.
\({ }^{16}\) AABOUD 18 z searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via \(\lambda_{12 k}\) or \(\lambda_{i 33}\) to charged leptons, see their Figures 7, 8.
17 SIRUNYAN 18AA searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one photon and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like \(\widetilde{\chi}_{1}^{0}\) and wino-like \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\), see Figure 7. Limits are also set on the NLSP mass in the Tchi1n1A and Tchi1chi1A simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10.

18 SIRUNYAN 18AJ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two low-momentum, oppositely charged leptons (electrons or muons) and \(E_{T}\). No excess over the expected background is observed. Limits are derived on the wino mass in the Tchi1n2F simplified model, see their Figure 5. Limits are also set on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tchi1n2G simplified model, see Figure 8 and in the pMSSM, see Figure 7.
\({ }^{19}\) SIRUNYAN \(18 A O\) searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos in events with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchi1n2A, Tchi1n2H, Tchi1n2D, Tchi1n2E and Tchi1n2F simplified models, mass in the TChi1n2A, TChi1n2H, TChiln2D, TChiln2E and TChiln2F simplified models,
see their Figures \(14,15,16,17\) and 18 . Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figure 19.
20 SIRUNYAN 18AP searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos by combining a number of previous and new searches. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchi1n2E, Tchi1n2F and Tchi1n2l simplified models, see their Figures 7, 8, 9 an 10. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figure \(11,12,13\) and 14.
21 SIRUNYAN 18AR searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10.
\({ }^{22}\) SIRUNYAN 18DN searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and for pair production of top squarks in events with two leptons (electrons or muons) of the opposite electric charge. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the Tchi1chi1C and Tchi1chi1E simplified models, see their Figure 8. Limits are also set on the stop mass in the Tstop1 and Tstop2 simplified models, see their Figure 9
\({ }^{23}\) SIRUNYAN 18DP searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos or of chargino pairs in events with a tau lepton pair and significant missing transverse momentum. Both hadronic and leptonic decay modes are considered for the tau lepton. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the Tchi1chi1D and Tchi1n2 simplified models, see their Figures 14 and 15. Also, excluded stau pair production cross sections are shown in Figures 11, 12, and 13.
\({ }^{24}\) SIRUNYAN 18 x searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and \(\mathbb{E}_{T}\). The razor variables ( \(M_{R}\) and \(R^{2}\) ) are used to categorise the events. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model and on the wino mass in the Tchinn2E simplified model, see their Figure 5. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B
simplified models, see their Figure 6 . simplified models, see their Figure 6.
\({ }^{25} \mathrm{KHACHATRYAN} 17 \mathrm{~L}\) searched in about \(19 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two \(\tau\) (at least one decaying hadronically) and \(E_{T}\). In the Tchi1chi1C model, assuming decays via intermediate \(\tau\) or \(\nu_{\tau}\) with equivalent mass, the observed limits rule out \(\widetilde{\chi}_{1}^{ \pm}\)masses up to 420 GeV for a massless \(\tilde{\chi}_{1}^{0}\). See their Fig.5.
\({ }^{26}\) SIRUNYAN 17 AW searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a charged lepton (electron or muon), two jets identified as originating from a \(b\)-quark, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the chargino and the next-to-lightest neutralino in the Tchi1n2E simplified model, see their Figure 6.
\({ }^{27}\) AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \(E_{T}\), with or without hadronic jets, in 20 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at \(95 \%\) C.L. are set on the \(\widetilde{\chi}_{1}^{ \pm}\)mass in the Tchi1chi1B and Tchi1chi1C simplified models. See their Fig. 13.
\({ }^{28}\) AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \(E_{T}\), with or without hadronic jets, in 20 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at \(95 \%\) C.L. are set on mass-degenerate \(\widetilde{\chi}_{1}^{ \pm}\)and \(\tilde{\chi}_{2}^{0}\) masses in the Tchi1n2B, Tchi1n2C, and Tchi1n2D simplified models. See their Figs. 16, 17, and 18. Interpretations in phenomenological-MSSM, two-parameter Non Universal Higgs Masses (NUHM2), and gauge-mediated symmetry breaking (GMSB) models are also given in their Figs. 20, 21 and 22.
\({ }^{29}\) KHACHATRYAN 16 R searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or more photons, one electron or muon, and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking model (GGM), for a wino-like neutralino NLSP scenario, see Fig. 5. Limits are also set in the Tglu1D and Tchi1n1A simplified models, see Fig. 6. The Tchi1n1A limit is reduced to 340 GeV for a branching ratio reduced by the weak mixing angle.
\({ }^{30}\) AAD 15BA searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of charginos and neutralinos decaying to a final state containing a \(W\) boson and a 125 GeV Higgs boson, plus missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow H \tilde{\chi}_{1}^{0}\) having \(100 \%\) branching fraction, see Fig. 8. A combination of the multiple final states for the Higgs decay yields the best limits (Fig. 8d).
31 AAD 15CA searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or more photons and \(E_{T}\), with or without leptons \((e, \mu)\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in the general gauge-mediated SUSY breaking model (GGM), for wino-like NLSP, see Fig. 9, 12
\({ }^{32}\) AAD 14 H searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of charginos and neutralinos decaying to a final sate with three leptons and missing transverse momentum. No excess beyond the Standard Model expectation is observed.

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}

Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with decays to the lightest neutralino via either all three generations of leptons, staus only, gauge bosons, or Higgs bosons, see Fig. 7. An interpretation in the PMSSM is also given, see Fig. 8.
\({ }^{33}\) AAD 14X searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the wino-like chargino mass in an R-parity violating simplified model where the decay \(\widetilde{\chi}_{1}^{ \pm} \rightarrow w^{(*) \pm} \widetilde{\chi}_{1}^{0}\), with \(\widetilde{\chi}_{1}^{0} \rightarrow\) \(\ell^{ \pm} \ell^{\mp} \nu\), takes place with a branching ratio of \(100 \%\), see Fig. 8 .
\({ }^{34}\) KHACHATRYAN 14 searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of chargino-neutralino \(\widetilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{2}^{0}\) pair production with Higgs or \(W\)-bosons in the decay chain, leading to \(H W\) final states with missing transverse energy. The decays of a Higgs boson to a photon pair are considered in conjunction with hadronic and leptonic decay modes of the \(W\) bosons. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of simplified models where the decays \(\tilde{\chi}_{2}^{0} \rightarrow\) \(H \tilde{\chi}_{1}^{0}\) and \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) take place \(100 \%\) of the time, see Figs. 22-23.
\({ }^{35}\) AAD 13 searched in \(4.7 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for charginos and neutralinos decaying to a final state with three leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 and 3, and in simplified models, see Fig. 4. For the simplified models with intermediate slepton decays, degenerate \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\) masses up to 500 GeV are excluded at \(95 \%\) C.L. for very large mass differences with the \(\tilde{\chi}_{1}^{0}\). Supersedes AAD 12AS.
\({ }^{36}\) AAD 13B searched in \(4.7 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for gauginos decaying to a final state with two leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Limits are derived in a simplified model of wino-like chargino pair production, where the chargino always decays to the lightest neutralino via an intermediate on-shell charged slepton, see Fig. 2(b). Chargino masses between 110 and 340 GeV are excluded at \(95 \%\) C.L. for \(m_{\widetilde{\chi}_{1}}=10 \mathrm{GeV}\). Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3.
\({ }^{37}\) AAD 12CT searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing four or more leptons (electrons or muons) and either moderate values of missing transverse momentum or large effective mass. No significant excess is found in the data. Limits are presented in a simplified model of R-parity violating supersymmetry in which charginos are pair-produced and then decay into a \(W\)-boson and a \(\widetilde{\chi}_{1}^{0}\), which in turn decays through an RPV coupling into two charged leptons ( \(e^{ \pm} e^{\mp}\) or \(e^{ \pm} \mu^{\mp}\) ) and a neutrino. In this model, chargino masses up to 540 GeV are excluded at \(95 \%\) C.L. for \(m_{\widetilde{\chi}_{1}^{0}}\) above 300 GeV , see Fig. 3a. The limit deteriorates for lighter \(\tilde{\chi}_{1}^{0}\). Limits are also set in an R-parity violating mSUGRA model, see Fig. 3b.
\({ }^{38}\) CHATRCHYAN 12 BJ searched in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for direct electroweak production of charginos and neutralinos in events with at least two leptons, jets and missing transverse momentum. No significant excesses over the expected SM backgrounds are observed and \(95 \%\) C.L. limits on the production cross section of \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}\) pair production were set in a number of simplified models, see Figs. 7 to 12.
\({ }^{39}\) ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass of charginos is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays), for charginos and for sleptons. These limits are valid for values of \(M_{2}<1 \mathrm{TeV},|\mu| \leq 2 \mathrm{TeV}\) with the \(\tilde{\chi}_{1}^{0}\) as LSP. Constraints from the Higgs search in the \(m_{h}^{\max }\) scenario assuming \(m_{t}=\) 174.3 GeV are included. The quoted limit applies if there is \({ }^{h}\) no mixing in the third family or when \(m_{\tilde{\tau}_{1}}-m_{\widetilde{\chi}_{1}^{0}}>6 \mathrm{GeV}\). If mixing is included the limit degrades to 90 GeV . See Fig. 43 for the mass limits as a function of \(\tan \beta\). These limits update the results of ABREU OOW.
40 KHACHATRYAN 16AA searched in \(7.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or more photons, hadronic jets and \(\nabla_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in the general gauge-mediated SUSY breaking model (GGM), for a wino-like neutralino NLSP scenario and with the wino mass fixed at 10 GeV above the bino mass, see Fig. 4. Limits are also set in the Tchi1chi1A and Tchi1n1A simplified models, see Fig. 3.
41 KHACHATRYAN 16R searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or more photons, one electron or muon, and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are also set in the Tglu1F simplified the Standard Model
model, see Fig. 6.
42 KHACHATRYAN \(16 Y\) searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or two soft isolated leptons, hadronic jets, and \(\nabla_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the \(\widetilde{\chi}_{1}^{ \pm}\)mass (which is degenerate with the \(\tilde{\chi}_{2}^{0}\) ) in the Tchi1n2A simplified model, see Fig. 4.
\({ }^{43}\) AAD 14AV searched in \(20.3 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for the direct production of charginos, neutralinos and staus in events containing at last two hadronically decaying of charginos, neutralinos and staus in events containing at last two hadronically decaying
\(\tau\)-leptons, large missing transverse momentum and low jet activity. The quoted limit was derived for direct \(\widetilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{2}^{0}\) and \(\widetilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{1}^{\mp}\) production with \(\widetilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau \rightarrow \tau \tau \widetilde{\chi}_{1}^{0}\) and \(\widetilde{\chi}_{1}^{ \pm} \rightarrow \tilde{\tau} \nu\left(\widetilde{\nu}_{\tau} \tau\right) \rightarrow \tau \nu \widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{2}^{0}}=m_{\widetilde{\chi}_{1}^{ \pm}}, m_{\widetilde{\tau}}=0.5\left(m_{\widetilde{\chi}_{1}^{ \pm}}+m_{\widetilde{\chi}_{1}}\right), m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\). No excess over the expected SM background is observed. Exclusion limits are set in simplified models of \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{\mp}\) and \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}\) pair production, see their Figure 7. Upper limits on the cross section and signal strength for direct di-stau production are derived, see Figures 8 and 9 . Also, limits are derived in a pMSSM model where the only light slepton is the \(\widetilde{\tau}_{R}\), see Figure 10 .
\({ }^{44} \mathrm{AAD} 14 \mathrm{AV}\) searched in \(20.3 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for the direct production of charginos, neutralinos and staus in events containing at last two hadronically decaying \(\tau\)-leptons, large missing transverse momentum and low jet activity. The quoted limit was derived for direct \(\tilde{\chi}_{1}^{ \pm} \widetilde{\chi}_{1}^{\mp}\) production with \(\widetilde{\chi}_{1}^{ \pm} \rightarrow \widetilde{\tau} \nu\left(\widetilde{\nu}_{\tau} \tau\right) \rightarrow \tau \nu \widetilde{\chi}_{1}^{0}, m_{\tilde{\tau}}=0.5\) \(\left(m_{\widetilde{\chi}_{1}^{ \pm}}+m_{\widetilde{\chi}_{1}^{0}}\right), m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\). No excess over the expected \(S M\) background is observed. Exclusion limits are set in simplified models of \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{\mp}\) and \(\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}\) pair production, see their Figure 7. Upper limits on the cross section and signal strength for direct di-stau production are derived, see Figures 8 and 9. Also, limits are derived in a pMSSM model where the only light slepton is the \(\widetilde{\tau}_{R}\), see Figure 10 .
\({ }^{45}\) AAD 14 G searched in \(20.3 \mathrm{fb}^{-1}\) of \(p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of chargino pairs, or chargino-neutralino pairs, decaying to a final sate with two leptons ( \(e\) and \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of chargino pair production, with chargino decays to the lightest neutralino via either sleptons or gauge bosons, see Fig 5.; or in simplified models of chargino and next-to-lightest neutralino production, with decays to the lightest neutralino via gauge bosons, see Fig. 7. An interpretation in the PMSSM is also given, see Fig. 10.
\({ }^{46}\) AALTONEN 14 searched in \(5.8 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for evidence of chargino and next-to-lightest neutralino associated production in final states consisting of three leptons (electrons, muons or taus) and large missing transverse momentum. The results are consistent with the Standard Model predictions within \(1.85 \sigma\). Limits on the chargino mass are derived in an mSUGRA model with \(m_{0}=60 \mathrm{GeV}, \tan \beta=3, A_{0}=\) 0 and \(\mu>0\), see their Fig. 2.
47 KHACHATRYAN 14। searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of chargino pairs decaying to a final state with opposite-sign lepton pairs ( \(e\) or \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Fig. 18.
48 AALTONEN 13Q searched in \(6.0 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for evidence of chargino-neutralino associated production in like-sign dilepton final states. One lepton is identified as the hadronic decay of a tau lepton, while the other is an electron or muon. Good agreement with the Standard Model predictions is observed and limits are set on the chargino-neutralino cross section for simplified gravity- and gauge-mediated models, see their Figs. 2 and 3.
\({ }^{49}\) AAD 12AS searched in \(2.06 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for charginos and neutralinos decaying to a final state with three leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 (top), and in simplified models, see Fig. 2 (bottom).
\({ }^{50}\) AAD 12T looked in \(1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons ( \(e\) or \(\mu\) ). Opposite-sign and same-sign dilepton events were separately studied. Additionally, in opposite-sign events, a search was made for an excess of same-flavor over different-flavor lepton pairs. No excess over the expected background is observed and limits are placed on the effective production cross section of opposite-sign dilepton events with \(E_{T}>250 \mathrm{GeV}\) and on same-sign dilepton events with \(E_{T}>100 \mathrm{GeV}\). The latter limit is interpreted in a simplified electroweak gaugino production model as a lower chargino mass limit.
51 CHATRCHYAN 11B looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with an isolated lepton ( \(e\) or \(\mu\) ), a photon and \(E_{T}\) which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is assumed.
52 CHATRCHYAN \(11 v\) looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with \(\geq 3\) isolated leptons ( \(e, \mu\) or \(\tau\) ), with or without jets and \(E_{T}\). No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM \(\left(m_{0}, m_{1 / 2}\right)\) plane for \(\tan \beta=3\) (see Fig. 5).

Long-lived \(\tilde{\chi}^{ \pm}\)(Chargino) mass limit
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \(>1090\) & 95 & \({ }^{1}\) AABOUD & 19at ATLS & long-lived \(\widetilde{\chi}_{1}^{ \pm} \mathrm{mAMSB}\) \\
\hline > 460 & 95 & \({ }^{2}\) AABOUD & 18AS ATLS & \[
\begin{gathered}
\widetilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \text {lifetime } 0.2 \mathrm{~ns} \\
m_{\tilde{\chi}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=160 \mathrm{MeV}
\end{gathered}
\] \\
\hline \(>715\) & 95 & 3 SIRUNYAN & 18BR CMS & \[
\begin{aligned}
& \tilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \mathrm{AMSB}, \tan \beta=5 \\
& \quad \text { and } \mu>0, \tau=3 \mathrm{~ns}
\end{aligned}
\] \\
\hline > 695 & 95 & 3 SIRUNYAN & 18BR CMS & \[
\begin{aligned}
& \tilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \text {AMSB, } \tan \beta=5 \\
& \quad \text { and } \mu>0, \tau=7 \mathrm{~ns}
\end{aligned}
\] \\
\hline \(>505\) & 95 & 3 SIRUNYAN & 18BR CMS & \[
\begin{gathered}
\tilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \mathrm{AMSB}, \tan \beta=5 \\
\mu>0,0.5 \mathrm{~ns}>\tau>60 \mathrm{~ns}
\end{gathered}
\] \\
\hline \(>620\) & 95 & \({ }^{4}\) AAD & 15aE ATLS & stable \(\widetilde{\chi}^{ \pm}\) \\
\hline \(>534\) & 95 & \({ }^{5}\) AAD & 15BM ATLS & stable \(\tilde{\chi}^{ \pm}\) \\
\hline > 239 & 95 & \({ }^{5} \mathrm{AAD}\) & 15BM ATLS & \[
\begin{gathered}
\widetilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \text {lifetime } 1 \mathrm{~ns}, \\
m_{\widetilde{\chi}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=0.14 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>482\) & 95 & \({ }^{5}\) AAD & 15bm ATLS & \[
\begin{gathered}
\widetilde{\chi}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \text {lifetime } 15 \mathrm{~ns}, \\
m_{\widetilde{\chi}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=0.14 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 103 & 95 & \({ }^{6}\) AAD & 13H ATLS & long-lived \(\tilde{\chi}^{ \pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{ \pm}\), \(\mathrm{mAMSB}, \Delta m_{\widetilde{\chi}_{1}^{0}}=160 \mathrm{MeV}\) \\
\hline > 92 & 95 & \({ }^{7}\) AAD & 12BJ ATLS & long-lived \(\widetilde{\chi}^{ \pm} \rightarrow \pi^{ \pm} \widetilde{\chi}_{1}^{0}, \mathrm{mAMSB}\) \\
\hline \(>171\) & 95 & \({ }^{8}\) ABAZOV & 09m D0 & H \\
\hline > 102 & 95 & \({ }^{9}\) ABBIENDI & 03L OPAL & \(m_{\widetilde{\nu}}>500 \mathrm{GeV}\) \\
\hline none 2-93.0 & 95 & 10 ABREU & 00T DLPH & \(H^{ \pm}\)or \(m_{\widetilde{\nu}}>m_{\chi^{ \pm}}\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|c|}
\hline > 260 & 95 & \multicolumn{2}{|l|}{11 KHACHATRY...15AB CMS} & \[
\widetilde{\chi}_{1}^{ \pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{ \pm}, \tau_{\widetilde{\chi}_{1}^{ \pm}}=0.2 \mathrm{~ns}, \mathrm{AMSB}
\] \\
\hline \(>800\) & 95 & \multicolumn{2}{|l|}{12 KHACHATRY...15AO CMS} & long-lived \(\widetilde{\chi}_{1}^{ \pm}\), mAMSB, \(\tau>100 \mathrm{~ns}\) \\
\hline \(>100\) & 95 & \multicolumn{2}{|l|}{12 KHACHATRY...15AO CMS} & long-lived \(\widetilde{\chi}_{1}^{ \pm}, \mathrm{mAMSB}, \tau>3 \mathrm{~ns}\) \\
\hline & 95 & \multicolumn{2}{|l|}{13 KHACHATRY...15w CMS} & \[
\begin{aligned}
& \text { long-lived } \tilde{\chi}^{0}, \tilde{q} \rightarrow q \tilde{\chi}^{0}, \widetilde{\chi}^{0} \rightarrow \\
& \ell^{+}+\ell^{-} \nu, \mathrm{RPV}
\end{aligned}
\] \\
\hline \(>270\) & 95 & 14 AAD & 13BD ATLS & disappearing-track signature, AMSB \\
\hline \(>278\) & 95 & 15 ABAZOV & 13B D0 & long-lived \(\widetilde{\chi}^{ \pm}\), gaugino-like \\
\hline \(>244\) & 95 & 15 ABAZOV & 13B D0 & long-lived \(\widetilde{\chi}^{ \pm}\), higgsino-like \\
\hline
\end{tabular}
 4, 4 and 5.
\({ }^{4}\) AAD 15AE searched in \(19.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set on stable charginos, see excess of
\({ }^{5}\) AAD 15BM searched in \(18.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for stable and \({ }^{5}\) AAD 15BM searched in \(18.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for stable and
metastable non-relativistic charged particles through their anomalous specific ionization energy loss in the ATLAS pixel detector. In absence of an excess of events above the expected backgrounds, limits are set on stable charginos (see Table 5) and on metastable charginos decaying to \(\widetilde{\chi}_{1}^{0} \pi^{ \pm}\), see Fig. 11 .
\({ }^{6}\) AAD 13 H searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for direct electroweak production of long-lived charginos in the context of AMSB scenarios. The search is based on the signature of a high-momentum isolated track with few associated hits in the outer part of the tracking system, arising from a chargino decay into a neutralino and a low-momentum pion. The \(p_{T}\) spectrum of the tracks was found to be consistent with the SM expectations. Constraints on the lifetime and the production cross section were obtained, see Fig. 6. In the minimal AMSB framework with \(\tan \beta=5\), and \(\mu>0\), a chargino having a mass below 103 (85) GeV for a chargino-neutralino mass splitting \(\Delta m_{\widetilde{\chi}_{1}^{0}}\) of 160 (170) MeV is excluded at the \(95 \%\) C.L. See Fig. 7 for more precise bounds.
\({ }^{7}\) AAD 12BJ looked in \(1.02 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for signatures of decaying charginos resulting in isolated tracks with few associated hits in the outer region of the tracking system. The \(p_{T}\) spectrum of the tracks was found to be consistent with the SM expectations. Constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with \(m_{3 / 2}<32 \mathrm{TeV}, m_{0}<1.5 \mathrm{TeV}, \tan \beta=5\), and \(\mu>0\), a chargino having a mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at the \(95 \%\) C.L. See their Fig. 8 for more precise bounds.
\({ }^{8}\) ABAZOV 09m searched in \(1.1 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with direct production of a pair of charged massive stable particles identified by their TOF. The number of the observed events is consistent with the predicted background. The data are used to constrain the production cross section as a function of the \(\tilde{\chi}_{1}^{ \pm}\)mass, see their Fig. 2. The quoted limit improves to 206 GeV for gaugino-like charginos.
\({ }^{9}\) ABBIENDI 03L used \(e^{+} e^{-}\)data at \(\sqrt{s}=130-209 \mathrm{GeV}\) to select events with two high momentum tracks with anomalous \(\mathrm{dE} / \mathrm{dx}\). The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3. The bounds are valid for colorless fermions with lifetime longer than \(10^{-6} \mathrm{~s}\). Supersedes the results from ACKERSTAFF 98P.
10 ABREU OOT searches for the production of heavy stable charged particles, identified by their ionization or Cherenkov radiation, using data from \(\sqrt{s}=130\) to 189 GeV . These limits include and update the results of ABREU 98P.
11 KHACHATRYAN 15 AB searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing tracks with little or no associated calorimeter energy deposits and with missing hits in the outer layers of the tracking system (disappearing-track signature). Such disappearing tracks can result from the decay of charginos that are nearly mass degenerate with the lightest neutralino. The number of observed events is in agreement with the background expectation. Limits are set on the cross section of electroweak chargino production in terms of the chargino mass and mean proper lifetime, see Fig. 4. In the minimal AMSB model, a chargino mass below 260 GeV is excluded at \(95 \%\) C.L., see their Fig. 5.
12 KHACHATRYAN 150 searched in \(18.8 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of long-lived charginos in the context of AMSB and pMSSM scenarios. The results are based on a previously published search for heavy stable charged particles at 7 and 8 TeV . In the minimal AMSB framework with \(\tan \beta=5\) and \(\mu \geq 0\), constraints on the chargino mass and lifetime were placed, see Fig. 5. Charginos with a mass below 800 (100) GeV are excluded at the \(95 \%\) C.L. for lifetimes above \(100 \mathrm{~ns}(3 \mathrm{~ns})\). Constraints are also placed on the pMSSM parameter space, see Fig. 3.
13 KHACHATRYAN 15 w searched in up to \(20.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of long-lived neutralinos produced through \(\tilde{q}\)-pair production, with \(\widetilde{q} \rightarrow q \tilde{\chi}^{0}\) and \(\tilde{\chi}^{0} \rightarrow \ell^{+} \ell^{-} \nu\left(\right.\) RPV: \(\left.\lambda_{121}, \lambda_{122} \neq 0\right) .95 \%\) C.L. exclusion limits on cross section times branching ratio are set as a function of mean proper decay length of the neutralino, see Figs. 6 and 9.
14 AAD 13BD searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing tracks with no associated hits in the outer region of the tracking system resulting from the decay of charginos that are nearly mass degenerate with the lightest neutralino, as is often the case in AMSB scenarios. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum. Constraints on chargino properties are obtained and in the minimal AMSB model, a chargino mass below 270 GeV is excluded at \(95 \%\) C.L., see their Fig. 7.
\({ }^{15}\) ABAZOV 13B looked in \(6.3 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for charged massive long-lived particles in events with muon-like particles that have both speed and ionization energy loss inconsistent with muons produced in beam collisions. In the absence of an excess, limits are set at \(95 \%\) C.L. on gaugino- and higgsino-like charginos, see their Table 20 and Fig. 23.

\section*{\(\widetilde{\boldsymbol{\nu}}\) (Sneutrino) mass limit}

The limits may depend on the number, \(N(\widetilde{\nu})\), of sneutrinos assumed to be degenerate in mass. Only \(\widetilde{\nu}_{L}\) (not \(\widetilde{\nu}_{R}\) ) is assumed to exist. It is possible that \(\widetilde{\nu}\) could be the lightest supersymmetric particle (LSP).

We report here, but do not include in the Listings, the limits obtained from the fit of the final results obtained by the LEP Collaborations on the invisible width of the \(Z\) boson \(\left(\Delta \Gamma_{\text {inv. }}<2.0 \mathrm{MeV}, \operatorname{LEP}-\operatorname{SLC} 06\right): m_{\widetilde{\nu}}>43.7 \mathrm{GeV}(N(\widetilde{\nu})=1)\) and \(m_{\widetilde{\nu}}>44.7 \mathrm{GeV}\) \((N(\widetilde{\nu})=3)\).
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >3400 & 95 & \({ }^{1}\) AABOUD & 18CM ATLS & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{312}=\lambda_{321}= \\
& 0.07, \lambda_{311}^{\prime}=0.11
\end{aligned}
\] \\
\hline \(>2900\) & 95 & \({ }^{2}\) AABOUD & 18CM ATLS & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \tau, \lambda_{313}=\lambda_{331}= \\
& 0.07, \lambda_{311}^{\prime}=0.11
\end{aligned}
\] \\
\hline >2600 & 95 & \({ }^{3}\) AABOUD & 18cm ATLS & \[
\begin{gathered}
\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow \mu \tau, \lambda_{323}=\lambda_{332}= \\
0.07, \lambda_{311}^{\prime}=0.11
\end{gathered}
\] \\
\hline >1060 & 95 & \({ }^{4}\) AABOUD & 18 z ATLS & \begin{tabular}{l}
\[
\mathrm{RPV}, \geq 4 \ell, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
600 GeV (mass-degenerate left handed sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline > 780 & 95 & \({ }^{4}\) AABOUD & 182 ATLS & \begin{tabular}{l}
\[
\mathrm{RPV}, \geq 4 \ell, \lambda_{i 33} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
300 GeV (mass-degenerate lefthanded sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline \(>1700\) & 95 & \({ }^{5}\) SIRUNYAN & 18AT CMS & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{132}=\lambda_{231}= \\
& \quad \lambda_{311}^{\prime}=0.01
\end{aligned}
\] \\
\hline >3800 & 95 & \({ }^{5}\) SIRUNYAN & 18at CMS & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{132}=\lambda_{231}= \\
& \quad \lambda_{311}^{\prime}=0.1
\end{aligned}
\] \\
\hline \(>2300\) & 95 & \({ }^{6}\) AABOUD & 16P ATLS & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{311}^{\prime}=0.11\) \\
\hline \(>2200\) & 95 & \({ }^{6}\) AABOUD & 16P ATLS & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \tau, \lambda_{311}^{\prime}=0.11\) \\
\hline \(>1900\) & 95 & \({ }^{6}\) AABOUD & 16P ATLS & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow \mu \tau, \lambda_{311}^{\prime}=0.11\) \\
\hline \(>400\) & 95 & 7 AAD & 14X ATLS & \[
\begin{aligned}
& \mathrm{RPV}, \geq 4 \ell^{ \pm}, \widetilde{\nu} \rightarrow \nu \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\
& \quad \ell^{ \pm} \ell^{\mp} \nu
\end{aligned}
\] \\
\hline & & \({ }^{8}\) AAD & 112 ATLS & \[
\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu
\] \\
\hline \(>94\) & 95 & \({ }^{9}\) ABDALLAH & 03M DLPH & \[
1 \underset{m_{\widetilde{e}_{R}}-m_{\widetilde{\chi}_{1}^{0}}}{\leq} \leq 40 \mathrm{GeV}
\] \\
\hline \(>84\) & 95 & 10 HEISTER & 02N ALEP & \(\widetilde{\nu}_{e}\), any \(\Delta m\) \\
\hline > 41 & 95 & 11 DECAMP & 92 ALEP & \(\Gamma(Z \rightarrow\) invisible); \(N(\widetilde{\nu})=3\), model independent \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline & & 12 SIRUNYAN & 19aO & \[
\begin{aligned}
& \mathrm{RPV}, \mu^{ \pm} \mu^{ \pm}+\geq 2 \text { jets, } \\
& \lambda_{211}^{\prime} \neq 0, \widetilde{\nu}_{\mu} \rightarrow \mu \widetilde{\chi}_{1}^{ \pm} \\
& \widetilde{\chi}_{1}^{ \pm} \rightarrow \mu q \bar{q} q \bar{q}
\end{aligned}
\] \\
\hline >1280 & 95 & \multicolumn{2}{|l|}{13 KHACHATRY...16BE CMS} & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{132}=\lambda_{231}= \\
& \lambda_{311}^{\prime}=0.01
\end{aligned}
\] \\
\hline >2300 & 95 & \multicolumn{2}{|l|}{13 KHACHATRY...16BE CMS} & \[
\begin{aligned}
& \mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{132}=\lambda_{231}= \\
& 0.07, \lambda_{311}^{\prime}=0.11
\end{aligned}
\] \\
\hline >2000 & 95 & 14 AAD & 150 ATLS & \[
\begin{aligned}
& \operatorname{RPV}(e \mu), \widetilde{\nu}_{\tau}, \lambda_{311}^{\prime}=0.11 \\
& \quad \lambda_{i 3 k}=0.07
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{>1700} & \multirow[t]{5}{*}{95} & 14 AAD & 150 ATLS & \[
\begin{aligned}
& \operatorname{RPV}(\tau \mu, e \tau), \widetilde{\nu}_{\tau}, \lambda_{311}^{\prime}=0.11 \\
& \quad \lambda_{i 3 k}=0.07
\end{aligned}
\] \\
\hline & & \({ }^{15}\) AAD & 13al ATLS & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, e \tau, \mu \tau\) \\
\hline & & 16 AAD & 11H ATLS & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu\) \\
\hline & & 17 AALTONEN & \(10 z\) CDF & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu, e \tau, \mu \tau\) \\
\hline & & 18 ABAZOV & 10m D0 & \(\mathrm{RPV}, \widetilde{\nu}_{\tau} \rightarrow e \mu\) \\
\hline \(>95\) & 95 & 19 ABDALLAH & 04H DLPH & AMSB, \(\mu>0\) \\
\hline \(>37.1\) & 95 & 20 ADRIANI & 93m L3 & \(\Gamma(Z \rightarrow\) invisible); \(N(\widetilde{\nu})=1\) \\
\hline \(>36\) & 95 & ABREU & 91F DLPH & \(\Gamma(Z \rightarrow\) invisible); \(N(\widetilde{\nu})=1\) \\
\hline \(>31.2\) & 95 & 21 ALEXANDER & 91F OPAL & \(\Gamma(Z \rightarrow\) invisible); \(N(\widetilde{\nu})=1\) \\
\hline
\end{tabular}
\({ }^{1}\) AABOUD 18 CM searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for heavy particles decaying into an \(e \mu, e \tau, \mu \tau\) final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For \(\widetilde{\nu}_{\tau} \rightarrow e \mu\), masses below 3.4 TeV are excluded at \(95 \%\) CL, see their Figure 4(b). Upper limits on the RPV couplings \(\left|\lambda_{312}\right|\) versus \(\left|\lambda_{311}^{\prime}\right|\) are also performed, see their Figure 8(a-b).
\({ }^{2}\) AABOUD 18 CM searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for heavy particles decaying into an \(e \mu, e \tau, \mu \tau\) final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For \(\widetilde{\nu}_{\tau} \rightarrow e \tau\), masses below 2.9 TeV are excluded at \(95 \%\) \(C L\), see their Figure \(5(\mathrm{~b})\). Upper limits on the RPV couplings \(\left|\lambda_{313}\right|\) versus \(\left|\lambda_{311}^{\prime}\right|\) are also performed, see their Figure 8(c).
\({ }^{3}\) AABOUD 18 CM searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for heavy particles decaying into an \(e \mu, e \tau, \mu \tau\) final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For \(\widetilde{\nu}_{\tau} \rightarrow \mu \tau\), masses below 2.6 TeV are excluded at \(95 \%\) \(C L\), see their Figure \(6(b)\). Upper limits on the RPV couplings \(\left|\lambda_{323}\right|\) versus \(\left|\lambda_{311}^{\prime}\right|\) are also performed, see their Figure 8(d).

Searches Particle Listings

\section*{Supersymmetric Particle Searches}
\({ }^{4}\) AABOUD 18 z searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via \(\lambda_{12 k}\) or \(\lambda_{i 33}\) to charged leptons, see their Figures 7, 8.
\({ }^{5}\) SIRUNYAN 18AT searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for heavy resonances decaying into \(e \mu\) final states. No significant excess above the Standard Model expectation is observed and \(95 \%\) C.L. exclusions are placed on the cross section times branching ratio for the R-parity-violating production and decay of a supersymmetric times branching ratio four fig. 3 .
\({ }^{6}\) AABOUD 16P searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with different flavour dilepton pairs \((e \mu, e \tau, \mu \tau)\) from the production of \(\widetilde{\nu}_{\tau}\) via an RPV \(\lambda_{311}^{\prime}\) coupling and followed by a decay via \(\lambda_{312}=\lambda_{321}=0.07\) for \(e+\mu\), via \(\lambda_{313}=\lambda_{331}\) \(=0.07\) for \(e+\tau\) and via \(\lambda_{323}=\lambda_{332}=0.07\) for \(\mu+\tau\). No evidence for a dilepton resonance over the SM expectation is observed, and limits are derived on \(m_{\widetilde{\nu}}\) at \(95 \%\) CL, see their Figs. 2(b), 3(b), 4(b), and Table 3.
\({ }^{7}\) AAD \(14 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sneutrino mass in an R-parity violating simplified model where the decay \(\widetilde{\nu} \rightarrow \nu \tilde{\chi}_{1}^{0}\), with \(\widetilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\), takes place with a branching ratio of \(100 \%\), see Fig. 9 .
\({ }^{8}\) AAD 112 looked in \(1.07 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with one electron and one muon of opposite charge from the production of \(\widetilde{\nu}_{\tau}\) via an RPV \(\lambda_{311}^{\prime}\) coupling and followed by a decay via \(\lambda_{312}\) into \(e+\mu\). No evidence for an \((e, \mu)\) resonance over the SM expectation is observed, and a limit is derived in the plane of \(\lambda_{311}^{\prime}\) versus \(m_{\widetilde{\nu}}\) for three values of \(\lambda_{312}\), see their Fig. 2. Masses \(m_{\widetilde{\nu}}<1.32\) (1.45) TeV are excluded for \(\lambda_{311}^{\prime}=0.10\) and \(\lambda_{312}=0.05\left(\lambda_{311}^{\prime}=0.11\right.\) and \(\left.\lambda_{312}=0.07\right)\).
\({ }^{9}\) ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of \(\mathrm{M}_{2}<1 \mathrm{TeV},|\mu| \leq 1 \mathrm{TeV}\) with the \(\tilde{\chi}_{1}^{0}\) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of \(\tan \beta\). These limits update the results of ABREU 00 W
10 HEISTER 02 N derives a bound on \(m_{\widetilde{\nu}_{e}}\) by exploiting the mass relation between the \(\widetilde{\nu}_{e}\) and \(\widetilde{e}\), based on the assumption of universal GUT scale gaugino and scalar masses \(m_{1 / 2}\) and \(m_{0}\) and the search described in the \(\widetilde{e}\) section. In the MSUGRA framework with radiative electroweak symmetry breaking, the limit improves to \(m_{\widetilde{\nu}_{e}}>130 \mathrm{GeV}\), assuming a trilinear coupling \(A_{0}=0\) at the GUT scale. See Figs. 5 and 7 for the dependence of the limits on \(\tan \beta\).
11 DECAMP 92 limit is from \(\Gamma\) (invisible) \(/ \Gamma(\ell \ell)=5.91 \pm 0.15\left(N_{\nu}=2.97 \pm 0.07\right)\).
12 SIRUNYAN 19AO searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two same-sign muons and at last two jets, originating from resonant production of second-generation sleptons ( \(\widetilde{\mu}_{L}, \widetilde{\nu}_{\mu}\) ) via the R-parity violating coupling \(\lambda_{211}^{\prime}\) to quarks. No significant excess above the Standard Model expectations is observed. Upper limits on cross sections are derived in the context of two simplified models, see their Figure 4. The cross section limits are translated into limits on \(\lambda_{211}^{\prime}\) for a modified CMSSM, see their Figure 5.
13 KHACHATRYAN 16BE searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of narrow resonances decaying into \(e \mu\) final states. No significant excess above the Standard Model expectation is observed and 95\% C.L. exclusions are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino, see their Fig. 3.
\({ }^{14}\) AAD 150 searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of heavy particles decaying into \(e \mu, e \tau\) or \(\mu \tau\) final states. No significant excess above the Standard Model expectation is observed, and 95\% C.L. exclusions are placed on the cross section times branching ratio for the production of an \(R\)-parity-violating supersymmetric tau sneutrino, applicable to any sneutrino flavour, see their Fig. 2.
\({ }^{15} \mathrm{AAD} 13 \mathrm{Al}\) searched in \(4.6 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for evidence of heavy particles decaying into \(e \mu, e \tau\) or \(\mu \tau\) final states. No significant excess above the Standard Model expectation is observed, and \(95 \%\) C.L. exclusions are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino, see their Fig. 2. For couplings \(\lambda_{311}^{\prime}=0.10\) and \(\lambda_{i 3 k}=0.05\), the lower limits on the \(\widetilde{\nu}_{\tau}\) mass are \(1610,1110,1100 \mathrm{GeV}\) in the \(e \mu, e \tau\), and \(\mu \tau\) channels, respectively.
\({ }^{16} \mathrm{AAD} 11 \mathrm{H}\) looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with one electron and one muon of opposite charge from the production of \(\widetilde{\nu}_{\tau}\) via an RPV \(\lambda_{311}^{\prime}\) coupling and followed by a decay via \(\lambda_{312}\) into \(e+\mu\). No evidence for an excess over the SM expectation is observed, and a limit is derived in the plane of \(\lambda_{311}^{\prime}\) versus \(m_{\widetilde{\nu}}\) for several values of \(\lambda_{312}\), see their Fig. 2. Superseded by AAD \(11 z\).
17 AALTONEN 10 z searched in \(1 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events from the production \(d \bar{d} \rightarrow \widetilde{\nu}_{\tau}\) with the subsequent decays \(\widetilde{\nu}_{\tau} \rightarrow e \mu, \mu \tau, e \tau\) in the MSSM framework with RPV. Two isolated leptons of different flavor and opposite charges are required, with \(\tau\) s identified by their hadronic decay. No statistically significant excesses are observed over the SM background. Upper limits on \(\lambda_{311}^{\prime 2}\) times the branching ratio are listed in their Table III for various \(\widetilde{\nu}_{\tau}\) masses. Limits on the cross section times branching ratio for \(\lambda_{311}^{\prime}=0.10\) and \(\lambda_{i 3 k}=0.05\), displayed in Fig. 2, are used to set limits on the \(\widetilde{\nu}_{\tau}\) mass of 558 GeV for the \(e \mu, 441 \mathrm{GeV}\) for the \(\mu \tau\) and 442 GeV for the \(e \tau\) channels.
18 ABAZOV 10 m looked in \(5.3 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with exactly one pair of high \(p_{T}\) isolated \(e \mu\) and a veto against hard jets. No evidence for an excess over the SM expectation is observed, and a limit at \(95 \%\) C.L. on the cross section times branching ratio is derived, see their Fig. 3. These limits are translated into limits on couplings as a function of \(m_{\widetilde{\nu}_{\tau}}\) as shown on their Fig. 4. As an example, for \(m_{\widetilde{\nu}_{\tau}}=\) 100 GeV and \(\lambda_{312} \leq 0.07\), couplings \(\lambda_{311}^{\prime}>7.7 \times 10^{-4}\) are excluded.
\({ }^{19}\) ABDALLAH 04 H use data from LEP 1 and \(\sqrt{s}=192-208 \mathrm{GeV}\). They re-use results or re-analyze the data from ABDALLAH 03m to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region \(1<m_{3 / 2}<50 \mathrm{TeV}, 0<m_{0}<1000 \mathrm{GeV}, 1.5<\tan \beta<35\), both signs of \(\mu\). The constraints
are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM \(Z\) width of 3.2 MeV . The limit is for \(m_{t}=174.3 \mathrm{GeV}\) (see Table 2 for other \(m_{t}\) values). The limit improves to 114 GeV for \(\mu<0\).
\({ }^{20}\) ADRIANI 93M limit from \(\Delta \Gamma(Z)\) (invisible) \(<16.2 \mathrm{MeV}\).
\({ }^{21}\) ALEXANDER 91F limit is for one species of \(\widetilde{\nu}\) and is derived from \(\Gamma\) (invisible, new) \(/ \Gamma(\ell \ell)\) < 0.38 .

\section*{Charged sleptons}

This section contains limits on charged scalar leptons ( \(\tilde{\ell}\), with \(\ell=e, \mu, \tau\) ). Studies of width and decays of the \(Z\) boson (use is made here of \(\Delta \Gamma_{\text {inv }}<2.0 \mathrm{MeV}\), LEP 00) conclusively rule out \(m_{\tilde{\ell}_{R}}<40 \mathrm{GeV}(41\) GeV for \(\widetilde{\ell}_{L}\) ), independently of decay modes, for each individual slepton. The limits improve to \(43 \mathrm{GeV}\left(43.5 \mathrm{GeV}\right.\) for \(\left.\tilde{\ell}_{\mathrm{L}}\right)\) assuming all 3 flavors to be degenerate. Limits on higher mass sleptons depend on model assumptions and on the mass splitting \(\Delta m=m_{\tilde{\ell}}-m_{\widetilde{\chi}_{1}^{0}}\). The mass and composition of \(\tilde{\chi}_{1}^{0}\) may affect the selectron production rate in \(e^{+} e^{-}\)collisions through \(t\)-channel exchange diagrams. Production rates are also affected by the potentially large mixing angle of the lightest mass eigenstate \(\widetilde{\ell}_{1}=\widetilde{\ell}_{R} \sin \theta_{\ell}\) \(+\widetilde{\ell}_{L} \cos \theta_{\ell}\). It is generally assumed that only \(\widetilde{\tau}\) may have significant mixing. The coupling to the \(Z\) vanishes for \(\theta_{\ell}=0.82\). In the high-energy limit of \(e^{+} e^{-}\)collisions the interference between \(\gamma\) and \(Z\) exchange leads to a minimal cross section for \(\theta_{\ell}=0.91\), a value which is sometimes used in the following entries relative to data taken at LEP2. When limits on \({\tilde{\tilde{\ell}_{R}}}_{R}\) are quoted, it is understood that limits on \(m_{\tilde{\ell}_{L}}\) are usually at least as strong.

Possibly open decays involving gauginos other than \(\tilde{\chi}_{1}^{0}\) will affect the detection efficiencies. Unless otherwise stated, the limits presented here result from the study of \(\widetilde{\ell}^{+} \widetilde{\ell}^{-}\)production, with production rates and decay properties derived from the MSSM. Limits made obsolete by the recent analyses of \(e^{+} e^{-}\)collisions at high energies can be found in previous Editions of this Review.
For decays with final state gravitinos \((\widetilde{G}), m_{\widetilde{G}}\) is assumed to be negligible relative to all other masses.

\section*{R-parity conserving \(\widetilde{\boldsymbol{e}}\) (Selectron) mass limit}

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

\({ }^{1}\) SIRUNYAN 19AW searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak pair production of selectrons or smuons in events with two leptons (electrons or muons) of the opposite electric charge and same flavour, no jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the selectron mass assuming left-handed, right-handed or both left- and right-handed (mass degenerate) production, see their Figure 6. Similarly, limits are set on the smuon mass, see their Figure 7. Limits are also set on slepton masses under the assumption that the selectron and smuon are mass degenerate, see their Figure 5.
\({ }^{2}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless \(\widetilde{\chi}_{1}^{0}\), assuming degeneracy of \(\widetilde{e}, \widetilde{\mu}\), and \(\tilde{\tau}\) and exploiting the \(2 \ell\) signature, see their Figure 8(b).
\({ }^{3}\) AABOUD 18R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in slepton pair production models with a fourfold degeneracy assumed in selectron and smuon masses. The \(\widetilde{e}\) masses are excluded up to 190 GeV for \(m_{\widetilde{e}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 1 GeV , see their Fig. 11 .
\({ }^{4}\) CHATRCHYAN 14R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in a stau (N)NLSP simplified model (GMSB) where the decay \(\widetilde{\ell} \rightarrow \ell^{ \pm} \tau^{ \pm} \tau^{\mp} \widetilde{G}\) takes place with a branching ratio of \(100 \%\), see Fig. 8.
\({ }^{5}\) AAD 13B searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for sleptons decaying to a final state with two leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Limits are derived in a simplified model of direct left-handed slepton pair production, where left-handed slepton masses between 85 and 195 GeV are excluded at \(95 \%\) C.L. for \(m_{\widetilde{\chi}_{1}^{0}}=20 \mathrm{GeV}\). See also Fig. 2(a). Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3.
\({ }^{6}\) ABBIENDI 04 search for \(\widetilde{e}_{R} \widetilde{e}_{R}\) production in acoplanar di-electron final states in the \(183-208 \mathrm{GeV}\) data. See Fig. 13 for the dependence of the limits on \(m_{\tilde{\chi}_{1}^{0}}\) and for the limit at \(\tan \beta=35\) This limit supersedes ABBIENDI 00G.
\({ }^{7}\) ACHARD 04 search for \(\widetilde{e}_{R} \widetilde{e}_{L}\) and \(\widetilde{e}_{R} \widetilde{e}_{R}\) production in single- and acoplanar di-electron final states in the 192-209 GeV data. Absolute limits on \(m_{\widetilde{e}_{R}}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1 / 2}\) and \(m_{0}, 1 \leq \tan \beta \leq 60\) and \(-2 \leq \mu \leq 2 \mathrm{TeV}\). See Fig. 4 for the dependence of the limits on \(m_{\widetilde{\chi}_{1}^{0}}\). This limit supersedes ACCIARRI 99 w .
\({ }^{8}\) ABDALLAH 03M looked for acoplanar dielectron \(+\not \equiv\) final states at \(\sqrt{s}=189-208 \mathrm{GeV}\). The limit assumes \(\mu=-200 \mathrm{GeV}\) and \(\tan \beta=1.5\) in the calculation of the production cross section and \(\mathrm{B}\left(\widetilde{e} \rightarrow e \widetilde{\chi}_{1}^{0}\right)\). See Fig. 15 for limits in the \(\left(m_{\widetilde{e}_{R}}, m_{\widetilde{\chi}_{1}^{0}}\right)\) plane. These limits include and update the results of ABREU 01
\({ }^{9}\) ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of \(M_{2}<1 \mathrm{TeV},|\mu| \leq 1 \mathrm{TeV}\) with the \(\widetilde{\chi}_{1}^{0}\) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limit is obtained when there is no mixing in the third family. See Fig. 43 for
limits as a function of \(\tan \beta\). These limits update the results of ABREU 00w.
\({ }^{10}\) HEISTER 02E looked for acoplanar dielectron \(+E_{T}\) final states from \(e^{+} e^{-}\)interactions between 183 and 209 GeV . The mass limit assumes \(\mu<-200 \mathrm{GeV}\) and \(\tan \beta=2\) for the production cross section and \(\mathrm{B}\left(\widetilde{e} \rightarrow e \widetilde{\chi}_{1}^{0}\right)=1\). See their Fig. 4 for the dependence of the limit on \(\Delta m\). These limits include and update the results of BARATE 01.
11 HEISTER 02 N search for \(\widetilde{e}_{R} \widetilde{e}_{L}\) and \(\widetilde{e}_{R} \widetilde{e}_{R}\) production in single- and acoplanar di-electron final states in the \(183-208 \mathrm{GeV}\) data. Absolute limits on \(\tilde{m}_{\widetilde{e}_{R}}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1 / 2}\) and \(m_{0}, 1 \leq \tan \beta \leq 50\) and \(-10 \leq \mu \leq 10 \mathrm{TeV}\). The region of small \(|\mu|\), where cascade decays are important, is covered by a search for \(\tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0}\) in final states with leptons and possibly photons. Limits on \(m_{\widetilde{e}_{l}}\) are derived by exploiting the mass relation between the \(\widetilde{e}_{L}\) and \(\widetilde{e}_{R}\), based on universal \(m_{0}\) and \(m_{1 / 2}\). When the constraint from the mass limit of the lightest Higgs from HEISTER 02 is included, the bounds improve to \(m_{\tilde{e}_{R}}>77(75) \mathrm{GeV}\) and \(m_{\tilde{e}_{l}}>115(115) \mathrm{GeV}\) for a top mass of \(175(180) \mathrm{GeV}\). In the MSUGRA framework with radiative electroweak symmetry breaking, the limits improve further to \(m_{\widetilde{e}_{R}}>95 \mathrm{GeV}\) and \(m_{\widetilde{e}_{L}}>152 \mathrm{GeV}\), assuming a trilinear coupling \(A_{0}=0\) at the GUT scale. See Figs. 4, 5, 7 for the dependence of the limits on \(\tan \beta\).
12 AAD 14G searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of slepton pairs, decaying to a final sate with two leptons ( \(e\) and \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of slepton pair production, see Fig. 8. An interpretation in the pMSSM is also given, see Fig. 10.
13 KHACHATRYAN 141 searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of slepton pairs decaying to a final state with opposite-sign lepton pairs ( \(e\) or \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Fig. 18.

\section*{R-partiy violating \(\tilde{e}\) (Selectron) mass limit}

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.|bl.gov).
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline >1065 & 95 & \({ }^{1}\) AABOUD & \(18 z\) & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \lambda_{12 k} \neq 0, m_{\tilde{\chi}_{1}^{0}}=600
\] \\
GeV (mass-degenerate lefthanded sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline > 780 & 95 & \({ }^{1}\) AABOUD & 182 & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \lambda_{i 33} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=300
\] \\
GeV (mass-degenerate lefthanded sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline \(>410\) & 95 & \({ }^{2}\) AAD & 14x & ATLS & \[
\begin{aligned}
& \mathrm{RPV}, \geq 4 \ell^{ \pm}, \widetilde{\ell} \rightarrow \stackrel{\tilde{\chi}_{1}^{0}}{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\
& \quad \ell^{ \pm} \ell_{\nu}
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(>89\) & 95 & \({ }^{3}\) ABBIENDI & 04F & OPAL & RPV, \(\widetilde{e}_{L}\) \\
\hline > 92 & 95 & \({ }^{4}\) ABDALLAH & 04M & DLPH & RPV, \(\tilde{e}_{R}\), indirect, \(\Delta m>5 \mathrm{GeV}\) \\
\hline
\end{tabular}

\begin{abstract}
\({ }^{1}\) AABOUD 18 z searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via \(\lambda_{12 k}\) or \(\lambda_{i 33}\) to charged leptons, see their Figures 7, 8.
\({ }^{2}\) AAD \(14 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in an R-parity violating simplified model where the decay \(\widetilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}\), with \(\widetilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\), takes place with a branching ratio of \(100 \%\), see Fig. 9.
3 ABBIENDI 04F use data from \(\sqrt{s}=189-209 \mathrm{GeV}\). They derive limits on sparticle masses under the assumption of RPV with \(L L \bar{E}\) or \(L Q \bar{D}\) couplings. The results are valid for \(\tan \beta=1.5, \mu=-200 \mathrm{GeV}\), with, in addition, \(\Delta m>5 \mathrm{GeV}\) for indirect decays via \(L Q \bar{D}\). The limit quoted applies to direct decays via \(L L \bar{E}\) or \(L Q \bar{D}\) couplings. For indirect decays, the limits on the \(\widetilde{e}_{R}\) mass are respectively 99 and 92 GeV for \(L L \bar{E}\) and \(L Q \bar{D}\) couplings and \(m_{\widetilde{\chi}^{0}}=10 \mathrm{GeV}\) and degrade slightly for larger \(\widetilde{\chi}_{1}^{0}\) mass. Supersedes the results of ABBIENDI 00.
4 ABDALLAH 04M use data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to derive limits on sparticle masses under the assumption of RPV with \(L L \bar{E}\) or \(\bar{U} \bar{D} \bar{D}\) couplings. The results are valid for \(\mu\) \(=-200 \mathrm{GeV}, \tan \beta=1.5, \Delta m \geq 5 \mathrm{GeV}\) and assuming a BR of 1 for the given decay. The limit quoted is for indirect \(\bar{U} \frac{5}{\bar{D}}\) decays using the neutralino constraint of 39.5 GeV for \(L L \bar{E}\) and of 38.0 GeV for \(\bar{U} \bar{D} \bar{D}\) couplings, also derived in ABDALLAH 04M. For indirect decays via \(L L \bar{E}\) the limit improves to 95 GeV if the constraint from the neutralino is used and to 94 GeV if it is not used. For indirect decays via \(\bar{U} \bar{D} \bar{D}\) couplings it remains unchanged when the neutralino constraint is not used. Supersedes the result of ABREU 00 U .
\end{abstract}

\section*{R-parity conserving \(\widetilde{\mu}\) (Smuon) mass limit}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >210 & 95 & \({ }^{1}\) SIRUNYAN & 19AW CMS & \[
\ell^{ \pm} \ell^{\mp}+E_{T}, \widetilde{\mu}_{R}, m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\] \\
\hline >280 & 95 & \({ }^{1}\) SIRUNYAN & 19aw CMS & \(\ell^{ \pm} \ell^{\mp}+E_{T}, \widetilde{\mu}_{L}, m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline \(>290\) & 95 & 1 SIRUNYAN & 19AW CMS & \[
\begin{gathered}
\ell^{ \pm} \ell^{\mp}+E_{T}, \widetilde{\ell}_{R} \text { and } \widetilde{\ell}=\widetilde{e}, \widetilde{\mu}, \\
m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>400\) & 95 & \({ }^{1}\) SIRUNYAN & 19AW CMS & \[
\begin{gathered}
\ell^{ \pm} \ell^{\mp}+\mathbb{E}_{T}, \widetilde{\ell}_{L} \text { and } \widetilde{\ell}=\widetilde{e}, \widetilde{\mu}, \\
m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>450\) & 95 & \({ }^{1}\) SIRUNYAN & 19aw CMS & \[
\begin{aligned}
& \ell^{ \pm} \ell^{\mp}+E_{T}, m_{\ell_{R}}=m_{\ell_{L}} \text { and } \\
& \tilde{\ell}=\widetilde{e}, \widetilde{\mu}, m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{aligned}
\] \\
\hline >310 & 95 & \({ }^{1}\) SIRUNYAN & 19AW CMS & \[
\begin{aligned}
& \ell^{ \pm} \ell^{\mp}+E_{T}, m_{\widetilde{\mu}_{R}}=m_{\widetilde{\mu}_{L}} \\
& \quad m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{>190} & \multirow[t]{3}{*}{95} & \({ }^{2}\) AABOUD & 18R ATLS & \[
\begin{gathered}
2 \ell(\mathrm{soft})+E_{T}, m_{\widetilde{e}}=m_{\widetilde{\mu}} \\
m_{\widetilde{\mu}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}
\end{gathered}
\] \\
\hline & & \multicolumn{2}{|l|}{\({ }^{3}\) CHATRCHYAN 14R CMS} & \begin{tabular}{l}
\[
\geq 3 \ell^{ \pm}, \tilde{\ell} \rightarrow \ell^{ \pm} \tau^{\mp} \tau^{\mp} \tilde{G} \text { sim- }
\] plified model, GMSB, stau \\
(N)NLSP scenario
\end{tabular} \\
\hline & & \({ }^{4}\) AAD & 13B ATLS & \(2 \ell^{ \pm}+E_{T}, \mathrm{SMS}, \mathrm{pMSSM}\) \\
\hline \(>91.0\) & & \({ }^{5}\) ABBIENDI & 04 OPAL & \[
\begin{aligned}
\Delta m & >3 \mathrm{GeV}, \tilde{\mu}_{R}^{+} \tilde{\mu}_{R}^{-} \\
|\mu| & >100 \mathrm{GeV}, \tan \beta=1.5
\end{aligned}
\] \\
\hline > 86.7 & & \({ }^{6}\) ACHARD & 04 L3 & \[
\begin{aligned}
\Delta m & >10 \mathrm{GeV}, \tilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} \\
|\mu| & >200 \mathrm{GeV}, \tan \beta \geq 2
\end{aligned}
\] \\
\hline none 30-88 & 95 & 7 ABDALLAH & 03M DLPH & \(\Delta m>5 \mathrm{GeV}, \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-}\) \\
\hline \(>94\) & 95 & \({ }^{8}\) ABDALLAH & 03M DLPH & \[
\tilde{\mu}_{R}^{, 1} \leq \tan \beta \leq 40,
\] \\
\hline \(>88\) & 95 & 9 HEISTER & 02E ALEP & \(\Delta m>15 \mathrm{GeV}, \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-}\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>500\) & 95 & 10 AABOUD & 18BT ATLS & \begin{tabular}{l}
\[
2 \ell+E_{T}, m_{\tilde{\ell}_{R}}=m_{\tilde{\ell}_{L}} \text { and } \tilde{\ell}=\tilde{e} \text {, }
\] \\
\(\widetilde{\mu}, \widetilde{\tau}\), with \(m_{\widetilde{\chi_{0}}}=0 \mathrm{GeV}\)
\end{tabular} \\
\hline none 90-325 & 95 & 11 AAD & 14G ATLS & \(\tilde{\ell \ell} \rightarrow \ell^{+} \tilde{\chi}_{1}^{0} \ell^{-} \tilde{\chi}_{1}^{0}\), simplified model, \(m_{\widetilde{\ell}_{L}}=m_{\widetilde{\ell}_{R}}, m_{\widetilde{\chi}_{1}^{0}}=0\) \\
\hline & & \multicolumn{2}{|l|}{12 KHACHATRY... 14 I CMS} & \(\tilde{\ell} \rightarrow \ell \widetilde{\chi}_{1}^{0}\), simplified model \\
\hline \(>80\) & 95 & 13 ABREU & 00v DLPH & \(\widetilde{\mu}_{R} \widetilde{\mu}_{R}\left(\widetilde{\mu}_{R} \rightarrow \mu \widetilde{G}\right), m_{\widetilde{G}}>8 \mathrm{eV}\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 19 AW searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak pair production of selectrons or smuons in events with two leptons (electrons or muons) of the opposite electric charge and same flavour, no jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the selectron mass assuming left-handed, right-handed or both left- and right-handed (mass degenerate) production, see their Figure 6. Similarly, limits are set on the smuon mass, see their Figure 7. Limits are also set on slepton masses under the assumption that the selectron and smuon are mass degenerate, see their Figure 5.
\({ }^{2}\) AABOUD 18 R searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in slepton pair production models with a fourfold degeneracy assumed in selectron and smuon masses. The \(\mu\) masses are excluded up to 190 GeV for \(m_{\widetilde{\mu}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\). The exclusion limits extend down to mass splittings of 1 GeV , see their Fig. 11 .
\({ }^{3}\) CHATRCHYAN 14 R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in a stau (N)NLSP simplified model (GMSB) where the decay \(\widetilde{\ell} \rightarrow \ell^{ \pm} \tau^{ \pm} \tau^{\mp} \widetilde{G}\) takes place with a branching ratio of \(100 \%\), see Fig. 8.
\({ }^{4}\) AAD 13B searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for sleptons decaying to a final state with two leptons ( \(e\) and \(\mu\) ) and missing transverse energy. No excess beyond

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}
the Standard Model expectation is observed. Limits are derived in a simplified model of direct left-handed slepton pair production, where left-handed slepton masses between 85 and 195 GeV are excluded at \(95 \%\) C.L. for \(m_{\widetilde{\chi}^{0}}=20 \mathrm{GeV}\). See also Fig. 2(a). Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3.
\({ }^{5}\) ABBIENDI 04 search for \(\widetilde{\mu}_{R} \widetilde{\mu}_{R}\) production in acoplanar di-muon final states in the \({ }_{183-208 \mathrm{GeV} \text { data. See Fig. } 14 \text { for the dependence of the limits on } m_{\widetilde{\chi}_{1}^{0}} \text { and for the }}\) limit at \(\tan \beta=35\). Under the assumption of \(100 \%\) branching ratio for \(\tilde{\mu}_{R} \rightarrow \mu \tilde{\chi}_{1}^{0}\), the limit improves to 94.0 GeV for \(\Delta m>4 \mathrm{GeV}\). See Fig. 11 for the dependence of the limits on \(\mathrm{m}_{\tilde{\chi}_{1}}\) at several values of the branching ratio. This limit supersedes ABBIENDI 00G.
\({ }^{6}\) ACHARD 04 search for \(\widetilde{\mu}_{R} \widetilde{\mu}_{R}\) production in acoplanar di-muon final states in the \(192-209 \mathrm{GeV}\) data. Limits on \(m_{\widetilde{\mu}_{R}}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1 / 2}\) and \(m_{0}, 1 \leq\) \(\tan \beta \leq 60\) and \(-2 \leq \mu \leq 2 \mathrm{TeV}\). See Fig. 4 for the dependence of the limits on \(m_{\widetilde{\chi}_{1}^{0}}\). This limit supersedes ACCIARRI 99w.
\({ }^{7}\) ABDALLAH 03m looked for acoplanar dimuon \(+\not \equiv\) final states at \(\sqrt{s}=189-208 \mathrm{GeV}\). The limit assumes \(\mathrm{B}\left(\widetilde{\mu} \rightarrow \mu \tilde{\chi}_{1}^{0}\right)=100 \%\). See Fig. 16 for limits on the \(\left(m_{\widetilde{\mu}_{R}}, m_{\widetilde{\chi}_{1}^{0}}\right)\) plane. These limits include and update the results of ABREU 01.
8 ABDALLAH 03M uses data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of \(M_{2}<1 \mathrm{TeV},|\mu| \leq 1 \mathrm{TeV}\) with the \(\tilde{\chi}_{1}^{0}\) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of \(\tan \beta\). These limits update the results of ABREU 00W
\({ }^{9}\) HEISTER 02E looked for acoplanar dimuon \(+E_{T}\) final states from \(e^{+} e^{-}\)interactions between 183 and 209 GeV . The mass limit assumes \(\mathrm{B}\left(\tilde{\mu} \rightarrow \mu \tilde{\chi}_{1}^{0}\right)=1\). See their Fig. 4 for the dependence of the limit on \(\Delta m\). These limits include and update the results of BARATE 01.
\({ }^{10}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless \(\tilde{\chi}_{1}^{0}\), assuming degeneracy of \(\widetilde{e}, \tilde{\mu}\), and \(\widetilde{\tau}\) and exploiting the \(2 \ell\) signature, see their Figure \(8(\mathrm{~b})\).
\({ }^{11}\) AAD 14G searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of slepton pairs, decaying to a final sate with two leptons ( \(e\) and \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of slepton pair production, see Fig. 8. An interpretation in the pMSSM is also given, see Fig. 10.
12 KHACHATRYAN 14 I searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for electroweak production of slepton pairs decaying to a final state with opposite-sign lepton pairs ( \(e\) or \(\mu\) ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Fig. 18.
13 ABREU 00 V use data from \(\sqrt{s}=130-189 \mathrm{GeV}\) to search for tracks with large impact parameter or visible decay vertices. Limits are obtained as function of \(m_{\widetilde{G}}\), after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00Q. For limits at different \(m_{\widetilde{G}}\), see their Fig. 12

\section*{R-parity violating \(\tilde{\boldsymbol{\mu}}\) (Smuon) mass limit}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT & & TECN & COMMENT \\
\hline > 780 & 95 & \({ }^{1}\) AABOUD & 18 z & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \lambda_{i 33} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=300 \mathrm{GeV}
\] \\
(mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline >1060 & 95 & \({ }^{1}\) AABOUD & 18 z & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=600 \mathrm{GeV}
\] \\
(mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline \(>410\) & 95 & \({ }^{2}\) AAD & & & \[
\begin{aligned}
& \mathrm{RPV}, \geq 4 \ell^{ \pm}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \\
& \quad \ell^{ \pm} \ell^{\mp} \nu
\end{aligned}
\] \\
\hline
\end{tabular}

\(>81 \quad 95 \quad 5\) HEISTER \(\quad\) 03G ALEP \(\quad\) RPV, \(\widetilde{\mu}_{L}\)
\({ }^{1}\) AABOUD 18 z searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events contain ing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are taus). No significant deviation the Higgsino mass in simplified models of general gauge mediated supersymmetry set on the Higgsino mass in simplified models of general gauge mediated supersymmetry sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity
violating decays of the LSP via \(\lambda_{12 k}\) or \(\lambda_{i 33}\) to charged leptons, see their Figures 7, 8 .
\({ }^{2}\) AAD \(14 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in an R -parity violating simplified model where the decay \(\ell \rightarrow \ell \tilde{\chi}_{1}^{0}\), with \(\tilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\), takes place with a branching ratio of \(100 \%\), see Fig. 9 .
3 SIRUNYAN 19AO searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two same-sign muons and at last two jets, originating from resonant production of second-generation sleptons ( \(\widetilde{\mu}_{L}, \widetilde{\nu}_{\mu}\) ) via the R-parity violating coupling \(\lambda_{211}^{\prime}\) to quarks. No significant excess above the Standard Model expectations is observed. Upper limits on cross sections are derived in the context of two simplified models, see their Figure 4. The cross section limits are translated into limits on \(\lambda_{211}^{\prime}\) for a modified CMSSM, see their Figure 5.
\({ }^{4}\) ABDALLAH 04M use data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to derive limits on sparticle masses under the assumption of RPV with \(L L \bar{E}\) or \(\bar{U} \bar{D} \bar{D}\) couplings. The results are valid for \(\mu\)
\(=-200 \mathrm{GeV}, \tan \beta=1.5, \Delta m \geq 5 \mathrm{GeV}\) and assuming a BR of 1 for the given decay. The limit quoted is for indirect \(\bar{U} \bar{D} \bar{D}\) decays using the neutralino constraint of 39.5 GeV for \(L L \bar{E}\) and of 38.0 GeV for \(\bar{U} \bar{D} \bar{D}\) couplings, also derived in ABDALLAH 04 M . For indirect decays via \(L L \bar{E}\) the limit improves to 90 GeV if the constraint from the neutralino is used and remains at 87 GeV if it is not used. For indirect decays via \(\bar{U} \bar{D} \bar{D}\) couplings it degrades to 85 GeV when the neutralino constraint is not used. Supersedes the result of ABREU 00U.
\({ }^{5}\) HEISTER 03 G searches for the production of smuons in the case of RPV prompt decays with \(L L \bar{E}, L Q \bar{D}\) or \(\overline{U D D}\) couplings at \(\sqrt{s}=189-209 \mathrm{GeV}\). The search is performed for direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for direct decays mediated by RPV \(L Q \bar{D}\) couplings and improves to 90 GeV for indirect decays (for \(\Delta m>10 \mathrm{GeV}\) ). Limits are also given for \(L L \bar{E} \operatorname{direct}\left(m_{\widetilde{\mu} R}>\right.\) 87 GeV ) and indirect decays ( \(m_{\tilde{\mu} R}>96 \mathrm{GeV}\) for \(m\left(\widetilde{\chi}_{1}^{0}\right)>23 \mathrm{GeV}\) from BARATE 98s) and for \(\overline{U D D}\) indirect decays ( \(m_{\tilde{\mu} R}>85 \mathrm{GeV}\) for \(\Delta m>10 \mathrm{GeV}\) ). Supersedes the results from BARATE 01B.

\section*{R-parity conserving \(\tilde{\tau}\) (Stau) mass limit}

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

\({ }^{1}\) ABBIENDI 04 search for \(\tilde{\tau} \tilde{\tau}\) production in acoplanar di-tau final states in the \(183-208 \mathrm{GeV}\) data. See Fig. 15 for the dependence of the limits on \(m_{\widetilde{\chi}_{1}^{0}}\) and for the limit at \(\tan \beta=35\). Under the assumption of \(100 \%\) branching ratio for \(\widetilde{\tau}_{R} \rightarrow \tau \tilde{\chi}_{1}^{0}\), the limit improves to 89.8 GeV for \(\Delta m>8 \mathrm{GeV}\). See Fig. 12 for the dependence of the limits on \(\mathrm{m}_{\tilde{\chi}_{1}^{0}}\) at several values of the branching ratio and for their dependence on \(\theta_{\tau}\). This limit supersedes ABBIENDI 00G.
\({ }^{2}\) ACHARD 04 search for \(\widetilde{\tau} \widetilde{\tau}\) production in acoplanar di-tau final states in the 192-209 GeV data. Limits on \(m_{\widetilde{\tau}_{R}}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1 / 2}\) and \(m_{0}, 1 \leq \tan \beta \leq 60\) and \(-2 \leq \mu \leq 2 \mathrm{TeV}\). See Fig. 4 for the dependence of the limits on \(m_{\widetilde{\chi}_{1}^{0}}\).
\({ }^{3}\) ABDALLAH 03m looked for acoplanar ditaus \(+\not Z\) final states at \(\sqrt{s}=130-208 \mathrm{GeV}\). A dedicated search was made for low mass \(\widetilde{\tau}\) s decoupling from the \(Z^{0}\). The limit assumes \(\mathrm{B}\left(\widetilde{\tau} \rightarrow \tau \widetilde{\chi}_{1}^{0}\right)=100 \%\). See Fig. 20 for limits on the \(\left(m_{\tau}, m_{\widetilde{\chi}_{1}^{0}}\right)\) plane and as function of the \(\widetilde{\chi}_{1}^{0}\) mass and of the branching ratio. The limit in the low-mass region improves to 29.6 and 31.1 GeV for \(\widetilde{\tau}_{R}\) and \(\widetilde{\tau}_{L}\), respectively, at \(\Delta m>m_{\tau}\). The limit in the high-mass region improves to 84.7 GeV for \(\widetilde{\tau}_{R}\) and \(\Delta m>15 \mathrm{GeV}\). These limits include and update the results of ABREU 01.
\({ }^{4}\) HEISTER 02E looked for acoplanar ditau \(+E_{T}\) final states from \(e^{+} e^{-}\)interactions between 183 and 209 GeV . The mass limit assumes \(\mathrm{B}\left(\widetilde{\tau} \rightarrow \tau \widetilde{\chi}_{1}^{0}\right)=1\). See their Fig. 4 for the dependence of the limit on \(\Delta m\). These limits include and update the results of \({ }_{5}\) BARATE 01.
\({ }^{5}\) AABOUD 18BT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless \(\widetilde{\chi}_{1}^{0}\), assuming degeneracy of \(\widetilde{e}, \widetilde{\mu}\), and \(\widetilde{\tau}\) and exploiting the \(2 \ell\) signature, see their Figure \(8(\mathrm{~b})\).
\({ }^{6} \mathrm{KHACHATRYAN} 17 \mathrm{~L}\) searched in about \(19 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two \(\tau\) (at least one decaying hadronically) and \(E_{T}\). Results were interpreted to set constraints on the cross section for production of \(\widetilde{\tau}_{L}\) pairs for \(m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}\). No mass constraints are set, see their Fig. 7.
\({ }^{7}\) AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \(E_{T}\), with or without hadronic jets, in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The paper reports \(95 \%\) C.L. exclusion limits on the cross-section for production of \(\widetilde{\tau}_{R}\) and \(\widetilde{\tau}_{L}\) pairs for various \(m_{\widetilde{\chi}_{1}^{0}}\), using the 2 hadronic \(\tau+E_{T}\) analysis. The \(m_{\widetilde{\tau}_{R / L}}=109 \mathrm{GeV}\) is excluded for \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\), with the constraints being stronger for \(\widetilde{\tau}_{R}\). See their Fig. 12.
\({ }^{8}\) AAD 12AF searched in \(2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two tau leptons, jets and large \(E_{T}\) in a GMSB framework. No significant excess above the expected background was found and an upper limit on the visible cross section for new phenomena is set. A \(95 \%\) C.L. Iower limit of 32 TeV on the mGMSB breaking scale 1 is set for \(M_{\text {mess }}=250 \mathrm{TeV}, N_{S}=3, \mu>0\) and \(C_{\text {grav }}=1\), independent of \(\tan \beta\).
\({ }^{9}\) AAD 12AG searched in \(2.05 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least one hadronically decaying tau lepton, jets, and large \(E_{T}\) in a GMSB framework. No significant excess above the expected background was found and an upper limit on the visible cross section for new phenomena is set. A \(95 \%\) C.L. lower limit of 30 TeV on the mGMSB breaking scale \(\Lambda\) is set for \(M_{\text {mess }}=250 \mathrm{TeV}, N_{S}=3, \mu>0\) and \(C_{\text {grav }}\) \(=1\), independent of \(\tan \beta\). For large values of \(\tan \beta\), the limit on \(\Lambda\) increases to 43 TeV .
\({ }^{10}\) AAD 12 CM searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least one tau lepton, zero or one additional light lepton \((e / \mu)\) jets, and large \(E_{T}\) in a GMSB framework. No significant excess above the expected background was found and an upper limit on the visible cross section for new phenomena is set. A \(95 \%\) C. L. lower limit of 54 TeV on the mGMSB breaking scale \(\Lambda\) is set for \(M_{\text {mess }}=250 \mathrm{TeV}, N_{S}=3\), \(\mu>0\) and \(C_{\text {grav }}=1\), for \(\tan \beta>20\). Here the \(\widetilde{\tau}_{1}\) is the NLSP.
\({ }^{11}\) ABBIENDI 06B use \(600 \mathrm{pb}^{-1}\) of data from \(\sqrt{s}=189-209 \mathrm{GeV}\). They look for events from pair-produced staus in a GMSB scenario with \(\widetilde{\tau}\) NLSP including prompt \(\widetilde{\tau}\) decays to ditaus \(+E\) final states, large impact parameters, kinked tracks and heavy stable charged particles. Limits on the cross-section are computed as a function of \(m(\widetilde{\tau})\) and the lifetime, see their Fig. 7. The limit is compared to the \(\sigma \cdot B R^{2}\) from a scan over the GMSB parameter space.
\({ }^{12}\) ABDALLAH 04 H use data from LEP 1 and \(\sqrt{s}=192-208 \mathrm{GeV}\). They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region \(1<m_{3} / 2<50 \mathrm{TeV}, 0<m_{0}<1000 \mathrm{GeV}, 1.5<\tan \beta<35\), both signs of \(\mu\). The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV . The limit is for \(m_{t}=174.3 \mathrm{GeV}\) (see Table 2 for other \(m_{t}\) values).
The limit improves to 75 GeV for \(\mu<0\).

\section*{R-parity violating \(\widetilde{\boldsymbol{\tau}}\) (Stau) mass limit}

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (GeV) & \(\underline{C L} \%\) & DOCUMENT & & TECN & COMMENT \\
\hline >1060 & 95 & \({ }^{1}\) AABOUD & 18 z & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \mathrm{RPV}, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
600 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline > 780 & 95 & \({ }^{1}\) AABOUD & 182 & ATLS & \begin{tabular}{l}
\[
\geq 4 \ell, \mathrm{RPV}, \lambda_{i 33} \neq 0, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
300 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
\end{tabular} \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{llllll}
\(>\) & 74 & 95 & \({ }^{2}\) ABBIENDI & 04F & OPAL
\end{tabular} RPV, \(\tilde{\tau}_{L}\), indirect, \(\Delta m>5 \mathrm{GeV}\)
\({ }^{1}\) AABOUD 18 z searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via \(\lambda_{12 k}\) or \(\lambda_{i 33}\) to charged leptons, see their Figures 7, 8.
\({ }^{2}\) ABBIENDI 04F use data from \(\sqrt{s}=189-209 \mathrm{GeV}\). They derive limits on sparticle masses under the assumption of RPV with \(L L \bar{E}\) or \(L Q \bar{D}\) couplings. The results are valid for \(\tan \beta=1.5, \mu=-200 \mathrm{GeV}\), with, in addition, \(\Delta m>5 \mathrm{GeV}\) for indirect decays via \(L Q \bar{D}\). The limit quoted applies to direct decays with \(L L \bar{E}\) couplings and improves to 75 GeV for \(L Q \bar{D}\) couplings. The limit on the \(\widetilde{\tau}_{R}\) mass for indirect decays is 92 GeV for \(L L \bar{E}\) couplings at \(m_{\widetilde{\chi}^{0}}=10 \mathrm{GeV}\) and no exclusion is obtained for \(L Q \bar{D}\) couplings. Supersedes the results of ABBIENDI 00.
\({ }^{3}\) ABDALLAH 04M use data from \(\sqrt{s}=192-208 \mathrm{GeV}\) to derive limits on sparticle masses under the assumption of RPV with \(L L \bar{E}\) couplings. The results are valid for \(\mu=\) \(-200 \mathrm{GeV}, \tan \beta=1.5, \Delta m>5 \mathrm{GeV}\) and assuming a BR of 1 for the given decay. The limit quoted is for indirect decays using the neutralino constraint of 39.5 GeV , also derived in ABDALLAH 04M. For indirect decays via \(L L \bar{E}\) the limit decreases to 86 GeV if the constraint from the neutralino is not used. Supersedes the result of ABREU 00 .

\section*{Long-lived \(\tilde{\boldsymbol{\ell}}\) (Slepton) mass limit}

Limits on scalar leptons which leave detector before decaying. Limits from \(Z\) decays are independent of lepton flavor. Limits from continuum \(e^{+} e^{-}\)annihilation are also independent of flavor for smuons and staus. Selectron limits from \(e^{+} e^{-}\)collisions in the continuum depend on MSSM parameters because of the additional neutralino exchange contribution.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & \(\underline{C L} \%\) & \multicolumn{2}{|l|}{DOCUMENTID TECN} & COMMENT \\
\hline \(>430\) & 95 & \({ }^{1}\) AABOUD & 19at ATLS & long-lived \(\widetilde{\tau}\), GMSB \\
\hline \(>490\) & 95 & 2 KHACHATRY & ..16BWCMS & long-lived \(\widetilde{\tau}\) from inclusive production, mGMSB SPS line 7 scenario \\
\hline \(>240\) & 95 & 2 KHACHATRY & ..16BWCMS & long-lived \(\widetilde{\tau}\) from direct pair production, mGMSB SPS line 7 scenario \\
\hline >440 & 95 & \({ }^{3}\) AAD & 15aE ATLS & \[
\begin{aligned}
& \mathrm{mGMSB}, M_{\text {mess }}=250 \mathrm{TeV}, N_{5} \\
& \quad=3, \mu>0, C_{\text {grav }}=5000, \\
& \quad \tan \beta=10
\end{aligned}
\] \\
\hline >385 & 95 & \({ }^{3}\) AAD & 15AE ATLS & \[
\begin{aligned}
& \text { mGMSB, } M_{\text {mess }}=250 \mathrm{TeV}, N_{5} \\
& \quad=3, \mu>0, C_{\text {grav }}=5000, \\
& \tan \beta=50
\end{aligned}
\] \\
\hline >286 & 95 & \({ }^{3}\) AAD & 15aE ATLS & direct \(\widetilde{\tau}\) production \\
\hline none 124-309 & 95 & \({ }^{4}\) AAIJ & 15BD LHCB & long-lived \(\widetilde{\tau}\), mGMSB, SPS7 \\
\hline \(>98\) & 95 & \({ }^{5}\) ABBIENDI & 03L OPAL & \(\widetilde{\mu}_{R}, \widetilde{\tau}_{R}\) \\
\hline none 2-87.5 & 95 & \({ }^{6}\) ABREU & 00Q DLPH & \(\widetilde{\mu}_{R}, \widetilde{\tau}_{R}\) \\
\hline > 81.2 & 95 & \({ }^{7}\) ACCIARRI & 99H L3 & \(\widetilde{\mu}_{R}, \widetilde{\tau}_{R}\) \\
\hline > 81 & 95 & \({ }^{8}\) BARATE & 98K ALEP & \(\widetilde{\mu}_{R}, \widetilde{\tau}_{R}\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • • -
\(>300 \quad 95\) AAD 13AA ATLS long-lived \(\widetilde{\tau}\), GMSB, \(\tan \beta=5-20\) 10 ABAZOV 13B D0 long-lived \(\widetilde{\tau}, 100<m_{\widetilde{\tau}}<300 \mathrm{GeV}\) minimal GMSB, SPS line 7
\(>500 \quad 95 \quad 11,13\) CHATRCHYAN 13AB CMS long-lived \(\widetilde{\tau}, \widetilde{\tau}_{1}\) from direct pair prod. and from decay of heav ier SUSY particles, minimal GMSB, SPS line 7
\(>314 \quad 95 \quad 14\) CHATRCHYAN 12L CMS long-lived \(\widetilde{\tau}, \widetilde{\tau}_{1}\) from decay of heavier SUSY particles, minimal GMSB, SPS line 7
\(>136 \quad 95 \quad 15\) AAD \(\quad 11 \mathrm{P}\) ATLS stable \(\widetilde{\tau}\), GMSB scenario, \(\tan \beta=5\)
\({ }^{1}\) AABOUD 19AT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for metastable and stable \(R\)-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Results are interpreted in terms of exclusion limits on long-lived stau in the context of GMSB models. Lower limits on the mass for direct production of staus are set at 430 GeV , see their Fig. 10 (left).
2 KHACHATRYAN 16BW searched in \(2.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pair production of tau sleptons as a function of mass, depending on their direct or inclusive production in a minimal GMSB scenario along the Snowmass Points and Slopes (SPS) line 7, see Fig. 4 and Table 7.
\({ }^{3}\) AAD 15AE searched in \(19.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set on stable \(\widetilde{\tau}\) sleptons in various scenarios, see Figs. 5-7.
\({ }^{4}\) AAIJ 15BD searched in \(3.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7\) and 8 TeV for evidence of Drell-Yan pair production of long-lived \(\widetilde{\tau}\) particles. No evidence for such particles is observed and \(95 \%\) C.L. upper limits on the cross section of \(\widetilde{\tau}\) pair production are derived, see Fig. 7. In the mGMSB, assuming the SPS7 benchmark scenario \(\widetilde{\tau}\) masses between 124 and 309 GeV are excluded at \(95 \%\) C.L
\({ }^{5}\) ABBIENDI 03L used \(e^{+} e^{-}\)data at \(\sqrt{s}=130-209 \mathrm{GeV}\) to select events with two high momentum tracks with anomalous \(\mathrm{dE} / \mathrm{dx}\). The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3. The limit improves to 98.5 GeV for \(\widetilde{\mu}_{L}\) and \(\widetilde{\tau}_{L}\). The bounds are valid for colorless spin 0 particles with lifetimes longer than \(10^{-6} \mathrm{~s}\). Supersedes the results from ACKERSTAFF 98p.
\({ }^{6}\) ABREU \(00 Q\) searches for the production of pairs of heavy, charged stable particles in \(e^{+} e^{-}\)annihilation at \(\sqrt{s}=130-189 \mathrm{GeV}\). The upper bound improves to 88 GeV for \(\widetilde{\mu}_{L}\), \(\widetilde{\tau}_{L}\). These limits include and update the results of ABREU 98P.
7 ACCIARRI 99 H searched for production of pairs of back-to-back heavy charged particles at \(\sqrt{s}=130-183 \mathrm{GeV}\). The upper bound improves to 82.2 GeV for \(\widetilde{\mu}_{L}, \widetilde{\tau}_{L}\)
\({ }^{8}\) The BARATE 98 K mass limit improves to 82 GeV for \(\tilde{\mu}_{L}, \tilde{\tau}_{L}\). Data collected at \(\sqrt{s}=161-184 \mathrm{GeV}\)
\({ }^{9}\) AAD 13AA searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing long-lived massive particles in a GMSB framework. No significant excess above the expected background was found. A \(95 \%\) C.L. lower limit of 300 GeV is placed on longlived \(\tilde{\tau}\) 's in the GMSB model with \(M_{\text {mess }}=250 \mathrm{TeV}, N_{S}=3, \mu>0\), for \(\tan \beta=5-20\). The lower limit on the GMSB breaking scale \(\Lambda\) was found to be \(99-110 \mathrm{TeV}\), for \(\tan \beta\) values between 5 and 40, see Fig. 4 (top). Also, directly produced long-lived sleptons, or sleptons decaying to long-lived ones, are excluded at \(95 \%\) C.L. up to a \(\widetilde{\tau}\) mass of 278 GeV for models with slepton splittings smaller than 50 GeV .
10 ABAZOV 13B looked in \(6.3 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for charged massive long-lived particles in events with muon-like particles that have both speed and ionization energy loss inconsistent with muons produced in beam collisions. In the absence of an excess, limits are set at 95\% C.L. on the production cross section of stau leptons in the mass range \(100-300 \mathrm{GeV}\), see their Table 20 and Fig. 23.
\({ }^{11}\) CHATRCHYAN 13AB looked in \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and in 18.8 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with heavy stable particles, identified by their anomalous \(\mathrm{dE} / \mathrm{dx}\) in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \(\widetilde{\tau}_{1}\) 's. No evidence for an excess muon in the muon chambers, from pair production of \(\tau_{1}\) 's. No evidence
12 CHATRCHYAN 13AB limits are derived for pair production of \(\widetilde{\tau}_{1}\) as a function of mass in minimal GMSB scenarios along the Snowmass Points and SIopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for direct pair \(\widetilde{\tau}_{1}\) production.
\({ }^{13}\) CHATRCHYAN 13AB limits are derived for the production of \(\widetilde{\tau}_{1}\) as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for the production of \(\widetilde{\tau}_{1}\) from both direct pair production and from the decay of heavier supersymmetric particles.
\({ }^{14}\) CHATRCHYAN 12L looked in \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with heavy stable particles, identified by their anomalous \(\mathrm{dE} / \mathrm{dx}\) in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \(\tilde{\tau}_{1}\) 's. No evidence for an excess over the expected background is observed. Limits are derived for the production of \(\widetilde{\tau}_{1}\) as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 3). The limit given here is valid for the production of \(\widetilde{\tau}_{1}\) in the decay of heavier supersymmetric particles.
\({ }^{15}\) AAD 11P looked in \(37 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two heavy stable particles, reconstructed in the Inner tracker and the Muon System and identified by their time of flight in the Muon System. No evidence for an excess over the SM expectation is observed. Limits on the mass are derived, see Fig. 3, for \(\widetilde{\tau}\) in a GMSB expectation is observed. Limits on the mass are derived, see fig. 3 , for \(\tau\) in a GMSB
scenario and for sleptons produced by electroweak processes only, in which case the limit scenario and for slepto
degrades to 110 GeV .

\section*{Supersymmetric Particle Searches}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
\(\tilde{q}\) (Squark) mass limit \\
For \(m_{\widetilde{q}}>60-70 \mathrm{GeV}\), it is expected that squarks would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included. \\
Limits from \(e^{+} e^{-}\)collisions depend on the mixing angle of the lightest mass eigenstate \(\widetilde{q}_{1}=\widetilde{q}_{R} \sin \theta q+\widetilde{q}_{L} \cos \theta_{q}\). It is usually assumed that only the sbottom and stop squarks have non-trivial mixing angles (see the stop and sbottom sections). Here, unless otherwise noted, squarks are always taken to be either left/right degenerate, or purely of left or right type. Data from \(Z\) decays have set squark mass limits above 40 GeV , in the case of \(\tilde{q} \rightarrow q \tilde{\chi}_{1}\) decays if \(\Delta m=m_{\tilde{q}}-m_{\tilde{\chi}_{1}^{0}} \gtrsim 5 \mathrm{GeV}\). For smaller values of \(\Delta m\), current constraints on the invisible width of the \(Z\left(\Delta \Gamma_{\text {inv }}<2.0\right.\) MeV , LEP 00) exclude \(m_{\tilde{u}_{L, R}}<44 \mathrm{GeV}, m_{\tilde{d}_{R}}<33 \mathrm{GeV}, m_{\tilde{d}_{L}}<44 \mathrm{GeV}\) and, assuming all squarks degenerate, \(m_{\tilde{q}}<45 \mathrm{GeV}\). \\
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{R-parity conserving \(\widetilde{\boldsymbol{q}}\) (Squark) mass limit}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline >1590 & 95 & 1 SIRUNYAN & 19AG & CMS & \[
\begin{gathered}
2 \gamma+E_{T}, \text { Tsqk4B, } 500 \mathrm{GeV} \\
<m_{\widetilde{\chi}_{1}^{0}}<1500 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1130\) & 95 & 2 SIRUNYAN & 19CH & CMS & jets \(+E_{T}\), Tsqk1, 1 light flavour, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1630 & 95 & \({ }^{2}\) SIRUNYAN & 19CH & CMS & jets \(+\mathscr{E}_{T}\), Tsqk1, 8 degenerate light flavours, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline \(>1430\) & 95 & \({ }^{3}\) SIRUNYAN & 19K & CMS & \[
\gamma+\ell+E_{T}, \text { Tsqk4A, } m_{\widetilde{\chi}_{1}^{0}}=
\] \\
\hline >1200 & 95 & \({ }^{4}\) AABOUD & 18BJ & ATLS & \[
\begin{aligned}
& \ell^{ \pm}{ }_{\ell^{\mp}}^{1200}+\mathrm{GeV} \\
& \quad=1 \mathrm{GeV}, \text { any } m_{\widetilde{\chi}_{2}^{0}}, \text { Tsqk2, } m_{\widetilde{\chi}_{1}^{0}} \\
& \quad=1
\end{aligned}
\] \\
\hline > 850 & 95 & \({ }^{5}\) AABOUD & 18BV & ATLS & \[
\begin{gathered}
c \text {-jets }+E_{T}, \text { Tsqk1 (charm only) } \\
m_{\widetilde{\chi}_{1}^{0}}^{=} 0 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 710 & 95 & \({ }^{6}\) AABOUD & 181 & ATLS & \[
\geq 1 \text { jets }+E_{T}^{T}, \text { Tsqk1, } m_{\tilde{q}} \sim
\] \\
\hline \(>1820\) & 95 & 7 AABOUD & 18 U & ATLS & \(2 \gamma+E_{T}\), GGM, Tsqk4B, any NLSP mass \\
\hline >1550 & 95 & 8 AABOUD & 18 V & ATLS & \[
\text { jets }+E_{T} \text {, Tsqk1, } m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\] \\
\hline \(>1150\) & 95 & \({ }^{9}\) AABOUD & 18 V & ATLS & \[
\begin{aligned}
\text { jets }+E_{T}, \text { Tsqk3, } m_{\widetilde{\chi}_{1}^{ \pm}} & =0.5 \\
\left(m_{\tilde{q}}+m_{\widetilde{\chi}_{1}^{0}}\right), m_{\widetilde{\chi}_{1}^{0}} & =0 \mathrm{GeV}
\end{aligned}
\] \\
\hline \(>1650\) & 95 & 10 SIRUNYAN & 18AA & CMS & \(\geq 1 \gamma+E_{T}\), Tsqk4A \\
\hline \(>1750\) & 95 & 10 SIRUNYAN & 18AA & CMS & \(\geq 1 \gamma+E_{T}\), Tsqk4B \\
\hline \(>675\) & 95 & 11 SIRUNYAN & 18AY & CMS & jets \(+E_{T}\), Tsqk1, 1 light flavor state, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1320 & 95 & 11 SIRUNYAN & 18AY & CMS & jets \(+\mathscr{E}_{T}\), Tsqk1,8 degenerate light flavor states, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1220 & 95 & 12 AABOUD & 17AR & ATLS & \[
1 \ell+\text { jets }+E_{T} \text {, Tsqk3, } m_{\widetilde{\chi}_{1}^{0}}=0
\] \\
\hline >1000 & 95 & 13 AABOUD & 17N & ATLS & \begin{tabular}{l}
GeV \\
2 same-flavour, opposite-sign \(\ell+\) jets \(+E_{T}\), Tsqk2, \(m_{\widetilde{\chi}_{1}^{0}}=0\)
\end{tabular} \\
\hline >1150 & 95 & 14 KHACHATRY & & CMS & \begin{tabular}{l}
GeV \\
1 or more jets \(+E_{T}\), Tsqk1, 4(flavor) \(\times 2\) (isospin) \(=8\) mass degenerate states, \(m_{\widetilde{\chi}_{1}^{0}}=0\)
\end{tabular} \\
\hline \(>575\) & 95 & 14 KHACHATRY & & CMS & \begin{tabular}{l}
GeV \\
1 or more jets \(+E_{T}\), Tsqk1, one light flavor state, \(m_{\widetilde{\chi}_{1}^{0}}=0\)
\end{tabular} \\
\hline >1370 & 95 & 15 KHACHATRY & & CMS & \begin{tabular}{l}
GeV \\
\(2 \gamma+E_{T}\), GGM, Tsqk4, any \\
NLSP mass
\end{tabular} \\
\hline >1600 & 95 & 16 SIRUNYAN & 17AY & CMS & \[
\gamma+\text { jets }+E_{T} \text {, Tsqk4B, } m_{\widetilde{\chi}_{1}^{0}}=0
\] \\
\hline >1370 & 95 & 16 SIRUNYAN & 17AY & CMS &  \\
\hline >1050 & 95 & 17 SIRUNYAN & 17AZ & CMS & \begin{tabular}{l}
GeV \\
\(\geq 1\) jets \(+E_{T}\), Tsqk1, single light flavor state, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\)
\end{tabular} \\
\hline >1550 & 95 & 17 SIRUNYAN & 17AZ & CMS & \[
\begin{aligned}
& \geq 1 \text { jets }+E_{T} \text {, Tsqk1, } 4 \text { (flavor) } \\
& \times 2 \text { (isospin) }=8 \text { degenerate } \\
& \text { mass states, } m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1390 & 95 & 18 SIRUNYAN & 17P & CMS & \begin{tabular}{l}
jets \(+E_{T}\), Tsqk1, 4(flavor) \(x\) \\
2 (isospin) \(=8\) degenerate \\
mass states, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\)
\end{tabular} \\
\hline > 950 & 95 & 18 SIRUNYAN & 17P & CMS & jets \(+E_{T}\), Tsqk1, one light flavor state, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline > 608 & 95 & 19 AABOUD & 16D & ATLS & \[
\begin{aligned}
& \geq 1 \text { jet }+E_{T}, \text { Tsqk1, } m_{\tilde{q}}-m_{\widetilde{\chi}_{1}^{0}} \\
& \quad=5 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline >1030 & 95 & \({ }^{20}\) AABOUD 16N ATLS & \[
\geq 2 \text { jets }+E_{T} \text {, Tsqk1, } m_{\widetilde{\chi}_{1}^{0}}=0
\] \\
\hline > 600 & 95 & 21 KHACHATRY...16BS CMS & GeV jets \(+\mathbb{E}_{T}\), Tsqk1, single light squark, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1260 & 95 & 21 KHACHATRY...16BS CMS & jets \(+\not \mathscr{E}_{T}\), Tsqk1, 8 degenerate light squarks, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline > 850 & 95 & \({ }^{22}\) AAD 15BV ATLS & \[
\text { jets }+E_{T}, \tilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
\hline > 250 & 95 & \({ }^{23}\) AAD 15cs ATLS & \[
\begin{aligned}
& 100 \mathrm{GeV} \\
& \text { photon }+E_{T}, p p \rightarrow \tilde{q}^{\widetilde{q}^{*}} \gamma \\
& \stackrel{\widetilde{q}}{ } \rightarrow q \widetilde{\chi}_{1}^{0}, m_{\tilde{q}}-m_{\widetilde{\chi}_{1}^{0}}=m_{C}
\end{aligned}
\] \\
\hline > 490 & 95 & \({ }^{24}\) AAD 15K ATLS & \[
\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}, m_{\tilde{\chi}_{1}^{0}}<200 \mathrm{GeV}
\] \\
\hline > 875 & 95 & 25 KHACHATRY...15aF CMS & \(\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\), simplified model, 8 degenerate light \(\widetilde{q}, m_{\widetilde{\chi}_{1}^{0}}=0\) \\
\hline > 520 & 95 & 25 KHACHATRY...15AF CMS & \(\tilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\), simplified model, single light squark, \(m_{\widetilde{\chi}_{1}^{0}}=0\) \\
\hline >1450 & 95 & 25 KHACHATRY...15af CMS & \[
\begin{aligned}
& \text { CMSSM, } \tan \beta=30, A_{0}= \\
& \quad-2 \max \left(m_{0}, m_{1 / 2}\right), \mu>0
\end{aligned}
\] \\
\hline > 850 & 95 & \({ }^{26}\) AAD 14aE ATLS & jets \(+E_{T}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) simplified model, mass degenerate first and second generation squarks, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline > 440 & 95 & \({ }^{26}\) AAD 14aE ATLS & jets \(+\mathscr{E}_{T}, \widetilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) simplified model, single light-flavour squark, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >1700 & 95 & 26 AAD 14aE ATLS & \[
\begin{aligned}
& \text { jets }+E_{T}, \text { mSUGRA/CMSSM, } \\
& m_{\widetilde{q}}=m_{\widetilde{g}}
\end{aligned}
\] \\
\hline > 800 & 95 & 27 CHATRCHYAN 14AH CMS & jets \(+\ddot{F}_{T}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) simplified model, \(m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\) \\
\hline > 780 & 95 & 28 CHATRCHYAN 141 CMS & \[
\begin{aligned}
& \text { multijets }+E_{T}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text { sim- } \\
& \text { plified model, } m_{\widetilde{\chi}_{1}^{0}}<200
\end{aligned}
\] \\
\hline >1360 & 95 & 29 AAD 13L ATLS & \[
\text { jets }+E_{T}, \mathrm{CMSSM}, m_{\tilde{g}}=m_{\tilde{q}}
\] \\
\hline >1200 & 95 & 30 AAD \(13 Q\) ATLS & \(\gamma+b+E_{T}\), higgsino-like neutralino, \(m_{\widetilde{\chi}_{1}^{0}}>220 \mathrm{GeV}, \mathrm{GMSB}\) \\
\hline & & 31 CHATRCHYAN 13 CMS & \(\ell^{ \pm} \ell^{\mp}+\) jets \(+\#_{T}, \mathrm{CMSSM}\) \\
\hline >1250 & 95 & 32 CHATRCHYAN 13 G CMS & \[
\begin{aligned}
& 0,1,2, \geq 3 b \text {-jets }+E_{T}, \mathrm{CMSSM}, \\
& \quad m_{\widetilde{q}}=m_{\widetilde{g}}
\end{aligned}
\] \\
\hline \(>1430\) & 95 & 33 CHATRCHYAN 13 H CMS & \(2 \gamma+\geq 4\) jets + low \(E_{T}\), stealth SUSY model \\
\hline > 750 & 95 & 34 CHATRCHYAN 13 T CMS & jets \(+E_{T}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) simplified model, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline > 820 & 95 & \({ }^{35}\) AAD 12AX ATLS & \(\ell+\) jets \(+\mathscr{E}_{T}\), CMSSM, \(m_{\widetilde{q}}=m_{\tilde{g}}\) \\
\hline \(>1200\) & 95 & \({ }^{36}\) AAD 12CJ ATLS & \(\ell^{ \pm}+\)jets \(+E_{T}, \mathrm{CMSSM}, m_{\widetilde{q}}=m_{\widetilde{g}}\) \\
\hline > 870 & 95 & \({ }^{37}\) AAD 12CP ATLS & \[
\begin{gathered}
2 \gamma+E_{T}, \text { GMSB, bino NLSP, } \\
m_{\tilde{\chi}_{1}^{0}}>50 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 950 & 95 & 38 AAD 12w ATLS & jets \(+E_{T}, \mathrm{CMSSM}, m_{\widetilde{q}}=m_{\widetilde{g}}\) \\
\hline & & 39 CHATRCHYAN 12 CMS & \(e, \mu\), jets, razor, CMSSM \\
\hline > 760 & 95 & 40 Chatrchyan 12aE CMS & \[
\text { jets }+E_{T}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}<
\] \\
\hline >1110 & 95 & 41 CHATRCHYAN 12AT CMS & \[
\begin{aligned}
& 200 \mathrm{GeV} \\
& \text { jets }+E_{T}, \text { CMSSM }
\end{aligned}
\] \\
\hline \(>1180\) & 95 & 41 CHATRCHYAN 12AT CMS & jets \(+\#_{T}, \mathrm{CMSSM}, m_{\tilde{q}}=m_{\tilde{g}}\) \\
\hline \(\cdot \cdot\) & not us & he following data for averages, fits & s, limits, etc. \\
\hline >1080 & 95 & \({ }^{42}\) AABOUD 18 V ATLS & \[
\begin{aligned}
& \text { jets }+E_{T}, \text { Tsqk5, }\left(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\right) / \\
& \left(m_{\tilde{q}^{-}}-m_{\widetilde{\chi}_{1}^{0}}\right)<0.95, m_{\widetilde{\chi}_{1}^{0}}= \\
& \quad 60 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 300 & 95 & 43 KHACHATRY...16BT CMS & 19-parameter pMSSM model, global Bayesian analysis, flat prior \\
\hline & 95 & 44 AAD 15AI ATLS & \(\ell^{ \pm}+\)jets + E \(_{T}\) \\
\hline >1650 & 95 & 22 AAD 15bv ATLS & \[
\text { jets }+E_{T}, m_{\tilde{g}}=m_{\tilde{q}}, m_{\widetilde{\chi}_{1}^{0}}=1
\] \\
\hline > 790 & 95 & 22 AAD 15bv ATLS & \[
\stackrel{\mathrm{GeV}}{\text { jets }+E_{T}}, \tilde{q} \rightarrow q W \widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}=
\] \\
\hline > 820 & 95 & 22 AAD 15bv ATLS & 100 GeV 2 or 3 leptons + jets, \(\tilde{q}\) decays via sleptons, \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\) \\
\hline > 850 & 95 & 22 AAD 15bv ATLS & \(\tau, \widetilde{q}\) decays via staus, \(m_{\widetilde{\chi}_{1}^{0}}=50\) \\
\hline > 700 & 95 & 45 KHACHATRY...15AR CMS & \[
\begin{aligned}
& \widetilde{q} \rightarrow q \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{S} g, \widetilde{S} \rightarrow \\
& s \tilde{G}, S \rightarrow g g, m_{\tilde{S}}=100 \\
& \mathrm{GeV}, m_{S}=90 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 550 & 95 & 45 KHACHATRY...15AR CMS & \[
\begin{gathered}
\ell^{ \pm}, \widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow \widetilde{S} W^{ \pm} \\
\widetilde{S} \rightarrow S \widetilde{G}, S \rightarrow g g, m_{\widetilde{S}}= \\
100 \mathrm{GeV}, m_{S}=90 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1500 & 95 & 46 KHACHATRY...15az CMS & \(\geq 2 \gamma\), \(\geq 1\) jet, (Razor), binolike NLSP, \(m_{\widetilde{\chi}_{1}^{0}}=375 \mathrm{GeV}\) \\
\hline >1000 & 95 & 46 KHACHATRY...15AZ CMS & \[
\begin{aligned}
& \geq 1 \gamma, \geq 2 \text { jet, wino-like NLSP, } \\
& m_{\widetilde{\chi}_{1}^{0}}=375 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}

\({ }^{1}\) SIRUNYAN 19AG searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two photons and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4B simplified model and on the squark mass in the Tsqk4B simplified model, see their Figure 3.
\({ }^{2}\) SIRUNYAN 19 CH searched in \(137 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing multiple jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tgluic, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.
\({ }^{3}\) SIRUNYAN 19 K searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a photon, an electron or muon, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the chargino and neutralino mass in the Tchi1n1A simplified model, see their Figure 6. Limits are also set on the gluino mass in the Tglu4A simplified model, and on the squark mass in the Tsqk4A simplified model, see their Figure 7.
\({ }^{4}\) AABOUD 18BJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk2 model in case of \(m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}\) : for any \(m_{\widetilde{\chi}_{2}}\), squark masses below 1200 GeV are excluded, see their Fig. 14 (b).
\({ }^{5}\) AABOUD 18 BV searched in \(36.1 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet identified as \(c\)-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tsqk1 models considering only \(\widetilde{c}_{1}\). In scenarios with massless neutralinos, scharm masses below 850 GeV are excluded. If the differences of the \(\widetilde{c}_{1}\) and \(\widetilde{\chi}_{1}^{0}\) masses is below 100 GeV , scharm masses below 500 GeV are excluded. See their Fig. 6 and Fig. 7 .
\({ }^{6}\) AABOUD 18 l searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tsqk1 models. In the compressed scenario with similar squark and neutralino masses, squark masses below 710 GeV are excluded. See their Fig.10(b).
\({ }^{7}\) AABOUD 18 U searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results are interpreted in terms of lower limits on the masses of squark in Tsqk4B models. Masses below 1820 GeV are excluded for any NLSP mass, see their Fig. 9.
\({ }^{8}\) AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk1 model: squark masses below 1550 GeV are excluded for massless LSP, see their Fig. 13(a).
\({ }^{9}\) AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk3 model. Assuming that \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.5\left(m_{\tilde{q}}+m_{\widetilde{\chi}_{1}^{0}}\right)\), squark masses below 1150 GeV are excluded for massless LSP, see their Fig. 14(a). Exclusions are also shown assuming \(m_{\widetilde{\chi}_{1}^{0}}=60\) GeV , see their Fig. 14(b).
10 SIRUNYAN 18AA searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one photon and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like \(\widetilde{\chi}_{1}^{0}\) and wino-like \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\), see Figure 7. Limits are also set on the NLSP mass in the Tchi1n1A and Tchi1chi1A simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10.
11 SIRUNYAN 18AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing one or more jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range \(10^{-3}\) \(\mathrm{mm}<\mathrm{c} \tau<10^{5} \mathrm{~mm}\), see their Figure 4.
\({ }^{12}\) AABOUD 17AR searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.25 TeV are set on the 1st and 2nd generation squark masses in Tsqk3 simplified models, with \(x=\left(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}\right) /\left(m_{\tilde{q}^{-}}^{-} m_{\widetilde{\chi}_{1}^{0}}\right)=1 / 2\). Similar limits are obtained for variable \(x\) and fixed neutralino mass, \(m_{\tilde{\chi}_{1}^{0}}=60 \mathrm{GeV}\). See their Figure 13.
13 AABOUD 17 N searched in \(14.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with 2 same-flavour, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. The results are interpreted as \(95 \%\) C.L. limits in Tsqk2 models, assuming \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) and \(m_{\widetilde{\chi}_{2}^{0}}=600 \mathrm{GeV}\). See their Fig. 12 for exclusion limits as a function of \(m_{\widetilde{\chi}_{2}^{0}}\).
14 KHACHATRYAN 17P searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8
\({ }^{15} \mathrm{KHACHATRYAN} 17 \mathrm{~V}\) searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two photons and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino and squark mass in the context of general gauge mediation models Tglu4B and Tsqk4, see their Fig. 4.
16 SIRUNYAN 17AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one photon, jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6.
17 SIRUNYAN 17AZ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8.
18 SIRUNYAN 17P searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with multiple jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsqk1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13.
\({ }^{19}\) AABOUD 16D searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with an energetic jet and large missing transverse momentum. The results are interpreted as \(95 \%\) C.L. limits on masses of first and second generation squarks decaying into a quark and the lightest neutralino in scenarios with \(m_{\tilde{q}}-m_{\widetilde{\chi}_{1}^{0}}<25 \mathrm{GeV}\). See their Fig. 6 .
\({ }^{20}\) AABOUD 16 N searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing hadronic jets, large \(E_{T}\), and no electrons or muons. No significant excess above the Standard Model expectations is observed. First- and second-generation squark masses below 1030 GeV are excluded at the \(95 \%\) C.L. decaying to quarks and a massless lightest neutralino. See their Fig. 7a
21 KHACHATRYAN 16BS searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one energetic jet, no isolated leptons, and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in the Tskq1 simplified model, both in the assumption of a single light squark and of 8 degenerate squarks, see Fig. 11 and Table 3.
\({ }^{22}\) AAD 15BV summarized and extended ATLAS searches for gluinos and first- and secondgeneration squarks in final states containing jets and missing transverse momentum, with or without leptons or \(b\)-jets in the \(\sqrt{s}=8 \mathrm{TeV}\) data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95\% C.L. are set on the squark mass in several R-parity conserving models. See their Figs. 9, 11, 18, 22, 24, 27, 28.

23 AAD 15 CS searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of pair production of squarks, decaying into a quark and a neutralino, where a photon was radiated either from an initial-state quark, from an intermediate squark, or from a finalstate quark. No evidence was found for an excess above the expected level of Standard Model background and a \(95 \%\) C.L. exclusion limit was set on the squark mass as a function of the squark-neutralino mass difference, see Fig. 19.
\({ }^{24}\) AAD 15 K searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing at least two jets, where the two leading jets are each identified as originating from \(c\)-quarks, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the mass of superpartners of charm quarks \((\widetilde{c})\). Assuming that the decay \(\widetilde{c} \rightarrow c \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, a scalar charm mass below 490 GeV is excluded for \(m_{\widetilde{\chi}_{1}^{0}}<200\) GeV . For more details, see their Fig. 2.
25 KHACHATRYAN 15AF searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in simplified models where the decay \(\tilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), both for the case of a single light squark or 8 degenerate squarks, see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming \(\tan \beta=30, A_{0}=-2 \max \left(m_{0}\right.\), \(m_{1 / 2}\) ) and \(\mu>0\), are also presented, see Fig. 15.
\({ }^{26}\) AAD 14AE searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and large missing transverse momentum, and no electrons or muons. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing squarks that decay via \(\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\), where either a single light state or two degenerate generations of squarks are assumed, see Fig. 10.
\({ }^{27}\) CHATRCHYAN 14AH searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables ( \(M_{R}\) and

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}
\(R^{2}\) ) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on squark masses in simplified models where the decay \(\tilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 28. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), are also presented, see Fig. 26.
\({ }^{28}\) CHATRCHYAN 14 I searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multijets and large \(E_{T}\). No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing squarks that decay via \(\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\), where either a single light state or two degenerate generations of squarks are assumed, see Fig. 7a.
\({ }^{29} \mathrm{AAD} 13 \mathrm{~L}\) searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of squarks and gluinos in events containing jets, missing transverse momentum and no high\(p_{T}\) electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), squarks and gluinos of equal mass are excluded for masses below 1360 GeV at \(95 \%\) C.L. In a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutralino, squark masses below 1320 GeV are excluded at \(95 \%\) C.L. for gluino masses below 2 TeV . See Figures \(10-15\) for more precise bounds.
\({ }^{30}\) AAD 13Q searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing a high- \(p_{T}\) isolated photon, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such signatures may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. No significant excess above the expected background was found and limits were set on the squark mass as a function of the neutralino mass in a generalized GMSB model (GGM) with a higgsino-like neutralino NLSP, see their Fig. 4. For neutralino masses greater than 220 GeV , squark masses NLSP, see their Fig. 4. For neutralino
below 1020 GeV are excluded at \(95 \%\) C.L.
3 below 1020 GeV are excluded at \(95 \%\) C.L.
with the of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two opposite-sign leptons \((e, \mu, \tau)\), jets and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the mSUGRA/CMSSM model with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), see Fig. 6 .
\({ }^{32}\) CHATRCHYAN 13 G searched in \(4.98 \mathrm{fb}^{-1}\) of \(p\) p collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of squarks and gluinos in events containing \(0,1,2, \geq 3 b\)-jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\), and \(\mu>0\), squarks and gluinos of equal mass are excluded for masses below 1250 GeV at \(95 \%\) C.L. Exclusions are also derived in various simplified models, see Fig. 7.
\({ }^{33}\) CHATRCHYAN 13 H searched in \(4.96 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two photons, \(\geq 4\) jets and low \(E_{T}\) due to \(\tilde{q} \rightarrow \gamma \tilde{\chi}_{1}^{0}\) decays in a stealth SUSY framework, where the \(\widetilde{\chi}_{1}^{0}\) decays through a singlino \((\widetilde{S})\) intermediate state to \(\gamma \widetilde{S} \widetilde{G}\), with the singlet state \(S\) decaying to two jets. No significant excess above the expected background was found and limits were set in a particular R-parity conserving stealth SUSY model. The model assumes \(m_{\tilde{\chi}_{1}^{0}}=0.5 m_{\tilde{q}}, m_{\tilde{S}}=100 \mathrm{GeV}\) and \(m_{S}=90 \mathrm{GeV}\). Under these assumptions, squark masses less than 1430 GeV were excluded at the \(95 \%\) C.L.
\({ }^{34}\) C.L. with at least two energetic jets and significant \(E_{T}\), using the \(\alpha T\) variable to discriminate between processes with genuine and misreconstructed \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on squark masses in simplified models where the decay \(\tilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), assuming an eightfold degeneracy of the masses of the first two generation squarks, see Fig. 8 and Table 9. Also limits in the case of a single light squark are given.
\({ }^{35}\) AAD 12AX searched in \(1.04 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for supersymmetry in events containing jets, missing transverse momentum and one isolated electron or muon. No excess over the expected SM background is observed and model-independent limits are set on the cross section of new physics contributions to the signal regions. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), squarks and gluinos of equal mass are excluded for masses below 820 GeV at \(95 \%\) C.L. Limits are also set on simplified models for squark production and decay via an intermediate chargino and on supersymmetric models with bilinear R-parity violation. Supersedes AAD 11G.
\({ }^{36}\) AAD 12CJ searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing one or more isolated leptons (electrons or muons), jets and \(E_{T}\). The observations are in good agreement with the SM expectations and exclusion limits have been set in number of SUSY models. In the mSUGRA/CMSSM model with \(\tan \beta=10, A_{0}=0\), and \(\mu>0\), \(95 \%\) C.L. exclusion limits have been derived for \(m_{\widetilde{q}}<1200 \mathrm{GeV}\), assuming equal squark and gluino masses. In minimal GMSB, values of the effective SUSY breaking scale \(\Lambda<\) 50 TeV are excluded at \(95 \%\) C.L. for \(\tan \beta<45\). Also exclusion limits in a number of simplified models have been presented, see Figs. 10 and 12.
\({ }^{37} \mathrm{AAD} 12 \mathrm{CP}\) searched in \(4.8 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two photons and large \(E_{T}\) due to \(\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}\) decays in a GMSB framework. No significant excess above the expected background was found and limits were set on the squark mass as a function of the neutralino mass in a generalized GMSB model (GGM) with a bino-like neutralino NLSP. The other sparticle masses were decoupled, \(\tan \beta=2\) and \(c \tau_{N L S P}\) \(<0.1 \mathrm{~mm}\). Also, in the framework of the SPS8 model, a \(95 \%\) C.L. Iower limit was set on the breaking scale 1 of 196 TeV
\({ }^{38} \mathrm{AAD} 12 \mathrm{~W}\) searched in \(1.04 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), squarks and gluinos of equal mass are excluded for masses below 950 GeV at \(95 \%\) C.L. In a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutralino, squark masses below 875 GeV are excluded at \(95 \%\) C.L.
\({ }^{39}\) CHATRCHYAN 12 looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with \(e\) and/or \(\mu\) and/or jets, a large total transverse energy, and \(E_{T}\). The event selection is based on the dimensionless razor variable \(R\), related to the \(E_{T}\) and \(M_{R}\), an indicator of the heavy particle mass scale. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM \(\left(m_{0}, m_{1 / 2}\right)\) plane for \(\tan \beta=3,10\) and 50 (see Fig. 7 and 8). Limits are also obtained for Simplified Model Spectra.
\({ }^{40}\) CHATRCHYAN 12AE searched in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least three jets and large missing transverse momentum. No significant excesses over the expected SM backgrounds are observed and \(95 \%\) C.L. limits on the production cross section of squarks in a scenario where \(\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}\) with a \(100 \%\) branching ratio, see Fig. 3. For \(m_{\widetilde{\chi}_{1}^{0}}<200 \mathrm{GeV}\), values of \(m_{\widetilde{q}}\) below 760 GeV are excluded at \(95 \%\) C.L. Also limits in the CMSSM are presented, see Fig. 2.
\({ }^{41}\) CHATRCHYAN 12AT searched in \(4.73 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for the production of squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), squarks with masses below 1110 GeV are excluded at \(95 \%\) C.L. Squarks and gluinos of equal mass are excluded for masses below 1180 GeV at \(95 \%\) C.L. Exclusions are also derived in various simplified models, see Fig. 6.
42 AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk5 model. Squark masses below 1100 GeV are excluded if \(\left(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\right) /\left(m_{\tilde{q}}-m_{\widetilde{\chi}_{1}^{0}}\right)<0.95\) and \(m_{\widetilde{\chi}_{1}^{0}}\) \(=60 \mathrm{GeV}\), see their Fig. 16(a).
43 KHACHATRYAN 16BT performed a global Bayesian analysis of a wide range of CMS results obtained with data samples corresponding to \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=\) 7 TeV and in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The set of searches considered, both individually and in combination, includes those with all-hadronic final states, samesign and opposite-sign dileptons, and multi-lepton final states. An interpretation was given in a scan of the 19 -parameter pMSSM. No scan points with a gluino mass less than 500 GeV survived and \(98 \%\) of models with a squark mass less than 300 GeV were excluded.
4 AAD 15Al searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing at least one isolated lepton (electron or muon), jets, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95\% C.L. are set on the squark masses in the ground was found. Exclusion limits at 95\% C.L. are set on the squark masses in the
CMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simplified CMSSM/mSUGRA, see
models, see Figs. 19-21.
45 KHACHATRYAN 15AR searched in 19.7 of \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing jets, either a charged lepton or a photon, and low missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in a stealth SUSY model where the decays \(\tilde{q} \rightarrow q \widetilde{\chi}_{1}^{ \pm}\), \(\widetilde{\chi}_{1}^{ \pm} \rightarrow \widetilde{S} W^{ \pm}, \widetilde{S} \rightarrow S \widetilde{G}\) and \(S \rightarrow g g\), with \(m_{\widetilde{S}}=100 \mathrm{GeV}\) and \(m_{S}=90 \mathrm{GeV}\), take place with a branching ratio of \(100 \%\). See Fig. 6 for \(\gamma\) or Fig. 7 for \(\ell^{ \pm}\)analyses.
46 KHACHATRYAN 15AZ searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with either at least one photon, hadronic jets and \(E_{T}\) (single photon channel) or with at least two photons and at least one jet and using the razor variables. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-like and wino-like neutralino NLSP scenario, see Fig. 8 and 9.
47 AAD 14E searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from \(b\)-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6 . In the \(\widetilde{q} \rightarrow q^{\prime} \tilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow w^{(*) \pm} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow Z^{(*)} \tilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.5 m_{\widetilde{\chi}_{1}^{0}}+m_{\widetilde{g}^{\prime}}, m_{\widetilde{\chi}_{2}^{0}}=0.5\left(m_{\widetilde{\chi}_{1}^{0}}\right.\) \(\left.+m_{\widetilde{\chi}_{1}^{ \pm}}\right)\). In the \(\widetilde{q} \rightarrow q^{\prime} \tilde{\chi}_{1}^{ \pm}\)or \(\tilde{q} \rightarrow q^{\prime} \widetilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} \nu \tilde{\chi}_{1}^{0}\) or \(\tilde{\chi}_{2}^{0} \rightarrow \ell^{ \pm} \ell^{\mp}(\nu \nu) \tilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}=0.5\left(m_{\widetilde{\chi}_{1}^{0}}\right.\) \(\left.+m_{\tilde{q}}\right), m_{\tilde{\chi}_{1}^{0}}<460 \mathrm{GeV}\). Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.
\({ }^{48}\) CHATRCHYAN 13 AO searched in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two opposite-sign isolated leptons accompanied by hadronic jets and \(E_{T}\). No significant excesses over the expected SM backgrounds are observed and 95\% C.L. exclusion limits are derived in the mSUGRA/CMSSM model with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), see Fig. 8.
\({ }^{49}\) CHATRCHYAN 13 AV searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for new heavy particle pairs decaying into jets (possibly \(b\)-tagged), leptons and \(E_{T}\) using the Razor variables. No significant excesses over the expected SM backgrounds are observed and \(95 \%\) C.L. exclusion limits are derived in the mSUGRA/CMSSM model with \(\tan \beta=\) \(10, A_{0}=0\) and \(\mu>0\), see Fig. 3. The results are also interpreted in various simplified \(10, A_{0}=0\) and \(\mu\)
models, see Fig. 4.
\({ }^{50}\) CHATRCHYAN 13 w searched in \(4.93 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with one or more photons, hadronic jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on squark masses in the general gaugemediated SUSY breaking model (GGM), for both a wino-like and bino-like neutralino NLSP scenario, see Fig. 5.
51 DREINER 12A reassesses constraints from CMS (at \(7 \mathrm{TeV}, \sim 4.4 \mathrm{fb}^{-1}\) ) under the assumption that the fist and second generation squarks and the lightest SUSY particle are quasi-degenerate in mass (compressed spectrum).
52 DREINER 12A reassesses constraints from CMS (at \(7 \mathrm{TeV}, \sim 4.4 \mathrm{fb}^{-1}\) ) under the assumption that the first and second generation squarks, the gluino, and the lightest assumption that the first and second generation squarks, the gluin
SUSY particle are quasi-degenerate in mass (compressed spectrum).

\section*{R-parity violating \(\tilde{q}\) (Squark) mass limit}
\(\frac{V A L U E(G e V)}{C L \%}\) DOCUMENT ID TECN COMMENT
none 100-720 \(95 \quad 1\) SIRUNYAN \(\quad\) 18EA CMS 2 large jets with four-parton sub-
\(>1600 \quad 95 \quad 2\) KHACHATRY...16BXCMS \(\begin{array}{r}\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu, \lambda_{121}\end{array}\) or
\(\lambda_{122} \neq 0, m_{\tilde{g}}=2400 \mathrm{GeV}\)
>1000 \(95 \quad 3 \mathrm{AAD} \quad 15 \mathrm{CB}\) ATLS jets, \(\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell q q\),
\begin{tabular}{|c|c|c|}
\hline \({ }^{3}\) AAD & 15CB ATLS & \[
\begin{aligned}
& \text { jets, } \widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell q q \\
& m_{\widetilde{\chi}_{1}^{0}}=108 \mathrm{GeV} \text { and } 2.5< \\
& \mathrm{C} \widetilde{\tau}_{1}^{0}<200 \mathrm{~mm}
\end{aligned}
\] \\
\hline \({ }^{4}\) AAD & 12AX ATLS & \(\ell+\) jets \(+E_{T}, \mathrm{CMSSM}, m_{\widetilde{q}}=m_{\widetilde{g}}\) \\
\hline 5 CHAT & 12AL CMS & \(\geq 3 \ell^{ \pm}\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 18EA searched in \(38.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for the pair production of resonances, each decaying to at least four quarks. Reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess over the Standard Model expectation is observed. Limits are set on the squark and gluino mass in RPV supersymmetry models where squarks (gluinos) decay, through intermediate higgsinos, to four (five) quarks, see their Figure 4.
\({ }^{2}\) KHACHATRYAN 16BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 4 leptons coming from R-parity-violating decays of \(\tilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu\) with \(\lambda_{121} \neq\) 0 or \(\lambda_{122} \neq 0\). No excess over the expected background is observed. Limits are derived on the gluino, squark and stop masses, see Fig. 23.
\({ }^{3}\) AAD 15CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrack signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving \(R\)-parity violation, split supersymmetry, and gauge mediation. See their Fig. 14-20.
\({ }^{4}\) AAD 12AX searched in \(1.04 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for supersymmetry in events containing jets, missing transverse momentum and one isolated electron or muon. No excess over the expected SM background is observed and model-independent limits are set on the cross section of new physics contributions to the signal regions. In mSUGRA/CMSSM models with \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), squarks and gluinos of equal mass are excluded for masses below 820 GeV at \(95 \%\) C.L. Limits are also set on simplified models for squark production and decay via an intermediate chargino and on supersymmetric models with bilinear R-parity violation. Supersedes AAD 11 G .
\({ }^{5}\) CHATRCHYAN 12AL looked in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for anomalous production of events with three or more isolated leptons. Limits on squark and gluino masses are set in RPV SUSY models with leptonic LLE Couplings, \(\lambda_{123}>0.05\), and hadronic \(\overline{U D D}\) couplings, \(\lambda_{112}^{\prime \prime}>0.05\), see their Fig. 5. In the \(\overline{U D D}\) case the leptons arise from supersymmetric cascade decays. A very specific supersymmetric spectrum is assumed. All decays are prompt.

\section*{Long-lived \(\tilde{\boldsymbol{q}}\) (Squark) mass limit}

The following are bounds on long-lived scalar quarks, assumed to hadronise into hadrons with lifetime long enough to escape the detector prior to a possible decay. Limits may depend on the mixing angle of mass eigenstates: \(\tilde{q}_{1}=\tilde{q}_{L} \cos \theta_{q}+\tilde{q}_{R} \sin \theta_{q}\).
The coupling to the \(z^{0}\) boson vanishes for up-type squarks when \(\theta_{u}=0.98\), and for down type squarks when \(\theta_{d}=1.17\).
\begin{tabular}{|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENTID TECN & COMMENT \\
\hline >1250 & 95 & \({ }^{1}\) AABOUD 19AT ATLS & \(\widetilde{b} R\)-hadrons \\
\hline >1340 & 95 & \({ }^{2}\) AABOUD 19at ATLS & \(\tilde{t} R\)-hadrons \\
\hline >1600 & 95 & \({ }^{3}\) SIRUNYAN 19bн CMS & long-lived \(\tilde{t}, \operatorname{RPV}, \tilde{t} \rightarrow \bar{d} \bar{d}, 10\) \(\mathrm{mm}<\mathrm{c} \tau<110 \mathrm{~mm}\) \\
\hline >1350 & 95 & \({ }^{3}\) SIRUNYAN 19bh CMS & long-lived \(\tilde{t}, \operatorname{RPV}, \tilde{t} \rightarrow b \ell, 7\) \\
\hline > 805 & 95 & \({ }^{4}\) AABOUD 16B ATLS & \(\tilde{b} R\)-hadrons \\
\hline > 890 & 95 & \({ }^{5}\) AABOUD 16B ATLS & \(\tilde{t} R\)-hadrons \\
\hline >1040 & 95 & 6 KHACHATRY...16BWCMS & \(\tilde{t} \mathrm{R}\)-hadrons, cloud interaction model \\
\hline >1000 & 95 & 6 KHACHATRY...16BWCMS & \begin{tabular}{l}
\(\tilde{t}\) R-hadrons, charge-suppressed \\
~ interaction model
\end{tabular} \\
\hline > 845 & 95 & \({ }_{7}^{7}\) AAD \(\quad 15 \mathrm{AE} \mathrm{ATLS}\) & \(\widetilde{\sim}\) R-hadron, stable, Regge model \\
\hline > 900 & 95 & \({ }_{7}^{7}\) AAD \(\quad 15 \mathrm{AE}\) ATLS & \(\tilde{t}\) R-hadron, stable, Regge model \\
\hline >1500 & 95 & \({ }^{7}\) AAD \(\quad 15 \mathrm{AE} \mathrm{ATLS}\) & \(\widetilde{g}\) decaying to 300 GeV stable sleptons, LeptoSUSY model \\
\hline > 751 & 95 & \({ }^{8}\) AAD \(\quad 15 \mathrm{Bm}\) ATLS & \(\widetilde{b}\) R-hadron, stable, Regge model \\
\hline > 766 & 95 & \({ }^{8}\) AAD \(\quad 15\) bmatLS & \(\tilde{t}\) R-hadron, stable, Regge model \\
\hline > 525 & 95 & \({ }^{9}\) KHACHATRY...15AK CMS & \(\tilde{t}\) R-hadrons, \(10 \mu \mathrm{~s}<\tau<1000 \mathrm{~s}\) \\
\hline > 470 & 95 & 9 KHACHATRY...15AK CMS & \(\tilde{t}\) R-hadrons, \(1 \mu \mathrm{~s}<\tau<1000 \mathrm{~s}\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline > 683 & 95 & \({ }^{10}\) AAD 13AA ATLS & \(\widetilde{t}, R\)-hadrons, generic interaction model \\
\hline > 612 & 95 & 11 AAD 13AA ATLS & \(\widetilde{b}, R\)-hadrons, generic interaction model \\
\hline > 344 & 95 & 12 AAD 13bC ATLS & \(R\)-hadrons, \(\tilde{t} \rightarrow b \tilde{\chi}_{1}^{0}\), Regge model, lifetime between \(10^{-5}\) and \(10^{3} \mathrm{~s}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\) \\
\hline > 379 & 95 & \({ }^{13} \mathrm{AAD}\) 13bC ATLS & R-hadrons, \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\), Regge model, lifetime between \(10^{-5}\) and \(10^{3} \mathrm{~s}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\) \\
\hline > 935 & 95 & 14 CHATRCHYAN 13AB CMS & long-lived \(\tilde{t}\) forming R -hadrons, cloud interaction model \\
\hline
\end{tabular}
\({ }^{1}\) AABOUD 19AT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for metastable and stable \(R\)-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Sbottom \(R\)-hadrons are excluded at \(95 \%\) C.L. for masses below 1250 GeV . Less stringent constraints are achieved with the muonspectrometer agnostic analysis. See their Figure 9 (bottom-left).
\({ }^{2}\) AABOUD 19AT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for metastable and stable \(R\)-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected to path lengths of a few meters, are defined. No significant deviations from the expected
Standard Model background are observed. Stop \(R\)-hadrons are excluded at \(95 \%\) C.L. for Standard Model background are observed. Stop \(R\)-hadrons are excluded at 95\% C.L. for
masses below 1340 GeV . Similar constraints are achieved with the muon-spectrometer masses below 1340 GeV . Similar constraints are ach
agnostic analysis. See their Figure 9 (bottom-right).
\({ }^{3}\) SIRUNYAN 19BH searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for longlived particles decaying into jets, with each long-lived particle having a decay vertex well displaced from the production vertex. The selected events are found to be consistent with standard model predictions. Limits are set on the gluino mass in a GMSB model where the gluino is decaying via \(\widetilde{g} \rightarrow g G\), see their Figure 4 and in an RPV model of supersymmetry where the gluino is decaying via \(\widetilde{g} \rightarrow \bar{t} \bar{b} \bar{s}\), see their Figures 5. Limits are also set on the stop mass in two RPV models, see their Figure 6 (for \(t \rightarrow b \ell\) decays) and Figure 7 (for \(\widetilde{t} \rightarrow \bar{d} \bar{d}\) decays).
\({ }^{4}\) AABOUD 16B searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived \(R\)-hadrons using observables related to large ionization losses and slow propagation velocities, which are signatures of heavy charged particles traveling significantly slower than
the speed of light. Exclusion limits at 95\% C.L. are set on the long-lived sbottom masses exceeding 805 GeV . See their Fig. 5 .
\({ }^{5}\) AABOUD 16B searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived \(R\)-hadrons using observables related to large ionization losses and slow propagation velocities, which are signatures of heavy charged particles traveling significantly slower than the speed of light. Exclusion limits at \(95 \%\) C.L. are set on the long-lived stop masses exceeding 890 GeV . See their Fig. 5.
\({ }^{6}\) KHACHATRYAN 16BW searched in \(2.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pair production of top squarks as a function of mass, depending on the interaction model, see Fig. 4 and Table 7.
\({ }^{7}\) AAD 15AE searched in \(19.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set R-hadrons in various scenarios, see Fig. 11. Limits are also set in LeptoSUSY models where the gluino decays to stable 300 GeV leptons, see Fig. 9.
\({ }^{8}\) AAD 15BM searched in \(18.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for stable and metastable non-relativistic charged particles through their anomalous specific ionization energy loss in the ATLAS pixel detector. In absence of an excess of events above the expected backgrounds, limits are set on stable bottom and top squark R-hadrons, see Table 5.
\({ }^{9}\) KHACHATRYAN 15AK looked in a data set corresponding to \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\), and a search interval corresponding to 281 h of trigger lifetime, for longlived particles that have stopped in the CMS detector. No evidence for an excess over the expected background in a cloud interaction model is observed. Assuming the decay \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) and lifetimes between \(1 \mu \mathrm{~s}\) and 1000 s , limits are derived on \(\tilde{t}\) production as a function of \(m_{\widetilde{\chi}_{1}^{0}}\), see Figs. 4 and 7 . The exclusions require that \(m_{\widetilde{\chi}_{1}^{0}}\) is kinematically consistent with the minimum values of the jet energy thresholds used.
10 AAD 13AA searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing colored long-lived particles that hadronize forming \(R\)-hadrons. No significant excess above the expected background was found. Long-lived \(R\)-hadrons containing a \(\tilde{t}\) are excluded for masses up to 683 GeV at \(95 \%\) C.L in a general interaction model. Also, limits independent of the fraction of \(R\)-hadrons that arrive charged in the muon system were derived, see Fig. 6.
\({ }^{11}\) AAD 13AA searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events containing colored long-lived particles that hadronize forming \(R\)-hadrons. No significant excess above the expected background was found. Long-lived \(R\)-hadrons containing a \(\bar{b}\) are excluded for masses up to 612 GeV at \(95 \%\) C.L in a general interaction model. Also, limits independent of the fraction of \(R\)-hadrons that arrive charged in the muon system were derived, see Fig. 6 .
12 AAD 13BC searched in \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and in \(22.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for bottom squark R -hadrons that have come to rest within the ATLAS calorimeter and decay at some later time to hadronic jets and a neutralino. In absence of an excess of events above the expected backgrounds, limits are set on sbottom masses for the decay \(\widetilde{b} \rightarrow b \widetilde{\chi}_{1}^{0}\), for different lifetimes, and for a neutralino mass of 100 GeV , see their Table 6 and Fig 10 .
\({ }^{13}\) AAD 13 BC searched in \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and in \(22.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for bottom squark R -hadrons that have come to rest within the ATLAS calorimeter and decay at some later time to hadronic jets and a neutralino. In absence of an excess of events above the expected backgrounds, limits are set on stop masses for the decay \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\), for different lifetimes, and for a neutralino mass of 100 GeV , see their Table 6 and Fig 10.
\({ }^{14}\) CHATRCHYAN 13AB looked in \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and in 18.8 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with heavy stable particles, identified by their anomalous \(\mathrm{dE} / \mathrm{dx}\) in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \(\tilde{t}_{1}\) 's. No evidence for an excess over the expected background is observed. Limits are derived for pair production of stops as a function of mass in the cloud interaction model (see Fig. 8 and Table 6). In the charge-suppressed model, the limit decreases to 818 GeV .

\section*{\(\tilde{\boldsymbol{b}}\) (Sbottom) mass limit}

Limits in \(e^{+} e_{\sim}^{-}\)depend on the mixing angle of the mass eigenstate \(\widetilde{b}_{1}\) \(=\tilde{b}_{L} \cos \theta_{b}+\widetilde{b}_{R} \sin \theta_{b}\). Coupling to the \(Z\) vanishes for \(\theta_{b} \sim 1.17\). As a consequence, no absolute constraint in the mass region \(\lesssim 40 \mathrm{GeV}\) is available in the literature at this time from \(e^{+} e^{-}\)collisions. In the Listings below, we use \(\Delta m=m_{\widetilde{b}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\)
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving \(\tilde{b}\) (Sbottom) mass limit


\section*{Supersymmetric Particle Searches}

\({ }^{11}\) AABOUD 17AJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the bottom squark mass in Tsbot2 simplified models assuming \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\). See their Figure 4(d).
\({ }^{12}\) AABOUD 17AX searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two jets identified as originating from \(b\)-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of bottom squarks. In the Tsbot1 simplified model, a \(\widetilde{b}_{1}\) mass below 950 GeV is excluded for \(m_{\widetilde{\chi}_{1}^{0}}=0(<420) \mathrm{GeV}\). See their Fig. 7(a).
\({ }^{13}\) AABOUD 17AX searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two jets identified as originating from \(b\)-quarks and large missing transverse momentum, with or without leptons. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of bottom squarks. Assuming \(50 \% \mathrm{BR}\) for Tsbot1 and Tsbot2 simplified models, a \(\widetilde{b}_{1}\) mass below \(880(860) \mathrm{GeV}\) is excluded for \(m_{\widetilde{\chi}_{1}^{0}}=0(<250) \mathrm{GeV}\). See their Fig. 7(b).
14 KHACHATRYAN 17A searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two forward jets, produced through vector boson fusion, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. A limit is set on sbottom masses in the Tsbot1 simplified model, see Fig. 3.
15 KHACHATRYAN 17 AW searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least three charged leptons, in any combination of electrons and muons, and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. significant \(E_{T}\). No significant excess above the Standard Model expectations is observed.
Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, and on Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified
the sbottom mass in the Tsbot2 simplified model, see their Figure 4.
16 KHACHATRYAN 17P searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8.
17 SIRUNYAN 17AZ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, glu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1
simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, simplified model, see their Fig. 7. Finally, limits ar
Tstop4 and Tstop8 simplified models, see Fig. 8.
18 SIRUNYAN 17 K searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct production of stop or sbottom pairs in events with multiple jets and significant \(E_{T}\). A second search also requires an isolated lepton and is combined with the all-hadronic search. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop8 and Tstop4 simplified models, see their Figures 7, 8 and 9 (for the Tstop4 limits, only the results of the all-hadronic search are used). Limits are also set on the sbottom mass in the Tsbot 1 simplified model, see Fig. 10 (also here, only the results of the all-hadronic search are used).
19 SIRUNYAN 17 s searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two isolated same-sign leptons, jets, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the gluino mass in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu1B simplified models, see their Figures 5 and 6, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 6.
\({ }^{20}\) AABOUD 16D searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with an energetic jet and large missing transverse momentum. The results are interpreted as \(95 \%\) C.L. limits on mass of sbottom decaying into a \(b\)-quark and the lightest neutralino in scenarios with \(m_{\tilde{b}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\) between 5 and 20 GeV . See their Fig. 6 .
21 AABOUD 16 Q searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two jets identified as originating from \(b\)-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of third-generation squarks. Assuming that the decay \(\widetilde{b}_{1} \rightarrow b \widetilde{\chi}_{1}^{0}\) (Tsbot1) takes place \(100 \%\) of the time, a \(\widetilde{b}_{1}\) mass below 840 (800) GeV is excluded for \(m_{\widetilde{\chi}_{1}^{0}}<100(360) \mathrm{GeV}\). Differences in mass above 100 GeV between the \(\widetilde{b}_{1}\) and the \(\widetilde{\chi}_{1}^{0}\) are excluded up to a \(\widetilde{b}_{1}\) mass of 500 GeV . For more details, see their Fig. 4.
\({ }^{22}\) AAD 16BB searched in \(3.2 \mathrm{fb}^{-1}\) of pp collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with exactly two same-sign leptons or at least three leptons, multiple hadronic jets, \(b\)-jets, and \(\mathbb{E}_{T}\). No significant excess over the Standard Model expectation is found. Exclusion limits at \(95 \%\) C.L. are set on the sbottom mass for the Tsbot2 model, assuming \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{1}^{0}}+\) 100 GeV . See their Fig. 4c.
23 KHACHATRYAN 16BJ searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot2 simplified model, see Fig. 6.
24 KHACHATRYAN 16BS searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one energetic jet, no isolated leptons, and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot1 simplified model, see Fig. 11 and Table 3.
25 KHACHATRYAN 16BY searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-sign, same-flavour leptons, jets, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4, and on sbottom masses in the Tsbot3 simplified model, see Fig. 5.
\({ }^{26}\) AAD 15CJ searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of third generation squarks by combining a large number of searches covering various final states. Limits on the sbottom mass are shown, either assuming the \(\widetilde{b} \rightarrow b \widetilde{\chi}_{1}^{0}\) decay, see Fig. 11, or assuming the \(\tilde{b} \rightarrow t \widetilde{\chi}_{1}^{ \pm}\)decay, with \(\widetilde{\chi}_{1}^{ \pm} \rightarrow W^{(*)} \tilde{\chi}_{1}^{0}\), see Fig. 12a, or assuming the \(\tilde{b} \rightarrow b \tilde{\chi}_{2}^{0}\) decay, with \(\tilde{\chi}_{2}^{0} \rightarrow h \tilde{\chi}_{1}^{0}\), see Fig. 12b. Interpretations in the pMSSM are also discussed, see Figures 13-15.
\({ }^{27}\) KHACHATRYAN 15AF searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in simplified models where the decay \(\widetilde{b} \rightarrow b \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming \(\tan \beta=30\), \(A_{0}=-2 \max \left(m_{0}, m_{1 / 2}\right)\) and \(\mu>0\), are also presented, see Fig. 15.
28 KHACHATRYAN 15AH searched in 19.4 or \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from \(b\)-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in simplified models where the decay \(\widetilde{b} \rightarrow b \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 12. Limits are also set in a simplified model where the decay \(\tilde{b} \rightarrow c \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 12.
\({ }^{29}\) KHACHATRYAN 151 searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events in which \(b\)-jets and four \(W\)-bosons are produced. Five individual search channels are combined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, multilepton). No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in a simplified model where the decay \(\widetilde{b} \rightarrow t \widetilde{\chi}_{1}^{ \pm}\), with \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\), takes place with a branching ratio of \(100 \%\), see Fig. 7 .
\({ }^{30}\) AAD 14T searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for monojet-like events. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of third-generation squarks in simplified models which assume that the decay \(\widetilde{b}_{1} \rightarrow b \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, see Fig. 12.
\({ }^{31}\) CHATRCHYAN 14 AH searched in \(4.7 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a \(b\)-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\widetilde{b} \rightarrow b \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 28 and 29. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), are also presented, see Fig. 26.
\({ }^{32}\) CHATRCHYAN 14R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay \(\widetilde{b} \rightarrow t \widetilde{\chi}_{1}^{ \pm}\), with \(\widetilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\), takes place with a branching ratio of \(100 \%\), see Fig. 11 .
\({ }^{33} \mathrm{KHACHATRYAN}\) 15AD searched in \(19.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two opposite-sign same flavor isolated leptons featuring either a kinematic edge, with two opposite-sign same flavor isolated leptons featuring either a kinematic edge,
or a peak at the \(Z\)-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds is observed and \(95 \%\) statistically significant excess over the expected SM backgrounds is observed and \(95 \%\)
C.L. exclusion limits are derived in a simplified model of sbottom pair production where C.L. exclusion limits are derived in a simplified model of sbottom pair production where,
the sbottom decays into a \(b\)-quark, two opposite-sign dileptons and a neutralino LSP, through an intermediate state containing either an off-shell \(Z\)-boson or a slepton, see Fig. 8 .
\({ }^{34}\) AAD 14AX searched in \(20.1 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for the strong production of supersymmetric particles in events containing either zero or at last one high high- \(p_{T}\) lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from \(b\)-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with \(\tan \beta=30, A_{0}=\) \(-2 m_{0}\) and \(\mu>0\), see their Fig. 14. Also, exclusion limits are set in simplified models containing scalar bottom quarks, where the decay \(\tilde{b} \rightarrow b \tilde{\chi}_{2}^{0}\) and \(\tilde{\chi}_{2}^{0} \rightarrow h \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see their Figures 11 .
\({ }^{35}\) AAD 14E searched in \(20.3 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from \(b\)-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. mentum and other variables. No excess over the expected SM background is observed.
Exclusion limits are derived in simplified models containing bottom, see Fig. 7. Limits Exclusion limits are derived in simplified models containing bottom, see fig. . Limits
\({ }^{36}\) CHATRCHYAN 14 H searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in a simplified models where the decay \(\widetilde{b} \rightarrow t \widetilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), with varying mass of the \(\tilde{\chi}_{1}^{ \pm}\), for \(m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\), see Fig. 6 .
\({ }^{37}\) AAD 13 AU searched in \(20.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing two jets identified as originating from \(b\)-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of third-generation squarks. Assuming that the decay \(\widetilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, a \(\tilde{b}_{1}\) mass below 620 GeV is excluded for \(m_{\widetilde{\chi}_{1}^{0}}<120 \mathrm{GeV}\). For more details, see their Fig. 5.
\({ }^{38}\) CHATRCHYAN 13AT provides interpretations of various searches for supersymmetry by the CMS experiment based on 4.73-4.98 fb \({ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the framework of simplified models. Limits are set on the sbottom mass in a simplified models where sbottom quarks are pair-produced and the decay \(\widetilde{b} \rightarrow b \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 4.
\({ }^{39}\) CHATRCHYAN 13 T searched in \(11.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets and significant \(\nabla_{T}\), using the \(\alpha T\) variable to discriminate between processes with genuine and misreconstructed \(\mathscr{E}_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\widetilde{b} \rightarrow b \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 8 and Table 9.
\({ }^{40}\) CHATRCHYAN \(13 V\) searched in \(10.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and at least two \(b\)-jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the bottom mass in a simplified models where the decay \(\widetilde{b} \rightarrow t \tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), with varying mass of the \(\tilde{\chi}_{1}^{ \pm}\), for \(m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\), see Fig. 4.

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}
\({ }^{41}\) AAD 12AN searched in \(2.05 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for scalar bottom quarks in events with large missing transverse momentum and two \(b\)-jets in the final state. The data are found to be consistent with the Standard Model expectations. Limits are set in an R-parity conserving minimal supersymmetric scenario, assuming \(\mathrm{B}\left(\widetilde{b}_{1} \rightarrow b \widetilde{\chi}_{1}^{0}\right)=\) \(100 \%\), see their Fig. 2.
\({ }^{42}\) CHATRCHYAN 12AI looked in \(4.98 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with two same-sign leptons \((e, \mu)\), but not necessarily same flavor, at least \(2 b\)-jets and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in a simplified model for sbottom pair production, where the sbottom decays through \(\widetilde{b}_{1} \rightarrow t \widetilde{\chi}_{1} W\), see Fig. 8.
\({ }^{43}\) CHATRCHYAN 12BO searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for scalar bottom quarks in events with large missing transverse momentum and two \(b\)-jets in the final state. The data are found to be consistent with the Standard Model expectations. Limits are set in an R-parity conserving minimal supersymmetric scenario, assuming \(\mathrm{B}\left(\widetilde{b}_{1} \rightarrow b \widetilde{\chi}_{1}^{0}\right)=100 \%\), see their Fig. 2.
\({ }^{44} \mathrm{AAD} 11 \mathrm{~K}\) looked in \(34 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with heavy stable particles, identified by their anomalous \(\mathrm{dE} / \mathrm{dx}\) in the tracker or time of flight in the tile calorimeter, from pair production of \(\widetilde{b}\). No evidence for an excess over the SM expectation is observed and limits on the mass are derived for pair production of sbottom, see Fig. 4.
\({ }^{45} \mathrm{AAD} 110\) looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with jets, of which at least one is a \(b\)-jet, and \(\#_{T}\). No excess above the Standard Model was found. Limits are derived in the \(\left(m_{\tilde{g}}, m_{\tilde{b}_{1}}\right)\) plane (see Fig. 2) under the assumption of \(100 \%\) branching ratios and \(\widetilde{b}_{1}\) being the lightest squark. The quoted limit is valid for \(m_{\widetilde{b}_{1}}<\) 500 GeV . A similar approach for \(\tilde{t}_{1}\) as the lightest squark with \(\widetilde{g} \rightarrow \tilde{t}_{1} t\) and \(\tilde{t}_{1} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\) with \(100 \%\) branching ratios leads to a gluino mass limit of 520 GeV for \(130<m_{\tilde{t}_{1}}<\) 300 GeV . Limits are also derived in the CMSSM \(\left(m_{0}, m_{1 / 2}\right)\) plane for \(\tan \beta=40\), see Fig. 4, and in scenarios based on the gauge group \(\mathrm{SO}(10)\)
46 CHATRCHYAN 11D looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with \(\geq 2\) jets, at least one of which is b-tagged, and \(E_{T}\), where the \(\bar{b}\)-jets are decay products of \(\widetilde{t}\) or \(\widetilde{b}\). No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM \(\left(m_{0}, m_{1 / 2}\right)\) plane for \(\tan \beta=50\) (see Fig. 2).
\({ }^{47}\) AALTONEN 10R searched in \(2.65 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with \(E_{T}\) and exactly two jets, at least one of which is \(b\)-tagged. The results are in agreement with the SM prediction, and a limit on the cross section of 0.1 pb is obtained for the range of masses \(80<m_{\tilde{b}_{1}}<280 \mathrm{GeV}\) assuming that the sbottom decays exclusively to
\(b \tilde{\chi}_{1}^{0}\). The excluded mass region in the framework of conserved \(R_{p}\) is shown in a plane of ( \(m_{\tilde{b}_{1}}, m_{\widetilde{\chi}_{1}^{0}}\) ), see their Fig.2.
\({ }^{48}\) ABAZOV 10L looked in \(5.2 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events with at least 2 b-jets and \(E_{T}\) from the production of \(\widetilde{b}_{1} \tilde{b}_{1}\). No evidence for an excess over he SM expectation is observed, and a limit on the cross section is derived under the assumption of \(100 \%\) branching ratio. The excluded mass region in the framework of conserved \(R_{p}\) is shown in a plane of \(\left(m_{\tilde{b}_{1}}, m_{\widetilde{\chi}_{1}^{0}}\right)\), see their Fig. 3b. The exclusion also extends to \(m_{\tilde{\chi}_{1}^{0}}=110 \mathrm{GeV}\) for \(160<m_{\tilde{b}_{1}}<200 \mathrm{GeV}\).

\section*{R -parity violating \(\tilde{b}\) (Sbottom) mass limit}
\(\frac{\text { VALUE }(\mathrm{GeV})}{>\mathbf{3 0 7}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KHACHATRY...16BX }} \frac{\text { TECN }}{\text { CMS }} \frac{\text { COMMENT }}{\text { RPV, } \tilde{b} \rightarrow t d \text { or } t s, \lambda_{332}^{\prime \prime} \text { or } \lambda_{331}^{\prime \prime}}\)
\[
\begin{aligned}
& 2 \mathrm{AAD} \quad 14 \mathrm{E} \text { ATLS } \quad \ell^{ \pm} \ell^{ \pm}\left(\ell^{\mp}\right)+\text { jets, } \widetilde{b}_{1} \rightarrow t \widetilde{\chi}_{1}^{ \pm} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text {with } \widetilde{\chi}_{1}^{ \pm} \rightarrow w^{(*) \pm} \tilde{\chi}_{1}^{0} \text { sim- model, } m_{\widetilde{\chi}_{1}^{ \pm}}=2 m_{\widetilde{\chi}_{1}^{0}}
\end{aligned}
\]
\({ }^{1}\) KHACHATRYAN 16BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 2 leptons coming from R-parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits are derived on the sbottom mass, assuming the RPV \(\widetilde{b} \rightarrow t d\) or \(\widetilde{b} \rightarrow t s\) decay, see Fig. 15.
\({ }^{2}\) AAD 14E searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from \(b\)-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing bottom, see Fig. 7. Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.

\section*{\(\tilde{t}\) (Stop) mass limit}

Limits depend on the decay mode. In \(e^{+} e_{\sim}^{-}\)collisions they also depend on the mixing angle of the mass eigenstate \(\widetilde{t}_{1}=\widetilde{t}_{L} \cos \theta_{t}+\widetilde{t}_{R} \sin \theta_{t}\). The coupling to the \(Z\) vanishes when \(\theta_{t}=0.98\). In the Listings below, we use \(\Delta m \equiv m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\) or \(\Delta m \equiv m_{\tilde{t}_{1}}-m_{\widetilde{\nu}}\), depending on relevant decay mode. See also bounds in " \(\widetilde{q}\) (Squark) MASS LIMIT."
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

\section*{R-parity conserving \(\tilde{t}\) (Stop) mass limit}
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >1110 & 95 & \({ }^{1}\) SIRUNYAN & 19au CMS & \[
\begin{aligned}
& \gamma+\text { jets }+b \text {-jets }+{ }_{\text {F }}^{T}, \\
& \text { Tstop13, } m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1230 & 95 & \({ }^{1}\) SIRUNYAN & 19au CMS & \[
\begin{aligned}
& \gamma+\text { jets }+b \text {-jets }+E_{T}, \\
& \text { Tstop13, } m_{\widetilde{\chi}_{1}^{0}}=800 \\
&=8 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}


See key on page 999

\begin{tabular}{|c|c|c|c|}
\hline > 450 & 95 & 53 KHACHATRY...15AF CMS & \[
\begin{aligned}
\tilde{t} & \rightarrow t \tilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}=0, m_{\tilde{t}}>m_{t} \\
& +m_{\tilde{\chi}_{1}^{0}}
\end{aligned}
\] \\
\hline > 560 & 95 & 54 KHACHATRY...15AH CMS & \[
\begin{aligned}
\tilde{t} & \rightarrow t \tilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}=0, m_{\tilde{t}}>m_{t} \\
& +m_{\tilde{\chi}_{1}^{0}}
\end{aligned}
\] \\
\hline > 250 & 95 & 55 KHACHATRY...15AH CMS & \(\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}, m_{\tilde{t}^{-}} m_{\widetilde{\chi}_{1}^{0}}<10 \mathrm{GeV}\) \\
\hline none, 200-350 & 95 & \({ }^{56}\) KHACHATRY...15L CMS & \(\tilde{t} \rightarrow q q, \mathrm{RPV}, \lambda_{312} \neq 0\) \\
\hline none, 200-385 & 95 & \({ }^{56}\) KHACHATRY...15L CMS & \(\tilde{t} \rightarrow q b, \mathrm{RPV}, \lambda_{323} \neq 0\) \\
\hline > 730 & 95 & 57 KHACHATRY...15x CMS & \[
\begin{gathered}
\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}, \\
\quad m_{\tilde{t}}>m_{t}+m_{\widetilde{\chi}_{1}^{0}}
\end{gathered}
\] \\
\hline none 400-645 & 95 & 57 KHACHATRY...15x CMS & \[
\begin{aligned}
\tilde{t} & \rightarrow t \tilde{\chi}_{1}^{0} \text { or } \tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}, m_{\widetilde{\chi}_{1}^{0}} \\
& =100 \mathrm{GeV}, m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=
\end{aligned}
\] \\
\hline none 270-645 & 95 & \({ }^{58} \mathrm{AAD}\) 14AJ ATLS & \[
\begin{aligned}
& \geq 4 \text { jets }+\not E_{T}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0}, \\
& m_{\tilde{\chi}_{1}^{0}}<30 \mathrm{GeV}
\end{aligned}
\] \\
\hline none 250-550 & 95 & 58 AAD 14AJ ATLS & \[
\begin{aligned}
& \geq 4 \text { jets }+E_{T}, \mathrm{~B}\left(\tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm}\right) \\
& =50 \%, m_{\widetilde{\chi}_{1}^{ \pm}}=2 m_{\widetilde{\chi}_{1}^{0}} \\
& \quad m_{\widetilde{\chi}_{1}^{0}}<60 \mathrm{GeV}
\end{aligned}
\] \\
\hline none 210-640 & 95 & \(5^{59}\) AAD 14BD ATLS & \[
\begin{aligned}
& \ell^{ \pm}+\text {jets }+E_{T}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\
& \quad m_{\tilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 500 & 95 & \(5^{59}\) AAD 14BD ATLS & \[
\begin{aligned}
& \ell^{ \pm}+\text {jets }+\mathscr{E}_{T}, \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm} \\
& m_{\widetilde{\chi}_{1}^{ \pm}}=2 m_{\widetilde{\chi}_{1}^{0}}, 100 \mathrm{GeV}< \\
& m_{\widetilde{\chi}_{1}^{0}}<150 \mathrm{GeV}
\end{aligned}
\] \\
\hline none 150-445 & 95 & \({ }^{60} \mathrm{AAD} \quad 14 \mathrm{~F}\) ATLS & \(\ell^{ \pm} \ell^{\mp}\) final state, \(\tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm}\), \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{ \pm}}=10 \mathrm{GeV}, m_{\widetilde{\chi}_{1}^{0}}\) \\
\hline none 215-530 & 95 & \({ }^{60} \mathrm{AAD}\) (14F ATLS & \[
\begin{aligned}
& \ell^{ \pm} \ell^{\mp} \text { final state, } \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0}, \\
& \quad m_{\tilde{\chi}_{1}^{0}}=1 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 270 & 95 & \({ }^{61}\) AAD 14T ATLS & \(\tilde{t}_{1} \rightarrow c \tilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}}=200 \mathrm{GeV}\) \\
\hline > 240 & 95 & \({ }^{61}\) AAD 14T ATLS & \[
\tilde{t}_{1} \rightarrow c \tilde{\chi}_{1}^{0}, m_{\tilde{t}_{1}}-m_{\tilde{\chi}_{1}^{0}}<85 \mathrm{GeV}
\] \\
\hline > 255 & 95 & \({ }^{61}\) AAD 14T ATLS & \[
\begin{aligned}
& \tilde{t}_{1} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0}, m_{t_{1}}-m_{\tilde{\chi}_{1}^{0}} \approx \\
& m_{b}
\end{aligned}
\] \\
\hline > 400 & 95 & 62 CHATRCHYAN 14AH CMS & jets \(+E_{T}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) simplified model, \(m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\) \\
\hline & & 63 CHATRCHYAN 14R CMS & \[
\begin{gathered}
\geq 3 \ell^{ \pm}, \tilde{t} \rightarrow\left(b \tilde{\chi}_{1}^{ \pm} / t \tilde{\chi}_{1}^{0}\right), \\
\tilde{\chi}_{1}^{ \pm} \rightarrow\left(q q^{\prime} / \ell \nu\right) \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \\
(H / Z), \tilde{G}^{\prime}, \text { GMSB, natural } \\
\text { higgsino NLSP scenario }
\end{gathered}
\] \\
\hline > 740 & 95 & 64 KHACHATRY...14T CMS & \begin{tabular}{l}
\(\tau+b\)-jets, RPV, \(L Q \bar{D}, \lambda_{333}^{\prime} \neq\) \\
\(0, \tilde{t} \rightarrow \tau b\) simplified model
\end{tabular} \\
\hline > 580 & 95 & 64 KHACHATRY...14T CMS & \[
\begin{gathered}
\tau+b \text {-jets, RPV, } L Q \bar{D}, \lambda_{3 j k}^{\prime} \neq \\
0(j \neq=3), \tilde{t} \rightarrow \tilde{\chi}^{ \pm} b, \\
\tilde{\chi}^{ \pm} \rightarrow q q \tau^{ \pm} \text {simplified }
\end{gathered}
\] \\
\hline We do & use & following data for averages, fits, & s, etc. \\
\hline > 850 & 95 & \({ }^{65}\) AABOUD 17AF ATLS & \[
\begin{gathered}
2 \ell+\text { jets }+b \text {-jets }+\not \mathscr{E}_{T}, \text { Tstop6, } \\
m_{\widetilde{\chi}_{1}^{0}}=0
\end{gathered}
\] \\
\hline > 800 & 95 & \({ }^{66}\) AABOUD 17AF ATLS & \[
\begin{aligned}
& 2 \ell+\text { jets }+b \text {-jets }+E_{T}, \text { Tstop7 } \\
& \text { with } 100 \% \text { decays via } Z, \\
& m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}
\end{aligned}
\] \\
\hline > 880 & 95 & 67 AABOUD 17aF ATLS & \(2 \ell+\) jets \(+b\)-jets \(+{ }_{E}{ }_{T}\), Tstop7 with \(100 \%\) decays via higgs, \(m_{\widetilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\) \\
\hline & & 68 AABOUD 17AY ATLS & jets \(+E_{T}, \mathrm{pMSSM}-\mathrm{inspired}\) \\
\hline > 230 & & ROLBIECKI 15 THEO & \[
\begin{aligned}
& W W \text { xsection, } \tilde{t}_{1} \rightarrow b W \tilde{\chi}_{1}^{0} \\
& m_{\tilde{t}_{1}} \simeq m_{b}+m_{W}+m_{\tilde{\chi}_{1}^{0}}^{0}
\end{aligned}
\] \\
\hline > 600 & 95 & \({ }^{69}\) AAD 14B ATLS & \[
\begin{gathered}
z+b E_{T}, \tilde{t}_{2} \rightarrow Z \tilde{t}_{1}, \tilde{t}_{1} \rightarrow \\
t \tilde{\chi}_{1}^{0}, m_{\tilde{\chi}_{1}^{0}}<200 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 540 & 95 & \({ }^{69}\) AAD 14B ATLS & \begin{tabular}{l}
\[
z+b \underset{\sim}{\notin}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow
\] \\
\(Z \mathrm{G}\), natural \(\mathrm{GMSB}, 100 \mathrm{GeV}\) \(<m_{\widetilde{\chi}_{1}^{0}}<m_{\tilde{t}_{1}}-10 \mathrm{GeV}\)
\end{tabular} \\
\hline > 360 & 95 & 70 CHATRCHYAN 14U CMS & \[
\begin{aligned}
& \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm} r, \tilde{\chi}_{1}^{ \pm} \rightarrow f f^{\prime} \tilde{\chi}_{1}^{0}, \\
& \tilde{\chi}_{1}^{0} \rightarrow H \tilde{G} \text { simplified model, } \\
& m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}, \mathrm{GMSB}
\end{aligned}
\] \\
\hline > 215 & 95 & CZAKON \(\quad 14\)
71 KHACHATRY... 14 C & \[
\begin{aligned}
& \tilde{t} \rightarrow t \chi_{1}^{0}, m_{\chi_{1}^{0}}<10 \mathrm{GeV} \\
& \tilde{t}_{2} \underset{\text { plified model }}{H \tilde{t}_{1} \text { or } t_{2}} \rightarrow z \tilde{t}_{1} \text { sim- }
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 19AU searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at last one photon, jets, some of which are identified as originating from \(b\)-quarks, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the gluino mass in the Tglu4C, Tglu4D and Tglu4E simplified models, and on the top squark mass in the Tstop13 simplified model, see their Figure 5.
\({ }^{2}\) SIRUNYAN 19 CH searched in \(137 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing multiple jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.
\({ }^{3}\) SIRUNYAN 19 s searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with zero or one charged leptons, jets and \(E_{T}\). The razor variables ( \(M_{R}\) and \(R^{2}\) ) are used to categorize the events. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3C simplified models, see Figures 22 and 23, and on the stop mass in the Tstop1 simplified model, see their Figure 24.
\({ }^{4}\) SIRUNYAN 19 u searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing one electron-muon pair with opposite charge. The search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production is very similar, due to the mass difference between the top squark and the neutralino being close to the top quark mass. No excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 model, with \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\) close to \(m_{t}\), see Figure 5.
\({ }^{5}\) AABOUD 18AQ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop1 models, top squark masses up to 940 GeV are excluded assuming \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\), see their Fig. 20. If the top quark is not on-shell (3-body) decay, exclusions up to 500 GeV are obtained for \(m_{\widetilde{\chi}_{1}^{0}}=300 \mathrm{GeV}\). Exclusions as a function of \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\) are given in their Fig. 21.
\({ }^{6}\) AABOUD 18AQ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop3 models (4-body), top squark masses up to 370 GeV are excluded for \(m_{\tilde{t}}-m_{\tilde{\chi}_{1}^{0}}\) as low as 20 GeV . Top squark masses below 195 GeV are
excluded for all \(m_{\widetilde{\chi}_{1}^{0}}\), see their Fig. 20 and Fig. 21.
\({ }^{7}\) AABOUD 18AQ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop2 models, top squark masses up to 840 GeV are excluded for \(m_{\tilde{t}}-m_{\widetilde{\chi}_{1}^{ \pm}}=10 \mathrm{GeV}\). See their Fig. 23. Exclusion limits for this decay mode are presented also in the context of Higgsino-LSP phenomenological MSSM models, where \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\), see their Fig 26.
\({ }^{8}\) AABOUD 18BV searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet identified as \(c\)-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop4 models. In scenarios with differences of the stop and neutralino masses below 100 GeV , stop masses below 500 GeV are excluded. See their Fig. 6 and Fig. 7.
\({ }^{9}\) AABOUD 18BV searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet identified as \(c\)-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop1 models. In scenarios with massless neutralinos, top squark masses below 850 GeV are excluded. See their Fig. 6.
\({ }^{10}\) AABOUD 18I searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop3 models. Stop masses below 390 GeV are excluded for \(m_{\tilde{t}}-m_{\widetilde{\chi}_{1}^{0}}=m_{b}\). See their Fig.9(b).
\({ }^{11}\) AABOUD 18 searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop4 models. In scenarios with differences of the stop and neutralino masses around 5 GeV , stop masses below 430 GeV are excluded. See their Fig.9(a).
12 AABOUD 18 Y searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct pair production of top squarks in final states with two tau leptons, \(b\)-jets, and missing transverse momentum. At least one hadronic \(\tau\) is required. No significant deviation from the SM predictions is observed in the data. The analysis results are interpreted in Tstop5 models with a nearly massless gravitino. Top squark masses up to 1.16 TeV and tau slepton masses up to 1 TeV are excluded, see their Fig 7.
13 SIRUNYAN 18AJ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two low-momentum, oppositely charged leptons (electrons or muons) and \(E_{T}\). No excess over the expected background is observed. Limits are derived on the wino mass in the Tchi1n2F simplified model, see their Figure 5. Limits are also set on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tchi1n2G simplified model, see Figure 8 and in the pMSSM, see Figure 7.
14 SIRUNYAN 18AL searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least three charged leptons, in any combination of electrons and muons, jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 6, and on the stop mass in the Tstop7 simplified model, see their Figure 7.
\({ }^{15}\) SIRUNYAN 18AN searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing one or two photons and a pair of top quarks from the decay of a pair of top squark in a natural gauge-mediated scenario. The final state consists of a lepton (electron or muon), jets and one or two photons. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop12 simplified model, see their Figure 6.
\({ }^{16}\) SIRUNYAN 18AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing one or more jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range \(10^{-3}\) \(\mathrm{mm}<\mathrm{c} \tau<10^{5} \mathrm{~mm}\), see their Figure 4.
17 SIRUNYAN 18B searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for the pair production of third-generation squarks in events with jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot1 simplified model, see their Figure 5, and on the stop mass in the Tstop4 simplified model, see their Figure 6.
18 SIRUNYAN 18C searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for the pair production of top squarks in events with two oppositely charged leptons (electrons or muons), jets identified as originating from a \(b\)-quark and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop2 and Tstop11 simplified models, see their Figures 11 and 12. The Tstop1 and Tstop2 results are combined with complementary searches in the all-hadronic and single lepton channels, see their Figures 13 and 14.
19 SIRUNYAN 18D searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing identified hadronically decaying top quarks, no leptons, and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 8, and on the gluino mass in the Tglu3A, Tglu3B, Tglu3C and Tglu3E simplified models, see their Figure 9.
20 SIRUNYAN 18DI searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for pair production of top squarks in events with a low transverse momentum lepton (electron or muon), a high-momentum jet and significant missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop3 and Tstop10 simplified models, see their Figures 7 and 8. A combination of this search with the all-hadronic search is presented in Figure 9.
21 SIRUNYAN 18DN searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct electroweak production of charginos and for pair production of top squarks in events with two leptons (electrons or muons) of the opposite electric charge. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the Tchi1chi1C and Tchi1chi1E simplified models, see their Figure 8. Limits are also set on the stop mass in the Tstop1 and Tstop2 simplified models, see their Figure 9.
22 AABOUD 17AJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the top squark mass in Tstop11 simplified models, assuming \(m_{\widetilde{\chi}_{1}^{0}}=m_{\tilde{t}}-275\) GeV and \(m_{\widetilde{\chi}_{2}^{0}}=m_{\widetilde{\chi}_{1}^{0}}+100 \mathrm{GeV}\). See their Figure 4(e).
23 AABOUD 17AX searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two jets identified as originating from \(b\)-quarks and large missing transverse momentum, with or without leptons. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of top squarks. Assuming \(50 \%\) BR for Tstop1 and Tstop2 simplified models, a \(\widetilde{t}_{1}\) mass below 880 (860) GeV is excluded for \(m_{\widetilde{\chi}_{1}^{0}}=0(<250) \mathrm{GeV}\). See their Fig. 7(b).
\({ }^{24}\) AABOUD 17AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least four jets and large missing transverse momentum. No significant excess above at least four jets and large missing transverse momentum. No significant excess abo
the Standard Model expectations is observed. Limits in the range \(250-1000 \mathrm{GeV}\) are the Standard Model expectations is observed. Limits in the range \(250-1000 \mathrm{GeV}\) are
set on the top squark mass in Tstop 1 simplified models. For the first time, additional set on the top squark mass in Tstop1 simplified models. For the first time, additional
constraints are set for the region \(m_{\tilde{t}_{1}} \sim m_{t}+m_{\tilde{\chi}_{1}^{0}}^{0}\), with exclusion of the \(\tilde{t}_{1}\) mass range \(235-590 \mathrm{GeV}\). See their Figure 8.
\({ }^{25}\) AABOUD 17AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits in the range \(450-850 \mathrm{GeV}\) are set on the top squark mass in a mixture of Tstop1 and Tstop2 simplified models with \(\mathrm{BR}=50 \%\) and assuming \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}\) and \(m_{\chi_{1}^{0}}<240 \mathrm{GeV}\). Constraints are given for various values of the BR. See their Figure 9.
\({ }^{26}\) AABOUD 17BE searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 720 GeV are set on the top squark mass in Tstop1 simplified models, assuming massless neutralinos. See their Figure 9 (2-body area).
\({ }^{27}\) AABOUD 17BE searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 400 GeV are set on the top squark mass in Tstop3 simplified models, assuming \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}^{0}\) \(=40 \mathrm{GeV}\). See their Figure 9 (4-body area).
\({ }^{28}\) AABOUD 17BE searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 430 GeV are set on the top squark mass in Tstop1 simplified models where top quarks are offshell, assuming \({\tilde{t_{1}}}-m_{\tilde{\chi}_{1}^{0}}\) close to the \(W\) mass. See their Figure 9 (3-body area).
\({ }^{29}\) AABOUD 17BE searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the top squark mass in Tstop2 simplified models, assuming \(m_{t_{1}}-m_{\widetilde{\chi}_{1}^{ \pm}}=10 \mathrm{GeV}\) and massless neutralinos. See their Figure 10.
30 KHACHATRYAN 17 searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more jets, no more than one lepton, and missing transverse momentum, using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop1 simplified model, see Fig. 17.
31 KHACHATRYAN 17AD searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing at least four jets (including \(b\)-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Top squark masses in the range \(250-740 \mathrm{GeV}\) and neutralino masses up to 240 GeV are excluded at 95\% C.L. See Fig. 12.

32 KHACHATRYAN 17AD searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing at least four jets (including \(b\)-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Limits are derived on the \(\widetilde{t}\) mass in simplified models that are a mixture of Tstop1 and Tstop2 with branching fractions \(50 \%\) for each of the two decay modes: top squark masses of up to 610 GeV and neutralino masses up to 190 GeV are excluded at \(95 \%\) C.L. The \(\widetilde{\chi}_{1}^{ \pm}\)and the \(\widetilde{\chi}_{1}^{0}\) are assumed to be nearly degenerate in mass, with a 5 GeV difference between their masses. See Fig. 12.
33 KHACHATRYAN 17 P searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8.
\({ }^{34}\) KHACHATRYAN 17 s searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multiple jets and missing transverse momentum, using the \(\alpha_{T}\) variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop4 model: for \(\Delta \mathrm{m}=m_{\tilde{t}}-m_{\widetilde{\chi}}^{0}\) equal to 10 and 80 GeV , masses of stop below 240 and 260 GeV are excluded, respectively. See their Fig.3.
35 KHACHATRYAN 17 s searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multiple jets and missing transverse momentum, using the \(\alpha_{T}\) variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop3 model: for \(\Delta \mathrm{m}=m_{\tilde{t}}-m_{\widetilde{\chi}_{0}^{0}}\) equal to 10 and 80 GeV , masses of stop below 225 and 130 GeV are excluded, respectively. See their Fig.3.
36 KHACHATRYAN 17 S searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multiple jets and missing transverse momentum, using the \(\alpha_{T}\) variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop2 model: assuming \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.25 m_{\tilde{t}}+0.75 m_{\widetilde{\chi}_{1}^{0}}\), masses of stop up to 325 GeV and masses of the neutralino up to 225 GeV are excluded. See their Fig.3.
37 KHACHATRYAN 17 S searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multiple jets and missing transverse momentum, using the \(\alpha_{T}\) variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop2 model: assuming \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.75 m_{\tilde{t}}+0.25 m_{\widetilde{\chi}_{1}^{0}}\), masses of stop up to 400 GeV are excluded for low neutralino masses. See their Fig.3.
38 KHACHATRYAN 17 S searched in \(18.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multiple jets and missing transverse momentum, using the \(\alpha_{T}\) variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop1 model: assuming masses of stop up to 500 GeV and masses of the neutralino up to 105 GeV are excluded. See their Fig.3.
\({ }^{39}\) SIRUNYAN 17AS searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a single lepton (electron or muon), jets, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Standard Model expectations is observed. Limits are set on the stop
Tstop2 and Tstop8 simplified models, see their Figures 5,6 and 7 .
40 SIRUNYAN 17AT searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct production of top squarks in events with jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop2, Tstop3, Tstop4, Tstop8 and Tstop10 simplified models, see their Figures 9 to 14 .
41 SIRUNYAN 17AZ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8.
42 SIRUNYAN 17 K searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for direct production of stop or sbottom pairs in events with multiple jets and significant \(E_{T}\). A second search also requires an isolated lepton and is combined with the all-hadronic search. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop8 and Tstop4 simplified models, see their Figures 7, 8 and 9 (for the Tstop4 limits, only the results of the all-hadronic search are used). Limits are also set on the sbottom mass in the Tsbot1 simplified model, see Fig. 10 (also here, only the results of the all-hadronic search are used).
43 SIRUNYAN 17P searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with multiple jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsqk1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13.
\({ }^{44}\) AABOUD 16D searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with an energetic jet and large missing transverse momentum. The results are interpreted as \(95 \%\) C.L. limits on mass of stop decaying into a charm-quark and the lightest neutralino in scenarios with \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}\) between 5 and 20 GeV . See their Fig. 5.
\({ }^{45}\) AABOUD 16J searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with one isolated electron or muon, jets, and missing transverse momentum. For the direct stop pair production model where the stop decays via top and lightest neutralino, the results exclude at \(95 \%\) C.L. stop masses between 745 GeV and 780 GeV for a massless \(\widetilde{\chi}_{1}^{0}\). See their Fig. 8.
\({ }^{46}\) AAD 16AY searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at \(95 \%\) C.L. on the mass of top squarks decaying via \(\widetilde{\tau}\) to a nearly massless gravitino are placed depending on \(m_{\widetilde{\tau}}\) which is ranging from the 87 GeV LEP limit to \(\tilde{m}_{t_{1}}\). See their Figs. 9 and 10 .

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}

47 KHACHATRYAN 16AV searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or two isolated leptons, hadronic jets, \(b\)-jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 and Tstop2 simplified models, see Fig. 11.
48 KHACHATRYAN 16BK searched in \(18.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with hadronic jets and \(\mathbb{E}_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 and Tstop2 simplified models, see Fig. 16.
49 KHACHATRYAN 16BS searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one energetic jet, no isolated leptons, and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see Fig. 11 and Table 3.
50 KHACHATRYAN 16 Y searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or two soft isolated leptons, hadronic jets, and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop3 simplified model, see Fig. 3.
\({ }^{51}\) AAD 15CJ searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of third generation squarks by combining a large number of searches covering various final states. Stop decays with and without charginos in the decay chain are considered and summaries of all ATLAS Run 1 searches for direct stop production can be found in Fig. 4 (no intermediate charginos) and Fig. 7 (intermediate charginos). Limits are set on stop masses in compressed mass regions regions, with \(\mathrm{B}\left(\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}\right)+\mathrm{B}\left(\tilde{t} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0}\right)=\) 1 , see Fig. 5. Limits are also set on stop masses assuming that both the decay \(\widetilde{t} \rightarrow\) \(t \widetilde{\chi}_{1}^{0}\) and \(\widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\)are possible, with both their branching rations summing up to 1 , assuming \(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{(*)} \tilde{\chi}_{1}^{0}\) and \(m_{\tilde{\chi}_{1}^{ \pm}}=2 m_{\tilde{\chi}_{1}^{0}}\), see Fig. 6. Limits on the mass of the next-to-lightest stop \(\tilde{t}_{2}\), decaying either to \(Z \tilde{t}_{1}, h \tilde{t}_{1}\) or \(t \tilde{\chi}_{1}^{0}\), are also presented, see Figs. 9 and 10. Interpretations in the pMSSM are also discussed, see Figs 13-15.
\({ }^{52}\) AAD 15J interpreted the measurement of spin correlations in \(t \bar{t}\) production using 20.3 \(\mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) in exclusion limits on the pair production of light \(\tilde{t}_{1}\) squarks with masses similar to the top quark mass. The \(\tilde{t}_{1}\) is assumed to decay through \(\tilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}\) with predominantly right-handed top and a \(100 \%\) branching ratio. The data are found to be consistent with the Standard Model expectations and masses between the top quark mass and 191 GeV are excluded, see their Fig. 2
53 KHACHATRYAN 15AF searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets and significant \(\mathbb{F}_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay \(\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming \(\tan \beta=30, A_{0}=\) \(-2 \max \left(m_{0}, m_{1 / 2}\right)\) and \(\mu>0\), are also presented, see Fig. 15.
54 KHACHATRYAN 15AH searched in 19.4 or \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from \(b\)-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 9. Limits are also set in simplified models where the decays \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) and \(\tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\), with \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\), each take place with a branching ratio of \(50 \%\), see Fig. 10, or with other fractions, see Fig. 11. Finally, limits are set in a simplified model where the decay \(\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 9,10 and 11.
55 KHACHATRYAN 15AH searched in 19.4 or \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from \(b\)-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay \(\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 9. Limits are also set in simplified models where the decays \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) and \(\tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\), with \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\), each take place with a branching ratio of \(50 \%\), see Fig. 10, or with other fractions, see Fig. 11. Finally, limits are set in a simplified model where the decay \(\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 9, 10, and 11 .
56 KHACHATRYAN 15L searched in \(19.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for pair production of heavy resonances decaying to pairs of jets in four jet events. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in \(R\)-parity-violating supersymmetry models where \(\tilde{t} \rightarrow q q\left(\lambda_{312}^{\prime \prime} \neq 0\right)\), see Fig. 6 (top) and \(\tilde{t} \rightarrow q b\left(\lambda_{323}^{\prime \prime} \neq 0\right)\), see Fig. 6 (bottom).
57 KHACHATRYAN \(15 \times\) searched in \(19.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets, at least one of which is required to originate from a \(b\) quark, possibly a lepton, and significant \(E_{T}\), using the razor variables \(\left(M_{R}\right.\) and \(\left.R^{2}\right)\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay \(\tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) and the decay \(\tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\), with \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5\) GeV , take place with branching ratios varying between 0 and \(100 \%\), see Figs. 15,16 and 17.
\({ }^{58} \mathrm{AAD}\) 14AJ searched in \(20.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing four or more jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of third-generation squarks in simplified models which either assume that the decay \(\tilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, see Fig. 8 , or that this decay takes place \(50 \%\) of the time, while the decay \(\tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm}\)takes place the other \(50 \%\) of the time, see Fig. 9.
\({ }^{59}\) AAD 14BD searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing one isolated lepton, jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at \(95 \%\) C.L. are set on the masses of third-generation squarks in simplified models which either assume that the decay \(\widetilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, see Fig. 15 , or
the decay \(\widetilde{t}_{1} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\)takes place \(100 \%\) of the time, see Fig. \(16-22\). For the mixed decay scenario, see Fig. 23.
60 AAD 14F searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing two leptons ( \(e\) or \(\mu\) ), and possibly jets and missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion of events above the expected level of Standard Model background was found. Exclusion
limits at \(95 \%\) C. are set on the masses of third-generation squarks in simplified models which either assume that the decay \(\tilde{t}_{1} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\)takes place \(100 \%\) of the time, see Figs. 14-17 and 20, or that the decay \(\tilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, see Figs. 18 and 19.
61 AAD 14T searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for monojet-like and \(c\)-tagged events. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95\% C.L. are set on the masses of third-generation squarks in simplified models which assume that the decay \(\tilde{t}_{1} \rightarrow c \widetilde{\chi}_{1}^{0}\) takes place \(100 \%\) of the time, see Fig. 9 and 10. The results of the monojet-like analysis are also interpreted in terms of stop pair production in the four-body decay \(\widetilde{t}_{1} \rightarrow b f f^{\prime} \tilde{\chi}_{1}^{0}\), see Fig. 11.
\({ }^{62}\) CHATRCHYAN 14AH searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a \(b\)-quark. No significant excess above the at least one of the jets to be originating from a \(b\)-quark. No significant excess above the
Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 28 and 29. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), are also presented, see Fig. 26.
\({ }^{63}\) CHATRCHYAN 14R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in a natural higgsino NLSP simplified model (GMSB) where the decay \(\widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\), with \(\widetilde{\chi}_{1}^{ \pm} \rightarrow\left(q q^{\prime} / \ell \nu\right) H, Z \widetilde{G}\), takes place with a branching ratio of \(100 \%\) (the particles between brackets have a soft \(p_{T}\) spectrum), see Figs. 4-6.
\({ }^{64}\) KHACHATRYAN 14 T searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with \(\tau\)-leptons and \(b\)-quark jets, possibly with extra light-flavour jets. No excess above the Standard Model expectations is observed. Limits are set on stop masses in RPV SUSY models with \(L Q \bar{D}\) couplings, in two simplified models. In the first model, the decay \(\tilde{t} \rightarrow \tau b\) is considered, with \(\lambda_{333}^{\prime} \neq 0\), see Fig. 3. In the second model, the decay \(\tilde{t} \rightarrow \widetilde{\chi}^{ \pm} b\), with the subsequent decay \(\widetilde{\chi}^{ \pm} \rightarrow q q \tau^{ \pm}\)is considered, with \(\lambda_{3 j k}^{\prime} \neq 0\) and the mass splitting between the top squark and the charging chosen to be 100 GeV , see Fig. 4.
65 AABOUD 17AF searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for evidence of top squarks in events containing 2 leptons, jets, \(b\)-jets and \(E_{T}\). In Tstop6 model, assuming \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}, \widetilde{t}_{1}\) masses up to 850 GeV are excluded for \(m_{\widetilde{\chi}_{2}^{0}}>200 \mathrm{GeV}\).
\({ }^{66}\) AABOUD 17AF searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for evidence of \(\tilde{t}_{2}\) in events containing 2 leptons, jets, \(b\)-jets and \(E_{T}\). In Tstop7 model, assuming \(m_{\widetilde{\chi}_{1}^{0}}=\)
50 GeV and \(100 \%\) decays via \(Z\) boson, \(\tilde{t}_{2}\) masses up to 800 GeV are excluded. Exclusion limits are also shown as a function of the \(\tilde{t}_{2}\) branching ratios in their Figure 7.
67 AABOUD 17AF searched in \(36 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for evidence of \(\widetilde{t}_{2}\) in events containing 2 leptons, jets, \(b\)-jets and \(E_{T}\). In Tstop7 model, assuming \(m_{\widetilde{\chi}_{1}^{0}}\)
\(=50 \mathrm{GeV}\) and \(100 \%\) decays via higgs boson, \(\widetilde{t}_{2}\) masses up to 880 GeV are excluded. Exclusion limits are also shown as a function of the \(\widetilde{t}_{2}\) branching ratios in their Figure 7.
68 AABOUD 17AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the top squark mass assuming three pMSSM-inspired models. The first one, referred to as Higgsino LSP model, assumes \(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\) and \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}=10 \mathrm{GeV}\), with a mixture of decay modes as in Tstop1, Tstop2 and Tstop6. See their Figure 10. The second and third models are referred to as Wino NLSP and well-tempered pMSSM models, respectively. See their Figure 11 and Figure 12, and text for details on assumptions.
69 AAD 14B searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing a \(Z\) boson, with or without additional leptons, plus jets originating from \(b\)-quarks and significant missing transverse momentum. No excess over the expected SM background is observed. Limits are derived in simplified models featuring \(t_{2}\) production, with \(t_{2} \rightarrow\) \(z \tilde{t}_{1}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0}\) with a \(100 \%\) branching ratio, see Fig. 4, and in the framework of natural GMSB, see Fig. 6.
\({ }^{70}\) CHATRCHYAN 14 searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of direct pair production of top squarks, with Higgs bosons in the decay chain. The search is performed using a selection of events containing two Higgs bosons, each decaying to a photon pair, missing transverse energy and possibly \(b\)-quark jets. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of a "natural SUSY" simplified model where the decays \(\widetilde{t}_{1} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\), with \(\tilde{\chi}_{1}^{ \pm} \rightarrow f f^{\prime} \tilde{\chi}_{1}^{0}\), and \(\tilde{\chi}_{1}^{0} \rightarrow H \tilde{G}\), all happen with \(100 \%\) branching ratio, see Fig. 4 .
71 KHACHATRYAN 14 C searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for evidence of direct pair production of top squarks, with Higgs or \(Z\)-bosons in the decay chain. The search is performed using a selection of events containing leptons and \(b\)-quark jets. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of a simplified model with pair production of a heavier topsquark mass eigenstate \(t_{2}\) decaying to a lighter top-squark eigenstate \(t_{1}\) via either \(t_{2} \rightarrow\) \(H \tilde{t}_{1}\) or \(\tilde{t}_{2} \rightarrow Z \tilde{t}_{1}\), followed in both cases by \(\tilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}\). The interpretation is performed in the region where the mass difference between the \(\widetilde{t}_{1}\) and \(\widetilde{\chi}_{1}^{0}\) is approximately equal to the top-quark mass, which is not probed by searches for direct \(\tilde{t}_{1}\) pair production, see Figs. 5 and 6. The analysis excludes top squarks with masses \(m_{\tilde{t}_{2}}<575 \mathrm{GeV}\) and \(m_{\tilde{t}_{1}}<400 \mathrm{GeV}\) at \(95 \%\) C.L.

R-parity violating \(\tilde{t}\) (Stop) mass limit
\begin{tabular}{|c|c|c|c|c|}
\hline Value (Gev) & CL\% & DOCUMENT ID & TECN & COMment \\
\hline >1150 & 95 & \({ }^{1}\) SIRUNYAN & 19BI ATLS & \begin{tabular}{l}
\(\widetilde{t} \rightarrow b \mu\), long-lived, \\
Tstop2RPV, \(\mathrm{c} \tau=0.1 \mathrm{~cm}\)
\end{tabular} \\
\hline >1100 & 95 & \({ }_{2}^{2}\) SIRUNYAN & 19BJ CMS & \(\tilde{t} \rightarrow\) be, Tstop2RPV, prompt \\
\hline none 100-410 & 95 & \({ }^{3}\) AABOUD & 18BB ATLS & 4 jets, Tstop1RPV with \(\widetilde{t} \rightarrow\) \(d s, \lambda_{312}^{\prime \prime}\) coupling \\
\hline \[
\begin{gathered}
\text { none } 100-470, \\
480-610
\end{gathered}
\] & 95 & \({ }^{4}\) AABOUD & 18BB ATLS & 4 jets, Tstop1RPV, \(\lambda_{323}^{\prime \prime}\) coupling \\
\hline \(\geq 600-1500\) & 95 & \({ }^{5}\) AABOUD & 18P ATLS & \[
\begin{aligned}
& 2 \ell+b \text {-jets, Tstop2RPV, de- } \\
& \quad \text { pending on } \lambda_{i 33}^{\prime} \text { coupling ( } i \\
& =1,2,3 \text { ) }
\end{aligned}
\] \\
\hline >1130 & 95 & \({ }^{6}\) SIRUNYAN & 18AD CMS & \(\tilde{t} \rightarrow\) b , long-lived, \(\mathrm{c} \tau=\) \\
\hline > 550 & 95 & \({ }^{6}\) SIRUNYAN & 18AD CMS & \(\tilde{t} \rightarrow b \ell\), long-lived, \(\mathrm{c} \tau=\) \(1-1000 \mathrm{~mm}\) \\
\hline >1400 & 95 & 7 SIRUNYAN & 18DV CMS & \begin{tabular}{l}
long-lived \(\bar{t}, \mathrm{RPV}, \tilde{t} \rightarrow \bar{d} \bar{d}, 0.6\) \\
\(\mathrm{mm}<\mathrm{c} \tau<80 \mathrm{~mm}\)
\end{tabular} \\
\hline none 80-520 & 95 & \({ }^{8}\) SIRUNYAN & 18DY CMS & 2, 4 jets, Tstop3RPV, \(\lambda_{312}^{\prime \prime}\) coupling \\
\hline \[
\begin{gathered}
\text { none } 80-270, \\
285-340, \\
400-525
\end{gathered}
\] & 95 & \({ }^{8}\) SIRUNYAN & 18DY CMS & 2,4 jets, Tstop1RPV, \(\lambda_{323}^{\prime \prime}\)
coupling \\
\hline >1200 & 95 & \({ }^{9}\) AABOUD & 17AI ATLS & \(\geq 1 \ell+\geq 8\) jets, Tstop1 with \(\tilde{\chi}_{1}^{0} \rightarrow t b s, \lambda_{323}^{\prime \prime}\) coupling, \(m_{\widetilde{\chi}_{1}^{0}}=500 \mathrm{GeV}\) \\
\hline none, 100-315 & 95 & \({ }^{10}\) AAD & 6AMATLS & 2 large-radius jets, Tstop1RPV \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. - -
\begin{tabular}{|c|c|c|c|}
\hline > 890 & 95 & 11 KHACHATRY...16AC CMS & \[
\begin{gathered}
e^{+} e^{-}+\geq 5 \text { jets; } \tilde{t} \rightarrow b \tilde{\chi}_{1}^{ \pm} \\
\tilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} j j, \lambda_{i j k}^{\prime}
\end{gathered}
\] \\
\hline >1000 & 95 & 11 KHACHATRY...16AC CMS & \[
\begin{gathered}
\mu^{+} \mu^{-}+\geq 5 \text { jets; } \tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm} \\
\tilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} j j, \lambda_{i j k}^{\prime}
\end{gathered}
\] \\
\hline > 950 & 95 & 12 KHACHATRY...16BX CMS & \[
\begin{aligned}
\tilde{t} & \rightarrow t \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu, \lambda_{121} \text { or } \\
& \lambda_{122} \neq 0
\end{aligned}
\] \\
\hline > 790 & 95 & 13 KHACHATRY...15E CMS & \(\tilde{t}_{1} \rightarrow b \ell \ell, \mathrm{c} \tau=2 \mathrm{~cm}\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 19BI searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with two muons and two jets, or with one muon, two jets, and missing transverse momentum. Limits are set in a model of pair-produced, prompt or long-lived top squarks with R-parity violating decays to a \(b\)-quark and a lepton (Tstop2RPV), branching fraction of \(t \rightarrow b \mu\) equal to \(1 / 3\) and \(c \tau\) between 0.1 cm and 10 cm in the case of long-lived top squarks. See their Fig. 10.
\({ }^{2}\) SIRUNYAN 19BJ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with two electrons and two jets, or with one electron, two jets, and missing transverse momentum. Limits are set in a model of pair-produced, prompt top squarks with R-parity violating decays to a \(b\)-quark and a lepton (Tstop2RPV), assuming branching fraction of \(\widetilde{t} \rightarrow\) be equal to \(1 / 3\) and \(c \tau=0 \mathrm{~cm}\). See their Fig. 10 .
\({ }^{3}\) AABOUD 18BB searched in \(36.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for massive colored resonances which are pair-produced and decay into two jets. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model as Tstop1RPV with \(t \rightarrow d s\). Top squarks with masses in the range \(100-410 \mathrm{GeV}\) are excluded, see their Figure 9(a). The \(\lambda_{312}^{\prime \prime}\) coupling is assumed to be sufficiently large for the decays to be prompt, but small enough to neglect the single-top-squark resonant production through RPV couplings.
\({ }^{4}\) AABOUD 18BB searched in \(36.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for massive coloured resonances which are pair-produced and decay into two jets. No significant deviation from the background prediction is observed. Results are interpreted in Tstop1RPV. Top squarks with masses in the range \(100-470 \mathrm{GeV}\) or \(480-610 \mathrm{GeV}\) are excluded, see their Figure 9(b). The \(\lambda_{323}^{\prime \prime}\) coupling is assumed to be sufficiently large for the decays to be prompt, but small enough to neglect the single-top-squark resonant production through RPV couplings.
\({ }^{5}\) AABOUD 18P searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for pair-produced top squarks that decay through RPV \(\lambda_{i 33}^{\prime}(i=1,2,3)\) couplings to a final state with two leptons and two jets, at least one of which is identified as a \(b\)-jet. No significant excess is observed over the SM background. In the Tstop2RPV model, lower limits on the top squark masses between 600 and 1500 GeV are set depending on the branching fraction to \(b e, b \mu\), and \(b \tau\) final states. See their Figs 6 and 7.
\({ }^{6}\) SIRUNYAN 18AD searched in \(2.6 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived particles by exploiting the multiplicity of displaced jets to search for the presence of signal decays occurring at distances between 1 and 1000 mm . Limits are set in a model of pair-produced, long-lived top squarks with R-parity violating decays to a \(b\)-quark and a lepton, see their Figure 3.
7 SIRUNYAN 18DV searched in \(38.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived particles in events with multiple jets and two displaced vertices composed of many tracks. No events with two well-separated high-track-multiplicity vertices were observed. Limits are set on the stop and the gluino mass in RPV models of supersymmetry where the stop (gluino) is decaying solely into dijet (multijet) final states, see their Figures 6 and 7.
\({ }^{8}\) SIRUNYAN 18DY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for the pair production of resonances, each decaying to two quarks. The search is conducted separately in a boosted (two-jet) and resolved (four-jet) jet topology. The mass spectra are found to be consistent with the Standard Model expectations. Limits are set on the stop mass in the Tstop3RPV and Tstop1RPV simplified models, see their Figure 11.
\({ }^{9}\) AABOUD 17AI searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more isolated lepton, at least eight jets, either zero or many \(b\)-jets, for evidence of R-parity violating decays of the top squark. No significant excess above the Standard Model expectations is observed. Limits up to 1.25 (1.10) TeV are set on the top squark mass in R-parity-violating supersymmetry models where \(\tilde{t}_{1}\) decays for a bino LSP as: \(\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}\) and for a higgsino LSP as \(\tilde{t} \rightarrow t \tilde{\chi}_{1,2}^{0} / b \tilde{\chi}_{1}^{+}\). These is followed by the decays through the non-zero \(\lambda_{323}^{\prime \prime}\) coupling \(\widetilde{\chi}_{1,2}^{0} \rightarrow t b s, \widetilde{\chi}_{1}^{ \pm} \rightarrow b b s\). See their Figure 10 and text for details on model assumptions.
\({ }^{10}\) AAD 16AM searched in \(17.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing two large-radius hadronic jets. No deviation from the background prediction is observed. Top squarks with masses between 100 and 315 GeV are excluded at \(95 \%\) C.L. in the hypothesis that they both decay via \(R\)-parity violating coupling \(\lambda_{323}\) to \(b\) - and \(s\)-quarks. See their Fig. 10.
11 KHACHATRYAN 16AC searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets, at least one of which is a \(b\)-jet, for evidence of R -parity violating, charging-mediated decays of the top squark. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in R-parity-violating supersymmetry models where \(\tilde{t} \rightarrow b \widetilde{\chi}_{1}^{ \pm}\)with \(\widetilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} j j, \lambda_{i j k}^{\prime} \neq 0(i, j, k \leq 2)\), and with \(m_{\tilde{t}}-m_{\tilde{\chi}_{1}^{ \pm}}=100 \mathrm{GeV}\), see Fig. 3.
12 KHACHATRYAN 16 BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 4 leptons coming from R-parity-violating decays of \(\tilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu\) with \(\lambda_{121} \neq\) 0 or \(\lambda_{122} \neq 0\). No excess over the expected background is observed. Limits are derived on the gluino, squark and stop masses, see Fig. 23.
13 KHACHATRYAN 15 E searched for long-lived particles decaying to leptons in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). Events were selected with an electron and muon with opposite charges and each with transverse impact parameter values between 0.02 and 2 cm . Limits are set on SUSY benchmark models with pair production of top squarks decaying into an \(e \mu\) final state via RPV interactions. See their Fig. 2

\section*{Heavy \(\tilde{\boldsymbol{g}}\) (Gluino) mass limit}

For \(m_{\tilde{g}}>60-70 \mathrm{GeV}\), it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov)

R-parity conserving heavy \(\tilde{\boldsymbol{g}}\) (Gluino) mass limit
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >1975 & 95 & 1 SIRUNYAN & 20B CMS & \[
\begin{gathered}
\geq 1 \gamma+E_{T}, \text { Tglu4A, } \operatorname{BR}(\widetilde{g} \rightarrow \\
\left.q q \widetilde{\chi}_{1}^{ \pm}\right)=0.5, m_{\widetilde{\chi}_{1}^{0}} \simeq m_{\widetilde{g}}
\end{gathered}
\] \\
\hline >2000 & 95 & \({ }^{2}\) AABOUD & 19| ATL & \[
\begin{aligned}
& \geq 2 \text { jets }+1 \text { or } 2 \tau+E_{T}, \\
& \text { Tglu1F, } m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1860 & 95 & 3 SIRUNYAN & 19ag CMS & \[
\begin{gathered}
2 \gamma+E_{T}, \text { Tglu4B, } 500 \mathrm{GeV} \\
<m_{\widetilde{\chi}_{1}^{0}}<1500 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1920 & 95 & \({ }^{4}\) SIRUNYAN & 19AU CMS & \[
\begin{aligned}
\gamma+\text { jets } & +b \text {-jets }+E_{T}, \text { Tglu4D } \\
m_{\widetilde{\chi}_{1}^{0}} & =127 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1950 & 95 & \({ }^{4}\) SIRUNYAN & 19AU CMS & \[
\begin{gathered}
\gamma+\text { jets }+b \text {-jets }+E_{T}, \text { Tglu4E, } \\
m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1800\) & 95 & \({ }^{4}\) SIRUNYAN & 19aU CMS & \[
\begin{gathered}
\gamma+\text { jets }+b \text {-jets }+E_{T}, \text { Tglu4F, } \\
m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}
\end{gathered}
\] \\
\hline >2090 & 95 & \({ }^{4}\) SIRUNYAN & 19aU CMS & \[
\begin{aligned}
& \gamma+\text { jets }+b \text {-jets }+E_{T}, \text { Tglu4D } \\
& m_{\widetilde{\chi}_{1}^{0}}=1200 \mathrm{GeV}
\end{aligned}
\] \\
\hline >2120 & 95 & \({ }^{4}\) SIRUNYAN & 19aU CMS & \[
\begin{gathered}
\gamma+\text { jets }+b \text {-jets }+\not{ }_{F}, \text { Tglu4E, } \\
m_{\widetilde{\chi}_{1}^{0}}=1200 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1970 & 95 & \({ }^{4}\) SIRUNYAN & 19aU CMS & \[
\begin{gathered}
\gamma+\text { jets }+b \text {-jets }+E_{T}, \text { Tglu } 4 F, \\
m_{\widetilde{\chi}_{1}^{0}}=1200 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1700\) & 95 & 5 SIRUNYAN & 19CE CMS & 2 jets, Stealth SUSY, Tglu1A and
\[
\tilde{\chi}_{1}^{0} \rightarrow \tilde{S} \gamma(\tilde{S} \rightarrow S \widetilde{G}), m_{\widetilde{\chi}_{1}^{0}}
\] \\
\hline >2000 & 95 & \({ }^{6}\) SIRUNYAN & 19CH CMS & \[
\text { jets }+E_{T} \text {, Tglu1A, } m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\] \\
\hline >2030 & 95 & \({ }^{6}\) SIRUNYAN & 19CH CMS & \[
\begin{aligned}
& \text { jets }+E_{T} \text {, Tglu1C, } m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}= \\
& 0.5\left(m_{\widetilde{g}}+m_{\widetilde{\chi}_{1}^{0}}\right), m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\end{aligned}
\] \\
\hline >2270 & 95 & \({ }^{6}\) SIRUNYAN & 19CH CMS & jets \(+E_{T}\), Tglu2A, \(m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) \\
\hline >2180 & 95 & 6 SIRUNYAN & 19CH CMS & \[
\text { jets }+E_{T} \text {, Tglu3A, } m_{\widetilde{\chi}_{1}^{0}}=0 \mathrm{GeV}
\] \\
\hline \(>1750\) & 95 & 7 SIRUNYAN & 19K CMS & \[
\gamma+\ell+E_{T}, \text { Tglu4A, } m_{\widetilde{\chi}_{1}^{0}}=1500
\] \\
\hline >2000 & 95 & 8 SIRUNYAN & 19 S CMS & \[
\begin{aligned}
& \mathrm{GeV} \\
& 1 \text { or } 2 \ell+\text { jets }+{\underset{Z}{T}}_{T} \text {, Tglu3A, } \\
& m_{\tilde{\chi}_{1}^{0}}<700 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1900 & 95 & \({ }^{8}\) SIRUNYAN & 19 S CMS & \[
\begin{aligned}
& 1 \text { or } 2 \ell+\text { jets }+E_{T}, \text { Tglu3C, } \\
& 150 \mathrm{GeV}<m_{\widetilde{\chi}_{1}^{0}}<950 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1970 & 95 & \({ }^{9}\) AABOUD & 18AR ATLS & \[
\begin{aligned}
\text { jets }+ & \geq 3 b \text {-jets }+E_{T}, \text { Tglu3A } \\
m_{\tilde{\chi}_{1}^{0}} & <300 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1920 & 95 & 10 AABOUD & 18AR ATLS & \[
\begin{aligned}
\text { jets }+ & 3 b \text {-jets }+E_{T}, \text { Tglu2A }, \\
m_{\tilde{\chi}_{1}^{0}} & <600 \mathrm{GeV}
\end{aligned}
\] \\
\hline >1650 & 95 & 11 AABOUD & 18AS ATLS & \(\geq 4\) jets and disappearing tracks from \(\tilde{\chi}^{ \pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{ \pm}\), modified Tglu1A or Tglu1B, \(\widetilde{\chi}^{ \pm}\)lifetime \(0.2 \mathrm{~ns}, m_{\widetilde{\chi}^{ \pm}}=460 \mathrm{GeV}\) \\
\hline >1850 & 95 & 12 AABOUD & 18BJ ATLS & \[
\begin{aligned}
& \ell^{ \pm} \ell^{\mp}+\text { jets }+E_{T}, \text { Tglu1G, } \\
& m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}


See key on page 999


Searches Particle Listings
Supersymmetric Particle Searches

\({ }^{10}\) AABOUD 18AR searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for gluino pair production in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from \(b\)-quarks. No excess is found above the predicted background. In Tglu2A models, gluino masses of less than 1.92 TeV are excluded for \(m_{\widetilde{\chi}_{1}^{0}}\) below 600 GeV , see their Fig. 10(b). Interpretations are also provided for scenarios where Tglu2A modes mix with Tglu3A and Tglu3D, see their Fig 11.
11 AABOUD 18AS searched for in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for gluino pair production in the context of AMSB or phenomenological MSSM scenarios with wino-like LSP and long-lived charginos. Events with a disappearing track due to a low-momentum pion accompanied by at least four jets are considered. No significant excess above the Standard Model expectations is observed. Exclusion limits are set at 95\% confidence level on the mass of gluinos for different chargino lifetimes. Gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns , correspon Fig. 9
12 AABOUD 18BJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1G model: gluino masses below 1850 GeV are excluded for \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\), see their Fig. 12(a).
\({ }^{13}\) AABOUD 18BJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1H model: gluino masses below 1650 GeV are excluded for \(m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\), see their Fig. 13(a).
\({ }^{14}\) AABOUD 18 u searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results for the di-photon channel are interpreted in terms of lower limits on the masses of gluinos in Tglu4B models, which reach as high as 2.3 TeV . Gluinos with masses below 2.15 TeV are excluded for any NLSP mass, see their Fig. 8.
\({ }^{15}\) AABOUD 18 U searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the \(\gamma+\) jets \(+E_{T}\) channel are interpreted in terms of lower limits on the masses of gluinos in GGM higgsino-bino models (mix of Tglu4B and Tglu4C), which reach as high as 2050 GeV . Gluino masses below 1600 GeV are excluded for any NLSP mass provided that \(m_{\tilde{g}^{-}} m_{\widetilde{\chi}_{1}^{0}}>50 \mathrm{GeV}\). See their Fig. 11.
\({ }^{16}\) AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1A model: gluino masses below 2030 GeV are excluded for massless LSP, see their Fig. 13(b).
17 AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1B model. Assuming that \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.5\left(m_{\widetilde{g}}+m_{\widetilde{\chi}_{1}^{0}}\right)\), gluino masses below 1980 GeV are excluded for massless LSP, see their Fig. 14(c). Exclusions are also shown assuming \(m_{\widetilde{\chi}_{1}^{0}}=60\) GeV , see their Fig. 14(d).
\({ }^{18}\) AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1E model: gluino masses below 1750 GeV are excluded for \(m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}\) and any \(m_{\widetilde{\chi}_{2}^{0}}\) above 100 GeV , see their Fig. 15. Gluino mass exclusion up to 2 TeV is found for \(m_{\widetilde{\chi}_{2}^{0}}=1 \mathrm{TeV}\).
\({ }^{19}\) SIRUNYAN 18AA searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one photon and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like \(\tilde{\chi}_{1}^{0}\) and wino-like \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{2}^{0}\), see Figure 7. Limits are also set on the NLSP mass in the Tchi1n1A and Tchi1chi1A simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tglu4B simplified models, see their Figure 9, and
Tsqk4B simplified models, see their Figure 10.
20 SIRUNYAN 18AC searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Figure 5.
21 SIRUNYAN 18AL searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least three charged leptons, in any combination of electrons and muons, jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 6, and on the stop mass in the Tstop7 simplified model, see their Figure 7.
22 SIRUNYAN 18AR searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10.
\({ }^{23}\) SIRUNYAN 18AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing one or more jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A Model expectations is observed. Limits are set on the gluino mass in the TgluiA, sore the and Tglu3A simplified models, see their Figure 3 . Limits are also set on squark, sbottom
and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range \(10^{-3}\) \(\mathrm{mm}<\mathrm{c} \tau<10^{5} \mathrm{~mm}\), see their Figure 4.
\({ }^{24}\) SIRUNYAN 18D searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing identified hadronically decaying top quarks, no leptons, and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 8, and on the gluino mass in the Tglu3A, Tglu3B, Tglu3C and Tglu3E simplified models, see their Figure 9.
\({ }^{25}\) SIRUNYAN 18M searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more high-momentum Higgs bosons, decaying to pairs of \(b\)-quarks, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set No significant excess above the standard Model expectations is observed. Limits ar
\({ }^{26}\) AABOUD 17AJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.75 TeV are set on the gluino mass in Tglu3A simplified models in case of off-shell top squarks and for \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\). See their Figure 4(a).
\({ }^{27}\) AABOUD 17AJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.57 TeV are set on the gluino mass in Tglu1E simplified models (2-step models) for \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\). See their Figure 4(b).
\({ }^{28}\) AABOUD 17AJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.86 TeV are set on the gluino mass in Tglu1G simplified models for \(m_{\widetilde{\chi}_{1}^{0}}=200 \mathrm{GeV}\). See their Figure 4(c).
\({ }^{29}\) AABOUD 17AR searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 2.1 TeV are set on the gluino mass in Tglu1B simplified models, with \(x=\left(m_{\widetilde{\chi}_{1}^{ \pm}}-m_{\widetilde{\chi}_{1}^{0}}\right) /\) \(\left(m_{\tilde{g}^{-}} m_{\widetilde{\chi}_{1}^{0}}\right)=1 / 2\).Similar limits are obtained for variable \(x\) and fixed neutralino mass, \(m_{\widetilde{\chi}_{1}^{0}}=60 \mathrm{GeV}\). See their Figure 13.
\({ }^{30}\) AABOUD 17AR searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.74 TeV are set on the gluino mass in Tglu1E simplified model. Limits up to 1.7 TeV are also set on pMSSM models leading to similar signal event topologies. See their Figure \({ }_{1}^{13 .}{ }_{\text {AAB }}\)

AABOUD 17AY searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in Tglu3A simplified models assuming \(m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}=5 \mathrm{GeV}\). See their Figure 13 .
\({ }^{32}\) AABOUD 17AZ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R -jets or \(b\)-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in Tglu1E simplified models. See their Figure 6b.
\({ }^{33}\) AABOUD 17AZ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or \(b\)-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits up to 1.54 TeV are set on the gluino mass in Tglu3A simplified models. See their Figure 7a.
\({ }^{34}\) AABOUD 17N searched in \(14.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1J models, gluino masses are excluded at \(95 \%\) C.L. up to 1300 GeV for \(m_{\tilde{\chi}_{1}^{0}}=0 \mathrm{GeV}\) and \(m_{\widetilde{\chi}_{2}^{0}}=1100 \mathrm{GeV}\). See their Fig. 12 for exclusion limits as a function of \(m_{\widetilde{\chi}_{2}^{0}}\). Limits are also presented assuming \(m_{\widetilde{\chi}_{2}^{0}}=m_{\widetilde{\chi}_{1}^{0}}+100 \mathrm{GeV}\), see their Fig. 13.
\({ }^{35}\) AABOUD 17N searched in \(14.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1H models, gluino masses are excluded at \(95 \%\) C.L. up to 1310 GeV for \(m_{\widetilde{\chi}_{1}^{0}}<400 \mathrm{GeV}\) and assuming \(m_{\widetilde{\chi}_{2}^{0}}=\left(m_{\widetilde{g}}+m_{\widetilde{\chi}_{1}^{0}}\right) / 2\). See their Fig. \({ }_{36}{ }^{15}\).
\({ }^{36}\) AABOUD 17 N searched in \(14.7 \mathrm{fb}-1\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In TgluiG models, gluino masses are excluded at \(95 \%\) C.L. up to 1700 GeV for small \(m_{\widetilde{\chi}_{1}^{0}}\). The results probe kinematic endpoints as small as \(m_{\widetilde{\chi}_{2}^{0}}\) \(m_{\widetilde{\chi}_{1}^{0}}=\left(m_{\tilde{g}}-m_{\widetilde{\chi}_{1}^{0}}\right) / 2=50 \mathrm{GeV}\). See their Fig. 14.
\({ }^{37}\) KHACHATRYAN 17 searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing four or more jets, no more than one lepton, and missing transverse momentum, using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Figs. 16 and 17. Also, assuming gluinos decay only via three-body processes involving third-generation quarks plus a neutralino/chargino, and assuming \(m_{\widetilde{\chi}^{ \pm}}=m_{\widetilde{\chi}_{1}^{0}}+5 \mathrm{GeV}\), a branching ratio-independent limit on the gluino mass is given, see Fig. 16.
\({ }^{38} \mathrm{KHACHATRYAN}\) 17AD searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing at least four jets (including \(b\)-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded at \(95 \%\) C.L. See Fig. 13.
\({ }^{39}\) KHACHATRYAN 17AD searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing at least four jets (including \(b\)-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1450 GeV and neutralino masses up to 820 GeV are excluded at \(95 \%\) C.L. See Fig. 13.
\({ }^{40}\) KHACHATRYAN 17AS searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Fig. 7
\({ }^{41}\) KHACHATRYAN 17 AW searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least three charged leptons, in any combination of electrons and muons, and

\section*{Searches Particle Listings}

\section*{Supersymmetric Particle Searches}
significant \(E_{T}\). No significant excess above the Standard Model expectations is observed Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 4.
42 KHACHATRYAN 17P searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on
the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see the stop
Fig. 8 .
43 KHACHATRYAN 17 V searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two photons and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino and squark mass in the context of general gauge mediation models Tglu4B and Tsqk4, see their Fig. 4.
44 SIRUNYAN 17AF searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with a single lepton (electron or muon), jets, including at least one jet originating from a \(b\)-quark, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3B simplified models, see their Figure 2.
45 SIRUNYAN 17AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one photon, jets and large \(\nabla_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6.
46 SIRUNYAN 17AZ searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one or more jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6 . Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1
simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, simplified model, see their Fig. 7. Finally, limits ar
Tstop4 and Tstop8 simplified models, see Fig. 8.
47 SIRUNYAN 17P searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with multiple jets and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsqk1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13.
48 SIRUNYAN 17 S searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two isolated same-sign leptons, jets, and large \(E_{T}\). No significant excess above the two isolated same-sign leptons, jets, and large \(T_{T}\). No segnificant excess above the in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu1B simplified models, see their Figures in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu1B simplified models, see their Figure
5 and 6 , and on the sbottom mass in the Tsbot2 simplified model, see their Figure 6 .
\({ }^{49}\) AABOUD 16AC searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with hadronic jets, 1 or two hadronically decaying \(\tau\) and \(E_{T}\). In Tglu1F, gluino masses are excluded at \(95 \%\) C.L. up to 1570 GeV for neutralino masses of 100 GeV or below. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV , while the strongest neutralino-mass exclusion of 750 GeV is achieved for gluino masses around 1400 GeV . See their Fig. 8. Limits are also presented in the context of Gauge-Mediated Symmetry Breaking models: in this case, values of \(\Lambda\) below 92 TeV are excluded at the \(95 \% \mathrm{CL}\), corresponding to gluino masses below 2000 GeV . See their Fig. 9.
\({ }^{50}\) AABOUD 16J searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with one isolated electron or muon, hadronic jets, and \(E_{T}\). Gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino are targeted and gluino masses are excluded at \(95 \%\) C.L. up to 1460 GeV . A \(100 \%\) of stops decaying via charm + neutralino is assumed. The results are also valid in case of 4 -body decays \(\widetilde{t}_{1} \rightarrow\) \(f f^{\prime} b \widetilde{\chi}_{1}^{0}\). See their Fig. 8.
\({ }^{51}\) AABOUD 16 m searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two photons, hadronic jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Exclusion limits at 95\% C.L. are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like NLSP. See their Fig. 3.
52 AABOUD 16 N searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing hadronic jets, large \(E_{T}\), and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1510 GeV are excluded at the \(95 \%\) C.L. in a simplified model with only gluinos and the lightest neutralino. See their Fig. 7b.
53 AABOUD 16 N searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing hadronic jets, large \(E_{T}\), and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1500 GeV are excluded at the \(95 \%\) C.L. in a simplified model with gluinos decaying via an intermediate \(\widetilde{\chi}_{1}^{ \pm}\)to two quarks, a \(W\) boson and a \(\tilde{\chi}_{1}^{0}\), for \(m_{\widetilde{\chi}_{1}^{0}}=200 \mathrm{GeV}\). See their Fig 8.
54 AAD 16AD searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing several energetic jets, of which at least three must be identified as \(b\)-jets, large \(E_{T}\) and no electrons or muons. No significant excess above the Standard Model expectations is observed. For \(\widetilde{\chi}_{1}^{0}\) below 800 GeV , gluino masses below 1780 GeV are excluded at \(95 \%\) C.L. for gluinos decaying via bottom squarks. See their Fig. 7a.
\({ }^{55}\) AAD 16AD searched in \(3.2 \mathrm{fb}^{-1}\) of pp collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing several energetic jets, of which at least three must be identified as \(b\)-jets, large \(E_{T}\) and one electron or muon. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No significant excess above the Standard Model expectations is observed. For \(\widetilde{\chi}_{1}^{0}\) below 700 GeV , gluino masses below 1760 GeV are excluded at \(95 \%\) C.L. for gluinos decaying via top squarks. See their Fig. 7b.
\({ }^{56}\) AAD 16BB searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with exactly two same-sign leptons or at least three leptons, multiple hadronic jets, \(b\)-jets, and \(E_{T}\). No significant excess over the Standard Model expectation is found. Exclusion limits at \(95 \%\) C.L. are set on the gluino mass in various simplified models (Tglu1D, Tglu1E, Tglu3A). See their Figs. 4.a, 4.b, and 4.d.
57 AAD 16BG searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with one isolated electron or muon, hadronic jets, and \(E_{T}\). The data agree with the SM background expectation in the six signal selections defined in the search, and the largest deviation is a 2.1 standard deviation excess. Gluinos are excluded at 95\% C.L. up to 1600

GeV assuming they decay via the lightest chargino to the lightest neutralino as in the model Tglu 1 B for \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\), assuming \(m_{\widetilde{\chi}_{1}^{ \pm}}=\left(m_{\widetilde{g}}+m_{\widetilde{\chi}_{1}^{0}}\right) / 2\). See their Fig. 6 .
\({ }^{58}\) AAD 16 V searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with \(E_{T}\) various hadronic jet multiplicities from \(\geq 7\) to \(\geq 10\) and with various \(b\)-jet multiplicity requirements. No significant excess over the Standard Model expectation is found. Exclusion limits at \(95 \%\) C.L. are set on the gluino mass in one simplified model (Tglu1E) and a pMSSM-inspired model. See their Fig. 5.
\({ }^{59}\) KHACHATRYAN 16 AM searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with highly boosted \(W\)-bosons and \(b\)-jets, using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3C and Tglu3B simplified models, see Fig. 12.
60 KHACHATRYAN 16 BJ searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the following simplified models: Tglu3A and Tglu3D, see Fig. 4, Tglu3B and Tglu3C, see Fig. 5, and Tglu1B, see Fig. 7.
\({ }^{61}\) KHACHATRYAN 16 BS searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least one energetic jet, no isolated leptons, and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Fig. 10 and Table 3.
62 KHACHATRYAN 16 BY searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two opposite-sign, same-flavour leptons, jets, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4, and on sbottom masses in the Tsbot3 simplified model, see Fig. 5.
63 KHACHATRYAN 16 V searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least four energetic jets and significant \(E_{T}\), no identified isolated electron or muon or charged track. No significant excess above the Standard Model expectations is muon or charged track. No significant excess above the Standard Modet expectations in
observed. Limits are set on the gluino mass in the TgluiA, Tglu1C, Tglu2A, and Tglu3A observed. Limits are set on th.
simplified models, see Fig. 8 .
64 AAD 15BG searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with jets, missing \(E_{T}\), and two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the \(Z\)-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds are observed and \(95 \%\) C.L. exclusion limits are derived in a GGM simplified model of gluino pair production where the gluino decays into quarks, a \(Z\)-boson, and a massless gravitino LSP, see Fig. 12. Also, limits are set in simplified models with slepton/sneutrino intermediate states, see Fig. 13.
\({ }^{65}\) AAD 15BV summarized and extended ATLAS searches for gluinos and first- and secondgeneration squarks in final states containing jets and missing transverse momentum, with or without leptons or \(b\)-jets in the \(\sqrt{s}=8 \mathrm{TeV}\) data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at \(95 \%\) C.L. are set on the gluino mass in several R-parity conserving models, leading to a generalized constraint on gluino masses exceeding 1150 GeV for lightest supersymmetric particle masses below 100 GeV . See their Figs. 10, 19, 20, 21, 23, 25, 26, 29-37.
\({ }^{66}\) AAD 15BX interpreted the results of a wide range of ATLAS direct searches for supersymmetry, during the first run of the LHC using the \(\sqrt{s}=7 \mathrm{TeV}\) and \(\sqrt{s}=8 \mathrm{TeV}\) data set collected in 2012, within the wider framework of the phenomenological MSSM (PMSSM). The integrated luminosity was up to \(20.3 \mathrm{fb}^{-1}\). From an initial random sampling of 500 million pMSSM points, generated from the 19 -parameter pMSSM, a total of 310,327 model points with \(\widetilde{\chi}_{1}^{0}\) LSP were selected each of which satisfies constraints from previous collider searches, precision measurements, cold dark matter energy density measurements and direct dark matter searches. The impact of the ATLAS Run 1 searches on this space was presented, considering the fraction of model points surviving, after projection into two-dimensional spaces of sparticle masses. Good complementarity is observed between different ATLAS analyses, with almost all showing regions of unique sensitivity. ATLAS searches have good sensitivity at LSP mass below 800 GeV .
\({ }^{67}\) AAD 15CA searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with one or more photons, hadronic jets or \(b\)-jets and \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gaugeModel expectations is observed. Limits are set on gluino masses in the general gauge-
mediated SUSY breaking model (GGM), for bino-like or higgsino-bino admixtures NLSP, mediated. 8, 10, 11
\({ }^{68}\) KHACHATRYAN 15 AF searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) colisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the transverse mass variable \(M_{T 2}\) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 13(a), or where the decay \(\tilde{g} \rightarrow b \bar{b} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 13(b), or where the decay \(\widetilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 13(c). See also Table 5. Exclusions in the CMSSM, assuming \(\tan \beta=30, A_{0}=-2 \max \left(m_{0}, m_{1 / 2}\right)\) and \(\mu>0\), are also presented, see Fig. 15.
\({ }^{69}\) KHACHATRYAN 15 I searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events in which \(b\)-jets and four \(W\)-bosons are produced. Five individual search channels are combined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, mulcombined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, mul-
tilepton). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay \(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 5. Also a simplified model with gluinos decaying into on-shell top squarks is considered, see Fig. 6.
70 KHACHATRYAN 15 X searched in \(19.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least two energetic jets, at least one of which is required to originate from a \(b\) quark, and significant \(E_{T}\), using the razor variables ( \(M_{R}\) ) and \(R^{2}\) ) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay \(\widetilde{g} \rightarrow b \bar{b} \widetilde{\chi}_{1}^{0}\) and the decay \(\widetilde{g} \rightarrow t \bar{t} \widetilde{\chi}_{1}^{0}\) take place with branching ratios varying between 0,50 and \(100 \%\), see Figs. 13 and 14 .
\({ }^{71}\) AAD 14AE searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and large missing transverse momentum, and no electrons or muons. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5, 6 and 7. Limits are also derived in the mSUGRA/CMSSM with parameters \(\tan \beta=30, A_{0}=-2 m_{0}\) and \(\mu>0\), see their Fig. 8.
\({ }^{72}\) AAD 14AG searched in \(20.3 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing one hadronically decaying \(\tau\)-lepton, zero or one additional light leptons (electrons or muons), jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95\% C.L. are set in several SUSY scenarios. For an interpretation in the minimal GMSB model, see their Fig. 8. For an interpretation in the mSUGRA/CMSSM with parameters \(\tan \beta\) \(=30, A_{0}=-2 m_{0}\) and \(\mu>0\), see their Fig. 9. For an interpretation in the framework of natural Gauge Mediation, see Fig. 10. For an interpretation in the bRPV scenario, see their Fig. 11.
\({ }^{73}\) AAD 14X searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a general gauge-mediation model (GGM) where the decay \(\widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}_{1}^{0}\), with \(\widetilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \widetilde{G}\), takes place with a branching ratio of \(100 \%\), for two choices of \(\tan \beta=1.5\) and 30 , see Fig. 11. Also some constraints on the higgsino mass parameter \(\mu\) are discussed.
74 CHATRCHYAN 14 AH searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables \(\left(M_{R}\right.\) and \(R^{2}\) ) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 28. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>\) 0 , are also presented, see Fig. 26
\({ }^{75}\) CHATRCHYAN 14 AH searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a \(b\)-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\widetilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 28 and 29. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), are also presented, see Fig. 26.
\({ }^{76}\) CHATRCHYAN 14 AH searched in \(4.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with at least two energetic jets and significant \(E_{T}\), using the razor variables ( \(M_{R}\) and \(R^{2}\) ) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a \(b\)-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay \(\tilde{g} \rightarrow t \bar{t} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Figs. 28 and 29. Exclusions in the CMSSM, assuming \(\tan \beta=10, A_{0}=0\) and \(\mu>0\), are also presented, see Fig. 26.
77 CHATRCHYAN 14 I searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing multijets and large \(E_{T}\). No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos that decay via \(\widetilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}\) with a \(100 \%\) branching ratio, see Fig. 7 b , or via \(\widetilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\) with a \(100 \%\) branching ratio, see Fig. 7c, or via \(\widetilde{g} \rightarrow q \bar{q} W / Z \tilde{\chi}_{1}^{0}\), see Fig. 7d.
\({ }^{78}\) CHATRCHYAN 14 N searched in \(19.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing a single isolated electron or muon and multiple jets, at least two of which are identified as originating from a \(b\)-quark. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in three simplified models of gluino pair production with subsequent decay into virtual or on-shell top squarks, where each of the top squarks decays in turn into a top quark and a \(\tilde{\chi}_{1}^{0}\), see Fig. 4. The models differ in which masses are allowed to vary.
\({ }^{79}\) CHATRCHYAN 14R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a slepton co-NLSP simplified model (GMSB) where the decay \(\tilde{g} \rightarrow q \ell^{ \pm} \ell^{\mp} G\) takes place with a branching ratio of \(100 \%\), see Fig. 8 .
\({ }^{80}\) CHATRCHYAN 14R searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay \(\widetilde{g} \rightarrow t \bar{t} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), see Fig. 11.
81 AABOUD 18BJ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse two opposite-sign charged leptons (electrons and muons), jets and missing transverse
momentum, with various requirements to be sensitive to signals with different kinematic momentum, with various requirements to be sensitive to signals with different kinematic
endpoint values in the dilepton invariant mass distribution. The data are found to be endpoint values in the dilepton invariant mass distribution. The data are found to be
consistent with the SM expectation. Results are interpreted in the Tglu1H model in case consistent with the SM expectation. Results are interpreted in the Tglu1H model in case
of \(m_{\widetilde{\chi}_{1}^{0}}=1 \mathrm{GeV}\) : for any \(m_{\widetilde{\chi}_{2}^{0}}^{0}\), gluino masses below 1500 GeV are excluded, see their Fig. 14(a).
\({ }^{82}\) AABOUD 18 V searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in a Tglu1C-like model, assuming \(50 \%\) BR for each gluino decay mode. Gluino masses below 1770 GeV are excluded for any \(m_{\widetilde{\chi}_{2}^{0}}-m_{\widetilde{\chi}_{1}^{0}}\) and \(m_{\widetilde{\chi}_{1}^{0}}=60 \mathrm{GeV}\), see their Fig. 16(b).
\({ }^{83}\) AABOUD 17AZ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or \(b\)-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits are set for pMSSM models with \(M_{1}=60 \mathrm{GeV}, \tan (\beta)=10, \mu<0\) varying the soft-breaking parameters \(M_{3}\) and \(\mu\). Gluino masses up to 1600 GeV are excluded for \(m_{\widetilde{\chi}_{1}^{ \pm}}=200 \mathrm{GeV}\). See their
Figure 6a and text for details on the model
84 KHACHATRYAN 16AY searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with one isolated high transverse momentum lepton ( \(e\) or \(\mu\) ), hadronic jets of which at least one is identified as coming from a \(b\)-quark, and large \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A simplified model, see Fig. 10, and in the Tglu3B model, see Fig. 11.
85 KHACHATRYAN 16BT performed a global Bayesian analysis of a wide range of CMS results obtained with data samples corresponding to \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=\) 7 TeV and in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The set of searches considered, both individually and in combination, includes those with all-hadronic final states, samesign and opposite-sign dileptons, and multi-lepton final states. An interpretation was given in a scan of the 19-parameter pMSSM. No scan points with a gluino mass less than 500 GeV survived and \(98 \%\) of models with a squark mass less than 300 GeV were excluded.
\({ }^{86} \mathrm{AAD} 15 \mathrm{AB}\) searched for the decay of neutral, weakly interacting, long-lived particles in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). Signal events require at least two reconstructed vertices possibly originating from long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. No significant excess of events over the expected background was found. Results were interpreted in Stealth SUSY benchmark models where a pair of gluinos decay to long-lived singlinos, \(\widetilde{S}\), which in turn each decay to a low-mass gravitino and a pair of jets. The \(95 \%\) confidence-level limits are set on the cross section \(\times\) branching ratio for the decay \(\widetilde{g} \rightarrow \widetilde{S} g\), as a function of the singlino proper lifetime ( \(c \tau\) ). See their Fig. 10(f)
87 AAD 15AI searched in \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing at least one isolated lepton (electron or muon), jets, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95\% C.L. are set on the gluino mass in the CMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simplified models, see Figs. 18-22.
88 AAD 15CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrak signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving \(R\)-parity violation, split supersymmetry, and gauge mediation. See their Fig. 12-20.
89 KHACHATRYAN 15AD searched in \(19.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the \(Z\)-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds is observed and \(95 \%\) C.L. exclusion limits are derived in a simplified model of gluino pair production where the gluino decays into quarks, a \(Z\)-boson, and a massless gravitino LSP, see Fig. 9.
90 KHACHATRYAN 15AZ searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with either at least one photon, hadronic jets and \(E_{T}\) (single photon channel) or with at least two photons and at least one jet and using the razor variables. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-like and wino-like neutralino NLSP scenario, see Fig. 8 and 9.
\({ }^{91}\) AAD 14AX searched in \(20.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for the strong production of supersymmetric particles in events containing either zero or at last one high high- \(p_{T}\) lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from \(b\)-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with \(\tan \beta=30, A_{0}=-2 m_{0}\) and \(\mu>0\), see their Fig. 14. Also, exclusion limits in simplified models containing gluinos and scalar top and bottom quarks are set, see their Figures \(12,13\).
92 AAD 14E searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from \(b\)-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6 . In the \(\widetilde{g} \rightarrow q q^{\prime} \tilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow w^{(*)} \pm \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow z^{(*)} \tilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.5 m_{\widetilde{\chi}_{1}^{0}}+m_{\tilde{g}}, m_{\widetilde{\chi}_{2}^{0}}=\) \(0.5\left(m_{\widetilde{\chi}_{1}^{0}}+m_{\widetilde{\chi}_{1}^{ \pm}}\right), m_{\widetilde{\chi}_{1}^{0}}<520 \mathrm{GeV}\). In the \(\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} \nu \tilde{\chi}_{1}^{0}\) or \(\tilde{g} \rightarrow\) \(q q^{\prime} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \rightarrow \ell^{ \pm} \ell^{\mp}(\nu \nu) \widetilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}=0.5\left(m_{\tilde{\chi}_{1}^{0}}+m_{\tilde{g}}\right), m_{\widetilde{\chi}_{1}^{0}}<660 \mathrm{GeV}\). Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.
\({ }^{93}\) CHATRCHYAN 14 H searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay \(\widetilde{g} \rightarrow t \bar{t} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), or where the decay \(\widetilde{g} \rightarrow \tilde{t} t, \tilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), with varying mass of the \(\tilde{\chi}_{1}^{0}\), or where the decay \(\widetilde{g} \rightarrow \widetilde{b} b, \tilde{b} \rightarrow t \widetilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow\) \(W^{ \pm} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), with varying mass of the \(\tilde{\chi}_{1}^{ \pm}\), see Fig. 5.
\({ }^{94}\) CHATRCHYAN 14 H searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay \(\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \widetilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), with varying mass of the \(\widetilde{\chi}_{1}^{ \pm}\)and \(\widetilde{\chi}_{1}^{0}\), see Fig. 7 .
\({ }^{95}\) CHATRCHYAN 14 H searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay \(\widetilde{g} \rightarrow b \bar{t} \widetilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{1}^{ \pm} \rightarrow W^{ \pm} \tilde{\chi}_{1}^{0}\) takes place with a branching ratio of \(100 \%\), for two choices of \(m_{\widetilde{\chi}_{1}^{ \pm}}\)and fixed \(m_{\widetilde{\chi}_{1}^{0}}\), see Fig. 6.

\section*{R-parity violating heavy \(\tilde{\boldsymbol{g}}\) (Gluino) mass limit}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \(>1500\) & 95 & \({ }^{1}\) SIRUNYAN & 19F & CMS & \(\widetilde{g} \rightarrow j j j\) \\
\hline \(>2260\) & 95 & 2 AABOUD & 182 & ATLS & \[
\geq 4 \ell, \lambda_{12 k} \neq 0, m_{\widetilde{\chi}_{1}^{0}}>1000
\] \\
\hline >1650 & 95 & \({ }^{2}\) AABOUD & 182 & ATLS & \[
\geq 4 \ell, \lambda_{i 33} \neq 0, m_{\widetilde{\chi}_{1}^{0}}>500
\] \\
\hline \(>1610\) & 95 & \({ }^{3}\) SIRUNYAN & 18AK & CMS & \(\widetilde{g} \rightarrow t b s, \lambda_{332}^{\prime \prime}\) coupling \\
\hline \(>1690\) & 95 & \({ }^{4}\) SIRUNYAN & 18D & CMS & \[
\begin{aligned}
& \text { top quark (hadronically decay- } \\
& \text { ing) }+ \text { jets }+E_{T} \text {, Tglu3C, } \\
& m_{\tilde{t}_{1}}-m_{\widetilde{\chi}_{1}^{0}}=20 \mathrm{GeV}, m_{\widetilde{\chi}_{1}^{0}}= \\
& 0 \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}

Searches Particle Listings

\section*{Supersymmetric Particle Searches}

excess above the Standard Model expectations is observed. Limits up to 400 GeV are set on the down type squark ( \(d_{R}\) mass in R-parity-violating supersymmetry models where \(\tilde{d}_{R} \rightarrow t b\) through the non-zero \(\lambda_{313}^{\prime \prime}\) coupling or \(\tilde{d}_{R} \rightarrow t s\) through the non-zero \(\lambda_{321}^{\prime \prime}\). See their Figure 5(e) and 5(f).
14 AABOUD 17AZ searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or \(b\)-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits are set for R-parity violating decays of the gluino assuming \(\widetilde{g} \rightarrow t t_{1}\) and \(\tau_{1} \rightarrow b s\) through the non-zero \(\lambda_{323}^{\prime \prime}\) couplings. The range \(625-1375 \mathrm{GeV}\) is excluded for \(m_{\tilde{t}_{1}}=400 \mathrm{GeV}\). See their Figure 7b.
15 KHACHATRYAN \(17 Y\) searched in \(19.7 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing at least 8 or 10 jets, possibly \(b\)-tagged, coming from R -parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits are derived on the gluino mass, assuming various RPV decay modes, see Fig. 7.
16 KHACHATRYAN 16BJ searched in \(2.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the following simplified models: Tglu3A and Tglu3D, see Fig. 4, Tglu3B and Tglu3C, see Fig. 5, and Tglu1B, see Fig. 7.
17 KHACHATRYAN 16BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 0 or 1 leptons and \(b\)-tagged jets, coming from R-parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits are derived on the gluino mass, assuming the RPV \(\widetilde{g} \rightarrow t b s\) decay, see Fig. 7 and 10.
18 AAD 15BV summarized and extended ATLAS searches for gluinos and first- and secondgeneration squarks in final states containing jets and missing transverse momentum, with or without leptons or \(b\)-jets in the \(\sqrt{s}=8 \mathrm{TeV}\) data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95\% C.L. are set on the gluino mass in several R-parity conserving models, leading to a generalized constraint on gluino masses exceeding 1150 GeV for lightest supersymmetric particle masses below 100 GeV . See their Figs. 10, 19, 20, 21, 23, 25, 26, 29-37.
\({ }^{19}\) AAD \(14 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in an R-parity violating simplified model where the decay \(\widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}_{1}^{0}\), with \(\widetilde{\chi}_{1}^{0} \rightarrow \ell^{ \pm} \ell^{\mp} \nu\), takes place with a branching ratio of \(100 \%\), see Fig. 8.
\({ }^{20}\) CHATRCHYAN 14P searched in \(19.4 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for threejet resonances produced in the decay of a gluino in R-parity violating supersymmetric models. No excess over the expected SM background is observed. Assuming a \(100 \%\) branching ratio for the gluino decay into three light-flavour jets, limits are set on the cross section of gluino pair production, see Fig. 7, and gluino masses below 650 GeV are excluded at \(95 \%\) C.L. Assuming a \(100 \%\) branching ratio for the gluino decaying to one b-quark jet and two light-flavour jets, gluino masses between 200 GeV and 835 GeV are b-quark jet and two lig
excluded at \(95 \%\) C L.
\({ }^{21}\) AABOUD 18CF searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events with several jets, possibly \(b\)-jets, and large-radius jets for evidence of R-parity violating decays of the gluino. No significant excess above the Standard Model expectations is observed. Limits between 1000 and 1875 GeV are set on the gluino mass in R-parityviolating supersymmetry models as Tglu2RPV with the LSP decay through the non-zero \(\lambda^{\prime \prime}\) coupling as \(\widetilde{\chi}_{1}^{0} \rightarrow\) qqq. The most stringent limit is obtained for \(m_{\widetilde{\chi}_{1}^{0}}=1000 \mathrm{GeV}\), the weakest for \(m_{\tilde{\chi}_{1}^{0}}=50 \mathrm{GeV}\). See their Figure 7(b). Figure 7(a) presents results for gluinos directly decaying into 3 quarks, Tglu1RPV.
22 KHACHATRYAN 16BX searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing 4 leptons coming from R-parity-violating decays of \(\tilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu\) with \(\lambda_{121} \neq\) 0 or \(\lambda_{122} \neq 0\). No excess over the expected background is observed. Limits are derived 0 or \(\lambda 122 \neq 0\). No excess over the expected backgr
on the gluino, squark and stop masses, see Fig. 23.
23 AAD 15CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrak signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving \(R\)-parity violation, split supersymmetry, and gauge mediation. See their Fig. 12-20.
\({ }^{24}\) AAD \(15 \times\) searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events containing large number of jets, no requirements on missing transverse momentum and no isolated electrons or muons. The sensitivity of the search is enhanced by considering the number of \(b\)-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence was found for excesses above the expected level of Standard Model background. Exclusion limits at 95\% C.L. are set on the gluino mass assuming the gluino decays to various quark flavors, and for various neutralino masses. See their Fig. 11-16.
\({ }^{25}\) AAD 14AX searched in \(20.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for the strong production of supersymmetric particles in events containing either zero or at last one high high- \(p_{T}\) lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from \(b\)-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with \(\tan \beta=30, A_{0}=-2 m_{0}\) observed. Limits are derived in mSOGRA/CMSSM models with \(\tan \beta=30, A_{0}=-2 m_{0}\)
and \(\mu>0\), see their Fig. 14. Also, exclusion limits in simplified models containing gluinos and \(\mu>0\), see their Fig. 14. Also, exClusion limits in simplified mod
and scalar top and bottom quarks are set, see their Figures \(12,13\).
\({ }^{26}\) AAD 14E searched in \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from \(b\)-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6 . In the \(\tilde{g} \rightarrow q q^{\prime} \widetilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow W(*) \pm \tilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \rightarrow \quad Z(*) \tilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=0.5 m_{\widetilde{\chi}_{1}^{0}}+m_{\tilde{g}}, m_{\widetilde{\chi}_{2}^{0}}=\) \(0.5\left(m_{\widetilde{\chi}_{1}^{0}}+m_{\widetilde{\chi}_{1}^{ \pm}}\right), m_{\widetilde{\chi}_{1}^{0}}<520 \mathrm{GeV}\). In the \(\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}_{1}^{ \pm}, \widetilde{\chi}_{1}^{ \pm} \rightarrow \ell^{ \pm} \nu \widetilde{\chi}_{1}^{0}\) or \(\widetilde{g} \rightarrow\) \(q q^{\prime} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \rightarrow \ell^{ \pm} \ell^{\mp}(\nu \nu) \widetilde{\chi}_{1}^{0}\) simplified model, the following assumptions have been made: \(m_{\widetilde{\chi}_{1}^{ \pm}}=m_{\widetilde{\chi}_{2}^{0}}=0.5\left(m_{\widetilde{\chi}_{1}^{0}}+m_{\widetilde{g}}\right), m_{\widetilde{\chi}_{1}^{0}}<660 \mathrm{GeV}\). Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.
\({ }^{27}\) CHATRCHYAN 14 H searched in \(19.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the R-parity violating decay \(\widetilde{g} \rightarrow t b s\) takes place with a branching ratio of \(100 \%\), see Fig. 8.

Long-lived \(\tilde{\boldsymbol{g}}\) (Gluino) mass limit
Limits on light gluinos ( \(m_{\tilde{g}}<5 \mathrm{GeV}\) ) were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >1980 & 95 & \({ }^{1}\) AABOUD & 19at ATLS & \(R\)-hadrons, Tglu1A, metastable \\
\hline >2060 & 95 & 2 AABOUD & 19C ATLS & \(R\)-hadrons, Tglu1A, \(\tau \geq 10\) ns, \(m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\) \\
\hline \(>1890\) & 95 & \({ }^{2}\) AABOUD & 19C ATLS & \(R\)-hadrons, Tglu 1 A , stable \\
\hline >2400 & 95 & \({ }^{3}\) SIRUNYAN & 198H CMS & long-lived \(\widetilde{g}, \operatorname{RPV}, \widetilde{g} \rightarrow \bar{t} \bar{b} \bar{s}\), \(10 \mathrm{~mm}<\mathrm{C} \tau<250 \mathrm{~mm}\) \\
\hline >2300 & 95 & \({ }^{3}\) SIRUNYAN & 19вн CMS & long-lived \(\widetilde{g}\), GMSB, \(\widetilde{g} \rightarrow\)
\[
g \widetilde{G}, 20 \mathrm{~mm}<\mathrm{C} \tau<110
\]
\[
\mathrm{mm}
\] \\
\hline >2100 & 95 & 4 SIRUNYAN & 19BT CMS & \[
\begin{aligned}
& \text { Iong-lived } \widetilde{g} \text {, GMSB, } \widetilde{g} \rightarrow \\
& \quad g \widetilde{G}, 0.3 \mathrm{~m}<c \tau<30 \mathrm{~m}
\end{aligned}
\] \\
\hline >2500 & 95 & \({ }^{4}\) SIRUNYAN & 19bt CMS & long-lived \(\widetilde{g}\), GMSB, \(\widetilde{g} \rightarrow\)
\[
g \widetilde{G}, c \tau=1 \mathrm{~m}
\] \\
\hline >1900 & 95 & \({ }^{4}\) SIRUNYAN & 19bt CMS & long-lived \(\widetilde{g}\), GMSB, \(\widetilde{g} \rightarrow\)
\[
g \widetilde{G}, c \tau=100 \mathrm{~m}
\] \\
\hline \(>2370\) & 95 & \({ }^{5}\) AABOUD & 18 S ATLS & displaced vertex \(+E_{T}\), longlived Tglu1A, \(m_{\widetilde{\chi}_{1}^{0}}=100\) GeV , and \(\tau=0.17 \mathrm{~ns}\) \\
\hline >1600 & 95 & \({ }^{6}\) SIRUNYAN & 18AY CMS & jets \(+E_{T}\), Tglu1A, \(\mathrm{c} \tau<0.1\) \(\mathrm{mm}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}\) \\
\hline >1750 & 95 & 6 SIRUNYAN & 18AY CMS & \[
\begin{gathered}
\text { jets }+E_{T}, \text { Tglu } 1 \mathrm{~A}, \mathrm{c} \tau=1 \\
\mathrm{~mm}, m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1640 & 95 & \({ }^{6}\) SIRUNYAN & 18AY CMS & \[
\begin{gathered}
\text { jets }+E_{T}, \text { Tglu1A, } \mathrm{c} \tau=10 \\
\mathrm{~mm}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1490 & 95 & \({ }^{6}\) SIRUNYAN & 18AY CMS & \[
\begin{gathered}
\text { jets }+E_{T}, \text { Tglu } 1 \mathrm{~A}, \mathrm{c} \tau=100 \\
\mathrm{~mm}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1300\) & 95 & 6 SIRUNYAN & 18AY CMS & \[
\begin{gathered}
\text { jets }+E_{T}, \text { Tglu1A, } c \tau=1 \mathrm{~m} \\
m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 960 & 95 & 6 SIRUNYAN & 18AY CMS & \[
\begin{gathered}
\text { jets }+E_{T}^{1}, \text { Tglu1A, } \mathrm{c} \tau=10 \mathrm{~m} \\
m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 900 & 95 & 6 SIRUNYAN & 18AY CMS & \[
\begin{aligned}
& \text { jets }+E_{T}^{T}, \text { Tglu1A, } \mathrm{c} \tau=100 \\
& \mathrm{~m}, m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{aligned}
\] \\
\hline >2200 & 95 & 7 SIRUNYAN & 18DV CMS & long-lived \(\tilde{g}, R P V, \tilde{g} \rightarrow \bar{t} \bar{b} \bar{s}\),
0.6 mm \(0.6 \mathrm{~mm}<\mathrm{c} \tau<80 \mathrm{~mm}\) \\
\hline >1000 & 95 & 8 KHACHATR & .17ar CMS & long-lived \(\widetilde{g}, \operatorname{RPV}, \widetilde{g} \rightarrow t \bar{b} \bar{s}\), \(\mathrm{C} \tau=0.3 \mathrm{~mm}\) \\
\hline \(>1300\) & 95 & 8 KHACHATRY & .17ar CMS & long-lived \(\widetilde{g}, \operatorname{RPV}, \widetilde{g} \rightarrow t \bar{b} \bar{s}\), \(\mathrm{c} \tau=1.0 \mathrm{~mm}\) \\
\hline >1400 & 95 & 8 KHACHATRY & 17ar CMS & \[
\begin{aligned}
& \text { long-lived } \widetilde{g}, \mathrm{RPV}, \tilde{g} \rightarrow t \bar{b} \bar{s}, \\
& 2 \mathrm{~mm}<\mathrm{c} \tau<30 \mathrm{~mm}
\end{aligned}
\] \\
\hline \(>1580\) & 95 & \({ }^{9}\) AABOUD & 16B ATLS & long-lived \(R\)-hadrons \\
\hline > 740-1590 & 95 & 10 AABOUD & 16C ATLS & \[
\begin{gathered}
R \text {-hadrons, Tglu1A, } \tau \geq 0.4 \\
\mathrm{~ns}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1570\) & 95 & \({ }^{10}\) AABOUD & 16C ATLS & \(R\)-hadrons, Tglu A , stable \\
\hline >1610 & 95 & 11 KHACHATR & 16BWCMS & long-lived \(\widetilde{g}\) forming Rhadrons, \(\mathrm{f}=0.1\), cloud interaction model \\
\hline >1580 & 95 & 11 KHACHATR & .16BWCMS & long-lived \(\widetilde{g}\) forming Rhadrons, \(\mathrm{f}=0.1\), chargesuppressed interaction model \\
\hline >1520 & 95 & 11 KHACHATR & .16BWCMS & long-lived \(\widetilde{g}\) forming Rhadrons, \(\mathrm{f}=0.5\), cloud interaction model \\
\hline >1540 & 95 & 11 KHACHATR & .16BWCMS & long-lived \(\widetilde{g}\) forming Rhadrons, \(f=0.5\), chargesuppressed interaction model \\
\hline \(>1270\) & 95 & 12 AAD & 15AE ATLS & g R-hadron, generic R-hadron model \\
\hline >1360 & 95 & 12 AAD & 15aE ATLS & \(\widetilde{g}\) decaying to 300 GeV stable sleptons, LeptoSUSY model \\
\hline \(>1115\) & 95 & 13 AAD & 15BMATLS & \(\widetilde{g}\) R-hadron, stable \\
\hline \(>1185\) & 95 & 13 AAD & 15вmATLS & \[
\begin{gathered}
\widetilde{g} \rightarrow(g / q \bar{q}) \widetilde{\chi}_{1}^{0}, \text { lifetime } 10 \\
\mathrm{~ns}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline >1099 & 95 & 13 AAD & 15bmATLS & \[
\begin{gathered}
\tilde{g} \rightarrow(g / q \bar{q}) \widetilde{\chi}_{1}^{0}, \text { lifetime } 10 \\
\mathrm{~ns}, m_{\tilde{g}}-m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1182\) & 95 & 13 AAD & 15BMATLS & \[
\begin{gathered}
\tilde{g} \rightarrow t \bar{t} \widetilde{\chi}_{1}^{0} \text {, lifetime } 10 \mathrm{~ns}, \\
m_{\tilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline \(>1157\) & 95 & 13 AAD & 15bmATLS & \(\widetilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}\), lifetime 10 ns , \(m_{\widetilde{g}}-m_{\widetilde{\chi}_{1}^{0}}=480 \mathrm{GeV}\) \\
\hline > 869 & 95 & \({ }^{13}\) AAD & 15BMATLS & \[
\begin{gathered}
\tilde{g} \rightarrow(g / q \bar{q}) \widetilde{\chi}_{1}^{0}, \text { lifetime } 1 \\
\mathrm{~ns}, m_{\widetilde{\chi}_{1}^{0}}=100 \mathrm{GeV}
\end{gathered}
\] \\
\hline > 821 & 95 & 13 AAD & 15bmATLS & \[
\begin{aligned}
& \widetilde{g} \rightarrow(g / q \bar{q}) \tilde{\chi}_{1}^{0}, \text { lifetime } \\
& 1 \mathrm{~ns}, m_{\tilde{g}}-{\underset{m}{\tilde{\chi}_{1}^{0}}}=100 \\
& \mathrm{GeV}
\end{aligned}
\] \\
\hline
\end{tabular}

Searches Particle Listings

\section*{Supersymmetric Particle Searches}


AABOUD 19AT searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for metastable and stable \(R\)-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding o path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Gluino \(R\)-hadrons with lifetimes of the order of 50 ns are excluded at \(95 \%\) C.L. for masses below 1980 GeV using the muon-spectrometer agnostic analysis. Using the full-detector search, the observed lower limits on the mass are 2000 GeV . See their Figure 9 (top).
\({ }^{2}\) AABOUD 19C searched in \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for metastable and stable \(R\)-hadrons arising as excesses in the mass distribution of reconstructed tracks with high transverse momentum and large \(\mathrm{dE} / \mathrm{dx}\). Gluino \(R\)-hadrons with lifetimes above 10 ns are excluded at 95\% C.L. with lower mass limit range between 1000 GeV and 2060 GeV , see their Figure 5(a). Masses smaller than 1290 GeV are excluded for a lifetime of ns, see their Figure 6. In the case of stable \(R\)-hadrons, the lower mass limit is 1890 GeV , see their Figure 5(b).
\({ }^{3}\) SIRUNYAN 19BH searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for longlived particles decaying into jets, with each long-lived particle having a decay vertex well displaced from the production vertex. The selected events are found to be consistent with standard model predictions. Limits are set on the gluino mass in a GMSB model where the gluino is decaying via \(\widetilde{g} \rightarrow g \widetilde{G}\), see their Figure 4 and in an RPV model of supersymmetry where the gluino is decaying via \(g \rightarrow t \bar{b} \bar{s}\), see their Figures 5. Limits are also set on the stop mass in two RPV models, see their Figure 6 (for \(t \rightarrow b \ell\) decays) and Figure 7 (for \(\widetilde{t} \rightarrow \bar{d} \bar{d}\) decays).
\({ }^{4}\) SIRUNYAN 19BT searched in \(137 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for longlived particles decaying to displaced, nonprompt jets and missing transverse momentum. Candidate signal events are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are found to be consistent with the background predictions. Limits are set on the gluino mass in a GMSB model where long-lived gluinos are pair produced and decaying via \(\widetilde{g} \rightarrow g \widetilde{G}\), see their Figures 4 and 5.
\({ }^{5}\) AABOUD 18 s searched in \(32.8 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived gluinos in final states with large missing transverse momentum and at least one highmass displaced vertex with five or more tracks. The observed yield is consistent with the expected background. Exclusion limits are derived for Tglu1A models predicting the existence of long-lived gluinos reaching roughly \(\mathrm{m}(\widetilde{g})=2000 \mathrm{GeV}\) to 2370 GeV for \(\mathrm{m}\left(\widetilde{\chi}_{1}^{0}\right)\) \(=100 \mathrm{GeV}\) and gluino lifetimes between 0.02 and 10 ns , see their Fig. 8. Limits are presented also as a function of the lifetime (for a fixed gluino-neutralino mass differenc of 100 GeV ) and of the gluino and neutralino masses (for a fixed lifetime of 1 ns ). See their Fig. 9 and 10 respectively
\({ }^{6}\) SIRUNYAN 18AY searched in \(35.9 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for events containing one or more jets and significant \(E_{T}\). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on Squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range \(10^{-3}\) \(\mathrm{mm}<\mathrm{c} \tau<10^{5} \mathrm{~mm}\), see their Figure 4.
7 SIRUNYAN 18DV searched in \(38.5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived particles in events with multiple jets and two displaced vertices composed of many tracks. No events with two well-separated high-track-multiplicity vertices were observed. Limits are set on the stop and the gluino mass in RPV models of supersymmetry where the stop (gluino) is decaying solely into dijet (multijet) final states, see their Figures 6 and 7.
8 KHACHATRYAN 17AR searched in \(17.6 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for R-parity-violating SUSY in which long-lived neutralinos or gluinos decay into multijet final states. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass for a range of mean proper decay lengths ( \(c \tau\) ), see their Fig. 7. The upper limits on the production cross section times branching ratio squared (Fig. 7) are also applicable to long-lived neutralinos.
\({ }^{9}\) AABOUD 16B searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived \(R\)-hadrons using observables related to large ionization losses and slow propagation velocities, which are signatures of heavy charged particles traveling significantly slower than the speed of light. Exclusion limits at 95\% C.L. are set on the long-lived gluino masses exceeding 1580 GeV . See their Fig. 5.
\({ }^{10}\) AABOUD 16 C searched in \(3.2 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) for long-lived and stable \(R\)-hadrons identified by anomalous specific ionization energy loss in the ATLAS Pixel detector. Gluino \(R\)-hadrons with lifetimes above 0.4 ns are excluded at \(95 \%\) C.L. with lower mass limit range between 740 GeV and 1590 GeV . In the case of stable \(R\)-hadrons, the lower mass limit is 1570 GeV . See their Figs. 5 and 6 .
ratio, lifetimes between 75 ns and \(3 \times 10^{5} \mathrm{~s}\) are excluded for \(m_{\tilde{g}}=300 \mathrm{GeV}\). The \(\tilde{g}\) mass exclusion is obtained with the same assumptions for lifetimes between \(10 \mu s\) and 1000 s , but shows some dependence on the model for R-hadron interactions with matter, illustrated in Fig. 3. From a time-profile analysis, the mass exclusion is 382 GeV for a lifetime of \(10 \mu \mathrm{~s}\) under the same assumptions as above.
\({ }^{24}\) KHACHATRYAN 11 C looked in \(3.1 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with heavy stable particles, identified by their anomalous \(\mathrm{dE} / \mathrm{dx}\) in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \(\widetilde{g}\). No evidence for an excess over the expected background is observed. Limits are derived for pair production of gluinos as a function of mass (see Fig. 3), depending on the fraction, \(f\), of formation of \(\tilde{g}-g\) (R-gluonball). The quoted limit is for \(f=0.1\), while for \(\mathrm{f}=0.5\) it degrades to 357 GeV . In the conservative scenario where every hadronic interaction causes it to become neutral, the limit decreases to 311 GeV for \(\mathrm{f}=0.1\).

Light \(\tilde{G}\) (Gravitino) mass limits from collider experiments
The following are bounds on light ( \(\ll 1 \mathrm{eV}\) ) gravitino indirectly inferred from its coupling to matter suppressed by the gravitino decay constant.
Unless otherwise stated, all limits assume that other supersymmetric particles besides the gravitino are too heavy to be produced. The gravitino is assumed to be undetected and to give rise to a missing energy \((\mathbb{E})\) signature.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.|bl.gov).
VALUE (eV) CL\%

\section*{DOCUMENT ID}
\(\qquad\) TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - \(>3.5 \times 10^{-4} 95 \quad{ }^{1}\) AAD \(\quad\) 15BH ATLS \(\begin{gathered}\text { jet }+E_{T}, p p \rightarrow(\tilde{q} / \widetilde{g}) \widetilde{G}, \\ m_{\tilde{q}}=m_{\tilde{g}}=500 \mathrm{GeV},\end{gathered}\)
\(>3 \times 10^{-4} 95 \quad{ }^{1}\) AAD \(\quad\) 15BHATLS \begin{tabular}{rl} 
jet \(+E_{T}, p p \rightarrow(\widetilde{q} / \widetilde{g}) \widetilde{G}\), \\
\(m_{\tilde{q}}=m_{\tilde{g}}=1000 \mathrm{GeV}\)
\end{tabular}

\(>1.09 \times 10^{-5} \quad 95 \quad{ }^{2}\) ABDALLAH \(\quad 05\) B DLPH \(e^{+m_{\tilde{q}}} \rightarrow m_{\tilde{g}}^{\tilde{G}}{ }^{-5} \gamma\)
\(>1.35 \times 10^{-5} \quad 95 \quad 3\) ACHARD \(\quad\) 04E L3 \(\quad e^{+} e^{-} \rightarrow \tilde{G} \tilde{G} \gamma\)
\(>1.3 \times 10^{-5} \quad{ }^{4}\) HEISTER \(\quad\) O3C ALEP \(e^{+} e^{-} \overrightarrow{\tilde{\sigma}} \widetilde{\tilde{\sigma}} \tilde{G} \gamma\)
\begin{tabular}{lllll}
\(>11.7 \times 10^{-6}\) & 95 & 5 ACOSTA & 02 H CDF & \(p \bar{p} \rightarrow \tilde{G} \widetilde{G} \gamma\) \\
\hline
\end{tabular}
\({ }^{1}\) AAD 15BH searched in \(20.3 \mathrm{fb}{ }^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) for associated production of a light gravitino and a squark or gluino. The squark (gluino) is assumed to decay exclusively to a quark (gluon) and a gravitino. No evidence was found for an excess above the expected level of Standard Model background and 95\% C.L. lower limits were set on the gravitino mass as a function of the squark/gluino mass, both in the case of degenerate and non-degenerate squark/gluino masses, see Figs. 14 and 15.
\({ }^{2}\) ABDALLAH 05B use data from \(\sqrt{s}=180-208 \mathrm{GeV}\). They look for events with a single photon \(+E\) final states from which a cross section limit of \(\sigma<0.18 \mathrm{pb}\) at 208 GeV is obtained, allowing a limit on the mass to be set. Supersedes the results of ABREU \(00 z\).
\({ }^{3}\) ACHARD 04 E use data from \(\sqrt{s}=189-209 \mathrm{GeV}\). They look for events with a single photon \(+\not \equiv\) final states from which a limit on the Gravitino mass is set corresponding to \(\sqrt{F}>238 \mathrm{GeV}\). Supersedes the results of ACCIARRI 99R.
\({ }^{4}\) HEISTER 03 C use the data from \(\sqrt{s}=189-209 \mathrm{GeV}\) to search for \(\gamma{ }_{T}\) final states.
\({ }^{5}\) ACOSTA 02H looked in \(87 p b^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.8 \mathrm{TeV}\) for events with a high- \(E_{T}\) photon and \(E_{T}\). They compared the data with a GMSB model where the final state could arise from \(q \bar{q} \rightarrow \widetilde{G} \widetilde{G} \gamma\). Since the cross section for this process scales as \(1 /|F|^{4}\), a limit at \(95 \% \mathrm{CL}\) is derived on \(|F|^{1 / 2}>221 \mathrm{GeV}\). A model independent limit for the above topology is also given in the paper.
\({ }^{6}\) ABBIENDI,G OOD searches for \(\gamma \neq\) final states from \(\sqrt{s}=189 \mathrm{GeV}\).

\section*{Supersymmetry miscellaneous results}

Results that do not appear under other headings or that make nonminimal assumptions.
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.|bl.gov).

VALUE CL\%

DOCUMENT ID \(\qquad\) TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - \(1{ }^{1}\) AAD
20c ATLS
habemus MSSM,
\(m_{A}\)-tan \(\beta\) plane
selected ATLAS searches
on EWK sector
dark photon, \(\gamma_{d}\), in SUSY-
and Higgs-portal models
dark \(\gamma\), hidden valley
hidden
scalar gluons Higgs
\(\mu \mu\) resonances
\(\gamma_{D}\), hidden valley
\({ }^{1}\) AAD \(20 C\) uses a statistical combination of six final states \(b \bar{b} b \bar{b}, b \bar{b} W W, b \bar{b} \tau \tau\), \(W W W W, b \bar{b} \gamma \gamma\), and \(W W \gamma \gamma\) to search for non-resonant and resonant production of Higgs boson pairs. The search uses \(36.1 \mathrm{fb}^{-1}\) of \(p p\) collisions data at \(\sqrt{s}=13 \mathrm{TeV}\). Constraints in the habemus Minimal Supersymmetric Standard Model in the \(\left(m_{A}, \tan \beta\right)\) parameter space are placed, see their Figure 7(b).
\({ }^{2}\) AABOUD 16AF uses a selection of searches by ATLAS for the electroweak production of SUSY particles studying resulting constraints on dark matter candidates. They use \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). A likelihood-driven scan of an effective model focusing on the gaugino-higgsino and Higgs sector of the PMSSM is performed. The ATLAS searches impact models where \(m_{\chi_{1}^{0}}<65 \mathrm{GeV}\), excluding \(86 \%\) of them. See their Figs. 2, 4, and 6.
\({ }^{3}\) AAD 16AG searches for prompt lepton-jets using \(20 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) collected with the ATLAS detector. Lepton-jets are expected from decays of low-mass dark photons in SUSY-portal and Higgs-portal models. No significant excess of events is observed and \(95 \% \mathrm{CL}\) upper limits are computed on the production cross section times branching ratio for two prompt lepton-jets in models predicting 2 or \(4 \gamma_{d}\) via SUSYportal topologies, for \(\gamma_{d}\) mass values between 0 and 2 GeV . See their Figs 9 and 10 . The results are also interpreted in terms of a \(90 \%\) CL exclusion region in kinetic mixing and dark-photon mass parameter space. See their Fig. 13.
\({ }^{4}\) AAD 13P searched in \(5 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for single lepton-jets with at least four muons; pairs of lepton-jets, each with two or more muons; and pairs of lepton-jets with two or more electrons. All of these could be signatures of Hidden Valley supersymmetric models. No statistically significant deviations from the Standard Model expectations are found. \(95 \%\) C.L. limits are placed on the production cross section times branching ratio of dark photons for several parameter sets of a Hidden Valley model.
\({ }^{5}\) AALTONEN 12 AB looked in \(5.1 \mathrm{fb} b^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for anomalous production of multiple low-energy leptons in association with a \(W\) or \(Z\) boson. Such events may occur in hidden valley models in which a supersymmetric Higgs boson is produced in association with a \(W\) or \(Z\) boson, with \(H \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}\) pair and with the \(\tilde{\chi}_{1}^{0}\) further decaying into a dark photon \(\left(\gamma_{D}\right)\) and the unobservable lightest SUSY particle of the hidden sector. As the \(\gamma_{D}\) is expected to be light, it may decay into a lepton pair. No significant excess over the SM expectation is observed and a limit at \(95 \%\) C.L. is set on the cross section for a benchmark model of supersymmetric hidden-valley Higgs production.
\({ }^{6}\) AAD 11AA looked in \(34 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with \(\geq 4\) jets originating from pair production of scalar gluons, each decaying to two gluons. No two-jet resonances are observed over the SM background. Limits are derived on the cross section times branching ratio (see Fig. 3). Assuming \(100 \%\) branching ratio for the decay to two gluons, the quoted exclusion range is obtained, except for a 5 GeV mass window around 140 GeV .
\(7^{7}\) CHATRCHYAN 11 E looked in \(35 \mathrm{pb}^{-1}\) of \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) for events with collimated \(\mu\) pairs (leptonic jets) from the decay of hidden sector states. No evidence for new resonance production is found. Limits are derived and compared to various SUSY models (see Fig. 4) where the LSP, either the \(\tilde{\chi}_{1}^{0}\) or a \(\tilde{q}\), decays to dark sector particles.
\({ }^{8}\) ABAZOV 10 N looked in \(5.8 \mathrm{fb}^{-1}\) of \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) for events from hidden valley models in which a \(\tilde{\chi}_{1}^{0}\) decays into a dark photon, \(\gamma_{D}\), and the unobservable lightest SUSY particle of the hidden sector. As the \(\gamma_{D}\) is expected to be light, it may decay into a tightly collimated lepton pair, called lepton jet. They searched for events with \(E_{T}\) and two isolated lepton jets observable by an opposite charged lepton pair ee, \(e \mu\) or \(\mu \mu\). No significant excess over the SM expectation is observed, and a limit at \(95 \%\) C.L. on the cross section times branching ratio is derived, see their Table I. They also examined the invariant mass of the lepton jets for a narrow resonance, see their Fig. 4, but found no evidence for a signal.

\section*{REFERENCES FOR Supersymmetric Particle Searches}
\begin{tabular}{|c|c|c|c|c|}
\hline AAD & 20C & PL B800 135103 & G. Aad et al. & (ATLAS Collab.) \\
\hline SIRUNYAN & 20B & PL B801 135183 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AABOUD & 19AT & PR D99 092007 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AU & PR D100 012006 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19C & PL B788 96 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19G & PR D99 012001 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 191 & PR D99 012009 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AAD & 19 H & JHEP 1912060 & G. Aad et al. & (ATLAS Collab.) \\
\hline ABE & 19 & PL B789 45 & K. Abe et al. & (XMASS Collab.) \\
\hline AJAJ & 19 & PR D100 022004 & R. Ajaj et al. & (DEAP-3600 Collab.) \\
\hline AMOLE & 19 & PR D100 022001 & C. Amole et al. & (PICO Collab.) \\
\hline APRILE & 19A & PRL 122141301 & E. Aprile et al. & (XENON1T Collab.) \\
\hline DI-MAURO & 19 & PR D99 123027 & M. Di Mauro et al. & \\
\hline JOHNSON & 19 & PR D99 103007 & C. Johnson et al. & \\
\hline LI & 19D & PR D99 123519 & S. Li et al. & \\
\hline SIRUNYAN & 19AG & JHEP 1906143 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19AO & EPJ C79 305 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 AU & EPJ C79 444 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 AW & PL B790 140 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BH & PR D99 032011 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BI & PR D99 032014 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BJ & PR D99 052002 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BT & PL B797 134876 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BU & JHEP 1908150 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19CA & PR D100 112003 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 CE & PRL 123241801 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 CH & JHEP 1910244 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 Cl & JHEP 1911109 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19F & PR D99 012010 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19K & JHEP 1901154 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19S & JHEP 1903031 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19 U & JHEP 1903101 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline XIA & 19A & PL B792 193 & J. Xia et al. & (PandaX-II Collab.) \\
\hline AABOUD & 18AQ & JHEP 1806108 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18AR & JHEP 1806107 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18AS & JHEP 1806022 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18AY & EPJ C78 154 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18BB & EPJ C78 250 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18BJ & EPJ C78 625 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18BT & EPJ C78 995 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18BV & JHEP 1809050 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CF & PL B785 136 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CK & PR D98 092002 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 CM & PR D98 092008 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CO & PR D98 092012 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 181 & JHEP 1801126 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18P & PR D97 032003 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18R & PR D97 052010 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 S & PR D97 052012 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 U & PR D97 092006 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 V & PR D97 112001 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 Y & PR D98 032008 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 182 & PR D98 032009 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline ABDALLAH & 18 & PRL 120201101 & H. Abdallah et al. & (H.E.S.S. Collab.) \\
\hline ADHIKARI & 18 & NAT 56483 & G. Adhikari et al. & (COSINE-100 Collab.) \\
\hline AGNES & 18A & PR D98 102006 & P. Agnes et al. & (DarkSide-50 Collab.) \\
\hline AGNESE & 18A & PRL 120061802 & R. Agnese et al. & (SuperCDMS Collab.) \\
\hline AHNEN & 18 & JCAP 1803009 & M.L. Ahnen et al. & (MAGIC Collab.) \\
\hline ALBERT & 18B & JCAP 1806043 & A. Albert et al. & (HAWC Collab.) \\
\hline ALBERT & 18C & PR D98 123012 & A. Albert et al. & (HAWC Collab.) \\
\hline AMAUDRUZ & 18 & PRL 121071801 & P.A. Amaudruz et al. & (DEAP-3600 Collab.) \\
\hline APRILE & 18 & PRL 121111302 & E. Aprile et al. & (XENON1T Collab.) \\
\hline SIRUNYAN & 18AA & PL B780 118 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18AC & PL B780 384 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SIRUNYAN & 18AD & PL B780 432 & A.M. Sirunyan et al. & (CMs Collab.) & AAD & 15BG & EPJ C75 318 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AJ & PL B782 440 & A.M. Sirunyan et al. & (CMS Collab.) & Also & & EPJ C75 463 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AK & PL B783 114 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15B & EPJ C75 299 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AL & JHEP 1802067 & A.M. Sirunyan et al. & (CMS Collab.) & Also & & EPJ C75 408 (errat.) & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AN & JHEP 1803167 & A.M. Sirunyan et al. & (CMs Collab.) & AAD & 15BM & EPJ C75 407 & G. Aad et al. & & (ATLAS Collab.) \\
\hline Sirunyan & 18 AO & JHEP 1803166 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15 BV & JHEP 1510054 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AP & JHEP 1803160 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15BX & JHEP 1510134 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18 AR & JHEP 1803076 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15 CA & PR D92 072001 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AT & JHEP 1804073 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15 CB & PR D92 072004 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18AY & JHEP 1805025 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & \({ }^{15 C J}\) & EPJ C75 510 & G. Aad & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18B & PL B778 263 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15CS & PR D91 012008 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18 BR & JHEP 1808016 & A.M. Sirunyan et al. & (CMS Collab.) & Also & & PR D92 059903 (errat.) & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & \({ }^{18 C}\) & PR D97 032009 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15 J & PRL 114142001 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18D & PR D97 012007 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15K & PRL 114161801 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18DI & JHEP 1809065 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 150 & PRL 115031801 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18DN & JHEP 1811079 & A.M. Sirunyan et al. & (CMS Collab.) & AAD & 15X & PR D91 112016 & G. Aad et al. & & (ATLAS Collab.) \\
\hline SIRUNYAN & 18DP & JHEP 1811151 & A.M. Sirunyan et al. & (CMS Collab.) & AAIJ & 15BD & EPJ C75 595 & R. Aaij et al. & & (LHCb Collab.) \\
\hline SIRUNYAN & 18DV & PR D98 092011 & A.M. Sirunyan et al. & (CMS Collab.) & AARTSEN & 15 C & EPJ C75 20 & M.G. Aartsen et al. & & (IceCube Collab.) \\
\hline SIRUNYAN & 18DY & PR D98 112014 & A.M. Sirunyan et al. & (CMS Collab.) & AARTSEN & 15 E & EPJ C75 492 & M.G. Aartsen et al. & & (IceCube Collab.) \\
\hline SIRUNYAN & 18EA & PRL 121141802 & A.M. Sirunyan et al. & (CMS Collab.) & ABRAMOWSKI & & PRL 114081301 & A. Abramowski et al. & & (H.E.S.S. Collab.) \\
\hline SIRUNYAN & 18 M & PRL 120241801 & A.M. Sirunyan et al. & (CMS Collab.) & ACKERMANN & 15 & PR D91 122002 & M. Ackermann et al. & & (Fermi-LAT Collab.) \\
\hline SIRUNYAN & 180 & PR D97 032007 & A.M. Sirunyan et al. & (CMS Collab.) & ACKERMANN & 15A & JCAP 1509008 & M. Ackermann et al. & & (Fermi-LAT Collab.) \\
\hline SIRUNYAN & 18 X & PL B779 166 & A.M. Sirunyan et al. & (CMS Collab.) & ACKERMANN & 15B & PRL 115231301 & M. Ackermann et al. & & (Fermi-LAT Collab.) \\
\hline asboud & 17AF & JHEP 1708006 & M. Aaboud et al. & (ATLAS Collab.) & ADRIAN-MAR... & . 15 & JCAP 1510068 & S. Adrian-Martinez et & & (ANTARES Collab.) \\
\hline AABOUD & 17 Al & JHEP 1709088 & M. Aaboud et al. & (ATLAS Collab.) & AGNES & 15 & PL B743 456 & P. Agnes et al. & & (DarkSide-50 Collab.) \\
\hline asboud & 17AJ & JHEP 1709084 & M. Aaboud et al. & (ATLAS Collab.) & AGNESE & 15B & PR D92 072003 & R. Agnese et al. & & (SuperCDMS Collab.) \\
\hline Also & & JHEP 1908121 (errat.) & M. Aaboud et al. & (ATLAS Collab.) & BUCKLEY & 15 & PR D91 102001 & M.R. Buckley et al. & & \\
\hline asboud & 17 AR & PR D96 112010 & M. Aaboud et al. & (ATLAS Collab.) & CHOI & 15 & PRL 114141301 & K. Choi et al. & (Super- & -Kamiokande Collab.) \\
\hline AABOUD & 17 AX & JHEP 1711195 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY & 15 AB & JHEP 1501096 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AABOUD & 17 AY & JHEP 1712085 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY. & 15AD & JHEP 1504124 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AABOUD & 17AZ & JHEP 1712034 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY. & 15AF & JHEP 1505078 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AABOUD & 17BE & EPJ C77 898 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY... & 15 AH & JHEP 1506116 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AABOUD & 17 N & EPJ C77 144 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY. & 15AK & EPJ C75 151 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AAIJ & 177 & EPJ C77 224 & R. Aaij et al. & (LHCb Collab.) & KHACHATRY. & 15 AO & EPJ C75 325 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AARTSEN & 17 & EPJ C77 82 & M.G. Aartsen et al. & (IceCube Collab.) & KHACHATRY... & 15AR & PL B743 503 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AARTSEN & 17A & EPJ C77 146 & M.G. Aartsen et al. & (IceCube Collab.) & KHACHATRY.. & \(15 A Z\) & PR D92 072006 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline Als & & EPJ C79 214 (errat.) & M.G. Aartsen et al. & (IceCube Collab.) & KHACHATRY. & 15 E & PRL 114061801 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AARTSEN & \({ }_{17}^{17}\) & EPJ C77 627 & M.G. Aartsen et al. & (IceCube Collab.) & KHACHATRY. & 151 & PL B745 5 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AKERIB & 17 & PRL 118021303 & D.S. Akerib et al. & (LUX Collab.) & KHACHATRY.. & & PL B74798 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AKERIB & \({ }^{17 \mathrm{~A}}\) & PRL 118251302 & D.S. Akerib et al. & (LUX Collab.) & KHACHATRY... & 150 & PL B748 255 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline ALBERT & 17A & PL B769 249 & A. Albert et al. & (ANTARES Collab.) & KHACHATRY.. & 15W & PR D91 052012 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline Also & & PL B796 253 (errat.) & A. Albert et al. & (ANTARES Collab.) & KHACHATRY. & \({ }^{15}\) & PR D91 052018 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AMOLE & 17 & PRL 118251301 & C. Amole et al. & (PICO Collab.) & ROLBIECKI & 15 & PL B750 247 & K. Rolbiecki, J. Tattersall & & (MADE, HEID) \\
\hline APRILE & 176 & PRL 119181301 & E. Aprile et al. & (XENON Collab.) & AAD & 14 AE & JHEP 1409176 & G. Aad et al. & & (ATLAS Collab.) \\
\hline ARCHAMBAU... & . 17 & PR D95 082001 & S. Archambault et al. & (VERITAS Collab.) & AAD & 14 AG & JHEP 1409103 & G. Aad et al. & & (ATLAS Collab.) \\
\hline BATTAT & 17 & ASP 9165 & J.B.R. Battat et al. & (DRIFT-IId Collab.) & AAD & 14 A J & JHEP 1409015 & G. Aad et al. & & (ATLAS Collab.) \\
\hline BEHNKE & 17 & ASP 9085 & E. Behnke et al. & (PICASSO Collab.) & AAD & 14 AV & JHEP 1410096 & G. Aad et al. & & (ATLAS Collab.) \\
\hline CUI & 17 A & PRL 119181302 & X. Cui et al. & (PandaX-II Collab.) & AAD & 14 AX & JHEP 1410024 & G. Aad et al. & & (ATLAS Collab.) \\
\hline FU & 17 & PRL 118071301 & C. Fu et al. & (PandaX-II Collab.) & AAD & 14B & EPJ C74 2883 & G. Aad et al. & & (ATLAS Collab.) \\
\hline Also & & PRL 120049902 (errat.) & C. Fu et al. & (PandaX-II Collab.) & AAD & 14BD & JHEP 1411118 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 17 & PR D95 012003 & V. Khachatryan et al. & (CMS Collab.) & AAD & \({ }_{14 \mathrm{E}}^{14 \mathrm{BH}}\) & PR D90 112005 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 17A & PRL 118021802 & V. Khachatryan et al. & (CMS Collab.) & AAD & 14 E & JHEP 1406035 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 17AD & PR D96012004 & V. Khachatryan et al. & (CMS Collab.) & AAD & 14 F & JHEP 1406124 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 17AR & PR D95 012009 & V. Khachatryan et al. & (CMS Collab.) & AAD & \({ }_{14}^{14 G}\) & JHEP 1405071 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... KHACHATRY... & & PR D95 012011 & V. Khachatryan et al.
V. Khachatryan et al. & (CMS Collab.) & AAD & \[
\begin{aligned}
& 14 \mathrm{H} \\
& 14 \mathrm{~K}
\end{aligned}
\] & JHEP 1404169
PR D90 012004 & G. Aad et al.
G. Aad et al. & & (ATLAS Collab.) \\
\hline kHACHATRY... & 17 L & JHEP 1704018 & V. Khachatryan et al. & (CMS Collab.) & AAD & 14 T & PR D90 052008 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 17P & EPJ C77 294 & V. Khachatryan et al. & (CMS Collab.) & AAD & 14 X & PR D90 052001 & G. Aad et al. & & (ATLAS Collab.) \\
\hline KHACHATRY... & 175 & PL B767 403 & V. Khachatryan et al. & (CMS Collab.) & AALTONEN & 14 & PR D90 012011 & T. Aaltonen et al. & & (CDF Collab.) \\
\hline KHACHATRY... & 17 V & PL B769 391 & V. Khachatryan et al. & (CMS Collab.) & ACKERMANN & 14 & PR D89 042001 & M. Ackermann et al. & & (Fermi-LAT Collab.) \\
\hline KHACHATRY... & 17 Y & PL B770 257 & V. Khachatryan et al. & (CMS Collab.) & AKERIB & 14 & PRL 112091303 & D.S. Akerib et al. & & (LUX Collab.) \\
\hline SIRUNYAN & 17 AF & PRL 119151802 & A.M. Sirunyan et al. & (CMS Collab.) & ALEKSIC & 14 & JCAP 1402008 & J. Aleksic et al. & & (MAGIC Collab.) \\
\hline SIRUNYAN & 17AS & JHEP 1710019 & A.M. Sirunyan et al. & (CMS Collab.) & AVRORIN & 14 & ASP 6212 & A.D. Avrorin et al. & & (BAIKAL Collab.) \\
\hline SIRUNYAN & 17 AT & JHEP 1710005 & A.M. Sirunyan et al. & (CMS Collab.) & BUCHMUEL.. & 14 & EPJ C74 2809 & O. Buchmueller et al. & & \\
\hline SIRUNYAN & 17 AW & JHEP 1711029 & A.M. Sirunyan et al. & (CMS Collab.) & BUCHMUEL.. & 14A & EPJ C74 2922 & O. Buchmueller et al. & & \\
\hline SIRUNYAN & 17 AY & JHEP 1712142 & A.M. Sirunyan et al. & (CMS Collab.) & CHATRCHYAN & 14 AH & PR D90 112001 & 5. Chatrchyan et al. & & (CMS Collab.) \\
\hline SIRUNYAN & 17 AZ & EPJ C77 710 & A.M. Sirunyan et al. & (CMS Collab.) & CHATRCHYAN & \[
14 \mathrm{H}
\] & JHEP 1401163 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline SIRUNYAN
SIRUNYAN & 17 l & EPJ C77 327
PR D96 032003 & A.M. Sirunyan et al.
A.M. Sirunyan et al. & (CMS Collab.) & CHATRCHYAN
CHATRCHYAN & \[
\begin{aligned}
& 14 \mathrm{I} \\
& 14 \mathrm{~N}
\end{aligned}
\] & JHEP 1406055 & S. Chatrchyan et ald & & (CMS Collab.) \\
\hline SIRUNYAN & 17 S & EPJ C77 578 & A.M. Sirunyan et al. & (CMS Collab.) & CHATRCHYAN & 14 P & PL B730 193 & s. Chatrichyan et al. & & (CMS Collab.) \\
\hline AABOUD & 16 AC & EPJ C76 683 & M. Aaboud et al. & (ATLAS Collab.) & CHATRCHYAN & 14R & PR D90 032006 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline asboud & 16AF & JHEP 1609175 & M. Aaboud et al. & (ATLAS Collab.) & CHATRCHYAN & 14 U & PRL 112161802 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline AABOUD & \({ }^{16 \mathrm{~B}}\) & PL B760 647 & M. Aaboud et al. & (attas Collab.) & CZAKON & 14 & PRL 113201803 & M. Czakon et al. & (AACH, & CAMB, UCB, LBL+) \\
\hline AABOUD & 16 C & PR D93 112015 & M. Aaboud et al. & (ATLAS Collab.) & FELIZARDO & \({ }_{14}^{14}\) & PR D89 072013 & M. Felizardo et al. & & (SIMPLE Collab.) \\
\hline AABOUD & 16D & PR D94 032005 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY... & 14 C & PL B736 371 & V. Khachatryan et al. & & (CMS Collab.) \\
\hline AABOUD
AABOUD & 16 J
16 M & PR D94 052009
EPJ C76 517 & M. Aaboud et al. & (ATLAS Collab.) & KHACHATRY...
KHACHATRY.. & & EPJ C74 3036 & & & (CMS Collab.) \\
\hline AABOUD
AABOUD & 16 M
16 N & EPJ C76 517
EPJ 76392 & M. Aaboud et al.
M. Aaboud et al. & (ATLAS Collab.)
(ATLAS Collab.) & KHACHATRY...
KHACHATRY... & & PR D90 092007
PL B739 229 & V. Khachatryan et al.
V. Khachatryan et al. & & (CMS Collab.) \\
\hline asboud & 16 P & EPJ C76 541 & M. Aaboud et al. & (ATLAS Collab.) & PDG & 14 & CP C38 070001 & K. Olive et al. & & (PDG Collab.) \\
\hline AABOUD & 16 Q & EPJ C76 547 & M. Aaboud et al. & (ATLAS Collab.) & Roszkowski & 14 & JHEP 1408067 & L. Roszkowski, E.M. Sessolo & , A.J. & Williams (WINR) \\
\hline AAD & 16 AA & PR D93 052002 & G. Aad et al. & (ATLAS Collab.) & AAD & 13 & PL B718881 & G. Aad et al. & & (ATLAS Collab.) \\
\hline AAD & 16AD & PR D94 032003 & G. Aad et al. & (ATLAS Collab.) & AAD & \({ }^{13 A A}\) & PL B720 277 & G. Aad et al. & & (ATLAS Collab.) \\
\hline \({ }^{\text {AAD }}\) & \({ }^{164 G}\) & JHEP 1602062 & G. Aad et al. & (ATLAS Collab.) & AAD & 13 Al & PL B723 15 & G. Aad et al. & & (ATLAS Collab.) \\
\hline \({ }_{\text {AAD }}^{\text {AAD }}\) & \({ }_{16 \text { 16M }}^{16 \mathrm{~A}}\) & JHEP 1600067 & G. Aad et al.
G. Aad et al. & (ATLAS Collab.) & AAD & \({ }_{13}^{13 A P}\) & PR D88 012001 & G. Aad et al.
G. Aad et al. & & (ATLAS Collab.) \\
\hline AAD & 16BB & EPJ C76 259 & G. Aad et al. & (ATLAS Collab.) & AAD & 13B & PL B718 879 & G. Aad et al. & & (ATLAS Collab.) \\
\hline AAD & 16BG & EPJ C76 565 & G. Aad et al. & (ATLAS Collab.) & AAD & 13 BC & PR D88 112003 & G. Aad et al. & & (ATLAS Collab.) \\
\hline \({ }^{\text {AAD }}\) & \({ }^{16 \mathrm{~V}}\) & PL B757 334 & G. Aad et al. & (ATLAS Collab.) & \({ }^{\text {AAD }}\) & \({ }_{1}^{13 B D}\) & PR D88 112006 & G. Aad et al. & & (ATLAS Collab.) \\
\hline \({ }_{\text {AARTSEN }}\) & 16 C & JCAP 1604022 & M.G. Aartsen et al. & (IceCube Collab.) & AAD & \({ }_{13}^{13 H}\) & JHEP 1301131 & G. Aad et al. & & (ATLAS Collab.) \\
\hline \({ }_{\text {ABDALLAH }}\) & \({ }_{16}^{16}\) & PRL 117111301 & N.G. Adarsen et al.
H. Abdallah et al. & (H.E.S.S.S. Collab.) & \({ }_{\text {AAD }}\) & \({ }_{13 \mathrm{P}}^{13 \mathrm{~L}}\) & PR B719 299 & G. Aad et al. & & (ATLAS Collab.) \\
\hline ABDALLAH & 16A & PRL 117151302 & H. Abdallah et al. & (H.E.S.S. Collab.) & AAD & \({ }^{13 Q}\) & PL B719 261 & G. Aad et al. & & (ATLAS Collab.) \\
\hline ADRIAN-MAR.. & & PL B759 69 & S. Adrian-Martinez et al. & (ANTARES Collab.) & AAD & 13 R & PL B719 280 & G. Aad et al. & & (ATLAS Collab.) \\
\hline AHNEN & 16 & JCAP 1602039 & M.L. Ahnen et al. & (MAGIC and Fermi-LAT Collab.) & AALTONEN & 131 & PR D88 031103 & T. Aaltonen et al. & & (CDF Collab.) \\
\hline AKERIB & 16 & PRL 116161301 & D.S. Akerib et al. & (LUX Collab.) & AALTONEN & \({ }_{13 \mathrm{C}}^{13}\) & PRL 110201802 & T. Aaltonen et al. & & (CDF Collab.) \\
\hline AKERIB & 16 A & PRL 116161302 & D.S. Akerib et al. & (LUX Collab.) & AARTSEN & 13 C & PR D88 122001 & M.G. Aartsen et al. & & (lceCube Collab.) \\
\hline \({ }_{\text {AMPLE }}^{\text {APRILE }}\) & \({ }_{16 \mathrm{~B}}^{16}\) & PR D93 052014
PR D94 122001 & C. Amole et al. & (PICO Collab.)
(XENON100 Collab.) & ABAZOV
ABRAMOWSKI & \({ }_{13}^{138}\) & PR D87 052011
PRL 110041301 & V.M. Abazov et al.
A. Abramowski et al. & &  \\
\hline AVRORIN & 16 & ASP 8112 & A.D. Avrorin et al. & (baikal Collab.) & ACKERMANN & 13 A & PR D88 082002 & A. Abramowski et al.
M. Ackermann et al. & & (Fermi-LAT Collab.) \\
\hline CIRELLI & 16 & JCAP 1607041 & M. Cirelli, M. Taoso & (LPNHE, MADE) & ADRIAN-MAR... & & JCAP 1311032 & S. Adrian-Martinez et al. & & (ANTARES Collab.) \\
\hline KHACHATRY... & 16 A & PL B759 479 & V. Khachatryan et al. & (Cms Collab.) & AGNESE & 13 & PR D88 031104 & R. Agnese et al. & & (CDMS Collab.) \\
\hline kHACHATRY... & 16 AC & PL B760 178 & V. Khachatryan et al. & (CMS Collab.) & AGNESE & 13A & PRL 111251301 & R. Agnese et al. & & (CDMS Collab.) \\
\hline KHACHATRY... & 16 AM & PR D93092009 & V. Khachatryan et al. & (CMS Collab.) & APRILE & 13 & PRL 111021301 & E. Aprie et al. & & (XENON100 Collab.) \\
\hline KHACHATRY... & 16AV & JHEP 1607027
JHEP 1608122 & V. Khachatryan et al. & (CMS Collab.) & BERGSTROM & 13 & PRL 111171101 & L. Bergstrom et al. & & \\
\hline KHACHATRY...
KHACHATRY... & \({ }_{16 \mathrm{BE}}^{164}\) & JHEP 1608122 & V. Khachatryan et al. & (CMS Collab.) & BOLIEV
CABRERA & 13
13 & JCAP 1309019
JHEP 1307182 & M. Boliev et al.
M. Cabrera, J. Casas, R. de & & \\
\hline KHACHATRY... & 16BJ & EPJ C76 439 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & 13 & PL B718 815 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & 16BK & EPJ C76 460 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & 13AB & JHEP 1307122 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & \({ }_{\text {16BS }}^{16 \mathrm{BS}}\) & JHEP 1610006 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & 13 AH & PL B722 273 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY...
KHACHATRY & \({ }_{16 \mathrm{BW}}^{16 \mathrm{~B}}\) & JHEP 1610129 & V. Khachatryan et al.
V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN
CHATRCHYAN & 13AO
13 & PR D87 072001 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & 16 BX & PR D94 112009 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & 13 AV & PRL 111081802 & 5. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & 16BY & JHEP 1612013 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & \({ }^{136}\) & JHEP 1301077 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & 16 R & PL B757 6 & V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN & \({ }^{13 \mathrm{H}}\) & PL B719 42 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY...
KHACHATRY & 16 V & PL B758
PL
B759 & V. Khachatryan et al.
V. Khachatryan et al. & (CMS Collab.) & CHATRCHYAN
CHATRCHYAN & 13 V
13 V & EPJ C73 2568 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline KHACHATRY... & \(16 Y\)
16 & PL B759 9
JCAP 1611
021 & V. Khachatryan et al.
N . Leite et al. & (CMS Collab.) & \(\underset{\text { Also }}{\text { CHATRCHYAN }}\) & & JHEP 1303037 (errat) & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline TAN & 16 B & PRL 117121303 & A. Tan et al. & (PandaX Collab.) & CHATRCHYAN & 13W & JHEP 1303111 & S. Chatrchyan et al. & & (CMS Collab.) \\
\hline AAD & 15 AB & PR D92 012010 & G. Aad et al. & (ATLAS Collab.) & ELLIS & \({ }^{13} \mathrm{~B}\) & EPJ C73 2403 & J. Ellis et al. & & \\
\hline AAD & 15 AE & JHEP 1501068 & G. Aad et al. & (ATLAS Collab.) & JIN & 13 & JCAP 1311026 & H.-B. Jin, Y.-L. Wu, Y.-F. & Zhou & \\
\hline AAD & & EPJ C75 208 & G. Aad et al. & (ATLAS Collab.) & StREGE & 13 & JCAP 1304013 & C. Strege et al. & & \\
\hline
\end{tabular}


Searches Particle Listings

\section*{Supersymmetric Particle Searches, Technicolor}


\section*{Technicolor}

See the related review(s):
Dynamical Electroweak Symmetry Breaking: Implications of the \(H^{0}\)

The latest unpublished results are described in "Dynamical Electroweak Symmetry Breaking" review.

MASS LIMITS for Resonances
in Models of Dynamical Electroweak Symmetry Breaking
VALUE (GeV)
L\%
- - We do not use the following data for averages, fits, limits, etc . .
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{>2400} & \multirow{3}{*}{95} & \({ }^{1}\) AAD & 16W & ATLS & color octet vector resonance \\
\hline & & 2 KHACHATRY.. & .16E & CMS & top-color \(Z^{\prime}\) \\
\hline & & \({ }^{3}\) AAD & 15AB & ATLS & \(h \rightarrow \pi_{v} \pi_{v}\) \\
\hline \multirow[t]{4}{*}{>1800} & \multirow[t]{4}{*}{95} & \({ }^{4}\) AAD & 15AO & ATLS & top-color \(Z^{\prime}\) \\
\hline & & \({ }^{5}\) AAD & 15 BB & ATLS & \(p p \rightarrow \rho_{T} / a_{1 T} \rightarrow\) Wh or \\
\hline & & \({ }^{6}\) AAD & 15Q & ATLS & \(\xrightarrow{Z} h \pi_{v} \pi_{v}\) \\
\hline & & \({ }^{7}\) AAIJ & 15AN & LHCB & \(h \rightarrow \pi_{v} \pi_{v}\) \\
\hline \multirow[t]{2}{*}{\(>1140\)} & \multirow[t]{2}{*}{95} & \({ }^{8}\) KHACHATRY.. & 15c & CMS & \(\rho_{T} \rightarrow W Z\) \\
\hline & & \({ }^{9}\) KHACHATRY.. & .15w & CMS & \(H \rightarrow \pi_{v} \pi_{v}\) \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { none } 200-700, \\
750-890 \\
\text { none } 275-960
\end{gathered}
\]} & 95 & 10 AAD & 14AT & ATLS & \(p p \rightarrow \omega_{T} \rightarrow Z \gamma\) \\
\hline & \multirow[t]{2}{*}{95} & 10 AAD & 14AT & ATLS & \(p p \rightarrow a_{T} \rightarrow W \gamma\) \\
\hline & & 11 AAD & 14V & ATLS & color singlet techni-vector \\
\hline \(>703\) & & 12 AAD & 13AN & ATLS & \(p p \rightarrow a_{T} \rightarrow W \gamma\) \\
\hline \(>494\) & & 13 AAD & 13AN & ATLS & \(p p \rightarrow \omega_{T} \rightarrow Z \gamma\) \\
\hline none 500-1740 & 95 & 14 AAD & 13AQ & ATLS & top-color \(Z^{\prime}\) \\
\hline \(>1300\) & 95 & 15 CHATRCHYAN & 13 AP & CMS & top-color \(Z^{\prime}\) \\
\hline \multirow[t]{2}{*}{\(>2100\)} & \multirow[t]{2}{*}{95} & 14 CHATRCHYAN & 13BM & CMS & top-color \(Z^{\prime}\) \\
\hline & & 16 BAAK & 12 & RVUE & QCD-like technicolor \\
\hline none 167-687 & 95 & 17 CHATRCHYAN & 12AF & CMS & \(\rho_{T} \rightarrow W Z\) \\
\hline \(>805\) & 95 & 14 AALTONEN & 11AD & CDF & top-color \(Z^{\prime}\) \\
\hline \multirow[t]{4}{*}{\(>805\)} & \multirow[t]{4}{*}{95} & 14 AALTONEN & 11AE & CDF & top-color \(Z^{\prime}\) \\
\hline & & 18 CHIVUKULA & 11 & RVUE & top-Higgs \\
\hline & & 19 CHIVUKULA & 11A & RVUE & techini- \(\pi\) \\
\hline & & 20 AALTONEN & 101 & CDF & \(p \bar{p} \rightarrow \rho_{T} / \omega_{T} \rightarrow W \pi_{T}\) \\
\hline \multirow[t]{2}{*}{none 208-408} & \multirow[t]{2}{*}{95} & 21 ABAZOV & 10A & D0 & \(\rho_{T} \rightarrow W Z\) \\
\hline & & 22 ABAZOV & 071 & D0 & \(p \bar{p} \rightarrow \rho_{T} / \omega_{T} \rightarrow W \pi_{T}\) \\
\hline \multirow[t]{2}{*}{\(>280\)} & \multirow[t]{2}{*}{95} & 23 ABULENCIA & 05A & CDF & \(\rho_{T} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}\) \\
\hline & & 24 CHEKANOV & 02B & ZEUS & color octet techni- \(\pi\) \\
\hline \(>207\) & 95 & 25 ABAZOV & 01B & D0 & \(\rho_{T} \rightarrow e^{+} e^{-}\) \\
\hline \multirow[t]{2}{*}{none 90-206.7} & \multirow[t]{2}{*}{95} & \({ }^{26}\) ABDALLAH & 01 & DLPH & \(e^{+} e^{-} \rightarrow \rho_{T}\) \\
\hline & & 27 AFFOLDER & 00F & CDF & color-singlet techni- \(\rho\),
\[
\rho_{T} \rightarrow W \pi_{T}, 2 \pi_{T}
\] \\
\hline > 600 & 95 & 28 AFFOLDER & 00k & CDF & color-octet techni- \(\rho\),
\[
\rho_{T 8} \rightarrow 2 \pi_{L Q}
\] \\
\hline \multirow[t]{2}{*}{none 350-440} & \multirow[t]{2}{*}{95} & \({ }^{29} \mathrm{ABE}\) & 99F & CDF & \[
\begin{aligned}
& \text { color-octet techni- } \rho \text {, } \\
& \qquad \rho_{T 8} \rightarrow \bar{b} b
\end{aligned}
\] \\
\hline & & \({ }^{30} \mathrm{ABE}\) & 99N & CDF & techni- \(\omega, \omega_{T} \rightarrow \gamma \bar{b} b\) \\
\hline none 260-480 & 95 & 31 ABE & 97G & CDF & color-octet techni- \(\rho\), \\
\hline
\end{tabular}
\({ }^{1}\) AAD 16 W search for color octet vector resonance decaying to \(b B\) in \(p p\) collisions at \(\sqrt{s}\) \(=8 \mathrm{TeV}\). The vector like quark \(B\) is assumed to decay to \(b H\). See their Fig. 3 and Fig. 4 for limits on \(\sigma \cdot B\).
2 KHACHATRYAN 16 E search for top-color \(Z^{\prime}\) decaying to \(t \bar{t}\). The quoted limit is for \(\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012\). Also exclude \(m_{Z^{\prime}}<2.9 \mathrm{TeV}\) for wider topcolor \(Z^{\prime}\) with \(\Gamma_{Z^{\prime}} / m_{Z^{\prime}}\)
\({ }^{3}\) AAD 15AB search for long-lived hidden valley \(\pi_{v}\) particles which are produced in pairs by the decay of a scalar boson. \(\pi_{V}\) is assumed to decay into dijets. See their Fig. 10 for 4 the limit on \(\sigma B\).
\({ }^{4}\) AAD 15AO search for top-color \(Z^{\prime}\) decaying to \(t \bar{t}\). The quoted limit is for \(\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=\)
\({ }^{5}\) AAD 15BB search for minimal walking technicolor (MWT) isotriplet vector and axialvector resonances decaying to \(W h\) or \(Z h\). See their Fig. 3 for the exclusion limit in the MWT parameter space
\({ }^{6}\) AAD 15Q search for long-lived hidden valley \(\pi_{v}\) particles which are produced in pairs by the decay of scalar boson. \(\pi_{V}\) is assumed to decay into dijets. See their Fig. 5 and Fig. 6 for the limit on \(\sigma B\)
6 for the limit on \(\sigma B\).
AAIJ 15 AN search for long-lived hidden valley \(\pi_{v}\) particles which are produced in pairs AAIJ 15AN search for long-lived hidden valley \(\pi_{v}\) particles which are produced in pairs
by the decay of scalar boson with a mass of \(120 \mathrm{GeV} . \pi_{v}\) is assumed to decay into dijets. by the decay of scalar boson with a m
See their Fig, 4 for the limit on \(\sigma B\).
See their Fig. 4 for the limit on \(\sigma B\).
\({ }^{8}\) KHACHATRYAN \(15 C\) search for a vector techni-resonance decaying to \(W Z\). The limit assumes \(M_{\pi_{T}}=(3 / 4) M_{\rho_{T}}-25 \mathrm{GeV}\). See their Fig. 3 for the limit in \(M_{\pi_{T}}-M_{\rho_{T}}\) plane of the low scale technicolor model.
\({ }^{9}\) KHACHATRYAN 15 w search for long-lived hidden valley \(\pi_{v}\) particles which are produced in pairs in the decay of heavy higgs boson \(H . \pi_{v}\) is assumed to decay into \(\ell^{+} \ell^{-}\). See their Fig. 7 and Fig. 8 for the limits on \(\sigma B\).
\({ }^{10}\) AAD 14AT search for techni- \(\omega\) and techni-a resonances decaying to \(V \gamma\) with \(V=W(\rightarrow\) \(\ell \nu)\) or \(Z\left(\rightarrow \ell^{+} \ell^{-}\right)\).
\({ }^{11}\) AAD 14 V search for vector techni-resonances decaying into electron or muon pairs in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). See their table IX for exclusion limits with various assumptions.
\({ }^{12}\) AAD 13AN search for vector techni-resonance \(a_{T}\) decaying into \(W \gamma\).
\({ }^{13}\) AAD 13AN search for vector techni-resonance \(\omega_{T}\) decaying into \(Z \gamma\).
\({ }^{14}\) Search for top-color \(Z^{\prime}\) decaying to \(t \bar{t}\). The quoted limit is for \(\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012\).
\({ }^{15}\) CHATRCHYAN 13AP search for top-color leptophobic \(Z^{\prime}\) decaying to \(t \bar{t}\). The quoted limit is for \(\Gamma_{Z^{\prime}} / m_{Z^{\prime}}=0.012\).
\({ }^{16}\) BAAK 12 give electroweak oblique parameter constraints on the QCD-like technicolor models. See their Fig. 28.
\({ }^{17}\) CHATRCHYAN 12AF search for a vector techni-resonance decaying to \(W Z\). The limit assumes \(M_{\pi_{T}}=(3 / 4) M_{\rho_{T}}-25 \mathrm{GeV}\). See their Fig. 3 for the limit in \(M_{\pi_{T}}-M_{\rho_{T}}\) plane of the low scale technicolor model.
18 Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11 obtain a limit on the top-Higgs mass \(>300 \mathrm{GeV}\) at \(95 \% \mathrm{CL}\) assuming 150 GeV top-pion mass.
\({ }^{19}\) Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11A obtain a limit on the techinipion mass ruling out the region \(110 \mathrm{GeV}<m_{P}<2 m_{t}\). Existence of color techni-fermions, top-color mechanism, and \(N_{T C} \geq 3\) are assumed.
\({ }^{20}\) AALTONEN 10 I search for the vector techni-resonances \(\left(\rho_{T}, \omega_{T}\right)\) decaying into \(W_{T} \pi_{T}\) with \(W \rightarrow \ell \nu\) and \(\pi_{T} \rightarrow b \bar{b}, b \bar{c}\), or \(b \bar{u}\). See their Fig. 3 for the exclusion plot in \(M_{\pi_{T}}-M_{\rho_{T}}\) plane.
21 ABAZOV 10A search for a vector techni-resonance decaying into \(W Z\). The limit assumes \(M_{\rho_{T}}<M_{\pi_{T}}+M_{W}\).
\({ }^{22}\) ABAZOV 07I search for the vector techni-resonances \(\left(\rho_{T}, \omega_{T}\right)\) decaying into \(W \pi_{T}\) with \(W \rightarrow e \nu\) and \(\pi_{T} \rightarrow b \bar{b}\) or \(b \bar{c}\). See their Fig. 2 for the exclusion plot in \(M_{\pi_{T}}-M_{\rho_{T}}\) plane.
\({ }^{23}\) ABULENCIA 05A search for resonances decaying to electron or muon pairs in \(p \bar{p}\) collisions. at \(\sqrt{s}=1.96 \mathrm{TeV}\). The limit assumes Technicolor-scale mass parameters \(M_{V}=\) \(M_{A}=500 \mathrm{GeV}\).
\({ }^{24}\) CHEKANOV 02B search for color octet techni- \(\pi P\) decaying into dijets in ep collisions. See their Fig. 5 for the limit on \(\sigma(e p \rightarrow e P X) \cdot \mathrm{B}(P \rightarrow 2 j)\).
\({ }^{25}\) ABAZOV 01B searches for vector techni-resonances \(\left(\rho_{T}, \omega_{T}\right)\) decaying to \(e^{+} e^{-}\). The limit assumes \(M_{\rho_{T}}=M_{\omega_{T}}<M_{\pi_{T}}+M_{W}\).
\({ }^{26}\) The limit is independent of the \(\pi_{T}\) mass. See their Fig. 9 and Fig. 10 for the exclusion plot in the \(M_{\rho_{T}}-M_{\pi_{T}}\) plane. ABDALLAH 01 limit on the techni-pion mass is \(M_{\pi_{T}}>79.8\) GeV for \(N_{D}=2\), assuming its point-like coupling to gauge bosons.
\({ }^{27}\) AFFOLDER 00F search for \(\rho_{T}\) decaying into \(W \pi_{T}\) or \(\pi_{T} \pi_{T}\) with \(W \rightarrow \ell \nu\) and \(\pi_{T} \rightarrow\) \(\bar{b} b, \bar{b} c\). See Fig. 1 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the \(M_{\rho_{T}}-M_{\pi_{T}}\) plane.
\({ }^{28}\) AFFOLDER 00 K search for the \(\rho_{T 8}\) decaying into \(\pi_{L Q} \pi_{L Q}\) with \(\pi_{L Q} \rightarrow b \nu\). For \(\pi_{L Q} \rightarrow c \nu\), the limit is \(M_{\rho_{T 8}}>510 \mathrm{GeV}\). See their Fig. 2 and Fig. 3 for the exclusion plot in the \(M_{\rho_{T 8}}-M_{\pi_{L Q}}\) plane.
\({ }^{29} \mathrm{ABE} 99 \mathrm{~F}\) search for a new particle \(X\) decaying into \(b \bar{b}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.8 \mathrm{TeV}\). See Fig. 7 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on \(\sigma(p \bar{p} \rightarrow X) \times \mathrm{B}(X \rightarrow b \bar{b})\). ABE 99F also exclude top gluons of width \(\Gamma=0.3 M\) in the mass interval \(280<M<670 \mathrm{GeV}\), of width \(\Gamma=0.5 M\) in the mass interval \(340<M<640 \mathrm{GeV}\), and of width \(\Gamma=0.7 M\) in the mass interval \(375<M<560 \mathrm{GeV}\).
30 ABE 99 N search for the techni- \(\omega\) decaying into \(\gamma \pi_{T}\). The technipion is assumed to decay \(\pi_{T} \rightarrow b \bar{b}\). See Fig. 2 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the \(M_{\omega_{T}}-M_{\pi_{T}}\) plane.
\({ }^{31} \mathrm{ABE} 97 \mathrm{G}\) search for a new particle \(X\) decaying into dijets in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=1.8\) TeV. See Fig. 5 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on \(\sigma(p \bar{p} \rightarrow X) \times \mathrm{B}(X \rightarrow 2 j)\).

\section*{REFERENCES FOR Technicolor}
\begin{tabular}{|c|c|c|c|c|}
\hline AAD & 16W & PL B758 249 & G. Aad et al. & (ATLAS Collab.) \\
\hline KHACHATRY... & 16E & PR D93 012001 & V. Khachatryan et al. & (CMS Collab.) \\
\hline AAD & 15AB & PR D92 012010 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 15AO & JHEP 1508148 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 15BB & EPJ C75 263 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 15Q & PL B743 15 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 15AN & EPJ C75 152 & R. Aaij et al. & (LHCb Collab.) \\
\hline KHACHATRY... & 15 C & PL B740 83 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY... & 15 W & PR D91 052012 & V. Khachatryan et al. & (CMS Collab.) \\
\hline AAD & 14AT & PL B738 428 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 14 V & PR D90 052005 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 13AN & PR D87 112003 & G. Aad et al. & (ATLAS Collab.) \\
\hline Also & & PR D91 119901 (errat.) & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 13AQ & PR D88 012004 & G. Aad et al. & (ATLAS Collab.) \\
\hline CHATRCHYAN & 13AP & PR D87 072002 & S. Chatrchyan et al. & (CMS Collab.) \\
\hline CHATRCHYAN & 13BM & PRL 111211804 & S. Chatrchyan et al. & (CMS Collab.) \\
\hline Also & & PRL 112119903 (errat.) & S. Chatrchyan et al. & (CMS Collab.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline BAAK & 12 & EPJ C72 2003 & M. Baak et al. & (Gfitter Group) \\
\hline CHATRCHYAN & 12AF & PRL 109141801 & S. Chatrchyan et al. & (CMS Collab.) \\
\hline AALTONEN & 11AD & PR D84 072003 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 11AE & PR D84 072004 & T. Aaltonen et al. & (CDF Collab.) \\
\hline CHIVUKULA & 11 & PR D84 095022 & R.S. Chivukula et al. & \\
\hline CHIVUKULA & 11A & PR D84 115025 & R. S. Chivukula et al. & \\
\hline AALTONEN & 101 & PRL 104111802 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 10A & PRL 104061801 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 071 & PRL 98221801 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABULENCIA & 05A & PRL 95252001 & A. Abulencia et al. & (CDF Collab.) \\
\hline CHEKANOV & 02B & PL B531 9 & S. Chekanov et al. & (ZEUS Collab.) \\
\hline ABAZOV & 01B & PRL 87061802 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABDALLAH & 01 & EPJ C22 17 & J. Abdallah et al. & (DELPHI Collab.) \\
\hline AFFOLDER & 00 F & PRL 841110 & T. Affolder et al. & (CDF Collab.) \\
\hline AFFOLDER & 00K & PRL 852056 & T. Affolder et al. & (CDF Collab.) \\
\hline ABE & 99F & PRL 822038 & F. Abe et al. & (CDF Collab.) \\
\hline ABE & 99N & PRL 833124 & F. Abe et al. & (CDF Collab.) \\
\hline ABE & 97G & PR D55 5263 & F. Abe et al. & (CDF Collab.) \\
\hline
\end{tabular}

\section*{Quark and Lepton Compositeness, \\ Searches for}

The latest unpublished results are described in the "Quark and Lep-
ton Compositeness" review.
See the related review(s):
Searches for Quark and Lepton Compositeness

\section*{CONTENTS:}

Scale Limits for Contact Interactions: \(\wedge(e e e e)\)
Scale Limits for Contact Interactions: \(\Lambda(e e \mu \mu)\)
Scale Limits for Contact Interactions: \(\wedge(e e \tau \tau)\)
Scale Limits for Contact Interactions: ^(८८८८)
Scale Limits for Contact Interactions: \(\wedge(e e q q)\)
Scale Limits for Contact Interactions: \(\wedge(\mu \mu q q)\)
Scale Limits for Contact Interactions: \(\wedge(\ell \nu \ell \nu)\)
Scale Limits for Contact Interactions: \(\wedge(e \nu q q)\)
Scale Limits for Contact Interactions: \(\wedge(q q q q)\)
Scale Limits for Contact Interactions: \(\wedge(\nu \nu q q)\)
Mass Limits for Excited \(e\left(e^{*}\right)\)
- Limits for Excited \(e\left(e^{*}\right)\) from Pair Production
- Limits for Excited e ( \(e^{*}\) ) from Single Production
- Limits for Excited \(e\left(e^{*}\right)\) from \(e^{+} e^{-} \rightarrow \gamma \gamma\)
- Indirect Limits for Excited \(e\left(e^{*}\right)\)

Mass Limits for Excited \(\mu\left(\mu^{*}\right)\)
- Limits for Excited \(\mu\left(\mu^{*}\right)\) from Pair Production
- Limits for Excited \(\mu\left(\mu^{*}\right)\) from Single Production
- Indirect Limits for Excited \(\mu\left(\mu^{*}\right)\)

Mass Limits for Excited \(\tau\left(\tau^{*}\right)\)
- Limits for Excited \(\tau\left(\tau^{*}\right)\) from Pair Production
- Limits for Excited \(\tau\left(\tau^{*}\right)\) from Single Production

Mass Limits for Excited Neutrino ( \(\nu^{*}\) )
- Limits for Excited \(\nu\left(\nu^{*}\right)\) from Pair Production
- Limits for Excited \(\nu\left(\nu^{*}\right)\) from Single Production

Mass Limits for Excited \(q\left(q^{*}\right)\)
- Limits for Excited \(q\left(q^{*}\right)\) from Pair Production
- Limits for Excited \(q\left(q^{*}\right)\) from Single Production

Mass Limits for Color Sextet Quarks ( \(q_{6}\) )
Mass Limits for Color Octet Charged Leptons ( \(\ell_{8}\) )
Mass Limits for Color Octet Neutrinos ( \(\nu_{8}\) )
Mass Limits for \(W_{8}\) (Color Octet \(W\) Boson)

\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(e e e e)\)}

Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.
\(\frac{\Lambda_{L L}^{+}(\mathrm{TeV})}{>\mathbf{8 . 3}} \frac{\Lambda_{L L}^{-}(\mathrm{TeV})}{>10.3} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { BOURILKOV } 01} \frac{\text { TECN }}{\text { RVUE }} \frac{\text { COMMENT }}{E_{\mathrm{Cm}}=192-208 \mathrm{GeV}}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{lllllll}
\(>4.5\) & \(>7.0\) & 95 & 2 SCHAEL & 07 A & ALEP & \(E_{\mathrm{cm}}=189-209 \mathrm{GeV}\) \\
\(>5.3\) & \(>6.8\) & 95 & ABDALLAH & 06 C & DLPH & \(E_{\mathrm{cm}}=130-207 \mathrm{GeV}\) \\
\(>4.7\) & \(>6.1\) & 95 & 3 ABBIENDI & 04 G & OPAL & \(E_{\mathrm{cm}}=130-207 \mathrm{GeV}\) \\
\(>4.3\) & \(>4.9\) & 95 & ACCIARRI & 00 P & L3 & \(E_{\mathrm{cm}}=130-189 \mathrm{GeV}\)
\end{tabular}
\({ }^{1}\) A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.
\({ }^{2}\) SCHAEL 07A limits are from \(R_{c}, Q_{F B}^{\text {depl }}\), and hadronic cross section measurements.
\({ }^{3}\) ABBIENDI 04 G limits are from \(e^{+} e^{-} \rightarrow e^{+} e^{-}\)cross section at \(\sqrt{s}=130-207 \mathrm{GeV}\).

\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(e e \mu \mu)\)}

Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underline{\Lambda_{L L}^{+}(\mathrm{TeV})}\) & \(\underline{\Lambda_{L L}^{-}(\mathrm{TeV})}\) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \(>6.6\) & >9.5 & 95 & \({ }^{1}\) SCHAEL & 07A & ALEP & \(E_{\mathrm{cm}}=189-209 \mathrm{GeV}\) \\
\hline \(>8.5\) & \(>3.8\) & 95 & ACCIARRI & 00P & L3 & \(E_{\mathrm{cm}}=130-189 \mathrm{GeV}\) \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline \(>7.3\) & \(>7.6\) & 95 & ABDALLA & 06C & DLPH & \(E_{\mathrm{Cm}}=130-207 \mathrm{GeV}\) \\
\hline >8.1 & \(>7.3\) & 95 & 2 ABBIENDI & 04G & OPAL & \(E_{\mathrm{Cm}}=130-207 \mathrm{GeV}\) \\
\hline
\end{tabular}
\({ }^{1}\) SCHAEL 07A limits are from \(R_{C}, Q_{F B}^{\text {depl }}\), and hadronic cross section measurements.
\({ }^{2}\) ABBIENDI 04G limits are from \(e^{+} e^{-} \rightarrow \mu \mu\) cross section at \(\sqrt{s}=130-207 \mathrm{GeV}\).

\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(e e \tau \tau)\)}

Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\wedge_{L L}^{+}(\mathrm{TeV})\) & \(\wedge_{L L}^{-}(\mathrm{TeV})\) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline > 7.9 & \(>5.8\) & 95 & 1 SCHAEL & & ALEP & \(E_{\mathrm{Cm}}=189-209 \mathrm{GeV}\) \\
\hline \(>7.9\) & \(>4.6\) & 95 & ABDALLAH & 06C & DLPH & \(E_{\text {cm }}=130-207 \mathrm{GeV}\) \\
\hline \(>4.9\) & \(>7.2\) & 95 & \({ }^{2}\) ABBIENDI & 04G & OPAL & \(E_{\text {cm }}=130-207 \mathrm{GeV}\) \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>5.4\) & \(>4.7\) & 95 & ACCIARRI & 00p & L3 & \(E_{\text {Cm }}=130-189 \mathrm{GeV}\) \\
\hline \multicolumn{7}{|l|}{\({ }^{1}\) SCHAEL 07A limits are from \(R_{c}, Q_{F B}^{d e p l}\), and hadronic cross section measurements. \({ }^{2}\) ABBIENDI 04G limits are from \(e^{+} e^{-} \rightarrow \tau \tau\) cross section at \(\sqrt{s}=130-207 \mathrm{GeV}\).} \\
\hline
\end{tabular}

SCALE LIMITS for Contact Interactions: \(\Lambda(\ell \ell \ell \ell)\)
Lepton universality assumed. Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\wedge_{L L}^{+}(\mathrm{TeV})\) & \(\wedge_{L L}^{-}(\mathrm{TeV})\) & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline > 7.9 & \(>10.3\) & 95 & 1 SCHAEL & 07A & ALEP & \(E_{\text {Cm }}=189-209 \mathrm{GeV}\) \\
\hline >9.1 & \(>8.2\) & 95 & ABDALLAH & 06C & DLPH & \(E_{\mathrm{Cm}}=130-207 \mathrm{GeV}\) \\
\hline \multicolumn{7}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>7.7\) & \(>9.5\) & 95 & \begin{tabular}{l}
2 ABBIENDI \\
3 BABICH
\end{tabular} & \[
04 \mathrm{G}
\] & OPAL RVUE & \(E_{\mathrm{Cm}}=130-207 \mathrm{GeV}\) \\
\hline >9.0 & \(>5.2\) & 95 & ACCIARRI & 00P & L3 & \(E_{\mathrm{Cm}}=130-189 \mathrm{GeV}\) \\
\hline
\end{tabular}
\({ }^{1}\) SCHAEL 07A limits are from \(R_{c}, Q_{F B}^{d e p l}\), and hadronic cross section measurements.
\({ }^{2}\) ABBIENDI 04G limits are from \(e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}\)cross section at \(\sqrt{s}=130-207 \mathrm{GeV}\).
\({ }^{3}\) BABICH 03 obtain a bound \(-0.175 \mathrm{TeV}^{-2}<1 / \Lambda_{L L}^{2}<0.095 \mathrm{TeV}^{-2}(95 \% \mathrm{CL})\) in a model independent analysis allowing all of \(\Lambda_{L L}, \Lambda_{L R}, \Lambda_{R L}, \Lambda_{R R}\) to coexist.

SCALE LIMITS for Contact Interactions: \(\Lambda(e e q q)\)
Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\underline{\Lambda_{L L}^{+}(\mathrm{TeV})}\) & \(\Lambda_{L L}^{-}(\mathrm{TeV})\) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \(>4.5\) & \(>12.8\) & 95 & 1 ABRAMOWIC & Z19 ZEUS & (eeqq) \\
\hline \(>23.9\) & \(>16.8\) & 95 & 2 SIRUNYAN & 19AC CMS & (eeqq) \\
\hline \(>24\) & \(>37\) & 95 & \({ }^{3}\) AABOUD & 17AT ATLS & (eeqq) \\
\hline > 8.4 & \(>10.2\) & 95 & \({ }^{4}\) ABDALLAH & 09 DLPH & (eebb) \\
\hline \(>9.4\) & \(>5.6\) & 95 & 5 SCHAEL & 07A ALEP & (eecc) \\
\hline \(>9.4\) & \(>4.9\) & 95 & \({ }^{4}\) SCHAEL & 07A ALEP & (eebb) \\
\hline \(>23.3\) & \(>12.5\) & 95 & \({ }^{6}\) CHEUNG & 01B RVUE & (eeuu) \\
\hline \(>11.1\) & \(>26.4\) & 95 & \({ }^{6}\) CHEUNG & 01B RVUE & (eedd) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>15.5\) & \(>19.5\) & 95 & \({ }^{7}\) AABOUD & 16 U ATLS & (eeqq) \\
\hline \(>13.5\) & \(>18.3\) & 95 & 8 KHACHATRY. & 15aE CMS & (eeqq) \\
\hline \(>16.4\) & \(>20.7\) & 95 & \({ }^{9} \mathrm{AAD}\) & 14BE ATLS & (eeqq) \\
\hline \(>9.5\) & \(>12.1\) & 95 & 10 AAD & 13E ATLS & (eeqq) \\
\hline \(>10.1\) & >9.4 & 95 & 11 AAD & 12AB ATLS & (eeqq) \\
\hline \(>4.2\) & \(>4.0\) & 95 & 12 AARON & 11C H1 & (eeqq) \\
\hline \(>3.8\) & \(>3.8\) & 95 & 13 ABDALLAH & 11 DLPH & (eetc) \\
\hline \(>12.9\) & \(>7.2\) & 95 & 14 SCHAEL & 07A ALEP & (eeqq) \\
\hline \(>3.7\) & >5.9 & 95 & \({ }^{15}\) ABULENCIA & 06L CDF & (eeqq) \\
\hline
\end{tabular}
\({ }^{1}\) ABRAMOWICZ 19 limits are from \(\mathrm{Q}^{2}\) spectrum measurements of \(e^{ \pm} p \rightarrow e^{ \pm} \chi\).
\({ }^{2}\) SIRUNYAN 19AC limits are from \(e^{+} e^{-}\)mass distribution in \(p p\) collisions at \(\sqrt{s}=13\)
\({ }^{3}\) AABOUD 17AT limits are from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). The quoted limit uses a
uniform positive prior in \(1 / \Lambda^{2}\).
\({ }^{4}\) ABDALLAH 09 and SCHAEL 07A limits are from \(R_{b}, A_{F B}^{b}\).
\({ }^{5}\) SCHAEL 07A limits are from \(R_{c}, Q_{F B}^{d e p l}\), and hadronic cross section measurements
\({ }^{6}\) CHEUNG 01B is an update of BARGER 98E.
\({ }^{7}\) AABOUD 16 U limits are from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). The quoted limit uses a uniform positive prior in \(1 / \Lambda^{2}\).
\({ }^{8} \mathrm{KHACHATRYAN}\) 15AE limit is from \(e^{+} e^{-}\)mass distribution in \(p p\) collisions at \(E_{\mathrm{Cm}}=\)
\({ }^{9}\) AAD 14BE limits are from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The quoted limit uses a uniform positive prior in \(1 / \Lambda^{2}\).
\({ }^{10}\) AAD 13E limis are from \(e^{+} e^{-}\)mass distribution in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\).
\({ }^{11} \mathrm{AAD} 12 \mathrm{AB}\) limis are from \(e^{+} e^{-}\)mass distribution in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\).
\({ }^{12}\) AARON 11C limits are from \(Q^{2}\) spectrum measurements of \(e^{ \pm} p \rightarrow e^{ \pm} X\).
13 ABDALLAH 11 limit is from \(e^{+} e^{-} \rightarrow t \bar{c}\) cross section. \(\Lambda_{L L}=\Lambda_{L R}=\Lambda_{R L}=\Lambda_{R R}\) is assumed.
14 SCHAEL 07A limit assumes quark flavor universality of the contact interactions.
\({ }^{15}\) ABULENCIA 06L limits are from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\).

\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(\mu \mu q q)\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\wedge_{L L}^{+}(\mathrm{TeV})\) & \(\Lambda_{L L}^{-}(\mathrm{TeV})\) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \(>30.4\) & \(>20.4\) & 95 & \({ }^{1}\) SIRUNYAN & 19AC CMS & ( \(\mu \mu q q\) ) \\
\hline \(>20\) & \(>30\) & 95 & \({ }^{2}\) AABOUD & 17AT ATLS & \((\mu \mu q q)\) \\
\hline
\end{tabular}

Searches Particle Listings

\section*{Quark and Lepton Compositeness}


\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(\ell \nu \ell \nu)\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE ( TeV ) & CL\% & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline >3.10 & 90 & 1 JODIDIO & 86 & SPEC & \(\Lambda_{L R}^{ \pm}\left(\nu_{\mu} \nu_{e} \mu e\right)\) \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline >3.8 & & 2 DIAZCRUZ & 94 & RVUE & \(\Lambda_{L L}^{+}\left(\tau \nu_{\tau} e \nu_{e}\right)\) \\
\hline \(>8.1\) & & \({ }^{2}\) DIAZCRUZ & 94 & RVUE & \(\Lambda_{L L}^{-}\left(\tau \nu_{\tau} e \nu_{e}\right)\) \\
\hline >4.1 & & \({ }^{3}\) DIAZCRUZ & 94 & RVUE & \(\Lambda_{L L}^{+}\left(\tau \nu_{\tau} \mu \nu_{\mu}\right)\) \\
\hline \(>6.5\) & & \({ }^{3}\) DIAZCRUZ & 94 & RVUE & \(\Lambda_{L L}^{-}\left(\tau \nu_{\tau} \mu \nu_{\mu}\right)\) \\
\hline
\end{tabular}

1 JODIDIO 86 limit is from \(\mu^{+} \rightarrow \bar{\nu}_{\mu} e^{+} \nu_{e}\). Chirality invariant interactions \(L=\left(g^{2} / \Lambda^{2}\right)\) \(\left[\eta_{L L}\left(\bar{\nu}_{\mu L} \gamma^{\alpha} \mu_{L}\right)\left(\bar{e}_{L} \gamma_{\alpha} \nu_{e L}\right)+\eta_{L R}\left(\bar{\nu}_{\mu L} \gamma^{\alpha} \nu_{e L}\left(\bar{e}_{R} \gamma_{\alpha} \mu_{R}\right)\right]\right.\) with \(g^{2} / 4 \pi=1\) and \(\left(\eta_{L L}, \eta_{L R}\right)=(0, \pm 1)\) are taken. No limits are given for \(\Lambda_{L L}^{ \pm}\)with \(\left(\eta_{L L}, \eta_{L R}\right)=( \pm 1,0)\). For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.
\({ }^{2}\) DIAZCRUZ 94 limits are from \(\Gamma(\tau \rightarrow e \nu \nu)\) and assume flavor-dependent contact interactions with \(\Lambda\left(\tau \nu_{\tau} e \nu_{e}\right) \ll \Lambda\left(\mu \nu_{\mu} e \nu_{e}\right)\).
\({ }^{3}\) DIAZCRUZ 94 limits are from \(\Gamma(\tau \rightarrow \mu \nu \nu)\) and assume flavor-dependent contact interactions with \(\Lambda\left(\tau \nu_{\tau} \mu \nu_{\mu}\right) \ll \Lambda\left(\mu \nu_{\mu} e \nu_{e}\right)\).

\section*{SCALE LIMITS for Contact Interactions: \(\wedge(e \nu q q)\)}
\(\frac{\operatorname{VALUE}(\mathrm{TeV})}{>\mathbf{2 . 8 1}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { AFFOLDER 01ı }} \frac{\text { TECN }}{\text { 1 AFFOLDER }}\)

\section*{SCALE LIMITS for Contact Interactions: \(\boldsymbol{\Lambda ( q q q q )}\)}

\({ }^{1}\) AABOUD 17AK limit is from dijet angular distribution in \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). \(u, d\), and \(s\) quarks are assumed to be composite.
\({ }^{2}\) AABOUD 18AV obtain limit on \(t_{R}\) compositeness \(2 \pi / \Lambda_{R R}^{2}<1.6 \mathrm{TeV}^{-2}\) at \(95 \% \mathrm{CL}\) from \(t \bar{t} t \bar{t}\) production in the \(p p\) collisions at \(E_{\mathrm{Cm}}=13 \mathrm{TeV}\).
\({ }^{3}\) SIRUNYAN 18DD limit is from dijet angular distribution in \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\).
\({ }^{4}\) SIRUNYAN 17 F limit is from dijet angular cross sections in \(p p\) collisions at \(E_{\mathrm{Cm}}=13\) TeV. All quarks are assumed to be composite.
\({ }^{5}\) AAD 16 S limit is from dijet angular selections in \(p p\) collisions at \(E_{\mathrm{cm}}=13 \mathrm{TeV} . u, d\), and \(s\) quarks are assumed to be composite
\({ }^{6}\) AAD 15AR obtain limit on the \(t_{R}\) compositeness \(2 \pi / \Lambda_{R R}^{2}<6.6 \mathrm{TeV}^{-2}\) at \(95 \% \mathrm{CL}\) from the \(t \bar{t} t \bar{t}\) production in the \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\).
\({ }^{7} \mathrm{AAD} 15 \mathrm{BY}\) obtain limit on the \(t_{R}\) compositeness \(2 \pi / \Lambda_{R R}^{2}<15.1 \mathrm{TeV}^{-2}\) at \(95 \% \mathrm{CL}\) from the \(t \bar{t} t \bar{t}\) production in the \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\).
\({ }^{8} \mathrm{AAD} 15 \mathrm{~L}\) limit is from dijet angular distribution in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV} . u, d\), and \(s\) quarks are assumed to be composite.
\({ }^{9}\) KHACHATRYAN 15 J limit is from dijet angular distribution in \(p p\) collisions at \(E_{\mathrm{cm}}=\) \(8 \mathrm{TeV} . u, d, s, c\), and \(b\) quarks are assumed to be composite.
\({ }^{10}\) FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using \(p p \rightarrow t \bar{t}\) and \(p \bar{p} \rightarrow t \bar{t}\) cross sections. The quoted limit on the \(q \bar{q} t \bar{t}\) contact interaction is derived from their bound on the chromoelectric form factor.

\section*{SCALE LIMITS for Contact Interactions: \(\Lambda(\nu \nu q q)\) \\ Limits are for \(\Lambda_{L L}^{ \pm}\)only. For other cases, see each reference.}
\(\frac{\Lambda_{L L}^{+}(\mathrm{TeV})}{>5.0} \frac{\Lambda_{L L}^{-}(\mathrm{TeV})}{>5.4} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { MCFARLAND } 98} \frac{\text { TECN }}{\text { CCFR }} \frac{\text { COMMENT }}{\nu N \text { scattering }}\)
\(\quad\)\begin{tabular}{l} 
MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon \\
type.
\end{tabular}

\section*{MASS LIMITS for Excited \(e\left(e^{*}\right)\)}

Most \(e^{+} e^{-}\)experiments assume one-photon or \(Z\) exchange. The limits from some \(e^{+} e^{-}\)experiments which depend on \(\lambda\) have assumed transition couplings which are chirality volating ( \(\eta_{L}=\eta_{R}\) ). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value \(\lambda\) by \(\sqrt{2}\); see Note

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

\section*{Limits for Excited e ( \(e^{*}\) ) from Pair Production}

These limits are obtained from \(e^{+} e^{-} \rightarrow e^{*+} e^{*-}\) and thus rely only on the (electroweak) charge of \(e^{*}\). Form factor effects are ignored unless noted. For the case of limits from \(Z\) decay, the \(e^{*}\) coupling is assumed to be of sequential type. Possible \(t\) channel contribution from transition magnetic coupling is neglected. All limits assume a dominant \(e^{*} \rightarrow e \gamma\) decay except the limits from \(\Gamma(Z)\).

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).
VALUE \((\mathrm{GeV})\) CL\% DOCUMENT ID TECN COMMENT
>103.2 \(\quad \frac{1}{95} \overline{\text { ABBIENDI } \quad 02 \mathrm{G}} \overline{\mathrm{OPAL}} \overline{e^{+} e^{-} \rightarrow e^{*} e^{*} \text { Homodoublet type }}\) - - We do not use the following data for averages, fits, limits, etc. - • -
\(>102.8 \quad 95 \quad 2\) ACHARD \(\quad\) 03B L3 \(\quad e^{+} e^{-} \rightarrow e^{*} e^{*}\) Homodoublet type \({ }^{1}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=183-209 \mathrm{GeV} . f=f^{\prime}\) is assumed.
\({ }^{2}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV} . f=f^{\prime}\) is assumed. ACHARD 03B also obtain limit for \(f=-f^{\prime}: m_{e^{*}}>96.6 \mathrm{GeV}\).

\section*{Limits for Excited e( \(e^{*}\) ) from Single Production}

These limits are from \(e^{+} e^{-} \rightarrow e^{*} e, W \rightarrow e^{*} \nu\), or \(e p \rightarrow e^{*} X\) and depend on transition magnetic coupling between \(e\) and \(e^{*}\). All limits assume \(e^{*} \rightarrow e \gamma\) decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, \(\eta_{L}=\eta_{R}=1\). In most papers, the limit is expressed in the form of an excluded region in the \(\lambda-m_{e^{*}}\) plane. See the original papers.
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).
\begin{tabular}{|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENTID TECN & COMMENT \\
\hline >4800 & 95 & 1 AABOUD 19AZ ATLS & \(p p \rightarrow e e^{*} X\) \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>3900\) & 95 & 2 SIRUNYAN 19 Z CMS & \(p p \rightarrow e e^{*} X\) \\
\hline \(>2450\) & 95 & 3 KHACHATRY...16AQ CMS & \(p p \rightarrow e e^{*} X\) \\
\hline \(>3000\) & 95 & 4 AAD 15AP ATLS & \(p p \rightarrow e^{(*)} e^{*} X\) \\
\hline \(>2200\) & 95 & \({ }^{5}\) AAD \(\quad 13 \mathrm{BB}\) ATLS & \(p p \rightarrow e e^{*} X\) \\
\hline \(>1900\) & 95 & \({ }^{6}\) CHATRCHYAN 13 aE CMS & \(p p \rightarrow e e^{*} X\) \\
\hline \(>1870\) & 95 & 7 AAD 12AZ ATLS & \(p p \rightarrow e^{(*)} e^{*} X\) \\
\hline
\end{tabular}
\({ }^{1}\) AABOUD 19AZ search for single \(e^{*}\) production in \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). The limit quoted above is from \(e^{*} \rightarrow e q \bar{q}\) and \(e^{*} \rightarrow \nu W\) decays assuming \(f=f^{\prime}=1\) and \(m_{e^{*}}=\Lambda\). The contact interaction is included in \(e^{*}\) production and decay amplitudes. See their Fig. 6 for exclusion limits in \(m_{e^{*}}-\Lambda\) plane.
\({ }^{2}\) SIRUNYAN 19 Z search for \(e^{*}\) production in \(\ell \ell \gamma\) final states in \(p p\) collisions at \(\sqrt{s}=\) 13 TeV . The quoted limit assumes \(\Lambda=m_{e^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(e^{*}\) production and decay amplitudes.
\({ }^{3}\) KHACHATRYAN 16AQ search for single \(e^{*}\) production in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The limit above is from the \(e^{*} \rightarrow e \gamma\) search channel assuming \(f=f^{\prime}=1, m_{e^{*}}=\Lambda\). See their Table 7 for limits in other search channels or with different assumptions.
\({ }^{4}\) AAD 15AP search for \(e^{*}\) production in evens with three or more charged leptons in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The quoted limit assumes \(\Lambda=m_{e^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(e^{*}\) production and decay amplitudes.
\({ }^{5}\) AAD 13BB search for single \(e^{*}\) production in \(p p\) collisions with \(e^{*} \rightarrow e \gamma\) decay. \(f=\) \(f^{\prime}=1\), and \(e^{*}\) production via contact interaction with \(\Lambda=m_{e^{*}}\) are assumed.
\({ }^{6}\) CHATRCHYAN 13AE search for single \(e^{*}\) production in \(p p\) collisions with \(e^{*} \rightarrow e \gamma\) decay. \(f=f^{\prime}=1\), and \(e^{*}\) production via contact interaction with \(\Lambda=m_{e^{*}}\) are assumed.
\({ }^{7}\) AAD 12AZ search for \(e^{*}\) production via four-fermion contact interaction in \(p p\) collisions with \(e^{*} \rightarrow e \gamma\) decay. The quoted limit assumes \(\Lambda=m_{e^{*}}\). See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Limits for Excited \(e\left(e^{*}\right)\) from \(e^{+} e^{-} \rightarrow \gamma \gamma\)
These limits are derived from indirect effects due to \(e^{*}\) exchange in the \(t\) channel and depend on transition magnetic coupling between \(e\) and \(e^{*}\). All limits are for \(\lambda_{\gamma}=1\). All limits except ABE 89」 and ACHARD 02D are for nonchiral coupling with \(\eta_{L}=\eta_{R}\) \(=1\). We choose the chiral coupling limit as the best limit and list it in the Summary Table.
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).


\section*{Indirect Limits for Excited \(e\left(e^{*}\right)\)}

These limits make use of loop effects involving \(e^{*}\) and are therefore subject to theoretical uncertainty.
\(\qquad\)
- - We do not use the following data for averages, fits, limits, etc. - • •
\[
\begin{array}{lrl}
1 \text { DORENBOS... } 89 & \text { CHRM } \nu_{\mu} e \rightarrow \bar{\nu}_{\mu} e, \nu_{\mu} e \rightarrow \nu_{\mu} e \\
2 \text { GRIFOLS } & 86 & \text { THEO } \nu_{\mu} e \rightarrow \nu_{\mu} e
\end{array}
\]
\[
{ }^{3} \text { RENARD } \quad 82 \text { THEO } g-2 \text { of electron }
\]
\({ }^{1}\) DORENBOSCH 89 obtain the limit \(\lambda_{\gamma}^{2} \Lambda_{\text {cut }}^{2} / m_{e^{*}}^{2}<2.6(95 \% \mathrm{CL})\), where \(\Lambda_{\text {cut }}\) is the cutoff scale, based on the one-loop calculation by GRIFOLS 86 . If one assumes that \(\Lambda_{\text {cut }}\) \(=1 \mathrm{TeV}\) and \(\lambda_{\gamma}=1\), one obtains \(m_{e^{*}}>620 \mathrm{GeV}\). However, one generally expects \(\lambda_{\gamma} \approx m_{e^{*}} / \Lambda_{\text {cut }}\) in composite models.
\({ }^{2}\) GRIFOLS 86 uses \(\nu_{\mu} e \rightarrow \nu_{\mu} e\) and \(\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e\) data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.
\({ }^{3}\) RENARD 82 derived from \(g-2\) data limits on mass and couplings of \(e^{*}\) and \(\mu^{*}\). See figures 2 and 3 of the paper.

\section*{MASS LIMITS for Excited \(\mu\left(\mu^{*}\right)\)}

\section*{Limits for Excited \(\boldsymbol{\mu}\left(\boldsymbol{\mu}^{*}\right)\) from Pair Production}

These limits are obtained from \(e^{+} e^{-} \rightarrow \mu^{*+} \mu^{*-}\) and thus rely only on the (electroweak) charge of \(\mu^{*}\). Form factor effects are ignored unless noted. For the case of limits from \(Z\) decay, the \(\mu^{*}\) coupling is assumed to be of sequential type. All limits assume a dominant \(\mu^{*} \rightarrow \mu \gamma\) decay except the limits from \(\Gamma(Z)\).
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).
\(\frac{\operatorname{VALUE}(\mathrm{GeV})}{>\mathbf{1 0 3 . 2}} \frac{C L \%}{95} \quad \frac{\text { DOCUMENT ID }}{1} \frac{\text { ABBIENDI }}{\text { 02G }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \mu^{*} \mu^{*} \text { Homodoublet type }}\) - - We do not use the following data for averages, fits, limits, etc. - - -
\(>102.8 \quad 95 \quad 2\) ACHARD 03 B L3 \(e^{+} e^{-} \rightarrow \mu^{*} \mu^{*}\) Homodoublet type \({ }^{1}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=183-209 \mathrm{GeV} . f=f^{\prime}\) is assumed.
\({ }^{2}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV} . f=f^{\prime}\) is assumed. ACHARD 03B also obtain limit for \(f=-f^{\prime}: m_{\mu^{*}}>96.6 \mathrm{GeV}\).

\section*{Limits for Excited \(\boldsymbol{\mu}\) ( \(\boldsymbol{\mu}^{*}\) ) from Single Production}

These limits are from \(e^{+} e^{-} \rightarrow \mu^{*} \mu\) and depend on transition magnetic coupling between \(\mu\) and \(\mu^{*}\). All limits assume \(\mu^{*} \rightarrow \mu \gamma\) decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, \(\eta_{L}=\eta_{R}=1\). In most papers, the limit is expressed in the form of an excluded region in the \(\lambda-m_{\mu^{*}}\) plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).
VALUE \((\mathrm{GeV})\)
\(>\mathbf{3 8 0 0}\)
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|}
\hline \(>2800\) & 95 & \({ }^{2}\) AAD & 16Bm ATLS & \(p p \rightarrow \mu \mu^{*} X\) \\
\hline \(>2470\) & 95 & 3 KHACHATRY... 1 & .16AQ CMS & \(p p \rightarrow \mu \mu^{*} X\) \\
\hline >3000 & 95 & \({ }^{4} \mathrm{AAD}\) & 15AP ATLS & \(p p \rightarrow \mu^{(*)} \mu^{*} X\) \\
\hline \(>2200\) & 95 & \({ }^{5} \mathrm{AAD}\) & 13bв ATLS & \(p p \rightarrow \mu \mu^{*} X\) \\
\hline \(>1900\) & 95 & \({ }^{6}\) CHATRCHYAN & 13ae CMS & \(p p \rightarrow \mu \mu^{*} X\) \\
\hline \(>1750\) & 95 & \({ }^{7}\) AAD & 12AZ ATLS & \(p p \rightarrow \mu^{(*)} \mu^{*} X\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN \(19 z\) search for \(\mu^{*}\) production in \(\ell \ell \gamma\) final states in \(p p\) collisions at \(\sqrt{s}=\) 13 TeV . The quoted limit assumes \(\Lambda=m_{\mu^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(\mu^{*}\) production and decay amplitudes.
\({ }^{2}\) AAD 16BM search for \(\mu^{*}\) production in \(\mu \mu j j\) events in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). Both the production and decay are assumed to occur via a contact interaction with \(\Lambda=\) \(m_{\mu^{*}}\).
\({ }^{3}\) KHACHATRYAN 16AQ search for single \(\mu^{*}\) production in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The limit above is from the \(\mu^{*} \rightarrow \mu \gamma\) search channel assuming \(f=f^{\prime}=1, m_{\mu^{*}}=\Lambda\). See their Table 7 for limits in other search channels or with different assumptions.
\({ }^{4}\) AAD 15AP search for \(\mu^{*}\) production in evens with three or more charged leptons in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The quoted limit assumes \(\Lambda=m_{\mu^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(\mu^{*}\) production and decay amplitudes.
\({ }^{5}\) AAD 13BB search for single \(\mu^{*}\) production in \(p p\) collisions with \(\mu^{*} \rightarrow \mu \gamma\) decay. \(f=\) \(f^{\prime}=1\), and \(\mu^{*}\) production via contact interaction with \(\Lambda=m_{\mu^{*}}\) are assumed.
\({ }^{6}\) CHATRCHYAN 13AE search for single \(\mu^{*}\) production in \(p p\) collisions with \(\mu^{*} \rightarrow \mu \gamma\) decay. \(f=f^{\prime}=1\), and \(\mu^{*}\) production via contact interaction with \(\Lambda=m_{\mu^{*}}\) are assumed.
\({ }^{7}\) AAD 12AZ search for \(\mu^{*}\) production via four-fermion contact interaction in \(p p\) collisions with \(\mu^{*} \rightarrow \mu \gamma\) decay. The quoted limit assumes \(\Lambda=m_{\mu^{*}}\). See their Fig. 8 for the exclusion plot in the mass-coupling plane.

\section*{Indirect Limits for Excited \(\boldsymbol{\mu}\) ( \(\boldsymbol{\mu}^{*}\) )}

These limits make use of loop effects involving \(\mu^{*}\) and are therefore subject to theoretical uncertainty.
VALUE (GeV)
DOCUMENTID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • •
\({ }^{1}\) RENARD 82 THEO \(g-2\) of muon
\({ }^{1}\) RENARD 82 derived from \(g-2\) data limits on mass and couplings of \(e^{*}\) and \(\mu^{*}\). See figures 2 and 3 of the paper.

\section*{MASS LIMITS for Excited \(\tau\left(\tau^{*}\right)\)}

\section*{Limits for Excited \(\boldsymbol{\tau}\) ( \(\boldsymbol{\tau}^{*}\) ) from Pair Production}

These limits are obtained from \(e^{+} e^{-} \rightarrow \tau^{*+} \tau^{*-}\) and thus rely only on the (electroweak) charge of \(\tau^{*}\). Form factor effects are ignored unless noted. For the case of limits from \(Z\) decay, the \(\tau^{*}\) coupling is assumed to be of sequential type. All limits assume a dominant \(\tau^{*} \rightarrow \tau \gamma\) decay except the limits from \(\Gamma(Z)\).
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).


\section*{Limits for Excited \(\tau\left(\tau^{*}\right)\) from Single Production}

These limits are from \(e^{+} e^{-} \rightarrow \tau^{*} \tau\) and depend on transition magnetic coupling between \(\tau\) and \(\tau^{*}\). All limits assume \(\tau^{*} \rightarrow \tau \gamma\) decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, \(\eta_{L}=\eta_{R}=1\). In most papers, the limit is expressed in the form of an excluded region in the \(\lambda-m_{\tau^{*}}\) plane. See the original papers.
\begin{tabular}{|c|c|c|c|c|}
\hline \(V A L U E(\mathrm{GeV})\) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline >2500 & 95 & 1 AAD & ATLS & \(p p \rightarrow \tau^{(*)} \tau^{*} X\) \\
\hline
\end{tabular}
- - We do not use the following data for averages, fits, limits, etc. • - -
\(>180 \quad 95 \quad 2\) ACHARD 03B L3 \(e^{+} e^{-} \rightarrow \tau \tau^{*}\)
\(>185 \quad 95 \quad 3\) ABBIENDI 02 G OPAL \(e^{+} e^{-} \rightarrow \tau \tau^{*}\)
\({ }^{1}\) AAD 15AP search for \(\tau^{*}\) production in events with three or more charged leptons in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The quoted limit assumes \(\Lambda=m_{\tau^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(\tau^{*}\) production and decay amplitudes.
\({ }^{2}\) ACHARD 03B result is from \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV} . f=f^{\prime}=\Lambda / m_{\tau^{*}}\) is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
\({ }^{3}\) ABBIENDI 02 G result is from \(e^{+} e^{-}\)collisions at \(\sqrt{s}=183-209 \mathrm{GeV} . f=f^{\prime}=\Lambda / m_{\tau^{*}}\)
is assumed for \(\tau^{*}\) coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

\section*{MASS LIMITS for Excited Neutrino ( \(\nu^{*}\) )}

\section*{Limits for Excited \(\boldsymbol{\nu}\left(\nu^{*}\right)\) from Pair Production}

These limits are obtained from \(e^{+} e^{-} \rightarrow \nu^{*} \nu^{*}\) and thus rely only on the (electroweak) charge of \(\nu^{*}\). Form factor effects are ignored unless noted. The \(\nu^{*}\) coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant \(\nu^{*} \rightarrow\) \(\nu \gamma\) decay except the limits from \(\Gamma(Z)\).
VALUE \((\mathrm{GeV})\) CL\% DOCUMENTID TECN COMMENT
\(>1600 \quad 951\) AAD 15AP ATLS \(p p \rightarrow \nu^{*} \nu^{*} X\)
- - We do not use the following data for averages, fits, limits, etc. - • -
 \({ }^{1}\) AAD 15AP search for \(\nu^{*}\) pair production in evens with three or more charged leptons in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). The quoted limit assumes \(\Lambda=m_{\nu^{*}}, f=f^{\prime}=1\). The contact interaction is included in the \(\nu^{*}\) production and decay amplitudes.
\({ }^{2}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=192-209 \mathrm{GeV}\), ABBIENDI 04N obtain limit on \(\sigma\left(e^{+} e^{-} \rightarrow \nu^{*} \nu^{*}\right) \mathrm{B}^{2}\left(\nu^{*} \rightarrow \nu \gamma\right)\). See their Fig.2. The limit ranges from 20 to 45 fb for \(m_{\nu^{*}}>45 \mathrm{GeV}\).
\({ }^{3}\) From \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV} . f=-f^{\prime}\) is assumed. ACHARD 03B also obtain limit for \(f=f^{\prime}: m_{\nu_{e}^{*}}>101.7 \mathrm{GeV}, m_{\nu_{\mu}^{*}}>101.8 \mathrm{GeV}\), and \(m_{\nu_{\tau}^{*}}>92.9 \mathrm{GeV}\). See their Fig. 4 for the exclusion plot in the mass-coupling plane.

\section*{Searches Particle Listings}

\section*{Quark and Lepton Compositeness}

\section*{Limits for Excited \(\nu\left(\nu^{*}\right)\) from Single Production}

These limits are from \(e^{+} e^{-} \rightarrow \nu \nu^{*}, z \rightarrow \nu \nu^{*}\), or ep \(\rightarrow \nu^{*} X\) and depend on transition magnetic coupling between \(\nu / e\) and \(\nu^{*}\). Assumptions about \(\nu^{*}\) decay mode are given in footnotes.
\(\frac{V A L U E(G e V)}{>\mathbf{2 1 3}} \frac{C L \%}{95} \quad 1\)\begin{tabular}{l} 
DOCUMENT ID \\
AARON \\
\hline 10
\end{tabular}\(\frac{\text { TECN }}{\mathrm{H} 1} \frac{\text { COMMENT }}{e p \rightarrow \nu^{*} X}\)
- - We do not use the following data for averages, fits, limits, etc. - . .
\(>190 \quad 95 \quad{ }^{2}\) ACHARD 03 В L3 \(\quad e^{+} e^{-} \rightarrow \nu \nu^{*}\)
\(\begin{array}{llllll}\text { none 50-150 } & 95 & 3 \text { ADLOFF } & \text { 02 } & \text { H1 } & e p \rightarrow \\ \nu^{*} \text { X } \\ >158 & 95 & 4 \text { CHEKANOV } & \text { 02D } & \text { ZEUS } & e p \rightarrow \nu^{*} \mathrm{X}\end{array}\)
\({ }^{1}\) AARON 08 search for single \(\nu^{*}\) production in ep collisions with the decays \(\nu^{*} \rightarrow \nu \gamma\), \(\nu Z, e W\). The quoted limit assumes \(f=-f^{\prime}=\Lambda / m_{\nu^{*}}\). See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
\({ }^{2}\) ACHARD 03B result is from \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV}\). The quoted limit is for \(\nu_{e}^{*} \cdot f=-f^{\prime}=\Lambda / m_{\nu^{*}}\) is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
\({ }^{3}\) ADLOFF 02 search for single \(\nu^{*}\) production in ep collisions with the decays \(\nu^{*} \rightarrow \nu \gamma\), \(\nu Z, e W\). The quoted limit assumes \(f=-f^{\prime}=\Lambda / m_{\nu^{*}}\). See their Fig. 1 for the exclusion plots in the mass-coupling plane.
\({ }^{4}\) CHEKANOV 02D search for single \(\nu^{*}\) production in \(e p\) collisions with the decays \(\nu^{*} \rightarrow\) \(\nu \gamma, \nu Z, e W . f=-f^{\prime}=\Lambda / m_{\nu^{*}}\) is assumed for the \(e^{*}\) coupling. CHEKANOV 02D also obtain limit for \(f=f^{\prime}=\Lambda / m_{\nu^{*}}: m_{\nu^{*}}>135 \mathrm{GeV}\). See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

\section*{MASS LIMITS for Excited \(\boldsymbol{q}\left(\boldsymbol{q}^{*}\right)\)}

\section*{Limits for Excited \(q\left(q^{*}\right)\) from Pair Production}

These limits are mostly obtained from \(e^{+} e^{-} \rightarrow q^{*} \bar{q}^{*}\) and thus rely only on the (electroweak) charge of the \(q^{*}\). Form factor effects are ignored unless noted. Assumptions about the \(q^{*}\) decay are given in the comments and footnotes.

\({ }^{1}\) AALTONEN 10 H obtain limits on the \(q^{*} q^{*}\) production cross section in \(p \bar{p}\) collisions. See their Fig. 3.
\({ }^{2}\) SIRUNYAN 18 V search for pair production of spin \(3 / 2\) excited top quarks. \(\mathrm{B}\left(t_{3 / 2}^{*} \rightarrow\right.\) \(t g)=1\) is assumed.
\({ }^{3}\) BARATE 98 u obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.
\({ }_{5}^{4}\) ADRIANI 93M limit is valid for \(\mathrm{B}\left(q^{*} \rightarrow q g\right)>0.25(0.17)\) for up (down) type.
\({ }^{5}\) BARDADIN-OTWINOWSKA 92 limit based on \(\Delta \Gamma(Z)<36 \mathrm{MeV}\).
\({ }_{7}^{6}\) These limits are independent of decay modes.
\({ }^{7}\) Limit is for \(\mathrm{B}\left(q^{*} \rightarrow q g\right)+\mathrm{B}\left(q^{*} \rightarrow q \gamma\right)=1\).

\section*{Limits for Excited \(\boldsymbol{q}\left(\boldsymbol{q}^{*}\right)\) from Single Production}

These limits are from \(e^{+} e^{-} \rightarrow q^{*} \bar{q}, p \bar{p} \rightarrow q^{*} \mathrm{X}\), or \(p p \rightarrow q^{*} \mathrm{X}\) and depend on transition magnetic couplings between \(q\) and \(q^{*}\). Assumptions about \(q^{*}\) decay mode are given in the footnotes and comments.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (GeV) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline none 1500-2600 & 95 & \({ }^{1} \mathrm{AABOUD}\) 18AB & ATLS & \(\rightarrow b^{*} X, b^{*} \rightarrow b g\) \\
\hline none 1500-5300 & 95 & \({ }^{2}\) AABOUD 18B & ATL & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q \gamma\) \\
\hline none 1000-5500 & 95 & 3 SIRUNYAN 18A & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q \gamma\) \\
\hline none 1000-1800 & 95 & 4 SIRUNYAN 18A & CMS & \(p p \rightarrow b^{*} X, b^{*} \rightarrow b \gamma\) \\
\hline none 600-6000 & 95 & 5 SIRUNYAN 18B & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q g\) \\
\hline none 1200-5000 & 95 & \({ }^{6}\) SIRUNYAN 18P & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q W\) \\
\hline none 1200-4700 & 95 & \({ }^{6}\) SIRUNYAN 18P & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q Z\) \\
\hline >6000 & 95 & 7 AABOUD 17 & , & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q g\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - . -} \\
\hline none 600-5400 & 95 & \multicolumn{2}{|l|}{8 KHACHATRY...17w CMS} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
p p \rightarrow q^{*} X, & q^{*} \rightarrow q g \\
p p \rightarrow b^{*} X, & b^{*} \rightarrow b g
\end{array}
\]} \\
\hline none 1100-2100 & 95 & \({ }^{9}\) AABOUD 16 & ATLS & \\
\hline \(>1500\) & 95 & 10 AAD & ATLS & \(p p \rightarrow b^{*} X, b^{*} \rightarrow t W\) \\
\hline \(>4400\) & 95 & 11 AAD & TLS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q \gamma\) \\
\hline & & 12 AAD 16aV A & ATLS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow W b\) \\
\hline \(>5200\) & 95 & 13 AAD 16 S & ATLS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q g\) \\
\hline \(>1390\) & 95 & 14 KHACHATRY...16। & CMS & \(p p \rightarrow b^{*} X, b^{*} \rightarrow t W\) \\
\hline \(>5000\) & 95 & 15 KHACHATRY...16k & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q g\) \\
\hline none 500-1600 & 95 & & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow\) \\
\hline \(>4060\) & 95 & \[
\begin{aligned}
& 10 \text { KHACHATRY...16L } \\
& 17 \text { AAD }
\end{aligned}
\] & ATLS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow\) \\
\hline \(>3500\) & 95 & 18 KHACHATRY...15V & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q g\) \\
\hline >3500 & 95 & 19 AAD & ATLS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow\) \\
\hline \(>3200\) & 95 & 20 KHACHATRY... 14 & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q W\) \\
\hline >2900 & 95 & 21 KHACHATRY... 14 & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q Z\) \\
\hline none 700-3500 & 95 & 22 KHACHATRY...14」 & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q \gamma\) \\
\hline \(>2380\) & 95 & 23 CHATRCHYAN 13AJ & CMS & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q W\) \\
\hline >2150 & 95 & \multicolumn{2}{|l|}{24 CHATRCHYAN 13AJ CMS} & \(p p \rightarrow q^{*} X, q^{*} \rightarrow q Z\) \\
\hline
\end{tabular}
\({ }^{1}\) AABOUD 18AB assume \(\Lambda=m_{b^{*}}, f_{s}=f=f^{\prime}=1\). The contact interactions are not included in \(b^{*}\) production and decay amplitudes.
\({ }^{2}\) AABOUD 18BA search for first-generation excited quarks ( \(u^{*}\) and \(d^{*}\) ) with degenerate mass, assuming \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{3}\) SIRUNYAN 18AG search for first-generation excited quarks ( \(u^{*}\) and \(d^{*}\) ) with degenerate mass, assuming \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\).
\({ }^{4}\) SIRUNYAN 18 AG search for excited \(b\) quark assuming \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\).
\({ }^{5}\) SIRUNYAN 18BO assume \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{6}\) SIRUNYAN 18P use the hadronic decay of \(W\) or \(Z\), assuming \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\).
\({ }^{7}\) AABOUD 17AK assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\). The contact interactions are not
included in \(q^{*}\) production and decay amplitudes. Only the decay of \(q^{*} \rightarrow g u\) and \(q^{*} \rightarrow\) \(g d\) is simulated as the benchmark signals in the analysis
\({ }^{8} \mathrm{KHACHATRYAN} 17 \mathrm{~W}\) assume \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{9}\) AABOUD 16 assume \(\Lambda=m_{b^{*}}, f_{s}=f=f^{\prime}=1\). The contact interactions are not included in the \(b^{*}\) production and decay amplitudes.
\({ }^{10}\) AAD 16AH search for \(b^{*}\) decaying to \(t W\) in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV} . f_{g}=f_{L}=\) \(f_{R}=1\) are assumed. See their Fig. 12b for limits on \(\sigma \cdot B\).
\({ }^{11}\) AAD 16AI assume \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\).
\({ }^{12}\) AAD 16 AV search for single production of vector-like quarks decaying to \(W b\) in \(p p\) collisions. See their Fig. 8 for the limits on couplings and mixings.
\({ }^{13}\) AAD 16 S assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{14}\) KHACHATRYAN 161 search for \(b^{*}\) decaying to \(t W\) in \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV} . \kappa_{L}^{b}\) \(=g_{L}=1, \kappa_{R}^{b}=g_{R}=0\) are assumed. See their Fig. 8 for limits on \(\sigma \cdot B\).
\({ }^{15}\) KHACHATRYAN 16 K assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{16}\) KHACHATRYAN 16 L search for resonances decaying to dijets in pp collisions at \(\sqrt{s}=\) 8 TeV using the data scouting technique which increases the sensitivity to the low mass
\({ }^{17}\) AAD 15 v assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{18}\) KHACHATRYAN 15 V assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\). The contact interactions are not included in \(q^{*}\) production and decay amplitudes.
\({ }^{19}\) AAD 14A assume \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\).
\({ }^{20}\) KHACHATRYAN 14 use the hadronic decay of \(W\), assuming \(\Lambda=m_{q^{*}}, f_{s}=f=f^{\prime}=1\).
\({ }^{21}\) KHACHATRYAN 14 use the hadronic decay of \(Z\), assuming \(\Lambda=m_{q^{*}}, f_{S}=f=f^{\prime}=1\).
\({ }^{22}\) KHACHATRYAN 14 J assume \(f_{S}=f=f^{\prime}=\Lambda / m_{q^{*}}\)
\({ }^{23}\) CHATRCHYAN 13AJ use the hadronic decay of \(W\).
\({ }^{24}\) CHATRCHYAN 13AJ use the hadronic decay of \(Z\).

\section*{MASS LIMITS for Color Sextet Quarks \(\left(q_{6}\right)\)}
\(\frac{V A L U E(\mathrm{GeV})}{>84} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\mathrm{ABE}} \frac{\text { TECN }}{\text { 89D }} \frac{\text { COMMENT }}{p \bar{p} \rightarrow q_{6} \bar{q}_{6}}\)
\({ }^{1}\) ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons ( \(\ell_{8}\) )
\(\lambda \equiv m_{\ell_{8}} / \Lambda\)

\({ }^{1} \mathrm{ABE}\) 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.
\({ }^{2}\) ABT 93 search for \(e_{8}\) production via \(e\)-gluon fusion in \(e p\) collisions with \(e_{8} \rightarrow e g\). See their Fig. 3 for exclusion plot in the \(m_{e_{8}}-\Lambda\) plane for \(m_{e_{8}}=35-220 \mathrm{GeV}\).

\section*{MASS LIMITS for Color Octet Neutrinos ( \(\nu_{8}\) )}
\(\operatorname{VALUE}(\mathrm{GeV}) m_{\ell_{8}}\) CL\% DOCUMENTID TECN COMMENT
\(>110 \quad \frac{1}{90} \quad 1\) BARGER \(\quad 89 \quad\) RVUE \(\frac{\nu_{8}: p \bar{p} \rightarrow \nu_{8} \bar{\nu}_{8}}{}\)
- - We do not use the following data for averages, fits, limits, etc. • • -
none 3.8-29.8 \(95 \quad 2 \mathrm{KIM} \quad 90 \quad \mathrm{AMY} \quad \nu_{8}: e^{+} e^{-} \rightarrow\) acoplanar jets none 9-21.9 \(95 \quad{ }^{3}\) BARTEL \(\quad\) 87B JADE \(\nu_{8}: e^{+} e^{-} \rightarrow\) acoplanar jets
\({ }^{1}\) BARGER 89 used ABE 89B limit for events with large missing transverse momentum． Two－body decay \(\nu_{8} \rightarrow \nu g\) is assumed．
\({ }^{2} \mathrm{KIM} 90\) is at \(E_{\mathrm{cm}}=50-60.8 \mathrm{GeV}\) ．The same assumptions as in BARTEL 87B are used． \({ }^{3}\) BARTEL 87 B is at \(E_{\mathrm{Cm}}=46.3-46.78 \mathrm{GeV}\) ．The limit assumes the \(\nu_{8}\) pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production．This assumption is not valid in general for the weak couplings，and the limit can be sensitive to its \(\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}\) quantum numbers．

MASS LIMITS for \(W_{8}\)（Color Octet \(W\) Boson）
VALLE（Gev）DOCUMENT ID TECN COMMENT
－－We do not use the following data for averages，fits，limits，etc．－•－
\({ }^{1}\) ALBAJAR \(\quad 89\) UA1 \(p \bar{p} \rightarrow W_{8} \mathrm{X}, W_{8} \rightarrow W g\)
\({ }^{1}\) ALBAJAR 89 give \(\sigma\left(W_{8} \rightarrow W+\right.\) jet \() / \sigma(W)<0.019(90 \% \mathrm{CL})\) for \(m_{W_{8}}>220 \mathrm{GeV}\) ．

\section*{REFERENCES FOR Searches for Quark and Lepton Compositeness}
\begin{tabular}{|c|c|c|c|c|}
\hline AABOUD & 19AZ & EPJ C79 803 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline ABRAMOWICZ & 19 & PR D99 092006 & H．Abramowicz et al． & （ZEUS Collab．） \\
\hline SIRUNYAN & 19 AC & JHEP 1904114 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 192 & JHEP 1904015 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline AABOUD & 18 AB & PR D98 032016 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline AABOUD & 18AV & JHEP 1807089 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline AABOUD & 18BA & EPJ C78 102 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline SIRUNYAN & 18AG & PL B781 390 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 18BO & JHEP 1808130 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 18DD & EPJ C78 789 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 18P & PR D97 072006 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 18 V & PL B778 349 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline AABOUD & 17AK & PR D96 052004 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline AABOUD & 17AT & JHEP 1710182 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline KHACHATRY．．． & 17W & PL B769 520 & V．Khachatryan et al． & （CMS Collab．） \\
\hline SIRUNYAN & 17 F & JHEP 1707013 & A．M．Sirunyan et al． & （CMS Collab．） \\
\hline AABOUD & 16 & PL B759 229 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline AABOUD & 16 U & PL B761 372 & M．Aaboud et al． & （ATLAS Collab．） \\
\hline AAD & 16 AH & JHEP 1602110 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 16AI & JHEP 1603041 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 16 AV & EPJ C76 442 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 16BM & NJP 18073021 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 16 S & PL B754 302 & G．Aad et al． & （ATLAS Collab．） \\
\hline KHACHATRY．．． & 16AQ & JHEP 1603125 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY．． & 161 & JHEP 1601166 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY．．． & 16 K & PRL 116071801 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY．．． & 16L & PRL 117031802 & V．Khachatryan et al． & （CMS Collab．） \\
\hline AAD & 15 AP & JHEP 1508138 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 15AR & JHEP 1508105 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 15BY & JHEP 1510150 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 15L & PRL 114221802 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 15 V & PR D91 052007 & G．Aad et al． & （ATLAS Collab．） \\
\hline KHACHATRY．．． & 15AE & JHEP 1504025 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY．．． & 15J & PL B746 79 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY． & 15 V & PR D91 052009 & V．Khachatryan et al． & （CMS Collab．） \\
\hline AAD & 14A & PL B728 562 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 14BE & EPJ C74 3134 & G．Aad et al． & （ATLAS Collab．） \\
\hline FABBRICHESI & 14 & PR D89 074028 & M．Fabbrichesi，M．Pinamonti，A & Tonero \\
\hline KHACHATRY．．． & 14 & JHEP 1408173 & V．Khachatryan et al． & （CMS Collab．） \\
\hline KHACHATRY．．． & 14」 & PL B738 274 & V．Khachatryan et al． & （CMS Collab．） \\
\hline AAD & 13 BB & NJP 15093011 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 13E & PR D87 015010 & G．Aad et al． & （ATLAS Collab．） \\
\hline CHATRCHYAN & 13AE & PL B720 309 & S．Chatrchyan et al． & （CMS Collab．） \\
\hline CHATRCHYAN & 13A」 & PL B723 280 & S．Chatrchyan et al． & （CMS Collab．） \\
\hline CHATRCHYAN & 13K & PR D87 032001 & S．Chatrchyan et al． & （CMS Collab．） \\
\hline AAD & 12 AB & PL B712 40 & G．Aad et al． & （ATLAS Collab．） \\
\hline AAD & 12AZ & PR D85 072003 & G．Aad et al． & （ATLAS Collab．） \\
\hline AARON & 11 C & PL B705 52 & F．D．Aaron et al． & （H1 Collab．） \\
\hline ABDALLAH & 11 & EPJ C71 1555 & J．Abdallah et al． & （DELPHI Collab．） \\
\hline AALTONEN & 10 H & PRL 104091801 & T．Aaltonen et al． & （CDF Collab．） \\
\hline ABDALLAH & 09 & EPJ C60 1 & J．Abdallah et al． & （DELPHI Collab．） \\
\hline AARON & 08 & PL B663 382 & F．D．Aaron et al． & （H1 Collab．） \\
\hline SCHAEL & 07A & EPJ C49 411 & S．Schael et al． & （ALEPH Collab．） \\
\hline ABDALLAH & 06C & EPJ C45 589 & J．Abdallah et al． & （DELPHI Collab．） \\
\hline ABULENCIA & 06 L & PRL 96211801 & A．Abulencia et al． & （CDF Collab．） \\
\hline ABBIENDI & 04 G & EPJ C33 173 & G．Abbiendi et al． & （OPAL Collab．） \\
\hline ABBIENDI & 04N & PL B602 167 & G．Abbiendi et al． & （OPAL Collab．） \\
\hline ABDALLAH & 04N & EPJ C37 405 & J．Abdallah et al． & （DELPHI Collab．） \\
\hline ACHARD & 03B & PL B568 23 & P．Achard et al． & （L3 Collab．） \\
\hline BABICH & 03 & EPJ C29 103 & A．A．Babich et al． & \\
\hline ABBIENDI & 02 G & PL B544 57 & G．Abbiendi et al． & （OPAL Collab．） \\
\hline ACHARD & 02D & PL B531 28 & P．Achard et al． & （L3 Collab．） \\
\hline ADLOFF & 02 & PL B525 9 & C．Adloff et al． & （H1 Collab．） \\
\hline CHEKANOV & 02D & PL B549 32 & S．Chekanov et al． & （ZEUS Collab．） \\
\hline AFFOLDER & 011 & PRL 87231803 & T．Affolder et al． & （CDF Collab．） \\
\hline BOURILKOV & 01 & PR D64 071701 & D．Bourilkov & \\
\hline CHEUNG & 01B & PL B517 167 & K．Cheung & \\
\hline ACCIARRI & 00 P & PL B489 81 & M．Acciarri et al． & （L3 Collab．） \\
\hline AFFOLDER & 001 & PR D62 012004 & T．Affolder et al． & （CDF Collab．） \\
\hline BARATE & 98 U & EPJ C4 571 & R．Barate et al． & （ALEPH Collab．） \\
\hline BARGER & 98E & PR D57 391 & V．Barger et al． & \\
\hline MCFARLAND & 98 & EPJ C1 509 & K．S．McFarland et al． & （CCFR／NuTeV Collab．） \\
\hline DIAZCRUZ & 94 & PR D49 2149 & J．L．Diaz Cruz，O．A．Sampayo & （CINV） \\
\hline ABT & 93 & NP B396 3 & I．Abt et al． & （H1 Collab．） \\
\hline ADRIANI & 93M & PRPL 2361 & O．Adriani et al． & （L3 Collab．） \\
\hline BARDADIN－．．． & 92 & ZPHY C55 163 & M．Bardadin－Otwinowska & （CLER） \\
\hline DECAMP & 92 & PRPL 216253 & D．Decamp et al． & （ALEPH Collab．） \\
\hline PDG & 92 & PR D45 S1 & K．Hikasa et al． & （KEK，LBL，BOST＋） \\
\hline ABREU & 91F & NP B367 511 & P．Abreu et al． & （DELPHI Collab．） \\
\hline KIM & 90 & PL B240 243 & G．N．Kim et al． & （AMY Collab．） \\
\hline ABE & 89B & PRL 621825 & F．Abe et al． & （CDF Collab．） \\
\hline ABE & 89D & PRL 631447 & F．Abe et al． & （CDF Collab．） \\
\hline ABE & 89」 & ZPHY C45 175 & K．Abe et al． & （VENUS Collab．） \\
\hline ALBAJAR & 89 & ZPHY C44 15 & C．Albajar et al． & （UA1 Collab．） \\
\hline BARGER & 89 & PL B220 464 & V．Barger et al． & （WISC，KEK） \\
\hline DORENBOS．．． & 89 & ZPHY C41 567 & J．Dorenbosch et al． & （CHARM Collab．） \\
\hline BARTEL & 87B & ZPHY C36 15 & W．Bartel et al． & （JADE Collab．） \\
\hline GRIFOLS & 86 & PL 168B 264 & J．A．Grifols，S．Peris & （BARC） \\
\hline JODIDIO & 86 & PR D34 1967 & A．Jodidio et al． & （LBL，NWES，TRIU） \\
\hline Also & & PR D37 237 （erratum） & A．Jodidio et al． & （LBL，NWES，TRIU） \\
\hline RENARD & 82 & PL 116B 264 & F．M．Renard & （CERN） \\
\hline
\end{tabular}

\section*{Extra Dimensions}

For explanation of terms used and discussion of significant model dependence of following limits，see the＂Extra Dimensions＂review． Footnotes describe originally quoted limit．\(\delta\) indicates the number of extra dimensions．
Limits not encoded here are summarized in the＂Extra Dimensions＂ review，where the latest unpublished results are also described．
See the related review（s）：

\section*{Extra Dimensions}

\section*{CONTENTS}

Limits on \(R\) from Deviations in Gravitational Force Law
Limits on \(R\) from On－Shell Production of Gravitons：\(\delta=2\)
Mass Limits on \(M_{T T}\)
Limits on \(1 / R=M_{C}\)
Limits on Kaluza－Klein Gravitons in Warped Extra Dimensions
Limits on Kaluza－Klein Gluons in Warped Extra Dimensions
Black Hole Production Limits
－Semiclassical Black Holes
－Quantum Black Holes

\section*{Limits on \(R\) from Deviations in Gravitational Force Law}

This section includes limits on the size of extra dimensions from deviations in the New－ tonian \(\left(1 / r^{2}\right)\) gravitational force law at short distances．Deviations are parametrized by a gravitational potential of the form \(V=-\left(G m m^{\prime} / r\right)[1+\alpha \exp (-r / R)]\) ．For \(\delta\) toroidal extra dimensions of equal size，\(\alpha=8 \delta / 3\) ．Quoted bounds are for \(\delta=2\) unless otherwise noted．
\(\frac{\operatorname{VALUE}(\mu \mathrm{m})}{<\mathbf{3 0}} \frac{C L \%}{95} \quad 1 \frac{\text { DOCUMENT ID }}{\text { KAPNER } \quad 07} \frac{\text { TECN }}{\text { COMMENT }} \frac{\text { Torsion pendulum }}{}\)
－－We do not use the following data for averages，fits，limits，etc．－•－
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \({ }^{2}\) BERGE & 18 & MICR & Space accelerometer \\
\hline & & 3 FAYET & 18A & MICR & Space accelerometer \\
\hline & & \({ }^{4}\) HADDOCK & 18 & & Neutron scattering \\
\hline & & \({ }^{5}\) KLIMCHITSK & ．17A & & Torsion oscillator \\
\hline & & \({ }^{6} \mathrm{XU}\) & 13 & & Nuclei properties \\
\hline & & 7 BEZERRA & 11 & & Torsion oscillator \\
\hline & & \({ }^{8}\) SUSHKOV & 11 & & Torsion pendulum \\
\hline & & \({ }^{9}\) BEZERRA & 10 & & Microcantilever \\
\hline & & 10 MASUDA & 09 & & Torsion pendulum \\
\hline & & 11 GERACI & 08 & & Microcantilever \\
\hline & & 12 TRENKEL & 08 & & Newton＇s constant \\
\hline & & 13 DECCA & 07A & & Torsion oscillator \\
\hline \(<47\) & 95 & 14 TU & 07 & & Torsion pendulum \\
\hline & & 15 SMULLIN & 05 & & Microcantilever \\
\hline \(<130\) & 95 & 16 HOYLE & 04 & & Torsion pendulum \\
\hline & & 17 CHIAVERINI & 03 & & Microcantilever \\
\hline \(\lesssim 200\) & 95 & 18 LONG & 03 & & Microcantilever \\
\hline ＜190 & 95 & 19 HOYLE & 01 & & Torsion pendulum \\
\hline & & 20 HOSKINS & 85 & & Torsion pendulum \\
\hline
\end{tabular}
\({ }^{1}\) KAPNER 07 search for new forces，probing a range of \(\alpha \simeq 10^{-3}-10^{5}\) and length scales \(R \simeq 10-1000 \mu \mathrm{~m}\) ．For \(\delta=1\) the bound on \(R\) is \(44 \mu \mathrm{~m}\) ．For \(\delta=2\) ，the bound is expressed in terms of \(M_{*}\) ，here translated to a bound on the radius．See their Fig． 6 for details on the bound
\({ }^{2}\) BERGE 18 uses results from the MICROSCOPE experiment to obtain constraints on non－Newtonian forces with strengths \(10^{-11} \lesssim|\alpha| \lesssim 10^{-7}\) and length scales \(R \gtrsim\) \(10^{5} \mathrm{~m}\) ．See their Figure 1 for more details．These constraints do not place limits on the
size of extra flat dimensions．
FAYET 18A uses results from the MICROSCOPE experiment to obtain constraints on an EP－violating force possibly arising from a new \(\mathrm{U}(1)\) gauge boson．For \(R \geq 10^{7}\) m the limits are \(|\alpha| \lesssim\) a few \(10^{-13}\) to a few \(10^{-11}\) depending on the coupling， corresponding to \(|\epsilon| \lesssim 10^{-24}\) for the coupling of the new spin－1 or spin－0 mediator． These constraints do not place limits on the size of extra flat dimensions．This extends the results of FAYET 18.
\({ }^{4}\) HADDOCK 18 obtain constraints on non－Newtonian forces with strengths \(10^{22} \lesssim\) \(|\alpha| \lesssim 10^{24}\) and length scales \(R \simeq 0.01-10 \mathrm{~nm}\) ．See their Figure 8 for more de－ tails．These constraints do not place limits on the size of extra flat dimensions．
\({ }^{5}\) KLIMCHITSKAYA 17A uses an experiment that measures the difference of Casimir forces to obtain bounds on non－Newtonian forces with strengths \(|\alpha| \simeq 10^{5}-10^{17}\) and length scales \(R=0.03-10 \mu \mathrm{~m}\) ．See their Fig．3．These constraints do not place limits on the scales \(R=0.03-10 \mu \mathrm{~m}\) ．See
size of extra flat dimensions．
\({ }^{6}\) XU 13 obtain constraints on non－Newtonian forces with strengths \(|\alpha| \simeq 10^{34}-10^{36}\) and length scales \(R \simeq 1-10 \mathrm{fm}\) ．See their Fig． 4 for more details．These constraints do not place limits on the size of extra flat dimensions．
\(7^{7}\) BEZERRA 11 obtain constraints on non－Newtonian forces with strengths \(10^{11} \lesssim|\alpha| \lesssim\) \(10^{18}\) and length scales \(R=30-1260 \mathrm{~nm}\) ．See their Fig． 2 for more details．These constraints do not place limits on the size of extra flat dimensions．
\({ }^{8}\) SUSHKOV 11 obtain improved limits on non－Newtonian forces with strengths \(10^{7} \lesssim\) \(|\alpha| \lesssim 10^{11}\) and length scales \(0.4 \mu \mathrm{~m}<R<4 \mu \mathrm{~m}(95 \% \mathrm{CL})\) ．See their Fig． 2. These bounds do not place limits on the size of extra flat dimensions．However，a model dependent bound of \(M_{*}>70 \mathrm{TeV}\) is obtained assuming gauge bosons that couple to baryon number also propagate in \((4+\delta)\) dimensions．
\({ }^{9}\) BEZERRA 10 obtain improved constraints on non－Newtonian forces with strengths \(10^{19} \lesssim|\alpha| \lesssim 10^{29}\) and length scales \(R=1.6-14 \mathrm{~nm}(95 \% \mathrm{CL})\) ．See their Fig． 1. This bound does not place limits on the size of extra flat dimensions．

Searches Particle Listings

\section*{Extra Dimensions}
\({ }^{10}\) MASUDA 09 obtain improved constraints on non-Newtonian forces with strengths \(10^{9} \lesssim\) \(|\alpha| \lesssim 10^{11}\) and length scales \(R=1.0-2.9 \mu \mathrm{~m}(95 \% \mathrm{CL})\). See their Fig. 3. This bound does not place limits on the size of extra flat dimensions.
11 GERACI 08 obtain improved constraints on non-Newtonian forces with strengths \(|\alpha|>\) 14,000 and length scales \(R=5-15 \mu \mathrm{~m}\). See their Fig. 9. This bound does not place limits on the size of extra flat dimensions.
12 TRENKEL 08 uses two independent measurements of Newton's constant \(G\) to constrain new forces with strength \(|\alpha| \simeq 10^{-4}\) and length scales \(R=0.02-1 \mathrm{~m}\). See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.
\({ }^{13}\) DECCA 07A search for new forces and obtain bounds in the region with strengths \(|\alpha| \simeq\) \(10^{13}-10^{18}\) and length scales \(R=20-86 \mathrm{~nm}\). See their Fig. 6. This bound does not place limits on the size of extra flat dimensions.
14 TU 07 search for new forces probing a range of \(|\alpha| \simeq 10^{-1}-10^{5}\) and length scales \(R\) \(\simeq 20-1000 \mu \mathrm{~m}\). For \(\delta=1\) the bound on \(R\) is \(53 \mu \mathrm{~m}\). See their Fig. 3 for details on the bound.
15 SMULLIN 05 search for new forces, and obtain bounds in the region with strengths \(\alpha \simeq 10^{3}-10^{8}\) and length scales \(R=6-20 \mu \mathrm{~m}\). See their Figs. 1 and 16 for details on the bound. This work does not place limits on the size of extra flat dimensions.
\({ }^{16}\) HOYLE 04 search for new forces, probing \(\alpha\) down to \(10^{-2}\) and distances down to \(10 \mu \mathrm{~m}\). Quoted bound on \(R\) is for \(\delta=2\). For \(\delta=1\), bound goes to \(160 \mu \mathrm{~m}\). See their Fig. 34 for details on the bound.
17 CHIAVERINI 03 search for new forces, probing \(\alpha\) above \(10^{4}\) and \(\lambda\) down to \(3 \mu \mathrm{~m}\), finding no signal. See their Fig. 4 for details on the bound. This bound does not place limits on the size of extra flat dimensions.
\({ }^{8}\) LONG 03 search for new forces, probing \(\alpha\) down to 3 , and distances down to about \(10 \mu \mathrm{~m}\). See their Fig. 4 for details on the bound.
19 HOYLE 01 search for new forces, probing \(\alpha\) down to \(10^{-2}\) and distances down to \(20 \mu \mathrm{~m}\) See their Fig. 4 for details on the bound. The quoted bound is for \(\alpha \geq 3\).
\({ }^{20}\) HOSKINS 85 search for new forces, probing distances down to 4 mm . See their Fig. 13 for details on the bound. This bound does not place limits on the size of extra flat dimensions.

\section*{Limits on \(\boldsymbol{R}\) from On-Shell Production of Gravitons: \(\boldsymbol{\delta}=\mathbf{2}\)}

This section includes limits on on-shell production of gravitons in collider and astrophysical processes. Bounds quoted are on \(R\), the assumed common radius of the flat extra dimensions, for \(\delta=2\) extra dimensions. Studies often quote bounds in terms of derived parameter; experiments are actually sensitive to the masses of the KK gravitons: \(m_{\vec{n}}=|\vec{n}| / R\). See the Review on "Extra Dimensions" for details. Bounds are given in \(\mu \mathrm{m}\) for \(\delta=2\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE ( \(\mu \mathrm{m}\) ) & \(\underline{C L} \%\) & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \(<4.8\) & 95 & 1 SIRUNYAN 1 & 185 & CMS & \(p p \rightarrow j G\) \\
\hline \(<0.00016\) & 95 & 2 HANNESTAD 03 & 03 & & Neutron star heating \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<8.0\) & 95 & \({ }^{3}\) AABOUD 1 & 181 & ATLS & \(p p \rightarrow j G\) \\
\hline \multirow[t]{2}{*}{89} & \multirow[t]{2}{*}{95} & 4 SIRUNYAN 1 & 18BV & CMS & \(p p \rightarrow Z G\) \\
\hline & & 5 SIRUNYAN & 17AQ & CMS & \(p p \rightarrow \gamma G\) \\
\hline \multirow[t]{3}{*}{90} & \multirow[t]{3}{*}{95} & \({ }^{6}\) AABOUD & 16F & ATLS & \(p p \rightarrow \gamma G\) \\
\hline & & 7 KHACHATRY... 1 & .16N & CMS & \(p p \rightarrow \gamma G\) \\
\hline & & \({ }^{8}\) AAD 1 & 15 cs & ATLS & \(p p \rightarrow \gamma G\) \\
\hline < 127 & 95 & \({ }^{9}\) AAD & 13C & ATLS & \(p p \rightarrow \gamma G\) \\
\hline < 34.4 & 95 & 10 AAD & 13D & ATLS & \(p p \rightarrow j j\) \\
\hline \(<0.0087\) & 95 & 11 AJELLO 12 & 12 & FLAT & Neutron star \(\gamma\) sources \\
\hline < 245 & 95 & 12 AALTONEN 0 & 08AC & CDF & \(p \bar{p} \rightarrow \gamma G, j G\) \\
\hline < 615 & 95 & 13 ABAZOV 0 & 08s & D0 & \(p \bar{p} \rightarrow \gamma G\) \\
\hline \(<0.916\) & 95 & 14 DAS 0 & 08 & & Supernova cooling \\
\hline < 350 & 95 & 15 ABULENCIA,A 0 & & CDF & \(p \bar{p} \rightarrow j G\) \\
\hline \(<270\) & 95 & 16 ABDALLAH 0 & 05B & DLPH & \(e^{+} e^{-} \rightarrow \gamma G\) \\
\hline < 210 & 95 & 17 ACHARD 0 & 04E & L3 & \(e^{+} e^{-} \rightarrow \gamma G\) \\
\hline < 480 & 95 & 18 ACOSTA 0 & 04C & CDF & \(\bar{p} p \rightarrow j G\) \\
\hline < 0.00038 & 95 & 19 CASSE 0 & 04 & & Neutron star \(\gamma\) sources \\
\hline < 610 & 95 & 20 ABAZOV 03 & 03 & D0 & \(\bar{p} p \rightarrow j G\) \\
\hline \(<0.96\) & 95 & 21 HANNESTAD 03 & 03 & & Supernova cooling \\
\hline < 0.096 & 95 & 22 HANNESTAD 03 & 03 & & Diffuse \(\gamma\) background \\
\hline \(<0.051\) & 95 & 23 HANNESTAD 0 & 03 & & Neutron star \(\gamma\) sources \\
\hline \multirow[t]{2}{*}{< 300} & \multirow[t]{2}{*}{95} & 24 HEISTER & 03C & ALEP & \(e^{+} e^{-} \rightarrow \gamma G\) \\
\hline & & \({ }^{25}\) FAIRBAIRN 0 & 01 & & Cosmology \\
\hline \multirow[t]{2}{*}{0.66} & \multirow[t]{2}{*}{95} & 26 HANHART 0 & 01 & & Supernova cooling \\
\hline & & 27 CASSISI 0 & 00 & & Red giants \\
\hline \(<1300\) & 95 & 28 ACCIARRI 9 & 995 & L3 & \(e^{+} e^{-} \rightarrow Z G\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 18 S search for \(p p \rightarrow j G\), using \(35.9 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=13 \mathrm{TeV}\) to place lower limits on \(M_{D}\) for two to six extra dimensions (see their Table VII), from which this bound on \(R\) is derived. This limit supersedes that in KHACHATRYAN 15AL
\({ }^{2}\) HANNESTAD 03 obtain a limit on \(R\) from the heating of old neutron stars by the surrounding cloud of trapped KK gravitons. Limits for all \(\delta \leq 7\) are given in their Tables \(V\) and VI . These limits supersede those in HANNESTAD 02.
\({ }^{3}\) AABOUD 18 । search for \(p p \rightarrow j G\), using \(36.1 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=13 \mathrm{TeV}\) to place lower limits on \(M_{D}\) for two to six extra dimensions (see their Table 7), from which this bound on \(R\) is derived. This limit supersedes that in AABOUD 16D.
\({ }^{4}\) SIRUNYAN 18BV search for \(p p \rightarrow Z G\), using \(35.9 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=13 \mathrm{TeV}\) to place lower limits on \(M_{D}\) for two to seven extra dimensions (see their Figure 11), from which this bound on R is derived.
\({ }^{5}\) SIRUNYAN 17AQ search for \(p p \rightarrow \gamma G\), using \(12.9 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=13 \mathrm{TeV}\) to place limits on \(M_{D}\) for three to six extra dimensions (see their Table 3).
\({ }^{6}\) AABOUD 16F search for \(p p \rightarrow \gamma G\), using \(3.2 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=13 \mathrm{TeV}\) to place limits on \(M_{D}\) for two to six extra dimensions (see their Figure 9), from which this bound on \(R\) is derived.
\(7^{7}\) KHACHATRYAN 16 N search for \(p p \rightarrow \gamma G\), using \(19.6 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=8 \mathrm{TeV}\) to place limits on \(M_{D}\) for three to six extra dimensions (see their Table 5).
\({ }^{8}\) AAD 15 CS search for \(p p \rightarrow \gamma G\), using \(20.3 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=8 \mathrm{TeV}\) to place lower limits on \(M_{D}\) for two to six extra dimensions (see their Fig. 18).
\({ }^{9}\) AAD 13C search for \(p p \rightarrow \gamma G\), using \(4.6 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=7 \mathrm{TeV}\) to place bounds on \(M_{D}\) for two to six extra dimensions, from which this bound on \(R\) is derived.
10 AAD 13D search for the dijet decay of quantum black holes in \(4.8 \mathrm{fb}^{-1}\) of data produced in \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place bounds on \(M_{D}\) for two to seven extra dimensions, from which these bounds on \(R\) are derived. Limits on \(M_{D}\) for all \(\delta \leq 7\) are given in their Table 3.
11 AJELLO 12 obtain a limit on \(R\) from the gamma-ray emission of point \(\gamma\) sources that arise from the photon decay of KK gravitons which are gravitationally bound around neutron stars. Limits for all \(\delta \leq 7\) are given in their Table 7 .
12 AALTONEN 08AC search for \(\overline{p \bar{p}} \rightarrow \gamma G\) and \(p \bar{p} \rightarrow j G\) at \(\sqrt{s}=1.96 \mathrm{TeV}\) with 2.0 \(\mathrm{fb}^{-1}\) and \(1.1 \mathrm{fb}^{-1}\) respectively, in order to place bounds on the fundamental scale and size of the extra dimensions. See their Table III for limits on all \(\delta \leq 6\).
13 ABAZOV 08 S search for \(p \bar{p} \rightarrow \gamma G\), using \(1 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place bounds on \(M_{D}\) for two to eight extra dimensions, from which these bounds on \(R\) are derived. See their paper for intermediate values of \(\delta\).
\({ }^{14}\) DAS 08 obtain a limit on \(R\) from Kaluza-Klein graviton cooling of SN1987A due to plasmon-plasmon annihilation.
\({ }^{5}\) ABULENCIA,A 06 search for \(p \bar{p} \rightarrow j G\) using \(368 \mathrm{pb}^{-1}\) of data at \(\sqrt{s}=1.96 \mathrm{TeV}\). See their Table II for bounds for all \(\delta \leq 6\).
16 ABDALLAH 05B search for \(e^{+} e^{-} \rightarrow \gamma G\) at \(\sqrt{s}=180-209 \mathrm{GeV}\) to place bounds on the size of extra dimensions and the fundamental scale. Limits for all \(\delta \leq 6\) are given in their Table 6. These limits supersede those in ABREU 00 z .
17 ACHARD 04E search for \(e^{+} e^{-} \rightarrow \gamma G\) at \(\sqrt{s}=189-209 \mathrm{GeV}\) to place bounds on the size of extra dimensions and the fundamental scale. See their Table 8 for limits with \(\delta \leq 8\). These limits supersede those in ACCIARRI 99R.
\({ }^{8}\) ACOSTA 04C search for \(\bar{p} p \rightarrow j G\) at \(\sqrt{s}=1.8 \mathrm{TeV}\) to place bounds on the size of extra dimensions and the fundamental scale. See their paper for bounds on \(\delta=4,6\).
\({ }^{19}\) CASSE 04 obtain a limit on \(R\) from the gamma-ray emission of point \(\gamma\) sources that arises from the photon decay of gravitons around newly born neutron stars, applying the technique of HANNESTAD 03 to neutron stars in the galactic bulge. Limits for all \(\delta \leq\) 7 are given in their Table I.
\({ }^{20}\) ABAZOV 03 search for \(p \bar{p} \rightarrow j G\) at \(\sqrt{s}=1.8 \mathrm{TeV}\) to place bounds on \(M_{D}\) for 2 to 7 extra dimensions, from which these bounds on \(R\) are derived. See their paper for bounds on intermediate values of \(\delta\). We quote results without the approximate NLO scaling introduced in the paper.
\({ }^{21}\) HANNESTAD 03 obtain a limit on \(R\) from graviton cooling of supernova SN1987a. Limits for all \(\delta \leq 7\) are given in their Tables V and VI .
\({ }^{22}\) HANNESTAD 03 obtain a limit on \(R\) from gravitons emitted in supernovae and which subsequently decay, contaminating the diffuse cosmic \(\gamma\) background. Limits for all \(\delta \leq 7\) are given in their Tables V and VI . These limits supersede those in HANNESTAD 02.
\({ }^{23}\) HANNESTAD 03 obtain a limit on \(R\) from gravitons emitted in two recent supernovae and which subsequently decay, creating point \(\gamma\) sources. Limits for all \(\delta \leq 7\) are given in their Tables V and VI. These limits are corrected in the published erratum
\({ }^{24}\) HEISTER 03C use the process \(e^{+} e^{-} \rightarrow \gamma G\) at \(\sqrt{s}=189-209 \mathrm{GeV}\) to place bounds on the size of extra dimensions and the scale of gravity. See their Table 4 for limits with \(\delta \leq 6\) for derived limits on \(M_{D}\).
\({ }^{25}\) FAIRBAIRN 01 obtains bounds on \(R\) from over production of KK gravitons in the early universe. Bounds are quoted in paper in terms of fundamental scale of gravity. Bounds depend strongly on temperature of QCD phase transition and range from \(R<0.13 \mu \mathrm{~m}\) to \(0.001 \mu \mathrm{~m}\) for \(\delta=2\); bounds for \(\delta=3,4\) can be derived from Table 1 in the paper.
\({ }^{26}\) HANHART 01 obtain bounds on \(R\) from limits on graviton cooling of supernova SN 1987a using numerical simulations of proto-neutron star neutrino emission.
\({ }^{27}\) CASSISI 00 obtain rough bounds on \(M_{D}\) (and thus \(R\) ) from red giant cooling for \(\delta=2,3\). See their paper for details.
\({ }^{28}\) ACCIARRI 995 search for \(e^{+} e^{-} \rightarrow Z G\) at \(\sqrt{s}=189 \mathrm{GeV}\). Limits on the gravity scale are found in their Table 2, for \(\delta \leq 4\)

\section*{Mass Limits on \(M_{T T}\)}

This section includes limits on the cut-off mass scale, \(M_{T T}\), of dimension-8 operators from KK graviton exchange in models of large extra dimensions. Ambiguities in the UV-divergent summation are absorbed into the parameter \(\lambda\), which is taken to be \(\lambda=\) \(\pm 1\) in the following analyses. Bounds for \(\lambda=-1\) are shown in parenthesis after the bound for \(\lambda=+1\), if appropriate. Different papers use slightly different definitions of the mass scale. The definition used here is related to another popular convention by \(M_{T T}^{4}=(2 / \pi) \Lambda_{T}^{4}\), as discussed in the above Review on "Extra Dimensions."
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (TeV) & & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline > 9.02 & & 95 & 1 SIRUNYAN & 18DD CMS & \(p p \rightarrow\) dijet, ang. distrib. \\
\hline >20.6 & ( \(>15.7\) ) & 95 & 2 GIUDICE & 03 RVUE & Dim-6 operators \\
\hline \multicolumn{6}{|l|}{- We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(>6.9\) & \multirow{4}{*}{( \(>5.6\) )} & 95 & \multicolumn{3}{|l|}{\({ }^{3}\) SIRUNYAN \(\quad\) 19AC CMS \(\quad p p \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \gamma \gamma\)} \\
\hline \(>7.0\) & & 95 & \({ }^{4}\) SIRUNYAN & 18Du CMS & \(p p \rightarrow \gamma \gamma\) \\
\hline \(>6.5\) & & 95 & \({ }^{5}\) AABOUD & 17AP ATLS & \(p p \rightarrow \gamma \gamma\) \\
\hline \(>3.8\) & & 95 & \({ }^{6}\) AAD & 14BE ATLS & \(p p \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}\) \\
\hline \multirow[t]{2}{*}{\(>3.2\)} & \multirow{5}{*}{( \(>0.92\) )} & \multirow[t]{2}{*}{95} & \multirow[t]{2}{*}{\begin{tabular}{l}
7 AAD \\
8 BAAK
\end{tabular}} & 13E A & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
p p \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \gamma \gamma
\] \\
Electroweak
\end{tabular}} \\
\hline & & & & 12 RVUE & \\
\hline \(>0.90\) & & 95 & \multirow[t]{2}{*}{\({ }^{9}\) AARON 10 ABAZOV} & 11C & \(e^{ \pm} p \rightarrow e^{ \pm} X\) \\
\hline \(>1.48\) & & 95 & & 09aE D0 & \(p \bar{p} \rightarrow\) dijet, ang. distrib. \\
\hline \(>1.45\) & & 95 & 11 ABAZOV & 09D D0 & \(p \bar{p} \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline \(>1.1\) & ( \(>1.0\) ) & 95 & 12 SCHAEL & 07A ALEP & \(e^{+} e^{-} \rightarrow e^{+} e^{-}\) \\
\hline \(>0.898\) & ( \(>0.998\) ) & 95 & 13 ABDALLAH & 06C DLPH & \(e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}\) \\
\hline \(>0.853\) & \((>0.939)\) & 95 & 14 GERDES & 06 & \(p \bar{p} \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline \(>0.96\) & \((>0.93)\) & 95 & 15 ABAZOV & 05V D0 & \(p \bar{p} \rightarrow \mu^{+} \mu^{-}\) \\
\hline \(>0.78\) & \((>0.79)\) & 95 & 16 CHEKANOV & 04B ZEUS & \(e^{ \pm} p \rightarrow e^{ \pm} X\) \\
\hline \(>0.805\) & \((>0.956)\) & 95 & 17 ABBIENDI & 03D OPAL & \(e^{+} e^{-} \rightarrow \gamma \gamma\) \\
\hline \(>0.7\) & \((>0.7)\) & 95 & 18 ACHARD & 03D L3 & \(e^{+} e^{-} \rightarrow Z Z\) \\
\hline \(>0.82\) & \((>0.78)\) & 95 & 19 ADLOFF & 03 H 1 & \multirow[t]{2}{*}{\(e^{ \pm} p \rightarrow e^{ \pm} X\)} \\
\hline \(>1.28\) & \((>1.25)\) & 95 & 20 GIUDICE & 03 RVUE & \\
\hline \(>0.80\) & \((>0.85)\) & 95 & 21 HEISTER & 03C ALEP & \(e^{+} e^{-} \rightarrow \gamma \gamma\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(>0.84\) & \((>0.99)\) & 95 & 22 ACHARD & 02D & L3 & \(e^{+} e^{-} \rightarrow \gamma \gamma\) \\
\hline \(>1.2\) & ( \(>1.1\) ) & 95 & 23 ABBOTT & 01 & D0 & \(p \bar{p} \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline \(>0.60\) & \((>0.63)\) & 95 & 24 ABBIENDI & 00R & OPAL & \(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\) \\
\hline \(>0.63\) & \((>0.50)\) & 95 & 24 ABBIENDI & 00R & OPAL & \(e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}\) \\
\hline > 0.68 & \((>0.61)\) & 95 & 24 ABBIENDI & 00R & OPAL & \(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, \tau^{+} \tau^{-}\) \\
\hline & & & 25 ABREU & 00A & DLPH & \(e^{+} e^{-} \rightarrow \gamma \gamma\) \\
\hline \(>0.680\) & ( \(>0.542\) ) & 95 & 26 ABREU & 00s & DLPH & \(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, \tau^{+} \tau^{-}\) \\
\hline \(>15-28\) & & 99.7 & \({ }^{27}\) CHANG & 00B & RVUE & Electroweak \\
\hline \(>0.98\) & & 95 & 28 CHEUNG & 00 & RVUE & \(e^{+} e^{-} \rightarrow \gamma \gamma\) \\
\hline \(>0.29-0.38\) & & 95 & 29 GRAESSER & 00 & RVUE & \((g-2) \mu\) \\
\hline \(>0.50-1.1\) & & 95 & 30 HAN & 00 & RVUE & Electroweak \\
\hline \(>2.0\) & \((>2.0)\) & 95 & 31 MATHEWS & 00 & RVUE & \(\bar{p} p \rightarrow j j\) \\
\hline \(>1.0\) & ( \(>1.1\) ) & 95 & 32 MELE & 00 & RVUE & \(e^{+} e^{-} \rightarrow V V\) \\
\hline & & & 33 ABBIENDI & 99P & OPAL & \\
\hline & & & 34 ACCIARRI & 99m & L3 & \\
\hline & & & \({ }^{35}\) ACCIARRI & 99S & L3 & \\
\hline > 1.412 & ( \(>1.077\) ) & 95 & 36 BOURILKOV & 99 & & \(e^{+} e^{-} \rightarrow e^{+} e^{-}\) \\
\hline
\end{tabular}

1 SIRUNYAN 18DD use dijet angular distributions in \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions \(\sqrt{s}=13 \mathrm{TeV}\) to place a lower bound on \(\Lambda_{T}\), here converted to \(M_{T T}\). This updates at \(\sqrt{s}=13 \mathrm{TeV}\) to place a low
the results of SIRUNYAN 17F.
\({ }_{2}\) the results of SIRUNYAN 17F. 6 operator \(\left(2 \pi \lambda / \Lambda_{6}^{2}\right)\left(\sum \bar{f} \gamma_{\mu} \gamma^{5} f\right)\left(\sum \bar{f} \gamma^{\mu} \gamma^{5} f\right)\), using data from a variety of experiments. Results are quoted for \(\lambda= \pm 1\) and are independent of \(\delta\).
\({ }^{3}\) SIRUNYAN 19AC use 35.9 (36.3) \(\mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in the dielectron (dimuon) channels to place a lower limit on \(\Lambda_{T}\), here converted to \(M_{T T}\). The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table 2. This updates the results in KHACHATRYAN 15AE.
\({ }^{4}\) SIRUNYAN 18DU use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to place lower limits on \(M_{T T}\) (equivalent to their \(M_{S}\) ). This updates the results of CHATRCHYAN 12R.
\({ }^{5}\) AABOUD 17AP use \(36.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to place lower limits on \(M_{T T}\) (equivalent to their \(M_{S}\) ). This updates the results of AAD 13AS.
\({ }^{6}\) AAD 14BE use \(20 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) in the dilepton channel to place lower limits on \(M_{T T}\) (equivalent to their \(M_{S}\) ).
7 AAD 13E use 4.9 and \(5.0 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the dielectron and dimuon channels, respectively, to place lower limits on \(\bar{M}_{T T}\) (equivalent
to their \(M_{S}\) ). The dielectron and dimuon channels are combined with previous results in to their \(M_{S}\) ). The dielectron and dimuon channels are combined with previous results in
the diphoton channel to set the best limit. Bounds on individual channels and different the diphoton channel to set the best li
priors can be found in their Table VIII.
\({ }_{8}{ }^{\text {priors can }}\) be found in their Table VIII. 12 use electroweak precision observables to place bounds on the ratio \(\Lambda_{T} / M_{D}\) as a function of \(M_{D}\). See their Fig. 22 for constraints with a Higgs mass of 120 GeV .
\({ }^{9}\) AARON 11C search for deviations in the differential cross section of \(e^{ \pm} p \rightarrow e^{ \pm} X\) in \(446 \mathrm{pb}^{-1}\) of data taken at \(\sqrt{s}=301\) and 319 GeV to place a bound on \(M_{T T}\).
10 ABAZOV 09AE use dijet angular distributions in \(0.7 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place lower bounds on \(\Lambda_{T}\) (equivalent to their \(M_{S}\) ), here converted to \(M_{T T}\).
\({ }^{11}\) ABAZOV 09D use \(1.05 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place lower bounds on \(\Lambda_{T}\) (equivalent to their \(M_{S}\) ), here converted to \(M_{T T}\)
12 SCHAEL 07A use \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV}\) to place lower limits on \(\Lambda_{T}\), here converted to limits on \(M_{T T}\).
\({ }^{13}\) ABDALLAH 06C use \(e^{+} e^{-}\)collisions at \(\sqrt{s} \sim 130-207 \mathrm{GeV}\) to place lower limits on \(M_{T T}\), which is equivalent to their definition of \(M_{S}\). Bound shown includes all possible
final state leptons, \(\ell=e, \mu, \tau\). Bounds on individual leptonic final states can be found final state Ieptons,
in their Table 31.
\({ }^{14}\) GERDES 06 use 100 to \(110 \mathrm{pb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.8 \mathrm{TeV}\), as recorded by the CDF Collaboration during Run I of the Tevatron. Bound shown includes a \(K\)-factor of 1.3. Bounds on individual \(e^{+} e^{-}\)and \(\gamma \gamma\) final states are found in their Table I.
\({ }^{15}\) ABAZOV 05V use \(246 \mathrm{pb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for deviations in the differential cross section to \(\mu^{+} \mu^{-}\)from graviton exchange.
\({ }^{16}\) CHEKANOV 04B search for deviations in the differential cross section of \(e^{ \pm} p \rightarrow e^{ \pm} X\) with \(130 \mathrm{pb}^{-1}\) of combined data and \(Q^{2}\) values up to \(40,000 \mathrm{GeV}^{2}\) to place a bound on \(M_{T T}\).
17 ABBIENDI 03D use \(e^{+} e^{-}\)collisions at \(\sqrt{s}=181-209 \mathrm{GeV}\) to place bounds on the ultraviolet scale \(M_{T T}\), which is equivalent to their definition of \(M_{S}\).
18 ACHARD 03D look for deviations in the cross section for \(e^{+} e^{-} \rightarrow Z Z\) from \(\sqrt{s}=\) \(200-209 \mathrm{GeV}\) to place a bound on \(M_{T T}\).
\({ }^{19}\) ADLOFF 03 search for deviations in the differential cross section of \(e^{ \pm} p \rightarrow e^{ \pm} X\) at \(\sqrt{s}=301\) and 319 GeV to place bounds on \(M_{T T}\).
\({ }^{20}\) GIUDICE 03 review existing experimental bounds on \(M_{T T}\) and derive a combined limit.
\({ }^{21}\) HEISTER 03C use \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189-209 \mathrm{GeV}\) to place bounds on the scale of dim-8 gravitational interactions. Their \(M_{s}^{ \pm}\)is equivalent to our \(M_{T T}\) with \(\lambda= \pm 1\).
\({ }^{22}\) ACHARD 02 search for \(s\)-channel graviton exchange effects in \(e^{+} e^{-} \rightarrow \gamma \gamma\) at \(E_{\mathrm{Cm}}=\) 192-209 GeV.
\({ }^{23}\) ABBOTT 01 search for variations in differential cross sections to \(e^{+} e^{-}\)and \(\gamma \gamma\) final states at the Tevatron.
\(2^{24}\) ABBIENDI 00R uses \(e^{+} e^{-}\)collisions at \(\sqrt{s}=189 \mathrm{GeV}\).
\({ }^{25}\) ABREU 00A search for \(s\)-channel graviton exchange effects in \(e^{+} e^{-} \rightarrow \gamma \gamma\) at \(E_{\mathrm{Cm}}=\) \(189-202 \mathrm{GeV}\).
\({ }^{26}\) ABREU 00s uses \(e^{+} e^{-}\)collisions at \(\sqrt{s}=183\) and 189 GeV . Bounds on \(\mu\) and \(\tau\) individual final states given in paper
27 CHANG OOB derive \(3 \sigma\) limit on \(M_{T T}\) of \((28,19,15) \mathrm{TeV}\) for \(\delta=(2,4,6)\) respectively assuming the presence of a torsional coupling in the gravitational action. Highly model dependent.
28 CHEUNG 00 obtains limits from anomalous diphoton production at OPAL due to graviton exchange. Original limit for \(\delta=4\). However, unknown UV theory renders \(\delta\) dependence unreliable. Original paper works in HLZ convention.
29 GRAESSER 00 obtains a bound from graviton contributions to \(g-2\) of the muon through loops of 0.29 TeV for \(\delta=2\) and 0.38 TeV for \(\delta=4,6\). Limits scale as \(\lambda^{1 / 2}\). However
calculational scheme not well-defined without specification of high-scale theory. See the "Extra Dimensions Review."
30 HAN 00 calculates corrections to gauge boson self-energies from KK graviton loops and constrain them using \(S\) and \(T\). Bounds on \(M_{T T}\) range from \(0.5 \mathrm{TeV}(\delta=6)\) to 1.1 TeV ( \(\delta=2\) ); see text. Limits have strong dependence, \(\lambda^{\delta+2}\), on unknown \(\lambda\) coefficient.
31 MATHEWS 00 search for evidence of graviton exchange in CDF and D \(\varnothing\) dijet production data. See their Table 2 for slightly stronger \(\delta\)-dependent bounds. Limits expressed in terms of \(\widetilde{M}_{S}^{4}=M_{T T}^{4} / 8\).
\({ }^{32}\) MELE 00 obtains bound from KK graviton contributions to \(e^{+} e^{-} \rightarrow V V(V=\gamma, W, Z)\) at LEP. Authors use Hewett conventions.
33 ABBIENDI 99P search for \(s\)-channel graviton exchange effects in \(e^{+} e^{-} \rightarrow \gamma \gamma\) at ABBIENDI 99P search for \(s\)-channel graviton exchange effects in \(e^{+} e_{-} \rightarrow \gamma \gamma\) at
\(E_{\mathrm{cm}}=189 \mathrm{GeV}\). The limits \(G_{+}>660 \mathrm{GeV}\) and \(G_{-}>634 \mathrm{GeV}\) are obtained from combined \(E_{\mathrm{cm}}=183\) and 189 GeV data, where \(G_{ \pm}\)is a scale related to the fundamental gravity scale.
\({ }^{34}\) ACCIARRI 99m search for the reaction \(e^{+} e^{-} \rightarrow \gamma G\) and \(s\)-channel graviton exchange effects in \(e^{+} e^{-} \rightarrow \gamma \gamma, W^{+} W^{-}, Z Z, e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, q \bar{q}\) at \(E_{\mathrm{Cm}}=183 \mathrm{GeV}\). Limits on the gravity scale are listed in their Tables 1 and 2.
\({ }^{35}\) ACCIARRI 99S search for the reaction \(e^{+} e^{-} \rightarrow Z G\) and \(s\)-channel graviton exchange effects in \(e^{+} e^{-} \rightarrow \gamma \gamma, W^{+} W^{-}, Z Z, e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, q \bar{q}\) at \(E_{\mathrm{cm}}=189 \mathrm{GeV}\). Limits on the gravity scale are listed in their Tables 1 and 2.
\({ }^{36}\) BOURILKOV 99 performs global analysis of LEP data on \(e^{+} e^{-}\)collisions at \(\sqrt{s}=183\) and 189 GeV . Bound is on \(\Lambda_{T}\).

\section*{Limits on \(1 / R=M_{C}\)}

This section includes limits on \(1 / R=M_{C}\), the compactification scale in models with one TeV -sized extra dimension, due to exchange of Standard Model KK excitations. Bounds assume fermions are not in the bulk, unless stated otherwise. See the "Extra Dimensions" review for discussion of model dependence.

\({ }^{1}\) AAD 12 CC use 4.9 and \(5.0 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest \(\mathrm{KK} Z / \gamma\) boson (equivalent to \(1 / R=M_{C}\) ). The limit quoted here assumes a flat prior corresponding to when the pure \(Z / \gamma\) KK cross section term dominates. See their Section 15 for more details.
\({ }^{2}\) BARBIERI 04 use electroweak precision observables to place a lower bound on the compactification scale \(1 / R\). Both the gauge bosons and the Higgs boson are assumed to propagate in the bulk
\({ }^{3}\) AABOUD 18AV use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with multiple b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.8 TeV for the Kaluza-Klein mass is obtained.
\({ }^{4}\) AABOUD 18CE use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in final states with same-charge leptons and b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.45 TeV for the Kaluza-Klein mass is obtained.
\({ }^{5}\) ACCOMANDO 15 use electroweak precision observables to place a lower bound on the compactification scale \(1 / R\). See their Fig. 2 for the bound as a function of \(\sin \beta\), which parametrizes the VEV contribution from brane and bulk Higgs fields. The quoted value is for the minimum bound which occurs at \(\sin \beta=0.45\).
\({ }^{6}\) KHACHATRYAN 15T use \(19.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to place a lower bound on the compactification scale \(1 / R\).
\({ }^{7}\) CHATRCHYAN 13AQ use \(5.0 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) and a further \(3.7 \mathrm{fb}^{-1}\) of data at \(\sqrt{s}=8 \mathrm{TeV}\) to place a lower bound on the compactification scale \(1 / R\), in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 5 for the bound as a function of the universal bulk fermion mass parameter \(\mu\).
\({ }^{8}\) CHATRCHYAN 13 W use diphoton events with large missing transverse momentum in \(4.93 \mathrm{fb}^{-1}\) of data produced from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the Kaluza-Klein masses, satisfies \(\Lambda / M_{C}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
\({ }^{9}\) EDELHAUSER 13 use 19.6 and \(20.6 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) analyzed by the CMS Collaboration in the dielectron and dimuon channels, respectively,

\section*{Extra Dimensions}
to place a lower bound on the mass of the second lightest Kaluza-Klein \(Z / \gamma\) boson (converted to a limit on \(1 / R=M_{C}\) ). The bound assumes Standard Model fields propagating in the bulk and that the cutoff scale \(\Lambda\), for the radiative corrections to the Kaluza-Klein masses, satisfies \(\Lambda / M_{C}=20\).
10 AAD 12 CP use diphoton events with large missing transverse momentum in \(4.8 \mathrm{fb}^{-1}\) of data produced from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the Kaluza Klein masses, satisfies \(\Lambda / M_{C}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
\({ }^{11}\) AAD 12x use diphoton events with large missing transverse momentum in \(1.07 \mathrm{fb}^{-1}\) of data produced from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the KaluzaKlein masses, satisfies \(\Lambda / M_{C}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
12 ABAZOV 12M use same-sign dimuon events in \(7.3 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the compactification scale \(1 / R\), in models with universal extra dimensions where all Standard Model fields propagate in the bulk.
13 BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale \(1 / R\), in models with universal extra dimensions and Standard Model fields propagating in the bulk. Bound assumes a 125 GeV Higgs mass. See their Fig. 25 for the bound as a function of the Higgs mass.
14 FLACKE 12 use electroweak precision observables to place a lower bound on the compactification scale \(1 / R\), in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 1 for the bound as a function of the universal bulk fermion mass parameter \(\mu\).
15 NISHIWAKI 12 use up to \(2 \mathrm{fb}^{-1}\) of data from the ATLAS and CMS experiments that constrains the production cross section of a Higgs-like particle to place a lower bound on the compactification scale \(1 / R\) in universal extra dimension models. The quoted bound assumes Standard Model fields propagating in the bulk and a 125 GeV Higgs mass. See their Fig. 1 for the bound as a function of the Higgs mass.
\({ }^{16}\) AAD 11F use diphoton events with large missing transverse energy in \(3.1 \mathrm{pb}^{-1}\) of data produced from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the Kaluza-Klein masses, satisfies \(\Lambda / M_{c}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
\({ }^{17}\) AAD \(11 \times\) use diphoton events with large missing transverse energy in \(36 \mathrm{pb}^{-1}\) of data produced from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the Kaluza-Klein masses, satisfies \(\Lambda / M_{C}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
18 ABAZOV 10P use diphoton events with large missing transverse energy in \(6.3 \mathrm{fb}^{-1}\) of data produced from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \(\Lambda\), for the radiative corrections to the KaluzaKlein masses, satisfies \(\Lambda / M_{c}=20\). The model parameters are chosen such that the decay \(\gamma^{*} \rightarrow G \gamma\) occurs with an appreciable branching fraction.
\({ }^{19}\) ABAZOV 09AE use dijet angular distributions in \(0.7 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the compactification scale.
\({ }^{20}\) HAISCH 07 use inclusive \(\bar{B}\)-meson decays to place a Higgs mass independent bound on the compactification scale \(1 / R\) in the minimal universal extra dimension model.
21 GOGOLADZE 06 use electroweak precision observables to place a lower bound on the compactification scale in models with universal extra dimensions. Bound assumes a 115 GeV Higgs mass. See their Fig. 3 for the bound as a function of the Higgs mass.
\({ }^{22}\) CORNET 00 translates a bound on the coefficient of the 4 -fermion operator \(\left(\bar{\ell} \gamma_{\mu} \tau^{a} \ell\right)\left(\bar{\ell} \gamma^{\mu} \tau^{a} \ell\right)\) derived by Hagiwara and Matsumoto into a limit on the mass scale of KK \(W\) bosons.
23 RIZZO 00 obtains limits from global electroweak fits in models with a Higgs in the bulk \((3.8 \mathrm{TeV})\) or on the standard brane \((3.3 \mathrm{TeV})\).

\section*{Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions}

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, \(\boldsymbol{k}\). See the "Extra Dimensions" review for a full discussion
Here we list limits for the value of the warp parameter \(k / \bar{M}_{P}=0.1\).
\begin{tabular}{|c|c|c|c|c|}
\hline \(V A L U E(\mathrm{TeV})\) & \(\underline{C L}\) & DOCUMENT ID & TECN & COMMENT \\
\hline >4.25 & 95 & \({ }^{1}\) SIRUNYAN & 18BB CMS & \(p p \rightarrow G \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}\) \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline & & \({ }^{2}\) AAD & 20C ATLS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 3 AABOUD & 19A ATLS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & \({ }^{4}\) AABOUD & 190 ATLS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & \({ }^{5}\) AAD & 19D ATLS & \(p p \rightarrow G \rightarrow W W, Z Z\) \\
\hline & & \({ }^{6}\) SIRUNYAN & 19 CMS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 7 SIRUNYAN & 19be CMS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 8 SIRUNYAN & 19CF CMS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & \({ }^{9}\) AABOUD & 18AK ATLS & \(p p \rightarrow G \rightarrow W W\) \\
\hline & & 10 AABOUD & 18AL ATLS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & 11 AABOUD & 18bF ATLS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & 12 AABOUD & 18BI ATLS & \(p p \rightarrow G \rightarrow t \bar{t}\) \\
\hline & & 13 AABOUD & 18CJ ATLS & \(p p \rightarrow G \rightarrow V V, V H, \ell \bar{\ell}\) \\
\hline & & 14 AABOUD & 18CQ ATLS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 15 AABOUD & 18cwATLS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 16 SIRUNYAN & 18aF CMS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 17 SIRUNYAN & 18AS CMS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & 18 SIRUNYAN & 18AX CMS & \(p p \rightarrow G \rightarrow W W\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{>1.8} & \multirow{4}{*}{95} & 19 SIRUNYAN & 18BK CMS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & 20 SIRUNYAN & 1880 CMS & \(p p \rightarrow G \rightarrow j j\) \\
\hline & & 21 SIRUNYAN & 18cwCMS & \(p p \rightarrow G \rightarrow H \mathrm{H}\) \\
\hline & & 22 SIRUNYAN & 18DJ CMS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline \multirow[t]{4}{*}{>4.1} & \multirow[t]{4}{*}{95} & 23 SIRUNYAN & 18DU CMS & \(p p \rightarrow G \rightarrow \gamma \gamma\) \\
\hline & & 24 SIRUNYAN & 18 F CMS & \(p p \rightarrow G \rightarrow \mathrm{HH}\) \\
\hline & & 25 SIRUNYAN & 181 CMS & \(p p \rightarrow G \rightarrow b \bar{b}\) \\
\hline & & 26 SIRUNYAN & 18P CMS & \(p p \rightarrow G \rightarrow W W, Z Z\) \\
\hline \multirow[t]{5}{*}{\(>4.1\)} & \multirow[t]{5}{*}{95} & 27 AABOUD & 17AP ATLS & \(p p \rightarrow G \rightarrow \gamma \gamma\) \\
\hline & & 28 AAD & 16R ATLS & \(p p \rightarrow G \rightarrow W W, Z Z\) \\
\hline & & \({ }^{29}\) AAD & 15AU ATLS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & \({ }^{30}\) AAD & 15AZ ATLS & \(p p \rightarrow G \rightarrow W W\) \\
\hline & & \({ }^{31}\) AAD & 15 CT ATLS & \(p p \rightarrow G \rightarrow W W, Z Z\) \\
\hline \(>2.68\) & 95 & 32 AAD & 14 V ATLS & \(p p \rightarrow G \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}\) \\
\hline \(>1.23(>0.84)\) & 95 & 33 AAD & 13A ATLS & \(p p \rightarrow G \rightarrow W W\) \\
\hline \(>0.94(>0.71)\) & 95 & \({ }^{34}\) AAD & 13ao ATLS & \(p p \rightarrow G \rightarrow W W\) \\
\hline \(>2.23\) & 95 & \({ }^{35}\) AAD & 13AS ATLS & \(p p \rightarrow \gamma \gamma, e^{+} e^{-}, \mu^{+} \mu^{-}\) \\
\hline \multirow[t]{4}{*}{\(>0.845\)} & \multirow[t]{4}{*}{95} & \({ }^{36}\) AAD & 12AD ATLS & \(p p \rightarrow G \rightarrow Z Z\) \\
\hline & & \({ }^{37}\) AALTONEN & 12 V CDF & \(p \bar{p} \rightarrow G \rightarrow Z Z\) \\
\hline & & 38 BAAK & 12 RVUE & Electroweak \\
\hline & & 39 AALTONEN & 11G CDF & \(p \bar{p} \rightarrow G \rightarrow Z Z\) \\
\hline \(>1.058\) & 95 & 40 AALTONEN & 11R CDF & \(p \bar{p} \rightarrow G \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline \(>0.754\) & 95 & 41 ABAZOV & 11H D0 & \(p \bar{p} \rightarrow G \rightarrow W W\) \\
\hline \(>0.607\) & & \({ }^{42}\) AALTONEN & 10N CDF & \(p \bar{p} \rightarrow G \rightarrow W W\) \\
\hline \multirow[t]{2}{*}{\(>1.05\)} & & 43 ABAZOV & 10F D0 & \(p \bar{p} \rightarrow G \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline & & 44 AALTONEN & 08S CDF & \(p \bar{p} \rightarrow G \rightarrow Z Z\) \\
\hline \multirow[t]{2}{*}{\(>0.90\)} & & 45 ABAZOV & 08」 D0 & \(p \bar{p} \rightarrow G \rightarrow e^{+} e^{-}, \gamma \gamma\) \\
\hline & & 46 AALTONEN & 07G CDF & \(p \bar{p} \rightarrow G \rightarrow \gamma \gamma\) \\
\hline \(>0.889\) & & 47 AALTONEN & 07H CDF & \(p \bar{p} \rightarrow G \rightarrow e \bar{e}\) \\
\hline \(>0.785\) & & 48 ABAZOV & 05N D0 & \(p \bar{p} \rightarrow G \rightarrow \ell \ell, \gamma \gamma\) \\
\hline \(>0.71\) & & 49 ABULENCIA & 05A CDF & \(p \bar{p} \rightarrow G \rightarrow \ell \bar{\ell}\) \\
\hline
\end{tabular}
\({ }^{15}\) AABOUD 18 Cw use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for Higgs boson pair production in the \(\gamma \gamma b \bar{b}\) final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
\({ }^{16}\) SIRUNYAN 18AF use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for Higgs boson pair production in the \(b \bar{b} b \bar{b}\) final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for \(k / \bar{M}_{P}=0.5\). This updates the results of KHACHATRYAN 15 R .
17 SIRUNYAN 18AS use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for \(Z Z\) resonances in the \(\ell \ell \nu \bar{\nu}\) final state \((\ell=e, \mu)\). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for \(k / \bar{M}_{P}=0.1,0.5\), and 1.0 .
\({ }^{18}\) SIRUNYAN 18 AX use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for WW resonances in \(\ell \nu q q\) final states \((\ell=e, \mu)\). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including KK graviton mass as a function of the cross section times branching fraction, including
theoretical values for \(k / \bar{M}_{P}=0.5\). This updates the results of KHACHATRYAN 14A.
19 SIRUNYAN 18BK use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for \(Z Z\) resonances in the \(\nu \bar{\nu} q \bar{q}\) final state. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for \(k / \bar{M}_{P}=0.5\)
\({ }^{20}\) SIRUNYAN 18BO use up to \(36 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for dijet resonances. Besides the quoted bound, KK graviton masses between 1.9 search for dijet resonances. Besides the quoted bound, KK graviton masses between 1.9 TeV and 2.5 TeV are also excluded. See their Figure 11 for the limit on the product of
the cross section, branching fraction and acceptance as a function of the KK graviton the cross section, branching fraction and acceptance as
21 SIRUNYAN 18 cW use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for Higgs boson pair production in the \(b \bar{b} b \bar{b}\) final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for \(k / \bar{M}_{P}=0.5\).
22 SIRUNYAN 18DJ use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for \(Z Z\) resonances in \(2 \ell 2 q\) final states \((\ell=e, \mu)\). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming \(k / M_{P}=0.5\), a graviton mass is excluded below 925 GeV .
23 SIRUNYAN 18DU use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\), in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values \(k / \bar{M}_{P}=0.01\) and 0.2 . This updates the results of KHACHATRYAN 16 m .
\({ }^{24}\) SIRUNYAN 18 F use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for Higgs boson pair production in the \(b \bar{b} \ell \nu \ell \nu\) final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for \(k / \bar{M}_{P}=0.1\).
25 SIRUNYAN 18 I use \(19.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of \(325-1200 \mathrm{GeV}\)
\({ }^{26}\) SIRUNYAN 18P use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for diboson resonances with dijet final states. See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for \(k / \bar{M}_{P}=0.5\). This updates the results of SIRUNYAN 17AK.
27 AABOUD 17AP use \(36.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the results of AABOUD 16 H .
\({ }^{28}\) results 16 R use \(20.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
\({ }^{29}\) AAD 15AU use \(20 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for KK gravitons in a warped extra dimension decaying to \(Z Z\) dibosons. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching fraction.
\({ }^{30} \mathrm{AAD} 15 \mathrm{AZ}\) use \(20.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
\({ }^{31}\) AAD 15CT use \(20.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to place a lower bound on the mass of the lightest KK graviton. See their Figures 6 b and 6 c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
\({ }^{32}\) AAD 14 V use \(20.3(20.5) \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) in the dielectron (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 12CC
\({ }^{33}\) AAD 13A use \(4.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the \(\ell \nu \ell \nu\) channel, to place a lower bound on the mass of the lightest KK graviton.
\({ }^{34}\) AAD 13 aO use \(4.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the \(\ell \nu j j\) channel, to place a lower bound on the mass of the lightest KK graviton.
\({ }^{35}\) AAD 13AS use \(4.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values \(k / \bar{M}_{P}\) between 0.01 and 0.1 . This updates the results of AAD 12 Y
\({ }^{36}\) AAD 12AD use \(1.02 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to search for KK gravitons in a warped extra dimension decaying to \(Z Z\) dibosons in the \(I I j j\) and \(I I I I\) channels \((\ell=e, \mu)\). The limit is quoted for the combined \(\|j j+\| \| /\) channels. See their Figure 5 for limits on the cross section \(\sigma(G \rightarrow Z Z)\) as a function of the graviton mass.
\({ }^{37}\) AALTONEN 12 V use \(6 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in a warped extra dimension decaying to \(Z Z\) dibosons in the \(I I j\) and IIII channels \((\ell=e, \mu)\). It provides improved limits over the previous analysis in AALTONEN 11G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio \(\sigma\left(p \bar{p} \rightarrow G^{*} \rightarrow Z Z\right)\) as a function of the graviton mass.
38 BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale \(k e^{-\pi k R}\), assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
\({ }^{39}\) AALTONEN 11 G use \(2.5-2.9 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in a warped extra dimension decaying to \(Z Z\) dibosons via the eeee, ee \(\mu \mu, \mu \mu \mu \mu, e e j j\), and \(\mu \mu j j\) channels. See their Fig. 20 for limits on the cross section \(\sigma(G \rightarrow Z Z)\) as a function of the graviton mass.
\({ }^{40}\) AALTONEN 11 R uses \(5.7 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 11U. For
warp parameter values \(k / \bar{M}_{P}\) between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV . See their Table I for more details.
\({ }^{41}\) ABAZOV 11 H use \(5.4 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the mass of the lightest graviton. Their \(95 \%\) C.L. exclusion limit does not include masses less than 300 GeV .
\(2^{2}\) AALTONEN 10 N use \(2.9 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the mass of the lightest graviton.
\({ }^{43}\) ABAZOV 10 F use \(5.4 \mathrm{fb}^{-1}\) of data from \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to place a lower bound on the mass of the lightest graviton. For warp parameter values of \(k / \bar{M}_{P}\) between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV . See their Fig. 3 for more details.
\({ }^{44}\) AALTONEN 08s use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two \(Z\) bosons using \(1.1 \mathrm{fb}^{-1}\) of data. See their Fig. 8 for limits on \(\sigma \cdot \mathrm{B}(G \rightarrow Z Z)\) versus the graviton mass.
\({ }^{45}\) ABAZOV 08J use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using \(1 \mathrm{fb}^{-1}\) of data. For warp parameter values of \(k / \bar{M}_{P}\) between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV . See their Fig. 4 for more details.
\({ }^{46}\) AALTONEN 07G use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using \(1.2 \mathrm{fb}^{-1}\) of data. For warp parameter values of \(k / \bar{M}_{P}=0.1,0.05\), and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV , respectively. See their Fig. 3 for more details. See also AALTONEN 07H.
47 AALTONEN 07 H use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using \(1.3 \mathrm{fb}^{-1}\) of data. For a warp parameter value of \(k / \bar{M}_{P}=0.1\) the bound on the graviton mass is 807 GeV . See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 07G yields for \(k / M_{P}=0.1\) a graviton mass lower bound of 889 GeV .
48 ABAZOV 05N use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using \(260 \mathrm{pb}^{-1}\) of data. For warp parameter values of \(k / \bar{M}_{P}=0.1,0.05\), and 0.01 , the bounds on the graviton mass are 785,650 and 250 GeV respectively. See their Fig. 3 for more details.
\({ }^{49}\) ABULENCIA 05A use \(p \bar{p}\) collisions at \(\sqrt{s}=1.96 \mathrm{TeV}\) to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using \(200 \mathrm{pb}^{-1}\) of data. For warp parameter values of \(k / \bar{M}_{P}=0.1,0.05\), and 0.01 , the bounds on the graviton mass are 710,510 and 170 GeV respectively.

\section*{Limits on Kaluza-Klein Gluons in Warped Extra Dimensions}

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the gluon in warped extra dimension models with Standard Model fields propagating in the bulk. Bounds are given for a specific benchmark model with \(\Gamma / m=15.3 \%\) where \(\Gamma\) is the width and \(m\) the mass of the KK gluon. See the "Extra Dimensions" review for more discussion.
\begin{tabular}{|c|c|c|c|}
\hline \(V A L U E(\mathrm{TeV})\) & CL\% & DOCUMENT ID TECN & COMMENT \\
\hline \multirow[t]{2}{*}{>3.8} & 95 & 1 AABOUD 18BI A & \(g_{K K} \rightarrow t \bar{t} \rightarrow \ell j\) \\
\hline & \multicolumn{2}{|l|}{following data} & \\
\hline & & \(\begin{array}{ll}2 \text { AABOUD } & \text { 19AS ATLS } \\ 3 \text { SIRUNYAN } & \text { 19AL CMS }\end{array}\) & \[
\begin{aligned}
& K K \rightarrow t \bar{t} \rightarrow \\
& K K \rightarrow t T
\end{aligned}
\] \\
\hline >2.5 & 95 & \begin{tabular}{l}
\({ }^{4}\) CHATRCHYAN 13BM CMS \\
5 CHEN 13A
\end{tabular} & \[
\rightarrow x_{S} \gamma
\] \\
\hline >1.5 & 95 & \({ }^{6}\) AAD 12BV ATLS & \(K K \rightarrow t \bar{t}\) \\
\hline \multicolumn{4}{|l|}{\({ }^{1}\) AABOUD 18BI use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). This result updates AAD 13AQ.} \\
\hline \multicolumn{4}{|l|}{\({ }^{2}\) AABOUD 19AS use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\). An upper bound of 3.4 TeV is placed on the KK gluon mass for \(\Gamma / m=30 \%\).} \\
\hline \multicolumn{4}{|l|}{\({ }^{3}\) SIRUNYAN 19AL use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to place limits on a KK gluon decaying to a top quark and a heavy vector-like fermion, T. KK gluon masses between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are excluded for T masses of 1.2 and 1.5 TeV , respectively.} \\
\hline \multicolumn{4}{|l|}{\({ }^{4}\) CHATRCHYAN 13BM use \(19.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\). Bound is for a width of approximately \(15-20 \%\) of the KK gluon mass.} \\
\hline \multicolumn{4}{|l|}{\({ }^{5}\) CHEN 13A place limits on the KK mass scale for a specific warped model with custodial symmetry and bulk fermions. See their Figures 4 and 5.} \\
\hline
\end{tabular}

Black Hole Production Limits

\section*{Semiclassical Black Holes}
\({ }^{1}\) SIRUNYAN 18DA use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for semiclassical black holes decaying to multijet final states. No excess of events above the expected level of standard model background was observed. Exclusions at \(95 \%\) CL are set on the mass threshold for black hole production as a function of the higherdimensional Planck scale for rotating and nonrotating black holes under several model assumptions (ADD, 2, 4, 6 extra dimensions model) in the \(7.1-10.3 \mathrm{TeV}\) range. These limits supersede those in SIRUNYAN 17CP.
\({ }^{2}\) AAD 16 N use \(3.6 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for semiclassical black hole decays to multijet final states. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95\% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 6 extra dimensions model).
VALUE (GeV) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|}
\hline 1 SIRUNYAN & 18DA CMS & \(p p \rightarrow\) multijet \\
\hline \({ }^{2}\) AAD & 16 N ATLS & \(p p \rightarrow\) multijet \\
\hline \({ }^{3} \mathrm{AAD}\) & 160 ATLS & \(p p \rightarrow \ell+(\ell \ell / \ell j / j j)\) \\
\hline \({ }^{4}\) AAD & 13AW ATLS & \(p p \rightarrow \mu \mu\) \\
\hline
\end{tabular}

\section*{Searches Particle Listings}

\section*{Extra Dimensions}
\({ }^{3}\) AAD 160 use \(3.2 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for semi classical black hole decays to high－mass final states with leptons and jets．No excess of events above the expected level of Standard Model background was observed．Exclusion contours at \(95 \%\) C．L．are set on the mass threshold for black hole production versus higher－dimensional Planck scale for rotating black holes（ADD， 2 to 6 extra dimensions）． \({ }^{4}\) AAD 13AW use \(20.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for semi－ classical black hole decays to like－sign dimuon final states using large track multiplicity． No excess of events above the expected level of Standard Model background was ob－ served．Exclusion contours at 95\％C．L．are set on the mass threshold for and non－rotating models

Quantum Black Holes
－－We do not use the following data for averages，fits，limits，etc．－－
\begin{tabular}{lll} 
1 AABOUD & 18BA ATLS & \(p p \rightarrow \gamma j\) \\
2 AABOUD & 18CM ATLS & \(p p \rightarrow e \mu, e \tau, \mu \tau\) \\
3 SIRUNYAN & 18AT CMS & \(p p \rightarrow e \mu\) \\
4 SIRUNYAN & 18DD CMS & \(p p \rightarrow\) dijet，ang．distrib． \\
5 AABOUD & 17AK ATLS & \(p p \rightarrow j j\) \\
6 SIRUNYAN & 17CP CMS & \(p p \rightarrow j j\) \\
7 KHACHATRY．．．16BE CMS & \(p p \rightarrow e \mu\) \\
8 KHACHATRY．．．15V CMS & \(p p \rightarrow j j\) \\
9 AAD & 14AL ATLS & \(p p \rightarrow \ell j\) \\
10 AAD & 14V ATLS & \(p p \rightarrow e e, \mu \mu\) \\
11 CHATRCHYAN 13 A CMS & \(p p \rightarrow j j\)
\end{tabular}
\({ }^{1}\) AABOUD 18BA use \(36.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum black hole decays to final states with a photon and a jet．No excess of events above the expected level of Standard Model background was observed．Exclusion limits at \(95 \%\) C．L．are set on mass thresholds for black hole production in ADD（6 extra dimensions）and RS1 models．Assuming the black hole mass threshold is equal to the Planck scale，mass thresholds below 7．1 TeV and 4．4 TeV are excluded for the ADD and RS1 models，respectively．These limits supersede those in AAD 16Al．
\({ }^{2}\) AABOUD 18 CM use \(36.1 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum black hole decays with different－flavor high－mass dilepton final states．No excess of events above the expected level of Standard Model background was observed． Exclusion limits at 95\％C．L．are set on mass thresholds for black hole production in ADD （ 6 extra dimensions）and RS1 models．Assuming the black hole mass threshold is equal to the higher－dimensional Planck scale，mass thresholds below 5.6 （3．4）， 4.9 （2．9），and 4.5 （2．6） TeV are excluded in the \(e \mu, e \tau\) and \(\mu \tau\) channels for the ADD（RS1）models， respectively．These limits supersede those in AABOUD 16P
\({ }^{3}\) SIRUNYAN 18AT use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum black hole decays to \(e \mu\) final states．In Figure 4，lower mass limits of 5．3， 5.5 and 5.6 TeV are placed in a model with 4,5 and 6 extra dimensions，respectively， and a lower mass limit of 3.6 TeV is found for a single warped dimension．
\({ }^{4}\) SIRUNYAN 18DD use \(35.9 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum back hob dims in 9 （8．2） TeV is placed in the RS（ADD）model with one（six）extra dimension（s）．
\({ }^{5}\) AABOUD 17AK use \(37 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum black hole decays to final states with dijets．No excess of events above the expected level of Standard Model background was observed．Exclusion limits at 95\％C．L． are set on mass thresholds for black hole production in an ADD（6 extra dimensions） model．Assuming the black hole mass threshold is equal to the higher－dimensional Planck scale，mass thresholds below 8．9 TeV are excluded．
\({ }^{6}\) SIRUNYAN 17CP use \(2.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=13 \mathrm{TeV}\) to search for quantum black holes decaying to dijet final states．No excess of events above the expected level of standard model background was observed．Limits on the quantum black hole mass threshold are set as a function of the higher－dimensional Planck scale，under the assumption that the mass threshold must exceed the above Planck scale．Depending on the model，mass thresholds in the range up to \(5.1-9.0 \mathrm{TeV}\) are excluded．
7 KHACHATRYAN 16BE use \(19.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for quantum black holes undergoing lepton flavor violating decay to the \(e \mu\) final state．No excess of events above the expected level of standard model background was observed．Exclusion limits at \(95 \%\) CL are set on mass thresholds for black hole production in the ADD（2－6 flat extra dimensions），RS1（1 warped extra dimension），and a model with a Planck scale at the TeV scale from a renormalization of the gravitational constant no extra dimensions）．Limits on the black hole mass threshold are set assuming that it is equal to the higher－dimensional Planck scale．Mass thresholds for quantum black holes in the range up to \(3.15-3.63 \mathrm{TeV}\) are excluded in the ADD model．In the RS1 model，mass thresholds below 2.81 TeV are excluded in the PDG convention for the Schwarzschild radius．
KHACHATRYAN 15 V use \(19.7 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}-8 \mathrm{TeV}\) to search for quantum black holes decaying to dijet final states．No excess of events above the expected level of standard model background was observed．Exclusion limits at \(95 \% \mathrm{CL}\) are set on mass thresholds for black hole production in the ADD（2－6 flat extra dimensions）and RS1（1 warped extra dimension）model．Limits on the black hole mass threshold are set as a function of the higher－dimensional Planck scale，under the assumption that the mass threshold must exceed the above Planck scale．Depending on the model，mass thresholds in the range up to \(5.0-6.3 \mathrm{TeV}\) are excluded．This paper supersedes CHATRCHYAN 13AD
\({ }^{9}\) AAD 14AL use \(20.3 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for quantum black hole decays to final states with high－invariant－mass lepton + jet．No excess of events above the expected level of Standard Model background was observed． Exclusion limits at 95\％C．L．are set on mass thresholds for black hole production in an ADD（ 6 extra dimensions）model．Assuming the black hole mass threshold is equal to the higher－dimensional Planck scale，mass thresholds below 5.3 TeV are excluded．
\({ }^{10}\) AAD 14 V use 20.3 （20．5） \(\mathrm{fb}^{-1}\) of data in the dielectron（dimuon）channels from \(p p\) collisions at \(\sqrt{s}=8 \mathrm{TeV}\) to search for quantum black hole decays involving high－mass dilepton resonances．No excess of events above the expected level of Standard Model background was observed．Exclusion limits at \(95 \%\) C．L．are set on mass thresholds for black hole production in ADD（6 extra dimensions）and RS1 models．Assuming the black hole mass threshold is equal to the higher－dimensional Planck scale，mass thresholds below 3.65 TeV and 2.24 TeV are excluded for the ADD and RS1 models，respectively．
\({ }^{11}\) CHATRCHYAN 13A use \(5 \mathrm{fb}^{-1}\) of data from \(p p\) collisions at \(\sqrt{s}=7 \mathrm{TeV}\) to search for quantum black holes decaying to dijet final states．No excess of events above the expected level of standard model background was observed．Exclusion limits at 95\％ CL are set on mass thresholds for black hole production in the ADD（2－6 flat extra dimensions）and RS（1 warped extra dimension）model．Limits on the black hole mass threshold are set as a function of the higher－dimensional Planck scale，under assumption that the mass threshold must exceed the above Planck scale．Depending on the model， mass thresholds in the range up to \(4.0-5.3 \mathrm{TeV}\) are excluded．

\section*{REFERENCES FOR Extra Dimensions}

AAD
AABOUD AABOUD AABOU SIRUNYA SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD
AABOUD AABOUD
AABOUD AABOUD AABOUD
AABOUD AABOUD BERGE
FAYET
FAYET
FAYET
HADDOCK HADDOCK
SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN
SIRUNYAN SIRUNYAN SIRUNYAN AABOUD AABOUD KHACHATRY KHACHATRY． KLIMCHIRYK．．
SIRUNYAN SIRUNYAN SIRUNYAN
SIRUNYAN AABOUD
AABOUD AABOUD
AABOUD
AABOUD AABOUD
AABOUD AABOUD
AABOUD
AABOU
AAD
AAD
AAD
AAD
KHACHATRY． KHACHATRY．． KHACHATRY．． AAD
 AAD
ACCOMANDO KHACHATRY．．． KHACHATRY．．． KHACHATRY． KHACHATRY AAD
AAD
 Y．．．
\(\stackrel{N}{\circ}\) \(\begin{array}{lll}\text { OC } & \text { PL B800 } 135103 \\ \text { 9A } & \text { JHEP } 1901030 \\ \text { 9AS } & \text { PR D99 } 092004\end{array}\) PR D99 092004
JHEP 1904092 JHEP 19090
PL B788 JHL B788 7
P
JHEP 1904 19 AC JH
19 AL EP
10 P 9BE PRL 122121803 19CF JHEP 1910125 18AK 18 ALV
18 BA 18BA
18BF
18BI 8BF EPJ C78 1029 8BI EPJ C78 293 8CE JHEP 18120 18CJ PR D98 052008 18CM PR D98 092008 18CW JHEP 1811040 18F PL B777 91 JHEP 1801126
PRL 120141101 PRL 120141101
PR D97 055039 \(\begin{array}{ll}\text { PR D99 } & 055043 \\ \text { PR D97 } 062002\end{array}\) \(\begin{array}{ll}\text { PR } & \text { D97 } \\ \text { PL B781 } \\ 244\end{array}\) 8AS JHEP 1803003 18AT JHEP 1804003 8AX JHEP 1805088 8BB JHEP 1806120 \(\begin{array}{llll}\text { 18BK JHEP } & 1807 & 075 \\ \text { 18BO JHEP } & 1808 & 130\end{array}\) 18BO JHEP 1808130 18CW JHEP 1808152 18CW JHEP 1808152
18DA JHEP 1811042 18DD EPJ C78 789 18DJ JHEP 1809101 8DU PR D98 092001 \(\begin{array}{lll}\text { 18F } & \text { JHEP } 1801054 \\ \text { 181 } & \text { PRL } 120201801 \\ \text { 18P } & \text { PR } & \\ 1897 & & \end{array}\) PR D97 072006
PR D97 092005 17AK PR D96 052004 17AP PL B775 105 PL B768 57 \(\begin{array}{ll}17 A & \text { PL B769 } 520 \\ \text { 17 } & \\ 17 A K & \text { D95 } \\ 123013\end{array}\) \(\begin{array}{llll}\text { PR D95 } & 123013 \\ \text { PL B774 } & 533\end{array}\) 7AK PL B774 533
7AQ JHEP 1710073 17CP PL B774279 17F JHEP 1707013 AE JHEP 1609173 PR D94 032005
JHEP 1606059 JHEP 1609001
PR D94 052002 PR D94 052002
EPJ C76 541 JHEP 1603041 JHEP 1603026
PL B760 520 PL B755 285 EPJ C76 317 PRL 117051802 PL B755 102 AU EPJ C75 209
EPJ C75 370 PR D91 012008 PR D92 059903 （erra 15 C
15気出出访它 14 A 13A JHEP A30 1504025 EPJ C75 235 R PL B749 560 PR D91 092005 PRL 112091804 \(\begin{array}{lll}\text { PRL } 112 & 091804 \\ \text { EPJ C74 } & 3134\end{array}\) \(\begin{array}{llll}4 V & \text { PR D90 } & 052005 \\ \text { JHEP } & 1408 & 174\end{array}\) JHEP 140817 PR D87 112006 3A PR D88 012004
\(\qquad\)
\(\qquad\) CHATRCHYAN CHATRCHYAN
CHATRCHYAN CHATRCH
Also



\begin{tabular}{|c|c|}
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline A．M．Sirunyan et al． & （CMS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline J．Berge et al．（M & （MICROSCOPE Collab．） \\
\hline P．Fayet & （EPOL） \\
\hline P．Fayet & （ENSP，EPOL） \\
\hline C．Haddock et al．（N & （NAGO，KEK，OSAK＋） \\
\hline A．M．Sirunyan et al． & （CMS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline V．Khachatryan et al． & （CMS Collab．） \\
\hline V．Khachatryan et al． & （CMS Collab．） \\
\hline G．L．Klimchitskaya，V．M．Mostepane & anenko \\
\hline A．M．Sirunyan et al． & （CMS Collab．） \\
\hline M．Aaboud et al． & （ATLAS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline V．Khachatryan et al． & （CMS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline E．Accomando & （SHMP） \\
\hline V．Khachatryan et al． & （CMS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline V．Khachatryan et al． & （CMS Collab．） \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline S．Chatrchyan et al． & （CMS Collab．） \\
\hline \(\mathrm{J}-\mathrm{B}\) ．Chen et al． & （DALI） \\
\hline L．Edelhauser，T．Flacke，M．Kramer & mer（AACH，KAIST） \\
\hline J．Xu et al． & \\
\hline G．Aad et al． & （ATLAS Collab．） \\
\hline T．Aaltonen et al． V．M．Abazov et al． & （CDF Collab．）
（D0 Collab．） \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline AJELLO & 12 & JCAP 1202012 & M. Ajello et al. (Ferser & (Fermi-LAT Collab.) \\
\hline BAAK & 12 & EPJ C72 2003 & M. Baak et al. & (Gfitter Group) \\
\hline CHATRCHYAN & 12R & PRL 108111801 & S. Chatrchyan et al. & (CMS Collab.) \\
\hline FLACKE & 12 & PR D85 126007 & T. Flacke, C. Pasold & (WURZ) \\
\hline NISHIWAKI & 12 & PL B707 506 & K. Nishiwaki et al. & (KOBE, OSAK) \\
\hline AAD & 11F & PRL 106121803 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 11 X & EPJ C71 1744 & G. Aad et al. & (ATLAS Collab.) \\
\hline AALTONEN & 11G & PR D83 112008 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 11R & PRL 107051801 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 11 U & PR D83 011102 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AARON & 11 C & PL B705 52 & F. D. Aaron et al. & (H1 Collab.) \\
\hline ABAZOV & 11H & PRL 107011801 & V.M. Abazov et al. & (Do Collab.) \\
\hline BEZERRA & 11 & PR D83 075004 & V.B. Bezerra et al. & \\
\hline SUSHKOV & 11 & PRL 107171101 & A.O. Sushkov et al. & \\
\hline AALTONEN & 10N & PRL 104241801 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 10F & PRL 104241802 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 10P & PRL 105221802 & V.M. Abazov et al. & (Do Collab.) \\
\hline BEZERRA & 10 & PR D81 055003 & V.B. Bezerra et al. & \\
\hline ABAZOV & 09AE & PRL 103191803 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 09D & PRL 102051601 & V.M. Abazov et al. & (D0 Collab.) \\
\hline MASUDA & 09 & PRL 102171101 & M. Masuda, M. Sasaki & (ICRR) \\
\hline AALTONEN & 08AC & PRL 101181602 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 085 & PR D78 012008 & T. Aaltonen et al. & (CDF Collab.) \\
\hline ABAZOV & 08J & PRL 100091802 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 08 S & PRL 101011601 & V.M. Abazov et al. & (D0 Collab.) \\
\hline DAS & 08 & PR D78 063011 & P.K. Das, V.H.S. Kumar, P.K. Suresh & \\
\hline GERACI & 08 & PR D78 022002 & A.A. Geraci et al. & (STAN) \\
\hline TRENKEL & 08 & PR D77 122001 & C. Trenkel & \\
\hline AALTONEN & 07G & PRL 99171801 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AALTONEN & 07H & PRL 99171802 & T. Aaltonen et al. & (CDF Collab.) \\
\hline DECCA & 07A & EPJ C51 963 & R.S. Decca et al. & \\
\hline HAISCH & 07 & PR D76 034014 & U. Haisch, A. Weiler & \\
\hline KAPNER & 07 & PRL 98021101 & D.J. Kapner et al. & \\
\hline SCHAEL & 07A & EPJ C49 411 & S. Schael et al. & (ALEPH Collab.) \\
\hline TU & 07 & PRL 98201101 & L.-C. Tu et al. & \\
\hline ABDALLAH & 06C & EPJ C45 589 & J. Abdallah et al. & (DELPHI Collab.) \\
\hline ABULENCIA,A & 06 & PRL 97171802 & A. Abulencia et al. & (CDF Collab.) \\
\hline GERDES & 06 & PR D73 112008 & D. Gerdes et al. & \\
\hline GOGOLADZE & 06 & PR D74 093012 & I. Gogoladze, C. Macesanu & \\
\hline ABAZOV & 05N & PRL 95091801 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABAZOV & 05V & PRL 95161602 & V.M. Abazov et al. & (Do Collab.) \\
\hline ABDALLAH & 05B & EPJ C38 395 & J. Abdallah et al. & (DELPHI Collab.) \\
\hline ABULENCIA & 05A & PRL 95252001 & A. Abulencia et al. & (CDF Collab.) \\
\hline SMULLIN & 05 & PR D72 122001 & S.J. Smullin et al. & \\
\hline ACHARD & 04E & PL B587 16 & P. Achard et al. & (L3 Collab.) \\
\hline ACOSTA & 04C & PRL 92121802 & D. Acosta et al. & (CDF Collab.) \\
\hline BARBIERI & 04 & NP B703 127 & R. Barbieri et al. & \\
\hline CASSE & 04 & PRL 92111102 & M. Casse et al. & \\
\hline CHEKANOV & 04B & PL B591 23 & S. Chekanov et al. & (ZEUS Collab.) \\
\hline HOYLE & 04 & PR D70 042004 & C.D. Hoyle et al. & (WASH) \\
\hline ABAZOV & 03 & PRL 90251802 & V.M. Abazov et al. & (D0 Collab.) \\
\hline ABBIENDI & 03D & EPJ C26 331 & G. Abbiendi et al. & (OPAL Collab.) \\
\hline ACHARD & 03D & PL B572 133 & P. Achard et al. & (L3 Collab.) \\
\hline ADLOFF & 03 & PL B568 35 & C. Adloff et al. & (H1 Collab.) \\
\hline CHIAVERINI & 03 & PRL 90151101 & J. Chiaverini et al. & \\
\hline GIUDICE & 03 & NP B663 377 & G.F. Giudice, A. Strumia & \\
\hline HANNESTAD & 03 & PR D67 125008 & S. Hannestad, G.G. Raffelt & \\
\hline Also & & PR D69 029901(errat.) & S. Hannestad, G.G. Raffelt & \\
\hline HEISTER & 03 C & EPJ C28 1 & A. Heister et al. & (ALEPH Collab.) \\
\hline LONG & 03 & Nature 421922 & J.C. Long et al. & \\
\hline ACHARD & 02 & PL B524 65 & P. Achard et al. & (L3 Collab.) \\
\hline ACHARD & 02D & PL B531 28 & P. Achard et al. & (L3 Collab.) \\
\hline HANNESTAD & 02 & PRL 88071301 & S. Hannestad, G. Raffelt & \\
\hline ABBOTT & 01 & PRL 861156 & B. Abbott et al. & (Do Collab.) \\
\hline FAIRBAIRN & 01 & PL B508 335 & M. Fairbairn & \\
\hline HANHART & 01 & PL B509 1 & C. Hanhart et al. & \\
\hline HOYLE & 01 & PRL 861418 & C.D. Hoyle et al. & \\
\hline ABBIENDI & 00R & EPJ C13 553 & G. Abbiendi et al. & (OPAL Collab.) \\
\hline ABREU & 00A & PL B491 67 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ABREU & 00S & PL B485 45 & P. Abreu et al. & (DELPHI Collab.) \\
\hline ABREU & 00 Z & EPJ C17 53 & P. Abreu et al. & (DELPHI Collab.) \\
\hline CASSISI & 00 & PL B481 323 & S. Cassisi et al. & \\
\hline CHANG & 00B & PRL 853765 & L.N. Chang et al. & \\
\hline CHEUNG & 00 & PR D61 015005 & K. Cheung & \\
\hline CORNET & 00 & PR D61 037701 & F. Cornet, M. Relano, J. Rico & \\
\hline GRAESSER & 00 & PR D61 074019 & M.L. Graesser & \\
\hline HAN & 00 & PR D62 125018 & T. Han, D. Marfatia, R.-J. Zhang & \\
\hline MATHEWS & 00 & JHEP 0007008 & P. Mathews, S. Raychaudhuri, K. Sridh & \\
\hline MELE & 00 & PR D61 117901 & S. Mele, E. Sanchez & \\
\hline RIZZO & 00 & PR D61 016007 & T.G. Rizzo, J.D. Wells & \\
\hline ABBIENDI & 99P & PL B465 303 & G. Abbiendi et al. & (OPAL Collab.) \\
\hline ACCIARRI & 99M & PL B464 135 & M. Acciarri et al. & (L3 Collab.) \\
\hline ACCIARRI & 99R & PL B470 268 & M. Acciarri et al. & (L3 Collab.) \\
\hline ACCIARRI & 99S & PL B470 281 & M. Acciarri et al. & (L3 Collab.) \\
\hline BOURILKOV & 99 & JHEP 9908006 & D. Bourilkov & \\
\hline HOSKINS & 85 & PR D32 3084 & J.K. Hoskins et al. & \\
\hline
\end{tabular}

\section*{WIMP and Dark Matter Searches}

We omit papers on CHAMP's, millicharged particles, and other exotic particles.

\section*{GALACTIC WIMP SEARCHES}

These limits are for weakly-interacting stable particles that may constitute the invisible mass in the galaxy. Unless otherwise noted, a local mass density of \(0.3 \mathrm{GeV} / \mathrm{cm}^{3}\) is assumed; see each paper for velocity distribution assumptions. In the papers the limit is given as a function of the \(X^{0}\) mass. Here we list limits only for typical mass values of sub- \(\mathrm{GeV}, \mathrm{GeV}, 20\) \(\mathrm{GeV}, 100 \mathrm{GeV}\), and 1 TeV . Specific limits on supersymmetric dark matter particles may be found in the Supersymmetry section.

Searches Particle Listings

\section*{WIMP and Dark Matter Searches}
\({ }^{22}\) ZHAO 16 search for GeV -scale WIMP scatter on Ge; limits placed in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(\mathrm{m}(\chi)\) plane for \(m(\chi) \sim 4-30 \mathrm{GeV}\); quoted limit is for \(m(\chi)=5 \mathrm{GeV}\).
\({ }^{23}\) AMOLE 15 search for WIMP scatter on \(\mathrm{C}_{3} \mathrm{~F}_{8}\) in PICO-2L; limits placed in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-25 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{24}\) XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-100 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{25}\) AGNESE 14 search for GeV scale WIMPs SI scatter at SuperCDMS; no signal, limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 3.5-30 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)\) \(=5 \mathrm{GeV}\).
\({ }^{26}\) AKERIB 14 search for WIMP scatter on Xe; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-5000 \mathrm{GeV}\). Limit given for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{27} \mathrm{LI}\) 13B search for WIMP scatter on Ge; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(m(\chi) \sim 4-100 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{28}\) ARCHAMBAULT 12 search for low mass WIMP scatter on \(\mathrm{C}_{4} \mathrm{~F}_{10}\); limits set in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(m(\chi)\) plane for \(m \sim 4-12 \mathrm{GeV}\); quoted limit is for \(m=5 \mathrm{GeV}\).
\({ }^{29}\) ALSETH 11 search for GeV-scale SI WIMP scatter on Ge; limits placed on \(\sigma^{S I}(\chi N)\) for \(\mathrm{m}(\chi) \sim 3.5-100 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{30}\) AHMED 11b search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 4-12 \mathrm{GeV}\).
\({ }^{31}\) ANGLE 11 search for GeV scale WIMPs in Xenon-10; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-20 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{32}\) AKERIB 10 search for WIMP scatter on \(\mathrm{Ge} / \mathrm{Si}\) in CDMS2; limits place in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} 3-100 \mathrm{GeV}\). Limit given for \(\mathrm{m}(\mathrm{DM})=5 \mathrm{GeV}\)

\section*{For \(\boldsymbol{m}_{\boldsymbol{X}^{0}}=\mathbf{2 0} \mathbf{~ G e V}\)}

For limits from \(X^{0}\) annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
\(\frac{\operatorname{VALUE}(\mathrm{pb})}{} \frac{\text { CL\% }}{\text { DOCUMENTID }} \frac{\text { TECN }}{\text { COMMENT }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 1 ANGLOHER & 19 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline \(<7\) & \(\times 10^{-5}\) & 90 & \({ }^{2} \mathrm{KIM}\) & 19A & KIMS & NaI \\
\hline \multirow[t]{2}{*}{<3} & \multirow[t]{2}{*}{\(\times 10^{-7}\)} & \multirow[t]{2}{*}{90} & \({ }^{3}\) KOBAYASHI & 19 & XMAS & \multirow[t]{2}{*}{SI WIMP on Xe
\[
\gamma \rightarrow \gamma A, A \rightarrow \chi \chi
\]} \\
\hline & & & \({ }^{4}\) SEONG & 19 & BELL & \\
\hline \(<3.5\) & \(\times 10^{-5}\) & 90 & \({ }^{5}\) YANG & 19 & CDEX & annual modulation Ge \\
\hline <2 & \(\times 10^{-7}\) & 90 & \({ }^{6}\) ABE & 18 C & XMAS & \(x^{0}-\mathrm{Xe}\) modulation \\
\hline \(<1.44\) & \(\times 10^{-5}\) & 90 & \({ }^{7}\) ADHIKARI & 18 & C100 & NaI \\
\hline \(<3\) & \(\times 10^{-7}\) & 90 & \({ }^{8}\) AGNES & 18 & DS50 & \(x^{0}-\mathrm{Ar}\) \\
\hline <5 & \(\times 10^{-6}\) & 95 & \({ }^{9}\) AGNESE & 18 & SCDM & Ge \\
\hline <4 & \(\times 10^{-8}\) & 90 & 10 AGNESE & 18A & SCDM & Ge \\
\hline <6 & \(\times 10^{-11}\) & 90 & \({ }_{11}\) APRILE & 18 & XE1T & Xe , sı \\
\hline <4.5 & \(\times 10^{-3}\) & 90 & 12 ARNAUD & 18 & NEWS & GeV WIMPs on Ne \\
\hline <2 & \(\times 10^{-6}\) & 90 & 13 AARTSEN & 17 & ICCB & \(\nu\), earth \\
\hline <2 & \(\times 10^{-10}\) & 90 & 14 AKERIB & 17 & LUX & Xe \\
\hline <1 & \(\times 10^{-3}\) & 90 & \({ }^{15}\) BARBOSA-D... & & ICCB & Nal \\
\hline \(<1.7\) & \(\times 10^{-10}\) & 90 & \({ }^{16} \mathrm{CUI}\) & 17A & PNDX & WIMPs on Xe \\
\hline \(<7.3\) & \(\times 10^{-7}\) & 90 & AGNES & 16 & DS50 & Ar \\
\hline <1 & \(\times 10^{-5}\) & 90 & 17 AGNESE & 16 & CDMS & Ge \\
\hline \(<2\) & \(\times 10^{-4}\) & 90 & 18 AGUILAR-AR... & & DMIC & Si CCDs \\
\hline <4.5 & \(\times 10^{-5}\) & 90 & \({ }^{19}\) ANGLOHER & 16 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline <2 & \(\times 10^{-6}\) & 90 & 20 APRILE & 16 & X100 & Xe \\
\hline <9.4 & \(\times 10^{-8}\) & 90 & \({ }^{21}\) ARMENGAUD & 16 & EDE3 & Ge \\
\hline \(<1.0\) & \(\times 10^{-7}\) & 90 & \({ }^{22}\) HEHN & 16 & EDE3 & Ge \\
\hline <5 & \(\times 10^{-6}\) & 90 & \({ }^{23}\) ZHAO & 16 & CDEX & Ge \\
\hline <1 & \(\times 10^{-5}\) & 90 & AGNES & 15 & DS50 & Ar \\
\hline <1.5 & \(\times 10^{-6}\) & 90 & 24 AGNESE & 15A & CDM2 & Ge \\
\hline <1.5 & \(\times 10^{-7}\) & 90 & \(2^{5}\) AGNESE & 15B & CDM2 & Ge \\
\hline <2 & \(\times 10^{-6}\) & 90 & \({ }^{26}\) AMOLE & 15 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<1.2\) & \(\times 10^{-5}\) & 90 & CHOI & 15 & SKAM & H , solar \(\nu(b \bar{b})\) \\
\hline \(<1.19\) & \(\times 10^{-6}\) & 90 & CHOI & 15 & SKAM & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline <2 & \(\times 10^{-8}\) & 90 & \({ }^{27}\) XIAO & 15 & PNDX & Xe \\
\hline \(<2.0\) & \(\times 10^{-7}\) & 90 & \({ }^{28}\) AGNESE & 14 & SCDM & Ge \\
\hline <3.7 & \(\times 10^{-5}\) & 90 & \({ }^{29}\) AGNESE & 14 A & SCDM & Ge \\
\hline \(<1\) & \(\times 10^{-9}\) & 90 & \({ }^{30}\) AKERIB & 14 & LUX & Xe \\
\hline <2 & \(\times 10^{-6}\) & 90 & 31 ANGLOHER & 14 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline <5 & \(\times 10^{-6}\) & 90 & FELIZARDO & 14 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline <8 & \(\times 10^{-6}\) & 90 & 32 LEE & 14 A & KIMS & CsI \\
\hline <2 & \(\times 10^{-4}\) & 90 & \({ }^{33}\) LIU & 14 A & CDEX & Ge \\
\hline <1 & \(\times 10^{-5}\) & 90 & \({ }^{34}\) YUE & 14 & CDEX & Ge \\
\hline \(<1.08\) & \(\times 10^{-4}\) & 90 & 35 AARTSEN & 13 & ICCB & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline <1.5 & \(\times 10^{-5}\) & 90 & \({ }^{36}\) ABE & 13в & XMAS & Xe \\
\hline <3.1 & \(\times 10^{-6}\) & 90 & 37 AGNESE & 13 & CDM2 & Si \\
\hline \(<3.4\) & \(\times 10^{-6}\) & 90 & \({ }^{38}\) AGNESE & 13 A & CDM2 & Si \\
\hline \multirow[t]{2}{*}{<2.2} & \multirow[t]{2}{*}{\(\times 10^{-6}\)} & \multirow[t]{2}{*}{90} & 39 AGNESE & 13A & CDM2 & Si \\
\hline & & & \({ }^{40}\) BERNABEI & 13A & DAMA & Nal modulation \\
\hline \multirow[t]{2}{*}{<1.2} & \multirow[t]{2}{*}{\(\times 10^{-4}\)} & \multirow[t]{2}{*}{90} & \({ }^{41} \mathrm{LI}\) & 13в & TEXO & Ge \\
\hline & & & 42 zHAO & 13 & CDEX & Ge \\
\hline \multirow[t]{2}{*}{\(<1.2\)} & \multirow[t]{2}{*}{\(\times 10^{-7}\)} & \multirow[t]{2}{*}{90} & AKIMOV & 12 & ZEP3 & Xe \\
\hline & & & 43 ANGLOHER & 12 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline \(<8\) & \(\times 10^{-6}\) & 90 & 44 ANGLOHER & 12 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline <7 & \(\times 10^{-9}\) & 90 & \({ }^{45}\) APRILE & 12 & X100 & Xe \\
\hline \multirow[t]{2}{*}{\(<7\)} & \multirow[t]{2}{*}{\(\times 10^{-7}\)} & \multirow[t]{2}{*}{90} & 46 ARMENGAUD & 12 & EDE2 & Ge \\
\hline & & & \({ }^{47}\) BARRETO & 12 & DMIC & CCD \\
\hline \(<2\) & \(\times 10^{-6}\) & 90 & BEHNKE & 12 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline \(<7\) & \(\times 10^{-6}\) & & \({ }^{48}\) FELIZARDO & 12 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<1.5\) & \(\times 10^{-6}\) & 90 & KIM & 12 & KIMS & CsI \\
\hline <5 & \(\times 10^{-5}\) & 90 & \({ }^{49}\) AALSETH & 11 & CGNT & Ge \\
\hline
\end{tabular}
\({ }^{1}\) ANGLOHER 19 search for low mass WIMP scatter on \(\mathrm{CaWO}_{4}\); no signal; limits placed on Wilson coefficients for \(\mathrm{m}(\chi)=0.6-60 \mathrm{GeV}\).
\({ }^{2}\) KIM 19A search for WIMP scatter in Nal KIMS experiment; no signal: require \(\sigma^{S I}(\chi n)\) \(<7 \times 10^{-5} \mathrm{pb}\) for \(\mathrm{m}(\chi)=20 \mathrm{GeV}\).
3 KOBAYASHI 19 search for WIMP scatter in XMASS single-phase liquid Xe detector; no signal; require \(\sigma^{S I}(\chi N)<3 \times 10^{-7} \mathrm{pb}\) for \(\mathrm{m}(\chi)=20 \mathrm{GeV}\).
\({ }^{4}\) SEONG 19 search for \(\gamma \rightarrow \gamma A, A \rightarrow \chi \chi\) via CP-odd Higgs; no signal; limits on BF set; model dependent conversion to WIMP-nucleon scattering cross section limits \(\sigma^{S I}<10^{-36} \mathrm{~cm}^{2}\) for \(\mathrm{m}(\chi)=0.01-1 \mathrm{GeV}\).
\({ }^{5}\) YANG 19 search for low mass wimps via annual modulation in Ge ; no signal; require \(\sigma^{S I}(\chi N)<3.5 \times 10^{-5} \mathrm{pb}\) for \(\mathrm{m}(\chi)=20 \mathrm{GeV}\).
\({ }^{6}\) ABE 18C search for WIMP annual modulation signal for m (WIMP): 6-20 GeV; limits set on SI WIMP-nucleon cross section: see Fig. 6.
\({ }^{7}\) ADHIKARI 18 search for WIMP scatter on Nal; no signal; require \(\sigma^{S I}<1.44 \times 10^{-5}\) pb for \(\mathrm{m}(\) WIMP \()=20 \mathrm{GeV}\); inconsistent with DAMA/LIBRA result.
8 AGNES 18 search low mass m(WIMP): \(1.8-20 \mathrm{GeV}\) scatter on Ar; limits on SI WIMPnucleon cross section set in Fig. 8.
\({ }^{9}\) AGNESE 18 give limits for \(\sigma^{S} I(\chi N)\) for m (WIMP) between 1.5 and 20 GeV using CDMSlite mode data
10 AGNESE 18A search for WIMP scatter on Ge at SuperCDMS; 1 event, consistent with expected background; set limit in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 10-250 \mathrm{GeV}\).
11 APRILE 18 search for WIMP scatter on 1 t yr Xe ; no signal, limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 6-1000 \mathrm{GeV}\).
12 ARNAUD 18 search for low mass WIMP scatter on Ne via SPC at NEWS-G; limits set in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 0.5-20 \mathrm{GeV}\).
\({ }^{13}\) AARTSEN 17 obtain \(\sigma(\mathrm{SI})<6 \times 10^{-6} \mathrm{pb}\) for \(\mathrm{m}(\) wimp \()=20 \mathrm{GeV}\) from \(\nu\) from earth.
14 AKERIB 17 search for WIMP scatter on Xe; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{15}\) BARBOSA-DE-SOUZA 17 search for annual modulation of WIMP scatter on Nal using an exposure of 61 kg yr of DM-Ice17 for recoil energy in the \(4-20 \mathrm{keV}\) range (DAMA found modulation for recoil energy \(<5 \mathrm{keV}\) ). No modulation seen. Sensitivity insufficient to distinguish DAMA signal from null.
\({ }^{16}\) CUI 17A search for SI WIMP scatter; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for m \(\sim 10-1 \times 10^{4} \mathrm{GeV}\) using 54 ton-day exposure of Xe .
17 AGNESE 16 CDMSlite excludes low mass WIMPs \(1.6-5.5 \mathrm{GeV}\) and SI scattering cross section depending on \(m\) (WIMP); see Fig. 4.
18 AGUILAR-AREVALO 16 search low mass \(1-10 \mathrm{GeV}\) WIMP scatter on Si CCDs; set limits Fig. 11.
19 ANGLOHER 16 search for GeV scale WIMP scatter on \(\mathrm{CaWO}_{4}\); limits placed in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 0.5-30 \mathrm{GeV}\).
\({ }^{20}\) APRILE 16 search for low mass WIMPs via ionization at XENON100; limits placed in \(\sigma^{S I}(\chi N)\) vs \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 3.5-20 \mathrm{GeV}\).
21 ARMENGAUD 16 search for GeV scale WIMP scatter on Ge; limits placed in \(\sigma^{S I}(\chi \mathrm{~N})\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-30 \mathrm{GeV}\).
22 HEHN 16 search for low mass WIMPs via SI scatter on Ge target using profile likelihood analysis; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-30 \mathrm{GeV}\).
\({ }^{23}\) ZHAO 16 search for GeV -scale WIMP scatter on Ge ; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-30 \mathrm{GeV}\).
\({ }^{24}\) AGNESE 15A reanalyse AHMED 11B low threshold data. See their Fig. 12 (left) for improved limits extending down to 5 GeV .
25 AGNESE 15B reanalyse AHMED 10 data.
26 See their Fig. 7 for limits extending down to 4 GeV .
\({ }^{27}\) XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-100 \mathrm{GeV}\).
\({ }^{28}\) This limit value is provided by the authors. See their Fig. 4 for limits extending down to \(m_{X^{0}}=3.5 \mathrm{GeV}\).
\({ }^{29}\) This limit value is provided by the authors. AGNESE 14A result is from CDMSlite mode operation with enhanced sensitivity to low mass \(m_{x^{0}}\). See their Fig. 3 for limits extending down to \(m_{X^{0}}=3.5 \mathrm{GeV}\) (see also Fig. 4 in AGNESE 14).
\({ }^{30}\) See their Fig. 5 for limits extending down to \(m_{X^{0}}=5.5 \mathrm{GeV}\).
\({ }^{31}\) See their Fig. 5 for limits extending down to \(m_{X^{0}}=1 \mathrm{GeV}\).
\({ }^{32}\) See their Fig. 5 for limits extending down to \(m_{X^{0}}=5 \mathrm{GeV}\).
33 LIU 14A result is based on prototype CDEX-0 detector. See their Fig. 13 for limits extending down to \(m_{X^{0}}=2 \mathrm{GeV}\).
\({ }^{34}\) See their Fig. 4 for limits extending down to \(m_{X^{0}}=4.5 \mathrm{GeV}\).
\({ }^{35}\) AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between June 2010 and May 2011.
\({ }^{36}\) See their Fig. 8 for limits extending down to \(m_{X^{0}}=7 \mathrm{GeV}\).
37 This limit value is provided by the authors. AGNESE 13 use data taken between Oct. 2006 and July 2007. See their Fig. 4 for limits extending down to \(m_{X^{0}}=7 \mathrm{GeV}\).
\({ }^{38}\) This limit value is provided by the authors. AGNESE 13A use data taken between July 2007 and Sep. 2008. Three candidate events are seen. Assuming these events are real, the best fit parameters are \(m_{X^{0}}=8.6 \mathrm{GeV}\) and \(\sigma=1.9 \times 10^{-5} \mathrm{pb}\).
\({ }^{39}\) This limit value is provided by the authors. Limit from combined data of AGNESE 13 and AGNESE 13A. See their Fig. 4 for limits extending down to \(m_{X^{0}}=5.5 \mathrm{GeV}\).
\({ }^{40}\) BERNABEI 13A search for annual modulation of counting rate in the \(2-6 \mathrm{keV}\) recoil energy interval, in a 14 yr live time exposure of 1.33 t yr . Find a modulation of \(0.0112 \pm\) 0.0012 counts/(day kg keV) with 9.3 sigma C.L. Find period and phase in agreement with expectations from DM particles.
\({ }^{41} \mathrm{LI}\) 13B search for WIMP scatter on Ge; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-100 \mathrm{GeV}\).
42 See their Fig. 5 for limits for \(m_{X^{0}}=4-12 \mathrm{GeV}\).
\({ }^{43}\) ANGLOHER 12 observe excess events above the expected background which are consistent with \(X^{0}\) with mass \(\sim 25 \mathrm{GeV}\) (or 12 GeV ) and spin-independent \(X^{0}\)-nucleon cross section of \(2 \times 10^{-6} \mathrm{pb}\left(\right.\) or \(\left.4 \times 10^{-5} \mathrm{pb}\right)\).
\({ }^{44}\) Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
45 See also APRILE 14A.
46 See their Fig. 4 for limits extending down to \(m_{X^{0}}=7 \mathrm{GeV}\).
47 See their Fig. 13 for cross section limits for \(m_{X^{0}}\) between 1.2 and 10 GeV .
48 See also DAHL 12 for a criticism.
\({ }^{49}\) See their Fig. 4 for limits extending to \(m_{X^{0}}=3.5 \mathrm{GeV}\).
\({ }^{50}\) AALSETH 11A find indications of annual modulation of the data, the energy spectrum being compatible with \(X^{0}\) mass around 8 GeV . See also AALSETH 13.
\({ }^{51}\) AHMED 11 search for \(X^{0}\) inelastic scattering. See their Fig. \(8-10\) for limits. The inelastic cross section reduces to the elastic cross section at the limit of zero mass splitting (Fig. 8 , left).
52 AHMED 11A combine CDMS II and EDELWEISS data.
\({ }^{53}\) ANGLE 11 show limits down to \(m_{X^{0}}=4 \mathrm{GeV}\) on Fig. 3.
\({ }^{54}\) APRILE 11 reanalyze APRILE 10 data.
\({ }^{55}\) APRILE 11A search for \(X^{0}\) inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
56 HORN 11 perform detector calibration by neutrons. Earlier results are only marginally
57 affected.
58 Superseded by AHMED 10.
\({ }^{59}\) See their Fig. 6(a) for cross section limits for \(m_{X^{0}}\) extending down to 2 GeV .
\({ }^{60}\) See their Fig. 2 for cross section limits for \(m_{X^{0}}\) between 4 and 10 GeV .

\section*{For \(m_{X^{0}}=100 \mathrm{GeV}\)}

For limits from \(X^{0}\) annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE (pb) & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<4 \times 10^{-8}\) & 90 & \({ }^{1} \mathrm{ABE} \quad 19\) & XMAS & Xe \\
\hline \(<3.9 \times 10^{-9}\) & 90 & 2 AJAJ 19 & DEAP & Ar \\
\hline \(<2.3 \times 10^{-6}\) & 90 & 3 ADHIKARI 18 & C100 & Nal \\
\hline \(<1.14 \times 10^{-8}\) & 90 & 4 AGNES 18A & DS50 & Ar \\
\hline \(<2 \times 10^{-8}\) & 90 & \({ }^{5}\) AGNESE 18A & CDMS & Ge \\
\hline \(<1.2 \times 10^{-8}\) & 90 & \({ }^{6}\) AMAUDRUZ 18 & DEAP & Ar \\
\hline \(<9.12 \times 10^{-11}\) & 90 & 7 APRILE 18 & XE1T & Xe \\
\hline & & \({ }^{8}\) REN 18 & PNDX & SIDM at PDX-II \\
\hline \(<1.7 \times 10^{-10}\) & 90 & \({ }^{9}\) AKERIB 17 & LUX & Xe \\
\hline \(<1.2 \times 10^{-10}\) & 90 & 10 APRILE 17 G & XE1T & Xe \\
\hline \(<1.2 \times 10^{-10}\) & 90 & 11 CUI 17A & PNDX & Xe \\
\hline \(<2.0 \times 10^{-8}\) & 90 & AGNES 16 & DS50 & Ar \\
\hline \(<1 \times 10^{-9}\) & 90 & 12 AKERIB 16 & LUX & Xe \\
\hline \(<1 \times 10^{-9}\) & 90 & 13 APRILE 16B & X100 & Xe \\
\hline \(<2 \times 10^{-8}\) & 90 & 14 TAN 16 & PNDX & Xe \\
\hline \(<4 \times 10^{-10}\) & 90 & 15 TAN 16B & PNDX & Xe \\
\hline \(<6 \times 10^{-8}\) & 90 & AGNES 15 & DS50 & Ar \\
\hline \(<4 \times 10^{-8}\) & 90 & 16 AGNESE 15B & CDM2 & Ge \\
\hline \(<7.13 \times 10^{-6}\) & 90 & \(\mathrm{CHOI} \quad 15\) & SKAM & H , solar \(\nu(b \bar{b})\) \\
\hline \(<6.26 \times 10^{-7}\) & 90 & \(\mathrm{CHOI} \quad 15\) & SKAM & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<2.76 \times 10^{-7}\) & 90 & \(\mathrm{CHOI} \quad 15\) & SKAM & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<1.5 \times 10^{-8}\) & 90 & 17 XIAO 15 & PNDX & Xe \\
\hline \(<1 \times 10^{-9}\) & 90 & AKERIB 14 & LUX & Xe \\
\hline \(<4.0 \times 10^{-6}\) & 90 & 18 AVRORIN 14 & BAIK & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<1.0 \times 10^{-4}\) & 90 & 18 AVRORIN 14 & BAIK & H , solar \(\nu(b \bar{b})\) \\
\hline \(<1.6 \times 10^{-6}\) & 90 & 18 AVRORIN 14 & BAIK & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<5 \times 10^{-6}\) & 90 & FELIZARDO 14 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<6.01 \times 10^{-7}\) & 90 & 19 AARTSEN 13 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<3.30 \times 10^{-5}\) & 90 & 19 AARTSEN 13 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline \(<1.9 \times 10^{-6}\) & 90 & 20 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<1.2 \times 10^{-4}\) & 90 & 20 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu(b \bar{b})\) \\
\hline \(<7.6 \times 10^{-7}\) & 90 & 20 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<2 \times 10^{-6}\) & 90 & 21 AGNESE 13 & CDM2 & Si \\
\hline \(<1.6 \times 10^{-6}\) & 90 & \({ }^{22}\) BOLIEV 13 & BAKS & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<1.9 \times 10^{-5}\) & 90 & \({ }^{22}\) BOLIEV 13 & BAKS & H , solar \(\nu(b \bar{b})\) \\
\hline \(<7.1 \times 10^{-7}\) & 90 & 22 BOLIEV 13 & BAKS & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<3.2 \times 10^{-4}\) & 90 & 23 LI 13B & TEXO & WIMPs on Ge \\
\hline \(<1.67 \times 10^{-6}\) & 90 & 24 ABBASI 12 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<1.07 \times 10^{-4}\) & 90 & 24 ABBASI 12 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline \(<4 \times 10^{-8}\) & 90 & AKIMOV 12 & ZEP3 & Xe \\
\hline \(<1.4 \times 10^{-6}\) & 90 & 25 ANGLOHER 12 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline <3 & \(\times 10^{-9}\) & 90 & 26 APRILE & 12 & X100 & Xe \\
\hline <3 & \(\times 10^{-7}\) & 90 & BEHNKE & 12 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline \(<7\) & \(\times 10^{-6}\) & & FELIZARDO & 12 & SMPL & \(\mathrm{C}_{2} \mathrm{CIF}_{5}\) \\
\hline \(<2.5\) & \(\times 10^{-7}\) & 90 & 27 KIM & 12 & KIMS & Csl \\
\hline \multirow[t]{2}{*}{\(<2\)} & \multirow[t]{2}{*}{\(\times 10^{-4}\)} & \multirow[t]{2}{*}{90} & AALSETH & 11 & CGNT & Ge \\
\hline & & & 28 AHMED & 11 & CDM2 & Ge , inelastic \\
\hline \multirow[t]{2}{*}{\(<3.3\)} & \multirow[t]{2}{*}{\(\times 10^{-8}\)} & \multirow[t]{2}{*}{90} & 29 AHMED & 11A & RVUE & Ge \\
\hline & & & 30 AJELLO & 11 & FLAT & \\
\hline \multirow[t]{2}{*}{\(<3\)} & \multirow[t]{2}{*}{\(\times 10^{-8}\)} & \multirow[t]{2}{*}{90} & 31 APRILE & 11 & X100 & Xe \\
\hline & & & 32 APRILE & 11A & X100 & Xe, inelastic \\
\hline <1 & \(\times 10^{-8}\) & 90 & 26 APRILE & 11B & X100 & Xe \\
\hline \multirow[t]{2}{*}{\(<5\)} & \multirow[t]{2}{*}{\(\times 10^{-8}\)} & \multirow[t]{2}{*}{90} & 33 ARMENGAUD & 11 & EDE2 & Ge \\
\hline & & & 34 HORN & 11 & ZEP3 & Xe \\
\hline <4 & \(\times 10^{-8}\) & 90 & AHMED & 10 & CDM2 & Ge \\
\hline \multirow[t]{2}{*}{\(<9\)} & \multirow[t]{2}{*}{\(\times 10^{-6}\)} & \multirow[t]{2}{*}{90} & AKERIB & 10 & CDM 2 & \(\mathrm{Si}, \mathrm{Ge}\), low threshold \\
\hline & & & 35 AKIMOV & 10 & ZEP3 & Xe, inelastic \\
\hline \(<5\) & \(\times 10^{-8}\) & 90 & APRILE & 10 & X100 & Xe \\
\hline \(<1\) & \(\times 10^{-7}\) & 90 & ARMENGAUD & 10 & EDE2 & Ge \\
\hline \(<3\) & \(\times 10^{-5}\) & 90 & FELIZARDO & 10 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{3}\) \\
\hline \multirow[t]{2}{*}{\(<5\)} & \multirow[t]{2}{*}{\(\times 10^{-8}\)} & \multirow[t]{2}{*}{90} & 36 AHMED & 09 & CDM2 & Ge \\
\hline & & & 37 ANGLE & 09 & XE10 & Xe, inelastic \\
\hline \multirow[t]{2}{*}{<3} & \multirow[t]{2}{*}{\(\times 10^{-4}\)} & \multirow[t]{2}{*}{90} & LIN & 09 & TEXO & Ge \\
\hline & & & 38 GIULIANI & 05 & RVUE & \\
\hline
\end{tabular}
\({ }^{1}\) ABE 19 search for SI DD in single phase Xe ; no signal; require \(\sigma^{S I}(\chi p)<4 \times 10^{-8}\) pb for \(\mathrm{m}(\chi) \sim 100 \mathrm{GeV}\).
\({ }^{2}\) AJAJ 19 search for SI WIMP-nucleon scatter with 758 tonne day exposure of single phase liquid Ar; no signal: require \(\sigma^{S I}(\chi N)<3.9 \times 10^{-9} \mathrm{pb}\) for \(\mathrm{m}(\chi)=100 \mathrm{GeV}\).
\({ }^{3}\) ADHIKARI 18 search for WIMP scatter on Nal; limit set \(\sigma^{S I}(\chi p)<2.3 \times 10^{-6} \mathrm{pb}\) for \(\mathrm{m}(\chi)=100 \mathrm{GeV}\).
\({ }^{4}\) AGNES 18A search for WIMP scatter on 46.4 kg Ar ; no signal; require \(\sigma^{S I}(\chi \mathrm{~N})<\) \(1.14 \times 10^{-8} \mathrm{pb}\) for \(\mathrm{m}(\chi)=100 \mathrm{GeV}\).
\({ }^{5}\) AGNESE 18A set limit \(\sigma^{S I}(\chi N)<2 \times 10^{-8} \mathrm{pb}\) for m(WIMP) \(=100 \mathrm{GeV}\).
\({ }^{6}\) AMAUDRUZ 18 search for WIMP scatter on Ar with DEAP-3600; limits set: \(\sigma^{S I}(\chi \mathrm{p})\) \(<1.2 \times 10^{-8} \mathrm{pb}\) for \(\mathrm{m}(\) WIMP \()=100 \mathrm{GeV}\).
\({ }^{7}\) APRILE 18 search for WIMP scatter on 1.3 t liquid Xe; no signal; require \(\sigma^{S I}(\chi p)\) \(<9.12 \times 10^{-11} \mathrm{pb}\) for \(\mathrm{m}(\chi)=100 \mathrm{GeV}\).
\({ }^{8}\) REN 18 search for self-interacting DM at Panda-X-II with a total exposure of 54 ton day; limits set in \(\mathrm{m}(\mathrm{DM})\) vs. m (mediator) plane.
\({ }^{9}\) AKERIB 17 exclude SI cross section \(>1.7 \times 10^{-10} \mathrm{pb}\) for \(\mathrm{m}(\) WIMP \()=100 \mathrm{GeV}\). Uses complete LUX data set.
10 APRILE 17 g set limit \(\sigma^{S I}(\chi p)<1.210^{-10} \mathrm{pb}\) for \(\mathrm{m}(\) WIMP \()=100 \mathrm{GeV}\) using 1 ton fiducial mass Xe TPC. Exposure is 34.2 live days.
\({ }^{11}\) CUI 17A search for SI WIMP scatter; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for m \(\sim 10-1 \times 10^{4} \mathrm{GeV}\) using 54 ton-day exposure of Xe .
12 AKERIB 16 re-analysis of 2013 data exclude SI cross section \(>1 \times 10^{-9} \mathrm{pb}\) for \(m\) (WIMP) \(=100 \mathrm{GeV}\) on Xe target.
13 APRILE 16B combined 447 live days using Xe target exclude \(\sigma(\mathrm{SI})>1.1 \times 10^{-9} \mathrm{pb}\) for \(\mathrm{m}(\) WIMP \()=50 \mathrm{GeV}\).
14 TAN 16 search for WIMP scatter off Xe target; see SI exclusion plot Fig. 6.
15 TAN 16B search for WIMP-p scatter off Xe target; see Fig. 5 for SI exclusion.
16 AGNESE 15B reanalyse AHMED 10 data.
17 XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-100 \mathrm{GeV}\).
18 AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
19 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between June 2010 and May 2011.
20 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
21 AGNESE 13 use data taken between Oct. 2006 and July 2007.
\({ }^{22}\) BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\)
trapped by the sun in data taken from 1978 to 2009 . See also SUVOROVA 13 for an trapped by the sun in data take
older analysis of the same data.
\({ }^{23} \mathrm{LI}\) 13B search for WIMP scatter on Ge; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-100 \mathrm{GeV}\).
\({ }^{24}\) ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun. The amount of \(X^{0}\) depends on the \(X^{0}\)-proton cross section.
\({ }^{25}\) Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
26 See also APRILE 14A.
27 See their Fig. 6 for a limit on inelastically scattering \(X^{0}\) for \(m_{X^{0}}=70 \mathrm{GeV}\).
\({ }^{28}\) AHMED 11 search for \(X^{0}\) inelastic scattering. See their Fig. \(8-10\) for limits.
29 AHMED 11A combine CDMS and EDELWEISS data.
\({ }^{2} 0\)
AJELLO 11 search for \(e^{ \pm}\)flux from \(X^{0}\) annihilations in the Sun. Models in which \(X^{0}\) annihilates into an intermediate long-lived weakly interacting particles or \(X^{0}\) scatters inelastically are constrained. See their Fig. 6-8 for limits.
31 APRILE 11 reanalyze APRILE 10 data.
\({ }^{32}\) APRILE 11A search for \(X^{0}\) inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
33 Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
\({ }^{34}\) HORN 11 perform detector calibration by neutrons. Earlier results are only marginally 35 affected.
35 AKIMOV 10 give cross section limits for inelastically scattering dark matter. See their Fig. 4.
36 Superseded by AHMED 10.
\({ }^{37}\) ANGLE 09 search for \(X^{0}\) inelastic scattering. See their Fig. 4 for limits.
38 GIULIANI 05 analyzes the spin-independent \(X^{0}\)-nucleon cross section limits with both isoscalar and isovector couplings. See their Fig. 3 and 4 for limits on the couplings.

\section*{WIMP and Dark Matter Searches}

\section*{For \(m_{\boldsymbol{X}^{0}}=1 \mathrm{TeV}\)}

For limits from \(X^{0}\) annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline <3 & \(\times 10^{-6}\) & 90 & \({ }^{1}\) YAGUNA & 19 & & Ar; l-spin viol DM \\
\hline <3.8 & \(\times 10^{-8}\) & 90 & \({ }^{2}\) AGNES & 18A & DS50 & Ar \\
\hline <8.24 & \(\times 10^{-10}\) & 90 & \({ }^{3}\) APRILE & 18 & XE1T & Xe \\
\hline <2 & \(\times 10^{-9}\) & 90 & \({ }^{4}\) AKERIB & 17 & LUX & Xe \\
\hline \(<0.3\) & & 90 & \({ }^{5}\) CHEN & 17E & PNDX & \(\chi N \rightarrow \chi^{*} \rightarrow \chi \gamma\) \\
\hline <1.2 & \(\times 10^{-9}\) & 90 & \({ }^{6} \mathrm{CuI}\) & 17A & PNDX & SI WIMPs on Xe \\
\hline <8.6 & \(\times 10^{-8}\) & 90 & AGNES & 16 & DS50 & Ar \\
\hline <2 & \(\times 10^{-7}\) & 90 & AGNES & 15 & DS50 & Ar \\
\hline <2 & \(\times 10^{-7}\) & 90 & 7 AGNESE & 15B & CDM2 & Ge \\
\hline \(<1\) & \(\times 10^{-8}\) & 90 & AKERIB & 14 & LUX & Xe \\
\hline \(<2.2\) & \(\times 10^{-6}\) & 90 & \({ }^{8}\) AVRORIN & 14 & BAIK & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline <5.5 & \(\times 10^{-5}\) & 90 & \({ }^{8}\) AVRORIN & 14 & BAIK & H, solar \(\nu(b \bar{b})\) \\
\hline \(<6.8\) & \(\times 10^{-7}\) & 90 & \({ }^{8}\) AVRORIN & 14 & BAIK & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline <3.46 & \(\times 10^{-7}\) & 90 & \({ }^{9}\) AARTSEN & 13 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<7.75\) & \(\times 10^{-6}\) & 90 & \({ }^{9}\) AARTSEN & 13 & ICCB & H, solar \(\nu(b \bar{b})\) \\
\hline \(<6.9\) & \(\times 10^{-7}\) & 90 & 10 ADRIAN-MAR. & 13 & ANTR & H, solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline <1.5 & \(\times 10^{-5}\) & 90 & 10 ADRIAN-MAR. & & ANTR & H, solar \(\nu(b \bar{b})\) \\
\hline <1.8 & \(\times 10^{-7}\) & 90 & 10 ADRIAN-MAR. & & ANTR & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<4.3\) & \(\times 10^{-6}\) & 90 & \({ }^{11}\) BOLIEV & 13 & BAKS & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline <3.4 & \(\times 10^{-5}\) & 90 & \({ }^{11}\) boliev & 13 & BAKS & H , solar \(\nu(b \bar{b})\) \\
\hline <1.2 & \(\times 10^{-6}\) & 90 & \({ }^{11}\) boliev & 13 & BAKS & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline <2.12 & \(\times 10^{-7}\) & 90 & \({ }^{12}\) ABBASI & 12 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline <6.56 & \(\times 10^{-6}\) & 90 & 12 AbBASI & 12 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline <4 & \(\times 10^{-7}\) & 90 & AKIMOV & 12 & ZEP3 & Xe \\
\hline \(<1.1\) & \(\times 10^{-5}\) & 90 & 13 ANGLOHER & 12 & CRES & \(\mathrm{CaWO}_{4}\) \\
\hline <2 & \(\times 10^{-8}\) & 90 & 14 APRILE & 12 & X100 & Xe \\
\hline <2 & \(\times 10^{-6}\) & 90 & BEHNKE & 12 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline <4 & \(\times 10^{-6}\) & & FELIZARDO & 12 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<1.5\) & \(\times 10^{-6}\) & 90 & KIM & 12 & KIMS & CsI \\
\hline & & & 15 AHMED & 11 & CDM2 & Ge , inelastic \\
\hline \(<1.5\) & \(\times 10^{-7}\) & 90 & 16 AHMED & 11A & RVUE & Ge \\
\hline <2 & \(\times 10^{-7}\) & 90 & \({ }^{17}\) APRILE & 11 & X100 & Xe \\
\hline <8 & \(\times 10^{-8}\) & 90 & 14 APRILE & 11B & X100 & Xe \\
\hline <2 & \(\times 10^{-7}\) & 90 & 18 ARMENGAUD & 11 & EDE2 & Ge \\
\hline & & & 19 HORN & 11 & ZEP3 & Xe \\
\hline <2 & \(\times 10^{-7}\) & 90 & AHMED & 10 & CDM2 & Ge \\
\hline <4 & \(\times 10^{-7}\) & 90 & APRILE & 10 & X100 & Xe \\
\hline <6 & \(\times 10^{-7}\) & 90 & ARMENGAUD & 10 & EDE2 & Ge \\
\hline <3.5 & \(\times 10^{-7}\) & 90 & \({ }^{20}\) AHMED & 09 & CDM2 & \\
\hline
\end{tabular}
\({ }^{1}\) YAGUNA 19 recasts DEAP-3600 single-phase liquid argon results in limit for isospin violating DM; for \(f_{n} / f_{p}=-0.69\), requires \(\sigma^{S I}(\chi p)<3 \times 10^{-6} \mathrm{pb}\) for \(\mathrm{m}(\chi)=1 \mathrm{TeV}\). \({ }^{2}\) AGNES 18A search for WIMP scatter on 46.4 kg Ar; no signal; require \(\sigma^{S I}(\chi N)<\) \(3.8 \times 10^{-8} \mathrm{pb}\) for \(\mathrm{m}(\chi)=1 \mathrm{TeV}\).
\({ }^{3}\) APRILE 18 search for WIMP scatter on 1.3 t Xe ; no signal seen; require \(\sigma^{S I}(\chi p)\) \(<8.24 \times 10^{-10} \mathrm{pb}\) for \(\mathrm{m}(\chi)=1 \mathrm{TeV}\).
\({ }^{4}\) AKERIB 17 search for WIMP scatter on Xe using complete LUX data set; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{5}\) CHEN 17E search for inelastic WIMP scatter on Xe; require \(\sigma^{S I}(\chi N)<0.3 \mathrm{pb}\) for \(\mathrm{m}(\chi)\) \(=1 \mathrm{TeV}\) and (mass difference) \(=300 \mathrm{keV}\).
\({ }^{6}\) CUI 17A search for WIMP scatter using 54 ton-day exposure of Xe ; limits placed in \(\sigma^{S I}(\chi N)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 10-1 \times 10^{4} \mathrm{GeV}\).
\({ }^{7}\) AGNESE 15B reanalyse AHMED 10 data
\({ }^{8}\) AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
\({ }^{9}\) AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between June 2010 and May 2011.
10 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
11 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
12 ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun. The amount of \(X^{0}\) depends on the \(X^{0}\)-proton cross section.
13 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
14 See also APRILE 14A.
15 AHMED 11 search for \(X^{0}\) inelastic scattering. See their Fig. 8-10 for limits.
\({ }^{16}\) AHMED 11A combine CDMS and EDELWEISS data
17 APRILE 11 reanalyze APRILE 10 data.
\({ }^{18}\) Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
\({ }^{19}\) HORN 11 perform detector calibration by neutrons. Earlier results are only marginally
\(20 \begin{aligned} & \text { affected. } \\ & \text { Superseded by AHMED } 10 .\end{aligned}\)

\section*{—— Spin-Dependent Cross Section Limits for Dark Matter Particle ( \(\boldsymbol{X}^{0}\) ) on Proton}

\section*{For \(m_{x_{0}}\) in GeV range}

We provide here limits fo \(m_{X^{0}}<5 \mathrm{GeV}\)
VALUE (pb) CL\% DOCUMENTID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|}
\hline \(<1 \times 10^{6}\) & 95 & \({ }^{1}\) ABDELHAME.. 19 & CRES & GeV -scale WIMPs on Li \\
\hline \(<3 \times 10^{-4}\) & 90 & 2 AMOLE 19 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<1.7 \times 10^{4}\) & 90 & \({ }^{3}\) APRILE 19C & XE1T & light DM on Xe via Migdal/brem effect \\
\hline \(<8 \times 10^{6}\) & 90 & \({ }^{4}\) ARMENGAUD 19 & EDEL & GeV -scale WIMPs on Ge \\
\hline \(<70\) & 90 & \({ }^{5}\) XIA 19A & PNDX & SD WIMP on Xe \\
\hline \(<100\) & 90 & \({ }^{6}\) AGNESE 18 & SCDM & GeV -scale WIMPs on Ge \\
\hline \(<1\) & 90 & 7 AKERIB 17A & LUX & Xe \\
\hline \(<0.6\) & 90 & \({ }^{8} \mathrm{FU}\) & PNDX & SD WIMP on Xe \\
\hline \(<0.2\) & 90 & \({ }^{9}\) AMOLE 15 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<1.6 \times 10^{-1}\) & 90 & 10 ARCHAMBAU.. 12 & PICA & \({ }^{19} \mathrm{~F}\) \\
\hline
\end{tabular}
\({ }^{1}\) ABDELHAMEED 19 search for SD WIMP scatter on \({ }^{7} \mathrm{Li}\); limits placed on \(\sigma^{S D}(\chi p)\) for \(\mathrm{m}(\chi) \sim 0.8-20 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=1 \mathrm{GeV}\).
\({ }^{2}\) AMOLE 19 search for SD WIMP scatter on \(\mathrm{C}_{3} \mathrm{~F}_{8}\) in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling \(\sigma^{S D}(\chi p)<2 \times 10^{-4} \mathrm{pb}\) for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{3}\) APRILE 19C search for light DM on Xe via Migdal/brem effect; no signal, require \(\sigma^{S D}(\chi p)<1.7 \times 10^{4} \mathrm{pb}\) for \(\mathrm{m}(\chi)=1 \mathrm{GeV}\).
\({ }^{4}\) ARMENGAUD 19 search for GeV scale WIMP scatter on Ge ; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(m(\chi)\) plane for \(m(\chi) \sim 0.5-10 \mathrm{GeV}\); quoted limit is for \(m(\chi)=5 \mathrm{GeV}\).
\({ }^{5}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{6}\) AGNESE 18 search for GeV scale WIMPs with CDMSlite; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 1.5-20 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
7 AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 6-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{8} \mathrm{FU} 17\) search for SD WIMP scatter on Xe ; limits set in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).; quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{9}\) AMOLE 15 search for WIMP scatter on \(\mathrm{C}_{3} \mathrm{~F}_{8}\) in PICO-2L; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(m(\chi)\) plane for \(m(\chi) \sim 4-1 \times 10^{4} \mathrm{GeV}\); quoted limit is for \(m(\chi)=5 \mathrm{GeV}\).
10 ARCHAMBAULT 12 search for SD WIMP scatter in \({ }^{19} \mathrm{~F}\) with PICASSO; limits set in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 4-500 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).

\section*{For \(\boldsymbol{m}_{X^{0}}=20 \mathrm{GeV}\)}

For limits from \(X^{0}\) annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
\(\operatorname{VALUE}(\mathrm{pb}) \quad\) CL\% DOCUMENTID _TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

\({ }^{1}\) ABDELHAMEED 19 uses \(\mathrm{Li}_{2} \mathrm{MoO}_{4}\) target to set limit for spin dependent coupling \(\sigma^{S D}(\chi p)<3 . \times 10^{5} \mathrm{pb}\) for \(\mathrm{m}(\chi)=20 \mathrm{GeV}\).
\({ }^{2}\) AMOLE 19 search for SD WIMP scatter on \(\mathrm{C}_{3} \mathrm{~F}_{8}\) in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling \(\sigma^{S D}(\chi p)<2.5 \times 10^{-5} \mathrm{pb}\) for \(\mathrm{m}(\chi)=20 \mathrm{GeV}\). \({ }^{3}\) APRILE 19A search for SD WIMP scatter on 1 t yr Xe ; no signal, limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 6-1000 \mathrm{GeV}\).
\({ }^{4}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{5}\) AGNESE 18 give limits for \(\sigma^{S D}(p \chi)\) for m (WIMP) between 1.5 and 20 GeV using CDMSlite mode data.
\({ }^{6}\) AKERIB 17a search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 6-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{7}\) BEHNKE 17 show final Picasso results based on 231.4 kg d exposure at SNOLab for WIMP scatter on \(\mathrm{C}_{4} \mathrm{~F}_{10}\) search via superheated droplet; require \(\sigma(\mathrm{SD})<1.32 \times 10^{-2}\) pb for m (WIMP) \(=20 \mathrm{GeV}\)
\({ }^{8}\) FU 17 search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).
\({ }^{9}\) AMOLE 16A require SD WIMP-p scattering \(<5 \times 10^{-4} \mathrm{pb}\) for \(m\) (WIMP) \(=20 \mathrm{GeV}\); bubbles from \(\mathrm{C}_{3} \mathrm{~F}_{8}\) target.
10 KHACHATRYAN 16AJ require SD WIMP- \(p<2 \times 10^{-6} \mathrm{pb}\) for \(m(\) WIMP \()=20 \mathrm{GeV}\) from \(p p \rightarrow Z+E_{T} ; Z \rightarrow \ell \bar{\ell}\) signal.
\({ }^{11}\) AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between June 2010 and May 2011.
12 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.
13 ARCHAMBAULT 12 search for WIMP scatter on \(\mathrm{C}_{4} \mathrm{~F}_{10}\); limits set in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 4-500 \mathrm{GeV}\).
14 Use a direction-sensitive detector.
5 TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun. The amount of \(X^{0}\) depends on the \(X^{0}\)-proton cross section.
16 See also AKERIB 05.

\section*{For \(m_{X^{0}}=100 \mathrm{GeV}\)}

For limits from \(X^{0}\) annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(V A L U E(\mathrm{pb})\)} & CL\% & DOCUMENT ID & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - - -} \\
\hline < & \(4 \times 10^{-5}\) & 90 & \({ }^{1}\) AMOLE 19 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline & \(4 \times 10^{-4}\) & 90 & \({ }^{2}\) APRILE 19A & XE1T & Xe, SD \\
\hline \(<\) & \(8 \times 10^{-4}\) & 90 & 3 XIA 19A & PNDX & SD WIMP on Xe \\
\hline \(<\) & \(8 \times 10^{-4}\) & 90 & \({ }^{4}\) AKERIB 17A & LUX & Xe \\
\hline \(<\) & \(5 \times 10^{-5}\) & 90 & \({ }^{5}\) AMOLE 17 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<\) & \(3.3 \times 10^{-2}\) & 90 & \({ }^{6}\) APRILE 17A & X100 & Xe inelastic \\
\hline \(<\) & \(2.8 \times 10^{-1}\) & 90 & \({ }^{7}\) BATTAT 17 & DRFT & \(\mathrm{CS}_{2}\) \\
\hline & \(1.5 \times 10^{-3}\) & 90 & \({ }^{8} \mathrm{FU}\) & PNDX & Xe \\
\hline \(<\) & 0.553-0.019 & 95 & \({ }^{9}\) AABOUD 16D & ATLS & \(p p \rightarrow j+E_{T}\) \\
\hline \(<\) & \(1 \times 10^{-5}\) & 90 & 10 AABOUD 16F & ATLS & \(p p \rightarrow \gamma+E_{T}\) \\
\hline & \(1 \times 10^{-4}\) & 90 & 11 AARTSEN 16C & ICCB & solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & \(2 \times 10^{-4}\) & 90 & 12 ADRIAN-MAR. 16 & ANTR & solar \(\nu(W W, b \bar{b}, \tau \bar{\tau})\) \\
\hline & \(3 \times 10^{-3}\) & 90 & 13 AKERIB 16A & LUX & Xe \\
\hline & \(5 \times 10^{-4}\) & 90 & 14 AMOLE 16 & PICO & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline \(<\) & \(1.5 \times 10^{-3}\) & 90 & AMOLE 15 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<\) & \(3.19 \times 10^{-3}\) & 90 & \(\mathrm{CHOI} \quad 15\) & SKAM & H , solar \(\nu(b \bar{b})\) \\
\hline \(<\) & \(2.80 \times 10^{-4}\) & 90 & CHOI 15 & SKAM & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & \(1.24 \times 10^{-4}\) & 90 & CHOI 15 & SKAM & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline & \(8 \times 10^{2}\) & 90 & 15 NAKAMURA 15 & NAGE & \(\mathrm{CF}_{4}\) \\
\hline \(<\) & \(1.7 \times 10^{-3}\) & 90 & 16 AVRORIN 14 & BAIK & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & \(4.5 \times 10^{-2}\) & 90 & 16 AVRORIN 14 & BAIK & H , solar \(\nu(b \bar{b})\) \\
\hline & \(7.1 \times 10^{-4}\) & 90 & 16 AVRORIN 14 & BAIK & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & \(6 \times 10^{-3}\) & 90 & FELIZARDO 14 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<\) & \(2.68 \times 10^{-4}\) & 90 & 17 AARTSEN 13 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & \(1.47 \times 10^{-2}\) & 90 & 17 AARTSEN 13 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline & \(8.5 \times 10^{-4}\) & 90 & 18 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & \(5.5 \times 10^{-2}\) & 90 & 18 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu(b \bar{b})\) \\
\hline \(<\) & \(3.4 \times 10^{-4}\) & 90 & 18 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & \(1.00 \times 10^{-2}\) & 90 & 19 APRILE 13 & X100 & Xe \\
\hline & \(7.1 \times 10^{-4}\) & 90 & \({ }^{20}\) BOLIEV 13 & BAKS & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & \(8.4 \times 10^{-3}\) & 90 & \({ }^{20}\) BOLIEV 13 & BAKS & H , solar \(\nu(b \bar{b})\) \\
\hline & \(3.1 \times 10^{-4}\) & 90 & \({ }^{20}\) BOLIEV 13 & BAKS & H, solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & \(7.07 \times 10^{-4}\) & 90 & \({ }^{21}\) ABBASI 12 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & \(4.53 \times 10^{-2}\) & 90 & \({ }^{21}\) ABBASI 12 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline & \(7 \times 10^{-2}\) & 90 & 22 ARCHAMBAU.. 12 & PICA & \(\mathrm{F}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)\) \\
\hline \(<\) & \(1 \times 10^{-2}\) & 90 & BEHNKE 12 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline \(<\) & 1.8 & 90 & DAW 12 & DRFT & \(\mathrm{F}\left(\mathrm{CF}_{4}\right)\) \\
\hline \(<\) & \(9 \times 10^{-3}\) & & FELIZARDO 12 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<\) & \(2 \times 10^{-2}\) & 90 & KIM 12 & KIMS & Csl \\
\hline & \(2 \times 10^{3}\) & 90 & 15 AHLEN 11 & DMTP & \(\mathrm{F}\left(\mathrm{CF}_{4}\right)\) \\
\hline \(<\) & \(7 \times 10^{-2}\) & 90 & BEHNKE 11 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline \(<\) & \(2.7 \times 10^{-4}\) & 90 & 23 TANAKA 11 & SKAM & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & \(4.5 \times 10^{-3}\) & 90 & 23 TANAKA 11 & SKAM & H , solar \(\nu(b \bar{b})\) \\
\hline & & & 24 FELIZARDO 10 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{3}\) \\
\hline \(<\) & \(6 \times 10^{3}\) & 90 & 15 MIUCHI 10 & NAGE & \(\mathrm{CF}_{4}\) \\
\hline \(<\) & 0.4 & 90 & ARCHAMBAU. 09 & PICA & F \\
\hline \(<\) & 0.8 & 90 & LEBEDENKO 09A & ZEP3 & Xe \\
\hline \(<\) & 1.0 & 90 & ANGLE 08A & XE10 & Xe \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 2 & \(\times 10^{-2}\) & 90 & 7 FU \(\quad 17\)
8 ADRIAN-MAR. 16 B & PNDX ANTR & SD WIMP on Xe solar \(\mu\) from WIMP annih. \\
\hline < & 1 & \(\times 10^{-2}\) & 90 & AMOLE 15 & PICO & \(\mathrm{C}_{3} \mathrm{~F}_{8}\) \\
\hline \(<\) & 1.5 & \(\times 10^{3}\) & 90 & NAKAMURA 15 & NAGE & \(\mathrm{CF}_{4}\) \\
\hline & 2.7 & \(\times 10^{-3}\) & 90 & \({ }^{9}\) AVRORIN 14 & BAIK & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & 6.9 & \(\times 10^{-2}\) & 90 & \({ }^{9}\) AVRORIN 14 & BAIK & H , solar \(\nu(b \bar{b})\) \\
\hline \(<\) & 8.4 & \(\times 10^{-4}\) & 90 & \({ }^{9}\) AVRORIN 14 & BAIK & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & 4.48 & \(\times 10^{-4}\) & 90 & 10 AARTSEN 13 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline < & 1.00 & \(\times 10^{-2}\) & 90 & 10 AARTSEN 13 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline < & 8.9 & \(\times 10^{-4}\) & 90 & 11 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & 2.0 & \(\times 10^{-2}\) & 90 & 11 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu(b \bar{b})\) \\
\hline & 2.3 & \(\times 10^{-4}\) & 90 & 11 ADRIAN-MAR. 13 & ANTR & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & 7.57 & \(\times 10^{-2}\) & 90 & 12 APRILE 13 & X100 & Xe \\
\hline & 5.4 & \(\times 10^{-3}\) & 90 & 13 BOLIEV 13 & BAKS & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & 4.2 & \(\times 10^{-2}\) & 90 & 13 BOLIEV 13 & BAKS & H , solar \(\nu(b \bar{b})\) \\
\hline & 1.5 & \(\times 10^{-3}\) & 90 & 13 BOLIEV 13 & BAKS & H , solar \(\nu\left(\tau^{+} \tau^{-}\right)\) \\
\hline \(<\) & 2.50 & \(\times 10^{-4}\) & 90 & 14 ABBASI 12 & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline \(<\) & 7.86 & \(\times 10^{-3}\) & 90 & 14 ABBASI 12 & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline & 8 & \(\times 10^{-2}\) & 90 & BEHNKE 12 & COUP & \(\mathrm{CF}_{3} \mathrm{I}\) \\
\hline & 8 & & 90 & DAW 12 & DRFT & \(\mathrm{F}\left(\mathrm{CF}_{4}\right)\) \\
\hline & 6 & \(\times 10^{-2}\) & & FELIZARDO 12 & SMPL & \(\mathrm{C}_{2} \mathrm{CIF}_{5}\) \\
\hline & 8 & \(\times 10^{-2}\) & 90 & KIM 12 & KIMS & CsI \\
\hline & 8 & \(\times 10^{3}\) & 90 & 15 AHLEN 11 & DMTP & \(\mathrm{F}\left(\mathrm{CF}_{4}\right)\) \\
\hline & 0.4 & & 90 & BEHNKE 11 & COUP & \(\mathrm{CF}_{3} \mathrm{l}\) \\
\hline & 2 & \(\times 10^{-3}\) & 90 & 16 TANAKA 11 & SKAM & H , solar \(\nu(b \bar{b})\) \\
\hline & 2 & \(\times 10^{-2}\) & 90 & 16 TANAKA 11 & SKAM & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & 1 & \(\times 10^{-3}\) & 90 & 17 ABBASI 10 & ICCB & KK dark matter \\
\hline & 2 & \(\times 10^{4}\) & 90 & \(15 \mathrm{MIUCHI} \quad 10\) & NAGE & \(\mathrm{CF}_{4}\) \\
\hline & 8.7 & \(\times 10^{-4}\) & 90 & ABBASI 09B & ICCB & H , solar \(\nu\left(W^{+} W^{-}\right)\) \\
\hline & 2.2 & \(\times 10^{-2}\) & 90 & ABBASI 09B & ICCB & H , solar \(\nu(b \bar{b})\) \\
\hline & 3 & & 90 & ARCHAMBAU. 09 & PICA & F \\
\hline & 6 & & 90 & LEBEDENKO 09A & ZEP3 & Xe \\
\hline & 9 & & 90 & ANGLE 08A & XE10 & Xe \\
\hline & 100 & & 90 & ALNER 07 & ZEP2 & Xe \\
\hline & 0.8 & & 90 & LEE 07A & KIMS & CsI \\
\hline & 4 & \(\times 10^{4}\) & 90 & 15 MIUCHI 07 & NAGE & \(\mathrm{F}\left(\mathrm{CF}_{4}\right)\) \\
\hline & 30 & & 90 & 18 AKERIB 06 & CDMS & \({ }^{73} \mathrm{Ge},{ }^{29} \mathrm{Si}\) \\
\hline & 1.5 & & 90 & ALNER 05 & NAIA & Na \\
\hline & 15 & & 90 & BARNABE-HE. 05 & PICA & \(\mathrm{F}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)\) \\
\hline & 600 & & 90 & BENOIT 05 & EDEL & \({ }^{73} \mathrm{Ge}\) \\
\hline & 10 & & 90 & GIRARD 05 & SMPL & \(\mathrm{F}\left(\mathrm{C}_{2} \mathrm{ClF}_{5}\right)\) \\
\hline & 260 & & 90 & MIUCHI 03 & BOLO & LiF \\
\hline & 150 & & 90 & TAKEDA 03 & BOLO & NaF \\
\hline
\end{tabular}
\({ }^{1}\) AMOLE 19 search for SD WIMP scatter on \(\mathrm{C}_{3} \mathrm{~F}_{8}\) in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling \(\sigma^{S D}(\chi p)<3 \times 10^{-4} \mathrm{pb}\) for \(\mathrm{m}(\chi)=1000 \mathrm{GeV}\). \({ }^{2}\) APRILE 19A search for SD WIMP scatter on 1 t yr Xe ; no signal, limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 6-1000 \mathrm{GeV}\).
\({ }^{3}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{4}\) ALBERT 18C search for DM annihilation in Sun to long-lived mediator (LLM) which decays outside Sun, for DM masses above 1 TeV ; assuming LLM, limits set on \(\sigma^{S D}(\chi p)\).
\({ }^{5}\) AARTSEN 17A search for neutrinos from solar WIMP annihilation into \(\tau^{+} \tau^{-}\)in 532 days of live time.
\({ }^{6}\) AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 6-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{7}\) FU 17 search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi p)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).
\({ }^{8}\) ADRIAN-MARTINEZ 16B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to \(\mu\) or \(\nu\) s; limits presented in Figures 3 and 4.
\({ }^{9}\) AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
\({ }^{10}\) AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between June 2010 and May 2011.
\({ }^{11}\) ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
12 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.
\({ }^{13}\) BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
14 ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun. The amount of \(X^{0}\) depends on the \(X^{0}\)-proton cross section.
15 Use a direction-sensitive detector
16 TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of \(X^{0}\) trapped by the Sun. The amount of \(X^{0}\) depends on the \(X^{0}\)-proton cross section.
17 ABBASI 10 search for \(\nu_{\mu}\) from annihilations of Kaluza-Klein photon dark matter in the
18 Sun.

\({ }^{1}\) ABDELHAMEED 19 search for GeV-scale WIMP SD scatter on \({ }^{7}\) Li crystal; set limit
\(\sigma^{S D}(\chi n)\) for \(\mathrm{m}(\chi) \sim 0.8-20 \mathrm{GeV}\); quoted limit for \(\mathrm{m}(\chi)=1 \mathrm{GeV}\)
\({ }^{2}\) APRILE 19C search for light DM on Xe via Migdal/bremsstrahlung effect; no signal, require \(\sigma^{S D}(\chi n)<230 \mathrm{pb}\) for \(\mathrm{m}(\chi)=1 \mathrm{GeV}\).
\({ }^{3}\) APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in \(\sigma\) vs. \(\mathrm{m}(\mathrm{DM}) \sim 3-6 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\mathrm{DM})=5 \mathrm{GeV}\).
\({ }^{4}\) ARMENGAUD 19 search for GeV scale WIMP scatter on Ge; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 0.5-10 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{5}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{6}\) AGNESE 18 search for GeV scale WIMPs scatter at CDMSlite; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 1.5-20 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
7 JIANG 18 search for GeV scale WIMP scatter on Ge ; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\)
plane for \(\mathrm{m}(\chi) \sim 3-10 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{8}\) YANG 18 search for WIMP scatter on Ge ; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 2-10 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{9}\) AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5\) GeV .
\({ }^{10} \mathrm{FU} 17\) search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).; quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
\({ }^{11}\) ZHAO 16 search for GeV -scale WIMP scatter on Ge ; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-30 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).
12 AHMED 11B search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 4-12 \mathrm{GeV}\). Limit given for \(\mathrm{m}(\chi)=5 \mathrm{GeV}\).

\section*{For \(\boldsymbol{m}_{X^{0}}=20 \mathrm{GeV}\)}
\begin{tabular}{|c|c|c|c|}
\hline \(V A L U E(p b)\) & CL\% & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{4}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<8 \times 10^{-6}\) & 90 & \({ }^{1}\) APRILE 19A & XE1T Xe, SD \\
\hline \(<3 \times 10^{-5}\) & 90 & 2 XIA 19A & PNDX SD WIMP on Xe \\
\hline \(<1.5\) & 95 & 3 AGNESE 18 & SCDM Ge \\
\hline \(<2.5 \times 10^{-5}\) & 90 & 4 AKERIB 17A & LUX Xe \\
\hline \(<7 \times 10^{-5}\) & 90 & \({ }^{5} \mathrm{FU} \quad 17\) & PNDX SD WIMP on Xe \\
\hline \(<2\) & 90 & 6 ZHAO 16 & CDEX GeV-scale WIMPs on Ge \\
\hline \(<0.09\) & 90 & FELIZARDO 14 & SMPL \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<8\) & 90 & 7 UCHIDA 14 & XMAS \({ }^{129} \mathrm{Xe}\), inelastic \\
\hline \(<1.13 \times 10^{-3}\) & 90 & \({ }^{8}\) APRILE 13 & X100 Xe \\
\hline \(<0.02\) & 90 & AKIMOV 12 & ZEP3 Xe \\
\hline \(<0.06\) & 90 & AHMED 09 & CDM2 Ge \\
\hline \(<0.04\) & 90 & LEBEDENKO 09a & ZEP3 Xe \\
\hline \(<50\) & & \({ }^{9}\) LIN 09 & TEXO Ge \\
\hline \(<6 \times 10^{-3}\) & 90 & ANGLE 08A & XE10 Xe \\
\hline \(<0.5\) & 90 & ALNER 07 & ZEP2 Xe \\
\hline \(<25\) & 90 & LEE 07A & KIMS CsI \\
\hline \(<0.3\) & 90 & 10 AKERIB 06 & CDMS \({ }^{73} \mathrm{Ge},{ }^{29} \mathrm{Si}\) \\
\hline < 30 & 90 & SHIMIZU 06A & CNTR \(\mathrm{F}\left(\mathrm{CaF}_{2}\right)\) \\
\hline < 60 & 90 & ALNER 05 & NAIA Nal \\
\hline \(<20\) & 90 & BARNABE-HE. 05 & PICA \(\mathrm{F}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)\) \\
\hline \(<10\) & 90 & BENOIT 05 & EDEL \({ }^{73} \mathrm{Ge}\) \\
\hline \(<4\) & 90 & KLAPDOR-K... 05 & HDMS \({ }^{73} \mathrm{Ge}\) (enriched) \\
\hline <600 & 90 & TAKEDA 03 & BOLO NaF \\
\hline
\end{tabular}
\(1^{1}\) APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal: limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 6-1000 \mathrm{GeV}\).
\({ }^{2}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{3}\) AGNESE 18 give limits for \(\sigma^{S D}(n \chi)\) for m (WIMP) between 1.5 and 20 GeV using \({ }_{4}\) CDMSlite mode data.
\({ }^{4}\) AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{5}\) FU 17 search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).
\({ }^{6}\) ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\)
\({ }^{\text {plane }}\) for \(\mathrm{m}(\chi) \sim 4-30 \mathrm{GeV}\).
\(7 \begin{aligned} & \text { plane for } m(\chi) \sim 4-30 \mathrm{GeV} \text {. } \\ & \text { Derived limit from search for inelastic scattering } X^{0}+{ }^{129} \mathrm{Xe} \rightarrow X^{0}+{ }^{129} \mathrm{Xe}^{*}(39.58\end{aligned}\) 8 keV ).
8 The value has been provided by the authors. See also APRILE 14A.
\({ }^{9}\) See their Fig. 6(b) for cross section limits for \(m_{X^{0}}\) extending down to 2 GeV .
\({ }^{10}\) See also AKERIB 05.

For \(\boldsymbol{m}_{\boldsymbol{X}^{0}}=100 \mathrm{GeV}\)
VALUE (pb) CL\% DOCUMENT ID COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \(\times 10^{-5}\) & 90 & 1 APRILE & 19A & XE1T & Xe, SD \\
\hline & & \(\times 10^{-3}\) & 90 & 2 SUZUKI & 19 & XMAS & \({ }^{129} \mathrm{Xe}\), inelastic \\
\hline & & \(\times 10^{-5}\) & 90 & \({ }^{3}\) XIA & 19A & PNDX & SD WIMP on Xe \\
\hline & 2.5 & \(\times 10^{-5}\) & 90 & \({ }^{4}\) AKERIB & 17A & LUX & Xe \\
\hline & & \(\times 10^{-5}\) & 90 & \({ }^{5} \mathrm{FU}\) & 17 & PNDX & SD WIMP on Xe \\
\hline \(<\) & 0.1 & & 90 & FELIZARDO & 14 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<\) & 0.05 & & 90 & \({ }^{6}\) UCHIDA & 14 & XMAS & \({ }^{129} \mathrm{Xe}\), inelastic \\
\hline \(<\) & 4.68 & \(\times 10^{-4}\) & 90 & 7 APRILE & 13 & X100 & Xe \\
\hline \(<\) & 0.01 & & 90 & AKIMOV & 12 & ZEP3 & Xe \\
\hline & & & & 8 FELIZARDO & 10 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{3}\) \\
\hline \(<\) & 0.02 & & 90 & AHMED & 09 & CDM2 & Ge \\
\hline \(<\) & 0.01 & & 90 & LEBEDENKO & 09A & ZEP3 & Xe \\
\hline \(<1\) & 00 & & 90 & LIN & 09 & TEXO & Ge \\
\hline \(<\) & 0.01 & & 90 & ANGLE & 08A & XE10 & Xe \\
\hline \(<\) & 0.05 & & 90 & \({ }^{9}\) BEDNYAKOV & 08 & RVUE & Ge \\
\hline \(<\) & 0.08 & & 90 & ALNER & 07 & ZEP2 & Xe \\
\hline \(<\) & 6 & & 90 & LEE & 07A & KIMS & CsI \\
\hline \(<\) & 0.07 & & 90 & 10 AKERIB & 06 & CDMS & \({ }^{73} \mathrm{Ge},{ }^{29} \mathrm{Si}\) \\
\hline \(<\) & 30 & & 90 & SHIMIZU & 06A & CNTR & \(\mathrm{F}\left(\mathrm{CaF}_{2}\right)\) \\
\hline \(<\) & 10 & & 90 & ALNER & 05 & NAIA & NaI \\
\hline \(<\) & 30 & & 90 & BARNABE-HE. & & PICA & \(\mathrm{F}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)\) \\
\hline \(<\) & 0.7 & & 90 & BENOIT & 05 & EDEL & \({ }^{73} \mathrm{Ge}\) \\
\hline \(<\) & 0.2 & & & 11 GIULIANI & 05A & RVUE & \\
\hline \multirow[t]{5}{*}{\(<\)} & \multirow[t]{4}{*}{1.5} & & 90 & KLAPDOR-K.. & 05 & HDMS & \({ }^{73} \mathrm{Ge}\) (enriched) \\
\hline & & & & 12 GIULIANI & 04 & RVUE & \\
\hline & & & & 13 GIULIANI & 04A & RVUE & \\
\hline & & & & 14 MIUCHI & 03 & BOLO & LiF \\
\hline & 00 & & 90 & TAKED & 03 & BOLO & NaF \\
\hline
\end{tabular}
\({ }^{1}\) APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 6-1000 \mathrm{GeV}\).
\({ }^{2}\) SUZUKI 19 search in single phase liquid xenon detector for inelastic scattering \(X^{0}+\) \({ }^{129} \mathrm{Xe} \rightarrow X^{0}+{ }^{129} \mathrm{Xe}^{*}(39.58 \mathrm{keV})\); no signal: require \(\sigma(\chi n)^{S D}<4 \times 10^{-3} \mathrm{pb}\) for \(m(\chi)=100 \mathrm{GeV}\).
\({ }^{3}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{4}\) AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{5}\) FU 17 search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).
\({ }^{6}\) UCHIDA 14 derived limit from search for inelastic scattering \(X^{0}+{ }^{129} \mathrm{Xe} \rightarrow X^{0}+\) \({ }^{129} \mathrm{Xe}(39.58 \mathrm{keV}\) ).
\({ }^{7}\) The value has been provided by the authors. See also APRILE 14A.
\({ }^{8}\) See their Fig. 3 for limits on spin-dependent neutron couplings for \(X^{0}\) mass of 50 GeV .
\({ }^{9}\) BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.
10 See also AKERIB 05.
11 GIULIANI 05A analyze available data and give combined limits.
\({ }^{12}\) GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent \(X^{0}\)-neutron coupling.
\({ }^{13}\) GIULIANI 04A give limits for spin-dependent \(X^{0}\)-neutron couplings from existing data.
14 MIUCHI 03 give model-independent limit for spin-dependent \(X^{0}\)-proton and neutron cross sections. See their Fig. 5.

\section*{For \(m_{X^{0}}=1 \mathrm{TeV}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(<1.2 \times 10^{-4}\) & 90 & 1 APRILE & 19A & XE1T & Xe, SD \\
\hline \(<2 \times 10^{-4}\) & 90 & \({ }^{2}\) XIA & 19A & PNDX & Xe \\
\hline \(<2.5 \times 10^{-4}\) & 90 & \({ }^{3}\) AKERIB & 17A & LUX & Xe \\
\hline \(<4 \times 10^{-4}\) & 90 & \({ }^{4} \mathrm{FU}\) & 17 & PNDX & SD WIMP on Xe \\
\hline \(<0.07\) & 90 & FELIZARDO & 14 & SMPL & \(\mathrm{C}_{2} \mathrm{ClF}_{5}\) \\
\hline \(<0.2\) & 90 & \({ }^{5}\) UCHIDA & 14 & XMAS & \({ }^{129} \mathrm{Xe}\), inelastic \\
\hline \(<3.64 \times 10^{-3}\) & 90 & \({ }^{6}\) APRILE & 13 & X100 & Xe \\
\hline \(<0.08\) & 90 & AKIMOV & 12 & ZEP3 & Xe \\
\hline \(<0.2\) & 90 & AHMED & 09 & CDM2 & Ge \\
\hline \(<0.1\) & 90 & LEBEDENKO & 09A & ZEP3 & Xe \\
\hline \(<0.1\) & 90 & ANGLE & 08A & XE10 & Xe \\
\hline \(<0.25\) & 90 & 7 BEDNYAKOV & 08 & RVUE & Ge \\
\hline \(<0.6\) & 90 & ALNER & 07 & ZEP2 & Xe \\
\hline \(<30\) & 90 & LEE & 07A & KIMS & CsI \\
\hline \(<0.5\) & 90 & \({ }^{8}\) AKERIB & 06 & CDMS & \({ }^{73} \mathrm{Ge},{ }^{29} \mathrm{Si}\) \\
\hline < 40 & 90 & ALNER & 05 & NAIA & NaI \\
\hline <200 & 90 & BARNABE-HE. & & PICA & \(\mathrm{F}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)\) \\
\hline \(<4\) & 90 & BENOIT & 05 & EDEL & \({ }^{73} \mathrm{Ge}\) \\
\hline \(<10\) & 90 & KLAPDOR-K... & & HDMS & \({ }^{73} \mathrm{Ge}\) (enriched) \\
\hline \(<4 \times 10^{3}\) & 90 & TAKEDA & 03 & BOLO & NaF \\
\hline
\end{tabular}
\({ }^{1}\) APRILE 19A search for SD WIMP scatter on 1 t yr Xe ; no signal, limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 6-1000 \mathrm{GeV}\).
\({ }^{2}\) XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{3}\) AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 5-1 \times 10^{5} \mathrm{GeV}\).
\({ }^{4}\) FU 17 search for SD WIMP scatter on Xe; limits set in \(\sigma^{S D}(\chi n)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m}(\chi) \sim 4-1 \times 10^{3} \mathrm{GeV}\).
\({ }^{5}\) Derived limit from search for inelastic scattering \(X^{0}+{ }^{129} \mathrm{Xe}^{*} \rightarrow X^{0}+{ }^{129} \mathrm{Xe}^{*}(39.58\) keV ).
\({ }^{6}\) The value has been provided by the authors. See also APRILE 14A.
\({ }_{7}\) BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.
\({ }^{8}\) See also AKERIB 05.
I ——Cross-Section Limits for Dark Matter Particles ( \(\boldsymbol{X}^{0}\) ) on electron
For \(\boldsymbol{m}_{X^{0}}\) in GeV range
CLUE (pb)
CL\%
\(X^{0}<5 \mathrm{GeV}\)
DOCUMENTID
COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • •
\(\begin{array}{llllll} & & 1 \text { AKERIB } & 20 & \text { LUX } & \text { mirror DM with Xe } \\ <2 \times 10^{6} & 90 & { }^{2} \text { ABRAMOFF } & 19 & \text { SENS } & \text { WIMP-e scatter on Si }\end{array}\)
\(\begin{array}{llllll} & & { }^{3} \text { AGUILAR-AR...19A } & \text { DMIC } & \text { MeV scale DM scatter on } e \\ <1 \times 10^{-4} & 90 & { }^{4} \text { APRILE } & \text { 19D XE1T } & \begin{array}{c}\text { light Di } \\ \text { tion }\end{array}\end{array}\)
\(<9 \times 10^{-3} \quad 90 \quad{ }^{5}\) AGNES 18 B DS50 \(\mathrm{Ar}^{\text {tion }}\)
\(\begin{array}{lllll}<1 \times 10^{4} & 90 & { }^{6} \text { AGNESE } & 18 \mathrm{~B} \text { SCDM e } \chi \text { scatter } \\ <5 \times 10^{3} & 90 & 7 \text { CRISLER } & 18 & \text { SENS Si }\end{array}\)
\(\begin{array}{llllll}<5 \times 10^{3} & 90 & 7 \text { CRISLER } & 18 & \text { SENS } & \text { Si CCD }\end{array}\)
\({ }^{1}\) AKERIB 20 search for mirror DM with LUX \(95 \mathrm{~d} \times 118 \mathrm{~kg}\) data for mirror \(e\) scatter from Xe; no signal, limits placed in kinetic mixing parameter vs. mirror e temperature \(\mathrm{T} \sim 0.1-0.9 \mathrm{keV}\) plane.
2 ABRAMOFF 19 search for MeV-scale WIMP scatter from Si skipper-CCD; limits placed on \(\sigma(\chi e)\) for \(\mathrm{m}(\chi) \sim 0.5-100 \mathrm{MeV}\) depending on DM form factors. Limit given for \(m(D M)=1 \mathrm{MeV}\).
\({ }^{3}\) AGUILAR-AREVALO 19a search for MeV scale DM scatter from \(e\) in Si CCDs at SNO-
LAB; no signal, limits placed in \(\sigma(\mathrm{e})\) vs. \(\mathrm{m}(\mathrm{DM})\) plane for \(m(D M) \sim 0.6-100 \mathrm{MeV}\).
\({ }^{4}\) APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in \(\sigma\) on nucleus vs. \(\mathrm{m}(\mathrm{DM})\) plane for \(\mathrm{m}(\mathrm{DM}) \sim 0.02-10 \mathrm{GeV}\); quoted limit is for \(\mathrm{m}(\mathrm{DM})\) \(5=0.2 \mathrm{GeV}\).
\({ }^{5}\) AGNES 18B search for MeV scale WIMP scatter from \(e\) in Ar; no signal, limits set in \(\sigma_{e}\) vs. \(m(\chi)\) plane for \(m \sim 20-1000 \mathrm{MeV}\) and two choices of form factor \(\mathrm{F}(\mathrm{DM})\); quoted limit for \(\mathrm{m}(\chi)=100 \mathrm{MeV}\) and \(\mathrm{F}=1\).
\({ }^{6}\) AGNESE 18B search for e \(e\) scatter in SuperCDMS; limits placed in \(\sigma(e \chi)\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 0.3-1 \times 10^{4} \mathrm{MeV}\) for two assumed form factors and also in m (dark photon) vs. kinetic mixing plane. Limit given for \(m(\chi)=1 \mathrm{GeV}\) and \(\mathrm{F}=1\).
\({ }^{7}\) CRISLER 18 search for \(\chi e \rightarrow \chi e\) scatter in Si CCD; place limits on MeV DM in \(\sigma_{e}\) vs. \(\mathrm{m}(\chi)\) plane for \(\mathrm{m} \sim 0.5-1000 \mathrm{MeV}\) for different form factors; quoted limit is for F(DM) \(=1\) and \(\mathrm{m}(\chi)=10 \mathrm{MeV}\).
\({ }^{8}\) APRILE 17 search for WIMP-e annual modulation signal for recoil energy in the 2.0-5.8
keV interval using 4 years data with Xe . No significant effect seen.
-Coss-Section Limits for Dark Matter Particles ( \(X^{0}\) ) on Nuclei -_
For \(m_{X 0}\) in Gev range
We provide here limits fo \(m_{x}<5 \mathrm{GeV}\)

For \(m_{X^{0}} \equiv 20 \mathrm{GeV}\)


\(\begin{array}{lc}<0.06 & 95 \\ { }^{1} \text { UCHIDA } 14 \text { limit is for inelastic scattering } X^{0}+{ }^{129} X^{*} \rightarrow X^{0}+{ }^{129} X^{*}{ }^{*}(39.58\end{array}\) keV).
\({ }^{2}\) ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.
\({ }^{3}\) BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay NaI experiments.
\({ }^{4}\) KLIMENKO 98 limit is for inelastic scattering \(X^{0}{ }^{73} \mathrm{Ge} \rightarrow X^{0}{ }^{73} \mathrm{Ge}^{*}(13.26 \mathrm{keV})\).
\({ }^{5}\) BELLI 96 limit for inelastic scattering \(X^{0}{ }^{129} \mathrm{Xe} \rightarrow X^{0}{ }^{129} \mathrm{Xe}^{*}\) (39.58 keV).
\({ }^{6}\) BELLI 96C use background subtraction and obtain \(\sigma<150 \mathrm{pb}\) ( \(\left.<1.5 \mathrm{fb}\right)(90 \% \mathrm{CL})\) for spin-dependent (independent) \(X^{0}\)-proton cross section. The confidence level is from R . Bernabei, private communication, May 20, 1999.
\({ }^{7}\) BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
\({ }^{8}\) SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

Searches Particle Listings

\section*{WIMP and Dark Matter Searches}
9 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter
density of 0.4 GeV cm

10 GARCIA 95 imit assumed.
diurnal and annual modulation.
11 SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are
also given for \({ }^{27} \mathrm{AI}\) and \({ }^{28} \mathrm{Si}\). See COLLAR 96 and SNOWDEN-IFFT 96 for discussion
on potential backgrounds.
12 REUSSER 91 limit here is changed from published ( 0.04 ) after reanalysis by authors.
J.L. Vuilleumier, private communication, March 29,1996 .

For \(m_{X^{0}}=100 \mathrm{GeV}\)

\({ }^{1}\) UCHIDA 14 limit is for inelastic scattering \(X^{0}+{ }^{129} \mathrm{Xe}^{*} \rightarrow X^{0}+{ }^{129} \mathrm{Xe}^{*}(39.58\) keV).
\({ }^{2}\) ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.
\({ }^{3}\) BELLI 02 discuss dependence of the extracted WIMP cross section on the assumptions of the galactic halo structure.
\({ }^{4}\) BERNABEI 02C analyze the DAMA data in the scenario in which \(X^{0}\) scatters into a slightly heavier state as discussed by SMITH 01.
\({ }^{5}\) GREEN 02 discusses dependence of extracted WIMP cross section limits on the assumptions of the galactic halo structure.
\({ }^{6}\) ULLIO 01 disfavor the possibility that the BERNABEI 99 signal is due to spin-dependent WIMP coupling.
\({ }^{7}\) BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.
\({ }^{8}\) BERNABEI 00D limit is for inelastic scattering \(X^{0129} \mathrm{Xe} \rightarrow X^{0129} \mathrm{Xe}\) (39.58 keV).
\({ }^{9}\) AMBROSIO 99 search for upgoing muon events induced by neutrinos originating from WIMP annihilations in the Sun and Earth.
\({ }^{10}\) BRHLIK 99 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.
11 KLIMENKO 98 limit is for inelastic scattering \(X^{0}{ }^{73} \mathrm{Ge} \rightarrow X^{0}{ }^{73} \mathrm{Ge}^{*}(13.26 \mathrm{keV})\).
\({ }^{12}\) KLIMENKO 98 limit is for inelastic scattering \(X^{0}{ }^{73} \mathrm{Ge} \rightarrow X^{0}{ }^{73} \mathrm{Ge}^{*}(66.73 \mathrm{keV})\).
\({ }^{13}\) BELLI 96 limit for inelastic scattering \(X^{0}{ }^{129} \mathrm{Xe} \rightarrow X^{0}{ }^{129} \mathrm{Xe}^{*}(39.58 \mathrm{keV})\).
\({ }^{14}\) BELLI 96 C use background subtraction and obtain \(\sigma<0.35 \mathrm{pb}\) ( \(<0.15 \mathrm{fb}\) ) \((90 \% \mathrm{CL})\) for spin-dependent (independent) \(X^{0}\)-proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
\({ }^{15}\) BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
16 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
17 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of \(0.4 \mathrm{GeV} \mathrm{cm}^{-3}\) is assumed.
18 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for
19 diurnal and annual modulation. also given for \({ }^{27} \mathrm{Al}\) and \({ }^{28} \mathrm{Si}\). See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
\({ }^{20}\) BECK 94 uses enriched \({ }^{76} \mathrm{Ge}\) ( \(86 \%\) purity).
\({ }^{21}\) REUSSER 91 limit here is changed from published (0.3) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

For \(\boldsymbol{m}_{\boldsymbol{x}^{0}}=1 \mathrm{TeV}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE (nb) & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<0.03\) & 90 & \({ }^{1}\) UCHIDA & 14 & XMAS & \({ }^{129} \mathrm{Xe}\), inelastic \\
\hline \multirow[t]{4}{*}{< 3} & \multirow[t]{4}{*}{90} & 2 ANGLOHER & 02 & CRES & AI \\
\hline & & \({ }^{3}\) BENOIT & 00 & EDEL & Ge \\
\hline & & \({ }^{4}\) BERNABEI & 99D & CNTR & SIMP \\
\hline & & \({ }^{5}\) DERBIN & 99 & CNTR & SIMP \\
\hline \(<0.06\) & 95 & \({ }^{6}\) KLIMENKO & 98 & CNTR & \({ }^{73} \mathrm{Ge}\), inel. \\
\hline < 0.4 & 95 & 7 KLIMENKO & 98 & CNTR & \({ }^{73} \mathrm{Ge}\), inel. \\
\hline < 40 & & ALESSAND... & 96 & CNTR & 0 \\
\hline \(<700\) & & ALESSAND... & 96 & CNTR & Te \\
\hline \(<0.05\) & 90 & \({ }^{8}\) BELLI & 96 & CNTR & \({ }^{129} \mathrm{Xe}\), inel. \\
\hline \multirow[t]{2}{*}{< 1.5} & \multirow[t]{2}{*}{90} & \({ }^{9}\) BELLI & 96 & CNTR & \({ }^{129} \mathrm{Xe}\), inel. \\
\hline & & 10 BELLI & 96C & CNTR & \({ }^{129} \mathrm{Xe}\) \\
\hline \(<0.01\) & 90 & 11 BERNABEI & 96 & CNTR & Na \\
\hline < 9 & 90 & 11 BERNABEI & 96 & CNTR & 1 \\
\hline \(<7\) & 95 & 12 SARSA & 96 & CNTR & Na \\
\hline \(<0.3\) & 90 & 13 SMITH & 96 & CNTR & Na \\
\hline < 6 & 90 & 13 SMITH & 96 & CNTR & I \\
\hline \(<6\) & 95 & 14 GARCIA & 95 & CNTR & Natural Ge \\
\hline \(<8\) & 95 & QUENBY & 95 & CNTR & Na \\
\hline \(<50\) & 95 & QUENBY & 95 & CNTR & I \\
\hline \(<700\) & 90 & 15 SNOWDEN-... & 95 & MICA & \({ }^{16} \mathrm{O}\) \\
\hline \(<1 \times 10^{3}\) & 90 & 15 SNOWDEN-... & 95 & MICA & \({ }^{39} \mathrm{~K}\) \\
\hline \(<0.8\) & 90 & 16 BECK & 94 & CNTR & \({ }^{76} \mathrm{Ge}\) \\
\hline < 30 & 90 & BACCI & 92 & CNTR & Na \\
\hline \(<30\) & 90 & BACCI & 92 & CNTR & , \\
\hline \(<15\) & 90 & 17 REUSSER & 91 & CNTR & Natural Ge \\
\hline < 6 & 95 & CALDWELL & 88 & CNTR & Natural Ge \\
\hline
\end{tabular}
\({ }^{1}\) UCHIDA 14 limit is for inelastic scattering \(X^{0}+{ }^{129} X e^{*} \rightarrow X^{0}+{ }^{129} X^{*}{ }^{*}(39.58\) keV).
\({ }^{2}\) ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.
\({ }^{3}\) BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.
\({ }^{4}\) BERNABEI 99D search for SIMPs (Strongly Interacting Massive Particles) in the mass range \(10^{3}-10^{16} \mathrm{GeV}\). See their Fig. 3 for cross-section limits.
\({ }^{5}\) DERBIN 99 search for SIMPs (Strongly Interacting Massive Particles) in the mass range \(10^{2}-10^{14} \mathrm{GeV}\). See their Fig. 3 for cross-section limits.
\({ }^{6}\) KLIMENKO 98 limit is for inelastic scattering \(X^{0}{ }^{73} \mathrm{Ge} \rightarrow X^{0}{ }^{73} \mathrm{Ge}^{*}(13.26 \mathrm{keV})\).
\({ }^{7}\) KLIMENKO 98 limit is for inelastic scattering \(X^{0}{ }^{73} \mathrm{Ge} \rightarrow X^{0}{ }^{73} \mathrm{Ge}^{*}(66.73 \mathrm{keV})\).
\({ }^{8}\) BELLI 96 limit for inelastic scattering \(X^{0129} \mathrm{Xe} \rightarrow X^{0}{ }^{129} \mathrm{Xe}^{*}(39.58 \mathrm{keV})\).
\({ }^{9}\) BELLI 96 limit for inelastic scattering \(X^{0}{ }^{129} \mathrm{Xe} \rightarrow X^{0}{ }^{129} \mathrm{Xe}^{*}(236.14 \mathrm{keV})\).
\({ }^{10}\) BELLI 96C use background subtraction and obtain \(\sigma<0.7 \mathrm{pb}(<0.7 \mathrm{fb})(90 \% \mathrm{CL})\) for spin-dependent (independent) \(X^{0}\)-proton cross section. The confidence level is from R . Bernabei, private communication, May 20, 1999.
11 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
12 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
\({ }^{13}\) SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of \(0.4 \mathrm{GeV} \mathrm{cm}^{-3}\) is assumed.
\({ }^{14}\) GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.
\({ }^{15}\) SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for \({ }^{27} \mathrm{Al}\) and \({ }^{28} \mathrm{Si}\). See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
\({ }^{16}\) BECK 94 uses enriched \({ }^{76} \mathrm{Ge}\) ( \(86 \%\) purity).
17 REUSSER 91 limit here is changed from published (5) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline & & 1 ABRAMOFF & 19 & SENS & MeV DM e-Si; dark photon Si absorption \\
\hline & & \({ }^{2}\) ADHIKARI & 19 & C100 & annual modulation Nal \\
\hline & & \({ }^{3}\) AMARE & 19 & ANAI & annual modulation NaI \\
\hline \(<6.4 \times 10^{-10}\) & 90 & \({ }^{4}\) APRILE & 19 & XE1T & \(\pi\) (Xe) \\
\hline & & 5 BRINGMANN & 19 & & cosmic ray DM \\
\hline & & \({ }^{6}\) BRUNE & 19 & & Majoran DM \\
\hline & & \({ }^{7} \mathrm{CHOI}\) & 19 & THEO & 290 TeV IceCube \(\nu\) \\
\hline & & \({ }^{8} \mathrm{HA}\) & 19 & C100 & inelastic boosted dark \(\gamma\) \\
\hline & & \({ }^{9}\) KLOPF & 19 & & \(n \rightarrow \chi e^{+} e^{-}\) \\
\hline & & 10 AARTSEN & 18D & ICCB & relic WIMP \(\chi \rightarrow \nu \chi\) \\
\hline & & 11 ABE & 18F & XMAS & \(A^{\prime} e \rightarrow A^{\prime} e\) \\
\hline & & 12 AGNES & 18B & DS50 & Ar \\
\hline & & 13 AGNESE & 18B & SCDM & MeV DM e-Si; dark photon Si absorption \\
\hline & & 14 AKERIB & 18A & LUX & Xe \\
\hline & & 15 ARMENGAUD & 18 & EDE3 & Ge \\
\hline
\end{tabular}
 \({ }^{24}\) APRILE \(\quad 15 \mathrm{~A} \quad\) X100 \(\quad\) Electron scattering
\({ }^{1}\) ABRAMOFF 19 search for MeV scale DM via DM-e scattering and dark photon DM via absorption in Si ; limits set in coupling vs. \(\mathrm{m}(\chi)\) plane and on dark photon in \(\mathrm{m}(A)\) vs. kinetic mixing parameter plane.
\({ }^{2}\) ADHIKARI 19 search for annual modulation signal from WIMP scatter on Nal with 1.7 yr exposure; result consistent with both DAMA/LIBRA and null hypothesis.
\({ }^{3}\) AMARE 19 is ANAIS-112 search for WIMP scatter annual modulation on Nal; 157.55 kg yr exposure; result compatible with null hypothesis; confirm goal of reaching sensitivity at \(3 \sigma\) to DAMA/LIBRA result in 5 years.
\({ }^{4}\) APRILE 19 search for WIMP-pion scattering in Xe; no signal: require \(\sigma(\chi \pi)<6.4 \times\) \(10^{-10} \mathrm{pb}\) for \(\mathrm{m}(\chi)=30 \mathrm{GeV}\).
\({ }^{5}\) BRINGMANN 19 derive theoretically limits on GeV and sub- GeV mass dark matter, in its high energy component generated by interaction with cosmic rays; place limits on \(\sigma^{S I}\) and \(\sigma^{S D}<10^{5} \mathrm{pb}\).
\({ }^{6}\) BRUNE 19 examine possibility of Majoron dark matter; limits placed on Majoron mass vs. coupling from SN1987a and \(\nu\)-less double beta decay.
\({ }^{7} \mathrm{CHOI} 19\) from multimessenger observation finds limit on \(\sigma(\nu \chi) / \mathrm{m}(\) DM \()<5.1 \times 10^{-23}\) \(\mathrm{cm}^{2} / \mathrm{GeV}\) based on 290 TeV IceCube neutrino event.
\({ }^{8}\) HA 19 search for inelastic boosted MeV scale dark photon using COSINE-100 data; limits placed in m vs. epsilon plane for various mediators.
\({ }^{9}\) KLOPF 19 search for DM via \(n \rightarrow \chi e^{+} e^{-}\); no signal: limits placed in branching fraction vs. \(\mathrm{m}\left(e^{+} e^{-}\right)\)plane.
\({ }^{10}\) AARTSEN 18D search for long-lived DM particles decaying \(\chi \rightarrow \nu X\); no excess seen; for DM masses above 10 TeV , excluding lifetimes shorter than \(10^{28} \mathrm{~s}\).
\({ }^{11}\) ABE 18F search for keV mass ALPs and hidden photons (HP) scatter on electrons; limits set on mass vs. coupling.
12 AGNES 18B search for MeV-scale DM scatter on electrons in Ar; no signal; require \(\sigma(\chi e)\) \(<9 \times 10^{-3} \mathrm{pb}\) for DM form factor \(F(D M)=1\) and \(<300 \mathrm{pb}\) for \(F(D M)\) proportional to \(1 / \mathrm{q}^{2}\) for \(\mathrm{m}(\chi)=100 \mathrm{MeV}\).
13 AGNESE 18B search for MeV scale DM via DM-e scattering and dark photon DM via absorption in Si ; limits set on MeV DM in coupling vs. \(\mathrm{m}(\chi)\) plane and on dark photon in \(m\left(A^{\prime}\right)\) vs. kinetic mixing plane.
14 AKERIB 18A search for annual and diurnal modulation of DM scattering rate on electrons for recoil energy between 2 and 6 keVee ; no signal found.
15 ARMENGAUD 18 search for ALP from the Sun and galactic bosonic DM, interacting in Ge; no signal; limits set for \(0.8-500 \mathrm{keV}\) DM particles.
16 KACHULIS 18 search for an excess of elastically scattered electrons above the atmospheric neutrino background in Super-K; limits placed for simple annihilation or decay in the Sun or galactic center producing "boosted" dark matter.
17 AGUILAR-AREVALO 17 search for hidden photon DM scatter on Si target CCD; limit kinetic mixing \(\kappa<1 \times 10^{-12}\) for \(\mathrm{m}=10 \mathrm{eV}\).
18 APRILE 17 search for WIMP-e annual modulation signal for recoil energy in the 2.0-5.8 keV interval using 4 years data with Xe . No significant effect seen.
\({ }^{19}\) APRILE 17D set limits on 14 WIMP-nucleon different interaction operators. No deviations found using 225 live days in the \(6.6-240 \mathrm{keV}\) recoil energy range.
20 APRILE 17 H search for keV bosonic DM via \(e \chi \rightarrow e\), looking for electronic recoils with 224.6 live days of data and 34 kg of LXe. Limits set on \(\chi e e\) coupling for \(m(\chi)=8-125\)

21 APRILE 17 K search for magnetic inelastic DM via \(\chi N \rightarrow \chi^{*} \rightarrow \chi \gamma\). Limits set in DM magnetic moment vs. mass splitting plane for two DM masses corresponding to the DAMA/LIBRA best fit values.
\({ }^{22}\) ANGLOHER 16A require \(\mathrm{q}^{2}\) dependent scattering \(<8 \times 10^{-3} \mathrm{pb}\) for asymmetric DM \(m(\) WIMP \()=3 \mathrm{GeV}\) on \(\mathrm{CaWO}_{4}\) target. It uses a local dark matter density of 0.38 \(\mathrm{GeV} / \mathrm{cm}^{3}\).
\({ }^{23}\) APRILE 15 search for periodic variation of electronic recoil event rate in the data between Feb. 2011 and Mar. 2012. No significant modulation is found for periods up to 500 days.
\({ }^{24}\) APRILE 15A search for \(X^{0}\) scattering off electrons. See their Fig. 4 for limits on cross section through axial-vector coupling for \(m_{X^{0}}\) between 0.6 GeV and 1 TeV . For \(m_{X^{0}}=\) \(2 \mathrm{GeV}, \sigma<60 \mathrm{pb}(90 \% \mathrm{CL})\) is obtained.

\section*{\(X^{\mathbf{0}}\) Annihilation Cross Section}

\section*{Limits are on \(\sigma v\) for \(X^{0}\) pair annihilation at threshold.}
VALUE \(\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right) \quad\) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - •

1 ABEYSEKARA 19 HAWC DM annihilation to \(\gamma \mathrm{s}\) within galactic substructure
\(<0.8 \times 10^{-22} \quad 95 \quad 2\) ALBERT \(\quad 19 \mathrm{~B}\) HAWC annihilation/decay to \(\gamma\) in M31
\(<4 \times 10^{-26}\)
\(<7 \times 10^{-27}\)
95
\(2 \times 10^{-26} \quad 95\)
\(<1 \times 10^{-32} \times 7 \mathrm{NG}\)
\(\begin{array}{ll}<4 & \times 10^{-28} \\ <1 & \times 10^{-23} \\ <1 & \times 10^{-22} \\ <1 & \times 10^{-26}\end{array}\)
\(<1 \times 10^{-26} 95\)

\section*{WIMP and Dark Matter Searches}
\({ }^{19}\) BOUDAUD 17 use data from the spacecraft Voyager 1, beyond the heliopause, and from AMS02 on \(\chi \chi \rightarrow e^{+} e^{-}\)to require \(\langle\sigma \cdot v\rangle<1 . \times 10^{-28} \mathrm{~cm}^{3} / \mathrm{s}\) for \(\mathrm{m}(\chi)=10 \mathrm{MeV}\).
\({ }^{20}\) AARTSEN 16 D search for \(\mathrm{GeV} \nu\) s from WIMP annihilation in galaxy; limits set on \(\langle\sigma \cdot v\rangle\) in Fig. 6, 7.
\({ }^{21}\) ABDALLAH 16 require \(\langle\sigma \cdot v\rangle<6 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=1.5 \mathrm{TeV}\) from 254 hours observation ( \(W\) W channel) and \(<2 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=1.0 \mathrm{TeV}\) in \(\tau^{+} \tau^{-}\)channel.
\({ }^{22}\) ABDALLAH 16A search for line spectra from WIMP + WIMP \(\rightarrow \gamma \gamma\) in 18 hr HESS data; rule out previous 130 GeV WIMP hint from Fermi-LAT data.
\({ }^{23}\) AHNEN 16 require \(\langle\sigma \cdot v\rangle<3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=100 \mathrm{GeV}\) ( \(W W\) channel).
\({ }^{24}\) AVRORIN 16 require \(\langle\) s.v \(\rangle<1.91 \times 10^{-21} \mathrm{~cm}^{3} / \mathrm{s}\) from WIMP annihilation to \(\nu\) s via \(W\) W channel for \(m\) (WIMP) \(=1 \mathrm{TeV}\).
\({ }^{25}\) CAPUTO 16 place limits on WIMPs from annihilation to gamma rays in Small Magellanic Cloud using Fermi-LaT data: \(\langle\sigma \cdot v\rangle<3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=10 \mathrm{GeV}\).
\({ }^{26}\) FORNASA 16 use anisotropies in the \(\gamma\)-ray diffuse emission detected by Fermi-LAT to bound \(\langle\sigma \cdot v\rangle<10^{-25} \mathrm{~cm}^{3} / \mathrm{s}\) for \(\mathrm{m}(\) WIMP \()=100 \mathrm{GeV}\) in \(b \bar{b}\) channel: see Fig. 28. The limit is driven by dark-matter subhalos in the Milky Way and it refers to their Most Constraining Scenario
27 LEITE 16 constrain WIMP annihilation via search for radio emissions from Smith cloud; \(\langle\sigma \cdot v\rangle<5 \times 10^{-27} \mathrm{~cm}^{3} / \mathrm{s}\) in \(e e\) channel for \(\mathrm{m}(\) WIMP \()=5 \mathrm{GeV}\).
\({ }^{28}\) LI 16 re-analyze Fermi-LAT data on 8 dwarf spheroidals; set limit \(\langle\sigma \cdot v\rangle<2 \times 10^{-26}\) \(\mathrm{cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=100 \mathrm{GeV}\) in \(b \bar{b}\) mode with substructures included.
\({ }^{29} \mathrm{LI}\) 16A constrain \(\langle\sigma \cdot v\rangle<10^{-25} \mathrm{~cm}^{3} / \mathrm{s}\) in \(b \bar{b}\) channel for m (WIMP) \(=100 \mathrm{GeV}\) using Fermi-LAT data from M31; see Fig. 6.
\({ }^{30}\) LIANG 16 search dwarf spheroidal galaxies, Large Magellanic Cloud, and Small Magellanic Cloud for \(\gamma\)-line in Fermi-LAT data.
\({ }^{31}\) LU 16 re-analyze Fermi-LAT and AMS-02 data; require \(\langle\sigma \cdot v\rangle<10^{-25} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m_{m}(\) WIMP \()=1 \mathrm{TeV}\) in \(b \bar{b}\) channel
\({ }^{32}\) SHIRASAKI 16 re-anayze Fermi-LAT extra-galactic data; require \(\langle\sigma \cdot v\rangle<10^{-23} \mathrm{~cm}^{3} / \mathrm{s}\) for \(m(\) WIMP \()=1 \mathrm{TeV}\) in \(b \bar{b}\) channel; see Fig. 8.
\({ }^{33}\) AARTSEN 15 C search for neutrinos from \(X^{0}\) annihilation in the Galactic halo. See their Figs. 16 and 17, and Table 5 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 100 GeV and 100 TeV.
\({ }^{34}\) AARTSEN 15E search for neutrinos from \(X^{0}\) annihilation in the Galactic center. See their Figs. 7 and 9, and Table 3 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 30 GeV and 10 TeV .
\({ }^{35}\) ABRAMOWSKI 15 search for \(\gamma\) from \(X^{0}\) annihilation in the Galactic center. See their Fig. 4 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 250 GeV and 10 TeV .
\({ }^{36}\) ACKERMANN 15 search for monochromatic \(\gamma\) from \(X^{0}\) annihlation in the Galactic halo. See their Fig. 8 and Tables \(2-4\) for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 0.2 GeV and 500 GeV .
\({ }^{37}\) ACKERMANN 15A search for \(\gamma\) from \(X^{0}\) annihilation (both Galactic and extragalactic) in the isotropic \(\gamma\) background. See their Fig. 7 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 10 GeV and 30 TeV .
38 ACKERMANN 15B search for \(\gamma\) from \(X^{0}\) annihilation in 15 dwarf spheroidal satellite galaxies of the Milky Way. See their Figs. 1 and 2 for limits on \(\sigma \cdot \mathrm{v}\) for \(X^{0}\) mass between 2 GeV and 10 TeV .
\({ }^{39}\) ADRIAN-MARTINEZ 15 search for neutrinos from \(X^{0}\) annihilation in the Galactic center. See their Figs. 10 and 11 and Tables 1 and 2 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 25 GeV and 10 TeV .
40 ACKERMANN 14 search for \(\gamma\) from \(X^{0}\) annihilation in 25 dwarf spheroidal satellite galaxies of the Milky Way. See their Tables II-VII for limits assuming annihilation into \(e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, u \bar{u}, b \bar{b}\), and \(W^{+} W^{-}\), for \(X^{0}\) mass ranging from 2 GeV to 10 TeV .
\({ }^{41}\) Limit assuming \(X^{0}\) pair annihilation into \(b \bar{b}\).
\({ }^{42}\) Limit assuming \(X^{0}\) pair annihilation into \(W^{+} W^{-}\).
\({ }^{43}\) ALEKSIC 14 search for \(\gamma\) from \(X^{0}\) annihilation in the dwarf spheroidal galaxy Segue 1. The listed limit assumes annihilation into \(W^{+} W^{-}\). See their Figs. 6, 7, and 16 for limits on \(\sigma \cdot \mathrm{v}\) for annihilation channels \(\mu^{+} \mu^{-}, \tau^{+} \tau^{-}, b \bar{b}, t \bar{t}, \gamma \gamma, \gamma Z, W^{+} W^{-}, Z Z\) for \(X^{0}\) mass between \(10^{2}\) and \(10^{4} \mathrm{GeV}\).
\({ }^{44}\) AARTSEN 13C search for neutrinos from \(X^{0}\) annihilation in nearby galaxies and galaxy clusters. See their Figs. 5-7 for limits on \(\sigma \cdot v\) for \(X^{0} X^{0} \rightarrow \nu \bar{\nu}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}\), and \(W^{+} W^{-}\)for \(X^{0}\) mass between 300 GeV and 100 TeV .
\({ }^{45}\) ABRAMOWSKI 13 search for monochromatic \(\gamma\) from \(X^{0}\) annihilation in the Milky Way halo in the central region. Limit on \(\sigma \cdot v\) between \(10^{-28}\) and \(10^{-25} \mathrm{~cm}^{3} \mathrm{~s}^{-1}(95 \% \mathrm{CL})\) is obtained for \(X^{0}\) mass between 500 GeV and 20 TeV for \(X^{0} X^{0} \rightarrow \gamma \gamma . X^{0}\) density distribution in the Galaxy by Einasto is assumed. See their Fig. 4.
\({ }^{46}\) ACKERMANN 13A search for monochromatic \(\gamma\) from \(X^{0}\) annihilation in the Milky Way. Limit on \(\sigma \cdot v\) for the process \(X^{0} X^{0} \rightarrow \gamma \gamma\) in the range \(10^{-29}-10^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}(95 \%\) CL ) is obtained for \(X^{0}\) mass between 5 and 300 GeV . The limit depends slightly on the assumed density profile of \(X^{0}\) in the Galaxy. See their Tables VII-X and Fig.10. Supersedes ACKERMANN 12.
\({ }^{47}\) ABRAMOWSKI 12 search for \(\gamma^{\prime}\) 's from \(X^{0}\) annihilation in the Fornax galaxy cluster. See their Fig. 7 for limits on \(\sigma \cdot v\) for \(X^{0}\) mass between 0.1 and 100 TeV for the annihilation channels \(\tau^{+} \tau^{-}, b \bar{b}\), and \(W^{+} W^{-}\).
48 ACKERMANN 12 search for monochromatic \(\gamma\) from \(X^{0}\) annihilation in the Milky Way. Limit on \(\sigma \cdot v\) in the range \(10^{-28}-10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}(95 \% \mathrm{CL})\) is obtained for \(X^{0}\) mass between 7 and 200 GeV if \(X^{0}\) annihilates into \(\gamma \gamma\). The limit depends slightly on the assumed density profile of \(X^{0}\) in the Galaxy. See their Table III and Fig. 15.
\({ }^{49}\) ACKERMANN 12 search for \(\gamma\) from \(X^{0}\) annihilation in the Milky Way in the diffuse \(\gamma\) background. Limit on \(\sigma \cdot \mathrm{v}\) of \(10^{-24} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\) or larger is obtained for \(X^{0}\) mass between 5 GeV and 10 TeV for various annihilation channels including \(W^{+} W^{-}, b \bar{b}, g g, e^{+} e^{-}\), \(\mu^{+} \mu^{-}, \tau^{+} \tau^{-}\). The limit depends slightly on the assumed density profile of \(X^{0}\) in the Galaxy. See their Figs. 17-20.
\({ }^{50}\) ALIU 12 search for \(\gamma\) 's from \(X^{0}\) annihilation in the dwarf spheroidal galaxy Segue 1. Limit on \(\sigma \cdot v\) in the range \(10^{-24}-10^{-20} \mathrm{~cm}^{3} \mathrm{~s}^{-1}(95 \% \mathrm{CL})\) is obtained for \(X^{0}\) mass between 10 GeV and 2 TeV for annihilation channels \(e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, b \bar{b}\), and \(W^{+} W^{-}\). See their Fig. 3.
\({ }^{51}\) ABBASI 11C search for \(\nu_{\mu}\) from \(X^{0}\) annihilation in the outer halo of the Milky Way. The limit assumes annihilation into \(\nu \nu\). See their Fig. 9 for limits with other annihilation channels.
52 ABRAMOWSKI 11 search for \(\gamma\) from \(X^{0}\) annihilation near the Galactic center. The limit assumes Einasto DM density profile.
53 ACKERMANN 11 search for \(\gamma\) from \(X^{0}\) annihilation in ten dwarf spheroidal satellite galaxies of the Milky Way. The limit for \(m=10 \mathrm{GeV}\) assumes annihilation into \(b \bar{b}\), the others \(W^{+} W^{-}\). See their Fig. 2 for limits with other final states. See also GERINGERSAMETH 11 for a different analysis of the same data.

\section*{Dark Matter Particle ( \(X^{0}\) ) Production in Hadron Collisions}

Searches for \(X^{0}\) production in asociation with observable particles ( \(\gamma\), jets, ...) in high energy hadron collisions. If a specific form of effective interaction Lagrangian is assumed, the limits may be translated into limits on \(X^{0}\)-nucleon scattering cross section.

VALUE
- - We do not us

\({ }^{1}\) AABOUD 19AA searches for BSM physics in more than 700 event classes with more than \(10^{5}\) regions at 13 TeV with \(3.2 \mathrm{fb}^{-1}\); no significant signal.
\({ }^{2}\) AABOUD 19Al searches for vector boson fusion \(p p \rightarrow H q q, H \rightarrow\) invisible at 13 TeV with \(36.1 \mathrm{fb}^{-1}\); no signal: require \(\mathrm{B}(H \rightarrow\) invisible) \(<0.37\) ( 0.28 expected).
\({ }^{3}\) AABOUD 19AL perform search in three different channels for \(H \rightarrow \chi \chi\) at 7,8 and 13 TeV ; combined result \(\mathrm{BF}(H \rightarrow\) invisible \()<0.26\) ( 0.17 expected).
\({ }^{4}\) AABOUD 19Q search for single \(t+E_{T}\) at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data; no signal; limits set in \(\sigma\) or coupling vs. mass plane for simplified models.
\({ }^{5}\) AABOUD 19V review ATLAS results from 7, 8 and 13 TeV searches for mediator-based DM and DE scalar which couples to gravity; no signal: limits set for large variety of simplified models.
\({ }^{6}\) BANERJEE 19 search for dark photon via eN \(\rightarrow\) e \(N+E\) in NA64; no signal, limits placed in kinetic mixing \(\epsilon\) vs. \(\mathrm{m}(\mathrm{DM})\) plane for \(\mathrm{m}(\mathrm{DM}) \sim 0.001-1 \mathrm{GeV}\).
7 SIRUNYAN 19AN search at 13 TeV with \(35.9 \mathrm{fb}^{-1}\) for \(p p \rightarrow H \chi \chi \rightarrow b \bar{b} E_{T}\); no signal: limits set in the context of a 2HDM + pseudoscalar (a) model and a baryonic \(Z^{\prime}\)
8 model. \(\mu j E_{T}\) with \(77.4 \mathrm{fb}^{-1}, 13 \mathrm{TeV}\); no signal: limits placed in \(\mathrm{m}(\chi)\) vs. \(\mathrm{m}(\mathrm{LQ})\) plane. Model dependent limits on DM mass up to 600 GeV depending on \(m(L Q)\) placed.
\({ }^{9}\) SIRUNYAN 19BO search for vector boson fusion \(V V \rightarrow q q H\) with \(H \rightarrow \chi \chi\) at 13 TeV with \(38.2 \mathrm{fb}^{-1}\); no signal: limits placed for several models. Also search for \(H \rightarrow\) invisible at 7,8 , and 13 TeV ; no signal: limit placed on \(\mathrm{BF}<0.19\).
10 SIRUNYAN 19C search for DM via \(p p \rightarrow t \bar{t} \chi \chi\) at \(13 \mathrm{TeV}, 35.9 \mathrm{fb}^{-1}\); no signal; limits placed on coupling vs. mediator mass for various simplified models.
11 SIRUNYAN 190 search for \(p p \rightarrow \gamma\) at 13 TeV with \(35.9 \mathrm{fb}^{-1}\); no signal: limits placed on parameters of various models.
\({ }^{12}\) SIRUNYAN 19x search for \(p p \rightarrow t \bar{t} E_{T}\) and \(p p \rightarrow t E_{T}+\ldots\) at 13 TeV with 35.9 \(\mathrm{fb}^{-1}\); no signal: limits placed on \(\chi\) production \(\sigma\) for various simplified models with \(\mathrm{m}(\chi)\) \({ }_{13}=1 \mathrm{GeV}\).
\({ }^{13}\) AABOUD 18 search for \(p p \rightarrow Z+E_{T}\) with \(Z \rightarrow \ell \ell\) at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data. Limits set for simplified models.
14 AABOUD 18A search for \(p p \rightarrow t \bar{t} E_{T}\) or \(p p \rightarrow b \bar{b} E_{T}\) at \(13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}\) of data. Limits set for simplified models.
15 AABOUD 18CA search for \(p p \rightarrow V \chi \chi\) with \(V \rightarrow j j\) at \(13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}\); no signal; limits set in \(m(D M)\) vs \(m\) (mediator) simplified model plane
\({ }^{16}\) AABOUD 181 search for \(p p \rightarrow j+E_{T}\) at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data. Limits set for simplified models with pair-produced weakly interacting dark-matter candidates.
17 AGUILAR-AREVALO 18B search for WIMP production in MiniBooNE \(p\) beam dump; no signal; limits set for \(\mathrm{m}(\chi) \sim 5-50 \mathrm{MeV}\) in vector portal DM model.
18 KHACHATRYAN 18 search for \(p p \rightarrow Z(\ell \ell)+E_{T}\); no signal ; limits set on effective dark matter interactions and other exotic physics models.
19 SIRUNYAN 18BF search for \(p p \rightarrow t \not{ }_{T}\) at 13 TeV and \(36 \mathrm{fb}^{-1}\); no signal; limits placed on DM models involving a flavor changing neutral current, scalar resonance decaying to top quark and DM.
20 SIRUNYAN 18Bo search for high mass dijet resonances at 13 TeV and \(36 \mathrm{fb}^{-1}\); no signal: limits placed on various models, including simplified DM models involving a spin \(=1 Z^{\prime}\) mediator.
21 SIRUNYAN 18BV search for \(p p \rightarrow Z E_{T}\) at 13 TeV ; no signal, limits placed for various exotic physics models including DM.
22 SIRUNYAN 18C search for new physics in \(p p \rightarrow\) final states with two oppositely charged leptons at 13 TeV with \(35.9 \mathrm{fb}^{-1}\). Limits placed on m(mediator) and top squark for various simplified models.
\({ }^{23}\) SIRUNYAN 18 CU search for \(p p \rightarrow Z E_{T}\) at 13 TeV and \(2.3 \mathrm{fb}^{-1}\); no signal: limits placed for various exotic models including DM.
24 SIRUNYAN 18DH search for \(p p \rightarrow \chi \chi h ; h \rightarrow \gamma \gamma\) or \(\tau \bar{\tau}\) at \(13 \mathrm{TeV}, 35.9 \mathrm{fb}^{-1}\); no signal; limits placed on massive boson mediator \(z^{\prime}\) in the context of \(z^{\prime}+2\) HDM and baryonic \(Z^{\prime}\) models. Limits also cast in terms of spin-independent WIMP-nucleon cross section for masses \(1-200 \mathrm{GeV}\).
25 SIRUNYAN 18 S search for \(p p \rightarrow\) jets \(E_{T}\) at 13 TeV ; no signal: limits placed on simplified dark matter models, on the branching ratio of the Higgs boson to invisible particles, and on several other exotic physics models including fermion portal DM.
\({ }^{26}\) AABOUD 17A search for \(H \rightarrow b \bar{b}+E_{T}\). See Fig. 4b for limits set on VB mediator vs WIMP mass.
\({ }^{27}\) AABOUD 17AM search for \(p p \rightarrow Z^{\prime} \rightarrow A h \rightarrow h(b \bar{b})+E_{\underline{T}}\) at 13 TeV . Limits set in \(\mathrm{m}\left(Z^{\prime}\right)\) vs. \(\mathrm{m}(A)\) plane and on the visible cross section of \(h(b \bar{b})+E_{T}\) events in bins of \(\varepsilon_{T}\).
28 AABOUD 17AQ search for WIMP in \(p p \rightarrow h(\gamma \gamma)+E_{T}\) in \(36.1 \mathrm{fb}^{-1}\) of data. Limits on the visible cross section are also provided. Model dependent limits on spin independent DM - Nucleon cross-section are also presented, which are more stringent than those from DM - Nucleon cross-section are also presented, which
direct searches for DM mass smaller than 2.5 GeV .
\({ }^{29}\) AABOUD 17BD search for \(p p \rightarrow\) jet(s) \(+E_{T}\) at 13 TeV with \(3.2 \mathrm{fb}^{-1}\) of data. Limits set for simplified models. Observables corrected for detector effects can be used to constrain other models.
30 AABOUD 17R, for an axial vector mediator in the s-channel, excludes \(m\) (mediator) < \(750-1200 \mathrm{GeV}\) for \(m\) (DM) \(<230-480 \mathrm{GeV}\), depending on the couplings.
31 AGUILAR-AREVALO 17A search for DM produced in 8 GeV proton collisions with steel beam dump followed by DM-nucleon scattering in MiniBooNE detector. Limit placed on DM cross section parameter \(Y<2 \times 10^{-8}\) for \(\alpha_{D}=0.5\) and for \(0.01<m(D M)<\) 0.3 GeV .

32 BANERJEE 17 search for dark photon invisible decay via e \(N\) scattering; exclude m( \(\gamma^{\prime}\) ) \(<100 \mathrm{MeV}\) as an explanation of \(\left(g_{\mu}-2\right)\) muon anomaly.
33 KHACHATRYAN 17A search for WIMPs in forward jets \(+E_{T}\) channel with \(18.5 \mathrm{fb}^{-1}\) at 8 TeV ; limits set in effective theory model, Fig. 3.
\({ }^{34}\) KHACHATRYAN 17F search for \(H \rightarrow\) invisibles in \(p p\) collisions at 7,8 , and 13 TeV ; place limits on Higgs portal DM.
\({ }^{35}\) SIRUNYAN 17 search for \(p p \rightarrow Z+E_{T}\) with \(2.3 \mathrm{fb}^{-1}\) at 13 TeV ; no signal seen; limits placed on WIMPs and unparticles.
\({ }^{36}\) SIRUNYAN 17AP search for \(p p \rightarrow Z^{\prime} \rightarrow A h \rightarrow h+\) MET with \(h \rightarrow b \bar{b}\) or \(\gamma \gamma\) and \(A \rightarrow \chi \chi\) with \(2.3 \mathrm{fb}^{-1}\) at 13 TeV . Limits set in \(\mathrm{m}\left(Z^{\prime}\right)\) vs. \(\mathrm{m}(A)\) plane.
37 SIRUNYAN 17AQ search for \(p p \rightarrow \gamma+\) MET at 13 TeV with \(12.9 \mathrm{fb}^{-1}\). Limits derived for simplified DM models, effective electroweak-DM interaction and Extra Dimensions models.

38 SIRUNYAN 17BB search for WIMPs via \(p p \rightarrow t \bar{t}+E_{T}, p p \rightarrow b \bar{b}+E_{T}\) at 13 TeV with \(2.2 \mathrm{fb}^{-1}\). Limits derived for various simplified models.
\({ }^{39}\) SIRUNYAN 17 G search for \(p p \rightarrow j+E_{T}\) with \(12.9 \mathrm{fb}^{-1}\) at 13 TeV ; limits placed on WIMP mass/mediators in DM simplified models.
40 SIRUNYAN \(17 U\) search for WIMPs/unparticles via \(p p \rightarrow Z \chi \chi, Z \rightarrow \ell \bar{\ell}\) at 13 TeV with \(2.3 \mathrm{fb}^{-1}\). Limits derived for various simplified models.
\({ }^{41}\) AABOUD 16AD place limits on \(V V X X\) effective theory via search for hadronic \(W\) or \(Z\) plus WIMP pair production. See Fig. 5.
42 AAD 16AF search for \(V V \rightarrow(H \rightarrow\) WIMP pair \()+\) forward jets with \(20.3 \mathrm{fb}^{-1}\) at 8 TeV ; set limits in Higgs portal model, Fig. 8
43 AAD 16AG search for lepton jets with \(20.3 \mathrm{fb}^{-1}\) of data at 8 TeV ; Fig. 13 excludes dark photons around \(0.1-1 \mathrm{GeV}\) for kinetic mixing \(10^{-6}-10^{-2}\).
\({ }^{44}\) AAD 16M search with \(20.3 \mathrm{fb}^{-1}\) of data at \(8 \mathrm{TeV} p p\) collisions; limits placed on EFT model (Fig. 7) and simplified \(Z^{\prime}\) model (Fig. 6).
45 KHACHATRYAN 16 Bz search for jet(s) \(+E_{T}\) in \(19.7 \mathrm{fb}^{-1}\) at 8 TeV ; limits set for variety of simplified models.
\({ }^{46}\) KHACHATRYAN 16CA search for WIMPs via jet(s) \(+E_{T}\) using razor variable; require mediator scale \(>1 \mathrm{TeV}\) for various effective theories.
47 KHACHATRYAN 16 N search for \(\gamma+\) WIMPs in \(19.6 \mathrm{fb}^{-1}\) at 8 TeV ; limits set on SI and SD WIMP-p scattering in Fig. 3.
48 AAD 15AS search for events with one or more bottom quark and missing \(E_{T}\), and also events with a top quark pair and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\) with \(L\) \(=20.3 \mathrm{fb}^{-1}\). See their Figs. 5 and 6 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-700 \mathrm{GeV}\).
49 AAD 15BH search for events with a jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See their Fig. 12 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-1200 \mathrm{GeV}\).
50 AAD 15CF search for events with a \(H^{0}(\rightarrow \gamma \gamma)\) and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See paper for limits on the strength of some contact interactions containing \(X^{0}\) and the Higgs fields.
51 AAD 15 CS search for events with a photon and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=\) 8 TeV with \(L=20.3 \mathrm{fb}^{-1}\). See their Fig. 13 (see also erratum) for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-1000 \mathrm{GeV}\).
52 KHACHATRYAN 15AG search for events with a top quark pair and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=19.7 \mathrm{fb}^{-1}\). See their Fig. 8 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-200 \mathrm{GeV}\).
53 KHACHATRYAN 15AL search for events with a jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\) with \(L=19.7 \mathrm{fb}^{-1}\). See their Fig. 5 and Tables 4-6 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-1000 \mathrm{GeV}\).
54 KHACHATRYAN 15T search for events with a lepton and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=19.7 \mathrm{fb}^{-1}\). See their Fig. 17 for translated limits on \(X^{0}\)-proton
 with \(L=20.3 \mathrm{fb}^{-1}\). See their Fig. 4 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-1500 \mathrm{GeV}\).
56 AAD 14BK search for hadronically decaying \(W, z\) in association with \(E_{T}\) in \(20.3 \mathrm{fb}^{-1}\) at \(8 \mathrm{TeV} p p\) collisions. Fig. 5 presents exclusion results for SI and SD scattering cross section. In addition, cross section limits on the anomalous production of \(W\) or \(Z\) bosons with large missing transverse momentum are also set in two fiducial regions.
\({ }^{57}\) AAD 14 K search for events with a \(Z\) and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See their Fig. 5 and 6 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-10^{3} \mathrm{GeV}\).
58 AAD 140 search for \(Z H^{0}\) production with \(H^{0}\) decaying to invisible final states. See their Fig. 4 for translated limits on \(X^{0}\)-nucleon cross section for \(m=1-60 \mathrm{GeV}\) in Higgs-portal \(X^{0}\) scenario.
\(5^{59}\) AAD 13AD search for events with a jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=4.7 \mathrm{fb}^{-1}\). See their Figs. 5 and 6 for translated limits on \(X^{0}\)-nucleon cross 60 section for \(m=1-1300 \mathrm{GeV}\).
\({ }^{60}\) AAD 13C search for events with a photon and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=\) 7 TeV with \(L=4.6 \mathrm{fb}^{-1}\). See their Fig. 3 for translated limits on \(X^{0}\)-nucleon cross 61 section for \(m=1-1000 \mathrm{GeV}\).
\({ }^{61}\) AALTONEN 12 K search for events with a top quark and missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=1.96 \mathrm{TeV}\) with \(L=7.7 \mathrm{fb}^{-1}\). Upper limits on \(\sigma\left(t X^{0}\right)\) in the range \(0.4-2 \mathrm{pb}\) \((95 \% \mathrm{CL})\) is given for \(m_{X^{0}}=0-150 \mathrm{GeV}\).
62 AALTONEN 12 M search for events with a jet and missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}\) \(=1.96 \mathrm{TeV}\) with \(L=6.7 \mathrm{fb}^{-1}\). Upper limits on the cross section in the range \(2-10 \mathrm{pb}\) ( \(90 \% \mathrm{CL}\) ) is given for \(m_{X^{0}}=1-300 \mathrm{GeV}\). See their Fig. 2 for translated limits on \(X^{0}\)-nucleon cross section.
\({ }^{63}\) CHATRCHYAN 12AP search for events with a jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=5.0 \mathrm{fb}^{-1}\). See their Fig. 4 for translated limits on \(X^{0}\)-nucleon cross section for \(m_{X^{0}}=0.1-1000 \mathrm{GeV}\).
\({ }^{64}\) CHATRCHYAN 12 T search for events with a photon and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=5.0 \mathrm{fb}^{-1}\). Upper limits on the cross section in the range \(13-15 \mathrm{fb}(90 \% \mathrm{CL})\) is given for \(m_{X^{0}}=1-1000 \mathrm{GeV}\). See their Fig. 2 for translated limits on \(X^{0}\)-nucleon cross section.

\section*{REFERENCES FOR WIMP and Dark Matter Searches}
\begin{tabular}{|c|c|c|}
\hline AKERIB & 20 & PR D101 012003 \\
\hline AABOUD & 19AA & EPJ C79 120 \\
\hline AABOUD & 19AI & PL B793 499 \\
\hline AABOUD & 19AL & PRL 122231801 \\
\hline AABOUD & 19Q & JHEP 1905041 \\
\hline AABOUD & 19V & JHEP 1905142 \\
\hline ABDELHAME... & & EPJ C79 630 \\
\hline ABDELHAME... & 19A & PR D100 102002 \\
\hline ABE & 19 & PL B789 45 \\
\hline ABEYSEKARA & 19 & JCAP 1907022 \\
\hline ABRAMOFF & 19 & PRL 122161801 \\
\hline ADHIKARI & 19 & PRL 123031302 \\
\hline AGNESE & 19A & PR D99 062001 \\
\hline AGUILAR-AR... & 19A & PRL 123181802 \\
\hline
\end{tabular}
D.S. Akerib et al.
M. Aaboud et al.
A.H. Abdelhameed et al.
A.H. Abdelhameed et al.
K. Abe et al.
A.U. Abeysekara et al.
O. Abramoff et al.
G. Adhikari et al.
R. Agnese et al.
A. Aguilar-Arevalo et al.

(LUX Collab.)
(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CRESST Collab.) (CRESST Collab.)
(XMASS Collab.) (XMASS Collab.)
(HAWC Collab.) (SENSEI Collab.)
OSINE-100 Collab.) (CDMS Collab.)
(DAMIC Collab.) (DAMIC Collab.)

Searches Particle Listings

\section*{WIMP and Dark Matter Searches}



\section*{Other Particle Searches}

OMITTED FROM SUMMARY TABLE

\section*{OTHER PARTICLE SEARCHES}

Revised February 2018 by K. Hikasa (Tohoku University).
We collect here those searches which do not appear in any other search categories. These are listed in the following order:
- Concentration of stable particles in matter
- General new physics searches
- Limits on jet-jet resonance in hadron collisions
- Limits on neutral particle production at accelerators
- Limits on charged particles in \(e^{+} e^{-}\)collisions
- Limits on charged particles in hadron reactions
- Limits on charged particles in cosmic rays
- Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including \(W_{R}, W^{\prime}, Z^{\prime}\), leptoquarks, axigluons), axions (including pseudoGoldstone bosons, Majorons, familons), WIMPs, heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness.

We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

\section*{CONCENTRATION OF STABLE PARTICLES IN MATTER}

Concentration of Heavy (Charge +1 ) Stable Particles in Matter
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALUE & CL\% & DOCUMENT ID & & TECN & COMMENT \\
\hline \multicolumn{6}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - -} \\
\hline \(<4 \times 10^{-17}\) & 95 & 1 YAMAGATA & 93 & SPEC & Deep sea water, \(M=5-1600 m_{p}\) \\
\hline \(<6 \times 10^{-15}\) & 95 & 2 VERKERK & 92 & SPEC & Water, \(M=10^{5}\) to \(3 \times\) \(10^{7} \mathrm{GeV}\) \\
\hline \(<7 \times 10^{-15}\) & 95 & 2 VERKERK & 92 & SPEC & Water, \(M=10^{4}, 6 \times\) \(10^{7} \mathrm{GeV}\) \\
\hline \(<9 \times 10^{-15}\) & 95 & 2 VERKERK & 92 & SPEC & Water, \(M=10^{8} \mathrm{GeV}\) \\
\hline \(<3 \times 10^{-23}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & Water, \(M=1000 m_{p}\) \\
\hline \(<2 \times 10^{-21}\) & 90 & 3 HEMMICK & 90 & SPEC & Water, \(M=5000 m_{p}\) \\
\hline \(<3 \times 10^{-20}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & Water, \(M=10000 m_{p}\) \\
\hline \(<1 . \times 10^{-29}\) & & SMITH & 82B & SPEC & Water, \(M=30-400 m_{p}\) \\
\hline \(<2 . \times 10^{-28}\) & & SMITH & 82B & SPEC & Water, \(M=12-1000 m_{p}\) \\
\hline \(<1 . \times 10^{-14}\) & & SMITH & 82B & SPEC & Water, \(M>1000 m_{p}\) \\
\hline \(<(0.2-1.) \times 10^{-21}\) & & SMITH & 79 & SPEC & Water, \(M=6-350 m_{p}\) \\
\hline
\end{tabular}
\({ }^{1}\) YAMAGATA 93 used deep sea water at 4000 m since the concentration is enhanced in deep sea due to gravity.
2 VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle \(\left(5 \times 10^{6} \mathrm{GeV}\right)\), assuming the local density, \(\rho=0.3 \mathrm{GeV} / \mathrm{cm}^{3}\), and the mean velocity \(\langle v\rangle=300 \mathrm{~km} / \mathrm{s}\).
\({ }^{3}\) See HEMMICK 90 Fig. 7 for other masses 100-10000 \(m_{p}\).

\section*{Concentration of Heavy Stable Particles Bound to Nuclei}
VALUE CL\% DOCUMENT ID TECN COMMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(<1.2 \times 10^{-11}\) & 95 & 1 JAVORSEK & 01 & SPEC & \(\mathrm{Au}, \mathrm{M}=3 \mathrm{GeV}\) \\
\hline \(<6.9 \times 10^{-10}\) & 95 & 1 JAVORSEK & 01 & SPEC & \(\mathrm{Au}, \mathrm{M}=144 \mathrm{GeV}\) \\
\hline \(<1 \times 10^{-11}\) & 95 & 2 JAVORSEK & 01B & SPEC & \(\mathrm{Au}, \mathrm{M}=188 \mathrm{GeV}\) \\
\hline \(<1 \times 10^{-8}\) & 95 & 2 JAVORSEK & 01B & SPEC & \[
\begin{gathered}
\mathrm{Au}, M=1669 \\
\mathrm{GeV}
\end{gathered}
\] \\
\hline \(<6 \times 10^{-9}\) & 95 & 2 JAVORSEK & 01B & SPEC & \(\mathrm{Fe}, \mathrm{M}=188 \mathrm{GeV}\) \\
\hline \(<1 \times 10^{-8}\) & 95 & 2 JAVORSEK & 01B & SPEC & Fe, \(M=647 \mathrm{GeV}\) \\
\hline \(<4 \times 10^{-20}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & C, \(M=100 m_{p}\) \\
\hline \(<8 \times 10^{-20}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & C, \(M=1000 m_{p}\) \\
\hline \(<2 \times 10^{-16}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & C, \(M=10000 m_{p}\) \\
\hline \(<6 \times 10^{-13}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & \(\mathrm{Li}, M=1000 m_{p}\) \\
\hline \(<1 \times 10^{-11}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & \(\mathrm{Be}, M=1000 m_{p}\) \\
\hline \(<6 \times 10^{-14}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & B, \(M=1000 m_{p}\) \\
\hline \(<4 \times 10^{-17}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & \(\mathrm{O}, M=1000 m_{p}\) \\
\hline \(<4 \times 10^{-15}\) & 90 & \({ }^{3}\) HEMMICK & 90 & SPEC & \(\mathrm{F}, M=1000 m_{p}\) \\
\hline \(<1.5 \times 10^{-13} /\) nucleon & 68 & 4 NORMAN & 89 & SPEC & \({ }^{206} \mathrm{~Pb} X^{-}\) \\
\hline \(<1.2 \times 10^{-12} /\) nucleon & 68 & 4 NORMAN & 87 & SPEC & \({ }^{56,58} \mathrm{Fe} X^{-}\) \\
\hline
\end{tabular}

1 JAVORSEK 01 search for (neutral) SIMPs (strongly interacting massive particles) bound 2 to Au nuclei. Here \(M\) is the effective SIMP mass.
2 JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here \(M\) is the mass of the anomalous nucleus. See also JAVORSEK 02.
\({ }^{3}\) See HEMMICK 90 Fig. 7 for other masses \(100-10000 m_{p}\).
\({ }^{4}\) Bound valid up to \(m_{X^{-}} \sim 100 \mathrm{TeV}\).

\section*{Other Particle Searches}

\section*{GENERAL NEW PHYSICS SEARCHES}

This subsection lists some of the search experiments which look for general signatures characteristic of new physics, independent of the framework of a specific model.

The observed events are compatible with Standard Model expectation, unless noted otherwise.
\begin{tabular}{|c|c|c|c|c|}
\hline VALUE & \multicolumn{2}{|l|}{DOCUMENT ID} & TECN & COMMENT \\
\hline \multicolumn{5}{|l|}{- - We do not use the following data for averages, fits, limits, etc. - .} \\
\hline & 1 SIRUNYAN & 20A & CMS & SUSY/LQ search with mT2 or long-lived charged particles \\
\hline & \({ }_{2}^{2}\) ALCANTARA & 19 & & Auger, superheavy DM \\
\hline & 3 PORAYKO & 18 & PPTA & pulsar timing fuzzy DM search \\
\hline & \({ }^{4}\) AAD & 15AT & ATLS & \(t+E_{T}\) \\
\hline & \({ }^{5} \mathrm{KHACHATRY} . .\). & . 15 F & CMS & \(t+E_{T}\) \\
\hline & \({ }^{6}\) AALTONEN & 14J & CDF & \(W+2\) jets \\
\hline & \({ }^{7}\) AAD & 13A & ATLS & \(W W \rightarrow \ell \nu \ell^{\prime} \nu\) \\
\hline & \({ }^{8}\) AAD & 13C & ATLS & \(\gamma+E_{T}\) \\
\hline & \({ }^{9}\) AALTONEN & 131 & CDF & Delayed \(\gamma+\mathbb{E}_{T}\) \\
\hline & \multicolumn{2}{|l|}{10 CHATRCHYAN 13} & CMS & \(\ell^{+} \ell^{-}+\)jets \(+E_{T}\) \\
\hline & 11 AAD & 12C & ATLS & \(t \bar{t}+E_{T}\) \\
\hline & 12 AALTONEN & 12M & CDF & jet \(+E_{T}\) \\
\hline & 13 CHATRCHYAN & 12 AP & CMS & jet \(+E_{T}\) \\
\hline & 14 CHATRCHYAN & 12Q & CMS & \(Z+\) jets \(+E_{T}\) \\
\hline & 15 CHATRCHYAN & 12 T & CMS & \(\gamma+E_{T}\) \\
\hline & \({ }^{16}\) AAD & 11 s & ATLS & jet \(+E_{T}\) \\
\hline & 17 AALTONEN & 11AF & CDF & \(\ell^{ \pm} \ell^{ \pm}\) \\
\hline & 18 CHATRCHYAN & 11C & CMS & \(\ell^{+} \ell^{-}+\)jets \(+E_{T}\) \\
\hline & 19 CHATRCHYAN & 110 & CMS & jet \(+E_{T}\) \\
\hline & \({ }^{20}\) AALTONEN & 10aF & CDF & \(\gamma \gamma+\ell, E_{T}\) \\
\hline & 21 AALTONEN & 09AF & CDF & \(\ell \gamma b E_{T}\) \\
\hline & 22 AALTONEN & 09G & CDF & \(\ell \ell \ell \nabla_{T}\) \\
\hline
\end{tabular}
\({ }^{1}\) SIRUNYAN 20A search for SUSY and LQ production using \(m\) T2 or presence of longlived charged particle; no signal, limits placed in various mass planes for different BSM scenarios and various assumed lifetimes.
2 ALCANTARA 19 place limits on \(m\) (WIMPzilla \(=X\) ) vs lifetime from upper bound on ultra high energy cosmic rays at Auger experiment: e.g. \(\tau(X)<4 \times 10^{22}\) yr for \(\mathrm{m}(X)=\) \(10^{16} \mathrm{GeV}\).
3 PORAYKO 18 search for deviations in the residuals of pulsar timing data using PPTA. No signal observed. Limits set on fuzzy DM with \(3 \times 10^{-24}<\mathrm{m}(\mathrm{DM})<2 \times 10^{-22}\)
\({ }^{4} \mathrm{eV}\). \({ }^{\mathrm{AAD}} 15 \mathrm{AT}\) search for events with a top quark and mssing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}\) \(=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\).
\({ }^{5}\) KHACHATRYAN 15 F search for events with a top quark and mssing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\) with \(L=19.7 \mathrm{fb}^{-1}\).
\({ }^{6}\) AALTONEN 14J examine events with a \(W\) and two jets in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.96\) TeV with \(L=8.9 \mathrm{fb}^{-1}\). Invariant mass distributions of the two jets are consistent with the Standard Model expectation.
\({ }^{7}\) AAD 13A search for resonant \(W W\) production in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L\) \(=4.7 \mathrm{fb}^{-1}\)
\({ }^{8}\) AAD 13 C search for events with a photon and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7\) TeV with \(L=4.6 \mathrm{fb}^{-1}\).
\({ }^{9}\) AALTONEN 13। search for events with a photon and missing \(E_{T}\), where the photon is detected after the expected timing, in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=1.96 \mathrm{TeV}\) with \(L=6.3\) \(\mathrm{fb}^{-1}\). The data are consistent with the Standard Model expectation.
10 CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(L=4.98 \mathrm{fb}^{-1}\).
\({ }^{11}\) AAD 12 C search for events with a \(t \bar{t}\) pair and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7\) TeV with \(L=1.04 \mathrm{fb}^{-1}\).
12 AALTONEN 12 M search for events with a jet and missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}\) \(=1.96 \mathrm{TeV}\) with \(L=6.7 \mathrm{fb}^{-1}\).
\({ }^{13}\) CHATRCHYAN 12AP search for events with a jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=5.0 \mathrm{fb}^{-1}\).
\({ }^{14}\) CHATRCHYAN 12Q search for events with a \(Z\), jets, and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=4.98 \mathrm{fb}^{-1}\).
\({ }^{15}\) CHATRCHYAN 12 t search for events with a photon and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=5.0 \mathrm{fb}^{-1}\).
\({ }^{16}\) AAD 11 s search for events with one jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=7\) TeV with \(L=33 \mathrm{pb}^{-1}\).
\({ }^{17}\) AALTONEN 11 AF search for high- \(p_{T}\) like-sign dileptons in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=\) 1.96 TeV with \(L=6.1 \mathrm{fb}^{-1}\).

18 CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=34 \mathrm{pb}^{-1}\).
\({ }^{19}\) CHATRCHYAN 11 u search for events with one jet and missing \(E_{T}\) in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=36 \mathrm{pb}^{-1}\).
\({ }^{20}\) AALTONEN 10AF search for \(\gamma \gamma\) events with \(e, \mu\), \(\tau\), or missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.96 \mathrm{TeV}\) with \(L=1.1-2.0 \mathrm{fb}^{-1}\).
\({ }^{21}\) AALTONEN 09af search for \(\ell \gamma b\) events with missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=\) 1.96 TeV with \(L=1.9 \mathrm{fb}^{-1}\). The observed events are compatible with Standard Model expectation including \(t \bar{t} \gamma\) production.
\({ }^{22}\) AALTONEN 09G search for \(\mu \mu \mu\) and \(\mu \mu e\) events with missing \(E_{T}\) in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.96 \mathrm{TeV}\) with \(L=976 \mathrm{pb}^{-1}\).

\section*{LIMITS ON JET-JET RESONANCES}

\section*{Heavy Particle Production Cross Section}

Limits are for a particle decaying to two hadronic jets. Units(pb) CL\% Mass(GeV) DOCUMENTID TECN COMMENT
- • We do not use the following data for averages, fits, limits, etc. • •

\begin{tabular}{lllll}
\(<44\) & 95 & 400 & 31 ABE & 93 G CDF \\
\hline
\end{tabular}
\(<795600 \quad 31 \mathrm{ABE} \quad 93 \mathrm{G}\) CDF \(1.8 \mathrm{TeV} p \bar{p} \rightarrow 2\) jets
\({ }^{1}\) AABOUD 19AJ search for low mass dijet resonance in \(p p \rightarrow \gamma X, X \rightarrow j j\) at 13 TeV with \(79.8 \mathrm{fb}^{-1}\) of data; no signal found; limits placed on \(Z^{\prime}\) model in coupling vs. \(\mathrm{m}\left(Z^{\prime}\right)\) plane.
2 SIRUNYAN 19B search for low mass resonance \(p p \rightarrow j A, A \rightarrow b \bar{b}\) at 13 TeV using 35.9
\(\mathrm{fb}^{-1}\); no signal; exclude resonances \(50-350 \mathrm{GeV}\) depending on production and decay.
\({ }^{3}\) SIRUNYAN 19CD search for \(p p \rightarrow z^{\prime} \gamma, z^{\prime} \rightarrow j j\) with fat jet \((j j)\); no signal, limits placed in \(\mathrm{m}\left(Z^{\prime}\right)\) vs. coupling plane for \(Z^{\prime}\) masses from 10 to 125 GeV .
\({ }^{4}\) AABOUD 18AD search for new heavy particle \(Y \rightarrow H X \rightarrow(b b)+(q q)\). No signal observed. Limits set on \(m(Y)\) vs. \(m(X)\) in the ranges of \(m(Y)\) in 1-4 TeV and \(m(X)\) in observed. Limi
\(50-1000 \mathrm{GeV}\).
\({ }^{5} \begin{aligned} & 50-1000 \mathrm{GeV} \text { AABOUD } 18 \mathrm{CK} \text { search for SUSY Higgsinos in gauge-mediation via } p p \rightarrow b b b+E_{T}\end{aligned}\) at 13 TeV using two complementary analyses with \(24.3 / 36.1 \mathrm{fb}^{-1}\); no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the \(95 \%\) confidence level.
\({ }^{6}\) AABOUD 18CL search for \(p p \rightarrow\) vector-like quarks \(\rightarrow\) jets at 13 TeV with \(36 \mathrm{fb}^{-1}\); no signal seen; limits set on various VLQ scenarios. For pure \(B \rightarrow H b\) or \(T \rightarrow H t\), set the mass limit \(\mathrm{m}>1010 \mathrm{GeV}\).
\({ }^{7}\) AABOUD 18 N search for dijet resonance at Atlas with 13 TeV and \(29.3 \mathrm{fb}^{-1}\); limits set on \(\mathrm{m}\left(Z^{\prime}\right)\) in the mass range of \(450-1800 \mathrm{GeV}\).
\({ }^{8}\) SIRUNYAN 18DJ search for \(p p \rightarrow Z Z\) or \(W Z \rightarrow \ell \bar{\ell} j j\) resonance at \(13 \mathrm{TeV}, 35.9\) \(\mathrm{fb}^{-1}\); no signal; limits set in the \(400-4500 \mathrm{GeV}\) mass range, exclusion of \(W^{\prime}\) up to 2270 GeV in the HVT model A, and up to 2330 GeV for HVT model B. WED bulk graviton exclusion up to 925 GeV .
\({ }^{9}\) SIRUNYAN 18DY search for \(p p \rightarrow R R ; R \rightarrow j j\) two dijet resonances at 13 TeV 35.9 \(\mathrm{fb}^{-1}\); no signal; limits placed on RPV top-squark pair production.
10 KHACHATRYAN 17w search for dijet resonance in \(12.9 \mathrm{fb}^{-1}\) data at 13 TeV ; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc.
11 KHACHATRYAN \(17 Y\) search for \(p p \rightarrow(8-10) j\) in \(19.7 \mathrm{fb}^{-1}\) at 8 TeV . No signal seen. Limits set on colorons, axigluons, RPV, and SUSY.
12 SIRUNYAN 17F measure \(p p \rightarrow j j\) angular distribution in \(2.6 \mathrm{fb}^{-1}\) at 13 TeV ; limits set on LEDs and quantum black holes.
13 AABOUD 16 search for resonant dijets including one or two \(b\)-jets with \(3.2 \mathrm{fb}^{-1}\) at 13 TeV ; exclude excited \(b^{*}\) quark from \(1.1-2.1 \mathrm{TeV}\); exclude leptophilic \(Z^{\prime}\) with SM couplings from \(1.1-1.5 \mathrm{TeV}\).
14 AAD 16 N search for \(\geq 3\) jets with \(3.6 \mathrm{fb}^{-1}\) at 13 TeV ; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11).
15 AAD 16 S search for high mass jet-jet resonance with \(3.6 \mathrm{fb}^{-1}\) at 13 TeV ; exclude portions of excited quarks, \(W^{\prime}, Z^{\prime}\) and contact interaction parameter space.
\({ }^{16} \mathrm{KHACHATRYAN} 16 \mathrm{~K}\) search for dijet resonance in \(2.4 \mathrm{fb}^{-1}\) data at 13 TeV ; see Fig. 3 for limits on axigluons, diquarks etc.
17 KHACHATRYAN 16L use data scouting technique to search for \(j j\) resonance on 18.8 \(\mathrm{fb}^{-1}\) of data at 8 TeV . Limits on the coupling of a leptophobic \(Z^{\prime}\) to quarks are set, improving on the results by other experiments in the mass range between \(500-800 \mathrm{GeV}\).
18 AAD 13D search for dijet resonances in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(L=4.8\) \(\mathrm{fb}^{-1}\). The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range \(m=1.0-4.0 \mathrm{TeV}\).
\({ }^{19}\) AALTONEN 13 R search for production of a pair of jet-jet resonances in \(p \bar{p}\) collisions at \(E_{\text {cm }}=1.96 \mathrm{TeV}\) with \(L=6.6 \mathrm{fb}^{-1}\). See their Fig. 5 and Tables I, II for cross section \({ }_{\text {limits. }}\)
\({ }^{20}\) CHATRCHYAN 13A search for \(q q, q g\), and \(g g\) resonances in \(p p\) collisions at \(E_{\mathrm{cm}}=\) 7 TeV with \(L=4.8 \mathrm{fb}^{-1}\). See their Fig. 3 and Table 1 for limits on resonance cross section in the range \(m=1.0-4.3 \mathrm{TeV}\).
\({ }^{21}\) CHATRCHYAN 13A search for \(b \bar{b}\) resonances in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L\) \(=4.8 \mathrm{fb}^{-1}\). See their Fig. 8 and Table 4 for limits on resonance cross section in the range \(m=1.0-4.0 \mathrm{TeV}\).
\({ }^{22}\) AAD 12 s search for dijet resonances in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=1.0\) \(\mathrm{fb}^{-1}\). See their Fig. 3 and Table 2 for limits on resonance cross section in the range \(m\) \(=0.9-4.0 \mathrm{TeV}\).
\({ }^{23}\) CHATRCHYAN 12BL search for \(t \bar{t}\) resonances in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(L\) \(=4.4 \mathrm{fb}^{-1}\). See their Fig. 4 for limits on resonance cross section in the range \(m=\) 0.5-3.0 TeV.
\({ }^{24}\) AAD 11 AG search for dijet resonances in pp collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(\mathrm{L}=36 \mathrm{pb}^{-1}\). Limits on number of events for \(m=0.6-4 \mathrm{TeV}\) are given in their Table 3.
\({ }^{25}\) AALTONEN 11 m find a peak in two jet invariant mass distribution around 140 GeV in \(W+2\) jet events in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.96 \mathrm{TeV}\) with \(\mathrm{L}=4.3 \mathrm{fb}^{-1}\).
\({ }^{26}\) ABAZOV 11। search for two-jet resonances in \(W+2\) jet events in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}\) \(=1.96 \mathrm{TeV}\) with \(\mathrm{L}=4.3 \mathrm{fb}^{-1}\) and give limits \(\sigma<(2.6-1.3) \mathrm{pb}(95 \% \mathrm{CL})\) for \(m=\) \(110-170 \mathrm{GeV}\). The result is incompatible with AALTONEN 11m.
\({ }^{27}\) AAD 10 search for narrow dijet resonances in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with L \(=315 \mathrm{nb}^{-1}\). Limits on the cross section in the range \(10-10^{3} \mathrm{pb}\) is given for \(m=\) \(0.3-1.7 \mathrm{TeV}\).
\({ }^{28}\) KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(\mathrm{L}=2.9 \mathrm{pb}^{-1}\). Limits on the cross section in the range \(1-300 \mathrm{pb}\) is given for \(m=\) \(0.5-2.6 \mathrm{TeV}\) separately in the final states \(q q, q g\), and \(g g\).
\({ }^{29}\) ABE 99 F search for narrow \(b \bar{b}\) resonances in \(p \bar{p}\) collisions at \(E_{\mathrm{Cm}}=1.8 \mathrm{TeV}\). Limits on \(\sigma(p \bar{p} \rightarrow X+\) anything \() \times \mathrm{B}(X \rightarrow b \bar{b})\) in the range \(3-10^{3} \mathrm{pb}(95 \% \mathrm{CL})\) are given for \(m_{X}=200-750 \mathrm{GeV}\). See their Table I.
\({ }^{30}\) ABE 97G search for narrow dijet resonances in \(p \bar{p}\) collisions with \(106 \mathrm{pb}^{-1}\) of data at \(E_{\mathrm{cm}}=1.8 \mathrm{TeV}\). Limits on \(\sigma(\rho \bar{p} \rightarrow X+\) anything \() \cdot \mathrm{B}(X \rightarrow j j)\) in the range \(10^{4}-10^{-1} \mathrm{pb}\) \((95 \% \mathrm{CL})\) are given for dijet mass \(m=200-1150 \mathrm{GeV}\) with both jets having \(|\eta|<2.0\) and the dijet system having \(\left|\cos \theta^{*}\right|<0.67\). See their Table I for the list of limits. Supersedes ABE 93G.
\({ }^{31}\) ABE 93 G give cross section times branching ratio into light \((d, u, s, c, b)\) quarks for \(\Gamma\) \(=0.02 \mathrm{M}\). Their Table II gives limits for \(M=200-900 \mathrm{GeV}\) and \(\Gamma=(0.02-0.2) \mathrm{M}\).

\section*{LIMITS ON NEUTRAL PARTICLE PRODUCTION}

Production Cross Section of Radiatively-Decaying Neutral Particle

\({ }^{1}\) ALBERT 18 C search for WIMP annihilation in Sun to long-lived, radiatively decaying mediator; no signal; limits set on \(\sigma^{S D}(\chi p)\) assuming long-lived mediator.
\({ }^{2}\) KHACHATRYAN 17D search for new scalar resonance decaying to \(Z \gamma\) with \(Z \rightarrow e^{+} e^{-}\), \(\mu^{+} \mu^{-}\)in \(p p\) collisions at 8 and 13 TeV ; no signal seen.
\({ }^{3}\) AAD 16 Al search for excited quarks (EQ) and quantum black holes (QBH) in \(3.2 \mathrm{fb}{ }^{-1}\) at 13 TeV of data; exclude EQ below 4.4 TeV and QBH below 3.8 (6.2) TeV for RS1 (ADD) models. The visible cross section limit was obtained for 5 TeV resonance with \(\sigma_{G} / M_{G}=2 \%\).
4 KHACHATRYAN 16 m search for \(\gamma \gamma\) resonance using \(19.7 \mathrm{fb}^{-1}\) at 8 TeV and \(3.3 \mathrm{fb}^{-1}\) at 13 Tev ; slight excess at 750 GeV noted; limit set on RS graviton.
\({ }^{5}\) ABBIENDI OOD associated production limit is for \(m_{X^{0}}=90-188 \mathrm{GeV}, m_{Y^{0}}=0\) at \(E_{\mathrm{cm}}=189 \mathrm{GeV}\). See also their Fig. 9.
\({ }^{6}\) ABBIENDI 00D pair production limit is for \(m_{X^{0}}=45-94 \mathrm{GeV}, m_{Y 0}=0\) at \(E_{\mathrm{Cm}}=189\) GeV . See also their Fig. 12.
\({ }^{7}\) ACKERSTAFF 97 B associated production limit is for \(m_{X^{0}}=80-160 \mathrm{GeV}, m_{Y^{0}}=0\) from \(10.0 \mathrm{pb}^{-1}\) at \(E_{\mathrm{Cm}}=161 \mathrm{GeV}\). See their Fig. 3(a).
\({ }^{8}\) ACKERSTAFF 97 B pair production limit is for \(m_{X^{0}}=40-80 \mathrm{GeV}, m_{Y^{0}}=0\) from \(10.0 \mathrm{pb}^{-1}\) at \(E_{\mathrm{Cm}}=161 \mathrm{GeV}\). See their Fig. 3(b).

\section*{Heavy Particle Production Cross Section}
VALUE \(\left(\mathrm{cm}^{2} / N\right)\) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - •
\begin{tabular}{|c|c|c|c|}
\hline \({ }^{1}\) AABOUD & 19H & ATLS & di-photon-jet resonance \\
\hline 2 AABOUD & 19V & ATLS & ATLAS review, mediatorbased DM \\
\hline \({ }^{3}\) SIRUNYAN & 190 & CMS & \(p p \rightarrow \gamma E_{T}\) \\
\hline \({ }^{4}\) AABOUD & 18CJ & ATLS & \[
p p \rightarrow V V / \ell \ell / \ell \nu, V=
\] \\
\hline \({ }^{5}\) AABOUD & 18CM & ATLS & \(p p \rightarrow e \mu / e \tau / \mu \tau\) \\
\hline \({ }^{6}\) AAIJ & 18AJ & LHCB & \[
\begin{gathered}
p p \rightarrow A^{\prime} \rightarrow \mu^{+} \mu^{-} ; \\
\text {dark photon }
\end{gathered}
\] \\
\hline 7 BANERJEE & 18 & NA64 & \(e Z \rightarrow e Z X\left(A^{\prime}\right)\) \\
\hline \({ }^{8}\) BANERJEE & 18A & NA64 & \(e Z \rightarrow e Z A^{\prime}, A^{\prime} \rightarrow \chi \chi\) \\
\hline \({ }^{9}\) MARSICANO & 18 & E137 & \[
\underset{\text { decay }}{e^{+}} \rightarrow A^{\prime}(\gamma) \text { visible }
\] \\
\hline
\end{tabular}

22 ADAMS 97B KTEV \(m=1.2-5 \mathrm{GeV}\)
\(<10^{-36}-10^{-33} \quad 90 \quad 23\) GALLAS 95 TOF \(m=0.5-20 \mathrm{GeV}\)
\(<(4-0.3) \times 10^{-31} \quad 95 \quad 24\) AKESSON 91 CNTR \(m=0-5 \mathrm{GeV}\)

\({ }^{1}\) AABOUD 19 H searches for di-photon-jet resonance at 13 TeV and \(36.7 \mathrm{fb}^{-1}\) of data;
no signal found and limits placed on \(\sigma \cdot B R\) vs. mass plane for various simplified models.
\({ }^{2}\) AABOUD 19 V review ATLAS searches for mediator-based DM at 7,8 , and 13 TeV with up to \(37 \mathrm{fb}^{-1}\) of data; no signal found and limits set for wide variety of simplified models of dark matter.
\({ }^{3}\) SIRUNYAN 190 search for \(p p \rightarrow \gamma E_{T}\) at 13 TeV with \(36.1 \mathrm{fb}^{-1}\); no signal found and Simits set for various simplified models.
\({ }^{4}\) AABOUD 18CJ make multichannel search for \(p p \rightarrow V V / \ell \ell / \ell \nu, V=W, Z, h\) at 13 \(\mathrm{TeV}, 36.1 \mathrm{fb}^{-1}\); no signal found; limits placed for several BSM models.
\({ }^{5}\) AABOUD 18CM search for lepton-flavor violating resonance in \(p p \rightarrow e \mu / e \tau / \mu \tau\) at 13 \(\mathrm{TeV}, 36.1 \mathrm{fb}^{-1}\); no signal is found and limits placed for various BSM models.
\({ }^{6}\) AAIJ 18AJ search for prompt and delayed dark photon decay \(A^{\prime} \rightarrow \mu^{+} \mu^{-}\)at LHCb detector using \(1.6 \mathrm{fb}^{-1}\) of \(p p\) collisions at 13 TeV ; limits on \(\mathrm{m}\left(A^{\prime}\right)\) vs. kinetic mixing are set.
\({ }^{7}\) BANERJEE 18 search for dark photon \(A^{\prime} / 16.7 \mathrm{MeV}\) boson \(X\) at NA64 via e \(Z \rightarrow\) \(e Z X\left(A^{\prime}\right)\); no signal found and limits set on the \(X-e^{-}\)coupling \(\epsilon_{e}\) in the range \(1.3 \times 10^{-4} \leq \epsilon_{e} \leq 4.2 \times 10^{-4}\) excluding part of the allowed parameter space.
\({ }^{8}\) BANERJEE 18 A search for invisibly decaying dark photons in \(e Z \rightarrow e Z A^{\prime}, A^{\prime} \rightarrow\) invisible; no signal found and limits set on mixing for \(m\left(A^{\prime}\right)<1 \mathrm{GeV}\).
\({ }^{9}\) MARSICANO 18 search for dark photon \(e^{+} e^{-} \rightarrow A^{\prime}(\gamma)\) visible decay in SLAC E137 \(e\) beam dump data. No signal observed and limits set in \(\epsilon\) coupling vs \(\mathrm{m}\left(A^{\prime}\right)\) plane, see their figure 7.
10 SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of \(Z^{\prime}\), KK graviton models.
11 SIRUNYAN 18DA search for \(p p \rightarrow\) Black Hole, string ball, sphaleron via high multiplicity events at \(13 \mathrm{TeV}, 35.9 \mathrm{fb}^{-1}\); no signal, require e.g. \(\mathrm{m}(\mathrm{BH})>10.1 \mathrm{TeV}\).
12 SIRUNYAN 18DD search for \(p p \rightarrow j j\) deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) \(>5.9-8.2 \mathrm{TeV}\)
13 SIRUNYAN 18DR search for dimuon resonance in \(p p \rightarrow b \mu \bar{\mu}\) at 8 and 13 TeV . Slight excess seen at \(\mathrm{m}(\mu \bar{\mu}) \sim 28 \mathrm{GeV}\) in some channels.
14 SIRUNYAN 18DU search for high mass diphoton resonance in \(p p \rightarrow \gamma \gamma\) at 13 TeV using \(35.9 \mathrm{fb}^{-1}\); no signal; limits placed on RS Graviton, LED, and clockwork.
\({ }^{15}\) SIRUNYAN 18 ED search for \(p p \rightarrow V \rightarrow W h ; h \rightarrow b \bar{b} ; W \rightarrow \ell \nu\) at 13 TeV with \(35.9 \mathrm{fb}^{-1}\); no signal; limits set on \(\mathrm{m}\left(W^{\prime}\right)>2.9 \mathrm{TeV}\).
\({ }^{16}\) AABOUD 17B exclude \(\mathrm{m}\left(W^{\prime}, Z^{\prime}\right)<1.49-2.31 \mathrm{TeV}\) depending on the couplings and \(W^{\prime} / Z^{\prime}\) degeneracy assumptions via \(W H, Z H\) search in \(p p\) collisions at 13 TeV with \(3.2 \mathrm{fb}^{-1}\) of data
17 AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.
18 AAD 160 search for high \(E_{T} \ell+\left(\ell s\right.\) or jets) with \(3.2 \mathrm{fb}^{-1}\) at 13 TeV ; exclude micro black holes mass \(<8 \mathrm{TeV}\) (Fig. 3) for models with two extra dimensions.
\({ }^{19}\) AAD 16 R search for \(W W, W Z, Z Z\) resonance in \(20.3 \mathrm{fb}^{-1}\) at 8 TeV data; limits placed on massive RS graviton (Fig. 4).
20 KRASZNAHORKAY 16 report \(p \mathrm{Li} \rightarrow \mathrm{Be} \rightarrow e \bar{e} N 5 \sigma\) resonance at 16.7 MeV - possible evidence for nuclear interference or new light boson. However, such nuclear interference was ruled out already by ZANG 17.
\({ }^{21}\) LEES 15E search for long-lived neutral particles produced in \(e^{+} e^{-}\)collisions in the Upsilon region, which decays into \(e^{+} e^{-}, \mu^{+} \mu^{-}, e^{ \pm} \mu^{\mp}, \pi^{+} \pi^{-}, K^{+} K^{-}\), or \(\pi^{ \pm} K^{\mp}\). See their Fig. 2 for cross section limits.
\({ }^{22}\) ADAMS 97B search for a hadron-like neutral particle produced in \(p N\) interactions, which decays into a \(\rho^{0}\) and a weakly interacting massive particle. Upper limits are given for the ratio to \(K_{L}\) production for the mass range \(1.2-5 \mathrm{GeV}\) and lifetime \(10^{-9}-10^{-4} \mathrm{~s}\). See also our Light Gluino Section.
\({ }^{23}\) GALLAS 95 limit is for a weakly interacting neutral particle produced in \(800 \mathrm{GeV} / \mathrm{C} p \mathrm{~N}\) interactions decaying with a lifetime of \(10^{-4}-10^{-8}\) s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section \(10^{-29}-10^{-33} \mathrm{~cm}^{2}\). See Fig. 10.
\({ }^{24}\) AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in \(p N\) reaction at \(450 \mathrm{GeV} / c\) performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for \(\tau>10^{-7} \mathrm{~s}\). For \(\tau>10^{-9} \mathrm{~s}\), \(\sigma<10^{-30} \mathrm{~cm}^{-2} /\) nucleon is obtained.
\({ }^{25}\) BADIER 86 looked for long-lived particles at \(300 \mathrm{GeV} \pi^{-}\)beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass \(>2 \mathrm{GeV}\). The limit applies for particle modes, \(\mu^{+} \pi^{-}, \mu^{+} \mu^{-}, \pi^{+} \pi^{-} \mathrm{X}, \pi^{+} \pi^{-} \pi^{ \pm}\)etc. See their figure 5 for the contours of limits in the mass- \(\tau\) plane for each mode.

Searches Particle Listings

\section*{Other Particle Searches}

\({ }^{1}\) KILE 18 investigate archived ALEPH \(e^{+} e^{-} \rightarrow 4\) jets data and see 4-5 \(\sigma\) excess at 110 GeV
\({ }^{2}\) ABLIKIM 17AA search for dark photon \(A \rightarrow \ell \bar{\ell}\) at 3.773 GeV with \(2.93 \mathrm{fb}^{-1}\). Limits are set in \(\epsilon\) vs \(\mathrm{m}(A)\) plane.
\({ }^{3}\) ACKERSTAFF 98P search for pair production of long-lived charged particles at \(E_{\mathrm{Cm}}\) between 130 and 183 GeV and give limits \(\sigma<(0.05-0.2) \mathrm{pb}(95 \% \mathrm{CL})\) for spin-0 and spin- \(1 / 2\) particles with \(m=45-89.5 \mathrm{GeV}\), charge 1 and \(2 / 3\). The limit is translated to the cross section at \(E_{\mathrm{cm}}=183 \mathrm{GeV}\) with the \(s\) dependence described in the paper. See their Figs. 2-4.
\({ }^{4}\) ABREU 97D search for pair production of long-lived particles and give limits \(\sigma<(0.4-2.3) \mathrm{pb}(95 \% \mathrm{CL})\) for various center-of-mass energies \(E_{\mathrm{cm}}=130-136,161\), and 172 GeV , assuming an almost flat production distribution in \(\cos \theta\)
\({ }^{5}\) BARATE 97 k search for pair production of long-lived charged particles at \(E_{\mathrm{cm}}=130\), 136,161 , and 172 GeV and give limits \(\sigma<(0.2-0.4) \mathrm{pb}(95 \% \mathrm{CL})\) for spin-0 and spin-1/2 particles with \(m=45-85 \mathrm{GeV}\). The limit is translated to the cross section at \(E_{\mathrm{cm}}=172\) GeV with the \(E_{\mathrm{cm}}\) dependence described in the paper. See their Figs. 2 and 3 for limits on \(J=1 / 2\) and \(J=0\) cases.
\({ }^{6}\) AKERS 95 R is a CERN-LEP experiment with \(\mathrm{W}_{\mathrm{Cm}} \sim m_{Z}\). The limit is for the production of a stable particle in multihadron events normalized to \(\sigma\left(e^{+} e^{-} \rightarrow\right.\) hadrons \()\). Constant phase space distribution is assumed. See their Fig. 3 for bounds for \(Q= \pm 2 / 3\), \(\pm 4 / 3\).
\({ }^{7}\) BUSKULIC 93C is a CERN-LEP experiment with \(W_{c m}=m_{Z}\). The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig. 5 single product
and Table 1.
\({ }^{8}\) ADACHI 90 C is a KEK-TRISTAN experiment with \(\mathrm{W}_{\mathrm{cm}}=52-60 \mathrm{GeV}\). The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4.
\({ }^{9}\) ADACHI 90E is KEK-TRISTAN experiment with \(\mathrm{W}_{\mathrm{cm}}=52-61.4 \mathrm{GeV}\). The above limit is for inclusive production cross section normalized to \(\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \cdot \beta\left(3-\beta^{2}\right) / 2\), where \(\beta=\left(1-4 m^{2} / \mathrm{W}_{\mathrm{cm}}^{2}\right)^{1 / 2}\). See the paper for the assumption about the production mechanism.
10 KINOSHITA 82 is SLAC PEP experiment at \(W_{c m}=29 \mathrm{GeV}\) using lexan and \({ }^{39} \mathrm{Cr}\) plastic sheets sensitive to highly ionizing particles.
11 BARTEL 80 is DESY-PETRA experiment with \(W_{c m}=27-35 \mathrm{GeV}\). Above limit is for inclusive pair production and ranges between \(1 . \times 10^{-1}\) and \(1 . \times 10^{-2}\) depending on mass and production momentum distributions. (See their figures 9, 10, 11).

Branching Fraction of \(\boldsymbol{Z}^{\mathbf{0}}\) to a Pair of Stable Charged Heavy Fermions
VALUE \(\frac{\text { CL\% }}{\text { DOCUMENT ID }} \frac{\text { TECN }}{\text { COMMENT }}\)
\begin{tabular}{llclll}
\(<5 \times 10^{-6}\) & 95 & 1 AKERS & 95 R & OPAL & \(m=40.4-45.6 \mathrm{GeV}\) \\
\(<1 \times 10^{-3}\) & 95 & AKRAWY & 900 OPAL & \(m=29-40 \mathrm{GeV}\)
\end{tabular}
\({ }^{1}\) AKERS 95R give the 95\% CL limit \(\sigma(X \bar{X}) / \sigma(\mu \mu)<1.8 \times 10^{-4}\) for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4-45.6 GeV for \(X^{ \pm}\)and \(<45.6 \mathrm{GeV}\) for \(X^{ \pm \pm}\). See the paper for bounds for \(Q= \pm 2 / 3, \pm 4 / 3\).

\section*{LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS}

\section*{MASS LIMITS for Long-Lived Charged Heavy Fermions}

Limits are for spin \(1 / 2\) particles with no color and \(\operatorname{SU}(2)_{L}\) charge. The electric charge \(Q\) of the particle (in the unit of \(e\) ) is therefore equal to its weak hypercharge. Pair production by Drell-Yan like \(\gamma\) and \(Z\) exchange is assumed to derive the limits.
\(\frac{\operatorname{VALUE}(\mathrm{GeV})}{\bullet \bullet \bullet \text { We do not use the following data for averages, fits, limits, etc } \bullet \bullet \bullet} \frac{\text { DOCUMENT ID }}{\text { COMMENT }}\)
- - We do not use the following data for averages, fits, limits, etc. • • •
\begin{tabular}{|c|c|c|c|}
\hline >660 & 95 & \({ }^{1}\) AAD \(15 B J\) ATLS & \(Q \mid=2\) \\
\hline \(>200\) & 95 & \({ }^{2}\) CHATRCHYAN 13 AB CMS & \(Q \mid=1 / 3\) \\
\hline \(>480\) & 95 & 2 CHATRCHYAN 13AB CMS & \(Q \mid=2 / 3\) \\
\hline \(>574\) & 95 & 2 CHATRCHYAN 13AB CMS & \(Q \mid=1\) \\
\hline \(>685\) & 95 & \({ }^{2}\) CHATRCHYAN 13 ab CMS & \(Q \mid=2\) \\
\hline \(>140\) & 95 & \({ }^{3}\) CHATRCHYAN 13AR CMS & \(Q \mid=1 / 3\) \\
\hline \(>310\) & 95 & \({ }^{3}\) CHATRCHYAN 13AR CMS & \(Q \mid=2 / 3\) \\
\hline
\end{tabular}
\({ }^{1}\) AAD 15BJ use \(20.3 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\). See paper for limits for \(|Q|\) \(=3,4,5,6\).
\({ }^{2}\) CHATRCHYAN 13 AB use \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) and \(18.8 \mathrm{fb}^{-1}\) at
\(E_{\mathrm{Cm}}=8 \mathrm{TeV}\). See paper for limits for \(|Q|=3,4, \ldots, 8\).
\({ }^{3}\) CHATRCHYAN 13AR use \(5.0 \mathrm{fb}^{-1}\) of \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\).

\section*{Heavy Particle Production Cross Section}
VALUE (nb) CL\% DOCUMENT ID TECN COMMENT

\({ }^{1}\) AABOUD 19AA search for BSM physics at 13 TeV with \(3.2 \mathrm{fb}^{-1}\) in \(>10^{5}\) regions of \(>\)
700 event classes; no significant signal found.
\({ }^{2}\) AABOUD 19Q search for single top+MET events at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data; no signal found and limits set in \(\sigma\) or coupling vs. mass plane for variety of simplified models including DM and vector-like top quark \(T\).
\({ }^{3}\) AABOUD 17D search for \(W W j j, W Z j j\) in \(p p\) collisions at 8 TeV with \(3.2 \mathrm{fb}^{-1}\); set limits on anomalous couplings.
\({ }^{4}\) AABOUD 17L search for the pair production of heavy vector-like \(T\) quarks in the \(Z(\rightarrow\) \(\left.{ }^{\nu} \nu\right) t X\) final state.
\({ }^{5}\) SIRUNYAN 17B search for vector-like quark \(p p \rightarrow T X \rightarrow t H X\) in \(2.3 \mathrm{fb}^{-1}\) at 13 TeV; no signal seen; limits placed.
\({ }^{6}\) SIRUNYAN \(17 C\) search for vector-like quark \(p p \rightarrow T X \rightarrow Z+(t\) or \(b)\) in \(2.3 \mathrm{fb}^{-1}\) at 13 TeV ; no signal seen; limits placed.
\({ }^{7}\) SIRUNYAN 17 J search for \(p p \rightarrow X_{5 / 3} X_{5 / 3} \rightarrow t W t W\) with \(2.3 \mathrm{fb}^{-1}\) at 13 TeV . No signal seen: \(m(X)>1020\) (990) GeV for RH (LH) new charge \(5 / 3\) quark.
\({ }^{8}\) AAIJ 15BD search for production of long-lived particles in pp collisions at \(E_{\mathrm{Cm}}=7\) and
8 TeV . See their Table 6 for cross section limits.
\({ }^{8} \mathrm{AAD}\) 13AH search for production of long-lived particles with \(|\mathrm{q}|=(2-6) e\) in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(4.4 \mathrm{fb}^{-1}\). See their Fig. 8 for cross section limits.
10 AAD 11। search for production of highly ionizing massive particles in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(\mathrm{L}=3.1 \mathrm{pb}^{-1}\). See their Table 5 for similar limits for \(|\mathrm{q}|=6 e\) and \(17 e\), Table 6 for limits on pair production cross section
\({ }^{11}\) AALTONEN \(09 z\) search for long-lived charged particles in \(p \bar{p}\) collisions at \(E_{\text {Cm }}=1.96\) TeV with \(L=1.0 \mathrm{fb}^{-1}\). The limits are on production cross section for a particle of mass above 100 GeV in the region \(|\eta| \lesssim 0.7, p_{T}>40 \mathrm{GeV}\), and \(0.4<\beta<1.0\).
12 Limit for weakly interacting charge-1 particle.
13 Limit for up-quark like particle.
\({ }^{14}\) ABAZOV 09M search for pair production of long-lived charged particles in \(p \bar{p}\) collisions at \(E_{\mathrm{cm}}=1.96 \mathrm{TeV}\) with \(L=1.1 \mathrm{fb}^{-1}\). Limit on the cross section of \((0.31-0.04) \mathrm{pb}\) \((95 \% \mathrm{CL})\) is given for the mass range of \(60-300 \mathrm{GeV}\), assuming the kinematics of stau pair production.
\({ }^{15}\) AKTAS 04C look for charged particle photoproduction at HERA with mean c.m. energy 16 of 200 GeV .
\({ }^{16}\) ABE 92J look for pair production of unit-charged particles which leave detector before decaying. Limit shown here is for \(m=50 \mathrm{GeV}\). See their Fig. 5 for different charges and stronger limits for higher mass.
\({ }^{17}\) CARROLL 78 look for neutral, \(S=-2\) dihyperon resonance in \(p p \rightarrow 2 K^{+} \mathrm{X}\). Cross section varies within above limits over mass range and \(p_{\text {lab }}=5.1-5.9 \mathrm{GeV} / c\).
18 LEIPUNER 73 is an NAL \(300 \mathrm{GeV} p\) experiment. Would have detected particles with lifetime greater than 200 ns .

\section*{Heavy Particle Production Differential Cross Section}

VALUE
\(\left(\mathrm{cm}^{2} \mathrm{Sr}^{-1} \mathrm{GeV}^{-1}\right)\)
- - We do not use the following data for averages, fits, limits, etc. • •

DOCUMENT ID
TECN CHG COMMENT
\begin{tabular}{lllllll}
\(<2.6 \times 10^{-36}\) & 90 & 1 & BALDIN & 76 & CNTR & - \\
\(<2.2 \times 10^{-33}\) & 90 & 2 ALBROW & 75 & SPEC & \(\pm\) & \(Q=1, m=2.1-9.4 \mathrm{GeV}\) \\
\(<1.1 \times 10^{-33}\) & 90 & 2 ALBROW & 75 & SPEC & \(\pm\) & \(Q= \pm 2, m=4-15 \mathrm{GeV}\) \\
\(<8 . \times 10^{-35}\) & 90 & 3 JOVANOV \(\ldots\) & 75 & CNTR & \(\pm\) & \(m=15-26 \mathrm{GeV}\) \\
\(<1.5 \times 10^{-34}\) & 90 & 3 JOVANOV... & 75 & CNTR & \(\pm\) & \(Q= \pm 2, m=3-10 \mathrm{GeV}\) \\
\(<6 . \times 10^{-35}\) & 90 & 3 JOVANOV.. & 75 & CNTR & \(\pm\) & \(Q= \pm 2, m=10-26 \mathrm{GeV}\) \\
\(<1 . \times 10^{-31}\) & 90 & 4 APPEL & 74 & CNTR \(\pm\) & \(m=3.2-7.2 \mathrm{GeV}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(<5.8 \times 10^{-34}\) & 90 & \({ }^{5}\) ALPER & 73 & SPEC \(\pm\) & \(m=1.5-24 \mathrm{GeV}\) \\
\hline \(<1.2 \times 10^{-35}\) & 90 & \({ }_{7}^{6}\) ANTIPOV & 71B & CNTR & \(Q=-, m=2.2-2.8\) \\
\hline \(<2.4 \times 10^{-35}\) & 90 & \({ }^{7}\) ANTIPOV & 71C & CNTR & \[
Q=-, m=1.2-1.7,
\] \\
\hline \(<2.4 \times 10^{-35}\) & 90 & BINON & 69 & CNTR & \(Q=-, m=1-1.8 \mathrm{GeV}\) \\
\hline \(<1.5 \times 10^{-36}\) & & \({ }^{8}\) DORFAN & 65 & CNTR & Be target \(m=3-7 \mathrm{GeV}\) \\
\hline \(<3.0 \times 10^{-36}\) & & \({ }^{8}\) DORFAN & 65 & CNTR & Fe target \(m=3-7 \mathrm{GeV}\) \\
\hline
\end{tabular}
\({ }^{1}\) BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at \(\theta=0\). For other charges in range -0.5 to \(-3.0, \mathrm{CL}=90 \%\) limit is \(\left(2.6 \times 10^{-36}\right) / \mid\) (charge) \(\mid\) for mass range (2.1-9.4 GeV) \(\times \mid\) (charge) \(\mid\). Assumes stable particle interacting with matter as do antiprotons.
\({ }^{2}\) ALBROW 75 is a CERN ISR experiment with \(E_{\text {Cm }}=53 \mathrm{GeV} . \theta=40 \mathrm{mr}\). See figure 5 for mass ranges up to 35 GeV .
3 JOVANOVICH 75 is a CERN ISR \(26+26\) and \(15+15 \mathrm{GeV} p p\) experiment. Figure 4 covers ranges \(Q=1 / 3\) to 2 and \(m=3\) to 26 GeV . Value is per GeV momentum.
\({ }^{4}\) APPEL 74 is NAL \(300 \mathrm{GeV} p \mathrm{~W}\) experiment. Studies forward production of heavy (up to 24 GeV ) charged particles with momenta \(24-200 \mathrm{GeV}\) (-charge) and \(40-150 \mathrm{GeV}\) (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon
\({ }^{5}\) ALPER 73 is CERN ISR \(26+26 \mathrm{GeV} p p\) experiment. \(p>0.9 \mathrm{GeV}, 0.2<\beta<0.65\).
\({ }^{6}\) ANTIPOV 71B is from same \(70 \mathrm{GeV} p\) experiment as ANTIPOV 71 C and BINON 69.
\({ }^{7}\) ANTIPOV 71 C limit inferred from flux ratio. \(70 \mathrm{GeV} p\) experiment.
\({ }^{8}\) DORFAN 65 is a \(30 \mathrm{GeV} / c p\) experiment at BNL. Units are per GeV momentum per nucleus.

\section*{Long-Lived Heavy Particle Invariant Cross Section}

VALUE
\(\left(\mathrm{Cm}^{2} / \mathrm{GeV}^{2} / N\right)\) CL\% DOCUMENT ID TECN CHG COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -
\begin{tabular}{llllll}
\(<5-700 \times 10^{-35}\) & 90 & 1 & 1 \\
\(<5\) BERNSTEIN & 88 & CNTR & \\
\(<5-700 \times 10^{-37}\) & 90 & 1 BERNSTEIN & 88 & CNTR & \\
\(<2.5 \times 10^{-36}\) & 90 & 2 THRON & 85 & CNTR - & \(Q=1, m=4-12 \mathrm{GeV}\) \\
\(<1 . \times 10^{-35}\) & 90 & 2 THRON & 85 & CNTR + & \(Q=1, m=4-12 \mathrm{GeV}\) \\
\(<6 . \times 10^{-33}\) & 90 & 3 ARMITAGE & 79 & SPEC & \(m=1.87 \mathrm{GeV}\) \\
\(<1.5 \times 10^{-33}\) & 90 & 3 ARMITAGE & 79 & SPEC & \(m=1.5-3.0 \mathrm{GeV}\) \\
& & 4 BOZZOLI & 79 & CNTR \(\pm\) & \(Q=(2 / 3,1,4 / 3,2)\) \\
\(<1.1 \times 10^{-37}\) & 90 & 5 CUTTS & 78 & CNTR & \(m=4-10 \mathrm{GeV}\) \\
\(<3.0 \times 10^{-37}\) & 90 & 6 VIDAL & 78 & CNTR & \(m=4.5-6 \mathrm{GeV}\)
\end{tabular}
\({ }^{1}\) BERNSTEIN 88 limits apply at \(x=0.2\) and \(p_{T}=0\). Mass and lifetime dependence of limits are shown in the regions: \(m=1.5-7.5 \mathrm{GeV}\) and \(\tau=10^{-8}-2 \times 10^{-6} \mathrm{~s}\). First number is for hadrons; second is for weakly interacting particles.
2 THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for \(\tau>3 \times 10^{-9} \mathrm{~s}\).
\({ }^{3}\) ARMITAGE 79 is CERN-ISR experiment at \(E_{\mathrm{cm}}=53 \mathrm{GeV}\). Value is for \(x=0.1\) and \(p_{T}=0.15\). Observed particles at \(m=1.87 \mathrm{GeV}\) are found all consistent with being antideuterons
\({ }^{4}\) BOZZOLI 79 is CERN-SPS \(200 \mathrm{GeV} p N\) experiment. Looks for particle with \(\tau\) larger than \(10^{-8} \mathrm{~s}\). See their figure 11-18 for production cross-section upper limits vs mass.
\({ }^{5}\) CUTTS 78 is \(p\) Be experiment at FNAL sensitive to particles of \(\tau>5 \times 10^{-8} \mathrm{~s}\). Value is for \(-0.3<x<0\) and \(p_{T}=0.175\).
\({ }^{6}\) VIDAL 78 is FNAL 400 GeV proton experiment. Value is for \(x=0\) and \(p_{T}=0\). Puts lifetime limit of \(<5 \times 10^{-8}\) s on particle in this mass range.
Long-Lived Heavy Particle Production
( \(\sigma\) (Heavy Particle) / \(\sigma(\pi)\) )
VALUE DOVTS DOCUMENT ID TECN CHG COMMENT
- - We do not use the following data for averages, fits, limits, etc. - -
\(<10^{-8} \quad 1\) NAKAMURA 89 SPEC \(\pm \quad Q=(-5 / 3, \pm 2)\)
\(0 \quad{ }^{2}\) BUSSIERE 80 CNTR \(\pm \quad Q=(2 / 3,1,4 / 3,2)\)
1 NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies for mass \(\lesssim 1.6 \mathrm{GeV}\) and lifetime \(\gtrsim 10^{-7} \mathrm{~s}\).
\({ }^{2}\) BUSSIERE 80 is CERN-SPS experiment with \(200-240 \mathrm{GeV}\) protons on Be and Al target. See their figures 6 and 7 for cross-section ratio vs mass.
Production and Capture of Long-Lived Massive Particles
VALUE \(\left(10^{-36} \mathrm{~cm}^{2}\right)\) DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\(<20\) to \(800 \quad 1\) ALEKSEEV 76 ELEC \(\tau=5 \mathrm{~ms}\) to 1 day
\(<200\) to \(2000 \quad 1\) ALEKSEEV 76B ELEC \(\tau=100 \mathrm{~ms}\) to 1 day
\(\begin{array}{lllll}<1.4 \text { to } 9 & 2 \text { FRANKEL } & 75 & \text { CNTR } & \tau=50 \mathrm{~ms} \text { to } 10 \text { hours }\end{array}\)
1 ALEKSEEV 76 and ALEKSEEV 76B are \(61-70 \mathrm{GeV} p\) Serpukhov experiment. Cross section is per Pb nucleus.
\({ }_{3}^{2}\) FRANKEL 75 is extension of FRANKEL 74
\({ }^{3}\) FRANKEL 74 looks for particles produced in thick AI targets by \(300-400 \mathrm{GeV} / \mathrm{c}\) protons.
Long-Lived Particle (LLP) Search at Hadron Collisions
Limits are for cross section times branching ratio.
VALUE
(pb/nucleo
- - We do not use the following data for averages, fits, limits, etc. • • •
\begin{tabular}{lll} 
1 AAD & 20D ATLS & \(p p \rightarrow\) LLPs at 13 TeV \\
2 AABOUD & 19AE ATLS & \(p p\) at 13 TeV \\
3 AABOUD & 19AK ATLS & \(p p \rightarrow \phi \rightarrow Z Z_{d}\) \\
4 AABOUD & 19AM ATLS & DY multi-charged LLP production \\
5 AABOUD & 19AO ATLS & LLP via displaced jets \\
6 AABOUD & 19AT ATLS & heavy, charged long-lived particles \\
7 AABOUD & 19G ATLS & LLP decay to \(\mu^{+} \mu^{-}\) \\
8 SIRUNYAN & 19BH CMS & LLP via displaced jets
\end{tabular}
(
\({ }^{9}\) SIRUNYAN 19BT CMS LLP via displaced jets+MET 10 SIRUNYAN 19 CA CMS LLP \(\rightarrow \gamma\) search
11 SIRUNYAN 19Q CMS \(\quad p p \rightarrow j+\) displaced dark quark jet 12 SIRUNYAN 18AWCMS Long-lived particle search
13 AAIJ
14 KHACHATRY.
15 RADIER RY...16BWCMS direct production: HSCPs
\({ }^{1}\) AAD 20D search for opposite-sign dileptons originating from long-lived particles in \(p p\) collisions at 13 Tev with \(32.8 \mathrm{fb}^{-1}\); limits placed in squark cross section vs. \(\mathrm{c} \tau\) plane for RPV SUSY.
\({ }^{2}\) AABOUD 19AE search for long-lived particles via displaced jets using \(10.8 \mathrm{fb}^{-1}\) or 33.0 \(\mathrm{fb}^{-1}\) data (depending on a trigger) at 13 TeV ; no signal found and limits set in branching ratio vs. decay length plane
\({ }^{3}\) AABOUD 19AK searches for long-lived particle \(Z_{d}\) via \(p p \rightarrow \Phi \rightarrow Z Z_{d}\) at 13 TeV with \(36.1 \mathrm{fb}^{-1}\); no signal found and limits set in \(\sigma \times\) BR vs. lifetime plane for simplified model.
\({ }^{4}\) AABOUD 19AM search for Drell-Yan (DY) production of long-lived multi-charge particles
at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data; no signal found and exclude \(50 \mathrm{GeV}<\mathrm{m}\) (LLMCP) \(<980-1220 \mathrm{GeV}\) for electric charge \(|\mathrm{q}|=(2-7)\) e.
\({ }^{5}\) AABOUD 19AO search for neutral long-lived particles producing displaced jets at 13 TeV with \(36.1 \mathrm{fb}^{-1}\) of data; no signal found and exclude regions of \(\sigma \cdot \mathrm{BR}\) vs. lifetime plane for various models.
\({ }^{6}\) AABOUD 19AT search for heavy, charged long-lived particles at 13 TeV with \(36.1 \mathrm{fb}{ }^{-1}\); no signal found and upper limits set on masses of various hypothetical particles.
7 AABOUD 19G search for long-lived particle with decay to \(\mu^{+} \mu^{-}\)at 13 TeV with 32.9 \(\mathrm{fb}^{-1}\); no signal found and limits set in combinations of lifetime, mass and coupling planes for various simplified models.
8 SIRUNYAN 19BH search for long-lived SUSY particles via displaced jets at 13 TeV with \(35.9 \mathrm{fb}^{-1}\); no signal found and limits placed in mass vs lifetime plane for various hypothetical models.
\({ }^{9}\) SIRUNYAN 19BT search for displaced jet(s) \(+E_{T}\) at 13 TeV with \(137 \mathrm{fb}^{-1}\); no signal found and limits placed in mass vs lifetime plane for gauge mediated SUSY breaking found an
models.
10 models.
GMSB; no 19CA search for gluino/squark decay to long-lived neutralino, decay to \(\gamma\) in GMSB; no signal, limits placed in \(m(\chi)\) vs. lifetime plane for SPS8 GMSB benchmark point.
11 SIRUNYAN 19Q search for \(p p \rightarrow j+\) displaced jet via dark quark with 13 TeV at 16.1 \(\mathrm{fb}^{-1}\); no signal found and limits set in mass vs lifetime plane for dark quark/dark pion model.
12 SIRUNYAN 18AW search for very long lived particles (LLPs) decaying hadronically or to \(\mu \bar{\mu}\) in CMS detector; none seen/limits set on lifetime vs. cross section.
13 AAIJ 16AR search for long lived particles from \(H \rightarrow X X\) with displaced \(X\) decay vertex using \(0.62 \mathrm{fb}^{-1}\) at 7 TeV ; limits set in Fig. 7.
14 KHACHATRYAN 16BW search for heavy stable charged particles via ToF with \(2.5 \mathrm{fb}^{-1}\) at 13 TeV ; require stable m (gluinoball) \(>1610 \mathrm{GeV}\).
\({ }^{15}\) BADIER 86 looked for long-lived particles at \(300 \mathrm{GeV} \pi^{-}\)beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass \(>2 \mathrm{GeV}\). The limit applies for particle modes, \(\mu^{+} \pi^{-}, \mu^{+} \mu^{-}, \pi^{+} \pi^{-} \mathrm{X}, \pi^{+} \pi^{-} \pi^{ \pm}\)etc. See their figure 5 for the contours of limits in the mass \(-\tau\) plane for each mode.

\section*{Long-Lived Heavy Particle Cross Section}

VALUE (pb/sr) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. • • -
\begin{tabular}{llllll}
\(<34\) & 95 & \(1_{\text {RAM }}\) & 94 & SPEC & \(1015<m_{X++}<1085 \mathrm{MeV}\) \\
\(<75\) & 95 & \(1_{\text {RAM }}\) & 94 & SPEC & \(920<m_{X++}<1025 \mathrm{MeV}\)
\end{tabular}
\({ }^{1}\) RAM 94 search for a long-lived doubly-charged fermion \(X++\) with mass between \(m_{N}\) and \(m_{N}+m_{\pi}\) and baryon number +1 in the reaction \(p p \rightarrow X^{++} n\). No candidate is found. The limit is for the cross section at \(15^{\circ}\) scattering angle at 460 MeV incident energy and applies for \(\tau\left(X^{++}\right) \gg 0.1 \mu \mathrm{~s}\).

\section*{LIMITS ON CHARGED PARTICLES IN COSMIC RAYS}

\section*{Heavy Particle Flux in Cosmic Rays}
VALUE \(\left(\mathrm{cm}^{-2} \mathrm{sr}^{-1} \mathrm{~s}^{-1}\right)\) CL\% EVTS DOCUMENT ID COMMENT
- - We do not use the following data for averages, fits, limits, etc. - • -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multirow{3}{*}{90} & & 1 ALVIS & 18 & \multirow[t]{3}{*}{MAJD
CDM2} & \multirow[t]{2}{*}{Fractionally charged
\[
Q=1 / 6
\]} \\
\hline \(<1\) & \(\times 10^{-8}\) & & 0 & \({ }^{2}\) AGNESE & 15 & & \\
\hline \(\sim 6\) & \(\times 10^{-9}\) & & 2 & \({ }^{3}\) SAITO & 90 & & \[
Q \underset{370 m_{p}}{\simeq 14, m \simeq}
\] \\
\hline \(<1.4\) & \(\times 10^{-12}\) & 90 & 0 & \({ }^{4}\) MINCER & 85 & CALO & \(m \geq 1 \mathrm{TeV}\) \\
\hline & & & & 5 SAKUYAMA & 83B & PLAS & \(m \sim 1 \mathrm{TeV}\) \\
\hline < 1.7 & \(\times 10^{-11}\) & 99 & 0 & \({ }^{6}\) BHAT & 82 & CC & \\
\hline \(<1\). & \(\times 10^{-9}\) & 90 & 0 & 7 MARINI & 82 & CNTR & \(Q=1, m \sim 4.5 m_{p}\) \\
\hline 2. & \(\times 10^{-9}\) & & 3 & \({ }^{8}\) YOCK & 81 & SPRK & \(Q=1, m \sim 4.5 m_{p}\) \\
\hline & & & 3 & \({ }^{8}\) YOCK & 81 & SPRK & Fractionally charged \\
\hline 3.0 & \(\times 10^{-9}\) & & 3 & \({ }^{9}\) YOCK & 80 & SPRK & \(m \sim 4.5 m_{p}\) \\
\hline \((4 \pm 1)\) & \(\times 10^{-11}\) & & 3 & GOODMAN & 79 & ELEC & \(m \geq 5 \mathrm{GeV}\) \\
\hline < 1.3 & \(\times 10^{-9}\) & 90 & & 10 BHAT & 78 & CNTR & \(m>1 \mathrm{GeV}\) \\
\hline \(<1.0\) & \(\times 10^{-9}\) & & 0 & BRIATORE & 76 & ELEC & \\
\hline < 7 . & \(\times 10^{-10}\) & 90 & 0 & YOCK & 75 & ELEC & \(Q>7 e\) or \(<-7 e\) \\
\hline \(>6\). & \(\times 10^{-9}\) & & 5 & 11 YOCK & 74 & CNTR & \(m>6 \mathrm{GeV}\) \\
\hline \(<3.0\) & \(\times 10^{-8}\) & & 0 & DARDO & 72 & CNTR & \\
\hline \(<1.5\) & \(\times 10^{-9}\) & & 0 & TONWAR & 72 & CNTR & \(m>10 \mathrm{GeV}\) \\
\hline \(<3.0\) & \(\times 10^{-10}\) & & 0 & BJORNBOE & 68 & CNTR & \(m>5 \mathrm{GeV}\) \\
\hline \(<5.0\) & \(\times 10^{-11}\) & 90 & 0 & JONES & 67 & ELEC & \(m=5-15 \mathrm{GeV}\) \\
\hline
\end{tabular}

Searches Particle Listings

\section*{Other Particle Searches}
\({ }^{1}\) ALVIS 18 search for fractional charged flux of cosmic matter at Majorana demonstrator; no signal observed and limits are set on the flux of lightly ionizing particles for charge as low as e/1000.
\({ }^{2}\) See AGNESE 15 Fig. 6 for limits extending down to \(Q=1 / 200\)
\({ }^{3}\) SAITO 90 candidates carry about \(450 \mathrm{MeV} /\) nucleon. Cannot be accounted for by con ventional backgrounds. Consistent with strange quark matter hypothesis.
\({ }^{4}\) MINCER 85 is high statistics study of calorimeter signals delayed by \(20-200 \mathrm{~ns}\). Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake effect.
5 SAKUYAMA 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above \(10^{17} \mathrm{eV}\) may indicate production of very heavy parent at top of atmosphere
\({ }^{6}\) BHAT 82 observed 12 events with delay \(>2 . \times 10^{-8}\) s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.
\(7^{7}\) MARINI 82 applied PEP-counter for TOF. Above limit is for velocity \(=0.54\) of light. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith angle is assumed.
\({ }^{8}\) YOCK 81 saw another 3 events with \(Q= \pm 1\) and \(m\) about \(4.5 m_{p}\) as well as 2 events with \(m>5.3 m_{p}, Q= \pm 0.75 \pm 0.05\) and \(m>2.8 m_{p}, Q= \pm 0.70 \pm 0.05\) and 1 event with \(m=(9.3 \pm 3.) m_{p}, Q= \pm 0.89 \pm 0.06\) as possible heavy candidates.
\({ }^{9}\) YOCK 80 events are with charge exactly or approximately equal to unity.
\({ }^{10}\) BHAT 78 is at Kolar gold fields. Limit is for \(\tau>10^{-6} \mathrm{~s}\).
11 YOCK 74 events could be tritons.

\section*{Superheavy Particle (Quark Matter) Flux in Cosmic Rays}
\({\left.\stackrel{V A L U E}{\left(\mathrm{~cm}^{-2}\right.}{ }_{\mathrm{sr}}-1_{\mathrm{s}}-1\right)}\) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. 1 ADRIANI 15 PMLA \(4<m<1.2 \times 10^{5} m_{p}\) 2 AMBROSIO 00B MCRO \(m>5 \times 10^{14} \mathrm{GeV}\) \(\begin{array}{llll}<5 \times 10^{-16} & 90 & \text { 2 AMBROSIO } & \text { 00B } \\ <1.8 \times 10^{-12} & 90 & 3 \text { ASTONE } & 93\end{array}\) \(<1.1 \times 10^{-14} \quad 90 \quad 4\) AHLEN \(92 \quad\) MCRO \(10^{-10}<m<0.1\) gram \(<2.2 \times 10^{-14} \quad 90 \quad 5\) NAKAMURA 91 PLAS \(m>10^{11} \mathrm{GeV}\) \(<6.4 \times 10^{-16} \quad 90 \quad{ }^{6}\) ORITO 91 PLAS \(m>10^{12} \mathrm{GeV}\) \(<2.0 \times 10^{-11} \quad 90 \quad 7 \mathrm{LIU} \quad 88 \quad\) BOLO \(m>1.5 \times 10^{-13}\) gram \(<4.7 \times 10^{-12} \quad 90 \quad{ }^{8}\) BARISH \(\quad 87\) CNTR \(1.4 \times 10^{8}<m<10^{12} \mathrm{GeV}\) \(<3.2 \times 10^{-11} \quad 90 \quad 9\) NAKAMURA 85 CNTR \(m>1.5 \times 10^{-13} \mathrm{gram}\) \(<3.5 \times 10^{-11} \quad 90 \quad 10\) ULLMAN 81 CNTR Planck-mass \(10^{19} \mathrm{GeV}\) <7. \(\times 10^{-11} 90 \quad 10\) ULLMAN 81 CNTR \(m \leq 10^{16} \mathrm{GeV}\)
\({ }^{1}\) ADRIANI 15 search for relatively light quark matter with charge \(Z=1-8\). See their Figs. 2 and 3 for flux upper limits
\({ }^{2}\) AMBROSIO OOB searched for quark matter ("nuclearites") in the velocity range \(\left(10^{-5}-1\right) c\). The listed limit is for \(2 \times 10^{-3} c\).
\({ }^{3}\) ASTONE 93 searched for quark matter ("nuclearites") in the velocity range \(\left(10^{-3}-1\right) c\). Their Table 1 gives a compilation of searches for nuclearites.
\({ }^{4}\) AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity \(<2.5 \times 10^{-3} c\). See their Fig. 3 for other velocity/ \(c\) and heavier mass range.
\({ }^{5}\) NAKAMURA 91 searched for quark matter in the velocity range \(\left(4 \times 10^{-5}-1\right)\) c.
\({ }^{6}\) ORITO 91 searched for quark matter. The limit is for the velocity range \(\left(10^{-4}-10^{-3}\right) c\).
\({ }^{7}\) LIU 88 searched for quark matter ("nuclearites") in the velocity range ( \(2.5 \times 10^{-3}-1\) )c. A less stringent limit of \(5.8 \times 10^{-11}\) applies for \((1-2.5) \times 10^{-3} C\).
\({ }^{8}\) BARISH 87 searched for quark matter ("nuclearites") in the velocity range ( \(2.7 \times\) \(\left.10^{-4}-5 \times 10^{-3}\right) c\)
\({ }^{9}\) NAKAMURA 85 at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of \(u, d\), \(s\) quarks. These lumps or nuclearites were assumed to have velocity of \(\left(10^{-4}-10^{-3}\right) c\).
\({ }^{0}\) ULLMAN 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity \(100-350 \mathrm{~km} / \mathrm{s}\).

Highly lonizing Particle Flux
\(\qquad\) DOCUMENT ID \(\qquad\) TECN COMMEN
- - We do not use the following data for averages, fits, limits, etc. - \(\begin{array}{lllllllll}<0.4 & 95 & 0 & \text { KINOSHITA } & \text { 81B PLAS } & Z / \beta & 30-100\end{array}\)

\section*{SEARCHES FOR BLACK HOLE PRODUCTION}

\section*{VALUE DOCUMENT ID TECN COMMENT}
- - We do not use the following data for averages, fits, limits, etc. - -

\({ }^{1}\) AABOUD 16P set limits on quantum BH production in \(n=6\) ADD or \(n=1\) RS models.
\({ }^{2}\) AAD 15AN search for black hole or string ball formation followed by its decay to multijet final states, in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See their Figs. 6-8 for limits
\({ }^{3}\) AAD 14A search for quantum black hole formation followed by its decay to a \(\gamma\) and a jet, in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20 \mathrm{fb}^{-1}\). See their Fig. 3 for limits.
\({ }^{4}\) AAD 14AL search for quantum black hole formation followed by its decay to a lepton and a jet, in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See their Fig. 2 for limits. \({ }^{5}\) AAD 14C search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and \(\geq 2\) (leptons or jets), in \(p p\) collisions at \(E_{\mathrm{cm}}=8 \mathrm{TeV}\) with \(L=20.3 \mathrm{fb}^{-1}\). See their Figures \(8-11\), Tables 7,8 for limits.
\({ }^{6}\) AAD 13D search for quantum black hole formation followed by its decay to two jets, in pp collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(L=4.8 \mathrm{fb}^{-1}\). See their Fig. 8 and Table 3 for limits.
7 CHATRCHYAN 13A search for quantum black hole formation followed by its decay to two jets, in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(L=5 \mathrm{fb}^{-1}\). See their Figs. 5 and 6 for
\({ }^{\text {l }}\) limits. CHATRCHYAN 13AD search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including \(\gamma, \ell\) ) events in \(p p\) collisions at \(E_{\mathrm{Cm}}=8 \mathrm{TeV}\) with \(L=12 \mathrm{fb}^{-1}\). See their Figs. 5-7 for limits.
\({ }^{9}\) AAD 12AK search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and \(\geq 2\) (leptons or jets), in \(p p\) collisions at \(E_{\mathrm{cm}}\) \(=7 \mathrm{TeV}\) with \(L=1.04 \mathrm{fb}^{-1}\). See their Fig. 4 and 5 for limits.
\(1^{10}\) CHATRCHYAN 12 W search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including \(\gamma, \ell\) ) events in \(p p\) collisions at \(E_{\mathrm{Cm}}=7 \mathrm{TeV}\) with \(L=4.7 \mathrm{fb}^{-1}\). See their Figs. \(5-8\) for limits.
\({ }^{11}\) AAD 11AG search for quantum black hole formation followed by its decay to two jets, in \(p p\) collisions at \(E_{\mathrm{cm}}=7 \mathrm{TeV}\) with \(\mathrm{L}=36 \mathrm{pb}^{-1}\). See their Fig. 11 and Table 4 for limits.

\section*{REFERENCES FOR Other Particle Searches}
\begin{tabular}{|c|c|c|c|c|}
\hline AAD & 20D & PL B801 135114 & G. Aad et al. & AS Coll \\
\hline SIRUNYAN & 20A & EPJ C80 3 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AABOUD & 19AA & EPJ C79 120 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AE & EPJ C79 481 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19A」 & PL B795 56 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AK & PRL 122151801 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AM & PR D99 052003 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AO & PR D99 052005 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19AT & PR D99 092007 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19G & PR D99 012001 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19 H & PR D99 012008 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19Q & JHEP 1905041 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 19 V & JHEP 1905142 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline alcantara & 19 & PR D99 103016 & E. Alcantara, L.A. Anchordoqui, J.F. & F. Soriano \\
\hline SIRUNYAN & 19B & PR D99 012005 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BH & PR D99 032011 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19BT & PL B797 134876 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19CA & PR D100 112003 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19CD & PRL 123231803 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 190 & JHEP 1902074 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 19Q & JHEP 1902179 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AABOUD & 18AD & PL B779 24 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CJ & PR D98 052008 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CK & PR D98 092002 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CL & PR D98 092005 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18CM & PR D98 092008 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 18 N & PRL 121081801 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AAIJ & 18AJ & PRL 120061801 & R. Aaij et al. & (LHCb Collab.) \\
\hline ALBERT & 18C & PR D98 123012 & A. Albert et al. & (HAWC Collab.) \\
\hline ALVIS & 18 & PRL 120211804 & S.I. Alvis et al. & (MAJORANA Collab.) \\
\hline BANERJEE & 18 & PRL 120231802 & D. Banerjee et al. & (NA64 Collab.) \\
\hline BANERJEE & 18A & PR D97 072002 & D. Banerjee et al. & (NA64 Collab.) \\
\hline KILE & 18 & JHEP 1810116 & J. Kile, J. von Wimmersperg-Toeller & \(r\) (LISBT) \\
\hline MARSICANO & 18 & PR D98 015031 & L. Marsicano et al. & \\
\hline PORAYKO & 18 & PR D98 102002 & N.K. Porayako et al. & (PPTA Collab.) \\
\hline SIRUNYAN & 18AW & JHEP 1805127 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18BB & JHEP 1806120 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DA & JHEP 1811042 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DD & EPJ C78 789 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DJ & JHEP 1809101 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DR & JHEP 1811161 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DU & PR D98 092001 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18DY & PR D98 112014 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 18ED & JHEP 1811172 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline AABOUD & 17B & PL B765 32 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 17D & PR D95 032001 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 17L & JHEP 1708052 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AAIJ & 17BR & EPJ C77 812 & R. Aaij et al. & (LHCb Collab.) \\
\hline ABLIKIM & 17AA & PL B774 252 & M. Ablikim et al. & (BESIII Collab.) \\
\hline KHACHATRY.. & 17D & JHEP 1701076 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY.. & 17W & PL B769 520 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY... & 17 Y & PL B770 257 & V. Khachatryan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 17B & JHEP 1704136 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 17C & JHEP 1705029 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 17 F & JHEP 1707013 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline SIRUNYAN & 17J & JHEP 1708073 & A.M. Sirunyan et al. & (CMS Collab.) \\
\hline ZANG & 17 & PL B773 159 & X. Zang, G.A. Miller & (WASH) \\
\hline AABOUD & 16 & PL B759 229 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AABOUD & 16P & EPJ C76 541 & M. Aaboud et al. & (ATLAS Collab.) \\
\hline AAD & 16AI & JHEP 1603041 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 16 N & JHEP 1603026 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 160 & PL B760 520 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 16R & PL B755 285 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 16 S & PL B754 302 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 16AR & EPJ C76 664 & R. Aaij et al. & (LHCb Collab.) \\
\hline KHACHATR & 16BW & PR D94 112004 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY... & & PRL 116071801 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY... & & PRL 117031802 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KHACHATRY... & 16M & PRL 117051802 & V. Khachatryan et al. & (CMS Collab.) \\
\hline KRASZNAHO... & & PRL 116042501 & A.J. Krasznahorkay et al. & (HINR, ANIK+) \\
\hline AAD & 15AN & JHEP 1507032 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 15AT & EPJ C75 79 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 15BJ & EPJ C75 362 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAIJ & 15BD & EPJ C75 595 & R. Aaij et al. & (LHCb Collab.) \\
\hline ADRIANI & 15 & PRL 115111101 & O. Adriani et al. & (PAMELA Collab.) \\
\hline AGNESE & 15 & PRL 114111302 & R. Agnese et al. & (CDMS Collab.) \\
\hline KHACHATRY... & 15F & PRL 114101801 & V. Khachatryan et al. & (CMS Collab.) \\
\hline LEES & 15E & PRL 114171801 & J.P. Lees et al. & (BABAR Collab.) \\
\hline AAD & 14A & PL B728 562 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 14AL & PRL 112091804 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 14 C & JHEP 1408103 & G. Aad et al. & (ATLAS Collab.) \\
\hline AALTONEN & 14J & PR D89 092001 & T. Aaltonen et al. & (CDF Collab.) \\
\hline AAD & 13A & PL B718 860 & G. Aad et al. & (ATLAS Collab.) \\
\hline AAD & 13AH & PL B722 305 & G. Aad et al. & (ATLAS Collab.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AAD & 13C & PRL 110011802 & G. Aad et al. (ATLAS Collab.) & AKRAWY & 900 & PL B252 290 & M.Z. Akrawy et al. (OPAL Collab.) \\
\hline AAD & 13D & JHEP 1301029 & G. Aad et al. (ATLAS Collab.) & HEMMICK & 90 & PR D41 2074 & T.K. Hemmick et al. (ROCH, MICH, OHIO+) \\
\hline AALTONEN & 131 & PR D88 031103 & T. Aaltonen et al. (CDF Collab.) & SAITO & 90 & PRL 652094 & T. Saito et al. (ICRR, KOBE) \\
\hline AALTONEN & 13R & PRL 111031802 & T. Aaltonen et al. (CDF Collab.) & NAKAMURA & 89 & PR D39 1261 & T.T. Nakamura et al. (KYOT, TMTC) \\
\hline CHATRCHYAN & 13 & PL B718 815 & S. Chatrchyan et al. (CMS Collab.) & NORMAN & 89 & PR D39 2499 & E.B. Norman et al. (LBL) \\
\hline CHATRCHYAN & 13A & JHEP 1301013 & S. Chatrchyan et al. (CMS Collab.) & BERNSTEIN & 88 & PR D37 3103 & R.M. Bernstein et al. (STAN, WISC) \\
\hline CHATRCHYAN & 13 AB & JHEP 1307122 & S. Chatrchyan et al. (CMS Collab.) & LIU & 88 & PRL 61271 & G. Liu, B. Barish \\
\hline CHATRCHYAN & 13AD & JHEP 1307178 & S. Chatrchyan et al. (CMS Collab.) & BARISH & 87 & PR D36 2641 & B.C. Barish, G. Liu, C. Lane (CIT) \\
\hline CHATRCHYAN & 13AR & PR D87 092008 & S. Chatrchyan et al. (CMS Collab.) & NORMAN & 87 & PRL 581403 & E.B. Norman, S.B. Gazes, D.A. Bennett (LBL) \\
\hline AAD & 12AK & PL B716 122 & G. Aad et al. (ATLAS Collab.) & BADIER & 86 & ZPHY C31 21 & J. Badier et al. (NA3 Collab.) \\
\hline AAD & 12 C & PRL 108041805 & G. Aad et al. (ATLAS Collab.) & MINCER & 85 & PR D32 541 & A. Mincer et al. (UMD, GMAS, NSF) \\
\hline AAD & 12 S & PL B708 37 & G. Aad et al. (ATLAS Collab.) & NAKAMURA & 85 & PL 161B 417 & K. Nakamura et al. (KEK, INUS) \\
\hline AALTONEN & 12 M & PRL 108211804 & T. Aaltonen et al. (CDF Collab.) & THRON & 85 & PR D31 451 & J.L. Thron et al. (YALE, FNAL, IOWA) \\
\hline CHATRCHYAN & 12AP & JHEP 1209094 & S. Chatrchyan et al. (CMS Collab.) & SAKUYAMA & 83B & LNC 3717 & H. Sakuyama, N. Suzuki (MEIS) \\
\hline CHATRCHYAN & 12BL & JHEP 1212015 & S. Chatrchyan et al. (CMS Collab.) & Also & & LNC 36389 & H. Sakuyama, K. Watanabe (MEIS) \\
\hline CHATRCHYAN & 12Q & PL B716 260 & S. Chatrchyan et al. (CMS Collab.) & Also & & NC 78A 147 & H. Sakuyama, K. Watanabe (MEIS) \\
\hline CHATRCHYAN & 12 T & PRL 108261803 & S. Chatrchyan et al. (CMS Collab.) & Also & & NC 6C 371 & H. Sakuyama, K. Watanabe (MEIS) \\
\hline CHATRCHYAN & 12 W & JHEP 1204061 & S. Chatrchyan et al. (CMS Collab.) & BHAT & 82 & PR D25 2820 & P.N. Bhat et al. (TATA) \\
\hline AAD & 11 AG & NJP 13053044 & G. Aad et al. (ATLAS Collab.) & KINOSHITA & 82 & PRL 4877 & K. Kinoshita, P.B. Price, D. Fryberger (UCB+) \\
\hline AAD & 111 & PL B698 353 & G. Aad et al. (ATLAS Collab.) & MARINI & 82 & PR D26 1777 & A. Marini et al. (FRAS, LBL, NWES, STAN+) \\
\hline AAD & 11S & PL B705 294 & G. Aad et al. (ATLAS Collab.) & SMITH & 82B & NP B206 333 & P.F. Smith et al. (RAL) \\
\hline AALTONEN & 11AF & PRL 107181801 & T. Aaltonen et al. (CDF Collab.) & KINOSHITA & \({ }^{81 B}\) & PR D24 1707 & K. Kinoshita, P.B. Price (UCB) \\
\hline AALTONEN & 11 M & PRL 106171801 & T. Aaltonen et al. (CDF Collab.) & LOSECCO & 81 & PL 102B 209 & J.M. LoSecco et al. (MICH, PENN, BNL) \\
\hline ABAZOV & 111 & PRL 107011804 & V.M. Abazov et al. (D0 Collab.) & ULLMAN & 81 & PRL 47289 & J.D. Ullman (LEHM, BNL) \\
\hline CHATRCHYAN & 11 C & JHEP 1106026 & S. Chatychyan et al. (CMS Collab.) & YOCK & 81 & PR D23 1207 & P.C.M. Yock (AUCK) \\
\hline CHATRCHYAN & 11 U & PRL 107201804 & S. Chatychyan et al. (CMS Collab.) & BARTEL & 80 & ZPHY C6 295 & W. Bartel et al. (JADE Collab.) \\
\hline AAD & 10 & PRL 105161801 & G. Aad et al. (ATLAS Collab.) & BUSSIERE & 80 & NP B174 1 & A. Bussiere et al. (BGNA, SACL, LAPP) \\
\hline AALTONEN & 10AF & PR D82 052005 & T. Aaltonen et al. (CDF Collab.) & YOCK & 80 & PR D22 61 & P.C.M. Yock (AUCK) \\
\hline KHACHATRY... & 10 & PRL 105211801 & V. Khachatryan et al. (CMS Collab.) & ARMITAGE & 79 & NP B150 87 & J.C.M. Armitage et al. (CERN, DARE, FOM+) \\
\hline Also & & PRL 106029902 & V. Khachatryan et al. (CMS Collab.) & BOZZOLI & 79 & NP B159 363 & W. Bozzoli et al. (BGNA, LAPP, SACL+) \\
\hline AALTONEN & 09AF & PR D80 011102 & T. Aaltonen et al. (CDF Collab.) & GOODMAN & 79 & PR D19 2572 & J.A. Goodman et al. (UMD) \\
\hline AALTONEN & 09G & PR D79 052004 & T. Aaltonen et al. (CDF Collab.) & SMITH & 79 & NP B149 525 & P.F. Smith, J.R.J. Bennett (RHEL) \\
\hline AALTONEN & 092 & PRL 103021802 & T. Aaltonen et al. (CDF Collab.) & BHAT & 78 & PRAM 10115 & P.N. Bhat, P.V. Ramana Murthy (TATA) \\
\hline ABAZOV & 09M & PRL 102161802 & V.M. Abazov et al. (D0 Collab.) & CARROLL & 78 & PRL 41777 & A.S. Carroll et al. (BNL, PRIN) \\
\hline AKTAS & 04C & EPJ C36 413 & A. Atkas et al. (H1 Collab.) & CUTTS & 78 & PRL 41363 & D. Cutts et al. (BROW, FNAL, ILL, BARI+) \\
\hline JAVORSEK & 02 & PR D65 072003 & D. Javorsek II et al. & VIDAL & 78 & PL 77B 344 & R.A. Vidal et al. (COLU, FNAL, STON+) \\
\hline JAVORSEK & 01 & PR D64 012005 & D. Javorsek II et al. & ALEKSEEV & 76 & SJNP 22531 & G.D. Alekseev et al. (JINR) \\
\hline JAVORSEK & 01B & PRL 87231804 & D. Javorsek II et al. & & & Translated from YAF 22
SJNP 23633 & 1021. Alekseev et al. (JINR) \\
\hline ABBIENDI
AMBROSIO & 00D
00 B & EPJ C13 197
EPJ C13 453 & \(\begin{array}{lr}\text { G. Abbiendi et al. } \\ \text { M. Ambrosio et al. } & \text { (OPAL Collab.) }\end{array}\) & ALEKSEEV & 76B & SJNP Translated from YAF 23 & 1190. Alekseev et al. (JINR) \\
\hline ABE & 00B & EPL 822038 & M. Ambrosio et al.
F. Abe et al. & BALDIN & 76 & SJNP 22264 & B.Y. Baldin et al. (JINR) \\
\hline ACKERSTAFF & 98P & PL B433 195 & K. Ackerstaff et al. (OPAL Collab.) & & & Translated from YAF 22 & \\
\hline ABE & 97G & PR D55 5263 & F. Abe et al. (CDF Collab.) & BRIATORE GUSTAFSON & 76 & \[
\begin{aligned}
& \text { NC } 31 A 553 \\
& \text { PRL } 37474
\end{aligned}
\] & L. Briatore et al.
H.R. Gustafson et al. (LCGT, FRAS,
(MICH) \\
\hline ABREU & 97D & PL B396 315 & P. Abreu et al. (DELPHI Collab.) & ALBROW & 75 & NP B97 189 & M.G. Albrow et al. (CERN, DARE, FOM+) \\
\hline ACKERSTAFF & 97 B & PL B391 210 & K. Ackerstaff et al. (OPAL Collab.) & FRANKEL & 75 & PR D12 2561 & S. Frankel et al. \({ }^{\text {a }}\) (PENN, FNAL) \\
\hline ADAMS & 97 B & PRL 794083 & J. Adams et al. (FNAL KTeV Collab.) & Jovanov... & 75 & PL 56B 105 & J.V. Jovanovich et al. (MANI, AACH, CERN+) \\
\hline BARATE & 97 K & PL B405 379 & R. Barate et al. (ALEPH Collab.) & YOCK & 75 & NP B86 216 & P.C.M. Yock (AUCK, SLAC) \\
\hline AKERS & 95 R
95 & ZPHY C67 203
PR D52 6 & R. Akers et al. (OPAL Collab.)
E. Gallas et al. & APPEL & 74 & PRL 32428 & J.A. Appel et al. (COLU, FNAL) \\
\hline RAM & 94 & PR D49 3120 & S. Ram et al. (TELA, TRIU) & FRANKEL & 74
74 & PR D9 1932 & S. Frankel et al. (PENN, FNAL) \\
\hline ABE & 93G & PRL 712542 & F. Abe et al. (CDF Collab.) & YOCK & 74
73 & \begin{tabular}{ll} 
NP & B76 \\
PL & 168 \\
\hline 165
\end{tabular} & \begin{tabular}{l}
B. Alper et al. \\
(CERN, LIVP, LUND, BOHR+)
\end{tabular} \\
\hline ASTONE & 93 & PR D47 4770 & P. Astone et al. (ROMA, ROMAI, CATA, FRAS) & LEIPUNER & 73 & PRL 311226 & B.B. Leipuner et al. (BNL, YALE) \\
\hline BUSKULIC & 93 C & PL B303 198 & D. Buskulic et al. (ALEPH Collab.) & DARDO & 72 & NC 9A 319 & M. Dardo et al. (TORI) \\
\hline YAMAGATA & 93 & PR D47 1231 & T. Yamagata, Y. Takamori, H. Utsunomiya (KONAN) & TONWAR & 72 & JP A5 569 & S.C. Tonwar, S. Naranan, B.V. Sreekantan (TATA) \\
\hline ABE & 92J & PR D46 1889 & F. Abe et al. (CDF Collab.) & ANTIPOV & 71B & NP B31 235 & Y.M. Antipov et al. \\
\hline AHLEN & 92 & PRL 691860 & S.P. Ahlen et al. (MACRO Collab.) & ANTIPOV & 71 C & PL 34B 164 & Y.M. Antipov et al. (SERP) \\
\hline VERKERK AKESSON & 92
91 & PRL 681116
ZPHY C52 219 & P. Verkerk et al.
T. Akesson et al.
(ENSP, SACL, PAST)
(HELIOS Collab.) & BINON & 69 & PL 30B 510 & F.G. Binon et al. \\
\hline NAKAMMURA & 91 & PL B263 529 & T. Akessonuet al. & BJORNBOE & 68 & NC B53 241 & J. Bjornboe et al. (BOHR, TATA, BERN+) \\
\hline ORITO & 91 & PRL 661951 & S. Orito et al. (ICEPP, WASCR, NIHO, ICRR) & JONES & 67 & PR 1641584 & L.W. Jones (MICH, WISC, LBL, UCLA, MINN+) \\
\hline ADACHI & 90 C & PL B244 352 & I. Adachi et al. (TOPAZ Collab.) & DORFAN & 65 & PRL 14999 & D.E. Dorfan et al. (COLU) \\
\hline ADACHI & 90 E & PL B249 336 & I. Adachi et al. (TOPAZ Collab.) & & & & \\
\hline
\end{tabular}

Searches Particle Listings```


[^0]:    * Coordination activities supported directly by INFN.
    ${ }^{\dagger}$ Deceased.
    $\ddagger$ Support from Programa Estatal de Generación de Conocimiento MCIU, Spain and ERDF of the European Union (PGC2018-096663-B-C41 and C44).
    ${ }^{\S}$ Retired.

[^1]:    ${ }^{1}$ Please send comments and corrections
    to micha.moshe.moskovic@cern.ch

[^2]:    * M.A.R. Gunston. Microwave Transmission Line Data, Noble Publishing Corp., Atlanta (1997) ISBN 1-884932-57-6, TK6565.T73G85.

[^3]:    ${ }^{1}$ With respect to PQCD there is an important caveat to this statement: at sufficiently high orders, perturbative series generally suffer from "renormalon" divergences $\alpha_{s}^{n} n!$ (reviewed in Ref. [28]). This phenomenon is not usually visible with the limited number of perturbative terms available today. However it is closely connected with non-perturbative contributions and sets a limit on the possible precision of perturbative predictions. The cancellation of scale dependence will also ultimately be affected by this renormalon-induced breakdown of perturbation theory.

[^4]:    ${ }^{3} \mathrm{LO}$ is generally taken to mean the lowest order at which a quantity is non-zero.

[^5]:    ${ }^{4}$ Processes with jets or photons in the final state have divergent cross sections unless one places a cut on the jet or photon momentum. Accordingly, they are discussed below in Section 9.2.3.2.

[^6]:    ${ }^{5}$ To be precise one should be aware of two causes of the divergence of perturbative series. That which interests us here is associated with the presence of a new large parameter (e.g. ratio of scales). It is distinct from the "renormalon" induced factorial divergences of perturbation theory which the "renormalon indu
    ${ }^{6}$ Whether or not this happens depends on the quantity being resummed. A classic example involves two-jet rate in $e^{+} e^{-}$collisions as a function of a jet-resolution parameter $y_{\text {cut }}$. The logarithms of $1 / y_{\text {cut }}$ exponentiate for the $k_{t}$ (Durham) jet algorithm [215], but not [216] for the JADE algorithm [217] (both are discussed below in Sec. 9.3.1.1).

[^7]:    ${ }^{7}$ A veto on the jet phase space can be severe, for example by requiring exactly zero jets above a given transverse momentum cut accompanying a Higgs boson, or relatively mild, for example by placing a transverse momentum cut of 30 GeV on the measurement of the production of a Higgs boson with one or more jets. In general, inclusive cross sections are preferable, as uncertainties on both the theoretical and experimental sides are smaller.
    ${ }^{8}$ The program ARIADNE [277] has also been widely used for simulating $e^{+} e^{-}$and DIS collisions.

[^8]:    ${ }^{9}$ A number of prescriptions also exist for setting the scale automatically, e.g. Refs. [294-298], eliminating uncertainties from scale variation, though not from the truncation of the perturbative series itself. Recently, there have also been studies of how to estimate uncertainties from missing higher orders that go beyond scale variations [299-301].
    ${ }^{10}$ In some circumstances, the scale in the denominator could be a smaller kinematic or physical scale that depends on the observable.

[^9]:    ${ }^{11}$ For these calculations, there is a requirement of the presence of a jet, but the $p_{t}$ cut is typically small $(30 \mathrm{GeV})$ compared to the high $p_{t}$ region being discussed here.
    ${ }^{12}$ For reliable predictions, the scale used in the higher order calculations should be proportional to the sum of the transverse momenta of all of the objects in the final state [431].

[^10]:    $13 \sharp$ The time evolution of $\alpha_{s}$ combinations can be followed by consulting
    Refs. [481-483] as well as earlier editions of this Review.

[^11]:    ${ }^{14}$ In the previous review, if this error appeared to be smaller than the unweighted standard deviation - i.e. the spread - of the results, the standard deviation was taken as the overall uncertainty instead. This was done in order to arrive at an unbiased estimator of the average value of $\alpha_{s}\left(M_{Z}^{2}\right)$ from a given sub-field, and to avoid that singular, optimistic estimates of systematic uncertainties unduly bias the uncertainty of the sub-field average. Here we find that, for all six sub-fields, the quoted error is larger than the standard deviation.

[^12]:    ${ }^{15}$ We note, however, that in many such studies, like those based on exclusive states of jet multiplicities, the relevant energy scale of the measurement is not uniquely defined. For instance, in studies of the ratio of 3 - to 2 -jet cross sections at the LHC, the relevant scale was taken to be the average of the transverse momenta of the two leading jets [543], but could alternatively have been chosen to be the transverse momentum of the $3^{r d}$ jet.

[^13]:    ${ }^{1}$ Constraints on $V$ and tests of universality are discussed in Ref. [7] and in the Section on the "CKM Quark-Mixing Matrix" in this Review. The extension of the formalism to allow an analogous leptonic mixing matrix is discussed in the Section on "Neutrino Masses, Mixing, and Oscillations" in this Review.
    ${ }^{2}$ There is no generally accepted convention to write the quartic term. Our numerical coefficient simplifies Eq. (10.4a) below and the squared coupling preserves the relation between the number of external legs and the power counting of couplings at a given loop order. This structure also naturally emerges from physics beyond the SM, such as Supersymmetry.

[^14]:    ${ }^{3}$ We emphasize that in the fits described in Sec. 10.6 and Sec. 10.7 the values of the SM parameters are affected by all observables that depend on

[^15]:    them. This is of no practical consequence for $\alpha$ and $G_{F}$, however, since they are very precisely known.
    ${ }^{4}$ The theoretically consistent and gauge-invariant definition of the $Z$ boson mass through the complex pole of the propagator would instead lead to a Breit-Wigner with a constant width. The two definitions differ numerically, and this difference has to be accounted for in theoretical calculations.
    ${ }^{5}$ In the spirit of the Fermi theory, we incorporated the small propagator correction, $3 / 5 m_{\mu}^{2} / M_{W}^{2}$, into $\Delta r$ (see below). This is also the convention adopted by the MuLan collaboration [15]. While this breaks with historical consistency, the numerical difference was negligible in the past.

[^16]:    ${ }^{6}$ In this Section we denote quantities defined in the $\overline{\mathrm{MS}}$ scheme by a caret; the exception is the strong coupling constant, $\alpha_{s}$, which will always correspond to the $\overline{\mathrm{MS}}$ definition and where the caret will be dropped.
    ${ }^{7}$ In practice, $\alpha\left(M_{Z}\right)$ is directly evaluated in the $\overline{\mathrm{MS}}$ scheme using the FORTRAN package GAPP [32], including the QED contributions of both leptons and quarks. The leptonic three-loop contribution in the on-shell scheme has been obtained in Ref. [33].

[^17]:    ${ }^{8}$ All explicit numbers quoted here and below include the two- and threeloop corrections described near the end of Sec. 10.2.

[^18]:    ${ }^{9}$ We use here slightly different definitions (and to avoid confusion also a different notation) for the coefficients of these four-Fermi operators than we did in previous editions of this Review. The new couplings [13] are defined in the static limit, $Q^{2} \rightarrow 0$, with specific radiative corrections included, while others (more experiment specific ones) are assumed to be removed by the experimentalist. They are convenient in that their determinations from very different types of processes can be straightforwardly combined.

[^19]:    ${ }^{10}$ In the simple parton model, ignoring hadron energy cuts, $r \approx(1+$ $3 \epsilon) /(3+\epsilon)$, where $\epsilon \sim 0.125$ is the ratio of the fraction of the nucleon's momentum carried by anti-quarks to that carried by quarks.

[^20]:    ${ }^{11}$ We are indebted to Diogo Boito, Maarten Golterman, Kim Maltman and Santiago Peris for privately communicating these results to us.
    ${ }^{12}$ In what follows, we summarize the most important aspects of $a_{\mu}$ and give some details on the evaluation in our fits. For more details and references, see the Section on the "Muon Anomalous Magnetic Moment" in this Review. There are some numerical differences, which are well understood and arise because internal consistency of the fits requires the calculation of all observables from analytical expressions and common inputs and fit parameters, so that an independent evaluation is necessary for this Section. Note, that in the spirit of a global analysis based on all available information we have chosen here to also include $\tau$ decay data [30], corrected for isospin breaking effects [31].

[^21]:    ${ }^{13}$ We are grateful to Werner Bernreuther and Long Chen for the recalculation of their result employing the more appropriate $\overline{\mathrm{MS}}$ mixing angle, $\widehat{s}_{Z}^{2}$, instead of the on-shell quantity, $s_{W}^{2}$.

[^22]:    ${ }^{14}$ Alternatively, one can use $A_{\ell}=0.1481 \pm 0.0027$, which is from LEP 1 alone and in excellent agreement with the SM, and obtain $A_{b}=0.897 \pm 0.022$ which is $1.7 \sigma$ low. This illustrates that some of the discrepancy is related to the one in $A_{L R}$.

[^23]:    ${ }^{15}$ Three additional parameters are needed if the new physics scale is comparable to $M_{Z}$ [332]. Further generalizations, including effects relevant to LEP 2 and Drell-Yan production at the LHC, are described in Refs. [333] and [334], respectively.

[^24]:    ${ }^{1}$ the $k$-factor is defined as the ratio of a physical quantity with and without radiative corrections included.

[^25]:    ${ }^{2}$ The Run 1 results for ATLAS and CMS are at fixed values of $m_{H}=$ 125.4 GeV and 124.7 GeV , respectively.

[^26]:    ${ }^{3}$ In the combination performed by ATLAS and CMS, the systematic uncertainties on these parameters are taken into account by allowing these parameters to vary in the fit.

[^27]:    ${ }^{4}$ Complete enumerations of $d=8$ operators have been obtained [256] and some preliminary constraints on peculiar subsets of these operators have been derived from experimental measurements [257]. Still, in this review, the EFT Lagrangians will be truncated at the level of dimension-6 operators.

[^28]:    ${ }^{5}$ Another solution to the naturalness problem is to lower the fundamental scale of quantum gravity, like for instance in models with large extradimensions, see Ref. [287].

[^29]:    ${ }^{6}$ Observe that in the SM sections of this review, $H$ denotes the SM Higgs boson, whereas in the sections about SUSY, or extensions of the SM with two Higgs doublets, $H$ is used for the heaviest $C P$-even Higgs boson, since this is the standard notation in the literature, and the 125 GeV SM-like light Higgs boson will be denoted by $h$. Generically, in the MSSM, the lightest $C P$-even Higgs boson is indeed SM-like and thus it is naturally identified with the 125 GeV Higgs boson discovered by ATLAS and CMS, while in 2HDM extensions, with or without SUSY, there could still be lighter scalar states below 125 GeV .

[^30]:    ${ }^{7}$ In very special regions of the parameter space, there is still the possibility that the heavier $C P$-even Higgs state is identified with the 125 GeV Higgs boson discovered by ATLAS and CMS, see for instance the discussion in Ref. [303] and the benchmark $M_{H}^{125}$ defined in Ref. [304].

[^31]:    ${ }^{8}$ Still, most non-SUSY models are likely to include further states and dynamics above the weak scale to stabilise the scalar sector and this new and unknown physics may influence the searches described in this section in a way difficult to estimate.

[^32]:    ${ }^{1}$ For lattice QCD inputs, we use the averages from Ref. [14], unless the minireviews $[10,15]$ choose different values. We only use unquenched results, and if both $N_{f}=2+1+1$ and $2+1$ calculations are available, we use the former.

[^33]:    ${ }^{2}$ Hereafter the first error is statistical and the second is systematic, unless mentioned otherwise.

[^34]:    ${ }^{1}$ The physics of massive neutrinos has been the subject of excellent books such as $[1-5]$ and multiple review articles. The contents of the present review is built upon the structure and the contents of the review articles [6, 7].

[^35]:    ${ }^{3}$ For a pedagogical discussion of the quantum mechanical description of flavour oscillations in the wave package approach see for example Ref. [3]. A recent review of the quantum mechanical aspects and subtleties on neutrino oscillations can be found in in Ref. [25].

[^36]:    ${ }^{4}$ However, as discussed in Sec.14.6.4, the reactor antineutrino flux measurement at Daya Bay $[143,199]$ is consistent with the old flux predictions and the flux measurement results in the previous short-baseline reactor neutrino oscillation experiments.

[^37]:    ${ }^{1}$ Here and in what follows, we call secondaries the new particles produced in the course of the interaction.
    ${ }^{2}$ For definition of particle rapidity (pseudorapidity), see Section 48.5.2 in [1]; $y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$
    ( $\eta=-\ln (\tan (\theta / 2))$; the correct variable is the rapidity $y$, however, experimentally it is simpler to use the pseudorapidity $\eta$ which does not require identifying the particles, setting $m=0$. For $p_{T} \gg m, \eta \simeq y$.

[^38]:    ${ }^{3}$ Pomeron pole was named after I. Y. Pomeranchuk. The history of the Pomeron is discussed in [19-21].

[^39]:    ${ }^{4}$ At high energies the configurations with different transverse separation, $r$, between the quarks (valence partons) can serve as an example of such Fock states. An interaction with the QCD Pomeron does not change the value of $r$, while the cross section $\sigma \propto \alpha_{s}^{2} \cdot r^{2}$ (see Section 20.4.2 and [42-44]).

[^40]:    ${ }^{5}$ Strictly speaking the proof of the Pumplin bound is justified only for low mass dissociation. When the masses $M_{1,2}$ become so large (say, $M_{i}^{2}>$ $\sqrt{s s_{0}}$ ) that the Good-Walker states $\left|\phi_{i}\right\rangle$, corresponding to two incoming protons overlap, we may face double counting. Therefore, the high mass dissociation will be considered in the next Section, in terms of the multiPomeron diagram. Here and in what follows $s_{0}$ is a constant which should be defined for a particular theoretical model or fitted from experiment.

[^41]:    ${ }^{6}$ As usual, we assume $s_{0}=1 \mathrm{GeV}^{2}$, but the qualitative conclusion does not depend on any realistic choice of $s_{0}$.
    ${ }^{7}$ The two-Pomeron contribution has a factor of two smaller $t$-slope, and in terms of the impact parameter, the $\Omega^{2}(b)$ term is concentrated in the domain of a smaller radius. In such a simplified picture, the impact parameters corresponding to an exchange of $n$ Pomerons will rapidly decrease with $n$ increasing.

[^42]:    ${ }^{8}$ This contribution is enhanced due to the large parton multiplicity.

[^43]:    ${ }^{9}$ In their complete form the AGK cutting rules were implemented in the QGSJET Monte Carlo [61].

[^44]:    ${ }^{10}$ see also Section 18.5 in [1]

[^45]:    ${ }^{11}$ The pile-up is formed by additional $p p$ collisions which typically produce low- $p_{T}$ particles. These may affect the signal sample and worsen various reconstruction and identification efficiencies.

[^46]:    ${ }^{12}$ The CDF 1.8 TeV point [109] is $2.8 \sigma$ higher than the corresponding E811 result [110].
    ${ }^{13}$ Effective Pomeron means that this is not an original pole in the $j$-plane, but it includes the corrections (renormalizations) caused by the enhanced diagrams (see e.g. [121])

[^47]:    ${ }^{14}$ That is, the virtual loop corrections to the one-gluon exchanges are included. These corrections are important in order to provide infrared stability of the results.

[^48]:    ${ }^{15}$ Minijets result from hadronization of partons emitted from the cut QCD Pomeron. Typically these are groups of hadrons with comparatively low overall $E_{T} \lesssim 5-10 \mathrm{GeV}$.

[^49]:    ${ }^{16}$ In general, final state interactions can be included into the detailed structure of the multi-Pomeron vertices. However these vertices are phenomenological objects which are not well known experimentally.

[^50]:    ${ }^{17}$ Recall the stronger absorption of the low $k_{t}$ partons.
    ${ }^{18}$ Note that a qualitatively similar behaviour to the $p \bar{p}$ ISR data, namely a filling in of the dip in the $t$-distribution, was observed by the UA4 collaboration at the CERN $\mathrm{S} p \bar{p} \mathrm{~S}$ collider at $\sqrt{s}=546$ and 630 GeV (see $[208,209]$ and in particular Fig. 2 in [209]) and by the $D 0$ collaboration at the Tevatron at 1.96 TeV [207].

[^51]:    ${ }^{19}$ We thank Jean-Rene Cudell for clarifying this issue.

[^52]:    ${ }^{1}$ Unless stated otherwise, all quoted uncertainties in this article are $1 \sigma / 68 \%$ confidence and all upper limits are $95 \%$ confidence. Cosmological parameters sometimes have significantly non-Gaussian uncertainties. Throughout we have rounded central values, and especially uncertainties, from original sources, in cases where they appear to be given to excessive precision.

[^53]:    ${ }^{1}$ Notice that this includes the case of PBHs, as successful formation of the correct number density of PBHs involves new ingredients beyond standard cosmology and particle physics

[^54]:    ${ }^{1}$ 'Primary' and 'secondary' are used in a different but analogous sense when discussing cosmic ray interactions in the atmosphere.
    ${ }^{2}$ Energetic particles accelerated by the Sun and at other sites within the heliosphere and at its boundary are outside the scope of this review

[^55]:    ${ }^{4}$ Here we use cosmogenic to denote neutrinos produced by photoproduction during propagation, and astrophysical to denote neutrinos produced by other mechanisms or close to sources.

[^56]:    *KEKB was operated with crab crossing from 2007 to 2010.
    $\dagger$ With dynamic beam-beam effect.

[^57]:    * Other TEVATRON parameters: $\bar{p}$ source accum. rate: $25 \times 10^{10} \mathrm{hr}^{-1}$; max. no. of $\bar{p}$ stored: $3.4 \times 10^{12}$ (Accumulator), $6.1 \times 10^{12}$ (Recycler).
    $\dagger$ Variable crossing angle decreasing during the fill with the reduction in bunch population
    Minimum beam radius during levelling
    $\S_{\beta^{*}}$ levelling
    ${ }^{4}$ Number of bunches colliding at the interaction regions (i.r.) 1 (ATLAS) and 5 (CMS).
    ${ }^{\|}$Value for design beam energy of 7 TeV .

[^58]:    *High luminosity upgrade expected $>=2021$; will extend throughout HL-LHC running. Very preliminary, conservative estimates.
    ${ }^{\dagger}$ Initial value, possibly larger after cooling
    ${ }^{\ddagger}$ Negative or infinite decay time is effect of cooling.
    §luminosity leveled to flat after set to target value, with cooling
    『 measured minimum, not theoretical

[^59]:    1"Moderate thickness" means $G \lesssim 0.05-0.1$, where $G$ is given by Rossi Ref. [2], Eq. 2.7(10). It is Vavilov's $\kappa$ [28]. $G$ is proportional to the absorber's thickness, and as such parameterizes the constants describing the Landau distribution. These are fairly insensitive to thickness for $G \lesssim 0.1$, the case for most detectors.
    ${ }^{2}$ Practical calculations can be expedited by using the tables of $\delta$ and $\beta$ from the text versions of the muon energy loss tables to be found at pdg.lbl.gov/AtomicNuclearProperties.

[^60]:    ${ }^{3}$ Rossi [2], Talman [31], and others give somewhat different values for $j$. The most probable loss is not sensitive to its value.

[^61]:    ${ }^{4}$ It does find application in dosimetry, where only bulk deposit is relevant.

[^62]:    ${ }^{5}$ Shen et al.'s measurements show that Bethe's simpler methods of including atomic electron effects agrees better with experiment than does Scott's treatment.

[^63]:    ${ }^{6}$ This definition differs from that of Ref. [55] by a factor of two. $E_{L P M}$ scales as the 4 th power of the mass of the incident particle, so that $E_{L P M}=$ $\left(1.4 \times 10^{10} \mathrm{TeV} / \mathrm{cm}\right) \times X_{0} / \rho$ for a muon.

[^64]:    ${ }^{1}$ Application Specific Integrated Circuit

[^65]:    ${ }^{2}$ Photon absorption coefficients for the elements (via a NIST link), and $d E /\left.d x\right|_{\min }$ and plasma energies for many materials are given in pdg.lbl.gov/AtomicNuclearProperties.

[^66]:    ${ }^{3}$ The RPC was based on earlier work on a spark counter with one metallic and one high-resistivity plate [161].

[^67]:    ${ }^{4} X_{0}=120 \mathrm{~g} \mathrm{~cm}^{-2} Z^{-2 / 3}$ to better than $5 \%$ for $Z>23$.
    ${ }^{5} \lambda_{I}=37.8 \mathrm{~g} \mathrm{~cm}^{-2} A^{0.312}$ to within $0.8 \%$ for $Z>15$.
    See pdg.lbl.gov/AtomicNuclearProperties for actual values.

[^68]:    ${ }^{\|}$The asymptotic pair-production cross section scales roughly as $Z^{0.75}$, and $|d E / d x|$ slowly decreases with increasing $Z$.

[^69]:    ${ }^{1}$ LIDAR stands for "Light Detection and Ranging" and refers here to

[^70]:    ${ }^{\dagger} R B E$-weighted when necessary

[^71]:[^72]:    ${ }^{1}$ The couplings $A_{\tilde{\chi}_{i}^{0}}^{f}$ and $B_{\tilde{\chi}_{i}^{0}}^{f}$ are given explicitly in Ref. [13] in Eq. (8.87). Also, the couplings $A_{\tilde{\chi}_{i}^{-}}^{d}$ and $A_{\tilde{\chi}_{i}^{-}}^{u}$ are given in Eq. (8.93). The couplings $X_{i}^{j}$ and $Y_{i}^{j}$ are given by Eq. (8.103), while the $x_{i}$ and $y_{i}$ couplings are given in Eq. (8.100). Finally, the couplings $W_{i j}$ are given in Eq. (8.101).

[^73]:    ${ }^{1}$ Nuclear effects refer to kinematic and final state effects which impact neutrino scattering off nuclei. Such effects can be significant and are particularly relevant given that modern neutrino experiments make use of nuclear targets to increase their event yields.
    ${ }^{2}$ In the case of deuterium, many experiments additionally observed the spectator proton.

[^74]:    ${ }^{3}$ Some representative recent estimates of the hadronic light-by-light scattering contribution, $a_{\mu}^{\mathrm{Had}, \mathrm{LBL}}[\mathrm{NLO}]$ are: $105(26) \times 10^{-11}[29], 110(40) \times$ $10^{-11}[25], 136(25) \times 10^{-11}$ [26]. An approach based on dispersion relations is proposed in [28].

[^75]:    ${ }^{1}$ There exists a doubly Cabibbo-suppressed amplitude in which the $c$ and $\bar{u}$ quarks exchange a $W$, and then the resulting $d$ quark (from $c$ ) decays semileptonically. We neglect this second-order process.

[^76]:    ${ }^{1}$ This uncertainty on $C_{\pi, K}$ is smaller than the error estimated by Marciano and Sirlin in Ref. [24], which predates the calculations of the hadronicstructure contributions in Refs. [3, 5, 22, 23]. The hadronic LECs incorporate the large short-distance electroweak logarithm discussed in Ref. [24], and their dependence on the chiral renormalization scale cancels the scaledependence induced by chiral loops, thereby removing the dominant scale uncertainty of the Marciano-Sirlin analysis [24].

[^77]:    ${ }^{2}$ See the PDG mini-review on "Lattice Quantum Chromodynamics" [39] for a general review of numerical lattice-QCD simulations. Details on the different methods used in modern lattice-QCD calculations are provided in Appendix A of the FLAG "Review[s] of lattice results concerning low energy particle physics" [18, 40, 41].
    ${ }^{3}$ See the review by Kronfeld [42] for a summary of the large body of evidence validating the methods employed in modern lattice-QCD simulations.

[^78]:    ${ }^{4}$ We have not included the BaBar result for $\mathcal{B}\left(D_{s}^{+} \rightarrow \mu^{+} \nu\right)$ reported in Ref. [67] because this measurement determined the ratio of the leptonic decay rate to the hadronic decay rate $\Gamma\left(D_{s}^{+} \rightarrow \ell^{+} \nu\right) / \Gamma\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$.

[^79]:    * Ref. [28] provides values for $f_{D}$ and $f_{D_{s}}$ in the isopsin-symmetric limit, but not for their ratio. Here we infer the central value from those of the individual decay constants, and take the statistical and systematic errors to be the same as for the physical ratio $f_{D_{s}} / f_{D^{+}}$.

    Preprint submitted to the arXiv and JHEP after the deadline for inclusion in the 2019 FLAG review.
    $\ddagger$ Obtained using $m_{c}^{\overline{\mathrm{MS}}}$; results using $m_{c}^{\text {pole }}$ are also given in the paper.
    

[^80]:    ${ }^{5}$ This is an update of the 2010 Flavianet review [38] that includes new measurements of the $K_{S}$ lifetime [97, 98], $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$ [98], and $\mathcal{B}\left(K^{ \pm} \rightarrow\right.$ $\pi^{ \pm} \pi^{+} \pi^{-}$) [99]. The latter measurement is the primary source of the reduced error on $\mathcal{B}\left(K_{\ell 3}\right)$, via the constraint that the sum of all branching ratios must equal unity.

[^81]:    * Quantum numbers fixed from the quark model and need confirmation.

[^82]:    ${ }^{1}$ While the $J^{P}=1^{+}$quantum numbers are plausible for this state, they are not yet established experimentally. This is why this state appears as $X(4020)$ in both listings and summary tables.
    ${ }^{2}$ According to the PDG naming scheme the prime name for these states is the quark model name, here listed first for each state, since it expresses the quantum numbers. However, in what follows we use the names mostly used in the literature to ease notations and to avoid confusion.

[^83]:    ${ }^{1}$ More generally, for $S U(N), N \times N \times N=[N(N+1)(N+2) / 6]+2 \times$ $\left[N\left(N^{2}-1\right) / 3\right]+[N(N-1)(N-2) / 6]$. The $\mathbf{2 0}_{S}, \mathbf{2 0}_{M}$ and $\overline{\mathbf{4}}$ correspond to the representations with Dynkin labels $(3,0,0),(1,1,0)$ and $(0,0,1)$, respectively. See Ref. [1] for a review.

[^84]:    ${ }^{1}$ Our convention for the metric is $\eta_{M N}=\operatorname{Diag}(-1,1,1,1,1)$.

[^85]:    ${ }^{1}$ In a strongly interacting theory "Naive Dimensional Analysis" [3, 4] implies that, in the absence of fine-tuning, $\Lambda \simeq g^{*} f$ where $g^{*} \simeq 4 \pi$ is the typical size of a strong coupling in the low-energy theory $[5,6]$. This estimate is modified in the presence of multiple flavors or colors [7]
    ${ }^{2}$ For a review of technicolor models, see [10-12].
    ${ }^{3}$ If both the electroweak symmetry and the approximate scale symmetry are broken only by electroweak doublet condensate(s), then the decayconstants for scale and electroweak symmetry breaking may be approximately equal - differing only by terms formally proportional to the amount of explicit scale-symmetry breaking.
    ${ }^{4}$ In this case, however, the coupling strength of the singlet state to $W W$ and $Z Z$ pairs would be comparable to the couplings to gluon and photon pairs, and these would all arise from loop-level couplings in the underlying technicolor theory [22].

[^86]:    ${ }^{5}$ In these models $v / f$ is an adjustable parameter, and in the limit $v / f \rightarrow 1$ they reduce, essentially, to the technicolor models discussed in the previous subsection. Our discussion here is consistent with that given there, since we expect corrections to the SM Higgs couplings to be large for $v / f \simeq 1$. Current measurements constrain the couplings of the $H^{0}$ to equal those predicted for the Higgs in the standard model to about the $10 \%$ level [27], suggesting that $f$ must have values of order a TeV or higher and, therefore, a dynamical scale $\Lambda$ of at least several TeV .

[^87]:    ${ }^{6}$ Indeed, from this point of view, the vector-like partners of the topquark in top-seesaw and little Higgs models can be viewed as incorporating partial compositeness to explain the origin of the top quark's large mass.

[^88]:    ${ }^{1}$ In our convention the electric charge is $Q=T_{3}+Y / 2$ and all our spinor fields are left-handed (1.h.).
    ${ }^{2}$ Equivalently, the $S U(2)_{L}$ and $U(1)_{Y}$ couplings are denoted as $g=g_{2}$ and $g^{\prime}=\sqrt{3 / 5} g_{1}$. One also uses $\alpha_{s}=\alpha_{3}=\left(g_{3}^{2} / 4 \pi\right), \alpha_{\mathrm{EM}}=\left(e^{2} / 4 \pi\right)$ with $e=g \sin \theta_{W}$ and $\sin ^{2} \theta_{W}=\left(g^{\prime}\right)^{2} /\left(g^{2}+\left(g^{\prime}\right)^{2}\right)$.

[^89]:    ${ }^{3}$ Useful references on group theory in the present context include [16] and refs. therein.

[^90]:    ${ }^{4}$ The solution of [29] relies on the absence of the fundamental superpotential term $\mu H_{u} H_{d}$ (or $\mu \mathbf{5}_{H} \overline{\mathbf{5}}_{H}$ ). This can be ensured either by a discrete $R$ symmetry or by a $U(1)_{R}$. The latter clashes with typical superpotentials for the GUT breaking sector. However, higher-dimensional or stringy GUTs, where the triplet Higgs is simply projected out, can be consistent with the $U(1)_{R}$ symmetry.

[^91]:    ${ }^{5}$ All embeddings of $G_{S M}$ in one $\mathrm{E}_{8}$ factor which are consistent with a breaking-pattern $\mathrm{E}_{8} \rightarrow S U(5) \rightarrow G_{S M}$ are suitable (cf. for example the natural breaking chain from $\mathrm{E}_{8}$ to $G_{S M}$ through maximal subgroups mentioned at the end of Sect. 94.3). Other embeddings can change the mentioned at the end of Sect. 94.3 . Other embeddings can change the ratios between the three resulting $G_{S M}$ couplings at the GUT scale by
    group-theoretic factors. Crucially, due to the single 10d gauge coupling, no continuous tuning is possible.
    ${ }^{6}$ Field-theory thresholds of 4 d GUTs are discussed in 94.5 .
    ${ }^{7}$ See however [42].

[^92]:    ${ }^{8}$ The $\overline{\mathrm{DR}}$ scheme is frequently used in a supersymmetric regularization [69]. The renormalization transformation of the gauge coupling constants from $\overline{\mathrm{MS}}$ to $\overline{\mathrm{DR}}$ scheme is given in Ref. [70]. For an alternative treatment using holomorphic gauge couplings and NSVZ $\beta$-functions see e.g. [71].

[^93]:    ${ }^{9}$ It is interesting to note that a ratio $M_{*} / M_{c} \sim 100$, needed for gauge coupling unification to work in orbifold GUTs, is typically the maximum value for this ratio consistent with perturbativity [84].

[^94]:    ${ }^{10}$ This forbids the dimension-four operator ( $\mathbf{1 0} \overline{\mathbf{5}} \overline{\mathbf{5}}$ ), but allows the Yukawa couplings for quark and lepton masses of the form ( $\mathbf{1 0} \overline{\mathbf{5}} \overline{\mathbf{5}}_{H}$ ) and $\left(\mathbf{1 0 1 0 5} \mathbf{5}_{H}\right)$. It also forbids the dimension-three, lepton-number-violating operator $\left(\overline{5} \mathbf{5}_{H}\right) \supset\left(L H_{u}\right)$ as well as the dimension-five, baryon-numberviolating operator ( $\left.\mathbf{1 0 1 0 1 0} \overline{\mathbf{5}}_{H}\right) \supset\left(Q Q Q H_{d}\right)+$

[^95]:    ${ }^{11}$ Adding extra vector-like sets of fields, e.g. two fermions which only
    transform under $U(1)$ and have charges $Y$ and $-Y$, is considered to violate minimality. .

[^96]:    ${ }^{12}$ To be precise, if lepton flavor numbers $L_{i}(i=1-3)$ are nonzero and
    $\left(L_{i}-L_{j}\right) \neq 0(i \neq j)$, one may obtain nonzero values for $B$ and $L$ even if
    $(B-L)=0[158]$. $\left(L_{i}-L_{j}\right) \neq 0(i \neq j)$, one may obtain nonzero values for $B$ and $L$ even if
    $(B-L)=0[158]$.

[^97]:    ${ }^{13}$ This constraint may be avoided in resonant leptogenesis [162], in which the right-handed neutrinos are required to be almost degenerate in mass.
    ${ }^{14}$ Another important test of leptogenesis would be the observation of CP violation in neutrino oscillations. Strictly speaking, the CP phase in the PMNS matrix does not contribute to $\epsilon_{1}$ in the seesaw model. Nevertheless, the observation of CP violation in neutrino oscillations would suggest that the seesaw mechanism is associated with a large CP violation, similarly to the quark sector

[^98]:    ${ }^{1}$ Where no ambiguity is likely to arise, a reference to a monopole implies
    a particle possessing Dirac charge.

[^99]:    -     - We do not use the following data for averages, fits, limits, etc. - .

    1 SIRUNYAN 19BK CMS $\begin{array}{lll}2 \text { KHACHATRY...16AU CMS } & p p, 8 \mathrm{TeV}\end{array}$
    ${ }^{1}$ SIRUNYAN 19BK search for the $t H^{0}$ associated production using multilepton signatures $\left(H^{0} \rightarrow W W^{*}, H^{0} \rightarrow \tau \tau, H^{0} \rightarrow Z Z^{*}\right)$ and signatures with a single lepton and a $b \bar{b}$ pair $\left(H^{0} \rightarrow b \bar{b}\right)$ using $35.9 \mathrm{fb}^{-1}$ at $E_{\mathrm{cm}}=13 \mathrm{TeV}$. Results are combined with $H^{0} \rightarrow$ $\gamma \gamma$ (SIRUNYAN 18DS). The observed $95 \%$ CL upper limit on the $t H^{0}$ production cross section times $H^{0} \rightarrow W W^{*}+\tau \tau+Z Z^{*}+b \bar{b}+\gamma \gamma$ branching fraction is 1.94 pb (assuming SM $t \bar{t} H^{0}$ production cross section). See their Table X and Fig. 14. The values outside the ranges of $[-0.9,-0.5]$ and $[1.0,2.1]$ times the standard model top quark Yukawa coupling are excluded at $95 \%$ CL.

[^100]:    KHACHATRY... 15BB PL B750 494

[^101]:    VALUE DOCUMENT ID COMMENT

    -     - We do not use the following data for averages, fits, limits, etc. - -
    ${ }^{1}$ BASSOMPIE... $95 m_{A^{0}}=1.8 \pm 0.2 \mathrm{MeV}$
    ${ }^{1}$ BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peak in the invariant mass of $e^{+} e^{-}$pairs in the region $m_{e^{+} e^{-}}=1.8 \pm 0.2 \mathrm{MeV}$. They obtained bounds on the production rate $A^{0}$ for $\tau\left(A^{0}\right)=10^{-18}-10^{-9} \mathrm{sec}$. They also found an excess of events in the range $m_{e^{+}} e^{-}=2.1-3.5 \mathrm{MeV}$.

[^102]:    $<4.9 \times 10^{-10} \quad 90 \quad$ AHMAD 88 TPC TRIUMF

[^103]:    ${ }^{1}$ See footnote to SCHAEL 05C $\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}$ measurement for correlations with other measurements．
    2 The correlation coefficient between this measurement and the ACCIARRI 01F measure－ ment of $\mathrm{B}\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ is 0.08 ．
    ${ }^{3}$ The correlation coefficients between this measurement and the ANASTASSOV 97 mea－ surements of $\mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right), \mathrm{B}\left(\mu \bar{\nu}_{\mu} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right), \mathrm{B}\left(h^{-} \nu_{\tau}\right)$ ，and $\mathrm{B}\left(h^{-} \nu_{\tau}\right) / \mathrm{B}\left(e \bar{\nu}_{e} \nu_{\tau}\right)$ are $0.50,0.58,0.50$ ，and 0.08 respectively．
    ${ }^{4}$ Not independent of ALBRECHT 92D $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) / \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right)$ and ALBRECHT 93G $\Gamma\left(\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right) \times \Gamma\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \Gamma_{\text {total }}^{2}$ values．
    ${ }^{5}$ Modified using $\mathrm{B}\left(e^{-} \bar{\nu}_{e} \nu_{\tau}\right) / \mathrm{B}$（＂1 prong＂）and B （＂1 prong＂），＝ 0.855 ．
    ${ }^{6}$ Error correlated with BALTRUSAITIS $85 e \nu \bar{\nu}$ value．

[^104]:    ${ }^{1}$ BARTELT 94 assume phase space decays．

[^105]:    ${ }^{1}$ ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of $37.9 \mathrm{kton} \cdot \mathrm{yr}$ ). This result is obtained with a sample of high resolution contained-vertex muons. The quoted error is statistical only.
    ${ }^{2}$ ASHIE 05 results are based on an exposure of 92 kton yr during the complete SuperKamiokande I running period. The analyzed data sample consists of fully-contained single-ring $\mu$-like events with visible energy $>1.33 \mathrm{GeV}$ and partially-contained events.

[^106]:    A.M. Sirunyan et al.
    M. Aaboud et al.
    M. Aaboud et al
    M. Aaboud et al.
    M. Aaboud et al.
    M. Aaboud et al.
    M. Aaboud et al.
    A.M. Sirunyan et al.
    A.M. Sirunyan et al.
    A.M. Sirunyan et al.
    A.M. Sirunyan et al
    A.M. Sirunyan et al.
    M. Aaboud et al.
    A.M. Sirunyan et al.
    A.M. Sirunyan et al.
    A.M. Sirunyan et a
    G. Aad et al.
    V. Khachatryan et al.
    G. Aad et al.
    S. Chatrchyan et al.
    S. Chatrchyan et a
    G. Aad et al.
    S. Chatrchyan et
    G. Aad et al.
    G. Aad et al.
    G. Aad et al.

[^107]:    ${ }^{1}$ CHATRCHYAN 13AR limits assume pair-produced long-lived spin- $1 / 2$ particles neutral under $\mathrm{SU}(3)_{C}$ and $\mathrm{SU}(2)_{L}$.
    ${ }_{3}^{2}$ ABE 92J flux limits decrease as the mass increases from 50 to 500 GeV .
    ${ }^{3}$ HE 91 limits are for charges of the form $N \pm 1 / 3$ from $23 / 3$ to $38 / 3$.
    ${ }^{4}$ Hadronic or leptonic quarks.
    ${ }^{5}$ Cross section $\mathrm{cm}^{2} / \mathrm{GeV}^{2}$.
    ${ }_{7} 3 \times 10^{-5}<$ lifetime $<1 \times 10^{-3} \mathrm{~s}$
    ${ }_{8}^{7}$ Includes BOTT 72 results.
    ${ }^{8}$ Assumes isotropic cm production.
    ${ }^{9}$ Cross section inferred from flux.

[^108]:    (Continued on next page.)

[^109]:    VALUE (keV) DOCUMENT ID TECN COMMENT

    -     - We do not use the following data for averages, fits, limits, etc. - - -

[^110]:    ${ }^{1}$ Calculated by the authors from the cross section at the peak.

[^111]:    $1.2 \pm 0.3 \quad 870 \quad 22$ SCHEGELSKY 06A RVUE $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$

[^112]:    ${ }^{1}$ Mass errors enlarged by us to $\Gamma / \sqrt{N}$ ；see the note with the $K^{*}(892)$ mass
    ${ }_{3}^{2}$ Uses same data as HYAMS 75.
    ${ }^{3}$ From a phase shift solution containing a $f_{2}^{\prime}(1525)$ width two times larger than the $K \bar{K}$ result．
    ${ }^{4}$ From phase－shift analysis．Error takes account of spread of different phase－shift solutions．

[^113]:    $0.17 \pm 0.06$
    ${ }^{1}$ ABELE $\quad 01 \mathrm{~b}$ CBAR $0.0 \bar{p} n \rightarrow 5 \pi$

[^114]:    ${ }^{1}$ Result obtained by averaging the decay length and decay time analyses taking correlations into account.

[^115]:    $\sim 1580$
    OTTER 79 - $10,14,16 K^{-} p$

[^116]:    ${ }^{1}$ GODANG 00, ZHANG 06, and AALTONEN 08E allow $C P$ violation.
    ${ }^{2}$ AITALA 98, LI 05A, and AUBERT 07W assume no CP violation.
    3 This ABULENCIA 06X result assumes no mixing.
    ${ }^{4}$ This LINK 05 H result assumes no mixing but allows $C P$ violation. If neither mixing nor $C P$ violation is allowed, $R=(4.29 \pm 0.63 \pm 0.28) \times 10^{-3}$.
    ${ }^{5}$ This AUBERT $03 z$ result allows $C P$ violation. If $C P$ violation is not allowed, $R=$ $0.00359 \pm 0.00020 \pm 0.00027$.
    6 This LINK 01 result assumes no mixing or $C P$ violation.

[^117]:    ${ }^{1}$ To compare with previous measurements, this AUBERT 08AN value is from a fit that fixes the pole masses at $m_{A}=2.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $m_{V}=2.1 \mathrm{GeV} / \mathrm{c}^{2}$. A simultaneous fit to $r_{2}$, $r_{v}, r_{0}$ (a significant $s$-wave contribution) and $m_{A}$, gives $r_{2}=0.763 \pm 0.071 \pm 0.065$.'

[^118]:    * The group was originally referred to as "HFAG." This acronym was changed to "HFLAV" in 2017.

[^119]:    ${ }^{1}$ Assumes equal production of $B^{+}$and $B^{0}$ at the $\gamma(4 S)$.

[^120]:    ${ }^{1}$ For $m_{\Lambda \bar{\Lambda}}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$.
    ${ }^{2}$ Assumes equal production of $B^{+}$and $B^{0}$ at the $r(4 S)$.

[^121]:    $-0.16 \pm 0.22 \pm 0.01$
    WANG
    04 BELL Repl. by WEI 08

[^122]:    ${ }^{1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. We added $360^{\circ}$ to the value of $\left(-66_{-31}^{+21}\right)^{\circ}$ quoted by LEES 13B.
    ${ }^{2}$ Uses Dalitz plot analysis of $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$decays from $B^{+} \rightarrow$ $D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is $236^{\circ}<$ $\delta_{B}^{*}<322^{\circ}$.

[^123]:    ${ }^{1}$ Obtained by amplitude analysis of $\bar{B}^{0} \rightarrow D^{*-} \omega \pi^{+}$. The second uncertainty combines in qudrature experimental systematic and model uncertainties.
    ${ }^{2}$ Assumes equal production of $B^{0}$ and $B^{+}$at $r(4 S)$.

[^124]:    ${ }^{1}$ Assumes equal production of $B^{+}$and $B^{0}$ at the $\Upsilon(4 S)$.

[^125]:    ${ }^{1}$ Measured the angular and lifetime parameters for the time-dependent angular untagged
    decays $B_{d}^{0} \rightarrow J / \psi K^{* 0}$ and $B_{S}^{0} \rightarrow J / \psi \phi$.
    ${ }^{2}$ Obtained by combining the $B^{0}$ and $B^{+}$modes.

[^126]:    ${ }^{1}$ Uses a fully reconstructed $B$ meson as a tag on the recoil side

[^127]:    ${ }^{1}$ ABBIENDI OOE result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.
    ${ }^{2}$ ACCIARRI 96 C result obtained by a fit to the single lepton spectrum.
    ${ }^{3}$ Assumes Standard Model value for $R_{B}$.
    ${ }^{4}$ ABREU 93C event count includes $e e$ events. Combining $e e, \mu \mu$, and $e \mu$ events, they obtain $0.100 \pm 0.007 \pm 0.007$.
    5 ADEVA 91C measure the average $\mathrm{B}(b \rightarrow e \mathrm{X})$ branching ratio using single and double tagged $b$ enhanced $Z$ events. Combining $e$ and $\mu$ results, they obtain $0.113 \pm 0.010 \pm$ 0.006 . Constraining the initial number of $b$ quarks by the Standard Model prediction $(378+3 \mathrm{MeV})$ for the decay of the $Z$ into $b \bar{b}$, the electron result gives $0.112 \pm 0.004 \pm$ $(378 \pm 3 \mathrm{MeV})$ for the decay of the $Z$ into $b b$, the electron result gives $0.112 \pm 0.004 \pm$ 0.008 . They obtain $0.119 \pm 0.003 \pm 0.006$ when $e$ and $\mu$ results are combined. Used to
    measure the $b \bar{b}$ width itself, this electron result gives $370 \pm 12 \pm 24 \mathrm{MeV}$ and combined measure the $b b$ width itself, this electron result
    with the muon result gives $385 \pm 7 \pm 22 \mathrm{MeV}$.
    with the muon result gives $385 \pm 7 \pm 22 \mathrm{MeV}$.
    ${ }^{6}$ ABE 93E experiment also measures forward-backward asymmetries and fragmentation
    7 functions for $b$ and $c$.
    7 AKERS 93B analysis performed using single and dilepton events.

[^128]:    ${ }^{1}$ BUSKULIC 96 V assumes PDG 96 production fractions for $B^{0}, B^{+}, B_{S}, b$ baryons．
    ${ }^{2}$ Average branching fraction of weakly decaying $B$ hadrons into two long－lived charged hadrons，weighted by their production cross section and lifetimes．

[^129]:    $\Gamma\left(f_{0}(1500) f_{0}(1370)\right) / \Gamma_{\text {total }}$
    $\Gamma_{18} / \Gamma$
     ${ }^{1}$ ABLIKIM $05 Q$ reports $<1.4 \times 10^{-4}$ from a measurement of $\left[\Gamma\left(\chi_{C 0}(1 P) \rightarrow\right.\right.$ $\left.\left.f_{0}(1500) f_{0}(1370)\right) / \Gamma_{\text {total }}\right] \times\left[\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \chi_{C 0}(1 P)\right)\right]$ assuming $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=(9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2 S) \rightarrow$ $\left.\gamma \chi_{C 0}(1 P)\right)=9.79 \times 10^{-2}$. The $f_{0}$ mesons are identified via $f_{0}(1500) \rightarrow \pi^{+} \pi^{-}$and $f_{0}(1370) \rightarrow K^{+} K^{-}$decays. Both branching fractions for these $f_{0}$ decays are implicitly included in the quoted result.

[^130]:    ${ }^{1}$ Correlated with $b_{2}$ with correlation coefficient $\rho_{a_{2} b_{2}}=0.133$.

[^131]:    ${ }^{1}$ From a fit of $\pi^{0} p \bar{p}$ data to eight distinct intermediate $N \bar{p}$ resonant states.

[^132]:    ${ }^{1}$ From a Dalitz plot analysis with two Breit－Wigner amplitudes．

[^133]:    ${ }^{1}$ From an amplitude analysis of the decay $B^{+} \rightarrow J / \psi \phi K^{+}$with a significance of $8.4 \sigma$.
    ${ }^{2}$ Statistical significance of more than $5 \sigma$.
    ${ }^{3}$ Statistical significance of more than $6 \sigma$.
    ${ }^{4}$ Statistical significance of $3.1 \sigma$.
    ${ }^{5}$ From a fit assuming an $S$-wave relativistic Breit-Wigner shape above a three-body phase-
    space non-resonant component with statistical significance of more than $5 \sigma$.
    ${ }_{7}^{6}$ Statistical significance of $3.8 \sigma$.
    7 Superseded by AALTONEN 17 .
    

[^134]:    ${ }^{1}$ From a Dalitz plot analysis with two Breit-Wigner amplitudes

[^135]:    ${ }^{1}$ From a three-resonance fit

